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PREFACE

This thesis deals with two problems:

(i) To generalize the concept of the Lipschitz algebra of a
metric space.

(ii) To study the analytic properties of the mappings induced on
éhe underlying metric spaces by homomorphisms of generalized
Lipschitz algebras, and to see to what extent maps with these
analytic properties induce algebra homomorphisns.

We commence by studying the lattice of convex and concave
mcdrli of continuity on a closed real interval. Elements of this
lattice, with suitable restrictions, are then used to give a
family of Banach algebra norms on the algebra of bounded continuous
complex-valued functions on any metric space. The algebrasof
functions bounded in these norms are the generalized Lipschitz algebras.

Again with certain restrictions, homomorphisms of these
algebras are shown to correspond to space mappings which satisfy
moduli of continuity. The collections of such space maps and of
geheralized Lipschitz algebras inherit a bartial order from the lattice
of modull of continuity. Using this, we express the relationship
between algebra hcomomorphisms and space maps in categorical terms.
Finally, when the metric spaces in question are taken to be domains

in real n-space, isomorphisms of generalized Lipschitz algebras

iv



are shown to induce quasiconformal mappings of the underlying
domains. It is also established that quasiconformal maps induce
homomorphisms, within fixed limits, of the generalized Lipschitz

algebras.
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CHAPTER O

GENERAL PRELIMINARIES

We collect here some well known results on function algebras and
quasi-conformal mappings which will be given without specific references.
Proofs and further discussion are to be found in [Loomis, (1)1,
[Royden, (2)] and [Gehring, (3)] along.with bibliographies of further
sources.

Iet X be a topological space and A an algebra of continuous
complex -valued functions on X. We assume that A contains the multi-
plicative identity [f(x) = 1, x € X] and that the functions in A |
separate the points of X.

The spectrum % = Z(A) of A is the set of all non-zero homo-
morphisms of A into the complex field C. The space X may be
embedded in X by identifying with each x 1in X +the homomorphism
f > £(x) taking each function in A to its value at x. A is
naturally isomorphic with the algebra K of functions on X defined
by %(ﬂ) =m(f) for MTe X and f € A.

The algebra A then consists of the functions in ﬁ restricted
to-the space X.

% is usually topologized by using the weakest topology under
which the elements of A are contimuous. This will be called the
Gelfand topology on X; in it, a neighbourhood basis for the point

Q € ¥ 1is given by sets:

J
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N(C?5 £i0 oo T e)={mezx | ‘ﬂ(fi)l <e,i=1,...n,}

for € > o, T .., £ e A. The Gelfand topology is always Hausdorff

1’ n

and the natural embedding of X into ¥ 1is continuous with respect to
it; if X is compact, this embedding is a homecmorpiiism.

We can also associate with A the set M = M(A) of maximal
ideals of A. Since each element of X 1s uniquely determined by
the maximal ideal which is its kernel, we can identify X with a subset
of M.

A function algebra A on a space X is weakly inverse closed

if it has the property:

(ao) If feA and sup lf(x)| <1, then (1-f) has an inverse in
xeX

A, A is inverse closed on X if it has the property:

(¢) If feA and f is bounded away from O on X , then £ has.
an inverse in A .

We note that o implies Qs further, if A 1is closed under
uniform convergence, then ao holds. The following propositions
relate the divisibility properties of A, its maximal ideal space and
its spectrum. |
0.1 Let A be a weakly inverse closed algebra of bounded functions.
Then the spectrum and maximal ideal space of A coincide with the
spectrum of E) the completion of A under uniform convergence on X.
Further, the Gelfand topologies of £(A) and X(A) coincide.

0.2 Let A Ybe an inverse closed and self-adjoint (closed under camplex
conjugation) algebra of bounded functions which separates X. By 0.1,

the maximal ideal space and the spectrum of A are identical, and if

X is compact they coincide with X. If X is not compact, it is
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homeomorphic, by the natural embedding, with a subset of the spectrum
of A which is dense in that spectrum in the Gelfand topology.

Since the algebras with which we will be concerned satisfy
the conditions of 0.2, we identify the spectrum and maximal ideal
space and use the same symbol, M, for both. Elements of M
corresponding to points of X wunder the natural embedding are called
fixed ideals; other elements of M are called free ideals.

The association of the space on which an algebra of functions
is defined with the spectrum of the algebra provides the basic
connection between algebra homomorphisms and space maps. Given two
algebras A and B on topological spaces X and Y, we let T be
a homomorphism of A into B. Then for each homomorphism T € M(B)
we have a homomorphism t(m) in M(A) defined by t(7T) =m o T.
Thus for each y € Y and f € A we have

£(t(y)) = (T0)(y).

We call the mapping t the adjoint of T and sometimes write
t = T¥. With respect to the Gelfand topology of M(A), t is a
continuous map of M(B) into M(A) and its restriction to Y is a
continuous map of Y into M(A). Further, if T maps A ontoa
dense subset of B, then t is a homenmiphism of M(B) onto a closed
subset of M(A). If T maps A onto B, then t is 1-1, M(B) into
M(A); if t maps M(B) onto M(A), then T is 1-1.

Conversely, if X and Y are topological spaces and t a
continuous map of X into Y, then for each function f € C (Y), the

algebra of all continuous complex valued functions on Y, we have

foteC(X). This gives a unitary algebra homomorphism T : C (Y) —>¢(X)



defined by
TFf (x)=7Ffot (x) £ e c(Y)

We call T the adjoint of t and sometime write T = t%
If t+ maps X onto Y, then T is 1-1; if T maps C(Y) onto
C(X), then t is 1-l.

For algebras A and B on topological spaces X and Y,
let T be a homomorphism of A into B.

When X, considered as a point set without topology, coincides
with M(A), the adjoint mapping t is a mapping of Y into X.
If X is compact, by 0.2 1its topology is the Gelfand topology and
t : Y - X is continuous. If X 1is not compact, the mapping t
may not be continuous with respect to the topology on X and may not
carry Y into X as a subset of M(A). We can give conditions which
ensure that t(Y) € X; as follows:

Definition 0.3 ILet A ©be an algebra of bounded functions defined on

a topological space X with values in a normed space. The compa.ct
open topology on A 1is generated by the neighbourhood basis given by
sets of form:

N(f3K, +-s K3 €)= {gea I 1le -fIK [lo<e,i=1, ..., n}

i
where f € A, € > 0 and the Ki are any finite collection of compact
sets in X.

0.4 Iet A, B Dbe point-separating algebras of continuous complex-valued

bounded functions on the topological spaces X, Y respectively; such

that X 1is dense in M(A) and every compact open neighbourhood of the



unit of A contains a function of campact support in X.

Then for any unitary homomorphism T : A —> B which is continuous in
the compact-open topology the adjoint t : M(B) — > M(A) carries

Y into X.

Proof: Iet ye Y. M = {r e Blf(y) = 0} 1is closed in the compact

open topology of B. Suppose t y % X.

M, = {£ e ale(ty) = Te(y) = 0}

is exactly T°10Wy) and hence is campact-open closed in A. Since

ty # X, all functions f in A of compact support in X are

in Mty s for if K is the support of f, X - K 1is dense in

M(A) -X and thus % vanishes cn M(A) -X. But every compact

open neighbourhood of the unit, 1, of A contains a function of compact
support. Hence 1 € Mty’ which is a contradiction of the fact that T
is unitary, so ty € X forall y e Y.

In other words, the conditions of 0.4 ensure that the mapping
t carries fixed ideals of B to fixed ideals of A. An argument
similar to this was given by Nakai [9] in the special case of the Royden
ring of functions on a Riemann surface, but as far as we know this is
its first statement as a general proposition.

We note that the compact-open topology on an algebra A of
continuous functions on a space X depends strongly on the underlying
space X. For instance, if Y is a dense subspace of X and B the
function algebra cobtained by restricting A to Y then the restriction
map T : A —->B is clearly an algebra iscmorphism, and hence so is its
inverse, but T-l may fail to be compact open continuous, although T

always is.



CHAPTER I

Moduli of Continuity

In this Chapter we discuss the lattice of real convex and
concave moduli of continuity on a closed real interval. We
define an equivalence relation on this léttice and introduce a
subclass which will eventually be used to give norms for systems

of Banach algebras.



SECTION O: Concavity and Convexity.

Definition 1.0 A real valued function f defined on a closed real

interval I is concave on I 1if and only if for every

e I, x <x

3 5 every point (y, £(y)) of the graph of f

*10 %5

with x, <y<x

) is sbove the line segment [(Xl, f(xl)),

2

(X2: f(xg))]-

This condition is equivalent to the following:

1.1 £(d x) + (lék)xe) >\ f(xl) + (1)) f(xz) for all x €I

17 %20
with X < Xy all A, o< A< 1.
1.2 f 1is continuous on I, difierentiable on the complement B

of a set in I which is at most countable, and has non-increasing

derivative on B.

Definition 1.3 A real valued function f defined on a closed real

interval I dis convex on I if and only if (-f) is concave on I.
This is equivalent to the following:

1.4 For every xy, X, € I with x < X, every point (v, £(¥y))

of the graph of f with Xl <y< x2 is below the line segment

[(Xl’ f(Xl)), (X b} f(xg))]'
1.5 f(hxl + (l-l)xe) <A f(xl) + (l-A)f(xg) for all x;, X, € I, x
all X\ e (0,1).

1

< x

25



1.6 f is continuous on I, d&ifferentiable on the complement B
with respect to I of a set in I which is at most countable, and
has non-decreasing derivative on 3B.
Concavity and convexity are thus duvual properties.
We note those properties of concave functions which follow
directly from the definitions, as shown in Bourbaki, [5].
1.7 For real L\, concave f:
F(Ax) > A £(x) 0< A< 1.
f(Ax) <\ £(x) A > 1.
1.8 For concave f, a > o, f(xa)< f(x)+ £(a)

1.9 Let (f.) be a family of real concave functions on a real
interval J. lg the lower envelope g of this family, defined by
g(x) = inf {£ () 15 ¢ 13.

is finite at all finite points of J, then g 1s concave on J.
1.10 Let f be a finite concave function on an interval J. Then
at every interior point of J, f has finite right and left
derivatives, £’ and fg’ respectively with fd’(x) < fg’(x) for all

d

X where they are defined. £ c{ and fg’ are non-‘increa.sing on the
interior of J and f, is non-increasing wherever f is differentilable;
i.e;, on the complement with respect to J of at most a countable
set in J.
The dual properties hold for convex functions, as follows:
1l.11 For all real A, convex f:
f(Ax) < : £(x) o0< A< 1.

£(Ax) > X £(x) A > .



1.12 For convex T, a >0, f(x+a) > f(x) + f(a)

l.13 Let (fi) be a family of real convex functions on a real:
iel

interval J. If the upper envelope g of this family, defined by:
g(x) = sup {fi(X)|i e I}

is finite at all finite points of J, then g 1is convex on J.
1.14 Iet f be a finite convex function on an interval J. | Then
at every interior point of J, I has finite right and left
derivatives fé and fé respectively with fé(x) z_fé(x) for all

X where both are defined. fé and fd( are non-decreasing on the
interior of J and £/ is non-decreasing wherever f is differentiable;
i.e., on the complement with respect to J of at most a countable

set in J.



SECTION 1: Moduli of Continuity.

Definition 1.15 A real modulus of continuity o defined on a closed

bounded real interval [0,d] is a convex or concave homeomorphism of
[0,d] onto itself with «(0) = 0. A real modulus of continuity «
defined on the half line [0,2] 4is a concave or convex homeomorphism

of [0,®) onto itself with «(0) = 0 and 1lim g}%‘-) = 1.
X —>®

Iet CC be the set of all concave moduli of continuity on
[0,d] for fixed d, 0< d< ®; (CV the set of all convex ones;
C=CCU Cv. Note that for any 4, CC Ml CV consists of the identity
map, or(x) = x. (It has been necessary to use here a different and
slightly more restrictive definition of modulus of continuity than that
used by Glaeser [6], but the essential properties are the same).

We establish some properties of C which will be required Iin
what follows:
1,16 Let o be a homeomorphism [0,d] -> [0,d] with «(0) = O,
differentiable except for a set in [0,d] which is at most countable.
Then o € C if and only if the function 4af(x) -x attains exactly one
relative extremum on (0,d) which may be attained on an interval.
Proof Let o € CC:. Since o 1is non-increasing where defined,
Ol(x) -x must have exactly one relative maximum on (0,4d). For
o€ CV', o 1is non-decreasing and the same argument holds. Conversely,
for o as per hypothesis, the existence of a single relative extremum
for o(x)-x implies that the derivative of «(x) is monotone.

10



1.17 [Glaeser, [6]] For any family F of bounded, uniformly
equicontinuous complex-valued functions on a metric space (¥X,d) of
diameter (not necessarily finite) D, there exists a non-decreasing
concave real valued function «, continuous at O with q(O) = 0,
such that:

lf(x) - f(y)' < o(d(x,y)) forall feF, x,yeX.

Proof: Set A(t) = sup (|£(x) - £(3)| lalx,v) < t).
fer

A is non-decreasing, continuous at O Dby the uniform equicontinuity
of F and has A(0) = 0. TFor « we take the function whose ofdinate
set is the closed convex hull in the plane of the ordinate set of AX.
o 1s then concave and inherits the other required properties from X\.
1.18 For fixed 4, 0< d < *®, we define a partial order on C by:
@; <@, if and only if al(x) §_a2(x) for all x ¢ [0,d4].

With this order, C is a lattice.

Proof: We note that if h is the identity map on [0,d] then

a<h for e CV and @>h for e CC. If « a2 are not

l)
comparable in C, they must be both in. CC or both in CV. Let
dl’ a2 € CC and not comparable. By 1.6, the lower envelope g

of al, a?, given by:
g(x) = min [o (x), a,(x)] for x e [0,d]
is concave. Suppose g(x) = g(y) for x< y. Since @), @, are

strictly increasing, this can happen only if:



12
min  [o(x), @ (x)] = o (x) = @ (y) = min [o(y), o ()] or
vice versa. But the firstequality implies:
< ) <
@y (x) < ay(x) < ay(y)
by the monotonicity of 02, S0 g(x) is strictly increasing on [0,d].

By definition, g(x) = al(X)AQé(X) for x € [0,d] and A is

a, continuous operation. Hence

1w A0 A gy () ()

X— >es X X o’ X X
ozl(X) a2(x)
= (lim x ) A (lim X )
x> x—>>
=1

Thus o A € ¢C, on [0,d].

By 1.10, al and a2 have a concave upper bound h which
is continuous at O with h(x) <d on [0,d].

Suppose h(x) = h(y) < d for x<y, d finite. Then the
line segment [(x;h(x)), (d,d)] 1lies above the graph of h at the
point (y, h(y)) which contradicts the concavity of h. If 4 is
infinite and h(x) = h(y) for x<y, x,y finite, then there exists
a point z >y with h(z) > h(y), so the iine segment [(x,h(x)),
(z,h(z))] 1lies above the graph of h at the point (y, h(y)), asgain

contradicting the concavity of h.
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We note that for d infinite, h(x) is always finite for
finite x Dby definition. We have left the possibility that for
finite d, h{x) = d for x< d. Consider the point set:

((y) | o< x<d, o<y <) 1.18.1
which consists by definition of points. (x,¥) lying on line segments
both ends of which are in:

{(x,y) [ 0<x<d, o<y< max [al(x), a2(x)]) 1.18.2
including degenerate segments of one point only. By concavity, if'
h(x) =4 for x<4d, then h is identically equal to d4 on [x,d].

Then the point (x,d) must be in (1.18.2) which contradicts the

strict monotonicity of o, and ¢«¢.. Thus h is strictly incrzasing.

1 2
By the argument used for A, we see that

o (xVo, (x)
Lim ———2"° _ 4
X=> @ x

Considering the point sets 1.18.1 and 1.18.2, it is apparent that

h(x}
lim x = 1 as well.
X

Hence h(x) = a, Vv a, (x) in cCC.

1

We have established the existence in CC of o, V a2, o, Ao

1 1 2

for all dl, d2 € CC. The dual formulations give @ v a2, al A a2 €

for o5 02 e CV.

cv



- SECTION 2: Composition of Moduli of Continuity.

1.19 TFor o.,, ¢

15 Oy € CC (cv), a, oa, e CC (CV).

1 2

Proof: ILet @, 0y e CC on [0,d]. Then for x, x’ ¢ [0,d], x< x:C
a, (W + (1-M)x") > ay(x) + (1-x)ai(x’)
for all A e (0,1), i = 1,2 by 1l.1. Then:
, /
o, o a, (M + (1;-._>»)x ) = ozl(az()oc + (1-M)x )
/
> o, (My(x) + (1-2)a,(x7))

/
>N 0 oze(x) + (1-x)aloa2(x ;

For finite d, this implies that al o a2 ¢ CC, since we

have shown that composition preserves concavity and the other properties

of a modulus of continuity are immediate. For infinite 4, we have

that:
rin al(ag(x))_ fm o (ax(x))  ay(x) .,
X — > x X > o GQrX: x
So in any case, al, a2 ¢ CC imply al o) a2 e CC. The dual argument
shows that for al, Q€ cv, al 00, ¢ cv .

We note that for al e CV, Q, e CC, the composition al °Q, ,
while still monotone increasing, need be neither concave nor convex.

Consider:

14
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12{‘ Og_x_<_2/3
o, (x) =
1 2x-1 -§-<x_<_l
4x O<x< %
O£2(x)= :
. 4x+3 l<x< 1.
T 8
Then o, e CV, &, ¢ CC on [0,1], Dbut
FX 0O<x<y
a, o a,(x) = 4x43 1 5
1° 72 " g<x< /12
8x+6 _

= 1 5/12<x<l.

which is neither concave nor convex on [0,1] .
1.20 For 'OL e CC, Ol_l, the inverse of «a with respect to
composition, is in CV and vice versa.
Proof. We have immediately, for finite d, that a'l(o) = 0,
a'l(d) =d and o' isa homeomorphism of [0,d] onto itself.
By 1.1,
a(xa'l(x) + (1-x)a'1(x’)) > Ax + (1-x)x’ for x<x’, Me (0,1)
Acting &1 on both sides:

r o Hx) + (100 (x ) > o Tox + (1-0)x7)

So ale¢cCV by 1.1 and 1.3. The dual argument holds for o ¢ CV.

- -1
We need to show that, in the case where d 1is infinite, lim g_(_x_)_ = 1.
X >
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For e C , we have:

lim g—}(z}-{—)-=,l.
X >
X
Hence -1 —
1im 9§923$§ll - 1im o M(x) =1
X > o o (x) X > o

x) =1, so aleCV for Qe CC and the dual

X > o X
argument gives the result in the opposite direction.

1.21. [10] Every o« ¢ C may be represented as:
X
o(x) = [5 p(t)at

where p 1is a monotone right continuous function, essentially
bounded on any finite interval.
Proof: By 1.10, <« has a derivative almost everywhere and, since

it is absolutely continuous, is equal to the indefinite integral of

4
d

which is monotone and equals the derivative of «a a.e. by 1.10.

that derivative. The function p is the right derivative a. of «,

For the right continuity, suppose « 1is concave. Then by an

application of 1.1, for all h > O,

ozd/(x) > o:(x+h})1 - afx)

Keeping h <fixed and passing to the limit as x —= xo+

. / a(xoth) - alxg)
lim  , ay(x) > n
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by the continuity of «; the limit on the left exists by the

monotonicity of cx, Now passing to the limit as h—> O+,

*
/ /
lim o (x) > a(x ).
d - d‘Vo
X —=> XO

/7 . . .
For concave a, Otd 1s non-increasing, sO

/ /
lim ad(x) S-ad(xo)
X > x_

’ y
Thus  lim ad(x) = ad(xo) for concave «; the analogous procedure
X => x
o

establishes right continuity for convex Q. Note that since o 1is O
only at 0, p(t) must be bounded away from O on any interval not
containing O.

~ Since « (x) is finite for finite x, p(t) can be infinite
on no set of measure greater than O and so is essentially bounded on
every finite interval.

1.22 Let @, Be C. Then there exists y ¢ C such that

1lim QQ%-%Q = 1.
x>0 Y\
Proof: Suppose Qo pgé¢ C. By 1.21,
o(x) = [ p(t)at B(x) = [7 a(t)at .

where p and q are monotone and right continuous. Then ([10],p.10)


http:10],p.10
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X
@ o p(x) = [X p(a(t)) a(t)as
= [F g(t)at.
o]
where g 1is right continuous and > o for any t > o. If, for

some X, g(t) 1is monotone on o< X< X, We can construct vy by:

y(x) = [T g(t)at X< X

and by defining y(x) in terms of a suitable line segment for x > X,e
If there is no neiéhbourhood of O on which g 1is monotone, we note
that o< g(o) < » since:

(i) if g(o) = 0o, g must be monotone increasing in some neighbourhood
is 0, since G o B 1is zero only at O .

(1) 1if g(o)

o, g must be monotone decreasing in some neighbourhood

of 0, since & o B 1s finite for finite x.

We then set +(x) = xg(o) in a neighbourhood o < x < X,

define it in terms of a suitable line segment elsewhere. By right

and

continuity, for any e > o we can find X > o such that

|e(o) - g(t)] < e for o<t<x .

Then, for x< x ,

. I, e(t)a .
1- /g(o) < W <1+ /g(o) .
aop(x) _

So lim ”
x>0 Y

1.



SECTION 3: The Class Ca

1.23 We now consider the class Ca.C:C consisting of moduli of

continuity « with the property:

o< 1im inf ——(—7 for all A > o0 .
X —=> 0 alx

We note the following properties of Ca:

l.24 CCc C
—— a

Proof: Let ae CC. Then for o< A< 1, A (x)< a(rx) by

l.4. so
0< \< 1imine®0x)
= alx
X ~> 0

For »>1, oa(ix)>alx), so

a{rx) .

O<l§_ lim inf—m

X >0

1.25 For e Ca’ 9%%%% > o for all x, =all X > o; we show that

a(xx)
(%)

Proof: By 1.15, this is immediate for « ¢ CC. For ae¢ CV,

there exists K> o with > K for all x.

we represent @ as in 1.21. Then:

ax) | o) = % fzx pdt
a(X) - X
1 Ax
Z-’EIL’E pdt
2
1 Axy Axy _ A o
2'}2(’2—):9(2)=2P<2) > 0 .

19
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for x bounded away from O. Since the definition of Ca ensures
that %()"}33 is bounded away from O in a neighbourhood of 0, this
gives the result.

1.26 cm# c .
e a

_ i
g x2 o< x< a
Proof: Consider o(x)=
o X =0 .
1
alx) = -2-3 e” ¥  is strictly increasing in a neighbourhood of O,
X 1

2 2
"(X):é:%§_ e~ X

since its derivative «Q is positive for small x.

Thus O is convex for small x and so is:

ax) 0<x<0.1
B(x) =

10 (1-e'loo)x + 207100 1 ok

9 9 9 =
However, for x< 0.1, A< 1,
1 1

B(})\.{X) - e- Z_”X 2 + '}22

=2 (1 - %2)

= e which has limit O as x —= 0 .

(Example due to B. Banaschewski.)

1.27 The class of functions in CV which are of form o(x) = x , k> 1

in a neighbourhood of O 1is properly contained in CV N Ca .

Proof: It is immediate that any function of this form is in Ca .
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Consider the function defined by:
0 x=0

a(x) =

gl

X
"I 0 *s

. d o 1 . . .
Since -a:x—(a(x)) = z—ln—;y2 Tox which is monotone increasing on

[0, —]5], e CV on [0, -]-']
e e
Consider 1lim -a—(-}é) , k> 1
X-> 0 X

1k
x
= lim [-1nx ]
X -> 0
Applying IL'Hospital's rule, we have:
a(x) -k
lim K = lim - (l—ik)-—x——
X->o0 X -=> 0 [x
= - lim (1-k) AE ..
X = 0
xl_k 1
For k=1, 1im -lnx=lim -E=O.

X -> 0 X->o0
Thus @(x) is of comparable order at O with no function of form

X , k>1, in a neighbourhood of O.
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. . . a(ax) . AX 1nx
Finally, consider lim = lim .
% > o a(x) % > o In{Ax) X
. Inx
= M e -7
X =0

for all A > o. Thus ¢ CV N Ca on [O,l/e'] .

We now note that any o ¢ C on [o0,d] for any finite 4
can be extended to C on [o,o] as follows:

For Q¢ C, there exists x , o< x; < d, at vhich alx) - x

1

A
attains a relative extremum, by 1.16. Define a on [o,»] by:

A

o(x) = a(x) 0<xgx
A

a(x)=x+a(xl)-xl X, < X< @ .

A
Then o 1is contained in CV, CC or Ca’ as the case may be, with 0.

From here on, except as otherwise noted, we will consider all « to
be defined on [o,»] as above.
1.28 For a e CC, by 1.7:

a(x) < a(dx) < ax) A<l

a(x) < a(rx) < rax) A> 1.

For e CV N Ca:

. At)
L [%-(g)] alx) g o) g dalx)  rg .

by 1.11 and 1.24, O0< d< o .
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rofx) < o) < sup 208 o(x) a1
= = alt b
. te[o,d]
o< d< > .
The supremum here is finite for any finite d, and the

condition that lim %) = 1 ensures that it is finite for

b’y
X > «
infinite 4.

1.29 For @, O, ¢ (cv n Ca)’ Q@ o0, € (cv n Ca) .

Proof: Let ., &

17 % be in CVnCa. Then, for A< 1, all x> o,

o, (o, (2x)) a, (K o,(x))
CHCAEIDNENCA CHEID
Ko, (a,(x))
> W = Kl>0 by 1.25
a, (a,(2x)) My (o, (x))

For > 1, ACAC I el

= A > 0 by convexity.

Ozloaz()»x)
Thus for all A > o, lim  inf > o0
x>0 %%x)

Note that since CV = (Cc)'l, 1.25 implies that for « e CC, ot is

not necessarily in Ca' Also, 1.19 and the example following show

that while CC and CV are closed under composition, Ca is not.



SECTION 4: The Equivalence Relation on Ca.

We now define a relation on the union of all Ca {o,p]

O< p< o as follows:

Ctl > if and only if:
o (x) a. (x)
o< lim 1ni'm 1lim supalx < © .
X >0 X = 0 2

1.30 The relation so defined is an equivalence relation on Ca .
Proof: Reflexivity is obvious. Symmetry follows from the fact that

if 1lim inf f(x) = a > o0, then lim sup —(—7
X > 0 X >0

For transitivity we can write:

0 (x) &, (x) a(x)
lim inf > 1lim inf . lim inf
X - 0 O[S:Xj T x> o0 Ot2zxj X => 0 asfx}

since the limits on the right are finite and non-zero for alJ\/ oz2

a, AV Ot3 3 similarly:

o’ (x) o (x) oz2(x)
Jim sup ——(——)‘ < 1lim sup —(—)— lim sup —_(_7
X > 0 p > ] X =0 O13 *

We note that o L a o A (where @ o AMx) = @(Ax), A real) if and
only if Qe Ca ; also:

1.31 For Q, B e Ca’ there always exists vy e Ca. with @ o By .

24
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Proof: We define vy as in 1.22. If y 1s linear throughout, it
is in Ca trivially; this is also the case for vy ¢ CC. The
remaining possibility is that vy may be equal to @ o g for

X< X, X >0, and linear elsewhere. Suppose Qe CC, Be CV .

1

Then for o< X< X a calculation as in 1.29 shows that

l)

. , () .. . aos(r\x)
1lim 1nfyy—(-£)— = lim inf 073%6?)—>O for all A > o .

X -> 0 X -> 0

so here also v € Ca . By comstruction, yaradop .

Consequently, the set of functions Ca is closed under
composition up to equivalence.

We note here that the composition defined in 1.22 is, in
general, order preserving in Ca’ in the sense that equivalence
classes are preserved. This follows from 1.30 and the following:
1.32 The equivalence defined above on Ca is preserved under

composition and inversion in Ca .

o 1 AL
Proof: ILet Otl, Y Bl, 52.6 Ca’ with .Bl ocl, 52«/042 and

Blo 32, ozl © 0, e Ca' Bifu ozi implies, by 1.27 and 1.29, that

there exist Ki, K: > o and finite such that:

) ) / for all i =1, 2, and

K, Bi(x < oci(x < K, Bi(x) or a x,i=1, 2, an
4

Ri’ Ri > o and finite such that

/7 .
Ry Ozi(x) < Bi(x) <R, Oti(x) for all x, i

I
}—l

e
o
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B, (B,(x)) B, (R (%))
Then lim inf 12 > lim inf 1 22
X —=>0 OllOLX X - 0 ollOLQX
R.R. o (o, (x))
> 1lim inf laz(é (}2()) =R Ry>o0.
X = 0 172
B,0B,(x)
- . 1772
Similarly, lim sup Ty < °-
X > 0 12 .
1 -1 -1 -1

Now let o o B, B eCa with BoQ, B T oa eC
J

- / /
We have R, R and K, K as above with:

K B(x) < afx) <K ‘ B(x) for all x and
R ofx) < p(x) < R/ o(x) for all x . Then:

p~h(x) = p7T ot a(x)

57 ot k Bloa N (x))

AY

v

K, B'lofl K, a(oa"l(x))

v

Ky B'lo: ofl(x) .

> Ky B K, g0 (x)

> K¢ a-l(x) using the above inequalities and

1.28, for suitable Kg>o andall x .

-1
Consequently, lim  inf ﬁ——(ﬁ > K_> o, which in turn
-1 - 5
X > 0 a (x)

implies that

A oz'lg x)
lim sup < @

X—>0 B-l(x)
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Similarly, the inequalities arising from the equivalence of
¢ and B can be used to show that

-1
lim  inf g:igﬁl > o and
X = 0 B ~(x)

The assumption here that o, B ¢ Ca implies Qo B e Ca
is not necessary, since by 1.31, for any such

composition, there is an equivalent element of Ca . Consequently,
o : .
we have the result that for o, A~ a, and qu) Bos O O Bi\’aé ° Bos

and that - g if and only if a Lo 5‘-1 in C_ .

As noted in the remarks following 1.27, we can extend any
A
Qe Ca on [0,d] to o contained in Ca on [o0,0] and the
extension preserves equivalences since a(x) = (x) for small x .

In a similar way we can set up an equivalence preserving correspondence

between Ca on [o,»] and Ca on [0,d] for any 4, o< d< » .

1.35 For O < d< =, there exists a 1-1 onto éorrespondence
between the equivalence classes of Ca on [o0,d] and those of Ca
dn [o,=] .

Proof: As noted, we have a 1-1 correspondence between equivalence
classes of Ca [0,4] and those of Ca [o,@]. Iet Qe Ca [o,=].

Define «a as follows:
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a (x) = ox) - 0<x< a—l(-g—) .

a(x) = ["O‘-l() y Yo  xox'(£)
a-a"1(%/2)

Then Q is e ¢ [0,d] and if oel~’ch2 in Clo,»], then

al/\/ az in Ca[o,d], since a =a for small x.



CHAPTER IT

The Generalized Lipschitz Algebras of a Metric Space.

In this chapter we will use the lattice of moduli of
continuity discussed in Chapter I to define norms which determine a
class of function algebras, the generalized Lipschitz algebras,
on any metric space. We will discuss the separation properties of
these algebras, and will define a set of metrics with respect
to which a subclass of the generalized Lipschitz algebras on a

given metric space are in fact Lipschitz algebras on that space.

29



SECTION O: The Algebras Ib

Definition 2.0: Let (X,d) be any metric space with

diameter p< » . For a fixed in Ca[o,q], q > p we denote by
L(X,4,a) = Ld the set of all continuous bounded complex valued

functions £ on X with:

9l - o SEEH <

x,yeX

We define a norm on Ld by:

el =1l fllyq

where ||f|| denotes the uniform norm, sup |f(x)|. Note that
® xeX'
€

each such function f has a unique extension ﬁF to the ccmpletion
of X with respect to d, and hence the ‘?i Te La’ make up the
- corresponding set of functions for the completion.
2.1 With this norm and with pointwise addition and multiplication,
La is a semi-simple commutative Banach élgebra with unit.
Proof: (i) L, ise Banach space.
Tﬁe triangle inequality is trivial and hence Eu is a linear
space. We follow a procedure due to Mirkil [8] to show completeness.
let {fn] be a Cauchy sequence in Ld' Then {fn} is also

a Cauchy sequence in the space C(X) of continuous bounded complex-valued

30
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functions on X with the uniform norm, so {fn} converges in this
norm to f ¢ C(X) .

To show that the limit function f 1is in L, consider

120)-£(0)] | 20x)~2, (k)| +] £, ()5, (7) |+ £, () -£(3)]

a(d(x -~
¥ CICIEFD))
for any n, all x, ye X . Since [fn} is Cauchy in Id’ {fn] is
bounded in L, so there is some M >0 with I £ l‘d,a'< M for
all n . Fixing x,y and letting n = « , we see by the above
inequality that || f l‘d,a is also <M, so felL, -

We still have to show that {fn} converges to f in Ha .

By considering the sequence [fn—f} and changing notation, we may

assume without loss of generality that £ =0 . We must show that
{fn} is a zero sequence in La. Now since {fn} is Cauchy in Id’
given any ¢ > o we can find N such that ]|fn-fm||d,a.< e for

n,m> N; i.e., for any X, ye X, x % y:

(2.2 )(x) = (2,-.) ()]
a(d(x:y))

< e

Since the mepping f —> Axf, where

f(x)-f(y)

Ax f(Y) = ala X,y

is continuous from La into C(X) for fixed x, we can fix x,y

and n and let m = o 1in the above, obtaining:
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() - £,(5)]
oA(d(%,5))

< e

in the above, for all x, ye X and all n> N .

Thus nlig ) ‘lfn“d,a =0, so [fn} is a zero sequence in Ib

and Eu is complete in the given norm.
(ii) L, is a Banach algebra:

For f, ge Ly, xty:

f x) - T f(x x)- £(x)-£(3
gl < VO g o I

< 1, Hellg e * el f]1g 0

hence ||%g|ly o< 1911, lellgq+ Hlell, 112114 o

so ||fgl|

il

Hfg”m + Hfglld,a

< el Ilelly + NE, el o+ el el g

<(Hell, + Ul g o) (lell, + Hellg,o)
= |1t]] Ilel]

This shows that %a is closed under multiplication, and that the given
norm iIs a Banach algebra norm on Ld . Since Id is a function
algebra, it is semi-simple and since it evidently contains the constant

functions, it has as its unit £(x) =1, xe X .
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We note that the norm ll'lll on L, defined by :
7 .
[T = max [} 1]}, Ilflld,a] is boundedly
equivalent to the original norm ||-.]|, since
el < Nl <2 1e] foran re, .
For each ¢ C_, L, on (X,4) is obviously closed under

complex conjugation (self-adjoint). Id is also inverse closed,

since if |f(x)| > a> o for all x ¢ X, then

lf%x) ) f:(Ly}\ < i’g‘ | £(x) - £(¥)]

By 0.2, the maximal ideal space of Qa coincides with its spe~trum
for each «. If La separates X, the space X corresponds

homeomorphically with a subset of the spectrum Za of La which is
dense in the Gelfand topology; 1f X 1is compact, X coincides with
%a . Since fs e La for all s e¢ X when ya separates X, (see 2.5)
the homeomorphic embedding of X in %a means that for such

Ld the metric topology on X coincides with the'topology induced

on X by the Gelfand topblogy on %& .

2.2 HI is closed under truncation; i.e. for any real valued £ ¢ La,
a>0,aneLa.

Proof: For any a> o, ||fa a||_ S.\'f‘lw'

By considering cases, it is readily seen that for any x, ye X,
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|4 a(x) - faaly)] < |£(x) - £)] so || £aally o< |Iflly 0

It follows, by (Sherbert) [7] that L, is a regular algebra

if it separates X .



SECTION I: Comparison of different La

The division of Ca inte equivalence classes in Chapter 1
is now seen to provide a classification of the algebras LOt on a

fixed metric space as Q@ varies in Ca .

.3 Let (X,d) bve a metric space of diameter . .

(=}

5 Otl @, in Ca Then chl and LO‘2 contain the same elements

and there exist K, K7 > o such that
kil < 11l s k7112
1S PR it
vhere Hflll is the norm of f in Oti, i=1, 2.

Proof: et f be ¢ L, . Asnoted in 1.32, there exist R, R > o

1
such that
T R’al(x) < Oce(x) < R Otl(x) for all x ¢ [o0,D]
- | £(x)-£(y)
men |19l = 22 G
1 f(x)-f(y)| _ 1
S R/ W ‘al"(a’&’;ﬂg = & Willgq
i.e. g 1, 71 f
ll Hd,a2 < /R H Hd,al

Also, the uniform norm of f 1is independent of «, so L, € La
2 1

Reversing the argument we have La = ch as sets of functions.
1 2

35
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It now follows from the general theory that the norms of %a and

1
La are boundedly equivalent, but the above calculation shows this
2
directly.

Corollary Suppose D 1is finite. Let & be the extension of «
to [o,»] as in 1.33, for e C, fo,D]. Then L(X,d,x) and
L(X,d,et) contain the same functions

Proof: Since o~ by construction, we have for all x ¢ [o,D],
/ A /
K a(x) < G(x) < K a(x) K, K" >0 .

.4 TLet (X,d) %be a locally compact metric space of diameter D.

d(X,y) D = ©

Let a new metric: r (x,y) = Tratos)
b

r (x,y) = % a(x,y) Dim

be introduced on X so that (X,r) has diameter 1 . Then for
each « ¢ Ca[O,D] there exists g e Ca[O,l] such that I(X,d,a)

and L(X,r,8) contain the same functions.

Proof: For finite D, take 8¢ Ca[o,m] and B = -6-1 € Ca[o,vl} as in
the proof of 1.33. Then ozfvez/vs . By 1.25 and the definition

of equivalence, we have for some K

12 K2>O and all x,y € X ;

[l

1
K, a(d(x,y)) < e(f alx,¥)) e(r(x,y))
> _<_ K,N(d<x:3’))'
2
Thus the norms on bounded continuous functions on X given

by a and R are boundedly equivalent, so the sets of functicns



bounded in these norms coincide; i.e., the algebras L(X,d,a) and
L(X,r,8) contain the same functions

For infinite D, take A as in the proof of 1.33. For
d(x,y) < 1, we have

dlx,y) 5 axy)

1+d(x,y) 2

a(x,y)

So for d(x,y) < 1,

8(ax,9)) > e(EET) = (r(x,y)) > s(HEE) > « s(alx,)

37
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for suitable K> O . By construction, a(x) = p(x) for small x .

'Then for, say, d(x,y)< & , any function f on X :
| £(x)-£(y)] V£(x)-£(y)] | £(x)-£(y)|
a(a(x J)) S BG(Ey)) T R(alx,y))

For d(x,y) > 6 , any bounded f :

f(x)-f(y) 211 f
|B(;<X)yyl < Hil ¢ w .

8
B("/1+8)
and
5=l o 2llell o
Aeboy)) = wEy
Consequently a bounded function f on X is bounded in the
norm ll"'d,a if and only if it is bounded in the norm l'\lr,g .

Since the uniform norm is unaffected by the change in metric, this

again means that L(X,d,&) and L(X,r,3) contain the same functions.



SECTION 2: Separation Properties.

We now consider the separating properties of %2 . For
some metric spaces and scme O € Ca 5 Ld may contain only the

constant functions; for example, take X = [0,1], d(x,y) = |x-y]

and o(a(x,y)) = (&(x,y))% . Tet fe L, ; ‘then :
| £(x+h)-F(x)] | £(xh)-£(x)|
Iim b7 = 1lim h bo<iffly <= -
h—=>o0 h—=>o ?

1 £(x)-£(y)]

So lim | <=1 =0 for all x,y . Consequently, f is
lx-y| = o
constant on [0,1] . (Example based on that given by Sherbert, [7].)

We give a sufficient condition on o for Qa to
separate X , as follows : (from [7] )
2.5 Let (X,d) be a metric space; Qe C, such that aod is
again a metric on X . Then L, contains the function fs(x) =

min{o{d(s,x)),1) for all s e X .

38
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Proof: Certainly |[[f ||, <4 for all se X . Since aod is
a metric,
la(a(s,x)) - a(d(s,y))] < a(d(x,y)) for all x,y,s ¢ X .

By considering cases, we see that ||fs||d g1 as well,
: b

so f e L_ .
S 04

It follows that if « is concave, Ld contains fs for
all s e€ X and so always separates X ; this is also the caze if 4

is an ultrametric, i.e. if:
a(x,y) < max [d(x,z), d(y,z)] for all x,y, ze X,

regardless of @ , since the fact that any O e Ca is a monotone

increasing homeomorphism makes & o d an ultrametric as well.

On the other hand, it is not necessary for ¢ o d to be a

metric in order for La to contain fs for all s . Consider
X = {0,1]
d(x;Y) = ’X'Y]

I

a(d(x,y)) = tan (*/4}x-y])
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2
For ox) = tan 1;5, a(o) = o, a(l) = 1, a’(x) = */4 5€€¢ (%)
which is strictly increasing on [0,1], so tan %2(- e CVv [0,1] .
ATCX
. tan 4
Also lim — = A for all A>0
x = o tan X*
4
so tan = e C
4 a
_tan x + tan y
tan (x+y) = l-tan x tan y
> tan x + tan y for tan x, tan y > o
so tan i——}—{ is not a metric on [0,1], since it is positive on this
range. However, for this « on this space:
£ (x) = o(a(s,x))
= tan "/4 |s-x| and :
£,(x) - £.(y) _ tan "/4 |s-x| - tan "/4 |s-y]
a(d(x,y)) tan */4 |x-y]
b b1 1t 1

= tan /4 (|s-x| - |s-y|) (4 + tan " /4 |s-x| tan /4 |s-y|) -

' tan * /4| x-y|

< j_ + tan 11:/4 | s-x| tan ﬂ/‘l |S-Y‘
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< 2 ftforall x,s,ye [0,1] .
So La contains fs for all §

It is immediate that whenever f ¢ L for all s, L
s (0] J o

separates X; the converse also holds:

2.6 IT Qa separates X then it contains the function fs

defined by:

fs(x) = a(d(x,s))al for every s ¢ X .

Proof: Tet yu separate X . Then for any a, y ¢ X , X % Yy
there is some g ¢ La with |g(x)-g(y)| =a>o0 . Ve have

-1
g geLa and :

Ii g(x) - g g(v)| ;l; |e(x) - &y 1
& (d(x49)) ~ ~ odlx,y)) - odlx,y))
> | £,(x) - £ (¥)]
a(da(x,y))
since fS(x) <1 for all x . Thus ||fs‘|s o 1s finite for

each s, so fs € La for all s ¢ X .
We can now prove a statement analogous to 2.2 .

2.7 Let (X,d) be any metric space of diameter D < o; let

a(x)

Blx) = O &

a, B be ¢ Ca [0,D] such that 1im inf
X = 0
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-~~~

a(x)

lim sup
X = 0

< © .

B

and such that L'B séparates X. Then La is properly contained

in L

g
Proof: Since L‘3 separates X, fs as defined in 2.5 Dbelongs to
La for all s ¢ X . TFor any s and all x such that/g(d(s,x))< 1,
we have
2000 = 2,60 (g(s) - £ )] olas )
p(d(s,x)) a(d(s,x))  ° pld(s,x))

Then for any M > 0 , there exists § > O such that for

d(SJX) <& ,

Wella,q 2 15:00) - L0y

a(d(s,x))

i.e. Hszd,a is tnfinite for each s and so fs is not in La .

Let f ¢ La Since lim a(i) < © , there exists K

X > OB

such that a(x) < K g(x) for all x ¢ [0,D] . Consequently,

|£(x) - £(y)] K |£(x) - £(¥)] |

patoy)) S Tty <Kllflla fer el
X, ¥Ye X . So f e LB . Note that Lag LB whether LB separates

X or not.
In particular, for Q< g8 in the lattice order on Ca [0,D]

. ax)
and _]in_ Ez-}-{—y

= o, Lac: L6 whenever LB separates X .



SECTION 3: The Metrics JOL .
For each « ¢ Ca such that La separates X, where
(X,4) is a fixed metric space, we may introduce a metric Ty o0 I,

as follows:
Let Qf,)ue %, 5 ‘then:

T B#) = sup (|B(£) -£(£)] | £, ||F]] <)

Il

A A
sup (|£(g) - £(#)| |feL, |1]] <43
Then JO( induces a metric on the set X c Za:

T (%,y) = swp (|£(x) - £(7)] |fel, |[£]] <4) for x, ye X .

2.8 For any metric space (X,d) of diemeter D< » and any
o e Ca such that La separates X and the set {fS|Sg X} is
bounded in La, the metric Ja is boundedly equivalent on X to
the distance given by « o d; 1i.e., there exist K, K’> 0 with :
kK’ o(a(x,y)) <0y (x,¥) < Kec(a(x,¥))
for all x, ye X .
Proof: By definition, Ja(x,y) < a(d(x,y)), since if f ¢ L,
with ||f]]| < 1, then
|f(x) - f(y)‘ < a{d(x,y)) for all x, ye X .
We have fs(x) = a(d(x,s)) ¢ L, forall se X, since L, separates

X and X 1is of finite diameter. By hypothesis, there exists some
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constant P, O< P< w, such that ||f || <P forall seX .

Let x, y ¢ X be given and set g(s) = % fx(s) for
s e X ‘. Then ge L, with ||g|| < 1 and

O 6y) > elx) - ey)| =3 o (a,¥)),
which completesthe inequality as stated.

From this there follows immediately:
2.9 For any metric space (X,d) of finite diameter and any

Qe Ca ‘such that Id separates X and {fslse X} 1is bounded
in Id’ there exists a metric on X such that Id is precisely
the essociated Lipschitz algebra.

With respect to the boundedness of {fs‘s e X}, we note
that this is the case whenever the triangle inequality holds for
o od at all points in -X . We have then:

|£,(x) - £.(3)] = |(d(s,x)) - ala(s,y))]

< afd(x,y)) for all x, s, Ye X,

i.e. ||fsl|d o <1 forall se¢X .
)

If the triangle inequality for @ o 4@ holds nowhere in X ,

we have

[£,(x) - £ .(v)] = |a(d(s,x)) - «(a(s,¥))]
< a(d(s,x)) + a(d(s,y))

< a(d(x,y)) for all x, s, Y e X .
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so in this case also, Hfs‘ld,aﬁi for all s ¢ X.. The case
in which & o d satisfies the triangle inequality at some points of
X and not at others remains open . |

We note finally that the uniform structures Ua on X

generated by the sets {(x,y) \ a(d(x,y)) < e} are all equivalent
to the metric uniformity determined by d (i.e., Ul). Hence for
@ with separating L and {fs ‘ s ¢ X} bounded, the G are

o

uniformly equivalent metrics on X .



CHAPTER 3

SPACE MAPS AND ALGEBRA HOMOMORPHISMS.

Given two metric spaces and their associated collections
of algebras Id’ we now consider the rélations between continuous
maps of one space into another and homomorphisms of the algebras.
We will give a categorical characterization of these relations.

In this Chapter we will consider all Qe Ca to be defined on
[0,»] . and all metric spaces to be of finite diameter. By 2.4 ,

this involves no loss of generality.
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SECTION O: Adjoints.

Iet (X,d) and (Y,r) be two metric spaces.
3.0 A continuous map t of X into Y will be said to be

p-modally continuous if it satisfies the condition:

r(tx,tx) < K g(d(x,y)) (*)
for B e Ca’ some K> 0 and all x, ye X .
We will denote the fact that a continuous map t satisfies

condition (*) for a particular B ¢ c, by writing:

t o (X,d) > (Y,r) ()
We note here that if t is p-modally continuous and XA/ B
in Ca’ then t 1is also Q-modally continuous.
Given any continuous map t : X —= Y, we consider T ,
the adjoint of t, to be the algebra homomorphism
T: C(Y) = c¢(X)
defined as in Chapter O by
Tf(x) = f£(tx) for xe¢ X .
3.1 Let t: (X,d4) - (Y,r) be a pB-modally continuous map. For

¢ C the restriction Ta of the adjoint T of t to Ld

a’

determines a compact-open continuous algebra homomorphism

T L(Y) - Laos(x) .
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We note that if o o B is not in Ca’ we can replace it, by
1.31, with an equivalent function in Ca without loss of
generality, and will consider this to have been done henceforth
when the occasion arises.

Proof: For fe¢ L, (Y) :

)|,

sup {lf(tx)‘ |x e X}

< sup {|£(y)| |y e ¥}

el

I cor R

ftx) - f(t
= sup (ozoﬁ)ﬁ(d(xff)’;‘ | % e X)

(t - f(t
o I

A

k' sup (JELs) = £(t)]

< sft a(r(s,t

o vem =R,

Thus T(Lu(Y)) g;IdOB(X) and T is trivially a homomorphism. To
show that T is compact open continuous, for ¢ > 0, g ¢ Ld(Y)’ K

compact in X consider:

N(Tg, K, ¢)

(£ ¢ Toop() | |17-Te]K] |, < <)

and N(g, tK, ¢) = (£ e L(Y) | ||£-g|tK]||_ < )

The continuity if t implies that tK us compact in Y, so N(g,tK,e)
is an element of the subbase of the compact open neighbourhood

system of g and



49

T(N(g)tK:G )) c N(Tg,K,e)
since

W f-eg| K|, = || T£-Tg| K|

This establishes the compact-open continuity of T. JIn the case
where Y 1is compact, T 1is continuous in the uniform topology of
Id (Y), since the two topologies coincide.

In order to get a partial converse to this, we need first
to establish that the adjoint of a compact-open continuous homomorphism
of L -algebras, T:A — B, carries the underlying space of B into
that of A; in other words, preserves fixed ideals. In view of
0.4, all we need to show is that for any X, any compact open
neighbourhood of the unit of ga(x) contains a function of compact
support when Id(X) separates X. Since L, is regular when it
.separates X, and always self-adjoint and closed under truncation
the following result will provide this:
3.2 Let X 7De a locally compact metric space. If A 1is a regular
subalgebra of C(X) which is self-adjoint and closed under truncation,
then every compact open neighbourhood of‘the unit of A contains a
function h e A with compact support in X .
Proof: We need to show that for every compact set K in X, there

exists a function h e A which is identically 1 on K and zero

outside a compact set in X . ILet K be any compact set in X ,
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U an open neighbourhood of K with compact closure. Let M(A)
denote the maximal ideal space of A. TFor each p e M(A)-U, we

have by regularity a function fp e A with :

fp(p) =1
A
fp(K) =0
A
Set v, = {q | pr(q) | >3%)

Then ©p e Vp’ and the sets
U and V . '
' p pkU
form an open cover of M(A). By compactness we can select a

finite number of these sets, U,Y_ , ...., V
Py Pn

h —
Now set f= X £ £ A
For q¢ X, q%U we have q_evp; for some j, so
J

£(a) 2 | £, (a) 1% > Yy

J
For q ¢ K, £(q) =0

Now set h=1-(4f) A 1€ A.

Then b | K=1, while for x } U, ﬁ(x) =0 . h is then the

required function.
It follows that we can talk about the adjoint t 2 Y - X of
a compact-open continuous algebra homomorphism
T: La(X) - LB(Y)

when La(X) separates X and X is locally compact.

MILLS MEMORIAL LIBRARY
McMASTER UNIVERSITY.



51

3.3 Let (X,d), (Y,r), where (X,d) is locally compact, be

metric spaces with « ¢ Ca such that Ld (X) separates X, a'l € Ca
and the set {fs | s ¢ X) is bounded in I (x) .

let .

T: L, (x) > LB (Y)
be a compact-open continuous homomorphism for some B ¢ Ca. Then
its adjoint t 1is an a_l o B -modally continuous map of (Y,r)
into (X,d) .
E{ggﬁ:' By the preceding discussion, t carries Y into XM (Id) .
Sincz T 1is a Banach algebra homomorphism, the set

[Tfs l s € X}

is bounded in norm in LB, say by K . For all x,ye€Y

K> |Tf (x) - Tf_(¥)]
B(r(x,y))

> |a(d(s,tx)) - a(d(s,ty))|
B(r(x,y))

Then for s = ty :
o(a(tx,t9)) < K 8 (x(x,3))
. /7 -1
i.e., d(tx,ty) < K" a7 o g (r(x,y))

for suitable K’ > O since a-l € Ca by hypothesis. In the case

where X 1s compact, we note that all three of the conditions of
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3.3 are still necessary in order to reach the same conclusion.

If a= g =: the identity in Ca’ this reduces to the case of the
Lipschitz algebras on X and Y , as considered by Sherbert [7].
In this case, the separation of X by %d’ the inclusion of a_l

in C_ and the boundedness of (£, | s ¢ X} in L, follow from

the definition of ga .



SECTION I: Algebra Isomorphisms.

From here on, we will consider all metric spaces to be
locally compact.
3.4 A compact-open continuous homomorphism

T: L (X,4) — > L, (Y,r)

where a-l € Ca’ L, (Y) separates Y and the set [fs l s ¢ Y} is
bounded in L, (Y), is an isomorphism of L, (X) onto L, (Y)
if and only if the adjoint t:¥Y=>X 1is a homeomorphism of Y onto

X satisfy#ng
k! o (r(x,7)) < Altx,ty) < Ko (x(x,5)) (3.4 C)

/
for some K, K >0, 2all x,ye Y .
Proof: Iet T Ybe a compact open topological isomorphism of

L (X) onto L, (Y) . Since T 1is onto, t is 1-1, so

£t (M(x)) = M(Y) is defined on t(M(Y)).
Now suppose t : M(Y) = M(X) 1is not onto, so that there exists
Y e M(X), y”%:t(M(Y)). Since M(Y) is compact and t is
continuous, t(M(f)) is compact in M(X). By the regularity of

L there exists f ¢ Ll with

l}

A

(¢) =1

f(x) =0 for all x & t(M(Y))
So %f(;//) = ?‘(tw) =0 for all ¢ e M(Y)
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This contradicts the assumption that T 1s 1-1, so t

must be onto, M(Y) — M(X) . Likewise £ M(X) — > M(Y) *°
onto and
-1 -1
tTT(X)gYct T (M(X)) = M(Y) .
i.e. Xc tY since t 1is 1-1. By the compact open continuity of
T,tY¥cX, so t¥=X and t 1is onto.
Now we define do(x,y) = d(tx,ty) for x, y€ Y . Since
t is 1-1 , this gives a metricon Y . Set
L =1L (Y,do)
Then for f ¢ L, (Y), £ =Tg for some g ¢ L (X) and :
|£(x) - £(y)] = |a(tx) - alty)]
d_(x,y) a(tx,ty)
for all x Y .
< |lella,n > Ve

Thus L, () ¢ L, in particular, since L, separates Y by
hypothesis,
£ (x) = afx(s,%)

is in Lo for all s e Y , so for some constant Kl >0

ofr(x,y)) < K (d(tx,ty))

with 3.1, this shows that t satisfies 3.4.0 for suitable

K,K' >0 .
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Let t : Y - X %be a homeomorphism satisfying 3.%.0 .
Then the adjoint T is 1-1, I, (X) > 1 (Y) end is compact-
open continuous by 3.1 . Then dO as defined above is boundedly
equivalent to @or ; i.e., L (Y,do) and L, (Y,r) contain

the same elements. Let f ¢ L, (Y,do) and define
-1
g(s) = £f(t ~s) for s ¢ X .

Then

le(x) - e(y)] _ |2(+7%) - £(t7y)| for x, ye X .

a(x,y) a(x,y)

_ |T—lf(x) - T-lf(y)‘
d(x,y)

Since T : L, (Y) = L, (X)), ge¢ Ly (X) and Tg=f . Thus
T: L (X,d4) = L, (Y,do) is onto, so T maps L, (X,d) onto
L, (Y,ri . ‘

As far as the automorphisms of a particular L, (X,d) are
concerned, we can say:
3.5 Every compact open automorphism T of Qa (x,4), « e C

where L, (X) separates X , ot ¢ C, and {fs | s ¢ X} is

a 2

bounded in Ea , 1is of the form:

Tf(x) = £(tx) fel,,%xeX .

where t: X — X 1is a homeomorphism onto satisfying

’ /
K d(x)Y) < d(tX;ty) < Kd(X)y) x5y e X, K, K" >0
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i.e. the adjoints of such automorphisms are homeomorphisms which
satisfy a double Lipschitz condition .

Proof: Follows from applying the method of proof of 3.3 +to the
situation T: Ld - ya as described. The only change needed is
to set

Ly = L, (Y,do)

instead of L, (y,a.) .



SECTION 2: Categorical Considerations.

We can express some aspects of the relationship between
modally continuous space maps and compact-open continuous algebra
homomorphisms in £erms of sultable categories. We refer the
reader to [11] for basic material about categories

To begin with, we can describe the system of LOt algebras
on a fixed metric space as follows:

3.6 Iet Ca[o,d] be directed by the lattice order and assign

to each O ¢ Ca the corresponding algebra La on X . For

) B . .
O!g_[; in Ca let ha : La—-> LB be the mapring of Loz onto
itself as a subset of LB . (La, hg) then forms a direct system

of Banach algebras and Banach algebra homomorphisms.

Proof: By 2.6 , for a< B, La_c_ LB and

el g2 HEEEOM = 1£]]g 0

since £(x) = 1Y (x) for all x¢ X, ||£]|_ = ||e5(D)]|  so

hg is a Banach algebra homomorphism, LOt - L5 .

hg : La-> La is the identity for every « ¢ Ca 5 and for o< B< ¥,
Y _.8 g

we have ha = hOé o) h{3 .

Since by 1.17 every uniformly continuous function on (X,d)

Thus (La, hg) forms a direct system.

satisfies some modulus of continuity in C, the union of this
system is the algebra of all uniformly continuous complex-valued

bounded functions on X . It is conjectured that the unifcrm closure

5T
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of this algebra is the direct limit of this system in the category
of commutative semi-simple Banach algebras.

Now let G stand for the set of equivalence classes of
Ca under the relation defined in Chapter I, Section 4. G 1inherits
the lattice order of Ca and is closed under composition by 1.31 .
We have then associated with each metric space (X,d) the direct
system of algebras (L¢(X) , h; %,yeg' where %¢(X) is the algebra
with compact-open toéology given by Q ¢ Ca and ¢ is the equivalence
class of Q@ in G . I¢(X) then consists of the same set of
functions as IO(X) for éll o} C.fé, and it is easily seen that
this is again a direct system of algebras over (X,d)

Moreover, any B-modally continuous map with B ¢ Ca

t: (X,4) = (Y,r) (%)

determines by its adjoint the algebra homomorphisms

Tp!‘ : L¢(Y) - L¢Or‘(X)

for all ¢ € G, where n is the equivalence class of g in C,-
This leads us to consider the category @ defined as follows:
The objects are the direct systems of topological algebras:
(B, bg)gn e G, g2
with the property that, for ¢ < n, Bg is a sub-algebra of B, ,

and the algebra homomorphism
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is in fact the natural injection. The morphisms are pairs of the
form:

9=((T¢)¢66«:’?);76G
where Tf : }39( -—-> B ;6 on is compact open continuous with
g 0o’ = ((T;o,? °oTg) 51 on”)

where defined, and for any ;f <N

T n o h} = Tig
i.e. Tq‘ B;A = T¢

The composition defined is evidently assoclative and g 1is the
identity belonging to (BP‘ s h;) if each T¢ is the identity
homomorphism of B?{ and i 1is the equivalenceclass in G containing
the identity map in Ca .

On the other hand, we consider the category X whose objects
are the metric spaces (X,d) and whose morphisms are the n -modally

continuous maps for N € G; (t,7) such that:

t: (X,d) = (Y,r) (B)
for any B in the class R of G .
' Again it is readily seen that
(t’,,;/) o (t,n) = (% t, ho7)
where defined; this composition iséssociative and the identity for

(X,d4) is simply the pair (t,n) where v is the identity equivalence

class in G and t 1is the identity mapping on X .



We can now define a category mapping F : of——) 65 .

as follows:

F(X,8) = (L(X,8,¢),n)}

)f’ 7¢G,g<n
F (t,n) = ( (Tp)ﬁeG , 1)
on the objects and morphisms respectively of L
3.7 This mapping F : L—a & (@) is a contrévariant functor
which maps the set of modally continuous |
6 (X,d) = (L,r) () ne G
one to one onto the set of all morphisms
F(Y,r) — F(X,d)
Proof: Let 6= ( (T¢)¢’€5_J-7 ) for 7 ¢ & . In order to show
that F 1is onto, we need to find (t,q) in L  such that F(t,if) =9

We take t = TP*, the adjoint of an algebra homomorphisma

ot Ly (¥) hon (X)
in g such that LP (X) satisfies the requirements of L, in
3.5. It is sufficient to take £ the equivalence class of the
identity map in Ca'

By 3.3, t: (X,d) — (Y,r) (V[ )
Moreover, we claim that

T % (x) = T,% (x

REOERARC
for all ;zf e G, 2ll x € X where Tp* is defined. Suppose that

# <P, SO that L¢(Y) c I;O(Y) . Then
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i.e., T,* (x)=T% (x
) Tye (x) = ¥ (x)
where defined, so the above assertion holds.

For IP(Y) c L (Y), we recall that the adjoint t of Tp :

LP(Y) - f’ o (X) carries all points (i.e., fixed maximal ideals)
of X +to points of Y . Since I_p(Y) separates Y, 1if two

ideals are identified by + , they correspond to the same point

of Y . Suppose T X, = t X5 3 consider the adjoint h of
. ) — >
Tg : L¢(Y) L¢ o1 {x)
Suppose hx, § hx, . Then for all s ¢ X , fs(hxl) F £ (hxz);

i.e., T P £ (x ) ¥ Ty f (xg,
But since f_ ¢ I;a (Y) for all seg Y :
_ M —_

T#fs(x‘) = ’pfs(xl) f (x2) = Tﬁfs(xg)
So we must have hxl = hx2 = tyl for the adjoint of ’I"o
This takes care of all cases, since for ?!, A2 ¢ G we have that
& <p p< ¢ or 4§ and P are not comparable. However, if
?5 and p are not comparable, we can find n€&G with 5 > ;( and
y _>_/j, and in this case L’I(Y) will have the same properties as
I;O(Y) . This reduces the matter to the two cases we have considered.
It follows that the adjoint of every Tﬁ e 6 1s determined by that

*
of ‘I/‘o, so we can take t = T,G and then F(t,n) = ¢ as required.
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Finally, let oy = (Tl orh)

( (T2¢ )¢GG, 72)

'71 72
T1g = To g for all & ¢ G .
In particular, Tlp= TEP for 2 as above, and since these

homomorphisms are enough to determine 1, N and 6, are the
image under F of the same (t,i]\ in & ; so F 1is one to one
as stated.

Since F  is a functor, it takes isomorphisms of oi to

isomorphisms of B . An isomorphism in L is a map
t: (X,4) - > (Y,r) (%)
such that t_l exists with
v () -> (x,0)  (h)

where Vz-l e G . Such a map must correspond under F with
where all T # are isomorphisms
H —->
T4 L/;(Y) I%O?(x)
We note that the existence of t and t-l as above implies that

t satisfies

r(tx,ty) < K O!(d(x,y)) X,¥eX, Q¢ 7
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a(t7lz,t7) < Cp(rz W) zZweY, pen
Hence, for suitable Kl’ K2 >0,
Kl a (d(x,y)) ¢ rltx,ty) < K, (alx,y)) -

Thus the isomorphisms of @ come from maps (t,'r]) in Z such
that . t-l is defined, Vz-l e G and t satisfies the above double
condition with respect to « , for any « 1in the equivalence

class Vl .



CHAPTER 4

Quasiconformal Mappings.

In this chapter we consider the analytic properties of the
space maps induced by compact-open continuous isomorphisms of
generalized Lipschitz algebras, and see to what extent space maps

of this type give rise to algebra homomorphisms.



SECTION O: Quasiconformality.

The basic results on quasiconformal mappings in the plane
are to be found in Kunzi [12]; the 3-dimensional case has been
developed by Gehring [3]

In real n-space, Rn, nZ?2, aring R is defined to be
a finite connected doubly connected domain, that is, a domain
whose complement with respect terxtended n-space consists of two
components Co and Cl’ such that Cl contains the point at
infinity. ILet Bci denote the boundary of C, with R, 1=1,2.

We define the conformal capacity of a ring R as follows:

c(R) = inf _-(R | otz |" dw

where the infimum is taken over all functions u = u(x), x = (xl,...,xn)

which are continuously differentiable in R and have boundary values
0O on & CO and 1 on a Cl . We then define the modulus of R

by means of the relation

n L
&/2 n-1
W

where n is the dimension of the space and T is the gamma function.
If R 1is the n-dimensional shell bounded by concentric balls of

radii a and b, a<« b, then

65
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mod R = log b/a .

4.0 A homeomorphism of a domain D 1In Rn is said to be a

K-quasiconformal mapping, 1 < K« o, 1if the inequality

% mod R ¢ mod t (R) <« K mod R

for fixed K and every bounded ring R with R D . A

quasiconformal mapping is one which is K-quasiconformal for some K.

If-t.is a homeomorphism of a domain D in Rn, we define,

for x €D .
L (x,r) = sup | tx-ty]
- ‘){—y =T
1(x,r) = inf |tx-ty‘
X=-y|=r
L(x,r)

H = 1i
() = Hm o 107

The following result, in R2 and. RS, is due to Gehring [3],
[12]; its extension to R® is simply a matter of following Gehring's
procedure for R3 in the n-dimensicnal case.
4.1 A topological mapping of a domain. D in Rn is quasiconformal
on D if and only if H(x) is bounded in D .

Quasiconformal maps may, of course, be characterized in
analytic terms. Jn the present context we will be interested only
'in the extent to which they are Holder continuous. The classical

result on HOlder continuity of quasiconformal mappings is that given
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in its final form by Mori in the case of plane mappings:

4.2 [12] Let w = H(z) be a K-quasiconformal plane map of
lz|<'1 onto ‘w|<1 with H{(O)= O . Then for each pair of
points 2.1, Z, in 'Zl<1’

c'k'zl - 22|k£ | B (z) - H(z,)] < 2y - Z,| Lk

where C 1is an absolute constant whose smallest possible value is
16.

More generally, we have the results of Callendar [4] :
4.3 ILet f(x_) be a K-quasiconformal map of the open unit ball
|x|<q in R® onto itself, with f£(0) = O . Then there exists
an absolute constant H and an absolute exponent p such that
for any pair of points X5 Xy in |x|<1

|£05) = 20ep)] < 7 [y - gl P

Here H and p depend on n and on K .
4.4 Tet f Dbe a K-quasiconformal map defined on a domain D of

Rn, then on any compact subregion B of D

|£(x;) - £(xx)} < € %) - x| k,

where Xy, X, are any two points of B, C depends on n, K and

2
the distance from B +to the boundary of A and }a depends only

on n and K .



SECTION 1: 43 - Homomorphisms and Quasiconformality.

We can now relate the algebra isomorphisms discussed in
Chapter 3 to quasiconformal mappings, as follows:
4.5 Let X and Y Dbe domains in real n-space. The direét
systems S(X) and S(Y) of generalized Lipschitz algebras over
X and Y are objects of the category JB discussed in Section 2
of Chapter 4 . ILet g be a B-isomorphism; g : S(X) = s(Y)

- Then the adjoint t of @ 1is a quasiconformal map of Y onto X.

Proof: By 3,4 and remarks following, t is a homeomorphism
satisfying
Ki a(\x-y\) < |tx—ty| <K, a(‘x—y‘) X, VeV

where « 1is in the equivalence class of ¥} and lx-y‘ is the

usual metric in n-space. Then for every y e Y :
. sup ltx-ty‘
=1 - -
H(y) . ii . sup ot |tx-ty| |x y| =T
<1 Kpllxy]) |x-y| = r

r— 0 Ki aflx—y|)

A

So by 4.1, t 1is quasiconformal.
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In general, a quasiconformal map of one domain onto another
cannot be shown to give rise to an 43—isomorphism of the associated
direct systems of algebras, since, even with the strong conditions
of 4.2, such a map does not necessarily satisfy the double
inequality

K, a(|x-y‘) Siltx—tyl < K, a(\x-yl)
for any O ¢ Ca . However, combining the fesults of Chapter 3
with 4.2, 4.3 and 4.4, we have :
4.6 Let t be a quasiconformal map of the open unit disc U in

the plane onto itself, with t(0) = 0 . The adjoint T of t

determines a @ -morphism

0 = ((Tﬁ‘)gfeG")) ie. o : 8(U) = s(U) {)

of the direct system S(U) 1into itself, where hn 1is the equivalence
1
class of a(x) = xX. Moreover, for each #e G, we have :

() e L) g L, (0)

{JB
where g (x) =
Proof: The existence of T and the fact that

follow from 3.1, 3.7, and the inequality in 4.2. The left

hand inclusion comes by applying the proof of 3.1 to the left

side of the inequality of 4.2 .
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The last two results follow immediately froem 3.1, 3.7,
and the quasiconformality results 4.3 and 4.4 .
4.7 Let t be a quasiconformal mapping of the open unit ball U
in R® onto itself, with t(0) = O . The adjoint T of 1

then determines a (f§ -morphism

o : 5(U) > 8(U) ()

of the direct system S(U) into itself, where 9 is the
equivalence class of a(x) = XP) b as in 4.3 .

_4_.§ - Let = be a quasiconformal mapping defined on a domain D in
Rn. Let B be any compact subregion of D such that B 1is
separated from the boundary of D . Then the adjoint T of +t

determines a § -morphism
o : S(tB) = 8(B) (n)

where t B 1is the image under t of B and 7 is the equivalence

of x’j b as in + 4.
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