Population frecosting for the tain?
Monk allemang

ABSTRACT

This paper applies a cohort survival model to an age- and sex-disaggregated 1985 "base" population of Ancastinn. Using a fortran programme, low, high, and "most probable" projections ware made for a 1986 to 2001 time horizon. The migration component was found to be the single most important projection variable. Consequently, only migration was varied between the threes sets of projections. ln analyzing migration for Ancaster, we identified a persistent trend in net. migration over the 1971 to 1985 period. This finding allowed us to apply the 1985 male and female age profiles of net migration to the immigrants. Thus, this study more accurately quantified net migration than previous studies.

ACKNOHLEDGEMENTS

I would like to thank my supervisor, Dr. KnL. Liaw, for all the assistance and advice he provided. This paper could not have been completed without his support.

I also wish to offer my thanks to Mr. Fet,er Tollefsen, Town Frlanner for Ancaster, and Mrs. Gail Folland, Clerk's Department, for their assistance.

TABLE OF CONTENTS

Abstract(ii)
Acknowledgements(iii)
(iv)
Table of Contents
(vi)
List Of Tables(vii)
List of Figures
1.0 Introduction 1
1.1 Fesearch objectives 1
1.2 Importance of The Research 2
2.0 Population Forecasting 3
2.1 Prior kesearch 3
2.2 Context, Of This Research 8
3.0 Research Methodology 9
3.1 The Lestie Model 9
3.2 The Frojection Model 10
3.2.1 Incorporation of Migration 11
3.2 .2 Staging of The Model 12
3.3 Frojection Variables 13
3.3.1 'Ease' Population 13
3.3.2 Survivorship Froportions 13
3.3.3 Fertility Rates 14
3.3.4 Sex Ratio 14
3.3 .5 Migration 15
3.4 Data Modifications/Assumptions 16
3.4.1 Disaggregation of The 1985 16
3.4.2 Incorportation Of Unknowns 17
3.4.3 Determination of TheSurvivorship proportions18
3.4.3.1 Estimation Of 1982 Age- Specific Mortality Rates 18
3.4.3.2 Determination of The Stationary Age Composition 19
3.4.3.3 Det,ermination Of Survivor- ship Froport,ions 21
3.4.4 Determination of The 'Rirth' Rates 21
3.4.5 In- and Out-Migration 233.4.5.1 Determination of The 1985In- and Out-Migration23
PAGE
3.4.5.2 Determinatiom Of A Fersist- ent Migration Pattern 23
3.4.5.3 Determination Of Separate In- and Out-Migration Rates 28
3.5 Frojection Assumptions 29
3.5 .1 Survivorship Proportions 29
3.5 .2 "Birth" Kates 30
3.5 .3 In- and Out-Migration 31.
3.6 Frojection Scenamios 32
3.7 The Computer Frogramme 34
4.0 Research Findings 36
4.1 Fopulation Frojections For Ancastar 36
4.2 Projection Accuracy vs 1985 Census Data 36
4.3 Linitation Of Findings 39
4.4 Conclusions 40
Appendix 41
Bibliography 55

NUMEEE	SUB.JECT	PAGE
1.1	Lexis Table (1971.-1981)	26
1.2	1985 Net Migration For Ancaster	27
1.3	The Assessment and Projected Fopulation Totals, and \% Difference	38
A. 1	The 1982 Age- And Sex-Disaggregated "Base' Fopulation	42
A. 2	The 1.985 Age- and Sex-Specific Assessment fopulation	43
A. 3	The 1982 Age- and Sex-Specific Survivorship Froportions	44
A. 4	The 1982 Age-Specific 'eirtm* Rates	45
A. 5	The Ontario Mortality Schedules	46
$A=6$	The Ontario Fertility Schedule	47
A. 7	The Female Life Table For Ancaster	48
A. 8 a	The 1991 Population Projections (Female Table)	49
A.8b	The 1991 Fopulation Projections (Male Table)	50
$A_{1} 8 \mathrm{C}$	The 1991 Fopulation Projections (Female+Male Table)	51

LIST OF FIGURES

NUMEER SUBIECT EAGE
1.1 Graph Of The Stationary Age Composition Of Ancaster 20
1.2 Graphs Of The Age Profiles of The Female And Male Net Migrants 24
8. 1 a The Fortran Projaction Frogramme (Fage 1) 52
Q. 1 b The Fortran Projection Frogramme (page 2) 53
B .2 Graph Of The Population Projections For Anc aster 54
1.0 Introduction

1.1..........esearch objectives

There are two basic objectives of this research. Finst, the modification and application of the projection methodology, used at a large scale, to a municipality (Ancaster). Second, the production of population projections for Ancaster given a number of scemarios. The projectionswill be produced for a 1906 to 200 . time horizona

Using the basic population projection model, the Lestie Model, a number of trial muns will be made from the 'base' year' (1982) to 1985, for which we have the current census report. Therefore, we will be able to compare the projected 1985 population with the actual poputation, and gauge the model's performance. The first run will be made using constant 1982 fertility and mortality rates, and zero net migration Subsequent runs will then be made for varying erends in the fertility and migration rates. upon inspection of these runs, the relative importance of these projection variables will be detemmined. The important variable(s) will then be selected and varied in order to
protuce low and high projection somanios. Finally. given the results of these scenarios and using recent historical trends for the Town of Ancaster, this mesearch will produce a "most probable' projection for Ancester =
1.2 The Importance of The Eesearch

Over the years very little population forecasting has been done for the Town of Ancaster. This is probably the case for most other mumicipalities in Ontario as well. Therefore, population forecasting at the municipal level is an important research topic, not only for its applied value, but also from a methodological perspectiven

From an application standpoint, the population projections for spacific years are important statistice for the business communits, educatonal authomities, and mumicipal governments. The business communty is interested in the age and ses breakdown of the population projections when considering the location of businesses. The various boards of education are interested in the age and sex compositions of the future populations for a number of reasons, not the least of which is futume Encollmant: From a planning perspectiva municipal goverrments are interested in population projections whem considuring housing, education, recreations, heat th and other social welfare servicus.

Population forecasting at the municipal level is also an important study from a methodological standpoint. Most of the research in population forecasting is done for a lange amea, such as a nation, state or province. Themefore, the porecasting methodology for a mall area is not well developed. often the data availablefor a small afea, like a mumicipality, is not as detailed as that available for a lange aras, like a nation. Consequently, a number of inferences will meed to be made about the datax These inferences make population forecasting at the municipal level quite different from forecasting done at the national level.

20 O_Fopulation Forecasting

2.1. Frior Fesearch

Theme exists a number of projection methodologies Which could have been selected for this researcha These include the Migration and Natural Increase Method, the Extrapoletion method, the Fatio Method, and the Cohont Survival Method. The Migration and Natural Increase Method was used in the 1976 population study done by the Hemilton Wentworth Fegional Flanning and Developmemt

Sepantment. They selacted this method because it took into account the demographic components of population growth and yet was faimly simplistic to use (Hamiltonwentworth, 1976). However, this method applies average grabth rates to the whole population instead of appluing them to particular age groups within the population. Thus the model is imheremtly less accurate. Furthermore, this method does not take into account changing birth rates, which occur for example, when daughters of the babyboom pass thmough their childbeaning years. Similanty an increasing death rates which occurs when a greatef proportion of the population reaches the older age categories, is not accounted for" Therefore, the Natural Increase and migration method is considered to bee less accurate than the Cohort Survival Method. For these reasons, the Hamiltonwsntworth Fianning and Development Department, in their 1981 "Fopulation Frojections Review", considered and subsequantly rejected the Migration and Natural Increase Method (Hamilton-Wentworth, 1981). The Extrapolation Method, along with the Migration ard Natural Increase Method, was used in the September 1775 " Demognaphic Analysis And Fopulation Trend Fomecast For The Regional Municipality of Halton" This method, Which tends to be the most common over the years, assumes that the future growth will be smooth and regular iHeltom,

197\%) Using these assumptions, this method uses past population ahanges and Extrapolates them into the futures The major drawbek of this procedume involves the assumption of stability Extrapolations invoke the unfealistic assumption that there will be no shift in wogenous factors (siegal, 1974).

The Retio method, which is a less commonly used method in population forecasting. assumes that the population growth of an urban area beare a relationehip with the population growth of another area. A ratio is determined betwesm the two populations, and the forecests for the meference population are applied to this ratio producing a population forecast for the study arean This procedure, as with the extrapolation, is plagued with the problem of stability (Siegal, 1974).

The ability to make accurate population predictions is largely dependent on the forecaster's ability to piediet components of population change over times Of coumse, the most important components are births, deathe, and migration. As inputs to the model, futume fertility, mortality, and migration rates must be predicted. The assumptions of future grouth are based on observations of histomical trends for each component, adjusted to meflect recent trends (Hamilton-Wentwomen, 1981). As noted in the 1976 and 1981 Hamiltonmentworth

Population Frojection reports, obeerved growth patterns of Fertility and mignation have been especially erpatic. The 1976 report points out that the recent trend of a declining birth rate coutd be the pesutt of a delay in the timing of family formation or a desite on the part of an increasing segment of the population not to malse ohildmen (Hamileonwentworth, 1976) The 1981 report details a range of positive and negative socioeconomic factops influmeing the fertility fate (Hamilton-Wentworth, 1981). Therefore, due to the uncertainty of future levels of fertilitu and mignation, a number of population projection studies hove introduced the concept of highe low, and "most likely" projections based on varying fertility and migration mates. Eoth the 1976 and 1981 Hamiltonwentworth Regional Fopulation Frojections employed this approach, which sesms the most prudent approach given the uncertainty involved. However, many studies do not employ this method these include Erince Eduagd Istand
 Fopulation Dynamics (1901-2001) and the Dempgeppic Anglysis Anc Fopulation Trend Forscast For The Begional Muncipality ge Helton (1975). The latter, for evamply. Wes the average fertility rate of the recent past (1965 1974) for their 1975 to 2001 projections. obviously, this is a brave, if not nalve, assumption which could lead to
sone quite inaccurate resulte. Similarly, migration is an extremely difficult factor to quantify especially for a small area like a municipality or a region. A number of different techmiques have been used by the various studies, including the Residual method and the Ratio Method. Again, the Hamilton-wentworth studies, as previously mentioned, were the only mesearched studies to use high, low, and 'most likely' scenamios for migration, The cohort survival methodology is, of course, the methodology selected for this research. The theory behind this approach has been around for over forty years. FiH. Leslie, in 1949, applied a cohort survival model to a population of female Nowegian rats. He dealt with the concept of a stationary population in which the age specific fertility and mortality rates remain constant over time (Lesite, 1945). This concept provides the major simplifying assumption used in the cohort method employed in my research. In recent years, researchers such as Andrei Rogers and Nathan Keyfitz have applied the Luslie methodology to human populations (Keyfitz, 1964) . Fogers: in his paper, : Matmix Methods of Eqpulation_Analysis: developed projection matrices to simulate the combined effects of fertility, mortality, and migration. He first simulated the effects of fertility and mortality by matrix multiplication and then deseribed migretion in terms of a
transition matrix. Finally, Fogers presented an integrated mathix model of population grouth in which the combined effects of fertility, mortality, and migration are applied to an age-disaggiegated population (Fogers, lgoz) From a genemal methodological point of view, this approempis not unlike the appromeh taken in my research. other studise have also used this cohort survival method as well. Threa studizs previously mentioned all used the cohort survival methods they are: Atlantic Fegion Fopulgtion Dungmics (1981-2001), Erince Edward Island Fopulation Dynamics (1981-1996), and the Hamiltonmentworth population Frojectiove geview (1981).
$2=2 \ldots$ Context of This Research
In recent years, as evidenced by the above studies, the most popular forecasting model has been the age-cohont sumvival model. There are a number measons for this trend. First, as pointed out in the 1901 HamiltorWentworth study, the cohort survival model requires a great deal of information to operaten Therefore, due to the fact that the widewspread use of computers is only a recent phenomenon past studies found the method too cumbersome. However, since we have computems at our disposal and since this model can be computer driveng we

Cam manipulate the model to test a number of variable conditions (Hamiton-Wentworth, Igol) " Second, as is atso pointed out by the Hamiltor-Wentworth report, population Fonecasts employing the cohort survival method provide detalled age and sex breakdown of the population. These detalued fomecests ame important tools when plamers attempt to quantify future demand or future mesds for yarious types of facilities, services, and programmes (Coffey et al, 1977). For example, if the Town of Ancaster Were considering the building of a centre for seniors, an importent piece of information to consider would be the population totale of the older age groupe for future years.

3.0........ Eesearch Methodology

3. 1 . . The Leslie Model

The projection methodology for this research is based on an extension of the cohort survival model, known as the Leslie model. This model incorporates the combined wfects of birth and death procesess on an age and sex disaggregated population. The model has the following fom:

$$
\underset{\sim}{k}(t+5)=\underset{\sim}{H} \div \underset{\sim}{k}(t)
$$

Whers:

1. e(t) is the vector of the age and sex disaggregated "base' populationa
2. $\quad \underset{\sim}{n}$ is the projection matrix whicts combines the effecte of birthe and deaths bu applying age specific birth rates and age and sex specific survivorship proportions:
3. $k(t+5)$ is the vector of the projected population at time t+5 years.

Using five years as the unit time and age interval, the model can be written as :

3.2_-The Frojection Model

The projection model formulated for this resterch is a modified version of the Leslie Model, Expanded to incorporate the effecte of in and out migration. Furthermore, the model has beem modified to actept the "base" population, fertilitu rates, and survivorship proportions on a year by year basis. The model is computer
diven using a fortran programme whittan specificatuy for Whis researche This cohort survival model has the following properties;
the model:
d. produces yearly population projections.
2. disaggregates the projected population by single years of age, by ser, and by totale. for persons under 1 , 1 to 84 , and $85+$.

3n uses age-specific femtilitu mates for females from age 15 to 49 . It should be noted that these mates have been adjusted downwards to account for the attrition due to infant mortalitu.
4_{5}. uses age and sex-specific sumvivorship proportions for persons umder 1 , 1 to b4, and 85.
S. uses a variable number of inwigrants bu sex

$3.2=1 \quad$ Incorporation of Migration

As previously mentioned, my projection model is based on the Lestie model, which applies birth and death processes to the population. However. the whole projection model incorporates the effects of in- and out-migrationa Thus, the projection model adds in- and out-migration to the "Lestie population" (isex the population projected by
the Lealie model) in orden to arrive at the final
projected populations. The computer programme FROJI, which will be discussed in detail in section 3.7 , will print out not only the 'base" and projected populations but also the Lesile population Therefore, the individus importance of births and deaths and migration will be observable.

3.2.2_...Staging_0f The_Model

The projection model will be run in two stages. First, the "evaluation' stage will be performed on the model. This stage involves muning the model from a "base" year of 1982 to 1985 . The 1985 projections will be compared to the actual 1985 assessment census data in order to evaluate both the general accuracy of the model ard the relative contributions of each of the projection variables The second stage of the model is the 'projection' stage. The projection stage involves ruming the model from a 'base' gear of 1985 and producing three sets of projections, low, high, and "most probable', for the 1986 to 2001 time period. These projection scenamios and their results are discusesd in sections 3.6 and 4.0 , respectively.

3. 3 ... The Frojection Variables

3.3.1 'Base' Fopulation

The "base" population is the poputation from which the projection model initiates the projection process. The "base" population for the sevaluation' run is the 1902 assessment census data for single years of age by sex isew Appendix, Table A.j. . It is worth roting that the "base" popalation for each year, following the initial year of the projection, is simply the projected population of the previous year. The "base' population for the 'projection' stage of the model is the 1985 census data for single and aggregated years of age by sex (sex Appendix, Table A. 2). The method for disaggregating this data will be discussed in section 3 , in Tha disaggregated 1985 "base" population is stored on a computer file called POP85 and is used as one of the inputs to the projection programme Froul.

3.3.2.-. Survivorship Froportions

The survivorship proportion is the proportion of people that survive from ome age group to the next age
yrop. This mesearch detemmines the 1982 agen amb sex. spewific sumvivorehip proportions for Ancaster (see Appendix, Table A. 3) . This determination will be discussed In detail in seteton 3.4 .3. The survivorship proportions matrix is stored on a computer file called surutud and is one of the input mathices for the computer program proju.

3.3.3 Fertility_Rates

The age-specific fertility schedule nesded for Hhis meseameh is the 1982 Ancaster fertility schedule by single yeare of age and by sex. However, ro such schedule Exists for Ancaster. Consequently, the Anesster schedule was estimatud using the 1982 ontario age-specific fertilituschedule. As with the survivonship proportions, the estimation and disaggraggation procedure will be discussed in section 3.4 . Furthermore, the estimated age specific fertility schedule for Ancaster will be used as a constant for all projections (ses Appendix, Table An ${ }^{\text {a }}$ The Ancaster fertilitu schedule is stored in a computar file called ferte and is used as an input to the projection programme FROJI.

3. $3=4$ Sex Eiatio of Infants

The sex ratio of infante is thenumber of male
intants divided by the number of female infants: The average proportion of males born in Hamilton-wentworth between 1970 ard 1977 is approximately 51% implying a 5 as matio of tuon This proportion has remained fainly constart over the tast 15 yers. Therefore for this mesearch, the sex ratio will be held constant at 1.02 over the projection period.

3.3.5 Migration

The migration component of the projection model is spitt into positive and negative net migrations. For simplicitu, we will call them in and out-mignation components, respuctively. The out-migration component is ir the form of a matrix of out-migration ratesn This outmignation matrix is stored on a computer file called Xout and is one of the imputs for FROJI. This matrix will be applied to the Eestie populasion, by FROJl, to detemmine the number of out-migrants for single years of age. The in-migration comsonent is in the form of a matrix of in... migration proportions. This in-migration matrix is stored on a computer file esthed XIN and is the wewond migration input to FROJi. This matrix will be applied to the total number of inmigrants and will produce the number of in migrants in each age group. The total number of irm
migants wil be used as a varianle input to froul and wit be varied fow each set of projections. Both the in and out-migretion matrices will be held constant throughout each set of projections. The determination of the in- and outwigration will be discuseed im the mext. section.

3.4_-_Data Modifications/Assumptions

This section discusses the modifications performed on the projection variables in order to make them acceptable imputs for the projection model. The assumptions necessary to make these modifications will also be discussed.

3.4.1__Disagreagation_Of The_1985_Base: Fopulation

As pmeviously mentioned, the 1986 "base" population is available in a form that is partu aggregated for certain age groups. In order to make this data matrix palatable for froul, it must be disaggregated into single years of age. This disaggregation was done using a statistical package programme on the mainframe Galled Minitab. Minitab is used throughout this research whenever matrix arithmetic is required. First, proportions werse obtained from the projected age-disaggregated 1965
poputation produced during the "evaluation" stagen These proportions were calculated by dividing the number of persons in each year within the aggragated group by the total population of that group. These proportions were then applied to the totals fom each of the aggugated groups within the 1785 population usirg minitab. Thus the agewdisaggregated 1985 "base" population was obtained and saved in a computer file called FoFg5.

3.4.2_-..-Incorporation of Unknowns

In both the 1982 and 1985 census populations there is a sen-disaggregated group whose ages were recorded as unknown: For this research, these unknown age groups were disaggregated and then distributed among all the single year age groups. To do this, the age- and sexdisaggregated 1782 and 1985 "base" populations were divided by the sexwdisaggregated total populations using nifitab. Thus ${ }_{r}$ asex-disaggmegatec matrix of proportions for both "base" populations was obtained. These matrices were then multiplied by the sex-disaggregated umknown totals producing age- and sex-disaggregated matrices of unknowns. Finally, using Minitab, these matrices ot unknowns were added to the 1982 and 1985 "base" populations to produce the fimal versions which are stored in computer files FOFQ2 and FOFBS, respectivelu.

3.4.3 Determination Of The Survuorshif Proportions
 3.4.3.1 Estimation Of The 1982 Age and SEx=
 Specificmortality_Rates

Sines the age and sex-specific morbality pates for Ancestem ame unkrown, the 1982 male and female montality schedutes for fncaster were estimated using the 1982 Dntario mortality schedules (ses Appendix, Table A.5). As seen from table A. 5 , the Untario mortality rates were aggregated into 5 bear age groups. Eefore these montality rates could be applied to the age- and sex. diseggragated 1962 Ancaster population, this population was aggregated into y year age cohorts. At this point it was necessary to make the assumption that the fncester nortality schedule, which is unknown is similar in shape to the Ontario sehedule. The Ontario mortality schedule couta then be applisd to the 1782 Ancaster population using minitat. The fesulting schedule of "expected" deathe was totalled and compared with the total number af observed deaths recomded im fncaster in 1982. The number of observed female and male deaths for Ancaster were 3 \%\% and 26% lower, repectivelu, than the "expected" mumber" of deaths. Consequently, the Ontario mortalitu schedules were lowered by 39% and 26%, respectively, to yisld the bust estimate of the Ancaster mortalitu schedu: es.

3.4.3.2 Determination Of The Stationary Age Composition

Since the determination of the survivorship proportions requires the knowledge of the age compositions of the stationary populations that are implied by the Ancaster mortality schedules, the next step is to find the stationary populations. The estimated sex- and cohort, specific Ancaster mortality schedule was applied to the 1982 Ancaster sex- and cohort-specific age compostion in order to produce the ses- and cohort-specific number of deathe. The senw and cohort- specific number of deaths and the Ancaster age composition were the inputs required to operate a computer programe called LIFE. LIFE was ueed to produce a life table for Ancaster, as shown in table A. 7 of the appendix, containing the LL(x) column (ine. the stationary age compostion) for Ancaster. ThisL(x) colum contaiped data which was in 5 year age cohorts. Therefore, data was fed into the computer programe called sfliv which performed a smooth disaggregation on the data by a third degree splime function. Consequently, the resulting output from SFLN contaned the age and sex-specific stationary age compostions for Ancaster, asshown in figure 1.1 .

FIGURE 1.1

REAL AGE

3.4.3.3 Determination Of The_Survivorship_Froportions

A survivorship proportion is defined as the proportion of people who survive from one age group to the next ace group. Consequently, to debermine the female and mate survivorship proportions for Arcaster, each row of the female and mate Lle (x) columns were divided bu the previous rous This matrix mamipulation was performed using minitab and produced the age- and sex-specific survivorship proportions. As previously mentioned, these proportions were stored in a computer file called sunvtui. which was used as one of the inputs to FROJI.

3.4.4 Determination Of The 'Birth' Rates

In order to determine the age-specific "births mates, we first had to determine the 1982 age-specific fertility schedule for Ancaster. However, as discussed in section $3,3,3$, this schedule had to be wetimated from the 1992 Ontario age-specific fertility schedule (see Table A. 6 . . As with the estimation of the mortality schedule in section $3.4,3.1$, we had to assume that the Ancaster fentilitu schedule was similan in shape to the ontario fertility semedulen Therefore, using Minitab, the same
procudume mas followed to estimate the Ancaster fertility schedule as was followed to determine the Ancester mortality schedule. This produced the cohort-specific fertility rates which wewe then disaggregated ir: a smooth fashion using splan In order to debmmine age-specific "binun ratas for Ancester, the efocte of mortality from one age to the next had to be applied to the age-specific fertility rates. This was done using the following formula:

$$
\text { Ba }=1 / 2 \geqslant\left(, L_{0} / L_{0}\right) \geqslant\left[F_{a}+\left(F_{a+1}\right) \geqslant\left(S_{a}\right)\right]
$$

wher"e:

1. Ea is the "birth' rate for real age a.
2. Lo is the number of persons less than one yeat old in the stationary population:
3. i. is the anmual number of births in the stationamy population.
4. Fe is the fertility rate at age au
5. Fa+1 is the fertility rate at age a
6. Sa is the amual survigorship proportion at age 3.

Mintab was used to do the matrix arithmetic mequimed by the "birth" rate formulan Thus, Ba bas calculated for the 15 to 47 age groups and was stored in
the emputer file colled FERTE, as an irput to FROJL.

3.4.5...In- and Out-Migration

3.4.5.1 Determination Of 1985_In- and Out-figration

Determiniog the in and outwigerion for a place is difficult, especislly for a small town for which vers litte data is available. In ordar to quantify this migration for Ancaster, the kesidual Method was employed. Therefore the 1785 age and sex specific lestie population for Ancaster projected during the evaluation stage, was compared with the 1985 age and sex-specific assessment population. Using the Residual Method, the Leslie population was subtracted from the assessment population and the difference was assumed to be the net migration. Consequently, the most up to date matrix of inand outmigration was obtaimed.
3.4.5.2 - Determination Of A_Persistent Migration Fattern
Before any future predicting about in- and out.-
nigration could be made, some pattern in migration had to
be identified as persistent over times The 1985 net
migration for Ancaster, discussed in section 3.4.5.1. was
observed graphically using Minitab (see Figure 1.2) .

FIGURE $1=2$

Age Frofile of The Femole Net Migrants

 For Ancaster (1985)

Age Frofile Of The Male Net Migrants For Ancaster (1985)

Having viened this graph. it was avident that thare was a substantial outmigamtion of males and females between thu ages of 21 and 25 There was also a substantial in migration betwem the ages of 26 and 45 peding in the mode $30^{*}=$ for fenalus and late $30^{\circ}=$ for males (sex Table 1.2 . This table included 5-yean age cohortes starting at age 2d. In order to produce age-specific figures for net migration, a smooth disaggregation was performed on the 5 year age cohombs using SFLN. At this point it was necessary to determine if this net migration pattern in the 1985 data has been persistent through timex Towards that and, this mesearch developed a Lexis table, as shown in Table 1.1 , tracing the variations in the age compositions of each 5-year age cohort between 1971 and 1981. After inspecting Table 1.2 , it became avident that there was a significant drop in both the male and femals populations as the 16 to 20 age cohort of 1971 moved into the 21. to 2 w age cohomt of 1976 , as indicated in bold print. This trend continued as the 16 to 20 age cohort of 1976 moved into the 21 to 25 age cohort of 1901. Furthermones, as seen in the Lexis Tabie, there was a persistert petbern of irmigration within the 26 to 45 year old cohorts. These findings supportsd the hypothesis that the 1985 net migration pattern was a persistent pattem over times at least simes 1971. Therefome the
 in and out-migration data bo be used for tha projectons.

Tablen. 1 L튼Table_(_1971_七o 1981_)

Source : Clerk = Department, Toun of Ancaster. Complled usimg 1971,1776 , and 1961 a三sesement data. ?

Age	$\begin{gathered} \text { Leslie } \\ \text { F } \end{gathered}$	Fopulation M	Census F	Population M	Net F	Migration M
0.	84.	89	75.	75.	-9.	- H^{14}
1.	81.	86.	107.	110.	26.	24.
$2=$	80.	85.	112.	132.	32.	47.
3.	62.	63.	123.	118.	61.	5.
$4{ }_{6}$	76.	69.	121.	124.	45	35.
5	97.	1.93	141.	139.	44_{4}	36.
6.	93.	103.	128.	139.	35.	36.
7	105.	90.	127.	11.7.	22.	27.
8.	09.	110.	116.	133.	29.	23.
9.	96.	101.	125.	132.	29.	31.
10.	88.	126.	120.	161.	32.	35.
11.	90.	104.	112.	121.	22.	17.
12.	120.	119.	143.	140.	23.	21.
13	93.	145	115.	160.	22:	15.
14:	85.	100.	114.	120.	29.	12.
15:	136.	$141=$	141.	142.	5	1.
16.	114.	124.	123.	128.	$9=$	4.
17.	119.	134:	136	152.	1.7	16.
18.	122.	137.	123.	141.	l.	$4=$
17.	1.44.	148.	139.	137.	--3.	-11.
20.	141.	150.	131.	156:	$\cdots 10$	6
21-2\%	679.	779.	543	653.	$\cdots 136$.	-126.
26-30	368.	434.	468.	452.	110:	18.
31-35	476.	415	745:	614.	267.	1.77
36-40	593.	535	739.	744.	146.	209.
41-4\%	536.	578.	588.	658.	52.	80.
$46-50$	487.	433.	522.	492.	35.	59
$51-55$	461.	486.	489\%	506.	28.	20.
$56-59$	387.	372	411.	391.	24:	19.
60.	126.	115.	11.8.	120.	$\cdots 8$.	5.
61.	106.	87:	100.	72.	-6.	5.
62.	84.	104.	85.	108.	1.	4.
63.	94.	94.	95.	90.	I.	-4.
64.	91.	$73 \times$	89.	74.	-2.	1.
65.	79:	92.	82.	92.	$4=$	0.
$66-69$	225.	260.	230	250.	독.	$\cdots 10$.
70tup	521.	443.	507.	431.	$-14=$	-12.

3.4.5.3 Determination Qf Separate In- and_0ut Migration Rates

Firset, the male and female out-migretion (i.en negative met migration) values were removed from the 1985 met migration table (Table 1.2). These two columes conteimed negetive integers, representing the number of out-migrants, and were assigned aeros where positive values beisted. Using Minitat. Each of the values was divided by the corresponding projected total cohort... specific populations. This produced male and female colums containing the age and cohort-specific outmigration rates. In order to disaggregate the 5-gear cohort-wpecific retes, we simply decided, for the lack of additional information, to split up the cohort-specific rates everlu. Thus, a metrix of age- and sex-specific outmignation rates was developed and stored on a computer file called xout, for use in FROJI.

The second task was the determination of the age and sex-specific inmigration proportions for Amcastar. As with out-migration, a matrix of age and cohort-specific irmigrants was extracted from the 1985 net migration table. Using minitab, each element of the male and female columns was divided by the total number of male and famale in migrants, respectively. The cohort-specific values were then disaggregated evanly in the same fashion as the out-
whedion rates. Thus a matrix of agem and sex-specific inmigration proportions was provided and stored in a computer file called xin, for use in froul.

3. 5Frojection Assumptions

The accuracy of any population projection is dependent upon the ability of the forecaster $宀$ opredict the threw components of change cbirths, deathe, and migrationd. The thres most important components are births, deaths, and migration. within this section, we will discuss the reasons for holding the "birth" pates and the survivorship proportions constant for all projections. Likewise, reasons for vaming the migration lavele, through the varying of the number of building permite issued and the number of persons per dwelling unit, will also be disedesta.

3.5.1.......urvivorship Froportions

There has been a steady decline in mortality in Canada since 1929. In recent years the decline sems to have leveled offa as a reasonable approximation, the 1982 survivorship proportions, discussed in section $3.4,3$, were used as a constant for all projections.

3.5.2_Birthrotes

For population forecasting performed on a metropolitan, movincia: or national solu, the fertility component would be a major factor. However, for small town Forecasting, in which you are dealing with poputations well below 50,000, varuing the rbirthr rate is of less significance. This is especially true in situations, such as Ancaster, in which the net migration component is of such relative importance. In onder to substantiate this claim, the relative importance of the fertility and mighation components was compared using a couple of runs made from the 1982 'base" population. First, a population projection for 1983, using the established 1982 "birth" rates and migration levels, was maden A second run was then made holding inmigration at the same level and increasing the "birth' rates by 35\%. Finally, a third rum was made holding birth' rates constant and increasing in" migration levels by 35%, The results of all three runs was as follows:

		Eun_ 1	Fun 2	Fun 3
1982	Fopulation	14780	14780	14780
1983 Frojection = $=15368$			15427	15779
	Increase	588	647	999
	\% Increase	--	9\%	41%

As seen from these mesults, a 35% increase in the ${ }^{\circ} \mathrm{binth}$ rates resultad in onlu a 9% increase in the projected 1963 population. On the other hand, a 35% increase in the number of inmignante to Ancaster resulted in a 4 m increase in the .983 population. Therefore, due to these results, it was decided that the 'birth" rates would not be varied in the projection stage. Fumthermore, a 35% increase in the "birth" rates is inconceivablen However, it should be pointed out that in cases wheme the in migration rate is not as large a factor, the effects of varying fertility levels should also be explored.

3.5.3 - In= and_Out-Migration

For the projection stage of the modet, the age. and sex specific out-migration rates were held constant. Therefore, there weme only small variations in the total out-migration between years due to the changes in the age composition over time Fumthermore, there were no changes in the levels of out-migration between sets of projections. The inmigration proportions were also field constant over time and over all sets of projections. Consequently, both the in- and out-migration populations
were assumed to hove age and sex profiles that were the same as the 2985 in and out-migration schedules for Ancaster, discussed in section 3.4.5.3. Therefore, only the number of inmigrants were varied between projections. The number of in migrants to Ancaster was determined using the number of buidding permits issued and the person per dwelling unit (p.p.dsu.). The number of building permits issued, for the years 1982 through 1985, were obtained from the Ancaster Building Department. Two different numbers of persons per ewelling unit were used for this researcha A p.p.d.u. of 3.1 was obtained from the Hamilton Wentworth Planing Department and a p.p.d.w. of 2.6 was obtained from the Town Flanner of Ancaster.

3.6 Frojection Scenarios

Three projection scenarios were used during the projection stage of the research. The first two scenarios involved the projected low and high levels of inwigration based on the number of building pernite issued. The number of building permits issued in 1905 was 292. Due to a number of conditions it was assumed that the average number of building permits issued per year for the next 15 years would not go below 150 or above 450 . The conditions

Eistig in Ancater which could affet inmigratiom arm as follows:

1. Aracastar has a positiva rasidential
atmosphama

2 = Duelling unite have mostly betr of the lom dकeity and high quality (cost tupe pelative to housing available alsewherte in the pegion.
3. The Allarco development will be the first large "new town' type plamned commumity in Ancaster developed by a major privata devel lopment company.
4. A variety in the housing unit tupes is Exp:

Fif The Allarco lamds ara well serviciad by tiansportation routes which provide sasy access to the Employment armas in Ancaster, Ham: lton and the highway 403 -aEw corridor.
6. Tha fricaster Irodustrial Bussiness fartan 1

Aftor Eensidering these conditions, it was assumad that the mymage number of buildimg permits iscusd over the maxt 15 ysam would fall within tha 150 to 40 rongen As mantioned in section 3.5 .3 , two person per dwelling untte were usad in this research. Tha actusl papad.un for Ancester is mot known. Consequently, for the low projection, whe mumber of inmigrants mens detwrmined by using the papadadn of 2.6 and 150 building pemmits issuedn This high projection found the mumber of inmignants using a $P_{n} p_{n} d$ mi of 3.1 and 450 bullding permits issumd.

Finalty, the *most probables projuction used a p.p.d.u. of 2.85 and a figure of 272 building permits issutd. The p.pad.h. of 2.85 is the average between the 2.6 and 3.1 values. Due to the fact that the actuat papad.un for Ancaster is unknown, using the average value would seem to provide the most likely approximation. The selection of an average of 292 building permits issued was made because this value falls in the middle of the assumed range of 150 to 450 . Furthermore, this value is the actual number of permits issued in 1985 and, therefore, represents the most up to date figure. Thus the projection scenarios are as follows:

			$\begin{aligned} & \text { Eermits } \\ & \text { Issued } \end{aligned}$	In-Migrants
Low Projection	:	2.6	150	370
High Frojection	:	3.1	450	1395
'most Probable'	$:$	2.85	292	832

3.7 The Computer Frogramme

A fortran programme, called FFOJl, was written specifically for this reseatch. The programme, shown in Figume E. 1 of the fppendix, was used to drive the projection model. Thus the programme applied the sffects of birthe, desthe, and migration to an age- and sex disaggregated "base' population. The projection programme

Wes uewd during both the "evaluation" stage and the "projection' stage of the research. Thus, the inputs required by FROJI are as follows?

'Evaluation' Stage

1. Age anc sex-disaggregated 1982 "bese" poptlation.
2. Age- and sex-disaggregated survivorship proportions.
3. Age-wisaggregated "birthr rates.

4* Age- and sex-disaggregated outmigration mates.
xOUT
5. Age and sex-diseggregated inmignation proportions.

XIN

Another input required by the programme is the value for the number of projections (NF.J). As sexn on line 140 of the programe, this value was 16 for the 'projection' stage in order to project from 1985 to 200 L . For the 'evaluation' stage it was 3 .

'Evaluation' Stage

i. Age- and sex-disagregated 1985
"base" population.
Computer File

* Note * All other inputs for the "projection" stage are the same as for the 'evaluation" stage ilisted atove)
4.O.- Research Findings

4.1 Fopulation Frojections For_Ancaster

The projetted populations for the thres senarios, at 5 Hear intervals, ape as follows:

Projection				
Scenario	1986	1991	1996	2001
Low	16753	17545	18272	18856
High	17757	23745	29762	35478
Most Frobable?	17195	20227	23208	25979

4.2_-_Frojection_Accuracy

The "evaluation' stage involved running the model, until loge, using constant 1982 laveis of "birth" fates and survivorship proportions. The number of in-migrants used for this run was determined by multiplying the number of permits issued in 1985 (292) by a p.p.d.t. of 2.6 . The results of the two runs are as follows:

	Total	Female Total	Male Total	Sex Ratio
Assessment Fopulation	16542	8181	8361	1. 02
Frojected Egpulation	16449	8132	8317	1.02
Difference	93	49	44	
\% Difference	0.6	0.6	0.5	

As seen from these results, the model appeare to be predicting quite well. The projected and assessment total populations are reasonably close. Furthermore, the sex ratios of both the assessment population and the predicted population are the same. Due to the fact that the migration component is an estimated quantitu, one cannot expect the model to predict total population with much more accuracy than is evident in these resulte. Consequently, it appears that the Leslie part of the model is working well. Although the prediction of total populations is acceptible, there still remaine the age profiles to be chetsed. To do this the ± 985 projected population was aggregated into age cohorte for the purpose of dinect comparison with the 1985 assessment figures (ses Table A. 8 in the Appendix). The results of the comparisom, between the age-specific totals, are as follows:

TAELE $1=3$

Age Group	Grand Total *Assessment	Grand total Frojected
	Fopulation	Fopulation

\% Difference

0	1.46	160	$+8.8$
1	211	159	--24.6
2	230	161	$\cdots 32.4$
3	235	150	-36.2
4	239	193	19.2
5	273	227	--16.8
6	260	218	-16.2
7	238	213	-10.5
8	244	215	- 11.9
9	250	213	- 14.8
10	274	232	-15.3
11	238	210	- 11.8
12	276	253	- 8.3
13	268	249	- 7.1
1.4	229	205	-". 10.5
15	276	285	$+10.5$
16	245	244	0.0
17	281	257	- 8.5
18	250	263	+1.9
19	270	286	+ 5.6
20	281	261	-7.1.
21-25	1169	960	-17.9
26-30	899	862	--7. 4.1
31-35	1328	1495	+11.2
36-40	1.4.49	1715	$+15.5$
4.1-45	1217	1384	$+12.1$
46-50	991	1067	+7.1
51-55	971	1026	+ 5.4
56-59	784	817	+4.0
60	233	248	+ 0.0
61	187	192	+2.6
62	188	180	- 4.3
63	1.80	179	0.0
64	150	161	0.0
65	170	165	2.9
66-69	469	461	- 1.7
70+40	216	883	--3. -6

[^0]As Eewn from Table 1.3 , the model significantly Undurwpredicte the munber of children from ages 1 to b. Furthermore, the model significantly under-wpredicte the 21 to 25 ags cohort, for which we anticipated significant ouswigration The model over-predicted for the 31 to 35 , 36 to 40 , and $4 i$ to 45 age cohorts for which we anticipated sigmificant inmmigration. Therefore, the modet would appear to over emphasize the expected in- and outmigrations, to a certain degreen Generally, the rest of the age groups are predicted quite well with the older age categories being especially well predicted.

4.3 Limitation_Findings

The population projactions made in this research are the best possible, given present knowledge about the conditions in shcester and about migration levels. Howsver, accurate prediction is not an easy task giver the smallness of the at-wisk population. Although conditions point to the continued growth of Ancaster, the land use development patterms are politically controlled and are thus somewhat uncertain. In order to overcome this problem of reliability, a range of population projections was formulated. These ane the low, high, and "most probable"
projectuns. This reseamcher bet iwas that the future populations of Ancaster will fall within this range and that the future populations will most closely follow the "most probable" projections.

4.4 Conclusions

As shom in Figure B. 1 in the Appendix, low, high and "most probable" projections were produced for Ancaster: The "most probable" projection, which was the midde projection, predicted a population of 25979 for Ancester in 2001 (sem pa 36). The computer programme, shown in appandix B, produced yearly projections for the projection period. An example of such a printwout, shouing the Female, dale, and Femaletmale Tabier can be sem in Table A. Ba, A. 8b, and A.8c, respectively.

All projections weme made holding the "birth" rates and survivorship proportions constant at 1982 Luvels. Although this did mot seem to dimemish the qualitu of the projections, further research should test the projection model by varying time "birth' rates and survivorship proportions. However, given the time constrainte, the projections produced proved wo be quite worthwhile. Furthermore, this research demonstrated that, with certain ata modifications and assumptions. forec asting methodology developed on a national scate an be used at a small town scale.

The 1989 Age- And Sex-Disaggregated ${ }^{\text {ºbase }}$ Fopulation TABLE A.

Age	F	m	Age	F	m
0.	63.	63.	50.	85.	90.
1.	76.	89.	51.	90.	99.
2	97.	103:	52.	99.	109:
3.	93.	102.	53.	104n	108.
4.	1.05.	70.	54.	100.	108.
\%.	89.	110.	55.	97.	97.
6	96.	101.	56.	93.	97.
7.	88.	12\%.	\%	129.	121.
8.	90.	104.	58.	109.	91.
9.	120.	119"	59.	86.	110.
10.	93.	1.45.	60.	97.	97
11.	85.	108.	61.	93.	78.
12.	136.	1.41.	62.	80.	94.
13.	114.	124.	63.	59.	68.
14.	11.9.	134.	64.	58.	77.
15.	122.	137.	65.	54.	63.
16.	144.	148.	66.	59.	63.
17.	141*	150.	67.	61.	54.
10.	152.	195.	68.	44.	61.
19:	166.	160.	69.	50.	48.
20.	132.	156.	70.	37.	53.
2..	116.	143:	71.	37.	32.
22.	113.	125.	72.	31.	42.
23.	79.	111.	73.	33.	34.
24:	65.	91.	74.	39.	30.
25.	65.	86.	75.	26.	26.
26.	77 c	75.	76	28.	15.
27.	72.	71.	77:	28.	20.
20.	73.	66.	78.	17.	21.
29.	107.	84.	79.	17.	15.
30.	91.	80.	90.	25.	9.
31:	96.	78.	81.	11.	12.
32.	107\%	79.	82.	24.	8.
33.	94.	87.	83.	8.	1.
34.	126.	108.	84.	6.	3.
35.	133.	132.	85.	55.	26.
36.	145.	107.			
37.	98.	101.			
38.	113.	105.			
39.	121.	106.			
40.	111.	140.			
41.	103.	113.			
42.	88.	117.			
43.	101.	78.			
44.	102.	74.			
45	95.	93.			
46.	94.	93.			
47.	75.	73.			
48.	92.	108.			
49	98.	63.			

1985 Age- and Sex-Specific AssessmentPopulation TAPLE A. 2

Age	F	M	Age	F	m
0.	73	75.	42.	121.	135.
1.	105.	108.	4.3.	120.	135.
2.	110%	129.	$44=$	104=	116.
3.	120.	116.	45.	104.	116.
$4=$	118.	12\%	46.	101.	96.
5.	137	136	47.	107.	101:
6.	12\%	136.	48.	101.	96.
7	124*	115.	49.	101.	96.
$日_{\text {\% }}$	115.	130.	50.	97.	91.
9.	122.	129.	51.	105.	1.08.
10.	117\%	159.	52.	90.	94.
1.1.	110.	117.	53.	86.	89.
12.	139.	137	54%	95.	99.
13.	112.	157.	55	100.	103.
14.	112.	1.19.	56	1.09.	1.03.
15.	137.	139.	57.	72.	88.
16 .	120.	125.	58.	100.	95.
17:	132.	148.	59	100.	95.
18.	120.	138.	60.	1.15.	118.
19:	135.	1340	61.	97.	90.
20.	128.	15.	62.	83.	105.
21.	149.	179.	63.	92.	80.
22.	122.	146.	64.	87.	73.
23.	96.	115.	65.	80.	90.
24.	80.	76.	66.	58.	63.
25.	86.	102.	67.	60.	66.
26.	79.	75.	68.	51.	56.
27.	63.	80.	69.	54.	58.
20.	101.	97.	70.	57	50.
29.	100.	97.	71.	54.	46.
30.	95	73.	72.	49.	42.
31.	101.	64.	73.	$44^{4 .}$	48.
32.	146.	120.	74.	30.	26.
33.	160.	132.	75.	35.	30.
34.	153.	126.	76.	30.	26.
35.	167.	139.	77.	35.	30.
36.	130.	131.	78.	19.	17.
37.	152,	152.	79.	15.	12.
30.	159:	160.	80.	25.	21.
39.	152.	152.	81.	15.	12.
40.	129.	131.	82.	15.	12.
4 I.	126.	141.	83.	15.	12.
			84.	10.	8.
			85.	44 ,	38.

The 1982 Age And Sex-Specific Survivorship Proportions TABLE A. 3 (Computer File : SURUIVI)

	F	
Age	F	M
1.	.975720	. 992950
2.	. 979760	. 999919
3.	.979730	.999849
4	. 999879	.999758
5	.997849	.999696
.	. 979829	.997627
7	. 799929	.979677
8.	. 799849	.999738
9	. 999869	.997788
10	.979889	.999859
11.	. 997910	. 999899
12.	. 997897	.999839
13.	. 999889	.999778
14.	. 999879	.997697
15.	.979869	.979626
16.	.999847	. 999545
17.	.997849	. 997464
18.	. 999829	.999383
19.	.999829	.997292
20	.999797	.999210
21.	. 999799	.999128
.	.999778	.999117
23.	.9 .999778	.999117
24.	.979758	.999126
2%.	.997748	.797115
26.	. 799728	. 979125
27.	.999728	.999134
28.	. 999718	. 979154
27 :	.999707	.997173
30.	.999687	.979173
31.	. 999687	.999203
32.	. 999677	. 999192
33.	. 999657	.979201
34.	. 999646	. 999211
35.	.999626	.999210
36.	.799616	.979189
37.	. 97955	.999127
38.	.997484	.999034
39.	.997423	. 998960
40.	.999362	.998856
41.	. 999290	. 998762
42.	. 999209	.998616
43.	. 999127	.996449
44.	. 999045	. 998291
45.	.998973	.998133
46 .	. 978870	. 977742
47 m	.998756	. 997656
48	.998643	. 977348

	urviv	
49.	. 998508	. 997027
50.	.998383	. 996703
51.	. 998247	. 976334
52.	.998018	.995803
53.	. 997777	.995201
54.	. 997525	. 994613
55.	. 997291	.894004
56.	. 997025	. 993364
57.	.996777	. 992668
58.	.996516	. 991935
59.	.996253	.991185
60.	. 995976	. 990406
61.	. 995664	.989549
62.	.995169	.988325
63.	. 994623	.986972
64.	.974080	.985610
65.	. 993507	.984172
66.	. 992901	.982669
67.	. 992206	.981081
68.	.991463	.979396
69.	. 990701	.977641.
70.	. 989908	.975751
71.	. 988968	.973550
72.	. 987426	.970326
73.	. 985667	. 966640
74:	. 983860	.962599
75.	. 981.947	.958160
76.	. 98030.1	. 954228
77.	. 979917	. 954138
78.	. 979885	. 955271
79.	. 979847	. 956669
80.	. 779842	. 958338
81.	. 977879	.956249
82.	. 967892	.936776
83.	. 954977	.909318
84	. 940432	.874772
85.	. 923480	.827662
86.	. 906528	.780552
87	.889576	. 733442

The 1982 Age-Specific ${ }^{\text {Pirth' }}$ Rates For Ancaster TAELE A. A 4

'Birth'

Age Fates
0.0 .000000

1. 0.000000
2. 0.000000
3.0 .000000
3. 0.000000
4. 0.000000
5. 0.000000
6. 0.000000
7. 0.000000
8. 0.000000
9. 0.000000
10. 0.000000
11. 0.000000
12. 0.000000
13. 0.000000
14. . 007352
15. . 013260
16. . 021866
17. . 035180
18. . 047202
19. . 063260
20. . 078804
21. . 073123
22. . 106236
23. 1118143
24. . 128155
25. 133518
26. .133542
27. .1202.7
28. $\quad .117574$
29. 1.02643
30. . 087678
31. . 073741
32. . 060831
33. . 048948
34. . 038180
35. . 028881
36. . 021136
37. . 014948
38. . 010315
39. . 007075
40. . 004578
41. . 002661
42. . 001326
$44 \mathrm{n} \quad .000570$
43. . 000305
'birth' Rates
Age
44. 0.000168
45. 0.000068
46. 0.000005
47. 0.000000
48. 0.000000
49. 0.000000
50. 0.000000
51. 0.000000
52. 0.000000
53. 0.000000
54. 0.000000
55. 0.000000
56. 0.000000
60.0 .000000
57. 0.000000
58. 0.000000
59. 0.000000
60. 0.000000
61. 0.000000
62. 0.000000
63. 0.000000
64. 0.000000
65. 0.000000
66. 0.000000
67. 0.000000
68. 0.000000
69. $\quad 0.000000$
70. 0.000000
71. 0.000000
72. 0.000000
73. 0.000000
74. 0.000000
75. 0.000000
76. 0.000000
77. 0.000000
78. 0.000000
79. 0.000000
80. 0.000000
81. 0.000000
82. 0.000000

TABIE 19. Denth Rates Per 1,000 Population by Sex and Age, Canada and Provinces, 1982 - Concluded

	$\begin{aligned} & \text { Age } \\ & \text { Age } \end{aligned}$	Canada	Nad. T.-N.	P.E.L L.P.-E.	$\begin{gathered} \text { N.S. } \\ \text { N.-E. } \end{gathered}$	N.B.	Que.	Ont:
		- Permate - Fotrsinin						
2	Cobcier 1 year.	7.8	- 7.3	6.6	7.2	6.7	7.7	7.1
2		0.4	0.5	0.8	0.5	0.5	0.5	0.3
3	5-9.....................................	0.2	0.2	0.2	0.2	0.3	0.2	0.2
t	:2-14...................................	0.2	0.1	0.4	0.2	0.3	0.2	0.2
5	15-19	0.4	0.3	-	0.5	0.6	0.4	0.3
5	-0-24	0.4	0.2	0.2	0.3	0.4	0.4	0.4
\cdots	-5-89 .	0.5	0.4	0.6	0.3	0.6	0.5	0.5
$\stackrel{3}{4}$	20.s4 .	0.6	0.4	1.1	0.5	0.7	0.6	0.6
9		1.0	0.5	1.1	1.0	0.8	1.0	0.9
23	+2-44 .	1.6	1.4	1.0	1.5	1.7	1.5	1.6
12	\&5-49 .	2.4	2.5	2.8	3.0	2.8	2.2	24
12	30-34	4.0	4.6	3.1	- 4.0	3.7	4.0	4.0
13	き5-57 .	6.3	6.5	5.2	6.9	6.7	6.3	6.3
14	-0-64..	9.3	11.0	10.1	11.3	8.3	9.6	9.4
15	可 69.	15.2	15.8	10.1	16.0	14.4	16.1	15.8
29	T0-74........	24.2	26.6	13.5	25.0	25.8	25.3	24.8
\because	-5\%3	39.3	45.2	36.2	42.6	40.5	41.6	39.7
is	5	68.2	80.1	59.0	66.9	68.7	30.4	69.4
13	is and over .	143.2	143.0	125.6	144.3	128.6	139.4	143.7
33	Teck......................................	6.1	5.0	6.6	7.0	6.2	5.7	
21	Srandardined age (adjusted)................	4.2	4.4	3.6	4.4	4.2	4.3	4.2

TABtE A. 7

TABLE A.8A

FEMALE TaBLE

TABLE A． 8ε

AGE	popitasion	profitction	nisitatsom	MIGIthtion	PROAECTEO
0	175.	19.	－24．		175.
$\frac{1}{2}$	17\％：	17%	8：	5：	177：
$\frac{3}{4}$	197:	196：	\％：	13:	199：
$\begin{aligned} & 5 \\ & 6 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 190: } \\ & \text { 201. } \\ & \text { 167: } \end{aligned}$	8：	9:	219\％：
7	3i1：	350：	8：	\％：	302：
8	273：	300：	8	$4:$	27\％：
10	30：	372：	$8:$	0	㦲：
12	269\％：	376：	$8:$	5：	302：
12	273：	360	8	$5:$	$27{ }^{2}$
15 16	多900	372：	$8:$	$\frac{1}{2}:$	273．
17	结:	等：	8：		344：
$\begin{aligned} & 18 \\ & \frac{18}{20} \end{aligned}$		274：	－7\％	\％	36
$\frac{50}{57}$		紹：	－17：	\％：	鲍：
22 23 23	$\begin{aligned} & 183: \\ & 633 \end{aligned}$	193：	－3，	0.	148 169
24	1900:	131：	－11：	$8:$	106：
26	18.	60.	－${ }^{\circ}$	14：	$4{ }^{4}$ ：
27	19.	1810	8	14：	195．
28	193：	1\％：	$8:$	14 ：	309
30	59\％：	19！：	8.	14.	205
31	弱：	35	8	53.	305
32 33	337	337：	$8:$	53：	310.
$3{ }^{34}$	415：	376	$8:$	53.	429：
35	445.	413.	$8{ }^{\circ}$	53.	466
37	300 ：	437.	8.	$41:$	468 ：
36	515.	499：	8	41.	540.
30	505：	417：	8 \％	$41:$	535：
41	4350	5020	8	14	$317{ }^{\circ}$
42	430	434.	8.	15：	449 40：
$4{ }_{4}^{4}$	491.	436.	$8:$	15：	$4{ }^{4} 15$
45	䂆处：	326：	\％：	11：	3375
48	新？：	3110	\％：	11：	342：
59	273：	3170：	8.	11：	321：
51		2670：	$8:$	6：	273：
53	233．	\％${ }^{\circ}$	\％：	6	253 ：
54 59	226：	231．	8	60	237：
56	亿35：	212：	$8:$	\％：	230：
37	38：	313：	$8:$	\％：	31\％：
34	40\％：	\％\％：	$8:$	\％：	1\％：
61	209：	$315:$	\％：	1：	207：
63 63	173：	2780	－	\％：	209：
${ }^{64}$	16：	175：	－2：	0.	173 ：
65	23\％：	166：	－3．	$1:$	267：
67	16\％：	16\％：	－	$1:$	162 ：
88	18：	102：	－3：	$1:$	160. 160.
4	14，	产等：	－4．	\％：	139 137
\％	\％：	14：	－3：	\％：	13：
7	15：	79：	－	8.	760
7	75：	\％\％：	－	$0:$	7\％：
17	59：	39：	－$=$	\％：	68：
76	30：	55：	－1：	$8:$	69：
80	43^{6} ：	30.	－1：	$0:$	35：
8	510．	33：	－1：	\％：	31.
$8{ }^{85}$	10°	23：	－${ }^{\text {－}}$	$8:$	12．
65	44.	38.	－3．	6.	65.
rotal	18507.	10429．	－234．	832．	20227.

```
FIGURE B.1a

FIGURE B.1b


1220 FORMAT (ts, \(-\frac{1}{2}\)
\begin{tabular}{ll}
00 & 40 \\
00 & \(5=1\) SNA \\
\hline
\end{tabular}


-TA9PEGGGATION'TGL: "POPULATION'
1144 FORMATYY5,
0057 IAClon
WRITEA-1

1246 Fonnatititit


    It
 wRiteis,1240
0056 IAmiaNA


WhtE(9, 1295)



1230
1240
1250
WRITEITi 1230 I

Fonnat(otithitil
MORTE(9ti250)
0\% 60 tialina
0070 S-INNS





\section*{BIBLIDGRAPHY}

Coffey, W.J., F.M. Smith and A.S. Harvey. 1979. Atlantic Region Population Dunamics. 1981-2001.
Halifax, Nova Scotiat Institute of public Affairs, Dalhousie University.

Halton Regional Planning Department. 1975. Demographic Analusis and Fopulation Irend Forecast for the Regional Municinalityof Halton: oakvitie, ontario.

Hamilton-Wentworth Regional Flanning and Development Department. 1981. Hamilton-Wentworth Population Projections 1981 Reyiew. Hamilton, Ontario.

Hamilton-Wentworth Kegional Flanning and Development Department. 1976. Eopulation: Future Growth in the Hamilton-wentworth Eegion. Hamilton, Ontario.

Keyfitz, Na, " The Fopulation Frojection as a Matrix Operator," Demography, 1. (1964), 56-73.

Lestie, P.H., " On the use of Matrices in Certain Population Mathematics," Biometrika, XXXIXI (November 1945), 183-212.

Rogers, A., "Matrix Methods of Fopulation Analysis," Journal_of the American Institute of Flanners, XXXIX, 1 (January 1966), 40-44.

Siegel, J., "Fonecasting Urban Fopulations," Urban Futures for Central Canada: Persectives on Forecasting Urban Growth and Form. University of Toronto Fress, 1974.```


[^0]:    * Adjusted to incorporate unknowns.

