
Recursive Estimation of Driving-Forces from 


Nonlinear Nonstationary Systems with Unknown 


Dynamics 




RECURSIVE ESTIMATION OF DRIVING-FORCES FROM 


NONLINEAR NONSTATIONARY SYSTEMS WITH UNKNOWN 


DYNAMICS 


BY 


ULA$ GUNTURKUN, M.A.Sc. 


A THESIS 


SUBMITTED TO THE DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING 


AND THE SCHOOL OF GRADUATE STUDIES 


OF MCMASTER UNIVERSITY 


IN PARTIAL FULFILMENT OF THE REQUIREMENTS 


FOR THE DEGREE OF 


DOCTOR OF PHILOSOPHY 


© Copyright by Ula§ Giintiirkiin, April 2010 

All Rights Reserved 



Doctor of Philosophy (2010) McMaster University 

(Electrical & Computer Engineering) Hamilton, Ontario, Canada 

TITLE: 

AUTHOR: 

SUPERVISORS: 

NUMBER OF PAGES: 

Recursive Estimation of Driving-Forces from Nonlinear 

Nonstationary Systems with Unknown Dynamics 

Ula§ Giintiirkiin 

M.A.Sc., (Electronic and Communications Engineering) 

Yildiz Technical University, Istanbul, TURKEY 

Dr. Hubert deBruin, Dr. James P. Reilly 

xix, 144 

11 



This dissertation is dedicated to my family for their continuous support throughout 


my studies, and to Mustafa Kemal ATATURK, the founder of secular Turkish 


Republic, for encouraging and making it possible for the citizens of his nation to 


recognize science as the only true guide in life. 


"We do not consider our principles as dogmas contained in books said to come from 


heaven. We derive our inspiration, not from heaven, or the unseen world, but 


directly from life." 


Mustafa Kemal ATATURK. 




Abstract 


We address a functional analysis-based method for the estimation of driving-forces 

from nonlinear dynamic systems in this thesis. The driving-forces account for the 

perturbation inputs or the irregular variations in the internal variables of a dynamic 

system. These inputs are hidden from the observer most of the time if not always. 

Reconstruction of such inputs when there is too little or no prior knowledge to build 

a mathematical model to describe the system's behavior is an important problem in 

many cases in physics and engineering. To this end, we propose a method for the 

recursive estimation of driving-forces without the availability of an analytic model of 

the unknown physical phenomenon. 

The underlying idea of the proposed estimator is to predict the observables one­

step ahead of the current time instant, and then retrieve the driving-force from the 

prediction error. This idea is embodied by predicting the observables using a bank 

of echo state networks (ESN) in an online fashion, extracting the raw estimates from 

the prediction error, and then finally smoothing these estimates in separate adaptive 

filtering stages. The approach described herein distinguishes itself from the similar 

methods in the literature in its adaptivity and its greater immunity against varying 

environmental uncertainties. The adaptive nature of the estimator enables us to 

retrieve both slowly and rapidly varying driving-forces accurately in presence of model 
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or sensor noises, which are illustrated by experiments in the subsequent chapters of 

this thesis. In particular, some chaotic/stochastic nonlinear models are studied in 

controlled experiments. The estimation quality of the proposed approach is judged 

with a reference to the Posterior Cramer-Rao Lower Bound as a theoretical lower 

limit on the estimation error. 

The Bayesian and Maximum-Likelihood (ML) methods are also studied for the 

estimation of driving-forces when partial or full information is available on the mathe­

matical description of the unknown system. These methods serve as practical merits of 

assessment for the proposed driving-force estimator. Moreover, a direct performance 

comparison between the proposed estimator and a favorable estimation scheme of a 

similar kind is provided, which confirms the advantages of the proposed approach. 

The proposed method is tested on a real-world application on the extraction of 

sun's magnetic flux from the sunspot time series. It is illustrated that the results 

obtained by the proposed estimator are in close agreement with the results of two 

other analytical studies. 

Finally, a solution to a real problem in practice is proposed using the method. 

Specifically, extracting the signature of a small random target embedded in the sea 

surface is addressed using the live recorded data collected with the McMaster IPIX 

radar. This is the first specific realization of a radar scene analyzer for the cognitive 

radar reception in the literature to the author's best knowledge. 

The material in this thesis is presented in a sandwich thesis format, combining 

two peer reviewed, published journal articles, and another journal article that is 

prepared for submission. An additional chapter that provides the background material 

is included for the completeness of the presentation. 
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Notation and abbreviations 

Notations 

Un Driving-force (hidden input) at discrete-time n 

Xn, Xn The scalar state variable, and the state vector respectively at discrete-time n 

Yn The measured sample variable at discrete-time n 

g(.) The continuous and measurable mapping that describes the state transition 

h(.) The continuous and measurable mapping that relates the measurements to the 

state 

f(.) The mapping that governs the hybrid systems, which relates the previous mea­

sured sample to the current one 

J(.) An approximation to f (.) 

w Process (dynamic) noise 

v Measurement noise 

JR The set of real numbers 

N The set of natural numbers 

JE[.] Statistical expectation operation 

O"~ The variance of the process noise 

O"; The variance of the measurement noise 
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T Number of samples 

T (Superscript) matrix transpose 

Sn The state of the echo state network (neuronal state) at discrete-time n 

win The vector of input weights for the echo state network 

W The internal weight matrix for the echo state network 

w 0 ut The vector of output weights for the echo state network 

<I> The time-averaged autocorrelation matrix of the neuronal state for the operation 

of RLS algorithm 

P The inverse of the autocorrelation matrix for the neuronal state 

ARLS The forgetting factor for the RLS algorithm 

k The RLS gain vector 

<; The connectivity rate of the dynamic reservoir of the echo state network 

p The spectral radius of the internal weight matrix for the echo state network 

N The number of neurons in the dynamic reservoir of the echo state network 

V The number of echo state networks in the ESN bank 

Zn The output variable the echo state network at discrete-time n 

en The prediction error for the echo state network at discrete-time n 

rn The tap-input vector for the regularized adaptive estimator 

f n The output variable for the regularized adaptive estimator 

O:n The prediction error for the regularized adaptive estimator 

f3n The difference between the two consecutive outputs of the regularized adaptive 

estimator 

L The number of tap-weights for the regularized adaptive estimator 

J The cost function associated with the regularized adaptive estimator 
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8 ] The standard error term for the definition of the cost function associated with the 

regularized adaptive estimator 

lreg The regularizing error term for the definition of the cost function associated with 

the regularized adaptive estimator 

>. The regularization constant 

an The tap-weight vector for the regularized adaptive estimator 

µn The step-size parameter for the regularized adaptive estimator 

p(.) Probability density function 

IP' Discrete probability 

() The hidden parameter 

a-~ Time-averaged variance of estimation error 

Pu The power of the driving-force 

Dn Measurements in terms of spectral power up to time n 

~~ The event of a target being present in resolution cell r at time n 

,,jT;,, The square root texture component at time n 

V' The gradient operator 

C(.) The number of floating-point operations 

I The identity matrix 

P The order of all-pole filter responsible for the generation of the driving-force 

M The number of particles 

tanh(.) The hyperbolic tangent function 
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Abbreviations 

ADFE The Adaptive Driving-Force Estimator 

AM Amplitude Modulation 

BTT The Bayesian Target Tracker 

DR Dynamic Reservoir 

EM Expectation Maximization 

EM-PF Expectation Maximization Particle Filter 

ESN The Echo State Network 

FLOP Floating-point operation 

GMRF Gauss-Markov Random Field 

IEEE The International Institute of Electrical and Electronic Engineers 

IPIX Intelligent PIXel Processing Radar 

KF Kalman filter 

KS Kalman smoother 

LLN Law of Large Numbers 

LMS Least Mean Square 

L-Map Logistic Map 

ML Maximum Likelihood 

MSE Mean Square Error 

MR-Map Moran-Ricker Map 

NMSE Normalized Mean Square Error 

PF Particle Filter 

PDF Probability Density Function 

RBF Radial Basis Function 
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RC Reservoir Computation 

RLS Recursive Least Squares 

PCRB Posterior Cramer-Rao Lower Bound 

RBPF Rao-Blackwellized Particle Filter 

RMLP Recurrent Multilayer Perceptron 

RNN Recurrent Neural Network 

RSA Radar Scene Analysis 

SNR Signal-to-Noise Ratio 

SPF Standard Particle Filter 

STFT Short-Term Fourier Transform 
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Chapter 1 

Introduction and Problem 

Statement 

1.1 Introduction 

Many real-life dynamic systems generate nonstationary outputs due to the inevitable 

presence of measurement noise, dynamic noise and changes in the internal system 

parameters or environmental conditions in the course of time. Measurement noise 

implies stochasticity, whereas the perturbations may cause the system parameters to 

be time-varying, and the combined effects of these factors result in a nonstationary 

process arising from a perturbed dynamic system. The perturbation signals (driving­

forces) can be viewed as unknown inputs to the unperturbed dynamics. They are 

hidden from the observer most of the time if not always, and estimating them can be 

of practical interest in many cases in physics and engineering. 
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1.1.1 Some Examples of Perturbed Dynamic Systems 

Here we address some examples of how in many physical phenomena we have a dy­

namic system driven by a force that is not observable: 

Sunspot Time Series: A sunspot is a cooler darker spot appearing on the sun's 

photosphere whose mechanism is not exactly known. In 1848, Rudolph Wolf devised 

a daily method of estimating solar activity by counting the number of individual spots 

and groups of spots on the face of the sun (NGDC, 2006). The variation in the sun's 

magnetic flux plays the role of a perturbation process impacting the evolution of the 

sunspot numbers' time series. Solanki et al. (2002) developed a mathematical model 

to extract the information pertaining to sun's magnetic flux. 

Sea Clutter: Sea clutter refers to the radar backscatter from an ocean surface. 

The study of sea clutter is not only of theoretical importance but also of practical 

importance because it places severe limitations on the detectability of point targets 

(e.g., low-flying aircraft, small marine vessels, navigation buoys, and small pieces of 

ice) on or near the sea surface. The two fundamental types of waves (i.e. gravity 

and capillary waves) dictate the roughness of the sea surface, and govern the clutter 

dynamics (Haykin et al., 2002). When a small target is embedded in the sea surface, 

the movement of the target will be also dominated by the governing sea waves. Then a 

small target can be modeled as an additional random perturbation in the sea surface, 

whose dynamics are closely coupled by those of the sea. Hence the estimation of a 

small random target's signature can be cast as a driving-force estimation problem 

within the radar scene analysis. 

Wireless Communication Channel: In a general wireless communications scenario, 
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the transmitted signal reaches the receiver by different transmission paths with dif­

ferent path lengths. This causes the received signal to be a superposition of different 

reflected signals, which have varying delays due to their path lengths. Since the re­

ceiver could be moving, fast fading occurs and the channel is therefore time-varying. 

In such situations, the physical and geometrical properties of the environment (build­

ings, trees, etc.) and movement of the receiver play the role of perturbation inputs. 

Physiological Processes: In living organisms, heart activity, breathing, muscle 

tremor and voice production are some examples of physiological processes. All these 

processes have some degree of nonstationarity due to the perturbations coming both 

from the environment and from different systems of the vital activity of the organism. 

Seismic Data: Earth's deep interior has been largely influenced by earthquakes, 

most of which are caused by the sudden movement of rock masses along a fault. As 

these rocks grind together, energy is released and vibrations are produced, which 

we call seismic waves. The speed of seismic waves in rocks depends on several en­

vironmental variables, the most important of which are pressure and temperature 

(DGPS, 2010). Therefore, seismic waves, being the reflection of the rock motions, are 

perturbed by those driving-forces. 

1.1.2 Problem Statement 

In light of these physical examples, we can identify three estimation scenarios: 

1. 	 The state and driving-force are both one-dimensional, as in the case of sunspot 

data. 

2. 	 The state is multidimensional, and the driving-force is common to every ele­

ment of the state, as in the case of sea clutter, where a population of the local 

3 




Ph.D. Thesis - Ula§ Giintiirkiin McMaster - Electrical & Computer Engineering 

scatterers are perturbed by the same small target. The target would play the 

role of a driving-force. 

3. 	 The state and driving-force are both multidimensional; it is in such a situa­

tion where we need prior information on the evolution of state to estimate the 

driving-forces. 

The material covered in this thesis is applicable to scenarios 1 and 2. 

Consider a one-dimensional (possibly nonlinear) dynamic system as described in 

( 1.1), whose state-space model consists of two parts: 

• 	 A process equation that describes the evolution of state under the action of 

process noise and a driving-force; the force is unknown. 

• 	 A measurement equation that defines the observables buried in measurement 

noise. 

These two equations can be represented respectively as 

(1.1) 


The continuous and measurable mapping g : JR2 ---+ JR defines the state transition, 

and h : JR ---+ JR defines the evolution of observables respectively. Xn E JR denotes 

the state, Un E JR is the unknown input signal (driving-force), Yn E JR denotes the 

observable, Wn E JR is the dynamic noise, and Vn E JR is the measurement noise, all at 

discrete time n E [O, T]. T E N denotes the number of data samples and JR denotes 
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the real space. Note that (1.1) can be extended to cover the cases where the state is 

multidimensional without loss of generality. 

In general terms, the problem that we are posing is similar to the state-estimation 

problem, where the requirement is to estimate the state Xn· Our problem, however, 

is different: We wish to estimate the driving-force Un without knowledge of g(.) and 

h(.) given that h(.) is invertible. 

1.2 Literature Review 

The hidden input estimation problem has received considerable attention in both the 

physics and engineering disciplines. We-can divide the numerous contributions in the 

literature to two main categories. 

In the first category, an analytical description of the system model is readily 

available. The second category covers such cases where the system model is unknown. 

It is these cases that we address in this thesis. We present below a summary of the 

main contributions in both categories. 

1.2.1 Input Estimation in Fully Identified Systems 

Linear Deterministic Systems 

The system under study is represented by a linear state-space model without any 

uncertainties. Mainly, linear algebra techniques are used for inverting the system, 

and estimating the unknown input. Such an estimator is usually referred to as an 

'observer' in the automatic control literature (Guan and Saif, 1991), (Darouach et al., 

1994), (Hou and Patton, 1998a). Bhattacharyya (1978) takes a geometrical approach 
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as an alternative method. Singular value decomposition (SVD) is presented by 

Fairman et al. (1984) for reconstruction of the hidden input. 

Linear Stochastic Systems 

The system model is still linear, but includes additive noise to represent the uncer­

tainties about the system dynamics and measurement errors. Most of the literature 

for the study of such cases is based on the generalization of the linear optimum Gaus­

sian filtering (i.e. Kalman filter). The generalized Kalman filter (Gillijns and Moor, 

2006) is realized as two interconnected steps, hence the estimation of state and in­

put are linked. Hou and Patton (1998b) decouple these two operations, exploiting 

the innovations approach in Kalman filtering. deconvolution approach is studied by 

Nicolao et al. (1997) based on a linear system with a known impulse response. The 

solution is based on regularized least squares estimation for physiological processes. 

Nonlinear Deterministic Systems 

In these cases, a commonly employed approach is to transform the nonlinear dynamics 

to a new set of coordinates where linear methods can be applied, (Krener and Respondek, 

1985), (Xia and Gao, 1989). Another approach that is widely practiced is applica­

ble to nonlinearities of the Lipschitz kind, which allows local linear approximations. 

Zhu and Han (2002) linearize the estimation error using the Lipschitz condition. Then 

based on the stability of the estimated error, a Riccati equation is solved and the 

estimates are obtained. Boutayeb et al. (2002) determine the (linearized) model ma­

trices given the Lipschitz nonlinearity, and estimate hidden input using linear algebra 

techniques. Arcak and Kokotovic (2001) exchange the Lipschitz restriction by the 
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circle criterion (a theorem showing stability in nonlinear systems). The circle crite­

rion is evaluated by LMI (linear matrix inversion) computations. In an article by 

Ha and Trinh (2004), the previous approaches are generalized to nonlinearities which 

are not necessarily Lipschitz any more, but rather are state-dependent nonlinearities. 

The estimation method depends on the solution of the Riccati equation by the LMI. 

The state and input are simultaneously estimated. 

Nonlinear Stochastic Systems 

Pillonetto and Saccomani (2006) study a nonlinear system where the state equation 

is noise-free, and the stochasticity is limited to measurement uncertainties. A Kalman 

smoother is used for suppressing the measurement noise. Then differential algebra 

techniques are used for estimating the input from the resulting supposedly determinis­

tic system. In an article by Pillonetto and Bell (2004), the hidden parameter is buried 

in both the state and measurement equations. A Laplacian approximation is used 

for representing the likelihood of the unknown parameter, and maximum likelihood 

(ML) estimates are obtained to approximate the exact system model. 

A more interesting input estimation scheme in nonlinear stochastic systems is ar­

guably the application of Bayesian methods. The literature on the Bayesian input 

estimation however is limited to the estimation of static variables. In another work 

by Pillonetto and Bell (2007), results of (Pillonetto and Bell, 2004) are generalized by 

assuming that the prior pdf on the unknown parameters is known. Then a Bayesian 

solution is studied. The expectation maximization (EM) algorithm (Dempster et al., 

1977) combined with a Kalman smoother is shown to be an effective method to esti­

mate the fixed parameters. Moon (1996) mention some general applications of EM. 
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Andrieu and Doucet (2003) derive an online version of EM. In two more recent papers 

(Zia et al., 2007, 2008), the measurement model is assumed unknown, and it is esti­

mated by virtue of estimating the parameters of a mixture of Gaussians (MoG) model. 

A different approach is augmenting the state model for the estimation of hidden pa­

rameters. Kitagawa (1998), estimate the unknown scalars of the system equations 

and noise variances by this approach based on sequential Markov Chain Monte Carlo 

methods (MCMC) (or particle filters). Higuchi (1997) replace the prediction step in 

particle filters by some elements of genetic algorithms, namely crossover and muta­

tion. Storvik (2002) assumes that the distribution of the hidden parameter depends 

on the state vector through some low-dimensional sufficient statistics, and the hidden 

parameter is marginalized from the posterior. Liu and West (2001) fit a random walk 

model to the evolution of the hidden static parameters and they introduce kernel 

smoothing to compensate the artificial dynamic behavior of the random walk model. 

Zhang et al. (2006) modify a particle filtering algorithm for the estimation of unknown 

input variable. Specifically, the state transition operation is performed without the 

unknown input, and the value of the unknown input variable is chosen from a known 

constellation that maximizes the measurement likelihood. This operation is inserted 

as an intermediate step between prediction and update steps of the particle filter. 

Zhang et al. (2007) apply the same idea for the estimation of a static parameter. 

1.2.2 Input Estimation in Unknown Systems 

This scenario has received attention mostly from the physics literature, where in­

put estimation is termed "driving-force estimation", or "perturbation estimation" 

in the relevant papers. In such problems, lack of sufficient prior knowledge of the 
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system prompted researchers to resort to blind approaches based on some weaker as­

sumptions. The earliest work for the estimation of driving-forces from systems with 

unknown dynamics can be dated back to the recurrent plots (Eckmann et al., 1987). 

The idea behind recurrence plots is to construct windows of data with a suitable 

embedding length, and pass the scaled norms of the moving distance between the 

windows through a kernel for varying lags. The kernel is usually the Heaviside step 

function. The driving-force information is searched within these processed distances 

between the windows. Hence, the recurrent plots may be considered as the earliest 

realization of the prediction error idea. Casdagli (1997) revisited the recurrent plots 

by introducing an averaging technique for deterministic systems. Then the driving­

force can be reconstructed up to an arbitrary amplitude transformation. An improved 

approach is presented by Schreiber (1997, 1999, sec. 4.2). Two segments from the 

time series are constructed. One segment is used for predicting another segment. 

The driving-force is searched in this cross-prediction error. As argued by the authors 

themselves, a strong limitation of this approach is the following: The duration of 

overlap between two consecutive segments, and the length of each segment must be 

chosen properly so as to guarantee that one segment contains enough information to 

predict another segment. 

Verdes et al. (2001) solidified the prediction error idea using a radial basis func­

tion (RBF) network for predicting the overlapping intervals of time series. The av­

erage prediction errors are calculated within these intervals, and the time-average of 

the driving-force is reconstructed from the prediction error subject to an arbitrary 

amplitude transformation. As proposed by Casdagli (1997); Eckmann et al. (1987); 

Schreiber (1997, 1999), the method is also applicable only when the driving-force is 
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known to be varying very slowly. However, the authors show their method to be 

more effective than that of Schreiber (1997, 1999) thanks to accurate modeling by an 

RBF network. While the method of Schreiber (1997, 1999) is relatively insensitive to 

the number of overlapping samples, the performance of Verdes et al. (2001) heavily 

depends on the number of samples that overlap between two consecutive intervals. 

Szeliga et al. (2002, 2003a, b) further improved the approach presented in (Verdes et al., 

2001). Specifically, a feedforward multilayer perceptron (MLP) is used for predictive 

modeling, to which an extra input node is attached to feed the driving-force estimates 

into the network. Then the MLP is trained with and without the extra input. The 

combined error of two training phases is minimized by the gradient descent. Again, 

the time-average of the driving-force is reconstructed in consecutive intervals subject 

to an unknown scale transformation. Verdes et al. (2004, 2006) showed that feeding 

the driving-force estimates into the neural network enables modeling of nonstationary 

time series in a more accurate fashion. 

Consequently, we can summarize the relevant literature as follows: All the contri­

butions by Casdagli (1997); Eckmann et al. (1987); Schreiber (1997, 1999); Szeliga et al. 

(2002, 2003a,b); Verdes et al. (2001, 2004, 2006) can be considered as different re­

alizations of reconstructing very slowly varying driving-forces from the prediction 

error in an offiine fashion. The work presented by Szeliga et al. (2002, 2003a,b); 

Verdes et al. (2001, 2004, 2006) differs from those of Casdagli (1997); Eckmann et al. 

(1987); Schreiber (1997, 1999) in that the prediction of the observables is handled in 

a more principled manner using RBFs and MLPs. As a result, Szeliga et al. (2002, 

2003a,b); Verdes et al. (2001, 2004, 2006) have reported a superior performance com­

pared to the preceding techniques. 
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Batch processing 1 is common to all the contributions by Casdagli ( 1997); Eckmann et al. 

(1987); Schreiber (1997, 1999); Szeliga et al. (2002, 2003a,b); Verdes et al. (2001, 

2004, 2006) with the objective of retrieving slowly varying forces. In many real-world 

applications however (e.g. sea clutter, wireless channel), it is essential to estimate 

the signal of interest in an online fashion and update these estimates as the new data 

become available. Also, the driving-signal may not change very slowly in many real-

world problems. Motivated by these facts, and building on the contributions listed 

above (mainly on the work of Szeliga et al. (2002, 2003a,b); Verdes et al. (2001, 2004, 

2006)), we described an adaptive sequential method for driving-force estimation in 

two peer reviewed, published journal articles, (Giintiirkiin, 2010a,b). 

We applied the proposed driving-force estimator (Giintiirkiin, 2010a) to the es­

timation of both slowly and rapidly varying forces. Also, following from the work 

of Szeliga et al. (2002, 2003a,b); Verdes et al. (2001, 2004, 2006), we demonstrated 

the algorithm's accuracy on a real world application, where the objective is to esti­

mate the sun's magnetic flux using the sunspot time series. vVe have also provided 

a comparison between the proposed method and that of Verdes et al. (2006), which 

revealed that the proposed method provides a much greater immunity against the 

effect of additive noise. 

We proposed a solution to the radar scene analysis (RSA) problem for the cognitive 

radar receiver (Giintiirkiin, 2010b) using the proposed approach. Building on the 

cognitive radar reception idea of Haykin (2006), we showed that the signatures of 

small, random targets can be retrieved using the proposed driving-force estimator 

exploiting the texture modeling of the sea clutter. We demonstrated the results of 

1In the batch processing or offiine processing, all the available data are gathered first, then 
presented to the processor (e.g. the neural network) at successive times before retrieving the quantity 
of interest. 
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the algorithm qualitatively on live-recorded radar returns collected with the McMaster 

IPIX radar. 

1.3 Thesis Organization 

This thesis is organized in sandwich thesis format in accordance with the regulations 

of the School of Graduate Studies (SGS) at McMaster University. The presentation 

in the thesis is built around the published journal articles (Giintiirkiin, 2010a,b), and 

another article, (Giintiirkiin et al., 2010) that is prepared for submission. 

In Chapter 2, the background material is presented. In particular, the online pre­

dictive modeling with the echo state networks (ESN s) has been described. Modeling 

of the unknown dynamic environment with the ESNs is the basis on which the pro­

posed driving-force estimator is built. The driving-force estimation problem is also 

handled using the Bayesian techniques when knowledge of the underlying physical 

system is partially or fully available. Detailed descriptions of the Bayesian methods 

are also given in Chapter 2. 

The proposed driving-force estimator is described in detail in Chapter 3 with 

applications to chaotic dynamic systems and the sunspot time series. A solution is 

proposed to the radar scene analysis (RSA) problem using the proposed method also 

in Chapter 3. The material in Chapter 3 is mostly based on the contributions of the 

two articles (Giintiirkiin, 2010a,b ). 

The results for the application of the Bayesian inference to the driving-force es­

timation problem are illustrated and compared with the proposed method in Chap­

ter 4. All driving-force estimation algorithms are provided an equivalent amount of 

computational resources for a fair comparison. The computational complexities are 
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calculated in terms of the floating point operations (flops), which provide an exact 

implementation cost of the respective algorithms. 

Chapter 5 concludes the thesis with a summary of the contributions of the work 

to general knowledge and remarks on future research. 

All the references are cited in author-year format, which is different than the IEEE 

numerical format in the original articles. 

At the beginning of each chapter, the reader is alerted for possible overlaps between 

some material that may appear in different parts of the thesis. The occurrences of 

such overlaps are kept as rare as possible throughout the thesis. 
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Chapter 2 

Background 

This chapter is organized to provide background material for the driving-force esti­

mation techniques that are presented in Chapter 3 and Chapter 4. The first section of 

this chapter is devoted to the description of the echo state networks (ESNs), which are 

used for the online predictive modeling of the unknown environment. ESNs consti­

tute the basis of the proposed adaptive driving-force estimator. The other operations 

encompassed by the proposed algorithm are throughly analyzed in Chapter 4, and 

are hence omitted herein. The remaining sections of this chapter provide background 

on the Bayesian techniques, which are also applied to the driving-force estimation 

problem in Chapter 4 for comparison with the proposed method. 
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2.1 	 Recursive Predictive Modeling with Echo State 

Networks 

The prediction of the time series measured from the unknown environment is one of 

the key operations embodying the proposed adaptive driving-force estimator. Echo 

state networks (ESNs) are used for predicting the observables one-step into the future. 

Online or one-step prediction implies that the current observable of the time series 

Yn is used for predicting the new observable, Yn+l· 

The ESN is a recent class of the recurrent neural networks (RNN) (Jaeger, 2001, 

2003; Jaeger and Haas, 2004), whose principles are based on the idea of reservoir 

computation (RC). The basic idea behind the RC is to construct a dynamic reservoir 

(DR) that is made up of randomly and sparsely connected recurrent neurons with 

fixed internal weights, and train only the linear readout layer (i.e. the weights w~ut,(i) 

as shown in Fig.2.1). Both the ESN and its biologically inspired counterpart liquid 

state machine (LSM) are shown to perform well on a variety of different tasks (Jaeger, 

2001, 2003; Natschlager et al., 2002). The ESN distinguishes itself from other popular 

recurrent neural networks (e.g. recurrent multilayer perceptrons (RMLP), real time 

recurrent learners (RTRL)) in its simple and effortless training, built-in short-term 

memory and adequacy for real-time processing. 

We consider V ESNs configured as in Fig.2.1 running in parallel, operating on 

the same input-output data pair at each instant n, which we refer to as the 'ESN 

bank' that will be elaborated in Section 2.1.1. The input-output relation for one ESN 
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Dynamic Reservoir 

Figure 2.1: Echo State Network (ESN) with single input, single output. The number 
of recurrent units in the DR is denoted by N. The trainable output weights, w~ut,(i) 
are represented with the dotted lines. The superscript ( i) denotes the ith ESN in the 
bank, i = 1, 2, ... , V. 

configuration can be expressed as 

s(i) = tanh (w(i)s(i) + win,(i)y + ,,1..(i) ) (2.2)n+l n n '+'n+l 

z(i) = (wout,(i))T 8 (i) n+l n n+l 

where s~~ 1 is the N x 1 state vector of the hidden units for the ith ESN at time n + 1, 

win,(i) denotes the N x 1 vector of input weights, and w~1f..i(i) is the N x 1 vector of 

output weights at time n + 1. The superscript T denotes the matrix transpose. ¢~~ 1 
is the N x 1 artificial noise sequence inserted for enhancing the numerical stability of 

the weight adaptation algorithm. Internal connections (denoted by the N x N matrix 

W(i)) within the DR and the input weights remain constant. This way, training of 

the ESN boils down to a linear regression task. The N x 1 output weights wout,(i) = 

[w~ut,(i), ... , w~t,(i)]T are trained using the recursive least squares (RLS) algorithm. 
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The RLS algorithm is briefly given as follows, 

,\-1 p(i) (i) 
k(i) _ RLS n Sn+l (2.3)

n+l - ( )T-1 (i) (i) (i)
1 + ,\RLS 8n+l p n 8n+l 

out,(i) _ out,(i) + k(i) (i) 
Wn+l -Wn n+len+l 

p(i) -,\-1 p(i) _ ,\-1 k(i) (s(i) ) T p(i)
n+l - RLS n RLS n+l n+l n 

where k(i) is N x 1 gain vector, and ,\RLS is the forgetting scalar associated with 

the (i)th ESN in the bank. The N x N matrix p~) denotes the inverse of the time­

averaged correlation matrix of the neuronal state vector s~), which is given as 

<I>~) = L
T 

(ARLS)7-n s~) (s~) ( , (2.4) 
n=l 

and p~) t::. (<I>~))-
1

. 

Success of the ESN design is based on how well the DR is constructed. The 

DR setup is determined by the tuning the following free parameters: Connectivity 

rate (~)~(a measure of sparseness of the internal weight matrix, W), spectral radius 

(i.e. the largest eigenvalue) (p) of W matrix~(a measure of internal time-scale), 

and the number of neurons (N). The 'echo state property' refers to the fact that 

the initial effects "wash out" in the course of time. After the transition period is 

completed, the network output is a function of solely the trainer input history. Hence 

the neural network provides a linear combination of the echos of the trainer signal. 

For this property to hold, 0 < p < 1 is required. This property also guarantees 

the asymptotic stability of the ESN dynamic reservoir as long as the network's own 

output z~ii 1 is not fed back into the DR (Jaeger, 2001, p.8, proposition 3). For the 
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construction of the internal weight matrix, we follow the echo state recipe in (Jaeger, 

2001), which is reproduced below: 

1. 	 randomly generate an internal weight matrix, W 0 , 

2. 	 normalize the initial matrix W 0 to another matrix, W 1 , such that W 1 = 

(1/ IPol)W0 , where p0 is the spectral radius of (i.e. the largest eigenvalue) 

Wo, 

3. 	 assign the desired spectral radius to the internal weight matrix by setting W = 

pW1 , hence the matrix W has the spectral radius p < 1, 

4. 	 the untrained network (win, W) has the echo state property regardless of how 

win,(i) is constructed. 

The entries of input weight vector win are drawn from the uniform distribution in 

the interval [-1, l]. 

The echo state property is illustrated on a simulation experiment, whose results 

are depicted in Fig.2.2 for a single ESN. For the experimental setup, 30 samples from 

the logistic map dataset are drawn. In (2.5), we describe the experimental data, 

where the state equation defines the logistic map, 

Xn+l = r oXn (1 - Xn) 	 (2.5) 

Yn+l = Xn+l + Vn+l· 

r0 is the bifurcation constant, which determines the region of operation for the logistic 

map. r0 = 3.8 is set so as to keep the map in the interesting chaotic regime. Vn is 
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additive white Gaussian noise (AWGN), whose variance is set to <J~ = 0.5. The initial 

state, x0 = 0.42 is set. The logistic map is studied in greater detail in Section (3.1.4). 

The task of the ESN to predict Yn+l using only the current sample Yn at its input. 

After the initial period (e.g. first 10 steps) is completed, the distinct echos of the 

teacher input appear the hidden layer (DR) as illustrated in the left-hand side of 

Fig.2.2. These echos, in a successfully constructed DR, compose a rich set of basis 

functions to approximate the desired response. The role of the output layer is then to 

optimally combine these echos to predict the desired response. As observed in right-

hand side of Fig.2.2, the weighted linear combination of the echo functions follow the 

original observables closely. 

Echo Functions, Sn 
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Figure 2.2: Online predictive modeling with echo state network. Left-hand side of 
the figure illustrates the echo functions sampled from a single ESN, (i.e. V = 1). The 
hidden layer signals (i.e. the echo functions) for the first and the Nth neuron are 
shown on the left with N = 10. The original time series and ESN approximation are 
shown on the right-hand side. 
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2.1.1 The ESN Bank Approach 

Our experiments show that using a bank of ESN s rather than a single ESN enables 

approximation of the unknown dynamics in a much more accurate way. The reason for 

this is two fold: First; the fact that each ESN in the bank has a randomly connected 

DR assures that the ESNs will produce non-identical outputs despite the fact that 

they all receive the same teacher input. Therefore, V independent networks provide 

an ensemble averaging mechanism, which offers a greater immunity against the noise. 

Second, V decoupled DRs provide a much richer basis for approximating the nonlinear 

dynamics of the teacher input. Another advantage of the ESN bank approach is that 

the one-step mean square prediction error averaged over all ESN s is found to be fairly 

insensitive to the selection of the free parameters of the ESN. 

We demonstrate the efficiency of the ESN bank approach by comparing an ESN 

bank with a 7 times larger single ESN of the same complexity. The numerical results 

herein are obtained by applying the proposed driving-force estimator to the estimation 

of the hidden input from the nonlinear stochastic system studied in detail in Section 

4.2. Following from the complexity expression in (4.3), we can realize the adaptive 

driving-force estimator (ADFE) given a fixed complexity by setting 

• {V = 1, N = 70}, 

• or {V = 34, N = 10} for a fixed<;. 

The computational complexity is specified as the number of floating point operations 

(i.e. flops). The former configuration points to a single ESN and is realized at ap­

proximately 37.103 flops. The latter configuration is an ESN bank with an equivalent 

complexity. For both cases, we test the sensitivity of the ADFE to the selection of ( <;) 
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and (p). Following the guidelines given by Jaeger (2001), we propose some candidate 

values for the free parameters such that c; E {0.3, 0.4, 0.5} and p E {0.1, 0.4, 0.7}, 

and measure the corresponding variance of the estimation error. 

In Table 2.1, the variance of the estimation error is given vs. the varying values 

of c; and p. Clearly, the performance of the estimator is sufficiently insensitive to 

the selection of ESN free parameters. Although all 32 combinations of the pair ( c;, 

p) are tried out, we only present the results for c; E {0.3, 0.4, 0.5 IP = 0.1} and 

p E {0.1, 0.4, 0.7 Jc;= 0.1} for the sake of brevity. The remaining combinations do 

not lead to any significant changes from the results presented in Table 2.1. 

In Table 2.2, the sensitivity of the ADFE to the selection of ESN parameters 

is analyzed if a single ESN were used rather than an ESN bank. It is illustrated 

that a single ESN still provides a reliable estimation performance suggested by its 

insensitivity to the selection of c; and p. However, comparing the rightmost columns of 

Table 2.1 and Table 2.2, it is clear that the ESN bank approach leads to a significant 

reduction in the variance of the estimation error compared to a single ESN of the 

same complexity. 

Table 2.1: Sensitivity of the ADFE to the selection of the free parameters of an ESN 
bank for N = 10, V = 34. oL = 1/T'2:::~=l IE [(un - un) 2

] denotes the time-averaged 
variance of the estimation error. 

c; 
0.3 

2 
(}"ih,._ 

0.37 
p 
0.1 

2
(}"ih,._ 

0.37 
0.4 0.36 0.4 0.36 
0.5 0.37 0.7 0.37 
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Table 2.2: Sensitivity of the ADFE to the selection of the free parameters of a single 
ESN for N = 70, V = 1. oL = 1/T_L~=l IE [(un - un) 2 ] denotes the time-averaged 
variance of the estimation error. 

<; 2 
(J~ p 2 

CJu_n_ 
0.3 0.54 0.1 0.54 
0.4 0.54 0.4 0.54 
0.5 0.52 0.7 0.55 

2.2 	 Bayesian Inference for Recursive Driving-Force 

Estimation 

In this section, we provide an overview of the simulation-based Bayesian methods for 

the estimation of time-varying states of nonlinear dynamic systems. The material in 

this section is intended as a basis for more advanced particle methods that are used 

for the driving-force estimation in Chapter 4. 

The Bayesian methods can be used for filtering, prediction or smoothing of the un­

known states. Typically, the observer is provided only with a series of measurements, 

{ynln = 1, 2, ... , T}, and the requirement is to make decisions about the hidden 

states, Xn in (2.6) without having a direct access to Xn. An accurate mathematical 

description of the underlying dynamic system as given in (2.6) is also a crucial piece 

of information required for successful operations of the Bayesian methods. Let (2.6) 

represent the state-space description of the underlying system that is available to the 

observer, 

(2.6) 
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which differs from the description of the unknown system given in ( 1.1) in that we 

have incorporated the driving-force Un in the augmented state, Xn in (2.6) for the 

ease of exposition. 

Our focus in our applications is the online or sequential filtering problem. In 

sequential filtering, a probabilistic belief on the unknown state Xn is formed based 

on the history of the observables {y1, ... , Yn-1}, and the knowledge of a model as in 

(2.6). This belief is represented by a probability density function (pdf), from which 

all the moments of the unknown state Xn can be calculated. Then at the arrival 

of each new data sample Yn, the belief on the unknown state is updated. In more 

formal terms, our problem is to estimate the filtering posterior probability density of 

the hidden states, p (xnlYl:n)· The vector Yl:n denotes the history of the observables, 

which is defined as Yl:n 6 {y1, ... ,Yn}· 

For a mathematical treatment of the Bayesian sequential filtering, let us assume 

that p (xolYo) p(x0 ) is known a priori. Then the underlying idea of the sequential 

Bayesian estimation is to infer the pdf p (xnlYl:n) in two steps in an iterative manner: 

prediction, and update. 

Let us suppose that the pdf p (xn-llYn-l) is available at time n - 1. In the 

prediction stage, the prediction density p (xnlYl:n-l) is obtained by virtue of the 

Chapman-Kolmogorov equation as given in (2.7), 

(2.7) 

where p (xnlxn-1, Yl:n-l) = p (xnlxn-1) has been made use of for the first factor in 

the integrand in (2.7). Note that this follows from the fact that the first line of (2.6) 

is a first-order Markov process. The transition prior density p (xnlxn_i) is specified 
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by the state transition model in (2.6) and the known statistics of Wn-

At the instant n, the new measurement Yn becomes available, and it is used for 

updating the prediction density in (2. 7) via Bayes' rule to obtain the desired posterior 

density, 

(2.8) 


The normalizing constant p (YnlYi:n-i) = Jp (Ynlxn) p (xnlYi:n-i) dxn depends on the 

likelihood function p (Ynlxn), which is defined by the measurement equation in the 

second line of (2.6) and the known statistics of Vn-

The optimum Bayesian solution given in predict/update equations in (2.7) and 

(2.8) constitute only a conceptual solution, and can not usually be determined ana­

lytically due to the possibly intractable integrals. In the sequel, we describe how the 

particle filters provide a suboptimum solution to this problem. 

2.2.1 	 Sampling Importance Resampling (Standard) Particle 

Filter 

The particle filters provide simulation based-filtering solutions that are used for ap­

proximating the posterior density functions of the unknown states by means of a 

weighted sum of discrete support points. These support points are called the parti­

cles. Then the desired estimates of the unobserved dynamic states are obtained by 

simulating and propagating these discrete pdf approximations via Bayes' rule. The 

key idea in the particle filtering is represented in ( 2.9), 

(2.9) 
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where the posterior density p (xn-ilYi:n-i) at time n-1 is approximated by a weighted 

sum of particles, {x~~ 1 li = 1, ... , M}. w~i~ 1 is the weight of the ith particle, and 8(.) 

is the delta function. The weights are normalized such that L::1 w~i~ = 1.1 
Note that if we could sample directly from the true posterior, then we could have 

drawn the particle cloud {x~~ 1 li = 1, ... , M} according to the pdf p (xn-1IYi:n-i), 

and all the weights would have been set to 1/M. This is known as the uniform 

sampling. However, in general, the posterior density p (xn-ilYi:n-i) can be very 

hard-to-sample from, and it can be available only for evaluation up to a normalizing 

constant. In such cases, we take an indirect approach to realize the approximation 

in (2.9). In particular, we resort to an auxiliary pdf, from which it is easy-to-sample. 

This intermediate pdf is called the proposal density or the importance function, and 

this approach is known as importance sampling. An illustration of the importance 

sampling idea is given in Fig.2.3, where the true posterior density is represented 

as a "weirdly-skewed" pdf, such that sampling directly from the true posterior is 

illustrated not to be feasible. In the same graph, the proposal density is presented 

with a more regular shape to represent a pdf, which is easy-to-sample from. 

Figure 2.3: Illustration of the importance sampling: the solid curve represents the 
true posterior density, whereas the dashed curve stands for the proposal density ( im­
portance function). 

To elaborate on the importance sampling idea, Let 7r (xn-1lxn-2, Yi:n-i) denote 
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an importance function at n - 1. Sampling of the particles from this importance 

function is represented by 

(2.10) 

The importance weights associated with the particles in (2.10) are determined in such 

a way that the discrepancy between the desired shape of the true posterior and that 

of the proposal is compensated. Accordingly, the importance weights in (2.9) are 

given as 
(i) )

(i) P ( xn-1IY1:n-1 
(2.11)wn-l ex (") ' 

7f ( xL1 lxn-21 Y l:n-1) 

where the symbol ex means "proportional to". 

In light of the discrete summation in (2.9) and the importance weights in (2.11), let 

us discretize the predict/update equations given in (2. 7) and (2.8) that are continuous 

in state. Then the prediction step in (2. 7) becomes 

(2.12) 

To realize the update step in (2.8), let us update the time instant from n - 1 to n in 

(2.11), 

( (') )
w(i) ex p x~ IY1:n . 

(2.13) 
n ( ( i) ( i) ) 

7f Xn lxn-1' Y1:n 

Invoking the Bayes' rule given in (2.8) for the numerator of (2.13), the weight update 
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equation (2.13) can be re-organized as, 

(2.14) 


Consequently, the approximation to the true posterior at time n is obtained as 

P (xnlY1:n) ~ L
M 

W~i)c5 (xn - x~)). (2.15) 
i=l 

The selection of the proposal density is a major design aspect for a success­

ful realization of a particle filter. An optimal importance function is shown to be 

available only for a restricted class of state-space models (Arulampalam et al., 2002; 

Doucet et al., 2000). A common practice in particle filters is to use the transition 

prior p (xnlXn-1) as the proposal density such that 7r (xnlXn-1, Yl:n) = p (xnlxn-1) 

(Arulampalam et al., 2002; Gordon et al., 1993), which leads to simple implementa­

tion. With this selection of the importance function, the weight update equation in 

(2.14) is simplified to 

w(i) ex: w(i) p (y lx(i)) (2.16)n n-1 n n · 

A challenge in the practical realization of the particle filters is that after a few itera­

tions of (2.16), only a few particles have non-negligible weights (Arulampalam et al., 

2002), which is known as the particle attrition problem. A remedy to this problem is 

presented by drawing a new set of particles with uniform weights at each iteration. 

This idea is termed the resampling. The resampling operation can be performed in 
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different ways by several resampling algorithms, such as the systematic resampling, 

stratified resampling or the residual resampling (see (Hol et al., 2006) for an overview 

of several resampling techniques). We concern ourselves with systematic resampling 

(Arulampalam et al., 2002; Gordon et al., 1993) due to its simplicity and reduced 

computational cost. The underlying idea of systematic resampling is the following: 

At each particle position at time n - 1, draw a new set of particles at time n, whose 

number is proportional to the weight of the particle at that position. This idea is 

graphically illustrated for 10 particles in Fig.2.4. Notice that the fourth particle from 

the left, x~~ 1 has the largest weight at time n - 1, and 3 new particles with uniform 

weights are drawn at its position for the next time step. The other particles are also 

replicated or removed proportionally to the weights of particles at respective positions 

at n -1. We note that without resampling, the weight of the fourth particle would get 

larger and larger at each iteration while the weights of the others would vanish. After 

the completion of the resampling operation, the particles are propagated to the next 

time step by using the proposal density, hence the particle diversity is introduced. 

Since we set the proposal density equal to the transition prior, the propagation step 

takes place according to the state equation in the first line of (2.6). 

n-1 0 Qo (JO 0 0 0 oo 
Resample

0 0 0 0 

l \~ l Propagate 

n 
(~~ (o~ (8 

Figure 2.4: Graphical illustration of the systematic resampling of and propagation of 
particles from time n - 1 to n. 
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Although the resampling and propagation operations help reduce the particle de­

generation, the particles with large weights are still kept being replicated many times. 

This is called the sample impoverishment, which places certain limitations on the per­

formances of the standard particle filters (SPF). Nevertheless, the SPF, which encom­

passes the selection of prior as the proposal, and the systematic resampling algorithm 

at each iteration, serves sufficiently well for our purposes. In the next subsection, we 

build a more advanced Bayesian technique called the Rao-Blackwellized particle filter 

(RBPF) on the SPF. The RBPF will be shown to provide superior performance for 

the applications that we are concerned with in Chapter4. 

2.2.2 Rao-Blackwellized Particle Filter 

In this subsection, we study the estimation of driving-forces that can be modeled as 

the additive components in the nonlinear state equations. To elaborate, imagine that 

the general description of a perturbed dynamic system in (1.1) is specified as 

Xn+l =g (xn) + Un+l + Wn+l (2.17) 

Yn+l =h (xn+1) + Vn+l 

where the driving-force Un+l is an additive element in the governing body of the 

nonlinear state. Since any band-limited discrete time stochastic process can be de­

scribed by an autoregressive (AR) model of arbitrary order (Papoulis, 1985), a linear 

submodel can be devised to describe the dynamic evolution of Un such that, 

(2.18) 
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where (n is white Gaussian noise (WGN) that accounts for the model input, whose 

variance is O"r The AR(P) model in (2.18) can be expressed with a Markovian 

transition in the vector form. For this transformation, let us collect the P driving-force 

samples from time n to n - P + 1 in a vector and define this vector as, 

(2.19) 

We refer to the vector Un as the linear state vector. Un can be regressed on its previous 

state by a P x P regression matrix, which holds the model coefficients { Cp Ip = 1, ... , P} 

in the following form 

CP-1 Cp 

1 0 0 0 
(2.20)B= 

0 0 1 0 

This enables us to re-arrange (2.17) as given in (2.21), in which both the linear and 

the nonlinear state variables are represented in dynamic Markovian sub-structures, 

Un+l =Bun+ ~n+l (2.21) 

Xn+l = g (xn) +bun+ Wn+l 

Yn+l = h (xn+1) + Vn+i· 

The (1 x P) vector bin the second line of (2.21) is defined as b = [1, 0, ... , O]. The 

(P x 1) noise vector is given by ~n ~ [(n, 0 ... , o]r. The concatenation of the linear 

state Un and the nonlinear state Xn is equivalent to the standard description of the 

state vector in (2.6) such that Xn - [u~, Xn]T. 
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Andrieu and Doucet (2000); Hendeby et al. (2007); Schon et al. (2005) demon­

strate that the Rao-Blackwellized particle filter is a favorable technique for the esti­

mation of linear state variables, whenever it is possible to partition the state equation 

into a linear and a nonlinear sub-model as in (2.21). The RBPF exploits the linear 

sub-structure by virtue of Rao-Blackwellization (or marginalization). In particular, 

the nonlinear state Xn is estimated with a particle filter, and the linear state Un is 

then marginalized from the nonlinear state. This marginalization is operated by a 

Kalman filter (KF). Due to the linearity of the first and second lines of (2.21), and 

the Gaussianity of ~n and Wn, the KF estimates of the linear states Un are optimum. 

Therefore, the RBPF is partly optimum. This explains why the RBPF provides su­

perior performance over the standard particle filters by Andrieu and Doucet (2000); 

Schon et al. (2005). 

For a more formal description of the RBPF, let p (un, xnlYi:n) denote the joint 

posterior of the linear and nonlinear state, which can be written in the form, 

(2.22) 


where we have made use of the fact that the measurements are independent of the 

linear state. Then the idea is to marginalize the posterior density of the linear state 

from the joint posterior in (2.22) as follows, 

P(UnJY1:n) =JP (un, XnlY1:n) dxn (2.23) 

= JP (unJxn) P(xnlY1:n) dxn­
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p (xnlYi:n) in the second line of (2.23) can be approximated by a particle filter. Specif­

ically, let p (xnlYi:n) denote the particle filter approximation top (xnlYi:n), which can 

be described as given in (2.24), 

P(.TnJY1:n) = L
M 

W(i)5 (xn - x~l). (2.24) 
i=l 

Substituting (2.24) in the second line of (2.23), the approximate posterior density for 

the linear state is obtained as 

M 

fi(unJY1:n) = LW(i)p (unJx~l). (2.25) 
i=l 

The conditional mean estimates of the linear state variable are approximated from 

(2.25) in the following form: 

IE [unJY1:nJ ~ JUnP (unlY1:n) dun (2.26) 

M 

= L w(i)IE [unJx~l], 
i=l 

where IE[.] denotes the statistical expectation operation. IE [unJx~)J is computed 

using a Kalman filter exploiting the linear Gaussian substructure in the first and the 

second lines of (2.21). 

The overall implementation of the Rao-Blackwellized particle filter is provided in 

a pseudo-code in Algorithm 1, where the nonlinear state is estimated with a standard 

particle filter. Hence, the importance function is set equal to the transition prior, 

and the systematic resampling is used at each iteration. The filter's computational 

complexity can be easily derived from the Algorithm 1 as will be explained in the 
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Appendix B.2. 

Before explaining the steps of Algorithm 1, let us introduce the following notation 

for the estimated quantities, which will be commonly used in the sequel: 

Unln: filtered estimates of the vector Un, and Cnln: filtering covariance for Unln, 

un+lln: one-step predicted estimates of the vector Un, and Cn+lln: prediction 

covariance for Un+lln, 

UnlT: fixed-interval smoothed estimates of the vector Un and Cn+ilT: smoothing 

covariance for UnlT· The fixed-interval smoothing implies that all the data available 

from time 1 to Tare utilized to estimate the vector Un. The smoothed estimates are 

especially frequently used in Section 2.2.3. 

Now let us have a closer look at the steps of the Algorithm 1. The first and the 

second tabs in the line 3 in Algorithm 1 are the Kalman prediction equations, where 

R stands for the P x P covariance matrix for the evolution uncertainty for the linear 

state vector, whose only nonzero entry is its first element, O"r For instance, letting 

P = 2, we have 

(2.27) 


The first tab of the line 4 denotes the sampling of particles from the transi­

tion prior, whereas the second tab of line 4 explains the derivation of the pseudo­

measurements obtained from the nonlinear state equation. 

The Kalman gain vector at time n is denoted Y n at line 6, which is a P x 1 column 

vector. 

Line 7 describes the Kalman measurement update equations. The estimate of the 

linear state vector associated with the (i)th particle is denoted u~?n as given in the 
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first tab of line 7. Cnln in the second tab of line 7 denotes the P x P covariance 

matrix for the estimation error for u~(n. Note that each particle is associated with 

a Kalman filter. However, the same covariance matrix is propagated for all Kalman 

filters, since the measurement equation is independent of the linear state vector. This 

greatly reduces the complexity of the RBPF. 

Finally, the desired conditional mean estimates of the linear state vector are ob­

tained by averaging over all particles as observed in line 8 since the importance weights 

have already been normalized. The filtered driving-force estimate, Un equals the first 

element of f:tnln­

2.2.3 Expectation Maximization - Particle Filter (EM-PF) 

The Rao-Blackwellized particle filter is intended for such applications where the exact 

knowledge of the system equations (e.g. (2.21)) is available. However, in some appli­

cations, a model of the underlying dynamic system may be only partially available 

(Andrieu and Doucet, 2000, 2003; Liu and West, 2001). In this subsection, we con­

sider such cases where the nonlinear state equation and the measurement equation 

are available, yet the evolution of the linear state is hidden from the observer. We 

propose to use the expectation maximization (EM) (Dempster et al., 1977) algorithm 

for such estimation scenarios, where the hidden states have to be inferred from in­

complete data. The objective of the EM algorithm is to parameterize the missing 

information, and obtain maximum likelihood (ML) estimates of those parameters. 

The driving-force estimator based on the EM algorithm is embodied by the fol­

lowing two main operations: 

1. Particle Filtering: using the readily available system equations (i.e. the second 
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Algorithm 1 THE RAO-BLACKWELLIZED PARTICLE FILTER 

Require: Observables from the environment {ynln = 1, ... , T} and an analytical 
description of the underlying mechanism (e.g. (2.21)) 

Ensure: Conditional mean estimates of the linear state vector; Unln for n = 1, ... , T 
· · 1. t· 1 · 1 ~ 1' (i) ( ) d t (i) (i) d c(i)Imtia ize par ices, i = , ... , 1v1; p x0 an se u = u0 , anf"Vx 01 _1 	 01

_ 1 01 _1 

Co 

for (n = O; n < T; t + +) { 


for (i = l;i:::; M;i++) { 


1: 	 Evaluate the importance weights w~) = p (Ynlx~)) and normalize u/i) 


w(il/ "°'M w(J)

L....1=1 n 

2: 	 Resample NJ particles with replacement, JP (x~fn = x~~_ ) = w~l1	 1 
3: 	 State prediction and state prediction covariance: 

• 	 u.(il = Bu(il
n+Iln nln 

4: 	 For i = 1, ... , M, 

• 	 New particle prediction x~~Iln p (Xn+Iinlx~Cl) 
N (g (x~)) + bu~(n' bCnlnbT + (J~) 

• 	 Measurement prediction m~~1 = x~~1 - g ( x~)) 

5: 	 On+ I = bCn+I\nbT + (J~ {Innovation covariance} 
6: 	 Yn+l = Cn+I\nbTO~~I {Kalman gain} 
7: 	 Updated state estimate and updated state covariance: 

A (i) - (i) y ( (i) b A (i) )A 

e 	 Un+l\n+l - Un+I\n + n+l mn+I - Un+I\n 

} 
A 	 A(1/M) '\;""M (i)8: 	 Desired estimates: Un\n = L....i=l Un\n 

} 
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and the third lines of (2.21)), and the set of measurements Yi:ni the nonlinear 

state Xn in (2.21) is estimated with a particle filter. The estimates of Un provided 

by the EM algorithm are also substituted in (2.21). 

2. 	 Expectation Maximization: The EM algorithm operates on a sub- state-space 

model, which consists of 

• 	 a state equation, (i.e. the first line of (2.21)), whose parameters are miss­

ing. This means that the first line of (2.21) is treated as an unknown 

equation by the EM, whose parameters are to be estimated; 

• 	 a measurement equation, (i.e. the second line of (2.21)), in which the esti­

mates of Xn provided by the particle filter are treated as the measurements. 

Following from this brief description, we abbreviate the resulting method as the "EM­

PF". The operation of the EM-PF method is illustrated on a block diagram as given 

in Fig.2.5. The EM-PF algorithm is proposed a doubly-iterative method that en­

compasses an inner and an outer loop of iterations. The inner loop consists of K 

EM iterations over the entire dataset. After the completion of one inner loop, the 

outer loop is re-initiated by running the particle filter all over again to exploit the 

updated estimates of Un provided by the EM algorithm. Thus, the available data m 

are updated by the particle filter, and provided to the E-step of the EM algorithm. 

For the particle filtering operations, we use the SPF, which is addressed in detail 

m Section 2.2.1. Now, let us elaborate on the EM method by starting with the 

construction of the sub- state-space pair given in (2.28), which is built on the first 
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m lE[logp(dl8)le1k1,m] 

Particle Filter M-Step 

e[kJ 

'---------------------­
EM 

Figure 2.5: Block diagram for the EM-PF method. The outer iteration loop includes 
the exchange of data between the particle filter and the E-step of the EM algorithm. 
The inner iteration loop represents the exchange of data between the E and the 
M-steps of the EM algorithm. 

and the second lines of ( 2. 21): 

(2.28) 


In (2.28), we have defined mn 6 Xn - g(xn_1), which are treated as the pseudo­

measurements for the EM algorithm. Note that the model in (2.28) is suitable for the 

operation of a Kalman smoother (KS), which is needed to perform the expectation (E) 

step of the EM algorithm as will be explained soon. In the M-step, the log-likelihood 

of the complete data is maximized with respect to the unknown coefficients. Since 

the unknown regression coefficients { cP J p = 1, ... , P} occupy only the first row of 

the matrix B, performing the M-step over the model in (2.28) would be wasteful of 

computational resources. As an alternative, we simplify (2.28) to obtain (2.29), where 

we deal with the 1 x P vector of unknown coefficients (c 6 [c1 , ... , cp]) instead of the 
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P x P matrix, B: 

(2.29) 


Consequently, the E-step of the EM algorithm operates on (2.28), whereas the M-step 

exploits (2.29). 

Imagine that the conditional mean estimates of the nonlinear state Xn are obtained 

with a particle filter from time n = 1 to n = T. For the sake of brevity, let us assume 

that the particle filter estimates are arbitrarily close to the true states. Then let us 

collect the pseudo-measurements in a T x 1 vector such that m 6. [m1 , ... , my]T, 

which represents the available data. Let us also concatenate the entire history of 

the driving-force samples in another T x 1 vector, U 6. [u1 , ... , u7]T. The vector 

U represents the missing data which are associated with the hidden parameters, 

8 !:,. [c1 , ... , cp, 0"2Jr. The complete data are represented as a concatenation of the 

missing and the available data. Let the vector d denote the complete data, which is 

defined as 

(2.30) 


The E and the M-steps of the EM algorithm are iterated until convergence. In the 

E-step, the expectation of the log-likelihood of complete data is simulated given the 

available data m, and the current estimates of the hidden parameters, 8[k]. In the 

M-step, the expected log-likelihood of the complete data is maximized with respect to 

the hidden parameter vector. This maximization results in an updated ML estimate 
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of 8. 1 

Let us describe the log-likelihood of the complete data as 

logp (dl8) = logp (U, ml8) (2.31) 

= logp (Ul8) + logp (mlU, 8). 

Exploiting the linearity of our sub-model in (2.29) and using the whiteness and Gaus­

sianity of (n and Wn, the second line of (2.31) can be expressed as 

T T 
logp (dl8) = logp (u0 ) - 2 1og a2 - Tlog 2rr - 2 1og a~- (2.32) 

1 LT ( T )2 1 LT 2 
--2 Un - C Un-1 - --

2 
(mn - Un) .

2a 2a
( n=l w n=l 

Using (2.32), we are ready to elaborate on the E and the M-steps: 

• E-step: Let 9[k] be an estimate of the parameters at the kth EM iteration. 

Then for the E-step, we compute the expectation of the log-likelihood in (2.32) 

1Another popular interpretation of the EM algorithm is the maximization of the lower bound 
on the log-likelihood of the incomplete data (Roweis and Ghahramani, 2001). This interpretation 
is more adequate for nonlinear, non-Gaussian models, in which case the conditional density of the 
missing data needs to be simulated for the E-step. Nevertheless, the M-step in the two interpretations 
in (Dempster et al., 1977) and (Roweis and Ghahramani, 2001) can be shown to be identical when 
the variational distribution of the missing data in (Roweis and Ghahramani, 2001) is set to the actual 
conditional density of the missing data, in which case the lower bound is satisfied with equality. 
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given the available data m, and our current parameter estimate, 8[k]: 

E 	(8l8[kl) ~lE [logp(dl8)lm,e!kl] (2.33) 

=o1 -
T 
2 1og a(

2 

T 
2- 2~2 l:JE [(un) lm,81kl] - 2cTlE [unUn-llm,e!kl] + cTlE [un-1u;_1lm,8!kl] C 

( n=l 

1 T 	 2 
-	 a 2 l:JE [(mn - Un) lm,e!kl]

2
w 	n=l 

where we have defined the constant term as o1 D. log p (u0 ) -T log 2n - f log a3. 
As 	noted before, the E-step operates on the model in (2.28), and the indicated 

expectations in (2.32) are approximated using a KS. For instance, in order to 

compute the term lE [(un) 2 lm,e!kl], we first compute lE[unu;lm,e!kJ] using a KS. 

Then lE [(un) 2 lm,e!kl] is retrieved from the first element of lE[unu;lm,e!ki]. The 

operation of the KS is described in full detail in line 3 of the Algorithm 2. 

• 	 M-step: We find the value of 8 that maximizes E (8l8[kl), which becomes the 

next estimate of the missing parameters, 

(2.34) 


where E (8l8[kl) is as given in (2.33). The details and the outcome of the 

maximization operation are provided in the line 2 of the Algorithm 2. 

Note that the KS in the E-step is used for approximating the second-order quan­

tities indicated in the expectations in (2.33). As a side product of the E-step, the 

smoothed driving-force estimates can also be retrieved from the KS, which is the case 
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in our application. 

It is shown in (Roweis and Ghahramani, 2001) that the likelihood of the missing 

parameters cannot decrease during the EM iterations. Hence, at each iteration, the 

expectations in the E-step are performed over more accurate estimates of the model 

parameters, 8. This implies that the quality of the driving-force estimates are either 

improved or not decreased at each EM iteration. 

The performance of the particle filter has a crucial impact on the overall perfor­

mance of the EM algorithm. The EM-PF algorithm will be put to test in Chapter 4 

as well as the other driving-force estimation methods. 

The entire realization of the EM-PF is given in a pseudo-code in Algorithm 2. The 

total number of EM iterations in Algorithm 2 is denoted by K. Although there does 

not exist an analytical way of finding the optimum value of K, in practice, we have 

observed that more than 4-6 EM iterations do not lead to a significant improvement 

in the estimates of Un- These results match with the observations of other researchers 

in the literature (Zia et al., 2007, 2008). 
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Algorithm 2 THE EXPECTATION MAXIMIZATION - PARTICLE FILTER 

Require: Observables from the environment {ynln = 1, ... , T} and an analytical 
description of the system (e.g. (2.28)) 

Ensure: Estimates of the missing parameters 8 and the smoothed conditional mean 
estimates of the driving-force; Un for n = 1, ... , T 

.. l' . 1 . 1 Lf (i) ( ) d (i) (i) d C(i)I mtia lze partic es, z = , ... , 1Vi ; x 01 _1 ,......., p x0 an set u 1 = u0 , an ­
01 

_ 01 _1 

Co 
Initialize the estimate for the missing parameters: 8[0

J 

for (k = O; k < K; k + +) { 
for (n = O;n < T;t++) { 

for (i = l;i::; M;i++) { 
1: Evaluate the importance weights w~) = p (Ynlx~)) and normalize U;(i) 

w(ilj "'M w(J)
L..,J=l n 

2: 	 Res. NI particles with replacement, IP ( x~?n = x~~-i) = w~) 
3: 	 E-STEP (Kalman smoother): 

1. 	 Forward Recursions: 

State prediction and state prediction covariance: 


d . . (i)
• 	 Partic1e pre ict10n xn+lln ,......., 

N (g (x~)) + bu~?n' bCntnbT + a3) 
• Measurement prediction m~~1 = x~~ 1 - g ( x~)) 

• (n+l = bCn+ltnbT + a3 {Innovation covariance} 

• 	 On+l = Cn+ltnhT(;~ 1 {Kalman gain} 
Updated state estimate and state covariance: 

A (i) - (i) 0 ( (i) b A (i) )A 

• un+lln+l - un+lln + n+l mn+l - un+lln 

} } 
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Algorithm 2 Cont'd 

2. 	 Backward Recursions: 
for (n = T; t ~ O; t - -) { 

for (i = l;i::; M;i + +) { 

• 	 UnlT = (1/M) L~1 u~rr ---+ Desired estimates: IE[un1r] 

• 	 IE [un (unf] = CnlT + UnlT (unir)T 

• IE [un-1 (un-1f] = 	Cn-llT + Un-llT (un-11r)r 

• 	 IE [un (un-1f] = Pn-1CnlT + UnjT (un-11r)T 

} 

2,[k+l] 	 1 T ( 2 
• (J~ 	 T ~ IE [(un) ] 

( 	[kl)r [~ (~ )r] [kJI )C IE Un-1 Un-1 C m,8[k] 

• 	 Allocate ( c[k+lJ) Tinto the first row of B[k+l] and <J:,[k+l] into the first element 
of R[k+lJ 

} 
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Chapter 3 

The Adaptive Driving-Force 

Estimator 

In this chapter, the methodology for the proposed driving-force estimator, demon­

strations of the algorithm's performance on some controlled experiments, and some 

applications of the proposed method to the real-world problems are presented. Most 

of the material in this chapter is a reproduction of the contents of the two journal ar­

ticles, (Giinturkiin, 2010a), (Giinturkiin, 2010b). Section 3.1 and Section 3.2 present 

the material in the two articles respectively in a coherent manner. The overlapping 

parts of the two articles have been removed in the following presentation. 
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3.1 	 Sequential Reconstruction of Driving-Forces From 

Nonlinear Nonstationary Dynamics 

3.1.1 	 Introduction 

This section describes the proposed adaptive driving-force estimator (Giintiirkiin, 

2010a). The driving-forces account for the perturbation inputs induced by the exter­

nal environment or the secular variations in the internal variables of the system. The 

proposed algorithm is applicable to the problems for which there is too little or no 

prior knowledge to build a rigorous mathematical model of the unknown dynamics. 

We derive the estimator conditioned on the differentiability of the unknown system's 

mapping, and smoothness of the driving-force. The proposed algorithm is an adap­

tive sequential realization of the blind prediction error method, where the basic idea 

is to predict the observables, and retrieve the driving-force from the prediction error. 

Our realization of this idea is embodied by predicting the observables one-step into 

the future using a bank of echo state networks (ESN) in an online fashion, and then 

extracting the raw estimates from the prediction error and smoothing these estimates 

in two adaptive filtering stages. The adaptive nature of the algorithm enables the 

retrieval of both slowly and rapidly varying driving-forces accurately, which are il­

lustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled 

experiments, exemplifying chaotic state and stochastic measurement models. The 

algorithm is also applied to the estimation of a driving-force from another nonlinear 

dynamic system that is stochastic in both state and measurement equations. The 

results are judged by the posterior Cramer-Rao lower bounds. The method is finally 

put into test on a real-world application; extracting sun's magnetic flux from the 

45 




Ph.D. Thesis - Ula§ Giintiirkiin McMaster - Electrical & Computer Engineering 

sunspot time series. 

In Section 3.1.2, we address the problem in a formal way, and present the deriva­

tion of the reconstruction algorithm. We reproduce the generalized posterior Cramer­

Rao lower bound (PCRB) in Section 3.1.3. In Section 3.1.4, we present the results 

of controlled experiments, which are evaluated using the PCRB. In Section 3.1.5, we 

apply the estimator to the real-life sunspot time series for the reconstruction of sun's 

magnetic flux. We compare our results to two other models, and show that the pro­

posed approach captures the essential dynamics of the sun's magnetic flux. Section 

3.1.6 concludes the section with remarks on the future research. 

In Section 3.2, we propose a solution to the radar scene analysis problem using the 

proposed ADFE and exploiting the texture modeling of sea clutter. The radar scene 

analysis problem is addressed in Section 3.2.1 for the design of a cognitive radar 

receiver. The texture modeling of the sea clutter is briefly reproduced in Section 

3.2.2. In Section 3.2.3, a tracking example is studied. Section 3.2.4 is devoted to the 

description of the Dartmouth database, and the results of the experiments conducted 

on live recorded data. Section 3.3 concludes the section. 

3.1.2 	 Regularized Estimation and Tracking of Unobservable 

Inputs 

The basic idea underlying our approach is to predict the observables one-step into 

the future using a bank of echo state networks (ESN) in an online fashion, and then 

exploit the fact that the driving-force is not explicitly modeled by the predictor. 

Based on this simple idea, we relate the driving-force to the prediction error of the 

ESNs. 
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A predictive model of the unknown environment can be built by transforming the 

evolution of the observables Yn from the unknown system in (1.1) into a time series 

model. In such a model, the requirement for knowledge of the equations in (1.1), and 

the dependence of the observables on the unknown state is eliminated. For derivation, 

let us begin with re-arranging the second line of ( 1.1), 

(3.1) 

Now let us substitute (3.1) in the state equation in the first line of (1.1): 

(3.2) 


If we plug (3.2) in the measurement equation in the second line of (1.1), we obtain 

the observable as 

(3.3) 

Let us denote the nested combination of mappings by f(a, {3) ~ h (g (h- 1(a), /3)) with 

the aid of two dummy variables, a and {3. Then, we can write 

(3.4) 


where the overall effect of the transformed and the additive noise processes is denoted 

by Vn+l· In (3.4), the observable Yn+l is expressed as a function of the previous 

observable Yn, and the unknown driving-force, Un. 

Next, consider that we design an online nonlinear predictor (i.e. an ESN bank 
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as described in Section 2.1), which receives only the previous observable in its input 

and provides one-step approximations to the unknown system. Let Zn+l denote the 

output of the nonlinear predictor, which is described as 

(3.5) 


where Yn is input to the predictor, and Zn+i is obtained at its output. Note that 

the notation f (yn, 0) implies that the driving-force is not provided to the neural 

network. Therefore, the absence of unat the neural network input is denoted by 0 as 

a second argument. The predictor's trainable parameters are updated at each time 

instant based on the arrival of a new observable. Then the objective is to extract the 

driving-force signal from the online prediction error en+l = Yn+l - Zn+i based on the 

finite-difference approximation, given that the mapping f is differentiable everywhere: 

en+l = 	 f (yn, Un) - f (yn, 0) + Vn+l (3.6) 

Of (yn, Un) 
~ [j Un+ En+l· 

Un 

In (3.6), En+i denotes the overall approximation error. The derivation of (3.6) will 

be elaborated in the sequel on the basis of some functional analysis theorems. The 

final step of the algorithm is to obtain the refined driving-force estimates using a 

regularized adaptive filter based on (3.6). 

To sum up, the idea is to exploit the fact that the driving-force is not explicitly 

modeled by the predictor as suggested by Szeliga et al. (2002, 2003a,b); Verdes et al. 

(2001, 2004, 2006). Based on this fact, we relate the 1-step prediction error to the 

hidden input. The resulting estimation algorithm encompasses the following three 
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main operations: 

1. 	 Predictive modeling of the unknown system using ESN s, 

2. 	 Linearization of the 1-step prediction error as in (3.6), 

3. 	 Noise smoothing and regularized adaptive estimation of the hidden input from 

the linearized prediction error. 

One iteration of the algorithm is depicted in the block diagram in Fig.3.1. 

Regularized Adaptive Estimator 
Yn+1 ,.- -------------------------·--- - ------- -------·-. 

+TDL 
LMS(L Units) 

{ ________ .J 

I 
ESN 
Bank 
( 

Zn+l 

________ .J 

I 

i 
! 
I 

,----! 

·- ---·--------- ---------------------·- --------- --' 

Figure 3.1: Block diagram of the ADFE. The task of the functional analysis block 
is to provide a model in which the prediction error en+l is linearly dependent on 
the driving-force. z- 1 denotes the unit delay operator. "TDL" denotes a tapped­
delay line of L shift registers. "LMS" stands for the least mean squares algorithm. 

Q. 	 [ ]Trn 	- Tn,. ·., Tn-L+l · 

In the remainder of this section, we elaborate on the three operations that form 

the basis of the algorithm. 

Predictive Modeling of The Unknown System 

A detailed treatment of the ESN has been provided in Section 2.1. Herein, we illus­

trate some numerical results to demonstrate the online prediction capability of the 

ESN bank for the applications studied in this chapter. 

As stated in Section 2.1, the 1-step mean square prediction error averaged over all 

ESNs is found to be fairly insensitive to the selection of the free parameters of ESN. 
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To demonstrate this fact, we calculate the time-averaged mean squared error (MSE) 

on four different datasets that are studied in detail in Section 3.1.4 and 3.1.5. We 

measure the overall 1-step prediction error averaging over the individual prediction 

errors of each ESN in the bank. Let e~~1 = Yn+l - z~ii 1 denote the 1-step prediction 

error of the ith ESN in the bank, i = 1, 2, ... , 100. Our motivation in using a large 

number of ESNs (i.e. V = 100) herein is to demonstrate the algorithm's performance 

when arbitrarily large computational resources are available. In Chapter 4 however, 

we place some constraints on the computational cost, and analyze the performance 

of the driving-force estimator when the algorithm has to be realized with a much 

smaller amount of computaional resources. 

The MSE in Fig.3.2 is estimated over 100 independent trials for each parameter 

value. Sensitivity of the algorithm to the selection of the ESN free parameters is 

analyzed in Fig.3.2. Inspecting Fig.3.2, it can be argued that the connectivity rate 

(~) and the number of neurons ( N) in DR do not play a crucial role on the performance 

of the network. The spectral radius (p) of the internal weight matrix however has a 

more remarkable effect. Nevertheless, the effect of p is not large enough to impede 

the prediction performance of the network significantly. As a result, we shall fix all 

the ESN parameters for the experiments in Section 3.1.4 and 3.1.5 without employing 

any search to find an optimum configuration. 

The universal approximation theorem for recurrent neural networks (Jin et al., 

1995; Madan et al., 1995) states that f (yn, un) : IR2 
-t IR in (3.4), whose initial 

values belong to a compact set D, can be approximated arbitrarily well by recurrent 

neural networks of finite order. 
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(a) 

~ :~1----·----~---=: ---~----:---1 

1 1.5 2 2.5 3 3.5 4 

(b) 

1.5 2 2.5 3 3.5 4 
(c) 

~ :~+2'----:--=-=----=-~----=-=-~~-~- ­--~------j
o~-~~~~~~~~~~~~~~~~~~~~~~ 

1 1.5 2 2.5 3 3.5 4 

~ J'-'-----~,~-~ ----'------:-------""---~- - -:.______)-	 - J- _- - ---L--.:____,__­-:-~-
1 	 1.5 2 2.5 3 3.5 4 

I--e-- c - * - p . -<I- . N I 
Figure 3.2: Time-averaged 1-step prediction MSE vs. free parameters of ESN. (a) 
Logistic map dataset. (b) Moran-Ricker dataset. (c) Nonlinear stochastic system. 
(d) Sunspot time series. The lines marked with circle, star and the triangle refer to 
the parameters p, c;, and N respectively. The x-axis is in arbitrary units and refers to 
the index of the free parameter under consideration. The following candidate values 
are tested: p = [0.1, 0.3, 0.7, 0.9]; c; = [4%, 6%, 8%, 10%]; N = [30, 40, 100, 200]. 

Linearized Approximate Model 

Let us reproduce 	the 1-step prediction error in the first line of (3.6), 

(3.7) 
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where f (Yn, un) and J(Yn, 0) are described in (3.4) and (3.5) respectively. In order 

to proceed further ahead with (3.7), we present Proposition 1: 

Proposition 1. Let f E B be differentiable everywhere. Hence, f is Lipschitz con­

tinuous. Let f E A be a mapping in a dense subset A C B. Then the following holds: 

(3.8) 


where f (yn, 0) represents the unperturbed (stationary) dynamics, and f (yn, 0) denotes 

the neural network's modeling without the availability of the driving-force input. 

The important implication of Proposition 1 is the following: Based on the Lipschitz 

continuity off; the neural network response f (yn, 0) lies in a finite distance from the 

stationary dynamics mapped by f (yn, 0). Then formally, we can write f (yn, 0) = 

f (yn, 0) +En+1, where En+l is upper bounded such that lcn+il ::; 6 (which also follows 

from Proposition 1). 

Proof. Let us subtract and add f (yn, un) on the left-hand side of (3.8) to obtain: 

Applying the triangle inequality to the right-hand side of (3.9), we get 

(3.10) 

Due to the Lipschitz continuity off, we can state If (Yn, 0) - f (Yn, un)I :S [,!uni for 

the first term on the right-hand side of (3.10), which requires that the driving-force 

is upper-bounded. [, is the Lipschitz constant. Also, exploiting the density of the 

52 




Ph.D. Thesis - Ula§ Giintiirkiin McMaster - Electrical & Computer Engineering 

neural network class (Zeidler, 1995, ch.1), we can state If (yn, un) - J(yn, 0) I :S 61 

for the second term in right-hand side of (3.10). Then (3.10) becomes: 

(3.11) 


Setting 6 = £ lunl + 61 completes the proof. D 


Now, let us plug f (yn, 0) = f (Yn, 0) - En in the second line of (3.7) to obtain: 


(3.12) 

Using the differentiability off, let us replace the difference [f (Yn, un) - f (yn, O)] in 

(3.12) by the partial derivative expression [ fJ f ~~~un)] Un using the finite difference­

approximation. This approximation will also introduce some errors. Then denoting 

the combination of all errors by E, we have 

(3.13) 


Now that we have a linearized system from which the hidden input is to be recon­

structed. 

Estimation of Hidden Input Using Wold's Decomposition 

As a first step toward the derivation of the estimator, we reduce the excess noise in 

(3.13) using an exponentially decaying noise smoother. At this point, we stress the 

notation on the four key estimation quantities to clarify the notation in the sequel: 

• Un: the driving-force, 
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• en: the prediction error obtained by the ESN bank, 

• r n: the output of the noise-smoothing filter, 

• f n: the output of the regularized adaptive estimator. 

The input-output relation for the noise-smoothing filter is given by 

Tn+l = (1 - I')en+l + I'rn (3.14) 

where en+l is the filter input, and the filter output is denoted by rn+l· The objective 

of this filter is to reduce the variance of the additive noise, En in (3.13) by suppressing 

the high frequency noise components. The output of the noise-smoother is further 

refined using a regularized adaptive estimator, which is described in the sequel. Note 

that the task of the noise smoother is to cancel very high frequency components, which 

are assumed to be noise contributions. On the other hand, the signal component is 

assumed to occupy a lower bandwidth. Therefore, although the selection of I' can 

be fine-tuned for specific applications, we do not search for an optimum value for I', 

and set I' = 0.9 throughout the experiments as a rule of thumb. Let us describe 

the relation between the output of the noise-smoothing filter and the driving-force as 

given in (3.15) 

(3.15) 


where E
1 stands for the reduced noise. We derive the adaptive estimator based on 

Wold's decomposition theorem, which states the following (Papoulis, 1985): 

Theorem 1. Wold's Decomposition 
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Any arbitrary discrete-time stochastic process can be decomposed into the summa­

. . . bl h h f) j (yn, Un) htion of an unpredictable and a predicta e part sue t at = On+ T/n, w ere
0Un 

On 	 is the stochastic part and T/n is predictable. 

Then (3.15) can be rearranged as rn+l = (On + T/n) Un + E~+l deducing from The­

orem 1. Denoting the stochastic part '!9n+l c. [onun + E~+i], we obtain 

(3.16) 


Papoulis (1985) showed that there exists a predictor of rn+l of the form Tn+l = 

L
00 

azrn-l+l, which is also a (non-unique) a predictor of T/nUn in (3.16). Estimating 
l=l 
Un from rn+l is however an inverse problem, which is most likely to be ill-posed due 

to the abrupt variations in T/n, and the effect of convolutional noise, '!3n. Therefore, 

to obtain a practically meaningful estimator, we need to: 

• 	 bring some form of regularization into the solution of problem, and 

• 	 employ an adaptive mechanism so as to respond to the changes in the environ­

mental conditions represented by the variations in T/n-

The method that we follow in this chapter is Tikhonov regularization (Tikhonov and Arsenin, 

1977) which imposes a smoothness constraint on the driving-force. The driving-force 

is estimated using a regularized adaptive filter. Let us introduce the following nota­

tions for the filter parameters at discrete time n: 

f n+l = a-;:rn: Filter output with the tap-weight vector~· 

rn+1 : Desired response. 
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O:n+l = Tn+i - fn+l = Tn+1 - a;:rn: The regularized prediction error obtained at 

the output of the regularized estimator. Note that O:n must not be confused with the 

ESN bank's prediction error, en. 

f3n = rn+1 - fn = a;:rn - a;:_1rn_1: Difference between two consecutive estimates. 

The cost function ( J) associated with the adaptive estimator is to be minimized 

with respect to the weight vector, an: 

(3.17) 


=IE [0:~+1] + ,\llf3n+ill 
2 

=IE [(rn+l - fn+1) 
2

] + ,\ llfn+l - fnll 
2 

=IE [ (rn+l - a;rn) 
2

] + ,\ jja;rn - a;_1rn-1ll 
2 

. 

] is the standard error term which minimizes the mean square deviation between 8 

Tn+l and its predictor f n+l = L
L 

a1rn-l+1 = a~rn. lreg is the regularizing term, 
l=l 

which penalizes the sudden variations in the estimates as a consequence of the un­

derlying smoothness assumption of the driving-force signal. ,\ is the regularization 

constant that provides a balance between the standard error term and the regular­

ization term. The regularized estimator is trained on the LMS algorithm iterating 

the estimator's weights in the inverse direction of the gradient scaled by an adequate 

step-size parameter at each time instant. Following the methodology presented by 

Kushner and Yang (1995), we update not only the tap-weights, but also the step-size 

parameter, µ. Leaving the derivations to the Appendix A.1, the regularized LMS 
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equations with adaptive gain are obtained as given below. 

an+l =an+ µn [an+l - >.,6n+1l fn (3.18) 

µn+l = µn + r [an+l - >.,6n+l] w;rn 

Wn+l = [I - (1 + >.) µnr;rn] Wn + [an+l - >.,6n+1] fn 

where I denotes an L x L identity matrix, and the L x 1 vector '11 n 
6 \7µnan facilitates 

the update of the step-size parameter, µn. 

We anticipate that the resulting estimator will be capable of reconstructing both 

slowly and rapidly varying driving-forces from arbitrary nonlinear dynamics thanks 

to the power and fast convergence of the ESNs, and the robustness of the regular­

ized LMS adaptation algorithm. Nevertheless, the nature of the estimation task may 

place some limitations on the algorithm's performance. For instance, if the partial 

derivative in (3.6) has a (possibly nonlinear) dependence on the driving-force Un, 

arguably a more challenging estimation scenario is posed. It can be also expected 

that estimating the rapidly changing driving-forces would be ordinarily more difficult 

than estimating those forces that exhibit slower variations. The innate degree of dif­

ficulty of a particular estimation task can be evaluated in a principled way by the 

Posterior Cramer-Rao Lower Bound (PCRB). Then comparing the algorithm's per­

formance with the PCRB, we can reach some rigorous conclusions on the algorithm's 

performance under varying conditions. 

Before concluding this section, we summarize the operation of the ADFE in an 

algorithmic form as given in Algorithm 3. Lines between 1 and 7 address the ESN 

operations. Line 8 describes the noise-smoother, and the operations between lines 9 
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and 14 define the regularized adaptive estimator. 

Algorithm 3 THE ADAPTIVE DRIVING-FORCE ESTIMATOR 

Require: Observables from the environment; Yn, n = 1, ... , T 
Ensure: Driving-force estimates; f n, n = 1, ... , T 

Initialize the RLS algorithm by setting pg) =bl and w~ut,(i) = 0 with b small. 
for (n = O; t < T; n + +) { 

for(i=l;i:::;V;i++){ 
1: s(i) = tanh (w(i)s(i) + win,(i)y + ,1,(i) )n+l 	 n n 'f'n+l 

. (i) ( out,(i))T (i)
2. Zn+l = Wn Sn+l 

(i) ( i) 
3: en+l = Yn+l - Zn+l 

\ -1 p(i) (i) 


k (i) _ /\RLS n 8 n+l

4: 


n+l - 1 \-1 ( (i) )T p(i) (i) 

+ /\RLS 8 n+l n 8n+l 


5·. out,(i) _ out,(i) + k(i) (i)

Wn+l - Wn n+l en+l 

6: p(i) _ ,\-1 p(i) _ ,\-1 k(i) (s(i) )T p(i)
n+l - RLS n RLS n+l n+l n 

} 
v (i)

7: en+l = (1/V) Li=l en+l 
8: rn+l = (1 - I') en+l + I'rn 

6
9: fn+l=a'f:rn {where an [a~ll, ... ,a~L)JT andrn 6 

[rn, ... ,rn-L+i]T} 

10: O'.n+l = rn+l - in+l 

11: f3n+l = fn+l - f n 

12: ~+1 =an+ µn [o:n+l -	 ,\f3n+1] rn 
13: µn+1 = µn + r [an+1 - ,\f3n+i] w'f:rn 

14: 	 Wn+1 = [I - (1 + ,\)µnrnr'f:] Wn + [an+1 - ,\f3n+i] rn 
} 

3.1.3 PCRB 

Error lower bounds provide performance limitations for the estimation algorithms, 

and also allow several methods to be compared against a reference. The Posterior 

Cramer-Rao Lower Bound (PCRB) is applicable to the estimation of dynamic pa­

rameters. Van Trees (2001) derived the PCRB in for the estimation of time-varying 
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parameters which are interpreted as stochastic processes. Tichavsky et al. (1998) 

specified the PCRB for the generalized Markovian nonlinear systems, which is sum­

marized below. Let y represent a sample of measured data, let 8 be an (P + 1) ­

dimensional estimated random parameter, let p (y, 8) be the joint probability density 

of the pair (y, 8) and let 8 be an estimate of 8. PCRB on the estimation error has 

the form 

6P IE [ ( 8 - 8) (8 - 8) r] ~ J-1
, (3.19) 

where J is the (P + 1) x (P + 1) (Fisher) information matrix with the elements 

i, j = 1, ... , p + 1. (3.20) 

Let us use the following notation for the first and second-order partial derivatives 

respectively, V'e = [ 8~ , ••• , ae~+J T; 6.~ = V'::::V'~. Using the relation p (y, 8)1 
P (y I8) P (y), and keeping in mind that P (y) does not depend on 8, we reach 

J =IE [-6.~ logp (yl8)] . (3.21) 

Now let us consider the general nonlinear filtering problem, 

(1) ( ) (1)
Xn+l = 91 Xn +wn (3.22) 

59 




Ph.D. Thesis - Ula§ Giintiirkiin McMaster - Electrical & Computer Engineering 

where we have split the state transition into two parts. Note that dividing the state 

equation into two sub-equations enables us to incorporate the evolution of the driving-

force into the system model as an augmented state. Note that the RBPF and the 

EM-PF have been described on such an augmented system as given in (2.21). The 

state variables x~1 ) and x~2) in (3.22) are defined as (P1 + 1) x 1 and P2 x 1 vectors 

respectively, such that P1 +P2 = P. The (P+l) x 1 stacked state vector is given as Xn 
6 

[(x~1)f, (x~2)ff. The mappings 91 (.) and 92 (.) represent arbitrary nonlinearities, and 

additive noises w~1 ) and w~2) respectively are white. h(.) is the measurement mapping. 

Let us concatenate the state vectors and the measurements up to time n in respective 

vectors such that Xn 6 [x6, ... ,x~]T and yn 6 [y0 , ... , Yn]T respectively. Equations 

in (3.22) and p (x0 ) define the joint pdf of Xn and Yn such that, 

n n 

p(Xn,Yn) =p(xo) IJP(Yjlxj) IJp(xklxk_i). (3.23) 
j=l k=l 

Let J(Xn) denote the entire n(P +1) x n(P + 1) information matrix of the vector Xn 

derived from the above joint density. We are interested in determining the information 

submatrix for estimating Xn, which is denoted Jn, that is given as the inverse of 

the (P + 1) x (P + 1) right-lower block of J(Xn)· The matrix J~ 1 will provide a 

lower bound on the mean square error for estimating Xn. Decomposing Xn in time 

as Xn 6 [X~_ 1 , x~r, we obtain the following recursion for the sequence {Jn} of 

posterior information submatrices (Tichavsky et al., 1998), 

G 22 G21 (J G11)-1 G12J n+1 = n - n n + n n · (3.24) 
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The initial information submatrix can be calculated from the a priori pdf, J0 = 

lE [-.6.~g logp (xo)]. Note that p (xn+1lxn) = p (x~1l 1 lxn) p (x~2l1 lxn) is determined 

from the first and second equations in (3.22). The matrices G~ are given as 

a;1 
= lE [-.6.~~ logp ( x~1l 1 lxn)] + lE [-.6.~~ logp ( x~2l 1 lxn)] (3.25) 


G~2 = lE [-.6.~~+ 1 logp ( X~~1 IXn) J + lE [-.6.~~+ 1 logp ( x~2l1 IXn) J 


a~l = [a;2r 

G22 = lE [-.6.Xn+1 logp (x(l) Ix )] + lE [-.6.Xn+1 logp (x(2) Ix )]


n n nXn+l n+l Xn+l n+l 

+ lE [-.6.i::~ logp (Yn+ilXn+1)] · 

3.1.4 Controlled Experiments 

Experiments on Chaotic Maps 

The estimator's performance with regard to the chaotic dynamics will be illustrated on 

two different systems. The first system under consideration is a simple, yet extremely 

rich Markovian example, the logistic map as described in (3.26): 

(3.26) 


where the chaotic state Xn is linear in the driving-force, Un· Yn is the measured sample 

at time n. Note the logistic map has been introduced in (2.5) in Section 2.1 with a 

constant bifurcation factor, r0 • The logistic map can be driven in different regions of 

operation by controlling the value of r 0 • (3.26) differs from (2.5) in that the constant 
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bifurcation scalar r 0 in (2.5) is replaced by a dynamic bifurcation process Un in (3.26), 

which plays the role of the driving-force that we wish to estimate. The second system 

under study is the Moran-Ricker map, which distinguishes itself from the logistic map 

mainly in that the chaotic state Xn is related to the driving-force Un by a nonlinear 

recursion as given in (3.27), 

Xn+l = Xn exp[/'\; (1 - Xn/un)] 	 (3.27) 

Yn+l = Xn+l + Vn+l 

where the map can be operated in a chaotic regime by tuning the constant h; ade­

quately. 

Note that the sources of uncertainty in the chaotic systems in (3.26) and (3.27) are 

threefold. Hence, the performance of the algorithm is studied with an emphasis on 

these three points. In order to quantify the impact of all three factors, we comment 

on how those points pose particular challenges, and how each of them manifests itself 

in the derivation of the PCRB: 

• 	 The first source of uncertainty is due to the initial state, x 0 . To quantify the 

impact of varying initial conditions in a differentiable dynamic system, it is 

0
natural to consider the derivatives Xn. These derivatives can be obtained via 

8Xo 

the chain rule. To study the long term behavior, let us consider the Lyapunov 

. 11 [OXn] Th . . . . . ( r) OXnexponent r = 11m - og - . e mtmt1ve approx1mat1on exp n ~ ­
n-+oo n 0Xo 	 0Xo 

suggests that for large r, small deviations in the initial conditions lead to large 

deviations in Xn (Berliner, 1991). As a result, different initializations of a chaotic 

map may lead to different horizons of predictability. The impact of x 0 is taken 
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into account in (A. 7) and (A.12) for the respective derivation and calculation 

of the PCRB in Appendix A.2. 

• 	 The impact of the partial derivative in (3.6), as mentioned in the last paragraph 

of Section 3.1.2, manifests itself in the PCRB as given in (A.13) and in (A.14) 

in Appendix A.2. Specifically, it follows from (A.13) that 

(3.28) 


for the logistic map, and it is deduced from (A.14) that 

(3.29) 

for the Moran-Ricker map. Note that T/n m (3.28) does not depend on Un, 

whereas T/n in (3.29) has a severely nonlinear relation with Un for the Moran­

Ricker map. This observation suggests that estimating a driving-force from 

the Moran-Ricker map will be a more challenging problem than from the lo­

gistic map. As will be presented in the experiments, the PCRB will serve as a 

quantitative measure of this comparison. 

• 	 Another source of uncertainty is the additive measurement noise denoted by 

Vn· Examining (3.3) and (3.4) which describe the derivation of the hybrid 

mapping f (.), it can be seen that the effect of the measurement noise can be 

greatly amplified when the state mapping g(.) is nonlinear, which may severely 

impair the neural network's prediction capability. This is due to the fact that 

the underlying smoothness assumption of the hybrid mapping f(.) could be 

63 




Ph.D. Thesis - Ula§ Giintiirkiin McMaster - Electrical & Computer Engineering 

violated in such cases. The nonlinearity of g(.) is indeed the case for both 

examples under consideration. The effect of measurement noise on the PCRB 

can be observed following from (A.11) in Appendix A.2. 

The following two comments are in order prior to the presentation of the experimental 

setup and the results: 

1. 	 It should be noted that we perform a sanity check on the prediction error of 

the ESN bank. Specifically, we monitor the ESN bank's training error to make 

sure that the prediction error remains bounded. 

2. 	 Note that the PCRB is deriven on the availability of the full model of the 

underlying system. The proposed ADFE however does not assume the avail­

ability of the model knowledge. Therefore, the PCRB is interpreted as a loose 

approximation to the actual lower bound for the experiments in sequel. 

In light of the points stressed above, and following from the detailed derivation 

of the PCRB given in Appendix A.2, we are ready to proceed to the controlled 

experiments. 

We study the reconstruction of two driving-forces that differ in their respective 

time-scales. In particular, the following amplitude-modulated (AM) signal will be 

considered as an example of a rapidly varying driving-force; 

(3.30) 

where Ac is the amplitude, ka is the modulation index, fm is the message frequency, T8 

is the sampling period, and fc is the carrier frequency. The carrier frequency dictates 

the global time-variation of u~1 ), whereas the message frequency determines the shape 
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of its envelope. As a result, this driving-force changes in two time-scales. u~1 ) will 

be realized with the following parameters: For logistic map; r 0 = 3.8, Ac = 0.125, 

ka = 0. 7. These values ensure that the logistic map exhibits a chaotic behavior. 

lm = 10 Hz, le = 100 Hz, ls = l/Ts = 2000 Hz are selected, which results in a 

rapidly varying signal. For the Moran-Ricker map, r 0 = 1, Ac = 0.6, and the other 

parameters are the same. T = 2000 data points will be drawn from the logistic map 

and the Moran-Ricker map for the reconstruction of u~1 ). 

To test the algorithm's performance on a slowly varying driving-force, the following 

signal will be considered, 

u(2) = r - A cos ( 27rn) e-n/5o (3.31)
n o 50 ' 

which was previously studied by Szeliga et al. (2003a,b); Verdes et al. (2006) with the 

following parameters for the logistic map: r 0 = 3.8, A= 0.045. These values ensure 

that the logistic map stays in the nontrivial chaotic regime. The same signal will be 

simulated with the following parameters in the Moran-Ricker map: r0 = 1, A= 0.9. 

T = 100 data points will be drawn from the logistic map and the Moran-Ricker map 

for the reconstruction of u~2). For the Moran-Ricker map, r;, = 3.7 is set for the 

reconstruction of both u~1 ) and u~2). 

In light of the experimental results presented in Fig.3.2, the ESNs are configured 

with the following parameters, which are fixed throughout the upcoming experiments 

also: i;; = 0.1, p = 0.1, N = 30. For u~1 ), we have a relatively large dataset, (i.e. 

T = 2000). Therefore, we can set the number of estimator taps to L = 100. Due 

to the fact that we draw only 100 data points for u~2), which is relatively small, we 

set the adaptive estimator length at L = 10 for u~2). We have observed that as long 
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as the step-size parameter is initialized with a small number (e.g. 0 :::; µ0 :::; 10-3
), 

the algorithm's performance is insensitive to the selection of µ0 . For this and the 

remaining experiments, the initial step-size is fixed at µ0 = 10-5 . The regularization 

constant is set .X = 1 for all experiments. The sensitivity of the algorithm to the 

selection of .X will be studied in a unified manner for all applications at the end of 

Section 3.1. 5. 

The algorithm's performance for the reconstruction of the rapidly varying AM 

force is presented in Fig.3.3. In Fig.3.3(a), an example run of the algorithm is dis­

played. For visual convenience, only the last 500 samples are plotted. In Fig.3.3(b ), 

performance of the algorithm is shown for varying degrees of measurement noise in 

terms of Signal-to-Noise Ratio (SNR). The SNR is measured as SNR = 10 log10 ( :~), 

where Pu is the power of the driving-force signal, and O"; is the variance of measure­

ment noise. For each SNR level, the corresponding values of the variance of estimation 

error CJ~ and the PCRB are shown. The first 300 samples are removed from the cal­

culations so as to discard the effect of transient dynamics. Comparing the PCRB 

for the MR-map and the PCRB for logistic map in Fig.3.3(b), we can deduce that 

the MR-map indeed poses a harder problem than the logistic map. The algorithm's 

performance on the MR-map follows the PCRB almost at the same distance for all 

SNR levels. For the logistic map however, the algorithm performs well for moderate 

to high SNR (i.e. 10 - 20 dB), whereas the performance is largely degraded for 0 

dB. Also, the PCRB for logistic map declines remarkably faster than the PCRB for 

the MR-map for increasing SNR. The reason for these two observations is that the 

driving-force is carried in the amplitude content of the logistic map, in which case 

the white noise is directly added on the driving-force. For the MR-map however, 
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the driving-signal is in the phase content, and therefore less affected by the additive 

noise. As a result, there is still room for improvement for the estimation of rapidly 

varying forces for high levels of additive noise. In Fig.3.3(c), we plot the variance of 

estimation error and the PCRB for different initial states, x 0 . Although the MSE 

of the algorithm exhibits small fluctuations for varying x0 , we can conclude that the 

algorithm is reasonably insensitive to the selection of the initial conditions. 

The results of experiments for the extraction of slowly varying force u~2) are pre­

sented next in Fig.3.4. In Fig.3.4(a), 100 independent realizations of the algorithm 

are illustrated for the logistic map example. It is seen that the algorithm keeps track 

of the driving-force after the transient period is completed. In Fig.3.4(b), the noise 

performance of the algorithm is shown. First 10 samples are discarded from the 

calculation of MSE to discard the transient dynamics. Comparing Fig.3.4(b) and 

Fig.3.3(b), similar conclusions can be drawn regarding the sensitivity of the method 

to the additive noise. However one interesting point is that for the logistic map ex­

ample, the additive noise is less harmful for the estimation of u~2) than it was for u~1 ). 

The reason is that the adaptive filter operates as a low-pass filter with an adaptive 

bandwidth. Therefore, for the low frequencies (i.e. slowly varying forces), the filter 

bandwidth is narrow enough to effectively smooth out most of the noise content. The 

converse is true for the rapidly varying forces. Finally, in Fig.3.4(c), the sensitivity 

to the initial state is illustrated. It can be concluded that the algorithm is fairly 

insensitive to the initial conditions for the estimation of u~2) as it was the case for 

(1)
Un . 

Note that the driving-force is injected in different strengths in chaotic systems 

studied above so as to keep the maps in the chaotic regime without collapsing them 
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Figure 3.3: Experimental results for the reconstruction of the rapidly varying AM 
driving-force u~1 ) given in (3.30) from Moran-Ricker and Logistic maps. 
(a) Sequential driving-force estimation performed on the AM-force driven logistic 
map. Solid line is the original driving-force u~1 ). Dashed curve is the average recon­
struction. The shaded area refers to the deviation of 100 independent reconstructions 
from the average reconstruction. x 0 = 0.42, SNR=20 dB. 
(b) Performance of the algorithm for varying SNR. 'MR-1' and 'L-1' stand for the 
Moran-Ricker map and the logistic map perturbed by u~1 ) respectively. O"~ denotes 
the time-averaged variance of estimation error, P denotes the PCRB. x 0 = 0.42. 
(c) Performance of the algorithm for varying initial state, x 0 . 'MR-1' and 'L-1' 
stand for the Moran-Ricker map and the logistic map perturbed by u~1 ) respectively. 
SNR=20 dB. 
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Figure 3.4: Experimental results for the reconstruction of the slowly varying u~2) given 
in (3.31) from Moran-Ricker and Logistic maps. 
(a) Sequential driving-force estimation performed on the slowly-driven logistic map. 
Solid line is the original driving-force u~2). Dashed curve is the average reconstruction. 
The shaded area refers to the deviation of 100 independent reconstructions from the 
average reconstruction. x0 = 0.42, SNR=20 dB. 
(b) Performance of the algorithm for varying SNR. 'MR-2' and 'L-2' stand for the 
Moran-Ricker map and the logistic map perturbed by u~2) respectively. a~ denotes 
the time-averaged variance of estimation error, P denotes the PCRB. x 0 = 0.42. dB. 
(c) Performance of the algorithm for varying initial state, x0 . 'MR-2' and 'L-2' 
stand for the Moran-Ricker map and the logistic map perturbed by u~2) respectively. 
SNR=20 dB. 
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to the unstable regions. Therefore, we also study the normalized mean square error 

(NMSE) as a global metric for a unified performance assessment. The results are 

presented Table 3.1 where SNR=20 dB and x 0 = 0.42 are fixed. The NMSE is 

calculated as (jV Pu, where (jl is the variance of estimation error, and Pu is the power 

(or variance) of the driving force. Comparing L-1 with MR-1 and L-2 with MR-2 in 

Table 3.1, it is clear that better results are obtained for the logistic map than the MR-

map. This observation is in agreement with the results presented in (Verdes et al., 

2001). Nevertheless, the normalized error for the MR map is still smaller than 0.1 

as well. Another comparison between L-1 and L-2, and MR-1 and MR-2 reveals that 

both slowly and rapidly varying forces can be reconstructed by the algorithm up to 

a similar level of accuracy for reasonably high SNR. 

Table 3.1: NMSE performance over all experiments on the chaotic maps. L-1 and 
MR-1 denote the logistic map and Moran-Ricker map perturbed by u~1 ) in (3.30) 
respectively. L-2 and MR-2 denote the logistic map and Moran-Ricker map perturbed 
by u~2) in (3.31) respectively. 

L-1 MR-1 L-2 MR-2 
NMSE 0.068 0.09 0.077 0.093 

Before concluding this subsection, we finally present some comparison between the 

results obtained herein and those that were recorded by Verdes et al. (2006, Table 1). 

The authors of (Verdes et al., 2006) quantified the additive noise level in terms of the 

ratio of standard deviation of the noise to the standard deviation of the driving-signal. 

We transform those numbers to signal-to-noise ratios in dB, which is the standard 

power ratio unit throughout this chapter. The results are presented in Table 3.2. 

Clearly, the method of Verdes et al. (2006) provides an impressive performance for 

the noise-free case (i.e. SNR=oo), and for very low noise levels (i.e. SNR=40 dB). The 

proposed approach however distinguishes itself in its much greater stability against 
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the increasing levels of additive noise exemplified by the results for 26 and 20 dB. 

Table 3.2: NMSE performance comparison on L-2 experiment for varying SNR be­
tween the proposed approach and (Verdes et al., 2006). T = 100. 

SNR [dB] 00 40 26 20 
NMSE in (Verdes et al., 2006) 0.017 0.013 0.088 0.191 

NMSE herein 0.068 0.067 0.071 0.077 

Experiments on a Nonlinear Stochastic System 

In the preceding subsection, we have examined the algorithm's performance on two 

chaotic systems, whose state equations had zero process noise. The uncertainty in 

the state models was rooted from the deterministic chaos. In this set of experiments, 

we study another nonlinear dynamic system as given in (3.32), where both the state 

and measurement models are stochastic. This will allow us to judge the algorithm's 

performance on such scenarios where the system dynamics can carry varying degrees 

of stochastic uncertainty represented by the process noise. We study the following 

system, 

(3.32) 


Xn+l 
Yn+l = W + Vn+l, 

which was originally studied by Gordon et al. (1993) as a case of severe nonlinearity 

for Bayesian sequential nonlinear state estimation problem. Wn denotes the process 

noise. Our problem is, once again, to estimate Un without the knowledge of the 

system. The results will be also judged quantitatively with a reference to the PCRB. 

We skip the derivation of PCRB for this example since it follows from the equations 
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presented in Section 3.1.3 in a rather straightforward manner. 

We perturb the system in (3.32) with a single-tone signal, Un = cos(n/10). The 

configurations pertaining to the ESN and the adaptive estimator are the same as in 

the preceding section for estimating u~1). 

In Fig.3.5(a), we illustrate the estimates obtained by 100 independent trials. Only 

the last 500 samples are plotted for easy visualization. 

We test the algorithm's performance on varying levels of process noise in Fig.3.5(b). 

It is observed that the variance of the estimation error follows a similar trend as the 

PCRB at almost a uniform distance. This observation suggests that the algorithm's 

performance is fairly insensitive to the uncertainty in the governing body of system 

dynamics. This is an expected result since the process noise Wn is introduced as ad­

ditive noise in the expression of the hybrid system mapping, f(.) in (3.4). A large 

process noise therefore does not greatly impede the prediction capability of the ESN 

predictor since the ESN bank approach provides an ensemble averaging mechanism. 

However, inspecting (3.4) and (3.3) once again, we observe that the measurement 

noise Vn is located in the argument of the nonlinear state transition represented by 

g(.). Therefore, similar comments can be suggested regarding the effect of mea­

surement noise as those presented for the chaotic map experiments in the preceding 

subsection. In particular, increasing levels of the measurement noise is expected to 

affect the smoothness off (.), hence the predictability of the observables by the neural 

networks. The algorithm's performance on varying measurement noise is presented in 

Fig.3.5(c), where the distance between the variance of estimation error and the PCRB 

gets larger for increasing measurement noise. In principle, following from Cover's the­

orem (Cover, 1965), it could be possible to reduce the harming effect of measurement 
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(a) Sequential driving-force estimation results for 
single-tone signal with CT~ = 0.1 and CT~ = 0.01. Solid 
line is the original driving-force, Un· Dashed curve is 
the ensemble-averaged reconstruction. Shaded area 
refers to the deviation of 100 independent reconstruc­
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(b) Effect of process noise. The variance of measure­
ment noise is fixed at CT~= 0.01. (c) Effect of measure­
ment noise. The variance of the process noise is fixed 
at CT~ = 1. CT~ denotes the variance of the estimation 
error. 

Figure 3.5: Results of the sequential driving-force estimation algorithm performed on 
the nonlinear stochastic system in (3.32). 
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noise by transforming the data into an even higher dimensional space. This can be 

done by using a nonlinear readout layer for the ESN. The feasibility of this approach 

will be suggested as part of the future research. 

3.1.5 Application To Sunspot Time Series 

We finally illustrate the performance of the estimator on some real-life data, the 

sunspot time series, in which the hidden information exhibits an irregular behavior. 

A sunspot is the cooler darker spot appearing on the sun's photosphere whose 

mechanism is not exactly known. For sunspot time series, the dominating perturba­

tion is the sun's total magnetic flux, hence, the driving-force is one-dimensional. A 

mathematical model is developed by Solanki et al. (2002) to extract the information 

pertaining to sun's magnetic flux. Lockwood et al. (1999) used a different method 

for estimating sun's magnetic flux. Specifically, a set of measurements called the 'aa' 

index has been compiled from the measurements of geomagnetic field since 1868 by 

pairs of magnetometers. An analytical model is always preferable to an algorithmic 

approach whenever there is enough prior information and physical evidence to con­

struct a rigorous but yet uncomplicated model. That being said, we do not pursue to 

claim that our method could be comparable to the analytical models. Rather, follow­

ing the work presented by Verdes et al. (2004), we interpret the work of Solanki et al. 

(2002) and Lockwood et al. (1999) as the true models, and refer to the results therein 

to judge the performance of our algorithm by visual inspection. 

We used the international annual sunspot numbers available from the year 1700 

to 2008 (NGDC, 2009). The ESN configuration used in this experiment is the same 

as in the previous experiments. 
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Figure 3.6: Reconstruction of the Sun's total magnetic flux. Thin solid lines: con­
struction by the analytical study by Solanki et al. (2002). Thick solid lines: Results 
of the study by Lockwood et al. (1999) (Available only since year 1868). Dashed 
lines: Average reconstruction of 100 independent trials obtained by the proposed 
method from the normalized time series. Shaded area: deviation of 100 independent 
reconstructions from the average reconstruction of the proposed algorithm. 

In Fig.3.6, we show the 20-year running mean of the sun's total magnetic flux esti­

mated by the proposed method as well as the reconstruction obtained by Solanki et al. 

(2002), and Lockwood et al. (1999). Although we do not expect to obtain an exact 

match with the analytical model results, we observe that our method has captured 

the basic characteristics of the driving-force. Especially the rapid increase in the sun's 

total magnetic flux in the last century is also visible as seen in Fig.3.6. 

Sensitivity to the Selection of the Regularization Parameter 

We analyze the algorithm's sensitivity to the selection of the regularization parameter, 

,\ over all the experimental setups studied in the current and preceding sections. As 

inspected in Fig.3. 7, a wide plateau is observed for 10-4 < ,\ < 1 for all experiments, 

where the algorithm does not heavily depend on the selection of the regularization 
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parameter. For sunspot, MR-1 and MR-2 experiments however, the results suggest 

that the algorithm's performance can be improved by selecting >. = 100, >. = 1 and 

>. = 10 respectively. The automated selection of >. will be considered by virtue of the 

generalized cross validation method in the future. 

w 
Cf) 
::;; 

-v--Sspot -+-XSS --+-~!Il-1 --1IR-2 ___,._L-1 -<r--L-2 

Figure 3.7: Algorithm's sensitivity to the selection of regularization constant, >.. 
Variance of estimation error for each experiment is plotted against the corresponding 
values of>.. Following values are set for this experiment: SNR=20dB for the perturbed 
logistic map, and <T~ = 1, <T~ = 0.1 for the nonlinear dynamic system. Following 
labels are used: Sspot: Experiments on sunspot time series; NSS: Experiments on the 
nonlinear stochastic system in (3.32); MR-1: Moran-Ricker map perturbed by rapidly 
driven forcing; MR-2: Moran-Ricker map perturbed by the slowly varying force; L­
1: Logistic map perturbed by rapidly driven force; L-2: Logistic map perturbed by 
slowly varying force. 

3.1.6 Conclusion 

We described a sequential estimation approach building on the prediction error idea 

for the reconstruction of hidden inputs that perturb nonlinear dynamic systems. The 

proposed driving-force estimator owes its good performance to the selection of two 

robust systems; the ESN banks, and the regularized LMS adaptive filtering algorithm. 
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Both the ESNs and the adaptive filter enjoy a common adaptation property. The 

ESNs keep learning from the environment by virtue of the continuous update of its 

free weights, whereas the LMS adaptation algorithm makes it possible to respond 

to the changes in the environment so as to keep producing regular estimates of the 

quantity of interest. 

The overall adaptation property of the proposed method makes it possible to re­

construct the rapidly varying driving-forces as demonstrated in Section 3.1.4. For 

that matter, this capability distinguishes the proposed method from the other con­

tributions in the related literature. To this end, as addressed in Section 3.1.4, there 

is still room for improvement to mitigate the harming effect of additive noise for the 

estimation of rapidly varying forces. One way to enhance the proposed approach 

is to modify the design of ESN predictor by replacing the linear readout unit by a 

nonlinear one as explained at the end of Section 3.1.4. 

Slowly varying forces on the other hand can be reconstructed by the algorithm 

with a similar level of accuracy under varying noise levels and initial conditions. 

As a matter of fact, we have reported a remarkable improvement in comparison to 

(Verdes et al., 2006) for the reconstruction of a slowly varying force when the additive 

noise is an issue (Table 3.2). 

For future research, we propose a comparison of the proposed estimator with 

the Bayesian techniques when prior knowledge on the system equations and noise 

distributions is partially or fully available. This will enable us to provide solutions 

to more general situations, as well as to gain more insight into the limitations of the 

method. 
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3.2 	 Toward the Development of a Radar Scene An­

alyzer for Cognitive Radar 

This section is devoted to the presentation of the material published in the article 

(Giintiirkiin, 2010b). Since the methodology has already been given in detail in 

Section 3.1, it is omitted herein. New experimental results and the application of 

the proposed ADFE to the radar scene analysis problem have been presented in this 

section. 

3.2.1 	 Introduction 

We propose a target signature search algorithm to address the radar scene analyzer 

in explicit terms for cognitive radar reception in this section. A cognitive radar 

receiver encompasses two main blocks: The radar scene analyzer (RSA) and the 

Bayesian target tracker (BTT). The BTT requires prior knowledge of what it is 

looking for, such as terrain conditions, and the potential targets in that terrain. 

This information is provided by the RSA with the aid of other external resources. 

More formally, the statistical information about the environment and the target are 

central to the realization of the BTT. Modeling the statistics of unknown target 

returns however is a particularly challenging task. The objective of the proposed 

RSA structure is to tackle this challenge by extracting useful information about the 

target from the environment based on the texture modeling of sea clutter. Specifically, 

we formulate a weak target as an unknown input embedded in the sea surface, whose 

dynamics are closely coupled by those of the clutter. The mapping that governs the 

unknown system's dynamics is assumed to be smooth. The observables from the 
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environment are then predicted one-step ahead with a bank of echo state networks 

(ESN). The unknown target's signature is extracted from the ESN prediction error 

and then refined in two adaptive filtering stages. Performance of the resulting method 

is evaluated using the Posterior Cramer-Rao lower bound (PCRB) on some controlled 

simulations. Finally, the intended application is presented on live recorded sea returns 

collected by the McMaster IPIX radar. Experiments show that the algorithm can 

accurately extract the target template from the environment. 

Cognitive radar has been proposed as a fully adaptive radar transmission and 

reception system by Haykin (2006). In cognitive radar, the cognition refers to under­

standing the environment, and modifying the system parameters accordingly. Both 

the transmitter and the receiver parameters are updated in the course of time by virtue 

of learning from the unknown environment, forming a belief on what is learned, and 

propagating this belief by Bayesian inference. Operating blocks of the cognitive radar 

are discussed by Haykin (2006). The task associated with the RSA (Haykin, 2006) 

is to supply statistical information about the clutter and the unknown target. Other 

prior information (e.g. speed and direction of wind, sea state) provided by external 

resources can also assist the realization of the BTT. Then the BTT decides whether 

a particular resolution cell contains a target. The decisions made by the BTT are fed 

back to the adaptive transmitter, and to the RSA. The parameters of the adaptive 

transmitter [e.g. transmit waveform, pulse repetition frequency (PRF), polarization] 

are then updated to focus on the patch of the ocean surface where the target is be­

lieved to be located. The range bins labeled by the BTT not to contain a target with 

high confidence are exploited by the RSA to estimate the time variation of the global 

clutter dynamics (i.e. the texture). A block diagram of the overall system is sketched 
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in Fig.3.8 with the proposed vision of the RSA, which is the focus of this article. 
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Figure 3.8: Block diagram of the cognitive radar with the proposed radar scene 
analyzer. 

We propose a realization of the RSA, which employs the proposed adaptive driving-

force estimator for extracting hidden-input information from an unknown dynamic 

environment. To describe the role of the RSA in mathematical terms, let us first 

briefly describe the sensing routine depicted in Fig.3.8, and then formulate the BTT. 

The discrete-time measurements from the radar search space are collected in the range 

bins for each range, azimuth and elevation dimension. The radar being coherent, the 

data in the range bins are composed of in-phase (I) and quadrature (Q) components. 

For the operation of the BTT, sliding windows of the data (I+ jQ) in each range 

bin are transformed to the frequency domain by the short-term Fourier transform 

(STFT). This way, the measurements are indexed into a linear array of resolution 

cells, which are labeled by 1, ...r, ... , R. Each resolution cell can now be considered 

as a 4 x 1 index vector, whose elements indicate the range, azimuth, elevation, and 

the Doppler velocity for a discrete spectral measurement made at time n. 1 The RSA 

1Let R1, R2, R3 and R4 denote the number of ranges, azimuth angles, elevation angles, and 
Doppler velocities respectively. Then the 4 dimensional array of all resolution cells at time n has a 
cardinality equal to R = R1R2R3R4. 
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processes the data in the time domain to search for the target signature in a partic­

ular range bin of interest. The task of the BTT is then to decide whether a target 

is contained in any of the R resolution cells at time n exploiting the target signature 

information provided by the RSA. This is accomplished by calculating the posterior 

probability, IP (~~IDn), where the event of a target being present in the r th resolu­

tion cell at time n is denoted by ~~. The 5-dimensional matrix Dn is obtained by 

concatenating the spectral measurements indicated by the arrays of resolution cells 

from time 1 to n.2 According to Bayes' theorem, this posterior probability can be 

expressed as 

(3.33) 


where p (Dn I~~) is the likelihood function, denoting the probability density function 

(pdf) of the measurements given the occurrence of a target in cell r. IP(~~) denotes 

the prior probability of the target appearing in cell r, and p(Dn) is the normalizing 

term, which describes the evidence of the measurements. In order to propagate the 

posterior density in time, let us rearrange the measurement matrix as a concatenation 

of the measurement vectors ordered in time 

The R x 1 vector di denotes the spectral measurements sampled at instants i = 

1, 2, ... , n. By the same token, matrix Dn-l denotes all the spectral measurements 

made before time n. Rearranging (3.33) and carrying out the necessary recursions, 

2For instance, the (p, l, k, j, i)th element of the matrix Dn is a spectral power sample that is 
measured at the pth range, lth azimuth angle, kth elevation angle, jthe Doppler velocity, and the 
ith time instant, where p = 1, ... , R1, l = 1, ... , R2, k = 1, ... , R3, j = 1, ... , R4 and i = 1, ... , n. 
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one reaches the following simplified expression for the posterior probability 

(3.34) 


where the current frame of measurements dn and the set of all previous measurements 

Dn-l are assumed statistically independent. p (dnl~~) is supplied by the RSA. The 

second term in the numerator in (3.34) is computed by the following recursion: 

R 

P (Dn-11~~) =LP (dn-1!~~-1) P (Dn-2!~~-1) IfD (~~-11~~). (3.35) 
q=l 

As before, p (dn-11~~- 1 ) is provided by the RSA. p (Dn-21~~- 1 ) is the one-step delayed 

version of p (Dn-11~~) and computed recursively. IfD (~~- 1 1~~) are the elements of the 

inverse transition probability matrix. This matrix is also to be received from the 

RSA and then updated. Consequently, the RSA is expected to generate the following 

pieces of information for a particular resolution cell: 

1. p (dnl~~): statistics about the clutter, and/or the target; 

2. IfD (~~- 1 I~~): statistical knowledge on the target's movement. 

The Bayesian approach for detection and tracking of targets with known signatures 

has been analyzed and demonstrated in (Bruno and Moura, 2001a) and (Bruno and Moura, 

2001 b). In these papers, the target signature is represented by a set of deterministic 

coefficients, which are assumed known. The signature of a random target is modeled 

by a conditional pdf in (Bruno and Moura, 2001b, Sec. D). The clutter is mod­

eled as a Gauss-Markov random field (GMRF), whose parameters are determined 

by maximum likelihood estimation. Based on the GMRF clutter model and the 
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presumed availability of the target signature, the BTT is shown to provide supe­

rior performance compared to the Kalman-Bucy filter (Bruno and Moura, 2001a,b). 

Bakker et al. (2002) employ a peak filter before presenting the data to the BTT in 

order to average-out strong clutter returns, and highlight the target peaks. The out­

put of the peak filter is represented by an :F distribution. The target statistics are 

modeled as a scaled version of the clutter distribution due to the lack of prior infor­

mation on the target returns. A major disadvantage of this assumption is that the 

discriminative power between two cases is weak (Bakker et al., 2002). To our best 

knowledge, no specific algorithms have been addressed for the realization of the RSA 

for extracting the signature of a small random target from the environment. 

In this chapter, we address this shortcoming by proposing an RSA algorithm which 

estimates realistic target statistics from the environment by the RSA, that will enable 

the BTT to operate with more accurate statistics on the target returns. 

Before proceeding to the description of the proposed approach, let us stress how 

the prior knowledge on the target returns is conjectured to be obtained by the ADFE: 

First, exploiting the texture modeling of sea clutter given by Gini and Greco (2001), 

we model the background clutter arising from the sea surface as a product between the 

local scatterers and the global sea waves. Based on this model, we interpret a small 

random target floating on sea surface as an additional backscatterer, which plays the 

role of a perturbation input. An intuitive justification of this interpretation lies in 

the fact that the movement of a small surface target is also dictated by the global 

sea dynamics in a similar manner to the local backscatterers. Based on the resulting 

target+clutter for a small surface target, we realize the ADFE as described in 3.1 

to obtain estimates of the driving-force. These estimates are then transformed to 
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the frequency domain by the STFT, and are indeed shown qualitatively to represent 

weak target echoes. In conclusion, the proposed RSA model exploits the ADFE to 

produce probabilistic information about the unknown random target embedded in 

the sea surface. 

The remainder of this chapter is organized as follows. In Section 3.2.2, we briefly 

revisit the texture modeling of sea clutter. In Section 3.2.3, we study a controlled case, 

and demonstrate the algorithm's tracking performance. In Section 3.2.4, we provide 

the results of experiments performed on the live recorded radar returns compiled from 

the Dartmouth database. 3 Section 3.3 concludes the chapter with final remarks. 

3.2.2 Texture Modeling of Sea Clutter 

The RSA requires an approximate model of the radar search space. In sea condi­

tions, this is a sea clutter model. Haykin and Thomson (1998) suggested that the 

sea clutter is a cyclostationary process. They supported their claim using the Loeve 

transform. As an independent study, a perceptually satisfying analytic sea clutter 

model is presented by Gini and Greco (2001), which reached the same result on the 

cyclostationary character of the sea clutter. Cyclostationarity of the sea clutter is 

associated with the quasi-periodic structure of the sea surface. In our work, we will 

be concerned with the model proposed by Gini and Greco (2001), whose results will 

be briefly reproduced below. According to the texture model (Gini and Greco, 2001), 

discrete samples of the complex envelope of the clutter process can be written as the 

product of two components 

Yn = vfi;;,xn. (3.36) 

3 Available at http: //soma. ece .mcmaster. ca/ipix/dartmouth/datasets .html. 
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In this formulation, Xn is a complex-valued stationary Gaussian process with zero 

mean and unit power. It is called the speckle, and it represents the local backscat­

tering. Tn is a non-negative real stochastic process, called the texture. It is reported 

(Gini and Greco, 2001) that the correlation length of the speckle is on the order of 

tens of milliseconds, while that of the texture is on the order of seconds. Farina et al. 

(1997) studied the time-variation of the texture component by simulations, and con­

cluded that the texture slowly fluctuates around a mean value. Ward et al. (1990, 

sec.2) also described the sea clutter as a modulated Gaussian process and demon­

strated that the modulating signal (i.e. the texture) changes in a much slower 

time scale than the local backscatterers (i.e. the speckle). Our own results also 

confirm the conclusions reached by Farina et al. (1997) and Ward et al. (1990), as 

will be illustrated in Fig.3.11. The amplitude of the fast changing speckle compo­

nent is modulated by the slowly varying texture component in (3.36) as argued by 

Field and Haykin (2008); Haykin et al. (2002); Ward et al. (1990). From a physical 

perspective, high sea waves (represented by the texture) dominate the movement of 

the local scatterer (the speckle). The movement of a small target on sea surface will 

also be dominated by the sea waves. Based on these intuitive ideas, we build the 

following state-space formalism for a target+clutter scenario, which is a more specific 

form of the general model in ( 1.1): 

Xn+l = g (xn) +Un+ Wn+l (3.37) 

Yn+l = VT;;xn + Vn+l· 

In (3.37), the population of the local scattering Xn is regressed on its own past by 

the unknown mapping g(.). The target, Un, is viewed as an unknown additional local 
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scatterer embedded in the sea surface. We introduce Wn that accounts for the model 

uncertainty, whereas Vn denotes the measurement noise. The texture component 

modulates both Xn and Un as observed in the second line of (3.37). This formality 

corresponds to the fact that the dynamics of both the local scatterers and a small 

target are governed by the same global wave structure~the texture. In Fig.3.9(a), 

we plot a sample window of the target+clutter returns in the spectral domain. In 

Fig.3. 9(b), pure clutter returns are plotted. This graph addresses the effect of close 

coupling between a small target and the clutter dynamics. 

-500 -400 -300 -200 -100 0 100 200 300 400 500 
Frequency [Hz] 

Figure 3.9: (a) Target+clutter, and (b) pure clutter radar returns in Doppler domain. 
y-axis is spectral power density, and x-axis is Doppler frequency. 

Estimation Algorithm 

For the application of the ADFE to the estimation of the hidden target signature, 

let us first reproduce (3.13) obtained in the previous section, in which the prediction 
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error is related to the target signature as given in (3.38), 

(3.38) 


Note that 8f (yn, un) /8un is a model-dependent term. Using the sea clutter model 

in (3.37), we can specify this term as 

(3.39) 


Incorporating this result in the last line of (3.38), and invoking the noise-smoothing 

operation as described in (3.14), the output of the noise-smoothing filter can be now 

described as 

(3.40) 


Note that the nature of the radar application under consideration enables us to 

obtain the estimates of the texture component Fn in (3.40) by means of a separate 

filter. To elaborate, imagine that the BTT returns the range bins that are labeled 

not to contain a target with high confidence. Then the texture component can be es­

timated on a sliding-window basis as suggested by Farina et al. (1997) from a nearby 

target-free range bin. Thus, the estimates of Fn can be incorporated into the regu­

larized adaptive estimator as shown in Fig.3.10, where the output of the estimator is 

scaled by 1 / ,;T;,, at the rightmost block. 

To demonstrate how the estimates of the texture are obtained, let us consider 

that a target-free range is addressed by the BTT. For example, the range bins #4 

of file#30 and file#280 are known to be pure clutter (See Table 3.4 for a detailed 

description of the datasets used in this experiment). Using the data available in those 
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+TDL 
(L Units) 

1/ ;;:F;;, 

Figure 3.10: Operation of the regularized adaptive estimator in Fig.3.1 is modified 
with the incorporation of estimates of the texture component, ,.JT;,, as observed in 
the rightmost block. The other operating blocks to the left of the "TDL" herein are 
identical to those in Fig.3.1. 

range bins, we estimate ,.JT;,, using the methodology developed by Farina et al. (1997) 

as given in (3.41), 
1/; 

A 1 """"'J mJ2 (3.41)Tn = 21/J L.....J Yn ' 
m=l 

where n is the running window index, 1/J is the window length, and y;;" is the mth 

sample drawn from the nth sliding window of a target-free range bin. Following from 

(3.41), VT;,, is simulated using real data gathered from the range bins #4 of file#280 

and file#30 for varying window length. The slow variation of the texture component 

is illustrated over a duration of 5 seconds for both datasets. The results are shown in 

Fig.3.ll(a) and Fig.3.ll(b) for file#280 and file#30 respectively. It is observed that 

for 1/J = 256and1/J = 512, the effect ofrapidly varying speckle component is still visible 

as argued by Farina et al. (1997). For 1/J = 1024, the speckle component is isolated 

out, yet the variation of VT;,, still follows the general trend. For 1/J = 2048 however, 

VT;,, is oversmoothed. These results are in close agreement with those presented in 

(Farina et al., 1997). 

A small random target may exhibit an irregular trajectory, which necessiates a 

radar receiver to be capable of tracking the statistical variations in the environment. 

To this end, before presenting the algorithm's performance on live-recorded data, we 
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---t/J=256 
- - ,p = 512 

i/J = 1024 
-t/J=2048 

0.5 1.5 2.5 3.5 4.5 
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---1/!=256 
- - i/J = 512 

i/J = 1024 
-1/!=2048 
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Figure 3.11: Simulation results for the estimation of square root texture component, 
Fn from (3.41) for different window lengths, 'lj;. (a) file#280, #4. (b) file#30, range 
bin #4. 
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first demonstrate the ADFE's tracking capability on a controlled experiment. 

3.2.3 Illustrative Example 

We study the system given in (3.32) which is perturbed by a driving-force that exhibits 

a time varying frequency content. Differently from the single-tone driving-force in 

(3.32), the following setup for the driving-signal is considered herein: 

Un= cos ( 2~0 exp ( ~0 )). (3.42)1

Un in (3.42) has a time variation in its frequency content, for which the sampling rate 

is such that fs ~ 200fmax where !max is the maximum instantaneous frequency in Un 

for n = 2000. 

For simulations, we draw 2000 samples from (3.32) perturbed with the force given 
p

in (3.42). Signal-to-process noise power ratio is set to ~n = -7 dB to represent a 
(Jw 

. . . Pxn/20
weak target in the state equation. Signal-to-measurement nmse power ratio is

2 
(JV 

varied in order to test the algorithm's performance under varying levels of measure­

ment noise. 

We conduct some simulations on the ESN bank once again to test the sensitivity 

of the tracking performance of the ADFE to the selection of the ESN free parameters. 

In Table 3.3, the time-averaged variance of the estimation error aln is calculated for 

some candidate values of the quadruple { <:;, p, N, V}. When testing the parameters 

{ <:;, p, N}, V = 10 is held constant since V has a significant effect on the algorithm's 

performance. All of the remaining 43 combinations of the triple { c;, p, N} are tried 

out, and it is observed that different configurations of { c;, p, N} do not lead to any 
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significant difference in the estimation error. Therefore, when one of the parameters 

is being tested, the three others are fixed at the following values: <;' = 0.1, p = 0.1, 

N = 20, V = 10. For instance, in the fourth column of Table 3.3, p is under test, 

and<;'= 0.1, N = 20, V = 10 are held constant. As observed from the first column 

in Table 3.3, using V 2: 10 ESNs running in parallel leads to a reduction in the 

estimation error by a factor of 2. For the selection of { <;', p, N}, the user has the 

flexibility to assign the values without employing an exhaustive search, which is a 

desired property. 

Table 3.3: candidate values for ESN configuration. a~n denotes the time-averaged 
variance of estimation error. 

v 2 
a f1ai N 2

aflai <;' 2
a4n. p 2 

a4n. 
1 0.1512 20 0.0724 0.05 0.0769 0.1 0.0674 
10 0.0803 30 0.0730 0.1 0.0739 0.4 0.0819 
15 0.0695 40 0.0742 0.15 0.0796 0.7 0.0904 
50 0.0650 50 0.0786 0.2 0.0730 0.9 0.0876 

For a visual illustration of the algorithm's performance for the estimation of Un in 

(3.42) from the system given in (3.32), we plug the following parameters based on the 

procedures explained above, and run the algorithm 100 times: ESN bank: <;' = 0.1, 

p = 0.1, N = 20, V = 50; decaying constant for the noise-smoother: I' = 0.9, the 

adaptive estimator: L = 100, A = 1. The average of 100 estimates of Un is plotted 

vs. the original signal, Un in Fig.3.12(a). As expected, the estimator keeps track of 

the original signal after the adaptation period is completed. 

Although the averaging mechanism introduced in the ESN bank approach provides 

a remarkably greater immunity against the measurement noise than a single ESN, the 
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Figure 3.12: Simulation results for the recovery of Un from (3.32). (a) Solid line is 
the original driving-force Un- Dashed curve is the average reconstruction obtained by 
100 independent runs of the estimator. (b) Sample variance oL and 953 confidence 
interval vs. the PCRB for varying SNR. 

92 




Ph.D. Thesis - Ula§ Giintiirkiin McMaster - Electrical & Computer Engineering 

smoothness of the unknown hybrid mapping f(.) may be violated for high measure­

ment noise levels. To this end, we simulate the time-averaged variance of the estima­

tion error for varying signal-to-measurement noise ratios (-20, -10, 0, 10, 20 dB) to 

obtain a quantitative measure of the algorithm's noise performance. In Fig.3.12(b), 

we plot the estimation variance, the 95% confidence interval and the PCRB. Despite 

its looseness, the PCRB can be interpreted as the true variance, and its distance from 

the confidence interval provides a performance assessment of the estimator. The re­

sult is that, the algorithm performs well for moderate to high SNR levels (e.g. 0 to 

20 dB), whereas its performance is largely degraded for very noisy sensor models (e.g. 

-20 dB) exemplified by a large deviation from the PCRB as illustrated in Fig.3.12(b). 

3.2.4 Experiments with Live Recorded Data 

Dataset Description 

In this section, we perform our experiments on the radar returns collected with the 

McMaster IPIX (Intelligent PIXel Processing) radar at the east coast of Canada, in 

Dartmouth, Nova Scotia. The radar is operated in the dwell mode with a 1° pencil 

beam and a fixed radio frequency at 9.39 GHz. It is mounted on a cliff top at 30 m 

above the sea level. The target is a 1 m diameter styrofoam ball wrapped in radar 

reflecting material and floats on ocean surface on anchor line at about 2.5 km off 

shore. Effective pulse repetition frequency is 1 kHz. Each data file in the Dartmouth 

database contains the I and Q channel measurements for about two minutes. Each 

data file is divided into 14 range bins, whose ranges are separated by 15 meters. Some 

of these range bins contain a weak target. We conduct our experiments on the two 

data files (file #280 and file #30) having the lowest target-to-clutter ratios (TCR). 
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The characteristics of the range bins of interest are summarized for both data files in 

Table 3.4. 

Table 3.4: Details of file #280 and file #30 from the Dartmouth database 

0 
00 Range Bin Range Azimuth Elevation TCR 

% 
µ... 

0 

#7 
#8 

2640 m 
2655 m 

179° 
179° 

359° 
359° 

-7 dB 
0 dB 

% 
µ... #6 

#7 
2649 m 
2664 m 

128° 
128° 

359° 
359° 

-3 dB 
0 dB 

We are going to perform our experiments on the secondary range bins ( bin #7 

for file #280 and bin #6 for file #30), both of which are known to contain a weak 

target. The same targets however show much stronger in the primary range bins 

which makes it possible to retrieve the target trajectory based on visual inspection. 

Therefore we will refer to the Time-Doppler (TD) images of the primary range bins 

(bin #8 for file #280 and bin #7 for file #30) for performance assessment. 

As seen in Table 3.4, range, azimuth and elevation dimensions are fixed for each 

of the particular range bins that are used in our experiments. Then the radar returns 

can be conveniently visualized by plotting the spectral measurements vs. time and 

Doppler velocity omitting the other dimensions that are constant. This way, we 

obtain the three-dimensional TD images as displayed in Fig.3.13 and Fig.3.14. These 

TD images can be linked with the sensing geometry explained in Section 3.2.1 in 

the following way: The y-axis in each image represents the resolution cells, which are 

indicated only by their Doppler dimensions since the other dimensions are fixed. Each 

pixel in a TD image represents the spectral content of the corresponding resolution 

cell at time n. Consequently, the time evolution of the target tracks and the clutter 
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returns can be monitored from the TD images in Fig.3.13 and Fig.3.14. 

Results 

In this section, the hidden target's signature is retrieved from the unknown radar 

search space using the ADFE given in (3.40), and the sliding-window based estimates 

of ylT;,, as described in (3.41). We proceed to the experiments by setting 1jJ = 1024, and 

substituting VT:,, in the predictor in (3.40). We apply the hidden input estimator to I 

and Q components separately. The Doppler spectra for all experiments is estimated 

on 64 sample sliding window basis. The ESN bank parameters are set to N = 20, 

<; = 0.1, p = 0.1, and V = 50. 

The Doppler spectra of the raw radar returns in the range bin #8 of the file#280 

are shown in Fig.3.13(a). The algorithm's performance is shown on the range bin 

#7, file#280 in Fig.3.13(b). Comparing Fig.3.13(a) and Fig.3.13(b), it can be seen 

that the target tracks are greatly highlighted for most time instants. The algorithm 

however picks up some clutter effects around 45, 60, 70, 90, 100, 120 s, when the clutter 

is very strong in the corresponding resolution cells. The results provided are the 

average of 10 independent runs of the algorithm. 

In Fig.3.14(a), we sketch the time-Doppler image for the raw returns in file#30, 

range bin #7. Fig.3.14(b) shows the algorithm's performance on the range bin #6. 

For this dataset, the wind is blowing perpendicular to the radar beam. As a result, the 

visual separation between the target tracks and the clutter is not as clear as it was for 

Fig.3.13(a), and it requires a more careful inspection to observe that the target tracks 

are highlighted in Fig.3. l 4(b). The evolution of the target tracks and the algorithm's 

performance can be best inspected by comparing Fig.3.14(a) and Fig.3.14(b) at the 
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Figure 3.13: Experiments with live-recorded radar returns, file#280-Dartmouth 
database 
(a) Raw radar returns for the file#280, range bin #8, in which the TCR is approx­
imately 0 dB. The bottom trace represents the target Doppler variation with time, 
hence the desired response. The traces at higher Doppler velocities are the clutter 
echos. Note that due to the high TCR in this range bin, the target returns are 
strong and hence bright enough to visually distinguish the desired response from the 
background clutter echos. 
(b) Results of the target signature search algorithm applied to the file#280, range 
bin #7, in which the TCR is 7 dB lower than the TCR in the upper graph. 
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time instants 30, 40, 60, 65, 70, 85 s, and after 100 s, when the target returns are easier 

to visualize. Also, the effect of strong clutter returns are visible at some time instants 

in Fig.3.14(b) such as around 50, 60, 100, 110 s. 

3.3 Conclusion 

We described an estimation algorithm for the target template search as a realization 

of the radar scene analysis (RSA) for a cognitive radar receiver. We demonstrated the 

accuracy of the algorithm in a quantitative manner on a controlled experiment using 

the posterior Cramer-Rao lower bound. For the real-world radar application, the 

desired signal is available only visually, hence the algorithm's performance is judged 

that way. In both Fig.3.13(b) and Fig.3.14(b), we see that for the time instants 

in which the clutter returns are strong, the algorithm picks up some clutter effects. 

Refinement of these results is possible by propagating the belief in the target returns 

in time, which suits the spirit of Bayesian inference for post-processing. We have 

conjectured the use of the developed method to fit a statistical distribution to the 

target returns, and infer the target transition probabilities on the fly. Specifically, the 

RSA can continuously update and provide the following information to the BTT on 

the basis of the proposed target signature search algorithm: 

• probability density function of the target returns p (dn 1.;~); 

• probabilistic knowledge on the target agility ~ (.;~_ 11.;~). 

These two pieces of information will be exploited by the Bayesian target tracker 

(BTT), the unit which will make the final decisions about the target tracks. Then 

the decisions made by the BTT will be fed back to the RSA, and the target search 
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Figure 3.14: Experiments with live-recorded radar returns, file#30-Dartmouth 
database. 
(a) Raw radar returns for the file#30, range bin #7, in which the TCR is approxi­
mately 3 dB. The trace around the 0 Doppler velocity represents the target Doppler 
variation with time, hence the desired response. The traces at higher Doppler ve­
locities are the clutter echos. Note that due to the high TCR in this range bin, the 
target returns are strong and hence bright enough to visually distinguish the desired 
response from the background clutter echos. 
(b) Results of the target signature search algorithm applied to the file#30, range bin 
#6, in which the TCR is approximately 6 dB lower than the TCR in the upper graph. 
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algorithm will be re-initiated. The results of ongoing research efforts on the realization 

of a Bayesian target tracker supported by the proposed radar scene analysis strategy 

will be reported in the next article. 
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Chapter 4 

Bayesian, Maximum-Likelihood, 

and Prediction Error Methods for 

the Estimation of Hidden Inputs 

From Nonlinear Dynamic Systems 

This chapter covers the material in the article (Giintiirkiin et al., 2010) that is pre­

pared for submission. Introductory notes (e.g. case examples, literature review) in 

(Giintiirkiin et al., 2010) are omitted in this chapter since those notes are already 

given in greater detail in Chapter 1. The description of the driving-force estimator 

is also skipped herein since it was analyzed in detail in Chapter 3. The objective of 

this chapter is to provide deeper insights into the capabilities and limitations of the 

ADFE. Applications of the Bayesian techniques to the estimation of hidden dynamic 
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inputs are studied to pursue this objective, since the Bayesian methods provide prac­

tical merits of performance assessment under varying observability conditions. The 

Bayesian techniques used in this chapter are built on the background material pro­

vided in Chapter 2. 

4.1 Introduction 

In this chapter, we report the results of recent research efforts on the estimation of 

hidden inputs from nonlinear dynamic systems. The hidden inputs or the driving­

forces refer to the unobservable perturbations embedded in the system dynamics. In 

two previous chapters, we addressed an adaptive driving-force estimator (ADFE). 

The ADFE is designed for reconstructing the hidden inputs using only the time series 

observations without the availability of an analytical description of the system. The 

resulting algorithm was shown to perform well on a variety of tasks exemplified by 

some nonlinear stochastic/chaotic systems. In this chapter, we provide a deeper in­

sight into the performance and limitations of the algorithm. Specifically, we interpret 

the hidden input estimation problem from missing data - maximum likelihood (ML), 

and Bayesian inference perspectives. As opposed to the ADFE, these approaches 

require partial or full prior knowledge of the underlying physical phenomena respec­

tively. We provide the performance results of the ADFE, ML and Bayesian techniques 

on a nonlinear stochastic system where the hidden input is a rapidly changing ad­

ditive term in the state equation. All the filters are realized at the same level of 

computational complexity for a fair comparison. Experimental results show that the 

ADFE is a favorable method except for such cases where an evolutionary model for 

the hidden input is available as well as the governing system equations. 
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In most real world examples of the type we are considering, a mathematical model 

describing the underlying phenomenon is constructed. Then the problem is to esti­

mate the hidden information exploiting the mathematical model of the system. The 

Bayesian inference approach regularizes solutions of such inverse problems by virtue 

of incorporating all the prior knowledge on the system in a probabilistically optimum 

fashion. However, in many other cases, (i.e. voice production, brain activity, sea 

dynamics, an unknown multipath wireless medium, solar system, evolution of seismic 

waves, etc.) there may be too little or no prior knowledge to build a specific and 

accurate model of the underlying system with Bayesian methods. A common need in 

such cases is to reconstruct the hidden driving-forces using only a finite set of time 

series data without the availability of an analytic model. It is these cases that we 

address in this article. 

In the current chapter, we present deeper insight on the computational complexity, 

the performance and the limitations of the ADFE. Specifically, we seek to answer the 

following questions: 

1. 	 How accurately could the driving-forces be estimated if the underlying system 

model were 

(a) fully available (i.e. 	 the state-space pair and an evolutionary model of the 

driving-force are all known)? 

(b) 	or partially available (i.e. only the state-space equations are known)? 

2. 	 How good is the performance of the ADFE compared to the more optimistic 

observability situations above under varying environmental conditions? 

The 	question (la) is addressed by incorporating all the prior knowledge by virtue of 
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Bayesian inference, which is realized by the Rao-Blackwellized Particle Filter (RBPF), 

which has been described in Section 2.2.2. The question (lb) is explored by interpret­

ing the problem from a missing-data maximum likelihood (ML) perspective. To this 

end, the Expectation Maximization (EM) algorithm is combined with a particle filter 

(PF), which we abbreviate as the EM-PF algorithm as given in Section 2.2.3. The 

answer to the question (2) is presented by analyzing the performances of the EM-PF, 

RBPF and ADFE on a nonlinear stochastic system. All of the EM-PF, RBPF and 

the ADFE are realized at the same computational complexity for a fair comparison. 

The computational complexity is specified by the number of floating point operations 

(flops). 

Before proceeding to the experiments in Section 4.2, let us mention the practical 

challenges for the operation of the ADFE. As depicted in Fig.3.1 in Section 3.1.2, 

the first step in the algorithm is to approximate the observables in an online fashion 

using a bank of ESNs. An underlying assumption for accomplishing this objective is 

the differentiability of the hybrid mapping, f(.) given in (3.3). However, observing 

(3.3), the noise processes can be greatly amplified by the nonlinear functions g(.), 

h(.), or h-1 
(.). This may harm the continuity, hence the differentiability off(.), in 

which case the predictive modeling of the observables may fail. 

Second, consider the term &f(yn, un)/&un in (3.13). As mentioned in the previous 

chapter, this term is model-dependent, and abrupt variations in &f(Yn, un)/&un can 

cause a substantial loss in the algorithm's performance. For the two chaotic systems 

in Section 3.1.4, the model dependent terms &f(Yn, un)/&un have been shown to be 

time-varying and being nonlinearly dependent on Un in (3.28) and (3.29) respectively, 

thus posing particular challenges for the estimation of Un· For the stochastic system 
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m (3.32) however, where we had 8j(yn, un)/8un = 1/20, where the measurement 

equation was linear in state. Here, we modify (3.32) by making the measurement 

model nonlinear as given in ( 4.1), 

(4.1) 


2
Xn+l 

Yn+l = W + Vn+l 

thus making the estimation of Un more involved. For the system in ( 4.1), we have 

8f(yn, un)/8un = Xn+i/10 which suggests that the process noise may have a harmful 

effect on the performance of the estimator. Therefore, analyzing the estimator's 

performance on ( 4.1) for varying levels of variance of process noise CJ~, we can gain a 

deeper understanding of the algorithm's capability in coping with the effect of outliers. 

As in the previous chapter, the effect of environmental conditions will be quantified 

with a reference to the PCRB. 

4.2 	 Bayesian Inference and Missing Data - Max­

imum Likelihood Methods for Hidden Input 

Estimation 

Note that the ADFE is designed for the estimation of driving-forces in such cases 

where the description of the underlying system is not available at all. Here, we 

consider the cases where some knowledge regarding the state-space model is available. 

To elaborate, first let us introduce a dynamic model to describe the evolution of the 

driving-force Un, and incorporate this model as an extra state variable into ( 4 .1) to 

104 




Ph.D. Thesis - Ula§ Giintiirkiin McMaster - Electrical & Computer Engineering 

obtain the augmented system description as given in ( 4.2) in a similar way to the 

model in (2.21), 

Un+l = Bun + ~n+l 	 (4.2) 

25xn 
Xn+l = 0.5Xn + 2 +bun + Wn+l 

1 +xn 
2 

Xn+l 
Yn+l = W + Vn+l 

where the P x P regression matrix B is similar to (2.20), and 1 x P vector b /:. 

[1, 0, .. , O] is again defined in a similar way as in the model in (2.21). 

4.2.l Experimental Setup 

The 1~xperiments in this chapter are conducted on ( 4.2), where the objective is to 

estimate Un. The estimators are specified for the varying observability conditions in 

the following manner: 

1. 	 Fully observable dynamics: For the application of the RBPF within this case, 

we construct Un in ( 4.1) to be a 2nd-order autoregressive process (i.e. P = 2 

in (4.2)). Then the regression coefficients [c1, c2]T in (2.18) are calculated using 

the covariance method so as to minimize the forward prediction error in the 

least squares sense. 1 Setting P = 2 is sufficient since it leads to a negligibly 

small variance of modeling error O"J. Using P > 2 does not lead to a significant 

decrease in O"l- This application will be referred to as RBPF-AR(2), for which 

the model and all parameters are assumed known. 

2. Partially observable dynamics: 


1T 1e command arcov is readily available in Matlab for this operation. 
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• 	 In this case, the first method we propose is to apply the RBPF without 

the availability of the model coefficients, [c1, ... , cp]r. Then a natural way 

to proceed with the RBPF is to use a random walk model (Liu and West, 

2001) for the evolution of the driving-force. This filter is abbreviated as 

the RBPF-RW. 

• 	The second method we propose for this estimation situation is the EM-PF 

algorithm. The objective of the EM algorithm is to estimate the coefficient 

vector [c1 , ... , cp]r. 

3. 	 Finally, for such cases where there is no prior knowledge on the system dynamics, 

the proposed ADFE is invoked without the knowledge of (4.1). 

4.2.2 Estimation Performance with Minimal Complexity 

Our l)bjective in the first part of the experiments is to realize all of the methods 

ment oned above at minimal computational cost. In Appendix B, the computational 

complexities of all estimators (i.e. the ADFE, RBPF, and EM-PF) are derived. 

Below, we summarize the computational cost of each of these methods in terms of 

flop counts: 

C )mputational cost of the ADFE is obtained as: 

CAnFE(c;, V, N, L) = [(2c; + 5)N2 + (2,.,;1 +,.,;2 +12 - c;) N + 1] V + llL + 10 + ,.,;i, 

( 4.3) 

when~ ,.,;1 and ,.,;2 are some constants that represent the number of flops per division 

and Exponential operations respectively, as described in Table B.1 in Appendix B. 
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The computational cost of the RBPF is given as: 

(4.4) 

when the constants c1 to c6 are as; c1-evaluation and normalization of importance 

weight per particle, c2-resampling for all particles, c3-Cholesky factorization, c4­

random number generation per particle, c5-evaluation of the nonlinear mapping, 

g(.), ;:md c6-division. The details of (4.4) are defined in Table B.2 in Appendix B. 

The Computational cost of the EM-PF is shown to be using the complexity of the 

RBPF: 

,':;EMPF(M, P, K) =K [10P3 + 13P2 + (4P2 + 6P + C1 + C4 + C5 + 4)1\!I (4.5) 

+ C2 + C3 + ( p + 1) C5 + C7 - 1] , 

wherE the constants c1 to c6 are the same as in given ( 4.4). c7 denotes the inversion 

of a F x P matrix as given in Table B.3 in Appendix B. 

W2 first determine the minimum complexity of the EM-PF method since it is 

comp11tationally the most demanding filter among the others. Specifically, using 

50 particles and 5 EM iterations leads to a reasonable performance for the EM-PF 

with a model order of P = 2. Increasing the computational resources does not lead 

to a Eignificant increase in the performance for the EM-PF. With this setting, the 

EM-PF algorithm is realized at approximately 37.103 flops. In Table 4.1, this setup is 

repreEented by CEMPF(50, 2, 5). Then we realize the other estimators at a similar level 

of computational cost as presented in Table 4.1, where the theoretical and simulated 
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flop C)unts2 are shown to agree on a close degree of approximation for each estimator. 

The ciscrepancy between the theoretical and simulated flop counts in Table 4.1 is less 

than 33 for all estimators. We proceed to the experiments with the settings given in 

Table 4.1: Theoretical and simulated computational complexity of the driving-force 
estim1tion methods. The EM-PF is realized by 50 particles with a model order of 
P = :~ and 5 EM iterations. The RBPF-AR(2) is realized with 275 particles with 
P = ~~. The RBPF-RW is realized with 300 particles, with P = 1 (i.e. the random 
walk). The ADFE has 34 ESNs in the ESN bank, each having 303 connected dynamic 
resenoirs with 10 neurons. The regularized LMS estimator has 100 tap-weights. 

Filter Realization Flop Count 
Theoretical Simulated 

EM-PF CEMPF(50, 2, 5) 37125 37594 
RBPF-AR(2) CRBPF(275, 2) 36983 37812 

RBPF-RW CRBPF(300, 1) 36980 38183 
ADFE CADFE(0.3, 34, 10, 100) 36410 37337 

the SE cond column of Table 4.1. 

An example run of the ADFE algorithm with the complexity CADFE(0.3, 34, 10, 100) 

(i.e. ~ = 0.3, V = 34, N = 20, L = 100) is illustrated in Fig.4.1, which demonstrates 

the accuracy of the proposed method for the reconstruction of a rapidly varying non­

smooth driving-force. For the sake of visuality, only the last 50 samples are shown in 

Fig.4.1. The decaying constant of the noise smoother is I'= 0.9. 

A~: stated in the introduction of the current chapter, we conduct our experiments 

for varying environmental conditions which are represented by changes in the model 

uncer;ainty and sensor noise in the model (4.1). Let Pu denote the power of the 

driving-force signal. We vary the ratio of Pu to the variance of the dynamic noise in the 

range Pu/a~ E { -10, 10} dB with 5 dB increments in order to test the performance 

2 Tte flops are simulated using the lightspeed toolbox (Minka, 2009), which leads to much 
more accurate flop estimates than the Matlab 5.3. 
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n 

Figur1~ 4.1: An example run of the ADFE. The solid curves denote the actual driving­
force, Un drawn from ( 4.1). The dashed curves are the estimates provided by the 
ADFE, which are obtained by a single example run of the ADFE algorithm. The 
ADFI~ is realized with the values and the corresponding complexity given in Table 
4.1. a~= 1.6 (i.e. Pu/a3 = -5 dB) and a;= 0.05. 

of the estimators for varying level of unstructured outliers or model uncertainty. We 

consic.er two sensor noise levels. For the first case, we consider a low-noise sensor, 

and sd a; = 0.05. Then we repeat our experiments for the same range of Pu/a3 with 

a higl:-noise sensor model by setting a; = 5. 

The results are shown in Fig.4.2, where the Root Mean-Square Error (RMSE) 

is ph;ted with respect to Pu/a3 E { -10, 10} dB for all estimators and the Poste­

rior Cramer-Rao Lower Bound (PCRB) for two different measurement noise levels. 

Comparing the performances of RBPF-RW and EM-PF with the ADFE, it is clear 

that the ADFE provides a considerably better performance for all noise levels. The 

RBPF'-AR(2) on the other hand greatly outperforms all other filters for all noise lev­

els, foJows a similar trend with the PCRB, and gets closest to the PCRB as expected. 

Inspecting the curves for the ADFE a; = 5 and ADFE a; = 0.05 reveals that the 
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ADFE is relatively sensitive to both the effect of outliers and the measurement noise 

for the low-complexity scheme considered in Fig.4.2. Note that the RBPF-RW and 

EM-FF are simulated only for low measurement noise since both of these filters ex­

hibit 1 very poor performance (i.e. RMSE> 0.71) for a;= 5. The estimation errors 

for all estimators in Fig.4.2 are averaged over 100 independent runs of the respective 

algorithms. The outputs of the RBPF-RW, EM-PF and the ADFE are normalized 

by thi~ largest absolute values of their respective estimates so as to compensate the 

effect of arbitrary scaling. For all particle filtering operations, we use the systematic 

resampling scheme (Arulampalam et al., 2002; Kitagawa, 1996), due to its ease of 

imple:nentation and low complexity (Hol et al., 2006). 

Figun~ 4.2: Performances of the Rao-Blackwellized Particle Filter, Expectation­
Maxinization, and the Adaptive Driving-Force Estimator on the estimation of hidden 
inputE. All filters are realized with a computational cost at approximately C = 37.103 

flops. The y-axis is the root mean square error (RMSE), while the x-axis is the ratio 
of the power of the driving-force to the variance of dynamic noise in dB. 
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4.2.:~ The Effect of Computational Resources 

Basec on the results presented in Fig.4.2, the following question can be raised: How 

much better could the ADFE and the other estimators perform if a larger amount of 

comp1tational resources were available? To address this question, we setup another 

exper lment in which the noise levels are fixed at a~ = 5 and a; = 0.5. Then we 

calculate the RMSE for C ~ {37, 100, 200, 400} x 103 flops for all estimators. The 

results are presented in Table 4.2. Clearly, for the ADFE, the performance is remark­

ably improved with more and more computational power becoming available. All the 

other estimators however perform almost the same accuracy regardless of how much 

more computational power is available. 

Table 4.2: Performance of all estimators vs the increasing computational complexity. 
The O)fresponding specifications for the realizations of all filters are provided in Table 
B.4. 

Flop Count II RBPF-RW I EM-PF I ADFE I RBPF-AR(2) 

RMSE 
37.103 0.82 0.74 0.62 0.029 
100.103 0.82 0.73 0.54 0.029 
200.103 0.83 0.73 0.49 0.029 
400.103 0.83 0.73 0.43 0.029 

Before concluding this subsection, our final set of experiments are designed to 

specif:r the conditions under which the ADFE could perform almost at the same level 

of accuracy as the RBPF. Specifically, we test the performance of the ADFE for 

Pu/a~ E { -10, 10} dB, C ~ {37, 100, 200, 400} x 103 flops, and compare the results 

with the RBPF-AR(2). 

Note that the RMSE curves in Fig.4.2 were obtained by averaging over 100 runs, 

since it is feasible to estimate the point variance over a large number of independent 
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trials empirically (e.g. 100) exploiting the LLN. 3 However, for such algorithms that 

require very large computational complexity, it is more practical to average the results 

over t maller ensembles (e.g. 10 independent trials) and then refer to some specified 

tolerance limits for performance assessment. To this end, an interval estimate of the 

error 3tandard deviation can be obtained in terms of 953 confidence area. This is how 

we proceed with the ADFE for CADFE ~ {100, 200, 400} x 103 flops. Specifically, in 

Fig.4.3, we illustrate the point variance estimates for the RBPF-AR(2) with CRBPF = 

37.10:: flops. For CADFE ~ {100, 200, 400} x 103 flops however, we illustrate the 953 

conficence intervals (See Appendix B.5). Then a practically meaningful way to judge 

the performance of the ADFE is to address under what conditions the standard 

devia1;ion of the RBPF lies within the 953 confidence interval for one of the ADFE 

realizations. Inspecting Fig.4.3, we observe that only for Pu/rJ3 2: 5 dB and CADFE 2: 

400.103 flops the standard deviation of the RBPF lies within the tolerance limits 

provided by the ADFE. 

4.2.4 Discussion 

The nsults of the experiments studied in this section reveals some interesting obser­

vatioLs: 

1. 	 The essence of the Bayesian inference is to incorporate all the prior knowledge 

on the underlying phenomena in a probabilistically optimum fashion to solve the 

inverse problems. Hence, the Bayesian estimators heavily rely on the accuracy 

of the prior information that is fused in the estimator. As observed in Fig.4.1, 

the driving-force under study is a dynamic force that exhibits rapid variations 

3LLN is an abbreviation for the law of large numbers. 
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Figure 4.3: 95% Confidence intervals for the standard deviation of estimation error 
for the ADFE with CADFE ~ {100, 200, 400} x 103 flops, and the point estimate of 
the ff;andard deviation of the estimation error for the RBPF with CRBPF ~ 37.103 

flops. 

m time. Therefore, a random walk model is a very poor approximation to 

describe the evolution of the driving-force. This explains why the performance 

of the RBPF-RW is greatly inferior to all the other estimators under all noise 

conditions. 

The EM algorithm on the other hand performs better than the random walk 

model for identifying the driving-force evolution. Specifically, consider the low­

est noise levels, (a~ = a~ = 0.05). In this case, the EM algorithm produces 

after the 5th iteration an estimate of the coefficient vector in (2.20), c1 = 0.79, 

c2 = -0.49. Further iterations do not lead to any remarkable change in the es­

timate of c1 and c2 . The actual coefficient vector however is [c1 , c2] = [0.72, -1]. 

This observation suggests that a slight discrepancy between the actual dynamics 
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and the model on which the Bayesian estimator operates can lead to a substan­

tial decline in the precision of the estimates. Before reaching this claim, we 

have initialized the EM algorithm with many different initial values of c1 and 

c2 . Note that the EM algorithm is very sensitive to the process noise. There­

fore, a3 < 0.05, the results can be further improved, which however is out of 

the scope of this work. 

When the exact prior information is integrated in the solution of the problem, 

the results are shown to be greatly improved as illustrated by the RBPF-AR(2) 

curves in Fig.4.2. 

As a result, we conclude that unless full prior knowledge about both the govern­

ing dynamics of the underlying system and the evolution of the driving-force is 

available, the proposed ADFE is evidently a favorable approach for the driving­

force estimation problem. 

2. 	 A shortcoming of the ADFE is its sensitivity to the increasing noise levels in 

the system. Note that the ADFE was shown to be considerably less sensitive 

to the process noise when the driving-force is a smooth signal in multiplicative 

and/or exponent forms (Giintiirkiin, 2010a). Following from the results pre­

sented by Giintiirkiin (2010a) and those obtained in this work, we can suggest 

that the ADFE provides close performance to the best available estimator for 

the additive, non-smooth forces only for low noise levels at the expense of more 

than 10 times larger computational resources (see Fig.4.3). 
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4.3 Conclusion 

We hwe provided a deeper analysis of the adaptive driving-force estimator (ADFE) 

presented by Giintiirkiin (2010a,b), which is designed for estimating the hidden in­

puts 1:driving-forces) from nonlinear system with unknown dynamics. The emphasis 

of thE current article is on addressing the conditions under which the ADFE is a good 

choice for hidden input estimation problems. By virtue of experiments conducted on 

a gemral nonlinear system, we have demonstrated that if the underlying system is 

not fully specified by a mathematical model that describes both the governing sys­

tem dynamics (state-space equations) and the evolution of the hidden force, then the 

ADFE is indeed a favorable method. It is also illustrated by a statistical analysis that 

if ver:r large computational resources are available, then the accuracy of the ADFE 

gets closer to the best available fully coherent Bayesian estimator for low noise levels. 

The JlDFE owes its good performance to the selection of two robust recursive non­

linear filters that are capable of adapting to the environment: A bank of Echo State 

Networks for predictive modeling of the observables from the unknown system; and 

the rEgularized Least Mean Squares filter for the refinement of the raw driving-force 

estimates. In an earlier article ( Giintiirkiin, 2010b), we demonstrated the usefull­

ness cf the ADFE on a real world problem with live recorded data. Specifically, the 

signature of small random targets were extracted by the ADFE to be utilized in a 

cognitive radar receiver. Two other venues where the ADFE could be a useful tech­

nique are the biomedical and chaotic communications applications. For the former 

application, the ADFE will be considered for the extraction of perturbation inputs or 

artifacts from biomedical time series (e.g. EEG data), in which case a specific model 

of the underlying dynamics is really hard to build. For the latter case, we conjecture 
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the eJ:ploration of applicability of the ADFE for detecting message symbols that are 

embedded in a chaotic carrier. 
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ClLapter 5 

Cc1ncluding Remarks 

We hc,ve presented the theory and applications of an estimation algorithm in this 

thesis, whose objective is to reconstruct the hidden forces from nonlinear nonsta­

tionary systems with unknown dynamics. The contributions of the approach can be 

summ1rized as follows: 

• 	 The literature on the estimation of driving-forces or hidden inputs prior to the 

presentation of the proposed method has been limited to the estimation of very 

dowly changing or constant perturbations as noted in Chapter 1. The proposed 

rntimator on the other hand is shown to be capable of retrieving both slowly and 

rapidly varying driving-forces as well as those forces that exhibit nonstationary 

cir irregular time-variations as demonstrated in Fig.3.3(a), Fig.3.4(a), Fig.3.6, 

I'ig.3.12(a) and Fig.4.1. 

• 	 Moreover, the driving-force estimator presented herein is compared with another 

hvorable method (Verdes et al., 2006) on the estimation of slowly varying hid­

een inputs when the time series are corrupted by additive noise. It is shown in 
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Table 3.2 that the proposed method provides a significantly greater immunity 

to the additive noise. 

• The conditions under which the hidden forces can be estimated using nonlin­

?ar predictors are clearly addressed as given in Proposition 1. Specifically, it 

1s shown that the differentiability of the mapping that governs the unknown 

,3ystem and the universal approximation capability of the predictor are required 

~or a successful application of the estimator. Based on these theoretical observa­

;ions, the algorithm is put to test under varying environmental conditions exem­

:)lified by the varying degrees of uncertainty and outliers in the state equation, 

and varying amounts of sensor noise in the measurement model. In Fig.3.3(b), 

~ig.3.4(b), Fig.3.5, Fig.3.12(b) and Fig.4.2, the algorithm is shown to perform 

reasonably well for moderate to low noise levels. 

• 	 The validity of the approach is demonstrated on a real world example in Sec­

1ion 3.1.5, for the estimation of sun's magnetic flux from the sunspot time 

Eeries without the availability of an analytic description of the underlying phe­

nomenon. Taking the results of the analytic studies by Solanki et al. (2002) 

hnd Lockwood et al. (1999) as true references, the driving-force estimator is 

demonstrated to capture the main characteristics of the underlying force. 

• 	 r•he radar scene analysis problem is addressed using the proposed estimator for a 

cognitive radar reception system. Specifically, the signature of a small random 

target is extracted from the raw sea returns with the algorithm based on a 

generic model of the sea clutter. Accurate prior knowledge on the statistics of an 

r nknown target is required by the target tracking mechanism for the cognitive 
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radar. To this end, it is shown in Fig.3.13 and Fig.3.14 that the target signature 

provided by the algorithm indeed enables to obtain such statistical information 

for the unknown targets. To the author's best knowledge, a specific structure 

for the realization of a radar scene analyzer is addressed for the first time in the 

literature ( Giintiirkiin, 2010b). 

• 	 As stated in the first paragraph, the proposed algorithm does not assume a 

mathematical model of the unknown system. In this regard, the proposed 

method can be classified as a blind estimator. Then the following point is of 

xactical interest: Could better algorithms be employed under more optimistic 

1)bservability conditions (i.e. the system under study is partially or fully iden­

jfiable)? This question is addressed by comparing the method with semi-blind 

and fully coherent estimators, which are built on the Missing Data-Maximum 

:~ikelihood and Bayesian Inference methods, and which require partial and full 

availability of an analytic model respectively. Providing the same amount of 

computational resources to all algorithms, it is shown that the proposed ap­

proach greatly outperforms the semi-blind estimators as illustrated in Fig.4.2. 

The fully coherent Bayesian estimator on the other hand is shown to provide the 

dosest performance to the theoretical lower limit, which requires the availability 

eif a mathematical model of not only the governing dynamics of the system of 

i 1terest, but a generating model of the driving-force too. 

• 	 )l detailed analysis of the computational requirements of the proposed algorithm 

and the semi-blind and coherent estimators are addressed in Appendix B. Based 

on these results, it is shown in Table 4.2 that the performance of the algorithm 

nn be improved by increasing the computational resources. Moreover, it is 
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shown by a statistical analysis in Fig.4.3 that if more than 10 times larger 

computational resources are made available to the proposed approach than to 

the fully coherent Bayesian estimator, then its performance approaches to that 

of the coherent estimator. 

Brned on the theoretical and practical results provided in this thesis, we conjecture 

to pursue our future research on the following topics: 

• 	 A.n immediate extension of the work presented in this thesis is to merge the pro­

)Osed radar scene analyzer structure with a Bayesian target tracking unit so as 

;o obtain the first realization of an actual cognitive radar receiver. Specifically, 

1;he statistics of the unknown target returns obtained by the proposed method 

will be supplied to the Bayesian target tracker. We expect the accurate and 

online availability of the statistical information on the target returns to greatly 

facilitate the operation of the Bayesian target tracker. 

• 	 Another problem that is well-suited for the application of the proposed method 

i3 the processing of biomedical time series for artifact extraction. In particu­

hr, we consider the EEG (electroencephalogram) signals, which are used for 

c.istinguishing epileptic seizures from other types of spells, and for many other 

r:·urposes in clinical applications. The driving-force for an EEG record can be 

controlled (e.g. the blink of an eye), however is difficult to extract from the 

actual measurements. Hence, the proposed method could be specified for such 

operations. 

• 	 \ive also consider using the method as a blind chaotic communications receiver. 

In chaotic communication systems, the security is introduced by virtue of using 
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1 chaotic map as the carrier, which efficiently masks the message signal so as 

to block the access of an eavesdropper. A copy of the carrier signal is made 

wailable at the receiver for coherent decoding, which is kept hidden from the 

chird parties. The results of our preliminary experiments on this topic however 

mggest that the message signal can be retrieved up to a certain accuracy using 

;he proposed driving-force estimator without knowing the carrier. In the future, 

;he probability of error curves will be derived, and it will be explored whether 

1n eavesdropper can actually interfere with the communication link in case they 

mve arbitrarily large computational resources. 
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A1>pendix A 

A1>pendix for Ch. 3 

A.1 Derivation of the Adaptive Estimator 

Let U3 reproduce the cost function for the regularized adaptive estimator: 

J =IE [0:~+1] + >-ll/3n+ill 2 (A.1) 

=IE [(rn+l - anrn) 2
] + >-lla~rn - a~_ 1r(n - 1))11 2 

. 

A.Ll Weight Update 

Exac; gradient for the weight update is 

(A.2) 

Removing the statistical expectation, we obtain the stochastic gradient update 

122 




Ph.D. Thesis - Ula§ Giintiirkiin McMaster - Electrical & Computer Engineering 

rule, 

(A.3) 

A.1.2 Step-Size Update 

The derivative of the cost function with respect to the step-size parameter is 

(A.4) 

when we have defined Wn A V'µnan, which will be also derived iteratively next. In 

light ,)f (A.4), step-size parameter is updated as 

1 81 
µn+l = µn - 218µn (A.5) 

= µn +I [an+1 w?;rn - -X,6n+1 w?;rn] 
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Iteration of Wn follows from (A.3): 

wn+l = wn + [ O:n+ 1r n + µn a;;:1 
r n] - (A.6) 

A [/Jn+irn + µn a:~:1 
rn] 

= Wn + [an+lrn + µn (Y'anO:n+1)T rn (V'µnan)] 

- A [/Jn+lrn + µn (\i'an/Jn+i)T rn (V'µnan)] 

A.2 PCRB for The Perturbed Chaotic Maps 

Befon proceeding to the specific calculations, first we express the system in (3.26) in 

a suitable form for the derivation of PCRB for the generalized Markovian nonlinear 

systems (Tichavsky et al., 1998). For this purpose, we adopt an augmented state 

equation as given in (3.22) on which the PCRB is derived in Section 3.1.3. Here, we 

speciJy the general augmented system in (3.22) by fitting an all-pole model responsible 

for tl e generation of the dynamic input, Un. The initial state is also included as a 

fixed parameter in the augmented state model as given in the first line of (A. 7). Let 

1 6 2us dEfine x~ ) x 0 as the initial state, and x~ ) J:=.. Un as the driving-force in the 

origir.al system in (3.26). Then substituting P1 = 0 and P2 = P, and 91 = 1, 92 = B 
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in (3.'.22), the augmented system in (3.22) becomes equivalent to 

(A.7) 


x(2) = Bx(2) + w
n+l n n 

= h (x(l) x(2)) + vYn n ' n n1 

where we have defined x~2) c. [un, Un_ 1, ... , Un-r+ 1f, and the first row of the matrix 

B hol:is the autoregressive (AR) coefficients { cp} for the evolution of driving-force, 

such that 

C1 C2 Cp_1 Cp 

B= 
1 0 0 0 

(A.8) 

0 0 0 1 

[ (2) ] TThe process noise vector is defined as Wn = Wn ,0, ... ,0 . Both w~2) and Vn are 

zero-nean, white Gaussian processes. The AR coefficients and the variance a~c2i are 

determined by solving the Yule-Walker equations using Levinson-Durbin algorithm 1 . 

The initial state x0 is uniformly distributed in [O, 1]. The measurement model is 

expre3sed as a function of the initial state x0 and the driving-force, Un mapped by 

h: JR~---+ R 

Ddermination of the log densities given in (3.25) are essential for the calculation 

of thE posterior information submatrices in (3.24), hence the PCRB. 

1. p ( x~1~ 1 lxn) is a uniform distribution in the unit interval for the initial state, 

1Tlte command aryule in MATLAB is readily available for this operation. 
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:;:0 . 	 Therefore, we have 

(A.9) 

2. 	 jJ ( x~2l 1 lxn) is determined from the second line of (A.7) and its natural loga­

:·ithm is given by, 

(2) 	 I ) - 1 [ (2) (2)] T -1 [ (2) (2)]-	 logp ( Xn+l Xn - C1 + 2 Xn+l - Bxn ~ Xn+l - Bxn , (A.10) 

where c1 is a constant. In order to avoid the singularity of the covariance 

:natrix ~' we add little random elements on its main diagonal. Calculations of 

;he gradients of - logp (x~2l 1 lxn) w.r.t. Xn and Xn+l follow from above in a 

3traightforward manner, hence are skipped here. 

3. 	 o (Yn+1 lxn+1) is determined from the third line of (A. 7) and obtained as, 

2 
(1) (2) ) ) 

( Yn+l - h ( Xn+l 1 Xn+l 
-logp (Yn+ilXn+1) = C2 + ~---~---~- (A.11)

20"2 v 

Calculation of the derivative of - logp (Yn+1lxn+1) with respect to x~1l 1 is a 
(1) (2) )oh ( Xn+l' Xn+l 

nontrivial task. We can invoke the chain rule to find (l) , or we 
OXn+l 

can use the Lyapunov exponent approximation, 

~exp (2(n + l)f), 	 (A.12) 

which follows from the method developed in (Berliner, 1991). It is noticeable 
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1;hat in either case, the same results are obtained. 

2i'Jalculation of the derivative of - logp (Yn+i \Xn+i) with respect to x~ 1 is straight­

:orward. For the logistic map, it follows from the first line of (3.26) that 

~ ( (1) (2) )
uh Xn+l' Xn+l 

= Xn (l - Xn). (A.13)
~ (2)
uxn+l 

For the Moran-Ricker map, we obtain from the first line of (3.27) 

(A.14) 

127 




Ph.D. Thesis - Ula§ Gunturkun McMaster - Electrical & Computer Engineering 

A1>pendix B 

Cc>mputational Complexity 

DE~rivations 

B.1 Computational Complexity of the ADFE 

Derivation of the computational complexity of the ADFE algorithm is given as 

CA£FE(c;, V, N, L) = [(2c; + 5)N2 + (2~1+~2+12 - c;) N + 1] V + llL + 10 + ~1, 

(B.15) 

whos ~ detailed derivation is given in Table B.1 in terms of flop counts. 

Computational Cost of the RBPF 

The 1~omplexity of the RBPF algorithm is studied by Karlsson et al. (2005) and illus­

trate:l to be O(P3
). For the sake of generality, Karlsson et al. (2005) analyzed such 

cases where both parts of the state model are linear, and the nonlinearity is confined 
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Table B.l: Computational cost of the adaptive driving-force estimator in terms of 
fioatir.g point operations. V denotes the number of ESNs in the ESN bank, N de­
notes the number of neurons in each ESN in the ESN bank, c is the connectivity 
rate of each dynamic reservoir, L denotes the number of taps of the regularized adap­
tive e:;timator. 11:1 and 11:2 indicate the number of flops per division and exponential 
opera ;ions respectively. 

[ Instruction I\ mul. add. other 

ESN-DR - (hidden layer): 

,6,1 = w(i) s~) 
 c;N2 c;N(N - 1) 


,6,2 = ,6,1 + win,(i)Yn + </>n+1 
 N 2N 
(i) _ h(,6, ) _ exp(26.2)-l 2NN N("'1 + "'2) 

RLS - output layer: 
,6, ,\-1 (i) 

Sn+l - tan 2 - exp(26.2)+1 

N3 = RLS8n+l 


,6,4 = ,6,fP ~) 
 N2 N(N -1) 
(i) N N,6,5 = 1 + ,6,4sn+l 

N11:1k~L = (,6,4/ ,6,5f 
( out,(i)) T (i) N (N -1)Zn+l = Wn Sn+l 

(i) ( i) 1 

out,(i) _ out,(i) + k(i) (i) 


en+l = Yn+l - Zn+l 

NNWn+l - Wn n+len+l 
p(i) _ ,\-1 p(i) _ k(i) ,6, N22N2

n+l - RLS n n+l 4 
Subtotal for 1 ESN: CEsN = (2c; + 5)N2 + (211:1 + 11:2 + 12 - c;)N 

en+l = (1/V) L~1 e~l V-l "'1 
Noise smoother: 

Tn+l = (1 - I') en+l + I'rn 

Regularized LMS predictor: 

f n+l =(<inf rn 

O'.n+l = Tn+l - f n+l 
fJn+i = f n+l - f n 

,6,6 = O'.n+1 - AfJn+1 
,6,7 = ,6,5rn 

an+l = Cln + µn,6,7 

,6,8 = 7/J~r n 

µn+l = µn +r,6,6,6,8 
,6,g = [(1 + ,\) µn] rn 

7/Jn+l = 7/Jn - ,6,g,6,f + ,6,7 

2 

L 

1 
L 
L 
L 
2 

L+l 
L 

2 

L-l 
1 
1 
1 

L 
L-l 

1 
1 

2£ 
Subtotal for the Adapt. Est. CAE = ll(L + 1) 

[~~~~-T_O~TA~L~~~~---"Lll~_v_c~E=S~N_+_c~A=E~+~v_+~11:1~-~l~~ 
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to thE measurement model only. Building on the ideas developed by Karlsson et al. 

(20051, we have studied the complexity of the RBPF for the specific model in (2.21). 

Once again, we made use of the neutral flop count estimates for the operations such 

as exp, square root, log, and random number generation. The operations other than 

multiplication and addition in Table B.2 are the following: c1 : Evaluation and nor­

malization of importance weight per particle. c2 : Resampling for all particles. Since 

the nonlinear state is 1-dimensional, the Cholesky factorization is reduced to the cal­

culation of a square root. So, c3 =sqrt. c4 : Random number generation per particle, 

c5 : Evaluation of the nonlinear mapping, g(.). c6 denotes division. Then the total 

comp.exity of the RBPF given in Algorithm 1 becomes 

CRBP"(M, P) =4P3 + 5P2 + 2P + (2P2 + 5P + c1 + C4 + c 5 + 4)M + c 2 + c 3 + (P + l)c6 - 1. 

(B.16) 

B.3 Computational Cost of the EM-PF 

The computational cost required for the implementation of the EM-PF algorithm is 

deriv1~d in Table B.3. Note that the operations in the M-Step are repeated after each 

EM iteration rather than each time iteration. Thus, to calculate the flops per time 

iterai ion, these operations must be divided by the length of the dataset. This brings 

us th3't if the dataset is long enough (e.g. T 2: 200) then the terms divided by T will 

vanish, and can be neglected. Hence, the computational cost of the EM-PF algorithm 
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Table B.2: Computational cost of the Rao-Blackwellized Particle Filter. c1: Eval­
uation and normalization of importance weight per particle. c2: Resampling for all 
particles. Since the nonlinear state is 1-dimensional, the Cholesky factorization is re­
duced to the calculation of a square root, c3 =sqrt. c4: Random number generation 
per particle, c5: Evaluation of the nonlinear mapping, g(.). c6 denotes division. 

Instruction mul. add. other 

r=== Importance weights c1Nl 
t--- Resampling 
t---· 

State pred. & cov.: 
C2 

u.(il = Bu(il 
, n+lln nJp 

Cn+lln = BCn1nB + R 
t--- Particle Transition: 

~1 = bCnln 
~2 = ~lbT + (J3 

p2M 

2P3 

p2 
p 

P(P - l)Nl 

P2(2P - 1) 

P(P - 1) 
p 

~3 = chol(~2 ) C3 
~4 = randn(l, NI) C4M 

w = ~3~4 NI 

~5 = g ( (i))Xn C5.l\;f 
~ ­

6 -
bA (i)

unln PM (P - l)Nl 

r~+lj_n = ~5 + ~6 + w 2M 
Measur. pred. 

rri(i) = x(i) - g{x(i)l
n+l n+l n 

t--
Innov. cov. (On+i) 

~7 = Cn+llnbT 
nn+l = b~7 + (J3 

p2 
p 

M 

P(P ­
p 

1) 

Kalman gain ( Y n+1) 

r---· 
ln+l = ~7/0n+l 

Upd. state & cov.: 
Pc6 

~ ­ (i) bA(i)
8 ~ mn+l - un+lln 

A(( - A (i) y ~ 
un--lln+l - un+lln + n+l 8 

~9 = ~71;+1 
Cn+lln+l = Cn+lln - ~9 
. . ( 1 IM) LM A ( i) 
~1nln = i=l unln 

PM 

PM 
p2 

PM 

PM 

p2 

M-1 C5 

Total: 2P3 + 3P2 +2P + M( 
P2 +3P+l) 

2P3 + 2P2 

+M(P2 + 2P 
NI(c1 + c4 

+c5) 
+3) -1 +c2 + C3 

+(P + l)c6 
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can b(~ given by 

CE'MPF(M, P, K) =K [10P3 + 13P2 + (4P2 + 6.P + C1 + C4 + C5 + 4)Nl+ (B.17) 

C2 + C3 + (P + l)c6 + C7 - 1]. 

B.4 	 Higher Complexity for All Estimators 

Table B.4 indicates the realizations of all estimators studied in Section 4.2.3 with 

varying complexities. 

B.5 	 Confidence Intervals for Parameter Estima­

tion 

To determine the 953 confidence limits, let£ denote the number of independent trials. 

Let :'.: denote the sample variance obtained by averaging over £ independent trials. 

Let us also denote the actual variance that we are looking for by rJ2 . The random 

variable £2/rJ2 is known to have a X 2 (£) density (Papoulis and Pillai, 2002). Then 

the 9.53 confidence interval for rJ2 is given by 

£2 2 £2 
(B.18)

2 ()<CJ< 2 ()'
Xo.975 £ Xo.025 £ 
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Table B.3: Computational cost of the Expectation Maximization Particle Filter. P 
denot,~s the dimensionality of the linear state, c6 is division, and c7 is the inversion 
of a F x P matrix. T denotes the number of samples, and K denotes the number of 
EM iterations. The vector c denotes the regression parameters as defined in (2.18) 

c Instruction 

PF & Forward Recursions 
Backward Recursions & E-Step: 

c-1
n+lln 

Pt= Cnln ( B[k]) T c~~lln 

I mul. 

2P3 

I add. 

CRBPF 

2P(P2 - 1) 

I other 

C7 

I 

6 (A (i) A(i) )
1 = Un+llT - Un+lln 
A(i) - A(i) + p 6 
UnlT - Unln t 1 

62 = (Cn+llT - Cn+lln) 
CnlT = Cnln + P t62 

IE [u,, (ii,,)'J = CnlT + iinlT (U.1T) T 

p2jVJ 

p3 

p2 

PNI 

p2M 
p2 

P(P2 
- 1) 

p2 

IE Un-1 (U.n-1f = Ct-llT + llt-llT (ut-llT)T p2 p2 

IE Un (un-1fj = Pn-1CnlT + UnlT (ut-llT)T p2 p2 

M-Step: 
T 

63 =LIE [un-1 (U.n_i)T lm,e[kJ] 
n=l 

T 

64 =LIE [un (U.n-1f lm,e[kJ] 
n=l 
(clk+lJ)T = 64631 

T 
2

65 = L IE [(Un) ] 
n=l 

6 6 = 2 (clkJ( 6I 
67 = (clkl) T 6 3c[k] 

cr_i[k+iJ = (6 5 - 65 + 67) /T 

p2 

(P ­ 1) 

p2/T P(P ­ l)/T C7 

T 

1 

P+l 
-y 

2P/T (P 

P-1 
-y 

- l)/T 
2/T C5 

T 
Subtotal for the b.r. & EM-Steps: 

CEM(M, P, T) = 
3p3 + p2(M + 3 + :f=) + ~;1 

+3P3 + P2(M + 5 + -1)
1 T 

+P(M-2+ 7 ) 
+c6 + C7 

.I_ + C7 
Total complexity of EM-PF: K (CEM(M, P, T) + CRBPF) 
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Table B.4: Configurations of the Free Parameters of All Estimators for Varying Levels 
of Ccmplexity. The following values are fixed for the respective estimators: P = 1 
for RBPF-RW; P = 2, K = 5 for EM-PF; P = 2 for RBPF-AR(2), and~ = 0.3,N = 
10,L = 100 for the ADFE. M denotes the number of particles, and Vis the number 
of ESNs in the ESN bank for the ADFE. 

Flop Count (x103 
) II RBPF-RW I EM-PF I ADFE I RBPF-AR(2) 

M M v M 
37 300 50 34 275 
100 825 140 96 750 
200 1635 275 192 1500 
400 3255 555 386 3000 
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