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PREFACE

Fér approximately one hundred years chemists have
been writing structural formulae with lines connecting
the atoms which form so-called valence bonds. The concept
of valence arose in connection with the development of
organic chemistry and originally referred to the
combining power of an atom in a molecule. Gradually
chemists began to think of these structural formulae as
showing the way in which atoms are bonded together in
three-dimensional space. With the discovery of the elec-
tron, there was much speculation as to the physical basis
of the chemical bond. Lewis developed his concepts of
the shared-electron-pair and the stable octet to explain
respectively the covalent and ‘ionic bonds. The develop~-
ment of quantum mechanics in the late 1920's and its |
application to chemistry resulted in.the valence bond
interpretation of ionic characger.-

Yet the chemical bond so far has evaded precise
definition. Indeed it is the comsidered opinion of many
investigators that there is no precise‘definition for
this concept. This study presents a discussion of the
chemical bonds in homonucléar and heteronuclear diatomic

molecules. The discussion is in terms of the three-

dimensional electronic charge distribution and the force

iii



that it exerts on the nuclei. The net force acting on
the nucleus in a stable molecule must be zero. The
molecular density distribution when compared to the den-
sity distributions of the noninteracting atoms gives
evidence of the reorgéﬁization of charge that occurs
during the formation of the molecule in order to achieve
this”electrostatic equilibrium.

I agree with Polanyi that knowledge is personal and
involves the active participation of the.one who aspires
to know. My stay at McMaster University has allowed me
the opportunity of involvement in theoretical chemistry.
Thislthesis is the result of 3.5 years of reading,computer
fprogramming, discussions - and more computer programming.
Interspersed with these activities were sessions spent at
the piano in an attempt to perfect Bachian fugues and
the preludes of Rachmaninoff. |

In the poem "Ulysses", the hero is quoted as
saying, "I am a part of all that I have seen ". Indeed
this is true, I thénk my parents fof their material
assistance during the undergraduate portion of my student
career and for their encouragement. Also I thank Dr. |
D. R, Bidinosti of the chemistry department at the Univer-
sity of Western Onfario-who first taught me quantum
mechanics and directed me to further studies at McMaster

University.
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I thank Professor R.F.W. Bader for his continued
interest in the.problems discussed in tﬁis thesis. He
originally suggested the analysis presented in the following
pages and his enthusiastic approach has led to the |
successful completion of this work. From him I have learned
the importance of associating a physical picture with the
math;matica; description of "l'état des choses". Theoretical
chemistry is more than the evaluation of integrals !

I acknowledge the ass;stance of two graduate
students with whom I have been associated during the course
of this study. Mr. Andrew Bandrauk with his many statements
of disbelief often caused me to re;examine hastily drawn
conclusions. Mr. Harry Preston and I redesigned the computer
subprogramme F@RINT . He also rewrote the subprogramme
@VLINT for the calculation of overlap force integrals.

Financiél aséistance was provided by the National
Research Council .of Canada in the form of one bursary and
and three studentships. I aéknowledge this monetary aid.
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skillfully typed this thesis. To them I say thank you.

| Finally I wish to expfess my thanks to Dr. Paul E.
Cade of the Laboratory of Molecular Structure and Spectra
at the University of Chicago for supplying us with wave-
functions of Hartree-Fock accuracy. The interpretations
presented in this thesis would not be possible without the

many people who have developed the Hartree-Fock™Roothaan procedure.
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INTRODUCTION

In 1929; Diracl stated "the underlying physical
laws necessary for the mathematical theory of a large part
of physics and the whéle of chemistry are thus completely
known and the difficulty is only that the exact application
of tﬁese 1$ws leads to equations much too complicated to
be soluble." This statement has been quoted by numerous

2,3

theoreticians®’™ who have devoted themselves to the formidable

task of finding solutions to Schroedinger's equation

HY = EY

M~

where H is the quantum mechanical Hamiltonian, ¥ is the
eigenfunction of the system and E is the energy eigenvalue.
This equation which, for the quantum chemist, describes the
many-body problem presented by a system of nuclei and elec-
trons has ﬁot yet been solved exactly. However, progress has
been made especially within the framework of a physicallyI
well-defined approximation-namé;y the Hartree-Fock approximation
- so that there presently exist electronic wave functions

for atoms and diatomic molecules whose»enefgy eigenvalues are
‘close to the Hartree-Fock limit. One particularly important
advantage of these wave' functions is the fact that they yield
one~electron density distributions correct to the second order

in perturbation theory. As a consequence of this result, all

1



properties depending on the one-electron density distribution
are also correct to second order. Because the one-electron
density is just the three-dimensional electroniz charge
distribution, an observable of the system being considered,
its accuracy warrants its use as the basis for new definitions
concerning the chemical bond. |

It is the purpose of this thesis to discuss the
chemical bond in terms of Hartree-Fock, one-electron density
contour maps and to relate these density quantities +to the
force acting on the nucleus by means of the Hellmann-Feynman
theorem4, Certain electron density difference contour nmaps
are obtained by subtracting from the total molecular density
the density distributions of the constituent atoms. Such
contcur maps are interpreted as the reorganization of charge
at.zendant upon the formation of the chemical bond. If any
correlation axists between these contour maps and the clas-
sical ideas concerning the covalent and ionic konds., then
there will be density difference oxr Ap maps characteristic
of each of *hese limiting forms of the chemical bond. Does
the - Ap map for LiF show & localization of one unit of
electronic charge about the fluorine atom ? Does the Ap
map for a homonuclear diatomic molecule present a picture
which can be correlated with the classical concept of the
shared-electron-pair which Lewis5 postulated as the important

featu.. of a covalent bond ? Do the density and density



difference maps by themselves predict molecular stability ?
This thesis commences with é general discussion of
8ensity matrices  -and the properties associated with these
matrices. Hartree-Fock theory is discussed, and it is shown
that the Hartreae-Fock, one-electron density distribution and
its dependent properties are correct to the second order.
Density and density difference contour maps are discussed
for the homonuclear diatomic molecules Li

N )

2’ 2/ 2’ 2/

and.Fz. Force calculations involving these molecules are

B2, C

analyzed, and a comparison of the terms binding and bonding
is presented. Finally a comparative study of the bonds in
LiF and N2 is made. The analysis is in terms of the forces
overative in the two molecules and the dénsity and density
difference contour maps of the two molecules.

Most of the results of this thesis have been pub-
lished in the Journal of the American Chemical SocietyG’7

and the Journal of Chemical Physicsg.



CHAPTER I
THEORETICAL BACKGROUND

I.1 DENSITY MATRICES

The N-electron wave function is related to the
position cc-ordinates of each of the N electrons. As
Hartree9 has pointed out, a table listing its values at ten
positions of each variable would require lO3N entries.

In addition to £he fact that for increasing values of N,
the size of the table rapidly becomes intractable, the
entries in the table are meaningless from a physical
point of view. How can such a wave function be inter-
preted in the light of familiar chemical concepts?

In this section, the first-and second-order
density matriceslo are defined and expressions inveolving
their dependent properties are evaluated. The discussion
emphasizes the use of such matrices as interpretive devices.

Consider w(&i&z...iN) as a wave function describing
an N-electron system. The co-ordinate X, describes the

N

N and the spin Sy of the Nth electron. The

*
product V¥ V¥V gives the simultaneous probability of finding

>
position r

) ->
electron one at position ry with spin s electron two at

l’

- . . . . . >
position r, with spin Sor. s and electron N at position r

with spin s

N

y+ The mth-order density matrix is by definitiomn



m ! i N. *
r(i,2...mj1 ,2 ...m ) = G ¥ (1,2...m,m+l ,...N)

Y(l ,2 ,...m ,m+l,...N)d§ﬁ+l...d§N (1)
where
¥(1,2,...,m,m+l,...N; = W(zlrzzf"'§m’§m+l"’§N)

In particular, the second-order density matrix is given as

_N(N-1)

r?(1,2[1",2) =24

* ! ! W gty >
¥y (1,2,3...N)¥(1 ,2 ,3,...N)dx ...de.(Z)

The diagonal element of this matrix, F2(1,2ll,2) has the
following interpretation. The expression F2(l,2}1,2)d§ld;2
is equal to the number of pairs of electrons times the proba-—

bility for finding one electron within the volume element a?l

. .. > . . L
around the point r, with spin S and another electron within

1

the volume element d?z around the point f2

with all other electrons having arbitrary pesitions and spins.

with the spin Sy

The diagonal element of the first-order density matrix

»
2,...de (3)

* .
Y(1]1) = N | ¥ (1,2...N)¥(1,2,...N)dx

has the following physical interpretation. It is just the
number of electrons, N, times the probability of finding an
electron at the position T

with spin s, irrespective of the

1 1
co-ordinates and spins of the other electrons. The expres-
sion

p{Z) = | v(l|lds, (4)



1¥ now independent of the spin s, and is just the total

1

<narge density at the position r Equations (3) and (4)

1°
state that, in principle, a one-electron density function
which obeys the laws of gquantum mechanics can be calculated.
Arguments from this point onward can be based upon a threef
dimensional function p(;) describing an electronic charge
distribution in real space instead of a 4 N~dimensiornal
function Y which has no physical interpretation at all.

The discussion of density matrices can be carried
further by showing their use in the calculation of atomic

and molecular properties. The definition of a one-electron

operator is given below as
N
P= 1.0(i) {5)
i=1
where the index i refers to the ith electron. The average

value of this operator is

2...de

[ o I

\ *, . ' > a2
P> = ¥ {1,2,...N) o(i) ¥(1 ,2,...N)dxldx

i=1

' -> -+ , > o )
= [ 0(1) y(1]1 );i=§l dx, = O(r) pir)dr {6)

where the last of the three expressions follows if the
operator is spin independent. The above equations (6)
qhoﬁ tsat the average value of a one-electron operator de-
pehds 'nly on the first-order density matrix where the
convenicion is that the operator operates on unprimed co-

ordinates ané then primed co-ordinates are set egual to
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unprimed co-ordinates. A two-electron operator defined by

Q =32z G(i,j) (7)
ij
where i#¥j yields for its average value
- * *
Q> = §1§~1L [ ¥7(1,2,...N)G(1,2)¥ (1',2',...N)d§l...d§N
= | ex,2r%1,2]1",2")2' > ' > aX.a¥ (8)
’ r ’ xl=xl,x2=x2 1772

From these considerations,the average value of the electronic energy

of a molecular system is easily calculated as

E = <Y|H|Y> . 9
where H= f H.(i) + % ¥ — (10)
. N 2 r..
i=1 1,] 1]
2 i#j
4 lVi Za
an i)z .—— - —_— 3
Hy (1) > Lo (11)
o “ia

Also rij is the distance between the ith and jth electrons,

Vi is the Laplacian opératbr for the ith electron, Za is

the charge of the ath nucleus énd L is the distance between
the ith electron and the ath nucleus. With these definifions,
the energy is

2 ] ¥
r<(i,2{1 ,2)
E= (1) y(1]1')>' > dx.+ ' ‘
J HN X,=Xq 1 } ri,

Another form for the énergy equation is

' . e oty

N(N—l).[ ro(1,211 ;2 )z 4%
2 1o -

! ' '
N | H (1) T2(1,2]1,2 ) aR, aR,+

N ,
RN | or2qa,2010,2)) a% e,



where the subscripts §l = Xqi §2=§2 have been dropped, and

the above mentioned convention is still implied. Equation

¥

(13) allows for the normalization of the second-order den-

sity matrix and shows that, in fact, the energy of the system
depends only on the second-order density matrix. Lawdin10
has suggested that equation (13) be the basis of é minimiza~
tion procedure that seeks an expression for the density

matrix F2(1,2|l',2') &hich produces the lowest energy poss.i.c.

Then the one-electron density distribution could be calculated

from the following equation

(N-1)

L] ]
p(® = 8L p21,2]17,2") as,a%, . (14;

1
However, in order to proceed in this manner, an analyticail
form for F2(1,2|1v,2') must be known. This is by nc means
a trivial question and is part of the general problem of
N-representgbilit%lwhich asks the necessary and sufficient
conditions that a given density matrix is a representatica
of the properly antisymmetrized N-body wave function.

Of course, at present the density matrices can be
obtained by the more conventional method of integrating
+the function

v (1,2,...M¥(1,2...0) . (15)
The following chapter gives a detailed account of the
Hartree-Fock approximatior to ¥ and the one-electronfden~’

sity derived from this approximate Y,
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I.2 ~ THE HARTREE-FOCK APPROXIMATION
The electronic wave equation for a polyelectronic,

polynuclear system is given beliow as.

z
- % rv.Zior %y g 1y ogy (16)
1

: 16 Sia i>3 Fij
where the symbols have been previously defined. As mentioned
in the introduction, this wave equation has never been soclved
exactly. ‘If exact solutions do not present themselves, then
approximations are necessary. In particular, the Hartree-¥ock
formulation seeks an approximate wave function which is

antisymmetrized product of one-electron spin functions. Thus

v = /x| a;(Lay(2) ... .a (M) ]] (17)

The heavy double bars Jdenote a determirnant. If the one

electron spin functions obey the following relation

<ai|aj> = eij (1)

where Sij is the usual diagonal Kronecker & symbol, then
the wave function ¥ is normalized to unitcy.

The concept of the one-electron spin function arose
from an attempt to extend the central field model for the
nhydrogen atom to the general case of an N-electron system,
An electron in the spinorbital a, moves in a field owing to
the nuclei z, and the average charge distribution of the

remaining N-1 electrons.
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Hartreel~2 was the first person to formulate the

quantum mechanical analogue of the classical central field
atom. He calculated the self-consistent field in which a

- given electron moved, and then obtained the orbital descri-
bing this electron by numerical integration techniques. As
early as 1927, he obtained an orbital energy for He of
-1.835 a.u. which compares favorably with the present day

calculation of -1.83592 a.u. published by Clementil3.

14

In 1930, Fock extended the Hartree theory to

include the Pauli principle and, in the same year, Slater15
noted the connection between the variation principle and
the Hartree-Fock formalism in the case of an antisymmetrized
wave function composed of one-electron spin functions.
Consider such a wave function describing the N-

eleétron problem in the case of a diatomic molecule. The
Born-Oppenheimer16 approximation is assumed in this dis-
cussion and, as a result, the wavefunction ¥ is labelled
with a subscript E for electronic. The energy of such a
. system is given as

E = <Y |H|Y:> (19}
where the Hamiltonian H is given in equation (16}
With the definition of HN(i) as the Hamiltonian describing

one electron in the field of the two nuclei Zl and Zz

v.2 2 gz
HNU) = =t _ -3 .i_.E‘__ (20)

2 g=1 “ia
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the total Hamiltonian becomes

N 1
H=13 H (i) + I —— (21)
i i>3 Tij ,

The expression(19)-for the electronic energy becomes

N
1 L] l

He (i)+ 3 <
1 i>j *ij

N o2

= <al(l)....aN(N) .

llai(l)....aN(N)||>

i
I~z

<ai(1)|nN(;)|;i(1)>-+ I <ai(1)aj(2)I;Izlai(l)aj(2)>

i=1 i>j

_<ai(l)aj(2y|?%;4 ai(zraj(l)i]

N =,
Lt ifj [?ij - Ky ] (22)

For a closed shell system where the spinorbital a; is

fl
N~

i

restricted to be of the form'¢ia or ¢iB, the wave function

is given as

T « .
¥p =y §7l 12, (MaMP (2)8(2) .. ..o (BN || (23}
2
¢i is the ith molecular orbital and obeys the relation
<¢i|¢j> =85 (24)

The symbols o and B refer to the one-electron spin functions.

With these definitions, the terms in equation €2) become
1]
I, = <ai(l)lHN(l)|ai(l)> = <¢i(1)|HN(l)|¢i(l)>= I; (25)

' = 1 = 1 s=J. ,
Ji5 = <ai(1)aj(2)Irlzlai(l)aj(2)>-<¢i(1)¢j(2)|r12|¢i(1)¢j(2) —Jij(26)
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1 _‘ 1 _ 1 . _
Ky = <a;(ay(2) I-f-l-; lai(z)aj (1)>=<g; (1)@, (2) IJ—:IEIQ:.L(ZHJj (1) >=K; 4(27)

Equation (27) is trué if ¢i and ¢j have the same spin. Other-

)
.+ Wwise Kij=0' The energy of such a closed shell system is

E=23I,+LJd,, + I [4Ji.—2Ki.] (28)
i i i>j W 13 J
where the sums are over the occupied molecular orbitals. The
above expression can be rearranged to give
E=23L1I,+ 1 2J..-K, .
PR [. ij 1%] (29)
wnere Jii = Kii .

Under what conditions do the molecular orbitals ¢i
yield a wave function whose energy is a minimum ? In order
to answer this question, the energy must be minimized subject
to the restriction that the one-electron functions remain

17 . . e
normalized and orthogonal . This is equivalent to mini-

mizing the energy subject to the condition that

2L €,.8.. (30)
ij 3 I
remains constant. The Eij are constants and
= = (31
Sij Sij <¢i|¢j>. )

]
A new quantity E is defined and it is required tha: this '
1]
E be stationary with respect to small variations in the ¢i.Thus

L
E =E -2 % €.. S.. (.32)
i4 i] 13

and



13
= 2-; GIi + F. 26Jij—6Kij_2€ij65ij} (33)
i ij
It is necessary to evaluate all the expressions in equation

(33)

asij = 5<¢i(l”¢j‘l’>=,<5¢i(1)|¢j(1)>+ <¢i(1)|5¢j(1)> (34)

§I; = 2<8@, (1) [Hg (1) [, (11>

(35)
Further, J;; = <¢i(1)¢j(2)1;%5I¢i(1)¢j<2)>
= <@; (1) [35(1) |8, (1)> = <@, (2) |3, (218,21 > (36)
where Jj(l) = <¢j(2)12%;|¢j(2)> (37)
3, (2) = <¢i(1)|;%;|¢i(1)> (38)

Jj is the interaction of electron one with electron two
where the position of electron one is held constant and the
integration is carried out over the charge distribution of
electron two. It is the average field acting on electron
one because of the remaining N-1 electrons. The assumption
that this average field does not change as electron oné moves

is implicit in the Hartree-Fock formalism. Thus

5Jij=z<a¢i(1)|Jj(1)|¢51)>+2<5¢j(1)[Ji(l)l¢j(1)> (39)
’ L _
Also Kij = <¢i(%)¢j(2)lfzgi¢i(2)¢j(l)>

= <@ (1) [R, (1)@, (1) > = <@,(2) |K; (2) |85(21> (40)
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Kjis an exchange operator which reflects the inclusion of the
Pauli principle in the theory. Thus

8Ky = 2<6¢i<1)|1<j(1> |85 (1) >+ 2<88.(2) |K; (2) 921> (41

]
With these relations 8E in equation (33) becomes

{}5¢i(1)|[éHN‘l)+¥ @Jj(1)‘4K§1Jj|¢i(l)>-<6¢i(lﬂ2§gij ¢j(l)i]

8E =0= I

i=l

j
(42)

Since 6¢i(l) represents an arbitrary variation of the itr
molecular orbital ¢i, then
{hN‘l) + § (2Jj(1)—Kj(l){]¢i(l) = g eij ¢j (43

ot

An orthogonal unitary transformation of the type

can be executed where here and in all future references the
index onelindicating the single particle nature of ¢i is
dropped. 3uch molecular orbitals ¢; lead to an electronic
wave fuhction

v = arl 191D ag 8@ .. gy M|
S . 2

Lok

= ‘PE det {5} (45>
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where det{C} is the determinant of the matrix C.

Since C is a unitary matrix, det{Cl=t1,

'
WE = % WE ‘ (46)
and such a unitary transformation does not change the total
electronic energy of the system. 1In particular, the unitary
transformation U which diagonalizes the matrix € is sought.

The Hartree-Fock operator is defined below as

F = Hg + g (2Jj—Kj) (47)
and is invariant to this transformation. The transformed
molecular orbitals and € matrix become

g = @b (48)

L= 0T | (4)

(U]

@ and ¢ are row vectors, U is the required pxg
matrix where p=§ is the number of occupied molecular
orbitals, U ! is the inverse of this matrix and £ is a
diagonal matrix. The placement of these resﬁlts in the

matrix equivalent of equation (43)

FG = Je (50)

yiélds the result
Fg, = €;9; (51)

or r

J

Equation (52) describes the Hartree-Fock integro-different:al

equations. In future references to this result, all primes
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4

will be dropped and Qi will be used to represent the itﬁ

Hartree-Fock molecular orbital. The equation is essentially

&

the same as that one proposed intuitively by Hartree. The

average potential in which the electron moves is given by

VvV = - + I (2J3.-K.) 53
vl AR (53)

In order to ‘calculate this average potential, a charge
distribution must be assumed. Thus a self-consistent ap-
proach’to the problem is adopted in which it is required
that the final calculated charge distribution be the same
as that one assumed in order to make the calculation.

The term e; in equation (52) is called the orbital
ercergy. It has been shown by Koopmansgothat e, (with the
prime dropped) is an approximation to the ionization

enerqgy Ii of an electron in the ith molecular orbital;

that 1is Ii = -€; (54)
Also ,
12 z, Z, o v'
ey = =<#;139119; >“<¢i|r_i‘I + Ei—2‘|¢i> Lo(27;457K 00 (55)

J
The orbital energy is. equal to the kinetic energy of electron

i and the interaction potential <¢LIVI¢i>' This interaction
pocential consists of the coulomb attraction.bétwéen elec~
t¥on i and the two nuclei Zy and Z, plus the coalomb re-
pulsion Letween the electron i and the charge distribution

describ. ag the remaining N-1 electrons. In the case of j=i,

j,.=K.., and the coulomb repulsion is equal to J.., the
11 il ii
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s

repulsion between two electrons in the ith molecular orbital.
In this particular case, the exchange integral Kii is seen
as preventing the inclusion in the total potential energy

of a term describing tﬁe repulsive self-potential of an
electron ; that is, the repﬁlsive potential of an electron
due to its own charge distribution. For i#j, the term

2J describes the potential between electron i and the 2

(]

i3
electron:z in the orbital @j. Since the exchange potential
Kij is non 2ero only for electrons of the same spin, the
factor two is in this case deleted. It 1s difficult to
ascribe a simple, classical, physical picture 10 the term
ij. All that can be said about this term is that it
arises because of the antisvmmetric nature of the electronic
wave funclien. It represents an additionral interaction
between a pair of electrons with parallel spins.

Althcugh Hartree originally obtained his ocne-
claciron functiens by numerical integration techniques,
Roothaanlg l.as more recently formulated the expansion method
for the solution of the Hartree-Fock egquation. In the case of
diatomic molecules, he obtains the molecular orbitals as

linear combinations of Slater-type functions centred on each

nucleus.


http:functi.on
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Cc

Thus Pirxa = E Xpna Cinp (56)

ilo
p

. » *
where pra is a Slater-type function denoted by Snza
n+%

_ (2©) n-1 .o _=-Zr
Snla = T(—zi—)—ﬁg r Y’L e (57)

Similarly the one-electron atomic orbitals are approximated as

X 5% = & X

ilao c

pio Tilip Y (58)
The index lambda refers to the symmetry species of the one-
electron orbital and o is the symmetry subspecies. which
beeomes important if A is degenerate. The index i is an
integer which numbers the nondegenerate functions within a
given symmetry species. For instance, in atoms the elec-
trons are classified according to their angular momentum
quantum number as

=0 —> s

=1 —> p

L=2 — d_
6

Thus for neon in the configuration 1522522p , the atomic

Hartree~Fock orbitals are labelled

] ]
X lS, X 25’ X 2p0' X zpll X zp_l
In linear molecules, the electrons are classified
according to their angular momentum along the z axis as
lz=0 —> 0

zz=l —_—

*
The symbol r represents the orbital screening
coefficient. Y% i s a spherical harmonic.
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Hence, LiF, in the configuration 1022023024021w4 has

associated with it the molecular orbitals

216220236 %40 P1n+ P10 -

From the expansion equation (56) above, it is
seen that the choice of Slater-type functions depends on
the symmetry of the molecular orbital in question. Non-
degenerate molecular orbitals of the same symmetry species
have the same basic Slater-type functions. However, the
linear coefficients CiAp depénd on the index i but are in-
dependent of the symmetry subspecies a. If egquation (56)vis
substituted into equation (51),theﬁcanonical Hartree-Fock

equations become in matrix notation

Foa = P (59)

Thus for molecular orbital ¢iAa’

FXAaCA = Ei.XAaCX (60)
y is a
column vector. The indices Ao in equation (5Y9) imply that

ila is a row vector, ¢Aa is a row vector, and C

in the case of o electrons, there will be one matrix equation
of the form

F@, = €9, (61)
and that, in the case of m electrons, there will be two
identical matrix equations of the form

P = € B, (62)

Consider‘equation (60) and premultiply both left and right

hand sides by ika*' Then

*

- - - — *
Xaa F Xag Cx T %1 Xpa

Xyq CA (63) -
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PO~ S 10 = (64)
or ¥y eiSA]CA 9
The matrix FA has elements qu such that
F = < P >
g xpl qu (65)

The matrix SA has elements S such that

Spq = XplXq> (66)

Again for ¢ electrons there will be one such matrix equation.
For m electrons there will be two identical matrix equations.
The above matrix equation has a nontrivial solution if the

determinant

| IF, -€;5,][=0 (67)

Here is the clue for solving the matrix equaﬁion to self-
consistency. 1Initial vectors EA are assumed and an initial
basis set is proposed. The matfix F, of the Hartree-Fock
operator, and the overlap matrix S are calculated. The matrix
|F-eS| is diagonalized, the orbital energies e, are obtained
and new sets of vectors CA are generated. The cycle is
coptinued until the calculated EA agree with the assumed EA
to a given degree of accuracy. vThe total energy is then given
as |

Bp = I (ey+<p |Hylg;>). (68)

The sum is over all occupied molecular orbitals
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The total energy calculated is not yet necessarily
the minimum Or Hartree-Fock energy. Many calculations must
be done in the search for a completely flexible basis set
- which allows for full atomic polarization and the excitation
of the atoﬁs within the molecule to higher quantum states.
The former effect (polarization) has been treated in a
different way by Hurleylg. Also within each calculation
the nonlinear exponential parameters are varied to minimize
the energy. ‘

In 1955, C. WwW. Scherr20 performed the first
nonempirical calculation with the expansion method on the
molecule N,. He used a basis set of single 1ls, 2s and 2p
Slater-type functions on each centre, chose nonlinear
coefficients according to Slater's rules and obtained a
total energy of -108.574 a.u. In 1960, Ransil21 used the
first generation3 of molecular structure electronic computer
programmes in a set of calculations on closed shell
structures including Liz, Be2, C2, N2, F2; LiH, BH, NH,

HF; CO, BF;. and LiF. He again used a minimum basis set

but allowed his nonlinear parameters to be varied in the
energy minimization process. A variation of the orbital
exponent on one centre can have the effect of increasing

the polarization of charge at the other centre. Ransil's
total energy for N, was -108.63359 a.u. In 1961, Richardson22

2
made the next significant improvement on the energy of N, by
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using a double zeta basis set in which each of the valence
Slater-type functions was doubled; that is, he used 2s,
25', 2p0, 2po', 2pTr and ZpW' Slater-type functions on each
centre. With variation of the nonlinear parameters, he
reduced the error in the total energy by 4.1 e.v. to
-108.785 a.u. Using the second generation3 of molecular
structure computer programmes developed by Wahl, Huo and
othersZ3, Cade, Wahl, Huo and their associates have done
extensive calculations on CO, BF, N2 and its ionization
products, the remainihg homonucléar diatomic molecules,
and the first and second row hydrides. They have used
lérge flexible basis sets with higher quantum Slater-type
functions such as 3s, 3p, 3d and 4f, and have also varied
the nonlinear exponential parameters to obtain what they
fgel to be results close to the Hartree-Fock limit. For

example, in the case of N224

, they obtain a total energy
of -108.9928 a.u. This computed energy is still in error
from the total experimental energy by 16.1 e.v. while De’
the dissociation energy is in error by 4.70 e.v. This
error is called the correlation error and results in part
from an overestimation of the field acting on a given
electron because of electrons of opposite spin.

L6wdiri10 has shown that,’given a complete set of

one-electron functions, a true solution to Schrddinger's

equation can be given as
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Y= 1C, V¥V, | (69)
i 1l 1

¥. describes the ith configuration and is an antisymmetrized
product of N of these one-electron functions where N is the
number of electrons in the system. This is the method of
configuration interaction and is juét an extension of

the single-configuration wavefunction that has already

been discussed. 1In thé Laboratory of Molecular Structure
and Spectra at the University of Chicago, a third genera-
tion3’25 of computer programmes based on multiconfigura-
tional éelf—consistent field theory is being constructed.

It is expected that expansions of a relatively few number

of configurations will yield wave functions of high quality.
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1.3 BRILLOUIN'S THEOREM AND THE HARTREE-FOCK ONE-ELECTRON'
DENSITY -

In the case of an orbital approximation to the elec-
trenic wavefunction, the diagonal element of the first-

order density matrix is given as

Y(1[1)= I a; (1)a, (1) (70)
1

The sum is over all occupied molecular spin orbitals. 1In
this section it wi Il be shown that the Hartree-Fock one-
electron density is correct to second order27.

The Hartree-Fock model for an'electronic system is
essentially a single particle model in which each electron
moves in an average field owing to the nuclei and the other
electrons. It has been pointed out that the energy of
such a system is never equal to the experimental energy.
iﬁere is a difference between the two which is called the
correlation enefgy*. This correlation energy is just
_é reflection of the fact that the instantaneous field
that an electron experiences owing to the remaining N-1

electrons is not the same as the average field that it

experiences in the Hartree-Fock approximation.

The gorrelation energy 'is the difference between
the Hartree-Fock energy and the theoretical energy. This
theoretical enargy is the experimental energy of the system
minus. the relativistic corrections.



25

Suppose there exists a complete set of one-electron
spin functions such that each member of this set obeys the
relation

<ai|aj> = Sij (71)

Since these functions depend only on the coordinates of one
electron, they must be eigenfunctions of some Hartree-Fock
operator; that is,

F a. = €£,a,
i ii

(72)

F is the Hartree-Fock operator and € is the orbital energy.

Tf these eigenfunctions are arranged in order of increasing
seh.tal energy then the first N spin functions can be used

to form an antisymmetrized product wavefunction which describes
the ground state of an N-electron system. This wavefunction

v

is given as

v© =/ é_ llap(May(2) .. .ag(d)ag(3) .ay || (73)

For this ground state wavefunction, the Hartree-Foc¢k operator

2
1579

F =H,+ X J; - K. '
N 3 [ i i ] (74)
whare
Z .
H_ = 1 T v? -y O : - (75)
N 20 i . Y.
1 1ad . 10

dj and Kj are defined by the relations

' l _
Jij = <ai[Jj |ai> = <ai(l)aj(2)'EI;Iai(l)aj(2)> (76)
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1

] [}
K.. = <a, . > = . . — .
i allkj !al> <a1(l)a3(2)|r12l al(2)aj(l)> (77)
The Hartree-Fock energy is given as
¥ Z[U V]
E =3I, + J..~K.. (78)
H.F. i 1 i>5 13 "13
where
= {
I, <ai|HN|ai> 79)
Also28
l 1 1)
Eyp. = ? €1 7 2 i§ 035 ~Ki9 ! (80)
i#3j
Thus there is some H° such that
0,0 o
yoo= R 4
H Y L (81)
An inspection of equation (80) shows that
§ 1
o . 1 _ - . -
H =1 F(i) =~ 3 £ L (J.(1i)~K, (1)) i#j {32)
i ig J
F(i) is defined by equation (74). Further
(o] . o, _ - ;
<¥U|z F(i)|¥°> = Loe, (83)

1 1

~i.eare the zndex i runs from one to N.
The ab ove discussion can be made the kasis of an
analysis of the accuracy of the Hartree-Fock one-electron

density. The total electronic Hamiltonian is given as

_ . 1 1
H=2H(i) +35 I 7=
i iJ 213
. i#3
.z L1 vy X _1 "(1)-K. (i
=H + 3 g - 3D I Iy (d)-Ky ()]
‘ i3 ~i 17
i#3 i#]

= H” + AV (84)
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H® is defined in equations 81l) and 82). V is the difference
between the exact operator H and the operator H° which

possesses eigenvalues E It is here regarded as a small

H.F.®
perturbation. The energy of the system correct through

first-order perturbation theory is given as

E = <v|H|¥> = <¥Oavl|mOav|yOayls

= <¥O[HO 1O [<¥ O [¥O5+<¥O | HO[¥T>+<¥® v [¥O>]  (s5)

where )\ is a perturbation parameter. Wl is a first-order
correction to the Hartree~Fock ground state vO,

An excited state configuration in which a is
ceplaced by ay is called a one-electron excitation and is
descfibed by the antisymmetrized product

/’l

.k 5 l|al(1)a2(2)'"'ak(i)"‘aj(j>"‘aN(N)t] (86)

An excited state configuration.in which a; is replaced by

2y 2

citation and is described by the antisymmetrized product

and aj is replaced by a, is called a two-electron ex-

y |Ia (Day(2)...a (1) ...a,(3). .,aN(N)II (87)

ij:k£=//ﬁT
1 . . o ... .
Y , the first-order correction to ¥~ will contain deter-
minants that differ from Wo.by one-and two-electron
axcitations. This is so because the perturbation term V

11l connect states differing from each other by one- and

two-electron excitations. Therefore
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1
vt =1 a, ., V.. vooa,. o, Y.L
ik ik ik i9ks ijeke "ij:ke (88)

From perturbation theory ‘<W iV|WO>
ik '

a; . = - (89)
ik By p 7Bk
! O
_ <\Pij:k,QlVH’ >
qij:ke T E E (90)

H.F. ij:k&

'E_..k is the Hartree-Fock energy of the determinantal wave~-
- i f ‘ ] ' - =

function yi:k and Eij:kz is the Hartree-Fock energy of the

determinantal wavefunction VY, The scalar product

ij:ke”
<o, VI¥es = <y, L2 or E-Ts oy )k, (4)¥0>
ik’ i:k]| 2 r.. 2 : 3 3 (31)
ij ij ij
i#3 i#]
=0

Thus the wavefunction correct through first order is given
as

Y= ¥+ 5 al Yoy (92)
ijke 3¢ J:

With ‘these relations, the various portions of
equation (g5) can be evaluated. The scalar product <?1|H°|YQ>
involves only the term <Wij_k£IH°]WO> which is equal to zero
Thus

<t B[¥0> = <¥®|rO|¥l> = 0 (93)

There remains the term <W°|V]W°> . A straightforward
calculation shows that it is zero. With this information
equation (85) yields the energy of the system correct through

first-order as
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0..0}.,0
E=<Y |H |¥"> = EH.F. (94)

There is a second-order correction to the Hartree-Fock energy

which is given by
E(2)=[<W2|H°|W°>+<W°]HOIW2>+<W1|H°]Wl>+<Wl]V!W°>(95)

+ <y v|¥ls

This expression can easily be seen to reduce to

£ = <yl ylsicyl|v|¥Os<vO v | ¥ls (96)

(2)

where E represents the 'second-order correction to the
energy. The wavefuncfion correct through first order is
written as
v = w0 v 1 Bigike Yigike (92)
ijke
The diagonal element of the first-order density matrix
correcf through first-order perturbation theory can be calcu-

lated from the expression

2
fo) - > >
y(1]1) = YO+ D aisie Yisikg dx, dX,...dxg
: ijke
= | vO° gx. dx, .... dx. . C(97)

2 3 N

There is no first-order correction to the density and equation
(70) is correct to second order, If y© is written in the
restricted Hartree~-Fock scheme and is a closed shell deter-

minant, then the expression for the electron density distri-



bution is

= o=
p (L) & Mita

Pira Pira (98)

The symbol N is the occupation number of the orbital

@.

ila® Equation (98)° is also correct to second order.

However in the case of an open shell system, there is some
disagreement as to whether p(;) is or is not correct to
the second order30’3l’32.

A one~electron operator has previously been
defined and it has beén shown that such an operator is
dependent only on the first-order density matrix. The.

average value of the one-electron operator

P =1 O(i) (99)
i .

correct through the first order is given as
- ' 1l
@> = <¥° + Atz 0(i) |¥O+ AY s
i
[ 1l
= <¥|z o(iﬂw°> + A<W1IZ 0(i) [¥°> + a<¥®|z o(i)|vi> (100)
i i i

Since Wl involves only two-electron excitations, it is

easily seen that

<¥liz o(i) [¥O> = <¥°|z o(i) |¥l> = o (101)
i , i

and

<> = <¥°|F 0(1)[¥%> = | o(1) y(1[1))d%,  (102)
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The average value of this one electron operator has no first-
order corrections33- The statement that all properties
dependent on the first—order density matrix are correct to

second~order has thus been proven.



32

I.4 THE CONCEPTS OF BINDING AND ANTIBINDING IN DIATOMIC
MOLECULES

(a) The Hellmann-Feynman Theorem

The force acting on the nucleus in a molecule is,
according to the Hellmann-Feynman theorem4, rigorously
determined by the first-order density matrix. Thus, a
Hartree-Fock wavefunction should yield a force correct to
second order in perturbation theory. Consider the proof of
the Hellmann-Feynman theorem. ¥ is the wavefunction descri-

bing a molecular system, and the energy of this system is

given as
E = <Y|H|Y > (103)
where
HY = EY (104
and
<Y|y> =1 (105)
The derivative %% is obtained as
dE dH avy avy
= <Wl [W> + B 3 [<¥]|¥>]
di 107)
= - SH, (108)
<)y - LE,
since '
d Vs = g—.. = ’
C_1_..<\1!| > = 3x (1) 0 (109)



Figure 1. The co-ordinate system describing a diatomic

molecule AB. The distance x,. represents the component

Al
of ;Ai along the internuclear axis. The distances Tai
and Xp; are measured with respect to a co-ordinate system

centred on nucleus A, The symbol e represents an electronic

charge.
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This is the mathematical statement of the generalized
Hellmann-Feynman theorem. If Y describes a diatomic mole-

cule and is obtained within the framework of the Born-

16

Oppenheimer approximation, then

> o

> > -> ,
¥ o= Yo (X Xyeooo X R)Y, o (X, Xp) (110)

R is the internuclear distance and WAB is the nuclear wave-

function which depends on the nuclear co-ordinate §A and iB'

The Hamiltonian which includes the nuclear-nuclear potential
term is given as

N Z z
H=—%—ZV?—Z——A——-—ZB + 3§ 2t

. : . fXo N
i Yifai ifi i>3 “ij

ZAZB
R

+ (111)

The indices i and j run from one to N where N is the number
of electrons.

The parameter ‘A is defined to be the nuclear co-
ordinate XA and the deriv::itive_si-E is taken with r_. held

di Bi
constant. Figure 1 shows the above described situation

Z. dr. . Z_ Z
di -z 2 (AL 2B @R, (112)
dXA . r2 dXA r R2 dXA -
T tai + i » Bi
dR ‘
(). =-1
dXA rgi (113)
dr. . dr. .
Al Al '
( No== ( )|=— cos O. (114)
dXA rBi dxAi - AL
T .
B1i
Therefore
aH  _ N ZAcosOAi ZAZB
ax_ - " ¢ 2 t (115)
A i r. . R

R Al
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and
Z cos0 Z2.%2
dE A Ai ) A"B
—_— = P = <Y —Z Yy > <+ 116
ax, A E| § rAz E RZ (11e)

whare FA is the definition of the Hellmann-Feynman force on

nucleus A, If WE is an unrestricted Hartree-Fock wave-

function, then .
Z_ 2 cosB, - ' -
Fy = —5— = Z, 5 y(1|1) dx, (117)

R Ta

or if WE isvobtained within the restricted Hartree-Fock

formalism then
Z2.7 cos0
A 2 A .2

R rA

A (f)ar (118)

Similarly, the force acting on nucleus B is

Z_7 cos0
_ AB_ -> ->
Fp = 2 Zg| —7— e(D)dr (119)
s .

A B
by two then the equation

If F, and F, are added together and the result is divided

’ [
FA+FB ZAZB [ZAcosOA +_ZBcosO

1 > -
7=z -~ 3| 2 71 dr  (120)
R *a B |

is obtained. The quantity

Z_cos® Z_cos0
AT A B B
Q = 3 + 2 (121)

rA I'B

is just the sum of the force acting on nucleus A and the
force acting on nucleus B because of a point charge at a

distance rA from the nucleus A and a distance rB from the
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Figure 2. Binding and antibinding regions in diatomic
molecules, The curves passing through the nuclei repre;'
sent  the nodal surfaces of revolution defined by Q=0.
Charge density placed in the antibinding regions behind
the nuclei exerts a force tending to separate the nuclei.
Charge density placed ;n the binding region between the
nuclei exerts a force tending to displace the nuclei
towards each other. In the case of a homonuclear molecule,
the two antibinding regions are identical and the curve
Q=0 is open.. In the.case of a heteronuclear molecule,
the figure shows that the curve Q=0 is closed in the

region of nucleus B. This nucleus has a smaller charge

than does nucleus A.
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nucleus B. The situation is the same as that shown in Figure 1.

Berlin>?

used th erelation (121) to define binding and anti-
binding regions in diatomic molecules. In the region of
positive Q, the total electronic force is such that it tends
to pull the nuclei toward each other in opposition to the
force of nuclear repulsion. Such a region, Berlin termed
the binding region. In the region of negative Q, the total
electronic force is such that it tends to pull each nucleus
in the same direction. However, it tends to pull one nucleus
more strongly than the other with the result that the nuclei
separate. Such a region is termed the antibinding region.
The binding and antibinding regions are separated by nodal
surfaces of revolution where

Q=0 . (122)
Figure 2 shows a homonuclear and a heteronuclear diatomic
molecule. The lined regions behind the nuclei are the anti-
binding regions while the internuclear area is defined as
the binding region.

(b) The Density-Difference Function-An Interpretive
Device.

One of the purposes of this thesis is to discuss
diatomic molecules in terms of their electron density distri-
bution functions p(;). These functions are easily pictured
in terms of electron density contour maps. A description

of the computational techniques required to plot these

contour maps is presented in the appendix.



39

It is also of use to compare the density of a given mole-
cule with the densities of its atomic constituents. This
is done by means of the electron density difference func--

tion35-44, Ap(;) defined as

bp(¥)= py(¥) = p, (¥). o (123)

The molecular density is designated by pM(;) while pA(?) is
the sum of the atomic densities calculated as if the non-
interacting atoms were brought to the obéerved internuclear
distance. Such Ap functions can also be pictured in the
form of contour maps. These Ap contour maps can be
interpreted as th eredistribution of charge which accompanies
the formation of a chemical‘bond. The Hellmann-Feynman
theorem as it applies to diatomic molecules gives a
firm basis for this interpretation.

Consider two spherica14atomic charge distributions.
Label the nuclei of the respective charge distributions A

and B. The force acting on nucleus A is given as
ZA
FA = ;‘5 [ZB—fA] (124)
where ZA and ZB are the nuclear charges of A and B
respectively, R is the distance between the nuclei, and fA
is an effective electronic charge situated on the nucleus B.
From Gauss's Law, this effective charge is equal to the

total amount of charge within a sphere whose centre is

‘nucleus B and whose radius is R. At large internuclear dis-
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tances the nucleus A is outside the charge distribution of
B and

B A ' (125)
with the result that
(126)
As nucleus A penetrates the electronic charge distribution
Surrounding nucleus B

B A {(127)
and

Fpo >0 (128)

For all degrees of penetration, there is a net force of
repulsion acting on nucleus A. Similarly there is always a
net force of repulsion acting on nucleus B. The overlap
of two spherical charge distributions does not place enough
charge in the region between the nuclei or more precisely
in the binding region to balance the electrostatic force of
repulsion owing to the nuclei A and B.

The Ap'map, which describes a stable diatomic mole-
cule must show an accumulation of electron density'in

the binding region - an accumulation sufficient to offset

the electrostatic force of repulsion owing to the nuclei.



CHAPTER II

THE ELECTRON DENSITY DISTRIBUTIONS IN
HOMONUCLEAR DIATOMIC MOLECULES

IT.1 INTRODUCTION

In this section, an"ihterpretive discussion of one-
electron density and density difference distributions in |
terms of contour maps is presented. Although such topo-
graphical maps have previously been documented in the
iiterature, ‘the density quantities which they represent have
been derivedyfrom crude VY. 'A comparison of the difference
density maps shown here with those published by Roux38
is sufficient to underline the importance of an accurate
representation of the one-electron density for both
atoms and molecules. After the publigation of these density
contour maps, an interpretive paper by Ransil and Sinai45
appeared in the literature. Their analysis is similar to
that espoused in this discussion and the results reported
here can be compared with their data.

The analysis of p(;) presented here is neither the
first nor the only analysis to be exploited. For some time

now, Mulliken's46'47

molecular orbital population count, an
integrated form of p(;), has been used to gain an idea of the
distribution of electrons within a molecule. The population

analysis gives quantitative meaning to concepts such

41
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as electron promotion;. hybridization, bond orders, atomic
and overlap populations; and thie results of such calculations
are presented as effective electron configurations for

atoms within the molecule under consideration. The increa-
sing complexity of molecular orbitals approximated as linear
combinatiens of atomic orbitals makes precise definitions
of these concepts difficult to forﬁulate. Indeed, the
population analysis appears to be meaningful only when the
molecular orbkit=als are approximated by minimal basis sets

of atomic orbitals. Davidson48 has realized this and has
attempted to fit density distributions obtained from ex-
tended basis set approximations tc a minimal basis set

of atomic orbitals having some intuitive significance

He constrains the appruximate densities so that their wmean
square error relative *to the "true" densities is a minimum,
and, in this way, attempis *to recover a meaning for the
texms hybridization and electron promotion.

The analysis of molecular charge density cContour
maps oy Ransili aand sinai®® results i the division of such
maps into regioas of lccalized and delocalized charge
defined respectively as that charge contained within con-
tours that encircle both nuclei separately and that charge
excluding the core regions which spans the entire molecular
space. * classificatiorn of these charge regions in terms
of their binding, nonbirding or antibinding nature is

made, and electron populations within given locaiized contours
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are calculated. A comparison of these populations with
those found within the same contours in the isolated
atoms from which the molecule is formed gives an idea of
the charge transferred tc ithe core regions during the
formation of the molecule.

Rnedenberg49 has proposed an extensive inter-
pretation of the physical nature of the chemical bond using
the first- and second-order density matrices. He relates
these density gquantities to energy changes accoméanying
certain hypothetical processes occurring as the chemical
bond develops. Another approach to estalklisa a nonarbai-
trary link between riqorougﬂmolecular orbital wavefunctions
and chemical concepts has been formulated by Edmiston and

Ruedenbergso’SI,

Beginning with the canonical molecular
orbitals ¢i these aunthors determine localized molecular
orbitals Ai which correspond to conventional localized
inner shell, lone pair, and bond orbitals. These localized

molecular orbitals are determined by the unitary transfor-

mation

which maximizes the sum
DO = & <l =[1P>
L 12
2, 1 2 .
The term <Ai|;—-lxi> represents the repulsion of two
2

electrcns in the orbital Xi. The index i runs over all
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occupied localized molecular orbitals. It is possible to
compare the diagrams derived by Edmiston and Ruedenberg with
the density difference diagrams shown here.

The direct determination of electron density distri-
butions in molecules f?om x-ray and electron diffraction of
the relevant gases is theoretically possible. Elastic
scattering depends on ‘the one-electron density distribution
while inelastic scattering depends on the two-electron

52,53,54 55

density and his associates

At present, Bartell
are attempting to reproduce experimental intensity measure-
ments for the molecules Nzland 02 by employing the Ap(;)
‘contours shown in this thesis for these molecules. In the
past, their calculationé have been based upon the density
distributions of the undistorted atoms oxygen and nitroger.
and have not agreed with the experimental data at low angle
scattering. Such Ap(;) contour maps should help to determine
whether the disagreement occurs as a result of correlation
effects or the chemical bond. As of yet, the density

contour maps discussed here have not been reproduced by

experiment.



Figure 3. The total molecular charge density contours fo

[

the first row homonuclear diatomic molecules. The wvalues

of the conteours in this and the following maps are quoted

. : : 3 3

in atomic units (1 a.u.ze/ao = 6.749e/ﬁ ). The sane

scale cof length applies to all the maps in this figure. The
innermost circular contours centred on cthe nuclei have

been omitted for the sake ¢f clarity. The value of the

total derncity at the position of the nuclei is given in

Table I.
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IT.2 THE TOTAL MOLECULAR CHARGE DISTRIBUTIONS

Contour maps of the total molecular charge density

distributions for Liz,Bz, C2’ N2’ O2 and F, all drawn

2
to the same scale are shown in Figure 3. The wave function
1 ' -
for Li2 (X Z;) is from Cade, Sales and Wah156; for B2(X3Zg)
1
and cz(alz;)57 from Greenshields; for NZ(X Z;) from Cade,

Sales and Wahlsg; for 0O, (X3Z§) from Cade and Mallisg;

and fbr Fz(xlzg)60 from Wahl. The contours connect points of
equal density in a plane containing the two nuclei and are
continuous in nature. °The total density is distinct from
the various orbital densities in that it possesses no nodal
contours.

A cursory examination of these density diagrams
shows that L12 differs from the remaining members of the
series in two aspects; The Li2 density along the internuclear
axis possesses two saddlepoint minima while the remaining
moleculér densities possess only one such saddlepoint. The
density of the lithium molecule, especially that in the
binding region,is diffuse in nature; that is; the outer
contours are separated by greater distances in Li2 than, for

example, in O This has the effect of giving Liz an over-

2.
all width greater than that found for the other molecules.
The diffuse nature of the density in Li2 can be correlated

with its bond type as predicted by simple molecular orbital

theory. The bond in Li2 is seen as resulting from the over-
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lap of two lithium 2s orbitals,one on each nuclear centre.
The overlap of such s orbitals is not highly effective in
concentrating dehsity in the internuclear region along the
bond axis. The diffuse nature of the electron density in
this molecule also correlates with its bond strength. Li2
has the lowest dissociatioh energy of any of the homo-
nuclear diatomic molecules studied in this thesis.

| Molecular dimensions have long been inferred from
measurements of virial coefficients or transport properties
such as viscosity. The assumption of the empirical Lennard-
Jones (6-12) intermolecular potential61 yields'one effective
molecular diameter. More complicated empirical potential
expressions such as those by Kiharajand CornerG_l for molecules
with cylindrical symmetry yield two "effective dimensions".
An examination of the density distributions in Figure 3 pro-
vides a basis for different definitions concerning the
lengths and widths of molecules. Molecular size here is
defined with reference to a specific contour inside of which
most.of the electron density is contained. Calculations
carried out during these studies indicate that the 0.002
contour contains over 95% of the total electronic charge,
ana thus the 0.002 contour appears to be a good cut-off
contour in terms of which the length and width of a given
molecule can be measured. Such a contour choice is arbitrary
tp some extent, and there is no a pPriori reason why the‘

results reported here should agree with the "experimental



TABLE I

Characteristics of the Total Density Distributions

Molecule L12 B2, C2 N2 02 . F2
Wwidth (a.u.) 7.8 7.2 7.0 6.4 6.0 5.4
Length (a.u.) 8.7 9.8 8.5 8.2 7.9 7.9
Re (a.u.) 5.051 3.005 2.3481 2.068 2.282 2.268

Distance of
0.002 contour
from nucleus

In molecule (a.u.) 1.8 3.4 3.1 3.4 2.8 2.6
In atom (a.u.) 3.2 3.4 3.2 3.0 2.9 2.8
Fraction of total ,
electronic charge 0.59 0.58 0.60 0.56 0.55 0.54
in the binding
region

Charge density :
at the,nuclei 13.855 71.856 127.323 205.591 311.312 448.760

(a.u.)

Dissociation

Energy 1.12 3.0 6.36 9.902 5.213 1.647
e.v.

*
1l a.u. of density = e/ag = 6.749 e/g3

87
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diameters" of the respective molecules. The length and
width of éach molecule defined respectively as the distance
between the intercepts of the 0.002 contour on the molecular
axis and on & line perpendicular tc the molecular axis and
passing through its mid-pcint are given in Tabie I. These
data in Table I are similar to results reported by Ransil%>

except for the case of N His total density contour map

2°

for N2 shown in Figure 3 of his text differs from that one

reported here although the same molecular wavefuaction was
used in each case. Asg a result he reports a molecular width
.of 4.70 a.u. for N2 wh:le this study indicates a width

of 6.4 a.u. for the same molecule . fhe experimental values
of the diamesters of the NZ and O2 molecules as determined
bv a Lennard-Jones (6-12) potential are 7.84 and 7 .32 av.u.61
respectively. These results are slightlv smaller than the
lengths and slightly larger than the widths of the molecules
N2 and O2 shown in Table I. With a more complicated po-

tential expression Kihara obtains for N, a width of 6.57 or

2
7.73 a.u. and a length of 8.64 or 9.81 a.u. for sphero-
cylindrical or eilipsoidal molecules61 respectively. The
spherocylindrical values agree quite well with those reported
in Table I. .

Table I .iso shows for each of the molecules the

fraction of the total charge that lies in the binding region.



50

There appears to be no correlation between this fraction

and the strength of the bond as determined by the dissociation
energy. Neither does there appear to be any correlation

with the number of electron-pair bonds predicted by the

"Lewis model. However a population number by itself does

not give a complete picture. More important than the total
number of charges in the binding‘region is the placement

of this charge relative to the nuclear axis. Density
concentrated on and near the molecular axis is the most
effective in binding the nuclei together. The diffuse

nature of the'Li2 molecular density shows that there is no
strong concentration of this density along the molecular

axis and consequently that, relatively speaking, more

charge must be placed in the binding region of this molecule
in order to obtain electrostatic equilibrium. Similarly C2
has an abnormally large fraction of the total.electronic
charge in its binding region. Simple molecular orbital

theory predicts that this molecule is held together by two

pi bonds - bonds which do not concentrate density on the
molecular axis. It is true that the studies reported here
indicate that, even in the case of C2 there is a concentration
of density in the internuclear region typical of a P, bond.
However the abnormally large binding region population and

further data to be discussed presently indicate that there

is a considerable amount of density characteristic of =
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character in the off-axis internuclear regions - an amount
of density larger than that found in the case of N2,O2 and
F2.

Also shown in Table I are the experimental bond
lengths and the electron densities at the nuclei. There
seems to be no definite correlation between the bond length
and the overall molecular length. There are twc factors
which must be considered in understanding the length of
‘a moiecule, the bond length and the rate at which density
falls off from the nucleus on the side away from the bond.
Table I lists the distance from the nucleus to the 0.002
contour in the molecule aﬁd the radius of the same contour
=n the isolated ztom. With the exception of Liz this
distance in the molecule is almost identical! to the value
in the isclated atom. Thus the contribution of the two
end lenagths, beyond the nuclear separation to the overall
length of the molecule is largely determined by how tightly
the density is bound in the unperturbed atom. The binding
of the atomic density increases from Li across to F so
that Li and Be are large and diffuse while N,0 and F
are progrecssively tighter and more compact. Therefore Fz
is smallier in size than N2 or C2 even though possessing =
greater kond length owing to the fact that the density in
the F atom is more tightly bound than that in the C or N
atoms. The Li. molecule differs from the others in that

2

its length is considerably less than expected considering



Figure 4. A diagram to illustrate a method of estimating

the size of a peripheral atom.
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the diffuse nature of its atomic density or in this case
the molecular length is not approximately equal to the
sum of Re and twice the "atomic" radius. This is however
easily understood sincé in the Li'.atom only one valence
shell electron is present so that no atomlike residual
charge in the valencé shell remains in the molecule as is
the case in B2, CZ’ N2, O2 and F2' This is further il-
1ustfated by using instead of the 0.002 contour of Li
the 0.002 contour of'the ls2 shell of Li which yields a
relevant atomic radius of 1.7 a.u. in good agreement with
the molecular value of_l;8a.u.

An accurate estimate of the size of a peripheral
atom is tentatively proposed as the sum of L ke from a

2
suitable source and the atomic "radius" as defined by the

0.002 contour of the atom (except for Li, Na, etc., where
the core radius should be used). For example, Figure 4 shows

the length of a peripheral fluorine fragment.



Figure 5. The density difference contour maps for the
stable first-row homonuclear diatomic molecules. The
same scale of length applies to all the maps. The dotted
lines {shown in full for N2) separate the binding from

the antibinding regions.
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IX.3 THE DENSITY DIFFERENCE" CHARGE DISTRIBUTIONS

Figure 5 shows the Ap(;) contour maps for the series
of homonuciear diatomic molecules Li2, B2, C2, Nz, O2 and FZ'
As mentioned in the introduction, these Ap(;) maps provide
a useful picture of the net redistribution of charge that
takes oplace during the formation of the chemical bond. Also,
in the case of stable molecular arrangements such Ap(;)
contour maps should evidernce a net transfer of charge to
the binding region. The overlap of two atomic densities
at the observed internuclear distance does not place suf-
ficient charge in the binding region to balance the electro-

. . . ) . .62
static force of repulsion owing to the nuclei .
| d

The Ap(}) function is a significant guantity in-
dependent of the orbital representation of the wave function
as it is invariant to orthogonal, unitary, orbital trans=-
formations. Ag (%) maps identical to those shown in Figure 5
would be obtained if the molecular orbitals were first
transformed into eguivalent or localized orbitals. The
Ap(?) function is dependent on the quality of the orbital
representation in both the molecular and atomic wavefunctions.*
A consistent approximation perspecﬁive has been adopted in

this approach with wave functions of Hartree-Fcck accuracy

being used tc calculate both the molecular density and the

*The Lp map is incdependent of.the atomic basis set
for basi:z sets of equally high quality. The use 0f the "accurate
basis sets’ of P.Bagus and T.Gilbert (unpublished results, leaves
the Ap maps of the first-row homonuclear diatomic molecules un-
alterec except in the case of Li. In this latter case a small
change in the zero contour is evident in the region of the Li
nucleus.



(&7

Figure 6. & density difference contour map for the molecule
Liz. Here the molecular density is derived from a multi-

. . . - . .
configurational wavefunction. The Ap(r) map for Li, in

figure 5 involves the molecular density derived from a

Hartree-Fock approximation to the wavefunction.
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atomic densities63 that are needed to construct the Ap(;)
function. Such an approach neglects the electronic cor-
relation in both the atomic and molecular systems. It
might be argued that the Ap(f) function which is defined as
the result of a subtraction of two Hartree-Fock densities
is essentially accurate. The correlation errors in each
density tend to cancel each other with a resultant error of
less than 1% in Ap(;). However, as the separated atoms
apbroach cach other to form a molecule, there is a pairing
of electrons with a resultant correlation effect that is
not present in the atomic densities. Hence the above
argument is nct totally valid. Although it is not known
hew best to treat this problem at present, preliminary
studies64 employing a configuration interaction wavefunction65
for the Li2 molecule yield a.Ap(;) contour map shown in
Figure 6. This Ap(;) map is similar in every detail

—\’. . . o - .-
to the Ap(r) contour map shown for Li, in Figure 5.

2
The atomic densities used to construct these Ap(;)
maps describe the atoms in their valence states. This
acproach foresees the formation of the electron-pair bond
and 1s considered to yield the chemically most interesting
results. As an example, consider the formation c¢f the F2
molecule. At large internuclear distances, where the two

fluorine atoms just begin to interact, their orbitals can

e classified in terms of the guantum number A, tha orbital
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angular momentum along the bond axis. In the limit where A

just begins to be a good quantum number, the two fluorine

2

atoms can be described by the configuration 15223 2p§2p§.

Hence the bond in F, is foreseen as the overlap of two 2po

2
orbitals each with a éingle electron. A spherical average
over the ground state configuration for the atomic den-
sities would neglect this preferred direction towards

the other atom. There is no difference between the valence
state density and the average ground state density for Li and
.N, but‘B and C are placgd in valence states with one and two
o electrons respectively while O and F are placed in,

states with a single Py electron, the remaining p electrons
being averaged over the 7 orbitals.

An examination of the diagrams shows that there are
two characteristic regions of charge buildup in each
molecule - one being ih the intefnuclear region and one
being in the region behind the nuclei. The charge increase
behind the nuclei is‘small in the case of Li2 but quite
extensive in the remaining molecules. The dotted contours
on the N, Ap(?) map indicate the boundaries between the
binding and the antiﬁinding regions. Similar dotted contours
appear in the upper left region of each remaining diagram
and serve the same purpose as those contours in N2' A

consideration of these observations in terms of the concepts

of binding and antibinding34 leads to the surprising fact
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TABLE II

Increase in the Number of Electronic Charges in Berlin's

*
binding and antibinding regions

Bin@ing Antibinding
Region Region

Li2 0.41 ~0.01

Be, 0.17 0.11

B, .30 0.05

C2 .50 0.06

N, 0.25 0.13

02 0.10 5.14

F, 0.08 0.10

*Since the charge which is concentrated in these regions
is removed from both the binding and antibinding regions
these figures do not represent the changes in totai

alectron population for these regions.' The calculation

of these numbers is described in the appendix.
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.

that charge is not only concentrated in the binding region

but also in the antibinding regions. Only Li, corresponds

2
to the simple picture of charge transfer from the antibinding
to the binding region. From Li2 on across the series, the
charge density is increasingly removed from the binding

region until, for F practically the whole of the decrease

21
occurs in the binding region. Table II shows a series

of population numbers obtained by intégrating the Ap(;)
function over the various regions where it is positive.

The table shows two columns - one corresponding to a buildup
5 charce ir the binding region and one corresponding to

a buildup of charge in the antibinding region. In agreement
with the interprecation derived frqm the total density con-

tour maps, Li, and C, show the greatest increase ¢f charge

2
i the binding region. The data for 02 and Fz shows that
here a greater amount of charge is transferred to the anti-
binding region than to. .the binding region. Again it must

be noted that the Ap(?) contour maps and population numbers
do not give a complete picture. Although the charge accumu-
lated in the binding region is concentrated along the
internuclear axis while the charge accumulated in the anti-
binding region is more diffuse in nature, it is evident thact
an examination of these maps and population numbers will

lead to no conclusions regarding the stability of the

respective molecules. A force analysis will however show
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that each of these molecules has reached a state of electro-
static equilibrium. In fact, the force exerted by the charge
density in the binding region, the overlap density, is
greater than that required to balance the force of nuclear
cepulsion. Consequentiy, the atomic density on each nucleus
is strongly polarized away from the‘binding region.

The difference maps do give an idea of the bond
type.Li2 is certainly distinct from the other members of the
series and is characteristic of the increase in the inter-
nuclear region that is expected because of the overlap of
s functions. 1Indeed, in the wave function for Li, the
coefficients describing the p orbital contributions are
gquite small. The remaining Ap(;) maps show the increased
p character of the resulting bonds. Even B2 and C2 which
are seen in simple molecular orbital theory as possessing
respectively one and t&o T bonds, show maximum increases
in their respective Ap(;) maps along the internuclear axis.
If the m character of the bond remained strongly evident,
the maximum increase in Ap(;) would be above and below the
bond axis. Howaver the 7 character of these bonds is evi-
denced by the relatively larger distance serxarating the
two portiensz of the zero contour as measured along a
line at the molecular midpoint and perpendicular to the
internuciear axis. The relatively larger populations in C

2

z=d B2 - firstly describing the charge increase in the
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Figure 7. The total density and density difference
contour maps for the ground state of Be2 at an inter-

nuclear separation of 3.5 a.u.
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binding region and secondly describing the total fraction of
the charge in the binding region, together with the relatively
smaller increases of charge in the antibinding regions of
these molecules also evince their 7 character. With the

57 02 and F2,

internuclear increase becomes even more concentrated along

filling of the 30g and ﬂg orbitals in N the

the axis while the increase behind the nuclei becomes

more diffuse.

The molecule Be2 in its ground state aas the con-

figuration 10g2lcu220g220u2. As this state is not bound,

its electron density contour map should be investigated to
determine if this type of information is predicted by such an
analysis. Figure 7 shows the total density and density

difference contour maps for Be, at an internuclear distance

2
of R = 3.5 a.u. The wavefunction for Be2 is from Cade and
Sales66. The internuclear distance is approximately the

value cbtained for a nuclear charge.of 4 when Re is graphed
versus Z for the stable members of the series. The density

contour map . does not indicate the instability of Be2 in its

ground state. The diagram, as it stands, has one feature

reaminiscent of Li, - namely the manner in which the contocurs

2

bulge out from the internuclear axis. Presumably, there is

O]

double zaddlepoint minimum along the internuclear axis.
Zven tne density difference contour map for bBe. shcws the
V4

szume general features as those describing the ctrer members



64

of the series,including two regions of charge increase, one
in the internuclear region and one behind the nuclei. The

simple picture of charge transferred from the binding region

67
2

in its unstable ground state is no longer evident. From another

to the antibinding region as depicted for the molecule He

point of view; Table II shows. that compared to the neighbouring
members in the series Li2 and B2 there is an abnormally large
buildup of charge in the extranuclear region while, in ad-
dition torthis, there is an abnormally small buildup of charge
in the internuclear region. Similarly, the total fraction

of charge in the.binding region of‘Be2 is only 0.53 compared

to 0.59 for Li2 and 0.58 for B2. These facts suggest and

a force calculation shows that the amount of charge trans-

ferred to the binding region in Be, is insufficient to balance

2
the electrostatic force of repulsion owing to the nuclei
However, the difference in the density distributions for a
stable and an unstable molecule is clearly one of degree
and not one of kind.

A guestion was posed in the introduction concerning
the compatibility of this approach with the Lewis concept
of the electron-pair bond. Herzberg68 has pointed out that
the difference between the number of bonding orbitals and
the number of antibonding orbitals in the molecular orbital

description gives the number of electron-pair bonds in

the system. It would be satisfying to obtain some correlation
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between this electron-pair bond conpept and the number of
charges accumulated in the binding region. A casual inspection
seems to indicate no overall relationship. There is approxi-
ﬁately twicé as much charge accumulated in the binding region

of C2 as there is in the case of B2. Similarly N2 has a

charge accumulatcion in the binding region three times that
of F2. These facts can be rationalized and a partial cor-
relation can be obtained if it is recognized that there are
essentially three different bond types in the series of

molecules Li C2, N2, 02 and F2' The first bond type

2rBay

is here represented by Li2, the second bond type is re-

presented by B2 and C2 while the third type is characteristic

0of the bonds found in N O, and ¥,. Li, appears to be

27 72 2 2

bound together by a relatively large diffuse accumulation of
charge in its binding region. This can be interpreted as
evidence of a bond formed by the overlap of s orbitals.

The accumulation of charge in the binding region of B2 and

C.. is not as diffuse as that of Li neither is it as

2 27

concentrated. as the charge accumulation in N and F,.

27 9o 2
This can be taken as evidence of the partial w character

of the bonds in these two molecules, The concentrated nature
of the charge buildup in the binding region of N2, 02, and F2
seems w0 indicate the strong Py nature of the bonding.

Molecular orbital theory predicts these molecules to have

one sigma bond and respectively two, one and zerc w bonds.
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The change.in bond type after C2 to one which is more con-
tracted along the axis accounts for the lack of correlation
of the charge accumulation in the binding region and the
number of electron-pair bonds. A discussion of bonding
solely in terms of a population count is misleading. As
important as the amount of charge is the exact disposition
of the charge in the molecule; that is, whether it is
diffuse or contracted in nature. Both of these features,
the amount of charge and its disposition are taken into
account in a determination of the forces which bind the

nuclei together to form a molecule.



Figure 8. Electron density difference profiles for
the first-row homonuclear diatomic molecules. The
vertical axis shows the Ap(?) values. The horizontal

axis represents the internuclear axis.
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I1-4 THE ELECTRON DENSITY DIFFERENCE P'ROFILES

Figure 8 shows electron density'difference profile
maps for the molecules Liz, Bez, B2, C2, N2, O2 and FZ.'
These graphs summarize the value of the Ap(?) function at
various points along the internuclear axis. The scale of
density difference values is shown along the vertical axis.
There seems to be a cofrelation-between the value of
Ap(?) at the molecular midpoint (Re/2) and the value of
the‘dissociation energy. Thus C2 has a dissociation energy
two times that of 32 and the difference density accumulated

at the molecular midpoint in C, is twice that of B

2 2°
Rosenfelt42 has suggested that there is a correlation between
the dissociation energy calculated from a given approximate
molecular wavefunction and the density difference at the
molecular midpoint. In fact, if the'experimeptal dissocia-
tion energy is plotted against the value of Ap(f)
calculated at th e molecular midpoint, there is a straight

line relationship for the molecules Li C, and N.,.

27 Bar C2 2
However O2 and F2 do not fall on this straight line but 1lie
above it. |

The profiles again evidence the three distinct bond
types previously discussed . Li2 shows only a very small
increase of density along £he.bond axis. Indeed there is a

greater increase of Ap(f) behind the nuclei than there is in

the internuclear region. The profiles for B2 and C2 are
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quite similar. There is a larger increase of Ap(x) along
the internuclear axis in the binding region than there is
in the antibinding region. The diagrams make evident the
Pg character of the bonds in these molecules. Although
simple molecular orbital theory predicts that the bonds in
B2 and C2 should result from the overlap of P, orbitals
centred on each nucleus, the profiles show a large increase
of charge density along the internuclear axis. There is
necessarily a transfer of charge from orbitals of 7 symmetry
to orbitals of ¢ symmetry. The profiles describing N2, o,
and F2 are all quite similar. Further these profiles are
distinct from those describing the other molecules. Each
of these profiles shows three Ap(;) maxima in the binding
region along the internuclear axis. The maximum Ap(?)
contours describing the charge buildup in the antibinding
region are similar in value to those Ap(;) contours at
the moleculér midpoint. The remaining two Ap(?) maxima'
in the binding region appear because‘of the filling of the
3og orbital. The density contours of this orbital show
maxima along the internuclear axis in close proximity to
the nuclei.

The profile for Be, shows larggr positive Ap(;)
contoﬁrs in the binding region than in the antibinding region.
It appears quite similar to those profile graphs describing

the molecules B2 and c, with the exception that there is
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a larger amount of density removed from the nuclei in Be2

than there is removed from the nuclei in B2. However the .

instability of Be., is not predicted by its profile map.

2



CHAPTER III

THE FORCES OPERATIVE. IN HOMONUCLEAR "DIATOMIC MOLECULES

The preceding seétion Presented an analysis of the
cansity distributions in the first row homonuclear dia-
zomic molecules. From a comparison of these density
distributions with their separated atom components in
cerms of the density difference function Ap(?), a picture
«f the charge redistribution attendant upon the formatién
of the chemical bond was gained. The study of such Ap(;}
maps led to the conclusion that their use in predicting
molecular stability was limited. The physical features
of the Ap(?) contour map for the unstable ground state of
Be, were found to be similar to those of the stable member:
2f the series.,:

To attempt an understanding of binding in a molecul:,
i+ is usefui to consider the change in the force which the
cotal density'exerts on the nuclei in the molecule relative
~o the situation in the separated afoms. Label the nuclei
in a diatomic molecule A and B with nuclear charges ZA and
Z resbectively. From the Hellmann-Feynman4 theorem, the

B

total force acting on A for any internuclear separation

is
2.7 T cos0
y oo CAB oy ytogmy S2%0uAa o gmyeen .
FA{R] = ———2—- ZA 2 l WAB(X ) ) ‘l’AB(x )dx (1
R b ruA

71
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ZA 2 * cos0
= .

5 75 - R 1zJ .wAB'(?{n) -r—z—llfi ¥, (X X" (2)
HA
where.
Yap (X1 = ¥, (X, ¥yl X)) - (3)
ax” = dSZld?{z.....d?cn (4)

The index u runs over all values from one to n where n is
the number of electrons in the molecule AB. At very large

R such that R>>Re (the equilibrium bond length)

n n
VG = v, & Py B

AB a (x ). (5)

This implies that electron exchange between A and

B is negligible. The electronic force integral now becomes

(Elec) g cos0 cos0
FA (R)= ZA WAB (§n) [ —2——-—1—1—A- + X ———2——\)—A-] WAB(}—Zn)d;n (6)
M ruA Y] rvA
[ n cos0 n n
_ > A WA,y (2 A 2A
= ZA WA(x ) [Z ——7—~—JWA(X ) dx
J H ruA
f
n coso n n
>'B VA > B >"B ;
- zA WB(X ) [Z -—5———] WB(X ) dx {(7)
) Vv r\)A

The index py runs from one to nA where nA is the number of

electrons associated with atom A. The index v runs from

one to n_. where n_ is the number of electrons associated with

B B
the atom B. For large R
‘ ZA .
F(R>>R ) = —= [2_ - (1 -6 ) -1z &
A e R2 B " MU N
n cos0 8 n n
- R? ol (% By(——22 - W) y (% Byax B3 (8)
v B r2 R2 B

VA
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where éup and va are the usual diagonal Kronecker §
svmbols. In eqguation (8,, the ceontribution to the force on

nucleus A frem electrons on A is given as

Y.
Yoq-s
M ( Msi)

This is a sum of zeros and results from the fact that, 1in

this limit, the electronic density is spherically piaced

Ui

about nucleus A, The e_ectrons oo centrisute an attractive

iy

orce just balancing the repulsive force resulting from the
nuclear charge ZB except for the electronie force occurring
in the last term in equation (8). Thiz lazt expression becomes

negligible by choosing R large enough; that is, as

then
cos@\)A -+ 1
->
rvA - R .
In the general case
ZA :
B (R~ E e : - - - 1 =
LA\R ) 3 [ZB L (1 dpp) by évv 0 (9)
E U ;
ox
Z, = - (-8 ) + L & . {10}
B | UM v vV

At the egquilibrium intarnuclear distance, Re' the force on

nucleus A iz also zero so that


mailto:g@ner.al

74

~0s0 .
pr? | v Y MRy e = g (11)
U Ton

Tf a Hartree-Fock wavefuncl.on is used to calculate the

O

integral cn th e left hand side c¢f eguation (11), then

cosl v cosf
, , uAh, RALTE. 'R 2. I uA > -
L R2 VAB&X ) —;7——~ WAB(A yax «igl R Ni Qi(ru) ~;§-m ¢i(lu)dru
H WA - WA
= i fﬁ. (12)

The index i runs over all occupied molecular orbitals ard NL

is the cccupation number of orkital .. 2guation (2) now

becomes
ZA
FA(R) = = (z_ ~ ) fil (13)
i 1
At all internuclear distances, tha eguation
FA(R) = - FB(R) (14)

holds. Tn an orbital descripticn, equation (11) becomes

Zy = ; fi (18)
1
and equataion (10) becomes
ZB = i Nk(l—ékk) -+ i NQ S&Q ; (16)

The indices k and 2 run over the atomic orbitais on A and B
respectively. The kth and 2th atomic orbitals correlate
with the ith molecular orbital at large internuclear
distances. Nk is ﬁhe occupation number of the kth atomic

orbital cn A and ty is the occupation number of the Lth

atomic orbital on atom B. 'The'fi'value is ‘a measure of the




~#igure 9. The Hellmann~Feynman force on nucleus A

and its variation with internuclear separation. FA(e)
is the electronic force acting on nucleus A. FA(n) is
tne force of nuclear repulsion. FB(R) is the Hellmann-

Feynman force on nucleus B.
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TABLE TIT

Summary of Behaviour of the Forces on the Nuclei with Internuclear Sepﬁrationa

R-Range Force on Electronic Versus Net Effect of
Nuclei Nuclear Force All Forces Remarks
R>>R F_=-F_=0 B § = 7 Nil I'lectronie contribution can-
e A B b) L4 B , V . .
3 cels nuclear repulsion
R > R F_=-F_50 r £, > 7 httraction Electronic attractive force
e A B . 1 E ) .
1 ) exceeds nuclear repulsive
force
R =R F_ =-F_=0 r £, = 7 Equilibrium Electronic attractive force
e A B . 1 B .
i balances nuclear repulsive
force )
R <R F_=-F_#0 I f., < % Repulsion Nuclear repulsive force ex-
e A B . 1 B . .
i ceeds electronic attractive
force

8This table is complimentary to Figure 9 and assumes AB forms a stable molecule.

9L
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degree of the attractive or repulsive contribution to FA

from electrons in the ith molecular orbital.

The general schematic behavior of FA graphed against

R is shown in Figure 90 for bcth a stable and an unstable
molecule. Table IIT describes the force acting on nucleus

A in terms cf the fi values for given ranges c¢f the inter-
nuclear separation. At large R, FA = -Fy = 5, so that the
total electranic charge on B is completely effective in
czacelling the repulsive force due to nucleus B. For

R>Re, the attractive electronic force exceeds the nuclear

repulsive force due to nucleus B. At Re’ there is electrc-

static equilibriuvm, and sgain F, = -FB=0 with the result that
T E. =% (15)
i

For R<Re, the repulsive force due to nucleus B cecomes
larger than the attractive force due to the slectronic
charge cloud although FA = —FB is still valid.

The foregoing straightforward equations and remarks
are valid for the exact wavefunction and for a select group
of approximate wavefuﬁctions including the Hartree-Fock wave-
function ,but for crude approximate wavefunctions
FA(Re)#O and FA(R)#—FB(R) except fortuitously. Hurley69

has discussed in some detail in a survey article the con-

ditions for which the Hellmann-Feynman theorem is satisfied.
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Since the net force on nucleus A is zero both at Re
and in the limit as R approaches infinity, then

I f, =IN(1-6,) +I NS =12 17
i 1k kk g L B (17)

For a homonuclear diatomic molecule, the molecular orbital
¢i correlates with the same atomic orbitals on both A and B
for large internuclear separations. In this limit, the atomic
density on A makes no contribution to the electronic force
acting on A. Thus at.large R, each fi has a value of unity;
that is

| fi(w) =1 (18)
As the atoms approach there is a redistribution of charge
in each molecular orbital with the result that the fi
values are in general70 no longer equal to one. If fi>l,
then relative to the separated atoms, the charge density
in the ith molecular orbital has been built up in the region
between the nuclei such that it more than screens one unit
of nuclear charge; that is, there is an attractive force in

excess of the repulsion of one nuclear charge. Such a

molecular orbital is denoted as a binding molecular orbital.

If fi<l, then relative to the separated atoms, the charge
density of the ith molecular orbital has been built up

in regions behind the nuclei. This density no longer
screens one unit of nuclear charge on B as it did in the
separated atoms. Such a molecular orbital is denoted as

an antibinding molecular orbital. If the density in such.
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a molecular orbital has an fi value less than zero, then
this density is strongly antibinding. In a strongly anti-
binding molecular orbital, the density is so placed to
actually pull the nuclei apart. If fi~l then the density
in the molecular orbital ¢i continues to screen one unit

of nuclear charge on nucleus‘B‘from nucleus A. The density

in this type of molecular orbital is termed nonbinding

as it plays the same role in the molecule as in the separa-
ted atoms. Inner shell molecular orbitals possess fi
values close to unity. This observation indicates that the
density in such molecular orbitals is indeed tightly bound
to each nucleus in close to spherical distributions. In sum-
méry, the force on nucleus A is given as

Z_

F_ = T(8,.-£f.) 19
A R2 i ii i (19)

where the sum is over each of the occupied orbitals. The

I components of a doubly degenerate orbital are counted
separately. If an fi value is less than unity, the quantity
(1—fi) determines the net positive electric field at the

ﬁwo nuclei and hence the net force of repulsion acting on
the molecule because of the ith molecular orbital. If ar

fi value is greater than unity, then the quantity (l-fi) is
a quantitative measure of the net negative electric field
and of the binding exerted by the density of this molecular

orbital over and above the screening of one nuclear charge.



Orbital Forces

TABLY

v

in Homonuclear Diatomic Molecules

Ground Net force
> . ] . P . ) . i
State tolecule f(lOg) f(lou) i(Zog) ;(ZJU) f(lnu) f(?@g) f(lﬂg, Zifj in a.u.
1.+ . - .

Zg Li, 0.706 0.658 1.591 2.955 0.005
lz+ Be2a 1.051 1.028 2.003 -0.39¢ 3.683 (:.103

g
3z; B, 0.979 0.971 2.305 -0.492 1.188 . 4.951 0.027
1.+ . b -

E_ C2~ 0.969 0.954 2.250 =0.436 1.125 5.987 0.015

o)
1.+ ) b

Zq N, 1.160 1.085 2.682 -0.463 1.2167 0.150 7.04¢ -0.075
5 -
Z 0, 1.232 1.138 2.934 -0.518 1.302b 0.174 0.426 7.990 0.016
1.+ b b

Lg F, 1.243 1.123 2.447 -0.168 1.2327 0.516 0.656 8.937 0.080
4The xlz; state of Be2 is a repulsive one. These results refer to an internuclear

distance of 3.5 bohr. ’

b

All of the fi velues are quoted for double occupation of the orbitals for comparative

purposes. The values marked by b are to be doubled to obtain the total electronic

force as they refer to filled pi-orbitals.

08
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Table IV lists the fi values for the homonuclear
diatomic molecules formed from atoms in the first row of
the periodic table. These values are calculated from the
same‘Hartree~F@ck ground state wave functions used to
thain and Ap for these mclecules. With the exception
of Be2, the sum of the fi values is close to % in each

-1
case, as regquired for electrostatic eguilibriuwm =~ . For Be2
the sum is less than %, a result which correctly predicts
the ground state of this mcleculs to be a repulsive one.

3,

The method of calculation of these numbers is described

fa.

n the eppendix.
A gquantitative measure ci the binding or antibinding
nature of each m.o. is oobcained bv comparing its fi value
with unity. With the exception of the 109 and lcu orbitals,
the binding oxr antibinding nature of a given molecular
orbital is the same for all the molecules in the series.
several faccors indicate that the molecuisz in this s=ries
can be divided into three groups, one containing the
O, and F

2772 27

and one involving only Li

moleculss H one containing the molecules B2

and C For N 0., and ¥

27 2° 27 72 27
both the lOg and the lcu orbitals are slightly binding.

for Be,. B,, and C these orbitals dre essentially non-

2/

binding while for Li lc  and lcu‘are definitely cntibinding.

2’

Foxr Li?l the overall disposition of the 1o density results

23]

in a Zorce of repulsion eguivalent to placing zuproximately
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six-tenths of a positive charge on each nucleus. The 20
orbital is uniformly binding for the whole séries. The
f(ZOu) values are negative in every case and thus the 2du
molecular orbitals are a2ll strongly antibinding. The density
in these orbitals does not shielida one unit of charge on
nucleus B from nucleus A and is so placed az to draw the

nuclel apart.

4

Again the classification described above is seen.

{

The overall 2¢ density is binding in the case of NZ’ 02, and

F2 while it is slightly antibinding in the case of B, and

2
CZ. For Be2 f(20g) + f(ZGu) is concsiderably less than 2.
From these observations. it is clear that the Be. molecule

2

in its ground state configquration will be unstable as the
nuclel in this mclecule will be imperfectly screened and
will experience a net force of repulsion.

The 17, orbital is only weakly binding for the
molecules in this series. In the casg of Nz, 02, and F2,
lwu is of comparable strength to the lcg orbital. The
f(BGg) values are’all less than one with the result that
the 30g orbital is antibinding,. The density in this
molecular orbital while it does draw the nuclei together,
does not shield one unit of nuclear charge on B from A.
The lﬂg orbital is slightlv more antibinding than the
lvu orbital is binding. The complete filling of the L

and ﬂg orbitals in F., leads to a small net force of repulsion

2
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as the electric field exerted by the eight electrons in
these m orbitals no longer balances the field due to four
positive charges on each nucleus.

As explained in the appendix, each molecular
orbital in this work is approximated By a linear combina-
tion of Slater-type functions., Thus each fi value can be

written as a sum

£, = £, (BA) 4 ¢ (2B)
1 1

i + fi(BB) . (20)

‘The term fi(AA)

designated by A and referred to as the
atomic force is a measure of the electronic force acting

on nucleus A because of density situated about the A
nucleus. If this density is spherically disposed about A,
then the resultant electronic force is zero. However, any
polarization of the atomic charge distribution as described
by s-p or p-d hybridization results in a force oh the A
nucleus in the same direction as the polarization. The termb

(AB)
i

£ designated by O and referred to as the overlap force
is a measuré of the electronic force acting dn the A nucleus
as a result of the overlap distribution. The positive over-
lap of orbitais centred on A and B results in the transfer
of charge density to the region between the nuclei and the
overlap force provides a quantitative measure of the effect-
tiveness of this transferred density in binding the two

nuclei together. The term fi(BB) designated by S and

referred to as the screening force is a measure of the elec-



Figure 10: Contour maps and various force contributions

for the orbital densities of 02(X32;) at R = Re (experi-
mental) after Wahl (Ref. 72). A fi(AA);

¢ (8B)
1

in

atomic force,
(BB)

D = overlap force, and S

screening force f_






85

tronic force acting on the A nucleus as a result of density
sitﬁated entirely on the B pucleus. It is a measure of

the electronic shieldihg of nucleus B from nucleus A by

electrons on B. The screening force provides the sole contribution

to the f. values at large R

Figure 10 shows the orbital density diagrams given

72

by Wahl for the 0, molecule using the wave function of

Cade and Mallisg. The caption under each diagram gives the
force exerted by each orbital density and its breakdown
into atomic, overlap, and screening contributions as des-
cribed above. The various populations for the remaining
molecules of the series are given in the appendix.

The/density contour maps for the lcg and lcu
brbitals appear similar in nature to those describing inner
shell atomiclike orbitals centred on each nucleus. There
is no overlap force and each "core" density shields one
unit of nuclear charge. However each core density is
slightly polarized into the internuclear region. It is
this polarization that makes @, and $,, binding in

u

9

the case of N O, and F For C

2’ 72 27 2" T2 2
zation is in the opposite direction with the result that for

B, and Li., the polari-
these molecules, ¢lo and ¢lo are antibinding.
' u

The density contours of the Zog orbital encircle

the entire molecule in contrast to the contours of the log

orbital. The strong binding character of this molecular
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~orbital is a result of two factors, the large transfer of
density into the overlép region and the polarization of the
remaining atomic density. As a result of this large overlap
force, the screening value is less than unity. This dis-
position of the Zog charge density is characteristic for all
the molecules but C2 and N2 for which the atomic force
contribution is small and negative.

The nodal surface passing through the midpoint of
the internuclear axis half way between each oxygen nucleus
is sfrongly evident in the density contour map describing
the 2ou molecular orbital. The strongly antibinding nature
of .this molecular orbital is a result of a strong back
polarization of the density surrounding each nucleus and
a negative overlap force. The negative overlap force
indicates that the charge in this molecular orbital is re-
distributed to regions behind the nuclei during the formation
of the chemical bond. The strong back polarization of the
atomic densities results in_a considerable reduction of the
screening contribution and thus in an unshielding of the
auclei relative to the separated atoms. A comparison of the
20g and 20u orbitals shows that the total overlap force
is attractive and tends to pull the nuclei together while
the total atomic force is negative and tends to pull the
nuclei apart. These two resultant properties of the Zog and
Zou orbital densities dominate the Ap maps for B, and C

2 2
with the result as noted earlier that their bonds can be con-
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sidered sigma‘bonds rather than pi bonds. In B2, for example;
the binding force exerted by the overlap density in the

20g orbital is three times larger than that exerted by the

lwu overlap density.

The lﬂu orbital Contains a nodal suriace perpendicular
to the plane of the contour map and passing chrough the
internuclear axis. The nuclei are descreened in the formation
of this molecular orbital and the resultant charge density
is transferred to the overlap region where it exerts a
positive force on each nucleus. However, because of the nodal
plane, the overlap density is placed above and below the
internuclear axis where it only exerts a minimal binding
effect as compared to the overlap density in the 20g crbital.
In fact the sum of the overlap and screening contributions
is approximately equal to one the nonbinding result. The
slight binding nature of the molecular orbital can be con-
sidered a result of the net inward polarization of the re-
maining atomic density.

The 30g molecular orbital contains one nodal surface.

The antibinding nature of this molecular orbital is a result

@)

i the strong back polarization of the atomic densities

centred on each oxygen nucleus. Even the large overlap force
which reflects the transfer of charcge into the binding region
aﬁd its localization along the bond axis is not sufficient to

counteract this strong polarization. The strong atomic force
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results in/a descreening of the oxygen nuclei.
The appearance of the density lobes pictured for

the lwg orbital is the result of a transfer of overlap charge
density to the antibinding region and of a direct polari-
zation of the atomic densities. In both o, and F, the lng
orbital is slightly more antibinding than the lwu orbital is
binding.

| Finally it should be noted that an orthogonal unitary
transformation of the canonical Hartree-Fock molecular
orbitals will change the individual fi values but will
leave their sum invariant. Thus in going from "canonical"
molecular orbitals to "equivalent" or "localized" molecular
orbitals, the new set of fi values can also be analyzed
in the above fashion in parallel with the new sets of localized
or equivalent orbital densities. Thus using £, values in an
interpretive sense violates a desirable tenet of any accept-

able interpretive approach but the valuable perspective

outweighs this shortcoming.



CHAPTER IV

A COMPARISON OF THE TERMS BINDING AND BONDING

An interpretation of the force acting on the nucleus
in a homonuclear diatomic molecule was presented in the
preceding chapter. The_interpretation'was in terms of
certain fi values which measure the degree of the attractive
or repulsive contribution to the force acting on the
nucleus from electrons in the ith moiecular orbital. Although
the fi values were derived from an orbital representation of

the molecular wavefunction they were found to provide a /

|

meaningful discussion 6f the chemical bond in terms of the

definitions binding and antibinding.

This chapter presents the results of force calcu-

2+, namely X22g+, %
AZHu and Bzzuf. An attempt is made to relate the two f

lations involving three states of N

definitions bonding énd binding. The bonding character
of an electron removed from the ith molecular orbital of AB
depends on the nodal characteristics of that molecular
orbital. A bonding molecular orbital possesses no nodal
surface passing between the nuclei while an ahtibonding
molecular orbital does possess such a nodal surface

The degree of bonding or antibonding character is related

89
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to the state of promotion of the ith molecular orbital in
the correlation scheme connecting the separated and united

atoms73’74.

The 20g and lﬂu orbitals are binding as they

both possessmfi values greater than one. These orbitals are
also classified as bonding accordiﬁg to the previous definitiqn,
Similarly the 2cu and lﬂg orbitals are antibinding as they
possess fi values less than one. These orbitals are also anti-
bonding because they possess nodal surfaces between the nuclei.
These nodal surfaces are perpendicular to the plane containing
the nuclei. The only qualitative discrepancy between the two sets
of definitions concerns the 3og orbital which is.classed as

a bonding orbital in terms of orbital energies and an anti-
binding orbital in terms of orbital forces. The 30g orbital

is only weakly bonding because of its incipient promotion

to a united atom 3sO orbital. In like manner the 3cg orbital
is not strongly antibinding as it does not exert a force
tending to pull the nuclei apart. The attractive force

that this orbital exerts on the nuclei is not sufficient

to counteract the repulsive force contribution of one

positive charge situated on each nucleus. The definition

of binding could be changed so that a binding orbital would
have an fi value greater than zero while an antibinding
orbital would have an fi value less than zero. Even in this
case the correlation between the two definitions binding

and bcnding is not perfect as the 1wq orbital 1s new classi-
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fied as binding and antibonding. Furthermore restricting
the term antibinding to cases where fi is less than zero
results in a loss of the most useful feature of the defini~-
tion binding. A molecular state will be unstable as long
as the sum of the fi values is less than the nuclear charge
and £he attractive force of the electrons fails to balance
‘the nuclear repulsive force.

The definitions of bonding and antibonding correlate
remarkably well with the empirical definition regarding
observed changes in bond length which accompany the removal
of an electron in a diatomic molecu1e73'74. The jonization
of an electron leads to an increase in Re if removed from
a bonding orbital and to a decrease in Re if removed from
an antibonding orbitai. An analysis of the force acting
on the nucleps in a diatomic molecule should lead to an e'en
more direct physical interpretation of the ionization process.

For this purpose, it is convenient to define certain

£, values by the following equation

2
~ R :
_ e =_€ (AB) - (AB+)
£y 'z';’ [FA (R) Fa (R)]. (1)
FA(AB) is the force acting on nucleus A in the molecule AB
while F (AB+) is the force acting on nucleus A in the molecular

A
ion. Both molecular species have the same internuclear dis-

tance so the ionization is termed vertical.Re is the equili-

brium internuclear distance of AB. The fi value is a measure

of the change in the force on A accompanying the loss of an
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electron from the molecule AB.
Equation (1) can be expanded by the use of equation

(2) in the preceding section. The result is

2
R n cos©
_F - _e [ w* (2N A 2n, .3n
fi E;- I ZA I WAB(x ) rz WAB(x )ydax
u uA
n-1 * o cos0
- . n~-1 HA >n~-1, .»> n-1
Zy, I ¥pt(x )———;2———‘I’AB+(X ) dx 1 (2)
HA
. e '
=-r 2| ¢t @any 222uA ., (2ngzn
R WAB(x ) r2 WAB(r~)dx
HA
- 2 | * 2n 2n, .»n 2n-1,, an-1, »n-1 COS@HA
(n l)Re [WAB(x )WAB(x ) dx WAB+(x )WAB+(x )dax ‘]";5—_f (3)
uHa

If distinct Hartree-Fock wavefunctions are used for WAB and

?AB+' then equation (3) becomes
~ . 1 ] L] L
-f, =~-f, + £, - I (f.-f.) (4)
i i i P TR B

The index j runs over all molecular orbitals common to

YAB and WAB+. For i#j

N. = N, ~ (5)
The fj and fj' are defined by

; cos0
’ 2 * HA > .
£f. = R °N. ——t2 .d 6
3 e Ny ¢j =2 ¢J T (6)



Figure 11. The Hellmann—Feynmén force and its change
upon ionization. These are idealized schematic sketches
to indicate general characteristics. The lower shaded
regiqn# correspond to the case in which attractive

forces exceed repulsive forces.
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£ =rR %' | @, -——LA;aj'd? (7)

j e j j 2 uo
ruA

' ‘
where ¢41 are the molecular orbitals describing the AB+
P
molecule. In this description the electron is ionized from

the ith mclecular orbital. If ¢i is doubly occupied then

N, =11 (8)
1f @, is only singly occupied, then
LN

| | Ni = 0 (9)
and the second term on the right hand side of equation (4)
is absent.

Figures lla and b show the Hellmann—FeYnman force,

FA(R) and its vgriation with internuclear distance. The
change i1n this force which accompanies an ionization'
process 1s also shown. The vertical arrows are a measure
of the fi valuesﬁ The horizontal arrows involve. adiabatic
ionization processes for which the force on the nucleus always
temains zero. The loss of a bonding electron is depicted in
Pigﬁre\lla. The force curve for the product of ionization
intersects the FA=O axis at a larger value cf the inter-
nuclear distance and the R=Re axis at a positive value of
the net force. The véftical arrow from the AB curve at Re
strikes the aB* curve at a repulsive point sc that a net

force of repulsion occurs. If the area defined by & in the

diagram 1s less than the area defined by B, tren a stable
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ion ABT exists and its equilibrium bond length is larger
than Re' The loss of an antibonding electron is depicted
in Figure 1llb . The force curve for the product of ionization
intersects the F,=0 axis at a smaller internuclear distance
and the R=Re axis at a negative value of the Hellmann-Feynman
force. The vertical arrow from the AB curve at Re strikes
the AB+ curve at an attractive point so that a net force of
attraction occurs. The stable ion AB" has an eguilibrium
internuclear distance smaller than Re' The foregeing comments
imply that the bonding c¢r antibonding nature cf an electron
can be determined by the respective positive or negative
sign of the %i value associated with that electrozn. An
examination ci eguation {4) shows that the sign of fi does
not necesserily dstermine the sign of %i‘ This is an im-
portant‘point and will be illustrated later in a discussion
of the binding nature of the lﬂg orbital in 02. The observed
change in the bond length which occurs as the result of the
ionization of an electron from the ith molecular orbital
is not in general indicative of the role of that orbital 1ia
the binding of the neutral molecule.

75

Clinton and Hamilton have attempted to calculate

a force curve for the molecﬁlar ion 02+(X2HU) which results

from the removal of an electron from 02(X3Z;)~ From eguation
(1) such a force curve can be calculated as
+ z . f.
(0,7) _ (0.}, .\ 0~ i
Fy 2 "(R) =Fy 2 (%) + 5 (10)
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TABLE V

Ionization Energies

Hartree-Fock : : "True" Rigid Orbital
Energy , Ionization Energy Ionization
energy
-108.9956
-108.4073 0.5883 0.6379
~-108.4196 0.5760 0.6285

-108.2631 0.7325 0.7687
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FO(Oz)(R) was calculated from spectroscopic data and %i.

was determined with the aid of a rigid orbital model. In
such a model, the core orbitals are -not allowed to adjust
themzgelves to the changing field which occure during the
vertical ionizatibn process. VWith reference to equation (4),
this approximation allows fj and fj' to be eguated to each
othe:. For double occupation of the ith molecular orbital

in the moleculs AB, the relation

1

| fi = §fi (11)
is obtained. If ¢i is only singly occupied in the ground
state of AB, then

fi = fi {(12)

Hurley69 has recently used this rigid orbital approximation

to derive formulae describing the energy difference between
a molecular ion and its parent neutral molecule.

| The simple idea of rigid orbitals unfortunately
does not hold because of a significant reorganizatien of

th= charge density in orbitals other than the one involved
i
in the ionization process.

58,59

Cede et al have determined the molecular orbi-

tals for certain of the icnized states of N, and O, by a

2
complete reoptimization of the ground state wavefunctions.
Table V shows a comparison of the ionization energies for
various N2+ states obtained both in the rigid orbital approxi-
mation and as the result of a subtraction of the Hartree-Fock
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Figure 12. Density difference contour maps describing

the loss of an electfon from variouslmolecular orbitals in
N2 during'vertical ionization processes. If a rigid or-
bital approximation is used then the density difference
contour map describing the loss of a 30g electron from N2
is just equal to the densitvy distribution of one electron
in the 30g orbital of N2. The positive contours of this

30g molecular orbital density indicate regions from which

3

electron density is removed during a verticali ionization

N

P

, .
-+ - . .

to the xzzg state of ¥, . If the density difference

u

¢

o

contour map describing the loss of a 30G electron Zrcm N
-

involves a subtracticn ¢f the Hartree-Fock densities
describing N;(xlz;> and N9+(X22;), then both positive

- . - =
and negeative contours are present. The positive contours
describe regions “rom which electron density is remov..d
during the vertiqal ionization process. The hegative
contours deecribe regions which gain electron densitv
as a resuit of the vertical ionization process. This
figure permits a compariscn of Ap(%)lcalculated with the
ald of the rigid orbital approximation and the accurate
ApI(f) calculated by subtracting the Hartree-Fock density

of the ionized molecule from the Hartree-Fock density

of the parent molecule.
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energies of the ionized sfate and the ground state. The ioni-
zation energies obtained from the second hethod are consistently
smaller. The loss of an electron during the ionization pro-
cess can be aepicted by a density difference contour map in
which the density function of the molecular ion is subtracted
from that of the neutral species. Positive ApI(;) contours
indicate regions from which electron density has been removed
dufing the vertical ionization. Similarly, negative Ap con-
tours indicate regions which become electron-rich as a

result of the vertical ionization. An integration of ApI(f)
over all space yields the value one as the ionization process
results in the loss of one electron. If the rigid orbital

model is chosen, then

Ap'

* s
I (r)¢i(r¥

(?)'= @

i
where ¢i is the molecular orbital from which the electfon

is removed. Such a ApI(f) function can be compared with that
one obtained by subtracting the true Hartree-Fock densities

. of both molecular species.’ Figure 12 shows such a comparison
25+ 221 ang B2
g u

+ v+ -
for the L, states of N, . ThevApI(r) map

2

makes it evident that the bond length will change as a result
of the ionization of a 20u electron. Not only is density
removed from the antibinding region in the formation of the
molecular ion but also density is accumulated in the inter-

nuclear region. From this point of view, it is obvious that

the equilibrium distance of sz(BZZZ) will be shorter than
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TABLE VI

Orbital Forces for States of N2 and N2+ for a vertical Ionization(a) R=2.0132 a.u.

(b) T . . .
Rigid (c)

State f(lcg) £(1lo) f(20g) | £(20,) £(1lm) f(3og) £, orbitals ORe
xlz; 1.154  1.080 2.628  -0.439 2.403  0.160 - - -
xzz; .1.086  1.046  2.569  -0.417 2.560 0.102 0.040 0.080 0.039
A2Hu '1.226  1.101  2.790  -0.388 2.003 0.106 0.148 0.600 0.148
2.+

B’z 1.047  1.006 2.712  -0.039

2.502 0.070 -0.312 -0.220 -0.042

(a)Multiplication of the Ei or fi values by Zez/Rzag

= 1.423 x 10—2 will convert
them to a force in dynes.

(b)

These values are calculated for the total occupation number of the Hu orbital.

(c)

These values are the experimentally observed changes in Re'

00T
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that of N2(X12;). Such definite conclusions cannot be drawn

from the Apl(f) maps describing the xzz; and AZHu states of

~N2+. The ionization of an electron from the lwu orbital of

N2 results in a loss of electron densi£y from both the binding
and the antibinding regions. In the ion N2+(A2HuL there is
an accumulation of charge along the internuclear axis both in
the binding region and directly behind the nuclei. Such an
effect could be the result of a significant r;organizatidn of

the charge density in a ¢ molecular crbital. The ionization

-

Y

of an electron from the 30 orbital of N, is pictured in the

g 2

=

- = -
ApI(r) map as a iarce dififuse group of

(1

positive contours
in the antibinding regionsand a smaller more concentraced
group of vositive contours in the bindiag region . The
sets of negati&e contours which form toroidal rings about
each nucleus seem to suggest a reorganization of charge
density in the 1 molecular orbitalsas a result of the
ionization.

Force calculations involving N2 and the three

: ' : .+
previously discussed states of NZ should sexrve to cor-

(£) maps

roborate the gualitative descriptions which the Ap. T

present. Further such calculations permit a determination
of the various f.l values and thus a definite physical pic.ure

of the bond length changes occurring because of ionization.

2.+ 2

)
The orbital forces for the X Zg, A“Hu, and B Zz states

of N + and IZor the XlZ; state of N. are listed in Table VI.

2
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All are calculated for the internuclear distance corresponding

to the Hartree-Fock minimum for the ground state of N a va-

2’
lue of 2.0132 a.u. Cade, Sales, and Wah158 have previously
shown that the H artree-Fock results for the ions do

correctly reflect the changes in bond length predicted by

the terms bonding and antibonding
2 . - +
The A"l state of

N2 results from the lossz <f a

L electron from N2‘ The ricid orbital model demands that
fi be equal to 0.6 - a value one-quarter that of f(lw )
in N,. In reality Ei = 0.148. The value of £(l7 ) is cal-

ated to be 2.0 whereas the rigid orbital model predicts

}.r.)

cu

a value of 1.8 for f£(lw ) in this stzte of N, . The ioni-

o

[

zation also produces & Large increase in the £(2¢ ) wvalue.
“hus the binding of the 20 density and of the remaining 1'n'u
density increases on ionization of a lﬂu electron. The lwu

molecular orpital in N2 is bonding by definition. Moreover

it can be termed Linding because its £, value is greater

L
than one. More imeortant than the value of f(lﬂu) ie the
value of fi' It is positive in thiz case. The vertical

ionizatiorn thus results in a net descreening of the nuclei,

& repu.sive Force acting on the nuclei and a net increase in

- 3

the internuciesr distance. Thisg is the situation pictured

in Figure 1lla.

e mlet
ncBZu

-

+ . ) , . .
state of N2 results from the ionigzation o=

znn electron from the 20u orbital of N2. This Zcu orbital 1s

+
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antibonding by nature, and, in addition, it is strongly

antibinding. It exerts a force which tends to draw the

nuclei apart. The removai of an electrzon from the 20u
orbital causes a decreace in the internuclear distance of

the ionized product as pictured in Figure 11b. This can be
seen as & result of the decreased electronic force tending
t0 segsarate the nuclei. The rigid orbital model suggests
that the ionization process should increase f(20u) £rom
~0.439 to -0.220. Table VI indicates that f(ZGu) has

been increased almost to zero and that %i has a value of
~-0.322 rather than the rigid orbital value of -0.220. The

2

net attractive force acting on the nitrogen nuclei in

the vertical,ionization state iz accentuated and the reason
for the decrease in bond length is evident. All the re-
maining orbitals undergo changes in their fi values
approximately one-guarter as large as the change in f(ZUu)
the binding ability of the lgg, lo, and 30g orbitals being
decrecased and that of the 20g and 1w orbitals being in-
creased.

The X2ZQ state of N7+ arises from the ionization
of an electron from the 30g orbital. This orbital is
bonding by definition; moreover, i1t is antibinding as
it no longer shields one unit of nuclear charge. The 30g
density does exert anAattractive force on the nuclei, and,

in the rigid orbital approximation,'the removal of such

density should lead to a descreening of the nuclei and a
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TABLE VII

Orbital Forces for the Ground States of 02,02+ and 02“.
Stat ) ;
tate f(log) f(lou) f(20g) f(2ou) f(lwu) f(3og) f(_mrg) Re
o, XBZ; 1.232 1.138 2.934 =-0.518 2.604 0.174 0.426 2.282
o; xzng 1.244 1.138 3.056 =0.492 2.783 0.082 0.215 2.122
02‘ xzng 1.220 1.136 2.810 =-0.514 2.410 0.277 0.557 2.400
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resultant force of repulsion. The calculations in Table VI
corfoborate this argument. The rigid orbital model predicts
a value of 0.080 for f(30g) in N2+ while the calculations
show a value of 0.102 for f(30g) in this same molecule.
The calculated value of Ei is 0.040 and, as shown in Figure
lla there is a net force of repulsion tending to increase
the ?ond length in N2+. There is a significant increase in

f(lnu) for this ionized state of N.. In fact this increase

2

is equal to f(3og) in N The remaining orbitals indivi-

¢
dually undergo much smaller changes, but the net change is
a decrease in their binding large enough in magnitude to
counteract the increase in’the binding of the lwu density.
From the preceding results the absolute sign of
the fi value would appear to determine the subsequent
increase or decrease in the internuclear distance that .
follows ionization. This is not the case as can be seen
from an examination of the fi values for the 2Hg state
of O; listed in Table VII. The forces listed in Table
VII are calculated for, the experimental equilibrium value of
the ipternuclear distance. Thué the sum of the fi values
is ‘equal to Z in each case and the figures for O; refer to
an adiabatic ionization as depicted by the horizontal arrow
in Figure 1llh. The data for OZ illustrate that the re-
moval of a lng electron results in a decrease in the value

of Re even though the lng density exerts an attractive
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force on the nuclei in the neutral molecule. The figures

in Table VII show that the removal of an electron from the

lng molecular orbital reduces f(lng) by a factor of one-

half. However there are significant increases in the f(lnu)

and f(Zog) values during the ionization process, and it

is evident that in a vertical excitation, the increase in

the force exerted by these orbitals more than compensates

for the decrease in the force exerted by the lng density.

Although f(lﬂg) is positive, the vertical ionization of an

electron from the lwg molecular orbital yields a negative %i

value. Thus the removal of an electron from this antibonding

molecular orbital results ina net decrease of charge in

the antibinding region and a decrease in the bond length of

2
2

of x T, . The term antibinding fulfills the same defi-

nition as the term antibonding in this case even though the

orbital density exerts an attractive force

on the nuclei.

The observed change in Re attendant upon the removal of an

electron from a given orbital does not in general provide

.an accurate isolated measure of the role the orbital plays

in the binding of the neutral molecule.

A;so included in Table VII are the

for the X2Hg stéte of the,O2 ion. This ion
addition of an electron to the lwg orbital
expected the addition of an electron to an

orbital leads to an increased bond length.

orbital forces

is obtained by the
of 02. As is
antibonding

From another
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perspective, the increase of f(lnq) should lead to a greater
attraction of the nuclei and a resultant decrease in the
bond length of 05. However, although f(lng) andvf(30g)

are increased in magnitude, there are significant decreaées
in f(ZOg) and f(lnu)." These latter changes counteract

the former effect. The overall result of adding an electron
to thé lwg orbital‘is an addition of charge to the anti-
binding region. This addition of charge to regions behind
the nuclei gives rise to a net force tending to pull the
nuclei apart. The result is a larger internuclear distance

in O;.



CHAPTER V

A COMPARISON OF COVALENT AND IONIC BINDING

The development of the quaﬂtum mechanical formu-
lation of ionic character had its basis in valence bond
ftheq;y76. The amount of ionic character depends on the
contribution of the structure WA+B— to the total wave
function describing the molecule AB.

In a series of papers, Shull77

has devoted»him-
séif to the problem of ionic character. In particular,
he points out that an understanding of the concept of
the ionic or covalent bond cannot be‘gained until the
chemical bond itself is understood. He criticizes the
formulation of the concept of ionic character in terms
of valence bond theory and insists that any theoretical
foundation for this concept should be independent of a
particular model. Further, he points out that the

- in the wavefunction

structures WA and WA+

:B B

b4 =‘CAWA:B + CBWA+B— (1)

are not independent of each other; that is, they are not

78,79. If

orthogonal
<a:pl¥ats™> #0 (2)

108
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then the ionic character of the bond between atoms A and
B in the molecule AB cannot be quantitatively described

by the fractional number CBz.

80,81 has attempted to find answers to the

Shull
problems that he poses. He uses as his starting point a
well-defined approximation to the hydfogen molecule and
'separates the wvavefunction derived in this approximation
into orthogonal independent parts ¥, and ¥, which, respectively
have the optimum characteristics associated with the names

ionic” and "atomic". With these orthogonal functions,
he caﬁ rightly calculate and discuss iohic and atomic
character. Further, he finds a correlation between his
overlap distribution WIWA and the intuitive concept of
covalence.

Shull's discussion is still couched in terms of
ionic structure contributions to a total wavefunction.“
However, if the concept of ﬁhe ionic bond and albﬁg
with it, the concept of ionic character are to have any
general validity, they shbulé be independent of a particular

type of wavefunction. The form of any approximate VY is

not unique. In valence bond theofy the wavefunction is
given as equation (1) of this section. In molecular orbital
theory, the total wavefunction can be approximated by a
linear combination

Y = T C.Y. ‘ (3)
i
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The Wi describe various electronic configurations. If both
approximations are carried to their respective limits,
they, yield the same energies. However an ionic character
can.be eaSily derived from the valence bond wavefunction
but not from the molecular orbital wavefunction. It is
deéirablé to avoid definition of ionic character in terms
of wavefunctions.

The original purpose in defining ionic and covalent
character was to obtain some crude estimafe of how the
valence electrons are distributed or shared in a molecule.
This can now be done by means of the calculated molecular
charge density distribution. Such a charge distributaon is
unique; that is, it is an observable of the system. It is
one of the prihciple aims of this thesis to provide defini-
tions of the concepts of the ionic and covalent bond in
terms of their respective charge distributions. Indeed the
molecule LiF is analyzed in terms of its electron density
distribution and the force which this distribution exerts
on the nuclei. This analysis is then compared with a
similar one for the homonuclear molecule N2.

LiF is a molecule whose propgrties closely approxi-
mate those of the ionic model. It possesses a diple moment

83

of 6.284 D This value is 84% of the i1deal dipole moment

obtained for e separation of equal and opposite charges in

TiF at the observed internuclear distance of 2.95¢ a.u.83.



Figure 13. The total molecular charge distribution of LiF



0.004
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In Pauling's76’view, such a percentage is one way of
measuring the ionic character of a Bond. McLean82 has ob-
tained a wavefunction for LiF with an energy of -106.9885
h.u. at the'calculated internuclear distance of 2.8877 a.u.
He estimates that this energy is within 0.005 of the Hartree-
Fock limit and calculates a dipole moment of 6.30 D.

Figure 13 shows the total molecular charge contour
map derived from McLean's82 wavefunction for LiF. This
contour map has the appearance of two nonoverlapping
spheres of unequal charge density. .It is interesting to
compare this charge distribution with that shown for C, in

2

Figure 3. These two molecules are isoelectronic. 1In C2,

the first contour which encircles the entire molecule is
the 0.26 contour. However in LiF, the first contour which
encircles the entire molecule is the 0.08 contour . Also
in the F2 molecﬁle the first contour localized about the

F nucleus is the 0.30 contour while in LiF the first con-
tour localized about the F nucleus is the 0.09 contour.
Similarly in the Li2
about the Li nucleus is the 0.013 contour while in LiF

molecule, the first contour localized

the first contour localized about the Li nucleus is the 0.09

45 -
contour. Ransil and Sinai have discussed charge density

contours localized about given nuclei as a function of the

*
This has been confirmed although the 0.08 contour
is not shown in Figure 13.



Figure 1l4. A contrast of the density difference distri-
butions for ionic and covalent binding. The total amount of
charge within the zero contour encompassing the F is 9.8le .
A total of 0.85¢~ and 0.5le” migrate to the regions of charge

increase in LiF and N, respectively.

2
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electron populations within these contours. They show that
within the 1.0 contour surrounding F in LiF, there is a
total charge of 3.5 electrons while within the same contour
in F2 there is a total charge of 3.0 electrons. Similarly
within the 0.1 contour of Li in Li2 there is a total charge
of 1.6 electrons while within the 0.l contour of Li in LiF
there is a total charge of 1.4 electrons. It is evident
that(a great portion of the total charge in LiF is localized

in spherical regions about the nuclei while in C, a large

2
fraction of the‘total charge is delocalized about the entire
molecule. There is more charge localized about the F
nucleus in LiF than there is localized about the F nucleus
in F,. Similarly there is less charge localized about the
Li nucleus in LiF than there is localized about the Li
nucleus in Li2. ‘

Figure 14 contrasts the electron density difference
maps for LiF and N2. Above each contour map is a profile
of Ap(?) in the plane of the nuclei. LiF contains two regions
where charge is built up in the molecule relative to the
separated atoms. One region is localized about the fluorine
nucleus while the other region is localized behind the
lithium nucleus. N2 contains three regions where charge 1is
built up in the molecule relative to the separated atoms.
Two of these areas of.charge buildup are localized in the

antibinding regions behind the N nuclei. The third area of

charge buildup is shared between the nuclei in the binding
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region. The profile of the LiF Ap(;) function indicates
contours of a high value about the F nucleus. These
positive contours stretch three-quarters of the way to the
'Li nucleus. There is a much greater amount of total charge
localized about F than there is localized behind Li. On

the other hand, the profile of the N Ap(;) function

2
indicates two equal amounts of charge built up in the anti-
binding regions behind the nuclei and a relatively larger‘
amount of charge concentrated in the binding region

between the nuclei. .

The Ap(;) map has been interpreted as a bond map
which describes the feorganization of charge that must
occur during the formation of a stable molecule in order to
balance the force of repulsion owing to the nuclei. If
such an interpretatién is applied hefe, then it is clear
that LiF achieves electrostatic equilibrium throughba
localiéed increase of charge about the F nucleus. N2
achieves electrostatic equilibrium by meaﬁs of a shared in-
crease of charge in the binding region between the N nuclei.

In previous discussions concerning the electronic
force acting on the nucleus in a diatomic molecule, the
total density has been partitioned into atomic and overlap
distributions. As a result of this breakdown of the total

density, the electronic force acting on nucleus A in the

molecule AB is composed of atomic,overlapjand screening
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contributions. Such a partitioning of the total density,
although arbitrary, follows naturally from the form of thé
molecular orbitals used. It is now desirable to obtain a
different division of the total density, a division based
upon an analysis of the Ap(;) contour map. In the case of
LiF it would be of interest to know the electronic force
acting on the Li nucleus because of the total charge
density within the 010 contour describing the localized
charge buildup about the F nucleus. An idea of this parti-
tioning of charge can be gained by superimposing the zero
contours of the Ap map on the total molecular charge
density contour map. The region of the total density map
within the zero contour surrounding F is the fegion of
interest. Such total electronic density screens F nuclear
charge from Li and is therefore termed an atomic density
surrounding F. The remaining molecular density is termed
an atomic density surrounding Li.. In the case of N2 it
would be of interest to know the electronic force acting
on the N nucleus because of the positive density difference
contours within the OﬂO cdntoﬁr describing the shared
charge buildup in the binding region between the N nuclei.
Such Ap(;) contours are shared by'both nuclei and the
Ap(?) density distribution is termed a shared density
distribution. The remaining total density is atomic in

nature and is divided between the two nitrogen nuclei.



7

Figure 15. ' The overlap density distributions in LiF and N2
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Such a partitioniﬁg of the total density is
theoretically possible but in practice, a suitable method
for calculating the electronic force resulting from such
regions of dénsity has not been developed. Thus it is
necessary to make an identification between the above
defined atomic and shared densities and the molecular
orbital atomic and overlap densities. Figure 15 shows the
overlap density distributions derived from the Hartree-Fock
wavefunctions for LiF and N2 respectively. The overlap
density of the N, molecule places a symmetrical increase
of charge in the binding region. Further charge density
is also removed from the antibinding regions. This overlap
density is concentrated about the internuclear axis and is
shared between the two nuclei. It is here identified with
the shared density distribution which was previously de-
fined in terms of the Ap(;) map. The overlap density of
- the LiF molecule places an asymmetric increase of charge
in the binding region. Charge is removed from a symmetric
‘region surrounding the Li ﬁucleus while charge is removed
from the region directly behind the F nucleus. The positive
contours of this overlap distribution lie within the 0.0
contour describing the localized charge buildup surrounding
the F nucleus in the LiF Ap(;) contour map. Thus in
reality, this overlapidensity screens F nuclear charge from

the lithium nucleus. It is identified as part of the atomic



119
density defined previously as the total density within the
3.0 contour of the localized charge increase surrounding
ﬁhe F nucleus in the LiF Ap(;) contour map.

With this above partitioning of the total density
distribution, a comparison“of the force acting on the nucleus
in both an ionic and a covalent molecule is discussed.
Cornsider a classical model for the.ionic bond wliich in-
volves the transfer of one electronic charge from the electro-
positive atom A to the electronegative atom B. This
.odel thus consists of two nuclei A and B possessing
reSpectivelyvnuclear charges ZA and Z_.. Nucleus A is

B

surrounded by a spherical distribution of ZA—l electrons

wi:ile nucleus B is surrounded by a spherical distribution

of ZB+1 electrons. The result is two spherical nonover-

lapping charge distributions separated at the observed
internucliear distance. The force acting on nucleus A is

given as

Z Z
A = - B _
B_ZB"].] - R2 - # (4)

F, = = [2
A R2

is the internuclear distance. Similarly the force
acting on nucleus B is given as
F_ = EE {2z -2 _+11 = E— (5)
B R2 A A R2 -
There is an attractive force acting on nucleus A while
there is & repulsive force acting on nucleus B. The

classical model predicts instability. The important feature
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TABLE VIII

Force Contributions in LiF

Contribution from localized charge(a)

on F N on Li
Force on F ' 1.05 2.04
Ideal ionic binding 1.00 2.00 (=ZLi-1)
Force on Li 9.86 -0.71
Ideal ionic binding 10.00(=ZF+1) -1.00

(a)

The charge density localized on F exerts an atomic force
on F and a screening force on Li. Similarly the charge
density localized on Li exerts an atomic force on Li and
a screening force on F.
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of the model is the transfer of unit charge from A to B.
It is possible to maintain this feature in the model and
to obtain electrostatic equilibrium if the charge distri-
butions are polarized in directions opposite to that of
charge transfer. A polarization of the charge density
surrounding nucleus A into the antibinding region counter-
‘acts the force of attraction experienced by this nucleus
because of the charge density surrounding nucleus B.
Similarly a polarization of the charge density surrounding
nucleus B into the binding region counteracts the repulsive
force experienced by this nucleus owing to the unscreened
nuclear charge centred on A.

If LiF approaches this classical model, then the
lithium nucleus should experience & repulsive force owing
to nine F nuclear charges and an attractive force owing
to ZF+1=10 effective electronie charges centred on the F
nucleus. The b ack polarization of the electronic density
surrounding Li is represented by an effective electronic
charge of -1 unit centred at the fluorine nucleus. Similarly
the fluorine nucleus should experience a repulsive force
owing to three Li nuclear charges and an attractive force

owing to Z_..-1=2 effective electronic charges centred on

Li

the lithium nucleus. The polarization of the fluorine den-

sity into the binding region is represented by 1 unit of
ffective electronic charge centred at the lithium nucleus.

Table VIII shows how'closely the electron density distri-
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bution derived from McLean's wavefunction approaches this
limit. The atomic charge density localized about fluorine
exerts a force on the lithium nucleus which is equivalent

to 9.86 effective electronic charges centred on the F nucieus.
This effective charge is obtained as previously suggested

by combining the overlap and screening force populations
acting on the Li nucleus. This is equivalent to identifying
the overlap and séreening force populations with an atomic
density about F. This atomic density has previously been
defined as the total molecular charge lying within the zero
contour of the localized charge buildup surrounding the F
nucleus in the LiF Ap(;) map. Indeed the values in this
table show that the Li nucleus has been descreened by one
unit of effective electronic charge. The transfer of charge
is almost complete as the Li nucleus now experiencesan
attractive force owing to 9.86 effective electronic charges
centred on the F nucleus. The lithium core density is
polarized into the antibinding region. The force acting

on the lithium nucleus owing to this remaining electronic
densify surrounding Li is represented by an effective charge
of -0.71 units compared to the ideal value of -1.0 units.
The fluorine atomic density.is polarized into the binding
region. The force acting on the fluorine nucleus as a result
of this polarization is represented by an effective charge of

1.05 units compared to the ideal value of 1.0 units.

7
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TABLE IX

THE TOTAL ATOMIC, OVERLAP AND SCREENING CONTRIBUTIONS TO

THE FORCES
Atomic Overlap Screening Z minus De
Contribution Contribution Contribution Screening (ev)

I, fi(AA) zi‘fi(AB) ol fi(BB) 7-%, fi(B?)
Li2 - =0.563 0.927 2.591 0.409 1.106
B, -0.644 . 1.708 3.887 1.113 2.884
C, -0.735 2.198 4.523 1.477 6.251
N2 -1.943 3.853 ' 5.136 1.864 9.909
0, -2.284 3.486 6.788 1.212 5.181
F -1.949 2.505 8.381 0.619 1.647
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Table IX shows the partitioning of the total
electronic force into its atomic overlap and screening
populations for the molecules L12 B2, C2, N2,-O2 and
F2 . As previously discussed the overlap force population
is to be identified with the shéred density defined by
the positive Ap(;) contours in the binding region of each
molecule. In every case the nuclei are descreened. The
sum

L £ i(BB)
i (6)

is always less than the nuclear charge. The expression
7 -3 fi(BB)

i (7)
provides a measure of this nuclear descreening and is listed
in column four of this table. Foruexample, in the Li2
molecule there is an effective charge of +0.409 units
situated on the Li nucleus because the étomic density
sUrrounding this Li nucleus no longer shields an equivalent
number of nuclear charges. As indicated by the various
overlap populati ons, the shared density found in the
binding region is indeed responsible for molecular stability.
In fact so much charge is transferred to the binding region,
that the remaining atomic density muét be polarized into
the antibinding region in order to achieve electrostatic

equilibrium. This polarized atomic density gives rise to

the positive Ap(;) contours in the antibinding regions of



Figure 16. The total density difference contour map for -

HF.
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Figure 17. The total density difference contour map
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each molecule.

Thus in ionic binding both nuclei are bound by
the charge localized about one of them while in covalent
binding, the nuclei are bound by a dénsity increase which
is shared equally between them.

The analysis presented in the preceding pages forl
'LiF can be extended to include other heteronuclear diatomic
molecules. Figures 16 and 17 show respectively the Ap(;)
contour maps for HF and LiH. The wavefunction for HF is

from Nesbet84

and Nesbet85. These Ap(;) maps provide an interesting

and the wavefunction for LiH is from Kahalas

comparison between two heteronuclear diatomic molecules,
one in which the nuclei are bound by a localized increase
of charge density and one in which the nuclei are bound

by a shared increase of charge density. In HF the Ap(;)
contour map shows two regions of charge buildup. One is
localized in the antibinding region behind F while the
other is shared between the nuclei in the binding region.
The zero contour which describes this charge increase in
the binding region encloses the H nucleus, This is to

b e contrasted with LiF where the Li nucleus is excluded
from the charge increase that binds the nuclei. Similarly
the Ap(?) map for LiH shows two regions of charge increase.
But theSe'régiOns are localized abou£ the H nucleus énd in

the antibinding region behind Li.
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If the zero contours of the Ap(?) map for LiH are
superimposed upon the total density distribution of this
molecule, they suggest a partitioning of this total charge
density.. That density contained within the zero‘contour
which is localized about the H nucleus defines an atomic
density surrounding H; The remaining density is termed
~an atomic density surrounding Li. In HF, where the nuclei
are Eound by a shared density, the positive Ap(%) contours
in the binding region provide a measure of this shared
density.

As noted before, there is no practical way of
calculating the force acting on the nucleus owing to such
regions of density. However, the atomic, overlap, and
screening force contributions in these molecuies have
been calculated. They are listed in the appendix. In LiH,
the overlap and screening fdrce acting on the Li nucleus
are combined. Their sum is identified with the previously
defined atomic density surrounding H. Thus at equilibrium,
the Li nucleus experiences a repulsive force owing to one H
nuclear charge. However the atomic density localized
about H exerts a force on Li which is equivalent to 1.638
units of effective charge centred on the nucleus. The atomic
density localized about Li exerts a force on Li which 1is
equivalent to placing -0.335 units of effective charge on
the H nucleus. This result indicates ﬁhat the atomic density

surrounding Li is polarized away from H into the antibinding
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region. Similarly this atomic density localized about Li
exerts a force on the H nucleus which is equivalent to:
placing 2.210 units of effective charge on the Li nucleus.
This attractive force is not enough to balance the repulsive’
force owing £o the Li nuclear chargé. The H atomic density
is polarized into the binding region. It exerts an attrac-
tive force on the H nucleus which is equivalent to placing
0.688 units of effective charge on the Li nucleus. The
conclusions are‘evident. The Li nucleus is descreened

and its remaining density is polarized into the antibinding
region. The nuclei are bound by a localized increase in
charge defined by the zero contour surrounding the H nucleus
in the LiH Ap(?) contour map . LiH is an example of ionic
binding.

For HF, the overlap force is identified with the
shared increase in density defined by the positive Ap(?)
contours found between the nuclei in the binding region.

The force analysis shows that this ghared density binds the
nucléi. In fact so much of the F atomic density is trans-
ferred to the overlap region, that its remaining density

is strongly polarized into the antibinding region. If the
overlap and screening forces acting on the H nucleus are

c ombined, they exert an attractive force which is equivalent
to placing 8.776 units of effective charge on the F nucleus.

Even this effective charge does not succeed in balancing
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the repulsive force owing to nine F nuclear charges. The
F nucleus is still descreened. The hydrogen nucleus is
descreened as its density exerts an attractive force which
is equivalent to placing 0.390 effective charges on the

H nucleus. This effective charge is not sufficient to
counterbalance the repulsive force owing to the hydrogen
nuclear charge. However this descreening of the H nucleus
is not sufficient to reverse the direction of the polari-
zation of the remaining H density. This density is
polarized into the internuclear region. HF is an example
of polar covalent binding.'

One might expect to observe a correlation between
the dissociation energy for a molecule and the magnitude
of the attractive force which binds ﬁhe nuclei together.
Since the total force acting on the nuclei at the equili-
brium internuclear distance ig zero,one must decide on a breakdown
of the total force into equal and opposite components of at-
traction and repulsion which will reflect the changes in
the density and the forces which occur in the formation of
the molecule. For example setting the attractive force
equal to the total electronic force will certainly not
give a correlation with De as this force increases as does
Zz. The total electronic force operative at Re does not,
of course, take into account the fact that most of the

density continues to s<4imply screen nuclear charge in

the molecule as in the separated atoms and in no



Figure 18, A plot of z [fi(AA) + fi(AB)]/Re2 versus
i

the dissociation energy for homonuclear diatomic molecules

and molecular ions.
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way reflects the change in the density or the forces
and hence the change in energy arising from the formation
of the molecule. A covalent molecule has herg been
defined as one in which the transfer 6f charge results
in a descreening of both nuclei. The magnitude of the
force of repulsion generated by this descreening of the
nuclei is thus a direct reflection of the change in the
charge density which arises because of the formation of -
the molecule. This force of repulsion is balanced by
the atomic and overlap contribuﬁions which provide a
measure of the net attractive force which binds the nuclei.
The sum of the overlap and atomic contributions when multi-
plied by (l/ReZ) is thus equal to the force binding each
of the unscreened nuclear charges by the electron density
which has been redistributed in the formation of the
molecule. A plot of this quantity versus the dissociation
energy is given in Figure 18. There is indeed a correlation
between these two quantities, one which is best described
by a linear relationship.

The only molecule which is seriously out of line is
Liz. It was noted earlier that the.bond in this molecule
differs from the others in the series in that it is formed
primarily from the overlap of s orbitals and it does not
involve m orbitals. There could well be a distinct slope

for bonds of differing type. Included in the plot are
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points for the states of the molecular ions 02+, 02-
+

N2 . The sum of the atomic and overlap contributions for

and

these species are corrected by the addition of 0.5 for

the negative ions and by the subtraction of 0.5 for the posi-'
tive ions. These corrections take account of the fact

that there is initially present a force of repulsion'
equivalent to one-half of a positive charge on each nucleus
in tﬁe positive ions and a net force of attraction on the P

nuclei of similar magnitude for the negative ions.



CHAPTER VI
CONCLUDING SUMMARY .

Many conclusions can be drawn from the results
presented in this thesis. The one-electron density distri-
bution is a three-dimensional function and can be represen-
‘ted by charge contour maps. Further thése maps provide
a physically significant picture of the distribution of
‘electronic charge in a molecule. Estimates of molecular
dimensions have been derived from the contour maps
and F

2 2 2
and these estimates are in agreement with the results

describihg the molecules Liz, Bz, C2, N,, O
derived from’ equation of state data. Such molecular
dimensions are predictive in nature. They can be used

in studies of molecular crystals to determine the validity
of proposed crystal structures and to provide molecular
dimensions. No correlation has been found between the
fraction of charge in the binding region and the experi-
mental dissociation energy. Molecular length is found

to be related to the internuclear separation and the

rate at which density falls off from the nucleus in the
isolated atom. In fact, it has been proposed that the
length of a peripheral atom in a molecule can be

estimated by taking the sum of % R, from a suitable source

134
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plus the atomic radius as defined by the 0.002 contour of
the isolated atom. For atoms such as Li and Na the atomic
radius is defined by the 0.002 contour of the core density.
The Ap(;) contour maps present a picture of the
reorganization of charge density attendant upon the for-
mation of the chemical bond. From another point of view
such contour maps describe the changes in density that
must'occur in order that the molecular system may reach
electrostatic equilibrium., These maps are useful as they
permit a classification of diatomic molecules according to
their bond type. The Li2 molecule is representative of an
s-type bond. Such a bond presents a diffuse buildup of
charge in the binding region. The remaining stable homo-
nuclear diatomic molecules studied in this thesis are
representative of p-type bonds. For such bonds there is a
much more concentrated buildup of charge along the
internuclear axis. Further such bonds show a significant
accumulation of charge density in the antibinding regions
as well as in the binding region. This accumulation of
charge in the antibinding regionsis certainly contrary to
the classical picture of charge buildup in the binding
region at the expense of charge removal from the anti-
binding regions. It is a nonclassical effect which owes
its origin to interactions between electrons possessing

angular momentum. The chemical bond is a result of an
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accumulation of charge density in the binding region - an
accumuiation which balances the force of repulsion owing
to the nuclei. However the chemical‘bond is also a result
of the balance between electron-electron repulsion and
electron-nucleus attraction. Consider two atoms whose
valence electrons possess angular momentum. As such atoms
-approach each other during the formation of a bond, the
valehce electrons interact. .Under the influence of such
interactions, the atomic density distributions acquire
a directional character., The concentrated increase of
molecular charge density in the binding region emphasizes
the importance of eleétronic-nuclear attraction in binding
the nuclei together. But because of the directional nature
of the atomic densities, electron-electron repulsion
between the atomic charge clouds takes the form of a large
increase of molecular density in the antibinding regions
behind the nuclei. For atoms whose valence electrons possess
no angular momentum, this electron-electron repulsion is
indicated by a large‘diffuse buildup of charge in the
binding region. The Ap(;) maps are not predictive in nature
as they do not present distinct differences between stable
and unstable molecules.

The analysis of the force acting on the nucleus in
a diatomic molecule is found to corroborate the results

obtained from the total density and density difference maps.
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Force calculations verify the stability of all the molecules

studied in this thesis with the exception of Bez. Be2 is
correctly predicted to be unstable in its ground state at
an internuclear distance of 3.5 a.u. It is not possible

to predict the number of electron-pair bonds in a diatomic
molecule as the difference in the number of binding and
‘antibinding molecular oxbifals. This is a result of the
face'that there is no correlation between the terms bindiné

and bonding73 74,68

in the case of the 3og molecular
orbital. It is not desirable to change the definition of
binding beceuse such a redefinition results in a loss of
the physical picture presented by the fi values. The
charge density of a mglecular orbital whose fi value is
greater than one is built up ih the binding region and

exerts a force of attraction on the nucleus in excess

of the force of repulsion owing to one nuclear charge.
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Finally the Ap(;) contour maps provide new defi-
nitions for ionic and covalent bonds in terms of localizéd
and shared density increases. The density difference contour
Amap describing an ionic bond shows a localized buildup of
charge about thé electronegative atom while the Ap(?)
contour map describing a covalent bond shows a shared
increase of charge in thé binding region. If the Ap(f)
contour map is interpreted as a bond map, then a localized
increase of charge binds the nuclei in an ionic molecule
while a sharéd increase of charge binds the nuclei in a
covalent molecule, Future studies should involve calcu-
lations of the force acting on the nucleus owing to these
localized and shared densities. It is heartening to note
that the analysis suggested in this thesis and originally
applied to the molecules LiF, HF, and LiH has general
applicability. The first and second row hydride molecules
have been discussed by Bader, Keaveny, and Cade88. They
find that the Ap(;) maps for these molecules indeed show
a gradual transition from an ionic mechanism of binding
in LiH and NaH to a polar covalent meEhanism of binding
in HF and HCl. Bader and’Bandraukag have analyzed two
iso-electronic series of molecules, The one includes BF,

C0 and N, while the other includes LiF, BeO,and C,.

2
They conclude that LiF, and BeO are ionic while BF appears

"to be a mixture of both bond types. .



APPENDIX
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THE CALCULATION OF INTEGRALS

Consider a diatomic molecule AB described by a

Hartree-Fock wavefunction ¥ where

v =y g g Mag (28(2) ..o gBm ] (1)
2
The operator
Z_cos0
*a

describes the x component of the force acting on nucleus
A owing to an electronic charge at a distance ra units
from nucleus A, The situation is pictured in figure 1 of

the text. The expectation value of this operator is given

as
0
(ELEC) _ ' cosYy
Fa =2y I N; <G l—5 |9 (3)
i r,
The sum is over all occupied molecular orbitals. ZA is

-

the nuclear charge. Ni is the occupation number of mole-
cular orbital ¢i., If the§one—electron molecular orbitals
are approximated as linear combinations of atomic orbitais,
then the calculation of FA(ELEC)
of three types of integrals. These are listed below as

involves the calculation

cosOA
l‘ <XA|r 2 ]XA> (4)
A
cos@A
2. <XA|_;:77—IXB> (5)
A
cos®

—=Ixg> (6)
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XA is a Slater-type function centred on nucleus A while

Xg is a Slater-type function centred on nucleus B. Integrals
one, two, and three are referred to respectively as atomic,
overlap and screening integrals. They are discussed in the
text. .

‘The atomic integrais are easily evaluated as they
are simple one-centre integrals. The overlap and screening
integrals involve two centres. A prolate spheroidal
coordinate system is used in the evaluation of these inte-
grals. The variables in sUch a coordinate system are
designated A, u, and @g. @ is a rotation about the x axis.

Some relations between these coordinates and those shown

in Figure 1 of the text are given below.

A= (rA + rB)/R (7)

W= (r, - rp)/R (8)

?A = [A+plR/2 (9)

rg = A =-ulrR/2 : (10)
1+Ay

COSQA = -X_T_T— (11)
- 1-2u

COS@B = _)\—:-T (12)

. 2 2.17%
51nQA = [}A -1) (1-u )] /A+u (13)
sinOB = L(Az-l)(l-uz)]v/x—u (14)

sin0,sindy = (A2-1) (1-u2) / (1242 (15)
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The volume element in a spherical coordinate system is
given as

2 ., T, "
rA.51n@AdrdOd¢ (16)

while the volume element in a prolate spheroidal coordinate
system is given as

R3

2 2-u®)arduap | (17)

The two-centre force integrals in this new coordinate

system can be expressed as sums of integrals of the type

© ]l
2 ..k |
Fyq (0,8) = e N T L L PE VRN CT-)

- (A+n)

1 /-1

where

a = (T,+2p) R/2 (19)
B = (CA-CB) R/2 {20)

The symbol EA and Ly are the effective nuclear charges of
the Slater-type functions centred on A and B.

Kotani86

et al list general expressions for the
integral (18). These expressions were made the basis of a
computer programme designed by Dr. J. Goodisman at the
dniversity of Illinois. This programme was modified in
order tc be 0Of use in the éalculatiéns discussed in this
thesis, . is a subroutine-and has the name F@RINT . It

has as i.aput data the values of o and B8 and calculates

values for FOmn(a,B), Flmn(a;B), and an(a,B) where
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an(a,B) = Fo,m+l,n(u’8) - Fl,m,n(a’B) (21)
The computational method does not apply to the case where
Ta is equal to [ All force integrals where A is not

equal to EB'have been expressed in terms of F and

omn’ T ilmn
F__. Each integral is programmed in a separate function

mn
subprogramme with a call statement to F@RINT. Thus any
prog;amme to calculate two centre integrals consists of a
main deck with call statements to the various force
function subprogrammes. These func£ion subprogrammes and
the FPRINT subprogramme are always loaded with the main
deck.

In the subroutine F@RINT, the an values are desig-
nated by the subscripted variab;e FMN(I,J). Thus the

indices I and J are always one unit higher than the m and

n values. For example

Fyg = FMN(3,1) (22)
Also

Foppo = FO(3,1) (23)
and _

Fiy0 = F1(3,1) o (24)

Listed b elow are all formulae used in-this work.

The code is as follows:

O = overlap force
S = screening force
A =

atomic force



143

For example OlS1S means the force on nucleus A owing to
the overlap of a 1ls ofbital on A with a ls orbital on B.
‘P1S1S means the force on nucleus A owing to the 1ls denéity
on B. A2P1S i sthe force on nucleus A owing to the overlap
of the 2p and ls orbitals on atom A. The Symbol Z is used
~to indicate th eeffective nuclear charge. For overlap inte-

grals

and

R is the internuclear distance.
The overlap integrals are listed below. They are

°

designated with an "O". Thus, the notation is

O2SA(Z1) ZSB(ZZ)‘= 02s2s
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23 01 34)

-5F

32 10

-14(F21+F43)—9F14—5FS4—F50]

04F 3D = [6(F, +F, +F_ _+F_ _)+5(F..+F__)
384/5 30 43 "23 " 36 01 " 65

+3(F41+F25)+9(F12+F54)+F05+F6l

+F +F63)-5(F10+F56)—3(Fl4+F52)

“6(Fo3tFg+F 4,

"9 (Fy1+Fys5) "F50 Fr6l

9/2 , 9/2
1 2

15360

2
O4F4F

[35(F30+F74+F12+F56)+F70+Fl6

+11(F

05+F63+F41+F27)+9(F52+F34)+33(F23+F

45)

+25(F01+F67)—35(F' +F__+4+F, _+F..)~F

03 g5 Fg7tF o1 ~F

07 "61

—ll(F50+F +F.

14+F72)-—9(F25+F43)-—33(F32+F

)

36 54

7
—25(?10+F76)] X R
The penetration force integrals are designated with a "P".

The notation is, for example,

PZS(Zl)lS(Zz) = P2S1S



Plsls
P2s1s

P2s2s

P2P1S

P2P2S

P2P2P

P3s1s

P3S2S

P3s2p

P383S

P3D1s

150

3/2 _ 3/2 )
Zy Z,y R [F)5=Fp,]
le/z Z23/2 o2 | .
' P, 0 +F,,—2F 1
= 20 Fp27 "1
Zl5/2 Z25/2 23
P [3(F)-Fy ) +F34—F ]
le/z Zz3/2 o2
A (F107Fp1tF127Fpq ]
Z15/2 Z25/2 o3
' [2(F,,~F,.)+F_ +F .. .~F._.=-F..]
e 227 F11)4F 0 tF g F137F gy
ZlS/Z Zz5/2 <3
2 [2(F))=F ) +F 1 +F3,-F(1"F23]
Zl7/2 Z23/2 o3 ~ |
17 5 [Fgg+3F)5=3Fy -Fy,l
Zl7/2 Z25/2 o4 i
53 /15 [FyotbF g +Fqg ~4(F3+F,4)]
217/2 225/2 ol /2 \[F +3F,,-F,.-3F_.-3F
74 5 F3o*3F 5 Fy -3F 3-3F,,
“Fo3t3F3ptF 4!
Zl7/2 Z27/2 5 ;
5 [F50+10F32+5Fl4—10F23—5F41—F05]
144
Zl7/2 Z23/2 R3 /7 |
>4 [3(2(F) =F 1) +F g +F3,=F53-F( 1)
=3 (Fy5=Fyq) -F3+Fy5]



P3D2S

P3D2P

P3D3s

P3D3D

P4F1S

CZ
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7/2 , 5/2 -4

R
1 2
2520 V2 [3(4F y)+F o +F (o +F ) +F 5,
-2(F31+F13+F33+Fll))-6F22+4(F31+F13)
~F4F 0!
217/2 Z25/2 R4 V2 [3(3(F,,+F . ~F..,=F..)+F
73 12¥7F327F 3 Fp ) 4F
tF 34 Fg17Fy3) T3 (P p+F3,-F o -Fy3) -Fyy
~F30F41F 3]
7
Zl7/2 %2 S JAI3(F. —3F. —6F._ +2F. +F
- 5 307 3F 51 6F 3 +2F, 4 tF ey
228
—3F43+3F12-F03-2F4l+6F32+3F34-F25)-Fso

—5Fl4—lOF32+5F4l+lOF23+F05]

7/2
1 T2
9%x64

2 2

[9(6(Fy,=F)3) +4(F3 +F) ,=F

—F21)+F +F.,~F

107F 54 F57F(q) ~6 (3(F3,+Fy

“F 3 F ) 46 (F3-Fo3)+2(F 4 =F 1) +F 5,

-F . .+F

031F527Fpg) #Fg+t10(F 3 =F)3)+5(F ) 4-F 1) -Fycl

)

[5(F,.+F. )+6(F_ . +F..)+3(F,  +F
48/% 10 " 34 32 712 41 03

—5(FOl+F43)—6(F23+F21)—3(Fl4+F )]

30



P4F2S

P4F2P

P4F3S

P4F3D

P4F4F

[5
95/15

+F15)+12F +10F

22 44

-5(F53+F35)—10Fll

[5

96/5

+3(Fo3+F25)+ll(F12+F

—6F =3 (F35+F;,)

V2

2880

+F +F54)+3(F61+F05)-5(F03+F

34

—15(F21+F23+F43+F

1152 "5

+54 F +l4(F03+F6

34

—15(F01+F65)-54F2

—l4(F30+F36)—27(F

11520 [2

+ l4OF34+30(F03+F

+ 9(F50+F72)+60F5

—105(F23+F45)-l40F

—75(Fl4+F36)-90F5

-ll(F21+

152

(F20+F02)+3(F42+F +F

24 751

-3(Fl3+F +F, +F

31 04 40)

~12535)

+6F

(FpotF5q) #12F35*6F

-5 -
(F01+F )=12F

34) 45 23

F43)]

[5(F30+F36)+15(F12+F32

63)

45) "3(F1+Fgq) ]

[15(F10+F56)+54F 2+33(F12+F

3 54)

+F. )

3)+27(F41+F25)+3(F50 16

-33(F21+F45)‘54F

3 43

147 Fg0) =3 (Fog+Fg) ]

5(F +F76)+105(F32+F54)+60Fl

10 2

4‘7)+75(F41+F63)+90F25

+18Fl —2§(F01+

F67)
—30(F30+F

6 6

437%0F,;

—9(F05+F27)—60F

74)

2 65
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For II Integrals, one eaéily obtains

5/2 53

pP2pP2pP = 5 [

+F +F ~F

F110%F121%F1037F114 F

10177123

P3D2P =

+F +F ~-F ~-F

e F110%F103%F134* 1237 F1127F102

P3D3D = 7 [

P4F2P = [6F ., +F . _+5(F .. +F, _)+4F
64/30 30 " 05 01 " 45

+2(F21+F43)+7F

23

14T0F5,=6F3-Fgy

7% . -6F . _]

=5 (Fyg+Fg,) —4F 34)"TF4176F

32—2(F12+F

P4F3D = [6(F, . +F, +F_.+F_ )+5(F..+F__)
384/5 30 43 "23 " 36 01 65

+l3(F14+F52)+7(F21+F45)+F61+F05

—6(F03+F +F +F63)—5(FlO+F56)—13(F4l+F

34%F 32 )

25

-7(F12+F54)-F ~-F..]

16 “ 50

P4F4F

52+F7O+55F43

15360 [35(F3O+F74)+121F

+85(F F36)+ll(F05+F27)+65(F23+F

14* 45’

+15F6l+25(F01+F67)+45(F21+F65)—35(F03+

-121F25-F07—55F34—85(F41+F63)—11(F50+F

F47)

72)

—65(F32+F54)—15Fl6—25(FlO+F76)—45(F12+F56)]



The Atomic force integrals are designed with an "A".

The notation

The II atomic

is for example

A2P(Zl)lS(Zz) = A2P1S

5/2 3/2
A2P1S = 4 Zl- “2
= 7
3 (Zl+22)
. Zl5/2 Z25/2
A2P2S = 3 3
/3 (zl+zz)
g 1/2 7 5/2
A3S2P = %/r% 1 24
' (zl+zz)
e /3 Zl7/2 25/2
(zl+zz)
_ g 72 ,9/2
A3DAF = %3 //% 1 2 -
(Z.+2.)
7172
integrals.are :
g 1/2 . 5/2
A3D2P =-%§ 1l 2
V6 (zl+z2)
_ g 9/2 7 7/2
_,1L 128 1 2
.A4F3D v 3 5T

6
(2,+2,)

154
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In the case of homonuclear diatomic molecules,

electronic overlap force integrals occur in which 2 the

A’
effective ngclear charge of the orbital centred on nucleus
A equals ZB’ the effective nuclear charge of the orbital
centred on nucleus B. Such integrals cannot be evaluated
by the method of Kotani et a186. The Barnett—Coulson87
zeta-function technique was used during the course of this
work to evaluate such integrals. In this technique, the

function centred on nucleus B is expanded in terms of a

co-ordinate system centred on nucleus A. The expansion is

-7 oo
m-1 B'B (2n+1)
. e =L, -——== P (cos0,)z (Z_,r, ,R) (27)
' 1 . (2n+l)
= ZB_m+ y l2ntl) P_(cos@,)t (1,t,T) (28)
n=0 vt

The variables t and T are diménsioﬁless. Further

t = 34,r , (29)

T =32, R (30)

R is the internuclear distance and Pn,is the Legendre

Polynomial of order n. Each i (z R) is a function
[4

n ‘“prfa’

of three variables, These are 2 and R. PFor m=0,

B’ Tar

ton = Y (Zg/TaiR) (31)

where

yn(ZB,rA,R) = InJr;5 (Zg5,1,) Kn+% (z3,R) for r; ¢ R (32)
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The I and K are standard Bessel functions of purely imaginary

argument. When r, > R, the positions of T and R on the

right hand side of equation (32) are interchanged. Any

Cm,n can be expressed in terms of lower . Thus
g o(Lot,T) = p (1,50 = giy by (LD =y (1,501 (32)
or in general
Curz (Lt = (2o 1 e
2tT

T (2n+D) {ntm n-1 (1,t;7) + (n+l) S—— (1,t;1)y . (34)
/ ’
For the work considered in this thesis, the force integrals

are expressed in terms of J integrals where

-Z.r -Z.r :
- ATA B™B k 2-1_ m-1
J(k,2,m) = e e cos OArA ry drt (35)
Further ®
zB(“m*l)J(k,z,m) = AT TREAYE f k) at (36)
Ve ‘
T
o
where
Z
1
K = 5 (37)
422

The f(m,k:t) functions are linear combinations of the cm n
14

functions. Thus the J(k,%,m) integrals can be calculated

as sums of Z integrals where

[¢+]
-kt

- L+%
Zm,n,%+% (c,T) = e cm,n(l,t,r)t dt (38)

In particular



157

- L
Gn,2+% (x,T) = e Ktyn(l;t,T)t£+2dt (39)

-kt L+ ‘
Pn,oey (KrT) = | e " Py(lst, )t % ae (40)

o
The force integrals are expréssed as sums of these

G . and Pn’£+%_functlons. A general subroutine called

n,ﬁ%
@ VLINT was designed to calculate these Gn’2+%and Pn,£+%
functions. In the programme
GN,L+;§= G(N+2,L+2) (41)
PN,L+%= CP(N+2,L+2) (42)

G, and CP are doubly subscripted variables. Expressions
for the integrals evaluated by this technique are given

below.

1 4 2 21
77 S5 [Gy 2437 C1 04373
2

02528

. 7/2 |
g 21 2 27
15 375 [Py, 30577 Py 14573 (Po,243%2P) 54y))

2 .

03s3s

0y 1/2

2y Zy 6 .2 4 R

03030 = —p— /-2 B R%(2p; | 1 +3B, 1)) -7 5— (LB 5, ¥55P, o
44 56

2
2
P +==P

1 8 T
+36P4,2+%)+;§‘(§§ 1,3+%735 T3,3+577 P5, 34575
2

(4Pl,1+%

7

T
+6P3,1+%)+i3§(56P0’2+%+220P2,2+%+144p4,2+g )}
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9/2 . 9/2
21777 2, 3 R72 4
O4F4F = [(4.2857142R°~2.5714285 ——)P, .., /%,
45v1 . z5 1Tz
P 2 P
1
+ -iL%ii [5.7142857R>~3.4285714 BT 1+ 1'§+2 (2.0571428 2T
%2 2, 1z, 2
2 12 . P3 34y RT 2
-5.1428571R%+1.0285714 T—1+-2:3"416.1333333 BT -15.3333333R
z,° 2 2
2
12 . Ps 34 RT 2 2
+3.0666666 ~—]+—=>+3T% [3.8095238 £-9.5238095R°+1.9047619T—]
2, 1z, ~ 2 z,
Po, 4+ t . P2, a4y 4t
#2228 [1.7142857R-0.6857142 —]+—2£572 7, 4285715R-5 1]
Z Zy7 5.0 5
2 2
Pa, a4y o t . P6, 44k
#2283 19.6623377R-5.2363636 1], —*271[5.1948051R-2.0779220
Z 2 Z
2 2
| P, .., P P N
I 1-0.8761905 —2£5%0.8727273 325" 3186813 —Sr3tH
Zy 7.7 2.7 7.7
2 2 : 2
P
7,5:
-0.9324009 —£3¥5y]
z
2
For the ] overlap integrals, one obtains
42,5/
p2p2Pz—L  [p Py o]
ST 1,1+%F3,1+%
, 2. 7/2
4 % 2R 2R 8
03D3D = 3 o 15 Po,2+5 ¥ 2T P2,245 7 35 K Py 24y
_6 Ti,3ws2 Faaen 8 Ps 34y
35 — 7. 45 % 3 7
2 2 2
2,7/ % 16§ 1672 8 2 8 12
O4F4Fz [P, 3+1~5(7' - 2) + P, 3+%(§ R - 7% I _
60VZ T - 357 r 35 7
2 2 2
p (20 12 200 20 Fo,4wy 32 .32 T,
5,34 63 , 2 63 7, 21 105 7,
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P , P 1o |
2,4+% | 80 80 1 ,.74,4+% (144 _ _ 1008 T_
o P Rrms it BT R '2'6'9‘5‘22]
6 4tk (800 p _ 1601, , L2,
2y 31 231 %" 10s3,° 1,5+% " 4952, 27 %3,50%
_ 1680 . 400
24572,2  5r5%% 4295 2 77,545

[

Also’ for the sigma overlap integral 02P2P, one obtains

5/2 5/2 4 : : 1
O2P2P = 2 z — [ (P +2P ) -
1 2 VT ;‘g;‘f 0,0+% <5 2,0+% g;;i
(3P) 143+2P3 143)] |



Figure 19. Computer output describing a molecular density
contour map. The maximum contour is 1.8 a.u. and is re-
presented by the integef 9. The minimum contour is 0.0 a.u.
and is represented by the ihfeger 0. The arrow designates
the origin of the co-ordinate system. For this particulaf

example the nucleus H is situated at this origin.
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Figure 20. Computer output-describing a density difference
contour map. The integer 5 represents the zero contour.
The integers 0, 1, 2, 3 and 4 repreéent negative contours.
The integers 6, 7, 8 and 9 represent positive contours.

The symbol plus represents a region of contours having
higher values than DMAX. The symbol - indicates a region
of contours having more negative values than DMIN. The
arrow represents the origin of the co-ordinate system and
one of the nuclei (B in this case) is situated at this

origin.
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THE DENSITY AND DENSITY DIFFERENCE CONTOUR MAPS

The one-electron density computed from a molecular
Hartree-Fock function is given by

N

p(r) = iil ni¢i¢i (43)

where N is the number of occupied molecular orbitals and n.
is the occupation number of the ith molecular orbital.
Similarly the density difference function is given by

Ao (T) = p(¥) - pA(?) (44)

The symboi o ( ;) is defined above while the symbol

pA(;) designates the density of the noninteracting atoms
brought up to the observed internuclear distance. It is

a relatively simple task to set up a programme to calculate
these density functions for a diatomic molecule at a number
of points in the regions surrounding the nuclei. This in
fact was done and the computedAdensity values were stored
on the disc. At the end of the calculation the density
values were fed into the library subroutine C@NT@R.

This subroutine produced as output integer contours such

as those shown in Figure 19 for the total density of the
(FHF)_l ion and Figure 20 for the density difference function -

o £ B The path traced out by each repeated integer repre-

9
sents a curve of constant density. A maximum of ten
integers from 0 to 9 is available for each separate map.

Noted below is the section of the F@RTRAN programme devoted

to the plotting of contours.
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REWIND 3
READ 30, DMAX, DMIN
30 FPRMAT (2F8.5)
D@ 150 kIl = 1,41
READ (3) DX

150 CALL C@NT@R (DX ,DMAX,DMIN,M,N).

DX is a subscripted variable representing the density. It
must have as its dimension the integer M. DMAX and DMIN
represent‘respectively the maximum and minimum values of
contours which appear in the plot. For example, if
DMAX=0.9 and DMIN=0.0, then one can label the contours

in the following way

’
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Intege; Contour
0 0.0
1 0.1
2 0.2
3 0.3
4 0.4
5 0.5
6 0.6
7 0.7
’ 8 0.8
9 0.9

M is an integer which in this work was always set equal

to 101. It represents the length along the x axis defined
in Figure 1 in dimensionless units and can have a maximum
value of 132. In the programmes discussed here a multi-
plication of the number M by 0.12 yields the range of values
along the x axis in atomic units. N is another integer which
indicates the number of contours which will be plotted. ' The
number 41 in the segment programme above represents the
number of computer lines printed per contour map. It is a
dimensionless number describing the range of Z values as
defined in Figure 1. Mulfiplication of this dimensionless
rnumber by 0.15 gives the range of Z values in atomic units.
The last computer line in each contour map is the inter-

nuclear axis. Thus the first 101 calculated density points
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have a % co-ordinate of 6.0 atomic units. In a total calcu-
lation 101x41 = 4141 density points are stored in the disc
during the execution of the programme. These points are then
read in groups of 101 into the library function C@NT@R
Contour maps such as those shown in Figures 19 and 20

represent the computer output.
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THE POPULATION NUMBERS

The population numbers repdrted in this thesis
are just integrated forms of the total density and density
difference functions. The numbers listed in Table I and
labelled as the fractions of the charge in the binding
regions of the various molecules are defined by the

equation

p_ = % 0 (%) 4% (45)

N is the total number of electrons. The restriction Q=0
indicates that p(;) is integrated over all values of ra

and rn in the binding region,

The numbers in Table II are labelled as the increase

in the number of electronic charges in Berlin's34

binding
and antibinding regions. These numbers are defined by
the equation

P. = | Ap(¥)ar (46)

Ap(¥) = 0
Thus P is equal to the integral of Ap(?) over the various
regions where Ap(;) is positive.
The density and density difference contour maps
define regions over which the various integrals are to be

evaluated. Each region is divided into a grid of rectangles.

The density at the midpoint'of each rectangle is calculated.
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The segment program below describes the evaluation of P

————

PA=0.0
X = XINII
:D¢ 150 kIl = 1,N
Z = ZINIT
D@ 149 kI2 = 1,M

RPUT = 2 + RECZ/2.0
RIN = Z~RECZ/2.0
QA = DELTA * [RPUT**2.0-RIN**20]* 3,14159
PA = QA+PA
1F (DELTA.LE.0.0) Gg T@ 150
149 Z = Z+RECZ
150 X = X+RECX

160 PA =PA*RECX
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DELTA is a variable describing the’density. The expression
QA is the number of electrons in the annular ring whose
outer radius is R@PUT and whose inner radius is RIN. This
annular ring is in a plane perpendicular to the inter-
nuclear axis and the radii RIN and R@UT describe the
distances from the internuclear axis to the inner and
outer edges of this annular ring respectively. Each of
these annular ring populations is added to PA. RECZ

is the length of the rectangle in the Z direction.RECX

is the length of the rectangle in the X direction. XINIT
and ZINIT are initial values of X and Z. The integers

N and M describe the dimensions of the total grid of

rectangles; The final value of PA in statement 160 is

the desired population number.



TABLES
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1

Forces on Lithium (X Z;) R=5.051 a.u.

Orbital Atomic Overlap Screening , £

' Force Force Force i
lcg -0.2979 0.0052 0.9984 0.7057
lo, -0.3356  -0.0056 0.9993 0.6581
ch +0.0708 0.9271 0.5932 1.5911
Total -0.5627 '0.9267 2.5909 2.9549

z fi = 2.9549
i

Net Force = 35 [3-2.9549] = [0.0451135 = 0.005
R R



. Force on Boron (X32;) R = 3.005 a.u.

170

Orbital Atomic Overlap Screening £. .
Force Force Force t

lo -0.0263 0.0056 0.9992 0.9785
lo_ -0.0242 -0.0062 1.0011 0.9707
20 0.0841 1.4260 0.7947 2.3048
20 ~0.8755 -0.1987 0.5823 -0.4919
1 0.1980 0.4809 0.5095 1.1884
Total -0.6439 1.7076 3.8868 4.9505

S £. = 4.9505

N 1 A

1

5

Net Force — [5-4.9505] = 0.027
R



F

Orbital
lo
g

lo
u

2
%%

20
u

1w
u

Total

Atomic

Force

-0.0381

-0.0397

-0.0388

-0.9402
0.3215

-0.7353

Fa

1 .+

Overlap
Force

0.0082

-0.0068

1.4869

-0.1920
0.9018

2.1983

I f. = 5.9864"
. 1
1

= §7[6-5.9864] =

R

orces on Carbon (a Eg) R = 2.3481 a.u.

171

Screening f.

Force 1
0.9990 0.9691
1.0008 0.9543
0.8021 2.2502
0.6958 -0.4364
1.0257 2.2490
4,5234 5.9864

0.015
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1 :
Force on Nitrogen (X E;) R = 2.068 a.u.

Orbital Atomic Overlap Screening fi
Force Force Force

lo ' 0.1519 0.0080 0.9997 1.1596
lou ‘ 0.0738 0.0137 0.9972 1.0847
2oé ~0.0425 1.8418 0.8824 2.6817
Zou -0.7754 ~ -0.1666 0.4791 -0.4629
30g -1.7664 1.2206 0.6961 0.1503
lnu 0.4156 0.9355 1.0816 2.4327
Total -1.9430 3.8530 5.1361 7.0461

T f, = 7.0461
i 1

Net Force = 15 [7-7.0461] = —0.075
! R



Orbital

lo
g

lou

20
g

Zcu
30
g

lwu

ki)
g

Total

Atomic
Force

10.2309

0.1288

0.4036

-1.0478

-2.3335

0.4341

-0.1003

-2.2842

Net Force

Forces on Oxygen

(

f.
i

8
R

. —

2

x3z‘) R =
g

Overlap
Force

0.0005

0.0098

1.6277

-0.2674
1.6930

0.8410

-0.4187

3.4859

= 7.9896

[8-7.9896]

2.282 a.u.

Screening

- Force

1.0005

-0.9991

0.9029

0.7971

0.8147

1.3287

0.9449

6.7879

= 0.016

173

1.2319

1.1377

. 2.9342

-0.5181

0.1742

2.6038

0.4259

7.9896



Orbital

lo
g

lo
“u

20
g

20
u

Total

Atomic

Force

0.2425

0.1207

0.6079

-0.7478

-2.4587

0.3082

-0.0221

-1.9493

'Net Force

f.
i

Force on Fluorine (xlz;)

Overlap

Force

0.0004

0.0028

0.9084

-0.4079

2.0669

0.5640

. =-0.6301

2:5045

27[9-8.9366]
R

= 8.9366

= 2,68

Screening

Force
1.0002

0.9999

0.9307

0.9878

0.9081

1.5908

1.9639

8.3814

0.080

174

£.
i

1.2431

1.1234

2.4470

0.5163

2.4630

1.3117

.8.9366



Forces on Beryllium (lz;) R = 3.5 a,u.

Orbital

lo
. g

lo
u

2
%

20
u

Total

Atomic

Force

0.0434

0.0342

-0.0870

-0.8666

-0.8760

Net Force

Overlap
Force

0.0088

-0.0077

1.3617

-0.3457

1.0171

f.
i

£7[4—3.6832]
R

3.6832

Screening
Force

0.9991

1.0012

0.7281

0.8137

3.5421

..

0.103

175

£.
i

1.0513

1.0277

2.0028

-0.3986

3.6832



Orbital

lo
g

lo
u

20
g

20
u

30

lwu

Totals

Forces on N2(X Zg)

Atomic

FPorce

0.1448

0.0698

-0.1040
-0.7256

-1.7022

0.4077

~1.9095

Net Force

1 .+

Overlap

Force

0.0095

0.0137

1.8513
-0.1742

1.1792

0.9356

3.8151.

™

R

f. = 6.9857
i

7
—7[7—6.98

R = 2.01320 a.u.

Screening
Force

0.9995

0.9969

0.8808
0.4607

0.6829

1.0593

5.0801

57] = 0.025

176

1.1538

1.0804

2.6281
-0.4391

0.1599

2.4026

6.9857



Orbital

1o
g

lo
u

20
g

20
u

30
g

lwu

Total

.

+ 20+ _
N, (X°E)) R = 2.0132

Atomic Overlap
Force Force
0.0788 0.0076
0.0464 -0.0002
-0.0627 ©1.7520
-0.6426 -0.2209
-0.8500 0.5989
+0.4494 0.9769
~0.9807 3.1143

L £, = 6.9457
i

Z-2-'[7-6.9457]
R

Net Force

Screening
Force

0.

0

9995

.9997

.8792

.4464

.3532

.1341

.8121

.0094 a.u.

177

.0859

.0459

.5685

.4171

.1021

.5604

.9457



Orbital

1o
g

lo
u

2
%

20
u

30
g

lﬂu

Total

178

+,.2 _
N2 (A Hu), R =2,01320 a.u.

Atomic

Force

0.2169

0.0993

-0.1256

-0.6085

-1.6074

0.3894

~-1.6359

Overlap Screening fi
Force " Force

0.0092 1.0000 1.2261
0.0018 0.9996 1.1007
1.9924 0.9234 2.7902
-0.2277 : 0.4484 -0.3878
1.0400 0.6738 0.1064
0.7674 0.8465 2.0033

3.5831 "4.8917 6.8389

r £, = 6.8389
. 1
1

Net Force =[7-6.8389117 = 0.278
R



Orbital

io

lo
u

20

20
u

30

lnu

Total

N2+(BZZ:) R = 2.01320 a.u.

Atomic

Force

0.0381

0.0069

-0.1415

-0.0663

-1.6624

0.4196

-1.4056

Overlap
Force

0.0096

-0.0008

1.9460

-0.1766

1.0610

0.9614

' 3.8006
£, = 7.2977

Net Force= 15{7-7.2977]
R

Screening

Forxce
0.9992

0.9997

0.9075

0.2042

0.6710

1.1211

.4.9027

-0.514

179

f.
i

'1.0469

1.0058

2.7120

-0.0387

0.0696

2.5021

7.2977



Orbital

lo
g

lo
u

20'
g

20
u

30
g

1
u

1
g

Totals

+,.2 _
0, (x ng) R =

Atomic

Force

0.2422

0.1286

0.3225

-1.0029
-2.1760

0.5368

0.0453

-1.9941

2.12200 a.u.

Overlap Screening
Force Force
0.0017 1.0006
0.0101 0.9990
1.8055 0.9277

-0.2026 0.7131
1..4752 0.7830
0.9245 1.3218

. =0.2067 0.4671

3.8077 6.2123 .

Net Force =

r £, = 8.0259
A §
i

§7[8—8.0259] = ~-0.045
R

180

£,
i

1.2445

1.1377

3.0557

-0.4924
+0.0822

2.7831

0.2151

8.0259



Orbital

lo
°)

lo
u

20
g

20
u

30
g

1w
u

1w
g

Total

0,

Atomic

Force

0.2198

0.1280

0.4288

-1.0386

-2.4155

0.3272

-0.0998

-2.4501

Net Force

M) R =

Overlap
Force

+0.0000

0.0087

1.4982

-0.3550
1.8602

0.7707

-0.9002

2.8826

£f. = 7.8969
i

8 18-7.8969]
R

2.40 a.u.

Screening

il

£,
i

1.2203

1.1360

2.8097

-0.5136

0.2774

2.4101

0.5570

7.8969



Force on H

Force on F

Forces in HF'

182

Molecular Atomic Overlap Screening f.
Orbital Force Force Force .
1o 0. 0. 2.0 2.000
20 0.058 0.526 1.664 2,248
30 0.213  0.553 1.142 1.908
im 0.004 0.134 2.757 2.985
.Total 0.275 1.213 7.563 9.051
Net Force = i7[9-9,051] = -0.017 a.u.
1o 0.146 0.002 0.000 0.148
20 0.394 0.382 0.057 0.833
30 -2.476 +1.827 0.327 -0.322
1m 0.187 0.114 0.006 0.307
Total -1.749 0.390 0.966

Net Force

2.325

= 27[1—0.966] = 0.104 a.u.
R . .



Force on Li

Force on H

Forces on LiH

183

Molecular Atomic Oﬁerlap Screening fi
Orbital force force force
lo -0.325 0.066 0.002 -0.257
20 - =0.010 0.730 0.840 1.560
Total- -0.335' 0.796 0.842 1.303
Net Force = 35[1-1.303] = -0.010 a.u.
R
lo ' 0.002 0.028 1.963 1.993
20 0.062 - 0.589 0.247 0.898
Total 0.064 0.617 2.210 2.891
Net Force = 0.012 a.u.

l7[3-2.89l] =
R .



Force on Li

Force on F

Forces in LiF

Molecular Atomic Overlap

184

Screening £.
Orbital force force force 1
1o 0. 0. 2.0 2.0
20 -0.362 0.070 0.003 -0.289
30 -0.064 0.016 2.004 1.956
4g -0.296 0.080 2.200 1.984
im 0.010 0.180 3.304 3.494
Total -0.712 0.346 9.511 9.145
Net Force = 27[9—9.145] = —6.052
R
1o 0.099 0.001 0.000 0.100
20 0.007 °© 0.028 1.972 2.007
30 0.636  0.081 0.014 0.731
40 -1.148 0.739 1 0.043 -0.366
im 0.474 0.136 0.012 0.622
Total 0.068 0.985 2.041 3.094

Net Force = 27[3-3.094] = -0.101
R

°
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