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CHAPTER I 


INTRODUCTION 

Nuclear Matter is a hypothetical nucleus of infinite size. 

It contains an equal number of protons and neutrons, with no coulomb 

interaction present, and because of its infinite size no surface 

effect. Obviously this does not occur in nature. Still in a sense 

nuclei do resemble such an abstraction when seen from the liquid-

drop model point of view. In this model the nucleus is supposed to 

have a central region of uniform density of particles, with a surface 

where the density falls away rapidly to zero. 

There are two lines of evidence to show that this is a 

fairly accurate picture of a nucleus: 

(1) Assuming this model the Bethe-Weizsacker semi-empirical 

mass formula can be obtained: 

The first term comes from the uniform density of the nucleus. Unless 

it is near the surface the particle sees the same surroundings every­

where, and has the same energy. 

1 
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The second, third and fourth terms are respectively to 

take into account the surface effect, the coulomb effect, and the 

symmetry energy. There is also a fifth term to allow for the 

pairing energy. The parameters in this equation have been adjusted 

to give a good fit (± 500 K~V) to the general tendencies of nuclear 

binding energies. 

(2) Electron scattering experiments by Hofstadter show that 

nuclei A ) 16 have a uniform central density of about .168 nucleons 

per r3 which falls from 0.9 to 0.1 of its maximum value over a distance 

of 2.5 F. 

For an infinite nucleus the binding energy per particle is 

given by the first term -a1 in Equation (I-1). Empirically this 

value has been determined by Green, and Cameron (1) to be between 

-15.8 MeV and -17.2 MeV. The goal of nuclear matter theory is to 

obtain this value from theory at the correct saturation density. 

Thus, the model under consideration is an infinite number of 

nucleons filling co-ordinate space. Due to translational invariance, 

the single particle states are piane waves. Since nucleons are Fermi 

particles they will occupy the lowest available state according to the 

Pauli's exclusion principle, four nucleons going in each state. The 

filled states will form a sphere in momentum space of radius Pr (Fermi 

momentUJ)l) extending to the highest occupied state corresponding to the 

most energetic particle (Fermi energy). Generally we use 11 = 1 and 

talk in terms of the wave number kF =p~ as the Fermi momentum. 

To deal with this interacting Fermi gas we must use a many body formalism. 
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The details of the many body formalisms have been given 

in several places (2) and need not be repeated here in any detail. 

It will be sufficient to mention that the most usual procedure is to use 

the perturbation theory and seek an effective one-body potential from 

a given two particle interaction, as in the Hartree•Fock approach. 

Normally this method would be excellent, but nuclear forces are known 

to be strongly repulsive at short distances a' ·'. the Hartree-Fock method 

would fail for them, because the matrix elements of the potential 

would be very large, if not infinite. The solution to this difficulty 

is in Brueckner's theory of nuclear structure. This theory has also 

been dealt in detail in several places (3). Essentially this 

procedure is an extension of the Hartree-Fock method to strong short 

range forces by allowing the interacting particles to interact any 

number of times before they return to the Fermi sea, so that the 

resulting effective two-body interaction is given by a matrix 'G' 

which is the "sum" of a series of matrix elements of 'v', which 

alternate in sign. The matrix elements of 'G' between the states 

of two particles of initial momentum m1, n and of final momentum1 

m, n are then written as 

1- ~ [ <rn YI/ JJ-/ rn '11 - ri',,,,') ------- ( m'n' J G f Yn, n, -n,.,,.,,) 
E:,,.,_,.fn•- t.,.-6.,

1r1;n':>~f (I-2) 
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or more formally 

(I-3) 

where Q is the Pauli operator which requires that the intermediate 

states be above ~· e is the energy denominator defined positive 

and given by 

(I-4) 

It will be seen from the definition of the G-matrix in 

Equation (I-3) that its structure very much resembles that of the 

scattering matrix t or K of two free particles. Actually it is the 

same, except for the operator Q which prohibits transitions to the 

occupied states which do not exist in the case of free scattering. 

This then is the main difference between free scattering of two 

nucleons and that of those in nuclear matter. The presence of this 

operator makes the solution for G-matrix elements very complicated and 

various simplifying means have to be developed. The other difference 

is that the energy demoninator includes binding effects of the nuclear 

medium. 

One of the most important applications of the 'G' matrix 

formalism has been to derive the effective single particle potential 

due to other nucleons e:Kperienced by a single nucleon in the Fermi 

sea, and hence its binding energy to the system. A simple extension 
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of Hartree-Fock procedure to the 'G'-matrix shows that a particle 

of momentum km experiences a potential U(m) given by 

ll<m> ::: L ( mYJ j G / rnn-nm) 
n<~F 

The average binding energy for a particle is then given by 

< R>· E ·) -- ( K.£.') + ~ ( P. E.) 

112.. ~~~) (I-6) 
= + l.. UllYI)

:;2.a IYl 

2.~ 2..3 i) F I= u l Yl'l)+5 ~a fY1 

A study of the binding energy characteristics according to density also 

leads us to a saturation density which can be compared with the nuclear 

density inside a large nucleus like Pb2o8. In the next three chapters 

we give the details of our approach to this aim. In Chapter II we 

give the simplified methods to calculate the G-matrix elements and discuss 

the physical ideas of the origin of different terms and the contributions 

of different regions of the two body potentials. Chapter Ill is 

devoted to techniques 0£ calculation. In Chapter IV we present the 

results of all this exercise and come to the conclusion that the hard 

core potentials give better results than before an4 that the soft core 

potentials may indeed lead to the right b5nding energy and saturation 

density when the three body clusters are taken into account. Only 
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the lowest order three body clusters are removed in Hartree-Fock 

type approach. Very briefly considering .them merely represents 

the fact that for very short range strong forces like those in a 

nucleus, more than two particles may interact before returning to 

their normal situation in the Fermi sea. The proc·edure for 

taking them into account was given by Bethe (4) and is briefly given 

in Chapter II. 

So far we have only conF~ dered the application of the G­

matrix to an infinite nucleax system where only effective central 

forces exist. A finite system has a surface and therefore the 

tensor, spin-orbit and other forces can come into play. The extension 

to such a system was done by Brueckner, Gammel and Weitzner (5) under 

the local density approximation. In Chapter V we have extended the 

G-matrix calculations to study the spin-orbit splittings in a few 

closed shell ±1 nuclei and obtain values in reasonable agreement with 

experiment. We also find that the spin-orbit force peaks about 0.15 F 

inside the half density radius and go on to argue that the spin-orbit 

force is about .15 F inside the central force, confirming the recent 

works of several people (36). We also show that the two body spin­

orbit force obtained directly from the two body potential by itself is 

sufficient to account for the splitting of the levels. 



CHAPTER II 


APPROXIMATE METHODS FOR SOLVING THE "G" MATRIX 

There are essentially three ways to solve for the 

G-matrix. The first one was given by Brueckner ( 8) himself. 

It is a direct approach to the problem and at least in principle 

should lead to a very great accuracy. But the procedure is very 

lengthy and complicated and still requires an approximation for the 

core region. The other two procedures make approximations to the 

G-matrix, but give more physical insight into the problem and simplify 

the calculation. These are the Moszkowski-Scott separation method 

( 9) and the Reference Spectrum method (10). The Moszkowski-Scott 

separation method has been modified by Bethe, Brandow and Petschek (10) 

(henceforth referred to as B.B.P.) to improve its accuracy and is then 

called the modified Moszkowski-Scott separation method. The methods 

were developed to give greater physical insight into the theory. 

In particular, one wishes to understand the role of the exclusion 

principle, the hard core, and the deviation of the energy denominator 

e(k) from a simple effective mass form. Earlier methods treated 

these things in various ways, but nothing was very clear. 

In the Moszkowski-Scott method the long range part vi of 

v and the short range part v were separated out, such that the s 

7 
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attraction due to v was completely balanced by the hard core 
s 

repulsion and these together produced no phase shift. The distance 

'J' at which this separation occurred was called the separation 

-0.istance. Moszkowski-Scott then calculated Gs and G,.e as if vs and 

vt were independent of each other and showed that the correction 

G - (Gt +Gs) are 10 to 20% of the main term. v~ is relatively weak 

and of long range and hence could mainly induce transitions within 

the Fermi sea which are prohibited by the exclusion principle. Thus 

Gt~ vt - vt ~ V,e• The second order term was small. This also 

meant that the wavefunction ~ differs little from the uncorrelated 

wavefunction ¢ in the region vt. Thus " tf.," corresponded to the 

"healing" distance introduced by Gomez 9 Walecka and Weisskopf (11). 

For v the exclusion principle is of little importance, since it s 

mainly permits transitions only beyond the Fermi sea. Thus the 

Moszkowski-Scott separation method brought out the role of the 

exclusion principle and other things more clearly and understandably 

from the physical point of view. To improve accuracy this method 

was slightly modified by B.B.P. We shall talk of it later. 

The Reference Spectrum Method 

The understanding of Nuclear Matter given by Moszkowski and 

Scott was made use of by Bethe, Brandow and Petsche~ (10) to develop 

the "Reference Spectrum Method". Here one can calculate the 'G' 

matrix by a procedure which is more accurate and simpler than the 
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separation method. They showed, first, that given two types of 'G' 

matrices GN and GR which differ from each other only in the intermed­

iate state projection and in the energy denominator, they are related 

by 

(II-1) 

where PR and PN contain the intermediate state projection operator 

R Nand the energy denominator for each of the G-matrices G and G • 

Now if GN is the nuclear G matrix (Equation I-3) then PN = Q/eN 

where Q is the Pauli operator prohibiting transitions to the filled 

Fermi sea. Then 

(II-2) 

B.B.P. tried to find a GR which is such a good approximation to GN so 

that the second term in (II-2) is small. This would then permit the 

replacement of GN in the second term by GR. The Moszkowski-Scott 

Rmethod, and studies by Kohler (12) required that G should take a good 

approximate account of e 
N

(k) for k ) kF and of Q prohibiting transitions 

to states k { kF. But simplicity and ease of calculations required 

that Q be ignored and eN(k) be replaced by a quadratic form Ca1 + a2 k ), 

because this is equal to the operator (a - a V 2) • B.B.P. re­
1 2 

investigated Brueckner's single particle energies and found that for 

~ )) kF' UN(h), the single particle potential energies are very nearly 

2 
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quadratic in kb. Thus to a good approximation, one could replace 

for kb ~ 1.5 kv UN(b) by a "Reference Spectrum" potential: 

(II-3) 

The intermediate state-particle energies in the "Reference Spectrum" 

approximation then becomes 

:::. A -t (II-4) 

where 

2. 

=- Tl -1<.J + 8--%. (II-5) 

and T(k) is the kinetic energy of the particle. 

Brueckner's work had shown that for states inside the Fermi 

sea UN(m) wa.s also nearly quadratic in km and even though the effective 

mass for these states is different from the particle states, we can 

treat the difference as small and write 

N -k2­u. (m) :::: /1 
0 

(-m) -t f3 m (:I:I-6) 

and 
fYI rn~ [ :-f 

/). (mJ :: 'fti.,p_; fl- flo (m)J (II-7) 
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D ~21F2 
Thus E 0 <777 J ::. ENl rn J -+ 1t -1< (II-8)/).(yn) 

/YI rn"* 

Thus /),. is the energy gap between occupied and intermediate energy 

spectra. It is a function of k , but for most purposes may be taken m 

to be constant at its value at {:6 kF. We find its value to be 

around o.6. 

With these definitions of ER, B.B.P. have shown that the 

energy denominator 

where 

(II-10) 

Thus eR has the form desired of it. y 2 is large enough to strongly 

inhibit transitions to forbidden intermediate states. 

Application of the Reference Spectrum Method 

Thus, in the reference spectrum approximation, Equation (I-;>i 

will become 

(II-11) 
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where eR is given by (II-9). Introducing the two-body correlated 

wavefunction 'f'and the uncorrelated wavefunction ¢ satsifying 

(II-12) 

i.e. defining 

(II-13) 

we can write 

- ,,,/... I 7.)- W~'-/-' - el?. .., (II-14) 

which with eR as given above (Equation II-9) gives the reference 

wave equation 

(II-15) 

where 

(II-16) 

is the wavefunction distortion. Equation (II-15) is the fundamental equation 

of the reference spectrum method. When expanded in partial waves 

for uncoupled states it leads to equations of the form 

(II-17) 
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We use the convention of B.B.P.: 

(a) 

(b) (II-18) 

(c) 

and 

(II-19) 

y 2 for the occupied initial states is given above (Equation II-10); 

for particle states B.B.P. have after considering the off-energy shell 

effect that 

2. 2. 2 y (II-20)( 31::> - 0 · {,) ~ F + 3 -ko 

Comparing (II-12) and (II-17), and making allowance for an infinite 

hard-core of radius c, we find 

(II-21) 

471 [ 2 l.. Jc. '1..

rn*-k~ C-Ao +1 ) 9i- c-kokJ d.k 
0 

(II-22) 
00

1 

+ $" (9i- - 9:1: )Jc + m* 1C9t. - W") V-ULrJz> &IA] 
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with 

(II-23) 

Here 

(II-24) 

where (-J ·l+I . l+J •rh =~ (,<.x)-/il- (...(,;x.) 

is the solution of the problem with only the hard core potential; 

~+) (ix) is the outgoing wave spherical Hankel function. In 

Equation (II-22) the interaction is separated into core volume, core 

surface, and outer contributions. Both Equations (II-21) and (II-22) 

are useful. For coupled partial waves, which occur in triplet spin 

states, the corresponding equations can be written in a compact matrix 

form (Appendix A). 

To calculate the binding energy of nuclear matter we require 

the diagonal G-matrix element, averaged over the sixteen spin and iso­

spin states of the interacting pair. With proper statistical weights, 

and exchange contributions, this is given by (Equations 6-14a and 6-14b 

B.B.P.): 
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00 

t 3 L (d.L.+ 1) 1 ~1.Jl<.o.1c) At.f-ko,Jc} ( s~o,1:=:1) d-t 

~l " 
( II.25b) 

00 

-t 3 "£__ L ( .3 ;r+ 1
) J jJ. ( J: /c) X t. ( -k",.-t;,) ( S -; I , T =- I) d -t ] 

4Jc/ /.. ::r 0 

:::: -:i l.. -t s y "2.+ 2.. c .2.l;'lr[ l }
-f<.o Lt L 4 r (cl L + I ) { _±o J i, (-k ~) cl k 

~<>eri J.. JJL -J/f J... o0 m o 

00 

+ 3 2._ ( ~ l- f-J)1 ( 8t. - f:IL- ) lJ- ( s =' 0 I T.:; I ) uL d-t 
e1n111L c 

+ L ~ ( J. :rTI) j 
00

(JL - 7-IL. ) lj_:. ( s:: I, T:: 0) ll:L. d-! 
c 

t L ,2:_ (Uri) ["l J. - ?Y.) v;_;, (s~1, 7"') u;,, d-t J] 
oJ,/ LL ..J,, 

(II-25c) 

Equation (II-25b) is obtained from Equation (II-25a) by using Equation (II-17). 

http:1.Jl<.o.1c
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After the reference GR matrix is known, the correct GN 

matrix can be determined by solving the equation (see Equation II-1) 

(II-26) 


which was derived in their Appendix A by B.B.P. Assuming that GR 

is a good first approximation to GN, this may be solved by iteration 

The terms on the r.h.s. we refer to as the second, third, ••• order 

corrections to GR. The second order terms were estimated by B.B.P. 

and by Brown Schappert and Wong (13), but the third order term was not 

seriously considered previously. The calculation of the second 

order term, LJ <2 >a proceeds as follows. Consider an interacting 

pair of particles, denoting their momenta kb, k by P ± k , in a 
A;. m o 

definite spin, isospin state. The interaction conserves P, S, and T, 

so the intermediate state sum is only over relative momentum k'. 

The energy denominators involve the kinetic and potential energies of 

the initial states (,e and m) and the intermediate states (a and b) 

of the two particles: 

fl.' N T(./<"") + T{-ki)-T(-ke,) -Tf--km)e 
(II.28) 

U ~' "' ( -k11) -r U f?., N ( -ke.) - lt ( --k e ) - lA l ~"' ) 
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In units of 112/m = 41.469 MeV - ~we have 

(II.29)T ( -k.e } + T ( -km) 

u (-/<,.) + u (-k<,.) == U(fl+·ff_')-1-U(E--f/J 
(II.30) 

:: J u ( /P'--r-1<'2.) 

The last step would be correct if U were really a quadratic function 

of momentum. For a given initial k , not all values of P are possible.
0 

We make the further approximation of replacing P
2 in Equation (II.30) 

by its average value, 

;}. _ 3 2. (I- ~o) [I+ ~: / *~ J 
Po_,,_ - 5 ~F ~F 3(;i+/l.of~F) 

so that 

ep.' f'J ( .fo_'; :: j/ 2_ -k: + .1 [UR, N ( j P11-~ +-//2) - U (fa.~'- +-k~ il 
(II.,32) 

This is a slight improvement on the expression given in B.B.P., to whibh 

it reduces if P =o. They then showed that the matrix element of the 

second order correction can be expressed as 
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where 

Mand the average of 1-sT over spin and isospin states is 

(II.36) 

is a spherical Hankel transform of the wave function distortion X ~'L 

in the coupled state with total angular momentum J, taking the solution 

with dominant orbital momentum L and looking at the L' component. For 

example, tne deuteron (J:l) is mostly S-wave, so L::O and the large and 

small components are labelled by L' =o, 2 respectively. For uncoupled 

states, only the index L is required. The average =fo..,. is of course 

all one requires in binding energy calculations. 

In Equation (II-33) the angular integration has been performed. 

This involves an angle-averaging over the Pauli operator Q and thus in 

Equation (II-34) it is this angle averaged operator which occurs. 

B.B.P. 	considered the case P =0 so Q was simply a step function at 

We find that by taking Q (P0 o-, k') the second orderk' =~· 
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corrections are reduced by about 10%. The angle averaged 

Pauli operator is given as 

0 
I 

= 

= 


In our calculations the greatest part of the second order 

correction comes in the coupled 3s1 - 3n1 partial waves, where the 

tensor force is important. In fact the sum of all other second 

order corrections is virtually zero. The small component X ' 
20 

of the "deuteron state" does not occur in the first order GR calculation, 

but does enter Equation (II-35) for the corrections. 

fourier transform of the major, S-wave component is negative at small k 

(from the long range attraction) and positive at moderate k 

several kF, due to the short range repulsion. Empirically it is 

small near ~ due to these compensating effects. F20
1 , however is 

the transform of a function of one sign, zero inside the core. 

~20 is negative at all k upto about 6kF, and takes its maximum value 

near 2kF, as in Figure 1. Since it is large near the Fermi surface 

it makes a big contribution to both the Pauli and spectral correction 
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terms. Because so much of the correction came from this one state 

we evaluated the third order correction term, and found it to be 

reasonably small, but not negligible. 

The evaluation is similar to that of the second order term. 

Taking the matrix element of b,. (3)G between states of definite P, k ,
0 

S, M and T we have 

(II-38) 

( I - .fl.~) /. <Ps; > 
=L_ ( ~·M'/ E. (-f/J/*'M'><~"M"/ cc~"J/ *"p-f') 
0(( M,1fY1'') 

(II-39) 

( c/J.s; {(, _J2R) t / ~ 'M ') <~'M '/ ( ' - J1R/t-J j/'M ) ( -A"r>(' / (I -&P.) I 1>s~) 

The wave operator s!' has the property 

(II-4o) 

Rt (k) was defined in Equation ( II-34) and t = E. /e (k). There are 

seen to be two intermediate state sums, but as before P, S, and T are 

conserved by the interaction. Equation (II-39) is written for triplet 
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spin states, but the singlet case is an obvious simplification. 

Using Equations (6.28), (6.27) and (6.31) of B.B.P. we write 

(for S =1, T =O): 

<~II M" I ( ,_ JJ_~) I 4> M)
lo 

(II-41) 

00 

(II-42)_,;_; i i1-,_<-f/k) XL:l, (-k.-'l)YLdJz ~:ffl' (k' ~ io) 

00 

11(-//rl iL;i_( ~ "-1t:) A:, L ( -j/Jc) ~ d /(. i):r f"l" ( ~ -7 f/)
1 

" 

with (II-44) 

We need the identity 

Jc£2-f/ ct 
2 i" j):;,11 (io~ ~") !J:~m" (~,,~~') JJ~(YI' ci·~t) 

(II-45) 
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In view of these relations, Equation (II-38) gives 

00 
131 ~ ( ¢s; / i'J GJ cPs;) =1d f/ d f/' i (-/<J c (It; FsT (j/ -k''J 

(II-46) 

where 

F:s-r (f/ J<") = L_ i (~7\Jl,j d-21<' d2~,, -k'2 -k."2 (l-1-;r/ 
. tt7ff1'M" 

( -1<"2- -k'J- I 2­
.;r 

J>:,!'1 ct~f/) JJ;(YJ. (~'-7io):J):.m"(-*"~'J/J 
F. :J' 

L,._L, ( /< ~ f<o} F;_,,~3 ( -f/, -ko) F;_, ~5 ( -pz': -f/) 
J

The symbol F LL' was defined in Equation (II-36), but here· we specify 

both the initial and final momenta as parameters. 

Equation (II-47) simplifies to 

For the correction to the average G-matrix element, we average (II.48) 

over s, T states. The T =0 states are given a factor of 1/16 and 

the T =1 states, 3/16. The T = 1 triplet states have a sum over 

~ L, of course. The singlet states have only a single sum since 

L =J. We have computed the third order corrections only for the 

The double integral in Equation (II-46) 
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is sufficiently complicated that we considered the Pauli operator 

to be a step function ink', k11 ; i.e. we took P =0 in Equation (II-37). 

Effects of Three Body Clusters 

For occupied states, the single particle potential energy 

is defined as 

{) (m}""' L <)"Y)nlGI mn-nm) (II-49)
Bn<~F 

This is similar to the Hartree-Fock theory, with the anti-symmetrised 

G-matrix element replacing the potential v-. This 

definition was suggested by the third order (in G) hole-bubble diagram 

(Figure 2A) where a particle in the state m scatters forward from a 

particle in the occupied state n. It was shown by B.B.P., based on 

a suggestion of Brueckner and Goldman (14) that this G-matrix element 

should be calculated "on the energy shell". U(m) then compensates for 

a wider class of diagrams (Figure 2B) which are grouped together by 

the process of "generalised time orderingn. Brandow ( 15 ) has greatly 

developed this concept. 

For states ~ above the Fermi surface the situation is more 

complicated (Figure 2C). The G-matrix element for the interaction of 

states b and n must be calculated "off the energy shell", meaning that 

in solving Equation (I-3) the energy denominator involves the excitation 

energy of the rest of the diagram in addition to the energies of b and n. 
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B.B.P 0 showed that this insertion cannot be put on the energy shell 

by generalised time ordering. By a simple estimate of this effect, 

B.B.P. derived the estimates Equations (II-10) and (II-20) for the 

reference energy denominators. It is clear that Y 2 for particle 

states (b-n interaction) is much larger than for hole states (m-n 

interaction) and this has considerable effect on raising the potential 

energies of particle states U(b). In short, Equation (II-49) is also 

used for U(b), but G(b,n) is calculated on a different basis. 

The motive in defining a potential energy of particle states 

is to reduce higher order terms in the perturbation series. In the 

above, only the third order "bubble" diagrams were considered, because 

the third order "ring" diagram (Figure 2D) was known to be small. 
, 

More recently it has been realized that all diagrams containing only 

three occupied state lines should be considered together as constituting 

a three body cluster. Rajaraman ( 16) first pointed out that all 

the diagrams of third order in G could be grouped together, considered 

as insertions in a particle line b, and therefore cancelled by a 

suitable definition of U(b). Essentially there are two distinct third 

order diagrams, the "bubble" and the "ring", plus all their exchanges. 

Rajaraman arrived at a very simple prescription, namely that Equation (II-49) 

is used, but summing only. over ~ partial waves of G and using 

statistical weight 1 in place of 3/4 as usually applied. This was done 

in Razavy' s ( 17) calculation. 
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Rajaraman ( 18) also pointed out that there are diagrams 

of all orders in G containing only three occupied state lines. These 

are, therefore, of the same order in the density. Bethe (4 ) derived 

a Faddeev equation for the sum of all these diagrams and constructed an 

approximate solution. His result is that the sum of all three body 

cluster diagrams can be written as the lowest (third) order diagrams 

alone, with the middle G-interaction modified to (G.f.). The 

"suppression factor" f(r) is one at large r, but falls to about 1/3 

inside the hard core (Figure 3 ). It was, therefore, suggested by 

Bethe that the three body clusters be incorporated in the calculation 

by defining 

U (4)::: L (411/[Gf]/tn-n-t) (II-50) 
-B.,,<~F 

Writing the relative momentum k in place of the individual state 
0 

labels, we have for the matrix element in a single partial wave 

oO 

<.fl.of {Gt jJ/ ~o)L::: i ii_ (~o~) V-lk) T(-+J Ul (~o,-'c) d k 
(II-51) 

oO (II-52) 
+ Je [ 91.- { -ko~) 1(-t.) - <J:IJ. (-'t.J i (cJ 1)-(-t:} u/.. (-l<o-t.) d--t 

The generalization to coupled states is easy. Consideration of exchange 

diagrams shows that Rajaraman's prescription to take only even waves 
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still applies. This seems clear because the complete sum is a 

weighted third order diagram alone. 

Bethe estimated f(r) to take average values .384 inside 

the core and .86 outside. The effect of f(r) is thus to make the 

energies U(b) much more attractive than formerly, since the repulsive 

contributions are relatively more suppressed. It was estimated (19) 

that the three body clusters contribute of the order 1 MeV to the 

binding energy compared to about 10 MeV repulsion when the third 

order alone was considered; this is the source of the improvement 

in agreement with experiment. 

In our calculation we took somewhat better account of the 

suppression factor f(r), using Equation (II-51) and (II-52), than in 

Bethe's paper. For the hard core potentials we used his numerical 

values of f(r), scaled to the appropriate core radius. In principle, 

f(r) should be evaluated for the actual potential used, and thus our 

work is subject to a correction on this point. M. w. Kirson (20) 

is considering this, while B. Day (21) has recently improved on Bethe's 

solution of the Faddeev equations. For the soft core Bressel potential, 

we evaluated f(r) on the same basis as Bethe's hard core function. 

The relevant equations are (4.4) to (4.6) and (3.24) of reference (4 ), 

which we reproduce here: 

·(II-53) 
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(II-54) 

(II-55) 

UI~ 
- I - '°S,::z. 

(II-56) 

ri,2- Ll,3+11,3 u,:z-"'1:J 3 ( u,2- r-u,3 -J l/12 u,
3 

) 

ul:L u,3 .,_ llu. ll23 + ll3, ll3:i_- r1 u,2 ll23 ll3, (II-57) 

The subscripts denote the argument of each function, so u12 =u(r12) 

etc. Y/ and 'f are the wave function distortions (more precisely 

l} · ¢ and 'S· ¢ are) for a typical hole-hole and particle-hole inter­

action respectively. One requires these two situations because the 

initial and final stage in any three body cluster is the interaction 

of two particles in occupied states. The remaining stages involve 

excited particles. Equation (II-57) is Bethe's approximate solution 

of the Faddeev equations. ~(l) can be interpreted as the part of the 

three body wave function after any number of two body interactions, 

when particle l does not take part in the final interaction. The 

energy due to three body clusters is 

W = j G ( ~z.3} F ( k.u) d 'T,,.3 (II-59) 

while by considering the third order only one would have 

(II-60) 
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Using (II-55) it is obvious that 

(II-61) 

which leads to the interpretation stated earlier. 

In Bethe's calculation for f(r) several approximations were 

made. Only the short range part of the interaction was used, the long 

range part removed by a modified Moszkowski-Scott ( 10) separation. 

This is helpful because~ and "$are then positive functions, and 

justified because only the strong short range force can make appreciable 

contribution in high order diagrams. This is done here. Next ')'(r) 

was taken to be a real function of r only. Actually, 

(II-62) 

where X = ¢ - 11' is the wave function distortion in Equation ( II-16). 

Clearly 'f is in general a complex function of r and e. If ¢ and 7C 

are expanded in partial waves, and 'f in a series of multipoles, 

f(.I;) :;:: L (:ll-t-t) .iL ~(Ji:)~ ( UJ:j(}) 

£_ 

the 'fL may be determined by term by term comparison. ~ L:O is the 

angle average of ~ and it is only in this approximation ( -S = ~o ) that 

~ will be a real function only of r. Still considering only spinless 

particles, 

(II-64) 
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This agrees with (II-62) in giving 'f = 1 inside a hard core. 

Finally, Bethe did not calculate 'S (r) for any particular potential, 

but adopted a simple and reasonable quadratic form for it. 

In our calculation we constructed .X(r) for the 1s Bressel 
0 

potential using the Modified Moszkowski-Scott method. This was done 

for the two representative hole and particle cases. -rJ and "$ 

could then be taken from the L =0 parts of either (II-62) or (II-64). 

Since Equation (II-62) is too large near a zero of ffi<k0 ~ ), but 

(II-64) is too small, it finally seemed most reasonable to use 

'5 (r) = :X (r) with no factor of ¢. Higher partial waves could 
0 

be included in Equation (II-64) but actually this leads to difficulty 

if 1J (r) exceeds ':f (r) in magnitude. Day's new solution may improve 

matters here. Having thus defined ~ and ~ we used Equations (II-53) 

to (II-58) to evaluate f(r). The result is shown in Figure 

It is seen that f(r) for the Bressel potential takes values 

about ~ as r--) o. This arises because '¥/¢ ~ ~ at small r. In the 

case of an infinite hard core, 'l'/¢ =0 of course. Now it follows from 

Equation (II-58) that when YJ = -g = ~' if> - 'l'(l) = >2, and by 

comparing (II-52) and (II-53) we obtain f(r) ~ ~. This contrasts to 

the hard core limit of 1/3. We conclude that while a soft core is 

less repulsive than an infinite hard core, it is also less thoroughly 

suppressed in its effect on three body clusters. This effect will 

tend to minimize the difference between hard and soft core potentials 

in nuclear matter. 



Modified Moszkowski-Scott Method 

As mentioned in the beginning of this section in 

Moszkowski and Scott separation method beyond the separation distance 

dF the wavefunction of two free nucleons interacting via vs goes 

over to the unperturbed wavefunction. B.B.P. modified this condition 

to the effect that the wavefunction in the reference spectrum goes to 

the unperturbed wave function beyond d R" This is more accurate than 

the MS condition because the reference G-rnatrix is much closer to the 

actual G than the free nucleon G-matrix. This condition means 

R 
( -ko,Jc.) ;::: oX. 05 (II-65) 

or equivalently 

(II-66) 


Since /( and }..' are continuous, condition (II-65) is equal to 

Ix ( d- ~) =- x cot-o =-o (II-67) 

B.B.P. then go on to show that up to the terms in second order 

(II-68) 
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where K is a small quantity given by 

(II-69) 

where 
00 

~ 1
( -F- '/ / - JI_~ / ~D) = ~ ~ 19-L { f/h) X/. 5 (-ko, 'l) d k ::f 0 

-k ~0 o (II-70) 

I 

f.? :;; 0 
::: 

Proceeding just as we did in the Reference Spectrum Method, we can 

easily obtain 

(II-71) 

(II-72) 


for L = 0 wave alone. 



The third term in (II-68) is given by 

00 

N -J 1<~- fl.. T I I I Q_ ) ( R_ 3( flo I G3 / -f<o)::: (t-1<) 1<(lf 6s /~ )(.P<l(?--? JIJj-+G5 }/~oJdfl/0 

co 

=(1-Kf1d3f'[ { ~:, [9-. {f, '..; X" (-k,.t) A] 
(II-7;))

{IT 1- Q e~;'J ( ~, /J ~ G: I -ko))]Q) - -f 

= 2..,, [ (; _,,' { (f
00

9 (f/.Jc) x0 ( 1<o~) cVr) ( JCXJ ~0 r-A 
1 

k) ~ ~/) l-ko'r) dJr '}
°ko(i-/:.) O 6 o o J 

- (1.-k' e:-f'{a"- j-0 O'.tJ x, (A,.tJdt) ( ( 9;, 1-k'-"J v; 9-,0.-') dt)] 

The fundamental equation for X is of the form (II-17)
6 

(II-75) 



CHAPTER III 

DESCRIPTION OF THE CALCULATION 

(a) Reference Spectrum 

The first order or reference spectrum calculation involves 

the solution of the reference wave equation (II-17) and the evaluation 

of the integrals in Equation (II-21). To simplify the discussion we 

consider singlet states and relegate the triplet equations to Appendix A. 

Equation (II-17) may be written as 

(III-1) 

(III-2) 

For a hard core potential, uL vanishes for r ( c so /( L is equal to J--L. 

We solve Equation (III-1) for r ) c, subject to X -7 0 (heals) at 

large r. In practice we assume that v(r) is negligible for r greater 

than some large distance d. Beyond this distance, 

(III-3) 
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with Na constant and 'FIL a decaying Hankel function as in Equation (II-24). 

Explicitly 

'flo (~) ""'­
-x 

e 

'II, {/r.) :: (1-1-~) -x e 
(III-4) 

~+-1(}~) -- .1. l +-I 

x '#/.. {1r_,J -f­ '# UcJ 
L-1 

x :::. Yk 

Giving a name 

9>j_(k}~-- "- ~~ d.k 

- y (III-5)ro ­

to the log-derivative of 9/L' we can write the two point boundary 

conditions on Equation (III-1) as 

(III-6) 
A:: d 

In our work we generally used d ~ 7.lF. This problem is conveniently 

solved by the method of E. c. Ridley (22 ) as suggested by Razavy ( 17 ). 

Actually, Razavy used a variant of this method starting the integration 

at r = c. By starting instead at r = d the procedure is greatly 

simplified, as described here. 

In the Ridley method, auxiliary functions s and w are 

introduced, so that Equation (III-1) is factored into three first 
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order equations, 

(III-7) 


(III-8) 


(III-9) 


with (III-10) 

(III-11) 


The boundary condition at r = d is satisfied (see (III-9)) if s(d) = r L 

and Ct.J (d) =O. Using these initial values, (III-7) and (III-8) are 

integrated inwards to r = c, constructing a table of s and (1..1 by the 

Gill-Runge-Kutta method ( 23). Finally, using /((c) from (III-6) as 

initial value, Equation (III-9) may be integrated back out to r = d, 

completing the solution. The mesh here is double that used on the 

inward integration, so s(r) and UJ (r) are available at the mid-points 

of the steps. 

The values of /((r) are now used to construct the integrals 

in Equation (II-24) for r ) c. These may be considered spherical 



Hankel transforms, and conveniently evaluated by an extension of 

Filan' s method ( 24 ) • This is a generalization of Simpson's rule in 

which the wiggles of sin (qr) are exactly accounted for, so the mesh 

required is determined by the smoothness of X (r). Thus, for all q 

of interest we can use the same table of X(r). Our computer routine 

FILON assumed X(r) to be tabulated in blocks of 24 steps, with the 

mesh size doubling between blocks. For the hard core potentials we 

used H = .04 F outside the core, and three blocks in all. For the 

soft core Bressel potential we used a fictitious hard core of O.OlF 

as a device to start the integration. We fitted two blocks exactly 

inside the square core region and three blocks outside, being careful 

to pick up the very deep value of v(r) immediately beyond the square 

potential edge. For the region r ) d, so far neglected, we added a 

correction. Assuming as before that v(r) is very small, it is easy 

to derive the approximation 

JJ
oO 

JJ. ( /!0 Jc) XJ. ( -P-o-t:) ~ ~ (III-12) 

For r ( c '"XL = i L and hence the core contribution 

is given by 

(III-13) 
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The Reid hard core potential, given separately for each 

partial wave, is available only for the following states: 

For sake of comparison we calculated the binding energies for these 

very states for the Hamada-Johnston and the Bressel-Kerman potentials. 

For higher partial waves we evaluated the OPE.P contribution 

in Born approximation as first used by Razavy. For this purpose we 

assume that only the OPEP is effective for these waves and replace 

u1 by JL as in Born approximation in (II-25a). This procedure is 

quite good since the centrifugal barrier allows these partial waves 

to be effective only at large distances for the energies in nuclear 

matter and the wave function is not too much distorted. The detailed 

procedure is this: We first assume that the OPEP acts in all partial 

waves and then subtract out the ones which we have taken into account 

more accurately. The OPEP is given by 

0·0758 

2 µ c :::: PioN M11ss 

Since the tensor part averages out to zero when we sum over all the 

J components of any partial wave we have writing 

-P .!c 
-e (III-15) 



s
<Jd/ l 

(III-16) 
( 6-) 

Then by Equation (II-25a) 

(III-17) 

From this if we subtract out the contributions in OPEP of the waves we 

have used, viz., those given on page 37 we shall obtain the contributions 

of the higher partial waves. For this we require the integrals (25) 

j~ 
d (III-18) 


where a = f 1 j L(kr) = kr jL(kr) and ~ are the Legendre functions 

of the second kind·. Then the OPEP contribution is 
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I 

16 

(III-20) 

Similarly if only the even waves from amongst those given on page 37 

are considered the OPEP contribution is 

(III-21) 

The procedure of calculation was as follows: For each ~ 

reference spectrum parameters /1 and m* were chosen. After some time 

it became clear that one can choose /'). = o.6 and m* (always near 1.0) 

was determined by making the reference spectrum cross the "nuclearn 

or computed spectrum at some ~ ~ 3 kF. We chose seven values of 

k
0
/kF =0.1, 0.2, o.4, 0.54 0.775, 0.9 and 1.0 and for each k

0 

R 2constructed G (k ). The y for given k is determined by Equatioh (II-10).
0 0 

In the first order calculation, GR depends only on k , not P, so 
0 

(III-22) 
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and the average potential energy of occupied states is 

U ~ ~ L U(rn) 

m<*F (III-23) 

== 1;ie fo 1 

-t/(.P,-1/C1:<-rJ.) Gr ( f<·-kp) d-k 

It turns out that U is very nearly equal to U(m), where km = [6 ~ 
is the average momentum in the Fermi sea. 

To determine ~(~) we evaluated [ GfJ (k ) by (II-52)
0 

at eight values of k from zero relative momentum up to k =3.5 kF. 
0 0 

2In this case y is taken from Equation (II-20). Only even partial 

waves of G are required. The sum over k in Equation (II-50) was 
n 

carried out by a double quadrature, 

(III-24) 

To obtain G(k ) at all the points required, a Lagrange interpolation was 
0 

Nmade in the table of G. The computed U (~) and U(km) were compared 

against the input reference spectrum parameters and the process repeated 

once or twice to obtain reasonable self consistency. A typical spectrum 

is shown in Figure 4. 

(b) Second Order Corrections 

The second order corrections were evaluated from Equation (II-33) 

to (II-37), which give diagonal matrix elements of ~( 2)G.Generally we 

used a "one-point" approximation in which we estimated 

(III-25) 
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where k is the average relative momentum between occupied states. 
0 

Since b (2 
)G is not exactly a quadratic function of k , this is not 

0 

exact. Later on we evaluated /;:).( 2 )G at seven values of k and 
0 

integrated accurately to find the change in binding, as in Equation 

(II-49). As shown in Table I, the one-point approximation is very 

good, with an error of order 5%. The angle averaged Pauli operator 

Equation (II-37) with the P appropriate to k was used in all cases. av o 

Compared to setting P = O, (so Q is a step function), this decreases 

the corrections by about 10%. 

We made one slight error in our use of Equation (II-32), 

2by using ~(k') in place of the argument IP 2 + k' • For large
~ av 

k' this makes extremely little difference and we feel there are 

greater uncertainties than this in the nuclear spectrum. 

With P ~ 0 the integration in Equation(II-33) breaks up 

into four regions, two Pauli and two spectral. The three short 

regions were covered by 9 point Simpson's rule, the longer region by 

21 points. In our most accurate evaluation of the spectral correction 

we found some difficulty with taking k =kF. Due to the near 
0 

Ncontinuity of the nuclear spectrum at ~' e tends to zero at the 

Fermi surface. However P~~ also tends to zero in this limit, so Q 

is a step function. To evaluate the spectral correction we took the 

integrand at k =~ as a polynomial extrapolation from the values above 

~· This is probably justified, and was the only numerical problem 

faced. 
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(c) Third Order Correction 

The third order correction was evaluated from Equation (II-46) 

and (II-48). In this case we took Q to be a step function, to keep 

the work to a mininnun. Further, we used the "one-point" approximation 

(III-25) to estimate the change in binding energy. It would be a very 

lengthy task to evaluate ~(3)G at several initial k • Considering
0 

the coupled 3s1 - ~l waves, J = l and it turns out there are eight 

combinations of L-values in the sum (II-48). These are shown in 

Table :LI , in order of importance. The region of integration is 

shown in Figure 5 • The upper limit was set at 6~ which we believe 

is adequate. The Pauli operator Q divides the square into four 

regions, so with the eight terms there are thirty-two contributions 

to the corrections. In practice only one or at most three of these 

contributions was significant, the others being several tj_mes smaller. 

This gives us confidence that the result obtained is meaningful, and 

indicates also that the series of correction terms is converging 

absolutely. 

Simpson's rule was used in the integration, with eight 

points below kF and 21 above. According to Equation (II-48) we must 

have 29 Hankel transforms of X (k , fl. ) for the table of ii L(k", k ) • 
0 l 0 

However, the final term in the sum ~ould require 29 transforms of 

each 29 reference wave defect functions X (k', r). This would be a 

large amount of computing and we made the following approximation. 
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We chose seven representative values of k', k'fk:r = .22, .56, .775, 

.937, 1.5, 3.125, and 5.125. We found XR for each of these and 

for each made a table of the transform. During the integration 

the required F(k", k') was taken from the correct row of the closest 

available k' (above or below kF as required). Some comparisons 

given in Table III show that even with only two k' - columns the 

results agree quite closely with each other. We believe that our 

evaluation of L)(3) U is good to better than 10%. 

We also calculated the third order correction for the 

1s state for a few representative cases. It was of the order 0.2 MeV,
0 

so completely negligible. 

(d) 	MMS Method 

Since the corrections to the Reference Spectrum are most 

important 	in the S state we proceeded to apply the HMS method only in 

1the s state, the 3s1 being taken care of by the third order correction. 
0 

Equation (II-75) then becomes 

or (III-26) 

The boundary conditions are given as 

Xo .1, ::: lo Ih~ c 
(a) 

::: 0 Ik,, cl--~ f"--') 0 

(b) (III-27) 

" 
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The equation is again solved by the method of E. c. Ridley, but 

now, because the separation distance is not known at first, we must 

use its variant, as was done by Razavy. 

Equation (III-24) is again factored into three first order 

equations: 

ds - - (1+ 5fJS) (III-28)-cJ.>t 


cia; 
 - - 5(9W--fi)- (III-29)d-'L 

dll :: r; ( 5u-1-w) --Ii (III-30)dh 

:: SU+WXo-6 (III-31) 

- u (III-32)and 

::: - ( 1' 2- yr? * l!.i )-f 

where (III-33) 

(III-34) 


The equations are similar to (III-7, 8, 9, 10, 11) if we identify 

5 = I 

.J (III-35) 

and 
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The boundary condition (III-27a) is satisfied if we put S = 0 

and hf = Q (kc) at r = c (Equation III-31). With these initialq 0 0 

values we integrate outwards for S and W, constructing a table for 

them in this operation, till bJ = O. Here we then put U =o, thus 

satisfying the other two boundary conditions (III-2lb and c), and 

integrate inwards for U, constructing a table for it too. 

is then calculated from Equation (III-31). The evaluation of 

(k /G~/k ) is now given by Equation (II-71).
0 s 0 

The evaluation of the other terms in (II-68) is quite 

obvious from (II-72) and (II-74). The effect on potential energy 

of the correction terms was evaluated as in the Reference Spectrum 

Method. 



CHAPTER IV 

DISCUSSION 

We have carried out the nuclear matter calculations for 

three modern potentials, two of which have hard cores (Hamada-

Johnston ( 26 ) and Reid ( 27)) and one has finite or "soft" 

repulsive cores (Bressel-Kerman ( 28)). The potentials are des­

cribed in Appendix B. The results for binding and saturation 

are su..rnmarised in Tables IV and V • With the inclusion of three-

body cluster effects, both binding and saturation are closer to 

the experimental values than in previous calculations. The result 

for the Bressel Kerman potential shows that it is feasible to hope 

for agreement with the experimental values of about 16 MeV per 

particle at kF =1.4 F
-1

• 

The main surprise is the 2 MeV difference between the Reid 

and Hamada-Johnston potentials, and the four MeV gain of the soft 

core Bressel-Kerman potential over its parent, Hamada-Johnston, 

{Figure 6 , Table V ) • By referring to Table IV, it can be seen 

that the gain in binding of Reid over Hamada-Johnsto~ is in the 3n2 

and the net 3p states. Evaluation of the phase shifts for these 

3potentials shows that in the n state, Reid's potential is more2 

46 
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attractive, its phase shift being about 10 to 15% greater (and 

agreeing better with the most recent phase shift analyses). Since 

the average potential energy due to 3n interactions is about 15 MeV,2 

we can expect Reid to give about 1 MeV extra binding on this account. 

A similar contribution from the 3p states accounts for the difference. 

The Bressel potential gain in binding is a more subtle effect. First 

of all, softening the core does give a gain of about 1 MeV binding in 

each of the S-states at a given density. The comparison of Bressel 

to Reid rather than Hamada-Johnston is undoubtedly the fairer one, 

since both Bressel and Reid fit the most recent data and we have just 

seen that differences of a few MeV can easily arise from fitting 

different data :0lections (i.e. giving different phase shifts). 

The remaining small gain in binding is due to saturation occuring at 

a higher density. This will be brought out more fully below. 

Our work shows that at least for the hard core potentials 

the third order correction to the reference spectrum approximation is 

significant, being of order 1 MeV. This can be seen in· Tables VI 

and VII. In the soft core Bressel potential it is much smaller and 

generally unimportant (Table VII:O. This seems confirmed by pre­

liminary calculations with another soft core potential. It can be 

seen in Tables VI and VII that calculations made from different 

reference spectrum parameters l1 and m•, if carried to third order, 
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agree remarkably well: within .5 MeV in all cases. This is in 

spite of up to 5 MeV differences in the first order result. We 

have also calculated the 1s state by the modified Moszkowski­
o 

Scott Method, obtaining similar values as shown in Table IX • 

This agreement gives confidence that the reference spectrum series 

is converging to a meaningful GN matrix. It also indicates that 

only a modest degree of self consistency is required between ~ 
N

and U • Of course, if /1 and m• vary too greatly from reasonable 

values, the individual correction terms become large and their 

relative inaccuracy more dangerous. For example, in Table VII 

we calculated one case for the situation U(b) =0 m• =1, with 

self consistency in fl ) which gives fJ.. =o.86. The second order 

corrections are huge (spectral = -23 MeV) and could easily be 

inaccurate by one or two MeV. The final result is -13.2 MeV 

binding at kF = 1 0 36 F-1 , differing by about 2 MeV from our best 

value. A substantial third order 1s state contribution could 
0 

contribute to the discrepancy. 

It could be argued that once one decides to define U(b) =0 

the spectral correction should not be included at all. Rather the 

contribution of three body cluster diagrams should be included as a 

perturbation. Removing the spectral correction would reduce the 

binding disastrously, and it is unlikely the three body cluster diagrams 

can account for the discrepancy. It appears that at least two or 



three MeV binding are arising in our calculation from the iteration 

of three body clusters in higher order diagrams. This comes in when 

we define U(b) to be something' non-zero. This point requires further 

study. 

To complete the point we began, evaluation of the third order 

reference spectrum correction is quite simple, and is apparently an 

adequate method to get an accurate result from the tensor force. 

Generally speaking, we see in Tables VI, VII and VIII a large 

compensation between the second order Pauli and spectral corrections, 

with a small net result. This is true until Li and or m* is too 

far from rough self consistency. We have already noted that there 

is no such cancellation between parts of fj,(3)G. Thus from the point 

of view of absolute convergency it is fair to say the potential energy 

contributions from first second and third order are in the ratio 

80 : 20 : 2, which is satisfactory. 

It should be noted that decreasing [). makes the Pauli 

correction large, while increasing D. makes the spectral correction 

large. The Pauli correction is determined mainly by the magnitude 

2 RA small Lb: 0.5 makes Y small, so X (r) 

has a long tail. This makes F(k') large at small relative momentum. 

The spectral correction is sensitive to eR - eN in the region above 

but near ~· This difference is nearly proportional to tJ. • 

Empirically, the net second order correction is small for L1~0.6, 

which makes this the most useful value to employ for reference spectrum 

calculations. 
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Many details of the average potential energy per state are 

apparent in Table IV , and are more easily seen in Figures 7, 8 

and 9 • Over the range of densities displayed, the average 

kinetic energy T is roughly linear in ~; of course it is really 

1quadratic. The potential energy due to S interactions is seen 
0 

to be parallel to the kinetic energy (-T) line. This shows the 

1effect of the short range repulsion, in cutting down the S 
0 

2contribution from a kF3 dependence to only kF • The states with 

J } 2, interestingly, all have about the same dependence on kF and 

vary more rapidly. Thus, the many accidental cancellations which 

occur, hold over a wide range of densities. The 3p states combine 

to have a very small net result, consistent with the usual inter­

pretations that the P state force is primarily spin-orbit. The 

higher partial waves, here given by OPEP, make a substantial repulsive 

contribution which is highly density dependent. The 1P1 state 

repulsion is slightly stronger. Together these odd states roughly 

cancel the large attractive 3n2 contribution. The remaining attractive 

state, 1D2 is not shown as it lies just between the lines (-OPEP) and 

(-l P1 ). Thus, it would be in effect a good approximation to calculate 

only the 1s , 
1D2 and 3s - 3n1 states as done by Brueckner and Gammel. 

0 1 

Finally we note the most interesting feature, the decisive 

saturation effect of the tensor force in the coupled 3s1 - 3n
1 

states. 

It is the only contribution to lL which shows definite saturation in 

1this density range. The s state, where the force is purely central,
0 
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will saturate at a higher density comparable to the close packing 

of the hard cores. 

A central force can act in first order, so that all states 

in the Fermi sea can contribute, and saturation occurs only after 

the average matrix element becomes small. A tensor force acts only 

in second order. Empirically it is a long range force, so can only 

scatter to intermediate states through a momentum transfer of order 

one inverse fermi. Thus the states which can take advantage of 

the tensor force are those in a shell at the top of the Fermi sea. 

Since the surface area of the Fermi sea increases less fast than the 

volume, the net contribution of the tensor force to the binding will 

increase less fast than that of the central force. 

If only the 1s and 3s states were important, the mean 
0 1 

potential energy ~U would lie midway between the S-state curves in 

1
Figures ? to 9 • However, as we noted above, the D state can be2 

regarded as the net result of all the higher states, and its con­

tribution is seen to be anti-saturating. Its effect is thus to 

-1 (move the saturation point from about ~ =1.3 F where it would 

1be with only S-state forces) to the desired region near 1.4 F- • 

We can now consider the difference in binding between the 

Reid and Bressel potentials. Comparing Figures 7 and 9 we see 

that the major difference in the average potential energy curves is 

in the 3s - 3n state, where Bressel shows less tendency to saturate1 1 

until a higher density. It appears in fact that the Bressel potential 
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has a stronger ratio of central to tensor force in this state, in 

agreement with the above discussion. This was checked in a rough 

manner by computing the phase shifts, for both potentials, using the 

central forces alone. Hence, the main difference is that Bressel 

-1 3fails to saturate until 1.5 F , due to a weaker s1 tensor force. 

But by postponing saturation until the higher density, it gains a 

small amount of binding from the other states (which one can say are 

1in sum, the s and 1D2). In principle, the gain in binding this 
0 

way could be greater, but it does not happen to be. 

At this point one small defect in the work must be pointed 

out. In applying Equation (II-52) to the hard core forces, we ma.de 

the error of using '#L{r) f (r) in the final term, rather than f(c). 

This makes the energies of excited states less attractive than they 

would otherwise be, and costs nearly 1 MeV of binding. Thus our 

hard core calculatioL is not strictly comparable to the soft core 

one where Equation (II-51) could be used directly. On the other hand, 

using Day's solution of the Faddeev equations will give compensating 
t 

effects, slig1*ly reducing the binding. These two corrections might 

well cancel, and neither is includea as we hesitate to repeat all 

the work now. 

Another point that should be pointed out here is that f~r 

the soft core potential (Bressel-Kerman) while calculating Bethe's 

suppression factor f(r) we assumed the particle state momentum to be 

-1about 4F • To test if this was reasonable we also calculated f(r) 
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at 3F-l and 5F-l and found that what was to be gained in binding 

-1 -1 energy at 3F was lost at 5F • Thus the two effects were com­

-lpensating and that 4F was a good value to use. 

In Figure 10 we show the 3s - 3n reference wave function 

distortion for the dominant S-channel solution. 'X 20 vanishes 

inside the core, since a plane wave has no "small component". This 

is calculated for the average relative momentum k = [:3 kF. 
0 

The Fourier transform of X is small for k' ~ kF because of 
00 

cancellation between the long range attractive and shi:,:c·t range repul­

sive parts of X • This circumstance makes the second order 
00 

correction from F small. However, it is clear that for X2000 

there is no cancellation, and its 92 Hankel transform is negative 

and quite substantial for k' !::!- kF (Figure 1). X 20 is made 

large by the strong tensor force. Thus, it is the tensor force 

which makes the second order correction terms so large in the coupled 

3s - 3D states. Only in this state is the third order correction 

appreciable. The relative smallness of the third order correction 

is due to geometrical effects~ only at a few places in the region 

of integration do all factors in the integrand take on large values. 

In Table X we tabulate GN matrix elements for the Reid 

potential, state by state, with statistical w~ights included, at 

several sub-nuclear densities. Each line refers to a relative 

These results 

are of value for further work. 



In Figure IV one can see the details of the potential 

energy and the reference spectrum. This is for the Reid 

potential, ~ =1.36 and ~ =o.6·, m* = .949. The curve U is the 

potential energy of occupied states using GR. Uc includes the 

second and third order corrections evaluated at several k • The
0 

agreement seems quite good. UM i·s a li"near i t 1 t• b t n erpo a ion e ween 

We believe it is wrong to accept the computed 

Nvalues of U for ~ ~ kF for the following reason. The very great 

R
attraction just above the Fermi surface comes about because (i) G 

is modified by the suppression factor f, removing most of the hard 

core repulsion and (ii) we take only even waves into account, by 

Rajararnan's prescription. At least the second of these effects is 

suspect, since Rajarman's argument (16 ) relied heavily on neglecting 

all hole-state momenta compared to the momentum of the state con­

sidered. This is clearly wrong until kb is at least 2 or 3 ~· 

One can also say that the spectrum just above kF will be sensitive to 

the long range forces, such as the tensor force. However, for these 

an improved treatment of the three body problem is needed, and has 

been developed by Dahlblom ( 29). One needs now two suppression 

factors f c and fT' and the calculation becomes more involved. Here, 

we have simply used Bethe's solution and applied a single f(r) to all 

parts of G. We believe that the actual spectrum will be closer to 

ifl than to tfi in this region. The spectral correction can be changed 

one or two MeV by moving uM about, but no attempt was made to do this 
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to make the result look artificially better. When a better treat­

ment of the three body problem and the energy spectrum is available 

it will be a simple matter to correct our result. 

In conclusion, we believe the remaining uncertainty in 9ur 

results lies in the physical approximations used and not in the 

numerical ones. We have just mentioned the necessary improvements 

in the treatment of three body effects and in the evaluation of the 

energy spectrum near the Fermi surface. The question of the energy 

spectrum for particle states is bound up with the convergency of the 

theory, and has recently been discussed very nicely by Brandow (15 ). 

These effects could certainly be a few MeV in magnitude. 

Our result for the compressibility in Table V is of the 

same order of magnitude as in Brueckner's calculations. Remarkably, 

the soft core potential gives a greater value than the hard core. 

This is probably connected with the fact that saturation is not 

exclusively a property of the repulsive core. As discussed above, 

the Bressel potential saturates at a higher density, where the core 

can be playing a more important role in saturation, and this would 

account for the higher value of the compressibility coefficient. 

In any case, there is no experimental evidence against the present 

values which are of the magnitude required recently by Sorensen in 

his consideration of the isotope shift. 

In Table XI we present the results for the re-arrangement 

energy calculated according to the relation 

(IV-1) 



CHAPTER V 


SPIN ORBIT FORCE 

We have seen that for an infinite system like nuclear­

matter the 'G' matrix formalism gives excellent results both for 

the Binding Energy and saturation density. An extension of this 

procedure to finite systems was initially suggested by Brueckner, 

Gammel and Weitzner( 5) (hereafter referred to as B.G.w.). Here 

the main term in the effective interaction in a finite nucleus is the 

'G' matrix, taken from infinite nuclear matter at that density. 

This procedure is commonly known as the "local density approximation". 

It has been followed more recently by Kuo and Brown ( ":fJ ) and to some 

extent justified by Brandow ( 31 ) • 

In nuclear matter, only the central force part of G is 

effective for binding and saturation. In a finite nucleus the spin-

orbit, tensor and quadratic spin-orbit forces will also come into 

play. Obviously the balance of these various forces will be different 

in 'G' than in the original two body force. It is clearly of interest 

to know whether, indeed, G is made up of a "strong central-weak tensor" 

force, or just what the balance is. 

56 
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In this section the spin-orbit force is considered 

in some detail, and the separation of the effective tensor inter­

action is only considered in a general way. Using the effective 

spin-orbit force, the one body spin orbit force of the shell model 

is evaluated in an approximation similar to that of Blin-Stoyle 

( 32 ) • Shell model level splittings are considered, reasonable 

values are found and certain problems of current interest are dis­

cussed (constancy of splitting among the isotopes of Ca, questions 

of the 'shape' of the one-body spin-orbit force of the shell and 

optical models). 

In view of the satisfactory agreement with experiment 

and with other calculations, these techniques should be applied to 

the separation of the tensor and other parts of the two body force. 

Further, the question of the applicability of the Moszkowski-Scott 

(9) method to the spin-orbit force is considered. 

Consider the G in its most general form: 

(1'.JG//l.):: a+.i.-c(q;+-crz)·!j+-m(<!J·lf ~·&') -1-(1.rtJ(rz;·e rr;.·I?) 

+ ($--t)('f/·15-0J·~) 

where IT and g:- are axial vectors, ~ and P are polar vectors: 

( ~ x ~/) 

/-/:: x~'J 
p " I 

= * + -k- (V-2) 

;: ~· ­15 ~ ; 
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where ~' ~· are unit vectors in the incident and outgoing directions. 

For the spin-orbit force we are interested only in the coefficient c 

which is given, by geometrical arguments, to be 

I ( i.tf,J -i.</J ).-c ::: r8 e G, 0 - e G0 , 

(V-3) 

Details for other coefficients are given in Appendix c. Thus the 

evaluation of c requires calculation of matrix elements of G off 

diagonal in M (the magnetic quantum number). B.B.P. ( 10) have given 

the procedure for the diagonal matrix elements; the off-diagonal 

is a simple extension of that. 

The free-particle wavefunctions for state S =1, T =0 

are given by (B.B.P., Equation 6.2) 

( a.J 

(V-4) 

:: (87f/~ ( /<. 0 ~J1 f_ ~ .i.." ( .2l+-1;'1-z_ C ( l I 0 M J .:T fr/) 

( {,.) 

The nuclear matter "reference" wavefunctions are (B.B.P., Equation 6.3) 

M' 
~o

' 
t tVt I (V-5)/YI I I / 1} ,., ) o

UL,J.(-/1.o~k} ;JL,J" Ao 
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Then using (V-4a, 5) 

Like B.B.P. Equations 6.8 and 6.10 we define 

(V-7) 

and 

;JIM' 
ut.':r' [l L' l" 

Then 

I /YJ'0 (V-8)('•'H~ _p_ M u;r lrf-t) I YL I :r >d ~ ?<, Yt_ ff'L":r l 1 l" 

Using Equation (17) B.G.W. 

JdJl ~.0,-t) 1)-(-t} I "Y,_: (f,.>J) ~!ft; If,~. Yf7'( 1/f) 

(V-9) 
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where (V-10) 

(V-11) 

Using 

(V-12) 

and Equation (V-7) we finally obtain, using the reference G matrix 

GR for G 

· C (t'' Io fr// ;r "1 
1

} C( LI fYl'--n M / .J /Y1 
1

) 

<v-13)•J JL ( -ko.!t} LJ l~l" ( -k:,-'c) ~:. ck ~f'l '-/11 
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As a first use of this equation we apply it to the case 

M=M', and sum over M. Then putting k = k ' and using the Clebsch­o 0 

Gordan identity 

L c ( L s o M J 7 fYl) c ( L" s o m / .:r /YJ) -= bu·· 
(Y1 (V-14) 

we obtain 

(V-15) 

which agrees with the corresponding quantity in Equation (6.ll+a) of 

B.B.P. 

The G-matrix elements given by Equation (V-13) are in the 

k-space. It is sometimes useful and necessary to go from the k-space 

to the r-space or vice-versa. It is convenient to know how this 

affects a given partial wave, where the Fourier Transform induces a radial 

Hankel transform. The rules are summarised below: 

(1) 	To go from k space to r space: 
(4Tt )2 kk' 1 kk'Multiply the matrix elements by •=~(2it3)2 rr' rr' 

Then take a double Hankel Fourier transform with respect to 3L (kr) 

and 8L(k• r') integrating over kk'. The result is the (rr') matrix 

element of G. 

(2) 	To go from r space to k space. 
2(4:t) rr'

Multiply the coefficient by 

kk' 




62 


Then take a double Hankel Fourier transform with respect to 3L(kr) 

and jL(k'r') integrating over rr'. The result is the (kk') matrix 

element of G. 

While doing these transformations the following identities are 

useful: 

(a) 

(V-17) 

(b) 

Thus Equation (V-13) and the procedure for going from k space to 

r space 	and vice-versa we know all the matrix elements of G in either space. 

Coming back now to the evaluation of 'c' given by Equation(V-3} 

we obtain by using Equation (V-13) in it 

(V-18) 

where 

1 

l ~ l 	 #/ 'l:i.. { 

:: 
(.iJ (e1l-fl) C (L11-1j:ro) 


ff 
 (V-19) 

+ c ( l 11 0 I ;r I ) c ( L ,, I 0 I I JI)J 

Thus the second term in Equation (V-1) becomes 



. 'C 

=-~ (:!i+y;) ( ~x-f!) 
1 L' - ­
-,,. -f< ~ ( 6J) 

(V-20) 

Using the relation 

(V-21) 

.L I Bs (JM j 9, 0.,-t.J 11-L~· u,~- u,;..! dLrL Y,_'Coooo; 
.(?w,,,LL

1
lu ;T d(C<n(}), . 

'12­
where 8 SUM::: ASU/Y} f L(L+1)} (V-22) 

Now we have the identity 

( 
-k -/!I ) _!:_ Y/ (C<Y.l ()).i ( Vi + ti-;: ) ...::... x -­

- - -k -k_' cL l c.~ B) 

D 
I 

( Qj +-O'i:) ix\lk y/,.= (V-23)~ 

L·S Y.o-- J. - - /,. 
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where L = r x k and r = i 'J k• 
A -

The identity can easily be seen if we take the z-axis along the k' 

direction. Putting this result in Equation (V-21) we get B(k ,k ')
0 0 

as the coefficient of the L.S in the G-matrix as 

-k:~ J;;- ~ CSUM J gt (-fo.-t) V-l:' 
t., t.~ L'' 

(V-25) 

where CSUM = 2·BSIB1 • [ 2L + l 

d. ((J.L"+1}(;<L-1-1} 
{ c(L 11 -• /.u)C ( L"" oI :r• J 

L(L-1-1) 

(V-26) 
+ C (l O O/:T•)C{L" 10/ /:rl)} 

The above expression (Equation V-25) has been derived only for the 


T =0 case. For T = 1 an exactly similar expression will be obtained, 


0 0 

but the summation will be over odd L. The procedure adopted above is 

very similar to that of B.G. W. ( 5 ) • They worked in r-space instead 

of k space as we are doing. 

In order to evaluate B(k, k 1 ) we requi~e the following 

Clebsch-Gordan coefficients: 
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C (Llt-1/:ro)::: 
::T=L+I 

.J = L 0 .::J= L" 

-~ 
J =L-1 -..j.;t-l"-1-11 :r =- l"-1 

L(t...+:J.) l 
,, 
+~c (L110/::r1) -- :f;-l+I C ( l 

11 

/ 0 I/JI) = .J: L''+ I 

L .:r.:r = -(F· = l " 
/ l { l-tl) 

l "- I ,,(L - l}(L+I) -:T=l-1
J = l-1 

J. (:Jl"r I)
L {C).l+1) 

(V-27) 

It is now a very simple matter to deduce that in Equation (V-26) 

(i) if L fi L" CSUM = 0 

~L+3 L :;; ::::r- I (V-28)
L +-I 

. (ii) if L = L" CSUM = 
JL-1-1- -- L =:T
L (Ut) 

J L-1 L =::T+I 

L 
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Thus, knowing the L.S coefficient for the T = 1, 0 

cases the total coefficient is given by 

(V-29) 

which for a N = Z nucleus reduces to the usual ~ (T = 1 contribution) 

+ 41 
(T =0 contribution). 

The above expression for the coefficient of the spin-orbit 

operator has been obtained in the k space. For a practical application 

we must know its form in the r-space. The procedure for such a 

transformation has been given on page 61. Before we do this we must 

note that for physically interesting cases the coefficient of the 

operator is diagonal in the k-space, i.e., k =k ', or else energy
0 0 

will not be conserved. Let B (r,r') be the r space representation 

of the L.S coefficient. 

There are two ways in which we can proceed to obtain 

B ( r, r 1 ) from B ( k , k ) • Both procedures should at least in 
0 0 

principle lead to the same result, though in actual practice it is 

more convenient and accurate to use one rather than the other. For 

physical insights the opposite is the case. We, therefore, mention 
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We know from our reference spectrum calculations 

Using this relation in (V-25) 

C,; Q f>1 J~L (-/,,.t) x:l" (f,,k) J4 f; ( '""') 

(V-31) 

with a similar expression for odd L. Now (see Equation (I~l)) 

R are simply the diagonal matrix elements in k space of G and can 

simply be found by the Bessel Fourier Transform of the wave defect 

obtained in the Nuclear Matter calculations. Thus we see that a 

suitable combination of the G-matrix elements, the combination being 

provided by CSUM (Equation V-26), we can very easily obtain the· 

coefficient of the spin-orbit operator in k- 8 pace. To obtain its 

r-space representation B (r, r') it is then just a matter of two 

more Bessel Fourier Transforms according to the prescription on page 61. 
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When this procedure is adopted it is a trivial matter to see that 

(V-32) 

i.e., the coefficient of the spin-orbit operator is symmetrical in 

r-space (see Equation V-35). 

Explicitly we can write for an N = Z nucleus after taking 

{ ~ ("T; 1) + ~ ( /::o) J OF 8 ( "*o,~) 'r~o e-tc r:t 

8 (-ko, -Ao) :: ft?\ ( y~.,. /1..2.)[ ( o GI ~ G1 )~ 3 r> 
m* -R: - fl-~ II+ ""J_ II I, (CO~B) 

(V-33) 

where (V-34) 

Looking at Equation (V-33) it is immediately seen that there is no hard 

core conbribution to £3 (k ,k ) since 
0 0 )( ~s \

r(c 
which is independent of J. 

The r space representation for t 1GJ 11 is given byLS 



Another point that can be easily seen in this procedure 

is the absence of the second order correction to the G's. In fact 

all G matrix elements which are off diagonal in M have no second order 

correction. The proof goes as follows: The second order correction 

is given by (See Equation (II-27)): 

1G~ = <,,+.. M p. t Q il. fr1' 
.. '-Ysr J G ( eP. - e"') G f cfsT ) 

(V-36) 

(V-37) 

where 

(V-38) 

-+:1-rM' :: L (d~)J Jci2..)" .p."2 <4'.s~ I (I -Jl-R )-t I -//' rrt") 
M" 

(V-39) 
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Considering, as a special case, the.triplet even states 

we can write from Equations (II-41) and (II-42) 

//'2 ~ rrt''* ['11' 1"1" fr1 * 
L- ~" { ·~ ~L'" -r .J ' I ti /II l j .. .., "' tL" J' 

~v-en L /.. l 

1.:: o.tt J_;J' 

Now 
(YI,, , ,,Jd2.-i<,, J):J M( ~o~-f/'j JJ;,M ( -A"-7 ~.) 

Jd~ ~" ( ]):, rrt"( -fe" _:, ~'))*J);,M'( fe"-7 f<,) (V-41) 

= 


Thus, since our G-matrix has only off-diagonal (in MM') elements, there 

is no second order correction. An exactly similar proof goes for the 

Triplet odd states. 

The procedure outlined here to obtain the r-space represen­

tation for G is very simple. Unfortunately it is not a trivial matter 

to achieve accuracy. Firstly to obtain the final result we have to 

perform three Bessel Fourier transforms which all have to be done on 

a computer. Two of these transforms are over k, which requires knowledge 

of G for large k's. The final accuracy is, therefore, poor. Our 

initial attempt to obtain 8 (r,r') was by this method, but we had to 
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abandon it in favour of the procedure given below, for reasons mentioned 

and also because the k ) kF contribution was masking the k ( ~ 
0 0 

contribution which, of course, should be the more important one. 

The following procedure is less direct and the physical 

picture is not clear; but it is more accurate since the total 

number of integrations are reduced to a bare minimum. 

In Equation (V-25) the only quantity that changes over when 

13 (k , k 1 ) ~ B (r,r') is the integral
0 0 

Consider its Bessel Fourier transform according to the prescription 

on page 61. Then 

9t. (-kok)13t. (-li.o-'c') vt:· u~,. {J: ~·) dJc'' 

.~ {(,-'t-') elk() d '/ 

1 

=- 4~4 ff k~' ·: ~ (Jc-k') l{~ l{:.L" (~a'k") 9L(f<o'-1C')d-tc/Po 
· (V-43) 

Thus 

. fl. ( (.,{ft f}) 
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This then is the r space representation of the spin-orbit coefficient 

and differs from Equation (32) of B.G.W. by a factor of 2 

because of our inclusion of the exchange term. They derived this 

equation more directly in the r-space itself. 

We thus see that to obtain the r-space 8 (r,r') the number 

of integrals have been reduced from three to one. This will certainly 

improve accuracy. For a practical application of 8 (r,r') it is 

better to delay the integration until the end. 

We now wish to consider the spin-orbit splittings of the 

shell model potential. As is well known a two body spin orbit force 

will lead directly to a one body splitting, while the tensor force 

will do so only in second order. According to B.G.w. the second order 

effect is negligible; here we consider only L.S because we want to 

see if it alone is adequate. We follow Blin-Stoyle (32 ) and others 

by considering a "closed shell ±1 nucleon" nucleus, and ask for the one 

body force due to the interaction of the odd nucleon with the core. 

This procedure is followed because it will lead into the 11usual 11 

1 d (>
~form ofthe L.S force, which will facilitate comparisons with the r 

optical and shell model wells used by other authors. The novel 

feature here is that we take into account the nonlocality of the two­
foJt.ce 

bodyA(G-matrix). Certain approximations have to be made to lead to a 

simple result. These are pointed out. 

We, therefore, have to consider the expectation of the 

spin-orbit term 

J3(Jr,..t'> L·S ::: ~ ( '[i-t C!J-) • -'r,z. xp,'2. 6 (-'!:," ,Jr, 
1 

2 ) (V-45) 



73 


where 

= ~, 
I 

- ~... 
' 

( V-1+6)
In doing so we closely follow B.G.W. 

111 11Suppose that we are considering particle which has a 

specified spin state. Then the expectation value of q- summed over2 

the spin states of particle 2 will be taken to be zero if the states are 

all populated equally with spin up and down. In actual practice, however, 

this is not quite correct, since a single particle spin-orbit interaction 

splits two states with the same orbital motion, but opposing spins. 

This effect is of second order in the spin orbit potential strength and 

we shall ignore it since the spin-orbit potential is weak relative to 

the central potential. We shall also neglect any possible lack of 

spin-pairing in unfilled shells. Consequently our results will hold 

at and near closed shells. 

To evaluate the expectation value of r 12 x p12, we write ~·~ 

as 

k12 ~ Pn. I (V-47)== r2 ( ~· x t:· + ~2 )( e>- - -'}1 xi:_ .. -~ .. x J?,) 

Since P = 0 

P:i f3 ( -'t-12 1£,'2) =- f!, 8 (-k,z 1:'1) (V-48)I 

(V-49) 
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Consider the expectation value of the first term. This is 

11211where C. are statistical weight factors for the states of particle
J 

and~. its initial and final wavefunction. The operator p1 of course 
J 

operates only on f3 (r r ' ). Because the centre of mass is
12

, 12 

fixed, i.e., + r 2 = r 1 
' + r 

I 

, we make use of the delta function onr 1 2 

it which we have thus far ignored. Then we evaluate the integral over 

to obtain 

L Ci f ~~ (-:Cz) [ ~1 X J:• 8 ( 11:i , 112 -:J. ( ~. - /c; ll'fi ( -!!2+.ly"';•J (V-51) 

i ·ol ~· 

If 8 were a local function, it would have a delta function on 

rl - rl ' • Then r - r 1 
' would not occur in ~j (r2 + r - ' ) and1 1 r 1 

we could remove rl x p from the integral. But we know that the non­1 

locality in 8 is of very short range and that we can imagine that 

~. is slowly varying relative to 8 . This will allow us to take 
J 

r 1 x p1 from the integral. 

Now consider the expectation value of the second term. 

This is 

r ci 1~-~ c~z.) r -':.i. )( 1:1 8 c~,2-. 1:1~;J l/J· (-'c:) d~. "1: (V-52) 
a 
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Since we are integrating over ; and : ' the result of this integration2 2 
I 

must be proportional to a vector constructed from : and !l • If the
1 

nonlocality in 8 is of very short range, it is accurate enough to 

take this vector to be !i• This approximation is similar to that 

a1ready made in removing p1 from the integral of Equation (V-51). 

We, therefore, retain only the component of : 2 along : 
1

, i.e., we make 

the replacement 

(V-53) 

Then in the expectation value of the spin orbit term we can make the 

replacement 

k, .Jr.. / z. ><:Z12 ){ f 1:1->~ ~1 X )?, <I - - - 4, (V-54) 

Then writing 

L, ·S, (V-55) 

and combining Equations (V-45), (V-49), (V-51), (V-52) and (V-54) 

we obtain finally the single particle spin-orbit potential as the 

coefficient of 1:i_.S :
1 

(LS) ' ' fd d.Jr.' ~ r( k 1 I V / k,) ~ £;- Ci ~.. _z ~· ( ~1) /3 ( -'£1
1 11z.):1­

~ (V-56) 

•( / - ~' '~2-1 -'t;~ ) ~· (.Ir;~) 
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Recalling Equation (V-46) this can also be written as 

(V-57) 

where we have introduced the density correlation function 

(V-58) 


We now assume that the nonlocality is of short range so that we can 

make a Taylor expansion of ~ (r
2

, r ' ) about r and retain only the2 2 

first two terms of the expansion. Thus using 

(V-59) 


we can write 

(V-6o) 

The extra factor of '~' that we have put in compensates for allowing 

the operator \J to act on both the coordinates ; 
2 

• We now make 
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a second Taylor expansion between r 2 and r 1 : 

(V-61) 

and 

(V-62) 

Substituting these expansions in (V-57) 

1 + .!.. ( (.lz-k),,: Jol1 d-'! /3(k,~1 ) ( ~'~?) { (J(/c,) -~ \1-'c,E'(-'l-,) Ol - ­

- ( Q(-\ 1 ) }~I -1:)) 'Qk 
1 
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Let us now consider a multipole expansion of 8 (r, r 
I 

). 

This is given in Equation (V-44). Let us write this equation in the 

form 

f3 ( .Jc /c'J ::: L 131- (.Jc> -t:') (V-64) 
l 

Within the limits of our nuclear matter calculations 8 1 Cr, r') 

is known only for L =1, T = l and L = 2, T =0 states; we took all 

other states to be OPEP. Thus there is no experimental information 

which denies the assumption that all the multipoles 8 1 are equal; 

this assumption leads to a function 8 (r,r') which is a local operator 

in the angle variable. An alternative but no more reasonable assumption 

would make all the other multipoles zero; this would give maximum 

non-lo?ality and have angular dependence P1(Jl..) in place of o(Jl.-Jl.'). 

(Note: The L =0 multipole is irrelevant since it comes with the 

operator L.S). Thus with the above assumptions we can write: 

(V-65) 

(V-66) 

http:131-(.Jc
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where SL , ...S2. 1 are the angles which r, r' make with a given 

arbitrary direction. 

Let us first consider the T = 1 state. By Equation 

(V-63) and (V-66) this becomes 

(-".Jv'1-s>lk;JJ,-:,:::: JJ<.,_.!/,z. d.JGJ..k' ci.JLd-Jl' 13T=1(k.,>I,) 

~, . -'E ~ r (-'r,) - .!.. '!- . v... (> ( Jlc,) 
k.,1 { a ' (V-67) 

I I II 
- -;;-~·'Y,, {JC-'c,)-- (.-\::,-k 1 ).\7.1c ec-'<,)

Ot I .,;t _ - I 

Let us now take the arbitrary direction from which J2. and J1. 1 are 

measured to be along r • Then Equation (V-67) reduces to1 

. ~··~ . .Jr:' ·vk, (Jc-'<,)] (oCV2--J2'J _ o(Sl-f-Jl'J) 
.1c;1" 

I d, (! (V-68)
~-;(' f J d 3 1,,1 3 13 {Jr:J k)I 

- - - ,,.._ .Ji; h: h: ,,.., r,,,, k, ;;k, 
- 3 

For the T= 0 case we shall have 

, ) .A;.,. ft {fr &csz.-&)+o(SL+&';. -h:-- rr.t,J-J~·vk,~r.1r,>( 

I J I ~ _ l .k ·VL ~(A-,) - -:;- (A:, -.Jc.). VL (>(Jt,)« - ,,, "' - - ''-1 
(V-69) 

http:h:--rr.t,J-J~�vk,~r.1r
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1 4 2- - f. Jd h d k. d JL o/. .n..' -k: .lc' f{,r -+,,1c'J ~' · 1 .1c. V (>f.+,) 
°'1 	 I< 0 ...t 2. - k, 

I 

. ( & ( SZ- -.n.') b ( J2 -f- &.')).f. 

OY ( Jr., I I I ~ fd k d.t' h" ...-t' 1. 13 (~,.1c'J _!.. d p 	 {V-70)V.<(LSJ / k,) r::o ~ -	 r::. 0 k, elk,3 

8 (r, r') J 	 cases are given by Equation (V-44). We 
l:: I, T:: I 


~ L = 2 I T= 0 


now assume that nonlocality in this function comes from inside 	the 

2integral over k and that outside we can put the factor rr' = r • 
0 

This approximation is of the same order as made in connection with 

Equations (V-51) and (V-52). Thus using this approximation and 

Equations (V-44) and (V-28) we can write 

0
Iltif 	 08 T:::q (.Jc, -'<-'j ::. 3 f.:. . ;. rJ 9; (.fHJ I - v;, {.Ji } Ull ( -k,-'l;') 

- _g I 1 ll I D. Jr,') 5 ~ Vf1 ( ..Jt) II ( 7<, -(- ;i 

and 

I 

~2. 

r" 2 t :Z. I 7 ( .3 I u 3 
( i ') 

I I I ( fl ') - ~ V:, (k) U2 ( -k,--'c) + -3 ()-2l. (..le) 22 -1<,'r
)+ IJao (Jz:JU02 t<.,k G ... 

{V-72) 
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If we now put these values of B's in Equations (V-68) 

and (V-70) we obtain the coefficient of the single-particle spin­

oribt operator in r-space. In order to avoid the difficulty experienced 

earlier because of lack of knowledge of u for large k it is better to 

interchange the order of integration leaving the k-integration to the 

last. This will reduce considerably the apparent importance of large k 

and thus the contribution from inside the Fermi-sea will be dominant 

together with that of immediately outside. Further the number of 

integrations will reduce from 3 to 2. When this is done we require 

integrals of the type 

These can be easily evaluated by introducing exponentially decaying 

- f?C.­functions of the type e , integrating and then letting l: ~ o. 

The general case is a little difficult to work out, but in some particular 

Cos2s they are quite simple. This procedure then gives 

8 
-;.f ~~ 9z (J.x.J d.x 

-fl 

Jx,J ~~ (f<.x) cl-x.. = 0 

:I.Jx 9, (--kxJ cl.x = ~'l.. (V-73) 

4JX ~I ( +.l() dx. ::: () 

8 
::.J )l3 9, (*-~> ol x - .P/' 
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Thus combining (V-68) and (V-71) and (V-70) and (V-72), ma.king 

the change in integration order as suggested above and then using 

(V-73) we shall finally obtain 

,( ~ I I v' LS'! k1, ) /I=/ -::;. - qe J d1::2.-k [ f d k , -k, 3 { - V; 0 
(-i:) LJ,"( -k,-t_') 

(V-74)
.3 I , I L ' S( 2. , .2 1 2 1'j V, rhJ U, (?</t) ..f :i. V-,, (kJ U,, (-/<,k ) + V;3 (.Jr: J u3~ (-kJ/)) ]J 

I de 
k. dk 

and 

(Ls) I(.Jc, I v / -t; J = 
T=t> 

(V-75) 

and finally for N = Z closed shell nucleus 

(V-76) 

Equations (V-74, 75, 76) give the effective one body spin orbit force. 



These equations give the correct result (namely that of Elin-Stoyle) 

in the case of a local two body force. To see this we consider 

the Moszkowski Scott separation method. According to this the effective 
(J.5J 

spin orbit part of G is just U- (r) for r ) d and the wave function 

U. ~L' -7 ~ L' .t-'lane wav• • 

The work follows: 

Consider first Equation (V-74). In the Born approximation limit using 

vl this becomes 

(/,S) , I 
( ..Pz:, I V / Jc,) T::-o 

(V-77) 
00 00 

1

16 Jd 3 1I I= 3 ~ ~ ...k I{ /,f ) 0 

The factor 6 with v1 is really 2 (2£ +l) and for T = 1 we have onlyong ~ 

L =1. We now make use of the integral ( 33 ) 

00 

{7( jµ.ff},J.; i)j xA ~ (X-!f} (xv/hdx::: 
(V-78)0 

(7( i»-j-,,.u.,. iJ 

- Re ll - ff. < f<-e P <-i 

(V-79) 
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(V-80) 


Similarly 

after using (V-78) to obtain 

(V-82) 

Thus 

Equations (V-80) and (V-81) correspond to the form of the force given 

by Blin-Stoyle. 
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Using Equations (V-80, 8.1 and 83) it is now possible 

to evaluate the one body spin-orbit force directly using only the 

outer part of the two-body spin orbit force. Taking this force 

from the Hamada Johnston Potential (Appendix B) we can then show the 

one-body force to be 

{lS) I 2.. (, • I 

( .J.c, Iv /-'c.,);::: - 7f d ·:3. 2..[
()•JI0'-13 (I+ µd 

(V-84) 

where d is the distance beyond which the two body force is considered. 

We show below that it is equal to or near to the core radius. 

Once the effective single particle spin orbit force is 

calculated the level splitting is given by b., E = EJ=L~~-EJ=L+Y.! 

for an odd nucleon in state (n,,e) by 

(v-85) 

where -f ne is the radial wave function of the particle and depends 

upon the type of well chosen for the nuclear potential. 
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Calculations, Results and Discussion 

Before we go into the procedure of the calculations and give 

any results it should be pointed out that the effective single 

particle spin-orbit force consists of the product of two terms: 

l d~r dr and its coefficient. Let us call the coefficient by the 

name VLSCOEF. Thus the spin orbit force is given by 

(V-86) 

In general VLSCOEF is a function of r, i.e. it is density dependent. 

The aim of the present calculations is to find the spin-

orbit splittings in nuclei near to the closed shell ones. The 

calculations are in two parts: first is the calculation of VLSCOEF 

and the second is using it to find the splittings. Both these are 

independent of each other and require quite different assumptions. 

The calculation of the actual force is done by using 

Equations (V-74, 75, and 76). Equations (V-80, 81 and 83) are also 

used if the potential VLS were used directly as the two body force, 

rathe:r tnan the G-matrix. The u's are the two body correlated wave-

functions in nuclear matter. In Chapters II and III we have 

described how the wave function distortion X. can be calculated in 

reference spectrum approximation. The u are then simply given by 

(9- X) • Thus knowing the two body poten~ial in the 3p and 3n states 

it is very easy to calculate the spin-orbit force. 



One of the main assumptions made so far is that the non­

locality of /3 (r,r') is of much shorter range than that of '2 (r,r'). 

This was found to be true by B.G.W. Preliminary investigations 

showed this to be true, but no definite numerical values were obtained 

owing to the difficulties experienced in such a calculation as 

explained above. The main aim of our calculation, viz. evaluation 

of VLSCOEF was reached without explicitly calculating B(r,r'). 

If the spin-orbit part beyond some separation distance d of 

the Hamada-Johnston potential is used, VLSCOEF can be calculated 

directly from Equation (V-84). It is found that almost the complete 

external potential must be used to get the correct splittings. B.G.W. 

made this assumption in their calculations for binding energy effects, 

Our justification is provided by Figure 11. Here we have plotted the 

two body Hamada-Johnston spin-orbit force as the effective two-body 

force calculated in the 'G' matrix approximation. This was obtained 

in the following manner after Brandow's suggestion (35) for defining 

effective interactions: 

From Equations (V-25 and V-28) we see that in momentum space 

the effective two body spin-orbit interaction is given by (for T =1 1 

L =1 state only and k =k ')
0 0 

13 (/<,, I<,)~ ~ [f 9-, {-!<,->! {ff (L>,~ u> it,u ~.)- ~ u:o-; -U;'u:} ,u,J 
(V-87) 

In Born approximation this reduces to 

(V-88) 
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Thus the effective spin-orbit interaction is 

S( 1. 2. 2. ,_) 3 I I 0 0r v;, u,, + lJ;3 u3, - au, v,- -LJ; u, 
(V-89) 

From Figure 11 it is clear that the effective interaction and the 

two body Hamada-Johnston spin-orbit force are very much the same 

except at very small distances. It can be said that the "healing" 

of the spin-orbit amplitude is remarkably fast. The Hamada-Johnston 

spin-orbit force will, therefore, give the same splitting as the 

effective one only if almost all of it outside the hard core is used. 

From Equation (V-89) we also calculated the effective two body spin-

orbit force using only the spin-orbit part of the Hamada-Johnston 

p9tential. This we found to be very close to the one calculated by 

using all of the potential. Use of the central part of the 

potential gave practically zero value throughout. Thus the tensor 

part contribution will be very small and we could conclude that the 

effective spin orbit interaction comes mainly from the spin orbit part 

of the potential. In Figure 11 the top most curve represents the 

difference of the contributions to the two body spin-orbit effective 

forces obtained by using the total potential and only the spin-

orbit part of the potential in Equation V-89. This would be the 

tensor force contribution. It is seen to be small and vanishes very 

fast. These conclusions, however, are at best correct only in first 

approximation, since the u's involve the total potential. The 



above conclusions are true only for the T = 1 case. We have not 

investigated the T =0 case; the spin-orbit force here, however, 

is small. 

One of the interesting points to be studied about VLSCOEF is its 

variation with density and the contributions to it from different 

regions of the momentum space. These are shown in Figures 12 and 

13. Figure 12 gives the variations of the contributions to VLSCOEF 

from different regions of the momentum space for T =O,lcomponents, and 

the total force for N = Z closed shell nucleus. It is seen that the 

T =1 part is virtually constant over the whole range of the density, 

though the contributions from above and below kF change. It is 

interesting to note that the variation with ~ is linear and that as 

~ increases thereby increasing the size of the occupied region, 

the contribution increases by the same amount as the outside sea 

contribution decreases. For T = 0 this is not the case. The 

outside sea contribution is constant and negligibly small. The 

contribution from inside the sea decreases in magnitude as the density 

iacreases. The reason for such a variation can be seen from the T =O, 

k ( kF contributions given at ~ =l.36 and o.8. This variation is 

similar to that in the central force where it occurs mainly due to 

the 3r>2 states, the 3n1 and 3r>
3 

are very small and do not change 

total 3n much. This variation occurs in 3p states also, but is 

mutually cancelled by the three states. 
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In Table XII we give VLSCOEF at different kF for T =1 

and 0 states. The fourth column gives this coefficient for 

N = Z closed shell nuclei, while (N - Z)/4A times the number in 

fifth column must be added to the corresponding number in the 

fourth column to obtain VLSCOEF for N # Z closed shell nuclei. 

The numbers are in F3 and must be multiplied by 41.469 to get 

them in MeV r. 
To obtain the spin-orbit force in the form 'constant • 

d \' 11 dr we have made several assumptions. This form is useful 
r 

since it facilitates comparison with the usual shell model and 

optical model potentials. B.a.w. and Brueckner, Lockettand 

Rotenberg (7) did not do this. B.G.W. directly used the non­

local potential B (r,r') and very ingenj:>usly reduced the integro­

differential equation to a pair of differential equations of the 

form 'l'" + Ff'' + G'l' = o. Both F and G involve potential functions. 

They observed that the spin-orbit part of the G potential was not 

localized in the nuclear surface, but due to the presence of the 

add5+~_.;;.a~l potential F it is not clear that their work disagrees with 

the usual type of analysis. 

In Figure 14 we give the VLSCOEF · ! 
r -dr 

d (' 
as well as 

d (' 
100. -l - • We have seen that the coefficient of ! d ~ is r dr r dr 

not a constant, but an increasing function of the local density. As 

discussed above, this density dependence ~omes from the T =0 part 
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of the two body potential. The force is seen to be very similar in 

1 d (>
shape to - ~ , but peaking about 0.15 F inside the half density

r dr 

radius. From optical model analysis of proton scattering data several 

authors (36) have found that the radius parameter for the spin-orbit 

interaction was approximately .lF less than for the real central 

interaction. 

Greenless, Pyle and Tang (6) proposed an explanation, based 

on the following assumptions, which we shall see are not entirely 

justified: (1) the potential well radius squared is estimated to be 

the mean square density radius plus the mean square two body force 

radius. (2) The two body central mean square radius was taken to be 

3i'2 , and the spin-orbit radius zero. However, it is well known that 

the long range OPEP does not contribute to the extension of the 

nuclear force, because of its exchange character. According to Reid, 

the intermediate range two body force is primarily of range of about 

2
three pion masses, so that its mean square radius is below 1F • On 

the other hand, the spin-orbit force has a range of order three to 

five pion masses (three in Hamada-Johnston potential) which is not 

dramatically shorter than that of the central force. Thus the crucial 

steps in the Greenless-Pyle and Tang's argument are not supported. 

Our nuclear matter calculations lead easily to a one body 

spin-orbit force with a shift of the right magnitude inside the nuclear 

density. This is brought about by the density dependence of the 

spin-orbit coefficient VLSCOEF (see Figure 12). An argument similar 
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to that of the spin-orbit force if made for the central force 

would be rather rough, but would indicate the right tendency of the 

force. In Figure 14 we have also plotted the (> (r) and 

Q(r); the latter is the single particle potential energy and may be 

very roughly written as ~(r)•constant. It is seen that unlike the spin-

orbit force U(r) is outside the density distribution. Such a 

behaviour is brought about by the saturation property of the nuclear 

force. 

Now it is well known that the density distribution is well 

inside the optical potential well. Though never calculated from the 

first principles this is believed to be a manifestation of the finite 

range of the nuclear forces. It should be expected that such a 

smearing effect should be the same for the central as well as the spin-

orbit potential. Thus, there would still be a displacement of at 

least .15 F between the spin-orbit radius and the central potential 

well radius. 

1 d~ .
The figure of 100 · - Cir which we found convenient to use in 

r 

Figure 14 can be related to the usual "Thomas Term", if we assume a 

depth for the central well. Thus, writing 

we have 
.;loo e('I.,,, .1.00 • '/68V0 x :::: 760== =­

(-XrY2 (·~103)2. 

760x ::::: 1q ~ !la =: 4 0 fY1-£4>. 

v, 
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The usual potential models require 20 to '"jJ times the Thomas 

Term. 

Having thus far made a detailed study of VLSCOEF, the 

coefficient of 1 d (' • th ff ti b dy #'dT in e e ec ve one o ~orceJwe now r 

consider the next part of the calculations: a study of the spin-

orbit splittings in actual closed shell ± 1 nuclei. The splittings 

can readily be calculated using Equation (V-85). This involves 

knowledge of mainly two quantities: the radial wave functions fn£ 

_and the density distribution in the nucleus. For the first one, 

viz., the radial wave functions, we as usual took spherical oscillator 

functions. There is by now ample evidence for the reasonableness 

of this assumption from several Hartree-Fock calculations on light 

nuclei. For particles deep inside the well this approximation is 

quite good. For density distributions we used both the shell model 

density distribution and the Fermi density distribution. 

16 40
The shell model density distribution was used for 0 , Ca , 


and Ca48. It is given by 


:L 2.

4 (33 -(3.k 2.)e (c::i+~.k(1) For 016 PCJc) 
2. 

(V-91)= 7f3/;i. 

1. 2. 

4o 41&3 ~/3 k ( Jl ·s + a(3"h"J(2) For Ca (J (A) :::: Jf31,_ (V-92) 



~ is a certain mean of the oscillator wave function size 

parameter determined by requiring that the mean square radius of the 

nucleus be given by ~2 [ 2(n-1) + £ + ~ J , where n takes the 

values =number of nodes (including origin) -£ =1, 2, 3 .... 
For Ca48 we took (3 to be that of ca40 times (4o/48)l/3. Thus 

16 40 	 48f> =.566 for 0 , .4914 for Ca , .4624 for Ca • 

The Fermi density distribution is given by (37) 

Cv-93)
c-'t.-c>/a.

I + -e 

where c is the half-density radius; the surface thickness is given 

by 

(V-94) 

and 

2.. -I 
3 n-'2.a.. )( I -t- -­C'2-	 (V-95) 

c and s are the only quantities determined by electron scattering 

experiments. c is determined by the position of the first minimum in 

the diffraction pattern as a function of scattering angle and s from 

16 	 40the depth of this minimum. e = 2.60 for 0 , 3.64 for Ca , 

208 486.50 	for Pb • For Ca c = c of ca40 times (48/40)l/3 • 

16 40 48 208 s =1.85 for 0 , 2.5 for Ca and Ca and 2.3 for Pb • 
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The spin-orbit splitting calculations have been carried 

16 
out for 1!)2 - lp and l~/2 - l~/2 states around 0 ; for

312 
40 

l~ - lp , ld - ld lf - lf states around Ca ;
312 312 512

, 
512 712 

48
for ld - ld lf - lr and 21)2 - 2p ;2 states around Ca

312 512, 512 712 3
using both the shell model and Fermi density distributions. For 

lead we calculated the splittings for the states lh - ~1;2,9; 2 

1111/2 - lil3/2' 2f5/2 - 2f7/2' 2g7/2 - 2~/2' 3~/2 - 3d5/2 and 

3~ - 3P3/2 using only the Fermi density distribution. The 

oscillator size parameter o<. was varied around the mean value (3 

as determined above. Thus while the wave function of the single 

particle was allowed to change its size the density distribution, 

both shell model as well as Fermi, were kept fixed. The result 

of these calculations are presented in Figures 15, 16, 17 and 18. 

Marked on these figures are the experimental values (39). The 

agreement with experiment is seen to be quite good especially when 

it is to be seen in view of the approximations we have made. 

Firstly all our calculations are based on the Hamada-Johnston 

force. In nuclear matter this does not give enough binding and it 

would, therefore, seem too much to expect the correct spin orbit 

splitting. Secondly our calculations have been done in the Reference 

Spectrum approximation. We have shown that the second order 

correction in the spin-orbit case is zero, hence the leading correction 

is the third order one. However, from nuclear matter calculations 

we know that most of the correction comes from S-states and for spin­
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orbit force this does not exist. On the whole we therefore expect 

results lying reasonably close to- the experimental values. This is 

what we get. 

The only general trend that can be seen for all the nuclei 

studied is that as the experimental values require the size paramater 

oC to be smaller, the smaller the quantum number n. In other 

words the smaller the quantum number n more spread out is the wave­

function. 



APPENDIX A 

Coupled States 

The reference wave equation for coupled triplet states 

can also be solved by the Ridley method. We use the matrix notation 

developed by Razavy and Sprung (34). For a given J, there are two 

coupled orbital angular momenta, L = J ± 1. A solution of the 

reference wave equation (A.4) consists of two amplitudes, one for 

each L. For example, J = 1 has L = o, 2. X and X20 are the 
00 

"large" and "small" components of the deuteron state. The second 

index indicates that this solution is mostly $-wave. There is a 

second, dominant D-wave solution, with components X 02, x 22· 

It is very useful to regard these as making up a "solution matrix" 

X Jt components A'. J
LL'" Introducing the notation 

ol. ct'ld ,,._2-_ ::rc .:r- 1 J / -t2. o )
v'J = (A-1) 

2( 0 tf, /d/r..L- (:T-1-1)(;T+-:J.J/k2 

.:r 
""f-t) == v­

.J- 1 , :J-1 l}'J-1 J .J+' ) 
(A-2)

( \)--J+-1 I .J- I lJ;,.... I , :f+ I 

(A-3)0 \ 

#. (ko-t )). 
.T+-t 

97 
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we can write the coupled reference wave equation (2.5) as 

(A-4) 

(A-5)Of course, 

Inside a hard core, all components of uJ vanish, so the off-diagonal 

Jcomponents of -X do. We define <Ji J to be a diagonal matrix like 

(A-3) with 9=/ L(r) elements. By an argument similar to Equation (III-3) 

we will have, for r ) d, 

(A-6) 

with N some normalization (2 x 2) matrix. It must be written on 

the right so that the off diagonal components of -XJ have the appropriate 

L-character. Setting 

(A-7) 


The boundary conditions on ..X are 

?( ;r(C) ::; .Ji: :: c3-J' ( /?.o C) 

(A-8) 
-X;rfd) + f' .J ?<..::r(d) =- 0 k:: cl. 

which correspond to Equation (III-6). 
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To apply the Ridley method we introduce l and W J 

as 2 x 2 matrices. Equations (III-7) to (II~ll)may be interpreted 

as matrix equations. Due to symmetry of the potential (A.2), the g J in 

(III-7) and (III-10) is symmetric, and so is s J • The boundary 

condition at r =dis satisfied with WJ(d) = 0 and i(d) = r J• 

We can integrate the eight (seven are enough) coupled equations (III-10) 

J J
and (III-11) into r = c, where X (c) = g . Thus the procedure is 

completely straightforward. 



APPENDIX B 

Potentials 

The Hamada-Johnston Potential ( 26 ) is expressed as a sum 

of central, tensor, spin-orbit and (L L + (L s)2 terms. The para­

meters are different in singlet even and odd and triplet even and 

odd states. The numerical values are given in Table XIII. The 

potential is 

vl .k ) :: Ve (.le,) + vT {.le) s I :l. -1- v/.. s (-'t:? ( ~ • ~ ) + v£.L (.Ir ) LI 2. 

LI :l ::: b /.. J ( I + s . ~ ) k2.. .,. !.- .~ :::; f 5L<r-t l u; .~ )} l::L- (f.-? t 

V, (A:) :: 0. 0 8 ~ C2.. ( ~ • 15-) ( 0°" . q;_) Y(~) [I+ c'.l-e Y(x) f /,-e Y~-"J 
VT (.le); 0 ·08 ~c'Z. ( Tt·Ta-)( ~-~) 'J.[xJ[t+ aT Ytx)-r -e,.., Y 2

c .. J 

(B-1),- z (;c) [I A y
<.::rt.I. - +- IA.ll (")x:i.. 

Yo<;::: ExP(-x.)/x 
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2
Here µc =139.4 MeV is the pion mass. x = µ r. The hard core 

radius c is given by foe = .343 where µ = 139 .4/197 .314 = •706481 F-1 • 

S==-D 

~ :::.1L :. .:r== 

l :;:; :J+I 

0<1J,, 
M 

L, s/ s,,/ ~ ~s) :: 
s~o 

- d.(::I-1) 5 L :: J= IL-L' 
~J+I 

6/J"(.J+t) I
l:f- l ::; J±I s::;= :Iv+ I 

.;/. ( .J-t-2) .=. :r-rtbu1 l 
~ .J-1-/ 

L = :rJ.. ~LL-' 

- ~..J(.:T+1) s::. 0( ~;L,s J L12} LJ;:,s) ::::: 
, , 

L -:: .:r-1.:r- I 

5 :;. 
:: C}.~(J+1)-I 

L = ·" 
- ( ;r +2.) L ::; -;J+I1 J 


I 
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The potential in Bressel's thesis was derived by replacing the 

infinite hard cores by finite square potentials. The meson mass 

was taken differently for the three states T = 1 (pp), T = 1 (np), 

T = 0 (np), being 139.4 MeV, 135.28 MeV, 137.2 MeV respectively. 

This makes the potential charge symmetric, but not charge independent. 

However, we made the approximation of charge independence, using a 

single T =1 force with the correct average meson mass. This is 

correct to first order. The core radius is x = .4852 meson Compton c 

wave lengths and is, therefore, charge dependent. For x > x c 

the potential is the same as the o!iginal Hamada Johnston definition, 

as a function of x =µ r. 

The core heights are given in Table XIV. 

Recently Bressel improved the fit to the data and corrected 

an error in his programme. His revised potential has pion masses 

137.4, 133.08 and 137.34 MeV, in the same order as above. The T = 1 

core heights were amended to the values given in brackets in Table XIV. 

Further, three of the Hamada Johnston potential parameters were amended: 

ac (
1E) =8.7075 (from 8.7), a (3o) = -11.2 (from -9.07) and b (3o) =3.28 c c 

(from 8.?). This potential was fitted directly to a selection of experi­

mental data from 0 to 350 MeV, avoiding the correlated errors of fitting 

to phase shifts. 

The Reid potential was fitted to phase shifts of the Yale 

groups. 



The potential was given separately for each (J, L, S) state instead 

of being expressed as a sum of central, tensor, spin orbit, etc. forces. 

It is: 

defined to be 0.7 F-l 

defined to be 41.4700 MeV F-2 

1 s hard core radius x =P.29614
0 

3s1 - 3D1 hard core radius x = .35611 

.2... )
2 

x 

-x e 

18 -6x+ (71.98 - - .2... ) e x 2 x 

J I-11.294 e-3x x 

All other states hard core radius x = 0.3 
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23n2 = - 10.463 [<3+ ~ + 2z) e-x + 28.45 e- x 

x 

-(93.6 + 1~ + 62) e-3xJ/x 
x 

4 -6x3p
0 

V(x) = -10.463 [ (1 + ~ + 
2

) e-x - (545 + 24 + !!:_) e x 2 x x 

2+ 16.2 e- x -55.6 e-3x J /x 

L) -x 12 2 ) -6x3pl V(x) = 10.463 [ (1 + ~ + 2 e + (175.1 - x - 2 e 
x x 

2-1.1553 e- x -8.722 e-3x J /x 

All the potentials are in MeV. The number 10.463 is the value adopted 

2 2
for f µ c , the strength of the O.P.E.P. In using the Reid potential 

we used his defined values for the physical constants, including the 

contribution from O.P.E.P. in high partial waves. 



APPENDIX C 

In this section we propose to give a simpler method to 

determine the various coefficients in Equation (V-1) reproduced here: 

(C-1) 
cu+-1:Jcu:;-e +<5-·f!J+ (~--RJ( <!i·!f ~·~) 

where ~' ~ and ~ are given by (V-2). The G-matrix can also be 

written in the singlet-triplet representation as in Chapter III. 

When this is done it is seen by geometrical arguments 

a. = *(d G11 -t G00 + Gss ) 

I ( ;_¢' - i.tp )c =- e G,o - e Go1V8 

I ( G ;t4 <P )m -- 4 oo - Gss - J e G1-1 (C-2) 

;J.i. <P )I 
:::. ( G,, - Gss .,. e G ~ 1-14 

;Ji_c/J ) ( ~(p -~; 
~ =- I ( 6" - Goo - e 6 

1
_ 1 

::: - G,10 e + Go, e. 
If (4, f) tf8 ..t:M, {} 
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and the relations 

G,, = 4 
-1 -· 

G ce,rp J =- G ( e, -¢)
lo -10 

and the useful check relation 

The point which will be exploited here is that the G-matrix 

has exactly the same structure in terms of spin operators and rotational 

tensors as does the nucleon-nucleon scattering matrix. Thus we can 

simply take over the results of Stapp (4 o ) who has given the partial 

wave expansion of Mij in terms of phase shifts or more precisely the 

partial wave scattering amplitude o( • •• 
J.J 

t {/ ;r_ t> ) + ~ ~ ca. L -t , ) 0( ,_ f{ ( eJ / d. ;, -k 
e1>-e.111.. 

(C-4) 
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(U-J.) l-ft ~(c1l+1) L {;i(L-1} L-1 
o<L + o<l- + oc + 

l +I l ( L+ I} L L 

(C-5)~ { Lfl L 1 j6, 0 = L J:i O{L - Ji" o(L- + V 

o-dJ l 


l+I 
0(/. JL+t L-1 L- / L+I

G,_,= L { l o(L C>{ o< ) P1.
2 

<BJ -.;z,;,¢ 
o<L + - -- e

tJ-dd l L. +I L ( l+t} L 
~ 

{Lt /...+I) /t L+-1)( l+~) c5l .i. P. 
where 

L-1u = Jc L+!)( l+-~) o<L+I + Ji-c L-1) o< 

v ;:: § 1¥-IL+I L-1c< - - D(Jl+-1 L 

For T =o, summations over odd and even L interchange. For nuclear 

matter f's are of course zero. 

If we now combine Equations (C-5) and (C-2) for the co­

efficient ~ we shall have 

;iL+3 L+1 dl+I L dl-J L-1} Fl_ (0) 
o(.L 

lf8 oii.J l t L+1 l(l+1) ,}A..° k 
c=-'Lfra {i -- o<L - JJ. L o{L 

I 

L+I- ai+3 or. l- .J"=l+l 
L+I 

-A 4' I 
/;lfl(L+I) dl+t L e= + -- o(L ::T-= L '{LO)(C-6)";-k r_ l (L+1 Jd.L+IcrJJL 

L-1d. L - I ::T= L-1 
o(L.+ L 
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Using Equations (V-18), (V-19) and (V-27) we can also write after 

defining 

c.:: <.t71 [ 
~~,_ 

Odd L 

that 

l/7: L(L+1} 

~L+I 

JL+-3 
J= l+J

l -t I 

_.;, <P 
I "'J<ll+I-- J:: L e 'I. -(3

L L.L(L+-t) 

a_ L- I .:r:: L-1 (C-8)
L 

Thus comparing (C-6) and (C-8) it is immediately seen 

.:r 
(C-9)0( L = 
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(C-10) 


(C-11) 

(C-12) 

With this identification between the scattering amplitudes 

and the nuclear matter G-matrix elements it j_s now possible to easily 

calculate the coefficients a, c, m, g and h in Equation (C-1). 

As a first application of this procedure let us calculate 

the coefficient 'a'. This should give us Equation (II-25) 

(Equation 6-14, B.B.P.) when we take (~ (T =1) + i (T =O) states. 

Thus 

A I [ .:;-- { j l +- I) O(L + ~ { { 'l ) l-t I L 
IN :: .; L- L ol +3 o<L -t(Jl+-t) cX/....°' e L OdJ l 

Cc-13) 

/{(BJL-11]-f (:JL-1) O(L 

using Equations (C-2) and (C-5). 
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Putting in the values of o<. L from ( C-9) we get 

t1 I :: ": r L (Jl-f-1) /31.- + L [JL-t3) al-I-'+ (dLnJ/3,l + (.1L-1)/3,L-1fj_{FJ) 
/:=I a~ Lel>-(,y,L oddl rt t t 

(C-14) 

Similarly for T =0 this becomes 

L_ (~::r+1) j ff1.- (-k,") IJ-:i_, u;.L C-ko,J'c.)d-'t] 
;:r (C-15) 

Now taking ~ of (C-14) and ~ of (C-15) we get 

: 3L (t1U·1) f iL (-ko-'t:,} /.{ (..f:) ll.J -Jo-f:J M 
.e"'~" L 

+ 3 z_ 2=. <,;J J +IJ j ~ ( .:o-t:J vt~· (-4:) ut~ ( l,,--t) ck 

o./d L , L ' .:r (C-16) 

-t L L (~.rn) j J~ ( k, -~:) v;_~ t~J u;,L ( 'o-t) d-t) 
e~tn l,L' ..:r 
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This corresponds exactly with Equation (II.25a) (Equation 6.14a 

B.B.P.). 

Following the same procedure it is possible to determine 

the other coefficients m, g and h also. Accumulating in one place 

these coefficients are for T = l (Interchange odd and even L for T =O): 

l-t L L+t 4 } P. 
°"L - c<L of- 0(/. + ____!!:_ (.21..1--1) L (OJ 


odtlL .5lL+I ,;J.i k 

~ = i 2-: { 

+ 2:: l- {l+1) o<.:-1 + ( d.L l-1) <XL - L CJ(.L+-1+ '-JL (L+-1) v}-'­
oJdL L '/.. l(t..+t) 

- i 2=. (~ <XLl -t I) 


~<>en L 


L-1 l L+t Jg. =j2:_ 
{ 

- ()(.L -t- o<L - OlU(.JL+t) ~ -t­

orJll 


~ { L-t L L+-t ] I 'Jf]JBJ+ !.. L- (Ur) O(l - (.1 l +-I) O<t. + L ot:L + .;2 l (lN) V -­
;l od,/t. l(L+t) o{un c9J 

I 
- J: 

L-1 L L+I ~, oP,_te) I 
-(Ln} o<L + (~u-1) txL - L CXL - 4VL(L+I) -- - ·­

l < ac(d.J vJ .ti.kt...f-1} 

(C-17) 
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oZJ 
where L 

are given by Equations (C-9 to C-12). Once the2ik 

tensor or quadratic spin-orbit forces are scrambled in terms of 

rn, g and h it is, at least in principle, possible to determine them. 
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Table I 

A comparison between second order corrections evaluated at seven 

O.? 

0.9 

1.1 

1.36 

1.43 

points and the one-point approximation• 

Reid potential. 

One point 
Correction 

2.21 

4.35 

6.11 

4.19 

5.8? 

Seven point 
Correction 

2.19 

4.33 

6.16 

3.61 

6.20 

(MeV) 
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Table II 
L values occurring in the summation for the third order 
correction, J = 1. 

L 11 12 Term 

0 2 0 F20 Foo F20 

0 0 0 Foo Foo Foo 

0 0 2 Foo F2o Fo2 

0 2 2 F20 F20 F22 

2 0 0 F02 F02 Foo 

2 2 0 F22 F02 F20 

2 0 2 F02 F22 F02 

2 2 2 F22 F22 F22 
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Table III 

- ---ni1rd order correction. 

Accuracy of the two-k' approximation compared to the seven-k' 

approximation for (k'"/A..- (k')). ld.ne three is the most 

reasonable of the two-point values. 

k' values 

k' / 17 ( 1 

.95 1.0 

.775 l.o 

.55 1.0 

.22, .56 ) 
) 

1.5, 3.125 

.775, .937 ) 5.125 

) 
) 
) 

III order 

Correction 

(MeV) 

1.36 

2.18 

2.03 

1.85 



able IV 

Tabulation of Binding Energy stat·ewise for the (1) Reid, (2) Hamada-Johnston, 
and (3) Bressel-Kerman Revised potentials. A= o.6 throughout, and m• given 
for each potential in the above order. 

kF 1.2 1.36 1.43 1.5 1.6 1.7 
m• .952,.952 • 949'. 949 .957,.957 .96, .96 .959, .959 

.98 .97 .97 .97 .97 

ls (1) -23.52 -29.92 -32.55 -35.47 -39.19 0 

(2) -23.18 -29.48 -32.16 -34.86 -38.72 
(3) -30.82 -34.oo -37.12 -41.55 -45.85 

lD 
2 (1) -3.11 -5.40 -6.71 -8.19 -10.69 

(2) -3.03 -5.32 -6.63 -8.15 -10.72 
(3) -5.50 -6.83 -8.37 -10.99 -14.09 

3s 
1 (1) -32.54 -37.24 -38.93 -40.68 -41.69 

(2) -32.49 -36.88 -38.46 -39.73 -40.94 
(3) -40.47 -4~· 79 -4 l/· 8.;J. -4 7·Jo -_49. 00 

3nl (1) 1.11 2.21 2.82 3.55 4.83 
(2) 1.10 2.67 2.62 3.53 4.86 
(3) 2.0L/ ;i: 73 3.48 I/· 7,~ 6.:e 

3n2 (1) -5.34 -9.04 -11.05 -13.32 -17.00 
...... (2) -4.58 -7.77 -9.53 -11.50 -14.74 I-' 

°' (3) -8.50 -10.34 -12.48 -15.93 -19.84 

lp 
1 (1) 3.38 5.95 7.54 9.45 12.91 

(2) 4.01 6.27 7.54 9.01 11.51 
(3) 6.62 7.94 9.48 12.11 15.37 



\:caoi: .... :i:w conc111ueu1 

3po (1) -5.66 -7.96 -8.98 -10.04 -11.49 
(2) -4.62 -6.45 -7.27 - 8.10 -9.22 
(3) -6.90 -7.81 -8.73 -10.00 

-11.18 
3p (1) 12.93 20.55 24.72 29.42 37.25 1 

(2) 12.25 19.48 23.42 27 .88 35. 27· 
(3) 19.92 23.94 28.54 36.18 45.25 

3p 
2 (l) -8.53 -14.14 -17.21 -20.71 -26.41 

(2) -8.(fJ -13.36 -16.35 -19.74 -25.;p 
<:?) -14.37 -17.55 -21.18 -27.12 -34.11 

3F 
2 (1) -.54 -1.04 -1.33 -1.69 - 2.28 

(2) -.63 -1.24 -1.61 -2.05 -2.79 
(3) -1.35 -1.74 -2.19 -2.99 -3.95 

OPEP (l) 2.55 4.58 5.75 7.11 9.43 
(2) 2.59 4.67 5.86 7.26 9.63 
(3) 5.07 6.37 7.86 10.40 13.46 

Total(l) -59.27 -71.44 -75.93 -80.48 -84.28 
(2) -56.23 -67.86 -72.33 -?6.37 -81.06 
(3) -74.25 -80.09 -85.95 -92.45 -97.87 

B.E. (l) -11.75 -12.90 -12.62 -12.46 -10.59 
(2) -10.;p -10.9 -10.71 -10.10 -8.5 
(3) -14.28 -14.79 -15.20 -14.64 -:L3.29 I-' 

I-' 
-.,J 
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TABLE V 

Summary of Binding Energy Results (MeV) 

1.0 

1.1 

1.2 

1.28 

1.36 

1.43 

1.5 

1.6 

1.7 

Saturation 
Binding 

Density (F-1 ) 

Compressi­
bility 

Hamada­

J ohnston 


-8.55 

-9.47 

-10.30 

-10.90 

-10.71 

-10.07 

-8.50 

-10.87 

1.35 

89.B 

Reid 

-9.56 

-10.95 

-11.75 

-12.54 

-12.90 

-12.62 

-12.46 

-10.59 

-12.93 

1.3? 

159 

Bressel 

Thesis 


-14.71 

-16.01 

-15.21 

-14.36 

-15.80 

1.51 

251 

Bressel­
Kerman 
Revised 

-14·;l8 

-14.79 

-15.20 

-14. 6lf 

-13. ~q 

-15. /J. 

l.5c 

&o3 



Table VI 

Binding Energy in MeV for Reid potential comparing various A and m• 

8t several deneitiee. 
Ilnd Order Total 

~ m• A Ist Order (i)Pauli (ii)Spectral (iii)Total (I+II) IIIrd Order Total 

0.70 .95 0.600 -6.34 3.87 -2.77 1.10 -5.Z'J -0.29 -5.53 

o.Bo .95 0.600 -8.06 4.49 -2.92 1.56 - 6.60 -o.42 -7.02 

0.90 .95 o.600 -9.88 5.14 -2.57 2.56 -7.32 -0.73 -8.05 

1.00 .95 o.600 -11.70 5.77 -3.31 2.46 -9.24 -0.32 -9.56 

1.10 .95 o.600 -13.36 6.44 -3.58 2.86 -10.50 -o.45 -10.95 

1.20 .952 0.600 -14.86 7.17 -4.27 2.90 -11.90 +0.15 -11.75 

1.20 .966 o.600 -16.03 7.74 -3."51 4."51 -11.66 -0.20 -11.86 

l.28 .95 o.600 -15.38 7.69 -5.41 2.28 -11.98 +0.56 -12.54 

1.36 .949 o.600 -15.48 8.37 -6.69 1.68 -13.Bo 0.90 -12.90 

1.36 .960 0.570 -17.81 9.47 -4.43 5.03 -12.78 0.14 -12.64 

1.36 .962 o.600 -16.83 8.89 -5.4o 3.49 -13.33 o.67 -12.66 

1.36 .970 0.535 -20.Bo ll.06 -1.97 9.09 -11.71 -1.29 -13.00 

1.43 .957 o.600 -16.00 9.46 -7.05 2.41 -13.58 0.96 -12.62 

l.50 .960 o.600 -15.66 10.55 -8.59 1.96 -13.70 1.23 -12.46 

1.50 .969 o.600 -16.79 10.91 -7.15 3.76 -13.03 1.08 -ll.95 

1.60 .959 o.600 -13.25 12.~ -11.25 1.12 -12.13 1.54 -10.59 

I-' 
I-' 
\0 



TABLE VII 

Hamada-Johnston Potential. Binding Energy vs density 

IInd Order Total 
KF m• Ist Order (i) Pauli (ii) Spectral (iii)Total (I+II) IIIrd Order Total 

1.0 .97 o.6 -11.31 6.20 -2.80 3.40 -7.91 -o.64 -8.55 

1.1 .97 o.6 -12.68 6.84 -3.25 3.59 -9.09 -0.38 -9.47 

1.2 .952 o.6 -12.13 6.79 -5.47 1.32 -10.81 0.51 -10.30 

1.36 .949 o.6 -11.86 7.98 -8.40 -o.42 -12.28 1.21 -11.07 

1.36 .98 o.6 -15.38 9.24 -4.89 4.35 -11.03 0.31 -10.72 

1.36 l.oo o.86 -9.52 5.95 -11.48 -5.53 -15.05 1.74 -13.31 

1.43 .957 o.6 -12.16 9.06 -9.08 -0.02 -12.14 1.29 -10.85 

1.43 .98 o.6 -15.05 10.03 -6.20 3.84 -11.21 .64 -10.57 

1.50 .99 o.6 -15.62 11.42 -6.24 5.18 -10.44 .62 ~9.82 

1.50 .96 o.6 -11.45 10.13 -10.56 -.43 -11.87 1.49 -10.38 

1.60 .959 o.6 -8.62 11.90 -14.08 -2.18 -10.80 1.87 -8.93 

1.60 .99 o.6 -13.54 13.15 -8.71 4.44 -9.10 1.04 -8.06 

..... 
~ 



TABLE VIII 


Binding Energy in MeV for Bressel's Revised Potential 

KF m• 6 lat Order (i) 
Pauli 

(ii) 
Spectral 

(iii) 
Total 

Total 
I +II 

IIIrd Order Total 

1.36 .949 .6 -18.86 10.16 -5.92 4.25 -14.61 +.~l -13.29 

1.36 .98 .6 -20.75 11.21 -4.Z? 6.94 -13.81 +.20 -14.64 

1.43 .97 .6 -20.85 11.70 -5.54 6.16 -14.69 +.03 -15.20 

1.50 .97 .6 -21.26 12.66 -6.63 6.03 -15.23 -.10 -14.79 

1.60 .97 .6 -21.12 14.,30 -8.01 6.28 -14.84 +.11 ·-14.50 

1.70 .97 .6 -19.93 16.33 -10.04 6.-:;J -13.60 -.47 -14.28 

I\) 
1-J 

f-1 
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TABLE IX 

Binding Energy for Nuclear Matter. l S 
0 

by M.M.s. method; others 

by Reference Spectrum Method. Third Order Correction for 3s
1 
- ~l 

is not included. 

b.. =o.6 

kF 

1.2 

m• 

.966 

Ist Order 

-13.52 

!Ind Order 
(Pauli + 
Spectral) 

1.72 

-• Rt­ , a)
(I - ~) 6,S (el(. ­ ? 

.(~ ~ -tG,:) 

-.07 

lJ; q l>-~:e e 

-.4o 

Total 

-12.27 

1.36 .962 -14.08 0.83 -.36 -.4o -14.o 

1.50 .969 -.69 -.4o 

K = -.o4 

= -.06 

= -.04 

at 

at 

at 

kF 

~ 

kF 

=1.2 

= 1.36 

= 1.50 



TABLE x 

G-matrix elements for Reid Potential at various densities 

KF = .7, = .6 m• "" .95 

ls 
0 

lp 
1 

lD 
2 

3p 
0 3pl 3n2 3s

l 3ol 3p2 Total 

-9.51 0.02 o. -.047 .079 o. -16.204 o. -.027 -25.69 

-9.27 .08 -.004 -.181 .305 -.007 -15.856 0.002 -.110 -25.04 

-8.61 .27 -.055 -.625 1.057 -.097 -15.216 .030 -.438 -23.65 

-8.05 .41 -.162 -.996 1.696 -.289 -14.881 .089 -.813 -22.87 

-7.24 .58 -.457 -1.468 2.525 -.838 -15.185 .262 -1.589 -23.07 

-6.93 .65 -.673 -1.669 2.848 -1.270 -17.024 .427 -2.128 -25.32 

-6.33 .70 -.878 -1.864 2.987 -1.750 -19.091 1.213 -2.665 -27.15 

..... 
~ 



TABLE X (continued) 

KF = .8 m• = .95 = .6 

ls 
0 

lp
l 

lD 
2 

3p 
0 

3pl 3D
2 

3s
l 

3D
1 3p2 Total 

-9.160 0.030 -0.001 -0.064 0.108 -0.001 -14.425 o.ooo -0.036 -23.548 

-8.848 0.110 -0.007 -0.242 o.410 -0.013 -14.016 0.004 -0.146 -22.741 

-7.925 0.341 -0.094 -0.784 1.363 -0.165 -14.033 0.052 -0.572 -20.750 

-7.114 o.490 -0.260 -1.171 2.069 -o.46o -12.282 .144 -1.005 -19.436 

-5.865 o.642 -o.645 -1.519 2.819 -1.174 -11.488 .366 -1.847 -18.394 

-5.220 0.714 -0.883 -1.580 3.012 -1.651 -11.878 .542 -2.533 -18.931 

-4.370 0.754 -1.087 -1.533 2.993 -1.778 -13.575 1.115 -2.928 -20.328 

I-' 

~ 



Table X ~continued) 


~ = .9, ..6 = .6 m• = .95 


ls lD 3p Total 
0 1>1 2 0 3pl 3n2 3s1 3nl 3p2 

-8.867 .039 -o. -o.o83 0.144 -0.001 -12.997 .o -O.o46 -21.81 

-8.480 .143 -0.012 -0.308 0.538 -0.021 -12.529 .oo7 -0.184 -20.84 

-7.312 .409 -0.146 -0.933 1.661 -0.2.56 -11.276 .080 -o.712 -18.38 

-6.309 .554 -0.374 -1.298 2.384 -o.659 -10.268 .205 -1.275 -16.78 

-4.8o2 .706 -0.814 -1.477 2.998 -1.467 -8.928 .449 -2.86? -15.10 

-4.02' .795 -1.041 -l.4ll 3.094 -1.915 -8.752 .588 -2.861 -14.90 

-3.431 .831 -1.217 -1.290 2.957 -2.350 -11.616 .661 -3.325 -18.07 

fo-J 

~ 



TABJ.E X (continued) 

~ = 1.00, .A = .6 m• = .95 

ls 
0 

lp
l 

lD 
2 

3p 
0 

3pl 3o2 3s
l 3o

l 3p2 Total 

-8.629 0.050 -0.001 -0.103 0.813 -0.002 -12.489 0.001 -0.057 -24.434 

-8.163 0.177 0.019 -0.378 o.668 -0.033 -11.343 0.010 -0.224 -19.296 

-6.770 o.429 -0.211 -1.064 1.9;8 -0.366 -9.881 0.114 -0.855 -16.479 

-5.622 0.607 -o.496 -1.375 2.638 -0.870 -9.607 0.224 -1.503 -14.729 

-3.959 0.790 -0.946 -1.381 3.133 -1.691 -7.119 0.514 -2.528 -12.635 

-3.143 0.907 -1.155 -1.218 3.165 -2.074 -6.687 0.614 -3.025 -12.006 

-2.744 0.931 -1.257 -l.024 2.948 -2.429 -8.376 0.315 -3.020 -15.463 

,_. 
~ 



---------------- ---

Table X (continued) 

~ = 1.1 .4 = .6 m• = .95 

ls lp lD 3po 3pl ~2 3s 3nl 3p2 Total 
0 1 2 1 

-8.437 o.o62 -0.002 -0.127 0.224 -0.003 -10.886 .001 -0.067 -19.23 

-?.888 0.215 -0.028 -o.451 o.806 -0.048 -10.281 .015 -0.266 -17.91 

-6.287 0.527 -0.286 -1.174 2.190 -o.494 -8.639 .15.5 -0.999 -14.81 

-.5.028 o.665 -0.616 -l.408 2.845 -1.076 -?.380 .3"?}+ -1.?14 -12.97 

-3.270 0.910 -1.059 -l.256 3.264 -1.845 -5.647 .562 -2.814 -10.48 

-2.4i.4 1.057 -1.247 -1.021 3.211 -2.156 -5.044 .644 -3.246 - 9.49 

-2.032 l.064 -1.387 -0.789 3.016 -2.449 - 6.467 .371 -3.?83 -ll.59 



TABLE X (continued) 

KF = 1.2, = .6, m• = .952 

ls 
0 1i>l 1r>2 3p 

0 
3pl 3n2 3s 

1 3nl 3p2 Total 

-8.261 0.075 -0.003 -0.151 0.270 -0.050 -10.120 0.001 -0.081 -18.272 

-7.630 0.253 -o.o4o -0.526 0.949 -0.068 -9.461 0.022 -0.311 -16.793 

-5.844 0.585 -0.366 -1.260 2.399 -0.633 -7.696 0.199 -1.148 -13.518 

-L~.501 0.726 -0.728 -1.4o6 3.013 -1.265 -6.395 0.392 -1.922 -11.615 

-2.689 1.044 -1.150 -1.118 3.384 -2.053 -4.656 0.584 -2.980 -8.830 

-1.877 1.201 -1.335 -1.335 3.364 -2.203 -3.874 0.637 -3.346 -7.798 

-1.431 1.162 -1.410 -1.410 3.069 -2.492 -4.909 0.312 -3.477 -9.415 

~ 
N 
00 



Table X (continued) 
------­- -

~ =1.36 A = .6 m• = .95 

ls 
0 

lp
l 

lD
2 

3p 
0 3pl 3o2 3s 

l 3ol 3p2 Total 

-8.080 Q.098 -o.005 -0.194 0.350 -0.008 -9.113 .003 -0.099 -17.05 

-?.312 .316 -o.o64 -o.647 1.184 -0.109 -8.350 .035 -o.;87 -15."?IJ 

-5.259 o.657 -0.502 -1.351 2.111+ -0.867 -6.424 .272 -1.382 -11.82 

-3.811 o.858 -5.095 .468 -2.225 - 9.73 

-1.952 l.~3 -3.379 .619 -3.298 - 6.48 

-1.166 1.460 -1.476 -0.5"?/J 3.535 -2.244 -2.745 .584 -3.759 - 5.;4 

-1.640 -0.253 3.217 -2.487 -3.018 -.011 -4.225 - 6.69 



T. 1LE X (continued) 

~ • 1.43 t : .6, m• II .957 

lpls lD 3p 3pl 3s 3D 3p2 Total
0 1 2 0 '°2 1 1 

-7.985 0.109 -0.066 -0.213 0.387 0.010 -9.232 0.003 -0.107 -16.437 

-7.152 0.345 -0.077 -0.700 1.270 -0.131 -7.801 0.036 -0.422 -14.568 

-4.993 o.696 -0.562 -1.373 2.828 -0.968 -5.817 0.304 -1.481 -11.004 

-3.506 0.936 -0.936 -1.308 3.34o -1.597 -4.483 o.497 -2.344 -8.792 

-1.637 1.434 -1.340 -0.765 3.668 -2.087 -2.789 .279 -3.386 -5.359 

-.864 1.588 -1.533 -.397 3.617 -2.147 -2.147 .056 -3.797 -4.162 

-.285 1.450 -1.707 -0.117 3.296 -2.277 -2.277 -.231 -3.690 -6.372 

..... 
~ 
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TABLE XI 

Re-arrangement Energy in MeV Calculated According to Equation (IV-1) 

1m• AE Total E (k :k_)
s.p. m -7 

.957 .6 -12.02 -24.21 12.19 

.949 .6 -12.49 -26.18 

1.10 .95 .6 -10.71 -21.95 11.24 

0.90 .95 .6 -8.48 - 17.48 9.00 

6.920.10 .95 .6 -5.44 



TABLE XII 

l d <>VLSCOEF the coefficient of r ~ in the spin orbit force as 

a function of kF. All quantities are measured in F3 and must 

be multiplied by 41.469 to obtain them in MeV :r5. 

VLSCOEF T=l VLSCOEF T:O ~ VLSCOEF T=l VLSCOEF T=l 
1+J+ VLSCOEF T:O -VLSCOEF T:O 

1.43 4.131 -1.111 2.820 5.242 

1.36 4.114 -1.292 2.762 5.406 

1.23 4.093 -1.8.96 2.595 5.989 

1.10 4.056 -2.600 2.391 6.656 

0.90 3.962 -4.2"?/) 1.913 8.192 

o.Bo 3.920 -5.454 1.576 9.374 

0.70 3.871 -7.165 1.112 11.036 



TABLE XIII 

Parameters of Hamada-Johnston Potential 

State 

Singlet even 

Triplet odd 

Triplet even 

Singlet odd 

ae 

+8.7 

-9.07 

+6.o 

-8.o 

b e 

10.6 

+3.48 

-1.0 

+12.0 

at 

-1.29 

-0.5 

bt 

+0.55 

+0.2 

GLS 

+0.1961 

+0.0743 

bLS 

-7.12 

-0.1 

GLL 

-0.000891 

-0.000891 

+0.00267 

-0.00267 

~L 

+0.2 

-7.26 

+1.8 

+2.0 

bLL 

-0.2 

+6.92 

-o.4 

+6.o 

..... 
~ 
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Table XIV 

Bressel-Kerman Core Potentials 

T = 0 T = 1 


s = 0 s =1 s =0 s = 1 


Central 648 500 648(670) 436 (670) 

Tensor 99 106 (-50) 

S.L. -160 -130 (-374) 

-46 224 -46 224 (332) 

These are the heights in MeV of square potentials of radius 

x = .4852 meson Compton wave-lengths, for the Bressel Thesis 

Potential. The figures in brackets are for the Revised 

Potential. 



CAPTION OF FIGURES 

Figure 1. 	 Spherical Hankel Transforms F(k') of the reference 

wave function distortion, defined in Equation (II-36). 

F is plotted in units of ~. Reid Potential, 

F ,F are the large and small 
00 20 

1components of the deuteron state. F is for the S state. 
0 	 0 

Note the similarity of the S-states, and that F20 is large 

for momenta near kF. k' is in units of ~· 

Figure 2. 	 Definition of the single particle potential energy for 

occupied states (m) and unoccupied states (b), Equations (II-49) 

and (II-50) In (A) and (B) a sum over occupied states (n) 

is implied. (B) takes account of generalised time ordering. 

In (C) and (D) a sum over (n) and some average over the 

other lines is required, since they are off the energy shell. 

The "suppression factor" f arises from summation of three 

body clusters. 

Figure 3. 	 Suppression factor f(r) for hard core potentials as calculated 

by Bethe (c = 0.5F) and for the soft core Bressel potential as 

calculated by us. 

Figure 4. 	 Potential Energy of states k in nuclear matter. U is 
m 

calculated by Equation (II-~q)and UN by Equation (II-50). Uc 

includes second and third order corrections to GR. UR is the 

reference spectrum, fj, = o.6 and m• = ~949. Reid potential, 

-1 
~ =1.36 F • ~ is the modified particle spectrum as 

explained in Section IV. 
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Figure 5. Region of Integration for the third order correction, 

Equation (II-46). 

Figure 6. Binding Energy vs ~ for Reid, Hamada-Johnston and 

Bressel-Kerman potential. 

Figure 7. Average Potential Energy for each state, and total U 

as a function of Fermi Momentum. 

Figure 8. Same as Figure 7, but for 

Figure 9. Same as Figure 7, but Bressel-Kerman Revised Potential. 

Figure 10. Reference wave function distortion for large and small 

components of the deutron state. See Figure 1 also. 

?( is dimensionless. 

Figure 11. A comparison of the two body spin orbit interaction in 

Hamada-Johnston potential (bottom most graph) and the 

effective two body spin orbit interaction obtained from 

G-matrix formalism (graph in the middle) using Equation 

(V-89). The top most curve is the difference of the 

effective spin orbit interactions calculated using the 

total potential and only the spin orbit potential in 

equation (V-89). This, of course, shows only in a first 

approximation that the effective spin-orbit interaction 

comes mainly from the two body spin orbit force, since 

u't already contain the whole potential. 

Figure 12. Variation of VLSCOEF vs density. Actually the variation 

p = 3 2 
2kF '/3-rr. • VLSCOEF is theis against 1tr and density 

0~1 d (' 
coefficientA; dr in the one body spin orbit force. 



Figure 12 The total VLSCOEF is given by the small dashed 
continued 

lines; the other top three lines refer to the 

T =1 state and the bottom three to T =0 state. 

The continuous line gives the total contribution 

from a particular T; the big dashed lines are the 

contributions from outside the Fermi sea; the big 

dash small dash lines are the contributions from 

inside the sea. 

Figure 13. Contributions to the VLSCOEF at densities corresponding 

to ~ =1.36 and 0.8. The dashed lines are from 

kF = o.BF-l and the continuous lines are from 

-1=1.36 F • The top four lines correspond to T =1 

component and the bottom lines to T = 0 component. 

Figure 14. Line a is 100 . .! •r 
dP

Line 1 is VLSCOEF Cir , hence represents the spin 

orbit force. 

Line 4 is the Fermi density distribution times 10.93. 

Line 3 is the k (single particle potential energy) 

obtained from nuclear matter calculations. 

40Fermi density distribution for ca has been assumed and 

all lines correspond to it. 

Figure 15. The lp ci:;d ld splittings around 016 respectively, drawn 

as a function of the oscillator size parameter o< • 

The continuous lines are for the Fermi density distribution; 

the broken lines correspond to shell model density distribution. 



1)8 


Figure 15. The oscillator size parameter for it was kept fixed 
continued 

at .566. Vertical lines show the range of the 

experimental 	results for n and p levels. The mean 

value of o<. viz. (d is marked at the 	bottom, 

4o
Figure 16. 	 The ld, lf and 2p splittings around Ca • Notation 

same as in Figure 15. 
48

Figure 17. 	 The ld, lf and 2p splittings around Ca • Notation 

same as in Figure 15. The blobs show the neutron levels. 

These are the only ones known experimentally. 

208Figure 18. 	 Spin orbit splittings around Pb variation with the 

size parameter is shown. Only neutron levels are shown. 

Fermi density distribution is assumed. 
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