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The electron density approach in conjunctior with
the Hellmann-Feynman theorem is used for a systematic analysis
of binding characteristics of the two isoelectron:. olecular
groups: Nj, CO, BF anda LiF, BeO. Electron density :istri-
butions, forces and field gradients, correspondinc . static
properties of electron densities, have been calculiz ed Izom
Hartree-Fock wavefunctions for these molecules. TFouce
constants have been computed from polynomia. 1t 0 the
forces. Corre.ation of the forces and field grad.ents cr
made with the static electron distributions. Correlatiocn:
of the force constants are made with dynamic a.stributicns

called relaxation densities.
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ABSTRACT

The electron density approach in conjunction with
the Hellmann-Feynman theorem is.used for a systematic
analysis of binding characteristics of the two isoelectronic
molecular series: N3, CO, BF and LiF, BeO. Electron density
distributions, forces and field gradients corresponding to
static properties of electron densities, have been calculated
from Hartree-Fock wavefunctions (obtained from the work of
other authors) for these molecules. Correlation of these
static properties with binding characteristics are presented.
Covalent and ionic characteristics are made evident by an
analysis of the density distributions, density difference
maps obtained by subtracting atomic from molecular
distributions, and the forces exerted on nuclei by these
distributions. A discussion of the field gradients, as
related to quadrupole polarizations of the electron densities,
is presented and the relevance of these polarizations to the
interpretation of nuclear, quadrupole coupling constants is
indicated.

Dynamic properties, as reflected by the magnitude-
of force constants, are analyzed in terms of’functionalé
of the one-electron density. Force constant expreséions

are derived from the Hellmann-Feynman theorem. Any relation
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of force constants to field gradients is shown to be not

unique as a result of cancellation of static and dynamic
electronic contributions to the total force constant. The
total electronic contribution is shown to arise from a
relaxation of density after a displacement of a certain
nucleus. Relaxation of density with respect to one nucleus

but which remains localized on some other nucleus in a molecule
is shown to be equivalent to a field gradient. Thus, such
density is separated from other density and its contribution

to the force constant is treated as a field gradient. All
contributions are computed from polynomial fits of the
corresponding forces calculated at a number of internuclear
distances. Relaxation density maps for the remaining atomic
and overlap densities centered on.a specific nucleus are
presented. These maps are calculated as the difference between
densities of the extended and equilibrium configurations of a
molecule. The relaxation'deﬁsities are correlated to the
magnitude of the corresponding electronic force constant
components. Thus, for the first tiﬁe, there is demonstrated
the concrete relation between covalent and ionic characteristics
of electron densities in molecules and their dynamic properties

which result in the magnitude of force constants.
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'I. GENERAL INTRODUCTION

"Si les plats que je vous offre sont mal préparés,
c'est moin la faute de mon cuisinier que celle
de la 'chimie' qui est encore dans l'enfance."

Anatole France

1.1 The Importance of the Charge Density

Apart from the theory of the most simple phenomena -
chemical binding in small molecules, vibration and rotation
of the molecule,vspin and symmetry properties, - the main
body of current quantum chemistry consists in model building
and semiempirical methods. The models of quantum chemistry
are by and large a descriptive way to summarize empirical
results, whereas the semiempirical quantum chemistry does
not really permit the possibility of invalidation of models.
Furthermore, operationally ill-defined or non-observable
parameters have played a large role in empirical chemistry.
As a result, the meaning and numerical values of such con-
cepts as orbital, resonance structure, electronegativity,
hybridization , ionic character, etc., are in continuous
dispute.

Beyond these objections is a fundamental objection,
for chemical purpbses, to the usual quantum theoretical

form of the many electron wavefunction, which is defined



in a 3N-dimensional coordinate space for an N-electron
system. But most of these coordinates are non-observable
inasmuch as empirical-‘chemical structures are 3-dimensional
entities in a classical space. Empirical chemistry has
emphasized for a loﬁg time the outstanding role of this
3-dimensional electron charge density and its systematic

use in a rigorous quantum mechanical theory is of invaluable
impditance in the e#planation of chemical bonds. There

are but a few rigorous theorems concerning such a 3-

=

dimensional charge densi*v ., all o them of great importance.

The fi...: “=necrem 2nables us to ¢ ve the electronic
density fror - ~igorous caantum mecnenic: ~atment,
i.e. sclat. 7 ¢che Schroedinge: equeat. o nvolves
a reduc : 7= the number of coo-3dinates .equ- the
wavefur: _on via the agency of the Dirac(;? natrix
methoad Thus, o e can rigorously replace the ¢ - lec-
tronic wavefunct on of a system by a density func-.:. of
WO positions ii. space - 6 space coordinates - called the
censity matr -~ second order density matrix, to conform
with tke <~ . _ature due to Coleman(z). In practice, the
many e. &z, 2. vefunction is obt.ine? L. an antisymmetric
produci .. i tectron orbital functions ducing this
total 1u.. v the density formalism, t.ae ridual
orbitals y tance becomes s :hmerged becau - density

atrix ...variant to an orthogonal linear t.  .ormation



among the orbitals. It is, therefore, invariant to changes
in the one-electron potential which produces a new set of
orbitals expressible in terms of the 0ld ones by such a
transformation or "hybridization". Dirac showed that all

the information that we can get about the individual orbitals
.can be summed up by giving the density matrix to which they
lead. This density matrix should therefore describe all
that”we know about the electrons in the system. Lﬁwdin(B)
has generalized this matrix to a transition density matrix,
also in 6-coordinates, between two electronic states. The
3-space transition dénsity or first-order density has been

(4)

formulated explicitly by Longuet-Higgins , suggesting a

useful concept for summarizing and systematizing spectro-

scopic data on atomic and molecularvassembliea In the

case of atomic and molecular systems with rixec »vc.ei, the
diagonal elements of the first-order density matri. .which

is really the kernel of an integral operator(s)) characterizes

the electron.z charge distribution, and the full f.. - .-

order mairix enables one to calculate the exper 27> 7 value
of any one-particle operator. For an electronic “= " tonian
of a many-body sys=sm one needs the second-order ce o tx

trix in general for energy expectation values, bu® oHné
a calculats =~e total electronic energy of :n eigeista =2
from an exa i xaowledge of the first-order 7. :.t: "enrix

alone, 1. "o om the virial theorem E = -<i ; .inetic



energy T can be evaluated as a one-electron operator. At
present, there is no Way of finding the exact density matrix
without a knowledge of the exact wavefunction, but it has
nevertheless been of some interest to study the conditions

a physically realizable density matrix must satisfy in order
to be obtainable from an antisymmetric (symmetric) wave-
function. This is known as the N-representability con-
ditién(z) for the density matrix. The importance of this
is that one could replace the energy-variation method for
the wavefunction by an energy—&ariation method for the
density matrix. The N-body problem could be then directly
reduced to a 2-body problem, or even a l-body problem via
the virial theorem. The conditions for the first-order
matrix, which gives the electron density, has been recently

(6)

investigated by Smith It is rigorously true that the
3-space electron density is fhe value of the 6-space density
function (pair density) on the diagonal of the matri:. It

is also almost egaal to the sum of the orbital derns: ties in

a system (Hartree-Fock approximation), so that the individual
orbital densities do not appear in the resulc, emphasizing
the fa.¢ thac the individual orbitals have 10 real physical

(7)

significance. Chirgwin has even pointed out that the
orbitals need not be individually time-indecvendent in oraer

tc give a stationary total state of the system. Ir. short,

{r

17 is alway: possible to represent the dynamical state of



(8)

system by its density operator , whether that state be
completely or incompletely known. The specification of
this operator is sufficient to determine all physically
measurable quantities which the gquantum theory is in a
position to furnish.

Secondly, there is the Hellmann-Feynman theorem(g)
which considers the force field produced by the 3-space
density p which Feynman calls "an electron cloud prevented
from collapsing by obeying the Schroedinger equation" -

It is the laws of guantum mechanics which are sufficient

to make matter stable. This has been shown guite generally

by Dyson(lo)—

Thus in a quantum mechanical syster, the
forces on any nucleus, considered fixed, is just tue
classical electrostatic interaction exerted on twie awcleus
in question by the other nuclei and by the charge ceisity
distribution of all electrons. This theorem was firsc

(11) but Berlin(lz)

challenged by Coulson and Bell proved
the objection to be based upon a misunderstanding anu gave
further proofs of the theorem and a clear interpret- .iow
closely related to the earlier and more empiricai e.ect:
static approach of Fajans(lB). The forces acting on a
nucleus of a molecule as a function of the electron density
provide therefore a basis for the discussion of chemical
»inding in classical terms. This approach has been used in

=« series of papers by Bader et a1(t4)



Thirdly, there is a theorem due to Kato(ls),

giving the cusp condition of the electron density of a

Born - Oppenheimer molecule. This is related to the

physical importance of the essential self-adjointness of

the Hamiltonian in an N-body Schroedinger equation. These
fundamental results of Kato in this area have essentially
established existence of solutions for a large class of
Hamiitonians in atomic (molecular) and nuclear physics.

The 'importance of this theorem in theories based on molecular
charge densities are frequently overlooked. For instance,
the consequence of the coalescence of two cusps as the
internuclear distance approaches zero in the united atom
treatment of derivatives of electronic energias has led to
(16)

inconsistencies in different authors' works If cusp

conditions are not satisfied, one may have to resur in-

(17) in the united atom

finite series as done by Levine
treatment of H2+. Similarly, the average energy approxi-
mation in the perturbation‘calculation of force constants
leads to physically inadmissible wavefunctions, due to the
stronc singularity of the force operator, resulting in a

quadratically non-integrable perturbed function. This type

"of divergence also occurs in perturbation calculations of

(19) (20)

gspin-spin coupling constants and correlation energies #
for which the energy is not an analytic function, and the

irportance of logarithmic terms in the wavefunction has been



(21)

discussed by Pekeris . These problems are similar to
the divergences which occur in field theories as discussed

recently by Dirac(zz). They can all be related to a fun-

(23)

damental theorem of functions which states that the
behaviour of a function in an analytic domain is determined
by its singularities outside that domain. Whenever a
Hamiltonian has singularities, for instance, whenever the
eleéfron—electron and electron-nuclear distances vanish,
the theorem gives rise to Kato's results, namely that the
cusp conditions at these Coulomb singularities defines the
form of the wavefunction and hence the electron density(24).
Finally, there is a recent théorem due tc Hohenberg

and Kohn(zs)

Using the variational principle, the above
authors have shown that any property of a system in an
arbitrary potential is a unique functional o the 2-dimensional
charge density p of the ground state. The most transparent
example of a functional is the number of particles in a

system which is itself a simple functional of p - Examples

of functional approaches are the Thomas-Fermi theory and its

’ 2¢)
reflnements( :

, which departs from the usual orbital approxi-
mation in that the electron density p plays a centrali role

and is assumed to behave more like a classical fluid. These
theories however, because they neglect the cusp condlticns
.2manc=C by Kato's theorem will not reproduce Friedel

(27)

oscil.ations (set up by a localized perturbation such as


http:2man6..2d

an impurity in an electron gas) or the radial oscillations
(i;e. oscillations in the radial distribution function) of
the electronic density in an atom which reflect the
electronic shell sfructure. These are manifestations of
quantum effects and therefore must be incorporated in any
theory involving electron density. The major part of the
complexities of the many-electron problem, as always, is
assoéiated with the determination of these functionals,
valid for all molecules, expressing the expecfation value
of any observable in terms of the electronic charge density.

Nevertheless, it appears that the density and certain
of its spatial properties, such as shéll structure, cusp
conditions, may be quantum mechanical counterparts of the
so-called classical constants of motion in a generalized
density theory. Stimulated by these possibilities, there
has been an attempt by Prima§(28) to approach quantum
chemistry using the formalism of density functional
representation, wherein a canonical transformation of the
quantum mechanical equations of motion raises the charge
density into the fundamental role ofa canonical variable.
This is really an attempt at axiomatization, which is the
most effective way of systematizing and therefore elucidating
a body of ideas. However limited in scope, axiomatizaticn
is a stage in maturation(zg). This axiomatization stems

from a philosophy based on the observations that only



quantities actually accessible to precision measurements

afe related to the observables of the charge density, the
pair density, the current density and the spin. For pro-
blems of chemical interest, it is the ground state charge
density of any molecule which contains all the information
necessary for discussions on the basis of quantum mechanics.
This strongly suggests that a systematic analysis of
elec£ronic distributions is a powerful tool for gaining
insight into numerous bond situations and deserves wider
use and development. It will be one of the objectives of

this work to pursue such a line.

1.2 Approximations

To make practical use of quantum theory, approximations
are still necessary, because so far there is, as mentioned
before, no direct differgntial equation nor a variational
equation for either the pair density or the charge density.
In the final analysis, one must always have recourse to
orbital models, a feature of the independent-particle model.
Although orbitals have no substantial existence, and one can
argue that they are merely mathematical conveniences, they
have been and still are useful as conceptual units whose
characteristics are worth examining. One must hope that at
least they represent a "reculer pour mieux sauter” until

more sophisticated models such as those based on geminals(30)
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have been demonstrated to be superior in scope and tracta-
bility. The importance of the independent particle model
is that it provides separable physical properties so that
correlations with chemical concepts may be made. A
two-electron wavefunction is not separable due to the anti-
symmetry requirement. We would get much lucidity if we
cou;d avoid such nonseparable quantities completely. There
are several possib ilities to avoid nonseparable quantities;
the use of orbitals, pair functions, etc. which give
separable Hamiltonians. In the case of orbitals, we obtain
the independent particle model. As can best be seen from

(31)

one-particle Green's function theory , a properly inde-
pendent particle model may be well represented witn strong
interactions between bare particles. Due to the incliusion

of a self-consistent field, the particles get "dressed" and
in many cases the interaction between the dressed particles
(quasi particles) is drastically reduced so that an inde-
pendent quasi-particle model becomes a good approximation.

An extension of the Bohr atomic theory to atoms and molecules
assigns these particles to their proper orbitals, which are
eigenfunctions of the separable Hamiltonian. For molecules,
the molecular orbital has the advantage of being conceptually
~ased on atomic theory, due to a correlation origina.ly used

(32)

by Hund and Mulliken with the united atom. The relation-

ship of this theory to Hartree's atomic calculations was



1l

(33)

pointed out by Lennard-Jones who first derived the
Hartree-Fock equations. The resulting orbitals are eigen-
functions of one-electron operators, since the Hartree-Fock
(H.F.) method makes the Hamiltonian separable into

effective one-electron Hamiltonians (see Appendix 1l). The
fact that the most important perturbation theory corrections
to the solution of this separable zetroth-order Hamiltonian
can Ee written in terms of solutions of 2-particle equations
has been recently emphasized by Sinanoglﬁ(34). Valence bond

functions do not have this advantage since the solution of

the first order perturbation theory is not expressible in

(35)

terms of pair correlations
The Hartree-Fock equations are a result of the
criteria of the best energy approximation. Orbitals can
also be determined by the criteria of the best approximation
of the wavefunction .and the criteria of the disappearance of

one-particle clusters(36). The three possibilities have

been discussed by Kutzelnigg and Smith(37).

The energy
criterion has the essential advantage that it leads directly
to the powerful numerical methods for the determination of
the wavefunction. Furthermore, in the general Ravleigh-
Schroedinger perturbation theory, when the unperturbed Hamil-
tonian and the perturbation are all Hermitian, knowledge of

the wavefunction corrections to order n provides the energy

corrections to order (2n+l) and not to the apparent order (n+l),
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so that one has é relative measure of the sensitivity of
the wavefunction and the energy(38). The third criterion,
that there are no one-particle clusters, i.e. no cor-
rections from single excitations to all orders, is for

many theoretical questions very convenient. This criterion
is a necessary condition for the optimal least square
approximation of the wavefunction(39). This will not
neceésarily imply a good approximation of all expectation
values. Nevertheless, the determinant built from such
orbitals is characterized by its maximum overlap with the

(40)

true wavefunction These orbitals are called Brueckner

(4l have shown, for any

orbitals. As Sinanoglu and Tuan
closed-shell systems the difference between Hartree-Fock

and Brueckner orbitals is expected to be very small. For

a closed-shell system, thefe is a unique Hartree-Fock
method: that based on the single Slater determinant. All
effects not included in the independent particle model may
be referred to as correlation effects. For closed shells,
the correlétion is mostly of the short-range type; the long-
range effects of the Coulomb repulsions are taken care of

in the Hartree-Fock scheme so that residual correlation
effects are not expected to affect H.F. orbi:tals much. As

(41)

shown by Sinanoglu , many electron correlations are guite
animportant for ciosed-shell atoms and molecules. First

order corrections to the energy contain no single excitations
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(42)

due to Brillouins's theorem but appear only in fourth

order. First order wavefunctions contain no single
excitations(4l). The result is that the first-order
corrections to the electron density also vanish as originally

(43)

demonstrated by M@gller and Plesset This result holds

-for the expectation value of any general one-electron

(44) (45)

operator, as proved by Cohen and Dalgarno and others
The éingle excitations vanish for Brueckner orbitals and not
for H.F. orbitais. This difference in emphasis is due to

the peculiarity of the nuclear potential. Nevertheless, the
smallness of the total contribution from single excited con-
figurations to orbital corrections aléng with the unimpor-
tance of many-electron correlations means that H.F. orbitals
form an excellent basis for gquantum chemistry. Even though
correlations change the energy significantly, their effects
on orbitals is slight. The Brueckner and H.F. orbitals are
nearly identical. Therefore, all quantitative considerations
on the shapes of molecules, electron densities, etc., can be
based safely on H.F. orbitals.

Molecular orbitals (MO's) ,expressed as linear combi-
nations of atomic orbitals (LCAO), are the basis of a large
body of theoretical molecular structgral discussion,
including predictions, correlations and interpretations.

(46)

mations themselves within a definite theoretical frame-
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work, the appropriate framework beiné the H.F. theory,
spurred by the tractability inherent in Roothan's(47)
self-consistent field (SCF) methods. There has been a
very marked improvement in calculated binding energies
and other molecular properties resulting from allowing
for polarizations and disﬁortions of atomic orbitals in

(48)tends

the molecule. Experience with H.F. calculations
to éﬁggest that for proper discussion of chemical binding,

one must include polarization valence shell functions.

These polarization functions tend to compensate for the

usual lack of adequate representation of transferrence

of electrons in the mplecule. The coﬁplexity of the

present functions seriously handicap a discussion of the
wavefunction itself in terms of hybridization, polarities,
orbital electronegativities, ionic character, etc. These

are all "hangovers" of the atoms in molecules method(49).
Although one may associate a particular atom with a

particular nucleus in a molecule, the conditions of an

atom in a particular molecular environment are then completely
specified when the electric and magnetic potentials due to

all other molecular charges, together with their successive
derivatives, are given in the immediate vicinity of the

atomic nucleus in question. This is the approach we adhere

to in this work. It is much more difficult to generalize

the descriptive terms often used by chemists by means of which
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the properties of atoms in molecules may be defined. The
difficulty becomes then that every molecule might need be
a special case, an observation put forward by Evans(so) as
early as 1951.

The general picture that emerges from the H.F:
theory and computations retains much of the simplicity of
the priginal "Aufbauprinzip" as used by Hund and Mulliken
to identify and classify electronic states in molecules.
Certain details of the theory have been brought into
sharper focus as a consequence of the discovery that cor-
relation effects in molecular ground states are rather
insignificant for one-electron properties. From this fact
and from the theorems of Mg@gller and Plesset, etc., it
follows that electrostatic properties of a molecule relate
only to the H.F. approximation(SI), and hence that classical
electrostatic molecular models can have a close empirical
relationship only with an H.F. calculation. A separate
empirical theory is in general needed to describe sub-
stantial contributions to dissociative energies due to cor-
relation energies.

The fact that the first-order correction to the
density and one-electron operators vanish does not mean
the function satisfying the best energy criterion gives the

best possible density and best expectation values for one-

electron operators as pointed out previously. In connection



with the density matrix approach, an alternative set of
orbitals arises which does give the best possible density.
This is the set of natural spin orbitals which is defined
as that orthogonal basis in terms of which the first order
density matrix is diagonal. From the point of view of
wavefunction analysis, these are extremely useful since
they are invariants rather than artifacts of a particular
basis set choice, plus as being known to optimize con-
vergence properties of configuration interaction wave-
functions(sz). On the other hand, one does not have
tractable one-electron equations for the determination of
the natural orbitals although éttempts in this direction

(53) for LiH and HF.

have been made by Bender and Davidson
The natural spin orbitals as well as the best overlap
(Brueckner) orbitals can be obtained as solutions of
coupled integrodiffereﬁtiai equations which differ from

the H.F. equations by some additional correlation potential.
Because of this, the natural spin orbitals seem to give
better approximations to expectation values of one-electron

operators than the H.F. orbitals(39).

On the other hand,
the natural spin orbitals or "best density" wavefunctions,
as they are sometimes called, do not satisfy the virial

theorem(54)

, whereas a "best energy" function (H.F. scheme)
does. Furthermore, because of computational difficulties,

the natural orbitals are usually obtained from the best
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energy MO's, after which one can "boil down" the most
significant features contained in a wavefunction. At
this writing, it is evident that these MO's are the most
useful from the point of view of calculation and inter-
pretation as discussed above. This present work will
rely on accurate Hartree-Fock wavefunctions obtained from
Root?an's S.C.F. methods which have been amplified and
improved in recent years.

1,3 Motivation and Plan

Energy results have relevancy to concepts of
chemical bonding. However, they represent only one per-
spective. The numerous expectation values and ﬁolecular
properties, as well as the explicit charge contours contain
much more revealing information regarding the concept of
bonding. An examination of the details of the disposition
of the electrons in the first-row diatomics and the first-
row hydrides with an accompanying interpretive analysis
based on the HellmannsFeynman forces operative in such a
series of molecules and others has been recently given by

Bader et al(ss). With the appearance of another critical

(56), the

appraisal of such an approach by Ransil and Sinai
present dissertation is in this respect a continuation and
extension of these previous investigations.

To bring to focus the importance of electron
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disposition, consider the correlation energy, a concept
which has no real physical meaning but only represents a
deficiency in our theoretical methods. It is the spatial
correlation of électrons in atoms and molecules, as pointed

(57)

out by Lennard-Jones and Pople , which has physical

meaning. As emphasized recently by Cade and Huo(58),

s 1 =
is iny if accurate charge densities are compared with
H.F. densities in a few test cases can one correctly
connect the relative dispositions of electrons in terms
of correlation energy results. This relationship cannot
be definitely established otherwise..

The systems analyzéd in the present wofk comprise

two isoelectronic series: a) N CO, BF; b) LiF, BeO.

27
These cover a wide range of bonding, from triple to single
bonding, from ionic to covalent. Electronic charge distri-
butions can be obtained from accurate SCF wavefunctions
obtained from Hartree—Fock_calculations using extended
basis sets. The functioné are for N2 from Cade et al's

. (59) (60)

wor , for CO and BF from Huo and also McLean and

(61), for LiF and BeO from these last authors also.

Yoshimine
An effort is made to relate molecular properties to the
charge disfributions of these. The importance of the
charge density and the accuracy of this density and other

one-electron operators obtained from H.F. calculations

permit an important advantage of this approach, a point we



19

have often stressed in this introduction.

Many properties of molecules yield information
about p, the electron density, directly. 1In particular,
the main part of this thesis is an attempt at relating
the magnitude of force constants in diatomic molecules
to the nature and properties of molecular charge distri-
butions. The force constants of molecules are generally
dete£mined from infrared or Raman spectroscopy. In terms
of the electron density, they are given by tﬁe following

expression:

By _ "2 _
k= |p 0 “Ve-n drt + oVe-n QQ dr + 9 “Vn-n (1.1)
" 3R? 3R 3R 9R?2

The first term is an electronic field gradient term, the
classical analogue of the electronic force constant for a
nuclear charge moving in a spatic density p. The last
term is the nuclear field gradient. The second term
measures the redistribution of charge when the molecule is
stretched or contracted.

There is a direct physicgl connection between the
spatial distribution of the electronic charge for the
equilibrium configuration and the magnitude of the force
constant, which determines the forces acting on the nuclei
when they are displaced from their equilibrium. To what

fcatures of the electronic charge density are molecular
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vibrations most sensitive will be the main objective of
the present work. Whether the charge distribution is
delbcalized to an equal extent over the nuclei in a molecule
or is localized in the region of a single nucleus, whether
the distribution is diffuse or contracted, and whether it
follows rigidly the nuclear displacement or relaxes in
such a manner as to oppose or facilitate the nuclear motion,
are‘the properties of primary interest in the determination
of the vibrational constant.

A discussion of molecular binding is first presented
which is based on a compa;ison of the charge distribution
and the forces which it exerts on the nuclei for the molecule
with that found for the separated ‘atoms. The force constant
has its origin in the same distortions which give :ise to
the electrpnic force. Thus, the interpretation of the
force constant necessarily follows a discussion of the forces
which are responsible“for the chemiéal binding. The Hellmann-
Feynmann approach is central in this thesis. The force
expression which arises from it permits a classical inter-
pretation of binding related to the one-electron density.
The expression (1.1) for the force constant also results
from this approach. This permits one to clearly isolate
the different contributions - orbital, atomic, overlap and

shielding - to the force constant. This has the advantage

over the energy method where the sum of the orbital energies
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is not equal to the total H.F. energy and hence the use of
the variation of orbital energies (or ionization potentials
from Koopman's theorem) is not justifiable(67). In cor-
relating Walsh diagrams, the adequacy of the variation of
these has been demonstrated recently.by Peyerimhoff et al(69)
as one only has to consider angular variations.
Hellmann-Feynmann expressions are functionals of the
one-electron density. The density distributions, once cal-
culated from the appropriate wavefunctions, may then be
compared in terms of their relative tightness of binding,
a property which determines molecular.size and which ulti-
mately must .be related to the chemical reactivity of the
molecule. The over-all charge distribution may be analyzed
in terms of the total amount of charge which is found in
different regions of space. Related to these total density
maps are the density difference maps, which are obtained
by subtracting from the total molecular density, the density
distributions of the constituent atoms. Such maps can
demonstrate redistribution of charge and serve as the basis
for definitions of distinct bond types, e.g. ionic or covalent
character. The physical picture provided by the one-electron
density distribution may be carried.even further through
the use of the Hellman-Feynman theorem, which, as discussed
Lefore, relates in a rigorous mannér the forces acting on the

riuclei in a molecule to the one-electron density function.



22

Because of the essentially classical nature of the connection
between the forces and the electronic charge distfibution,

a study of the forces can provide a physical basis for the
interpretation of molécular binding. This then will be the
prelude to the discussion of force constants.

In the expression (1.1l) for the force constant, we have
indicated the presence of two terms called field gradients.
The sum of these may be determined in some cases from the
quadrupole coupling constant of nuclei with quadrupole

(62). The quadrupole coupling constants.are determined

moments
by the components of the electric field gradient at the

'nucleus and give valuable insight into the asymmetry of the
charge density distribution in the vicinity of the nucleus.

Townes and Dailey(63)

have laid the ground work for the
theoretical understanding of these quantities but no adequate
theory is yet available and much of what is written about
ionic character, hybridization, etc., must be viewed skepti-
cally(64). The Townes and Dailey théory is applicable to
covalent molecules only. Theories first developed by

Sternheimer(65)

on the antishielding of the nuclear gquadru-
~pole moment by the electron cores of free ions are frequently
used for ionic cases. These two "prescriptions" will not
often explain rather subtle variations and intermediate

bonding cases. For instance, an accurate appraisal of cova-

lency effects on the quadrupole interaction must involve a
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full molecular orbital treatment as Bersohn and Shulman(65)

have recently pointed out. Refined calculationé are
needed to verify other poinﬁs. This has been attempted by
calculating field gradients from the wavefunctions for the
aforementioned molecules, and analyzing the results to
bring out the most important features of quadrupole coupling
constants. The field gradient discussion is another pre-
lude to the force constant dissertation, as they provide
a link between static effects and the actual constant. 1In
the discussion of the force constants, the exact connection
and relevance of the field gradient to the constant itself
will be further analyzed.

In concluding this introduction, we wish to remark on

(70)

a point stressed by Slater as early as 1933, namely that

. the study gf molecular structure has been too much based on
.particular.models rather than on general principles. There-
fore, it is not surprising if certain concepts tend to
disappear with more detailed functions. An exact wavefunction
provides a tool for obtaining exact expectation values.

These can be obtained, alternatively, from experimental data.
Of importance is the fact that neither alone constitute an
understanding of the electronic structure of molecules.

Definitions must have meaning within a framework, providing

gquantitative data, obtained from either experiment or exact
(71)

calculation, of a qualitative nature The importance of
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symbolism in understanding the chemical bond should not be
minimized. Chemistry, like atomic physics with its atomic
orbits, needs not only methods of exact calculation of wave-
(72)

functions, but also a justified symbolic calculus

Of interest to chemistry primarily are space distributions

and energy changes. The density matrix and Hellmann-Feynman

theorems provide scope for definitions and data which are

used and analyzed in order_ to obtain some correlation between

molecular structures, especially various types of "bonding".
It is with these views in mind that this dissertation pro-
poses to be a contribution in that direction.

.1.4 Nz, CO, BF

These three molecules make up a l4-electron iso-
electronic system. Furthermore, CO is an important hetero-
nuclear molecule because of the abundance of experimental
data on it. Both CO and N, have been of some historical

(73)

importance. In 1926, Birge was the first to point out
the energy levels of CO and N2 presented a remarkable
analogy to those of Mg. However, both molecules showed

no marked analogy evident in chemical behaviour to Mg.

N2 is inert just like argon. This was attributed by Langmuir

to the fact that the supposed 2 valence electrons were

3 ({
imprisoned in an octet or L shell. It was Mulliken‘32) in
1928 who showed that the lowest 21 state of CO+ was inverted;

unlike the %P state of its atomic analogue, Na, but more

(74)



Table 1.1

Molecular Data 2

Molecule Wavefunction Total Energy De Re ko
(Hartrees) (eV) (Bohrs) (mdyn/g)

N H.F(>%) 108.9928 5.19 2.013 30.73

2 . . - - . - -

Exptl. -109.586 9.902 2.068 22,91

co m.rlo0) ~112.7908 7.97 2.081 24.36

Exptl. -113.377 11.24 2,132 19.02
BF H.FSGl) -124.1675 6.22 2.354 9.652
Exptl. -124.777 8.58 2.391 8.080

BeO g.r(0L) - 89.4542 4.14 2.443 10.14
Exptl. - 89.962 6.66 2.515 7.519
LiF m.p{0L) ~106.9918 4.08 2.9377 2.818
Exptl. ~107 .502 5.929 2.9554 2.569

a) Rg(H.F.) and kp(H.F.) are from polynomial fits of the energy curve.

g¢c
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like a 2P of a halogen. The conclusion was, therefore,

tﬁat the ﬁolecule was missing an electron of prw character.
These suggested analoqies between atomic and molecular
spectra showed the way to specify a definite orbit for
each electron in the molecule. 1In the case of N2, its
ﬁaman spectrum led to the first determination of its moment
of inertia. The intenéity alternation in the rotational
lines of N2 showed that thevN nucleus obeys Bose statistics,

(75) suggested could

a result which Heitler and Herzberg
not be reconciled with the presencé of electrons in the
nucleus, the theory prevalent at tha£ time.

In ‘molecular orbital notation, all three molecules
have the ground state electronic configuration, lo220230?2
4021w*502. The N, molecule is further designated by the
inversion symmetry present so that its configuration can
also be written log210u220g22qu21ﬂu“30g2. Of these molecules
N2 is the most inert, BF the most reactive. In Table (1.1)
are listed some of the properties of these, both experimental
and calculated with the Hartree-Fock functions indicated
by the references. 1In Fig.(l.1l), the change in orbital
. ordering across the series is demonstrated for the three
highest orbitals in the series. The 40 orbital is usually

designated asa "lone pair" situated on the heavier nucleus

and thus increases in energy as the nuclear charge decreases
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when going across the series from BF to N The 50 orbital

9
is the "lone pair" on the lightest atom and its energy decreases
as one goes across from BF to N2 due to increasing nuclear
charge. The 1lm orbital tends to become localized primarily

on the heavier atom and therefore behaves somewhat like the

40 orbital. It is not easy to rationalize many of the
diffgrences between these molecules from an observation of

these energy levels. It is known experimentally(76)

that
the loss of an electron to form CO' and BF " leads to a
decreased bond length and an increased vibrational frequency,
whereas N2 offers the reverse case, fqr the first ioniéation
of these systems. The ionized electron is known to be from
the 50 orbital (lZ+ - 2Z+ transition)(z7)

The central features of the empirical molecular
orbital theory are the correlation diagrams and the related
concepts of bonding and antibonding orbitals. The dis-
tinction of bonding and antibonding electrons is based on
the criterion whether the energy level of a given electron is
lowered or raised respectively, in the transition from

(78)

separated atoms to the molecule . Symmetry changes also

enter the evaluation of this distinction. In N for

2/
example, the 30g orbital would be classified as weakly
bonding because of its incipient promotion to a 3s orbital

in the united atom. One would infer that since for CO and

BF the Dond length decreased and the force constant increased
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upon loss of a 50 electron, that MO is antibonding
whereas in N, it is bonding; From energetics alone, because
of its lower energy, one would predict that in N2 the
orbital is bonding and that in CO.and BF, the non-bonding
situation is approached. These orbital characteristics
"will be analyzed via a force analysis in a more illuminating
way, as it is the actual forces on the nucleiland their
changes upon ionization which cause structure changes.
Further insight into the varying characteristics of these
molecules will be "distilled" from density and density
difference maps w hich represent net effects, rather than
orbital contributions. The force constants will also be
analyzed as these represent the changes in forces in the
vibrating molecule.
1.5 LiF, BeO

These two molecules are the first member of a
l2-electron isoelectronic series, the others being BN and C2,
which are all not too well understood. LiF has always been
of great interest as it appears to be the prototype of an
ionic molecule. BeO has always been a very perplexing case.
Experimental evidence pointing to a lZ+ has never been com-
pelling. By the Wigner-Witmer correlation rules, the lZ+
state cannot dissociate into ground state atoms, i.e.
Bdls),d3P). Since it is unusual for the ground state to

dissociate into excited atoms, there always remained the
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possibility that the true ground state was an unobserved

31 or 3Z+ level. Only recent open-shell MO calculations(79)

for these states have indeed established the 13% to be the

lowest state. For this state, previous MO calculations(so)
by Yoshimine have shown that the highest doubly occupied
o-orbital (40) changes character in the vicinity of Re from
mostly O basis orbitals to mostly Be basis orBitals. Since
the wavefunction does not change symmetry, this change might
be described as a virtual cross-over of molecular configurations.
As this changes the molecular structure from what is usually
thought to be BeT207? to BeO, there is an abrupt change of
the dipole moment function u(R) with a maximum near Re
(slightly greater than Re). There have been several dis-
cussions of a dipole moment function for diatomic molecules(8l).
The simplest function‘should go to zero as R + 0 and as

R + » (united and separated atoms) and reach a maximum at

some intermediate value of R. For an.ionic molecule, a model

(82). As the

of two polarizable ions ié generally used
distance between the two ions increases, their polarization
decreases. Both the increased separation of the ions and
their reduced polarizations increase the dipole moment. Thus,
the ionic model predicts a large positive slope for the u(R)

curve. For LiF, the equilibrium distance falls on the rising

zide of u(R) so that its dipole moment function is in agreement



Table 1.2

Orbital Energies

Molecule Orbitals
4 1w
LiF -0.505 -0.479
BeO -0.461 ~0.389
- 40

Hartrees

- 50
- «60
- 070
- .80 q%
§
-+90 + '

BF co N

Fig.(1.1l) Orbital Energies

30
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with the ionic model. Yoshimine's calculations for BeO
predict a dipole moment of 7.3 D, whereas for an undis-
torted Be+O— system a% the same R, this is 6.2 D. A
positive calculated u(R) slope confirms the ionic character.
The experimental dipole moment function is not known and

its measurement presents considerable experimental diffi-

(83). 'Nevertheless, of general importance has been the

(83)

culty
observation recently that there is complete lack of
correlation of u and du/dR in SrO, an analog of BeO as these
form with others the family of alkaline-earth oxides.
Although there is correlation for u and dpy/dR in BaO, u
indicates SrO is extremely ionic and yet du/dR is negative.
This suggests that the molecule is undergoing change of
configuration in spite of a large dipole moment. No model
of polarizable ions can explain properly these results.
Trends in the other alkaline-earfh oxides suggest that BeO
might be similar to SrO.

A general picture of the chemical bond in the
alkaline-earth oxides caﬁ be'obtained by comparing MO
calculations of BeO and LiF. A reasonably adequate picture
of LiF is generally thought to be fhat of two slightly
overlapping ions Li+ and F . The two highest energy

2 and lﬂ4, are assumed to be

occupied orbitals in LiF, 4o
almost entirely Zg%because they have approximately the same

energy (see Table 1.2). If BeO had the same electron
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distribution, it would be described as two doubly-charged
ions, Be++ and O=. Comparison of the orbital energies,
however, shows that in BeO the 1m orbital is considerably
higher in energy than the 40 orbital, and from the
wavefunction, has become a mixture of 2pre and 2pﬁ0. The
four 1lm electrons are, therefore, shifted into the bond
towards Be, thus tending to make fhe over-all dipole moment
of BeO not too differeﬁt from that of LiF which is 6.284 D
(Debyes) . , The separation of equal and opposite charges at
the observed LiF bond length gives a dipole moment of 7.51 D;
for Be'0  this is 6.2 D. The calculated dipole moment for
BeO is 7.3 D, indicating that the molecule is approaching
the Be++0= configuration.

On the other hand, one might expect Bel to be more
covalent than LiF, since by excitation of type 52 -~ sp,
Be becomes divalent and therefore one can expect to have a
czwz configuration. This would then be the appearance of
double bond character similar to ethylene except for large
polarities, as pointed out by Coulson(84). This particular
difference shows up in the crystal structures. LiF crystallizes
in thé simple cubic form or NaC{f lattice , whereas BeO's
solid conformation is wurtzite, as ZnS,which is a diamond-
like structure held together by both covalent and ionic

forces. A rigid-ion calculation of normal modes in solid

BeO is in serious disagreement with experimentally observed
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(85)

modes. A mixed valence-Coulomb force field has to be
used in order to calculate adequately phonon frequencies.
It would seem that the degree of covalency is sufficiently
large for directional valence forces to determine the
stereochemistry of the lattice (and thus affect the phonon
spectrum) were it not for the fact that closest packing
cri;eria‘of the large ions 0~ also favor the tetrahedral
crystal structure wurtzite(86). The question as to which
characters, ionic or covalent, are prevalent will be
analyzed in terms of electron densities, forces and field
gradients. 1In a later chapter, the effect of the bonding
in LiF and BeO on force constants will be also examined

in order to ascertain the differences in their magnitudes

as seen in Table 1.1.



II. .ELECTRON DENSITIES

United we stand, divided we fall.

Atoms in molecules

2.1 - The Density Distribution - A Study in Molecular

Topography

A knowledge of the electron distribution in a molecule
is a fundamental requirement for the understanding of the
chemical behaviour of a molecule(lz'zs). The calculation
of the electron density in a molecule is therefore an
important problem. But once the rules for defining a
physically sensible wavefunction, and therefore density,
have been set down, then within that framework the primary
factors available for a description of molecular behaviour
are the densities, the forces between particles (which are
mainly coulomb forces), and whatever quantum numbers are
inherent in the problem. Specifically, it is actually the
distribution of the electrons within the molecular frame-
work which determines many properties of the molecules,
and particularly'their chemical reactivity. Relocation
of electronic charge density has always been presumed to

be an important adjunct, if not cause, of chemical bond

formation. The transfer of electron density into the

34
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internuclear region of the H2 molecule is a long-recognized
phenomenon, even though the reasons for it are still the
subject of considerable discussion(87). With scant
additional iilustration, the same sort of phenomenon has
been assumed to occur in larger molecules. The present
discussion considers the effect of chemical bond formation
from the viewpoint of spatial electron distributions,‘in

the following molecules: N CO, BF, BeO and LiF. The

27
first three form a group of l4-electron isoelectronics;
the last two are l2-electron isoelectronic analogues of
each other.

From very close SCF-LCAO approximations to the true
H.F. wave functions of these and 6f the free atoms involved
in the bonding, it is possible to determine redistribution
of electronic charge predicted by the H.F. calculations.
It has long been held by'mos£ chemists that, in addition
to "exchange effects", a éhemical bond forms as a result
of electronic charge density flow into the internuclear
region where the potential energy ié lower. Recently,

Ruedenberg(87)

has suggested that the main potential energy
lowering occurs by a contraction or clustering of valence
electron density about the nuclei. The concomitant and
also necessary (from the standpoint of the virial theorem(70))

increase in kinetic energy is partially offset by the effects
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of delocalization. One can best gain insight into the
problem of what really happens when an atom unites with
another atom to form a molecule by examining the changes
which the tofal electronic charge densities undergo in such
a process of bond formation. The relevant observables

are then the charge densities. To obtain a measure of
such'changes, one can construct a molecule which would
result if the two atoms making up the molecule were united
without perturbing each other, or if they were in incipient
valence states arising from ground state configurations of
the separated atoms. This can be done by simply superposing
the electronic charge densities of these constituent atoms.

One can then characterize a chemical bond by the function
o (x) = ey (X) = py(7) (2.1)

where ﬂm(;) is the total electronic density of the molecule

M at some space point (r) in the molecule; pA(;) represents

the electronic charge density (at the same point) which

would occur if the two consituent atoms were superposed at

the molecular eqﬁilibrium distance. Thus, Ap(f) is positive
in regions of the molecule where charge density has accumu-
lated and negative where charge density left. Because net
charge is conserved, the integral of Ap(;) over all space

is zero. This function has been computed for several molecules

(88) (89)

by Roux, Daudel and co-workers , by Rosenfeld
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correlated to bond orders by Manning(go)

1 (55)

, and finally

thoroughly discussed by Bader et a (56).

, Ransil and Sinai
The maximum amount of chemical information is
obtained from such a density difference plot when the
densities of the atoms are derived from valence states
which result in the overlap of singly-occupied orbitals
whenvthe atoms are brought together. This corresponds,
therefore, to the valence-bond picture of chemical-bond -
formation. The "valence" states implied here refer to the
ground states of atoms in an axial electric field. Such
a field splits the Py s py and P, degeneracy, lowering the
still degenerate Py and py o;bitals (»-m) and raising the
P, orbital (»o) if z is taken as the direction of the axial
field. These states therefore differ from those used in

the atoms in molecules method(49)

which correspond to non-
stationary states and artificial dissociations, but are
nevertheless a suggestive artifice for the description of
the molecule in terms of the properties of its constituent
atoms. In the method advocated here, in the limit of
vanishing perturbation, the averaged ground state density
and . the valence state density used correspond to the same
energy. However, in the valence, state,distinction between
o and 7w character is preserved in order to display the very

useful picture of chemical-bond formation given by valence-

bond theory. Thus, the F atoms in the molecules BF and LiF
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will be considered in the "valence state" corresponding

to the configuration 1522522p012pw4. A spherical average

over the ground-state configuration as used by other authors(ae)
for the atomic densities, would neglect the preferred
direction towards the other atom.  There is no difference
between this valence-state density and the averaged ground-
state density for Li, Be and N. B is placed in a valence
state with one po electron, whereas C has in addition one
pm electron. O and F are placed in states with a single po
electron, the remaining electrons being averaged over the =
orbitals. Thus, for N2’ CO and BF, the bond formation is
visualized as overlap of po orbitals on each atom and sub-
sequent rearrangement of the densities in the molecule.
This enables one to compare these three molecules |
systematically, and keeps four electrons in the m region

as demanded by the molecular orbital representation of
these molecules. For a similar comparison between LiF and

2,.2 4)a)

BeO, it was found necessary to use the state O0(1ls"2s™2pm

as the ground state for Be corresponds to 152252. The
method of the function Ap(f) is not without analogy with
the electron population aﬁalysis devised by Mulliken(gl),
The main difference between the two procedures lies in

the fact that the Ap. method gives a local representation

a) Footnote: This corresponds to taking twice
the My =0 component of the first 1p state
minus the first +S state of oxygen.
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of the "bond effect"and provides information on the
spatial distribution of the electrons. On the other

hand, the population analysis provides a gross repre-
sentation of the phenomenon and suffers from the defect
that overlap populations are arbitrarily equally divided
between the two nuclei. This difficulty will be circum-
venyed in the next chapter by the use of force analyses,
which clearly show any asymmetry in the distribution of -
the overlap region by comparing the forces the density
exerts on both nuclei. The density and density dif-
ference maps can give us a pictorial and thus extremely
useful interpretation of chemical bonding which will be
later supplemented by the force analysis. As our ultimate
goal is an analysis of force constants for the molecules
-N2, CO, BF, BeO and LiF, we discuss first some of their
characteristics which can be extracted from an examination
of the details of the density and density difference maps.

2.2 Charge Density- p diagrams

Approximating the electronic wave function for
the ground state of a closed-shell molecule by a single
determinant constructed from a set of occupied orthonormal
orbitals ¢i(;), the one-electron probability density function

associated with the wave function is given by

N -
p(T) = iil n, [¢;(x)|? (2.2)
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where n, are the occupation numbers and the sum is taken
over the occupied orbitals. If the functions ¢i(f) form
an orthonormal set, then p(;) represents the probability of
finding an electron at the point r in space. Although
strictly speaking a probability distribution function,

p(f) may be taken as a measure of the average electronic
cha;ge density, excluding electron correlations, at

point r. 1In the present work, the molecular orbitals are
approximated by linear combinations of atomic orbitals,

Xj(;) and thus equation (2.2) becomes:

N
r) = I nltc.. x.(r)|? 2.3
p(rx) i l|j £ ]( ) | ( )

From the study of molecular charge densities, we would
hope to gain insight and information about several important
characteristics of molecules: their "size", "shape", their
total distribution. 1In particular, molecular shapes are
determined by the nuclear configuration and the spatial
distribution of the surrounding electronic charges. The
nuclear configuration parameters may be obtained from
experiment, or theory, or both. Calculation of accurate
charge density distributions requires accurate molecular
wavefunctions.

Determination of molecular shape hinges upon the
determination of molecular "size" which is complicated by

the fact that the outermost charge density contours fall
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off exponentially to infinity, or at a rate which varies
acoording to whether the molecule is in a ground state or
excited state, whether it is neutral, negatively or
positively charged. A cutoff contour must be defined and
thus a certain degree of arbitrariness or "empiricism"
probably cannot be avoided in establishing a basis upon
whiqb such definition can be made. In this work, following

Bader et a1(55)

, molecular size is defined with reference
to a specific contour inside of which most of the charge
density is contained. Arbitrariness enters when specifying
the percentage of charge to be enclosed by the cutoff
contour. The 0.002 contour chosen here as cutoff contour
encloses about 95% of the total charge(ss). Other criteria
for definition of size, based on interaction energies, are
possible and perhaps are more physically meaningful. But
definition on this basis is difficult because of the wide
range of interaction energies possible. A recent review(gz)
of quadrupole moments demonstrates‘the disagreements
between the different experimental determinations of the
same physical property, so that even here definitions are
not made overly precise. There is yet no known correlation
petween a given range of charge density and the strength of
molecular force fields. Consequently, one would not expect

the size of molecules computed according toc the above

convention to agree necessarily with the van der Waals radii,






CHARACTERISTICS OF TOTAL DENSITY DISTRIBUTION

Table 2.1

Molecule AB Ny CcO BF Co BeO LiF
Width(a.u.)
at A 6.3 6.1 6.5 7.0 6.0 3.6
B 6.3 5.1 5.9 6.6 6.0
Re/2 6.4 B.1l 6.2 6.6 6.0
Length(a.u.) 8.2 8.4 8.9 8.5 7.0 T.6
Re(a.u.) 2.068 2.132 2.391 2.348 2.50 2.8877
z-intercept
of 0.002
contour
(a.u.)in _
molecule A 3«1 3.4 3.8 s I | 1:3 Ye7
B 3.1 2.8 2.8 3.1 3.1 3.0
in atom A 3.0 v, 3.4 S 3.6 3.3
B 3.0 2:+9 2B Jad 2.9 2.8
Charge Den-
sity at A 205.59 127.07 71.70 127.32 34.88  13.78
= B 205 .59 310 .89 447.53 127.32. 310.80 447.41

€
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or molecular diameters computed from Lennard-Jones potential

data(93). But from an analytical standpoint, for different

molecules a comparison is relevant and of interest.
Contour maps of the total molecular charge density
distributions, all drawn to the same scale are shown in

&l These projections illustrate the relative

Pig.{2.1).
tightness of binding of these various density distributions
It is well known that the atomic charge distributions become
more contracted across a row of the periodic table, a result
of the increase in the effective nuclear charge. This same
effect is noticeable in the density distribu#ion at the

N, O, and F nuclei in the‘molecular charge distributions. 1In
Table (2.1) are listed some of the more dramatic features of
the charge distributions. The distance from each nucleus

to the 0.002 contour along the non-bonded axis or z-intercept
as designated in Table (2.1), are listed with the radii of
these same contours in the'appropriate separated atoms.

The diameter of the non-bonded charge densities of N, O, and
F in the molecules is ve?y close to that found in the
corresponding isolated atoms. There is a greater variation
in the atomic diameters across the'row from N to Li. There

is an increasing divergence between the atomic values and

a) Footnote : Co, which has already been dis-
cussed by Bader et al(55), is included for
completeness.
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those found in the molecule. There is an increase in the
value of the Z-intercept or non-bonded radii from N to B.

In particulér, the value for B is significantly greater than
that of the free atom. For the molecules CO and BF, this

is therefore in accord with the actual dipole moments

C_O+, B_F+. For CO this has been reassigned recently after

extensive controversy about the sign(94). The dipole
moment of BF has not been measured as yet, but has been

calculated(so)

to be 1.04 D as compared to the experimental
result of 0.112 for CO. The sign and magnitude of these

then follow from the nature of the dipole operator which
weighs heavily charges far removed from the charge center

of the system, and also from the charge distributions of
these two molecules which have more charge behind the nuclei
C and B than found in the free atoms. There is a sharp
difference in this trend in the CZ' BeO, LiF series. The
non-bonded radii of the densities centered on the Be and

Li nuclei in the molecule'are considgrably smaller than

their corresponding atomic values. 1In fact, the values

of the radii in the molecule are the same as the values which
can be calculated for the 0.002 radius of the 1ls shell
densities in the ions Li+, Bet?t. This is then a clear indication
of charge transfer away from the light atom regions of

these molecules. i

In comparing N2 and CO which are often assumed to be
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quite similar in many respects except reactivity, potential

parameters from vViscosity data(95)

indicate the diameters
of these molecules are equal (7 a.u.). This is intermediate
between our calculated lengths and widths. Such data are
probably not fine enough to determine comparative molecular
sizes. 1In fact, the polarizability of CO is greater than
thaE of N2(96), so that this may affect transport properties
which generally are based on crude models. Some evidence

of similarities between these two molecules comes from
recent crystal structure work. The experimental results(97)
demonstrate the same space group and same crystal parameters
for the crystal forms of N2 and CO. The question then arises
as to whether size effects are very important in the structure

of van der Waals lattices. Barrett et al(98)

have recently
noted the effect of dissolving N2 and CO in solid Ar. The
two molecules produce strikingly different phase diagrams.
It may be that as Hillier and Rice have suggested(gg),
electron delocalization, represented in terms of the mixing

of charge transfer excitation states and neutral excitation
states are important contributions to the ground state binding
energy of molecular crystals. In this respect, one would
expect CO to differ from N, because of the slight decrease

in binding >f the electrons on the C atom as witnessed by

the change in non-bonded radii. The density at O is slightly
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more bound iﬁ the molecule. These effects increase as one
goes to BF so that the high reactivity of BF can be
qualitatively correlated with the decrease of binding of
the density at B which has resulted in the density on B
having become more diffuse than in the free atom.

A perusal of the LiF total density map shows that
the molecule approximates what one can call two unequal
sphe£es of unequal charge density coupled together. The
shape of BeO approaches sphericity whereas LiF is quite
elongafed. The tight densities at the Li and Be ends of
these molecules indicate charge transfer away from these
nuclei. While the non-bonded charge density of Be has
been decreased along the 5ond axis, the transfer is not
pronounced in the regions perpendicular to the bond.
Interestingly, LiF has the smalles£ first contour of equal
densify which encompasses both nuclei. As this is a rough
indication of the amount of delocalized charge density,
it is thus seen that LiF approaches the ideal ionic model
of noncoupled spheres. In BeO, the full contour first
appears at 0.16 as compared to 0.08 for LiF; for BF this
is 0.26 , slightly higher for Cor and larger for CO and Nj.
The observation that one can therefore make is that
delocalization increases in the following order: LiF,
BeO, BF, C,, co, N2' Finally we notice that the F atom

in LiF is nearly spherical, a somewhat surprising observation
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as one would expect it to be quite polarized towards the
Li nucleus. This situation also exists in the crystal.
The electron density contours in the LiF crystal have
been plotted by Krieg et al(loo)from x-ray data. The
density around the F nucleus is almost spherical while
thaf around the Li nucleus deviates appreciably from
sphg;ical shape, particularly in regions away from the
nuclei in the crystal. Indications are that this Li
density is more polarizable in the crystal LiF than for

a Li+ ion(lol)

as the maximum of the radial density distri-
bution is shifted by about 0.258 from the Li nucleus as
compared with the free ion.

In summary, in contrast to the series N2’ CO, BF
where the density becomes more diffuse behind the electro-
positive element, in CZ’ BeO, LiF the trend is reversed, -
in that the density becomes tighter around the electro-
positive element for these molecules. This is then in line
- with the tgndencies of BeO and LiF to ionize first in
chemical reactions because of the electron acceptor
properties of the electropositive end of these molecules,

as opposed to CO which is an electron "donor" and
tends to bond covalently with other elements, especially

transition metals. We would thus predict that BF is a

much stronger electron "donor" than CO in view of the more
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diffuse density behind B. The p contours therefore provide
structural information about molecules in terms 6f charge
density contours and their intercepts with an appropriate
set of axes. Integration of the p diagram can yield
electron populations as a function of contour value and
éorresponding spatial coordinates for the entire molecule
(seg work of Ransil(56)). However, the presence or absence.
of a chemical bond is not manifested by the appearance

of the total density distributions. The features displayed
by the total density map are in géneral gross and require
further refinement. In addition, total molecular charge

" densities computed from wavefunctions with varying degrees
of sophistication do not differ appreciably in the display

(102).

of contours This insensitivity must be somewhat
superficial since striking variations are observed when
one characterizes the charge density with the function Ap.
2.3 Ap Maps

The Ap diagram presents an interpretive problem
because regions of positive and negative contour values are
encountered. These regions do not represent absolute
increase or decreases respectively, in total charge density
but rather they represent an increase or decrease of probability
density relative to the densities of the appropriate

unperturbed dissociation products, in appropriate valence

states, a distance Re apart. By way of contrast, the p maps
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give a time independent statistical distribution of

electron charge in molecular space, whereas the Ap maps

tell us what regions in the molecule are electron rich or
deficient compared to the hypothetical case of appropriate
dissociation products. Furthermore, while there may be a
net‘gain or deficit of electron charge density at a speci-
fied point, the net total change in density obtained by
integrating over all spaceis zero. This density.difference
as defined and computed therefore reflects, strictly
speaking, not charge distribution associated with formation
of a chemical bond, but a difference between two scalar
quantities, which may be correlated with a chemical bond
only insofar as the molecular and atomic densities correlate
with the accurate charge densities. The validity of these
interpretations assumes the computational accuracy of the
total and difference densities, and their invariance to such
things as basis-set representation, relativistic and

- correlatiop effects, etc. The characteristics of Ap are

in general seen to depend very strongly on the quality of
the approximate wavefunction, as shown by some calculations

(103)

on N2 by Smith and Richardson For an outline of

these problems, the reader is further referred to Ransil

(56)

and Sinai's paper On the basis of wvarious diagrams,

these authors conclude that the evidence so far suggests
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that there are no significant major variations in the Ap
diagram topography in going'from a limited to an extended
basis set, provided molecular and atomic functions of
consistent accuracy are used. We have implicitly employed
such a consistent approximation perspective in what
ffollows. Hartree-Fock wavefunctions have been employed
for_poth the molecule and the separated atoms, the atomic

functions coming from the work of Clementi(sl)

which have
been used as starting points in the MO calculations.

The density distribution which results from the
overlap of the unperturbed atomic densities separated by
Re does not ordinarily place sufficient charge in the
region between the nuclei to just balance the force of
nuclear repulsion and hence result in a state of electro-
static equilibrium(l4). The density difference map Ap
may therefore be viewed as a picture of the change in
atomic charge distribution required to balance the force
of nuclear repulsion and thus obtain a stable molecule,
i.e., a chemical bond. From this point of view the
density difference maps provide one with a picture of
the "bond density". The Ap maps are given in Fig.(2.2)
for R = R (exptl.). The general characteristics of these
maps is uniformly a buildup of charge between the nuclei

and in the regions behind the nuclei, i.e. the region away

from the bond. What is observed then, is the movement of

52



Table 2.2

INCREASE IN CHARGE Ap(POSITIVE)

Molecule Ap in binding region Ap in antibinding regions

AB behind nuclei
A B

N, 025 0:.13 0.13
Cco 0.21 . 0.13 0.18
BF 0.21 0.21 0.20
e, 0.50 0.06 0.06
BeO ' 0.82 0.02 0.57
Beto~ 0.59 : 0.02 0.20
LiF 0.47 0.01 0.36

a) Ref. 55

€S
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’

"antibindihg" electrons away and apart from "binding"
electrons. A region of charge deficit of the form of

pm atomic density is evident on those nuclei where such

a charge density was situated, a demonstration of the rather
easy mobility of T electrons. While the original atomic
densities are distorted so as to place charge in the anti-
binding regions, regions which pull the nuclei apart, as
well as in the binding regions, regions which pull the

" nuclei together, in the formation of a molecule, the most
important aspect is the exact disposition of the charge

in the molecule, and not necessarily the amount of charge.
Both of these features, the amount of charge, and its
disposition can be only taken into account properly by a
determination of the forces which bind the nuclei together
to form the.molecule, as will be done in the next chapter.
An idea of the charge distribution can be roughly obtained
from Table (2.2) where we list the total amount of
electronic charge minus the free atom densities contained
within the zero contours in the binding and antibinding
regions, except in the case of BeO and LiF where we report
these numbers for the total binding and antibinding regions,

as one has to deal with nuclei enclosed by zero contours. In the
discussion that follows, the density difference function

Ap is compared for the isoelectronic series N2, CO, BF;

LiF, BeO and C2°
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a) N CO, BF

2I

The Ap map for N éxamplifies the reorganization

2
of the atomic charge densities which is characteristic of

the formation of a covalent bond. There is a net accumu-
lation of negative charge, symmetrically placed between

‘the nuclei. The large accumulation of charge density in

the antibiﬁding region behind each nucleus is also
characteristic of any bond which involves the participation
of p orbitals. This pattern is not found for example in

H2 or Li2(55), for which the charge is concentrated almost
entirely in the region between the nuclei. The large
separate accumulations of charge in the antibinding region
are a direct consequence of the quantum mechanical result

of imposing directional properties on orbitals and hence on

" charge densities which possess angular momentum. The binding
in CO is covalent as the difference map is very similar to
that of N2' But the charge increase is shifted towards the
vicinity of the O nucleus. Simultaneously, there is apparently
more charge removed in perpendicular regions at the O nucleus
than at the other end of the molecule. The charge increase
is still larger when one goes to F in BF. The perpendicular
charge removal also follows the same trend. In fact, we see

now the appearance of pm electrons situated quite diffusely

at the B end of the molecule. From the numerical integration
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of the various regions as reported in Table (2.2), it is
evident the population numbers are all quite similar,

TNZ showing ‘slightly more charge in the binding region,
i.e. between two nuclei where it exerts an attractive
force on both. The difference in charges in the binding
region between N2 and CO would seem'to have been put
beh;nd the O nucleus. This does not correlate with the
dipole moment C—O+, but the answer go this is evident

from the geometry of the density difference diagrams.

The density accumulated behind C is more diffuse than that
behind O so that its centroid is farther away from the C
-nucleus. This farther displacement therefore contributes
to the moment, and not the pdpulation itself. Similarly,
one notes that there is more charge put behind the F
nucleus, but again the effect is offset by the increased
diffuseness of the charge accumulated behind the B nucleus.
The maximum charge displacement behind the F nucleus is in
accord with its acquiring the most po character. This

also correlates with Davidson's(104)

recent population
analysis on these same three molecules, where, contrary
to popular belief, it was shown that the more electro-

negative element has the larger degree of "hybridization".

b) LiF, BeO, Cp

The ionic extreme in binding is examplified by LiF.

Here the charge increase is localized on the F nucleus. The
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Fig.(2.3) - Ap map witF)
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small charge increase in charge density immediately behind
the Li nucleus is a result of a polarization of the remaining
core density of an it ion. The Ap population is seen to
be completely situated on the F nucleus, as it isAenclosed
by a zero contour with that nucleus. 1In view of this
transfer of charge to F and the resulting negative -
elecPric field, the density on the Li nucleus must polarize
away from the bond region to counter the net attractive
force of the excessive density on the F nucleus. Alter-
natively, one can say the density on the Li nucleus is
being repulsed by the accumulated charge on the other end
of the molecule. In view of the clear separation of charge
in two distinctive regions, it is then appropriate to

speak in terms of electrostatic effects. This will be
pursued further in the next chapter. The tofal charge
increase in the zero contour encircling the F nucleus is
0.83 with 0.48 charge in front of that nucleus, a clear
indication of polarization effects. A depletion of charge
in a region perpendicular to the.bond is suggestive of
motion of 2pﬂF density away from the F nucleus. This
behaviour persists for the density difference diagrams
involving the ions Li+, f_, i.e. the combined densities

of these ions have been subtracted from the total density

of the molecule(14). It is evident from Fig.(2.3) more
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Fig.(2.4) - Ap map (Be' 0 )
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charge is placed in froént of the F nucleus both along and
.perpendicular to the bond..

The BeO diagram shows similar 'features, but the
transfer of charge is not as sharply defined as in the
case of LiF. The positive increase in the binding
region between the nuclei which is closest to the O
nucleus is 0.82. The charge increase behind is 0.57.

The total increase is therefore 1.39. The amount of charge
lost in the perpendicular region at O is -0.55, whereas

at F for LiF it is -0.19. Thus it is evident that bonding
effects are more drastic in BeO. It must be remembered

that the "valence-state" of the O atom is 2822p00

2p1r4 so
that we have introduced a deficiency in the internuclear
region. A density difference map using the constituent
separated ions Bet o (2522p012pn4) shows little noticeable
changes as the 0 density is diffuse compared to a neutral
O atom (see Fig.(2.4)). The contours around the Be nucleus
for this map also show little change, indicaﬁing that the
density around this nucleus must be approaching that of
Be++, The small values for the integrated positive Ap
regions behind Li and Be are effectively a result of
polarizations of 152 densities. >Large Ap populations
behind the heavy nuclei are evidence of redistribution

of valence-shell densities. In fact recent work on

(55)

hydrides shows that LiH remains ionic (LiTH™) as for this
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molecule the Ap population behind Li is the same as that
in LiF. On the other hand, for BeH the Ap population
behind Be is large as a result of the promotion of the 2s
valence elecfrons in Be to 2poc atomic orbitals. This
suggests that BeH is not to be associated with any well-
defined limiting bonding case, i.e. covalent or ionic.
The negative contours which appear in front of the
Li and Be nuclei in LiF and BeO and also persist in the
density different diagrams using the ions as separated
constituents are reminiscent of repulsions of the Pauli
exclusion type between two closed shells(lOS), an effect
which enhances removal of charge between two separated
closed shell charge densities whén allowed to overlap.
The net effect from the viewpoint of the density maps is a
backpolarization of the densities on the Li and Be nuclei,
which can be interpreted'as an electrostatic repulsion
of this density b y the density transferred to the other
end of the molecule. | |
C2, which represents the covalent extreme of these
two molecules, has been discussed amply by Bader et a1(55)°
The small densities in the antibinding regions (see Table (2.2))
are therefore a compromise between charge decrease at the

electropositive ends of the molecule and the large charge

increase at the other end. They thus reflect these two
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opposing tendencies, charge removal from one end and charge
transfer to the other end, which by symmetry of the molecule
C2 now must happen simultaneously at one nucleus.

2.4 Ap Profiles

Much of the charge density which affects the nuclei
most profoundly and vice versa lies along the internuclear
axis. In order to gauge clearly the effects of the charge
density in regions near the nuclei it is advantageous to
examine profiles of the density difference maps along the
internuclear axis and in particular at the nuclei themselves.
These are shown in Fig.(2.5) for all the molecules discussed
above.

For all these systems, there is charge removal from
the nuclear region. The relative magnitudes of these for
the same nuclei in different molecules correlate also with
the total charge densities at these nuclei as given in
Table (2.1). In general, the charge removal is fairly
constant for the same nucleus in different molecules, as can
be seen from the profiles for BF and LiF, CO and BeO. There
is a removal of charge in increasing order N, O, F. The
tightness of the atomic densities of these increase in
that same order, reflecting the increasing nuclear charge.
The charge decrease at the other end is not as regular,
being largest at C and Be, and smallest at B and Li in

order. For those atoms which contain po character, i.e. B,
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C, O, F, there is evident increase in density in front and
behind these nuclei, an effect which increases with nuclear
charge. 1In other words, the profiles indicate clustering

via maxima farther outward from the nuclei. This can be
taken as evidence of the orbital contraction of the second
brinciple quantum number atomic orbitals. Thus, as succinctly

(103)

stated by Richardson , the clustering phenomena proposed

(87) is indeed observed. It turns out to be

by Ruedenberg
synonymous with charge build up in the binding and anti-
binding regions close to the nuclei. The decrease of
density at the nuclei is not evident for protons such as in

2 and HF(;4) where there is actual charge increase. Hence,

.‘H
conclusions based on considerations of the H, molecule only
must be viewed with caution, since protons are usually the
exception rather than the rule, as a result of the uniquely
small electron densities associated with them. It is to be
noticed that Li and Be, which have no po atomic densities, do
not show clustering in the bonding fegion. Instead, there

is charge decrease for these two in this region. It is
evident that from the electropositive end,vLiF and BeO are

quite similar in character.

2.5 Concluding Remarks

If current notions regarding the transfer of charge

in the formation of a molecule are effectively correct, one
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would expect the density difference maps to show patterns
which are characteristic of and distinct for limiting bond
£ypes. The density and density difference maps could then

be used as the basis for definitions of distinct bond types:
Up till now, the available-aiagrams suggest three distinctive
bond types:. a) the homonuclear pattern represented by N2
and Cz; b) theheteronuclear'pattefn presented by LiF and
LiH(SS); c) a second heteronuclear pattern represented by

' the remainder of the first row hydrides. Both patterns a)
and b) possess the most distinctive features as portrayed
by our maps. Pattern a) has charge symmetrically placed
between the two nuclei, in the o—region; charge placed
behind each nucleus and removal of charge at both nuclei
perpendicular to the bond. In general, such a pattern,
which is by definition covalent, cah be qualitatively
described in terms of o-type and'n—type, binding and anti-
binding charge distributions, the last characteristics

being derived from a force analysis pursued in the next

chapter. Pattern b), termed the ionic case, has charge

accumulated in two regions: around the nucleus associated
with the relaﬁively greater transfer of charge and extending
a considerable distance along the internuclear axis toward
the other nucleus; and to the far side of the nucleus
associated with the lesser increase in charge. Pattern c)

differs from pattern b) primarily in the behaviour of the
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zero contour around the heavier nucleus: it either does

not close upon itself or it encloses a very large volume,
;while the region of positive Ap surrounding the lighter
atom is moétly in front of it and thus binding. This
pattern may be unique as a result of the presence of the
proton.

N2, CO, BF belong to pattern a). This is a result
of their isoelectronic structure and the occurence of po
character in the separated atom densities. The diagrams
justify this classification. Nevertheless, in BF there is
evidence of increasing unequal sharing of the density, and
- thus BF marks to some extent the transition between the
examples of charge transfer (ionic character) and sharing
of charge (covalent binding). LiF and BeO fall in the
classification of pattern b). The BeO molecule is, however,
not as clearcut as LiF. There is evident in BeO some
density sharing in the regions perpendicular to the bond
axis. Thus, BeO marks the beginning of a transition in the
opposite direction of BF, i.e. from ionic to covalent.

The total molecular charge distributions and their
properties will obviously determine the magnitude of the
force constants of these molecules. One might expect that

the degree to which the charge distribution relaxes during

motion of the nuclei will be determined to some extent by
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the tightness of the molecular charge distributions. For
instance, those charges which are tightly bound to a

certain nucleus will follow such a nucleus during its

motion. This will particularly be.true of core electrons.
This effect will decrease with decreasing tightness of
‘binding. Similarly, the Ap maps which provide a detailed
picture of the net reorganization of the charge density

in the molecule with respect to some separated atoms, and

are therefore characteristic for bonds of different type,

are also of importance in the understanding of the force
constants. It is to be expected that the stretching of a
bond will correspond to a reversal of the direction of

charge transfer shown by the Ap maps. The Ap maps demonstrate
emphatically where charge transfer has occurred in the
formation of a bond. A stretch of the bond by an infinitesi-
mal amount will reverse the direction of this process, as the
stretch corresponds to a reversal of bond formation. Simi-
larly, contraction of the bond would cause enhancement of

the Ap patterns. One would thus expect that just as the Ap
patterns differ radically through the series from N2 to LiF,
so will the.patterns of the relaxations of the charge

density caused by nuclear motion demonstrate such characteris-
tics. These anticipated results along with the nature of the
binding in these molecules are further investigated in the

succeeding chapters.



ITI. THE ELECTROSTATIC INTERPRETATION OF

ELECTRON DENSITIES

"For without a force there is no connection;
without connection, no order; without order,
no space."

‘ Immanuel Kant

3.1 Introduction and Definition

The Hellmann-Feynman theorem, or more appropriately
the electrostatic theorem to emphasize its application,
offers another operational viewpoint from the usual tyranny
of the energy representation of quantum mechanics. In
essence it states that all forces on atomic nuclei in a
molecule can be considered as purely classical interactions
involving Coulomb's law. This implies the conclusion that the
force on any nucleus in any system of nuclei and electrons
is just the classical electrostatic attraction of other
nuclei and the electron charge density p(;). The theoremv
appears, therefore, as a powerful £ool for researches in
quantum chemistry. For if once the electronic density is
known accurately, the forces acting on the different nuclei
can be determined exactly and the energy for a given nuclear
configuration follows by integration.

The proof of this theorem is quite simple. Consider

68
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a system of n eléctrons and N nuclei, the latter fixed,
i.e. the limit of zero nuclear momentum (adiabatic or Born-
Oppenheimer approximation). Let ﬁa be the gradient operator
with respect the the coordinates of nucleus A. The
Schroedinger representation gives the following equation
of motion of the electrons:

HY = EY (3.1)
where H = T q + V is the Hamiltonian operator, E the
energy of the system, and Y the electronic wave function.
The force acting on nucleus A is:

- P

e * ‘
Fp=-V, E= —Va (Y HWdTI...dTi...dTn) (3.2)

where dri implies integration of the volume coordinates of
electron i. The operation (3.2) gives:

o o * . * o

EA = —(fVaW HWdTl...dTh+fW HVaWdTl...dTn)

* - (3-3)
-y (VaH)WdTl...dTn

The term in parentheses vanishes for an exact wavefunction
. because it is equal to:

-

-~ %
EVa(IW Wdrl...dTn) = EVa(l) = (3.3a)

Furthermore, the kinetic energy operator Tej of the
electrons is independent of nuclear coordinates for fixed
electron coordinates. Therefore:

Fy=-V_E=-/¥ (V_H)V¥dt,...dt =-/¥ (V_V)¥dT,...dT (3.4)

where V is the potential energy operator of the system.
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The expression (3.4) is the fundamental equation of Hellmann
and Feynman. The operator~V is comprised of three parts:
the electrostatic interaction between nuclei V,,, the
electron-nuclear interaction Ven: énd the interaction between
the electrons themselves Ve e. This last part is
"independent of the nuclear coordinates for fixed electron
coogdinates, a point further discussed below, and its
contribution to (3.4) vanishes. The interaction between the
nuclei is independent of the electronic coordinates and
hence can be immediately integrated out. The detailed
operator Vg, is:

n N e2

Ven = = L z JQLTI“— ‘ (3.5)

i=1 a=1 |Ra-ri|

where Ea is the coordinate vector of nucleus A and ;i is

" the electronic coordinate vector with respect to some

common origin. Zp is the nuclear charge of A. Since

Ven is a one-electron operator, the integral (3.4) can be
easily transformed into an integral involving the 3-dimensional
‘electronic density (lst order density matrix) of the

system, i.e.

& > n - -ZA
JAU) (VaVen)WdTl...dTn = iiiﬂi(ri)va(T;;::z)dTi (3.6)
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where Py is the electron density of electron i, i.e.

*
py =S¥ ¥ dry...dry 4T, .. cdT,

Summing over i, we obtain

* =S =
IY (¥ Ven)¥dt ...dT_ = 2,/p(r)V_(- —=——)dt (3.7)

R,

where p is the total electronic density of the system.

Theféfore, the force acting on nucleus A is given by

AT 1
- ZA Jp(r) Va(- —))drT (3.8)

P = -y _
Ry

A nn

The theorem can be generalized to degenerate electronic
states (Hall(45)). We therefore see that all distortion

energies, dissociation energies, etc., can be functionals

of p alone. For instance, for a diatomic molecule,
Va = - d/dz, = +d/dzb = + d/dR (see Fig.(3.1)), then
D = E(») - E(R) = -J F dRrR (3.9)
R

so that for an exact ¥ the interelectronic term 1/rj4 would

not enter the computation. The approach has been pursued

(106) (107)_

by Hurley in a series of papers and also by Bader

For an exact wavefunction since from (2.3a):
Wa- = (goP3, —
2syn Par = [Hglar = 0
and for space fixed electron coordinates

aTel ~ BVee &

oR ~ OR
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this implies that

/B3 ar = 250l2 4 2ee 4 py ¥ ar =0 (3.10)

Therefore, the electron correlations affect p but do not
affect the forces directly as they do also the energy
calculations.

One can see, therefore, that the Hellmann-Feynman
approach has many adVantages, in particular giving rise to
alternative ways of getting at energy differences of iso-
electronic processes besides also giving the forces. These
methods have been studied recently by Epstein et 11108}
giving rise to the integrated and integral Hellmann-Feynman
formulae. Time-dependent extensions of the approach can

be also found in the works of Hayes and Parr(log), and also

Epstein(llo).

Unfortunately, the variational principle does not
apply to these methods. Little proéress has been made with
the applications of the Heilmann-Feynman theorem since its
discovery of some thirty years due to a further difficulty
that the theorem does not always hold for approximate wave-
functions and can, in fact, lead to absurd results in cases
where sufficient care is not taken in the choice of an
approximate wavefunction. Consider as an example the

molecule H; and let R be the internuclear distance. The

derivative dE/dR is then the slope of the potential energy
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curve. If the wavefunction for the ground state is taken
to be a simple linear combination of 1ls orbitals centered
on the two protons, the slope calculated is from the
Hellmann-Feynman theorem negative at all internuclear
distances(lll). This corresponds to a completely repulsive
curve. On the other hand, if the same wavefunction is used
to qalculate the energy directly, one obtains a reasonably
satisfactory potential energy curve. The source of the
difficulty lies in the approximate wavefunctions's failure
to allow for charge polarization. This case has been

discussed at length by Hurley(lOG),

He gives methods of
modifying the approximate wavefunctions in order that the
Hellmann-Feynman theorem may be brought into agreement
with direct calculations of the energy. If one realizes
that any function may be expanded in terms of a fixed

set of functions (i.e. which do not depend on the nuclear
configuration), then only if all the Variational parameters
are chosen by'the Ritz variational method do the electro-
static and conventional, i.e. dE/dR, method coincide.

In particular, a wavefunction which does not vary at all
with the nuclear configuration will give the same results
by the conventional and electrostatic methods, a rather
impractical but yet instructive example. Furthermore,

Heitler-London functions as in the H; example above, which

depend explicitly on nuclear coordinates if expressed in
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terms of a single fixed set of Cartesian coordinates
because the functions are built up of atomic orbitals
rigidly attached to one of the nuclei‘of the molecule,
will not givé the same results by bath methods. To
remedy this deficiency, Hurley has introduced "floating
functions" because of the treatment of the internuclear
distance as a variable parameter. Such functions, deter-
mined by the variational principle satisfy the Hellmann-
Feynman theorem. In general, as seen from Eg.(3.3) for

a wavefunction to obey the theorem we must have

*
* v
r Y myar+ v EE ar = o (3.11)
drR dR .
Wavefunctions which satisfy this equation are called

(45)

stable If the variation of the wavefunction with R

is described in terms of a set of parameters Oy s then for
a stable function

_8E _ H _ 3 3E, do

E 2= - o> = e (3.12)
dR k R QR

R k ‘2o

A floating function is defined by the vanishing of each

(112), SO that‘any stable function

term in the sum over k
may be expresséd as a floating function by a suitable
choice of parameters. The theorem is satisfied if either
the parameters are independent of R so that dap/dR = 0

or else parameters are optimized so that SE/auk = 0.

(113)

Hirschfelder and Coulson have discussed the use of

certain hypervirial relations for the construction of
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stable wavefunctions.

Floating functions, however, do not lead to an

accurate estimate of the atomic polarizability(114) or

good energies(lls). There are valid objections to
floating functions. Firstly, as Longuet-Higgins and

(116)

Brown have shown, it requires much energy to detach

the center of a charge density from a nucleus. Secondly,

(117)f0r H+, by Miller and Lykos that

it has been shown
a maximum distortion of bonding atomic orbitals occurs

at the equilibrium internuclear distance (- they also

point out that this does not correspond to maximum overlap,
a condition usually invokéd for strongest bonding). The
important first order effect in the distortion of atomic
orbitals in molecule formation is the polarization of the
atomic orbital. This polarization phenomenon can be
understood as arising from external fields of neighbouring
charges. This sort of example has been considered by Salem
and Wilson(lls). A neutral atom in an external field does
not move. The force on the nucleus due to the polarized

electronic charge cancels out exactly the effect of the

external field. This was pointed out among others, by
(119)

Sternheimer , in terms of shielding and antishielding
concepts, later extended to the interpretation of quadrupole
coupling constants.

It is evident that in all the cases where the
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applications of the Hellmann-Feynman theorem to approximate
fﬁnctions gives physically unacceptable results, the
difficulty may be traced to a clearcut physical deficienéy
in the wavefunction, which is intrinsically related to the
parameter undergoing variation. In general, calculations

of dE/AR by means of the theorem leads to errors which are
of 1lst order in € if ¢y differs from the true wavefunction
by terms of order € as shown by Salem and Wilson. This, is
in contrast to the calculation of E and therefore dE/dR,

for which errors are of second order in 6(38). However

for stable functions,which Hall has shoﬁn includes Hartree-
Fock functions, the Hellmann-Feynman theorem leads to érrors
which are only second order in €, as the conventional method.
The Hartree-Fock functions belong to the category of stable
functions since they are stationary solutions of the

type (3.11), as can be séen'from the Hartree-Fock equations
(see Appendix 1). This is the essence of Brillouin's
theorem. This has also been consiaered generally by

(120) (121)° For

Stanton and is implicit in a paper by Allen
variational functions, the success of this method, i.e. the
magnitude of the correction €, depends on how well the
parameters chosen to minimize the ground-state energy can
represent the operator one wishes to calculate. This pro-
vides a more subtle test than Brillouin's theorem. For

example,.the diamagnetic shielding <1/rgz> is usually in
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good agreement with experiment sihce it is an operator that
plays a significant role in the energy of the molecule

(in V) and therefore is favoured by the variational
determination of the energy of the molecule.

‘'For dispersion phenomena, Salem and Wilson have
shown that the complete density to second-order is neces-
sary to obtain the forces by the electrostatic theorem as
opposed to the vériational method where the first-order
wavefunct;dh yields the energy to 3rd order. On the other

hand Yaris(lzz)

obtains the 2nd order force using the

first order density only. This result is not in contra-
diction with the results of Salem and Wilson. The
difference is due to the way the systems have been divided.
Yaris uses a relative electronic coordinate system

centered on each of the two nuclei, i.e. functions which
follow the nuclei. Thus in zeroth order, if nucleus A
moves a distance dR, its electronic charge moves with it
and hence 9Hy/3R = 9Y,/9R = 0, where Hy and wo are the zeroth
order Hamiltonian and wavefunction. - Salem and Wilson used
a space fixed electronic coordinate system and considered
that moving nucleus A a distance dR leaves the zeroth order
electronic charge unchanged. Thus in their method of
dividing up the total Hamiltonian and wavefunction,dH,/dR

and 9yo/9R do not vanish,'and the second-order wavefunction

is necessary. Yaris's method involves an effective charge
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model, or what Epstein et al(llo)

call a complete orbital
following model and only works for nonoverlapping shells
but not for valence electron which are a case of incomplete

orbital following, requiring knowledge of the exact wave-

function. Nevertheless, this example brings out one

important point, namely, that the validity of the Hellmann-

Feynman theorem and the stability of ¥ depend on the
fundamental choice of integration variables. The value

of dE/dR is independent of the choice. The precise form

of the operator in the integrand, Eq.(3.2), depends upon

the electronic coordinates fixed during the differentiation

(123)

and in particular on the coordinate origin For

Cartesian or spherical polar coordinates arbitrarily
centered, (see Fig.(3.l1l)) one can write (Berlin, Feynman) :

Z2,2
- -_AB _ . fpcos )
K] A
R g

QJIQJ
w| =

dt (3.13)

where p is the electron density (diagonal element of

first-order density matrix), Z, is the nuclear charge of A,

A
6, and ry are defined in Fig.(3.1).. Secondly, any orbital
centered on nucleus A which completely follows that

nucleus will contribute nothing to the force as shown by
Yaris. This will be of importance in force constants where
the nonorbital following becomes a "relaxation".

The electrostatic or Hellmann-Feynman theorem

results when the electron is held fixed with respect to a
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space fixed axis system during differentiation, thereby
giving expressions (3.8). There is still some aﬁbiguity
since the nuclei may move in a number of ways during the
differentiation. The nuclear motion may not be a pure
vibration and, if movement is allowed only along the

z-axis, it is possible for some translation of the molecule
to occur. We will consider first, the case where there is nb
molecular translation, i.e., as R changes, the center of

mass remains fixed with respect to the space fixed axis
system. For a diatomic molecule with masses m, and my ,

the center of mass is a distance uR from center A with

‘u = mp/(mg+my) . If the center of mass is to remain fixed,
nucleus A must move by an amount udR and nucleus B by (1l-u)dR
(see Fig.(3.2)). For this fixed electron method, 9H/3R

= 9V/9R, as discussed at the beginning of the introduction.
Using the spherical coordinates shown in Fig.(3.1l), which

are the most convenient for our purpose, then:

Z,2 g
v _ _’a"B 9V drg , 3V drp
oR R2 or; OdR drp oR
It is easy to show that
b _ (1- 9ra _
AR (1-u) cos 6p R u cos 6,
Therefore
A Z, cos 6
b
N iw - BBy pe 89878 4 (Jw) B [3.13)
oR R2 A 2 2
ry ry

Now translation has no effect on the energy, i.e. dE/dRT=0
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where d/dRT implies translation (isotropy of space),

i.e. moving both nuclei by-amount dR in the same direction,

_ ' Z., cos 0, .
IarR- - fp[ZA cos 6 _ °B b

Jdt = 0 (3.14)

which merely expresses the fact that the electronic forces

’

‘on each nuqleus are equal and opposite. Therefore, we can
add any multiple of Eqg.(3.14) to (3.13) without changing
the resulting force at all. The result will be that we
can obtain different expressions for the same equation(124).

If we choose to keep nucleus B fixed and allow nucleus A

to move, then

(2!) _ ZpZp Zy cos 0
oR

= + 3.15
zb - r 2 bets el
a

which implies that the center of mass moves by udR, i.e.,

dE
dRT

Y| (G 4, 0> = <¥Igglv> - v
One can easily show by integrating the electron density p
over (3.15) that keeping nucleus B fixed gives Eq.(3.13),
the expression originally derived by Feynman and Berlin.

For scaled coordinate systems with scale factors

dependent on R, it is not possible to reduce dE/dR to a

one-electron integral. For example, for a diatomic molecule
and trial functions constructed from confocal elliptic
coordinates A = (ra+rp)/R, yu = (rz-rp)/R and ¥, see

Fig.(3.2), 1/R plays the role of a scale factor. The
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Hellmann-Feynman relation in that case for exact and stable
functions becomes identical to the quantum mechahical virial
theorem(70), i.e.

RAE/dR + 2<T> + <V> = 0 (3.16)

This comes about because now one has another choice of

independent variables, A and py, and the electrons move

duripg the differentiation. The movement is such that the
internal angles ea and eb describing the electronic
position remain fixed as R changes, as shown in Fig. (3.2).
This is exactly equivalent to keeping the ratios r /R

and rp/R fixed. It is easy to see then that:

T(R,r) = T(1l,r') (3.17)
R2

since T is a homogeneous function of second degree.
V(R,r) = V(1l,r')/R
since V is homogeneous of first degree. The notations

T(l,r') and V(1l,r') indicate that these three quantities

are now independent of R,and r' = r/R. Therefore
T _ =27(1,r') _ =2T(R,r)
(5% ), = 3 = = (3.18)
R
AV, o Zva,r) | -V(Rr)
R 'r' i R
{2y 5 o N (3.19)
oR 'r R
or that g% = —% <w|2T+V|w> which is equivalent to (3.16).

The failure of approximate wavefunctions, eg. Heitler -




83
i .

London #unctions, constructed from atomic orbitals rigidly
attached to more than one nucleus to satisfy the electro-
static theorem was due to the fact that they were a complete
orbital following model and hence required "floating" to
remedy the deficiency. Nevertheless, they satisfied the
virial theorem and hence showed binding. The equivalence
of tpese two theorems demonstrates the close connection
between the Hellmann-Feynman and virial theorems for scaled
coordinate systems. In general, one can obtain conditions
different from optimum scaling that lead to approximate
wavefunctions for which the virial relationships are valid(lzs).
These c?nditions will not legd to good approximate wave-
functioﬁs just as floating functions which satisfy the
Hellmann-Feynman theorem give poor energies. As L6wdin(126)
has shown, the validity of the virial theorem is not a
sufficient condition for testing the accuracy of a wave-
functioq. Only for exact and stable wavefunctions is the
conditi?n to satisfy the virial and Hellmann-Feynman theorems

both nedessary and sufficient.

|
3.2 Chemical Binding

We have shown on the basis of wave mechanics that
the eleqtric forces exerted on the nuclei by the molecular
electroﬁic distribution can be interpreted from the electro-
static viewpoint when the molecule is in a stationary state,

even though the charge distribution is dependent on the
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|
electronic motion in as much as the electrons have kinetic

energy.

Berlin(lz) has made an interesting subdivision of
the space around a diatomic molecule into "binding and
antibinding regions", according to whether negative charge
in a giVFn region tends to push the nuclei together electro-
statically or to pull them apart. The binding region is of
course between the two nuclei, but in a diatomic molecule
it extends out at each end to a conical boundary making
an angle of 125° with the bond line for a homonuclear.

This angle decreases with increasing disparity in nuclear
charge at both ends of the molecule so that in ethane, for
example,ieven the electrons of the C-H bonds have a net

antibinding effect on the carbon nuclei. This sort of

 observation has been used by Bader and Preston(105)

to
criticize the usual notions of hybridization in determining
geometries in three and four-center molecules. In an
attempt to give precise meaning to the covalent and ionic
bond concepts, the approach was also extended to diatomic
molecules, LiF, LiH, and HF(14). The interpretation made
in these papers and fully expanded in an analysis of the

(55) makes use of the electrostatic

first-row diatomics
point charge model concepts of shielding and antishielding
in addition to polarization and overlap contributions to

forces. This differs from the Berlin treatment, primarily
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because of the L.C.A.O0. approximation inherent in the
Hartree-Fock functions used, whereby one can associate
each moiecufar orbital with distinct separated-atom atomic
orbitals. This enables one to see how the forces in a
molecule change upon formation of a bond between the
separated atoms and correlate these with the types of
bonding present.

‘ The force exerted on nucleus A in a diatomic

molecule A-B is as we have seen above

A .
F, = 2B _ 5 ro(r) S08 8a g4 (3.20)
A R2 A r 2

a

When each molecular orbital is occupied the electron
density |is

2

p(r) =% n; ¢; (r) | (3.21)

where n; is the occupation number of orbital ¢i' and the
orbitals are assumed orthogonal so that one has the
advantage of the additivity evident in (3.21). It is
convenient to define a quantity fiA for each MO as the
force exerted on nucleus A by the density in the ith MO
multiplied by R2/ZA° This gives a dimensionless number,

and the total force on nucleus A becomes:

B E £

The force on each nucleus is zero for large values of R
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and for the equilibrium internuclear separation R,. Thus

at these two values of R, ZB =‘§ fiA (or ZA=§ fiB for ZB).

For large values of R each fiA value reduces to the orbital
occupation number of the atomic orbital with which the

ith MO correlates. This is a result of the fact that at

this limit the charge density on atom B exerts a field at A
equal to that obtained from an equivalent number of point
charées located at the B nucleus, irrespective of the

symmetry of the atomic orbital. Each electron thus effectively
shields one unit of nuclear charge and for a molecule which
dissociates into neutral atoms, E fiA = 25 and Fo becomes

zero. For smaller values of R, however, the exact disposition
of the charge density in each orbital determines its fiA
value. An increase in the fiA value over its value for

large R implies that the formation ofrthe molecule has
resulted in a transfer of charge density to the region between
the nuclei where it exerts a binding force on the nuclei in
excess of the simple shielding of an equivalent number of
nuclear charges. Such an MO is defined binding. The fiA
value may remain unchanged, in which case it is termed non-
binding as it plays the same role in the molecule as it

did for large values of R where the density simply shielded

an equal number of nuclear charges. The fiA value may

decrease at Ry, in which case it is termed antibinding.

Each fi value is the sum of three contributions which
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are determined by the atomic and overlap populations. The
force on A due to the density situated on A is termed an
atomic force. This force ié»zero unless the atomic density
on A is polarized. The overlap forces provide separate
measures of the binding of both nuclei by the density
resulting from the overlap of orbitals situated on A and B.
Any inequality in the sharing of the overlap density by

the ;wo nuclei is made evident by differences in their
overlap forces. The atomic density on B will shield some
fraction of the nuclear charge on B from A. Thus the
contribution to the‘force on nucleus A from the density
situated solely on B is called the shielding force (or
screening force as used by Bader et al).

Using theseldefinitions, oné can qualitatively analyze
the working concepts, ionic and covalent bond. An ionic
bond resulting from the transfer of one electronic charge
between the atoms has the following characteristics(l4) in
terms of the forces acting on the nuclei: the shielding of
the cationic nucleus should be decreased by unity and the
shielding of the anionic nucleus increased by units corres-
ponding to the transfer of charge from one center to the
other. The forces exerted by the overlap density should
be ideally zero, or at least small and unequal for the two
nuclei, as the transferred charge is centered on the anion

as an atomic density and not in the overlap region. This
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transfer of.charge will result in the cationic nucleus
experiencing a net electric field of ~1/R2., Thus, the
remaining atomic density on the cation must polarize away
from the anion to overcome the net attractive force. The
atomic force term for the cation will thus be negative.

The anionic nucleus will experience a force of repulsion
due to the net positive charge centered on the cation. Thus
the ;tomic density on the anion must be polarized toward

the cation (positive atomic force) to achieve electrostatic

(55) bond, on the other hand, is the

equilibrium. A covalent
result of the transfer of charge density from each atom to
the region between the nuclei where it is equally shared by
both nuclei. Thus for a‘covélent bond the shielding forces
exerted on both nuclei should be decreased, and by the same
amount. The resulting repulsive fbrces should then be
balanced by large and equal overlap forces. TIonic character
will be made evident by inequalities in the shielding and
overlap forces exerted on the two nuclei.

The density distributions of N5, CO, BF, BeO, LiF
are analyzed in the light of the above definitions in an
endeavour to determine the nature of their bonding. A
comparison of the forces as aresult of these density
distributions for these five molecules should allow us

to gain insight into their types of bonding which range

from the purely covalent Ny to the nearly ionic LiF. The
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next step will then be to analyze the changes of these
forces as a nucleus undergoes an infinitesimal displacement.
This will bring us into the realm of force constants.

3.3 Interpretation of N>, CO, BF

In the density chapter, we have pictured the
formation of a chemical bond for these molecules along the
lines of simple valence bond theory. This was considered
from'the viewpoint of the overlap of singly occupied
orbitals (po orbitals) of atomic densities derived from
gound state valence states, with additional rearrangement
of charge as put in evidence by the density difference maps.
In the force analysis which follows now, this method allows
one to correlate the.various molecular orbitals with the
appropriate atomic orbitals in the separated atoms as
represented by their valence states. For N, and CO, a
straightforward correlation is also possible from the orbital
energies of the ground state free atoms listed in Table 3.1.
Some difficulty is encountered with BF, since both the 2sp,
and ZpF orbitals are all lower in energy than the corresponding
B atomic orbitals. This would mean that upon dissociation

of this molecule, according to the MO picture, one would end

2

up with the B atom in a 2P state (2sB

2
F

In order to keep continuity of discussion, we assume that

2pné) and the F atom

with the configuration (Zs§2po 2pﬂg) also in a 2P state.

each valence state, corresponding to the slightly perturbed



Table 3.1

ORBITAL ENERGIES

. Energies
Orbital B C 0 -
2s -0.495 -0.706 -1.244 -1.573
2p -0.310 -0.433 -0.632 -0.730
Table 3.2
FORCES ON N2)IN N, R = 2.068 a.u.
a.o. MO f; (R=w) f; (Re) A (6] S
1s? log 1.000 1.160 0.152 0.008 1.000
1s! lou 1.000 1.085 0.074 0.014 0.997
2s! 209 1.000 2.682 -0.042 1.842 0.882
2s! 20u 1.000 -0.463 . =0.775 -0.167 0.470
2po!  3og 1.000 0.150 -1.766 1.221 0.696
2pt?  1lmu 2.000 2.433 0.416 0.935 1.082
Totals 7.000 7.046 -1.943 3.853 5.136
a) Calculated from Cade et al's function Ref. 59

06
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ground state atoms, has one singly occupiéd po orbital.

By this artifice, the 50 MO is always correlated with a

po atomic orbital on each separated atom. The 30 MO
correlates with the 2s atomic orbital on the heavy atom,
whereas the 40 MO correlates with the 2s orbital of the
light atom. We demonstrate the interpretation firstly for

N5, following the account of Bader et a1(55).

a) Np

In this homonuclgar case, each molecular orbital
correlates with an atomic orbital on nucleus A and one on
B. Of the pair of electrons in the ith molecular orbital,
the one which correlates with atom A contributes zero to
the value of fj at large R and the one which correlates
with atom B contributes a value of unity (except 7w's which
give 2). Table 3.2 gives a breakdown of the orbital forces.
The calculations are for Re = 2.068, i.e. the experimental
distance. At the Hartree-Fock minimum, Rg = 2.013, the
total f;'s are 6.986. This is an assurance that the wave-
functions are indeed accurate and will reproduce one-electron
properties to a high degree of accuracy, probably to within
l% of the true value, as suggested previously by Goodisman
and Klemperer(45). The individual f;'s do not differ
significantly between those for the experimental Rg and

Hartree-Fock Re. (see Appendix 3)

One can obtain a quantitative measure of the binding
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or antibinding nature of each MO by comparing its fj

value with unity. The log and lou are slightly binding

due to what is termed innershell polarization, the
polarization being towards the nuclei. This can be seen
from the atomic contribution to the force. The near zero
overlap contributions indicate that no amount of charge

has peen transferred from either atom in the formation

of the "core" orbitals. The 204 is a strongly binding
orbital as its electron density exerts an attractive

force on the nuclei which is almost three times greater

than the simple shielding or nonbinding value of unity.

f20, is negative so that the 20 6rbital is strongly
antibinding in the sense that it not only deshields the
nuclear charges, but tends to increase the repulsion between
the nuclei by pulling them apart. The total density in the
ch and 20y orbitals gives a small net binding (2.22). This
is slightly greater than the nuclear charge of 2. which

is to be shielded. The strong binding force exerted by

the 20g density may be interpreted as the result of two
effects: the accumulation of charge in the overlap region
and an inward polarization-of the remaining atomic densities
on each nucleus. The transfer of charge to the binding
region is reflected in the shielding value being less than
unity. This disposition of the Zog density is characteristic

(55)

of all first-row homonuclears except for Cy and N2 for
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which the atomic force contribution is small and negative.
This would then mean that some of the density is‘back-
polarized and thus would also be responsible for the under-
shielding. In such a case an actual population analysis
performed by integrating could only settle the issue as to
how much charge is actually present. However, for binding
purposes it is the electric field experienced by the nucleus
which is of importance and not the real population. The
distinction between effective populations based on a field
effect and real population numbers arises from the fact
that we are looking at different moments of the density.
The forces, corresponding to the <r—2> moment, are in this
Vwork emphasized because they are what produces stability

of molecules. The net populations corresponding to the
zeroth moment of the density are not as significant from an
operational standpoint. The large amount of charge density
which is accumulated in the antibinding region by the 20y
orbital may be interpreted as the result of both an overlap
and a polarization effect. A transfer of charge behind the
nuclei results in a negative overlap and a considerable
antishielding relative to the separate atoms. In addition,
the atomic densities are strongly polarized outwards and
exert a fairly large atomic force drawing the nuclei apart.
The resultant feature of the density in the 204 and 20y

molecular orbitals are a net attractive force from the
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overlap density (the 20g orbital placing more density in
this region than the 20, removes) and a net antibinding
force from the atomic densities.

The surprising fact that the 3og orbital shows
antibinding (as opposed to.the MO theory classification of
"it as a weakly bonding orbital) can be explained from the
sign of its atomic force contribution. The charge density
tranéferred into the binding region as the result of the
‘overlap of 2poc atomic orbitals is seen to be very contracted
along the internuclear axis where it exerts a correspondingly
large binding force on the nuclei (see Fig. 6 in Bader

et al(ss)). Ruedenberg(87)

has suggested that the main
potential energy lowering of the electrons in a molecule
occurs by such a contraction or clustering of valence electron
density. There is also a very stroﬁg back polarization of

the atomic density in that orbital, which results in an

atomic force term which more than negates the large positive
overlap contribution to the force. The 1"u orbital,

density is typical of a m-bond. There is considerable
antishielding of the nuclei relative to the separated atoms,
indicating that a substantial amount of charge is transferred
to the overlap region. This overlap density is not particularly
effective in binding the nuclei due to the presence of a

nodal surface along the internuclear axis. It is the sum

of the overlap and shielding contributions for the 1m,
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Table 3.3

Forces on C in CO Ry 22,132 &.u.
8:0s MO f1 (R=) fi(Re) 0O 8
lszo lo 2.000 2.000 0.000 0.000 2.000
lszc 20 0.000 0.266 0.257 0.008 0.000
2520 30 2.000 2527 ~0.495 1.198 1.824
Zsz 40 0.000 1:271 -0.152 0.396 1.027
Zpéc+2péo 50 1.000 ~1.009 -2.334 0.788 0.536
Zp%c+2p;o 1m 3.000 3.056 0.216 0.762 2.078

Totals: 8.000 '8.lil -2.508 3.154 7.466
Forces on O in CO
Sals MO  £i (R=w) fi (Re) 0 8
lszo lo 0.000 0.319 0.319 0.000 0.000
1y 20 2.000 2.002 0.000 0.002 2.000
2520 30 0.000 2.346 0:955 1.178 0.213
2szcr 4o 2.000 -1.,295 -2.786 1.167 0.324
2péc+2péo 50 1.000 0.962 0.524 -0.528 0.966
2ppct2pg, lm 1.000 1.739 0.589 0.768 0.382

Totals: 6.000 6.072 -0.398 2.586 3.884
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Table 3.4

Forces on B in BF Rg & 2.391 a.u.
a.o. MO f{ (R=w) fi (Re) A o) S
lst lo 2.000 2.000 0.000 0.000 2.000
lszB 20 0.000 0.352 0,336 0.016 0.000
252F . 30 2.000 2.256 -0.310 6.408 1.999
2s2B 4o 0.000 2.016 -0.347 0.727 1.636
2poé+2po% 50 1.000 -1.042 -1.348 0.015 0.291
Zp;F 1w 4.000 3.490 0.059 0.349 3.082

Totals: 9.000 9.072 -1.451 1,505 9.008
Forces on F in BF
a.0. MO £ (R=w) ‘fi(Re) A @) S
lsZF lo 0.000 - 0.325 0.323 0.027 0.000
lszB 20 2.000 2.003 ' 0.000 0.003 1.599
252F | 30 0.000 1.568 0.991 0.533 0.045
Zst 4o 2.000 -0.834 -2.806 1.783 0,178
2p0};+2p0%, 56 1.000 0.914 0.672 =-0.732 0.972
2pfr’rF 1w .0.000 1.062 0.632 0.367 0.064

Totals: 5.000 5.037 -0.189 1.966 3..259
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orbital which is equal to unity, the nonbinding value.
Thus the result of antishielding of the nuclei and trans-
ferfing the charge density to the overlap region does not
in itself, in the case of a pi-bond, result in any signi-
ficant net binding.
b) CO, BF

In approaching these two molecules, we must now deal
with a proliferation of numbers pertaining to the various
orbital contributions to the forces. As the aim of this
discussion is of comparative nature, it is more appropriate ’
to demonstrate graphically comparative features. 1In
Figures (3.3) to (3.6) are plotted the atomic, overlap
and shielding components of the forces for the orbitals
30, 40, 50 and 1m respectively. This is done for each atom,
. for which,/in parenthesis, are listed the total forces
corresponding to infinite separation, namely fj () (see
Table 3.2). A zero fj(x») indicates charge centered on the
nucleus considered whereas a non-zero value measures the
shielding population of charge situated on the other nucleus.
The lo and 20 orbitals require little discussion as they are
the inner 1ls shells of each atom. These are all slightly
polarized into the bond as in N3, and show negligible overlap
effects as expected for such tightly-bound densities (see
Tables 3.3 and 3.4 for the actual forces).

The 30 orbital density as seen from a density map(so)
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is known to have‘the most density over all the other orbitals
in the binding region. This is confirm;d by the larger
overlap forces for it as compared to other orbitals. The
maximum force occurs for N, and is smallest at F, as a
result of it being mainly 255. This localization of
charge on the heavy nucleus is portrayed by the drastic
decrease in shielding force from B to F. The localization
is fﬁrther indicated by the increase of atomic polarization,
in the forward direction, at the heavier nucleus. The °
negative polarizations at B and C indicate some delocalization
of the orbital density behind these nuclei. The overlap
forces increase from both extremes B and F towards N. This
suggests therefore that delocalization of this orbital is
least for BF and largest for N;. In terms of net binding
characteristics as delineated in the previous discussion,.
there is net binding at all nuclei, since for all cases the
total force exceeds that predicted for the separated atoms.
. This is in keeping with the usual strong bonding characteristics
of that orbital.

The 40 orbital is characterized for N, by a node in
the middle of the bond in view of the ungerade symmetry
inherent. Thus, one would expect it to reflect characteristics
quite different from that of the 30 orbital. In fact, the

overlap force is smallest at N and increases towards B and

F, in opposite direction to that of the 30 orbital. The
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overlap force is maximum at the F ﬁucleus. However, this

is offset by a large backpolarization of the density on that
fnucleus, an indication of large po character of that density.
This backpolarization causes the orbital to be extremely-
antibinding. Maximum binding occurs at the other end of

the BF molecule, i.e. at B, as a result of a large shielding
force from the density on F. 1In fact, because of the way

we héve correlated this orbital with the separated atoms,
this would suggest that charge has been transferred from B
to F. The orbital is evidently delocalized in the bond
region, as seen from the overlap forces, being the least

so for N, because of the nodal property of a 2°u orbital.

In the present scheme, the orbital is net binding at B

and C, and net antibinding at N, O, F. For the latter three
nuclei, the total forces are negative and therefore fall short
of the non-binding shielding value of 2.0 (1.0 for N).

The 50 orbital is the "mirror image" of the 30 orbital
as much of the charge is now localized on the light nucleus.
Therefore, the shielding increases in going from B to F. The
overlap force is maximum at N and minimum at F, where it is
in fact negative. A negative overlap force is also exhibited
at 0. The reason for this behaviour can be found in the
large backpolarizations of atomic densities on B and C. 1In
the density discussions, we have already indicated that for

these two nuclei, the atomic densities in the molecule are
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more diffuse behind the nuclei than in the free atoms.

Thus charge removal must occur in the bond region, especially
near the heavier nuclei, via the agency of overlap in order
to enhance expansion of density behind the nuclei at the
other end of the molecule. This is then reflected in the
signs of the overlap forces. There is charge delocalization,
nevertheless, onto the heavy nuclei. The shielding forces
at E and C indicate the delocalization is actually larger
than for the 30 orbital. For this latter orbital, the

charge density was atomic 252 situated mainly on O and F, so
that one would not expect'it to be appreciably delocalized.
The 50 orbital must involve po atomic character of density

on the light nuclei as indicated by the large negative atomic
forces for these. As a result of these, the orbital is anti-
binding at B, C and N. At O and F the orbital is essentially
non-binding, the principal contribution to the force being
from shielding effects of density at the other nuclei. The
orbital is therefore considerably iess binding than the 3¢
orbital, which has most of the charge situated on the opposite
end of the molecule.

The 17 orbital is distinguished from the o orbitals
by a nodal plane in which lies the iﬂternuclear axis. This
has the effect of introducing undershielding of w densities
which are by symmetry requirements situated perpendicular to

the internuclear axis. The maximum total force occurs at B,
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decreases to a minimum at F. The principal cause of this
trend is portrayed by the shielding force, which although

1s undershielding because of the geometrical nature of =
densities, nevertheless contributes mostly to the force at
the light nuclei. The overlap and atomic forces are small
compared to these. Maximum overlap occurs at N,. The
ove;all picture is then of a density distribution which
becomes polarized towards the more electronegative element.
Yet the overlap forces are equal at both ends of the molecule.
Finally, the orbital is slightly antibinding at B, essentially‘
non-binding at C and binding at the other nuclei, the

net binding increasing in the direction towards F.

3.4 Spectroscopic Considerations

The above attempt at an orbital force analysis runs
into some difficulty whenever an absolute correlation of
molecular orbitals with separated atoms is not feasible, BF
being one example. We have made it a point to retain the
simple valence-bond picture of bond formation, by insisting
on single occupancy of the po orbitals of the separated atoms.
In the case of BF, dissociation of the molecule as seen from
the atomic orbital energies in Table 3.1 would predict the
separated atoms to be in the configurations B(2s22pml)

and F(2s22po22pm3). This corresponds to the M = t1 components

L
of the 2P atomic ground sfate of these, as opposed to the

ML = 0 component of that same state inherent in the valence-
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bond picture. 1In order for this last picture to be
operative, one would have to invoke crossing of the 2p0B
and ZSB components of the 40 and 50 orbitals as shown in

the following diagram:

2pg _‘:\\
\ \\\ 502
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Since we adhere to the valence-bond picture in correlating
the molecule with the separated atoms, some degree of
arbitrariness is therefore imposed on the assignment of netw
binding properties of the MO's, properties defined with
respect to the separated atoms. One might have expected
this arbitrariness since using orbital fi values in an
interpretive scheme violates a desirable tenet of any
acceptable interpretive approach, namely invariance to
orthonormal transformations. The usefulness of the MO's
resides nevertheless in the fact that when they are calcu-
lated by the Hartree-Fock method, the orbital energies are
to a first approximation the ionization energy (Koopman's

(127)}‘

theorem One can also on qualitative grounds, assign

(78,128)

bonding powers to these . Such facility in correlating

spectroscopic features is not displayed by locaiized



107

(129)

equivalent orbitals since removal of an electron from

a molecule, for instance, comes from all over the molecule
and not from a particular localized region of space(l3o).
In order to pursue any possible correlation between orbital
forces and spectroscopic properties of these for a molecule
such as BF, an approach will be tried which puts less
emphasis on the correlation with the forces from separated
atoms. The previous analysis is still quite meaningful for
N, and CO where the correlations derived from both the MO
and valence-bond methods can be made to coincide without
the difficulty of level crossing, by virtue of the relative
energies of the atomic orbitals of the separated atoms being
just right for such a correlation.

Concerning the usqal bonding powers of these higher
orbitals, we have noted before that upon ionization of a
50 electron, BF and CO undergb a bond length decrease of
3.3% and .9% respectively whereas N, upon loss of the
equivalent electron, namely 30g+ undergoes a bond length
increase of 2.7%. Before remarking on the significance of
this, it must be realized that the ions, other things being
equal, are expected and observed to have usually shorter
bond lengths than the uncharged molecules due to the
contraction of the orbitals by the excess nuclear charge,

(76)

i.e. due to less shielding. Robinson has used a standard
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arbitrary 4% correction due to this ion effect in the study
of bonding powers of MO's in isoelectronic series. Thus

he is able to show that the bonding ability of the 50 orbital
decreases as the electronegativity difference or polarify
increases, and furthermore, that the bonding power of the
2g, orbital in Ny is approximately half of that of the

40 orbital in CO. The general conclusion is that for homo-
nucléar molecules 50 is more strongly bonding that 4¢ but

as the electronegativity difference between the atoms
increases, 40 becomes more strongly bonding. A knowledge

of the orbital forces should allow for an even more direct
-physical interpretation of the ionization process. The
removal of an electron from an orbital whose electron
density exerts a force drawing the nuclei together should
result in a decrease in the total attractive force in the
ion and thus to an increase in Re. The use of orbital
forces in this way was first suggested by Berlin and applied

(131) .na by'Hurley(132). These

by Clinton and Hamilton
authors made the assumption that the forms of the orbitals
remain unchanged during the ionization process. This
simplification termed the rigid orbital hypothesis by Hurley
is appealing as the net force of repulsion or attraction
resulting from a vertical ionization will be simply one-half

of the original force exerted by the pair of electrons in

the ith MO.
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Within the rigid orbital approximation, one can
define a net force change, resulting from such an ionization,
more explicitly. This will thus give us a measure of the change
of the binding effect of an orbital. The definitions of

bonding and antibonding, which are derived from energetic

considerations and nodal characteristics of the molecular
orbitals correlate remarkably well with the empirical defi-
nitién regarding observed changes in bond length which

accompany the removal of an electron in a diatomic moleculesflzs)
In order to compare binding charactetristics and see if these
correlate with bonding characteristics we define a Afj,
corresponding to the change of force arising from the removal
of an electron out of a possible nj; electrons in the orbital
i. The net force which will tend to pull the nuclei together
or apart is the result ofvthe sum of Fhe forces operative

at each nucleus. If the forces at both nuclei are positive,
i.e., pointing into the bond, then they will pull the nuclei
together. The net force is defined by (ZAf?+ZBf?), where 2,
and ZB are the nuclear charges at A and B, f% and f? are

the force per unit charge experienced by these nuclei
respectively. The definition has meaning with respect to
some arbitrary fixed point from which one views the motion

of both nuclei at the same time (the point could be the

center of mass as an example). Ionization reduces this

net force by the factor 1/nj, since we are ionizing one
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(RIGID ORBITAL APPROXIMATION)

Table 3.5
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Molecule State ?gﬁi;gé Af; (g?gé?gted) Exptl.ARg/Rg

N, xzz; 309 -1.05 + +1.9
A%Mu 1mu -8.516 + T2
BZZZ 200 +3.241 - =3 .0

co x2zt 50 -0.821 4 ~0.9
A%l 1m -8.062 + 9.6
B2r* 40 +1.367 - +3.4

BF x2y ™t 50 -1.508 & o 3R
A%l im -6.752 + -
B2r” 40 + -

=1,287¢

a) This result is somewhat questionable in view of the

experimental uncertainties (see Ref. 76).

We thank

Dr. P. E. Cade for pointing out this uncertainty.
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electron out of nj. Afj therefore becomes

Afj = %%

[2,£5 + 2,51 (3.23)
If the net'force is positive, then the resulting force

upon ionization has been reduced by the amount Afj. A
negative Af; therefore implies a decrease in force, and
hence a bond lengthening; a positive Af; implies an increase
. in fbrce and therefore a bond shortening, since positive

- forces are defined as bein§ attractivg. The Af;'s and the

ARe's in Table (3.5) agree well with the experimental ARe's

for N3. In the case of CO and BF, the 40 and 50 orbitals

do not agree as well. As Bader et al(ss)

have shown, there
is considerable reorganization of the charge density in
orbitals other than the ones involved in the ionization
process. This proble@ they have nicely discussed for some
of the ions, both positive and negative, of N, and 0j3.
Contraction of the orbitals and hence bond shortening
occurs, but not regularly for each orbital. This is demon-
strated by an increased binding of the remaining skeleton
for positive ions as compared to the neutral molecule.

The 50 orbitals in CO and BF indicate that this contraction
nccurs for the ion as seen from their Af;'s. The 40 orbital
in CO is predicted to decrease the bond length upon loss of.

one electron, whereas experimental results indicate the

opposite effect. As this loss comes from an orbital the
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density of which is extremely backpolarized at the oxygen
(atomic force of -2.8), the experimental result suggests
considerable reorganization of-charge which will tend to
pull the nuclei apa;t even more than such an orbital density
did in the neutral molecule. The 7 orbital Afj's correlate
very well with the experimental results. As is well known

(133) but not generally appreciated

by qiatomic'spectroscopists
among chemists, 1lm is a more effective bonding orbital than
50 . This has been discussed theoretically in terms of
overlap populations, as a bonding criterion, which in the
last analysis Mulliken admits has no theoretical foundation

(134). The Af;'s demonstrate

and is fallible in extreme cases
the binding characteristics to be in agreement with the
experimental predictions, and therefore support the bonding
properties of this orbital. In the ionization of a
electron there is considerable ihcrease of the bond distance
and this is fairly independent of bond polarity. This
independence of polarity may be understood if one remembers
that the m-bond behaves iike.a'covalent bond as far as the
overlap forces are concerned, as seen from the equality of
these forces at both nuclei in the same molecule (Fig.(3.6)) .
The increased polarity of the 1lm orbital is evident from the
shielding forces. However, the increasing nuclear charge

in going from N to F enhances any forces resulting from

polarizations and overlap densities situated at these nuclei,
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and thus equalizes to a large extent the Af;'s. The result
is that orbital polarities as defined from population

analyses(104)

which reflect integrated charge densities
associated with a particular atom, are not able to interpret
the insensitivity to polarities of the bondipg powers of
the 1lm orbital. It is the forces'operative in the molecule
from which one can predict Afj's (preferably with non-rigid
orbi£a1 wavefunctions of the ionized molecule also), which
are a cause for the similari;ies of the binding (and
bonding) characteristics of the 1lm orbital.

The usual picture of localized "lonepairs" is not
so evident using a force analysis. Energy considerations
seem to indicate the existence of such isolated entities.

(135} long ago pointed out that

For instance, Mulliken
discrepancies between free atom ionization potentials and
"lone pair" ionization potentials in molecules can be
reconciled simply by invoking electrostatic interactions
(dipolar and charge transfer). Absence of vibrational
structure on some Rydberg series and in photoionization

has been often cited as evidence(136)

for the presence

of such nonbonding electrons. The force analysis suggests
that such entities do not exist as isolated in view of the
presence of sizable contributions from overlap and shielding,

indicating delocalization. The largest backpolarization

seems to come with largest overlap. This appears at F and O
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fin the 40 orbital, implying significant hybridization in
the chemical sense but also a fair amount of delocalization.
This is consistent with the recent population analysis done

by Davidson(104)

on these same molecules, where it was
shown that more electronegative element has the larger
degree of hybridization in each case. Although the back-
polarizations are large for the heavy nuclei, the exact
disposition of these charges can best be inferred from the

-

density and density

b

difference diagrams. Irn fact, 1t was

shown in the previous chapter, that for the heavier uuclel,

atomic radii for densities situated on them are virt ally

identical to the radii of free atoms. This then demonstrates

aes

e

that the charge accumulated behind the heavy nuclei res
in a region close to these. The increase in charge .n that

region is slightly lzarger for F than for 0. ‘The relative

position as gauged by the magnitude of the atom.c and
overlap forces suggests that for O the displacements of

charge occur much closer to that nucleus. The amcunt of
charge disr.aced behind the two nuclei O and F whicl 1is
0.18 ard 0.20 respectively is not in accorc witi: the usual

large displacements associated with isclate? "loro zairs ',

At the other end of the molecules CO eunc BI', tcthe

“ensities Indicsted also charge transfer behind ¢h« aclel
and =T nz macgnitude of which was equal for N, C: .13 and 1s at

0.21. The Jdifference in disposition of thaosa iz



115

characterized by the increased diffuseness of these charges,
thus correlating with the decreasing nuclear charge as one
goes from N to B. For C and B, the "lone pair" is normally
associated with the 50 orbital. Interestingly enough, at

B, for this orbital there is less overlap and less back-
polarization as measured by the forces. Furthermore, the
overlap force at F for this orbital is more negative than
at O; indicating more charge removal from near the F nucleus
as compared to 0. This therefore substantiates the infor-
mation obtained from the density maps, that the charge
accumulated behind B is placed farther away behind that
nucleus than behind C for CO. Thus, in this series, the
lightest nucleus has the most diffuse backpolarized charge
and is disposed farthest away from the binding region.

This sort of behaviour is further substantiated by a recent

(137) on some excited states of BeO

calculation of Huo
where it is shown that the 50 orbital displacement away

from the nucleus is strongest in this molecule because of

the largest ratio <2>50/R, as compared to CO, BF, NO and

CN. This is most likely due to BeO being the most hetero-
nuclear of the series. Such "lone pair characteristics”

of the 50 orbital is also predicted by qualitative MO
theory(138). The density map analysis shows that this latter

approach exaggerates the amount of charge placed behind the

nuciei° The importance of this backpolarization depends on
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the nuclear charge at which this occurs.  For in terms of
forces, the larger the backpolarization force f£; and the

larger the nuclear charge, the greater is the antibinding

of the 50 orbital. This will then influence the stability
of a molecule considerably. For LiF, for instance, one can
predict the 50 density to be still more diffusevbehind Li
than behind Be in BeO. However, in view of the small
nucléar charge of Li, there probably will be little effect
on the stability or instability of the molecule. The more
important aspecf to be considered then, will be the previous’
localization of this density.

In summary, a comparison of the partial forces on
A and B for a particular orbital can provide a quantitative
comparison of the effectiveness of this orbital density in
. binding the nuclei. From Table (3.5), the 40 orbital can
'be seen to be more binding as one goes from Ny to BF. This
is supported by the decrease in the Afj values for that
orbital in going to BF, The 40 orbital, therefore, although
strongly antibinding for N, as seen from Fig.(3.4), changes
binding characteristic at BF. For this molecule, ARy should
be quite large upon loss of one 4¢ electron. The 5¢ orbital
is more difficult to characterize. The localization of
density on the light nuclei B and C is not complete, less

so than for the 30 orbital for instance., The 5¢ orbital is



117

always strongly antibinding with respect to nucleus A but

goes from moderately antibinding‘in N2 to essentially
nonbinding at O and F. Thus one may classify

the orbital as being totally an antibinding orbital. This
would agree with the experimentally observed bond length
decrease for CO and BF upon loss of such an electron
through ionizationf The 1lm orbital is seen to be in
general binding both from the Af;'s in Table (3.5) and

the orbital forces in Fig.(3.6). It appears to be a
characteristic of this orbital that the m density is
polarized in a direction counter to the direction of charge
transfer in the o distribution as demonstrated by positive
atomic forces and nearly equal overlap forces at both
nuclei in the molecules for the m density. This is, therefore,
the primary cause for its binding character being prevalent
in these molecules.

3.5 Interpretation of LiF and BeO

In the previous cbapﬁer on densities, these two
molecules were shown to have quite different density distri-
butions as compared to N, CO and BF. Trends displayed by
thisilatter series were found to go the opposite way for LiF
and BeO. The distinctive features for these were the
tightening of density at Li and Be, small regions of charge
transfer behind these nuclei in addition to some charge

removal in front of these. Charge transfer to the heavy
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Table 3.6
Forces on Li in LiF Re = 2.8877 a.u.
8.0 MO fi (R=w) fi (Re) A o S
152F lg 2.000 2.000 0.000 0.000 2.000
1s2Li 20 0.000 -0.338 -0.418 0.076 0.004
252F 30 2.000 1.955 -0.071 0.038 1.987
2SLi2pO; 4g 1.000 1.994 -0.297 0.095 2.197
2pn; 1n 4.000 3.503 0.019 0.251  3.233
Totals : 9.000 9.115 -0.766 0.460 9.421
ionic case(LitF-) 10.000 -1.000 0 10.000
Forces on F in LiF
a.o. MO £3 (R=%) £; (Rg) A 0 S
1s2F 10 0.000 0.185 0.184 0.000 0.000
1s2Li 20 2.000 2.006 0.007 0.030 1.969
2s2F 30 0.000 0.595 0.468 0.115 0.014
2sLi2p0% 40 1.000 -0.378 -1.141 0.753 0.044
2pn; 1m 0..000 0.602 0.412 0.171 0.019
Totals: 3.000 3.045 -0.070 1.069 2.046
ionic case (1itr™) 2.000 1.000 O 2.000




TABLE 3.7
FORCES ON Be IN BeO Re = 2.50 a.u.
";.o. M. O fi(R=w) fi(Re) A 0 S
1s§ 10 2.000 2.000 0.000 0.000 2.000
1s2_ 20 0.000 ~0.722 -0.769 0.046 0.000
282 30 2.000 2.059 -0.240 0.323 1.976
252 4o 0.000  1.684 -0.455 0.569 1.570
2pnd 1T 4.000 3.019 0.072 0.550 2.396
Totals 8.000 | 8.040 -1.391 1.488 7.943
ionic (Bet?07?) 10.00 -2.000 0.000  10.000
FORCES ON O IN BeO
a.o. m.o. fi(R=>) fi(Rg) A 0 S
lsg 10 0.000 0.320 0.320 0.000 0.000
1s§e 20 2.000 1.994 0.000 0.013 1.981
252 30 0.000 1.306 0.835 0.427 0.045
2s§e 40 2.000 -0.815 -2.768 1.784 0.168
2p" & 1m 0.000 1.235 0.521 0.536 0.178
Totals 4.000 4.041 -1.092 2.760 2.372
202 +2.000 0.000 2.000

ionic(Be+ 0 “) 2.00

6TT
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nuclei O and F was also put in evidence by the Ap maps,
the transferred charge being distinctively separated from its
original nucleus for LiF but less so for BeO. 1In view
of these features, one can expect that a force analysis
will further accentuate these charge‘transfer effects, for
instance, by deshielding or overshielding of nuclei, small
and %arge overlap forces, and finally back and forward
polarizations arising from transferred charge.

In Tables (3.6) and (3.7) are listed the orbital
contributions to the forces, with further subdivision
into atomic, overlap and shielding components. The appro-
priate correlations of the MO's with the various separated
atom orbitals are indicated, with theit corresponding f; (=),
the effective electronic charge seen from one nucleus, for
the separated case. The orbital contributions are further
displayed graphically in Fig.(3.7) to (3.9) in which has
also been included the forces for the covalent isoelectronic
analogue C,. The discussion of this molecule via density
and force analyses has been reported previously by Bader

et a1(33 (14

. The forces have also been discussed for LiF
before. LiF is reconsidered here along with C; for completeness
and also more extensively, as emphasis will eventually be put
on force constants and field gradients. The lo and 20

orbitals, corresponding to 1s2 density on the heavy and

light nuclei respectively as seen from the shielding forces
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(see tables), demonstrate new features of the atomic
polarizations at Li and Be. The 1s2 atomic densities are
polarized behind these nuclei whereas' at the heavy nuclei O
and F, these are polarized into the bond. 1In the series
N,, CO, BF, all inner shells are polarized forwards.
The backpolarizations of atomic densities at Li and Be
are greatest for the 1s2 density, which is in the 2¢
orbifal. These correlate with the increase in charge
behind Li and Be as displayed by the density difference
maps, using both neutral and ionic species as the separated
constituents.

The 30 orbital, as seen from Fig.(3.7) indicates
large localization of the charge at thelheavy nuclei,
corresponding to Zs’densities from the orbital correlations.
The shielding fi's at Li and Be are very close to
the separated atom value of 2.0. The magnitude of these
decreases to zero at F, indicative of nearly complete
localization of this density in the heavy nucleus. The
overlap contribution is maximum for the most covalent
molecule, C,, decreasing to zero in LiF. There is a small
overlap c¢ontribution at both nuclei in BeO. The charge
localization is thus less perfect for BeO as compared to
LiF. Delocalization is maximum for Cy. The characteristics
of the 30 orbital for the series N3, CO, BF were the same

as for Cy. 1In passing to BeO and LiF, this characteristic
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of maximum delocalization and concentration into the bond
region is reversed by virtue of the high electrostatic
‘field of the nuclei O and F. The 3¢ density therefore
acquires 2s atomic character centered on the heavy end for
the molecules BeO and LiF. The orbital as a result of this
is most binding for C3, binding at O and F, and essentially .
nonjbinding'at the light nuclei Li and Be.

The 40 orbital demonstrates increased shielding
of the heavy nuclei when viewed from the light nuclei, and
decreased shielding of the light nuclei when viewed from
the heavy end of the molecule. Cy, which is the limit’
of the average of these two tendencies, indiéates slight
deshielding of the nuclei. Overlap effects are largest at
the heavy nuclei, being negative only for Cs. Large
atomic backpolarizations of density situated at O and F
is indicative of the presence of poc atomic character. This
effect is largest at O for which the largest shielding
changes occurred also. The overall picture for this orbital
is that for the unsymmetficél molecules LiF and BeO, there
has been large transfer of charge from the electropositive
end of the molecule to its electrohégative end. The
transfer is most complete for LiF for which one has nearly
vanishing shielding and overlap contributions from density
on the Li nucleus. At Be, there is still some charge

left as indicated by its small overlap and shielding effects.
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In the case of C,, the trend is motion of charge away from
the internuclear region and motion behind the nuclei. As
a result of this, the 40 orbital is strongly antibinding
for the C; molecule. The binding character increases
dramatically at Li and Be, and decreases in the same fashion
at O and F, as a result of charge transfer having occurred
from one end to the other.

The 1lm orbital, as in the previous group of molecules
N2, CO, BF, puts in evidence the typical undershielding of
its charge density. The shielding contributions to the
binding change drastically in going from Li, through Be
and O, to F. The asymmetry in charge disposition is thus
displayed effectively by this trend, so that one concludes
that the 7 bond is most polar in LiF but less so in BeO.
The overlap fi's arising from this density is equal at
both nuclei in the same molecule, a feature displayed by
the 1m orbital of the previous group of molecules studied.
At Li, the atomic and overlap densities are vanishingly
small as they contribute little to the corresponding £f;'s.
The atomic f; at Be is also negligible but there is a larger
overlap contribution, abou£ half of that in C2. This
indicates transfer of 7 density from the O atom towards
Be, as further amplified by the rather large undershielding
~of the O nucleus by its own density. The effect of this

transfer or "back-donation" of 7 density was made evident
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in the total density map for the BeO molecule, in which it
was noticed that a tight Be core was engulfed in a very
diffuse envelope of density. We thus see again the easy
correlation one can make with density distributions and

the forces binding a molecule. These correlations will

also enter force constant discussions, in which the response
of these densities to nuclear diéplacements will determine
the magnitude of these constants via changes in the forces.

3.6 A Comparison of Covalent and Ionic Binding

The concept of the ionic character of a bond is rooted
in the language of valence-bond theory, the percent ionic
character being related to the relative weighting of the
wavefunction for the ionic structure to that for the
covalent structure. Relating this concept to the parameters
in an approximate wavefunction makeé it difficult to give
an exact mathematical or physical interpretation to it.

The inadequacies of past definitions of partial ionic

character have been detailed by Shull (139)

. The original
purpose in defining ionic and covalent character and the
closely related concept of electronegativity was to obtain
by empirical methods some crude estimate of how the valence
electrons were distributed or shared in a molecule. 1In
this sense the use of the words ionic and covalent was
predictive in nature. Since the electron density can now

be calculated with some precision it might be argued

4
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that the concept of the relative ionic-~covalent character of
a bond could be discarded. The physical property of interest
is, after all, the electron density and not the wavefunction.
However, the terms ionic and covalent are still useful in a
descriptivé sense when they are defined in terms of the density
distribution and its dependent properties. In what follows,
we dgfine the terms ionic and covalent via the density
distributions and the <r—2> moment of these, corresponding
to the forces ‘which the density exerts on the nuclei. These
definitions will parallel to some extent previous definitions
based on observables which are determined by the one-electron
density. For example, the first moment <r> partitioned into
components along appropriate axes gives the dipole moment
of the charge distribution and thus offers another definition
of ionic character based on the ratio of the observed to
the ideal dipole moment(86). These same definitions will
obviously exclude any definition of ionic character which
does not result in an actual asymmetry in the calculated
charge distribution. For example, our approach would not
ccnsider Hyp as partially ionic, as opposed to the valence-
bond theory where one introduces structures such as H'H .
The problem of defining partial ionicvcharacter directly
in terms of the orbital components of a wavefunction has
(140)

been considered by Shull . His analysis is in terms

of the natural orbitals, which as pointed out in the general
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introduction, have invariant properties for a given system,
independent of the basis set. This method is absolute in
the sense that no comparison is made between the moleucle
and its constituent atoms. One still has the problem
of partitioning the electron space via weight factors in
"order to correlate diverse phenomena such as bond energies,
force constants, etc. Our weight factor in this discussion
is tﬁe force operator which helps characterize the densities
and density differences in a systematic way.

The regions of charge increase in the Ap maps are
the regions to which charge is transferred to obtain a
state of electrostatic equilibrium in the formation of a
chemical bond. As pointed out in the previous chapter,
they may be regarded as providing pictures of the "bond
density". Thus, it is natural to characterize the bond
according to the location, relative to the nuclei, of the
charge increase which binds the nuclei. TheAp maps
(see Fig.(2.2)) for the homonuclear diatomic molecules
N2 and Cy exhibited an increase in the charge density
symmetrically placed in the binding region. It is the
force exerted by this shared density which binds the
nuclei in these molecules as it represents the increase in
the density relative to a distribution which does not place
sufficient density in the binding fegioﬁ to balance the force

of nuclear repulsion. Thus the definition of a covalent
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bond is one for which the Ap map exhibits a density increase
which is shared equally by both nuclei. The nature of the
charge increase in the binding region found in the Ap

maps for CO and BF were very similar in appearance to that

of N,, except for amore diffuse charge relocation behind

" the C and B nuclei. In the case of CO, this diffuse density
beh?nd C as opposed to the tighter density behind O will

make it easier for the C end of the molecule to donate

density to some other atom such as a transition metal. Because
of the still more diffuse charge density behind BF, on the
basis of the density diagrams, one would predict that BF would
be a stronger ligand than CO. As stated succinctly by

Moff it (141)

, this means that this density is therefore nicely
suited,»sterically, for combining with groups which approach
the molecule. The rearrangement of the CO system after loss of
a 50 electron results in a configuration which has a shorter
bond length than the ground state, as discussed previously.
As much of the diffuseness of the density comes from this
orbital, then donation of such an electron to some other
nucleus will be assisted by the rearrangement, as there is

a reduction in "activation energy" for the "transition
state", i.e. the ingipient polyatom, made evident by the
rearrangement of the CO skeleton. For loss of the 50(309)

electron in Nj, there is bond lengthening, so that the

rearrangement is not quite favourable for electron donation.
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For BF, the rearrangement is in the same direction as CO

but even greater so that this would tend to increase the
stability of a ligand-metal complex with BF as the ligand.
This prediction for BF is however incomplete as the density
difference maps indicate there is a tendency for the

B nucleus to also attract charge to it (notice the appearance
of m density at Bj. These twb'effects therefore support

the experimentally known fact that BF is the most reactive
-of the series N5, CO, BF.

The nature of the charge increase in the binding
region found in the Ap map for LiF is distinct from that
found for the homonuclear diatomic molecules, in addition
to CO and BF. The Ap map for LiF exhibits the characteristics
of ionic binding as defined by: (1) a transfer of charge
from one atom to the other, the charge increase being
localized on one atom as indicated by the fact that the
positive contours are approximately centered on one of the
nuclei and the region of increése is bounded by a zero
contour which encompasses only a single nucleus, (2) a
polarization of the density increase localized on the anion
and of the density remaining on the cation in a direction
counter to the direction of the charge transfer. This last
characteristic is a direct consequence of the extreme
localization of the valence charge density on a single

nucleus, which exerts a net attractive force on the other
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nucleus. Thus, the density in the immediate vicinity

of the Li nucleus must be polarized away from the F nucleus
to counterbalance the net force of attraction exerted by
the density transferred to F. These polarizations are
evident in the Ap maps for LiF and BeO. BeO is somewhat
different than LiF since the complete separation of charge
is got as evident. The reason for this difference is the
delocalization of the 1w density from O to Be as discussed
in the forces for that orbital.

The distinction between the characteristic of ionic
and covalent binding may be made more quantitative by
comparing the nature and magnitude of the contributions to
the electronic forces in the two limiting cases. If we
make a tentative identification of the localized and shared
charge of the density difference maps with the atomic
and overlap populations, respectively, we may restate the
definitions of covalent and ionic binding in terms of the
atomic, overlap and shielding contfibutions to the forces.
In the formation of a covalent bond the buildup of a large
overlap population or shared density between the nuclei
results in a deshielding of both nuclei. This deshielding
results in a net force of repulsion ;cting on the nuclei,

2 force which is counterbalanced by the attractive force
exerted by the overlap density. In Fig. (3.10), we

present the overlap density for N One sees that

2-
the effect of overlap is to concentrate



TABLE 3.8

Total atomic, overlap and shielding contribution to the forces

AB Atomic Overlap Shielding Unshielded Nuclear Totalsa)
; g1 (AR g g (BB} g gy (BB) g _SParde (gp) T fi
1 i i AT¥ 1 i

NN -1.943 3.853 5.136 1.864 7.046
co -2.508 3.154 7.466 0.534 8.112
BF -1.451 1.515 9.008 -0.008 9.0%72
B+F- -1.000 0.000 10.000 -1.000 _

¢ C -0.735 2.198 4.523 1.477 5.986
BeO -1.391 1.488 7.943 0.057 8.040
Bet++0= -2.000 0.000 10.000 -2.000

LiF -0.766 0.460 9.421 -0.421 9.115
Lit+F- -1.000 0.000 10.000 -1.000

N N -1.943 3.853 5.136 1.864 7.046
ocC - -0.398 2.586 3.884 2.116 6.072
F B -0.189 1.966 3.259 1.741 5.036
F-Bt +1.000 0.000 4.000 1.000

¢ C -0.735 2.198 4.523 1.477 5.986
0 Be -1.092 2.760 2.372 1.628 4.040
0=Bet+ +2.000 0.000 2.000 2.000

F Li -0.070 1.069 2.046 0.954 3.045
F-Lit 1.000 0.000 2.000 "1.000

a) The small deviations of these numbers from Zg values are indicative of the
degree of accuracy of the Hartree-Fock wavefunctions.

PET
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charge symmetrically in the bond region and also aid
remqval of charge from behind the nuclei. In a covalent
bond, it is the force exerted by this overlap or shared
density which binds the nuclei together. To determine

how closeiy the density in a covalent bond meets‘the above
requirements we have assembled in Table (3.8) the total
atomic, overlap and sﬂielding contributions to the forces
for the molecules considered in this work. In the case

6f the separated atoms, the total shielding contribution

is equal to Z the nuclear charge, and the atomic and

A’
overlap contributions are zero. The difference between ZA
and the total shielding which is also listed is a measure

of the amount of nuclear charge présent in the molecule
which is no longer shielded by the atomic density distri-
fbutiohs. The deshielding of the nuclei is a result of the
distortion of the atomic charge distributions and of the
migration of charge to the region of overlap. There is,

in fact, a correlation between the amount of descreening and
magnitude of the overlap contribution to the force. Both

of these guantities increase to a maximum at N and then
decrease through CO, BF when the liéht nucleus is considered.
The same trend holds for Cy, BeO and LiF. When considered
at the heavy nucleus, slight anomalies in the shielding |

at O in CO and BeO occur (there is more deshielding of the

electropositive nucleus than the trend would suggest). In
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the series'Nz, CO, BF, the overlap is smallest in BF, suggesting
decreasing covalency for that molecule. The total increased
shielding of the F nucleus supports this conclusion. On
the other hand, the near equalitg of overlap contributions
at both nuclei in this series is further evidence that Ny,
CO, BF are to be considered covalent. The atomic contributions
provide a quantitative measure of the antibinding effect exerted
by éhe nonbonded density increase. In every case except LiF,
the overlap contribution is greater than the deficit created
by the deshielding of the nuclei and the excess attractive
force exerted by the overlap density is balanced by the
negative atomic force contributions. The net force of
attraction which binds the nuclei is exerted by the overlap
or shared density for the molecules N, CO, BF, C, and BeO,
so that these would be considered covalent.

In an idealized model of an ionic bond, there is no
overlap or shared density and no corresponding force contri-
bution. Instead, the complete transfer of charge will
increase the shielding contribution of the anion and decrease
that of the cation. These values are listed for the bracketed
ionic structures of the molecules BF, BeO and LiF. The
increased shielding of the anionic nucleus exerts a net
force of attraction on the cationic nucleus. As noted
earlier, this force is balanced by a negative atomic force

which arises from a polarization of the density remaining on the



l

137

.cation. The net force of repulsion acting on the anionic

nucleus because of the charge transfer is in turh balanced
by a positive atomic force term. Ideally, one would wish
to calculate the contributions to the forces based on a
partitioning of the charge in the manner indicated by the
density difference diagrams, rather than by an orbital
population analysis. The partitioning of the charge as
sugéested by the density difference diagram is determined
by the total distribution of the charge in the molecule, -
while the partitioning based on a population analysis

will change with a change in the orbital basis set. If

 the density distributions employed are Hartree-Fock densities,

i.e., correct to second ordeé}4§%en the density difference
diagrams should remain unchanged regardless of the nature
of the basis set used in the expansion. We can obtain an
estimate of the force contributions as determined by the
density difference maps for the ionic case by using the
information contained in these maps'to reassign the force
contributions obtained from the population analysis. The
density difference map suggests thét the valence charge
density is transferred in the formation of LiF is localized
on F within the zero contour enveloping the F nucleus. Thus
in this case the overlap population should be added to the
atomic population on F and the forces exterted on the nuclei

by this combined density equated to that exerted
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by the density localized on F in the density difference
map. The overlap forces are relatively small in any

event for LiF and are larger for F than Li, reflecting

the fact, as shown by the overlap density map in Fig. (3.10)
that the density lies within the charge increase localized
on F. Thus ‘the sum of overlap and atomic contributions

at F is indeed 1.00 in accord with the atomic value for
the ionic structure. At Li the overlap is not enough to
override the atomic backpolarization. In fact, since the
overlap density map indicates nearly symmetrical charge
removal around Li, then much of this contribution at Li
must come from the overlap density closer to F. Thus, one
could add the overlap and shielding forces at Li, the
result being 9.88 which approaches the ionic value of
10.00. The signs of the atomic force term at Li and that
of the sum of overlap and atomic forees at F indicate the
densities on both Li and F are polarized in a direction
counter to the direction of the chérge transfer as required
for electrostatic equilibrium. In the case of BeO, the
distinction between covalent and ionic character is not

as clear cut, as a result of the zero contour encompassing
poth nuclei. The reason for this larée delocalization

has already been noted in the discussion of the 1w orbital
forces for that molecule, where it was shown that the

overlap force was equal at both nuclei, an indication of
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equal sharing of the orbital density. In fact, this
behaviour was found for the 1lm orbitals of all the molecules
considered in this work, but the magnitude of the 1w

overlap forces for LiF were small compared to the other
molecules. The total overlap'density for BeO is illustrated
in Fig.(3.10) It can'be seen that there is delocalization
of this density in the 7 region of the Be nucleus. However,
the ﬁajor part of the density is localized on the O nucleus,
with strong po character evident. This suggests that one
should consider this density localized on O, the same as
was done for F in LiF. The force resulting from adding

this overlap density to the atomic density is 1.67. The
expected force contribution for the ionic case Be++0= is
2.00 at O, i.e., the amount of polarization force in the
forward direction required to counter the nuélear repulsion
from the net positive force of 2.00 experienced by the O
nucleus from Be++. We can sihilarly add the overlap and
shielding contributions at Be. This gives a total force of
9.43 as compared to 10.00 for the ionic case. Although

we are somewhat short of the proposed structure Be++0=' the
Ap map along with the overlap density map and the forces
suggest that the overlap'deﬁsity is better considered as
being localized on O. Such an association is not easily

done for BF, but since many of the features of this molecule

as seen from the Ap map parallel those of BeO, it is evident
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that ionic character is present to a large extent. The
electropositive ends of the molecules BeO and BF are also
quite similar from a force analysis standpoint. There is
nearly complete shielding of the heavy nuclei O and F.

The binding at Be and B come from the overlap force, which
can be considered as mostly charge situated on the heavy
nuclei. The increased shielding of the heavy nuclei is

an ihdication these are approaching electrostatic binding
which is associated with ionic character. The main dif-
ference between the two resides in the fact that the B
atomic density contains p character and there is a tendency to
attract mdensity towards B from the other end of the
molecule, more so than Be in BeO. The large region of
charge depletion behind Be is very similar to Li and LiF,
hence reinforcing the ionic status of Be in BeO.

Thus, in ionic binding both nuclei are bound by the
charge localized on one of them. This is clearly examplified
by LiF. For Beo; the case is not as clear cut, but from
the density difference maps, it is evident much of the charge
increase is to be associated mainly with the O nucleus.
Therefore, BeO is largely ionic in character by the above
definition. Iﬂ covalent binding, as represented by the
homonuclears N3 and Cp, the nuclei are bound by a density

increase in the bond region which is shared equally between

them. For/CO, this density increase is slightly polarized
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towards the O nucleus, as seen by the slight asymmetry
displayed by the Ap map. Nevertheless, it is still this
same density which binds the nuclei, so that CO must be
classified as distinctly covalent. BF represents the
intermediate case, as a result of incomplete charge
transfer to one end of the molecule. The density trans-
fer;ed towards the F nucleus is essentially localized on it.
This is demonstrated by the increased shielding of that
nucleus by this density. For a covalent molecule,

deshielding would have been expected. There is also

a fair amount of charge placed behind the B nucleus. This
is, therefore, indicative of covalent behaviour. Thus,

we have the result for BF that the electropositive end of
the molecule shows covalent tendencies, whereas the
electronegative end indicates ionic tendencies.

It can be argued that the breakdown of a total
electronic force into atomic, overlap and shielding contri-
butions is not unique, nor fundamental. This partition
was made feasible by the separation inherent in the
L.C.A.0. approximation of Hartree-Fock wavefunctions. In
the case of LiF, it is possible to associate the charge
transferred with the F atom from the Ap map. Although for
BeO, the association was not made as definite by the Ap
map, aséociatibn was still possible with the O nucleus

by examining the magnitude of contours. Thus, it was concluded
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most of the charge transferred was indeed situated on the
(0] nuéleus. In the case of covalent molecules, there is a
clear separation of charge in the binding region from the
charge in the antibinding region. The overlap density
diagram for N3 (see Fig.(3.10)) indicates that the charge
increase in the binding region as portrayed in Ap maps

is indeed mostly an overlap density. Therefore, one can
conéider this density as a separate entity. The increase
in the antibinding regions reflect a change essentially

in the atomic densities as a result of boﬁd formation;
therefore, a consideration of the forces exerted by this
density is alsb appropriate. In the final analysis, these
force components should not depend on the properties of
basis sets employed. In view of this uncertainty, it is
the density and density difference maps which must be
emphasized, by which one can therefore form the correct
partitions of the forces. In the case of BF, such a partition
was not easily obtained, as a result of the complex nature
of the Ap diagram. The somewhat arbitrary dissection of
the force into atomic, overlap and shielding components

is nevertheless instructive and of operational value in
correlating the various bonding characteristics in a

systematic way.



IV. MORE STATICS: FIELD GRADIENTS AND

QUADRUPOLE COUPLING CONSTANTS

"On a souvent besoin d'un plus petit gue soi"
La Fontaine

4.1 Introduction

In atoms and molecules, nuclei are embedded in an
electronic distribution. When such a distribution outside
a partiqular quadrupolar nucleus is nonspherical, there is
an interaction between the nuclear moments and the external
fields from this distribution. This interaction is
responsible for hyperfine structure of rotational lines.

A nuclear-quadrupole coupling constant eQq can be calcu-
lated from this hyperfine structure when both Q, the
nuclear quadrupole moment, and q, the external field
gradient, are finite. Effectively, g is a measure of the
departure from séherical symmetry of the charge distribution,
at the nucleus, of the electrons and other nuclei present

in the same molecule. The quantity depends on the environ-
ment of the quadrupolar nucleus in the molecule and is
therefore intimately connected with the types of valence
bonding in the molecule. 1In the region of the nucleus,
wavefunctions, which otherwise have proved satisfactory,

have not previously been tested. Simple molecular orbital

143
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theory is open to the objections discussed in the
previous chapter, namely that correctly polarized and
scaled wavefunctions must be used for quantities involving
the electron density. For example, a wavefunction which
does not obey cusp conditions at r = 0 will yield an
inferior value for field gradients, even though this has
little effect on the energy(143). Furthermore, the r—3
depehdence of the field gradient means that ideas drawn

from properties that depend on r—l, such as the energy,

must be used with caution.

The significance 2f nuclear juad:.inls wrling
constants in relation *+¢ the theory of cacm o i e L
has been empha: :.:d 7 "ownes and Dailey(ss' aral,
the direct ¢ rmination of the electronic o« ..z . m
in chemic. . .unds is difficult since most dbc.. Le. . ‘:ers,
such as .. ... . and dipole moment are propertias .7 T. 2
whole ~“lecuie. If it were possible tc insert i o Jged
p~obe - different points within a molecule, u.e” .0 c 1ge

stribution could be studied. As Dailey -3 . i
gu:adrupolar nuclei act as built-in probes, =- Gty 2is:
vantage being that since their positions a. ke, the

e 1 .firma ;i about the electron distriki s.&h ot wne

int i s, nue _=ar electric guadrupciz moneEtl 3

a function as = - oe of the electron. @ «rvi ent. 4n

ch the same > .t the proton magnetic noi Ry QN
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of the most bopular.probes of the chemist. This great
interest in correlating the magnetic resonance frequency
shifts with charge distribution in molecules, as opposed

to the use of quadrupole coupling constants, however,

has only achieved partial success because the chemical
shifts depend not only on the charge distribution of the
groqnd state but also on how the ground state wavefunction
is deformed in the presence of an external field. Quadru-
pole coupling constants have theoretical simplicity in

that they depend only or the ground state charges density.

This is because the interaction between a nuclear : 3>:ent

and the .u.:cular charge distribution is such thar  .zst-
order perturbation theory is quite adequate for +tae ~alc .-
lation(144)

Nucle. o guadrupo.e coupling constants SILfe
trerefore, .. J-nciple & promising means of obita b ..J
useful information on charge distributions. Recze:xn advinces

. experimenta. methods make routine measurements cf
) , . bt e gl ‘it h i n 45)
adr .pole resonance frequencies a practicai oo ssio Uit .
ssoader spectroscopy in conjunction with apglis=d
~ternal magnetic fields allow a determination of the
.adrupole interzctions for various nuclear states. To
date, the most .sefui information has be2i: obtained from

the temperature Cezpendence of the quadrupole fir+=s=ractions

:nd from the - ~relation of quadrupole cougu.. e data with
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crystal-field and chemical bonding theories. In discussing‘
the theory of the origin of nuclear quadrupole interactions
in free molecules, we shall make use of data obtained from
microwave and molecular beam spectroscopy, the first being
applicable for molecules with permanent electric dipole
moments; the second where this is not so, but the molecules
have magnetic moments either electronic or nuclear or both.

‘ From the theoretical or interpretive side, chemists
have depended almost exclusively upon the basic considerations
and relationsh.»s concerning the connection between chemical
bonding ar4 suadrupole coupling constants out forward by
Townes - ~& % ley. This theory deéls with the =ovalent
structure of the molecule. These authors emphasize that
all contributions to g may be neglected except those arising
from the valence electron densities in the orbitals of the
lowest eccentric atomic state, usually p orbitals. 1In the
simplest form of the theory as applied to halogen atoms,

the. valence shell consists of one valence electron in an

npo orbital and four nonbonding electrons .n npm orbitals,
w*ich is equivalent to a "hole" in npo: Donesir™ ~Hisiiin Values
- q,,, are derived from spectra of free atoms. In an ionic
>lecul , the halogen ion is considered to have an undistorted
mherica’ shell of electrons: qion=0' If i is the fraction
# ionic :tructure, then
q= (1-1) gq (4.1)

cov
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This can be refined to include further factors such as
hybridization, resonance, etc., as amplified by Das and
Hahn(l45). In general, however, work followed along such
lines is not definitive, reflecting a remark made by
Dailey in 1955(146): "Obviously personal preference plays
an important role in the task of evaluating three para-
mete;s from one experimentally determined constant." Only
rigorous calculations performed with accurate wavefunctions
can settle the validity of the interpretations usually made.
The second interpretive approach is invariably
tied in with the realm of solic state physics, in particular
with the study »:i ionic crystals. The distorcicn of the
electron she_._.s of ions aue to external point cia.ges in
ionic crysta.z, was first considered by Foley, ster.aeimer,
and Tyckc'lé?z as a contribution to the field g-ouw cats at
the nuc:ic.. Trhey estimated for a humber of ions, the
factor (l1-vyx, Dby which the field gradient due to the
.exceri.. charge was altered by this shell distortion, and
t. 2n used these values of (l-yx) for discussing nuciear
gwadrupole coupling constants in é number of ionic diatomic
wwlecules. Van Kranendonk(l48) showed the importance ox
in determining nuclear magnetic relaxation times in
nic crv:izals. Yo is called the antishieiding factor
«.d is :herefore pivotal in the Sternheimer antisrielding

tneory, which is ir effect a point charge moae.i.
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Both theories have been hybridized to explain
experimental data, especially on nuclear-quadrupole
interactions in alkali halides and nuclear spin-lattice
relaxation times in ionic crystals. Wikner et al(l49)
conclude that the charge transfer covalent bond model
is 1inadequate in explaining observed relaxation times,
and that the theory of the ionic model modified to include
antiéhielding and induced dipole polarization is better
established .than the covalent model. The covalent model
is very poor for the metal nucleus. On the other hand,

(66)

Bersohn and Shulman would rather bury this approach,

as they emphatically state that the model of an 1

Sp ion in

an electric-field gradient coming from external point

charge is inadequate. For transition-metal halides, they
prefer the Townes and Dailey approach which seems t©c agree
better with transferred magnetic hyperfine interactions
results. For anions, higher-order polarizabilities intro-
duce non-converging terms into the calculated field gradients.
Evidently not all is well in the land of the ions. Das and

(150) have given a hint to.the problem, namely

Karplus
tat for the alkali halides, orbital overlap is important
a.d consequently the ionic model is inadequate. In a recent
calculzation on the diatomic molecule KCK(lSl), they have

swn chat overlap affects the field gradient significantly

the direction required to explain discreparncy between
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theory and experiment. Covalency would seem to lead to
effects in the opposite direction, suggesting that covalent
binding can play only a small role.

It appears now that neither the Townes and Dailey
theory nor the Sternheimer antishielding theory, nor a
combination of these two theories can account for experi-
menpal data of the alkali halides. This discrepancy has

{152} by considering

been tentatively resolved by DeWijn
effects of the ionic chemical bond on, the polarizations
of the ions. We have already noticed a partial quenchingv
of the atomic polarization forces in LiF. This was also
manifested in the density difference diagrams by a removal
of charge from between the bond region, typical of a
Pauli exclusion effect between two closed shells.  Clearly,
this demonst:iates the.limitation of the non-overlapping
charge model. An accurate charge distribution is necessary
in order to obtain the observed field gradients. The
antishielding phenomena is a result of trying to extend
the point-charge model. If the correct wavefunction of the
crystal or molecule were available,'the correct field
gradient could be obtained without any antishielding
factor.

The inadequacies of the Townes and Dailey and the
antishielding theories will be delineated below by a

discussion of these and their applications. Field gradients
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have been calculated using the Hartree-Fock wavefunctions
used in the force analysis. The relevant formula for

the field gradient q, at nucleus A is

_ 225 _ , 3 coszeé—lv
ap = =3 <‘p|iil 13 [v> (4.2)
a

where ZB is the charge of nucleus B, R the internuclear
distgnce and Yy the total electronic wavefunction. The
operator in the bracket is a one-electron operator and
hence the integral can be reduced to a functional of the
one-electron density p, as for the forces. This thus
permits partitioning of the electronic field gradient into

orbital contributions:

k 3 00526 -i
R”  j=1 £y

l64> (4.3)

where ¢j is the j'th MO and ny its occupation number. For
certain wavefunctions, thé field gradient integrals are
conditionally convergent begause of a singularity in the
integrand at the nucleus. Since the value of the integral
depends on the treatment employed in the neighbourhood of
the singularity, some care is required to obtain the
physically correct value(153). For instance, in confocal
eYliptical coordinates, one must add a correction equal

(144) This

to %ﬂ times thre electron density at the nucleus
¢ ~responds tc the limiting process of first excluding a

spherical volume element, centered on the nucleus, in the
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integration over all coordinates, and then permitting
the radius of the excluded sphere to go to zero(154).
Thué,for a spherical S shell, one would obtain zero

for the integral, which reflects the physically obvious
fact that such a spherical shell cannot contribute to

an observable electric quadrupole interaction since all
nuclear orientations in such a charge distribution have the
same energy. The methods of ihtegration and formulae for
the various orbital contributions are given in Appendix

2

4.2 The Antishielding Model(l55)

The problem to be considered is an ion with a
nuclear quadrupole moment in the field of an external
positive point charge. We have to find the factor {(l-y~)

- by which the direct interaction between the external charge
and the nuclear quadrupole moment of Q, i.e. 2Q/R3, is
affected by the deformation that the presence of this
charge causes in the closed shells of the ion. If the
distorted electron distribution opposes the field gradient
due to the positive charge, then y» is positive and there
. a shielding effect, while if the distorted distribution
thances the field gradient, then y» is negative and there

i3 an antishielding effect.
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Consider an electron at the position r,0 as

shown below.

The glectron interacts with both the quadrupole moment Q
of the nucleus and with the distant charge. We have,
jtherefore,,a syétem with a ground state Hamiltonian Ho
which is subjected to the above two perturbations des-

cribed respectively by the Hamiltonians H, and H..

2 1+ In
terms of ordinary perturbation theory, there can be three
types of second-order perturbations: (1) second order in
Hl alone; (2, second order in H2 alone; of (3) a second-
order interaction arising from firsf—order perturbations
due to both Hl and H,. The latter is the one which is of
interest. Physically it corresponds to a deformation in
- the ground state wavefunction by Hl and a subsequent
interaction of H2 with the deformed wavefunction. The
perturbation could be applied, of course, in reverse
srder. The final results obtained by either procedure
can be shown in general to be equivalent. Letujl, and

u) represent the Iirst-order perturbations in the ground

state wavefunct.on uy of the electrons, due to Hl and H2.
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The Schroedinger equation becomes
(HytH +H,) (ugtu +u,) = (Ej+E;+E,) (ujtuq+u,)
where EO’El’EZ are expectation values over ug of Ho,Hl,H2

respectively. Separating the terms of first order in Hl

and in H2 , we obtain
(Hy=Epluy =-(H;-E;j)u,
(4.4)
(Hy-Eglu, =-(H,-E;)u,

Now in atomic units

= Ll
H0 = =-kV° + V0
H. = v r cos 6 _ o r2(3 cosze—l),,(4.5)
1 R R2 r3
20
H, = -0 Li3 cos“f-1
w3

Oniy the third term in H, is of interest. The first term

i
cannot distort the electron distribution and the second

term is responsible for the ordinary dipole polarization.

There is a possibility of having an indirect interaction
between the nuclear quadrupole momegt and the externél

charge by ways of a second order perturbation with the

second term in H, and the first order in H, but Foley et al(147)
have shown it to be less than ten per cent of the interaction
of first order in both the third term in Hy and the first term
in H2. The net energy E of the electron is given by

. <uo+‘11+“2| Ho+Hp+H, [ug+u,+u,>

<u0+ul+u2[uo+ul+u2>
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Expanding to first order, we obtain

<u |[Hy=Eq|u;> <u,|H,=E,|u,>  2<u,|H, |u,>

2<u0|H2|u2
* * 2<uy |Hy Juy> + 2<ug[Hy|u >+ 2<u; [Hy-Eguy> + ...

(4.6)
The underlined terms represent second-order perturbation

from'H1 and H, separately. From Eq.(4.4) it follows that

<ug|Hy[uy> = <ug|H,|u > = —<u1|H0-E0|u2> (4.7)

Thus, it is only a matter of convenience whether <u0|Hl|u2>

(65)

or <uO|H2|ul>'is calculated. Sternheimer solves this

by using only the quadrupole terms of the interaction Hl

by a numerical procedure. However, as Dalgarno(lSG) has

pointed out, the presence of singularities in self-consistent
field potentials, which is related to cusp conditions dis-
cussed in Chapter I, introduces -some arbitrariness into

the derived values of shielding factors. Bersohn has
employed a variational method for the problem(157).

One may thus calculate either (a): the electronic
distortion due to the electric field gradient and thence the
interaction of this distorted distrisution with the nuclear
quadrupole moment Q; or (b): the electronic distortion dueﬁ

to Q and in turn its interaction with the external field.

Both approaches give identical results within second-order
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perturbation theory as can be seen from equations (4.6)
and (4.7); but the situation would become more complicated
if one were to go beyond it. The Sternheimer method is

a perturbation method of type (b) on restricted Hartree-
Fock functions (RHF). Recent investigations have shown
that the relaxation of these constraints leads to a new
way of calculating electric quadrupole polarizabilities
and éternheimer antishielding factors, so»that the
‘distortions induced in the inner shells by distorted outer
‘closed shells are thus included in a natural way. By
comparison with the results of the perturbation method
(which normally does not take these distortions of outer
shells into consideration) fhese are found to be signifi-
cant for large ions. An extensive review of these investi-

(158). This

gations has been given by Freeman and Watson
approach, the unrestricted Hartree-Fock method (UHF)

(see Appendix 1), is also pertinent to any distortion of
an ion by a crystalline field. 1In all investigations to
date and (by definition) in all y» estimates, a most
serious shortcoming has arisen in the unrealistic electro-
static fields which have been used. The problem is more
acute for unclosed aspherical shells. An UHF wavefunction
should already, therefore, include a contribution from the

poclarized core so that no correction for core-shielding

effects of the type considered by Sternheimer should be
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necessary.

In a molecule, there is no clear distinction of
valence shells as such because of charge transfer and overlap
effects. Furthermore, any density.associated with a
particular nucleus will take on polarization components
fwith the symmetry of the field. To separate the density
into atomi¢ or ionic entities in order to calculate, by
pertﬁrbation theory, the effect of the external remaining
charges on one of these entities would be quite impractical.
In such a case, one uses the unréstricted ﬁartree—Fock
approach in calculating the total wavefunction of the system
and thus replaces the standard'pertﬁrbation theory which is
used in either method (a) or (b). Thus, an exact wavefunction
will take into account polarizations to all orders,

- polarizations which have mainly the symmetry of the field,
axial for a diatomic molecule. 1In terms of Eq.(4.7),

this means that u, is exact as far as H the perturbation

1’
from external charges, is concerned. In fact, the exact
wavefunction also includes, therefore, the perturbation of
the distorted inner and valence shells on the external
charge. Ong can therefore calculate the electric field
yradient using the external field perturbation method, since

(159) has shown that

~ne knows uy exactly. Sternheimer
the two ways of calculating the field gradient, by considering

the internal nuclear or the external field perturbation, are

completely equivalent for second-order perturbation theory



Table 4.1

Field Gradients at Li in LiF at Re = 2.8877 a.u.
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a.o. MO  gpp(R=w) gj(R==) gj(Re) A 0 B
152F lo. +0.373 2.000 2.000 0.000 0.000 2.000
lsii 20 0.000 -0.010 -0.098 0.083 0.004
252F 30 2.000 .2.041 -0.013 0.053 2.001
Zsidf2po; 4o 1.000 2.682 0.068 0.217 2.397
Zpﬂg‘ 1w 4.000 2,918 -0.021 0.1F22 2.818
Totals: 9.000 9.633 -0.064 0.475 9.221
Field Grad;ents at F
a.o. MO gzp(R=w) éi(R=w) gi (Re) A 0 S
lst lo +72.690 0.000 0.001 0.001 0.000 0.000
lsii 20 2.000 2.046 0.042 0.042 1.962
25’2F 30 0.000° 0,312 0.226 0.0Y3 0,013
2p1E¢25£i 40 72.690 '1.000 126.787 125.963 0.784 0.039
2pﬂ§ 1m -145.380 0.000 -122.941 -122.006 -0.935 0.000
Totals: =72.690 3.000 6.206 4.226 -0.086 2.004
| 3

a) Underlined gpp(®)'s are +

Tt Harp



Field Gradients at Be in BeO at Rg = 2.50 a.u.

Table 4.2

a)

158

a.o. MO gzp(R=w) gi (R=») gj (Re)- A 0 'S
lsé lo +1.094 2.000 2.001 0.000 0.000 2.001
1s§e 20 0.000 0.058 0.016 0.042 0.001
258 30 2.000. 2.494 0.119 0.393 1.982
Zsée 4¢g 0.000 2.595 0.395 0.653 1.547
2pﬂ6 1T 4.000 1.312 -0.483 -0.049 1.844
Totals: 8.000 8.420 0.045 1.039 7.334
Field Gradients at O
ls; lo +30.779 0.000 0.006 0.006 0.000 0.000
lsée 20 2.000 1.994 0.003 0.015 1.976
ZSé 30 0.000 1.222 0.830 0.348 0.043
Zsée' 4o 2.000 46.922 44.914 1.859 0.149
2pw6 lm -61.558 0.000 -40.440 -39.955 -0.569 0.084
Totals: -61.558 4,000 9.704 5.798 1.654 2.252
R3
a) Underlined gzp(w)'s are + — x4,y




159

and has noted that oﬁ physical grounds, one expects the
equivalence to be complete, i.e., correct to all orders

of the nuclear quadrupole and the electronic perturbation.
If one uses an exact wavefunction (without nuclear
interaction), one has then summed the electronic pertur-
bation to all orders. The question then becomes, is an

RHF wavefunction, as we have used in the force analysis,
accurate enough.to calculate field gradients. For closed-
sheil molecules, the RHF orbitals are internally consistent
_eigenfunctions of the H-F equations and therefore
Brillouin's theorem applies to them. Since the main
perturbations on the atomic densities are of axial symmetry
as a result of bond formation, perturbations from nuclear
moments can be safely disregarded. Thus, we can confidently
‘'surmise that the field gradients obtained from the RHF
functions used in this work will be quite accurate; the
quadrupolar energy as cal;ulated using second-order pertur-

and H.) should be thus

bation theory (first order in H1 5

reliable.

4.3 Interpretation of Ionic Molecules

Ig Tables (4.1)and (4.2) , there are presented field
gradients . for the two molecules LiF and BeO, with an
orbital breakdown of the various contributions, in addition
to atomic, overlap and shielding components. These have

all been multiplied by R3/2 in order to transform them into
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’

effective charges,i.e.,

2 N
q = — [Z - X g.] (4.8)
A R3 B i=l =
where 3 2
_ R 3 cos“65-1
9; = 3 0y <0 _ 3 0>
a

Also listed is gzp(w) which represents the field gradient
of ?he 2p electrons on the free atom in question. These
have been calculated from Hartree-Fock atomic functions
used in the density difference diagrams. Shielding
corrections for these valence'electrons have been neg-
lected due to their smallness and the inherent difficulties
discussed previously. For Li and Be, gzp(w) is taken from
spectroscopic data. (see ref. 145, pp.1l3l).
a) LiF

A comparison with the forces in Table (3.6) shows
only correlation with the shielding charges. In particular,
the atomic polarizations at Li indicate little or no
parallel behaviour as the forces. This is due to the fact
that much of this polarization is of p character. Such
volarization only contributes to the field gradient in
second order, as compared to first order for the forces,
pecause of the different symmetries of the operators involved.

The net atomic contribution at Li is antishielding. This

is not in accord with that obtained by the Sternheimer theory
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9(160)

which predicts g.. (atomic) = vy~ = 0.24 , Since
L1

dpi = -;%(l—yw). On the other hand, the Li nucleus does
not see.a fully negative fluoride ion. In fact, adding
the overlap and shielding contributions, one gets 9.696.
For the forces af Li, this sum was 9.881l. One thus sees
thaf higher negative moments involve larger undershielding
phénomena. This undershielding comes about because of the
factor (3'coszeB—l)whiqh favours charge placed on the
internuclear axis much more than the factor cos GB operative
in the forces. Thus, the ¢ shielding contributions are
larger than in the forces, but this factor is overwhelmed
by a large undershielding from the 7w electrons.

‘The net field gradient at Li is -0.0526 e/ag>. From
the Sternheimer theory, qp; = -2(l—y°°)/R3 with yeo = +0.249.
Using R, = 2.8877 a.u., our calculation predicts
Yo = +0.367; The quadrupole coupling constant in Li@‘has

(161)

been measured by Braunstein and Trischka for which

. they repor? eq Q = 412 kc/sec. From the quadrupole moment
.QLi7 = -4.3 % 10_26cm2 as calculated by Browne and Matsen(l62)
with an accurate wavefunction of LiH, one can calculate the
experimental q; ., in LiF to be —0.04la;3. This would imply

a still larger shielding factor +ye. 'However, in view of the
fact that Braunstein et al obtained very poor spectroscopic
constants (error of 20%), their quadrupole constant is

probably not very accurate either. At R=2.9877 a.u., we
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calculate y» = +0.300 (see Appendix 3). The experimental

equilibrium value of LiF is 2.9554 a.u.(163)

, so that y=
at this distance will be between 0.300 and 0.367. This
variation of y« with internuclear distance is indicative
of bonding effects on the polarizations of the ion.

At the fluorine nucleus, the shielding from the Li
density indicates the presence of essentially an it ion,
just'as the force analysis predicted. The positive 7
overlap field gradient at Li'definitely shows this density
is quite far away from the Li nucleus, a point not exactly
accentuated by the forces, where it was found the m overlap
forces were about equal af both nuclei. The 7 overlap
field gradient at F is negative, hence really behaving as.
an atomic density. Interestingly, it completely negates
the positive o-overlap contribution. The atomic g's at F
show up something quite important, namely, that the pm
electrons are more polarized than their po counterpart.
Much of the contributjion to the total electronic field
gradient comes from this diffefence. A perusal of the
density difference diagrams of LiF using neutral and ionic
separated atoms (see Chapter II), show a removal of pm
electrons around the F nucleus and accumulation of this
density along the bond, more so in front of the F nucleus.
A density difference map for the ¢ density only, by Bader

(14)

and Henneker showed that some of this perpendicular
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charge removal was due to a contraction of the o density
along the bond, i.e., a polarization effect arising from
the presence of Li*. It is evident that chemical bonding
has profound effects on the polarizations of densities.
The total field gradient at F is +2/R3(-3.206)
which corresponds to Y» = +4.206. The Sternheimer value

.0(164).

for y» is =22 In other words, the point charge

model predicts a value of completely wrong sign. A

(165) also

recent H.F.calculation of g in NaFAby Matcha
predicts a negative field gradient, whereas the anti-
shielding model predicts a large positive qp- The over-
lapping of Li* and F~ densities has obviously considerably
altered the field gradient contributions at F, from that
of a point charge model. The.deliquents in this state of
affairs are the 2pc and 2pm electrons at F, thch have
individually different polarizations. The field gradient
at Li on the other hand, is governed by a substantial
undershielding of the.2pﬂ electrons on F.

b) BeO

In the force analysis, it has already been

indicated that this molecule was intermediate between
BeT0~ and Be++0:. One féatufe of this molecule distinct
fiom that of LiF was a larger delocalization of the

density towards Be. The w overlap'forces indicated equal

sharing of this density. This is no longer true for the
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field gradients which weight regions.closer to the nucleus
more than the forces. Nevertheless, the negative contri-
bution of the overlap field gradient at Be indicates that
this density is beginnhing to behave as an atomic charge,
so that the 7 density is indeed more polarized towards Be
than towards Li in LiF. There is again a significant
difﬁerence between the ¢ and m atomic field gradients.
This disparity, just as in LiF, contributes largely to the
total field gradient. This difference is in the same
direction as that in LiF, contributing to shielding}rather
than antishielding as predicted by thg Stefnheimer theory.
At Be, there dis the usual large undershielding of |
the m electrons from O. Adding the overlap'and shielding
contribution, the net result is 8.373, whereas the result
Zor the forces was 9.430. The 1m shielding force at Be
was 2.396, whereas the 1lm shielding field gradient is 1.844.
It is evident that the smaller the internuclear distance,
the more severe is the undershielding by m electrons. The

Sternheimer shielding factor for Be™t is Yo = 0.189‘166’.

Assuming the ionic model Be+20-2, i.e. qg, = —ﬁé (l-yw) ,
. _ _ 2

using R = 2,50 a.u. and e = §3(0.420), one obtains

Yo = 0.81. The calculated y» is thus too high, since in

the molecule the net charges on the nuclei are smaller as

a result of incomplete charge transfer. In order to repro-

duce our calculated field gradient with the Sternheimer vy,
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we would have to assume a structure Be+0'50-0'5. This

is not realistic in terms of the large charge transferred
from Be(shielding at O is 2.252). Thus, the Be density

as seen from O behaves very much like Be+2. For O=,

Burns and Wikner(167)

report (l-yw) = 29.22, i.e., anti-
shielding. Our calculation gives 99 = +-é% (=1.704) so
thag (1-yw) = —0;852. This is therefore of opposite sign
to the antishielding model. The main source of these
theoretical disagreements as in LiF are a result of the
different contributions of 2pc and 2pm electrons situated
at the heavy nuclei, a reflection of the influence of the

bonding process on the polarizations of densities.

4.4 Inadequacies of the Antishielding Model

To gauge the reasons for the above discrepancies,
one must look into the assumptions which are inherent in
the antishielding model. Firstly, no distinction is made
between po and pm orbitals. The Li'F~ density difference
map shows that there is a more concentrated 2pc density
along the bond on both sides of the F nucleus, thus
increasing the shielding. Furthermore, there is an increase
of m density in front of £he F nucleus. This also increases
the shielding factor at F as the antishielding of the
acomic density is reduced. The fact that the atomic
~contribution of the m electrons at F is less in magnitude

than that of the o electrons indicates a strikingly different
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polarization of these. The second assumption is made that
the electrons on one ion are almost external to the other,
i.e;, there is very little overlap. The picture of the
molecule as being two spherical balls of charge touching
each other is an oversimplification. If one looks at the
density difference diagrams for LiF and BeO, one notices
"exchange" distortions at the electropositive elements,
with'radial excitations which expand the electron density
of the positive ion in directions perpendicular to and
also along the internuclear axis behind these ions. The
net result of these distortions at Li and Be does not
produce appreciable atomic field gradients for these
nuclei. At Be, the o polarizations are actually cancelled
by m density which has been transferred from O. The
.exchange distortions also affect the polarization of the

o density of the F ion or F atom as seen by the rather
abrupt cutoff of the positive Ap region near Li, with
accompanying backpolarization. The total overlap force
added to the atomic force at F gives a value of 1.00, as
expected for the ionic model. On the other hand, the
field gradient,which measures regions closer to the nucleus,
:ndicates that the 2poc electrons at F contribute more than
the 2p7m electrons in magnitude. This increased shielding
by the 2poc electrons can be partly understood in terms of

the clustering of density around the heavy nuclei as
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demonstrated by the profiles of the Ap map along the
internuclear axis (see Fig.(2.5)). Furthermore, there is
" obvious loss of m electrons from the vicinity of these
nuclei. This substantiates the assumption made by
Dewijn(lsz) that in alkali halide molecules the polari-
zations of the orbitals of the halogen ions along the
internuclear axis are quenched by overlap with the alkali
corel This quenched polarization may not be noticeable
in the forces, but will affect field gradients by virtue
of prohibiting radial excitations, i.e., motion of more
density towards the positive ion via orbitals of higher
pfincipal quantum numbers centered on F. Assuming that
it is the pm orbitals which are freely polarizable,
DeWijn is thus able to present a theory which has the
advantage of being applicable by means of simple semi-
empirical calculations. These same effects are operative
in BeO. The Ap diagrams using both neutral and Be+, o,
atomic densities indicate the increase of charge along
the internuclear axis on both sides of O and polarization
of m electrons into the bond region. In view of the
diffuseness of O density, one thefefore concludes that
with reépect to the F_ and O ions, polarization of the
pTm electrons and some depolarization of the po electrons

tend to contribute to a shielding of the heavy nuclei F

and O, with the result that one has negative field gradients



168

rather than positive ones as predicted by the anti-
shielding theory. The situation at the positive ions is
that both Li and Be see less.pm electrons on the other
nucleus than predicted by the ionic model, since the
nature of the disposition of such a density contributes
significantly to undershielding.

One therefore has the result that the field gradients
predicted by the antishielding model is an order of magni-
tude larger and of wrong sign for the F~ and o ions,
while the results for the positive ion are predicted to be
larger by a factor of two. The introduction of covalency,
which amounts to introducing the Townes-Dailey theory, does
not help ££e situation(lss). This results in a deficiency
in the po orbital of a halogen atom which contributes a
positive amount to the atomic g at the halogen nucleus
(see next section). On the other hand, a point forgotten
by many authors, a deficiency of the pm density will create
the opposite effects, i.e., reduce the antishielding contri-
bution of these at the halogen nucleus. Our observation
has been that in all the molecules we have studied so far,
it is the w-bond which dembnstrates covalent characteristics,

whereas the ionic character is predominant in the o-region.

Thus it becomes now clear that the simplification of con-

w

.deri~z che pm electrons as point charges located at the

more electronegative nucleus is not totally justifiable.
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For the molecule KC{, Das and Karplus(ISl)

showed that
the inclusion of overlap effects between the ions K+
énd C% alters the field gradient in the rigﬁt direction
to improve the agreement with the observed field gradient
at the halogen nucleus. Charge-transfer covalency on
the other hand, increases the discrepancy with experiment.
Thig would not be so if one considers covalency of the =
electrons also, whereas these authors consider only po
- covalency.. Introduction of overlap, they show, enhances
the potassium field gradient bf a factor of two. The
discrepancy may well come from the undershielding of pm
electrons on the C% nucleus. Although the internuclear diétance
is 5.04 a.u., the C% ion will be very diffuse, so that
a small undershielding of the halogen nucleus by the pm
electrons will counter any overlap éffects which are also
small.

These effects are probably larger in LiF because

of the smaller internuclear distance. DeWijn(lsz)

has,
in fact, pointed out that the discrepancy is always
largest at the smallest cation, the presence of which
results in a shorter bond distance. This enhances the
undershielding of the pm electrons and thus is a primary
source of the decreased antishielding at the alkali ion.
In the case of BeO, the internuclear distance is smaller

(168)

than in LiF. It has been stated by Das that in spite
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of the diffuseness of the O: charge distribution, the
compactness of positive ions as manifested by their
small radii argues against the possibility of much
covalent bonding. This is certainly questionable, since
the electropositive ion tends to draw to itself the
electrons from the electronegative ion. We have also
seen, moreover, that the electronic configuration was
intermediate between Be+0- and Be++0:. Thus, at Be,

one must deal with undershielding of the O nucleus,
whereas at O, larger covalency of the m electrons will
introduce a greater disparity in magnitude between ¢ and
m contributions. .

The paradox extends, as discussed by DeWijn(lsz),
to the dependence of the antishielding effect on molecular
vibrations. For g(v), i.e., the increase of g with
increase of the vibrational quantum number by one unit,
calculated with antiéhielding theorj, there is quite good
agreement at the alkali site. At the halogen ion there
again is a large discrepancy. The antishielding model
predicts g(v) to be negatiﬁe. The observed q(v)'s,
although of equal order of magnitude, héve opposite signs.
An effect other than antishielding must therefore be
operative. Since g arises from all charges other than

that of the nucleus under consideration, g will be affected

by the change of ch arge distribution caused by molecular
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vibrations. Assuming g to be a function of internuclear

distance R, it will vary with R during the course of

molecular vibration as follows:(lsg)
q(R) = q'0 4+ q g 4 g2 2 . |, (4.9)
where ¢ = (R—Re)/Re and R, is as before the equilibrium

internuclear distance. The wavefunction for an anharmonic
poteéntial can be obtained by solving a harmonic oscillator
problem and the average values of the above expansion

are obtained from this wavefunction. g(R) is then

approximately expressed as(l7o)

q(0)

q(R) = +q(2)(V+35)+...

where ‘ ' (4.10)

q(v) = 3Be/we (1 + aewe/6B§)q(l) (2)

+2Be/we q
The first term is the average of r:over the anharmonic
molecular vibrations; the last, the average of cz over

the harmonic vibration. Be is the rotational constant,

we the vibrational frequency, oag the rotation vibration

constant. Using the recent experimental data of Gordy(163)
for LiF and Herzberg's(77) tables for BeO, the resulting
q(v)'s are:
a7} = .012 gt + .003 ¢
(4.11)
aY) = .009 ¢P + 002 ¢!

These effects are quite small and include second order

2
affects q( ). Using calculated values of g(R) at seven
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different points (see Appendix 2) we have made a best
fit of these values to a 4th order polynomial. In
Table 4.3, we present the first and second derivatives

of the field gradient, and not q(V)

as this would only
obscure what we wish to show. We have transformed the
first derivatives into effective charges so that

dg,/dR = - 6/R4(ZB - (4.12)

Zofs)
Also included are contributions from the po (40 orbital)
and pm electrons (lm orbital) on the electronegative
element.

The first thing one notices is that the pm
electrons at F and O are less sensitive to molecular
vibration than the po electrons. This suggests that the
polarization of o electrons at the electronegative nucleus
is much more dependent on vibrations than the w electrons.
This does not agree with DeWijn's semi-empirical theory,
which considers only the polarization of the w electrons.
The overlap contributions are negligible compared to the
polarization contributions. The Li and Be charge densities
behave again as point charges Be+2'and Li+ as seen from
their shielding contributions. Thus, at the more electro-

(v)

negative nucleus, the main contribution to g comes from
the restoration of polarization of po electrons, i.e.,
an increased antishieldind. The pm electrons as they

become more localized on the electronegative nucleus with



Table 4.3

DERIVATIVES OF FIELD GRADIENT IN LiF & BeO

_RY dq
q dg/dR d2q/dr2 6 dR
b ' Total
Nuclear (Z.) o T A o S
: B P P Electronic
4 -0.053 +0.008 -0.033 9.0 -2.528 =-2.358 -0.003 -0.307 -8.781 -9.091
F . : . -17.016
-0.266 1.102 -0.756 3.0 -11.589 -2.915 =15.220 +0.224 =2.020
Be -0.058 -0.023 +0.024 8.0 -2.388 -0.708 -0.283 -0.781 -6.738 -7.802
0 -0.883 2.595 1.105 4.0 ~14.105 ~19.021 -0.220 -2.040 -21.277

~3x 307

eZLT
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increasing internuclear distance, also enhance the
antishielding since they always contribute a net positive
field gradient. However, their effect is only % of that
of the po electrons. The net result is an increasing field
gradient at F and O. On the other hand, the antishielding
model would'predict a decrease since dgq/dR = -6 /R4 (1-yw)
and (l-yx) is 23 and 29 respectively for F  and O=. At
the électropositive nuclei, namely Li and Be, the field
gradients are very small, so are their changes. There is
the usual undershielding of pm electrons offset by an
overlap and a slight overshielding of the po electrons.
These small changes are not in exact agreement with the
shielding models which predict larger positive effects,
i.e., dq/dR = +6/R4(1l-y®) where yw<l,

In all classical models such as the antishielding
model, no‘attempt is made to portray- directly the intra-
molecular electronic charge distributions. Terms are
introduced to represent the polariéation energy, but
whether these are applicable in the inhomogeneous electric
field occurring within the molecule is open to question.

(171)

3uckingham has introduced such inhomogeneous fields

in order to preserve the classical simplicity of the
ionic model. However, this requires the knowledge of
hyperpolarizabilities, second order polarizabilities which

(164)

are not easily calculatéd with reliability Benson
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and van der Hoff(l72)

were probably the first to point
out that orthogonalization of Li+ 1ls orbitals to F 2p
orbitals gave backpolarizations at F~ due to Pauli
repulsions between two closed'shells. They concluded
that although LiF is usually considered to be an ionic
molecule, the inclusidn of some covalent character was
an gssential feature. Similarly in the cfystal, in
ofder to explain properly nuclear quadrupole relaxation

(155)

times, it has become evident that any effective

theory should include simultaneously the Van Kranendonk
ionic model and the Yoshida—Moriya,covalent model(l73).
The latter model enables one to calculate transition
probabilities for nuclear spins in ionic crystals assuming
that the transitions are induced mainly by a distortion

of the residual covalent binding between neighbouring

ions by the lattice vibrations. The Van Kranendonk model
considers a point-charge ionic crystal where the transi-
tions are induced by fluctuating field gradients from
lattice vibrations. In view of the fact that the work of

Watson and Freeman(l74)

suggests that the Sternheimer
srocedure underestimates |y=|, certainly modification of
the negative ion structure by its environment must be a
major source of the discrepancies. For systems with axial

symmetry, it is now clear that binding affects the

polarizations of the m and o electrons differently. At
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the electronegative site, shielding is increased as a
result of depolarization of the o electrons and an
opposite polarization into the bond of m electrons. At
the lighter étom, there is very little polarization of
the core, or if there is any, it is effectively cancelled
by back-donated m electrons. There is, furthermore,
substantial undershielding of the m electrons situated
at the electronegative site. There is thus a decrease
in magnitude of the total field gradient, which one would

misconstrue for a shielding effect on the part of the

cation density itself due to externally induced
polarizations. 1In highly symmetric systems such as alkali
halide crystals, distortions froﬁ cubic symmetry by
lattice vibrations will define directions along which
polarizations will become asymmetric, so that densities
along the internuclear distances will have different
polarizations as those away from these regions. This

will then affect field gradients af the halogen nuclei

as in the axially symmetric cases. Furthermore, under-
shielding of the heavy nuclei by the electron densities which
are situated on these will also be a factor contributing
to smaller field gradients at the alkali sites. It is
unfortunate that there is no long-lived quadrupolar

9

isotope of F (Fl , the most abundant isotope has nc nuclear

suadrupole moment). Otherwise, the negative field gradients
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as predicted by our calculation would have indicated the
failure of the antishielding model and the possible
deficiencies would have been brought to light sooner.

4.5 The Townes-Dailey Theory

The standard semi-empirical theory of field

gradients and quadrupole constants is due to Townes and

Dailey(63). Other general discussions have been given

by Gordy(175), Das and Hahn(l45) (176)

and Lucken(177). Townes and Dailey related da for a

, Orville-Thomas

molecule to the atomic field gradients e Y for a p
electron, outside closed shells at nucleus A. The closed
shells are assumed to be spherically symmetrical and to
make no contribution to g. Other electrons give contri-
butions that decrease rapidly with n and 1. ' Thus,

dp = f . SR where f depends on the electronic structure

of the molecule. The calculation of 9t from experimental
results in many cases is possible from hyperfine splitting

(178) which involves transitions

of atomic beam spectra
between the energy levels of the free atom in a magnetic
field. These quantities are also less accurately deter-
mined from the hyperfine splitting of optical spectra.
For N, with a spherically symmetric configuration which
gives zero interaction with the quadrupole moment of the

nucleus, one can still obtain approximate values of <l/r3?

for the p electrons from the fine structure of optical
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lines due to spin-orbit coupling(l79). One can also

calculate these from atomic Hartree-Fock wavefunctions

such as those used for the density difference diagrams.
However, there are quadrupolar deviations from spherical
symmetry of atomic cores due to distortions from polarization
of the electronic charge distribution by the nuclear quadru-
pole, and also by valence electrons, as we discussed in

the previous sections. There is also a second order effect
on the valence electrons themselves which is only taken
into account by UHF calculations. These effects have been
recently discussed by Sternheimer(lsg). By introducing

the shielding faétor Yar ﬁhe total field gradient of the
valence electrons should be regarded as altered to
qat(l-YA). For the first row atoms these are small. For
B,YA= .142; F, Yy = .11, which represents a shielding
effect in both cases(lgo). In general, as discussed before,
calculations coupled with known theoretical difficulties
indicate enough uncertainties in the calculated correction
factors due to shielding that their present general use for
evaluating nuclear quadrupole moments does not seem justi-
fied. Furthermore, in molecules, since the charge distri-
butions that produce the various contributions to the field
gradient are disposéd‘differently with respect to the core

electrons, the different contributions will all, in general,

be subject to different antishielding factors and hence
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more ambiguity exists(181). In what follows, we have

shunned this approach due to its uncertainties.
In a molecule, then, dp is primarily dependent

on the way in which valence electrons fill the lowest
energy p-type orbitals. Contributions to q, come from
several different sources.

1) valence electrons associated with the nucleus in
position

2) other charges associated with adjacent atoms

3) distortion of nonbonding closed shells of
electrons around the nucleus.
Type (2) is usually considered not impoftant, depending
on 1/Re3. However, these external charges produce changes
in the wavefunction of other electrons in the atom. These
contribute primarily to (3). For instance, if there is a
nearby negative charge, the atomic electrons including
‘those in closed shells tend to move away from this charge,
partially cancelling its effect or shielding the nucleus.
The effects of type (2) éndl(3) presumably cancel to a
Veéy large extent. It is generally assumed that the
contribution to q of an external charge is reduced by a
factor of 10. Estimates as discussed before show that
distortions of the closed shell of electrons surrounding
the nucleus will produce contributions to g less than 1% of

the value due to a single electron of the valence shell.
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It is also argued that the pm electrons are perturbed
and hence will cancel such polarization effects.

Quadrupole coupling constants are usually assumed
to be sensitive only to charge near the nucleus, and not
to outer regions of the molecule. Hence, Townes and Dailey
expand the wavefunction pear.the nucleus in terms of
atomic configurations. The question becomes then how these
configurations are related to the nature of the chemical

bond. Furthermore, both Dailey(l46) (175)

and Gordy reject
overlap, which implies that neither valence bond nor MO
methods provide adequate link between atomic and molecular
wavefunctions. The chief argument against -inclusion of
overlap has been that normalization changes the electron
density near the nucleus whereas the major effects of
bonding should occur only in the outer regions_of the atom -
Our density difference maps certainly strongly vitiate

any such arguments - Alternatively, the interpretation
becomes that other configurations such as valence states

and ionic configurations will change the charge density

at the nucleus. The role of overlap has thus been puzzling.
Inclusion of overlap in crude calculations may lead to
erroré since the wavefunction of the neighbour atom is

far from being the correct solution to Schroedinger's

equation in regions near the nucleus considered. That is

why hybridization has always seemd a more reasonable



Field Gradients on N in N at Rg = 2.068 a.u.

Table 4.4

a)

180

a.o. MO gzp(R=W) gi(R==) gji(Re) A (0] S
1s? log 10.964 1.000 1.009 -0.002 0.010 1.000
ls® lou 1.000 0.988 -0.012 0.004 0.997
2s* . 209 1.000 5.011 2.286 1.800 0.926
2s! 20u 1.000 2.551 2.244 -0.017 0.323
2po! 30g 10.964 1.000 11.517 9.626 1.289 0.602
2pm? lmu -10.964 2.000 =-8.051 =-8.325 =-0.453 0.727
Totals: 0.000 7.000 13.026 5.817 2.634 4.575

3
a) Underlined gzp(w) is + %r'qulO



Table 4.52)
Field Gradients on C in CO at Ry = 2.132 a.ual.
a.o. MO gzp(R=w) gi (R=») gj (Re) " A o} S
Is*® lo 6.324 2.000 2.001 0.000 0.000 2.001
L& 4 20 0.000 0.084 0.077 0.007 0.000
28 : 30 '2.000 4.029 0.828 1.350 1.851
2s 4¢ 0.000 1.559 0.277 0.436 0.845
2poé+2p§)50 6.324 1.000 6.841 5.291 0.992 0.558
2p'rré:+2pﬂ‘; lr =-3.162 3.000 -0.837 =-2.192 -0.167 1.522
Totals: 3.162 8.000 13.677 4.281 2.619 6.777
Field Gradients on O
a.o. MO gzp(R=°°) gi (R==) gj; (Re) A 0 S
1s2 lo 19.089 0.000 0.018 0.018 0.000 0.000
1s2 20 2.000 2.003 0.000 0.002 2.000
2sg 30 0.000 4.057 2.585 1.229 0.243
25 40 2.000 22.116 20.241 1.564 0.311
kg?%poé 50 19.089 1.000 6.204. 5.725 =-0.075 0.554
2p@+4n% lm -28.634 1.000 -24.873 -24.515 -0.603  0.244
Totals:  =-9.545 6.000 9.524 4.054 2.118 3.353
Y . [] 3
a; Underlined gzp(w) s are + —5Xq,,
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Field Gradients

.Table 4.6 a)

at B in BF at Rg = 2.391 a.u.

a.o. MO gzp(R=w) gi(R=w) gi (Re) A o S
ls§ lo '4.238 2.000 2.000 0.000 0.000 2.000
1S§ 20 0.000 0.051 0.036 0.015 0.000
2s§ 30 2.000 2.693 0.119 0.512 2.062
2sé 4o 0.000 3.061 0.468 0.916 1.678
Zpoé+2poF 50 4.238 1.000 2.555 1.983 0.244 0.329
2p, 1m 4.000 2.320 -0.281 0.055 2.546
Totals: 4,238 9.000 12.680 2.325 1.741 8.615
Field Gradients at F
a.o. MO g2p(R=w) g; (R=2) gj (Re) A o} S
lsé lo 41.763 0.000 -0.007 -0.009 0.002 0.000
lsé 20 2.000 2.004 0.000 0.004 2.000
2s§, 30 0.000 1.969 1.417 0.502 0.050
2s§ 4o 2.000 64.245 '61.813 2.244 0.189
Zpﬁé*-ZpG;. 50 41.763 1.000 4.063 3.936 -0.385 0.513
2pw; 1m -83.526 0.000 -71.448 -71.012 =-0.477 0.041
Totals: -41.763 5.000 0.827 -=3.855 1.889 2.793
, Eh R3
a) Underlined gzp(w) s are + =~ x4,y
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approximation to Schreedinger's equation. As Gordy has
explicitly stated, it is necessary to assume hybridization
or to treat bonding in terms of delocalized MO's. The
recent trends would seem to favour the latter approach,

(182) recent work

as exemplified by Harris and Cotton's
on metal complexes. In the final analysis, as we have seen
for phe ionic case, although overlép may not contribute to
a particular property, it will significantly alter ofher
‘domains of ,the electron density which will thus affect
expectation values considerably. This is the rule rather

than the exception and as Davies(183)

pointed out, may
well be the explanation of the difficulty found in the
interpretation of eQqg and of the injunction to ignore

overlap.

4.6 Interpretation of Covalent Molecules

In Tables (4.4) to (4.6), there are presented the
electronic field gradients in terms of effective charges
for the series N2, CO and BF. Orbital breakdowns as well
as atomic, overlap and shielding contributions of each
orbital are given. 1In addition, free atom values of
the contributions from 2p electrons are given as gzp(w)Q

As seen from these tables, the.shielding contri-
butions correlate quite well with the shielding forces
(see Chapter III). Atomic densities, which show back-

polarization in terms of atomic forces, are found tc be
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less shielding for field gradients because of the 1/r3
dependence, than for the forces which have a 1/r2
dependence. The largest disagreement is found with the

1m electrons. These electrons only shield about 1/3 of

the corresponding nuclear charge in N, because of their
spatial distribution,’whereas the forces show a shielding

of 5 of these nuclear charges. The discrepancy in shielding
diminishes as one goes to larger internuclear distances such
as in BF. It has been remarked by Kolker and Karplus(144)
that as the wavefunction becomes more accurate, the
contribution of the 1 electrons decreases as a result of
orbital expansion. The difference between screening
coefficients for o and m orbitals was first noted by

(184)

Mulliken , although it is often forgotten in approximate

MO calculations(46). We have already remarkéd on the
contraction of the o-density in connection with the density
diagrams, as a result of contraction of the 2poc orbitals

in the molecule. The disparity in 2poc and 2pm contributions,
as noted earlier for N2 by Richafdson(lss), results in a
noncancellation of these contributions. In the valence

state for N ( 2p012pn2) there is a complete cancellation
since quo = —2q2p“. The total contributions from the
overlap and shielding add up to give a net shielding

charge of 7.21, which effectively cancels the nuclear

charge. Hence, for N2, most of the field gradient
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contribution comes from the atomic density, in agreement
with the Townes-Dailey theory. The polarization of the
m electrons into the bond complicates any discussion in
terms of hybridization. However, one can express the
net atomic field gradient in terms of effective atomic
populations, making use of gzp(w), the field gradient

value of the free atom 2poc orbital. For N this is 10.964.

2!
Then by adding the total ¢ atomic field gradient, one
obtains an atomic population for N2 of 2pol'25 2pnl'50.

In the case of CO, the total shielding contribution
at C due to O densiﬁy is undershielding by about 1.2
charges, most of the deficiency coming from the m electron
distribution. However, the sum of the overlap and shielding
charges exceed the oxygen nuclear charge by 1.40 charges.
A comparison of m overlap field gradients indicate that the
density is unequally shared in contrast to the force analysis
which predicted equal sharing. The total shielding at O
due to C density is less than the O nuclear charge by 2.65
as compared to 2.12 from the force analysis. Much of this
undershielding is therefore a result of backpolarization of
atomic charges, also indicated by the forces. The field
gradients thus accentuate the effect. The sum of shielding
and overlap g's at O is 5.47, somewhat less than the C
nuclear charge of 6. In terms of the free atom field

gradients, one obtains the following populations:
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2p0C1'02pﬂco'70, 2p0§'502pﬂ02'55. For BF, the sum of

overlap and shielding field gradients at B indicates an
overshielding of the F nuclear charge by 1.35, similar to
the situation of C in CO. At F, this sum is 4.7, nearly
competely shielding the 5 nuclear charges on B, In

terms of free atom field gradients, the atomic populations

0.512 . 0.13 1.622 - 3.45
PB 14 F PF L

The field gradients in covalent molecules are not

are: 2po 2po

B
easily correlated by the Townes and Dailey theory with
electronic structure. The first difficulty is that
invariably one has to deal with the polarization of =
electrons, which, as we have discussed in connection with

the forces, go counter to electron transfer which occurs

in the o-region. Furthermore, the theory underestimates

the contribution of overlap and shielding densities at

light nuclei, and overestimates these at the heavy nuclei.
These two contributions do not cancel out the nuclear

charges for the last case. 1In the case of the light

nuclei, the smaller po gradients seriously limit any con-
clusion of the amount of "hybridization" present as a

result of the overshieldiné of the nuclear charge at thev
other end of the molecule by the total overlap and shielding
densities. The symmetric molecule N2 shows best cancellation
of nuclear charge and overlap plus shielding densities

(z.. = 7.0, 0+4S = =7.21). For the other nuclei, one therefore
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has the problem of partitioning the overlap density. 1In
the next section, these will be discussed together with
the atomic contributions in gonnection with certain features
of the density.

A general comparison of the atomic densities of
these molecules indicates increasing po character and
also pm character in the order B(.51,.13), C(1.0,.70),
N(l.éS,l.SO), 0(1.50,2.55), F(1.62,3.45), where the
bracketed values are po and pm net atomic populations
referred to the free atom field gradients. Since the
contribution of a simple pm electron to field gradients
is -% that of a po electron, we see that in all cases
except F is there a preponderance'of po contribution, so
that F would be termed as having a "p-electron defect"(145)
of about 0.10 = (2322 - 1.62). This small defect would
indicate a large amount of ionic character were it not
for the fact that the atomic pm population of F has
decreased by about .5 charée due to transfer and polari-
zation into the bond region. One might'be tempted to
obtain the ionic charac£er i by linear interpolation of
'q from the equation
/ q=41idq. + (1-i) g

ion cov

as done for a compound similar to BF, I,C% by DeWijn(186).

This necessitates the use of an antishielding factor for


http:C(l.0,.70
http:B(.51,.13
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the ion F or depolariZation of the po density and
polarization of the pm as discussed before. As all these
are difficult to get at in practice the best one can say

is that the atomic field gradients are obtainable from

the above net atomic populations. The m population must

be obtained a priori from MO calculation in order to have
meaningful results, due to their polarizations. The
impo?tant suggestion of independent or even opposed ¢

‘and T polarizations has been previously discussed by various
.authors(187). Extended Hiickel theory calculations for
heterocyclic rings suggest pronounced and independent ¢

and m electron polarizations also(lsg). Simple electro-
negativity considerations, while giving a reasonable guide
to the o-polarization may lead to erroneous conclusions for
the m-polarization. Nuclear quadruﬁole resonance studies
interpreted in terms of the Townes-Dailey theory have thus
always predicted large total electron excesses on electro-
~negative atoms(189). It is therefore obvious that SCF-MO
treatments will give lower values for the m-electron density,
hence suggesting a need for refinements in the interpretation
of quadrﬁpole resonance data, a refinement which necessarily

depends on the knowledge of the exact electron distribution.

4.7 Quadrupole Polarizations

The forces provide a measure of the axial dipole

polarizations of the charge distributions. In particular,



TABLE 4.7

Field Gradient Components

A . (2?3?1) ay(electronic) *R3/2 - (A+0)xR3/2  ¥(Mde) o (q.. )
=d319 val. " “210

Li -0.053 -9.633 -0.411 +110 (0)

Be -0.058 ~8.420 ~1.084 + 99 (0)

o -0.883 -9.704 | -7.452 +224 (+2)

F -0.266 -6.206 ~4.230 +106 (+1)
~0.538 ~12.680 ~4.066 - 4 (-1)
~1.172 . -13.677 ~6.900 + 59 (-%)
~1.365 ~13.026 -8.451 + 77 (0)
-0.728 ~9.524 -6.172 + 82 (+%)
+0.611 -0.827 +1.966 + 95 (+1)

H O Z 0O w

68T
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the atomic forces provide a measure of the extent of this
polarization at each nucleus. These are related to dipole

(190) which are defined as the ratio

'shielding factors B,
of the change in the electric field at the nucleus, due

to an atomic charge distribution, to the electric field

at the nucleus from some external charge alone. The
most'characteristic rearrangement of the charge distri-
bution is, however, its quadrupole polarization. The
field gradient operator, (3 coszea—l) , provides a measure

. s ra3 .
of this very polarization at nucleus A. Negative charge

on the axis contributes —2/rg to the field gradient while
charge on the perpendicular axis contributes +1/rg (6=m/2) .

A polarization of the charge along the axis at the expense

of the perpendicular component in the region of the nucleus
results in a negative field gradient and the magnitude of the
gradient provides a measure of the quadrupole polarization.
The electronic field gradients calculated from the H-F
wavefunctions at the indicated Rg's are given in Table 4.7.
They are negative in_every case. These figures, however,
include the contribution from the atomic density distribution
centered on the second nucleus in fhe molecule. This second
atomic contribution exerts a field gradient equivalent to
some number of point charges situated at the position of

the second nucleus and is, therefore, large and negative.

The contribution to dp by a pair of inner shell electrons
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on nucleus B is for example simply 72(2/Rg). To obtain
a measure of the quadrupole polarization which reflects
the polarization of the density in the region of each
nucleus independent of the changing contribution of the
atomic density on the second nucleus, we have subtracted
this latter contribution from the total electronic field
gradients, as listed in Table é.7).. This results in a
fieid gradient which is the sum Qf the contributions from
the atomic and overlap populations for a given nucleus
and is a measure of the quadrupoie polarization in the
region of a single nucleus as depicted in the Ap maps.
To make the relationship between this partial field gradient
and the Ap map complete,'we have calculated the fractional
increase in the field gradient relative to that for the
separated atoms, using the same vaience state for the atom
as that employed in the construction of the Ap maps. For
example, the valence state of the F atom used in the Ap maps
is the M, = O component of the 2P state which corresponds

Fl 2pnF4.

gradient for the valence state of the F atom thus equals

to the 2p subshell configurations of 2po The field
-1+4(%) = (+1) times the magnitude of the field gradient
of a single 2p electron. The same atomic values gzp(w) for
+he 2p electrons, as in Tables 4.1 to 4.6, corresponding to
the Ap valence states, were used to calibrate the partial

field gradients in the molecule. Table 4.7 lists the change
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in the number of 2po electrons required to produce the
calculated change in the partial field gradients. They
are, therefore, measures of the extent of quadrupole
polarizations. The bracketed values in the table are
the field gradients for the appropriate valence states
of the separated atoms also expressed relative to the 2p
atom;c values: a contribution of -1 for a single 2po
electron and of +1 for simultaneous single occupancy of
the pm, and pw_ orbitals.

The spherical charge Symmetry of the N atom in
its 4s ground state is greatly distorted in the nuclear
regions in the N, molecule. The o component of the
charge density is increased by 77% at the expense of the
m charge component. This quadrupole polarization is even
larger at the O nucleus in CO. The partial field gradient
at F in BF is positive but the excess m component of the
charge density in the free atom is halved by the process
of bond formation. The increase in the o component of the
charge density found for the O nucleus in BeO and F in LiF
exceed the values expected on the basis of the filling of
the double and single 2po 6rbita1 vacancies found in the
separated O and‘F atoms. This, as.we have already dis-
cussed, was one of the reasons for the failure of thev
Sternheimer antishielding theory when applied to negative

sons. Thus, the cationic charge distribution in an ionic
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bond exhibits both dipolar and quadrupolar deviations from
spherical symmetry. The dipole polarization is necessary
for the establishment of elec¢trostatic equilibrium and

the guadrupole polarization results in an enhancement of
the o component of the charge density at the expense of the
T component.

The asymmetry of the valence state of atomic

1 1
c 2PT¢

enhanced by 60% in the formation of the CO molecule. While

carbon resulting from the configuration 2po is

the partial field gradient of the charge density in the

vicinity of the boron nucleus in BF is negative in value,

it represents & small decrease in the ¢ charge component

derived from the valence state atomic charge density with

a single o electron in the 2p subshell. As noted previously,

the charge increase in the region of boron nucleus is

predominantly perpendicular rather than axial as in C, N, O or

F, and the region of charge removal is not centered about the

boron nucleus. The slight decrease in the quadrupole

polarization noted for the boron reflects the partial transfer

of charge to the vacant 2pm orbitals of the boron atom in

the formation of BF. The éharge density in the molecule in

the vicinity of boron is still predominantly quadrupolarized.
The partial gradients for Be and Li are small and

.negative, the values being -0.140 and -0.034 a.u. res-

pectively. Using the gzp(w) from atomic data (see section 4.3)
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yields approximate increases of 110% and 100% in the o
over m components of the charge densities. Thus, even
the cationic charge distribution in an ionic molecule
exhibits both dipole and quadrupole polarizations,
although the latter is small in magnitude.

The total field gradients in atomic units are
listgd as qp in Table 4.7. N has the largest negative
dp- ’This is due to a large po electron excess and also
an increasing po atomic field gradient. All qA's are
negative except. at the fluorine nucleus in BF. The
situation for this nucleus is different in the molecules
LiF and BF. Standard ionic polarization theory (Sternheimer
antishielding) would predict the field gradients to be
positive at F in LiF and still more positive in BF as a
result of covalency of the 2poF electrons in that molecule.
dp in LiF is negative whereas in BF it is positive. The
signs follow from excess po density at F in LiF and a
defect of ~0.0%5 po electroﬁs in BF. In conclusion, it is
evident the quadrupole polarizations are strongly affected
by chemical bonding. Thus, caution must be used in inter-
~preting these polarizations, as measured from quadrupole
~coupling cénstants. Models which do not take into account
rearrangement cf charge as a result of bonding will not

predict adequately the quadrupole polarizations.



V. DYNAMIC PROPERTIES: FORCE CONSTANTS

La vérité, pour l1l'un, fut de bitir -
elle est, pour l'autre, d‘'habiter.
A. de Saint-Exupéry

5.1 . Introduction

From many points of view, the most interesting
properties of molecules involve displacements of their
nuclei. An essential step in the analysis of such effects
1s the expression of the electronic eigenfunctions 1. terms
of the internuclear distance. In many cases, of whicn the
treatment of reaction kinetics is perhaps the most impor-
zant, this step involves formidable difficulties that
snly diligent computations cancope with. As a result, it
nas most frequently béen handled'phenomenologically(lgl‘
In other cases, however, where the associated nuclear
motions are of small amplitude, as for example vibrations
the problems are more tractable(lgz). In this chapter, we
snall pe concerned with intramolecular properties ana
cnerefore with vibr&tionsu The subject of this section
aeals with the magnitude of vibrational frequencies, ana
nence force constants of diatomic molecules. The importance
of further work in the latter context has been underlined

(193)

~z2cently by Parr , in an attempt to correlate molecular

195




196

potential energy functions to theoretical ideas regarding
chemical bonding.

To a surprisingly good approximation, a potential
function composed only of quadratic terms in the nuclear
displacements may be made to fit the vibrational spectrum
of most molecules. Furthermore, the potential energy
constants for isotopic molecules_are the same as in normal
molecules, depending therefore on the electronic structure
rather than on the nuclear structure of the isotope. This
identity of force constapts.is a fortunate circumstance
for polyatomics where otherwise it becomes impossible
co calculate the constants uniquely. The force constants,
determined from the vibrational frequencies, directly
reflect the electronic structure of the molecule.Stretching
force constants (our subject) although sensitive to mole-
cular environment exhibit a fairly straightforward quali-
cative relationship. Their magnitude is to a good approxi-
mation inversely proportional to the bond length, which is
in .turn a measure of the bond order, and they are in

(194)

Jeneral transferable among similar molecules The

empirical relationships between vibrational force constants

and bond lengths which hold for a very wide variety of

(195) (196)

molecules, such as Badger's rule and other rules

and between force constants, bond lengths and dissociation

(197)

‘energies , have encouraged theoretical attempts to find
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a practical way of calculating force constants. These

include calculations of (dzE/dRZ)(lgs)

, of (dr/dr) (179
which can be related to the force constant by the virial
theorem, calculation of the force on an atomic nucleus

in the molecule and use of the Hellmann-Feynman theorem(zoo),

perturbation theory(201) h(202).

and an electrostatic approac
The.principles of these methods have been reviewed from
time to time. However, their application to a wide range
of actual many-electron diatomic molecules has not been
particularly successful. The simplicity of the empirical
relationships has not been matched by the theory, and
underlying regularities cannot easily be discerned. It
is evident that exact force constant calculations are,
therefore, of importance for a better understanding of
molecular binding.

In particular, liftle attentign has been paid to
ab initio calculations of molecular force constants.
Although the force constant operator involved has been

stated in a form which could, in principle, facilitate

calculation, those features of the electronic charge density

to which the force constant is most sensitive have not been

(202) derived

systematically investigated. 1In 1950, Platt
an approximate theoretical expression for the force constant
of a diatomic molecule and applied it with some success to

diatomic hydrides. Pauling had previously(203)(in 1927)
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predicted internuclear separations for hydrogen halides
employing the same underlying model, namely the wunited
atom electron distribution. Platt's result was criticized

by Clinton(lgg)

» who noted that Platt's derivation ignored
the explicit variation of the electronic charge density

with internuclear distance. 1In addition, by differentiation
of ghe virial theorem with respect to the internuclear
distance R, Clinton concluded that the explicit variation

of the electronic-charge density with internuclear distance
is a necessary condition for the molecule to have a non-
vanishing force constant. Platt's impressive numerical
results were interpreted as due to approximate cancellation
of higher correction density terms. The fact that the force
constant involves the derivative of the electronic charge
density with respect to R was shown earlier by Byers Brown(201),
through differentiation of the Hellmann—Feynman theorem. He
then proceeded to express the force constant in terms of

infinite perturbation sums. Salem(204)

employed certain sum
rules to arrive at various alternative expressions for the
force constant, related to the perturbation sums , and
also derived the force constant expressions from the Hellmann-
Feynman theorem.

The primary purpose of the présent study is to

investigate further the mathematical forms which the force

constant can assume and use of these for interpretive purposes.
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The form depends upon whether the virial theorem or the
Hellmann-Feynman theorem is used to define the first
energy derivative and what coordinate representation is
employed to déscribe the wavefunction. These points

have been emphasized in chronological order by Salem(204),

(205) (206)

, Schwendeman , Benston and Kirtman(207).

Phillipson
The choice of coordinate representation is an important
fac;or as this can change the form of the force constant
expression and its possible interpretation. As in the
- force analysis, we will find that the Hellmann-Feynman
approach is the most advantageous method which permits
one to isolate the different contributions to force constants.
This hopefully puts one in a better position to explicitly
analyze the role which the electronic-charge distribution
plays in the vibrations of atomic nuclei. One question
which may be asked is, for example, to what features of
the electron-charge density are molecular vibrations most
sensitive? Also, how important are the effects of electron
correlation, and the related question of how reliable are
Hartree-Fock wavefunctions, and their best approximations,
in providing the ambient charge density in which the nuclei
move?

It is to these aﬁd related questions that this
chapter purports to be an introduction. In general, for

3 diatomic molecule, the force constant is the second

»
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fderivative of the total molecular energy with respect to R,
evaluated at the equilibrium distance Ry. The nature of

the differentiation process is investigated. Consideration
of the first énergy derivative, yielding the mathematical
formulation of the Hellmann-Feynman theorem has already
been discussed in a previous chapter in connection with the
forqe analysis of chemical binding. The differentiation
process is applied again to arrive at the second energy
derivative, and hence the force constant. Employing a space
fixed coordinate system in which one of the atoms is fixed,
one can visualize the relative importance of the various
terms involved so that one can get more insight into the
relationship between chemical binding and the force constant.
The scheme adopted here was thus designed to allow
calculation of the force constants for any molecule, and in
such a way as to show up those features of the electronic
structure which have the most influence. To obtain the

best accuracy of prediction in any particular case, the

data employed should be restricted to a series of molecules
in which the bond character is similar, or at least suffers
no abrupt change along the series(zoe), The two series

N5, CO, BF and LiF, BeO, fit the above criteria. A calculation
of the forces at a number of internuclear distances, curve

fitting these to obtain derivatives and hence furnishing

force constants, anharmonic constants, etc., use of field
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gradients and the Hellmann-Feynman expression of the force
constants will enable us to compare results for correlation
schemes. The result of this will be to show that regularities
reflect the extent to which the repulsive forces between the
nuclei of the bonded atoms are reduced by electronic

shielding and electronic relaxation effects. These relaxation
effects will be pictorialized via the use of actual electron
density diagrams rep;esenting the density differences between
the extended and normal molecule.

5.2 The Hellmann-Feynman or Electrostatic Approach

We assume the validity of the Born-Oppenheimer
approximation, according to'which(zog) nuclear and electronic
motions are separable. Specifically, we conéider the nuclei
to be subject to an effective potential energy function E(R)
which is the eigenvalue of the electrons for the nuclei fixed
in each instantaneous configuration. The electrons are
taken to remain during nuclear motion in the same quantum
state, the characteristics of which adapt continuously to
the shifting of the nuclei. The effective potential E(R)

for the nuclei is thus defined by
[Tel(ri) + V(R,ri)]wel(R,ri) = E(R)wel(R,ri) (5.1)

In this equation as in (3.1), rj refers to the electronic
coordinates, Tel’is the electronic kinetic energy operator,
and V is the total electrostatic potential energy operator.

The nuclear coordinates are understood to have been written
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eV 1

F:-dE/dR
-4 |

-5 L

F1684. General form of a diatomic potential curve, E (R), and of its derivative, F =
—~dE/dR {to scale for H; molecule).
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in terms of R and of the coordinates of some fixed point
O, preferably on the molecular axis. In the equation, R
appears only as a parameter. One can plot E(R) and dE/dR
as in Fig.(5.1). For bound states, as considered here,
the function E(R) has a minimum at'Re, with (dE/dR)Re=0.
The force constant ks of the molecule in the state repre-
'senggd by wel is defined by approximating E(R) near Rg
by a parabolic function (harmonic oscillator) and obtaining
thereby

ky = (d2E/dR2)Re (5.2)
where the differentiation occurs with respect to R only.

Alternatively, we can express the force constant as

! _ _gE
ky = [gg (AE/AR)1p = -(3)

Rg (5.3)

i.e. the differentiation of the force curve. The force
only has meaning in so far as it operates on a certain
.nucleus, so that one must differentiate with respect to a

nuclear displacement, eg., z

al
. drF 2 2
A d<E d<E
ko = +(a——) = +(—%) = (—=) (5.4)
. 2a Re dzz Re dr? Re

This follows from the Hellmann-Feynman force on nucleus A,

Z

__4E__dE _ _ cos 6 _ _B
FA_T—R-+dza = ZA[fp————a-r =l dr ~ ] (5.5)
a

where from Fig.(5.2) one has -dZz = dR.

Before deriving the force constant expressions, we
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Fig.(5.2a) Fixed Electronic Coordinates Centered
on B

Fig.(5.2b) Moving Electronic Coordinates Centered
" on A, and B Fixed
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wish to digress upon the real physical meaning of the force
expression in order to clarify some points not discussed
befdre and whica are of relevance to the interpretation of
forﬁe constants. Firstly, if we had expressed H and w.in
terms of Cartesian coordinates centered on nucleus B, the

Zz axis being directed as indicated in Fig.(5.2), then in
this representation, the only quantities_in H and { which
depend on R are the distance ry; of the electrons from
nucleus A in addition to R itself and other variational
parameters in Y. For this case (1), see Fig.(5.2a), the

expression for Y would be(%32)

(5.6)
il 2 2 2.%. 2 2 2.% '
V(o ,ra,rp,)=0(B , [Xp+yp+(2p-R) ]fgxb+yb+zb]f arctan yb/xb)

where arctan Yb/xb = ¢, and B represents all para-

meters including R. Furthermore we would have

Bra . ari arb

aza ‘azb aza

=0

where this last relationship depends on the fact that the
function y is fixed at zp and does not depend on z_. 1In
fact, we see from the right-hand{side of Eq.(5.6) that ¥
depends on z_, (since -dzz = dR) only through the parameters

B (and R itself)

.. _AV(B,Ty) _ 3V 38 _ _ 3y (8,rp) ‘
Talal dz, e T 32, L £5:7)

‘where the primed superscript on z, indicates differentiation
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of parameters only, including R. For this case, then

dE__dE

*3H
ar "az, ~ 'V 3z

- 3¢ Y
wd f é HydT- Iw H ; drt (5.8)

The point to be underlined is that for this space fixed
function, there has been a change in the density p = |¢]|?

due to the nuclear motion, i.e. dy/dzy = awlazé #0.

However, the'integral fg—, H.dt = 0 for stable wavefunctions,
so that we retain the classical electrostatic interpretation.
On the other hand, for case (2), see Fig.(5.2b), ¢ is
expressed in terms of cartesian coordinates centered on
nutleus A, so that

Y (o, ra,rb) =y (a, [x +ya+22]%,[xa+ya+(z —R)Z]%,arctan ya/x )

(5.9)

This function therefore depends explicitlyon z; and R, so

that .
dy _ 3y ax, Y 9 (cosb )
dzz dr, 9z, - 0(cosB,) 0z
_ (5.10)
+ 9y da + 3y 9R
90, drgy dR 0z4

If o« and R are constant, then we have rigid orbital following,

or more precisely, just translation of the system. If

the function remains centered on A, there is no change in

v and H for this rigid foilowing, so 'that 3y/dz, = BH/BZa;O,
(122)

since ry is constant . Thus the only change in ¢y comes

from nonrigid following with respect to A, i.e.

dﬂ_ (o, r)
'rv
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where o represents all parameters including R, for ¥ centered
on A. The same result could have been obtained had we
moved nucleus B by dz;, = dR, keeping A fixed. Since w(a,fa)

only depends on z, through o, then
3V (a,ra)_ _ 3 (a,F5)_ 3V (a,Fa) 3a (5.11)
92y, 0Z oa 9Zp
Furthermore, since -d/dz; = +d/dz, = d/dR, then
v (a,r,)_ _ dv(B,Tp) _ 3u(a,r,)
dz, aib EEA (5.12)
where in the equation, we have transformed (a,fg) into
(B,Tp). This is permissible as 1oné as one takes total
derivatives of y, and can be checked using simple Slater
orbitals. The importance of (5.12) will appear when we
deal with the force constant expression. As the force
constant is a measure of the changes in the forces, rigid
following must. contribute nothing since for such a case
there is no change in force. The force changes will come
from changing or relaxing densities Bw(a,;a)/azé, which
do not follow nucleus A.

The Hellmann-Feynman force expression is derived
from a space-fixed electronic system, i.e. case (1), so
that one thus eleminates interelectronic coordinates.
Furthermore, mathematical operations such as differentiation

is necessarily done with respect to a fixed coordinate system.
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Therefore, whenever wé shall use.the Hellmann-Feynman
formulae, we shall imply that the functions to be
differentiated are expressed in terms of some space fixed
coordinate. Coordinates will be introduces as variables
in order to indicate.a specific coordinate system other
than some arbitrary space fixed system.

Differentiating expression (5.5) with respect to

R, we have:

2 22,72
d g - A3B " Z [I (cos a)dr + f%g cosea dv )
dRr R r
a a
In fixed electronic coordinates,
d ,cosfy a2 _ 1-3 coszea 4 _
ai( 5 ) = vi (F;) = 3 +* 3 G(ra—O)
ry dR r,
(see next section), and using the relation dR = -dz,, we
2 22,2
have: ' ky = @ E = g B
drR? R
3 coszea 1) dp cos6
+ ZA[_D(A) f ( a3 )d = -d-E;—rgz-adT ]

where p is expressed 'in a space fixed system. (5.13)

Equation (5.13) corresponds to the more general

equation given earlier by Hornig(64)
d2v
dR (5.14)

The first integral, comprised of the first three terms in
{5.13) is the force constant analogue of classical electro-

statics for point charges (nuclei) immersed in a fixed
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charge distribution of density p. This, by definition is
a field gradient term. The second integral which is
equivalent to the last term of (5.13) has no classical

analogue(201)

, and expresses the change in the charge
distribution due to the movement of the nuclei. This
corresponds tc a reaction of the system upon the field,
a condition usually ignored in classical field theories
but.not in quantum field theories.

The field gradient term,which corresponds to moving
the nuclei while holding the electrons fixed is positive
and quite large because as one moves the nuclei, the
initial electronic configuration does not correspond to a
very low energy situation. The reason for this can be

(67). The

seen in expression (5.13) first derived by Salem
electronic field gradient term requires the correction

glp(A)' which we have omitted in the previous chapter, as it
does not éffect the energy of the rotational states of a

nucleus if p is spherical about it. However, if one moves

~a nucleus of charge ZA from the center of such a distribution by
an amount dR, one can easily calculate that the restoring

force is ZAgn-dA)dR. Consider a small volume element

dt = %E(AR)3 at A. Then the charge Q in that volume is
ar
3

nucleus ZA from the centre of this charge distribution by the

o(A) (AR)3 in the limit A R—*0. If one displaces the
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distance AR, then the restoring force is 'AF=ZAQ/(AR)2 =
47

ZA(§— p(A) AR) in the limit AR+ 0. Therefore, the force
constant AF/AR for such a displacement is ZA(-g-It p(A”.

We see then, that the larger p(A) is, the larger is the
force constant so that it becomes energetically more
difficult to displace a nucleus from the center of a charge
distFibution with high density. This is the basis of the
objection to'floating functions as introduced by Hurley

in order to satisfy the Hellmann-Feynman theorem. The

am

term 3 p(A) is positive and thus usually exceeds any

electronic field gradient terms which are sometimes negative.

For the F nucleus, %1 o (A) is of the order of 1300 a.u.,

so that it is cuite inconvenient in an analysis using
equation (5.13). As shown explicitly later, much of this

is cancelled by the relaxation component of the force
s dv

dR dR
theory to be always negative, following an argument first

given by Byers Brown(201). Expanding 9y,/3R in terms of

constant dt . This can be shown using perturbation

the complete set of equilibrium wavefunctions U ¢

3 ’
¢ _ _. (3H/3R) _ ¥ 5.15
W phoB, - B0 T fa

where (QH/3R) <w°4|8V/BR|wﬁ> , the sum excluding the

' ’ *
state n = 0, and since p = Wo wo' we have

dp dv
I3k ar 9t = -2,k I<u,[ov/oR[yp>|®

En—E
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Since En > E4, the integral is obviously always negative.
This term then has the effect of reducing the energy of the
system by a rearrangement of the density. The field gradient
plus 4n/3 p(A) is the static part of the force constant,
i.e., the electrdn density is kept fixed. The relaxation

d av ... p .
a% 3R dt represents a dynamic effect, i.e., a

term [
response of the electronic system to nuclear motion, which
thus hélps reduce the energy of the total system and hence,
the force constant. The magnitude of these two terms, the
static and dynamic terms, depend on the choice of center

kept fixea (67)

during the infinitesimal extension or con-
traction of the internuclear distancé by R. 1In most cases,
the force constant appears as the difference of two very
large terms.

The center of mass is not fixed in the derivation
of equation (5.13). In as much as we have indicated that
detachment of orbitals is not too likely, there will be
some translation of the electronic density with the nucleus
being considered. This trénslation must contribute nothing
to the total force constant. This.can be avoided by starting

from equation (5.5) and differentiating it with respect to

dzy = dR. Thus, one obtains

’

9 2 2Z2.2 =
d g - -ngdz - § B, zAfg—g- (a,ra) E-‘E%a ar (5.16)
dR b~ “a R b r

a
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where p has been expressed in terms of coordinates centered
on nucleus A so that éfa/azb = 0. In this method, which

corresponds to Murrell's original approach(ZOI)

, translation
effects have been avoided by moving nucleus A by dR/2 and
then nucleus B by the same amount. From (5.11) we have

further that

2 22,7 vy :
2= 52 - gy l0ralesta o (5.17)
dR R a )

a

where dzé implies differentiation with respect to para-
‘meters only (see equations (5.9), (5.10)). The significance
bof this is that the electronic contribution to the force
constant depends only on "relaxation" effects when P is
expressed in terms of coordinates centered on A . This has
the advantage that it avoids the calculation of contributions
from rigid orbital following, since the only force changes
occur for non-following for such a coordinate system. This
approach has been advanced 5y Schwendeman.(zos). We see
that it is equivalent to Murrell's method, as one would
‘expecf from Galilean relativity. The disadvantage is that
all effects are lumped together as relaxation, including
density, which is fixed at B and therefore follows nucleus B.
From the electrostatic viewpoint, this is equivalent to a
field gradient contribution.

5.3 CanceiiatisngTheorem

B T T Y]

We have commented that translation effects must

>
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cancel out in the force constant calculation as these do not
contribute to actual force changes. The nullification of
these contributions are a general result of translational
invariance of the energy. From equations (5.13) and (5.17)
we must have

2
f cosea dr + fp (3 cos“05- 1)dT _ %lp(A) =fgg cosfy A%

a ra3 2 En
now
fgp cosea &r wf dp cosfg dt +f ap cosb, At
25 2 9z 2 0z 2
ry a rg a rg

where 9p implies differentiation of r_ and cos ¢_ only,
9z, a

a
i.e. differentiation of coordinates only. This is then the
rigid orbital approximation (see Eq.(5.9)). We thus have the

result that

2
f%g— EQE%a‘dT + rp(3c0s %a=1)4r - il p(A) =0
r, r 3 (5.18)

for rigid following. For a spherical charge density centered
on A, the electronic field.gradient is zero and we thus

obtain the special case

Sph cosfg dtr - i”l p(A) = 0 (5.19)

ﬁz 2 3
Ta

f

This special case had been enunciated as a theorem by Salem
but he failed to recognize its wider generality, i.e. a
nonspherical charge distribution which follows a nucleus

rigidly will always demonstrate cancellation of field
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gradient and relaxation term. This can be easily verified
by using Slater atomic orbitals of any symmetry centered
;on A ana pérforming the operation indicated in Eqg. (5.18).
Much of the interpretive scheme of Salem is thus invali-
dated because of the omission of this important aspect.
Schwendeman's and Murrell's expressions are thus seen to
be a simplification.arising from this cancellation.

One can derive this result %n a much more general
fashion. A system which moves through space without under-
going spatial distortions corresponds to a translationally
invariant system, and because of the isotropy of space
suffers no change in energy, force, etc. Thus we must have

VE = V2E = V'E = 0 for n > 0
By starting with the Hellmann-Feynman expression for the

force, we have for n = 2,

-

f[p$;g—1/fa) + Y 0 Ga(-i/fa)]dr = 0 (5.20)

In order to, obtain meaningful results as the first integral is
singular,.one must first omit a small sphere of radius & about
A and integrate over angular variables, as discussed in the
field gradient calculations of the fourth chapter. Then a
correction obtained from Poisson's equation ﬁz(l/ra)=—4ﬂ6(A)
must be added (see Appendix 2) for the excluded sphere.

This is all a matter of convention to ensure that a spherical

charge distribution gives no field gradient. The second
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part of the integral is absolutely convergent if p is made
up of Slater functions since for the worst case, a ls
function, we have in the small excluded sphere

f g%;— E%%Q 47r%dr which goes to zero as e€+0. We thus have
£-+0 .

3

fra>€ pvs(-l/fh)dT + Iﬁapva(-l/fa)dT = 47 p(A) (5.21)

For”translation along the z-axis only, by symmetry

3 323, 2 3

ra a

24 _
[ 0 3 Ccos ea 1 dt + Iap Egggﬁ dt = 51 p(A) (5.22)
ry>€e .

which is the result (5.18) and proves our theorem,

namely that the density which follows rigidly nucleus A

cannot contribute to the force constant, so that in a

fixed coordinate representation the result (5.22) holds true.
This cancellation will also hold for higher deriva-

tives by succéssively differentiating the equality (5.22).

The result is that only relaxation effects contribute to

all higher derivatives of the energy. To show this generally,

we differentiate the férce on hucleus A with respect to

2, and remember that a?a/azb = 0, .then

Z,% n-1 s

n n

dE?! _ d ( %{B) + 2, fa ng{a,ra) cosba 4+
dr?  4r" 0z r

b a

Furthermore, from Eq.(5.11) %E— = - %ET , therefore
b a

dg? _ ar ZAZB) + (_lfn-l)zAIBn—l (a,;a)cosga at

R

: 'n-—
Bza T

{5.23)
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a result reported previously by Schwendeman(zos).

5.4 Force Constant and Quadrupole Coupling Constants

In the fixed electronic coordinate method, i.e.
Helimann-Feynman method, we saw that only H depended
expiicitly on the coordinates of nucleus A. In these so-
called "one-center" coordinates, the derivative of the
wavefunction with respect to R involves only the derivative
with’respect to the variational parameters, including R .

Defining these parameters by Bji, we have (y centered on B)

984

_ gmoag) « Q¥ _ 3V _ o 9y 9Pi
¥ = V(Xp,¥YprZbiB) ay R E 38 3R

P 3R

The electronic force constant in this representation we have

seen is (from (5.13) and (5.5))

2 .
q v 8<Fel> aBi

en
Yy dt - % - ]
dR2 i 9B 3 9R Re (5.24)

el *
kST =1/v

.On the othér hand, in the moving coordinate representation,
the electronic force constant is given by the following

equivalent expression from (5.17)

0<Fel> aai

aai dR 'Rg

k = -z
i (5.25)

where the o;'s are now the parameters obtained after
expanding the density onto nucleus A. The second term of
(5.24) appears formally to be identical with the equality

(5.25) , yet there is no contradiction. The dependence of
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the parameters g; on R is different from the R dependence'
of the parameters oy the differenée arising from the
transformations from one nucleus to the other (Eq. (5.6)
‘and (5.8)). In particular, Schwendeman's expression is

a special case of the confocal elliptical representation

of Phllllpson( 205)

where now the density is centered
simultaneously on A and B to avoid translation of the

system as a whole. Phillipson prefers to call the field
gradient contribution a "quadrupole" correction to the

force constant. He emphasizes the fact that the appearance
of the quadrupole operator in the force constant expression
is contingent upon the choice of coordinate representation
.and thus appears to rule out the possibility of assigning

an invariant connection between the force constant k, and
the quadrupole coupling constaﬁt g. This view is also
supported by Schwendeman who shows that different symmetries
of the electron density are involved in the force constant
and the field gradient. For instance, the electronic

contribution to the force constant is

el _ _ ap(a,;a) cosb
k2™ = =%y 33 =g AT (5.26)
, a

which Schwendeman equates to

kel - 4my % f 10 (0,Fa) 4.

=
“a'3 (5.27)
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'This is permissible as can be easily shown by considering
: = _ _=2r oY o _.4az -Zr
a 1ls orbital ¢, _(ry) = e ""a. Then 5;;15 (ra) = dz, Fa® a,

so that upon performing this operation, the angular symmetry
of the function has not dhanged. However, in the next
section, in connection with Platt's model, we will show
that a spherical charge density centered on nucleus B,

to which are applied equations (5.26) and (5.27) when this
density is expanded onto A, will give a field gradient
contribution to the force constant. This is also true for
any density of other symmetry centered on nucleus B. as

can easily be verified by using simple Slater orbitals .
The result is that Eq.(5.27) is equivalent to a field
gradient for a fixed charge density. For density wh.ch
follows nearly completely nucleus A, then (5.27) also

gives a field gradient which is a measure of the effect
from thatvcharge which does not follow that nucleus rigidly,
but relaxes with respect to it. It is evident, therefore,
that with respect to nucleus A, any density fixed on B will
represent a relaxation. Howéver, as the contribution of
this "fixed" relaxation is equivalent to a field gradient,

i & » wili be more convenient to treat it as such. These

ideas will be further purgued in the analysis of the density
contributions to the force constant.

The relationship between force constants kj and field
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dt

3 cos2 95-1
p 3
Ta

gradients qA defined by q, = ZZB/R3 - f

depends on which nucleus one is considering. Use of a -
linear relationship in order to attain some empirical

correlation has been made for C-H bonds(210).

The

detailed expression relating the force constant to the
quadrupole constant of either nucleus involves a certain
amount of cancellations, as was shown in the previous
section. A previous attempt to relate these two quantities

is due to Hornig(64). The explicit relationship was

analyzed by Salem(67)

using Eq.(5.13) in order to account
for an apparent correlation for a series of molecules,

ionic hydrides specifically. Although he indicated

evidence that the partial force constant for moving a proton
along with a 2p, orbital was zero, the reason was not made
clear. Furthermore, for those molecules which have nega-
tive field gradients, as those considered in this work

(see Table (4.7)), there is obviously no linear relationship
between the force constant and the field gradient, since

ko by definition is a positive quantity. These negative
field gradients cancel to a large extent in the total

force constant expression as they arise from P, orbitals
which mainly follow the nuclei on which they are situated.

It is that densitg which does not follow the nucleus con-

sidered,which will contribute a field gradient to the force
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constant. The separation of this fixed part of the density
from the total is by no means simple. It can be done for
that charge fixed on nucleus B. The remaining density,.
atomic and overlap must be considered as relaxation. Thus,
no general relationship between the force constant and

the field gradient of the total density is possible in

view of cancellation phenomena.

5.5 Platt's Model

We now present an instructive example to demonstrate
the equivalence of field gradients and relaxations of
densities fixed with respect to some ‘center other than A.

The Hellmann-Feynman expression was used for the force as

a result of the advantage derived from its exclusion of

the requirement of any knowledge of 3y/9R, i.e. the adiabatic
change in the electronic wavefunction with nuclear motion.

"In the force constant expréssion, one'therefore has to

cope with this factor, or rather J3p/3R, the change in density.
The center of gravity of the distribution 3p/3R thus enters

the force constants. It also determines infrared intensitie421%)

since the change in dipole moment with vibration is

Y _ féﬂ 2 dt (5.29)

In the force ccnstant calculations, the term one must
consider is

el _ d cos (5.30)
k =2 fa%g dr
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As we have mentioned before, this is a quantal term
expressing tﬁe reaction of a particle on a field, thus
giving rise to a second order correction to the energy
of the total system. This is by no means negligible as
it must cancel with the classical electrostatic terms
when the molecule is uniformly translated. By expanding
the perturbed (1ls) density 9p/9R for an H atom using

the expression (5.15),

o _ _ ¢ <o|3H/IR|n> v
(212) have shown by summing over

Byers Brown anc Steiner
‘discrete states that 93.2% of the contribution to the
relaxation (5.30) comes from continuum states, whereas
the resulting polarizability of the displaced charge
only had an 18% contribution to the total from continuum
states. This corresponds to pulliné a spherical charge
distribution, undistorted, a distance R from the nucleus.
One way of circumventing this problem is to use floating
functions a la Hurley, which follow the nucleus. This

(192) in the calcu-~

approach has indeed been used by Liehr
lation of vibronic effects on transition probabilities.

For certain systems, it is possible to omit these variations
in charge density and assume that there is no orbital fol-

lowing. This approximation will hold well for protons, the

electrostatic field of which are small because of the small
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charge of the proton. This approximation has been successfully

4282) and by Longuet—HiéQins and Brown(116) in

used by Platt
calculations on molecular hydrides..

Let us therefore consider a hydride M-H+. A
typical compourd of this class would be FH. In a first
approximation we may consider such a molecule as built out
of a negative ion M™, consisting of a nucleus M surrounded
by a‘charge density of'ZM+l electrons, and of the proton |

buried in this density at its equilibrium position. Hence,

from (5.13),

ky = Zylay + g% o(H) - /32 (rM)cong ad 1

2 a dzy r {5.31)
_ 27 : 2
and = ZM _ , 3cos"fH-1
Ty

If the total charge density in our mddel is chosen to be

spherical, then for electrostatic equilibrium

N3

5 = Jo(my) S2ZH-ar (5.32)
Re H

which means that the charge density inside the sphere of

radius Ry must equal Z, in order to completely shield the

M
nuclear charge, and thus give FH=0' Since dy is the nega-
tive derivative of FH' it will also be zero, i.e. complete
screening of the nucleus, except for a singularity at

Zy=0, which contributes an additional %l p(H). This
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additional contribution comes about because the electric
field or force must be continuous in the x and y directions,
considering the sphere with radius Re.as a boundary. The
diséontinuity in the field occurs along the normal, i.e.

thé z axis, and the magnitude of it is 4ﬂp(213). Our
result for a spherical charge distribution centered on M,
then is:

k, = 2, [np(H) - s3e(rm) cosfy g

2 2
H Ty

{5.33)
We obtain Platt's formula ky= 4mp(H) if we assume that the
charge density is fixed on nucleus M and follows only that
nucleus in addition to beihg rigid , for then p(;M) is
independent of 2 completely and the integral vanishes
since dp/dzH = 0.

Alternatively, one could have started from Eq.(5.17)

" and using Eq.(5.12):

ko = 2. [ 2Zy + f dp (ry) cosOH g
2 H 3 dz, 2 L (5.34)
R M 5
H
which represents the relaxation method of Murrell and
Schwendeman. In other words, we measure the change in

force resulting from a change in density at the proton
as nucleus M carries with it the density p(rM). We assume
for simplicity that we are dealing with a 1ls density centered

on M, so that|b(;M) = e ™™, Using the results -
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) -rm ™M
= e = -cosfy e
; azM
cosby _ Zi% P31 (cosfy) ry € R
rH2
- cos 2M ry > R
: (154) . ™
(see Pitzer et al or Appendix 2)
we obtain
dp  (rm) coso g “Re 2 | ©
dp  (rm) cosOm _\871 Re_ “IM gqr2
S " 2 dt 3 © = e dmrg dry, ry< R
H
0
-R
%1 e € ry> R
For Iy <Ry, we then have the field gradient of all the

charge inside the radius Ry . The resulting force constant

is then

Re

Kk, = 2. [ =M 4 4np(H) & 4ﬂr; dr,, 1

-2
3
R
© Jo
For electrostatic equilibrium the first and third terms
are equal, i.e. complete shielding. We thus obtain again

Platt's equation
ky = dmp i) (5.35)

This simple example therefore demonstrates the equivalence
between field gradients and relaxation effects. The
Murrell-Schwendeman-Phillipson interpretation includes field
gradient effects as relaxation. For charge distributions

localized on a particular nucleus, the electrostatic inter-
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pretation indicates these should be more appropriately
considered as field gradient effects:

We have seen that q = %1 p(H), so that k,= % qH.
For HF, HBr and HI, Salem has discussed this correlation.
The experimental data suggests that Ay is 85% of the force
constant on the average, rather than the predicted 67%.
The agreement can be i@proved by assuming the complete
following of the proton by an added spherical charge
density. This would increase p(H) but would not affect
k, since orbital following would contribute nothing. The
addition of polarization at H in the form of po character
would decrease dy since po contributes a negative field
gradient. If this polarization remained rigid and followed
the proton, k3 again would be unaffected. However, if
one assumed that this polarization changed upon vibration,
as it most certainly does, then p(H) would have to be
increased, since the relaxation term due to the changing
polarization is positive (qH<k2) bu£ the field gradient
contribution of po electrons would reduce Ay The question
as to which charge density to use has thus always been in
dispute. Hall and Rees(zoz) have pointed out that a
separated ion wavefunction would give improvéd results for
Platt's model, which originally depended on united atom
wavefunctions. More recently, using Hartree-Fock atomic

(214)

wavefunctions, McDugle and Brown have shown that cal-
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culated equilibrium distances and force constants are in
much better agreement with experiment for the united-atom
model. Platt's treatment is least accurate for the lighter
molecules, for which the electron'density will become
significantly perturbed by motion of the proton. Intro-
duction of polarization will, as we have discussed above,
alleyiate any discrepancy. Relaxation or orbital following
will then have to be considered explicitly.

It must be pointed out that nucleus M is not in
equilibrium but sees a repulsive force from a single
positive charge, the unshielded proton. Thus, polarization
must be introduced at M to achieve electrostatic equi-

librium. Similarly, the force constant at Mlis equal to
ZZHZM/R3, i.e. the field gradient produced by the proton
at nucleus M, since p(;M) completely follows that nucleus
and hence contributes nothing to the force constant. 1In
actuality, the electronic field gfadients are not
negligible since the bonding involves mostly p0 electrons
in molecules such as HF and HC2. Thus their magnitudes
and the change of polarizétioﬁ of po and pT electrons,
which we have seen in the previous chapter can be quite
different, must be taken into account.

At the proton, PLatt's model violates another tenet
of rigorous quantum chemistry, namely the virial theorem.

The assumption that ap/ézH=O implies constant scale. Satis-
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faction of the virial theorem requires optimum scale
which minimizes the energy. On the other hand, the above
assumption ensures validity of the Hellmann-Feynman
theorem, which rgquires only thatf%gg Hdt = 0, a condition
satisfied by Platt's assumption. The violation of the
virial theorem requirements was pointed out by Clinton.
The objection has been removed by a scaling technique
proposed by Hall and Rees(zoz). However, we now see that
the success of Platt's model is more a result of its
satisfying the Hellmann-Feynman theorem, even though some-
what artificially, and less a spurious result because
of its violation of the virial theorem.

In extending the model to polyatomic molecules as

done by Longuet-Higgins and Brown(lls)

, satisfactory results
are again obtained. The reason for this is that for the
particular case of bending and twisting modes, the

electronic contributions diminish considerably. We have
commented before that electrostatics requires the tangential
component of the force on a boundary surface to be continuous.
For a spherical distribution, thevforce is constant on the
sphere and hence perpendicular modes will have vanishing
electronic force constants. This sort of reasoning has been
used by Bader in a discussion of proton transfer reactions(215).

One can extend these ideas to potential barriers, where if

as in ethane one assumes as a first approximation the charge
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density to have cylindrical symmetry about the C-C bond,
then the twisting modeé will be hardly affected by the
electronic field gradient because of the continuity of the
perpendicular force components on the protons. Clinton(216)
was one of the first to point out that much of the

barrier to internal rotation comes from nuclear-nuclear
interactions. Our considerations would seem to indicate
that a large part of the remaining contribution comes from
electronic relaxation effects. One important factor is
orbital following at the protons, which must be included.
That orbital following does occur is reflected in the low
values of interaction force constants. The assumption

of orbital following corresponds to quite a sizable value
of ap/BrH which drastically reduces the nuclear repulsion
contribution in C-H bonds(217). In fact, it is impossible
to get a nonvanishing electronic contribution to the inter-
action constants of stretching-stretching type if the
wavefunctions are not allowed to follow the nuclear
_motion(agb ). This is because of ﬁhe result that no
molecular integrals then depend simultaneously on two
different bond distances: d2E(e1.)/deR' is necessarily
zero (R ahd R' are two different bond lengths). The
electronic term therefore measures the electronic rearrange-

ment during vibration. The negative signs of interaction

constants in some molecules are precisely the result of the
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fpreponderance of this electronic relaxation(21l) over
nuclear terms. Bader(zlg) has used perturbation theory
and certain simplifying assumptions about the "transition
density" to evaluate these effects. In conclusion, we
can state that relaxation is the rule rather than the
exception.

5.6 Method of Calculation

The relaxation terms are in general much too
difficult to calculate from ab initio functions. In the
case of Cade's function for N,, the parameters do not vary
with R in any systematic way, thus making it impossible
to evaluate da/dR in any consistent manner. The method
we have adopted in this present work is a calculation of
forces at different internuclear distances, followed by
a polynomial fit of these,so that one can easily obtain
the derivatives one is interested in . This has advantage
over an energy fit, since in general the forces are smaller
and much more sensitive functionals of the density. More-
over, this permits one to partition the derivative into
orbital contributions. One can show this for the force

constant by considering the derivative of the force expression:

e fo Fat=J3& F dr + SogE at

dds dF
z 2ni<¢i| F Ia%l > + Ini<éjlgglei>
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where the ¢j's are orbitals, and the second equality

comes about'by writing the force F as a sum of orbital
terms nj<¢j|F|$;>. The relaxation is therefore separable
into orbital contributions by comparing the two equalities
by term, i.e.,

dp
3R

F dt = ZE n;< ¢;| F |g%i>
In the case of the energy, the sum of the individual
orbital energies is not equal to the total energy in
Hartree-Fock theory. The sum of orbital energies cpunts
.the pair interactions twice. Thus, one cannot easily
calculate any relationship between variations of orbital
energies and crbital force constant (or for that matter,
force) contributions. The first derivative of the force
curve gives the force constant. The orbital field gradients
have already been given in the previous chapter. The
densities at the nuclei are also easily calculated from
the known wavefunctions. Hence, using equation (5.13),
one can work back to obtain the numerical values of the
relaxation terms in addition to analyzing the force con-
stant orbital by orbital, and also in terms of atomic,
overlap and shielding contributions.

The force curve is expanded in the Dunham form used

by molecular spectroscopists, i.e.,

F(R) = F) + For + For 2 + Foz 3 + ...,



231

where ¢ = (ﬁ-Re)/Re. This was fitted to the forces calcu-
lated at seven regularly spaced points, as listed in

Appendix 3. Curve fitting was done for net forces and also for
the individual orbital electronic forces. The wavefunctions
used are claimed to be close to Hartree-Fock functions by

the authors who calculated them. However, as optimization

is not complete in general, the force curves obtained are

not ideally smooth, so that poor results for higher deriva-
tives are obtained if one fits a polynomial through all the
given points. These difficulties in polynomial fits have
been discussed by Cade et al for energy derivatives, for
which scaling of the energies should be done as per McLean(zlg).
To ensure rapid convergence of a power series, one should

not use too wide a range of R(220). On the other hand, if

the range is too narrow, higher order terms in the poly-

" nomial become negligible énd prevent the exact determination

of the coefficients of these terms. The best fit was

obtained when more points were used than the minimum required
by the degree of the polynomial. For the seven points
available, a fourth order polynomial was found to give,

in general, best agreement for the force constant kj, the
anharmonic constant k3 and 3rd order constant k4. Because

of the unevenness of the optimization of certain functions

and the sensitivity of the forces to these, two methods of

curve fitting were used in order to ascertain consistency
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of the results. A Tcﬁébycheff poiynomial best fit was

used first. 1In this method, a polynomial is chosen which
will go through the best set of a given number of points,
the procedure being one of iterative testing of each point
and discardiﬁg the worst ones. This method was at all

times checked against a least square fit of the polynomial
of the.same degree. The least square method has been
studied by Pliva et al for various potential energy
curves(ZZl). Best results are obtained by an overdeterminafion
of the polynomial, i.e., using more points than the minimum
required. ' In all cases, the best fit and least square
method agreed to two or three significant figures. The N,
wavefunction was the most reoptimized of all the wave-
functions used, especially at the4Re(exptl.) where all
exponents were all optimized twice(sg). At internuclear
distances other than this, reoptimization was not as complete
or was interpolated. ,Nevértﬁeless for this molecule, we had
eleven points to work with since wavefunctions for all these
points, (forces for these are listéd in Appendix 3) had been
made available by Cade. This permitted a check on possible
limitations in using only seven rather than more points.
Varying the number of points and reasonable distributions

of these, it was possible to obtain nearly identical results

with a seven and eleven point fit to the same order poly-

nomial, namely fourth order. In order to present consistency
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of the method, we cite as an example the results obtained
from the Tchebycheff éhd least square fits, for the molecule
N,. Using the least square method, the values for -

ké, k3/3, k4/12 were in order: 1.51879, -2.20817, 1.80996;a)
and for the Tchebycheff method: 1.52348, -2.20654, 1.74976.'
Extending the cdegree of the polynomial gave poorer results
for k4 in general, with some change in k3 and little or no
chanée in k. One unpleasant aspect was the observation
that the distribution of points for N, sometimes affected
‘the magnitudes and even signs of some of the components

Vof k3 and k4, even though the sum of these components always
were nearly the same for the different distributions.
However, these in no way affected visibly the components

of k2, such as the orbital, atomic, etc., components. In
view of this difficulty with k3 and k4, we have declined

to include any discussion of these. 'This problem was not
noticed with the molecules CO and BF when McLean's functions
were used. For these, at distances other than Re' only the
coefficientsof the basis orbitals were reoptimized whereas
the exponents were those of Ry, which had been properly
optimized. As the optimizations were therefore more con-
sistent 6r even for the range of R values considered, less
difficulty was observed in the polynomial fit, Uneven
optimization can thus be troublesome. A previous calculation

of the ~forces at different values of R and curve fitting

a) Footnote: See Table (5.2) for units.
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these for wavefunctions of Huo(so)

for CO and BF presented
the same difficulty as N,, even more so. Huo's wave-
functions had also been partially optimized or interpolated
at some R values other than R,. However, some irregularities
were found in the atomic forces. in fact, at 0 for CO,
ko was found to be below the experimental value, whereas
fusipg the C forces, the same result was obtained as with
the McLean function. 1In view of the fact that the McLean
functions gave better energies than Huo's for CO and BF
as a result of larger basis set expansions, these were
used in the calculation of the forces. The same authors'
functions were used for BeO and LiF.

The question as to whether dne should have expanded
the Dunham series for the force about the point where the

net force is zero, as done by Goodisman for H2(260)

, must

be answered in the negative. For Ny, the force is zero

at R = 2.025 a.u., whereas Re(exptl.) = 2,068 a.u. and
Re(H.F.) = 2,0132 a.u. At R = 2,025 a.u., ky was 1.857, and
k3/3:-2.197. The reason for the higher k3 can be found in
the inadequacy of the H.F. potential curves at large dis-
tances, as they rise to ionized or excited states for most

cases. This usually means that the H.F. minimum must

occur at an R

. i
- Re (exptl.) since the H.F. curve must

rise faster than the experimental curve for large R(222)a

The result is that kj is larger than the experimental value



FORCE CONSTANTS FROM FORCESa

Table 5.1

)

AB Re (exptl.) kz(exptl.) k2(calculated) Rg (H.F.) k2(calculated)
NN 2.068 1,472 1.519 2.0132 1.864
co 2.132 1.222 1.379 2.081 1.652
ocC 1.546 1.822
BF 2.391 . 0.519 0.532 2.354 0.610
FB : 0.701 0.796
BeO 2.515 0.483 0.530 2.4377 0.670
OBe 0.674 0.824
LiF 2:955 0.165 0.161 2.9377 0.170
FLi 0.147 0.155
a) See Table 5.2 for units.

) X4
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if calculated at the H.F. minimum. Evaluation of these
quantities at Rg will give results.closer to experimental
values, in view of the fact that Rg is closer to the
‘inflexion point of the curve, at which kg = 0 (see Fig.(5.1)).
These problems and others related to the accuracy of the

force constants are further discussed in Appendix 5.

In Table (5.1) are listed results for kj at
Re(e¥perimenta1) and R, (Hartree-Fock) calculated from the
total forces and compared with the experimental values.
The H.F. Rg is smaller than Re(exptll) . The force
constants are all considerably higher at the H.F. Ry
whereas k,; calculated at Rg(exptl.) is in much closer
.agreement with the experimental result. In Table (5.2) are
also listed values of kj, k3/3 and k4/12 calculated by
two different methods. The first method (a) involved a
polynomial fit of the net total forces, nuclear and
electronic. Method (b) consisted of a polynomial fit
of the individual atomic,overlap and shielding electronic
forces. Thg results from these electronic forces were
then added to the nuclear contributions. As can be seen
from the table, both methods were consistent with each
other. The overall agreement between kj, k3 and k4, as
calculated from the.fOrces, with the experimental results
was an indication of the accuracy of the method of poly-

nomial fits. For the force constants, best agreements are



Table 5.2°C)

FORCE CONSTANTS FROM: a) CURVE FITS OF TOTAL FORCES
b) CURVE FITS OF ATOMIC, OVERLAP, SHIELDING FORCES

AB R k2 k3/3 , kg/12
Exptl. (a) (b) Exptl. (a) (b) Exptl. (a) (b)
NN .068 1.472 1.519 1.503 -1.959 -2.208 -2.114  1.630 1.810 1.717
co .132 1.222 1.379 1.383  -1.548 -1.640 -1.653 1.216 1.315 1.224
oc 1.546  1.552 | -1.628 -1.628 1.365 1.261
BF .391 0.519 0.532 0.544 -0.572 -0.660 ~-0.635 0.318 0.452 0.476
FB 0.701  0.711 -0.774 -0.712 0.588 0.520
BeO .500 0.483 0.567 0.554 -0.489 -0.602 -0.579 0.291 0.311 0.325
OBe 0.711 0.698 -0.636 -0.603 0.332 0.338
LiF .8877 0.165 0.198 0.199 -0.152 -0.198 -0.195 0.124 0.133 0.118
FLi 0.174 0.184 -0.185 -0.177 0.144 0.126
€) Units used throughout

R(a,) = 1 bohr = 0.529167 R

E = 1 hartree = 4.35942%10"11 erg

F = 1 hartree/bohr = 8.2377%10-3 dyne

k = 1 hartree/bohr? = 15.5684%105 dyn/cm

Jerg = 1 hartree/bohr3 = 29.4205%1013 dyn/cm?

k = 1 hartree/bohr? = 55.5978x1021 dyn/cm3

LEC
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found for the calculation from the forces at the lighter
nucleus in the molecule. This is understandable if one
remembers that the heavy atom has the larger atomic charge
density. 1It’'is then more difficult to variationally
optimize this density as it contributes much more to the
energy than the lighter atom, and is thus relatively
insensitive to small energy changes. 1In what follows, the
force constant components obtained as the derivative of the
corresponding forces are used in an analysis which is
correlated with densities to elucidate the nature of these
force constants.

5.7 Interpretive Scheme

The deqgree to which the force constant depends

upon explidit variation of the wavefunction with R via
the parameters is as we have indicated dependent upon
the differentiation process (see section 5.4). Consequently,
there arises the general problem of the relative importance,
in the force constant expression, of the parameter deriva-
“tives 3;% for moving coordinates cen#ered on A, or

3Bi/BR for fixed coordinates centered on B. Their quali-
tative and quantitative roles are far from clear in the
two-center representation, i.e., confocal elliptical,
which makes use of the virial theorem. Only equation (5.25),

which results from this approach, has a one-electron character

to it. Other equivalent expressions involve the potential
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energy operator (see Phillipson(zos)) and thus make it
difficult to reduce the problem to one-electron integrals.
For exact wavefunctions, both the Hellmann-Feynman approach
"and that of Schwendeman and Phillipson give the same
result for the value of the force constant.

From the interpretive aspect, one encounters certain
difﬁerences. In the electrostatic épproach, one keeps
the total density fixed with respect to some arbitrary
point, for example nucleus B, and then one moves nucleus A.
If the total density remains rigid with respect to nucleus
B, then the contribution to the force constant is the
field gradient of the total density. This density then
relaxes. From the cancellation theorem, all the density
which follows nucleus A rigidly cancels its field gradient

contribution via the relaxation term

fdp (B,rp) cosga o fgg (B,rp) cos 64 at

dz
a
r, a r,

The working ecuation for the electrostatic apprbach is from

Eq.(5.13) .
22 2
B -~ 3 cos“65-1
k2 = ZA[? - fp(B,rb)( 3 . ) dt ,
4 g
R a (5.36)
s Wn o(d) - fdp(B,rb)cosOa ar 1
3 dz 2
a N

In view of the linear dependence on p in this expression,
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one may decompose p into a sum of terms

P =Pyt Ppgt Pp

where Pa and p_ are charge densities centered on nuclei

B
A and B, and'pAB is the overlap density. The contributions
from the electronic terms to the force constant in the
limiting case of rigid following of nucleus A by Pa and

of nucleus B by pp are:

 (AR)

atomic: 2 =0
. d
) (AB) _ A 3cos26,-1 _ pAB cosfy
overlap: ko /%y = 4 pAB(A) IOAB—————ga—— dt = dt
2a .
b siddnme % (BB) _ 4m _ . 3cos26,-1

shleldlng. k2 /ZA = 3 pB(A) pr___;_Ea__ drt

. (5.37)

The null contribution from the atomic density rigidly
following nucleus A follows from the cancellation of the
field gradient and relaxation terms by the cancellation
theorem. The shielding term kéBB) for rigid following of
nucleus B, i.e., p remains fixed on B, contributes a field
gradient term in addition to a density contribution which
. we showed before was the force constant for a nucleus on
which this density was .completely localized. The electronic
overlap constant always contains a relaxation term, even
for rigid densities which follow the nuclei. If there were
no orbital following of nucleus A, then this relaxation

would be zero. However, as a result of the L.C.A.O.

approximation, where the densities are centered on A and B,

o



Table 5.3

CONTRIBUTIONS OF ELECTRON DENSITIES TO K

, e A
AB KéAA) KéAB) KgBB) Total zB-KgBB) (KgAA)+K£AB)) Féz—s) o Mg
NN -1.208 3.143 4.115 6.051  2.885 1.935 1.864 -5.644 -0.242
cO  -2.989 3.366 6.507 6.884 1.493  _  0.377 0.534 =-3.760 +0.140
BF -1.926 1.904 8.285 8.262 0,715 ~0.022  -0.008 -2.040 ~-0.099
BeO -1.931 1.365 7.458 6.892 0.670 ~0.523  +0.057 -4.521 +0.350
LiF -0.977  0.170 9.007 8.201 =-0.007 20.807  -0.421 -1.166 -0.094
NN -1.208 3.143 4.115 6.051 2.885 1.935 1.864 -5.644 ~-0.242
oC --0.584 2.407 3.237 5.060 2.763 1.823 2.116 =-1.307 -0.050
FB - Q524 2D, 333 2650 - 4,460 . 3.582 1.809 1.741 -0.880 -0.069
OBe -0.177 1.364 2.118 3.306 1.921 1.187 1.628 -2.077 -0.086
FLi +0.098 0.570 2.089 2.757 0.911 0.668 0.954 =-1.166 +0.079

e
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the overlap density is continuously changing with nuclear
motion.

If one defines the total relaxation in terms of
an effective charge by

= B3 dp cos6
AD—R/ZIEE- =2.a dr

raz (5.38)

where pp = pB(B,;b)ané pAB(Bﬂq;a;;b) respectively, one can
calculate these using Eq.(5.36) for components kz(BB) and
kéAB) using the previously calculated density p(A) (see
Appendix 4), the field gradients (see Chapter 4) and the
values of the k2's which have been obtained by polynomial
fits of the forces, as described previously. The A's

are listed in Table (5.3). Perusal of this table shows

Ag is small in all cases, as one would expect since this
charge density is far from nucleus A, and sits quite rigidly
on nucleus B. The signs of Ag fluctuate from nucleus to
nucleus. Ideally, one would like this to be positive so that
this relaxation would cancel the small density term %1 pB(A)
at nucleus A. For this cancellation to occur, this small
density would have to follow nucléus A completely. This

is quite reasonable as this density is far away from nucleus
B, albeit centered on it, and is mainly perturbed by A. The
values for the relaxatioﬁs Aé are small and depend on pB(A),
the accuracy of which is difficult to assess from Hartree-

Fock theory, as it is only a part of the total density. It
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is probably much more realistic to view this relaxation
term as being positive and cancelling the density term.

The overlap relaxations AAB‘are much more problematic as
they involve a certainnamount of charge following of
nucleus A as well as following nucleus B since
pAB=¢;(fé)wB(fL). From the tables, it is evident the
ove;lap relaxations are much larger than the AB's. The
values of the AAB's are negative, the sign being just right

to cancel the density correction (A) which is

Ui
3 PaB
negative for all nuclei (see Appendix 4). For Ny,
R3/2(—§-1 pAB(A)) is -6.153 as compared to AAB which is
-5.644. It is thus.evident that much of the overlap density
follows the nuclei. One can further show this by calculating
the integral (5.38) using simple Slater orbitals centered
on A and B. |

It is thus seen that the total relaxation effects
as calculated by the space fixed method involve large
quantities which cancel field gradient contributions. One
way to avoid these is to view these relaxations from the
nucleus which is being moved, for example nucleus A. This,

as we have seen, is also equivalent to the motion of nucleus

B with respect to A. We then have from (5.16)

kel - _z 80 (a,rg) cosa 4. _ 5 (3p (a,ry) cosby 4.
2 A9z 2 A9z 2
a ray b ry

(5.39)
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In this equation, explicit dependence on the field gradient
does not appear, which is as it should be since we have
previously indicated there is no definite relationship
between these two. We pave already demonstrated in connection
with Platt's model that for any density’pB(B,fb) which

remains rigidly fixed on nucleus B, the integral (5.39)

is a field gradient contribution of the form

29
kéBB)— z [4q pB(A) _ pr3 cosaea 1 ar 1
P .
_ ZA fdp (B,rb) cosf, ak
ra

where differentiation of coordinates rp only occurs.

The density term %1 pB(A) is best considered with the
relaxation of this density for which we have indicated
cancellation'will occur. The total k(B )1nclud1ng relaxation,
i.e. 2 I%EB(B rb)ggizﬁ dt, is best considered as a field
gradient. From (5.39) with respect to nucleus A any density
fixed on B is moving with B and therefore relaxing. We

thus have that the relaxation of density on B with respect

to A can be evaluated as a field gradient term, in view of

the equivalence of these two. We can, therefore, consider

the density on B as shielding that nucleus from A. In

terms of effective charges, we define

3 29 -~
K}(\BB)= %T[‘{ pB3cos 0a=1 .- 51 og (A) - f PB(B,rp) coso a dr 1]
ry3 b Ta

(5.40)
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as the shielding contribution per unit charge to the force
constant expression. If Py is expressed in terms of

. coordinates centered on A, this is then equivalent to

3 op i
K(BB)= B_[ r ? (a,ry) cosbg ds 1
A 2 aza o 2

a

where primes indicate differentiation of parameters only.
The overlap density QAB(Q,B(ra,rb) can bg considered
in a similar fashion, i.e., as a relaxation effect if one

expands it onto center A completely so that Pag = (G X5) -

°aB
This avoids the appearance of large cancellations of
- relaxation and field gradient effects which occur if this
density is kept fixed with respect to nucleus B, i.e. by
expanding it completely in terms of coordinate ?b. We

have already seen that density which follows nucleus A,such
as pA’tO a very large extent, is best considered as relaxing
with respect to micleus A. It is precisely for Pa and Pap’
as we have discussed above, that most of the cancellation

of field éradient and relaxation terms occur in the space

fixed approach. It is therefore much more convenient to

consider these two together. We therefore define

; op s
(D) _ R3 D (o,r,)cos 85
KA = 7?[ ngT a S dt 1] (5.41)
a o
where ppT pA(u,§a) + pAB(a,ra),.as the electronic contri-
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bution from these densities. Our final expression for

the force constant becomes

22
_“"a (BB (D)
k2= 3 (agRy )= k3" ]

(5.42)

The first term, (ZB-KA(BB)) is the total unshielded charge
on nucleus B and therefore, following our previous
discussion, is a net field gradient. The last term
represents the sum of atomic and overlap relaxation effects

with respect to nucleus A.

5.8 Shielding and Dipolar Interactions

The working equation (5.42) for the interpretation
of force constants involves one-electron operators only, as
seen from the general expression for the K's (Eq.(5.41). The
force constants are therefore ultimately related to the
one-electron density. In the force. analysis, we have
emphasized the importance of the exact disposition of the
charges in the mélecule as depicted by the density difference
diagrams. Our task is, therefore, to relate in a similar
qualitative fashion the electron densities to the various
quantitative factors in Eq.(5.42)y, which influence the force
constants.

The shielding term kéBB) contributes a field gradient

term and is therefore easily handled. From (5.42), we have

. (BB) _ (BB) 3
ko = -22, K, ' /Rg
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where KABB) is an effective charge producing the calculated

electric field gradient. If this were the only contribution,

we would have for the force constant

= 22 (Z _K(BB)

3
ko alZg~Ky " )/Rg

and for the anharmonic constant

_ _x(BB), , 4
k3 = GZA(ZB KA )/Re

To test the assumption, we note that k3/k2 = -3/R_. From

e
a Dunham analysis(zos)

one can show k3/k2 = 3al/Ré, where
for most diatomic molecules -2>aj;>-4. For N,, aj is -2.75,
and for LiF -2.72. Since Rg >2 for N, and LiF, one sees
that shielding is not the only contribution and relaxation
effects must be considered from the rest of the density,
i.e., atomic and overlap.

The expression which summarizes the atomic and

overlap relaxation effects is Eq.(5.41), i.e.,

9p e
(D) _ R3,,.°PD(a,ry) cosba
Ky ' = 5 Uggr — drl

a Ta e
_ R} 2°p(a,r,)c080n g, (5.43)
2 "9z v 2
a

This integrél represents the interaction of the change in
electron density ap/az; with a point dipole at the point
za=0, i.e., nucleus A, directéd along the internuclear
axis. By this method, one can visualize force constants

as the change in force components on one nucleus (A)

exerted by the change in charge distribution resulting from
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é small unit displacement of the other nucleus (B). This
is, of course, equivalent to moving nucleus A instead of B.
The relaxation effects are,'however, measured with respect
to A, for which nucleus B appears to be moving. The equiva-
lent of these two approaches is suﬁmarized by the two

integrals in Eq.(5.43). White(223)

used a similar approach
"in calculating atomic force constants for the case of solid
copper, but the formalism was never developed explicitly.
His treatment considers the total dipole effect from nuclear
and rigid core charge movements, which as we have indicated,
are more easily treated as field gradients. In addition,

the relaxation of the conduction electrons is treated in

a crude fashion as a perturbation bf the virtual displacements
of the nuclear and core charges. The dipole interaction

has been extensively used also as a model in calculating
transition intensities in electronic spectra, an example
being some calculations of Jones on benzene(224). In this
approach, the nuclei and atomic orbitals are assumed not to
move together so that the resulting dipole field is, in

part, responsible for vibrational interaction terms(lgz)o

Such a model has been discussed in detail by Liehr(zzs)

, who
gives a careful analysis of the errors which arise from
different approximations.. The methods used in most of

these calculations overemphasize non-orbital following

and so do not allow the atomic orbitals, and therefore
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densities, to move at all with the nuclei. If we displace
a certain nucleus in a molecular configuration from its
equilibrium position, then there will be some tendency for
the valence electrons to remain in their equilibrium positions
instead of being‘carried away by the atom with which the
atomic orbital is associated. The actual amount of following
or non-following which then is a relaxation, can be judged
frombthe values of the K's. Our later discussion would
certainly suggest that orbital following is quite large.

One can visualize the relaxation effects most
clearly by the use of density diagrams. In particular,
by considering the total atomic and overlap densities
centered on one atom, i.e. pD(a,?a) = pA(a,f5)+pAB(a,;a),
and seeing how this changes with nuclear vibration, one
can hopefully get a true picture of these relaxation
effects. Keeping nucleus A fixed and displacing nucleus

B, we have subtracted pp°9 from ppeXt

i.e., the
sum of equilibrium atomic and overlap densities from the
sum of their extended counterparts. These then represent,

the change in density aéD)

/9R which interacts with an
imaginary dipole ZAdR at A. It will be shown how these
‘density differences can be qualitatively correlated with
the trends.in the force constant contributions from the

relaxation terms. One need not consider the relaxation of
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Pp in terms of densities, as such densities are small near
A. The contribution from Py is best treated as a field

gradient term. Inclusion of'DB in the density diagrams

would only obscure the overlap effects which are predominant

in the bond region.

5.9 Characteristics of Electronic Force Constants

| A comparison of the contributions to the total
force from charge density in different spatial regions of
the molecules in the two series N,, CO, BF; C2, BeO, LiF,
demonstrated that the manner in which a state of electro-
static equilibrium is reached is characteristic of the
binding found in each of these molecules. The general
nature of the variation in the spatiél distribution of the
charge density through these two serieé of molecules is
also evident from pband Ap maps as discussed previously.
In particular, it was found that for the l4-electron iso-
electronic group N, CO, BF, the charge density became
more diffuse at the electropositive end of the molecules.
This was the result of the presence of a 50 orbital which
contributes appreciably to density accumulation behind the
light nucleus. This is in sharp contrast ta the 12-electron
group LiF, BeO, which has no 50 orbital. Thus the charge
density becomes very tight at the electropositive end,
indicative of charge transfer to the electronegative atom

in the molecule. The contribution of the overlap charge
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density to the binding in the molecules decreased in the
order N,, CO, BF. 1In CO, the shared density exerts a larger
force on C than on O, while in BF it binds the F nucleus
more than B. The atomic forces exerted on the N, O, and F
nuclei in Ny, CO and BF decrease sharply through the series,

an indication of an increasingly symmetrical arrangement

of the charge density in the immediate neighbourhood of
these nuclei. In the ionic molecules BeO and LiF, the
direction of the atomic polarizations and their forces which
are exerted on the nuclei O and F are reversing to counter
the net positive field which results from the transfer of
charge to O and F. The charge increase is more‘symmetrically
localized on F.

These contrasting tendencies in the two series should
therefore result in quite different relaxation effects
during nuclear vibration.  The force constant components
should parallel the forces to some extent as they represent
the change in forces. On the basis of the density (p),
density difference (Ap) and force discussions one would
expect maximum deshielding of the nuclei and maximum overlap
contributions to prevail in the force constant of the
covalent prototype, Na. At the other extreme of bonding
character} the presence of charge transfer should manifest
itself in overshielding of the heavy nuclei, deshielding of

the light nuclei by an amount equivalent to the magnitude
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of the charge transferred, negligible overlap contributions.

In view of the fact that as the molecule is extended,

dipole moment functions for BeO and LiF indicate increasing
ionic charadter as a result of depolarization effects, one
might expect the densities centered on the heavy nuclei

to become more symmetrical. This conjecture is further
supported by the dynamics of alkali metal plus halogen
molecule reactions, in which the notion of long-range electron
transfer to the halogen by stripping seems to be well
established(zzs). We can thus anticipate that the density
situated at O and F will follow these nuclei and perhaps

even facilitate nuclear motion via a decrease in polarization

in the internuclear region. In the field gradient analysis,
we have already indicated the different polarizations of

po and pm densities. Thus we might expect the changes in
these polarizations to show up in the density difference
maps advocated in the previous sections. Inasmuch as bond
stretch is the undoing of molecular bonding, it is to be
anticipated that in the gfoup N,, CO, BF, density difference
maps of the extended and equilibrium densities will indicate
a reversal to the valence states of the separated atoms for
these molecules. In these molecules, accumulation of
density behind the nuclei was manifested by the Ap diagrams.
On extension of the nuclear configuration, these charge

accumulations will reverse and flow back into the bond region
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in order to attain the more symmetrical electron distri-
bution of the valence states. This relaxation effect
should show up in the atomic force constant contributions
as impeding nuclear motion.

a) Atomic, Overlap, Shielding Kﬁfs

In order to examplify and validate these predictions,
we present in Table (5.3) the numerical values of the
derivatives of the atomic, overlap and shielding forces,
obtained from polynomial fits of these forces as described
in section 5.6. The derivatives correspond to Kg's repre-

senting the integral (5.41)

3 293p -~ 3 9dp s
(x) _R x(a,ry)cosb - _R x(a,ry)cos 6
K2~ =7 oz 2 3= T g, — & 4
a a

and x is generally representative of the atomic density (AA),

the overlap density (AB), and the shielding density (BB).

(BB)

The shielding- Kp is best treated with the

nuclear field gradient, thus giving a measure of the relative
undershielding of the nuclei by the atomic densities

situated there. The total unshielded charge (ZA-KA(BB)) is
therefore included in the table, with the corresponding
FA(Z—S), the unshieided charge which appears in the force
analysis. This last quantity has been correlated with
dissociation energiesléf homonuclear diatomics by Bader et
a1(55)° It is seen from the table that maximum undershielding

in the force constants occurs at N2. Minimum deshielding
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occurs in LiF. At Li, there is actually complete shielding

of the F nucleus, whereas at F, there is deshielding of the

Li nucleus by 0.91 charge. The overlap KZ'S, i.e. KAAB),
are maximum at N, and minimum in LiF. In fact, for Li
KAAB) is vanishingly small (0.17). The atomic Kg's, i.e.
KAAA) differ appreciably for these two limiting cases of
bonding, i.e. covalent in N3 and ionic in LiF. K;AA) for

N, is negative, indicating that the density changes are

4 opposing the nuclear motion as predicted before. In LiF,
the two ends of the molecule behave differently. At Li,
the density relaxes in such a way as to also oppose nuclear
motion, the magnitude of KgAA) being comparable to that for
N,. This means that charge must be leaving regions behind
the Li nucleus and accumulating in front of it, annihilating

the "hole" which was evident in the Ap diagram for that

(AA)
A

electronic relaxation is aiding nuclear motion. There must

molecule. At F, K is positive, hence implying the
then be charge removal from the binding region in the
vicinity of the F nucleus. The magnitude of this effect
would indicate that charge removal is very small or sym-
metric about the F ﬁucleus. The K;AA)'S become more
negative at the heavy end, i.e. oppose motion of the

heavy nucleus more and more as one goes from LiF, through

BeO, BF, CO and N. This is indicative of increased charge



255

restoration into the binding region, which in the bonding
process are asymmetrically disposed in the covalent molecules
but are more symmetrically relocated at the heavy nuclei

in the more ionic cases. Thus the decrease in magnitude and

(A7)
A

from N, to LiF reflects this characteristic of the equili-

eventual reversal in sign of K at F in LiF as one goes
brium densities. The overlap contributions to the force
conétant decrease from N3 to LiF at the heavy nuclei,
reflecting the increase of p density and decrease of s density
in the bonding of these nuclei. At the electropositive
nuclei, Li to N, the aéomic contributions always oppose
nuclear motion much more than at the heavy nuclei." At B
and C, we have noted in the previous chapters the rather
diffuse densities accumulated behind these. It is evident,
therefore, that these diffuse densities follow these light
nuclei much less than.the densities at the other end of the

molecule which are tightly bound by the larger nuclear

charges of O and F. The magnitudes of the KgAA)'s at either
end of the molecule therefore correlate with the tightness
(An)

of binding of density. At Be, the larger value of K as

A
compared to Li indicates significant accumulation of charge
in front of that nucleus. The larger deshielding of that
nucleus as compared to Li must be partly responsible for

this increased relaxation in electronic density.

The above discussion can be summarized with the use
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of the tabulated values of KgD)'which appear in Table (5.3)

and represent the total relaxation effect of overlap and atomic
densities at nucleus A. A very significant revelation is

that from the light end of the molecule this relaxation

effect opposes nuclear motion increasingly as one goes from

(D)
A

N to Li. The change in sign for K occurs at B. This

is Fhe result of'large negative atomic relaxation exceeding
the overlap density relaxation. 1In all cases where KgD)

is negative, i.e. at B, Be and Li, the sign of this contri-
bution is due to the preponderance of atomic relaxation.
Simultaneously, one has an increasing shielding of the
other nucleus in thé molecule. Thus at Li, the total force
constant comes from the relaxation of nearly all atomic
density, as the overlap is small at Li. At N,, overlap
effects prevail ovef adverse atomic relaxations in order

to decrease the large undershielding of the N nucleus. The
increased shielding of the heavy nuclei in going from

Ny to LiF is consistent with ionic trends in the molecules.

;D) at C and B is a result

The decreasing magnitude of K
of the diffuse densities (mostly from the 50 orbital) behind-
these nuclei relaxing in opposition to nuclear motion.

At Be and Li, similar relaxation which puts more density

in the binding regions near these nuclei to where there

had been depletion as seen from the Ap diagrams for these,

must occur. At the heavy nuclei, the group N,C,0 behave
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quite similarly. The net unshielded nuclear charge and

the KéD)'s are quite comparable. This is a result of
decreasing overlap contributions and greater density following
of nuclei as one goes to the heavier and thus more charged
nucleus. The contributions at O and F in BeO and LiF do

not behave in this manner. Deshielding of the light

nuclei is less and as charge transfer has occurred to O

and F, relaxation effects are smaller at these nuclei as a
result of densities being more symmetrically situated with
respect to these.

b) Densities and Nuclear Motion

The magnitude and sign of the various component
contributions to the force constants can further be under-
stood in terms of relaxation diagrams, representing the
difference in atomic and overlap densities of the stretched.
and equilibrium molecules, The same approacﬁ can be used
for contraction of nuclear configuration, the only difference
being a reversal of signs in the appropriate expressions.

The 6verall principles which characterize relaxations are

the same. The use of a nuclear dipole ZAdR to help visualize
these effects as discussed in section 5.7 depends on the
potential V(P) of such a dipole at a point P in épace as

seen from the following diagram:
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V>o

[ eo —
+Z, ¢—— R —— 57

—»= -Z, dR

A

-

V(P) = -p.V53(1/xz) = - ZAdR cos ea/ra2

and therefore AE = ZA(dR)2 Ig% E%iigﬁ dt
in accord with Eq.(5.41).
In Figs.(5.3)~(5.6) there are given the atomic
and overlap relaxation maps for densities centered on
nucleus A. The heavy nucleus is always to the right of
the light nucleus, and the latter is always to the left
of the heavy nucleus. The nuclear dipoles are included
in the diagrams to indicate the directions of nuclear motion.
In éhe group N,, CO, BF, it is evident that as one
goes from nucleus C to nucleus B, more charge is removed
from behind the nuclei and put into the bonding region.
The effect is smallest, visually, for the nitrogen atom.
This is in accord with the demonstration previously from
p and Ap diagrams that the density was most tightly bound
to N. Thus at N, there is more density following the
nucleus than at B and C. However, inasmuch as this following
is incomplete, there is relaxation opposing the nuclear

motion (the diagrams are all for bond extension). The

smaller relaxation at N is both suppbrted by the relaxation

(NN)

density diagram and the magnitude of KN . The net effect
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of the relaxation is an induced dipole moment in the
electron density in the same directioﬁ as the nuclear
dipole, thus increasing tﬁe dipole interaction and hence

the energy of the system. This is equivalent to increasing
the force constant. In the case of the nitrogen atom,

there is a removal of charge from the pe region, in a
‘geomgtrical fashion reminiscent of a po orbital, and
transference of this charge into the pm region. In other
words, extension of the configuration undoes the bonding
process. In the molecule N,, there was charge depletion

in the regions perpendicular to the bond axis, and

charge accumulation along the bond axis. Thus we are
witnessing the reversail to the valence states predicted
before. As one goes through C, B, Be and Li, there is
charge removal from behind the atom with a slow progression
to symmetrical removal around the nucleus. This progression
to symmetric -removal of density reduces, therefore, the |
magnitude of the atoﬁic relaxation. AThe density difference
diagrams for these atomic densities are therefore indicative
of progressive s-orbitai type involvement in the relaxation.
Thus, in the case of Be and Li, the small polarizations
which occurred behind these nuclei are diminished in
addition to overall removal around the nuclei and replenishing
of the "hole” which was apparent in the Ap maps for LiF

and BeO in front of Li and Be. In the case of C and B, there
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is also p¢ character involved in the density changes as

seen from the geometrical shape of the contours. The
dipolar interactions are strongest for C and B, as the
electronic dipole whichoresults from relaxation is larger
and of the same sign as the nuclear dipole. The result

is then an increasing hindering of nuclear motion as can
also'be seen from the magnitude of this effect via the
KéAA)'s in Table (5.3). From the magnitude of the contours,
it becomes obvious that the relaxation process involves

only small charge displacements, so that orbital following

must be predominant at all times.

The atomic dénsities at the heavy nuclei demonstrate
the increasing importance of p-type relaxation effects. 1In
passing from'N to O, and to F in N2, CO, BF, the removal of
charge density from in front of and from behind the nuclei
becomes more and more symmetrical, as portrayed by the

diagrams. This correlates with the decreasing magnitude

(AR)
A

charge is removed from behind. In other words, this counters

of K which always remains negative as slightly more

the accumulation of charge behind the heavy nuclei during
bond formation. The removal is nevertheless smaller than
occurs at the other end of the molecule as a result of more
tightly bound densities at the heavy end. The increase in
p-orbital involvement in the relaxation is evident from the

po and pT nodes coming closer to the nucleus as one comes
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to F. The small KgAA)

are seen to arise from the mainly p-type relaxations which

values for O and F in BeO and LiF

occurs at these. The relaxation effects have become quite
symmetric about each nucleus, so that for F in LiF, the
net electronic dipole is zero, and thus the effect on
nuclear motion via dipole interaction becomes negligible.
It seems, therefore, that as one increases charge transfer
to the heavy nucleus in the order BF, BeO and LiF, as
demonstrated by the Ap maps in Chapter II, the relaxation
effects decrease their influence on nuclear vibration. The
Ap maps indicate that this is the result of a symmetrical
disposition of the transferred charge around the heavy
nuclei which tends to move with these nuclei, as it is
completely localized or nearly so in the case of BeO and

less so in BF. The relaxation maps for the atomic densities

(An)
A

to symmetrical relaxations about the O and F nuclei. It

along with the relative values of K support the tendency
is significant that in the case of the most ionic molecule
LiF, the atomic relaxation at F actually helps nuclear
motion, so that a little more charge leaves the bond region
than from behind the nucleus. This is an indication of a
decrease in the forward polarization of the transferred
charge, rendering the density on F more symmetric and thus

enhancing nuclear motion.

The overlap nélaxaﬁion diagrams displayed in the Figs.
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represent a relaxation which tends to facilitate nuclear
motion. This is accomplished by large charge removals

from the bonding (binding) region and increase of charge
behind all the nuclei. At the heavy nuclei, the geometrical
ch&racteristics of the relaxation contours are suggestive

of p-type density. At the light nuclei, expecially Li and
Be, one sees the restoration of s-type density around theése
nuclei, as opposed to the atomic relaxations where charge
removal was put in evidence. It is apparent then that these
overlap effects also include atomic density effects as noted
in the force analysis where it was found that in the cases
of LiF and BeO, overlap densities at the heavy nuclei were to
be more appropriately considered as atomic densities. From
the relaxation maps of the overlap densities, one sees that
at the light nuclei the relaxation density encloses the
-nuclei witp an evident increment in density which becomes
rless symmetricalAas one progresses to B, C and N. In the
case of Be and Li, the major part of the overlap contri-
bution to the force constant comes from depletion of charge
in the internuclear region, as a result of dilation of this
density. For Li, this is small, as e#idently the overlap
density is strongly polarized towards the F nucleus. As one
comes to N, the charge depletion has come near that nucleus

and we thus have a large KéAB)

« In the case of the heavy
nuclei, the overlap density increase about these nuclei is

smaller than at the light nucleus . This is evidence
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of the increasing contribution from p-type density to
this relaxation, density which vanishes at the nucleus.

gAB)'s‘comes from charge

- ,Much of the magnitude of the K
removal in the bond region. As this charge removal comes
closer to the heavier nuclei by virtue of the density
being tighter around these, the net effect is an increase

"in the repulsion of the nuclei from the bonding region via
the dipolar interaction. This, therefore, offsets the
decrease. in s-character participation which would have
otherwise increased the overlap density in the vicinity
of these nuclei. The smaller overlap density changes at
O in BeO and especially at F in LiF is further evidence
that these densities largely follow the nuclei O and F,
as if they were atomic densities centered on these. This
then lends further support to our force partition in
Chapter III, where the overlap forces were added to the
atomic forces for these nuclei. The following of the
nucleus by the overlap density is nearly perfect for the
density at F as demonstrated by the nearly vanishing density
changes from the relaxation diagram and the small value
of’KéAB)(0.57). We thus see that LiF is again approaching
the limit of two separable densities centered on the nuclei
Li and F.
| It has becomé evident from the overlap density

relaxation diagrams that appreciabie changes occur in the
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vicinity of the nuclei, so that much of this relaxation

is to be associated with atomic densities. It is thus

~more appropriate to gauge the total effects. These are
summarized in the relagation maps in Fig.(5.7) corresponding
to KAD), i.e. thesum of atomic and overlap contributions.
As one goes through Li in LiF, Be in BeO, B in BF, C in CO,
and'N in Ny, one notices the appearance of a positive region in
front of these nuclei which approaches these nuclei and
finally envelops B, C and N. 1In all cases there is charge
removal from behind tHe nuclei. At Be and Li, the
restoration of density occurs in the region where there had
been charge depletién typical of repulsion between two
closed shells. At B, C and N, the restoration occurs around_
the nuclei, indicative of a decrease in the clustering
phenomena around thése nuclei as depicted by the profiles

in Chapter II. Overlap contributions are seen to increase
as one approaches N from Li. The preponderance of these
overlap effects is made clear by these relaxation maps,

thus corroborating the trends in KéD)

. At Né, one has a
net relaxation which facilitates nuclear motion because of
large overlap density depletion in the bond region. At the
other extreme, Li in LiF, the overlap changes are small.
The atomic relaxation prevails in a direction opposing

nuclear motion, as a result of decrease in backpolarization

of the Li density. For the other nuclei, B, C and Be, the



270

overlap and atomic relaxations tend to cancel oné another,
the cancellation occurring nearly completely at B in BF.

~ For this nucleus, the force constant arises from incomplete
shielding of the F nucleus (see Table' (5.3)).

At the heavy nuclei, the contours indicate that
the total atomic and overlap relaxations become more
1oc§lized as the molecule becomes more ionic. For O in BeO
and F in LiF the independence of these two densities from
the other nucleus in these molecules becomes quite evident.
At all electronegativé nuclei, there is removal of pa
density and accumulation of pm density. This charge
réarrangement is thérefore in exact opposition to the
Ap maps, so that by extending the nuclear configuration
one is moving towards the more symmetrical electron distri-
butions of the valeﬁce states. The charge removal is always
larger from the binding region for the more covalent mole-

cules CO and BF, but becomes more symmetrical in BeO and

(D)
A

of all. The relaxation diagram demonstrates that nearly

especially LiF. In fact, at F in LiF, K is the smallest
all the relaxation effect occurs for density centered
on that nucleus, thus behaving as a real atomic density.
The distinction between atomic and overlap densities is
thus superfluous for this nucleus.

In summary, for the two limiting cases of covalent

and ionic bonding, the dynamic properties of the electron
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densities are very dissimilar. The cdvalent case, as
examplified by N,, is characterized by a very large
deshielding of the nuclear charge. This was also mani-
{28 in rable (5.3)).

The electron density relaxes during nuclear vibrations

fested by the force analysis (See F

in such a way as to aid the nuclear motion and thus

redqce the net shielding contribution to the force constant.
Much of this favourable relaxation comes from changes in
the overlap density. This is partially reduced by the
reversal of atomic polarizations behind the nuclei. 1In

the ionic case, as portrayed by LiF{ there are two
contrasting behaviours exhibited by the electron density.
At Li, there is complete shielding of the F nucleus,
negligible overlap relaxation and accumulation of charge

in front of the Li nucleus, thus impeding the "extending”
motion of the Li nucleus. There is also tightening of

the Li core, indicating that the atomic density is becoming
still more ionic. At Li, then, most of the contribution

to the force constant comes from a relaxation of. the

Li density which hinders nuclear motion. At F, there is

a deshielding of the Li nucleus as expected for the ion
Li+° There is, in addition, a contribution from the
relaxation of density situated on the F nucleus, whereby
charge is transferred from a po-like orbital to a pr

orbital. This is then exactly opposite to the characteristics



Tabl

e 5.4

Orbital Contributions kiA to Force Constant

B c N 0 F
19 1.998  2.000 1.055  -0.007 0.068
20 0.035  0.060 1.000 2.003 2.004
3¢ 2.234  1.966 1.764 2.036 2.134
40 1.087  1.425  -0.020  -1.431  -1.314
50 -0.079 -0.858  +0.313 0.927 0.420
1n 2.982  2.290 1.907 1.533 1.147
Totals 8.257  6.883 6.020 5.060 4.460
Totals 8.262  6.796 6.051 5.060 4.460
from Kgl '

Li Be 0 F
1o " 1.999 2.011 ~0.193 ~0.085
20 0.226 0.106 2.001 2.066
30 1.605 1.606 1.446 0.570
40 1.384 0.951 ~0.920 ~0.419
1n 2.988 2.183 0.961 0.621
Totals 8.201 6.857 3.303 2.754
Totals from 8.201 6.892 3.306 2.757

el
KA

272
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displayed by the %p map. As the density rearrangement is
most symmetrical in comparison to all the other heavy
nuclei, the effect on the force constant is therefore least
in LiF. BeO behaves very much like LiF. CO and BF exhibit
relaxations similar to N;. The presence of the 50 orbital,
which is partially very diffusely delocalized behind C

and B,introduces large atomic relaxations of this diffuse
density, which oppose nuclear motion. At O and F for these
two molecules, overlép effects are dominant just as in N,.

5.10 Orbital Interpretation

A further breakdown of force constant contributions

may be done orbital by orbital. We can define K5 as a sum

A
of orbital components kiA’ where
_ R3 ., 3(s%¢i) cos 6
k127 T M g a0 @
a

This partition was suggested in section (5.6) where it was
shown that such a partition of the force constant is
permissible. The numerical values of the kiA's reported
in Table (5.4) were obtained from polynomial fits of the
orbital forces as a function of internuclear distance.
The agreement of the total kiA“s with the totals of the
atomic, overlap and shielding components is very satisfactory,
thus confirming the consistency and accuracy of the method.
All these numbers are reported together in Appendix 4.

In the first group Ny, Co, BF, the 1l¢ orbital

reflects the complete shielding from the two electrons
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situated at the heavy nucleus. The 20 orbital is essentially
the same, the electrons being now localized at the lighter
nucleus. The N2 molecule is symmetric and thus has only

one electron per orbital shielding the N nucleus. The
polarizations of inner shells do not contribute visibly to

the force constant. The 30 orbital, which has the most

dens?ty in the internuclear region as discussed previously

in the force analysis, does not show much variation along

the series and parallels the near homogeneity of the total
force contribution for that orbital. The 40 orbital demonstrates
a transition at N, from a shielding to an antishielding or
enhancement effect. Thus, the large backpolarizations of

the atomic charge densities relax in such a manner as to oppose
nuclear motion. One can define a net electronic force constant
per orbital by averaging the contributions at both nuclei,
i.e., the value of the expression -%(ZAkiA+ZBkiB). A simple
calculation shows these to be: BF(+3.196), CO (+1.449),

N, (+0.140). The net result is that the relaxation of the

40 density accumulated behind the heavy nuclei enhances the
force constant, an effect which seemingly decreases as the
molecule becomes more covalent. It is evident that this is

to some extend counterbalanced by the increase in nuclear
contribution (ZAZB) which is: BF(45), CO(48), N2(49). The

50 orbital indicates the presence of the backpolarization on

the light nuclei. Nevertheless, the influence of these is
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not as dramatic as in the case of the 40 orbital. The
average contribution to the force constant, as estimated
above, for this orbital is: BF(-1.693), CO(~1.134),
N,(-2.191), i.e. a shielding or decrease of the force
cdnstant. The 17 orbital force constant contributions
parallel the forces for that same orbital, the separation
in magnitude of the effective charges increasing as one
goes to BF. This orbital resembles the 3¢ orbital, as
covalency is predominant in these two from the force
analysis (equal overlap forces at both nuclei). The sum
of their contributions make up between 60 and 70% of the
total electronic force constant in N2, CO, and BF.

The group LiF and BeO indicates increasing inner
core polarization relaxations, but otherwise, the 1o and
20 orbital show the same'behaviour»as in the first series.
The 30 orbital shows little variation except at F. The
small contribution at F is a result of the smaller relaxation
of the ng density as expected, in view of the larger
" nuclear charge of F which binds this density very tightly.
In the force analysis, 'a smaller overlap contribution at F
supported this contention. . This is then probably another
reason for this discontinuity. The contributions at.the
light nuclei Li and Be for this orbital reflect the
shielding of the heavy nuclei by charge situated on these.

The shielding is not as complete as in the forces. The
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40 orbital which is largely backpolarized at the heavy
nucleus, demonstrates an antishielding effect, this being

very pronounced at the oxygen in BeO. The force analysis
showed that ‘it was in this orbital much of the charge transfer
occurred, the density change being greatest in BeO as
compared to LiF. This backpolarized transferred charge

is obviously relaxing against the nuclear motion, thus
enhancing the force constant. The 17 orbital shows that

the relaxation of the electron density at the heavy nuclei

is not negligible and tends to facilitate nuclear motion

by contribution to the reduction of the nuclear field gradient
which makes up the force constant. At the electropositive
nuclei, the contributions are less than what one would

expect from point charges situated at the other end of the
molecule, i.e. 4.0 at F and O, on the basis of an ionic

model. This typical undershielding of the 7 densities was
shown to be operative in the forces, and thus persists in

the force constants.

The orbital contributions to force constants are of
interest in correlating vibrational frequency shifts of
certain groups, such as the carbonyl group ~C=0, in
different molecular environments. Force constants derived
from frequencies in polyatomics are unfortunately often
derived from potential fields which are in turn based on

preconceived molecular models. Some caution is therefore
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required in determinations of force constants as discussed

a¢227)  agide fromithis

(228)

recently by Machida and Overen
remark, géneral MO considerations assume invariant, .
nonpolar sigma networks and thus attribute variations in
the carbonyl stretching frequency to changes in m-bond
polarity. We have already commented that the 3¢ and

1w qrbitals contributé substantially to the force constant.
Furthermore, upon loss of an electron from the 17 orbital,
there is an increase in bond length by about 10% and a
concomitant decrease in the force constant by about 48%577)
Inasmuch as the 17 orbital is highe; in energy than the
30 orbital, it will be more easily perturbed by different
environments. Thus, changes in the m-bond density will
affect the force constant of the C=0 group appreciably.

As the bonding occurs principally via donation of the

50 electrons,diffusely disposed to some exteﬁd behind the

C nucleus, there arises the question what effect the

bonding of these will have on the force constant. Stretching
of the carbonyl group is usually described as an electron-

(229), i.e. transfer of charge into the

demanding process
C=0 bond. On this basis, it is possible to explain the
larger band intensities observed in metal carbonyls as
compared to the intensities for the carbonyl group in organic

molecules and even CO itself. Increased metal size and

increased negative charge via substitution on the metal
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enhances the carbonyl intensities. This can be explained
if one assumes the 50 density bonded behind the C nucleus
relaxes in the same fashion as we discussed previously in
COrwhere it was found that the relaxation at C was going
counter to the C motion or in the same direction as the

O displacement. As this increases the force constant,

this may well be one reason why the carbonyl force constant

is not too different from that in CO (2040 cm T in Ni(CO)4(84)

as compared to 2170 cm L

in CO). Delocalization of 7
density from CO would have appreciably reduced the constant.
In fact, our relaxation map as discussed in éection 5.9
would seem to indicate that relaxation of density in the
o-region 'is larger than that in thg m-region. Thus it seems
that the assumption of invariant O-density may be an

oversimplification.

5.11 Semiempirical Considerations

There have been, in the past,certain general
approximate relationships which have been useful in correlating
force constants and other properties of molecules. One
remarkable rule of diatomic molecular spectroscopy has

been that if w_ is the vibrational frequency in Cm —l, and

e
R, the equilibrium internuclear distance, then one has to

surprising accuracy

2 =
Re Wy = copstant (5.44)
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through all electronic states of one molecule(230),

(231)

Morse showed the relation weRg = const. can be derived

from simple theoretical considerations. This last relationship

has been shown to hold quite well for many nitrogen bonds(232).
The somewhat more accurate relation of Badger(lgs) is
known to be much more universal. (See Eq.(5.46)). The

firsf relationship (5.44) has been recently demonstrated

to follow from the kinetic-energy form of the virial

theorem by Parr and Borkman(193), Other recent work of
Empedocles(lgg) has also stressed the utility of the kinetic

energy form of the virial theorem for understanding potential

functions and force constants in diatomic molecules. Parr

and Borkman have shown that the relation follows from
treating the valence electrons in the bond region (which

can be obtained from overlap-population methods) as an
electron gas, an assumption which implies that the electronic
kinetic energy is of the form T(R) = To + T2/R2. The force
constant then follows from the virial relationship

kg = -1/Re (4T/dR); = ~2T,/Ra.

One does not have to invoke the electron gas model
to obtain this R;4 dependence of the force constant. An
instrﬁctive derivation is the following. The force equation
is

dE/AR = <y |3H/3R|yY>/<y|¥>
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In scaled coordinates such as elliptical coordinates, one

has
'
R R
where ¥r' = r/R and is thus made independent of R (see

Chapter III). Differentiating again, one obtains

2 ' '
<w|w> d__Ez_:= <w(R’r|)|6T(1,r ) + 2V(l,r )|W(R,r')'>
dR ' 3

r? R
’ [] 2 1 v L T
~ QY R,z T;3 r') 4 V(;zr L1y (r,x")> +30cy| 28 |¢>

The last term arises from the explicit dependence of the

volume on R:
d " (R0 W (R, DA = T  (Rrw(R,x) RNar

= IQELEAE—L dar

3N
adRr + —R—fp dt

But since <3H/8R> = 0 at Ry, and from the virial theorem

~2<T(1,r')> . <v(l,r')>
- aamne i s oo

(see Eq. (4.16), (4.17), we can summarize the force constant

expression

2 i v v
T8 = 2, <pre)) [2(L,20 [V (R,2") > g2 ZEIRAN2MV]B(R,z')>

K
ar? R

2

where all integrals are done in scaled coordinates. The first

term is then the counterpart of the rule of Eq.(5.44) and also
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e

the assumption of Parr and Borkman. There is, nevertheless,
an extra term, a relaxation term expressed in scaled
coordinates. For the Hp molecule, one can easily show that

this term is -0.830, whereas the force constant is 1.401.

This follows from the expression(207)
<¢]32H/3R2|¢> = <w|§2izylw> = T2E
: 2 2
Re Re

which are obtainable from the scaled coordinate expressions
of T and V and use of the virial theorem -2<T> = <V> gnd
E=T+ V. For N,, one can calculate the above expression
to be of the order of 50. Hence, extensive cancellation
via the relaxation term must occur in order to reproduce
the force constant value of 1.417 for N,. The electron gas
model therefore does not follow easily from this rigorous
derivation of the force constant expression, as it is
difficult again to evaluate the relaxation term.

The force constants, which we Have calculated by
considering the charge densities and electropositive forces
from these, include impiicitly the very important effect
of relaxation. The guestion then arises whether there are
any regularities in the numerical values obtained which
would seem to indicate the existence of some semiempirical
relationship. If one averages the shielding and relakation

contributions, one can obtain .a correlative expression for

~the force constants. Let us define
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” (AR)

. _p (BB) 3
B %[ZA(ZB KA ) + zB( a-Kgp ) ]

(BB) (BA) ,
B +KB )]

(AR) , . (AB)

= k
M 2[zA(KA +K, )+ZB(K

The first expression represents an average shielding contri-
bution for the whole molecule and M represents the average

relaxation effect. The force constant can then be defined

i i
as 2ZAZB
ko=
3
R

m (5.45)

where m now takes the form m = l—M/ZAZé.

This expression has close resemblance to Badger's rule which

relates the force constant to the bond length in the fashion:

-3
k= 1.86(Remd; ) (5.46)

where di is fixed for bonds between atoms from rows 1 and

J
j of the periodic table, but is not so appropriate for

isoelectronics. The values of Z.2! and m are for the

'A°B
molecules as follows
N, . co BF BeO LiF
zAzé 20.195 15.531 12.363 8.612 4.100
m 0.329 0.458 0.306 0.562 0.580
k2 (cale) 1.503 1.493 0.553 0.639 D .191
ko (exptl)1.417 1.222 0.519 0.483 0.165

The slight anomaly for CO is & result of the predicted

force constant being higher than the experimental value.
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Using the experimental k,, m becomes 0.375, which is more

in line with the values of N, and EF. A slightly larger
ZAZé would also improve the correlation. The force constant
for C, is 0.782. Whether this molecule would have a similar
m as BeO and LiF, its isoelectronic analogues, cannot be
answered definitely. The low value of the force constant
and.the change in bond type, p'chéracter at both ends of

the molecule, may invalidate any possible correlation.

Aside from this, the interesting observation is that a

plot of kj vs. ZZAZéﬁR3 would be prédicted to be nearly
linear and probably going through the origin, corresponding
to ko and zizé being zero. From the Hellmann-Feynman
viewpoint, for extremely ionic molecules, one has under-
shielding at one nucleus and overshielding at the other,

so that these two effects cancel in the averaging procedure,
tending to make ZAZé approach zero or negative values. If
one assumes the main shielding comes from the core electrons
only, then Z,Z; is for N,: 25; CO: 24; BF: 21; BeO: 12;
LiF: 7. All these values are much larger than those
reported above, so that it is evident that some shielding
does océur'bY’the Valgnce electrons. Using these higher

Azé values, Murre;l(zol)
thg above plot, which did not go through the origin. It

Z obtained a straight line, for

is perhaps not too irrelevant to point out that the last

members of these two isoelectronic series are the rare
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éas diatoms’ BeNe and HeNe. These hypothetical molecules
represent a discontinuous change in bonding because of

the high stability of closed shells, and could be considered
to have zero force constants or nearly so as their inter-
actions are of van der Waals type. One can expect, there-
fore, for these the shielding to be pearly complete, in
acco;d with the existence of a zefo on the correlation

line. The objectioﬁ of including these into the correlation
scheme is of course the ambiguity in defining force constants
for such molecules.

It is to be emphasized that the correlation can only
be approximate as warranted by the.ad hoc averaging of the
various contribﬁtions at both nuclei. A rigorous correlation
between any parameters and k, is difficult to justify a
priori. The above correlation will have to be tested for
more molecular series to seé_whether it is real and not
artificial. The question of C, fitting into the group BeO
and LiF will have to be answered by calculations as out-
lined in the previous sections. At the present writing,
the exact physical.meaning of the near constancy of m
in isoelectronic groups is not easily understood. Never-
theless, the regularities reflect the extent to which the
repulsive forces between the nuclei of the bonded atoms
are reduced by electronic shielding and electronic relaxation

effects.
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5.12 On Force Constant Models

The total electronic forces F:, which at equilibrium

necessarily equal 2 are in contrast to the total electronic

BI
force constant Ki which must be less than ZB in magnitude

. _2Zp _u® :
since k2—§§— (zB KA) must be greater than zero. This can be

qualitatively understood from the general relaxation expression

3
Kel= .R_.

= o ;38 (esra) cosly gy

Ta
The differentiation of the density with respect to the

parameters (E%E = E %ﬁ;-%%i) reéults partly in radial
excitations of the density. For example, a ls orbital
centered on A will become promoted to a 2s orbital after

the differentiation, as discussed in section 5.4. This
removes charge farther away from nucleus A and thus reduces
the shielding because of the geometrical nature of the force
operator, which preferentially weidhs densities close fo

the nucleus. As one goes to higher derivatives and thus
higher order constants, the decrease in shielding becomes

(196)

. larger as noted by Hershbach and Laurie .(Shielding is

2 which thus réduces the force

constant). This simple explanation is not the complete

defined by a positive K

story as this does not take into account explicit variation
of those parameters which are not necessarily scale para-

meters but account for changes in polarizations, charge
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transfer, etc.a). Radial excitations, which correspond

to scaling and thus changes in the molecular geometry
similar to "breathing" modes, present an attractive approach
as pursued By Empedocles(lgg). This permits one to easily
calculate changes in the kinetic energy upon scale change,
and then via the virial theorem, one can obtain the force

constant. However, as Schwendeman (206)

has pointed out,
the'decrease in electronic shielding with higher derivatives
is slow. This can be attributed to inner shell electrons
which move rigidly with the nuclei during vibrations and
provide a perfect partial shield for the nuclear repulsions.
In addition to scale changes, changés in polarization will
also occur. The total effects can best be ascertained from
an analysis of how the forces in a molecule change upon
vibration. These then include scale changes, polarizations
and other relaxation effects. We ﬁave already seen how
densities (in CO and BF) which are diffusely disposed behind
nuclei indicate large relaxation effects which oppose the
nuclear motion and therefore are an antishielding or enhancing
contribution to ther fbrce constant. 'Thus, the problem of

whether one should include "lone pairs" in p as spherical

shells or whether they are sufficiently polarized so as to

a) Footnote: The distinction between scale changes and
polarization changes is unreal. The gross effect is a
scale change, i.e., either a net contraction or a net
expansion of the total density. In terms of forces, it
is the detailed disposition of the the charge which is
important. Therefore, polarization changes and charge
transfer effects are a more detailed description than
scale changes.
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warrant their exclusion from the electron density as for

inner shells(233)

, can only be solved by including explicit
relaxation of these densities via a change in polarization.
On reexamining the various contributions to the
force constant in the LiF molecule, it is evident the
ionic model of two polarizable charge spheres is relevant
to ghe discussion of this molecule. The small overlap
contribution at Li to the force constant supports the
view of this molecule being two separate charge densities.
This point is further accentuated by the fact that the
overlap force constant contribution at F can be considered,
just as in the forces, to be part of the F density as seen
from the relaxation maps. This same conclusion was drawn
earlier from the Ap map for LiF. On the other hand, the
ionic polarization mechanisms,which are a result of the
detailed guantum mechanical calculation,show features which
are somewhét different from the usual assumptions of
polarizable ions. One interesting feature is that the F
nucleus is negligibly overshielded'(KéﬁB) + Kﬁ?B)= 9.18,
see Table (5.3)), and thus most of the force constant

at Li comes from the restoration of charge in front of Li.

(AB) (BB) _
Be + KBe -

O nucleus does not behave as a predicted shielding population

In BeO, K 8.82, so that the density at the

of 10.00, i.e., Be"t0~. The undershielding can be traced

largely to the behaviour of the pTmT electrons situated at
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‘the heavy nuclei. As one goes from the forces to field
gradients, it has been noted previously that the m-densities
exhibit enhanced undershielding by virtue of the nature of
the operators involved. As much of the force constant
contribution at Li from m-electrons at F comes as a field
gradient contribution, the undershie}ding in the force
constant by this density is thus understandable. One can,
therefore, see that predictions of the force constant from
the ionic model based on two polarizable spheres it ana F~
will be in difficulty if this undershielding is not taken
into account. This same difficulty appeared in the
interpretation of quadrupole coupling constants based on
such a model. Force constants determined from the polarizable

spheres model( 82)

(234)

show agreement with observed spectroscopic
constants when only dipole polarizabilities are used.
The introducfion of quadruﬁoiar and higher polarizabilities
results in a polarization catastrophe in the standard ionic
theory, in addition to destroying the original agreement.
Recent improvements,such as the inclusion of deformation

dipole potentials(235)

via the use of short-range polarizations
in order to maintain induced-dipoles small, reintroduce
agreement with experimental constants but still do not
completely eliminate the polarization catastrophe.

This dipole deformation model is basically equivalent

to the shell model of solid state physics which gives



rather accurate account of the phonon dispersion curves
in the alkali halides with physical reasonable values

of the parameters(236). The physical idea behind the

shell model 237}

is that in an ion, those electrons far
from the nucleus, being less tightiy bound are more pro-
foundly affected by the application of an electric field
'thag the inner electrons. This intuitive view is supported

(180) who showed that the

by the work of Sternheimer
polarizabilities of rare-gas configuration ions are due
almost entirely‘to the outermost shells. Accordingly,

the shell model incorporates these qualitative features.

It is thus assumed that under the field of neighbouring ions,
the shell retains its spherical chafge distribution (because
of the cubic symmetry of the alkali halide crystals so that
one has no net forces and field gradients at equilibrium(2385
. but moves with respect to the core. The resulting polariza-
bility is kept finite by a harmonic restoring force between
the core and the shell, thus also taking partly into account
the repulsive effect between adjacent shells. In terms of
our previous discussion, this corresponds to complete non=
fbllowing of the nuclei by the valence electrons. Our
relaxation maps suggest that this phenomenon, which would
have been expected to be largest at F due to the weak

binding of valence electrons in F~, is probably exaggerated

by the shell model. It is true that there are more Li+ near

289
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neighbours to.contend with. On the ofher hand, the inter-
nuclear distance in thé LiF crystal is now 3.81 a.u. as
compared to 2.96 a.u. in the molecule, so that electrostatic
effects are partially decreased. 1In view of the high
symmetry of the lattice, we may surmise that relaxations

will remain symmetrical abqut the fluorine ion and the

forqe constant contribution at F will approach the field
gradient produced by the it ion. ‘At Li, x-ray crystal-
lography indicates the density aobut this nucleus to be
‘unsymmetriqal(loo), increasing in reéions away from the
nuclei. This is in accord with our Ap map for LiF where
polarization behind the Li core is evident. It is to be
expected that relaxation effects of this core density will

be again dominant, since in moving away from one F ion,
there will be shell repulsion from the other ions behind it,
thus helping the charge accumulation in the internuclear
region in front of it. The undershielding by the F  density
is to be expected again although somewhat less. In the

case of solid BeO, the undershielding of the O nucleus by

the density centered on it is more serious. The introduction
of effective charges less than the ionic charges at the heavy
nuclei wéuld seem to be a promising improvement. Such an
effective charge has been introduced previously by Szigeti(239)

in order to include electronic polarizability along with

lattice displacements. For LiF, the effective or Szigeti charge
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is 0.83. This is an average of the charges at both ions,
positive and negative. The large undershieldings of
densities at F and O indicate that the effective éharges

should be still smaller than the usual Szigeti charges.
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VI. SUMMARY AND CONCLUSION

All knowledge is based on a measure of personal
participation. - Michael Polanyi

The formation of a molecule is intimately connnected
witﬁ a change in the electron distribution. The binding
energy is only a small part of the total electronic energy
- (v1% for Np). One would therefore predict that the
formation of a molecule is the result of small perturbations
on the atoms concerned. One might, furthermore, expect that
the change in the electron distribution on formation of a
molecule will also be small and one might hope that such
changes would by and large be restricted to those regions
where the interaction was strongest, that is in the regions
between those atoms where the traditional chemical bonds
are supposed to be localized. An appreciation of these
effects is best ascertained from the density map (p) and
density difference maps (Ap) of molecules. 1In particular,
with the advent of Hartree-Fock calculations from which one
can obtain accurate wavefunctions, a study based on a density
approach has been pursued in this work. The existence of a
theorem (Brillouin's) which puts bounds on the accuracy

of one-electron properties calculated from these densities

*
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renders this approach advantageous and makes possible a
classical electrostatic interpretaéion based on the
Hellmann-Feynman theorem.

In view of Brillouin's theorem, Hartree-Fock
densities approach exact densities. These reveal signifi-
cant features, particularly anisotropies of atoms in
molecular environments. From the total density (p) one
can define molecular diameters corresponding to a cutoff
contour of 0.002 a.u. These diameters are in agreement
with empirical molecular sizes. Detormination of atomic
radii in the nohbonded regions of the molecule, i.e. behind
the'nuclei, and comparison of these with the atomic radii
- of free atoms and ions give information on tightness of
binding in the molecule as compared to the molecule. In
the series N,, CO, BF it is found that electron density is
very diffuse behind C and B. For CO this is in accord
with its electron donor properties as examplified by the
existence of many carbonyl compounds. As the density
behind the B nucleus is more diffuse than behind C, one
is tempted to suggest that BF should be a still more
potent electron donor. In view of the tendency of the
B atom towards triple coordination, the existence of BF
molecules doubly bridged to metal atoms via two B-metal
bonds should be possible. Thus, another class of compounds

similar to metal-carbonyls would be an interesting experi-
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mental possibility. 1In the l2-electron series Cj, BeO, LiF,
the densities are much more tightly bound at the electro-
positive elements, as a result of charge transferred to

the other end of the molecule. The density difference

maps (Ap) depict'the rearrangement of the molecular density
and thus provide one with a picture of the bond density.

In the series N,, CO, BF,. the bulk of binding is due to
increased concentration of density in the internuclear
region. Accumulation in the bond goes hand in hand with
depopulation at the nuclei. Charge increase also occurs
behind the nuclei. 1In the group BeO, LiF, there is
extensive charge removal in regions behind the light nuclei
and relocation of this density at the electronegative

site in the molecule. This behaviour is characteristic of
ionic bonding. The accumulation of density in the bonding
region, which is equally shared in N, but more polarized
towards F in BF, is characteristic of covalent bonding,

BF being indicative of a gradual transition between these
two types of bonding. ‘

One can further partition the electron space via
weight factors in order to correlate characteristics of the
densities of different molecules. In particular, by the
‘use of the’Hellmann-Feynman theorem, a comparison of the
contributions to the total force, from charge density in

different spatial regions of the molecule, demonstrates the
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‘manner in which a state of electrostatic equilibrium is
reached is characteristic of the binding found in each
of these molecules. The general naturé of the variation
in the spatial distribution of the charge density through
these two series of molecules is evident from p and Ap
maps. A comparison of the force components with the
limiting components of separated atoms accentuates the
mecﬁanism by which electrostatic equilibrium is attained_
in the molecule as opposed to the separated atoms. The
- comparison thus isolates those changes in the atomic
distributions which are responsible for binding the nuclei
in the molecule. From the force analysis, there emerge
distinctive chéracteristics of covalent and ionic densities.
In the covalent case, there is undershielding of the nuclei
and the binding comes essentially from the shared overlap
charge densjity. In the ionic case, there is overshielding
of the heavy nucleus and charge depletion at the light
nucleus. Using contributions to the forces based on a
partitioning of the charge in the manner indicated by the
Ap diagrams, it is possible to approach the classical
model of two pplarizable ions Li+,F- for LiF. BeO is thus
found to be intermediate between Be+0_ and Be++0:.

Along with the Ap maps, profiles of the density

difference on the bond axis indicate increased concentration

of density near nuclear positions. This "clustering" of
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density occurs for atoms which have p electrons taking
part in the bonding. It is, therefore, to be expected

that any property which sensitively depends upon the
| electron density near @he nucleus will exhibit a characteristic
change when the atom is incorporated in a molecule. Hence,
theoretical calculations of such properties should be based
on molecular wavefunctions which properly describe the
contfactive effect. One molecular property strongly
influenced by this effect is the field gradient at a nucleus,
giving rise to nuclear quadrupole interactions. This
interaction is simple as it is obtained from first order
perturbation theory énd thus gives direct information on the
charge distribution in the ground state. The analysis of
the field gradient contributions in the molecules LiF and
BeO indicate that the Sternheimer aﬁtishielding model, which
is the result of trying to extend the point charge model,
predicts field gradients of incorrect sign at the heavy
nuclei. The cause of this disagreement is the different
polarizations of po and pm electrons at the hegative ion,
arising from the guantum mechanical effects of bonding.
At the positive ion, field gradients are less than pre-
dicted by the Sternheimer theory as a result of the under-
shielding of ™ density situated at the negative ion. The
undershielding occurs from polarization effects and the

geometrical nature of 7 densities. Similarly, analysis of
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field gradients in N,, CO, BF indicate that the Townes-

Dailey theory used in the interpretation of nuclear
quadrupole constants in covalent molecules, must be viewed
with caution as a result of independent o and polarizations.
These polarizations (quadrupole) sérongly depend on the
rearrangement of chargé which occurs in bond formation, an
'effgct displayed by the Ap maps.

This 'cautionary tale' regarding the interpretation
of experimental data in térms of simple models is further
pursued in a calculation and analysis of force constants. By
differentiating the Hellmann-Feynman force, one obtains an
interpretive expression for the force constant. It has
peen shown in this work that much of‘the static part of the
expression, namely field gradient contributions, cancel
out with relaxation contributions if the density is expressed
in space fixed coordinates, i.e., the Hellmann-Feynman
procedure. By expanding the total density onto one nucleus
(A) , and calculating the change in forces at that nucleus
as it undergoes a virtual displacement, the force constant
is then the result of relaxation of the density, i.e., a
dynamic effect. Contributions from density centered on
nucleus (B),can be separated out rigorously as a field
gradient and the remaining atomic and overlap densities at
A are viewed as purely relaxation phenomena° This relaxation

is depicted in terms of relaxation diagrams which are



298

correlated .‘to the magnitude of the contri-

butions from the atomic and overlap densities. All force
constant contributions are calculated from polynomial fits
of the corresponding forces. As in the forces and Ap
diagrams, covalent and ionic densities exhibit contrasting
characteristics in their force constant contributions. The
covalent molecules as examplified by N3 demonstrate the

importance of overlap density relaxations which facilitate

nuclear motion. These override atomic contributions which
impede nuqlear displacements by the flow of charge back into
the bonding regions from nonbonded regions, i.e., behind the
nuclei. The observation made is that densities situated
diffusely behind a nucleus exhibit large relaxation effects
countering nuclear motion, as such densities do not follow
nuclei with which they are associated. Thus, at B in BF,
atomic relaxation overridés overlap relaxation, the net
effect being a hinderance of nuclear motion. Densities situated
at heavy nuclei follow these nuclei more completely, as a
result of larger nuclear electrostatic fields. 1In the ionic
molecules - LiF being most representative of this type of
bonding - much of the force constant contribution at the
light nucleus (Li) comes from relaxation of the Li+ density
in the direction opposite to displacements of the Li nucleus.

At the heavy nucleus (F), relaxation is symmetric about that
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nucleus, thus contributing little to the force constant.
The main contribution at F then arises from the field
gradient produced by Lit. Of significance is the sub-
stantial undershielding of the heavy nucleus by density
situated there. This effect is more severe in BeO, where,
as a result, the representation of this molecule as Be++0=
is rendered questionable.

In conclusion, we would like to remark on the
appropriateness of the use of a classical approach to
chemical binding as we have pursued. A theorem of M¢ller(256)
states that classical point particles may not have any
spin. On the other hand, quantum mechanical particles are
defined in terms of rather abstract properties of the linear
manifold of their physical states. Such definitions A
accommodate the notion of spinning particles very naturally.
In view of the theorem due to Hohenberg and Kohn(25), if we
know the 3-dimensional charge density p(;) of a specified
state of a molecule, however complicated it may be, then we

have all the information that we need to answer any question

about any spin-independent property. The usefulness of the
(257)

density approach is'amplified by recent experiments from
which it appears that the over-all electron configuration
of a molecule is more important in determining its reactivity

than the finer details such as spin.or orbital angular momentum.

The use of the Hellmann-Feynman theorem makes possible, therefore,
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a classical electrostatic interpretation of these densities.
From such interpretation, it becomes evident that exact
calculations reveal significant features, particularly
anisotropies of atoms in molecular environments. These
features exert a strong influence on calculated molecular
properties. The moral of our story, then, is that detailed
calqulation will often reveal important effects that simple
models rule out in advance. One wonders whether we may
one day be able to abandon all models - just store all our
machine-recorded calculations based on fundamental laws and
when needed, extract the specific information from memory

tapes!



APPENDIX 1

Hartree-Fock Theory(ZAO)
In an exact Hartree-Fock calculation, the single particia
states are determined by a variational calculation where their

wavefunctions are subject to an unrestricted variation, and ar=

called unrestricted (UHF) Hartree-Fock wavefunctions. Such
program is very complicated and is not usually carried out.
expanding the unknowh single particle states in a complete
basis, the Hartree-Fock equations become an infinite set of ncn-
iinear equations in the expansion coefficients. Upon lin ing
the expansion to a finite number of terms, one solves th:: ~5n-
‘irear secular equation using an iteration proceaure§“7)

number of terms is large, as it should be for a good appr .

tion, the problem is still considerable.

The Hartree-Fock equatioﬁs are simplified by impos:
symmetries on the Hartree-Fock potential, usually rotatior
.nversion symmetry. The equations thus become a set of ', =¢. o~
differential equations which determine the radiai part of
wavefunctions, the angular=-spin part being determined frr- &
imposed symmetry. Thése are then called restrictec Hartrze-
Fock wavefunctions (RHF), or more appropriately, symmetr:
restricted functionsgzul) The Hartree-Fock ecguaticas havs
general very many solutions, since they constitute only a .
sary condit‘on for the minimization of the energy. imposing

symmetry conditions means that one restricts onesel? to a par:
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of the possible solutions, namely those which have the given
symmeiry. The lowest energy minimum may not be contained in
Tais is the price to pay for the simpiification
3t the problem.
The basic Hamiltonian of the system of W particies wiil
5& written H =T + V, where T is the kinetic energy, ana ¥ i<
& two-body interaction. Choosing N orthonormal functiéns
¢ seeeby (which are elements of the one-particle Hilbert space
denoted by} ), one can construct an operator h (acting in}# )
~defined by its matrix elements between any two states |a>and
|3> of ¥ (these states, are antisymmetric procucts of the $'s)
N

<al hig> = <a|T + W|B> = <a|T|g> + §§“¢iivi3¢é - 972> Al.1

is easily shown(47) that h is invariant under any unicary
c-ansformation of the function ¢; so that it is cetermined Lv
.ne N-dimensional subspace spanned by these functiors. ihis
space wiil be denoted Ly{¢} and- the corresponding opevators by
n .9} and W ol

The Hartree-Fock Hamiltonian h and the Hartree-Fock

puotential W are defined as operators of the above structure but

where the ¢i‘s are the N lowest energy solutions of the eigenvaiu:

problem
h{phy, = [T W {p2> Ty, = &y Al.z
The equatiors “or (i = 1,N) are called the Hartree-Fock equatiors.

Their solutions are denoted by Voo iy and the space spanned by
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these functions is labelled {y}. The Hartree-Fock Hamiltonian

h{y} is usually constructed by an iterative procedure. Starting

(1)

with N orthogonal functions {¢(l)}, one constructs h{g¢ } ac-

y ‘ \
cording to A(1.1) and finds its eigenvalue g:(zl

(2)

and eigenfunctions
) . From the N functions of lowest energy (more functions
can be obtained than N if the basis set is larger than N) one
constructs another h{¢(2)} and repeats the previous procedure
until consistency is achieved. The eigenfunctions y; of the
finai, self-consistent operator h{y} form a complete set of
functions ind and are called Hartree-Fock orbitals. The N
functions of lowest energy are referred to as occupied orbitals.
Now let the states |[B> differ from ic> by replacing the
furictions ¢S(SiN) by ¢g(€>N) one at a time, i.e., we are con-
sidering only single excitations. Then one can easily show that

the change in energy to first order is(2h3)

Y [<¢§|H}a> * <a'H|¢g;] A3
T=N+*1

3

I
wn
Io~—=

f—

c

For minimum energy, this first order variation which is the most
important, impliies in view of the Hermitian property of the

Hhamiltonian

<¢¢|Hla> = 0 ALk
This is preciseiy Briliouin's theorem for the energies. In terms
of the orbitals, ¢§ corresponds to arbitrary variations Swi in
first order. These variations must vanist for A(l.4) to hold.

This condition is then the usual differential 2cuation for self-

il

. - . - - \
consistent wavefunctions as obtained from & variaticnal procedure.

L Cr
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An immediate consequence of this is that in first order
perturbation theory, the states LB)nnust be doubly substituted
determinantsfﬁg?)>where the occupied orbitals s and t are
replaced by the excited orbitals 6 and C respectiveiy. It
follows from this that the mean value of any one-electron
operator F, which has no matrix e]ementsé«!F%ﬁgﬁj>for any ¢
and © , differs from the Hartree-Fock value by second-order
terms only, quadratic in the coefficients Cff of the states
Lﬁ;?’ estimated for the first-order wavefunction. This is the
counterpart of Brillouin's theorem for one-zlectron operators.
This result applies only to UHF calculations.

The Hellmann~Feynman theorem follows by differentiatiﬁg
the expression for the energy

£ = <[] > e fu] wpmafh|a>

Fy = " VE = -Kalo x> w249l Tlx > = 24 Ty [V Ix>
Now$7N}x)>can be expanded in terms of the compiete set of Hartree-
Fock states /8> where /8> differs from |=> by only one orbital

~hich because of the antisymmetric property of > may not be an

orbitail already in/x)>. The expansion is expressible in tern

w

of states which contain only one orbital different from those in
P> as Uy is a one-electron operator. We then have, using the
Hermitian properties of T and V,
e u . r _ w| T P <o |V J Al.s
Fo= =L ]V, Hle> Z§¢“[< FTig >+ IViIigp>

where the sum over £ excludes « since the state V, i«>is ortho-

N

normal to !« > from the normalization condition‘?Né.m)°&7= 0. We
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can rewrite the last bracketed term as a one-electron operator
by averaging V over the orbitals which are the same in /%> and

18> , as in A(1.1), i.e.,

Fo==<alv Hla)> - 22 ﬁl [<ex| T1A> +<«¢,-JV{E>Q%’<;{5.>]A ’

B e 1.5
where now the sum goes only to N - 1, as a result of one orbitai
being different inlﬁ}. However, the bracketed term is formally
identical to A(l1.1) since in that equation the sum includes a
self-energy term which is identically zero, corresponding to the
interaction of the orbital %_ with itself. Therefore the cor-
rection term to the classical expression for the force is the
ﬁatrix elementsﬁi_(oe | hlﬂ>which, by virtue of the se]f-con§istent
orbitals obeying equation A(1.2), must vanish. The final result
is then the He]]mann—Feynmah theorem for Hartree-Fock wave-
functions:

F, = <l Y Hla> Al

ON

Wwe have already shown in the previous paragraph that the expe.ta-
- tion value of FN is correct to second order, as§7NH is a one-
electron operator in the Hellmann-Feynman formulation (see chapter
two). This also includes the case of electron densities, which
are defined by the one electron operatorcg(?), i.e., the deltea
function at the point r in space.

In this thesis, we are dealing with molecules in their ground
state, the symmetry of which is th and furthermore these are

closed shell systems. For such systems, the RHF method is in

t
o
-

nally consistent with the UHF equations. A HF wavefunction shcuic

transform in the manner of an exact energy eigenstate. Open sheli!
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systems with degenerate ground states do not have this property
’ (245)

and thus do not satisfy Brillouin's theorem. Specifically,

the Slater determinant for a state containing only doubly oc-

(246)

cupied orbitais is left invariant under unitary transformations
As the ground states considered in this present work are made up
of doudly occupied orbitals, then their RHF wavefunctions will

opey Briilouin's theorem.
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APPENDIX 2

Field Gradients

The calculation of field gradients involves the average
of the operator (3c0526-l)/r3 over atomic, overlap and shielding
distributions. These are then one-center integrals for the
atomic densities and two-center integrals for the remaining
densities. The operator is singular at r=0. As all integrals
are done by integrating over angular coordinates first, then an
undefined integral occurs for spheriéa]]y symmetric distributions

because in a vanishing small volume 7 ,

3cos“ 01 -z — _ (y AZ ]
‘L"O{ 3 )e v 208"y sme de = ©/, 25

-r

fnis difficulty does not arise for higher orbitals, since thesc
contribute a factor rZC with Z>O, and then the integral is
absolutely convergent. To cirﬁumvent this operational difficuluy,
the integral over all space is broken up into two parts, r from €
toc, and then 0 to & . The limit €20 is performed after
integrating over angular coordinates. For the last part we can

express the integral as

2* (: . 4 A2.2
o = = 2 (
'[C-»o /‘L)f’ g f 0)

J&? 3

where the equality is a result of Poisson's equation w2(1/r)=-47&(0)
By symmetry, all three components of the Laplacean are equal for
a2 spherical distribution so that the integral is then only 1/3 of

the equation. The result can also be easily proven by use of



308

(247)

Green's theorem and integrating over two surfaces, one at o

and the other at r = €. The result is that

.[‘ 2 2 > —
| weie (M)/Ddr:j(&s}iﬂ)w_ AL (o) A2.3
/zb N T>4 ,l_‘ .3
177'6
) Lmit €= 0 . . :
The formula¢ given below are for Slater atomic orbitals of the

form(248)
X(nt,m) = C2o)” " [(2nl)]% 4" o~%% em(elf’) A2.bL

where YLM(O_, ¥ ]= (27 )% eim¥ [(zé’u) (4-m)/ ]l (-4m8) (DL\ (csp-1)
oA

A 2 (trm)! cos 6)

For 1 ! .
or example YOD:vT—,T‘ ’ y,=l/;'§;6059 ’ y‘ _ [T»me“\f >/ \/-—smo-:)

-1

Y = "“ Arn 8 cosBe -iX y /—(.gl_(ﬁsoﬁg -Jos 9) . \/ V 4m0{5w56 ’>f’

z
For computational facility the normalization factor N is defined
as . :
AN e n+ m +'h 4 -k

where  and B8 re present different exponents for atomic orbitais with
Guantum numbers nj; and n, respectively. Angular iIntegrals of

the form s /

Y, (6 ¢) Yelm(e/{) VCT(G,(’)

(249)

can be readily worked out from Slater's tables of Ck(fmj,{'ﬂ; )

Atomic Field Gradients

A(ncm’nltlml)_—_— Z/X (’7""1) )((n't'm') 6(6056)43 d?

We list only the nonzero elements.

% %

- 2N LS -8

A(1s, 3d.6) (o(*,8) F A(Z/’f,z/oo”) Z T
A(25,346) . 4N | A (346, 346) _ 2

= o ()
, 2 N(51)

A (35 340) - 12N /75 p (k6 4t6)s 2 (<rp)¢ i
\Og.,‘“
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Al2p6 4f¢) - /‘ A (4f7, +hx) - 2_"/_/5;/) £

@wﬁ 7 (cerp )t 7228

A (27, 2p7) = - 2 oiyé A (2,7, whr) = 2 N 78
[x¢/ﬂ4

(x+p)”
A (347, 3az) = 12N //)

(e +8)"*

Overlap Field Gradients

Overlap field gradients can be reduced to the general

fntegra]

_ - L/ -8 e- - ‘
Tk, €, m) —fe f 0T boska, 4q "zé"' "d A2.6

by use of the relations r_sinf_= r,sinép, r,cos6,=R-r,cosép
(see fig.EJ) OCne then expands functionals of ro, and 6, by the

Coulson-Barnett method: (250)

_ Yy o (2h+1) »
Z{m fe A% & Ve R w e & )T alBres k) A2.7

where the J/'s are products of imaginary Bessel functions b g1/2
and K 41/2+ By the substitution t=4ra, T=8R, K=«[8, one has

also

— 47 (2nrt) /(7 ~ .
T (ke m) _56:’”/ Z- it /’a(/‘)ﬂk@)zm,% (x7) 52.8

N=0

Thus all integrals can be reduced to the functions Z e
m,n,C+i/2
which are calculated by iterative procedures desented by Couison

and Barnett(ZSO)for the integral representation:

L con (%) = f,,“%"- Cxt)d, e )t

Az.9
Occasionally use of the following definitions will be made:
Zo’ nl-r-'/a.: G,,'C-.'—Z' )' le r,,e-fli — a;i-fg/l

The general definition of an overlap field gradieat is then:

O(n,(,m r/,_‘lZf'm’) =%/"Xa_ (r;'e'm) (cos9) X@(), pi ’) d

e B A2.10
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The expressions for the individual overlap elements are listed

as follows.

O(’ls'/s)z' 0(3/2/33/2, %F[_Gl,-lrl/z - Gj"/-i'%_]

5/ 0$’ V A
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Shielding Field Gradients

The integrals of the form
<€ (60596)( cos m € dn
Stamm) {n sy Bz (e m) (275
(154)

have been dlbcussed by Pitze , Kern, and Lipscomb. These

authors use the expansions for spherical harmonics as given by

; (251) . :
Hobson 0 m ;
f;(COSG(y)z_L (C'rh.)iﬂi /CD(COSQ“) L]C /Za<R
/Zrnfl Rn n =m Rt;rl )
v ‘{”’1
Az .11
&0 -m)RE pm _
*R* f-ﬁ),j;, P(c()sea) i 2qa> R
There is a singularity at n=R for cases invoiving n-m2Z 2. For
the field gradient operator, an additional factor of BjTF(R)

296-])/Q§ if angular integrations are

must be added to (3cos
performed first as is the usual case. The integrals are ali

reduc ible to the functional:

_ [ LT n+ -
Ceomtn) (D)t eptprar + () [tretepae s

!
where P=(x+tB)R | L+, > > [L,-¢, ], n=n,+mn,

The formulae for averages over orbital products are then defircc

N

from

P(h/{/ m, 3 n, £ "’z) - Z/XQ(n'(' ™, M XQ(”zezml) dc

A2.13
3

and are given‘ by the following:
Plrs, 1) = 2N [-4 esp(-0) + G(202,0.p)]
S, - zNR[~3’- xp(-p) + @(2053.0, p)]
P(is,35) = 2NR'[5epCp) + G(2.04.09)]
Ples,22) = 2 NK [ op (£ + G (2.04,00)]
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P(Zs,ss) — ZNRS[‘éeXf(—.{?) - G(Z,O,S,o,f)]
P (33, 35)_—_ ZNR’* ["éexlo(~f) e G(Z,o, 6,0,70)]
Plis,2p8)= 2NR [ _oyn(-p) + G (2,03, 1, )

2 | 2

P s, 3a6)= ZNR‘?[-—QE plf) + 5 Glaos2p)]

5

e f e
P {1s, 4f6>:2NR3[_3ﬁ: ﬁx/l(__p)_,_q_z_?_G.(z,o,s,s, }0)]

F(Zs, ZPo') - 2NR
V'3

[ex/a( 2)+ Gz, 04, p)]

P(ZS,MG): 7_NK3[ ;‘-px/a(-lp)_,,_\[i_s, G(z,o,s,z,p-)]

P25, 4f6)= 2 NRY

 ——

_iz_ - (_y) '+v4—7_ & (2'0'6"3'?)}

P (35, 2p6) = gﬁs[_exp(-f) + Gcz,o,s,:,fn]

P (3s,3d6)= 2 NR? [ -_zxf(—(H G(z00,2 f)]
P (3s, -’+f6> =2 i\lizs[“—_%‘/Z expl-p) + 1= G207 ’a@]
?(2/26,7-/>6>= 2 NR? [-exp (=) + Glzo400) + %G(z’o""z"oﬂ

] - { \ 7(2 05,3
?(2(05, 3&6): ZNRBL"%E axp(—.(?) +E/’/;5‘G(2’o‘s’ )0) * i/_j:j‘s C( A 'p)_]

— q
r i \ 16 G )!
:P(Z/)g‘.q.}(é‘): ZNR"“‘—_\J; 2#{7(-—?)-# __’2]5_ G(Z,O,G,Z,p/ +\{———/gq (2 9 b,4p |
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}D(So(& 3d,&)= INR* [_35 zxp(—.() + G (2.0 6.0,p) + %‘ G'(7.,0,6,'2-,/0)+¢/§%G(z’o'aﬂ,}pﬂ
Plsac 47[0”) =2 NRS[“%——S exp (‘/) £ )/;7_; Glaomi,p) + ‘/3775(7(2,0,7,3,,:)-{— oo (+(2,0,7,5,p)

; 7
’:D{L!f& 4/[6') _ ZNRé[_—B—.ex/o(—/ﬂ) + G(z,oﬂ,o,}o) + %—G(z,o,e.z,)o) + \/%QG(Z,Q@,@D}
H/% G(z,o,«,c,,(ﬂ

7’(2/;77, zfr);: ZNRZ[G(z,o,q,o,f) -+ G (2,0, 4,2,70)]

P (z/aﬁ,zowr)= zNE3[\/,:35——G(_z,o,$, :,/,) - \/;—%; G (z,o,s‘,s,f)]
P(zF)T,#]fr):ZNRL’[W—;; G’(z,o,é,z,}o) - \/% Gcz,o,e,tf,f)]

P (347, 347) = Z/\IR‘*[G(z,o,a,o,/o) +4 G (2,06,2.p) \[%1 G‘(z,o,élél(_:ﬂi/?

P (3a7, Lffﬁ); ZNRSEV‘%— G(z,o,m :,/o) - ﬂ%CT(l,OIIB,/?) “)}/?‘z’—zé G (2075, p)]
‘ .

P(H‘ WoH4TT ) = ¢ ' . o |
)[ ][ ) 2NR [G(z,o,e,o,}o) t= G(Z,O,*Z,Z,{) -+ \/Té‘q G(Z_.O.S,L*,f)

_ 22,50 -
| ]/7—————3(_1163 G (20,4, &, 10)]
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Hno. SN0 SO Y

o~ = o

w» wn wn1

H®nOoWw-

20U

log 1oy 209 3o0g 1wy T
.00577 -.00259 .67835 «62151 2.21187 -1.94934 156557
007284 -.001301 .55766 -.01264 .36402 - .14164 .77338
31576 .31468 .28097 07953 16833 198334 1,35760
.32881 «31072 1.51698 .68840 2.72886 ~1.89265 3.69655
.00440 -.00284 .59816 .55888 2.18759 ~1.91545 1.43074
.004282 .00020 -.00060 .33217 - .12176 .69946
.26966 .26879 .24537 .07927 .15154 .18194 1.19657
.278342 .26615 1.32870 «63755 2.65594 ~1,85527 3.32677
.00168 -.00284 .55419 .533326 2.18105 -1.89403 1.37338
.00310 .000644 .44645 -.00378 .30341 - .11134 .63848
.24508 .24434 .22496 .075126 .14319 171675 1.10438
.24986 .24214 1.22560 .60467 2.62765 -1,833695 3,11623
.00333 -.00280 532557 .51568 2.17161 =1,88919 1.32420
002599 .00079 + 420027 ~.00317 .30687 - .10482 .62230
.23214 .23146 .21437 07377 .13715 .16744 1.05633
.23807 + 22945 1.15997 .58628 2.60027 -1.82657 3.00283

-.00490 -,00263 .46509 47172 2.16023 -1.86877 1.22074
.001769 .00096 .36277 -.00588 .28561 - .09141 -55382
.20134 .20076 .18847 .06%61 .12454 .15442 .93914
«19821 «+19909 1.01633 .53545 2.55502 -1.80576 2.71370

-.00726 -, 00231 «29711 .33424 2.13883 =-1.,83858 .92203
.00046 .00088 .23074 ~.00757 +23835 - .06169 .40117
.13604 .13583 .12974 .06283 .09564 .12250 .68258
12924 .13440 «65759 .38950 2.47282 -1.777717 2.00578
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lo 20 30 %o} 17 T
.00000 .03719 .27026 .11076 .12011 -.53908 .99924
.00015 .00163 .42437 13627 .20260 -.01978 .74524
.58523 .00000 .44811 o 1% B .09179 .36532 1.74462
.58538 .03882 .14274 .50120 .41450 =,19354 3.48910
.00000 .02364 .19413 .07010 12513 -.47172 .94128
.000¢% .0005¢ .30812 .09984 .19236 501157 .58945
.44397 .00000 .38140 .18701 .09384 .31497 1.48116
.44408 .02423 .88365 « 35695 .41133 -.16832 2,95192
.00000 .02096 .17855 .05874 .12410 -.45475 .92760
.00010 .00047 .28202 .09093 .19161 -.01491 . 55022
.41285 .00000 .36169 .17151 .09651 .30533 1.34790
.41296 .02143 .82226 .32118 41222 -.16433 2.82572
.00000 .01090 .12814 .01992 13123 -.39320 .89699
.00005 .00032 .19098 .05569 .18616 -.01133 .42187
.30208 .00000 27012 .10813 .10214 .25609 1.03856
30213 01122 .58924 .18374 .41953 -.14844 2,35742
.00000 .00614 .08904 .00296 .14173 -.34365 .89622
.00003 .00027 « 12515 .02864 .17718 -.00911 .32216
.22763 .00000 .20925 .06125 .09797 .21674 .81284
.22766 .00641 .42344 .09285 .41688 -.13602 2.03122
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.01199 .00003 .68206 4.,99030 .63099 -4.,94843 1.36694
.00011 .00008 .40224 .40206 .02031 -. .236657 .58814
.00000 .58617 .10438 .05933 13756 .07613 .96357
.01210 .58628 1.18868 5.45169 .78886 -5.10896 2.91865
.00470 .00001 .53480 4,37190 .99448 -4.,99048 .91541
.00020 .00000 .29510 .33450 .02040 - .18370 46650
.00000 44447 .06529 .06375 .11590 .05876 .74817
.00490 .44448 .89519 4.77015 .13078 -4.11542 2.13008
.00334 .00001 .49498 4.,18161 .12632 - -5.02990 .77635
.00026 .00001 .26884 .31276 .01868 - .159285 44127
.00000 .41328 .05800 .06401 .11013 .05659 .70201
.0036 .41330 .82182 4.55838 .25513 ~5.13259 1.91964
.00069 .00000 .31820 3.19216 .82472 -5.13071 .21127
.00033 .00005 .18020 .23270 .035530 - .111583 .33723
.00000 .30225 .03916 .07191 .08436 .04261 .54029
.00102 .30230 .53756 3.49676 .94461 -5.19968 1.08257.

-.00046 .00000 .19666 2.12349 .54231 -5.26210 -.40010
00020 .00004 .11666 .16040 .07885 - .078643 « 21851
.00000 22772 .02489 .08237 .06282 « 3221 .43001

-.,00026 .22776 .33821 2.36626 .68498 ~5.30853 .30842
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AT .00000 .02889 .04017 .08474 .33030 -.08094 .40316
ov .00010 .00567 .16804 .16061 « 05529 -+ 005796 .38391
PE .50005 .00004 .48558 .42260 .04136 .54298 1.99261
T +50015 .03460 693379 66795 .42695 .45625 2.77969
2.354

AT .00000 .01290 01753 .07046 .29180 -.04323 .34946
oV -.00002 .00033 .07296 .12647 03789 -+ 00187 « 23586
PE .30667 .00000 « 32331 .27096 .03%924 .39191 1.33209
T .30665 .01323 .41380 .46789 .36903 .34681 1.91741
2,391 :

AT .00000 .01230 01628 .0691¢8 .28726 -.04100 .34402
ov -.00018 .000123 .06802 .12386" .03603 -.000701 « 22715
PE 29265 .00000 « 30815 «25791 03956 21 92h 1.27752
T .29247 .01242 »39245 .45095 « 36285 . 33755 1.84869
2.770 ‘

AT .00000 .00614 - .00792 05302 23258 -, 02316 .27650
ov .00002 -.00021 .03038 .09294 02091 .002183 .14622
PE .18822 .00000 .19506 .15629 03797 .27169 .84923
T .18824 00593 «23336 «30225 . 29146 25071 ° 1.27195
3108

AT .00000 .00275 .00380 .03244 .18165 =~.01335 20729
ov - .00001 -.00034 .01304 .06390 .01343 .001801 .09184
PE .12738 .00000 13062 .09467 .04023 .19823 .59113
T 12739 .00241 §$746 «19101 23531 .18668 .89026
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.00095 .0003%7 4120% 10.06539 .2%265 -10.14885 56254
.00C28 .C0179 .15164 .35837  -.00497 - .09525 41186
.000C0 . 50060 .02219 .0258% .08158 01152 64171
.00123% .50276 " .58586  10.44959 30926 =10.23259 1.61611
-.00081 .00005 23046 9.15162 51410 ~10.34680 - 45138
.00025 .00003 .07106 .28871 -.03420 - 04579 .28006
.0000C . 30724 .00673 .0223%5 - .072%1 .00536 41399
-.00056 .30732 .30825 9.46268 .55221 -10.3%8723 .2Lk267
-.00081 . 0000k 21346 9.06558 55476 =10.35879 - ,52576
.00023%2 .00002 .06695 .28602 -.0%379% - 04591 26G3LD
.00000 .29320 .00619 .02275 07141 .00507 . 30862
-.00058 .29322 .28660 9.37435 58824 ~10.3996% 14220
-.00085 .00001 .09893 8.10835 1.09868 -10.51%26 -1.2081k
.00011 .00008 03434 .24596 ~-.05220 - .03091 19722
.00000 .13847 .00261 .02641 .05949 .00259 .27957
-.00074 .18840 .13%588 8.38072 1.10597 =10.541%8 -~ .73135
-.00069 .00000 04873 6.90604 2.09124 -10.60188 -1.5%656
.00007 .00004 .01608 .18842 -.05262 - .01909 .12282
.00000 12749 .00101 .02817 .04586 .00129 .20382
-.00062 12745 L06582 7.12263% 2.08448 -10.61968 -1.21992
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,00000 L0372% .05471 12300 ~.099820 .11512
~. 00050 .05952 .0906% .203%360  =.02202 .33123
68664 .003%85 .59959 .54488 384599 2.21995
68614 .10060 . 74493 87148 26315 2.66630
.00000 .C103%0 .03190 07721 -.079%29 .0%948
-.00009 .2167 .07847 12920 -.01668 .21257
43215 .00082 &1871 . 34399 .3128L4%  1.50851
L3206 .0%279 . 52908 .55040 2162% 1.76056
. 00000 .003%72 .02025 .05877 -.068230 LOL446
-.00001 .00908 .06097 .09165 -.00955 15214
.308%2 .00018 . 30456 24188 261974 1.11691
.30831 .01298 .38578 . 39230 18414 1.28351
.0C000 .00262 01714 .05%28L  ~,06L507 . 00909
-.00001 .00669 .05548 08750 ~-.00751 14215
27622 .00011 273543 .21504 246391  1.01119
.27621 .00942 34605 . .35638 17437 1.16243
.00000 .00203% .01518 05060 -.061847 .005%63
- .000C0 .0053%6 .05131 08353  -,00621 .13399
.25607 .00007 25371 .19802 .2%60%3% .94%00%
.25607 .00746 . 32020 .33215 167976  1.083856
.00000 .00067 .00907 °~ .03889 -.050864 -.00223%
.00000 .00213 .03584 06994  -,00224 .10567 -
.19238 .00001 .19077 .14200 .200300 .72546
.19238 .00281 .23568 .25083 14720 .82890
.00C00 .00017 .00382 .02164 -.050587' -,00530
.00C00 .00051 .01924 .04986 .00092 .07053%
13429 .00000 13312 .08070 164146 .51226
.13429 .000%4 .15618 .15220 L13448 57749
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OBe

R -
1.800 1G 2G 3G Lo o, 1n Gy

AT . 00406 01242 28275  7.22842  <4.878916 2.64873
oV -.00090 .05697 .00094 26175 - .22665 .09211
PB .00000 64604 .03803% .04500 014456 74353

T .00316 . 71543 .32172  "7.53517 =5.09111  3%.48437
2.100 -

AT .00203 . 00264 21774 6.54814 -4.,95015% 1.82CLO
ov -.00018 L0141k LOL343 L2633 - 12802 .16771
PE .00000 .451909 L01411 .02253% L01413%8 46987
T .00185 43587 28028 6.83401 -5.06404  2.48798
2.350

AT .00107 .00070 JA43LL 6,04728 -5,0L021  1.15228
oV .00002 .0040% .04895 24600 - .088L9 .21057
PE .00000 .30322 .00753 .01910 012094  .3L1944
T 00109 . 30801 .19992  6.31238 -5.11661  1.70479
2.4377

AT .00088 - .00044 12087 5.87420 -5.081354  .91504
ov .00C05 .00266 .0L660 241110 - 07887 21155
PE .00000 27244 .00626 .01896 .011320  .30898
P .0009% .27554 A7373 0 6.13427 =5.14890  1.4355%7
2.500

AT .00073% .0003%2 10628  5.74901  -5.11k242 . 742098
oV .00006 .00196 04458 23793 - 07284 .21169
PE .00000 .25299 .00553 .01903 .010765  .288315
P .00079 25527 15639  6.00597 =5.176317 1.242103
2.7500

AT .00028 .00009 .06051 5.19312 =5.290694 -.03669
ov .00008 .00056 .03%390 21661 - 05342 .19773
PE .00000 .19087 .00343 .0203%6 008501  .22316
P .0003%6 .19152 09784 5.43009 -5.3%561 .38420
3,100 '

AT -.000k2 .00001 02475 4.06049 -5.675925 -1.59110
ov .00007 .00008 .02025 18625 - .02045 17620
PE .00000 .13363 00167 .02619 004820  ,16631

T -.00035 «13372 04667  4,27293  -5.70156 -1.2L859



AT

Pi
iy

2.65
AT
oV

LiF
10 27 3G La 1 T

.00000 -.00148 -.0040% .00551  -.00244  -.002L4
.00001 02849  -.00400 .01014 .01181 04643
.27201 .00238 264638 320884 34376 1.21217
.27202 .02987 25665 .3hL44g .35%213 1.,25616
.00000 -.0057% =-.00223% .00569  -.00216 -.0C4#45
.0000C 014706  .00241 L01579 L01145 .0LL =6
21495 .00109 .21290 .264gL .28680 . 98068
.21495 .01005 .21308 .28642 .29609  1.02059
00000 -.007%5 -.00146 00568 -.0019% =-.00506
. 00000 .00945 .00401 01752 .01076 LOL174
.18465 .00057 18415 .22176 25457 .8L570
18465 .00267 .18670 L2hhge .263%40 .88238
.000C0  ~.00810 -.00106 00562 -.00176 -.00529
.00000 .00691 .00439 .01804 01014 .02948
.16612 .0003%6 .16623 .19910 . 23407 .96588
16612  -.00083 .16956 .22276 24245 . 80006
.00000 -.00849 -.00076 00552 -.00160 ~-.00533
.00000 .00509 .00439 01814 .00948 .03710
.14999 .0002% .15045 17937 21568 69572
L4999 -.00317 .15408 .2030% .22356 72749
.00000  =-.00872 -.00035 00524 -,C0129 -.00512
. 00000 .00274 .003%78 L0173k .0080C3% .03189
.12208 .00009 .12281 .14518 18245 .57261
12208  -.00589 12624 .16776 .18919 59938
.00C00 -.00807 -.00004 00466  -.0C0R9  -.00L3k4
. 00000 .00107 .00241 .01457 .00390 .023%95
.08941 .00002 .09010 .10516 .14C80 42549
L08641  -,00698 .09247 12439 14581 44510

326



AT
ov

P

1A
P

2.65 *

5.55
AT
ov
PE

o B2

FLi
10 20 3T La 1n T
.00052 .01952 .02823 10.98191 -9.99868 1.0%150
.00002 .01883  -.,00212 .05268 - .0912% -.,02182
.00000 .2603% .00627 .01023 - .0003%5 27648
. 00054 .29868 .03238 11.04482 -10.05026 1.28616
.00027 .00882 L02448  10.73%317 -10.06150 . 70524
.00002 .00866 .00440 .06%75 - .0871% =.01030
. 00000 .20880 .00276 00577 - 00027 21706
.00029 .22628 .03%164 10.80269 -10.14890 .91200
.00018 .CO514 .02115 10.56170 -10.10407 L8L10
.00002 . .00511 .0058% .0655% - ,08193  ~.00S4k
.00000 .180%2 .00160 .00409 - .00020 18601
.00020 .19077 .02858 10.63132 -10.18620 66467
.00010 . 00348 .01878 10.46209 -10.13%342 . %5103
.00002 .00%50 .00606 06509 - 07762  -.00295
. 00000 .16296 .00110 .00327 - .00015 .16733
.00012 .16994 .02594% 10.53%045 ~10.21104 . 51541
.00010 .0C23%8 .0166L4 10.3%7268 -10.16122 .23058
.00002 .00242 .00590 L06%7% - ,0731.6 -.C0109
.00000 14753 .00076 .00268 - .00010 .15087
.00012 .15233% .02330 10.43909 -10.23448 .380%6
.000Q2 .00107 .01287 10.21448 -10.21%75 .01469
.00001 0013 .00498 .05906 - .06361 .00156
.00000 .12057 .00037 .00190 - .00002 12282
.00003 .12276 01822 10.27544 -10.27738 .13907
- .00007 .0003%1 .00873 10.02966 -10.280%6 -.24173
.00001 00034 .00321 .04951 .0493L .00373%
.0000C .08367 .00013% .00129 .00007 .09016
- .00006 .08932 .01207 10.08046 -10.%2963 -.14784
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APPENDIX 3

Forces

The forces reported in this section have been calculated

7\
using formulae presented in a thesis by W. H. Henneker.(zsé’

=

The overlap forces have been calculated by the Coulson-Barnett
method described in Appendix 2 for the field gradients.

Shielding forces follow from the auxiliary function method of

?
Kotani et ai.(25“)
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-.10826

N2

1a 1ad 24 2 T 5G4 1m T

g u g u g

.037350 .018216 -.079534 -.150992 -.L14776 111884 -.477852
.005035 .003124 534063  -.0693%77 .288052 271680 1.032577
. 291944 .291097 .255011 .114989 .183027 .290918  1.426G86
.334%29 312437 .708540  -.105380 .056303 L74482 1,981711
.036504 017252  -.042610 -.181492 -.L41014% L10L709 = 478979
.003004 .003475 LA8hopl ~ 0L4783 .282629 245868 .975207
.262519 .262086 .231090 .117978 172504 272441 L.3%1888
.302417 282814 673404 -.108297 .OLL590 .62%018 .318346
.035485 017262 -.,015683 -,180705  -.40%L98 097697  ~.ihoLk
.002015 003248 L430470 ~.0LOK1E 277308 .222529 .90k152
.2%7870 .2%725% .209893% L112464 .162669 .255906  1.215055
«275370 .257763% 633680 -.108659 .036479 576132  1.57076
.033626 .017857 .010C%7  -.180529 -,391262 091618 -
.001330 .002825 .%9309%  -.035%18 .268151 .202170
216377 .215819 .191443 108481 .152986 240769 1
251333 .236501 594573 -.107366 .029875 534557 1
.0%6186 .017919  .050418 -.177236 -.354100 075449 -,351564
. 000509 .001828 278800  -.025087 2h7723 JA51414 655187
166609 .166378 148167 .102198 128712 .203%23%9 .915303
.203%04 .186125 477385 -.100125 022325 430102  1.219126
.03574 ;01722 -.02566 -.17904 . -.41998 .10058 S A
.00235 .00338 456781 -.0k297 290942 230841 LOh13z
24662 .245960 21752 .11366 .16850 261355 1.253L42
28471 26656 LHL8LY -.108349 .0%5L6 .55278 1.72%60
.03551 .01726 -.00993 -.181%2 - 41304 ,09717 -.4sk3s
.00187 .0C319 L53066 -.03896 . 28540 21874 .900%0
il -25316 .20632 .11202 16277 L2529  1.20093
27113 25361 .62705 .03513 56882  1.64743
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N
16 10 2@ 2G 3G 1 ‘i
g g u 8

.050698 L020415 -.189715 -,087665 . -.L467176 28164k -~ .545279
.012377 .002202 L6hh71s - 12881k .337852 .334199 1.,202529
. 366346 . 365249 < 313540 .117883 215652 .3%53%48  1.714018
L2041 . 387866 .768538  -,098596 .086328 797711 2.271268
.036996 .017283  -,057838 -.177658 ~.414192 L.107913 -,

.003760 .00%5%9 .506872 - .0492%8 .2863%98 257124 1

275344 274530 241481 119221 177409 280514 1.

.316100 .2G5356 690515  -.107675 .0L961E 645551 1.

.035249 017387 LD01613 -.18%954  -,393736 .094200  -.429241
.001575 .003%027 410083  ~-.035559 .269634 210246 2859006
.224565 224028 198637 - .111455 156422 L2h6651 1.2161758
.261389 Lhblp o 6103%3%% -.108058 .0%2320 .551097  1.59152%
.035302 .017531 L019394 - ,184266  -.3%85140 .088831  -.4038348
.001116 .002732 .371853  -.03%1274 .264318 .192731 .801476
.206592 206152 .183063 .108739 148482 233836  1.0868564
243010 226415 574310 -.106801. .027660 .515%98  1.479992
L035546 1 L,017609 .0257%7  -.183971  -.381%62 L08661L4  -,399927
.000685 .C02588 .35624L8  ~.029759 262278 .1856056 777646
.199462 .199063% 176848 .107688 145238 228620 1.0%6919
.23%5593% .219260 .5588%3  -,106042 026154 . 500840 1.434658
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co
1¢ 2q 3¢ L S g 1 e
.000002  .075374  -.266645 -.107668 -.568997  .057851  -.81008%
- .000%0k .004026 402504 .131379 .196442 247563 981610
617881 .000014 .550259 .347211 .113560 .551420 © 2.180%L45
.617579 079414 686118 .370922 -.258995 856824 2.%5187%2

.000000 065017 -.207998 -.0803%72 -.552780 054503 =, 721540
-.000119 .003234 . 355696 .116338 .186926 .220886 852661
.555520 .000009 . 502397 . 308447 .11%704 520797  2.000874
. 555401 .068260 .650095 J3hi41% -,252150 796276  2.152295

.000C00 .058987  -.152125 -.054049  -.53363k L050924  -.629897

-.000023 .002518 . 306645 .101099 .178593 .192480 . 7817
.Lo2788 .0C0006 LhooL3 265775 .115179 87453 1.8 ;
492765 .061511 .603563 .312825 -.239862 .730857  1.G6165¢

000000 2056576  -.108845  =.033517  =-.513547 047495
.000013 .001962 - .263629 .087139°  .17338% 167729
44013 .0C000k -401221 .225901 .117999 457156
LLbolbk .058578 556005  '.279523  -.222165 672521

000000 .056497  -,075804 -.018599  -.491212 LOLkL21l
.000023 .001557 .225676 .073%668 .170926 146133
395403 .00000% 359344 .188721 .12183%6 429702
.395516 .058C57 .509216 242790  -,198450 .620049

.000000 057093 -.050785 -.009646 -.L465178 L0L1011

427505
.000023 (001233  ,192123  .060336  .170658  .127259  .551672

«357343 .000002 .323155 .154299 .125867 404639 1.3%65305
.357366 058328 JLe4hgz 204989 - .168€1% .572909  1.48g472

.0C0000 057891 -.0%2182 -.006876 -.43L782 037901 -.378048
.000021 .0C0993% .162567 047436 171748 .110757 497522
.324455 .000002 .292109 123241 .128976 .381782 1.250565
. 324476 .0588¢86 JLeahok 163801  -.134058 530440  1.366039
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ocC
1¢ 20 3G Lg 54 1in
.077040 .000075 }183871 ~-.721%%8 131129 .151802 -.177571
-.001660 .0013%62 .382745 .315%04  -.154081 2Lh2386 . 786056
.000003 617029 .076763% .048827 .288L465 112691 1.143778
.0753%8% .618316 HL3379  =.357207 .26551% .506879  1.752263%
.07%015 .00003%2 202450  -.689604 .1%2952 JA443%1 - ,136888
-.000802 .000958 .342318 .295715 -.147401 .218148 . 70893
.000001. .554969 . 064982 .052559 .265795 .10%581  1.041887
072214 .555895 609750  -.3413%30 251346 466060 1.613935
070353 .CCO0LY 211361 -.653116 1.12819% 136501 -.106719
-.000252 .0006L6 .29850% .276350 =-.134690 .191982 632539
. 00000 492440 L054614 060410 2%0034 .093237  ,939735
.070101 .49%075 564478 ~.3163%56 +23%253%7 LA421720  1.465555
.070101 .000003 210176 -.612895 .115299 L2GA60 -.087662
.000014 000442 .259093% .256307 -.11.620% 168876 .565029
.000000 L439913% .0k6852 . .071231 212440 084023 .85445¢9
.070105 440352 .516121  -.284857 .211536 .382559  1.335816
.0701%6 .0000090 202351 =.5663%97 093543 123448
. .000124 .0003%12 .22%694 234534 - 091702 148390
. 000000 . 395372 .040713% .084%3% .186092 .075304
.070260 . 395684 466758  -.24753%0 .187933% L9642
.070600 -000C01 .189908 -.511998 062543 117639 ~.071307
.000165 000221 + ,192076 .208101 -.061048 .1%0188 469703
.0000C0 . 357267 .035609 .098699 .160L54 .068381 .720410
.070765 . 357486 LA417593  -,205198 .161949 .316208  1.118806
071305 . 000001 70524 - 450879 .023880 .112008  -.05¢
.000180 .000160 L16L017 177903  -.0C25547 114004 oL
. 000000 . 324408 .0%1187 .113008 LLBEEE2 .061675 .66
071485 . 324569 .%69728  -.159968 134865 287687  1.02%
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1T ) picy g 507 in T

.000001 068541 -.095057 =.13%38501 -.253%525 .015856 402685
.000143 .009265 .119024 134554 .017%3%8 L11413% . 394457

. 499966 .000075 .51380% 423149 .055724 .688490  2.18120
.500110 .077881 « 537770 LA419202 -.180463 818479 2.172979
.000001 062929 -,0695%22 -.113986 -.249501 014311 -.355768

.000113% .006864 .106068 .1%3%21% .013%1.76 .0S754% . 356577

453481 .00C0L6 462566 . 381937 .054271 645498 1.997799
.453595 .069839 .499112 Lo116h4 -.182054 797352 1.99%008

.000001  .059988 -.051602 -.094528 -.245387 .012957
.000091 005146 094419 131846 ° .009590 .084167
416034 .000029 421297 347897 .052951 .608879
416126 .065163 LL6LGoL .385215  -.182846 . 706003 .

.000001 058765  -.026L09  -.060663  -.235782 .010%30
.000058 .00277¢ 071284 - .127153 002642 .061027
.34583) .000011 . 349596 286216 050919 .53%9105
.349890 .061555 L3944 352706 =,182221 610482

.000001 060003  -.013429  -,0%6163 '-.225993 .008292
.000039 .C01602 . 053044 .120222  -.002898 .obLok)
. 301045 .00C005 .298527 239495 .050420 482645
.301085 061610 338142 .323554 - ,178476 .5%5878

.00000 061440  -.006256  -,016438 -,215075 006558  -.169771
.000026 .000971 .038257 110970 -.00743%3% .032747 .175538
.260655 .000003 .257455 .199509 .051494 421981 1.201097
.260681 .C62L1k 289456 294041 -.171014 L471286 .206864

el

.00000 .061823  -.002581  -.001303 -.20334 .0

0C5175
.000018 .000623 027239 .100295 -.010508 023913
.227688% .000001 .224789 165222 .0543%7% . 387900
227901 06244y 2kokLy L26L21L -,15648% 416988



2.10

Pw
8 ol o)

2.1925
AT

334

FB
1g 20 A6 LG 5G 1n T
.058877 ~.000025 L2h2137  -.611168 .099279 137498 - .073L02
.000721 .002031 147092 .356710  =.114544 .110620 3930
.000001 498451 .017221 .0293%20 .200499 .021022 . 766514
.0595%99 .501457 L06450 -.22513%8 .185234 269440  1.197042
.057638 . 000004 225465 -.578879 .106285 129%26 - .060! 6u

.00065% .001995 132817 345367 - .120844 086808 456796
.000001 452546 .013808 .02887% .1628%56 017948 . 706012
.058293 454545 .372090  ~-.204639 178277 LLLoB2 1.1025LY
.058106 .000C13 208876 ~.550540 °  .111100 122705  -.04974C
.00059% .0013%50 .119678 .335675  -.124560 .085141 AL/sff
.000001 L15456 011453 029249 .185582 015457 657198
.05870 416819 340007 -.185616 172122 223%03  1.025%35
.05646% .000011 75376 0 - .490869 117487 ,110516  =.033016
.000467 .0C0599 .093168 L513602  -.12802% L06L152 .;L,qu;
.00C001 . 34069L 007903 031359 L 170041 .ultlp; . 570149
.056931 < 350304 2744472 <,145908 .159503% .185219 .381096
054256 .000C08 JAL267L - 436778 .118966 .100%69  ~,019305
.000352 .000295 .071885 .290785 =.12742% au@o754 284658
. 000000 . 301065 .005643 03407k 155710 .C08185 . 50L577
.054618 301368 .220202  -.111919 148253 157508 . 770C30
.051340 .000005 115166  -.384782 .119597 091081 ~.007593
.000275 .0C015% .054169 266248 -,123%590 036484 233741
.000000 .260741 .003973 .037355 140938 .005967 L4872
.051615 .260901 .17%308 -.061179 .13%6943 155552 .675120
047835 .000003% .092374 -.337559  ,11%9899 .082165

.000210 .000038 .OLOLoL L2h1673 =.116422 027192

..000000 227977 .002779 041410 .125692 .004380

048045 .228068 .135647 -,054476 125169 113737




PE

2.35
AT

BeO
1G 2G 3G Lo 1n T
.00000% -.069743 -.215726 -.,296L472 029274~ 552664
-.000420 .068801 .029883 .110946 .202829 412039
.617869 .00%754 .61282% 536176 .53%29065  2.3%03587
617452 .002812 . 426980 . 350650 .765068 < 2.162962
.000000 =-.116052 =.107298 =-.156163 L017159  -.3%62%54
-.000092 .029539 055436 .095419 .1%6680 .316982
453710 . 000830 458510 . 379685 466331 1.759066
453618 ~.08568% L HOG6LE .318941 L620070 1.713694
.000000 -.123410 =-.057072 -.09692hk  .C131G6  -.26L30C
-.,000016 .012709" . 056720 .092940 103314 265667
.3622%5 .0C0186 .36060% .291820 412167 1.427015
L36222% -,110515 . 360251 287836 528587  1.4283%82
.000000  ~-.12354%  -.04k5348  -.082057 012148 -,238800
- .000007 .009279 054073 .091874 .094054 249275
. 336634 .000108 .3%%516 267251 L354055 1, 330L64
.33%6627 -.114155 L3224 .277068 .501159 1.342939
000000 -.123038 --.0383%95 —.072748 L011550 =,222631
-.000002 .0073%81 .05163%7 .090969 .088027 .23801z2
. 320059 .000073 .216189 251242 L35633%96  1.27095%
.320057 -.115584 .32943] 269463 482973 1.2863L0
000000 ~.117818 -.019212 -.0L42602 .0095%10 -.170122
. 00000k 002836 .039809 .085881. . 067084 195614
.264503 .Q00015 259488 .195239 343041 1.062286
264507  ~.114967 .280085 .238518 419635 1.087778
.000000  -.100226 -.006508 ° =.012160 .006728  -.112166
.0C0C05 .000621 .02%710 .071%65 .041828 . 137529
.208142 .000001 .20403%2 124166 . 303495 . 539836
208147 -.,09960L 221234 .183371 . 352051 .865159
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OBe

1.800 10 20 3q ba in T

AT .0%9808 . 000656 194127  -.L453507 075246  ~.143670
oV -.001450 .0393%64 .03%2789 232669 172546 475918
PR . 000005 .582245 .040222 .050778 . 058969 . 7%2245
n .0%8363 622265 267138  -.,170060 306791 1.06L4Lo7
2.100 ‘ ,

AT o ,0413%86 .000L 33 179699 -.4973631 L085629 ~.166484
0 -.000385 .012098 " 074021 278210 126734 490676
PE .000001 Lb1oh2 .01683%2 027924 .0%41020 .527019
P .041002 L53773% .270552  -.167L497 L25%%3% .851213
2.35

AP 047463 .000107 151296  -.461055 085216 -.176973%
ov ~.C0003%56 .00L04L7 074910 .288371 .099222 66514
PE .000000 . 357195 .009518 .025682 032565 424970
g 047427 .361349 235724 - 746992 .21700% 714511
2.43577
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APPENDIX 4

In this sectlon we present the orbital densities
o (A) aﬁ nucleus 4, and also the total atomic, overlap and
shielding values. Furthermore, listed are the coefficients
F2,F3,F obtained from a parametric polynomial fit for

the ‘electronic forces F using the expression:

A,

Fo(—=—%) A(4.1

i
~

) AD.'\
The factors Fw,F2,F3,F4 are then obtained from the Fq 's
&

by multiplication of these with Rz corresponding to the

simpler expansion

b

5 "
n-i
- - 4
FA — pZ . F_(R Re) A(4.



Fo

1

log 0.27034
lou 0.25356
209 0.62707
2o0u -0.10823
309 0.03512
lgu 0.56871
Total 1.64657

-0.44977
G 0.89630

-0.23854
-0.22612
-0.39898

0.00443
~0.07089

-0 43135

~-0.93064

-1.36828

R = 2.068
F3 F4
'0.21583 -0.19840
0.17636 =-0.12142
~0.03594  0.20472
0.05482 -0.02916
0.11025 =-0.03192
0.23062 —0,12274
0.74194 =0.29392
0.55584 =0.43237
~0.28559  0.40096
0.42349 -0.21818
0.69374 -0.24959
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p(2)

98.20623
98.31037
4.68913
3.91519

0.47054



F1
ls 0.44014
2 0.05866
30 0.55598
4o 0.27956
5¢  -0.22221
1y 0.67241

Total 1.78454

A -0.55179
0 0.69387
S 1.64249
Total 1.78457

-0.41280
-0.01234
-0.40570
-0.29407

0.17713
-0.47269

-1.42047

0.61689
-0.69449
-1.34298

-1.42058

0.29036
0.07497
0.03303
-0.09662
0.22575
0.22236

0.74985

-0.41251
0.41959
0.74124

0.74832

-0.19076
-0.16845
0.16876
-0.06968
0.02084
-0.08147

-0.32076

0.20419
-0 24595
~-0.27681

=0 .31857
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0.00000
121.83605
1.37676
1.87429
1.98562

127.07272

127.27500
-0.22203
0.02019

127 .07272
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Total

rxj

P

0.0699%6

O

fias
W
O
(9]
Gh

0.5161

Ui
(o))
ul

-0.28490
0.21152

0.38249

=
w
w
wm
w
(¢2]

-0.08795
0.56899
0.85446

1,33550

Iaj

0.00144
~0.41339
~0.42015

0.29542
-0.19127
~0.31630

-1.04425

0.12047
-0.495676
-0.66805

-1.04434

0.02477
0.29185
-0.03845

0.22010

-0.09523

0.16101

0.56405

=0 .26920
0.35860
0.47649

0.56589

5]
>

-0 .07119
-0.1%4z4
0:17697
-0.08618
0.00946
-0.06540

-0.23058

0.38158
—-0.,26697
-0.34422

~Q « 2296 1.

p (A)

296 .52552
0.0011
11.15704

3.14568

0.05992

10.88837

(@8]

310.96380

-0.07866

0.00323

310.88837
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2
a

30
4o
50
1w

Total

Tctal

0.06150
0.39447
0.35270
-0.18222
0.61048

1.58680

-0.25374
0.26491
1.57568

1.58685

L8]

-0.29234
-0.00506
-0.32684
-0.15907
+0.01157
-0.43635

~1.20809

0.28184

=0 =

ro

7852

=1.21222

-1.20888

0.
0.
0.

0.

0

0

18482

04769

13040

01929

.04398
.20939

.63557

« 19712
+L2120
.70842

.63255

.256

.10538
.09625
.02964
.02182
.00820
.08068

270289

.12180

()
o
o
X}
o

.34922

w

A
e

Voe

69

p (A)

00000

11742

0.21947

0

l

71

{
<

(&)

87691

.68180

.69560

.76445
.07694
.00g08

.69560
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L

Total

A

)

i

Total

=

0.05682
0.35027
0.27445
~0.14591

015950

+0.18582

0.88095

-0.03281
0.34383
0.57010

0.88112

]

-0.01001

~0.29324
~0.31226

0.19225
~0.06144
~0.16786

-0.65256

0.07660
-0.34143
=0, 38769

=0.65252

FB

B
3

-0.00940
0.18685
0.10625

-0.04787
0.00868
0.09492

0.33943

-0.03452
0.14298

0.22456

0.33302

0.00000
-0.11299

0.05824
-0.03855
~0.00827
~0.05007

-0.14194

0.05568
-0.05092
-0.14671

-0.14195

o (A)

425.64772

0.00016

20.52984"

447.52869

447.57233

- 0.046256

0.00263

447.52869
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F o (A)

Fy sy "3 4
1o 0.32006 ~-0.25101 0.14655 =-0.08895 0.00000
25 ~0.11558 =-0.01356 0.08221 =-0.09305 34.17555
35 0.32943 -0.20559 0.02567 0.09048  0.22840
4o 0.26946 =-0.12171 0.00255 -0.03178  0.47621
im 0.48297 =-0.27937 0.12552 =-0.04461 0.0

Total 1.28634 -0.87124 0.38251 =-0.16790 34.88016

A . =-0.,22250 0.24715 -0.18552 0.16048 35.01991
O 0.23840 -0.17473 0.01807 -0.06197 -0.14789

S L.27068  -0,95459 0.55625 -0.27049 0.00815

Total 1.28658 -0.88217 0.38880 -0.17198 34.8&0l6



Total

Total

P
1

0.51224
0.31906
0.20902
-0.13046
0.19766

0.64651

=0 17525
0.44170
0.37976

0465121

0.02473
-0.25100
0.18512
0.,11673
-0.12295

-0.41761

0.02265
-0.17465
=0.227115

-0.42315

OBe

-0.01340
0.14910
-0.01043
0.03296

0.02602

0.18425

0.08932

-0.07070

0.16923

0,18785

NEN

=0.02373
-0.09581

0.10843
-0.03699
=0.03235

-0.08046

~0.09124
0.13692
~0.12662

-0.08094

296

13.

74173

.00103

41578

.64266

.80120

.85436

.05462
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Total

A

0

S

Total

Fy
0.23985
~0.04059
0.23447
0.23923
0.42008

1.09304

-0.09192

1.12974

1.09304

LiF

Fa

~ 16602
-0.01873
-0.13333
-0.11492
-0.24815

=0 .68115

0.08112
-0.01414
-0.74815

-0.68117

R
e

0.08653
0.06420
0.01960
0.01596
0.10427

0.29055

=0 .05572
-0.03441
0.38069

0.29055

-0.04202
-0.08247
0.04648
0.01748
-0.03996

-0.10049

0.04334
0.0442Z
-0.18805

-0.10049

L3

13.

-0.0

0

p (A)

.00000

57171

.07327

.13204

<71 71702

81026

.00237

13.77702
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FLi
Py i By ¥, o (B)
lo 0.02184 0.00702 =0.1795 0.01584 425.84175
20 0.24048 -0.17161 0.09915 -0.05925 0.01905
30 0.07150 -0.04736 -0.00936 0.04725 21.45627
4g -0.04124 0.03484 -0.00243 -0.02176 0.09467
1y 0.07219° -0.05161 0.03040 ~0.01423

Total 0.36477 -0.22872 0.09981 -0.03215 447.41174

A -0.00868 -0.00814 0.02815 -0.02443 447.4467%
O 0.12820 -0.04732 -0.02704 0.04594 -0 .03513
S 0.24530 -0.17350 0.09793 -0.C5674 0.00010
Toﬁal 0.36482 =-0.66117 0.09914 - .03123 447.41174
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APPENDIX 5

Errors in Force Constant Caiculations
(o)

The Hartree=Fock wavefunction Y gives results for the

expectation values of one-electron operators that are correct

through first order. This is a consequence of no orbital cor-

rection functions from %X]), the first order correction to the
function--'""One-electron clusters' we refer to as orbital
correction functions (see chapter 1). In second order these ex-

pectation values will be affected by products of the first-crdcr

(
2-electron clusters U;}]) and by the interaction of the secoru-

order orbital correction functions Ui(z) with the unperturbed

orbitals. No other second order functions make any contribution:.

Let F be a symmetric sum of one-electron operators 7= 2L f:.
Then  <F>= YIRS /<ylv>
Keeping only second-order terms:
(2)
° © ! w o) 1) 5 . \
CF>= LW TRIWD [1- < 99T+ <O [F9> 2 2w Ife] 85
AD s |

(2)

where the(ﬁ 's are the Hartree-Fock orbitals, U; the second-

order corrections to these. Using the Hellmann-Feynman theorem,

then one can write the change in correlation energy as a functicn

DE. - {<%(_;)I§_§' i?(.)>_~<wc-)”,<,><vo1,aé4 ’+“°>}+22<uf“fw 55

A5 .2

The U;(Z) are suspected to have the same sign as the ?E in

N

Ui
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regipns close to the nucleusg254)This has a natural physical
interpretation. The Hartree-Fock energy contains too large a
contribution from electrostatic repulsion. The fqrma]ism which
leads to V(I) will tend to minimize this excess repulsion energy
by spreading the charge density farther out in space than it
should be. After the introduction of the correlation clusters
Uij’ this charge density should relax. It is the orbital
cbrrection functions which produce this relaxation through an
interference term ZZbiUi(z) in the expression for the charge‘

(9
density. As a péir of correiating electrons at a fixed relative
separation moves toward the nucleus, then cluster corrections

become smaller. As U.. implies an electron density spread out

b J
- o~ £ A + b (O) i (2> v 1 3
further from the nucleus than that of Y , only Ui wiil
affect densities appreciably near the nuclei. It would then

(2)

seem that the U, 's will be important in the determination

£

of one-electron properties in general. The phase properties

. . . ;v v (L)
of the corrections have been computed by Sinanogld and Tuan' '’

end appear to be in agreement with the above proposals.

In view of the same phases between the Uiké’ and ¢5, then
from (A5.2), assuming <4“dﬁg%fww)> = 0 at R_(HF), and since
1 O H 1) < o ) o
<VH>I%L{\?(’> will depend mainly on Ui(z’ as discussed

above, it is evident that around Re(HF),the change in '‘corre-

lation' energy (E - EO) will have the same sign as the force.

HF
This reasoning also follows from physical interpretation. At
distances less than Re, in approaching the unitea atom there is

an increase in correlation energy. At distances larger than Re,

there is increase in correlation energy as a result of the short-
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comings of the HF method based on single determinants for large

.

distances. From these considerations we conclude that dzEc/dR2

(255)

will be positive. Mclea has observed a minimum in Ec vs R

curves for diatomic molecules. These minima occur near Re(exptl.),

at values of R less than Re(exptl.) for H, and LiF. Thus his

2

results concur with the above considerations.

Let Ry = Re(exptl.) E, = E(exptl.)
RH = Re(Hartree-Fock) EH = E(Hartree-Fock)
© _ 2 .n b HF _ 2 |n n
k2 = 2 d"Eg/dR k' = 2 a"Ey/dR

Using a series expansion about Rj:

5 & - 5
E(R) = Eo(Ry) + Sykp(R = R)™ = EL(R) - €“E,(R)+.... A5.3

2
where G2E2 is the contribution to second order from correlation
effects. Expanding Ey about Ro’ pne has from A5.3:
2y (R) = £, (R)) - E (R T (kAT k@1 (R-R,)" A5 b
or expanding about Ry, thgn
HF

€28, (R) = Ey(Ry) -Eg(R)+ 2 [(ky ) (R=Ry)"-K2(R-RG)"] 5.5

Differentiating both sides n times, and evaluating derivatives

at RO:

2R I < HF HF \ R - N o4 = 2 N

(e EZ)Ro = kn—:-(kn )RH+(n+l)(k n+}jRH(KO RH,TO[(RO RH) ] A5.6

2. N _ HF _ .0 E s

From A5.L4 (e E, )Ry = (kn )RO kn A5.4a
HFy  _( HF HE } 5

or (kn )Ro—(kn )RH+(n+1)(kn+1§RH(RO RH)+... A5.7

This expression therefore relates derivatives of the HF energy
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evaluated at R, and Ry. If the energy EH is a true HF energy,

then we can expect

HF
FY . = KO+ g%k A5 . Lb
n Ry n n
where 5Lk§ is a second . order correction. (ki = Eg)
From A5.7, since k§<o, ngnJ ko, R07RH’ then

HF HF
o H

We have the result that the Hartree-Fock constant evaluated at
Ro is less than that evaluated at RH provided RO7- Ry. We must

now establish bounds on this relation. From A5.L4a:

HF fo)

" 1 = -~ .’_‘2 2 2
(nz )Ro k, *t & (d E,/dR )Ro
Now E2 = EC to second order (see above discussion). Thus dzéy,um

must be positive as Ee has a minimum near R,. Thus we have

.0 HF HF
Ky e (k2 )Ro 'S (k2 )RH

We conclude that for Ro > RH, the force constant for a Hartree-

Fock potential energy curve evaluated at RO=Re(expti.) will be

il -

)

closer to the true value than if evaluated at R_ =R (HF). {urther-
<

H

more, from A5.4b, the error in the constant should be of order

52, resuliting in a force constant slightly larger than the ex-

perimental value.
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