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INTRODUCTION 

The problem of calculating vibrational properties 

of lattices with randomly distributed impurities has been 

under continued investigation. Earlier work on monatomic 

lattices with defects and disordered diatomic lattices 

has been reviewed by Maradudin et al. (1958). Domb et al. 

(1959) have obtained results for the vibration frequency 

spectrum of disordered linear chains, using the moment 

trace method developed by Montroll (1942 and 1943), and 

the theory of random walks. This method seems to depend 

on the practicability of calculating even moments of the 

vibrational spectrum greater than the 20th. 

Machine calculat.ions by Dean and Bacon (1965) have 

shown that the structure of the vibrational spectrum is 

much more complicated than other calculations have indi­

cated it to be. This is especially true in the case of 

light impurities, due to the interactions of clusters of 

defects. 

Langer (1961) applied a Green's function formalism 

to the problem of a one-dimensional, monatomic chain con­

taining substitutional isotopic impurities; that is, atoms 

differing from the host atoms only in their mass. He was 

able to find the density of vibrational states in the system, 
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averaged over configurations of impurities, exactly, to 

the lowest order in the concentrat:ion of impurities. 

llin~Chiu Poon and Bienenstock (1966) have shown that the 

analogous problem of a lattice with changed force constants 

randomly distributed can be reduced mathematically to give 

a solution corresponding to that of Langer's for isotopic 

impurities. Using the isotopic impurity model, Davies 

and Langer (1963) carried out a self consistent approximation 

by calculating the self energy of the defect with the 

configuration averaged Green's function in place of the 

Green's function of the perfect chain. The result was a 

broader impurity band with no structure. 

This work was extended by Elliott and Taylor (1964) 

to the case of three dimensional crystals. Factors of 

higher order than the first in concentration were introduced, 

improving the position of the impurity band, but still not 

reproducing the spikey structure expected physically in 

the vibrational spectrum for light impurities. Langer (1961) has 

indicated that certain higher order concentration terms 

will give more structure to the impurity band. 
' 

The problem of impurities in diatomic crystals 

introduces the possibility of localized modes or impurity 

bands in the forbidden gap between the optical and acoustic 
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bands. Mazur, Montroll and Potts (1956) have discussed 

the effect of a single isotopic mass defect in an alternat­

ing diatomic linear chain and have found the conditions 

under which localized modes will appear in the forbidden gap 

and above the optical band. Bjork (1957) has considered the 

same model but extended the calculation to include the 

effects of force constant changes. 

In this paper we consider a diatomic linear chain 
\ 

with substitutional isotopic impurities. In section 2, we 

introduce the model and find the Green's function and 

density of states of the unperturbed chain. Following 

Langer's (1961) calculation, in section 3 we apply a Green's 

function formalism to find the change in the density of 

vibrational states to the first order in concentration by 

averaging over configurations. Section 4 contains the 

calculated results and a discussion of this approximation for 

the density of vibrational states. 



CllAP'l'ER I 

THE FORMULATION OF THE PROBLEM 

We consider a long chain of 2N atoms with alternat­

ing masses m1 and m2• Into this chain we introduce a small 

concentration of impurities of mass M on m1 sites only, the 

probability of an M atom being on an m1 site being q. The 

atoms are taken to interact by nearest neighbour harmonic 

forces with stiffness constant y. The equation of motion 

of the perfect lattice is given in matrix form by 

(~ - (I) 2 ~)-;/, • 0 

where l, is the unit matrix and ~ is the dynamical matrix, 

whose non-zero elements are 

AU. • £L 
IC IC m 

IC 

(2) 
A11 11 AR.-1,1 AR.,t+l I

12 • A21 = 21 = 21 = - Ji(ml m2) 

Here the index t(l=l,N) numbers the unit cells of the chain, 

and ~(K=l,2) numbers the masses within the unit cell. The 

vector v is the column matrix of reduced displacements,
ltJ 

V(1,ic) • .fiR_ x(1,1C)
IC 

4 
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,, 
where x U, 1d is the real displacement of the t, icth atom. 

Since in the perturbed case only a substitutional 

mass change is being considered, the perturbed eqution of 

motion becomes 

[4] 

where/\ is, in the space represen~ation, a 2Nx2N diagonal
"" 

matrix with elements 

[s] 

Only a small fraction q/2 of the diagonal elements will be 

non-zero; those for which m
1 

K is an impurity. 

The Green's functions of these systems are defined 

as follows: 

For the perfect chain 

For the perturbed chain 

(7) 

From these two equations we obtain the Dyson equation for 

the perturbed Green's function 

G0 w2AG 
N /VIV[a] 
Go1.112AGo- ,....., 

Maradudin (1962) shows that the density of vibrational 

states g(1.11) of the perturbed chain is given by 
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The density of states g0 (w) of the unperturbed chain is 

related in the same way to the trace of G0 (w2). 

The equation of motion [l] can be solved by the 

introduction of a transformation to the normal coordinates 

of the perfect lattice v(k,j), where k is the wave vector 

of the mode and j the branch, such that 

(10] V(1,K) = __!. l £j (k) eikt V(kj) 
IN kj K 

k has values -._:r-,S21f -N/2<S<N/2 (using cyclical boundary 

conditions). The quantity &j (k) is a "polarisation vector" 
K 

and is related to the reduced displacement of the icth atom 

in the jth branch of the mode of wave vector k. The 

frequencies of the normal modes of vibration of the chain, 

or equivalently the eigenfrequencies of the dynamical 

matrix, are 

[11) 

These frequencies form two bands, the acoustic and optical 

corresponding to j =1 or 2 respectively. The polarization 

vectors are normalized to unity and their magnitudes are 

given by 

[12] 
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and 

2 ""j~ - zlS .[;k, +;l;,] 
In this representation, the Green•s function G0 is ....... 


diagonal, and has the elements 

(13] 


The density of vibrational states for the perfect 

diatomic crystal can be calculated from equation [9] and 

the above expression for G0 
• The result is-

[vi] 	 9o (c..>) • 2w Im !_ 

2Nlt k 


The calculation of this summation in integral form can be 

found in Appendix I with the result. 

(15] 3~ (w) = -~--;--~ j{(f3-I) (R(3-l) ·l)(R[3-f)(~-1)1 ~2 

for regions o<(3< I, 
0 < ~ < '/R, 

1/R < (3 < I + '/R 
1<(3<1+ '/R 

lf 
tf 

m1>mz. 

m1 <ml 

where f3 • m 1 w2 

2~ 
, R • m2-mt 
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Fig. 1 shows the dispersion curve and the density 

of states of a perfect diatomic chain for the case when 

m1 >m2 (R<l). Further details on the diatomic chain can be 

found in a review article by Ludwig (1966). 



CHAPTER II 

THE FIRST ORDER APPROXIMATION 

It is convenient to work in the j,k, representation 

since the Green's function for the perfect chain is then 

diagonal. In this representation the elements of the 

perturbing matrix A are 
IV 

jj' 1 e-it(k-k') £j* (k) (1- m11C) £j' (k')
Akk' • N l IC m IC

h: IC 

The polarization vectors refer only to atom 1 because 

all elements of the sum corresponding to k= 2 are zero. 

Using the expression in equation [a] for the Dyson expansion, 

an element of the Green's function' becomes 

j . ' Goj .. Goj 2 jj' oj'
Gk~' • k 6jj' ~kk' k 11.1 Akk' G k' 

(11] 
0 •.IAjj1 Goj1 2 . . ' 

+ Goj w2 ti.I Ak
J1J.

k 1 G J' • • • •k kk1 k1 k1 

The exact configuration of impurities in the lattice 

is unknown and so, following Langer's (1961) treatment, we 

average over all configurations of impurities. The averaginq 

9 
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procedure has been described in detail by Langer (1961). 

The results for the first two terms of the perturbed Green's 

function are 

Ic.j,' (t<>I 2 

( w jl 2 k I - W 2 ) 
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Where ~ = (1 - 2!) and is positive and less than 1 for am . 
1 

light impurity, and negative for a heavy impurity, and 

the brackets <> denote configuration average. 

The result of the configurational average is to 

make all the terms diagonal in k. This is understandable 

since the change due to defects is averaged over the crystal, 

restoring translational symmetry. However, these terms 

are not diagonal in j, which indicates mixing of the branches. 

It is convenient to represent these terms by diagrams. In 

Figure 2 the straight horizontal line represents the phonon 

of wave vector k and frequency,,, whose propagation is 

described by G~j(w 2 ). The vertical dotted line represents 

the interaction of the phonon with an impurity and the 

double horizontal line represents the configuration 
.. ' 

averaged Green's function <G~~ 1 >, of the perturbed lattice. 

Figures 2a), 2b) and 2c) represent the first, second 

and third terms in the Dyson expansion, respectively. The 

graphs consist of one-phonon lines connected by self energy 

parts. We define a proper self energy part as represented 

by the diagram which cannot be broken into two parts by 

simply cutting the phonon line once. For example 2b(i) 

is a proper self energy part whereas 2b(ii) is not since it 

can be split into two diagrams like 2a). The proper 

self energy parts are always diagonal in k but not in j. 
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The proper self energy can be represented by a matrix 
' ' I 

diagonal in k and elements M~J given by figure 3. 

Since we are working with very sm~ll concentrations 

of defects, we further approximate the self energy function 

by considering only those diagrams which are of the first 

order in concentration, (that is those diagrams with 
I 

interactions with only one impurity) and omitting higher 

concentration corrections to these diagrams due to restricted 

summations in higher order diagrams (interactions with more 

than one impurity.~ The expression for the self energy 

poles of equation [2o] 

lc!<k>l2L - -
~ 
I 

j, k1 (wiki - wz.) 
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The solutions of this equation are frequencies of vibration 

of the diatomic linear chain with only one mass defect 

(Mazur et al. 1956), and can be found with the aid of 

diagram 4. In both parts of the diagram the infinities of 

the sum occur at the eigenfrequencies of the unperturbed 
2 . 2

lattice w = wjk • The solutions of equation (21) occur 

between these infinities. (The perturbed chain also has 

a normal mode exactly at the frequency £!.; the frequency
m2 

of this mode is unchanged by the impurity, since in this 

mode the mass m1 does not move.) In diagram 4a) when m2>m1 
it can be seen that for a heavy impurity there is a pole in 

the self energy function in the forbidden gap, whereas for 

a light impurity a pole occurs above the optical band. 

When m1 >m2 (fig. 4(b)), there are no poles out of the bands 

for a heavy impurity, but for a light impurity there are 

two poles which move up out of the bands, one into the 

forbidden gap and the other above the optical band. 

By resummation of the diagrams we can rewrite 

equation [s) for the Green's function of the perturbed 

lattice as 
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Since the Green's function <G> and 'the self energy Mare 

both diagonal in k but not in j then this equation reduces 

to the solution of a 2x2 matrix equation. The diagonal 

elements of <G> are . ,., 
•G Cwt) /ec< (wu<.2 -wZ) (waw.1-w2) +C\ ~w2 6(w2)(.£!-CA>2) . . mz 

2 
W11<2 . - wZ (r ­ ci 1' le: (K)l B (w 2)) 

B(w2) is related to the self energy by 

Note that B(ca,2) contains the poles of the self energy 

function and determines the poles of the Green's function. 

The denominators of~ (Cl>~l and<€ (ufV ;2 are both the same 

and therefore both have the same poles. Fig. 5 illustrates 

the positions of the zeros of the denominator of some 
\ /r. 2:\. 'j'~lement ~ (w )/~ of the Green's function for the case of 

light impuritie~ replacing the heavier mass. The vertical 

straight lines represent the poles of the self energy 

function. The zeros of B(w 2 ) occur at eigenfrequencies of 

the unperturbed lattice. The poles of the Green's function 

element(;)ticcur at the two unperturbed ·poles ~fk and w~k 

.. I
MJJ cw 2 > 

k 
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and at frequencies displaced by a factor q/N from the poles 

of the self energy function. Since in this case the pole 

of the Green's function associated with the local mo9e 

occurs above the local mode frequency, it is to be expected 

that the impurity bands of light impurities in the heavy 

sublattice will occur above the local mode frequencies 
\

arising in the single defect problem. Similar investigations 

in the case wher'e the lighter mass is replaced will show 

that the impurity band for heavy impurities appears below 

the local mode frequency in the forbidden gap, and for 

light impurities above the local mode above the optical 

band. 

In order to find the density of vibrational states 

the factor B(w 2) in the self energy expression must be 

evaluated. The summation over k and j in the denominator 

of B(w 2) is evaluated in the integral limit in analogy with 

the method of calculating the density of states function 

of the unperturbed lattice (see Appendix 1) with the result. 

[2sJ -N 
I 	 2: IE{ (k)l 2 • -N 

I l: m, (I - R ~2 

kj (Wj1<2-wa) k 2~ (~ -1) ( R(3 -1) .. i (cos ktl) 

m, 	 (I - RB)• 	 1
N...,. co 2lt [((13-1) (Rta-1)·1)(13-l)(R13-1)] ~2 
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The expression for B(w 2) is then 

,-~ I [ ~ .1
(3 ( R(3 -·)
[26J B(w 2) • 1 I - [cca-1) (R13-l)-l)(/3-l)(R/3-I~, 

The possible local mode frequencies of the single 

defect problem are given outside the bands by the zeros 

of the denominator of B(w2): 

2I - ~ 2 + 2. R ± (< I - ~ 2 ) + 4 R2 ~ 2) ~2
(!, • 

'2R(l-~2) 

However, the occurrence of these modes depends 

physically on whether elements of the lighter or heavier 

sublattice are replaced by a light or heavy impurity 

relative to this sublattice. Table I indicates the 

occurrence of local modes for the four possible configurations 

of masses. 

It is interesting to note that since the square 

root in the denominator of B(w2) becomes imaginary in the 

bands there are no inband solutions of equation [21] • 
Therefore this theory does not show any inband impurity 

resonances. 

Having now established an analytic form for the self 

energy function we can procede to calculate the density of 

states of the imperfect crystal to lowestorder in impurity 

concentration. 
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Using equation [23] for the Green's function and [24J 
for the self energy function, the density of states from 

equation [9J becomes in the integral limit [appendix 1] 

R + I - R (3 (2 -C)
9 (t.>) • «(/3(1 -C.) - I) (Rf3-1) -1) (f3(1-C)-~R~-1)) ~2. 

where 

Within the bands of the perfect lattice the factor 

inside the square root will have a real negative part and 

a small complex part (of order concentration) d~e to C(w 2). 

This means that the density of states within .the band will 

differ little from the density of states of the perfect 

crystal. 

outside of the bands, C is real and the expression 

within the square root will be real and positive except 

for very small regions near the possible local mode 

frequencies where C becomes very large and the argument 

of the square root may become negative. In this case there 

will be a contribution to g(w). There will be an impurity 

band in the density of states spectrum whenever 

(29] 0 < ( /3 ( f - C). - I) ( R (d - I) <I 
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The density of states spectrum has been computed 

from equation [2a] and is plotted in Fig. 6 for various 

ratios of host crystal masses and impurity mass parameter A • 



CHAPTER III 


\ RESULTS AND DISCUSSION 


Expression (20) for the density of states of the 

perturbed chain is exact to first order in the concentration 

of impurities. The mixing of polarization branches by the 

perturbation has caused no difficulty in the evaluation of 

an analytic expression for the Green's function or the 

density of states. The density of states spectra plotted 

in figure 6 are therefore essentially exact. The bands are 

narrow and sharp and appear above the appropriate local 

mode frequencies for light impurities (6(a) and (c)) and 

below this frequency for heavy impurities. There is very 

little change in the unperturbed bands and, as has been 

indicated in section 3 in the discussion of the poles of 

the Green's function, there is no possibility of inband 

resonances in this model. 

Further corrections to the first order result due 

to restricted summations of higher order diagrams have been 

discussed by Langer (1961). Elliott and Taylor (1964) have 

argued that all such corrections coming from all the diagrams 

included in the final expansion of the Green's function 

19 
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should be included.· These corrections have the effect of 

centering the impurity bands over the local mode frequencies. 

Leith and Goodman (1966), have calculated the exact 

concentration polynomials associated with each first order 

diagram, and find the impurity band slightly displaced 

from the pole at the one defect problem in agreement with 

Langer (1961). Since both predictions require retention of 

selected higher order effects, it is difficult to decide 

between them in a theory based on resummation. 

Langer (1961) has also discussed the effect of higher 

order diagrams on the perturbed Green's function. Their 

addition would cause the density of states spectrum to show 

spikey behaviour, in the case of light impurities. This 

is also expected on the basis of Dean's (1960) numerical 

results. For small concentrations of impurities these other 

peaks would be negligable since the area under a peak 

arising from an nth order term is of the order of qn. 

However their inclusion reduces the strength of the singularities 

found in the first order results. Since these terms are 

difficult to evaluate Davies and Langer (1964) have 

attempted to approximate this effect by formulating a 

self consistent approach to the problem. Since similar 

concentration effects are expected for the diatomic chain 

we have also carried out an analogous self consistent 

calculation by substituting the configuration averaged 
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self consistent Green's function instead of the pP.rfect 

Green's function into the expression for the self energy 

part. The two resulting equations to be solved self 

consistently can be reduced mathematically to the solution 

of a quartic equation, which can be solved numerically 

to give the self consistent density of states. The result 

of this calculation for the case of light impurities 

substituted into the heavy sublattice is shown in diagram 7. 

The impurity bands are now much broader than the narrow 

bands of the first order approximation. They are located 

over the local mode frequencies and are smooth with no 

singularities. The band edges at the top of the accoustic 

and optical bands have moved down in frequency which causes 

the singularities at these points to disappear; The density 

of states function goes to zero with infinite slope at the 

new band edges. These results are in all respects analogous 

to those found by Davies and Langer (1963) for the 

perturbed monatomic chain. 

However the physical significance of the self 

consistent approximation for the case of light impurities 

has been called into question by Ell~ot:tand Taylor (1964). The 

quantitative discrepancy between the results of the self-consistent 

approximation and the numerical results of Dean (1961) 
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also supports their view. For this reason, while it may 

be valuable to know that the self consistent approximation 

can be carried through in the diatomic chain, the details of 

this calculation are not presented in the main body of this 

thesis, but are further discussed in Appendix II. All 

numerical calculations were carried out on the IBM 7040 

computor at McMaster and the program used is shown in 

Appendix III. 
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APPENDIX I 

· Throughout this paper we need to evaluate summations 

of the form 

1 
(a<I-x)-~(Ra-1)-~(cos k+l) 

M2 
r.;:- and X is generally zero (for 

1 
evaluation of the unperturbed density of states) or small and 

of the order of concentration of impurities as in the 

evaluation of the perturbed density of states. The sum runs 

2ws I Iover the wave vectors k = -W- , -N 2<S<N 2, of the lattice 

with periodic boundary conditions. 

In the limit as N + • the summation becomes 

'If . 
dk
I (a(i+x)-l(RB-1)-~(cos k+l) 


ikwith the transformation z = e the integral becomes 

1
I• ­2n 

~ 
T 
unit
circle 

dz 4 
-i(-z2-2z(2a

1
a

2
-l)+l) 

1 ,,t. dz 4 
~ -i (z-b ) (z-b )• 2w + ­

where a1 • (B(l-x)-1) and a 2 • (RB-1) 

bt. <2•1•2·1> ! < 4•1•2<•1•2-1>>~ 

23 
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If both poles are inside the unit circle then the 

integral is zero, since the residues are equal and opposite. 

However at high frequencies (B + m) X is real and small, 

or zero, and the root b_ is within the unit circle and b+ 

is outside. The quantity I becomes 

A4 

· The same expression can be shown by analytic 

continuation to hold for all frequencies in the upper 

half of the complex B plane. 



APPENDIX II 

THE SELF CONSISTENT APPROXIMATION 

Analytic self consistency requires that both the 

exact Green's function G and the self energy part M should 
,y r,J 

have branch cuts along the real frequency axis coinciding 
\ 

with bands of the density of states function. This can be 

achieved by substituting the exact averaged Green's function 

Gsc into the self energy expression (given diagramatically 
~ 

in Figure 3) in the place of the unperturbed Green's function 

G0 
• In making this substitution all nested self energy-

diagrams have been added to the Green's function 

approximation. 

The configuration averaged self consistent Green's 

function Gsc is taken to be related to the self energy 
~ 

function MSC by 
~ 

and the elements of the self energy function become 

2 j* .. 
-q>.w E:l (k) &l (k) 6kk·'1 

MSCjj 1 
• 

kk' 2 
i+tl

N 

25 
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These two above equations are to be solved self­

consistently. The sununation in the denominator of the 

self energy expression becomes 

[A1]'°' cj'(k)/Gsc,jd2Eje(k) = m, ~ __----­-_CR_f3_-1) 
.~ c, ~ / k I Zj" '- (RB-1)(13(1-F)-1)-l(cosk-tl)
J1Jek k 2 

where F(=F(w2)) is related to the self energy expression 

by 

In general we know that F(w2 ) may be a complex 

quantity with branch cuts along the real w axis, since it 

contains the poles of the self energy function. We can 

evaluate the summation at high frequencies when F(w2) is 

small and real and then analytically continue the results 

to lower frequencies in the upper complex frequency plane 

(w
2=w 2+i6) (see Appendix 1). The result for the summation 

is such that F(w 2) becomes 

[As] F (wi) " V/{l-[(l3Cl-F)-1)(R/3-l)(<l3(l-F)-1)(Rf3-l)-1)] ~} 
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We now define a quantity 11 (B) by the equation 

[J\9
] 7. (13) = / [ ((3(1-F) --1)(Rl3-I) ((r..(t-F)-1) (R B-•)-1)) Ye 

There. are now two equations for F (w 2) in terms of n (a). 

The first comes from the definition itself 

[A10] F(wt)•I- 2f3(Rl3-t)' [(2R/3-1)-t(1+~'Z2)Y2] 

The ·.second from the substitution of 11 ( B) from equation 

(A9J into equation [AB] to give 

By equating these two expressions for F<w2) the 

following quartic equation for"l.(~) is obtained 

where 	 c = A/!J (Rf3-I) 
d = ( /3 -1) {Rl3-l)f3 {Rt3-R-I) 

g = 2(8-l)(R/3-1)-1 1 ~z -I • 4 d 

The roots of this equation define F(.J) at any given 

frequency. Since the self consistent density of states 

function can be written in a form analogous to equation 

(2a] for the density of states in the first order 

approximation, with C replaced by F, the self consistent 
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density of states function in terms of 11 ( =R (11 ) +/(ri ) ) 

becomes 

2W~SC (w) -
1t 

In the limit of no impurities (q=O) the roots of 

f(11 ), l/c, l/c, ± l//d. The· first two of these roots are 

spurious since A does not exist in this limit and either of 

the latter two roots substituted into equation (Al3] for 

g5C(w) will 
; 

give the density of states of the perfect chain 

(see equation (1s]). 
Figure 8 is a plot of f (n ) against n for various 

frequencies. The roots A and B occur near ± l/d~ 

respectively and c 1 and c 2 near l/c. When there are 

four real roots as in fig. 8(a) there is no contribution 

to the density of states, and therefore these frequencies 

do not lie in a band. For a small region near possible 

local mode frequencies the roots B,c1 and c2 become very 

close and two of them become complex (fig. 8(b)). The 

vibrational spectrum has an impurity band at these 

frequencies. 

The optical and accoustic bands in the density of 

states function occur at the frequencies when A and B 

are complex. It is interesting to note the behaviour of 

f (11) near the unperturbed band edges. When q • O the roots 
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A and B go to infinity and become complex at these band 

edges, however when there is a small concentration of 

impurities the q-dependent part of f (~) dominates and 

prevents A and B from becoming complex for a very small 

region of frequencies near the unperturbed band edges; thus 

causing the band edges to move (fig. 8(c)). 

We can investigate the behaviour of f (~) at the 

former band edges B• 1 and B • l + l/R by assuming that as 

A and B tend to infinity the roots c 1 and c 2 remain practically 

constant and we can therefore factor them out of f~ ). 

(At the other band edges B • 0 and B • l/R the roots c1 and 

Ci also tend to infinity and we cannot follow this procedure.) 

The resulting polinomial after factorisation is 

The roots of this equation are 

(Al5) 

~hese roots are equal when 

(1 + ~)= 4- (11 - t) c 
c 
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This implies that the top edge of the optical band moves 

down by an amount 

(Al7] l1 (3 = 4 ( R +I - °v/'A) 

if m1 >m2 the top of the accoustic band also moves by an 

\ 2amount 

[Al 8] !J ,., -= ( ,, I'A + R - I ) 

If m2>m1 the bottom of the optical band moves up by the 

same amount. 

The other band edges do not move. For example if 

m1>m2 the bottom of the optical band does not move. The 

behaviour of g6c(w) at such band edges does not change. 

This is expected since these correspond to movement of the 

mass which has not been replaced. However at the band edges 

which move g5c(w) becomes zero with infinite slope as 

discussed in section 4. 
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APPENDIX III 

TO FIND THF DFNSTTY OF ;,TATES or A (')JATOMTC l.INF.AR .. /\JM 

f) TMF f\! s I 0 N fl 1 ( 'i ) • R ;> ' 'J ) • H,.. I I\ J I 4 I , " t. t I\ I'. • ... i i 1l. ,..., i ! ... i ' t I' ' ... I 

COMPLEX CDENStGl,G?tFltF2tDllt01?•D1ltD1?tD4JtD4?tOXXQl•04SQ2tCUfN 
l S l , CP>AJ S? t F T A 1 • E T fl 2 t SF l F N l t CDN_:., C l • SF l FN? t C [)NS C 2 • Y 

rH.flL t.?.tL?l.tLMDAtIETAl tIETA?. 
<'.),,,0.01) 

01=1.o-o 
0.? ::()\lo() 

rJl2=0l*Q] 

REA[)l5tl00)R•LMOA 

Rl=R+leO 

R 1 r~ =R l /R 

RJL=l•OIR+leO/!leO-LMDA) 

QL =O~~LMf)A 


L?=L.MDA**2 

L21=1.0-L2 

Z=2•0*R*L21 

Zl=2e0*R+l2l 

Z2=4.0*L2*R**2e0+L21**2e0 

Z.3=SQRTIZ2) 
WPOLE1=(Zl-Z3)/Z 

WPOLE2=<Zl+Z3)/Z 

WRITE!6tl03)WPOLEltWPOLF?tLMOA•R •Q 

WRITE!6tl04) 

Wl=0.01 

W?=R*Wl 

J\l=Wl-leO 

A2=v12-1.o 
A3=Al.*A? 

A4=A3•(A3-le0) 

Y=CMPLX<A4tOe0) 

SOWl=SQRT<WJ) 

CDENS=SQW1*(R*Al+A2)/CSQRT<Y> 

AIDENS=AIMAG<CDENSl 

DENS=l\RS<AIDENSl 
C=LMDA•Wl*A2 

C2=C*C 

IF(A4eLT.O.O)GOT012 

soAt~=sorn < A4 > 


GWICl=C/SOA4 

GWIC2=Ql•C/SQA4 

IF(Al.LT.o.o.oR.A;>.LT.o.o)GO TO 13 

GWl=l.O-GWICl 

GW2=1.0-GWJC2 

Gl=CMPLX(OL/GWl.o.o> 

G2=CMPLX(QL/GW2.o.o> 

GO TO 20 

GWl=leO+CiWICl 


GW2=1.o+c;w1c2 
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17 

20 

40 

(,O TO 16 
SOMA4=SQRT<-A4) 
Ci~ 1 TCl =C/:,QMl\/1 
r,w Ic ;> =Q J *CI SCJMf\14 

t F ( A ] • L T • 0 • () • A1\10 • A? • l I • U • u I l:IU t u 1q 

Fl=CMPLX<l•O•GWICl) 

F2=CMPLX<l•OtGWIC2) 

GO TO 17 
Fl=CMPLXll•O•-GWICt> 
F?=C~PLXll•Ot-GWIC?.) 
Gl=OL/Fl 
G?=QL/F2 
Dll=Wl•<l.O-Gl>-1.0 
Dl2=Wl*(le0-G2l-l•O 
D2=A2 
D31=Dll•D2 
D32=D12•D2 
D4l=D3l*(D3J-1.0) 
D42=D32*(D3?-l.Ol 
f)4SQl=CSQRT(D41) 
D4502=CSORT<D42l 
CDENSl=SOWl*IR•Dll+D2l/045Ql 
CDENS2=SQWl•<R•D12+D2)/D4SQ2 
DENSl=ABS(AIMAGICDENSl)) 
DENS2=<AIMAGICDENS2l) 
DIFFlP=DENSl-DF.NS 
OIFF2P=DFNS2-DENS 
WRITE<6t105lW1,DENStDENS1,DENS2tDIFFlPtDIFF2P 
D=2.0•A3-l.O 
OC2D=O*C2•D 
Bl<ll=C2'*/\4 
Rl(2l=-2•0*C*A4+QC2D 
81 (3l=A4-C?-O*C*D+02*C2 
Bl(4l=2•0*C 
fH(5)=-1.n 
CALL RAJRSTIRl•RFTAltTETAlt4l 
DO 40 J=l•3•2 
ETAl=CMPLXIRETAllJltlETf\l(J)) 
SELFNl=QL/(1.0-C*ETAl) 
CDNSCl=SQWl*(R•<~l•<1.o-SELFNl>-1.o>+A2)•FTAl 
DENSCl=ABS{AJMAG(CDNSCl)) 
DIFSCP=DENSCl-D[NS 
WRITF(6t106lDENSCltDIFSCP 
CONTINUE 
R21l>=A4•012•C2 
B2<2l=~2.0*Ql*C*A4+QC2D•Ql 

B?<3>=A4-Ql2*C2-Q*C*D+O?*C2 
8?(t+\>=2eO*Ol*C 
A2(5)=-l.O 
CALL BAIRST<A2tRFTA2tlETA2•4> 
DO t+ 1 K=1 • 3 t? 
ETA?=CMPLX<RETA2(K)tlFTA?<K>l 
SFLFN2=QL/<1•0-Ql*C*ETA?) 

http:DIFFlP=DENSl-DF.NS
http:D42=D32*(D3?-l.Ol


33 CONSC?=SQWJ*CP*CWl*Cl.O-SfLFN?>-leU)+A?)•Ftf\2 
nrN.SC?:::Af~S(f\[Mf\(;(fDNSC2)) 
DFSCP?=DCNSC2-DFNS 

WRITE!6tl07)0FNSC2tDFSCP? 


'~ 1 	 CONT l "-IUE 

TFfWl.GT.RlllSTOP 

Wl=h'l+O.Ot+ 

GO TO 2 


100 FORMAT(3Fl0e0) 

I 

10 3 FOf~M f\ T ( l H l • 1X•7HWPOLE1: , F 10 • 4 • '.3 X' 7HWPOL f.? =•Fl 0 • l1 t '3 X ( ( HL "'1DA =,Fl O • t~ t l '3 X, 2 HR­
113 Xt? HR= t Fl O e 3t13Xt2HQ=,F10e3 ) 

104 FORMATflHOt4X•?HWlt5XtAHOENS PERt6Xt7HSCDEN5lt6Xt6HMMEN5lt6Xt71~5CDENS2t6X 
JENS?•hXt8Hl+TDFN52t4XtQl~BIFFSCl-Pt4XtAHDIFFLl-Pt~XtTIDTFFLC2-Pt4Xt 
2CJHDIFFLT2-P) 

105 FORMf\TC1XtF7e3tEl3e4t4C13XtE13e4)) 
106 FORMAT(21XtF13.4t39Xt~l~.4) 
]07 FORMATC47XtEl3e4t39XtEl~e4) 

END 

/ 

• 

• 

http:Wl=h'l+O.Ot
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Table I. Occurrence of Local Modes 

and Impurity Bands 

A > 0 	 Forbidden Gap Above optical band 
Above Optical Band 

1A < 0 ·none 	 Forbidden Gap 
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LEGENDS 

Fig. 1. 	 Plot of the dispersion curve and the 
frequency spectrum of a perfect diatomic 

linear chain with nearest neighbour inter­
actions and m2/m1 • 3/5 (=R as defined in 
equation [ 15] ) • 

Fig. 2. 	 Graphs occuring in the first three terms 

of the Dyson expansion for the Green's 
function -G(w2). 

Fig. 3. 	 Graphs which contribute to the self energy 
function M(w2) • ..­

Fig. 4. 	 Schematic plot showing the determination of 
the poles of the self energy function as 

given by the solutions of equation .(20]. 
The poles occur at the intersection of the 
solid curves with the dashed horizontal 
lines; the upper line for heavy impurities 

and the lower for light impurities. 

Fig. S. 	 Schematic plot showing the determination of 
the poles of the perturbed Green's function 
<G(w2)>k. The poles occur at the inter­

2 2 2 2 .section of the line (wk1-w ) (wk 2-w ) with the 
vertical lines. 

Fig. 6. The density of states function g(w) for a 
diatomic chain with impurities as given by 
equation [28] for different mass ratios 
and q = 1/20. (a) The heavy mass replaced 
by light impurities. (b) The heavy mass 
replaced by heavier impurities. (c) The 

. light mass replaced by lighter impurities. 
(d) The light 	mass replaced by heavy impurities. 
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Fig. 7. 

Fig. 8. 

The dotted lines indicate local mode 
frequencies. 

The self consistent density of states for a 

diatomic linear chain with light impurities; 

for mass ratios m1/m2 = 5/3, M/m1 • 3/4 

and q = 1/20. The arrows indicate local 
mode frequencies. 

Schematic plot showing the roots of the 
quartic f (l) given in equation [Al2] • 
(a) out of band frequencies (b) frequencies 
within impurity bands (c) frequencies near 
band edges. 
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FIG 1 

1t K• 	 4 a ~ 
DENSl'TY OF STATE::S 3°(w) 

(UN ITS OF 1"'•72c ) 
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