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Abstract 


In this thesis, we undertake a study of imperative reasoning. Beginning with a philo

sophical analysis of the distinction between imperative and functional language fea

tures, we define a (pure) imperative language as one whose constructs are inherently 

referentially opaque. We then give a definition of a reasoning language by identifying 

desirable properties such a language should have. 

The rest of the thesis presents a new pure imperative reasoning language, As

signment Calculus AC. The main idea behind AC is that R. Montague's modal 

operators of intension and extension are useful tools for modeling procedures in pro

gramming languages. This line of thought builds on T. Janssen's demonstration that 

Montague's intensional logic is well suited to dealing with assignment statements, 

pointers, and other difficult features of imperative languages. 

AC consists of only four basic constructs, assignment 'X := t', sequence 

't; u', procedure formation 'it' and procedure invocation '! t'. Three interpretations 

are given for AC: an operational semantics, a denotational semantics, and a term

rewriting system. The three are shown to be equivalent. Running examples are used 

to illustrate each of the interpretations. 

Five variants of AC are then studied. By removing restrictions from AC's 

syntactic and denotational definitions, we can incorporate L-values, lazy evaluation, 

state backtracking, and procedure composition into AC. By incorporating procedure 

composition, we show that AC becomes a self-contained Turing complete language 

iii 



iv 0. Abstract 

in the same way as the untyped >.-calculus: by encoding numerals, Booleans, and 

control structures as AC terms. Finally we look at the combination of AC with a 

typed >.-calculus. 
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Introduction 

What is a pure imperative language? A careful attempt to answer this question 

leads to many interesting questions about programming languages. This disserta

tion presents and pursues one possible definition: a pure imperative language is one 

whose operators are fundamentally referentially opaque; in simple terms, they make 

substitution problematic. 

0.1 Assignment Calculus 

We begin the thesis with a primarily philosophical, but example-driven, discussion of 

the above definition. We also give a definition of a reasoning language, which is some

what more subjective but can qualitatively be defined by identifying several desirable 

properties such a language should have; the A-calculus is taken as the paradigm. 

Referential opacity, the principle of substitutivity, and intensionality are then 

discussed. Starting with some natural-language examples, we motivate the use of 

intension for handling certain types of problems, and then demonstrate that these 

problems are also present in imperative programming languages. After a presentation 

of its historical and technical background, the main subject of this dissertation is 

introduced: our imperative reasoning language Assignment Calculus, AC. 

The formal syntax and operational semantics of AC is given. We define and 

derive some of its important properties. The running examples of the thesis are 

1 
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presented, with their intuitive meanings and also their operational interpretations. 

These three examples will be used throughout the thesis to motivate and compare 

each of the interpretations of AC. We also examine an interesting component of AC: 

state backtracking. This is an unusual feature of AC that we argue is a highly useful 

part of imperative reasoning. 

After going over some mathematical preliminaries of domain theory, the se

mantic domains in which AC will be interpreted are defined. Of note here is the 

interpretation of the domain of possible worlds or states as a reflexive domain; this 

allows for the storage of intensions (procedures) in the state. We then proceed to 

give the compositional denotational semantics of AC terms, and identify some prop

erties and results. The semantic definitions are demonstrated by applying them to 

the running examples. A proof of the equivalence of the operational and denotational 

semantics of AC follows. This requires some new tools to be developed, most no

tably bounded recursion semantics that allows us roughly to limit (denotationally) 

the number of procedure calls in the evaluation of an AC term. 

A term rewriting system for AC is presented next; after giving its rules and 

proving some properties we use it to interpret the running examples. We then prove 

the equivalence of the rewriting scheme to the operational and denotational semantics. 

Taking AC as a starting point, we explore various extensions and variants 

of the core language. We look at alternate evaluation schemes for AC, introducing 

L-values and pointers, and adding functional features. The core of AC is slightly 

enriched and is shown to be a self-contained Turing complete language in which we 

can encode, for example, numerals and Booleans. 

Finally, we summarize the contributions of the thesis, talk about related work, 

and indicate some possible lines of further research. This is followed by a presentation 

of the implementation of AC, written in the Haskell programming language. We 

give instructions for obtaining and using the program, some examples of its use, and 

a partial listing of the program code. The program is available from the author's 
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website at www. cas. mcmaster. ca/""bendermm. Using this program, readers of 

this dissertation can work through any AC examples themselves and interactively 

explore the possibilities of reasoning with AC. 

0.2 Structure of the Thesis 

The thesis is structured according to the following plan. 

• 	 Chapter 1 presents the background and philosophical motivation; 

• 	 Chapter 2 is devoted to the syntax and operational semantics of AC; 

• 	 Chapter 3 gives a denotational semantics for AC, as well as a proof of the 

equivalence of the operational and denotational semantics; 

• 	 Chapter 4 provides a rewriting system for AC, and contains a proof that the 

rewriting rules are sound and complete; it also contains an important conjecture 

on confluence. 1 

• 	 Chapter 5 presents five extensions and variants of AC, as well as expansions 

of the earlier proofs to two of these; 

• 	 Chapter 6 discusses the contributions of the thesis, as well as related and future 

work; 

• 	 Finally, the Appendix presents the implementation of AC. 

0.3 Notation 

Some comments on notation will help to organize our presentation. Syntax is rep

resented by bold text, whereas semantics (the metalanguage) is normal (non-bold) 

mathematical text. Sans-serif symbols are metavariables-if they are bold, they range 

1This conjecture has since been proved by the author. 
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over syntax; if not, over values. The equivalence of two syntactic entities, meaning 

that they consist of the same sequence of symbols (assuming full parenthesization to 

avoid ambiguity), is indicated by the symbol '='. 



Chapter 1 

Imperative Reasoning 

To program a computer, we must provide it with unambiguous instructions to direct 

its actions, in order that it will arrive at the desired result. What qualifies as such an 

instruction? First, there are commands, which indicate exactly what the computer 

should do next. Commands (or statements) are usually presented sequentially, with 

conditions and jumps that allow us to branch or "jump" to other parts of the sequence. 

Second, there are goals. These provide a "specification," and it is up to the 

computer (or compiler) to figure out how to arrive at a solution. Goals are generally 

written as declarations that specify the form that the solution must take, and are 

often presented in a "functional" style [Bac78]. 

This distinction between types of instructions forms the basis of the two types 

of programming language: a language that is based on commands is called imperative, 

and one that is based on goals is called declarative. 

The distinction between these two approaches can be traced back all the way 

to two pioneers in computation theory, Alan Turing and Alonzo Church. Turing's ap

proach [Tur36] to describing computation is via a machine (the Turing machine) that 

executes tasks sequentially, reading from and writing to a storage device (the "tape"). 

Church's system [Chu41] is somewhat more abstract, taking the mathematical notion 

5 
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of function as basic, and employing only the operations of (functional) abstraction 

and application to express computational goals. Turing proves that their systems 

have the same computational power. He also argues convincingly that they are uni

versal in that they can model any computable procedure (this is the Church-Turing 

Thesis). Although they are equivalent in power, Turing's and Church's conceptions 

have developed over time in quite different ways. 

The great benefit of Turing's approach is its immediate suggestion of a real, 

workable computer; a variant, due to von Neumann, still lies at the core of virtually 

every computing device in use today [TNOl, §4.1]. Imperative programming languages 

were essentially born out of practical need: to program a computer one must "speak 

its language"; since computers are basically built on Turing's idea, so are imperative 

languages. Thus in any imperative language one will find operations for sequencing 

(e.g., ';'),as well as for reading from and writing to memory (e.g., X := 1). Impera

tive languages are thus closely connected to practice, but also to Turing's conception 

of computation. However, dealing with imperative languages' syntactic and semantic 

concepts can be tricky, and the Turing machine can be a clumsy theoretical tool for 

certain tasks. 

Church's approach, the A-calculus, is a syntactic system that stems from re

search into the foundations of mathematics. Its language of functional abstraction and 

application over variables is astonishingly small, elegant, and powerful. In addition, 

its use of variables and binding is very similar to traditional mathematical and logical 

languages, making it immediately amenable to theoretical study. Since its invention, 

many programming languages have been designed around the ,\-calculus, i.e., so-called 

functional languages. Furthermore, the mathematical properties of the A-calculus and 

related systems are well-explored (cf. for example Barendregt [Bar84]). On the other 

hand, a major drawback to functional languages is their lack of a "machine intuition", 

which makes them somewhat more difficult to implement and, arguably, to use. 

Real computers are based on the imperative model, so compilers for functional 
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languages are need to translate Church-style computation into Turing's model. Con

versely for computer scientists working in denotational semantics, to give a mathemat

ical meaning to imperative programming languages means interpreting Turing-style 

computation in a Church-style (functional) language. 

Can we "short-circuit" this interpretation in either direction? In other words, 

can we (a) build a computer on Church's notion, or (b) design a formal language 

that embodies Turing's conception? To question (a) we devote little discussion, but 

simply ask the interested reader to imagine how the concept of first-class functions 

might be implemented as the basis of a working computer. Certainly the way to a 

solution is not as clear as it is in the case of Turing machines. Architectures that are 

closer to the declarative paradigm have been explored by several researchers, but the 

results have generally been less than successful [HHJW07, §2]. 

As to question (b), it is somewhat surprising that there is no accepted canonical 

theoretical reasoning language that is fundamentally imperative in character. Con

sidering that in the real world imperative programming is ubiquitous, why is it the 

case that we have no theoretical "kernel" for it? 

The goal of this dissertation is to present a language that can serve just such 

a purpose. It is not presented as "the" basic language for imperative reasoning, but 

simply offered as a potential candidate. First, however, we must answer a pressing 

question: what, exactly, is "imperative reasoning"? 

1.1 What is Imperative Reasoning? 

A first attempt to define imperative reasoning could be made from the point of view of 

machine behaviour. If functional features are seen as "high-level," then the argument 

could be made that a pure imperative language should be as close to the machine 

as possible. There is certainly plenty of value in this view, and we intend to try to 

remain as close to such a machine-based intuition as we can. The problem is that 
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this perspective does not sufficiently restrict our definition: there are many different 

machine architectures and instruction sets, many different abstractions provided be

tween machine and assembly languages, many different ways of implementing control 

structures; in short, there is simply too much freedom when working with machine 

intuition alone. Therefore we add this condition: we want a language that we can rea

son within, not just about. We want a language with a simple and intuitive rewriting 

system. This design goal is similar to that mentioned by Felleisen [FH92, §1]. From 

this perspective, Hoare-style logics [Hoa69, dB80, HKTOO, Rey02] are not satisfactory; 

it is necessary, when working with such logics, to "step out" of the (programming) 

language of interest to reason about it. 

A better point of view is afforded if we take "pure imperative" to mean "not 

functional" in much the same way as "pure functional" means "not imperative". The 

roots of this view are put forth in Backus' Turing Award lecture [Bac78]; its history is 

organized and presented in [HHJW07]. By adopting this perspective, we can identify 

much more clearly those fundamental parts of programming languages that are truly 

imperative. So we begin our investigations with the concept of functional purity: 

what is it exactly? This will lead us to a better understanding of what it is not. 

Purely functional languages are referentially transparent. This maxim is re

peated often in the literature [Rea89, p.10], [FH88, p.10], [BW88, p.4] and is seen as 

a key feature of pure functional languages because it allows for call-by-name or lazy 

evaluation. A notable example of a lazy (pure) functional programming language is 

Haskell [P+o3, HHJW07]. 

Referential transparency (from now on just transparency) is a concept that 

goes back to Quine [Qui60, §30] and essentially embodies Leibniz's principle of sub

stitutivity of equals: 

Definition 1.1 (Substitutivity). In any expression, substituting one subexpression 

for another with the same meaning preserves the overall meaning of the expression. 



9 1. 	Imperative Reasoning 

More precisely, 

(Syntactic representations of pure functional languages (often) have a single exception 

to this principle: variable capture. The exception is unimportant because various ways 

to sidestep the issue are well documented [Bar84].) 

This principle is important because it is true of all traditional mathematical 

languages. The main benefit of transparency is clear: with the benefit of free sub

stitution, "computation" can proceed by substituting expressions for placeholders or 

variables. This idea is taken to a dazzling extreme in the .A-calculus. 

The pure .A-calculus reduces functional reasoning to its smallest possible core.1 

Its (only!) operators are .A-abstraction, which represents function formation, and ap

plication, which represents the usual function application familiar to mathematicians; 

its only atoms are variables. Syntactically, application of a function to an argument 

is accomplished by substitution (modulo variable capture), taking full advantage of 

referential transparency. With just these, the full machinery of computation can be 

constructed. We take the .A-calculus as the paragon of theoretical reasoning languages: 

• 	 It is small, elegant and intuitive; 

• 	 Its operators (faithfully) represent well-understood, fundamental concepts; 

• 	 It is well grounded, having operational and denotational semantics that are 

equivalent; 

• 	We can rewrite its terms using simple (provably valid) rules; 

• 	It has interesting properties; 

• 	It is easy to modify and extend [Bar84]. 

1Further reductions can be made, but in the author's opinion, only at the cost of intuitiveness 

and perspicuity. 
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Our aim is to develop a formal language for imperative reasoning that has as many 

of the above virtues as possible. 

This brings us back to the question at hand: what is a pure imperative lan

guage? We can now take a definite position: it is a language whose features are 

fundamentally non-transparent, or opaque. That is, we are interested only in those 

operators for which substitutivity is the exception rather than the rule. 

1.2 Referential Opacity 

Rather than diving directly into programming language examples, we begin with an 

informal look at opacity in natural language. Consider the following sentence: 

The temperature is twenty degrees and rising. 

At first glance, the statement seems innocuous enough. Let us try to formalize it 

somewhat; introduce the variable temp for temperature, and predicates twenty(x) 

meaning that xis twenty degrees and rising(y) meaning that y is rising. Then we 

can write our sentence as 

twenty (temp) A rising(temp) (1) 

Again, this seems to make sense. Now, let us say that the current temperature is in 

fact 20°. We should be able to substitute this value for temp in (1) and determine 

its truth value; doing so results in 

twenty(20°) A rising(20°) 

The first part, twenty(20°), is of course true. But the second part makes no sense: 

20° is always just twenty degrees cannot "rise". When we say that the temperature 

is rising, we are not only talking about the current value of the temperature, but 

about its value over time (specifically its derivative). The predicate rising introduces 
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what is known as an opaque context: it does not suffice to look at the current (or 

extensional) value of its argument. Instead we must consider its "larger" meaning, 

called its sense or intension. twenty on the other hand creates a transparent context. 

Such intensional phenomena abound in natural language, and have created 

interesting problems for philosophers and linguists for some time [Fre92], [Tho7 4]. 

Generally they can be recognized by apparent violations of substitutivity like in the 

example above. This is also the case for imperative programming languages, to which 

we now turn our attention. 

Consider the expression: 

X~l. (2) 

In itself, the above causes no problems; it is transparent in that, if we know for 

example that X is 2 then we can substitute to obtain 

2~ 1 ~true 

as we would expect. In an imperative language, we could perhaps write this as 

X:=2; (X~l) ~true. (3) 

Another way to state this fact is to say that X ~ 1 in the "current machine state" . 

The trouble starts when we start to think not only in the context of the current 

machine state or even other states, but rather about varying or changing states in a 

computation, for example, 

During loop£, X ~ 1. (4) 

The above states a loop invariant and only makes sense if we think of X as represent

ing a (possibly) changing value, that is, a value that is subject to destructive update 

multiple times during the execution of£. Here we see the first case of an apparent 

violation of substitutivity: substituting the current value of X into ( 4) gives 

During loop £, 2 ~ 1. 
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which is trivially true and clearly has lost the meaning of ( 4). The sentence "During 

£, o" has introduced an opaque (or intensional) context. 

We do not need to resort to natural language to create opaque contexts. They 

are inherent to all of the fundamental imperative operations. First, consider the 

sequence operator '; '. It introduces an opaque context on its right-hand side, as 

demonstrated implicitly by (3). Whereas (2) is true only in states wherein X has a 

value greater than or equal to 1, (3) is always true. Specifically, if the current state 

assigns 0 to X, then we cannot substitute 0 for the second occurrence of X in (3) to 

obtain 

X := 2; (0;::: 1) ~ false. 

Next, examine the assignment statement itself; consider 

X:=Y. (5) 

It is transparent on its right-hand side; if the current state sets Y to 2 then (5) has 

the same meaning as 

X:=2. 

But, as first discovered and studied by Janssen [JvEB77], the assignment statement 

is opaque on its left-hand side. If, for example, the current state sets X to 1, we 

cannot substitute that into (5) to obtain 

1:= Y, 

because not only does the above not have the same meaning as (5), it has no meaning 

at all! This opaque context is quite interesting because it does not just indicate the 

value of a memory location "in all contexts" as in the earlier examples, but instead 

indicates the memory location "itself", called its L-value [Str73]. This penetrating 

insight of Janssen's is the starting point for the line of investigation ([Jan86, Hun90, 

HZ91]) that this thesis continues. 
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Another example of referential opacity is the while-loop construct, which has 

the form 

while t do b (6) 

where t is the loop test and b is the loop body. It turns out that both t and b are 

intensional contexts, as they must be reevaluated at each iteration in a new machine 

state. For example, if t is X = 1, then substituting 0 for X in (6) will result in a 

non-terminating program because the loop test will never be rechecked with a new 

value for X. Note the similarity of this example to the loop invariant example. 

1.3 Intension 

Frege, in [Fre92], carefully analyzed the substitutivity problem. This led him to 

distinguish between two kinds of meaning: sense (Sinn), the "larger" or "global" 

meaning, and reference or denotation (Bedeutung), the "smaller", "local" or "current" 

meaning. He shows that, in cases where substitutivity does not hold in terms of 

the denotations of expressions, it can be restored if we consider the senses of those 

expressions. 

Going back to example (1), we have seen that in 

rising (temp) 

we cannot substitute an expression for temp that is simply co-denotational with 

temp. We can, however, substitute an expression that has the same sense as temper

ature such as, say, therm = "the value displayed by the thermometer" . We 

say that they have the same sense because they are co-denotational in all possible 

"contexts,", "states," "settings" or-in Kripke's terminology [Kri59]-in all possible 

worlds. 

Frege's work was primarily philosophical. He intended to distinguish and ex

amine the two forms of meaning, but he did not go so far as to attempt to develop 
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a formal system to "implement" his ideas. This development had to wait until the 

work of Church [Chu51], who gave the first syntactic system that incorporates sense 

and denotation, and Carnap [Car47] who provided the first semantic interpretation 

of sense and denotation. Carnap introduced the names "intension" and "extension" 

respectively for his particular versions of these; he defined the intension of an expres

sion as a function from contexts of use (states) to values, and the extension of an 

expression in some state as its intension function applied to that state. This was a 

valuable step in designing a workable conception of sense and denotation. 

Kripke [Kri59], by providing the setting of possible worlds for modal logic, 

rounds out the semantic treatment. By combining his work with that of Carnap, we 

can treat intension as a function from possible worlds to values. 

The next major step was accomplished by Montague [Mon70, Mon73], whose 

attempts to treat natural language by mathematical means led him to his intensional 

logic IL, which takes the semantic work of Carnap and Kripke in the syntactic direc

tion of Church. In IL, not only can intension and extension be handled, but they are 

actually incorporated as operators in the logic. Montague's intension operator, 'A', is 

a "higher-order" analogue of the necessity operator 'D' of modal logic in the same 

way as Church's abstraction operator '..X' is a higher-order analogue of the universal 

quantifier ''r;/': following Gallin [Gal75], we can define 

Dt = (At= Atrue) 

just as Henkin [Hen63] defines 

'v'x · t = ((.Xx· t) =(.Xx· true)). 

Gallin [Gal75] provides a thorough treatment of IL along with some related systems. 

Montague utilized his logic to achieve great gains in the semantic study of natural 

language. But this is not what we are interested in. 

Janssen and van Emde Boas, in [JvEB77], discovered that Montague's tools 

and techniques were useful for modeling certain aspects of imperative programming 
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languages. By identifying possible worlds with machine states, and slightly extending 

IL, they provide strikingly elegant treatment of assignment statements and pointers. 

Due to the fact that IL, including the variant they propose which others [GS90] 

have called Dynamic Intensional Logic or DIL, has a compositional denotational 

semantics, the treatment they give is in the spirit of denotational semantics [Sto77]. 

This line of work was continued in Janssen's Ph.D thesis [Jan86], where a more 

complete fragment of a programming language was handled, including some tricky 

parts of Algol 68. A significant extension was accomplished by Hung and Zucker 

[Hun90, HZ91], who provide compositional denotational semantics of quite difficult 

language features such as 

• 	 Blocks with local identifiers: 

"new-blocks" which create a new local program variable 

"alias-blocks" which explicitly create aliasing between a local variable and 

an external variable 

-	 "macro-blocks" which model textual substitution for the local variable 

• 	 Procedure parameters, passed by value, by reference and by name, treated to

gether in a single system. 

• 	 Pointers which can be dereferenced anywhere including the left-hand side of 

assignment statements 

Janssen's system--specifically, Hung's version-is the genesis of Assignment 

Calculus AC, the language to be presented in the remainder of this dissertation. 
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1.4 Intentions 

The present work begins with the author's observation, while studying the work of 

Janssen and Hung, that 

Montague's intension operator generalizes the concept of (parameterless) procedure. 

A parameterless procedure is a function from states to states [Sto77, dB80]. An 

intension is a function from states to values. If we include states in the set of values, 

then the generalization is clear. The reason that it was not noticed by Janssen or 

Hung is that, in Montague's (and related) systems, states cannot be treated as values. 

The system of dynamic intensional logic (DIL) of Janssen [Jan86], is an exten

sion of Montague's original intensional logic IL. Montague's system was intended for 

natural language semantics, and does not have operators that are suited to handling 

assignment and sequence. 

In order to adapt IL to the setting, Janssen supplements its usual modal 

operators (intension and extension) with features that allow reading from and writing 

to the state. Reading from the state makes use of "access points" into the state 

called, as usual, locations. Updating the state makes use of a new invention, which 

Janssen calls the state switcher. The state switcher is a ternary operator '( t/u )v' 

that means, roughly, "the value of v in the current state modified so that t now 

contains u". Therefore state switchers are actually a combination of assignment and 

sequence. For example, here is a rough translation of a small imperative program into 

its DIL equivalent: 

X:= 1; 

y := x (x /1 ) ( ( y Ix) (Y)) 

return Y 

In AC we decouple the state switcher from its argument to regain the assignment 

and sequence operators themselves. This also has the consequence that states can be 

treated as values, which validates the observation mentioned above. 
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The second observation is that we can allow "storage" of intensions in the 

state. Stored procedures are a well-known but difficult feature of imperative languages 

[Sco70, §1], [8871, §5]. They lead to general recursion, but also to a generalization of 

the treatment of pointers given by Janssen and Hung. 

In fact, the system that results from this is sufficiently interesting that we 

have decided to study it in "isolation": we have removed all of the functional and 

logical components that were present in DIL, such as variables, abstraction and 

application. The remainder of this thesis is devoted to defining, analyzing, working 

with, extending, and implementing the resulting language, AC, as a case study in 

pure imperative reasoning. 



Chapter 2 

Assignment Calculus 

In our attempt to create a pure imperative reasoning language, it is important to 

remain as close as possible to existing imperative programming languages. The selec

tion of operators for AC must be as conservative as possible. So, what are the basic 

features of imperative languages? 

An imperative programming language can be defined as a language L with 

the following characteristics: 

1. 	 The interpretation of L depends on some form of computer memory (state) 

through which data can be stored and retrieved. 

2. 	 The state consists of contents of discrete memory locations that can be read 

from or written to independently. 

3. 	 An £-program consists of a sequence of explicit commands or instructions that 

fundamentally depend on (and often change) the state. 

4. 	 L contains some form of looping, branching or recursion mechanism to allow 

for repeated execution of program parts. 1 

1The fourth characteristic is, in a sense, optional; however, imperative languages that lack a 

repetition construct are less interesting because they are not Turing complete. 

18 
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The first three characteristics are common to all imperative languages, whether these 

languages are theoretical or practical. Therefore, AC includes them directly. 

The fourth characteristic, on the other hand, can be embodied in many differ

ent ways. We have conditional (location-based) branching or "jumping" in assembly 

languages, or "goto" statements in higher-level languages. There are a multitude 

of condition-based looping constructs, like "while" loops, "repeat-until" loops, "for" 

loops, etc. Finally, there is recursion, which depends on the notion of procedure: a 

named block of program text that can be invoked as many times as wanted, and can 

even call itself. 

Practical imperative languages usually include more than one (if not all) of the 

above incarnations of characteristic 4. Generally speaking, there is no agreed-upon 

mechanism that is considered the most "basic". Jumping is the closest approximation 

to the way that actual computer hardware functions, but it is usually eschewed in 

high-level languages [Dij68] and its mathematical treatment is difficult [SW74, BT83]. 

Looping constructs are commonly used in small theoretical languages, but the choice 

of which one to use is arbitrary; besides, translating branching or recursion into 

looping is non-trivial whereas the inverse translation is quite simple. In terms of ex

pressiveness, then, recursion seems best. However procedures tend to be a somewhat 

"bulky" addition to a small imperative language. This is due to the fact that the 

introduction of procedures usually requires, at the very least, a new set of identifiers 

for procedures and a procedure declaration construct. 

AC takes a different approach to characteristic 4. It employs Montague's 

intension operator as a generalization of parameterless procedure. Although Janssen 

and Hung had already employed intension and extension in ingenious and insightful 

ways, their ideas can be taken much further: we believe that 

Intension is to procedure formation as >.-abstraction is to function formation. 

In AC, intensions are treated as first-class values: they can be defined anonymously, 
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assigned to locations, and invoked freely. 

The goals of AC are twofold: firstly to continue the line of research initi

ated by Janssen and continued by Hung and Zucker in applying Montague's work to 

programming languages, and secondly to attempt to provide a small, elegant, useful 

core language for imperative-style reasoning-a pure imperative reasoning language 

as defined in Chapter 1. 

2.1 Introduction to AC 

The set of terms of AC is called Term, and it is ranged over by the metavariables 

t, u, .... Before defining Term formally, which we do in Definition 2.5, we start by 

going over the basic constructs of AC and their intuitive meanings. 

1. 	 Locations: X, Y, ... These correspond to memory locations in a computer. 

'X' alone is interpreted as "the contents of location X" . The collection of all 

locations constitutes the store. 

2. 	 Assignment: X := t. Overwrites the contents of location X with whatever t 

computes. The operation of assignment computes the store that results from 

such an update. 

3. 	 Sequence: t; u. This statement is to be interpreted as follows. First compute t, 

which must return a store, then compute u in this new context. t; u ; v is read 

t;(u;v) 

4. 	 Intension: it. This is the operation of procedure formation. It "holds" evalu

ation of t so that it is the procedure that, when invoked, returns whatever t 

computes. 

5. 	 Extension: !t. This operation is procedure invocation, that is, it "runs" the 

procedure computed by t. 
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We have decided to employ different notation than Montague for intension and ex

tension because, although our operations are in a sense identical, the way in which 

we use them is significantly different. It is also the author's humble opinion that 

Montague's symbols are somewhat confusing, and therefore we have taken pains to 

find symbols whose meanings are clearer. An easy way to remember them is that 'i' 
looks like a lowercase 'i', for intension, and that '! ', an exclamation mark, is used for 

extension. 

The above features, considered in isolation, constitute pure AC. In order to 

facilitate the development of examples, they are supplemented with the following: 

1. 	 Numerals: 0, 1, .. . , ranged over by m, n, 

2. 	 Booleans: true, false, ranged over by b, 

3. 	 Arithmetic operators: t + u, .. . , 

4. 	 Boolean operators: t Au, ... , 

5. 	 Number comparison operators: t < u, .. . , 

6. 	 A conditional construct: if t then u else v. 

To reduce the use of parentheses, set the precedence of operators, in decreas

ing order, as follows: intension and extension, arithmetic and Boolean operators, 

assignment, sequence, conditional. 

Here are some examples of AC terms: 

Examples 2.1. 

1. 	 X := 1; Y := X; Y. This term sets X to 1, then sets Y to 1, and finally 

returns 1. 

2. 	 P := iX; X := 1; !P. This term sets P to the procedure that returns X, 

then sets X to 1. Finally, P is invoked thus returning the current value of X 

which is 1. 
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3. 	 P := i (if X > 1 then X X (X := X - 1; !P) else 1); !P. This term 

computes the factorial of X (which needs to have a value). 

We will return to these examples often in the rest of the thesis, to demonstrate 

the various interpretations of AC. 

2.2 Types and Syntax of AC 

AC is a simply typed language in the sense of Church [Chu40], meaning that all 

terms are typed a priori, and that there are no type variables. 2 

Definition 2.2 (Types). The set of types Type, ranged over by T, .. . , is generated 

by: 

T ::= B I N I s I S-+T, 

where B is the type of Booleans, N is the type of natural numbers, S is the type of 

stores (or states, see Chapter 3), and S-+T is that of intensions (procedures) which 

return values of type T. Note that the base types B and N are added only to handle 

the supplementary features described above; for pure AC, they can be removed. 

Every term t of AC has a unique type T; if any ambiguity arises as to what 

that type is we will indicate it by a superscript: t-r. Locations are also uniquely typed 

a priori. 

To formalize the syntax of AC, we begin by specifying the set Loe of locations, 

first by identifying what their types can be: 

Definition 2.3. The set LType of types of locations is a finite subset of Type that 

does not contain S (but can contain S-+ T for any T). 

2By choosing a conservative approach to types, we intend to make it as easy as possible to extend 

and study the type system in future work. 
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We only allow a finite number of types of locations for technical reasons which 

will be made clear in Chapter 3 (see discussion in §3.2.1). Locations are (arbitrary) 

syntactic objects; the only criterion is that they be testable for (syntactic) identity. 

Definition 2.4. Loe-r is the (countable) set of all locations of type T. The set of all 

locations is Loe = UrELType Loe-r. 

The definitions of stores, terms (and later states) are all dependent on Loe. 

Rather than making this dependence explicit, we will just assume that we are always 

working with some predefined set of locations. 

Now we define the set of terms Term of AC. For each type T, the set of terms 

of type T is written Term-r; these sets are defined in a mutual recursive manner as 

follows. 

Definition 2.5 (Syntax of AC). 

1. X E Loe-r => x E Term-r 

2. t Term-r it E Terms-+-rE => 
3. t E Terms-+-r => !t E Term-r 

4. X E Loe-r, t E Term-r => X-r:=t-r E Terms 

5. t E Terms, u E Term-r => t;u E Term-r 

As for the supplementary operators, 

6. b E Term9 

7. n E TermN 

8. t, u E Term9 => t /\ u E Term9 
, sim. for other Boolean ops. 

9. t, u E TermN => t< u E Term9 
, sim. for other comparison ops. 

10. t, u E TermN => t+u E TermN, sim. for other arithmetic ops. 

11. t E Term9
, u, v E Term-r => if t then u else v E Term-r 

The set of all terms is then defined as Term = U-rE Type Term-r. 
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Remarks 2.6. 

1. 	 The intension of a term t of type T is of type S --+ T, and the extension of 

an (intensional) term t of type S--+ T is of type T. This is the reflection of 

formation and invocation in the type system. 

2. 	 The assignment construct is of type S. It does not result in a "value and a 

side-effect," but rather in the "effect" itself 

3. 	 The sequence operator allows types other than S on its right-hand side. This 

aspect of AC is discussed further in §2.5. 

Assignments are of type S due to the fact that they return stores, and the type 

of the location (on the left-hand side) and the assigned term must be in agreement. 

We do not allow locations of type Sin the usual version of AC (see, however, §5.3), 

but we do allow locations of type S --+ T for any T. This amounts to storage of 

intensions in the store, which accounts for much of AC's expressive power. 

To see this, we need to develop the intuition for intension a little further. 

Operationally, we can think of it as representing the "text" of t, which, in an actual 

computer, is the way that procedures and programs are stored. Now consider the 

term 

·- .,,xX ·- . ' 

which is read "store in X the procedure that invokes X". Once this action is per

formed, an invocation of X 

.l - X·- i'X· 'X 
def ·- • ' • 

will proceed to invoke X again and again, leading to divergence. Placing intensions 

in the store leads to the possibility of unbounded recursion and thus non-termination. 

Note that .l can be defined to be of any type T by selecting an X of type S--+ T, and 

also that .l is the simplest form of term that always diverges. 



25 2. Assignment Calculus 

2.3 Operational Semantics of AC 

In this section we provide an operational interpretation for AC. The first step is to 

formalize the store, which so far has been used in a rough-and-ready intuitive form: 

Stores, ranged over by s, are functions from Loe into Term that respect types in that 

members of Loc7' are only mapped to members of Term7'. This characterization is 

accurate but not precise, in that stores actually map locations to a particular subset of 

Term; it will however serve our purposes until it is formalized properly by Definition 

2.19. 

We access the contents of X in a stores by function application s(X), and we 

will use the standard notion of function variant to update the contents of a location. 

Definition 2. 7 (Variant). The variant of a function f at x for d is the function 

f[x/d], where (f[x/d])(x) = d and (f[x/d])(y) = f(y) for any y =I- x. 

Updating stores so that X now contains t gives the new store s[X/t]. 

We now proceed to formalize the behaviour of AC by giving its operational 

semantics. To do this we will use Plotkin's structural operational semantics [Plo81], 

in the big-step [Win93] (or "natural" [Kah87]) style. The rules define the computation 

relation .1J- C ( (Term x Store) x (Term U Store)). Really, since a term can compute 

either a store (if the term is of type S) or another term (if it is of any type other 

than S), the computation relation can be broken into two disjoint relations .IJ-c C 

( ( Term5 x Store) x Store) and .IJ-v c ( (Term7' x Store) x Term). However, since 

the rules are so simple, we choose instead to use the metavariable d to range over 

both terms and stores, and give the rules as follows: 

Definition 2.8 (Operational semantics of AC). First, the rules for locations, as

signment and sequence are standard [Win93]. 

s(X) = t t, s .lJ- u t, s .lJ- s' u, s' .lJ- d 

x, s .lJ- t X := t, s .lJ- s[X/u] t; u, s .lJ- d 
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Then, our rules for intension and extension: 

t, s ,[J, iu u, s ,[J, d 

it, S J,l, it I 11 d . t, s "'I' 

Then the rest (also standard). Recall that these are not a part of pure AC: 

b, s ,[J, b n, s ,[J, n 

t, s JJ, n1 u, s JJ, n2 where n is the sum of n1 and n2 ; 

t + u, s JJ, n sim. for other arithmetic operators 

t, s ,[J, b1 u, s ,[J, b2 where b is the conjunction of b1 and b2; 

t I\ u, s ,[J, b sim. for other Boolean operators 

t, s ,[J, n1 u, s ,[J, n2 where b is true iff n1 is less than n2; 

t < u, s ,[J, b sim. for other comparison operators 

t, s ,[J, true u, s ,[J, d t, s ,[J, false v, s ,[J, d 

if t then u else v, s ,[J, d if t then u else v, s ,[J, d 

As an example of how to interpret the above definitions, consider the assign

ment construct. Its rule should be read: If t computes d given store s, then X := t, 

when evaluated in stores, computes s[X /d]. 

The intuition for the rules for intension and extension are as follows: 

Intension "holds back" the computation of a term, 

and extension "induces" computation. 

These rules provide an operational interpretation for Montague's intension and exten

sion operators. While [HR77] translated Montague's operators into LISP fragments, 

we believe that ours is the first operational semantic description of these. 

It is important to note that there are no side-effects in AC; if a term is of 

type T =/= S then it only results in a value. This has interesting consequences; see §2.5 

for a detailed discussion. 
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As a first simple result about our operational semantics, we show that com

putation is unique and deterministic: 

Lemma 2.9. There is at most one derivation for any t, s. 

Proof. Formally, the proof proceeds by induction on derivations. However, by inspec

tion, we see that each construct appears on the bottom of exactly one rule except for 

the conditional. So the property is maintained by everything but the conditional. In 

that case, by IH, there is at most one derivation resulting in either true or false, so 

only one of the cases applies, which completes the proof. D 

If there is no d such that t, s .JJ- d, t is said to diverge on store s. 

Let us return to our examples from §2. l. First, here is the operational inter

pretation of example 1: for any s, 

s[X/l](X) = 1 


X, s[X/1] .JJ- 1 s[X/l][Y/l](Y) = 1 


1, s .JJ- 1 Y:= X, s[X/1] .JJ- s[X/l][Y/1] Y, s[X/l][Y/1] .JJ- 1 


X := 1, s .JJ- s[X/1] Y:= X; Y, s[X/1] .JJ- 1 


X:=l; Y:=X; Y,s .JJ-1 


Next, example 2. For any s, s' = s[P/iX] ands"= s[P/iX][X/1], 

s"(P) = ix s"(X) = 1 


1, s' .JJ- 1 P, s" .JJ- iX X, s" .JJ- 1 


iX, s .JJ- iX X := 1, s' .JJ. s" !P, s" .JJ- 1 


P == iX, s .JJ- s' X := 1; !P, s" .JJ. 1 


p := ix; x := 1; !p' s .JJ. 1 


Example 3 is different than the other two examples in that it depends on the input 


store, specifically, on the value of X. A term that has such a dependence is called 


operationally non-rigid, and one that has no such dependence is called operationally 
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rigid. Such classifications of terms are the subject of the next section. A full deriva

tion of example 3 is unwieldy, but we can demonstrate a single step of the factorial 

calculation. Let 

p = if X > 1 then X x (X := X - 1; !P) else 1, 

and take a stores s.t. s(P) = ip and s(X) = 4. The partial derivation of a step in 

the factorial is as follows: 

s(X)=4 

X,s.J,1..4 1,s.JJ..1 


(X-1),s.JJ..3 


s(X)=4 s(X)=4 (X := X-1),s .JJ.. s[X/3] !P,s[X/3] .JJ.. 6 


X,s.J,1..4 1,s.J,1..1 X,s.JJ..4 (X:=X-1; !P),s.JJ..6 


s(P)=ip (X>l),s.J,1..true (Xx(X:=X-1; !P)),s.J,1..24 


P,s .JJ.. ip (if X > 1 then Xx (X := X -1; !P) else 1), s .JJ.. 24 


!P,s .JJ.. 24 


2.4 Rigidity, Modal Closedness, and Canonicity 

This section is devoted to studying the properties of terms of AC and their opera

tional derivations. 

Definition 2.10 (Operational equivalence). Two terms t and u are operationally 

equivalent if, for every stores, either both t, sand u, s diverge or there is ad s.t. t, s .!J. d 

and u, s .!J. d. We write t 0 u if this is the case. 

Definition 2 .11 (Operational rigidity). A term t is called operationally rigid iff there 

is a u s.t. all stores s give t, s .!J. u. A term for which this is not the case is called 

operationally non-rigid. 

http:X-1),s.JJ
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Operational rigidity is a condition that is difficult to characterize simply. For 

example, X := X; 1 is rigid, but its operational derivation does depend on the 

value stored in X. It is therefore useful to approximate rigidity with more readily 

identifiable properties. The first such approximation that we will consider is the set 

of locations that are accessed during computation. 

Definition 2.12 (Access set). If t, s .lJ. d, the access set oft givens is the set consisting 

of all of the locations that are used in the derivation tree oft, s .lJ. d. We write this as 

acc(t, s). 

More formally, we can define the access set by induction on derivations: 

1. 	 acc(b,s) = acc(n,s) = acc(it,s) = 0 

2. 	 acc(X,s) = {X} 

3. 	 acc(X := t, s) = acc(t,s) U {X}. 

4. 	 If t 6 -+.,., s .lJ. iu, then acc(!t, s) = acc(t, s) U acc(u, s) 

5. 	 If t 6 , s .lJ. s', then acc(t; u, s) = acc(t, s) U acc(u, s') 

6. 	 acc(if t then u else v, s) = acc(t, s) U acc(u, s) U acc(v, s); sim. for all other 

operators. 

In the case that t, s diverges, we (arbitrarily) set acc(t, s) =Loe. 

Lemma 2.13. If there is ans s.t. acc(t, s) is empty, then for every s', acc(t, s') is 

empty. 

Proof. By induction on derivations. 

1. 	 Base cases: By definition, for alls, acc(b, s) = acc(n, s) = ace( it, s) = 0. 

2. 	 X: For alls, acc(X,s) = {X}-/= 0; therefore this case is vacuous. 

3. 	 X := t: For alls, acc(X := t, s) = acc(t, s) U{X} i= 0: vacuous. 
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4. 	 !t: If acc(!t, s) = 0, then acc(t, s) = 0 and, for the u s.t. t, s .ij. iu, acc(u, s) = 
0. 	By IH, for any s', acc(t, s') = 0 and acc(u, s') = 0; therefore, acc(!t, s') = 0. 

5. 	 t; u: If acc(t; u, s) = 0, then acc(t, s) = 0 and, for the s' s.t. t, s .ij. s', 

acc(u, s') = 0. By IH, for any s", acc(t, s") = 0 and for the s"' s.t. t, s" .ij. s"', 

acc(u, s"') = 0; therefore, acc(t; u, s") = 0. 

6. 	 Other operators, e.g., the conditional: If acc(if t then u else v, s) is empty, 

then acc(t, s) = acc(u, s) = acc(v, s) = 0. By IH, for any s', acc(t, s'), 

acc(u, s'), and acc(v, s') are empty, so acc(if t then u else v, s') = 0. D 

The reason that the access set depends not only on t but also on the input 

store is demonstrated by the following example: let t - !P, and let s be a store 

where s(P) = iX. Then t,s .ij. s(X), so acc(t,s) = {P,X}. 

Lemma 2.14. If acc(t, s) is empty, then t is operationally rigid. 

Proof The proof of Lemma 2.13, slightly modified, gives this result. 	 D 

To provide a syntactic approximation to rigidity, we follow Montague and 

define the set of modally closed terms as follows: 

Definition 2.15 (Modal Closedness). The set of modally closed terms MC, ranged 

over by me, is generated by 

if mc1 then mc2 else mc3 

with similar clauses for other arithmetic, comparison and Boolean operators. 

The following lemma shows that modal closedness is a stronger condition than 

the access set being empty. 

Lemma 2.16. t E MC===} acc(t, s) = 0 
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Proof. By a simple structural induction on the forms of modally closed terms. D 

Combining the two lemmas above, we have that modally closed terms are 

operationally rigid. 

Lemma 2.17. t EMC==> t is operationally rigid. 

Proof. By Lemmas 2.14 and 2.16. D 

Modal closedness captures the intuitive notion of a completed imperative com

putation, but it can leave arithmetic and Boolean computations unfinished. Terms in 

which all of these computations are also complete are called canonical and are defined 

by: 

Definition 2.18 (Canonical terms). The set of canonical terms Can, ranged over 

by c, is generated by: 

c ::= b I n I it 

CanT of course means the set of canonical terms of type T. Clearly, Can ~ MC; 

without supplementary operators Can is identical to MC. 

The characterization of terms given above can be presented concisely as 

t E Can => t EMC => acc(t, s) = 0 => tis operationally rigid 

Now we get to the point of these definitions: we want to ensure that stores only 

contain canonical terms. Doing so allows us to ensure that the operational semantics 

is well-defined. The following definition is the promised refinement to our earlier 

definition of stores: 

Definition 2.19 (Properness of Stores). A store s is called proper if it only maps 

locations to canonical terms. Define the set of stores Store as UTELType (Loe7" --+ 
CanT). 
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The main result of this chapter is that the operational semantics only produces 

canonical terms or proper stores: 

Theorem 2.20 (Properness of Operational Semantics). Ifs is proper, then for any 

t where t, s converges: 

1. 	 If t is of type S then there is a proper store s' s. t. t, s .1J- s'; 

2. 	 Otherwise, there is a c s. t. t, s .1J- c. 

Proof. By induction on derivations. 

1. 	 b, n, and it are already canonical. 

2. 	 X, s .1J- s(X). Since sis proper, s(X) is canonical. 

3. 	 !t,s .1J- d implies that there is au s.t. t,s .1J- iu and u,s .1J- d; by IH, dis either 

canonical or proper depending on the type of t. 

4. 	 X := t, s .1J- s[X /u]. Then t, s .1J- u, which means by IH that u is canonical, 

which, because sis already proper, gives that s[X/u] is also proper. 

5. 	 t; u, s .1J- d provides that there is a s' s.t. t, s .1J- s' and u, s' .1J- d. By IH, s' is 

proper; this then gives by IH that d is either canonical or proper depending on 

u's type. 

6. 	 if t then u else v, s .1J- d. 

Case 1: t, s .1J- true and u, s .1J- d. By IH, d is either canonical or proper. 

Case 2: t, s .lJ- false. Similar to case 1. 

7. 	 Other supplementary operators are treated in a similar manner as the condi

tional. D 

This completes the operational characterization of AC. 
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2.5 State Backtracking 

There are some notable differences between AC and traditional imperative program

ming languages. The most important such difference is indicated by Remark 2.6.2: 

there are no side-effects. In AC, terms represent either stores (effects), if they are of 

type S, or values if they are of some other type. 

Firstly, a language based on side-effects can easily be translated into AC by 

selecting one location (of each type), say R, as a result location; any expression in 

that language that returns a pair (value, effect) would be roughly translated into 

effect; R := value. This is based on the simple observation that the state is a rather 

large structure that is fully capable of containing any results that we may need, and 

therefore that returning a value separately from the state is superfluous. There is no 

loss of generality in moving to a side-effect-free setting as we have done. 

Secondly, in the absence of side-effects, a strange phenomenon occurs when we 

return a value: state backtracking. 

State backtracking, or non-persistent or local state update, occurs in AC when 

we have terms of the form 

t; u'T' where T =IS (1) 

because state changes caused by t are "lost," "localized" or "unrolled" when the value 

of u is returned. Consider the following example: 

Y:= (X:= 1; X). 

Changes to X are local to the computation of Y, so in fact the above term is equiv

alent to 

Y:=l 
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as demonstrated by the following derivation tree: 

1, s .JJ. 1 s[X/l](X) = 1 

X := 1, s .JJ. s[X/1] X, s[X/1] .JJ. 1 

X:= 1; X, s .JJ. 1 

Y:= (X:= 1; X), s .JJ. s[Y/1] 

Similar behaviour can be observed in Example 3, in the way that the key state update, 

X := X - 1, only applies within the scope of the multiplication operator at each 

recursive stage. 

State backtracking is reminiscent of dynamic scoping [Hun90], and is closely 

related to the concept of fluid variables in LISP [MHGG79]. It is important to note 

that only state is reset by the backtracking operator, not control. 

Because we include terms of the form (1), we can derive a clean rewriting 

system for AC. It gives us a way to "push assignments into terms". This will be 

discussed and defined in detail in Chapter 4; for now, consider this example: 

X:= 1; X:= 2 x (X +X) (2) 

By intuition and the operational semantics, we know that this term is equivalent to 

X := 4. But how can it be possible, without overly complicated rules, to rewrite 

(2) to it? By admitting terms like (1), we can express intermediate steps of the 

computation that could not otherwise be written. Using the rules from Chapter 4, 

X:= 1; X:= 2 x (X +X) 

:$! X := (X := 1; 2 x (X +X)) 

:$! X := ((X := 1; 2) x (X := 1; (X + X))) 

:$! X := (2 x ((X := 1; X) + (X := 1; X))) 

:$)> x := (2x(1+1)) 

:$)> x := 4 
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The ability to use assignments in local contexts is thus a powerful syntactic tool. 

Based on its usefulness, the ease of its incorporation, the simplicity of its semantic 

definitions and rewriting rules, and the fact that it also occurs naturally when we 

allow cells of type S (see §5.3), we believe that 

State backtracking is a natural part of imperative reasoning. 

Another difference with traditional imperative languages, one that has been men

tioned several times already, is in the way that AC treats procedures. (Parameter

less) procedures in the traditional sense are taken to be state transformers, that is, 

functions s-; S, whereas in AC the treatment of procedures, using intensions which 

give functions S --; T, is much more general. The generalization is actually closely 

related to the above discussion because it again involves state backtracking. 

An intension of type S--; T represents a "functionalized procedure". When 

such an intension is invoked (extensionalized), it uses the current store to compute 

a value, but all changes to the store that occur while computing that value are local 

and are lost once the value is returned. This is again caused by the lack of side-effects 

in AC. 

A comparison between this sort of localization of state change and the approach 

taken in Separation Logic [Rey02] would be quite interesting. 

In the next chapter, we will move beyond the simple operational interpretation 

given here and provide a full denotational semantics for AC, as well as give a proof 

of the equivalence of the two forms of semantics. 



Chapter 3 

Semantics of AC 

In the last chapter, we discussed the interpretation of AC operationally, that is, in 

terms of syntactic rules governing the behaviour of AC terms. While such an ap

proach is simple, easy to understand, and therefore useful for developing intuition, it 

suffers from a major drawback: it is syntax-directed. Evaluation of a term results in 

either a new term or in a store that contains terms. Intension is treated as an uneval

uated term; aside from the insight that intension can be seen as program text, this 

does not provide any help in understanding its actual meaning. Besides this, proofs 

of properties and equivalences of terms are cumbersome using only the operational 

semantics. 

To overcome these difficulties, we will give a denotational semantics for AC. 

The basic thrust of this approach is to define mathematical objects that serve as 

meanings for the syntactic objects of AC, and then define mapping(s) from the 

syntactic objects to the semantic objects. In logic, the approach is standard and goes 

back to Tarski. In computer science, the development is more recent and is due to 

Strachey and Scott [8871, Sto77]. 

Given a semantic domain ID of values-numbers, functions, etc.-we will define 

a meaning function [·] that maps terms of AC into ID, so that for any term t we 
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will have that [t] E ID. [t] is called t's meaning or denotation. We will also have to 

develop a mathematical analogue of the store, called a state; doing so is somewhat 

difficult due to the fact that we store intensions. Once the denotational semantics 

has been fully defined, a proof of the equivalence between it and the operational 

interpretation will be given. 

Our meaning function will respect the principle of compositionality [Jan86], 

in that the meaning of a compound expression is a function of the meanings of its 

subexpressions. 

Definition 3.1 (Principle of compositionality). For every n-ary syntactic operator 

<I> : Term x · · · x Term -+ Term 

that forms AC terms from immediate subterms, there is a corresponding function 

w: IDX···XID-+ ID 

such that 

[<I>(ti, ... 'tn)] = w([t1], ... ' [tn]). 

In other words, [·] is a homomorphism from the term algebra into the semantic 

algebra. 

We begin by going over the mathematical underpinnings of denotational se

mantics: the theory of domains. 

3.1 Domains 

Domains contain and organize the mathematical objects that serve as meanings for 

syntactic constructs. As far as containing the objects goes, domains are just sets. It is 

in the way that they organize the objects that domains are special: they provide a set 

of relationships between the objects that orders them according to their information 
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content. Domains consist of a set and an ordering relation on that set, together 

forming a complete partially ordered set (cpo). 

The following definitions can be found in any textbook on denotational se

mantics or domain theory, e.g., [dB80]. 

Definition 3.2 (Partial orders). A set ID is partially ordered by a relation ~ iff 

~ is (i) reflexive, (ii) antisymmetric and (iii) transitive, i.e. for all x, y, z EID, 

(i) 

xC.y/\y~x ===? x=y (ii) 

x c. y /\ y ~ z ===} x ~ z. (iii) 

If ID is partially ordered by C., then the pair (ID,~) is called a partial order (po). We 

usually refer to a po only by the name of its carrier set, with the order assumed. As 

usual x C. y means that x ~ y /\ x #- y. 

For our purposes, we also assume that all partial orders ID have a bottom 

element _LID s.t. Vx EID· _LID ~ x. _L represents divergence (non-termination). 

Definition 3.3 (Chains and bounds). A chain xis a sequence (xi, x2 , •• • ) s.t. x1 C. 

x2 ~ · · ·. When it exists, the supremum (least upper bound) of xis denoted by WXi 

or IJ x and satisfies 

Vi. xi~ IJx 

(Vi . Xi ~ z) ===} IJ x ~ z 


Define (x1 , ... ) ..j.. k = Xk. We adopt the following shorthand for chains: f (x) 

(J(xo), f(x1), .. . ) and f(x) = (Jo(x), f1(x), .. .). 

Definition 3.4 (Complete partial orders). A complete partial order (cpo) is a po ID 

in which all chains x have their suprema IJ x in ID. 

A useful result about chains is the following: 
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Lemma 3.5 (Diagonalizing chains). Given, for i,j E {O, 1, ...}, elements Xij of a 

cpo D that satisfy Xij ~ Xkz whenever i ~ k and j ~ l, 

l.Jli.Jxii = ~xkk 

Proof. See [dB80, Lemma 5.4]. D 

We can make cpos of the sets of natural numbers and Booleans in a trivial 

way: by making each pair of elements other than ..l. incomparable, e.g., ..l. ~ ft and 

..l. C ff but ft lb ff and ff lb ft. Such a cpo is called discrete. JN, lB and Loc-r will 

be taken to be discrete cpos. We take arithmetic and Boolean operations to be strict 

when applied to these cpos: for example, if either x = ..l. or y = .1., then x /\. y = ..l.. 

As an alternative to 1N, we can order the natural numbers according to their 

usual numerical ordering. We will call this the cpo C of ordered numbers: 

..le = 0 c 1 c · · · c w 

The inclusion of w is necessary because of the condition that cpos include all suprema. 

(We will not actually be using this cpo until §3.3.) 

Now we set about building new cpos out of existing ones. First, to any cpo 

we can add a new bottom element "below" all of its original elements. 

Definition 3.6 (Lifting). Given a cpo D, the lifted cpo D..L consists of all of the ele

ments of D, with the same order relation, supplemented with a new element ..l.IDJ.. that 

is weaker than any element of D. The difference between the two cpos is illustrated 

by 

A finite Cartesian product of cpos is itself a cpo: 


Definition 3.7 (Product cpo). Given cpos D1 , ... , Dn, the product [D1 x · · · x Dn] 


is a cpo ordered pointwise, 
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whose bottom element is (_i, ... , _i). Least upper bounds are determined pointwise: 

W(x1 .!- i, ... , Xn .!- i) = (LJ xi, ... ,LJ Xn)· 

To provide a useful cpo structure for types like S-+ r, we restrict the class of 

functions under consideration to these: 

Definition 3.8 (Continuous functions). A function f is monotonic iff it preserves 

order, i.e., if x ~ y then f (x) ~ f (y). f is continuous iff, in addition to being 

monotonic, it preserves suprema: f (LJ x) = LJ f (x). 

Now we show that the set of continuous functions from a cpo to another cpo 

can be viewed as a cpo. 

Definition 3.9 (Function cpo). Given two cpos ID1 and ID2 , the set of continuous 

functions from ID1 to ID2 is itself a cpo [ID1 -+ ID2] with ordering given as follows: 

f ~ g ~ (Vx E IDi · f(x) ~ g(x)) 

The bottom element is Ax · _l and LJ f = Ax · LJ f( x). 

For our purposes, we will often need to make use of lifted function spaces 

[· -+ ·]..L rather than simple function spaces. The reason for this is discussed after 

Definition 3.18. 

3.1.1 Reflexive Domains 

Defining State, the mathematical analogue of Store, causes no problems when we 

are storing values such as numbers or Booleans. But a great deal must be done in order 

to handle procedure-valued locations, which are a basic feature of AC. The reason 

for this is that states can "contain" procedures, which are intensions or functions 

State -+ ID for some ID. The usual definition of state as a function from locations 

to values is thus inadequate as we must somehow store a function from states to 
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states within a single state. Another way of putting it is that State has a recursive 

definition, 

State c::: ( · · · State · · · ) , (1) 

where 'c:::' represents isomorphism. This is similar to the situation found in the un

typed A-calculus, where values must also all be functions so that they can be applied 

to themselves, i.e., the domain ID must satisfy 

][) c::: (][) --+ ][)) . (2) 

Scott's breakthrough solution to (2) and, more generally, (1) in [Sco70] led to the 

development of domain theory [AJ94, SHLG94]. (Interestingly, in [Sco70] Scott ex

plicitly indicates storage of commands as one of the primary motivations for his work.) 

Domains satisfying such equations are called reflexive domains; we construct the set 

of states, State, as one such. 

The particulars of construction of such domains is technically involved and is 

of little consequence to our purposes, but a rough explanation of the approach is as 

follows. Say that we had a set of states that consist of two locations: one that stores 

numbers, and one that stores procedures. Then State's recursive specification could 

be written 

State c::: JN x [State--+ State] 

To build our solution, we start by setting State0 = { 1-}, and then by successively 

having that Staten+! = JN x [Staten --+ Staten]. Then we provide a system of em

beddings from each Statei into Statei+l, and projections from Statei+l to Statei. 

Taking care to ensure that certain conditions are met, State is constructed as the 

inverse limit of the sequence of approximating domains State0 , State1, .... Along 

with this inverse limit, we have a bijection State --+ (JN x [State --+ State]) that 

allows us to move between the "collapsed" and "unfolded" view of State. This is 

somewhat inexact but captures the spirit of the approach. 



42 3. Semantics of AC 

All that matters to us is that such domains, along with some useful functions 

on them, exist. The reader interested in the particulars can consult [Sch86] for a 

nice presentation, or [AJ94] or [SHLG94] for more in-depth information. We start by 

outlining the domain equations that we can solve. 

Definition 3.10 (Domain signatures). Let CPO be the class of all cpos. The set of 

signatures Sig is the set of functions E : CPO --+ CPO that is recursively given by 

1. ),JD . JD E Sig 

2. >.JD · JDo E Sig where JD0 E {JN, 18, C, Loe,.} 

3. ),JD . JD J_ E Sig 

4. >.JD · [E1 (JD) x · · · x En (JD)] E Sig 

5. >.JD · [E1 (JD) --+ E2 (JD)] E Sig 

We can create reflexive domains based on any signature. 

Theorem 3.11 (Reflexive domains). For any E E Sig, a cpo JD can be constructed 

s.t. there is a continuous bijection f : JD --+ E(JD). We write E for JD, ~for f and 

~for f-1
. 

Proof. See [SHLG94], Theorem 6.11. D 

~ is called E's embedding function, and ~ is E's projection function. The 

embedding can be seen as an unfolding operation, whereas the projection can be seen 

as a collapsing operation. This view will be useful to us given the way we will be 

using reflexive domains. 

See [Sch86] for an explicit construction of the above solution, as the inverse 

limit of the sequence {J_}, E({..l}), E(E({..l} )), .... We can also show that the con

struction gives the smallest possible solution in that it can be embedded into any 

other solution domain. 
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(It is also important to note that the set Do in the above definition is restricted 

to cpos that are consistently complete and algebraic [SHLG94]. Since all of our cpos 

satisfy these criteria we skip the details.) 

As a final comment, note that any "non-reflexive" domain corresponds to a 

signature I: that is a constant function on CPO. With our mathematical toolbox 

well stocked, we now turn to the semantics of AC. 

3.2 Semantics 

3.2.1 States and semantic domains 

Recall the definitions of Type, LType and Loe given in Definitions 2.2, 2.3 and 

2.4. Leaving the domain of states, State, assumed for a moment, we first present 

the set of semantic domains. To each type T is associated a domain nT~; a term of 

type T interpreted in a state State will result in a value from nTl 

Definition 3.12 (Semantic domains). To each type T E Type, we associate a do

main nT~ as follows: 

1. ne~ is the cpo of truth values 18, ranged over by b, 

2. nN~ is the cpo of natural numbers JN, ranged over by n, 

3. nsfr is the cpo of states State, ranged over by a, 

4. ns-+Tfr is the cpo of lifted functions [State-+ nTfrLi_. 

Let Dom = u'TE'.fypenTfr. For convenience we will write ..l'T for ..l~'Tfr. 

But how do we define State? Roughly, as the product of function spaces 

Loc'T --+ nTl The hitch, of course, is in the fact that nTfr itself can depend on 

State! The solution starts with an interpretation of types as signatures. 
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Definition 3.13. The signature of a type T, :ET, is given by: 

1. I;B _\][).JB 

2. I;N _\][).JN 

3. I;S - _\][).][) 

I;S~T4. ,\][). [JD~ I;T(JD)]_i 

(Notice that ~T~ can now be defined as :ET(State).) Recall that LType is a 

finite set; assume some ordering of its elements (Ti,··· ,Tn)· 

Definition 3.14 (State). The state signature, :Estate, is 

Define State to be the resulting domain :Estate, and we can unfold and collapse it 

using ~State and ~State. 

Now the reason for LType having been restricted to finite size can be clarified: 

there is no way to solve the domain equation for State if the product is infinite 

([Sch86]). To complete the definition of State, we need a way to access and update 

the contents of locations. 

Definition 3.15. Using the enumeration of LType given above, given XE LoeTi, 

a(X) def (~State (a) .!- i) (X) 

O" [x Id] def ~State(~State (O") .i 1, ... ' (~State (O") .i i) [ x Id] ' ... ' ~State (O") .i n) 

Notice that _l8 = ~State(,\XT1 • l_T1' ... , -\XTn · l_Tn)· 

States are the vehicle through which we assign values to locations; as such, 

they can be viewed as contexts in which AC terms are interpreted. AC is thus a 

modal calculus in that states can be viewed as possible worlds in the sense of Kripke 

[Kri59]. 
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3.2.2 Denotational Semantics 

We can now present the primary tool of this chapter: the meaning function that 

assigns values to terms relative to states. 

Definition 3.16 (Meaning function). The meaning function [-ll is a function that 

maps, for each T, Term'T into [State -t nT}]..i = ns -+ T}. It takes a term t 

and returns a function from states to values; this function is called the sense or 

intensional meaning oft. Applying this function to a state a results in the denotation 

or extensional meaning of t with respect to a. 

Convention 3.17 (Metavariables). The bijective mapping between Boolean con

stants and Boolean values, and that between numerals and numbers, is expressed as 

an implicit binding between similar metavariables: if, in some mathematical context, 

the metavariables b and b both occur, then they represent a corresponding Boolean 

constant and value, and similarly for the case of n and n. 

We are now ready to give the semantics of AC. 

Definition 3.18 (Denotational semantics of AC). First, we have that the meaning 

function is strict: [t].ls = 1-. For any a =!= 1-, 

1. [X]a - a(X) 

2. [it]a - [t] 

3. [!t]a [t]aa 

4. [X := t]a - a[X/[t]a] if [t]a =!= 1-, 1- otherwise 

5. [t;u]a - [u] ([t]a) 
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and the supplementary operators 

6. [b]o- b 

7. [n]o- - n 

8. [t /\ u]o- - [t]o- /\ [u]o
9. [t + u]o- [t]o- + [u]o
10. [t < u]o- [t]o- < [u]o

[u]o- if [t]o- =ft 

11. [if t then u else v]o [v]o- if [t]o- = ff 

1- otherwise 

Some discussion is in order to explain the above definition. First, we have that 

X means the X-projection of the state, which gives us a way to access a value in a 

location in the state. it, the intension operation, forms a procedure by abstracting 

the state, whereas !t invokes the procedure denoted by t by applying the state to 

it. Notice that intension is treated, as it is by Montague, as a function from possible 

worlds (states) to values, and that extension applies such a function to the "current" 

state. One of the interesting consequences of this is that the sense of t is the same 

as the denotation of it. 

X := t denotes the variant of the state a- at X for [t]o-, providing a way 

to update the contents of a location. t; u evaluates u in the state determined by t. 

Finally, the supplementary operators are given a standard treatment. 

Now that we have developed the denotational semantics of AC, the reason 

for the way we have defined states can be illuminated by an example: 

[P := i (X := l)]o- = o-[PI>.a-'. o-'[X/1]]. 

Without reflexive domains, "storing" functions on State within State would be 

impossible. 

We can also clarify the need for the use of the lifted function space for function 

types. Consider the following two terms, where X is of type S-+ T and Y is of type 
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S-+(S-+r). 

[i(X := i !X; !X)]a = .Xa' · ..1_7' 

[Y := i ! y; !Y] O" = J_S-+7' 

If we took ..1_s-+T to be the bottom element of the cpo of continuous functions from 

State to 1D7', then the two terms above would have the same denotation. However, 

operationally the first term terminates whereas the second diverges. This is the reason 

that we add a new bottom element to it: to differentiate between a non-terminating 

term of procedure type and a procedure that, if invoked, does not terminate. 

The fact that the meaning of any term is a strict function ([t]..1_ = ..1_) can 

be explained by the following example: say that we have a term t; iu where t is a 

divergent term. By the operational semantics given in the last chapter, we would 

assume that the entire term should diverge; however, without the strictness condition 

it is equivalent to iu. A similar situation arises when we consider the term X := t 

where t is again divergent. Operationally the entire term should once again diverge, 

but without the condition in clause 4, this would not be the case. These restrictions 

enforce the linear, sequential evaluation of terms that is mandated by the operational 

semantics. 

They also allow us to consider only a subcpo of State, i.e., the cpo of states 

a that do not assign ..1_ to any location unless a = ..1_. Clearly this cpo of states is 

closed under the semantic definitions above, and it is easy to show that it is in fact a 

cpo. (This definition of state follows a comment of de Bakker [dB80, pp.80-81].) We 

choose not to remove the other members from State because we will be making use 

of them when we look at lazy schemes of evaluation for AC in Chapter 5. 

Some semantic characterizations of AC terms can now be given. 

Definition 3.19 (Semantic equivalence). We say that two terms t and u are seman

tically equivalent if [t] = [u], that is, if for· all states a, [t]a = [u]a; if this is the 

case we write t s u. 
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Definition 3.20 (Semantic rigidity; fil·fil function). A term t is semantically rigid iff 

for all a1,a2 =f. 1-, [t]a1 = [t]a2 =f. 1-. If tis known to be semantically rigid, we write 

filtfil [t]a for some arbitrarily chosen a =f. 1-.def 

Compare Definitions 2.10 and 2.11. The relationship between the operational 

and denotational versions of these definitions is explored by Corollaries 3.38 and 3.39. 

Notice that, for a semantically rigid term t, [t] is its sense and filtfil is its denotation. 

Let us consider again the examples from Chapter 2, this time from a semantic 

perspective. First, example 1: 

[X := 1; Y := X; Y]a 

= [Y := X; Y]([X := l]a) 

= [Y:= X; Y]a[X/1] 

= [Y]([Y := X]a[X/1]) 

= [Y]a[X /l][Y /[X]a[X/1]] 

= [Y]a[X/l][Y/1] 

=1 

The only remarkable thing about the above is how unremarkable it is: it demonstrates 

just how faithful AC is to standard denotational approaches like [Sto77], [Sch86], 

[dB80], etc. Next, example 2, which contains the first use of stored intensions. 

[P:= iX; X:= 1; !P]a 

= [X := 1; !P]([P:= iX]a) 

= [X := 1; !P]a[P/[X]] 

= [!P]([X := l]a[P/[X]]) 

= [!P]a[P/[X]][X/1] 

= [P]a[P/[X]l[X/l]a[P/[X]J[X/1] 

= [X]a[P/[X]J[X/1] = 1 
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For example 3, we will, as before, let p = if X > 1 then X x (X := X 

1; !P) else 1, and take a state u[X /4] as our starting point. The factorial cal

culation proceeds as follows: 

[P:= ip; !PDu[X/4] 

= [!PDu[X/4][P/[pDJ (*) 

= [PDu[X /4][P /[pDJu[X /4][P /[pDJ 

=[if X > 1 then Xx (X := X -1; !P) else 1Du[X/4][P/[pDJ 

= if 4 > 1 then [Xx (X := X -1; !P)Du[X /4][P /[pDJ else 1 

= 4 x [!PDu[X/3][P/[pDJ; reapplying steps from(*) repeatedly: 

= 4 x 3 x [!PDu[X/2][P/[pDJ 

= 4 x 3 x 2 x [!PDu[X /l][P/[pDJ 

= 4 x 3 x 2 x if 1 > 1 then [Xx (X := X -1; !P)Du[X/l][P/[pDJ else 1 

= 4 x 3 x 2 x 1 = 24 

3.3 Equivalence of Interpretations 

In this section, we will demonstrate that the operational and denotational inter

pretations of AC are in agreement. This is important for two reasons. First, the 

operational interpretation, which is meant to capture the intuitive computational 

meaning of terms, contains new results for intension and extension operators. It is 

important that they be shown equivalent with the denotational semantics for these 

operators, which are standard [Gal75, Jan86]. Second, the proof of equivalence itself 

uncovers interesting aspects of AC's operators, and provides insight into the nature 

of computation in AC. 

We begin by defining a semantic interpretation of stores as states. First, recall 

(Definition 2.19) that stores map locations to canonical terms (Definition 2.18). 
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Lemma 3.21. Canonical terms are semantically rigid. 

Proof. By cases on the form of a canonical term c, we show that for any o-1, o-2 =I J_ 

it is the case that [c]o-1 = [c]o-2. 

1. [b]o-1 = b = [b]o-2 for any 0-1, 0-2 =I 1-. 

2. [n]o-1 = n = [n]o-2 for any 0-1, 0-2 =I 1-. 

3. [it]o-1 = [t] = [it]o-2 for any 0-1, 0-2 =I 1-. D 

Then our semantic interpretation of stores is built by taking the meaning of 

the contents of each location: 

Definition 3.22 (Semantics of stores). To each store s, we can associate a state o

by having, for each X E Loe, o-(X) = fils(X)l We want to define filsID = o- because 

we would like to think of o- as s's denotation; to do so, we set [s] = >..a-'· o-. 

Next we give a denotational interpretation of operational results. 

Definition 3.23. Given some t ands, we define (using Lemma 2.9) 

fildID if there is ad s.t. t, s ..l,l. d 
QtDs = 1

{ otherwise 

Using these definitions, we can express the equivalence theorem briefly: the 

operational and denotational semantics are equivalent iff, for all s, 

QtDs = [t]filsl (3) 

This is proved in two stages: the '!;;;;' direction and the ';;;;;J' direction. The first 

is relatively straightforward and is proved by induction on operational derivations. 

In fact, we can show the stronger result that, whenever t, s converges operationally, 

then (3) holds. 
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Lemma 3.24. If t, s .\), d, then [t] filsID = fildill 

Proof. By induction on derivations. 

1. 	 If t is either b, n or iu, then t, s .\), t, and t is canonical and therefore semantically 

rigid by Lemma 3.21. Thus t, s .\), t, and [t] filsID = filtID. 

2. 	 X,s .\), s(X). Then [X]filsID = filsfil(X) = fils(X)ID by Definition 3.22. 

3. 	 !t, s .\), d. Then by definition there is au s.t. 

t, s .\), iu /\ u, s .\), d 

:::} [t]filsID = filiuID /\ [u]filsID = fildill (by IH twice) 


:::} [t]filsID = [u] /\ [u]filsID = fildill (by Def. 3.18-2) 


:::} [t] filsID filsID = fildill (by substituting for [u]) 


~ [!t]filsID = fildfil. (by Def. 3.18-3) 


4. 	 X := t,s .\), s[X/u]. Then 

t,s .\), u 

:::} [t] filsID = filu ID (by IH) 

~ [X := t]filsID = filsfil[X/filuIDJ (by Def. 3.18-4) 

~ [X := t]filsID = fils[X/uJm 	 (by Def. 3.22) 

5. 	 t; u, s .\), d. Then by definition there is a s' s.t. 

t, s .\), s' /\ u, s' .\), d 

:::} [t] filsID = fils'ID /\ [u] fils'ID = fildill (by IH twice) 

~ [u] ([t] filsfil) = fildill (by substituting for fils'fil) 

~ [t; u] filsID = fildfil. (by Def. 3.18-5) 

6. 	 if t then u else v, s .\), d. Two cases arise. 
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Case 1: t, s .JJ. true. Then 

t,s.J,l.true A. u,s.J,l.d 

=> [t]filsfil = filtruefil A. [u]filsfil = fildfil (by IH twice) 

{::} [t] filsID = ft A. [u] filsID = fildfil (by Def. 3.18-6) 

{::} [if t then u else v] filsfil = fildfil (by Def. 3.18-11) 

Case 2: t, s .JJ. false. Similar to case 1. 

7. 	 Other operators follow a similar pattern. For example, if t + u, s .JJ. n, then there 

are n1,n2 s.t. 

t, s .JJ. n1 A. u, s .JJ. n2 A. ni + n2 = n 

=> [t]filsfil = filn1ID A. [u]filsfil = filn2ID A. ni + n2 = n (by IH twice) 

{::} [t]filsfil = ni A. [u]filsfil = n2 A. ni + n2 = n (by Def. 3.18-7) 

{::} [t]filsfil + [u]filsfil = n 

{::} [t+u]filsfil=n (by Def. 3.18-9) 

{::} [t+u]filsID = filnID (by Def. 3.18-7) 

Proving the ':::J' direction of (3) is somewhat more involved, as it requires 

that we be able to perform induction on the number of "recursive unfoldings" in 

the meaning of a term. For most languages with recursion, this is no great obstacle 

because the identifiers that are involved in a mutual recursive system cannot be 

altered during the course of the recursion. A proof of a similar theorem for such 

languages would proceed by repeatedly substituting for the identifiers the values that 

they denote. For an example of such a proof, see [dB80, Theorem 5.22]. 

We cannot proceed along these lines because locations involved in a recursive 

system can be overwritten during the course of the recursion. For example, given the 

0 
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examples we have seen so far, we might expect the term 

P:= i(!Q; !P); !P (4) 

to always diverge. But if Q changes P, for example, 

Q:= i(P:= iX), 

then (4) is equivalent to the term X. 

In order to count recursive unfoldings, we use a different method: we augment 

State with a "virtual location" that holds a counter (as in, a member of the cpo 

of ordered numbers C) that will be decremented every time an extension operation 

is performed. This choice of method for bounding recursive unfoldings was chosen 

primarily for technical reasons; other methods might work but this one seems to allow 

the cleanest proof of Theorem 3.37. It also has the benefit of being intuitively based 

on "counting procedure calls". 

Definition 3.25 (Statec). Recall the enumeration (r1, ... , Tn) of LType. The 

augmented state signature, ~Statec, is (cf. Definition 3.14) 

Define Statec to be the resulting domain ~Statec; again we can unfold and collapse 

it using ~Statee and ~Statec. We range over Statec using the notation (jc, where 

c E C indicates the value stored in the virtual counter location. (In our notation, 

states "wear their counter on their sleeve," so to speak.) This gives a set of states for 

which the same definition can be given for projection and variant: 

Definition 3.26 (Augmented projection and variant). (Cf. Definition 3.15) 

(jc(X) def (~StateC ((jc).} i)(X) 

(jc[X/d] def ~StateC(~StateC((jc).} l, ... , 

(~Statec ((jc) .} i) [X /d], ... '~StateC ((jc) .} n), c) 
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Barring the use of subscripts, uc1 and uc2 will be taken to be states that agree 

on all locations except the counter. For any augmented state uc, we call c its order. 

To make use of the new aspect of state, we modify the semantics of AC so 

that terms behave differently on states of order less than w. To do so, we first have to 

modify our semantic domains so that they are based on Statee rather than State. 

(Recall Definitions 3.12 and 3.13.) 

Definition 3.27. ~T~e = ~-r(Statee), and Dome= U-rEType~T~e. 

Definition 3.28 (Bounded-recursion semantics). The bounded meaning function (we 

use the same notation as for the non-bounded version; see comments after the defi

nition for an explanation) [-] : Term--+ Dome is defined as follows: first, we have 

that the meaning function is strict on c: [t]u0 = ..l. (This includes the case of the 

bottom state.) For any uc where c =f 0, 

1. [X]uc - uc(x) 

2. [i t]uc - [t] 

3. [! t]uc - [t]ucuc-1 

4. [X := t]uc uc[X /[t]uc] if [t]uc =f ..l, ..l otherwise 

5. [t; u]uc [u] ([t]uc) 

and the supplementary operators 

6. [b]uc b 

7. [n]uc - n 

8. [t A u]uc - [t]uc /\ [u]uc 

9. [t +u]uc [t]uc + [u]uc 

10. [t < u]uc - [t]uc < [u]uc 

[u]uc if [t]uc = ft 

11. [if t then u else v]uc  [v]uc if [t]uc = ff 

..l otherwise 
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The only real difference in the definitions is in clause 3-as promised, the 

bounded-recursion semantics just counts the number of extensions evaluated in a 

term's meaning. Consider example 3, evaluated in a state of order c. It is a bounded 

factorial function: it can compute the factorial of any number n < c, but will result 

in J_ if n 2:: c. 

We define the rigid meaning function ill·lli as follows. (Compare Definitions 

3.20 and 3.22.) 

Definition 3.29 (Augmented rigid meaning function). For any semantically rigid t, 

let illtlli be [t]ac for an arbitrary ac satisfying c =f 0. In the case of stores, define illsllic 

to be the ac that satisfies ac(X) = ills(X)lli for all X. For uniformity of notations, 

we will also extend (abuse) this notation slightly by interpreting, for rigid t, illtllic as 

illtlli because c is irrelevant in this case. 

To regain the original behaviour of AC, we will simply set the counter tow 

(since w - 1 = w). This is a handy observation since, for every a E State, we now 

have a chain 

0 1 wa,a, ... ,a 

in Statec. 

Using these new semantics we can prove interesting properties of terms, like 

the following: 

Proposition 3.30. [X := i !X; !X]ac = J_ for any ac. 

Proof. By induction on c, we show that for all ac s.t. c < w, [X := i !X; !X]ac = J_, 

The basis is clear. For the inductive step, assume that [X := i !X; !X]ac-l = _l_. 
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Then 

[X := i !X; !X]o-c = [!X]o-c[X/[!X]] 

= [X]o-c[X /[!X]]o-c-l [X /[!X]] 

= [!X]o-c-1[X/[!X]J 

= [X := i !X; !X]o-c-l 

= ..l by IH. 

To complete the proof we must show that it is true for any aw. Note that aw= l£jo-c. 

Corollary 3.34 will show that [t] is continuous for any t; it follows that 

[X := i !X; !X]o-w = [X := i !X; !X](l£] o-c) 

= l£j [X := i !X; !X]o-c 

= l£]..l = ..l. D 

As mentioned above, when the input state to the meaning function is of order 

w, the bounded-recursion semantics behaves the same way as the original semantics. 

This is clear by simple inspection of the definitions, so we will not prove it explicitly 

because we would need to develop machinery that is more complex than the thing we 

are trying to prove. Instead, we just retroactively state that o- E State is really just 

~ E State~. 

We next show that, for all t, [t] is continuous, so that [t]o-0 , [t]o-1 , . .. forms a 

chain whose supremum is [t]o-w. But before we can do so, we need a couple of useful 

lemmas. 

Lemma 3.31 (Continuity of state operations). 

3. o-~1 ~ o-~2 => o-~1 [X/d] c o-~2 [X/d] 
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4. (l.Jafi)[X/d] = l.Jafi[X/d] 

5. di !;;;;; d2 ::::} ac[x /d1] c ac[x/d2] 

6. ac[x /LJ di] = LJ ac[x /di] 

Proof. Immediate from Definition 3.25, Definition 3.26 and Theorem 3.11. D 

Lemma 3.32. Given a chain of ordered numbers c1, c2, ... , where~# 0 for all i, 

Proof. In the case where LJ Ci # w, the result is obvious. Otherwise, if the chain 

ci, c2, . . . has no greatest member, then there clearly cannot be a greatest member 

in the chain c1 - 1, c2 - 1, .. . , thus making their shared supremum w; if the greatest 

member in the chain c1, c2, ••. is w, then the greatest member in the chain c1 - 1, c2 

1, ... is w - 1 = w. D 

With these lemmas in place, we are ready to prove the continuity of [t]. We 

will actually prove a stronger statement: the meaning function only produces elements 

of Dome, which (when they are functions) are by definition continuous. 

Theorem 3.33. [tT] E ~S-+-r~ for all t E Term 

Proof. By structural induction on t. There are 3 obligations: 

(ii) [t] (l.J afi) = l.J ([t]afi) for all chains af1, a~2 , ••• ; 

(iii) [tT]ac E ~T~c for all ac. 

To simplify the proof, we discard some cases out of hand. For obligation (i), the 

result is immediate if c1 = 0. For obligation (ii), if all of the ~ are 0 then the result is 

trivial; we therefore assume that none of the ~ are 0 based on the observation that 
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all of the elements for which ci = 0 are at the start of the chain and can be removed 

without affecting its least upper bound. For obligation (iii), the result is again trivial 

if c = 0. We now proceed to the proof itself. 

1. 	 tis either b, nor iu. Then tis canonical and therefore, by Lemma 3.21, it is 

rigid; therefore, 

(i) 	 [t]0'~1 = filtID = [t]0'~2 

(iii) 	 [b]O'c = b E ~B~c by Definitions 3.13 and 3.27, and similarly for n. For 

intension, [iu7"]0'c = [u] E ~S-+T~c by IH. 

2. 	 x. 

(i) 	 [X]0"~1 = 0'~1 (X) ~ 0'~2 (X) by Lemma 3.31-1 

= [X]0"~2 

(ii) 	 [X](lijO'fi) = (lijO'fi)(X) = W(O'fi(X)) by Lemma 3.31-2 

= W[X]O"fi 

(iii) [X7"]0'c = O'c(X) 	E ~T~c by Definition 3.26. 

3. 	 !t. 

(i) [!t]O'~l = [t]0'~10'~1-l ~ [t]0'~20'~1-l by IH (i) and Def. 3.9 

C:: [t]O'c2 O'c2-l 
- 2 2 by IH (iii) (mono. of [t]0"~2 ) 

= [!t]0'~2 
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1(ii) 	 [!t](liJaf') = [t](liJafi)(LzJa;1- ) by Lemma 3.32 


= (liJ [t]afi)(LzJ a;i-1) by IH (ii) 


= W[t]afi (LzJ a;1-1) by Def. 3.9 


= liJ LtJ [t]afia;1-1 by IH (iii) 


= W[t]afiafi-1 by Lemma 3.5 


= W[! t]afi 


(iii) 	 [!tS-;T]ac = [t]acac-1. [t]ac E ~S-t-r~c by IH (iii), therefore [t]acac-l E 

~T~c by Definitions 3.13 and 3.27. 

4. X:= t. 

(i) 	 [X := t]ap = a~1 [X/[t]a~1 ] 


c a~1 [X/[t]a~2 ] by IH (i) & Lemma 3.31-5 


c a~2 [X/[t]a~2 ] by Definition 3.26 


= [X := t]a~2 

(ii) 	 [X:= t](liJafi) = (l.Jaf')[X/[t](LzJa;1)] 


= liJafi[X/[t](LtJa?)J by Lemma 3.31-4 


= l.J afi [X /W [t]a;1J by IH (ii) 


= l.J Wafi[X/[t]a?J by Lemma 3.31-6 


= Wafi [X /[t]afi] by Lemma 3.5 


= liJ [X := t]afi 


(iii) 	 [X := t]ac = ac[X /[t]ac] E ~s~c because, by IH (iii), [t]ac E Dome; 

the result follows from Definition 3.26. 
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5. t; u. 

(i) 	 [t; u]a~1 = [u] ([t]a~1 ) ~ [u] ([t]a~2 ) by IH (i), twice 

= [t; u]a~2 

(ii) 	 [t; u](liJ af;) = [u]([t](liJ af;)) = [u](W [t]af) by IH (ii) 

= W [u]([t]af;) by IH (ii) 

= W[t;u]af; 

(iii) 	 [t6 ; u'T]ac = [u]([t]ac). By IH (iii), [t]ac E ~s~c, and by IH, [u] E ~S-+ 

T~c; therefore, [u]([t]ac) E ~T~c. 

We skip the supplementary operators because their treatment is standard and they 

are all known to be continuous (see, e.g., [Sto77]). D 

Corollary 3.34. [t] is continuous for all t E Term. 

Proof. Immediate from the definition of ~-l 	 D 

We can now finish the work that was started in Lemma 3.24 by proving the 

'~' direction of (3). First we extend the Q·D function to work with the augmented 

domains. (Compare Definition 3.23.) 

Definition 3.35. Given some t and s, define 

fildmc if there is ad s.t. t, s -U. d 
QtDcs = 

{ J_ otherwise 

Lemma 3.36. For all t, s, and c, 	[t] filsmc ~ QtDcs. 

Proof. By induction on the pair (c, Jtl) where c is the state order and Jtl is the com

plexity of t. (The pairs are ordered so that (ci, n1) < (c2 , n2 ) iff c1 < c2 V (c1 = 

c2 /\ n1 < n2 ).) The exact statement of the inductive hypothesis is: if d ~ [t]filsmc for 
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d =f _i, then there is ad s.t. t, s -lJ- d and d ~ fildllic· (This stronger form of the IH is 

needed in case 3 below.) 

Bases occur when c = 0, in which case [t] filsIBc = J_ and therefore the statement 

is vacuous. Other bases arise when we are dealing with atomic terms, or the intension 

operator which does not require the inductive hypothesis: 

1. t is either b, n or iu. Then [t] filsllic = filtllic, and t, s -lJ- t. 

2. X. [X]filsllic = filsllic(X) = fils(X)llic by Definition 3.29, and X,s-IJ- s(X). 

The inductive cases proceed as follows. 

1. !t. 

d c [!t] filsIBc 

¢:} ::If · f = [t] filsllic /\ d k ffilsmc-1 

=::}- ::If' u · t,s-IJ- iu /\ f ~ filiuIB /\ d c ffilsmc-l by IH and Th'm 2.20 

=::}- ::Ju t, s -lJ- iu /\ d c filiuIBfilsmc-1 by Definition 3.9 

=::}- ::Ju t, s -lJ- iu /\ d c [u] filsmc-1 

=::}- :3u,d · t,s-IJ-iu /\ u,s-IJ-d /\ d~fildllic-l byIH 

{::} ::Id · !t, s -lJ- d /\ d ~ fildllic-1 c fildllic 

2. 	 X:= t. 

d k [X := t]filsllic 

¢:} :3d' · d' = [t] filsllic /\ d c filsllic[X /d'] 

=::}- :3d', c · t, s -lJ- c /\ d' ~ filcIB /\ d ~ filsllic[x /d'] by IH and Th'm 2.20 

=::}- ::Jc t, s -lJ- c /\ d ~ filsllic[x /filcIBJ by Lemma 3.31-5 

=::}- ::Jc t,s -U- c /\ d ~ fils[X /cJIBc by Definition 3.29 

¢:} ::Jc X := t, s -lJ- s[X/c] /\ d c fils[X /cJIBc 
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3. t;u. 

d c [t; u] filsmc 

~ :3ac1 . crc1 = [t] filsmc A d C [u]aci by strictness of [ u] 

=} :3ac1, s' · t, s ..U. s' A aci ~ fils'm c A d C [u]crc1 by IH and Th'm 2.20 

=} 3s' · t, s ..U. s' A d ~ [u] fils'mc by mono. of [u] 

=} 3s', d · t, s ..U. s' A u, s' ..U. d A d ~ fildmc by IH 

~ =id · t; u, s ..u. d A d ~ fildmc 

We again skip the supplementary operators. We have now proved the proposition for 

all t and ac where c < w. The result for w is obtained by appealing to continuity 

(Corollary 3.34): for all c, we have shown that [t]filsmc ~ QtDcs ~ QtDws, and thus that 

liJ [t] filsmi c QtDws. By continuity, liJ [t] filsmi = [t] (liJ filsmi) = [t] filsmw, completing the 

proof. D 

Theorem 3.37 (Equivalence of interpretations). QtDs = [t]filsl 

Proof. By Lemmas 3.24 and 3.36. 

Some interesting corollaries of Theorem 3.37 follow. Their proofs are immedi

ate from the theorem. 

Corollary 3.38. t is operationally rigid iff it is semantically rigid. Then we can 

simply say that t is rigid. 

Corollary 3.39. If t 0 u, then t s u. 

The converse of the above is not true, taking as an example t - i2 and u = 
i (1+1). However, we can "factor" the operational result through the denotational 

semantics: 

Corollary 3.40. If t s u, then QtDs = QuDs for alls. 



Chapter 4 

Term Rewriting 

In this chapter we explore AC by examining meaning-preserving transformations 

of terms. What we will develop is essentially the "calculus" part of Assignment 

Calculus-a term rewriting system whose rules are meant to capture and exploit its 

essential equivalences. We do not aim for the most powerful rewriting rules, but 

rather to enunciate a basic kernel of rules that can at least match the operational 

semantics. 

In developing these rules, we find significant guidance 'in Janssen's [Jan86] and 

Hung's [Hun90] work on state-switcher reductions, which are a form of rewriting sys

tem for (the modal side of) Janssen's DIL. Many of our rules are adapted from or are 

generalizations of theirs. The goal of their work was to eliminate state-switchers from 

predicates, resulting in state-switcher-free preconditions as meanings of programs. 

Our goal could roughly be seen, from their perspective, as striving for state-switcher

( assignment-) free execution results, though this is an oversimplification: although 

it is true when we are computing a value, in the case where we compute a state, 

we are really performing assignment-accumulation (i.e., computing a state-term, see 

Definition 4.9). 

To connect the results of this chapter with those of chapters 2 and 3, we will 
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provide a proof of equivalence of the rewriting with the operational and denotational 

semantics, demonstrating that the three are in agreement, and thus tying together 

all of the interpretations of AC. 

4.1 Rewrite rules and properties 

In order to make the rewriting definitions simpler, we adopt the convention that terms 

are syntactically identical regardless of parenthesization of the sequencing operator; 

to wit, 

Convention 4.1. (t; u); v _ t; (u; v) 

This convention makes it much easier to express rewriting rules that govern 

the interaction of assignment operators. Its semantic validity (see Theorem 4.6) is 

easily demonstrated: 

[(t; u); v] = [v] o ([u] o [t]) = ([v] o [u]) o [t] = [t; (u; v)]. 

The heart of the rewriting system is the rewriting function ~ Term --+ 

Term. Recall the definition (2.15) of modally closed terms me. 

Definition 4.2. The rewriting function ~ is given by 

1. ! it ~ t 

2. X:= me1; me2 ~ me2 

3. X:= t; x ~ t 

4. X:= me; y ~ y 

5. X:= t; X:=u ~ X·-(X·-t· u)·- ·- ' 
6. X:=me; Y:=t ~ Y:= (X:= me; t); X:=me 

7. X:=me; !t ~ X:= me; !(X:= me; t) 
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Along with some rules for the supplementary operators: 

8. X:=t; (u+v) ~ (X := t; u)+(X:=t; v), etc. 

9. n1 +n2 	 ~ n for the n s. t. ni + n2 = n, etc. 

10. b1 "b2 	 ~ b for the b s.t. b1 /\ b2 = b, etc. 

11. n1 < n2 	 ~ b for the b s.t. n1 < n2 = b, etc. 

12. if true then t else u ~ t 

13. if false then t else u ~ u 

Rewriting a term t consists of repeatedly applying ~ to subterms oft (zero 

or more times). 

Definition 4.3. The rewrite relation ~ c (Term x Term) is defined by: t ~ u 

iff u results from applying ~ to a subterm of t. 

Definition 4.4. If t ~ · · · ~ u (including if t = u), then we write t ~ u; that is, 

~ is the reflexive-transitive closure of ~ . 

Remarks 4.5. 

1. 	 Rule 1 expresses a basic property of Montague's intension and extension op

erators. In our setting, it embodies the execution of a procedure. A natural 

question is whether i !t can similarly be rewritten to t-the answer is yes, but 

only if t is rigid. Such a rule is not necessary to our purposes here, but it is 

interesting because it is a kind of modal analogue to 'T]-conversion in .\-calculus. 

2. 	 Rule 2 shows how the assignment statement interacts with modally closed terms. 

Since terms that are modally closed are rigid, the assignment has no effect 

unless its right-hand side does not terminate. In that case, the entire term 

would diverge; this is the reason that the right-hand side of the assignment is 

forced to be modally closed. 

3. 	 Rules 3 and 4 show how locations can be "valuated" by assignment statements. 

The previous comments on right-hand-side termination are still valid (as seen 
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in rule 4), but in the case of rule 3 the right-hand side is preserved so we do not 

have to enforce its modal closedness. 

4. 	 Rules 5 and 6 pertain to the interaction between two assignments. In the case 

that both assign to the same location (rule 5), the result of the first assignment 

is "overwritten" in the state by the result of the second. The only thing that 

remains of the first assignment is its effect on the right-hand side of the sec

ond one. Here, as in rule 3, the right-hand side of the first assignment is not 

restricted, because its termination properties are preserved. 

As for rule 6, it gives us a way to "push one assignment through another". 

The argument here is forced to be modally closed, not due to any question of 

termination, but because it guarantees that the second assignment has no effect 

on the right-hand side of the first. Note that this rule, when combined with 

rule 2, immediately provides a way to "swap" two assignment statements. 

5. 	 Rule 7 is a very important rule: the recursion rule. It may be difficult to see 

immediately why we identify this rule with recursion; the following special case, 

which combines the use of rules 7, 3 and 1, illustrates the concept more clearly: 

X:= it; !X ~ X:= it; t 

This amounts to simple substitution of a procedure body for its identifier, while 

"keeping a copy" of the procedure body available for further substitutions. 

6. 	 Rule 8 is the general pattern for pushing an assignment statement into any 

transparent construct: the assignment is simply pushed into each of its sub

terms. Combined with remark 3 above, assignment statements, when pushed 

into transparent terms, work exactly like a normal substitution operator. 

Our first order of business is to show that the rewrite function does not change 

the meaning of a term. 
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Theorem 4.6 (Validity of rewrite rules). t ~ u ===? [t] = [u]. 

Proof. By cases on the rewrite rules, we show that for all a =f _i, if t ~ u then 

[t]a = [u]a. All steps are justified directly by the semantic definitions (Definition 

3.18) or by basic properties of states. 

[! it]a = [it]aa = [t]a 

3. x := t; x ~ t. 

[X := t; X]a = [X]([X := t]a) 

a[X/[t]a] if [t]a =f _l 
= [X]a' where a' = J_

{ otherwise 

= {a_l[X/[t]a](X) if [t]a =f _l 

otherwise 

= [t]a 

4. X:=mc; Y ~ Y. 

[X:= me; Y]a = [Y]([X:= mc]a) = [Y](a[X/~mcID]) 

= a[X/~mcIDJ(Y) 

= a(Y) 

= [Y]a 
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5. X:=t; X:=u ~ X:=(X:=t; 	u) 

[X := t; X := u]a 


= [X := u]([X := t]a) 


= { J_[X := u]a[X /[t]a] 	 if [t]a =/= J_ 


otherwise 


= { 	a[X /[t]a] [X /[u]a[X /[t]a]] if [t]a =/= J_ and [u]a[X /[t]a] =/= J_ 

J_ otherwise 

= {a[X/[u]a[X /[t]a]] if [t]a =/= J_ and [u]a[X /[t]a] =/= J_ 

J_ otherwise 

= { 	a[X /[u]([X := t]a)J if [u]([X := t]a) =/= J_ 


J_ otherwise 


= { o-J_[X /[X := t; u]a] 	 if [X := t; u]a =/= J_ 


otherwise 


= [X := (X := t; u)]a 

6. X 	:= me; Y := t ~ Y := (X := me; t); X := me 

[X := me; Y := t]a 


= [Y := t]([X := me]a) 


= [Y := t]a[X /filmeIDJ 


= {:IXI filmcID](YI [t]<7[x /filmcIDJl 	 if [t]a[X /filmeIDJ =/= J_ 

otherwise 

= { :y/[t]<Y[X/filmcID]][X/filmcIDJ 	 if [t]a[X /filmeIDJ =/= J_ 

otherwise 
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= { ..l[X := me]cr[Y/[t]cr[X /filmelli]] 	 if [t]cr[X /filmelli] #- ..l 

otherwise 

= { 	[X := me]cr[Y/[t]([X := me]cr)] if [t]([X := me]cr) #- ..l 

..l otherwise 

= { [X := me]cr[Y/[X :=me; t]cr] 	 if [X :=me; t]cr #- ..l 

..l otherwise 

= [X := me]([Y := (X :=me; t)])cr 

= [Y := (X :=me; t); X := me]cr 

7. X 	:=me; !t l=t X :=me; ! (X :=me; t) 

[X :=me; !t]cr = [!t]([X := me]cr) 

= [!t]cr[X/filmelli] 

= [t]cr[X/filmelli]cr[X/filmelli] 

= [t]cr[X/filmelli] [X/filmelli]cr[X/filmelli] 

= [t] ([X := me]cr[X /filmefil])cr[X/filmelli] 

= [X := me; t]cr[X/filmefil]cr[X/filmeID] 

= [! (X :=me; t)]cr[X/filmefil] 

= [! (X :=me; t)]([X := me]cr) 

= [X := me; !(X := me; t)]cr 

8. X:=t; (u+v) l=t 	(X:=t; u)+(X:=t; v) 

[X := t; (u + v)]cr 

= [u + v]([X := t]cr) 

~ { ~+v]<7[X /[t]<7] 	 if [t]cr #- ..l 

otherwise 
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= { ~]u[X/[t]<y] + [v]u[X/[tJu] 	 if [t]o- =f J_ 

otherwise 

= [u]([X := t]o-) + [v]([X := t]o-) 

= [X := t; u]o- + [X := t; v]o

= [(X := t; u) + (X := t; v)]o-

The other cases for supplementary operators are obvious. The extension of the proof 

from ' ~ ' to ' ~ ' is provided by substitutivity: the compositionality of the meaning 

function (Definition 3.1) provides that if terms are semantically equivalent (Definition 

3.19) they can be freely interchanged. This means that since '~' is valid it can be 

applied to subterms without worry. D 

We can gain some valuable insight into how to use the rewriting rules by using 

them to interpret our three examples from chapters 2 and 3. First, example 1, using 

only the one-step ( ~) rewrites: 

x := 1; y := x; y 

(Rule 6) ~ Y:= (X:= 1; X); X:= 1; Y 

(Rule 4) ~ Y := (X := 1; X); Y 

(Rule 3) ~ Y:= 1; Y 

(Rule 3) ~ 1 

For example 2 we skip some obvious steps by using the ~ relation. 

P:= iX; X:= 1; !P 

~ X:= 1; P:= iX; !P 

~ X:=l; P:= iX; ! (P:= iX; P) 

~ X:=l; P:= iX; !ix 
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~ X:= 1; P:= iX; X 

~ 1 

We use example 3 to show that rewriting can also be used to perform partial evaluation 

of terms, by "unfolding" the factorial. This demonstrates that term rewriting allows 

more freedom than the operational semantics as it allows us to work with non-rigid 

terms to gain valuable results. In this way, term rewriting is a sort of intermediate 

interpretation between the operational and the denotational. 

Once again letting p =if X > 1 then Xx (X := X -1; !P) else 1, 

P := ip; !P 

~ P := ip; (if X > 1 then Xx (X := X -1; !P) else 1) 

~ if X> 1 then Xx (X:= X-1; P:= ip; !P) else 1. 

~ 

This gives a nice demonstration of the recursion rule (rule 7). 

4.2 Equivalence of Interpretations 

In this section we demonstrate that the rewriting system provided by the ~ relation 

is equivalent to the operational and denotational interpretations. Before stating this 

theorem, however, we need to address some technicalities. 

In order to use the rewriting rules to arrive at the same result as the operational 

semantics, we need to take into account the store. That means that we need a way to 

take the required information from the store and actualize it as a term. For example, 

take the term t _ X + X and a stores that maps X to 1; then, t, s .lJ- 2. We can 

accomplish this in rewriting by prepending t with X := 1, which gives X := 1; (X + 
X) ~ 2 as needed. 
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To formalize this notion, we use the definition of access set from chapter 2 to 

identify the locations that we need for the computation. Then, we use the following 

definition to actualize that part of the store. 

Definition 4.7 (Actualization). Given a finite set of locations C = { X 1 , ... , Xn}, 

the C-actualization of s is defined as 

A simple lemma expresses the semantic soundness of this idea: 

Lemma 4.8. For all C,s, [s(C)]filsIB = filsIB. 

Proof. Obvious. D 

Terms of the form returned by s(C) are of enough interest to classify them 

formally; we call them state-terms. Recall the definition of canonical terms c in 

Definition 2.18. 

Definition 4.9. The set of state-terms STerm, ranged over bys, is the set of terms 

of the form 

X1 := C1 Xn:= Cn 

(for pairwise distinct Xi). 

We can reorder state-terms at will: 

Lemma 4.10. Any state-term X 1 := c1 ; . . . ; X n := Cn can be reordered, that is, 

rewritten using the rewrite rules, to another state-term 

where {i1 , ... , in} is any permutation of {1, ... , n}. 
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Proof. Any two such assignments can be interchanged easily: 

X:=c1; Y:=c2 	=t Y:=(X:=c1; c2); X:=c1 by rule 6 

=t Y := C2; X := C1 by rule 2. 

The general result can be obtained by repeated swapping of assignments. D 

s(acc(t, s)) provides all of the information we need to ensure that the term 

rewriting rules can achieve the same result as the operational semantics. With this, 

we are ready to attack the main theorem of the chapter. 

Theorem 4.11 (Operational adequacy). 

1. 	 /ft,s.l).c, thens(acc(t,s));t ~ c; 

2. 	 If t, s .!). s', then s(acc(t, s)); t ~ s' (acc(t, s)). 

Proof. By induction on derivations, we will prove the stronger statements that, for 

any C 2 acc(t, s), 

• 	If t, s .!). c, then s(C); t ~ c; 

• 	If t, s .!). s', then s(C); t ~ s' (C). 

Cases proceed as follows: 

1. 	 t is either b, n or iu. The result follows by repeated application of rule 2, 

removing each of the assignment statements in s( C) in turn, and resulting in t 

as required. 

2. 	 X. In this case, we know, because acc(X,s) = {X}, that XE C. Reorder 

(using Lemma 4.10) s(C) so that the assignment X := s(X) occurs first. Now, 

applying rule 4 repeatedly will remove all assignments to locations other than 

X, until the term is of the form X := s(X); X; applying rule 3 then gives the 

required result s(X). 
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3. !t. If !t,s -l). d, then there is au s.t. t,s-l). iu and u,s -l). d. Let C 2 acc(!t,s) = 

acc(t, s) U acc(u, s). 

s(C); !t ~ s(C); ! (s(C); t) by repeatedly using rule 7 and reordering 

~ s(C); ! iu by IH 

~ s(C); u by rule 1 

If d = s' for some s', then IH tells us that s(C); u ~ s' (C), as desired. If d _ c, 

on the other hand, IH provides that s(C); u ~ c as needed. 

4. 	 X := t. If X := t, s converges, then there is a c s.t. t, s -l). c, and X := t, s -l). 

s[X/c]. Let C 2 acc(X := t,s) = acc(t,s) U {X}. 

s(C); X := t 

~ s(C-{X}); X:=s(X); X:=t by reordering 

~ s(C - {X}); X := (X := s(X); t) by rule 5 

~ X := (s(C - {X}); X := s(X); t); s(C - {X}) by rule 6 repeatedly 

~ X := (s(C) ;t); s(C - {X}) by reordering 

~ X:=c; s(C-{X}) by IH 

~ s[X/c](C) by reordering 

5. 	 t; u. If t; u, s -l). d, then there is a s' s.t. t, s -l). s' and u, s' -l). d. Let C 2 

acc(t; u, s) = acc(t, s) U acc(u, s'). 


We have that s(C); t; u ~ s' (C); u by IH. Ifd = s", then by IH, s' (C); u ~ s" (C); 


if d _ c, then IH gives s' (C); u ~ c, as required. 


The cases for the supplementary operators go through easily. 	 D 

The above theorem only works in one direction, in that it only shows that the 

rewriting system is at least as strong as the operational semantics. To complete the 
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proof of equivalence, we will make use of the equivalence between the operational and 

denotational interpretations. 

One property that we would like the rewriting system to have, but that we 

can only conjecture for now, is confluence: 

Conjecture 4.12 (Confluence). 1 If t~u and t~v, then there is aw s.t. u ~w 

and v~w. 

The lack of a confluence result for our rewrite rules means that we do not 

know whether there is aw s.t. u ~w and v ~ w in the above conjecture. Theorem 

4.6 allows us to sidestep this issue by stepping into the semantics: we know, at least, 

that u s v because the rewrite rules preserve meaning. This allows us to define the 

following rewrite-semantics function: 

Definition 4.13 (Rewrite semantics). Given some t ands, we define 

~cID if there is a c s.t. s(acc(t, s)); t ~ c 

{tDs = [s']~sID if there is ans' s.t. s(acc(t,s)); t~s' 

..l otherwise 

Lemma 4.14. For alls, {tDs ~ [t]~sID. 

Proof. Immediate from Definition 4.13, Theorem 4.6, and Lemma 4.8. D 

Lemma 4.15. For alls, ~tDs C: {tDs. 

Proof. Immediate from Definition 3.23, Definition 4.13, and Theorem 4.11. 

1This conjecture has since been proved by the author. 

D 
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Putting these results together with Theorem 3.37 gives, for all t, s, 

0; 

[t]~slli 

which proves 

Theorem 4.16 (Equivalence of AC interpretations). For all t, s, 

// 

[t] ~slli 

So the three interpretations of AC are in agreement. Note that Lemmas 4.14 

and 4.15 make the '~' direction of Theorem 3.37 (the "easy" direction) redundant

the equality in the first diagram above could be replaced by a weaker-than rela

tionship. Therefore Lemma 3.24 is superfluous; we have chosen to include it anyway 

because of the simplicity and clarity of its proof, and because it makes the equivalence 

of the operational and denotational semantics "self-contained". 



Chapter 5 

Extensions and Variants of AC 

In the previous chapters, we have shown that AC has simple and intuitive syntax and 

interpretations, and that these interpretations are all in agreement with one another. 

This provides a solid foundation, but it is important that we also show that AC is 

capable of handling more complex imperative features. We believe that one of the 

most interesting aspects of AC is that it can be extended and modified in simple 

ways to include interesting and powerful features. 

The goal of this chapter is to show how, by making straightforward adjust

ments to syntactic and semantic aspects of AC, we can incorporate some of these 

features. In fact, most of the variants presented below result from simply removing 

restrictions and conditions from AC 's definitions. We show, in §§5.1-5.4, how to 

handle L-values, lazy schemes of evaluation, state backtracking, and procedure com

position. 

Finally, §5.5 offers a (cursory) presentation of a combined imperative/functional 

language, by adding a typed >..-calculus to AC. This brings AC closer to the language 

that it is based on, Janssen's DIL [Jan86]. 

77 
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5.1 L-values 

The first variant that we will consider results from a generalization of the assignment 

operator to allow arbitrary terms on its left-hand side. This allows us to compute 

which location is going to be assigned to. This is quite a useful feature as it opens 

the door to pointers and arrays used as L-values, which are common in practical 

imperative languages. This work is the re-incorporation into AC of features that 

were introduced by Hung into DIL in [Hun90] and [HZ91]. The novelty is that we 

also give them an operational interpretation, and that the semantics of pointers is 

significantly simplified by our use of reflexive state. 

To avoid confusion, we will introduce a new symbol for the generalized assign

ment statement, 

tS-+r f- UT 
' 

where the usual assignment operator can be interpreted as follows: 

x := t = ix+- t. (1)
def 

Note that we are making use of the intension operator in a different way here: in 

order to talk about a location "itself" as opposed to its contents, as discussed in §1.2. 

The operational interpretation (compare the rule for assignment in Definition 2.8) is 

t, s .JJ- ix u, s .JJ- v 
(2) 

t +- u, s .JJ- s[X/v] 

and its denotation (compare Definition 3.18-4) is 

J_ if [u]a = J_ or -,::JX · [t]a = [X]
[t +- u]a = (3) 

{ a[X /[u]a] otherwise, for the X s.t. [t]a = [X]. 

Taking the old rules in Definition 4.2 as they are, but transcribed following (1), We 

only need to add a single rewrite rule 

X :=me; t +- u ~ X :=me; (X :=me; t) +- u. (4) 
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The operational interpretation is now strictly less powerful than the denota

tional, as illustrated by the term 

i (Y := X; Y) +- t 

which cannot be evaluated operationally (because i (Y := X; Y), s .JJ. i (Y := 

X; Y)), but whose denotation is the same as X := t. This can be rectified by 

eliminating terms of this form. We do so by introducing a subtype S 1> 7" of S-+ 7" for 

terms of the form ix7". 

Now we can give the formal syntax of the L-value extension to AC. Add the 

following clause to Definition 2.5: 

2'. ix7" E Term5t>7" 

and modify clause 4 in the same definition to 

4. t 5t>7" +- u7" E Term5 

Replace the rule for assignment in Definition 2.8 by (2), and replace rule 4 in Definition 

3.18 by the following. (The semantics is a little simpler than that given above because 

we do not have to deal with the case where the left-hand side does not represent a 

location.) 

if [u]a = J_
[t5 t>7" +- u7"]a = { 	J_ 

a[X/[u]a] otherwise, for the X s.t. [t]a = [X]. 

Finally, add the rewriting rule ( 4) to Definition 4.2. The final alteration is to the 

definition of access set (Definition 2.12: 

If t, s .JJ. iX, then acc(t +- u, s) = acc(t, s) U acc(u, s) u {X}. 

We can now extend the equivalence result (Theorem 3.37) to the new L-value friendly 

version of AC. 
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Theorem 5.1. Theorem 4.16 holds for AC modified as above. 

Proof. We need to modify or extend five results: Theorem 2.20, Theorem 3.33, Lemma 

3.36, Theorem 4.6 and Theorem 4.11. The first and second are trivial extensions to 

the existing proofs. The third is accomplished by modifying inductive case 2 of the 

proof in a straightforward manner, utilizing the fact that [X] ~ [Y] ==> X = Y, 

which is easily shown; basically, we just have to add 

d ~ [t f- u]filsIBc 

==> :ix · [X] = [t] filsIBc 

==> :JX,Y t,s.JJ.iY A filiYlli~[X] by IH and Th'm 2.20 


==} :ix, y t,s -U- iY A [Y] G; [X] 


* :ix . t, s .u- ix by the property mentioned above 

to the existing proof of the case. We should add that (3) is extended to a bounded

recursion version in the usual way, that is, it does not affect the state order (see 

Definition 3.28). 

The fourth proof is modified by adding a case for the new rewrite rule ( 4), 

which proceeds as follows: 

[X :=me; t f- u]a

= [t f- u]a-[X /filmeIBJ 

if [u]a-[X /filmeIBJ = J_ 

{ ~[X /filmcEJIY/[u]o-[X /filmcmJ] o/w, where [t]a-[X /filmeIBJ = [Y] 

if [u]a-[X /filmeIBJ = J_ ~ { ~[X /filmcEJIY/[u]o-[X /filmcmJ] o/w, where [X :=me; t]a-[X /filmeIBJ = [Y] 

= [(X :=me; t) f- u]a-[X /filmeIBJ 
= [X :=me; (X :=me; t) f- u]a

http:t,s.JJ.iY


81 5. Extensions and Variants of AC 

The fifth proof requires a modification to case 4, essentially by prepending it with 

this: If t +-- u, s converges, then there is a X s.t. t, s ..U- ix. Let C 2 acc(t +-- u, s) 2 

acc(t, s). 

s(C); t f- u 

~ s(C); (s(C); t) f- u by ( 4) repeatedly + reordering 

~ s(C); ix+-- u by IH 

s(C); X:= u 

The rest of the case goes just as it is given. D 

The addition of L-values to AC is inspired by the work of Hung and Zucker 

[HZ91] on introducing L-values and pointers into Janssen's DIL. They introduce a 

hierarchy within State, where State0 assigns values to base-type locations, State1 

assigns base-type locations to pointers, and then State= State0UState1. (In earlier 

work ([JvEB77]) Janssen and Van Emde Boas had developed a similar hierarchy of 

countable height; however, their pointers could not be dereferenced on the left-hand 

side of an assignment statement.) We do not need to introduce this hierarchy because 

we already allow the storage of intensions. Thus, our contribution is the observation 

that: 

A pointer is just a special kind of intension. 

5.2 Lazy Evaluation 

In analogy with the call-by-name or lazy evaluation schemes for >.-calculus based 

languages, in this section we will examine some modified evaluation strategies for 

AC. In the context of imperative reasoning, what could "laziness" entail? An inter

esting study of this concept was undertaken by J. Launchbury in [Lau93], where he 



82 5. Extensions and Variants of AC 

gives examples of imperative algorithms on lazy data structures and shows that lazy 

imperative evaluation can be a useful and powerful tool. 

In AC, laziness is achieved by eliminating two restrictions that are present in 

the denotational semantics of AC: 

1. [t := u]CJ" = ..l whenever [u]CJ" = ..l, 

2. [t]CJ" = ..l whenever CJ" = ..l. 

Let ..l be some non-terminating term, say X := i !X; !X. The two conditions above 

are akin to asking whether these two equivalences hold: 

1. x := l.; t 
? 
. l. 

2. l.;t 
? . l. 

If condition 1 is removed, then equivalence 1 does not hold. We call this lazy as

signment. If condition 2 is removed, equivalence 2 does not hold. This is called lazy 

sequence. We consider them each in turn. 

5.2.1 Lazy assignment 

In lazy-assignment AC, we allow states CJ" where e7(X) = ..l for some locations X, 

and we only require the right-hand value of an assignment statement to converge if 

it is used. This generalization of states was mentioned (and discarded) by de Bakker 

in [dB80, pp.80-81]. It is similar to the lazy ,\-calculus where arguments to functions 

are not required to terminate before they are passed (substituted) into the applicand 

[Plo75]. 

Intuitively, we can interpret this form of laziness as follows: a new execution 

thread is started each time an assignment statement is encountered. A thread is 

required to terminate only before its output is needed; any threads with unused 

output are killed. 
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The net effect of this change on the denotational semantics is simply the 

removal of a restriction in the definition of assignment; the new definition is more 

straightforward, 

[X := t]a = a[X/[t]a], 

and replaces clause 4 in Definition 3.18. The rewriting is similarly modified by relaxing 

these clauses in Definition 4. 2: 

2. X:=t; me ~ me 

4. X:=t; Y ~ Y 

The relaxation in question is that the right-hand sides of the assignment statements 

of interest are no longer required to be modally closed-see Remark 4.5-2. 

The operational interpretation of lazy assignment is more involved. A first 

attempt at generalizing the rule for assignment to be lazy might be simply to set 

X := t, s .1J.. s[X/t]. This does not work because terms must be evaluated in their 

original context. For example, 

X:= Y; Y:= 1; X 

should be equivalent to Y, not to 1. So stores must now map locations to pairs (t, s). 

Notice that now the definition of Store depends on itself! The solution is, however, 

much easier than it was when we ran into this problem in the denotational semantics 

(§3.1.1). First of all we allow stores to be partial functions. (Let A--+ B be the set 

of partial functions from A to B.) Inductively define: 

Storen = LJ Loc'T --+ (Term'T x LJ Storei)· 
'TELType i<n 

Storeo consists of exactly one store s0 (the nowhere defined function) and for all n, 

Storen c Storen+l· We can then let Store= LJi Storei. Note that ifs E Storei, 

then s[X /(t, s)] E Storei+l· 

The operational semantics (Definition 2.8) is modified as follows: 

s(X) = (t, s') t, s' .lJ.. u 
X := t, s .lJ.. s[X/(t, s)] 

X, s .1J.. u 
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We do not prove that the interpretations given for AC with lazy assignment 

are equivalent, because the new model of store changes some of the earlier definitions 

significantly. We do, however, believe that such an equivalence result does hold. 

5.2.2 Lazy sequence 

The standard interpretation of the sequence operator ';' forces the left-hand side to 

terminate and return a state before the right-hand side is evaluated in this new state. 

But what if the right-hand side does not depend on the state at all, i.e., what if it is 

rigid? The lazy interpretation of ';' gives that, if t is rigid, then for any u, 

u;t = t. 

As mentioned above, in the denotational semantics the matter is handled simply by 

removing the restriction that [t] is always strict. To handle lazy sequence opera

tionally, we need to allow partial stores as we did for lazy assignment, but we do not 

require the store hierarchy. Therefore we define 

Store= LJ Loc'T' --+ Can 
'T'ELType 

and again set s0 to be the nowhere-defined store. The operational semantics does not 

need to be modified; we just add the rule 

LI, So .U,. d 

t; u, s .u.. d 

to the others in Definition 2.8. Notice that this rule allows that there could be two 

distinct derivations for the same pair t, s, which invalidates Lemma 2.9. An example 

of such a term is X := X; 0, which can be derived either by the usual operational 

rules from Definition 2.8 or by the rule above. 

As far as rewriting goes, we need only add 

t;mc ~ me 
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to support lazy sequence. As for lazy assignment, we will not prove that the equiva

lence of interpretations holds for this variant of AC, but we do conjecture that such 

an equivalence does indeed hold. 

To combine lazy assignment and lazy sequence, simply combine the modifi

cations given above of the denotational, operational and rewriting interpretations of 

AC. 

5.3 Labelled State Backtracking 

State backtracking is the ability to "rewind" the state to some previous configuration. 

This is useful when modeling transactions or other such actions, and is a fundamen

tal component of logic programming languages such as Prolog [TNOl]. There has 

been some work in including state backtracking in practical imperative languages, by 

K. 	Apt and colleagues, in the Alma-0 programming language [ABPS97]. 

We have already discussed the fact that state backtracking is an inherent 

feature of AC in §2.5. This is a limited form of state backtracking though: it only 

allows us to "localize" parts of the computation of a term. A more freewheeling kind 

of state backtracking can be added to AC simply by allowing locations to be of type 

s. 

When locations of this type are allowed, we gain the ability roughly to set and 

return to state backtracking "markers" or labels. This is similar to the way state 

backtracking is done in Alma-0. Here is an example to show what is possible when 

we have a location X of type S. 

X:= (Y:= 1); Z:= 2; X 

Y:=l 

In the above example, the use of X at the end of the term backtracks the state to the 

point before Z was assigned, erasing its effect on the state. It actually backtracks the 
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state to before X itself was assigned, but it also executes the alternate computation 

path of assigning 1 to Y. 

All denotational and operational definitions are left unchanged. Rewriting is 

somewhat complicated by the fact that there are no rigid terms of type S; this is an 

interesting topic that merits further attention but must be left to future work. The 

way out seems, roughly, to be based on the observation that the term 

X;t 

depends only on the contents of X. This complication is the main reason that we 

have not attempted to extend the equivalence proof to this version of AC. 

There might be interesting connections between the state backtracking we 

describe and the delimited continuations of Felleisen et al. [FFDM87]. [ABPS97] 

gives an implementation method for labelled state backtracking, by using logs to 

keep track of the state changes to reverse when state backtracking is performed. 

5.4 AC with Procedure Composition 

One feature that is missing in AC is the ability to build new procedures from con

stituent procedures. This weakness can be remedied by replacing the sequence oper

ator ';' with a composition operator ';;' that takes procedure terms ts-+s and u8-+7' 

and forms their composition t ;; u. Executing this composed procedure is the same 

as executing t and then executing u; to wit, 

f (tS-+S • • US-+7') - ft• f U . '' - . '. 
The denotational interpretation of this operator is straightforward. 

[t ;; u]a = [u]a o [t]a = Aa' · [u]a([t]aa') 
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Compare Definition 3.18-5: we could define sequence in terms of composition as 

follows 

t;u = !(it;; iu), 

but the operational and rewriting rules for composition are simplified considerably 

if we keep the sequence operator as well. The operational semantics of procedure 

composition is then 
t, s .!J. iv u, s .!J. iw 

t;;u, s .!J. i(v;w) 

Rewriting is augmented by the following rules: 

it;; iu ~ i(t;u) (5) 

X:=t; (u;;v) ~ (X:=t; u);;(X:=t; v) (6) 

We can extend the proof of equivalence of interpretations easily to AC with 

composition. First extend the definition of access set (Definition 2.12 again: 

If t, s .!J. iv and u, s .!J. iw, then acc(t ;; u, s) = acc(t, s) U acc(u, s) 

Theorem 5.2. Theorem 4.16 holds for AC with the composition operator. 

Proof. As in §5.1, we need to extend Theorem 2.20, Theorem 3.33, Lemma 3.36, 

Theorem 4.6 and Theorem 4.11. Skipping as before the first and second due to their 

simplicity, Lemma 3.36 requires the following case for composition: 

d ~ [ts-+s ;; uS-+7"] illsllic 

{::} d ~ [u] illsllic o [t] illsllic 

{::} 3di, d2 · d1 = [t] illsllic /\ d2 = [u] illsllic /\ d c d2 0 d1 

::::} 3d1, d2 t,s .!J. id1 /\ u,s .!J. id2 /\ d ~ illid2lli 0 illid1lli by IH 

{::} 3d1, d2 t, s .!J. id1 /\ u, s .!J. id2 /\ d ~ [d2] 0 [d1] 


{::} 3di, d2 t,s.!J. id1 /\ u, s .!J. id2 /\ d c [d1; d2] 


{::} 3d1, d2 t,s .ij. id1 /\ u,s .ij. id2 /\ d ~ illi(d1 ;d2)lli 
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Theorem 4.6 requires the following two cases: 

[it;; iu]a = [it]a o [iu]a = [t] o [u] = [t; u] = [i (t; u)]a 

[X := t; (u ;; v)]a 

= [u ;; v]([X := t]a) 

_ { [u ;; v]a[X /[t]a] if [t]a # J_ 

J_ 	 otherwise 

_ { ~]u[X/[t]u] o [u]u[X/[t]u] 	 if [t]a # J_ 

otherwise 

= [v]([X := t]a) o [u]([X := t]a) 

= [X := t; v]a o [X := t; u]a 

= [(X := t; u) ;; (X := t; v)]a 

Theorem 4.11 needs the following addition. If t ;; u, s converges, then there are v, w 

s.t. t,s.JJ. iv and u,s.J,l. iw. Let C 2 	acc(t;;u,s) = acc(t,s) U acc(u,s). 

s(C); t;;u 

~ (s(C); t) ;; (s(C); u) by (6) repeatedly 

~ (iv);; (iw) by IH twice 

~ i(v;u) by (5) D 

Introducing the composition operator has an interesting consequence: AC 

becomes a self-contained Turing-complete language, in the same sense as the pure 

(untyped) >.-calculus is such a language. As in the >.-calculus, we can encode numerals, 

arithmetic operations, etc. as AC terms. 

We start by encoding numerals and some arithmetic operators. The encodings 

will depend on a specific location, Ns-+s. The numeral n will be encoded as the n

fold iteration of N, i.e., n = i (!N; ... ; !.NJ This method of encoding is inspired 
'V 

n times 
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by the Church encoding of numerals in >.-calculus, where n is encoded as .Ax· .Af · 

f(f(· · · f(x) · · · )). Operations are encoded as follows ______.. 
n times 

0 - i(X:= X) 

succ(n) _ n;; i!N 

n+m n;;m 

n•m - X:=O; Y:=m; N:= i(X:=(X;;Y)); !n; X 

For multiplication, N is set and repeatedly executed, resulting in the correct answer 

being stored in X, which is then returned. Calculating the predecessor relies on a 

similar trick: 

pred(n) X := 0; N := i ( N := i ( X := (X ; ; i !N))); !n; X 

Next we will encode a While-loop based language, which is the language While 

that is defined (and shown to be Turing-complete) in [ZP93]. First there are memory 

locations X, Y, .... While-programs Pare generated by: 

P .. _ X := 0 I X := Y I x++ I X-- I P; Q I wh~le X> O do P od 

The interpretation of a While-program is as follows: given designated input and 

output variables, I and O, the (partial) function computed by a program P, (P) : 

JN --+ JN is computed as follows. (P)(n) is the result of setting I ton, then running 

P, and then returning the value of O after the end of the program has been reached; 

if the end of the program is never reached then (P)(n) diverges. 

While-programs are encoded as follows: to each variable X is assigned a 

location X = xs-+s such that X =Y {::} X =Y. There are also two auxiliary locations 

ws-+S and ys-+S that are distinct from those just mentioned. Translations of While
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programs proceed inductively: 

x == 0 X:=O 

x == y X:=Y 

x++ X:= succ (X) 

X-- X:= pred {X) 

P;Q - P;Q 

while X> 0 do P od 

W:= i!(V:= i(X:=X); N:= i(V:= i(P; !W)); !x; V); !w 

To complete the translation, we identify the output of the term: the numeral that 

results from executing P is given by P ;0. Verification that the translations above 

provide the expected behaviour are left to the reader. 

The ability to perform such a Turing-complete encoding adds weight to our 

claim that AC can be seen as an imperative cousin to the >.-calculus, and strengthens 

our claim that AC is a true imperative reasoning language. 

5.5 Combining AC with Typed A-Calculus 

One of the most interesting extensions that we can make to AC involves adding func

tional features to its core operators. The most natural choice here is a simply typed 

>.-calculus, for multiple reasons: first, AC itself is simply typed; second, Janssen's 

and Hung's systems contain simply typed >.-calculus; third, we have already identified 

>.-calculus as our favoured functional reasoning language. 

Bringing in a typed >.-calculus allows the treatment of quite interesting fea

tures. Hung uses abstraction and application to model procedure parameters passed 

by value, by reference and by name [Hun90]. The ability to abstract over intensions, 

particularly those of type S -+ S, allows for the easy handling of difficult control 
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constructs like continuations [SW74], [dB80, Chapter 10]. 

Incorporating .\-calculus also brings AC closer to practical programming lan

guages, which invariably contain at least a few functional features. Higher-order 

imperative languages, such as ALGOL 60 [BBG+97] and derivatives, combine pow

erful imperative and functional features. Janssen and Hung have already studied 

aspects of such languages using DIL; it will be interesting to see what new features 

can be handled using AC. 

But the most interesting aspect of the combination is this: because we have 

endeavoured to make AC as pure an imperative language as possible, the study 

of its combination with pure functional features could provide a good perspective 

on the precise points of troublesome interaction between functional and imperative 

constructs. Given the oft-observed tension between these two paradigms [Bac78, 

HHJW07], such an orthogonalization might give a new approach to an old problem. 

Now to business. We will call our combined language .\AC, the .\/assignment 

calculus. The first part of the system that needs to be changed is the set of types, 

which now allow any type as a function domain. (In this section, we leave out the 

Booleans and numbers for simplicity.) 

T ::= s I 7"-tT, 

We now introduce a new set of syntactic atoms: Var, the set of variables, ranged 

over by x, y, .... As with locations, these are individually typed and cannot be of 

type S.1 The sets Var and Loe are disjoint. Loe becomes more general as it can 

now range over other function types, but it is still restricted to a finite number of 

types. Var does not require such a restriction. 

The syntax of .\AC is: 

1An interesting system arises when we allow variables of type S, such as in [Gal75, §8], but it 

raises more questions that we do not have time to delve into now. It is certainly an interesting 

subject for future research. 
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Definition 5.3 (Syntax of .XAC). The typed terms of .XAC are given by 

1. 	 XT E TermT 

2. 	 XT E TermT 

3. 	 itT E Terms-+T 

4. 	 !tS-+T E TermT 

5. 	 XT:= tT E Terms 

6. 	 ts j UT E TermT 

7. 	 AXTl . tT2 E TermT1-+T2 


tT1-+T2UTl TermT2
8. 	 E 

We skip the operational semantics due to the fact that things become more 

complex in the presence of functional features. The main reason for this is that 

intension can no longer be seen as representing the pure text of the term it encloses, 

due to the fact that it only binds the modal component of the term and not the 

functional part. Conversely, the usual operation treatment of the A-calculus does not 

work because of the fact that functional binding does not affect the modal component 

of a term. This explanation may seem a bit vague, but a full treatment must be left 

to future work. 

The next step, then, is then to give the denotational semantics of .XAC. We 

do not present in detail the definitions of State and the semantic domains, as they 

proceed basically along the same lines of Definitions 3.12-3.15. The only tool that we 

are lacking is a device for assigning values to variables; we call this a valuation, and it 

performs the same function as a state does for locations. The set of valuations Val, 

ranged over by p, consists of (total) functions from Var into ID respecting types. 

The meaning function now requires two arguments: a valuation and a state: 

[·] : TermAAC --+ Val--+ State--+ ID. 

We will give a semantics that is both imperatively and functionally lazy, mainly 

because of its elegance: 

http:3.12-3.15
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Definition 5.4 (Semantics of AAC). 

1. [X]pa a(X) 

2. [x]pa p(x) 

3. [it]pa [t]p 

4. [!t]pa [t]paa 

5. [X := t]pa - a[X/[t]pa] 

6. [t; u]pa [u]p ([t]pa) 

7. [Ax· t]pa - Ax· [t]p[x/x]a 

8. [tu]pa - [t]pa([u]pa) 

There should be nothing surprising about the above definitions, other than the 

fact that they are strikingly straightforward. They strongly resemble the definitions 

of Hung [Hun90]; it would be interesting to incorporate our imperative approach to 

recursion into Hung's system which does not allow state-typed terms. 

Finally, we discuss the issue of term rewriting for AAC. Without going into 

too much detail, we can say, first of all, that all of the rules in Chapter 4 hold (modulo 

the modifications indicated in §5.2 if we are working with lazy imperative features) 

if we treat abstraction and application as transparent operators, and variables as 

constants. All we need, then is a way to rewrite .A-abstraction and application. We use 

the usual tool, ,B-conversion. As Montague points out, however, ,B-conversion in this 

setting cannot always be carried out. Because of the presence of modal operators, and 

thus of referentially opaque contexts in terms, only a restricted form of ,8-conversion 

holds. We follow Janssen's definition: 

Definition 5.5 (,8-conversion for AAC). 

(Ax· t)u ~ f3 t[x/u] 

only if u is rigid or x is not in any opaque context int. Usually a syntactic approx

imation is taken to these conditions, i.e., that u must be modally closed and that x 
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does not lie within the scope of an 'i' operator, or on the right hand side of a sequence 

operator. 

As noticed in [FW80], this restricted form of ,B-conversion is not confluent, but 

the author has discovered some interesting variations of the rule that are confluent. 

These will be presented in future work. 

Note that Rule 8 (in Definition 4.2) extends to .A and application which are 

transparent, and that Rule 2 extends to variables which are modally closed. 

Here is an example of an .AAC term: 

F := i (.Ax · if x ~ 1 then 1 else x x !F (x - 1)); !F 

Letting f _ i (.Ax· if x ~ 1 then 1 else xx !F(x -1)), notice that 

F ·- f· 'F·- ' . 
~ Ax· if x:51 

then 1 

else xx (F := f; !F(x -1)) 

~ .Ax· if x:51 

then 1 

else x x if x :5 2 

then 1 


else (x -1) x (F := f; !F(x - 2)) 


~ .Ax·ifx~l 

then 1 

else x x if x :5 2 

then 1 

else (x - 1) x if x :5 3 

then 1 

else (x - 2) x (F := f; !F(x - 3)) 
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The example uses imperative recursion to "build" a recursive function, erasing 

all traces of the imperative computation as it goes. 



Chapter 6 

Conclusion 

6.1 Goals and Contributions 

I hope to have convinced the reader, in the last four chapters, that AC does indeed 

possess the desirable properties listed in §1.1: 

• 	 It is small, elegant and (hopefully) intuitive. 

As discussed in Chapter 2, AC's set of four basic operators is simple and 

understandable. Furthermore, §5.4 demonstrates that, with a small change, 

AC's meager set of operators can function as a self-contained Turing complete 

language. 

• 	 Its operators (faithfully) represent well-understood, fundamental concepts. 

By taking only assignment, sequence, procedure formation and procedure in

vocation as basic, we remain close to practical imperative languages. On the 

other hand, the intension and extension operators of Montague are also by now 

familiar and well-understood by logicians. 

• It is well grounded, having operational and denotational semantics that are 

equivalent. 

96 
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Chapters 2 and 3 show that AC has relatively uncomplicated operational and 

denotational semantics, and Theorem 3.37 tells us that they are in fact equiva

lent. 

• 	We can rewrite its terms using simple (provably valid) rules. 

Chapter 4 is devoted to this rewriting system. The rules are not only valid; 

Theorem 4.16 shows their completeness in that they can be used to arrive at 

any result that can be computed operationally 

• 	 It has interesting properties. 

Section 2.5 gives an example of this: AC's natural incorporation of (limited) 

state backtracking allows for the rewriting system of Chapter 4. 

• 	 It is easy to modify and extend. 


This is demonstrated in Chapter 5. 


I hope that the above points show that Assignment Calculus is a realization 

of our goal to develop an imperative reasoning language. We also contribute the 

following: 

1. 	 A philosophical examination of the concept of pure imperative reasoning (Chap

ter 1). 

2. 	 A generalization of the concept of procedure using the intension operator of 

Montague, continuing the line ofresearch of Janssen [JvEB77, Jan86] and Hung 

and Zucker [Hun90, HZ91]. 

3. 	 An original operational interpretation of Montague's intension and extension 

operators (Chapter 2). 

4. 	 An analysis of the concept of state backtracking as a fundamental imperative 

action (§2.5, §5.3). 

5. 	 The use of a reflexive domain as a model of possible worlds. (Chapter 3) 
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6. The first systematic treatment of imperative laziness (§5.2). 

6.2 Related Work 

The final step in our presentation is to explore related and otherwise relevant work. 

First note that there has been no other attempt, as far as the author knows, to define 

a core imperative reasoning language as we have done. Therefore all of the other 

work that we will examine is only indirectly related to our aims; nevertheless there 

are certainly interesting connections to be explored. 

The first and perhaps most striking language of interest that can be found 

in the literature is (unfortunately!) nameless; it is defined in the seminal report of 

Strachey and Scott [SS71, §5]. Here we find a language that has features that closely 

resemble those of AC: there are operators for referencing and dereferencing, and 

operators for treating a procedure as an expression and an expression as a procedure. 

These features seem close in spirit and in meaning to intension and extension, despite 

some differences. It is quite interesting that their aim seems to be to reduce more 

complex imperative language features to simple and powerful ones, which is what we 

have also attempted to do with AC. 

Next we consider Floyd-Hoare-style logics. These are common when studying 

imperative languages [dB80, Win93] and there are several modern variations which 

we will mention. The important point of note here is that such logics are designed to 

reason about imperative languages rather than within them (by using, say, a rewrit

ing system as we have done for AC). Programs and assertions about programs are 

(usually) seen as forming two distinct syntactic classes. Such a method of reasoning 

about programs, though useful, is not in the spirit of our conception of "reasoning 

language" as developed in Chapter 1. Nevertheless, much interesting work has been 

done in this area that is relevant to imperative reasoning. It will be interesting to 

study, in future work, connections with this line of research. 
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The other main difference between Floyd-Hoare-style systems and ours is that 

they are logics. They deal in preconditions and postconditions-assertions about 

the state before and after program execution. In this respect they have more in 

common with Janssen's and Hung's systems which are based on intensional logic 

and deal with weakest preconditions. Although there are commonalities with our 

approach of defining a rewriting system, they are too distant to allow for an immediate 

comparison. 

Notable systems of Floyd-Hoare-style logic are Algorithmic Logic [MS87], Dy

namic Logic [HKTOO], and Separation Logic [Rey02]. A careful comparison of their 

systems with ours is better suited to future work, because we do not actually de

fine a logic as they do. Of particular interest, however, is the store model used in 

Separation Logic, which facilitates local reasoning and reasoning about pointers. We 

would like to compare our treatment of pointers (§5.1) with theirs, and to see if our 

treatment of pointers as special kinds of procedures could be combined with their ap

proach. The connection is strengthened by recent work [Kri] that treats higher-order 

procedures in Separation Logic; we find, in his use of quotation and evaluation for 

procedure declaration, a kindred approach to ours and a likely fruitful collaboration 

in the future. 

Insofar as rewriting systems for imperative languages, the prime example is the 

work of Felleisen [FH92]. He adds facilities for handling state and control operators 

to Plotkin's call-by-value A-calculus, which results in a quite elegant system. There 

could be a good deal of interesting work in comparing our work with Felleisen's; the 

main problem that we immediately encounter is that his work depends fundamentally 

on the A-calculus, which is precisely what we have tried to avoid using in (the usual 

version of) AC. It is impossible to extract a pure imperative (by our definition) part 

of his system to compare with AC. The best starting point for a comparison would 

then be the language .\AC of §5.5. We intend to undertake such an analysis in 

forthcoming work. 
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Another example of a rewriting system for imperative languages is the language 

iRho of Liquori and Serpette [1808]. The same essential differences mentioned above 

also apply here: because it is an extension of the Rewriting Calculus [CKL02] which is 

a functional calculus, iRho is really a functional language enriched with imperative 

features. It seems impossible (to the author) to extract a workable, pure imperative 

system from their work. 

Another line of research that is related to ours is based on abstract machines. 

We identify in particular Random Access Stored Program machines and Pointer Ma

chines [vEB90]. These are different in spirit from our work: their intention is to 

provide a model of computation that is adequate for studying computability and 

complexity of algorithms that use stored procedures and pointers. We mention them 

mainly because they indicate a need for modeling features like procedures and point

ers. The main deficiency, in our view, of machine-based models such as these is that 

they are "too concrete": they are mired in implementation details and are therefore 

difficult to use as reasoning tools. 

6.3 Future Work 

We now discuss interesting avenues of further research. 

1. 	 Exploring, expanding, and improving the rewriting system of Chapter 4. As we 

stated there, the goal was to arrive at a small set of rules that was sufficient 

to achieve our equivalence proof; however, it would be better to develop more 

powerful rules that might be more intuitive in terms of real-world use. There 

is also the matter that we have not proved the confluence conjecture for our 

rules-certainly this is a question that we would like to answer .1 

2. Clarifying the philosophical issues related to imperative reasoning; looking at 

1The conjecture has since been proved by the author. 
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programming languages, both imperative and functional, in order to solidify 

and explicate our position on referential opacity vs. transparency. 

3. 	 Looking at other basic constructs for AC, such as, say, stacks or arrays (as in 

Hung [Hun90]) as well as unordered memory locations. 

4. 	 Examining more carefully the concept of state backtracking in AC. As men

tioned in §2.5, we believe that state backtracking is a fundamental part of 

imperative reasoning; therefore, we would like to provide an improved analysis 

of what it is and how it takes part in and affects imperative reasoning. 

5. 	 Developing the extensions to AC that are presented in Chapter 5, particularly 

the combination with the .\-calculus, as we believe that this direction can be 

particularly fruitful because of its immediate relevance to the foundations of 

hybrid imperative/functional programming languages. 

6. 	 Exploring connections with Separation Logic, particularly its interesting store 

model, and with Felleisen's work as mentioned above. 

The aim of this dissertation was to provide an analysis of imperative reason

mg. We have done this on multiple levels: from a philosophical dissection of the 

concept of imperative reasoning in Chapter 1, to an actual language AC and sug

gested extensions, to mathematical, operational and rewriting-based meanings, to a 

real implementation in Appendix A. We believe that this broad approach leaves AC 

well-prepared for further investigations, and we hope that it will stimulate future 

work in what we consider to be an exciting new approach to an old paradigm. 
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Implementation 

This appendix is devoted to a presentation of an implementation of the rewriting 

system of AC. All of the rules given in Chapter 4, along with all of those for 

extensions mentioned in Chapter 5, are included. The program is written in the 

Haskell programming language [P+Q3], and is freely available on the author's web

site at (www. cas. mcmaster. ca/"'bendermm). Up-to-date instructions are also 

available there. 

A.1 Introduction and Usage Instructions 

In order to allow users to interactively work through examples given in this thesis, we 

have developed an implementation of the rewriting system for AC and its extensions. 

The program works by allowing the user to enter AC terms in an ASCII version of 

AC syntax, and then to interact with these terms by selectively rewriting parts of 

those terms in whatever way that they wish. Users can also load terms from a text 

file; several examples are included (see §A.5). 

The program can be broken down into three parts: 
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1. 	 Parsing and printing: this part of the program parses ASCII representations of 

AC terms, and prints formatted (indented) program text to the screen; 

2. 	 Properties and manipulation: this component deals with the computation of 

properties of AC terms and the application of the rewrite rules to parts of 

terms. 

3. 	 Interaction: this component of the program allows the user to move freely about 

a term, select parts to rewrite, and apply rewriting. 

We give descriptions and instructions for each part, but we have only included code 

for part 2. The reason for this is that most of the code for parts 1 and 3 is not directly 

relevant to the implementation of terms and rewrite rules presented in the thesis. 

The program was designed to allow the user to interact with AC terms using 

a Haskell interpreter such as GHCI (www. haskell. org I ghc/), and requires an 

xterm-compatible terminal. Here is a simple example to get started: 

1. 	 Start by downloading and unpacking the Haskell program into a directory of 

your choice. Open a terminal in this directory. 

2. 	 Start the Haskell interpreter; if you are using GHCI, the command is 

ghci AC 

If another interpreter is being used, please consult its documentation for usage 

instructions, or check the author's website for directions. 

3. 	 Load a term by entering, say, 

load "simplel" 

You should see the listing of the example appear. Since it is now the last 

returned item, it can be referred to in the Haskell interpreter as "it". 
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4. 	 Begin interacting with the example by entering 

act it 

which will clear the screen, draw the term in the upper-left corner, and allow you 

to move the cursor around using the arrow keys. You can select an assignment 

statement by positioning the cursor over the ': =' and pressing the space bar; 

deselecting is done in the same way. To rewrite the selected assignment(s), press 

Enter or the 'r' key. 

5. 	 Arithmetic operators can also be selected in a similar way. Notice that rewriting 

these operators will not have any effect until both sides are numbers. 

6. 	 To highlight all of the selectable points at once, press the 'a' key. (Make sure 

that Caps Lock is not on, because typing 'A' will have the opposite effect and 

deselect everything.) To maneuver more quickly through terms, you can hold 

Shift while pressing the arrow keys, or use the Page Up and Page Down keys. 

Alternatively, you can cycle through all of the selectable points in the term by 

pressing 'n' and 'p'. A full list of all of the control keys is provided in §A.4. 

7. 	 When you have finished rewriting the term, you can exit interactive mode by 

pressing 'q'. 

Terms can be assigned to variables by using the let operator, as in: let x = load 

11 simplel 11 For more on the interactive command prompt and what can be done • 

there, please refer to the relevant documentation. Instructions for GHCI can be found 

online at www.haskell.org I ghc/. 

A.2 Parsing and Printing 

The syntax that is used by the program is by necessity different than that given in the 

thesis, not only because of the lack of a 'i' key on most keyboards. Nevertheless, we 

http:www.haskell.org
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have tried to keep approximations as close as possible. Here is a table of AC operators 

and their corresponding ASCII equivalents, in decreasing order of precedence: 

AC syntax ASCII syntax Selectable 

Booleans b True, False no 

Numerals n 0, 1, ". no 

Locations x Identifier starting with capital no 

Variables x Identifier starting with lowercase no 

Parentheses () . () no 

Intension ' 
A no 

Extension ! ! yes 

Application juxtaposition juxtaposition no 

Arithmetic, etc. +,-,etc. +, -, etc. no 

Composition ;; ; ; yes 

Assignment ·· . yes 

Lazy assignment ·· "'. yes 

L-Value assignment + < yes 

Sequence ; ; no 

Lazy sequence ; ."' 
' yes 

Abstraction AX. \x. yes 

Conditional if then else if then else yes 

To parse a term from the command prompt, use the parse function, for example, 

parse "\x . X:=x; Y:=AX". 

When a term is being displayed, whether at the command prompt or in interactive 

mode, it is indented and spaced for the user's convenience and ease of readability. 

The program does not currently include an implementation of types. This 

allows the user to experiment with terms that do not correspond to well typed AC 

terms; if however a term does correspond to a typed AC term, the implementation 

will behave as expected. 
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A.3 Properties and Manipulation 

We begin by giving the Haskell definitions that implement the set of operators listed 

above. First, we employ these useful type synonyms. 

type Var = String 

type Loe = String 

type Active = Booi 

type Lazy = Booi 

Active is used to indicate whether a particular operator is selected or not; Lazy will 

designate an assignment or sequence operator to be lazy as discussed in §5.2. Terms 

are generated by 

data Term = Tint Int TBool Booi I TVar Var I TLoc Loe 

Tin Term TEx Active Term 

TAss Active Lazy Term Term I TSeq Active Lazy Term Term 

TLam Active Var Term I TApp Term Term 

TCond Active Term Term Term 

TOp Active String Term Term 

deriving Eq 

Next, we collect various important properties and basic operations on terms. 

First, the freeVars function returns a list of all of the free variables in a term. The 

closed function tells us whether or not a term is (functionally) closed. 

sub performs substitution of a term for a variable. We have been careful to 

provide a correct substitution mechanism that chooses a fresh variable name (when 

needed) in order to avoid the variable capture problem. The newVar function im

plements this. 

freeVars : : Term -+ [Var] 

freeVars (TVar x) = [x] 
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freeVars (TAss t u) = freeVars t 'U' freeVars u 

freeVars (TSeq t u) = freeVars t 'u' freeVars u 

freeVars (TLam _ x t) = delete x $ freeVars t 

freeVars (TApp t u) freeVars t 'u' freeVars u 

freeVars (TCond t u v) = freeVars t 'U' freeVars u 'u' freeVars v 

freeVars (TOp t u) = freeVars t 'U' freeVars u 

freeVars = [] 

closed:: Term~ Booi 

closed = null·freeVars 

sub : : Term ~ Var ~ Term ~ Term 

sub a s = sub' 

where 


sub' t©(TVar x) = if x =s then a else t 


sub' (Tin t) = Tin $ sub' t 


sub' (TEx b t) = TEx b $ sub' t 


sub' (TAss b 1 t u) = TAss b 1 (sub' t) (sub' u) 


sub' (TSeq b 1 t u) = TSeq b 1 (sub' t) (sub' u) 


sub' t©(TLam b x u) x =s = t 

x 'elem' freeVars a 

=let z = newVar (x++"'") (freeVars a) 

in TLam b z $ sub' $ sub (TVar z) x u 

otherwise TL am b x $ sub' u 

sub' (TApp t u) = TApp (sub' t) (sub' u) 

sub' (TCond b t u v) = TCond b (sub' t) (sub' u) (sub' v) 

sub' (TOp b s' t u) = TOp b s' (sub' t) (sub' u) 

sub' t t 

newVarvvs Iv 'elem' vs =newVar (v++""') vs 
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I otherwise = v 

Next, we identify two modal properties of terms. The first is talked about 

in the thesis; it is modal closedness and extends Definition 2.15. It is implemented 

by the mClosed function. The second is experimental and allows more freedom in 

certain contexts; it is meant to identify when a term is guaranteed to terminate and 

is implemented by the terminate function. 

mClosed .. Term -+ Booi 

mClosed ( TLoc _) = False 

mClosed (TEx __) Faise 

mClosed (TAss _ _) Faise 

mClosed (TSeq _ _) = False 

mClosed (TLam _ x t) = mClosed t 

mClosed (TApp t u) = mClosed t /\ mClosed u 

mClosed (TCond _ t u v) = mClosed t /\ mClosed u /\ mClosed v 

mClosed (TOp t u) = mClosed t /\ mClosed u 

mClosed = True 

terminate .. Term -+ Bool 

terminate (TLoc _) = False 

terminate (TEx _ t) = Faise 

terminate (TAss _ t u) = terminate t terminate u" 
terminate (TSeq _ t u) = terminate t " terminate u 

terminate (TLam _ x t) terminate t 

terminate (TApp t u) = terminate t " terminate u 

terminate (TCond _ t u v) = terminate t terminate u /\ terminate v" 
terminate (TOp t u) = terminate t " terminate u 

terminate = True 
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Now, we look at rewriting. The first point we would like to make here is that 

rewriting is implemented in two ways: shallow and deep. Shallow rewriting of (say) 

assignment consists of pushing an assignment inward by one step (as in Definition 

4.2); deep rewriting pushes it in as far as possible. 

Rewriting is implemented by the rewrite function, which handles parenthe

sization and other organizational aspects. To handle the rewriting of specific kinds of 

operators, rewrite calls one of rewriteCond (for conditionals), rewriteOp (for 

operators), rewriteLam (for ,B-conversion), rewriteEx (for extension operators), 

or rewriteAss (for assignment statements). 

rewrite : : Boo i -+ Term -+ Term 

rewrite d = rW 

where 

rW (TEx True t) = rewriteEx d $ rW t 

rW (TEx _ t) = TEx Fatse $ rW t 

rW (TSeq b 1 ( TAss True l' t u) v) 

= rewriteAss d l' b 1 (rW t) (rW u) (rW v) 

rW (TSeq b 1 (TSeq b' l' t u) v) 

= rW $ TSeq b' l' t $ TSeq b 1 u v 


rW (TSeq True True t u) I mClosed u = rW u 


rW (TSeq b 1 t u) = TSeq b 1 (rW t) (rW u) 


rW (TAss b 1 t u) TAss b 1 (rW t) (rW u) 


rW (Tin t) = Tin$ rW t 


rW (TApp (TLam True x u) v) = rewriteLam d x (rW u) (rW v) 


rW (TApp t u) = TApp (rW t) (rW u) 


rW (TLam b x t) = TLam b x $ rW t 


rW (TCond True t u v) = rewriteCond (rW t) (rW u) (rW v) 


rW (TCond b t u v) = TCond b (rW t) (rW u) (rW v) 


rW ( TOp True s t u) = rewriteOp s (rW t) (rW u) 


rW ( TOp b s t u) = TOp b s (rW t) (rW u) 


rW t = t 
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rewriteCond (TBooi True) = const 

rewriteCond (TBooi Faise) = flip const 

rewriteCond t TCond True t 

rewriteOp "+" (Tint n) (Tint m) = Tint $ n + m 

rewriteOp "-" (Tint n) (Tint m) = Tint $ n - m 

rewriteOp "*" (Tint n) (Tint m) Tint $ n * m 

rewriteOp "<" (Tint n) (Tint m) = TBooi $ n < m 

rewriteOp ">" (Tint n) (Tint m) = TBooi $ n > m 

rewriteOp "=" t u = TBooi $ t =u 

rewriteOp "==" t u TBooi $ t =u 

rewriteDp "/=" t u = TBooi $ t :/: u 

rewriteDp "<=" (Tint n) (Tint m) = TBooi $ n ~ m 

rewriteOp ">=" (Tint n) (Tint m) = TBooi $ n ~ m 

rewriteOp "&&" (TBooi b) (TBooi b') = TBooi $ b A b' 

rewriteOp II 11" (TBooi b) ( TBoo i b') = TBooi $ b v b' 

rewriteOp 11. ·" (Tin t) (Tin u) = Tin $ TSeq Faise Faise t u
'' 

11. ••IIrewriteOp (Tin t) (Tin u) = Tin $ TOp Faise ". ·" t u
''' '' 

rewriteDp s t u TOp True s t u 

rewriteEx d (Tin t) = t 

rewriteEx d (TApp (TLam b x t) u) = TApp (TLam b x ((if d then 

rewriteEx d else TEx True) t)) u 

rewriteEx d t TEx True t 

The heart of the rewriting function is the rewr i teAs s function that deals 

with rewriting assignment statements; it is the implementation of the set of rules in 

Definition 4.2 along with those for all extensions in Chapter 5. 
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rewriteAss deep lazy seqb seql (Tin (TLoc x)) t = rAX 

where 

end = TAss True lazy (Tin ( TLoc x)) t 

stop = TSeq seqb seql end 

next = if deep then rAX else stop 

safe s = mClosed t 

apply u = if lazy v terminate t then u else stop u 

fV = freeVars t 

appendSeq sb sl t (TSeq b 1 u v) = TSeq b 1 u $ appendSeq sb sl t v 

appendSeq sb sl t u = TSeq sb sl u t 

rAX u©( TLoc y) y =x = t 
otherwise = apply u 

rAX u©(TE:c b v) safe x = stop $ TE:c b $ next v 

otherwise = stop u 

rAX u©(TAss b 1 (Tin (TLoc y)) v) 

I y =x TAss b 1 (Tin (TLoc y)) (next v) 

safe y = TSeq seqb seql ( TAss b 1 

(Tin (TLoc y)) (next v)) end 

otherwise = stop u 

rAX u©(TAss b 1 v w) safe x = stop $ TAss b 1 (next v) w 

otherwise = stop u 

rAX (TSeq b 1 (TSeq b' l' u v) w) 

= rAX $ TSeq b' l' u $ TSeq b 1 v w 

rAX (TSeq b 1 (TAss b' l' (Tin (TLoc y)) u) w) 

y =x = TSeq b 1 (TAss b' l' 

(Tin (TLoc y)) (next u)) w 

I safe y = TSeq b 1 ( TAss b' l' 

(Tin (TLoc y)) (next u)) (next w) 
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rAX (TSeq b 1 u v) = appendSeq b 1 v $ rAX u 

rAX (TLam b y u) y'elem'fV =let z = newVar (y++"'") fV in TLamb z 

$ next $ rewriteLam True y u $ TVar z 

otherwise = TLam b y $ next u 


rAX (TApp u v) = TApp (next u) (next v) 


rAX (TCond b u v w) = TCond b (next u) (next v) (next w) 


rAX (TOp b s u v) = TOp b s (next u) (next v) 


rAX u = apply u 


rewriteAss _ lazy seqb seql t u = TSeq seqb seql $ TAss True lazy t u 

The rewriteLam function deals with ,B-conversion of the functional (.A-calculus) 

features in our implementation. Recall (§5.5) that ,B-conversion cannot always be car

ried out. 

rewriteLam deep x t' t rLX t' 

where 

next t' 	 deep rLX t' 


otherwise = TApp ( TLam True x t') t 


rLX (TVar y) I x - y = t 

rLX ( TE:r: b u) = TEa; b $ next u 


rLX v© (Tin u) mClosed t Tin $ next u 


x'elem'freeVars u = TApp (TLam True x v) t 

otherwise Tin u 

rLX v©(TLam b y u) x =y = v 

y'elem'freeVars t 

let z = newVar (y++"'") (freeVars t) 

in TLam b z $ next $ rewriteLam True y u (TVar z) 

otherwise = TLam b y $ next u 
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= TAss b 1 (next u) (next v) 

= TSeq b 1 (next u) (next v) 

= TApp ( TLam True x $ 

TSeq b 1 (next u) v) t 


rLX (TApp u v) = TApp (next u) (next v) 


rLX (TCond b u v w) = TCond b (next u) 


(next v) (next w) 


rLX (TOp b s u v) = TOp b s (next u) (next v) 


rLX u = u 


A.4 Interaction 

The most important part of the implementation is the interactive mode, where a user 

can experiment with the rewriting rules of AC. Interaction with a term t is initiated 

by entering 

act t 

The following table lists all of the keys that can be used in interactive mode along 

with their effects. Notice that each key has a normal effect and a "shifted" effect, 

which is its effect if it is pressed while holding Shift. It is therefore important to make 

sure that Caps Lock is off when in interactive mode. 



114 

0 

A. 	Implementation 

Control key Action Shifted action 

Arrow key Move cursor by 1 Move cursor and screen by 5 

Page Up/Down Move cursor and screen by 5 Move cursor and screen by 5 

Space Toggle selection at cursor Toggle selection at cursor 

a Select all Deselect all 

r, Enter, d Deep rewrite Deep rewrite 

s Shallow rewrite Shallow rewrite 

Previous selection pointn Next selection point 

p Previous selection point Next selection point 

Deselect all modal operatorsm Select all modal operators 

Deselect all functional operatorsSelect all functional operatorsf 

Deselect all other operatorsSelect all other operators 

Quitq Quit 

A.5 Examples 

The following example terms are included with the implementation. 

1. 	 simplel. ac. This example is just a more involved version of Example 1 from 

§2.1. 

x 	:= 1; 

y 	 := 2; 

z 	 := 3; 

x 	:= y + X; 

y := y + 1; 


z := x 2;
* 
x := 5; 


y := y - z 
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2. 	 simple2. ac. This example is similar to Example 2 from §2.1. 

x := 1; 


p := AX; 


x := 3; 


!P 


3. 	 simple3. ac. Here we have an example of abstraction and application. 

X := 1; (if Y := 4; X < Y 	then \x x + 3 


else \x x + 5) 4) 


4. 	 factoriall. ac. See Example 3, §2.1. 

p :=A( 	if y > 1 


then Y * (Y := Y - 1; !P) 


else 1 


) ; 

y : = 6; 


!P 


5. 	 f actorial2. ac. An alternative approach to factorial, this one looks more like 

a traditional imperative program. It does not make use of state backtracking. 

A (x := 	 ! y; !X) ; 

Ay := (if N > 0 then M := 	M * N; 

N := N - 1 

else x := (X := X));A 

N := 6; 


M := 1; 


!X; 


M 
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6. 	 f actorial3. ac. This form of factorial follows the example given in §5.5. 

Fact := A(F := A(\x . if x<=l then 1 


else x * !F (x - 1)); !F); 


!Fact 6 


7. 	 whilel. ac. This example gives an AC encoding of a while-loop. 

x := 1; 


y := 6; 


While := A(if !WCond 


then !WLoop; 


!While 


else (X := X) 


) ; 


WCond := A(Y > 1) ; 


WLoop := A(X := y X;
* 

y y 1
:= 

) ; 


!While; 


x 


8. 	 while2. ac. Another while-loop example, this one is passed the test and 

body as parameters. 

While := A(\wcond. \wloop. 


if !wcond then !wloop; 


!While wcond wloop 


else (X:=X) 


) ; 

Y:=5; 

X: =1; 
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!While A(Y > 1) A(X .- x * Y; Y := Y - l); 

x 

9. 1value1 . ac. A small demonstration of L-values. 

Y := True; X := False; (if X then AX else AY) <- False; Y 

10. 	 lazyl. ac. A demonstration of the usefulness of lazy assignment. We recom

mend trying this example with a strict assignment to see what happens. 

Fact :=- (F := A(\x . if x <= 1 then 1 


else x * !F (x - l)); 


!F) ; 


Fact 5 


11. 	 stackl. ac. An interesting demonstration of the power of labelled state back

tracking, this gives an implementation of a stack using one state-typed location. 

Top:= A(S; X); 

Push :=A (\n . S := (X := n)); 

Pop : = A ( S: = (S; S) ) ; 

!Push l; 


!Push 2; 


!Push 3; 


!Pop; 


!Top 


12. 	 composition. ac. A small demonstration of the composition operator. 

! (X: = A (Y : = 1) ; 


(X ;; AY) 
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