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PREFACE 

For approximately one hun~red years chemists have 

been writing structural formulae with lines connecting 

the atoms which form so-called valence bonds. The concept 

of valence arose in connection with the development of 

organic chemistry and originally referred to the 

combining power of an· atom in a molecule. Gradually 

chemists began to think of these structural formulae as 

showing the way in which atoms are bonded together in 

three-dimensional space. With the discovery of the elec­

tron, there was much speculation as to the physical basis 

of the chemical bond. Lewis developed his concepts of 

the shared-electron-pair and the stable octet to explain 

respectively the covalent and ·ionic bonds. The develop­

ment of quantum mechanics in the late 1920's and its/ 

application to chemistry resulted in the valence bond 

interpretation of ionic character. · 

Yet the chemical bond so· far has evaded precise 

definition. Indeed it is the considered opinion of many 

investigators that there is no precise definition for 

this concept. This study presents a discussion of the 

chemical bonds in homonuclear and heteronuclear diatomic 

molecules. The discussion is in terms of the three­

dimensional electronic charge distribution and the force 
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that it exerts on the nuclei. The net force acting on 

the nucleus in a stable molecule must be zero. The 

molecular density distribution when compared to the den­

sity distributions of the noninteracting atoms _gives 

evidence of the reorganization of charge that occurs 

during the formation of the molecule in order to achieve 

this.. electrostatic equilibrium. 

I agree with Polanyi that knowledge is personal and 

involves the active particLpation of the one who aspires 

to know. My stay at McMaster University has allowed me 

the opportunity of involvement in theoretical chemistry. 

This thesis is the result of 3.5 years of reading,computer 

'programming,, discussions - and more computer programming. 

Interspersed with these activities were sessions spent at 

the piano in an attempt to per~fect Bachian fugues and 

the preludes of Rachmaninoff. 

In the poem "Ulysses", the hero is quoted as 

saying, "I am a part of all that I have seen ". Indeed 

this is true. I thank my parents for their material 

assistance during the undergraduate portion of my student 

career and for their encouragement. Also I thank Dr. 

D. R. Bidinosti of the chemistry department at the Univer­

sity of Western Ontario who first taught me quantum 

mechanics and directed me to further studies at McMaster 

University. 
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INTRODUCTION 

In 1929, Dirac1 stated "the underlying physical 

laws necessary for the mathematical theory of a large part 

of physics and the whole of chemistry are thus completely 

known and the difficulty is only that the exact application 
•, 

of these laws leads to equations much too complicated to 

be soluble." This s1;:.atement has been quoted by numerous 

theoreticians 213 who have devoted themselves to the formidable 

task of finding solutions to Schroedinger's equation 

H'I' = E'I' 

where H is the quantum mechanical Hamiltonian, 'I' is the 

eigenfunction of the system and E is the energy eigenvalue. 

This equation which, for the q~antum chemist, describes the 

many-body problem presented by a syste~ of nuclei and elec­

trons has not yet been solved exactly·. However, progress has 

been made especially within the framework of a physically 
I 

well-defined approximation-namely the Hartree-Fock approximation 

- so that there presently exist electronic wave functions 

for atoms and diatomic molecules whose energy eigenvalues are 

·close to the Hartree-Fock limit. One particularly important 

advantage of these wave' functions is the fact that they yield 

one-electron density distributions correct to the second order 

in perturbation theory. As a consequence of this result, all 

1 
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properties depending on the one-electron density distribution 

are also correct to second order. Because the one-electron 

density is just the three-dimensional electron:~.:: cha:::ge 

distribution, an observable of the system being considered, 

its accuracy warrants its use as the basis for new de::in.i tions 

concerning the chemical bond. 

It is the purpose of this thesis to 8.tscuss the 

chemical bond ifi terms of Hartree-Fock, one-eiectron density 

contour maps dnd to relate these density quantities to the 

force acting on the nucleus by means of the Hell~an~-Feynman 

4
theorem . Certain electron ~ensity difference con~;~= maps 

are obtained by subtracting from the total rnol2cular densi-ty 

the de::c.si-:::y distributions of the constituent atoms. such 

contour maps are interpreted as the reorganization of charge 

c.t:encant upon the formation of the chemical bond. !f any 

co·crelation 2xists between these contour maps a:1d the clas­

sical ideas concerning the covalent and ionic bends. then 

there will be density difference or 6p maps charac~erist1c 

of each of '::r.ese limiting forms of the chemical bond. Does 

the· 6p map for LiF show a localization of one unit of 

elect:;.onic charge about the fluorine atom :) Does the 6p 

map for a homonuclear diatomic molecule present a picture 

which can be correlated with the classical concept of the 

5shared-electron-pair which Lewis postulatea as the important 

featu. ~f a covalent bond ? Do the density and density 
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difference maps by themselves predict molecular stability ? 

This thesis commences with a general discussion of 

density matrices·and the properties associated with these 

matrices. Hartree-Fock theory is discussed, and it is shown 

that the Hartre2-Fock, one-electron density distribution and 

its dependent properties are correct to the second order. 

Density and density difference contour maps are discussed 

f cir .the homonuclear diatomic molecules Li
2 

, B
2 

, c 
2

, N
2

, o
2

, 

and F2 . Force calculations involving these molecules are 

analyzed, and a comparison of the terms binding and bondi~g 

is presented. Finally a comparative study of the bonds in 

LiF and N is made. The analysis is in terms of the forces
2 

O?erative in the two molecules and the density and density 

difference contour maps of the two molecules. 

Most of the results of this thesis have been pub­

6 7lished in the Journal of the American Chemical Soci2ty ' 

8and the Journal of Chemical Physics . 



CHAPTER I 

THEORETICAL BACKGROUND 

T.l DENSITY MA~RICES 

The N-electron wave function is related to the 

position cc-ordil1ates of each of the N electrons. .As 

9Hartree has pointed out, a table listing its values at ten 

positions of each variable would require io 3N entries. 

In addition to the fact that for increasing values of N, 

the size of the table rapidly becomes intractable, the 

entries in the table are meaningless from a physical 

point of vie~. How can such a wave function be ~nter-

preted in the light of familiar chemical concepts? 

In this section, the first-and second-order 

10density matrices are defined and expressions involving 

their dependent properties are evaluated. The discussion 

emphasizes the use of such matrices as interpretive devices. 
-+ -+ -+ 

Consider ~(x 1x2 ... xN) as a wave function describinef 

an N-electron system. The co-ordinate ~N describes the 
-+ 

position rN and the spin sN of the Nth electron. The 

product ~ * \fJ' gives the simultaneous probability of finding 

-+
electron one at position r with spi~ s 

1 
, electron two at1 

-+ -+
position r with spin s 2 , ... and electron Nat position rN2 

with spin sN. The mth-order density matrix is Dy definition 

4 
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m I I I N!r (1,2 .•.mil ,2 ...m ) = 
m! (N-m) ! f ~· (1,2 ••• m,m+l , ••• NJ 

I I I + + 
\]' ( 1 ,·2 , ••• m , m+ 1 , ••• N) dxm+ ••• dxN1 (l) 

where 

-r -r -r + 0
'¥(1,2, ... ,m,m+l, ... N) = '¥(x ,x

2
, ... x ,x 

1 
...x)

1 m :n+ N 

In particular ~~e second-order density matrix is given as1 

4r 2 (l,2!1',2 
1 

) N(N-l) J w*(1 , 2 3 ••• N 1 ' ,3, ... N)dx dxN. (r , )\1r 1 (' ,2 3 ... 
-+ 2)2 

The diagonal element of this matrix, r 2 (1,2\l,2) has the 

. . . h . 2 I -+ a•f o 11owing interpretation. Te expression r (1,2 l,2)dx x
1 2 

is equal to the number of pairs of electrons times the proba­

bility for finding one electron within the volume e1ement d~1 
-r

around the point r with spin s and another electron within1 1 

the volume element d~2 around the point ~2 with the spin s 2 

with all other electrons having arbitrary positions and spins. 

The diagonal element of th~ first-order density matrix 

r * -+ ~ 
y(lil) = N J '¥ (l,2 ...N)'¥(1,2, ... N)dx 2 .... dxN ( 3} 

has the following physical interpretation. It is just the 

number of electrons, N, times the probability of finding an 

electron at the position ~l with spin s 
1 

irrespective of the 

co-ordinates and spins of the other electrons. The expres­

sion 

( 4) 
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.1::: now independent of the spin s 1 and is just the total 

~harge density at the position ~1 • Equations (3) and (4) 

state that, in principle, a one-electron density function 

which obeys the laws of quantum mechanics can be calculated. 

Arguments from this point onward can be based upon a three­
+

dimensional function p(r) describing an electronic charge 

distribution in real space instead of a 4 N-dimensior.al 

function o/ which has no physical interpretation at all. 

The discussion of density matrices can be carried 

further by showing their use in the calculation of atomic 

and molecular properties. The definition of a one-electron 

operator is given below as 
N 

P= E.O(i) (5) 
i=l 

where the index i refers to the ith electron. The average 

value of this operator is 

<P> = J ~·(1,2,.;.N) 

I 
 I + 

I 

+ + +

0(1) y(lll )+1_+ dx1 = O (r) p {r) dr (6) 
= xl-xl 

where the last of the three expressions follows if the 

operator is spin independent. The above equations (6) 

:;how t-.at. t:.he average value of a one-electron operator de­

:-ends )nly on the first-order density matrix where the 

:.::onvem:ion is that the operator operates on unprimed co­

ordinates and then primed co-ordinates are set a~ual to 

http:N-dimensior.al
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unprimed co-ordinates. A two-electron operator defined by 


Q = l
2 

I: 
.. 

G(i,j) (7) 

1J 


where i~j yields for its average value


I *N (N-1) * I I -+ -+<Q > = '¥ ( 1 , 2 , . • . N) G ( l , 2) '¥ ( 1 , 2 , . . • N) dx ••• dxN 

I 
2 1 

2 ,. I -+-+ 
= G(l,2)f (1,2 1 ,2 )-+'_-+ -+ 1 _-+ dx dx ( 8)

xl-X]_ ,x2-x2 1 2 

From these considerations·,the average value of the electronic energ 

of a molecular system is easily calculated as 

E = <'¥IHI'¥> (9} 

N 
where H = I: HN(i) 

1 
2: 1 (10)+ 2i=l i,j r 

1] 
.. 

i~j
lV~ za 

HN (i) = --2-
1 - I: r. a 1Cl 

Also r .. is the distance between the ith and jth electrons,
1J 


V~ is the Laplacian operator for the ith electron, Z is 

1 a 


the charge of the ath nucleus and r. is the distance between
ia 


the ith electron and the ath nucleus. With these definitions, 


the energy is 


E= I ~(l)y(l/l')~~=~1d~1+ I 
Another form for the energy equation is 

2 I I 

r 2 I ' ' -+ -+ N (N-1) T (1,2!1 ,2 )d~.di (13)IN ; HN (l) r (l , 2 1 2 ) dxldx2+ .2 • 
rl2 .:.. 2 

E = 


N (N'-1) 
 I r 2 c1,2/1' ,2'> d~1e~22 

(12} 
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+' + +• +where the subscripts x, = x1 ; x 2=x have been dropped, and 
.!. 2 

the above mentioned convention is still implied. Equation 

( ·13) allows for the normalization of the second-order den­

sity matrix and shows that, in fact, the energy of the system 

depends only on the second-order density matrix. Lowdin10 

has suggested that equation (13) be the basis of a minimiza·­

tion procedure that seeks an expression for the dens::...ty 
2

matrix r (1,211 
I 

,2)
I 

which produces the lowest energy poss.:.r:J..;;;., 

Then the one-electron density distribution could be calcul.ated 

f ::om the following equation 

(14; 

However, in order to proceed in this manner, an analytical 
2 V I 

form for r (1,211 ,2 ) must be known. This is by nc .means 

a trivial question and is part of the general problem of 
11

N-representabili ty which asks the necessary and sufficie::.t 

condition& that a given density matrix is a represen~atic~ 

;)f the properly antisymmetrized N-body wave funct:..on. 

Of course 1 at present the density matrices can bf:: 

obtained by the more conventional method o= integrating 

the function 

'!' * (1,2, ..•N)'l'(l,2 .•. N} • (15) 

The following chapter gives a detailed account of the 

Hartree-Fock approximation to 'l' and the one-electron den­

sity derived from th~s ap~roximate 'l'. 

http:funct:..on
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I. 	2 THE HARTREE-FOCK APPROXIMATION 

The electronic wave equation for a polyelectronic, 

polynuclear system is gi.vt:::n below as. 

1+ 	 E --] 'I' - (16) 
i >j 

r. 
l. J 

where the symbols have been previously defined. As mentioned 

in the introa.J.ction, this wave equation has never been solved 

exactly. If exact solutions do not present themselves, then 

approximations are necessary. In particular, the Hartree-Fack 

formulation seeks an approximate wave function w~i~h is 

antisymmetrized product of one-electron spin func.\:ions. Thus 

'¥ 	 = ~ I I a 1 ( 1) a 2 ( 2 ) . . . .. . . aN ( N) I I (J 7) 

The heavy double bars denote a determir.ant. If the. one 


Qlectron spin funGtiops obey the following relation 


<a.la.>=c .. 	 (l~)
l J lJ 

'""here 6 . .. is the usual diagonal Kronecker e s:tmbo~, then 
J.. J 

t.he wave fun ct ion 'Y is normalized to unity. 

The concept of the one-electron spin function arose 

from an attempt to extend the central field model for the 

hydrogen atom to the ge:::ieral case of an N-electron system. 

An electron in the spinorbital a. 
]. 

moves in a field owing to 

the nuclei 2. 
(-. 

and the average charge distribution of the 

remaining N-1 ele.ctrons. 
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2Hartree1· was the first person to formulate the 

quantum mechanical analogue of the classical central field 

atom. He calculated the self-consistent field in which a 

given electron moved, and then obtained the orbital descri­

bing this electron by numerical integration techniques. As 

eariy as 1927, he obtained an orbital energy for He of 

-1.835 a.u. which compares favorably with the present day 

calculation of -1.83592 a.u. published by Clementi 13 • 

In 1930, Fock14 extended the Hartree theory to 

15include the Pauli principle and, in the same year, Slater 

noted the connection between the variation principle and 

the Hartree-Fock formalism in the case of an antisymmetrized 

wave function composed of one-electron spin functions. 

Consider such a wave function describing the N-

electron problem in the case of a diatomic molecule. The 

Born-oppenheimer16 approximation is assumed in this dis­

cussion and, as a result, the wavefunction ~ is labelled 

with a subscript E for electronic. The energy of such a 

system is given as 

(19)E = <IJ'EjHllJ'E> 

where the Hamiltonian H is given in equation (16) 

With the definition of HN(i) as the Hamiltonian describing 

one electron in the field of the two nuclei 
2

iJ. ' 2 z 
__i_ - E -2:- (20)H Ji) = 

2 a=l ria 
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the total Hamiltonian becomes 

.N 1 (21)H = ~ HN(i) + E r .. 
1 i>j 1J 

The expression(19) for the electronic energy becomes 

E=~<l,la1 (1) •••• ~(N) 111.~ HN(i)+.E. r~. I1la1 (1) ••••• aN(N) 11> 
. • . i=l i>J 1J 

N . 1 
= <a (1) •••• a.._(N) E HN(i)+ E ­ 1 la · (1) •••• aN(N) 11 >11 N • l '> · r ..1= 1 J 1J 

N 
= E <ai(l) IHN (1) Ia. (1) > + E r:a. (1) a. (2) l_!_I a 1. (1) aJ. ~2) > 

i=l . i i>jl i J rl2 

-<ai (l} a. (2) 1_!_1 a. (2).aj (1) >l 
J rl2 i j 

N I 

E I. += ~ G1: J' - K • . •'] (22)1i=l i>j L 1J 

For a closed shell system where the spinorbital ai is 

restricted to be of the form·~ia or ~ia' the wave function 

is given as 

'l'E = ./ ~ll~1(l)a(l)¢1(2)a(2) •• : •.•{tJN(N)B(N)ll (23)
2 . 

~. is the ith molecular orbital and obeys the relation 
1 

(24} 


The symbols a and a refer to the one-electron spin functions,, 

With these definitions, the terms in equation '2 2 ) become 

' Ii = <ai (1) IHN(l) lai (1) > :::: <~i (1) IHN(l) lf'Ji (1) >= Ii (zs·) 

J .. = <a. ( 1) a. (2) I_!_I a. (1) a. (2) >=<~. (1) ~. ( 2) I_!_I~. (1) ~. ( 2)>=J .• (26)
1J 1 J 1 J 1 J 1 J 1J ·r 12 r 12 

I 
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K ' .. = <a. (1) a . ( 2) I_L Ia . ( 2) a . ( 1) >= <¢ . ( 1) ¢ . ( 2) 1-1-1 ¢ . ( 2) ¢ . ( 1) >=K . . ( 2 7 ) 
l.J 1 1 1 1 1 JJ r 12 J · J r 12 J 

Equation (27) is true if¢. and¢. have the same spin. Other-
i J 

wise K ' .. =O. The ener~y of such a closed shell system is 
l.J 

E: = 2 I: I . + I: J . . + I: [4J . . - 2K . .1 (2 8 ) 
. l. . l.l. '>' l.J ijJl. ]. ]. J ­

where the sums are over the occupied molecular orbitals. The 

above expression can be rearranged to give 

E E I. I:= 2 + [2J .. -K. Ql. l.J l.J (29)i ij 

where J .. = K ..• 
l. l. l. l. 

Under what conditions do the molecular orbitals ¢. 
]. 

yield a wave function whose energy is a minimum ? In order 

to answer this question, the energy .must be minimized subject 

to the restriction that the one-electron functions remain 

17
normalized and orthogonal . This is equivalent to mini­

mizing the energy subjec~ to the condition that 

2 I: e: .. s .. (30)l.J l.Jij 

remains constant. The e: .. are constants and
l. J 

(:n)s . . = o . . = <¢ . I¢ . > • 
l.J l.J l. J 

A new quantity E ' is defined and it is required tha': this 

E be stationary with respect to small variations in tbe ¢
l.
.. Thus 

E ' = E - 2 I: e: . . s .. (32)
l.J l. J ij 

and 

oE ' = 0 = oE - 2 I: e: .. oS .. 
]. J l. J ij 

I 
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= 2 E cSI. + E lr·2cSJ .. -oK .. -2e: .. oS ..1 (33)
i l. ij l.J l.J l.J 1Jj 

It is necessary to evaluate all the expressions in equation 

(33) 


cSs;J· = 0<¢.<1>1¢.<1>>= <0¢.<1>1¢.(1)>+ <¢.<1>10¢.(l)> c34 ) 
~ l. J l. J l. J 

(35) 

.. 1 
Further, J .. = <¢.(1)¢.(2)1-1¢.(1)¢.(2)>

1 	 1l.J 	 J rl2 J 

= <¢. c1> IJ.<1> 1¢. <1>> = <¢.<2> IJ. c2> 19J.<2>> (36)l. J l. J ]. J 

where J. ( 1) = <¢. ( 2) 1-1-191. (2) > ( 37)
J J rl2 J 

J . ( 2) = <9) . ( 1) 1-1-1 ¢. ( l) > 	 ( 3 8 ) 
1 1 1rl2 

J. is the interaction of 	electron one with electron two 
J 

where the position of electron one is held constant and the 

integration is carried out over the charge distribution of 

electron two. It is the average field acting on electron 

one because of the remaining N-1 electrons. The assumption 

that this average field does not change as electro~ one moves 

is implicit in the Hartree-Fock formalism. Thus 

oJ . . = 2 < o¢ . ci > IJ . c1 > I ¢ .c 1>>+2 <o¢ . <l > I J . <l > I¢ . < l >> ( 3g ) l.J 	 l. J l. J l. J 


1
Also K.. = <¢. (1)¢. (2) 1r lflJi (4)¢J. (l)> = 
]. J ]. . J 12 
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Kj is an exchange operator whi"ch reflects the inclusion of the 

Pauli principle in the theory. Thus 

W~th these relations oE 
I 

in equation (33} becomes 
1 

cE =0= r r<. o~. (1) I [4HN(l)+r (8J. (l)-4K .(1))11~. (1) >-<6~. (l}f 2re: .. ¢]. (1) >]
1i=l L j J J J i 1 j 1] 

(42) 

Since 0¢. ( 1) represents an arbitrary variation of the i ti· 
1 

molecular orbital~., then 
1 

[~(l) + ~ (2Jj(l)-Kj(l}}}i\(1) = r e: •• 9J (43j 1] j 

An orthogonal unitary transformation of the type 
I 

~. = r ¢ .c .. (44)
1 . J Jl.

J 

can be executed where here and in all future references ~he 

index one indicating the single particle nature of ~i is 
I 

dropped. Such molecular orbitals ~i lead to an electronic 

wave function 

ifE =;kI I ~~ (1) a ( 1) ¢ ~ ( 2 ) (3 ( 2) • • • • •• ~~ (N) (3 (N) I I 
2 

= 'l'E det {c} (45) 
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where det{C} is the determinant of the matrix c. 

Since C is a unitary matrix, det{C}=±l, 

(46) 

and such a unitary transformation does not change the total 

electronic energy of the system. In particular, the unitary 

transformation Uwhich diagonalizes the matrix £ is sought. 

The Hartree-Fock operator is defined below as 

F = HN + E (2J. -K.) ( 47)
j J J 

and is invariant to this transformation. The transformed 

molecular orbitals and Ematrix become 

¢' = ¢u (48) 

£1 = 5-1£u· ( 4:t) 

¢ -· and¢ are row vectors, U is the required pxf 

Nmatrix where p=2 is the number of occupied molecular 

orbitals, 5-l is the inverse of this matrix and £
1 

is a 

diagonal matrix. The placement of these results in the 

matrix equivalent of equation (43) 

F¢ = ¢E (. 50) 

yields the result 
I I I 

F¢. 
1 

= £,¢.
1 1 (51) 

or 

rHN + E ( 2J . -K . )] ¢ '. = E '. ¢ '. (52)L . J J 1 1 1
J 

Equation (52) describes the Hartree-Fock integro-differential 

equations. In future references to this result, all primes 
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will be dropped and ¢. will be used to represent the ith 
l. 

Hartree-Fock molecular orbital. The equation is essentially 

the same as that one proposed intuitively by Hartree. The 

average potential in which the electron moves is given by 

zl z2 
V =-- - + E (2J .-K.) (5.3)

ril ri2 j J' J 

In order to ·calculate this average potential, a charge 

distribution must be assumed. Thus a self-consistent ap­

preach to the problem is adopted in which it is required 

tl:at the final calculated charge distribution be the same 

as that one assumed in order to make the calculation. 
I 

The term Ei in equation (52) is called the orbital 

er~ergy. It has been shown by Koopmans
90

that e:i (with the 

prime dropped) is an approximation to the ionization 

energy I. of an electron in the ith molecular orbital;
l. 

that is I. = -E. (54)l. l. 

A.lso 
1 2 zl z2 

e:. = -<¢ . l-2'7il¢ . >-<fl.I. I-+ -1¢.> + L: (2J .. -K .. ) 'SS)
1 11 1 1 ril ri2 j l.J .l.J \ 

The orbital energy is. equal to the kinetic energy of alecti:o11 

i :ind the interaction potential <¢ijvj¢.>. This interaction 
. l. 

po cen1. ·1 al consists of the coulomb attraction bei:.ween elec­

t.f".:m i and the two nuclei z and z2 plus the co·J.lomb re­
1 

pulsion oetween the electron i and the charge distribution 

descri.b:..'lg the remainin9 ~-1 electrons. In the case of j=i, 

; 1 i=Kii and the coulomb repulsion is equal to Jii' the 
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repulsion between two electrons in the ith molecular orbital. 

In this particular case, the exchange integral K.. is seen 
ll 

as preventing the inclusion in the total potential energy 

of a term describing the repulsive self-potential of an 

electron ; that is, the repulsive potential of an electron 

due to its own charge dis~ribulion. For itj, the term 

2J .. describes +_!1e notential between electron i and the 2lJ ­

electron~ ~n the orbital~ .. Since the exchange potential
J 

~ .. is non z.ero only for electrons of the sarne spin 1 the 
J. J 

factor two is in this case deleted. It is difficult to 

ascribe a simple, classical, physical picture to the terrn 

K... All that can be said about this term is that it 
l J 

arises because of the antisymmetric natu:::-e of the electronic 

wave functi.on. It represents an additional interaction 

between a p~ir of electrons with parallel spins. 

Although Hartree originally obtained his one-

cl~ctxon functions by nume:.ical integratiol'\ techniques, 

18Roothaan has more recently formulated the expansion method 

for the solution of the Hartree-Fock equation. In th~ case of 

diatomic molecules, he obtains the molecular orbitals as 

linear combinations of Slater-type functi.ons centred on eac.h 

nucleus. 

http:functi.on


18 

Thus ~., = E X, C.,1Aa p pAa 1AP ( 56) 

where xpAa is a Slater-type function denoted by snR.a* 

( 2 ) n+~s = _ __....z;;___ n-1 a -z;;r (5 7)r Yi e
nR.a [(2n) ~]J;i 

Similarly the one-electron atomic orbitals are approximated as 

X ., = E X , C., ) ( 58)1Aa pAa 1AP 

The·index lambda refers to the symmetry species of the one-

electron orbital and a is the symmetry subspecies which 

becomes important if A is degenerate. The index i is an 

integer which numbers the nondegenerate functions within a 

given symmetry species. For instance, in atoms the elec­

trons are classified according to their angular momentum 

quantum number as 

R.=O ---jo s 

R.=l ~ p 

R,=2 ____,, d 

Thus for neon in the configuration ls 22s 22p6
, the atomic 

Hartree-Fock orbitals are labelled 

X ls' X 2~' X 2po' X 2pl' X 2p-l 

In linear molecules, the electrons are classified 

according to their angular momentum along the z axis as 

R, =O ~a 
z 

R, =l --4 7T z 

*The symbol z;; represents the orbital screening 
coefficient. Y~ is a spherical harmonic. 
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2 2 2 2 4Hence, LiF, in the configuration lcr 2cr 3cr 4cr 1TI has 

associated with it the molecular orbitals 

From the expansion equation (56) above, it is 

seen that the choice of Slater-type functions depends on 

the symmetry of the molecular orbital in question. Non-

degenerate molecular orbitals of the same symmetry species 

have the same basic Slater-type functions. However, the 

linear coefficients c., depend on the index i but are in-
1/\p 

dependent of the symmetry subspecies a. If equation (56) is 

substituted into equation (51) ,the canonical Hartree-Fock 

equations become in matrix notation 

(59) 

Thus for molecular orbital ~,..,iA.a' 

( 60) 

XA.a is a row vector, ¢A.a is a row vector, and CA. is a 

column vector. The indices A.a in equation (S'Y) imply that 

in the case of cr electrons, there will be one matrix equation 

of the form 

( 61) 

and that, in the case of TI electrons, there will be two 

identical matrix equations of the form 

( 6 2)F¢ = £ ¢
TI 'IT 

Consider equation (60) and premultiply both left and right 

- * hand sides by XA.a • Then 

- * - ­ ( 6 3) .= £i XA.a XA.ct CA. 
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( 6 4) 
or 

The matrix F~ has elements F such that 
I\ pq 

F = <x IFlx > (65)pq p q 

The matrix SA has elements s such that pq 

s = <x Ix >pq p q (66) 

Again for a electrons there will be one such matrix equation. 

For TI electrons there will be two identical matrix equations. 

The above matrix equation has a nontrivial solution if the 

determinant 

( 67) 

Here is the clue for solving the matrix equation to self-

consistency. Initial vectors CA are assumed and an initial 

basis set is proposed. The matrix F, of the Hartree-Fock 

operator, and the overlap matrix S are calculated. The matrix 

jF-ESI is diagonalized, the orbital energies £, are obtained 
l. 

and new sets of vectors CA are generated. The cycle is 

continued until the calculated CA agree with the assumed CA 

to a given degree of accuracy. The total energy is then given 

as 
ET= r (£.+<~. lttNj¢.>}. ( 6 8). 1 1 1 

1 

The sum is over all occupied molecular orbitals 
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The total energy calculated is not yet necessarily 

the minimum or Hartree-Fock energy. Many calculations must 

be done in the search for a completely flexible basis set 

which allows for full atomic polarization and the excitation 

of the atoms within the molecule to higher quantum states. 

The former effect (polarization) has been treated in a 

19dif£erent way by Hurley . Also within each calculation 

the nonlinear exponential parameters are varied to minimize 

the energy. 

20In 1955, C. W. Scherr performed the first 

nonempirical calculation with the expansion method on the 

molecule N2 . He used a basis set of single ls, 2s and 2p 

Slater-type functions on each centre, chose nonlinear 

coefficients according to Slater's rules and obtained a 

21
total energy of -108.574 a.u .. In 1960, Ransil used the 

first generation3 of molecular structure electronic computer 

programmes in a set of calculations on closed shell 

structures including Li 2 , Be 2 , c2 , N2 , F 2 ; LiH, BH, NH, 

HF; CO, BF;· and LiF. He again used a minimum basis set 

but allowed his nonlinear parameters to be varied in the 

energy minimization process. A variation of the orbital 

exponent on one centre can have the effect of increasing 

the polarization of charge at the other centre. Ransil's 

total energy for N was -108.63359 a.u. In 1961, Richardson
2 

made the next significant improvement on the energy of N2 by 

22 
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using a double zeta basis set in which each of the valence 

Slater-type functions was doubled; that is, he used 2s, 
I I 

2s , 2p , 2p , 2prr and 2p Slater-type functions on each 
(1 (1 'IT 

centre. With variation of the nonlinear parameters, he 

reduced the error in the total energy by 4.1 e.v. to 
3 . 

-108.785 a.u. Using the second generation of molecular 

structure computer programmes developed by Wahl, Huo and 

23others , Cade, Wahl, Huo and their associates have done 

extensive calculations on CO, BF, N and its ionization2 . 
products, the remaining homonuclear diatomic molecules, 

and the first and second row hydrides. They have used 

large flexible basis sets with higher quantum Slater-type 

functions such as 3s, 3p, 3d and 4f, and have also varied 

the nonlinear exponential parameters to obtain what they 

feel to be results close to the Hartree-Fock limit. For 

example, in the case of N2
24 , they obtain a total energy 

of -108.9928 a.u. This computed energy is still in error 

from the total experimental energy by 16.1 e.v. while D , 
. e 

the dissociation energy is in error by 4.70 e.v. This 

error is called the correlation error and results in part 

from an overestimation of the field acting on ~ given 

electron because of electrons of opposite spin. 

10Lowdin has shown that, given a complete set of 

one-elec~ron functions, a true solution to Schrodinger's 

equation can be given as 
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1 

~ = E C. ~. (69)
i 1 1 

~; describes the ith configuration and is an antisyrnmetrized 

product of N of these one-electron functions where N is the 

number of electrons in the system. This is the method of 

configuration interaction and is just an extension of 

the single-configuration wavefunction that has already 

beeh discussed. In the Laboratory of Molecular Structure 

and Spectra at the University of Chicago, a third genera­

tion3125 of computer programmes based on multiconfigura­

tional self-consistent field theory is being constructed. 

It is expected that expansions of a relatively few number 

of configurations will yield wave functions of high quality. 
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26 
l..3 BRILLOUIN'S THEOREM AND THE HARTREE-FOCK ONE-ELECTRON· 

DENSITY 

In the case of an orbital approximation to the elec­

tronic wavefunction, the diagonal element of the first­
: 

order density matrix is given as 

* y(lll>= ~ ai(l)ai(l) (70) 
1 

~he sum is over all occupied molecular spin orbitals. In 

this section it wi Il be shown that the Hartree-Fock one­

27electron density is correct to second order • 

The Hartree-Fock model for an electronic system is 

essentially a single particle model in which each electron 

inoves in an average field owing to the nuclei and the other 

electrons. It has been pointed out that the energy of 

such a system is never equal to the experimental energy. 

There is a difference between the two which is called the 

. * correlation energy • This correlation energy is just 

a r8f lection of the fact that the instantaneous field 

that an electron e~peiiences owing to the remaining N-1 

electrons is not the same as the average field that it 

experiences· in the Hartree-Fock approximation. 

'rhe correlation energy is the difference between 
the Hartre.e~f'ock energy and the theoretical energy. This 
theoretical energy is the experimental energy of the system 
minus the :relativistic corrections. 
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Suppose there exists a complete set of one-electron 

spin functions such that each member of this set obeys the 

relation 

<a. la.>= o.. (71)
1 J 1] 

Since these functions depend only on 'the coordinates of one 

electron, they must be eigenfunctions of some Hartree-Fock 

operator; that is, 

F a. = E.a. ( 7 2)
l. 1 1 

F is the Hartree-Fock operator and E. is the orbital energy.
1 

T.f ~hese eigenfunctions are arranged in order of increasing 

0~~-tal energy then the first N spin functions can be used 

to form an antisymmetrized product wavefunction which describes 

the ground state of an N-electron system. This wavefunction 

is given as 

0
'!' (l)a (2) •••• ai (i)aj (j) •.•• aN(N} 11 {73)=/.h I la1 2 

For this ground state wavefunction, the Hartree-Fock opera·cc~ 

. 529J. 

I 

F = HN + E [Jj - K. ] (74)
Jj 

where 
z 
_g_ (7 5)v~HN = -2

1 
E 

1 
- E r.

i ia 1Cl 

(J . and K. are defined by the relations 
J J 

J .. = <a.IJ. 
1 

ja.> = <a.(l)a.(2)j-
1
-ja.(l}a.(2)> ( 7 €)

1 J 1 J 1 1 J 1 )r 12 
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K.. = <a.lk. Ja.> = <a.(l)a.(2)j-1-I a.(2)a.(l)> ( )
1J 1 J 1 1 J 	 1 J 77r 12 

The Hartree-Fock energy is given as 

I i 

E = L: I. + l: [J .. -K .. ] 	 (78}H.F. .1 	 1) 1Ji i>j 

whe:ce 

I. = <a. IHNI a.> 	 f 79)
1 1 1 
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Also 

1 I I 

E = l: e: . - E [J .. -K .. ]
H.F. l 2 1) lJ 	 ( 80)

l. 	 1J 
i;i!j 

HoThus there i·s some such that 

Ho'I'o \llo= E 	 (81)H.F .. 

A~ inspection of equation (80) shows that 

I I 

H 
0 = r. F(i) - ~ r r· (JJ.(i)-KJ. (i)) ir!j (82) 

i i j 

F(i) is defined by equation (74). Further 

<'l'Ojl: F(i) l'l'O> = r c.: • ( 8 3)
i li 

"": ..ere the :.ndex i runs from one to N. 

The ab ove discussion can be made the basis of an 

analysis of the accuracy of the Hartree-Fock one-electron 

density. The total electronic Hamiltonian is given as 

l: _l_H = l: HN(i) + ~ .. r ..
i 	 1J lJ 

i~j 
1 1 I i 

- l: l: [J. (i)-K. (i)]
r .. 2 . . J JlJ 1 	 J 

i~j 

= Ho + A.V ( 84) 
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H0 is defined in equations (81 ) and (82 ) . V is the difference 

between the exact qperator H and the operator H0 which 

possesses eigenvalues EH.F." It is here regarded as a small 

perturhation. ~he en8r9y ot tho •Y•t@m correct throuqh 

first-order perturbation theory is given as 

E = <'IHI'> = <,o+A,1jHo+A~j,o+A,1> 

= <,o,Hol~o>+A [<,1IHol,o>+<,olHol,1>+<,olvl~o>] (85) 

where A is a perturbation parameter. 'l is a first-order 

correction to the Hartree-Fock ground state ~ 0 . 

An excited state configuration in which a. is 
1 

~eplaced by ak is called a one-electron excitation and is 

described by the antisymmetrized product 

. T 
'Pi:k :/ N! I la

1 
(l)a

2 
(2) .•• ak(i) ..• aj (j} ••• aN(N) 11 (86) 

An excited state configuration in which a. is replaced by
1 

ak and aj is replaced l:>Y aQ, is called a two-electron ex­

citation and is described by the antisymmetrized product 

/'·---­

'¥ i j : k Q. = / ~ ! i !a 1 ( 1 ) a 2 ( 2 ) . . . ak ( i ) . . . a Q. ( j ) . . . aN ( N) I I (8 7 ) 

1 
' , the first-order correction to ,o will contain deter­

minants that differ from ,o_by one-and two-electron 

c.xcitations. This is so because the perturbation term V 

,,ill connect states differing from each other by one- and 

two-electron excitations. Therefore 
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'!'l = ;,; a. k '!'. k + \J' a.· k '!'. · kn (88)ik i: i: ijk1 lJ~ R, lJ: )I., 

From perturbation theory II/ I I o.<ri:klv If.> 
a. k = 	 (89)1: 	 E -E.

H.F. 	 i:k 
, I o

<'!'ij :ki IV '!' > 
(90)E F -E .. knH •• lJ: )I., 

· Ei :k is the Hartree-Fock energy of the determinantal wave·­

function '!'. k and E .. k~ is the Hartree-.Fock energy of the1: lJ: )I., 

determinantal wavefunction '!' .. kn" The scalar product
lJ : )I., 

( J . ( i) -K; ' ( i >) I 'l'o > (91)J _, 

== 0 


Thus the wavefunction correct through first order is given 


as. 


IT/ = m0 + ). a IT/

r r ~ • • kn r. · kn 	 (92)

ijki lJ: lJ:)I., )I., 

With 'these relations, the various portions of 

. ( ) can b e eva1uated . The scalar product .1, H0,.0>equation 85 <¥ r 

involves only the term <'l'ij:k!IH0 j'l'0 > which is equal to zero 

Thus 

(9 3) 

There remains the term <'1' 0 !vj'l'0 > • A straightforward 

calculation stows that it is zero. With this information 

Pquation (85) yields the energy of the system correct through 

first-order as 
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( 94) 


There is a second-order correction to the Hartree-Fock energy 

which is given by 

E(2)=[<~2IHol~o>+<~olHol~2>+<~llHol~l>+<~llv!~o> (95) 

+ <~olvl~l>J 

This expression can easily be seen to reduce to 

E(2) = <~llHol~l>+<~llvl~o>+<~olvl~l> (96) 

where E( 2 ) represents the ·second-order correction to the 

energy. The wavefunction correct through first order is 

written as 

a .. kn ~ .. kn~l = ~o + L: lJ: IV lJ: ( 92)IV 

ijki 

The diagonal element of the first-order density matrix 

correct through first-order perturbation theory can be calcu­

lated from the expression 
2 

-+ ... -+ 
~o + dx 2 dx 3 ... dxNL:y Cl I l> ~ .. kiaij:ki lJ:= I ijki 

-+ -+ -+ ( 97)dx dxN .= J 7°7° dx 2 3 

There is no first-order correction to the density and equation 

(70) is correct to second order. If ~o is written in the 

restricted Hartree-Fock scheme and is a closed shell deter­

minant, then the expression for the electron density distri­
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bution is 

(98) 

The symbol n.~ 	 is the occupation number of the orbital 
]. A (Y. 

¢., . Equation 	(98)' is also correct to second order. 
]. ACY. 

However in the case of an open shell system, there is some 

disagreement as to whether p(~) is or is not correct to 

the second order30131132 • 

A one-electron operator has P.reviously been 

defined and it has been shown that such an operator is 

dependent only on the first-order density matrix. The 

average value of the one-electron operator 

P = E O(i) 	 (99) 
i 

correct through 	the first 6rder is given as 
. 1

0 	 0
<P> 	 = <! ~ A.!

1 lr O(i) l! + A! > 
i 

1 0= <!01~ O(i)l!0 > + A.<! jr O(i) j! > + >.<!0 /r O(i) l'V 1> (100} 
l. i 	 i 

Since Yi involves only two-electron excitations, it is 

aasily oeen that 

<!l Ir 0 (i) r,o> = <o/~jr O(i) jo/1 > = 0 (101)
i i 

and 
• -+ 

0(1) y(lll )dx (102)1 
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The average value of this one electron operator has no first­

. . 33 
ord er corrections . The statement that all properties 

dependent on the first-order density matrix are correct to 

second-order has thus been proven. 
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I.4 	 THE CONCEPTS OF BINDING AND ANTIBINDING IN DIATOMIC 
MOLECULES 

(a) 	 The Hellmann-Feynman Theorem 

The 	force acting on the nucleus in a molecule is, 

4according to the Hellmann-Feynman theorem , rigorously 

determined by the first-order density matrix. Thus, a 

Hartree-Fock wavefunction should yield a force correct to 

second order in perturbation theory. Consider the proof of 

the Hellmann-Feynman theorem. 'l' is the wavefunction descri­

bing a molecular system, and the energy of this system is 

given as 

(103) 

where 

H'l' = E'l' (104) 

and 

<'l' I 'I'> = 1 (105) 

The derivative ~~ is obtained as 

dE 
(106)dA. 

107) 

( 108)= 

since 
d= dA. (l} = 0 	 (109) 



Figure 1. The co-ordinate system describing a diatomic 

molecule AB. The distance xAi represents the component 

+
of rAi along the internuclear axis. The distances rAi 

and xAi are measured with respect to a co-ordinate system 

centred on nucleus A. The symbol e represents an electronic 

charge. 
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This is the mathematical statement of the generalized 

Hellmann-Feynman theorem. If ~ describes a diatomic mole­

cule and is obtained within the framework of the Born­

Oppenheimer16 approximation, then 

-+ -+ -+ -+ -+ 
~ = ~E(xl,x2·····xN,R)~AB(XA,XB) . ( 110) 

R is the internuclear distance and 'AB is the nuclear wave­

function which depends on the nuclear co-ordinate XA and XB. 

The Hamiltonian which includes the nuclear-nuclear potential 

term is given as 

H = (111) 

The indices i and j run from one to N where N is the number 

of electrons. 

The parameter A is defined to be the nuclear co­

ordinate XA and the derivative ~~ i$ taken with rBi held 

constant. Figure 1 shows the above described situation 

( 112) 

(113) 

(114) 

Therefore 

dH (115) 
dXA 
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and 

(116) 

wh~re F is the definition of the Hellmann-Feynman force on 
A 


nucleus A. If ~E is an unrestricted Hartree-Fock wave-


function, then 

(117) 

·Or if IJIE is, obtained within the restricted Hartree-Fock 

formalism 

(118) 

Similarly, the force acting on nucleus B is 

ZAZB J cos0B ~ ~ 
F = - ZB p(r)dr

B 7 2 (119)
rB • 

If FA and FB are added together and the result is divided 

by two then the equation 

~ 

P (r} (120) 

is obtained. The quantity 


ZAcos0A 

Q - +- 2 (121) 

rA 

is just the sum o~ the force acting on nucleus A and the 

force acting on nucleus B because of a point charge at a 

distance rA from the nucleus A and a distance rB from the 
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Figure 2. Binding and antibinding regions in diatomic 

molecules. The curves passing through the nuclei repre­

sent the nodal surfaces of revolution defined by Q=O. 

Charge density placed in the antibinding regions behind 

the nuclei exerts a force tending to separate the nuclei. 

Charge density placed in the binding region between the 

nuclei exerts a force tending to displace the nuclei 

towards each other. In the case of a homonuclear molecule, 

the two antibinding regions are identical and the curve 

Q=O is open. In the.case of a heteronuclear molecule, 

the figure shows that the curve Q=O is closed in the 

region of nucleus B. This nucleus has a smaller charge 

~ than does nucleus.A. 
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, 
nucleus B. The situation is the same as that shown in Figure 1. 

34Berlin used the relation (121) to define binding and anti-

binding regions in diatomic molecules. In the region of 

positive Q, the total electronic force is such that it tends 

to pull the nuclei toward each other in opposition to the 

force of nuclear repulsion. Such a region, Berlin termed 

the binding region. In the region of negative Q, the total 

electronic force is such that it tends to pull each nucleus 

in the same direction. However, it tends to pull one nucleus 

more strongly than the other with the result that the nuclei 

separate. Such a region is termed the antibinding region. 

The binding and antibinding regions are separated by nodal 

surfaces of revolution where 

Q = 0 {122) 

Figure 2 shows a homonuclear anq a heteronuclear diatomic 

molecule. The lined regions behind the nuclei are the anti-

binding regions while the internuclear area is defined as 

the binding region. 

(b) 	 The Density-Difference Function-An Interpretive 
Device. 

One of the purposes of this thesis is to discuss 

diatomic molecules in terms of their electron density distri­

bution functions p(~). These functions are easily pictured 

in terms of electron density contour maps. A description 

of the computational techniques required to plot these 

contour maps is presented in the appendix. 
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It is also of use to compare the density of a given mole­

cule with the densities of its atomic constituents. This 

is done by means of the electron density difference func­

tion35-44, 6p(~} defined as 

+ + + 
6 p ( r} = pM ( r) - p A ( r) . ( 123) 

The molecular density is designated by pM(~} while pA(~} is 

the sum of the atomic densities calculated as if the non­

interacting atoms were brought to the observed internuclear 

distance. Such ~P functions can also be pictured in the 

form of contour maps. These 6p contour maps can be 

interpreted as th e redistribution of charge which accompanies 

the formation of a chemical bond. The Hellmann-Feynman 

theorem as it applies to diatomic molecules gives a 

firm basis for this interpretation. 

Consider two spherical atomic charge distributions. 

Label the nuclei of the re~pective charge distributions A 

and B. The force acting on nucleus A is given as 

ZA 
FA= :-2° [ZB-fA] (124) 

R 

where ZA and ZB are the nuclear charges of A and B 

respectively, R is the distance between the nuclei, and fA 

is an effective electronic charge situated on the nucleus B. 

From Gauss's Law, this effective charge is equal to the 

total amount of charge within a sphere whose centre is 

nucleus B and whose radius is R. At large internuclear dis­
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tances the nucleus A is outside the charge distribution of 

B and 

(125) 

with the result that 

F = 0A (126) 

As nucleus A penetrates the electronic charge distribution 

surrounding nucleus B 

(127) 

and 

(128) 

For all degrees of penetration, there is a net force of 

repulsion acting on nucleus A. Similarly there is always a 

net force of repulsion acting on nucleus B. The overlap 

of two spherical charge distributions does not place enough 

charge in the region between the nuclei or more precisely 

in the binding region to balance the electrostatic force of 

repulsion owing to the nuclei A and B. 

The ~P map, which describes a stable diatomic mole­

cule must show an accumulation of electron density in 

the binding region - an accumulation sufficient to offset 

the electrostatic force of repulsion owing to the nuclei. 



CHAPTER II 


THE ELECTRON DENSITY DISTRIBUTIONS IN 

HOMONUCLEAR DIATOMIC MOLECULES 


II.l 	 INTRODUCTION 

In this section, an ·interpretive discussion of one-

electron density and density difference distributions in 

terms of contour maps is presented. Although such topo­

graphical maps have previously been documented in the 

literature, 'the density quantities which they represent have 

been derived from crude ~. A comparison of the difference 

density maps shown here with those published by Roux 38 

is sufficient to underline the importance of an accurate 

representation of the one-electron density for both 

atoms and molecules. After the publication of these density 

45 our maps, in erpre 	 b Ransi dcon t 	 an · t t'ive paper y ·1 an s·1na1·

~ 	 appeared in the literature. Their analysis is similar to 

that espoused in this discussion and the results reported 

here can be compared with their data. 

+
The analysis of p(r) presented here is neither the 

first nor the only analysis to be exploited. For some time 

. 46 47 now, Mulliken's ' molecular orbital population count, an 

+
integrated form of p(r), has been used to gain an idea of the 

distribution of electrons within a molecule. The population 

analysis giv~s quantitative meaning to concepts such 

41 
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as electron promotion, hybridization, bond orders, atomic 

and 	overlap popu:!.a~ions; and tile results of such calculations 

ar2 presented as e.f fective electron configurations for 

a toms within t'he mo le.cule \lnder cons:Lderation. The increa­

sing comple:><ity of molecula.:c orbitals approx.imated a.s linear 

combinations of atomic orbitals makes precise defiY'litions 

of these concepts difficult to formulate. Indeed, the. 

population analysis appears to be meaningful only when the 

molecular orbit:: J.s are approximated by rni nimal bas is sets 

42
of atomic orbitals. Oavidson has realized this and has 

attempted to fit density di_stribut.ions obtained froxn e.x­

tended basis set approximations to a minimal basis set 

of atomic orbitals h~ving some int~itive si9nificance 

He constrains the apprcximate densities so tllat their mean 

square. error relative to the "true" densities is a minimwn, 

and, in th.is way, attem;'.'tS to recover a meaning for the 

t e.'rms hybrid i zat.ion ana elec·c.ron promction. 

The 	analysis of molecular charqe density contour 

·• s·inaimaps nnans11 and · 45 
cesults in the divisio~ of such 

maps i·,~.,::i ceq-Lo:.'.ls of lcc~lized and delGCt1.li2ed cha:cqe. 

define~ respectively as that charge conta1ned w1t~1n con­

tours that encircle both nuclei separateli and that charge 

excluding the core regions which spans tne el'lt i -re ir:olecular 

space. classificatior. of these charge regions in terms 

of their binding, nonbiLding or antibinding •1atare is 

made, and ele •ron pop~lations within given localized contours 

http:ceq-Lo:.'.ls
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are calculated. A comparison of these populations with 

those found wi thi:r.. the sa::r,e contours in the isolated. 

atoms from wni ch the malecv.le is formed give.;:; an ide.a. of 

the cha=ge transferred to ~he cor2 regions during the 

formation of the molecule. 

40Rnedenberg has proposed an·extens'ive inter­

pretation of the physical nature of the chemical bond using 

the first- and second-order density matrices. He relates 

these density quantities to energy changes accompanying 

certain hypothetical proces~es occurring as the chemical 

bond develops. Another approac'.:l to establis4 a nonarbi­
, . 

trary link between rigorous molecular orbi tc:.1 ,,,;2.vefunc.t.ions 

and chemical concepts has been formulated by Edmiston and 

50 SlRuedenberg • Beginning with the canonical molec~lar 

orbitals -i these authors dete~mine localized molec~lar 

orbitals ~- which correspond to conventional localized 
l 

inner shall, lone pair, and bond orbitals. These localized 

molecular orbitc..ls are determined by the u:--iitary transfer­

rnation 

)...
l 

= E ~p T 
pl 

. 
p 

which maxi~i~~s the sum 

D()..) 

2 1 2
The term <A. \~-J)..i> represents the repulsion of two 

l. r12 
electrcns in the orbital A.. The index i runs over all 

1 

http:malecv.le
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occupied localized molecular orbitals. It is possible to 

compare the diagrams.derived by Edmiston and Ruedenberg with 

the densfty difference diagrams shown here. 

The direct determination of electron density distri­

t~tions in molecules from x-ray and electron diffraction of 

the relevant gases is theoretically possible. Elastic 
. 

scattering depends on ·the one-electron density distribution 

while inelastic scattering depends on the two-electron · 

density52153154 At present, Bartell 55 and his associates 

are attempting to reproduce experimental intensity measure­

-+ 
ments for the molecules N2 .and o2 by employing the /J.p(r) 

contours shown in this thesis for thes~ molecules. In the 

past, their calculations have been based upon the density 

distributions of the undistorted atoms oxygen and nitroger:. 

and have not agreed with the experimental data at low angle 

scattering-. Such /J.p (~) contour maps should help to deter.mine 

whether the disagreement occurs as a result of correlation 

eifects or the chemica! bond. As of yet, the density 

co~tour ~aps discussed here have not been reproduced by 

experiment. 



Figure 3. The total molecular charge density contou:cs for 

the first row homonuclear diatomic molecules. The values 

of the contours in this a~d the following maps are quoted 

3 3 
in atomic units ll a.u.=e/a = 6.749e/~). The same 

0 

scale of l,ength applies to all the :::naps in this figu!:e. The 

innermost circular contours centred on che nuclei have 

been omi"'::ted for the sake of clarity. The value of the 

total density at the position of the nuclei is given in 

Table I. 
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II.2 THE TOTAL MOLECULAR CHARGE DISTRIBUTIONS 

Contour maps of the total molecular charge density 

distributions for Li ,B 2 , ~2 , N2 , o and F all drawn2 2 2 

to the same scale are shown in Figure 3. The wave function 

1
for Li (X E;) is from Cade, Sales and Wah1 56 ; for B 2 (x 3 r~)2 

1 + 57 . 1 +and c2 (a Eg) from Greenshields; for N2 (x E ) from Cade,
9 

Sales and Wahl 58 ; for (X 3 E~) from Cade and Malli 59 
;o2 

·. 1 + 60 
and for F (x Eg) from Wahl. The contours connect points of2 

equal density in a plane containing the two nuclei and are 

continuous in nature. ·The total density is distinct from 

the various orbital densities in that it possesses no nodal 

contours. 

A cursory examination of these density diagrams 

shows that Li2 differs from the remaining members of the 

series in two aspects. The Li 4 density along the internuclear 

axis possesses two saddlepoint minima while the remaining 

molecular densities possess only one such saddlepoint. The 

density of the lithium molecule, especially that in the 

binding region,is diffuse in nature; that is, the outer 

contours are separated by greater distances in Li than, for2 

example, in o
2

. This has the effect of giving Li 2 an over­

all width greater than that found for the other molecules. 

The diffuse nature of the density in Li can be correlated2 

with its bond type as predicted by simple molecular orbital 

theory. The bond in Li is seen as resulting from the over­2 
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lap of two lithium 2s orbitals,one on each nuclear centre. 

The overlap of such s orbitals is not highly effective in 

concentrating density in the internuclear region along the 

bond axis. The diffuse nature of the electron density in 

this molecule also correlates with its bond strength. Li
2 

has the lowest dissociation energy of any of the homo­

nuclear diatomic molecules studied in this thesis. 

Molecular dimensions have long been inferred from 

measurements of virial coefficients or transport properties 

such as viscosity. The assumption of the empirical Lennard­

Jones (6-12) intermole.cular potential61 yields one effective 

molecular diameter. More complicated empirical potential 

61expressions such as those by Kihara and Corner for molecules 

with cylindrical symmetry yield two "effective dimensions". 

An examination of the density distributions in Figure 3 pro­

vides a basis for different definitions concerning the 

lengths and widths of molecules. Molecular size here is 

defined with reference to a specific contour inside of which 

most.of the electron density is contained. Calculations 

carried out during these studies indicate that the 0.002 

contour contains over 95% of the total electronic charge, 

and thus the 0.002 contour appears to be a good cut-off 

contour in terms of which the length and width of a given 

molecule can be measured. Such a contour choice is arbit~ary 

to some extent, and there is no a priori reason why the 

results reported here should agree with the "experimental 



TABLE I .• 

Characteristics of the Total Density Distributions 

Molecule Li B2 c2 N2 02 F22 

Width (a.u.) 7.8 7.2 7.0 6.4 6.0 5.4 

Length (a.u.) 8.7 9.8 8.5 8.2 7.9 7.9 

Re (a.u.) 5.051 3-.005 2.3481 2.068 2.282 2.268 

Distance of 
0.002 contour 
from nucleus 

In molecule (a.u.) 1. 8 3.4 3.1 3.1 2.8 2.6 

In atom (a.u.) 3.2 3.4 3.2 3.o 2.9 2.8 

Fraction of total 
electronic charge 0.59 0.58 0.60 0.56 0.55 0.54 
in the binding 
region 

Charge density 
at the*nuclei 13.855 71.856 127.323 205.591 311.312 448.760 
(a. u.) 

Dissociation 
Energy 1.12 3.0 6.36 9.902 5.213 1. 647 

.i::.e.v. co 

* 3 R31 a.u. of density~ e/a = 6.749 e/
0 
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diameters" of the respective molecules. The length and 

width of each molecule defined respectively as the distance 

between the intercepts of the 0.002 contour on the molecular 

axis and on a line perpendicular to the molecular axis and 

passing through its mid-point are given ~n Table I. These 

aata in Table I are similar to results reported by Ransi145 

except for the case of N • His total density contour map2

for N shown in Figure 3 of his text differs from that one2 

reported here al though the same molecular wavefunctio~:. was 

used in each case. As a result he repor~s a molecular width 

of 4.70 a.u. for N wh~~e this study indicates a wid~h2 

of 6. 4 a. u. for ·..:.he sar~2 molecule . The experimental values 

of the dia~e~ers of the N and o molecules as determined2 2 

b~, a L2 ..~,n.ard-Jones (6-12) potential are 7.84 and 7.32 a.u. 61 

respectively. These results are slightly smaller than the 

lengths and slightly larger than the widths of the molecules 

cylindrical ellipsoidal molecules respectively. The 

N
2 

and o2 shown in Table I. With a more complicated po­

tential expression Kihara obtains for N2 a width of 6.57 or 

7. 73 a.u. and a length of 8.64 or 9.81 a.u. for sphero­

61 or 

spherocylindrical values agree quite well ~ith those reported 

in Table I. 

Table I .;.lso shows for each of the molecule:.s the 

fraction of the total charge that lies in the binding region. 
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There appears to be no ~orrelation between this fraction 

and the strength of the bond as determined by the dissociation 

energy. Neither does there appear to be any correlation 

with the number of electron-pair bonds predicted by the 

Lewis model. However a population number by itself does 

not give a complete picture. More important than the total 

number of charges in tne binding region is the placement 

of this charge relative to the nuclear axis. Density 

concentrated on and near the molecular axis is the most 

effective in binding the nuclei together. The diffuse 

nature of the'Li mol~cular density shows that there is no2 

strong concentration of this density along the molecular 

axis and consequently that, relatively speaking, more 

charge must be placed in the binding region of this molecule 

in order to obtain electrostatic equilibrium. Similarly c2 

has an abnormally large fraction of the total electronic 

charge in its binding region. Simple molecular orbital 

theory predicts that this molecule is held together by two 

pi bonds - bonds which do not concentrate density on the 

molecular axis. It is true that the studies reported here 

indicate that, even in the case of c there is a concentration
2 

of density in the internuclear region typical of a p bond.
0 

However the abnormally large binding region population and 

further data to be discussed presently indicate that there 

is a Considerable amount Of density characteristic Of TI 
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character in the off-axis internuclear regions - an amount 

of density larger than that found in the case of N ,o and
2 2 

F2. 

Also shown in Table I are the experimental bond 

lengths and the electron densities at the nuclei. There 

seems to be no definite cor~elation between the bond length 

and the overall molecular length. There a.re twc factors 

which m~st be considered in understanding ~he length of 

a molec~le, the bond length and the rate at which aansity 

falls off from the nucleus on the side away from the bond. 

Table I lists the distance from the nucleus to the 0.002 

~ontour in the molecule and the radius of the same contour 

:'..n the isolated :J..torn ... ~·~i th the E::xception O 
.c: Li this"­ 2 

distance Li the molecule is almost identica.l. to the value 

in. the isclated atom. Thus the contribution. of the two 

end lengtris, beyond the nuclear separation to the overall 

l;:;;~•gth of the molecule is largely determined by how lightly 

tt:.e density is bound in the unperturbed atom. The binding 

of the atomic density increases from Li across ·co F so 

that Li and Be are large and diffuse while N,O and F 

are progressively tighter and more compact. Therefore F 2 

is smaller in size than N or c even though possessing z2 2 

greater ~ond length owing to the fact that the density in 

the F atom is more tightly bound than that in the C or N 

atoms. The Li molecule differs frorr, the others in that
2 

its length is considerably less than expected considering 



Figure 4. A diagram to illustrate a method of estimating 

the size of a peripheral atom. 
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the diffuse nature of its atomic density or in this case 

the molecular length is not approximately equal to the 

sum of R and twice the "atomic" radius. This is however e 

easily understood sine~ in the ~i .atom only one valence 

shell electron is present so that no atomlike residual 

charge in the valence shell remains in the molecule as is 

the case in B2 , c2 , N2 , o and F • This is further il­2 2 

lustrated by ·using instead of the 0.002 contour of Li 

the 0.002 contour of .the ls 2 shell of Li which yields a 

relevant atomic radius of 1.7 a.u. in good agreement with 

the molecular value of l.Ba.u. 

An accurate estimate of the size of a peripheral 
1 ' 

atom is tentatively proposed as the sum of 2 Re from a 

suitable source and the atomic "radius" as defined by the 

0.002 contour of the atom (except for Li, Na, etc., where 

the core radius should be used). For example, Figure 4 shows 

the length of a peripheral fluorine fragment. 

/ 



Figure 5. The dens~ty difference contour maps for the 

stable first-row homonuclear diatomic molecules. The 

same scale of length applies to all the :'laps. The dotted 

lines (shown ln full for N2 ) separate the binding from 

the antibin6ing regions. 
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II.3 THE DENSITY DIFFE~ENCE CHARGE DISTRIBUTIONS 

->­
Fig-ure 5 shows the 6p (r) contour maps for the series 

of homonuclear diatomic molecules Li
2

, B
2

, c
2

, N
2

, o and F
2

.
2 

-+
As mentioned in the introduction, these 6p(r) maps provide 

a usef<ll pic~ure of the net redistribution of charge tha~ 

takes nlace during the formation of the chemical bond. Also, 
~-~ 

in the case of stable molecular arrangements such 6p(i) 

contour maps should evidence a net transfer of charge to 

the binding region. The overlap of two atomic densities 

at the observed internuclear distance does not place suf ­

ficient charge in the binaing region to balance the electro-­

static force of repulsio:1 owing to the nuclei 62 __ 

The 6p(i) function is a significant quant~ty in­

dependent of the orbital representation of the wave function 

as it is invariant to orthogonal, unitary, orbital trans­

formations. b~(~) maps identical to those shown in Figure 5 

would be ob~ained if the molecular orbitals were first 

transforned into equivalent or localized orbitals. The 

-+ .
t::,p(r) function is dependent on the quality of the orbital. 

representation in both the molecular and atomic wavefunctions. * 

A consistent approximation perspective has been adopted in 

this approach with wave functions of Hartree-Fock accuracy 

being used to ::alculate both the molecular density a:'1d the 

*ThE! 6p map is independent of.the atomic basis set 
for bas i .co sets of equa:;_ly high quality. The use. of the "accurate 
basis sets' of P.Bagus and T.Gilbert (unpublished results) leaves 
the 6p m~ps of the first-Tow homcnuclear diatomic molecules un­
al terec except in the case of Li. In this latter case a small 
change in the zero conto~~ is evident in the region of the Li 
nucleus. 



Figure 6. -A d2nsi ty difference contour map for the molecule 

Li 2 . Here the molecular 9ens.ity is derived from a multi­

-+
configurational wavefunction. The 6p(r) map for Li~ in 

figure 5 i:avolves the molecular density derived from a 

Hartree-Fock approximation to the wavefunction.. 
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d . d (7)t omic. . 6 3 · t h at are nee e d to construct the 6p ra ensities 

function. Such an approach neglects the electronic cor­

relation in both the atomic and molecular systems. It 

-+
might be argued that the 6p(r) function which is defined as 

t:ne result of a subtraction of two Hartree-Fock densities 

is e~sentially accurate. The correlation errors in each 

density tend to cancel each other with a resultan~ error of 

-+
less than 1% in 6p(r). However, as the separated atoms 

approac:r~ each other -co form a molecule, there is a pairing 

of electrons with a resultant correlation effect that is 

no-c. present in the atomic densities. Hence the above 

argument is not totally valid. Although it is not known 

hew best to treat this problem at present, preliminary 

d . 64 , . f. . . . f t' 65s t u ies emp~oying a con iguration interaction wave unc ion 

-+
:Eor the Li .molecule yield a 6p (r) contour map shown .:..n

2 
-+

Figure 6. This 6p(r) map is similar in every detail 

to the 6p (~) contour map shown for Li 
2 

ir. Figu:ce .::, . 
...

The atomic densities used to construc-c. these ~p(r) 

maps describe the atoms in their valence stat.es. This 

approac1:-::. foresees the formation of the electron-pair bond 

and is cons:'._dc:red to yield the chemically mosc interesting 

results. ?... s an example, consider the forma tio::.: of the F
2 

molecul2. At large internuclear distances, where the two 

fluorine atoms just begin to interact, their orbitals can 

~;e classified in terms of the q·..::.antu.m number A, the orbital 
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angular momentum along the bond axis. In the limit where A 

just begins to be a good quantum number, the two fluorine 

atoms can be described by the configuration ls 22s 22p42p1 • 
IT CJ 

Hence the bond in F is foreseen as the overlap of two 2pCJ2 

orbitals each with a single electron. A spherical average 

over the ground state configuration· for the atomic den-

siti~s would neglect this preferred direction towards 

the other atom. There is no difference between the valence 

state density and the aver~ge ground state density for Li and 

N, but B and C are placed in valence states with one and two 

p electrons respectively while O and Fare placed in,
IT 

states with a single p electron, the remaining p electrons
CJ 

being averaged over the IT orbitals. 

An examination of the diagrams shows that there are 

two characteristic regions of charge buildup in each 

molecule - one being ifi the int~rnuclear region and one 

being in the region behind the nuclei. The charge increase 

behind the nuclei is small in the case of Li 2 but quite 

e~ensive in the remaining molecules. The dotted contours 

on the N 6.p (·;-) map indicate the boundaries between the2 

binding and the antibinding regions. Similar dotted contours 

appear in the upper left region of each remaining diagram 

and serve the same purpose as those contours in N2 . A 

consideration of these observations in terms of the concepts 

34of binding and antibinding leads to the surprising fact 
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TABLE II 

Increase in the Number of Electronic Charges in Berlin's 

binding and antibinding regions * 

Binding Antibinding 
Region Region 

Li 2 0.41 -0. 01 

Be 
2 0.17 0.11 

B2 0.30 0.05 

c2 0.50 0.06 

N2 0.25 0.13 

02 0.10 0.14 

F2 0.08 0.10 

*Since the charge which is concentrated in these regions 

is removed from both the binding and antibinding regions 

these figures do not repre~ent the changes in tota~ 

electron population for these regions.· The calculation 

of these numbers is described in the appendix. 
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that charge is not only concent~ated in the binding region 

but also in the antibinding regions. Only Li corresponds2 

to the simple picture of charge transfer from the antibinding 

to the binding region. From Li 2 on across the series, the 

charge density is increasingly removed from the binding 

region until, for F 2 , practically the whole of the decrease 

occurs in the binding region. Table II shows a series 

-+
of population numbers obtained by integrating the ~p(r) 

function over the various regions where it is positive. 

Th2 table shows two colwnns - one corresponding to a buildup 

~i charge i~ the binding region and one corresponding to 

a buildup of charge in the antibinding region. In agreement 

with the interpre·cation derived from the total density con­

tour maps, Li and c show the greatest inc:cease cf charge2 2 

L:. the binding region. The data for o and F.!. shows that2 

here a greater amount of charge is transferred to the anti-

binding region than to.the binding region. Again it must 

-+
be noted that the ~P (r) contour maps and population nun1bers 

do not give a complete picture. Although the charge accum~-

lated in the binding region is concentrated along the 

internuclear a.xis while the charge accumulated in the anti-

binding region is more diffuse in nature, it i~ evident tha~ 

an examinatio:r. of these maps and population numbers will 

lead to no conclusions regarding the stability of the 

respective E1olecules. A force analysis will however show 
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that each of these molecules has reached a state of electro­

static equilibrium. In fact, the force exerted by the charge 

density in the binding region, the overlap density, is 

greater than that required to balance.the force of nuclear 

r0pulsion. Consequently, the atomic density on each nucleus 

is strongly polarized away from the binding region. 

The difference maps do give an idea of the bond 

-c.ype.Li is certainly distinct from the other members of the
2 

series and is characteristic of the increase in the inter­

nuclear region that is expected because of the overlap of 

s functions. Indeed, in the wave function for Li the2 

coefficients describing the p orbital contributio~s are 

->­
quite small. The remaining ~p(r) maps show the increased 

p character oi the resulting bonds. Even B and c which2 2 

are seen in simple molecular orbital theory as possessing 
. 

respectively one and two TI bonds, show maximum increases 

->­
in their respective ~p(r) maps along the internuclear axis. 

If the TI character of the bond remained strongly evident, 

-+
the maximu.'11 i:-ic:::-ease in ~p (r) would be abov2 and below the 

bond axis. How2ver the TI character of these bonds is evi­

denced by t~e relatively larger dista:-ice se9arating the 

two portio::::s of the zero contour as measured along a 

line at the molecular midpoint and perpendicular to t~e 

internuclear axis. The relatively larger populations in C2 

c..:-_d B - firstly describing the charge inc:c.eo.se in the
2 

http:inc:c.eo.se


Figure 7. The total density and density difference 

contour maps for the ground state of Be 2 at an inter­

nuclear separation of 3.5 a.u. 
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binding region and secondly describing the total fraction of 

the charge in the binding region, together with the relatively 

smaller increases of charge in the antibinding regions of 

these molecules also evince their 1T character. With the 

filling of the 3ag and ng orbitals in N2 , o and F 2 , the2 

internuclear increase becomes even more concentrated along 

the axis while the increase behind the nuclei becomes 

more diffuse. 

The molecule Be in its ground s~ate aas the con­
2 

2 2 2figuration la 21a 2a 2a . As this sta~e is not bound, 
g u g .. u 

i~s electron density contour map should be investigated to 

determine if this type of information is predicted by such an 

analysis. Figure 7 shows the total density and density 

difference contour maps for Be at an internuclear distance2 

of R = 3.5 a.u. The wavefunction for Be is from Cade and
2 


66
Sales . The internuclear distance is approximately the 

value obtained for a nuclear charge of 4 when R is graphede 

versus Z for the stable members of the series. The density 

contour map 
1
does not indicate the instability of Be in its

2 

qround state. The diagram, as it stands, has one feature 

rsminiscent of Li - namely the manner in which the contours2 

bulge out from the internuclear axis. Presumably, there is 

a double 3addlepoint minimum along the inte~ntlcle~r axis. 

~- ·.ren the density difference contm:.:::.-- map for Ee~ shc~s the 
L 

.:::.::c..me ge~1eral features as those describing the -:Yc:~s.:.:: members 
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of the series,including two regions of charge increase, one 

in the internuclear region and one behind the nuclei. The 

simple picture of charge transferred from the binding region 

67to the antibinding region as depicted for the molecule He 2 

in its unstable ground state is no longer evident. From another 

point of view, Table II shows that compared to the neighbouring 

members in the series Li and B there is an abnormally large
2 2 

buildup of charge in the extranuclear region while, in ad­

dition to this, there is an abnormally small buildup of charge 

in the internuclear region. Similarly, the total fraction 

of charge in the.binding region of Be is only 0.53 compared2 

to 0.59 for Li 2 and 0.58 for B2 • These facts suggest and 

a force calculation shows that the amount of charge trans­

ferred to the binding region in Be is insufficient to balance2 

the electrostatic force of repulsion owing to the. nuclei 

However, the difference in the density distributions for a 

stable and an unstable molecule is clearly one of degree 

and not one of kind. 

A question was posed in the introduction concerning 

the compatibility of this approach with the Lewis concept 

of the electron-pair bond. Herzberg68 has pointed out that 

the difference between the number of bonding orbitals and 

the number of antibonding orbitals in the molecular orbital 

description gives the number of electron~pair bonds in 

the system. It would be satisfying to obtain some correlation 
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between this electron-pair bond concept and the number of 

charges accumulated in the binding region. A casual inspection 

seems to indicate no overall relationship. There is approxi­

mately twice as much charge accumulated in the binding region 

of c as there is in the case of B2 . Similarly N has a2 2 

charge accumulation in the binding region three times that 

6f F 2 . These ~acts can be rationalized and a partial cor­

relation can be obtained if it is recognized that there are 

essentially three different bond typ~s in the series of 

molecules Li ,B 2 , c2 , N2 , o and F 2 . The first bond type2 2 

is here represented by Li 2 , the second bond type is re­

presented by B and c while the third type is characteristic2 2 

of the bonds found in N2 , o and F 2 . Li appears to be2 2 

bound together by a relatively large diffuse accumulation of 

charge in. its binding region. This can be interpreted as 

evidence of a bond formed by the overlap of s orbitals. 

'I'he acc:.:JTLUla tion of charge in the binding region. of B2 and 

c is not as diffuse as that of Li 2 ; neither is it as2 

concentrated.as the charge accumulation in N2 , o2 , and F2 . 

This can be taken as evidence of the partial TI character 

of the bonds in these two molecules. The concentrated nature 

of the charge buildup in the binding region of N2 , and0 21 F2 

seems ~o indicate the strong p nature of the bonding.
0 

Molecular orbital theory predic~s these molecules to have 

one sigma bond and respectively two, one and zero 1T bonds. 

http:concentrated.as
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The change in bond type after c to one which is more con­2 

tracted along the axis accounts for the lack of correlation 

of the charge accumulation in the binding region and the 

number of electron-pair bo·nds. A discussion of bonding 

solely in terms of a population count is misleading. As 

important as the amount of charge is the exact disposition 

of the charge in the molecule; that is, whether it is 

diffuse or contracted in nature. Both of these features, 

the amount of charge and its disposition are taken into 

account in a determination of the forces which bind the 

nuclei together to form a molecule. 



Figure 8. Electron density difference profiles for 

the first-row homonuclear diato;:nic molecules. The 

-+
vertical axis shows the 6p(r) values. The horizontal 

axis represents the internuclear axis. 



---- ------

67 
0·10 

-~----

-0·1 

·0·10 


0·10 


.,-0·38---------------- ,-. ------------- ·"1-----
-0·2 

·0·10 

0·20 

i, I 
·;ii'\ 
11 I ,r"\ 

0·10 

"'l / \ I 
·0·10 

I
I 

~-0·51 

·O I , 

Oz 3L:; 

/ 

I 

·~~ 
0·20 

r\ 
'"Ii 

, I 

0·10 I 

' 
I ''l 

f1 

!\ ~ 
-------~-tl-1--1-----\-.. - .)-->·-----··

i d \ ! 


\ 
1i \ 1 

I 

, I 

\, 
 i ,Ii I ', I I I 

"I I I'~ \ I 

'"i1 ~ ~ 
+-o·44 °''~ c, ';:; 

I
i 

I I 



68 

. 
II-4 THE ELECTRON DENSLTY DIFFERENCE PROFILES 

Figure 8 shows electron density difference profile 

maps for the molecules Li 2 , Be2 , B2 , c
2

, N2 , o and F 2 .2 

These graphs summarize the value of the ~p(~) function at 

various points along the internuclear axis. The scale of 

density difference values is shown along the vertical axis . . 
There seems to be a correlation between the value of 

-+
b.p(r) at the molecular midpoint (Re/2) and the value of 

the dissociation energy. Thus c2 has a dissociation energy 

two times that of B and the difference density accumulated2 

at the molecular midp!Jint in c2 is tw.ice that of B •2 

Rosenfelt42 has suggested that there is a correlation between 

the dissociation energy calculated from a given approximate 

molecular wavefunction and the density difference at the 

molecular midpoint. In fact, ~f the experimental dissocia­

-+
tion energy is plotted against the value of b.p (r) 

calculated at th e molecular midpoint, there is a straight 

line relationship for the molecules Li 2 , B2 , and N2 .c2 

However o and F do not fall on this straight line but lie2 2 

above it. 

The profiles again evidence the three distinct bond 

types previously discussed . Li shows only a very small2 

increase of density al9ng the bond axis. Indeed there is a 

-+
greater increase of 6p(r) behind the nuclei than there is in 

the internuclear region. The profiles for and areB2 c2 



0 

69 


+quite similar. There is a larger increase of 6p(r) along 

the internuclear axis in the binding region than there is 

in the antibindin.g region. The diagrams make evident the 

p character of the bonds in these molecules. Although 

simple molecular orbital theory predicts that the bonds in 

and c should result from the overlap of pTI orbitalsB2 2 

centred on each nucleus, the profiles show a large increase 

of charge density along the internuclear axis. There is 

necessarily a transfer of charge from orbitals of TI symmetry 

to orbitals of cr symmetry. The profiles describing N2 , o2 

and F 2 are all quite similar. Further these profiles are 

distinct from those describing the other molecules. Each 

+
of these profiles shows three 6p(r) maxima in the binding 

region along the internuclear axis. The maximum 6p(~) 

contours describing the charge buildup in the antibinding 

+region are similar in value to those 6p(r) contours at 

the molecular midpoint. The remaining" two 6p(~) maxima 

in the binding region appear because of the filling of the 

3cr orbital. The density contours of this orbital show 
g 

maxima along the internuclear axis in close proximity to 

the nuclei. 

The profile for Be 2 shows larg~r positive 6p(~) 

contours in the binding region than in the antibinding region. 

It appears quite similar to those profile graphs describing 

tne molecules B and c with the exception that there is2 2 
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a larger amount of density removed from the nuclei in Be 2 

than there is removed from the nuclei in B2 . However the 

instability of Be is not predicted by its profile map.2 



CHAPTER III 


THE FORCES OPERATIVE. IN HOMONUCLEAR.DIATOMIC MOLECULES 

The preceding section presented an analysis of· the 

.iansity distributions in the first row homonuclear dia­

:ornic molecules. From a comparison of these density 

distributions with their separated atom components in 

;enns of the density difference function 6p(~), a picture 

cf the charge redistribution attendant upon the formation 
-+

of the chemical bond was gained • The study of such 6p(r) 

.:taps led to the conclusion that their use in predicting 

molecular stability was limited. The physical features 
-+of the ~p(r) contour map for the unstable ground state of 

Be were found to be similar to those of the stable mernbe:c~2 

of the series. 

To attempt an understanding of binding in a molecu:.~.• 

2. ·:. is useful to consider the change in the force which the 

,otal density exerts on the nuclei in the molecule relative 

·:o the situation in the separated atoms. Label the nuclei 

Ln a diatomic molecule A and B with nuclear charges ZA and 

4ZB respectively. From the Hellmann-Feynman theorem, the 

total force acting on A for any internuclear separai:i.on 

is 

( l" 

71 
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(2) 

where 

(3) 

(4) 

The index µ runs over all values from one to n where n is 

the n'umber of electrons in the molecule AB. At very large 

R such that R>>Re (the equilibrium bond length) 

(5) 

F (Elec) (R) =-Z I 
A A (6) 

This implies that electron exchange between A and 

B is negligible. The electronic force integral now becomes 

n cose A . _.nA n 
= - zA \fA(~ A) [I: 2 µ ] \fA (x ) d~ AI µ rµA 

I cos0 A _.nB _.nB' v 
..... ZA \fB(x+nB ) [I: 2 ] \fB (x ) dx (7) 

v rVA 

The index µ runs from one to nA where nA is the number of 

electrons associated with atom A. The index v runs from 

one to nB where nB is the number of electrons associated with 

the a tom B. · For large R 

z 
FA(R>>Re) = R~ [ZB 

n cos0 o 
I: \f ()!" B) ( VA _ ~) (8)

B 2 R2 
V r VAf 
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where o and o are the usual diagonal Kronecker o 
µµ \)\) 

symbols. In equation (8~ , ~he ccntri~ution to the force on 

nucleus A from electrons on A is given as 

z:: n-0 )
µ µ1J. 

This is a sum of zeros and results from the fac·c that, in 

this limit, the electronic density is spherically placed 

about nucleus A. The e~actrons OL 3 ccntri~~te an attractive 

force just balancing the repulsive £o:cc2 resulting from the 

nuclear charge ZB e'.'1-:cept for the e1ectr0nic: force occurring 

in the last term in equation (8). Th5_s lc.:::t e"X.pression becomes 

ne~ligible by choosin~ A large enough; th t is, as 

then 

cose -+ 1
VA 

~ 
r -+ R .vA 

ln the g@ner.al case 
ZA 

F (R-'""") c:: [Z - 2: ( 1-o ) . - l: 6 1 :::: 0 (9)
A B µµ \j \1"1'2 µ 

or 

( 1-o ) + 2: a {10)
)l )l \) \) 

, \)µ 

At the equilibrium internuclear distance, R , the force on 
e 

nucleus A is also zero so that 

mailto:g@ner.al
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( 11) 

If a Hartree-Fock wavefuDcL_on is ~sad lo c~lculate the 

integral on. -ch e 12ft ha:~"d side cf equat~_on (11) , then 

cosEJ A _,.\J.I. .-)= '[; ?. 2N. !Zi· (r ) ¢, (r 
~ 

) dr 
. ' l l µ l µ ~!
i=l 

= t f. (12)
i :L 

The ind2x i runs over all occupjed molecular orbitals ~rd~­
.L 

is the: ~ccupation number of orbita::._ )b .• Sq_t.ation (2) now 

becomeE: 
ZA 

FA ( P) = -~ [Z _ - E f ] (13)
/ h )..

f\'.- ~ i 

At all internuclear distances, th2 equation 

( 14) 


holds. In an orbital description/ eq~ation {ll) becomes 

(15) 


and equatioY'I (10) becomes 

(16) 

The indices k and £ run over the atomic orbitals en A and i 

respectively. The kth and £th atomic orbitals correlate 

with the ith molecular orbital at large internuclear 

d . . h . b f h kth .istances. N1 is t e occupation nurn er o t e ato~111c 
K 

orbital on A and ·f., Q, is the occupc,t :i..oli 1'-umber of the 9,th. 

atomic 01:bital on a.tom B. The f. <v-a111e is a rceasure of the. 
~~-1~~~~~~~~~~~~~~­



ligure 9. The Hellmann-Feynman force on nucleus A 

and its variation with internuclear separation. FA(e) 

is the electronic force acting on nucleus A. FA(n) is 

tne force of nuclear repulsion. F8 (R) is the Hellmann­

Feynman force on nucleus B • 

• 
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GENERAL CASE 


)0 

<O 

F..'') ( F..'", 
(REPULSIVE) 

R< R. R,CAB) R>R. 

>O 

R-(> 




TABLE III. 


Summary of Hehe<\1iour of the Fo:rces on the· Nuclei wjth Ini.i:"-rnucleai: Sepd.rationa 


R-Range Force on 
Nuclei 

Electronic Versus 
Nuclear Force 

Net Eff:ect of 
All Forces Remarks 

R>>R 
e 

F =-F =OA B 
NB 
L: 
9, 

69,9, = ZB Nil Electronic contribution 
cels nuclear repulsion 

can­

H. > R 
e 

F =-F fO
A B 

}; 

i 
f. 

l 
> ZB l; t.tra.ction Electronic attractive force 

exceeds nuclear repulsive 
force 

R = R e F =-F =OA B L: 
i 

f. 
l 

--­ z
B 

Equilibrium Electronic attractive force 
balances nuclear repulsive 
force 

R < R e FA=-FBfO L: 
i 

f. 
l 

< Z'. 
B 

Repulsion Nuclear repulsive force ex­
ceeds electronic attractive 
force 

aThis table is complirnentary to Figure 9 <tnc1 assume:"'. AB forms a stab le molecule. 

-..J 
0\ 
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degree of the attractive or repulsive contribution to FA 

from electrons in the ith molecular orbital. 

The general sche~atic behavior of FA graphed against 

R is shown in Figure 9 for beth a stable and an unstable 

molecule. Table III de5cribes the force acting on nucleus 

"A in terms cf the f. values for given ranges cf tne inter­
1. 

nuclear separation. At large R F = -FB = '), so that the r A 

total electronic charge on B is completely effect~ve in 

c~ncelling the repulsive force due to nucleus B. For 

R>R , the attractive electronic force exceeds the nuclear e 

repulsive force due to nucleus B. At R , there is electro­
e 

static equilibrium, ?. = -F =0 with the result that 
r... 8

(15) 


For R<R , the repulsive force due to nucleus B cecomes 
e· 

l~~ger than the attractive force d~e to the electronic 

charge cloud although FA = -FB is still valid. 

The foregoing straightforward equations and remarks 

are valid for the exact wavefunction and for a select group 

of approximate wavefunctions including the Hartree-?ock wave-

function ,but for crude approximate wavefunctions 

has discussed in some detail in a survey article the con­

ditions for which the Hellmann-Feynman theorem is satisfied. 

69
Hurley 
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Since the net force on nucleus A is zero both at Re 

and in the limit as R approaches infinity, then 

For a homonuclear diatomic molecuie, the molecular orbital 

¢. correlates with the same atomic orbitals on both A and B 
l. 

for large internuclear separations. In this limit, the atomic 

density 	on A makes no contrib'ution to the electronic force 

acting 	on A. Thus at large R, each f. has a value of unity;
1. 

that is 

f,(oo) = 	1 (18)
l. 

As the atoms approach there is a redistribution of charge 

in each molecular orbital with the result that the f 
~ 

70values are in general no longer equal to one. If -E.>l,
]. 

then relative to the separated atoms, the charge density 

in the ith molecular orbital has been built up in the region 

between the nuclei such that it more than screens one unit 

~ 	 of nuclear charge; that is, there is an attractive force in 

excess of the repulsion of one nuclear charge. Such a 

molecular orbital is denoted as a binding molecular orbital. 

If f .<l, then relative to the separated atoms, the charge
l. 

density of the ith molecular orbital has been built up 

in regions behind the nuclei. This density no longer 

screens one unit of nuclear charge on B as it did in the 

separated atoms. Such a molecular orbital is denoted as 

an antibinding molecular orbital. If the density in such. 



79 


a molecular orbital has an f. value less than zero, then 
1 

this density is strongly antibinding. In a strongly anti-

binding molecular orbital, the density is so placed to 

actually pull the nuclei apart. If f.-1 then the density
1 

in the molecular orbital ¢. continues to screen one unit 
1 

of n~clear charge on nucleus B from nucleus A. The density 

in this type of molecular orbital is termed nonbinding 

as it plays the same role in the molecule as in the separa­

ted atoms. Inner shell molecular orbitals possess f. 
1 

values close to unity. This observation indicates that the 

density in such molecular orbitals is indeed tightly bound 

to each nucleus in close to spherical distributions. In sum­

mary, the force on nucleus A is given as 

z 
FA= -2 L (o .. -f.) (19)

R i . 11 1 

where the sum is over each of the occupied orbitals. The 

~A components of a doubly degenerate orbital are counted 

separately. If an f. value is less than unity, the quantity
1 

(1-f .) determines the net positive electric field at the 
1 ' 

two nuclei and hence the net force of repulsion acting· on 

the molecule because of the ith molecular orbital. If ar. 

f. value is greater than unity, then the quantity (1-f .) is 
1 i 

a quantitative measure of the net negative electric field 

and of the binding exerted by the density of this molecular 

orbital over and above the screening of one nuclear charge. 



'J'J~BL:, IV 

Orbital FcJrces :in Hornonuc lear Di at crni c Hole.cl; ·re 

Grouna Net force 
State Nole cu le f (lo ) f (lo ) ft 2o g) f (20 ) f\ln) f(Jcr) f(l11 ) t:.f in a.u. g u !) u g g 1 J 

12:+ Li 0.706 0.658 1. S91 2.955 0.005 g 2 

12:+ Be 
2 

a 1. 051 1.028 2.003 -0.399 3.683 CJ. 10 3 
g 

3 ­E 0.979 6.971 2.305 -0.492 L188 4. 9 5~ 0.027B2g 

l[+ bc . 0.969 0.954 2.250 -0.436 l.125 5.987 0.015 g 2 

12:+ b1.160 1. 085 2.682 -0.463 1.216 0.150 7.04G -0.075N2g 

-~ ­·r 1. 232 1.138 2.934 -0.518 l.302b 0.174 0.426 7.990 0.01602
CJ 

1(1­ 1. 243 1.123 2.447 -0.168 l.232b 0.516 0.656b 8.937 0.080F2g 

1aThe x E; state of Be is a repulsivP one. These results refer to an internuclear2 

distance of 3.5 bohr. 


bAJl of the f. valuAs are quoted for double occupation of the orbitals for comparative
l 

purposes. The v~lues marked by b are to be doubled to obtain the total electronic 

force as they refer to filled pi-orbitRJs. 
00 
0 
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Table IV lists the f. values for the homonuclear 
l 

diatomic molecules formed from atoms in the first row of 

the periodic t2bl2. ~hese values are calculated from the 

same Hart~ee-Fnck gro~nd state wave functions used to 

o'.:::tain i:: a~-:d f'ip for these :·~:olecules. th the exception 

of Be
2 

, the sum of the fi values is clos~ to Z in each 

. . - "! l case, as required for electrostatic equilibriUJT, , For Be
2 

the sum is less than z, a result which correctly predicts 

t~e ground state of this sclecul~ to be a repulsiv2 one. 

'.::'he method of calculatio::J of these numbers is c.escr.::.bed 

in the .::·ppe:n1ix. 

A quantitative measure c:;: -::..he bind::.::-1.; -:-;r a:c~Li'~inC:.::i..ng 

~ature of each m.o. is ob~ained bv cc;nparing i !:. s f . v2lue 
J_ 

v:i th unity. v:Ji th tl:.e exception of the 10 and le orbitals,g u 

·che binding or antiliinding nature of a given molecL1ar 

o:::-:Oi tal is the same for all the molecules iiL the serie:s. 

~everal facLors indicate that the molecules in t~is series 

can be divided into three groups, one containing the. 

rnolecu~es N
2 

, o and F
2 

, one containing the molecules B
2 2 

a~d c
2

, and one involving only Li
2

. For N
2

, o
2

, and F 2 , 

both the lcr and the lcr orbitals are sligh~lv bindi~c.g u ~ ~ 

For Be 2 . B2 , and c
2 

, thesE orbitals ~re essentially non-

binding while for Li 2 , lc and lcru are definitely ~ntibind1ng.
0 

For Li 
2 

, the overall disposition of the lcr density results 

in a ::'orce of repulsion equivalent to placing ::::;prox"irnately 
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six-tenths of a positive charge on each nucleus. The 20 g 

orbital is uniformly binding for the whole series. The 

f (20 ) values are negative in every case and thus the 20 
u u 

molecular orbitals ara all 3trongly antibinding. The density 

in thes2 orbitals does not shiei~ one unit of charge on 

nucleus B from nucleus A and is so placed ~s to draw the 

nuclei apart. 

Agai~ the 8lassification described above is seen. 

The overall 20 density is binding in the case of N
2 

, o
2 

, and 

F while it is slightly antibinding in the case of B and2 2 
c 2 . For Be f (20g) + f (20u) is considerably less than 2.2 

From these observations it is clear that the Be molecule
2 

in its ground state confi9uratio~ will be unstable as the 

~uclei in this molecule will be imperfectly screened and 

will experience a net force of repulsion. 

The l~ orbital is only weakly bindins for the 
u 

molecules in this series. In the case of N
2

, o2 , and F
2 , 

l~ is of comparable strength to the 10 orbital. The 
u g 

f {30 ) values are all less than one with the result that 
g 

the 30 orbital is antibinding. The density in this 
g 

molecular orbital while it does draw the nuclei together, 

does not shield one unit of nuclear charge on B from A. 

The ln orbital is slightly more antibindin~ than the g 

lnu orbital is binding. The complete filling of the ~u 

and ng orbitals in F leads to a small net force of repulsion2 
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as the electric field exerted by the eight electrons in 

these n orbitals no longer balances the field due to four 

positive charges on each nucleus. 

As explained in the appendix, each molecular 
. 

orbital in this work is approximated by a linear combina­

tion of Slater-type functions. Thus. each f. value can be 
l. 

written as a sum 

f. = f. (AA) + f. (AB) + f. (BB)
l. (20)l. 1 1 

·The term f. (AA) designated by A and referred to as the 
1 

atomic force is a measure of the electronic force acting 

on nucleus A because of density situated about the A 

nucleus. If this density is spherically disposed about A, 

then the resultant electronic force is zero. However, any 

polarization of the atomic charge distribution as described 

by s-p or p-d hybridization results in a force on the A 

nucleus in the same direction as the polarization. The term 

f i (AB) designated by O and referred to as the overlap force 

is a measure of the electronic ~orce acting on the A nucleus 

as a result of the overlap distribution. The positive over­

lap of orbi tals centred on A and B re·sul ts in the transfer 

of charge density to the region between the nuclei and the 

overlap force provides a quantitative measure of the effect­

tiveness of this transferred density in binding the two 

nuclei together. The term f. (BB) designated by Sand 
l. 

referred to as the screening force is a measure of the elec­



.. 


Figure 10: Contour maps and various force contributions 

for the orbital densities of 02(X3I:~) at R = R (experi­e 
f. (AA).mental) after Wahl (Ref. 72) • A - atomic force, 

1 ' 
f. (AB) (BB) 

. 0 ·.:- overlap force, and s - screening force f . 
1 1. 
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tronic force acting on the A nucleus as a result of density 

situated entirely on the B nucleus. It is a measure of 

the electronic shielding of nucleus B from nucleus A by 

electrons on B. The screening force provides the sole contribution 

to the f. values at large R 
l 

Figure 10 shows the orbital density diagrams given 

by Wahl72 for the o2 molecule using the wave function of 

Cade and Malli 59 • The caption under each diagram gives the 

force exerted by each orbit~l density and its breakdown 

into atomic, overlap, and screening contributions as des­

cribed above. The various populations for the remaining 

molecules of the series are given in the appendix. 

The density contour maps for the la and la 
I g U 

orbitals appear similar in nature to those describing inner 

shell atomiclike orbitals centred on each nucleus. There 

is no overlap force and each "core" density shields one 

unit of nuclear charge. However each core density is 

slightly polarized into the internuclear region. It is 

this polarization that makes ¢ 1a and ¢ 1a binding in 
g u 

the case of N2 , o and F 2 , For c2 , and Li 2 the polari­2 B2 

zation is in the opposite direction with the result that for 

these molecules, ¢1a and ¢1a are antibinding. 
g u 

The density contours of the 2ag orbital encircle 

the entire molecule in contrast to the contours of the lag 

orbital. The strong binding character of this molecular 
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orbital is a result of two· factors, the large transfer of 

density into the overlap region and the polarization of the 

remaining atomic density. As a resuit of this large overlap 

force, the screening value is leas than unity.· This dis­

position otthe 2cr g charge density is characteristic for all 

the molecules but c2 and N2 for which the atomic force 

contribution is small and negative.
•, 

The nodal surface passing through the midpoint of 

the internuclear axis half way between each oxygen nucleus 

is strongly evident in the density contour map describing 

the 2cru molecular orbital. The strongly antibinding nature 

of .this molecular orbital is a result of a strong back 

polarization of the density surrounding each nucleus and 

a negative overlap force. The negative overlap force 

indicates that the charge in this molecular orbital is re­

distributed to regions behind the nuclei during the formation 

of the chemical bond. The strong back polarization of the 

atomic densities results in a considerable reduction of the 

screening contribution and thus in an unshielding of the 

nuclei relative to the separated atoms. A comparison of the 

2cr and 2cr orbitals shows that the total overlap force g u 
is attractive and tends to pull the nuclei together while 

the total atomic force is negative and tends to pull the 

nuclei apart. These two resultant properties of the 2cr and g 

2cru orbital densities dominate the ~P maps for B and c2 2 

with the result as noted earlier that their bonds can be con­
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sidered sigma bonds rather than pi bonds. In B
2 

, for example, 

the binding force exerted by the over1ap density in the 

20 orbital is three times larger than that exerted by the g 

lTI overlap density.
u 

The ln orbital contains a nodal surface perpendicular.
u 

to the plane of the contour map and passing c.hrough the 

internuclear axis. The nuclei are descreened in the formation 

of this molecular orbital and the resultant charge density 

is transferred to the overlap region where it exerts a 

positive force on each nucleus. However, because of the nodal 

plane, the overlap density is placed above and below the 

internuclear axis where it only exerts a minimal binding 

effect as compared to the ~ve~lap density in the 2a c:cbi tal. g 

In fact the sum of the· overlap and screening contributions 

is approximately equal to one the nonbinding result. The 

slight binding nature of the molecular orbital canoe con­

sidered a result of the net inward polarization of the re­

maining atomic density. 

The 3a molecular orbital contains one nodal surface. 
g 

TLe antibinding nature of this molecular orbital is a result 

of the strong back polarization of the atomic densities 

centred on each oxygen nucleus. Even the large overlap force 

which reflects the transfer of charge into the binding region 

and its localization along the bond axis is not sufficient to 

counteract this strong polarization. The strong atomic force 
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results in a descreening of the oxygen nuclei. 

The appearance of the density lobes pictured for 

the lTI orbital is the result of a transfer of overlap charge
g 

density to the antibinding region and of a direct polari­

zation of the atomic densities. In both o2 and the lTigF 2 

orbital is slightly more antibinding than the lTI orbital is u 

binding. 

Finally it should be noted that an orthogonal unitary 

transformation of the canonical Hartree-Fock molecular 

orbitals will change the individual f. values but will 
1 

leave their sum invariant. Thus in going from "canonical" 

molecular orbitals to "equivalent" or "localized" molecular 

orbitals, the new set of f. values can also be analyzed
1 

in the above fashion in parallel with the new sets of localized 

or equivalent orbital densi~ies. Thus using f. values in an 
1 

interpretive sense violates a desirable tenet of any accept­

,;. 	 able interpretive approach but the valuable perspective 

outweighs this shortcoming. 



CHAPTER IV 

A COMPARISON OF THE TERMS BINDING AND BONDING 

An interpretation of the force acting on the nucleus 

in a homonuclear diatomic m.olecule was presented in the 

preceding chapter. The .interpretation·was in terms of 

certain f. values which measure the degree of the attractive1 . 

or repulsive contribution to the force acting on the 

nucleus from electrons in the ith molecular orbital. Although 

the f. values were derived from an orbital representation of 
1 

the molecular wavefunction they were found to provide a 

meaningful discussion ~f the chemical bond in terms of the 

definitions binding and antibinding. 

This chapter presents the results of force calcu­

lations involving three states of N +, namely x 2Eg+'2

A2Tiu and B2 Eu~· An attempt is made to relate the two 

definitions bonding and binding. The bonding character 

of an electron removed from the ith molecular orbital of AB 

depends on the nodal characteristics of that molecular 

orbital. A bonding molecular orbital possesses no nodal 

surface passing between the nuclei while an antibonding 

molecular orbital does possess such a nodal surface 

The degree of bonding or antibonding character is related 

89 
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to the state of promotion of the ith molecular orbital in 

the correlation scheme connecting the separated and united 

73174atoms . The 2a and ln orbitals are binding as theyg u 
both possess f. values greater than one. These orbitals are 

... l 

also classified as bonding according to the previous definition. 

Similarly the 2a and ln orbitals are antibinding as theyu g 

possess f. values less than one. These orbitals are also anti­
l 

bonding because they possess nodal surfaces between the nuclei. 

These nodal surfaces are perpendicular to the plane containing 

the nuclei. The only qualitative discrepancy between the two sets 

of definitions concerns the 3a orbital which is classed as 
g 

a bonding orbital in terms of orbital energies and an anti-

binding orbital in terms of orbital forces. The 3a orbital 
g 

is only weakly bonding because of its incipient promotion 

to a united atom 3s orbital. In like manner the 3cr orbital 
a g 

is not strongly antibinding as it does not exert a force 

tending to pull the nuclei apart. The attractive force 

that this orbital exerts on the nuclei is not sufficient 

to counteract the repulsive force contribution of one 

positive charge situated on each nucleus. The definition 

of binding could be changed so that a bindinq orbital would 

have an f. value greater than zero while an antibinding
l 

orbital would have an f. value less than zero. Even in this 
l 

case the correlation between the two definitions binding 

and bondin~ is not perfect as the ln orbital is now classi­g 



91 


fied as binding.and antibOnding. Furthermore restricting 

the term antibinding to cases where f 1 is less than zero 

results in a loss of the most useful feature of the defini­

tion binding. A molecular state will be unstable as long 

as the sum of the f. values is less than the nuclear charge
1 

and the attractive force of the electrons fails to balance 

the nuclear repulsive force. 

The definitions. of bondin~ and antibonding correlate 

remarkably well with the empirical definition regarding 

observed changes in bond length which accompany the removal 

. d' t . 1 1 73,74o f an e 1ec t ron in a ia omic mo ecu e • Th~ ionization 

of an electron leads to an increase in Re if removed from 

a bonding orbital and to a decrease in Re if removed from 

an antibonding orbital. AQ analysis of the force acting 

on the nucleus in a diatomic molecule should lead to an e•ten 

more direct physical interpretation of the ionization process. 

For this purpose, it is convenient to define certain 

f. values by the following equation 
1 - R 2 

- .fi=z: [FA (AB) (Re) - FA (AB+) (Re) 1. (1) 

F (AB) . th
A 1s e force acting on nucleus A in the molecule AB 

while F 
A 

(AB+) is the force acting on nucleus A in the molecular 

ion. Both molecular species have the same internuclear dis­

tance so the ionization is termed vertical.R is the equili­
e 

brium internuclear distance of AB. The f. value is a measure 
---]. 

of the change in the force on A accompanying the loss of an 
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Equation (1) can be expanded by the use of equation 

(2) in the preceding section. The result is 

R 2 
- fi = ~ {-Z

ZA A 

n-1 I- z I:
A µ 

(2) 

= -
. 2 
R 

e 

* +n +n 1 1 1 cose A['l'AB(x )'l'AB(x) d~n-'l' +(~n- )'I' +(~n- )d;n- 1- . µ-(n-l)Re2 I AB AB 2 · (3)
rµA 

If distinct Hartree-Fqck wavefunctions are used for 'l'AB and 

'!AB+, then equation .(3) becomes 

-
- f . = - f . + f 1' (f .-f. ' ) ( 4)

1 1 J J 

The index j ~ns over all molecular orbitals common to 

':!AB and 'I'AB+ • For i;i!j 

= N. (5)Nj J 

The f j and f. are defined by
J 


coseµA +
*f. = R 2N. I flJj 2 flJ.dr (6)
J e J J µ

rµA 



Figure 11. The Hellmann-Feynman force and its change 

upon ionization. These are idealized schematic sketches 

to indicate general characteristics.' The lower shaded 

regions correspond to the case in wpich attractive 

forces .exceed repulsive forces. 
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cos0 , ~ µA n1 ~f. = R 2N. I I ¢.'* 'P. dr (7)
J e J J 2 J µ

rµA 

where ¢. are the molecular orbitals describing the AB+ 
J 

molecule. In this description the electron is ionized from 

the ith molecular orbital. If ¢i ~s doubly occupied then 

N. 
l. 

= 'l ( 8) 

~f ¢. 
l. 

is only singly occupied, then 

N. - o ( 9) . 
l. 

and the second term on the right hand side of equation (4) 

is absent. 

Figures lla and b show the Hellmann-Feynma~ force, 

F:~.<R} and its variation with internuclear distance. ·l'he 

chRnge in this force which accompanies an ionization 

process is also shown. The vertical arrows are a measure 

of the f. values. The horizontal arrows involve. a.diabatic 
l. ' 

ionization processes for which the force on the nuc:~us always 

remains zero. The loss of a bonding electron is depicted in 

Pigure lla. The force curve for the product of ionization 

intersects t~e FA=O axi~ at a larger value cf the inter­

nuclear distance and the R=R axis at a positive value of e 

the net force. The vertical arrow from the AB curve at R e 

strikes the AB+ curve at a repulsive point ac that a net 

force of repulsion occurs. If the area defined by A in the 

diagram is less than the area defined by B, t~en a stable 
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ion AB+ exists and its equilibrium bond length is larger 

than R . The loss of an antibonding electron is depictede 

in Figure llb . The force curve for the product of ionization 

intersects the FA=O axis ,at ~ smaller internuclear distance 

and the R=R axis at a negative value of the Hellmann-Feynmane 

force. The vertical arrow from the AB curve at R strikes 
e 

the AB+ curve at an attractive point so that a net force of 

attraction occurs. The stable _;_on AB' has an eci...1.i.librium 

internuclear distance smaller than R . The foregoing comments e 

imply that the bondi:lg or antibo~:ding nature of an electron 

can be determined by the respective positive or ~egative 

sign of the f. val~e associated with that electroL. An 
l 

examination cf equatio~1 ( 4) shows that the sign o'c- f. does 
l 

not necessa.rily d2t.e:cmine the sign of f .. This is an im­
l 

portant 'poi~t and will be illustrated later in a discussion 

of the binding nature of the lng orbital in o2 . The observed 

change in the bond length which occurs as the res"Jlt of t~e 

ionization of an electron from the ith molecular orbital 

is not in general indicative of the role of that orbital i~ 

the binding of the neutral molecule. 

Clinton and Hamilton75 have attempted ~o calculate 

a force curve for the molecular ion O +(x 2 n)
2 g 

which results 

f __ om the removal of an electron from . 
3 -o

2 
(X L: )g From equation 

(1) such a force curve can be calculated as 

+ 
F (02

0 
) (R) (10) 
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TABLE V 


Ionization Energies 


Hartree-Fock 
Energy 

-108.9956 

-108.4073 

-108.4196 

-108.2631 

"·True" 

Ionization Energy 


0.5883 

0.5760 

0.7325 

Rigid Orbital 
Ionization 
energy 

0.6379 

0.6285 

0.7687 
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(0 ) 
(R) was calculated from- spectroscopic data and fiF0 

2 

was determined with the aid of a rigid orbital model. In 

such a model, the core orbitals are.not allowed to adjust 

vertical ionization process. ~i~h reference to equation (4), 

this approximation allows f. and=· to be equated to each 
J J 

other. For double occupation of the ith molecular orbital 

in the molecule AB, the relation 

- 1 
f. = -2f. (11)

l l 

is obtained. If ~· is only singly occupied in the ground
l 

state of AB, then 

f. = f. ( 12)
l , 

Hurley 69 has rece~tly used this rigid orbital approxi~ation 

to derive formulae describing the energy di:Efere:l.ce bctwee2";. 

a molecular ion and its parent neutral molecule. 

The simple idea of rigid orbitals unfortunately 

does not hold because of a significant reorganization of 

the charge density in orbitals other than the one involved 

in the ionization process. 

C~de et a158159 have determined the molecular orbi­

tals for certain of the ionized states of N and o by a2 2 

complete reoptimization of the ground state wavefunctions. 

Table V shows a comparison of the ionization energies for 

various N + states obtained both in the rigid orbital approxi­2

mation and as the result of a subtraction of the Hartree-Fock 

http:di:Efere:l.ce


Figure 12. Bensity difference contour maps describing 

the loss. of an electron from various molecular orbitals in 

N during'vertical ionization processes. If a rigid or­2 

bital approximation is used then the density difference 

contour map describing the loss of a 30g electron from N
2 

is just equal to the density distribution of one electron 

in the 30 orbital of N
2 

. The posi~ive co~tours of this 
9 

30 molecular orbital der:sity indicate regions from which 
g 

electron density is removed du~ing a verticai ioniz&tion 

to th~ x 2 L:; state of ·s -.-. :a the· density difference.
2

contour map desc:cib~ng t~e loss of a 30 electron ire~ N
g 2 

involves a s~btractio~ 0£ the Hartree-Fock densities 

- "' + ' .2\~+)ar_c. L~? \X L. , then both positive 
- g 

and negat~ve contours are present. The positive contours 

describe: regions -~:com which electron density is re:G",ov,;d 

during the vertical ionization process. The negative 

contours describe regions which gain electron dens~ty 

as a res~lt of the vertical ionization process. This 

->­
figure permits a comparison of 6p (r)_ calculated with the 

l 
aid of the rigid orbital approximation and the accurate 

+
lp (r) calculated by subtractL1g the Hartree-Fock density

1 

of the ionized :-:~olecule from the Hartree-Fock density 

of the parent molecule. 



98 




99 

energies of the ionized state and the ground state. The ioni­

zation energies obtained from the second method are consistently 

smaller. The loss of an electron during the ionization pro­. 
cess can be depicted by a density difference contour map in 

which the density function of the molecular ion is subtracted 

-+from that of the neutral species. Positive ~pI(r) contours 

indi.cate regions from which electron density has been removed 

during the vertical ionization. Similarly, negative ~P con­

tours indicate regions which.become electron-rich as a 

result of the vertical ionization. An integration of ~Pr(~) 

over all space yields the value one as the ionization process 

results in the loss of one electron. If the rigid orbital 

model is chosen, then 

where ¢. is the molecular orbital from which the electron 
1 

is removed. Such a ~pr(~) function can be compared with that 
.,;. 

one obtained by subtracting the true Hartree-Fock densities 

of both molecular species.· Figure 12 shows such a comparison 

2 + 2 2 + ' + -+
for the rg' A nu and B ru states of N2 . The ~pI(r} map 

makes it evident that the bond length will change as a result 

of the ionization of a 2cru electron. Not only is density 

removed from the antibinding region in the formation of the 

molecular ion but also density is accumulated in the inter­

nuclear region. From this point of view, it is obvious that 

the equilibrium dista~ce of N ~(B 2 r+) will be shorter than2 u 



: 
TABLE VI 

Orbital Forces for States of N2 and N2+ for a vertical Ionization(a) R=2.0132 a.u. 

(b) ­f ( lcr ) f (lcr ) f (2cr ) f ( 2cr ) f (171" ) f (3crg) f. Rigid tiR (c)
State g u g u u l. Orbitals e 

x1r+ 1.154 1.080 2.628 -0.439 2.403 0.160 g 

x2r+ . 1.086 1.046 2.569 -0.417 2.560 0.102 0.040 0.080 0.039 g 

A2TI ·1.226 1.101 2.790 -0.388 2.003 0.106 0.148 0.600 0.148 u 

B2E+ 1.047 1.006 2.712 -0.039 2.502 0.070 -0.312 -0.220 -0.042 u 

(a)Multiplication of the f. or f. values by ze2/R2a 2 = 1.423 x 10-2 will convert 
. l. l 0 

them to a force in dynes. 
s: (b)These values are calculated for the total occupation number of the IT orbital.

s: r= u 
ors: (/) 

(c)These values are the experimentally observed changes in Re. 
~ s: 
-I rn 
rn s 
::::oo 
c::::o 
z::t:­
<' ......rn r:;:o­ 0 
(/) OJ 0 
-::::0 
-I ::t:> 
.-<. ::::0 

-< 
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that of N2 (X
1

2:;) • Such definite conclusions cannot be drawn 

_,_ 2 2
from the tipI(r) maps describing the x 2:+ and A IT states of 


g u 

+


·N2 • The ionization of an ·electron from the lnu orbital of 

N results in a loss of electron density from both the binding2 


and the antibinding regions. In the ion N +(A 2 rr ) there is 

2 u ' 


an accumulation of charge along the internuclear axis both in 


the binding region and directly behind the nuclei. Such an 

effect could be the result of a significant reorganization of 

the charge density in a 0 molecular orbital. The ionization 

of an electron from ~he 3cr orbital of N is pictursd in the 
O" 2_, 


+

tip (r) map as a lar~a dif~use group of positive contours1
 

in the antibinding regions and a smaller more co~centra~e~ 


group of positive contours in the bindi~g region . The 

sets of ;:-J.eqative contours which form toroidal rings <J.DOUt 

each nucleus seem to suggest a reorganization of charge 

density i~ the TI molecular orbitals as a result of the 

ionization. 

Force ca~culations involving N a~d the three
2 


previously discussed states of N~+ should serve to cor­

L 

roborate the qualitative descriptions which the 6p (r) maps1 

present. Further such calculations permit a determination 
~ 

of the vario~s f. values and thus a def~nite physical pie .~re 
l. 

of the bond length changes occurring because of io~~~ation. 


2 2
The orbital forces for the x I+ A2n , ana B I+ states
g' u u 


of N + and :.:::;,r the x1 2:+ state of I\. are listed in Table VI.
2 g ~ 
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All are calculated for the internuclear distance corresponding 

to the Hartree-Fock minimum for the ground state of N2 , a va­

58
lue of 2.0132 a.u. Cade, Sales, and Wahl have previously 

shown that the H artree-Fock results for the ions do 

correctly reflect the changes in bond length predicted by 

the terms bonding and anti~onding. 

2
The A IT state of N~+ results from the los~ 

l.:. L 

TI electron The riqid orbital model demands thatN 2.u 

f. be equal to 0.6 a value one-quarter that of f (lnu)
l 


In rea::...ity f. = 0 .148. The value of f(ln )

l u 

culatad to be 2.0 whereas the rigid orbital model predicts 

a value of 1.8 for f (ln ) in The :ioni_­
u 

zation also produces ~ :arge increase in the f(20 ) value.
c;­

~tus the bindina of the 20 density and of the remaining lw 
, Ci" - u __, 

density increases on ionization of a ln electron. The lw u ·u 

~olecular orbi~2l i~ N is bonding by definition. Mo:::·eover
2 

it ca::. be termeC :-,inding becaus.::__ its f. value i:::~ <j:Cea.ter
l 

More im9ortant than the value of f(l'Tf ) 2-s the u 

value of t . . It is positive in this case. ·:-C'he vertical 
l 

ionizatio~ tnus ~esults in a net desc:ceening of the nuclei, 

a ~epu::...3ive fo~ce acting on the nuclei and a net increase ~n 

·.::.he inter::... uc~j_2ar distance. This is the situation pictured 

:::_n Figure lL:c" 

The B 2 E~ state of N2+ res~lts from the ionization 

a~ electron fro~ the 2au orbital of N2 . This 2cr orb~ta~ is 
u 
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antibonding by nature, and, in addition, it is strongly 

antibi.nding. It exerts a force which tends to draw the 

nuclei apart. The remova:;_ YE a:r, elect:::on from the 2o 
u 

orbital causes a ecc~easc in the internuclear distance of 

the ionized product as pictured in Figure llb. This can be 

seen as a result of the decreased electronic force tending 

to se?arate ~~e nuclei. The rigid orbital model suggests 

that the io~ization process sho~:d increase f(2o ) from 
u 

-J.439 to -0.220. Tacle VI indicates that f (2a ) has 
u 

-
been increased al~ost to zero and that f. has a value of 

l 

-0.3:2 rather ~~an the rigid orbital value of -0.220. The 

net attractive force acting on the nitrogen nuc~e~ in 

the vertical.ionization state is accent~ated and the reason 

for the decrease in bond length is evident All the re­

maining orbitals undergo changes in their -F-i values 

approximately one-quarter as larg-e as the change in f (2cr )
u 

the binqin~ ability of the lo , lo and 30 orbitals bein~ g u g 

decreased and that of the 2o 
g 

and lrr u orbitals being in­

creased. 

2~+ r N +The X ~ state OI r ? arises from the ionization 
g ­

of an electro~ from the 3o orbital. This orbital is 
g 

bonding by definition; moreover, it is antibi~ding as 

it no longer shields one unit of ~uclear charge. The 3o . g 

density does exert an attractive force on the nuclei, and" 

in the rigid orbital approximation, the removal of such 

density should lead to a descreening of the nuclei and a 
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TABLE VII 

Orbital Forces for the Ground States of 02,02
+ and 02 

State f (la' )
g 

f (lcr )u 
f (2cr )

g 
f (2cr )u f(lTI )

u 
f(30 )

g 
f(:.l..TI )

g 
R 

e 

02 X3L:­
g 

1.232 1.138 2.934 -0.518 2.604 0.174 0.426 2.282 

+ 
02 x2 rr g 1.244 1.138 3.056 -o. 49 2 2.783 0.082 0.215 2.122 

02 - x2 rr 
g 1.220 1.136 2.810 -0.514 2.410 0.277 0.557 2.400 

\ 
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resultant force of repulsion. The calculations in Table VI 

corroborate this argument. The rigid orbital model predicts 

]. 

a value of 0.080 for f(3crg) in N + while2 the calculations 

show a value of 0.102 for 

-
f(3cr )g in this same molecule. 

The calculated value of f. is 0.040 and, as shown in Figure 

lla there is a net force of repulsion tending to increase 

+the bond length in N . There is a significant increase in2 

f (lnu) for this ionized state of N2 . In fact this increase 

is equal to f (3crg} in N2 . The remaining orbitals indivi­

dually undergo much smaller changes, but the net change is 

a decrease in their binding large enough in magnitude to 

counteract the increase in the binding of the ln density.
u 

From the preceding results the, absolute sign of 

the f. 
]. 

value would appear to determine the subsequent 

increase or decrease in the internuclear distance that 

follows ionization. This is not the case as can be seen 

2from an examination of the f. values for the rr state]. g 

of O~ listed in Table VII. The forces listed in Table 

VII are calculated for.the experimental equilibrium value of 

the internuclear distance. Thus the sum of the f. values 
]. 

is equal to Z in each case and the figures for O+ refer to
2 

an adiabatic ionization as depicted by the horizontal arrow 

+in Figure ll:Q. The data for o illustrate that the re­2 

moval of a ln electron results in a decrease in the value 
g 

of Re even though the lng density exerts an attractive 
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force on the nuclei in the neutral molecule. The figures 

in Table VII show that the removal of an electron from the 

lTI molecular orbital reduces f (lTI ) by a factor of one-

g 

_ g g 

half. However there are significant increases in the f(ln )u 

and f (2cr ) values during the ionization process, and it 

is evident that in a vertical excitation, the increase in 

the force exerted by these orbitals more than compensates 

for the decrease in the force exerted by the lTI density.
g 

Although f (ln ) is positive, the vertical ionization of an 
g ­

electron from the lTI molecular orbital yields a negative f. g l 

value. Thus the removal of an electron from this antibonding 

molecular orbital results ina net decrease of charge in 

the antibinding region and a decrease in the bond length of 

2o; x rrg The term antibinding fulfills the same def i­

ni tion as the term antibonding. in this case even though the 

orbital density exerts an attractive force on the nuclei. 

The observed change in R attendant upon the removal of an 
e 

electron from a given orbital does not in general provide 

an accurate isolated measure of the role the orbital plays 

in the binding of the neutral molecule. 

Also included in Table VII are the orbital forces 

2for the xrrg state of the o; ion. This ion is obtained by the 

addition of an electron to th.e lng orbital of o2 . As is 

expected the addition of an electron to an antibonding 

orbital lead~ to an increased bond length. From another 
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perspective, the increase of f (lng) should lead to a greater 

attraction of the nuclei and a resultant decrease in the 

bond length of o;. However, although f (ln ) and f (3cr )g . g 

are increased in magnitude, there are significant decreases. . 
in f (2crg) and f (lnu). · These latter changes counteract 

the former effect. The overall resu~t of adding an electron 

to the ln orbital is an addition of charge to the anti-
g 

binding region. This addition of charge to regions behind 

the nuclei gives rise to a net force tending to pull the 

nuclei apart. The result is a larger internuclear distance 

in o;. 



CH}\PTER V 

A COMPARISON OF COVALENT AND IONIC BINDING 

The development of the quantum mechanical f ormu­

lation of ionic character had its basis in valence bond 

theory 76 
~he amount of ionic character depends on the 

contribution of the structure 'l'A+B- to the total wave 

function describing the molecule AB. 

77In a series of papers, Shu11 has devoted him­

self to the problem of ionic character. In particular, 

he points out that an understanding of the concept of 

the ionic or covalent bond cannot be gained until the 

chemical bond itself is understood. He criticizes the 

formulation of the concept of ionic character in terms 

of valence bond theory and insists that any theoretical 

foundation for this concept should be independent of a 

particular model. Further, he points out that the 

structures 'l'A:B and 'l'A+B- in the wavefunction 

(1) 

are not independent of each other; that is, they are not 

orthogona178179 • If 

(2) 
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then the ionic character of the bond between atoms A and 

8 in the molecule AB cannot be quantitatively described 
• 2 

by the fractional number CB • 

Shu1180 ' 81 h.as attempted to find answers to the 

problems that he poses. He uses as his starting point a 

~·e.11-de.fi ned approximation to the hydrogen molecule and 

separates the vavefu.nction derived i.n this approximation 

into orthogonal independent parts '!'I and 'fA which, respectively 

have the optimum characteristics associated with the names 

ionic" and "atomic". With these orthogonal functions, 

he. can rightly calculate and discuss ionic and atomic 

character. Further, he finds a correlation between his 

overlap distri~ution '!'I'!'A and the intuitive concept of 

covalence. 

Shull's discussion is still couched in terms of 

ionic structure contributions to a total wavefunction. 

However, if the concept of the ionic bond and along 

with it, the concept of ionic character are to have any 

general validity, they should be independent of a particular 

type of wavefunction. The form of any approximate o/ is 

~unique. In valence bond theory the wavefunction is 

~iven as equation (1) of this section. In molecular orbital 

theory, lhe total wavefunction can be approximated by a 

linear combination 

'¥ = L: C.'fi. (3)
i 1 l. 

http:e.11-de.fi
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The~. describe various electronic configurations. If both 
l. 

approximations are carried to their respective limits, 

they, yield the same energies. However an ionic character 

can be easily derived from the valence bond wavefunction 

but not from the molecular orbital wavefunction. It is 

desirable to avoid definition of ionic character in terms 

of wavefunctions. 

The original purpose in defining ionic and covalent 

character was to obtain some crude estimate of how the 

valence electrons are distributed or shared in a molecule. 

This can now be done by means of the calculated molecular 

charge density distribution·. Such a charge distribu.tion is 

unique; that is, it is an observable of the system. It is 

one of the principle aims of this thesis to provide defini­

tions of the concepts of the ionic and covalent bond in 

.terms of their respective charge distribu·cions. Indeed the 

molecule LiF is analyzed in terms of its electron density 

distribution and the force which this distribution exerts 

on the nuclei. This analysis is then compared with a 

similar one for the homonuclear molecule N2 . 

LiF is a molecule whose properties closely approxi­

mate those of the ionic model. It possesses a diple moment 

of 6.284 D83 . This value is 84% of the ideal dipole moment 

obtained fo:r e separation of equal and opposite charges in 

LiF at the observed internuclear distance of 2.956 a.u. 83 • 



Figure 13. The total molecular charge distribution of LiF 
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1 . ' 76 . h . fIn Pau ing s 'view, sue a percentage is one way o 

82measuring the ionic character of a bond. McLean has ob­

tained a wavefunction for LiF with an energy of -106.9885 

a.u. at the 1 calculated internuclear distance of 2.8877 a.u. 

He estimates that this energy is within 0.005 of the Hartree-

Fock limit and calculates a dipole moment of 6.30 D. 

Figure 13 shows the total molecular charge contour 

map derived from McLean•s 82 wavefunction for LiF. This 

contour map has the appearance of two nonoverlapping 

spheres of unequal charge density. It is interesting to 

compare this charge distribution with that shown for c in2 

Figure 3. These two molecules are isoelectronic. In c2 , 

the first contour which encircles the entire molecule is 

the 0.26 contour. However in LiF, the first contour which 

*encircles the entire molecule is the 0.08 contour . Also 

in the F molecule the first contour localized about the2 

F nucleus is the 0.30 contour while in LiF the first con­

tour localized about the F nucleus is the o.o9 contour. 

Similarl~ in.the Li 2 molecule, the first contour localized 

about the Li nucleus is the 0.013 contour while in LiF 

the first contour localized about the Li nucleus is the 0.09 
45 

contour. Ransil and Sinai have discussed charge density 

contours localized about given nuclei as a function of the 

*This has been confirmed although the 0.08 contour 
is not shown in Figure 13. 



Figure 14. A contrast of the density difference distri­

butionsfor ionic and covalent binding. The total amount of 

charge within the zero contour encompassing the Fis 9.8le-. 

A total of 0.85e and O.Sle migrate to the regions of charge 

increase in LiF and N respectively.2 
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electron populations within these contours. They show that 

within the 1.0 contour surrounding F in LiF, there is a 

total charge of 3.5 electrons while within the same contour 

' in F2 there is a total charge of 3.0 electrons. Similarly 

within the 0.1 contour of Li in Li there is a total charge2 

of 1.6 electrons while within the 0.1 contour of Li in LiF 

there is a total charge of 1.4 electrons. It is evident 

that a great portion of the total charge in LiF is localized 

in spheri~al regions about the nuclei while in c a large2 

fraction of the total charge is delocalized about the entire 

molecule. There is more charge localized about the F 

nucleus in LiF than there is localized about the F nucleus 

in F2 . Similarly there is less charge localized about the 

Li nucleus in LiF than there is localized about the Li 

nucleus in Li 2 . 

Figure 14 contrasts the electron density difference 

maps for LiF and N2 . Above each contour map is a profile 

-+of ~p(r) in the plane of the nuclei. LiF contains two regions 

where charge is built up in the molecule relative to the 

separated atoms. One region is localized about the fluorine 

nucleus while the other region is localized behind the 

lithium nucleus. contains three regions where charge isN2 

built up iri the molecule relative to the separated atoms. 

Two of these areas of charge buildup are localized in the 

antibinding regions behind the N nuclei. The third area of 

charge buildup is shared between the nuclei in the binding 
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~ 
region. The profile of the LiF ~p(r) function indicates 

contours of a high value about the F nucleus. These 

positive contours stretch ~hree-quarters of the way to the 

Li nucleus. There is a much greater amount of total charge 

localized about F than there is localized behind Li. On 
~ 

the other hand, the profile of the N ~p(r) function2 

indicates two equal amounts of charge built up in the anti-

binding regions behind the nuclei and a relatively larger 

amount of charge concentrated in the binding region 

between the nuclei. 
~ 

The ~p(r) map has been interpreted as a bond map 

which describes the reorganization of charge that must 

occur during the formation of a stable molecule in order to 

balance the force of repulsion owing to the nuclei. If 

such an interpretation is applied here, then it is clear 

that LiF achieves electrostatic equilibrium through a 

localized increase of charge about the F nucleus. N2 

achieves electrostatic equilibrium by means of a shared in­

crease of charge in the binding region between the N nuclei. 

In previous discussions concerning the electronic 

force acting on the nucleus in a diatomic molecule, the 

total density has been partitioned into atomic and overlap 

distributions. As a result of this breakdown of the total 

density, the electronic force acting on nucleus A in the 

molecule AB is composed of atomic,overlapJand screening 
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contributions. Such a partitioning of the total density, 

although arbitrary, follows naturally from the form of the 

molecular orbitals used. It is now desirable to obtain a 

different division of the total density, a division based 

upon an analysis of the ~p(~) contour map. In the case of 

LiF it would be of interest to know the electronic force 

acting on the Li nucleus because of the total charge 

density withi"n the 0.0 contour descr~bing the localized 

charge buildup about the F nucleus. An idea of this parti­

tioning of charge can be gained by superimposing the zero 

contours of the ~P map on the total molecular charge 

density contour map. The region of the total density map 

within the zero contour surrounding F is the region of 

interest. Such total electronic density screens F nuclear 

charge from Li and is therefore termed an atomic density 

surrounding F. The remaining molecular density is termed 

an atomic density surrounding Li. In the case of N2 it 

would be of interest to know the electronic force acting 

on the N nucleus because of the positive density difference 

contours within the 0.0 contour describing the shared 

charge buildup in the binding region between the N nuclei. 

-+Such ~p(r) contours are shared by both nuclei and the 

-+
~p(r) density distribution is termed a shared density 

distribution. The remaining total density is atomic in 

nature and is divided between the two nitrogen nuclei. 



Figure 15. The overlap density distributions in LiF and N2 
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Such a partitioning of the total density is 

theoretically possible but in practice, a suitable method 

for calculating the electronic force resulting from such 

regions of density has not been developed. Thus it is 

necessary to make an identification between the above 

defined atomic and shared densities and the molecular 

orbital atomic and overlap densities. Figure 15 shows the 
~ 

overlap density distributions derived from the Hartree-Fock 

wavefunctions for LiF and N2 respectively. The overlap 

density of the N2 molecule places a symmetrical increase 

of charge in the binding region. Further charge density 

is also removed from the antibinding regions. This overlap 

density is concentrated about the internuclear axis and is 

shared between the two nuclei. It is"here identified with 

the shared density distribution which was previously de­

fined in terms of the ~p(~) map. The overlap density of 

the LiF molecule places an asymmetric increase of charge 

in the binding region. Charge is removed from a symmetric 

region surrounding the Li nucleus whil~ charge is removed 

from the region directly behind the F nucleus. The positive 

contours of this overlap distribution lie within the 0.0 

contour describing the localized charge buildup surrounding 

the F nucleus in the LiF ~p(~) contour map. Thus in 

reality, this overlap density screens F nuclear charge from 

the lithium nucleus. tt is identified as part of the atomic 
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density defined previously as the total density within the 

i.o contour of the localized charge increase surrounding 

the F nucleus in the LiF ~p(~) contour map. 

With this above partitioning of the total density 

distribution, a comparison·of the force acting on the nucleus 

in both an ionic and a covalent molecule is discussed. 

Consider a classical model for the ionic bond which in­

volves the transfer of one electronic charge from the electro-

positive atom A to the electronegative atom B. This 

:..,.:.del -chus 'consists of two nuclei A and B possessing 

respectively nuclear charges ZA and zB. Nucleus A is 

surrounded by a spherical distribution of ZA-1 electrons 

w~ile nucleus B is surrounded by a spherical distribution 

ot ZB+l electrons. The result is two spherical nonover­

1.apping charge distributions separated at the observed 

internuclear distance. The force acting on nucleus A is 

given as 
ZA zA.F = - [Z -z -1] = (4)- R2 .A R2 B B 

ts the internuclear distance. Similarly the force 

acting on nucleus B is given as 

ZB 
F = - (S)

B R2 

There is an attractive force acting on nucleus A while 

there is a repulsive force acting on nucleus B. ·rhe 

classical model predicts instability. The important feat~re 
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TABLE VIII 


Force Contributions in LiF

•, 

Contribution from localized charge(a) 

on F on Li 

Force on F 1.05 2.04 

Ideal ionic binding 1.00 2.00 (=ZLi-1) 

Force on Li 9.86 -0.71 

Ideal ionic binding 10.00(=ZF+l) -1.00 

(a)The charge density localized on F exerts an atomic force 
on F and a screening force on Li. Similarly the charge 
density localized on Li exerts an atomic force on Li and 
a screening force on F. 
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of the model is the transfer of unit charge from A to B. 

It is possible to maintain this feature in the model and 

to obtain electrostatic equilibrium if the charge distri­

butions are polarized in directions opposite to that of 

charge transfer. A polarization of the charge density 

surrounding nucleus A into the antibinding region counter­

·acts the fo~ce of attraction experienced by this nucleus 

because of the charge density surrounding nucleus B. 

Similarly a polarization of the charge density surrounding 

nucleus B into the binding region counteracts the repulsive 

force experienced by this nucleus owing to the unscreened 

nuclear charge centred on A. 

If LiF approaches this classical model, then the 

lithium nucleus should experience a repulsive force owing 

to nine F nuclear charges and an attractive force owing 

to ZF+l=lO effective electronic charges centred on the F 

nucleus. The back polarization of the electronic density 

surrounding Li is represented by an effective electronic 

charge of -1 unit centred at the fluorine nucleus. Similarly 

the fluorine nucleus should experience a repulsive force 

owing to three Li nuclear charges and an attractive force 

owing to ZLi~l=2 effective electronic charges centred on 

the lithium nucleus. The polarization of the fluorine den­

sity into the binding region is represented by 1 unit of 

effective electronic charge centred at the lithium nucleus. 

Table VIII shows how closely the electron density distri­
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Bl 
bution derived from McLean's wavefunction approaches this 

limit. The atomic charge density localized about fluorine 

exerts a force on the lithium nucleus which is equivalent 

to 9.86 effective electronic charges centred on the F nucleus. 

This effective charge is obtained as previously suggested 

by combining the overlap and screenipg force populations 

acting on the Li nucleus. This is equivalent to identifying 

the overlap and screening force populations with an atomic 

density about F. This atomic density has previously been 

defined as the total molecular charge lying within the zero 

contour of the localized charge buildup surrounding the F 
. -+

nucleus in the LiF 8p(r) map. Indeed the values in this 

table' show that the Li nucleus has been descreened by one 

unit of effective electronic charge. The transfer of charge 

is .almost complete as the Li nucleus now experiencesan 

attractive force owing to 9.86 effective electronic charges 

centred on the F nucleus. The lithium core density is 

polarized into the antibinding region. The force acting 

on the lithium nucleus owing to this remaining electronic 

density surrounding Li is represented by an effective charge , 

of -0.71 units compared to the ideal value of -1.0 units. 

The fluorine atomic density is polarized into the binding 

region. The force acting on the fluorine nucleus as a result 

of this polarization is represented by an effective charge of 

1.05 units compared to the ideal value of 1.0 units. 



THE TOTAL ATOMIC, 

Atomic 
Contribution 

(AA)
I: . f. 

l l 

Li -0.563
2 

-0.644B2 

-0.735c2 

-1.943N2 

-2.28402 

-1.949F2 
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TABLE IX 

OVERLAP AND SCREENING CONTRIBUTIONS TO 
THE FORCES . 

Overlap Screening z minus 

Contribution Contribution Screening 


(AB) (BB) (BB)
I:. 'f. I: . f. z-r. f. 

l l l l l l 

0.927 2.591 0.409 

1.708 3.887 1.113 

2.198 4.523 1.477 

3.853 5.136 1.864 

3.486 6.788 1.212 

2.505 8.381 0.619 

D e 

(ev) 


1.106 

2.884 

6.251 

9.909 

5.181 

1.647 
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Table IX shows the partitioning of the total 

electronic force into its atomic overlap and screening 

populations for the molecules Li B , c , N , -0 and
2 2 2 2 2 

. As previously discussed the overlap force populationF 2 

is to be identified with the shared density defined by 

the positive ~p(r) contours in the binding region of each 

molecule. In every case the nuclei are descreened. The 

sum 

l: f .lBB) 
i 1 

( 6) 

is always less than tne nuclear charge. The expression 

Z - E f .(BB} 
i. 1 (7) 

provides a measure of this nuclear descreening and is listed 

in column four of this table. For example, in the Li
2 

molecule there is an effective charge of +0.409 units 

situated on the Li nucleus because the atomic density 

surrounding this Li nucleus no longer shields an equivalent 

number of nuclear charges. As indicated by the various 

overlap populati ons, the shared density found in the 

binding region is indeed responsible for molecular stability. 

In fact so much charge is transferred to the binding region, 

~hat the remaining atomic density must be polarized into 

the antibinding region in order to achieve electrostatic 

equilibrium. This polarized atomic density gives rise to 

-+
the positive ~p(r) contours in the antibinding regions of 



Figure 16. The total density difference contour map for 

HF. 
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Figure 17. The total den~ity difference contour map 

for LiH. 
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each molecule ; 

Thus in ionic binding both nuclei are bound by 

the charge localized about one of them while in covalent 

binding, the nuclei are bound by a density increase which 

is shared equally between them. 

The analysis presented in the preceding pages for 

LiF can be extended to include other heteronuclear diatomic 

molecules. Figures 16 and 17 show respectively the 6p(~) 

contour maps for HF and Liff. The wavefunction for HF is 

from Nesbet84 and the wavefunction for LiH is from Kahalas 

and Nesbet85 • These 6p(~) maps provide an interesting 

comparison between two heteronuclear diatomic molecules, 

one in which the nuclei are bound by a localized increase 

of charge density and one in which the nuclei are bound 
-+by a shared increase of charge density. In HF the 6p (r) 

contour map shows two regions of charge buildup. One is 

localized in the antibinding region behind F while the 

other is shared between the nuclei in the binding region. 

The zero contour which describes· this cha:rge increase in 

the binding region encloses the H nucleus, This is to 

be contrasted with LiF where the Li nucleus is· excluded 

from the charge increase that binds the nuclei. Similarly 

-+the 6p(r} map for Liff shows two regions of charge increase~ 

But these regions are localized about the H nucleus- and in 

the antibinding region behind Li. 
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-+If the zero contours of the t:,,p(r) map for LiH are 

superimposed upon the total density distribution of this 

molecule, they suggest a partitioning of this total charge 

density. That density contained within the zero contour 

which is localized about the H nucleus defines an atomic 

density surrounding H. The remaining density is termed 

an atomic density surroun~in~ Li. In HF, where the nuclei 
•. 

-+ are bound by a shared· density, the positive t:,,p(r) contours 

in the binding region provide a measure of this shared 

density. 

As noted before, there is no practical way of 

calculating the force acting on the nucleus owing to such 

regions of density. However, the atomic, overlap, and 

screening force contributions in these molecules have 

been calculated. They are listed in the appendix. In LiH, 

the -overlap and screening force acting on the Li nucleus 

are combined. Their sum is identified with the previously 

defined atomic density surrounding H. Thus at equilibrium, 

the Li nucleus experiences a repulsive force owing to one H 

nuclear charge. However the atomic density localized 

about H exerts a force on Li which is equivalent to 1.638 

units of effective charge centred on the nucleus. The atomic 

density localized about Li exerts a force on Li which is 

equivalent to placing -0.335 units of effective charge on 

the H nucleus. This result indicates that the atomic density 

surrounding Li is polarized away from H into the antibinding 
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region. Similarly this, atomic ·density localized about Li 

exerts a force on the H nucleus which is equivalent to 

placing 2.210 units of effective charge on the Li nucleus. 

This attractive force is not enough to balance the repulsive' 

force owing to the Li nuclear charge. The H atomic density 

is polarized into the binding region. It exerts an attrac­

tiv~. force on the H nucleus which is equivalent to placing 

0.688 units of effective charge on the Li nucleus. The 

conclusions are evident. The Li nucleus is qescreened 

and its remaining density is polarized into the antibinding 

region. The nuclei are bound by a localized increase in 

charge defined by the zero contour surrounding the H nucleus 

in the LiH llp(t) contour map • LiH is an example of ionic 

binding. 

For HF, the overlap force is identified with the 
-+

shared increase in density defined by the positive llp(r) 

contours found between the nuclei in the binding region. 

The force analysis shows that this shared density binds the 

nuclei. In fact so much of the F atomic dens.i ty is trans­

ferred to the overlap region, that its remaining density 

is strongly polarized into the antibinding region. If the 

overlap and screening forces acting on the H nucleus are 

c ombined, they exert an attractive force which is equivalent 

to placing 8.776 units of effective charge on the F nucleus. 

Even this effective charge does not succeed in balancing 
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the repulsive force owing to nine F nuclear charges. The 

F nucleus is still descreened. The hydrogen nucleus is 

descreened as its density exerts an attractive force which 

is equivalent to placing 0.390 effective charges on the 

H nucleus. This effective charge is not sufficient to 

counterbalance the repulsive force owing to the hydrogen 

nuclear charge. However this descreening of the H nucleus 

is not sufficient to reverse the direction of the polari­

zation of the remaining H density. This density is 

polarized into the internuclear region. HF is an example 

of polar covalent binding. 

One might expect to observe a correlation between 

the dissociation energy for a molecule and the magnitude 

of the attractive force which binds the nuclei together. 

Since the total force acting on the· nuclei at the equili­

brium internuclear distance is zero,one must decide on a breakdown 

of the total force into equal and opposite components of at­

traction and repulsion whi?h will reflect the chang·es in 

the density and the forces which occur. in the formation of 

the molecule. For example setting the attractive force 

equal to the total electronic force will certainly not 

give a correlation with D as this force increases as does 
e 

The total electronic force operative at R does not,e 

of course, take into account the fact that most of the 

density continues to s~mply screen nuclear charge in 

the molecule as in the separated atoms and in no 
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Figure 18. A plot of r [f. {AA) + f. {AB) 1/R 2 versus 
1 1 ei 

the dissociation energy for homonuclear diatomic molecules 

and molecular ions. 
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way reflects the change in the density or the forces 

and hence the change in energy arising from the formation 

of the molecule. A covalent molecule has here been 

defined as one in whic~ the transfer bf charge results 

in a descreening of both nuclei. The magnitude of the 

force of repulsion generated by this descreening of the 

nuclei is thus a direct reflection of the change in the 

charge density which arises because of the formation of 

the molecule. This force of repulsion is balanced by 

the atomic and overlap contributions which provide a 

measure of the net attractive force which binds the nuclei. 
/ 

The sum of the overlap and atomic contributions when multi­

plied by (l/R 2 ) is thus equal to the force binding each e 

of the unscreened nuclear charges by the electron density 

which has been redistributed in the formation of the 

molecule. A plot of this quantity versus the dissociation 

energy is given in Figure 18. There is indeed a correlation 

between these two quantities, one which is best described 

by a linear relationship. 

The only molecule which is seriously out of line is 

It was noted earlier that the bond in this molecule 

differs from the others in the series in that it is formed 

primarily from the overlap of s orbitals and it does not 

involve n orbitals. There could well be a distinct slope 

for bonds of differing type. Included in the plot are 
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points for the states of the molecular ions o2+, o2- and 

N2 
+ • The sum of the atomic and overlap contributions for 

these species are corrected by the addition of 0.5 for 

the negative ions and by the subtraction of 0.5 for the posi­

tive ions. These corrections take account of the fact 

that there is initially present a force of repulsion 

equivalent to one-half of a positive charge on each nucleus 

in the positive ions and a net force of attraction on the 

nuclei of similar magnitude for the negative ions. 



CHAPTER VI 

CONCLUDING SUMMARY. 

Many conclusions can be drawn from the results 

presented in this thesis. The one-electron density distri­

bution is a three-dimensional function and can be represen­

ted ~y charge contour maps. Further these maps provide 

a physically significant picture of the distribution of 

electroni·c charge in a molecule. Estimates of molecular 

dimensions have been derived from the contour maps 

describing the molecules Li 2 , B
2 

, c2 , N
2 

, o and F2 2 

and these estimates are in agreement with the results 

derived from' equation of state data. Such molecular 

dimensions are predictive in nature. They can be used 

in studies of molecular crystals to determine the validity 

of proposed crystal structures and to provide molecular 

dimensions. No correlation has been found between the 

fraction of charge in the binding region and the experi­

mental dissociation energy. Molecular length is found 

to be related to the internuclear separation and the 

rate at which density falls off from the nucleus in the 

isolated atom. In fact, it has been proposed that the 

length of a peripheral atom in a molecule can be 

estimated by taking the sum of j Re from a suitable source 

134 
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plus the atomic radius as defined by the 0.002 contour of 

the isolated atom. For atoms such as Li and Na the atomic 

radius is defined by the 0.002 contour of the core density. 
-+The 8p(r) contour maps present a picture of the 

reorganization of charge density attendant upon the for­ .. 
mation of the chemical bond. From another point of view 

such contour maps desc"ribe the changes in density that 

must occur in order that the molecular system may reach 

electrostatic equilibrium. These maps are useful as they 

permit a classification of diatomic molecules according to 

their bond type. Th~ Li 2 molecule is representative of an 

s-type bond. Such a bond presents a diffuse buildup of 

charge in the binding region. The remaining stable homo-

nuclear diatomic molecules studied in this thesis are 

representative of p-type bonds. For such bonds there is a 

much more concentrated buildup of charge along the 

internuclear axis. Further such bonds show a significant 

accumulation of charge density in the antibinding regions 

as well as in the binding region. This accumulation of 

.;:barge in the antibinding regions is certainly contrary to 

t:he classical picture of charge buildup in the binding 

region at the expense of charge removal from the anti­

binding regions. It is a nonclassical effect which owes 

its origin to interactions between electrons possessing 

angular momentum. The chemical bond is a result of an 
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accumulation of charge density in the binding region - an 

accumulation which balances the force of repulsion owing 

to the nuclei. However the chemical bond is also a result 

of the balance between electron-electron repulsion and 

electron-nucleus attraction. Consider two atoms whose 

valence electrons possess angular momentum. As such atoms 

approach each other during the formation of a bond, the 

valence electrons interact. Under the influence of such 

interactions, the atomic density distributions acquire 

a directional character •. The concentrated increase of 

molecular charge density in the binding region emphasizes 

the importance of electronic-nuclear attraction in binding 

the nuclei ~ogether. But because of the directional nature 

of the atomic densities, electron-electron repulsion 

between the atomic charge clouds takes the form of a large 

increase of molecular density in the antibinding regions 

behind the nuclei. For atoms whose valence electrons possess 

no angular momentum, this electron-electron repulsion is 

indicated by a large diffuse buildup of charge in the 
-+binding region. The 6p(r) maps are not predictive in nature 

as they do not present distinct differences between stable 

and unstable molecules. 

The analysis of the force act~ng on the nucleus in 

a diatomic molecule is found to corroborate the results 

obtained from the total density and density difference maps. 
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Force calculations verify the stability of all the molecules 

studied in this thesis with the excep 
0 

tion of Be2 • Be2 is 

correctly predicted to be unstable jn its ground state at 

an internuclear distance of 3.5 a.u. It is not possible 

to predict the number of electron-pair bonds in a diatomic 

molecule as the difference in the number of binding and 

antibinding molecular orbitals. This .is a result of the 

fact that there is no correlation between the terms binding 
74 68and bonding73 

r in the case of the 3crg molecular 

orbital. It is not desirable to change the definition of 

binding because such a redefinition results in a loss of 

the physical picture presented by the f. values. The 
l. 

charge density of a mq,lecular orbital whose f i value is 

greater than one is built up in the binding region and 

exerts a force of attraction on the nucleus in excess 

of the force of repulsion owing to one nuclear charge. 
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Finally the t:.p(~) contour maps provide new defi­

nitions for ionic and covalent bonds in terms of localized 

and shared density increases. The density difference contour 

map describing an ionic bond shows a localized buildup of 

charge about the electronegative atom while the t:.p (.~) 

contour map describing a covalent bond shows a shared 
-+increase of charge in the binding region. If the t:.p(r) 

contour map is interpreted as a bond map, then a localized 

increase of charge binds the nuclei in an ionic molecule 

while a shared increase of charge binds the nuclei in a 

covalent molecule. Future studies should involve calcu~ 

lations of the force acting on the nucleus owing to these 

localized and shared densities'. It is heartening to note 

that the analysis suggested in this thesis and originally 

applied to the molecules LiF, HF, and LiH has general 

applicability. The first and second row hydride molecules 

have been discussed by Bader, Keaveny, and Cade88 . They 

find that the t:.p(~) maps for these molecules indeed show 

a gradual transition from an ionic mechanism of binding 

in LiH and NaH to a polar covalent mechanism of binding 

in HF and HCl. Bader and Bandrauk8 ~ have analyzed two· 

iso-electronic series of molecules. The one includes BF, 

CO and N2 while the other includes LiF, BeO,and c2 • 

They conclude that LiF, and BeO are ionic while BF appears 

to be a mixture of both bond types. 



APPENDIX 
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. 

THE CALCULATION OF INTEGRALS 

Consider a diatomic molecule AB described by a 

Hartree-Fock wavefunction ~ where 

(1) 

The operator 
ZAcos0A 

0 = 	 (2)
2 

rA 

describes the x component of the force acting on nucleus 

A owing to an electronic charge at a distance rA units 

from nucleus A. The situation is pictured in figure 1 of 

the text. The expectation value of this operator is given 

as 

(ELEC) ~ N rl cos0A
F = ZA t.. • <YJ • 2 ¢ 

1
. > 

. 
( 3)A 	 . 1 1 

1 rA 
The sum is over all occupied molecular orbitals. ZA is 

the nuclear charge. N. is the occupation number of mole­
1 

cular orbital ¢ .. If the one-electron molecular orbitals 
1 

are approximated as linear combinations of atomic orbitals, 

then the calculation of FA (ELEC) in.valves the calculation 

of three types of integrals. These are listed below as 

cos0A 
1. <xAI 2 lxA> 	 (4) 

rA 

cos0A 
2. 	<xAI 2 lxB> (5) 

rA 

cos0A 
3. 	 <xB I 2 I xB> (6) 

rA 
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XA is a Slater-type function centred on nucleus A while 

xB is a Slater-type function centred on nucleus B. Integrals 

one, two, and three are referred to respectively as atomic, 

overlap and screening integrals. They are discussed in the 

text. 

The atomic integrals are easily evaluated as they 

are .~imple one-centre integrals. The overlap and screening 

integrals involve two centres. A prolate spheroidal 

coordinate system is used in the evaluation of these inte­

grals. The variables in sUch a coordinate system are 

designated A, µ, and¢. ¢is a rotation about the x axis. 

Some relations between these coordinates and those shown 

in Figure 1 of the text are given below. 

A = (rA + rB)/R (7) 

µ. = (r - rB)/R ( 8)
A 

= [A+µ] R/2 (9)rA 

rB = [A - µ] R/2 (10) 

l+Aµ 
coseA (11)= A+µ 

l-Aµ 
coseB = (12)A-µ 

sin GA = [ (A 2-1) (1-µ 2 )J~ /A+µ (13) 

sin GB = [ (A 2-1) (1-µ 2]) ~ /A-µ (14) 

2 2 2 2sin0Asin0B = (A -1) C1-µ ) I(), -µ ) (15) 
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The volume element in a spherical coordinate system is 

given as 

(16) 

while the volume element in a prolate spheroidal coordinate 

system is given as 

{17) 

The two-centre force integrals in this new coordinate 

system can be expressed as sums of integrals of the type 

F (a. 6) Joo f1 p,2-l)k Amµn e-CXA e-(3µ dAdµ (18) 
kmn ' = . P..+JJ) k+l 

1 -1 

Where 

(19) 

~he symbol ~A and ~B are the effective nuclear charges of 

~ne Slater-type functions centred on A and B. 

86
'V ' t 1 l' 1 . . f h~otan1 e a 1st genera expressions or t e 

integral (18). These expressions were made the basis of a 

computer programme designed by Dr. J. Goodisman at the 

Jnivers1ty of Illinois. This programme was modified in 

order t~ be of use in the calculations discussed in this 

thesis, is a subroutine-and has the name F~RINT It 

has as L)put data the values of a and B and calculates 



142 

The computational method does not apply to the case where 

~A is equal to ~B" All force integrals where ~A is not 

equal to ~B have been expressed in terms of F , Flm and 
. 0~ n 

F Each integral is programmed in a separate function mn 

subprogranune with a call statement to F¢RINT. Thus any 

progranune to calculate two centre integrals consists of a 

main deck with call statements to the various force 

function subprogrammes. These function subprogrammes and 

the F¢RINT subprogranune are always loaded with the main 

deck. 

In the subroutine F~RINT, the F values are desiq­
'P mn ­

nated by the subscripted variable FMN(I,J). Thus the 

indices I and J are always one unit higher than the m and 

n values. For example 

= FMN (3 ,1) (22)F20 

Also 

= FO (3I1) (23)F020 

and 

= Fl(3,l) (24)F120 

Listed below are all formulae used in this work. 

The code is as follows: 

o = overlap force 

s = screening force 

A = atomic force 
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For example OlSlS means the force on nucleus A owing to 

the overlap of a ls orbital on A with a ls orbital on B. 

PlSlS means the force on nucleus A owing to the ls density 

on B. A2PlS i s the force on nucleus A owing to the overlap 

of the 2p and ls orbitals on atom A. The symbol Z is used 

to indicate the effective nuclear charge. For overlap inte­

gra ls 

(25) 

and 

zB = I',; B = z2 (26) 

R is the internuclear distance. 

The overlap integrals are listed below. They are 

designated with an "O". Thus, the notation is 
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OlSlS 

02SlS 

02PlS 

03SlS 

03DlS 

z 5/2 z 3/2 R2 

1 2
= -----'----­

2. 0 I! 


z 5/2 z 3/2 R2 

1 2= --.,---,,..----­ [F10+ F 21- F 01- F 12]2. 0 

z 	7/2 z 3/2 R3 

1 2
 = - --·----- A lF3o+F21-F12-Fo3l 

12 

z 7/2 z 3/2 R3 

1 2
= ------­

24 

· 04FlS = 

-5(FOl+F34)-12(F12+F23)-3(F4l+F30)] 

z 3/2 z 5/2 R2 

1 2
OlS2S = ------­

21"3 


z 5/2 z 5/2 R3 

1 202S2S = 

12 

z 7/2 z 5/2

1 2
03S2S = -----,2=-4:::----­

z 7/2 z 5/2
1 203D2S = ------­

4 8. 0 

- 2 (Fll+2F22+F33))-F4Q-F04+ 2F22] 
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z 9/2 z 5/2 RS 
04D25 = l 6 ~ /r-llS [S(F20tF02+F53+F35}+lS(F3l+Fl3+F429 • I IS 

+F24}-lO( IJ.1+F44>- 24 <F22+F33>- 3 CF51+F15+F4o+Fo4>l 

z 3f2 z 5/2 R2 
1 . 2

0152P = [F10+ F 12- F 01- F 21]2 

z 5/2 Z 5/2 R3 

1 2
0252P = ------­

413 

Z 5/2 Z 5/2 R3 

1 2
02P2P = [F 2 3 +Fl 0 - F0 l - F.3 2 ] 4 

0352P = 

z 7/2 z 5/2 R4 f2 
1 203b2P = 48.0 

-Fo1-F12>-F30-F23-F21-F14+F41+F12+F32 +Fa3 1 

z19/2 z2s/2 R2 . 
04F2P = 96 /1 [S(FlO+F45)+ 7 (F2l+F34}+J(FS2-F03) 

-S(FOl+F54>- 7 CF12+F43~J(F25+F30}] 

z 3/4 Z 7/2 R3 

1 2
01535 = 12 A [F30+ 3F12- 3F21-Fo31 

z 5/2 z 7/2 R4 ~ 
02535 = 1 

24 
2 

/ 15 [F 40+ 2F13- 2F31-Fo4 1 

z 5/2 z 7/2 F.4 
02P35 1 242 ~ [F30+3Fl2+F41+3F23-3F21-F03-3F32-F14] 

z 7/2 Z 7/2 RS 
1 203535 

360 



146 

03D3S 


-Fsa-F14- 2F23+ 2F32+F41+Fas 1 


z 9/2 Z 7/2 R6 /2

1 204F3S = 2880 [S(F3a+F63)+lS(Fl2+F45) 

+l9 (F41+Fs2)+ 39 (F23+F34)+ 3 (Fl6+Fo5)-S(Fa3+F36} 

01S3D = 

02S3D = 

z 5/2 z 7/2 R4 /2
1 2 
~~~~~~~~02P3D = 

48 

zl7/2 z27/2 Rs /'""4 
03S3D = 288 S [3 (F30+F52+F43+ 2F23+ 2Fl4+F21 

- 2F41- 2F32-F12-F34-Fo3-F25)-Fsa-F14 
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.2 zl7/2 z27/2 Rs 

03D3D = S76 C9 <F1o+Fs4+ 2F23- 2F32-Fo1-F4s> 

-G(F30+FS2+Fl2+F34+ 4F23- 4F32-F43-F03 

-F2s-F21>+(Fo4o+Fos1+ 2Fo13+ 2Fo24- 2Fo31 

04F3D = 

- 2F042-F004-F01S] 

z 9/2 z 7/2 
1 2 /2 6 

1152 { ~ R 

+ 2 l(F2l+F54)+~4 (F03+F36)+9 (Fl4+F25)+ 3 (F5Q+F6l} 

-lS(FOl+F56)-18(F23+F34)-2l~Fl2+F4s) 

OlS4F 

-l 4 (F30+F63>-9 <F41+Fs2>- 3 <Fos+Fl6)] 

z 3/2 Z 9/2 R4 
1 2= ------­

4815 

-S(FOl+F43}-6 (F23+F21)- 3 (Fl4+F30)] 

02S4F 
z S/2 Z 9/2 RS 
1 2 .= ------­

961'15 

-S(F02+F53>-9 <F24+F31>- 3 CF4o+FlS)] 

02P4F = 
z S/2 Z 9/2

1 2 

9615 

RS 

-S(FOl+F54)- 3 (F2S+F30)-F34-F21] 

03D4F = 

z 7/2 Z 9/2 

l llS~ 
R6 

~ [lS(FlO+FS6)+6 (F32+F34) 

+ 1 <F21~F45>+14 <Fo3+F63>+ 3 <F41+Fl6+F2s+Fso> 

-lS(Fo1+F6S)-6(F23+F43)-7(F12+F54)-l4(F3o+F36) 

- 3 <F14+F~1+F52+Fos> 1 
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z 7/2 z 9/2 /2 R6. 

1 203S4F = 2880 [3 (F6l+Fos)+S(F3o+F21+F45)+l 2 <Fs2 

+F14)+ 9 < F43+F23)- 3 (Fl6+F50-S(Fo3+F12+F54 

+F63~F36)+l 2 CF25+F41)+g(F34+F32)] 

z 9/2 z 9/2 R7 
04F4F = 1 

11520 
2 

[25 <F1o+F67)+ 27 <F45+F32)+9 <Fsa+F14 

TI OVERLAP 	 FUNCTIONS 
z 5/2 z 5/2 R3 

1 202P2P = 	---:---=----­8. 0 

02P3D = 

-F125] 

Z 5/2 z 9/2 RS 
1 202P4F = 	------­

64/30 

03D2P = 
816 

-)Fll2-3Fl23-Fl34-Fl01] 

z 7/2 z 7/2 RS 
03D3D = 

1 
48 

2 
[F llO+F121+F103+F114+2F134+F145 - 2F112 
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z 7/2 z 9/2 R6 

1 2
03D4F = 

38415 

+3 (F12+F45)+F14+F2s+Fl6+Fos- 6 <Fo3+F36)- 2 <F32+F43) 

-S(FlO+F6S)-3 (F2l+F54)-F41-F52-F61-F50] 

z 9/2 z 5/2 RS 
1 2Q4F2P = 

I 64/30 

+9F41+SF45+Fo5-6(Fo3+F25)-20F32-5Fl0 

-14(F2l+F43)-9F14-SF54-F5al 

z 9/2 z 7/2 R6 

1 2
04F3D = 

38415 

- 6 (Fa3+F34+F32+F63)-S(F10+F56)- 3 (Fl4+F52) 

- 9 (F2l+F45)-FSO-Fl6] 

z 9/2 z 9/2
1 204F4F = 15360 

-ll(Fsa+F36+F14+F72>-9 <F25+F43>- 33 <F32+F54> 

7-25(F +F )] x R10 76 

The penetration force integrals are designated with a "P". 

The notation is, for example, 
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PlSlS = z13/2 z23/2 R [FlO-FOl] 

z 5/2 z 3/2 R2 
1 .2P2SlS = 

213 

z 5/2 z 5/2 R3 

1 2
P2S2S = ------­

12 

Z 5/2 Z 3/2 R2 


l 2
P2P1S = ------­
2 

z 5/2 z 5/2 R3 
1 2P2P2S = 

413- . 

Z 5/2 z 5/2 R3 

1 2
P2P2P = 4 

zl7/2 z2 3/2 R3 /2
P3SlS = 12 S [F30+3Fl2- 3F21-F03] 

z 7/2 z 5/2 R4 
1 2P3S2S = 24 

P3S2P 

P3S3S 

P3D1S 

-Fo3+ 3F32+F14] 

z 7/2 z 7/2 RS 
1 2 = 

144 

z 7 /2 z 3/2 

1 2
= --~--:-...----~24 



lSl 

P3D2S = 

- 2 (F31+F13+F33+Fll))-GF22+4 (F3l+Fl3) 


-Fo4-F4ol 


z17/2 z2s;2 R4 12" 

P3D2P = 48 [3 ( 3 (F12+F32-F23-F2l)+Fl0 

+F34-F01-F43)- 3 (Fl2+F32-F21-F23)-F14 

z 7/2 z 7/2 RS 
P3D3S = 1 2 ~[3(F30-3F21-6F23+2F14+FS2

228 

- 3F43+3F12-Fo3- 2F41+6F32+ 3F34-F2s>-Fso 

-SF14-lOF32+SF41+lOF23+Fosl 

z 7/2 z 7/2 RS2 
P3D3D = 19x64 2 [9(~(F32-F23)+4(F34+Fl2-F43 

-F21)+F1o+Fs4-F4s-Fo1>-GC 3 CF34+F12 

-F43-F2l)+G(F32-F23)+ 2 (F14-F4l)+F30 

-Fo3+Fs2-F2s>+Fsa+lO(F32-F23>+S(F14-F41>-Fos 1 

P4FlS 
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P4F2S 


P4F2P 

P4F3S 

z 9/2 Z 5/2 RS 

= 1 2 
[S(F2a+Fa2>+3 CF42+F24+Fs1 

9Sv'lS 

+FlS)+l2F22+10F44-3(Fl3+F3l+F04+F4Q) 

-S(F53+F35 )-lOF 1 +-l2~33 J 

z 9/2 z s;2 R.s 
1 2 = 

9615" 

+J(Fo3+F2s)+ll(F12+F34)-S(po1+F4s)-l2F23 

-6F14-3CF3a+Fs2)-ll(F21+F43)] 

Z 9/2 z 7/2 R6 

1 2
= ------­

2880 

+F34+FS4)+J(F6l+Fos>-S(F03+F63) 

-lS(F21+F23+F43+F4s>- 3 <F16+Fso> 1 

P4F4F 


-1S(F +F S)-54F -33(F +F S)-S4F01 6 23 21 4 43 

-14(F30+F36}-27(F14+Fs2}-3(Fas+F61)] 

Z 9/2 Z 9/2 R 7 

1 2 
= 11S20 . [2S(FlO+F76)+lOS(F32+FS4)+GOF12 

+ 140F 4+30(F +F 47}+7S(F41+F )+90F S3 03 63 2

+ 9(Fso+F72)+60FS6+18Fl6-2~(Fo1+F67) 

-10S(F +F )-140F -60F -30(F +F )
23 45 43 21 30 74
 

-7S(Fl4+F36)-90Fs2-9(Fos+F27)-60F65 


-18F61 J 




1S3 


. 
For IT Integrals, one easily obtains 

z S/2 z S/2 R3 

1 2 ' [
P2P2P = 8 FllO+Fl2l+Fl03+Fll4-Fl01-Fl23 

- 2Fll2] 

z 7i2 Z S/2.R4
1 2P3D2P = 

816 

-Fl32-Fl2S] 

Z 7/2 z 7/2 RS 
P3D3D = 

1 
48 

2 
[FllO+Fl03+Fl43+Fl36+2Fl23 

z 9/2 Z S/2 RS 
1 2P4F2P = ------­

64/30 

-S(FlO+FS4)-4F32-2(Fl2+F34)-7F41-6F2S] 

z 9/2 z 7/2 R6 

1 2
P4F3D = ------­

38415 

P4F4F 

+1SF61+2S(Fo1+F67)+4S(F2l+F6S)-3S(Fo3+F47> 

-121F2s-Fo7-SSF34-8S(F41+F63)-ll(Fso+F72> 

-6S(F32+FS 4 )-1SF16 -2S(F10+F76 )-4S(F12+FS 6 )J 
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The Atomic force integrals are designed with an "A". 

The notation is for example 

z 5/2 z 3/2
4 1 2A2PlS = 3 (z +z ) 2 

1 2

z 5/2 z 5/2 
8 1 2A2P2S = 
'3 /3 (Z 

1
+z 

2
) 3 

z 7/2 z 5/2 
= ~/'2 '1 2A3S2P 

3 5 (Zl+Z2) 4 

12 z 7/2 z 5/2
16 1 2A3D2P = 15 4

(Zl+Z2) 

z 7/ 2 z 9/2
32 /2 1 2A3D4F = 7 5 6

( z 1+z2) 

. 
The IT atomic integrals are 

z 7/2 z 5/2 
A3D2P =· 16 1 1 2 

5 ,,,.6 ( )4vo z 1+z 2 
z 9/2 z 7/2

128 2A4F3D =I L l
5 2T 6

(Z 1+z~) 
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In the case of homonuclear diatomic molecules, 

electronic overlap force integrals occur in which ZA' the 

effective nuclear charge of the orbital centred on nucleus. 
A equals ZB' the effective nuclear charge of the orbital 

centred on nucleus B. Such integrals cannot be evaluated 

by the method of Kotani et a1 86 . The Barnett-Coulson87 

zeta-function technique was used during the course of this 

work to evaluate such integrals. In this technique, the 

function centred on nucleus B is expanded in terms of a 

co-ordinate system centred on nucleus A. The expansion is 

-z rm-1 
00 

(2n+l)e B B=ErB Pn(cos8A)smn(ZB,rA,R) (27)n=O 
/rA R 

-m+l 
00 

(2n+l)
= ZB E P <cos eA )·s <1 , t , "[ > (28) 

n=O It "[ 
n mn 

The variables t and T are dimensionless. Further 

R is the internuclear distance and P ,is the Legendre
n 

Polynomial of order n. Each s (ZB,rAiR) is a function m,n 

of three variables. These are ZB' rA, and R. For m=O,. 

s = y (ZB,rA;R) (31)
o,n n 

where 
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The I and K are standard aessel functions of purely imaginary 

argument. When rA > n, the po8itions of rA and R on the 

right hand side of equation (32) ar~ interchanged. Any 

'm,n can be expressed in terms of lower ~. Thus 
. t'L 

sl,n(l,t,T) = pn(l,t;T) = n+l [yn-l(l,t;T)-yn+l(l,t;T)] (31)2

or in general 

2 2 s + (l,t;T) = (t +T )s (l,t;-r)m 2 ,n m,n 

For the work considered in this thesis, the force integrals 

are expressed in terms of J integrals where 

J(k,.Q.,m) (35) 

Further 
00 

ZB (.Q,+m+l)J(k,.Q.,m) = f 0 e-Ktti+~ f(m,k;t)dt (36) 

where 

(37) 

The f (m,k:t) functions are linear combinations of the s m,n 

functions. Thus the J(k,.Q,,m) integrals can be calculated 

as sums of Z integrals where 

{K 1 1") = ( 38) 

In particular 
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= [ e -Kty (l(t,T)tR,+~dt (39)Gn,R.+~ (K,T) 
n 

( K '"C) = r,e-Kt pn(l,t,T)tR.+~ dt (40)
P n' t+~ 

0 

The force integrals are expressed as sums of these 

G k and P n+k·functions. A general subroutine calledn,R.+2 n,N 2 

0 VLINT was designed to calculate these Gn,i+~and Pn,R.+~ 

functions. In the programme 

G = G(N+2,L+2)
N,L+~ ( 41) 

P = CP(N+2,L+2) (42)N,L+~ 

G, and CP are doubly subscripted variables. Expressions 

for the integrals evaluated by this technique are given 

below. 
z 3/2 z 1/2

1 2OlSlS = 4 p 
J,-1+~ 

5/2
zl 4 2 2T02S2S = [Gl, 2+~+T Gl, 0+~-3 W0,1+~+ 2G2,l+~]]z 1/2 3/T

2 

z 7/2 
8 1 2 2T03S3S = [P 1, 3+~+T Pl,l+~-3 (PO 2+k+ 2P2 2+k)]45 z 3/2/T ' 2 ' 2

2 . 

03D3D 
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z 9/2 z 9/2 
2 3	 2 2 404F4F = l [(4.2857142R -2.5714285 RZ~ 2 )P 212+:k/z

45/T 2 

p 	 2 p
4,2+~+ 	 [5.7142857R3-3.4285714 RT ]+ l, 3+~ [2.0571428 RT 
z 4 z 2 z 5 z2 

2 	 2 2 

22 	 p3 3 k 
-5.1428571R +1.0285714 ~]+ ' + 2 [6.1333333 RT -15.3333333R2 

z2 z25 Z2 
2 p 25 / 3+ 3 . 0 6 6 6 6 6 6 _T-] + +~ ( 3 . 8 0 9 5 2 3 8 ~T 9.5238095R2+1.9047619~]

z 2 z 5 2 	 z2 2 	 2 

+P0, 4+~ [l.7142857R-0.6857142 .!_]+p 214+~[7.4285715R-i.!_] 
z 6 	 z2 z 6 z2 

2 	 2 

+P 4 , 4 +~ [9.6623~77R-5.2363636 f-l+p 6 'i+~[5.1948051R-2.0779220
z 6 2 z

2 2 
p p 

5,5+~~ ] -o . 8 7 619 o5 P 1 ' 51-Jo . 8 7 2 7 2 7 3 · 3 7 5+~1.3186813
7 z 72 	 z z22 	 2 

-0 .9324009 -~+~1] 

z2 


For the rr overlap integrals, one obtains 
4Z 5/2 

P2P2P: l [Pl l+~-P 3 l+k]
5/Z:T I I 2 

2 

z 7/2 


4 1 [2R p 2R p 8 R p 
3 3ODD= 3 15 0,2+~ + 21 2,2+~ 35 4,2+~
IZ2T 

8 
p 

5, 3+~]
63 z2 

2 	 2
) 	 8 2 . 8 T 

+ P3,3+L(-9 R - ~45 ~22 -:z 	 z 
2 	 2 

16T 

35Z 
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. p
P2,4+~ [-* R + 

80 LJ+ 4,4+~ 100 8 1"+ [l~~ R ms-1z2 I05 z2 z2 z2 

272P6,4+~ [800 R 160 LJ + 112+ 
z2 

.231" - 2IT z2 2 Pl,S+~ + 2 P3,5+~105z2 495z 2 

1680 400 

2 p 

5,5+~ 
- 2 P7,S+~]


2457z 2 429z 2 

Also· for the sigma overlap integral 02P2P, one obtains 

02P2P = z 5/2 z 5/2 !_ l R ·<Po o+i.+2P2 o+i.> -~ 2 21 fi J.oz ' -:i ' "2 5z " 
2 2 



Figure 19. Computer output describing a molecular density 

contour map. The maximum contour is 1.8 a.u. and is re­

presented by the integer 9. The minimum contour is 0.0 a.u. 

and is represented by the integer 0. The arrow designates 

the origin of the co-ordinate system. For this particular 

example the nucleus H is situated at this origin. 
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Figure 20. Computer output-describing a density difference 

contour map. The integer 5 represents the zero contour. 

The integers O, 1, 2, 3 and 4 represent negative contours. 

The integers 6, 7, 8 and 9 represent positive contours. 

The symbol plus represents a region of contours having 

higher values than DMAX. The symbol - indicates a region 

of contours having more negative values than DMIN. The 

arrow represents the origin of the co-ordinate system and 

one of the nuclei (B in this case) is situated at this 

origin. 
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THE DENSITY AND DENSITY DIFFERENCE CONTOUR MAPS 

The one-electron density computed from a molecular 

Hartree-Fock function is given by 
N 

-+
p(r) = l: n.¢.¢. ( 4 3) 

1 1 1i=l 

where N is the number of occupied molecular orbitals and n. 
1 

is the occupation number of the ith molecular orbital. 

Similarly the density difference function is given by 

-+ -+ -+ 
{).p (r) = p (r) - PA (r) (44) 

-+ 
The symbol p{ r) is defined above while the symbol 

-+ .
pA{r) designates the density of the noninteracting atoms 

brought up to the observed internuclear distance. It is 

a relatively simple task to set up a programme to calculate 

these density functions for a diatomic molecule at a number 

of points in the regions surrounding the nuclei. This in 

fact was done and the computed density values were stored 

on the disc. At the end of the calculation the density 

values were fed into the library subroutine C0NT0R. 

This subroutine produced as output integer contours such 

as those shown in Figure 19 for the total density of the 

(FHF)-l ion and Figure 20 for the density difference function 

o f B2 . The path traced out by each repeated integer repre­

sents a curve of constant density. A maximum of ten 

integers from 0 to 9 is available for each separate map. 

Noted below is the section of the F~RTRAN programme devoted 

to the plotting of contours. 
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REWIND 3 


READ 30, DMAX, DMIN 


30 	 F¢RMAT (2F8.5) 


D¢ 150 kil = 1,41 


READ (3) DX 


150 CALL C¢NT¢R(DX,DMAX,DMIN,M,N). 

DX is a subscripted variable representing the density. It 

must have as its dimension the integer M. DMAX and DMIN 

represent respectively the maximum and minimum values of 

contours which appear in the plot. For example, if 

DMAX=0.9 and DMIN=O.O, then one can label the contours 

in the following way 



164 


Integer Contour 

0 0.0 

1 0.1 

2 0.2 

3 0.3 

4 0.4 

5 0.5 

6 0.6 

7 0.7 

8 0.8 

9 0.9 

M is an integer which in this work was always set equal 

to 101. It represents the length along the x axis defined 

in Figure 1 in dimensionless units and can have a maximum 

value of 132. In the programmes discussed here a multi­

plication of the number M by 0.12 yields the range of values 

along the x axis in atomic units. N is another integer which 

indicates the number of contours which will be plotted. The 

number 41 in the segment programme above represents the 

number of computer lines printed per contour map. It is a 

dimensioriless numbe:r describing the range of z values as 

defined in Figure 1. Multiplication of this dimensionless 

number by 0.15 gives the range of Z values in atomic units. 

The last computer line in each contour map is the inter­

nuclear axis'. Thus the first 101 calculated density points 
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have a z co-ordinate of 6.0 atomic units. In a total calcu­

lation 10lx41 = 4.141 density points are stored in the disc 

duripg the execution of the programme. These points are then 

read in groups of 101 into the library function C¢NT¢R 

Contour maps such as those shown in Figures 19 and 20 

represent the computer output. 
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THE POPULATION NUMBERS 

The population numbers reported in this thesis 

are just integrated forms of the total density and density 

difference functions. The numbers listed in Table I and 

labelled as the fractions of the charge in the binding 

regions of the various molecules are defined by the 

equation 

Pa=~ f P<fiar ( 45) 

Q=O 

N is the total number of electrons. The restriction Q=O 

-+
indicates that p(r) is integrated over all values of rA 

and rB in the binding region. 

The numbers in Table II are labelled as the increase 

in. t h e num er o f e ec t ronic c h arges . B in I s 34 b' d'b 1 . in erl' in ing 

and antibinding regions. These numbers are defined by 

the equation 

PL= (46)f ~P~riar 
b.p (r) = 0 

Thus PL is equal to the integral of 
-+

b.p(r) over the various 

regions where 
-+

b.p(r) is positive. 

The density and density difference contour maps 

define regions over which the various integrals are to be 

evaluated. Each region is divided into a grid of rectangles. 

·The density at the midpoint of each rectangle is calculated. 
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The segment program below describes the evaluation of PL 

PA=O.O 


X = XINII 


D¢ 150 kil = l,N 


Z = ZINIT 


D¢ 149 kI2 = l,M 


R¢UT = Z + RECZ/4.0 

RIN = Z-RECZ/2.0 

QA= DELTA* [R¢UT**2.0-RIN**20]*3.14159 

PA = QA+PA 

lF (DEL+A.LE.0.0) G¢ T¢ 150 

149 Z = Z+RECZ 

150 X = X+RECX 

160 PA =PA*RECX 
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DELTA is a variable describing the density. The expression 

QA is the number of electrons in the annular ring whose 

outer radius is R¢UT and whose inner radius is RIN. This 

annular ring is in a plane perpendicular to the inter­

nuclear axis and the radii RIN and R¢UT describe the 

distances from the internuclear axis to the inner and 

outer edges of this annular ring respectively. Each of 

these annular ring populations is added to PA. RECZ 

is the length of the rectangle in the z direction.RECX 

is the length of the rectangle in theX direction. XINIT 

and ZINIT are initial values of X and Z. The integers 

N and M describe the dimensions of the total grid of 

rectangles. The final value of PA in statement 160 is 

the desired population number. 



TABLES 
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Forces on Lithium (Xll:+) R = 5.05 1 a.u. g 

Orbital Atomic Overlap Screening f.Force Force Force l. 

lcr -0.2979 0.0052 0.9984 0.7057 g 

lcr -0.3356 -0.0056 0.9993 0.6581 u 

2cr +0.0708 0.9271 0.5932 1.5911 
g 

Total -0.5627 0.9267 2.5909 2.9549 

l: f. = 2.9549 
i l. 

3
Net Force = ~ [3-2.9549] ~ [0.0451]"-2 = 0.005 

R2 R 
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Orbital 

la g .. 
la 

u 

2a g 

2a 
u 

1 Tf 
u 

Total 

... 

force on Boron 

Atomic 
Force 

-o .0263 

-0.0242 

0.0841 

-0.8755 

0.1980 

-0.6439 

L 
i 

Net Force = 

(X 3 L-} 
g 

R = 3.005 a.u. 

Overlap Screening 
Force Force 

0.0056 0.9992 

-0.0062 1.0011 

1.4260 0.7947 

-0.1987 0.5823 

0.4809 0.5095 

1. 707·6 3.8868 

f. = 4.9505 
1 

5 (5-4.9505] = 0.027 
R2 

f, 
1 

0.9785 

0.9707 

2.3048 

-0.4919 

1.1884 

4.9505 
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Orbital 

lcr g 

lcr u 

2cr g 

2cr u 

l1T u 

Total 

Forces on Carbon 

Atomic 
Force 

-0.0381 

-0.0397 

-0.0388 

-0.9402 

0.3215 

-0.7353 

{all:+) R = g 

Overlap 
Force 

0.0082 

-0.0068 

1.4869 

-0.1920 

0.9018 

2.1983 

2.3481 a.u. 

Screening 
Force 

0.9990 

1.0008 

0.8021 

0.6958 

1.0257 

4.5234 

0.015 

f. 
J. 

0.9691 

0.9543 

2.2502 

-0.4364 

2.2490 

5.9864 

L: f. = 5·.9864' 
i J. 

FA= 	~[6-5.9864] = 
R 
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1 

Force on Nitrogen (X r+) R = 2.068 a.u. 


g 

Orbital Atomic Overlap Screening f. 
J.Force Force Force 

lcr 0.1519 0.0080 0.9997 1.1596 
g 

lcr 0.0738 0.0137 0.9972 1.0847 
u 

2cr -0.0425 1.8418 0.8824 2.6817 
g 

2cr -0.7754 -0.1666 0.4791 -0.4629 
u 

30' -1.7664 1.2206 0.6961 0.1503 
g 

l 7T 0.4156 0.9355 1.0816 2.4327 
u 

Total -1.94.30 3. 85,30 .5.1361 7.0461 

r f. = 7.0461 
i J. 

Net Force = J__ [7-7.0461] = -0.075 
R2 



~orces on Oxygen (x 3r-) R = 2.282 a.u. 
g 

Orbital 	 Atomic Overlap Screening 
Force Force Force 

lcr 	 0.2309 0.0005 1.0005 
g 

0.1288 0.0098 0.9991lcru 

2cr 	 0.4036 1.6277 0.9029 
g 

2cr -1.0478 -0.2674 0.7971 
u 

3cr 	 -2.3335 1.6930 0.8147 
g 

0.4341 0.8410 1.3287lrru 

lrr 	 -0.1003 -0.4187 0.9449 
g 

Total 
I 

-2.2842 3.4859 6.7879 

.... 

r f. = 7.9896 
1.i 

8
Net Force = [8-7 .9896] = 0.016 

R2 
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f. 
1. 

1.2319 

1.1377 

2.9342 

-0.5181 

0.1742 

2.6038 

0.4259 

7.9896 



Orbital 

la 
g 

lo u 

2og 

2a u 

3a 
g 

l 'TT 
u 

l'TT g 

Total 

2.68 

Screening 
Force 

1.0002 

0.9999 

0.9307 

0.9878 

0.9081 

1.5908 

1.9639 
,. 

8.3814 

= 0.080 
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f. 
1. 

1.2431 

1.1234 

2.4470 

-0.1679 

0.5163 

2.4630 

1.3117 

8.9366 

Force on Fluorine 

Atomic 

Force 


0.2425 


0.1207 


0.6079 


-0.7478 

-2.4587 

0.3082 

-0.0221 

-1.94·93 

(XlE+) 
g 

Overlap 
Force 

0.0004 

0.0028 

0.9084 

-0.4079 

2.0669 

0.5640 

-0.6301 

2:5045 

R = 

E f. = 8.9366 
i 1. 

9 
1Net Force= [9-8.9366]2

R 
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Forces on Beryllium (lr+) R = 3.5 a.u. g 

Orbital Atomic Overlap Screening f. 
J.Force Force Force 

lo 0.0434 o .. ooa.8 0.9991 1.0513 
g 

lo 0.0342 -0.0077 1. 0012 1.0277 
u 

2og -0.0870 1.3617 0.7281 2.0028 

2o -0.8666 -0.3457 0.8137 -0.3986 u 

Total -0.8760 1 .• 0171 3.5421 3.6832 

r f. = 3.6832 
i J. 

Net Force= 	4 
2 (4-3.6832] = 0.103 

R 
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Forces on N cx 1 r+) R = 2.01320 a.u.2 g 

Orbital 	 Atomic Overlap Screening f. 
Force Force Force l 

lcr .. 	 0.1448 0.0095 0.9995 1.1538 
g 

lcr 0.0698 0.0137 0.9969 1.0804 
u 

2cr -0 .1040 1.8513 0.8808 2.6281 
g 

2cr -0.7256 -0.1742 0.4607 -0.4391 
u 

3cr -1.7022 1.1792 0.6829 0.1599 
g 

l7T 0.4077 0.9356 1.0593 2.4026 
u 

Totals -1.9095 3. 8151. 5.0801 6.9857 

r f. = 6.9857 
i 1 

Net Force= 7 
2 [7-6.9857] = 0.025 

R ) . 



Orbital 

la g 

la u 

2a g 

2a u 

3ag 

lnu 

Total 

N +(X 2L+)

2 ' g 

Atomic 
Force 

0.0788 

0.0464 

-0.0627 

-0.6426 

-0.8500 

+0.4494 

-0.9807 

L 
i 

Net Force ­

R = 2.0132 

Overlap 
Force 

0 .. 0076 

-0.0002 

1.7520 

-0.2209 

0.5989 

0.9769 

3.1143 

f. = 6 ;9457 
1 

~·[7-6.• 9457] 
R 

a.u. 

Screening 
Force 

0.9995 

0.9997 


0.8792 


0.4464 


0.3532 


1.1341 


4.8121 

= 0.0094 a.u. 

177 

f, 
1 

1.0859 

1.0459 

2.5685 

-0.4171 

+0.1021 

2.5604 

6.9457 
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N +(A2 rr ) R 	 = 2.01320 a.u.2 u 

Orbital 	 Atomic Overlap Screening 
Force Force · Force 

la 	 0.2169 0.0092 1.0000 
g 

' 

la 	 0.0993 0.0018 0.9996 
u 

-0.1250 	 1.9924 0.92342crg 

2a 	 -0.6085 -0.2277 0.4484 u 

-1.6074 	 1.0400 0.67383ag 

0.3894 o.7674 0.8465lnu 

.­
Total -1.6359 3.5831 4.8917 

E f. = 6.8389 
i l 

7
Net Force =[7-6.83891---i- = 0.278 

R 

f. 
l 

1.2261 

1.1007 

2.7902 

-0.3878 

0.1064 

2.0033 

6.8389 
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Orbital 

lcr 
g 

lcr 
u 

2cr g 

2cr u 

3crg 

17ru 

Total 

N +(B 2 E+) R = 2.01320 a.u.2 u 

Atomic Overlap Screening 
Force Force Force 

0.0381 0.0096 0.9992 

0.0069 -0.0008 0.9997 

-0.1415 1.9460 0.9075 

-0.0663 -0.1766 0.2042 

-1.6624 1.0610 0.6710 

0.4196 0.9614 1.1211 

-1.4056 3.8006 .~.9027 

E f. = 7.2977 
i l 

7Net Force= (7-7.2977] = -0.5142
R 

f. 
l 

1.0469 

1.0058 

2.7120 

-0.0387 

0.0696 

2.5021 

7.2977 
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Orbital 

lcr g 

lcr u 

2a g 

2a u 

3cr g 

l'IT 
u 

lTI g 

Totals 

2o + <x rr > R = 2.122002 g 

Atomic Overlap 

Force Force 


0.2422 0.0017 


0.1286 0.0101 


0.3225 1.8055 


-1.0029 -0.2026 


-2.1760 1.• 4752 

0.5368 0.9245 

0.0453 -0.2067 

-1.9941 3.8077 

E f. = 8.0259 
i 1 

8Net Force = ""2[8-8.0259] = 
R 

a.u. 

Screening 
Force 

1.0006 

0.9990 

0.9277 

0.7131 

0.7830 

1.3218 

0.4671 

6. 2123 ' 

-0.045 

f. 
1 

1.2445 

1.1377 

3.0557 

-0.4924 

+0.0822 

2.7831 

0.2151 

8.0259 
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Orbital 

lcr g 

lcr 
u 

2crg 

2cr 
u 

3crg 

lTI 
u 

17r g 

Total 

o; ( 211 
g 

Atomic 
Force 

0.2198 

0.1280 

0.4288 

-1.0386 

-2.4155 

0.3272 

-0.0998 

-2.4501 

r 
i 

Net Force= 

) R = 2. 40 

Overlap 
Force 

+0.0000 

0.0087 

1.4982 

-0.3550 

1.8602 

0.7707 

-0.9002 

2.8826 

f. = 7.8969 
J. 

8
2 (8-7.8969] 

;R. 

a.u. 

Screening 
Force 

1.0005 

0.9993 

0.8827 

0.8800 

0.8327 

1.3122 

1.5570 

7.4644 

= 0.1798 

f. 
J. 

1.2203 

1.1360 

2.8097 

-0.5136 

0.2774 

2.4101 

0.5570 

7.8969 



Forces in HF 

182 

Force on H 

Molecular 
Orbital 

lcr 

2cr 

3cr 

lTI 

Total 

Atomic 
Force 

o. 
0.058 

0.213 

0.004 

0.275 

Overlap 
Force 

0. 

0.526 

0.553 

0.134 

1.213 

Screening 
Force 

2.0 

1.664 

1.142 

2.757 

7.563 

f. 
1 

2.000 

2.248 

1.908 

2.985 

9.051 

Force on F 

Net Force 

lcr 

2cr 

3cr 

l1T 

Total 

Net Force 

1 = -0.017= 2[9-9 .051] a.u~ 

R 

0.146 0.002 0.000 

0.394 0.382 0.057 

-2.476 +l.827 0.327 

0.187 0.114 0.006 

-1.749 2.325 0.390 

9 0.104= 2[1-0.966] = a.u. 
R 

0.148 

0.833 

-0.322 

0.307 

0.966 
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Force on Li 

Molecular 
Orbital 

lcr 

2cr 

Forces. 
Atomic 
force 

-0.325 

-0.010 

on LiH 

Overlap 
force 

0.066 

0.730 

Screening 
force 

0.002 

0.840 

f. 
1 

-0.257 

1.560 

Total 

Net Force 

-Q.335 0.796 

3 -0.010= 2(1-1.303) = 
R 

0.842 

a.·u. 

1.303 

Force on H lcr 

2cr 

Total 

0.002 

0.062 

0.064 

0.028 

0.589 

0.617 

1.963 

0.247 

2.210 

1.993 

0.898 

2.891 

.... 

Net Force = 
1
2(3-2 .891) 
R 

= 0.012 a.u. 
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Force on Li 

Molecular 
Orbital 

la 

2a 

3a 

4a 

l'IT 

Total 

Net Force 

Force 

.... 

on F la 

2a 

3a 

4a 

l'IT 

Total 

Net Force 

Forces 

Atomic 
force 

in LiF 

Overlap 
force 

Screening 
force 

f. 
l 

0 . 

-0.362 

-0.064 

-0.296 

0 .010 

-0.712 

0. 

0.070 

0.016 

0.080 

0.180 

0.346 

2.0 

0.003 

2.004 

2.200 

3.304 

9.511 

2.0 

-0.289 

1.956 

1.984 

3.494 

9.145 

3 = 2[9-9.145] 
R 

= -0.052 

0.099 

0.007 

0. 6 3-6 

-1.148 

0.474 

0.001 

0.028 

0.081 

0.739 

0.136 

0.000 

1.972 

0.014 

0.043 

0.012 

0.100 

2.007 

0.731· 

-0.366 

0.622 

0.068 0.985 2.041 3.094 

9 = 2[3-3.094] 
R 

= -0.101 
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