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Abstract

Instruction scheduling is an NP-complete problem which allows for deciding the ex-
ecution order of instructions in a function without altering the function’s semantics.
By modifying instruction execution order, CPU resource usage can be maximized
resulting in increased instruction throughput and decreased overall execution times.
In this thesis, a novel approximation-algorithm-based scheduler is introduced and a
prototype is implemented for the IBM R© z13TM processor. The algorithm is a modi-
fied version of Karger’s minimum cut algorithm which is applied to a directed acyclic
graph that defines instruction dependencies, also called the codegraph. Rather than
finding the minimum cut of a codegraph, the algorithm produces multiple large groups
of instructions that are independently scheduled and dispatched in software pipelined
stages. Each iteration of this approximation algorithm produces a random feasible
schedule. The likelihood that the performance of a schedule falls within a given range
of the optimal solution improves as the total number of schedules produced increases.
This allows for an explicit trade-off between schedule performance and scheduling
time. The prototype was tested by scheduling functions from the IBM Mathematical
Acceleration Subsystem (MASS) libraries for the z13 processor, and was found to be
capable of producing production-quality schedules with minimal user involvement.
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Chapter 1

Introduction

NP-complete problems (NPCPs) have solutions which are easily verified, but are
difficult to produce (Cormen et al., 2009). Current methods of creating exact solu-
tions to NPCPs require an impractically long amount of time. There are two methods
which can reasonably solve NPCPs in polynomial time: heuristics, and approximation
algorithms (Cormen et al., 2009). Heuristics are algorithms which produce reason-
able results in polynomial time, but may not always be fast and effective (Cormen
et al., 2009). Approximation algorithms search for approximately optimal solutions
for NPCPs in polynomial time (Cormen et al., 2009). An example of a NPCP is
instruction scheduling (Hennessy and Gross, 1983). In this thesis, we will propose an
approximation algorithm approach to instruction scheduling.

1.1 Thesis Organization

Chapter 1 will be devoted to giving the motivation behind the project and the basic
background to hardware pipelining and the challenges surrounding it. Chapter 2
contains a basic introduction to scheduling algorithms and approximation algorithms
in addition to the scheduling algorithm proposed by this thesis. Chapter 3 presents
the numerical evaluation of the algorithm. Chapter 4 provides a final discussion.

1.2 Motivation

Mathematical functions have a high frequency of usage in a variety of different pro-
grams. This means that small improvements in function run time have the potential
to significantly decrease the total runtime of a a given program. The IBM Mathe-
matical Acceleration Subsystem (MASS) is a library of such math functions which
is supplied with IBM XL compilers (IBM, 2015a)(IBM, 2015b)(IBM, 2015c). During

1



M.Sc. Thesis - Kriston Costa McMaster — Computer Science

the development and release of IBM’s z13 architecture a method of producing tuned
z13 assembly versions of functions from MASS was investigated (IBM, 2015d). The
z13 processor is an evolution of the IBM mainframe superscalar, out-of-order system
architecture, which includes SIMD instructions (Lascu, 2015). Due to the complexity
of MASS, a robust scheduler was required to produce schedules that were optimized
for both resource usage and performance. Simple scheduling algorithms produced in-
valid schedules due to the complexity of both the functions and the complexity of the
resource constraints. A scheduler was produced that allows for performance-optimized
schedules to be created with the flexibility to be applied to complex architectures.

1.3 Instruction Scheduling

Instruction scheduling is the process of organizing the execution order of a set of
instructions in order to optimize the performance of a function with complicated re-
source constraints (Hennessy and Gross, 1983). In particular, instruction scheduling
allows for instruction-level parallelism to be exploited in order to improve perfor-
mance on architectures which allow for out-of-order execution. To understand the
reasoning behind this, hardware pipelining and the hazards associated with it must
be understood.

1.3.1 Hazards

Hazards occur when the execution of an instruction is either not possible, or alters
the result of the original source code (Page, 2009). For example, if two instructions
depend on the same data value but one of these instructions overwrite the original data
then the order of execution is important to prevent the data from being overwritten
before it is utilized by both instructions. There are three primary hazards which must
be considered when scheduling instructions (Page, 2009).

• Data Hazard — data is overwritten, or not assigned, before it is accessed by
the instruction which depends upon it.

• Resource Hazard — the resources required by an instruction are not available
due to usage by other instructions. Examples that show how this hazard can
manifest include overloading functional units, and attempting to allocate more
registers than the number available on the machine.

• Control Hazard — when a branch is not resolved before an instruction which
depends on it.

2
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1.3.2 Hardware Pipelining

Hardware pipelining is the process of executing instructions, or groups of instructions,
in a concurrent manner. There are two methods of pipelining—software pipelining
and hardware pipelining. Hardware pipelining involves dispatching an instruction
for execution before the previous instruction has finished completing (Hennessy and
Patterson, 2011). This is accomplished by allowing for different stages of instruction
execution to be executed independently of one another. If an architecture supports
hardware pipelining, the length of each cycle is shorter compared to non-pipelined
hardware, however, it takes multiple cycles to fully execute an instruction (Page,
2009). Hardware pipelining maximizes the usage of the available hardware which
results in an increased instruction throughput (Page, 2009).

Software pipelining is a method of hiding the latency of instruction execution by
inserting non-dependent instructions in dependent instruction chains (Page, 2009).
The scheduled code is broken into stages. The stages are then interleaved in such
a way that high latency instructions and their dependent instructions are separated
by other, independent instructions. This process improves throughput by preventing
data hazards from stalling the dispatch of dependent instructions (Page, 2009). How-
ever, by separating dependent instructions the lifetimes of the associated registers is
extended, so this process will result in an increased number of registers used (register
pressure).

1 F D T X WB

2 F D T X WB

3 F D T X WB

4 F D T X WB

5 F D T X WB

������������
# Instrs.

Iteration
1 2 3 4 5 6 7 8 9

Figure 1.1: Hardware Pipelining: An example of how hardware pipelining allows
for resources to be maximized. The above chart shows how instructions propagate
through a CPU. Each row is a new instruction, and the columns show the cycle
number. Cycle 5 illustrates when the hardware is saturated. The above chart is
based on the Intel 486 CPU. The order of instruction issuing is Fetch (F), Decode
(D), Translate (T), Execute (X), Write Back (WB) (Johnson, 1990).
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Figure 1.2: Software Pipelining: An example of software pipelining. In order to
hide instruction latency stages are not executed in order. In the example above three
stages are pipelined. Once the loop is saturated it results in each stage allowing for
an additional stage to be called before the dependent stage. For example, stage one
will feed into stage two, however the latency of the instructions is hidden by the
execution of stage three. The superscript indicates the iteration number that the
stage is currently executing.

1.3.3 Out-of-order Execution

Out-of-order execution depends on the idea of register renaming. A processor has
architectural registers which are able to be accessed by a developer, and physical
registers which are accessed by the hardware. Register renaming renames an ar-
chitectural register to a physical register. There are always more physical registers
than architectural registers, and it is possible to have an architectural register map
to multiple different physical registers. Out-of-order execution allows for indepen-
dent instructions issued to a processor to be executed once all data operands are
available, not specifically in the order that they are issued. When an instruction is
issued, it’s operand architectural registers are renamed to hardware registers, which
either contain the dependent data or placeholder values. The placeholder values are
later overwritten by the data dependent value, and if all operands are available the

4
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instruction is executed. This allows for instructions which are data independent but
register dependent to be executed in parallel. If out-of-order execution is not permit-
ted then independent instructions which access the same registers become serialized,
and bottlenecks that affect one of those instructions will affect all subsequent in-
structions. Register renaming removes these false dependencies and allows schedules
to ignore potential register dependencies causing serialization (Smith and Pleszkun,
1988). This greatly simplifies the register allocation step described in 2.3.3.

1.3.4 Motivation for Instruction Scheduling

Instruction scheduling is used in order to maximize CPU resource usage and through-
put while preventing hazards from occurring. In order to maximize hardware pipelin-
ing, adjacent executed instructions should depend on different hardware resources, or
be low latency instructions. Selecting appropriate groups for software pipelining is
required to ensure that high latency instructions are being appropriately hidden by
the execution of other stages. Care must be taken to prevent the hazard presented
above. In particular, if the throughput relies too heavily on widely spaced instruc-
tion dependencies, register allocation may not be realizable if the machine does not
have enough resources available. The complexity of this problem prevents an optimal
solution from being determined in polynomial time, and is considered NP-Complete.
It is possible to find near-optimal solutions in polynomial time.

1.3.5 Current Techniques

Heuristic implementations allow for solutions to be produced in polynomial time.
Typically, the metric used to gauge the optimality of a solution is the throughput of
the resulting schedule or the maximum register pressure of a viable schedule. Initial
schedulers focused on improving the throughput through the use of list scheduling
and critical path algorithms.

List Scheduling

List scheduling involves producing a list of potential instructions that could be in-
serted into a schedule. Instructions are schedulable if their preceding data depen-
dent instructions have been scheduled. The listed instructions are then compared
to one another to determine which instruction will not interlock with the previously
scheduled instruction, and which instruction has the lowest probability of causing an
interlock. This method is used to consider the priority of the instructions in a list.
If the hardware required for the instruction’s execution is currently saturated then
the next highest priority instruction is considered. Once an instruction is selected,

5
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additional instructions are added to the list of candidates if all their dependencies are
already scheduled (Hennessy and Gross, 1983).

Improved scheduling algorithms based on the list scheduler utilized more robust
methods of determining instruction priority (Gibbons and Muchnick, 1986). The
most commonly used of these methods is the critical path algorithm.

Critical Path Algorithm

The critical path algorithm requires that all instructions have a total execution time.
A back-flow algorithm is used to propagate the execution times backwards through
the dependent instructions. The resulting graph contains the total length of time
required to execute a particular path of the original graph and allows for critical
long execution time paths to be discovered. The list scheduling algorithm can then
be applied to this graph, selecting the instructions that have the highest backward
propagation value (Landskov et al., 1980) (Gonzalez, 1977).

List scheduling with the critical path algorithm is a greedy method of instruction
scheduling. Due to little look-ahead, the scheduler will not choose a less optimal
local path to produce a optimal global result. An example of a non-optimal schedule
produced by the critical path algorithm is shown in Figure 1.3.

In addition to critical path there are other algorithms used in combination with
list schedulers, including decisive path, smallest co-levels first, and high level first
algorithms (Adam et al., 1974) (Park et al., 1997). These algorithms would allow
for functions to be scheduled near optimally with regards to throughput. Register
pressure is typically not considered in these schedulers.

6
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(a) Example DAG

Instr. Num. Critical Optimal
1 A A
2 B B
3 NoOp I
4 NoOp J
5 C C
6 D D
7 I E
8 J F
9 E G
10 F H
11 G
12 H

(b) Possible Schedules

Figure 1.3: The figure to the left is an example of a DAG that does not produce an
optimal result when scheduled using the critical path algorithm. The nodes are de-
fined with a label and number of cycles for completion (nodes, cycles). A combination
of critical path algorithms and hazard analysis would result in an optimal schedule.

1.3.6 Branch and Bound

An example of an algorithm that allows for optimal schedules to be produced is
the branch and bound algorithm. By producing a tree of all possible schedules and
evaluating each for optimality it is possible to find the optimal schedule, however the
runtime is non-polynomial and therefore not suitable for general use (Clausen, 1997).

There are examples of schedulers that allow for register-sensitive scheduling, but
they typically do not include software pipelining. A notable example of a sched-
uler which provides both register-sensitive scheduling with software pipelining is the
scheduler proposed by Llosa et al, swing modulo scheduling (Llosa et al., 1996).

1.3.7 Swing Modulo Scheduling

Swing modulo scheduling is a two phase scheduling method which attempts to min-
imize stage size and register lifetime. Utilizing a directed acyclic graph to represent
the instructions to be scheduled each node is visited and added to a list to produce a

7



M.Sc. Thesis - Kriston Costa McMaster — Computer Science

scheduling. To produce this list, the sinks of the DAG are added to the list based on
their depth; the “deepest” sinks are added first. Predecessors of the nodes in the list
are then visited in order of their height until there are no additional predecessors. The
graph then starts from the source nodes and iterates through unvisited successors, in
order of increasing depth. This initial list can be seen as the critical path of the DAG.
The list is then iterated through, and the instructions are inserted into the schedule
based on the ordering in the list. The position of an instruction in the schedule is
based on the instructions predecessors or successors. If there are only successors in
the schedule then the instruction will be scheduled as late as possible, if there are
only predecessors it will be scheduled as early as possible. This minimizes the register
lifetimes; however if there are both predecessors and successors present in the sched-
ule, then inserting the instruction in the earliest or latest slot will result in extended
register lifetime. Due to the initial ordering there will only ever be one instruction
which will have both predecessors and successors present in the schedule at the time
the instruction itself is being scheduled, preventing ambiguous placement issues with
all other instructions. The placement of instructions limits slots available for future
instructions to be inserted, increasing constraints over time and optimality. If there
are no additional slots available to insert an instruction as the algorithm progresses,
then the schedule is restarted with an increased stage size. The final schedule can
then be split into stages (Llosa et al., 1996).

Swing modulo scheduling is the current standard in software-based pipelined
scheduling. Due to the rigid structure of the algorithm it is still not possible to
reduce local optimality to improve the global solution. The approximation algorithm
based scheduler was created with hopes that it will allow for these local minima to
be overcome and increase the optimality of the final solution.

1.3.8 Principled Graph Transformations in Coconut

In pervious work at McMaster special functions were scheduled using principled code-
graph transformations (Anand and Kahl, 2009). In particular, the mincut problem
was used in explicitly staged software pipelining, a scheduling algorithm described in
(Thaller, 2006).

8



Chapter 2

Approximation Algorithm
Instruction Scheduling

2.1 Approximation Algorithms

Approximation algorithms take many forms, with perhaps the simplest being ran-
domized enumeration or tree search. The local optimal solution from this solution set
will have a probability of being the optimal (or near-optimal) solution. One of the
most well-known examples of an application of approximation algorithms is Karger’s
solution to the minimum cut problem for a graph. Determining the minimum cut of
a graph is an NPC problem, however Karger’s algorithm allows for polynomial run-
time with a lower bound on the probability of success of finding an optimal solution
(Karger and Stein, 1996).

9
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Figure 2.1: Example of Karger’s Algorithm: Sections 1 to 3 show successive itera-
tions, where colored edges are edges that are to be contracted and colored nodes are
the resulting groups. Section 4 skips ahead a few iterations to the final step where
there are two nodes remaining. The example above shows the optimal solution for
the minimum cut, but Kargers algorithm will also find non-optimal solutions. This
iterative process must be completed multiple times before the optimal solution can
be guaranteed with some certainty.

2.1.1 Karger’s Minimum Cut Algorithm

One iteration of Karger’s algorithm works as follows:

1. Begin with an undirected graph G = (V,E) with vertices V and edges E,
where: {V1, V2} are two independent nodes.

2. Choose a random node a and an adjacent node b

• Replace nodes a and b with node ab

• Replace edges {c, a} or {c, b} with {c, ab}, where c is any other node

• Replace edges {a, c} or {b, c} with {ab, c}

3. If there are more than two elements in V then go to 2

4. Count the number of remaining edges E connecting the remaining two nodes.

10
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The heuristic above is applied n− 1 times; otherwise the graph would have fewer
than 2 vertices remaining, and a cut graph is produced. With n nodes the probability

that a given cut is the minimum cut is
(
n
2

)−1
. If this procedure is performed

(
n
2

)
lnn

times and the minimum cut is chosen from that subset, then the probability that the
cut is the global solution is n−1

n
.

2.1.2 Application to Scheduling

As Karger’s algorithm progresses the graph is compressed into a number of subgroups
and the number of external edges connecting the subgroups tends to be minimized. It
was hypothesized that if the algorithm was terminated before only 2 vertices remain
and the edges are weighted in a way that produces groups containing instructions
that would benefit fro being dispatched together, then the subgroups generated could
be used to produce the stages used during software pipelining.

2.2 Modification to Karger’s Algorithm

If the instructions in a codegraph are scheduled in two groups according to the min-
cut, the number of registers in use across the cut is the size of the cut, so the min-cut
minimizes the register pressure at that point. For partially grouped codegraphs, the
number of edges in the grouped graph, with grouped instructions scheduled together,
the remaining edges represent register values used across groups. We will call this
external register pressure. The minimization and grouping properties of this algorithm
seem to make it a good fit for this scheduling problem.

Due to the nature of the algorithm, if a given vertex A has three edges feeding
into vertex B and one into vertex C, the next iteration is more likely to group A and
B together. If A and B are treated as stages it can be seen how, with each successive
iteration, subgroups that have more connected edges will merge together, reducing
external register pressure. By simply terminating the algorithm once n number of
subgroups have formed it is possible to generate any number of stages. There are
three properties of this algorithm that need to be corrected:

1. The algorithm will tend to produce one very large group with many small groups
connected to the main large group by one or two edges.

• To prevent this from occurring a maximum group size is set, where if the
product of two groups merging results in a group that is larger than this
size the algorithm prevents the merge.

2. Not all contractions are equally desirable.

11
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• Weightings are not all equal, instructions which favor being dispatched
together have connecting edges with higher weighting. This provides a
bias to favour combining these instructions, however it does not prevent
the algorithm from selecting instructions that may generate a non-optimal
local solution which may improve the global solution.

12
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Figure 2.2: Possible Cycles When Producing Min-Cut: Part A shows the initial graph.
If the edge connecting A and C is contracted and node AC is created then a cycle
will be produced as seen in part B.

3. The algorithm could produce cyclic dependency graphs.

• A dependency graph is produced at initialization of the algorithm. Vertices
may only merge if there are no intermediate vertices that may join other
groups. See Figure 2.2.

2.2.1 Modified Karger’s Algorithm

The newly produced algorithm is as follows:

1. Begin with an directed graph G = (V,E) with V vertices and E edges,
where (v1, v2) is the edge with source v1 and sink v2.

2. Produce a w : E → N function which returns the weighting of a given edge.

3. Choose a random vertex a:

• Expand the edges connecting to a, duplicate an edge (a, c) or (c, a), where
cεV , w(a, c) or w(c, a) times and add it to the multiset Etemp.

• If there exists no edge, or the value of∑
cεV

w(a, c) = 0

13
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then return to 3.

• Select a random edge (a, b), (a, b)εEtemp.

• Replace nodes a and b with node ab.

• Replace edges (c, a) or (c, b) with (c, ab), where c is any other node.

• Replace edges (a, c) or (b, c) with (ab, c).

• Determine invalidated edges, and set their weight to 0.

4. If there exist any merged verticies which have not exceeded the maximum group
size, or less than n iterations have been performed, go to 2.

5. Return the merged verticies and their elements (henceforth known as super-
groups).

The supergroups returned by the modified algorithm will be used as the build-
ing blocks for software stages. There will be two stages of scheduling, internal and
external. Internal scheduling will involve scheduling instructions contained within a
supergroup; instructions are unable to move between supergroups. External schedul-
ing will involve scheduling supergroups with respect to each other.

2.2.2 Size of Supergroups

The following should be considered when determining the maximum size of a super-
group. If the size of the supergroups is limited to 10 instructions it is possible to use
the branch and bound algorithm to find the optimal internal schedule of the super-
group. In this case each stage would be made of a subset of the set of supergroups.

• Constant runtime for internal scheduling, due to small number of instructions.

• Internal schedule can be optimized for both grouping and minimized internal
register pressure.

• Grouped instructions should also result in near-optimal throughput of each
supergroup.

• The external register pressure will not be optimal, if there are a large number
of supergroups then the external register pressure will be inflated.

It is also possible to set the maximum size of the supergroup to be approximately
n
m

where m is the desired number of stages and n is the total number of instructions.
In this case, each supergroup would represent a stage.

14
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• The minimum external register pressure will be closer to optimal.

• The internal scheduling problem will take a prohibitive length of time; either a
list scheduler or another heuristic scheduling algorithm should be used that can
be run in polynomial time.

For functions with less than 300 instructions, testing showed that limiting the size
of the supergroups to be 10 instructions allowed for additional instruction throughput
with minimal increases in external register pressure.

2.2.3 Grouping Supergroups into Stages

The supergroups are grouped together into stages. In order to perform this grouping
the same modified Karger’s algorithm is applied to a directed acyclic graph (DAG)
that represents the connected supergroups. The weighting of each edge is set to 1,
the internal structure of each supergroup is not modified, only the external register
pressure needs to be minimized. The maximum size of the merged vertices is set to be
numberOfSupergroups

numberOfStages
+ 1 The resulting groups represent each stage and their associated

supergroups.
The internal schedule of each supergroup is determined according to the methods

described in 2.2. An estimate of the maximum internal register pressure is determined
by detecting the maximum number of live edges at any given time.

If the number of supergroups per stage is less than 11, the topological sorts of each
stage are enumerated to find all possible orderings of supergroups. If the number
of supergroups is larger than 11, then the number of topological sorts is limited.
Topological sorts are generated at random where the number of sorts generated is
proportional to the number of super groups. The optimal sorting is the sort with
minimized maximum total register pressure, where the total register pressure is the
sum of the internal and external pressure of any given supergroup.

For scheduling MASS it was decided to have three stages, because this allowed for
latency hiding in a representative set of test functions, and simplified the identification
of data hazards described in 2.3.

2.3 Additional Schedule Modifications

2.3.1 FIFO insertion

Data hazards can occur for any pipelined schedules that have more than 2 stages. If
the data generated by one stage is not used in the next loop iteration by the next
stage then the data will be overwritten. Referring to Figure 1.2, it can be seen that if
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Figure 2.3: Basic FIFO Structure: With each iteration of the loop the data is pushed
down the FIFO. When the data dependant stage will always access the end of the
FIFO, where the appropriate iteration data is located. In the case of Figure 1.2 the
first iteration of just stage 1 will write x1. The next iteration with stage 2 and stage 1
will write x2. Then in the last iteration stage 3 will access x1, then stage 1 will write
x3. x1 is overwritten in the FIFO. The arrow indicates a pointer that is alternating
between the two addresses with each iteration.

stage 3 depends on stage 1 there are two iterations of stage 1 before stage 3 is called,
meaning the data supplied to stage 3 will be from a newer loop iteration than expected.
Each iteration of stage 1 could write to different registers to prevent overwriting data,
however this comes at a cost of significantly increased register pressure. Instead, it is
possible to store the value in a FIFO rotating data structure in order to prevent data
hazards.

The size of the FIFO is the length of the stage separation. If there is an edge from
stage 1 to stage 3 the FIFO will only ever need to store two values. For stage 1 to stage
4 three values will be required, and so on. FIFOs are simplified if there are only three
stages, there can only ever be edges of length 2 that will require a FIFO. An XOR
operation on the FIFO pointer is all that will be required to switch between the two
stored values. If there are more than three stages the modulo arithmetic to calculate
the FIFO pointer will change depending on the length of the stage separation of each
edge.

The z13 processor does not necessarily benefit from a large number of stages.
Based on this and the simplified pointer operations it was decided that 3 stages
would be used for scheduling.

The FIFO load and store instructions are inserted into the schedule by inserting
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load operations at the beginning of the dependent supergroups internal schedule and
the store instructions at the end. In the event that multiple supergroups depend on
the same FIFO then the FIFO is loaded in the stage’s first supergroup.

2.3.2 Interleaving Stages

Many MASS functions contain table lookups. Large tables need to be stored in
memory, and accessed via loads with computed indices. Some tables are large enough
not to fit in level-one cache, and have significantly higher latency when compared to
the non-lookup instructions. If the schedule attempts to execute instructions that are
dependent on the lookup instructions immediately following the lookup, throughput
will be reduced as the lookup is performed. If instructions are inserted between
the lookups and the instructions that depend on them the latency can be hidden.
However, the grouping algorithm will tend to group the lookup instructions together
in the same supergroups and stages.

In order to improve throughput, the stages are interleaved together. During the
initial creation of the supergroups, a bias is set to ensure that lookup loads and the
instructions that depend on them are in separate supergroups. Instead of dispatching
the stages in reverse order, the supergroups of different stages are interleaved in such
a way that lookup loads will always have supergroups from other stages called before
the dependent lookup instructions are called.

The supergroups are topologically sorted, meaning the interleaving is trivial; how-
ever additional data hazards occur due to this new ordering. It is now possible to
have negative stage separation, such as instances where a supergroup from stage n
is called before a dependent supergroup from stage n + 1. The stage n supergroup
will overwrite its previous value before the following supergroup can access the value.
For example, if there is an ordering where a supergroup from stage one is executed
before stage two in the same iteration, then the length of separation is now negative
one and stage one will always overwrite its previous value before stage two can access
it, as seen in2.4.

To prevent this, a FIFO will be required to store the value. The XOR pointer
arithmetic will not work in this case, the length of the edge is only one. The pointer
is updated at the beginning of each loop, and the FIFO store is called before the
FIFO load, meaning that the required FIFO value will always be overwritten before
it is loaded. There are two ways to bypass this issue:

• Instead of loading the value in stage n+1, load the value in the last supergroup
of stage n.

– Requires no additional instructions or FIFO pointer updates.

17
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Figure 2.4: Data hazards when interleaving stages: The figure on the left shows the
original topological sorting of a set of stages, with arrows indicating data dependen-
cies. Stage 2 was broken into 3 stages, labelled with: a, b, and c. The figure on the
right shows the software pipelined version of the codegraph on the left. The subscript
indicates the data set that the stage is acting on. Due to the data dependence be-
tween stage 2a and stage 3, stage 2a2 overwrites the results from 2a1 which stage 31

depends upon. A FIFO is required to prevent this data hazard from occurring. The
data from 2a1 is saved and reloaded in 2c1. The register is preserved across 2a2 and
consumed by 31

18
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– Increases register pressure, as these edges are now carried across all super-
groups after the load until the value is consumed.

• Increment the FIFO pointer after the FIFO store is called, but before the load.
Then decrement once loaded.

– No changes to register pressure.

– Potential throughput decrease due to additional instructions required for
pointer operations.

Due to uncertainty on the effect on throughput caused by the FIFO pointer in-
crement/decrement instructions, the former method was used.

2.3.3 Constant Load Insertion and Register Allocation

Numerous instructions within MASS depend on constants which are used throughout
the entire function. In a typical schedule the constant may be loaded into a register,
and once all dependant instructions utilize the value during one loop iteration the
value may be overwritten. To reduce the number of constant loads occurring during
a given iteration a set number of constants are loaded permanently at the beginning
of the function. The number of constants that can be loaded at the top of the function
is the difference between the number of registers available on the processor and the
maximum register pressure of the function. If the maximum register pressure of
the function is larger than the number of registers available on the processor then
constants cannot be permanently loaded, instead spills are inserted (refer to 2.3.4).

The remaining constant loads that are not permanently loaded are inserted after
the initial schedule is created. Groups are generated based on the processors speci-
fications, and if any groups are found to have slots available, constants are inserted.
If there are no slots available before an instruction which depends on a constant is
called then a group of constants is formed and inserted before the earliest dependent
instruction.

The register allocation is then performed using a standard graph coloring algo-
rithm. All instructions with data that is considered alive at any given point in time in
the schedule are considered connected. The graph coloring algorithm will attempt to
assign a register to each instruction such that there are no adjacent instructions that
share the same register. Once this has been performed, the order of all instructions
and their resident registers are defined.

2.3.4 Spills

If the maximum register pressure is still above the number of registers available on the
processor, then spilling is required. Spilling involves moving data from a register into
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the processor’s cache. Loads have a much higher latency than register operations,
resulting in a performance decrease when accessing data from memory. To reduce the
impact on performance that spilling would incur, data which requires spilling should
immediately be stored onto the stack and then reloaded several instructions before
the dependent instruction. This would allow for the load data latency to be hidden
by other instructions at the expense of slightly increased register pressure in the area
local to the dependent instruction.

The registers which are most suited to be spilled are those with long register life-
times which intersects with a region of high register pressure. The longer the edge the
more opportunities to hide the load and store latencies. Spills can be handled using
FIFOs, allowing for spills to occur between stages with a separation of 1. Otherwise,
spills within the same stage only require an address on the stack with a single offset
pointing to each spill location.

20



Chapter 3

Evaluation

3.1 Evaluation Platform

The modified Karger minimum cut (mKMC) algorithm was implemented in Haskell
running ghc 7.6.3. All timings were produced on IBM z13 mainframes. During each
mKMC cycle, n log n iterations were performed, producing one potential schedule.
Approximately 400 such schedules were produced and compared with multiple differ-
ent metrics, described below. If there was a case where the number of nodes being
topologically sorted exceeded 11, such as when the supergroups were being inter-
leaved, a randomized topological sort was used in order to avoid a non-polynomial
increase in computation time; the number of randomized topological sorts taken in
this case was set to an arbitrary number, 2000.
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Figure 3.1: MASS Cosine Codegraph: An example of the dependency graph gen-
erated by the scheduler for a prototype MASS cosine function. Nodes represent
individual instructions, the instruction names have been removed and replaced with
index numbers in order to prevent describing platform proprietary details of instruc-
tions. The black edges represent data dependencies between instructions. The red
edges represent false edges, edges which were placed in the graph in order to force a
specific ordering of instructions.
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Due to the limited number of general purpose registers (GPRs) available for the
table lookup instructions false, dependency edges were inserted in order to limit the
total number of GPRs active at once, as seen in Figure 3.1. The locations of the
false edges were produced by Coconut prescheduling graph transformers and limits
the maximum number of GPRs active at one time to 6.

Two metrics were used to gauge the desirability of a given schedule. The first
being a schedule is seen as more desirable if it has a lower maximum register pressure.
This would allow for additional constants to be loaded at the beginning of the loop
and remain resident throughout the function, reducing the number of constant loads
throughout the execution of the function as per 2.3.3.

The second metric involved weighing the likelihood of a hardware hazard occur-
ring, the maximum register pressure, and the total number of FIFOs. This metric was
chosen to attempt to reduce the total number of loads for both constants and FIFOs,
while also preventing stalling which occurs when the functional units are saturated.

The functions chosen for analysis are arccosine, cosine, and cube root. The reasons
are as follows: cosine was selected as a lookup-containing function which does not
require spilling, cube root is a non-lookup-containing function which does not require
spilling, lastly arcosine was chosen as a lookup-containing function which requires
spilling. None of the non-lookup-containing functions we considered required spilling.

The distribution of the execution time against a given metric will indicate whether
or not an approximation algorithm is a suitable fit for this instruction scheduling
problem. A binomial distribution is the expected distribution due to the results be-
ing discrete and the randomized approximation algorithm likely generating a normal
distribution. Multiple metrics were considered for this relation. The hope is that a
metric is found that can be used in order to estimate the timing of a given schedule.
This would allow a score to be generated that would allow schedules to be tested
against one another without requiring hardware timing.

3.2 Metrics

3.2.1 Register Pressure

In this case only register pressure was considered when evaluating schedules. It was
likely that functions that contain high latency instructions will have improved per-
formance if the low latency instructions are serialized, allowing the high latency in-
structions to be more spaced out. This is especially true in the case of the lookup-
containing functions as their expected latency is higher than both floating point and
non floating point instructions that are present in other functions. The register pres-
sure calculated only looks at vector register pressure, the false edges inserted for the
lookup-containing functions results in fixed GPR register pressure.
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3.2.2 Combined Metric

The likelihood that a data hazard would occur was evaluated by counting the num-
ber of instructions per supergroup which share the same functional unit and have a
high execution latency. This combined with the number of FIFOs, the supergroups’
internal register pressure, and total external register pressure were used to produce
the combined metric score for a given schedule. Other permutations of this metric
were tested, including simply data hazard likelihood, number of FIFOs, and simply
internal pressures, but were not found to be predictive of performance and were not
included in the results section.

3.2.3 Expected Result Distribution

According to the central limit theorem, the sum of an set of random variables which
are independent and identically distributed will approximately fit a normal distribu-
tion. Under the simplifying assumption that edge weighting and super-group limiting
can be ignored, our approximation algorithm merges all pairs of adjacent instruc-
tions with equal, independent probability, and each subsequent step will result in
additional mergers occurring. The final result is some set of supergroups which are
the result of identically distributed independent events. The hypothesis is that this
merging can be modelled using a normal distribution and approximated using a bi-
nomial distribution. A binomial distribution is the likelihood that an event occurs
some number of times over several trials, with the probability of this event occurring
remaining the same across all trials. As the limit of the number of trials approaches
infinity this distribution fits that of a normal distribution. To test the hypothesis the
experimental data will be compared to a binomial distribution.

3.3 Results

Two primary methods were used to determine the value of a given metric. The first
was that the metric compared to the timing was tested using a Pearson Correlation
test to determine whether or not they were correlated. Secondly, both the timings
and metrics were compared to a binomial distribution using a quantile-quantile plot
(QQ plot). The quantiles of a set of data are compared to the quantiles of a binomial
distribution, and if both lie on a linear slope then it can be said that a binomial
distribution fits the data set.
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3.3.1 Register Pressure Metric

Arccosine

Maximum register pressure follows a binomial distribution as seen in the QQ plots in
Figure 3.2. No correlation was found between execution time and maximum register
pressure, resulting Pearson correlation test returned an r2 value of -0.0095855 with a
two-tailed p value of 0.9151638. The timings do not fit well enough to the QQ plot
to determine whether or not the distribution fits a binomial distribution.

Figure 3.2: Analysis of Arccosine: Pearson Correlation r2 value of -0.00958553 with
a two-tailed p value of 0.91516383. The timings are likely not following a binomial
distribution.
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Cosine

Both execution time and maximum register pressure follow a binomial distribution as
seen in the QQ plots in Figure 3.3. A positive correlation was found between execution
time and maximum register pressure, resulting Pearson correlation test returned an
r2 value of 0.6806881 with a two-tailed p value of 1.0322e-53.

Figure 3.3: Analysis of Cosine: Pearson Correlation r2 value of 0.68068807 with a
two-tailed p value of 1.03227304e-53.
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Cube Root

Both execution time and maximum register pressure follow a binomial distribution
as seen in the QQ plots in Figure 3.4. A negative correlation was found between
execution time and maximum register pressure, resulting Pearson correlation test
returned an r2 value of -0.346193979 with a two-tailed p value of 2.97621289e-12.

Figure 3.4: Analysis of Cube Root: Pearson Correlation r2 value of -0.26167449 with
a two-tailed p value of 7.40485540e-07.
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3.3.2 Combined Metric

The combined metric was not found to predict performance. One example of a per-
mutation of a combination of these three values is shown below.

Reciprocal Square Root

The selected metric did not return a score which fit a binomial distribution. No
correlation was found between execution time and the score of a schedule, resulting
Pearson correlation test returned an r2 value of 0.163938727 with a two-tailed p value
of 4.9877904653e-7. Different permutations of this scoring system were used, but
were not statistically significant. Refer to Figure 3.5 which contains exclusively the
maximum register pressure to timing graph.

28



M.Sc. Thesis - Kriston Costa McMaster — Computer Science

Figure 3.5: Analysis of Reciprocal Square Root: Pearson Correlation r2 value of
0.16393872 with a two-tailed p value of 4.98779046e-7. The scoring does not fit a
binomial distribution.
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3.4 Discussion

3.4.1 Predicting Schedule Optimality

The lookup-containing functions typically have a higher number of constants to load
compared to other functions. If register pressure is minimized, it introduces more
opportunities to store constants permanently as described in 2.3.3. This reduces the
number of instructions present in the loop body, and it was expected that this would
allow for a decrease in execution time. Due to this, it was expected that there would
be a positive correlation between register pressure and timing. This hypothesis was
initially verified with cosine and later confirmed with exponent, base 2 exponent, and
sine.

Initial expectations were that for non-lookup-containing functions without spilling,
register pressure and execution time would be positively correlated. As register pres-
sure was reduced more constants could be moved into permanent registers, in the
same manner as the lookup instructions. The initial function tested, cube root, in-
stead had a weakly negative correlation. Investigation into the function showed that
it had a larger number of floating point instructions to total instructions. It was
likely that in this case what was occurring was that as dependent instructions were
moved closer together and reducing register pressure it introduced more serialization.
If the instructions that were being serialized were high latency floating point instruc-
tions then it is likely that the reduction in execution time caused by the movement
of constants out of the loop body was offset by the decrease in overall throughput of
the new schedules. However, if a function had a relatively low ratio of floating point
to total instructions then it is possible that non-floating point instructions would be
able to still mask the latency of the floating point instructions. Combined with the
decreased execution time of removing the additional constant loads it is likely that
the low ratio case would likely result in a positive register pressure to timing corre-
lation. The ratio of floating point instructions to total instructions was compared
to the overall correlation of the function. Only 8 such functions exist in the MASS
library and no correlation was found between the ratio of floating point instructions
and the timing of a given function. In this case simply looking at register pressure
is not enough, the scheduler needs additional information concerning the machines
architecture in order to avoid hardware hazards more consistently.

Functions which include spills and lookup instructions did not have a well defined
correlation with timing. It is likely that any correlation between register pressure and
timing is reduced or removed with the introduction of spill load and store instructions.
As the register pressure increases so does the number of spills required to schedule
the function. This means that any increase in throughput caused by dependency
edges becoming longer is likely hidden by the increase in execution time due to the
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addition of extra instructions inserted to store spills. Hyperbolic tan was a function
which required on the range of 30 registers to be scheduled. From maximum register
pressure 22 to 30 the general positive correlation of a non-spill lookup-containing
function can be seen, however once spilling is required beyond 30 the correlation is
lost. This shows the effect of spilling on the resulting timings of a given function.

Figure 3.6: Additional lookup-containing functions: Top left: Cosine: r2 value of
0.68068807. Top Right: Sine: r2 value of 0.76704230. Bottom Left: Exponent: r2

value of 0.47421500. Bottom Right: Exponent Base 2: r2 value of 0.47251520.
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Figure 3.7: Additional non-lookup-containing functions: Top left: Cube Root r2

value of -0.26167449 and a floating point to total instruction ratio of 0.65789473. Top
Right: Quad Root r2 value of 0.27568479 and a floating point to total instruction
ratio of 0.47682119. Bottom Left: Reciprocal Square Root r2 value of 0.08524685
and a floating point to total instruction ratio of 0.0.40816326. Bottom Right: Square
Root r2 value of 0.26716400 and a floating point to total instruction ratio of 0.44.
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Figure 3.8: Effect of floating-point-instruction fraction on the correlation between
execution time and maximum register pressure. The eight non-lookup-containing
functions were tested for a correlation between register pressure and execution time.
That correlation was then compared to the ratio of floating point instructions to
total number of instructions. The resulting Pearson correlation returned an r2 value
of -0.67446110 and a two-tailed p value of 0.06656117. The eight functions tested
were: cube root, reciprocal cube root, square root, reciprocal square root, quad root,
reciprocal quad root, reciprocal, and hypotenuse.

33



M.Sc. Thesis - Kriston Costa McMaster — Computer Science

Figure 3.9: Hyperbolic Tan: Pearson Correlation r2 value of 0.11364341 with a
two-tailed p value of 0.02694837. The timings are likely not following a binomial
distribution. Notice the shift from a positive correlation to noise at approximately
maximum register pressure = 31.

3.4.2 Scheduler Performance

The scheduler was capable of producing valid schedules for all z13 MASS functions
that were available at the time of this writing. The execution times of the resulting
schedules were also within the expected acceleration compared to scalar functions
written in C. Since many aspects of the z architecture are proprietary, we will not be
providing timing information.

3.4.3 Benefits of an Approximation-Algorithm Approach

In other contexts, approximation algorithms provide expected performance defects,
which is the next best thing to optimal solutions, and a big improvement over waiting
for non-polynomial algorithms. Approximation algorithms for instruction scheduling
are going to be more complicated, and harder to prove properties about, but as a first
step, we asked, do performance metrics follow a known statistical distribution, which
can be used to predict or gauge progress.

The schedules of the non-spilling MASS functions were found to produce a distri-
bution of timings that approximately fit a binomial distribution, as seen by the QQ
plots. This fact allows us to make assumptions about the expected performance of
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a given schedule produced by this algorithm. Constraints on the algorithm, such as
the insertion of false edges, seemed to have minimal effect on the final distribution.
Only the tail cases seem to deviate from that of a binomial distribution, however it
is uncertain as to whether or not this is due to the constrained system or due to
insufficient data points.

To start, if for a given performance requirement, Q, there is a probability, s, of a
schedule meeting this requirement at each iteration and the total number of schedules
produced is i then the likelihood that at least one schedule meets this requirement is
p, which is defined by: (1− p) = (1− s)i. It is possible to rearrange this to solve for
the number of cycles required to produce a schedule with the required likelihood:

log(1− p)
log(1− s)

= i (3.1)

Refer to Figure 3.10 for examples.

Probability of Best Schedule Percentile of Schedules Number of Schedules
Meeting Requirement Meeting Requirement Required

95% 10% 28 schedules
95% 5% 58 schedules
99% 1% 458 schedules

99.9% 1% 687 schedules

Figure 3.10: Examples of the number of schedules required to generate schedules with
a set likelihood.

Defining a schedule as being within the top n% is difficult to work with. If a
boundary is set on the normal distribution that defines a near-optimal schedule then
it is possible to convert the performance percentile variable to cycles per element
away from near-optimal. For example, rather than defining a schedule in the top
5% of all schedules it is possible to find a schedule within 1 cycle per element of the
estimated optimal schedule. To investigate an approximate boundary for the near-
optimal schedule the standard deviation of multiple timing distributions were tested
and compared with the best schedule found by the algorithm.

The ratio of difference between the mean and the minimum execution time to
the standard deviation (σ) will be used in order to define the boundary for the most
likely optimal schedule. An analytical solution would be the preferred method of
determining this boundary, however a reasonable approximation can be made by
looking at the experimental values in Figure 3.11. A boundary of 3σ was chosen
based on the data in the figure as the boundary in which the optimal solution likely
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Function Name Mean Minimum Standard Ratio
Deviation

Exponent Base 2 19.2076335878 15.5 1.50561890704 2.4625312358
Exponent 21.481920904 17.5 1.66994391951 2.38446384782

Cosine 20.1968831169 17.7 1.26418831794 1.97508795284
Sine 21.1913551402 17.9 1.65833917454 1.98472977707

Cube Root 33.5968390805 25.5 2.20129698119 3.67821295793
Reciprocal Cube Root 31.5793733681 25.6 1.83357648886 3.26104386944

Hypotenuse 22.9673366834 19.8 1.22551945389 2.5844850307
Square Root 18.4198019802 14.2 1.6721226092 2.52361995286

Figure 3.11: Examples of standard deviations compared with the best-observed
schedule. The ratio is determined by finding the difference in the mean and the
minimum and dividing the value by the standard deviation.

exists for non-lookup functions, and boundary of 2σ was chosen for lookup based
functions. The ordering of the lookup instructions result in tighter constraints which
limit the total number of schedules available in the tail-cases. A normal distribution
is defined as follows:

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (3.2)

The integral can be taken from −∞ to x′ in order to determine the probability
that a sample is less than or equal to some value x′.

f(z) =
1√
2π

∫ z

−∞
e
−z′2

2 dz′ with z =
x− µ
σ

F (z) =
1√
2π

√
π√
2

[
erf

(
z√
2

)
− erf

(
−∞√

2

)]
F (z) =

1

2

[
erf

(
z√
2

)
+ 1

]

F (x) =
1

2

[
erf

(
x− µ√

2σ

)
+ 1

]
(3.3)

Using this equation it is possible to define a radius around the approximated
schedule at 2σ or 3σ and determine the schedule percentile required in order to
produce a desired schedule. For example, if a schedule was desired to be within 1
cycle per element of the optimal for cosine:
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Determine the desired schedule’s distance away from the mean:

x1 =2σ − 1

x1 =2 ∗ (1.26418831794)− 1

x1 =1.52837663588

Determine the probability of selecting a worse schedule:

F (x1) =
1

2

[
erf

(
x1√
2σ

)
+ 1

]
F (x1) =0.88666446848

Therefore, a schedule in the top 11.3% is required to satisfy those constraints.
Following equation 3.1, in order to produce a schedule with this level of performance
with a guarantee of 99.9% it would require approximately 58 schedules to be produced.
The time required to generate each schedule is low. The approximate time per cycle
for a number of functions is shown below. As the number of instructions in the
function increases so does the execution time. The complexity of the algorithm was
also tested using the table and graph below. The schedules were produced on a
personal desktop running with an Intel 4690k processor on a single thread. A second
order polynomial was fit to the graph, giving a likely complexity of approximately
n2, which is the expected complexity considering it is simply a modified version of
Karger’s minimum cut algorithm. However, as stated before the scheduler is at a
prototype state, and it is possible that other aspects such as the topological sorting
may be masking the true complexity of the combined approximation algorithm and
heuristics. Additional functions will also need to be tested in order to allow for
intermediate values to be filled in.
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Function Name Number of Instructions Seconds Per Schedule
Arccosine 283 3.9

Hyperbolic Arccosine 263 5.0
Arcsine 283 3.6

Hyperbolic Arcsine 335 9.1
Two-Argument Arctan 324 8.4

Arctan 301 7.5
Hyperbolic Arctan 255 3.3

Cube Root 159 1.6
Cosine 155 1.5

Hyperbolic Cosine 194 2.2
Exponent Base 2 136 1.3

Exponent 140 1.3
Hypotenuse 135 1.4
Logarithm 125 1.7

Logarithm Base 2 117 1.7
Power v1 688 38.8
Power v2 368 7.4

Quad Root 158 1.6
Sine 163 1.9

Square Root 111 1.0
Hyperbolic Tan 259 3.6

Tan 263 3.9

Figure 3.12: Examples of scheduler timing per function: these times were based on
the total execution time for a 50 schedule run.
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Figure 3.13: Algorithmic complexity graph generated from Figure 3.12. The sched-
uler was run on an Intel 4690k processor to determine the number of seconds per
schedule. The data was fit to a degree-2 polynomial giving an estimated complexity
of n2 per schedule. However, the approximation algorithms and heuristics were not
isolated from other aspects of the scheduler which may have skewed the complex-
ity. Also, additional larger functions are required in order to properly observe the
increase in execution time at high instruction numbers. The blue line is the second
order polynomial fit with the following constants [1.08439266e-04, -2.16298058e-02,
2.35041415e+00]. The red line is a third order polynomial fit with the following
constants [ -1.37813359e-08 1.23925733e-04 -2.63618794e-02 2.74855162e+00]. The
constants are in aranged of increasing order (c1+c2 ∗ x+c3 ∗ x2...)
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This can all be tied together in order to allow for a scheduler with easily modifiable
parameters. For any function to be scheduled, trial schedules can be sampled until the
standard deviation of the distribution is determined within a reasonable degree. This
standard deviation can then be combined with the estimation of the near-optimal
boundary to allow a user to define the desired performance. Finally, the number of
instructions to be scheduled combined with the number of trial schedules that would
be required can be used to provide an estimate for total CPU time for scheduling.
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Chapter 4

Conclusion

The initial investigation into the approximation-algorithm based scheduler proposed
by this thesis establishes expected properties of the resulting schedules and areas
for improvement. One advantage of this approach is that it allows for an explicit
tradeoff between performance and scheduling time in a way that is easily understood
by a user. Rather than turning optimizations on or off, an expected final execution
time is set relative to the expected optimal schedule. This prototype, which only
supports modulo-scheduling of loops for the z13 processor, is capable of producing
production-quality schedules with minimal user involvement.

The timing results show multiple areas for possible improvement. Execution-unit
information needs to be added to the initial codegraph in order to minimize the
likelihood that one supergroup is filled with instructions that depend on the same
functional unit, resulting in a hardware hazard. Additional methods also need to
be investigated for combining supergroups into schedules. Specifically, methods for
finding long dependency chains and interleaving them with non-adjacent instructions.
The internal scheduling heuristic also needs to be improved. The investigation into
the register pressure metric shows that a list scheduler based on register pressure
is not the optimal way to produce an optimal internal schedule. A metric that in-
volves the additional information provided by an updated codegraph would likely
allow for an improved estimate of final schedule timing without explicitly having to
test the execution time of each schedule. Finally, when the algorithm variations are
better understood, the scheduler should be remade to make it embeddable in multiple
toolchains. For toolchains which support multiple processors, this algorithm is easily
parallelized.
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