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SCOPE AND CONTENTS: The phonon dispersion relation in the 

principal symmetry directions of a crystal of Cu-Ni-Zn was 

measured at 298°K by means of inelastic scattering of ther­

mal neutrons. The specimen had an electronic concentration 

per atom very close to that of pure copper and it came as 

no surprise that no significant shift in the phonon spectrum 

relative to that of pure copper could be observed. 

The particular specimen used had a poor mosaic dis­

tribution; this contribution was taken into account in the 

calculation of the line shape and it was found that the widths 

of the neutron groups could be well accounted for in this way. 

The appendix is divided into six parts, four of which 

contain a description of projects of secondary importance 

that were realized. 
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I) • Introduction. 


Ever since that it was made technically feasible, 


the scattering of thermal neutrons has revealed 

itself as a most sensitive probe of the micro-dynamics of 

systems in the condensed state. This reflected by the number 

of papers being published on the subject [Appendix A-6) and 

by the ever-increasing number of neutron spectrometers being 

used in the world. The virtue of the thermal neutron as a 

probe stems from two facts. Firstly, its momentum and energy 

lie within the same range as the pseudo-momentum and energy of 

excitations found in ~any-body systems. This makes for an 

easily observable detection of the interaction between an exci­

tation and a. neutron. Secondly, because of its permanent 

magnetic moment as well as its lack of electric charge, the 

neutron does interact with the scattering system through a 

short range potential which is either of a nuclear or magnetic 

nature. If this potential is represented by a Fermi pseudo­

potential, perturbation theory can be used and the theory of 

linear response is applicable (Taylor [70]). 

However, these merits of the neutron probe are offset 

by the relatively low intensities of the sources (nuclear reactors) 

of thermal neutrons and this is the cause of the present 

limitations of this technique. In fact, the scattering of 

thermal neutrons is essentially a spectrometry technique 

- 1 ­
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and this aspect of its nature is more evident in the case 

of inelastic scattering. Because of this, it is conflicted 

between the requirements of a high signal intensity and of 

good resolution. 

The optimization in signal to noise ratio is obtained 

by a judicious compromise between these conflicting requirements 

and it is known that it is possible to gain intensity from 

focusing considerations. One says that focusing occurs when 

there is a correlation between the imperfect instrumental 

resolution and the scattering surface of the specimen. 

A familiar case would be that of two crystals arranged in a 

parallel configuration (for elastic scattering). A similar 

situation may be obtained on a triple-axis neutron spectrometer 

and it is aimed to demonstrate the validity of a model used 

to calculate line shapes by comparing the results of calculations 

with those experimentally measured on a specimen of Cu-Ni-Zn 

having a poor mosaic distribution. 

The main body of this work is concerned with the 

resolution of a triple-axis neutron spectrometer. In the 

following sections, we will consider individually each of the 

factors affecting the measured intensity distribution in inelastic 

scattering. Section II-3 contains the theorttical derivation 

of the resolution matrix and-is basic in all that follows; 

althouqht somewhat monotonous to read, it is a very general 

approach first derived by Cooper/Nathans [67) and it gives 

a precise expression for the resolution of the instrument in 
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terms of all the experimental parameters. This expression 

is then integrated over the cross-section of the specimen 

in order to obtain the intensity distribution along the scan. 

This is the content of section II-4 where the line shape cal­

culation was extended to the general case where the scattering 

plane is not parallel to a symmetry plane of the reciprocal 

lattice of the specimen. This is of rather academic interest 

since experiments are commonly performed in a symmetry plane. 

Section II-5 deals with the peculiar behaviour of the constant 

frequency surface for c;rr1 phonons and the consequences on 
t 

the line shape is discussed. The case of the real specimen 

crystal with its imperfect mosaic distribution is considered 

in section II-6. Finally, section II-7 is concerned with the 

shift between apparent and true peak position as caused by 

the composite action of the mosaic spread and the population 

factor. 

Chapter III deals with empirical results of neutron 

scattering measurements made on a disordered alloy of Cu-Ni-Zn. 

After a brief introductory part where the reasons for choosing 

this alloy are explained, we proceed to the characterization 

of the specimen as to chemical composition, lattice parameter 

and mosaic distribution. Because of its poor mosaic distri­

bution, the specimen afforded a double interest in the sense 

that not only did the dispersion curves corresponding to a 

particular electronic concentration were measured but also 

it afforded the occasion to perform a study of the resolution 



4 

of a triple-axis neutron spectrometer in order to see the 

relative effect of poor mosaic distribution and atomic force 

constant disorder on the observed line width. Use was made 

of the theorttical results of chapter II and the validity 

of the calculations was verified by comparing the predictions 

with the measurements made on a good copper specimen. This 

being an homogeneous substance with comparativly little mosaic 

spread, then there is no contribution to the line width from 

mosaic spread or atomic force constants disorder. 

The result of section II-7 are used to extract the 

true peak position from the apparent peak position in the case 

of phonons of transverse polarization. This chapter is termi­

nated by presenting the results of the measurements of the 

dispersion curves for this specimen with an accompanying 

discussion. 

* * * * * 

A word about symbolism and convention. The symbols used 

are listed in table I-1 and will be faithfully adhered to 

throughout the text. Many differ from the ones usually used, 

but this type of change was made necessary in order to avoid 

any ambiguity. For exemple, the wave vectors (energies) of 

the neutron beam incident on and scattered from the specimen 

will be labeled k (-fl.cum) and k (.fiw) respectivly. The
-'m ,...a a 

indices i=0,1,2,3 are reserved stricly to label the different 

regions of the spectrometer (see table I-1). 
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The thesis is divided into chapters which are dealing 

with the theorQtical and experimental results separatly. 

The chapters are themselves divided into sections which are 

concerned with a well defined topic and the sections are 

possibly divided into· sub-sections. Figures are labeled 

according to the chapter, section and sub-section (if any} 

where it is first·refel!led from. The equations are refered to 

by giving a single number if it is to be found in the same 

section and including the chapter and section 

numbers if it is elsewhere in the text. 

Table I-1: Notation. 

~o (~} Value of a wave vector before (after} single scattering. 

(k } Value of an incident (analyzed) wave vector.~m ... a 

A 
x Central value of a quantity "x". 


N x Non-central value of a quantity "x". 


Q = k. - k J momentum-transfer. Al<.fl=Al 2 (k
2 - k 2)· energy transfer. 
,..,, ,.,m ..,a 2M m a , 


M mass of the neutron. 


m (or mk) : mass of an atom at the site "k" in the specimen crystal. 

,..,, A 	 ,..._, A 

- A """' A
~k = k - k • 4k = k - k ; AQ = Q - Q Aw= w - w
"" m ,.,m ""ID ' -.J a ....a -a ~ - ,.., 

r/... (~.) Horizontal (vertical} collimation angle in the ith region.
1 1 

v.CJ'.> Horizontal (vertical} angular deviation from the central 
•1 1 

direction • 

. th . 

1 region 	 i=O (in-pile region}; 

i=l (monochromator-to-specimen region); 
i=2 (specimen-to-analyzer crystal region}; 
i=3 (analyzer crystal-to-counter region}. 

Horizontal (vertical} mosaic spread of the monochromator.( m (~~} 
[standard deviation]. 

same for the 	analyzer.1a (,~) 
r : Any full 	width at half maximum. 



II- Resolution in triple-axis neutron spectrometry. 

1)- Transmission characteristics of a neutron collimator. 

i)- In neutron scattering as well as in x-ray work, 

collimators are used to define the direction of propagation 

of the incident and scattered beams. Collimation serves to 

delimit angular divergence of the neutron flux impinging on the 

specimen and accepted by the analyser. This is a necessary re­

quirement since a precise knowledge of the value of the momentum-

transfer Q requires well defined incident and scattered beams 
""J 

with respect to direction as well as to energy. This last re­

quirement is determined by monochromating and analysing crystals 

properties which later will be considered. 

An ideal collimator should allow perfect definition 

of the direction of propagation in both the horizontal and 

vertical planes. However, because of limited available neutron 

intensities, such a wasteful procedure is never adopted and 

it is usual to restrict collimation to the scattering plane 

only. This limitation is not as severe as it may seem since the 

component of the momentum transfer Q perpendicular to the 
"J 

scattering plane contributes a second order effect in inelastic 

scattering performed in symmetry planes. However, the effect of 

vertical collimation can sometimes result in spurious peaks 

appearing over the neutron groups as was recently discovered 

by Copley [70) , Cowley [70] 
- 6 -
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An obvious way to obtain collimation in the horizontal 

plane is to have a prismatic channel with the width smaller 

than the height inserted in the neutron beam. In practice, 

the vertical collimation is achieved by the beam tube channel 

and by the distances between monochromator, specimen and 

analyser. In order to maximize the through beam intensity, it is 

necessary to stack the collimating channels side by side to 

proportionally increase the transmitted intensity at no cost 

in horizontal collimation. This object is called a Soller-slit 

collimator. 

II-1-ii} In this section we present a simple deri­

vation of the transmission function of a collimator. A more 

rigorous approach, which proves hard to manipulate in practice , 

is given by Szabo [59]. The two methods essentially give 

similar conclusions because the s•all angle approximation 

is valid. 

Using the same symbols as Szabo and Cooper/Nathans 

[67] we define the horizontal (vertical} characteristic angle 

of a collimator as a(S}. This value depends on the physical 

arrangement of the SOller slits and is intuitively independ­

ant of the neutron energy. On the other hand, it depends on 

the mathematical object used to characterize the collimator. 

The characteristic angles are related to the physical 

dimensions in the following way. Assume a collimator of 

length L and plate spacing d. 



---------­
d«L 

d 

LT....--k-­
Fig. II-1-ii-l 

From an optical analogy, it is possible to con­

sider the plane P'P"i.e. the collimator inlet as a virtual 

neutron source(Huygens Principle). This is a valid 

approximation since the collimation is much smaller thaf 
\.'C 

the angular divergence of the incident beam; then for all 

practical purpose, the collimator inlet may be considered as an 

isotropically radiating source. 

For any point on the P'P" plane, the horizontal 

angle subtended by the allowed paths is d/L assuming perfect 

absorption of the collimator walls for any other angle. The 

position of P defines the extremum paths by the angles r; and1 

szwhich satisfies: 

(1)r; l + r; 2 = d/L = r 
If we now imagine moving the point source P horizontally along 

P'P", the hatched region will change and the angle r; will1 

vary linearly with the position of P. The transmission 

probability of a neutron from the vertical line source P to 

the collimator outlet region is then 

1 if -r;2<y<r;1 

O otherwise 
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(2a) 

(2b) 

Where T(y,s )is the transmission probability of a neutron
1

having a direction of propagation defined by y and corning 

from point p as defined by s1 and the e function is 

e (x) = 

= 

1 

0 

x>O 

x<O 
(3) 

The transmission probability of any neutron imping­

ing with an angle y with respect to the collimator axis is 

obtained by integrating the contribution from all virtual 

sources P on P'P" 

i.e. T(y) = I: T(y,, 1 )d' 1 

= J:e<,1-y>eCy+~-,1>d'1 

= ~ec, 1-y>eCy+~-, 1 >a, 1 
0 

+ Jrec,1-y>ecy+~-,1>a'1 

!YI 


= rre(y+~-s1)ds1
J1r1 

= rc1-hl> ( 4)r 
From this expression for the transmission probability 

of a neutron making an angle y with the collimator axis, we 

recognize the triangular function that we could have guessed 

on intuitive grounds. ~he assumption of an incident flux which 

is isotropic in the small angular range of interest means that 

the .integral of equation ( 4) over r must be linear in r. This 
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normalization requirement means that equation (4) becomes 

simply T<r> = 1- 11 t (4a) 

r 
Neutrons transmitted with a probability of one half that of the 

maximum are those making an angle ±rwith respect to the axis. 
2 

The full width at half height is thus equal to rin the case 

of a purely triangular transmissivity. 

II-1-iii Effect of small angle scattering. Geometrical con­

siderations have shown that a Soller slit collimator would 

have a triangular transmission function if the channel walls 

were perfectly absorbing and at the same time the small 

angle reflection was inexistant. 

We now proceed to show how much the second of those 

two processes contributes in the departure from the ideal 

case considered above. The angle defining critical reflection 

at a neutron wavelength A, i.e. the critical angle, is expressed 

as 

N. b h l1/2= A L: i co i ( s)
[i 7T 

where N. is the number of scattering centers of index i per
l 

unit volume and b h is the coherent scattering length.co . 
l 

A suggested reference on this subject is Gurevich [68]. 

In the thermal neutron range, we see that ¢ "t is acr1 

linear function of ~ in other words the effect of critical 

angle scattering on the effective characteristics of a collimator 

should be more important at the lower energies of the spectrum. 

From a practical point of view, it means that for all other 

things being held constant, the incident beam collimator has 
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an energy dependence and that the scattered beam colli­

mation "looks" differently depending on whether the scattering 

process was that of neutron energy loss or neutron energy gain. 

How big is this effect? Table II-1-iii-l lists a 

set of values of cl>c for steel using 

N = 8.49 x 10 22 -3 cm 

b = 0.96 x 10-12 
cm (Bacon [ 6 2 J ) 

and for cadmium using 

N = 4.635 x 1022 -3 cm 

b = (0.38 + i 0.12) 10-12 cm (Bacon (62]) 

This last case concerns the cadmium-plated steel plates which 

are used in our collimators. Then for steel cpc(min)=5.55A(A) (ba) 

=24.6 ('b) 
../v ('THz) 

and for cadmium, the values are 0.4645 of the corresponding 

values for steel (using the real part of the scattering length). 

Table II-1-iii-l 

Maximum angle for total small angle reflection 

v(THz) cl> c cl>c 
minutes minutes 
(steel) (cadmium) 

1.0 24.6 11.4 

2.0 17.4 8.08 

4.0 12.3 5.7 

8.0 8.7 4.04 

16.0 6.15 2.9 
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One now has to modify the previous conclusions 

regarding the transmission function of a collimator being 

given by a triangular function. Assuming that a neutron 

incident on a surface with an angle greater than <Pc has a 

unit probability of being absorbed while it has the same 

probability of being reflected if its incidence angle is 

less than <Pc$ one expects that the transmission function should 

remain unaffected for incidence angle greater than <Pc· On 

the other hand, any neutron making an angle less than <P with c 

the collimator axis should be transmitted after possible 

multiple scattering on the collimator walls resulting in a 

saturation effect for the angular region between -<Pc aud +<Pc· 

Fig.II-l•iii-1 Relative effect of small angle 

scattering on collimation; intensity vs. deviation. 

I
, ~ ' 

\I 
/\

\ 
I I 

I \ 
I \

I \ 

II ' \ 
I \ 


,I ' \ 

I \ 

I \ 

I \ 

1 \ 
-r o +r -~, -r 0 •r '" 

a) ¢ =O c) ¢c >rc 

Fig. II-iii-i illustrates the different possible 

transmission functions for collimators,In case a), the 

phenomena of mirror reflection is not considered and the 

transmission function is triangular, as deduced in the previous 

section. In b) and c), the phenomena of mirror reflection 

is considered. In b), the collimation angle is larger than 

the value of the angle for critical scattering resulting in a 
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transmission probability equal to unity (saturation) in the 

central region, while the tail po~tion still shows the tri­

angular behaviour. C~~e c) represents the extreme case where 

¢c)r; in this case, the collimation angle is independant of 

the value of the characteristic angle of the collimator and 

is given by the value of the critical angle ¢c· The trans­

mission probability is equal to unity in the range +¢ . - c 

Thus, the triangular function becomes less suitable to 

characterize a collimator in the case of tight collimation 

and/or low neutron energy. 

iv) Experimental results 

Measurements were made to obtain experimentally 

the transmission function of a Soller-slit collimator. 

The experimental procedure consisted in rocking the collimator 

under testing in the monochromatic incident beam with the 

analyser set in the straight through position. 

Obviously, in this way, it is not possible to isolate 

directly the collimator characteristic function. What is 

measured instead is a convolution of the incident beam 

collimator function, the monochromator mosaic distribution 

and the transmission function of the collimator under testing. 

If all three functions were gaussian, the resulting convoluted 

function would also be gaussian with a width given by 

~ = 2. er-~ (7)
i=l,3 J. 

<Tl being the true width contributed by each of the components. 

Figure II-1-iv-l shows the results with two combina­

tions of the most commonly used collimators, namely r = 1/80 

(43') and r = 1/160 (21.5'). The point to observe is the fact 
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that the composite transmission function has a very nearly 

gaussian shape. The values of the effective half-height, that 

is after correction for the background, can be used to deter­

mine the standard deviation o-of the intensity distribution. 

The continuous line in this figure repreaents the calculated 

gaussian curve using this value of a-. 
The values of the collimation angles and neutron energies 

used in these measurements correspond to case b) in figure 

II-1-iii-l since table II-1-iii-l gives an angle of 6 minutes 

as the critical angle on cadmium for neutrons having a fre­

quency of 3.5 THz. 

Thus there is overall agreement with experiment both 

in terms of the composite width and the intensity distribution 

if the transmission function of the collimators is assumed 

to be gaussian. The resulting simplification coming from the 

use of such a well-behaved function will be vital in obtaining 

an analytical expression for the resolution matrix and the 

line shape (sections II-3 and 4). For this reason, the relevan­

ce of the gaussian approximation applied to collimators 

will not be further questioned and the validity of this assump­

tion is left to be verified with actual phonon measurements. 

We have seen before that the characteristic angle 

of a collimator is equal to the FWHM Cr> in the case of a 

triangular function. In the case of interest of a gaussian 

function, the standard deviation of exp(-1 x 2) obtained by
2Q=2 

matching the widths at half height is given by: 

r = r = rI 2 • 3 5 4 ; r = d/L (8) 
2(2 ln~)Vt. 
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II-2 Elastic coherent scattering of neutrons 

from a monocrystal. 

It is the purpose of this section to show how the 

effects of imperfect collimation, mosaic distribution and 

crystal inhomogeneities affect the angular distribution and 

monochromatization of neutrons Bragg-scattered from a 

monocrystal. Each of these factors will be considered indivi­

dually before considering the composite effect. 

i) Elastic coherent scattering from a set of planes 

having Miller indices (hkl) is governed by the Bragg equation 

which may be written as 

k• '7T" ( 1) 

dhklsin(9s) 

or equivalently ~·.e.= "Ir /dhkl ( 2) 

where 29 s is the scattering angle 

and ~is a unit vector perpendicular to the scattering p}anes. 

Writing the Bragg equation in this way affords an 

interesting geometrical interpretation. For a given plane spa­

cing, the product ken is a constant; that is the projection of 

the wave vector obeying Bragg equation on the unit vector n-

is independent of the scattering angle for a given (hkl) reflec­

tion. A moment reflection shows that this is simply another 

formulation of the condition that the momentum transfer Q-

be equal to a reciprocal lattice vector, since f	k 11 = 11 k' 11 

"9 ­
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and (3) 

(see fig. II~2-i-l) 

In fig. 1!-2-i-2, the different lines labelled with 

Miller indices correspond to the loci of~allowed wave vectors 

for different reflections off a copper crystal. In practice, 

the scattering angle may be physically limited to a given range 

and therefore determines the maximum and minimum values of the 

wave vector that can undergo scattering through a given momen­

tum-transfer. The limiting values in the case of the monochro­

mator and analyser on E-2 hole are included in the figure. 

In practice, the (220) reflection is used for the monochromator 

and the (200) for the analyser. This is justified in section III-5. 

ii) Effect of collimation 

Because of imperfect collimation, the neutrons incident 

on a crystal do not have a perfectly defined direction of propa­

gation. The same thing may be said about neutrons reflected 

from the crystal. This double uncertainty results in a corres­

ponding uncertainty in the value of the scattering angle. 

To illustrate the effect of imperfect collimation, we 

assume a perfect crystal as illustrated in fig. II-2-ii-l. 

Let the deviations with respect to the main directions of propa­

gation be y and y in the case of the incident and scattered
1 2 

beam respectively. Since the crystal is supposed to be perfect, 

then Bragg condition requires that ~la ~ 2 • The scattering angle 

is thus changed from 29 to 20 + 2rl. The wave vector corres­
5 6 
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FIG. II - 2 - i - I 

·GEOMETRICAL INTERPRETATION OF 
BRAGG RE LATl ON 

---~-------------

0 


FIG. Il-2-i-2 
LOCI OF ALLOWED WAVE VECTORS 

1(~=I/A A- ) FOR SCATTERING OFF 
Cu CRYSTALS 

la=3.6147 1> .. 

0max • 65° ( mon. and anal.) 
0 

I e . • 23.5 (mon.)
/ min,,. 

~·o~--~------------------~-,~-------
~2~~--~,'~-----=-------,-,~,-'-~------~ 


I .,,-' 
[20Ql ,' 
D•UL--~____,~~--__,,..::.------------------

0 (an a I.)&-~..;;..c.._____________ emin. 0 

SCALE FOR WAVE VECTOR ('R) : Icm! 0.1 A-I 




19 

FIG . .II-2-ii-I EFFECT . OF IMPERFECT. COLLIMATION 


FIG. n-2-rn-1 EFFECT OF MOSAIC SPREAD 


FIG.JI-2-iv-I EFFECT OF CRYSTAL 
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ponding to this scattering angle is then 

k = (4) 

dhklsin(es+r1> 

Since the usual collimation is such that rl and ¥2 

are much smaller than unity, we can write 

dk =­ k cot (~ ) de s s en 

which is obtained by differentiating (1). Thus, 

i + Jk = ~ ll - y1 cot(~s) ) 

If the equation II-2-i-(2) had been differentiated 

instead, the result would have been 

0 = lk,n <1> 
"" "" 

thus indicating that the vectors Jk and n are perpendicular, 

in conformity with the diagram in fig. II-2-i-l. The correla­

tion between the scattered wave vector and the deviation with 

respect to the main direction of propagation is an equivalent 

formulation of the Bragg equation. 

Since it was assumed that the crystal is perfect, the 

probability of occurence of such a process is really determined 

by the transmission probabilities of the incident and scattered 

beams through their respective collimators. From the considerations 

Of 1ubsection II-1-iv, the transmission probability may be 

written 
= exp (-1'

2
2 ) ~ (k-~) •n) (8a) 

-=..Jt.. - - ~ 2oC. ('A A .' 

or equivalently = expC-.!.t2) 6(k(l-~cot(e5 )) -
rJ
k) (9b) 

2oe.2 
where ~ is the effective composite collimation defined by 

2 
l/oC. = l/o<. f + l/°'-~ (9a) 

and (9b)
" = r1= ¥2 

http:expC-.!.t2
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iii) Effect of the mosaic structure of the reflecting 

crystal. 

The perfect crystal considered above is an jdealization. 

It is known that no crystal is perfect up to· the macroscopic 

level [appendix A-3] but rather is made up of micro-crystallites 

which are themselves perfect and which are distributed preferen­

tially along the average crystal orientation. Denote the crys­

tallite distribution function as W(,); it gives the density of 

crystallites oriented at an angle, with respect to the average 

orientation. In many cases, a gaussian function proves to be a 

suitable approximation for W(,); this is what will be adopted 

here. Note that if the mosaic blocks are distributed with a 

cylindrical symmetry along the main orientation, then the 

function W(,) is actually a function of two variables, 

wqx,,y) = I exp-(~) X exp(~) (10) 
2.Tr ~er; 2 "1 ~ 

If we arbitrarily choose the x and y axis such that 

the x axis lies in the scattering plane while the y axis is 

perpendicular to this plane, we expect that the y component 

will be unimportant if the vertical collimation is much relaxed 

compared with the standard deviation of the crystallites. 

In practice, such is the case and the crystallite distribution 

is effectively given by a one-dimensionnal gaussian function 

of the form 

(\\) 
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Fig. II-2-iii-l illustrates the effects of mosaic spread 

on the monochromatization of scattered neutrons. The projection 

of the scattered wave vector on the normal to the scattering 

plane has to be constant, as was already said. Since this nor­

mal is not uniquely defined because of the mosaic structure, 

the loci of points in reciprocal space are smeared out on a 

curve with a probability density given by W('). It should then 

be self-evident from fig. II-2-iii-l how this curve determines 

the possible s~attered vectors. 

For each of the crystallites orientations, the value 

of the scattered wave vectors obey the Bragg equation for each 

of the different scattering angles(2es + >1· If the incident 

beam is assumed perfectly collimated and polychromatic, the 

scattering angle is related to the crystallite orientation 

through the relation: f =(12. Thus the intensity of the scatte­

red beam in the direction (20s + Y) is proportionnal to W(~/2}, 

the density of crystallites properly oriented to produce 

scattering in this direction. 

Eq. II-2-(5) which gives the cha~ge in m~gnitude of 

the scattered wave vector as a result of a change of 

in the scattering angle thus reads in this case: 
I\ A 

-n~tl cot (es) "l (12) 

since =¥=2'l' 
Similarly as in the previous section we can define the 

distribution of scattered neutrons by 
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where the two terms in the exponential describe respectively 

the mosaic distribution and the transmission of the collimator 

in the scattered beam. 

iv) Effect of the presence of inhomogeneities in the 

scattering crystal. 

The presence of inhomogeneities in a crystal results 

in a variation of the lattice parameter which in turn affects 

the distribution of neutrons scattered from such a crystal. 

In practice crystal chosen as monochromator or analyser are 

an homogeneous substance and these considerations do not apply. 

However this effect is mentioned for the sake of completeness. 

Consider again the Bragg equation II-2-(l) . Taking the 

partial derivative with respect to dhkl yields: 

dk I k = -ddhkl/dhkl 

The negative sign expresses the fact that distances in recipro­

cal space are inversely related to those in real space and an 

increase in the value of the plane spacing by the amount [dhkl 

results in a contraction of distances in reciprQcal space by 

the relative quantity l~dhkll I dhkl • 

Thus the projection of the scattered wave vector on 

the normal to the scattering plane varies throughout the 

crystal (fig. II-2-iv-l) resulting in a correlation k-y 
such that the intensity distribution is zero for any 

deviation angle r from the. central direction of the scattered beam.: 



24 


that is to say that the wave vector ~ is parallel to 1 so that 

~ + ~ is also parallel to ~· 
The analog of equations (8) and (13) for the 

intensity distribution of the scattered neutrons is in this case 

'It (k'¥) = w ( dhk1) [ (1> (15) 

W(dhkl) being the distribution of plane spacings and 

dhkl being equal to 71''/C[•n>· 
The simple argument of the delta function reflects the fact 

that ~ is parallel to ~· 
The situation of an inhomogeneous crystal will not be 

further considered since this situation was not encountere~ in 

practice; even the ternary alloy used in the measurement of 

phonons showed remarkable homogeneity. 

v) Composite effect of imperfect collimation and mosaic 

structure of the scattering crystal. 

The three cases previously considered dealt with the 

contribution of a single factor to the distribution of scattered 

neutrons and these idealized cases resulted in the magnitude 

of the scattered wave vector being correlated with the deviation 

from the average scattering angle; this is reflected by the 

presence of the delta function in the three equations for the 

intensity distribution (equations (8), (13) and (15)). 

We now will calculate this same intensity distribution 

but taking into account the simultaneous effect of mosaic struc­

ture and of imperfect collimation in both the incident and 
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scattered beam. The crystal is assumed to be homogeneous (cf. sec­

tion II-2-iv). Physical intuition predicts that the superposition 

of these two factors (cf. fig. II-2-ii-1 and II-2-iii-l) 

would remove the delta function from the expression for the 

intensity distribution resulting in this function being a 

well behaved continuous function of two variables. 

For the time being, no assumption will be made about the 

transmission function of the it~ collimator (T. (y.)) or the 
l l 

mosaic distribution of the specimen (W(n)). We restrict our­

selves to angles coplanar with the scattering plane. 

What is the probability of having a neutron of wave 
~ 

vector k+ok scattered in the direction y 2 relative to the central 

direction of the scattered beam? (y is positive for angles
2 

measured toward the unit vector ~; see Fig. II-2-v-l) Assuming
• 

that the propagation of a neutron through the individual steps 


of the transmission through the incident beam collimator (i=l) , 


the scattering by properly oriented mosaic blocks and the 


transmission through the scattered beam collimator (i=2) 


correspond to statistically independent processes, the composite 


probability is given as the product of the individual probabilities, 


i.e. 
,.... 

rr(k,ok,y 2 ) = T1 Cy 1 )w(n)T 2 Cy 2 > (16) 

where the angles y 1 , n and are coupled with each other and withy 2 


ok; they have to satisfy indentities which are now derived. 
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The value of the wave vector k+ok defines the correspondin' 

Bragg angle e and allows us to calculate n and y1 . Fig.
8 

II-2-v-l illustrates the relation between the different angles. 

The results of interest are: 

n = y2 - oe (17a) 

= - 268 (17b)y 1 y 2 

Hence we may write equation (1) as 

( 18) 

where 

A 

0 e = " 
-ok 

tan e (5) 
k 

Hence the composite probability function is a function of two 

independant variables for a given value of the central wave 

vector k. 

In order to proceed any further, we have to make some 

assumptions on the nature of the functions T. (y.) and W(n).
l l 

It is physically plausible and it will be mathematically 

convenient in the calculation of a phonon line shape in II-4 to 

assume a normalized Gaussian function for W(n), i.e. 

1
W(n) = - - exp[-«!JfJ (l9)

v'27Ta 
A study of the more general case where the standard deviation 

is itself a variable has been performed by Dymond [70] for the 

case of elastic scattering but it will not be considered here. 

The analytic form of the transmission function should 

properly be chosen as a triangular function with a flat central 

region to take into account critical scattering (sub-section 

II-1-iii), 
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i.e. Ti(yi) = 8(jyil-¢c)8(ai-jyil) (ai-~J)+8(¢c-1Yii) (20) 

where we have used the previously defined e function (equation 

II-1-(3) and ¢c is defined by equation II-1-(5). However, 

this is mathematically difficult to handle and, for the 

reason already mentioned we adopt the approximation of a 

Gaussian transmission function for the collimators, i.e. 

T. (y.)
1 1 

= 1 2 2
exp(- 2~./a.)1 1 

(21) 

Hence the final expression for equation (18) is 

(22) 


2 Ok A 2 2 2 2 ok " 2 2where E = (y 2+2~ tan8) /a1+y 2/a2 + (y2+°""" tane) /o (23a) 
k k 

=Ely~+ E2Y2(ok)+E3(ok) 
2 

(23b) 

r l'r it= 3 being defined as 

1 1 1 
rl = + - + (24a)2 a2 02al 2 

A 
2tan e 

r2 = (~
2 

+ L> (24b) 
k" al 02 

2 A 

tan e 
r3 = (!__ + L> (24c)"2 2 02k al 

Equation (23b) is the equation of an ellipse centred on the 

origin and rotated with respect to the (ok,y 2 ) axes and it 

governs the behaviour of the two dimensional Gaussian composite 

probability as a function of the two variables y 2 and ok. For a 

given value of y 2 , the intensity distribution in terms of ok 

has a Gaussian structure centred around the value 

ok = (25a) 



28 

Similarly, if ok is a constant, the maximum occurs at 

= -(ok)L:y 2 2 (2Sb) 
2L: 1 

the set of (ok,y2 ) points such that L:~ is a constant defined 

as isoprobability contour in k-space. This contour may be 

obtained by solving the quadratic (23b)or alternatively by 

joining points of equal probability on the set of functions 

of onevariable (either ok or y ) for different values of the other2

variable as illustrated in figure II-2-v-2 depicting the sit­

uation of a Cu(200) at a neutron energy of 2Thz with colli­

mation and mosaic parameters corresponding to those found in 

the analyser. Observe that the low energy end of the ellipse 

is closest to the normal of the scattering planes, as expected. 

It was verified that calculations according to equation (20) or 

(21) give essentially the same rP.~nlt. 

The total intensity scattered in a given direction is 

obtained by integr~ting ec:r1!.ati"on (22.) over all possible wave vectors 

I ( k , y 2 ) =j TI ( k , o k , y 2) d ( o k) ( 2 6 ) 
0 

In the small range where the integrant is large, we assume 

that the Maxwell spectrum is constant.Using the result of 

part i) of appendix A-1, this gives 

(27) 

we have neglected the term 

because of the small angle approximation. Note that the 

result of the integration gives a Gaussian intensity distri­

bution as a function of angular displacement away from the 
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central direction of propagation of the scattered beam. 

The total intensity is obtained by integrating (26) 

over all angles in the scatte~ing plane 

. !tot<k> = f_ dy 2 I(k,y2) (28) 
00 

where the physical limits (-n,n) were replaced by the con­

venient ones (-00,00). Again using the result of part i of 


appendix A-1, we get 


Itot(k) = (29a) 

3/2= a.la.2 (TI) 
(29b) 

· " "a !: (4 2 2 2
s1n8tan8 hkl 2 a +a. 1+a.~ 

This result should not be used to obtain the effect of 

variation of crystal mosaic spread (a) on the scattered inten­

sity since no considerations were made of extinction (appendix A-3) 

rt however illustrates the dependence of the total intensity 

upon collimation angles. 
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GEOMETRY OF SCATTERING FROM A MONO-CRYSTAL 

~= -¥- 9 : 11- e+, -~ 
~2 =~ +1[ = f -8... 2f[ -Ya 
Y,= ~ -(f _ e) =211- ~ 

Fl G. Jl-2-v-I 

Legend: E' unit vector defining the centre of the 

crystallite distribution 

ri' deviation relative to the-central direc~ions 

"e, central Bragg angle 

e, Bragg angle for a non-central process 

,, deviation of a mosaic block relative ton. 
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II-3 Derivation of the instrumental resolution 

function. 

We now proceed to derive an analytic expression for 

the resolution function of a neutron spectrometer. Altought 

the mathematical derivation may make this part a bit painful 

to read, we will try as much as possible to keep in close 

touch with the corresponding physical reality. The necessary 

and plausible approximations will be well indicated as well as 

being justified. In fact, this section which deals with the 

instrumental resolution itself, i.e. independently of the 

characteristics of a particular specimen, is quite exact. 

This is because of the fact that the components of a spectre­

meter are characterized by angular parameters such that 

the small angle approximation is valid. On the other hand, 

the next section which deals with the contribution to the 

resolution function from the specimen being studied is of a 

much more restricted scope; it will define the limit of validity 

of the theory. The approach adopted here follows that of the 

classic paper by Cooper/Nathans [67). 

The natural variables being the momentum transfer ~Q-
and the energy transfer ~c.u, we proceed to define an object 

giving the probability of detection of a neutron having gone 

--~through a (Q,w) scattering process while the instrument is set 

for looking at the point (~,~ in (Q,~) space; this object is 



33 


. ~ .~ 
the resolution function R(Q+4Q,c.u+Aw) of the instrument. In other- ~ 

words, it give the relative probability that a neutron recorded 

through a "' "in the detector went (Q+AQ,~+~w) process. Ideally, ..... ­
the resolution should be a delta function in the Q andW-
variables, but the existence of non-zero mosaic spreads in the 

monochromating and analysing crystals as well as the imperfect 

collimation resulting from the requirements of intensity, 

result in the resolution function having a non-zero window 

width in both the Q and w variables. 

i) Derivation of the resolution matrix. 

This section is fairly general. No assumptions are 

needed about the type of scattering or about the response of 

the specimen to a (Q,<11) probe. Consider a certain spectrometer
#OJ 

setting: ( 1) 

( 2) 

as illustrated by the vector diagram of fig. II-3-i-l. 

A A 
Here ~m and lsa are the most probable neutron wave 

vectott being scattered from the monochromator and analyser 

respectively. Their magnitudes determine the energy transfer, 

as given in (2), and both their magnitudes and relative 

directions of propagation determine the the momentum transfer, 

as given in (1). This means that an uncertainty in the 

magnitude of either the incident or scattered wave vectors 

result& in an uncertainty in the momentum as well as the 
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energy transfer, while an uncertainty in their relative 

direction of propagation only results in an uncertainty of the 

momentum-transfer. 

The most probable wave vector values are defined by 

" k = (3-a) ; 
A 

k = 7\" A (3-b)m a d sin(e )a a 

Any (Q,w) process is obviously related to the most-"°' Aprobable (Q,w) process by the deviations of the incident and.. IV 

scattered wave vectors from their central values defined in 

equation9 (3) by 
...... "-' A 

- k ( 4-a) l\ k = k - k (4-b)
.....m -a -a -a 

The corresponding shifts in energy and momentum transfer are 
~ A

AQ = Q - Q = f). k -: 6k <5- a > 
,.._ - - ~m -a 

A£ =-new-~> = h2 Jc k2 -k'2> _ ( 'k2 -'12>)2M\. m a m a 

2= 1(2 f ( 'k° •Ak - "k" •Ak ) + 1 (Ak ) 2-1 (Ak ) }Ml-m-m -a-a m a2 2 
(5-b) 

Now we may consider a few interesting cases; these 

are illustrated in fig. II-3-i-2. 

a) Assume that Ak • Ak = Ak 
,....,, m ,.....,a ­

then 

and 

-""' Observe that if Q andAk are orthogonal, then there is 
"" 

no shift in either Q or w. 
~ 
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b) If A.k = O then AQ =Ak -a .- ~m 

and AE. =Ali~ + ~~/2) ·~~ 
M " 

N .,..1A 
=m k •Ak (to first order)

M~ "'m 
Thus there is no shift in energy (to first order) for incident 

wave vectors whose projection on the direction of propagation 

of k (i.e. defined by the unit vector i as defined below)m ,...;f1l 

is equal to k • Obviously the same type of argument holds 
m 

if ~mis assumed zero instead of ~ka. 
A /'.

c) If ~•4,,,~ - )$a ·~...ka = O 

then l1 Q t- 0 in general,..,.... 

and A e..= 0 (to first order) 

If also A k = A k as in a) then there is no shift in both ,...,m ,.._,a 

Q and win first order. ,....,, 

Thus if we define the transmission functions: (using 

the symbols defined in table I-1). 
A 

as SnC~,A~,(1 > for the monochromator crystal 
A 

C (k ,~k '(2 > for the analyser crystala a a 


and T. CY. ,J.) for the individual collimators, the 

i pi i 

index i=0,1,2,3 referring to the respective regions: in-pile, 

monochromator-to-specimen, specimen~to-analyser and analyser-to­

counter, the total probability for the propagation of a neutron 

through each of the elements of a spectrometer is 

fV,V 3 J /\, A. 
P(k ,k )=lt T. <(·' .)C (k ,f),k ,V.1 )c (k ,/lk ,V ) (6)

,J'l ,...a i=O 1 1 l. m m m 4. a a a 4:2 
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As usual, the ~i are defined as positive when they are measured 

to~ard the normal to the scattering plane. This convention dif­

fers from that used by Cooper/Nathans in that they used a 

counter-clockwise positive direction, resulting in a posi­

tive angle corresponding to an increase in the magnitude of 

the scattered wave vector in the case of the analyser and 

to a decrease in the case of the monochromator. It seems 

desirable to remove this asymmetry and at the same time be 

consistent with the previous notation; thus, as before, an 

increase in the magnitude of the angle ( always corresponds to a 

decrease in the magnitude of the most probable wave vector. 

From the considerations made in section II-1 on 

collimators, it is obvious that the transmission function of 

a collimator may be decomposed in two terms dependent res­

pectively on the vertical and on the horizontal direction of 

propagation: 

T • ( Yi. , d. ) = T~ ( Y . ) T'! (r ) 
i' i i qi i i 

2 2where TJ:l(e.) = exp(-10./ol . ) 
i i 2 i i 

We may rewrite the expression for the total proba­

bility, using the result of equation II-2-(22), as 
~ ~ ,._,. ~ """ l"J 

P(k ,k ) = Ph(k ,k ) x P (k ,k ) (7)
A.Jn ""'a .,..m ,..,a v -m -a 


N ,._, 


p (k , k ) (8-a)
h ,.Jn .va. 

T'! cf )1 (8-b)
i i 
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Thus, the transmission probability may be separated into two inde­

pendent terms corresponding to processes in and out of the scat­

tering plane, since equation II-2-(22) shows no correlation between 

the scattered wave vector and the vertical divergence angles. 

We show in appendix A-2 that the in-pile and counter 

vertical deviation angles cf and [ ) are not independent but are 
0 3 

respectivly related to the vertical divergence angles in the mono-

chromator-to-sample and in the sample-to-analyser regions cfl- ,..and d ) ; hence , the function P (km,k ) is actually a function of v - ...,a2 
~l and s2 (equation 8-b). Using equations II-2-(22) and (23), 

we may write 

- - 0 2 2Ph (k , k ) = Phexp [-1 (% + ~ ) ] 	 (9a) 
~m 	-a 2 m a 

where ~ ~ =c! + ! + 1 J/k2
"2 o(2 .,,2 m 

o 1 lm 

~ m "" 
2 = 2tan(9m) [ 2 + 1 ]


""'¥ ~2 ,,,2 

m o ( m 

a 2 
= 	 tan 2 (~ ) [ 4 + 1 ] (lOe); ~J = tan (~ ) [ 4 + 1 J Cl Of) 

~2 m «.-2 ;2 'k! a cZ~ 7!m o lm 

(lOb) 

a(lOc); :i. 2 = (lOd) 

and 
(lla) 

where 

2 1 	 1 
all = 	 (llb)

(4 	 tan2 (" e ) n I 2 + 82)£2 + 82~2 
m m o m 1 m 

2 11 +
al2 = 	 (llc)

(4 2 " 2 +82) k2~ tan (ea)n~2 a 	 3 a 
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The symbols being properly defined in table I-1. 

Since there is no unique path for a neutron going 
,..., ,..., 

through a (Q,c.tr) scattering process, the resolution function 
"' 

for a given point (Q,W) is obtained by integrating the pro-
1'\J 

bability of such a process over all possible paths (in 0-1.0 
""' 

space) leading to that transfer in momentum and energy, 

namely the sextuple integration 

R co,U:> =Jd'k dk .Jr:' ,'k t<o- ck' -k' » ~cW'~ ci?-k2 » (12)
"' "'m 'V a.,.~m "'J" "-tn "'a 2M mrv a 

where the vector notation was used in the arguments of the 

functions for compactness and the constraints on km and ka 
'V '\.I 

are given by the delta funetions. 

The observed intensity for a given instrument setting 

is the convolution of the resolution function and the 

scattering cros~-section, i.e. the quadruple integration 

""""" r ""'~ - l'VIC£,w> = J R(2_,w> r'(2_,w) dQ, aw (13) 
A A 1 A A 

= R <g+A_g ,w+4w) 0-(£_+4_9 ,w+.4w) ~'}3) d~w) (14)S 
The second form where the variables of integration are the 

deviations from the central point ca,~) turns out to be 
tV 

the natural choice here and the analytic form of the resolu­

tion function using these variables can be conveniently 

formulated in matrix notation; the explicit form of the 

matrix elements will now be derived. 

Let us define three sets of right-handed orthonormal vectors * 

I\ 
to respectivly the central values of the wave vector transfer Q, 

"'-' 
*Note: that is, obeying the relation i I\ j = 1 (x=Q,m,a)

"-Ix ~x ,.,,x 
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,,,.... ..A.. 
the incident wave vector k and the scattered wave vector k . 

""m ~ 

As illustrated in fig. II-3-i-l, the i vectors (x=~,m,a)x 

are chosen to lie in the direction of the corresponding 

wave vectors and the j vectors, perpendicular to the asso­
x 

ciated i , are in the scattering plane: the third vectors (1 )x x 
are perpendicular to the scattering plane, parallel to each other. 

Consider first the uncertainty in momentum transfer 2i 
equations (4) and (5-a) have already shown that it is of 

the form: ~ Q = L)k - tlk (5-a) 
,_ "-m -a 

Let the vectors on the right hand side be expressed in terms 

of their respective orthonormal vectors: 

i.e. ~k = x i + y j + z 1 (15-a) 
"1l\ m..;i mi\Jl\ m,,..in 

+ .~k = x i z 1 (15-b) 
~ a ,iJ Ya~ + a,,._a 

By a tr1 ·vial linear transformation, these can also 
) 

be expressed in terms of the set (i ,jn,1
0 
). Fig. II-4-i-l 

'\..Q ,..::;- ,..;r­

shows the rotation angle between ~ and iG, that is 
A - ""-" 

between k and £• labelled as ! and that it is equal to 
NM 

c2es + ~) between ~ and ~. Thus, 

.... ,,.... ~ ,,.... 


~ = (Xrob+yma),!_~ + (-Xroa+y~b>J,Q + ~~ (16-a) 


llk = ex B"+y A> i + c-x ·A+y n> j + z 1 (16-b)
rva a a ,..A a a ~ a_q 

where a= sin~ A= sin<~ + ~)s 

b =cost B = cos<f + ~)
s 

Equation (5-a) may then be written as 

AO= (17) 

""" 
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,,... .......
.........

where = x b A - x B - y A (18-a)

m + Yma 
a a ,,,,._ .,,,._ 

= -x a + y b + x A - (18-b)YaB 
m m a 

x = z - z (18-c)
3 m a 

Notice that these values are the negative of those used 

by Cooper/Nathans since these workers had defined Q 
~ 

in the opposite way as what was done in eq. (1). 

Now consider the uncertainty in energy transfer; 

equation (5-b) which includes second order terms may be 

simplified to read in first order: 
A 

- k • Llk ) (19)
,.Ji. ._.a 

In conformity with equation (15) and with the definition 

of the (i ,j ,1 ) and (i ,; ,1 ) orthonormal vectors, the 
~m ~m ~m ~aN"a -a 

two scalar products in equation (19) can be simplified 

and l\ l = h 2 
(x ~ - x ~. ) (2 0)

M mm a a 
bei~ the same as would have been obtained by taking 

partial derivatives in eq. (2). Thus the longitudinal com­

ponent of the shift in magnitude of the scattered wave vector 

is xa =.Axm - SL (21) 
A A 

where Jl = k /k J\.= M ~14' (k""' 'fl)m a a 

In the following, we will treat the shifts in momentum 

transfer and energy on equal footing as components of a 

"distance" in (Q-&u) space and we can achieve a symmetrized 

notation with equations (18-a,b,c) by writing (5-b) as 

(18-d) 
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Similarly, by using the relations (18-a) and (18-b) 

it is possible to write ym and Ya in the same form as xa 

in equation (21) above, i.e. 

oC.Ym = -BXl + AX 
2 + (Jx - x (22-a)

IIJ a 

,,-. 
ol...Ya = -bx1 + ax2 + xm - f' x.:l (22-b) 

~,... ./'-... A,._
where rl. = sin(29 = tA - aB : (' = cos (29s) = aA + 'bB 

s 
But we know from equation (21) that x is a function of x a m ,.. ,.. 

o(ym = -BX + AX + c~ -A >~ + .st. (23-a)1 2 ,..
-bx" + ax2 + (1 -~)xm + (23-b)~Ya = ~SL1 

Equations (21), (23-a) and (23-b) can now be written in con­

densed symmetrized form: 

x =.Ax + H (24-a)
a m 

y = ex + D ; c = C(3 -A)/tJ.. (24-b)
m m 

ya = Ex + F E = (1 -~}-)/IA. (24-c)
m 

It might be appropriate to pause here and explain that 

the purpose of the above mathematical transformations was 

simply to express the deviations of the incident and scattered 

wave vectors as a function of the deviation in (Q,c.o) space 

from the central point (Q,C) in order to perform the ..... 

integral (12) for the resolution function. The delta functions 

in that integral giving the constraints between the variables 

of integration were used to express these variables as a 

function of ~ thus effectivly transforming a multiple integral 

into an integration over a single variable. 
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In equations (24-a,b,c) the dependence on x , x2 ,
1 

x and X (i.e. the "distance" in (Q-o,,) space comes from the
3 4 ~ 

terms H, D and F which may be written 

D = d•X (25-a) ; F = f•X (25-b); H = h•X (25-c) 
..... - ,,... - ~ .-.J 

the components of d, f and h being 
,,,... 

d = (-B/", -A/fl.., 0 , M/e{.ii~ ) (26-a),._ a 
A. 

...,.f = (-b/aL, a/ot., O, ~M/~~f..) (26-b) 

h = ( O, 0, 0, -M/.fi~ ) (26-c)
a -

We are now in a position to calculate the integral (12) 

for the contribution to the resolution function of processes 

taking place in the scattering plane; the effect of vertical 

divergence will soon be considered but for the time being the 

variables of interest are the horizontal components of 

dk - (i.e. x ,Y, ) and dk - (i.e. x_ ,ya) in equation (12).
,Jn m m "6- -a 

Since the small angle approximation is valid, the devia­

tion angles y
1 

and ( 2 are coupled to the quantities ym and ya 

through the relations: 

(27-b) 

The negative sign in the second expression stems from the 

angle convention in fig. II-3-i-l. Equation (9) may now be 

written in terms of the components ~, ~ , Ym and Ya without 

reference to the deviation angles and the term of the exponent 

becomes 
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Replacing the terms xa' Ym and Ya by their 

expressions given in (24) renders the argument of the 

exponential function in equation ( 9) particularly simple so 

that 	
r""',_; roo 0 2Rh(Q,u>) = dx Phexp[-l{A'x + B'x + c I) J (29)- m 2 m m 

:..00where 

( 30) 

( 31) 

(32) 

* * * 	 * * * 

Using the results of appendix A-1, integral (29) may 

be evaluated to be 

Rh(~,~= R0 exp[-l(C' - B 
12 ) ] (33) 

·- h 2 4A 1 

In order to obtain an explicit dependence on the 

natural variables X. (i=l,4), it is necessary to carry out 
1 

the substitution in the exponential (33) of the relations 

(25) 	 and (26). So we may write· for convenience 

2 H2C'-~~~ = +g1F 2 +g +g3FH +g4DF +g5DH (34)~0o	
2
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The x. dependence is contained in the terms D,F and H. 
l. 

Their coefficients are defined by: 

(35a)= I.m - (2l:~C + ~m) 2I (4A ' ) go 1 2 

a 


gl = J:: (2~aE - 1-aA) 2; ( 4A') (35b)-1 1 2 

g2 = 1:..a - ( 21..aA - ~aE) 2I (4A') (35c)
3 3 2 

= -[~a + (2l:.aE - .l:aA) (2~A - l'..~E) ]/(2A') (35d)g3 2 1 2 3 

= -c2xTc + ~m) (22aE - xa~ I (2A I) (35e)
g4 2 1 2 

gs = - c2~Tc + ~~) (2~A - l:~E) I (2A') (35f) 

From the expressions (25-a,b,c) for D, F and H, it should 

be obvious that the argument of the exponential is of the 

form: 
(36)-1 ~' M X X-· rs r s2 r,s=l,2,4 

where M = 1[2g d d +2g f f +2g2h h + 
rs 2 o r s 1 r s r s 

g (f h +f h > + g ca f +d f > + g Cd h +d h >1
3 r s s r 4 r s s r 5 r s s r 

(37) 

Let us recapitulate. The basic equation for the cal­

culation of the resolution function is equation (12). We have 

seen with equations (7) and (8) that the probability function 
~ w 

P(k ,k ) could be separated into a product of two functions of ,....m ""a 

different variables describing the neutron propagation in the 

scattering plane and perpendicular to it. Hence the sextuple 

integral in (12) could be writen as the product of a quadruple 

integral 

(38) 
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and a double integral 

R I\ " !dz dz P (k­(Q+t.Q,w+t.w) = ,krJ )m a v ,.,,m ,..,av ~ ­

x f{t.Q - (z -z )! }
""" m a ,.,,o 

x f (t.w) (39) 

the function Ph and Pv being given in (8). The delta functions 

expresses the constraints on the components of the incident 

and scattered wave vector so that the scattering process is 

one which is shifted a distance (t.Q,t.w) from the central-
A " process (Q, w) (See equations 5-a ,b) • .... 

Let us now proceed with the determination of the re­

maining matrix elements. First we observe the fact that the 

absence of correlation between vertical angular deviation and 

the magnitude of the scattered wave vectors allows us to 

write immediately 

= = 0 (S=l,2) ( 40)M35 M53 

Similarly, the fact that there is no first order shift 

in energy as a function of vertical wave vector components 

(Eq. 20) results in 

( 41) 

There now only remains M33 to evaluate by performing the inte­

gration in (39). As before we use the stftall angle approxi­

mation to write 
.,.. 

""' 51 = z /k (42-a) ; l52 = za/ka (42-b)m m 

and the expression for 
~ ~ 

(Eq. 11) becomesPv(~,lsa> 
"" ,.., 0 1 2 2 2 2

za)} ( 43)P v <!.m ',!sa) = Pv exp{-2(all zm + al2 
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The variables zm and za are coupled to each other by the first 

delta function in (39) and using equation (18-c) we may write: 

za = zm - X3 

zm is now the only variable of integration and we can evaluate 

( 39) as 

With the result of appendix A-1 we get 
A A 0 1 2 

Rv(2t~,w+~w) ~ Rv exp{-2 M33x3 } (45) 

where 2 2 
all al2 

2 2 (46) 
all+al2 

which completes the determination of the matrix elements. 

Equation (7-12) lead to the final expression for the 

resolution function 

R(~+49,C+~w) = R(~) = R0exp(-~XTMX) (47) 

where R = ~ x ~ is the value of the resolution function for
0 ,.. 

the central process (Q,w); it could be called the luminosity of-
the instrument for a particular setting and although it could 

be calculated in principle from a knowledge of the absolute 

characteristics of each of the spectrometer compo~ents (e.g. 

crystal reflectivities, incident flux distribution, counter 

sensitivity, etc), in practice one is rather interested in 

knowing how the resolution can be optimized for the measurement 

of a particular phonon and how the apparent peak position is 

related to the true peak position and this is governed by the 

exponential term in (47). 
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ii} The matrix notation is mathematically convenient 

but does not have an immediate physical interpretation as such. 

THowever the equation X MX=p can be visualized as an ellipsoid 

defining an isoprobability surface in 4-dimensional (Q,w}-2 space such that the quantity e-p/ is the probability of 
A A 

detection of a neutron having gone through a [(Q,w}+X] 
........ ­

scattering process relative to the probability for a (Q,w)-
process. It turns out that this ellipsoid always has a 


principal axis along (~Qz), a second one very nearly
x3 


parallel to x1,and the last two are rotated relative to 


the axis. This last feature has a most importantx2 ~x4 
consequence since it allows the possibility of focussing 


by introducing a correlation between the orientation of the 


ellipsoid and the dispersion surface of the specimen. The 


dispersion surface is defined as the loci of points in 


(Q,w) space where the dispersion relation of the specimen... 
w=w(q+T) is satisfied. Consider a small portion of that .._ ..., 
surface which does not contain any singularity (i.e. reci­

procal lattice point, or Kohn kinks); then the energy 

gradient with respect to wave vector is a well defined 

quantity and we may write 

w(q+6q) = w(~) + 6q·V w(q) + 0(6q 2 ) ( 4 8) 
..... ..., - - -CJ 

The point is that the particular value of the energy 

gradient has but a small effect on the linewidth when grad w 
q 

is parallel to Q(i.e. il.such is not the case when grad w is 
- ...q- q 

parallel to 1A. Since the amount of parallelism between 

the dispersion surface and the tilted resolution ellipsoid 

determines the intensity distribution along the scan. This 
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focussing is more pronounced when the dispersion surface is 

parallel to the ellipsoid and it falls off with departure 

from parallelism. In general, grad w is not exactly parallel
q 

to either x i or x2~ and may lie anywhere between these1~ 
positions (See below) ; in this general case, it is only the 

component of grad
q 

w along X2j which determines the focussing, 
-~ 

as the other component of the energy gradient is in a direction 

where the principal axis of the ellipsoid lies in the plane 

w=O. 

We may now anticipate and, referring to the expression 

for the one-phonon scattering cross-section, we observe that 

the polarization dependent term (Q·~) 2 governs the choice of 

the position in reciprocal space suitable for observing a 

particular phonon. The situation is particularly simple 

along the symmetry direction since only then are the polari­

zations either truly longitudinal or truly transverse. 

Another simplification found in this case is the fact that 

the energy gradient is along the symmetry direction 

because of reflection invariance perpendicular to the 

symmetry direction. 

Thus, a longitudinal phonon is measured in a direction 
~A 

closely, if not, parallel to the vector ~;~it was previously ;~· 0~ 

that the only contribution to focussing comes from the com­

ponent of the energy gradient parallel to the direction x2 j , 
~~ 

which is indeed a small effect in the case of longitudinal 

phonons. 

In the case of transverse phonons, on the other hand, 

measurements are carried out in a direction closely perpendicular 
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to the vector Q, resulting in the energy gradient having a ..... 

large component in the direction ~ with correspondinglyx2
large possible focussing.· The amount of focussing depends on 

the degree of parallelism between the dispersion surface 

and the ellipsoid; this degree of parallelism can be varied 

as the gradient varies along the symmetry direction or as 

the angle between .£ and Q, varies. Focussing goes through a 

maximum when parallelism is complete; this is to be contrasted 

with the case of longitudinal phonons where the degree of 

focussing increases from zero as the angle between Q and q...,, ~ 

changes from the ideal value of n/2. 

iii) The resolution function near a reciprocal lattice point 

can be measured in a straightforward way, as first suggested 

by M¢ller-[67], and the experimental procedure will not be 

repeated here. The point of interest is the fact that in 

the previous theoretical considerations, the natural variables 

were x1~ parallel to £,and x2~ perpendicular to £· However, 

although the measurements could be made by scanning in the 

direction of i and i , it is more convenient to scan in 
~ ~~ 

the symmetry direction along which the phonons are measured 

and thus obtain the resolution function along the direction 

of interest. Obviously, the resolution function obtained 

in this way becomes less and less suitable the farther away 

in (Q,w) space a phonon is measured from a reciprocal lattice 
-.J 

point (T,0) used to measure this function . 
..J 

In order to compare the measured isoprobability con­

tour and the calculated one, it is necessary to solve for the 

intersection of the resolution ellipsoid with the plane (q,w),..., 
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A comparison between the calculated and measured contour 

affords an illustration of the worsening of the resolution 

from the specimen mosaic spread and will be discussed in 

Chapter III. For the time being we will briefly describe 

how to solve for the intersection of the resolution ellipsoid 

with the plane (~1 w) 

The iso.probability"surface" is given by 
4 

XTMX = l: = p (49)X.-~ XS 
1 

where p is a number such that e-p/fs the value of the resolu­

tion function at the "point" x. A general linear transformation 

to a new basis leaves (49) unchanged: 

X'TM'X' = p 

Assume that X = AX' (A; a linear operation) thus: 

XTMX = (AX')TM(AX') 

= X'T(ATMA)X' 

(50) 

In this case, the linear transformation must leave x3 and x4 

unchanged and rotates x and x along and perpendicular to
1 2 

the symmetry direction respectively. The operator A is 

necessarily of the form 

A:: (A2 0 ' 

0 r 2J 

where the submatrices are 2 x 2. The matrix A is that for2 

a simple rotation in the x x plane given by1 2 

cose -sine) 

{ sine cose 

where e is the angle between Q and the symmetry direction. 

Thus, T:: (A~"'; )
A 0 I 

2 
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and the new matrix given by 

M' = ATMA 

can be calculated in a straightforward way. The matrix 

elements of M' are 

Mtl = M11cos 2 0 + M sin2e + 2M sin0cos0 (Sla)22 12
2-· M sin2e + M22 cos 0 - 2M12sin0cos0 	 (Slb)M22 11

M~3 = M33 {Slc) 

' = M44 {Sld)M44 

= • = ~M11sin0cos0 + M sin0cos0 + M12 (cos
2
0-sin

2 e) (Sle)M:21 Ml2 22 


M41 = Ml4 M cos0 + M sin0 {Slf)
' = 14 24

= -M sin0 + M24cos0 (Slg)M42 	 = M~4 14

= M)1 = M' = M' = M' = 0 {Slh)Mi3 = M23 32 34 43 

Knowing these matrix elements, it is a simple matter 

to solve for the intersection of the resolution ellipsoid 

with the (Xi,X4) and (x;,x~) planes to obtain a contour 

which can be compared with experimental results. This 

calculation was incorporated in the computer programme 

for the calculation of the line shape which uses the theory 

of the next section. 
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4-Line shape of a neutron group for a one-phonon 

scattering process. 

i) The scattered flux per unit solid angle when the 
A A 

instrument is "looking" at the point (Q,w) is given by the 

(1) 

and the expression for the partial differential cross-section 

for a one-phonon process is 

- (27T)3 ~ ~ ( 2)
2 k 

0 

where 

1 (3) 


is the Bose-Einstein population factor (ReiF [65]) 

and -bk 
l: - C£: f (S ,k)) exp (i2; ~k) exp (-W (Q_)) ( 4) 
k {Mk 

is a modified form of the structure factor for inelastic 

scattering by a one-phonon process (Bak [64]). In the 

following we restrict ourselves to this type of process and 

this limits the validity of the calculation of the line shape 

to cases where elastic coherent/incoherent and multi-phonon 

processes can be neglected. 

We will assume that the variation of the structure 

factor throughout the region of reciprocal space within the 

resolution of the instrument is insignificant and we write 

<<s>=<q> '<j >) (5) 



55 


i.e. s is taken as the value of q and j of the peak of the 

measured phonon. 

For convenience, we will also assume that the value of 

the mode S=(q,j) only refers to one branch j. This is no 

restriction in generality since the final line shape may be 

obtained by adding the contribution of the different branches 

in caseswhere the spacing between the different dispersion 

surfaces is comparable to the energy resolution of the instru-

Hence the factor of interest in the cross-section isment. 

k' 
l: k ( 6) 
q 0 

The two delta functions define what we have already called 

the dispersion surface (sub-section II-3-ii). 

In order to carry out the integration in (1) , it is 

necessary to define the geometrical shape of this dispersion 

surface, An obvious way would to be solve the dynamical matrix 

for a mesh of points in the region of k-space contained within 

the resolution of the instrument. By doing this one also gets 

the polarization vectors as a function of ~; thus one can cal­

culate the exact structure factor as a function of ~ and by 

numerical integration solve (1). Such a computer programme was 

written by Dr. E.R. Cowley and proves very useful when the 

curvature of the dispersion surface is very pronounced (Copley 

[70]) • 

Since we are assuming a constant structure factor, this 

requires that the eigenvectors are very nearly consta~t and 

physical intuition tells that this is best verified when there 
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is little mixing between the modes, i.e. when the dispersion 

surface has a small curvature. Then the Q-dependent dispersion 
....... 


relation can be well approximated as a first order function in 

~· Hence we may write the frequency expansion as (see II-3-(48)) 

w = w + c. 04 ( 7) 
0 - "'Q 

where c=V w.1 (the group velocity} and oq<<l. 
,.., "<:I q=q q 

0 

The dispersion surface linear in oq is the most 

restrictive approximation of this theory. Obviously it breaks 

down near a reciprocal lattice point but the great advantage 

over the numberical method is that it allows a much more rapid 

calculation without any knowledge of atomic force constants. 

Since this calculation does not apply to the small 

wave vector region, we are justified, as a first approximation 

to assume that the factor 

1 1 
n (x } +.;;+22k' ( q - ) (8)k w 

0 q 

in equation (6) varies but little within the resolution of 

the instrument. This allows a completely analytical solution 

to the calculation of the line shape. 

However this last approximation may easily be removed by 

performing numerical integration. We will come back to this 

point later. 

The population factor, or rather the quantity 

(n(x)+h~)/x which enters into the expression for the cross­

section (2), determines the relative merit of performing an 

experiment under the conditions of phonon creation or phonon 

annihilation. This comes about from the behaviour of (3) 
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in the 	limit of large x 

lim n(x) + 0 (Phonon annihilation) 
x+oo 

and 	 lim n(x)+l + 1 (Phonon creation) . 
x+oo 

Both functions are monotonously decreasing, as 

illustrated in Fig. II-4-i-l, and it is seen that the 

situation becomes increasingly more unfavourable for phonon 

annihilation as the phonon reduced energy becomes larger 

than 1 (~9· measurements at low temperature) . At the other 

extreme, i.e. for x<<l, the graph shows that the corresponding 

curves for phonon creation and phonon annihilation converge 

into one another; thus at high temperature and/or low phonon 

energy it is indifferent whether one does the experiment under 

a process of phonon creation or annihilation. A particuiarly 

illU~i'V\.ating discussion on this aspect of quantum statistics 

is to be found in Feynman [65]. 

The third function plotted in Fig. II-4-i-l is related 

to the energy di£ference between the true peak position and 

apparent peak position of transverse phonons and will be 

discussed in Section II-7. 

ii) Calculation of the line shape for phonons other 

than At. 

We have previously (sub-section II-3-ii) discussed 

briefly the symmetry property of the energy gradient of 

phonons measured along a symmetry direction. In the rest 

of this section we will consider only phonons along directions 

other than At, reserving the entire section ~ for the peculiar 
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case of the At branch. 

The expression for the cross-section in equation II-4-(2) 

explicitly contains the conservation relations of pseudo-momentum 

and energy and this can be taken into account in the inte­

gration II-4-(1) by writing the equation of the dispersion 

surface as a function of wave vector. 

Consider the rel~tive position of the dispersion surface 

and the resolution ellipsoid as illustrated in Fig. II-4-ii-l. 

We have to integrate in equation II-4-(1) the resolution 

function over this surface in order to satisfy the conservation 

in the delta functions of equation II-4-(2). 

We can define ( ~Q*, ~w*) as the separation in (Q,w) 

space between the actual position of the centre of resolution 

ellipsoid (i.e. point (Q,n}) and the intersection point of-
the scan with the dispersion plane(i.e. point (<Q>,<w>)).-
Hence, the energy difference between any point on the dispersion 

.... 
plane and the energy w is given (in the planar approximation) by 

(9) 

This is a function of three variables (the three corn­

ponents of 6Q}. Physically grad w is the group velocity (c) 
- -Q 

and we define its three components along (i ,j ;l ) as 
~ q Q 

i.e. (10) 

Hence, 

6w = c·6Q - (c 0 6Q*-6w*) (lla),..._ ,.,,. ,,,_,, ,,.,.,, 

a sirnplification could be introduced by the fact that 
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spread of the specimen on the measured phonon wave vector. 
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experiments are commonly performed in a symmetry plane of the 

specimen's reciprocal lattice. In this case the energy 

dependence as a function of a perpendicular displacement out 

of the scattering plane is a second order effect and the 

component could be put equal to zero. However for the sakec 3 

of completeness, we will consider the general case; the con­

clusion is the same as that of Cooper/Nathans if one puts c 3=0 

in the final solution but the result will allow a calculation 

of the line shape should experiments be performed out of a 

mirror plane in a region of reciprocal space where the planar 

approximation is valid. 

Equation (11-a) can be conveniently written as 

= c 1x
1 

+ c 2x 2 + c 
3

x 3 - w (llb) 

where W = C"6Q - 6w (llc) 
---· * 

Hence x is a function of (X ,x2 ,x ) so that the quadruple4 1 3

integration in the general expression II-4-U) is now reduced 

to a triple integration. 

Hence we may write the 

T 2 2 2 
x MX = Mllxl + M22x2 + M33x3 

+ M44(clxl + c2X2 + c3X3 - W)2 

(12a) 

(12b) 



62 

where 	the following coefficients were used 

A= Mll + cl 
2 

M44 + 2c1Ml4 (13a) 

B = M22 + c2 
2 

M44 + 2c2M24 (13b) 

c = M33 + c2 
3 M44 (13c) 

D = 2(clc2M44 + Ml2 + 0 2M14 + 0 1M24) (13d) 

E = 2c 3 (clM44 + Ml4) (13e) 

F = 2c3 (c2M44 + M24) (13f) 

G = -2w (c1M44 + Ml4) (13g) 

H = -2W (c2M44 + M24) (13h) 

J = -2W C3M44 (13i) 

In i) we have discussed the convenience of assuming 

a constant partial differential cross-section. In this case, 

the intensity at a given spectrometer setting is proportional 

to 

I(Q,w) (14) 

Using(l2) and(l3) and the result of appendix A-1-iii), 

this integral may be evaluated analytically to yield: 

3/2 R 1 2 a }I(Q,w) = 4(2rr) 	 ....!_ exp{-2[M44w - If] (15) 

IS 
where a and S are defined in part iii) of appendix A-1. The 

remarkable feature of this result is the fact that it predicts 

a nearly Gaussian line shape. In order to see this, observe 



63 


that the only coefficients in equation(l3) dependent on W are 

G, H and J. From the form of these coefficients and the result 

of appendix A-1-iii) we see that these terms only come in the 

factor a products of pairs, eg. J 2 , HJ etc. and hence the de­

pendence of the argument of the exponenti~l on W is quadratic 

in the general case where the scattering plane is not parallel 

to a symmetry plane of the specimen's reciprocal lattice. 

This can be illustrated if one considers an experiment 

performed in a symmetry plane which allows us to write c 3=0 

resulting in a considerable simpljfication of equation (13) and 

(A-l-iii-8) for the line shape. In this case equations 

read 

E = F = J = 0 (if c =0)3

Hence 

2P	= 4 (4ABC-D C) {16a) 

2 
a = 4(BCG + ACH 2 - CDGH) (161-i) 

and the argument of the exponential function is 

-1 2{~ 	W M44+ 4 [D(c1M44+Ml4) (c2M44+M24) 

2 	 2 
-	 A(c2M44+M24> -B(c1M44+M14> ]} (17) 

two remarks: 

a) Notice that we have said that the calculated curve 

is nearly Gaussian. This comes about because of the fact that 

the coefficients a and S are slowly varying functions throughout 
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the scan since the matrix elements in (6) are themselves 

functions of 	the magnitude of the wavevectors and the 

scattering angles (section II-3). Hence, one cannot 

rigorously extract the width of the scan from the factor of 

w in equation(lS) and the numerical approach whereby the 

coefficients a and S are calculated for each instrument 

setting along the scan proves to be the right procedure. 

b) The second remark concerns the mode of scanning 

independently of any form of focusing. We have seen that 

the factor governing the intensity distribution along the 

scan is the quantity 

(llc) 

In an arbitrary scan, both AQ* and Aw* are varied. The 

quantity W varies fastest when 6Q* and 6w* vary in opposite-

directions if c>O and in the same direction otherwise. This 

has a simple geometrical interpretation as illustrated in 

Fig. II-4-ii-2. 

In order to take into account the possible error 

introduced by neglecting the variation of the factor n(x)/w 

in the region of the dispersion surface within the resolution 

of the instrument, it is necessary to evaluate numerically 

equation II-4-(1) which now becomes proportionnal to 

n (Y) 1 T
f JfdX1dX2dx3 	 kT y exp(-2 X MX) (18) 

11where 

(19) 

and n(Y) is defined by equation II-4-(3). 

In using this procedure one must obviously exclude the 
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the value Y=O from the integration. This has no effect on 

the final result if (x1 ,x2 ,x 3 ,k~Y) lies outside of the instru­

ment. If this is not the case, then one is actually detecting 

a Bragg peak and one must use the appropriate theory. From 

the form of the expression n(x}/x (See Fig. II-4-i-l), it should 

be clear that the inclusion of this factor will remove the 

Gaussian nature of the line shape and at the same time shift 

the peak position toward lower energies. 
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II-5- At Phonons and their unorthodox constant frequency surface. 

i) The A direction of a cubic lattice(i.e. the sss dir­

ection) shows a peculiar behaviour of the constant frequency 

surface of phonons of transverse polarization and line shape 

calculations for At phonons must be dealt with separately. 

It turns out that the constant energy surface is a function 

of the three components of Q as in the previous case. The-
difference comes from the functional dependence of this function 

on the components of Q. Similarly as in the previous section,,,..,,, 

we will see that the common situation of experiments performed 

in a symmetry plane in directions other than At are but a 

special case of the following treatment. 

Consider the case of a crystal with one atom per unit 

cell. Gilat [69] has shown that the double degeneracy along 

the A direction is removed for displacements perpendicular to 

the A direction and that the constant frequency surfaces form 

two cones around the (111) direction (i.e .. cylindrical symmetry) 

touching one another at their vertices. 

Mathematically, the frequency shift of transverse phonons 

for a small arbitrary tangential displacement from the A dir­

ection is given by 

n (1) 

where: m is the mass of the atom 

vT is the transverse phonon frequency on the 

A direction (and of wave vector q )
-v.l\. 

n is the r adiaa.l displacement in q-space away 

from symmetry direction such that the wave 
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vector becomes 

q = q + n • (2a) 
~ """/>. ;..# ' 

with q ·n = o ( 2b)
:.}. ,.., 

a { 3)- 2-a- Dl2 {q.A.) 

nl 

Where D.. {qA) is the dynamical matrix evaluated at point qA.
1J .J• """"' 

Geometrically, the frequency w{q) depends on the para­,., 

meters 2A and ~ so that an iso-frequency surface centered on 

the point ::JA is defined by the set of wave vectors~+~ such 

that grad (W) ·oq = O. Because of the conical shape of the 
,,.._, q ­

constant energy surface, the energy gradient in q-space may 

be decomposed into two components: 

- one along the A direction and given by 

a {4a)8 = aq-YT{q.A) {longitudinal gradient) 
'A 

- another one perpendicular to the .A direction (i.e. with 

cylindrical symmetry) and given by equation (1) 

a = ~ I (tangential gradient) {4b) 
n n=O 

Obviously the previously considered case of the planar 

dispersion surface in a synunetry scattering plane is a special 

case of this generalized situation corresponding to putting 

a = 0 

In the following, we will consider how this particular 

topology of the dispersion surface can be taken into account 

in the calculation of the line shape. 
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ii) At phonons and instrumental resolution 

The dependence of the dispersion relation frequency on 

wave vector is given for a small displacement {.!l_) in Q-space 
.... 

perpendicular to the A direction by 

{Sa) 

where 

q = q.. + n (q ·n)=O..,I\ N 
- ...... «J 

n could be called the radius of the Gilat circle and 

{Sb) 

as was already said. 

As in the previous case, the dispersion relation w=w(q)-
is implicitly taken into account by expressing the dependence 

of the frequency in terms of wave vector. We use the same set 

of axis j~,j-,]Aas before to express the energy shift dependence 

as a function of XMX2~3 . 

In an exactly analogous way, (t:.w* -8ciq~) represents the 

energy separation between the centre of the resolution ellipsoid 

and its point of intersection with the point ( <sA>, w ( <,.srA.>)) on 

the A direction: in a constant-Q scan, rqAo = 0, for exemple.
,., t-.J 

Define t:.w as the energy separation between the centre of 

the resolution and the frequency corresponding to the wave 

vector <~t\>+ ~qA + ,!} , i.e. 

{ 6) 

where oqAll oq~ fl qA and ~.l 21\ which is the analog of 

equation II-4-(9). 
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In the following, we make two approximations 

a) as in the case of the planar dispersion surface, we 

assume that the dependence of the dispersion relation w(q) on-
wave vector q is linear in the A direction (i.e. the longitudinal-
energy gradient S is assumed constant in the central region 

of the resolution ellipsoid). 
v 

b) we also assume that the magnitude of the radial 

energy gradient a which is a functional of dynamical matrix 

elements is also a constant in that central region. 

The relation (2) can now be written in terms of the 

variables x~x2~ 3 which are a natural choice for pe~furming the 

integration (II-4-i-l). Refer to Fig. II-5-ii-l where the 

scattering plane is parallel with a (Orl) plane of the 

reciprocal lattice. 

Evidently, the component of n perpendicular to the 

scattering plane is 

(7a)nl = X3 

The in'""'plane component of n(i.e. ) and the shiftn 11 

along qA are related to the vectors x1i~ and x2j~ through a 

rotation of axis 

= sin a + x cos&... (7b)n 11 -x2 1 


oqA = cos a + sin a (7c)
x2 x1 

where a is the angle between j~ and the A direction. 

Hence equation (8) becomes 

2 112x = 6w = -W+S(X 2cos a+ 	x sin a)~a{X~+(x 1cos a - x 2sin a) } (8)4 	 1


0 (9)

where 	 w = So - 6w.qA 
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The rest now follows by repeating the same procedure as 

in subsection II-4-ii. 

However it is not possible to perform analytic integration 

and obtain a result equivalent to equation II-~(15) since the 

term x contains a square root term and no analog result to
4 

that of appendix A-1-iii exists in this case. Numerical integration 

has to be used. 

The validity of this calculation is limited since the 

eigenvectors do not have simple behaviour except at the zone boundary 

(fig. II-5-ii-2). However, it illustrates how this particular branch 

may give rise to double peaks (Cowley [70]) since the double 

sign in equation (8) effectively results in the observed line 

shape being the superposition of two peaks, each given by one 

sign or the other in equation (8). This double peak is more 

likely to show up above the resolution of the instrument so 

much the better that the factor a is large ; it disappears 

completely when a=O. 

This case where the frequency surface is dependent upon 

three variables is a more general case of the particular 

situation previously considered where the energy gradient of 

a planar dispersion surface was in the scattering plane. This 

corresponds to putting a=O and equation (8) becomes 

= -W+l3 Cx cos la)+X sin \a)> (lOa)x4 2 1 

= -w + clxl + C2X2 (lOb) 

since 

13 cos a = c2 

13 sin a = cl 

Which is equivalent with the result of sub-section II-4-ii for 

the case of a phonon within a mirror plane. 
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II-6. Effect of the mosaic spread of the specimen 

on the calculated line shape. 

The previous considerations dealt with the case of 

a perfect crystal in which case the value of the momentum 

transfer Q corresponds to a well defined point in the reciprocal 
~ 

lattice of the specimen. However, no crystal actually fits the 

idealized mathematical picture of a lattice of absolute perio­

dicity. 

Suffice to say that real crystals are actually a 

composite mosaic of micro-crystals which are themselves perfect 

and are distributed preferentially along the macro-crystal axes. 

This mosaic distribution has consequences in both elastic (see 

for example Appendix A-3) and in inelastic scattering. For our 

present considerations, we may vizualize the effect as a radial 

smearing of reciprocal space since the mosaic structure, 

by itself, only affects the orientation of the crystallites 

and not their plane spacing. We will limit ourselves to consi­

derations of the "smearing" in the scattering plane since the 

out of the plane component is expected to play a minor role 

in any crystal with small enough mosaic spread to be usable. 

Similarly as the relative orientation between different 

crystallites varies, so does their respective vectors defining 

reciprocal space. Hence, a given wave vector has a d~ferent 
orientation in reciprocal space depending on which set of 

reciprocal space basis vectors if is refered to. 
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How does this affect the general expression [equation 

II-4-(15)) for the line shape? This expression is a function 

of W, GC., (3 and 'fhe matrix{Mrs} This matrix is obviously inde­

pendent of the mosaic spread of the specimen (see section II-3). 

T~e terms~ and ~are functions of the different components 

of the group velocity (see equations II-4--(13)); in principle, 

these components vary since they are defined along the Q-depen­-
dent unit vectors ~,.ii..and 1a.One can easily take this variation 

into account by adopting a numerical procedure but we will use 

the fact that a mosaic distribution is at most a few degrees 

wide in order to assume that the facto:r:i-o( and~ are not signi­

ficantly affected by the mosaic structure and can be taken 

equal to their central values. 

Hence, the main contribution to the line shape from 

the crystallites distribution comes from the factor W defined 

by equation II-4- (11) as: 

w = c.~o. - Aw* (1) 
.... ­

This object was already illustrated in figure II-4-ii-l. 


Both of the terms 60* and AWir are affected by the mosaic spread.
-
Refer to figure II-6-f which illustrates a projection of the 

dispersion surface on the CVw,<.u) plane. Qualitativly, we see 
...q 

that mosaic spread results in the observed line shape being 

the superposition of individual neutron groups contributed by 

each of the crystallites; the smearing of the dispersion curve 

is increased so much the better that the energy q-gradient 

of the phonon lies perpendicular to Q (and in the scattering 

"" *NOTE: figure II-6-1 is on page 60. 



- -

76 


plane). In any case, we can say that, in general, the instrumental 

resolution intersects a "dispersion volume" instead of a surface. 

Define 4011 as the component of (Ql) parallel to Jq""' 
i.e. fJ o,, = oecos (b) ( 2) 

where "l, corresponds to a particular orientation of mosaic blocks 

and where b is the central angle between the unit vector .iA 
(see section II-3) and the energy q-gradient. W is a function 

of '>t , the angular "smearing" in the scattering plane, and we 

may write W' <(> = cAOn - Acu* (3a) 

= c It(_- Aw* (3b) 

where c = cQcos(b) (4) 

if we assume a constant-Q scan for simplicity (i.e. ~Q*=O); 

the generalization is straightforward in the case of an 

arbitrary scan and is not needed if a numerical calculation 

is carrd:ed out. 

We have seen that the general expression II-4-(15) 

for the intensity distribution is very nearly a gaussian 

function and may be written as proportional to: 

I c8',ci> = 1 exp£-1Sw21 (5) 
tJ - !

VP' 
where )!(is a complicated function of the instrumental 

parameters and settings. In the case now under consideration 

(i.e. constant-Q scan in an arbitrary plane), the calculated 
~ 

in~ensity distribution is obtained by integrating the contribution 

of all the crystallites distributed according to the function 

A .\ 
I'(Q,W) (6),.., 
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Again, the mathematically convenient limits of (-o0,+oo) 

were used instead of the physical ones (-~,+~). If the mosaic 

distribution is gaussian, as in equation II-2-(11) , then we 

have 
2 2

r ' <ir.11> =vi:;:~-i2'<A"'*> 1j.:
oO 

"!. exp c-~{"( <~+ c J!t> -2cAIU)t1}1 
(7) 

Using the result of Appendix A-1, this gives 

where C is defined by equation (4). We repeat that the validity 

of the result (8) is limited to a constant-~ scan. 

We see that the line shape, as previously, has a nearly 

gaussian structure. Its width, however, is now larger by the 

factor Vi + tr 2c2S 
1 

(9) 

a quantity which is always greater or equal to unity since 

the term j;t is itself positive as can be seen simply by observing 

that a physical situation with a well defined peak corresponds 

to a positive ta' in the expression (5). Equation (8) illustrates 

the fact that the neutron group is narrowest (for a given cons­

tant-g, scan) when the mosaic spread is small (o-~ 0) and/or 

the energy q-gradient of the excitation is parallel to Q,.,, 
(C = O; see equation (4)). This ideal situation corresponds 

to an identical result as that given by equation (5). 

Observing that the term ~ corresponds to the inverse of 

the width in the case where there is no mosaic spread present 

(equation (5)), then we get the expression for the increased width 

Cat 1/exp C::j1 > a.(* • 2<f2 + a-2c 2 ,Vt. ; ('2 = 11;s clo> 

an intuitivly acceptable result. 
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II-7. Correction on apparent peak position because of 

the composite effect of the population factor 

and the widening of the neutron groups. 

The previously derived expression for the widening of a 

neutron~ group [equation II-6.... {l-0)] is valid so. much the better 

that the correction is small. Such is not the case for phonons 

of transverse polarization measured on a bad specimen and the 

widening may be large enough so that a correction for the effect 

of the population factor needs to be made. We will now derive 

the expression for this correction, pointing out immmediatly 

that it is valid so much the better that the widening is large 

compared with a similar phonon measured on a good crystal. 

The expression for the cross-section of a one-phonon 

process contains a term of the form (n(x)+l±l)/x, where 
22 

n(x) is the population factor at the reduced energy x [equa­

tion II-4-(2)]. Refering to figure II-4-i-l, it is seen that 

the functions n(x)/x and (n(x)+l)/x are monotonically decreasing 

functions: consequently, the presence of this term in the 

cross-section formula is to give more weight to the low energies. 

Rigorously, this should be taken into account in the expression 

for the linetilape, but this is only possible if one uses a 

numerical procedure to evaluate the intensity distribution 

[equation II-4-(18)} • In what follows, we derive an expression 

to take into accOMC the fact that the different sections of 

the"dispersion volume" intersected during a scan have different 

cross-sections. Obviously, this derivation is only valid if 
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the mosaic spread of the specimen results in a much larger width 

than that of the resolution of the instrument alone. 

The effect of the terms n(x)/x and (n(x)+l)/x on the 

peak position of 11rduprwidened b}t mosaic spread is estimated 

in the following way. We write these two terms as a single 

one G(x) =[ 1 + 1 ± l]/x (1) 
(exp (xj - 1) 2 2 

where x stands for the reduced energy (hV/(kT)) and the (upper)
(lower) 

signs are to be used for phonon (cre~t~on. >.
(annihilation) 

Let the line shape, undistorted by the function G(x) 

and including the widening caused by mosaic spread,. be of the 

form F(X} = A exp[~(~2 J d= x - (x> (2) 

( a gaussian line shppe will be assumed for the rest of this sub­

section). Let the measured line shape be of the form 

F.Cxl =A* exp[i(Jj21 : J,.= - (3)x (x.) 
1 

<x> · h peak position· · of the undistorted anis t e · curve d 

<x.) is the peak position of the measured curve. ~ and ¥• are 

the standard deviations of the groups anG are related to the FWHM 

by equation II-1- (8). 

Define A = <.x> - (x.) as the shift between the undis­

torted and the measured peak central positions. The observed 

intensity at an energy setting x is approximatly 

(4a) 

( 1 + 1 ± 1)/x (4b) 
exp(x) - 1 2 2 

Equating to zero the derivative of this object with 

respect to x gives the position of maximum intensity of the 
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observed groups. The result is 

dF* ( x) = Ax exp [-}(~\2] [ 1 - ( ~ +1) ( 1 +1±1) ]
dx .~ (exp(x)-1) (expfx)-1) 'j'2' x exp(x)-1 2 2 

(5) 

This is equal to zero if either ~-t ±dO (trivial case) 

or if the expression in square brackets is equal to zero. This 

is true when x = <x.) 

Then, ~ = x - <x> = <x• :> - ()<> = - A (6) 

and A = K2{ 1 -t 1 ] I [ l +1:t11) ( 7)x (exp(x)-1) {expfx)•l) exp(x)-1 2 2 

where xis understood to be equal to (x•)· We make the approxima­

tion that the distortion does not significantly change the 

width of the group, i.e. 1= y* · 

The general expression (7) may be simplinied: 


a) For phonon annihilation 


I 2 
(8)I /J = v c !. + ..---1------- ] 


' 0 x 1 - exp (-x) 


if x<<l, I:.~ 212/x (in reduced units) or (9a) 

A (THz)-+ 0.362r2/V- (in THZ); (r: FWHM) (9b) 

2 

ll 

if x ))1, b ~ ¥ (in reduced units) or (lOa) 

A (THz)-+ 8. 1r2 [THz] /T [ °K] er: FWHM) (lOb) 

b) For phonon creation 

A=v 2 c1+ 1 1 (11) 
0 x exp (x) - 1 

if x« 1, ll. + 2 ~2 /x (in reduced uni ts) or 

A (THz) -+ o. 362r2/ll Cin THz) ~r : FWHM) (12a) 

if X);> 1, A + 0 (12b) 



81 


Thus, for low energies, the shift is the same for both phonon 

creation and phonon annihilation. For high energies, the shift 

for phonon creation tends to zero while, for phonon annihilation, 

it is temperature dependent. 

Obviously, the above considerations do not apply 

if the shift~ is of similar magnitude as to the energy itself, 

i.e • .ANX. The condition forA«x is found to be 

r Iv<-< i. 6 (13) 

Figure II-4-i-l illustrates the behaviour of the fre­

quency shift as a function of the reduced energy for the cases 

of neutron energy loss and neutron energy gain. To apply this 

correction, one should properly use for rthe true width of the 

group, i.e. after correction for instrumental width. However, 

the validity of thts correction is limited to the case where 

the widening is at least comparable in magnitude to the instru­

mental width so that one can use the uncorrected width in the 

case of a bad specimen. 



• • • 
III-Crystal dynamics of a disordered alloy:Cu Ni 21zn63 16 

1) Introduction 

We now come to the experimental section dealing with 

the measurements of the phonon spectrum of a disordered ternary 

alloy of cu-Ni-Zn. The description of the equipment or the 

procedure ado.pted for the measurements will be avoided here 

since it has been carried out elsewhere by very qualified 

people (Rowe [6,]1 Brockhouse [68], Hallman [691) .. 

The recent years have seen work demonstrating the strong 

influence on the phonon spectrum of metals by the existence of 

long-range interaction between ions, as in lead (Brockhouse [62]), 

white tin (Rowe [65]) and zinc (Maliszewski [63]). The study 

of these complicated metals has brought forward the necessity 

of taking proper account of electron-phonon interaction. This 

interaction is always present but the fact of the matter is that 

the comparative simplicity of the dispersion curves in the case 

of simple metals like copper and the alloy studied here always 

permits a description in terms of a short·-range interaction 

with a limited number of interacting neighbours. An excellent 

recent review article on the subject is to be found in Yu. 

Kagan [68]. 

The experiment here described isa logical extension of 

the work of Hallman [69] on binary solutions of copper where 

- 82 ­
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the dependence of the phonon spectrum on electron concentration 

had been studied in iron-group alloys and our aim was to measure 

the phonon spectrum of a solid having the same electron concen­

tration as pure copper. The choice of a ternary composition 

a~forded the possibility to obtain a compensated system 

with a average electron concentration per atom equal to that 

of pure copper (and with the unavoidable mass disorder). This 

effect of local mass variation may be minimized to that found 

in an homogeneous copper specimen from isotopic mass variation 

by choosing the components of the ternary to be neighbours 

of copper in the periodic table i.e. nickel and zinc, as was 

done here. The electronic structure of these three elements is 

given in Table III-1-(1) and is self explanatory; obviously 

the average electron concentration per atom will be equal to 

that of copper if equal atomic concentrations of nickel and 

zinc are alloyed with the copper. 

The particular specimen used had a nominal concentration 

of 60 at.% for copper and 20 at.% for both nickel and zinc; 

it was verified by chemical analysis (see next sub-section) that 

these values were inexact and that the crystal had an electronic 

concentration per atom 0.95 that of pure Cu. 

Hallman had measured the phonon spectrum of c~5N~5 and 

Cu~ 5 z~25 and found that their respective average frequency 

ratios relative to pure copper wer-e 1.107 + 0.009 and 0.934 + 

0.003 illustrating how the frequencies are inversely related 

to electron concentration. However in our case the departure 
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from the compensated value of electron concentration is much 

smaller and the Lindemann criterion defined as 

predicts an average frequency ratio 

= 1. 025 


using the melting temperatures (TX) , lattice parameters (ax) 

and atomic masses (Mx) listed in Table III-1-(1). 

This frequency shift is in the same direction as that 

predicted from the results of Hallman. However, the relative 

change in frequency lies at the limit of precision of the 

technique of thermal neutron scattering so that one does not 

expect any detectable shifts relative to the copper spectrum 

as measured by Svensson [67]. 
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Table III-1-(1)-a; 


Relevant physical quantities for the transition 


elements Cu, Ni and Zn. 

Cu Ni Zn 
\ 

z'(atomic number) 29 28 30 

A (atomic mass in a.m.u.) 63.54 58.71 65.38 

Crystal structure (20°C.) F.c.c. F.c.c. H.C.P. 

a (lattice parameter:20°C.) 3.6147A 3.52A 2.66A,4.95A 

T (melting temperature) 1356°K 1728 692 m 

(Debye temperature) 345°K 476°K
e 0 

eC (Curie temperature) 635°K 

Neutron scattering 
cross-sections: 0- 7.25 13.2 4.1

coh.(x lo-24cm2) 
4.8"inc. 0. 6 

4.6 1.1'abs. 3. 8 

Electron configurations and term type for the ground state 

ls 2s 2p 3s 3p 3d 4s 
3 

Ni 2 2 6 2 6 8 2 F4 
2

Cu 2 2 6 2 6 10 1 81;2
1

Zn 2 2 6 2 6 10 2 s 
0 

* * * * * * * * * * * * 

Table III-1-(1)-b; Properties of the cu-Ni-Zn specimen. 

Chemical composition: 	 [Ni]: 20.67iO.S at%: 
[Cu]: 63.47~0.5 at%; 
[Zn]: 15.86tl.O at%. 

Lattice parameter: 3.6229 ! 0.006 A 

Melting temperature: circa 1400°K. 

Average atomic mass: 62.83 a.m.u. 

Dimensions: 6mm. dia. x lO cm. long. 
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III-2 Chemical composition of the specimen. 

i) The composition of the ternary was measured by per­

forming a chemical analysis on a 2 gram portion coming from 

one extremity of the crystal which was a cylinder 6 mm. in dia­

meter and 10 cm. long. At the time this was done, it was not 

t1fught of to repeat the procedure on a portion coming from 

the other extremity of the crystal; this would have supplied 

an indication as to chemical homogeneity. However, measurements 

of the lattice parameter afforded an estimate of the degree 

of inhomogeneity averaged over the whole crystal (cf. III-4). 

The chemical separation of the three elements was per­

formed using the technique of anion exchange and their concen­

trations were determined by EDTA (ethylenedinitrilo-tetraacetic 

acid) titration. The next sub-section (ii) is concerned with 

a description of the experimental chemical procedure and the 

result of this analysis is to be found in sub-section (iii). 

ii) Chemical analysis 

The experimental procedure for this type of analysis is 

fairly well known [Jones-59, Welcher-58]; it is illustrated 

in block diagram in fig. III-2-ii-l and will be briefly described. 

A portion of the specimen weighting 1.95110 gr. was 

dissolved by warming in concentrated HCl and then diluted to 

6N HCl, resulting in a solution containing the following 

.ions: N.++ ,i 
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Cu-Ni-Zn Alloy 

Dissolve·in concentrated HCl 

1Dilute to 6N HCl 

Ni++, [CUCl4l~- and [Znc141-­

Wash with 6N HCl 

Anion exchange column 

Wash with 1 N HC

Wash with 
demineralized H2o 

l 

Alf it .. 
cu++ solutionNi+1 solution zn++ solution 


evaporate evap!rate 
.. 
dissolve in diLolve in diss~lve in 

cone. NH4oH H 0 dilute NH40Hi (150 ml.) ~150 ml.) (300 ml. T 

EDTA titration ED~A titration EDTl titration 

Fig. III-2-ii-l Block diagram of the chemical 

procedure for separating the constituents of the alloy. 

The principle behind the technique of anion exchange, 

as~the name indicates, is that anions in the solution flowing 

through the separating column are trapped by the resin packed 

in this column while the cations are allowed to flow through 

freely. Consider the particular case of the ternary for exemple. 

In a 6N HCl solution, Ni is a cation while Cu and Zn react with 

the Cl ion to form an anion; in lN HCl, the Cu becomes in 

turn a cation while the Zn is unaffected and in O.OlN HCl, 
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all three elements are cations. 

Thus when the 6N HCl solution containing the dissolved 

alloy is allowed to flow in the column, the Ni goes through 

practically unhindered and can be collected. Similarly, washing 

with lN HCl liberates the Cu by transforming it to a cation 

leaving behind only the Zn fraction which may be eluded using 

O.OlN HCl or plain H20· 

Obviously the efficiency of the separation depends upon 

maximizing the ratio surface/volume of the resin making up the 

column. A , -, resin like Dowex 1-XS, 100-200 mesh, was found 

to give satisfactory results as compared with the coarser 

grade 20-50 which did not allow the separation to take place 

within the length of the column(N30 cm.). 

EDTA was used in all three titrations. The indicator 

used for Ni and cu was Murexide and that used for Zn was Erio­

chrome Black T. The solutions containing the Ni and Cu fractions 

were evaporated to dryness before titration since the Murexide 

indicator has to be used in a non-acid solution and neutrali­

zation would have resulted in the formation of ammonium salts 

which are particularly deleterious to this indicator. The Ni 

precipitate was redissolved in concentrated NH 0H while 4N NH 40H
4

was used for the Cu precipitate. The Zn fraction did not need 

to be evaporated since a different indicator was used. 

The titration itself was straightforward except in the 

case of the Zn fraction where, for a yet unexplained reason, 

no well defined end-point could be observed; a test solution 
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prepared from Zn powder showed no such problem. The Zn concentra­

tion was ultimately obtained by $U~tracting the other two con­

centrations from unity; this was later justified by doing a 

qualitative spectroscopic analysis to verify the absence of any 

other element in any significant concentration. 

·• iii) Results of the titrations are as follows: 

[Ni] 20.67 at.% ± 0.5 

[Cu] 63.47 at.% + 0.5 

[Zn] 15.86 at.t ± 1.0 

This is to be compared with the nominal concentration 

given as Cu~ 0Ni20zn20 . The imbalance between the Ni and Zn 

concentrations results in the ternary having an electron 

concentration per atom of 0.95 as compared with 1.0 for Cu. 
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III-3 Crystallite distribution 

Normally there is nothing interesting under this 

heading, the usual figure of merit of a crystal being the 

width at half maximum of its mosaic block distribution; it 

is usually a number smaller than one degree and the perfection 

of the specimen crystal is a desirable feature in neutron 

scattering as well as in other branches of solid state physics 

to make the interpretation of the measurements unambiguous. 

A picture of the mosaic distribution may be obtained 

by rocking the specimen around its orientation for Bragg 

scattering leaving the scattering angle fixed and the intensity 

distribution thus obtained is a convolution of the instru­

mental resolution and the mosaic distribution function. 

This function is customarily assumed to be Gaussian in 

the case where the crystal is relatively good. The convolution 

of this function with the resolution function of the instrument 

gives the observed Gaussian line shape and its width is given 

by the R.M.S. of the widths of the distribution and the 

resolution function. 

The contribution of the mosaic distribution function 

becomes more prominent and more similar to that of the 

observed intensity distribution when its width becomes 

superior to the resoiution of the instrument. 

Such is the case with the particular specimen used 

here. Fig. III-3-3 illustrates the observed intensity 

from the four maih (200) reflections while the crystal (001) 

planes were parallel to the scattering plane. Two points 
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first strike the observer. Firstly, the effective width of 

each dis.tribution varies between 2 and 3 degrees. This is 

much wider than the contribution from instrumental resolution 

which may be estimated to be a fraction of a degree using a 

perfect crystal on the specimen table. This means that 

resolution introduces but a small correction to the widths 

of the observed intensity and we may safely assume the 

above intensity distribution to be faithful representation 

of the crystallite distribution. 

The second point to observe is that the crystal is 

obviously non-single. Not only i$ this evident from these 

intensity distribution curves but also it was possible to 

observe low intensity parasitic reflections at random 

positions between the main reflections. This occured in 

both the (001) and (Oil) scattering planes used. 

This demonstrates the imperfection of our specimen and 

will be a limiting factor in the accuracy of the measure­

ments of phonons to be described later since the observed 

intensities are necessarily coming from a sme.a.red out region 

of reciprocal space. Nevertheless we will use the theory 

of Chapter II to determine how much this effect contributes 

to the widening of the lineshapes. 

It seems to be a common instance that it is difficult 

to obtain a good crystal of copper with nickel and zinc. 

For example, another alloy of nominal concentration 

c~50Nie2 5z~25 also showed a similarly unfavorable mosaic 

distribution~ The two specimens of c~5 Ni.s and cu.75 z1!2s 
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studied by Hallman and previously referred to also were 

among his worst crystals having a FWHM of 96' and 66'. 

From the phase diagram Fig. III-3-2, we see that the 

particular composition of the ternary specimen and that 

of Hallman's specimens correspond to a region well within 

the FCC phase indicating that this difficulty is encountered 

over a wide range of concentrations in this phase. 

After· the phonons measurements were completed, it 

was attempted to anneal the crystal to see if the mosaic 

distribution could be improved. According to the liquid~s 

diagram of Fig. III-3•1, the melting temperature lies above 

1100°C, slightly above that of pure copper. The annealing 

treatment consisted as follows: the crystal was enclosed 

in a heat resistant steel pipe which was sealed under an 

argon atmosphere and contained zinc powder in order to have 

a high vapour pressure of this element and thereby minimizing 

the possibility of depletion of the zinc content while the 

crystal was at high temperature. The treatment consisted in 

keeping this arrangement during one week at a temperature of 

800°C and then gradually cooling down to room temperature 

over a 3 day period. 

This procedure proved to be satisfactory. Although tie 011A.tt~~e o~ 

the pipe was badly corroded, the crystal seemed to have been 

totally unaffected except for some localized change to a 

brass-like color (as compared with the initial greyish tint) 

which extended inside the bulk of the materials. Some sharp 

edg€$previously present on the specimen were rounded off, 

indicating that a high degree of mobility had been reached. 
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The mosaic distribution was remeasured after annealing 

and the result is illustrated in Fig. III-3-3. The curve now 

has less structure than before treatment and the importance 

of the secondary peak relative to the main one is diminished 

The width at half height is slightly improved but the tail . 

of the distribution are unaffected and extend as far as that 

of the untreated crystal. 

Ni 

Fig. III-3-1; (taken from Smithells (62)) 
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4-Measurement of the lattice parameter. 

The lattice parameter was measured by neutron diffrac­

tion using the method described by Ng[67]. A good copper 

crystal was used as a standard, and its (220) reflection was 

compared with that of the specimen, using a neutron wavelength 
0

Oft' 2A. 

The resulting family of o/-rocking curves is shown in 

Fig. III-4-1; this is very different from the case of a good 

crystal and a scan of nearly 8° in r had to be done in order 

to detect the contribution from all the mosaic blocks. The 

envelop of the family of ~-rocking curves was obtained by 

taking the peak intensity of each curve and plotting this 

as a function of the corresponding scattering angle {¢) • 

It was verified that little change is obtained in the final 

determination of the lattice parameter if one takes the 

intensity at half width instead. 

The resultant envelop of the family of curves in Fig. 

III-4-1 is given in Fig. III-4-2 for the ternary specimen 

and other crystals of variable content of Cu, Ni and Zn. The 

curve for the ternary peaks at a value of the lattice para­

meter: 

a = 3.6229A (C~63N~21 znti 6 ) 

The same function for the copper crystal measured under 

the similar conditions may be taken to yield the value of the 

width contributed from instrumental resolution. From this 

the true full width at half maximum coming from the specimen's 



97 


inhomogeneity is estimated to be 0.43° assuming Gaussian 

functions; this corresponds to a relative variation of the 

plane spacing throughout the crystal of 

0 

ile. a+oa = 3.6229 + 0.006 A. 

This is an indication that the plane spacing is fairly 

homogeneous through the specimen. It is however not sufficient 

information to conclude that the same is true of the chemical 

composition. Fig. III-4-3 shows the result of the measurement 

of the lattice parameter by the method of X-rays for different 

concentrations of the constituent elements. Since the curve 

for Cu-Zn (0%Ni} is fairly linear, the available points for 

a ternary concentration were joined with the points of equal 

Ni concentration on the Cu-Ni (0%Zn) curve. The procedure 

is justified by observing that the resulting interpolated 

constant Ni concentration curves are parallel to the Cu-Zn 

curve. 

This figure illustrates the fact that the small 

rQlative plane spacing inhomogeneity does not necessarily 

imply a strong chemical homogeneity since there is a whole 

range of concentrations curresponding to a given lattice 

parameter. However, the good agreement between the value of the 

lattice parameter corresponding to the chemical composition at one 

extremity of the crystal (section III-2 and fig. III-4-3) and the 

measured lattice parameter, necessarily averaged over the whole of 

the crystal because of the neutron technique used, tend to 

indicate that the crystal is fairly homogeneous. 
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5-Phonon Measurement 

i) Choice of experimental conditions 

Measureme.nts were carried out using a constant inci­

dent neutron energy and the choice of this experimental 

parameter is governed by two main considerations: optimization 

of the resolution and avoidance of the contaminant. 

a) Resolution considerations 

The energy and wavevector of neutrons undergoing elastic 

coherent scattering from a crystal obey the following relation: 

- Al2k2. 'IT262 
(1)

E - ~ 2Md2sin2e 
5 

where 2e8 is the scattering angle and d is the scattering 

plane spacing. 

Since the monochromatization of the incident neutron 

beam and the energy analysis of the scattered beam are 

carried out by Bragg-reflection, good energy resolution means 

that a small change in energy corresponds to a large change 

ina1lgular position of the crystals, in order that the energy 

of the beams be little sensitive to the divergences resulting 

from imperfect collimation. Hence one must minimize the 

ratio 
'IT 2.f'l2 cote

l~I= (2) 
d2M sin2e 

and this may be sa.tisfied so much the better that the angle e 
'ITis close to The ideal situation is one in which this2· 

condition is approximated in both the monochromator and the 

analyzer and their respective plane spacings govern how well 

this is satisfied in the measurement of a particular phonon. 
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Fig. III-5-i-l illustrates the rapidly varying function cot8/sin2e 

of equation (2) . 

Under conditions of phonon energies and temperature such 

that the phonon reduced energy ('fiCIVkT) is smaller than one, it 

is a matter of indifference whether one proceeds under conditions 

of neutron energy loss or energy gain because the population 

factor in this domain is a number much larger than unity. 

(~ig. II-4-i-l). The requirements of a large scattering angle 
~ 

in both monochromator and analyzer means that the plane 

spacing of the analyser should be larger tha that of the 

monochromator in the first case (neutron energy loss) 

and smaller in the other (neutron energy gain). For example, 

the experiment repo,..ted here was done under the condition of 

phonon creation and the monochromator and analyzer were 

respectively Cu(220) and Cu(200); Fig. III-5-i-2 illustrates 

the behaviour of equation (1) as a function of the scattering 

angle in these two cases. 

For lack of the possibility of having an infinitly 

adjustable plane spacing over a convenient range in order to 

work at the largest scattering angles in the monochromator 

and the analyzer, we expect from the analytic expression of 

equation (1) that, for a given experimental arrangement, the 

spectrometer energy resolution would be optimized by matching 

the energy spread in the monochromator (oEM) and in the 

analyzer ( oEa) • 

These energy spread are related to the collimation 

angles via the relations 

dEm dE 
a= - a (3a); =~ct (3b)aem m a a 
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using the usual notation. The requirement oE =oE m a 

means that 
aam cote a cote* (4):rd _.....,,...m_ = d2 2 a 

. 2em sin a sin e * m a 

Assuming that the incident energy (or e ) , the collimation m 

angles and the plane spacing are known it :is possible to 

2oqtain sin e*a satisfying equation (4) either by solving a 

cubic equation or, more conveniently, by a graphic method 

which is now briefly described. 

A certain value of the incident energy determines the 

monochromator half scattering angle e (Fig. III-5-i-2) and m 

the corresponding ratio cot(e )/sin2 (e ) (Fig. III-5-i-l).m m 

Using equation (4) with da>dm for neutron energy loss and 

the converse for neutron energy gain 

cote* 
a (5) 

.sin2e*a 

is determined from the proper values of the collimation 

angles a and the plane spacing d. Finally one obtains the 

analyzer angle ea for optimum energy resolution and the energy 

of the phonon corresponding to thi5 setting oy using the 

relation for the energy transfer under conditions of optimum 

energy resolution which may be written as 

E -E 
v* = +( m a)= +h C---1~--- 1 (6a) 

P - h ~ d~sin2 em 

d~ sin
2 

em 
= +v (1 - (6b) 

d 2- m sin2e• 
a a 
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where the symbols of Tablel~ were used and the relation 

between em and e: is given by equation (5). The positive 

sign and the condition da>dm are to be taken for neutron 

energy loss and the converse for neutron energy gain. 

The value of v~ depends on the incident frequency 

~m and on the experimentally adjustable prarmeters d and a 

which determine e: through equation (5) 

Let us consider the case of neutron energy loss. The 

minimum value of the function v~ is zero (for all value of 

the incident frequency v ) when d =d and e =8* (i.e. a =a 
~ · m ma ma ma 

from equation (5)). It increases progresively as the ratio 

d2 .sin2emm 
d2 

a 
. asin28* 

is made smaller by decreas~9 the ratio am/aa (equation 5) 

for a given value of the ratio d;/a!. 

Fig. III-5-i-3 illustrates the behaviour of the 

function v~ for commonly used ratios d;/da and am/aa. 

Two remarkable cases are those where da=dm and aa=am 

which gives v~=O for all values of the incident energy Vm· 

This is the case relevant to elastic scattering. Another 

interesting situation occurs when 

2 2d = 2d and a = 2ama m a 

in which case, equation (6b) simplifies to 

v* 1 " p = 2 "m 
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b) Considerations of the contaminant 

The incident beam does not only contain first and 

higher orders of the main (220) component but also a series 

of contaminant energies of which the main one is (331). 

(Hallman c,,]) The composition of the beam as measured by 

Hallman is illustrated in Fig. III-5-i-4. 
' 

Obviously the presence of the contaminated may 

hinder the interpretation of experimental results if proper 

care is not taken. To prevent any ambiguity, it is necessary 

to avoid the case where the contaminant is going through an 

elastic incoherent scattering process from the specimen and 

through a second order scattering process in the analyzer, 

that is 

vc # 4v~ = 4(viw.-v) 

i.e. v# v~ - vc/4 

Using the data of Fig. III-5-i-4, the function v'ftl. - vc/4 

was plotted in Fig. III-5-i-5. It gives the apparent 

position of the contaminant during a phonon scan. Using 

this graph, it is thus possible to select phonons which 

lie in an energy range where the contaminant will not be 

detected during the whole of the scan. 



::r::: 
.c~lt: 
--t~:~ 

~ 





111 


ii) Resolution function: calculated and measured. 

We have made in sub-section II-4-iii some theor~tical 

considerations on the relation between the calculated and 

measured isoprobability contours and it was pointed out that 

a comparison between these. two objects illustrates the 

worsening of the resolution from the specimens mosaic spread., 
Physically, this is because of the resulting tangential 

smearing of the reciprocal lattice points. 

The resolution function of bbl!' spect~eter was 

measured with the specimen in position and the result is illus­

trated in figure III-5-ii-l for the region in reciprocal space 

around the point -Q=(0,2,0). The function for the transverse 
. 

polarization is very different from what is commonly 

encountered and it resembles strongly ~e a juxtaposition 

of two ellipses which may each be tought as being contributed 

from either peaks of the mosaic distribution (sub-section III-3). 

Besides this structure in the function, the presence of mosaic 

spread also results in a widening of the contour comparativty 

to that corresponding to a good crystal; this later case is 

approximated by the calculated curve which is also included 

in the figu~e. The difference between these two is very 

pronounced but a certain amount of confidence for the result 

of the calculations may be obtained by comparing the prediction 

with the actual measurements from a good crystal as was done 

for example by Mr. A. P. Roy (70] who found consistent agreement. 
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The effect of mosaic distribution on the isoprobability 

contour (transverse polarization) may be estimated in a simple 

way by calculating the resulting value of the perpendicular 

component to the momentum transfer 2: Taking r,,= 2° (i.e. 

0.035 radiant) as a representative value of the full width at 

half maximum of the central peak of the mosaic distribution, 

one gets: 
as0..&. = aQ r't' = 0 • 0 7 
~ Th 

This is in excellent agreement with the width in ~ of the 

main ellipse if one adds the intrinsic width in ~ of the 

ellipse, i.e. 0.01. 

The case of the longitudinal polarization does not have 

such a straightforward explanation. The reason for the wideninq 

in energy relative to the calculated curve may be best under­

stood by observing that the intercepts on the energy axis must 

be the same for both polarizations when 5=0, whether the mosaic 

spread 
~-~ 

is present or not, since they correspond to the same 

two points on the resolution ellipsoid in <g-w> space, but 

prnjected on two orthogonal planes, i.e. lox- a1) and (oy-v) planes. 



RQ_ JI[-5-ii-I Cu.il N;,_tjJ_ ln rL : Re~olufion ±Y"ncfion in 
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iii) Phonons and their measurement. 

This final sub-section dealing with the results of the 

measurements of the phonon spectrum of the alloy may be 

divided into three parts: a) Experimental considerations 

b) Line shapes 

I c) Discussion. 

the results are summarized in table III-5-iii-1. 

a) Experimental considerations. 

The specimen had the geometry of a cylinder 10 cm. 

long and 6 mm. in diameter with a (001) crystallographic 

very nearly parallel to its axis; it was mounted on a support 

which allowed the changing of its orientation as a relativly 

simple procedure. The measurements of the phonons were made 

at room temperature, in•which conditions the crystal has a 

face centred cubic structure (fig. III-3-1) and correspondingly, 

its reciprocal lattice has a body centred cubic structure. 

Two different crystal alignments suffice to observe phonons 

propagating in the principal symmetry directions of the Brillouin 

zone and these are obtained respectivly by making the (001) 
~ 

and (Oll)- planes parallel to the scattering plane of the 

spectrometer; figure III-5-iii-l represents these two planes 

with a typical wave vector arrangement. 

The experimental procedure consisted in keeping the 

neutron incident energy and the momentum transfer f iKed while 

varying the energy transfer (Brockhouse [61]). Considerations 



I.. i j
,., I. ' 

Fig. III-5-iii-l a) (001) plane b) (Oll) plai:ie .... ..... 
The two major symmetry planes of the B.C.C. lattice. U1 
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of the factor (Q.r} in equation II-4-(4) governs the choice 

of the region in reciprocal space where a given phonon may be 

observed: ideally, the momentum transfer should be parallel 

to the phonon eigen-vector for a twofold reason: to maximize 

t~e factor <£•1> 2 in the expression for the cross-section and 
•

to minimize the possibility of interference with phonons of 

other polarizations ~hose eigen-vectors might show a large 

component; along o~.and.;wfiose enerqies11~ie in the range of the scan • .... 
The first requirement may also be satisfied by taking a large 

value of the vector Q but this has other consequences which-
may not be desirable since a large value of Q increases the 

relative importance of multi-phonons processes (Sjolander [58)) 

and this becomes objectionable in the case where the Deby~-

Waller factor is large, which is not the case here. Also, a 

small value of Q is desiralble in the case of an imperfect crys­..... 
tal since the previously discussed smearing of the reciprocal 

lattice points is more pronounced for large values of this wave 

vector. 

This last consideration was important with the ternary 
J 
' but measurements made at large values of the momentum transfer 

proved to be more practical because the gain in intensity is 

proportional to the sqaare of the vector Q while the price 
"" 

paid in terms of the widening of the lineshape is only 

proportional at most to the first power in Q • ..... 
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b) Line s"~t•s: calculated and measured. 

The neutron groups, althought much widened by the im­

perfect mosaic distribution, were surprisingly well defined 

in most cases. The theory of chapter II was put to the test 

in this particular case and figures III-5-iii-4 and S show a 

sampling of the results obtained for different phonons. The 

theorAtical width was calculated by assuming a gaussian mosaic 

distribution whose width was given by that of the intensity 

distribution of a nearby Bragg reflection without taking into 

account the double peak nature of the distribution which was 

less proeminent in the (O!l) plane where most of the measure­

ments were carried than in the (001) plane corresponding to 

the situation depicted in figure III-3-3. For comparison 

purposes, the instrumental width can be obtained either by 

calculation or by repeating the experiment using a good specimen 

of a crystal having a prononced similarity with the bad one 

In our case, copper met these requirements (table III-1-(1)-a and 

fig. III-4-2). The phonons shown in the above mentioned figures 

were measured under identical experimental conditions as those 

found on the adjoining transparencies which were taken from the 

work of Dr. A.P. Miiller on a copper specimen having a mosaic 

width of 0.5° and it was also verified that these groups are 

in good agreement with the ones calculated using the proper 

value of the mosaic spread. 

Comparison of the neutron groups from the two materials 

confirms that the widths of longitudinal phonons are much less 

affected than the transverse ones. However, figure III-5-iii-S 
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shows a case of some zone boundary phonons where both the 

transverse and longitudinal branches are similarly widened 

relativly to copper and to the calculated curve. Since the 

energy q-gradient is zero, one does not expect any effects 

from the presence of mosaic spread and the observed groups 

should be similar to those of copper, as predicted by the 

calculations. Since it is not so, the extra width could be a 

manifestation of atomic force constants disorder on short 

wavelenght phonons which are a sensitive probe to local 

variations as compared with those of long wavelenght which 

see more of the continuum aspect of the crystal. 

Besides increasing the error in the energy determination 

of the phonons by increasing the line width, the mosaic spread 

also caused two other difficulties. The first of tbese was 

encountered in the measurement of the T2 branch and this is 

illustrated in figure III-5-iii-l-b) • In this geometry, a frac;­

tion of the crystallites turns out to be properly oriented for 

elastic coherent scattering into the analyser. The large numbc-H: 

of counts accumulated in both the signal and background counters 

indicates that the neutrons reach the detectors through an elas­

tic incoherent scattering process off the analyser crystal 

thus burying the weak phonon signal. This difficulty was 

circumvened by measuring this branch with a low incident energy 

thereby maximizing the resolution in energy (sub-section III-5-ii) 

and in momentum transfer by making the scattering angle larger. 
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The second difficulty relates to the measurement of the small 

wave vector re~ion of the dispersion curves where the signal 

of transverse phonons would be lost in the Bragg-scattered 

neutrons at a larger phonon wave vector than would have been 

otherwise the case if a good crystal had been used. 

We have seen in section II-7 how the apparent peak 

position of the neutron groups of transverse polarization 

differs from the true peak position in t~• case where the 

mosaic spread is important. The correction, of the form: 

6 = o. 362 r2/y 

was made here on the apparent energy of phonons in the 

[OO~]T, [Ot~JT1 and (0Jf]T which~ showed considerable widening
2 

compared with those found in copper; hence the correction 

is justified. The Cl!f1T phonons were not similarly corrected 

since they were not as much affected by the mosaic spread 

because of the particular topology of their dispersion 

surface (section II-6). 

The term r in the above expression should appropriatly 

be the true width, i.e. the width after correction for instru­

mental resolution. Assuming a gaussian line shape and resolution, 

this correction rapidly becomes less important when the wide­

ning is significant and one may take r as the width of the ob­

served group; this will obviously overcorrect but the error 

is typically a small fraction of the uncertainty in the peak 

position. 

Table III-5-iii-l and figure III-5-iii-Z illustrate 
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this correction on two particular branches which were each 

measured in the same region of reciprocal space and with 

the same incident neutron energy all along the branch. 

The continuous lines in the figure is simply an eye-ball 

fit to the calculated points and does not represent any f ittinq 

procedure. Note that in this case the term rwas corrected 

for instrumental width from the available results on copper 

which had been measured under identical conditions; also that 

the correction at the zone boundary has to be identically zero 

because of the zero q-gradient of the energy of the phonon. 

c) Discussion. 

As expected, the frequency spectrum is practically 

identical with that of pure copper. Table III-5-iii-2 shows 

our results compared with those of Svensson [67] whose work 

on copper was used as a standard in the search for possible 

energy shifts. There is a general trend for the spectrum to 

be moved toward higher1 frequencies, as expected from the value 

of the electronic concentration. However, the fact that the 

two measurements give energies which are w:ithin the estimated 

errors does not allow any definite conclus:ions alto~9lt the 

fact that the shifts are generally in the same direction tends 

to indicate that the effect is real. The reliability of the 

measurements was obviously affected by the presence of poor 

mosaic spread and, using the usual physically plausible rule 

of thumb which assigns to a phonon an uncertainty of one tenth 

of its observed width, the values of the uncertainties listed 
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in the above mentioned table were determined; these values 

were made larger in the case where the neutron group was not 

perfectly defined. Most of the phonons were measured twice with 

different incident neutron energies and in a different scatte­

ring plane; good agreement was obtained and table III-5-iii-1 

contains the most reliable results of these multiple measurements. 
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Table III-5-iii-l; 

Correction to the peak position of phonons of 

transverse polarization from the term (n(x)+l)/x. 

Branch y r A y + tJ~ 
(THz) (THz) (THz) (THz) 

[OO~]T 0.4 3.05 0.82 0.0741 3.12 

0.6 4.08 0.92 0.0725 4.15 

0.8 4.76 0.80 0.04 4.80 

1.0 5.12 0.74 0.00 5.12 

[05;J'l'l 0.2 1.27 0.87 0.1828 1. 45 

0.4 2.62 0.93 0.11 2.73 

0.6 3.87 0.90 0.0674 3.94 

0.75 4.60 0.80 0.04 4.64 

0.80 4.84 1.04 0.0733 4.91 

1. 00 5.05 0.76 0.00 5.05 

[O~j]T 0.6 5.72 0.95 0.043 5.76 
2 

0.8 6.75 1. 22 0.0566 6.81 

1.00 7.28 0.85 o.oo 7.28 

I!>A(rtfJ) ~ 
0.15 

[O!JJT
1 

&.04 

o.oz. coo;JT 

ClO 

() .. s Ooef O•t l•OC>'- 0·6' .., l•O 
1

_. 
.1~ °"' 

Fig. III-5-iii-Jj Graph of above correction. 

0 
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Table III-S~iii-2; 

Comparative table of phonon frequencies 

in Cu and c~63Ni·21zn.16. 

Cu c"!63Ni.21 zn.16 

Branch ; 'V(THz) Y(THz) r(THz) 

[OOJ)T 0.2 1.56t0.04 1. 64 tO. 07 0.70 
0.4 3.0110.04 3.12i0.09 0.82 
0.6 4.15!0.05 4.15to.10 0.95 
0.8 4.86~0.07 4.8oto.o8 0.80 
1.0 5.08t0.08 5.12to.00 0.74 

0.2 2.4210.07 2.5610.07 0.70COJ~1L 

/ 

/ 
0.4 4.4710.07 4.58t0.06 0.60 
0.6 6.05i0.08 6.05to.o4 0.30 
0.7 6.6oto.00 6.76~0.09 0.90 


// 
0.8 6.99t0.13 7.12~0.07 0.62 

0.9 7.17i0.12 7.12t0.09 0.88 
1.0 7.19i0.12 7.28t0.09 0.85 

[0~1]7t 0.2 7.07t0.14 6.95tO.ll 1.02 
0.4 6.44i0.09 6.49tO.ll 1.08 
0.6 5.77!0.08 5.82to.09 0.85 
0.8 5.27'!0.08 5.13t0.12 1.20 

[O~l]A 0.2 4.99t0.07 5.14-i'0.09 0.85 
0.4 4.89t0.09 4.90t0.09 0.86 
o.s 4.89~0.08 5.04t0.09 0.87 

[O~fJ T 1 0.2 1. 35 :!'o. 04 1. 45t0. 09 0.87 
0.4 2.7010.04 2.73t0.10 0.93 
0.6 3.89i0.05 3.94t0.09 0.90 
0.75 4.55to.o5 4.64~0.08 0.80 
0.8 4.75t0.07 4.91±0.11 1.04 
1. 0 5.08'!0.08 5.05i0.08 0.76 

(0 ~rJ L 0.1 2.03~0.10 2.00-!0.06 0.45 
0.2 3.70i0.08 3.86t.0.07 0.7 
0.3 5.11to.01 4.97~0.09 0.9 
0.4 5.97t0~08 6. 23.tO .1 (?) 0.85 
0.6 6.38t0.12 6.81tO.ll 1.02 
0.75 5.73t0.08 5.66~0.08 0.8 
0.8 5.s1to.01 5.42t0.13 1.3 
0.9 5.19~0.07 5.2610.08 0.80 
1.0 5.08~0.08 S.05i0.09 0.90 

http:S.05i0.09
http:5.08~0.08
http:5.2610.08
http:5.19~0.07
http:5.42t0.13
http:5.s1to.01
http:5.66~0.08
http:5.73t0.08
http:6.81tO.ll
http:6.38t0.12
http:4.97~0.09
http:5.11to.01
http:3.86t.0.07
http:3.70i0.08
http:2.00-!0.06
http:2.03~0.10
http:5.05i0.08
http:5.08'!0.08
http:4.91�0.11
http:4.75t0.07
http:4.64~0.08
http:4.55to.o5
http:3.94t0.09
http:3.89i0.05
http:2.73t0.10
http:2.7010.04
http:5.04t0.09
http:4.89~0.08
http:4.90t0.09
http:4.89t0.09
http:5.14-i'0.09
http:4.99t0.07
http:5.13t0.12
http:5.27'!0.08
http:5.82to.09
http:5.77!0.08
http:6.49tO.ll
http:6.44i0.09
http:6.95tO.ll
http:7.07t0.14
http:7.28t0.09
http:7.19i0.12
http:7.12t0.09
http:7.17i0.12
http:7.12~0.07
http:6.99t0.13
http:6.76~0.09
http:6.6oto.00
http:6.05to.o4
http:6.05i0.08
http:4.58t0.06
http:4.4710.07
http:2.5610.07
http:2.4210.07
http:5.12to.00
http:5.08t0.08
http:4.8oto.o8
http:4.86~0.07
http:4.15to.10
http:4.15!0.05
http:3.12i0.09
http:3.0110.04
http:1.56t0.04
http:c"!63Ni.21
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Table III-3-iii-2 (continued) • 

Cu CU.63N\21zn.,16
Branch t Y{THz) )l(THz) r (THz) 

[O}~]T
2 

0.1 
0.2 

1.1110.03 
2.271"0.04 

i.1810.05 
2.56-t.0.03 

0.50 
0.30 

0.6 5.7lt0.06 5.76!.0.10 0.95 
0.8 6.80!0.11 6.8U:0.13 1. 22 

[~ Sfl T 0.1 
0.2 

l.Oli.0.05 
1.87t0.06 

1.14t0.05 
1.90±0.10 

0.5 
1.0 

0.3 2.66i0.06 2.68~0.06 0.6 
0.4 3.17!0.07 3.06:!0.07 0.65 
0.5 3.37~0.07 3.34'!0.09 0.84 

[ ~ f 51 L 0.1 
0.2 

2.46±0.07 
4.54~0.06 

2.51.t0.03 
4.63±0.07 

0.30 
0.62 

0.3 6.14~0.07 6.08±0.08 0.75 
0.4 7.0Gt0.10 7.171:0.07 0.70 
0.5 7.40i0.13 7.4010.10 1.00 
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Fig. 	I JI I~ s"'iii- 3.: . ..C.ala.~late.d pboi\.Q~L~_.pec;~rum u~ ing_, the 

force constant of copper (Svensson [671). 
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Al'Pendix A-1; Evaluation of three integ~als 

i) 
1:dx exp{-~(Ax2 

+Bx)} (1) 

Define 

(b 1 2 


r 1 (a,b) = Ja dx exp {-2 (Ax +Bx)} ( 2) 

2
= exp(~2 > f: dx exp{-i(/A x + x) J (3) 

where X = B/ (2/A) (4) 

Changing variable to y =IA x + X; dy = IA dx 

we get 

.L x2 f IA b+X 2 


r 1 Ca,b) = TA exp<r> dy exp(+) (5) 

IA a+X 

,flr( 2 
= y~ exp(~) [~(IA b + X)-erf(/A a+ X)] (6) 

z. 'Z. 
the object erf (y) stands for 

2. 
2_l (y Jx -x

exp(~) (7) 
f27T J 

0 

1
Obviously erf (0) = 0 and lirn erf (M)+ +-2

M+::!:_oo 2. 

Hence we have the desired integral 

\(21T' B2 
I(-00,00) =VA""" exp <eA> ( 8) 
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ii) 
129 

(1) 

-oo 

we use the result of the previous page and get 

2 
12 = v~~f~~dx1 exp{-}(Axi + cx1)}expf} (D::x1) } (3) 

2 2\f21T' D f00 1 E 2 DE=YB exp(8B) -oodxlexp{-2[(A-413)xl + (C-2B)xl]} (4) 

2 2 = 4n 
l4AB-E2 

exp{![AD +BC - CDE]}
2 4AB - E2 

(S) 

as a verification, note that this result is invariant under 

the transformation A..._.B 
c....o 
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iii) 
00 

-oo 

(1) 
00 

-oo 

(2) 

From the first result of this appendix, we get.. 
r 3 =Wfdx1dx2 exp{-~ [ (Axi+ax~) + (Gx1+Hx2 ) +ox1 x 2 J} 

-- 2 
'tf exp{!.[ (Ex1+Fx2+J) ] } (3)

2 
" 4c 

00 

2 =ye-\(2;'1 exp(S1 c->J f f dx1dx2 exp{-21 [(Kx21+Lx2 )+(Mx1+Nx 2 )+Px1x 2 ]}2

-00 

E2 F2 
where K = A - 4C (Sa) ; L = B - 4C (Sb) 

EJ FJM = G - 2C (Sc); N = H - 2C (Sd) 

P = D - ~~ (Se) 

Using the second result of this appendix, we get 

(6) 
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If we carry out the substitution of the indentities (5)

' the final result is: 

where 

= 4(ABJ2+BCG2+ACH2 ) 

-(D2J2+F2G2+H2E2) 

+2(DHEJ+DGFJ+GHEF) 

-4(CDGH+BEJG+AFJH) 

As a verification, observe that 

symmetry operations 

1) :S.-.A H-.+G E...,.F 

2) B.....,..C H~ D~E 

3) ~c G....,..J D._.F 

(7) 


(Ba) 

(Sb) 

both cl and~ o.bey the 3 

(9a) 

(9b) 

(9c) 



Appendix A-2: In-pile collimation and vertical divergence. 

The general expression for the transmission function of 

a collimator, i.e. equation II-2-(21), is also valid for vertical 

divergences. However, the dependence upon the monochromator 

(or analyser) vertical mosaic spread does not show any (first 

order) correlation between the magnitude of the scattered wave 

vector and the vertical angular divergence as was the case in 

equation II-2-(22) for angular divergences in the scattering plane. 

Instead, the reflection probability to go from the 

vertical angles d to d1 is governed by the distribution of
0 

properly oriented crystallites whose normal lies in the vertical 

plane containinq Q , the momentum transfer in the monochromator,- m 


Hence, the contribution to the transmission probability from 


vertical divergences is proportionnal to 


expc-1< e + cd1 +So) >1 ( 1) 


~ fa: 4'2tan2 <EU 


For a given value of d1 , the total contribution from all vertical 

angles f 0 is obtained by integrating the above expression over 

&. 
0 

Using the result of appendix A-1, this is found to be 


equal to 


(2) 

where = [21r/ ( 1 + (3) 

~~ 
~~ is the vertical mosaic spread. A similar result applies 

for the counter collimation. 
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APPEND!X A-3 

Effect of heat and pressure treatments on the neutron 

reflectivity of germanium monocrystals. 

!)-Introduction. It is nowadays an established 

technique to grow large crystals of germanium and silicon 

to a high degree of perfection. If the crystal is to be used 

as monochromator or analyser, a high reflectivity is desired 

(Dymond[70]).This figure of merit depends on two forms of 

extinction (Bacon[48], Bacon[62]). 

Primary extinction is the effective attenuation taking 

place from coherent elastic scattering processes as a neutron 

beam propagates through a perfect crystal. Assume that 

the beam contains some wavelenght satisfying the Bragg relation 

for a given direction of propagation, of the neutron beam with 

respect to the crystal (hkl) planes. Each unit cell of the 

crystal contributes to the scattered amplitude a relative 

quantity equal to Fhkl' the square of itA·~odulus being the 

structure factor for th~ unit cell. James[48] calculated the dif­

fracted amplitude from an extended crystal by considering 

the contributions from each of the successive (hkl) planes; 

This quantity is equal to 

~ 133 ­
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Nc being the number of cells per unit volume, 


and d being the interplanar (hkl) spacing. 


The value of qhkl is independant of the neutron energy and is 


typically of the order of l0-4 - lo-5. Thus, each plane contri­

butes to the resultant scattered amplitude a quantity of this 


order relative to the incident amplitude and after n planes, 


the amplitude of the wave propagating in the forward direction 


is given by the (n-l)th term of the geometrical progression: 


4(1 - l0­ )n-l (neglecting multiple scattering). Here are a 

few values to illustrate~ 
n penetration 

distance 

500 -1000 A 0.986 

5000 

50000 

1 

10 

p 
r 

0.89 

0.32 

It is seen that for penetration depth of the order of 

1 r or less, the attenuated beam does not markedly have a 

different amplitude from the incident beam. In this case, we 

say that there is negligible primary extinction. 

On the contrary, for penetration distances much larger 

than 1 the incident beam is significantly attenuated andr' 

the planes far removed from the crystal surface contribute 

proportionnaly less to the scattering amplitude; it must also 

be remembered thAt the same argument apply to the scattered 

beam in its propagation toward the external surface of the 

crystal. Thus, the diffracted intensity effecti~y comes from 

*~OTE: Consideration of multiple scattering should decrease the 
penetration depth because of destructive interference, in the 
case of a perfect crystal. 
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a region within 1 f of the crystal boundary and any increase 

in thickness from this value has but little effect on the 

scattered intensity. The value of this penetration depth is 

much smaller than that obtained from considerations of true 

absorption processes: for material of interest in diffraction 

from crystals, the linear absorption coefficient is of the 

order of 0.2 cm:1 Thus, nuclear capture processes are negli­

gible compared to elastic scattering processes. 

The other form of extinction, i.e. secondary extinction, 

arises from the fact that single crystals are not usually 

perfect on a scale much larger than 1 P' because of the pre­

sence of dislocations. The crystallites, as they are called, 

are small regions of the crystal with no imperfections: the 

above considerations about perfect crystal structures hold 

within these regions. This microscopic structure has two 

consequences of interest for our topic. Firstly, by effectivly 

reducing primary extinction, the penetration depth within the 

crystal is increased. This does not mean however that the 

effects of extinction may be made arbitrarily small just by 

decreasinq the size of mosaic bloQJca- Successive attenuation 
·' 

of the neutron beam by the sequence of properly oriented crys­

tallites takes place and is known as secondary extinction. 

Secondly, the fact that the crystallites are distributed in a 

given angular range results in the width of the scattered 

intensity distribution being larger than the calculated values 
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for a perfect crystal which are typically of the order of a 

few seconds of arc (Bacon [62]). 

It is known that crystal reflectivities may be improved 

by decreasing primary extinction through heat and pressure 

treatments of the crystal. (Hallman-69, Konstantinovit-68, 

Nikotin-69). This appendix refers to the results of such work 

made on germanium. This is an interesting candidate for mono~ 

chromator or analyser since its (111) reflection lacks a 

second-order component. (Barrett [63], Dolling [67]). 

2)-Experiments. The crystals that were treated were in 

the form of thin discs approximatly 70 mm. dia. x 0.38 mm. 

These were all cut from the same boule and all had a (220) 

axis nearly perpendicular to their flat face. The figure of 

merit in the appreciation of the treatment was the integrated 

reflectivity (at a fixed position, 29M of the counter) defined by 

R = s Tlt) cl "' 9 .,, ' 
I. 

where the interval of integration is extended to contain all 

contributions to I Cf> from coherent elastic scattering. 

Note that I 0 is the intensity. of the incident beam whose 

cross-section entirely intercepts the crystal. In practice, 

a "pinhole" (6 mm. dia.) was used to obtain a pencil-type 

beam falling entirely on the specimen. 
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The results of the treatment of the crystal are pre­

sented in table A-3-1. The numbers given in that table for the 

reflectivity are not the absolute reflectivities but correspond 

to a pseudo-reflectivity value as obtained by putting the 

same collimation (1/80 horizontally) in ~ and ~· ;true reflec­

tivities are measured without any collimation · in the scattered 

beam. Measurements made on the standard with both types of 

collimations indicate that the true reflectivity is approximatly 

50\ larger with the proper collimation arrangement than with 

the special arrangement used. This correction should be 

the same for all treated slices since their F.W.H.M. is very 

similar in all but one case; thus the numbers given should be 

a true picture of the relative efficiency of different treat­

ments in improving the reflectivity 

3)-Technique. A germanium single crystal is an extremely 

hard material and different combinations of heat and pressure 

treatments were tried in order to facilitate the plastic flow 

which would increase the mosaic spread of the crystals. The ta­

ble of results show a continuous increase in the efficiency 

of the treatments as higher pressures and temperatures were 

reached, i.e. as the degree of plastic flow was made larger. 

For these treatments, a set of flat plates were made that 

could hold the crystal in the press and at the same time act 

as a heat reservoir to minimize the·rate of cooling while the 
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crystal was brought up to the desired pressure. (Fig. A-3-1). 

The two parts were arranged to fit into one another so as to 

shield the crystal from the oxidating atmosphere. The grooves 

on the sides served as slots for the handling fork used 

in transfering the plates from the oven to the hydraulic press. 

The material used was mild steel since it was easier to machine 

th~n stainless steel. Mild steel did not resist very well to 

the high temperatures encountered (circa 900°C); corrosion and 

pitting occurred on all surfaces after repeated use. This was 

more objectionable on the inside surfaces ( in contact with 

the crystal) and was compensated by putting the crystal between 

clean stainless steel shim stocks instead of directly in contact 

with the steel plates. This gave effective protection from the 

oxidation and prevented contamination of the specimen by the 

corroded plates. 

4)-Results. The results of table A-3-1 show that a 

combination of both high temperature and high pressure is neces­

sary in order to see any improvements. Note that the given 

temperatures do not correspond to the temperatures at which the 

crystal was being pressed but rather they are the maximum 

temperatures attained when the steel plates were transfered to 

the press. The time required for this transfer and to build up 

the pressure is of the order of one minute. During this time, 

the inside cavity containing the crystal will have started to 

cool down but this temperature variation was not measured. 
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The crystal slice # B-2 was used as a standard; its 

characteristics are identical to that of any of the other 

slices before treatment. The value of the F.W.H.M. for the 

standard may be considered as being contributed exclusively by 

instrumental resolution since the mosaic width of the 

untreated crystal is zero for all practical purposes. 

The treatment received by slice #C-1 was a sudden 

cooling from 600° c to 77° K. Sudden cooling is used in 

X-ray work to increase the mosaic width of too perfect 

crystals but it had no observable effects in thts case. 

The treatment made on slices t C-11 and B-3 shows 

that high pressure or high temperature alone has no effect. 

In one case, the material is not plastic enough while in the 

other case, there is no significant external forces to 

create dislocations. In fact, high temperature alone 

should decrease rather than increase the density of defects~ 

since the relatively slow cooling rate might effectivly 

have resulted in an annealing treatment. 

Heat/pressure treatments are more spectacular in the case 

where the upper limits are reached both in temperature (Tmelt-30°) 

and in pressure (maximum pressure of the press: 166 atm.). 

The crystals withstood these treatments very well 

from the mechanical point of view. No sign of oxidation was 

visible, except perhaps as a slight change in colour. Some 

microscopic cracks, extending a few millimeters, were generally 

observed,but they were not objectionable. This could probably 

have been avoided by remachining the plates when the internal 

surfaces became uneven from corrosion. 



140 

Results of heat and pressure treatment of 

germanium monocrystals 

(measurements made on (220) reflections, 

thickness of crystals 0.38 mm.) 

Slice no. 	 F.W.H.M. Pressure Temp.~ (min.) (deg.) (Atrn.) (OK.) 

(note 2)
B-2 0.35 0.3 Standard 

C-1 0.3 0.32 1 875 sudden 
-+77 cooling 

C-11 0.36 0.28 166 298 

B-3 0.32 0.33 1 1200 

B-5 0.38 0.34 83 900 

B-7 0.6 0.52 83 1100 

B-8 1.3 1.0 155 1200 
1.1 1.6 

B-9+Bl2 	 2.2 0.7 83 1200 stack of 
2 slices. 

1) Note: the 2 sets of data for slice B-8 refer 

to the two faces of the crystal. 

2) Note: F.W.H.M. are uncorrected for instrumental 

resolution. 

3) Note: Melting temperature of germanium: 1227°K (954°C) 

Table A-3-1 
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FLAT PLATES for the HEAT/PRESSURE TREATMENT 

of GERMANIUM Slices. 

I 
t 88 mm. dia.r 	 l

T I ~ s mm. 
15 mm. I \ 6 mmJ* • ' 	 ,.,-­

3.7~jL-__-...._1.---:...-a ..........
,-mm-.--+-----,..-~~L, 5 mm •. 

', I 	 f\I ' I, ~--cteel Foils 
I \ (stainless) 
I ' \ O. OSmm. 
I ' 	 thick 

......... 	 \ 


' 	 I . ' ' sample 	 • • wumt)'nW.ll,Q!l//IU'/lf1nuu/'t@J/Dku'4 , 1 \ 
(HO. 4 mm. thick) 	 I I ', \ 

I ........_ 
I 	 I _...~lots (4) 
I 	 -1- I for 
I _.. .- I' 1 Handling
I I _.. _.. ..,...... I I 1 Fork. 
~ I.I- _...- I 

7 mm. -I r - - I 11

f ._,,_.lf... ---1,---------' .._.__6_~_._ 

21 mm. 	 ' fl 11.fJn· 

-..I .i.- ~I mm• 

Scale: 1:1 

Material: Mild Steel. 

Fig. A-3-1 
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Appendix A-4: 	Automation of the spectrometer by paper tape; 

construction of a A.s.c.I.I. decoder. 

I - Introduction 

The construction of a second McMaster .spectrometer 

at the NRU reactor has motivated an investigation into the 

possible improvements that could be incorporated in the new 

instrument. The study described here was concerned solely 

with the input-output channels portions of the system, mainly 

for the reason that the judicious design of the control unit 

and related equipment proper proved to be most satisfactory. 

In this appendix, the principle behind a paper tape 

decoder designed and built in the sununer of 1969 is exposed. 

But before going to this topic proper, it may be appropriate 

to rapidly describe the system presently used; a detailed 

description is to be found in Rowe's thesis. (Rowe-66) 

II - The Present System 

The system presently used on the McMaster Spectrometer 

is illustrated in block diagram in fig. A-4-1. It consists 

basically of: 

- a main control unit which electromechanically performs 


logical operations through the use of fast response 


time (10 ms.) relays. 


- an input station which makes use of a IBM card punch 


(Model 026) and the built-in card duplicator. 


- an output station, i.e. a teletype model T-33, fed 


from a solid state scanner. 
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- counting circuits and related electronics for the 


incident beam monitor counter and the analyser 


signal and background counters. 


III - The Problem and a Solution 

The general design as described in II proved to 

be most satisfactory despite the relatively low capital 

investment involved. However, the use of cards for controlling 

the instrument suffers from severe drawbacks: 

- a card reader is required which adds an important 

contribution to the cost of the instrument. 

- the input and output channels are completely inde­

pendent so that alphanumeric identifiers cannot be 

automatically printed with the experimental data. 

The basic idea behind the circuit described here is 

to combine in a single unit the input and output stations. 

This turns out to be feasible by the fact that the Model 

T-33 teletype which is needed anyhow on the output section 

has a duty cycle which never comes in conflict with that of 

the reader and that it can be simply modified to serve at the 

same time as an input station. Besides the economy being realized 

by getting rid of the card punch altogether, it is now possible 

to couple the input and output channels in a simple way. A 

block diagram, fig. A-4-1, illustrates the idea. 



144 IBM 026 Card­ TypewriterPunch/Reader 
Using 

,,
d 

com_p_u_t_e_r__c_a__r __s______~Jv.--------------'-'--------~~-------'-'______________ 

·~Advance Jf"Accumula tors 
Counts

[ I '¢'ea' 20a 'em Motor~~ Main 
Control 

[ 1 u-1 ~ Unit , ¢, e...a.., 2e_a_, e..m.. L..._swi tchE!!JJ · 1...._,.-­_____. 
T ·~­ I 

J_. 

.. 
Monitor_ 

Signal 

Signal 
Counter 

End-of-scan 

Inhibit. 
Monitor 

111--1---------1
Scaler Preset Count 

coin1; Advance 

Read-out 
Control 

Unit 
[End-of-scan- -­-....______... 

Scan 

Reset 

..-

Reset 

' 
Signal 
Scaler 

, 

Inhibit 

Inhibit 

Backgrounc~ 

Scanner 

--------------------------.. Scaler 1--------------------~
Background 
Counter 

Al ~anu T-33Paper-tape~_~lo6.Z.w.M~--~ 
Decoder Numerics TeletypeReader 

SignalUsing 

Paper tape Signal 
dvance 1~·-----------------------­---Iv 

Fig.A-4-1. Block diagram of the Control Section 

and the Electronics 

of McMaster Spectrometers 

(with the two different modes of control: 

Computer Cards and Paper Tape.) 
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The heart of the new input-output system is a model 

T-33 teletype which comes equipped for reading and punching 

A.S.C.I.I. (American Standard Code for Information Inter­

change) code paper tape. Actually the punch itself plays 

a minor role with respect to the circuit described here in 

the sense that it is used only 

a) 	 for manually punching spectrometer commands, the 

punching task being normally performed by a computer 

programme. 

b) 	 when it is desired to interface the output to a 


computer via paper tape. 


Basically-Fig. A-4-1 shows that the 

card reader is replaced by the paper tape reader. The infor­

mation punched on the tape can now be used to write on the 

printer or to control the spectrometer according to the two 

modes described below. In the case of the control mode, the 

coded information read from the tape goes through the decoding 

circuit where it is translated into the proper combination 

of spectrometer commands. 

The need for a decoder arises from the fact that 

although 7 bits code contains more than enough channel 

capacity that will ever be needed (2 7 7 bits words) it still 

does not allow to assign a motor increment (positive or 

negative) to one and only one perforation, as is possible 

using 12 bits/column computer cards. 



146 

Hence the need for a decoder. As the name indicates, 

the decoder deciphers the punched information and energizes 

the appropriate relays in the control unit which now takes 

over until the desired function is accomplished and an 

"advance" pulse is sent back to the reader. The cycle is 

then repeated. 

V - Coding 

The choice of the actual code corresponding to the 

different combinations of spectrometer commands was governed 

by the following considerations. 

a) in a general scan in (Q-w) space, three independent-
angles need to be varied: ~' ~' e (26 ) ore m· Since a a 

the efficiency of the spectrometer depends on minimi­

zing the time lost during motor moves, it is of utmost 

importance to simulataneously vary all three angular 

positions. The total number of possibilities is thus 

3x3x3 - 1 = 26 where one is subtracted corresponding 

to the case where none of the angles are varied. 

b) The spectrometer commands could be punched directly 

from the teletype keyboard for obvious reasons. (For 

a list of Standard ASCII characters, please refer to 

Table A-4-1 ) • 

c) The ASCII symbol corresponding to a spectrometer 

conunand should be limited to those 64 available on CDC 



147 

computers~ since it might sometimes be desired to 

check for agreement between the calculated and perforated 

values. Since, as will be seen, the decoder allows the 

codes corresponding to each spectrometer conunand to 

be written, it is also possible to check for agreement 

of the written code symbols with those that are to be 

expected. This eventually would prove a useful diagnosis 

in cases of technical difficulties affecting the control 

circuit by allowing the possibility to monitor the 

behaviour of the front end. 

The above consideration suggests to use the letters 

of the alphabet and the combination of motor moves in a one­

to-one correspondence. The truth table corresponding to 

spectrometer conunands, including non-motor-moves is given in 

table A-4-2. 

VI - Alpha Mode and Control Mode 

Obviously the above arguments would be poor if it 

resulted in the loss of the possibility of writing alphanumerics. In 

order to differentiate between codes corresponding to alpha­

numeric information and spectrometers conunands, it is 

necessary to define two operating modes, as determined by 

the position of the bi-stable K-13: 

a) The alpha modes where all ASCII characters can be 


read and printed at the rate of 10 characters/second 


(Table A-4-1), except ASCII code 074 8 , which is used for 


switching from alpha to control mode. 
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b) 	 The control mode where a limited number of characters 

corresponding to spectrometer commands may be read as 

illustrated in Table A-4-2., 

Referring to the circuit diagram, it is seen that the 

alpha mode corresponds to K-13 being de-energized while 

the control mode corresponds to K-13 being locked energized. 

Within the control mode itself, there is yet two other 

submodes: {as determined by the bi-stable K-23). (fig. A-4-3) 

bl) 	The e mode where ~' ~, e (26 ) may be simultaneouslya a a 


moved. This corresponds to K-23 being de-energized. 


b2) The e mode where ~,~,e may be simultaneously moved. 
m m 
This corresponds for K-23 being locked energized. 

VII 	- Manual and Computer Programmed Operation. 

1. 	 Manual Operation 

Using the truth table, it is possible to manually 


program a spectrometer scan. The procedure is as follows: 


i) in the alpha mode, any keyboard character except code 


074 8 may be punched. This may be called the editing 

section. 

ii) immediately preceding the first spectrometer command, 

ASCII character 074 8 (i.e."bru"<) is punched. 

iii) Spectrometer commands are punched according to the truth 

table, table A-4-2. 

iv) 	when it is desired to return to the alpha mode, the ASCII 


code 276 8 {i.e. "ket">) is punched. The punched information 


is now as per i), and the cycle may repeat. 
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The resulting tape is now fed into the tape reader 

and 	automatic operation takes over. 

Besides the bra and ket symbols, there exists others 

which are not related to motor moves and which are now 

explicitly defined. 

a) Space: the detection of the corresponding code by the 

decoder results in no spectrometer commands. It is to 

be used in cases where the direction of the motor is 

reversed and where a time delay of the order of 15 

seconds is desired before receiving the next advance pulse. 

b) 	 Rub-out: This serves the same purpose in both the alpha 

and control modes i.e. by perforating all 8 channels, 

it results in the same effect as in a). This is to be 

used in mistake correction. 

c) $: Reactor time is precious and this symbol represents 

the "count" command. 

d) •: at this end of a scan, this symbol releases the line 

counter. 

e) 1: it signifies a change from moving em to moving e (28 )a 	 a 

2: 	 it is the reciprocal of the previous code 

Note: the meaning of these codes is as above only in the 

control mode. Otherwise they are alphanumeric characters 

having no influence on the spectrometer. 
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2. Computer programmed operation. 

The spectrometer may be controlled automatically to 

perform an arbitrary scan in (Q,t.u) space by reading a tape
N 

punched by a computer programme which does the necessary cal­

culations to move any of the four angular variables in the 

appropriate way. The adopted procedure is the following: 

calculations are performed on a c.o.c. computer (either at 

McMaster or at Chalk River) since these are the fastest machines 

in both locations. Neither of these gives a punched output though. 

The interfacing between the c.o.c. machines and the Bendix G-20 

(Chalk River) which does give a punched output is done through 

punched cards. A simple translation programme (named PAPYRUS) 

was written for the G-20 to convert to the appropriate A.S.C.I.I. 

code. The tape then contains both the coded angular increments 

and the editing section to be written besides the experimental data. 

The characters given in table A-4-3 (part 1) are all 

legal in A.S.C.I.I. and may be used freely. They correspond 

to the standard characters available on a card punch and they 

have the same Hollerith representation in both the C.D.C. and 

Bendix machines. 

Those given in table A-4-3 (part 2) are special charac­

ters which are not all legal in A.S.C.I.I. and which have a 

different Hollerith representation in both types of computers. 

Table A-4-4 lists those which may be converted to A.S.C.I.I. 

via a different representation in G-20 display code (compare 

with table A-4-3 part 2). This table A-4-4 also includes the 



151 

internal representations of the special purposes characters, 

i.e. bra < , ket >, line feed ' and carriage return -+. Thus 

the editing section may contain any of the characters listed 

in tables A-4-3 (part 1) and A-4-4 excluding the followings: 

.., Hollerith code 0-8-5 

+ II II " 11-8-5 

< II " 12-8-2 

(The ket ) is allowed as an ordinary alphanumeric 

character) • 

2 
3 

4 

5 

l!.:: 
m, 1.. r1nmm ·111Ii1•ll-I · aoDEil3Elsl6fllil91' B<GSIJ 1 II 

0 

• • •n• • • ~l~~ -. • ~" ·-~..:l:~ •e et-f- 1e o T • • • ~+--+-+~~+-c-~-- 4lt ~~ ~~~ • • .~I·. . . . . . .. 41t+- - -+-~- ~~ ~ 
0 0 0 0 Q 0 ' ';'; ; ; ; ; ; ; ,, ,, 0 ° 0 0 ° c ; ; ; ~ ili ; ; 

--1~- -+ itet-eere i ele e e ~~.. ·-r-

1--~ --; 
ll]A IBDJDG!~G IH G:.11 Km!MIN Dl PDJW SmlUIV rlJEI YI Zlit\11;g 

c:mm • I mg I • Eif3 a I 11 •• I EC Elill~il 


Table A-4-1: CHARACTER ARRANGEMENT (ASCII CODE) 
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VIII- Truth Table for Paper Tape Coding (Control mode) . 

Table A-4-2. 

a)-Motor-mov 

b)-Non motor 
Change from 

to cont 

Change from 
to alph 

Skip • . • 

Skip(alter 

Count. • • 

Release Li 

9a Mode •• 

9m Mode•. 

es symbot~~'f ~ '~ 

0 0 + 
0 0 -
0 + 0 
0 - 0 
+ 0 0 
- 0 0 

0 + + 
0 - + 
0 + -
0 - -
+ 0 + 
- 0 + 
+ 0 -
- 0 -
+ + 0 
- + 0 
+ - 0 
- - 0 

+ + + 

- + + 
+ - + 
+ + -
- - + 
- + -
+ - -
- - -

-moves symbols 
alpha-mode 

rol-mode . . . 
control-mode 

a-mode . . 
• . . . . 

nate). . . 
. . . . . 

ne Counter 

.. . . . . 
. . . . . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

~Coding Symbol 
1 2 4,.8124 1 2 

x ..., x a 
x Cl) x b.w dx CJ x 

~ x x h 
x x p 

x x x c 

x x x x e 
x x x x i 

x x x x f 
x x x x i 

x x x x q 
x x x x s 

x x x x r 
x x x x "" x x w 

x x x x t 
x x x x g 

x x x x x 
x x x x k 

x x x x u 

x x x x :t. 
x x x x y 

x x x x v 

x x x x m 
x x x x n 
x x x x z 

x x x x x x 0 

x x x x <(Bra) 

x x xx x x > (Ket) 

x x Space 

x x x x x x x x Rub-out 

x x $ 

x x x x .(Full Stop) 

x x x x 1 

x x x x 2 
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X)- Representation of characters in different codings. 

(Octal) 
A.S.C.I.I. flollerithG-20
C.D.C.Character 

.8-bits card7-hitsdisplaydisplay 
(even­codecode 

(Octal) (Octal) parity' 

A 01 01 101 
 101 
 12-1 

12-2
B 02 02 102
102 

12-3
c 03 303
03 103 

12-4
D 04 04 104 
 104 

). 2- 5........ 3 0 5 ..• • • • • E • • • _.. • . • • 0 5 .••. . . . . 0 5 .•. " • . • 105 ••. 
12-6
F 06 06 106 
 306 

12-7
G 07 07 107 
 107 

12-8
H 10 
 10 
 110 
 110 

12-9
311
I 
 11 
 11 
 111 

11-1•...•. . • 312 ... . . . . J ..... • . . 12 •..• . . . . 12 .... . • . 112 ..•. 
11-2
K 13 
 113 
 113
13 

11-3
14
L 14 
 114 
 314 


M 

N 


. . . . . f2' ..... 

p 

Q 
p 

s 
. . . . . T ..... 

u 
v 

w 
x 


.....y ..... 
z 
0 

1 

2 


..... 3 .•... 

4 

5 

6 

7 


• • . • . 8 ••... 
9 

+ 
-
* ...../ ..... 
( 
) 
$ 
= 

blank/space 
, 
. 


11-4
15 
 15 
 115 
 115 

11-5
16 
 16 
 116 
 116 

J.1- 6...•.. . . 17 .... . • . . 1 7 .... • • • 117 ...• • • . 317 •• 

11-7
20 
 20 
 120 
 120 

11-8
21 
 21 
 121 321 

11-9
22 
 22 
 122 
 322 


0-2
23 
 123
23 
 123 

. .0-3. ..... . • 3 24 ..
. . . 2 4 ... ~ .... 24 .... • . • 124 ..•. 


0-4
25 
 25 
 125 
 125 

0-5
26 
 26 
 126
126 

0-6
27 
 27 
 127 
 327 

0-7
30 
 30 
 130 
 330 


. .0-8. ..... . . 31 •... . .. 131 ... . . . 31 ... ~ •.• 131 ..• ~ 
0-9
32 
 32 
 132 
 132 


040 
 060 06033 

1
34 
 261
41 
 061 
2
42 
 062 262
35 


••• .,3 • ••••. . . 3 6 ... ~ . ...4 3 ... 
. .. 063 ..• ~ ...a6 3 .. 

4
44 
 064 264
37 

5
40 
 45 
 065 065 
6
41 
 46 
 066 066 
7
42 
 267
47 
 067 

... 27 0 ... ••. J3 • ..•.. . . 4 3 ... 
 . . . 07 0 .... ... 5 0 ... ' 
9
44 
 51 
 071 071 

12
45 
 54 
 053 053 
11
05546 
 05555 


11-8-447 
 56 
 052 252 

• 0-1 . ...• •• 5 0 ••• t •.•• 5 7 ... 
t ••• 0 5 7 .... . . . 2 5 7 .. 


0-8-4050 05051 
 70 

12-8-4251
52 
 73 
 051 
11-8-304453 
 65 
 044 

8-3
54 
 60 
 275
075 
... 2 4 0 ..• blank ...
... 5 5 .... 
• • • • 0 0 ••.. ... 040 .. q 

0-8-356 
 054 254
37 

12-8-357 
 53 
 056 056 

Note: All these characters have the same Hollerith Card 

representation in both the C.D.C. and G-20 computers. 
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X)- Representation of characters in different codings. 

Table A-4~ • (part 2). 
(Octal) 

Character C.D.C. Hollerith G-20 Hollerith A.S.C.I.I. 
display card display card 7-bits 8-bits 

codecode (C.D.C.) (G-20) (even­
10ctaJ.l _Qari tv)J.Octcall J.octcall 

60 0-8-6 007 207ii! 
[ 61 8-7 71 0-8-5 133 333 

62 0-8-2 72 135 3350-8-61 
• 63 8-2 76 072 0720-8-2• 

11-8-2.... ~..... . . . 64 . ... . .. 8-4.. . ~ ••• 6 2•••• .... . . . . ... . .... . . .. 
65 0-8-5 35 11-8-7 	

~ 

015** 
~ 

215••... ** 
66 11-8-2 61 12-8-7v 

,,.. 67 0-8-7 63 12-8-6 

t ** 
 70 11-8-5 75 12-8-2 012 •• 012 •• 

. . . . ... . . ... 7.l . ... ' • J.1-8-6.•. • . • 7 4 • .•.• . . . . 8-7. .. .. .. . . . .. . . . . . . . . . 
(' ** 72 12-8-2 64 11-8-5 074 ** 074 ** 
> ** 73 11-8-7 66 11-8-6 076•• 276 ** 

74 8-5 

75 


~ 
12-8-5~ 

• • • ] 6•••• " • l2-8-6••• ... 36•••••~ .. .__.... ' • 12-8-5••• . . ... . . .. . ... . . . . . . 27377 12-8-7 67 0738-4I 

1) Note: These characters have different Hollerith card 

representations in the C.D.C. and G-20 computers. 

2) Note: The 4 symbols followed by a double asterisk are 

special purposes characters: 

-c.o.c. display code 65 is translated into 

carriage return of the teletype (code 215) 

-c.o.c. display code 70 is translated into 

line feed of the teletype (code 012) 

-c.o.c. 	display codes 72 and 73 (bra and ket) 

respectively preceeds and follows a 

series of spectrometer commands. 
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XI) - .Intermediate representation for characters having 

different Hollerith codings in C.D.C. and 

G-20 systems. 

This 	table gives the G-20 display code correspondina 

to Hollerith card coding in C.D.C. system 

for symbols listed to the left. 

The final A.S.C.I.I. code obtained by table 

look-out is given to the right. 

(Octal) 
Character C.D.C. Hollerith G-20 A.S.C.I.I. 

display card 7~bitsdisplay 8-bits 
..(C.D.C.)code code (even­

(Octal) (Octal) parity) 

60 0-8-6 72 007 207• 
[ 61 8-7 74 133 333 

62 0-8-2 76 135 335J.. 63 8-2 33 072 072 
. • • 65 . •• . •• 0-8-5 •. . . . . 71 . .. • • 015 •••• . . • 015 •••.. . ••-+.*.*· •• 

70 11-8-5 64 012 012t ** 
72 12-8-2 75 074 074< ** 
73 11-8-7 35 076 076> ** ., .. 6177 12-8-7 073 073 

Note: Concerning the starred symbols, please refer 

to note 2) in table A-4-3. 

Table A-4-4 
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XII- Modification to the wiring of the teletype; 
1


Paper tape reader circuit. (fig. A-4-2) 

t ­ 2 

S: On/off/end-of-tape switch 


Cl: Connector to decoder 


C6: Teletype connector no. 6 


l 

2 

3 


-
~ 

4 

5 
 -

6 

7 


8 
 -
9 
 -

s14 
 - l15 


-

2 -------------- 14 

3 
 15 


1----------------116
_Tape f s4 
t--------------------tl7perforation 

6 1----------------------118 


7 1------------------119 

8 1------------------~20 


9 t-------------~----~21 

I 
 ..z:: ~--------t 22


\..'-'JL2-= 
~ 

14 I 

15 I ~ I~! 


(C6) Initial circuit (C6) Modified-circuit (Cl) ..... 
V1 
0\ 
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•• •• • • 
•• •• 

•• 

•• 

• 
•• 
• •• • •• 

• •• •• • 

• 
•• 
• 
•• 
• 

• • 

• 
• 
• • 

• • 

• 

Pins of connector Cl Pins of connector C-2 >< 
H 
H 

0 
0::s
=' r= 
fD ::s
<l .... 11 
rt ~::I 0_l :::r -n 
11 

··----~.-.Ci j r. 
IV 

l .... r. 
J ~ 

.. r. 
r. e: t 
r. -' ..f" r. 
J ..-: r. 
r. .. r.'·•il 

ru=iJ+ 
ri 

4 S\YJTCH FUN(! IONS•• I •e---l 1•' ...c£&IJ-­ -~-~Sz• t- I t ... ' 
WHEN CLOSED. 1NSTRUCTIONS51 
CONTROL .ARE WRITTEN~ .... ~... 

S2 PRESS TO RESET CYCLE 
ti:::!.. .. ]~

I 
I" S3 WRITE- COl\:TROL SWITCH....• • t ,. 

INTERFACING PAPER TAPE READER 

1: +24 v. to reader contacts(&) 
2-9: From reader contacts (8) 

rt- n 10~ Teletype write-inhibit
00

::s 12+22: To incandescent lamps (2)
rt- ::s 
ct CD 14-21: Teletype write signal 

J: :i •. J ..
. __, 
• 

Is. 
._. .. • J l T' 
KIT

• : i e-; ••• 

l t 
••• 

.... n 23-24:
CD ~ 

~o

'< 11 

n 
'O·­....-
 3 3 ~ ,...--., 

I 

13 --- .. le..J le.-J=E' c. :i- DJj Zq r.-. 
:. c.
~ 

I
1:-.,161 =====t'=' :. r.~ 1:_ •

{ 1:.... 
l__J:_.~= :. :.. .
~::
:1 == ,22tl l -ft 

23 

~ > > > . ~
~. 

• • • ~I fWJ.i­L..rs.1...~. 

..___ -

l!..J I_!• .. .. 

Teletype advance 

1-2: Analyser motors 

10: ) 9&10: Release 

3-4: Phi-motor 
5-6: Psi-motor 
7-8: Monochromator motor 

9: skip ) 
count 

14: Advance pulse 

H 
I 

n .... 
11 
0 
r=.... 
~ 

p..... 
I» 

n 
IQ
11 

0 
::s ~ 
~ 

0 
0 Hl .... 

~ 
::J' 
CD 

p. 
CD 
n 
0 p. 
CD 
11 

·-Hl.... 

IQ. 


w-

FOR 

TO 
CONTROL UN:T. 

A.S. C. 1. I. DECODER 

21-0CT- 1989, A.I. 
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Appendix A-5 

Design of a self-protected motor/clutch control circuit 

Purpose: i) to allow the motors to be energized 

continuously during an angular scan instead of being pulsated 

as is presently the case, resulting in: 

-an increase in average angular speed 

-reduced heating of the motor 

-higher torque 

ii) to allow a certain dead time (~) sufficient 

for the motor to stop completly before reversing direction. 

iii) to protect the system against jamming of 

the moving parts (especially the¢ arm). 

The circuit is illustrated in fig. A-5-1. Basically it 

can be divided in 3 parts: the motor-control (part 1), the 

self-protection (part 2) and the cut-off relay (part 3). 

Part 1 contains a bistable made up of relays A -1 and A. -2 

which can be locked in two configurations,"forward" or "reverse", 

depending whether points 'P-3 or T-+ have a voltage level. After 

locking in either configuration, a thermal delay relay (of 

time constant~) is energized to delay the application of power 

to the motor; this time lapse is sufficient to allow the motor 

to stop if it was previously turning in the opposite direction. 

Once the motor is started, it will be continuously energized 
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unless the direction of motion is reversed or a counting period 

is started. 

Part 2 is a protection circuit which would energize the 

relay ) -1 should the spectrometer jam against an obstacle. 

Then the clutch and relay A-3 would be energized for a longer 

time than the time constant of the delay circuit and relay ~-1 

would become energized, thus cutting power to the motor and 

the clutch, until manually resetted by temporarily opening 

the switch S-2. This feature is intended to be used only on the 

~ motor where obstacles may be encountered along a scan; for 

the other motors, this part may be avoided completly by connec­

ting directly point P-1 to point P-2. 

Part 3 is a relay which turn the power off during a 

count period, thus stopping the motor. Obviously only one such 

relay is needed if this circuit is installed on more than one 

motor. 

This appendix was included for future reference since 

the circuit has not been built yet. Installation should be 

simple since it is only a straightforward insertion 

between the control unit and the motor without modifying 

either of these. 
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(117VAC) 

•24 v (WHEN COUNTINGi T l · - 02 • ~---Pl 
------ L-2 ~ -::b­-----...----------­

+24V !3-1 L-1 

·• -•· • J: 
u.. 

---------.....--~------~~-u 
{! 

---to I • 

N.C.~-2_.. NE-4 
Jam Sfgnal 
..-..--­

4 P2 

P3 
Al • • • 

r-
I P5
I ..... 0L.

COMMON 0 
~ 

PG ~ 

P4 (117 V Ac!jE-2 
A2 • ••Reverse 

Fig. A-5-1; Motor/Clutch Control (Self-Protected) 
Legend: Al,2,3:AC Relays· Dl,2:DC Relays. 

L-1,2: 24 V Lamps; NE-1,2, 3,4: Neon Lamps 
T: Thermal Delay Relay 



Appendix A-6 

Bibliography of papers relevant to the scattering of 

thermal neutrons. 

A search was done through the scientific litterature 

in order to collect in a bibliography papers relevant to the 

scattering of thermal neutrons. The earliest year surveyed was 

arbitrarily set as mid-1962 and the search covered the journals 

listed in table A-6-1. Most of the title collecting was done 

in cooperation with R. Dymond but recent updatings were done 

more fairly by requiring all people in our group to cooperate. 

Up to the beginning of 1970, we have 1828 references 

relevant to experimental work and 649 relevant to theor~tical 

and technical subjects; these numbers include cross-references. 

This amount of data has created a certain handling problem 

which was finally solved, after trying other unsatisfactory 

methods, by the present procedure which is now briefly described. 

Individual references are stored on computer cards 

according to the format listed in table A-6-1. This format is 

compatible with that required by the computer library program 

KWIC (Key Words In Context) which is a general SCOPE programme 

to do alphabetical sorting. 'Ihe duplication of columns 201-240 

from columns 41-80 initially stems from this reason. It also 

serves as a check that each reference record is complete. 
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Since the pDogramme KWIC is not presently working 

reliably, a computer programme (named BARBARA) was written 

which could serve our own special purpose since the sorting 

of chemical formulae is not stricly an alphabetical sorting 

as a moment reflection shows. Every time that an updating is 

performed, two copies of a magnetic tape are obtained as a 

safeguard against accidental erasure. 

It is hoped that this work will be annually distributed 

to interested research groups. 

Table A-6-1; Format for reference records as 

adopted for computer programme BARBARA 

I) Experimental papers. 

(3 cards per reference records) 

Col. 1-40 Journal reference using standard abbreviation 

41-72 formula 

73 Blank 

74-80 Category of work using standard code 

81-200 Authors list 

201-240 duplicate of col. 41-80 

II) Theor&tical and technical papers 

(3 cards per reference records) 

Col. 1-40 Journal reference using standard abbreviation 

41-80 Authors list 

81-200 Title of paper 

201-240 Duplicate of col~ 41-80 



163 

Table A-6-1; Journals and the first issue surveyetl. 

Acta Cryst. Vol. 16 (196 3) 

Ann. de Phys. Serie 13, tome 8 

Ann. of Phys. Vol. 21 (1963) 

Can. Journ. Phys. Vol. 41 (1963) 

Comptes Rendus Tome 256 (1963) 

Dissertation Abstracts Vol. XXIV (1963-4) 

Journ. App. Phys. Vol. 34 (1963) 

Journ. Phys. Chem. Sol. Vol. 24 (1963) 

Nucl. Inst. Met. Vol. 20 (19 6 3) 

Phys. Rev. Vol. 129 (1963) 

Phys. Rev. Lett. Vol. 10 (1963) 

Phys. Stat. Sol. Vol. 1 (1962) 

Phys. Lett. Vol. 1 (1962) 

Proc. Phys. Soc. Vol. 81 (1963) 

Proc. Roy. Soc. Vol. 271 (1963) 

Rev. Scient. Inst. Vol. 34 (1963) 

Sol. Stat. Comm. Vol. 1 (1963) 

Sov. Phys. J.E.T.P. Vol. 16 (1963) 

Sov. Phys. Sol. State Vol. 4 (1962) 

Also surveyed were 

The proceedings of I.A.E.A. symposia held in 

Vienna (1960), Chalk River (1962)' 

Bombay (1964) and Copenhagen (1968). 
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