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- PREFACE

Thg.purpose of this thesis is to provide simple
characterizéﬁions of the injeofive and projective objects
"in the categories of compact, totally discoﬁneCted,
distributive topological lattices, and of ‘compact, dist-
ributive.tppqlogical lattices, each with céntinuous
‘lattice homomorphisms.

In Chapter O, some of the less familiar concepts
and<theoremé in the separate flelds of Category Theory,
Topology, Algebra, and Topological Algebra are given.

Cha?ter 1 presents known reéults oﬁ_injectivity
and»projectivity In the categories of compaét Hausdorff
spaces an&‘of distributive lattices.

Chapters 2 and 3 present new material dealing

with the injectives and projectives as mentioned above,

(iv)
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CHAPTER O

Preliminaries

The question of injectivity is one which arises
in many areas of Mathematics, and concerns the poss-
ibilityvof exfending a glven mapping defined on a sub-
structure to the whole structure. More generally, if A
is a structure which may be embedded into B, then when
can a map}féA~+C be extended to a map T :B—>C?

The theory of categories has helped facilitate
the study of such situations, and it will be the concern
of this paper to investigate them in tWo categories of
| topological_lattices. |

Many of the ideas developed in the ensuing chap—
ters will depend on known results from the,areas of lat-
tice theory and general topology, and some of these will
be given, ds‘well as some of the notions from general

category to be used,

1, Category Theory

Definition OL;: A category is a class ¥, called the

objects of the category, and such that:

| 1) to every pair (A,B) of objects there is assoc-
lated a set M(A,B) of morphisms of A onto B,
ueM(A,B) 1s often denoted u:A—sB,
. ,1



2) for every triple (4,B,C) of objects, there
exists a function f:M(A,B) x M(BR,C)—M(A,C)
denoted by f(u,v) = vu and called the
composition of the morphismsf'
3) a)the composition function f is associative
. b)for each object AeA, there exists a
morphism 1,eM(A,4) such that 1,u = u and
_ le = v whenever such compositions are defined,
4) for distinct pairs.of objects (A,B) # (A',B')
M(A,B)N M(A',B') = &,
Wheﬁ the intention is clear, a category shall

be denoted by its class of objects.

Definition 0.2: A category #is a subcategory of the
category A when:
1) A=k
2) M(A,E}Q; QM(A,B‘)A for all (A,B)&.A’xﬁ,’
3) the composition function in A extends
the composition function in &,

4) for Aed, 1, in A is the same as 1, inA.

A

Definition 0.3: A category # 1s a full subcategory of 4

if M(A,B), = N(A,B) for all (A,B)e 4xa

Definition 0.4: The dual category of A, denoted A%, has

\A'*
uv in 4% is defined as vu in 4.

class of objects A and M(A,B) = M(B,A% . Composition



Definition 0,5: An object A in a category Ais called a
retract of B;J%iff for some morphism u:A—>B, there exists

a morphism ﬁ':B-—eA such that u'u = 1A.'

Definition 0.6: A morphism ueM(A,B) is called a mono-
morphism, and denoted w:A—B if uv = uw implies v = w
for all v,w having codomain A,

A morphism ueM(A,B) is called an epi~
morphism, and denoted u:A-—»B if vu = wxximpliés Vv =W

| for all v,w having domain B,

Epimorphism is called the dual notion of mono-
morphism because u is a monomorphism in # iff u is an

epimorphism in A¥,

Definition O,?:,For a family {Ai}l of objects in a cat-
egory A, é‘product'for the family is a family of mor-

phisms ipi:A'-—)Ai}I such that for any family {fizA'—~>Ai} 1
there is a ﬁniqué morphism f:A'—4>A such that pif = f

i

for all ie¢l. If the family {f } _ is also a product, then

1" T
it is easily seen that f is an isomorphism and the object
A shall be.denoted7TA1 and referred to as the product

of the family {a) .

Definition 0,8: An object AeA is called injective iff

for every diagram of the form
Xh—2 sy

v
A

there exists a morphism w:Y—> A making the diagram commute,



Definition 0.9: An object Ac is called projective iff

for every diagram of the form
A
iv
X ———ee3>Y
o u .
there exists a morphism w:A—X making the diagram

commute,

We now note that the question of extending the
embedding u in Definition 0.8 from X to all of Y is
precisely that of the injectivity of A in the category
- Ay While the dual category gives rise to the notlon
of projectivity.

We now give some theorems from the theory of
categories, without proofs, which will be of use in

 the ensuing chapters. Proofs may be found in Mitchell [9] .

Theorem 0.1: Retracts and products of injective objects

are injective; retracts of projective objects are

projective.'

Def;nition»o.loz An object AeA is called a generator

of the category A iff for distinct morphisms f,g:B—C,
there is a’morphism u:A—>B such that fu # gu. Dually,
A is a cogenerator iff for distinct morphisms f,g:B—>C,

there is a morphism u:C—A such that uf # ug;
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Theorem O,Z;va a category # has an injective cogenerator

I, then the injectives of W are precisely the retracts

of powers of I,

2. Topoiogy

Notation: For a subspace A of a topological space X,
Ao = the interior of A

'A* = the closure of A.

Definition 0.11: Given a topological space X, a com=-

pactification of X will be a pair (X,f) where X is
compact and f is an embedding of X into X such that f(X)

is dense in f.

Definition 0,12: Given (X,f) a compactification of the
space X, (X,f) has the extension property for compact-
'ifications of X iff for every continuous function g from
X into a compact Tz-space Y, the function gf-l:f(x)——éY

has a continuous extension to X.

Theorem 0,3: A completely regular space X is homeomorphic

ckx,1

to a subspace p(X) of I where I = [0,1] with the

usual topology, and C[X,I is the set of continuous maps
| C[X,1]

from X into I. (p(X))*=1I is a compactification

for X, called the Stone-Cech Compactification of X.

Theorem O.4: The Stone-Cech Compactification of a space

has the extension property for compactifications.



Theorem 0.5: (Tietze's Extension Theorem): If X is a

normal space, F a closed subset of X, and g a continuous
function from F into I, the unit interval, then g has a

continuous extension defined on all of X.

Theorem 0.6: If X is a compact totally disconnected

T2-space; then X has a base of closed-open sets.

3, Algebra

Our concern in this section, and in later related
sections,Awill be with various types of lattices, but
some definitions will be given in their more general form

in the framework of universal algebra,

Definition0.13: An algebra of type t is said to be

freely generated by a set S of generators if for any
set map £:8S—>T with T an algebra of type t, f can be

extended to a homomorphism f:F—>T,

Theorem 0.7: The homomorphism f in the previous definition

is unique..

Definition 0.14: An extension of an algebra A is a pair

(B,f) with f:A—>B, and f is one to one,

Def;nition'oolﬁz'Anvextension (B,f) of A is called

essential if for any g:B—>C such that gf is one to one,

then g 1s one to one.
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Definition 0.16: Given a partially ordered set P, a
MacNeille Completion of P is a complete 1a£t1¢e M with
P as sub-partially ordered set, and

1) every a €M is the join of elements of P

2) évery atM is the meet of elements of P.

Theorem 0.8: In the category of Booiean lattices and
Boolean homomorphisms, a MacNeille Completion of a

Boolean lattice 1s an essential extension.

Definition 0.17: In a lattice L, an ideal is a subset .
of L with |
1) xel, ysx 2yel

2) x,yel =2xvyel.

Definition OQ18: An ideal I of L is called prime iff

for x,y e L, and xay ¢I, then one of x and y is in I.

Theorem 0.9: In a distributive lattice with 0 and e,
if I is an ideal, F a dual ideal (filter), and INF = &,

_then there exists a prime ideal P with I €P and PAF = 4.

Theorem 0.10: The set complement of a prime ideal in a

lattice is a'prime filter,

Theorem 0.11: Any complete Boolean lattice can be embedded

in a power of the two element chain.



L, Topological lattices

Definition 0.19: A topological lattice L is a T ~top-

_ 2
ological space with a lattice structure on it such that the

operations meet and join are continuous from LXL into L.

Notation: For a topological lattice L, ASL:
AL = {all: aea, 1L}

all

@all: 1eL}. .

Théorem 0.12: For a topological lattice L, ASEL, then

if A is open, AL are open. If A is compact, then ACL

are closed.

- Theorem 0.13: A compact topological lattice is complete.

Theorem 0,14 (Numakura [1@ ): Any compact, totally dis-

connected, distributive topological lattice can be
embedded in a power of 2 ='{O,1} with the discrete topi

ology.,

» Theorem 0;15: Any compact topological Boolean lattice is
iseomorphic (isomorphic and homeomorphic)‘with a power -
of 2, |

This theorem i1s a corollary to a theorem of

Kaplansky [?]'on topological rings.

Proof's for the following two theorems may be

fouﬁd‘in Bﬂ .
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Theorem 0316: A compact distributive topological lattice L
has enough characters to separate points.iff for A a
closed 1déa1, B a closed filter and AN B = &, there exists
van-open‘ideal U and an open filter V with A<U, BV, =

‘and UNnV = #,(L is lattice-normal).

Theorem 0.,17: If L is a compact topological lattice, the

following conditions are equivalent:
1)leis latticé-normal |
2) if i}y then there exists z eI,with xef{tstez}®
and é%y, and dually |
3)-eVery point of L has a base of neighbourhoods
of the form {t:astsb}
L) every point of L has a base of open neighbour-

hoods which are convex open sublattices of L.



CHAPTER 1

Injectives and Projectives in Compact Hausdorff Spaces

And Distributive Iattices

This chapter will deal entirely with known results

in the fields of topology and lattice theory.

1. Compact Hausdorff Spaces

In this section we give a characterization of the
1njective and projective objects in the category J of

compact Hausdorff spaces and thelr continuous maps.

"Lemma 1.1: The unit interval I with the usual topology

is an injedtive cogenerator for the categoryfT.

Proof: (i) Given the situation

A—i 3

BN
. » N
then j(A) is compact in B, hence closed, and by Tietze's
Extension Theérem, since compact Tz-spaces are normal,
f can be extended to B, showing that I is 1njective.
(11) Given f,g:A—>B with f # g, take ée;A such

that f(a) # g(a). Then {f(a), g(a)} is closed in B and
'discrete in tﬁe relati#e topoiogy. Define h:{f(a), g(éﬂ——al
by hf(a) = O;_hg(a) = 1, Again using Tletze's Extension
Theorem, h can be extended to h:B—>I and Hf # hg,
showing that I is a cogenerator for J .

10



11
Theorem 1,2: The injectives in T are the retracts of

the_powers of the unit interval,
Proof: This is a direct result of Lemma 1.1 and Theorem 0.2

Lemma 1.2 In T, the epimorphisms are precisely the

continuous onto maps.

Proof: If f is continuous and onto, it is clearly an

epimorphisnm,

Conversely, suppose f:A—>B is an epimorphism.
Then if g;h;B——>C; gf = hf =g = h, Supposevf is not onto
B. Then definé:
Bt |

f(A)U {x} for x e¢B=-f(A), {x}vqpen in B!

cr=cu{xt,y} x',y'¢c, {x'},{y"} open sets

in C!

g':B'—>C' by g'(b) = g(b) for beB
' gt (x) = x?
h':B'—>C' by h'(b) = h(b) for beB
ht'(x) =y ,
Then g'f = h'f with g' # h!', which provides the desired

contradiction.

Lemma 1.3:-Le£ A and B be compact T,-spaces, and f:B—»A

2
. eh : .
such that f‘(B.o) sA fo?;\Bog B and Bd closed, Then for any

open set CsB, £(C) = [A-f(B-C) .

Proof: If C = @, there i1s nothing to prove.



_ 12
For C # ¢,‘take atef(C) and V any open neighbourhood of a.
Claim: VN (A-f(B-C) # 4. |
- Proof: C{\ffl(v) # # and is open in B,
= £ (B=-(CN f'l(v))) # A, by hypothesis.
Take x € A-£(B-(CN £~ (V))) S
> X & A~f (B=C)

X

f(y) for some y € B; in fact yeCnf-l(V)

sx = fly)e £ (W) = v

S xeVn (A-f(B-C)) # 4,

which gives the desired result.

Définition'l.lz A T,-space is called extremally dis-

‘connected,if the closure of every open subset 1s open.

Lemme 1.4: If X is extremally disconnectéd'and Ul’ U2 are

disjoint open subsets of X, then U¥n U¥ = ¢,

1 2
Proof: U{n U2 = § since U, is'open;
% N K = : 5%
Uln U2 g since U%¥ is open.

~Lemma 1.5: If A is an extremally disconnected, compact
: TZ-Space, B is a compact Tz-space and f:B—»A 1s cont~
inuous such that f(B,) # A for any closed set B¢ B,

then f 1s a homeomorphism.

Proof: It suffices to show that £ is one to one. Let

x, # X, in B, Let Vi, Vv, be disjoint open neighbourhoods

of'x1 and X, respectively,



13
"> B - V1 and B - V2 aré closed and hence compact
=>f(B-Vi) are closed since f is ont;o; 1 =1,2

='A-f(B-V,) are open, 1 = 1,2

Claim: (A-f(B-V;))n (A-f(B-V,)) = g.
Proof: B = (B-V,) U (B-V,) |

= £(B-V{)U £(B-V,) = A

> (A=f(B=V;))N (A=£(B-V,)) = §

= (A=f (B=V,))*N (A-F(B=V,))¥* = § by Lemma 1.k
> £(x,) ¢ (A-f(B—Vl))*} |

'f(xz)_a (A-f(B-VZ))* by Lemma 1.3
=>lf‘(xi) # £(x,).

Lemma_1.6: Let A and B be compact T,-spaces, and f:B—» A

2
be continuous, Then B contains a compact subset B' such

that £(B') = A, but f(B}) # A for any closed set B!$B'.
Proof: This is a well known result of Zorn's Lemma.

Theorem 1.3: In the category J, the projective objects

are precisely the extremally disconnected spaces.,

Proof: (i)Let X be projective in 7T, and let A€ X be open.

For p,af X, take {p,a} with the discrete topélogy. Then

in X X {p,a} let Y = ((X-A) X {p})U (A% X {q} ), which is

closed, and let i be the natural embedding of Y into

X X{b.q} . Let p be the projection of X x {p,q} onto X,
. '=» pl:Y—»X is continuous .-

" and 1X:X——>X is continuous.
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Then we have

e

——
Y o1 X

where, by'the projectivity of X, f exists with pif =1

x'
Now pi is one to one on A X {p}.
2 f(x) = (x,q) for any x¢ A
and f(x) = (x,q9) for any x ¢ A* since f is continuous.

Similarly, if x #A%*, then f(x) = (x,p). Thus A% = f-l(A*X[q})
and, since f is continuous and A* X {q} is open in Y, we

- conclude that A¥ is 6pen in X. |

Convérsely, let A be a compact, extremally dis-

connected Tz-space, and let B and C be compact Tz-spaces.

Then, let the diagram be given in T
| A

lf
A B-———g———e»c
Let D = {(a,b)e AXB: f(a) = g(b)}. Clearly D ié ciosed,
hence compact. Since g is onto, pi;A><B~—>A takes D onto
A, Then by Lemma 1.6, there exists a subset D! of D such
that pl(D') = A, but pl(Dé) # A for Dé a propef closed

‘subset of D', Let h = pﬂD . Then by Lemma 1.5, h is a
: - -1
‘homeomorphism, Let k = p2h 1, and take a e A, Then h (a)e D,

Hence é(pz(hfl(a))) = f(pl(h—l(a))) = f(a), and thus

-1

f = gpzh = gk, showing the projectivity of A, .'
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2, D;§pr1butive Lattices

'This section provides a characterization of the
injective objects in the}categoryCD of distributive
lattices'and_their homomorphisms, as well as‘the well-
known characterization of the projectives in,any equational

class,

Definition 1.2: A Boolean lattice B is said to be strictly

generated by a lattice L iff:
1) B is the smallest Boolean lattice containing
L as sublattice.
Lemma 1.7: The monomorphisms in ID are precisely the

one to one maps,

23221: Clearly any one to one map is a monomorphism,

Conversely, let f:A——B be a monomorpﬁism, and let
£(x) = f(y)‘fqr X,y ¢ A. The two element chain 2 1s con-
tained in D, Then define:

g(1)
h(1)

g:2—>A by g(0) X

h:2—>A by h(0) y

Clearly fh = fg g = h 2x = y 2> f is one to one,

Lemma 1.8:.For L a sublattice of a Boolean lattice B, the
smallest sub-Boolean lattice L' of B containing L is:
i,n
L' ={V ). . v
{ 1_(xi/«yi) n»1l, X, 0¥, € LU {0,e}} B

" Proof: The pfoof of this theorem is computational in nat-

- ure, and thus will be omitted here.
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Lemma 1,9: For a distributive lattice L, the Boolean
lattice s'tricgtly generated by L is an essential extension B

of L.

Proof: Take AeD, and f:B—>A With f| one to one, Then £(B)
is contained in [f(OB).f(eB)] € A, Then f(B) is a Boolean
lattice with smallest element f(OB), and largest element
f(eB), and f is a Boolean homomorphism onto f(RB), There
is no los$ of generality in restricting our interest in
A to f(B); in other words, we assume A to be Boolean.
Take 0 # be B, and assume f(b) = 0, Then by Lemma 1.8,
bi = 1\}n(x A-sr*) for x yv.e LU{o,e} '
« i 171 1'71 e
J =
f(;i) A f(yi) 0
t =
=>f‘(xi)/\f(yi) 0
:>f(xi) 3 f‘(yi) for i = 1,2,***,n

Since b»0, (xiAy{bO for some i, and so X, £ 0, yi # e,

R § i

Case 1: x,,y.¢L =x syi since f is one to one on L
=
=;>xi/\yi 0
= b = 0 which provides a contradiction,

Case2: x, =-e, Y, € L-{e}.

i
Now 0 = f(xjay{) = f(yj) = £y, )"
> 'f"_(yi) = e

=> f‘(yi) = f(yivy) for all yelL
= yi=yivy for all ye L
= 2y for all yeL
o oy

yy = e contradiction

Case 3: X, € L- {0}, y, = 0, which is the dual of Case 2.



Lemma 1,10: The two element chain is injective inID.

Proof: lLet S, LeD, and j:S+—L, and f:S—>2 a lattice
homomorphism, Define A = f‘l(o), B = f-l(l). We may
assume that A # § # B, and define

A = {xe&L:x¢a for some a € A}

wi

= {y e L:bsy for some be B},
Then clearly A and B are disjoint ideal and filter resp-
ectively, and, by Theorem 0.9, there exists a_prime ideal
P with E<P, and BaP = #. Now define Fil—>2 ‘by
F(x) = (0 if x &P
L if x¢gP
which yields the desired result.

Corollary 1.1: Every power set lattlice is injective in D.

Proof: Every power set lattice is a power of 2,

Lemma 1.11:'Every complete Boolean lattice is injective in ID.

Proof:Let B be a complete Boolean lattice, Then B can be
embedded in éhpower set lattice C, B is injective in the
category of Boolean lattices, and thus B is Boolean retract
of every extension. Hence B is a Boolean retradt of C; i.,e,.
there exists f:C—>B such that this one to one, iet there
be given in D the diagram |

Sl)—'——i—-—-%D

B é__é__~f.c
f
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Wwhere ) = 1,. Tnen by the injectivity of C, g:D—C

exists with gi = jg, and hence fgi = fig = g.

Theorem 1.,4: In the category D, the following are

equivalent:

1) B is complete Boolean

2) B is injective

3) B has no proper essential

Proof: 1 = 2: is a result of Lemma 1.11

2 =2 3: Let 1:I—>X be an essentilal

Q
t
(u]

fude

Proo

=]

o

]

_f;Xr-»I exists with fi =1

injective object I, Then in

Ilhi——>x

11\
I

=»> f1 is one to one
2> f 1is one to one
2>X = I.

From Lemma 1.9, we conclude

‘extensions.

extenslon of the

the diagram

. :

that B is Boolean.

~Let C be a MacNeille Completion of B.

C 1s an essential extension

of B.

: Let f:C—>L and f‘B bé one to ohe

. > f£(C) is Boolean

=> f is & Boolean homomorphism onto f(C)

and f is one to one since C is essential

in thé Boolean case
2>B =C

= B is complete.
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Theorem 1,5:'In an equational class A of algebras, the
projectives are precisely the retracts of the free

objects,

Proof: Let P be projective in A; then there exists a free
algebra F(n) on sufficiently many'generators to be
mapped homdmorphiéally onto P, Let the diagram be given

. N . P .

J1

F(n)———?————»P

Then f:P—>F(n) exists with ff = 1, by the projectivity
of P, and hence P is a retract of F(n). '

Con#ersely, let P be freely generated by a set S,
and let the diagram be given

S———ii——~9F(S)

lh
A——F—>B | |
where g 1s the natural embedding of S into F(S). By the
freeness of F(S), there exists g:F(S)— A, and £ :S—>A
such that
f(s)e fnl(h(s)) for all se¢ 8

> £f(s) = h(s)

> fg|g = h|g

Hfg =h

and we conclude that F(S) is projective ink.



CHAPTER 2

Injectives and Projectives in Compact Totally Disconnected

Distributive Topological Lattices

Definition 2.1: A topological lattice is said to have
small lattices 1ff it has a topological base of open

sublattices, -

Lemma 2.1: A compact, totally disconnected topological

lattice L has small lattices,

Proof: Since by Theorem 0.14, L may be embedded as a top-
ological lattice in a power of 2 = {0,1)} with . the
discrete‘topology, then we have L-JL>23—P&>2-+£>I,

where 1 is the embedding, Py are the projections, and T
takes 0 to 0 and 1 to 1. All three are clearly lattice-
homomorphisms. Then for x # vy in L, there exists a
projection pj separating i(x) from i(y), and sinbe fpji
are continuous lattice-homomorphisms from L to I

- (characters),. L has sufficient characters to separate
points., Thus by Theorems 0,16 and 0.17, L haé a base of
open neighbourhoods consisting of convex opén sublattices,

In particular, L has small lattices.

Lemma 2,2: If L is & totally disconnected, compact,
distributive_topological lattice, then {Vs;L: V is convex

closed-open) forms a topological base for L.
20
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Proof: Let aeU<sLl, with U open, and choose V, a closed~-
open set such that a eVE U, Such a V exists by Theorem 0,6.
Let W = (LaV) N (LvV). Then by Theorem 0,12, W is closed-
open,‘ and WE_V-C-U. Also, for x<y in W, if x<fé<y:

X eW =f)x=11vv for 1. & L, vlav“

1 1

:f-=7X>V1

=?7z>v1

»f?z-—'-zvvl | |
yeW =y = 12/\v2 for 128 L, vza 'S

——>ysv2

>z <v2

>z = ZAVZ'

Hence z eW, and so W is convex.

Lemma 2,3: If L 1s a compact, totally disconnected, dist-
ributive fopological lattice, theri {VEL: V is a closed~-

open convex sublattice} forms a topological base for L.

Proof: Let é’aU. with U a closed-open comréx' subset of L.
Consider the family § = {VGU: V is &a convex opeén
sublattice, aﬁd a.cV}. It is clear that é, ordefed by
inclusion is inductive, and. nence, by <Zorn's Lemma, has
a maximal element V.,

Claim: V is closed.

Proof: Sincé U ié closed, V¥< U, and V*¥* is a convex
closed subiattice (sublattice by the continuity of A,v),

then let V¥ = E\,b] . Since a,beU, there exist open convex
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sublattices V, and V_ with a&V b aVz, and Vlg U,

1 2 1’
VZ.C;U.
let W = (val)n (LAVZ), which is clearly a
convex open sublattice of L. Since U is convex, WU, Also
VeW, and hence V = W since V is maximal inlﬁ. Now,

V¥ = Ea,b] =W = V and hence V¥ =V,

Lemma 2.4: Let & be the category of compact, totally
disconnected, distributive topological lattices and cont-
inuous lattice-homomorphisms., Then the monomorphisms of

are precisely the one to one maps,

Proof: Let f:A—>B be a monomorphism, Then let g,h:2—>4
be defined by g(0) = g(1) = x, and h(0) =‘h(i) =y, With
x # y in A, Suppose f(x) = f(y); then fg =-fh, but & # h
which contradicts f's being a monomorphism.‘

The converse is obvious,

Lemma 2.5: In the category &, 2 = {0,1} with the discrete

topology 1s injective,

?roof: Let the diagranm

Df—rI>—sL
"\
2
be given ingﬁﬂ_and let I' = fml(o), J' = f (1). The
sltuation 1s trivial if I' = J' and hence We may assume

I'n J' = g, and it is clear that they are closed ideal
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and filter respectively,

Now let I = j(I'), J = j(J'), Clearly INJ = 4.
We also have that I and J are closed sublattices of L,
hence compact, and so by Thedrem 0.13, have greatest and
least elements. Let a be the greatest element of I, b the
least of J., Then clearly b%a‘. and so a ¢ L-(LVb) which is
open. Thus there exists a closed-open 1attioe'M such that
aé&M and MSL-(Lvb).,

We show LAM is a closed-open ideal, and LAI< LAM,
ILAM is clearly closed-open since M is compact open. Also
if x,y ¢ L~M, then xém, y<m?! for some m,mte M

2 xvy <smvmte M
% 1AM is an ideal in L.
Take x £ LAI = x<u for some uel
= x¢a = the maximum element of I
= xga ¢ M
= x & LAM
Z LAl =LAM,

Analogously, we have b e L-(LAM), and so there
exists a closed-open lattice N such that beN € L=(LrM),
and LvN is a closed=-open filter.

Now we show (LaM) N (LvN) = ¢, and LvJ €LvN, If
there exists x e (LaM) N (LvN)

=>n.sxsm for some neN and meM |
2 nsm which provides a 'contradict‘ilon.

Also, xelvy &2 x>k for some keJ, but belN
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$JeW
= x>n for some ﬁaN
Z X ELvN.

{veL: V is an open

i

Now consider the family 1)
ﬁ}. Then LM €9,

ideal containing LAM and V N (LvN)
hence ¢ # #, and is inductive under inclusion. Let V be
‘a maximal element of $ and show V is a closed sublattice
of L. That V is a sublattice is trivial, Let x be the
'gréatest element of V#*, Then there exists a closed-
open lattice W such that x e W €L=-(LvN), since L-(LvN) 1is
an open néighbourhood. of x. Now a eV 2 as<x

> a = asx

> a & LaW

= VS‘*-LAW‘

but IaM sV

> LAM € Lal,
Also (Lay)pn (LvN) = #, since W €L-(LvN), and hence
LW ed -
Ve LaW
V maximal in & >V = LAW,
Now since x e LalW = V, x £V, and so V¥#<V which shows
that V is closed.

Now V = xAL and we show x is A-irreducible.

Suppose x = pAq., Then since LvN is A-closed, and

Vn(LvN) = ¢, W.L.0.G. p €LvN, Then there exists a closed-
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open sublattice W containing p, with WI\(LVﬁ) = @, since
L-(LvN) is open., Also

x<p and V = WAL
| >peV
> p =X
=V is a closed-open prime ideal.
We now define g:L—2 by g(x) =0 if x eV,
g{x) = 1 1f x &V, and g is clearly a continuous lattice-

"homomorphism extending f, showing that 2 is injective

in&.
Lemma 2.6: 2 is a cogenerator in &,

Proof: Let u,v:A—>B be distinct morphisms in &, and
let I and J be the closed ideal and filter respectively
generated by u(a) and v(a) in B, where u(a)vkv%a). Then
Ing = 4.

We now have a situation identical to that of the
previous lemma, and arrive at a closed-open prime ideal
V with T€V, VnJ = #, ,

Then define f:B—>2 in the identical way,
providing é morphism such that fu # fv, and hence 2 is

a cogenerator for g.

Theorem 2.1: The injective objects of Z are precisely

the powers of the cogenerator 2..

%’vacp DIMIVERSITY LIBRARY
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Proof: The injectives of & are the retracts of powers
of 2 by Lemmas 0,2 and 2.6, But the retracts of 2 are
compact Boolean lattices since 2 is, and hénCe, by

Theoren O.i5,are iseomorvhic with powers of Z.

Lemma 2,7: If D is a distributive lattice with the
discrete topology, then the Stone-Cech Compactification
FD is a compact, totally disconnected, distributive

topological lattice.

Proof': Byufheorem 0.14, D can be embedded in a compact
Boolean lattice, and hence admits sufficient characters
to separate points. Hence D can be lattice-homomor-
phically embedded in IHom(D,I)‘ Since D has the discrete
topology, Hom(D,I) =C(D,I), where C(D,I) are the cont-

inuous maps from D into I, the unit interval. Since

Hom (D, I) | < _¢c(D,1) )
I 18 compact, it is closed in I , and so,

‘ Hom(D,I) ' Hom(D,I).
under the embedding j:D—>1 s J(D)* = pD=s1I .

Claim: PD is a compact, totally disconnected, dist-

ributive topological lattice in the relative topology

HOM(D'I)
of I e

Proof: Ia is a topological lattice for any cardinal

a, so we restrict the partial order to pD. Since 3j(D) is
H D
a distributive sublattice of IHom( ’I), so is j(D)¥* = pD,
Meets and joins in gD, being restrictions of

Hom(D,I
meets and joins in I , are continuous,



It is well known that the Stone-Cech Compact-
ification of a discrete space is extremally disconnected

and in particular totally disconnected,

Lemma 2.8:'Lét D be a distributive lattice, and gD its
Stone-Cech Compactification. Then if f:D—>E is a lattice~
homomorphism into a totally disconnected, compact, dist-
ributive topological lattice, there exists a unique cont-

inuous 1attiée—homomorphism ?:FD——aE extending .

Proof: By giving D the discrete topology, we make f

a continuous lattice~homomorphism. Then by Theorem 0.4,
there exists a continuous extension f of f which is
unique since D is dense in pD. it X.yEISD, there are nets
{xg:a<£A} and.{yd:asA} in D converging to x dnd y resp-
ectively, and since f is a lattice~homomorphism and

f is continﬁous, Fixty) = F(X)C f(y), showing that t

is a lattice-homomorphism,

Let]D be the category of distributive lattices
ahd their homomorphisms., Then define functors:
F: D—& by F(D) =pD |
U:F—>ID forgetting the topology
Claim: F is. covariant.
Proof: Given f:D—>D', and g:D'—>D", Then if D' has

the discrete topology, f can be extended to EPD—~+D‘,
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and the embedding j of D' into pD' is continuous, hence
j? is a coﬁtinuous lattice-homomorphism from pD into pD'.

F(gf) is the unique extension gf of gf. But
F(g)F(f) also extends gf and thus F(gf) = F(g)F(f)
by uniqueness, The preservation under F of identities

inD is clear,
Lemma 2.9: U is adjoint for F,.

Proof: For DeD, E&f, we show that % : F(D),E]—>[,U(E]
is a natural equivalence of set-valued bifunétors,
Taking f ¢ [F(D),E], define n(f) = f|,, and
‘dropping the continuity requirement, Q(f) &[p,U(E{I,
Conversely, for g e[p.U(Eﬂ , We have '

D J >F(D)
sl - lE
U(E) T >E

where g exists uniquely by Lemma 2,8, Then n"l(g) = g,
To check the naturality of 7, take (D,E) and
(D',E*) in Dx 8 and show |

- Fo)H—A—puE]
[F(a).Ell iEa@Um]
[F(p") B —y——",uE")]

commutes for any product morphism (a,b):(D,E)—>(D!,E?').
By taking f & [F(D),E], »[F(a),q] (£) = n(brF(a)) = (brF(a))|p,
= U(b)f|, a. But [a,U(b)]yZ(f) = U(B)n(fla = U(b) (f], )a.



29
Hence N is natural in D and E, and we conclude that U is

ad joint for P,

Remark: There exist natural transformations
1) 7 +15—UF |
11) € :FU—>1g

Proof: For De D, there is a natural embedding n of D
~ wWith the discrete topology into F(D), and hence of D
into UF(D). Then for a morphism f:D-—D', construct
D% UR(D)

fl | lUF(f)
Dt———>UF(D?)

N
Taking x 6D, UF(f)p(x) = UF(f)(x) = F(f(x)) = £(x),

the diagram

since f(x) is an element of D'. Hence UF(f)n(x) =xnf(x),
and 7 1is natﬁral. |

Onvthé other hand, for any A& S8, there exists
a homomorphism & :FU(A)—>A as follows:

U(A) ————> FU(A)
NP
A .

and € is uniquely determined by Lemma 2.8. Now for a

morphism f:A—>A', construct the diagram
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FU(A) < > A
FU(f) l if‘
FU(A') = SAY

Then eU(f)iU(A)——eA' has a unique extension from.FU(A)
to A by Lemma 2.8, Taking x e U(A), fe(x) = f{x), and
aFﬁ(f)(x) =gf(x) = £{x) since f(x)e A'., Since both f&
and eFU(f) extend £U(f), they are egqual, and & is

natural.

Lemma 2,10: If P is projective in D, then F(P) is

projective in &.

Proof: Let there be given the diagram in &
FP)

Then we have

h UR(P)
U(A)—-——GG)—»U(B)

since U clearly preserves epimorphisms, and h exists

making the diagram commute by the projectivity of P in ID.
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Hence we get the diagram in &

The two smaller diagrams commute, and hence so does
the larger,

Claim: aFU(é)F(q) = g, which provides the map eF(h),
showing the projectivity of F(P) in &. |

Proof: Since C:FU——éyg is a natural traﬁsformation. we have

FUF(P) —E9&) s my(B)
| I°
F(P) z > B

where eFU(g) = ge.

It is enough to show that 6F0p= 1 , for then

F(P)

¢FU(g)F(n) = geF(yn) = glp oy = 8. |
It is known, [9], that in the adjoint situation

(q;F,U;ﬁgD), one has (&F)(Fq) = 1., and hence we have

1F(P) = eF(y).

Thiévcompletes the proof of the lenmma.
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Theorem 2,2: In the categoryd, A is projective iff A

is a retract of the Stone-Cech Compactification of a free

distributive lattice with the discrete topology.

Proof: The free objects are the projectives in D, by
Theorem 1.5 and hence, by the last lemma, théir Stone=-
Cech Compactifications are projective.infﬂ, and so

_afe the retracts.

B Conversely, let A be projective in&. Then U(A)
15 a distributive lattice, and let G be the free dist-
ributive lattice freely generafed by the 1a££ice U(A).
vBy the freeness of G, there exlists a 1att1ce-epim0rphism
f:G—> U(A). Then'in the diagram

> F(G)

D%

f exists making the diagram commute, and by the pro-

jectivity of A there exists g:A—>F(G) making the following
diagram commute:
A
>
F(G) ——»4
- Hence A is a retract of the gtone-Cech Compactification

of the free lattice F(G).



CHAPTER 3

Injectives and Projectives in Compact Distributive

Topological Lattiqes

Theorem 3.1: In the category £ of compact distributive

topolpgical lattices and continuous lattice-homomorphisms,

there are no non-trivial injectives.

Proof: Let Q be injective in &£. Then U(Q)e D and FU(Q)elsL.

Now FU(Q)s;Za for some cardinal a, and so we get morphisms:

U(Q) —————FU(Q) ————s 2%

The morphiém f exists by Lemma 2,8, and g by the inject-
ivity of Q in L. |

Hence @, a'homomorphic image of Za,.is a compact
Boolean lattice, and so Q = 2b for some b<a., Suppose b=1,
Then 2 is injective in&. But, letting j:2~—[0,1 be |

defined by 3(0) = 0, j(1) = 1, we have the following.

diagram:
2 35 [0, 1]
12 T
2

33
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where f exists by the injectivity of 2, and the diagram
commutes. This provides a contradiction, since [0,1]

- cannot be decomposed into disjoint open sets, and we con-

clude that b = 0,

Lemma 3.1: Let D be a distributive lattice, and PD its
Stone~Cech Compactification. Then if f:D—E is a lattice-
homomorphism into a compact, distributive topological
lattice, there exists a unique coﬁtinuous 1attice-hom-

omorphism F:PD——»E extending f.

Proof': The hypothesls of total disconnectedness in

Lemma 2,8 was not used in its proof.

Theorem 3.2: In the categoryL, P is projective iff P

1s a retract of the Stone-Cech Compactification of a free

distributive lattice with discrete topology.

Proof: Let P be projective inX. Let U' be the forget-
ful functor which drops the topology from objects of L.

Tnen in the diagram

U'(P) > FU (P)
1U'(R‘ /
P

there exists a continuous lattice-homomorphism f from

the Stone-Cech Compactification of U'(P) ontoc P by Lemma 3.1.
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Now in the diagram

b
FU'(P) ——F5—»P

the morphism £:P—FU'(P) exists by the projectivity of P.
Let x,y ¢ P, and Cx = Cy, where Cx and Cy are the con-
nected components of x arid y respectively. But con-
néctivity is preserved by continuous maps; in particular
F(C%) and F(Cy) are connected in FU'(P), whigh'is totally
disconnectéd,'implying ?(CX) = f(x) = f(y). Then
ff(x) = ff(y) which implies x = y. Hence P is totally
disconnected, and projective inX. Since £ is a full
subcategory of £, we conclude that P is projective ind,
and, by Theofem 2.2, is a retract of the Stoné-Cech Compact-
ification of a free distributive lattice.

Conversely, let P be the Stone-Cech Compact-
ification of a free distributive lattice L witﬁ discrete
topology. Then P is an object of £, and is“projective
in & by Theorem 2.2, Let S be the set of free generators

of L, and let the following diagram be given in«:
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Then in the diagram

> L J sP
X ll . lf |
: A= »B
g

where 1 and j are the inclusion maps, define k, 1 and m
as follows:
(1) for every s¢ S, fji(s) ¢ B. Since g is onto,
take a_¢ g-l(fji(s)). and let k(é) = a_. Then
%k is a set mapping, and
| . gk = i1 (1)
(11) By the definition of freeness, 1:L-—A is a
" homomorphism extending k, and hence |
11 =k - (2)
(1ii) Since P is the Stone-Cech Compactification
of L, by Lemma 3.2, m:P—»A is a continuous
lattice-homomorphism extending 1, and so
mj =1 - (3)
Thus, by (1), (2), and (3):
gmjl = f£j1 (4)
and since ¢mj and f3j agree on S, they agree on L, and
gmj = £} (5)
Since gm and f are continuous homomorphisms from
P into B agreeing on L which is dense in P, they agree
on P, and so, by (5), gm = f, showing that P, and hence

also its retracts, are projective in L.
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