# PHYSIOLOGICAL AND METABOLIC RESPONSES OF THELLUNGIELLA SALSUGINEA TO OSMOTIC STRESS

## PHYSIOLOGICAL AND METABOLIC RESPONSES OF THELLUNGIELLA SALSUGINEA TO OSMOTIC STRESS

By

#### DAVID ROLANDO GUEVARA, Hon. B. Sc.

A Thesis

Submitted to the School of Graduate Studies

In Partial Fulfillment of the Requirements

For the Degree

**Doctor of Philosophy** 

**McMaster University** 

© Copyright by David R. Guevara, February 2010

DOCTOR OF PHILOSOPHY (2010)

McMaster University (Biology)

Hamilton, Ontario

# TITLE:Physiological and Metabolic Responses of Thellungiellasalsuginea to Osmotic Stress

AUTHOR:David R. Guevara, Hon. B.Sc. (McMaster University)SUPERVISOR:Professor E.A. Weretilnyk, Ph. D

NUMBER OF PAGES: xv, 188

#### ABSTRACT

Abiotic stresses such as extreme temperatures, drought and high salinity severely compromise plant productivity, and have placed selective pressure for the acquisition of traits enabling plants to adjust to and recover from these unfavorable environmental conditions. Thellungiella salsuginea is a plant that is native to highly saline and semiarid environments and exhibits an exceptional ability to tolerate abiotic stress. In this thesis, I report on laboratory and field studies aimed at identifying traits that allow Thellungiella to tolerate harsh environmental conditions. It was found that Thellungiella accumulates organic solutes in response to abiotic stress. Transcript and metabolite profiling approaches were used to identify metabolic pathways important for the accumulation of compatible organic solutes in Thellungiella in response to sub-optimal environmental conditions. The relative abundance of transcripts encoding enzymes associated with the biosynthesis of compatible organic solutes such as proline or galactinol showed stress-responsive increases in cabinet-grown material and these metabolites were accumulated in salt or drought treated plants, respectively. However, proline and galactinol were found to be of low relative abundance in leaves of field plants. In contrast, several carbohydrates including sucrose, glucose, and fructose made a greater relative contribution to the field plant profiles suggesting that carbohydrates play an important role in plant abiotic stress tolerance during growth under field conditions. The identification of stress-specific metabolic changes can be used to identify important biochemical traits underlying environmental stress tolerance in *Thellungiella*. This

information can be used to improve the tolerance of stress – sensitive crops (including a related crucifer species, canola) that are grown in areas where persistent droughts, saline soils and early or late frosts frequently occur.

#### ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Elizabeth Weretilnyk for her financial support and guidance throughout my studies. Her constant challenges and criticisms about my work helped me develop the skills to ask the right questions, to critically analyze my findings and relate them to the "bigger picture". I think I will eventually write a book on her quotes, one of the lab favorites: "Plants don't read textbooks". This statement emphasizes an important point; plants have evolved unique ways on how to survive and thus this statement is a constant reminder which has helped me think "outside the box" in the quest for an understanding of the mechanism underlying the vast metabolic flexibility exhibited by plants. She also helped me develop my presentation skills and gave me advice on many topics outside the lab that I greatly appreciate.

I am grateful to Susan Dudley who spurred my interest in plant evolution. I enjoyed (and miss) the conversations we had over coffee about plant research, and I will cherish her scientific advice as well as advice beyond the lab. I am indebted to Brian McCarry who inspired me to pursue my quest to study the chemical diversity and complexity that exists in nature. I thank Brian Golding and Jon Stone for their help in bioinformatical analysis which greatly helped me analyze my work and has opened up a different way of thinking about data analysis.

I thank Peter Summers for his suggestions about the finer details in plant biochemistry, advice throughout my work in the lab, and critically reading of our manuscripts. While in the lab, I had the pleasure of working with Mike BeGora, Jeff Dedrick, Martina Drebenstedt, Amber Gleason, Karen Haines, Chris Wang and thank them for their help and encouragement.

My interest in plants all started when I was a toddler roaming in the maize fields of rural El Salvador where my grandfather, Papa Tino, taught me about his farm and the importance this crop has played for the economy and throughout civilization. I thank my parents, Jose and Ana, who left everything behind for us to pursue our dreams and I am fortunate to have found mine; the love of my life, Rovena, and plant science. I thank my brothers Nestor and Herb, and sister Carolyn for their love and encouragement throughout my journey. It's actually difficult to put in words the gratitude I have for the unconditional love and encouragement that Rovena provided to me throughout my studies. Her patience, love and support throughout my studies motivated me to step up to the challenges.

This work is dedicated to our families who depend on agriculture for a living and I have made it my personal mission to improve crop yields during a time when we are more than ever dependant on plant products due to explosive growth in the world population, but are most vulnerable as a result of the unpredictability in climatic conditions which compromises our food resources.

#### **OVERVIEW**

This sandwich thesis contains five chapters: Chapter One (Literature review); Chapter Two (Materials and Methods); Chapters Three and Four (Enclosed as separate manuscripts to be submitted); and Chapter Five (General discussion). My contributions and the contribution from the co-authors will be described in a preamble to chapters three and four. The final chapter will include a general discussion and future directions.

## TABLE OF CONTENTS

| Title page                 | i    |
|----------------------------|------|
| Descriptive note           | ii   |
| Abstract                   | iii  |
| Acknowledgements           | v    |
| Overview                   | vii  |
| Table of contents          | viii |
| List of figures            | xi   |
| List of tables             | xiii |
| List of abbreviations used | xiv  |

| Chapter One: Literature Review                                                          |
|-----------------------------------------------------------------------------------------|
| 1.1 Abiotic stress decreases plant growth and productivity 1                            |
| 1.2 Plant responses to osmotic stress                                                   |
| 1.3 Using genomics approaches to search for osmotic stress tolerance mechanisms10       |
| 1.4 Field studies14                                                                     |
| 1.5 <i>Thellungiella</i> : A valuable model for the study of abiotic stress tolerance15 |
| 1.6 Research objectives17                                                               |
| 1.7 References                                                                          |

| Chapter | Two: Materials and Methods                           | 29 |
|---------|------------------------------------------------------|----|
| 2.1     | Yukon field site location and plants                 | 29 |
| 2.2     | Controlled environment plant growth conditions       | 29 |
| 2.3     | Stress treatments                                    | 30 |
| 2.4     | Water status and physiological response measurements | 31 |
| 2.5     | Metabolite analysis of Yukon Thellungiella           | 33 |
| 2.6     | Criteria for the identification of metabolites       | 45 |
| 2.7     | Biological variability of metabolite profiles        | 47 |
| 2.8     | References                                           | 49 |

Chapter Three: Physiological and metabolic responses of the halophytic plant,

| Thellungiella salsuginea to salinity | 59 |
|--------------------------------------|----|
| 3.0 Preface                          | 59 |
| 3.1 Abstract                         | 63 |
| 3.2 Introduction                     | 64 |
| 3.3 Materials and Methods            | 66 |
| 3.4 Results                          | 70 |
| 3.5 Discussion                       | 75 |
| 3.6 Conclusions                      | 80 |
| 3.7 References                       | 81 |

| Chapter Four: Transcriptomic and metabolomic analysis of Yukon Thellun    | <i>giella</i> plants |
|---------------------------------------------------------------------------|----------------------|
| growing under cabinet and field conditions shows overlapping and distinct | responses to         |
| environmental conditions                                                  |                      |
| 4.0 Preface                                                               |                      |
| 4.1 Abstract                                                              | 107                  |
| 4.2 Introduction                                                          |                      |
| 4.3 Materials and methods                                                 |                      |
| 4.4 Results                                                               |                      |
| 4.5 Discussion                                                            |                      |
| 4.6 References                                                            |                      |

| Chapter Five: | General Discussion |  |
|---------------|--------------------|--|
|---------------|--------------------|--|

#### LIST OF FIGURES

#### Chapter Two:

Figure 1 Natural distribution of *Thellungiella* in the Yukon Territory.

Figure 2 Metabolomic analysis of *Thellungiella*.

Figure 3 Peak deconvolution from complex GC/MS chromatograms.

**Figure 4** Strategy for data mining of metabolomic data to identify metabolic traits associated with abiotic stress tolerance.

#### Chapter Three:

Figure 1. Effect of salinization on the root growth of *Thellungiella* seedlings.

Figure 2. Performance of *Thellungiella* plants subjected to salt treatments.

Figure 3. Water relations of Yukon Thellungiella exposed to NaCl.

**Figure 4.** PCA of MST data for Yukon *Thellungiella* plants show grouping as a function of salt exposure.

Figure 5. Hierarchical cluster analysis of salt-responsive MSTs.

**Figure 6.** Leaf proline content of Yukon *Thellungiella* subjected to NaCl treatments and their respective, unsalinized control plants.

Figure S1. PCA of the 58 statistically significant MSTs.

**Figure S2.** Analysis of the contribution of MSTs with highest absolute PC loadings on metabolic grouping patterns observed using 58 statistically significant MSTs.

#### Chapter Four:

Figure 1 Phenotype of *Thellungiella* grown in controlled environments and at the Yukon field site

Figure 2 Meteorological conditions near Yukon field site

**Figure 3** Gene ontology classification of transcripts differentially expressed in *Thellungiella* growing at the Yukon field site.

**Figure 4** Hierarchical cluster analysis of genes differentially expressed in *Thellungiella* harvested from the Yukon field site in 2003 and 2005 and *Thellungiella* exposed to abiotic stresses in growth cabinets.

**Figure 5** Hierarchical cluster analysis of metabolites in *Thellungiella* harvested from the Yukon field site in 2003 and 2005 and chamber grown plants exposed to abiotic stresses.

Figure 6 Hierarchical cluster analysis of metabolites present at different levels

throughout the day in *Thellungiella* harvested from the Yukon field site.

#### LIST OF TABLES

Chapter 4

Supplemental Table S1. Soil properties and mineral composition of Yukon

*Thellungiella* harvested from the experimental field site near Whitehorse, YT, and from growth chamber grown plants.

**Supplemental Table S2.** Transcripts differentially expressed in Yukon *Thellungiella* harvested from the field in 2003 and 2005.

**Supplemental Table S3.** Metabolites present at statistically significantly different levels in Yukon *Thellungiella* harvested from the field in 2003 and 2005.

### LIST OF ABBREVIATIONS USED

| ABA        | Abscisic acid                                                  |
|------------|----------------------------------------------------------------|
| AMDIS      | Automated Mass Spectral Deconvolution Information System       |
| d          | Day                                                            |
| ELIP       | Early light induced protein                                    |
| FW         | Fresh weight                                                   |
| GASP       | Gas chromatography/Mass spectrometry Analysis Software Package |
| GC/MS      | Gas chromatography/Mass spectrometry                           |
| HSP        | Heat shock protein                                             |
| LEA        | Late embryogenesis abundant                                    |
| LTP        | Lipid transfer protein                                         |
| m/z        | mass-to-charge ratio                                           |
| MSTFA      | N-methyl-N-trimethylsilyl-trifluoroacetamide                   |
| MST        | Mass spectral tags                                             |
| MPa        | Megapascal                                                     |
| NaCl       | Sodium chloride                                                |
| HCA        | Hierarchical cluster analysis                                  |
| ANOVA      | Analysis of variance                                           |
| PCA        | Principal component analysis                                   |
| ROS        | Reactive oxygen species                                        |
| $\Psi_{W}$ | Water potential                                                |

| Ψs                  | Solute potential          |
|---------------------|---------------------------|
| $\psi_{\mathrm{P}}$ | Pressure/Turgor potential |
| RI                  | Retention index           |
| RT                  | Retention time            |
| RWC                 | Relative water content    |
| TIC                 | Total ion chromatogram    |
| TMS                 | Trimethylsilyl            |

#### **Chapter One**

#### **Literature Review**

1.1 Abiotic stress decreases plant growth and productivity

Plants growing in their native habitats are confronted with ever-changing environmental factors that may limit their growth and productivity. Some of these factors include prolonged periods of water deficit (drought), excessively high or low temperatures, or high soil salinity. These conditions reduce the quantity of water that can be taken up from the soil by plant roots and so represent factors contributing to osmotic stresses. Unfortunately, most major crop species are poorly adapted and vulnerable to osmotic stress (Boyer, 1982). It is estimated that osmotic stresses are responsible for decreasing major crop yields by about 69%, depending on the crop (Boyer, 1982; Bray et al, 2000). To some extent, the impact of water deficit can be partially offset through irrigation of crops to produce higher yields in agricultural areas prone to recurrent drought episodes during the growing season. However, irrigation of agricultural lands with poorly drained soils can lead to the buildup of salts in the soil to levels that can be toxic to plants (Schoups et al., 2005). The Intergovernmental Panel on Climate Change (IPCC) has predicted an increased incidence of more intense and longer drought in the future as a result of increased soil drying due to higher temperatures and decreased land precipitation patterns (IPCC, 2008). Consequently, drought effects on crop yield will

become more severe and lead to reduced food production. The current position held by many plant scientists is that we must enhance the tolerance of stress-sensitive crops so that they achieve higher yields despite exposure to sub-optimal environmental conditions (Flowers and Yeo, 1995). This is especially important since higher yields will be required to meet the increased demand for plant products to sustain the growing human population (Flowers and Yeo, 1995; Trewavas, 2001). However, in order to improve the productivity of crops grown under sub-optimal environmental conditions we must develop a more complete understanding of the mechanisms underlying osmotic stress tolerance in plants (Flowers and Yeo, 1995; Tester and Bacic, 2005).

#### 1.2 Plant responses to osmotic stress

#### 1.2.1 Water status

Plant cell growth generally occurs within a narrow range of water content (Hsiao et al., 1976). There are two parameters that are widely used to determine the water status of a plant: the relative water content and the water potential.

#### 1.2.1.1 Relative water content

The relative water content (RWC) refers to the amount of water in the tissue relative to the amount the tissue can hold when fully turgid. A leaf from a well-watered

plant will have a RWC in the range of 85-95 %, and decreases when plants are exposed to osmotic stress (Hsiao, 1973). Although the RWC is a useful parameter to describe the effect water deficits have on cell volume and water status of a plant (Sinclair and Ludlow, 1985), one short-coming is that it does not provide information on water movement (Kramer, 1988). A more suitable parameter to help describe water movement in the cell is the water potential.

#### 1.2.1.2 Water potential

Plant water status can be monitored by measuring the free energy state of water molecules inside cells or tissues, a parameter that is estimated by plant physiologists using the term water potential ( $\Psi_w$ ).  $\Psi_w$  is comprised of two major components: the solute (or osmotic) potential ( $\Psi_s$ ) which represents the effect of dissolved solutes on  $\Psi_w$ , and the pressure (or turgor) potential ( $\Psi_p$ ) which describes the effect of pressure on the energy status of water. The presence of solutes reduces the free energy of water, and thus decreases  $\Psi_w$ , whereas a positive  $\Psi_P$  increases the  $\Psi_w$ . Pure water has the highest capacity to do work and is frequently represented by a  $\Psi_w$  of zero megapascal (MPa). In biological systems, water has less potential energy than pure water due to the effect of dissolved solutes that are inevitably present in a cell and thus  $\Psi_w$  values are always negative. Well hydrated plants maintain a leaf  $\Psi_w$  of – 0.85 to – 1.0 MPa (Flowers and Ludlow, 1986). Plants can take up water from their environment through the roots only when their root  $\Psi_w$  is lower than the surrounding soil  $\Psi_w$ .

#### 1.2.1.3 Impact of osmotic stress on water relations

When plants are subjected to soil water deficits water lost by transpiration can exceed uptake by roots. Under these conditions, plant  $\Psi_W$  decreases with the passive accumulation of solutes (Acevedo et al., 1979; Flower and Ludlow, 1986). The decrease in root  $\Psi_w$  must be sufficient to maintain a  $\Delta\Psi w$  gradient between the root  $\Psi_w$  and soil  $\Psi_w$  to ensure continued water uptake by the root. If this gradient is not established, plant growth ceases as a first consequence of water deficit (Nonami and Boyer, 1989) with turgor loss (or wilting) when the  $\Psi_p$  reaches 0 Mpa.

Drought, extreme temperatures, or high soil salinity affect plant water status in different ways, but all of these environmental conditions can ultimately lead to cellular dehydration. In the field, drought and high temperature stress significantly reduce water content in the soil as a result of evaporation leading to decreased water uptake by plants and reduced water content of plant tissues (Ristic et al., 1991). Soil salinity, on the other hand, need not be accompanied by a shortage of water. Water moves down a  $\Psi_W$ gradient from high (less negative) to low  $\Psi_W$ . As such, the presence of high salts can impede the ability of a plant to take up water unless the plant can overcome the reduction in soil  $\Psi_W$  caused by the presence of high levels of dissolved solutes in the soil (Yeo et al., 1991). Chilling temperature (5°C) leads to lower water content in plant tissues as a result of decreased water absorption by the roots and water transport to the shoot (Burchett et al., 2006). Finally, freezing temperatures (<0°C) lead to the formation of ice in the intercellular spaces and the resulting movement of water out of the cell during extracellular freezing causes cellular dehydration (Yelenowsky and Guy, 1989).

Inadequate water supply to plant tissues during osmotic stress triggers physiological responses aimed at minimizing transpirational water loss, an objective achieved by stomatal closure (Ackerson and Krieg, 1977) when the leaf RWC decreases to 70 to 75% (Chaves et al., 2002) . However, stomatal closure during water deficits leads to lower CO<sub>2</sub> intake for photosynthesis (Meyer and Genty, 1999). Drought-induced reduction of photosynthesis limits plant growth and development because fewer resources are available to support cell expansion. Therefore, in general, water deficits produce plants of decreased stature and this reduction in plant size can severely compromise yield potential (Blum and Sullivan, 1997).

#### 1.2 2 Osmotic adjustment

Some plants have the ability to maintain full turgor of the leaves during water deficits by actively accumulating non-toxic (compatible) organic solutes. It has been proposed that compatible organic solute accumulation serves to decrease the plant  $\Psi_s$  in order to establish a  $\Delta \Psi w$  gradient between the plant and drying or saline soil that promotes water uptake (Hsiao et al., 1976). Plants exposed to saline environments passively accumulate the Na<sup>+</sup> ions dissolved in the water absorbed by their tissues. To offset the deleterious effects of high Na<sup>+</sup> concentrations on metabolic processes, plants sequester potentially perturbing ions in the vacuole (Matoh et al., 1987). However, this

5

response can lead to an osmotic imbalance within the cell (Matoh et al., 1987; Binzel et al., 1988). Thus, it is generally accepted that the balance in the osmotic pressure between the cytoplasm and the vacuole is achieved primarily via the accumulation of compatible solutes in the cytoplasm (Binzel et al., 1988). This active net accumulation of solutes by plants in response to water deficit or salinity helps them remain turgid under water deficits and the response is called osmotic adjustment. Osmotic adjustment has been proposed to be an important adaptive process conferring osmotic stress tolerance in plants (Flowers and Ludlow, 1986). This is believed to be the case because plants that can osmotically adjust are better able to acclimate to adverse environmental conditions (Acevedo et al., 1979; Nonami and Boyer, 1989) than plants that close their stomata during exposure to soils with low  $\psi_W$  (Turner, 1974).

Two extreme examples of highly desiccation and salt tolerant plants include the 'resurrection plant' *Craterostigma plantagenium* and the 'common ice plant' *Mesembryanthemum crystallinum. C. plantagenium* is capable of recovering from complete vegetative tissue dehydration (Bianchi et al., 1991) whereas *M. crystallinum* can grow in the presence of sea-water strength salinity (Paul and Cockburn, 1989). *C. plantagenium* and *M. crystallinum* are able to thrive under osmotic stress due, at least in part, to their ability to osmotically adjust in response to exposure to extreme environmental conditions. *C. plantagenium* accumulates sucrose in response to prolonged periods of desiccation (Bianchi et al., 1991) while the pinitol content of *M. crystallinum* increases when exposed to sea-level strength salinity (Paul and Cockburn, 1989). The capacity for osmotic adjustment is not restricted to 'extremophile' plants but is believed to be a process that many organisms including many plant species undergo when experiencing osmotic stress (Yancey 2005; Yancey et al., 1982).

The compatible organic solutes involved in osmotic adjustment are chemically diverse but essentially fall into five main classes of compounds: 1) sugars, including trehalose (Garg et al., 2002) and sucrose, (Bianchi et al., 1991; Rizhsky et al., 2004), 2) sugar alcohols, like galactinol, inositol, mannitol, sorbitol, and pinitol,(Paul and Cockburn, 1989; Popp and Smirnoff, 1995; Pattanagul and Madore, 1999, Taji et al., 2002), 3) N-containing solutes such as the amino acid proline (Kishor et al., 1995), or quaternary ammonium species like proline betaine,  $\beta$ -alanine betaine and glycine betaine (Hanson et al., 1991), 4) tertiary sulfonium compounds including 3-dimethylsulfoniopropionate and choline-O-sulfate (Trossat et al., 1998). The capacity to accumulate these compatible solutes differs between plant species. For example, stress-responsive increases in proline content occurs broadly among plant species (Delauney and Verma, 1991) whereas other classes of compatible solutes such as glycine betaine are accumulated in plants of select families such the Chenopodiaceae and Poaceae (Storey and Jones, 1977).

Many crop plants lack the ability to synthesize and accumulate compatible solutes that are found in osmotic stress tolerant native plants. Therefore, genes encoding enzymes involved in the synthesis of compatible solutes have been introduced into nonaccumulating species in an effort to genetically engineer crop plants that are more stress tolerant. For example, transgenic tobacco plants engineered to over-express a gene encoding the *M. crystallinum* myo-inositol *O*-methyltransferase were more drought and

salt tolerant than wild-type tobacco plants (Sheveleva et al., 1997). These transgenic tobacco plants were found to contain higher levels of ononitol compared to wild-type tobacco plants, an observation that led the authors to conclude that ononitol plays a role in osmotic adjustment. This approach of metabolic engineering to increase compatible solute biosynthesis by plants has contributed towards increased stress tolerance in nonaccumulating, stress-sensitive crops such as rice (Zhu et al., 1998; Garg et al., 2002), tobacco (Kishor et al., 1995; Sheveleva et al., 1997), and wheat (Abebe et al., 2003). However, despite these successes, frequently the observed levels of compatible solutes accumulated by the transgenic plants were not high enough to explain their protective role through their contribution towards osmotic adjustment. This observation is consistent with the conclusion that compatible solutes may increase the tolerance of plants through protective mechanisms other than simply osmotic adjustment. Flowers (2004) has also raised the concern that most of these studies were performed under artificial, controlled environmental conditions and it is uncertain whether transgenic plants with an increased capacity for compatible solute biosynthesis have an increased tolerance to abiotic stress under field conditions.

An example of the difficulty in associating stress tolerance with solute accumulation is given by sucrose. The accumulation of sucrose in many plants experiencing water deficits is widespread and found among osmotic stress tolerant and sensitive species. However, the significance of sucrose accumulation during osmotic adjustment is uncertain due to the difficulty in demonstrating conclusively that sucrose accumulated in response to stress actually contributes towards osmotic adjustment (Munns and Weir, 1981). In fact, accumulation of organic solutes like sucrose may represent the outcome of impairments in metabolism and thus may be indicators of cell damage as opposed to providing protective functions (Paul and Cockburn, 1989). More recently the adaptive value of organic solute accumulation and their contribution to osmotic adjustment for abiotic tolerance in plants has been challenged. A comprehensive analysis of solute accumulation in Limonium latifolium subjected to NaCl treatments shows that the major contributors to osmolarity were inorganic solutes, while organic solutes such as sucrose, hexoses,  $\beta$ -alanine betaine, and glycine betaine only accounted for approximately 25% of the osmolarity (Gagneul et al., 2007). Interestingly, compartmental analysis of proline and  $\beta$ -alanine betaine in salt-shocked L. latifolium found that both of these compatible solutes were localized in the vacuoles rather than the cytosol raising questions as to whether these metabolites are involved in osmotic adjustment in this species (Gagneul et al., 2007). Therefore, future work must be directed towards delineating the significance of compatible organic solute accumulation during exposure to osmotic stress conditions if this trait is to be used in long-term selection strategies to develop crops showing greater tolerance to osmotic stress.

The failure to genetically engineer plants with greater osmotic stress tolerance through an increased capacity to produce a given organic solute reveals that the manipulation of a single gene involved in compatible solute synthesis is likely insufficient to yield a more stress tolerant crop (Ramanjulu and Bartels, 2002). This may be due to the multigenic nature of osmotic stress tolerance in plants with an innate ability to thrive under sub-optimal environmental conditions (Ramanjulu and Bartels, 2002). As

9

a consequence, current efforts are focused on gaining an appreciation for higher order controls that serve to coordinate cellular functions at multiple levels using genomic approaches. Approaches that afford a better appreciation of global regulatory networks include technologies that allow the unbiased detection of many simultaneous changes among gene products that may occur in response to an abiotic challenge. These approaches include quantifying products at the transcript, protein and metabolite level. Changes occurring at each of these levels in response to abiotic stress compared to unstressed conditions should include those that are essential for enabling plants to adjust to and recover from exposure to sub-optimal environmental conditions. Recent technological advancements in genomics approaches now permit the correlation of physiological responses in plants subjected to osmotic stress with multiple, concurrent changes among specific gene products allowing for the development of deeper insights into the cellular processes associated with osmotic stress tolerance.

1.3 Using genomics approaches to search for osmotic stress tolerance mechanisms

The availability of the full genome sequence of the genetic model plant *Arabidopsis thaliana* (hereafter referred to as *Arabidopsis*) has led to the development of tools and resources that can be used to gain insights into the genetic basis of plant abiotic stress tolerance (Somerville and Somerville, 1999; The *Arabidopsis* Genome Initiative, 2000). One noteworthy technological advance in identifying the molecular basis underlying plant abiotic stress tolerance has been the development of genome wide

10

expression profiling methods (Somerville and Somerville, 1999). The high-throughput analysis of gene expression (transcriptomics) using DNA microarrays has greatly helped in the large-scale identification of genes that are stress-responsive.

Transcriptomics is performed using DNA microarrays containing 1,000 to 10,000 cDNA sequences per square centimeter deposited onto a solid surface (a glass slide). These arrayed sequences are hybridized with fluorescently labeled probes derived from mRNA samples of different tissue types (Wisman and Ohlrogge, 2000) allowing the simultaneous analysis of thousands of genes in a single microarray experiment. For some plant species including *Arabidopsis* and rice (*Oryza sativa*), whole genome DNA microarray chips are commercially available (www.affymetrix.com). A recent advance in transcript profiling methodologies is RNA sequencing (RNA-Seq). RNA-Seq approaches enable the analysis of the entire transcriptome in a high-throughput manner with greater sensitivity and a higher level of reproducibility compared with DNA microarrays (Wang et al., 2009). The use of RNA-Seq methodologies will enable the accurate quantification of transcriptional responses to abiotic stress in many non-model plants including halophytes, as no prior knowledge on genome sequence is required to quantify gene expression levels in an unbiased fashion (Wang et al., 2009).

Plant responses to water deficits are modulated by altered gene expression that is triggered by sub-optimal environmental conditions. As such, transcriptomics has been used to elucidate the molecular mechanisms underlying osmotic stress tolerance. For example, transcriptomics has been used to monitor the gene expression patterns exhibited by *Arabidopsis* exposed to osmotic stress (Seki et al., 2002; Kreps et al., 2002). These

studies showed that hundreds of genes were differentially expressed in Arabidopsis upon short-term exposure to abiotic stress conditions by studying 1, 2 up to 24 h time-points following stress exposure (Seki et al., 2002; Kreps et al., 2002). Among the genes showing increased transcript abundance following exposure to abiotic stresses were those encoding proteins associated with: the synthesis of compatible solutes or phytohormones, the protection against ROS, dehydrin proteins, HSP proteins, LEA proteins, LTP proteins, transcription factors, carbohydrate metabolism, and others of unknown function. The precise role for many of these gene products remains elusive, and this is particularly true for the comparatively well studied dehydrins, LEAs and LTPs that over many years have been well documented to increase in a stress-responsive manner (Seki et al., 2002). However, the over-expression of LEA (Xu et al., 1996) in stress-sensitive crops, for example, has led to enhanced tolerance confirming their role for abiotic stress tolerance. Interestingly, transcriptomics results show that different sets of genes are involved in the response to cold, drought, or salinity stress (Seki et al., 2002). This observation provides evidence that responses to a given stress are specific at the molecular level (Seki et al., 2002). This specificity offers targets for a narrower range of products to test *in planta*. For example, associating survival during long-term exposure to abiotic stress under natural conditions in the field with the presence or absence of a given gene product would provide compelling evidence for the role of a specific gene in abiotic stress tolerance.

The information afforded by transcriptome profiling is extremely useful in associating metabolic pathways that are altered in plants subjected to sub-optimal environments. However, transcriptome data alone cannot establish whether the increased abundance of transcripts encoding a given enzyme actually leads to more enzyme and enzyme activity in the cell (Fiehn et al., 2000). Consequently, large-scale analysis of metabolites present in an organism should be used to help establish or define the metabolic phenotype that results from the altered expression of genes in response to adverse environmental conditions.

The metabolome is the entire metabolite complement of a biological organism and as such, is complex. For the plant kingdom it is estimated that over 200,000 chemically diverse metabolites exist (Weckwerth, 2003) with an estimated number of about 5,000 metabolites in a single plant cell (Krishnan et al., 2005). Current methodologies permit the simultaneous analysis of over 300 metabolites using gas chromatography-mass spectrometry (GC/MS) (Fiehn et al., 2000) and up to 5,200 putative metabolites using Fourier transform ion cyclotron mass spectrometry (FTMS) (Aharoni et al., 2002). Of these technologies, the GC/MS approach has been the preferred metabolomics method due to its amenability for high-throughput analysis (methodologies reviewed by Allwood et al., 2008). To date no technology has been developed that allows one to study the complete metabolome of an organism. Studying the complete metabolome remains a challenge because no single approach suitably handles the wide dynamic range in metabolite abundance in tissues where, without enrichment, a large proportion of metabolites are present at levels below the current limit of detection. No instrumentation exists that can simultaneously resolve and detect all of the chemical components that are found in the plant kingdom (Sumner et al., 2003). Despite these inherent shortcomings, metabolomic approaches have been used to identify stress-induced changes in the metabolism of plants including Arabidopsis subjected to drought or heat (Rizhsky et al., 2004), cold temperatures (Kaplan et al., 2004; Cook et al., 2004; Gray and Heath, 2005) and salinity (Kim et al., 2007). In these studies distinct metabolic phenotypes could be associated using the profiles of chemical components extracted from Arabidopsis cell cultures or plants subjected to stress-treatments when compared to profiles from unstressed controls. For example, Arabidopsis subjected to cold temperatures undergoes a substantive re-organization of the metabolome compared to unstressed controls (Kaplan et al., 2004; Cook et al., 2004, Gray and Heath, 2005). Arabidopsis exposure to cold temperatures leads to the accumulation of sugars and proline, and unexpectedly, other metabolites including putrescine, ornithine, and citrulline that implicate polyamines as contributing towards improved stress tolerance upon exposure to low temperatures (Cook et al., 2004). Rizhsky et al. (2004) reported that Arabidopsis exposed to drought accumulates proline, whereas exposure to a combination of drought and heat stress resulted in the accumulation of sucrose instead of proline. Arabidopsis cell cultures exposed to 100 mM NaCl over a period of 72 h showed that salt treatment leads to the co-induction of glycolysis and sucrose metabolism suggesting that sucrose accumulation may serve to promote water uptake and a potential source of energy to sustain cellular metabolism during exposure to salinity stress (Kim et al., 2007). Current metabolomics methodologies may not be unbiased or comprehensive but they are sufficient to uncover novel changes among metabolites across multiple metabolic pathways. Improvements in this technology could increase our capacity to detect changes among chemical components in plants subjected to abiotic stress and will

no doubt increase our capacity to define essential cellular networks needed by plants to respond to and recover from sub-optimal environmental conditions.

#### 1.4 Field studies

The advent of genomic tools has offered important insights into identifying gene products associated with plant response to cold temperature, drought or salinity. In general, these environmental conditions induce the expression of many different genes or different members of gene families. Although these studies have identified traits associated with abiotic stress tolerance, the adaptive value and contribution of these traits to long-term acclimation of plants experiencing sub-optimal environments remains difficult to judge (Kulheim et al., 2002; Rizhsky et al., 2004). This difficulty may be due to the relatively low number of studies focusing on traits expressed in plants exposed to abiotic stress conditions in their natural environment. In fact, most studies aimed at identifying stress-specific responses have been performed using plants subjected to artificial calibrated treatments imposed in controlled environmental growth chambers. Extrapolating plant responses in the laboratory to their response in the field is difficult given that growth chambers cannot mimic the complexity of a natural environment where traits that are important for long-term survival and productivity under challenging conditions are needed. Comparative studies reporting on plants subjected to abiotic stress under controlled environments and under field conditions have been published (Miyazaki et al., 2004; Dhanaraj et al., 2006). Although overlap is found between transcripts

15

expressed in plants subjected to stress in growth chambers and those in the field, major differences were also found. Key to this latter observation is that caution should be exercised when extrapolating results based on laboratory experiments alone to form predictions or expectations of plant responses in the field (Dhanaraj et al., 2007).

#### 1.5 Thellungiella: a valuable model for the study of abiotic stress tolerance

The adoption of *Arabidopsis* as a model organism has greatly improved our understanding of the genetic mechanisms that control plant growth and development (Bevan and Walsh, 2005). While much progress has been made in identifying mechanisms by which plants respond and adapt to cold temperatures, high salinity, drought, and other stresses, our understanding of the molecular basis of abiotic stress tolerance has been impeded, in part, by the lack of an appropriate genetic model with an innate ability to withstand stress. Arabidopsis displays little to no inherent tolerance to abiotic stress (Bressan et al., 2001). However, a close relative of Arabidopsis, Thellungiella salsuginea (also known as Thellungiella halophila or salt-lick mustard, hereafter referred to as *Thellungiella*) is native to areas with highly saline soils. Thellungiella has been reported as a suitable genetic model plant to study stress tolerance due to its ability to complete its life cycle under harsh environmental conditions (Zhu 2001; Xiong and Zhu, 2002; Inan et al., 2004, Taji et al., 2004, Wong et al., 2005, 2006; Griffith et al., 2007). Thellungiella shares many traits of Arabidopsis including a small size, short life cycle, copious seed production, a relatively small genome and it can be

genetically transformed (Bressan et al., 2001). *Thellungiella* coding DNA also has a high degree of sequence similarity to homologous *Arabidopsis* genes (90 – 95%); a feature that facilitates gene identification in this species. This similarity in genome content enables one to apply the abundant genetic resources developed for the study of *Arabidopsis* to the study *Thellungiella*'s response to abiotic stress.

Several natural accessions of *Thellungiella* have been identified that are specialized for diverse habitats worldwide (Scoggan, 1978). In Canada, *Thellungiella*'s distribution extends from south western Yukon and northern British Columbia to the Prairie Provinces, regions with semi-arid conditions (Scoggan, 1978). *Thellungiella* is also found in the western United States, Maritime China, Russia (Scoggan, 1978). Thus, unlike *Arabidopsis*, *Thellungiella* natural distribution exemplifies a species that has had to adapt to areas featuring cold including freezing temperatures, high salinity, and prolonged periods of water deficit. The molecular basis conferring the capacity of extremophiles like *Thellungiella* to withstand harsh environments is poorly understood and provides an exciting research opportunity to gain insights into the evolution of adaptive abiotic stress tolerance traits in plants using readily available approaches and methodologies.

#### 1.6 Research objectives

Identifying metabolic pathways needed by plants stressed under field conditions will provide information that can be used to produce more stress tolerant crops. To date, no studies have compared traits expressed in extremophiles, such as *Thellungiella* plants, exposed to stress under controlled environmental conditions and in their natural habitat. In this thesis, I report comparisons of transcript and metabolite profiles of *Thellungiella* plants grown in the laboratory and at a Yukon field site. The objective of this comparative study is identifying abiotic stress tolerance traits in the Yukon ecotype of *Thellungiella*. During my studies, I addressed the following questions:

- Is there evidence for osmotic adjustment in Yukon *Thellungiella* subjected to abiotic stress treatments in growth chambers and plants in the field?
- 2) Is there overlap among transcripts or metabolites that accumulate in Yukon *Thellungiella* growing at the Yukon field site and plants subjected to calibrated stress treatments in controlled growth chambers?
- 3) Can comparisons between transcript and metabolite profiles of plants exposed to field and growth cabinet conditions identify biochemical traits needed for survival and growth under abiotic stress?

My hypothesis is that a critical trait(s) needed for survival under osmotic stress should be expressed by the plant regardless of whether the plant experiencing stress is growing in the cabinet or a remote field site.

#### 1.7 References:

- Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitolaccumulating transgenic wheat to water stress and salinity. Plant Physiol 131: 1748-1755
- Acevedo E, Fereres E, Hsiao TC, Henderson DW (1979) Diurnal growth trends, water potential, and osmotic adjustment of maize and sorghum leaves in the field. Plant Physiol 64: 476-480
- Ackerson RC, Krieg DR (1977) Stomatal and nonstomatal regulation of water use in cotton, corn, and sorghum. Plant Physiol 60: 850-853
- Aharoni A, Ric de Vos CH, Verhoeve HA, Maliepaard CA, Kruppa G, Bino R,
  Goodenowe D (2002) Nontargeted metabolome analysis by use of Fourier
  transform ion cyclotron mass spectrometry. OMICS 6: 217-234
- Allwood JW, Ellis DI, Goodacre R (2008) Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiol Plant 132: 117-135
- Bevan M, Walsh S (2005) The *Arabidopsis* genome: A foundation for plant research. Genome Res 15: 1632-1642
- Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1991) Novel carbohydrate metabolism in the resurrection plant *Craterostigma plantagineum*. Plant J 1: 355-359

Binzel ML, Dana Hess F, Bressan RA, Hasegawa PM (1988) Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol 86: 607-614

Blum A, Sullivan CY (1997) The effect of plant size on wheat response to agents of drought stress. I. Root drying. Aust J Plant Physiol 24: 35-41

Boyer JS (1982) Plant productivity and environment. Science 218: 443-448

- Bray EA, Bailey-Serres J, Weretilnyk EA (2000) Responses to abiotic stresses. In B Buchanan, W Gruissem, R Jones, eds, Biochemistry and Molecular Biology of Plants. Amer Soc Plant Physiol, Rockville, MD, pp 1158-1203
- Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu J-K (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol 127: 1354-1360
- Burchett S, Niven S, Fuller MP (2006) The effect of cold acclimation on the water relations and freezing tolerance of *Hordeum vulgare* L. Cryo Letters 27: 295-303
- Chaves MM, Pereira JS, Maroco JP, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field: photosynthesis and growth. Ann Bot 89: 907-916
- Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of *Arabidopsis*. Proc Nat Acad Sci USA **101**: 15243-15248
- Delauney A, Verma D (1993) Proline biosynthesis and osmoregulation in plants. Plant J4: 215-223
Dhanaraj AL, Alkharouf NW, Beard HS, Chouikha IB, Matthews BF, Wei H, Arora R, Rowland LJ (2007) Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions. Planta 225: 735-751

Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem **72:** 3573-3580

Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55: 307-319

- Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: Where next? Aust J Plant Physiol 22: 875-884
- Flowers TJ, Ludlow MM (1986) Contribution of osmotic adjustment to the dehydration tolerance of water-stressed pigeonpea (*Cajanus cajan* (L.) millsp.) leaves. Plant Cell Environ 9: 33-40
- Gagneul D, Ainouche A, Duhaze C, Lugan R, Larher F, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae *Limonium latifolium*. Plant Physiol **144**: 1598-1611
- Garg AK, Kim J-K, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA **99:** 15898-15903
- Gray GR, Heath D (2005) A global reorganization of the metabolome in *Arabidopsis* during cold acclimation is revealed by metabolic fingerprinting. Physiol Plant 124: 236-248

- Griffith M, Timonin M, Wong CE, Gray G, Akhter SR, Saldanha M, Rogers MA,
  Weretilnyk EA, Moffatt BA (2007) *Thellungiella*: an *Arabidopsis*-related model
  plant adapted to cold temperatures. Plant Cell Environ 30: 529-538
- Hanson AD, Rathinasabapathi B, Chamberlin B, Gage DA (1991) Comparative physiological evidence that β-alanine betaine and choline-o-sulfate act as compatible osmolytes in halophytic *Limonium* species. Plant Physiol 97: 1199-1205
- Hsiao TC, Acevedo E, Fereres E, Henderson DW (1976) Water stress, growth and osmotic adjustment. Philos Trans R Soc Lond B Biol Sci 273: 479-500

Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24: 519-570

- Inan G, Zhang Q, Li PH, Wang ZL, Cao ZY, Zhang H, Zhang CQ, Quist TM,
  Goodwin SM, Zhu JH, Shi HH, Damsz B, Charbaji T, Gong QQ, Ma SS,
  Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM,
  Bohnert HJ, Joly RJ, Bressan RA, Zhu J-K (2004) Salt cress. A halophyte and
  cryophyte *Arabidopsis* relative model system and its applicability to molecular
  genetic analyses of growth and development of extremophiles. Plant Physiol 135:
  1718-1737
- Intergovernmental Panel on Climate Change (2008) <u>http://ipcc.ch</u>. Accessed August 2009.
- Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy
   CL (2004) Exploring the temperature-stress metabolome of *Arabidopsis*. Plant
   Physiol 136: 4159-4168

Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A (2007) Time-course metabolic profiling of *Arabidopsis thaliana* cell cultures after salt stress treatment. J Exp Bot **58:** 415-424

- Kishor PBK, Hong Z, Miao CH, Hu CAA, Verma DPS (1995) Overexpression of  $\Delta^1$ pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol **108**: 1387-1394
- Kramer PJ (1988) Changing concepts regarding plant water relations. Plant Cell Environ 11: 565-568
- Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for *Arabidopsis* in response to salt, osmotic, and cold stress. Plant Physiol 130: 2129-2141
- Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56: 255-265
- Kulheim C, Agren J, Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297: 91-93
- Matoh T, Watanabe J, Takahashi E (1987) Sodium, potassium, chloride, and betaine concentrations in isolated vacuoles from salt-grown Atriplex gmelini leaves. Plant Physiol 84: 173-177
- Meyer S, Genty B (1999) Heterogeneous inhibition of photosynthesis over the leaf surface of *Rosa rubiginosa* L. during water stress and abscisic acid treatment: induction of a metabolic component by limitation of CO<sub>2</sub> diffusion. Planta 210: 126-131

Miyazaki S, Fredricksen M, Hollis KC, Poroyko V, Shepley D, Galbraith DW, Long SP, Bohnert HJ (2004) Transcript expression profiles of *Arabidopsis thaliana* grown under controlled conditions and open-air elevated concentrations of CO<sub>2</sub> and of O<sub>3</sub>. Field Crops Res **90:** 47-59

- Munns R, Weir R (1981) Contribution of sugars to osmotic adjustments in elongating and expanded zones of wheat leaves during moderate water deficit at two light levels. Aust J Plant Physiol 8: 94-105
- Nonami H, Boyer JS (1989) Turgor and growth at low water potentials. Plant Physiol **89:** 798-804
- Pattanagul W, Madore MA (1999) Water deficit effects on raffinose family oligosaccharide metabolism in Coleus. Plant Physiol **121**: 987-993
- Paul MJ, Cockburn W (1989) Pinitol, a compatible solute in *Mesembryanthemum* crystallinum L. J Exp Bot 40: 1093-1098
- Popp M, Smirnoff N (1995) Polyol accumulation and metabolism during water deficit. In N Smirnoff, ed, Environment and Plant Metabolism. BIOS Scientific Publishers Limited, Oxford, U.K., pp 199 – 215
- Ramanjulu S, Bartels D (2002) Drought- and dessication-induced modulation of gene expression in plants. Plant Cell Environ 25: 141-151
- **Ristic Z, Gifford DJ, Cass DD** (1991) Heat shock proteins in two lines of *Zea mays* L. that differ in drought and heat resistance. Plant Physiol **97:** 1430-1434

Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol **134**: 1683-1696

## Schoups G, Hopmans JW, Young CA, Vrugt JA, Wallender WW, Tanji KK,

Panday S (2005) Sustainability of irrigated agriculture in the San Joaquin Valley,California. Proc Natl Acad Sci USA 102: 15352-15356

- Scoggan HJ (1978) Part 3 Dicotyledoneae (Saururaceae to Violaceae), In: The Flora of Canada, National Museums of Canada, Ottawa, pp. 790-791.
- Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and highsalinity stresses using a full-length cDNA microarray. Plant J 31: 279-292
- Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by *D*-ononitol production in transgenic *Nicotiana tabacum* L. Plant Physiol 115: 1211-1219
- Sinclair TR, Ludlow MM (1985) Who taught plants thermodynamics? The unfulfilled potential of plant water potential. Aust J Plant Physiol 12: 213-217.

Somerville C, Somerville S (1999) Plant functional genomics. Science 285: 380-383

Storey R, Jones RGW (1977) Quaternary ammonium compounds in plants in relation to salt resistance. Phytochemistry 16: 447-453 Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62: 817-836

- Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135: 1697-1709
- Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki
  K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for
  galactinol synthase in stress tolerance in *Arabidopsis thaliana*. Plant J 29: 417426
- **Tester M, Bacic A** (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol **137:** 791-793
- The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature **408**: 796-815
- **Trewavas AJ** (2001) The population/biodiversity paradox. Agricultural efficiency to save wilderness. Plant Physiol **125:** 174-179
- Trossat C, Rathinasabapathi B, Weretilnyk EA, Shen T-L, Huang Z-H, Gage DA,
   Hanson AD (1998) Salinity promotes accumulation of 3 dimethylsulfoniopropionate and its precursor S-methylmethionine in chloroplasts.
   Plant Physiol 116: 165-171
- **Turner NC** (1974) Stomatal behavior and water status of maize, sorghum, and tobacco under field conditions. II. At low soil water potential. Plant Physiol **53**: 360-365

Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: 57-63

- Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol **54:** 669-689
- Wisman E, Ohlrogge J (2000) Arabidopsis microarray service facilities. Plant Physiol124: 1468-1471
- Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in *Thellungiella*, a close relative of Arabidopsis. Plant Physiol 140: 1437-1450
- Wong CE, Li Y, Whitty BR, Diaz-Camino C, Akhter SR, Brandle JE, Golding GB, Weretilnyk EA, Moffatt BA, Griffith M (2005) Expressed sequence tags from the Yukon ecotype of *Thellungiella* reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Mol Biol 58: 561-574
- Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25: 131-139
- Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late
   embryogenesis abundant protein gene, *HVA1*, from barley confers tolerance to
   water deficit and salt stress in transgenic rice. Plant Physiol 110: 249-257
- Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208: 2819-2830

Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217: 1214-1222

- Yelenosky G, Guy CL (1989) Freezing tolerance of citrus, spinach, and petunia leaf tissue. Plant Physiol 89: 444-451
- Yeo AR, Lee K-S, Izard P, Boursier PJ, Flowers TJ (1991) Short- and long-term effects of salinity on leaf growth in rice (*Oryza sativa L*.). J Exp Bot 42: 881-889
- Zhu B, Su J, Chang MC, Verma DPS, Fan YL, Wu R (1998) Overexpression of a pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Plant Sci 139: 41-48

Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6: 66-71

#### Chapter Two

#### **Methods and Materials**

### 2.1 Yukon field site location and plants

In 2002, 2003 and 2005, cauline leaf tissue was harvested from mature, flowering Yukon *Thellungiella* at a field site near Whitehorse, Yukon (location: 60° 55.928'N, 135° 10.249' W; elevation = 647m), located 20 km north of Whitehorse (Fig. 1). Soil samples were collected from the top 18 cm depth at the field site where Yukon *Thellungiella* was harvested. Soil pH, electrical conductivity, and chemical content were determined and the elemental composition of soil samples, field and chamber leaf tissues were analyzed (Ping et al., 1998). Five to six cauline leaves, weighing approximately 200 mg FW were harvested from at least ten different plants 7 h from sunrise in the Yukon, and then tissue was transferred quickly to individual 2-mL Nalgene cryovials. The cryovials containing the samples were immediately flash frozen in liquid nitrogen (Jacob's Industries Limited, Whitehorse, YT), and then transferred to a charged MVE XC20/3V vapour shipper (Jencons Scientific Inc., Bridgeville, PA) where samples were kept frozen at -150°C for transport. Vials were transferred to -80°C for storage pending analysis.

### 2.2 Controlled environment plant growth conditions

Seeds of Yukon *Thellungiella* were sterilized using a vapour-phase gas technique (Clough and Bent, 1998) and then mixed with 0.1% (w/v) Phytagel (Sigma, Oakville, ON) and pipetted onto a moistened soil mixture containing six parts Promix BX (Premier Horticulture, Rivière-du-Loup, PQ) and one part Turface (Profile Products LLC, Buffalo, NY) in individual 5 x 5 x 7 cm pots. The pots containing seeds were stratified for 2 d at 4°C before transfer to growth chambers (AC 60 Enconair, Winnipeg, MB) set with a 21h/3h day/night cycle (light intensity of 250  $\mu$ mol m<sup>-2</sup>s<sup>-1</sup>) and 22°C/10°C day/night temperature regime. Plants were watered daily with de-ionized distilled water prepared using Barnstead NANO Pure II system (Barnstead International, Dubuque, IA) and fertilized once per week with 1 g L<sup>-1</sup> 20-20-20 (N-P-K) fertilizer.

Cauline leaves from mature, flowering, 12-week-old Yukon *Thellungiella* plants grown in Enconair chambers served as control, unstressed tissue in microarray and metabolite profiling experiments in comparisons involving the cauline leaves from fieldgrown plants (Prepared by Mr. Yong Li under the supervision of Dr. Barbara Moffatt, University of Waterloo). Basal rosette leaves of unstressed control plants served as the basis of comparison for metabolite profiles in the case of cold, drought, drought/rewatered and saline plant samples.

### 2.3 Stress treatments

For drought experiments, 4-week-old Yukon *Thellungiella* plants were randomly divided into two groups: a control group that was well-watered and a drought group where water was withheld until plants were visibly wilted. Approximately one-half of

the wilted plants in the drought treatment were re-watered by watering the soil. The rewatered plants were allowed to recover and regain turgor for 48 h prior to harvest. To impose salinity stress, 4-week-old Yukon *Thellungiella* plants were salinized with 50 mM NaCl for three days and the salinity level increased in increments of 50 mM NaCl every three days to a final concentration ranging from 100 to as high as 500 mM NaCl. Plants were irrigated with the final NaCl concentration for 3 d prior to harvest. Leaf tissue was harvested and flash-frozen with liquid nitrogen and then stored at -80°C for subsequent GC/MS analysis. Cold temperature experiments were performed by Dr. Marilyn Griffith's lab at the University of Waterloo. Four-week-old Yukon *Thellungiella* plants grown at 22°C were randomly divided into two groups: a control group that was grown at 22°C and a group that was shifted to 5/4°C for 3-weeks. Upon completion of the stress treatments a portion of the leaf tissue was flash-frozen in liquid nitrogen and stored at -80°C until it was processed for transcript or metabolite profiling

### 2.4 Water status and physiological response measurements

### **Relative water content (RWC)**

For RWC measurements, 6 mm diameter discs were removed from leaves using a cork borer and weighed to obtain their FW and then allowed to float on 2 mL of deionized, distilled water in covered transparent Falcon® plastic wells (Becton Dickinson Labware, Franklin Lakes, NJ) for 24 h. The discs were blotted dry and weighed to obtain the turgid weight. The dry weight was then obtained after by taking the leaf discs and drying them in an oven set at 70°C for 24 h in pre-weighed 1.5 mL microfuge tubes. The RWC was determined using the following equation:

RWC (%) = [(Fresh weight – Dry weight)/(Turgid weight – Dry weight)]

### **Dewpoint psychrometry**

Leaf water potential was measured using a HR 33 T psychrometer (Wescor Inc. Logan, UT). A disc was excised from a fully expanded leaf using a 6 mm diameter cork borer and then was placed in a C52 leaf chamber. Discs were allowed to come to equilibrium with the air in the chamber for 20 min. Leaf solute potential was determined by submerging the leaf disc in liquid nitrogen for a few seconds. The frozen leaf disc was allowed to thaw and come to equilibrium for 20 min with the air in a C52 leaf chamber. Leaf turgor pressure was estimated as the difference between the water potential and osmotic potential (Nonami and Boyer, 1989). A calibration standard curve was performed using NaCl concentrations in the range of 0 to 1000  $\mu$ M before taking leaf  $\psi_W$  measurements.

### **Infrared gas analysis**

A CIRAS-1 infrared gas analyzer (IRGA) (PP Systems, Haverhill, MA) was used to determine rates of photosynthesis, transpiration, and stomatal conductance using excised leaves. The leaves were left to equilibrate in the leaf chamber for 60 s before taking a measurement. The leaf boundary-layer resistance was determined by following the operator's manual (CIRAS-1 Version 2). A calibration curve estimating resistance as a function of leaf area was determined and used to calculate rates of photosynthesis and stomatal conductance. Given that the leaves were typically less than 2.5 cm<sup>2</sup> and so did not cover the area in the leaf chamber of the instrument, it was necessary to correct rates using leaf areas. Leaf areas were determined using an AM100 leaf area meter (Analytical Development Company Ltd., Herts, UK). For photosynthesis rate measurements the light intensity was set to 300 μmol m<sup>-2</sup>s<sup>-1</sup> and the CO<sub>2</sub> concentration was maintained at 450 ppm. The instrument data was imported to a statistical analysis software (SAS) Version 7 (SAS Institute, Cary, NC) and rates of photosynthesis, transpiration and stomatal conductance were calculated with the corrected leaf area using PS\_EQN\_CIRAS equation (Appendix 1), which is saved in the SAS program (the PS\_EQN\_CIRAS equation was created by Jon Sleeman, former M.Sc. student of Dr. S. Dudley).

## 2.5 Metabolite analysis of Yukon Thellungiella

### Polar metabolite extraction of Yukon Thellungiella leaf tissue

At harvest, 200 mg of leaf tissue was weighed and then flash frozen in liquid nitrogen and stored in a -80°C freezer until samples were processed. For processing, the tissue was crushed to a powder with a mortar and pestle that was chilled with liquid nitrogen prior to grinding. The leaves were ground to a powder in liquid nitrogen and after the nitrogen evaporated 1.4 mL of 100% HPLC grade methanol was added (Caledon Laboratories Limited, Georgetown, ON). 50  $\mu$ L of 2 mg mL<sup>-1</sup> ribitol (Sigma) was added

as an internal recovery standard and 58 µL of 1 M NaCl was added to improve the polar/non-polar phase separation of the slurry. This slurry was transferred to a 15 mL Corex<sup>©</sup> tube. The Corex<sup>©</sup> tube containing the brei was covered with aluminum foil with a punctured hole and was placed in a 70°C water bath and shaken for 15 min. The tubes were then centrifuged for 3 min at 14000 g at 4°C using a Beckman Coulter Avanti J-25 Centrifuge equipped with a JA-20 rotor (Fullerton, CA). The supernatant was removed and transferred to a 16 x 100 mm test tube (VWR) and 1.4 mL of de-ionized, distilled H<sub>2</sub>O was added. To the remaining pellet in the Corex© tube, 750 µL of chloroform were added, the tube was shaken for 5 min at room temperature and then centrifuged for 3 min at 14000 g as above. The supernatant was removed and combined with the methanol water phase in the 16 x 100 mm test tube and the pooled mixture was vortexed and centrifuged for 15 min (International Clinical Centrifuge Model CL, Needham, MA) at the step 5 speed setting. The polar (upper) phase was transferred to a new 16 x 100 mm test tube and vortexed again. After vortexing,  $250 \,\mu$ L of polar extract was removed and transferred to a 1 mL reaction vial (Wheaton, Millville, NJ). This polar fraction was dried down with nitrogen gas using an N-evap (Meyer N-evap organomation model no. 111 Berlin, MA) with an airflow pressure of 20 psi and the bottom of the tubes were suspended in a water bath set at 40°C. A 250 µL aliquot of the polar phase was combined with 250 µL of de-ionized distilled water in a microfuge tube with 1 mm holes in the lids. These tubes were then flash frozen in liquid nitrogen and lyophilized using a freeze dry system (Labconco Freezone Plus 6, Kansas City, MO) overnight and then the tubes were stored in desiccant at -20°C.

## **Oxime derivatization**

Direct trimethylsilyl derivatization of reducing sugars leads to different peaks related to cyclic and linear forms for the same compound (Fiehn et al., 2000b). One way to prevent the formation of the cyclic conformation of sugars is to treat them with methoxyamine in order to reduce and stabilize the carbonyl moiety (Roessner et al., 2000). Therefore, 50  $\mu$ L of 20 mg mL<sup>-1</sup> methoxyamine hydrochloride (Sigma) dissolved in biotech grade  $\geq$  99.9% pyridine (Sigma) was added to the dried leaf extract and the mixture was incubated at 30°C in a Baxter temperature block heater (Lab-line instruments, Inc. Melrose Park, IL) for 90 min prior to trimethylsilyl derivatization.

### **Trimethysilyl derivatization**

After methoxymation, the polar metabolites were converted into volatile trimethylsilyl derivatives by using the derivatization agent N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA). MSTFA (Chromatographic Specialties Inc. Brockville, ON) is the preferred trimethylsilyl reagent due to its ability to derivatize a broad range of chemical compound classes (Fiehn et al., 2000a; Roessner et al., 2000). The samples were derivatized with 80  $\mu$ L of 100% MSTFA at 37°C for 30 min. After incubation, the derivatized samples were placed in a desiccator jar containing anhydrous calcium sulphate (Drierite) for at least 2 h prior to analysis by GC/MS.

### **GC/MS** analysis

Derivatized plant extracts were analyzed using a Trace DSQ GC-MS system (Thermo Finnigan, Austin, TX) operated in the positive ion electron impact (EI<sup>+</sup>) full scan mode. Samples were diluted 25-fold using HPLC-grade hexane and then  $1-\mu L$  was injected into the Trace DSQ GC-MS system using the MPS 2 autosampler (Gerstel GmbH & Co., Mülheim, Germany). Chromatography was performed using a Restek Rtx-5MS integra column (crossbond 5% diphenyl – 95% dimethyl polysiloxane; Cat.#12623 -127, Chromatographic Specialties Inc.) with a length of 30 m, a column ID of 0.25mm and a film thickness of  $0.25\mu m$ . The column was fused with a 10 m guard column that had the same composition as the column. The injection temperature was 230°C, and the ion source was kept at 200°C. The carrier gas was high purity (>99.999%) helium (VitalAire, Hamilton, ON) at a constant flow rate of 1 mL min<sup>-1</sup>. The oven temperature program was initially set at 50°C isocratic for 2.5 min, the temperature was increased first at 7.5°C min<sup>-1</sup> to 70°C, and then followed by a 5°C min<sup>-1</sup> ramp to a final temperature of 310°C that was isocratic for 6 min. The system was allowed to return to 50°C for 5 min before the next injection. Mass spectra were recorded at three scans  $s^{-1}$  with an m/z 50 – 650 scanning range.

### Criteria used to monitor GC column performance

GC column performance was monitored by injecting a polycyclic aromatic hydrocarbon (PAH) calibration standard solution mix #5 (Restek Co., Bellefonte, PA). This standard solution contained the benzofluoranthenes, a group of PAHs with identical mass spectrum that can only be resolved chromatographically. Therefore, GC column performance was monitored by ensuring that the peaks for benzofluoranthene (b) and (k) were successfully resolved. If these PAHs were not resolved, the removal of 50 to 70 cm of the retention gap would restore the GC column performance that was checked by re-running the PAH calibration standard solution prior to metabolite profiling of plant extracts.

#### **GC/MS data analysis**

GC/MS chromatograms or metabolite profiles are quite complex revealing the presence of several hundred peaks. Figure 2 shows representative GC/MS chromatograms generated for polar extracts prepared from Yukon *Thellungiella* subjected to different stress treatments or from plants harvested from the field site near Whitehorse, YT. The metabolite profiles show the presence of major and minor peaks. The enlarged portion of Figure 2 shows a comparison between the metabolite profiles generated for cold-treated Yukon *Thellungiella* plants and a plant that was grown under unstressed conditions. While a number of peaks are not different between Yukon *Thellungiella* plants treated with cold temperatures relative to an unstressed plants (a), a number of peak are higher (b) or lower (c) in the metabolite profiles from treated Yukon *Thellungiella* relative to the unstressed control plant. The main objective from these metabolite profiling studies was to identify metabolites undergoing statistically significant differences in abundance in *Thellungiella* subjected to stress treatments compared with respective controls. Therefore, it is necessary to extract information on

37

the areas of peaks present in the metabolite profiles of control and treated *Thellungiella* plants in a reproducible and efficient fashion.

#### **Deconvolution of mass spectral components**

High-throughput approaches require efficient and reproducible extraction of data. As such, visual peak-by-peak comparison between multiple GC/MS analyses was not feasible. Although the majority of peaks could be resolved by peak area integration using the X calibur software, some peaks co-eluted posing a challenge for precise peak abundance determination. For example, Figure 3 shows a sample raw chromatogram (a) with panel (b) showing irregularities in peak shape due to the presence of more than one peak component. Upon careful examination, two peaks were found to have different mass spectra within this major peak, as shown in panels c and d. Therefore, it was necessary to extract the pure mass spectra to distinguish between closely eluting peaks along with their accurate peak abundance information. The automated mass spectral deconvolution of identification system (AMDIS) was used to extract peak abundance and pure mass spectral component information from the complex chromatograms generated for leaf metabolite profiles. With AMDIS it is possible to separate the mass spectra of overlapping, co-eluting peaks rapidly, a process commonly referred to as deconvolution (Stein, 1999). AMDIS creates an eluent file (\*.elu) in a tab-delimited format that contains information on peak abundance and mass spectrum of an individual component. Unfortunately, the absolute retention times (RTs) for identical peaks from multiple successive GC/MS analyses were not identical making direct comparisons for these peaks

difficult. An additional step is necessary to align identical peaks from multiple GC/MS analyses prior to statistical analysis.

### Peak alignment using the GC/MS data analysis software package (GASP)

The eluent tab-delimited data files generated from GC/MS using AMDIS are complex and difficult to compare. Variation is found in the absolute RTs of identical peaks in chromatograms from multiple analyses done on different days or even different times on the same day. Correcting for shifting RTs was not possible due to the nonlinearity of changes across the chromatogram. To correct for shifting RTs, Roessner et al. (2000) added fatty acid standards of different molecular weights (non-branched) to each sample prior to derivatization and GC/MS analysis. In this approach, a retention index (RI) value for a peak can be calculated that describes peak position relative to the two flanking fatty acid standard peaks in the chromatogram (Roessner et al., 2000). Thus all peaks are designated by their RI and peaks from multiple runs that share the same RI can then be aligned.

I used the exact method by Roessner et al. (2000) to calculate the RIs for peaks from GC/MS runs. In order to calculate the RI for peaks, a fatty acid standard mix was added to extracts. The fatty acid standard mix was prepared by adding 9 fatty acid standards that had variable lengths in hydrocarbon chain ( $C_7$ ,  $C_9$ ,  $C_{11}$ ,  $C_{13}$ ,  $C_{15}$ ,  $C_{19}$ ,  $C_{23}$ ,  $C_{27}$ ,  $C_{31}$ ) dissolved in tetrahydrofuran in a Kimble vial and expressed as a % v/v: heptanoic acid 3.7%, nonanoic acid 3.7%, undecanoic acid 3.7%, tridecanoic acid 3.7%, pentadecanoic acid 3.7%, nonadecanoic acid 7.4%, tricosanoic acid 7.4%, heptacosanoic

39

acid 22.2% and hentriacontanoic acid 55.5% (Sigma). The fatty acid standards were dissolved in tetrahydrofuran to a final concentration of 10  $\mu$ g  $\mu$ L<sup>-1</sup>. To the dried leaf extract, 25  $\mu$ L of a 10  $\mu$ g  $\mu$ L<sup>-1</sup> fatty acid standard mix dissolved in tetrahydrofuran was added and the mixture was dried down using nitrogen gas prior to methoxymation and derivatization.

All the peaks present in the GC/MS files were deconvoluted using AMDIS to create the tab-delimited eluent file. This eluent file was then converted into a GC/MS universal (\*.gmu) file format using the GC/MS data analysis software package (GASP) (Nuin et al., 2004). The GC/MS universal file contains all the peak abundance information as well as the associated RT and mass spectrum information for an individual component. In order to calculate the RI, the exact RT for each fatty acid standard needs to be entered into GASP (available at: <u>www.flintbox.com</u>) and then the RIs for all the peaks present in the GC/MS universal file are calculated using the following equation:

 $\mathbf{RI}_{x} = [(100)x(\mathbf{C}_{n}) + (((100)x(\mathbf{C}_{n+1}) - (100)x(\mathbf{C}_{n}))x((\mathbf{RT}_{x} - \mathbf{RT}_{\mathbf{Cx}-1})/(\mathbf{RT}_{\mathbf{Cx}+1} - \mathbf{RT}_{\mathbf{Cx}-1})))]$ 

 $C_n$  represents the number of carbons present in the fatty acid that elutes before the compound x

 $C_{n+1}$  represents the number of carbons present in the fatty acid that elutes after the compound x

 $RT_x$  denotes the RT of compound x

 $RT_{X+1}$  denotes the RT of fatty acid standard that elutes after compound x

 $RT_{X-1}$  denotes the RT of fatty acid standard that elutes before compound x

In addition to creating a RI for each peak present in the GC/MS universal file, the peak area is divided by the peak area of the internal recovery standard, ribitol, and hence only this normalized peak area is compared between multiple analyses. Once the RI and normalized peak areas have been determined for each GC/MS analysis, peaks sharing the same RI from multiple GC/MS universal files from multiple analyses are aligned using GASP, and a GC/MS alignment format (\*.gma) file is created. This GC/MS alignment format file will contain three columns: a column containing the normalized peak area, a column containing the original RT and a column containing the calculated RI. This file can be subjected to a variety of statistical test that are available within GASP as this software interfaces with the statistical package "R" (<u>www.r-project.org</u>) or it can be exported to Excel or any other software package for data mining.

#### **Data mining**

The strategy for data mining of metabolomic data is outlined in Figure 4. After peak deconvolution using AMDIS and alignment using GASP, the data was subjected to at least three different statistical methods routinely used for metabolomic data mining. This included using a combination of unsupervised methods such as principal component analysis (PCA) and hierarchical cluster analysis (HCA), and more stringent methods such as analysis of variance. These methods are designed to visualize and differentiate between large datasets obtained from metabolite profiles (Sumner et al., 2003; Fiehn, 2002).

### **Principal component analysis**

One of the first questions to answer during the exploration of metabolomic data is whether or not the data acquired groups into distinct groups based on differences in metabolite concentrations (Fiehn, 2002). For example, if distinct metabolite profile groups (also referred to as metabolic phenotypes, Fiehn et al., 2000a) emerge when comparing the entire dataset generated for wild-type and mutant or treated and control samples, this would signify that differences exist in their metabolite composition. PCA is an important multivariate technique used to determine whether groups exist among metabolite profiles. PCA transforms the large dataset (hundreds of peaks from multiple GC/MS analyses) into a smaller set of uncorrelated variables, called principal components that are determined by linear combinations using the peak abundance data (Fiehn et al., 2000a; Taylor et al., 2002). The contribution of each peak on this principal component (referred to as a principal component loading) is used to determine whether it plays an important role in the observed grouping patterns. Normally, the top three principal components are plotted against one another to determine whether distinct groups are evident in the overall dataset (Sumner et al., 2003). Once the existence of distinct groups are established, classical statistical methods such as Student's *t*-tests or analysis of variance (ANOVA) can be used to identify metabolites whose levels are statistically significantly different between the groups (Fiehn, 2002).

PCA analysis of metabolite profiles obtained for leaf polar extracts prepared from *Thellungiella* plants was done using the STATISTICA Version 6.0 software package (StatSoft, Inc., Tulsa, OK). The peak abundance data was log<sub>10</sub> transformed due to the observed dynamic range of concentrations in metabolite abundance. This transformation allows a better comparison of large and small numbers (Roessner et al., 2001). A covariance matrix was used to determine the principal components from the dataset.

### Analysis of variance

One-way ANOVA was used to identify peaks that were present at statistically significantly different levels in *Thellungiella* plants subjected to stress treatments relative to respective controls. This approach enabled the comparison of the means of two or more independent groups with the assumption that the means follow a normal distribution with equal variances (Sokal and Rohlf, 1995). The null hypothesis that the means of all groups are equal, was rejected when a threshold for significance of P<0.05 was obtained as determined using STATISTICA Version 6.0 software package (StatSoft, Inc., Tulsa, OK) or GASP (Nuin et al., 2004). At a P<0.05, at least one pair of means was found to be different during multiple means comparisons. Given that several hundred variables were compared between groups, the expected number of incorrect null hypotheses rejections was 15 (false positives). However, ANOVA yielded considerably more peaks undergoing statistically significant differences between treatment and control (58 for the "salt" data) or field and chamber (109 for "field") comparisons than the expected number of false positives. Means of statistically significantly different peaks between groups

43

were further explored using hierarchical cluster analysis (HCA) (described in the next section). This was performed to group peaks undergoing similar expression patterns in response to stress treatments. These results were then related to the literature for biological interpretation instead of applying multiple test corrections such as the Bonferroni correction to decrease the false discovery rate, as the Bonferroni correction is generally too conservative (Sokal and Rohlf, 1995).

### Hierarchical cluster analysis

HCA methods are used to assess the similarity between metabolite profiles (Fiehn, 2002). The most commonly used distance metric for metabolomic data analysis is the Euclidean distance (Taylor et al., 2002). The result of HCA is visualized as a dendrogram or a tree where the branch lengths are proportional to the distances between groups (Sumner et al., 2003). HCA can also be used to group peaks undergoing similar expression patterns. The first step was to identify statistically significantly different peaks between *Thellungiella* plants subjected to abiotic stress treatments compared with their respective controls. The next step was to express the mean peak abundance as a fold-ratio of the mean for treated and control samples. These fold-ratios were log<sub>10</sub> transformed and then subjected to HCA to group peaks undergoing similar expression patterns. Peaks that were not detected in either treated or control samples were assigned a threshold for detection value of 0.00005 since their true value is between zero and the detection limit. A Euclidean distance was used to calculate the matrix of all the log<sub>10</sub> transformed peak fold ratios and the average-linkage method was used to perform the

HCA either using STATISTICA Version 6.0 software package or the Gene Cluster software program (available at <u>http://rana.lbl.gov</u>, Eisen et al., 1999) to construct heatmaps. The output of the Gene Cluster software program is a \*.cdt file that can be opened with the Java Treeview program (available at: <u>http://jtreeview.sourceforge.net</u>, Saldanha, 2004) to construct heatmaps. On the heatmap white indicates no change, and red or blue indicates a peak that is present at higher or lower levels, respectively, for data of *Thellungiella* subjected to calibrated stress treatments imposed in growth cabinets relative to respective controls or field grown relative to chamber grown controls.

In summary, using a combination of PCA, HCA and ANOVA, peaks that help distinguish between metabolic phenotypes can be identified. The next step is to identify the chemical structure for these peaks in order to relate them to metabolic pathways and, in doing so, gain insights into the biochemical changes associated with response to abiotic stress.

# 2.6 Criteria for identification of metabolites

### Mass spectral library

A mass spectral library created by Dr. Chris Wang using authentic standards has been prepared using the same methodology and instrumentation as that used for the leaf samples. The first step to identify peak components was to find the closest matching mass spectrum in the library for a given peak of interest. The next step was to compare the RI for the unknown peak to that of an associated mass spectrum. Therefore, all peaks

45

that were positively identified had an identical mass spectrum and RI to that obtained for an authentic standard present in the library.

## **Co-injection using authentic standards**

Wherever possible, further confirmation for the identity of an unknown component was obtained by co-injection. In this approach, addition of a known amount of authentic standard to the extract helps identify whether the peak height associated with the target unknown increases as a result of the addition of the authentic standard. The first step is to estimate the relative amount of the peak so that the addition of the authentic standard to the extract does not overwhelm the initial peak amplitude. Ideally, the peak amplitude of the extract should double (at most) upon addition of the authentic standard. The response of the authentic standard was determined by injecting an equivalent of 5 ng and diluting appropriately prior to its addition to the extract. This approach is only feasible if the authentic standard is commercially available and there is some certainty as to its chemical identity.

### Galactosidase/glucosidase hydrolysis of complex sugars

Peaks with mass spectra that resembled disaccharides (presence of m/z 361) were assayed to determine whether they had specific linkage bonds connecting monomers. A  $\beta$ -glucosidase (E.C 3.2.1.21; Sigma) purified from almonds was used to cleave  $\beta$ -glucose linkages from complex sugars present in the polar extracts. The protocol used to perform the  $\beta$ -glucosidase hydrolysis reaction was developed by Mr. David Guevara and Dr. Peter Summers in conjunction with Mr. Jeff Malins. In total, only MST 2137 classified as a C12 sugar alcohol/disaccharide was demonstrated to undergo hydrolysis by  $\beta$ -glucosidase using this approach.

Briefly, to a 1 mL microfuge tube that contains the re-suspended polar extract in 125  $\mu$ L of de-ionized distilled water at a concentration of 7.2 mg FW equivalent mL<sup>-1</sup>, 25  $\mu$ L of 0.05 Units  $\mu$ L<sup>-1</sup> of the  $\beta$ -glucosidase enzyme was added and the reaction was allowed to proceed for 4 h in a water bath set to 37°C. To stop the reaction, 50  $\mu$ L of the extract subjected to  $\beta$ -glucosidase hydrolysis was transferred into a new microfuge tube on ice, then 350  $\mu$ L of cold 100% HPLC grade methanol was added and the mixture vortexed. To remove the enzyme, 407.5  $\mu$ L of de-ionized distilled water and 188  $\mu$ L of chloroform were added to this microfuge tube. This microfuge tube was vortexed and centrifuged for 1 min at 3000 *g* at room temperature. The polar (upper) phase was placed into a new microfuge tube and an aliquot of 467  $\mu$ L was transferred into a 1 mL Wheaton reaction vial. This polar fraction was dried down with 20 psi of N<sub>2</sub> (g) using an N-evap. The bottoms of the tubes were suspended in a water bath set at 40°C. The dried extract was then derivatized and analyzed by GC/MS using the same methods described previously.

### 2.7 Biological variability of metabolite profiles

The initial challenge was to determine whether reproducible metabolite profiles could be obtained using an experimental size of 5 plants per treatment. A sample size of five is a manageable size since samples can be harvested rapidly to avoid changes due to time effects. With larger sample sizes manipulations can take more time thereby risking the degradation of samples or the possible formation of artifacts. This was an important step since baseline variability in metabolite profiles needed to be established before further treatment comparisons could be made since Yukon *Thellungiella* seeds used for experiments were not from single seed descent.

Ten individual plants grown together under identical conditions in a growth chamber were analyzed. A Student's *t*-test was performed to determine whether the peak areas of the first 5 samples run were the same as the component areas from the subsequent 5 samples. Out of 275 peak components detected using AMDIS, only 10 were different at a significance of P<0.05, a number that is lower than the 14 expected incorrect null hypotheses rejections (false positives) for this dataset. This indicates that the metabolite profiles between the two groups representing 10 individual plants were similar. Furthermore, only 3 of the 10 significantly different peaks were present at levels 2-fold higher or lower between these groups. One reason to explain the variability in these 3 peaks is that these peaks represent chemicals whose abundance was low and near the detection limit for the detector. However, metabolites can be expected to exhibit variations in their levels between different plants since biochemical networks are not static due to oscillations that are part of maintaining plant cellular homeostasis (Weckwerth, 2003). These findings are in keeping with other studies that have found metabolite profiles to be highly reproducible, with a small number of metabolites that exhibit higher variations in their levels even though plants are grown under the same conditions (Fiehn et al., 2000b; Roessner et al., 2000). Based on these results, we

determined that N=5 is a suitable number of replicates to detect changes between metabolite profiles at a significance cut-off of P<0.05.

•

### 2.8 References

- **Clough SJ, Bent AF** (1998) Floral dip: a simplified method for *Agrobacterium*mediated transformation of *Arabidopsis thaliana*. Plant J **16**: 735-743
- Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863-14868
- Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000a) Metabolite profiling for plant functional genomics. Nat Biotechnol 18: 1157-1161
- Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000b) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 72: 3573-3580
- Fiehn O (2002) Metabolomics the link between genotypes and phenotypes. Plant Mol Biol 48: 155-171
- Nuin PAS, Weretilnyk EA, Summers PS, Guevara DR, Golding GB (2004) GASP: GC/MS data analysis software package (Unpublished)
- Ping CL, Bockheim JG, Kimble JM, Michaelson GJ, Walker DA (1998) Characteristics of cryogenic soils along a latitudinal transect in Arctic Alaska. J Geophys Res Atmosph 103: 28917-28928
- Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography/mass spectrometry. Plant J 23: 131-142

Saldanha AJ (2004) Java Treeview – extensible visualization of microarray data. Bioinformatics 20: 3246-3248

- Scoggan HJ (1978) Part 3 Dicotyledoneae (Saururaceae to Violaceae), In: The Flora of Canada, National Museums of Canada, Ottawa, pp. 790-791
- Sokal RR, Rohlf FJ (1995) Single-classification analysis of variance. In Biometry: The principles and practice of statistics in biological research third edition. W. H. Freeman and Company, NY, pp. 207-260
- Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry. J Am Soc Mass Spec
   10: 770-781
- Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62: 817-836
- Taylor J, King RD, Altmann T, Fiehn O (2002) Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics 18: S241-S248
- Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol **54:** 669-689

### Figure 1. Natural distribution of *Thellungiella* in the Yukon Territory.

Red dot denotes locations where Yukon *Thellungiella* populations were found by our research group. The purple asterisk indicates the field site location referred to as Dillabough's grazing lease, where tissue was harvested from Yukon *Thellungiella* growing on the field in the years 2002, 2003 and 2005. The Yukon Territory map was accessed from <u>http://www.yukoncommunities.yk.ca/communities</u>. MapQuest and the MapQuest logo are registered trademarks of MapQuest, Inc. Map content © 2007 by MapQuest, Inc. and its respective copyright holder. Used with permission #KMM1957870V75342L8234KM.



# Figure 2. Metabolomic analysis of Thellungiella.

A) Representative total ion chromatogram of the polar phase of leaf extracts prepared from *Thellungiella* plants subjected to various abiotic stress treatments in growth cabinets or harvested from a salt flat near Whitehorse, YT. The metabolite profiles are complex and show the presence of several hundred peaks.

B) Inset shows differences between peaks of treatment and controls; a = no change, b = higher in treated, c = lower in treated.



### Figure 3. Peak deconvolution from complex GC/MS chromatograms.

A) Chromatogram of a polar extract prepared from *Thellungiella* leaves.

B) Co-eluting peaks can be separated (deconvoluted) using AMDIS to show unique mass spectral components with unique ion traces such as m/z 319 (blue) and m/z 173 (red).
Mass spectra for co-eluting peaks i & ii are given in C & D, respectively. Mass spectral information as well as RIs calculated for mass spectral components were used to align peaks from multiple chromatograms.


Figure 4. Strategy for data mining of metabolomic data to identify metabolic traits associated with abiotic stress responses.

McMaster - Biology



#### **Chapter Three**

## "Physiological and metabolic responses of the halophytic plant, *Thellungiella* salsuginea, to salinity."

**3.0 PREFACE**: Author contributions and acknowledgements for manuscript to be submitted for publication.

<u>David Guevara:</u> Performed salinity stress experiments (water status & physiology, metabolomic analysis and statistical analysis); compiled figures; wrote first draft of the manuscript.

Dr. Sajjad Akhter: Performed seed germination and root growth experiments.

Dr. Brian McCarry: Provided suggestions for metabolomic analysis.

<u>Dr. Susan Dudley:</u> Provided CIRAS-1 equipment and suggestions for stomatal conduction and photosynthesis analysis.

Dr. Peter Summers: Critical reading and revision of the manuscript.

<u>Dr. Elizabeth Weretilnyk:</u> Supervised the project and oversaw revisions of this and all the drafts.

## RUNNING HEAD: Yukon Thellungiella response to salinity

| Corresponding author: | Dr. Elizabeth Weretilnyk         |
|-----------------------|----------------------------------|
|                       | Department of Biology,           |
|                       | McMaster University              |
|                       | 1280 Main St. West, Hamilton, ON |
|                       | L8S 4K1, Canada                  |
|                       | Tel: (905) 525-9140, Ext 24573   |
|                       | Fax: (905) 522-6066              |
|                       | e-mail: weretil@mcmaster.ca      |

**Research category** 

Environmental Stress and Adaptation

## TITLE:

Physiological and metabolic responses of the halophytic plant, *Thellungiella* salsuginea, to salinity.

#### AUTHORS:

David Guevara<sup>1</sup>, Sajjad Akhter<sup>3</sup>, Brian McCarry<sup>2</sup>, Peter Summers<sup>1</sup>, Susan Dudley<sup>1</sup>, Elizabeth Weretilnyk<sup>1\*</sup>

 <sup>1</sup> Departments of Biology and <sup>2</sup>Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada, L8S 4K1
 <sup>3</sup> Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1 FOOTNOTES:

1 This work was supported by a Discovery Grant by the Natural Sciences and

Engineering Research Council of Canada to E.A.W.

\* Corresponding Author; E-mail weretil@mcmaster.ca

#### 3.1 ABSTRACT

Thellungiella salsuginea Yukon ecotype is a subarctic crucifer native to habitats with highly saline soils and displays an exceptional ability to tolerate sea-strength salinity. Yukon Thellungiella plants were subjected to NaCl treatments to identify traits associated with salinity tolerance. Yukon Thellungiella seeds can germinate on agar media supplemented with up to 100 mM NaCl and once germinated seedlings maintain 60% the root elongation rates of seedlings grown in the absence of NaCl. Plants salinized gradually to 300 mM NaCl on soil showed rates of stomatal conductance and photosynthesis that were 48% and 64%, respectively, of rates for well-watered, unsalinized, control plants. Leaf water and solute potential measurements from Yukon Thellungiella irrigated with NaCl show that leaf solute content increases in a saltresponsive manner. Polar solutes from leaves were profiled using gas chromatography/mass spectrometry. Of the 300 mass spectral tags (MSTs) detected in metabolite profiles, 25, 27 and 48 MSTs were found to be significantly different in Yukon Thellungiella subjected to 100 mM, 300 mM or 500 mM NaCl, respectively, relative to unsalinized controls. Among the metabolites consistently more abundant in Yukon Thellungiella subjected to 300 mM NaCl and 500 mM NaCl were glucose, proline, pyroglutamic acid, sucrose, valine, and six sugar-like compounds. Our results suggest that part of the mechanism enabling Yukon Thellungiella to tolerate salinity involves the accumulation of proline and carbohydrates.

### **3.2 INTRODUCTION**

Soil salinity negatively impacts plant growth and productivity. Unfortunately, the accumulation of salt in arable lands as a result of poor irrigation poses serious threats to agriculture (Shani et al., 2005). Therefore, it will be necessary to improve the salinity tolerance of crops in order to meet the demands for food production. The family Brassicaceae includes a number of agronomically important species that are negatively affected by high salinity (Ashraf and McNeilly, 2004), while at least thirty of its members are halophytes (Flowers et al., 1986). Among these halophytic species is *Thellungiella* salsuginea (also known as salt cress, Thellungiella halophila, hereafter referred to as *Thellungiella*) which is capable of completing its lifecycle when grown under sea-water strength salinity (Zhu 2001; Gong et al., 2005; Kant et al., 2006). Thellungiella's close similarity to Arabidopsis thaliana (>90% nucleotide identity; Zhu, 2001) permits the use of the genetic resources and tools amassed for the study of Arabidopsis to unravel the molecular mechanism(s) underlying salinity tolerance of *Thellungiella* (Bressan et al., 2001; Zhu 2001). The use of Thellungiella as a genetic model species for the study of salinity tolerance will provide invaluable information that can be used to develop crops that have a greater ability to tolerate saline soils.

Plants growing on saline soil have a reduced ability to take up water due to the high concentrations of dissolved salts in the soil water that lowers the soil water potential  $(\psi_W)$  relative to that of the roots (Rodriguez et al., 1997). Some plants are able to lower their root  $\psi_W$  by accumulating non-toxic "compatible" solutes such as amino acids,

sugars and straight chain or cyclic polyols in order to create a  $\psi_W$  gradient that allows for water uptake from saline soils (Jefferies et al., 1979). Natural accessions of *Thellungiella* native to maritime China (Shandong Province) and sub-arctic Canada (Yukon Territory) grow on highly saline soils (Inan et al., 2004; Guevara et al., 2009) and it has been shown that they accumulate solutes in response to abiotic stress (Inan et al., 2004; Wong et al., 2006). Shandong *Thellungiella* plants exposed to 250 mM NaCl for 24 h were shown to accumulate sugars such as galactinol, glucose, inositol, trehalose, and a trehalose-like sugar and the amino acids glutamate and proline (Gong et al., 2005). The observation that Shandong Thellungiella accumulates a number of carbohydrates and amino acids in response to salinity suggests that this plant uses chemically diverse compatible solutes to promote water uptake during exposure to saline conditions. This interpretation finds further support in the reports that transcripts encoding enzymes involved in the synthesis of sugars and amino acids are enriched in both the Shandong and Yukon ecotypes of Thellungiella exposed to abiotic stress (Inan et al., 2004; Taji et al., 2004; Gong et al., 2005; Wong et al., 2006).

Proline accumulation, a response associated with stress tolerance in many plant species (Delauney and Verma, 1993), has been proposed to be an important trait for salinity tolerance in Shandong *Thellungiella* (Gong et al., 2005; Inan et al., 2004; Kant et al., 2006). However, the roles organic solutes such as sugars or sugar-like metabolites play in salinity tolerance in *Thellungiella* subjected to saline environments is unknown. In this study, Yukon *Thellungiella* plants were subjected to a step-wise increase in salt to identify physiological and metabolic traits that are present during plant acclimation to NaCl. The role of proline and soluble sugars in promoting water uptake in Yukon *Thellungiella* exposed to saline environments is discussed.

#### **3.3 MATERIALS AND METHODS**

#### Plant growth and stress treatments

For seed germination and primary root growth studies, *Thellungiella* seeds were surface sterilized in 0.6% (v/v) sodium hypochlorite for 10 min, rinsed twice with 95% ethanol and then rinsed extensively with sterile, distilled water. Sterile seeds were sown on 0.7% (w/v) agar or media supplemented with NaCl. The seeds were stratified for 2 d in the dark at 4°C, and then the plates were transferred to 20°C under continuous light (50  $\mu$ mol m<sup>-2</sup>s<sup>-1</sup>) for 10 d. The emergence of a 2 mm radicle from the seed coat defined the time of germination and primary root length measurements were recorded daily.

*Thellungiella* seeds of the Yukon ecotype were sown on a moistened soil mixture containing six parts Promix BX (Premier Horticulture, Rivière-du-Loup, PQ) and one part Turface (Profile Products LLC, Buffalo, NY) in individual 5 x 5 x 7 cm pots, as described in Wong et al. (2006). The seeds were stratified for 2 d at 4°C and then the pots were transferred to growth chambers (AC60 Enconair, Winnipeg, MB) set for a 21-h/22°C d with an irradiance of 250  $\mu$ mol m<sup>-2</sup>s<sup>-1</sup> and a nighttime temperature of 10°C. For salinity treatments, four-week-old plants were watered with 50 mM NaCl for 3 d and the salinity level of the irrigating solution was increased in increments of 50 mM NaCl every

3 d to final concentrations of 100mM, 300 mM, and 500 mM NaCl. Plants were watered for 3 d at their final salinity level prior to physiological analysis and harvest of salinized and respective unsalinized controls at each salt step.

#### Water potential measurements

Leaf water  $(\psi_W)$  and solute  $(\psi_S)$  potential measurements were performed using a HR33T psychrometer fitted with a C52 chamber (Wescor Inc., Logan, UT) using a 6 mm diameter disc excised from a mature fully expanded leaf (Wong et al., 2006). Leaf turgor  $(\psi_P)$  pressure was estimated as the difference between the water and solute potential measurements (Nonami and Boyer, 1989).

#### **Photosynthesis measurements**

A CIRAS-1 infrared gas analyzer (IRGA) (PP Systems, Haverhill, MA, USA) was used to measure rates of photosynthesis and stomatal conductance. Excised leaves were quickly placed in the leaf chamber and left to equilibrate for 60 s before taking a measurement. The light intensity was set to 300  $\mu$ mol m<sup>-2</sup>s<sup>-1</sup> and the CO<sub>2</sub> concentration was 450 ppm. A calibration curve plotting resistance as a function of leaf area was performed to determine the leaf boundary-layer resistance, as outlined in the CIRAS-1 Version 2 operator's manual to correct rates of photosynthesis and stomatal conductance for leaf area was measured using an AM100 leaf area meter (Analytical Development Company Ltd., Hoddesdon,UK).

#### Metabolite analysis

The procedure followed for polar metabolite extraction and analysis by gas chromatography/mass spectrometry was essentially that described by Fiehn et al. (2000). A 200-mg sample of leaf tissue to which 50  $\mu$ L of the internal standard ribitol (2 mg mL<sup>-1</sup>) was added was ground and the polar metabolites were extracted using 1.4 mL of methanol, 1.4 mL of de-ionized distilled water and 0.75 mL of chloroform. The methanol/water fraction containing the polar metabolites was dried under a stream of N<sub>2</sub> (g), a 25  $\mu$ L aliquot of RT standard mixture containing odd-chained fatty acids (Roessner et al., 2000) was added and the mixture dried as before. To the residue 50  $\mu$ L of methoxyamine (20 mg mL<sup>-1</sup> in pyridine) was added and the contents incubated at 30°C for 90 min. Samples were derivatized with 80  $\mu$ L of N-methyl-N-trimethylsilyl trifluoroacetamide and incubated at 37°C for 30 min.

The samples were diluted 25-fold in hexane and then 1  $\mu$ L was injected using a MPS 2 autosampler (Gerstel GmbH & Co., Mülheim, Germany) into a Trace DSQ GC/MS system (Thermo Finnnigan, Austin TX) operated in the positive ion electron impact (Ef<sup>+</sup>) full scan mode. Chromatography was performed using a 30 m x 0.25 mm I.D. and 0.25  $\mu$ m film thickness Restek Rtx-5MS integra column (Chromatographic Specialties Inc., Brockville, ON) equipped with a 10 m guard column of the same composition. The injection temperature was 230°C, and the ion source was kept at 200°C. The carrier gas was helium at a flow rate of 1 mL min<sup>-1</sup>. The temperature was initially set at 50°C for 2.5 min then 7.5°C min<sup>-1</sup> to 70°C followed by 5°C min<sup>-1</sup> to a final

temperature of 310°C where it was maintained for 6 min. Mass spectra were recorded at 3 scans s<sup>-1</sup> with a mass-to-charge (m/z) scanning range of 50 to 650.

The automated mass spectral deconvolution and identification system (AMDIS) was used to extract peak abundance and mass spectral information for each trimethylsilyl (TMS) derivative component. This information was imported into the GC/MS Data Analysis Software Package (GASP; Available at: <u>www.flintbox.com</u>, Nuin et al., 2004) where peak area was normalized to that of the internal standard ribitol, and the RI calculated according to Roessner et al. (2000). Each TMS component was labeled with a RI. The RI and mass spectrum (MS) are used to distinguish different mass spectral tags (MSTs) as defined by Kopka (2006). The putative chemical identity for MSTs was obtained by querying a library generated using authentic standards that were analyzed using the same instrument.

#### Data analysis

Principal component analysis (PCA) and analysis of variance (ANOVA) were performed using the STATISTICA software package Version 6 (StatSoft Inc., Tulsa, OK) with the abundance information for each MST deconvoluted using AMDIS. For PCA, the abundance data was log<sub>10</sub> transformed and then a co-variance matrix was used to calculate the principal components. The abundance information of MSTs that were significantly different between treated and control tissue at a P<0.05 as determined by ANOVA were expressed as a log<sub>10</sub> transformed fold-ratio of the means between treated and control groups. This fold-ratio was then subjected to hierarchical cluster analysis (HCA) to group metabolites according to their similarity in pattern of expression at each salt step. Euclidean distance was used to calculate the distance matrix using the Cluster program (<u>http://rana.lbl.gov</u>, Eisen et al., 1998). The complete-linkage method was used for data clustering and heatmaps were constructed using the JavaTreeview program (Saldanha, 2004).

#### **3.4 RESULTS**

#### Thellungiella growth on NaCl

The germination efficiency of Yukon *Thellungiella* seeds on agar media was not affected by exposure to 50 or 100 mM NaCl. However, Figure 1 shows that seedlings exposed to the agar medium containing 50 mM or 100 mM NaCl resulted in a reduced root growth relative to unstressed controls. After 10 d, roots of seedlings on 50 mM and 100 mM NaCl were 17% and 26% shorter, respectively, than roots of unsalinized controls. The germination efficiency of seeds on media supplemented with 150 mM NaCl was reduced to 80% and was only 30% when seeds were exposed to 200 mM NaCl (data not shown).

Yukon *Thellungiella* plants were grown on soil and watered with a solution containing increasing concentrations of NaCl. Figure 2A shows representative Yukon *Thellungiella* plants watered with a solution lacking added NaCl and plants watered with 100 and 300 mM NaCl. All plants eventually flowered and set seed. *Thellungiella* plants watered with a final concentration of 100 mM NaCl showed rates of stomatal conductance and photosynthesis that were not significantly different from rates observed for unsalinized control plants (Fig. 2B). However, *Thellungiella* plants salinized to 200 mM NaCl or 300 mM NaCl showed 60% and 48% the rates of stomatal conductance observed in unsalinized controls, respectively. Plants exposed to 300 mM showed 64% of the rates of photosynthesis recorded for the corresponding controls (Fig. 2B).

#### Thellungiella plants accumulate solutes in response to NaCl

Unstressed Yukon *Thellungiella* plants have a leaf  $\psi_W$  of – 0.9 MPa and leaf  $\psi_W$  decreases with exposure to successively higher concentrations of NaCl (Fig. 3). Similarly, the leaf  $\psi_S$  of plants decreases in a salt-responsive manner. Leaf  $\psi_S$  decreased by 36% upon exposure to 100 mM NaCl, and up to a 300% decrease in leaf  $\psi_S$  was observed when plants were subjected to 500 mM NaCl compared to an unsalinized plant (Fig. 3). However, even when leaf  $\psi_S$  values were found to be as low as – 4.0 MPa the leaves showed a positive  $\psi_P$ . Therefore, the drop in leaf  $\psi_S$  shows that solute content of *Thellungiella* leaves increased as a function of exposure to higher concentrations of NaCl.

#### Metabolite profiling of Yukon Thellungiella subjected to salt treatments

The polar organic solutes contributing to the drop in leaf  $\psi_s$  were profiled by GC/MS analysis of leaves from plants exposed to 100 mM NaCl ("low"salt), 300 mM

NaCl ("medium"salt) or 500 mM NaCl ("high"salt). All metabolite profiling included comparisons made with control, unsalinized plants of the same age grown under identical conditions. The metabolite profiles derived using GC/MS were complex and were composed of several hundred TMS derivatives including amino acids, amines, organic acids, sugars, and polyols.

Principal component analysis (PCA) was used to investigate differences between the metabolite profiles of Yukon Thellungiella plants irrigated with salt and their respective controls. PCA is an unsupervised multivariate data analysis approach used to determine whether groups exist in metabolomic data through visual interpretation (Fiehn, 2002). PCA can also be used to calculate the relative contribution of an individual metabolite towards the observed grouping pattern through the examination of the principal component (PC) loadings. We performed PCA using the complete data comprised of 30 metabolite profiles representing 300 MSTs. Of the total metabolite variance detected, 63% can be accounted for by the first three PCs (PC1 = 41\%, PC2= 12%, PC3= 9%). Figure 4A shows PC1 and PC2 plotted against each other giving rise to separate groups for the metabolite profiles of polar extracts prepared from leaves of Yukon Thellungiella plants watered with NaCl or not. Four main groups are shown by the treatments and these distinguish three groups representing treatments for metabolite profiles of plants exposed to 100 mM, 300 mM or 500 mM NaCl and the treatment for all of the controls grouped as a fourth group (Fig. 4A). PC loading analysis revealed that the variables citrate, galactose, glucose, malate, proline, and sucrose all contribute to the observed grouping (Fig 4B).

An ANOVA performed using the same data shows 58 MSTs to differ significantly with respect to relative abundance (P<0.05) among the different treatments. PCA was performed using the abundance of these MSTs only. Of the total metabolite variance detected, 90% can be accounted for by the first three PCs (PC1 = 58%, PC2= 17%, PC3= 15%). The main groups observed were comparable to those observed using the entire data (Fig. S1A). The variables galactose, glucose, malate, proline, and sucrose were also found to exert the greatest influence in the observed grouping patterns (Fig. S1B). To determine the relative influence of each of these variables on the overall grouping pattern observed for all 58 MSTs, MST relative abundance for galactose, glucose, malate, proline or sucrose were removed from the data in turn and PCA analysis was carried out on the remaining data representing the remaining 57 MSTs. It was found that only malate (Fig. S2E) and proline (Fig. S2F) led to a change in the grouping pattern observed for the analysis performed using the abundance of the 58 statistically significant MSTs. By contrast, the removal of glucose (Fig. S2B), galactose (Fig. S2C), or sucrose (Fig S2D) from the dataset did not change the overall grouping pattern. This provides evidence for malate and proline as playing prominent roles in generating the grouping patterns observed in the PC1 and PC2 biplots. Therefore, the formation of distinct groups from by distinct treatments provides evidence that differences among metabolite abundance and/or composition distinguishes samples prepared from Yukon Thellungiella subjected to saline conditions compared to unsalinized controls.

The mean abundance for each of the 58 statistically different MST was expressed as a ratio between salt-treated and unsalinized control, the ratio was log<sub>10</sub> transformed,

then subjected to hierarchical cluster analysis (HCA) (Fig. 5). Of these MSTs, 23 were identified by comparison of their RI and MS to those of authentic standards analyzed using the same GC/MS instrument while 15 MSTs could only be categorized according to their chemical class based on their MS pattern (i.e., sugar, sugar alcohol, phosphorylated sugar). A total of 20 MSTs could not be classified to their chemical class and are labeled as "unknown". A total of 25, 27 and 48 MSTs were found to be significantly different in Yukon Thellungiella subjected to 100 mM, 300 mM or 500 mM NaCl, respectively, relative to unsalinized controls (Fig. 5). Only 5 of the 25 MSTs (20%) were present at higher levels in Yukon Thellungiella plants irrigated with 100mM NaCl compared to unsalinized controls and they were asparagine, fumaric acid, proline, pyroglutamate and serine (Fig. 5). By contrast, for plants salinized to 300 mM NaCl or 500 mM NaCl almost 80% of the MSTs showing statistically significant differences were ones that underwent increases in abundance relative to controls (Fig. 5). Among the metabolites consistently more abundant in *Thellungiella* subjected to 300 mM NaCl and 500 mM NaCl were glucose, proline, pyroglutamic acid, sucrose, valine, six sugar-like compounds and six MSTs labeled as unknowns (Fig. 5). Some MSTs did not show a consistent pattern of increase with salt exposure. For example, glucose, sucrose, and several other sugar-like MSTs were lower in leaves of Thellungiella exposed to 100 mM NaCl as compared to control plants of the same age. Only proline was found to consistently increase in abundance with successively higher exposure of plants to saline conditions (Fig. 5, 6). MSTs that underwent only an increase in abundance in leaves of Thellungiella subjected to 500 mM NaCl were ascorbic acid, galactose, glutamine, quinic

acid, and three sugar-like compounds. Figure 5 shows that the organic acids ascorbate, citramalate, fumarate and quinate are more abundant in samples from salt-stressed plants while citrate, malate, maleate, succinate and threonate are present in lower abundance.

#### 3.5 DISCUSSION

The salt level of soils in Yukon Thellungiella's natural habitat is estimated to be roughly equivalent to 160 mM NaCl (Guevara et al., 2009). Under these conditions, our in vitro germination trial suggests that Yukon Thellungiella seeds should germinate at about 80% efficiency if there is little to no dilution of salts by spring run-off or precipitation. Neither the Shandong nor Yukon ecotypes show any decreased capacity to germinate when media is not supplemented by NaCl so there is no apparent need for salt to promote germination (Inan et al., 2004). However, Inan et al (2004) show that Shandong *Thellungiella* seeds fail to germinate on any MS agar media supplemented with NaCl as low as 100 mM. This response has been observed in other halophytes presumably as a means to prevent NaCl induced injury to the seedling (Flowers et al., 1986). Figure 1 shows that root growth of Yukon *Thellungiella* seedlings on agar containing NaCl is slower than for seedlings without added salt. However, at 100 mM the rate of root elongation after 6 d exposure to salt is  $1.4 \text{ mm d}^{-1}$  which is 60% of the rate determined for plants on NaCl-free media. This observation suggests that Yukon Thellungiella can germinate and grow, albeit more slowly than controls, under the levels of NaCl that approximate those found at Yukon field sites.

Stomatal conductance of Yukon Thellungiella decreases in response to salinity but rates of photosynthesis were not reduced to the same extent (Fig. 2B). Shandong Thellungiella undergoes a decrease in stomatal transpiration during exposure to saline conditions (Volkov et al., 2003; Inan et al., 2004). This decrease in stomatal transpiration, however, was not specific to Na<sup>+</sup>, but also occurred during treatments with elevated K<sup>+</sup> concentrations (Volkov et al., 2003). Flowers et al. (1986) states that transpiration rates expressed on the basis of fresh weight generally show a decline with salt exposure but cautions that interpretation of these data may be confounded by other factors including the basis used for their expression. Our data, corrected for leaf area, suggests that Na<sup>+</sup> ion influx into the shoot via the transpiration stream is ongoing in Thellungiella but decreased stomatal conductance should reduce the salt accumulated in the mature, fully expanded leaves of the salinized plants used for our measurements. Control of transpiration and mechanisms impacting water uptake by Thellungiella requires further work to delineate the mechanism(s) underlying salt-induced stomatal closure and to determine its significance for salinity tolerance in this plant.

Yukon *Thellungiella* shows a decrease in leaf  $\psi_S$  with increasing external salt showing that this plant accumulates solutes in a salt-responsive manner (Fig. 3). The estimated leaf  $\psi_p$  remains positive, an outcome consistent with a plant able to actively accumulate solutes in order to take up water from potting media that is undergoing increasing salinization. Shandong *Thellungiella* (Inan et al., 2004) plants also undergo a decrease in leaf  $\psi_S$  and both accessions show decreases to as low as -4.0 MPa when exposed to 500 m M NaCl. Thus, a general mechanism for the halophile *Thellungiella*  appears to be an ability to accumulate solutes in order to establish a  $\psi_W$  gradient to promote water uptake under saline conditions (Inan et al., 2004).

We compared leaf metabolite profiles of Yukon Thellungiella plants subjected to saline conditions in order to identify organic solutes undergoing changes in abundance with increasing salt exposure. The 58 statistically significant changes among MSTs led to distinct grouping of treatments representing Yukon *Thellungiella* plants exposed to different NaCl concentrations (Fig. S1A). Fewer metabolites underwent an increase in abundance in leaves of Yukon Thellungiella plants exposed to 100 mM NaCl (Fig. 5). Among the metabolites showing a higher content in Yukon *Thellungiella* irrigated with 100 mM NaCl was proline and pyroglutamate (Fig. 5). The increase in proline content for this accession is salt-responsive, a finding that is consistent with that reported for Shandong Thellungiella (Inan et al., 2004; Gong et al., 2005; Kant et al., 2006). Positively correlated changes among MST relative abundance with increasing salt are noteworthy as so few MSTs showed this pattern. For example, only proline was found to undergo an increased abundance that correlated positively with increasing salinity (Fig. 5 and 6). Proline serves diverse roles in plant stress tolerance including osmotic adjustment, a N-storage molecule, scavenging ROS, maintaining NADP<sup>+</sup>/NADPH ratios during stress, all of which can contribute towards important strategies for abiotic stress tolerance (For a review, see Kishor et al., 2005).

Although proline accumulated in a manner that was positively correlated with increasing salinity at all salt-levels tested, proportionately more compounds were present at higher levels in Yukon *Thellungiella* salinized to 300 mM or 500 mM compared with

100 mM NaCl treated plants, relative to their respective, unsalinized controls. For example, we found 13 MSTs (5 unknown, 7 sugars, and valine) to be present at lower abundance in leaves of Yukon Thellungiella plants watered with 100 mM NaCl relative to controls and the converse to be true for plants stressed to 500 mM NaCl (Fig. 5). For a halophyte like *Thellungiella*, lowering of  $\psi_W$  at a salt level of 100 mM NaCl or even higher could be accomplished simply by accumulating inorganic solutes such as Na<sup>+</sup> and Cl<sup>-</sup>. In support of this suggestion, Na<sup>+</sup> and Cl<sup>-</sup> concentrations can be accumulated to ca 100 mM in the cytoplasm of cells adapted to 428 mM NaCl (Binzel et al., 1988). For example, the halophytic plant Limonium latifolium accumulates proline, sucrose, cyclitols and inorganic ions in response to salinity (Gagneul et al., 2007). The contribution of organic solutes towards  $\psi_S$  was estimated to be only about 25% while inorganic ions were a major contributor, accounting for 75% towards  $\psi_{s}$  (Gagneul et al., 2007). The accumulation of readily available inorganic ions to lower the  $\psi_W$  during exposure to low concentrations of salt may provide an energetically less expensive means to promote water uptake (Gagneul et al., 2007).

The redirection of carbon towards accumulated sugars represents a redirection of photosynthate away from growth and maintenance metabolism. Nonetheless, significant increases in the total soluble sugars have been reported for Shandong *Thellungiella* plants subjected to saline conditions compared to unsalinized controls (Inan et al., 2004). We also observed an accumulation of sugars and sugar-like MSTs when Yukon *Thellungiella* plants were exposure to 300 or 500 mM NaCl (Fig. 5). We also found that content of several organic acids were lower in Yukon *Thellungiella* exposed to saline conditions

relative to the unsalinized control plants. Decreases in citrate, malate, and succinate content were observed in leaves of plants subjected to 300 or 500 mM NaCl treatments (Fig. 5). Sanchez et al. (2008b) propose that organic acids contribute to salt tolerance by restoring ion balance under stress and by contributing to nitrogen assimilation for amino acids and the synthesis of compatible solutes. All of these roles could redirect organic acids and reduce their total content in leaves and conceivably other organs. The decreases that we find for the leaf content of several organic acids is consistent with the roles proposed by Sanchez et al (2008b) in directing carbon into amino acids and sugars for Yukon Thellungiella exposed to saline conditions. Some exceptions to the observed depletion of organic acids in plants exposed to saline conditions included quinic acid and ascorbic acid, both of which were found to be more abundant in Yukon Thellungiella exposed to 500 mM NaCl relative to unsalinized controls (Fig. 5). These metabolites may be involved in the protection against oxidative damage that can occur in plants exposed to high salinity, and may not directly contribute towards the synthesis of organic solutes (Apel and Hirt, 2004). For example, quinic acid is an important precursor for the synthesis of antioxidants (Niggeweg et al., 2004) that are implicated in protection against oxidative stress (Apel and Hirt, 2004) and ascorbic acid is capable of scavenging reactive oxygen species (Conklin et al., 1996; Apel and Hirt, 2004).

#### **3.6 CONCLUSION**

The ability of *Thellungiella* to thrive under saline soils is likely due, in part, to its ability to osmotically adjust (Inan et al., 2004). In this study, we found that Yukon *Thellungiella* plants accumulate proline and sugars in response to salinity. The higher of amino acid and sugar content in Yukon *Thellungiella* subjected to saline conditions relative to unsalinized controls was accompanied by lower levels of organic acids. This suggests that organic acids provide a potential carbon source to support the increased synthesis of compatible organic solutes that are accumulated in Yukon *Thellungiella* in response to salinity. For *Thellungiella*, proline has been proposed to be a major compatible solute when plants are salt-stressed (Inan et al., 2004). However, the salinity-induced increases in the abundance of sugars such as glucose and sucrose in Yukon *Thellungiella* strongly suggests that in addition to proline, carbohydrates also play a prominent role in lowering  $\psi_S$  to promote water uptake from sea-level salinity conditions. The role these metabolites play for *Thellungiella* adaptation to the highly saline soils typically found in its natural habitat in the Yukon requires further investigation.

#### **3.7 REFERENCES**

- **Apel K, Hirt H** (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol **55:** 373-399
- Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci23: 157-174
- Binzel ML, Hess FD, Bressan RA, Hasegawa PM (1988) Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol 86: 607-614
- Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient *Arabidopsis* mutant. Proc Natl Acad Sci USA 93: 9970-9974
- Delauney A, Verma D (1993) Proline biosynthesis and osmoregulation in plants. Plant J4: 215-223
- Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863-14868

Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem **72:** 3573-3580

Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48: 155-171

Flowers T, Hajibagheri M, Clipson N (1986) Halophytes. Quart Rev Biol 61: 313-337

#### Gagneul D, Ainouche A, Duhaze C, Lugan R, Larher F, Bouchereau A (2007) A

reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae *Limonium latifolium*. Plant Physiol **144**: 1598-1611

## Guevara D, Dedrick J, Wong A, Li Y, Labbe A, Ping L, Wang Y, Golding GB, Gray G, McCarry BE, Summers PS, Griffith M, Moffatt BA, Weretilnyk EA

(2009) Transcriptomic and metabolomic analysis of Yukon *Thellungiella* plants growing under cabinet and field conditions shows overlapping and distinct responses to environmental conditions

Gong QQ, Li PH, Ma SS, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile *Thellungiella halophila* in comparison with its relative *Arabidopsis thaliana*. Plant J **44**: 826-839

Inan G, Zhang Q, Li PH, Wang ZL, Cao ZY, Zhang H, Zhang CQ, Quist TM,
Goodwin SM, Zhu JH, Shi HH, Damsz B, Charbaji T, Gong QQ, Ma SS,
Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM,
Bohnert HJ, Joly RJ, Bressan RA, Zhu J-K (2004) Salt cress. A halophyte and
cryophyte *Arabidopsis* relative model system and its applicability to molecular
genetic analyses of growth and development of extremophiles. Plant Physiol 135:
1718-1737

# Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, *Thellungiella halophila*, and *Arabidopsis thaliana* is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T-halophila. Plant Cell Environ 29: 1220-1234

Kishor PBK, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S,
Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline
biosynthesis, degradation, uptake and transport in higher plants: Its implications
in plant growth and abiotic stress tolerance. Curr Sci 88: 424-438

- Kopka J (2006) Current challenges and development in GC/MS based metabolite profiling technology. J Biotech 124: 312-322
- Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167: 645-663
- Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotech 22: 746-754
- Nuin P, Weretilnyk EA, Summers PS, Guevara DR, Golding GB (2005) GASP: GC/MS Analysis Software Package

(http://www.flintbox.com/technology.asp?page=685).

- Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of *Arabidopsis* to a combination of drought and heat stress. Plant Physiol **134**: 1683-1696
- Rodriguez HG, Roberts JKM, Jordan WR, Drew MC (1997) Growth, water relations, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress. Plant Physiol **113**: 881-893
- Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography/mass spectrometry. Plant J 23: 131-142

Saldanha AJ (2004) Java Treeview--extensible visualization of microarray data.

Bioinformatics **20:** 3246-3248

- Sanchez DH, Lippold F, Redestig H, Hannah MA, Erban A, Kramer U, Kopka J, Udvardi MK (2008a) Integrative functional genomics of salt acclimation in the model legume *Lotus japonicus*. Plant J 53: 973-987
- Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J (2008b) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant 132: 209-219
- Shani U, Ben-Gal A, Dudley LM (2005) Environmental implications of adopting a dominant factor approach to salinity management. J Environ Qual 34: 1455-1460
- Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135: 1697-1709
- Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A (2003) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant Cell Environ 27: 1-14
- Volkov V, Amtmann A (2006) *Thellungiella halophila*, a salt-tolerant relative of *Arabidopsis thaliana* has specific root ion-channel features supporting K<sup>+</sup>/Na<sup>+</sup> homeostasis under salinity stress. Plant J **48**: 342-353

Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in *Thellungiella*, a close relative of *Arabidopsis*. Plant Physiol 140: 1437-1450
Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208: 2819-2830

Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6: 66-71

### Figure 1. Effect of salinization on the root growth of *Thellungiella* seedlings.

Data represent the mean of ten seedlings at each time point for three independent

experiments  $\pm$  SEM.



#### Figure 2. Performance of *Thellungiella* plants subjected to salt treatments.

A) *Thellungiella* plants following treatment with 0 mM, 100mM or 300mM NaCl. The photograph was taken on the third day of exposure to NaCl treatment by Dr. Peter Summers. Bar = 1cm.

B) Stomatal conductance and photosynthetic rates of Yukon *Thellungiella* exposed to NaCl expressed as the % of rates for unsalinized, control plants at each salt step. Values are the mean determination of rates for mature fully expanded leaves from six individual plants  $\pm$  SEM. Stomatal conductance for control plants were 84 $\pm$ 6.5, 102 $\pm$ 3.5, and 89 $\pm$ 5.4 mmol m<sup>-2</sup> s<sup>-1</sup> at 100, 200, or 300 mM NaCl treatments, respectively. Photosynthetic rates for control plants were 7.1 $\pm$ 0.5, 6.9 $\pm$ 0.8, and 3.6 $\pm$ 1.6  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup> at 100, 200, or 300 mM NaCl treatments (\*) denotes that values of salt-treated plants are significantly different from controls at P<0.05; Student's *t* test.





#### Figure 3. Water relations of Yukon Thellungiella exposed to NaCl.

Plants were salinized step-wise by increasing the concentration of NaCl in water by 50 mM increments. Leaf  $\psi_W$  and  $\psi_S$  potential measurements were taken after 3 d of acclimation to each salt concentration. The  $\psi_P$  was estimated as the difference between  $\psi_W$  and  $\psi_S$ . Values are means of six individual plants ± SEM from two different experiments.


## Figure 4. PCA of MST data for Yukon *Thellungiella* plants show grouping as a function of salt exposure.

A) The PC1 and PC2 were plotted against each other giving rise to distinct groups. Each letter represents the entire complement of 300 MSTs present in leaves from an individual Yukon *Thellungiella* plant that either received no salt (Controls for each salt-step: "100mM NaCl"=CL; "300mM NaCl"=CM; "500mM NaCl"=CH) or varying concentrations of salt: 100 mM=L, 300 mM=M and 500 mM=H. The metabolite profiles from five individual plants were determined at each salt step as well as for five corresponding unsalinized control plants.

B) PC loading plot for PC1 and PC2. MSTs with highest absolute PC loadings were identified and are labeled: Cit, citrate, Gal, galactose, Glc, glucose, Mal, malate, Pro, proline, Suc, sucrose.



#### Figure 5. Hierarchical cluster analysis of salt-responsive MSTs.

Heat map showing MSTs found to be statistically significantly different in abundance in leaves of Yukon *Thellungiella* subjected to 100 mM, 300 mM or 500 mM NaCl. White indicates no difference in MST ratio between treatment and respective control while red or blue indicates that MST abundance was higher (positive number) or lower (negative number), respectively, relative to control. Data shown is reported as relative to MST content in their respective controls that received no NaCl. Wherever possible, each MST was labeled with the RI number. Chemical structure of putative matches were made by comparing MS patterns to those of authentic standards analyzed using the same instrument. Proline and glucose were identified by co-injection. Data are based on MST levels from five individual plants at each salt treatment as well as respective unsalinized controls.

#### PhD Thesis – David Guevara

#### McMaster - Biology

+ 58

1

- 24





# Figure 6. Leaf proline content of Yukon *Thellungiella* subjected to NaCl treatments and their respective, unsalinized control plants.

The absolute concentration of leaf proline levels were determined by using an eight-point calibration standard curve prepared from known quantities of proline (156 pg  $\mu$ L<sup>-1</sup> to 20 ng  $\mu$ L<sup>-1</sup>, correlation coefficient, R<sup>2</sup>=0.994). Numbers on the x-axis denote NaCl concentration (mM). Open bars, unsalinized controls; solid bars, salinized plants. Values are means ± SE from five individual plants.



#### Figure S1. PCA of the 58 statistically significant MSTs.

A) The PC1 and PC2 were plotted against each other giving rise to distinct groups. Each letter represents the 58 MSTs present in leaves from an individual Yukon *Thellungiella* plant that either received no salt (Controls for each salt-step: "100mM NaCl"=CL; "300mM NaCl"=CM; "500mM NaCl"=CH) or varying concentrations of salt: 100 mM=L, 300 mM=M and 500 mM=H. The metabolite profiles from five individual plants were determined at each salt step as well as for five corresponding unsalinized control plants.

B) PC loading plot for PC1 and PC2. MSTs with highest absolute PC loadings were identified and are labeled: Cit, citrate, Gal, galactose, Glc, glucose, Mal, malate, Pro, proline, Suc, sucrose.



Figure S2. Analysis of the contribution of MSTs with highest absolute PC loadingson metabolite grouping patterns observed using 58 statistically significant MSTs.A) The PC1 and PC2 were plotted against each other giving rise to distinct groups using

MST abundance for the 58 statistically significant MSTs. Glucose (B), Galactose (C), Sucrose (D), Malate (E) and Proline (F) were individually removed from the dataset and performed PCA on the remaining 57 MSTs to determine the effect of removal on the original grouping pattern.



#### **Chapter Four**

### "Transcriptomic and metabolomic analysis of Yukon *Thellungiella* plants growing under cabinet and field conditions shows overlapping and distinct responses to environmental conditions"

**4.0 PREFACE**: Author contributions and acknowledgements for manuscript to submitted for publication.

<u>David Guevara:</u> Performed metabolomic analysis of Yukon *Thellungiella* subjected to cold, drought and salinity treatments in growth cabinets and of plants harvested in 2003 from the Yukon; performed all statistical analysis of metabolome data and meta-analysis of transcriptome data from "growth chamber" and "field" microarray experiments; compiled figures 3 to 6 and supplemental tables; wrote the first draft of the manuscript. <u>Jeff Dedrick:</u> Compiled Figure 2; Performed metabolomic analysis of Yukon *Thellungiella* harvested from the Yukon in 2005.

<u>Dr. Annie Wong & Yong Li:</u> Performed microarray experiments for Yukon *Thellungiella* harvested from field sites in the Yukon in 2003 & 2005.

Dr. Aurelie Labbe: Performed statistical analysis of microarray experiments.

Dr. Chien-Lu Ping: Performed Yukon soil analysis

Dr. Chris Wang: Created the library of TMS-metabolite derivatives database

<u>Dr. Brian Golding</u>: Designed platform for storage and retrieval of microarray experiments.

Dr. Brian McCarry: Provided suggestions for metabolomic analysis.

Dr. Peter Summers: Critical reading and revision of the manuscript.

Dr. Barbara Moffatt: Supervised microarray experiments.

<u>Dr. Elizabeth Weretilnyk:</u> Supervised the project, compiled Figure 1, wrote final version of the discussion, and oversaw the revisions of the first draft and all subsequent drafts.

### RUNNING HEAD: Transcriptome and metabolite analysis of Yukon Thellungiella

| Corresponding author: | Dr. Elizabeth Weretilnyk         |
|-----------------------|----------------------------------|
|                       | Department of Biology,           |
|                       | McMaster University              |
|                       | 1280 Main St. West, Hamilton, ON |
|                       | L8S 4K1, Canada                  |
|                       | Tel: (905) 525-9140, Ext 24573   |
|                       | Fax: (905) 522-6066              |
|                       | e-mail: weretil@mcmaster.ca      |
|                       |                                  |

TITLE:

Transcriptomic and metabolomic analysis of Yukon *Thellungiella* plants growing under cabinet and field conditions shows overlapping and distinct responses to environmental conditions

AUTHORS:

David R. Guevara, Jeff Dedrick, Chui E. Wong<sup>2</sup>, Yong Li, Aurelie Labbe<sup>3</sup>, Chien-Lu Ping, Yanxiang Wang, G. Brian Golding, Brian E. McCarry, Peter S. Summers, Barbara A. Moffatt, Elizabeth A. Weretilnyk<sup>\*</sup>

Departments of Biology (D.R.G., J.D., Y.W., G.B.G., P.S.S., E.A.W.) and Chemistry (B.E.M.), McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada, L8S 4K1

Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, Ontario, Canada, N2L 3G1 (C.E.W., Y.L., B.A.M.)

Palmer Research, Agricultural and Forestry Research Station, University of Alaska-Fairbanks, 533 East Fireweed Ave., Palmer, Alaska, USA, 99645 (C.P.)

#### FOOTNOTES:

<sup>1</sup> This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant to EAW; AAFC-NSERC-CRD (Performance Plants Inc.) grant to BAM, EAW, INAC Northern Scientific Training Program grants to DRG, JD and the Ontario Research Development Challenge Fund.

<sup>2</sup> Present address: Melbourne School of Land and Environment, University of Melbourne Parkville, Victoria 3010, Australia

<sup>3</sup> Present address: Département de mathématiques et de statistique, Pavillon Alexandre-Vachon Université Laval, Québec, Canada, G1K 7P4

\* Corresponding Author; E-mail weretil@mcmaster.ca

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (<u>www.plantphysiol.org</u>) is: Elizabeth Weretilnyk (weretil@mcmaster.ca).

#### 4.1 ABSTRACT:

Thellungiella salsuginea has a high natural tolerance to abiotic stresses including salt, cold and water deficits. Microarray studies have shown that this extremophile plant when grown under controlled environment conditions undergoes many stress-responsive changes in transcript abundance. However, cabinet-grown plants have prominent rosettes with few cauline leaves while the opposite is true for plants found in the field. To determine whether stress-responsive changes in cabinet-grown plants are also found in field plants we analyzed leaf transcript and metabolite profiles of *Thellungiella* found at its native Yukon habitat during two years with contrasting meteorological conditions. Of 673 genes showing differential expression between field and chamber-grown plants, 27% are categorized as stress-associated by GO Biological Process with several more highly expressed in the year with below average precipitation. We found 63 differentially expressed genes in field-grown plants whose patterns of expression were different in plants stressed in growth cabinets. In general, the relative abundance of metabolites in leaves of field plants was lower than plants in chambers. The relative abundance of serine, proline, galactinol and raffinose showed stress-responsive increases in cabinetgrown material but they were found to be of low relative abundance in leaves of field plants. In contrast, several carbohydrates including sucrose, glucose, galactose and fructose made a greater relative contribution to the field plant profiles than to plants in growth cabinets. Comparisons between plants responding to stress in cabinets and the field implicates the involvement of many common products but site-specific differences

may offer important targets for improving crops that must respond appropriately to multiple, concurrent stresses.

#### **4.2 INTRODUCTION**

Abiotic stresses such as drought, extreme temperatures, and high salinity decrease plant growth and productivity and are responsible for major losses in crop yield (Boyer, 1982). Thellungiella salsuginea (also known as salt-lick mustard, saltwater cress, Thellungiella halophila, herein referred to as Thellungiella) is an emerging physiological and genetic model for the study of abiotic stress tolerance in plants. An important factor underlying this development is *Thellungiella*'s significant natural ability to tolerate adverse environmental conditions including, water deficits, freezing temperatures, and high salinity (Inan et al., 2004; Taji et al., 2004; Wong et al., 2005; 2006; Griffith et al., 2007). Of additional importance is the close relationship between Thellungiella and Arabidopsis (Al-Shehbaz et al., 2006). This relatedness between the two species allows one to apply the knowledge and genetic tools already developed for the study of Arabidopsis towards increasing our understanding of molecular mechanisms underlying stress tolerance in Thellungiella (Bressan et al., 2001). Thellungiella shares some advantageous properties with Arabidopsis including a comparatively small genome size (approximately two-fold the genome size of Arabidopsis), small stature, prolific seed production and a relatively short life cycle of six to eight weeks (Inan et al., 2004). In many respects, Thellungiella is ideally suited to studies designed to identify traits underlying stress tolerance of plants with an objective to improving the productivity of stress-sensitive crops.

Transcript profiling was used to study stress-induced changes in gene expression for *Thellungiella* genotypes originating in Shandong Province, China and Yukon Territory, Canada. The gene expression pattern shown by Shandong *Thellungiella* subjected to salinity stress treatments in controlled environments has been studied using *Arabidopsis* microarray slides (Inan et al., 2004; Taji et al., 2004; Gong et al., 2005). Microarrays showed six genes undergoing salt-responsive changes in expression in Shandong *Thellungiella* compared to 40 genes in *Arabidopsis* plants exposed to the same salt stress conditions (Taji et al., 2004). Interestingly, among the genes identified as stress-responsive in *Arabidopsis* were genes associated with higher constitutive expression in unstressed *Thellungiella* (Taji et al., 2004). Together these observations suggest that many genes associated with salinity are constitutively expressed in *Thellungiella* producing a plant with a heightened innate resilience towards stress.

Gene expression patterns following response to cold, drought or salinity in Yukon *Thellungiella* was assessed using a microarray derived from cDNA libraries enriched for genes associated with stress (Wong et al., 2006). Exposure to salt stress resulted in the differential expression of 22 genes, a number that is low compared to cold stress (76 genes) or drought stress (101 genes). However, little overlap was found among the genes whose expression changed with exposure to cold, drought or salinity leading to the conclusion that *Thellungiella* has rather specific responses to these stresses (Wong et al., 2006).

Metabolite profiling has been used to describe plant phenotype as a function of genotype or genotype and environment interaction (Messerli et al., 2007; Li et al., 2008).

Since metabolite profiling provides an overview of the complement of metabolites present in an organism at a set time-point, this data complements transcript profiling and offers a means to link the potential for a plant to express a stress-specific response to an actual metabolic phenotype. In this way, comparisons made between unstressed plants and plants experiencing sub-optimal environmental conditions can provide valuable insights into traits conferring tolerance (Rizhsky et al., 2004). One such study combines transcript and metabolite profiling methodologies to monitor Shandong *Thellungiella*'s response to salinity under controlled environmental conditions (Gong et al., 2005). Shandong *Thellungiella* was shown to have higher levels of proline, and sugar alcohols, in plants subjected to salinity stress relative to unsalinized controls and this outcome was associated with the enhanced expression of transcripts encoding enzymes involved in their synthesis (Gong et al., 2005).

The study of plant responses to stress frequently uses plants grown under controlled environments in cabinets and the application of treatments intended to simulate adverse field conditions. This approach has been used successfully in identifying stress responses and genes whose products are involved in stress tolerance (for a review see Bartels and Sunkar, 2005). However, it is impossible to faithfully reproduce the complexities of a natural environment in a growth cabinet. Several studies using microarrays have highlighted this important consideration by comparing phenotypes observed in controlled conditions to those expressed in the field (Dhanaraj et al., 2007; Miyazaki et al., 2004). In these comparisons, the association and value of traits observed in controlled environment studies and stress tolerance can find support or be questioned depending on their expression under field conditions.

In this study we harvested leaves from Yukon *Thellungiella* plants growing on salt flats near Whitehorse, YT, Canada. Microarray and metabolite profiling was completed using leaves harvested during two years of contrasting meteorological conditions. In 2003, the Yukon experienced below average precipitation and in 2005 the rainfall was above average. Analysis of Yukon Thellungiella during the different sampling years allowed us to compare the profile of transcripts and metabolites for field plants with comparable profiles prepared from plants grown and stressed under growth cabinet conditions. In our study we found many drought-responsive changes in the expression of gene products identified in simulated drought experiments in growth cabinets to be also represented among transcripts showing differential expression in plants harvested in 2003, a dry year. However, some changes were field or cabinet specific, raising questions about the essential nature of various gene products for stress protection. As such, comparative genomic analysis involving field studies can offer an important companion strategy to the study of chamber-grown plants in the identification of critical traits underlying abiotic stress tolerance.

#### 4.3 MATERIALS AND METHODS

#### Yukon field site location and plants

In 2002, 2003 and 2005 cauline leaf tissue was harvested from mature, flowering Yukon *Thellungiella* at a field site near Whitehorse, Yukon (location: 60° 55.928'N, 135° 10.249' W; elevation = 647m). Leaf tissue was transferred quickly to 2-mL Nalgene cryovials, immediately flash frozen in liquid nitrogen, and then transferred to a charged MVE XC20/3V vapour shipper (Jencons Scientific Inc , Bridgeville, PA) where samples were kept frozen at -150°C for transport. Vials were transferred to -80°C for storage pending analysis.

#### Controlled environment plant growth conditions and stress treatments

Seeds of the Yukon genotype were sterilized using a vapour-phase gas technique (Clough and Bent, 1998) and then mixed with 0.1% (w/v) Phytagel (Sigma) and pipetted onto a moistened soil mixture containing six parts Promix BX (Premier Horticulture, Rivière-du-Loup, PQ) and one part Turface (Profile Products LLC, Buffalo, NY) in individual 5 x 5 x 7 cm pots. The pots containing seeds were stratified for 2 d at 4°C before transfer to growth chambers (AC 60 Enconair, Winnipeg, MB) set with a 21-h d and irradiance of 250  $\mu$ mol m<sup>-2</sup>s<sup>-1</sup> and 22°C/10°C day/night temperature regime. Plants were watered daily as needed and fertilized one time per week with 1 g L<sup>-1</sup> 20-20-20 (N-P-K) fertilizer.

Cauline leaves obtained from mature, flowering, 12-week-old *Thellungiella* plants grown in controlled environment chambers served as the source of control, unstressed tissue in microarray and metabolite profiling experiments in comparisons involving the cauline leaves from field-grown plants. Basal rosette leaves of unstressed control plants served as the basis of comparison for metabolite profiles in the case of cold, drought, drought/re-watered and saline plant samples (Wong et al., 2006). The growth conditions, stress treatments and nature of tissue harvested were as described by Wong et al. (2006). Upon completion of the stress treatments a portion of the leaf tissue was flash-frozen in liquid nitrogen and stored at -80°C until it was processed for metabolite profiling.

#### Soil and plant analysis

Soil samples were collected from the top 18 cm depth at the field site where Yukon *Thellungiella* was harvested. Soil pH, electrical conductivity, and chemical content were determined and the elemental composition of soil samples, field and chamber leaf tissues were analyzed (Ping et al., 1998).

#### Solute potential measurements

Leaf solute potential measurements were made using a HR33T psychrometer (Wescor Inc., Logan, UT). A frozen leaf disc 6 mm in diameter was allowed to thaw and come to equilibrium with the air in the chamber for 20 min in a C52 leaf chamber.

#### **Microarray analysis**

Total RNA extraction and microarray hybridization conditions were as reported by Wong et al. (2006) except the mRNA was first amplified using the Ambion MessageAmp aRNA Amplification kit (Applied Biosystems) and the cDNA was primed with a random primer mix (Invitrogen). The cDNA microarrays were hybridized with Cy3 and Cy5 fluorescently labeled probe pairs prepared using RNA extracted from untreated cauline leaves of chamber grown *Thellungiella* and cauline leaves of *Thellungiella* harvested at the Yukon field site. Three biological replicates with dye swap as a technical replicate were used for leaf tissue harvested from the field in 2003 and 2005 and statistical analysis was based on a total of six replicates per field year (three biological replicates plus three technical replicates). ScanArray confocal scanning system and QuantArray data acquisition software (Perkin-Elmer) were used to obtain data, and after normalization, differentially expressed genes between growth chamber and field-grown Yukon *Thellungiella* were detected using a Bayesian model as previously described (Wong et al., 2006). Transcripts in leaves of field plants showing differential expression relative to those in chamber-grown plants were annotated and classified using the TAIR9 gene ontology functional categorization tool (http://www.arabidopsis.org/tools/bulk/sequences/index.jsp).

#### **Metabolite analysis**

Polar metabolites for profiling by gas chromatography/mass spectrometry (GC/MS) were obtained from frozen leaf tissue (200 mg) to which 50  $\mu$ L of ribitol (2 mg mL<sup>-1</sup>) was added and then ground together to a fine powder in liquid nitrogen. The protocol followed for metabolite extraction using methanol and chloroform was as described by Fiehn et al. (2000) and the fraction in the methanol phase containing polar metabolites was retained for this study. The final steps of preparation included the addition of a mixture of fatty acid standards so that RTs could be converted to RIs

(Roessner et al., 2000). Methoxymation and derivatization were as reported by Roessner et al. (2000).

Samples were analyzed using a Trace DSQ GC-MS system (Thermo Finnigan, Austin, TX) operated in the positive ion electron impact (EI<sup>+</sup>) full scan mode. Samples were diluted 25-fold with hexane and then 1- $\mu$ L was injected using a MPS 2 autosampler (Gerstel GmbH & Co., Mülheim, Germany). Chromatography was performed on a 30 m long, 0.25 mm ID and 0.25  $\mu$ m film thickness Restek Rtx-5MS integra column (crossbond 5% diphenyl – 95% dimethyl polysiloxane; Chromatographic Specialties Inc., Brockville, ON) fused with a 10 m guard column of the same composition. The injection temperature was 230°C, and the ion source was kept at 200°C. The carrier gas was helium (>99.999% purity; VitalAire, Hamilton, ON) delivered at a constant flow rate of 1 mL min<sup>-1</sup>. The temperature program was initially set at 50°C for 2.5 min then temperature was first increased at a rate of 7.5°C min<sup>-1</sup> to 70°C followed by 5°C min<sup>-1</sup> ramp to a final temperature of 310°C where it remained for 6 min. Mass spectra were recorded at three scans per second with a scanning range of 50 to 650 mass-to-charge (m/z) ratio.

The automated mass spectral deconvolution and identification system (AMDIS) software was used to extract peak abundance and mass spectral (MS) information for each trimethylsilyl derivative resolved in GC/MS chromatograms (Stein, 1999). This information was imported in tab-delimited format to the GC/MS Analysis Software Package (GASP) (available at: <u>www.flintbox.com</u>, Nuin et al., 2004) where the RI was calculated as described by Roessner et al. (2000) and the relative abundance for each

component was adjusted to reflect the estimated recovery of the internal standard ribitol. The term mass spectral tag (MST) refers to an individual trimethylsilyl derivative identified by a characteristic RI and MS (Kopka, 2006). Identical MSTs from multiple GC/MS analyses were aligned with GASP and subjected to statistical tests to identify those associated with specific samples and/or treatments. An arbitrary threshold detection limit for relative response factors associated with MSTs of 0.00005 was used in determining abundance and fold-differences among chemical components from different samples.

The chemical identity of an MST was determined by comparing its RI and MS parameters to those obtained for authentic standards analyzed using the same instrument and experimental conditions. MSTs that shared m/z ratios with authentic standards that had different RIs were classified according to predicted chemical classes such as sugars or sugar phosphates.

#### Statistical analysis of data

Transcripts found differentially expressed in the field relative to cabinet-grown plants were compared to those showing stress-related changes in abundance reported previously by Wong et al. (2006). The Wong et al. (2006) dataset is comprised of 147 transcripts showing statistically significant stress-responsive changes in leaves of Yukon *Thellungiella* plants grown in cabinets and subjected to cold, drought, salinity and drought followed by re-watering treatments. Transcripts showing a 1.5-fold or greater difference in expression in *Thellungiella* harvested from the field compared to growth chamber grown plants (P<0.01) were subjected to multivariate analysis. MSTs whose abundance was significantly different (P<0.05) between treated and control or field and control plants were expressed as a ratio, and were then  $log_{10}$  transformed before being subjected to multivariate analysis. Euclidean distance was used to calculate the distance matrix and a complete linkage method was used for hierarchical clustering MSTs and genes using the program, Cluster (Eisen et al., 1998). Heat maps were constructed using the Java Treeview program (<u>http://jtreeview.sourceforge.net</u>, Saldanha, 2004) where white indicates no difference between transcript or MST abundance between the sample and its respective control while red or blue indicates a gene or MST is detected at higher or lower levels, respectively, relative to a control.

#### 4.4 RESULTS

#### Yukon field site conditions

The season for plant growth in the Yukon is typically short and for *Thellungiella* this extends from early May to late July (Bruce Bennett, personal communication). We visited the field site over one to two week periods in late May 2002, early July 2003 and late June 2005. Sampling in 2002 was largely carried out to select a suitable field location and establish a sampling protocol suitable for preserving the RNA and metabolite content of specimens during transport from the remote Yukon location.

Specimens harvested in 2003 and 2005 were subjected to both transcript and metabolite profiling.

At the field site we selected *Thellungiella* plants growing on soil encrusted by salt deposits. Soil at the site is composed of an upper mineral-organic layer of approximately 20 cm that overlays clay. Chemical analysis of the upper layer (Supplemental Table S1) shows the soil to be highly alkaline with a pH of 8.3 and saline (soil electrical conductivity of 15.7 dS m<sup>-1</sup> is roughly equivalent to 157 mM NaCl; Munns, 2005). This soil is high in magnesium, sodium and sulfates, a feature shared by other saline soils in the area (Day, 1962). With respect to other nutrients, the soil has adequate levels of potassium and phosphorus (236 and 26 mg kg<sup>-1</sup>, respectively), whereas the total nitrogen content is very low (0.26%; Martens and Lindsay, 1990). The Ca/Mg ratio is less than one while a typical soil usually has a Ca/Mg ratio exceeding one (Brady et al., 2005).

For the Whitehorse, Yukon area, the average temperature for the 2003 and 2005 growing seasons was approximately 20° C (Fig. 2). In 2003, average high and low temperatures for the ten-day period prior to harvest were 22°C and 15°C, respectively. At the field site on the day of harvest, soil temperature was 17°C, the air temperature was 24°C, and the light intensity was 1500  $\mu$  moles m<sup>-2</sup> s<sup>-1</sup>. In 2005, the average high and low temperatures for the ten-day period before harvest was, 18°C and 7°C, respectively. At the field where plants were collected in 2005, the soil temperature was 18°C, the daytime air temperature was 24°C, and the light intensity was 1433  $\mu$ moles m<sup>-2</sup> s<sup>-1</sup>.

The average cumulative rainfall for this region is 84.1 mm during the growing season for *Thellungiella* (May through July) classifying this area as semi-arid

(Environment Canada climate normals 1971 – 2000;

http://www.climate.weatheroffice.ec.gc.ca/climate\_normals). In 2003, however, total precipitation was 28% lower than the long-term norms and, as such, can be considered a drought year even for a semi-arid region (Fig. 2, Hogg and Wein, 2005). In a ten day period leading up to our visit to the field site in 2003 only 1.8 mm of rainfall was recorded for the area.

### *Thellungiella* growing in the field and in growth chambers have different phenotypes

The natural accession of *Thellungiella* found in the Yukon displays a variable phenotype under different growth conditions. A prominent difference in a mature, flowering plant is the distribution of leaves between the basal rosette and aerial stems bearing flowers. In growth cabinets set to mimic the temperature range and summer daylength of the Yukon, plants develop multiple (60 to 80 by 8 weeks) basal rosette leaves (Fig. 1A) with flowers first appearing at about 4 to 5 weeks as a small cluster within the rosette. Plants usually bolt at about six weeks after germination and flowers are borne on a main stem. At about 8 weeks, auxiliary stems bearing flowers appear and cauline leaves develop on the main and auxiliary stems with the basal rosette leaves remaining a prominent feature. In contrast, *Thellungiella* at field sites have prominent cauline leaves that clasp around the main and auxiliary flowering stems and either lack or have only a few, diminutive rosette leaves (Fig. 1B, C, and D). The chemical analysis of leaf tissue show N, Ca<sup>++</sup>, and Mg<sup>++</sup> contents to be similar for cabinet and field-grown plants, but the

121

Na<sup>+</sup> content of leaves harvested in the field is over six-times higher than that of the cabinet-grown control plants (Supplemental Table S1).

The plants collected in 2003 had experienced below-average precipitation (32.4 mm) in a 60 d period before harvest, in the same timeframe the plants collected in 2005 had experienced more frequent episodes of rainfall leading to above-average cumulative precipitation (92.2 mm). The contrasting precipitation patterns allowed us to compare the field plants exposed to water deficits in 2003 with those experiencing above-normal cumulative precipitation in 2005. Figure 1C shows the grass surrounding *Thellungiella* to be brown and either dead or dying in 2003. The *Thellungiella* plants were small (8 to 18 cm tall) but green and either flowering or setting seed. In contrast, at the same site in 2005 the above-average precipitation patterns contributed to an abundance of green vegetation around the *Thellungiella* plants who were themselves almost 2 to 3-fold larger than the plants found in 2003 (Fig. 1B and D). The transcript and metabolite composition of these plants were then compared to plants subjected to more calibrated stress treatments in controlled environment chambers so as to identify shared and site-specific stress-responsive traits.

#### Transcript profiling of Thellungiella growing under field conditions

We used a cDNA microarray containing 3628 unique sequences derived from libraries of stress-induced cDNAs as described in Wong et al. (2006) to profile transcripts present in the leaves of plants obtained from the Yukon field site. Of the gene products represented on the microarray, 673 (19%) were found to be differentially expressed in cauline leaves of *Thellungiella* growing in the field (Supplemental Table S2). In 2003, transcripts associated with 216 cDNAs were differentially expressed with 132 and 84 being present at higher or lower levels, respectively, relative to control cauline leaves from cabinet-grown plants. For 2005, transcripts associated with 548 genes were found to be differentially expressed with 301 and 247 being present at higher or lower levels, respectively, relative to cauline leaf controls. Of the 673 genes differentially expressed in field samples, only 7% were expressed at higher levels over controls in both years and 6% were expressed to a lesser extent in both field years relative to cabinet-grown controls. Only two gene products were found to be up-regulated in one year and down-regulated in the other year sampled.

We classified the genes showing differential expression between 2003 and 2005 by the biological processes and molecular functions encoded by their products according to the Gene Ontology (GO) annotations (<u>www.arabidopsis.org</u>) and summarized this analysis in pie charts (Fig. 3). The GO Biological Process categorizes 180 of the 673 (~27%) genes showing differential expression in the field plants relative to chamber plants as being associated with stress (Fig. 3A; Supplemental Table S2). Few stressassociated genes were detected in both years with only twelve found to be more highly expressed and fourteen repressed in both 2003 and 2005. Gene products classified as stress-responsive by GO comprised a two-fold greater proportion of the transcripts showing enhanced expression in 2003 as compared to 2005 (Fig. 3A).

The GO Slim analysis by molecular function (Fig. 3B) shows that 20% of the genes expressed at higher levels in 2003 encode products of unknown function compared

to 11% in 2005. Interestingly, proteins with kinase activity contribute <1% towards the complement of products with increased expression in 2003 whereas 8% are repressed that year. In contrast, products encoding protein kinases have expression levels that are similar in control tissue and in leaves harvested in 2005.

We compared the transcripts showing differential expression in field plants with those previously reported as undergoing changes in abundance in rosette leaves of *Thellungiella* subjected to cold, drought, drought recovery or salinity treatments in growth cabinets (Wong et al., 2006). From this meta-analysis we found 63 genes that were differentially expressed in leaves of field-grown plants that were not changed in expression in leaves of plants stressed in growth cabinets. An additional 85 genes show differential expression in the field and in response to at least one growth cabinet stress condition. The fold-differences associated with these 148 gene products were then compared using HCA (Fig. 4). The HCA comparison does not include genes whose transcripts were identified as undergoing differential expression in leaves of field plants from only one year (2003 or 2005) unless the gene product was also reported to undergo stress-associated changes following treatments in the growth cabinet. All of the genes whose products showed a change in relative abundance in 2003 and/or 2005 are listed in Supplemental Table S2.

HCA groups the two field datasets into a single cluster that has greater similarity to the data for cold and drought treated cabinet-grown plants than data obtained from plants subjected to salt stress or recovering from drought (Fig. 4). From the HCA heat map, some generalizations can be made about differences among transcript abundance with respect to sample source. The top half of the figure includes genes whose transcripts are down-regulated in the field relative to control, cauline leaves of cabinet-grown plants while the bottom half includes genes found to be more highly expressed in the field. Differential expression for some genes was only observed in leaf samples obtained from the field site. In total there were 28 genes showing higher expression and 30 genes showing lower expression in leaves of 2003 and 2005 field plants relative to cauline controls and for which no differential expression was observed in leaves of stressed plants from cabinets.

Of the genes shown in the HCA comparison (Fig. 4) about 60% are associated with a stress-responsive change in expression previously reported for cabinet grown plants subjected to cold, salinity, drought, or drought followed by re-watering treatments (Wong et al., 2006). For example, the first six genes at the top of the figure show comparatively strong stress-responsive expression in growth cabinets with exposure to cold or drought treatments but none were detected at higher abundance in the field for either year sampled. This contrasting pattern of gene expression makes it difficult to conclude whether these genes play a role in plant stress response under field conditions. Other genes show changes in expression that supports a role in stress acclimation in field and cabinet grown plants. By way of example, a cluster of seven genes at the base of the HCA heat map showed increased expression in 2005 and in leaves of plants re-watered following drought treatment in cabinets but they showed no increased expression in 2003 or following drought, cold or salinity treatments in cabinets. This group would appear to be comprised of genes whose expression is down-regulated with stress irrespective of

125

where the plants are growing and are more likely associated with plants recovering from stress or growing under more optimal field conditions such as those of 2005.

Patterns of differential expression associated with a number of the genes in the heat map are strongly suggestive of a stress-responsive role that is not influenced by where the plants are growing. For example, transcripts associated with 15 genes showed higher abundance in 2003 plant samples and in plants that had undergone a drought treatment in growth cabinets but their transcript abundance for 2005 was no different than for cauline leaves of well-watered controls in growth cabinets. Transcripts associated with five of the 15 genes (At4g16190, At5g66400, At1g20440, At1g20450 and At5g59310) also showed increased expression after a cold treatment in cabinet conditions. Enhanced expression with salinity is shown for a total of four genes, three of which are also up-regulated under field conditions. One of these salt-responsive products (At5g52300) shows higher transcript abundance in the field but more so for 2003. The broad stress responsive behaviour for At5g52300 (annotated as Responsive to Desiccation 29B) in cabinet grown plants and elevated transcript levels for field plants distinguishes this product from others in the heat map. Nine genes showed decreased expression in 2003 field samples but no differential expression relative to controls in 2005. Of these genes, six are also repressed in drought-exposed chamber-grown plants with four (At4g02380, At2g06850, At3g01500 and At2g10940) also showing increased expression in drought-stressed plants that are re-watered and recovering from stress.

Of the gene products showing differential expression in the heat map (Fig. 4), only 49 were categorized by GO-Slim analysis to be associated with stress. Among gene products showing enhanced expression following stress treatments in cabinets and in field plants, 13 genes have transcripts that increase in response to drought imposed on plants in cabinets and six of these are more abundant in leaf samples from plants harvested in 2003. Interestingly, the six genes associated with these drought-responsive transcripts are not categorized by GO Biological Functions as responsive to stress (including abiotic or biotic stress). The genes associated with these transcripts are At3g09390, At4g33550, At5g42050, At5g42800, At5g53870, and At5g60360. Indeed, two from this list (At5g42050 and At5g53870) were not among the products used to compile the GO Biological Process shown in Figure 3A.

Two genes encoding expressed proteins of unknown function (At5g66860 and At2g15890) showed no apparent stress-responsive pattern in plants exposed to cold, salt or drought stress in cabinets but were found to show higher expression in the field in 2003, the year of prolonged water deficits at the field site. Furthermore the expression levels for these products were repressed in 2005 field plants, a year of adequate rainfall.

#### Metabolite profiling of *Thellungiella* growing under field conditions

The GO annotation analysis of Figure 3 shows that transcripts associated with metabolism comprise one of the largest categories of differentially regulated genes in *Thellungiella* field plants. In order to gain greater insight into the biochemical activities of these plants we extracted and profiled polar metabolites present in samples of the same leaf tissues used for microarray experiments. Using this approach, it was possible to simultaneously monitor over 300 MSTs corresponding to chemically diverse compounds.

We found 109 MSTs in leaf extracts prepared from plants collected in both 2003 and 2005 that showed statistically significant differences in abundance relative to extracts from cauline leaf controls (Supplemental Table S3). Of these components, the majority of MSTs showed reduced levels in the field (62) or showed a difference in abundance for only one year (48) compared to controls. Only two MSTs, (RI 1320 and RI 1377) showed differential abundance between the two years with higher content in 2003 samples.

In parallel to the transcript HCA, we compared MSTs found to undergo changes in abundance in 2003 and 2005 field plants (Supplemental Table S3) with those undergoing stress-responsive changes in abundance in cabinet-grown plants subjected to stress. This HCA (Fig. 5) includes MSTs showing a change in relative abundance in field material for both 2003 and 2005. Also included were 15 MSTs found at a level different from controls in one year (either 2003 or 2005) and in at least one cabinet stress treatment. The most striking impression given by HCA is that most components are less abundant in leaves of field plants than cauline leaves from a growth cabinet control plant. Leaves harvested from *Thellungiella* growing on saline field sites in 2003 and 2005 had a higher content of citrate, unknown RI 1429, succinate, ethanolamine, Gly, citramalate, sucrose and fructose compared to cauline leaf controls. None of the laboratory stress conditions led to an increased relative abundance of the first four MSTs in this list. Carbohydrates, including several sugars (sucrose, glucose, galactose and fructose) and sugar alcohols, also show increased abundance in field samples relative to well-watered cauline control leaves. Finally, a number of components were of low relative abundance

128
in the field samples but showed a significant change in content in leaves of plants stressed in growth cabinets. These MSTs include several amino acids (Ser, Glu, Pro, Ile, and Val), galactinol and, raffinose.

The content of plant metabolites can show diurnal changes in abundance (Gibon et al., 2006). We took two measures to address the impact of time of harvest on MST composition. In the first measure we grew laboratory plants under a Yukon day-length regime and synchronized leaf removal from cabinet-grown and field plants. Harvest time approximated the same number of hours (7 h) from sunrise in the Yukon or "lights on" in the growth cabinet. A second measure involved harvesting leaf tissue from field plants at three time-points corresponding to 2, 7 and 12 h after sunrise. Measurements of MST abundance at any given time point were expressed as an average fold-change of the three time points selected for tissue analysis and Figure 6 shows an HCA for the group of 29 MSTs that were found to undergo significant changes in abundance. The majority of the compounds that underwent changes in content showed maximum abundance in the samples obtained 7 h after sunrise. This group includes myo-inositol, raffinose, galactinol, quinic acid, fructose, sucrose, and 16 unidentified MSTs. A smaller group whose abundance was highest in early morning (2 h) samples included phosphate, citrate, Gly and unknown RI 1320 while one MST, unknown RI 966, was most abundant in the late time-point sample (12 h after sunrise). Given the difficulty of sampling at a remote field site and the pattern of highest abundance tending to be near midday, we selected a single time-point corresponding to 7 h after sunrise for routine sampling and synchronized this sampling time for comparisons with plants in growth cabinet material.

Our finding agrees with those reported by Gibon et al. (2006) who reported that metabolite abundance is relatively low early in the day and increases over the course of the day.

### 4.5 DISCUSSION

Many features distinguish a model organism and among them is their ease of propagation under laboratory conditions. While the study of model plants such as *Arabidopsis* under these conditions has provided an abundance of genetic and physiological information, applying this knowledge to plant performance under more complex, natural environmental conditions has lagged behind (Ungerer et al., 2008). In this study we have applied functional genomic approaches to the study of a related crucifer extremophile growing under laboratory conditions with a population of the same species found in its native Yukon habitat. The Yukon Territory of Canada offers a very challenging environment for plants. With a relatively short growing season, typically cold and frequently dry conditions, and a highly saline and alkaline soil medium, the field site we selected for our study is ideally suited for studying plants requiring traits needed for survival under adverse conditions.

Given the diversity of concurrent environmental stresses possible under Yukon field conditions, a highly plastic phenotype could be advantageous in developing a plant more suitably structured for a prevailing environment. In July 2003 the only green and flowering vegetation among dead and dying grass at the field site was *Thellungiella* (Fig. 1C). These plants were small in stature compared to those found in 2005 and aside from this morphological indication of stress, leaf solute potential ( $\Psi_s$ ) measurements also distinguished these Yukon *Thellungiella* plants. A well-watered plant in the growth cabinet has a cauline leaf  $\Psi_s$  of -1.50 ± 0.05 MPa, a comparatively low value for an unstressed plant (Morgan, 1984). In comparison, visibly turgid cauline leaves from field plants were -2.07 ± 0.13 MPa and -1.63 ± 0.07 MPa in 2003 and 2005, respectively. These leaf  $\Psi_s$  values show the most solute-rich leaves as being from plants experiencing the 2003 drought. Solute accumulation by plants under water deficits is a beneficial physiological response that can improve water uptake to maintain or restore turgor (Hanson and Hitz, 1982; Shao et al., 2009).

Analysis of transcripts by biological process corroborates the extent of stress experienced by plants under field conditions. The theoretical expectation for transcripts classified by GO Biological Process for "Response to stress or biotic stimulus" and "Response to stress" given the coding potential for the *Arabidopsis* genome would be approximately 8.4% (TAIR; http://www.arabidopsis.org/tools/bulk/go/) and for the unigenes represented on our microarray chip about 8% (Wong et al., 2005). However, we found our observed and expected frequencies with respect to transcripts classified by these categories to diverge. The observed frequency of stress-associated transcripts was over two-fold higher at 19% for *Thellungiella* leaf tissue collected in 2005, a year of above-normal precipitation. In 2003 the corresponding value is just over 38% or almost four times as high as the theoretical expectation showing that stress-responsive gene expression made an even greater relative contribution towards the transcripts found in leaves of 2003 field plants. This observation suggests that gene products undergoing changes in relative abundance uniquely in this year could be associated with survival under extreme water deficit conditions.

The gene products found to undergo an increase in transcript abundance in leaves of field plants of 2003 but not 2005 are given in supplemental Table S2E. Of the 78 genes found to undergo a 2-fold or greater increase in expression, 14 (18 %) were reported to be stress responsive in growth cabinet treated plants by Wong et al. (2006) and the remaining 64 products only showed increased relative expression in tissue from 2003 field plants. Only half of the 64 gene products are categorized by GO Annotation to be associated with stress although their enrichment in this tissue source would suggest otherwise. With a focus on the 15 most highly expressed gene products in 2003, all but seven showed increased abundance in tissue subjected to stress, including simulated drought in cabinets. These seven transcripts encode genes for heat shock protein 17.6 kDa class II (At5g12020), a lipid transfer protein family member (At1g62510), heat shock protein 81-1 (At5g52640), beta-amylase 8 (BMY8, At4g17090), a putative lipocalin (At5g58070), ferretin 1 (At5g01600), and cold, circadian rhythm, and RNA binding 2 (At2g21660). The heat-shock products, putative lipocalin, BMY8 and lipid transfer protein share a common feature in that all have a reported association with exposure to high temperature (Chi et al., 2009; Kaplan and Guy, 2004; Rizhsky et al., 2004), consistent with the prevailing hot and dry weather conditions for 2003 (Fig. 2).

A combination of heat and drought stress in the field is not uncommon and usually leads to a more significant adverse impact on crop productivity than either stress alone (reviewed by Mittler, 2006). Plants subjected to heat stress and water deficits display characteristic physiological changes including a combination of high respiration and low photosynthesis and these responses are associated with stress-specific changes among gene products related to carbon metabolism (Rizhsky et al., 2004). Although light and circadian rhythms are two factors regulating starch metabolism, environmental conditions of temperature stress (heat or cold) and drought can also influence starch synthesis and degradation (reviewed in Lu and Sharkey, 2006). Among the highly expressed transcripts only found in 2003 leaves were those encoding two  $\beta$ -amylases namely BMY8 (At4g17090) which was one of the ten most highly expressed products, and BMY7 (At3g23920), and an  $\alpha$ - amylase-like 2 product (At1g76130). The BMYs are of particular interest as they are believed to play a key role in starch catabolism, particularly under controlled environment conditions (Fulton et al., 2008). In Arabidopsis the expression of genes encoding BMYs are regulated by many factors including light, phytohormones and various stress conditions with BMYs 7 and 8 associated more specifically with heat and cold stress (Kaplan and Guy, 2004; Kaplan et al., 2006). BMY8 is considered the most important enzyme in the breakdown of leaf starch but a very specific functional overlap between BMYs 7 and 8 has been revealed through a particularly severe, starch-accumulation phenotype of a double mutant (Fulton et al., 2008). BMYs are involved in starch degradation and the maltose produced can protect photosynthetic proteins and membranes from stress-associated damage (Kaplan and Guy, 2004). This relief may be transitory until other compatible solutes including sugars can accumulate as part of a long-term stress acclimation strategy. In our case we

detected and verified the presence of maltose among our chemical components but found no evidence that the maltose content was significantly higher in leaf tissue from 2003 compared to cauline leaf controls produced in our growth cabinets or in comparison to field plants harvested in 2005. The lack of accumulated maltose would suggest that this organic solute is not used in long-term adjustment for drought and heat stress protection. Since levels of maltose are typically low during the day (Weise et al., 2005) and the field plants are exposed to a daylength in excess of 20 h during the summer, it is possible that maltose cannot accumulate in field plants under these conditions. The heightened capacity for starch degradation including the production of glucose, sucrose and fructose could explain the elevated levels of these sugars in 2003 leaf tissue (Fig. 5).

Of 2,806 drought and/or heat responsive changes among transcripts, Rhizsky et al. (2004) found over 770 (41%) that were unique to *Arabidopsis* plants exposed to a simultaneous heat and drought treatment. These unique changes extended to the metabolome where drought and heat-specific metabolites, particularly sugars, were found to accumulate with sucrose content increasing by almost 24-fold over unstressed controls (Rizhsky et al., 2004). In field plants where most metabolites were found at levels well below those found in plants grown in growth cabinets, we found statistically significant higher contents associated with sucrose and a number of other sugars. In our case, however, the highest fold-increase in sucrose was found in plants exposed to the more favorable 2005 conditions as opposed to the dry and hot 2003 season. In agreement with their study, however, we found other sugars including glucose, fructose and galactose to undergo significant increases in 2003 tissues as compared to plant tissues obtained in

2005. For these latter sugars in particular, levels frequently increased with other stress treatments in cabinets but in each case drought elicited the highest-fold accumulation.

Not all of the heat stress and drought-related changes represented a positive accumulation. Rather, the study by Rizhsky et al. (2004) reports proline levels to be increased by drought but suppressed under a combination of drought and heat stress, an observation that seems at variance with the purported stress-protective role of proline (Szekely et al., 2008 and reviewed by Verbruggen and Hermans, 2008). Our comparative study between the field and cabinet stress treatments also shows factors contributing to proline accumulation to be at least as complex for Yukon *Thellungiella* plants.

Proline accumulation under stress results from its increased synthesis and decreased turnover (Delauney and Verma, 1993) and a salt stress-responsive increase in proline content for Shandong *Thellungiella* plants has been well documented (Inan et al., 2004; Kant et al., 2006). Wong et al. (2006) reported that transcripts associated with *delta-1-pyrroline-5-carboxylate synthetase* (*P5CS A*, At2g39800 and *P5CS B*, At3g55610) were expressed at higher levels in drought and cold-treated plants relative to controls. Based upon these expression patterns we expected proline content to be higher in cold and drought-stressed chamber-grown plants. However, Figure 5 shows that proline content was highest in cold and salt-stressed plants and not in leaves of plants subjected to drought treatment, an observation showing poor agreement to predictions based upon the relative abundance of *P5CS* transcripts. For the field plants, the transcript profiles for leaves of 2003 plants show no enrichment for *P5CS A* or *B* transcripts and proline content was, at best, no different than the level found in a well-watered cauline

135

leaf found in the growth cabinet. Thus whether drought was simulated in a growth cabinet or in combination with salt and heat stress in the field as was the case in 2003, proline did not accumulate in Yukon *Thellungiella* under water deficits. Moreover, while a salt stress treatment imposed by irrigating plants in growth chambers with saline solutions led to increased proline content, plants growing under non-drought conditions that are exposed to salt in the field (2005) also had low levels of proline compared to a well-watered cabinet-grown plant. Together these observations suggest that Yukon *Thellungiella* plants show metabolic plasticity with respect to their capacity to accumulate proline. It may be that any benefits conferred by proline under a controlled, cabinet salt stress treatment are not realized during water deficits or when plants are subjected to the multiple, concurrent stresses experienced in the field. Our findings support the conclusions of Gagneul et al. (2007) who found proline levels in the halophyte *Limonium latifolium* to respond modestly but positively to salt up-shifts but did not display strong indications of a being an osmolyte in comparison to other solutes.

Galactinol was also present at higher relative abundance in *Thellungiella* leaves from plants subjected to drought conditions in growth cabinets but was found at lower levels in the leaf tissue of field plants compared to well-watered, chamber-grown *Thellungiella* (Fig. 5). Galactinol synthase catalyzes a key step in galactinol synthesis and the expression of the gene encoding this enzyme (At1g56600) was up-regulated in *Thellungiella* harvested from the field during both years relative to cabinet grown controls (Fig. 4). This observation suggests that the capacity for galactinol accumulation by these plants should not be limited by the absence of this enzyme. However, this data is based upon a static snapshot of metabolites, and it is possible that galactinol fails to accumulate because it is used in other synthetic or catabolic reactions although raffinose, one such end-product, also did not accumulate in field plants (Fig. 5). Galactinol content was found to change over the course of a day with the highest level found at the 7 h (midday) time-point (Fig. 6). This pattern of changing abundance is consistent with a role in carbohydrate transport and both galactinol and galactinol synthase have known roles in phloem loading in other plant species (McCaskill and Turgeon, 2007).

A genome-wide analysis of Arabidopsis revealed that 1310 out of 1969 (~67%) genes that were differentially expressed in Arabidopsis subjected to drought were also significantly up or down-regulated by exogenously applied abscisic acid (ABA) or an analog of ABA (Huang et al., 2007, 2008). Our study shows 15 genes whose transcript levels were higher in leaf tissue from 2003 and in plants subjected to drought treatments in cabinets. Expression of these genes was suppressed in plants recovering from drought treatment and showed no increased expression in 2005 plant tissue relative to wellwatered cabinet plants. With one exception (At5g60360), these genes were classified by Huang et al. (2007) as ABA-responsive. Among the 2003-specific changes, the gene product encoded by At2g46680 is an ABA-responsive homeodomain Leu zipper transcription factor (ATHB7) that has been reported to be upregulated by drought, salinity, and white light (Söderman et al., 1996; Henriksson et al., 2005). Transcripts associated with ATHB7 were over 3-fold more abundant in leaves of 2003 Thellungiella field plants relative to well-watered control plants and in a previous study were not found to be more abundant in drought-treated plants in growth cabinets (Wong et al., 2006).

Thus water deficits simulated in growth cabinets did not elicit the same response with respect to expression of *ATHB7* as a prolonged drought in the field.

The capacity of a plant to withstand an environmental extreme will probably not reside with one metabolite, protein or transcript but is more likely to be a combination of many control levels working in concert (Mazzucotelli et al., 2008). If this is true then it is likely that an extremophile may be an organism that can successfully orchestrate its response to maximize the advantages that various response pathways may confer. One dramatic albeit descriptive indication of *Thellungiella*'s capacity to show flexibility toward its environment is displayed by the contrasting field and cabinet phenotypes. It is perhaps not surprising that plants with such striking and distinct architectures should also have underlying differences in transcriptome and metabolome profiles. Nonetheless, we found many traits to be expressed by plants in the field and in growth cabinets. As such, some traits are expressed by plants experiencing stress regardless of where they are growing and it is tempting to propose that these will be the genes and gene products that offer the greatest potential for crop improvement.

### ACKNOWLEDGEMENTS

We thank Bruce Bennett and Randy Mulder for their assistance at the Yukon field site.

#### **4.6 REFERENCES**

- Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259: 89-120
- Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24: 23-58

Boyer JS (1982) Plant productivity and environment. Science 218: 443-448

- Brady KU, Kruckeberg AR, Bradshaw HD (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol System **36:** 243-266
- Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu J- (2001) Learning from the *Arabidopsis* experience. The next gene search paradigm. Plant Physiol 127: 1354-1360
- Chi W, Fung RM, Liu H, Hsu C, Charng Y (2009) Temperature-induced lipocalin is required for basal and acquired thermotolerance in *Arabidopsis*. Plant Cell Environ 32: 917-927
- **Clough SJ, Bent AF** (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of *Arabidopsis thaliana*. Plant J **16:** 735-743
- **Day JH** (1962) Reconnaissance Soil Survey of the Takhini and Dezadeash Valleys in the Yukon Territory. Canada Dept. of Agriculture, Ottawa, ON

**Delauney AJ, Verma DPS** (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4: 215-223

Dhanaraj AL, Alkharouf NW, Beard HS, Chouikha IB, Matthews BF, Wei H,
 Arora R, Rowland LJ (2007) Major differences observed in transcript profiles of
 blueberry during cold acclimation under field and cold room conditions. Planta
 225: 735-751

Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863-14868

Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 72: 3573-3580

## Fulton DC, Stettler M, Mettler T, Vaughan CK, Li J, Francisco P, Gil D, Reinhold H, Eicke S, Messerli G, Dorken G, Halliday K, Smith AM, Smith SM, Zeeman SC (2008) beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in *Arabidopsis* chloroplasts. Plant Cell 20: 1040-1058

Gagneul D, Ainouche A, Duhaze C, Lugan R, Larher FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol **144:** 1598-1611

Gibon Y, Usadel B, Blaesing OE, Kamlage B, Hoehne M, Trethewey R, Stitt M (2006) Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in *Arabidopsis* rosettes. Genome Biol **7:** 76

Gong QQ, Li PH, Ma SS, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile *Thellungiella halophila* in comparison with its relative *Arabidopsis thaliana*. Plant J. 44: 826-839

Griffith M, Timonin M, Wong AC, Gray GR, Akhter SR, Saldanha M, Rogers MA,
Weretilnyk EA, Moffatt B (2007) *Thellungiella*: an *Arabidopsis*-related model
plant adapted to cold temperatures. Plant Cell Environ 30: 529-538

Hanson AD, Hitz WD (1982) Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol 33: 163-203

- Henriksson E, Olsson ASB, Johannesson H, Johansson H, Hanson J, Engstrom P,
   Soderman E (2005) Homeodomain leucine zipper class I genes in *Arabidopsis*.
   Expression patterns and phylogenetic relationships. Plant Physiol 139: 509-518
- Hogg EH, Wein RW (2005) Impacts of drought on forest growth and regeneration following fire in southwestern Yukon, Canada. Can J For Res 35: 2141-2150
- Huang D, Jaradat MR, Wu W, Ambrose SJ, Ross AR, Abrams SR, Cutler AJ (2007) Structural analogs of ABA reveal novel features of ABA perception and signaling in *Arabidopsis*. Plant J 50: 414-428

Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in *Arabidopsis thaliana* to hormonal and environmental factors. J Exp Bot 59: 2991-3007

Inan G, Zhang Q, Li PH, Wang ZL, Cao ZY, Zhang H, Zhang CQ, Quist TM,
Goodwin SM, Zhu JH, Shi HH, Damsz B, Charbaji T, Gong QQ, Ma SS,
Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM,
Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt cress. A halophyte and
cryophyte *Arabidopsis* relative model system and its applicability to molecular
genetic analyses of growth and development of extremophiles. Plant Physiol 135:
1718-1737

- Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, *Thellungiella halophila*, and *Arabidopsis thaliana* is responsible for higher levels of the compatible osmolyte proline and tight control of Na<sup>+</sup> uptake in *T. halophila*. Plant Cell Environ **29:** 1220-1234
- **Kaplan F, Guy CL** (2004) β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol **135**: 1674-1684
- Kaplan F, Sung DY, Guy CL (2006) Roles of beta-amylase and starch breakdown during temperatures stress. Physiol Plant 126: 120-128
- **Kopka J** (2006) Current challenges and developments in GC-MS based metabolite profiling technology. J Biotechnol **124:** 312-322

### Li P, Ainsworth EA, Leakey ADB, Ulanov A, Lozovaya V, Ort DR, Bohnert HJ (2008) *Arabidopsis* transcript and metabolite profiles: Ecotype-specific responses to open-air elevated [CO<sub>2</sub>]. Plant Cell Environ **31:** 1673-1687

Lu Y, Sharkey TD (2006) The importance of maltose in transitory starch breakdown. Plant Cell Environ 29: 353-366

Martens DC, Lindsay WL (1990) Testing soils for copper, iron, manganese and zinc. In RL Westerman, ed, Soil Testing and Plant Analysis, Ed 3. Soil Science Society of America, Madison, WI, pp 229-264

- Mazzucotelli E, Mastrangelo AA, Crosatti C, Guerra D, Stanca AM, Cattivelli L (2008) Abiotic stress response in plants: When post-transcriptional and posttranslational regulations control transcription. Plant Sci **174:** 420-431
- McCaskill A, Turgeon R (2007) Phloem loading in Verbascum phoeniceum L. depends on the synthesis of raffinose-family oligosaccharides. Proc Natl Acad Sci USA 104: 19619-19624
- Messerli G, Nia VP, Trevisan M, Kolbe A, Schauer N, Geigenberger P, Chen JC, Davison AC, Fernie AR, Zeeman SC (2007) Rapid classification of phenotypic mutants of *Arabidopsis* via metabolite fingerprinting. Plant Physiol 143: 1484-1492

Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11: 15-19

Miyazaki S, Fredricksen M, Hollis KC, Poroyko V, Shepley D, Galbraith DW, Long SP, Bohnert HJ (2004) Transcript expression profiles of *Arabidopsis thaliana* grown under controlled conditions and open-air elevated concentrations of CO<sub>2</sub> and of O<sub>3</sub>. Field Crops Res **90:** 47-59

- Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35: 299-319
- Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167: 645-663
- Nuin P, Weretilnyk EA, Summers PS, Guevara DR, Golding GB (2005) GASP:

GC/MS analysis software package. Hamilton, ON

### Ping CL, Bockheim JG, Kimble JM, Michaelson GJ, Walker DA (1998)

Characteristics of cryogenic soils along a latitudinal transect in Arctic Alaska. J Geophys Res Atmos **103**: 28917-28928

Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of *Arabidopsis* to a combination of drought and heat stress. Plant Physiol **134**: 1683-1696

- Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas-chromatography-mass spectrometry. Plant J 23: 131-142
- Saldanha AJ (2004) Java Treeview--extensible visualization of microarray data. Bioinformatics 20: 3246-3248

#### Shao H, Chu L, Jaleel, CA, Manivannan P, Panneerselvam, Shao M (2009)

Understanding water defict stress-induced changes in the basic metabolism of higher plants – biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol **29**: 131-151

- Soderman E, Mattsson J, Engstrom P (1996) The *Arabidopsis* homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J **10:** 375-381
- Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography. J Am Soc Mass Spectrom 10: 770-781
- Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of *Arabidopsis* play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53: 11-28
- Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt

tolerance between *Arabidopsis* and *Arabidopsis*-related halophyte salt cress using *Arabidopsis* microarray. Plant Physiol **135**: 1697-1709

- **Ungerer MC, Johnson LC, Herman MA** (2008) Ecological genomics: understanding gene and genome function in the natural environment. Heredity **100:** 178-183
- Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35: 753-759
- Weise SE, Kim KS, Stewart RP, Sharkey TD (2005) Beta-Maltose is the metabolically active anomer of maltose during transitory starch degradation. Plant Physiol 137: 756-761

Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in *Thellungiella*, a close relative of *Arabidopsis*. Plant Physiol 140: 1437-1450

Wong CE, Li Y, Whitty BR, Diaz-Camino C, Akhter SR, Brandle JE, Golding GB, Weretilnyk EA, Moffatt BA, Griffith M (2005) Expressed sequence tags from the Yukon ecotype of *Thellungiella* reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Mol Biol 58: 561-574

# Figure 1. Phenotype of *Thellungiella* grown in controlled environments and at the Yukon field site

A) 9-week old *Thellungiella* grown in controlled environment cabinets showing seed-

bearing siliques and a prominent rosette (scale: white or black bar =2 cm).

B) *Thellungiella* found on salt flats have cauline leaves borne on multiple stems that terminate in flowers and siliques, but lack the prominent rosette observed in plants grown in growth cabinets. The inset shows an example of *Thellungiella* found on salt flats with one main stem.

C) Thellungiella growing on Yukon field site in 2003 amongst dried up vegetation.

D) Thellungiella growing on Yukon field site in 2005

### PhD Thesis – David Guevara McMaster - Biology



### Figure 2. Meteorological conditions near Yukon field site

Data were taken from Environment Canada for the Whitehorse site and the months of May to July for 2003 and 2005 (www.climate.weatheroffice.ec.gc.ca/climate\_normals/). Asterisks denote dates on which tissue was harvested from *Thellungiella* plants growing in the field.



# Figure 3. Gene ontology classification of transcripts differentially expressed in *Thellungiella* growing at the Yukon field site.

The transcripts enhanced or repressed in Yukon *Thellungiella* harvested from the field in 2003 and 2005 relative to growth chamber grown plants were classified into the (A) biological processes and (B) molecular function categories using the TAIR9 gene ontology categorization (<u>www.arabidopsis.org/tools/bulk/go/index.jsp</u>). The number of transcripts that are differentially expressed in Yukon *Thellungiella* harvested from the field in 2003 or 2005 relative to growth chamber grown plants are indicated in brackets.





# Figure 4. Hierarchical cluster analysis of genes differentially expressed in *Thellungiella* harvested from the Yukon field site in 2003 and 2005 and *Thellungiella* exposed to abiotic stresses in growth cabinets

Transcript expression levels were converted to a ratio of the treatment over the appropriate control. Ratios greater or less than the controls by at least 1.5 fold were then  $log_{10}$  transformed before being subjected to HCA and illustrated as a heatmap. White indicates no difference in gene expression between the sample and its respective control while red or blue indicates that gene expression was higher (positive number) or lower (negative number), respectively, relative to a control. Values in legend are fold-differences compared to the appropriate control.



Figure 5. Hierarchical cluster analysis of metabolites in *Thellungiella* harvested from the Yukon field site in 2003 and 2005 and chamber grown plants exposed to abiotic stresses.

MSTs that were significantly (P<0.05) higher or lower in *Thellungiella* growing at the Yukon field site relative to unstressed growth cabinet-grown controls are compared to similar values for *Thellungiella* subjected to abiotic stress treatments imposed in growth cabinets. If an MST was only significantly higher or lower in one field year, it was not included in the analysis. The mean MST abundance was expressed as the fold ratio of treated or field over appropriate control levels. Those ratios that were higher or lower by a factor of 1.5-fold were then  $log_{10}$  transformed before being subjected to HCA and illustrated as a heatmap. White indicates no difference in MST abundance between the sample and its respective control while red or blue indicates that the MST is detected at higher (positive number) or lower (negative number) levels, respectively, relative to a control. The values in the legend are fold differences compared to the appropriate control.

### McMaster - Biology



# Figure 6. Hierarchical cluster analysis of metabolites present at different levels throughout the day in *Thellungiella* harvested from the Yukon field site.

The mean of measurements from five individual plants harvested at 2 h, 7 h and 12 h from the beginning of the light period were expressed as a ratio relative to the mean abundance for all three timepoints). The fold ratios were then  $log_{10}$  transformed subjected to HCA and illustrated as a heatmap. MSTs whose levels were significantly different (P<0.05) at any time-point from the average of the day are illustrated. White indicates no difference between the mean MST abundance at a given time point and the daily average while red or blue indicates that the MST is present at significantly higher (positive number) or lower (negative number) levels, respectively, compared to the daily average. The values in the legend are fold differences compared to the average.



**Supplemental Table S1.** Soil properties and mineral composition of Yukon Thellungiella harvested from the experimental field site near Whitehorse, YT, and from growth chamber grown plants.

|                     | Soil Pr      | operties     | Thellungiella Mineral Composition |              |         |  |
|---------------------|--------------|--------------|-----------------------------------|--------------|---------|--|
| Parameter           | Field Site 1 | Field Site 2 | Field Site 1                      | Field Site 2 | Chamber |  |
| pH                  | 8.3          | 8.3          | - <u></u>                         |              | <u></u> |  |
| E.C. $(dS m^{-1})$  | 15.68        | 15.47        |                                   |              |         |  |
| Concentration (ppm) |              |              |                                   |              |         |  |
| NH4 <sup>+</sup>    | 1            | 1            |                                   |              |         |  |
| NO <sub>3</sub>     | 10           | 60           |                                   |              |         |  |
| Total C             | 26100        | 100500       |                                   |              |         |  |
| Total N             | 2600         | 10700        | 31900                             | 26500        | 42000   |  |
| Р                   | 26           | 47           | 2800                              | 2900         | 9200    |  |
| K                   | 236          | 131          | 22300                             | 22200        | 43700   |  |
| Ca                  | 521          | 469          | 15800                             | 14000        | 10400   |  |
| Na                  | 2224         | 2076         | 13630                             | 7100         | 2058    |  |
| Mg                  | 1456         | 1583         | 6000                              | 6100         | 4200    |  |

**Supplemental Table S2.** Transcripts differentially expressed in Yukon Thellungiella harvested from the field in 2003 and 2005.

Values represent fold-ratio between field (F) and chamber grown Yukon *Thellungiella*, where a positive or negative number represents an enhancement or repression of transcript expression in field-grown, respectively, compared to cabinet grown plants. Column E denotes whether annotated gene is associated with stress based on gene ontology categorization (Yes=stress associated). Column F denotes whether the annotated gene is associated with abscisic acid signaling (S) or metabolism (M), or responsive to abscisic acid stimulus (R) based on gene ontology categorization. Column G denotes whether the annotated gene is also stress-responsive (indicated with "1") based on experiments performed in growth chambers by our research group as reported in Table 2 in Wong et al. (2006).

Transcripts down-regulated (P<0.01) in Yukon Thellungiella harvested from the field in 2003 and 2005

| Α          |                                        | C        | D        | E        | F        | G                                             |
|------------|----------------------------------------|----------|----------|----------|----------|-----------------------------------------------|
| <u> </u>   |                                        | F 2003 / | F 2005 / |          |          | <u> </u>                                      |
| AGI code   | Annotation                             | Chamber  | Chamber  |          |          |                                               |
| At2g43590  | Chitinase. Putative                    | -23.7    | -3.7     |          |          | 1                                             |
| At3g57270  | Beta-1.3-Glucanase 1                   | -18.6    | -14.3    |          |          |                                               |
| At3957240  | Beta-1 3-Glucanase 3                   | -14.7    | -20.0    | Yes      |          | 1                                             |
| At1975040  | Pathogenesis-Related Gene 5            | -10.9    | -5.3     | Yes      |          | $\frac{1}{1}$                                 |
| At2g30520  | Root Phototropism 2                    | -10.7    | -4.0     | Yes      |          | <u> </u>                                      |
| At3g51600  | Lipid Transfer Protein 5               | -10.3    | -5.6     |          | ————     | 1                                             |
| At5g21274  | Calmodulin 6                           | -9.3     | -10.0    |          | <u> </u> |                                               |
| At4g27440  | Protochlorophyllide Oxidoreductase B   | -9.0     | -9.1     |          |          |                                               |
| At1g21100  | O-Methyltransferase. Putative          | -8.8     | -7.7     | ·        |          | <u>├</u> ───                                  |
| At3g13560  | Glycosyl Hydrolase Family 17 Protein   | -8.2     | -5.0     |          |          | F                                             |
| At3916530  | Legume Lectin Family Protein           | -8.0     | -12.5    |          |          | 1                                             |
| At2g02930  | Glutathione S-Transferase 16           | -7.6     | -5.6     |          | ·····    | <u> </u>                                      |
| At4922690  | Cytochrome P450 Family                 | -7.1     | -9.5     |          |          | <u> </u>                                      |
| At2g39310  | Iacalin Lectin Family Protein          | -7.0     | -7.1     |          |          | 1                                             |
| At2g44490  | Penetration 2 Glycosyl Hydrolase       | -6.5     | -8.3     | Yes      |          | $\frac{1}{1}$                                 |
| At2g41180  | SigA-Binding Protein-Related           | -6.4     | -4 5     |          |          | <u> </u>                                      |
| At2g29300  | Tropinone Reductase Putative           | -63      | -83      |          |          | <u>├</u> ──                                   |
| At3g16370  | GDSL-Motif Linase/Hydrolase            | -6.0     | -1.8     |          |          | 1                                             |
| At1978830  | Curculin-Like Lectin Family Protein    | -5.2     | -3.4     |          |          | <u> </u>                                      |
| At4g11650  | Osmotin 34                             | -51      | -21.4    | Yes      | ·        | 1                                             |
| At3g26210  | Cytochrome P450, Family 71             | -4.9     | -5.0     |          |          |                                               |
| At3g01290  | Band 7 Family Protein                  | -4.8     | -5.6     | <u> </u> |          |                                               |
| At1951805  | Leucine-Rich Repeat Protein Kinase     | -4.7     | -4.8     |          |          |                                               |
| At4938770  | Proline-Rich Protein 4                 | -4.6     | -1.8     |          |          | <u>                                      </u> |
| At3g11080  | Disease Resistance Family Protein      | -3.9     | -5.6     | Yes      | -        | <u> </u>                                      |
| At1g09480  | Cinnamyl-Alcohol Dehydrogenase         | -3.8     | -5.6     |          | ~        | <u> </u>                                      |
| At1g62380  | ACC Oxidase 2                          | -3.8     | -4.9     | Yes      |          | <u> </u>                                      |
| At3g45640  | Mitogen-Activated Protein Kinase 3     | -3.7     | -4.8     | Yes      | S        |                                               |
| At4g28780  | GDSL-Motif Lipase/Hydrolase            | -3.7     | -1.7     |          |          |                                               |
| At4g21960  | Peroxidase 42                          | -3.6     | -3.2     | Yes      | ·        | 1                                             |
| At1949130  | Zinc Finger Family Protein             | -3.5     | -4.3     |          |          |                                               |
| At3g32980  | Peroxidase 32                          | -3.5     | -6.7     | Yes      | -        | <u> </u>                                      |
| At4g01950  | Giveerol-3-Phosphate Acyltransferase 3 | -3.4     | -2.7     |          |          |                                               |
| At1931580  | Pathogen Inducible ECS1                | -3.3     | -3.1     | Yes      |          | 1                                             |
| At3g22440  | Hydroxyproline-Rich Glycoprotein       | -33      | -2.2     |          |          | <u> </u>                                      |
| At3952500  | Aspartyl Protease Family Protein       | -3.2     | -2.4     |          |          |                                               |
| At2g26190  | Calmodulin-Binding Family Protein      | -3.2     | -2.5     |          |          | <u> </u>                                      |
| At1002140  | Maternal Effect Embryo Arrest 63       | -31      | -2.6     |          |          | t                                             |
| At1976160  | Sku5 Oxidoreductase                    | -3.0     | -15      |          |          | <u> </u>                                      |
| At3g15450  | Unknown Protein                        | -3.0     | -7.0     |          |          | <u>├──</u> ─                                  |
| At1 v20620 | Catalase 3                             | -29      | -97      | Yes      |          |                                               |
| At5g24240  | Phosphatidylinositol 3- and 4-Kinase   |          | _22      | 103      |          |                                               |
| At4g13850  | Glycine-Rich RNA-Binding Protein 2     | -2.9     | -2.2     | Ves      |          |                                               |
| 111-813030 | Gifene-Rich Ritz-Dinding Hotem 2       | L -2.0   | -2.2     | 103      | 1        | 1                                             |

| At5g14120 | Nodulin Family Protein               | -2.8 | -4.5 |     | 1 |
|-----------|--------------------------------------|------|------|-----|---|
| At4g19810 | Glycosyl Hydrolase Family 18 Protein | -2.8 | -7.7 | T   |   |
| At1g28230 | Purine Permease 1                    | -2.7 | -3.3 |     |   |
| At1g65930 | Isocitrate Dehydrogenase, Putative   | -2.6 | -2.2 | Yes |   |
| At2g20630 | Protein Phosphatase 2C, Putative     | -2.5 | -5.0 |     |   |

### Transcripts up-regulated (P<0.01) in Yukon Thellungiella harvested from the field in 2003 and 2005

| A         | В                                     | С        | D        | Е   | F | G        |
|-----------|---------------------------------------|----------|----------|-----|---|----------|
|           |                                       | F 2003 / | F 2005 / |     |   |          |
| AGI Code  | Annotation                            | Chamber  | Chamber  |     |   | 1        |
| At3g02150 | Plastid Transcription Factor 1        | 1.6      | 1.9      |     |   |          |
| At4g27520 | Plastocyanin-Like Protein             | 1.9      | 2.1      |     |   |          |
| At3g46970 | Alpha-Glucan Phosphorylase 2          | 2.1      | 5.9      | Yes |   |          |
| At5g51040 | Expressed Protein                     | 2.1      | 2.2      |     |   |          |
| At4g37980 | Elicitor-Activated Gene 3             | 2.2      | 4.6      | Yes |   |          |
| At4g35090 | Catalase 2                            | 2.3      | 3.7      | Yes |   |          |
| At5g57800 | Eceriferum 3                          | 2.3      | 5.5      |     |   |          |
| At2g39770 | Cytokinesis Defective 1               | 2.4      | 2.2      | Yes |   |          |
| At1g06430 | FtsH Protease 8                       | 2.4      | 2.1      |     |   | 1        |
| At1g15100 | Zinc Ion Binding Protein              | 2.4      | 2.6      |     | S |          |
| At5g23750 | Remorin Family Protein                | 2.5      | 3.0      |     |   | 1        |
| At3g61220 | Short-Chain Dehydrogenase/Reductase   | 2.5      | 2.9      | Yes |   |          |
| At1g67870 | Glycine-Rich Protein                  | 2.5      | 1.9      |     |   |          |
| At2g29630 | Thiamine Biosynthesis Family Protein  | 2.6      | 3.8      |     |   | 1        |
| At3g51730 | Saposin B Domain-Containing Protein   | 2.6      | 2.6      |     |   |          |
| At3g21560 | Sinapate 1-Glucosyltransferase        | 2.6      | 4.1      |     |   |          |
| At1g24580 | Zinc Finger Family Protein            | 2.7      | 3.4      |     |   |          |
| At3g56290 | Expressed Protein                     | 2.7      | 3.6      |     |   |          |
| At1g29640 | Expressed Protein                     | 2.7      | 1.8      |     |   |          |
| At4g13250 | Short-Chain Dehydrogenase/Reductase   | 2.7      | 3.1      |     |   | 1        |
| At2g12190 | Cytochrome P450, Putative             | 2.8      | 2.6      |     |   |          |
| At1g58280 | Expressed Protein                     | 2.8      | 3.5      |     |   |          |
| At5g61820 | Expressed Protein                     | 3.1      | 1.9      |     |   | 1        |
| At1g17190 | Glutathione S-Transferase             | 3.2      | 5.3      | Yes |   |          |
| At3g44300 | Nitrilase 2                           | 3.2      | 4.0      | Yes |   |          |
| At3g57020 | Strictosidine Synthase Family Protein | 3.3      | 2.4      |     |   | 1        |
| At3g23400 | Plastid-Lipid Associated Protein      | 3.5      | 1.8      |     |   |          |
| At1g56600 | Galactinol Synthase 2                 | 3.6      | 3.1      |     |   | 1        |
| At4g37680 | Heptahelical Protein 4                | 3.8      | 8.5      |     |   |          |
| At5g15970 | Cold-Responsive 6.6                   | 4.1      | 6.4      | Yes | R | 1        |
| At4g26530 | Fructose-Bisphosphate Aldolase        | 4.2      | 5.5      |     |   | F        |
| At5g52300 | Responsive To Dessication 29B         | 4.4      | 2.7      | Yes | S | 1        |
| At4g14690 | Early Light-Inducible Protein 2       | 4.6      | 29.0     | Yes |   | 1        |
| At5g07990 | Flavonoid 3'-Monooxygenase            | 5.2      | 10.2     | Yes |   |          |
| At4g39800 | Myo-Inositol-1-Phosphate Synthase     | 5.3      | 9.2      |     |   | <u> </u> |
| At5g09570 | Expressed Protein                     | 5.3      | 2.5      |     |   |          |
| At3g19710 | Methionine-Oxo-Acid Transaminase      | 5.8      | 4.0      |     |   |          |
| At5g13170 | Nodulin Mtn3 Family Protein           | 5.9      | 5.3      |     |   | 1        |
| At5g57785 | Unknown Protein                       | 6.1      | 3.7      |     |   |          |
| At3g57520 | Seed Imbibition 2                     | 8.2      | 3.9      |     |   | 1        |
| At3g22840 | Early Light-Inducible Protein 1       | 13.0     | 52.9     | Yes |   | 1        |

### Transcripts up-regulated (P<0.01) in Yukon Thellungiella harvested from the field in 2003, down-regulated (P<0.01) in 2005

| A         | В                                | C        | D        | E | F | G |
|-----------|----------------------------------|----------|----------|---|---|---|
|           |                                  | F 2003 / | F 2005 / |   |   |   |
| AGI code  | Annotation                       | Chamber  | Chamber  |   |   |   |
| At2g15890 | Maternal Effect Embryo Arrest 14 | 2.8      | -2.4     |   |   |   |
| At5g66860 | Expressed Protein                | 2.4      | -1.6     |   |   |   |

### Transcripts down-regulated (P<0.01) in Yukon Thellungiella harvested from the field in 2003 only

|           | В                                     | C        | D        | Е   | F | G |
|-----------|---------------------------------------|----------|----------|-----|---|---|
|           |                                       | F 2003 / | F 2005 / |     |   |   |
| AGI code  | Annotation                            | Chamber  | Chamber  |     |   | 1 |
| At1g72610 | Germin-Like Protein 1                 | -20.5    |          |     |   | 1 |
| At1g56340 | Calreticulin 1                        | -11.2    |          | Yes |   |   |
| At2g10940 | Lipid Transfer Protein Family Protein | -10.6    |          |     |   | 1 |
| At3g16470 | Jacalin Lectin Family Protein         | -9.3     |          | Yes |   |   |
| At5g41750 | Disease Resistance Protein            | -8.9     |          | Yes |   |   |
| At5g22580 | Expressed Protein                     | -7.5     |          |     |   |   |
| At1g74710 | Isochorismate Synthase 1              | -6.3     |          | Yes |   |   |
| At1g52400 | Beta-Glucosidase Homolog 1            | -5.0     |          |     |   | 1 |
| At4g31500 | Cytochrome P450 Monooxygenase         | -4.9     |          | Yes |   |   |
| At1g71695 | Peroxidase 12                         | -4.7     |          | Yes |   |   |
| At1g66980 | Glycerophosphoryl Phosphodiesterase   | -4.7     |          |     |   |   |
| At4g02380 | Senescence-Associated Gene 21         | -4.6     |          | Yes |   | 1 |
| At1g80440 | Kelch Repeat-Containing F-Box         | -4.3     |          |     |   |   |
| At1g26770 | Expansin A10                          | -4.2     |          |     |   |   |
| At2g45470 | Arabinogalactan Protein 8             | -4.2     |          |     |   |   |
| At2g21650 | Maternal Effect Embryo Arrest 3       | -4.1     |          |     |   |   |
| At3g25020 | Disease Resistance Family Protein     | -3.8     |          | Yes |   |   |
| At2g06850 | Endoxyloglucan Transferase            | -3.5     |          | Yes |   | 1 |
| At5g14320 | 30S Ribosomal Protein S13             | -3.4     |          |     |   |   |
| At3g27690 | PS II Light Harvesting Complex        | -3.3     |          |     |   | 1 |
| At4g03210 | Xyloglucan Endotransglucosylase       | -3.3     |          |     |   |   |
| At2g05070 | PS II Light Harvesting Complex        | -3.2     |          |     |   |   |
| At2g28190 | Copper/Zinc Superoxide Dismutase 2    | -3.2     |          | Yes |   |   |
| At5g37600 | Glutamate-Ammonia Ligase              | -3.2     |          |     |   |   |
| At1g08450 | Calreticulin 3                        | -3.2     |          |     |   |   |
| At3g01500 | Carbonic Anhydrase 1                  | -3.1     |          | Yes |   | 1 |
| At1g48300 | Unknown Protein                       | -2.9     |          |     |   |   |
| At4g23190 | Cysteine-Rich Rlk11 Kinase            | -2.9     |          | Yes |   |   |
| At3g62630 | Expressed Protein                     | -2.9     |          |     |   |   |
| At1g14870 | Expressed Protein                     | -2.8     |          | Yes |   |   |
| At1g15820 | PSII Chlorophyll Binding Protein      | -2.8     |          | Yes |   | 1 |
| At1g59870 | Pleiotropic Drug Resistance 8 Protein | -2.7     |          | Yes |   |   |
| At3g22120 | Plasma Membrane Linker Protein        | -2.6     |          |     |   | 1 |
| At1g44446 | Chlorophyllide A Oxygenase            | -2.6     |          |     |   |   |
| At5g40780 | Lysine Histidine Transporter 1        | -2.5     |          |     |   |   |
| At3g17390 | S-Adenosylmethionine Synthase 3       | -2.3     |          | Yes |   |   |

### Transcripts up-regulated (P<0.01) in Yukon Thellungiella harvested from the field in 2003 only

| A         | В                                       | C        | D        | Е    | F | G        |
|-----------|-----------------------------------------|----------|----------|------|---|----------|
|           |                                         | F 2003 / | F 2005 / |      |   |          |
| AGI code  | Annotation                              | Chamber  | Chamber  |      |   |          |
| At1g80130 | Expressed Protein                       | 1.5      |          | Yes  |   | 1        |
| At3g15310 | Transposable Element Gene               | 16       |          |      |   | 1        |
| At1g22370 | UDP-Glucosyl Transferase 85A5           | 16       |          |      |   |          |
| At3g55/30 | Beta-1 3-Glucanase Butative             | 1.0      |          |      |   |          |
| At5g42050 | Linknown Brotain                        | 1.6      |          |      |   | 1        |
| AL3942030 |                                         | 1.0      |          |      |   |          |
| Atig2///0 | Endemolecular (Energy land (Dhan hat an | 1.7      |          |      | D |          |
| Alig47310 | Endonuclease/Exonuclease/Phosphatase    | 1.7      |          |      | К |          |
| At2g34640 | Plastid Transcriptionally Active 12     | 1.8      |          |      |   |          |
| Atig09070 | Soybean Regulated by Cold 2             | 1.9      |          |      |   | <b></b>  |
| At2g16890 | UDP-Glucosyl Transferase                | 1.9      |          |      |   |          |
| At3g23920 | Beta-Amylase I                          | 2.0      |          |      |   | ļ        |
| At4g23600 | Coronatine Induced 1, JA Responsive 2   | 2.1      |          | Yes  | R |          |
| At1g64370 | Unknown Protein                         | 2.1      |          |      |   |          |
| At4g38740 | Peptidyl-Prolyl Cis-Trans Isomerase     | 2.1      |          |      |   |          |
| At3g08510 | Phospholipase C 2                       | 2.1      |          |      |   |          |
| At5g09590 | Heat Shock Protein 70                   | 2.1      |          | Yes  |   |          |
| At1g63810 | Nrap Family Protein                     | 2.1      |          |      |   |          |
| At2g33590 | Cinnamoyl-CoA Reductase Family          | 2.2      |          |      |   |          |
| At3g56310 | Alpha-Galactosidase/Melibiase, Putative | 2.2      |          |      |   |          |
| At2g17695 | Expressed Protein                       | 2.3      |          |      |   |          |
| At3g10985 | Wound-Induced Protein 12/SAG20          | 2.3      |          | Yes  |   |          |
| At1980530 | Nodulin Family Protein                  | 2.3      |          |      | - |          |
| At5g48180 | Kelch Repeat-Containing Protein         | 2.3      |          |      |   |          |
| At1g30360 | Farly-Responsive To Dehydration 4       | 2.3      |          |      |   |          |
| At1g30300 | NADPH Thioredoxin Peduatase 1           | 2.5      |          |      |   |          |
| At4g55400 | Alpha Amulasa Lika 2                    | 2.3      |          |      |   |          |
| At1g/0150 | Aipita-Aitiyiase-Like 2                 | 2.5      |          |      |   | ł        |
| At1g03340 | Expressed Protein                       | 2.5      |          | Vaa  |   | 1        |
| At1g13930 | Expressed Protein                       | 2.4      |          | res  |   | 1        |
| At1g29330 | ER Lumen Retaining Receptor 2           | 2.4      |          |      |   |          |
| At2g43100 | Aconitase Containing Protein            | 2.5      |          |      |   |          |
| Atlg21680 | Expressed Protein                       | 2.5      |          |      |   | L        |
| At2g01150 | Zinc Ion Binding Protein                | 2.5      |          |      |   |          |
| At1g52030 | Myrosinase-Binding Protein 2            | 2.5      |          | Yes  |   | 1        |
| At2g37220 | RNA-Binding Protein Cp29, Putative      | 2.5      |          | Yes  |   |          |
| At5g42980 | Thioredoxin H-Type 3 Protein            | 2.5      |          | Yes  |   |          |
| At4g34950 | Nodulin Family Protein                  | 2.5      |          |      |   |          |
| At1g31230 | Aspartate Kinase                        | 2.6      |          |      |   |          |
| At5g52310 | Cold Regulated 78                       | 2.6      |          | Yes  | R |          |
| At5g60600 | 4-OH-3-Mebut-2-en-1-yl DiP Synthase     | 2.6      |          | Yes  |   |          |
| At4g19230 | Cytochrome P450                         | 2.6      |          | Yes  | М | 1        |
| At1g17870 | Yellow-Green 3                          | 2.6      |          | Yes  |   |          |
| At2g29450 | Glutathione S-Transferase               | 2.6      |          | Yes  |   |          |
| At5g53870 | Plastocyanin-Like Protein               | 2.7      |          |      |   | 1        |
| At1g68050 | Flavin-Binding Kelch Domain Protein     | 2.7      |          | Yes  |   |          |
| At1g78380 | Glutathione Transferase 8               | 2.7      |          | Yes  |   |          |
| At1g19570 | Dehydroascorbate Reductase              | 2.7      |          | - ** |   |          |
| At5g42800 | Dihydroflavonol 4-Reductase             | 27       |          |      |   | 1        |
| At4001610 | Cathensin B-Like Cysteine Protease      | 2.7      |          |      |   |          |
| At5g16070 | 2-Alkenal Reductase                     | 2.7      |          | Yes  |   | <u> </u> |
| At2g29220 | Duridovina Riosunthasis 1.1             | 2.1      |          | Vee  |   |          |
| AL2230230 |                                         | 2.0      |          | 105  |   |          |
| AU20000   | FIORE S                                 | 2.8      |          |      |   |          |
| At3g02830 | UDP-GIUCUTONIC ACID Decarboxylase 2     | 2.8      |          |      |   |          |
| At4g39/30 | Lipid-Associated Family Protein         | 2.8      |          |      |   |          |
| At1g55490 | Chaperonin 60 Beta                      | 2.8      |          | Yes  |   |          |
| At3g51780 | Bcl-2-Associated Athanogene 4           | 2.8      |          | Yes  |   |          |
| At3g09390 | Metallothionein 2A                      | 2.8      |          |      |   | 1        |

| At1g01470 | Late Embryogenesis Abundant 14        | 2.8 | Yes |   | Τ |
|-----------|---------------------------------------|-----|-----|---|---|
| At5g60360 | Aleurain-Like Protease                | 2.9 |     |   | 1 |
| At2g34810 | FAD-Binding Protein                   | 2.9 | Yes |   |   |
| At1g66390 | Production Of Anthocyanin Pigment 2   | 2.9 |     |   |   |
| At5g23010 | 2-Isopropylmalate Synthase 3          | 2.9 |     |   |   |
| At2g40300 | Ferritin 4                            | 2.9 | Yes |   |   |
| At1g09240 | Nicotianamine Synthase, Putative      | 2.9 |     |   |   |
| At3g56090 | Ferritin 3                            | 3.0 | Yes |   |   |
| At2g17840 | Early-Responsive To Dehydration 7     | 3.0 | Yes |   |   |
| At1g16410 | Cytochrome P450                       | 3.0 |     |   |   |
| At1g16850 | Unknown Protein                       | 3.1 | Yes |   |   |
| At3g17800 | UV-B Responsive MEB5.2 Gene           | 3.2 | Yes |   |   |
| At2g46680 | Homeobox 7 Transcription Factor       | 3.2 | Yes | S |   |
| At3g15840 | Post-Illumination Chlorophyll Protein | 3.3 |     |   |   |
| At3g48510 | Expressed Protein                     | 3.3 |     |   |   |
| At5g21100 | L-Ascorbate Oxidase, Putative         | 3.3 |     |   |   |
| At4g16190 | Cysteine Proteinase, Putative         | 3.4 |     |   | 1 |
| At2g40080 | Early Flowering 4                     | 3.5 | Yes |   |   |
| At1g07040 | Expressed Protein                     | 3.6 |     |   |   |
| At2g21660 | Cold, Circadian Rhythm Protein        | 3.6 | Yes |   |   |
| At1g62570 | Flavin-Containing Monooxygenase       | 4.0 |     |   | 1 |
| At5g01600 | Ferretin 1                            | 4.1 | Yes |   |   |
| At5g58070 | Lipocalin, Putative                   | 4.2 | Yes |   |   |
| At1g20440 | Cold Regulated 47                     | 4.3 | Yes | R | 1 |
| At5g66400 | Responsive To ABA 18                  | 4.5 | Yes | R | 1 |
| At4g17090 | Beta-Amylase 3, Beta-Amylase 8        | 4.9 | Yes |   |   |
| At4g04020 | Fibrillin                             | 4.9 | Yes | R | 1 |
| At5g52640 | Heat Shock Protein 81-1               | 5.8 | Yes |   |   |
| At1g62510 | Lipid Transfer Protein Family Protein | 6.2 |     |   |   |
| At5g12020 | 17.6 kDa Class II Heat Shock Protein  | 6.3 | Yes |   |   |
| At5g59310 | Lipid Transfer Protein 4              | 8.1 |     | R | 1 |
| At4g33550 | Lipid Transfer Protein Family Protein | 8.4 |     |   | 1 |
| At1g20450 | Early Responsive To Dehydration 10    | 8.7 | Yes | R | 1 |

### Transcripts down-regulated (P<0.01) in Yukon Thellungiella harvested from the field in 2005 only

| A         | В                                     | С        | D        | E   | F | G |
|-----------|---------------------------------------|----------|----------|-----|---|---|
|           |                                       | F 2003 / | F 2005 / |     |   |   |
| AGI code  | Annotation                            | Chamber  | Chamber  |     |   |   |
| At1g78850 | Curculin-Like Lectin Family Protein   |          | -13.3    |     |   |   |
| At1g21120 | O-Methyltransferase, Putative         |          | -11.1    |     |   | 1 |
| At5g41550 | Disease Resistance Protein            |          | -8.3     | Yes |   | 1 |
| At3g51000 | Epoxide Hydrolase, Putative           |          | -7.4     |     |   |   |
| At1g06650 | 2-OG-Dependent Dioxygenase, Putative  |          | -5.9     |     |   | 1 |
| At5g55450 | Lipid Transfer Protein Family Protein |          | -5.9     | Yes |   |   |
| At5g61210 | Synaptosomal-Associated Protein 33    |          | -5.6     | Yes |   |   |
| At5g25980 | Glucoside Glucohydrolase 2            |          | -5.5     |     |   | 1 |
| At4g16500 | Cysteine Protease Inhibitor           |          | -5.0     |     |   |   |
| At2g38530 | Lipid Transfer Protein 2              |          | -5.0     |     |   |   |
| At2g05530 | Glycine-Rich Protein                  |          | -4.7     |     |   |   |
| At1g76790 | O-Methyltransferase Family 2 Protein  |          | -4.5     |     |   |   |
| At2g05520 | Glycine-Rich Protein 3                |          | -4.4     | Yes | R |   |
| At2g41430 | Early Responsive To Dehydration 15    |          | -4.3     | Yes |   |   |
| At5g20950 | Glycosyl Hydrolase Family 3 Protein   |          | -4.3     |     |   |   |
| At1g15670 | Kelch Repeat Family Protein           |          | -4.2     |     |   |   |
| At3g51920 | Calmodulin 9                          |          | -4.0     | Yes | R |   |
| At5g20230 | Blue-Copper-Binding Protein           |          | -3.8     | Yes |   | 1 |
| At2g20960 | pEARLI4                               |          | -3.8     |     |   |   |
| At3g03870 | Hypothetical Protein                  |          | -3.8     |     |   |   |
|           |                                       |      |            | ·            | <b>r</b>      |
|-----------|---------------------------------------|------|------------|--------------|---------------|
| At4g29190 | Zinc Finger Family Protein            |      |            |              |               |
| At5g35525 | Unknown Protein                       |      |            |              |               |
| At5g39670 | Calcium-Binding EFHand Protein        | -3.3 | L          |              |               |
| At3g14990 | 4-Me-5-OH-Me-Thiazole P Protein       |      |            |              |               |
| At2g05440 | Glycine-Rich Protein                  | -3.3 | l          |              | 1             |
| At2g39210 | Nodulin Family Protein                | -3.2 |            |              |               |
| At1g13260 | ABI3/Vp1 1 Transcription Factor       | -3.2 |            |              | <u> </u>      |
| At2933830 | Auxin Associated Family Protein       | -3.1 |            |              |               |
| At5g48380 | Leucine-Rich Repeat Family Protein    | -31  |            | ·            |               |
| At5g61530 | Small G Protein Family Protein        | -3.1 | <u> </u>   |              | <b>├</b> ──── |
| At3g01330 | Enithiospecifier Medifier 1           |      | Vac        |              | 1             |
| At5g14210 | Aurice Arrestite d Eventile Destain   |      | 105        |              |               |
| At1g56220 | Auxin Associated Family Protein       | -3.0 | <u> </u>   |              | <u> </u>      |
| At3g11130 | Clathrin Heavy Chain, Putative        | -2.9 |            |              | ļ             |
| At1g54030 | GDSL-Motif Lipase, Putative           | -2.9 | <u> </u>   |              |               |
| At4g24190 | Shepherd ATP Binding Protein          | -2.9 | Yes        |              |               |
| At5g21940 | Unknown Protein                       | -2.9 |            |              |               |
| At5g11090 | Serine-Rich Protein                   | -2.9 |            |              |               |
| At1g22710 | Sucrose-Proton Symporter 2            | -2.9 |            |              |               |
| At2g29320 | Tropinone Reductase, Putative         | -2.9 |            |              |               |
| At3g28930 | AvrRpt2-Induced Gene 2                | -2.8 | Yes        |              |               |
| At5961020 | Evolutionary Conserved C-Terminal 3   | -2.8 |            |              |               |
| At4935480 | Zinc Ion Binding Protein              | -2.8 |            |              | t             |
| At5g15650 | Alpha-1 4-Glucan-Protein Synthase     | -2.7 | Yes        |              |               |
| At5g21090 | Leucine-Rich Repeat Protein Putative  | -2.7 | 105        |              | <u>+</u>      |
| At/g05070 | Unknown Protein                       |      |            |              | h             |
| A14g03070 | Charachi Undralana Escuila 1 Dratain  | -2.7 | - Var      |              |               |
| Al5g24350 | Glycosyl Hydrolase Pamily I Protein   | -2.0 | res        |              |               |
| At5g01750 | Unknown Protein                       | -2.0 |            | - <u>n</u> - |               |
| At5g25610 | Responsive to Dessication 22          | -2.0 | res        | <u> </u>     | - <u> </u>    |
| At3g14230 | APETALA2 2 Transcription Factor       | -2.6 |            |              | L             |
| At5g18490 | Unknown Protein                       | -2.6 |            |              |               |
| At2g30250 | WRKY DNA-Binding Protein 25           | -2.6 | _Yes       |              |               |
| At3g10020 | Unknown Protein                       | -2.5 | Yes        |              |               |
| At4g10450 | 60S Ribosomal Protein L9              | -2.5 |            |              |               |
| At2g47470 | Maternal Effect Embryo Arrest 30      | -2.5 | İ          |              |               |
| At3g06500 | Beta-Fructofuranosidase, Putative     | -2.5 |            |              |               |
| At3g56510 | TBP-Binding Protein, Putative         | -2.5 |            |              |               |
| At5g20290 | 40S Ribosomal Protein S8              | -2.4 |            |              |               |
| At4g26120 | Ankyrin Repeat Family Protein         | -2.4 |            |              |               |
| At5g58375 | Unknown Protein                       | -2.4 |            |              |               |
| At5g44420 | Low-Molecular-Weight Cys-Rich 77      | -2.4 | Yes        |              | 1             |
| At1g08380 | Photosystem I Subunit O               | -2.4 |            |              | 1             |
| At5g20010 | Ras Related Nuclear Protein           | -2.4 | Yes        |              |               |
| At5957887 | Unknown Protein                       | -2.4 |            |              |               |
| At/g19160 | Unknown Protein                       | 2.4  |            |              |               |
| At5a56000 | Heat Shock Protein 81.4               | -2.5 | ł          |              | <u> </u>      |
| At1a14710 | HO-proline Rich Glycoprotein          | -2.3 |            |              | ╀───┤         |
| Arig14710 | 20C Ex(II) Organaca Esmily Protein    |      |            |              | ┟╌───┤        |
| At2g17720 | 400 Pilessenal Protein S2 Putation    | -2.3 |            |              | <u>├</u>      |
| Alig58985 | 405 Ribosomai Protein 52, Putative    | -2.3 | <u> </u>   |              | <b>↓</b>      |
| At5g27850 | 605 Ribosomal Protein L18 (Rp118C)    | -2.3 |            |              |               |
| At1g6/9/0 | Heat Shock Transcription Factor A8    | -2.3 |            |              |               |
| At1g53280 | DJ-1 Family Protein                   | -2.3 |            |              |               |
| At4g39670 | Glycolipid Transporter                | -2.3 |            |              |               |
| At3g48530 | SNF1-Related Kinase                   | -2.3 |            |              |               |
| At4g19200 | Proline-Rich Family Protein           | -2.3 | L          | L            |               |
| At3g52800 | Zinc Finger Family Protein            | -2.3 |            |              |               |
| At1g67430 | 60S Ribosomal Protein L17             | -2.2 |            |              |               |
| At3g47470 | PS I Light Harvesting Complex         | -2.2 |            |              |               |
| At4g14270 | PAM2 Motif Containing Protein         | -2.2 |            |              |               |
| At1g14790 | RNA-Dependent RNA Polymerase 1        | -2.2 | Yes        |              |               |
| At4g10970 | Unknown Protein                       | -2.2 |            | <u> </u>     | <u>├───</u>   |
| At4g34670 | 40S Ribosomal Protein S3A             | -2.2 |            | <br>         | ┼───┤         |
| At3g02230 | Reversibly Glycosylated Polypeptide 1 | -2.2 | Yes        |              |               |
| At1g12240 | Vacuolar Invertase                    | -2.1 | - <u> </u> |              | ┞───┤         |
| ·         |                                       |      |            |              |               |

|           |                                        |     |      | · · · · · |          | r        |
|-----------|----------------------------------------|-----|------|-----------|----------|----------|
| At2g41530 | S-Formylglutathione Hydrolase          |     | -2.1 |           |          |          |
| At2g36160 | 40S Ribosomal Protein S14              |     | -2.1 |           |          |          |
| At2g37190 | 60S Ribosomal Protein L12              |     | -2.1 | Yes       |          |          |
| At3g24830 | 60S Ribosomal Protein L13A             |     | -2.1 |           |          |          |
| At3951840 | Acvl-CoA Oxidase 4                     |     | -2.1 | <u> </u>  |          |          |
| At3g25890 | AP2 Transcription Factor Dutative      |     | 2.1  | <u> </u>  | ·        | <u> </u> |
| At2=14060 | Lete Embruogenerie Abundant Destein    |     |      |           | <u> </u> | ł        |
| AL2944060 | Late Embryogenesis Adundant Protein    |     | -2.1 | res       |          | <u> </u> |
| At4g05150 | Octicosapeptide/Phox/BemTP Protein     |     | -2.1 | <u> </u>  |          |          |
| At4g18630 | Unknown Protein                        |     | -2.1 |           |          |          |
| At1g47540 | Trypsin Inhibitor, Putative            |     | -2.1 | Yes       |          |          |
| At5g23860 | Tubulin Beta-8                         |     | -2.1 | Yes       |          |          |
| At1g50010 | Tubulin Alpha-2 Chain                  |     | -2.1 | Yes       |          |          |
| At5050900 | Armadillo/B-Catenin Repeat Protein     |     | -2.0 |           |          |          |
| At3g1/310 | Pectin Methylesterase 3                |     | 2.0  | Vec       |          |          |
| At1=02120 | Demonstrate Te Abasis As 41D           |     | -2.0 | 105       |          |          |
| Atiguzio  | Responsive To Abscisic Acid 1B         |     | -2.0 |           |          |          |
| At3g61460 | Zine Ion Binding Protein               |     | -2.0 | [         |          |          |
| At3g21140 | FMN Binding Protein                    |     | -2.0 |           |          |          |
| At5g53460 | NADH-Glutamate Synthase 1 Gene         |     | -2.0 |           |          |          |
| At1g73680 | Pathogen-Responsive a-Dioxygenase      |     | -2.0 | Yes       |          |          |
| At3g26090 | Regulator Of G-Protein Signaling 1     |     | -2.0 | Yes       | R        |          |
| At4g20890 | Tubulin Beta-9 Chain                   |     | -2.0 |           |          |          |
| At3g17410 | Sering/Threening Protein Kingsa        |     | -2.0 | <u> </u>  |          |          |
| A(3g17410 |                                        |     | -2.0 |           |          |          |
| At4g29410 | 60S Ribosomal Protein L28              |     | -2.0 |           |          |          |
| At1g21310 | Extensin 3                             |     | -2.0 |           |          |          |
| At5g01530 | Chlorophyll A-B Binding Protein CP29   |     | -2.0 |           |          | 1        |
| At3g45860 | Receptor-Like Protein Kinase, Putative |     | -2.0 | Yes       |          |          |
| At5g12250 | Beta-6 Tubulin                         |     | -2.0 | Yes       |          |          |
| At1961820 | Beta-Glucosidase 46                    |     |      |           |          |          |
| At1g30220 | Elongation Easter 1 Bate/Ef 1 Bate     |     | -2.0 | ·         |          |          |
| Alig30230 | COS D'harren Detain Delate h           |     | -2.0 | — —       |          |          |
| At3g58660 | ous Ribosomal Protein-Related          |     | -1.9 |           |          |          |
| At5g60640 | Protein Disulfide Isomerase-Like 1-4   |     | -1.9 | Yes       |          |          |
| At5g10360 | 40S ribosomal protein S6-2             |     | -1.9 |           |          |          |
| At4g02350 | Exocyst Complex Subunit Sec15-Like     |     | -1.9 | L         |          |          |
| At3g61470 | PS I Light Harvesting Complex          |     | -1.9 |           |          | 1        |
| At2g17480 | Mildew Resistance Locus O 8            |     | -1.9 | Yes       |          |          |
| At3g16640 | Translation-Controlled Tumor Protein   |     | -1.9 | Yes       |          |          |
| At5g61190 | Zinc Finger Related Protein            |     | 1.0  |           |          |          |
| At/g3/180 | Cualase Family Protein                 |     |      | Var       |          |          |
| At4254160 |                                        |     | -1.9 | 1es       |          |          |
| At4g13940 | Adenosylhomocysteinase                 |     | -1.9 |           |          |          |
| At2g20780 | Mannitol Transporter, Putative         |     | 1.9  |           |          |          |
| At5g09810 | Actin 7                                |     | 1.9  | Yes       |          |          |
| At1g09690 | 60S Ribosomal Protein L21              |     | -1.9 |           |          |          |
| At5g39590 | Unknown Protein                        |     | -1.9 |           |          |          |
| At2g34420 | PS II Light Harvesting Complex         |     | -1.9 |           |          |          |
| At3944340 | Clone Fighty-Four Transporter Protein  |     | -1.8 |           |          |          |
| At3g17520 | Late Empryogenesis Abundant Protain    |     | 1.0  |           |          |          |
| At3=11320 | Late Entoryogenesis Abundant Frotein   |     | -1.0 |           |          |          |
| A12941400 |                                        |     | -1.8 |           |          |          |
| At5g24150 | Squalene Monooxygenase I               |     | -1.8 |           |          |          |
| At1g29920 | Chlorophyll A/B-Binding Protein 2      |     | -1.8 |           |          |          |
| At5g11740 | Arabinogalactan Protein 15             |     | -1.8 |           |          |          |
| At1g77460 | Binding Protein                        |     | -1.8 |           |          |          |
| At3g54810 | Blue-Micropylar Transcription Factor   |     | -1.8 |           |          |          |
| At1g30580 | GTP Binding Protein                    |     | -1.8 |           |          |          |
| At5010010 | Unknown Protein                        |     |      | <u> </u>  |          |          |
| At/g22670 | Heat Shock Protein 70                  | — { | -1.0 |           |          |          |
| A14g22070 | DNA Dinding Details 45.4               |     | -1.8 |           |          | ┢━━━━━━┫ |
| At5g54900 | KNA-Binding Protein 45A                |     | -1.8 |           |          |          |
| At3g27740 | Carbamoyl Phosphate Synthetase A       |     | -1.8 |           |          |          |
| At5g02500 | Heat Shock Cognate Protein 1           |     | -1.8 | Yes       |          |          |
| At3g54890 | Chlorophyll Binding Protein            |     | -1.8 |           |          | 1        |
| At1g72150 | Patellin 1                             |     | -1.8 |           |          |          |
| At1g01820 | Peroxisomal Biogenesis Factor 11c      |     | -1.8 |           |          |          |
| At4015030 | Unknown Protein                        |     |      |           |          |          |
| At1077997 | Unknown Protein                        |     | 1.0  |           |          |          |
| AU 822002 |                                        |     | -1.8 |           |          |          |

| 1.1.8         1.1.8         1.1.8           Al321700         Unknown Protein         1.1.8         1.1.8           Al3217050         Yellow Stripe Like 5 Transporter         1.1.7         1.1.8           Al3207700         DiGcorge Syndrome Related Protein         1.1.7         1.1.7           Al4201701         DiP-Glucosyndramsferase         1.1.7         1.1.7           Al4201701         DiP-Glucosyndramsferase         1.1.7         1.1.7           Al4292020         Phenylalanyl-HKNA Synthetase         1.1.7         1.1.7           Al4292030         Flengation Factor Hamily Protein         1.1.7         1.1.7           Al4292030         Sciel A Cytosolic Factor Flamily Protein         1.1.7         1.1.7           Al1254100         Scinder Theorin Protein Nitaso         1.1.7         1.1.7           Al1294000         Scinder Theorin Protein Nitase         1.1.7         1.1.7           Al2203740         Scinder Theorin Protein Nitase         1.1.7         1.1.6           Al220300         Scinder Theorin Protein Nitase         1.1.7         1.1.6           Al220340         Fetratricopeptide Repear Protein         1.1.6         1.1.6           Al2264430         Glycosyl Hydrodase Family Protein         1.1.6         1.1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | At1g35780 | Unknown Protein                                            | -1.8 | <u>г - т</u>  |          |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------|------|---------------|----------|----------|
| Abs/17650         Yellow Strip Euke 5 Transporter         1.18           Ads(07790         DiGeorge Syndrome Related Protein         1.17           Ads(07790         DiGeorge Syndrome Related Protein         1.17           Ads(01790         DiGeorge Syndrome Related Protein         1.17           Ads(01070         UDP-Glucosyltransferase         1.17         Yes           Att[55460         DNA. Binding Protein-Related         1.17         Image: Comparison Comparison Protein Related           Att[27160         Sciel A Cynsoch Factor Family Protein         1.17         Yes         Image: Comparison Relation Relation Protein Relation Rel                                                                                                                             | At3g27090 | Unknown Protein                                            | -1.8 |               |          |          |
| Abs/1000         Discorge Syndrome Related Protein         1.0           Alsg07700         Discorge Syndrome Related Protein         1.7           Alsg00300         Elongation Factor I - Alpha/EF-1-Alpha         1.7           Alsg01700         Discorge Syndrome Related         1.7           All g55460         DNA-Binding Protein Related         1.7           All g55460         DNA-Binding Protein Related         1.7           All g55460         Drenylatally-HRNA Synthetase         1.7           All g21600         Sci 14 Alpha-Subwini 2         -1.7           All g26301         Translation Initiation Factor         1.7           All g26303         Translation Initiation Factor         1.7           All g26304         Sci-Introcolly Aldehyde Dehydrogenase         1.7           All g26304         Sci-Introcolly Aldehyde Dehydrogenase         1.7           All g26304         Sci-Introcolly Aldehyde Dehydrogenase         1.7           All g263040         Sci-Introcolly Aldehyde Dehydrogenase         1.7           All g263040         Econouclease Family Protein         -1.6           All g264450         Glycosyl Hydrolase Family 1 Protein         -1.6           All g264450         Glycosyl Hydrolase Family 1 Protein         -1.6           All g26304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | At3g17650 | Yellow Stripe Like 5 Transporter                           | -1.8 |               |          |          |
| Adsg0103         Elongation Factor 1-Alpha/EF-1-Alpha         1-7         1.7           Artg51030         Diongation Factor 1-Alpha/EF-1-Alpha         1-7         1.7           Artg53203         Phenylalanyl-tRNA Synthetase         1-7         1.7           Artg53203         Phenylalanyl-tRNA Synthetase         1-7         1.7           Artg53203         Franslation Initiation Factor         1-7         1.7           Artg25502         Translation Initiation Factor         1-7         Yes         1.7           Artg25502         Translation Initiation Factor         1-7         Yes         1.7           Artg25803         Translation Initiation Factor         1-7         Yes         1.7           Artg25804         Translation Initiation Factor         1-7         Yes         1.7           Artg25805         Translation Initiation Factor         1-7         Yes         1.7           Artg25806         Translation Initiation Factor         1-7         Yes         1.7           Artg26806         Exonuclease Family Protein         1-7         Yes         1.7           Artg25804         Exonuclease Family Protein         1-16         1.6         1.7           Artg252040         Galactoxytransferase Family Protein         1-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | At3g07790 | DiGeorge Syndrome Related Protein                          | -1.0 |               |          |          |
| Adsg0000         UDP. Glucosyltransferase         1.7         Yes           Atlg53460         DNA-Binding Protein Related         -1.7         -           Atlg53460         DNA-Binding Protein Related         -1.7         -           Atlg53250         Sec14 Cytosolic Factor Family Protein         -1.7         -           Atlg52550         Translation Initiation Factor         -1.7         Yes         -           Atlg55401         3-Chloroallyl Aldehyde Dehydrogenase         -1.7         Yes         R         1           Atlg54030         3-Chloroallyl Aldehyde Dehydrogenase         -1.7         Yes         R         1           Atlg54051         Serine/Threonine Protein Kinase         -1.7         Yes         -         -           Atlg54030         Berine/Threonine Protein Kinase         -1.7         Yes         -         -           Atlg54040         Evonuclease Family Protein         -1.6         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | At5c60390 | Elongation Factor 1-Alpha/EE-1-Alpha                       | -1.7 |               |          |          |
| Artgr070         DNA-Binding Protein Related         1.7         1.7           Artgr2500         Phenylalanyl-tRNA Synthetase         1.7         1.7           Artgr2200         Phenylalanyl-tRNA Synthetase         1.7         1.7           Artgr2160         Sec14 Cytosofic Factor Family Protein         1.7         1.7           Artgr25602         Translation Initiation Factor         1.7         Yes           Artgr25603         Translation Initiation Factor         1.7         Yes         1.7           Artgr25602         Translation Initiation Factor         1.7         Yes         1.7           Artgr25603         Integral Membrane Yip1 Family Protein         1.7         Yes         1.7           Artgr25040         Serine/Threonine Protein Kinase         1.7         Yes         1.7           Artgr25040         Galaciosyltransferase Family Protein         1.6         1.7         1.6           Artgr24450         Glycosyl Hydrolase Family Protein         1.6         1.6         1.7           Artgr2450         Galaciosyltransferase Family Protein         1.6         1.6         1.6           Artgr2450         Glycosyl Hydrolase Family Protein         1.6         1.6         1.6           Artgr24500         Galaciosyltransferase Family P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | At/g01070 | Liongation Lactor 1-Alpha Liongation Liongation Liongation | -1.7 | Ves           |          |          |
| Arlg.2920         Drive Dranke, Trease         1.7           Arlg.2920         Drenylamy-IrRNA Synitetase         1.7           Arlg.27160         Sec14 Cytosolic Factor Family Protein         1.7           Arlg.27160         Sec14 Cytosolic Factor Family Protein         1.7           Arlg.25520         Translation Initiation Factor         1.7         Yes           Arlg.25520         Translation Initiation Factor         1.7         Yes           Arlg.25070         Translation Initiation Factor         1.7         Yes           Arlg.250700         Serind/Theorine Protein Kinase         1.7         Yes           Arlg.250700         Serind/Theorine Protein Kinase         1.7         Yes           Arlg.250700         Galactosyltras/ferase Family Protein         1.6         1.6           Arlg.250200         Galactosyltras/ferase Family Protein         1.6         1.6           Arlg.250300         Orka-Binding Protein Kinase 19         1.6         1.6           Arlg.250300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | At1g55460 | DNA Binding Protein Related                                | -1.7 | 105           |          |          |
| Ardg.2233         Interplanify/Extra sprint data         1.7           Ardg.2233         File Flore         1.7           Ardg.25502         Translation Initiation Factor         1.7           Ardg.25020         Integral Membrane Yipi Family Protein         -1.7           Ardg.250740         Serine/Threonine Protein Kinase         -1.7           Ardg.25140         Herraricoperpide Repeat Protein         -1.7           Ardg.25240         Galactosyltransferase Family Protein         -1.6           Ardg.25240         Galactosyltransferase Family Protein         -1.6           Ardg.25240         Galactosyltransferase Family Protein         -1.6           Ardg.25200         Galactosyltransferase Family Protein         -1.6           Ardg.25290         DNA-Binding Protein GT-1-Related         -1.6           Ardg.252900<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | At1g30280 | Dhanylalanyl tRNA Synthetase                               | -1.7 |               | <u> </u> |          |
| Allg 2100         Bet PS Quarker Lakor Parking Protein         -1.7         Yes           Allg 25630         Translation Initiation Factor         -1.7         Yes         -           Allg 25630         Translation Initiation Factor         -1.7         Yes         -           Allg 25630         Translation Initiation Factor         -1.7         Yes         R         1           Allg 254100         3-Chirovallyl Aldehyde Dehydrogenase         -1.7         Yes         R         1           Alg 250740         Serine/Threonine Protein Kinase         -1.7         -         -         -           Alg 250740         Serine/Threonine Protein Kinase         -1.7         Yes         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>Attg39260</td> <td>Sool4 Cytosolic Easter Family Protein</td> <td>-1.7</td> <td><b>}</b></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Attg39260 | Sool4 Cytosolic Easter Family Protein                      | -1.7 | <b>}</b>      |          |          |
| Adsg5500       Finduator Law Protein       1.7       1cs         Adsg55502       Translation Initiation Factor       1.7       Yes       1         Adlg54502       Translation Initiation Factor       1.7       Yes       R       1         Adlg54100       3-Chloroally Aldehyde Dehydrogenase       1.7       Yes       R       1         Adg52140       Serine/Threonine Protein Kinase       1.7       Yes       R       1         Adg52140       Teranslation Exonuclease Family Protein       1.6       1       1       1         Adg52020       Galactosyltransferase Family Protein       1.6       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Attg/2100 | Flongation Factor 1B Alpha Subunit 2                       | -1.7 | Vec           |          |          |
| Alsg.2020       Translation Initiation Factor       1.7       Yes         Allg.26630       Translation Initiation Factor       1.7       Yes       R       1         Allg.26300       Serine/Threonine Protein Kinase       1.7       Yes       R       1         Alg.253005       Integral Membrane Yip1 Family Protein       1.7       Yes       R       1         Alg.25140       Fertarticopeptide Repeat Protein       1.7       Yes       R       1         Alg.252040       Exonuclease Family Protein       1.6       1.6       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | At2255620 | Elongation Factor TB Alpha-Subunit 2                       | -1./ | 105           |          |          |
| Atig20030         Tainstatoli micro raction         -1.7         Yes         R         1           Atig25100         Schioroallyl Aldehyde Dehydrogenase         -1.7         Yes         R         1           At2g39705         Integral Membrane Yipi Family Protein         -1.7         Yes         R         1           At2g37240         Tetratricopeptide Repeat Protein         -1.7         Yes         R         1           At3g252140         Tetratricopeptide Repeat Protein         -1.6         -         -         -           At5g26200         Galactosyltransferase Family Protein         -1.6         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Al5g55020 | Translation Initiation Factor                              | -1./ | Vac           |          |          |
| All 294100       S-ChildGarly A diellyde Delydrogetase       -1.7       Tes       K       1         All 2g3803       Integral Membrane Yipi Family Protein       -1.7       -1.7       -1.7         All 2g3803       Serine/Threonine Protein Kinase       -1.7       -1.7       -1.7         All 2g1680       4-Coumarate CoA Ligase 1       -1.7       Yes       -1.6         All 2g1680       4-Coumarate CoA Ligase 1       -1.7       Yes       -1.6         All 2g1680       4-Coumarate CoA Ligase 1       -1.6       -1.6       -1.6         All 2g1680       Exonuclease Family Protein       -1.6       -1.6       -1.6       -1.6         All 2g10420       Proteasome Family Protein Kinase 19       -1.6       -1.6       -1.6       -1.6         All 2g32800       Calcium-Dependent Protein Kinase 19       -1.6       -1.6       -1.6       -1.6         All 2g32300       GPatch Domain-Containing Protein       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | At1g20030 | Chloroplyd Aldobydo Dobydrogonogo                          | -1./ | Vac           | D        | 1        |
| Al2g39305       Integral Memorane Tipl raminy Protein       -1.7         Al2g30740       Serine/Threonine Protein Kinase       -1.7         Al1g51680       4-Coumarate CoA Ligase 1       -1.7         Al1g51680       4-Coumarate CoA Ligase 1       -1.7         Al5g26940       Exonuclease Family Protein       -1.6         Al5g26202       Galactosyltransferase Family Protein       -1.6         Al2g44450       Olycosyl Hydrolase Family Protein       -1.6         Al2g0200       Proteasome Family Protein       -1.6         Al2g02100       UTPAmoraia Ligase, Putative       -1.6         Al4g02120       UTPAmoraia Ligase, Putative       -1.6         Al4g02120       UTPAmoraia Ligase, Putative       -1.6         Al4g0230590       DNA-Binding Protein GT-I-Related       -1.6         Al4g232590       DNA-Binding Protein, Putative       -1.6         Al4g232590       DNA-Binding Protein       -1.6         Al2g32590       DNA-Binding Protein       -1.6         Al2g32590       DNA-Binding Protein       -1.6         Al2g32590       DNA-Binding Protein       -1.6         Al2g12300       Disported Protein       -1.6         Al2g1300       Disported Protein       -1.6 <td< td=""><td>Alig34100</td><td>S-Chioroanyi Aldenyde Denydrogenase</td><td>-1./</td><td>ies</td><td><u> </u></td><td><u> </u></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alig34100 | S-Chioroanyi Aldenyde Denydrogenase                        | -1./ | ies           | <u> </u> | <u> </u> |
| Al2g30740       Serine Turbonine Protein Naise       -1.7         Al2g52140       Tetratricopeptide Repeat Protein       -1.7         Al1g51680       4-Coumarate CoA Ligase 1       -1.7         Al5g6240       Exonuclease Family Protein       -1.6         Al5g6250       Galactosyltransferase Family Protein       -1.6         Al5g6260       Galactosyltransferase Family Protein       -1.6         Al5g0240       Calcium-Dependent Protein Kinase 19       -1.6         Al4g02120       UPr-Ammonia Ligase, Putative       -1.6         Al1g0380       G-Patch Domain-Containing Protein       -1.6         Al1g0380       G-Patch Domain-Containing Protein       -1.6         Al2g243250       Embryo Defective 1290/Kinase       -1.6         Al1g0380       G-Patch Domain-Containing Protein, Putative       -1.6         Al1g0380       Chirinase       -1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | At2g39803 | Series (Theorem Protein Kings)                             | -1./ | _             |          |          |
| Atbg2140       Tetratrocpeptide Repeat Protein       -1.7       Yes         Atbg21680       4-Coumarate CoA Ligase 1       -1.7       Yes         Atbg20200       Galactosyltransferase Family Protein       -1.6       -1.6         Atbg20200       Proteasome Family Protein       -1.6       -1.6         Atbg20200       Proteasome Family Protein       -1.6       -1.6         Atbg1210       UTPAmmonia Ligase, Putative       -1.6       -1.6         Atbg23200       DVetasome Family Protein       -1.6       -1.6         Atbg2120       UTPAmmonia Ligase, Putative       -1.6       -1.6         Atbg23250       Embryo Defective 1200Kinase       -1.6       -1.6         Atbg23250       Embryo Defective 1200Kinase       -1.6       -1.6         Atlg13160       SDA1 Family Protein       -1.6       -1.6         Atlg13160       Unknown Protein       -1.6       -1.6         Atlg13180       Unknown Protein       -1.6       -1.6         At2g14300       Unknown Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | At2g30740 | Serine/Infeorine Protein Kinase                            | -1./ | <b>├</b> ───┤ |          |          |
| Atlg 21680       4-Countrate CoA Ligase 1       -1.7       Yes         AtSg26940       Exonuclease Family Protein       -1.6       -1.6         AtSg26200       Galactosyltransferase Family Protein       -1.6       -1.6         AtSg26200       Proteasome Family Protein       -1.6       -1.6         AtSg20200       Proteasome Family Protein       -1.6       -1.6         AtSg10200       Protenome Family Protein       -1.6       -1.6         AtLg03200       OP-Ammonia Ligase, Putative       -1.6       -1.6         AtLg03200       G-Patch Domain-Containing Protein       -1.6       -1.6         AtLg03200       DNA-Binding Protein OT-1-Related       -1.6       -1.6         AtLg103080       Chitinase       -1.6       -1.6       -1.6         AtLg103080       Chitinase       -1.6       Yes       -1.6       -1.6         AtLg10300       SDA1 Family Protein       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6       -1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | At3g52140 | Tetratricopeptide Repeat Protein                           | -1./ |               |          |          |
| Abg262040       Exonuclease Family Protein       -1.6         Atfg26220       Galactoxyltransferase Family Protein       -1.6         Atfg20200       Proteasome Family Protein       -1.6         Atfg19450       Calcium-Dependent Protein Kinase 19       -1.6         Atfg02120       UTPAmmonia Ligase, Putative       -1.6         Atfg03980       C-Patch Domain-Containing Protein       -1.6         Atfg03980       G-Patch Domain-Containing Protein       -1.6         Atfg2320       DNA-Binding Protein GT-1-Related       -1.6         Atfg2320       Embryo Defective 1290/Kinase       -1.6         Atfg2320       Chitinase       -1.6         Atfg20100       Oligouridylate-Binding Protein, Putative       -1.6         Atfg20590       Homolog 2B/Transcription Factor       -1.6         Atfg21600       Pro-Rich Splicesome-Associated       -1.6         Atfg21300       Coatomer Protein Complex, Putative       -1.6         Atfg21300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | At1g51680 | 4-Coumarate CoA Ligase 1                                   | -1./ | Yes           |          |          |
| Abg26420       Galactosyltransterase ramily Protein       -1.6         At2g44450       Glycosyl Hydrolase Family 1 Protein       -1.6         At3g02200       Proteasome Family 1 Protein       -1.6         At3g02200       Proteasome Family 1 Protein       -1.6         At3g02200       UTPAmmonia Ligase, Putative       -1.6         At4g02120       UTP-Ammonia Ligase, Putative       -1.6         At1g63980       G-Patch Domain-Containing Protein       -1.6         At1g02202       Embryo Defective 1290(Kinase       -1.6         At4g221250       Embryo Defective 1290(Kinase       -1.6         At1g05850       Chitinase       -1.6         At1g13160       SDA1 Family Protein       -1.6         At1g13160       SDA1 Family Protein       -1.6         At1g21660       Pro-Rich Spliceosome-Associated       -1.6         At3g11500       Unknown Protein       -1.6         At1g181500       Unknown Protein       -1.6         At1g18250       Aminoacyl-tRNA Synthetase Family       -1.6         At1g18250       Aminoacyl-tRNA Synthetase Family       -1.6         At1g18250       Bagy-Related Kinase 11       -1.6         At1g26400       Bell1-Like Homeodomain 7       -1.6         At1g2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | At5g26940 | Exonuclease Family Protein                                 | -1.6 |               |          |          |
| Adg24430       Glycosyl Hydrolase Family Protein       -1.6         At3g02200       Proteasome Family Protein       -1.6         At4g02120       UTPAmmonia Ligase, Putative       -1.6         At1g0380       G-Patch Domain-Containing Protein       -1.6         At1g03980       G-Patch Domain-Containing Protein       -1.6         At1g03980       G-Patch Domain-Containing Protein       -1.6         At3g2230       Embryo Defective 1290/Kinase       -1.6         At1g03850       Chitinase       -1.6         At1g03850       Chitinase       -1.6         At1g13160       SDA1 Family Protein       -1.6         At1g13160       SDA1 Family Protein       -1.6         At4g21650       Hronolog 2B/Transcription Factor       -1.6         At4g21500       Unknown Protein       -1.6         At2g21390       Coatomer Protein Complex, Putative       -1.6         At2g15100       Unknown Protein       -1.6       -         At2g2130       Coatomer Protein Complex, Putative       -1.6       -         At2g16400       Bell1-Like Homeodomain 7       -1.6       -         At2g16400       Bell1-Like Homeodomain 7       -1.6       -         At2g16800       S/ZIP28 Transcription Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | At5g62620 | Galactosyltransferase Family Protein                       | -1.6 |               |          |          |
| At5g12200       Proteasome ramily Protein       -1.6         At5g19450       Calcium-Dependent Protein Kinase 19       -1.6         At4g02120       UTPAmmonia Ligase, Putative       -1.6         At4g02120       UTPAmmonia Ligase, Putative       -1.6         At4g02120       UTPAmmonia Ligase, Putative       -1.6         At4g023900       DNA-Binding Protein GT-1-Related       -1.6         At4g23250       Embryo Defective 1290/Kinase       -1.6         At4g03580       Chitinase       -1.6         At1g13160       SDA1 Family Protein       -1.6         At1g13160       SDA1 Family Protein       -1.6         At2g05690       Homolog 2B/Transcription Factor       -1.6         At2g1500       Unknown Protein       -1.6         At2g1390       Coatomer Protein Complex, Putative       -1.6         At2g1400       Bell-Like Homeodomain 7       -1.6         At2g1400       Bell-Like Homeodomain 7       -1.6         At2g1400       Bell-Like Homeodomain 7       -1.6         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | At2g44450 | Glycosyl Hydrolase Family I Protein                        | -1.6 |               |          |          |
| Atg19450       Calcium-Dependent Protein Kinase 19       -1.6         At4g02120       UTP-Ammonia Ligase, Putative       -1.6         At1g63980       G-Patch Domain-Containing Protein       -1.6         At1g25990       DNA-Binding Protein GT-1-Related       -1.6         At4g2250       Embryo Defective 1290/Kinase       -1.6         At1g100       Oligouridylate-Binding Protein, Putative       -1.6         At1g100       Oligouridylate-Binding Protein, Putative       -1.6         At1g105850       Chitinase       -1.6         At1g105850       Chitinase       -1.6         At1g205809       Homolog 2B/Transcription Factor       -1.6         At4g21660       Pro-Rich Spliceosome-Associated       -1.6         At2g11500       Unknown Protein       -1.6         At2g12190       Coatomer Protein Complex, Putative       -1.6         At2g12300       Coatomer Protein Complex, Putative       -1.6         At1g18850       Aminoacyl-tRNA Synthetase Family       -1.6         At2g16400       Bell1-Like Homecodomain 7       -1.6 </td <td>At3g02200</td> <td>Proteasome Family Protein</td> <td>-1.6</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | At3g02200 | Proteasome Family Protein                                  | -1.6 |               |          |          |
| At4g02120       UTPAmmonia Ligase, Putative       -1.6         At1g63980       G-Patch Domain-Containing Protein       -1.6         At3g2590       DNA-Binding Protein GT-1-Related       -1.6         At4g23250       Embryo Defective 1290/Kinase       -1.6         At4g23250       Embryo Defective 1290/Kinase       -1.6         At4g23250       Chitinase       -1.6         At1g03850       Chitinase       -1.6         At1g03550       Chitinase       -1.6         At1g035690       Homolog 2B/Transcription Factor       -1.6         At4g21600       Pro-Rich Spliceosome-Associated       -1.6         At5g1500       Unknown Protein       -1.6         At5g1500       Unknown Protein       -1.6         At1g1850       Aminoacyl-tRNA Synthetase Family       -1.6         At1g18950       Aminoacyl-tRNA Synthetase Family       -1.6         At5g26751       Shaggy-Related Kinase 11       -1.6         At5g1900       bZIP28 Transcription Factor       -1.6         At5g39450       F-Box Family Protein       -1.6         At1g18160       bEll1-Like Homeodomain 7       -1.6         At2g17400       RNA Recognition Motif Protein       -1.6         At5g39450       F-Box Family Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | At5g19450 | Calcium-Dependent Protein Kinase 19                        | -1.6 |               |          |          |
| Att g63980G-Patch Domain-Containing Protein-1.6At3g25990DNA-Binding Protein GT-1-Related-1.6At4g23250Embryo Defective 1290/Kinase-1.6At4g23500Chitinase-1.6At1g05850Chitinase-1.6At1g05850SDA1 Family Protein-1.6At1g13160SDA1 Family Protein-1.6At4g21600Pro-Rich Spliceosome-Associated-1.6At4g21600Pro-Rich Spliceosome-Associated-1.6At3g05690Unknown Protein-1.6At3g1500Unknown Protein-1.6At3g1500Unknown Protein-1.6At1g1890Aminoacyl-tRNA Synthetase Family-1.6At1g18950Aminoacyl-tRNA Synthetase Family-1.6At1g18950Aminoacyl-tRNA Synthetase Family-1.6At1g16400Bell1-Like Homeodomain 7-1.6At1g261300bZIP28 Transcription Factor-1.6At3g27700RNA Recognition Motif Protein-1.6At1g0170Synaptobrevin-Related Family Protein-1.6At1g04190Tetratricopeptide Repeat Protein-1.6At1g24101Synaptobrevin-Related Family Protein-1.5At1g28304Chaperonin, Putative-1.5At1g28430Chaperonin, Putative-1.5At1g26400Reprensin Family Protein-1.5At1g26400Reperonin, Putative-1.5At1g26400Reperonin, Putative-1.5At1g264300Chaperonin, Putative-1.5At1g264300Riperonin Protein-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | At4g02120 | UTPAmmonia Ligase, Putative                                | -1.6 |               |          |          |
| A1325990       DNA-Binding Protein GT-1-Related       -1.6         At4g23250       Embryo Defective 1290/Kinase       -1.6         At1g1400       Oligouridylate-Binding Protein, Putative       -1.6         At1g05850       Chitinase       -1.6         At1g05850       Chitinase       -1.6         At1g05850       Chitinase       -1.6         At1g05850       Chitinase       -1.6         At1g05690       Homolog 2B/Transcription Factor       -1.6         At4g21600       Pro-Rich Spliceosome-Associated       -1.6         At4g21500       Unknown Protein       -1.6         At2g21390       Coatomer Protein Complex, Putative       -1.6         At1g1850       Aminoacyl-tRNA Synthetase Family       -1.6         At5g26751       Shaggy-Related Kinase 11       -1.6         At5g26751       Shaggy-Related Kinase 11       -1.6         At5g39450       F-Box Family Protein       -1.6         At5g39450       F-Box Family Protein       -1.6         At5g39450       F-Box Family Protein       -1.6         At1g0170       Synaptobrevin-Related Family Protein       -1.6         At1g04190       Tetratricopeptide Repeat Protein       -1.5         At2g26710       Glutamate-tRNA Liga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | At1g63980 | G-Patch Domain-Containing Protein                          |      |               |          |          |
| At4g23250       Embryo Defective 1290/Kinase       -1.6         At3g14100       Oligouridylate-Binding Protein, Putative       -1.6         At1g0550       Chitinase       -1.6         At1g05590       Homolog 2B/Transcription Factor       -1.6         At3g05690       Homolog 2B/Transcription Factor       -1.6         At3g05690       Homolog 2B/Transcription Factor       -1.6         At3g1890       Unknown Protein       -1.6         At3g1890       Unknown Protein       -1.6         At2g21390       Coatomer Protein Complex, Putative       -1.6         At2g16400       Bell-Like Homeodomain 7       -1.6         At2g16400       Bell-Like Homeodomain 7       -1.6         At2g194501       F-Box Family Protein <t< td=""><td>At3g25990</td><td>DNA-Binding Protein GT-1-Related</td><td>-1.6</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | At3g25990 | DNA-Binding Protein GT-1-Related                           | -1.6 |               |          |          |
| At3g14100Oligouridylate-Binding Protein, Putative-1.6At1g03850Chitinase-1.6At1g03850Chitinase-1.6At1g01310SDA1 Family Protein-1.6At3g05690Homolog 2B/Transcription Factor-1.6At4g21660Pro-Rich Spliceosome-Associated-1.6At3g05890Unknown Protein-1.6At3g1300Unknown ProteinAt2g1390Coatomer Protein Complex, PutativeAt1g18950Aminoacyl-tRNA Synthetase Family-1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | At4g23250 | Embryo Defective 1290/Kinase                               | 1.6  |               |          |          |
| A11g05850       Chitinase       -1.6       Yes         A11g13160       SDA1 Family Protein       -1.6       -1.6       -1.6         A13g05690       Homolog 2B/Transcription Factor       -1.6       -1.6       -1.6         A14g21660       Pro-Rich Spliceosome-Associated       -1.6       -1.6       -1.6         A13g51890       Unknown Protein       -1.6       -1.6       -1.6         A12g21300       Coatomer Protein Complex, Putative       -1.6       -1.6       -1.6         A11g18950       Aminoacyl-tRNA Synthetase Family       -1.6       -1.6       -1.6         A11g18950       Aminoacyl-tRNA Synthetase Family       -1.6       -1.6       -1.6         A11g18950       Aminoacyl-tRNA Synthetase Family       -1.6       -1.6       -1.6         A12g16400       Bell1-Like Homeodomain 7       -1.6       -1.6       -1.6         A12g16400       Bell1-Like Homeodomain 7       -1.6       -1.6       -1.6         A13g10800       bZIP28 Transcription Factor       -1.6       Yes       -1.6         A13g27700       RNA Recognition Motif Protein       -1.6       -1.6       -1.6         A13g211830       Chaperonin, Putative       -1.5       -1.5       -1.4         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | At3g14100 | Oligouridylate-Binding Protein, Putative                   | -1.6 |               |          |          |
| At1g13160       SDA1 Family Protein       -1.6       -1.6         At3g05690       Homolog 2B/Transcription Factor       -1.6       -1.6         At4g21660       Pro-Rich Spliceosome-Associated       -1.6       -1.6         At3g51890       Unknown Protein       -1.6       -1.6         At3g51890       Unknown Protein       -1.6       -1.6         At2g21390       Coatomer Protein Complex, Putative       -1.6       -1.6         At1g18950       Aminoacyl-tRNA Synthetase Family       -1.6       -1.6         At2g26751       Shaggy-Related Kinase 11       -1.6       -1.6         At2g16400       Bell1-Like Homeodomain 7       -1.6       -1.6         At3g10800       bZIP28 Transcription Factor       -1.6       Yes         At3g27700       RNA Recognition Motif Protein       -1.6       -1.6         At3g11800       Chaperonin, Patative       -1.6       -1.6         At3g21700       RNA Recognition Motif Protein       -1.6       -1.6         At3g11830       Chaperonin, Patative       -1.5       -1.6         At3g11830       Chaperonin, Patative       -1.5       -1.5         At1g28400       Extensin Family Protein       -1.5       -1.5         At1g284320       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | At1g05850 | Chitinase                                                  | -1.6 | Yes           |          |          |
| At3g05690Homolog 2B/Transcription Factor-1.6-1.6At4g21660Pro-Rich Spliceosome-Associated-1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | At1g13160 | SDA1 Family Protein                                        | -1.6 |               |          |          |
| At4g21660       Pro-Rich Spliceosome-Associated       -1.6          At3g51890       Unknown Protein       -1.6          At5g11500       Unknown Protein       -1.6          At2g21390       Coatomer Protein Complex, Putative       -1.6          At1g18950       Aminoacyl-tRNA Synthetase Family       -1.6           At1g18950       Aminoacyl-tRNA Synthetase Family       -1.6           At5g26751       Shaggy-Related Kinase 11       -1.6            At2g16400       Bell1-Like Homeodomain 7       -1.6 <td>At3g05690</td> <td>Homolog 2B/Transcription Factor</td> <td>-1.6</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | At3g05690 | Homolog 2B/Transcription Factor                            | -1.6 |               |          |          |
| At3g51890       Unknown Protein       -1.6          At5g11500       Unknown Protein       -1.6          At2g21390       Coatomer Protein Complex, Putative       -1.6          At1g18950       Aminoacyl-tRNA Synthetase Family       -1.6          At1g18950       Aminoacyl-tRNA Synthetase Family       -1.6          At2g26400       Bell1-Like Homeodomain 7       -1.6          At3g10800       bZIP28 Transcription Factor       -1.6          At3g29450       F-Box Family Protein       -1.6          At3g29450       F-Box Family Protein       -1.6          At3g27700       RNA Recognition Motif Protein       -1.6          At4g10170       Synaptobrevin-Related Family Protein       -1.6          At1g04190       Tetratricopeptide Repeat Protein       -1.5          At1g78040       Extensin Family Protein       -1.5           At1g266730       Zinc Finger Family Protein       -1.5           At1g284320       Unknown Protein       -1.5           At1g28040       Extensin Family Protein       -1.5           At2g43320<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | At4g21660 | Pro-Rich Spliceosome-Associated                            | -1.6 |               |          |          |
| At5g11500       Unknown Protein       -1.6          At2g21390       Coatomer Protein Complex, Putative       -1.6          At1g18950       Aminoacyl-tRNA Synthetase Family       -1.6          At1g18950       Shaggy-Related Kinase 11       -1.6          At2g16400       Bell1-Like Homeodomain 7       -1.6          At3g10800       bZIP28 Transcription Factor       -1.6           At5g39450       F-Box Family Protein       -1.6           At3g10700       RNA Recognition Motif Protein       -1.6           At4g10170       Synaptobrevin-Related Family Protein       -1.6           At1g04190       Tetratricopeptide Repeat Protein       -1.6           At3g1830       Chaperonin, Putative       -1.5            At1g78040       Extensin Family Protein       -1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | At3g51890 | Unknown Protein                                            | -1.6 |               |          |          |
| At2g21390Coatomer Protein Complex, Putative-1.6At1g18950Aminoacyl-tRNA Synthetase Family-1.6At5g26751Shaggy-Related Kinase 11-1.6At2g16400Bell1-Like Homeodomain 7-1.6At3g10800bZIP28 Transcription Factor-1.6At5g39450F-Box Family Protein-1.6At3g10800bZIP28 Transcription Factor-1.6At5g39450F-Box Family Protein-1.6At3g27700RNA Recognition Motif Protein-1.6At4g10170Synaptobrevin-Related Family Protein-1.6At1g04190Tetratricopeptide Repeat Protein-1.6At5g26710Glutamate-tRNA Ligase, Putative-1.5At1g78040Extensin Family Protein-1.5At1g06960Ribonucleoprotein Spliceosomal Protein-1.5At1g06960Ribonucleoprotein Spliceosomal Protein-1.5At5g57630Cbl-Interacting Protein Kinase 21-1.5At4g28510Prohibitin 1-1.5YesAt5g43010Regulatory Particle Triple-A 4A-1.5Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | At5g11500 | Unknown Protein                                            | -1.6 |               |          |          |
| At1g18950Aminoacyl-tRNA Synthetase Family-1.6-1.6At5g26751Shaggy-Related Kinase 11-1.6-1.6At2g16400Bell1-Like Homeodomain 7-1.6-1.6At3g10800bZIP28 Transcription Factor-1.6YesAt5g39450F-Box Family Protein-1.6YesAt3g27700RNA Recognition Motif Protein-1.6Image: Comparison of the synthesis of the synth                                                    | At2g21390 | Coatomer Protein Complex, Putative                         | -1.6 |               |          |          |
| At5g26751Shaggy-Related Kinase 11-1.6-1.6At2g16400Bell1-Like Homeodomain 7-1.6-1.6At3g10800bZIP28 Transcription Factor-1.6YesAt5g39450F-Box Family Protein-1.6YesAt3g27700RNA Recognition Motif Protein-1.6Image: Comparison of the second       | At1g18950 | Aminoacyl-tRNA Synthetase Family                           | -1.6 |               |          |          |
| At2g16400       Bell1-Like Homeodomain 7       -1.6       -1.6         At3g10800       bZIP28 Transcription Factor       -1.6       Yes         At5g39450       F-Box Family Protein       -1.6       Yes         At3g27700       RNA Recognition Motif Protein       -1.6       Image: Comparison of the second secon | At5g26751 | Shaggy-Related Kinase 11                                   | -1.6 |               |          |          |
| At3g10800bZIP28 Transcription Factor-1.6YesAt5g39450F-Box Family Protein-1.6-1.6At3g27700RNA Recognition Motif Protein-1.6-1.6At4g10170Synaptobrevin-Related Family Protein-1.6-1.6At1g04190Tetratricopeptide Repeat Protein-1.6-1.6At3g11830Chaperonin, Putative-1.5-1.6At3g27700Glutamate-tRNA Ligase, Putative-1.5-1.5At1g78040Extensin Family Protein-1.5-1.5At1g243320Unknown Protein-1.5-1.5At1g0690Ribonucleoprotein Spliceosomal Protein-1.5-1.5At5g57630Zinc Finger Family Protein-1.5-1.5At5g28510Prohibitin 1-1.5-1.5At4g28510Prohibitin 1-1.5-1.5At5g43010Regulatory Particle Triple-A 4A-1.5-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | At2g16400 | Bell1-Like Homeodomain 7                                   | -1.6 |               |          |          |
| At5g39450F-Box Family Protein-1.6At3g27700RNA Recognition Motif Protein-1.6At4g10170Synaptobrevin-Related Family Protein-1.6At1g04190Tetratricopeptide Repeat Protein-1.6At3g11830Chaperonin, Putative-1.5At3g27700Glutamate-tRNA Ligase, Putative-1.5At1g78040Extensin Family Protein-1.5At2g43320Unknown Protein-1.5At1g06900Ribonucleoprotein Spliceosomal Protein-1.5At5g6730Zinc Finger Family Protein-1.5At5g257630Cbl-Interacting Protein Kinase 21-1.5At5g43010Regulatory Particle Triple-A 4A-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | At3g10800 | bZIP28 Transcription Factor                                | -1.6 | Yes           |          |          |
| At3g27700RNA Recognition Motif Protein-1.6At4g10170Synaptobrevin-Related Family Protein-1.6At1g04190Tetratricopeptide Repeat Protein-1.6At3g11830Chaperonin, Putative-1.5At5g26710Glutamate-tRNA Ligase, Putative-1.5At1g78040Extensin Family Protein-1.5At2g43320Unknown Protein-1.5At1g06960Ribonucleoprotein Spliceosomal Protein-1.5At5g6730Zinc Finger Family Protein-1.5At5g57630Cbl-Interacting Protein Kinase 21-1.5At5g43010Regulatory Particle Triple-A 4A-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | At5g39450 | F-Box Family Protein                                       | -1.6 |               |          |          |
| At4g10170Synaptobrevin-Related Family Protein-1.6At1g04190Tetratricopeptide Repeat Protein-1.6At3g11830Chaperonin, Putative-1.5At5g26710Glutamate-tRNA Ligase, Putative-1.5At1g78040Extensin Family Protein-1.5At2g43320Unknown Protein-1.5At1g06960Ribonucleoprotein Spliceosomal Protein-1.5At5g6730Zinc Finger Family Protein-1.5At5g57630Cbl-Interacting Protein Kinase 21-1.5At4g28510Prohibitin 1-1.5YesAt5g43010Regulatory Particle Triple-A 4A-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | At3g27700 | RNA Recognition Motif Protein                              | -1.6 |               |          |          |
| At1g04190Tetratricopeptide Repeat Protein-1.6At3g11830Chaperonin, Putative-1.5At5g26710Glutamate-tRNA Ligase, Putative-1.5At1g78040Extensin Family Protein-1.5At2g43320Unknown Protein-1.5At1g06960Ribonucleoprotein Spliceosomal Protein-1.5At5g66730Zinc Finger Family Protein-1.5At5g57630Cbl-Interacting Protein Kinase 21-1.5At4g28510Prohibitin 1-1.5YesAt5g43010Regulatory Particle Triple-A 4A-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | At4g10170 | Synaptobrevin-Related Family Protein                       | -1.6 |               |          |          |
| At3g11830Chaperonin, Putative-1.5At5g26710Glutamate-tRNA Ligase, Putative-1.5At1g78040Extensin Family Protein-1.5At2g43320Unknown Protein-1.5At1g06960Ribonucleoprotein Spliceosomal Protein-1.5At5g66730Zinc Finger Family Protein-1.5At5g57630Cbl-Interacting Protein Kinase 21-1.5At4g28510Prohibitin 1-1.5YesAt5g43010Regulatory Particle Triple-A 4A-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | At1g04190 | Tetratricopeptide Repeat Protein                           | -1.6 |               |          |          |
| At5g26710Glutamate-tRNA Ligase, Putative-1.5At1g78040Extensin Family Protein-1.5At2g43320Unknown Protein-1.5At1g06960Ribonucleoprotein Spliceosomal Protein-1.5At5g66730Zinc Finger Family Protein-1.5At5g57630Cbl-Interacting Protein Kinase 21-1.5At4g28510Prohibitin 1-1.5YesAt5g43010Regulatory Particle Triple-A 4A-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | At3g11830 | Chaperonin, Putative                                       | -1.5 |               |          |          |
| At1g78040Extensin Family Protein-1.5At2g43320Unknown Protein-1.5At1g06960Ribonucleoprotein Spliceosomal Protein-1.5At5g66730Zinc Finger Family Protein-1.5At5g57630Cbl-Interacting Protein Kinase 21-1.5At4g28510Prohibitin 1-1.5At5g43010Regulatory Particle Triple-A 4A-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | At5g26710 | Glutamate-tRNA Ligase, Putative                            | -1.5 |               |          |          |
| At2g43320Unknown Protein-1.5At1g06960Ribonucleoprotein Spliceosomal Protein-1.5At5g66730Zinc Finger Family Protein-1.5At5g57630Cbl-Interacting Protein Kinase 21-1.5At4g28510Prohibitin 1-1.5YesAt5g43010Regulatory Particle Triple-A 4A-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | At1g78040 | Extensin Family Protein                                    | -1.5 |               |          |          |
| At1g06960Ribonucleoprotein Spliceosomal Protein-1.5At5g66730Zinc Finger Family Protein-1.5At5g57630Cbl-Interacting Protein Kinase 21-1.5At4g28510Prohibitin 1-1.5YesAt5g43010Regulatory Particle Triple-A 4A-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | At2g43320 | Unknown Protein                                            | -1.5 |               |          |          |
| At5g66730Zinc Finger Family Protein-1.5At5g57630Cbl-Interacting Protein Kinase 21-1.5At4g28510Prohibitin 1-1.5YesAt5g43010Regulatory Particle Triple-A 4A-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | At1g06960 | Ribonucleoprotein Spliceosomal Protein                     | -1.5 |               |          |          |
| At5g57630         Cbl-Interacting Protein Kinase 21         -1.5           At4g28510         Prohibitin 1         -1.5         Yes           At5g43010         Regulatory Particle Triple-A 4A         -1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | At5g66730 | Zinc Finger Family Protein                                 | -1.5 |               |          |          |
| At4g28510         Prohibitin 1         -1.5         Yes           At5g43010         Regulatory Particle Triple-A 4A         -1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | At5g57630 | Cbl-Interacting Protein Kinase 21                          | -1.5 |               |          |          |
| At5g43010 Regulatory Particle Triple-A 4A -1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | At4g28510 | Prohibitin 1                                               | -1.5 | Yes           |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | At5g43010 | Regulatory Particle Triple-A 4A                            | -1.5 |               |          |          |

## Transcripts up-regulated (P<0.01) in Yukon Thellungiella harvested from the field in 2005 only

| A         | В                                     | C        | D                 | Е    | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G              |
|-----------|---------------------------------------|----------|-------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|           |                                       | F 2003 / | F 2005 /          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| AGI code  | Annotation                            | Chamber  | Chamber           |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At3g62910 | Translation Release Factor            |          | 1.5               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At5g08410 | Thioredoxin Reductase Subunit A       |          | 1.5               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At5944650 | Unknown Protein                       |          | 1.5               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At3e60690 | Auxin-Responsive Family Protein       |          | 1.5               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At2g18915 | Ibiquitin-Protein Ligase              |          | 1.5               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At5g03420 | Dentin Sialaphosphoprotein            |          | 1.5               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1g60000 | Aminomethyltransferase                |          | 1.5               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1200330 | ATD Synthese Femily                   |          | 1.5               | Vec  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At4g32200 | Chloroplast Unusual Desitioning 1     |          | 1.5               | 103  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Al3g23090 | A/D Fold Formily Dratein/Ludroloop    |          | 1.5               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | — —            |
| Al5g38520 | A/B Fold Family Protein/Hydrolase     |          | 1.5               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1g33720 |                                       |          | 1.5               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At4g26500 | I ranscription Regulator              |          | 1.5               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At3g46690 | UDP-Glucosyl Transferase              |          | 1.6               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At5g13690 | Alpha-N-Acetylglucosaminidase         |          | 1.6               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At3g25530 | Phosphogluconate Dehydrogenase        |          | 1.6               | Yes  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1g03680 | Thioredoxin M-Type 1                  |          | 1.6               | Yes  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At5g27380 | Glutathione Synthetase 2              |          | 1.6               | L    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At2g31040 | ATP Synthase Protein I -Related       | ļ        | 1.6               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1g49970 | Endopeptidase CLP                     |          | 1.6               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1g14920 | GA Insensitive/Transcription Factor   |          | 1.6               | Yes  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L              |
| At3g44680 | Histone Deacetylase 9                 |          | 1.6               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At5g58950 | Protein Kinase Family Protein         |          | 1.6               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1g60600 | 1,4-OH-2-Naphthoateprenyltransferase  |          | 1.6               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At3g08730 | P70 Ribosomal S6 Kinase               |          | 1.6               | Yes  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At4g18010 | Inositol PolyP 5-Phosphatase II       |          | 1.6               |      | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| At5g63330 | DNA-Binding Protein                   |          | 1.6               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At4g13220 | Unknown Protein                       |          | 1.6               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1g49880 | Erv1/Alr Family Protein               |          | 1.6               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At4g04640 | ATP Synthase Gamma Chain 1            |          | 1.6               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At5957360 | Zeitlupe Ubiquitin-Protein Ligase     |          | 1.7               | Yes  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1e67090 | Ribulose-Bisphosphate Carboxylase     |          | 1.7               | Yes  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At3g21690 | Mate Efflux Family Protein            |          | 1.7               | 100  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At2001570 | Repressor Of GA Transcription Factor  |          | 1.7               | Yes  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| At2g40480 | Unknown Protein                       |          | 17                | 103  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1g76520 | Auxin Efflux Carrier Family Protein   |          | 17                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>       |
| At2g32950 | Constitutive Photomorphogenic 1       |          | 1.7               | Ves  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>├───</u> ── |
| At5g54080 | Homogentisate 1.2 Dioxygenase         |          | 1.7               | 103  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At2g20860 | Lippic Acid Synthese 1                |          | 1.7               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At2g20800 | Ribosomal Protoin L1 Family Protoin   | ·        | 1.7               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1g10925 | Unknown Protein                       |          | $\frac{1.7}{1.7}$ |      | · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| At5667520 | Deptidul Prolul Cie, Trans Jeomeraca  |          | 1.7               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At2g/7500 | Dependent of the light Recenter 2     |          | 1.7               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| AL284/390 | FIDIOLYASE/DIUE-LIGHT RECEPTOR 2      |          | 1./               | V    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At4g34190 | Stress Ennanced Protein I             |          | 1.7               | 1 es |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1g20225 | Unknown Protein                       |          | 1./               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1g21065 | Unknown Protein                       | ļ        | 1.7               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At2g38270 | Protein Disulfide Oxidoreductase      |          | 1.7               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At3g27300 | Glucose-6-Phosphate Dehydrogenase 5   |          | 1.7               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At4g37510 | Ribonuclease III Family Protein       |          | 1.7               |      | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| At3g27570 | Unknown Protein                       |          | 1.7               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1g44920 | Unknown Protein                       |          | 1.7               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1g16240 | Syntaxin Of Plants 51                 |          | 1.7               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At1g52510 | Hydrolase, A/B Fold Family Protein    |          | 1.7               |      | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| At1g61660 | Basic Helix-Loop-Helix Family Protein |          | 1.7               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              |
| At4g09680 | Unknown Protein                       |          | 1.7               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| At3g04870 | Zeta-Carotene Desaturase              |          | 1.7               |      | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| At3g24170 | Glutathione-Disulfide Reductase       |          | 1.7               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|           |                                       |          |                   |      | and a second sec |                |

|              |                                       | ·     | ,          |               |               |
|--------------|---------------------------------------|-------|------------|---------------|---------------|
| At5g22640    | Embryo Defective 1211                 | 1.8   |            |               |               |
| At4001310    | Ribosomal Protein L 5 Family Protein  | 18    |            |               |               |
| A 45 - 49200 | ADD Churren Durenhaanhaardaan         | 1.0   | Vac        | <u> </u>      |               |
| AI5g48500    | ADP Glucose Pyrophosphorylase         | 1.8   | 105        | <u> </u>      | <u> </u>      |
| At2g27680    | Aldo/Keto Reductase Family Protein    |       |            |               | <u> </u>      |
| At1g55920    | Serine Acetyltransferase 1            | 1.8   | Yes        |               |               |
| At5g50920    | Heat Shock Protein 93-V               | 18    |            |               |               |
| ALJ200920    |                                       | 1.0   |            |               |               |
| At3g02170    | Longitolia 2                          | 1.8   |            |               |               |
| At1g50020    | Unknown Protein                       | 1.8   |            | ]             |               |
| A+2a31370    | h7IP Transcription Factor             | 18    |            |               |               |
| A12g31370    |                                       | 1.0   |            |               |               |
| At5g54960    | Pyruvate Decarboxylase-2              | 1.8   | Yes        |               |               |
| At1g74730    | Unknown Protein                       | 1.8   | ſ          | í             | 1             |
| At5003880    | Unknown Protein                       | 1.8   |            |               | 1             |
| 11050000     |                                       |       |            | <b>├</b> ──── |               |
| At5g40500    | Unknown Protein                       | 1.8   |            |               |               |
| At5g67030    | ABA Deficient 1/Zeaxanthin Epoxidase  | 1.8   | Yes        | M             |               |
| At4935010    | Beta-Galactosidase 11                 | 18    |            |               | 1             |
| A+1 = 64070  | Commo Toponharol Mathyltronaforaça    | 1.0   |            |               | <u> </u>      |
| Al1g04970    | Gamma-Tocopheror Methyluansierase     |       |            |               |               |
| At5g06260    | Nucleolar Protein-Related             | 1.8   |            |               |               |
| At1g16880    | Uridvlyltransferase-Related Protein   | 1.8   | Yes        |               |               |
| At3g22370    | Alternative Oxidase 1A                | 18    | Vec        | (             | f             |
| AU3222070    |                                       | 1.0   | 103        | <u> </u>      |               |
| At1g68830    | Stt/ Homolog Stn//Protein Kinase      | 1.8   |            | L             |               |
| At1g11650    | RNA Binding Protein                   | 1.8   | 1          |               |               |
| At4934350    | 4-HO-3-Mebut-2-En-1-DiP Reductase     | 1.8   |            |               |               |
| A.5-07270    | La sitel Delughander Kinger (Allele   | 1.0   |            | ┟────         |               |
| Al3g0/3/0    | mositor Poryphosphate Kinase 2 Alpha  | 1.8   |            |               | <b>└──</b> ─  |
| At5g52200    | Protein Phosphatase Inhibitor         | 1.8   |            |               |               |
| At1g64150    | Unknown Protein                       | 18    |            |               |               |
| A+3 ~ 26095  | A mino Torminal Brotonco              | 1.0   |            | <u> </u>      |               |
| A13g20085    | Annno Terminal Protease               |       |            |               |               |
| At5g58060    | Unknown Protein                       | 1.8   |            |               |               |
| At4g13430    | Aconitase Family Protein              | 1.8   |            |               |               |
| A+4g11600    | Clutathiana Paravidasa 6              |       | Var        |               |               |
| A14g11000    | Olulaulione Feloxidase o              | 1.0   | Tes        |               |               |
| At1g78960    | Lupeol Synthase 2                     | 1.8   |            |               |               |
| At3g13180    | Nol1/Nop2/Sun Family Protein          | 1.9   |            | ]             |               |
| At1g22600    | Unknown Protein                       | 19    |            |               | r             |
| Alig22000    | Pit Lee Distante Calant               |       |            |               |               |
| At5g38410    | Ribulose Bisphosphate Carboxylase     | 1.9   |            |               |               |
| At1g44575    | Nonphotochemical Quenching            | 1.9   | Yes        | [             | [             |
| At2g42130    | Plastid-Linid-Associated Protein 13   | 19    |            |               |               |
| A+2-11560    | Lista Elpid / Bootnice Trotein 15     | 1.5   |            |               |               |
| ALSGIISOU    |                                       | 1.9   |            | L             |               |
| At3g07220    | Transcriptional Activator, Putative   | 1.9   |            |               |               |
| At4g00895    | ATP Synthase Delta Chain-Related      | 1.9   |            |               |               |
| At/g11175    | Translation Initiation Easter IF 1    | 1.0   |            |               |               |
| A(4g11175    |                                       |       |            |               | L             |
| At4g20360    | Translation Elongation Factor         |       |            |               |               |
| At4g13010    | Zinc-Binding Dehvdrogenase            | 1.9   |            | ]             |               |
| At3952230    | Linknown Protein                      | 1.0   |            |               | f1            |
| A:2 51190    |                                       |       |            |               | <u> </u>      |
| At3g51180    | Zinc Finger Family Protein            | 1.9   |            |               |               |
| At5g26570    | Phosphoglucan Water Dikinase          | 1.9   |            | 1             | [ ]           |
| At5g54870    | Unknown Protein                       | 19    |            |               |               |
| At2a46000    | Unknown Protein                       | 1.5   |            | <u> </u>      |               |
| A12840900    |                                       |       |            |               | <b>↓</b>      |
| At4g32770    | Vitamin E Deficient 1                 | 1.9   | Yes        |               |               |
| At1g43670    | Fructose-1,6-Bisphosphatase, Putative | 1.9   |            |               |               |
| At4g20060    | Embryo Defective 1895/Binding         | 10    |            | <u> </u>      | <u>├───</u> ┤ |
| A10-20000    |                                       |       | <u> </u>   | <u> </u>      | ├             |
| At2g28900    | P-P-Hydrolysis-Driven Transporter     | 1.9   | Yes        |               |               |
| At1g28140    | Unknown Protein                       | 1.9   |            |               |               |
| At1g53520    | Chalcone-Flavanone Isomerase          | 19    |            |               | t1            |
| A+5a57040    | Chevelace I Family Brotein            |       | <u> </u>   | <u> </u>      | ┼───┤         |
| A13g37040    |                                       |       |            | L             |               |
| At3g47570    | Leucine-Rich RepeatKinase, Putative   | 1.9   |            | L             | <u> </u>      |
| At2g37770    | Aldo/Keto Reductase Family Protein    | 2.0   |            |               |               |
| At1g15600    | Vacualar Type H+-Pyrophosphotose      | 20    | Vac        | <u> </u>      | <u>├</u>      |
| A:1 27020    | vacuorar-1 ype 11++ r yrophosphatase  |       | res        |               | ┟             |
| At4g37930    | Serine Hydroxymethyltransferase 1     | 2.0   | Yes        |               |               |
| At5g05200    | ABC1 Family Protein                   | 2.0   |            |               |               |
| At4913310    | Cytochrome P450                       | 20    | — <u> </u> |               | ;             |
| A+2-22020    | Couplero Enovidere 2                  |       | <u> </u>   |               | ┝━━─┤         |
| At2g22830    | Squalene Epoxidase 2                  | 2.0   |            | L             |               |
| At3g12780    | Phosphoglycerate Kinase 1             | 2.0   | Yes        |               |               |
| At4g35250    | Vestitone Reductase-Related           | 20    |            |               |               |
| A+1 a24140   | A satul Coonguma A Carbourter 1       |       |            |               | ┝───┤         |
|              | ACCIVITUDEITZVIIIE A CALIDOXVIASE I   | 1 2.0 |            |               |               |

| L 11 64050 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |            |                                               |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|------------|-----------------------------------------------|
| At1g64850  | Calcium-Binding Family Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0   |          |            |                                               |
| At5g16540  | Zinc Finger Protein 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0   | 4        |            |                                               |
| At2g18710  | P-P-Bond-Hydrolysis-Driven Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1   |          |            |                                               |
| At1g64860  | Sigma Factor A Transcription Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1   |          |            |                                               |
| At2g46910  | Fibrillin Family Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.1   |          |            |                                               |
| At4g09650  | ATP Synthase Delta Chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.1   | Yes      |            |                                               |
| At5g52420  | Unnknown Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.1   |          |            |                                               |
| At2g03390  | uvrB/uvrC Motif-Containing Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1   | 1        | <u> </u>   | <u> </u>                                      |
| At3g03250  | LIDP-Glucose Pyrophosphorylase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21    | Yes      |            | <u> </u>                                      |
| At5g14970  | Amine Oxidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21    | 1        |            |                                               |
| At1g12090  | Extensin-Like Protein/Linid Binding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1   | +        |            |                                               |
| At1g12090  | Assolution Coll Death 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.1   | Vac      | <u> </u>   |                                               |
| At+2=20500 | Accelerated Cell Deallin 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |          |            | 1                                             |
| At5g29390  | Distribution Orden la contra la cont | 2.1   |          | <u> </u>   | <u> </u>                                      |
| Atig/0/30  | Phosphoglucomutase, Cytoplasmic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1   |          |            |                                               |
| At3g1/930  | Unknown Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |            | ļ                                             |
| At5g55990  | Calcineurin B-Like Protein 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.2   |          |            |                                               |
| At1g79270  | Evolutionarily Conserved C-Terminal 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |          |            |                                               |
| At3g46610  | Pentatricopeptide Repeat-Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.2   |          | L          |                                               |
| At5g65720  | Cysteine Desulfurase/Transaminase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.2   |          | <u> </u>   |                                               |
| At1g22850  | Unknown Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2   |          |            |                                               |
| At3g63410  | Albino Or Pale Green Mutant 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.2   |          |            |                                               |
| At4g09750  | Short-Chain Dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2   | T —      |            |                                               |
| At5g26820  | Ferroportin-Related Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.2   |          |            |                                               |
| At5g56860  | N-/C-Metabolism-Transcription Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.2   |          |            |                                               |
| At2g24090  | Ribosomal Protein L35 Family Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.2   | +        | t          |                                               |
| At2g33250  | Unknown Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22    |          |            |                                               |
| At2g13360  | Alapine: Glyoxylate Aminotransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.2   |          |            | ┝───┤                                         |
| At1g22070  | TGA1A Pelated Transcription Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.2   | Vac      |            |                                               |
| At1g22070  | Indexe Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |          |            | <u>                                      </u> |
| Al5g55620  | Unknown Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2   |          |            | ┝───┤                                         |
| Atig05190  | Embryo Defective 2394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.2   |          |            | ┣────┤                                        |
| At4g39970  | Haloacid Dehalogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.2   |          | <u> </u>   | $\vdash$                                      |
| At2g37540  | Short-Chain Dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2   |          |            |                                               |
| At1g48030  | Dihydrolipoamide Dehydrogenase 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.2   | Yes      |            |                                               |
| At1g80380  | Phosphoribulokinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.3   |          |            |                                               |
| At5g58040  | RNA Binding Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.3   |          |            |                                               |
| At5g28840  | GDP-D-Mannose 3',5'-Epimerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.3   |          |            |                                               |
| At1g44000  | Unknown Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3   |          |            |                                               |
| At5g04140  | Fd-Dependent Glutamate Synthase 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.3   | Yes      |            |                                               |
| At1g09340  | Chloroplast RNA Binding Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3   | Yes      |            |                                               |
| At5g20280  | Sucrose Phosphate Synthase 1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.3   | -        |            |                                               |
| At4932190  | Centromeric Protein-Related                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23    | +        | t          |                                               |
| At1e68570  | Oligopentide Transport Family Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23    |          |            |                                               |
| At4g36390  | Radical SAM Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.3   |          |            |                                               |
| At4g17560  | Ribosomal Protein I 10 Family Protain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.3   |          | <b>  _</b> |                                               |
| At2g16250  | Forradovin Palatad Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | -+       |            | ┝───┤                                         |
| At1252970  | Perevisemel Membrane Protein Palatad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |          |            |                                               |
| Aug328/0   | Linknown Destain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |          |            |                                               |
| AL3201000  | Ulikilowii Piteliii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |          |            | ┞                                             |
| At3g10180  | Ninesin Motor Protein-Related                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |          | ļ          |                                               |
| At4g25170  | Unknown Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4   |          |            | ļ                                             |
| At4g11570  | Haloacid Dehalogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4   |          | I          | ļ                                             |
| At3g59300  | Unknown Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4   | <u> </u> |            |                                               |
| At1g79600  | ABC1 Family Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4   |          |            |                                               |
| At4g13770  | Cytochrome P450 83A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4   | Yes      |            |                                               |
| At1g48350  | Ribosomal Protein L18 Family Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4   |          |            |                                               |
| At1g05560  | UDP-Glucosyl Transferase 75B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4   |          | M          |                                               |
| At5g20380  | Transporter-Related Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.4   |          |            |                                               |
| At5g42270  | ATP-Dependent Metallopeptidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.4   |          |            |                                               |
| At2g04520  | Translation Initiation Factor 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4   |          |            | j]                                            |
| At1g27370  | Squamosa Promoter-Binding Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.4   | 1        |            |                                               |
| At4g01080  | Unknown Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4   |          |            |                                               |
| At3g55120  | Chalcone Isomerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25    | Vec      |            |                                               |
| At3g23700  | S1 RNA-Binding Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 2.5 | Vec      |            |                                               |
| At5g30510  | RNA Binding Ribosomal Protein S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 103      |            |                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5   | 1        | 1          | . 1                                           |

|            |                                          |       |            | T           |                                              |
|------------|------------------------------------------|-------|------------|-------------|----------------------------------------------|
| At2g37240  | Antioxidant Oxidoreductase               | 2.5   |            | ļ           |                                              |
| At1g57770  | Amine Oxidase Family                     | 2.5   |            |             |                                              |
| At3g16910  | Acetate-coA Ligase                       | 2.5   | _          | Į           |                                              |
| At4g34135  | UDP-Glucosyltransferase                  | 2.5   | Yes        |             |                                              |
| At5g34850  | Purple Acid Phosphatase 26               | 2.6   |            | 1           |                                              |
| At4917610  | tRNA/rRNA Methyltransferase              | 2.6   |            |             | <u> </u>                                     |
| At/g3/2/0  | 3 Chloroallyl Aldehyde Dehydrogenase     | 2.0   | Vec        | P           | <u>├</u>                                     |
| At7-07020  | Sterentural Constituent Of Dilyurogenase | 2.0   | 105        |             |                                              |
| At3g27830  | Structural Constituent Of Ribosome       | 2.0   |            | l           | <u> </u>                                     |
| At1g52590  | DCC Family Protein Precursor             | 2.6   |            |             | <u> </u>                                     |
| At1g66330  | Senescence-Associated Family Protein     | 2.6   |            |             |                                              |
| At1g29390  | Cold Regulated 314                       | 2.6   | Yes        |             |                                              |
| At1g60950  | Ferredoxin 2                             | 2.6   | Yes        |             |                                              |
| At4g04770  | Nucleosome Assembly Protein 1            | 2.7   | Yes        | 1           |                                              |
| At3063140  | mRNA-Binding Protein Putative            | 27    |            | 1           |                                              |
| At/g1/0/0  | Embruo Sac Development Arrest 28         | 2.7   |            |             |                                              |
| At4g14040  | Emoryo Sac Development Arrest 58         | 2.7   |            | [           | <u> </u>                                     |
| At3g14770  | Nodulin Milins Family Protein            | 2.7   |            | <u> </u>    | <u> </u>                                     |
| At2g24280  | Serine Carboxypeptidase S28              | 2.7   |            |             | 1                                            |
| At4g13930  | Serine Hydroxymethyltransferase 4        | 2.8   |            |             |                                              |
| At1g73990  | Signal Peptide Peptidase                 | 2.8   | Yes        |             |                                              |
| At3g63520  | Carotenoid Cleavage Dioxygenase 1        | 2.8   | Yes        | M           |                                              |
| At5g13650  | Elongation Factor Family Protein         | 2.8   | -          |             |                                              |
| At1g50250  | EtsH Protease 1 Metallopentidase         | 28    |            |             |                                              |
| At1250250  | Zing Einger Dratain 1                    | 2.8   |            | 1           |                                              |
| Al5g02850  |                                          | 2.8   |            | ·           | <u> </u>                                     |
| At4g04350  | Aminoacyl-tRNA Ligase                    | 2.9   |            |             |                                              |
| At1g64680  | Unknown Protein                          | 2.9   |            |             |                                              |
| At5g17170  | Enhancer Of SOS3-1                       | 2.9   |            |             |                                              |
| At5g67360  | Subtilase                                | 2.9   |            |             |                                              |
| At5g15410  | Rectifier Potassium Channel              | 2.9   | Yes        | 1           | <u> </u>                                     |
| At2948070  | Unknown Protein                          | 29    | Yes        |             | <u> </u>                                     |
| At2g30490  | Cinnamate 4. Hydroxylase                 | 3.0   | Vec        |             | <u> </u>                                     |
| A12g30490  | Mandhana Pastein Duteting                | 3.0   | 105        | <u> </u>    | <u> </u>                                     |
| At1g32080  | Memorane Protein, Putative               |       |            | · · · · · · | <u> </u>                                     |
| At1g62780  | Unknown Protein                          |       |            |             |                                              |
| At3g53260  | Phenylalanine Ammonia-Lyase 2            | 3.0   | Yes        |             |                                              |
| At4g12320  | Cytochrome P450                          | 3.0   |            |             |                                              |
| At1g04350  | 2-OG-Dependent Dioxygenase, Putative     | 3.0   |            |             |                                              |
| At5g24460  | Hydrolase                                | 3.0   |            | 1           |                                              |
| At2038740  | Haloacid Dehalogenase                    | 31    |            |             | <u> </u>                                     |
| At/g33010  | Glycine Decarboxylase P Protein 1        | 3.1   |            |             | <u> </u>                                     |
| A14255010  | Orychie Decarboxylase F-Floteni I        | 3.1   |            |             | <u> </u>                                     |
| At2g35840  | Sucrose-Phosphatase 1                    | 3.2   |            |             |                                              |
| At2g42810  | Protein Ser/Thr Phosphatase 5            | 3.2   | Yes        |             |                                              |
| _At5g60540 | Pyridoxine Biosynthesis 2                | 3.2   |            |             |                                              |
| At5g10170  | Inositol-3-P Synthase, Putative          | 3.2   |            |             |                                              |
| At1g67360  | Rubber Elongation Factor Protein         | 3.2   |            |             | 1                                            |
| At3g25410  | Bile Acid:Na Symporter Family Protein    | 3.3   |            |             |                                              |
| At1916080  | Unknown Protein                          | 33    | -          |             | <u>                                     </u> |
| At1078070  | WD-40 Repeat Family Protein              | 31    |            |             |                                              |
| At/021070  | Clutathione Derovidase 7                 | 2 /   | Var        |             | <u>+</u>                                     |
| A(4g31870  |                                          | 3.4   | <u>Ies</u> |             |                                              |
| At5g20070  | INUGIX HYDROIASE HOMOIOg 19              | 3.4   |            |             | <u> </u>                                     |
| At5g53970  | Aminotransferase, Putative               | 3.5   |            | <u> </u>    |                                              |
| At4g36530  | Hydrolase, A/B Fold Family Protein       | 3.5   |            |             |                                              |
| At1g78510  | Solanesyl Diphosphate Synthase 1         | 3.5   |            |             |                                              |
| At5g52250  | WD-40 Repeat Family Protein              | 3.5   | Yes        |             | F                                            |
| At5005580  | Omega-3 Eatty Acid Desaturase            | 36    | Ves        |             | <u> </u>                                     |
| At2g17200  | Calcium-Dependent Protein Kinase 6       | 27    | 103        | c           | <u> </u>                                     |
| At1~45020  | Defactive Chloroplaste Drotein Delet-3   | 3./   |            | <u> </u>    |                                              |
| A11845250  | Chains Developments Protein-Kelated      |       |            |             |                                              |
| A12g26080  | Glycine Decarboxylase P-Protein 2        | 3./   |            |             | L                                            |
| At5g46800  | A Bout De Souffle Binding Protein        | 3.7   |            | ļ           |                                              |
| At1g62750  | Translation Elongation Factor            | 3.7   |            |             |                                              |
| At5g24120  | RNA Polymerase Sigma Subunit E           | 3.8   | Yes        |             |                                              |
| At3g21890  | Zinc Finger Family Protein               | 3.8   | Yes        |             |                                              |
| At3g21250  | Multidrug Resistance-Associated 6        | 3.0   |            | <u> </u>    |                                              |
| At1g17100  | SOUL Heme-Binding Family Protein         | 4.2   |            |             | 1                                            |
| At4a15520  | Burguisto Orthophosphoto Dilinere        | 4.2   | L          |             |                                              |
| A14813330  | ryiuvate Orthophosphate Dikinase         | [ 4.4 |            | 1           | 1                                            |

| At2g04039 | Unknown Protein                       | 4.5  |     |   |
|-----------|---------------------------------------|------|-----|---|
| At4g15480 | Sinapate 1-Glucosyltransferase        | 5.0  | Yes |   |
| At4g37990 | Elicitor-Activated Gene 3             | 5.1  | Yes |   |
| At1g02205 | Eceriferum 1                          | 5.2  |     |   |
| At5g20630 | Germin-Like Protein 3                 | 5.5  | Yes | 1 |
| At5g13930 | Naringenin-Chalcone Synthase          | 6.0  | Yes | 1 |
| At3g21670 | Nitrate Transporter (NTP3)            | 6.4  |     | 1 |
| At2g38240 | 20G-Fe(II) Oxygenase Family Protein   | 6.5  |     |   |
| At2g42530 | Cold-Regulated 15B Protein            | 6.7  | Yes | 1 |
| At5g05270 | Chalcone-Flavanone Isomerase          | 7.1  |     | 1 |
| At3g44990 | Xyloglucan:Xyloglucosyl Transferase 8 | 7.1  |     |   |
| At2g37040 | Phenylalanine Ammonia-Lyase           | 7.6  | Yes |   |
| At2g18230 | Pyrophosphorylase 2                   | 7.7  |     |   |
| At4g26850 | Vitamin C Defective 2                 | 9.4  | Yes |   |
| At1g62710 | Vacuolar Processing Enzyme            | 10.5 |     |   |

**Supplemental Table S3.** Metabolites present at statistically significantly different levels in Yukon Thellungiella harvested from the field in 2003 and 2005.

Values represent fold-ratio between field and growth chamber grown Thellungiella, where a positive or negative number represents a metabolite present at higher or lower level in field-grown plants, respectively, relative to cabinet grown plants.

## Metabolites present at significantly lower levels (P<0.05) in Yukon Thellungiella harvested from the field in 2003 and 2005

|                                     | Field 2003 / Chamber | Field 2005 / Chamber |
|-------------------------------------|----------------------|----------------------|
| 1076_aspartic acid                  | -12326.0             | -880.4               |
| 1346_glutamine                      | -10508.4             | -10508.4             |
| 2206_C12 sugar alcohol/disaccharide | -1686.8              | -1405.7              |
| 2803_C12 sugar alcohol/disaccharide | -1179.0              | -471.6               |
| 1312_unknown                        | -1025.2              | -28.2                |
| 984_unknown                         | -978.8               | -978.8               |
| 1564_C12 sugar alcohol/disaccharide | -858.0               | -3.5                 |
| 2683_C12 sugar alcohol/disaccharide | -580.4               | -580.4               |
| 2997_raffinose                      | -366.0               | -1683.7              |
| 2666_C12 sugar alcohol/disaccharide | -316.5               | -46.4                |
| 1599_unknown                        | -278.4               | -696.0               |
| 2649_C12 sugar alcohol/disaccharide | -220.0               | -27.5                |
| 1770_unknown                        | -196.0               | -78.4                |
| 1854_unknown                        | -175.5               | -280.8               |
| 2371_C12 sugar alcohol/disaccharide | -138.0               | -115.0               |
| 1368_unknown                        | -123.2               | -123.2               |
| 2472_C12 sugar alcohol/disaccharide | -95.2                | -95.2                |
| 1477_lysine                         | -91.2                | -91.2                |
| 1894_unknown                        | -68.0                | -68.0                |
| 2731_C12 sugar alcohol/disaccharide | -64.9                | -7.3                 |
| 1774_C12 sugar alcohol/disaccharide | -64.2                | -19.0                |
| 1786_phosphorylated sugar           | -55.2                | -286.8               |
| 1555_unknown                        | -50.3                | -201.2               |
| 1956_unknown                        | -45.2                | -45.2                |
| 821_phosphate                       | -24.3                | -120.8               |
| 2616_C12 sugar alcohol/disaccharide | -22.7                | -16.0                |
| 2423_C12 sugar alcohol/disaccharide | -22.7                | -254.0               |
| 1964_C12 sugar alcohol/disaccharide | -17.4                | -48.8                |
| 2000_C12 sugar alcohol/disaccharide | -16.3                | -130.0               |
| 2254_C12 sugar alcohol/disaccharide | -16.2                | -368.8               |
| 891_fumaric acid                    | -15.8                | -120.4               |
| 1845_cinnamic acid                  | -15.6                | -7.0                 |
| 1916_glucose-6-phosphate            | -12.7                | -56.0                |
| 1710_C6 sugar alcohol               | -8.3                 | -675.2               |
| 2548_C12 sugar alcohol/disaccharide | -7.6                 | -21.8                |
| 1426_quinic acid                    | -6.2                 | -2.6                 |
| 1096_pyroglutamic acid              | -5.6                 | -951.2               |
| 2269_C12 sugar alcohol/disaccharide | -5.6                 | -9.8                 |
| 810_unknown                         | -4.8                 | -137.0               |
| 1026_unknown                        | 4.7                  | -166.8               |
| 1158_unknown                        | -4.2                 | -7.7                 |

| 1166_unknown                        | -3.8 | -25.6   |
|-------------------------------------|------|---------|
| 931_threonine                       | -3.7 | -104.8  |
| 2137_C12 sugar alcohol/disaccharide | -3.0 | -37.3   |
| 749_valine                          | -2.8 | -19.5   |
| 2598_galactinol                     | -2.5 | -5.4    |
| 903_serine                          | -2.5 | -845.0  |
| 1147_unknown                        | -2.3 | -123.2  |
| 833_isoleucine                      | -2.1 | -188.8  |
| 1179_glutamic acid                  | -1.8 | -5747.3 |
| 1044_malic acid                     |      | -1.6    |

# Metabolites present at higher levels (P<0.05) in Yukon Thellungiella harvested from the field in 2003 and 2005

| ID                   | Field 2003 / Chamber | Field 2005 / Chamber |
|----------------------|----------------------|----------------------|
| 2236_sucrose         | 2.2                  | 3.5                  |
| 1389_citric acid     | 5.3                  | 4.8                  |
| 1429_unknown         | 6.1                  | 9.6                  |
| 1440_fructose        | 8.7                  | 4.5                  |
| 844_glycine          | 46.2                 | 36.2                 |
| 1024_citramalic acid | 69,9                 | 44.7                 |
| 859_succinic acid    | 863.6                | 276.6                |
| 794_ethanolamine     | 1118.0               | 688.0                |

# Metabolites present at higher levels (P<0.05) in Yukon Thellungiella harvested from the field in 2003, and lower levels (P<0.05) in 2005

| D            | Field 2003 / Chamber | Field 2005 / Chamber |
|--------------|----------------------|----------------------|
| 1320_unknown | 5.3                  | -42.3                |
| 1377_unknown | 6.1                  | -6.6                 |

# Metabolites present at higher levels (P<0.05) in Yukon Thellungiella harvested from the field in 2003 only

| ID                                   | Field 2003 / Chamber |
|--------------------------------------|----------------------|
| 1664_myo-inositol                    | 1.5                  |
| 1118_threonic acid                   | 1.7                  |
| 1466_glucose                         | 2.4                  |
| 874_unknown                          | 2.6                  |
| 1062_unknown                         | 21.3                 |
| 1141_unknown                         | 27.0                 |
| 1042_unknown                         | 45.7                 |
| 1462_galactose                       | 49.5                 |
| 1415_unknown                         | 100.8                |
| 1559_C6 sugar alcohol                | 114.4                |
| 1553_unknown                         | 120.8                |
| 1079_gamma amino butyric acid (GABA) | 218.9                |
| 1364_unknown                         | 260.8                |

| 1727_C6 sugar alcohol               | 313.6  |
|-------------------------------------|--------|
| 1315_unknown                        | 468.4  |
| 1344_unknown                        | 611.3  |
| 1443_unknown                        | 638.4  |
| 815_glycerol                        | 743.2  |
| 1495_pentose                        | 892.4  |
| 1565_unknown                        | 1549.6 |
| 1778_C12 sugar alcohol/disaccharide | 1568.4 |

Metabolites present at lower levels (P<0.05) in Yukon Thellungiella harvested from the field in 2005 only

| D                                   | Field 2005 / Chamber |
|-------------------------------------|----------------------|
| 1522_C6 sugar alcohol               | -1189.6              |
| 1569_C12 sugar alcohol/disaccharide | -730.4               |
| 1241_asparagine                     | -609.0               |
| 794_unknown                         | -338.8               |
| 1979_C12 sugar alcohol/disaccharide | -285.2               |
| 1260_unknown                        | -97.2                |
| 839_proline                         | -43.4                |
| 1221_unknown                        | -37.5                |
| 611_alanine                         | -28.6                |
| 1942_unknown                        | -14.0                |
| 1193_phenylalanine                  | -3.5                 |

Metabolites present at higher levels (P<0.05) in Yukon Thellungiella harvested from the field in 2005 only

| D                                   | Field 2005 / Chamber |
|-------------------------------------|----------------------|
| 1410_unknown                        | 3.1                  |
| 1734_C6 sugar alcohol               | 7.2                  |
| 1306_unknown                        | 17.5                 |
| 1574_unknown                        | 22.6                 |
| 929_unknown                         | 64.0                 |
| 2205_C12 sugar alcohol/disaccharide | 73.6                 |
| 1913_C12 sugar alcohol/disaccharide | 107.2                |
| 1978_C12 sugar alcohol/disaccharide | 107.9                |
| 1383_unknown                        | 113.0                |
| 2240_unknown                        | 130.0                |
| 1543_unknown                        | 221.0                |
| 1774_C6 sugar alcohol               | 343.2                |
| 2141_C12 sugar alcohol/disaccharide | 445.6                |
| 1330_unknown                        | 542.0                |
| 1108_unknown                        | 1183.2               |
| 1975_C12 sugar alcohol/disaccharide | 1206.8               |

#### **Chapter Five**

#### **General Discussion**

In the field, the soil water content can vary within a single day and throughout the growing season (Acevedo et al., 1979; Hanson and Hitz, 1982). Plants must therefore constantly 'fine-tune' physiological processes to ensure continued growth and development under fluctuating water availability (Hanson and Hitz, 1982). However, prolonged exposure to water deficits severely compromises plant growth and productivity and consequently, a lack of water is the single most important factor limiting crop production (Boyer, 1982). A better understanding of the molecular basis of plants that are naturally tolerant to abiotic stress holds great promise for improving the tolerance of stress-sensitive crops using genetic engineering approaches (Bressan et al., 2001). However, to date, the genes enabling naturally stress tolerant plants to thrive in their harsh habitats are unknown.

The identification of traits associated with abiotic stress tolerance has typically been performed by subjecting plants to calibrated stress treatments imposed under controlled growth chamber conditions. Under field conditions, however, plants are exposed to multiple stresses simultaneously leading to altered physiological responses that are not necessarily predicted based on experiments performed in artificial laboratory conditions (Rizhsky et al., 2004). Comparisons made between traits expressed by plants subjected to abiotic stress in their natural habitats and those exposed to growth chamber experiments could identify critical mechanisms enabling plants to acclimate to abiotic stress.

Thellungiella is exceptionally tolerant to cold temperatures, drought and salinity and is therefore an emerging genetic model for the study of abiotic stress tolerance mechanisms (Inan et al., 2004; Taji et al., 2004; Gong et al., 2005; Griffith et al., 2007; Wong et al., 2006). The highly saline soils in the Yukon where *Thellungiella* populations were sampled combined with the prevailing precipitation patterns during the periods plants were harvested enabled us to compare the traits expressed in *Thellungiella* experiencing drought and relatively well-watered conditions in the field (Guevara et al., 2009b). Our research group has demonstrated that Yukon Thellungiella accumulates organic solutes in response to drought and salinity treatments imposed in controlled environmental chambers (Wong et al., 2006, Guevara et al., 2009a) and in plants experiencing water deficits in the field (Guevara et al., 2009b), relative to unstressed chamber grown plants. Compatible organic solute accumulation in response to drought or salinity has been observed in other naturally tolerant plants (Bianchi et al., 1991; Paul and Cockburn, 1989), although the precise role compatible organic solute accumulation plays for stress tolerance is still under debate (Gagneul et al., 2007). Therefore, it will be an important objective to demonstrate the importance for organic solute accumulation for stress tolerance in Thellungiella grown under field conditions.

Proline has been proposed to be a major compatible solute in Shandong *Thellungiella* subjected to saline environments (Inan et al., 2004; Kant et al., 2006). Proline levels were similar between Yukon *Thellungiella* harvested from the field during drought and growth chamber grown controls (Guevara et al., 2009). Moreover, we found no evidence for altered expression of genes encoding enzymes involved in proline biosynthesis or degradation in Yukon Thellungiella harvested from salt flats in the Yukon (Guevara et al., 2009b). This outcome was not anticipated as we previously reported on genes encoding enzymes associated with proline metabolism such as delta-1-pyrroline-5carboxylate synthetase (P5CS1, At2g39800; P5CS2, At3g55610) which were enriched in Thellungiella subjected to drought or cold stress treatments imposed in growth cabinets, relative to unstressed controls (Wong et al., 2006). The lack of proline accumulation in Yukon Thellungiella plants growing under highly saline environments in the field exposed to drought conditions raises important questions about the role of this solute in abiotic stress tolerance. One possible explanation for the lack of proline accumulation in Thellungiella subjected to abiotic stress in the field may be the result of the low nitrogen (N) content in the soil at the Yukon field site (Supplemental Table S1 in Chapter 4). Insufficient N in the soil leads to plant N-deficiency (Kant et al., 2008), and this could limit the amount of N that can be diverted towards the synthesis of N-containing compatible solutes, including proline (Stewart and Lee, 1974). For example, Yukon Thellungiella experiencing water deficits under N limitation may accumulate polyols or sugars rather than N-containing metabolites such as proline, to ensure sufficient N pools are present for the synthesis of macromolecules such as chlorophyll, nucleotides and proteins (Tattersall, 2009). It will also be important to determine the effects light and temperature have on Yukon Thellungiella's ability to accumulate proline during growth under field conditions, as these environmental conditions can be quite variable during the

day. Further work will be required to demonstrate whether glucose and sucrose accumulation trutly contributes towards stress tolerance in Yukon *Thellungiella* growing in its naturally harsh habitat. For example, a recent study revealed that these two sugars can accumulate in *Arabidopsis* in response to potassium deficiency (Armengaud et al., 2009). The authors concluded that shoot glucose and sucrose accumulation is caused by impaired sugar metabolism in roots of potassium deficient plants (Armengaud et al., 2009). Thus, it will be important to study Yukon *Thellungiella*'s response to abiotic stress under full nutrient and nutrient deficient conditions to distinguish between general stress symptoms and traits associated with stress tolerance.

One striking observation was the drastic difference in morphology exhibited by Yukon *Thellungiella* from field sites in the Yukon compared to plants grown under growth chambers. Yukon *Thellungiella* harvested from the field sites had prominent cauline leaves in lieu of larger rosette leaves typically observed in growth chamber grown plants (Guevara et al., 2009). It has been demonstrated that the investment in vegetative biomass in wild barley was plastic and sensitive across water and nutrient stress treatments (Volis et al., 2004). This plasticity enabled an enhancement in fitness as a result of early onset flowering during water deficits (Volis et al., 2004). The significance of the apparent morphological differences observed between field grown and growth chamber grown Yukon *Thellungiella* for abiotic stress tolerance is unknown. It is likely that the phenotypic plasticity exhibited by Yukon *Thellungiella* may represent an important strategy enabling this plant to thrive in a highly variable environment.

179

The validation of the importance of genes for survival under harsh environmental conditions will require the use of both forward and reverse genetic approaches to determine the effect of gene manipulation on stress tolerance. For example, a recent functional gene-mining approach where a cDNA expression library from Shandong Thellungiella was constructed and used to transform Arabidopsis, generating a transgenic seed library which was screened for salt-tolerant Arabidopsis lines (Du et al., 2008). Among the salt-tolerant lines isolated, it was conclusively demonstrated that the enhancement in tolerance to salinity for the line ST6-66 was as a result of an unknown gene (At1g13930), that at the amino acid level was 67% similar to the Arabidopsis homologue with an as of yet, unknown function (Du et al., 2008). Intriguingly, this transcript was also elevated in Yukon Thellungiella harvested from the salt flats in 2003, the year when plants experienced drought conditions and in Yukon *Thellungiella* exposed to drought treatments in growth chambers. The next task would be to test the effect overexpression of this gene has for plant abiotic stress tolerance in stress-sensitive crops such as canola in highly saline environments in the field.

The response of *Arabidopsis* and *Thellungiella* to calibrated stress treatments imposed in controlled environmental conditions has been compared (Inan et al., 2004; Taji et al., 2004; Gong et al., 2005; Kant et al., 2006), and this work has led to several hypotheses regarding the special attributes responsible for conferring *Thellungiella*'s superior ability to tolerate harsh environments. For example, *Thellungiella*'s innate ability to tolerate sub-optimal environments to a greater extent than *Arabidopsis* may be due to: **1**) novel genes (Inan et al., 2004); **2**) the expansion of gene complement in

Thellungiella through gene or partial genome duplications which may have led to the evolution of paralogous genes that encode more active forms of enzymes (Inan et al., 2004; Gong et al., 2005; Kant et al., 2006); 3) divergent promoter structures in Thellungiella compared to Arabidopsis that permit diverse patterns of gene expression giving rise to halophytic characteristics (Inan et al., 2004); 4) an altered sensitivity to external factors or internal hormonal signals (Gong et al., 2005). A comparison between Arabidopsis, Brassica and Thellungiella responses to abiotic stress should help identify traits giving rise to Thellungiella's 'extremophile'-like characteristics that distinguish it from its less tolerant close relatives. The entire genome sequence of Arabidopsis thaliana is already available and whole genome sequencing efforts are currently underway or planned for other crucifers such as Arabidopsis lyrata, Capsella rubella, Brassica rapa, and Shandong Thellungiella (Schranz et al., 2007). Thus, through comparative genomics between Arabidopsis and Thellungiella whole genome sequence, it will be possible to identify changes within the genome structure, discover novel genes, and reveal modifications in the sequence of homologous genes, as well as the identification of differences in promoter structures between these halophyte and glycophyte species.

#### CONCLUSION

The combination of transcript and metabolite profiling of Yukon *Thellungiella* harvested from its harsh habitat enabled us to identify metabolic pathways associated

with abiotic stress tolerance under field conditions. This study revealed that the enrichment in sugar levels of field-grown Yukon Thellungiella experiencing drought conditions compared to unstressed controls is brought about by the higher level of expression of genes encoding enzymes associated with carbohydrate metabolism. This was in contrast to amino acids levels which were present at significantly lower levels in leaf tissues from Yukon Thellungiella harvested from salt flats in the Yukon, compared to unstressed growth chamber grown plants. Interestingly, proline, and its precursor glutamate, did not accumulate in Yukon Thellungiella harvested from the field in either year or in plants subjected to water deficit in growth chambers raising questions regarding proline's importance for stress tolerance in Yukon Thellungiella when grown under field conditions. The altered gene expression in Yukon Thellungiella subjected to drought in the field compared to unstressed, chamber grown plants is likely regulated by both ABA and the drought-responsive transcription factor AtHB7. It will be important to manipulate the expression of AtHB7 in order to determine its importance for abiotic stress tolerance in extremophile plants such as Thellungiella grown under field conditions. This information can then be used for improving the tolerance of stress-sensitive crops plants using biotechnological approaches.

References

- Acevedo E, Fereres E, Hsiao TC, Henderson DW (1979) Diurnal growth trends, water potential, and osmotic adjustment of maize and sorghum leaves in the field. Plant Physiol 64: 476-480
- Armengaud P, Sulpice R, Miller AJ, Stitt M, Amtmann A, Gibon Y (2009) Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in *Arabidopsis* roots. Plant Physiol 150: 772-785
- Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1991) Novel carbohydrate metabolism in the resurrection plant *Craterostigma plantagineum*. Plant J 1: 355-359
- Dhanaraj AL, Alkharouf NW, Beard HS, Chouikha IB, Matthews BF, Wei H,

Arora R, Rowland LJ (2007) Major differences observed in transcript profiles of
blueberry during cold acclimation under field and cold room conditions. Planta
225: 735-751

- Du J, Huang Y-P, Xi J, Cao M-J, Ni W-S, Chen X, Zhu J-K, Oliver DJ, Xiang C-B (2008) Functional gene-mining for salt tolerance genes with the power of *Arabidopsis*. Plant J **56**: 653-664
- Gagneul D, Ainouche A, Duhaze C, Lugan R, Larher F, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae *Limonium latifolium*. Plant Physiol 144: 1598-1611

Gong QQ, Li PH, Ma SS, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile *Thellungiella halophila* in comparison with its relative *Arabidopsis thaliana*. Plant J **44:** 826-839

#### Guevara D, Akhter S, McCarry BE, Summers PS, Dudley SA, Griffith M,

Weretilnyk E A (2009a) Physiological and metabolic responses of the halophytic plant, *Thellungiella salsuginea*, to salinity,.

# Guevara D, Dedrick J, Wong CE, Li Y, Labbe A, Ping C-L, Wang Y, Golding GB, Gray G, McCarry BE, Summers PS, Griffith M, Moffatt BA, Weretilnyk EA (2009b) Transcriptomic and metabolomic analysis of Yukon *Thellungiella* plants growing under cabinet and field conditions shows overlapping and distinct responses to environmental conditions

- Hanson AD, Hitz WD (1982) Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol 33: 163-203
- Inan G, Zhang Q, Li PH, Wang ZL, Cao ZY, Zhang H, Zhang CQ, Quist TM,
  Goodwin SM, Zhu JH, Shi HH, Damsz B, Charbaji T, Gong QQ, Ma SS,
  Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM,
  Bohnert HJ, Joly RJ, Bressan RA, Zhu J-K (2004) Salt cress. A halophyte and
  cryophyte *Arabidopsis* relative model system and its applicability to molecular
  genetic analyses of growth and development of extremophiles. Plant Physiol 135:
  1718-1737
- Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, *Thellungiella halophila*, and *Arabidopsis thaliana* is

responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in *T-halophila*. Plant Cell Environ **29**: 1220-1234

- Kant S, Bi Y-M, Weretilnyk EA, Barak S, Rothstein SJ (2008) The Arabidopsis
  halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions
  by maintaining growth, nitrogen uptake, and assimilation. Plant Physiol 147:
  1168-1180
- Miyazaki S, Fredricksen M, Hollis KC, Poroyko V, Shepley D, Galbraith DW, Long SP, Bohnert HJ (2004) Transcript expression profiles of *Arabidopsis thaliana* grown under controlled conditions and open-air elevated concentrations of CO2 and of O3. Field Crops Res **90:** 47-59
- Paul MJ, Cockburn W (1989) Pinitol, a compatible solute in *Mesembryanthemum* crystallinum L. J Exp Bot 40: 1093-1098
- Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of *Arabidopsis* to a combination of drought and heat stress. Plant Physiol **134**: 1683-1696
- Schranz ME, Song B-H, Windsor AJ, Mitchell-Olds T (2007) Comparative genomics in the Brassicaceae: a family-wide perspective. Curr Opin Plant Biol 10: 168-175
- Stewart GR, Lee JA (1974) The role of proline accumulation in halophytes. Planta 120: 279-289
- **Tattersall A** (2009) The effects of nitrogen concentration on compatible solutes during salinity stress in *Thellungiella salsuginea*. MSc Thesis, McMaster University.

Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135: 1697-1709

Volis S, Verhoeven KJF., Mendlinger S, Ward D (2004) Phenotypic selection and regulation of reproduction in different environments in wild barley. J Evol Biology 17: 1121-1131

Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in *Thellungiella*, a close relative of *Arabidopsis*. Plant Physiol 140: 1437-1450

## APPENDIX

## **CIRAS-1** Equation to Correct for Leaf Area to Calculate Stomatal Conductance

### and Photosynthesis Rate Measurements of Yukon Thellungiella

PROC IMPORT OUT= WORK.photosyn DATAFILE= "C:\Users\Dave\ps\irgacom1.xls" DBMS=EXCEL97 REPLACE; GETNAMES=YES; RUN;

Proc sort data=photosyn; by date; Run;

\*----Procedures to calc PS and SC-----\*; data ps; set photosyn;

\*--Sec 4-----\*

vapor pressure at saturation(es) and in the cuvette(eo) measured in bars (may not need) {in bars} \*-----\*-

MBRa=MBR/1000; rha=rh/1000;

es=(6.13753e-3)\*(EXP((CAT\*(18.564-(CAT/254.4)))/(CAT+255.57)));

eo=(MBRa+rha);

\*\_\_\_\_\_\*

correction of co2 readings for the broadening of the bands by water vapor -assumes dry air before air is passed over leaf (MBRa is zero). {in ppm = micromol/mol} \*------\*:

cout=(CO2rf+diff);

\*\_\_\_\_\_\*

estimation of boundary layer resistance from a regression of boundary layer resistance on filter paper 'leaves' of differing sizes. The regression may be linear or quadratic. Change to fit your leaves {in m2 s/mol?} rb=0.20-> set on CIRAS IRGA OLD rb~0.36=1/(5.94871+(-2.32984\*LAR)+(0.508707\*LAR\*LAR)+(-).037207\*LAR\*LAR\*LAR)) if lfincuv then LAR=lfincuv: rb=((0.102\*lfincuv)+0.218);625 \*\_\_\_\_\_\* {GOOD} conversion of mass flow rate (mls/min) to molar flow rate per unit leaf area (mols/m2/s) (manual lacks 1/60 minute/second conversion)  $\{in mols/m2/s\}$ \*\_\_\_\_\_\* W = (FLOW/1000) \* (1/22.41) \* (273/293) \* (1/60) \* (1/1.013) \* (10000/lfincuv);\*\_\_\_\_\_\* {GOOD} calculation of transpiration rate (Ea) Manual uses mmol/m2/s \*\_\_\_\_\_\*:  $Ea=(W^{(eo-MBRa)}/(1.013-eo))^{1000};$ \*\_\_\_\_\_\* {GOOD} calculation of leaf temperature from energy balance equation PARM is micromol/m2/s. Manual uses W/m2 -> divide PAR by 1.895? \*\_\_\_\_\_\* deltan=((PARM\*0.16)-((Ea/1000)\*(45064.3-(CAT\*42.9))));  $deltad = (((0.93 \times 28.97 \times 1.012)/rb) + (4.639 + (0.0583 \times CAT)));$ delta=deltan/deltad: lftemp=CAT+delta; \*--Sec 4-----\* calculation of leaf vapor pressure from leaf temp {in bars} \*\_\_\_\_\_\* el=6.13753e-3\*EXP((lftemp\*(18.564-(lftemp/254.4)))/(lftemp+255.57));

\*\_\_\_\_\_\* calculation of leaf stomatal conductance Manual uses mmol/m2/s \*\_\_\_\_\_\*

Ga=(1/(((el-eo)/((Ea/1000)\*1.013))-rb))\*1000;

\*\_\_\_\_\_\*

calculation of photosynthetic rate Manual uses micromol/m2/s \*-----\*;

Aa=-(W\*(cout-CO2rf)+(cout\*(Ea/1000)));

proc print; var date TLTL lftemp EVAP Ea GSGS Ga PNN Aa; run;