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ABST.RACT 

The electron d~nsity approach in conjunction with 

the Hellmann-Fieynman theorem is used for a systematic 

analysis of binding . characteristics of the two isoelectronic 

molecular series: N2, co, BF and LiF, BeO. Electron density 

distribution~, forces and field gradients corresponding to 

static properties of ' electron densities, have been calculated 

from Hartree-Fock wavefunctions (obtained from the work of 

other authors) for these molecules. Correlation of these 

static properties with binding characteristics are presentede 

Covalent and ionic characteristics are made evident by an 

analysis of the density distributions, density difference 

maps obtained by subtracting atomic from molecular 

distributions, and the forces exerted on nuclei by these 

distributions. A discussion of the field gradients, as 

related to quadrupole polarizations of the electron densities, 

is presented and the relevance of these polarizations to the 

interpretation of nuclear. quadrupole coupling constants is 

indicated. 

Dynamic properties, as refl~cted by the magnitude­

of force constantsp are analyzed in terms of functionals 

of the one-electron density. Force constant expressions 

are derived from the Hellmann-Feynman theorem. Any relation 
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. 

of force constants to field gradients is shown to be not 

unique as a result of cancellation of static and dynamic 

electronic contributions to the total force constant. The 

total electronic contribution is shown to arise from a 

relaxation of density after a displapement of a certain 

nucleus. Relaxation of density with respect to one nucleus 

but which remains localized on some other nucleus in a molecule 

is shown to be equivalent to a field gradient. Thus, such 

density is separated from other density and its contribution 

to the force constant is treated as a field gradient. All 

contributions are computed from polynomial fits of the 

corresponding forces calculated at a number of internuclear 

distances. Relaxation density maps for the remaining atomic 

and overlap densities centered on a specific nucleus are 

presented. These maps are calculated as the difference between 

densities of the extended and equilibrium configurations of a 

molecule. The relaxa.tion densities are correlated to the 

magnitude of the corresponding electronic force constant 

components. Thus, for the first time, there is demonstrated 

the concrete relation between covalent and ionic characteristics 

of electron densities in molecules and their dynamic properties 

which result in the magnitude of force constants~ 
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'I. GENERAL INTRODUCTION 

"Si les plats que je vous offre sont mal pr~par~s, 


c'est main la faute de mon cuisinier que celle 

de la 'chimie' qui est encore dans l'enfance." 


Anatole France 

' • 

1.1 The Importance of the Charge Density 

Apart from the theory of th~ most simple phenomena ­

chemical binding in small molecules, vibration and rotation 

of the molecule, spin and symmetry properties, - the main 

body of current quantum chemistry consists in model building 

and semiempirical methods. The models of quantum chemistry 

are by and large a descriptive way to summarize empirical 

results, whereas the semiempirical quantum chemistry does 

not really permit the possibility of invalidation of models. 

Furthermore, operationally ill-defined or non-observable 

p~rameters have played a large role in empirical chemistry. 

As a result, the meaning and numerical values of such con­

cepts as orbital, resonance structure, electronegativity, 

hybridi zation u ionic character, etc. , are in continuous 

disputeo 

Beyond these objections is a fundamental objectionu . · 

for chemical purposes, to th~ usual quantum theoretical 

form of the many electron wavefunction, which is defined 
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in a 3N-dimensional coordinate space for an N-electron 

system. But most of these coordinates are non-observable 

inasmuch as empirical·chemical .structures are 3-dimensional 

entities in a classical space. Empirical chemistry has 

emp~asized for a long time the outstanding role of this 

3-dimensional electron charge density and its systematic 

use in a rigorous quantum mechanical theory is of invaluable 

importance in the explanation of chemical bonds. There 

are but a few rigorous theorems concerning such a 3­

dimensional charge dens i~y. al l 0 & them of great importance. 

The f :. ::.~ ·~- .;..:.iiecrem enables us t - .i( ~ 1 <::.- the electronic 

density fro:.r -·.ig orous <-~: ..ian turn me(~~ fl. ,-;:. rt .:l.. C .:::. -- · ~ tment, 

i . e . so1u t ·: . , .: ·che SchroedingE · equc. 'C. ..:;·_ "'lvolves 

a reduc the 

. c J- . • ( .l. ;wavefu:;· ~ _on via the agency o __ne Dirac L :';a tr ix 

method Thus, o~e can rigorousli replace the t _: lee-

t.:ronic wavefunc-c ·. on of a system by a density func ::.·:.. ·..:. of 

-.:wo positions ·.;_L space - 6 space coordinates - called the 

density matr : second order density matrix, to conform 

" (2) . h -. ature d ue to Col~~an I n practice, t e 

,re function is ob ·1. .~ ·; "' -'- ·' a ·:; antisymmetric 

~ectron orbital func~ions ducing this 

total r ...A , __ -· Y the density formalism, t~e ridual 

orbital£ ·r- tance becomes s · :hmerged beeau, . ~- density 

~ ·..atrix .. .. .variant to an ortho9 -..mal linear t ..:.. ... . _. ~: nrmation 
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among the orbitals. It is, therefore, invariant to changes 

in the one-electron potential which produ.ces a new set of 

orbitals expressible in terms of the old ones by such a 

transformation or "hybridization". Dirac showed that all 

the information that we can get about the individual orbitals 

can be summed up by giving the density matrix to which they 

lead. This density matrix should therefore describe all 

that we know about the electrons in the system. Lowdin_( 3 ) 

has generalized this matrix to a transition density matrix, 

also in 6-coordinates, between two electronic s'tates. The 

3-space transition density or first-order density has been 

formulated explicitly by Longuet-Higgins( 4), suggesting a 

useful concept for summarizing and systematizing spectra­

scopic data on atomic and molecular assembli E-s Tn the 

. h " ..case of atomic and molecular systems Wl t I I >Ze C the 

diagonal elements of the first-order density matr i ~ ,wh i ch 

is really the kernel of an integral operator(S) ) ch .~ ; acteri~es 

:"'.~ ,;, .. - ' .• '• .~·order mat r i x e nables one to calculate the e xpe 1 value 

0of any one-particle operator. For an electr onic ~r· · . tonian 

o ~ a many-body sys ~em one needs the second-order c~ ·- ~ t y 

trix in general fa~ energy expectation values , bu ~ )n 2 

.>... :a calculat.2 ·'.':.2 ::.otal electronic energy of ;:_ n e ig ~::~; s t ei. :-..C: 

."<....:1owledge of the first-order - ~\. _,, _:.. 1> 

alone, ·om t~e virial ' theorem E = -< ?~ -~. i netic 
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energy T can be evaluated as a one-electron operator. At 

present, there is no way of finding the exact density matrix 

without a knowledge of the exact wavefunction, but it has 

nevertheless · been of some interest to study the conditions 

a physically realizable density matrix must satisfy in order 

to be obtainable from an antisymmetric (symmetric) wave-

function. This is known as the N-representability con­

di ti~n (2) for t h e density matrix. The importance of this 

is that one could replace the energy-variation method for 

the wavefunction by an energy-variation me t hod ·for the 

density matrix. The N-body problem could be then directly 

reduced to a 2-body problem, or even. a 1-body problem via 

the virial theorem. The conditions for the first-order 

matrix, which gives the electron density, has been recently 

investigated by Smith( 6 ). It is rigorously true that the 

3-space electron density is the value of the 6-space density 

function (pair d.er... sity) on the diagonal of the matr "i.> ItJ 

is also almost equal to the sum of the orbital ceE s ~ ties in 

a system {Hartree-Fock approximation) , so tha~ the individual 

orbital 5e~sities do not appear in the resu l~, emphasizing 

the fa ~~ tha~ the individual orbitals have ~o real physical 

significance .. Chirgwin(?) has even poi n ted out that the 

orbitals need not be individually time-independent in orde r 

to give a stationary total state of the system .. Jr~ ·s hort , 

is ~. 1 .way :; possible t.o represent the dynamica l sta.te o f a 
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system by its density operator(S), whether that state be 

completely or incompletely known. The specification of 

this operator is sufficient to determine all physically 

measurable quantities which the quantum theory is in a 

position to furnish. 

Secondly, there is the Hellmann-Feynman theorem( 9 ) 

which considers the force field produced by the 3-space 

density p which Feynman calls "an electron cloud prevented 

from collapsing by obeying the Schroedinger equation" ­

It is the laws of quantum mechanics which are sufficient 

to make matter stable. This has been shown quite generally 

by Dyson ( lO) - Thus in a quantum mechanical sys t.2F1. 1 the 

forces on any nucleus, considered fixed, is j ust ~h6 

classical electrostatic interaction exerted on ~h~ ~-cleus 

in question by the other nuclei and by the charge d e u >i ty 

distribution of all electrons. This theorem was first 

challenged by Coulson and Bell(ll) but Berlin(l2 ) proved 

the objection to be based upon a misunderstanding a t i gav e 

further proofs of the theorem and a clear interpret~ _ i o r _ 

closely related to the earlier and more empirica l e~2ct1 · 

static approach of Fa~ans(lJ) ~ The forces acting on a 

nucleus of a molecule as a function of the electron density 

provide therefore a ·basis for the discussion of chemical 

: .. inding in classical terms. This approach has been used in 

(14 \ 
~ series of papers by Bader et al J • 
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Thirdly, there is a theorem due to Kato(lS), 

giving the cusp condition of the el~ctron density of a 

Born - Oppenheimer molecule. This is related to the 

physigal importance of the essential s@lf~adjointn@ss of 

the Hamiltonian in an N-body Schroedinger equation. These 

fundamental results of Kato in this area have essentially 

established existence of solutions for a large class of 

Hamiltonians in atomic (molecular) and nuclear physics. 

The ·importance of this theorem in theories based on molecular 

cha~ge densities are frequently overlooked. For instance, 

the consequence of the coalescence of two cusps as the 

internuclear distance approaches zero in the united atom 

treatment of derivatives of electronic energ .i es has led to 

( 16 )inconsistencies. . . . d.i fferent authors ' work s cuspin If 

Gonditions are not satisfied, one may have to resur: in­

finite series as done by Levine(l?) in the united atom 

+treatment of H Similarly, the average energy approxi­2 

mation in the perturbation calculation of force constants 

leads to physically inadmissible w~vefunctions, due to the 

strons singularity of the force operator, resulting in a 

quadratically non-integrable perturbed function. This type 

of divergence also occurs in perturbation calculations of 

. . l'ing t t (l9 ) and 1a t' . ( 20 >spin-spin coup cons an s corre ion energies 

for which the energy is not an analytic function, and the 

i;---.portance of logarithmic terms in the wavefunct ion has been 
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. ( 21)
discussed by Pekeris . These problems are similar to 

the divergences which occur in field theories as discussed 

recently by Dirac( 22 ). They can all be related to a fun­

damental theorem of functions( 23 ) which states that the 

behaviour of a function in an analytic domain is determined 

by its singularities outside that domain. Whenever a 

Hamiltonian has singularities, for instance, whenever the 

electron-electron and electron-nuclear distances vanish, 

the theorem gives rise to Kata's results, namely that the 

cusp conditions at these Coulomb singularities defines the 

form of the wavefunction and hence the electron density( 24 ). 

Finally, there is a recent theorem due to Hohenberg 

and Kohn( 2S) ~ Using the variational principle, the above 

authors have shown that any property of a system ~n an 

arbitrary potential is a unique functional o~ the 3-dimensional 

charge density p of the ground state~ The most transparent 

example of a functional is the number of particles in a 

system which is itself a simple functional of p. Examples 

of functional approaches are the Thomas-Fermi theory and its 

refinements( 2 ~), which departs from the usual orbital approxi­

mation in frlat the electron density p plays a cen-cra l role 

and is assumed to behave more like a classical :Eluid . These 

theories however, because they neglect the cus p cond i ti o."".s 

"..2man6. .2 d. by Kato' s theorem will not reproduce Friede2. 

. ., . ( 27 ) ( b 1 l' d t b . hGsci ~ _ Jtions set up y a oca ize per ur at~on s ue as 

http:2man6..2d
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an impurity in an electron gas) or the radial oscillations 

(i.e. oscillations in the radial distribution function) of 

the electronic dens.ity in an atom which reflect the 

electronic snell structure. These are manifestations of 

quantum effects and therefore must be incorporated in any 

theory involving electron density. The major part of the 

complexities of the many-electron problem, as always, is 

associated with the determination of these functionals, 

valid for all molecules, expressing the expectation value 

of any observable in terms of the electronic charge density. 

Nevertheless, it appears that the density and certain 

of its spatial properties, such as shell structure, cusp 

conditions, may be quantum mechanical counterparts of the 

so-called classical constants of motion in a generalized 

density theory. Stimulated by these possibi liti es, there 

. ( 28)
has been an attempt by Primas to approach quant~m 

chemistry using the formalism of density functional 

representation, wherein a canonical ' transformation of the 

quantum rnechanic~l equations of motion raises the charge 

density into the fundamental role of a canonical variable. 

This is really an attempt at axiomatization, which is the 

most effective way of systematizing and therefore e lucida~ing 

a body of ideas. However limited in scope, axiomati zatior~ 

. . . (29) h' . . .is a stage in maturation . T is axiomatization stems 

from a philosophy based on the observations that only 
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quantities actually accessible to precision measurements 

are related to the observables of the charge density, the 

pair density, the current density and the spin. For pro­

blems of che~ical interest, it is the ground state charge 

density of any molecule which contains all the information 

necessary for discussions on the basis of quantum mechanics . . 

This strongly suggests that a systematic analysis of 

electronic distributions is a powerful tool for gaining 

insight into numerous bond situations and deserves wider 

use and development. It will be one of the objectives of 

this work to pursue such a line. 

1.2 Approximations 

To make practical use of quantum theory, approximations 

are still necessary, because so far there is, as mentioned 

before, no direct differential equation nor a variat i onal 

equation for either the pair density or the charge density. 

In the final analysis, one must always have recourse to 

orbital models, a feature of the independent-particle model. 

Although orbital~ have no substantial existence, and one can 

argue that they are merely mathematical conveniences, they 

have been and still are useful as conceptual units whose 

characteristics are worth examining. One must hope that at 

least they represent a "reculer pour mieux sautE:r" until 

~ore sophisticated models such as those based on geminals(JO) 
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have been demonstrated to be superior in scope and tracta­

bility. The importance of the independent particle model 

is that it provides separable physical properties so that 

correlations with chemical concepts may be made. A 

two-electron wavefunction is not separable due to the anti­

symmetry requirement. We would get much lucidity if we 

could avoid such nonseparable quantities completely. There 

are several possibilities to avoid nonseparable quantities; 

the use of orbitals, pair functions, etc. which give 

se~arable Hamiltonians. In the case of orbitals, we obtain 

the independent particle model. As can best be seen from 

one-particle Green's function theory( 3l), a properly inde­

pendent particle model may be well represented wi t h strong 

interactions between bare particles. Due to the inciusion 

of a self-consistent field, the particles get "dressed" and 

in many cases the interaction between the dressed particles 

(quasi particles) is drastically reduced so that an inde­

pendent quasi-particle model becomes a good approximation. 

An extension of the Bohr atomic theory to atoms and molecules 

assigns these particles to their proper orbita l s, which are 

eigenfunctions of the separable Hamiltonian. For molecules, 

the molecular orbital has the advantage of being conceptually 

L·.ased on atomic theory, due to a correlation origina.Lly used 

32bf Hund and Mulliken< > with the ~nited atom. The relation­

ship of this theory to Hartree's atomic calculations was 
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pointed out by Lennard-Jones( 33 
> who first derived the 

Hartree-Fock equations. The resulting orbitals are eigen­

functions of one-electron operators, since the Hartree-Fock 

(H.F.) method makes the Hamiltonian separable into 

effective one-electron Hamiltonians (see Appendix 1). The 

fact that the most important perturbation theory corrections 

to the solution of this separable zeroth-order Hamiltonian .. 
can be written in terms of solutions of 2-particle equations 

\_l ( 3 4) 
has been recently emphasized by Sinanoglu . Valence bond 

functions do not have this advantage since the solution of 

the first order perturbation theory is not expressible in 

terms of pair . correlation~( 3 5). 

The Hartree-Fock equations are a result of the 

criteria of the best energy approximation. Orbitals can 

also be determined by the criteria of the best approximation 

of the wavefunction.and the criteria of the disappearance of 

one-particle clusters( 36 ). The three possibilities have 

been discussed by Kutzelnigg. and 
. 
SmithC 37 >. The energy 

criterion has the essential advantage that it leads directly 

to the powerful numerical methods for the determination of 

the wavefunction. Furthermore, in the general Rayleigh-

Schroedinge~ perturbation theory, when the unpert:.u.rbed Hamil­

tonian and the perturbation are all . Hermitian, knowledge of 

the wavefunction corrections to order n provides th 0 energy 

corrections to order {2n+l) and not to the apparen~ order (n+l), 
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so that one has a relative measure of the sensitivity of 

the wavefunction and the energy(JS). The third criterion, 

that there are no one-particle clusters, i.e. no cor­

rections from single excitations· to all orders, is for 

many theoretical questions very convenient. This criterion 

is a necessary condition for the optimal least square 

approximation of the wavefunction< 39 >. This will not 

n~cessarily imply a good approximation of all expectation 

values. Nevertheless, the determinant built from such 

orbitals is characterized by its maximum over l ap with the 

true wavefunction( 40). These orbitals are called Brueckner 

orbitals. As Sinanoglu and Tuan( 4l) have shown, for any 

closed-shell systems the difference between Hartree-Fock 

and Brueckner orbitals is expected to be very small. For 

a closed-shell system, there is a unique Hartree-Fock 

method: that based on the single Slater determinant. All 

effects not included in the independent particle model may 

be referred to as correlation effects. For closed shells, 

the correlation is mostly of the short-range type; the long-

range effects of the Coulomb repulsions are taken care of 

in the Hartree-Fock scheme so that residua l correlation 

effects are not expected to affect H.F. orbi ta:s much. As 

S . - (41) 1 1 .s h own b y inanog~u , many e ectron corre ations are quite 

.mimportant for closed-shell atoms and molecules. First 

order corrections to the energy contain no single excitations 
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due to Brillouins's theorem( 42 ) but appear only in fourth 

order. First order wavefunctions contain no single 

excitations( 4l). The result is that the first-order 

corrections to the electron density also vanish as originally 

demonstrated by M¢ller and Plesset( 43 ). This result holds 

for the expectation value of any general one-electron 

operator, as proved by Cohen and Dalgarno( 44 ) and others( 4S). 

The sing~e excitations vanish for Brueckner orbitals and not 

for H.F. orbitals. This difference in emphasis is due to 

the peculiarity of the nuclear potential. Nevertheless, the 

smallness of the total contribution from single excited con­

figurations ~o orbital corrections along with the unimpor­

tance of many-electron correlations means that H.F. orbitals 

form an excellent basis for quantum chemistry. Even thbugh 

correlations change the energy significantly, their effects 

on orbitals is slight. The Brueckner and H.F. orbitals are 

nearly identical. Therefore, all quantitative considerations 

on the shapes of molecules, electron densities, etc., can be 

based safely on H.F. orbitals. 

Molecular orbitals (MO's) ,expressed as linear combi­

nations of atomic orbitals (LCAO), are the basis of a large 

body of theoretical molecular structural discussion, 

including predictions, correlations and interpre t ations. 

All MO methods are now being viewed and judged ~s a pproxi­

mations ~hemselves( 46 ) within a definite theoretical frame­
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work, the appropriate framework being the H.F. theory, 

spurred by the tractability inhere~t in Roothan's( 4?) 

self-consistent field (SCF) methods. There has been a 

very marked improvement in calculated binding energies 

and other molecular properties resulting from allowing 

for polarizations and distortions of ~tomic orbitals in 

the molecule. Experience with H.F. calculations( 48 )tends 

to suggest that for proper discussion of chemical binding, 

one must include polarization valence shell functions. 

These polarization functions tend to compensate for the 

usual lack of adequate representation of transferrence 

of electrons in the mplecule. The complexity of the 

present functions seriously handicap a discussion of the 

wavefunction itself . in terms of hybridization, polarities, 

orbital electronegativities, ionic character, etc. These 

are all "ha11govers 11 of the atoms in molecules method( 49 ) 

Although one may associate a particular atom with a 

particular nucleus in a molecule, the conditions of an 

atom in a particular molecular environment are then completely 

specified when the electric and magnetic potentials due to 

all other molecular charges, together with their successive 

derivatives, are given in the immediate vicinity of the 

atomic nucleus in question. This is the approach we adhere 

to in this work. It is much more difficult to generalize 

the descriptive terms often used · by chemists by means of which 



15 

the properties of atoms in molecules may be defined. The 

difficulty becomes then that every molecule might need be 

a special case, an observation put forward by Evans(SO) as 

early as 1951. 

The general picture that emerges from the H.F. 

theory and computations retains much of the simplicity of 

the original "Aufbauprinzip" as used by Hund and Mulliken.. 
to identify and classify electronic states in molecules. 

Certain details of the · th.eory have been brought into 

sharper focus as a conseq uence of the discovery that cor­

relation effects in molecular grou~d ?tates are rather 

insignificant for one-electron properties. From this fact 

and from the theorems of M¢ller and Plesset, etc., it 

follows that electrostatic properties of a molecu l e r elate 

only to the H.F. approximation(Sl), and hence that classical 

electrostatic molecular models can have a close empirical 

relationship only with an H.F. calculation. A separate 

empirical theory is in general needed to de·scribe sub­

stantial contributions to dissociative energies due to cor­

relation energies. 

The fact that the first-order correction to the 

density and one-electron operators vanish does not mean 

the function satisfying the best energy criterion gives t h e 

best possib l e density and best expectation values for one-

electron operators as pointed out previously. In connection 



16 

with the density matrix approach, an alternative set of 

orbitals arises which does give the best possible density. 

This is the set of nat ural spin orbitals which is defined 

as that orthogonal basis in terms of which the first order 

density matrix is diagonal. From the point of view of 

wavefunction analysis, these are extremely useful since 

they are invariants rather than artifacts of a particular 

basis set choice, plus as being known to optimize con- , 

vergence properties of configuration interaction wave­

functions <.52>. On t~e other hand, one does rtot have 

tractable one-electron equations for the determination. of 

the natural orbitals although attempts in this direction 

have been made by Bender and Dav~dson< 531 for LiH and HF. 

The natural spin orbitals as well as the ~est overlap 

(Brueckner) orbitals can be obtained as solutions of 

coupled integrodifferential equations which differ from 

the H.F. equations by some additional correlation potential. 

Because of this, the natural spin orbitals seem to give 

better approximations to expectation values of one-electron 

operators than the H.F. orbitals< 39 >. On the other hand, 

the natural spin orbitals or "best density" wavefunctions, 

as they are sometimes called, do not satisfy the virial 

theorem< 54 >, whereas a "best energy" function (H.F. scheme) 

does. Furthermore, because of comput.ational difficulties, 

the natural orbitals are usually obtained from the best 
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energy MO's, after which one can "boil down" the most 

significant features contained in a wavefunction. At 

this writing, it is evident that these MO's are the most 

useful from the point of view of calculation and inter­

pretation as discussed above. This present work will 

rely on accurate Hartree-Fock wavefunctions obtained from 

Roothan's S.C.F. methods which have been amplified and 

improved in recent years. 

1.3 Motivation and Plan 

Energy results have relevancy to concepts of 

chemical bonding. However, they repr~sent only one per­

spective. The numerous expectation_V9-lues and molecular 

properties, as well as the explicit charge contours contain 

much more revealing information regarding the concept of 

bonding. An examination of the details of the disposition 

of the electrons in the first-row diatomics and the first-

row hydrides with an accompanying interpretive analysis 

based on the Hellmann~Feynman forces operative in such a 

series of molecules and others has been recently given by 

Bader et al(SS). With the appearance of another critical 

appraisal of such an approach by Ransil and Sinai(S 6 ), the 

present disaertation is in this respect a continuation and 

extension of these previous investigations. 

To bring to focus the importance of electron 
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disposition, consider the correlation energy, a concept 

which has no real physical meaning ,but only represents a 

deficiency in our theoretical methods. It is the spatial 

correlation of electrons in atoms ana molecules, as pointed 

out by Lennard-Jones and Pople(S?), which has physical 

meaning. As emphasized recently by Cade and Huo(SS), it 

is only if accurate charge densities are compared with 
·. 

H.F. densities in a few test cases can one correctly 

connect the relative dispositions of electrons in terms 

of correlation energy results. This relationship cannot 

b~ definitely established otherwise. 

The systems analyzed in the present work comprise 

two isoelectronic series: a) N
2 

, CO, BF; b) LiF, BeO. 

These cover a , wide range of bonding, from triple to single 

bonding, from ionic to covalent. Electronic charge distri­

butions can be obtained from accurate SCF wavefunctions 

obtained from Hartree-Fock. calculations using extended 

basis sets. The functions are for N2 from Cade et al's 

work< 59 >, for CO and BF from Huo(~O) anq also McLean and 

Yoshimine(Gl), for . LiF and BeO from these last authors also. 

An effort is made to relate molecular properties to the 

charge distributions of these. The importance of the 

charge density and the accuracy of this density and other 

one-electron operators obtained from H.F. calculations 

permit an important advantage of this approach, a point Ae 
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have often stressed in this introduction. 

Many properties of molecules yield information 

about p, the electron density, directly. In particular, 

the main part of this thesis is an a.ttempt at relating 

the magnitude of force constants in diatomic molecules 

to the nature and properties of molecular charge distri­

butions. The force constants of molecules are generally 

determined from infrared or Raman spectroscopy. In terms 

of the electron density, they are given by the following 

expression: 

(1.1) 

The first term is an electronic field gradient term, the 

classical analogue of the electronic force constant for a 

nuclear charge moving in a static density p. The last 

term is the nuclear .field gradient. The second term 

measures the redistribution of charge when the molecule is 

stretched or contracted. 

There is a direct physical connection between the 

spatial distribution of the electronic charge for the 

equilibrium configuration and the magnitude of the force 

constant, which determines the forces acting on the nuclei 

when they are· displaced from their equilibrium. To what 

f~atures of the electronic charge density are molecular 
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vibrations most sensitive will be the main objective of 

the present work. Whether the charge distribution is 

delocalized to an equal extent over the nuclei in a molecule 

.or is localized in the region of a single nucleus, whether 

the distribution is diffuse or contracted, and whether it 

follows rigidly the nuclear displacement or relaxes in 

such a manner as to oppose or facilitate the nuclear motion, 

are the properties of primary interest in the determination 

of the vibrational constant. 

A discussion ' of molecular binding is first presented 

which is based on a comparison of the charge distribution 

and the forces which it exerts on the nuclei for the molecule 

with that found for the separated·atoms . . The force constant 

has its origin in the same distortions which give rise to 

the electronic force. Thus, the interpretation of the 

force constant necessarily follows a discussion of the forces 

which are responsible for the chemical binding. The Hellmann­

Feynmann approach is central in this thesis. The force 

expression which arises from it permits a classical inter­

pretation of binding related to the one-electron density. 

The expression (1.1) for the force bonstant also results 

from this approach. This permits one to clearly isolate 

the different contributions - orbital, atomic, overlap and 

shielding - to the force constant. This has the advantage 

over the energy method where the sum of the orbital energies 
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is not equal to the total H.F. energy and hence the use of 

the variation of orbital energies (oF ionization potentials 

from Koopman's theorem) is not justifiable(G?). In cor­

relating Walsh diagrams, the adequacy of the variation o~ 

these has been demonstrated recently by Peyerimhoff et al(Gg) 

· as one only has to consider angular variations. 

Hellmann-Feynmann expressions are functionals of the 

one-electron density. The density distributions, once cal­

culated from the appropriate wavefunctions, may then be 

compared in terms of their relative tightness of binding, 

a property which determines molecular.size and which ulti­

mately must.be related to the chemical reactivity of the 

molecule. The over-all charge distribution may be analyzed 

in terms of the total amount of charge which is found in 

different regions of sp~ce~ Related to these total density 

maps are the density difference maps, which are obtained 

by subtracting from the total molecular density, the density 

distributions of the constituent atoms. Such maps can 

demonstrate redistribution of charge and serve as the basis 

for definitions of distinct bond types, e.g. ionic or covalent 

character. The physical picture provided by the one-electron 

density distribution may be carried.even further through 

the use of the Hellman-Feynman theorem, which, as discussed 

~efore, relates in a rigorous manner the forces acting on the 

nuclei in a molecule to the one-electron density function. 



Because of the essent ially classical nature of the connection 

between the forces and .the electronic charge distribution, 

a study of the forces can provide a physical basis for the 

interpretation of molecular binding. This then will be the 

prelude to the discussion of force constants. 

In the expression U.l)for the force constant, we have 

indicated the presence of two terms called field gradients. 

The sum of these may be dete.rmined in some cases from the 

quadrupole c?upling constant of nuclei with quadrupole 

moments( 62 ). The quadrupole coupling constants . are determined 

by the components of the electric field gradient at the 

·nucleus anq give valuable insight into the asymmetry of the 

charge density distribution in the vicinity of the nucleus. 

Townes and Dailey( 63 ) have laid the ground work for the 

theoretical understanding of these quantities but no adequate 

theory is yet available and much of what is written about 

ionic character, hybridization, etc., must be viewed skepti­

cally<64). The Towne~ and Dailey theory is applicable to 

covalent molecules only. Theories first developed by 

Sternheimer( 6S) on the antishielding of the nuclear quadru­

. pole moment by the electron cores of free ions are frequently 

used for ionic cases. These two "prescriptions" will not 

often explain rather subtle variations and intermediate 

bonding cases. For instance, an accurate appraisal of cova­

lency effects on the quadrupole interaction must involve a 
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full molecular orbital treatment as Bersohn and Shulman( 6S) 

have recently pointed out. Refined calculations are 

needed to verify other points. This has been attempted by 

calculating field gradients from the wavefunctions for the 

aforementioned molecules, and analyzing the results to 

bring out the most important features of quadrupole coupling 

constants. The field gradient discussion is another pre­

lude to the force constant dissertation, as they provide 

a link between static effects and the actual constant. In 

the discussion of the force constants, the exqct connection 

and relevance of the field _gradient to the constant itself 

will be further analyzed. 

In concluding this introduction, we wish to remark on 

a point stressed by Slater( 7 0) as early as 1933, namely that 

. the study of molecular structure has been too much based on 
I 

particular models rather t h an on general principles. There­

fore, it is not surprising if certain concepts tend to 

disappear with more detailed functions. An exact wavefunction 

provides a t ool for obtaining exact expectation values. 

These can be obtained, alternatively, from experimental data. 

Of importance is the fact that neitner alone constitute an 

understanding of the electronic structure of molecules. 

Definitions must have meaning within a framework , provid ~~ ng 

quantitative data, obtained from either experiment or exact 

calculation, of a quali t a t ive nature~?l). The importance of 
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symbolism in understanding the chemical bond should not be 

minimized. Chemistry, like atomic physics with its atomic 

orbits, needs not only methods of exact calculation of wave­

functions, but also a justified symbolic calculus< 72 ). 

Of interest to chemistry primarily are space distributions 

and energy changes. The density matrix and Hellmann-Feynman 

theorems provide scope · for definitions and data which are 

used and analyzed in order . to obtain some correlation between 

molecular structures, especially various types of "bonding". 

It is with these views in mind that this dissertation pro­

poses to be a contribution in that direction. 

· 1.4 N2, CO, BF 

These three molecules make up a 14-electron iso­

electronic system. Furthermore, CO is an important hetero­

nuclear molecule because of the abundance of experimental 

data on it. Both CO and N2 have been of some historical 

importance. In 1926, Birge< 73 ) was the first to point out 

the energy levels of CO and N2 presented a remarkable 

analogy to those of Mg. However, both molecules showed 

no marked analogy evident in chemical behaviour to Mg. 

74N is inert just like argon. This was attributed by LangmuirC )2 


to the fact that the supposed 2 valence electrons were 
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imprisoned in .an octet or L shell. It was Mulliken ( ) in 


2 f + . d
19 28 wh o showed t h at t h e 1owest II state o CO was inverte ; 


unlike the 2 P state of its atomic analogue, Na, but more 
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'J'able l. J 

Molecular Data a) 

Molecule Wavefunction Total Energy De Re k2 
(Har~rees) (eV) (Bohrs) (mdyn/~) 

-
H.F~59) -108.9928 5.19 2.013 30.73N2 

Exptl. -109.586 9.902 2.068 22.91 

co H.F~61) -112.7908 7.97 2.081 24.36 
Exptl. -113.377 11. 24 2.132 19.02 

BF H.F ~61) -124.1675 6.22 2.354 9.652 
Exptl. -124.777 8.58 2.391 8.080 

BeO H.F~61) - 89.4542 4.14 2.443 10.14 
Exptl. - 89.962 6e66 2.515 7.519 

LiF H.F~61) -106.9918 4.08 2.9377 . 2.818 
Exptl. -107.502 5e99 2.9554 2.569 

a) Re(H.F.) and k2(H.F.) are from polynomial fits of the energy curve. 

l\J 
VI 
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like a 2 P of a halogen. The conclusion was, therefore, 

that the molecule was missing an electron of pTI character. 

These suggested analogies between atomic and molecular 

spectra showed the way to specify a definite orbit for 

each electron in the molecule. _In the case of N2 , its 

Raman spectrum led to the first determination of its moment 

of inertia. The intensity alternation in the rotational 

lines of N2 showed that the N nucleus obeys Bose statistics, 

a result which Reitler and Herzberg(?S) suggested could 

not be reconciled with the presence of electrons in the 

nucleus, the theory prevalent at that time. 

In 1molecular orbital notation, all three molecules 

have the ground state electronic configuration, la 2 2a 2 3a 2 

4a 2 ln 4 5a 2 ~ The N2 molecule is further designated by the 

inversion symmetry present so that i .ts configuration can 

also be written la 2 lcr 2 2cr 2 2cr 2 1TI 4 3cr 2 Of these molecules g u g u u g 

N2 is the most inert, BF the most reactive. In Table (1.1) 

are listed some of the properties of these, both experimental 

and calculated with the Hartree-Fock functions indicated 

by the references. In Fig.(1.1), the change in orbital 

ordering across the series is demonstrated for the three 

highest orbitals in the series. The 4a orbital is usually 

designated as a "lone pair" situated on the heavier nucleus 

and thus increases in e~ergy as the nuclear charge decreases 

' . 
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when going across the series from BF to N2 . The Sa orbital 

is the "lone pair" on the lightest atom and its energy decreases 

as one goes across from Bf to N due to increasing nuclear2 

charge. The l~ orbital tends to become localized primarily 

on the heavier atom and therefore behaves somewhat like the 

40 orbital. It is not easy to rationalize many of the 

differences between these molecules from an observation of 

these energy levels. It is known experimentally( 76 ) that 

the loss of an electron to form CO+ and BF+ leads to a 

decreased bond length and an increased vibrational frequency, 

whereas N offers the reverse case, for the first ionization2 

of these systems. The ionized electron is known to be from 

e· 5,..; b · t 1 (1 " + 2 "+ · t · · ) ( 7 7 )tl1· v or i a · ~ ~ transi ion •L 

The central features of the empirical molecular 

orbital theory are the correlation diagrams and the related 

concepts of bonding and antibonding orbitals. The dis­

tinction of bonding and antibonding electrons is based on 

the criterion whether the energy level of a given electron is 

lowered or raised respectively, in the transition from 

separated atoms to the molecule(?S). Synunetry changes also 

enter the evaluation of this distinction. In N2 , for 

example, the 3crg orbital would be classified as weakly 

bonding because of its incipient promotion to a 3s orbital 

in the united atom. One would infer that since for CO and 

BF the bond length decreased and the force constant increased 
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upon loss of a So electron, that MO is antibonding 

whereas in N it is bonding. From energetics alone, because2 

of its lower energy, one would predict that in N2 the 

orbital is bonding and that in CO and BF, the non-bonding 

situation is approached. These orbital characteristi c s 

will be analyzed via a force analysis in a more illuminating 

way, as it is the actual forces on the nuclei and their 
•. 

changes upon ionization which cause structure changes. 

Further insight into the varying characteristics of these 

molecules will be "distilled" from density and density 

difference maps which represent net .effects, rather than 

orbital contributions. The force constants will also be 

analyzed as these represent the changes in forces in the 

vibrating molecule. 

1.5 LiF, BeO 

These two molecules are the first member of a 

12-electron isoelectronic series, the others being BN and c2 , 

which are all not too well understood. LiF has always been 

of great interest as it appears to be the prototype of an 

ionic molecule. BeO has always been a very perplexing case. 

1 +Experimenta.l evidence pointing to a E has never been com­

pelling. By the Wigner-Witmer correlation rules, the 1 E+ 

state cannot dissociate into ground state atoms, i.e. 

Be( 1s), CX 3P). Since it is unusua l for the ground state to 

dissociate into excited atoms , there always remained the 
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possibility that the true ground state was an unobserved 

3rr or 3E+ level. Only recent open-shell MO calculations< 79 ) 

for these states have indeed established the lE+ to be the 

lowest state. For this state, previous MO calculations(SO) 

by Yoshimine have shown that the highest doubly occupied 

a-orbital (4a) changes character in the vicinity of Re from 

mostly O basis orbitals to mostly Be basis orbitals. Since .. 
the wavefunction does not change symmetry, this change might 

be described as a virtual cross-over of molecular configurations. 

As this changes the molecular structure from what is usually 

+2 -2thought to be Be 0 to BeO, there is an abrupt change of 

the dipole moment function µ(R) with a maximum near Re 

(slightly greater than R ) . There have been several dis­e 

cussions of a dipole moment function for diatomic molequles(al). 

The simplest function should go to zero as R + 0 and as 

R + 00 (united and separated atoms) and reach a maximum at 

some intermediate value of R. For an ionic molecule, a model 

of two p olarizable ions is generally used( 82 ). As the 

distance between the two ions increases, their polarization 

decreases. Both the increased separation of the ions and 

their reduced polarizations increase the dipole moment. Thus, 

the ionic model predicts a large positive slope for the µ(R) 

curve. For LiF, the equilibrium distance falls on the rising 

2 ide of µ(R) so that ~ts dipole moment function is in agreement 
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Table 1.2 

Orbital Energies 

Molecule Orbitals 

4cr l n 

LiF -0.505 -0.479 


BeO -0.461 -0.389 
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Fig.(1.1) Orbital Energies 
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with the ionic model. Yoshimine's calculations for BeO 

predict a dipole moment of 7.3 D, whereas for an undis­

torted Be+O- system at the same R, this is 6.2 D. A 

positive calculated.µ(R) slope confirms the ionic character. 

The experimental dipole moment function is not known and 

its measurement presents considerable experimental diffi­

( 8 3) ' 
culty . Nevertheless, of genera)_ importance has been the 

•. ' 

observation recently(S 3 ) that there is complete lack of 

correlation of µ and dµ/dR in SrO, an analog of BeO as these 

form with others the family of alkaline-earth oxides. 

Although there is correlation for µ apd dµ/dR in BaO, µ 

indicates SrO is extremely ionic and yet dµ/dR is negative. 

This suggests that the molecule is undergoing change of 

configuration in spite of a large dipole moment. No model 

of polarizable ions can explain properly these results. 

Trends in the other alkaline-earth oxides . suggest that BeO 

might be similar to SrO. 

A general picture of the chemical bond in the 

alkaline-earth oxide$ can be obtained by comparing MO 

calculations of BeO and LiF. A reasonably adequate picture 

of LiF is generally thought to be that of two slightly 

overlapping ions Li+ and F-. The two highest energy 

occupied orbitals in LiF, 4o 2 and ln 4 , are assumed to be 

almost entirely 2pFbecause they have approximately the same 

energy (see Table 1.2). If BeO had the same electron 
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distribution, it would be described as two doubly-charged 

. B ++ d 0ions, e an . Comparison of the orbital energies, 

however, shows that in BeO the ln orbital is considerably 

higher in energy than the 40 orbital, and from the 

wavefunction, has become a mixture of 2pnBe and 2pn0 . The 

four ln electrons are, therefore, shifted into the bond 

towards Be, thus tending to make the over-all dipole moment 

of BeO not too different from that of LiF which is 6.284 D 

(Debyes). , The separation of equal and opposite charges at 

the observed LiF bond length gives a dipole moment of 7.51 D; 

for Be+O- this is 6.2 D. The calcul~ted dipole moment for 

BeO is 7.3 D, indicating that the molecule is approaching 

the Be++o= configuration. 

On the other hand, one might expect BeO to be more 

covalent than LiF, since by excitation of type s 2 
-+ sp, 

Be becomes divalent and therefore one can expect to have a 

2 2 f' .a TI con iguration. This would then be the appearance of 

double bond character similar to ethylene except for large 

polarities, as pointed out by Coulson(S 4 ). This particular 

difference shows up in the crystal structures. LiF crystallizes 

in the simple cubic form . or NaC.Q, lattice , whereas BeO' s 

solid conformation is wurtzite, as ZnS,which is a diamond-

like structure held together by both covalen t and ionic 

forces. A rigid-ion calculation of normal modes in solid 

BeO is in serious disagreement with experimentally observed 
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modes. A mixed valence-Coulomb force field(SS) has to be 

used in order to calculate adequately phonon frequencies. 

It would seem that the degree of covalency is sufficiently 

l arge f or direc tiona l valence f o r c e s t o determi ne the 

stereochemistry of the lattice (and thus affect the phonon 

spectrum) were it not for the fact that closest packing 
-

criteria · of the large ions 	o- also favor the tetrahedral 

86crystal structure wurtzite( ). The question as to which 

characters, ionic or covalent, are prevalent will be 

analyzed in terms of electron densities, forces and field 

gradients. In a later chapter, the e~fect of the bonding 

in LiF and BeO on force constant s will be also examined 

in order to ascertain the difference~ in their magnitudes 

as seen in Table 1.1. 



II ..ELECTRON DENSITIES 

United we stand, divided we fall. 

Atoms in molecules 

2.1 	·. The Density Distribution - A Study in Molecular 

Topography 

A knowledge of the electron distribution in a molecule 

is a fundamental requirement for the understanding of the 

chemical behaviour of a molecule( 12125 ). The calculation 

of the electron density in a molecule is therefore an 

important problem~ But once the rules for qefining a 

physically sensible wavefunction, and therefore density, 

have been set down, then within that framework the primary 

factors available for a description of· molec~lar behaviour 

are the densities, the forces betwee.n particles (which are 

mainly coulomb forces), apd whatever quantum numbers are 

inherent in the problem. Specifically, it is actually the 

distribution of the electrons withi~ the molecular frame­

work which determines many properties of the molecules, 

and particularly their chemical reactivityo Relocation 

of electronic charge density has always been presumed to 

be an important adjunct, if not cause, of chemical bond 

formation. The transfer of electron density into the 

34 
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internuclear region .of the H2 molecule is a long-recognized 

phenomenon, even though the reasons for it are still the 

<87f consi ·sub Jee. t o 'derable d'1scuss1on > • With scant 

additional illustra~ion, the same sort of phenomenon has 

bee·n assumed to occur in larger molecules. The present 

discussion considers the effect of chemical bond formation 

from the viewpoint of spatial electron distributions, in .. 
the following molecules: N2 , CO, BF, BeO and LiFe The 

first three form a group of 14-electron isoelectronics; 

the last two are 12-electron isoelectronic analogues of 

each other. 

From very close SCF-LCAO approximations to the true 

H.R wave functions of these and of the free atoms involved 

in the bonding, it is possible to determine redistribution 

of electronic charge predicted by the H.F. calculations. 

It has long been held by most chemists that, in addition 

to "exchange effects", a chemical bond forms as a result 

of electronic charge density flow into the internuclear 

region where the· potential energy is lower. Recently, 

Ruedenberg(S?) has suggested that the main potential energy 

lowering occurs by a contraction or clustering of valence 

electron· density about the nuclei. The concomitant and 

also necessary (from the standpoint of . the virial theorem(?O)) 

increase in kinetic energy is partially offset by the effects 
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of delocalization. One can best gain insight into the 

problem of what really happens when an atom unites with 

another atom to form a molecule by examining the changes 

which the total elec~ronic charge densities undergo in such 

a process of bond formation. The relevant observables 

are then the charge densities. To obtain a measure of 

such changes, one can ·construct a molecule which would .. 
result if the two atoms making up the molecule were united 

without perturbing each other, or if they were in incipient 

valence states arising from ground state configurations of 

the separated atoms. This can be done by simply superposing 

the electronic charge densities of these constituent atoms. 

One can then characterize a chemical bond by the function 

where Pm{;) is the total electronic density of the molecule 

Mat some space point {r) in the .molecule; PA{~) represents 

the electronic charge density {at the same point) which 

would occur if the two consituent atoms were superposed at 

the molecular equilibrium distancee Thus, 6p{r) is positive 

in regions of the molecule where charge density has accumu­

lated and negative where charge density lefto Because net 
-"" 

charge is conserved, the integral of 6p{r) over all space 

is zeroe This function has been computed for several molecules 

by Roux, Daudel and co-workers(BB), by Rosenfeld(B9 ) 1 
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correlated to bond orders by Manning (90) , and fina·lly 

thoroughly discussed by Bader et al(SS), Ransil and Sinai(SG). 

The maximum amount of chemical information is 

obtained from such a density difference plot when the 

densities of the atoms are derived from valence states 

which result in the overlap of singly-occupied orbitals 

when the atoms are brought together. This corresponds,.. 
therefore, to the valence-bond picture of chemical-bond 

formation. The "valence" states implied here refer to the 

ground states of atoms in an axial electric field. Such 

a field splits the Px' Py and Pz degeneracy, lowering the 

still degenerate Px and p orbitals (~n) and raising the ,y . 

Pz orbital (~a) if z is taken as the direction of the axial 

fielde These states therefore differ from those used in 

49the atoms in molecules method< > which correspond to non-

stationary states and artificial dissociations, but are 

nevertheless a suggestive artifice for the description of 

the molecule in terms of the properties of its constituent 

atoms. In the method advocated here, in the limit of 

vanishing perturbation, the averaged ground state density 

and . the valence state density used correspond to the same 

energyo However, in the valence, state, distinction between 

a and TI character is preserved in order to displ~y the very 

useful picture of chemical-bond formation given by valence-

bond theorye Thus, t~e F atoms in the molecules BF and LiF 
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will be considered in the "valence state" corresponding 

to the configuration ls 2 2s 2 2po 12p~4 A spherical average 

over the ground-state configuration as used by other authors(BS) 

for the atomic densities, would neglect the preferred 

direction towards the other atom. There is no difference 

between this valence-state density and the averaged ground-

state density for Li, Be and N. B is placed in a valence 

state with one po electron, whereas C has in addition one 

pn electron. 0 and F are placed in states with a single po 

electron, the remaining electrons being averaged over the n 

orbitals. Thus, for N2 , CO and BF, the bond formation is 

visualized as overlap of po orbitals on each atom and sub­

sequent rearrangement of the densities in the moleculeo 

This enables one to compare these three molecules 

systematically, and keeps four electrons in the TI region 

as demanded by the molecular orbital representation of 

these molecules. For a similar _comparison between LiF and 

BeO, it was found necessary to use the state O(ls 22s 2 2pn 4}a) 

as the ground state for Be corresponds to ls 22s 2 . The 

method of the function 6p(r} is not without analogy with 

9the electron population analysis devised by MullikenC l} ~ 

The main difference between the two procedures lies in 

the fact that the .6p. me.th.o.d .g.i.v.e.s a .l.oc.a.1 r.e.pr.e.sentati.on 

a} 	 Footnote: This corresponds to taking twice 
the ML=O component of the first lo state 
minus the first ls state of oxygeng 

http:r.e.pr.e.sentati.on
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of the "bond effect"and provides information on the 

spatial distribution of the electrons. On the other 

hand, the population analysis provides a gross repre­

.sentation of the phenomenon and suffers from the defect 

that overlap populations . are arbitrarily equally divided 

between the two nuclei. This difficulty will be circum­

vented in the next chapter by the use of force analyses, 

which clearly show any asymmetry. in the distribution of 

the overlap region by comparing the forces the density 

exerts on both nuclei. The density and density dif­

ference maps can give us a _pictorial and thus extremely 

useful interpretation of chemical bonding which will be 

later supplemented by the force analysis. As our ultimate 

goal is an analysis of force constants for the molecules 

. N2 , CO, BFr BeO and LiF, we discuss first some of their 

characteristics which can be extracted from an examination 

of the details of the density and density difference maps. 

2.2 Charge Density- p diagrams 

Approximating the .electronic wave function for 

the ground state of a closed-shell molecule by a single 

determinant constructed from a set of occupied orthonormal 

orbitals ~· (-;.), the one-electron probability density function 
]. 

associated with the wave function is given by 

N 
~ 

p(r) = E n.1<1>·(~)12 ( 2 .. 2) 
i=l 

]. ]. 
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where ni are the occupation numbers and the sum is taken 

over the occupied orbitals. If the .functions ~i(~) form 
-+ 

an orthonormal set, then p(r) represents the probability of 

finding an electron at the point 
~ 

r in space. Although 

strictly speaking a probability distribution function, 

p(~) may be taken as a measure of the average electronic 

charge density, excluding electron correlations, at .. 
point ~. . In the present work, the molecular orbitals are 

approximated by linear combinations of atomic orbitals, 

X.(~) and thus equation (2.2) becomes: 
J 

N 
p (~) = E n. IE C .. X. (~) I 2 (2.3) 

. 1 1 . 1] J
1= J ­

From the study of molecular charge densities, we would 

hope to gain insight and information about several important 

characteristics of molecules: their "size", "shape", their 

total distribution. In particular, molecular shapes are 

determined by the nuclear configuration and the spatial 

distribution of the surrounding electronic charges. The 

nuclear configuration parameters may be obtained from 

experiment, or theory, or both. Calculation of accurate 

charge density distributions requires accurate molecular 

wavefunctions. 

Determination of molecular shape hinges upon the 

determination of molecular "size" which is complicated by 

the fact that the outermost charge density contours fall 
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off exponentially to infinity, or at a rate which varies 

according to whether the molecule is in a ground state or 

excited state, whether it is neutral, negatively or 

positively charged. A cutoff contour must be defined and 

thus a certain degree of arbitrariness or "empiricism" 

probably cannot be avoided in establishing a basis upon 

which such definition can be made. In this work, following.. 
Bader et al(SS), molecular size is defined with reference 

to a specific contour inside of which most of the charge 

density is contained. Arbitrariness enters when specifying 

the percentage of charge to be ~nclosed by the cutoff 

contour. The 0.002 contour chosen here as cutoff contour 

encloses about 95% of the total charge(SS). Other criteria 

for definition of size, based on interaction energies, are 

possible and perhaps are more physically meaningful. But 

definition on this basis is difficul~ because of the wide 

92 range of interaction energies possible. A recent review< > 

of quadrupole moments demonstrates the disagreements 

between the different experimental determinations of the 

same physical property, so that even here definitions are 

not made overly precise. There is yet no known correlation 

oetween a given range of charge density and the strength of 

molecular force fields. Consequently, one would not expect 

the size of molecules computed according to the above 

convention to agree necessarily with the van der Waals radii, 



Fig~(2.l} Electron Density 
··p 



Table 2.1 

CHARACTER!STICS OF TOTAL DENSITY DISTRIBUTION 
-·· 

.Molecule AB N2 co BF C2 BeO LiF 

Width (a . u . ) 
at 

Length (a. u.) 
Re {a. u.) 

z-intercept 
of 0.002 
contour 
(a.u.)in 

molecule 


in atom 

Charge Den­
sity at 

A 
B 
Re/2 

A 
B 
A 
B 

A 
B 

6.3 
6.3 
6.4 
8.2 
2.068 

3.1 
3.1 
T.O 
3.0 

205.59 
205.59 

6 .1 
6.1 
6.1 
8.4 
2.132 

3.4 
2.8 
3.2 
2.9 

127.07 . 
310.89 

6.5 
5.9 
6.2 
8.9 
2. 391· 

3.8 
2.8 
3.4 
2.8 

71.70 
447.53 

7.0 

8.5 
2.348 

3.1 
3.1 
3.2 
3.2 

-

127. 3..2 
127.32 . 

6. 0 
6.6 
6.6 
7.0 
2.50 

L3 
3.1 
3.6 
2.9 

34.88 
310.80 

3.6 
6.0 
6.0 
7.6 
2.8877 

1. 7 
3.0 
3.3 
2.8 

13.78 
447.41 

~ 
w 
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or molecular diameters computed from Lennard-Jones potential 

(93)
d a t a . But from an analytic_al standpoint, for different 

molecules a comparison is relevant and of interest. 

Contour maps of the total molecula r charge de nsity 

distributions, all drawn to the same scale are shown in 

Fig.(2.1) .a) These projections illustrate the relative 

tightness of binding of these various density distributions 

It is well known that the atomic charge distributions become 

more contracted across .a row of the periodic table, a result. 

of the increase in the effective nuclear charge. This same 

effect is noticeable in the density distribution at the 

N, 0, and F n~clei in the molecular charge . distributions. In 

Table (2.1) are listed some of the more dramatic features of 

the charge distributions. The distance from each nucleus 

to the 0.002 contour along the non-bonded axis or z-intercept 

as designated in Table (2.1) I are listed with the raaii. of 

these same contours in the appropriate separated atoms. 

The diameter of the non-bonded charge densities of N, O, and 

F in the molecules is very close to. that found in the 

corresponding isolated atoms. There is a greater variation 

in the atomic diameters across the row from N to Li. There 

is an increasing divergence. hetween the atomic values and 

a) 	 Footnote: C2 1 which has already been dis­
cussed by Bader et a1(55), is included for 
comp le tenes s . 
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those found in the molecule. There is an increase in the 

value of the Z-intercept or non-bonded radii from N to B. 
I 

In particular, the value for B is s'ignificantly greater than 

that of the free atom. For the molecules CO and BF, this 

is therefore in accord with the actual dipole moments 

- +C 0 , - +B F . For CO this has been reassigned recently after 

. {94)
extensive controversy about the sign • The dipole.. 

moment of BF has not been measured as yet, but has been 

calculated{GO) to be 1.04 Das compared to the experimental 

result of 0.112 for co. The sign and magnitude of these 

then follow from the nature of the dipole operator which 

weighs heavily charges far removed from the charge center 

of the system, and also from the charge distributions of 

these two molecules which have mor.e charge behind the . nuclei 

C and B than found in the free atoms. There is a sharp 

difference in this trend in the c2 , BeO, LiF series~ The 

non-bonded radii of the densities centered on the Be and 

Li nuclei in the molecule are considerably smaller than 

their corresponding atomic values. In fact, the values 

of the radii in the molecule are the same as the values which 

can be calculated for the 0.002 radius of the ls shell 

densities in the ions Li+, Be++~ This is then a clear indication 

of charge transfer away from the light atom regions of 

these moleculesw 

In comparing N and CO which are often assumed to be2 
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quite similar in many respects except reactivity, potential 

paramete·rs from viscosity data (95 > indicate the diameters 

of these· molecules are equal (7 a.u.). This is intermediate 

between our calculated lengths and widths. Such data are 

probably not fine enough to determine comparative molecular 

sizes. In fact, the polarizability of CO is greater than 

tha~ of N (9G), so that this may affect transport properties2 

which generally are based on crude models. Some evidence 

of similarities between these two molecules comes from 

recent crystal structure work~ The experimental results( 97 
> 

demonstrate the same space group and same crystal parameters 

for the crystal forms of N and CO. The question then arises2 

as to whether size effects are very important in the structure 

of van der Waals lattices. Barrett et al(ga) have recently 

noted the effect of dissolving N2 and CO in solid Ar. The 

two molecules produce strikingly different phase diagrams. 

It may be that as Hillier and Rice have suggested< 99 >, 

electron delocalization, represented in terms of the mixing 

of charge transfer excitation states and neutral excitation 

states are important contributions to the ground state binding 

energy of molecular crystals. In this respect, one would 

expect CO to differ from N2 because of the slight decreas·e 

in binding ~f the electrons on the C atom as witnessed by 

the change in non-bonded radii. The density at 0 is slightly 
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more bound in the molecule. These effects increase as one 

goes to BF so that the high reactivity of BF can be 

qualitatively correlated with the decrease of binding of 

the density at B which has resulted in the density on B 

having become more diffuse than in the free atom. 

A perusal of the LiF total density map shows that 

the molecule approximates what one can call two unequal 

spheres of unequal charge density coupled together. The 

shape of BeO approaches sphericity whereas LiF is quite 

elongated. The tight densities at the Li and Be ends of 

these molecules indicate charge transfer away from these 

nuclei. While the non-bonded charge density of Be has 

been decreased along the bond axis, the transfer is not 

pronounced in the regions perpendicular to the bond. 

Interestingly, LiF has the smallest first contour of equal 

density which encompasses both nuclei. As this is a rough 

indication of the amount of delocalized charge density, 

it is thus seen that LiF approaches the ideal ionic model 

of noncoupled spheres. In BeO, the full contour first 

appears at 0.16 as compared to 0.08 for LiF; for BF this 

is 0.26, slightly higher for c 2 , and larger for CO and N2u 

The observation that one can therefore make is that 

delocalization increases in the following order: LiF, 

BeO, BF, c
2 

, CO, N • Finally we notice that the F atom
2 

in LiF is nearly spherical, a somewhat surprising observation 
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as one would expect it to be quite polarized towards the 


Li nucleus. This situation also exists in the crystal. 


The electron density contours in the LiF crystal have 


. (lO 0)
been plotted by Krieg et al from x-ray data. The 


density around the F nucleus ·is almost spherical while 


that around the Li nucleus deviates appreciably from 


spherical shape, particularly in regions away from the 
.. 
nuclei . in the crystal. Indications are that this Li 

density is more polarizable in the crystal LiF than for 

a Li+ ion{lOl) as the maximum of the radial density distri­

bution is shifted by about o.2sR from the Li nucleus as 

compared with the free ion. 

In summary, in contrast to the series N2 , CO, BF 

where the density becomes more diffuse behind the electro-

positive element, in c 2 , BeO, LiF the trend is reversed, 

in that the density becomes tighter around the electro-

positive element for these molecules. This is then in line 

. 	with the tendencies of BeO and LiF to ionize first in 

chemical reactions because of the electron acceptor 

properties of the electropositive end of these molecules, 

as opposed to CO which is an electron "donor" and 

tends to bond covalently with other elements, especially 

transition metals. We would thus predict that BF is a 

much stronger electron "donor" than ' co in view of the more 
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diffuse density behind B. The p contours therefore provide 


s 'tructural information about molecules in terms of charge 


density contours and their intercepts with an appropriate 


set of axes ·. Integration of the p diagram can yield 


electron populations as a function of contour value and 


corresponding spatial coordinates for the entire molecule 


(see work of Ransil(SG)). However, the presence or absence .. 
of a chemical bond is not manifested by the appearance 


of the total density distributions. The features displayed 


by the total density map are in general gross and require 


further refinement. In addition, total molecular charge 


· 	densities pomputed from wavefunctions with varying degrees 

of sophistication do not differ appreciably in the display 

of contours uo 2 >. This insensitivity must be somewhat 

superficial since striking variations are observed when 

one characterizes the charge density with the function ~p. 

2.3 ~P Maps 

The ~P diagram presents an interpretive problem 

because regions of positive and negative contour values are 

encountered. These regions do not represent absolute 

increase or decreases respectively, in total charge density 

but rather they represent ~n increase or decrease of probability 

density relative to the densities of the appropriate 

unperturbed dissociation products, in appropriate valence 

states, a distance Re apart. By way of contrast, the p maps 
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give a time independent statistical distribution of 

electron charge in molecular space, whereas the ~P maps 

tell us what regions in the molecule are electron rich · or 

deficient compared to the hypothetical case of appropriate 

dissociation products. Furthermore, while there may be a 

net gain or deficit of electron charge density at a speci­

.fied point, the net total change in density obtained by 

integrating over all space is zero. This density difference 

as defined and computed therefore reflects, strictly 
.. 

speaking, not charge distribution associated with formation 

of a chemical bond, but a difference between two scalar 

quantities, which may be correlated with a chemical bond 

only insofar as the molecular and atomic densities correlate 

with the accurate charge ~ensities. The validity of these 

interpretations assumes the computational accuracy of the 

total and difference densities, arid their inv~~iance to such 

things as basis-set representation, relativistic and 

correlation effects, etc. The characteristics of ~P are 
I 

in general· seen to depend very strongly on the quality of 

the approximate wavefunction~ as shown by some calculations 

on N by Smith and Richardson(l0 3 ). For an outline of2 

these problems, the reader is further referred to Ransil 

and Sinai's paper(S 6 ). On the basis of various diagrams, 

these authors conclude that the evidence so far suggests 
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that there are no significant major variations in the ~p 

diagram topography in going from a limited to an extended 

basis set, provided molecular and atomic functions of 

consistent accuracy are used. We have implicitly employed 

such a consistent approximation perspective in what 

follows. Hartree-Fock wavefunctions have been employed 

for both the molecule and the separated atoms, the atomic .. 
functions coming from the work of Clementi(6 l) which have 

been used as starting points in the MO calculations. 

The density distribution which results from the 

overlap of the unperturbed atomic densities separated by 

Re does not ordinarily place sufficient charge in the 

region between the nuclei to just balance the force of 

nuclear repulsion and hence result in a state of electro­

static equilibrium< 14 >. The density difference map ~P 

may therefore be viewed as a picture of the change in 

atomic charge distribution required to balance the force 

of nuclear repulsion and. thus obtain a stable molecule, 

i.e., a chemical bond. From this point of view the 

density difference maps provide one with a picture of 

the 91 bond d,ensity" .. The ~P maps are given in Figg (2 .. 2) 

for R = Re(exptl.). The general characteristics of these 

maps is uniformly a buildup of charge between the nuclei 

and in the regions behind the nuclei, i.e. the region away 

from the bond. What is observed then, is the movement of 
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Table 2.2 

INCREASE IN CHARGE ~p(POSITIVE) 

Molecule ~P in binding region ~p in antibinding regions 
behind nucleiAB 

A B 
-
N2 

co 

BF 

C a)
2 

BeO 
Be+o-

LiF 
-

0.25 

0.21 

0.21 

0. 5.0 

0.82 
0.59 

0.47 

0.13 

0.13 

0.21 

0.06 

0.02 
0.02 

0.01 

0.13 

0.18 

0.20 

0.06 

0.57 
0.20 

0.36 

a) Ref. 55 

U1 
w 
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"antibinding" electrons away and apart from "binding" 

electrons. A region of charge deficit of the form of 

p ;r atomic density is evident on those nuclei where such 

a charge density was situated, a demonstration of the rather 

easy mobility of iT electrons. Whil~ the original atomic 

densities are distorted so as to place charge in the anti-

binding regions, regions which pull the nuclei apart, as.. 
well as in the binding regions, regions which pull the 

nuclei together, in the forma·tion of a molecule, the most 

important aspect is the exact disposition of the charge 

in the molecule, and not necessarily the amount of charge. 

Both of these features, the amount of charge, and its 

disposition can be only taken into account properly by a 

determination of the forces which bind the nuclei together 

to ·form the . molecule, as will be done in the next chapter. 

An idea of the charge distribution can be roughly obtained 

from Table (2.2) where we list the total amount of 

electronic charge minus the free atom densities contained 

within the zero contours in the binding and antibinding 

regions, except in the case of BeO and LiF where we report 

these numbers for the total binding and antibinding regions, 

as one has to deal with nuclei enclosed by zero contours ~ In the 

discussion that follows, the density difference function 

~P is compared for the isoelectronic series N2 , CO, BF; 

LiF, BeO and c2 • 
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a) N2 , CO, BF 

The ~P map for N examplifies the reorganization2 

of the atomic charge densities whi9h is characteristic of 

the formation of a covalent bond. There is a net accumu­

lation of negative charge, symmetrically placed between 

· the nuclei.' The large accumulation of charge density in 

the antibinding region behind each nucleus is also 

characteristic of any bond which involves the participation 

of p orbitals. This pattern is not found for example in 

H2 or Li
2 

<55 ), for which the charge is concentrated almost 

entirely in the region between the nµclei. The large 

separate accumulations of charge in the antibinding region 

are a direct consequence of the quantum mechanical result 

of imposing directional properties on orbitals and hence on 

· charge densities which possess angular momentum. The binding 

in CO is covalent as the difference map is very similar to 

that of N • But the charge increase is shifted towards the2 

vicinity of the O nucleus. Simultaneously, there is apparently 

more charge removed in perpendicular regions at the O nucleus 

than at the other end of the molecule. Tne charge increase 

is still larger when one goes to F in BF. The perpendicular 

charge removal also follows the same trend. In fact, we see 

now the appearance of pn electrons situated quite diffusely 

at the B end of the molecule. From the numerical integration 
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of the various regions as reported in Table (2.2), it is 

evident the population numbers are all quite similar, 

. N2 showing ' slightly more charge in the binding region, 

i.e. between two nuclei where it exerts an attractive 


force on both. The difference in charges in the binding 


region between N and CO would seem to have been put
2 

behind the O nucleus. This does not correlate with the 

dipole moment C-0+, but the answer to this is evident 

from the geometry of the density difference diagrams. 

The density accumulated behind C is more diffuse than that 

behind O so that its centroid is farther away from the C 

nucleus. This farther displacement therefore contributes 

to the moment, and not the population itself. Similarly, 

one notes that there is more charge put behind the F 

nucleus, but again the effect is offset by the increased 

diffuseness of the charge accumulated behind the B nucleus. 

The maximum charge displacement behind the F nucleus is in 

accord with . its acquiring the most pa character. This 

also correlates with Davidson~s(l0 4 ) recent population 

analysis on these same three molecules, where, contrary 

to popular belief, it was shown that the more electro­

negative element has the larger degree of "hybridization". 

b) LiF, BeO, C2 

The ionic extreme in binding is examplified by LiF. 

Here the charge increase is localized on the F nucleus. The 
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small charge increase in charge density. immediately behind 

the Li nucleus is a result of a polarization of the remaining 

core density of an Li+ ion. The ~P population is seen to 

be completely situated on the F nucleus, as it is enclosed 

by a zero contour with that nucleus. In view of this 

transfer of charge to F and the resulting negative 

electric field, the density on the Li nucleus must polarize.. 
away from the bond region to counter the net attractive 

force of the excessive density on the F nucleus. Alter­

natively, one can say the density on the Li nucleus is 

being repulsed by the accumulated charge on the other end 

of the molecule. In view of the clear separation of charge 

in two distinctive regions, it is then appropriate to 

speak in terms of electrostatic effects. This will be . 

pursued further in the next chapter. The total charge 

increase in the zero contour encircling the F nucleus is 

0.83 with 0.48 charge in front of that nucleus, a clear 

indication of polarization effects. A depletion of charge 

in a region perpendicular to the bond is suggestive of 

motion of 2pTIF density away from the F nucleus~ This 

behaviour persists for the density difference diagrams 

involving the ions L~+, F-, i.e5 the combined densities 

of these ions have been subtracted from the total density 

of the molecule(l4 ) It is evident from Fig.(2.3) moree 
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charge is placed in fr6nt of the F nucleus both along and 

perpendicular to the bond •. 

The BeO diagram shows similar ' features, but the 

transfer of charge is not as sharply d~fined as in the 

case of LiF. The positive increase in the binding 

region between the nuclei which is closest to the O 

nucleus is 0.82. The charge increase behind is 0.57 • .. 

The total increase is therefore 1.39. The amount of charge 

lost in the perpendicular region at O is -0.55, whereas 

at F for LiF it is -0 .19.. Thus it is evident that bonding 

effects are more drastic in BeO.. It must be remembered 

that the "valence-state" of the O atom is 2s 2 2pcr 0 2p7T 4 so 

that we have· introduced a deficiency in the internuclear · 

region.. A density difference map using the constituent 

separated ions Be+ o- (2s 22pcr 1 2pTI 4) shows little noticeable 

changes as the 0- density is diffuse compared to a neutral 

O atom (see Fig.(2.4)}. The contours around the Be nucleus 

for this map also show little change, indicating that the 

density around this nucleus must be approaching that of 

B ++ e .. The small values for the integrated positive ~P 

regions behind Li and Be are effectively a result of 

polarizations of ls 2 densities. Large ~P populations 

behind the heavy nuclei are evidence of redistribution 

of valence-shell densities.. In fact recent work on 

hydrides< 55 > shows that LiH ~emains ionic (Li+H-) as for this 
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molecule the ~P popQlation behind Li is the same as that 

in LiF. On the other hand, for BeH the ~P population 

behind Be is large as a result of the promotion of the 2s 

valence electrons i~ Be to 2po atomic orbitals. This 

suggests that BeH is not to be associated with any well-

defined limiting bonding case, i.e. covalent or ionic. 

The negative contours which appear in front of the 

Li and Be nuclei in LiF and BeO and also persist in the 

density different diagrams using the ions as separated 

constituents are reminiscent of repulsions of the Pauli 

exclusion type between two closed shells(lOS), an effect 

which enhances removal of charge between two separated 

closed shell charge densities when allowed to overlap. 

The net effect from the viewpoint of the density maps is a 

backpolarization of the densities on the Li and Be nuclei, 

which can be interpreted as an electrostatic repulsion 

of this density b y the density transferred to the other 

end of the molecule. · 

c 2 , which represents the covalent extreme of these 

two molecules, has been discussed amply by Bader et al(SS) o 

The small densities in the antibinding regions (see Table(2.2)) 

are therefore a compromise between charge decrease at the 

electropositive ends of the molecule and the large charge 

increase at the other end. They thus reflect these two 
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opposing tendencies,· charge removal ·from one end and charge 

transfer to the other end, which by synunetry of the molecule 

c now ·must happen simultaneously at one nucleus.2 

2.4 6p Profiles 

Much of the charge density which aff~cts the nuclei 

most profoundly and vice versa lies along the internuclear 

axis. In order to gauge clearly the effects of the charge.. 
density in regions near the nuclei it is advantageous to 

examine profiles of the density d.ifference maps along the 

internuclear axis and in particular at the nuclei themselves. 

These are shown in Fig.(2.5) for all the molecules discussed 

above. 

For all these systems, there is charge removal from 

the nuclear region.. The relative magnitudes of these for 

the same nuclei in different molecules correlate also with 

the total charge densities at these nuclei as given in 

Table (2.1). In general, the charge removal is fairly 

constant for the same nucleus in different molecules, as can 

be seen from the profiles for BF and LiF, CO and BeO. There 

is a removal of charge in increasing order N, O, F . The 

tightness of the atomic densities of these increase in 

that same order, reflecting the increasing nuclear charge. 

The charge decrease at the other end is not as regular, 

being largest at C and Be, and smallest at B and Li in 

order .. For those atoms which contain po character, i.e. B, 
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c, O, F, there is evident increase in density in front and 

behind these nuclei, an effect which increases with nuclear 

charge. In other words, the profiles indicate clustering 

via maxima farther outward from the nuclei. This can be 

taken as evidence of the orbital contraction of the second 

principle quantum number atomic orbitals. Thus, as succinctly 

. ( 103) . '- dstated by Richardson , the clustering phenomena propose.. 
by Ruedenberg(S?) is indeed ·observed. It turns out to be 

synonymous with charge build up in the binding and anti-

binding regions close to the nuclei. The decrease of 

density at the nuclei is not evident for protons such as in 

' H2 and HFC~ 4 > where there is actual charge increase. Hence, 

conclusions based on considerations of the H2 molecule only 

must be viewed with caution, since protons are usually the 

exception rather than the rule, as a result of the uniquely 

small electron densities associated with them. It is to be 

noticed that Li and Be, which have no po atomic densities, do 

not show clustering in the bonding region. Instead, there 

is charge decrease for these two in this region. It is 

evident that from the electropositive end, LiF and BeO are 

quite similar in character. · 

2~5 Concluding Remarks 

If current notions regarding the transfer of charge 

in the formation of a molecule are effectively correct, one 
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would expect the density difference maps to show patterns 

which are characteristic of and distinct for limiting bond 

types. The density and density difference maps could then 

be used as the basis for definitions of distinct bond types. 

Up till now, the available· diagrams suggest three distinctive 

bond types : . a) the homonuclear pattern represented by N2 

and c2 ; b) theheteronuclearpattern presented by LiF and 

L i. H (SS) ; c ) a second h eteronuc 1ear pattern represented b y 

the remainder of the first row hydrides. Both patterns a) 

and b) possess the most distinctive features as portrayed 

by our maps. Pattern a) has ·charge symmetrically placed 

between the two nuclei, in the a-region; charge placed 

behind each nucleus and removal of charge at both nuclei 

perpendicular to the bond. In general, such a pattern, 

which is by definition covalent, can be qualitatively 

described in terms of a-type and TI-type, binding and anti-

binding charge distributions, the last characteristics 

being derived from a force analysis pursued in the next 

chapter. Pattern b), termed the ionic case, has charge 

accumul~ted in two regions: around the nucleus associated 

with the relatively gre~ter transfer of charge and extending 

a considerable distance along the internuclear axis toward 

the other nucleus; and to the far side of the nucleus 

associated,with the lesser increase in charge. Pattern c) 

differs from pattern b) primarily in the behaviour of the 
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zero contour around the heavier nucleus: it either does 

not close upon itself or it encloses a very large volume, 

. while the region of positive ~P surrounding the lighter 

atom is mostly in front of it and thus binding. This 

pattern may be unique as a result of the presence of the 

proton. 

N2 , CO, BF belong to pattern a}. This is a result 

of their isoelectronic structure and the occurence of pa 

character in the separated atom densities. The diagrams 

justify this classification. Nevertheless, in BF there is 

evidence of increasing unequal sharing of the density, and 

thus BF marks to some extent the transition between the 

examples of charge transfer (ionic character} and sharing 

of charge (covalent binding}. LiF and BeO fall in the 

classification of pattern b). The BeO molecule is, however, 

not as clearcut as LiF. There is evident in BeO some 

density sharing in the regions perpendicular to the bond 

axis. Thus~ BeO marks the beginning of a transition in the 

opposite direction of BF, i.e. from ionic to covalente 

The total molecular charge distributions and their 

properties will obviously determine the magnitude of the 

force constants of these molecules. One might expect that 

the degree to which the charge distribution relaxes during 

motion of the nuclei will be determined to some extent by 
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the tightness of the moiecular charge distributions. For 

instance, those charges which are tightly bound to a 

certain nucleus will follow such a nucleus during its 

motion. This will partic~larly be true of core electrons. 

This effect will decrease with decreasing tightness of 

'binding. Similarly, the ~P maps which provide a detailed 

picture of ·the net reorganization of the charge density 

in the molecule with respect to some separated atoms, and 

are therefore characteristic for bonds of different type, 

are also of importance in the understanding of the force 

constants. It is to be expected that the stretching of a 

bond will correspond to a reversal of the direction of 

charge transfer shown by the 6p maps. The 6p maps demonstrate 

emphatically where charge transfer has occurred in the 

. formation of a bond. A stretch of the bond by an infinitesi­

mal amount will reverse the direction of this process, as the 

stretch corresponds to a reversal of bond formation. Simi­

larly, contraction of the bond would cause enhancement of 

the 6p patterns. One would thus expect that just as the ~P 

patterns differ radically through the series from N2 to LiF, 

so will the patterns of the relaxations of the charge 
~ 

density caused by nuclear motion demonstrate such characteris­

tics. These anticipated results along with the nature of the 

binding in these molecules are further investigated in the 

succeeding chapters. 



III. THE ELECTROSTATIC INTERPRETATION OF 


ELECTRON DENSITIES 


"For without a force there is no connection; 

without connection, no order; without order, 
no space." 

Immanuel Kant 
•. 

3.1 Introduction and Definition 

The Hellmann-Feynman theorem, or more appropriately 

the electrostatic theorem to emphasize its application, 

offers another operational viewpoint from the usual tyranny 

of the energy representation of quantum mechanicso In 

essence it states that all forces on atomic nuclei in a 

molecule can be considered as purely classical interactions 

involving Coulomb's law. This implies the conclusion that the 

force on any nucleus in any system of nuclei and electrons 

is just the classical electrostatic attraction of other 
........ 


nuclei and the electron charge density p{r). The theorem 

appearsf therefore, as a powerful tool for researches in 

quantum chemistryo For if once the electronic density is 

. known accurately, the forces acting on the different nuclei 

cah be determined exactly and the energy for a given nuclear 

configuration follows by integration. 

The proof of this theorem is quite simpleo Consider 

68 
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a system of n electrons and N nuclei, the latter fixed, 

i.e. the limit of zero nuclear momentum (adiabatic or Born­
...... 

Oppenheimer approximation) . Let V be the gradient operatora 


with respect the the coordinates of nucleus A. The 


Schroedinger representation gives the following equation . 


of motion of the electrons: 


H'I' = E'I' ( 3 .1) 
.. 

where H = Tel + V is the Hamiltonian operator, E the 


energy of the system, and 'I' the electronic wave function. 


The force acting on nucleus A is: 


~ ~ ~ * 
FA= -V E = -V (/'I' H'l'dT 1 ... dT .... dT) (3.2)a a 1 n 


where dT. implies integration of the volume coordinates of 

1 

electron i. The operation (3.2) gives: 

( 3. 3)* ......-f'I' ('\/ H) 'l'dT 1••. dT a n 

The term in parentheses vanishes for an exact wavefunction 

. because it is equal to: 

EVa(/'I' * 'l'dT1···dTn) = EVa(l) = 0 ( 3. 3a) 

Furthermore, the kinetic energy operator Tel of the 

electrons is independent of nuclear coordinates for fixed 

electron coordinatesa Therefore: 

( 3. 4) 

where V is the potential energy operator of the systemo 
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The expression (3.4) is the fundamental equation of Hellmann 

and Feynman. The operator·V is comprised of three parts: 

the electrostatic interaction between nuclei Vnn' the 

electron-nuclear interaction Ven' and the interaction between 

the electrons themselves Ve e· This last part is 

.· 	 independent of the nuclear coordinates for fixed electron 

coordinates, a point further discussed · below,and its 

contribution to (3.4) vanishes. The interaction between the 

nuclei is independent of the electronic coordinates and 

hence can be immediately integrated out. The detailed 

operator Ven is: 

Ven = 
n N 

- E E 
i=l a=l 

(3.5) 

where R is the coordinate vector of nucleus A and r. is 
a 	 1 

the electronic coordinate vector with respect to some 

common origin. ZA is the nuclear charge of A. Since 

Ven is a . one-electron operator, the integral (3.4) can be 

easily transformed into an integral i~volving the 3-dimensional 

electronic density (1st order density matrix) of the 

sys tern, . i. e G 
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where pi is the electron density of electron _i, i.e. 

Summing over i, we obtain 

(3.7) 

where p is the total electronic density of the system • 
.. 

Therefore, the force .acting on nucleus A is given by 

(3.8) 

The theorem can be generalized to degenerate electronic 
. . (45)

states (Hall ) . We therefore see that all distortion 

energies, dissociation energies, etc., can be functionals 

of p alone. For instance, for a diatomic molecule, 

'V = - d/dza = +d/dzb = + d/dR (see Fig. ( 3. 1} } , then 

D = E(oo) - E (R) F dR (3.9) 

a 

={ 
so that for an exact $ the interelectronic term l/rij would 

not enter the compu~ation. The approach has been pursued 

(106) . . · . f d 1 b B d (107)b y Hur1ey in a series o papers an a so y a er . 

For an exact wavefunction since from (2.3a): 

a,,, J. a 
2/$H WT = H~T = 0 

and for space fixed electron coordinates 

aT av e 1 ee 
-aR=-aR=O 
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this implies that 

/H ti dT = 0 (3.10) 

Therefore, the electron .correlations affect p but do not 

affect the forces directly as they do also the energy 

calculations. 

One can see, therefore, that the Hellmann-Feynman.. 
approach has many advantages, in particular giving rise to 

alternative ways of getting at energy differences of iso­

electronic processes .besides also giving the forces. These 

methods have been studied recently . by Epstein et al(lOS) 

giving rise to the integrated and integral Hellmann-Feynman 

formulae. Time-dependent extensions of the approach can 

(109)
be also found in the works of Hayes and Parr , and also 

Epstein(llO ) . 

Unfortunately, the variational principle does not 

apply to these methods. L~ttle progress has been made . with 

the appl_ications of the Hellmann-Feynman theorem since its 

discovery of some thirty years due to a further difficulty 

that the theorem does not always hold for approximate wave-

functions and can, in 
0 

fact, lead. to absurd results in cases 

where sufficient care is not taken in the choice of an 

approximate wavefunctione Consider as an example the 

+molecule H and let R be the internuclear distance. The2 

derivative ~E/dR is then the slope of the potential energy 
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curve. If the wavefunction for the ground state is taken 

to be a simple linear combination of ls orbitals centered 

on the two protons, · the slope calculated is from the 

Hellmann-Feynman theorem negative at all internuclear 

distances(lll). This corresponds to a completely repulsive 

curve. On the other hand, if the same wavefunction is used 

to calculate the energy directly, one obtains a reasonably 
•. 

satisfactory potential energy curve. The source of the 

difficulty lies in the approximate wavefunctions's failure 

to allow for charge polarization. This case has been 

. . ( 106)
discussed at length by Hurley ~ He gives methods of 

modifying the approximate wav~functions in order that the 

Hellmann-Feynman theorem may .be brought into agreement 

with direct calculations of the energy. If one realizes 

that any function may be expanded in .terms of a fixed 

set of functions (i.e. which do not depend on the nuclear 

configuration) , then only if all the variational parameters 

are chosen by the Ritz variational me~od do the electro­

static and conventional, i.e. dE/dR, method coincide~ 

In particular, a wavefunction which does not vary at all 

with the nuclear conf~guration will give the same results 

by the conventional and electrostatic methods, a rather 

impractical but yet . instructive examplea Furthermore, 

Heitler-London functions as in the H; example above, which 

depend expl~citly on nuclear coordinates if expressed in 
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terms of a single fixed set of Cartesian coordinates 

because the functions are built up of atomic orbitals 

rigidly attached to one of the nuclei of the molecule, 

will not give the sa~e results by both methods. To 

remedy this deficiency, Hurley has introduced "floating 

functions" because of the treatment of the internuclear 

distance as a variabl~ parameter. Such functions, deter­

mined by the variational principle satisfy the Hellmann-

Feynman theorem. In general, as seen from Eq. (3.3) for 

a wavefunction to obey the theorem we must have 

* f d~ 
dR 

H~ dT + f~* H d~ dT 
dR 

= 0 (3.11) 

Wav~functions which satisfy this ·equation are called 

stable< 45 >. If the variation of the wavefunction with - R 

is described in terms of a set of parameters ak' then for 

a stable function 

dE dak«jH> = (3.12)O = dR 3R dR 

A floating function is defined by the vanishing of each 

. (112) . 
term in the sum over k , so that any stable function 

may be expressed as a floating function by a suitable 

choice of parameters. The theorem is satisfied if either 

the parameters are independent of R so that dak/dR = 0 

or else paramete.rs are optim~zed so that 3E/Clak = 0. 

Hirschfelder and Coulson (-l lJ) have discussed the use of 

ce~tain hypervirial relations for the construction of 

http:paramete.rs
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stable wavefunctions. 

Floating functions, however, do not lead to an 

accurate estimate of the atomic polarizability(ll 4} or 

good energies(llS}. There are valid objections to 

floating functions. Firstly, as Longuet-Higgins and 

Brown(llG} have shown, it requires much ·energy to detach 

the center of a charge density from a nucleus. Secondly, .. 
it has been shown(ll?}for H;, by Miller and Lykes that 

a maximum distortion of bonding atomic orbitals occurs 

at the equilibrium internuclear distance (- they also 

point out that this does not correspond to maximum overlap, 

a condition usually invoked for strongest bonding}. The 

important first order effect in the distortion of atomic 

orbitals in molecule formation is the polarization of the 

atomic orbital. This polarization pheno~enon can be 

understood as arising from external fields of neighbouring 

charges. This sort of example ha.s been considered by Salem 

and Wilson (llS).. A n~utral .atom in an external field does 

not move. The force on .the nucleus due to the polarized 

electronic charge cancels out exactly the effect of the 

external field.. This was pointed out among others, by 

Sternheimer <. 119 >, in terms of shielding and antishielding 

concepts, later extended to the interpretation of quadrupole 

coupling constants .. 

It is evident that in all the cases where the 
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applications of the Hellmann-Feynman theorem to approximate 

functions gives physically unacceptable results, the 

difficulty may be traced to a clearcut physical deficien~.y 

in the wavefunction~ which is intri~sically related to t~e 

parameter undergoing variation. In general, calculations 

of dE/.dR by means of the theorem leads to errors which .are 

of 1st order in £ if ~ differs from the true wavefunction 

by terms of order £ as shown by Salem and Wilson. This
1 

is 

in contrast to the calculation of E and therefore dE/d~, 

(38)for which errors are of second order in £ • However 

for stable functions,which Hall has shown includes Hartree-

Fock functions, the Hellmann-Feynman theorem leads to errors 

which are only second order in £, as the conventional method. 

The Hartree-Fock functions belong to the category of stable 

functions since they are stationary solutions of the 

type (3.11), as can be seen from the Hartree-Fock equations 

(see Appendix 1). This is the essence of Brillouin's 

theorem. This has also been considered generally by 

(l20) d ' . l'ici't ' a b Allen (l 2l) ~Stanton an is imp in paper y For 

variational functions, the success of this method, i.e~ the 

magnitude of the correction £, depends on how well the 

parameters chosen to minimize the ground-state energy can 

represent the operator one wishes to calculate. This pro-

vid.es a more subtle test than Brillouin's theorem. For 

example, the diamagnetic shielding <l/ra> is usually in 
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good agreement with experiment since it is an operator that 

plays a significant role in the energy of the molecule 

(in V) and therefore is favoured by the variational 

determination of the energy of the molecu l e. 

·For dispersion phenomena, Salem and Wilson have 

shown that the complete ·density to second-order is neces­

sary to obtain the forces by the electrostatic theorem as 

opposed to the variational method where the first-order 

wavefunct~on yields the energy to 3rd order. On the other 

hand Yaris( 122 ) obtains the 2nd order force using the 

first order density only. This result is not in contra­

diction with the results of Salem and Wilson. The 

difference is due to the way the systems have been divided. 

Yaris uses a relative electronic coordinate system 

centered on each of the two nuclei, i.e. functions which 

follow the nuclei . . Thus in zeroth order, if nucleus A 

moves a distance dR, its electronic charge moves with it 

and hence 8Ho/8R = awo/8R = 0, where Ho and WO are the zeroth 

order Hamiltonian and wavefunction. ~ Salem and Wilson used 

a space fixed electronic coordinate system and considered 

that moving nucleus A a distance dR leaves the zeroth order 

electronic charge unchanged. Thus in their method of 

dividing up the total Hamiltonian and wavefunction,8H0 /8R 

and aw 0 /aR .do not vanish, and the second-order wavefunction 

is necessary. Yaris'~ method involves an effective char~e 
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model, or what Epstein et al(llO) call a complete orbital 

foll_owing model and only works for .nonoverlapping shells 

but not for valence electron which are a case of incomplete 

orbital following, requiring know.ledge of the exact wave-

function. Nevertheless, this example brings out one 

important point, namely, that the validity of the Hellmann-

Feynman theorem and the stability of ~ depend on the 

fundamental choice of integration variables. The value 

of dE/dR is independent of the choice. The precise form 

of the operator in the integrand, Eq.(3.2), depends upon 

tjle electronic coordinates fixed during the differentiation 

. . 1 th d ' t ' ' ( 12 3 ) Fand in particu ar on e coor ina e origin . or 

Cartesian or spherical polar coordinates arbitrarily 

centered, (see Fig.(3.1)) one can write (Berlin, Feynman): 

dE 
= dR 

( 3 .13) 


where p is the electron den~ity (diagonal element of 

first-order density matrix), ZA is the nuclear charge of .A, 

ea and ra are defined in Fig. (3.1) .. Secondly, any orbital 

centered on nucleus A which completely follows that 

nucleus will contribute nothing to the force as shown by 

YarisG This will be of importance in force constants where 

the nonorbital following becomes a "relaxation"~ 

The electrostatic or Hellmann-Feynman theorem 

results when the electron is held fixed with respect to a 
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.space fixed axis system during differentiation, thereby 

giving expressions (3.8). There is still some ambiguity 

since the nuclei may move in a number of ways during the 

differentiation. The nuclear motion may not be a pure 

vibration and, if movement is allowed only along the 

z-axis, it is possible for some translation of the molecule 

to occur. We will consider first, the case where there is no 

molecular translation, i.e~; as R changes, the center of 

mass remains fixed with respect to the space fixed axis 

system. For a diatomic molecule with masses ma and mb' 

the center of mass is a distance uR from center A with 

· u = mb/(matmb). If the center of mass is to remain fixed, 

nucleus A must move by an amount udR and nucleus B by (1-u)dR 

(see Fig.(3.2)). For this fixed electron method, aH/aR 

= av/aR, as discussed at the beginning of the introduction. 

Using the spherical coordinates shown in Fig.(3.1), which 

are the most convenient for our pu~pose, then: 

av ZAZB + av-aR ­ araR2 


It is easy to show that 


~ = (1-u) cos eb ~~a = u cos eaC)R 


Therefore 


av = - --
ZAZB 

+ uZA 
cos ea ZB cos eb 


+ (1-u) ( 3 .13)
aR rR2 2 r 2 a ·b 

Now translation has no effect on the ~nergy, i.ev dE/dRT=O 
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where d/dRT implies tr~nslation (isotropy of space) , 

i.e. moving both nuclei by-amount dR in the same direction, 

dE ZB cos eb.= f p[ZA cos 0a _ ]dT = 0dRT ( 3 .14) 
ra2 rb2 

which merely expresses the fact that the electronic forces 

· an each nucleus are equal and opposite. Therefore, we can 

add any multiple of Eq.(3.14) to (3.13) without changing 

the resulting force at all. The result will be that we 

124 >d'ff . th ion < •can obtain. i erent expressions f or e same equat' 

If we choose to keep nucleus B fixed and allow nucleus A 


to move, then 


cos e
ZAZB ZAav a = - -- + (3.15)( ClR) Zb R2 2r a 


which implies that the center of mass moves by udR, i.e., 


One can easily show by integrating the electron density p 

over (3.15) that keeping .nucleus B fixed gives Eq.(3.13), 

the expression originally derived by Feynman and Berlin • . 

For scaled coordinate systems with scale factors 

dependent on R, it is not possible to reduce dE/dR to a 
~ 

one-eTectron integral. For example, for a diatomic molecule 

and trial functions constructed from confocal elliptic 

coordinates A = Cra+rb)/R, µ = Cra-rb)/R and ¢, ·see 

Fig.(3.2), l/R plays the role of a scale factor~ The 

http:Eq.(3.13
http:Eq.(3.14
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Hellmann-Feynman relation in that case for exact and stable 

functions becomes identical to the quantum mechanical virial 

(70) .theorem , i.e. 

RdE/dR + 2<T> + <V> = 0 (3.16) 

This comes about because now one has another choice of 

{ndependent variables, ~ andµ, and the electrons move 

during the differentiation. The movement is such that the .. 
internal angles ea and eb Qescribing the electronic 

pas i tion remain fixed as R changes , as shown in Fig. (3. 2) ·• 

This is exactly equivalent to keeping the ratios ra/R 

and rb/R fixed. It is easy to see then that: 

. T(R,r) = T(l,r') (3.17) 

R2 

since T is a homogeneous function of second degree. 

V(R,r) = V(l,r')/R 

since V is homogeneous of first degree. The notations 

T(l,r') and V(l,r') indicate that these three quantities 

are now independent of R1 and r' = r/R. Therefore 

()T -2T(l,r') -2T(R,r) 
()R ) r ' = = R 

(3.18) 
R3 

av -V(l,rv) -V(R,r)
= = ()R ) r' RR2 

( aH ) , = -2T-V ( 3 .19)
()R r R 

or that~~=-~ <$l2T+Vl$> which is equivalent to (3.16). 

The failure of approximate wavefunctions, eg. Reitler ­
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London unctions, co.nstructed from atomic orbitals rigidly 

attache to more than one nucleus to satisfy the electro­

static · heorem was due to the fact that they were a complete 

orbital following model and hence required "floating" to 

remedy he deficiency. Nevertheless, they satisfied the 

virial heorem and hence showed binding. The equivalence 

of thes two theorems demonstrates the close connection .. 
between the Hellmann-Feynman and virial theorems for scaled 

coordin te systems. In general, one can obtain conditions 

differe t from optimum scaling that lead to approximate 

wavefun tions for which the virial relationships are valid( 125). 

These c nditions will not lead to good approximate wave-

just as floating functions which satisfy the 

eynman theorem · · As Lo"wdi'n( 126 )give poor energies. 

the validity of the virial theorem is not a 

condition for testing the accuracy of a wave-

Only for exact and stable wavefunctions is the 

conditi to satisfy the virial and Hellmann-Feynman theorems 

functio s 

F,­

suffici 

3.2 	 mica! Binding 

We have shown on the basis of° wave mechanics that 

tric forces exerted on the nuclei by the molecular 

ic distribution can be interpreted from the electro­

static 	 iewpoint when the molecule is in a stationary state, 

ugh the charg~ distribution is dependent on the 
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in these papers 

electron·c motion in as much as the electrons have kinetic 

energy. 

erlin< 12 
> has made an interesting subdivision of 

the spac around a diatomic molecule into "binding and 

regions", according .to whether negative charge 

to push the nuclei together electro-

to pull them apart. The binding region is of 

the two nuclei, but in a diatomic molecule 

at each end to a conical boundary making 

an angle of 125° with the bond line for a homonuclear. 

This angle decreases wit~ increasi~g disparity in nuclear 

charge at both ends of the molecule so that in ethane, for 

example, even the electrons of the C-H bonds have a net 

antibind·ng effect on the carbon nuclei. This sort of 

. (105)
observa ion has been used by Bader an? Preston to 

usual notions of hybridization in determining 

geometr'es in three and four-center molecules. In an 

attempt give precise meaning to the covalent and' ionic 

bond co cepts, the approach was also extended to diatomic 

LiH, and HFCl4 ) o The interpretation made 

and f~lly expanded in an analysis of the 

55first-r rw diatomi.cs < > makes ~se of the electrostatic 

antibind · ng 

region tends 

or 

it 

point c 

in addi 

forceso 

arge model concepts of shielding and antishielding 

ion to polarization and overlap contributions to 

This differs from the Berlin treatment, primarily 

http:diatomi.cs
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because of the L.C.A.O. approximation inherent in the 

Hartree Fack functions used, whereby one can associate 

each mo ecu!ar orbital with distinct separated-atom atomic 

orbital • This enables one to see how the forces in a 

molecul change upon formation of a bond between the 

separat and correlate these with the types of 

bonding present . .. 
The force exerted on nucleus A in a diatomic 

molecul A-B is as we have seen above 


cos ea
ZA /p(r) (3.20) 
r 2 a 

When ea h molecular orbital is occupied the electron 

density is 
.... ....' 2 

P (r) = ~ n. ~· (r) (3. 21)
1 11 

where n. is the ·Occupation number of orbital <f> • , and the 
l! 1 

orbitals are assumed orthogonal so that one has the 

advanta e of the additivity evident in (3.21) It ise 

define a quantity f iA for each MO as the 

force e erted on nucleus A by the density in the ith MO 

multipl'ed by R2/zAQ This gives a dimensionless number, 

and the total force on nucleus A becomes: 

= 
ZA 

( z - E f. A) (3.22)
R2 8 i 1 

The for e on each nucleus is z~ro for large values of R 



ith MO correlates. This is a result of the fact that at 

this liml t the charge density on atom B exerts a field at A 

equal to that obtained from an equivalent numbe·r of point 

charges ocated at the B nucleus, irrespective of the 

symmetry 	of the atomic orbital. Each electron thus effectively 

ne unit of nuclear charge and for a molecule which 

es into neutral ·atoms, f ~iA = ZB and FA becomes 

r smaller values of R, however, the exact disposition 

of the c arge density in each orbital determines its fiA 

value. n increase in the fiA value over its value for 

large R ·mplies that the formation of the molecule has 

in a transfer of charge density to the region between 

i where it exerts a binding force on the nuclei in 

the simple shielding of an equivalent number of 

nuclear chargesw Such an MO is defined binding. The fiA 

shields 

zero. 

decrease ! at Re, in which case it is termed antibinding. 

ac~ f i value is the sum of three contributions which 

and for 

occupati 

binding 

did for 

an equal 
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the equilibrium internuclear separation Re. Thus 

two values of R, zB = I fiA (or ZA=I f iB for ZB). 

values of ·R each fiA value reduces to the orbital 

n number of the atomic orbital with which the 

remain unchanged, in which case it is termed non-

s it plays ttie same role in the molecule as it 

arge values of R where the density simply shielded 

number of nuclear charges. The fiA value may 
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are determined by the atomic and overlap populations. The 

force on A due to the dens.ity situated on A is termed an 

atomic force. This force is zero unless the atomic density 

on A is polarized. The overlap forces provide separate 

measures of the binding of both nuclei by the density 

resulting from the overlap of orbitals situated on A and B. 

Any inequality in the sharing of the overlap density by 

the two nuclei is made evident by differences in their 

overlap forces. The atomic de~sity on B will shield some 

fraction of the nuclear charge on B from A. Thus the 

contribution to the force on nucleus A from the density 

situated solely on B is called the shielding force (or 

screening force as used by Bader et al) G 

Using these definitions, one can qualitatively analyze 

the working concepts, ionic and covalent bond. An ionic 

bond resulting from the transfer of one electronic charge 

between the atoms has the following characteristics< 14 
> in 

terms of the forces acting on the nuclei: the shielding of 

the cationic nucleus should be decreased by unity and the 

shielding of the anionic nucleus increased by units corres­

ponding to the transfer of charge from one center to the 

other ~ The forces exerted by the· overlap density should 

be ideally zero, or at least small and unequal for the two 

nuclei~ as the transferred charge is centered on the anion 

as an atomic density and ·not ' in the overlap region~ This 
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transfer of charge will result in tbe cationic nucleus 

experiencing a net electric field of -l/R2. Thus, the 

remaining atomic density on the cation must polarize away 

from the anion to overcome the net attractive force. The 

atomic force term for the cation will thus be negative. 

The anionic nucleus will experience a force of repulsion 

due to the net positive charge centered on the cation. Thus 
.. 

the atomic density on the anion must be polarized toward 

the cation (positive atomic force) to achieve electrostatic 

equilibrium. A covalent(SS) bond, on the other hand, is the 

result of the transfer of charge density from each atom to 

the region between the nuclei where it is equally shared by 

both riuclei ~ Thus for a covalent bond the shielding forces 

exerted on both nuclei should be decreased, and by the same 

amount. The resulting repulsive forces should then be 

balanced by large and equal overlap forces. Ionic character 

will be made evident by inequalities in the shielding and 

overlap forces exerted on the two nuclei. 

The density distributions of N2, CO, BF, BeO, LiF 

are analyzed in .the light of the above definitions in an 

endeavour to determine the nature of their bonding. A 

comparison of the forces as a result of these density 

distributions for these five molecules should allow us 

to gain insight into their types of bonding which range 

from the purely coval_ent N2 to the nearly ionic LiF .. The 
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next step will then .be to analyze the changes of these 

forces as a nucleus undergoes an infinitesimal displacement. 

This will bring us into the realm of force constants. 

3.3 Interpretation of N2, co, BF 

In the density chapter, we have pict~red the 

formation of a chemical bond for these molecules along the 

lines of simple valence bond theory. This was considered .. 
from the viewpoint of the overlap of singly occupied 

orbitals . (po orbitals) of atomic densities derived from 

gound state valence states, with additional rearrangement 

of charge as put in evidence by the density difference maps • . 

In the force analysis which follows now, this method allows 

one to correlate the .various molecular orbitals with the 

appropriate atomic orbitals in the separated atoms as 

represented by their valence states. For N2 and co, a 

straightforward correlation is also possible from the orbital 

energies of the ground state free atoms listed in Table 3.1. 

Some difficulty is encountered with BF, since both the 2.sF 

and 2pF orbitals are all lower in energy than the corresponding 

B atomic orbitals. This would mean that upon dissociation 

of this molecule, according to the MO picture, one would end 

2 2 1up with the B atom in a P state (2sB2pTI
8

) and the F atom 

with the configuration (2s;2po;2pTI~) also in a 2p state .. 

In order to keep continuity of disc~ssion, we assume that 

each valence state, c9rresponding to the slightly perturbed 
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Table 3 .1 

ORBITAL ENERGIES 

Orbital 
B 

Energies 
c 0 F 

2s -0.495 -0.706 -1.244 -1.573 

2p -0.310 -0.433 -0.632 -0.730 

T·able 3. 2 


FORCES ON Na) IN N2 R = 2.068 a.u. 


a.o. MO f i (R=oo) 

ls 1 log 

ls 1 lou 

2s 1 2og 

2s 1 2ou 

2po 1 3og 

2p7r2 17fU 

Totals 

1.000 

1.000 

1.000 

1.000 

1.000 

2.000 

7.000 

fi(Re) 

1.160 

·l. 0 85 

2.682 

-0.463 

0.150 

2.433 

7.046 

A 

0.152 

0.074 

-0.042 

. 	 -0.775 

-1.766 

0.416 

-1.943 

0 

0 .0 08 

0.014 

1.842 

-0.167 

1. 221 

0.935 

3.853 

s 

1.000 

0 .. 997 

0.882 

0.470 

0.696 

1.082 

5.136 

a} Calculated fran Cade et al's function Ref. 59 

\.0 
0 
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ground state atoms, has one singly occupied pcr orbital. 

By this artifice, the Scr MO is always correl~ted with a 

pcr atomic orbital on each separated atom. The 3cr MO 

correlates with the 2s atomic orbital on the heavy atom, 

whereas the 4cr MO correlates with the 2s orbital of the 

light atom. We demonstrate the interpretation firstly for 

N2, following the account of Bader et al(SS) • .. 
a) ~ 

In this homonuclear case, each molecular orbital 

correlates with an atomic orbital on nucleus A and one on 

B. Of the pair of electrons in the ith molecular orbital, 

the one which correlates with atom A contributes zero to 

the value of f i at large R and the one which correlates 

with atom B contributes a value of unity (except TI's which 

give 2). Table 3.2 gives a breakdown of the orbital forces. 

The calculations are for Re = 2.068, i.e. the experimental 

distance. At the Hartree-Fock minimum, Re = 2.013, the 

total fi's are 6.986. This is an assurance that the wave-

functions are indeed accurate and will reproduce one-electron 

properties to a high degree of accuracy, probably to within 

1% of the true value, as suggested previously by Goodisman 

and Klemperer< 45 > .. The individual fi's do not differ 

significantly between those for the experimental Re and 

~artree-Fock Re. (see Appendix 3) 

One can obtain a quantitative measure of the binding, 
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or antibinding nature of each MO by comparing its fi 

value with unity. The log and lou are slightly binding 

due to what is termed innershell polarization, the 

polarization being towards the nuclei. This can be seen 

from the atomic contribution to the. force. The near zero 

overlap contributions indicate that no amount of charge 

has been transferred from either atom in the formation 

of the "core" orbitals. The 2og is a strongly binding 

orbital as its electron density exerts an attractive 

force on the nuclei which is almost three times greater 

than the simple shielding or nonbinding value of unity. 

f2Ju is negative so that the 2au orbital is strongly 

antibinding in the sense that it not only deshields the 

n~clear charges, but tends to increase the repulsion between 

the nuclei by pulling them apart. The total density in the 

2.og and 2au orbitals gives a small net binding (2.22) ThisM 

is slightly greater than the nuclear charge of 2. which 

is to be shielded. The strong binding force exerted by 

the 2ag density may be .interpreted as the result of two 

effects: the accumulation o~ charge in the overlap region 

and an inward polarization of the remaining atomic densit~es 

on each nucleus . The transfer of charge to the binding 

region is reflected in the shielding value being less than 

unity~ This disposition of the 2og density is characteristic 

· of all first-row homonuclears(SS) except for C2 and N2 for 
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which the atomic force contribution is small and negative. 

This would then mean that some of the density is back-

polarized and thus would also be responsible for the under-

shielding. In such a case an actual population analysis 

performed by integrating could only settle the issue as to 

how much charge is actually present. However, for binding 

purposes it is the electric field experienced by the nucleus 

which is of importance and _not the real population. The 

distinction between effective populations based on a field 

effect and real population numbers ' arises from the fact 

that we are looking at different moments of the density. 

-2 · The forces~ corresponding to the <r >moment, are in this 

work emphasized because they are what produces stability 

of molecules. The net populations corresponding to the 

zeroth moment of the density are not as significant from an 

operational standpoint. The large amount of charge density 

which is accumulated in the antibinding region by the 2cru 

orbital may be interpreted as the result of both an overlap 

and a polarization effect. A transfer of charge behind the 

nuclei results in a negative overlap and a considerable 

antishielding relative to the separate atomsw In addition, 

the atomic densities are strongly polarized outwards and 

exert a fairly large atomic force drawing the nuclei aparte 

The resultant feature of the density in the ~crg and 2cru 

molecular orbitals are a net attractive force from the 
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overlap density (the 2·crg orbital placing more density in 


this region than the 2cru removes) and a net antibinding 


force from the atomic densities. 


The surprising 'fact that the 3crg orbital shows 


antibinding (as opposed to . the MO theory classification of 


· it as a weakly bonding orbital) can be explained from the 

sign of its atomic force contribution. The charge density 

transferred into the binding region as the result of the 

· overlap of , 2pcr atomic orbitals is seen to be very contracted 

along the internuclear axis where it exerts a correspondingly 

large binding force on the nuclei (see Fig. 6 in Bader 

( 55) ( 87) ' . 
et al ) • Ruedenberg has suggested that the main 

potential energy lowering of the electrons in a molecule 

occurs by such a contraction or clustering of valence electron 

density. There is also a very strong back polarization of 

the atomic density in that orbital, which results in an 

atomic force term which more than negates the large positive 

overlap contribution to the force. The 1nu orbital, 

density is typical of a n-bond. There is considerable 

antishielding of the nuclei relative to the separated atoms, 

indicating that a substantial amount of charge is transferred 

to the overlap region. This overlap density is not particularly 

effective in binding the nuclei due to the presence of a 

nodal surface along the internuclear axis • . It is the sum 

of the overlap and shielding cont~ibutions for the lnu 
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Table 3.3 

Forces on c in co Re = 2.132 a.u. 


a.o. MO fi (R=oo ) f i (Re) A 0 s 

ls 2 la 2.000 · 2.000 0.000 0.000 2.000 
0 

ls 2 
c 2a 0.000 0.266 0.257 0.009 0.000 

2s 2 3a 2.000 2.527 -0.495 1.198 1.824 
0 

2 s ' 2 c 4a 0.000 1. 271 -0.152 0.396 1. 027 

2p 1 +2p 1 
ac ao Sa 1.000 -1.009 -2.334 0.788 0.536 

2pl +2p3
Trc 1T o 11T 3.000 3.056 0.216 0.762 2.078 

Totals: 8.000 8.111 -2.508 3.154 7.466 

Forces on ·o in co 

a.o. MO f i (R=oo) f i (Re) A 0 s 

ls 2 la 0 .000 0.319 0.319 0.000 0.000 
0 

ls 2 
c 2a 2.000 2.002 ·o.ooo 0.002 2.000 

2s 2 
0 

3a 0.000 2.346 0.955 1.178 0.213 

2s 2 
· c 4a 2.000 -1.295 -2.786 1.167 0.324 

1
2p~ +2pac 0 

Sa 1 .. 0 0 0 0.962 0.524 -0.528 0.966 

1 3
2Prrc+2:p1T 

0 
l 1T 1.000 1. 739 0.589 0.768 0.382 

Totals: 6.000 6.072 -0.398 2.586 3.884 
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Table 3.4 


Forces on B in BF Re = 2.391 a.u. 


a. o .. MO f i (R=oo) f i (Re) A 0 s 

ls 2 
F lo 2.000 2.000 0.000 0.000 2.000 

ls 2 

B 2o 0.000 0.352 0.336 0. 016 0.000 

2s 2 
F 

3o 2.000 2.256 -0.310 0.408 1.999 

2s 2 
B 4o 0.000 · 2. 016 -0.347 0.727 1. 636 

2po 1 +2po 1 
B F 50 1.000 -1. 0 42 -1.348 0.015 0.291 

2p4
TIF l TI 4.000 3.490 0.059 0.349 3.082 

Totals: 9.000 9.072 -1.451 1.515 9.008 

Forces on F in BF 

a.o. MO fi(R=oo) fi(~e) A 0 s 

ls 2 

F 
lo 0.000 0.325 0.323 0.027 0.000 

ls 2 
B 2o 2.000 2.003 0.000 0.003 1.999 

2s 2 

F 
3o . 0.000 1. 569 0.991 0,. 533 0.045 

2s 2 

F 
4o 2.000 -0.834 -2.806 1.793 0.179 

2po 1 +2po 1 

B F So 1.000 0.914 0.672 -0.732 0.972 

2p4
TIF lTI 0.000 1. 062 0.632 0.367 0.064 

Totals: 5.000 5.037 -0.189 1. 966 3.259 
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orbital which is equal to unity, the nonbinding value. 

Thus the result of antishielding of the nuclei and trans­

ferring the charge density to the overlap region does not 

.in itself, in the case of a pi-bond, result in any signi­

ficant net binding. 

b) CO, BF 

In approaching these two molecules, we must now deal 

with a proliferation of numbers pertaining to the various 

orbital contributions to the forces. As the aim of this 

discussion is of comparative nature, it is more appropriate 

to demonstrate graphically _comparative features. In 

Figures (3.3) to (3.6} are plotted the atomic, overlap 

and shielding components of the forces for the orbitals 

3a, 4a, Sa and ln respectively. This is done for each atom, 

for which, in parenthesis, are listed the total forces 
I . 

corresponding to infinite separation, namely fi(oo) (see 

Table 3.2). A zero fi( 00 } indicates charge centered on the 

nucleus considered whereas a non-zero value measures the 

shielding population of charge situated on the other nucleus. 

The la and 2a orbitals require · little discussion as they are 

the inner ls shells of each atom.. These are all slightly 

polarized irito the bond as in N2, and show negligible overlap 

effects as expected for such tightly-bound densities (see 

Tables 3.3 and 3.4 for the actual forces) .. 

The 3a orbital density as seeri from a density map(GO) 
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is known to have the most density. over all the other orbitals 
,I I I ,_ , "" .. ') 

in the binding region. This is confirmed by the larger 

overlap forces for it as compared to other orbitals. The 

maximum force occurs for N2 and is smallest at F, as a 

result of it being mainly 2s;. This localization of 

charge on the heavy nucleus is portrayed by the drastic 

decrease in shielding force from B to F. The localization .. 
is further indicated by the increase of atomic polarization, 

in the forward direction, at the heavier nucleus. The / 

negative polarizations at B and C indicate some delocalization 

of the orbital density behind these nuclei~ The overlap 

forces increase from both extremes B and F towards N. This 

suggests therefore that delocalization of this orbital is 

least for BF and largest for N2· In terms of net binding 

characteristics as delineated in the previous discussion,. 

there is net binding at all nuclei·, since for all cases the 

total force exceeds that predicted for the separated atoms~ 

This is in keeping with the usual strong bonding characteristics 

of that orbitale 

The 4cr orbital is characterized for N2 by a node in 

the middle of the bond in view of the ungerade symmetry 

inherent~ Thus, one would expect it to reflect characteristics 

quite different from that of the 3cr orbitalQ In fact, the 

overlap force is smallest at N and increases towards B and 

Fv in opposite direction to that of the 3cr orbital~ The 
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overlap force is maximum at the F nucleus. However, this 

is offset by a large backpolarization of the density on that 

.nucleus, an indication of large pa character of that density. 

This backpolarization causes the orbital to be extremely 

antibinding. Maximum binding occurs at the other end of 

the BF molecule, i.e. at B, as a result of a large shielding 

force from the density on F. In fact, because of the way .. 
we have correlated this orbital with the separated atoms, 

this would suggest that charge has been transferred from B 

to Fe The orbital is evidently delocalized in the bond 

region, as seen from the overlap forces, being the least 

so for N2 because of the nodal property . of a 2au orbital. 

In the present scheme, the orbital is net binding at B 

and C, and net antibinding at N, o, F. For the latter three 

nuclei, the total forces .are negative and therefore fall short 

of the non-binding shielding value of 2.0 (1.0 for N). 

The Sa orbital is the "mirror image" of the 3a orbital 

as much of ~he charge is now localized on the light nucleus. 

Therefore, the shielding increases in going from B to Fo The 

overlap force is .maximtim at N and minimum at F, where it is 

in fact negativeo A negative overlap force is also exhibited 

at 0.. The reason for this behaviour can be found in the 

iarge backpolarizations of atomic densities on B and Co In 

the density discussions, we have already ·indicated that for 

~hese two nuclei, the atomic densities in the molecule are 
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more diffuse behind the nuclei than in the free atoms. 

Thus charge removal must occur in the bond region, especially 

near the heavier nuclei, via the agency of overlap in order 

to enhance expansion of density behind the nuclei at the 

other end of the molecule. This is then reflected in the 

signs of the overlap forces. There is charge delocalization, 

nevertheless, onto the heavy nuclei. The shielding forces 

at B and C indicate the delocalization is actually larger 

than for the 3cr .orbital. For this latter orbital, the 

charge density was atomic 2s2 situated mainly on O and F~ so 

that one would not expect• it to be appreciably delooalized. 

The Scr orbital must involve pcr atomic character of density 

on the light nuclei as indicated by the large negative atomic 

forces for these. As a result of these, the orbital is anti­

binding at B, C and Na At O and F the orbital is essentially 

non-binding, the principal contribu~ion to the force being 

from shielding effects of density at the other nuclei. The 

orbital is therefore considerably less binding than the 3cr 

orbital, which has most of the charge situated on the opposite 

end of the molecule. 

The ln orbital is distinguished from the a orbi~als 

by a nodal plane in which lies the internuclear axis. This 

has the effect of introducing undershielding of n qensities 

which are by symmetry requirements situated perpendicular to 

the internuclear axis e The maximum total force occurs at B1 
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decreases to a minimum at F. The principal cause of this 

trend is portrayed by the shielding force, which although 

is undershielding because of the .geometrical nature of n 

densities, nevertheless contributes mostly to the force at 

the light nuclei. The overlap and atomic forces are small 

compared to these. Maxi~um pverlap occurs at N2 • The 

overall picture is then of a density distribution which 

becomes polarized towards the more .electronegative element. 

Yet the overlap forces are equal at both ends of the molecule. 

Finally, the orbital is slightly antibinding at B, essentially 

non-binding at C and binding at the other nuclei, the 

net binding increasing in the direction towards F. 

3.4 Spectroscopic Considerations_ 

The above attempt at an orbital force analysis runs 

intb some difficulty whenever an absolute correlation of 

molecular orbitals with separated atoms is not feasible, BF 

~eing one example. We have made it a point to retain the 

simple valence-bond picture of bond formation, by insisting 

on single occupancy of the pa orbitals of the separated atoms. 

In the case of BF·, dissociation of the molecule af? seen from 

.the atomic orbital energies in Table 3.1 would predict the 

separated atoms to be in the configurations B{2s22pnl) 

0and F ( 2s22pa22pn3) This c_orresponds to the ML= ±1 compone.nts 

of the 2p atomic ground state of thesep as opposed to the 

ML = 0 component of that same state iriherent in the valence­
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bond picture. In order for this .last picture to be 

operative, one would have to invoke crossing of the 2pcrB 

and 2sB components of the 4cr and Scr orbitals as shown in 

the following diagram: 

2p~ ~	.... , 

\ ..... ........ 2

\ ' .....~ 

\..--- .- \ 

2s 2 -<"-- \ \ 
B ' \ \', 	 \' 	\ \ \

' ' , ..,.4 ' 2pn4 2Ps
' 	 \ ..a.,.u._ __ - ~ ~--~~ F 
'\ \ ,,,,,,,,,. 

'\.402__ -- -2;;~ 

Since we adhere to the valence-bond picture in correlating 


the molecule with the separated atoms,, some degree of 


arbitrariness is therefore imposed on the assignment of net 


binding properties of the .MO's, properties defined with 


respect to the separated atoms. One might have expected 


this arbitrariness since using orbital fi values in an 


interpretive scheme violates a desirable tenet of any 


· 	 acceptable, interpretive approach, n'amely invariance to 

orthonormal transformations. The usefulness of the MO's 

resides nevertheless in the fact that when they are calcu­

lated by the Hartree-Fock method, the orbital energies are 

to a first approximation the ionization energy (Koopman's 

( 127)theorem ) , One can also on qualitative grounds, assign 

. d ' t th (78,128)bon ing powers o ese Q Such facility in correlating 

spectroscopic features is not displayed by localized 
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129equivalent orbitals( ) since removal of an electron from 

a molecule, for instance, comes from all over the molecule 

and not from a particular localized region of space(lJO). 

In order to pursue any possible correlation between orbital 

forces and spectroscopic properties of these for a molecule 

such as BF, an approach will be tried which puts less 

emphasis on the correlation with the forces from separated .. 
a.toms. The previous analysis is still quite meaningful for 

N2 and CO where the correlations derived from both the MO 

and valence-bond methods can be made to coincide without 

the difficulty of level crossing, by virtue of the relative 

energies of the atomic orbitals of the separated atoms being 

just right for such a correlation. 

Concerning the usual bonding powers of these higher 

orbitals, we have noted before that upon ionization of a · 

Scr electron, BF and CO undergo a bond length decrease of 

3.3% and .9% respectively whereas N2 upon loss of the 

equivalent, electron, namely 3crg, undergoes a bond length 

increase of 2.7%. Before remarking on the significance of 

this, it must be realized that the ions, other things being 

equal, are expected and observed to have usually shorter 

bond lengths than the uncharged molecules due to the 

contraction of the orbitals by the excess nuclear charge, 

i.eQ due to less shielding. Robinson(?G) has used a standard 
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arbit~ary 4% correction due to this ion effect in the study 

of bonding powers of MO's in isoelectronic series. Thus 

he is able to show that the bonding ability of the So orbital 

decreases as the electronegativity difference or polarity 

increases, and furthermore, that the bonding power of the 

2au orbital in N2 is approximately half of that of the 

4o orbital in CO. The ·general conclusion is that for homo-

nuclear molecules So is mo~e strongly bonding that 4o but 

as the electronegativity difference between the atoms 

increases, 4o becomes more strongly bonding. A knowledge 

of the orbital forces should allow for an even more direct 

· physical i~terpretation of the ionization process. The 

removal of .an electron from an orbital whose electron 

density exerts a force drawing the nuclei together should 

result in a decrease in the total attractive force in the 

ion and thus to an increase in Re. The use of orbital 

forces in this way was first suggested by Berlin and applied 

by Clinton and Hamilton(l)l) and by ·Hurley< 132 > Q These 

authors made the assumption that the forms of the orbitals 

remain unchanged during the ionization process. This 

simplification termed the rigid orbital hypothesis by Hurley 

is appealing as the net force of repulsion or attraction 

resulting from a vertical ionization will be simply one-half 

of th~ original force exerted by the pair of electrons in 

the 1th MO. 
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Within the rigid orbital approximation, one can 

define a net force change, resulting from such an ionization, 

more explicitly. This will thus give us a measure of the ehan9e 

of the binding effect of an orbital. The definitions of 

bonding and antibonding, which are derived from energetic 

considerations and nodal characteristics of the molecular 

orbitals correlate remarkably well with the empirical defi­

nition regarding observed changes in bond length which 

accompany the removal of an electron in a diatomic molecules~ 128 ) 

In order to compare binding characteristics and see if these 

correlate with bonding characteristics we define a 6fi,. 

corresponding to the change of force arising from the removal 

of an electron out of a possible ni electrons in the orbital 

i. The net force which will tend to pull the nuclei together 

or apart is the result of the sum of the forces operative 

at each nucleus. If the forces at both nuclei are positive, 

i.e., pointing into the bond, then they will pull the nuclei 
A B . 

together. The net force is defined by {ZAfi+ZBfi), where ZA 

and z are the nuclear charges ~t A and B, f~ and f~ are
8 1 1 . 

the force per unit charge experienced by these nuclei 

respectively .. The definition has meaning with respect to 
~ . 

some arbitrary fixed point from which one views the motion 

of both nuclei at the same time {the point could be the 

~enter of mass as an example) .. Ionization reduces this 

net force b~ the factor l/niv since we are ionizing one 
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Table 3. 5 

FORCE CHANGES UPON IONIZATION 
(RIGID ORBITAL APPROXIMATION) 

Orbital ARe/ReMolecule State Ll f i Exptl. il Re/ReIonized (predicted) (%) 

N2 x2z:+ 
g 

A211u 

B2l:+ 
u 

3crg 

lnu 

2cru 

-1.05 

-8.516 

+3.241 

+ 

+ 

+1.9 

7.2 

-2.0 

co x2z::+ 

A2IT 

5a 

l7T 

-0.821 

-8.062 

+ 

+ 

-0.9 

9.6 

B2l:+ 4cr +1.367 +3.4 

BF X2I+ 

A2TI 

50 

l7T 

-1.508 

-6.752 

+ 

+ 

-3.3a) . 

B2l:+ 4a -1.287 + 

a) This result is somewhat questionable in view of the 
,.; . experimental uncertainties (see Ref. 76). We thank 

Dr. P. E. Cade for pointing out this uncertainty. 
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electron out of ni. 6fi therefore becomes 

(3.23) 

If the net force is positive, then the resulting force 

upon ionization has been reduced b~ the amount 6fi. A. 

negative 6fi therefore implies a decrease in force, and 

hence a bond lengthening; a positive 6fi implies an increase 

, in force and therefore a bond . sho~tening, since positive 

forces are defined as being attractive. The 6fi's and the 

6~ Vs in Table (3.5) agree well with the experimental 6Rers 

for N2• In the case of co and BF, the 4a and Sa orbitals 


et al(SS)
do not agree as well. As Bader have shown, there 

is considerable reorganization of the charge density in 

orbitals other than the ones involved in the ionization 

processQ This problem they have 
. 
nicely discussed for some 

~ 

of the ions, both positive and negative, of N2 and 02. 

Contraction of the orbitals and hence bond shortening 

occurs, but not regularly for each orbital. This is demon­

strated by an increased binding of the remaining skeleton 

for positive ions as compared to the neutral molecule. 

The Scr orbitals in CO and BF indicate that this contraction 

0ccurs for the ion as seen from their 6fi's. The 4cr orbital 

in CO is predicted to decrease the bond length upon loss of . 

one electron, whereas experimental results indicate the 

opposite effect. As this loss comes from an orbital the 
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density of which is extremely backpolarized at the oxygen 

(atomic force of -2.8), the experimental result suggests 

considerable reorganization of . charge which will tend to 

pull the nuclei apart even more than such an orbital density 

did in the neutral molecule. Then orbital ~fi's correlate 

very well with the experimental results. As is well known 

by diatomic ·spectroscopists< 133 ) bu~ not generally appreciated 
~ . 

among chemists, ln is a more effective bonding orbital than 

Sa . This has been discussed theoretically in terms of 

overlap populations, as a bonding criterion, which i~ the 

last analysis Mulliken admits has no theoretical foundation 

and is fallible in extreme cases< 134). The ~fi's demonstrate 

the binding characteristics to be in agreement with the 

experimental predictions, and therefore support the bonding 

properties of this orbital. In the ionization of a n 

electron there is considerable increase of the bond distance 

and this is fairly independent of bond polarity. This 

independence of polarity may be understood if one remembers 

that the n-bond behaves like a · covalent bond as far as the 

overlap forces are concerned, as seen from the equality of 

these forces at both nuclei in the same molecule (Fig.(3.6)). 

The increased polarity of the ln orbital is evident from the 

shielding forces. However, the increasing nuclear charge 

in going from N to F enhances any forces resulting from 

polarizations and overlap densities situated at these nuclei, 
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and thus equalizes to a large extent the 6fi's. The result 

is that orbital polarities as defined from p~pulation 

analyses{l0 4) which reflect integrated charge densities 

associated with a particular atom, are not able to interpret 

the insensitivity to polarities of the bonding powers of 

the lw orbital. It is the forces operative in the molecule 

from which one can predict ~fi's (preferably with non-rigid . 

orbital wavefunctions of the ionized molecule also), which 

are a cause for the similarities of the binding {and 

bonding) characteristics of the ln orbital. 

The usual picture of localized "lonepairs" is not 

so evident using a force analysis. Energy considerations 

seem to indicate the existence of such isolated entities. 

For instance, Mulliken{lJS) long ago ·pointed out that 

discrepancies between free atom ionization potentials and 

"lone pair" ionization potentials in molecules can be 

reconciled simply by invoking electrostatic interactions 

(dipolar and charge transfer) . Absence of vibrational 

structure on some Rydberg series and in photoionization 

has been often cited as evidence(lJG) for the presence 

of such nonbonding electrons. The force analysis suggests 

that such entities do. not exist as isolated in view of the 

presence of sizable contributions from overlap and shielding, 

indicating delocalizationm The largest backpolarization 

seems to come with largest overlap. This appears at F and O 
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in the 40 orbital, implying significant hybridization in 


the chemical sense but also a fair amount of delocalization. 


This is cons istent with the r~cent population analysis done 


by Davidson(l0 4 ) on these same molecules, where it was 


shown that more electronegative element has the larger 


degree of hybridization in each case. Although the back-


polarizations are large fo r the heavy ~uc lei, the exact 


disposition of ~hes 2 c~ar; es ca~ best be i~f ~~~E~ fro~ the 


density and de:is j_ -_y d ifference diag-rams. IL f.:...c ... , i t was 


shown in t he _;,re v i ous chapter, that: for t h e heav~.. e :· u uc l ei, 


atom~c radi~ ~or densities situa ted on them are v irt ~ l :y 


identi c~: to the radii of free atoms. Th is then demons ~~ates 


that -ch e charge accumulated behin d t he heav v nuc::.-ei res i:...>. e s 


i ~ a region close to these. The incrc 2 s 2 i n c~ar ~ e _n t~~ t 


region is slight ~7 ~~rger for F t h an fo~ 0 . 


position as ,gau92---::. by the magnitude o f th e:. a ·.::..orr .. .-:· E.. ~ >~ 


overlap force s s .2c, g ests tha ·.: for 0 the displacenle ::.. ~.·::: of 


charge occur 2~ch closer to that nucleus. The 3.mc .. .:.·::-. o ~ 


charge dis:f,- : aced behind the two nuclei O a:1d ? wl: i ·.: .. ! is 


0 . 18 c.. y-_::: r • 2 0 respective 1y is not in a cccc ~- >7 :.. _.. :.1-·_ ,_-_ us ~ 3. l 

large ..::. is placements associated with i s o ~_ c:. J:::e -:'. 1
: ~:c_., _ . -~ 3. L : .... . 

.A t t r .. e: other end of the molecules CO 2 1-_ ::.:. -:=, .~ ch 2 

·;·_ 2 n s i :~.:..e s ~ :nd i.- - -::ed also charge trans fer behi nc. · ~- ,_:_ . ·.le :::...:.:. 

-. .. - - ~ - :- ::.a.;:; ..-- ~ tude of which was equal :.=or N,. ·~ . C .1 3 a nd is at 

~h2 ~ i fference in disposition o ~ ~~2-~ i~ 
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characterized by the increased diffuseness of these charges, 

thus correlating with the decreasing nuclear charge as one 

goes from N to B. For C and B, t~e "lone pair" is normally 

associated with the Scr orbital. Interestingly enough, at 

B, for this orbital there is less overlap and less back­

polarization as measured ~y the forces. Furthermore, the 

overlap force at F fo·r this orbital is more negative than 

at O, indicating more charge removal from near the F nucleus 

as compared to o. This therefore substantiates the infor­

mation obtained from the density maps, that the charge 

accumulated behind B is placed farther away behind that 

nucleus than behind C for CO. Thus, in this series, the 

lightest nucleus has the most diffuse backpolarized charge 

and is disposed farthest away from the binding region. 

This sort of behaviour is further s~bstantiated by a recent 

calculation of Huo< 137 > on some excited states of BeO 

where it is shown that the Scr orbital displacement away 

from the nucleus is strongest in this molecule because of 

the largest ratio <Z>Scr/Re as compared to C01 BF, NO and 

CNe This is most likely due to BeO being the most hetero­

nuclear of the seriese Such "lone pair characteristics" 

of the Scr orbital is also predicted by qualitative MO 

Gtheory{l)S) The density map analysis shows that this latter 

approach exaggerates the amount of charge placed behind the 

nucleie The importance of this ba~kpolarization depends on 



116 


the nuclear charge at which this occurs. For in terms of 


forces, the larger the backpol~rization force f · and the
1 

larger the nuclear charge, the greater is the antibinding 

of the So orbital. This will then influence the stability 

of a molecule considerablyo For LiF, for instance, one can 

predict the So density to be still more diffuse behind Li 

than behind Be in BeO. However, in view of the small 

nuclear charge of Li, there probably will be little effect 

on the stability or instability of the molecule. The more 

important aspect to be .considered then, will be the previous' 

localization of this density. 

In summary, a comparison of the partial forces on· 

A and B for a particular orbital can provide a quantitative 

comparison of the effectiveness of this orbital density in 

. binding the nuclei. From Table (3.5), the 4o orbital can 

be seen to be more binding as one goes from N2 to BF. This 

is supported by the decrease in the Af i values for that 

orbital in going to BF. The 4o orbitali therefore, although 

strongly antibinding for N2 as seen from Fig.(3.4), changes 

binding characteristic at BFe For this molecule, ARe should 

be quite large upon loss of one 4o electrone The So orbital 

is more difficult to characterize. The localization of 

density on the light nuclei B and C is not complete, less 

so than for the 3o orbital for instance, The So orbital is 
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always strongly antibinding with respect to nucleus A but 

goes from moderately antibinding in N2 to essentially 

nonbinding at O and F. Thus one may classify 

the orbital as being totally an antibinding orbital. This 

would agree with the experimentally observed bond length 

decrease for CO and BF upon loss of such an electron 

through ioni zation.. The l TI orbital is seen to be in 

general binding both from the ~fi's in Table (3.5) and 

the orbital forces in Fig.(3.6). It appears to be a 

characteristic of this orbital that the 1T density is 

polarized in a direction counter to the direc.tion of charge 

transfer in the a distribution as demonstrated by positive 

atomic forces and nearly equal overlap forces at both 

nuclei in the molecules for the 1T density. This is, therefore, 

the primary cause for its binding character being prevalent 

in these molecules. 

3.5 Interpretation of LiF and BeO 

In the previous chap~er on densities, these two 

molecules were shown to have quite different density distri­

butions as compared to N2 , CO and BF. Trends displayed by 

this latter series were found to go the opposite way for LiF 

and BeO. The di~tinctive features foi these were the 

tightening of density at Li and Be, small regions of charge 

transfer behind these nuclei in addition to some charge 

removal in front of these. Charge transfer to the heavy 
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Table 3.6 


Forces on Li in LiF Re = 2.8877 a.u. 


a.o. MO fi(R=oo) f i (Re) A 0 s 

ls 2 

F lo 2.000 2.oo'o 0.000 o.ooo 2.000 

ls 2 
Li 2a 0.000 -0.338 -0.418 0.076 0.004 

2s :t: 

F 3a 2.000 1.955 :..o. 0 71 0.038 1. 987 

1 
2sLi2paF 4a 1. QOO 1.994 -0.297 0.095 2 .197 

2 1T 4 p F 11T 4.000 3.503 0.019 0.251 3.233 
Totals: 9.000 9.115 -0.766 0.460 9.421 

ionic case(Li+F-) 10.000 -1.000 0 10.000 

Forces on F in LiF 

a.o. MO fi (R=oo) f i (Re) A 0 s 

ls 2 .
F 

10 0.000 0.185 0.184 0.000 0.000 

ls2Li 2a 2.000 2.006 0.007 0.030 1.969 

2s 2 
F 3a 0.000 0.595 0. 46 8 0.115 0.014 

2sLi2po~ 4a 1.000 -0.378 -1.141 0.753 0.044 

2p1T4
F 

11T .o,. ·0-0·0· . ·0·.·6 ·02 0.412 0.171 0.019 

Totals: 3.000 3.045 -0.070 1.069 2.046-
ionic case(Li+F-) 2.000 1.000 0 2.000 



TABLE 3.7 


FORCES ON Be IN BeO Re = 2 . SO a. •u . 

a .. o. m.o. fi(R=oo) f i · ( Re) A 0 s 
--· 

ls 2 
0 

ls2
Be 

2s2 
0 

2s2
Be 

2pn6 

Totals 

lcr 

20' 

30' 

40' 

lTI 

2.000 

0.000 

2.000 

0.000 

4 .. 000 

8.000 

2.000 

-0 .. 722 

2.059 

1.,684 

3.019 

8.040 

o.ooo 

-0.769 

-0.240 

-0. 455 

0.072 

-1.391 

0.000 

0.046 

0.323 

0.569 

0.550 

1.488 

2. 0.00 

0.000 

1.976 

1. 570 

2.396 

7.943 

. .ionic ( +2 -2)Be o 10.00 -2.000 0.000 10.000 

FORCES ON 0 IN BeO 

a.o. m.o~ f i (R=00 
) fi (Re) A 0 s 

1 2 so 10 0.000 0.320 0.320 0.000 0.000 

ls 2 
'Re 

20 2.000 l. 994 0.000 0.013 1.981 

2s2 
0 

2s 2 
Be 

2p'1l 4 
0 

30 

40 

Jn 

0.000 

2.000 

0.000 

1 ~ 306 

-0s815 

1.235 

0.835 

-2.768 

0.521 

0.427 

1. 784 

0.536 

0.045 

0.168 

0.178 

t-' 
t-' 

"° 

Totals 4.000 4.041 -1.092 2.760 2.372 

. . (B +2 -2)ionic e o 2.00 +2.000 0.000 2.000 



--

120 

Li 
.. (2) 

-I-

-t-

-!--

•. -!--

-!--

-t-

~.... 
. 

-t-

-~ 

-.... 

-I-

- I-

-!~ 

-t- .· 

30- m .o. 

Be c 0 F 
(2) (I)I (0) (0,: 

Total 

'/ ' 
/ ' \ \. I ,, \ 

_,.,ti- - \l 
\\ 

\ 
' . \I · 8 

\\ 
\·\ 

Overlap \\ 
\ I \ 

\ 
\ 
\ 

\ I \ \ 

\ I \ \,, \I ·2 \\ 
\~ \

I\ 
' 

\\ 
\ \I ' \ " I \ Sc reenang \ \ 

\ ' \
I 

' I·6 
I 
I 
I 
I 

I 
I 

I 
I 

----- ,t·O 
', 

/ 
/ 

/. ' 

' 
I ' ' 
I 

I 

I 

. ~ 

\ \
\ 
\ 

\ 

,.\} 
I 

\ 
\ 

\ 

\
\ I \ \\I \ .. 

\~ ' 
I\ \ 

\ 
I \ \ 

\ 

I
/ \ 

\ 
\. 

_,_ -- ~ 
Atomic 

" 

,), 



4 CT m.o. 121 

LI Be c 0 F 
( I ) (0) <I > (2) ( I ) 

2·4 

'·6 

10·8
l 
I 

·0 . 

·4 

·8 

-

-

·6-

-2 4 

\ 

'\ 
~ i 

~ 

I 

I ' 
\ 
\ 

\\,, 
\ \ 
\ \ 
\ \ Screen1ni 

I 
I 
I 
I 
I 
I 

\ 
\ 
\ 

\ 

-
, 

/
/ 

/-­-

\ 
\ 
\ \
,\,, 

\ ­
\\ 

\ I
\{,, 
I '\ 
I 
I--OverlaR I, - ......... -

...... ... 
\ 
\ 

\ 
\ Iota I 

' ' ' ' / 
/ 

/ 

~' Atomic 
.\. 
\ r 
\ I 
\ 
\ 
\ 
\ 

I r 
I 
I 
I 

\ 
\ 
' 

I 
I 
I 

-3t2 

Fig. (3"8} 

I 



17Tm.o. 	 122 

3•6 

3•0 

2·4 

I · 8 

1·2 

I 
I O· 6 

Li Be· c 0 	 F 
(4) (4) 	 (2) (0) (0) 

'\ 

\ 

\' 

\


\ ' ·\ ' 
\ 
\ 	

\ 

',. \ 
.. 	 \ 

•. \ 
\\ \\ \ .' 

' 	\ 
\ 

' Tota I 

\ ' \ 
\ \ 
\ 	 \ 
\ 	 \
\ 
\ 	 \ 

\\ 
.\ \ 
\ \ 

\\ 
\ 	

\ 
\ 

\ 	 \ 
\\ 
\ 

\sere ening \ 
\ \ 

. \Overlap \ 
I \\ \ 

\I \\
I 

I 

',,, 	 \ 
\I 

I 
J \ 

\ 
\ 

; " ,,
I 	 ,,.{ ' ,,

I Atomic · ,,. 
aI 	 , I \ \ 

\
I 	 \ 

\I \/
I 	 ' ' '--	 '
-O·O 


Fi<;]• (3i:9} • 



123 


nuclei O and F was also put in evidence by the ~P maps, 

the transferred charge being distinctively separated from its 

original nucleus for LiF but less so for BeO. In view 

of these features, one can expect that a force analysis 

will further accentuate these charge transfer effects, for 

instance, by deshielding or overshielding of nuclei, small 

and large overlap forces, and finally back and forward 
~ 

polarizations arising from transferred charge. 

In Tables (3.6) and (3.7) are listed the orbital 

contributions to the forces, with further subdivision 

into atomic, overlap and shielding components. The appro­

priate correlations of the MO's with the various separated 

atom orbitals are indicated, with their corresponding fi(oo), 

the effective electronic charge seen from one nucleus, for 

the separated case. The orbital contributions are further 

displayed graphically in Fig.(3~7) to (3.9) in which has 

also been included the forces for the covalent isoelectronic 

analogue c 2 . The discussion of this molecule via density 

and force analyses has been reported previously by Bader 

et al(SS). The forces have also beeri discussed for LiF( 1 ~ 

before~ LiF is reconsi~ered here along with C2 for completeness 

and also more extensively, as emphasis will eventually be put 

on force constants and field gradients. The lcr and 2cr 

orbitals, corresponding to ls2 density on the heavy and 

light nuclei respectively as seen from the shielding forces 
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(see tables), demonstrate new features of the atomic 

polarizations at Li and Be. The ls2 atomic densities are 

polarized behind these nuclei whereas· at the heavy nuclei O 

and F, these are polarized into the bond. In the series 

N2, CO, BF, all inner shells are polarized forwards. 

The backpolarizations of atomic densities at Li and Be 

are c}r'eatest for the ls2 density, which is in the 2cr 

6rbital. These correlate with the increase in charge 

behind Li and Be as displayed ~y the density difference 

maps, using both neutral and ionic species as the separated 

constituents .. 

The 3cr orbital, as seen from Fig.(3.7) indicates 

large localization of the charge at the heavy nuclei, 

corresponding to 2s densities from the orbital correlations. 

The shielding fi's at Li and Be are very close to 

the separated atom value of 2.0. The magnitude of these 

decreases to zero at F, indicative . of n·early complete 

localization of this density in the heavy nucleus. The 

overlap contribution is maximum for the most covalent 

molecule, c 2 , decreasing to zer~ i~ LiF.. There is a small 

overlap contribution at both nuclei in BeOo The charge 

localization is thus less perfect for BeO as compared to 

LiFQ Delocalization is maximum for c2 • The characteristics 

of the 3cr orbital for the series N2, co, BF were the same 

as for C2~ In passing to BeO and LiF, this characteristic 
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of maximum delocalization and concentration into the bond 

region is reversed by virtue of the high electrostatic 
. 

field of the nuclei O and F. The 3a density therefore 

ae,quires 2s atomic character centered on the heavy end for 

·the molecules BeO and LiF. The orhital as a result of this 

is most binding for C2, binding at O and F, and essentially 

non-binding at the light nuclei Li and Be • .. 
The 4cr orbital demonstrates increased shielding 

of the heavy nuclei when viewed from the light nuclei, and 

decreased shielding of the light nuclei when viewed from 

the heavy end of the moleculeo c2 , which is the limit 

of the average of these two tendencies, indicates slight 

deshielding of the nuclei. Overlap effects are largest at 

the heavy nuclei, being negative only for C2. Large 

atomic backpolarizations of density situated at O and F 

is indicative of the presence of pa atomic character. This 

effect is largest at O for which the largest shielding 

changes occurred also. The overall picture for this orbital 

is that for the uns~etrical molecules LiF and BeO, there 

has been large transfer of charge from .the electropositive 
. . 

end of the molecule to its electronegative endo The 

transfer is most complete for LiF for which one. has nearly 

vanishing shielding and overlap contributions from density 

on the Li nucleuso At Be, there is still some charge 

left as indicated by its small overlap and shielding effects. 
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In the case of c2 , the tre_nd is motion of charge away from 

the internuclear region and motion behind the nuclei. As 

a result of t~is, the 4o prbital is strongly antibinding 

for the C2 molecule. · The binding charact~r increases 

dramatically at Li and Be, and decreases in the same fashion 

at 0 and F, as a result of charge transfer having occurred 

from one end to the other. 

The ln orbital, as in the previous group of molecules 

N2P CO, BF, puts in evidence the typical undershielding of 

its charge density. The shielding contributions to the 

binding change drastically in going from Li, through Be 

and ·o, to F. The asymmetry in charge disposition is thus 

displayed effectively by this trend, so that one concludes 

that the TI bond is most polar in LiF but less so · in BeO. 

The overlap fi's arising from this density is equal at 

both nuclei in the same molecule, a feature displayed by 

the ln orbital of the previous group of molecules studied. 

At Lip the atomic and overlap densities are vanishingly 

small as they contribute little to the corresponding fi's. 

The atomic fi at Be is also .negligible but there is a larger 

overlap contribution, about half of that in c 2 . This 

indicates transfer of n density from the o atom towards 

Be, as further amplified by the rather large undershielding 

of tht O nucleus by its own densityG The effect of this 

transfer or "back-donation" of TI density was made evident 
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in the total density map for the BeO molecule, in which it 


was noticed that a tight Be core was engulfed in a very 


diffuse envelope of density. We thus see again the easy 


correlation one can make with density distributions and 


the forces binding a molecule. These correlations will 


also enter force constant discussions, in which the resporise 


of these densities to nuclear displacements will determine 
.. 
the magnitude of these constants via changes in the forces. 

' 3 .. 6 A Comparison of Covalent and Ionic Binding 

The concept of the ionic character of a bond is rooted 

in the language of valence-bond theory, the percent ionic 

character being related to the relative weighting of the 

wavefunction for the ionic structure to that for the 

covalent structure. Relating this concept to the parameters 

in an approximate wavefunction makes it difficult to give 

an exact mathematical or physical - interpretation to it. 

The inadequacies of past definitions of partial ionic 

character have been detailed by s~ull <139 > . The original 

purpose in defining ionic and covalent character and the 

=losely related concept of electronegativity was to obtain 

by empirical methods some crude estimate of how the valence 

electrons were distributed or shared in a molecule. In 

this sense the use of the words ionic and covalent was 

predictive in nature. Since the electron density can now 

be calculated with some precision , it might be argued 
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that the concept of the relative ionic-covalent character of 

a bond could be discarded. The physical property of interest 

is, after all, the electron density and not the wavefunction. 

However, the terms ionic and covalent are still useful in a 

descriptive sense when they are defined in terms of the density 

distributiorl and its dependent properties. In what follows, 

we define the terms ionic and covalent via the density 
-2 . . 

distributions and the <r > moment of these, corresponding 

to the forces ·which the density· exerts on the nuclei. These 

definitions will parallel to some extent previous definitions 

based on observables which are determined by the one-electron 

density. For example, the first moment <r> partitioned into 

components along appropriate axes gives the dipole moment 

of the charge distribution and thus offers another definition 

of ionic character based on the ratio of the observed to 

the ideal .dipole moment(SG). These same definitions will 

obviously exclude any definition of ionic character which 

does not result in an actual asymmetry in the calculated 

charge distribution. For example, our approach would not 

consider H2 as partially ionic, as opposed to the valence­

. + ­
bond theory where one introduces structures such as H H • 

The problem of defining partial ionic character directly 

in terms of the orbital components of a wavefunction has 

been ~onsidered by Shull Cl 4o>. His a?alysis is in terms 

of the natural orbitals, which as pointed out in the general 
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introduction, have invariant properties for a given system, 


independent of the basis set. This method is absolute in 


the sense that no comparison is made between the moleucle 


and its constituent atoms. One still has the problem 


of partitioning the electron space via weight factors in 


· order to correlate diverse phenomena such as bond energies, 

force constants, etc. Our weight factor in this discussion 

is the force operator which helps characterize the densities 

and density differences in a systematic way. 

The regions of charge increase in the ~pmaps are 


the regions to which ch~rge is transferred to obtain a 


state of electrostatic equilibrium in the formation of a 


chemical bond. As pointed out in the previous chapter, 


they may be regarded as providing pictur~s of the "bond 


density". Thus, it is natural to characterize the bond 


according to the location, relative to the nuclei, of the 


c~arge increase which binds the nuclei. The~p maps 


(see Fig.(2.2)) for the homonuclear diatomic molecules 

N2 and C2 exhibited an increase in the charge density 

symmetrically placed in the binding regione It is the 

force exerted by this shared density which binds the 

nuclei in these molecules as it repr~sents the increase in 

the density relative to a distribution which does not place 

sufficient density in the binding region to balance the force 

of nuclear repulsionD Thus the definition of a covalent 
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bond is one for which the 6p map exhibits a density increase 

which is shared equally by both nucl~i. The nature of the 

charge increase in the binding region found in the 6p 

maps for CO and BF were very similar in appearance to that 

of N2 , except for amore diffuse charge relocation behind 

the C and B nuclei. In the case of CO, this diffuse density 

behind C as opposed to the tighter density behind O will .. 
make it easier for the C end of the molecule to donate 

density to · some other atom such as a transition metal. Because 

of the still more diffuse charge density behind BF, on the 

basis of the density diagrams, one would predict that BF would 

be a stronger ligand than CO. As stated succinctly by 

MoffitCl 4l), this means that this density is therefore nicely 

suited, sterically, for combining with groups which approach 

the molecule. The rearrangement of the CO system after loss of 

a So electron results in a configuration which has a shorter 

bond length than the ground state, as discussed previously. 

As much of the diffuseness of the density comes from this 

orbital, then donation of such an electron to some other 

nucleus will be assisted by the rearrangement, as there is 

a reduction in 9'activation energy'9 for the ntransi tion 

state", i.e. the incipient polyatom,. made evident by the 

rearrangement of the CO skeleton. For loss of the 5cr(3og) 

electron in N2, there is bond lengthening, so that the 

£earrangement is not quite favourable for electron donation. 
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For BF, the rearrangement is in the same direction as CO 

but even greater so that this would tend to increase the 

stability of a ligand-metal complex with BF as the ligand. 

This prediction for BF is however incomplete as the density 

difference maps indicate there is a tendency for the 

B nucleus to also attract charge to it (notice the appearance 

of n density at B) • These two ·effects therefore support .. 
the experimentally known fact that BF is the most reactive 

· of the series N2, CO, BF. 

The nature of the charge increase in the binding 

region f~und in the ~P map for LiF is distinct from that 

found for the homonuclear diatomic molecules, in addition 

to CO and BF. The ~P map for LiF exhibits the characteristics 

of ionic binding as defined by: (1) a transfer of charge 

from one at9m to the other, the charge increase being 

localized on one atom as indicated by the fact that the 

positive contours are approximately centered on one of the 

nuclei and the region of increase is bounded by a zero 

contour which encompasses only a single nucleus, (2) a 

polarization of the density increase localized on the anion 

and of the density remaining on the cation in a direction 

counter to the direction of the charge transferu This last 

~haracteristic is a direct consequence of the extreme 

localization of the valence charge density on a single 


nucleus, which exerts a net attractive force on the other 
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nucleus. Thus, the density in the immediate vicinity 

of the Li nucleus must be polarized away from the F nucleus 

to c"ounterbalance the net force of attraction exerted by 

the density transferred to F. These polarizations are 

evident in the 6p maps for LiF and BeO. BeO is somewhat 

different than LiF since the complete separation ~.f charge 

is not as evident. The reason for this difference is the .. 
delocalization of the l~ density from O to Be as d~scussed 

in the forces for that orbital. 

The distinction between the characteristic of ionic 

and covalent binding may be made more quanti tative by 

comparing the nature and magnitude of the contributions to 

the electronic forces in the two limiting cases. If we 

make a tentative identification of the localized and shared 

charge of the density difference maps with the atomic 

and overlap populations, respective~y, we may restate the 

definitions of covalent and ionic binding in terms of the 

atomic, overlap and shielding contributions to the forces. 

In the formation of a covalent bond the buildup of a large 

overlap population or shared density between the nuclei 

results in a deshielding of both nuclei. This deshielding 

:esults i n a net force of repulsion acting on the nuclei, · 

~ force which is counterbalanced by the attractive force 

exerted by the overlap density~ In Fig.. ( 3. 10) , we 

present the overlap density for N One sees that
2

e 

the effect of overlap is to concentrate 



TABLE 3. 8 

Total atomic, overlap and shielding contribution to the forces 

· AB Atomic Overlap Shielding Unshielded Nuclear Totalsa) 
~ f i. (AA) E fi (AB) E fi (BB) Cha~ge(BB) E f i 
1 i i 	 ZA-f fi i 

NN -1.943 3.853 5.136 1.864 7.046 

co -2.508 3.154 7.466 0.534 8.112 

BF -1.451 1.515 9.008 -0.008 9.072 
B+F­ -1.000 0.000 . 10.000 -1.000 

c c -Oe735 2.198 4.523 1.477 5.986 

BeO -1.391 1.488 7.943 0.057 8.040 
Be++o= -2.000 0.000 10.000 -2.000 

LiF -0.766 0.460 ~L 421 -0.421 9.115 
Li+F­ -1.000 0.000 10.000 -1·. 000 

N ·N -1.943 3 ·. 853 5.136 1.864 7.046 

O· C ~ -0. 39 8 2. 5 86 . 3.884 2.116 6.072 

F ·B -0.189 1.966 3.259 1.741 5.036 
F-B+ +1.000 0.000 4.000 1.000 

C· C -0.735 2.198 4.523 1.477 5.986 

0 Be -1.092 2.760 2.372 1.628 4.040 
o=Be++ +2.000 0.000 2.000 2.000 

F Li -0. 0 70 1.069 2.046 0.954 
F-Li+ 1.000 0.000 2.000 · 1.000 

I-' 
wa) 	 The small deviations of these numbers from ZB values are indicative of the 

degree .of accuracy of the Hartree-Fock wavefunctions. 
~ 

3.045 
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charge symmetrically in the bond region and also aid 

removal of charge from behind the nuclei. In a covalent 

bond, it is the force exerted by this overlap or shared 

density which binds the nuclei together. To determine 

how closely the density. in a covalent bond meets the above 

requirements _we have assembled in Table (3.8) the tota l 

atomic, overlap and shielding contributions to ~he forces 

for the molecules considered in this work. In the case 

of the separated atoms, the total shielding contributi on 

is equal to ZA, the nuclear charge, and the atomic and 

overlap contributions are zero. The difference between ZA 

and the total shielding which is also listed is a measure 

of the amount of nuclear charge present in the molecule 

which is no longer shielded by the atomic density distri­

' butions. The deshielding of the nuclei is a result of the 

distortion · of the atomic charge distributions and of the 

migration of · charge to the region of overlap. There is, 

in fact, a correlation between the amount of descreening and 

magnitude of the overlap contribution to the force. Both 

of these quantities increase to a maximum at N2 and then 

decrease through CO, ·BF when the light nucleus is considered. 

The same trend holds for C2 1 BeO and LiF. When considered 

at the heavy nucleus, slight anomalies in the shielding 

at 0 in CO and BeO occur (there is more deshielding of the 

electropositive nucleus than the trend would suggest). I n 
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the series N2 , co, BF, the overlap is smallest in BF, suggesting 

decreasing covalency for that molecule. The total increased 

shielding of the F nucleus supports this conclusion. On 

the other hand, the near equalitf of overlap contributions 

at both nuclei in this series is further evidence that N2 , 

co, BF are to be considered covalent. The atomic .contributions 

provide a quantitative measure of the antibinding effect ~xerted 
.. 

by the nonbonded density increase. In every case except LiF, 

the overlap contribution is greater than the deficit created 

by the deshielding of the nuclei and the excess attractive 

force exerted by the overlap density · is balanced by the 

negative atomic force contributions. The net force of 

attraction which binds the nuclei is exerted by the overlap 

or shared density for the molecules N2 , co, BF, C2 and BeO, 

so that the9e would be considered covalent. 

In an idealized model of an ionic bond, there is no 

overlap or shared density and no corresponding force contri­

bution. Instead, the complete transfer of charge will 

increase the shielding contribution of the anion and decrease 

that of the cation~ These values are listed for the bracketed 

·:_onic structures of the molecules BF, BeO and LiF .. The 

.increased shielding ·of the anionic nucleus exerts a net 

force of attraction on the cationic nucleus. As noted 

earlier , this force is balanced by a negative atomic force 

which arises from a polarization of the density remaining on the 
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-cation. The net force of repulsion acting on· the anionic 

nucleus because of the charge transfer is in turn balanced 

by a positive atomic force term. Ideally, one would wish 

tq calculate the contributions to the forces based on a 

partitioning of the charge in the manner indicated by the 

density difference diagrams, rather than by an orbital 

population analysis. The partitioning of the charge as . 

suggested by the density d _ifference diagram·· is determined 

by the total distribution of the charge in the molecule, 

while the partitioning based on a population analysis 

will change with a change in the orbital basis set. If 

· the density distributions employed are Hartree-Fock densities, 
( 142}

i.e., correct to second order, then the density difference 

diagrams should remain unchanged regardless of the nature 

of the basis set used in the expansion. We can obtain an 

estimate of the force contributioris as determined by the 

density difference maps for the ionic case by using the 

information contained in these maps to reassign the force 

contributions· obtained from the population analysis.. The 

density difference map suggests that the valence charge 

density is transferred in the formation of LiF is localized 

on F within the zero contour enveloping .the F nucleus. Thus 

in this case the overlap population should be added to the 

atomic population on F and the forces exterted on the nuclei 

by this combined density equated to that exerted 
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by the density localized on F in the density difference 

map. The overlap forces are relatively small in any 

event for LiF and are larger for F than Li, reflecting 

the fact, as shown by the overlap density map in Fig.(3.10) 

that the density lies within the charge increase localized 

on F. Thus ·the sum of overlap and atomic contributions 

at F is indeed 1.00 in accord with the atomic value for 

the ionic structure. At Li the overlap is not enough to 

override the atomic backpolarization. In fact, since the 

overlap density map indicates nearly symmetrical charge 

removal around Li, then muoh of this contribution at Li 

must come from the overlap density closer to Fo Thus, one 

could add the overlap and shielding forces at Li, the 

result being 9.88 which approaches the ionic value of 

10.00. The signs of the atomic force term at Li and that 

of the sum of overlap and atomic for€es at F indicate the 

densities on both Li and i are polarize~ · in a direction 

counter to the direction of the charge transfer as required 

for electrostatic equilibrium. In the case of BeO, the 

distinction between covalent and ionic character is not 

as clear cut, as a result 'of the zero contour encompassing 

ooth nuclei. The reason for this large delocalization 

has already been noted in the discussion of the ln orbital 

forces for that molecule, where it was shown that the 

overlap force was equal at both nuclei, an indication of 

http:Fig.(3.10


139 


equal sharing of the orbital density. In fact, this 

behaviour was found for the ln orbitals of all the molecules 

considered tn this work, but the magnitude of the ln 

overlap forces for LiF were small compared to the other · 

molecules. The total overlap density for BeO is illustrated 

in Fig.(3.10) It can·be seen that there is delocalization 

of this density in the n region of the Be nucleus. However, .. 
the major part of the density is localized on the · o nucleus, 

with strong po character evidento This suggests that one 

should consider this density localized on o, the same as · 

was done for F in LiF. The force resulting from adding 

this overlap density to the atomic density is 1.67. The 

expected force contribution for the ionic case Be++o= is 

2.00 at O, i.e., the amount of polarization force in the 

forward direction required to counter the nuclear repulsion 

from the net positive force of 2.00 experienced by the O 

nucleus from Be++o We can similarly add the overlap and 

shielding contributions at Beo This gives a total force of 

9.43 	as compared to 10.00 for the ionic case. Although 

++ = thewe are somewhat short of the proposed structure Be O ' 

6p map along with the overlap density map and the forces 
. . 

suggest ·that the overlap density is better considered as 

being localized on o. Such an association is not easily 

done for BF, but since many of the ' features of this molecule 

as seen from th~ ~P map parallel those of BeO, it is evident 

http:Fig.(3.10
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that ionic character is present to a large extent. The 

electropositive ends of the molecules BeO and BF are also 

quite similar from a for~e a~alysis standpoint. There is 

nearly complete shielding of the heavy nuclei O and F. 

The binding at Be and B come from ~he overlap force, which 

can be considered as mostly charge situated on the heavy 

nuclei. The increased shielding of the heavy nuclei is .. 
an indication these are approaching electrostatic binding 

· which is associated with ionic character. The main dif­

f erence between the two resides in the fact that the B 

atomic density contains p character and there is a tendency to 

attract n density towards B from the other end of the 

molecule, more so than Be in BeO. The large region of 

charge depletion behind Be is very similar to Li and LiF, 

hence reinforcing the ionic status of Be in BeO. 

Thus, in ionic binding both nuclei are bound by the 

charge localized on one of themo This is clearly exarnplified . 

by LiF. For BeO, the case is not as clear cut, but from 

the density difference maps, it is evident much of the charg.e 

increase is to be associated mainly with the O nucleus. 

Therefore, BeO is largely ionic in character by the above 

definition. In covalent binding, ~s represented by the 

hornonuclears N2 and C2, the nuclei are bound by a density 

increase in the bond region which is shared equally between 
( 

I 

them. For co, this density increase is slightly polarized 



I 

I 
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towards the O nucleus, as seen by the slight asymmetry 


displayed by the 6p map. Nevertheless, it is still this 


same density which binds the ·nuclei, so that CO must be 


classified as distinctly covalent. BF represents the 


intermediate case, as a result of incomplete charge 


transfer to one end of the molecule. The density trans­

ferred towards the F nucleus is essentially localized on it. 

•, 

This is demonstrated by the increased shielding of that 


nucleus by this density. For a covalent molecule, 


deshielding would have been expected. There is also 


a fair amount of charge placed behind the B nucleus. This 


·	 is, theref9re, indicative of covalent behaviour. Thus, 

we have the result for BF that the electropositive end of 

the molecule shows covalent tendencies, whereas the 

electronegative end indicates 'ionic tendencies. 

It can be argued that the breakdown of a total 

electronic force into atomic, overlap and shielding contri­

butions is not unique, nor fundamental. This partition 

was made feasible by the separation inherent in the 

L.C.AoO. approximation of Hartree-Fock wavefunctions~ In 

the case of LiF , it is possible to associate the charge 

transferred with the F atom from the 6p map. Although for 

BeO, the association was not made as definite by the ~P 

map, association was still possible with the O nucleus 

by examining the magnitude of contourso Thus, it was concluded 

1· 
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most of the charge transferred was indeed situated on the 

O nucleus. In the case of covalent molecules, there is a 

ciear separation of charge in the binding region from the 

charge in the antibinding region. The overlap density 

diagram· for N2 (see Fig. (J.10)) indicates that the charge 

increase in the binding region as portrayed in ~P maps 

is indeed mostly an overlap density. Therefore, one can .. 
consider this density as a separate entity. The increase 

in the antibinding regions reflect a change essentially 

in the atomic densities as a result of bond formation; 

therefore, a consideration of the forces exerted by this 

density is also appropriate. In the final analysis, these 

force components should not depend on the properties of 

basis sets employed. In view of this uncertainty, it is 

the density and density difference maps which must be 

emphasized, by which one can therefore form the correct 

partitions of the forces. In the case of BF, such a partition 

was not easily obtained, as a result of the complex nature 

of the ~P diagram. The somewhat arbitrary dissection of 

the force into atomic, overlap and shielding components 

is nevertheless instructive and of operational value in 

correlating the various bonding characteristics in a 

systematic way .. 



IV. MORE STATICS: FIELD GRADIENTS AND 


QUADRUPOLE COUPL·ING CONSTANTS 


"On a souvent besoin d'un plus 	petit que soi" 
La Fontaine 

4.1 Introduction 

In atoms and molecules, nuclei are embedded in an 

electronic distribution. When such a distribution outside 

a particular quadrupolar nucleus is nonspherical, there is 

an interaction between the nuclear moments and the external 

fields from this distribution. This interaction is 

responsible for hyperfine structure of rotational lines. 

A nuclear-quadrupole coupling constant eQq can be calcu­

lated from this hyper.fine structure when both Q, the 

nuclear quadrupole moment, and q, tne external field 

gradient, are finite. E£fectively, q is a measure of the 

~ 	 departure from spherical symmetry of the charge distribution, 

at the nucleus, of the electrons and other nuclei present 

in the same molecule. The quantity depends on the environ­

ment of the quadrupolar nucleus in the molecule and is 

therefore intimately connected with the types of valence 

bonding in the molecule. In the region of the nucleus, 

wavefunctions, which otherwise have proved satisfactory, 

h~ve not previously been tested. Simple molecular orbital 
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theory is open to the objections discussed in the 

previous chapter, namely that correctly polarized and 

scaled wavefunctions must be U$ed for quantities involving 

the electron density. For example, a wavefunction which 

does not obey cusp conditions at r = 0 will yield an 

inferior value for field gradients, even though this has 

3little effect on the energy(l43 >. Furthermore, the r-

dependence of the field gradient means that ideas drawn 

-1from properties that depend on r , such as the energy, 

must be used with caution . 

The signif .lcance ·~·f. nuclear .~ t :: c.J>.:· <'- > 2.. :. ·..... ~: l :..ng 

constants in relati on t~ ...:he theory of ...:.; ...1.cj:rr:. 

has been empha~· :::;d ·:..:_? '\ :>wnes and Dailey ( 6 .;, . .. ~ral, 

the direct c · ·;.7~ination of the electronic .:.;. ". ._. ·:·..: ._.. m 

in chemic,: :.. __,•J l1.ds is difficult since most b e . .. .:.>(;. ..... :e1.'2 I 

such as ~- . -~· . and dipo J. a moment are propertL?s ...:/: -c.. -~ 

whole ·:. 2-E:cu:i.E:.. If it we"£e possible tc :l.ns e.rt ~ ~>:·. .qe•.. 

p ··obt.' .. ·-,: different points wi thir:. a rr~ole cule / :.i ~ e·· '. . : .. ~... c . ·. ·~ · 1 e 

3tribution could be studied. As Dailey ~-. .. .:;. l 

q·.:adrupolar nuclei act as built-in probes i · i s :; 

~· ~ .... ..intaqe being that since their positions a :. . ...,. .....-,. -..... :.:"le 

1e -~ . ~. : ::.ma ·~ : about the electron distrit . -·-·· · . - _."le 

··_. · int : .. - ··· 

n f unction as _, ·o e of the electron.. ..- .:-- v :;_;_ : i .: . 

ch the sarr~-:.· . t the proton magnetic .no:t.-~ -~ · ,:.e 

~· 

' '·· 
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of the most popular .probes of the chemist. This great 

interest in correlating the magnetic resonance frequency 

shifts with charge distribution in molecule~as opposed 

to the use of quadrupole coupling constants, however, 

has only achieved partial success because the chemical 

shifts depend not only on the charge distribution of the 

ground state but also on how the ground state wavefunction .. 
is deformed in the presence of an external field. Quadru­

pole coupling constants have theoretical si.mp:.icity in 

that they depend only OL the ground state charga density. 

This is because the interaction between a nuclear c.:)r:\ent 

and the " ~ ..0:·_ .~cular charge distribution is such tha'C ;'. ~ ~st: ·-

order perturbation theory is quite adequate for ~.:1. e :" .il1 _.. ­

lation( 144 ). 

Nuclt:-... .· .:_r ·.....adrupo~e coup::!.in9 constan·c.:::; crr t.-.~ ... 

-c.::~ erefore ~- -· · ._· .::. nciple. a promising- means or obta.:. ·:~- ,..q 

..t::::;eful information on charge distributions e Re -~e ~i · .:~dv .:.. :r-.:.ces 

.·. experimenta:_ methods make routine measurements of 

. . . ~ . . 't . J 45).ad r-do l e r ·· .sonance f requencies a pract1ca..1. ~:,; -: · _1 _;,. · •.:>s2.~· _

.·ss.c.o...;ier spectroscopy in conjunction with appl i ..:· ~-~· 

-~·~ ternal magnetic fields allow a determination of the 

.adrupole inte~a~ L~ ons for various nuclear states. To 

date, the most .:..sE< f ·'-~ information has be, (~ {~ obtained frorCL 

the temperaturE ~ependence of the quadrupole i~t~:actions 

_:.. nd from the -~~ --:celat_ion of quadrupole cm.:, ~1 ..... ::.. ~· .:. ·:: · :id. ta. with 
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crystal~field and chemical bonding theories. In discussing 

the theory of the origin of nuclear quadrupo~e interactions 

in free molecules, we shall make use of data obtained from 

microwave and molecular beam spectroscopy, the first being 

applicable for molecules with permanent electric dipole 

moments; the second where this is not so, but the molecules 

have magnetic moments either electronic or nuclear or both . .. 
From the theoretical or interpretive side, chemists 

have depended a lmost exclusively upon the basic considerations 

and relations:'.1 :. ? S concerning the connection be t ween chemical 

bondinq ard :;ruadnJt;>Ole coupling constants put forw3.rd by 

Townes ~ ··· : a ··) .~·- : ~y. This theory deals with the ~ova:.ent 

struct·\lre of the· molecule. These authors emphasize t hat 

a J.l contributions to q ·may be neglected except those arising 

from the valence electron densities in the orbitals of the 

lowest eccentric atomic state, usually p orbitals. In the 

s implest form of the theory as applied to halogen atoms, 

the . valence shell consists of one valence electron in an 

npcr orbital and four nonbonding electrons .:..!:; r:.pn orbitals, 

~,.; ":" ich is equivalent to a "hole" in npcr: q ~ -q ~ · Values 
cov n .... v 

.:: q . are derived from spectra of free a torr.s. In an ionic 
nl.v 

J lecu: :- , the halogen. ion is considered to have an undistorted 

shell of electrons: q.ion=O. If i is the fraction 

E ioni c . tructure, then 

( 4 .1)q = (l- i ) qcov 

http:forw3.rd
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This can be refined - to include further factors such as 


hybridization, resonance, etc., as amplified by Das and 


(145)
H a h n • In general, however, work followed along such 

lines is not definitive, reflecting a remark made by 
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Dailey in 1955( ): "Obviously personal preference plays 

an important role in the task of evaluating three para­

mete.~s from one experimentally determined constant." Only 

rigorous calculations performed with accurate wavefunctions 

can settle the validity of the interpretations usually made. 

The second interpretive approach is invariably 

tied in with the realm of solid state physics, ~n particular 

with the study ;:.:. ionic crystals. The distor ·ca.un of the 

electron she ... :::. of ions aue to external point :-·..:1~~.. ges in 

ionic crysi:.~ ...... ..;;.: / was first <?Onsidered by Foley, ~te:r: ..1.~1t:dmer, 

a.s a contribution to the fiela ;, ..::'"""~ .. ~; .. 1. cs at 

the nuc~~ - - rhey estimated for a . number of ions, ~he 

factor Z l-y~, by which ~he field gradient due to the 

. ex·cerr::. .:.._ charge was altered by this shell distortion, and 

t. . ...~n used these values of ( l-y 00 ) for discussing nuclear 

q~.~drupole coupling constants in a number of ionic ~iatomic 

~..,_.lecules. Van Kranendonk (148 ) showed the importanct: o i: 

'(' in determining nucle~r magnetic relaxation times in 

.:nic cn.. :. :o.i ~-.. y 00 is called the anti shielding factor 

c. ••d. is ;;herefore pivotal in the Sternheime :c antishielding 

theory, which is i~ effect a point charge moaai ~ 

http:distor�ca.un
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Both theories have been hybridized to explain 

experimental data, especially on nuclear-quadrupole 

interactions in alkali halides and nuclear spin-lattice 

. t• . . . 1 .k 1(149)re 1axa t ion imes in ionic crysta s. Wi ner et a 

conclude .that the charge transfer covalent bond model 

is inadequate in explaining observed relaxation. times, 

and that the theory of the ionic model modified to include 

antishielding and induced dipole polarization is better 

established .than the covalent model. The covalent model 

is very poor for the metal nucleus. On the other hand, 

Bersohn and Shulman( 66 ) would rather bury this approach, 

1as they emphatically state ·that the model of an ion ins 0 

an electric-field gradient coming from external point 

charge is inad~quate. For transition-metal hal~des, they 

prefer the Townes and Dailey approach which seems ·co agree 

better with transferred magnetic hyperfine interactions 

results. For anions, higher-order polarizabilit~es i ntro­

duce non-converging terms into the 'calculated field gradients. 

Evidently not all is well in the lan~ of the ions. Das and 

Karplus{lSO) have given .a hint to the problem, namely 

t~at for the alkali halides, orbital overlap is important 

~ .. d consequently the ionic model is inadequate. In a recent 

:.~;a lcul .:.i.tion on the diatomic molecule KC£ ( lSl) , they have 

.'.)Wn ·:i~.-~ t overlap affects the field gradien ~ significantly 

' thE- C.irection required to explain discreparLC~? between 
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theory and experiment. Covalency would seem to lead to 

effects in the opposite direction, suggesting that covalent 

binding ca.n play only a small role. 
. 

It appears now that neither the Townes and Dailey 

theory nor the Sternheimer antishielding theory, nor a 

combination of these two theo.ries can ·account for experi­

mental data of the alkali halides. rhis .discrepancy has 

been tentatively resolved by DeWijn(lS 2 ) by considering 

effects of the ionic chemical bond on , the polarizations 

of the ions. We have already noticed a partial quenching 

of the atomic polarization forces in LiF. This was also 

manifested in the density difference diagrams by a removal 

of charge from between the bond region, typical of a 

Pauli exclusion effect between two closed shells . Clearly, 

this demons~~ates the ~ limitation . of the non-overlapping 

charge model. An accurate charge distribu~ion is necessary 

in order to obtain the observed field gradients. The 

antishielding phenomena is a result of trying to extend 

the point-charge model. If the correct wavefunction of the 

crysta l or molecule were available, the correct field 

gradient could be obtained without any antishielding 

factor . 

·rhe inadequacies of the Townes and Dailey and the 

a~tishielding theories will be delineated below by a 

discussion of ~hese and their applications. Fi eld gradients 
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have been calculated using the Hartree~Fock wavefunctions 

used in the ' force analysis. The relevant formula for 

the field gradient qA at nucleus A is 

n 3 cos2e~-1 ,,.>. . - <v1 I r i3 1 'Y 
(4.2) 

i=l ra 

where ZB is the charge of nucleus B, R the internuclear 

distance and ~ the total electronic wavefunction. The.. 

operator in the bracket is a one-electron op~rator and 

hence the integ'ral can be reduced to a functional of the 

one-electron density p, as for the forces. This thus 

permits partitioning of the electronic field gradient into 

orbital contributions: 

2ZB k 3 cos 2ea-ll = - l: n·<ct>·I <P·> ( 4. 3)
3 . 1 J J . 3 JR J= ra 

where <Pj is the j'th MO and nj its occupation number. For 

certain wavefunctions, the field gradient integrals are 

conditionally convergent because of a singularity in the 
t 

integrand at the nucleus. Since the value of the integral 

depends on the treatment employed in the .neighbourhood of 

the singularity, some care is required to obtain the 

physically correct value(lS 3 ). For instance, in confocal 

e 1 liptical coordinates, one must add a correction equal 

to j1T times the electron density at the nucleus(l 44 
> This 

c · .... responds to the limiting ·process of first excluding a 

s ~ ..herical volurne element, centered on the nucleus . i n the 
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integration over all coordinates, and then permitting 

the radius of the excluded sphere to go to zero(lS4}. 

Thus, for a spherical S shell, one would obtain zero 

.for the integral, which reflects the physically obvious 

fact that such a spherical shell cannot contribute to 

an observable electric quadrupole interaction since all 

nuclear orientations in such a charge distribution have the 

same energy. The methods of integration and.formulae for 

the various orbital contributions are given in Appendix 

2. 

4.2 The Antishielding Model(lSS) 

The problem to be considered is an ion with a 


nuclear quadrupole moment in the field of an external 


positive point charge. We have to find the factor ( l~y 00 ) 


. by which t~e direct interaction between the external charge 

and the nuclear quadrupole moment of Q, i.e. 2Q/R3, is 

affected by the deformation that the presence of this 

charge causes in the closed shells of the ion. If the 

distorted electron distribution opposes the field gradient 

due to the positive charge, then y 00 is positive and there 

- ~ a shielding effect, while if the ·distorted distribution 

·1hances the field gradient, then _y 00 is negative and there 

i s an antishielding effect. 
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Consider an electron at the posi~ion r,e as 


shown below. 


-----ii------------------·
+ 

R 

The electron interacts with both the quadrupole moment Q 

of the nucleus and with the distant charge. We have, 

' therefore, ,a s_ystem with a ground state ·Hamiltonian H0 

which is subjected to the above two perturbations des­

cribed respectively by the Hamiltonians and H1 . InH2 

terms of ordinary perturbation theory, there can be three 

types of second-order perturbations: (1) second order in 

alone; (2j second order in H alone; or (3) a second­H1 2 

order interaction arising from first-order perturbations 

due to both H1 and H2 • The latter is the one which is of 

interest. Physically it corresponds to a deformation in 

the ground state wavefunction by H and a subsequent1 


interaction of H with the deformed wavefunction. The
2 

perturbation could be applied, of course, in reveL~e 

~rder. The firial results obtained by either procedure 

can be shown in general to be equivalent. Letu1, and 

u2 represent the first-order perturbations in the ground 

state wavefunct~on u 0 of the electrons, due to H and H2 .1 
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The Schroedinger equation becomes 

where E0 ,E ,E are expectation values over u of H ,H ,H1 2 0 0 1 2 

respectively. Separating the terms of first order i~ H1 

and in H , we · obtain2 

.. ( 4. 4) 


Now in atomic units 

__r_c_o_s_e _ ~ r2(3 cos 28-l) ... (4.5) 

R2 R3 

H _ -Q ~3 cos 2 e-1 

2 - r3 


Only the third term · in. H is of interest. The first term1 

cannot distort the electron distribution and the second 

term is responsible for the o.rdinary dipole polarization. 

There is a possibility of having an indirect interaction 

between · the nuclear quadrupole moment and the external 

charge by ways of a . second order perturbation with the 

147second term in H and the first order in H but Foley et a1< >1 2 

h ave shown it to be less than ten per cent of the interaction 

o f first order in both the third term in H1 and the first term 

The net energy E .of the electron is given by 

<u0+u 1+u 21 H0+H1+H 2 1u 0+u 1+u 2> 

E = <uo+u1+u2luo+u1+u2> 
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Expanding to first order, we obtain 

( 4. 6) 

The underlined terms represent seconq-order perturbation 
.. 

from H and H separately. From Eq.(4.4) it follows that1 2 

( 4. 7) 

Thus, it is only a matter .of convenience whether <u0 1H 1u2 >
1 

or <u 1H !u > ·is calculated. Sternheimer(GS) solves this
0 2 1

by using only the quadrupole terms of the interaction H
1 

by a numerical procedure. However, as Dalgarno< 156> has 

pointed out, the presence of singularities in self-consistent 

field potentials, which is related to cusp conditions dis­

.cussed in Chapter I ·, introduces -some arbitrariness into 

the derived values of shielding factors. Bersohn has 

employed a variational method for the problem(lS?). 

One may thus calculate either (a): the electronic 

distortion due to the electric field gradient and thence the 

interaction of this distorted distribution with the nuclear 

quadrupole moment Q; or (b): the electronic distortion due. 

to Q and in turn its inte~action with the external field. 

Both approaches give identical results within second-order 
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perturbation theory as can be seen from equations (4.6) 

and (4.7); but the situation would become more complicated 

ff one were to go beyond it. The Sternheimer method is 

a perturbation method of type (b) on restricted Hartree­

Fock functions (RHF) . Rec~nt investigations have shown 

that the relaxation of these constraints leads to a new 

way of calculating electric quadrupole polarizabilities 

and Sternheimer antishielding factors, so that the 

·distortions, induced in the · inner shells by distorted outer 

closed shel·ls are thus included- in a natural way. By 

comparison with the ~esults of the perturbation method 

(which normally does not take these distortions of outer 

shells into consideration) these are found to be signifi­

cant for large ions. An extensive review of these investi­

gations has been given by Freeman an~ Watson(lSB). This 

approach, the unrestricted Hartree~Fock method (UHF) 

(see Appendix 1), is also . pertinent to any distortion of 

an ion by a crystalline field. In all investigations to 

date and (by definition) in all y 00 estimates, a most 

serious shortcoming has arisen in the unrealistic electro­

static fields which have been used. The problem is more 

acute for unclosed aspherical shells. An UHF wavefunction 

should already, therefore, include a contribution from the 

polarized core so that no correction for core-shielding 

effects of the type considered by Sternheimer should be 
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necessary. 

In a molecule, there is no clear distinction of 

valence shells as such because of charge transfer and overlap 

effects. Furthermore, any density associated with a 

particular nucleus will take on poiarization components 

'with the symmetry of the field. To separate the density 

into atomic or ionic entities in order to calculate, by 

perturbation theory, the effect of the external remaining 

charges on one of these entitie~ would be quite impractical. 

In such a case, one uses the unrestricted Hartree-Fock 

approach in calculating th~ tbtal wavefunction of the system 

and thus replaces the standard perturbation theory which is 

used in either method (a) or (b). Thus, an exact wavefunction 

will take into account polarizations to all orders, 

polarizations which have mainly . the symmetry of the field, 

axial for a diatomic molecule. In terms of Eq.(4.7), 

this means that u 1 is exact as far as H1 , the perturbation 

from external charges, i~ concerned. In fact, the exact 

wavefunction also includes, therefore, the perturbation of 

the distorted inner and valence shells on the external 

charge. One can therefor~ calculate the electric field 

1radient using the external field perturbation method, since 

~ ne knows u exactly. Sternheimer< 159 
> has shown that1 

the two ways of calculating the field gradient, by considering 

the internal nuclear or the external field perturbation, are 

completely equivalent for second-order perturbation theory 
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Table 4.1 


Field Gradients at Li in LiF at Re =· 2. 88 77 a.u. 


a.o. MO g2p (~=oo) gi (R=oo) .g i (Re) A 0 s 

ls 2 
F lcr +0 •.373 2.000 2.000 0 .000 o.coc 2.000 

ls~i 2cr 0.000 -0.010 -0.098 0.083 0.004 

2s 2 
F 3cr 2.000 . 2.041 -0.013 0.053 2.001 

2sti+2pcr~ 4cr 1.000 2.682 0.068 0.217 2.397 

2p7T4
F. l7T 4.000 2.919 -0.021 0.122 2.818 

Totals: 9.000 9.633 -0.064 0.475 9.221 

Field Gradients at F 

a.o. MO g 2p ( R=oo) g i ( R=oo) g i (Re) A 0 s 

ls 2 
F lcr +72.690 0.000 0.001 0.001 0.000 ·O. 0 0 0 

ls~i 2cr 2.000 2.046 0.042 0.042 1.962 

252F 3cr 0.000 0.312 0.226 0.073 0.013 

2p 
1 F+2~i 4cr 72.690 ·l. 000 12 6. 7 8 7 12 5. 9 6 3 0.784 0.039 

2p7T4
F l7T -145. 380 0.000 -122.941 -122 .006 -0.935 0.000 

Totals: -72.690 3.000 6.206 4.226 -0.036 2.014 

R3
a} Underlined g2p( 00 ) 's are + ~ x q 210 
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a)Table 4.2 

Field Gradients at Be ih BeO at Re = 2.50 a.u. 

a.o. MO g 2p (R=oo) g i (R=oo) gi (Re)· A 0 · s 

ls 2 la +l.094 2.000 2.001 0.000 0.000 2.0010 

ls 2 2a 0.000 0.058 0.016 0.042 0.001Be 

2s 2 3a 2. 0 0 o. 2.494 0.119 0.393 1. 982 
· O 


2s 2 
 4a 0 •. ooo . 2.595 0.395 0.653 1.547Be 

2pn
0 
4 l 1T 4.000 1.312 -0.483 -0.049 1.844 

Totals: 8.000 8.420 0.045 1.039 7 .· 334 

Field Gradients at O 

ls 2 la +30.779 0.000 0.006 0.006 o.ooo 0.000
0 

ls 2 2a :J.000 1.994 0.003 0.015 1.976Be 

2s 2 3a 0.000 1. 222 0.830 0.348 0.043
0 

4a 2.000 46.922 44.914 1.859 0.1492s~e 

2pn
0 
4 17r -61.558 0.000 -40.440 -39.955 -0.569 0.084 

Totals: -6.1.558 4.000 9.704 5.798 1.654 2.252 
.... 

R3 
a) Underlined g 2p( 00 ) 's are + 2 xq 210 
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and has noted that on physical grounds, one expects the 

equivalence to be complete, i.e., ~orrect to all orders 

of the nuclear quadrupole and the electronic .perturbation. 

lf one uses an exact wavefunction (without nuclear 

interaction) , one has then surruned the electronic pertur­

bation to all orders. The question then becomes, is an 

RHF wavefunction, as we have used in the force analysis, 

accurate enough to calculate field gradients. For closed­

shell molecules, the RHF orbitals are internally consistent 

eigenfunctions of the H-F equations and therefore 

Brillouih's theorem applies to them. Since the ~ain 

perturbations on the atomic densities are of axial symmetry 

as a result of bond formation, perturbations from nuclear 

moments can be safely disregarded. Thus, we can confidently 

surmise that the field gradients obtained from the RHF 

functions used in this work will be quite accurate; the 

quadrupolar energy as calculated using second-order pertur­

bation theory (first order in H and H ) should be thus .1 2

reliable. 

4.3 Interpretation of Ionic Molecules 

In Tables (4.l)and (4.2), there are presented field 

gradients . for the two molecules LiF and BeO, with an 

orbital breakdown of the various contributions, in addition 

to atomic, overlap and shielding components. These have 

all been multiplied by R3/ 2 in ord~r to transform them into 
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effective charges, i.e., 

N
2

qA = -3 [Z L g.] (4.8)
R B i=l 1 

where 
gi = R: ni <<Pil 3 cos~Sg-ll<Pi> 

r a 

Also listed is g 2p( 00 ) which represents the field gradient 

of the 2p electrons on the free atom in question. These 

have been calculated from Hartree-Fock atomic functions 

used in the density difference diagrams. Shielding 

corrections for these valence electrons have been neg­

lected due to their smallness and the inherent difficulties 

discussed previously. For ·Li and Be, g p( 00 ) is taken from2

spectroscopic data. (see ref. 145, pp.131). 

a) LiF 

A cpmparison with the forces in Table(3.6)shows 

only correlation with the shielding charges. In particular, 

the atomic polarizations at Li indicate little or no 

parallel behaviour as the forces. This is due to the fact 

that much of this polarization is of p character. Such 

polarization only contributes to the field gradient in 

second order, as compared to first order for the forces, 

necause of the different symmetries of the operators involved. 

The net atomic contribution at Li is antishielding. This 

is not in accord with that obtained by the Sternheimer theory 



161 

which predicts gL. (atomic) = y 00 = 0.249(l6 0), since 
. l 


qLi = - R-
2 
3 ( l-y00 ) On the other hand, the Li nucleus does
• 

not see a fully negative fluoride ion. In fact, adding 

the overlap and shielding contributions, one gets 9.696. 

For the forces at Li, this sum was 9.881. One thus sees 

that higher negative moments involve larger undershielding 

phenomena. · This undershielding comes about because of the 

factor (3. cos2eB-l)whi~h favours charge placed on the 

internuclear axis .much more than the factor cos 8B operative 

in the forces. Thus, .. the a shielding contributions are 

larger than in the forces, but this factor is overwhelmed 

by a large undershielding from the w electrons. 

3The net field gradient at Li is -0.0526 e/a0 . From ' 

the Sternheimer theory, qLi ·= -2(1-y00 )/R3 with y 00 = +0.249. 

Using Re= 2.8877 a.u., our calculation predicts 

yoo = +0.367. The quadrupole coupling constant ~n Li7F has 

been measured by Braunstein and Trischka( 161) for which 

. they report eq Q = 412 kc/sec. From the quadrupole moment 
I 

26 (16'"))
Q = -4.3 * 10- cm2 as calculated by Browne and Matsen ~ ·Li 7 


with an accurate wavefunction of LiH, one can calculate the 


-3
experimental qLi in LiF to be -0.04la . This would imply
0 

a still larger shielding factor y 00 • However, in view of the 

fact that Braunstein et al obtained very poor spectroscopic 

constants (error of 20%), their quad'rupole constant is 

probably not very accurate either~ At R = 2. 9 877 a. u., we 
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calculate y 00 = +0.300 (see Appendix 3). The experimental 

equilibrium value of LiF is 2.9554 a.u. <163), so that yoo 

at this distance will be between 0.300 and 0.367. This 

variation of y 00 with internuclear distance is indicative 

of bonding effects on the polarizations of the ion. 

At the fluorine nucleus, the shielding from the Li 

density indicates the presence of essentially an Li+ ion, 

just as the force analysis predict~d. The positive 7T 

overlap field gradient at Li definitely shows this density 

is quite far away from the Li nucleus, a point not exactly 

accentuated by the forces, where it was found the ~ overlap 

forces were about equal at both nuclei. The TI overlap 

field gradient at F is nega~ive, hence really b~having as 

an atomic density. Interestingly, it completely negates 

the positive a-overlap contribution. The atomic g's at F 

show up something quite important, namely, that the pn 

electrons are more polarized than their pcr counterpart. 

Much of the contribution to th~ total electronic field 

gradient comes from this difference. A perusal of the 

density difference diagrams of LiF using .neutral and ionic 

separated a toms · (see Chapter II) , show a remova 1 of p7T 

electrons around the F nucleus and accumulation of this 

density along the bond, more so in front of the F nucleus. 

A density difference map for the a density only, by Bader 

. ( 14)
and Henneker showed that some of this perpendicular 
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charge removal was due to a contraction of the o density 

along the bond, i.e., a polarization effect arising from . 

the presence Of L1.+. It is evident that chemical bonding 

has profound effects on the polarizations of densities. 

The total field gradient at F is +2/R3(-3.206) 

which corresponds to y00 = +4. 20.6. The Sternheimer value 

for -y 00 is -22.0< 164 ). In other words, the point charge 

model predicts a value of completely wrong sign. A 

recent H.F. calculation of qF in NaF . by Matcha(lGS) also 

predicts a negative field gradient, whereas the anti-

shielding model predicts a large positive qF. The over­

lapping of Li+ and F- densities has obviously considerably 

altered the field gradient contributions at F, from that 

of a point charge model. The deliquen~s in this state of 

affairs are the 2po and 2pTI electrons at F, which have 

individually different polarizations. The field gradient 

at Li on the other hand, is governed by a substantial 

undershielding of the 2pTI electrons on F. 

b) BeO 

In the force analysis, it has already been 

indicated that this molecule was intermediate between 

Be+O- and Be++o=. One feature of this molecule distinct 

fLom that of LiF was a larger delocalization of the TI 

density ~owards Be. The TI overlap forces indicated equal 

sharing of this density. This is no longer true for the 
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field gradients which weight regions closer to the nucleus 

more than the forces. Nevertheless, the negative contri­

bution of the overlap field gradient at Be indicates that 

this density is beginning to behave as an atomic charge, 

so that the TI density is ~ndeed more polarized towards Be 

than towards Li in LiF. There is ~gain a significant 

difference between the a and TI atomic field gradients. 

This disparity, just as in LiF, con~~ibutes largely to · ihe 

total field gradient. This difference is in the same 

direction as that in LiF, contributing to shielding; rather 

than antishielding as predicted by the Sternheimer theqry. 

At Be, there is the usual large undershielding of 

the TI electrons from o. Adding the overlap and shielding 

contribution, the net result is 8.373, whereas the result 

~or the forces was 9.430. The lTI shielding force at Be 

was 2.396, whereas the lTI shielding field gradient is 1.844. 

It is evident that the smaller the internuclear distance, 

the more severe is the undershielding by TI electrons. The 

Sternheimer shielding factor for Be++ is yoo = 0.189(l66 ) . 

. h ' . d 1 . B +20- 2 . ( 1 -y 00 )Assuming t e ionic m<? e e , 1 .e. qBe = - R34 
, 

using R = 2.50 a.u. and qB = - -
2 
3 (0.420), one obtains 

y
e R . . 

00 = 0.81. The calculated y00 is thus too high, since in 

the molecule the net charges on the nuclei are smaller as 

a result of incomplete charge transfer. In order to repro­

duce our calculated field gradient with the Sternheimer y 00 , 
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we would have to assume a structure Be+o. 50- 0 · 5 . This 

is not realistic in terms of the large charge transferred 

from Be(shielding at 0 is 2 .• 252). Thus, the Be density 

. . +2 ­as seen from O behaves very much like Be . For O , 

Burns and Wikner(lG?) report (l-y00 ), = 29.22, i.e,., anti­

shielding. Our calculation gives q 0 = +:3 (-1.704) so 

tha-t:-. ( l.;...y 00 ) = -0. 852. This is therefore of opposite sign 

to the antishielding model. The main source of these 

theoretical disagreements as in LiF are a result of the 

different contributions of 2pcr and 2pTI electrons situated 

at the heavy nuclei, a reflection of the influence of the 

bonding process on the polarizations of densities~ 

4.4 Inadequacies . of the Antishielding· Model 

To gauge the reasons for the above discrepancies, 

one must look into the .assumptions which are inherent in 

the antishielding model. Firstly, no distinction is made 

between po and pTI orbitals. The Li+F- density difference 

map shows that there is a more concentrated 2pcr density 

along the bond on both sides of the F nucleus, thus 

increasing the shielding. Furthermore, there is an increase 

of TI density in front of the F nucleus. This also incre&ses 

the shielding factor at F as the antishielding of the TI 

a ·~omic density is reduced. The fact that the atomic 

contribution of the TI electrons at F is less in magnitude 

than that of the a . electrons indicates a strikingly different 
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polarization of these. The second assumption is made that 

the electrons on one ion are almost external to the other~ 

i.e., there is very little overlap. The picture of the 

~olecule as being two spherical balls of charge touching 

each other is an oversimplification. If one looks at the 

density difference diagrams for LiF and BeO, one notices 

"exchange" distortions. at the electropositive elements, 

with radial excitations which expand the electron· density 
•, 

of the positive ion in directions perpendicular to and 

also along the internuclear axis behind these ions. The 

net result of these distortions at Li and Be does not 

produce appreciable atomic field gradients for these 

nucleio At Be, the a polarizations are actually cancelled 

by n density which has been transferred from O. The 

.exchange distortions also affect the polarization of the 
I 

a density of the F ion or F atom . as seen by the rather 

abrupt cutoff of the positive ~P region near Li, with 

accompanying backpolarization. The total overlap force 

added to the atomic force at F gives a value of 1.00, as 

expected for the ionic model. On the other hand, the 

field gradient,which measures regi~ns . closer to the nucleus, 

~ ndicates that the 2pcr electrons at F contribute more than 

the 2pn electrons in magnitude. This increased shielding 

by the 2pcr electrons can be partly understood in terms of 

the clustering of density around the heavy nuclei as 

J 
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demonstrated by the profiles of the ~P map along the 

_ . ') 	 internuclear axis (see Fig. ( 2. S)). Furthermore, there is 

obvious loss of TI electrons from the vicinity of these 

nuclei. This substantiates the assumption made by 

2DeWijn( 1 ~ ) that in alkali halide molecules the polari­

zations of the orbitals of the halogen ions along the 

internuclear axis are quenched by overlap with the alkali .. 
core. This quenched polarization may not be noticeable 

in the forces, but will affect field gradients by virtue 

of prohibiting radial excitations, i.e., motion of more 

density towards the positive ion via orbitals of higher 

principal quantum numbers centered on F. Assuming that 

it is the pTI orbitals which are freely polarizable, 

DeWijn is thus able to present a theory which has the 

advantage of being applicable by means of simple semi-

empirical calculations. These same effects are operative 

+in BeO. The ~P diagrams using both neutral and Be , O , 

atomic densities indicate the increase of charge along 

the internuclear axis on both sides Df 0 and polarization 

of TI electrons into the bond region. In view of the 

diffuseness of o= density, one therefore concludes that 

with respect to the F- and 0- ions, polarization of the 

pTI electrons and some depolarization of the pa electrons 

tend to contribute to a shielding of the heavy nuclei F 

and o, with the result that one has negative field gradients 
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rather than positive ones as predicted by the anti-

shielding theory. The situation at the positive ions is 

that both Li and Be see ~ess.pn electrons on the other 

nucleus than predict~d by the ionic model, since the 

nature of the disposition of such ~ density contributes 

significantly to undershielding. 

One therefore has the result that the field gradients 

predicted by the antishielding model is an order of magni­

tude larger and of wrong sign for the F- and 0- ions, 

while the results for the positive ion are predicted to be 

larger by a factor of two. The introduction of covalency, 

which amounts to introducing the Townes-Dailey theory, does 

. h 1 . h . . ( 155 ) h. 1 . d f. .not e p t e situation . T is resu ts in a e iciency 

i~ the pcr orbital of a halogen atom which contributes a 

positive amount to the atomic q at the halogen nucleus 

(see next section). On the other hand, a point forgotten 

by many authors, a deficiency of the pn density will create 

the opposite effects, i.e., reduce the antishielding contri­

bution of these at the halogen nucleus. Our observation 

has been that in all the molecules we have studied so far, 

it is the TI -bond which demonstrates covalent characteristics, 

whereas the ionic character is predominant in the a-region. 

Thus it becomes now clear that the simplification of con­

s ~ . deri :-:--.; ::he pn electrons as point charges located at the 

more electronegative nucleus is not totally justifiable. 
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For the molecule KCt, Das and Karplus(lSl) showed that 

the inclusion of overlap effects between the ions K+ 

and Ct alters the field gradient in the right direction 

to improve the agreement with the observed field gradient 

at the halogen nucleus. Charge-transfer covalency on 

the other hand, increases the discrepancy with .experiment. 

This would not be so if one considers covalency of the n.. 
electrons also, whereas these authors consider only pcr 

covalency. , Introduction of overlap, they show, enhances 

the potassium field gradient by a factor of two. The 

discrepancy may well come from the undershielding of pn 

electrons on the Ct nucleus. Although the internuclear distance 

is 5.04 a.u., the Ct ion will be very diffuse, so that 

a small undershielding. of the halogen nucleus by the pn 

electrons will counter any overlap effects which are also 

small. 

These effects are probably larger in LiF because 

of the smaller internuclear distance. DeWijn(lS 2) has, 

in fact, pointed out that the discrepancy is always 

larges~ at the smallest cation, the presence of which 

results in a shorter bond distance. This enhances the 

undershielding of the pn electrons and thus is a primary 

source of the decreased antishielding at the alkali ion. 

In the case of BeO, the internuclear distance is smaller 

than in LiF. It has been stated by Das(lGS) that in spite 
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of the diffuseness of · the 0- charge distribution, the 

compactness of positive ions as manifested by their 

small radii argues against the possibility of much 

covalent bonding. This is certainly questionable, since 

the electropositive ion tends to draw to itself the n 

electrons from the electronegative ion. We have also 

seen, moreover, that the electronic configuration was .. 
+ - ++ = intermediate between Be O and Be o . Thus, at Be, 

one must deal with undershielding of the O nucleus, 

whereas at O, larger covalency of the TI electrons will 

introduce a greater disparity in magnitude between o and 

n contributions. 

The paradox extends, as discussed by DeWijn< 152), 

to the dependence of the antishielding effect on molecular 

vibrations. For q{v), i.e., the increase of q with 

increase of the vibr_a tional quantum number by one unit, 

calculated with antishielding theory, there is quite good 

agreement at the alkali site. At the halogen ion there 

again is a large discrepancy. The antishielding model 

predicts q{v) to be negative. The observed q(v} 's, 

although of equal order · of magnitude, have opposite signs. 

An effect other than antishielding must therefore be 

o perative. Since q arises from all charges other than 

t:1at of the nucleus under .consideration, q will be affected 

by the change of ch arge distribution caused by molecular 
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vibrations. Assuming q to be a ·function of internuclear 

distance R, it will vary with R during the course of 

molecular vibration as follows:< 169 ) 

q ( R} = q ( 0} + q ( l) r; + q ( 2) r; 2 + • •.• 	 (4.9) 

where ~ = (R-Re)/Re and Re is as before the equilibrium 

internuclear distance. The wavefunction for an anharmonic 

potential can be obtained by solving a harmonic oscillator 

problem and the average values of the above expansion 

are obtained from this wavefunction. q(R) is then 

approximately expressed as(l?O) 

q(R) = q{O) + q(2) (v + ~) + •• • 

where (4.10) 

q(v) = 3Be/w 
e 

The first term is the average of r;; · over the 	anharmonic 

. 2
molecular vibrations; the las.t, the average of r;; over 

the harmonic vibration. Be is the rotational constant, 

We the vibrational frequency, ae the rotation vibration 

constant. Using the recent experimental data of Gordy(lG 3 ) 

for LiF and Herzberg's(??) tables for BeO, the resulting 

q (~) 's are: 

(v) (1) (2)
= • 012 q + .003 qqLiF 

( 4 .11)
(v) ( l} (2)= .009 q + .. 002 qqBeO 

These effects are quite small and include second order 

2
2ffects q( ). Using _calculated values of q(R} at seven 
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different points '(see Appendix 2) we have made a best 

fit of these values to a 4th order polynomial. In 

Table 4.3, we present the first ~nd second derivatives 

of the field gradient, and not q(v) as this would only 

obscure what we wish to show. We have transformed the 

first derivatives into e~fec~ive charges so that 

dqA/dR = - 6/R4(zB - Zeff) ( 4 .12) 

Also included are contributions from the po (4o orbital) 

and pn electrons (ln orbital) on the electronegative 

element. 

The first thing one notices is that the pn 

electrons at F and 0 are less sensitive to molecular 

vibration than the po electrons. This suggests that the 

polarization of a electrons at the electronegative nucleus 

is much more dependent on vibrations than the TI electrons. 

This does not agree with DeWijn's semi-empirical theory, 

which considers only the polarization of the n electrons. 

The overlap contributions are negligible compared to the 

polarization contributions. The Li and Be charge densities 

+2 · r+ fbehave again as point charges Be and Li as seen rom 

their shielding contributions. Thus, at the more electro­

negative nucleus, the main contribution to q(v) comes from . 

the restoration of polarization of po electrons, i.e~, 

an increased antishielding. The pn electrons as they 

become more localized on the elec~ronegative nucleus with 



Table 4.3 


DERIVATIVES OF FIELD GRP~DIENT IN LiF & BeO 


_R4 ~ 
q dq/dR d2q/dR2 6 dR 

' Total
Nuclear(ZB) po . pn A 0 s 

Electronic 

Li -0.053 +0.008 -0.033 9.0 -2.528 -2. 3 58 -0.003 -0.307 -8.781 -9.091 

-17.016F -0.266 1.102 -0.756 3.0 -11.589 .-2.915 -'15.220 +0.224 -=-2. 020 

Be · -0.058 -0.023 +0.024 8.0 -2.388 -0.708 -0.283 -0.781 -6.738 .-7.802 

0 -0.883 2.595 1.105 4.0 -14.105 -3.357 -19.021 -0.220 -2.040 -21.277 

•f-' 
-......) 

N 

PJ 
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increasing internuclear distance, also enhance the 

antishielding since they always contribute a net positive 

field gradient. However~ their effect is only ~ of that 

of the pcr electrons. The net result is an increasing field 

gradient at F and O. On the other hand, the antishielding 

model would·predict a .decrease since dq/dR = -6/R4(1-yoo) 

and (l-y 00 ) is 23 and 29 respectively for F- and 0-. At 

the electropositive nuclei, namely Li and Be, the field 

gradients are very small, so are their changes. There is 

the usual undershielding of pTI electrons offset by an 

overlap and a slight overshielding of the pa electrons. 

These small changes are not in exact agreement with the 

shielding models which predict larger positive effects, 

i.e., dq/dR = +6/R4(1-yoo) where yoo<l. 

In all classical models such as the antishielding 

model, no attempt is .made to portra~ directly the intra­

molecular electronic charge distributions. Terms are 

introduced to represent the polarization energy, but 

whether these are applicable in the inhomogeneous electric 

field occurring within the molecule is open · to question. 

3uckingham(l?l) has introduced such inhomogeneous fields 

in order to preserve the classical simplicity of the 

ionic model. However, this requires the knowledge of 

hyperpolarizabilities, second order polarizabilities which 

are not easily calculated with reliability(lG 4 ) ~ Benson 
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and van der Hoff (172 ) were probably the first to point 

out that orthogonalization of Li+ ls orbitals to F 2p 

orbitals gave backpolarizations at F- due to Pauli 

repulsions between two closed shells. They concluded 

that although LiF is usually considered to be an ionic 

molecule, the inclusion of some covalent character· was 

an essential feature. Similarly in the crystal, in 

order to ·explain properly nuclear quadrupole relaxation 

times, it has become evident(lSS) that any effective 

theory should include simultaneously the Van Kranendonk 

ionic model and the Yos~ida-Moriya . covalent model(l?J). 

The latter model enables one to calculate transition 

probabilities for nuclear spins in ionic crystals assuming 

that the transitions are induced mainly by a distortion 

of the residual covalent binding between neighbouring 

ions by the lattice vibrations. The Van Kranendonk model 

considers a point-charge ionic crystal where the transi­

tions are induced by fluctuating field gradients from 

lattice vibrations. In view of the fact that the work of 

Watson and Freeman(l? 4 ) suggests that the Sternheimer 

;rocedure underestimates IY 00 l, certainly modification of 

~he negative ion structure by its environment must be a 

:~ajor source of the discreparicies. For systems with axial 

symmetry, it is now clear that binding affects the 

polarizations ot the TI and a electrons differently. At 
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the electronegative .site, shielding is increased as a 

result of depolarization of the a electrons and an 

opposite polarization into the bond of TI electrons. At 

the lighter atom, th~re is very little polarization of 

the core, or if there is any, it is effectively cancelled 

by back-donated TI electrons. There is, furthermore, 

subs~antial undershielding of the TI electrons situa~ed 

at the electronegative site. There is thus a decrease 

in magnitude of the total field gradient, which one would 

misconstrue for a shielding effect on the part of the 

cation density its~lf due to externally induced 

polarizations. In highly symmetric systems such as alkali 

halide crystals, distortions from cubic symmetry by 

lattice vibrations will define directions ~long which 

polarizations will become asymmetric, so that densities 

along the internuclear distances will have different 

polarizations as those away from these regions. This 

will then affect field gradients at the halogen nuclei 

as in the axially symmetric cas~s. Furthermore, under~ 

shielding of the heavy nuclei by the electron densities which 

are situated on these will also be a factor contributing 

to smaller field gradients at the alkali sites. It is 

UD.fortunate that there is no long-lived quadrupolar 

isotope of F (F19 , the most abundant isotope has no nuclear 

~uadrupole moment). Otherwise, the negative field gradients 
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as predicted by our calculation would have indicated the 

failure of the antishielding model and the possible 

deficiencies would have been brought to light sooner. 

4.5 The Townes-Dailex Theory 

The standard semi-empirical theory of field 

gradients and quadrupole ~on~tants is due to Townes and 

Dailey< 63 >. Other general discussions have been given.. 
(175) (145) . (i176)b y Gordy , Das and Hahn , o.rv1lle-Thomas . 

and Lucken(l??). Townes and Dailey related qA for a 

molecule to the atomic field gradients qat for a p 

electron, outside closed shells at nucleus A~ The closed 

shells are assumed to be spherically symmetrical and to 

make no contribution to q. Other electrons give contri­

butions that decrease rapidly with n and 1 ~ ·.Thus, 

qA = f qat' where f depends on the electronic structure 

of the molecule. The calculation of qat from experimental 

results in many cases is possible from hyperfine·splitting 

of atomic beam spectra(l?S) which involves transitions 

between the energy levels of the free atom in a magnetic 

field. These quantities are also less accurately deter­

~ined from the hyperfine splitting of optical spectra. 

For N, with a spherically symmetric configuration which 

gives zero interaction with the quadrupole moment of the 

nucleus, one can still obt~in approximate values of <l/r3> 

for the p electrons from the fine ptructure of optical 
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lines due to spin-orbit coupling<l79 >. One can also 

calculate these from atomic Hartree-Fock wavefunctions 

such as those used for the density difference diagrams. 

However, there are quadrupolar deviations from spherical 

symmetry of atomic cores due to distortions from polarization 

of the electronic charge distribution by the nuclear quadru­

pole, and also by valence electrons,· as we discussed in .. 
the previous sections. There is aiso a second order effect 

on the valence electrons themselves which is only taken 

into account by UHF calculations. These effects have been 

recently discussed by Sternheimer< 159 >. By introducing 

the shielding factor yA, the total fi~ld gradient of the 

valence electrons should be regarded as altered to 

qat(l-yA). For the first row atoms these are small. For 

B,yA= .142; F, yA = .11, which represents a shielding 

.effect in both cases (180 ) . In general, as discussed before, 

calculations coupled with known theoretical difficulties 

indicate enough uncer.tainties in the calculated correction 

factors due to shielding that their present general use for 

evaluating nuclear quadrupole moments does not seem justi­

fied. Furthermore, in molecules, since the charge distri­

butions that produce the various contributions to the field 

gradient are disposed .differently w·ith respect to the. core 

electrons, the different contributions will ali, in general, 

be subject to different antishielding factors and hence 
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b . 't . (181}more am 1gu1 y exists . In what follows, we have 

shunned this approach due to its uncertainties. 

In a molecule: then, qA is primarily dependent 

on the way in which valence electrons fill the lowest 

energy p-type orbitals. Contributions to qA come from 

several different sources. 

l} vaience electrons associated with the nucleus in .. 
position 

2} other charges associated with adjacent atoms 

3} distortion of nonbonding closed shells of 

electrons around the nucleus. 

Type (2} is usually considered not important, depending 

on l/R 3. However, these external charges produce changese 

in the wavefunction of other electrons in the . atom. These 

contribute primarily to (3}. For instance, if there is a 

nearby negative charge, the atomic electrons including 

·those in closed shells tend to move away from this charge, 

partially cancelling its effect or shielding the nucleus. 

The effects of type (2} and (3} presumably cancel to a 

very large · extent. It is generally assumed that the 

contribution to q of an external charge is reduced by a 

factor of 10. Estimates as discussed before show that 

distortions of the closed shell of electrons surrounding 

the nucleus will produce contributions to q less than 1% of 

the value due to a single electron of the valence shell. 
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It is also argued that the pn electrons are perturbed 

and hence will cancel such polqrization effects. 

Quadrupole coupling constants are usually assumed 

to be sensitive only to charge near the nucleus, and not 

to outer regions of the molecule. Hence, Townes and Dailey 

expand the wavefunction near the nucleus in terms of 

atomic configurations. The question becomes then how these 
~ 

configurations are related to the nature of the chemical 

bond. Furthermore, both Dailey( 146 ) and GordyCl75 > reject 

overlap, which implies that neither ~alence bond nor MO 

methods provide adequate link between atomic and molecular 

wavefunctions. The chief argument against inclusion of 

overlap has been that normalization changes the electron 

density near the nucleus whereas the major effects of 

bonding should occur only in the outer regions of the atom ­

Our density difference maps certainly strongly vitiate 

any such arguments - Alternatively, the interpretation 

becomes that other configurations such as valence states 

and ionic configurations will change the charge density 

at the nucleus. The role of overlap has thus been puzzling. 

Inclusion of overlap in crude calculations may lead to 

errors since the wavefunction of the neighbour atom is 

far from being the correct solution to Schroedinger's 

equation in regions near the nucleus considered. That is 

why hybr~dization has always seemd a more reasonable 
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4. 4a)Table 

Field Gradients on N in N2 at Re = 2.068 a.u. 

a .o. MO ,g 2p (R=oo) g i (R=oo) gi (Re) A 0 s 

ls 1 log 10.964 1.000 1.009 -0.002 0.010 · 1.000 

l s · lou 1.000 0.988 -0.012 0.004 0.997 

2s · 2og ·1. 000 5.011 2.286 1. 800 0.926 

2s 1 2ou 1.000 2.551 2.244 -0.017 0.323 

2po 1 3og 10.964 1.000 11.517 9.626 1.289 0.602 

2pn 2 lnu -10.964 2.000 -8.051 -8.325 -0.453 0.727 

Totals: 0.000 7.000 13.026 5.817 2.634 4.575 

a) Underlined g 2p( 00) 
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Table ·4. Sa) 


Field Gr.adients on c in co at Re = 2.132 a.u. 


a .o .. MO g 2p (R=oo) gi (R=oo) g i (Re) , A 0 s 

. ...~ ,...
J...::... 

~· 

la 6.324 2.000 2.001 0.000 0.000 2.001 

.L S .: , 
"-" 

2a 0.000 0.084 0.077 0.007 0.000 

2.::: ...,, 
,J 

3a ·2.000 4.029 0.828 l.3SO 1. 851 

· 2s < 
c 4a 0.000 l.SS9 0.277 0.436 0.845 

2po ~ + 2pa1 
c 0 

So 6.324 1.000 6.841 S.291 0.992 0.558 

a'TI
1 +2:Pn3

!:! c 0 l TI -3.162 3.000 -:oO. 837 -2.192 -0.167 1.522 

Totals: 3.162 8.000 13.677 4.281 2.619 6.777 

Field Gradients on 0 

a.o. MO g 2p(R=oo) gi (R=oo) gi (Re) A 0 s 

ls 2 · 
0 

lo 19.089 0.000 0.018 0.018 0.000 0.000 

... ls 2 
c 2a 2.000 2.003 0.000 0.002 2.000 

2s 2-
0 

3a 0.000 4.057 2.585 1. 229 0.243 

2s :: c 4a 2.000 22.116 20.241 1.564 0.311 

2od+2pcr1 
... 0 c Sa 19.089 1.000 6.204 · 5.725 -0.075 0.554 

2pn;3+2p'TT1
0 c ln -28.634 1.000 -24.873 -24 .515 -0.603 0.244 

Totals: -9.545 6.000 9 .. 524 4.054 2.118 3.353 

R3
a ) Underlined g (oo) 's are +

2p Txq210 
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a)Table 4.6 

Field Gradients ~t B in BF at Re = 2.391 a.u. 

a.o. MO g 2p (R=oo) g. (R=oo) g i (Re) A 0 s
J. 

ls 2 
F lcr 4.238 2.000 2.000 0.000 0.000 2.000 

ls 2 
B 2cr 0.000 0.051 0.036 0.015 0.000 

2s 2 
F .3cr 2.000 2.693 0.119 0.512 2.062 

2s 2 
B 4cr 0.000 3.061 0.468 0.916 1.678 

~+2p~ 5cr 4.238 1.000 2.555 1.983 0.244 0.329 

2pn 4 
F Lrr 4.000 2.320 -0.281 0.055 2.546 

Totals: 4.238 9.000 12.680 2.325 1.741 8.615 

Field Gradients at F 

a.O~ MO g 2p (R=oo)· g i (R=oo) gi (Re) A 0 s 

ls 2 

F lcr 41.763 0.000 -0.007 -0 .. 009 0.002 0.000 
J 

.... 
ls 2 

B 2cr ~.000 2.004 0.000 0.004 2.000 

2s 2 

F 
3cr 0.000 1.969 1.417 0.502 0.050 

2s 2 

B 

- 1 2 1
LpoB+ ~ 

40 

Scr 41.763 

2.000 

1.000 

64.245 

4.063 

61.813 

3. 9 36 

2.244 

-0.385 

0.189 

0.513 

2p7T4
F ln -83.526 0.000 -71.448 -71. 012 -0.477 0.041 

Totals: -41.763 5.000 0.827 -3.855 1.889 2.793 

R3 
a) Underlined g 2p( 00 ) 's are · + .~ xq 210 
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approximation to Schroedinger's equation.. As Gordy has 

explicitly stated, it is necessary to assume hybridization 

or to treat bonding in terms of delocalized MO's. The 

recent trends would seem to favour the latter approach, 

as exemplified by Harris and Cotton's(lS 2 } recent work 

on metal complexes. In the final analysis, as we have seen 

for the ionic case, although overlap may not contribute to .. 
a particular property, it will significantly alter other 

' domains of ,the electron density which will thus affect 

expectation values considerably. This is the rule rather 

. d . (18 3} . dthan the exception an as Davies pointe out, may 

well be the explanation of the difficulty found in the 

interpretation of eQq and of the injunction to ignore 

overlap. 

4.6 Interpretation of Covalent Molecules 

In Tables (4.4)to ·(4.6), there are presented the 

electronic field gradients in terms of effective charges 

for the series N2 , CO and BF. Orbital breakdowns as well 

as atomic, overlap . and shielding contributions of each 

orbital are given. In addition, free atom values of 

the contributions from 2p electrons are given as g.,2p (00 } .. 


As seen from these tables, the . shielding contri­


butions correlate quite well with the shielding forces 


~see Chapter III}. Atomic densities, which show back-


polarization in terms of atomic forces, are found ~o be 
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less shielding for field gradients because of the l/r3 

dependence, than for the forces which have a l/r2 

dependence. The largest disagreement is found with the 

lTI electrons. These electrons only shield about 1/3 of · 

the corresponding nuclear charge in N because of their2 

spatial distribution,·whereas the forces show a shielding 

of ~ of these nuclear charges. The discrepancy in shielding.. 
diminishes as one goes to larger internuclear distances such 

as in BF. It has been remarked by Kolker and Karplus< 144 > 

that as the ·wavefunction becomes more accurate, the 

contribution of the TI electrons decreases as a result of 

orbital expansion. The difference between screening 

coefficients for a and TI orbitals was first noted by 

Mulliken(lB 4 ) , although it is often forgotten in approximate 

MO calculations( 46 ). We have already remarked on the 

contraction of the a-density in connection with the density 

diagrams , as a result of contraction of the 2pcr orbitals 

in the molecule. The disparity in ·2pcr and 2pTI contributions, 

as noted earlier for N
2 

by Richardson(lSS), results in a 

noncancellation of these contributions . I n the valence 

2state for N ( 2pcr 1 2pTI ) there is a complete cancellation 

since q - - 2q The total contributions from the2pcr - 2pTI · . 

v'\rerlap and shielding add up to give a net shielding 

charge of 7.21, which effectively' cancels the nuclear 

charge . Hence, . for N2 , most of the field gradient 
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contribution comes from the atomic density, in agreement 

with the Townes-Dailey theory. The polarization of the 

TI electrons into the bond complicates any discussion in 

terms of hybridization. However, one can express the 

net atomic field gradient in terms of effective atomic 

populations, making use o~ g2p( 00)' the field gradient 

value of the free atom 2pcr orbital. For N2 , this is 10.964. 

The_n by adding the total cr atomic field gradient, one 

25obtains an atomic population for N of 2pcr 1 · 2pTI 1 • 50 •2 

In the case of CO, the total shielding contribution 

at C due to 0 density is undershielding by about 1.2 

charges, most of the deficiency coming from the TI electron 

distribution. However, the sum of the overlap arid shielding 

charges exceed the oxygen nuclear charge by 1.40 charges. 

A comparison of TI overlap field gradients ind icate that the 

density is unequally shared in contrast to the force analysis 

which predicted equal sharing. The total shielding at O 

due to C density is less than the 0 nuclear charge by 2.65 

as compared to 2.12 from the force analysis. Much of this 

undershielding is therefore a result of backpolarization of 

atomic charges, also indicated by the forces. The field 

gradients thus accentuate the effect. The sum· of shielding 

and overlap g's at O is 5.47, somewhat less than the C 

nuclear charge of 6. In terms of the free atom field 

gradients 1 one o_btains the following populations: 
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1.02 0.70 1.502 2.55
2pcrc pnc , 2pcr0 pn0 For BF, the sum of 

overlap and shielding field gradients at B indicates an 

overshielding of the F nu~le~r charge by 1.35, similar to 

the situation of Cinco. At F, this sum is 4.7, nearly 

competely shielding the 5 nuclear charges on B. In 

terms of free atom field gradients, the atomic populations 

are: .. 
2 0.512 . 0.13pcrB pnB , 2 1.622 3.45pcrF pnF . 

The field gradients in covalent molecules are not 

easily correlated by · the Townes and Dailey theory with 

electronic structure. The first difficulty is that 

invariably one has to deal with the polarization of TI 

electrons, which, as we have discussed in connection with 

the forces, go counter to electron transfer which occurs 

in the a-region. Furthermore, the theory underestimates 

the contribution of overlap and shielding densities at 

light nuclei, and overestimates these at the heavy nuclei. 

These two contributions do not cancel out the nuclear 

charges for the last case. In the case of the light 

nuclei, the smaller pcr gradients seriously limit any con­

clusion of the amount of "hybridization" present as a 

result of the overshielding of the nuclear charge at ~he 

other end of the molecule by the tptal overlap and shielding 

densities. The symmetric molecule N shows best cancellation2 

of nuclear charge and overlap plus shielding densities 

(ZN= 7.0, O+S = -7.21). For the other nuclei, one therefore 
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has the problem of partitioning the overlap density. In 

the next section, these will be dispussed together with 

the atomic contributions in connection with certain features 

of the density • 

A general comparison of the atomic densities of 

these molecules indicates increasing pcr character and 

also pn character in the order B(.51,.13), C(l.0,.70), .. 
N ( 1 . 2 5 , 1 . 5 0 ) , O ( 1 • 5 0 , 2 . 5 5 ) , F ( 1 . 6 2 , 3 • 4 5 ) , where the 

bracketed values are pa and pn net atomic populations 

referred to the free atom field gradients. Since the 

contribution of a simple pn electron to field gradients 

is -~ that of a pa electron, we see that in all cases 

except F i~ there a preponderance ·of pa contribution, so 

145that F would be termed as having a "p-electron defect 11 < > 

45of about 0 .10 = (3 · - 1. 62) • This small defect would2 

indicate a large amount of ionic character were it not 

for the fact that the atomiq pTI population of F has 

decreased by about .5 charge due to transfer and polari­

zation into the bond region. One might be tempted to 

obtain the ionic character i by linear interpolation of 

q from the equation 

q = i qion + (l-i) qcov 

as done for a compound similar to BF, InCQ, by DeWijn .{186 ). 

This necessitates the use of an antishielding factor for 

http:C(l.0,.70
http:B(.51,.13
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the ion F or depolarization of the pa density and 

polarization of the pTI as discussed before. As all these 

are difficult to get at in practice ; the best one can say 

is that the atomic field gradients are obtainable f rorn 

the above net atomic popul~tions. The TI population must 

be obtained a priori from MO calculation in order to have 

meaningful results, due to their polarizations. The .. 
important suggestion of independent or even opposed a 

· and TI pola~izations has been previously discussed by various 

authors(lB7). Extended Huckel theory calculations for 

heterocyclic rings suggest pronounced and independent a 

and TI electron polarizations also(lSS). Simple electro-

negativity considera.tions, while giving a reasonable guide 

to the a-polarization may lead to erroneous conclusions for 

the TI-polarization. Nuclear quadrupole resonance studies 

interpreted in terms of the Townes-Dailey theory have thus 

always predicted large total electron excesses on electro­

negative atoms(lB 9). It is therefore obvious that SCF-MO 

treatments will give lower .values for the TI-electron density, 

hence suggesting a need for refinements in the interpretation 

of quadrupole resonance data, a refinement which necessarily 

depends on the knowledge of the exact electron distribution. 

4.7 Quadrupole Polarizations 

The forces provide a measure of the axial dipole 


polarizations of the charge distributions~ In particular, 




TABLE 4.7 

Field . Gr.a.dient . Components .• 

{total)
A qA{electronic)*R3/2 -(A+O)*R3/2 ·% · U~q el)qA a.u., qval. (q210>-q. .210 

·, ' ........ ·"- '· ' '
" ' 

Li. -0.053 -9.633 -0.411 · +110 {O) 


Be -0.058 -8.420 -1.084 + 99 (0) 

r 

0 -0.883 - 9. 70 4 -7.452 +224 {+2) 

F -0.266 -6.206 -4.230 +106 (+l) 

B -0.538 ~12.680 -4.066 - 4 {-1) 

c -1.172 -13.677 -6.900 + 59 (-~) 

N . -1.365 -13.026 -8.451 + 77 (0) 

0 -0.728 -9.524 -6.172 + 82 (+~) 

F +Oc611 -0.827 +l.,966 + 95 (+l) 

..... 
Q) 

\0 
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the atomic forces provide a measure of the extent of this 

polarization at each nucleus. These are related to dipole 

· shielding factors S
00

(l9 0) which are defined as the ratio 

of the change in the electric field at the nucleus, due 

to an atomic charge distribution, to the electric field 

at the nucleus from some ·external charge alone. The 

most characteristic rearrangement of the charge distri­

bution is, however, its quadrupole polarization. The 

field gradient operator, (3 cos 2ea-l) , provides a measure 
ra3 

of this very polarization at nucleus A. Negative charge 

on the axis contributes -2/ri to the field gradient while 

charge on the perpendicular axis contributes +l/r~ (S=n/2). 

~ polarization of the charge along the axis at the expense 

of the perpendicular component in the region of the nucleus 

results in a negative field gradient and the magnitude of the 

gradient provides a measure of the quadrupole polarization. 

The electronic field gradients calculated from the H-F 

wavefunctions at the indicated Re's are given in Table 4.7. 

They are negative in every case. Th~se figures, however, 

include the contribution from the atomic density distribution 

centered on the second nucleus in the molecule. This second 

atomic contribution . exerts a field gradient equivalent to 

some number of point _charges situated at the position of 

the second nucleus and is; therefore, large and negative. 

The contribution to qA by a pair of inner shell electrons · 
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on nucleus Bis for.example simply ~2(2/R~). To obtain 

a measure of the quadrupole polarization which reflects 

the polarization of the density in the region of each 

nucleus independent of the changing contribution of the 

atomic density on the second nucleus, we have subtracted 

this latter contribution from the total electronic field 

gradients, as listed in Table ~.7~ This results in a 

field gradient which is the sum of the contributions from 

the atomic and qverlap populations for a given nucleus 

and is a measure of the quadrupole polarization in the 

region of a single nucleus as depicted in the ~P maps. 

To make the relationship between this partial field gradient 

and the ~P map complete, we have calculated the fractional 

increase in the field gradient relative to that for the 

separated atoms, using the same valence state for the atom 

as that employed in the construction of the ~P maps. For 

example, the valence state of the F atom used in the ~P maps 

is the ML = O component of the 2P state which corresponds 

to the 2p subshell configurations of 
1

2pcrF 
. 4

2pnF . The field 

gradient for the valence state of the F atom thus equals 

-1+.4(~) = (+l) times the magnitude of the field gradient 

of a single 2p electron .. The same atomic values g P( 00 ) for
2

the 2p electrons, as in Tables 4.1 to 4.6, corresponding to 

the ~P valence states, were used to calibrate the partial 

fteld grad~ents in the molecule. Table 4.7 lists the change 
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in the number of 2pcr electrons required to produce the 

calculated change in the partial field gradients. They 

are, therefore, measures of the extent of quadrupole 

polarizations. The b~acketed values in the table are 

the field gradients for the approp~iate valence states 

of the separated atoms also expressed relative to the 2p 

atomic values: a contribution of - ,1 for a single 2pcr.. 
electron and of +l for simultaneous single occupancy of 

the pn+ and pTI_ orbit~ls. 

The spherical charge symmetry of the N atom in 

its 4s ground . state is greatly distorted in the nuclear 

regions in the N2 molecule. The a component of the 

charge density is increased by 77% at the expense of the 

~ . charge component. This quadrupole polarization is even 

larger at the O nucleus in co. The partial field gradient 

at F in BF is positive but the excess TI component of the 

charge density in the free atom is halved by the process 

of bond formation. The increase in the a component of the 

charge density found for the 0 nucleus in BeO and F in LiF 

exceed the values expected qn the basis of the filling of 

the double and single 2pcr orbital vacancies found in the 

separated O and F atoms. This, as . we have already dis­

cussed, was one of the reasons for the failure of the 

3ternheimer antishielding theory when applied to negative 

~ons. Thus, the cationic charge distribution in an ionic 
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bond exhibits both dipolar and quadrupolar deviations from 


spherical symmetry. The dipole polarization is necessary 


for the establishment of .electrostatic equilibrium and 


the quadrupole polarization results in an enhancement of 


the a component of the charge densi.ty at the expense of the 


n component. 


The asymmetry of the valence state of atomic 
.. 
carbon resulting from the configuration 2pcrc1 2pnc1 is 

enhanced by 60~; in the formation of the CO molecule. While 

the partial field gradient of the charge density in the 

vicinity of the boron nucleus in BF is negative in value, 

it represents c small decrease in the a charge component 

derived from tte valence state atomic charge density with 

a single cr electron in the 2p subshell. As noted previously, 

the charge increase in the region of boron nucleus is 

predominantly perpendicular rather than axial as in c, N, O or 

F, and the region of charge removal is not centered about the . 

boron nucleus. The slight decrease in the quadrupole 

polarization noted for the boron reflects the partial transfer 

of charge to the vacant 2pn .orbitals of the boron atom in 

the formation of BF.. The charge density in the molecule in 

the vicinity of boron is still predominantly quadrupolarized. 

The partial gradients for Be and Li are small and 

negative, the values being -0.140 and -0.034 a.u .. res­

· pectivelys Using the g 2p( 00 ) from atomic data (see section 4.3) 

http:densi.ty
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yields approximate increases of 110% and 100% in the a 

over 7T components of the charge densities. Thus, even 

the cationic charge distribution in an ionic ·molecule 

exhibits both dipole and quadrupole polarizations, 

although the latter is small in magnitude. 

The total .field gradients in atomic units are 


listed as qA in Table 4.7. N has the largest negative 

.. 

qA. This is due to a large pa electron excess and also 

an increasing pa atomic field gradient. All qA's are 

negative except at the fluorine nucleus in BF. The 

situation for this nucleus is different in the molecules 

LiF and BF. Standard ionic polarization theory (Sternheimer 

antishielding) would predict the field gradients to be 

positive at F in LiF and still more positive in BF as a 

result of covalency of the 2paF electrons in that molecule. 

qF in LiF is negative whereas in BF it is positive. The 

signs follow from excess pa .density at F in LiF and a 

defect of ~0.05 pa electrons in BF. In conclusion, it is 

evident the qua.drupole polarizations are strongly affected 

by chemical bonding. Thus~ caution must be used in inter­

preting these polarizations, as measured from quadrupole 

· coupling consta.nts. Models which do not take into account 

rearrangement of charge as a result of bonding will not 

predict adequately the quadrupole polarizationsw 



V. DYNAMIC PROPERTIES: FORCE CONSTANTS 

La v~rit~, pour l'un, futfte b&tir ­
elle est, pour l'autre, d~habiter. 

A. de Saint-Exup~ry 

:., .1 .. Introduction 

From many points of view, the most interesting 

f>:COperties of molecules involve displacements of their 

n~oleio An essential step in the analysis of such effects 

:t.s the expression of the electronic eigenfunctions l..l~ terms 

of the internuclear distance. In many cases, of whicn the 

treatment of reaction kinetics is perhaps the most .:a..mpor­

-cant, this step involves formidable difficulties that 

~,nly diligent computations cancope with. As a resuJ..t, it 

( 191 \0 h dl d . h 1 ' i­nas most frequemt1y b een an e p enomeno ogica ly · 

In other cases i however 1 where the a ·ssociated nuclear 

motions are of small amplitude, as for example vibrations 

the problems are more tractable< 192>.. In this chapter, we 

~nal1. .be concerned with intramolecular properties and 

~nerefore with vibrations~ The subject of this section 

~eals with the magnitude oi vibrational frequencies, ana 

nence iorce constants .of diatomic moleculeso The importance 

of fu~ther work in the latter context has been underlined 

(193) 
. ~cently by Parr ~ in an attempt to correlate molecular 

195 
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potential energy functions to theoretical ideas regarding 

chemical bonding. 

To a surprisingly good approximation, a potential 

function composed only of quadratic terms in the nuclear 

displacements may be made to fit the vibrational spectrum 

of most molecules. Furthermore, the potential energy 

constants for isotopic molecules are the same as in normal 

molecules, depending therefore on the electronic structure 

rather than on the nuclear structure of the isotope. This 

identity of force. constants is a fortunate circumstance 

f or polyatomics where otherwise it becomes impossible 

co calculate the constants uniquely. The force constants, 

determined from the vibrational frequencies, directly 

reflect the e l edtronic structure of the molecule.Stretching 

force constants (our subject) although sensitive to mole­

cular environment exhibit a fairly straightforward quali­

·.:::.ative relationship. Their magnitude is to a good approxi­

mation inversely proportional to the bond length, which is 

in .turn a measure of the bond order, and they are in 

- - b 1 . . i 1 ·1 ( 19 4 )':;Jenera.t transtera e among s1m1 ar mo ecu es . The 

empirical relationships between vibrational force constants 

and bond lengths which hold for a very wide variety of 

B d v ru1e<l95 > and ot' her·· r ·u·•lQs(l9G),mo1ecu1es, sueh as ager s ­

and between force constants, bond lengths and dissociation 

energies< 197 >, have encouraged theoretical attempts to find 
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a practical way of calculating force constants. These 

include calculations of (d2E/dR2) <199 >, of (dT/dR) <199 > 

which can be r«:?lated to the force constant by the virial 

theorem, calcul ation of the force on an atomic nucleus 

'( 200)in the moleculE~ and use of the Hellmann-Feynman theorem , 

perturbation theory( 20l) and an electrostatic approach< 202 >. 

The principles of these methods have been reviewed from 

time to time. However, their application to a wide range 

of actual many--electron diatomic molecules has not been 

particularly successful. The simplicity of the empirical ';' 

relationships has not been matched by the theory, and 

underlying regularities 6annot easily be discerned. It 

is evident that exact force constant calculations are , 

therefore, of importance for a better understanding of 

molecular binding. 

In particular, little attention has been paid to 

ab initio calculations of molecular force constants. 

Although the force donstant operator involved has been 

stated in a form which could, in principle, facilitate 

calculation, those features of the electronic charge density 

to which ·the force constant is most sensitive have not been 

systematically investigated. In 1950, Platt< 202 > derived 
~ 

an approximate theoretical expression for the force constant 

of a diatomic molecule and applied it with some success to 

203diatomic hydrides. Pauling had previously< > (in 1927) 
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predict~d internuclear separations for hydrogen halides 

employing the same underlying model, namely the united 

atom electron distribution. Platt's result was critici·ze.d 

by Clinton< 199), who noted that Platt's derivation ignored 

the explicit variation of the electronic charge density 

with internucl~~ar distance. In addition, by differentiation 

of the virial theorem with respec't to the internuclear 

distance R, Clinton concluded that the explicit variation 

of the electronic-charge density with internuclear distance 

is a necessary condition for the molecule to have a non­

vanishing forcc3 c.onstant. Platt' s i~pressive numerical 

results were interpreted as due to approximate cancellation 

of higher corrc3ction density terms., The fact that the force 

constant involves the derivative of the electronic charge 

density with rc~spect to R was shown earlier by Byers Brown ( 20l) , 

through d'iffenmtiation of the Hellmann-Feynman theorem. He 

then proceeded to express the force constant in' terms of 

infinite pertu;rbation sums. Salem< 204 
> employed certain sum 

rules to arriv1~ at various alternative e~pressions for the 

force constant, related to the perturbation - sums , and 

also derived ~le force constant expressions from the Hellmann­

Feyrunan theorem. 

The primary purpose of the present study is to 

investigate fu:rther the mathematical forms which the force 

constant can a:ssurne and use of thes'e for interpretive purposes. 



199 

The f orrn depends upon whether the virial theorem or the 
.. 

Hellmann-Feynman theorem is used to define the first 

energy derivative and what coordinate representation is 

~mployed to describe the wavefunction. These points 

have been emphasized in chronological order by Salem< 204 >, 

Phillipson( 2 QS,), Schwendem~n <206 >, Benston and Kirtman< 207 >. 
The choice of coordinate representation is an important 

factor as this can change the form· of the force constant 

expression and its possible interpretation. As in the 

· force anal¥sis, we will find that the Hellmann-Feynman 

approach is the most advantageous method which permits 

one to isolate the different contributions to force constants. 

This hopefully puts one in a better position to explicitly 

analyze the role which the electronic-charge distribution 

plays in the vibrations of atomic nuclei. One question 

which may be asked is, for example, ' to what features of 

the electron-charge density are molecular vibrations most 

sensitive? Also, how important are the effects of electron 

correlation, and the related question of how reliable are 

Hartree-Fock wavefunctions, and their best approximations, 

in providing the ambient charge density in which the nuclei 

move? · 

It is to these and related questions that this 


chapter purports to be an introduction. In general, for 


s diatomic molecule, the force constant is the · second 
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_derivative of 1t:he total molecuiar energy with respect to R, 

evaluated at the equilibrium distance Re· The nature of 

the differentiation process is· investigated. Consideration 

of the first energy derivative, yielding the mathematical 

formulation of the Hellmann-Feynman theorem has already 

been discussed in a previous chapter in connection with the 

force analysis of chemical binding. The differentiation 

process is applied again to arrive at the second energy 

derivative, and hence the force constant.. Employing a space 

· fixed coordinate system in which one of the atoms is fixed, 

one can visualize the relative importance of the various 

terms involved so that one can get more inaight into the 

relationship bE~tween chemical binding and the force constant. 

The scheme adopted here was thus designed to allow 

calculation of the force constants for any molecule, and in 

such a way qs it.o show up those features of the electronic 

structure which have the most influence. To obtain the 

best accuracy of prediction in any particular case, the 

data employed should be restricted to a series of molecules 

in which the bond character is similar, or at least suffers 

Qno abrupt chanqe along the s.eries <2oa) The two series 

N2 , co, BF and LiF, BeO, fit the above criteria. A calculation 

of the forces at a number of internuclear distances, curve 

fitting these t.o obtain derivatives and hence furnishing 

force cons.tant~;, anharmonic constants, etc., use of field 
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gradients and the Hellmann-Feynman expression of the force 

constants will enable us to compare results for correlation 

schemes. The Jresul t of this will be to show that regularities 

reflect the extent to 
0

which the repulsive forces between the 

nuclei of the bonded atoms are reduced by electronic 

shielding and electronic relaxation effects. These relaxation 

effects will be pictorialized via the use of actual electron 
•. 

density diagrams representing the de.nsity differences between . 

the extended and normal molecule. 

5.2 The Hellmann-Feynman or Electrostatic Approach 

We assume the validity of the Born-Oppenheimer 

approximation, according to ·which< 2o9 ) nuclear and electronic 

motions are separable., Specifically, we consider the nuclei 

to be subject to an effective potential energy function E(R) 

which is the eigenvalue of the electrons for the nuclei fixed 

in each instantaneous configuration. The electrons are 

taken to remain during nuclear motion in the same quantum 

state, the chaJracteristics of which adapt continuously to 

the shifting o:E the nuclei.. The effective potential E (R) 

for the nuclei is thus defined by 

( 5 .1) 

In this equation as in (3.1), ri refers to the electronic 

coordinates 1 TE!l · is the electronic kinetic energy oper~tor, 

and V is the total electrostatic potential energy operator .. 

The . nuclear coordinates are understood to have been written 
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in terms of R and of the coordinates of some fixed point 

O, p~eferably on the molecular axis. In the equation, R 

appears only as a parametei::. One can plot E(R) and dE/dR 

as in Fig.(5.1}. For bound states, as considered here, 

the function E(R) has a minimum at Re, with (dE/dR)R =O. 
e 

The force constant k2 of the molecule in the state repre­

.sen~~d by ~el :Ls defined by approximating E (R) near Re 

by a parabolic function (harmonic oscillator) and obtaining 

thereby 

( 5. 2) 

where the diff«:!rentiation occurs with respect to R only. 

Alternatively, we can express the force constant as 

( 5. 3) 

i.e. the diffeJ::-entiation of the force curve. The force 

only has meaning in so far as it operates on a certain 

nucleus, so ·that one must differentiate with respect to a 

nuclear displacement, eg., za, 

(5.4) 

This follows fJrom the Hellmann-Feynman force on · nucleus A, 

_ dE__ dE 
F --r--+­ (5. 5)

A dR dza 

where from Fig.(So2) one has -dza = dRo 

Before deriving the force constant expressions, we 
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Fig.(5.2a) Fixed Electronic Coordinates Centered 
on B 

Fig.(5.2b) Moving· Electronic Coordinates Centered 

on A, and B Fixed 

http:Fig.(5.2b
http:Fig.(5.2a
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wish to digress upon the real physical meaning of the force 

expression in order to clarify some points not discussed 

before and whic::l are of relevance to the interpretation of 

force constants. Firstly, if we had expressed H and w in 

terms of Cartesian coor.dinates centered on nucleus B, the 

z axis being directed as indicated in Fig. (5.2), then in 

this representation, the only quantities in H and ~ which 

depend on R are the distance rai of the electrons from 

riucleus A in addition to R itself and other variational 

parameters in ~. For this case (1), see Fig. (5.2a), the 

~2expression for ~ would be( 1 ) 
(5. 6 ~ 

where arctan y /xb = ¢ 1 
and S represents all para­

1

meters including R. Furthermore we would have 

8r 8rb 

+-~ = 0 


d Zb d ZaI 

where this last relationship depends on the fact that the 

function ~ is fixed _at zb and does not depend on za. In 

fact, we see from the right-hand side of Eq. (5.6) that 1jJ 

depends on za (since .-dza = dR) only. through the parameters 

S (and R itself.) 

i.e. ; ( 5. 7) 

· where the primed superscript on za indicates differentiation 
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·of parameters only, including R. For this case, then 

dE dE *aH a$~ * a~
dR--dza =-/$ ~2· $dT-/-;s-, H$dT- 1'$ H~, dT 

a 	 ;a aZa oZa (5.8) 

The point to be underlined is that for this space fixed 


function, there has been a change in the density p = lwl 2 


due to the nuclear m9tion, i.e. d~/dza = awlaz~ ~ o. 

However, the·integral 1¥z, H'dT = 0 for stable wavefunctions, 


a 
so that we reta.in the classical electrostatic interpretation. 

On the other ha.nd, for case (2), see Fig.(S.2b), $is 

expressed in te:rms of cartesian coordinates centered on 

nucleus A, so that 

....... - 2 2 2 ~ 2 2 )2 ~ 
$(a.,ra,rb) -$(a., [xa+Ya+za] , Cxa+Ya+Cza-R ] ,arctan Ya/xa) 

(5. 9) 

This function therefore depends explicitly on Za and R, so 

that 

(5.10) 

+ 	 ()$ ~ + ()llJ aR 
aa. ara aR aza 

If a, and R are constant, then we have rigid orbital following, 

or more preciSE!ly, just translation of the system. If 

the function re~mains centered on A, there is no change in 

W and H for this rigid following, so ' that aw/aza = aH/aza~O, 

since ra is constant< 122 >. Thus the only change in$ comes 

from nonrigid following with respect to A, i.e. 

http:Fig.(S.2b
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where a represients all parameters including .R, for l/J centered 

on A. The sam1e result could have been obtained had we 

moved nucleus :B by dzb = dR, keeping A fixed. Since "1 (a,r a> 

only depends oiri zb through a, then 
~ ~ 

aw (a ,ra> - _aw (a ,ra> - aw (a ,ra> aa ( 5 .11)

azb - az~ - aa azb 


Furthermore, since -d/dza = +d/dzb = d/dR, then .. 
~ ~ 

""""dl/J (a ,ra> _ ·- d w ca ,rb ) aw (a ,ra)=Oza - dzb rz· ( 5 .12)
a 

..
where in t;he equation, we have transformed (a, ra> into 

. 
<a:,rb>· . This is pennissible as long as one takes total 

derivatives of w' and can be checked using simple Slater 

orbitals. The importance of (5·.12) will appear when we 

deal with the force constant expression. As the force 

constant is a measure of the changes in the forces, rigid 

following must . contribute nothing since for such a case 

there is no change in force.. The force changes will come 
~ 

from changing or relaxing densities awca,ra)/aza, which 

do not follow nucleus A. 

The Hellmann-Feynman force expression is derived 

from a space-fixed electronic system" i.e. case (1), so 

that one thus Edeminates intere'iectronic coordinates .. 

Furthermore, mathematical operations such as differentiation 

is necessarily done with respect to a fixed coordinate system. 
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Therefore, wheinever we shall use the Hellmann-Feynman 

formulae, we shall i~ply that the functions to be 

differentiated are expressed in terms of some space fixed 

coordinate. Coordinates will be introduces as variables 

in order to indicate. a specific coordinate system other 

than some arbitrary space fixed system. 

. Dif fen:mtiating expression (5. 5) with respect to .. 
R, we have: 

d2E, 
2

ZAZB + z [/p~(cos0a)d + /dp cos0a dT 
d~2 = R3 A dR r 2 T dR r 2 

a a 

In fixed electronic coordinates, 

= 1-3 cos 2ea 
r 3 

a 

(s~e next section) , and using th~ relation dR = -dza, we 


d2E - 2ZAZB
have: k ­
2 ~ dR2 - R3 

2 - ' .+ z [41T (A) -J . (3 cos ea 1) dT _ 1~ cos ea dT 1A 3 P .P ra3 · · dza ra2 
(5.13)where p is expressed ·in a- space fixed system. 

Equation (5.13) corresponds to the more general 

equation given earlier by Hor~ig< 64 > 

· d2v dp av 
= /p~- dT + I dR dR dT 

dR2 
( 5 .. 14) 

The first inte9xal, comprised of the first three terms in 

(5.13) · is the force constant analogue of classical electro­

statics for point charges (nuclei) immersed in a fixed 
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charge distribution of density p. This, by definition is 

a , field gradient term. The second integral which is 

equivalent to the last term of (5.13) has no classical 
(201) .

analogue , and expresses the change in t~e charge · 

distribution due to the movement of the nuclei. This 

corresponds to a reaction of the system upon the field, 

a condition usually ignored in classical field theories 

but not in qua.ntum field theories. 

The fi.eld gradient term,which corresponds to moving 

the nuclei whi.le holding the electrons fixed is positive 

and quite largre because as one moves the nuclei, the 

initial electronic configuration does not correspond to a 

very low ener9y situation. The reason for this can be 

seen in expression (5.13) first· derived by Salem(G?). The 

electronic f ie~ld gradient term requires the correction 

~irp(A), w~ich we have omitted in the previous chapter, as . it 

does not affect the energy- of the rotational states of a 

nucleus if p JL s spherical about it. Howeve.r, if one moves 

a nucleus of c:harge ZA. from the center of such a distribution by 

an amount dR, one can easily calculate that the restoring 

force is zA.jn-~A)dRo Consider a small volume element 
41T .

dT = y-(6R)3 at A.. Then the charge Qin that volume is 

jir p(A) (6 R) 3 in t~~ limit A R >-+O.. If one displaces the 

nucleus ZA from · the centre of this charge distribution by the 
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distance ~R, then the restoring force is '6F=ZAQ/ (!\R) 2 = 

ZA (j'1T p (A) 6R) in th~ limit AR~ 0. Therefore, the force 

constant 6F/6R for such a displacement is ZA (jtt. p (A)). 

We see then, that the iarger p(A) . is, the larger is the 

force constant so that it ·becomes energetically more 

difficult to displace a nucleus from the center of a charge 

distribution with high density. This is the basis of the .. 
objection to . floating functions as introduced by Hurley 

in order to satisfy the Hellmann-Feynman theorem. The 

term ~'IT P(A) is positive and thus usually exceeds any 

electronic field gradient terms which are sometimes negative. 

For the F nuclems, j'1T p (A) is of the order of 1300 a. u., 

so that it is quite inconvenient in an analysis using 

equation (5.13).. As shown explicitly later, much of this 

is cancelled by the relaxation component of the force 

dp dV 
constant f dR clR dT • This can be shown using perturbation 

theory to be always negative, following an argument first 

given by Byers ·srown( 20l). Expanding a$ /aR. in terms of0 

the complete se~t of equilibrium wavefunctions lfJ n 

a$o =-I: (aH/aR) 0 n $n (5 .. 15) 
aR . n~oEn - Eo 

where ca H/aR) = <$ Ia V/a R '"' > , the sum excluding theon o · n . . * 
state n = 0,, and since P = "1 lJJ ,, we have' · o o· 
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Since En > E0 , the integral i.s obviously always negative. 

This term then has the effect of reducing the energy of the 

system by a rearrangement of the density. The field gradient 

plus 4n/3 p(A) is the static part of the force constant, 

i.e., the electron density is kept fixed. The relaxation 

av d· ·!~ - r represents a dynamic effect, i.e., aterm dR dR 


response of thE:! electronic system to nuclear motion, which 
.. 
thus helps reduce the energy of the total system and hence, 

the force constant. The magnitude of these two terms, the 

static and dynamic terms, depend on the choice of center 

kep~ fixed(GJ) during the infinitesimal extension or con­

t~action of th4::! internuclear distance by R. In most cases, 

the force constant appears as the difference of two very 

large terms. 

The benter of mass is not fixed in the derivation 

of equation (5.13). In as much as we have indicated that 

detachment of i0rbita ls .is not too likely, there will be 

some translation of the ele~tronic density with the nucleus 

being considered. This translation must contribute nothi~g 

to the total force constant. This . can be avoided by starting 

from equation (5.5) and differentiating it with respect to 

. azb = dR. Thus, one obtains 

(5.16) 
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where p has been expressed in terms of coordinates centered 
~ 

on nucleus A so that ·ara/a zb = 0. In this method, which 

corresponds to Murrell's original approach( 20l), translation 

effects have b~~en avoided by moving nucleus A by dR/2 and 

then nucleus B by the same amount. From (5.11) we have 

further that 

(5.17) 

where dz~ implies differentiation with respect to para­

·meters only (s1~e equations (5 .. 9) , ( 5 .10) ) • The significance
I . 

of this is ·that the electronic contribution to the force 

constant depends only on "relaxation" effects when P is 

expressed in b::?rms of coordinates centered on A .. This has 

the advantage that it avoids the calculation of contributions 

from rigid orb.ital following, since the only force changes 

occur for non-following for such a coordinate system. This 

approach has bieen advanced by Schwendeman. <206 >. We see 

that it is equivalent to Murrell's method, as one would 

expect from Galilean relativity. The disadvantage is that 

all effects ar 1e lumped together as relaxation, including 

density, which is fixed at B and therefore follows nucleus B .. 

From the electrostatic viewpoint, this is equivalent to a 

field gradient contribution. 

' " 5. 3. Cance'l.'l.'a't'i'el\'- The·or·em 

We have commented that translation effects must 
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cancel out in the force constant calculation as these do not 

contribute to actual ~orce changes. The nullification of 

these contributions are a general result of translational 

invariance or the energy. From equations (S.13) and (S.17) 

we must have 

.. 
ldp cosea dT ==! ~p COS~a dT +/ ~~· COS~a dTdza 2 za ra a ra 


where iL implies differentiation of ra and cos ea only, 


ra 

aza 
i.e. differentiation of coordinates only. This is then the 

.rigid orbital approximation (see Eq.(5.9)). We thus have the 

result that 

41TJ7 p (A) . - 0 
(5.18) 

for rigid following. For a spheri~al charge density centered 

on A, the electronic field.gradie~t is zero and we thus 

obtain the special case 

l~h cosea dT 4n p(A) = 0 ( 5 .19)
az - 2 - ~ 

a r a 

This special case had been enunciated as a theorem by Salem 

but he failed to recognize its wider generality, i.e~ a 

nonspherical charge distribution which follows a nucleus 

rigidly will always demonstrate cancellation of field 
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gradient and relaxation term. This can be easily verified 

by using Slater atomic orbitals of any symmetry centered 

on A and p~rfo~ming the operation indicated in Eq. (5.18). 

Much of the interpretive scheme of Salem is thus invali­

dated because of the omission· of this important aspect. 

Schwendeman's .and Murrell's expressions are thus seen to 

be a simplification arising from this cancellation. 

One can derive this result in a much more general 

fashion. A system which moves through space without under­

going spatial distortions corresponds to a translationally 

invariant system, and because of the isotropy of space 

suffers no change in energy, force, etc. Thus we must have 
_..... __,_n . 
VE = 

~ 

V2 E = V E = 0 for n > 0 

By starting with the Hellmann-Feynman expression for the 

force, we have: for n = 2., 

(5.20) 

In order to# obtain meaningful results as the first integral is 

singular, one must first omit a small sphere of radius € about 

A and integrate over angular variables, as discussed in the 

field gradient calculations of the fourth chapter. Then a 

.... 2
correction obtained from Poisson's equation V (l/ra)=-4Tio(A) 

must be added (see Appendix 2) for the excluded sphere. 

This is all a matter of convention to ensure that a spherical 

charge distribution gives no field gradient. The second 
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part of the integral is absolutely convergent if .p is made 

up of Slater functions since for the worst case, a ls 

function, we have in the small excluded sphere 

~e-r cose 4'JTr2dr h' h ~ --,ir- w ic goes to zero as E~o. We thus haveIe:+o uz r~ 

pV 2 (-l/r~)d-r + JvaPVa<-11raldT = 4'1T p(A) (S.21)fra>E a 

For~ translation along the z-axis only, by symmetry 

23 cos ea.:!. d 4'1T p + f~ cos6a d = p (A}3 . T dZ . 2 T 3 (5.22)a rrafra>E a 

which is the result (S.18) and proves our theorem, 

namely that the density which follows rigidly nucleus A 

cannot contribute to the force constant, so that in a 

fixed coordinate representation the result (S.22) holds true. 

This .cancellation will also hold for higher deriva­

·tives by successively differentiating the equality (5. 22) .. 

The result is that only relaxation effects contribute to 

all higher der:i'vatives of the energyo To show this generally, 

we differentiate the force on nucleus A with respect to 

zb and remembe:r that ara/a zb = 0, .then 

n-1 ~ 

1a p(a,ra> cosea d-r 
· n-1 r 2
azb a 

a a
Furthermore, from Eq. (5 .11) azb = - azr , therefore 

za 

.(5.23}' 
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a result reported previously by Schwendeman< 206 >. 

5.4 Force Corn3tant and Quadrupole Coupling Constants 

In the fixed electronic coordinate method, i.e. 

Hellmann-Feynman method, we saw that only H depended 

explicitly on the coordinates of nucleus A. In these so-

called "one-center" coordinates, the derivative of the 

wavefunction with respect to R involves only the derivative .. 
with respect to the variational parameters, including R • 

Defining these parameters by Si, we have ( ·lJJ centered on B) 

The electronic force constant in this representation we have 

seen is (from (5.13) and (5.5)) 

(5.24) . 

. On the ·0th.er hand, in the moving coordinate representation, 

the electronic force constant is given by the following 

equivalent expression from (5~17) 

(5.25) 


where the ai's are now the parameters obtained after 

expanding the density onto nucleus AG The second term of 

(5.24) appears formally to be identical with the equality 

(5.25) ~ yet the~e is no contradiction. The dependence of 
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the parameters Si on R is different from the R dependence 


of the parametE!rs a.. , the difference arising from the 

1 

transformatiom; from one nucleus to the other (Eq. (S.6) 


and (5.8)) . In particular, Schwendeman's expression is
1 

a special c~se of the confocal elliptical representation 

11 · c:rn 5> h th d · t · t a 

simultaneously on A and B to avoid translation of the 

system as a whole. Phillipson prefers to call the field 

gradient contribution a "quadrupole" correction to the 

force constanto He emphasizes the fact that the appearance 

of the quadrupole operator in the force constant expression 

is contingent upon the choice of coordinate representation 

. and thus appears to rule out the possibility of assigning 

an invariant connection between the force constant k2 and 

the quadrupole coupling constant q. This view is also 

supported by S1::::hwendeman .who shows that different symmetries 

of the electron density are involved in the force constant 

and the field 9radient. For instance, the electronic 

contribution bo the force constant is 

of Ph1· 1pson w ere now e ens1 y is cen ere 

. 

(5 .. 26) 

which Schwendeman ·equates to 



218 

This is permis:;ible as can be easily shown by considering 

a ls orbital w <~a> = e-Zra • . Then ~~ ls (~a) =-adz rae-Zra, 
.1S o Za Za 

so that upon p13.rforming this operation, the angular symmetry 

of the functioin has not changed. However, in the next 

section, in coirmection with Platt's model, we will show 

that a spherical charge density centered on nucleus B, 

to w.hich are 
~ 

applied equations (5.26) and (5.27) when this 

density is exp,:mded onto A, will give a field gradient 

contribution b:> the force constant. This is also true for 

any density of other symmetry centered on nucleus B! as 

can easily be verified by using simple S_later orbitals • 

The result is that Eq.(5.27) is equivalent to a field 

gradient for a fixed charge density. For density wh~ch 

follows nearly completely nucleus A, then (5.27) also 

gives a field 9radient which is a measure of the effect 

from that charige which does not follow that nucleus rigidly, 

but relaxes with respect to it. It is evident, therefore, 

that with respect to nucieus A, any density fixed on B will 

represent a relaxation. Howeve.r, as the contribution of 

this 0'fixed '' relaxation is equivalent to a field gradient, 

it will be more convenient to treat it as such. These 

ideas will be further pursued in the ~nalysis of the density 

contributions to the force constanto 

The relationship between force constants k2 an~ field 

http:Eq.(5.27
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= 2z /R3 _ 3 cos2 0a-l dtgradiehts q~ defined by qA B /p 3 
ra 

depends on which nucleus one is considering. Use of a 

.linear relationship in order to attain some empirical 

correlation has been made for C-H bonds( 2 lO). The 

detailed . expression relating the force constant to the 

quadrupole constant of either nucleus involves a certain 

amount of cancellations, as was shown in the previous 

section. A pr·evious attempt to relate these two quantities 

is due to HornigCG 4). The explicit relationship was 

analyzed by Salem(G?) using Eq.(5.13) in order to account 

for an apparent correlation for a series of molecules, 

ionic hydrides specifically. Although he indicated 

evidence that the partial force constant for moving a proton 

along with a 2pz orbital was zero, the reason was not made 

clear. Furthermore, for . those molecules which have nega­

tive field gradients, as those considered in this work 

(see Table {4.7)), there is obviously no linear relationship 

between the force constant and the field gradient, since. 

k2 by definition is a positive quantityo These negative 

field gradients cancel to a large extent in the total 

force constant expression as they arise from Pz orbitals 

which mainly follow the nuclei . on which they are situated. 

It is that densit~ ~hich does not follow the nucleus con­

sidered, which ·will· :. contribute a field gradient t.o the force 

http:Eq.(5.13
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constant. The separation of this fixed part of the density 

from the total is by no means simple. It can be done for 

that charge fi>:ed on nucleus B. . The remaining dens! ty, 

atomic and ove1:lap must be considered as relaxation. Thus, 

no general relationship between the force constant and 

the field gradient of the total density is possible in 

view of cancellation phenomena. 

5.5 Plattvs Model 

We now present an instructive example to demonstrate 

the equivalence of field gradients and relaxations of 

densities fixec5l with respect to some ·center other than A. 

The Hellmann-Fe!ynman express ion was used for the force as 

a result of the! advantage derived from its exclusion of 

the requirement of any knowledge of aw/aR, i.e. the adiabatic 

change in the electronic wavefunction with nuclear motion. 

In the force constant expressionp one therefore has to 

cope with this factor, or rather ap/aR, the change in density. 

The center of g·ravi ty of the distribution ap/ aR thus enters 

the force constants. It also determines infrared intensitie~ 2 l~) 

since the chang·e in dipole moment with vibration is 

(5.29) 

In the force constant calculations, the term one must 

consider is 

1 •. el 
"'·2 = -z 

. A 
/~Oza 

(5.30) 
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As we have mentioned before, this is a quanta! term 

expressing the reaction of a particle on a field, thus 

giving rise to a second order correction to the energy 

of the .total system. This is by no means negligible as 

it must cancel with the classical electrostatic terms 

when the molecule is uniformly translated. By expanding 

the perturbed ('ls) density ap /a R for an H atom using.. 
the expression (5.15), 

a~o = _ E <olaH/aRln> ~ 
aF{" n#o En-Eo n 

Byers Brown and Steiner< 212 
> have shown by sununing over 

·discrete states: that 93.2% of the contribution to the 

relaxation (5.30) comes from continuum states, whereas 

the resulting polarizability of the displaced charge 

only had an 18~; contribution to the total from continuum 

states. This c:orresponds to pulling a spherical charge 

distribution, undistorted, a distance R from the nucleus. 

One way of circ!Umventing this problem is to use floating 

functions a la Hurley, which follow the nucleus. This 

approach has indeed been used by Liehr< 192 > in the calcu­

lation of vibronic effects on transition probabilitieso 

For .certain sys:tems 1 it is possible to omit these variations 

in .charge density and assume that there is no orbital fol­

lowing o This aLpproximation will hold well for p~otons, the 

electrostatic field of which are small because of the small 
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charge of the proton. .This approximation has been successfully./ 

.I ~· Q 2 ) (116 )used by Platt~· and by Longuet-Higgins and Brown in 

calculations on molecular hydrides •. 

Let us therefore consider a hydride M-H+. A 

typical compound of this class would be FH. In a first 

approximation we may consider such a molecule as built out 

of a negative i.on M-, consisting of a .nucleus M surrounded 
·. 

by a charge density of ZM+l electrons, and of the proton 

buried in this density at its equilibrium position. . He.nee, 

from (5 .13) , 

k2 = ZH[qH + ¥- p(H) 
..a.. 

1ap (rM)cosea 
dzH r 2 

H 

dT 1 
(5.31) 

and qH = 
2ZM 

R3 
1 '3cos 2 eH-l 

p 3 
rH 

dT 

If the total charge density in our mddel is chosen to be 

spherical, then for electrostatic equilibrium 

(5.32): : 

which means that the charge density inside the sphere of 

radius Re must equal ZM in order to completely shield the 

nuclear charge, and thus give FH=O. Since qa is the nega­

tive derivative~ of FH' it will also be zero, .i.e .. complete 

screening of the nucleus, except for a singularity at 

zH=O, which corltributes an additional ¥ p (H) .. This 
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additional contribution comes about because the electric 

field or force must be continuous in the x and y directions, 

considering the sphere with radius Re as a boundary. The 

discontinuity in the field occurs along the normal, i.e • 

.the~ axis, ahd the magnitude of it is 4~p< 213 >. our 

result for a spherical charge distribution cente~ed on M, 

then is: 

(5.33) 

We obtain Platt's formula k2= 4~p(H) if we assume that the 

charge density is fixed on nucleus M and follows only that 
~ 

nucleus in addition to being rigid , for then p(rM) is 

independent of iI completely and the integral vanishes 

since d p/d' zH = 0 .. 

Alternatively, one could have started from Eq.(5.17) 

and using Eq.(5.12): 

(5.34) 

which represents the relaxation method of Murrell and 

Schwendeman. In other words, we measure the change in 

force' resulting from a change in density at the proton 

as nucleus M carries with it the density p (rM).. We assume· 

for simplicity that we are dealing with a ls density centered 

-rM= e Using the results ­o 

http:Eq.(5.12
http:Eq.(5.17
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a -rM -rM ,•...,, 
~ e - -coseM e
azM ­

cos ea 
r 2 

H 

= 

- COS 0M 

rM2 
(see Pitzer et a1< 154>or Appendix 2) 

we obtain 

87T 
3 I.Re 

-Re 2
1 dp <rM> ~e" d-r e -R3

dzM rH2 
0 

-R e e 

For rM <Re, we then have the field gradient of all the 

charge inside the radius Re. The resulting force constant 

is then 

2ZM. 2 
k2 = ZH [ + 47Tp(H) 

R 3 R 3 e e 

For electrostatic equilibrium the first and third terms 

are equal, f.e .. complete shielding. We thus obtain again 

Platt's equation 

k = 47Tp (H) .
2 (5.35) 

This simple example therefore demonstrates the equivalence 

between field gradients and relaxation effects.. The 

Murrell-Schwendeman-Phillipson interpretation includes field 

gradient effects ' as relaxation. For charge distributions 

localized on a particular nucleus, the electrostatic inter­
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( 

pretation .indicates these should be more appropriately 

considered as field gradient effects. 

87T 3 .
We have seen that qH = 3 p(H), so that k2 = 2 qH. 

For HF, HBr and HI, Salem has discussed this correlation. 

The experiment.al data suggests that qH is 85% of the force 

constant on the average, ~ather than the predicted 67%. 

The .. agreement can be i1!1proved by assuming the complete 

following of the proton by an added spherical charge 

density. This would increase p(H) but would not affect 

k 2 since orbit.al following would contribute nothing. The 

addition of polarization at H in the form of pcr character 

would decrease qH since pd contributes a negative field 

gradient. If this po1arizatio~ remained .rigid and followed 

the proton, k2 again would be unaffected. However, if 

one assumed that this polarization changed upon vibration, 

as it most certainly does, then p(H) would have to be 

increased, since the relaxation term due to the changing 

polarization is positive (qH~k2) but the field gradient 

contribution of pcr electrons would reduce qH. The question 

as to which charge density to use has thus always been in 

disputeo Hall and Rees( 20 2 ) have pointed out that a 

separated ion wavefunction would give improved results for 

wavefunctions, McDugle and Brown< have shown that cal-

Plattvs model, which originally depended on united atom 

wavefunctionso More recently, using Hartree-Fock atomic 

214 
> 


http:orbit.al
http:experiment.al
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culated equilibrium distances and force constants are in 

much better agreement with experiment for the united-atom 

moder. Platt's treatment is least accurate for the lighter 

molecules, for which the electron density will become 

significantly pertur~ed by motion of the proton. Intro­

duction of polarization will, as we have discussed above, 

alleviate any discrepancy. Relaxation or orbital following 

will then have to be considered explicitly. 

It must. be pointed out that nucleus M is not in 

equilib.rium but sees a repulsive force from a single 

positive charge!, the unshielded proton. Thus, polarization 

must be introduced at M to achieve electrostatic equi­

librium.. Similarly, the force constant at M is equal to 

2ZHZM/R3, i.e. the field gradient produced by the proton 

at nucleus M, since p(rM) completely follows that nucleus 

and hence contributes nothing to the force constant. In 

actuality, the electronic field gradients are not 

negligible since the bonding involves mostly pa electrons 

in molecules . such as .HF and HCR. .. Thus their magnitudes 

and the change of polc:irization of pa and pn electronsv 

which we have seen in the previous chapter can be quite 

diff~~entv must be taken into accounto 

At the proton, PLatt's model violates another tenet 

of rigorous qua.ntum ch~mistry, namely the virial theorem .. 

The assumption that ap/azH=O implies constant scale.. Satis­
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faction of the virial theorem requires optimum scale 

which minimizes the energy. On the other hand,. the above 

assumption ensures validity of the Hellmann-Feynman 

theorem, which requires only thati~ HdT = 0·11· a condition 
. H 

satisfied by Platt's assumption. The violation of the 

virial theorem requirements was pointed out by Clinton. 

The objection has been removed by a scaling technique 
. •, 

proposed by Hall and Rees( 20 2). However, we now see that 

the success of Platt's model is more a result of its 

satisfying the Hellmann-Feynman theorem, even though some­

what artificially, and less a spurio~s result because 

of its violation of the virial theorem .. 

In exb~nding the model to polyatomic molecules as 

done by Longue t -Higgiris and Brown (116 ) ,· satisfactory results 

are again obtained. The reason for this is that for the 

particular casE:! of bending and twisting modes, the J 

electronic contributions diminish considerably. We have 

commented before that electrostatics requires the tangential 

component of the force on a boundary surface to be continuous. 

For a spherical ¢iistribution, the force is constant on the 

sphere and hence perpendicular modes will have vanishing 

.electronic force constants. This sort of reasoning has been 

c·21s >used by Bader i n a discussion of proton transfer reactions • 

One can extend these ideas to potential barriers, where if 

as in ethane one assumes as a first approximation the charge 
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density to hav4~ cylindrical synunetry about the c-c bond, 

then the twisting modes will be hardly affected by the 

electronic field gradient because of the continuity of the 

perpendicular force components on the protons. Clinton< 216 > 

was one of the first to ·point out that much of the 

barrier to intE~rnal rotatiop · comes from nuclear-nuclear 

interactions. Our considerations would seem to indicate 

that a large part of the remaining 'contribution comes from 

electronic relaxation effects. One important factor is 

orbital following at the protons, which must be included. 
I 

That orbital following does occur is reflected in the low 

values of inteI:action force constants. The assumption 

of orbital following corresponds to quite a sizable value 

of ap/arH which drastically reduces the nuclear repulsion 

contribution in. C-H bonds< 217 > In fact, it is impossibleo 

to get a nonvanishing electronic contribution to the inter­

action constants of stretching-stretching type if the 

wavefunctions are not allowed to follow the nuclear 

motiori(SBb ) . This is because of the result that no 

molecular integrals then depend simultaneously on two 

different bond distances: a2E(el.)/dRdR' is necessarily 

zero (R and R' are two different bond lengths). The 

electronic term therefore measures the electronic rearrange­

ment during vibratd.on~ The negative signs of interaction 

constants in so:me molecules are precisely the result of the 

http:vibratd.on
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.preponderance of this electronic relaxation( 2ll) over 

nuclear terms. Bader( 2 lS) has used perturbation theory 

and certain simplifying assumptions about the "transition 

density" to ev.aluate these effects. In conclusion, we 

can state that relaxation is the rule rather than the 

exception. 

5.6 Method of Calculation 

The relaxation terms are in general much too 

difficult to calculate from ab initio functions. In the 

case of Cadevs function for N2 , the parameters do not vary 

with R in any systematic way, thus making it impossible 

to evaluate da/dR in any consistent manner.. The method 

we have adopted in this present work is a calculation of 

forces at diff•~rent internuclear distances, followed by 

a polynomial f:it of these,so that one can easily obtain 

the derivatj,ves one is interested in • This has advantage 

over an energy fit, since in general the forces are smaller 

and much more sensitive functionals of the density. More­

over, this permits one to partition the derivative into 

orbital contributions.. One can show this for the force 

constant by considering the derivative of the force expression: 

d dp dF 
QR /p F dT = /dR. F d--r + /pdR dT 

= r 2ni<~il F l~:i > + fni<~il~~l~i> 
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where the ~l's are orbitals, and the second equality 

comes about by writing the force F as a sum of orbital 

terms ni<~i IFf '~i>. The relaxation is therefore separable 

into orbital ciontributions by comparing the two equalities 

by term , i • e • , 

rddRP F dT = 2E n·< ~·I F ,d~j>
i l. 1 · dR 

In tbe case of the energy, the sum of the individual 

orbital energies is not equal to the total energy in 

Hartree-Fock theory. The sum of orbital energies cpunts 

the pair interactions twice. Thus, one cannot easily 

calculate any relationship between variations of orbital 

energies 'and orbital force constant (or for that matter, 

force) contributions. The first derivative of the force 

curve gives the force constant. The orbital field gradients 

have already been given in the previous chapter.. The 
. 

densities at the nuclei are also easily calculated from 

the known waVE!functions. Hence, using equation ( 5 .13) , 

one can work back to obtain the numerical values of the 

relaxation terms in ·addition to analyzing the force con­

stant orbital by orbital, and also in terms of atomicp 

over~ap and shielding contributions .. 

The force curve is expanded in the Dunham form used 

by molecular spectroscopists, i.e. 1 

F (R) = F1 + F2r; + F3l;: 2 + F 4 r; 3 + • ••II 
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* 
where ~ = (R-Re)/Re· This was fitted to the forces calcu­

lated at seven regularly spaced points, as listed in 

Appendix 3. Curve littin9 was done for net forces and also for 

the individual orbital electronic forces. The wavefunctions 

used are claimed to be close to Hartree-Fock functions by 

the authors who calculated them. However, as optimization 

is not completie in general, the force curves obtained are 
•. 

not ideally smooth, so that poor results for higher deriva­

tives are obtained if one fits a polynomial through all the 

given pointse These difficulties in polynomial fits have 

been discussed by Cade et al for energy derivatives, for 

which scaling of the ener.gies shou~d be done as per McLean <219 > • 

To ensure rapid convergence of a power series, one should 

not use too wide a range of R< 220 >. On the other hand, if 

the range is too narrow, higher order terms in the poly­

nomial become negligible and prevent ~he exact determination 

of the coefficients of these terms. The best fit was 

obtained when more points were used than the minimum required 

by the degree of the polynomial. For the seven points 

availablef a fourth order polynomial was found to give ; 

in general, be:;t agreement for the force constant k2, the 

anharmonic constant k] and 3rd order constant k4· Because 

of the unevenn«:!SS of the optimization of certain functions 

and the sensitivity ·of the forces to these, two methods of 

curve fitting were used in order to ascertain consistency 
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of the results. A Tchebycheff polynomial best fit was 

used first. In this . method, a polynomial is chosen which 

will go through the best set of a given number of points, 

the procedure being one of iterative testing of each point 

and discarding the worst ones. This. method was at all 

times cheqked against a least square fit of the polynomial 

of the same degree. The least square method has been 

studied by Pliva et al for various potential energy 

curves< 221 >. Best results are obtained by an overdetermination 

of the polynomial, i.e., using more ·points than the minimum 

required. · In all cases, the best fit and least square 

method agreed to two or three significant figures. The N2 

wavefunction was the most reoptimized of all the wave-

functions used, especially at the Re(exptl.) where all 

exponents werE~ all optimized twice <59 >. At internuclear 

distances othE~r than this, reoptimization was not as complete 

or was interpolated. Nevertheless for this molecule., we had 

eleven points to work with since wavefunctions for all these 

points, (forces for these are listed in Appendix 3) had been 

made availabl1e by Cade.. This permitted a check on possible 

limitations in using only seven rather than more points~ 

Varying the number of points and reasonable distributions 

of these, it was possible to obtain nearly identical results 

with a seven and eleven point fit to the same order poly­

nomial, name.ly fourth order. In order to present consistency 
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of the method, we cite as an example the results obtained 

from the Tchebycheff and least square fits, for the molecule 

N2 • Using the least square method, the values for 

k2, k k were in order: 1.51879, -2.20817, l.80996:a)
313 

, 
4112 

and for the Tchebycheff ·method: 1.52348, -2.20654, 1.74976. 

Extending the degree of the. polynomial gave poorer results 

for k4 in general, with some change in k 3 and little or no 
·. 

change in k 2 • One unpleasant aspect was the observation 

that the distribution of points for N2 sometimes affected 

·the magnitupes and even signs of some of the components 

of k3 and k4, e~ven though the sum of these components always 

were nearly thE~ same for the different distributions o 

However, these in no way affected visibly the components 

of k 2 , such as the orbital, atomic, etc., components. In 

view of this difficulty with k3 and k 4 , we have declined 

to include any discussion of these. This problem was not 

noticed with the molecules CO and BF when McLean's functions 

were used. For these, at distances other than Re' only the 

coefficientsof the basis orbitals were reoptimized whereas 

the exponents were those of Re, which had been properly 

optimized. As the optimizations were therefore more con­

sistent or even· for the range of R values considered, less 

difficulty was observed in the polynomial fit, Uneven 

optimization can thus · be troublesomeo A previous calculation 

of the ·~forces at different values of R and curve fitting 

a) Footnote: See Table (5.2) for units. 
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these for wave :functions of Huo (60) for CO and BF presented 

the same diffi ,culty as N2 , even more so. Huo's wave­

functions had also been pariially optimized or interpolated 

at some R values other than Re· However, some irregularities 

were found in the atomic forces. In fact, at O for CO, 

k2 was found to be below the experimental value, whereas 

' using the C forces, the same result was obtained as with 

the McLean function. In view of the fact that the McLean 

functions gave better energies than Huo's for co and BF 

as a result of larger basis set expansions, these were 

used in the calculation of the forces. The same authors' 

functions were used for BeO and LiF. 

The question as to whether one should have expanded 


the Dunham series for the force about the point where the 


(280) . 
net force is :i:ero, as done by Goodisman for H2 · , must 

be answered in the negative. For N2 , the force is zero 

at R = 2.025 a.u., whereas Re(exptl.) = 2.068 a.u. and 

Re(H.F.) = 2.0132 a.u. At R • 2.025 a.u., k2 was 1.857, and 

k :-2.197. The reason for the higher k2 can be found in
313
 

the inadequacy of the H.F .. potential curves at large dis­

tances, as thE~Y rise ·to ionized or excited states for most 


cases. This usually · means that the H.F. minimum must 


occur at an R . < Re(exptl.) since the H.F. curve must
min. 


rise faster than the experimental curve for large R< 222 > • 


The result is that k 2 is larger than the experimental value 



TabJe 5.1 


FORCE CONSTANTS FROM FORCESa) 


AB Re (exptl.) k 2 (exptl .. ) k 2 (calculated) Re (H. _F.) k 2 (calculated) 

NN 2.068 L472 1.519 2.0132 1.864 

co 
oc 

2.132 1.222 1.379 
1.546 

2.081 1.652 
1.822 

BF 
FB 

2.391 0.519 0.532 
0.701 

2.354 0. 610 
0.796 

BeO 
OBe 

2.515 0.483 0.530 
0 -.674 

2.4377 

. 

0.670 
0.824 

LiF 
FLi 

2.955 0.165 0.161 
0.147 

2.9377 

.. 
0.170 
0.155 

a) See Table 5.2 for units. 

N 
w 
U'1 
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if calculated at the H.F. minimum. Evaluation of these 

quantities at lRe will give results closer to experimental 

values, in view of the fact that Re is closer to the 

:inflexion point of the curve, at which k 2 = 0 (see Fig.(5.1)). 

These problems and others related to the accuracy of the 

force constants are further discussed in Appendix 5. 

In Table (S.l) are listed results for k2 at 

Re(experimental) and Re(Hartree-Fock) calculated from the 

total forces and compared with the experimental values. 

The H.F. Re is smaller than Re(exptl.) · • The force 

constants are all considerably higher at the H.F. Re 

whereas k 2 calculated at Re(exptl.) is in much closer 

. agreement with the experimental result. In Table (5.2) are 

also listed values of k2, kJ/3 and k 4112 calculated by 

two different methods. The first method (a) involved a 

polynomial fit of the ne~ total forces, nuclear and 

electronic. Method (b) consisted of a polynomial fit 

of the individual atomic,overlap and shielding electronic 

forces.. The Jcesults from these electronic forces were 
~ 

then added to the nuclear contributions. As can be seen 

from the tabl~=, both methods were consistent with each 

other. The overall agreement between k2, kJ and k4, as 

calculated from the forces, with the experimental results 

was an indication of the accuracy of the method of poly­

nomial fits. For the force constants, best agreements are 



q. 

Table 5. 2 c) 

FORCE CONSTANTS FROM: a) CURVE FITS OF TOTAL FORCES 

b) CURVE FITS OF ATOMIC, OVERLAP, SHIELDING FORCES 
- --­ · 

AB Re 

Exptl. 

k2 

(a) (b) Exptl. 

k3/3 

(al (b) Exptl. 

k4/12 

(a) (b) 

NN 2. 06 8 1.472 1.519 1.503 -1.959 -2.208 -2.114 1.630 1.810 1. 717 

co 
OC 

2.132 1.222 1.379 
1.546 

1.383 
1.552 

--1. 548 -1.640 
-1.628 

-1.653 
- .1. 6 2 8· 

1.216 1.315 
1.365 

1. 224 
1. 261 

BF 
FB 

2. 391 0.519 0.532 
0.701 

0.544 
0.711 

-0.572 -0.660 
-0.774 

-0.635 
-0.712 

0.318 0.452 
0.588 

0.476 
0.520 

BeO 
OBe 

2.500 0.483 0.567 
0.711 

0.554. 
0.698 

-0.489 -0.602 
-0.636 

-0.579 
-0.603 

0.291 0.311 
0.332 

0.325 
0.338 

LiF 
FLi 

2.8877 0.165 0.198 
0.174 

0.199 
0.184 

-0.152 -0.198 
-0.185 

-0.195 
-0.177 

0.124 0.133 · 
0.144 

0.118 
0. J..26 

c) 	 Units used throughout 

R(a ) = 1 bohr = o.529167 R 
0 

E = 1 hartree = 4.35942*10-ll erg 


F = 1 hartree/bohr = 8.2377*10-3 dyne 


= 1 hartree/bohr2 = 15.5684*105 dyn/cm
k2 
= 1 hartree/bohr3 = 29.4205*1013 dyn/cm2k3 
= 1 hartree/bohr4 = 55.5978*1021 dyn/cm3k4 

tv 
w 
...J 
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found for the ·C:alculation ' from the forces at the lighter 

nucleus in the molecule. This is understandable if one 

remembers that the heavy atom has the larger atomie oharge 

density. It .is then more difficult to variationally 

optimize this density as it contributes much more to the 

energy than the lighter atom, and is thus relatively 

insensitive to small energy changes. In what follows, the 

force constant components obtained as the derivative of the 

corresponding forces are used in an analysis which is 

correlated with densities to elucidate the nature of these 

force constants. 

5.7 Interpretive Scheme 

The de9ree to which the force constant depends 

upon explicit variatiqn of the wavefunction with R via 

the parameters is as we have indicated dependent upon 

the differentiation process (see section 5.4). Consequently, 

there arises the general problem of the relative importance, 

aa.i 
in the force constant expression, of the parameter deriva­

· tives -ap: for moving coordinates centered on A, or 

a81 /aR for f:Lxed coordinates centered on B. Their quali.:. 

tative and quantitative roles are far from clear in the 

two-cehter repJ::-esentation, i.e. ~ confocal elliptical, 

which makes use of the virial theorem.. Only equation (5.25), 

which results ~Erom this appro'ach, has a one-electron character 

to it.. Other 4~quivalerit expres·s.ions i .nvolve the potential 
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energy operator (see Phillipson( 20S)) and thus make it 

difficult to reduce the problem to one-electron integrals. 

For exact wavefunctions, both the Hellmann-Feynman approach 

· and that of Schwendeman and Phillipson give the same 

result for the value of the force constant. 

From the interpretive aspect, one encounters certain 

differences. In the electrostatic approach, one keeps 

the total density fixed with respect to some arbitrary 

point, for example nucleus B, and then one moves nucleus A. 

If the total density remains rigid with respect to nucleus 

B, then the contribution to the force constant is the 

field gradient. of the total density. This density then 

relaxes.. From the cancellation theorem, all the density 

which follows nucleus A rigidly cancels its field gradient 

contribution via the relaxation term 

( 

The working equation for the electrostatic approach is from 

Eq. ( 5 .13) 

(5.36) 

In view of thE~ linear deperide·nce on p in this expression, 
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one may decompc:>se p into a sum of terms 

p = PA + PAB + PB 

where pA and Pa are charge densities een~ered on nuclei 

A and a, and~ PAa is the overlap density. The contributions 

from the electJ:-onic terms to the force constant in the 

limiting case of rigid following of nucleus A by pA and 

of nucleus a by Pa are: 

atomic: k(AA) = 0 
2 

dpAa coseaoverlap: k(Aa)/Z = 4n (A)-/ 3cos2ea-l d 
2 A ~ PAa PAa 3 T -!-- ---­

ra dza r 2 
a 

4n 36os2e -1k(Ba) /Zshielding: = p (A) -/p a2 A 3 B a r 3 
a (5.37) 

The null contribution from the atomic density rigidly 

following nucleus A follows from the .cancellation of the 

field gradient and relaxation terms by the cancellation 

theorem. The i;hielding term kJaB) .for rigid following of 

nucleus a, i. 1~., p remains fixed on B, contributes a field 

gradient term in addition to a density contribution which 

we showed before was the force constant for a nucleus on 

which this demdty was .completely localizedo The electronic 

ove·rlap constant always contains a relaxation term, even 

for rigid densities which follow the nucleio If there were 

no orbital fol.lowing of nucleus A, then this relaxation 

would be zeroo However, as a result of the L.C.A.O. 

approximation, where the densities are centered on A and a, 



Table 5.3 


CONTRIBUTIONS OF ELECTRON DENSITIES TO K~ 

. . (D) 

KA 

AB K (AA) 
A 

K(AB) 
A 

K(BB) 
A . Total z -K (BB) 

B A (K (AAj +K (AB) ) 
A A 

F(Z-S) 
A 

11 AB 11B 

NN -1.208 3.143 4.115 6.051 2.885 1.935 1. 864 -5 .. 644 -0.242 

co -2.989 3.366 6.507 6.884 1. 49 3 .. 0.377 0.534 -3.760 +0.140 

BF -1. 9 26 1.904 8.285 8.262 0.715 -0.022 -0.008 -2.040 -0.099 

BeO -1. 9 31 1.365 7. 458 6.892 0.670 -0.523 +0.057 -4.521 +0.350 

LiF -0.977 0.170 9.007 8.201 -0.007 -0.807 -0.421 -1.166 -0.094 

NN -1. 208 3.143 4.115 6.051 2.885 1.935 1. 864 - 5.64 4 - 0.2 42 

oc ·­o.584 2.407 3.237 5.060 2.763 1.823 2.116 - 1. 30 7 -0.050 . 
FB -0.524 2.333 2.650 4 .. 460 2.882 1. 809 1. 741 -0 .880 -0.069 

OBe -0.177 1. 364 2.118 3.306 1. 921 1.187 1. 628 -2.077 - 0.086 

FLi +0.098 0.570 2.089 2.757 0.911 0.668 0.954 -1.166 +0.079 

N 
~ 

I-' 
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the overlap density is .continuously changing .with nuclear 

motion. 

If one defines the total relaxation in terms of 

an effective charge by 

cos ea 
2 

ra (5.38) 

.... • ..J... . _,._ 

whe:r:~ Po = Pa (6 ,rb) and PAB(S,a. ,ra,rb) respectively, one can 

calculate • these using Eq.(5.36) for components k2(BB) and 

k~AB) using the previously calculated density p(A) (see 

Appendix 4) , the field gradients (see Chapter 4) and the 

values of the k2vs w~ich have been qbtained by polynomial 

fits of the forces, as described previously. The 6vs 

are listed in Table. (5. 3) . Perusal of this table shows 

~B is small in all cases, as one would expect since this 

charge density is far from nucleus A, and sits quite rigidly i 

on nucleus Bo The signs of ~B fluctuate from nucleus to 

nucleuso Ideally, one would like this to be positive so that 

this relaxation would cancel the small density term jTI p (A)
8 

at nucleus A. For this cancellation to occur, this small 

density would have to follow nucleus A completely . This 

is quite reasonable as this density is far away from nucleus 

B 1 albeit centered on it, and is mainly perturbed by Ao The 

values for the relax~tions ~ are small and depend on pB(A), 

the accuracy of which is difficult to assess from Hartree-

Fock theory; as it is only a part of the total density. It 

http:Eq.(5.36
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is probably much more realistic to view this relaxation 

term as being positive and cancelling the density term. 

The overlap relaxations 6A8 · are much more problematic as 

they involve a certain amount of charge following of 

nucleus A as W•~ll as following nucleus B since 

* - ....PAB=lflA (ra> lfJB (r1,> . From the tables, it is evident the 

overlap relaxations are much larger than the ~B's. The 
•, 

values of the ~AB's are negative, the sign being just right 

t 1o cance the .:I • •
c~ensity correction 47T 

~ 
( ) PAB A which is 

negative for all nuclei (see Appendix 4) • For N2, 

R3/2(j7T PAB(A)) is -6.153 as compared to ~AB which is 

-5.644. It is thus evident that much of the overlap density 

follows the nuclei. One can further show this by calculating 

the integral· (5.38) using simple Slater orbitals centered 

on A and B .. 

It is thus seen that the total relaxation effects 

as calculated by the space fixed method involve large 

quantities whi1:h cancel field gradient contributions. One 

way to avoid these is to view these relaxations from the 

nucleus which .is being moved, for example nucleus A.. This, 

as we have seen, is also equivalent to the motion of nucleus 

B with respect to A. We then have from (5.16) 

~ 

= -z /~(1x,ra> cos0a 
A az' 2 a ra 

(5.39) 
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In this equation, explicit dependence on the field gradient 

does not appear, which is as it should be since we have 

previously indicated there.is no definite relationship 

between these two. We have already demonstrated in connection 

with Platt's model that for any density pB(S,rb) which 

remains rigidly fixed on nucleus B, the integral (S.39) · 

is a field gradient contribution of the form 

k(BB)_
2 - z [41~ PB (A)A 3 - /pB

3 cos2e 9-l d 
3 T 1 

ra 
~ 

= ZA /dp 
dzb 

CB, rb) cos ea 
2 

dT 
ra 

where differentiation of coordinates rb only occurs. 

The density term j7T pB(A) is best considered with the 

relaxation of this density for which we have indicated 

cancellation·will occur. The total k~BB)including relaxation, 

i.e. 	ZA/~ 1 (fl ,:~b) cos~a, dT, is best considered as a field 
ozb ra 

gradient. Frrnn (S.39) with respect to nucleus A any density 

fixed on B is moving with B and therefore relaxing~ We 

thus have that the relaxation of density on B with respect 

to A can be evaluated as a field gradient term, in view of 

the equivalenc1e of these two. We can, therefore, consider 

the density on B as shielding that nucleus from A. In 

terms ·of effective charges, we define 

K (BB)= ~[ ·i: 3cos2ea-l 
A ~ PB 3 

ra 
1 

(S.40) 


http:there.is
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as the shielding cont ribution per unit charge to the force 

constant expression. If pB is expressed in terms of · 

coordinates centered on A, this is then equiva l e n t t o 

R3(BB) __ o pB (a ~ ) cosea d ... ]K ~- [ J~~ · a '­, ' 
A 2 ()za r 2 

a 

where primes indicate differentiation of parameters only . 
~ 

T~e OVE~r1 ap dens ity pAB (a, B '. r a, rb) can b~ conside r e d 

in a simi~ar fashion, i.e., as a relaxation effect if one 

expands it onto cent(~r A completely so that pAB = pAB (a,ra )· 

This avoiqs the appearance of large cancellations o f 

relaxation and field gradient effects which bccur if tttis 

density i~ kep·t: fixed with respect t.o nucleus B, i.e. by 

expanding it completc2ly in terms of coordinate rb. We 

have already seen that density which follows nucleus A..,such 

as pA 1to a very large extent, is best considered as relaxing 

with respect to nucleus A. It is precisely for PA and pAB ' 

as we have sliscussed above, that most of the cancella tion 

of field gradient and relaxation terms occur in the space 

fixed approach. It is therefore much more convenient to 

consider these two together. We therefore define 

3 a·p _... 
K (D) = ~[ D (a,ra)cos 6a 

A 2 
182' 2 

dT (5. 41) 
a ra 

as the electronic contri­
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bution from thE~se densities. Our final expression for 

the force constant b~comes 

2ZA [(z -K (BB;_ K (D) k2 = 	 1B A AR3 
(5.42) 

The first term, (ZB-KA(BB)) is the total unshielded charge 

on nucleus B and therefore, following our previous 

discussion, is a net field gradient. The last term 

represents the sum of atomic and overlap relaxation effects 

with respect to nucleus A. 

5.8 	 Shielding ~nd Dieolar Interactions 

The wo:rking equation (5.42) for the interpretation 

of force constants involves one-electron operators onl~as 

seen from the qeneral expression for the K's (Eq.(5.41). The 

force constants are therefore ultimately related to the 

one-electron d1ensi ty o In the force . analysis, we have 

emphasized the importance of the exact disposition of the 

charges in the molecule as depicted by the density difference 

diagrams. Our task is, therefore, to relate in a similar 

qualitative fashion the electron densities to the various 

quantitative factors in Eq. (5.42),which influence the force 

constantso 

The shi~lding term k~BB) contributes a field gradient 

term and is therefore easily handled. From (5.42), we have 

'k (BB) = -2Z K(BB)/R 3 
' 2 A A e 

http:Eq.(5.41
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where K!BB) is an effective charge producing the calculated 

electric field gradient. If this were the only contribution, 

we would have fPor the force constant 

k = 2Z (Z -K(BB))/R3 
2 A B A e 

and for the anharmonic constant 

k = -6Z (Z -K(BB))/R4 
3 A B A e 

To test the assumption, we note that k 3/k 2 = -3/Re. From 

206 a Dunh am ana1 · < > one can s how k /k = 3 I Re' whereysis 3 2 a 1 

for most diatomic molecules -2>a1>-4. For N2 , a1 is -2.75, 

and for LiF -2.72. Since Re >2 for N2 and LiF, one sees 

that shielding .is not the only contribution and relaxation 

effects must be considered from the rest of the density, 

i.e., atomic and overlapo 

The expression which · summarizes the atomic and 

overlap relaxation effects is Eq.(5.41), ioe., 
3 ap ~ 

K(D)= ~ll---1?-(u,ra>cosea dT 

A 2 .a za r 2 


a R3 aP ( ~ ) , . 
f__E_ a,ra cosea dT (5.43) 
= ---i- azb ra2 

·This integr~l rE?presents the interaction of the change in 

electron density ap/a~~ with a point dipole at the point 

z =O, i.e.p nucleus A, directed along the internucleara 

axiso By this method, one can visualize force constants 

as the change in force components on one nucleus (A) 

axerted by the change in charge distribution resulting from 

http:Eq.(5.41
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a small unit displacement of the other nucleus (B). This 

is, of co~rse, equival~nt to moving nucleus A instead of B. 

The relaxation effects are, however, measured with respect 

to A, for which nucleus B appears to be moving. The equiva­

lent of tliese two approaches is summarized by the two 

223integrals in Eq.(5.43). White< > used a similar approach 

' in calculating atomic force constants for the case of solid 
., 

copper, but th4~ formalism was never developed explicitly. 

His treatment considers the total dipole effect from nuclear 

and rigid core charge movements, which as we have indicated, 

are more easily treated as field gradients. In addition, 

the relaxation of the conduction electrons is treated in 

a crude f ashio:n as a perturbation by the virtual displacements 

of the nuclear and core charges. The dtpole interaction 

has been extensively used also as a model in calculating 

transitioJ?. intensities in electronic spectra, an example 

being some caliculations of Jones on benzene <224 >. In this 

approach, the nuclei and atomic orbitals are assumed not ' to 

move together so that th~ resulting dipole field is, in 

192part, responsible for vibrational interaction terms< > .. 


Such a model has been discussed in detail by Liehr< 225 >, who 


gives a car?fu~ analysis of the errors which arise from 


different approximations. The methods used in most of 


these calculations .overemphasize non-orbital following 


and so do not allow the atomic orbitals, and therefore 


http:Eq.(5.43
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densities, to move at all.with the nuclei. If we displace 

a certain nucluus in a molecular configuration from its 

equilibrium pofsi tion, then t.here wi.11 be eome eendeney lor 

the valence elE~ctrons to remain in their equi·librium positions 

instead of being carried away by the atom with which the 

atomic orbital is associated. The actual amount of following 

or non-following which then is a relaxation, can be judged 

from the values of the K's. Our later discussion would 

certainly suggE~st that orbital following is quite large. 

One can visualize the relaxation effects most 

clearly by the use of density diagrams. In particular, 

by considerinq the total atomic and overlap densities 
..a.. ..a.. 

centered on one atom, i.e. Po(a.,ra> = pA(a.,ra>+pAB(a.,ra>" 

and seeing how this changes with nuclear vibration, one 

can hopefully qet a true picture of these relaxation 

effects. Keepi ng · nucleus A fixed and displacing nucleus 

B, we have subtracted Poeq from Poext i.e. , the 

sum of equilibrium atomic ~nd overlap densities from the 

sum of their extended counterparts. These then represent . 

the change in density 'ap(D) /'aR which interacts with an 

imaginary dipole ZAdR at A. It will be shown how these 

density differEmces can be qualitatively correlated with 

the trends in the force constant contributions from the 

relaxation terms. One need not consider the relaxation of 
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Pa in terms of densities, as such densities are small near 

A. The contribution from pB is best treated as a field 

gradient term. Inclusion of · PB in the density diagrams 

would only obs(mre the overlap effects which are predominant 

in the bond reqion. 

5.9 	 Characteristics of Electronic Force Constants 


A comparison of the contributions to the total 


force from chaJ::-ge density in different spatial regions of 

the molecules· in the two series N2 , CO, BF; c 2 , BeO, LiF, 

demonstrated that the manner in which a state of electro­

static 	equilibJrium is reached is characteristic of the 

binding 	found in each of these molecules. The .general 

' nature of the variation in the spatial distribution of the 

charge density through these two series of molecules is 

also evident fJrom P and 6.p maps as discussed previously. 

In particular, it was found that for the 14-electron iso­

electronic group N2, co, BF, the charge density became 

more diffuse at the electropositive end of the molecules. 

This was the n~sul t of the presence of a Scr orbital which 

contributes appreciably to density accumulation behind the 

light nucleus o This ·is in sharp contrast to the 12-electron 

group LiF, ~eo, which has no 5~ orbitalo Thus the charge 

density becomeB very tight at the electropositive end 1 

indicative of charge transfer to the electronegative atom 

in the moleculeo The contribution of the overlap charge 
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density to the binding in the molecules decreased in the 

order N2 , co, BF. In co, the shared density exerts a larger 

force on C than on o, while in BF i~ binds the F nucleus 

more than B. The atomic forces exerted on the N, o, and F 

nuclei in N2, CO and BF decrease sharply through the series, 

an indication of an increasingly symmetrical arrangement 

of the charge density immediate neighbourhood of.. in the 

these nuclei. In the ionic molecules BeO and LiF, the 

direction of the atomic polarizations and their forces which 

are exerted on the nuclei O and F are reversing to counter 

the net positive field which results from the transfer of 

charge to O arid F. The charge increase is more symmetrically 

localized on F. 

These contrasting tendencies in the two series should 

therefore result in quite different relaxation effects 

during nuclear vibration. · The force constant components 

should parallel the forces to some extent as they · represent 

the change in forces. On the basis of the density (p), 

density difference (6p) and force discussions one would 

expect maximum deshielding of the nuclei and maximum overlap 

contributions to prevail in the force constant of the 

covalent prototype, N2e At the other extreme of bonding 

character, the presence of charge transfer should manifest 

itself in overshielding ·Of the heavy nuclei, deshielding of 

the light nuclei by an amount equivalent to the magnitude 

. I 
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of the charge transferred, negligible overlap contributions. 

In view of the fact that as the molecule is extended, 

dipole moment tunetions .lor BeO and LiP !nd!ea~e inoreas!nq 

ionic character as a result of depolarization effects, one 

might expect the densities centered on the heavy nuclei 

to become more symmetrical. This conjecture is further 

supported by the dynamics of alkali metal plus halogen 

molecule reactions, in which the notion of long-range electron 

transfer to the halogen by stripping seems to be well 

establishea< 226 >. We can thus anticipate that the density 

situated at O and F will follow these nuclei and perhaps 

even facilitate nuclear motion via a decrease in polarization . 

in the internuclear region. In the field gradient analysis, 

we have already indiqated the different polarizations of 

pa and pw densities. Thus we might expect the changes. in 

these polarizations to show up in the density difference 

maps advocated in the previous sections. Inasmuch as bond 

stretch is the undoing of molecular bonding, it is to be 

anticipated that in the group N2, co, BF, density difference 

maps of the extended and equilibrium densities will indicate 

a reversal to the valence states of the separated atoms for 

these molecules. In these molecules, acc~ulation of 

density behind the nuclei was manifested by the Ap diagrams ... 

On extension of the nuclear configuration, these charge 

accumulations will reverse and flow back into the bond region 
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in order to attain the more symmetrical electron distri­

bution of the valence states. This relaxation effect 

should show up in the atomic force constant contributions 

as impeding nuclear motion. 

ea) Atomic, Overlap, ·shielding KA's 

In order to examplify and validate these predictions, 

we ~resent in Table (5.3) the numerical values of the 

derivatives of the atomic, overlap and shielding forces, 

obtained from polynomial ~its of these forces as described 

in section 5.6. The derivatives correspond to K~'s repre­

senting 

(x) _R3 
KA -2 

and x is generally representative of the atomic density . (AA) , 

the overlap density (AB), and the shielding density (BB). 

The shielding~KA(BB) is best treated with the 

nuclear field gradient, thus giving a measure of the relative 

undershielding of the nuclei by the atomic densities 

situated thereo The total unshielded charge (ZA-KA(BB)) is 

therefore included in the tabler with the corresponding 

FA(Z-S) v the unshieided ch~rge whic~ appears in the force 

analysise This last quantity has been correlated with 

dissociation energies_of homonuclear diatomics by Bader et 

al(SS) It is seen from the table that maximum undershielding0 

in the force constants occurs at N2Q Minimum deshielding 
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occurs in LiF. At Li, there is j ctually complete shielding 

of the F nucleus, whereas at F, here is deshielding of the 

. K(AB)Li nucleus by 0.91 charge. The Verlap Ke, 

are maximum at N2 and minimum in LiF. In fact, for Li 

KlAB) is vanishingly small (0.17). The atomic K~'s, i.e. 

Ki~) differ appreciably for the e ·two limiting cases of 

bond~ng, i.e. covalent in N2 and ionic in LiF. K(AA) for 

~ As, 1.e. A , 

A 

is negative, indicating that he density changes areN2 


opposing the nuclear motio.n as p edicted before. In LiF, 


the two ends of the mo~ecule behave differently. At Li, 

the density relaxes in such a war as to also oppose nuclear 

motion, the magnitude of K!AA) b~ing comparable to that for 

N2 . This means that charge must be leaving regions behind 

the Li nucleus and accumulating in front of it, annihilating 

the "hole" which was evident in the /lp diagram for that 

molecule. At F, K!AAi is positir e, hence implying the 

electronic relaxation is aiding r uclear motion. There must 

then be charge removal from the r inding region in the 

vicinity of the F nucleuso Thelagnitude of this effect 

would indica·te that charge remo al is very small or sym- · 

metric about the F nucleuso The KlAA) 's become more 

negative at the heavy end, i.eo oppose motion of the 

heavy nucleus more and more as from LiF, through 

BeO, BF, CO and N2. This is in icative of increased charge 
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restoration into the binding re lion, which in the bonding 

process are asymmetrically disp~sed in the covalent molecules 

but are more synunetrically reloj ated at the heavy nuclei 

in the more ionic cases. Thus ,he decrease in magnitude and 

eventu'al reversal in ·sign of K!AA) at F in LiF as one goes 

from to LiF reflects this ch,racteristic of the equili­N2 

brium densities. The overlap c1ntributions to the force 

constant decrease from N2 to Li , at the heavy nuclei, 

reflecting the increase of p de~sity and decrease of s density 

in the bonding of these nuclei. At the electropositive 

nuclei, Li to N, the atomic contributions always oppose 

nuclear motion much more than atl the heavy nuclei. · At .B 

and c, we have noted in the previous chapters the rather 

diffuse densities accumulated behind these.. It is evident, 

therefore, that these diffuse de~sities follow these light 

nuclei much less thanothe densities at the other end of the 

molecule which are tightly bound by the larger nuclear 

charges of 0 and F • . The magnitur es of the Ki,,_AA) 's at either 

end of the molecule therefore co~relate with the tightness 

of binding of density. At Be, the larger value of Ki,,_AAl as 

compared to Li indiCates signifi~ant accumulation of charge 

in front of that· nucleuse The larger deshielding of that 

nucleus as compared to Li must bb partly responsible for 

this increased relaxation in ele~tronic density. 

The above discussion canl be summarized with the use 
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of the tabulated values of K~D} , hich appear in Table (5.3) 

and represent the total relaxatibn effect of overlap and atomic 

densities at nucleus A. ~ very 
1

significant revelation is 

that from the light en~ of the mblecuie this relaxation 

effect opposes nuclear motion increasingly as one goes from 

N to Li. The change in sign for Kio) occurs at B. This 

is the result of large negative atomic relaxation exceeding 
(D) ­

the overlap density relaxation. In all cases where KA ­

is negative, i.e. at B, Be and Li, the sign of this contri­

bution is due to the ~repondera · e of atomic relaxation. 

Simultaneously, one has an increasing shielding of the 

other nucleus in the molecule. Thus at Li, the total force 

constant comes from the relaxation of nearly all atomic 

density, as ·the overlap is small at Li. At N2 , overlap 

effects prevail over adverse atomic relaxations in order 

to decrease the large undershiel6 ing of the N nucleus. The 

increased shielding of the heavy nuclei in going from 

N2 to LiF is consistent with io1 ic trends in the molecules.' 

The decreasing magnitude of KiD) I at C and B is a result 

of the diffuse densities (mostl from the Sa orbital) behindI 

these nuclei relaxing in opposi ion to nuclear motion. 

At Be and Li, similar relaxatio which puts more density 

in the binding regions near these nuclei to where there 

had been depa.etion as · seen from the 6p diagrams for these, 

must occur~ At the heavy nucle 0 

, the group N,C,O behave 
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quite similarly. The net unshie ded nuclear charge and 

the K(D) 's are quite comparable. This is a result of
A 

decreasing overlap contributions and greater density following 

of nuclei as one goes to the hea ier and thus more charged 

nucleus. The contributions at O and F in BeO and LiF do· 

not behave in this Jl)anner. Desh1' elding of the light . 
nuclei is less and as charge tra sfer has occurred to O 

•, 

and F, relaxation effects are sm ller at these nuclei as a 

result of densities being more s r mmetrically situated with 

respect to these. 

b) Densities a·na Nuclear· Motion 

The magnitude and sign o~ the various component 

contributions to the force constr nts can further be under­

stood in terms of relaxation dia rams, representing the 

difference in atomic and overlap densities of the stretched 

and equilibrium molecules, The ame approach can be used 

for contraction of nuclear configuration, the only difference 

being a reversal of signs in the l appropriate expressions. 

The overall principles which cha~acterize relaxations are 

the same. The use of a nuclear r ipole ZAdR to help visualize 

these . effects as discussed in section 5.7 depends on the. 

1potential V (P) of such a .dip~le lat a point P in space as 

seen from the follow~ng diagram: 



258 p 

V) o V(o 

+ZA ~--~- dR --;--/ --~>-ZA 
p= -ZA dR 

V(P) = -p.VaCl/;a> 9 - ZAdR cos 0a/ra2 

and therefore ~E = Z ~dR) 2 J dp leas Sa 
, A CIR ra2 

in accord with Eq.(5.41). 

.. In Figs. (5. 3) - (5. 6) are given the atomic 

and overlap relaxation maps for densities centered on 

nucleus A. The heavy nucleus i i always to the right of 

the light nucleus, and the latt, r is always to the left 

of the heavy nucleus.- The nuclear dipoles are included 

in the diagrams to indicate the ]directions of nuclear motion. 
' 

In the group N2, co, BF ~ it is evident that as one 

goes from nucleus C to nucleus ~' more charge is removed 

from behind the nuclei and put ·into the bonding region. 
I 

The effect is smallest, visually_, for the nitrogen atom. 

This is in accord with .the demoJ stration previously from 

p and lip diagrams that the dens~ty was most tightly bound 

to N. Thus at N, there is more jdensity following the 

nucleus than at B and Co However, inasmuch as this following 

is incomplete, there is relaxation opposing the nuclear 

motion (t~e diagrams are all foJ bond extension) .. The 

smaller ~elaxation at N is both J supp~rted by the relaxation 

density qiagram and the 'tud f K(NN) The net effectmagni le o N • 

http:Eq.(5.41
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of the relaxation is an induced dipole moment in the 

electron density in the same direction as the nuclear 

dipole, thus increasing the dipole interaction and henc~ 

the energy of the system. This is equivalent to increasing 

the force constant. In the case of the nitrogen atom, 

there is a removal of char~e from the pa region, in a 

geometrical fashion reminiscent of a pa orbital, and 

transference of this charge into the pn region. In other 

words, extension of the configuration undoes the bonding 

process. In the molecule N2, there was charge depletion 

in the regions perpendicular to the bond axis, and 

charge accumulation ad.ong the bond axis. Thus we are 

witnessing the reversai to the valence states predicted 

beforec As one goes through c, B, Be and Li, there is 

charge removal from behind the atom with a slow progression 

to symmetrical removal around the nucleus. This progression 

to symmetric ·removal of density reduces, therefore, the 

magnitude of the atomic relaxation. The density difference 

diagrams for these atomic densities are therefore indicative 

of progressive s-orbital type involvement in the relaxation. 

Thus, in the case of Be and Li, the small polarizations 

which occurred behind these nuclei are dimini~hed in 

addition to overall removal around the nuclei and replenishing 

of the nhole n which was apparent in the ~·P maps for LiF 

and BeO in front of Li and Be. In the case of C and B, there 
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is also po character involved in the density changes as 

seen from the geometrical shape of the contours. The 

dipolar interactions are strongest for C and B, as the 

electronic dipole which results from relaxation is larger. 
and of the same sign as the nuclear dipole. The result 

is then an increasing hindering of nuclear motion as can 

also be seen from the magnitude of this effect via the .. 
K!AA) 's in Table (5.3). From the magnitude of the contours, 

it becomes obvious that the relaxation process involves 

only small charge disp"lacements., so that brbital fallowing 

must be predominant at all times .. 

The atomic densities at the heavy nuclei demonstrate 

the increasing importance of p-type relaxation effects. In 

passing from·N to O, and to F in N2 , CO, BF, the removal of 

charge density from in front of and from behind the nuclei° 

becomes more and more symmetrical, as portrayed by the 

diagrams. This correlates with the decreasing magnitude 

of KlAA) which always remains negative as slightly more 

charge is removed from behind. In other words, this counters 

the accumulation of . charge behind the heavy nuclei during 

bond formation.. The removal is nevertheless smaller than 

occurs at the other end of the molecule as a result of more. 

tightly bound densities at the he·avy end. The increase in 

p-orbital involvement in the relaxation is evident from the 

pa and pn nodes c.oming closer to the nucleus as one comes 
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to F. The small KiAA) values for O and F in BeO and LiF 

are seen to arise from the mainly p-type relaxations which 

occurs at these. The relaxation effects have become qui~e 

symmetric about each nucleus, so ~hat for F in LiF, the 

net electronic dipole is zero, and thus the effect on 

nuclear motion via dipole interaction becomes negligible. 

It seems, therefore, that .as pne increases charge transfer 

to the heavy nucleus in the order BF, BeO and LiF, as 

demonstrated by the ~P maps in Chap~er II, the relaxation 

effects decrease their influence on nuclear vibration. The 

~P maps indicate that this is the result of a symmetrical 

disposition of the transferred charge around the heavy 

nuclei which tends to move with these nuclei, as it is 

completely localized or nearly so in the case of BE~O and 

less so in BF. The relaxation maps for the atomic densities 

along with the relative values of KiAA) support the tendency 

to symmetrical relaxations about the o and F nuclei. It 

is significant that in the case o~ the most ionic molecule 

LiF, the atomic relaxation at F actually helps nuclear 

motion, so that a little more charge leaves the bond region 

than from behind the nucleus. This is an indication of a 

decrease in. the forward polarization of the transferred 

chargev rendering the density on F more symmetric and thus 

enhancing nuclear motion. 

TQe overlap . ~elaxation diagrams displayed in the Figse 
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represent a relaxation which tends to facilitate nuclear 

motion. This is accomplished by large charge removals 

from the bonding (binding) region and increase of charge 

behind all the nuclei. At the hea'Vy nuclei, the geometrical 

characteristics of the relaxation contours are suggestive 

of p-type density. At the light nuclei, expecially Li and 

Be, one sees the restoration of s-type density around these .. 
nuclei, as opposed to the atomic relaxations when~ charge 

removal was put in evidenceo . It is apparent then that these 

overlap effects also include atomic density effects as noted 

in the force analysis where it was found that in the cases 

of LiF and BeO, overlap densities at the heavy nuclei were to 

be more appropriately considered as atomic densities. From 

the relaxation maps of the overlap · densities, one sees that 

at the light nuclei the relaxation density encloses the 

. nuclei with an evident increment in density which becomes 

less symmetrical as one progresse~ to B, C and N. In the 

.	case of Be and Li, · the major part of the overlap contri­

bution to. the force constant comes from depletion of cha!ge 

in the internuclear region, as a result of dilation of this 

densityo For Li, this is smallr as evidently the overlap 

density is strongly polarized towards the F nucleus. As one 

comes to Nu the charge depletion has come near that nucleus 

and we thus have a large K~AB) o In the case of the! heavy 

nuclei, the overlap ·density increase about these nuclei is 

smaller than at the light nucleus • This is evidence 
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of the increasing contribution from p-type density to 


this relaxation, density which vanishes at the nucleus. 


,Much of the magnitude of the KlAB) 's comes from charge 

removal in the bond region. As this charge removal oomes 

closer to the heavier nuclei by virtue of the density 

being tighter around these, the net effect is an increase 

· in the repulsion of the nuclei from the bonding region via .. 
· the dipolar interaction. This, therefore, offsets the 

decrease . ins-character participation which would have 

otherwise increased the overlap density in the vicinity 

of these nuclei. The smaller overlap density changes at 

O in BeO and especially at F in LiF is further evidence 

that these densities . la~gely follow the nuclei O and F, 

as if they were atomic densities centered on these. This 

then lends further support to our force partition in 

Chapter III, where the overlap fo~ces were added to the 

atomic forces for these nuclei. The following of the 

nucleus by the overlap density is riearly perfect for the 

density at F as demonstrated by the nearly vanishing density 

changes from the relaxation diagram and the small value 

of · K~AB) (0.57). We thus see that LiF is again approaching 

the i'imit of two separable densities centered on the nuclei 

Li and F .. 

It has become. evident from the overlap density 

relaxation diagrams that appreciable changes occuI: in the 
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vicinity of the nuclei, so that ' much of this relaxation 

is to be associated with atomic densities. It is thus 

more appropriate to gauge ~he total effects. These are 

summarized in the rela~ation maps in Fig.(5.7) corresponding 

to K!_D) , i.e. th e sum of atomic and overlap contributions. 

As one goes through Li in LiF, Be in BeO, B in BF, C in CO, 

and N in N2, one notices the appearance of a positive region in 

front of these nuclei which approaches these nuclei and · 

~inally envelops B, C and N. · In all cases there is charge 

removal from behind tHe nuclei.. ·At Be and Li, the 

restoration of density occurs in the region where there had 

been charge depletion typical of repulsion between two 

closed shells. At B, C and N, the restoration occurs around 

the nuclei, indicative of a decrease in the clustering 

phenomena around these nuclei as depicted by the profiles 

in Chapter II. Overlap contributions are seen to increase 

as one approaches N from Li. The preponderance of these 

overlap effects is made clear by these relaxation maps, 

thus corroborating the trends in K!_D). At N2 , one has a 

net relaxation which facilitates nuclear motion because of 

large overlap density depletion in the bond region.. At the 

other extreme, Li in LiF, the overlap changes are small .. 

The atomic relaxation prevails iri a direction opposing 

nuclear motionu as a result of decrease in backpolarizat~on 

of the Li density.. For the other nuclei, B, C and Be, the 
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overlap and atomic relaxation.s tend to cancel one another, 

the cancellation occurring nearly completely at B in BF. 

For this nucleus, the forc.e constant arises from incomplete 

shielding of the F nuc~eus (see Table · (5.3)). 

At the heavy nuclei, the contours indicate that 

the total atomic and overlap relaxations become more 

localized as the molecule becomes more ionic. For O in BeO .. 
and F in LiF the independence: of these two densities from 

the other nucleus in these molecules becomes quite evident. 

At all electronegative nuclei, . there is removal of pa 

density and accumulation of pn density.. This charge 

rearrangement is therefore in exact opposition to the 

~P maps, so that by extending the nuclear configuration 

one is moving towards the more symmetrical electron distri­

butions of the valence states: . The charge removal is always 

larger from the binding region for the more covalent mole­

cules CO and BF, but becomes more symmetrical in BeO and 

especially LiF~ In fact, at F in LiF, x!D) is the smallest· 

of all.. The relaxation diagram demonstrates that nearly 

all the relaxation effect occurs for density centered 

on that nucleus, thus behaving as a real atomic density .. 

The distinction between atomic and overlap densities is 

thus superfluous for this nucle~s .. 

In summary, for the two limiting cases of covalent 

and ionic bonding, the dynamic propert.ies of the electron 
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densities are v~ry diss~milar. The cdvalent case, as 

examplified by N2 , . is characterized by a very large 

deshielding of the nuclear charge. This was also mani-· 

(z-s) .
fested by the force analysis (See FA in Table (5.3)). 

The electron density relaxes during nuclear vibrations 

in such a way as to aid the . nuclear motion and thus 

reduce the net shieldi"ng contribution to the force constant • .. 
Much of this favourable relaxation comes from changes in 

the overlap density. This is partially reduced by the 

reversal of atomic polarizations behind the nuclei. In 

the ionic case, as portrayed by LiF, there are two 

contrasting behaviours exhibited by the electron density. · 

At Lip . there is complete shielding of the F nucleus, 

negligible overlap relaxation and accumulation of charge 

in front of the Li nucleus, thus impeding the "extending" 

motion of the Li nucleus., The~re is also tightening of 

the Li corep indicating that the atomic density is becoming 

.still more ionic. At Li, then, most of the contribution 

to the force constant comes from a relaxation of . the 

Li density which hinders nuclear motione At F, there is 

a deshielding of the Li nucleus as expected for the ion 

.+
L l. There is, in addition 1 a contribution from the0 

. . 
relaxation of density situated on the F nucleus, whereby 

charge is transferred from a po-like orbital to a p~ 

orbitalc This is then exactly opp6site to the characteristics 
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Table 5.4 

Orbital Contributions kiA to Force Constant 

B c N 0 F 

lo -
2a 

3a 

4a 

Sa 

1 TI 

Totals 

Totals 
from Kel 

A 

I

1.998 

o·. 03s 

2.234 

1.087 

-0.079 

2.982 

8.257 

8.262 

2.000 

0.060 

1.966 

1.425 

-0.858 

2.290 

6.883 

6.796 

1.055 

1.000 

1.764 

-0.020 

+0.313 

1.907 

6 .020 

6.051 

-0.007 

2.003 

2.036 

-1.431 

0.927 

1.533 

5.060 

5.060 

0.068 

2.004 

2.134 

-1.314 

0.420 

1.147 

4 .. 460 

4.460 

Li Be 0 F 

lo 1.999 2.011 -0.193 -0.085 

20 0.226 0.106 2.001 2.066 

3a 1. 60 5 1.606 1.446 0.570 

4a 1.384 0.951 -0.920 -0.419 

lTI 2. 9 88. 2.183 0.961 0.621 

Totals 8.201 6 .-857 3.303 2.754 

Totals from 8.201 6.892 3.306 2.757 
Kel 

A 

. 
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displayed by the wp ma~. As the density rearrangement is 

most symmetrical in comparison to all the other heavy 

nuclei, the effect on the force constant is therefore least 

in LiF. BeO behaves very much like LiF. CO and BF , exhibit 

·relaxations similar to N2. The presence of the 5~ orbital, 

which is partially very diffusely delocalized behind C 

and B1 introduces larg~ atomic relaxations of this diffuse 

density, which oppose nuclear motion. At O and F for these 

two molecules, overlap effects are dominant just as in N2 • 

5.10 Orbital Interpretation 

A further breakdown of force constant contributions 

may be done orbital by orbital. We can define K: as a sum 

of orbital components kiA' where 

k R3 n·f 3($f$i) cos ea dTiA= T l. a z ' r 2 
a a 

This partition was suggested in section ( 5. 6 ). where it was 

shown that such a partition of the force constant is 

permissible. · The nl.imerical values of the kiA's reported 

in Table (5.4) were obtained from polynomial fits of the 

orbital forces as a function of internuclear distance. 

The agreement of the total kiA~s with the totals of the 

atomicv overlap and shielding components is very satisfactory, 

thus confirming the cons~ste~cy and accuracy of the method. 

All these numbers are reported together in Appendix 4. 

In the first group N2, co, BF, the l~ orbital 

reflects the complete shielding from the two .electrons 



.274 

situated at the heavy nucieus. The 20 orbital is essentially 


the same, the electrons being now localized at the lighter 


nucleus. The N2 molecule is symmetric and thus has only 


one electron'per orbital shielding the N nucleus. The 


polarizations of inner shells do not contribute visibly to 


the force constant.. The 30' orbital, which has the most 


density in the internuclear region as discussed previously
.. 
in the force analysis, does not show much variation along 

the series and parallels the near homogeneity of the total 

force contribution for that orbital. The 4a orbital demonstrates 

a . transition at N2 from a shielding to an antishielding or 

enhancement effect. Thus, the large backpolarizations of 

the atomic charge densities relax in such a manner as to oppose 

nuclear motion. One can define a nee electronic force constan~ 

per orbital by averaging the contributions at both nuciei, 

i.e., the value of the expression -~(ZAkiA+ZBkiB). A simple 


calculation shows these to be: BF(+J.196), CO (+l.449), 


(+0.140). The net result is that the relaxation of the
N2 

· 4o density accumulated behind the heavy nuclei enhances the 
' 

force constant, an effect which seemingly decreases as the 


molecule becomes more covalent.. It is evident that this is 


to some extend counterbalanced by the increase in nuclear 


contribution (ZAZB) which is: BF(45), C0(48), N2 (49).. The 


So orbital indicates the presence of the backpolarization on 


the ligh~ nuclei~ Nevertheless; the influence of these is 

~ 
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not as dramatic as in the case of the 4<i1· orbital. The 

average contribution ~o the force constant, a~ estimated 

above, tor this orbital is: BF(-1.693), C0( - 1.134), 

N2(-2.191), ~.e. a shielding or decrease of the force 

constant. The l~ orbital force constant contributions 

parallel the forces for that same orbital, the separation 

in magnitude of the effective charges increasing as one 

goes to BF. This orbital resembles the 3 er orbital, as 

covalency is predominant in these two from the force 

analysis (equal overlap forces at both nuclei). The sum 

of their contributions make up between 60 and 70% of the 

total electronic force constant in N2 , CO, and BF. 

The group LiF .and BeO indicates increasing inner 

core polarization rel.axations, but otherwise, the la and 

2 a orbital show the same behaviour as in the first series . 

The 341 orbital shows little variation exce,pt at F. The 

small contribution at F is a result of the smaller relaxation 

of the 2s; density as expected, in view of the larger 

nuclear cpharge ·of F which binds this densi,ty very tightly., 

In the force analysis, ·a smaller overlap contribution at F 

supported this contention. This is then probably another 

reason for this discontinuityo The contributions at the 

light nuclei Li and Be for this orbital reflect the 

shielding of the heavy nuclei by charge situated on theses 

The shielding is not as complete as in the forces. The 
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4a orbital which is largety backpolarized at the heavy 

nucleus, demonstrates . an antishielding effect, this being 

very pronounced at the oxygen in BeO. The force analysis 

showed that 1t was in this orbital much of the charge transfer 

occurred, the density change being greatest in BeO as 

compared to LiF. This backpola~ized transferred charge 

is obviously. relaxing against the nuclear motion, thus .. 
enhancing the force constant~ The l~ orbital shows that 

the relaxation of the electron density at the heavy nuclei 

is not negligible and tends to facilitate nuclear motion 

by contribution to the reduction of the nuclear field gradient 

which makes up the force constant. At the electropositive 

nuclei, the contributions are less than what one would 

expect from point cha~ges situated at the other end of the 

molecule, i.e. 4.0 at F and o, on the basis of an ionic 

model. This typical undershielding of the n densities was 

shown to be operative in the forces, and thus persists in 

the force constants. 

The orbital contributions to force constants are of 

interest in correlating vibrational frequency shifts of 

certain groups, such as the carbonyl group -C=Or in 

different molecular environments. Force constants derived 

from frequencies in polyatomics are unfortunately often 

derived from potential fields which are in turn based on 

preconceived molecular models • . Some caution is therefore 
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required in determinat~ons of force constants as discussed 

recently by Machida and Overend< 227 >. Aside from this 

remark, g~neral MO considerations( 228 ) assume invariant, . 

nonpolar sigma networks and thus attribute variations in 

the ·carbonyl stretching frequency to changes in 'n-bond 

polarity. We have already commented that the 3G and 

ln orbitals contribute substantially to the force constant. 

Furthermore, upon loss of an electron from the ln orbital, 

there is an increase in bond length by about 10% and a 

concomitant decrease in the force constant by about 48%~ 77 > 

Inasmuch as 'the l'JT orbital is higher in energy than the 

3cr orbital, it will be more easily perturbed by different 

environrnentso Thus, changes in the ''JT-bond density will 

affect the force constant of the C=O group appreciably. 

As the bonoing occurs principally .via donation of the 

Scr electrons,diffusely dis~osed to some extend behind the 

C nucleus, there arises the question what effect the 

bonding of these will .have on the force constant. Stretching 

of the carbonyl group is usually described as an electron­

(229) .demanding process , 1.e .. transfer o~ charge into the 

C=O bondo On this basis, it is possible to explain the 

larger band intensities observed in metal carbonyls as 
. . 

compared to the intensities for the carbonyl group in organic 

molecules and even CO i tse·lf.. Increased metal size and 

increased negative charge via substitution on the metal 
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enhances the carbonyl intensities. This can be explained 

if one assumes the sa density bonded behind the C nucleus 

relaxes in the same fashion as we discus~ed previously in 

co,where .it was found that the re~axation at C was going 

counter to the C motion or in the same direction as the 

O displacement. As this increases the force constant, 

this may well be one reas~n ~hy the carbonyl force constant 

is not too different from that in CO (2040 cm-l in Ni(C0) 4 <
94 > 

as compared to 2170 cm-l in CO). Delocalization of n 

density from CO wot.Hd have appreciably reduced the ·constant. 

In fact, our rel~xation map as discussed in section 5.9 

would seem to indicate that relaxation of density in the 

a-region ·is .larger than that in the , n-region. Thus it seems 

that the assumption of invariant O-density may be an 

oversimplification. 

5.11 Semiempirical Considerations 

There have been, in the pa~t,certain general 

approximate relationships which have been useful .in correlating 

force constants and other properties of molecules. One 

remarkable rule of diatomic molecular spectroscopy has 

been that if me is the vibrational frequency in cm -l, and 

~e the equilibrium i nternuclear distance p then one has to 

surprising accurac·y 

R 2 w = constant (5.44)e e 
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through all electronic states of one molecule< 230 >, 

Morse< 23 l) showed the relation WeR~ = const. can be derived 

from simple theoretical considerations. This last relationship 

has been shown to hold quite well for many nitrogen bonds< 232 >. 
The somewhat more accurate relation of Badger< 195 > is 

known to be much more universal. (See Eq. ( 5. 46)) • The 

first relationship (S.44) has been recently demonstrated .. 
to follow from the kinetic-energy form of the virial 

theorem by Parr and Borkman(l9 J) Other recent work ofo 

Empedocles< 199 > has also stressed the utility of the kinetic , 

energy form of the virlal theorem for understanding potential 

functions and force constants in diatomic molecules. Parr 

and Barkman have shown that the relation follows from 

treating the valence electrons in the bond region (which 

can be obtained from overl~p~population methods) as an 

electron gas, an assumption which implies that the electronic 

kinetic energy is of the form T (R) ·= To + T2/R2 • The force 

constant then follows from the virial relationship 

·k2 = -1/Re (dT/dR)R = -2T2/R:. 
I e 

One· does not have to invoke the electron gas model 

to obtain this R~ 4 dependence .of the force constant~ An 

instructive derivation is the following. The force equation 

is 
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In scaled coordinates such as elliptical coordinates, one 

has 

where rw = r/R and is thus made independent of R (see 

Chapter III}. Differentiating again, one obtains 

.. <wlw> d2E = <1'J(R,r'} 16T(l,r'} + 2vc1,r') lw<R,r'Y> 
dR2 · ·R4 R3 

-<~ (R,r'} 12T(l,r')- + vc1~r'} ltiJCR,r'}> +3N<wla"lw> 
()R R3 R R aR 

The last term arises from the explicit dependence of the 

volume on R: 

= /dp(R,r'} dT +. 3RN/p dT
dR 

But since <aHiaR> = 0 at Re, and from the virial theorem 

-2<T(l,r'}> <V(l,r')>
R1 = R. 

(see Eq. (4.16}, (4.17}, we can summarize the force constant 

expression 

k = d
2

E = 2 <''•(R r~) ITC! r') l''•(R r'}> -2 <~(R,r 9 ) l2T+Vl1'JCR,r')>
2 · 2 :-4 'f' ' ' ' 'f' ' R aRdR R · 

where all integrals are done in scaled coordinatese The first 

term is then the counterpart of the rule of Eq.(5.44)and also 
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the assumption of Parr and Borkman. There is, nevertheless, 

an extra term, a relaxation term expressed in scaled 

coordinates. For the H2 molecule, one can easily show that 

this term is -0.830, whereas ' the force constant is 1.401. 

( 2 0 7 )f 11 f h .This. o ows rom t e expression 

<$1a2H/aR2I$> = <$l6T+2VI~> = -2E 

R 2 R 2 
e e 

which are obtainable from the scaled coordinate expressions 

of T and V and use of the virial theorem -2<T> = <V> and 

E = T + V. For. N2 , one can calculate the above expression 

to be of the order of 50. Hence, extensive cancellation 

via the relaxation term must occur in order to reproduce. 

the force constant value of 1.417 for N2 . The electron gas 

model therefore does not follow easily from this rigorons 

derivation of the force constant expression, as it is 

difficult again to evaluate the relaxation term. 

The force constants, which we have calculated by 

co~sidering the charge densities and electropositive forces 

from these, include implicitly the very important effect 

of relaxation. The question then arises whether there are 

any regularities in the nwnerical values obtained which 
I 

would seem to indicate the existence of some semiempirical 

relationship. If one averages the shielding and relaxation 

contributions, one can obtain .a correlative expression for 

the force constants. Let us define 
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The first expression represents an average . shielding contri­

bution for the whole molecule and M represents the average 

relaxation effect. .The force constant can then be defined 

2z'z 1 

as A B m (5.45) 
R3 

where m now takes the fo+m m = 1-M/Z~Z~. 


This expression has close resemblance to Badger's rule which 


relates the fore& constant to the bond length in the fashion: 


-3
k = 1 . 8 6 ( Re - d . . ) (5. 46) 2 lJ 

where dij is fixed for bonds between atoms from rows i and 

j of the periodic table, but is not so appropriate for 

isoelectronics. The values of z' z' 
A B 

and m are for the 

molecules as follows 

N2 co BF BeO LiF 

z' z' 20.195 15.531 12.363 8.612 4.100
A B 

m 0.329 0.458 0.306 0.562 0.580 

k2 (calc) 1. 503 1.493 0.553 0.639 0.191 

k2(exptl)l.417 1.222 0.519 0.483 0.165 

The slight anomaly for CO is a result of the p redicted 

force constant being higher than the experimental value. 
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Using the experimental k 2 , m becomes 0.375, which is more 

in line with the values of N2 and BF. A slightly larger 

z~Z~ would also improve the correlation. The force constant 

for C2 is 0.782. Whether this molecule would have a similar 

m as BeO and LiF, its isoelectronic analogues, cannot be 

answered definitely. The low value of the force constant 

and the change in bond type, p· character at both ends of 

the molecule, may invalidate any possible correlation. 

Aside from this, the interesting observation is that a 

' ' 3plot of k2 vs. 2ZAZB~R would be predicted to be nearly 

linear and probably going through the origin, corresponding 

to k2 and z~z~ being zero. From the Hellmann-Feynman 

viewpoint, for extremely ionic molecules, one has under-

shielding at one nucleus arid overshielding at the other, 

so that these two effects cancel in the averaging procedure, 

tending to make ZiZ~ apptoach zero or negative values. If 

one assumes the main shielding comes from the core electrons 

only, then z~z~ is for N2 : 25; CO: 24; BF: 21; BeO: 12; 

LiF: 7. AJl these values are much larger than those 

reported abovey so that it is evident that some shi~lding 

does occur ·by ·the valence electronsD · Using these higher 

9 g I . (201)
ZAZB valuesv Murrell obtained a straight line, for 

the above plot, which did not go through the origin& It 

is perhaps not too irrelevant to point out that the last 

members of these two isoelectronic series are the rare 
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.gas diatoms ' BeNe and HeNe. These hypothetical molecules 

represent a discontinuous change in bonding because of 

the high stability of closed shells, and could be considered 

to have zero force constants or nearly so as their inter­

actions are of van der Waals type. One can expect, there­

fore, for these the shielding to be nearly complete, in 

accord with the existence of a zero on the correlation 
•. 

line. The ob]ection of including these into the correlation 

scheme is of course the ambiguity in defining force constants 

for such molecules. 

It is to be emphasized that the correlation can only 

be appro~imate as warranted by the ad hoc averaging of the 

various contributions at both nuclei. A rigorous correlation 

between any parameters and k 2 is difficult to justify a 

priori. The above correlation will have to be tested for 

more molecular series to see whether it is real and not 

artificial. The question of c2 fitting into the group BeO 

and LiF will have to be answered by calculations as out~ 

lined in the previous sections. At the present writing, 

the exaot physical meaning of the ne~r constancy of ~ 

in isoelectronic groups is not easily understood. Never­

theless, the regularities reflect the extent to which the 

repulsive forces between the nuclei of the bonded atoms 

are reduced by electronic shielding and electronic relaxation · 

effects. 
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5.12 On Force Constant Models 

The total electronic forces F~, which at equilibrium 

necessarily equal ZB' are in contrast to the total electronic 

force constant K~ which must be less than ZB in magnitude 

2ZA esince k2=R3 (ZB-KA) must be greater than zero. This can be 

qualitatively understood from the general relaxation expression 

R3 
Kel · 1 3p (a,~a> cos8a dT 

A = 2 a-z'" 2­ L 

a ra 
The differentiation of the density with respect to the 

parameters (~ = ~ £.Q_ aa;) re.sults partly in radial 
aza 1 aai ()R 

excitations of the densityo For example, a ls orbital 

centered on A will become promoted to a 2s orbital after 

the differentiation, as discussed in section 5.4. This 

removes charge farther away from · nuc~eus A and thus reduces 

the shielding because of the geometrical nature of the force 

operator, which preferentially weighs densities close to 

the nucleus. As one goes to higher .derivatives and thus 

higher order constants, the decrease in shielding becomes 

larger as noted by Hershba·ch and Laurie Cl 9 G) . (Shielding is 

defined by a positive K~ which thus r~duces the force 

constant) . This simple explanation is not the complete 

story as this does. not take into account explicit variation 

of those parameters which are not necessarily scale para­

meters but account . for changes in polarizations, charge 
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a)transfer, etc. • Radial excitations, which correspond 

to scaling and thus c~anges in the molecular geometry 

similar to "breathing" modes, present an attractive approach 

as pursued "Y Empedocles< 199 >. This permits one to easily 

calculate changes in the kinetic energy upon scale change, 

and then via the virial theorem, one can obtain the force 

206constant. However, as Schwendeman < > has pointed out, .. 
the 	decrease in electronic shielding with higher derivatives 

is slow.. This can be attributed to inner shell electrons 

which move rigidly with the nuclei during vibrations and 

provide a perfect partial shield for the nuclear repulsions. 

In addition to scale changes, changes in polarization will 

also occur. The total effects can best be ascertained from 

an analysis of how the forces in a molecule change upon 

vibration~ These then include scale changes, polariz~tions 

and other relaxation effects.. We have already seen how 

densities (in CO and BF) which are diffusely disposed behind 

nuclei indicate large relaxation effects which oppose the 

nuclear motion and therefore are an antishielding or enhancing 

contribution to ther fbrce constant. Thus, the problem of 

whether one should include "lone pairs" in P as spherical 

shells or whether they are sufficiently polarized so as to 

a) 	 Footnote: The distinction between scale changes and 
polarization changes is unreal. The gross effect is a 
scale change, i.e., either a net contraction or a net 
expansion of the total density. In terms of forces, it 
is the detailed d~spositiort of the the charge which is 
important. Therefore, polarization changes and charge 
transfer effects are a more detailed description than 
scale changes .. 
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warrant their exclusion from the electron density as for 

inner shells< 233 >, can onli be solved by including explicit 

relaxation of these densities via a change in polarization. 

On reexamining the various con.tributions to the 

force constant in the LiF molecule, it is evident the 

ionic model of two polarizable charge spheres is relevant 

to the discussion of this molecule. The small overlap.. 
contribution at Li to the force constant supports the 

view of this molecule being two separate charge densities. 

This point is further accentuated by the fact that the 

overlap force constant contribution at F can be considered, 

just as in the forces, to be part of the F density as seen 

from the relaxation maps. This same conclusion was drawn 

earlier from the 6p map for LiF. On the other hand, the 

ionic polarization mechanisms, which are a result o·f the 

detailed quantum mechanical calculation,show features which 

are somewhat different from the usual assumptions of 

polarizable ions. One interesting feature is that the F 

nucleus is . negligibly overshielded (Ki1B) + Ki~B)= 9.18, 

see Table (5.3)) , . and thus most of the force constant 

at Li comes from the restoration of charge in front of Lio 

In Beb, KB(AB) + KB(BB)= 8.82, so that the density at the 
e e . 

O nucleus does not behave as a predicted shielding population 

. B ++ = o f lo . 00 , 1.e., e O The undershielding can be traced 

largely to the behaviour of the p~ electrons situated at 



the heavy nuclei. As one goes from the forces to field 

gradients, it has been noted previously that the n-densities 

exhibit enhanced undershieldirig by virtue of the nature of 

the operators involved. As much of the force constant 

contribution at Li from n-electrons at F comes as a field 

gradient contribution, the undershielding in the force 

constant by this density is thus understandable. One can, 

therefore, see that predictions of the force constant from 

. + ­the ionic model based on two polarizable spheres Li and F 

will be in difficulty if this· undershielding is not taken 

into account. This same difficulty appeared in the 

interpretation of ~uadrupole coupling constants based on 

such a model. Force cons.tants determined from the polarizable 

spheres model( 82 ) show agreement with observed spectroscopic 

234constants< > when only dipole polarizabilities are used. 

The introduction of quadrupolar and higher polarizabilities 

results in a polarization catas.trophe in the standard ionic 

theory, in addition to destroying the original agreement. 

Recent improvements1 such as the inclusion of deformation 

235dipole potentials< >via the use of short-range polarizations 

in order to maintain induced dipoles small, reintroduce 

agreement with experimental constants but still do not 

completely eliminate the polarization catastropheo 

This dipole deformation model is basically equivalent 

to the shell model of solid state physics which gives 
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rather accurate account of the phonon dispersion curves 

in the alkali halides with physical reasonable values 

of the parameters( 236 ). The physical idea behind the 

. (237)
shell model is that in an ion, those electrons far 

from the nucleus, being less tightly bound are more pro­

foundly affected by the application of an electric field 

' than the inner electrons. This intuitive view is supported 

by the work of Sternheimer(lSO) who showed that the 

polarizabilities of rare-gas configuration ions are due 

almost entirely to the outermost shells. Accordingly, 

the shell model incorporates these qualitative features. 

It is thus assumed that under the field of neighbouring ions, 

the shell retains its spherical charge distribution (because 

of the cubic symmetry of the alkali halide crystals so that 

one has no net forces and field gradients at equilibrium< 238 ~, 

but moves with respect to the core·. The resulting polari za­

bility is kept finite by a harmonic restoring force between .... . 

the core and the shell, thus also taking partly into account 

the repulsive effect bet~een adjacent shells. In terms of 

our previous discussion, this corresponds to complete non-

following of the nuclei by the valence electronso Our 

relaxation maps suggest that this phenomenon, which would. 
have been expected to be largest at F due to the weak 

binding of valence electrons in F-, is probably exaggerated 

by the shell model. It is true that there are more Li+ near 



290 


neighbours to contend with. On the other hand, the inter­

nuclear distance in the LiF crystal is now 3.81 a.u. as 

compared to 2. 96 a. u. in the molecule, so that electrostati.c 

effects are partially decreased. In view of the high 

symmetry of the lattice·, we may surmise that relaxations 

will remain symmetrical about the fluorine ion and the 

force constant contribution at F will approach the field 

gradient produced by the Li+ ion. At Li, x-ray crystal­

lography indicates the density aobut this nucleus to be 

(100)·unsymmetric,al . , increasing in regions away from the 

nuclei.. This is in .accord with our ~P map for LiF where 

polarization behind the Li core is evident. It is to be 

expected · that relaxation effects of this core density wil·l 

be again dominant, since in moving away from one F ion, 

there will be shell repulsion from the other ions · behind it~ 

thus helping the charge accumulation in the internuclear 

region in front of it. The undershielding by the F- density 

is to be expected again although somewhat less. In the 

case of solid BeO, the undershielding of the O nucleus by 

the density centered on it is more serious.. The introduction 

of effective charges less than the ionic charges at the heavy 

nuclei would seem to be a promising improvement.. Such an 

239
effective charge has been introduced previously by Szigeti< > 

in order to include electronic polarizability along with 

lattice displacements. For ~iF, ' the effective or Szigeti charge 
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is 0.83. This is an average of the charges at both ions, 

positive and negative. The large undershieldings of 

de·nsities at F and O indicate that the effective charges 

should be still smaller than the usual Szigeti charges. 
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VI. SUMMARY AND CONCLUSION 

All knowledge is based on a measure of personal 
participation. Michael Polanyi 

The formation of a molecule is intimately connnected 

with a change in the electron distribution. The binding 

energy is only a small part of the total electronic energy 

· 	(~1% for N~) . One would therefore predict that the 

formation of a molecule is the result of small perturbations 

on the atoms -concerned. One might, furthermore, expect that 

the change in the electron distribution on formation of a 

molecule will also be small and one might hope that such 

changes would by and large pe restricted to those regions 

where the interaction was strongest; that is in the regions 

between those atoms where the traditional chemical bonds 

are supposed to be localized. An appreciation of these 

effects is best ascertained from the density map (p) and 

density difference maps (6p) of moleculeso In particular, 

with the advent of Hartree-Fock calculations from which one 

can obtain accurate wavefunctions ., a study based on a density 

approach has been pursued in this worko The existence of a 

theorem (Brillouin~s) which puts bounds on the accuracy 

of one-electron properties calculated from these densities 



293 

renders this approach advantageous and makes possible a 


classical electrostatic interpretation based on the 


Hellmann-Feynman theorem. 


In ~iew of Brillouin's theorem, Hartree-Fock 

densities approach exact densities. These reveal signifi­

cant features, particularly anisotropies of atoms in 

molecular environments. From the total density (p) one 

can define molecular diameters corresponding to a cutoff 

contour of 0.002 a.u. These diameters are in agreement 

with empirical molecular sizes. Determination of atomic 

radii in the nonbonded regions of the molecule, i.e. behind 

the nuclei, and comparison of these with the atomic radii 

. of free atoms and ions give information on tightness of 

binding in the molecule as compared to the molecule. In 

the series N2 , co, BF it is found that electron density is 

very diffuse behind C anq B. For CO this is in accord 

with its electron donor properties as examplified by the 

existence of many carbonyl compounds. As the density 

behind the ~ nucleus is more diffuse than behind C, one 

is tempted to suggest that BF should be a still more 

potent electron donor. In view of the tendency of the 

B atom towards triple coordination, the existence of BF 

molecules doubly bridged to metal atoms via two B-metal 

bonds should be possiblee Thus, another class of compounds 

similar to metal-carbonyls would be an interesting experi­
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mental possibility. In the 12-electron series C2 1 BeO, LiF, 

the densities are much more tightly bound at the electro­

posi~ive elements, as a result of cbarge transferred to 

the other end of the molecule. The density di·fference 

maps (~p) depict the rearrangement of the molecular density 

and thus provide one with a picture of the bond density. 

In the series N2, co, BF, . the bulk of binding is due to .. 
increased concentration of density in the internuclear 

region. Accumulation in the bond goes hand in hand with 

depopulation at the nuclei. Charge increase also occurs 

behind the nuclei. In the group BeO, LiF, there is 

ex;tensive charge removal in regiona behind the light nuclei 

and relocation of this density at the electronegative 

site in the molecule. This behaviour is characteristic of 

ionic bonding. The accumulation of density in the bonding 

region, which is equally shared in N2 but more polarized 

towards F in BF, is characteristic of covalent bonding, 

BF being indicative of a gr~ual transition between these 

two types of bonding. 

One can further partition the electron space via 

weight factors in order to correlate characteristics of the 

densities of different moleculeso In particular, by the 

use of the Hellmann-Feynman theorem, a comparison of the 

contributions to the total force,from charge density in 

different spatial regions of the molecule, demonstrates the 
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manner in which a state of electrostatic equilibrium is 

reached is characteristic of the binding found in each 

of these molecules. The general nature 
'-

of the variation 

in the spatial distribution of the charge density through 

these two series of molecules is evident from p and ~P 

maps. A comparison of the force components with the 

limiting components of separated atoms accentuates the 

mechanism by which electrostatic equilibrium is attained 

in the molecule as opposed to the separated atoms. The 

comparison thus isolates those changes in the atomic 

distributions which are responsible for binding the nuclei 

in the molecule. From the force analysis, there emerge 

distinctive characteristics of covalent and ionic densities. 

In the covalent case, there is ~ndershielding of the nuclei 

and the binding comes essentially from the shared overlap 

charge density. In the ionic case, there is overshielding 

of the heavy nucleus and charge depletion at the light 

nucleus. Using contribution~ to the forces based on a 

partitioning of the charge in the manner indicated by the 

6p diagrams, it is possible to approach the classical 

model of two ·polarizable ions Li+,F- for LiF. BeO is thus 

found to be intermediate between Be+O- and Be++o=. 

Along with the ~P maps, profiles of the density 

difference on the bond axis indicate increased concentration 

of density near nuclear positions. This "clustering" of 
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density occurs for atoms which have p electrons taking 

part in the bonding. It is, therefore, to be expected 

that any property which se~sitively depends upon the 

electron density ~ear the nucleus will exhibit a characteristic 

change when the atom is incorporated in a molecule. Hence, 

theoretical calculations of such properties should be based 

on molecular wavefunctions which properly describe the .. 
contractive effect. One molecular property strongly 

influenced by this effect is the field gradient at a nucleus, 

giving rise to nuclear quadrup~le interactions. This 

interaction is simple as it is obtained from first order 

perturbation theory and thus gives dir~ct information on the 

charge distribution in the ground state. The analysis of 

the field gradient contributions in the molecules LiF and 

BeO indicate that the Sternheimer antishielding model, which 

is the result of trying to extend the point charge model, 

predicts field gradients ~f incorrect sign at the heavy 

nuclei. The cause of this disagreement · is the different 

polarizations of pcr and p'lT electrons at the negative ion, 

arising from the quantum mechanical effects of bonding. 

At the positive ion, field gradients are less than pre­

dieted by the Sternheimer theory as a result of the under-

shielding of ~ density situated at the negative ion. The 

undershielding occurs from polarization effects and the 

geometrical nature of '1T densities.. Similarly, analysis of 
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field gradients in N2 , co, BF indicate that the Townes-

Dailey theory used in the interpretation of nuclear 

quadrupole constants in covalent molecules, must be viewed 

with caution as a result of independent cr and n polarizations. 

These polarizations (quadrupole) strongly depend on the 

rearrangement of charge which occurs in bond formation, an 

'effect displayed by the ~P maps. 

This 'cautionary tale' regarding the interpretation 

of experimental data in terms ·of simple models is further 

pursued in a calculation and analysis of force constants. By 

differentiating the Hellmann-Feynman force, one obtains an 

interpretive expression for the force constant. It has 

neen shown in this work that much of the static part of the 

expression, namely field gradient contributions, cancel 

out with relaxation contributions if the density is expressed 

in space fixed coordinates, i.e., the Hellmann-Feynman 

procedure. By expanding the total density onto one nucleus 

(A) , and calculating the change in forces at that nucleus 

as it undergoes a virtua~ displacement, the force constant 

is then the result of relaxation of the densityg ioeev a 

dynamic effecte Contributions from density centered on 

nucleus · (B) can be separated out rigorously as a field 

gradient and the remaining atomic and overlap densities at 

A are viewed as purely relaxation phenomenae This relaxation 

is depicted in terms of relaxation diagrams which are 
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, 
correlated . to the magnitude of the contri­

butions from the atomic and overlap densities. All force 

constant contributions are calculated from polynomial fits 

of the corresponding forces. As in the forces and ~P 

diagrams, covalent and ionic densities exhibit contrasting 

characteristics in their force constant contributions. The 

covalent molecules as examplif ied by N2 demonstrate the 

importance of overlap density relaxations which facilitate 

nuclear motion. These override atomic contributions which 

impede nuclear displacements by the flow of charge back into 

the bonding regions from nonbonded regions, i.e., behind the 

nuclei. The observation made is that densities situated 

diffusely behind a nucleus exh~bit large relaxation effects 

countering nuclear motion, as such densities do not follow 

nuclei with which they are associated~ Thusg at B in BF, 

atomic relaxation overrides overlap r~laxation, the net 

' 
effect being a hinderance of nuclear motion. Densities situated 

at heavy nuclei follow these nuclei more completely, as a 

result of larger nuclear electrostatic fieldso In the ionic 

molecules - LiF being most representative of this type of 

bonding. - much of the force constant contribution at the 

light' nucleus (Li) co{lles from re .laxation of the Li+ density 

in the direction opposite to displacements of the Li nucleus~ 

At the heavy nucleus {F) , relaxation is symmetric about that 
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nucleus, thus contributing little to the force constant. 

The main contribution at F then arises from the field 

gradient produced by Li+. .of significance is the sub­

stantial undershielding of the heavy nucleus by density 

situated there. This effect is more severe in BeO, where, 

as a result, the representation of this molecule as Be++o= 

is rendered. questionable... . 

In conclusion·, we would like to remark on the 

appropriateness· of the use of a classical approach to 

chemical binding as we have pursued. A theorem of M~ller( 256 ) 

states that classical point particles may not have any 

spin. On the other hand, quantum mechanical particles are 

defined in terms of rather abstract p~operties of the linear 

manifold of their physical states. Such definitions 

accommodate the notion of spinning particles very naturally. 

In view of the theorem due to Hohenberg and Kohn< 25 >, if we 

know the 3-dimensional charge density p(r) of a specified 

state of a molecule, however complicated it may be, then we 

have all the information that we need to answer any question 

about any spin~independent propertyo The usefulness of the 

257density approach is ·amplified by recent experiments < > from 

which it appears that the over-all electron configuration 

of a molecule is more important in determining its reactivity 

than the finer details such as spin or orbital angular momentumo 

The use of the Hellmann-Feynman theorem makes possible, therefore, 
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a classical electrostatic interpretation of these densities. 

From such interpretation, it becomes evident that exact 

calculations reveal significant features, particularly 

anisotropies of atoms in molecular environments. These 

features exert a strong influence on calculated molecular 

properties. The moral of our story, then, is that detailed 

calculation will often reveal important effects that simple 

models rule out in advance. One wonders whether we may 

one day be able to abandon all models - just store all our 

machine-recorded calculations based on fundamental laws and 

when needed, extract the specific information from memory 

tapes! 

·~ · 
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APPENDIX l 

Hartree-Fock Theory(240) 

In a n exact Hartree-Fock calculation, the single par ~i cl 6 

states are determined by a variational calculation whe re ~ he ir 

wavefunctions are subject to an unrestricted variation, ard 2 rs 

called unrestricted (UHF) Hartree-Fock wavefunctions. Suc h ... 

program is very complicated and is not usually carried out. 

expanding the unknown single particle states in a c omplete 

basis, the Hartree-Fock equations become an infin i te set of nc n­

; in ear equations in the expansion coefficients. Up on 1 i n-. _ i ng 


the expansion to a finite number of terms, one solves th ~~ 


; ! ~ ear secular equation using an iteration proceaure~ 4 7) 


n umbe r o f t e rm s i s l a r ge , a s i t s h o u 1d be f o r a g o o d a p p r ~ · 


r t on, the problem is still considerable. 


The Hartree-Fock equations are simplified by imposi . 

~ ymmetries on the Hartree-Fock potential, usually rotatio r 

; nversion symmetry. The e qua t i on s thus become a set. of i .-. . ·":': c: ;· ~: ·­

differential equations which determine the radia l par t o f 

wave f u nc t i on s ) the an g u 1a r - s p'i n pa r t be i n g ce t e rm 1 n e cl f r ( t · · . ~· 

imposed symmetry . Th e s e a re t he n ca l 1e d re s t r i ;:.t t:.. i.; : ~ a r t ;" •; •: 

Fo c k wa ve f u n c t i o n s ( RHF) , o r mo re a pp r o p r i a t e 1y ) s y mm e t r ·;; 

restricted functions~ 2 4l) The Hartree-Fock equa ti ons hav ~ 

g e ne r a 1 ve r y ma n y s o 1u t i on s , s i n c e t h e y c o n s t i t u t e o n 1y a ,·: . 

7sary condit ~ n for the minimization of t he ene rg y . im posin g 

symmetry cond i tions means that one restricts onesel f : o a pa r ~ 
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of the possible solutions, namely those which have the . given 

symmetry. The lowest energy minimum may not be contained in 

! ., 1, 2 \ /par~:._, T ;i i s ts the price to pay for r:.he simplification 

.~ f t h e p· r o b 1 e m ., 

The bas i c Ham i l ton i an of the s yQs t em of N pa r t i ::: ·1es ·v,i i ! 1 

~~ written H = T + V, where T is the kinetic energy, anG V is 

a two-body interaction. Choosing N orthonormal functions 

cp ,. ·•• cpN (which are elements of the one-particle Hilbert spac~ 

denoted by )i ) , one can con s t r u ct an ope rat o r h (act i n g i n j) ) 

defined by its matrix elements between any two states ja.>and 

Is> of }.!- (these states. are · antisymmetric p r oducts of the !j> 1 s) 

M 
<a. I h ..: s> - <a.IT + w1 s> = <a.l T Is> + r. <a.<1> .. iv is · ~ i :~ > A 1 • l 

1 1 1 ::1 . I . I <t· i 

i s ea s i 1y sh own ( 47) that his invariant under any uni ·car·,, 

·c ". ans for r.1 at i on of the fun ct i on cp i so that i t ·j s c et e rm i n e .. ~ L ·· 1 

~h e N-dimensiona1 subspace spanned by these functions. 

sp ace wi I 1 be de.noted by {<P} and · the corresponding ope r ators by 

n ·'" cp } a n d W{ cp } • 

The Ha rt re e - F o ck Ham i 1 ton i an h and the Ha i · t re e - F o ck 

p o tential W are defined as operators of the above s:ructure ~~ t 

w h e r e t h e cp i a· s a r e t h e -N · l owe s t e n e r g y s o 1 u t i o n s o f t h e e i g e n v c. i ..; :.:. 

problem 

h { 1J;} \jJ. [ T +W { W} ] 1Jl i = c: i 1Jl i 
I 

The equatlor. s -:·or (i = l,N) are called tile Hartrec~Fock equatio n s . 

Their solut~ons are denoted by 1J;i, ••• ~N and the space spanne d b y 
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these functions is labelled {ljJ}. The Hartree-Fock Hamiltonian 

h{ljJ} is usually constructed by an iterative procedure. Starting 

v.dt h N orthogonal functions {cp( 1
)}, one constructs h{cp( 1 )} ac-

d . A(l l) d f" d . . 1 ( 2 ) d . f .·,or 1ng to . an · 1n s 1ts e1genva ue Ei an e1gen unctions 

( 2)
0: • From the N functions of lowest energy (more functions 
' : 

can be ob ta i n'ed than N 	 if the basis set is 1a rge r than N) one 

2 
constructs another h{cp( )} and repeats the previous procedure 

unti 1 consistency is achieved. The eigenfunctions l/Ji of the 

final, self-consistent operator h{ljJ} form a complete set of 

functions inJ+ and are called Hartree-Fock orbitals. The N 

functions of lowest energy are referred to as occupied orbitals. 

Now let the states IS> d i ff er fr om ) c > by rep ! a c i n g the 

f u ri Ct I 0l1 S w 1 S <N1' b y cp ~ ~ <>> N ) one at a time, ! . e.,. we are con­' s \ -­

siderin g only s:ngle excitations. Then one c.:an easily sh o v. hat 

ti .e change in energy to first order is(243) 

~ 2 4 ~; 

6E 

Fo.~ min i mum er.ergy, this first order variation whic h is tl'H: mos :: 

irn i:>ortan t, imp .I les in view of the Hermitian prope rt y of the 

!iam i lton 1an 

A ., Lr.0 ' . ' 

This ·is prec i seiy Bri 1louin 1 s theorem for the erergies. 

c, f the orbita ~ s, <Pf corresponds to arb i ·crary va ri ations Stµi i n 

f i rst order. These va r i ations must vanis h for A(l.4) to hold" 

This con d .tion ls the n che usual differe nti a ·1 ~ c: ua tion for self­

c onsistent wavef u nc ti ons as obtained from a va ( ia tio nal pr o cedure 
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An immediate consequence of this is that in first order 

perturbation theory, the states /fi)must be doubly substituted 

/3 
6(!

determinants I s~) where the occupied orbitals s and tare 

r ep laced by t he excited orbitals o and c respect i ve i y. It 

f ol low s fro m t his t ha t t h~ mean value of any on e -e le c t ron 

I 
o ·c 

ope ra t or F, which has no matrix elements/...«- . F j·/3st> f o r an y o 
an d V , differs from the Hartree-Fock value by second-orde r 

t e rm s on 1y , q u a d r a t i c i n t h e co e f f i c i e n t s Cf: o f t h e s t a t e s 

estimated for the first-order wavefunction. This is the 

counterpart of Brillouin' s t heorem for one-e l ectron operato r s . 

This result applies or.ly to UHF calculat i on5- . 

T h e He I 1 rn a n n - Fe y n m a n t h e o r em f o 1 1 ow s b y d i f f e r e n t i a t i n.g 

the ex p ression for the energy 

E = "- ()( j· Tl .... > +<:ex. t v/ r:f-. / = L~ j H Io<. > 
s o tha-c 

F N = - .v f. N = - < 0( I \7N H Io<.> - z < 'V,.., o<. I T f o< > - 2 .(, "V'N <>( i v f «> 

NowvNl ·o<.> can be expanded in terms of the comp l e t e s e t o f Ha rtre e­

f ock s t ates },B> where lfl> differs from f o<.> by o nl y o n e o rbita i 

«Nhich because o f the antisymmetric property o f ! o<. >m ay n o t b e an 

~H bital a l ready in /CL). The expansion is expressib l e i n t e r~s 

0 f states which conta i n only one orbita l di ff e r ent from those in 

; o<,,)> as\7N is a one-e l ectron operator . We then have, using t h e 

Hermit i an prope r ties o f T and V, 

F ::: - <.. O{ l ~ H 1'o1.. > - 2. Z [<.\)(.I T I /3 > + < <.><:. J V J b >J 
"' ·'; B i11v 

where the sum ov er f3, excludes ot. since the s tat e V N i o(>is ortho ·· 

normal to lo<..> f rom t ~1 e normalization cor.di :: ion v NL.. o<. lot../= 0. We 
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can rewrite the last bracketed term as a one-electron operator 

by averaging V over the orbitals which are the same in /cX..) and 

1/3 >, as in A(l.l), i.e., 

where now the sum goes only to N - 1, as a result of one orbitai 

being different in lf'>. However, the bracketed term is formally 

identical to A(l.1) since in that equation the sum includes a 

self-energy term which is identically zero, corresponding to the 

i n t e r a c t i on o f t h e o r b i t a 1 ~L w i t h i t s e l f • Th e re f o re t h e co r ­

rection term to the classical expression for the force is the 

matrix elements2: Zo<.... f hi~)which, by virtue of t he self-consistent 
t.f "'­

orbit a 1s obeying equation A(l.2), must vanish. The final result 

is then the Hellmann-Feynman theorem for Hartree-Fock w~v e -

functions: 

.1-:i 1 . 6 

vie have al ready shown in the previous paragraph that the (;.>~pe,_. t a-

t ~ on value 
1 

of FN is correct to second order , asVNH i s a on.;­

c.lectron operator in the Hellmann-Feynman formulation (se..; E; chapte r 

two) • This also includes the case of electron densities , whic h 

are defined by the one electron operator6(r), i.e., the de1~a 

function at the point r in space. 

In this thesis, we are dealing, with molecules in the \:- grou ··id 

state, the symmetry of which is ''Z~ and furthermore these are 

closed she1 l systems. For such systems, the RHf method is in tE:r ··· 

nal ly consistent with the UHF equations. A HF wavefunction s hcu id 

transform in the manner of an exact energy eigens t ate. 0 p e r. s h e ·i ·: 
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systems with degenerate ground states do not have this property 

and t h us do not satisfy Brillouin's theorem~ 245 )specifically, 
t h e S lat er de terminant for a state containing only doubly oc­

. ' b . l • 1 f . . d . f . (246)c up1ea or 1ta 1s 1s e t 1nvar1ant un er unitary tr an s or rnat 1ons. 

A. the gr o un d sta t es considered in this present work a re made up 

o r douj l y occupied orbita l s, then their RHF wavefunc ti on s wi 1 1 
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APPENDIX 2 

Field Gradients 

The calculation of field gradients involves the average 

of the operator (3cos2e-l)/r3 over atomic, overlap and sh i elding 

di stribut i ons. These are then one-center integrals for the 

atomic densities and two-center integrals for the remaining 

den sities. The operator is singular at r=O. As all intes;rals 

are done by integrating over angular coordinates first, then a n 

u n def i n e d i n t e g r a l o cc u rs f o r s p he r i ca l l y s y mm et r i c d i s t r i b u t. i o n ~~· 

because in a vanishing small volume'<:, 

A2. 1 

Th~ s difficulty does not arise for higher orbitals, since t hese 

contribute a factor r 2 l with (,>o, and then the integral is 

absolutely convergent. To circumvent this operational diff i cu l ty , 

the integral over all space is broken up into two pa ~.. ts, ; f ro m ( 

tooe, and then 0 to c. The limit €-9-Q is performed after 

integrating over angular coordinates. For the last part we can 

express the integral as 

A2 . 2 4;1 f ( {)) 

whe re the e qua l i t y i s a res u l t of Po i s son 1 s e qua t i on \12 ( l I r) = - 4·rr b ( Q) 

By symmetry, a11 three components of the Laplacean are equal for 

a spherical distr ibu tion so that the integral is then only 1/3 of 

.he equation. The result can also be easily proven by use of 
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Green's theorem( 247 )and integrating over two surfaces, one at ro 

and the other at r =€.The result is that 

]true (3"c~:f)- I ) rt.< = 1(3c~::e-1 )dT 4: f (o) 
A2.3 

<>4_/f' 
{;,.,,;t€ ~ 0 

Th e formula~ given below are for Slater atomic orbitals of the 

f o rm(248) 

For example vo _ J_ 
lo - i/411 

A2.4 

For computational facility the normalization factor N is defined 

as 
>i +Yi.N= (20(..)' 1­ [( z )r~Y'/2.. ,J A. 2 . 5 

vvh ere c<and j3 re present differ~nt exponents for atomic orbi ·;:; a·: s with 

.q~antum numbers ~nd respectively. Angular integra l s ofn 1 n 2 

can be readily worked out from Slater's ( 249 ) tables of ck(l'm ,1:-:,.,; ' 
1 

Atomic Field Gradients 

the form 

We list only the nonzero 

A (1s, 3do) - z. tJ l {Ys 
(o<..-t-fi) 

elements. 

A(2fo1i.fo)::: 
}_§_ 
.is 

_o<.-% § % 
(o<..1/!,/ 

A (Zs, 3cu;) ~ 4 N .r-;;­
(-)3 V Is 

o( -1/3 

A (3ri6,3t1.o)= 12N (2/) 
(ex T f3 )"' 7 

A (3:;, 3ct o)-::: 12 Iv 
:-.___ __ . 

rt; A ( -4 f ~ 1tf6') ~ -~--~-! 5/) I /(0 

( o< -r.J) ~ 2ZS 
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A ( lf/:n, fix) ~ 2 N (sl) /9 
(o<..-r-1>)~ 22.5" 

A ( 2,11, t;/;;-) ::: /2 N .!JI: 
( o<...,. j3) ~ v17s­

Overlap Field Gradients 

Overlap field gradients can be reduced to the general 

inte_gral 

A2.6 

by use of the relations r asin0a= rbs in 8b, racos8a=R-rbcos~b 

(see fig • 3·Z) 0 n e then expands fun c ~ i on a 1 s of r b 3 r. d 8 b by the 

Coulson-B a rnett method: (250) 

l:.. 2. 7 

where the ::/ 1 s are products of imag i nary Besse i functions ! n+ l /2 

an d Kn+l/Z· By the substitution t=fira, L=fiR, K=°'/fi) on~ h as 

a i so 

Th us al 1 integr a ls can be reduced to the functions Z . l + ' /'Jrr. , n , 1 • .... 

which are ca l culated by iterative procedures desented by Cou l son 

and Barnett(ZSO)for the integral representat i on: 

· occasionally use of the following definition s will be made: 

Zo n. + 'l-;. = G e . ,/
I 1 hi "f"/2_ 

The general de f i n ition of an overlap field grad i e nt is then: 

A2.1:; 

A2. l 0 
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The expressions for the individual overlap elements are 1 isted 

as f o 1 lows . 

0 ( Is , I s) ::::::: %­~ [ GI, - I T ~2. - G3 - I + Vi. ] 

0 1/ 2 P, )f) = o<. ~:a 5~ /.. l V (4 u I + C, D ) I ( i;' /.1) // I 
1 '- ~ -r . 'l 5 rl, - I+ Yz. S- 13, - I + 'l"~ - ,6 /!; o, o -r /'2. 

/312 

. bfi 5/zo ( 2 s, 2? ) = o<. A 
pl.32 

°'' .)l (3 S-/i­

..f> yl 3 z:­'l­
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1Q ( I$, 3s) = .L!i_ z~,2,-?. + 1-z.. 
J3 'FF 

0(3s 1s)::: 2 t-J D .. 
1 f 2.. 0 +- 'h.

I 

(.) 2.{i 

0 ( 1s, 3clo)= 6 N [4 Z3,2,-z.,. ~ -1- 1:1. Z - 2°z · 12 Z J
2 /3 2. ff . 2 5 I , o, O-f }'2- 7 I, 2 I 0 + Yz. -r- 35 ·1, Lf, 0 -r 'l'2. 

1
2 -1- 'h.O{1$, Jf/o)= ffN[_g_ (4 Z~ 2 - 12 + 4 Z, o o-f 'Ii. - ~~ Z,, z., (; -f· 

' 2 v'C J3,_ JI 
3 

II I 

2+ 7'+ zI, 't, 0 t- \fl.)- ~3 (~ Z3, l,-I.+'/>. + '; Z3, 3, -1 -r 'h 
· i 

4 z 
' I 

4 z / + Lfo z ,... ~ °) t - 7 J J J + Yi. - 3 I I 3, J -+ 1i_ - 2-1 i . :> I I -+ 2. -:_f 

Q ( Lf f6, Is ) - fLN I [3L z -+~z +-4oz 
l ' 
,I2. J'2 /> 3 35 . I I I, I -+ ~1. 15 1, 3, I + Yi 2 J i I .5"; J -i·· 12 I 
-· 

0 (z. s .· ~ s) = 1- N Z /1
3, 2. - I +- 12.

;!J3;-;E 

o (.3s, 2s) = z N Z. 2 , 2 • o .,. 'Ii. 
~3r:c 

0 ( 2 s, 3cl o) == Vs N ['I Z?. z, -I -r 'lz.. +~ zI , o, I+ '/2 - 272'.2.l + y,_ +;~z l,'t, l • '/ ..J
· 

. 2fi 83 
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o(Lff 6, 2~) = H N [ 33'- z2. I , ... 'k -t- :; zl. 11- '/,_ + 'l;l z2., s, I +-1]z.r:ci/t j I I J ,J 1 

O/3s 3s) :::: 2 N I J. 
\I --,.- L32 0-+ z..p"JZ t I 

O( 3·s, 3d 6) = iR N [11-Z 3, 2, 0 , 11,_ + 4js Z,, o, i.+ '/.,_ - 2°Jt Z1, i, u'l2 +:~ Z1, 'f, 2. + 11J 
. zfCfif 

O( 3d.6>) = ~~'f UZ3,o, O-t '.Ii. -f ~ Z3,2, o + Y,_ + J~ Z3, '1,o + ;1,_} 

o(3s,Llfo)= V7f'J [~(4l 3,2,o•V.,_-+ 'f3l,,o,i.+K-
1:7 2 .l., u Yi. 

2 PC fJ 
1 

+ 21-f z J ) J_ (! z 1/ +/2. 2 -f lj; - ~ zi , 1 3 .,- ,1h­7 '· Lf' L. -r-2. ~ tds s 3, i, I-+ 2 ,~- 3, 3, I L 1 

- ~ z1 3, :, ~ /l + ~~ zI, 5, 3 -f [)1 )',_ 

O ( 21rr 3 s) _ _ lf3 N [ 1 Z ~ Z ]
; - - s 3 I - I -t" 

11 
+ 5- 3, 3 I - J -t 'lz._ f"L.fi 3.f7C ' I 

0(3dc 3d6)= 5N riz , -+ 1. 7 /J N'-I z 1 
I 4 L S' 3 0 0 -r y2.. 7 L.. ~I 2, 0 I fl. 1 3s- )/ If, 0 ·+ 2.4f3 ifii ' ' -, 

..g- z /U.d 7 I If> z· -+ - z · /Lf 4- , y 2. f 1)... -+ _,7 L , 2.. ..,. ~ ,-: 7 I, o, ~ + 'IL 7 I, 2, L T Ii - 71 , ' 77 . I' I ~J 

10 (3d6 tf t)= Vis:/\/ [ R ( 4 z ~ z 72 z 11 )I 
. V:C- fZ"l- S 1,o,o-t %.. +- 7 1, 2, o -t Yl + 3~- 1, '-f,o -t- ll.·2 'C ~ 

LJ sz g7 1)7- L ( _J z 11 -+ s I 3 I t vl- -r 7 L I 5 ( -t Yi. Ja. 3 3~ I I I -t fl. I I ' •AJ J I I 
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1Q ( 2f' 0, "!> d 6) ==. If: ~u23, \-/ .,. /o. f if. z3, 3, - J + !{ +~~zI, I, I + i',_ - ~ zI, 3, I + '/-.... 

+ "8 IIz7 1,s-; 1-t-n.. 

, \ /.:"-: 
10 (3d.6,4f6J = N,p~- l R (8Z ·,1 roz 3,2.,o-fl/.:. _,.. L4-f.Z ,'./,o+Yl­

4 ~ l (;'1 ? 3,o, 0 1 t i. 7 - 3 .:> 3

+ 4o Z .. 
;;-; I O L. t 1/1­ + 
J- I J ' 

.J.. ( <g g z 
1 ,~z !iz - -!z ,- 13~ 3S" 3,i, 1+ ~/.. S -3,3, I+ 'J'l. -f ] 3,.>, 1-f ~l. 7 1, I, 3 + 'J'­

~ I ~o I I 

- 3°) L I, 3, ?:> + 11i.... - {.. 73 L. JI ~I 3 + 12... 


() / 1_1fA' 2 ,Jo) 1r:::-::.3r N I [ /)2._ z -J ')2. z Jr1 + ¥'0 ' 1 - I ' l;
\. 7 v I ;) V\ ::::. v6 ~ - L.:::; II - _:> 3 3 J -f /: - L .3 j . ·' ' -r- / ·,_

/ ,Lf v:c- /3 ~ 3~ 3, ) I I T 0 i- I !"' I I 2. 2. J I 

o(lf f [ LJf o) _ 7 N [ .R ( 72 z + 3 2.. z , -+ :t2 2 :; ,. .... ,,., ., 
I -

! 

. ~ f3 5- 3S" ~ I I I I, -r '12- 15 3.. ~ J ) + '/ l. 2. I ;; I ... . . . 

- if z '' -+ 13/. zJ 3 ~ -t ;1..., - S->k1.f 9l. z;,~, 3 -t ~-;.. t'f,~ l , , ·! ,3 ·: /..,_1 )1 JI ~ -f fl.. '1 q 1 ) .) j ·'- 3 ->JS- L 7 3 '-r ..; , 

_J... (2~ ,, z (72d 32.. ~ z . . JJ3 (.. 35" z3, 0 I 2.. -J. ~2. -f. 7 3, 2., 2. -f 'h.. -f . 77 - S ) 3, '+, L + h 

b g Lf.:; 7_ f -+- $ / !Ji_ -t q L, 1_ 36c· + I 0 z I - - 2 I IL+ /I - --=)--;; ) '-/ + 2. \ 3~ N :> ' '"1ITI 3, "I 2 -+ 'I).. 2..1 I 0 I -,- ' / l. .._ ..> I I -, "-l • ~ 

1zI 
I 

'-I, '-I f 'l). - 4i\z 'I t,., lf -t' /L. + ~4-:'1 2 I , ~ ' 4 -t- Vi.. )J 

o(iro, 4fo) __ r;; AJ_ Lr R ( ~- z -} f 12_ z 11 z Y. 2 .'.. 
- 3 1 

,
1
11 . + --S 3. \ - I -r 1h.. - 7 1 

1 
I,)-f 111- - 3 ~ 3, 1 -t '/i.. 2Y'C /33 .) 1..'I 

() z 1;4 - ·· LJ<? z40 I ..A. . ~ • I -+ - . I+ - zJ r;; I -t 'h.. )- /3 if (I { ~Io, 0 -+ 1/i.. t- 2) L 3; 2, 0 ..,.. '/2.. .3 ~ 3, 'f I 0 -t Y.l­
'2../ ' ' 

- 24-1 Z 1 ' 0 L.. -r '/-i -· 'Lo 2 1 2 i +1/"l-
J 2.1 I I 

http:1r:::-::.3r
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0 \ 2p Ji 2 01T) == 3 N _I [ - !!:_ z + 20 z 2 +' II - l.!± zI 'f 0 t-- ]I/ l/ 
, · , 2 n P2- 1 ~ , , o. o.,. 1z. 21 '· ,o 'I.. .35' , . 1i.. 

0 (Z.f Ji, 3cf. Ji)::: fu NlR (-1 Z + 2o Z - v - 2 4: 7 ' '-r c -r 'Ii.)re 6 -... 1s 1, o. a+ 'lz. 1, 2, v + 12 3s _ , .2 2 1 

I (If z ..'+ z j_ -z .. ~)J- /3 ~ ?15 I, l, I -+ Yz. + /5 l, 3 I ) -+ 12.. - 2 I ! I S, I + 2 ' 

;1 ( 'LI ,_ \ - {45 N _I [ j__ Z 11 -+- .:t_ Z 3 I f 11 -- fS 7 I S' i -r 1hjl
v J01.J1,2(JIJ_ z{-;e j)'-' 35 1,1 , r+1z 15 I, I /2. 2. 1 IL.- . 

_ 32 z + lfoO z + 5(-~ + 24 * %'_IS*' 4-<i)2ii i,0,4-t'/2 77 /,2.,'-f-r'/i_ 35 77 J'f~ J,4-,4-rf'i. 

+5(10~ 3« Gl-f )Z I - b'f() z ]
~I - 3~ I, fo, Lf + '/-i.. ~ I, 'a, Lf -t Yl. 
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o ( 41~ 3 clit)-== 115 v-;:; N [ R ( , (a z 37- 1 _ '3o ·z , ,J 

- - 11 + ~c- L t,Lf,2. + Y~ 77 ·,'7,2..+ Yi.f32. ~ ,6 4 35 l,O,l.-1- 2. v.v 


~C> z ']- 11/3 'f.i.)I, 7, 3 T 
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Shieldin g Field Gradients 

The integrals of the form 

Jr( ) { C.e>s >"Yl '{} Pi_ (Cos 9eJ (-8 ""1 .e., r-n) { ~~~ rrc. "(} <i. 0 
~ , h_f (, , hf • -f 1 l. > l. I S '-., '>'"n ._p 

I , , A St..., rr, \, /'z.. )$ 3 \... 

have been discussed by Pitze , Kern, and Lipscomb~ 154 )These 

a ut ho rs use the expansions for spherical harmonics as given by 

Hobson( 2 5l) ph"I- · 

I h ( ~S 9~) ::::: j_ .~ ( .(_ rn) /Cf f (Cos B~) 
I(, , n.-r 1 R.,, ~ fl.. -ni R'-·.,. 1 

V' .(,, Y'>1 . 

A2. I 1 
::::: (-I )"H"1o0 (l- 1"Tt) Rl D,.,.. . . 

. Rh > n-fV\ "l.. (.+-I 1i (Cos eo.) 1.f 'lq > R.
bn :(,

fh ere 's a singularity at ra=R for cases invo l ving n -m~2. For 

. t f} e f i e 1 d g r a d i e n t 0 p e r a t 0 r ' a n a d d i t i 0 n a 1 f a c t 0 r 0 f - 83ffI (R ) 

must be added to (3cos 2 
6.d -1)/r) if angular integrations are 

performed first as is the usual case. The integrals are a l ·1 

;e duc ible to the functional ~ 

G(2. o. -n. e. f) "'" ( l2-J.it o+l~r,p<-et) cLt + ( f)j;o-e-~f(-ft)clt A2. 12 

I 


w h e r e f = (c:X +- ,c<. ) , l -t > l J P /) {
1)jV !\. I + 2,. > t, / - ~ 'l,. . 1 . 

The formulae for averages over 6rbital products are t hen de fi~ec 

from 

P(-n., {, m, ; h.z. el. h?J = 2JxQ.. (Y1., e, rn,J Pi (cos e!,.) Xo...(n'l.. R.2. m"L) cl. 'C 
A2. 13 

'l ~ 
and are given by the following: 

P(t~, zs) 2N R[-t "'f (-f) + G-( 2 • 0 • :,, 0 
• f J] 

p (is, 3s) zNT([-i •"f C-f) + G ( 2. o. 4. o:f l] 

P(z,,, 2,,) = 2- NR.2. [- ~ €"f ( -f) + G- (z. o, '1 />.f)] 
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P(is,zto)== 2;: [-e/lr(--f) + G- (2,0,3, ',fl] 

P(1s 3do)- Nn 2[ f5 
' . - 2 " - 3 "''f (-f) + Js. G(z,o,4, 2,f)] 

p (2s, 4f6) = z_ NR" [- r; ~Y' (-/) -tf.r'- G- (i,o,b,3,f)] 

-p (3s, 2p 6) = 2;;3 l-exf ( -f) + G- ( 2, o, s' I , f)] 

P ( 3s, 3clD)= z. NR.4 
[ - '"[ .exf C-f) -t fs- G(2,o. 1,,, i.., fU 

P (3s, 4 fo) = z NRs [ -V: ""'f (-f) + {? (;. [ 2 ,0, 7, ~,f)J 
4f ( 21'~ . 2 f> 6)=. 2 Nr< 2 

[ -.exr C-f) + G;( z,o, '+,o,f)+ t G- ( i.,o, · • .p)J 

? (2p6, 3cl0):::: zNR0 [--~ '-"<f(-f) +{f;G(1-,o, s , l,p) + V::s G(<_o,S,3 ,1')J 

,<')- INRtt f _G .Qxf(-o)+ J21G-Ci.o 0 ~) +{Ji.G-(2.0,&,4-, p)7 f c, 4 v - t... L . T , , , , r , _JP ( 2 3 ,45f
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t- if o ·oo c G ( 2, o, '15, b' f )7
73/o, J~J.f 1 

1' ( 2f11, z. f1r) = ztJ R' [ G{.,_ ,o, '-1. o. f) - ~ G ( 2., o, '+, 2. , f) ] 

? (2f11, u+= zNR3 [/,~ G ( 2,0,s. ''f) - {;£ G l 2, o. 5", 3, f}] 

P(2p»,4f7i)=ZNR4 [if!rsG-(2,o,r.,2,1> - ~ &l2,o,G,,l./,fl] 



N2 
---·--- -­ ---·--··---~ 

R 
1.85 log 10µ 2og 20µ 

-­-------­---­- ·• 

3og lnµ T 
----· - ·-

A .00577 -.00259 .67835 .62151 2.21187 -1.94934 1.56557 
0 .·007284 -.001301 .55766 -.01264 .36402 - .14164 .77338 
s .31576 .31468 .28097 .07953. ' .16833 .198334 1.35760 
T .32881 .31079 1.51698 .68840 2.72886 -1.89265 3.69655 

1. 95 
A .004 4 0 -.00284 e59816 .55888 2.18759 -1.91545 1.43074 
0 .004282 .00020 -.00060 .33217 - .12176 .69946 
s .26966 .26879 .24537 .07927 .15154 .18194 1.19657 
T .278342 .26615 1.32870 .63755 2.65594 -1.85527 3.32677 

2.0132 
A .00168 -.00284 . 554 l 9 .533326 2.18105 -1.89 40 3 1.37338 
0 .00310 .000644 .44645 -.00378 .30341 - .11134 .63848 
s .24508 .24434 .22496 .075126 .14319 .'171675 1.10438 
T .24986 .24214 l.~2560 .60467 2.62765 -1. 8'3369 5 3.11623 

2.05 
A .00333 -.00280 .52557 .51568 2.17161 -1.88919 1.32420 
0 .002599 .00079 .420027 -.00317 .30687 - .10482 .62230 
s .23214 .23146 .21437 .07377 .13715 .16744 1.05633 
T .23807 .22945 1 -.15997 .58628 2.60027 -1.82657 3.00283 

2.15 
A -.00490 -.00263 .46509 .47172 2.16023 -1.86877 1.22074 
0 .001769 .00096 .36277 -.00588 .28561 - .09141 .55382 
s .20134 .20076 .18847 .06961 .12454 .15442 .93914 
T .19821 .19909 1.01633 .53545 2.55502 -1.80576 2.71370 

2.45 
A -.00726 - .00231 .29711 ~ 33424 2.13883 -1. 83858 .92203 
0 .00046 .00088 .23074 -- .00757 .23835 - .06169 .40117 
s .13604 .13583 .1297 4 .0628 3 .09564 .12250 .68258 
T .129.24 .13440 .65759 .38950 2.47282 -1. 77777 2.00578 

w 
I-' 

'° 



R 
1. 898 lcr 2cr 

-­- ---­---··· 
AT .00000 .03719 
ov .00015 .00163 
PE .58523 .00000 
T .58538 .03882 

2.081 
AT .00000 .02364 
ov .ooo ¢t .00059 
PE .44397 .00000 
rr .44408 .02423 

2.132 
AT .00000 .02096 
ov .• 00010 .00047 
PE .41285 .00000 
T .41296 .02143 

2.366 
AT .00000 .01090 
ov .00005 .00032 
PE .30208 ."00000 
T .30213 .01122 

2.600 
AT .00000 .00614 
ov .00003 .00027 
PE .22763 .00000 
T .22766 .00641 

3cr 

.27026 

.42437 

.44811 
1.14274 

.19413 

.30812 

.38140 

.88365 

.17855 

.28202 

.36169 

.82226 

.12814 

.19098 

.27012 

.58924 

.08904 

.12515 

.20925 

.42344 

C-0 
··-----~-,..-· - - --· 

4cr Scr 
·----· ----· 

.11076 1. 12011 

.13627 .20260 

.25417 .09179 

.50120 1.41450 

.07010 1.12513 

.09984 .19236 

.18701 .09384 

.35695 1.41133 

.05874 1.12410 

.09093 .19161 

.17151 .09651 

.32118 1.41222 

.01992 1.13123 

.05569 .18616 

.10813 .10214 

.18374 1.41953 

.00296 1.14173 

.02864 .17718 

.06125 .09797 

.09285 1.41688 

1 TI 

~----

-.53908 
-.01978 

.36532 
-"· .193 5 4 

-.47172 
- .01157 

.31497 
-.16832 

-.45475 
-.01491 

.30533 
-.16433 

-.39320 
-.01133 

.25609 
-.14844 

-.34365 
-.00911 

.21674 
-.13602 

·- -·---·-­

T 
--··-----

.9992 4 

.74524 
1. 74462 
3.48910 

.94128 

.58945 
1.48116 
2.95192 

.92760 

.55022 
1.34790 
2.82572 

.89699 

.42187 
1.03856 
2.35742 

.89622 

.32216 

.81284 
2.03122 

w 
N 
0 



0-C 
--·------­ ·---·­-

R 
1. 898 10 20 30 40 50 l'TT T 

AT .01199 .00003 .68206 4.99030 .63099 -4.94843 1. 36694 
ov .00011 .00008 .40224 .40206 .02031 - . . 236657 .5 8814 
PE .00000 .58617 .10438 .05933 .13756 .07613 .96357 
T .01210 .58628 1.18868 5.45169 .78886 -5.10896 2.91865 

2.081 
AT .00470 .00001 .53480 4.37190 .99448 -4.99048 .915 41 
ov .00020 .00000 .29510 .33450 .02040 - .18370 .466 50 
PE .00000 .44447 .06529 .06375 .11590 .05876 .74817 
T .00490 . 4 4 4 4.8 .895-19 4.77015 1.13078 -f .11542 2.13008 

2.132 
AT .00334 .00001 .49498 4.18161 1.12632 . -5.02990 .77635 
ov .00026 .00001 .26884 .31276 .01868 - .159285 .44127 
PE .00000 .41328 .05800 . 06401 .11013 :05659 .70201 

· T . 00 36 .41330 .82182 4.55838 1.25513 -5.13259 1.91964 
2.366 

AT .00069 .00000 .31820 3.19216 1.82472 -5.13071 .21127 
ov .00033 .00005 .18020 .23270 .035530 - .111583 .33723 
PE .00000 .30225 .03916 .07191 .08436 .04261 .54029 
T . 0010 2 . 30230 .53756 3.49676 1.94461 -5.19968 1.08257 . 

2.600 
AT -.00046 .00000 .19666 2.12349 2.54231 -5.26210 - . 40010 
ov . 0 00 20 .00004 .11666 .16040 .07985 - .078643 .27851 
PE . 00000 .22772 .02489 .08237 .06282 . •3221 .43001 
T - ·.00026 .22776 .338 21 2.36626 2.68498 -5.30853 .30842 

w 
r-...> 
f-l 



B-F 


R 
2.00 10 

··----·----· · ----~-·--. ~-----------·-- -·~------------------

20 30 40 Sa ln T 
---------· -­~----··· ---~ -··-·-·­ --·~------- ~---· .....~~ ------------------·-··--· ··-------­

AT .00000 .02889 .0401 7 .0847 4 .33030 - .0809 4 . 40316 
ov .00010 .00567 .16804 .16061 .0552 9 - .0 05796 .3 8391 
PE .50005 .00004 .48558 .42260 .04136 .54298 1.99261 
T .50015 .03460 .69379 .66795 . 42695 .45625 2.77969 

2.35 4 
NI' .00000 .01 290 .01753 .07046 .29180 -.04323 .34946 
ov - .00002 .00033 .07296 . 12647 . 0 3799 -.00187 . 23586 
PE .30667 .00000 .32331 .27096 .03924 .39191 1. 33209 
T . 30 66 5 .01323 .4 1380 .46789 .36903 .34681 1.91741 

2.391 
AT .00000 .01230 .01628 .0691 8 .28726 - .04100 .34402 
ov -.00018 .000123 .06802 .12386 · .03603 -.000701 .22715 
PE .29265 .00000 .30815 .25791 .03956 .37925 1.27752 
T .29247 .01242 .39245 .45095 .36285 .33755 1.84869 

2.770 
AT .00000 .0061 4 .00792 .05302 .23258 - .02316 .276 50 
ov .00002 -.00021 .0303 8 .0 9294 .02091 .002183 .1 4622 
PE .18822 .00000 .19506 .15629 .03797 .27169 .8 4923 
T .18824 .00593 .23 336 .3022 5 .29146 .25071 ' 1.27195 

3.155 
AT .00000 .00275 .00380 .03244 .18165 - .01335 .20729 
ov .00001 - .0003 4 .0130 4 .063 90 .013 4 3 .00 1801 .091 84 
PE .12738 .00 000 .13 062 .09 467 .04023 .19 823 .59113 
T .12 739 .002 41 . ~ ~7 46 . 19101 .235 31 .186 68 . 89026 

w 
l\.) 
l\.) 
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F-B 

·-i 

;\ 


2 .00 lCI 2 (J 3:i- LH~t 5 11-- lTt T 

AT . 00095 .00037 041203 10.06.539 .. 23265 - 10.14885 ~ 562 9. 
ov . 00028 .00179 .1516L+ .3.5837 - .00497 - .09525 .41186 
PE .00000 ~50060 .. 02219 .02583 .08158 . 0115: .6~171 
T .0012) .50276 . 58586 10. 44959 . 30926 -·10 . 23259 ., / .... ,~ ·~ ....., 

..L.. • 0.l.C .L.l. 

2.354 
A'r -. 00081 . 00005 .230L1-6 9.15162 .51410 ... ~ o .34680 - ) +5138 
C) J 
.....,. \ 
.:...- !'.J 

. 00025 

.00000 
.00003 
.30724 

.07106 

.00673 
.28871 
.02235 

-.03420 
.07231 

- .04579 
.00536 

.28006 

.41399 
1' -.ooc56 . 30732 .30825 9.46268 .55221 - 10.38723 .. 24267 

2.yn 
A'l' -.00081 .00004 .21346 9.06558 . 55476 - 10.35879 - ~52576 
ov .000232 -. 00002 .06695 .28602 - .. 03793 - .04591 .269)42 
PE .00000 .29320 .00619 .02275 . 0?141 .00507 ._3966~ 
11 -.00058 . 29322 .28660 9.37435 .58824 - 10 . 39963 .1 ··220 

2.770 
AT -.00085 .00001 .09893 8.10835 1 .09868 -10~51326 - l . 20811T 
ov .00011 - .00008 •031+ 34 .24596 -. 05220 - .03091 .19722 
PE .00000 .18847 .00261 .02641 .05949 .00259 .2?957 
T -.00074 .18840 .13588 8.38072 1.10597 - 10 . 54158 ,_ .?3135 

3.155 
AT 
ov 

-.00069 
.00007 

.00000 
-.00004 

.04873 

.01608 
6.90604 

.18842 
2.09124 
-.05262 

- 10 .. 60188 
~- .01909 

- 1.5)656 
.13282 

PE .00000 . 12749 .00101 .02817 .04586 .001·29 . 20382 
T -.00062 .12745 ·.06582 7.12263 2 .08448 -10.61968 -1.21992 
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1.80 

BeO 

'{ 
/_t (Tlv 2<([ 3 rr ln: T 

AT .00000 J1372j . 05L1-71 .12300 -. 099820 .11512 
ov -. 00050 .05952 .. 09063 .20360 -. 02202 • Y?l23 
PE . 68664 .00385 . 59959 .54488 .384999 2 .219<JS· 
T .68614 .10060 .74493 .87148 .26315 2.66630 

2.1.00 
,;~T .00000 .01030 .03190 .07721 -.079929 .03948 
ov -0 00009 .216? .07347 .12920· - .01668 .21257 
FE . 43215 ~00082 . 41871 .. 34399 •31281+3 1~_50851 
T .43206 .03279 •52908 .. 55040 . 21623. 1. ?6056 

2.3500 
AT .00000 .00372 ~02025 .05877 - .068280 .. Oll+i+6 
ov -. 00001 .00908 .06097 .09165 - .009:)5 .15214 
PE .,30832 .00018 . 301t-56 .21+188 .26l9?lt 1.11691 
T .. 30831 .01298 .38578 .39230 .18Ltl4 L28351 

2. 4.377 
A~1:· .00000 *00262 .01714 .05384 -.064507 . 00909 

l' y~O\! - .00001 .00669 .05548 .08?50 - .00751 • '+.'._.l _.I 

p~ . 27622 .00011 .27343 .21504 .246391 1.01119 
T . 27621 .00942 .34605 .3.5638 .. 171+37 1.16243 

2.500 
;T .00000 .00203 .01518 .. 05060 - .0618'-r? .. 005963 
OV -.00000 ~00536 .05131 .08353 -. 00621 ~ 13399 
PE . 25607 .00007 .25371 .19802 .236033 .. 9l+3903 
T . 25607 .00746 .32020 .33215 .167976 1.083856 

2.750 
AT .00000 .00067 . 00907 . 03889 - .050861+ -. 00223 
ov .00000 .00213 .03584 . 06994 - .00221+ . 10567 
PE .19238 .00001 .19077 .11+200 .200300 .72546 
T .19238 .00281 .23568 .25083 . : 4720 .82890 

3.100 
AT . 00000 -. 00017 .00382 .02164 - 0030587 - ~00530 

ov .00000 .. 00051 •01921+ .04986 .00092 .. 07053 
PE . 13L+29 .00000 .13312 .08070 .,164146 .51226 
T .13429 .00034 .15618 .15220 .13448 •5774·9 
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OBe 

R 
1 . 800 lu 2G 3G" 4u lrc T 

AT .001+06 .01242 .28275 7.22842 ..:4.878916 2.64873 
ov -.00090 .05697 .00094 .26175 - .22665 .09211 
PE .00000 .64604 .03803 .04500 .0111456 •7L+ 353 
T .00316 . 7151+3 .32172 ·7.53517 -5.09111 3.48437 

2.100 
AT .00203 ~00264 .21?74 6. 54814 - 1-1-. 950153 1.82040 
ov -.00018 ~Oli+l4 .04843 .26331+ - .12802 .19Tll 
PE .00000 .1+1909 •OlL~ll .022 .53 .014138 .1+6987 
T .00185 .43587 .28028 6.83401 -5.06404 2 . 1+8798 

2.350 
1\T 000107 .. 00070 .14344 6.04728 -5.04021 1.15222' 
ov .00002 .. 00409 .04895 .24600 - .08849 .. 21057 
--)E .00000 .30322 "00753 .01910 .012094 .341944 
'T .00109 . 30801 .19992 6.31238 -5.11661 1.70479 

2.4377 
Nr .00088 .. 00041+ .12087 5.87420 -5 .. 081354 •91501.; 
OV .00005 .00266 .Ol-t660 Q21+111 · - .07887 .21155 
PE .00000 .,27244 .00626 .01896 .011320 ~30898 
T .00093 .27554 .17373 6.13427 -5.14890 1.43557 

2.500 
A'r .00073 .00032 .. 10628 5.74901 -5.111+242 •71+2098 
ov .00006 .00196 .04458 .23793 - .0?2B4 .2ll69 
p-r<'__, .00000 .25299 .00553 .01903 .010765 .288315 
T .00079 .25527 .15639 6.00597 -5.176317 l.2Li-2103 

2.7500 
AT .00028 .00009 .06051 5.19312 -5 .290694 -.03669 
ov .00008 .00056 .03390 .21661 - 0531+2 .197730 

PE .00000 .19087 .003l1-3 .02036 .008501 .22316 

T .00036 .19152 .09784 5.43009 -5.33561 .381+20 


3.100 
AT -.00042 .00001 •02l+75 1+. 06049 -5. 675925 -1.59110 
ov .00007 -00008 .02025 .18625 - . 0301+:5 .17620 
PB .00000 .13363 .00167 .02619 .OOi+o::'._·D .1663l 
1' -.00035 .13372 .04667 4.27293 -5.70156 -1.24859 
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LiF' 

l~ 

2)+5 1 er 2([ 3v 4u lrc T 

A'l1 .00000 -.00148 -.00403 .00551 - .002Ltl1- -.00244 
ov .00001 .02847 -.00400 .01014 .01181 .04643 
PE .27201 .00288 .26468 ~32884 ._34376 1.21217 
'I' .27202 .02987 .25665 v34449 •~":l5313 1.2:1616 

2.65 
AT .00000 -.00575 -. 00223 .00569 - .. ooa6 - • OC4L;.5 
O'! .00000 .014706 .00241 .015'?9 .01111.5 .OLi.1+36 
PE .211+95 .00109 .21290 . 2611-94 . 28680 .96068 · 
111 .21495 .01005 .21308 .28642 .29609 i.c,2059 

2.7877 
,, n .00000 -.00735 -.00146 .00568 - (f00193 -.00506 
.J '.' ~00000 a0091+5 .ooi+o1 .01752 901076 g04174 
:uE .18465 .. 00057 .18415 .22176 .29+57 .81+5?0 ... .18465 .00267 .18670 • 2Ltl+96 .. 26340 .88238 

' l.. ~ 

2 .. 8877 
;\'I- .. 00000 . - .00810 -. 00106 .. 00562 -.00176 - .. 00529 
ov .00000 .00691 .0011·39 .01804 .01014 .. 0:;)948 
Pl~ .16612 .00036 .16623 .19910 .23407 ~96588 
T .16612 -.00083 .16956· .22276 .2421+5 •80.J06 

2. 9877 
t\ i"fl r .... .00000 - .. 00849 -.00076 .00552 -.00160 -.00533 
O'J .00000 .00509 .00439 .01811+ .00948 .03710 
PE~ .11+999 .00023 .15045 .17937 .21568 .. G9572 
T ~14999 -.00317 .15408 .20303 .22356 •7271t9 

3o20 
AT .00000 - .. 00872 -.00035 •0052Lt -. C0129 -.00512 
OV .10000 .. 00274 .00378 .01734 .. oc803 .03189 
PE .12208 .00009 .12281 .14518 .182Li.5 .57261 
T .12208 -.00589 .12624 .16776 18°.1 9 .59938G 7~. 

3.55 
AT .. 00000 -.00807 -.00004 .00466 -. 00089 -.00434 
ov .00000 . 00107 .00241 .01457 .. 00590 .02395 
PE • 089lt-l .OCC02 .09010 .10516 .. 14C80 .42549 
T .08941 -.00698 .09247 .12439 ~ 1 1+~;;;81 .44510 
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FLi 
R 

2~45 1 !) 2G 3([ 4 tT lrc 1 

A'I' .00052 .01952 .02823 10.98191 - 9.99868 1. 03150 
ov .00002 .01883 - .. 00212 .05268 - .0912:5 -. 02182 
P.i~ .00000 .26033 .00627 .01023 - .. 00035 ~27648 
T .00054 .29868 .03238 11.04482 - 10.09026 1.28616 

2 .. 65 
AT .00027 .0088:'.? .02448 10.73317 -10. 06150 •7DC:124 
ov ~OOOJ2 .00866 .00440 .063?5 - .087.13 -. 01030 
1-'E ~OOOOG .;~0880 .00276 .. 00577 - .00027 ~21706 
·r .00029 022628 .03164 10.80269 - 10.1'+890 .91200 

2- ?377 
/'.. rf l 

.t'\. J.. .00018 .00514 .02115 io.56r;o - 10.1011-07 • L~8 1+10 
nu\_. J .00002 .00511 .00583 .065.53 - ~08193 ·- .00544 
PJ~ .00000 .18052 .. 00160 .00409 - .00020 .18601 

•11 . 00020 .19077 802858 10.631.32 -10.18620 .66467 

2 ..8877 
F~~· .00010 .00348 .01878 10.46209 -10 .1331+2 .. 35103 
en~ Ii .00002 .00350 .00606 .06509 - .0??62 - .00295 
PE .,00000 ~16296 .OOllO .00327 - .00015 .16733 
11 .00012 .. 16994 .. 0259.4 10. 5.3045 -l0a2ll04 .51541 

2.9877 
N', .00010 .00238 .01664 10.37268 - 10 .. 16122 .,23058. ~ 

ov .00002 .002.42 .00590 .06373 - .07316 -· J)0109 
PE .00000 .14753 .00076 .00268 - .. 00010 .15087 
T .00012 .,15233 .02330 l0. 1+3909 -10 . 234L1-8 .. 38036 

~-).20 

P./r ~00002 .. 00107 .01287 10. 214Li8 -10.21375 .011.+69 
ov ~00001 .. 001.12 .00498 .05906 - .06361 .00156 
PE .. oooco ,,12057 .00037 .00190 - .00002 .12282 
T .00003 .12276 .01822 10.27544 -10.27738 .13907 

3.55 
AT -. 00007 .. 00031 .00873 10 .. 02966 -J.0.28036 - ..24173 
ov .00001 . 00031+ .00321 .01+951 .. 01+93l1- .00373 
PE .. ooooc ~08867 .00013 .00129 .00007 .09016 
T -.00006 .08932 .01207 10.08046 -10.32963 -.14784 

http:10.631.32
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APPENDIX 3 

Forces 

The f orces reported in this section have been calculated 

( 2 i::: 2)usi ng f ormu l ae presented in a thesis by W. H. Henneker. ~ 


- h e over l ap forces have been calculated by the Coulson-Barnett 


m8 thod descri bed i n Appendix 2 for the field gradients. 


S h i e 1d i n g f o r c e s f o 1 1 ow f r om t h e a u x i ·1 i a r y f u n c t i o n m e t h o d o f 


Ko t an i e t a 1 . ( 2 5 3) 
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N2 

R 

'l .8)1.) l ,T 2 er (j 7. lit T1 Cf 2 _,) 
g u g u g 

/\.T . 037350 .018216 -. 079534 - .150992 - .414776 .11188l+ - >+77852 
ov . 005035 .003124 .534063 - .069377 .288052 .271680' 1.032577 
P:S . 291944 .291097 .255011 . llL1-989 .183027 .290918 l.426<;86 
T . 334329 . 312LJ..37 • 70951+0 - .105380 .056303 •67L1482 l . S)81711 

1 . 950 
AT . 036504 .017253 - .042610 - . 181L+92 - .410143 .. J.Ql;.709 - ~ 4?~779 
ov . oo.~,094 . 003475 . 48Ji.924 - .Oltli-783 .282629 .21+5268 .. 975,->(:7 
p r • .r., . 262619 . 262086 .231090 .117978 .172504 .27241-i l l ~ )J.8828 
T •3021+17 .282814 .6731t04 -. 108297 . o41t990 .623018 .:. .. 313.3l+6 

2 . 050 
.i\T' . 035'+8•5 .. 017262 - .. 01568.3 -. 180705 - • :+0 ·5L;.9(> .. 097697 - ... ;li-9~1+2 

• o r:l·' c::, ..,ov . OO?Ol5 Qoo3248 • L+ 39470 -. 040418 v277308 0222529 fv ·~ .L_....,C: 

PE . 237870 .2.3'?253 .209893 .1121+61+ .162669 .255906 l.216055 
·r . 275370 .257763 .633680 -. 108659 .036479 .576132 1 06 '( 1J?65 

2.150 
J...T . 033626 .017857 .OlOC.37 - .. 180529 -.391262 .091618 - Jr-J 86j) 
ov . 001330 .002825 .393093 - .035318 .268151 .202170 .8 32.2~:;_ 
l:Ylj"' 
... 1.... .216377 .215819 .191443 .~1081+81 .152986 .240769 l. i2~)::;7j 
T .251333 . 236501 .59Lt573 - ~107366 . 029875 .5)4557 1 .. 53S;i+?) 

2.450 
AT . 036186 .. 017919 .050418 - .177236 - . 39+100 .0?5'+49 - • :~ 51 )E;4 
ov . . 000509 .001828 .278800 -. 025087 .247723 0l)l1+14 .65518? 
PE .166609 .. 166378 .148167 .102198 .128712 .203239 .915305 
T . 203304 .186125 .477385 -.100125 .. 022335 0430102 1.219126 

'2 .0132 
f.. 'I' . 0357L1- .. 01722 :-- .02566 -. 17904 - . 41998 _10058 - .. '~71~..Lt 
ov .00235 .00338 .1+56781 - . 0 1+297 . 29091+2 .2308Lf l •gl+J..5:2 

'\ /' (! r= I"'1?"2 .24662 .245960 .21732 .11366 .,..LOv ".) U .261355 --"2~,3 1;~~ 
rr~ .28471 . 266)6 .64844 -.108349 .o;,9LL6 .59278 1 .72360 

2. c6B 
J..."1: .03551 .01726 -.00993 -. 18132 -~ .. lil.304 "09717 - .49+35 
ov .00187 .. 00319 .43066 - .03896 •289+0 ~21874 .9oos10 
! ~- -~ . 233?5 . 2_3jl6 .. 20632 .11202 .. 1627? .25291 l..~C')C) 3 
."'··... .27113 025361 . 62705 -.10826 ~035lj .. 56882 l .. 64?t+3 
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N2 
r: 

l .6 jC 10- l ,-,- 2 ff 2G 3 er h. T 
g u g u g 

,\.Ti 
.:~-"- .050698 .0201·tl5 -. 189715 -.,087665 . - . 46?176 . L~ 816i+ .... 545279 
C\t . 012377 . 002202 .61+4713 -.128814 .337852 ~ 334l99 L 202529 
·~:;L: .. . --' . 366346 .365249 .313540 .117883 .215652 . _3353L;8 ::. . 'll<-t0l8 
T . 429421 .387866 .768538 -_098596 ~086328 -797?11 2" ;,71268 

LC)J5 
rim r . .J. . 036996 .01?28.3 - .057838 - .177658 - . .1+14192 .10791 3 - • -,3 ('L; ~j(J 

ov . 003760 .00~5539 .. 506872 - .049238 .. 286398 .257L2 4 l ~ C08L·5l) 

F"'l~ 
T 

•275341+ 
. 3161.00 

•271+52)L:. 
.295356 

.2411+81 

. 690515 
.119221 

-. 107675 
.1771+09 
.,01+9615 

.28C5lL;. 

.. 645551 
. 1 . ~6bsc:; 

~L . ·~b~/L!C.~ 

2~ 110 
f.. 'I' . 035249 .o~r;387 .001613 - .18399+ - .393736 . 094200 - ~ L:- 2<)2~1 

CV .001575 . 00302? . 410083 - .035.559 .. 269634 .210246 '8:)900(~ 
?E . 224565 • 221+028 .198637 .111455 .l56L~22" . 2l+6651 .l. l.t): 756 
f~\ . 261389 .24 '+ 442 . 610333 -. 108058 ~032320 .551097 1. "5CJJ..523 

2 .. 200 
P/}_1 .035302 . 017531 .019391+ - .1811-266 - .385140 .088831 - . 4o3Y1-8 
ov . 001116 .002732 .371853 -.031274 .. 264318 .. 192731 . 801476 
'PE .206592 •. 206152 .183063 .108739 .148482 .233836 1 . 08686L~ 
T . 243010 . 226415 .574310 - .106801. .02?660 .515398 1.479992 

2~239 
AT .035446 .017609 .025737 - .183971 -. 381362 .086614 -,, 399927 
CV .000685 .002588 .356248 -. 029'759 .262278 .18'.)606 .. ?77646 
PE .199462 .199063 .176848 .107688 .1Lt5238 .228620 l . 056i:n.9 
T .235593 .219260 .558833 -.106042 .. 02619-1­ .500840 L4Y.638 
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co 
R 

1.80 lG" 2 c; 3 G. l+0­ 5 ,, lie ff• 
l. 

AT 
ov 
PE 
rr 

. 000002 
-. 000304 

. 617881 

. 617579 

.075374 

.00~ 026 

. 00001!+ 
•079l+llt 

- . ,266645 
.402504 
.550259 
.686118 

- .107668 
.131379 
. ~347211 
.370922 

-. 568997 
. l 96l+ l;.2 
.113560 

-. 25899) 

.057851 

. 21+7563 
• ~) 5.1 :+20 
. 856834 

-. Fi 10083 
•92.161c 

,') .i20)L;._5 
? • 3.51872 

i.. 20::, 
AT· 
o·v 
PE 

-'Tl 

.000000 
-.000119 

. 555520 

. 559+01 

.065017 

.0032311­

.000009 

.068260 

-. 207998 
.. 355696 
.502397 
•650095 

- .080372 
.116338 
•308l+47 
. 344413 

-. 552780 
.186926 
,.ll.3?04 

-. 252150 

.. 054 5S.3 

.22ob36 

.. 520797 

.796276 

·-.'T?l 5 Li CJ 
. 2-32c;61 

2 •cock 7 L~ 
? . 16229;. 

2.015 
AT 
ov 
PE 
T 

.000000 
-.000023 

. 492788 

. 492765 

.058987 

.. 002518 

.ocooo6 

.c61511 

- .~52125 
. 306645 
•411901;._3 
.603563 

- .05!+ 049 
.101099 
.2657?5 
_312825 

-. 533634 
.178593 
.115179 

-. 239862 

.050924 

.192480 

. 4(~ ?453 
e?3035? 

- .. b~9C/_? 7 
,. -. ,...~ .. -· ~ -

• /0 . ).1t: 

l. dJJ.: ')i· l , 

1 ~ ss16 ·~;c 

,2 . 1.32 
/-.T 
'J V 
pi;1 
~ L 

·}1 

. 000000 

.000013 

. 440131 

.440144 

.'056576 

.001962 

. 000004 

.058578 

- .108845 
.26.)629 
. 401221 
. 556005 

-.033517 
.087139· 
.225901 

.•279523 

- .513547 
.173383 
.117999 

-. 222165 

.04714·96 

.16?'129 
•~- 5?1S6 
.. 6(2--r2l 

·­ -­ r ~ ,.~ ;;r ;.-·· ' ,./ ··­ -' ·' : 

. r:.9j 1~. :.;.- ~~ 
-­ ., €>~2 L. ~ .? 
i "' 1?.Si~ lr'('C 

2.249 
AT 
ov 
PE 
T 

. OO GOOO 

. 000023 

. 399+93 

.395516 

.056497 

.001557 

.000003 

.058057 

- .075801+ 
.2256?6 
.359344 
. 509216 

-. 018599 
.073668 
.188721 
.243790 

- .491212 
.170926 
~121836 

- .198~·50. 

.OLt~-21 4 

.146133 
~429?02 
•62001+9 

~ ~6L~· ·9C~ L 

. 61_?923 
l . 495U)9 
1 .. 6281?~: 

.2. =-s66 
A'I 
ov 
PE 
'r 

.000000 

. 000023 

. 357343 
. •3_57 _366 

.057093 

.0012.33 

.000002 
0058328 

- .050785 
.192123 
.323155 
.464493 

-.009646 
.060336 
. 154299 
.204989 

- .465178 
.170698 
.125867 

- . 16861~. 

.041011 

.127259 

.4o1+639 

.. 572909 

-. 427505 
. 551672 

1.365305 
1.489472 

2. 483 
,, rn 

.'"i.1. 

OV 
p ·~: 

I' 

.000000 

.000021 

.3244.55 

.324476 

.057891 
,OC0993 
.. 0()0002 
.. 058886 

- .. 032182 
.162567 
.292109 
.. 422494 

- .006'876 
.o47L+36 
.123241 
.163801 

-. 4 :i1~?82 
• j_ 71 71+ 3 
.. 128976 

- .134058 

.037901 

.110757 

.381782 
d53044o 

- .. 3;:Rc:.:-C-; 
.l r9~;)?? 

1.250765 
1.366039 
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oc 
1) 
l \ 

:-;1 1 . 80 1 G' 2 () yr 40 5ff lrr 

AT . 077040 - .000075 .183871 - .721338 .131129 .151802 -.177571 
ov - .001660 • 001362 . 382745 .315304 - .19+081 .21+2386 . .786056 
PE .000003 .617029 .0?6763 .048827 .288L+65 .112691 1.143778 
T . 075383 .618316 .643379 - .357207 . 265513 . 506879 1.752263 

1.898 
AT . OT?Ol5 - .000032 .2021+50 - . 689601+ .132952 . 14L+ 331 - .136888 
ov - . 000802 .000958 . 31+2318 .295715 -. 147401 .218148 .708936 
PB .000001 .554969 .06L1982 .052559 . 265795 .103581 1.041887 
T . 072214 .555895 . 609750 - .341330 .251346 . 466060 1.613935 

2,015 
''"'."'IJ·L.. .070353 -· oOOOOlJ: .2ll361 - .65.3116 .128193 .136501 - .106719 
ov -. OC;C25? . 0006L1-6 .298~;03 .276350 -. 134690 .191982 .632539 
p~~ . OCO·JOO )+92L+40 .09+6J_l.7 . 060410 .23903LJ­ .093237 .939735 
T . 070l01 .493075 .5644?8 - .316356 .23c537 .421720 1.465555 

2. :.!..32 
J~rr .070101 - .000003 .. 210176 - . 612895 .. 115299 . 129660 -.087662 
ov .000014 .000442 .25909:5 .256807 - • J .. :~.620_) .. 168876 .569029 
?.E: .000000 . 439913 .046852 . . 071231 g 2121+1+0 . c8402 3 ~854459 
T . 070105 . 440352 . 516121 -. 284857 .. 211536 .382559 l, 3~55816 

2 .. 249 
AT .0701)6 . OOOO:JJ .. 202351 -. 566397 e09351~ 3 .. 123l~~8 - .07C919 
ov . . 000121+ J000312 . 223694 .2.34534 - .091 ?O;_~ ~ l.l+8390 • ~)..l ~~ 352 
PE 
T 

. 000000 

.070260 
.395372 
. 395681+ 

.. Oi+0713 

. 466758 
.081+333 

- .21+7530 
.186092 
.187933 

~0?5804 
,.)li-7642 

. ?5231-+ 
:.. ~22Q?L~. 7 

.2 . 366 
AT .070600 :000001 . 189908 - .511998 .06;~9+3 .117639 -.071307 
ov . 000165 .000221 .192076 .208101 - .061048 .130188 .-r69703 
p~ · . 000000 .357267 .035609 . 098699 .l60l+5L:­ .068381 J720410 
01 .070765 .357489 .. L+l 7593 -. 205198 .16191+9 .316208 1.118806 

2 $1,83 
f\ rp 

1"\. .l.. .071305 . 000001 .. 171f·524 - • L+50879 . 023880 .112008 - .06SJ.. 6l 
OV . 000180 .. 0001-60 .. 164017 .177903 - .0259+? .. 114004 ,, L, ·3c7 ..t.? 
PE .000000 •321+1+03 .031187 .113008 .. 136:,:~-;2 .061675 . 66(,8 ..'. .0 
T . 071L1-85 . 3? 1;.569 .369728 - .159968 .134865) .287687 l,. f)2b~:66 
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BF 

R 

2 *0 lG" 2v )() l+vr- 5 u- ln T 

A'l~ .. 000001 .06851+1 -. 095057 - .138501 - . 253525 .015856 - . li-026[35 
ov .0001.!-+3 .009265 .ll902Lt .134554 .017338 .114133 . 391+457 
PE . 499966 .000075 .513803 .423149 .055724 •688lr90 2 . l.01207 
·T .500:110 .077881 .537770 .419202 - .180Lt63 .818479 2 .172979 

2.10 
,\T .000001 .062929 -.069522 - .113986 - . 2Lt9501 .014311 -. 355768 
ov .000113 .006864 .106068 .133213 .013176 .097543 .356977 
PE .453481 .000046 •Lt62566 .381937 .051+271 .6451+98 1 . 997799 
T .453595 .069839 .499112 . 40ll6Lt -. 182054 ~ 75'7352 1 .. 999008 

2.1925 
A'.I.1 .000001 .. 059988 - .. 051602 -. 094528 -. 245387 . Ol29S·7 - "}12. 5~11 
OV .000091 .005146 ... 09Lrltl9 •l318L~6 .009590 . o8LrJ.6? . 325; ~)s 
PE .4160:,4 .. 000029 .421277 .. 31+7897 .052951. . 608879 l .. E)+706? 
T .416126 .065163 .464094 . 385215 -. 182846 . 706003 . 1. 8~)_37:;5 

2. =-SC)i. 
AT ~ 000001 ~038?65 - .0261+09 -. 060663 -. 235782 ~ C~i.0;150 ·- ~ 2 5 3 ( --~, ~J 

')f / ,..,4-,ov .000058 .002779 .. 071284 . 12715=-s .002642 ~06102? • LC.-f'j . ) 

::-~F. .349831 .000011 ~349596 .2a6216 •0509~L9 .. 539105 1. 57.56?3 
T .349890 .061555 .39l+l;.71 . 352706 - .102221 .610482 l. :;..-:5G38 3 

2.5775 
AT .000001 .060003 - .01_3429. - .036163 ' - .225998 .0082g2 2J'??S· 1 ~- w 

CV .000039 0001602 .053044 . 120222 -. 002898 . 044941 ,,216950 
PE .30101+5 .. 000005 .298527 .2391+95 .050Lt20 . 4826L;.5 l ~ ~)?2~;? 
rr .301085 .061610 ~338142 .323554 -. 178476 . 535878 1.38~'793 

2. ?7C· 
AT .00000 .061440 -. 006256 -.016438 -. 215075 .,006558 - .169??1 
ov .000026 .000971 .038257 .110970 -. 007433 .032747 .175538 
?J~ .260655 .000003 .257455 .199509 .051494 .1+31981 l.201097 
T .260681 .062414 .. 289456 .294041 -. 171014 . 471286 1.206864 

z.9625. 
·'\ In 

..-..J.. .00000 .061823 -. 002581 -. 001303 -. 2033Li8 .. oc5175 -~ 14 tJ2)~ 

CV .OOOO.t8 .000623 .027239 .100295 - .010508 .. 02)913 .. 1L'-2 ..s8c 
?E .227883 .000001 .221+789 .165222 .0543T3 .38?900 1.060268 

.227901 .062447 ' .249447 .264214 - .1591+83 .416988 1.061514 
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FB 

~i 

2 .\ 

-,,.., 
_... / lJ" 2G ?>er 4v 5 (j 1n T 

A'~ .058:3?? -. 000025 .2L;-2137 -. 611168 .099279 .. 1371+98 - .0?3402 
.w .000?21 .00;;031 .147092 . 356710 - .11451+4 .1109?0 .. 503930 
PE .000001 . 498451 .017221 . 029320 • 2001,_99 .. 021022 . 76()514 
T .059599 . 501457 .. L+06450 -. 225138 .185234 .269Lf40 1. =-97042 

2.10 
-~T .057638 . 000004 .225465 -. 578879 .106285 . 129);~6 - .. oU,160 
ov .00065_3 .001995 . 132817 . 345367 - .120841+ .096808 • 1+56796 
PE .000001 •4529+6 . 013808 .02b873 .192836 .01?948 . ?06012 
T .058293 . 454545 .372090 -. 204639 .178277 .244082 i. io2.;to 

2. 1925 
AT .. 058106 .. 000013 .208876 - . 55051+0 

. 
.. 111100 .122705 - • Oi+9)i<"~ 

ov 
p•<... 

l~ 

.00059 .~) 

.000001 
. 001350 
. 419t-56 

. 119678 

. 0111+53 
. 3356?5 
.029249 

-. 124560 
.185582 

.085111"1 

.015l+57 · 
• l+r(6'7? 
~6~(/.lS,8 

T .05870 . 416819 .340007 - .. 185616 .172122 .223303 1. 02.Jj·j) 

2.39 
..~\_,.r 

ov 
PE 

.056463 

.OOOLt67 

.000001 

.000011 

.000599 

.. 349694 

.173376 

.093168 

.007903 

-. 490869 
. 313602 
.. 031359 

. 117487 
-.12802) 

• }_ 700LJr l 

.110516 

.064152 

. 0111~)1 

- .0;)3016 
.. 34 3963 
.. 570J.lr9 

fTl 
.J. .056931 . 350304 .274447 - ·. 145908 . 159503 .185819 . 381096 

2.5--,;75
Nr O C:::4. ' 'C;,.• ::> . c'..jO .000008 .142674 - . 4:36778 .119966 •:!_C()l)69 - •019 ·5'Jt) 
ov .000362 .. 000295 .071885 .290785 - . l27li-23 .. 0:.:-8154 (1234650 
PE .000000 . 301065 .005643 .OJlt074 .155?10 . ~ob185 "50 1 ~677 
T .054618 ., 301368 . 220202 -.111919 .148253 ol5?508 .77oc;o 

2 .770 
AT .. 051340 .. 000005 .115166 - •38Lt-782 Qll9597 . 091081 -. 00?593 
ov .000275 . 000155 .054169 .266248 -. 123590 .036484 . 23371+1 
f1<.....,' .000000 .260741 .003973 .037355 .1409~56 . 005967 . 448972 

f'1 
J.. .051615 .260901 .173308 -.081179 .1369i+3 . 133532 . 675120 

·= 4 96~2:J 
/' /l-,·-_, .047835 .000003 . 092374 -.337559 .1-1 c.:,s9s .082165 0 00~~7:_7 

~~ v .000210 .. 000088 .040494 . 241673 - .. 116422 . 027192 . 19323~ 
?E .• 000000 .22797'i ~002779 .041410 . J..2_5692 .004380 • L+0?2)8 
ITI 
~ .04804 5 .228068 .1356 47 -.054476 .125i69 J 113737 .596190 
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bcO 
i~ 

·l .. SOO lG 2 c,- 3 t) 4G lrc T 

J' •jl .000003 -. 069743 -. 215726 - .. 296472 .029274 - • :55266L~ 
ov - .000420 .068801 .029883 .1109l+6 .202829 . 412039 
PE . 617869 .00379+ .612823 •536176 .532965 2.303587 
T . 617452 .002812 . 426980 .350650 .765068 2.162962 

2.100 
AT 
ov 

.000000 
-.000092 

-.116052 
.029539 

-.107298 
.059+36 

-. 1.56163 
.095419 

.017159 

.1)6680 
- . 362)9+ 

.316982 
PE .453710 .000830 .458510 .. 379685 .~-66331 1. 759066 
T .453618 -.085683 .1+06648 .318941 .620170 1 Q ?1369'-t 

2.35 
AT .000000 - .1231+10 - .0:57072 - • OS6~-)21+ ~Cl_?:i.C6 -· .. 26Lt ~)OC 
ov 
PE 

-.000016 
.. 362239 

.012709· 

.000186 
.056'/20 
. 360603 

•0929l;O 
.291820 

.103=')1 L 

.1+12167 
.26566? 

l ~ Lr-2 70.15 
T . 362223 -. 110515 .360251 .2.87836 .528587 i . 42838c~ 

2 ,4j77 
J\.l' .000000 - .123543 -.045348 -. 082057 • Ol2li-r 8 -. 238800 
OV -~ 000007 . 009279 .05L+073 .091871+ .,091+05;_; .249275 
Pi ~ ~ 336634 .000108 .3}3516 .267251 "3S1T955 l.332464 

.336627 - .. l.' .4155 •.342241 .277068 .501159 l.)42939 

2.500 
-~T .000000 - .12~3038 ·-.038395 - .. 07271+8 .. 011550 - .222631 
ov - .. 000002 . 007381 .051637 .. 090969 .088027 .238012 
pi:.·.;._; -320059 .. 000073 . 316189 .251242 .. 383)96 L270959 
T .320057 - • ll558Lt •3291+31 .269463 . 4829 7:;, 1 .286340 

2.75 
Nr .000000 -.117818 -.019212 -. 042602 .009510 - .17012.?. 
OV .oooooL;. 0002836 .039809 .085881 .067084 .195614 
P.:.•, .264503 . 000015 .259488 .195239 .. 343041 1 .. 062286 
T . 264507 - . llL1-967 .280085 .238518 .419635 1.087778 

3~100 

f:.. T .00000() -.100226 -. 006508 -.012160 .006728 - .J_12166 
ov .000005 .000621 .023710 .071365 ~041.828 . ~;_37529 

PE .208142 . OOOOOJ_ .204032 .124166 . 303495 ~839836 
T .20814? -.099604 .221234 .183371 .352051 .865199 
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OBe 
R 

r)1~8JO l :;- r_ u r- 3cr l+C ln T 

AT 4039So8 .000656 .191+127 -. 453507 .07521+6 -. 1436?\J 
ov - v001450 .039364 .032789 . 232669 .1729+6 . 4759J..P., 
FE .000005 . 58224.5 . Olt0222 .050778 .. 058999 . 732.?'+9 
1l1 .038363 .622265 . 267138 -. 170060 .306791 1 .06449? 

2. - 00 
,; 'r . OL+1~586 .000433 . i79699 - .1+73631 .085629 - . J.66J.i84 
ov -. 000385 .012098· . 07L1-021 .278210 . J.26(3Lt • 1+90670 
PE . 000001 .1+1.; 121+2 .01.6832 .027924 .. o:tl020 . 527019 
T 	 . OL+100;~ • 1+53773 .270552 - .1671.+97 . 253383 .851213 

2 0 3'5 
.2~r_r .04?463 .000107 .151296 - . l+6105) .085216 - .176973 
()\' - .. 000036 .004047 .074910 .288371 . 099.:?22 . Lt665ll: 
p~-... , .000000 .. 357195 .009518 .025692 .032565 .. ~249?0 
T .. 04?Lt27 .361349 . 235?2Lt - . 7L+6992 . 21.7003 ~714511 

2. ~-)77 
.1 'ii 	 . 0'+9732 .000062 .1Lf0905 - . Lt51042 .084195 -.1761-+8 

.000017 u002718 .071403 ~287~~02 .091149 ,,!+52489' 
~ r i .000000 •~-328?1 .008021 .026228 .030159 .39727s 
T 	 .Ol+9749 .. 335651 .220329 -. 137612 . ?05503 .673620 

2. 500 
r rp 

..:\.J.. 	 -.051176 .ooooi+2 .133609 - . ~-42805 . 08_3305 ~174673 
O'J ~000048 . 002041 . 068273 . 285~85 .085805 . 4.Ltl652 
:?E .. 000000 ._316977 . 007141 .026861 .. 028549 .379523 
T 	 . 051224 .. 319060 .209023 - .. 130459 .197659 . .646507 

2.75 
AT .. 056461 . 000008 olG5044 - .. 406727 .078756 - .166458 
ov .. 000089 .000629 •053L~29 .275399 .066781 .396327 
~YS .000000 .262967 .ocL571 .031Ltl3 .. 022433 .321384 
T .. 056550 .263604 . J630L1-4 -.099915 .167970 .551253 

3.100 
r~T .05773_) .000000 .06861+8 -. 359378 .069763 - .163234 
ov . OOCC96 .000101 .. 033291 .260694 .01+2963 . 337145 
PE .000000 .. 207439 .002360 • 047L+58 .. 012640 .269897 
ni 	 .057829 .207540 .104299 -.051226 $125366 .443808 l . 
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l.~S 

r·: 

~ 1;­2 ~ 45 lu 2C- 3<T lrr 'I'"" 

NL' .000000 - .OL18l6l .. - •02)9l+L+ -.070690 .002182 - 014261) 
ov .000006 .033916 - .. 008523 - . 015Y+1 •01+0179 .050237 
P'S .. .333205 .003038 •32562Lt .376621 . 510142 1.548630 
'l' .333211 -.011.207 .291157 .290590 . 552503 l. 1+56251+ 

2.65 
A111 .000000 -.050873 -. 015537 - .050908 .002331 -.114987 
ov .000005 .018360 .000896 .000896 .. 035819 .055976 
PE 
T 

• 281+806 
.284811 

.00121+ 3 
-.031270 

.. 281188 

. 26_6 51+7 
.. )17193 
.267161 

. Lr.1+73?3 
Jr85:;28 

1 .. 331808 
1.272797 

2.7877 
AT . 000000 - .,050836 - .010922 -. 041221 .002328 - ~ lOOE5~ 
ov 
F, 

~' 

T 

~ OOOOOlt 

.. 257365 

.257369 

.Ol2206 

.000678 
-.037952 

0003666 
.2551 75 
.2l+7919 

.607858 

. 2842111­

.2 _50851 

.032496 

. 411159 

.41+5983 

00562)0 
1 .. 2085s1 
1..164170 

2;/8877 
AT .. ooooob - .. 050165 -. ooi346? - .. 035568 .002286 - .09ic:, 11+ 
ov .000003 .009159 .004592 . 0011377 . 030077 .05520<~ 
pr, 
- L'_, .239851 .0001+4-0 .238327 . 263l+J.2 •.38771Si 1.129 71+~) 
T .23985~. -.040566 .231+11- 52 . 239221 . 4200?8 1.,093039 

2.9877 
ld .. 000000 -.049156 -. 006572 -J o30Soo ~00222j - .. 031+ 305 
O'i.J 
PE 

.3000002 

.221+065 
.. 006935 
.000287 

.0049 50 

. 223029 
.. 013901 
.21+4825 

.0277?3 
• 366 316 

.. 053511 
i..058522 

"" .l .224067 -.041934 . 221407 .227926 ~ .3S6262 1.027?28 

3 .20 
AT .000000 - .OL~6220 - .. 003858 -.022908 . 00201+4 -. 070942 
OV .000001 .003947 .004687 .016837 .023086 •OL+8558 
PE .195321 .000119 .194911 .211353 .326532 .928236 
T .195322 -.042154 . 19571+0 . 20528,~ .351662 .905852 

3 4 55 
r~ rn 

r .. ~ .. 000000 - .01+0395 -. 001624 - .. 011;252 .om.n9 -.054552 
CV oCOOOOl .001677 .003312 .. 017302 . 0168,23 .039115 
e~ .158703 .000030 .158745 . 169l+31 ~ 2'.7:5809 .760718 
T .1587(~·:1· -.038688 .160433 .172481 .2923511 .745281 
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F'Li 
..,-, 
~\ 

-) .' ..- l,_..:_ • · !-') v 2 CJ 3T Lfw ln: T 

A1r ~ 011+1?6 .003171 .. 065850 - . 1.55303 .075399 .003293 
0V .000037 .017097 .010958 .086243 .024018 .138353 
PE .000000 .320288 .008392 .01'+498 .002513 . 31+5691 
T .011+213 .340556 .085200 -.054562 ~101930 . l+87337 

2.65 
·1 en 


t" J. 
 .018598 .08:...7?..L'r .062892 -.149667 ~061566 -.005087 
ov .000039 .008?66 . 014663 .09163~- .022567 .. 1y1169 
'J4"'.r:._, .000000 .27?752 .. 005984 .. 008718 .002l1J18 .29290;~ 

T .. cn8637 .~~8T/'t2 .081539 -.049315 .086381 •4249o Lr 

2,,7877 
AT ~021042 .OOl lJ..O .. 059091 - .142699 .05;-;91<; - .0075j? 
'}\; • OOOiJ3~- .. 005066 .014528 .09159+ .02]~01 .1325e3 
F'E .000000 • 2.52530 .0021+26 .006412 .. 002338 .263?06 
T .021076 .258706 .076045 -. 044733 .0?7658 .388752 

2.6877 
1\ (11
.-.1 .. 022112 .000810 .056067 - .136798 • Q1+94L~l - . 00836c:. 
C'V .. 000031 .oo::>578 ~013770 ~090297 .. 020510 .. 128126 
f E .000000 .. ;236100 .00171L1- .005258 .002?38 • ;;: 4531~; 
·r .022143 . 240488 .07155l - .OLt-1243 .072189 .365128 

? .. 9877 
AT .. 02201-+9 .000585 .052774 - ·.130552 ~OL~~)590 - .00955 L~ 

ov .000028 .002547 .012737 .088350 .Ol96~Li- .123266 
PE .000000 .. 221108 .001224 .004404 .002128 .228864 
T .0220TI .224240 .066735 -.037798 .. 067322 .342576 

3.20 
.A. fT1.;.. .023024 .000295 .045982 - .117.112 .039070 -.008741 
ov .0000::.. ,~ .001269 . .010261 .082750 .017681 .111979 
I1B .000000 .193454 .000626 .003246 .oc1880 .199206 
T .. 023042 .. 195018 .056869 - .031116 ~C58631 .302444 

3.55 
A.'I1 .022419 .ooco96 .0361+60 - .09)l1-9r .. 0)1768 -. 005711 
ov .000010 .ooo4Y~ .006666 .O'?l59B .01.~L?J.5 .093423 
PE .000000 .. 157732 .000240 .002336 .001492 .161800 
T . 022430 .158260 .043366 -.022520 • 01+79'75 .249511 
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APPENDIX 4 

In this section we present the orbital densitie s 

~' A) at nucleus A, and also the total atomic, overlap a nd 

sh ie lding v alues . Fur~hermore, listed are t he coeffici e nts 

F1 ,F , F , F obtained fr om a. parametric polyno'mial fit f or2 3 4 

the ·electronic forces FA' u sing t he expression ~ 

A ( 4~1)L: 
n= I 

,_Dl. IThe factors F ,F ,F ,F are then obtained f rom the F s1 2 3 4 n 

by multip li c~tion o f these with Rn corresponding to the 
e 

simpler expansion 

F = L: F (R-R ) n-i A( 4.2 )
A n e 

n = 1 
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R = 2.068 


F 1 

log 0.27034 

lou 0.25356 

2og 0.62707 

2ou -0.10823 

3og 0.03512 

lnu 0.56871 

Total 1.64657 

i ~.. -0~44977 

Ci 0~8 9 630 

::; 1.20165 

1I\)tal 1.64818 

F2 

-0.2385 4 

-0.22612 

-0.39898 

.o. 0 0 4 4 3 

-0.0708 9 

- 0 . 43135 

-1.36145 

0.27319 

-0.710 83 

- 0.9306 

-1.36828 

e 

F3 

0.21583 

0.17636 

-0.0359 4 

0.05482 

0.11025 

0.22062 

0. 7 4194 

0. 555 84 

-0.28559 

0 .423 49 

0.69374 

F4 

-0.19840 

-0.12142 

0.20472 

-0.02916 

- 0 .03~L92 

-0 .2-221 4 

-o. 2 q3 92 

-0~ 43237 

0.40096 

-0.21818 

-0.24959 

p (A) 

98.20623 

98.31037 

4 .68913 

3.91519 

0.47054 

2 Qj ~ 59 :;_ ~1~ 

205.9J_l29 

- 0 .332~1 

0~ 0~__ 77 

205. :3 9 145 
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C-0 R = 2.132 e 

F 1 F2 F3 F4 p (A) 

10 0 . 44014 - 0 . 41 280 0.29036 - 0 .1907 6 0.00000 

') .~ 
..:....\....,' 0. 0 5 8_6 6 -0.01234 0.07497 -0.168 45 121.83605 

30 0.555 98 -0. 40570 0.03303 0.16876 1.37676 

40 0.27956 -0.29407 -0.09662 -0.06968 1.87429 

50 -0.22221 0.17713 0.22575 0.02084 1.98562 

l 1T 0.67241 -0. 47269 0.22236 -0.0 8147 

Total 1 .78 454 -1. 42047 0.74985 -0.32076 127. 0 7 27 2 

.A -0.55 179 0.61689 -0. 41251 0.20419 127.27500 

0 0.69387 -0.69 449 0.41959 -0.2 4595 -0.22203 

s 1.64249 -1.34298 0.7 4124 -0.27681 0.02019 

Total 1.78457 -1. 42058 0.74832 -0.31857 127.07272 
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0-C 

.,.-, 

~ l 
T;' 
.l. 2 F 

3 
p 
.l. 4 p (A) 

.. 
lo 0 . 069 96 0.0014 4 0.02 477 -0. 07119 296.52552 

20 0.4 4036 -0. 41339 0.2 9185 -0. 194L:4 0.0011 

Jo 0.51615 - 0 . 4 201.5 -0. 0384 5 0.17697 11.1570 4 

4o - 0 . 28 49 0 0 .2 954 2 0.22010 -0.086 18 3.1 456 8 

So 0.2 1152 - 0 . 19127 -0. 09523 0 . 00946 0.05992 

l 1T 0.382 49 -0.3 1630 0.16101 -0. 06540 

Total 1.33558 -1.0 44 25 0.56 405 -0.23058 31.0 . 888 37 

A - 0.08795 0.12047 -0.2 6920 0.38158 310.96380 

0 0.56899 -0. 49676 0.35 860 -0.2 6697 -0.07866 

s 0.85 44 6 -0.66 805 0. 47649 -0.3 4422 0 . 00323 

Total 1.33550 - 1 . 04434 0.5 6589 -0.22961 31 0 .8883 7 
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BF R e = 2.3 91 

-~... 
.L "\ 

.L 
F 2 F3 F 

4 
p (A ) 

~ ·5 0 . 34987 - 0 .2 9 23 4 0.18 48 2 -0.10 9 38 0 . 0000 0 

') r-­
.:... 1__; 0.06 1 50 -0.00506 0.04769 -0.09625 6 9 01174 2 

30' 0.39 44 7 -0.32684 0.13040 +0.0296 4 0.2 194 7 

40 0.35270 -0.15907 0.01929 -0.02182 0.67691 

So -0.18222 +0.01157 0.04398 +0.00820 1.68180 

l'rr 0.61048 -0.43635 0.20939 -0.08068 

Total 1.58680 -1. 20 809 0. 63 55 7 -0.27029 71.69560 

A - 0 . 2537 4 0.2818 4 -0.19 71 2 0. 1 218 0 71. 76445 

0 0.2 6491 -0.278 52 0. 1 21 20 - C . 0 2892 ~-0.0 7 6 94 

....,,) 1 .575 68 -1.212 22 0. 7084 2 -0.3 492 2 0. 00 8 08 

·-:·c tal 1 . 586 85 -1.20 888 0.63255 -0.2563 4 71.695 60 
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FB 

Fl F2 F3 F4 p (A) 

la 0.05682 -0.0 1001 -0.0 0940 0.00000 425.647 72 

20 0.,35027 -0.29324 0.18685 -0.112 99 Cl.00 016 

30 0.27445 -0.31226 0.10625 0.05824 20.52984· 

40 -0. 14591 0.19225 -0.0 4787 -0.03855 1 .1 6622 

So 0.15950 -0.06144 0.00868 -0.00 827 0.18 4 7 5 

l'TT +0.1 858 2 -0. 16786 0.09 49 2 -0.0 5007 

Total 0.88095 -0. 65256 0.33943 -0.14194 447 .52 869 

A - 0.03281 0.07660 -0.03 452 0.05568 447.57233 

0 0.34383 -0.3 414 3 0.14298 -0.050 92 - 0.04626 

s 0.57010 -0.38769 0.22456 -0.14671 0~00263 

Total 0.88112 -0.65252 0.33302 -0.14195 447.52869 
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BeO R = 2.50 e 

F' 1 F2 F3 F4 p (A) 

1 ,.,. 
-1...J 0.32006 -0.25 101 0.14655 -0.08895 0.00000 

2 :J -0. 11558 -0.01356 0.08221 -0.09305 34.17555 

30 0.32943 -0~20559 0.02567 0.09048 0.22840 

40 0.26946 -0.1217 1 0.00255 -0.03 178 0.47621 

l1T 0.4~297 -0.27937 0.12552 -0.0 4461 0.0 

Total 1.2863 4 -0.87124 0.38251 -0.16790 34.880 1 6 

A -0.2 2250 0.2471.5 -0.1 8552 0 .16048 35~01991 

0 0.238 40 -0. 17473 0.01807 -0 Q0619 7 -0.14789 

s 1.27068 -0.95 459 0.55625 -0.270 L19 0~00815 

Total 1.28658 -0.88217 0.38880 -0.17198 34.88016 
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OBe 

F 
1 F2 ~ 

.L 3 F Ii 
4 

p (A) 

l o· 0 .. 51224 0.02473 -0.013 40 -0.02373 296.74173 

20 0.31906 -0.25100 0.14910 -0.09581 0.00103 

3o 0.20902 0.18512 -0.01043 0.10843 13.41578 

4o -0.130 46 0.11673 0.03296 -0.03699 0.64266 

ln 0.19766 -0.12295 0.02602 -0.03235 0.0 

-Total 0.64651 -0. 41761 0.18425 -0.08046 310.80120 

A ·-0.17525 0.02265 0.08932 -0.0912 ~ 310.85436 

0 0.44170 -0.17465 -0.07 070 0.13692 - 0 . 0 5462 

s 0.37976 -·0. 227115 0.16923 -0.12 662 0 .. 00146 

Total 0.65121 -0. 42315 0.18785 -0.0809 4 310.80120 
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LiF R = 2.8877 e 

F' 1 F2 F3 F4 p (A) 

le 0.23985 -0.16602 0.08653 -0.0 4202 0.00000 

20 --0.04059 -0.01873 0.06 420 -0.082 47 13.57171 

3o 0.23447 -0.13333 0.01960 0.04648 0.07327 

40 0.23923 -0.11 492 0.01596 0.01748 0.13204 

lTI 0.42008 -0.2 4815 0.10 427 -0.03996 

Total 1.09304 -0.68115 0.29055 -0. 10049 13.77702 

A -0. 09192 0.08112 -0.055 72 0.0 4 334 13.81026 

0 0.05522 -0.01414 -0.03 44 1 0.04422 - 0.03561 

s 1.1297 4 -0.74815 0.38069 -0. 18805 0.002 37 

To tal 1.09304 -0.68 117 0.29055 -0.10049 13.77702 
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FLi 

Fl F 2 F3 F 
4 

p (A) 

la 0.02184 0.00702 -0. 1795 0.01584 425.84175 

2a 0.24048 -0 .. 17161 0.09915 -0.05 925 0 . 01905 

3a 0.07150 -0.0 4 736 -0.00936 0.04725 21. 45627 

4a -0.0 4124 0.03484 -0. 00243 -0.02176 0.09467 

lrr 0.07219' -0.051 61 0.03040 -0.01423 

Total 0.36477 -0.22872 0 . 09981 - 0.03215 44:7.41174 

A - 0.00868 -0. 00814 0.02815 -0 ~02443 447.44678 

0 0.12820 -0.0 4732 -0. 02 70 4 0.04994 -·0.0351 3 

;:::. 0.24530 -0.17350 0.09793 -0~05674 0.00010 

'l'otal C.3 6482 -0.66117 0.09914 - .03 123 447.41174 
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APPE DIX 5 

Errors in Force Constant Ca1cu 1 ations 

0 
1T h g Ha r t r e e - FG " k wa v e f u n c t i 0 n Y( ) g i v e s · r € s u l t s f 0 r t h @ 

expectat·on values of one-electron operators that are co rrect 

thr ough first order. This is a consequence of no orbital cor­

rection functions from ~(l) the first order correction to the 

fun ction-- 1 1 0ne -electron c lusters 11 we refer to as orbital 

correction functions (see chapter I). In second order these ex­

pectation values wi 11 be affected by products of the first-c rd~r 

2-electron c l ~sters U. ~l) and by the interaction of the seco ~~-
1 _1 

order o-bi t al correction functions Ui( 2 ) with the ~n pE:rt u rb eo 
. 2 5 4 

orbitals. No other second order functions make a n y contr ib ut i o r~ 

Let F be a symmetric sum of one-electron operators 

T:1 cn <. F > = <. lf I Fl tfJ >I< t I lf.i > 


Kee ping only second-order terms: 


_,i, I h I F k b. 1 u (2 )wh e r e t h e T~ s a r e t e Ha r t r e e - o c o r 1 t a s ~ i th e se'co1a­

order correc tions to these. Using "the Hellmann-Feynman theorem, 

t h e n on e ca n w r i t e t h e ch a n g e i n co r r e l a t i o n e n e r g y a s a f u n c t i o 1. 

·Of R 

A5 . 2 

The u ~ 
! 

( 2) 
are suspe cted to have the same s ign as the 9: I r: 
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regions close to the nucleus~ 2 54)This has a natural physical 

interpret9tion. The Hartree-Fock energy contains too large a 

contri but"on fr om electrostatic repulsion. The formal ism which 

' e ·a d s t o 't' ( 1 ) w i l l t e n d t o m i n i m i z e t h i s e x c e s s r e p u l s i o n e n e r g y 

by spreading the charge density farther out in space than it 

should be. After the introduction of the correlati on c lust ers 

U.. , this charge density should relax. It is the orbita l 
lj 

correction functions which produce this relaxation through an 

interference term 2L¢.U~ ( 2 ) in the expression for the charge
L l I 

density. As a pair of correlating electrons ar a fixed relative 

separation moves toward the nucl eus, then c luster correc t ions 

become sma ller. As u.. implies an electron dens· ty s ·p re ac out 
lj 

( ) ( ,., \0fu~thet fro m Ihe 	nucleus than that of \fl , only U. \LJ w: l 1 
I 

·a ff e c -c dens ,j t i es 	 a ppr e c i ab 1 y near the nu cl e i . t ~..; o u 1d then 

2 
seem that the u.( ) 1 s will be important in the deterrn;nation

I 

of one-electron properties in general. The phase prop er t '.es 

/ 4 ; \ 

of the corrections have been co mput ed by Sinanogl~ and Tuan\·•, 


c.r:d 	 appear to be in agreement with the above proposa l s. 

In v iew of the same phases between the Ui ( 2 ) and 1 , then 
1 

fr om (AS.2), assuming and since 

wi 11 depend mainly o n u. (2 ) as di scussed 

above, it ls e vident that around Re(HF) ,the c hang2 in 11 corre­

.l ation 11 energy (EHF - E ) will have the same sign as the force. 
0 

This reasoning also follows from physical interpretation. At 

distances le ss than Re, in approaching the u~itea atom the:-e 1~ 

an increase in correla tion energy. At distances ]a rger than Re , 

t here is n c r ca se i n co r re 1 a t i on en e r g y as a res u l t of the s r. o ·· t - · 
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comings of the HF method ba sed on single determinants for large 

di stances. From t he se c onsi det ati ons we conclude that d 2 Ec/dR 2 

wi 11 be positive . M.clea~Z55) has observ ed a minimum in Ee vs R 

cur ves £o r diatomic mole c ule s. These min . m<J occur near Re(exptl .) , 

a t v a 1 L c s o _: ri 1e s s t h a n Re ( e x p t 1 • ) f o r H
2 

a n d L i F • Thus his 

r~ su lt s co ncu r with .the above cons iderations. 

Let Re(expt . ) E E(exptl.)·o 0 

R (Hartree-Fock) E(Hartree-Fock)RH e EH 

ko ~ dnE /dRn kHF 2 dnEH/dRn
n n ! o n rl! 

Us ing a series expansion about Ro: 

"
., 

­
E o (Ro) + n~lk~(R - Ro)n A5 .3 

2 ­wereh E E is the contrib uti on to second order from corr elat;oc-.
2 

ef fects. Expanding EH about R , one has from A5.3: 
0 

f 2 E ( R) = E (R) - E (R )+ ·f [(kHF)R -k 0 
] (R-R )n AS.4

2 H o o o n=l n n 0 
0 

or expanding 2 bout RH, then 

f 2 E2(R) = EH(RH) -E (R )+ L AS.5 
o o n=l 

Differentiating both sides n times, and evaluating deriva ·:iv es 

From A5.4 A5.4a 

HF HF HF 
or (k )R :::(kn )R +(n+l)(kn+ 1) 0 (R -RH)+ .•• ~5" 7 

n o H "H o 

This expressio n there f ore relates derivat i ves of the HF energy 
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evaluated at R
0 

and RH . f the energy EH is a true HF energy, 

then we can expect 

A5.4b 

L I 2w11 ere ( K IS a second ,'order correction. (k2 
. n n 

0 HFFr om A5.7, since k <o, k3, thenk3 1-V Ro/ RH'3


( kHF)

2 R ( 

0 

We have the result that the Hartree-Fock constant evaluated at 

R
0 

i s 1e s s t h a n t h a t e v a 1u a t e d a t RH p r o v i d e. d R
0 

? R H • \~ e must 

now est ab l i sh bounds on th i s re l c;i t ion • From A5.4c: 

c ,..: 2:: ! -·;:;, L~ ow E = Ec t o second order (see above discussion). Thu~ w i.: 
2

. u ...
2 

must be positive as Ec has a minimum near R
0 

. Thus V·Je h::..ve 

We conc lu de t at for R >:­ RH' the force constant for a Hartree­
0 

Fock potential energy curve evaluated at R =R (expt l . ) 
o .e 

wi 11 be 

c l o s e r t o t h e t r u e v a l u e t h a n i f e v a l u a t e d a t R H = R e ( H F ) . ~~· i_ ( :.: h e r ­

more, from AS.4b, the error in the constant should be of orde r 

c=. , resu lti ng in a force constant slight"y larger than the ex­

perimental va "! ue. 

2 
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