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PREFACE 

This thesis deals with two problems: 

(i) To generalize the concept of the Lipschitz algebra of a 

metric space. 

(ii) To study the analytic properties of the mappings induced on 

the underlying metric spaces by homomorphisms of generalized 

Lipschitz algebras, and to see to what extent maps with these 

analytic properties induce algebra homomorphisms. 

We commence by studying the lattice of convex and concave 

mod1'li of continuity on a closed real interval. Elements of this 

lattice, with suitable restrictions, are then used to give a 

family of Banach algebra norms on the algebra of bounded continuous 

complex-valued functions on any metric space. The algebrasof 

functions bounded in these norms are the generalized Lipschitz algebras .. 

Again with certain restrictions, homomorphisms of these 

algebras are shown to correspond to space mappings which satisfy 

moduli of continuity. The collections of such space maps and of 

generalized Lipschitz algebras inherit a partial order from the lattice 

of moduli of continuity. Using this, we express the relationship 

between algebra homomorphisms and space maps in categorical terms. 

Finally, when the metric spaces in question are taken to be domains 

in real n-space, isomorphisms of generalized Lipschitz algebras 
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are shown to induce quasiconformal mappings of the underlying 

domains. It is also established that quasiconforrnal maps induce 

homomorphisms, within fixed limits, of the generalized Lipschitz 

algebras. 
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CHAPI'ER O 

GENERA.L PRELIMJNARIES 

We collect here some well known results on function algebras and 

quasi-conf'ormal mappings which will be given without specific references. 

Proofs and further discussion are to be found in [Loomis, (l)], 

[Royden, (2)] and [Gehring, (3)] along with bibliographies of further 

sources. 

Let X be a topological space and A an algebra of continuous 

canplex-valued functions o~ X. We assume that A contains the multi

plicative identity [f(x) =1, x e X] and that the functions in A 

separate the points of X. 

The spectrum .E = .E(A) of A is the set of all non-zero homo 

morphisms of A into the complex field C. The space X may be 

embedded in E by identifying with each x in X the homomorphism 

f -> f(x) taking each function in A to its value at x. A is 

naturally isomorphic with the algebra /'t.. of functions on .E defined 

by ~(n) = n(f) for TI e E and f e A. 

The algebra A then consists of the fUnctions in t restricted 

to- the space X. 

E is usually topologized by using the weakest topology under 

which the elements of t are continuous. This will be called the 

Gelfand topology on .E; in it, a neighbourhood basis for the point 

0 e E is given by sets: 
) 
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for e > o, f 1, •.. , fn e A. The Gelfand topology is always Hausdorff 

and the natural embedding of X into E is continuous with respect to 

it; if X is compact, this embedding is a hameomo,rphism. 

We can also associate with A the set M = M(A) of maximal 

ideals of A. Since each element of I: is uniquely determined by 

the maximal ideal which is its kernel, we can identify I: with a subset 

of M. 

A function algebra A on a space X is weakly inverse closed 

if it has the property: 

(a ) If f e A and sup If(x) I < i, then (1-f) has an inv""rse in 
0 xex 

A. A 	 is inverse closed on X if it has the property: 

(a) If 	f e A and f ~s bounded away from O on X , then f has 

a...11 	 inverse in A . 

We note that a implies a . further, if A is closed undero' 

uniform convergence, then a holds. The following pro~ositions
0 

relate the divisibility properties of A, its maximal ideal space and 

its spectrum. 

0.1 Let A be a weakly inverse closed algebra of bounded functions. 

Then the spectrum and maximal ideal space of A coincide with the 

spectrum of A, the completion of A under uniform convergence on X. 

Further, the Gelfand topologies of E(A) and E(A) coincide. 

0.2 Let A be an inverse closed and self-adjoint (closed under complex 

conjugation) algebra of bounded functions which separates X. By 0.1, 

the maximal ideal space and the spectrum of A are identical, and if 

If X is not compact, it isX is compact they coincide with X. 
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homeomorphic, by the natural embedding, with a subset of the spectrum 

of A which is dense in that spectrum in the Gelfand topology. 

Since the algebras with which we will be concerned satisfy 

the conditions of 0.2, we identify the spectrum and maxiraal ideal 

space and use the same symbol, M, for both. Elements of M 

corresponding to points of X under the natural embedding are called 

fixed ideals; other elements of M are called free ideals. 

The association of the space on which an algebra of functions 

is defined with the spectrum of the algebra provides the basic 

connection between algebra homomorphisms and space maps. Given two 

algebras A and B on topological spaces X and Y, we let T be 

a hanomorphism of A into B. Then for each homomorphism TT e M(B) 

we have a homomorphism t(n) in M(A) defined by t(n) == n o T. 

Thus for each y e Y and f € A we have 

f(t(y)) == (Tf) (y). 

We call the mapping t the ad,joint of T and sometimes write 

t == T*. With respect to the Gelfand topology of M(A), t is a 

continuous map of M(B) into M(A) and its restriction to Y is a 

continuous map of Y into M(A). Further, if T maps A onto a 

dense subset of B, then t is a home:m<rphism of M(B) onto a closed 

subset of M(A). If T maps A onto B, then t is 1-1, M(B) into 

M(A); if t maps M(B) onto M(A), then T is 1-1. 

Conversely, if X and Y are topological spaces and t a 

continuous map of X into Y, then for each function f € C (Y), the 

algebra of all continuous cc:mplex valued functions on Y, we have 

:f o t e C (X). This gives a unitary algebra homomorphism T : C (Y) ->c(X) 
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defined by 

T f (x) = f o t (x) f € C(Y) 

We call T the adjoint of t and sometime write T = t~ 

If t maps X onto Y, then T is 1-1; if T maps C(Y) onto 

c(x), then t is 1-1. 

For algebras A and B on topological spaces X and Y, 

let T be a homomorphism of A into B. 

When X, considered as a point set without topology, coincides 

with M(A), the adjoint mapping t is a mapping of Y into X. 

If X is compact, by 0.2 its topology is the Gelfand topology and 

t : Y -> X is continuous. If X is not compact, the mapping t 

may not be continuous with respect to the topology on X and m.a:y not 

carry Y into X as a subset of M(A). We can give conditions which 

ensure that t(Y) c X; as follows: 

Definition 0.3 I.et A be an algebra of bounded functions defined on 

a topological space X with values in a normed space. The compact 

open topology on A is generated by the neighbourhood basis given by 

sets of form: 

... ' Kn; e) = [geA I Ilg -flK.11 00 < e, i= 1, ••• , n} 
J. 

where f e A, e > 0 and the Ki are any finite collection of compact 

sets in X. 

0.4 I.et A, B be point-separating algebras of continuous complex-valued 

bounded functions on the topological spaces X, Y respectively; such 

that X is dense in M(A) and every compact open neighbourhood of the 
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unit of A contains a function of canpact support in X. 


Then for any unitary homomorphism T : A - > B which is continuous in 


the compact -open topology the adjoint t : M(B) - > M(A) carries 


Y into X. 


Proof: Let y e y. M 
y 

= [f e B!f(y) =o} is closed in the canpact 


open topology of B. Suppose t y f X. 


Mty = [f e Alf(ty) = Tf(y) = o} 

is exactly T -l(My) and hence is canpact -open closed in A. Since 

t y ~ X, all functions f in A of compact support in X are 

in for if K is the support of f, x -K is dense inMty ' 
M(A) -X and thus ~ vanishes CY'_ M(A) - x. But every com.pact 

open neighbourhood of the unit, 1, of A contains a function of canpact 

support. Hence 1 e Mty' which is a contradiction of the fact that T 

is unitary, so ty e X for all y e Y. 

In other words, the conditions of 0.4 ensure that the mapping 

t carries fixed ideals of B to fixed ideals of A. An argument 

similar to this was given by Nakai [9] in the special case of the Royden 

ring of functions on a Riemann surface, but as far as we know this is 

its first statement as a general proposition. 

We note that the compact-open topology on an algebra A of 

continuous functions on a space X depends strongly on the underlying 

space X. For instance, if Y is a dense subspace of X and B the 

function algebra obtained by restricting A to Y then the restriction 

map T : A - > B is clearly an algebra isomorphism, and hence so is its 

inverse, but T-l may fail to be compact open continuous, although T 

always is. 



CHAPTER I 

Moduli of Continuity 

In this Chapter we discuss the lattice of real convex and 

concave moduli of continuity on a closed real interval. We 

define an equivalence relation on this lattice and introduce a 

subclass which will eventually be used to give norms for systems 

of Banach algebras. 

6 
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SECJ:ION 0: Concavity and Convexity. 

Definition 1.0 A real valued function f defined on a closed real 

interval I is concave on I if and only if for every 

x
1

, x e I, x < x
2

, every point (y, f(y)) of the graph of f
2 1 

with x < y < x is above the line segrrent [(x1 , f(x )),1 2 1 

This condition is equivalent to the following: 

1.1 f(A. x + (l-A.)x ) ~A. f(x ) + (1-A.) f(x ) for all x
1

, x , e I
1 2 1 2 2 

with x < x ; all A., o < A. < 1. 
1 2 

1.2 f is continuous on I, differentiable on the complement B 

of a set in I which is at most countable, and has non-increasing 

derivative on B. 

Definition 1.3 A real valued function f defined on a closed real 

interval I is convex on I if and only if (-f) is concave on I. 

This is equivalent to the following: 

1.4 For every x1 , x e I with x < x
2

, every point (y, f(y))
2 1 

of the graph of f with x < y < x is below the line se1?7Uent
1 2 

[(~, f(x1 )), (x2 , f(x ))].2

1.5 f(A.x + (l-A.)x ) < A f(~) + (l-A)f(x ) for all x
1 

, x e I, x < x ;
1 2 2 2 1 2 

all A. e (0,1). 
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1.6 f is continuous on I, differentiable on the complement B 

with respect to I of a set in I which is at most countable, and 

has non-decreasing derivative on B. 

Concavity and convexity are thus dual properties. 

We note those properties of concave functions which follow 

directly from the definitions, as shown in Bourbaki, [5]. 

U For real A., concave f: 

f(A.x) > A. f(x) O<A.<l. 

f(A.x) < A. f(x) A. > 1. 

1.8 For concave f, a> o, 	 f(x+a) ~ f(x) + f(a) 

1.9 	 Let (f.) be a family of real concave functions on a real 
i iE:I 

J. 	 If the lower envelope g of this family, defined by 

1
g(x) = inf [f. (x) 1 i e I}.

i 

is finite at 	all finite points of J, then g is concave on .J. 

1.10 Let f be a finite concave function on an interval .J. Then 

at every interior point of J, f has finite right and left 

1 /derivatives, f and f respectively with 	 for all
d g 

x where they are defined. f~ and f I are non-increasing on the 
g 

· t · of ..r and r" · · · h r is differentiable;in erior is non-increasing w erever 

i.e., on the complement with respect to J of at most a countable 

set in J. 

The dual properties hold for convex functions, as follows: 

l.ll 	For all real A., convex f: 

f(A.x) < A. f(x) O<A.<l. 

f(t-x) > A f(x) A. > 1. 
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1.12 For convex f, a> O, f(x+a) ~ f(x) + f(a) 

1.13 Let (f.) be a family of real convex functions on a real 
1 i€I 

interval J. If the upper envelope g of this family, defined by: 

g(x) = sup [f. (x) Ii e I}
J_ 

is finite at all finite points of J, then g is convex on J. 

1.14 Let f be a finite convex f'unction on an interval J. Then 

at every interior point of J, f has finite right and left 

derivatives f~ and f / respectively with for all 
g f:.x where both are defined. f~ and are non-decreasing on the 

f 1i~terior of J and is non-decreasing wherever f is differentiable; 

i.e., on the canplement with respect to J of at most a countable 

set in J. 



SECI'ION 1: Moduli of' Continuity. 

Definition 1.15 A real modulus of' continuity et defined on a closed · 

bounded real interval [O,d] is a convex or concave homeomorphism of' 

[O,d] onto itself' with o:(o) = o. A real modulus of' continuity o: 

defined on the half' line [0, 00 
] is a concave or convex homeomorphism 

of' [ o,cxliJl: onto itself' with o:(O) = 0 and lim o:(x) = 1. 
x->rox 

let CC be the set of' all concave moduli of' continuity on 

00[O,d] f'or f'ixed d, 0 < d ~ ; CN the set of' all convex ones; 

c = cc u (JV. Note that f'or any d, CC n CN consists of' the iC.entity 

map, o:(x) = x. (It has been necessary to use here a dif'f'erent and 

slightly more restrictive definition of' modulus of' continuity than that 

used by Glaeser [6], but the essential properties are the same). 

We establish sane properties of' C which will be required in 

what follows: 

_!.16 Let o: be a homeanorphism [O,d] -> [O,d] with o:(O) = O, 

dif'f'erentiable except f'or a set in [O,d] which is at most countable. 

Then et e C if' and only if' the function o:(x)-x attains exactly one 

relative eA-tremum on (O,d) which may be attained on an interval. 

Proof' L2t et e CC· : • Since o: is non-increasing where defined, 

o:(x) -x must have exactly one relative maximwn on (O,d). For 

is non-decreasing and the same argument holds. Conversely, 

f'or o: as per hypothesis, the existence of' a single relative extremwn 

f'or o:(x)-x implies that the derivative of' o:(x) is monotone. 

10 
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bl:1 [Glaeser, [6]] For any family F of bounded, uniformly 

equicontinuous complex-valued functions on a metric space (X,d) of 

diameter (not necessarily flilite) D, there exists a non-decreasing 

concave real valued function a, continuous at 0 with Q(O) = O, 

such that: 

lf(x) - :('(y)l -::_ a(d(x,y)) for all f e F, x, ye X. 

Proof: Set A.(t) = sup (jf(x) - f(y)j jd(x,y) ".S_ t). 
feF 

A. is non-decreasing, continuous at 0 by the uniform equicontinuity 

of F and has A.(O) = O. For a we take the function whose ordinate 

set is the closed convex hull in the plane of the ordinate set of A.. 

Ct is then concave and inherits t::e other required properties frc:m A.. 

1.18 For fixed d, 0 < d-::_ 00 
, we define a partial order on C by: 

With this order, C is a lattice. 


Proof: We note that if h is the identity map on [O,d] then 


a~ h for a e C V and a > h for a e C c. 

comparable in c, they must be both in cc or both in (JV. Let 

Ctl' a
2 

e cc and not cc:mparable. By 1.6, the lower envelope g 

of etl' a2, given by: 

g(x) = min [a (x), a (x)] for x e [O,d]
1 2 

is concave. Suppose g(x) = g(y) for x < Y• Since are 

strictly increasing, this can happen only if: 
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vice versa. But the firstequality implies: 

by the monotonicity of a , so g(x) is strictly increasing on [O,d].
2 

By definition, g(x) = a (x)Aa (x) for x € [O,d] and A is1 2 

a continuous operation. Hence 

OJ._ (x) Aa (x) C\(x) a (x)lim 2 = lim /\ 2
 
x- >Ob x x ->oo.' x x 


a (x) a (x)1 2 
= (lim x ) A (lim x 

x-~~ x-.;>co 

= 1 

Thus ~ Aa2 € CC, on [O,d]. 

By 1.10, a and a have a concave upper bound h which1 2 

is continuous at 0 with h(x) ~ d on [O,d]. 

Suppose h(x) = h(y) < d for x < y, d finite. Then the 

line segment [(x;h(x)), (d,d)] lies above the graph of h at the 

point (y, h(y)) which contradicts the concavity of h. If d is 

infinite and h(x) = h(y) for x < y, x,y finite, then there exists 

a point z > y with h(z) > h(y), so the line segment [ (x,h(x)), 

(z,h(z))] lies above the graph of h at the point (y, h(y)), again 

contradicting the concavity of h. 
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We note that for d infinite, h(x) is always finite for 

finite x by definition. We have left the possibility that for 

finite d, h(x) = d for x < d. Consider the point set: 

{(x,y) I o ~ x-::_ d, o-::_ y-::_ h(x)) 1.18 .1 

which consists by definition of points (x,y) lying on line segments 

both ends of which are in: 

((x,y) I o ~ x ~ d, o ~ y ~ max [a (x), a (x)]} 1.18.21 2 

including degenerate segments of one point only. By concavity, if 

h(x) = d for x < d, then h is identically equal to d on [x,d]. 

Then the point (x,d) must be in (1.18.2) which contradicts the 

strict monotonicity of a and a . Thus h is strictly incr2asing.1 2
 

By the argument used for A, we see that 


lim = 1 

x-> co 


Considering the point sets 1.18 .1 and 1.18 .2, it is apparent that 

hhl 
lim x = 1 as well. 


x->co 


Hence h(x) = a (x) in CC.1 y a 
2 

We have established the existence in CC of a V a , a A a
1 2 1 2 

for all a
1

, a e CC.
2 

for a 1 , a e ()[.
2 



SECTION 2: Composition of Moduli of Continuity. 

11Proof~ Let a1 , a 2 e CC on [O,d]. Then for x, x e [O,d], x < x , 

I J a. (AX+ (1-A)X) >A a2(x) + (1-A)a.(x)
1 - 1 

for all A e (0,1), i = 1,2 by 1.1. Then: 

For finite d, this implies that a o a CC, since we2 e1 

have shown that composition preserves concavity and the other properties 

of a modulus of continuity are immediate. For infinite d, we have 

that: 

a (a (x))
1 2lim = lim = 1 x a (x) x 

x - >co x ->co 2

So in any case, a
1

, CC imply e CC. The dual argumenta2 e a1 o a2 

shows that for a1 , a2 e CV, a o a2 e CV •1 

We note that for a CV, a e CC, the composition a o a ,1 e 
2 1 2 

while still monotone increasing, need be neither concave nor convex. 

Consider: 

14 
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2
0 < x < /3 

2
3<X<l. 

1 
0 ~ x ~ 8 

l< X< 1. 
8 

Then o:1 e CV, o:2 e CC on [O,l], but 

o~x~~J:+3 1 5/s<X~ 12. 

5
/12 < x < 1 . 

which is neither concave nor convex on [O,l] • 

-1 

la:>- i 

1.20 For o: e CC, o: , the inverse of' O: with respect to 


composition, is in CV and vice versa. 


Proof'. We have innnediately, for finite d, that o:-1(o) = O, 


1o:-1(d) = d and o:- is a homeomorphism of [O,d] onto itself. 

By 1.1, 

/O:(Ao:-1(x) + (l-A)o:-1(x1
)) > A.x + (l-A.)x 1 for x< A. e (0,1)x ' 

. . . -1
Acting o: on both sides: 

-1( ( -1( I -1( ( //)A o: x) + 1-A.)o: x ) ~ o: A.x + 1-A.)x 

So o:-1 
e CV by 1.1 and 1.3. The dual argument holds for 	 o: e CV. 

o:-l(x~ = 1.We need to show that, in the case where d is inf'inite, lim x x -> CXl 
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For a e C , we have: 

a(x)
lim --= l. x x -> co 


x 

Hence a{a-1 {x)) = 1lim = lim a-1(x) 


x -> co a-1 (x) x -> co 


-1i.e. lim so a e CV for a e CC and the dual 
x -> co 

argument gives the result in the opposite direction. 

1.21. [10] Every a e C may be represented as: 

a(x) = fx p(t)dt
0 

where p is a monotone right continuous function, essentially 

bounded on any finite interval. 

Proof: By 1.10, a has a derivative almost everywhere and, since 

it is absolutely continuous, is equal to the indefinite integral of 

that derivative. The function p is the right derivative a 1 of a,
d 

which is monotone and equals the derivative of a a.e. by 1.10. 

For the right continuity, suppose a is concave. Then by an 

application of 1.1, for all h > O, 

x 

+Keeping h fixed and passing to the limit as x -> x 
0 

a Cx) > a(x0 +h) - a{x0 )lim + d - h x -> x 
0 
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by the continuity of a; the limit on the left exists by the 

+monotonicity of a:_. Now passing to the limit as h-> 0 , 

For concave a, a~ is non-increasing, so 

I 
for concave a; the analogous procedureThus lim + ad(x) = 

x -> x 
0 

establishes right continuity for ~onvex a. Note that since a is 0 

only at O, p(t) must be bounded away from 0 on any interval not 

containing o. 

Since a (x) is finite for finite x, p(t) can be infinite 

on no set of measure greater than 0 and so is essentially bounded on 

every finite interval. 

1.22 Let a, ~ € c. Then there exists y € C such that 

lim 1.~= yx -> 0 

Proof: Suppose a 0 ~ ~ c. By 1.21, 

a(x) = fx p( t )dt ~(x) = t q(t)dt • 
0 0 

where p and q are monotone and right continuous. Then ([10],p.10) 

http:10],p.10
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a o 13(x) = I~ p(13(t)) q(t)dt 

= Ix g(t)dt.
0 

where g is right continuous and > o for any t > o. If, for 

some x , g(t) is monotone on o < x < x , we can construct y by:
0 0 

y(x) = Ix g(t)dt x < x 
0 - 0 

and by defining y(x) in terms of a suitable line segment for x>x. 
0 

If there is no neighbourhood of 0 on which g is monotone, we note 

tha~ O< g(o) < co since: 

(i) if g(o) = o, g must be monotone increasing in some neighbourhood 

is o, since a 0 13 is zero only at 0 

(ii) if g(o) = co' g must be monotone decreasing in some neighbourhood 

of o, since a o 13 is finite for finite x. 

We then set y(x) =xg(o) in a neighbourhood o < x ~ x
1

, and 

define it in terms of a suitable line segment elsewhere. By right 

continuity, for any e > o we can find x > 0 such that 
0 

Ig( o) - g( t) I < e for o < t < x 
0 

Then, for x < x ' 0 Ix g(t)dt
0 

1- e /g(o) < x.g(o) < 1 + e /g(o) • 

lim aoe(x) 1So 
x -> o y(x) = • 



SECTION 3: The Class C 
a 

1.23 We now consider the class C c C consisting of moduli of 
a 

continuity a with the property: 

lim inf a(A.x)O< for all A. > o •a(x)
x -> 0 

We note the following properties of c : a 

a 
l.24 cc c c 

Proof: Let a € CC. Then for o < A. ::;_ l, A. a (x) ~ a(A.x) by 

l.4. so 

o < A. ~ lim~0~(~~ 
x -> 0 

For A.> 1, a(A.x) ::::_ a(x), so 

lim ·nr a(A.x) •0 < 1 < i a(x) 
x -> 0 

l.25 For a e Ca' ~ > o for all x, all A.> o; we show that 

there exists K > o with 
a(Xx)
OC'(x) ::::_ K for all x. 

Proof: By 1.15, this is immediate for a e CC. For a e CV, 

we represent a as in 1.21. Then: 

a(A.x) 
a(x) 

> a(A.x) 
x 

= 1 
x J).x

0 
dt p 

> 0 • 

19 
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for x bounded away from o. Since the definition of C 
a 

that ~ is bounded away from 0 in a neighbourhood of 

gives the result. 

1.26 CV J C • - fa 

ensures 

O, this 

o < x <a 

Proof: Consider o:(x): 

0 x = 0 • 

1 

Ct '°(x) 2 2 
is strictly increasing in a neighbourhood of o,= 3 e 

- x 

x 1. 
2 2 

"( )..4-6x - xsince its derivative o: x- e · is positive for small x.6 

Thus Ct is convex for small x and.so is: 

o:(x) 0 .< x < 0 .1 


t3(x) = 

10 (l-e-lOO)x + 10 e-100 1

9 9 - 9 0.1 < x < 1 

However, for x < 0 .1, A. < 1 , 

1 1 
~ = e- M2 + x2 
t3(x) 1 1 

x2 (1 - I2) 
= e which has limit 0 as x -> O • 

(Example due to B. Banaschewski.) 

1.27 The class of functions in CV which are of form o:(x) = xk, k > 1 

in a neighbourhood of 0 is properly contained in CV n C • a 

Proof: It is innnediate that any function of this form is in c 
a 
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Consider the function defined by: 

0 x = 0 

a(x) = 

x 1
0 < x < - lnx - S' 

1 
- lnx which is monotone increasing onSince ~(a(x)) 

1[ O, - ] , a e CV on e 

lim a(x)Consider k>lk' x -> 0 x 

= lim 
x -> 0 

Applying L'Hospital's rule, we have: 

a(x) -k 
-k- (1-k) xlim = lim 

x x -> 0 x -> 0 l/x 

1-k 
= lim (1-k) x = co . 

x -> 0 

xl-k 1 
For k = 1, lim - lnx = lim - lnx = 0 • 

x -> 0 x -> 0 

Thus a(x) is of comparable order at 0 with no function of form 

k x , k > 1, in a neighbourhood of O. 
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lim a(A.x) A.x lnxFinally, consider = a(x) lim ln(A.x) . x x -> 0 x -> 0 

= ).. lim lnA.~lnx = ).. > o 
x -> 0 

for all A. > o. Thus a€ CV n C on [O,l/e] . 
a 

We now note that any a€ C on [o,d] for any finite d 

can be extended to C on [o,oo] as follows: 

For a e C, there exists xl' o < xl < d, at which a(x) - x 

A 
attains a relative extremum, by l.l6. Define a on [o,oo] by: 

A 
a(x) = a(x) 

I\ 
a(x) = x + a(xl) - x

l 
A 

Then a is contained in CV, CC or C , as the case may be., with a. 
a 

From here on, except as otherwise noted, we will consider all a to 

be defined on [o,oo] as above. 

l.28 For a € cc, by l.7: 

w(x) ~ a(A.x) ~ a(x) ).. < l 

a(x) ~ a(A.x) ~ w(x) A.> l . 

For a e CV n C : 
a 

).. < l. 

by l.ll and l.24, 0 < d < oo . 
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a((t~ A. > 1 .A. 	 a(x) ::;_ a(A.x) ::;_ sup [ a t ] a(x) 
- tdo,d] 

o<d<ro. 

The supremum here is finite for any finite d, and the 

condition that lim a(x) = 1 ensures that it is finite for 
x -> CXl 

x 

infinite 	 d. 

Proof: Let a1 , be in CV n Ca • Then, for A. < 1, all x > o ,a 2 

al (a2(A.x)) a (K a (x))
1 2 2


a (a (x)) > a (a fXJ)

1 2 1 2

K a (a (x))
1 1 2

> al(a2(x)) = Kl> o by 1.25 

a (a 2(A.x)) A.a1(a (x))
1 	 2For A. > 1, a (a (x)) > a (a (x))
1 2	 1 2

= A. > o by convexity. 

Thus for all A.> o, 

Note that since CV = (cc)-1 , 1.25 implies that for a e cc, a1 is 

not necessarily in C • 
a 

Also, L 19 and the example following show 

that while CC and CV are closed under composition, C 
a 

is not. 



SECTION 4:· The E~uivalence Relation on C . 
a 

We now define a relation on the union of all C [o,p]
a 

0 < p s_ co as follows: 

a /V a if and only if:
1 2 

a (x)
1lim sup -:::::-T::\ < CXl • 

X -> 0 a2\XJ 

1.30 The relation so defined is an e~uivalence relation on c a 

Proof: Reflexivity iS obvious . Symmetry follows from the fact that 

1 . 1 1if lim inf f(x) = a> o, then im sup ~ = - • 
f\XJ a x -> 0 x -> 0 

For transitivity.we can write: 

a (x) a (x)
1 1

lim inf ( ) > lim inf a (x) . 
x -> o a3 x x -> 0 2

since the limits on the right are finite and non-zero for a ..I\....> a and
1 2 

a2 ./\..J a ; similarly:3 

a (x) a (x) a (x)1 1 2
lim sup ( ) < lim sup a (x) • lim sup ( ) 

x -> o a3 x x -> o 2 x -> o a3 x 

We note that a-'\..; a o A (where a o A(x) = a(A...x), A real) if and 

only if a e C ; also: 
a 

1.31 For a, ~ e C , there always exists y e C with a o ~ "\./ y • a a 

24 

http:transitivity.we
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Proof: We define y as in 1.22. If y is linear throughout, it 

is in C trivially; this is also the case for ye CC. The 
a 

remaining possibility is that y may be equal to a o 13 for 

and linear elsewhere. Suppose a e CC, 13 e CV • 

Then for a calculation as in 1.29 shows that 

lim inf y~A.)) = lim inf ao13(A.x) > o for all A. > 0 • .. ao13(x)x -> 0 y x x -> 0 

so here also y e C • By construction, y /\/a o 13 • a 

Consequently, the set of functions C is closed under 
a 

composition up to equivalence. 

We note here that the composition defined in 1.22 is, in 

general, order preserving in in the sense that equivalenceca ' 
classes are preserved. This follows from 1. 30 and the following: 

1.32 The equivalence defined above on C is preserved under 
a 

composition and inversion in c 
a 

o 132 , e ca. (3."\./a. implies, by 1.27 and l.29, that131 a 1 o a2 1. 1. 

there exist Ki, Ki
I 

> o and finite such that: 

I 
K. 13. (x) < a. (x) < K. 13. (x) for all x, i = 1, 2, and 

1. 1. - 1. - 1. 1. 
I

Ri, Ri > o a_~d finite such that 

/
R. a.(x) < 13.(x) < R. a.(x) for all x, i = 1, 2. 

1. 1. - 1. - 1. 1. 



Then lim 
x ->o 

. t3l(t32(x)) 
inf al(a2(x)) >- lim 

x -> 0 

. 
inf 

-t3l(R2aix)) 
al(a2(x)) 

26 

>- lim 
x -> 0 

. 
inf 

RlR2al(a2(x)) 
al(a2(x)) = Rl R2 > o • 

Similarly, lim sup 
x -> 0 

t3lOt)2(x) 

alocx2(x) 
< <X> • 

Now let -la a ; 
' 

t3, t3-l e C with t3 o a,
a 

We have R, R 
/ 

and K, K 
/ 

as above with: 

-l 
t3 

-l° a € 
c 

a and a .;v t3 • 

K t3(x) '5.. a(x) '5.. K / t3(x) for all x and 

/
R a(x) '5_ t3(x) '5.. R a(x) for all x • Then: 

t3-1 (x) = t3-l a1 a(x) 

> t3-l a-l K /1=3(00-1 (.x:)) 

> 

> 

Kl t3-la-l K
2 

a(aa-l(x)) 

-1 -1cK
3 

t3 a a x) • 

> K a-l(x) using the above ine~ualities and
5 

l.28, for suitable K > o and all x •5 

K > o, which in turnConse~uently, lim 
5 x -> 0 

implies that 

lim < o:> • 

x->o 



Similarly, the inequalities arising from the equivalence of 

a and ~ can be used to show that 

lim > 0 and 

x -> 0 


lim < co • 

x -> 0 


The assumption here that a, ~ e C implies a o ~ e C a a 
is not necessary, since by 1.31, for any such 

composition, there is an equivalent element of c Consequently,
a 

we have the result that for a
1 

AJ a and ~l v ~2 , a o ~,[Va2 o ~2;
2 1 

and that a-N ~ if and only if u-~ ~-l in C 
a 

As noted in the remarks following we can extend anyl.27' 
A 

a e c on [o,d] to a contained in c on [ 0 ,co] and the 
a a 

A 
extension preserves equivalences since a(x) = a(x) for small x • 

In a similar way we can set up an equivalence preserving correspondence 

between C on [ 0 ,co] and C on [o,d] for any d, o < d < ro • 
a a 

l.33 For O < d< co, there exists a l-l onto correspondence 

between the equivalence classes of c on [o,d] and those of C 
a a 

on [o ,co] • 

Proof: As noted, we have a 1-1 correspondence between equivalence 

classes of C [O,d] and those of C [o,co]. Let a e C [ o ,co ] • 
a a a 

Define a as follows: 
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-Then a: is e: C [O ,d]
a 

and if 0: ;'\.I 0:l 2 in C [o ,co], then 

C [o,d],
a 

since a: = a: for small x. 



CHAPI'ER II 


The Generalized Lipschitz Algebras of a Metric Space. 


In this chapter we will use the lattice of moduli of 

continuity discussed in Chapter I to define norms which determine a 

class of function algebras, the generalized Lipschitz algebras, 

on any metric space. We will discuss the separation properties of 

these algebras, and will define a set of metrics with respect 

to which a subclass of the generalized Lipschitz algebras on a 

given metric space are in fact Li~s~hitz algebras on t~at space. 

29 




SECTION 0: The Algebras La 

Definition 2.0: Let (X,d) be any metric· space with 

diameter p -:::;_ oo • For a fixed in C [o,q], q > p we denote by
a 

L(X,d,a) = La the set of all continuous bounded complex valued 

functions f on X with: 

If(x)-f(y) I < 00 •Ilf\ld,a = s~pa(d{~,y)) 
x Ty 

x,yeX 

We define a norm on La by: 

11 f 11 = 

where llfl 1 denotes the uniform norm, sup If(x) I . Note that 
00 xex· 

each such function f has a unique extension 
~ 

f to the completion 
,...,, 

of X with respect to d, and hence the f, f e La' make up the 

corresponding set of functions for the completion. 

2.l With this norm and with pointwise addition and multiplication, 


La is a semi-simple commutative Banach algebra with unit. 


Proof: (i) La is a Banach space. 


The triangle inequality is trivial and hence La is a linear 

space. We follow a procedure due to Mirkil [8] to show completeness. 

Let (fn) be a Cauchy sequence in La. Then {f ) is also 
n 

a Cauchy sequence in the space C(X) of continuous bounded complex-valued 

30 
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functions on X with the uniform norm, so (f } converges in this 
n 

norm to f e C(X) • 

To show that the limit function f is in La' consider 

\f(x)-f(y)l lf(x)-fn(x)l+lfn(x)-fn(y)l+lfn(y)-f(y)\<a( d(x,y)) a(d(x,y)) 

for any n, all x, y e X . Since (fn} is Cauchy in La, (f } is 
n 

bounded in La so there is some M> 0 with 11 fn \I d,a < M for 

all n . Fixing x,y and letting n -> oo , we see by the above 

inequality that \I f lld,a is also :::;, M, so f e La. 

We still have to show that (fn} converges to f in La . 

By considering the sequence (f -f} and changing notation, we may
n 

assume without loss of generality that f = 0 . We must show that 

(fn} is a zero sequence in La· Now since {fn} is Cauchy in La' 

given any e > o we can find N such that \ jfn-fmlld,a< e for 

n,m > N; i.e., for any x, ye X, x f: y: 

j(fn-fm)(x) - (fn-fm)(y)I < e 


a(d(x,y)) 


Since the mapping f ->A f, where 
x 

A f( ) _ f(x)-f(y) 

x Y - a(d(x,y)) 


is continuous from La into C(X) for fixed x, we can fix x,y 

and n and let m -> oo in the above, obtaining: 
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jfn(x) - fn(y)I 

a( d(x,y)) ~ e 


in the above, for all x, y e X and all n > N . 

Thus lim \ \fnl la a= 0, so (fn} is a zero se~uence in La 
n -> o:i ' 

and L is complete in the given norm. a 

(ii) La is a Banach algebra: 

For f, g e La' x f Y : 

\f(x)g(x) - f(y)g(y)I < jf(x)\ lg(x)-g(y)l + jg(y'I lf(x)-f(y))\
a( d(x,y)) a(d(x,y)) 'I a(d(x,y)) 

< I l fl ICXl l Igl I a,a + 11 gl Io:il 1fl Ia,a 

hence 11 fgj I d a ~ 1l fl ICXl 11 g\ I d a + 11 gl ICXl 11 f\ I d a
' ' ' 

= 11 fgl ICXl + I l fgl Ia a 
' 

~ I l fl Io:il 1gll CXl + 11 f\ I CXl 11 gl I a,a + 11 gl I CXl 11 f\ I a,a . 

~(l lfl 100 +I If\ la a) (Ilg\ lo:i + \lgl la a)

' ' 


::: I lfl I I lg! I 

This shows that La is closed under multiplication, and that the given 

norm is a Banach algebra norm on La • Since La is a function 

algebra, it is semi-simple and since it evidently contains the constant 

functions, it has as its unit f(x) ~j, x e X. 
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1 
We note that the norm II ·I 1 on La' defined by: 

equivalent to the original norm II ·II, since 

/
11 fl I ' < 11 f\ I ~ 2 11 f 11 for all f e La • 

For each a e C , L on (X,d) is obviously closed under 
a a 

complex conjugation (self-adjoint). is also inverse closed, 

since if If(x) I ::::, a > o for all x e X, then 

l l < 12 I f(x) - f(y)Ilf(XJ - f(yJI 
a 

By 0.2, the maximal ideal space of La coincides with its spe~trum 

for each a. If La separates X, the space X corresponds 

homeomorphically with a subset of the spectrum Ea of La which is 

dense in the Gelfand topology; if X is compact, X coincides with 

La . Since fs e La for all s e X when La separates X, (see 2.5) 

the homeomorphic embedding of X in Ea means that for such 

La the metric topology on X coincides with the topology induced 

on X by the Gelfand topology on La • 

2.2 La is closed under truncation; i.e. for any real valued f e La' 

a > o, f 11. a e La . 

Proof: For any a > o, 11 f A al I 
00 
~ \ Ifl I 

00 
• 

By considering cases, it is readily seen that for any x, ye X, 
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\ f A a(x) - f.i\ a(y) I ::;_ If(x) - f(y)I 

It follows, by (Sherbert) [7] that La is a regular algebra 

if it separates X • 



SECTION I: Comparison of different La 

The division of C into equivalence classes in Chapter l 
a 

is now seen to provide a classification of the algebras La on a 

fixed metric space as a varies in C 
a 

2. 3 Let· (X,d) be a ri1etri.c space of diameter 

Then L and La contain the same elements 
al 2 

and there exist K, K / > o such that 

where I lfl Ii is the norm of f in ai, i = l, 2. 

Proof: Let f be e La As noted in l.32, there exist R, R / > o 
l 

such that 

- R'al(x) ~ a 2(x) ~ R al(x) for all x e [o,D] 

Then 11 fl l = sup lf(x)-f y)\
d,a2 xty a 2 d x,y ) 


< .;!:/ sup \f(x)-f(y)\ = _Rl" 

R al(d(x,y)) 

Also, the uniform norm of f is independent of a, so La ~ La 
2 1 

Reversing the argwnent we have L = La as sets of functions. 
al 2 

35 
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It now follows from the general theory that the norms of La and 
1 

La are boundedly equivalent, but the above calculation shows this 
2 

directly. 

Corollary Suppose D is finite. Let ~ be the extension of a 

to [ 0 ,co] as in 1.33, for 	 a e C [o,D]. Then L(X,d,a) and a 
/\L(X,d,a) contain the same functions . 


Proof~ Since at'\,;.~ by construction, we have for all x e [o,D], 


K / a(x) ::_ ~(x) ::_ K a(x) K, K 
/ > o 

2.4 	 Let (X,d) be a locally compact metric space of diameter D. 

d(x,y)Let a new metric: ( )r x,y = l+d(x,y) 

r (x,y) = :51 
d(x,y) 

be introduced on X so that (X,r) has diameter 1 . Then for 

each a e C [O,D] there exists 8 e C [O,l] such that L(X,d,a)
a a 

and L(X,r,~) contain the same functions. 

Proof: For finite D, take ~ e c [ o ,co] and 8 = ~ e C [o,l] as in 
a a 

the proof of 1.33. Then a JV~ .I\..) 8 . By 1.25 and the definition 

of equivalence, we have for some K1 , K > 0 and all x,y e x ;2 

K1 a(d(x,y)) < B(fi
1 

d(x,y)) = B(r(x,y)) 

< K~o((d(x,y)). 

Thus the norms on bounded continuous Lmctions on X given 

by a and B are boundedly equivalent, so the sets of functicns 
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bounded in these norms coincide; i.e., the algebras L(X,d,a) and 

L(X,r,B) contain the S8Jlle functions 

For infinite D, take B as in the proof of 1.33. For 

d(x,y) < 1, we have 

d(x,y) > d(x,y)
d(x,y) 	 > l+d(x,y) 2 

So for 	 d(x,y) ~ 1, 

e(d(x,y)) ~ B(~l~(~:y)) = e(r(x,y)) ~ e(d(~,y)) ~ K B(d(x,y)) . 

for suitable K> 0 . By construction, a(x) = e(x) for small x . 

Then for, say, d(x,y) < 6 any function f on X 

1f(x)-f(y)I lf(x)-f(y)! If(x)-f{y)! 

a( d(x,y)): < :e(r(x,y)) < Ka(d(x,y)) 


For d(x,y) > 6 any bounded f- ' 

I f(x)-f(y)I 2 11 fl L,, << o:> 


B(r(x,y)) 
e( 6/1+0) 


and 

If(x)-f(y)\ < 2\ Ifl Io:> < o:> • 

a(d(x,y))  a(o) 

Consequently a bounded function f on x is bounded in the 

norm I I ·I ld,a if and, only if it is bounded in the norm I I·\ lr,B 

Since the uniform norm is unaffected by the change in metric, this 

again means that L(X,d,a) and L(X,r.;B) contain the same functions. 



SECTION 2: Separation Properties. 

We now consider the separating properties of La • For 

some metric spaces and some Ct € c ' La may contain only the 
a 

constant functions; for example, take X = [O,l], d(x,y) = lx-yl 

2
and a( d( x, y) ) = ( d( x, y) ) . Let f e La ; then 

If(x+h)-f(x) I I f(x+h)-f(x) \ 1 
h2lim = lim h ii < 11 fl Id < co •,a

h -> 0 h -> 0 

I:r(x)-f(y)I 
So lim lx-yl = 0 for all x,y Consequently, f is 

lx-yl -> o 

constant on [O,l] (Example based on that given by Sherbert, [7].) 

We give a sufficient condition on a for La to 

separate X , as follows : (from [7] ) 

2.5 Let (X,d) be a metric space; a € C such that a o d is 
a 

again a metric on X . Then La contains the function f (x) = s 

min(a(d(s,x)),l) for all s e X . 

38 
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Proof: Certainly 11 f s 11 co ~ .1 for all s e X • Since a o d is 

a metric, 

!a(d(s,x)) - a(d(s,y))I < a(d(x,y)) for all x,y,s e X . 

By considering cases, we see that I lfsl ld,a~ 1 as well, 

so f e L 
s a 

It follows that if a is concave, La contains f for 
s 

all s e X and so always separates X ; this is also the case if d 

is an ultrametric, i.e. if: 

d(x,y) ~max [d(x,z), d(y,z)] for all x, y, z e X , 

regardless of a , since the fact that any a e C is a monotone 
a 

increasing homeomorphism makes a o d an ultrametric as well. 

On the other hand, it is not necessary for a o d to be a 

metric in order for La to contain f for all s Consider 
s 

X = [O,l] 

d(x,y) = rx-yJ 

a(d(x,y)) =tan (~/4lx-y\) 
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2 
:itX ( ) ( l) rv/.(x) __ :it;4 sec (:itx)For a(x ) = t an 4 , a o = o, a = 1 , '"" 4 

which is strictly increasing on [O,l], so tan 1x e CV [0,1] 

>..rcx 
tan 4Also lim = A for all A > 0 

:JtX x -> 0 t an4 

SO tan :JtX € C4 a 


tan x + tan y
tan (x+y) = 1-tan x tan y 

~ tan x + tan y for tan x, tan y > o 

so tan 1x is not a metric on [O,l], since it is positive on this 

range. However, for this a on this space: 

f (x) = a(d(s,x))s 

=tan :it/4 \s-x\ and 

f (x) - f (y)
s s = tan :it/4 ls-xi - tan :it/4 ls-y\ 
a( d(x,y)) tan :it /4 \x-y\ 

=tan :it/4 (\s-x\ - \s-y\) (.1. +tan :it/4 ls-x\ tan :it/4 \s-y\) 
tan 1l/4\x-y\ 

~ 1 + tan 1! /4 \ s-x\ tan :it /4 l s-y\ 

1 
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< 2 1·or all x, s , y e [0,1 J 

So La contains f' f'or all S s 

It is immediate that whenever f e L for all 
s a 

separates X; the converse also holds: 

2.6 If La separates X then it contains the function f 
s 

defined by: 

f (x) = a(d(x,s))Al for every s e X . s 

Proof: Let L separate X . Then for any a, y e X , x ! ya 

there is some g e La with Ig(x)-g(y) \ = a > o . He have 

.1a g e La and : 

1 1 1la: g(x) - a: g(y) I a jg(x) - g(y)j 1 
= = (;( (d (x.> ~J) a( d(x,y)) a( d(x,y)) 

> lfs(x) - fs(y)j 


a(d(x,y)) 


since f (x) < 1 for all x . Thus I lfs\ls,a is finite fors 

each s, so fs e La for all s e X . 

We can now prove a statement analogous to 2.2 

2.7 	 Let (X,d) be any metric space of diameter D ..:;_ oo; let 

f oa, ~ be e C [O,D] such that l ......;~,. in. -::::r::'Ia(x) = and 
a 	 ~\XJx -> 0 



42 


lim sup o:(x) < co • 

x->o W} 


and such that L separates X. Then Lo; is properly contained

6 

in Lt3 

Proof: Since Ll3 separates X, f as defined in 2.5 belongs to 
s 

L for all s e X For any s and all x such that ;;(d( s ,x))< 1 ,
13 

we have 

Jfs(s) - fs(x)\ \fs(s) - fs(x)I o:(d(s,x)) 
= 1 ::;

13(d(s,x)) o:( d( s ,x)) 13(d(s,x)) 

Then for any M > 0 , there exists 6 > 0 such that for 

d(s,x) < 6 , 

I Ifs\ ld,o: ~ \fs(s) - fs(x)\ > M 


o:(d(s,x)) 


i.e. \ I is tt1f-,·n d·e for each s and so f is not in Lo:11 f s d,o: s 

Since there exists KLet < co ' 

such that o:(x) ::;_ K 13(x) for all x e [O,D] Consequently, 

Jf(x) - f(y)I < K\f(x)-f(y)\ 

13( d(x,y)) o:(d(x,y)) 


Note thatx, y e X • 

or not. 

In particular, for 0:< 13 in the lattice order on C [O,D]
a 

and lim ~ = O, Lo: c L whenever Ll3 separates X • 
X->Ol3X 13 

X 



SECTION 3: The Metrics 0: .a 

For each a e C such that L separates X, where 
a a 

(X,d) is a fixed metric space, we may introduce a metric <fa; on Lo; 

as follows: 

Let ¢,ye Lo; ; then: 

era(¢ ,JV) = sup q¢( f ) - µ· (f) I IfeLo;' 11 fl I ::;_ 1J 

/\ A 


=sup qt(¢) - f()l') I IfeLo;, 11 fJ I 511 


induces a metric on the set X c L : - a 

2.8 For any metric space (X,d) of diameter D < and any O'.l 

a e Ca such that Lo; separates X and the set (fslSe X} is 

bounded in Lo;' the metric tf'o; is boundedly eq_uivalent on X to 

the distance given by a o d; i.e., there exist K, K"> O with 

K / a( d(x,y)) < 0,. (x,y) < KOC( d(x,y))- a - " 
for all x, y e X . 

Proof: By definition, Oo;(x,y) 5 o;(d(x,y)), since if f e Lo; 

with \ If\ I 5 1, then 

lf(x) - f(y)I ::;_ o;(d(x,y)) for all x, y e X . 

We have f (x) = a(d(x,s)) e L for all s e X , since Lo; separatess a 
X and X is of finite diameter. By hypothesis, there exists some 
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constant P, O<P<oo, such that for all s € x . 11 fsl I ::: P 

Let x, y € x be given and set g(s) =p 1 f ( s) for 
x 

s € x Then g € La with \lg\ I ::: 1 and 

<S"a(x,y)?. lg(x) - g(y)\ = ~ a (d(x,y)), 

which completesthe inequality as stated. 

From this there follows immediately: 

2.9 For any metric space (X;d) of finite diameter and any 

a e Ca such that La separat2s X and (fs\se X} is bounded 

in L , there exists a metric on X such that L is preciselya a 
the essociated Lipschitz algebra. 

With respect to the boundedness of (fs\s e X}, we note 

that this is the case whenever the triangle inequality holds for 

a o d at all points in X . We have then: 

s a(d(x,y)) for all x, s, y e X , 

i · e · 11 f s 11 d a ~ 1 for all s e X 
J 

If the triangle inequality for a o d holds nowhere in X , 

we have 

\fs(x) - fs(y)\ = ja(d(s,x)) - C((d(s,y))j 

~ a(d(s,x)) + a(d(s,y)) 

< a( d(x,y)) for all x, s, ye X . 
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so in this case also, \I fsl Id,o: ~1 for all s € X . The case 

in which o: o d satisfies the triangle inequality at some points of 

X and not at others remains open . 

We note finally that the uniform structures Uo: on X 

generated by the sets {(x,y) I o:(d(x,y)) ~ €) are all equivalent 

to the metric uniformity determined by d (i.e., u1 ). Hence for 

o: with separating LO: and (f
s 

s e: X) bounded, the 00: are 

uniformly equivalent metrics on X 



CHAPTER 3 

SPACE MAPS AND ALGEBRA HOMOMORPHISMS. 

Given two metric spaces and their associated collections 

of algebras La' we now consider the relations between continuous 

maps of one space into another and homomorphisms of the algebras. 

We will give a categorical characterization of these relations. 

In this Chapter we will consider all a e C to be defined on 
a 

[O,ro] . and all metric spaces to be of finite diameter. By 2.4 

this involves no loss of generality. 
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SECTION 0: Adjoints. 

Let (X,d) and (Y,r) be two metric spaces. 

3.0 A continuous map t of X into Y will be said to be 

@-modally continuous if it satisfies the condition: 

r(tx,tx) ~ K ~(d(x,y)) ( *) 

for ~ e Ca' some K > 0 and all x, y e X 

We will denote the fact that a continuous map t satisfies 

condition (*) for a particular ~ e C by writing:a 

t: (X,d) -> (Y,r) 	 (~) 

We note here that if t is ~-modally continuous and a /'v ~ 

in C , then t is also a-modally continuous. 
a 

Given any continuous map t : X ~ Y, we consider T , 

the adjoint of t, to be the algebra homomorphism 

T: C(Y) ~ C(X) 

defined 	as in Chapter 0 by 

Tf(x) = f( tx) for x e X . 

3.1 Let t: (X,d) -> (Y,r) be a ~-modally continuous map. For 

a e Ca' the restriction Ta of the ad~oint T of t to La 

determines a compact-open continuous algebra homomorphism 

T . a· 
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We note that if a o ~ is not in C , we can replace it, by
a 

1.31, with an equivalent function in C without loss of 
a 

generality, and will consider this to have been done henceforth 


when the occasion arises. 


Proof: For f e L (Y)
a 

\ !Tfl lco =sup {!f(tx)I Ix e X} 

<sup {jf(y)j IY e Y} 

= 11 fl lco 

{\Tf(x) - Tf(y)I I x, y e X}llTf\ ld,ao~ = s~p ao~( d(x,y))x y 

{lf(tx) - f(ty)j= sup x, y € X}
ao~(d(x,y)) 

{If( tx) - f( ty) I 
~sup x, y e X}K'a(r(tx,ty)) 

< K' {jf(s) - f(t)l1 s, t e Y} = K'\lfll ~:+i a(r(s,t)) ~,~ 

Thus T(L (Y)) c L (X) and T is trivially a homomorphism. To a - ao~ 

show that T is compact open continuous, for e > o, g e L (Y), K a 
compact in x consider: 

N(Tg, K, e) = (f e Lao~(X) I 11 f-Tg\Kj !co< e) 

and N(g, tK, e) = (f e Lc/Y) I 11 f-gj tKj Ico < e} 


The continuity if t implies that tK us compact in Y, so N(g,tK,e) 


is an element of the subbase of the compact open neighbourhood 


system of g and 
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T(N(g,tK,€)) ~ N(Tg,K,€) 

since 

\I f - g I tK 11 CX> = \I Tf - Tg I K 11 CX> 

This establishes the compact-open continuity of T. ln the case 

where Y is compact, T is continuous in the uniform topology of 

La (Y), since the two topologies coincide. 

In order to get a partial converse to this, we need first 

to establish that the adjoint of a compact-open continuous homomorphism 

of L -algebras, T:A-> B, carries the underlying space of B into 

that of A; in other words, preserves fixed ideals. In view of 

0.4, all we need to show is that for any X, ru1y compact open 

neighbourhood of the unit of La(X) contains a function of compact 

support when La(X) separates X. Since LC( is regular when it 

separates X, and always self-adjoint and closed under truncation 

the following result ~ill provide this: 

3.2 Let X be a locally compact metric space. If A is a regular 

subalgebra of C(X) which is self-adjoint and closed under truncation, 

then every compact open neighbourhood of the unit of A contains a 

function h e A with compact support in X . 

Proof: We need to show that for every compact set K in X, there 

exists a function h € A which is identically 1 on K and zero 

outside a compact set in X . Let K be any compact set in X , 
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U an open neighbourhood of K with compact closure. Let M(A) 

denote the maximal ideal space of A. For each p e M(A)-U, we 

have by regularity a function f e A with : 
p 


f (p) = 1 
p 

/I. 

f (K) = 0 p 


/I. 


Set v - = (q I Irp(q) I > tl p 

Then p e V , and the sets 
p 

. u ~d vp: p ~- u 

form an open cover of M(A). By compactness we can select a 

finite number of these sets, .... ' 

n 
Now set f = r. 

i=i 

For q e X , q f U we have q e V ; for some J, so 
pj 

f(q)?: I f
pj 

(q) 12 > l/+

For q e K , f(q) = 0 

Now set h = 1 - ( 4f) /I. 1 ~ A . 
A 

Then h \ K = 1 while for x f U, h(x) = 0 . h is then the 

required function. 

It follows that we can talk about the adjoint t ! Y --> X of 

a compact-open continuous algebra homomorphism 

T: La(X) -> L~(Y) 

when L (X) separates X and X is locally compact.a 

MILLS MEMORIAL LIBRARY 
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3.3 Let (X,d), (Y,r), where (X,d) is locally compact, be 

metric spaces with O'. € c such that LO'. (X) separates x, O'.-1 
€ c a a 

and the set (fs I s e X} is bounded in LO'. (X) . 

Let 

T: LO'. (X) ~ Ll3 (Y) 

be a compact-open continuous homomorphism for some 13 € c • Then 
a 

its adjoint t is an O'.-1 o 13 -modally continuous map of (Y,r) 

into (X,d) 

Proof: By the preceding discussion, t carries Y into Xr;; M (LO'.) • 

Sine~ T is a Banach algebra homomorphism, the set 

(Tfs I s 6, X} 

is bounded in norm ~n say by K For all x, y £ Y 

K;;::. \Tf (x) - Tfs(y)I
8 

s(r(x,y)) 

;;::. \a(d(s,tx)) - a(d(s,ty))I 
13(i-(x,y)} 

Then for s = ty 

a(d(tx,ty)) ~ K 13 (r(x,y)) 

i.e., d ( tx,ty ) ~ K
I O'.-1 

o 13 (r(x,y)) 

for suitable K 1 > 0 since a -1 
e C by hypothesis. In the case 

a 

where X is compact, we note that all three of the conditions of 
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3.3 are still necessary in order to reach the same conclusion. 

If a = f3 = · the identity in C , this reduces to the case of the 
a 

Lipschitz algebras on X and Y , as considered by Sherbert [7]. 

-1In this case, the separation of X by the inclusion of a 

in ca and the boundedness of (fs I s e X} in La follow from 

the definition of La . 



SECTION I: Algebra Isomorphisms. 

From here on, we will consider all metric spaces to be 

locally compact. 

3.4 A compact-open continuous homomorphism 

T : L1 (X,d) - > La (Y,r) 

where separates Y and the set (fs \ s e Y} is 

bounded in La (Y), is an isomo:cphism of L1 (X) onto La (Y) 

if and only if the adjoint t: Y-? X is a homeomorphism of Y onto 

X satisfy:i-::1g 

-1 
K ·a (r(x,y)) ~ d(tx,ty) ~Ka (r(x,y)) ( 3. Y·. O) 

for some K, K 
I > 0 , all x, y e Y . 

Proof: Let T be a compact open topological isomorphism of 

L1 (X) onto La (Y) . Since T is onto, t is 1-1, so 

t-l (M(X))-> M(Y) is defined on t(M(Y)). 

Now suppose t : M(Y) -> M(X) is not onto, so that there exists 

$1' e M(X), Y/f t(M(Y)). Since M(Y) is compact and t is 

continuous, t(M(Y)) is compact in M(X). By the regularity of 

L
1 

, there exists f e L with1 
A 
f(jtl) = 1 

f(x) = 0 for all x t. t(M(Y)) 
A A 

So Tf(f') = f( t t') = 0 for all st' 6 M(Y) 
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This contradicts the assumption that T is 1-1, so 	 t 

is 
must be onto, M(Y) -:> M(X) . Likewise t-l : M(X) - > M(Y) 

onto and 

t-l (X) ~ Y <;;. t -l (M(X)) = M(Y) . 

i.e. X c;;;; tY since t is 1-1. By the compact open continuity of 

T , t Y c;;;; X , so t Y = X and t is onto. 

Now we define d (x,y)
0 

= d(tx,ty) for x, y 6 Y . Since 

t is 1-1 , this gives a metric on Y . Set 

L 
0 

= L1 (Y,d )
0 

Then for f e: Lex (Y), f = Tg for some g e: L (X) and
1 

Ir(x) - f(y)I = Ig( tx) - g( ty) I 
d (x,y) d(tx,ty)

0 

for all x, y e: Y 

Thus Lex (Y) c;;;; L ; in particular, since Lex separates Y by
0 

hypothesis, 

f (x) = ex(r(s,x))s 

is in L for all s e: Y , so for some constant K > O 
0 1 

ex(r(x,y)) ~ K (d(tx,ty))1

with 3.1, this shows that t satisfies 3.4.0 for suitable 

K,K' > o . 
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Let t : Y--> X be a homeomorphism satisfying 3.'t.O 

Then the adjoint T is 1-1, L (X) -> La (Y) and is compact
1 

open continuous by 3.1 Then d as defined above is boundedly
0 

equivalent to a or ; i.e., L (Y,d ) and La (Y,r) contain
1 0 

the same elements. Let f e La (Y,d ) and define 
0 

g(s) = f(t-1s) for s e X . 

Then 

\g(x) - g(y)\ = \f(t-1x) - r(t-1y)I for x, y e X . 
d(x,y) d(x,y) 

1 1
= \T- f(x) - T- f(y)\ 

d(x,y) 

Since T-l : La (Y) -..:> L
1 

(X) , g e L
1 

(X) and Tg = f . Thus 

T : L
1 

(X,d) -..:> La (Y,d
0 

) is onto, so T maps L
1 

(X,d) onto 

La (Y,r) . 

As far as the automorphisms of a particular La (X,d) are 

concerned, we can say: 

3.5 Every compact open automorphism T of La (X,d), a e c ,a 
-1 cwhere La (X) separates X ' a e a 

and (fs I s e X} is 

bounded in La is of the form: 

Tf(x) = f(tx) f e La , x e X • 

where t: X ~ X is a homeomorphism onto satisfying 

K
1
d(x,y) ::;_ d(tx,ty) ~ Kd(x,y) x,y e X, K, KI > O 
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i.e. the adjoints of such automorphisms are homeomorphisms which 

satisfy a double Lipschitz condition . 

Proof: Follows from applying the method of proof of 3.3 to the 

situation T: La ~ La as described. The only change needed is 

to set 

= La (Y,d0 )L0 

instead of L (Y,d ) · 1 0 



SECTION 2: Categorical Considerations. 

We can express some aspects of the relationship between 

modally continuous space maps and compact-open continuous algebra 

homomorphisms in terms of suitable categories. We refer the 

reader to (11] for basic material about categories 

To begin with, we can describe the system of La algebras 

on a fixed metric space as follows: 

3.6 Let C [o,d] be directed by the lattice order and assign
a 

to each a e Ca the corresponding algebra La on X • For 

a~ /3 in c let hf3 
a· 

. La-> Lf3 be the mapping of La onto 
a 

itself as a subset of . (La' h~) then forms a direct systemLf3 

of Banach algebras and Banach algebra homomorphisms. 

Proof: By 2. ~ for and 

Since f(x) = h~ (x) for all x e X, \\fl loo= I lh~(f)\ le.I:?' so 

is a Banach algebra homomorphism, L -> L . a f3 

L :-> L is the identity for every a e c ; and for a a a 

we have hr = hf3 o h 6' . Thus forms a direct system.
a a f3 

Since by 1.17 every uniformly continuous function on (X,d) 

satisfies some modulus of continuity in C, the union of this 

system is the algebra of all uniformly continuous complex-valued 

bounded functions on X . It is conjectured that the uniform closure 
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of this algebra is the direct limit of this system in the category 

of commutative semi-simple Banach algebras. 

Now let G stand for the set of equivalence classes of 

C under the relation defined in Chapter I, Section 4. G inherits 
a 

the lattice order of C and is closed under composition by 1.31 
a 

We have then associated with each metric space (X,d) the direct 

tisystem of algebras (L~(X) , h¢ ) G where LA(X) is the algebra 
- .,.. 1,9 € '/' 

with compact-open topology given by a E: C and ¢ is the equivalence
a 

class of a in G . Lf (X) then consists of the same set of 

functions as La(X) for all a i;. {' , and it is easi.iy seen that 

this is again a direct system of algebras over (X,d) 

Moreover, any ~-modally continuous ma~ with ~ e Ca 

t : (X,d) ? (Y ,r) (p) 

determines by its adjoint the algebra homomorphisms 

for all ¢ ~ G , where ti is the equivalence class of ~ in C . 
a 

This leads us to consider the category 6J defined as follows: 

The objects are the direct systems of topological algebras: 

(Bl, h ~ ) ¢' , 'l e G , ¢ <:._ 1. 

with the property that, for ¢ ::_ 1 , B ~ is a sub-algebra of , .B12 

and the algebra homomorphism 
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is in fact the natural injection. The morphisms are pairs of the 

form: 

e = ((T~) </> e: & , Y/ ) rz e: G 

where Tf : B¢ - > B {; Yj is compact open continuous with 
0 

e o e' = ( (T~ o T~· ) , '1 o 1 '-)
r 0;7 r 

where defined, and for any f -;::;_ t1 

rt 
T r"J o h/> = Tf, 

i.e. T'l j B.¢ = T# 

The composition defined is evidently associative and e is the 

identity belonging to if each T¢ is the identity 

homomorphism of Br and ti is the equivalenceclass in G containing 

the identity map in c 
a 

On the other hand, we consider the category ;;f_ whose objects 

are the metric spaces (X,d) and whose morphisms are the rz. -modally 

continuous maps for ti E G; (t,7) such that: 

t: (X,d)-> (Y,r) (~) 

for any (?> in the class Yi of G . 

Again it is readily seen that 

I . L /,
( t ' ~ 1) 0 ( t '?) = ( t 0 t' ,, 0 7 ) 

where defined; this composition is associative and the identity for 

(X,d) is simply the pair (t,7) where ~ is the identity equivalence 

class in G and t is the identity mapping on X 
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We can now define a category mapping F J:.~ ~ 

as follows: 

F (X,d) = (L(X,d,ef) ,h~ ),) , 
7 

F ( t ,1) = ( (Tp) f € G- ) rz } 

on the objects and morphisms respectively of L 

3.7 This mapping F : ;f_ ~ <13, (G) is a contravariant functor 

which maps the set of modally continuous 

t: (X,d) ~ (Y ,r) 

one to"one onto the set of all morphisms 

F(Y,r) ~~ F(X,d) . 

Proof: Let 6 = ( (Tr;)¢ e G- J 1 ) for 'l € (;. • In order to show 

that F is onto, we need to find (t,1) in -f:_ such that F(t,1) = e · 

We take t = T *, the adjoint of an algebra homomorphisma
p 

Tp: Ip (Y) - > If>" 'l (X) 

in e such that LF' (X) satisfies the re~uirements of La in 

3.3. It is sufficient to take /? the e~uivalence class of the 

identity map in c . 
a 

By 3.3, t: (X,d) ~ (Y,r) (1) . 

Moreover, we claim that 

T * (x) = T,1* (x)!-' ,.. 
for all ¢ e G, all x e X where T 

p 
* is defined. Suppose that 

Then 
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T¢ = T L¢p 

i.e., T~* (x) = T * (x)
r p 

where defined, so the above assertion holds. 

For IP(Y) c;; L (Y), we recall that the adjoint t of TR : 


Lp(Y) - >LP 0 ~ (X) carries all points (i.e., fixed maximal ideals) 


of X to points of Y . Since L (Y) separates Y, if two

R 

ideals are identified by t they correspond to the same point 


of Y . Suppose t x = t x2 ; consider the adjoint h of
1 

i. e . , Tf f s (xl) f T¢ f s ( x2 ) 

But since f e L (Y) for all s E:: Y 
s I' 

Tf f s ( x I ) = ~t,fs ( x I ) = Tpf s ( x2 ) = Tl f s ( x2 ) 

So we must have hx1 = hx2 = ty1 for the adjoint of ~-

This takes care of all cases, since for <f, jJ e G we have that 

¢ ~ p, p ~ ¢ or ¢ and p are not comparable. However, if 

¢ and p are not comparable, we can find 1 ~ G with 1 ~ f and 

I) ~,/J' and in this case L (Y) will have the same properties as
1

ri,:,CY) . This reduces the matter to the two cases we have considered. 

It follows that the adjoint of every T/> e e is determined by that 

of ~' so we can take t = T,O* and then F(t,7) =e as required. 
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Finally, let e1 = ((T1¢Ye:G''l1) 

e = ( (T2f)_¢'ed '72) 2 

Then if e = e2 , we have
1 

'71 = i'"/2 

for all p e G • 

In particular, T1p= T .P for P as above, and since these
2 

homomorphisms are enough to determine t, 9 and 9 are the1 2 

image under F of the same ( t /;) in ~ ; so F is one to one 

as stated. 

Since F is a functor, it takes isomorphisms of J.. to 

isomorphisms of :/3 An isomorphism in £.. is a map 

t (X,d) - > (Y,r) (1) 
-1

such that t exists with 

t-l : (Y,r) - > (X,d) 

where VZ -1 
e G . Such a map must correspond under F with 

where all Tf are isomorphisms 

-1
We note that the existence of t and t as above implies that 

t satisfies 

r(tx,ty) ~ K a(d(x,y)) 
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z,w e Y , 

Hence, for suitable K
1

, K2 > 0 , 

K a (d(x,y)) $. r(tx,ty) $. K2 a (d(x,y)) .
1 

Thus the isomorphisms of <B come from maps (t,1) in ~ such 

that t-l is defined, Y/.-l e G and t satisfies the above double 

condition with respect to a , for any a in the e~uivalence 

class ~ . 



CHAPI'ER 4 

Quasiconformal Mappings. 

In this chapter we consider the analytic properties of the 

space maps induced by compact-open continuous isomorphisms of 

generalized Lipschitz algebras, and see to what extent space maps 

of this type give rise to algebra homomorphisms. 
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SECTION O: Quasiconformality. 

The basic results on quasiconformal mappings in the plane 

are to be found in Kunzi [12]; the 3-dimensional case has been 

developed by Gehring [3] 

nIn real n-space, R , n Z. 2, a ring R is defined to be 

a finite connected doubly connected domain, that is, a domain 

whose complement with respect to extended n-space consists of two 

components C and c , such that c contains the point at 
0 1 1 

inf'inity. Let d c. denote the boundary of c. with R, i = 1,2 . 
1 1 

We define the conformal capacity of a ring R as follows: 

c(R) = iar ~ I tJu In dw 

where the infimum is taken over all functions u = u(x), x = (x , ... ,xn)
1 

which are continuously differentiable in R and have boundary values 

0 on d c and 1 We then define the modulus of R 
0 

by means of the relation 

1 
n-1 

where n is the dimension of the space and r is the gamma function. 

If R is the n-dimensional shell bounded by concentric balls of 

radii a and b , a < b , then 
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mod R = log b/a . 

4.0 A homeomorphism of a domain D in Rn is said to be a 

K-quasiconformal mapping, j ~ K < oo, if the inequality 

1K mod R ~ mod t (R) ~ K mod R 

for fixed K and every bounded ring R with R c D • A 

K.quasiconformal mapping is one which is K-quasiconforrnal for some 

lf::_~. is a homeomorphism of a domain D in Rn, we define, 

for x ~ D . 

L (x,r) = sup ltx-tyl 

t..x-Yl-=r 


l(x,r) = inf Jtx-tyl 

lx-yi=r 


H(x) = lim sup L(x,r)
1.(x,r)r- > o 

2 3The following result, in R and R , is due to Gehring [3], 

[12]; its extension to Rn is simply a matter of following Gehring's 

3procedure for R in the n-dirnensional case. 

4.1 A topological mapping of a domain D in Rn is quasiconformal 

on D if and only if H(x) is bounded in D . 

Quasiconfo:rmal maps may, of course, be characterized in 

analytic terms. Jn the present context we will be interested only 

in the extent to which they are Holder continuous. The classical 

result on Holder continuity of quasiconformal mappings is that given 
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in its final form by Mori in the case of plane mappings: 

4.2 (12] Let w = H(2) be a K-quasiconformal plane map of 

lzl<i onto lwl<.f with H(O)= O. Then for each pair of 

points 2 1 , 2 2 in f.t l<l' 

where C is an absolute constant whose smallest possible value is 

16. 

More generally, we have the results of Callendar [4] : 

4.3 Let f(x) be a K-quasiconformal map of the open unit ball 

lx1<1 in Rn onto itself, with f(O) = O Then there exists 

an absolute constant H and an absolute exponent p such that 

for any pair of points in 

Here H and p depend on n and on K . 

4.4 Let f be a K-quasiconformal map defined on a domain D of 

Rn, then on any compact subregion B of D 

where x1 , x2 are any two points of B, C depends on n, K and 

the distance from B to the boundary of A and j:J depends only 

on n and K . 



SECTION 1: /3 - Homomorphisms and Quasiconformality. 

We can now relate the algebra isomorphisms discussed in 

Chapter 3 to quasiconformal mappings, as follows: 

4.5 Let X and Y be domains in real n-space. The direct 

systems S(X) and S(Y) of generalized Lipschitz algebras over 

X and Y are objects of the category J3 discussed in Section 2 

of Chapter 4 . Let e be a (13-isomorphism; e : S(X) -> S(Y) 

Then the adjoint t of e is a quasiconformal map of Y onto x. 

Proof: By 3,4 and remarks following, t is a homeomorphism 

satisfying 

x, Y e Y 

where a is in the equivalence class of VJ and 1x-yl is the 

usual metric in n-space. Then for every y e Y 

sup \ tx-tylH(y) = lim SUP---
inf \ tx-tylr -:> o 

K2 a(I x-y\)
~ lim lx-y\ = r 

r-:> o K a( Ix-yl )1 

So by 4.1, t is quasiconformal. 
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In general, a quasiconformal map of one domain onto another 

cannot be shown to give rise to an '8-isomorphism of the associated 

direct systems of algebras, since, even with the strong conditions 

of 4.2, such a map does not necessarily satisfy the double 

inequality 

for any a: e: C However, combining the results of Chapter 3 
a 

with 4.2, 4.3 and 4.4, we have : 

4.6 Let t be a quasiconformal map of the open unit disc U in 

the plane onto itself, with t(O) = 0 The adjoint T of t 

determines a QS-morphism 

of the direct system S(U) into itself, where 1 is the equivalence 
l 

class of a:(x) = xK. Moreover, for each <J e: G , we have : 

L~os ~U) <;:;; Tt (Lcji(U)) ~ ~o a: (U) 

where S (x) = x 
k 

. 


Proof: The existence of T and the fact that 


follow from 3.1, 3.7, and the inequality in 4.2. The left 


hand inclusion comes by applying the proof of 3.1 to the left 


side of the inequality of 4.2 . 




70 

The last two results follow immediately from 3.1, 3.7, 

and the quasiconformality results 4.3 and 4.4 . 

4.7 Let t be a quasiconformal mapping of the open unit ball U 

. Rnin onto itself, with t(O) = 0 . The adjoint T of t 

then determines a cf3 -morphism 

e : s(u) ~ s(u) Cl)) 

of the direct system S(U) into itself, where 7 is the 

equivalence class of o:( x) = X p) ):i as in 4. 3 . 

4.8 Let i: be a quasiconformal mapping defined on a domain D in 

Rn. Let B be any compact subregion of D such that B is 

separated from the boundary of D . Then the adjoint T of t 

determines a ~-morphism 

e : s(tB) -> s(B) C7) 

where t B is the image under t of B and 7 is the equivalence 

of X ~ p a.s itJ 'I, 'f,., 
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