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Abstract

In traditional meta-analysis, a random-effects model is used to deal with hetero-

geneity and the random-effect is assumed to be normally distributed. However, this

can be problematic in the presence of outliers. One solution involves using a heavy

tailed distribution for the random-effect to more adequately model the excess varia-

tion due to the outliers. Failure to consider an alternative approach to the standard

in the presence of unusual or outlying points can lead to inaccurate inference. A

heavy tailed distribution is favoured because it has the ability to down-weight out-

lying studies appropriately, therefore the removal of a study does not need to be

considered.

In this thesis, the performance of the t-distribution and a finite mixture model are

assessed as alternatives to the normal distribution through a comprehensive simula-

tion study. The parameters varied are the average mean of the non-outlier studies,

the number of studies, the proportion of outliers, the heterogeneity and the outlier

shift distance from the average mean. The performance of the distributions is mea-

sured using bias, mean squared error, coverage probability, coverage width, Type

I error and power. The methods are also compared through an empirical study of
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meta-analyses from The Cochrane Library (2008).

The simulation showed that the performance of the alternative distributions is

better than the normal distribution for a number of scenarios, particularly for ex-

treme outliers and high heterogeneity. Generally, the mixture model performed quite

well.

The empirical study reveals that both alternative distributions are able to reduce

the influence of the outlying studies on the overall mean estimate and thus produce

more conservative p-values than the normal distribution.

It is recommended that a practitioner consider the use of an alternative random-

effects distribution in the presence of outliers because they are more likely to provide

robust results.
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Chapter 1

Introduction

Evidence-based medicine requires that the best available evidence is used when mak-

ing decisions about clinical research and individual patient care. This involves com-

bining clinical expertise with external evidence through systematic reviews (Sackett,

1997). Meta-analysis is a tool which allows for the synthesis of studies which aim

to address the same scientific question. In a clinical setting, these studies may aim

to measure the effect of one intervention versus another, or versus a control group.

Combining the best available and most relevant clinical evidence through a meta-

analysis allows a researcher to practice evidence-based medicine.

The first distinction between results within a study and results summarized from

multiple studies was made during the 18th and 19th centuries in the fields of mathe-

matics and astronomy. In the 20th century these ideas were revisited in an attempt

to summarize the results of various clinical trials. Karl Pearson is credited as the

first to synthesize clinical study results in 1904 with a set of data which counted
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infections in soldiers who had either volunteered or not volunteered for typhoid in-

oculation (Simpson and Pearson, 1904). However, Pearson questioned whether the

group of soldiers who volunteered was homogeneous to the group of soldiers who

did not volunteer. In 1935, Ronald Fisher published a textbook which identified the

issue that the effects might vary by year or location, in other words, that the effects

might not be identical from study to study (O’Rourke, 2007).

In current meta-analysis the results from various clinical studies can be aggregated

to assess the strength of the treatments. However, in the presence of outliers, the

estimate of the overall mean can be misinformative due to an inflated estimate of

the heterogeneity.

Fioravanti and Yanagi (2005) present a meta-analysis of 10 studies which investi-

gate the effect of CDP-choline as a treatment for memory and behavior in an elderly

population. Figure 1.1 illustrates that study 8 (Senin 2003) is a potential outlier.

It would be worth investigating if the overall treatment effect estimate of 0.39 is

influenced by the observed treatment effect of study 8.

1.1 Background and Motivation

Marinho and Higgins (2003) present 70 studies which investigate the effect of fluoride

toothpaste on children for the prevention of dental caries. The effect is the differ-

ence between the treatment group and the control group, and the negative values

indicate that the fluoride is beneficial. Using the standard method the overall mean

estimate is -0.30 with a p-value< 0.0001. The forest plot is shown in Figure 1.2.
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−1.00 1.00 2.00 3.00 4.00

Observed Outcome

Spiers 1996

Sinforiani 1986

Senin 2003

Piccoli 1994

Motta 1985
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Capurso 1996

Bonavita 1983

Barbagallo 1988

Alvarez 1999

0.26 [ −0.49 , 1.01 ]

0.01 [ −0.40 , 0.42 ]

2.22 [  1.42 , 3.02 ]

0.58 [ −0.14 , 1.30 ]

0.34 [ −0.38 , 1.06 ]

0.33 [ −0.23 , 0.89 ]

0.14 [ −0.33 , 0.61 ]

0.15 [ −0.04 , 0.34 ]

0.50 [ −0.03 , 1.03 ]

0.13 [ −0.28 , 0.54 ]

0.39 [ 0.07 , 0.77 ]Random Normal

Author, Year Study Effect Estimate (95% CI)

Figure 1.1: CDP-choline data from Fioravanti and Yanagi (2005)
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This meta-analysis is atypically large, and even though some outliers are suspected

through visual inspection, the overall treatment effect is not in doubt due to the large

number of studies included (Gumedze and Jackson, 2011). In this case, it may not be

imperative to perform a meta-analysis using a robust random-effects distribution. In

fact, using the alternative methods that are discussed in Chapter 2 does not yield a

drastically different result as compared to the standard normal approach. Typically,

meta-analyses contain a small number of studies and one outlier may substantially

influence the mean estimate. Figure 1.3 is a forest plot of 10 studies which explore

exercise as a treatment for depression (Lawlor and Hopker, 2001). The standard

normal approach yields an overall treatment effect of -1.06 with a p-value < 0.0001.

It would be difficult to make a decision about the outliers in this study based only

on this forest plot, however, the Mutrie study is the furthest from the mean effect

estimate and may have some influence on the estimate. It is also possible that there

are no outliers here but instead high heterogeneity. One of the proposed robust dis-

tributions will down-weight the outer points in favour of the more precise studies,

such as the Martinsen, Singh and Veale studies.

Outlier analysis is commonly discussed in the field of regression and model fitting

and there are many accepted standards for outlier detection. Cook and Weisberg

(1982) is an excellent resource for the diagnostics of outliers and the assessment of

influence. However, outlier analysis is seldom discussed within the context of meta-

analysis even though outliers can influence the overall mean estimate in a meta-

analysis just as they can in usual regression. Viechtbauer and Cheung (2010) have

applied some of the standard regression methods found in Cook and Weisberg (1982)

4
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Figure 1.2: Forest plot for Fluoride Data from Marinho and Higgins (2003)
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Figure 1.3: Forest plot for Exercise Data from Lawlor and Hopker (2001)
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as well as Belsley et al. (1980) to meta-analysis. Some familiar tools such as stu-

dentized residuals and Cook’s distance are easily applied to meta-analyses and are

further discussed in Chapter 2.

When a random-effects model is used, the common assumption is that the distri-

bution of the random-effect is normal. However, Baker and Jackson (2007) suggest

that this assumption is not adequate when the data contain unusual values. Since

most meta-analyses contain a small number of studies, omitting suspected outliers

as though erroneous can be particularly detrimental to analysis since the outlying

studies have occurred by natural random chance. It would be preferable to keep

the outlying studies but to down weight their influence on the mean estimate. This

overcomes the uncertainty and controversial decision to remove the outlier.

To address the problem of outliers in meta-analysis, Baker and Jackson (2007)

proposed the use of a heavy-tailed distribution for the random-effect as this method

is capable of down-weighting the outlying observations and does not give an inflated

estimate of heterogeneity. Using real data applications, the paper compared the

standard method’s estimates against the estimates for a model using a t-, sinh-, beta-

and Subbotin-distributions for the random-effects. The authors conclude that each

proposed distribution successfully down-weighted the outliers, leading to a better

estimate for the overall treatment mean.

Lee and Thompson (2008) argued that assuming normality for the random-effects

is often a restrictive assumption and proposed a flexible model for the random-effects.

Using real data applications, the paper compared the estimates from the normal

method with the t-distribution, skewed-t and skewed-normal for the random-effects.

7
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Data sets simulated using both a normal distribution and a skewed t-distribution for

the random-effects were used to assess the methods when the true random-effects dis-

tribution is known. This study focused on the values of the parameter estimates and

did not directly measure any performance measures such as bias, coverage, power,

etc. Model comparisons were made using the deviance information criterion (DIC).

The authors concluded that fitting a skewed distribution to data with a skewed

random-effects distribution is more accurate and leads to a better model fit. More

generally, using a more flexible distribution is very beneficial when there is suspi-

cion that the normal assumption for the random-effects may be violated (Lee and

Thompson, 2008).

Another method which is also capable of identifying potential outliers was pro-

posed by Gumedze and Jackson (2011). The random variance shift outlier model

in the paper fits a model for each observation and determines the probability that

it is an outlier. This method also down-weights the outliers and produces a more

sensible mean estimate. The results are similar to the outcomes achieved by Lee

and Thompson (2008), and Baker and Jackson (2007), with the added benefit of

identifying the outliers.

Beath (2014) incorporates all of the above methods and verifies them using real

data applications with outliers present. Beath (2014) agrees that a heavier tailed

distribution adequately down-weights outliers and proposes the use of a finite mixture

distribution as an attempt to identify the outliers and model them using a second

heterogeneity parameter. This type of mixture model provides heavier tails when

outliers are identified and allows for them to be down-weighted during the calculation

8
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of the overall mean effect. This finite mixture model is an extension of the random

variance shift outlier model proposed by Gumedze and Jackson (2011). It is found

that the finite mixture model provides more robustness over the standard method,

and it is noted that the identification of the outlying studies is a useful tool.

While all of this work determines that an alternative random-effects distribution

is needed in the presence of outliers, none of the above studies used simulated data

with artificially inserted outliers in order to systematically assess the robustness of

the methods in comparison to one another.

This thesis project includes a simulation study which varies the proportion of

outliers present as well as the magnitude of the outliers, among other parameters.

Chapter 2 outlines the methods and assumptions which are necessary to perform

a standard meta-analysis as well as perform an analysis using a non-normally dis-

tributed random-effect. Chapter 3 describes the design and results of the simulation

study. Performance measures such as bias, mean squared error, coverage probability,

confidence width, power and Type I error are compared. Chapter 4 demonstrates

the effectiveness of the different methods when applied to real data sets. Finally,

Chapter 5 summarizes the results of the project and outlines the potential directions

for future work.

9



Chapter 2

Methods

2.1 Standard Meta-Analysis Overview

The purpose of a meta-analysis, in a medical context, is to calculate statistics about

a group of studies with greater precision than the individual studies of which the

meta-analysis is comprised. For a single study of continuous measurements, such as

blood pressure, one might summarize the study using a mean. For a single study

which records count data, such as how many patients tested positive for a disease,

one might calculate an odds ratio (see Table 2.1 for an example of the discrete

data structure using a treatment and control group, where ai, bi, ci, di are counts of

events in each group). These are known as the “treatment effects” or “effect sizes”

(Borenstein et al., 2009).

The effect size represents the impact of a treatment versus a placebo or another

treatment. There are different choices of effect sizes, such as the raw mean difference,

10
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Outcome 1 Outcome 2 Total

Treatment ai bi kT i = ai + bi

Control ci di kCi = ci + di

Table 2.1: Table of count data for one study (Viechtbauer, 2010)

the standardized mean difference, the odds ratio or the relative risk, etc (see Table

2.2). In this table, yi is the observed treatment effect, or effect size, for study i where

i = 1, ..., k and the meta-analysis is comprised of k studies.

Effect size Type Formula Note

Mean Difference (MD) Continuous yi = xT − xC xT , xC are the means
from the treatment
and control groups, re-
spectively

Standardized Mean
Difference (SMD)

Continuous yi = xT−xC
Spooled

Spooled pooled stan-
dard deviation of the
two groups

Odds Ratio (OR) Discrete yi = aidi/bici ai, bi, ci, di come from
Table 2.1

Relative Risk (RR) Discrete yi = (ai/kT i)/(ci/kCi) ai, ci, kT i, kCi come
from Table 2.1

Table 2.2: Example of possible effect size calculations

Some choices of effect size may be more appropriate than others. For example,

using the log odds ratio would be appropriate to express the doubling and the halving

of a value to have the same magnitude. Not all studies use the same effect size, but

in order to perform a meta-analysis on a collection of studies it is necessary to have

the effect sizes measured the same way. If a study provides the full data set then

any effect size can be calculated, but if only the effect size is known it is not always
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possible to convert it to another outcome measure. Some conversions are available

in Borenstein et al. (2009).

The simulation study in Chapter 3 simulates generic continuous outcomes while

the real data analysis in Chapter 4 uses MD, SMD and another measure called a

ratio of means proposed by Friedrich et al. (2011).

A key motivation in this project is the heterogeneity of the study effect sizes

within a meta-analysis. It is possible that there is no heterogeneity across the true

effect sizes for each study; in this case each study would have an identical true

effect size. This is called the fixed-effects model. However, due to variations such as

patient mixes, geographical location or implementation inconsistencies, there may be

dispersion in the true underlying effect sizes from study to study (Borenstein et al.,

2010). In this case, the random-effects model would be more appropriate as it is

designed to address this concern of heterogeneity.

The goal of a meta-analysis is to calculate an estimate of the overall mean effect.

A common approach when summarizing a data set would be to take an average of

the data points. In meta-analysis, each study effect size has a different measure of

precision which is analogous to the inverse of the within-study-variance called the

weight. We would like to give more weight to the studies which present more precise

effect size estimates (Borenstein et al., 2010). The weights will be different when

considering a fixed-effects model or a random-effects model.

A useful tool in meta-analysis is a forest plot. The forest plot simultaneously

displays the observed effect size for each study, the confidence interval and the cor-

responding within-study-variance. The CDP forest plot (Figure 1.1) contains 10
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studies, the effect size is represented by a square, and the value is printed in the

same line. The confidence interval is represented by the horizontal line through the

square, the upper and lower bound values are printed next to the effect size. Study 3

(Bonavita 1983) has the smallest within-study-variance indicated by a larger square.

This study will have the largest weight. The diamond indicates the estimate of the

overall mean. The diamond is stretched horizontally to represent the confidence in-

terval of the estimate. Visually, study 8 is suspected to be an outlier, or at the very

least it indicates potential heterogeneity in the meta-analysis. It is not always clear

whether the meta-analysis follows a fixed-effects model or a random-effects model,

Figure 1.1 has been constructed using a random-effects meta-analysis and maximum

likelihood estimates in following with other authors who have used these data. This

decision is up to the discretion of the analyst, and may be based on the context of

the studies. The next sections will describe the differences between the fixed-effects

and random-effects models.

2.1.1 Fixed Effects Model

The fixed-effects model is the most basic way of combining the outcome measures.

The estimate of the overall mean will be a weighted average of the study estimates,

where the weights are determined by the inverse of the study variances. This model

assumes that each study shares a common underlying true effect size (θi = θ for all

i). In other words, it is only random sampling error at the subject level that causes

the observed effect sizes to differ from study to study. The weights for each study

are given by wi = 1/vi where vi is the known within-study-variance. The estimate
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of the true mean is

θ̂ =

∑k
i=1 yiwi∑k
i=1wi

where yi is the effect estimate for study i. Borenstein et al. (2010) suggest that

there are two main conditions that should be met before choosing the fixed-effects

model. Firstly, if one can make the argument that all of the studies come from a

narrowly defined and functionally identical population. Secondly, the estimates are

to be used only to describe the particular population, and not to be extrapolated

beyond the defined population. These assumptions are not always valid, leading to

the discussion of the random-effects model.

2.1.2 Random Effects Model

The most important difference between the fixed-effects model and the random-

effects model is that the true underlying effect sizes (θi) are stochastic. The cal-

culation of the overall mean estimate for the random-effects model differs from the

fixed-effects model in the calculation of the weights. The weights use the estimate of

the heterogeneity as well as the within-study-variances since the analysis is designed

to recognize two sources of variation. This means that the overall mean estimate can

be drastically different than the fixed-effects estimate for studies with high hetero-

geneity. Borenstein et al. (2010) urges that even if the estimates are identical this

does not imply that the methods are interchangeable. As mentioned above, the fixed-

effects model is used to describe a narrower population whereas the random-effects

model can account for diverse populations.
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For any observed value yi the weight is given by

w̃i =
1

vi + τ̂ 2
(2.1)

where w̃i = wi for a fixed-effects model with an absence of heterogeneity (τ̂ 2 = 0). τ̂ 2

is the estimate of the heterogeneity parameter. This parameter is needed to calculate

the weights and the estimate of the overall mean effect. The estimate of the overall

mean is given by

µ̂ =

∑k
i=1 yiw̃i∑k
i=1 w̃i

. (2.2)

The observed effect yi is collectively determined by the true mean, the deviation of

the study’s true effect size from the true mean and the sampling variance (Borenstein

et al., 2010).

To think about this model in terms of statistical distributions we use the same

ideas. The observed effect size (yi) will differ from the study mean (θi) by a ran-

dom amount, determined by the within-study-variance (vi). The study means (θi)

will differ from the overall true mean (µ) by a random amount, determined by the

between-study-variance (τ 2).

This is viewed as the hierarchical model

yi = θi + εi (2.3)

θi = µ+ µi (2.4)

where εi ∼Normal(0,vi) and µi ∼Normal(0, τ 2).
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The random-effects model is a common choice in many meta-analyses. Even if

the fixed-effects model is an appropriate choice, inferences are limited to the specific

population. The random-effects model allows for inferences from the meta-analysis to

be generalized across more populations. Even though the random-effects model will

more accurately describe data which has heterogeneity in the true effects (Borenstein

et al., 2009), it has the potential to inaccurately model data which contains outliers.

The heterogeneity parameter τ 2 is often nuisance as we are not directly interested

in τ 2 but require it to estimate µ. There are many different methods for estimating

τ 2, the most well known is called the “DL” method, named after DerSimonian and

Laird (DerSimonian and Laird, 1986). The method is based on a method of mo-

ments framework. Two other popular methods for estimating τ 2 are the maximum

likelihood (ML) method and the restricted maximum likelihood (REML) method.

These are common statistical approaches for determining estimators for parameters

in a probability density function and will be used extensively in Chapter 4. Kon-

topantelis and Reeves (2012) evaluate the performance of some of these methods in

a simulation study for non-normally distributed random-effects. The details of the

estimation methods will be discussed in the proceeding random-effects distribution

sections.

2.2 Outliers in Meta-Analysis

Before exploring how a robust random-effects distribution might be beneficial in

dealing with outliers, it is important to understand how to detect an outlier and
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how it might affect the result of a meta-analysis. Hedges and Olkin (1985) include a

chapter which describes various diagnostic techniques for fixed-effects meta-analyses.

Viechtbauer and Cheung (2010) uses the methods of Hedges and Olkin (1985) and

adapts them for random-effects meta-analysis. The outlier detection tools discussed

are extensions of the standard outlier diagnostics in statistical literature.

Firstly, the internally studentized residual takes the form

ri =
yi − µ̂√

Var[yi − µ̂]
=

yi − µ̂√
(1− hi)(vi + τ̂ 2)

where yi is the observed effect estimate, µ̂ is the estimate of the overall mean effect

and hi is the ith diagonal entry of the hat matrix, also called the leverage. If yi were

an outlier or an extreme observation then it would have influence over the mean

estimate, which is included in the calculation of this residual, therefore it can be

useful to use the externally studentized residual, which takes the form

r(−i) =
yi − µ̂(−i)√

Var[yi − µ̂(−i)]
=

yi − µ̂(−i)√
vi + τ̂ 2(−i) + Var[µ̂(−i)]

where µ̂(−i) and τ̂ 2(−i) are the estimate of the overall mean and heterogeneity excluding

the ith study, respectively.

There are no universally accepted cut-off points which determine if a particular

residual is too extreme, therefore we can examine the residuals in relation to each

other. If the studies agree with the model assumption, then the externally stu-

dentized residuals will follow a normal distribution, this can be checked using a Q-Q

plot (Viechtbauer and Cheung, 2010). Figure 2.1 shows this plot for the CDP-choline
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data, study 8 falls outside of the confidence limits.

Figure 2.1: Q-Q plot of the externally studentized residuals from CDP data (Fig.
1.1)

The next diagnostic measure is called DFFITS (difference in fit statistics). It

is a measure of the difference between the predicted mean effect for study i with

and without study i included in the model. DFFITS measures the influence on the

results of the meta-analysis by calculating the change in standard deviations for the

mean effect after the ith study is excluded (Viechtbauer and Cheung, 2010). The

formula is as follows

DFFITSi =
µ̂− µ̂(−i)√
hi(vi + τ̂ 2(−i))

.

Another useful measure of influence comes from exploring the change in fitted

values when the ith study is excluded, this measure is known as Cook’s distance and
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can be calculated for a random-effect meta-analysis as follows

Di =
k∑
i=1

(µ̂− µ̂(−i))
2

vi + τ̂ 2
.

When Di is larger than χ2
p+1,0.5, the ith study is a potential outlier and should

be examined, where p is the number of betas included in a mixed effects model. A

Di value larger than χ2
p+1,0.5 will move the estimate to the 100×(1− α)th confidence

boundary which is denoted by χ2
p+1,1−α. This is determined by the idea that Di can

be interpreted as the Mahalanobis distance between the two sets of predicted values

when the ith study is included and excluded, respectively (Viechtbauer and Cheung,

2010; Cook and Weisberg, 1982).

The change in the parameter estimates can also be measured as each study is

deleted in turn. This measure is called DFBETAS (difference in betas) and is calcu-

lated using

DFBETASi = (µ̂− µ̂(−i))

√√√√ k∑
l=1

w̃l(−i)

where w̃l(−i) = 1/(vl + τ̂ 2(−i)). For small to medium data sets, a value of DFBETASi

larger than 1 could indicate an influential point. Viechtbauer and Cheung (2010)

suggest that this threshold is still valid for meta-analysis.

A change in the variance-covariance matrix of the overall effect size estimates can

be measured using COVRATIO as follows

COV RATIOi =
Var[µ̂(−i)]

Var[µ̂]
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where Var[µ̂] = 1/
∑k

i=1 w̃i. Removing study i will yield a more precise effect size

estimate when COV RATIOi is less than 1 (Viechtbauer and Cheung, 2010).

Finally, the change in the estimate of the heterogeneity can be measured with

the exclusion of each study, Ri is calculated as a percent change:

Ri = 100× (τ̂ 2 − τ̂ 2(−i))/τ̂ 2.

If a study is influential then its removal will cause a decrease in the estimated het-

erogeneity and a large positive Ri (Viechtbauer and Cheung, 2010).

All of these methods are available in the metafor package using the function

influence() (Viechtbauer, 2010).

The following is R output of the influence diagnostics for the CDP-choline data

from Figure 1.1. Study 8 is identified as influential by an asterisk (*).

rstudent dffits cook.d cov.r tau2.del QE.del hat weight dfb inf

1 -0.5977 -0.2755 0.0912 1.3316 0.1851 27.3796 0.1178 11.7753 -0.2782

2 0.2071 0.0058 0.0000 1.3214 0.1868 26.7369 0.1026 10.2597 0.0058

3 -0.6030 -0.2984 0.1142 1.3926 0.1908 25.9223 0.1445 14.4488 -0.3081

4 -0.5585 -0.2568 0.0784 1.3224 0.1851 27.4964 0.1104 11.0445 -0.2580

5 -0.1430 -0.1170 0.0163 1.3354 0.1905 27.6000 0.0988 9.8772 -0.1165

6 -0.1089 -0.0929 0.0097 1.2697 0.1824 27.6268 0.0795 7.9542 -0.0913

7 0.3431 0.0566 0.0035 1.2245 0.1736 26.8406 0.0795 7.9542 0.0559

8 4.8785 1.8244 1.7803 0.2050 0.0000 3.8982 0.0715 7.1506 2.9872 *

9 -0.8932 -0.3594 0.1429 1.2385 0.1668 26.3117 0.1184 11.8417 -0.3615
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10 -0.2526 -0.1335 0.0199 1.2586 0.1809 27.6956 0.0769 7.6937 -0.1310

These diagnostic tools will help identify studies as warranting further investiga-

tion. However, identification of these studies is not the only important task. If the

outlier study is not an error then it should be included in the analysis. The next sec-

tions describe different random-effects distributions which allow for the inclusion of

the outlier or influential point but reduce its influence on the overall mean estimate.

2.3 Random Effects Distributions

The distribution of the random-effect is used to explain the variability in effect

sizes when it is believed that the effect sizes do not share a common grand mean.

This means that the variability observed in a given meta-analysis is due to random

sampling variance (the within-study-variance) and population effect variance (the

between-study-variance). The parameter of interest is the overall mean, which can

only be estimated by taking into account the heterogeneity that exists across the

population effect sizes (Viechtbauer, 2005).

The random-effects hierarchical model is

yi = θi + εi

θi = µ+ µi

(2.5)

where εi ∼Normal(0,vi) as before, but now µi is the random-effect from some

distribution g(µi|τ, φ) where τ and φ are scale and shape parameters, respectively.

Equation 2.6 is the probability density function (pdf) of observing yi (Baker and
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Jackson, 2007).

f(yi|µ, τ, φ) =
1√
2πvi

∫ ∞
−∞

exp{−(yi − µ− µi)2/(2vi)}

×g(µi|τ, φ) dµi (2.6)

2.3.1 Normal Distribution for Random-Effects

Using similar notation to Baker and Jackson (2007), the pdf of observing yi is equa-

tion 2.6 where g(µi|τ, φ) is the pdf of a normal, this gives the following formula

f(yi|µ, τ) =
1√
2π

1√
vi + τ 2

exp

(
−1

2

(yi − µ)2

vi + τ 2

)
. (2.7)

Estimating τ 2 using DL gives the estimate

τ̂ 2 =
Q− (k − 1)∑k
i=1wi −

∑k
i=1 w

2
i∑k

i=1 wi

(2.8)

where Q is called Cochran’s Q-statistic and follows a χ2
k−1 distribution under the

fixed-effects null hypothesis. The Q-statistic is

Q =
k∑
i=1

wi(yi − µ̂F )2 =
k∑
i=1

wiy
2
i −

(∑k
i=1wiyi

)2
∑k

i=1wi
(2.9)

where µ̂F is the estimated true effect under the fixed effects model. Q is the observed

weighted sums of squares and (k−1) is the expected weighted sums of squares under

the fixed-effects model, therefore Q − (k − 1) is the excess variation. If the fixed-

effects model assumptions do not hold then there may be excess variation which can
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be attributed to heterogeneity in the true effect sizes (Borenstein et al., 2009).

Another way to estimate the heterogeneity is using the maximum likelihood (ML).

This approach gives estimates µ̂ and τ̂ 2 which are the values that maximizes the

following log-likelihood

log(L(µ, τ 2)) = −1

2

[
k∑
i=1

log(2π(vi + τ 2)) +
k∑
i=1

(yi − µ)2

vi + τ 2

]
(2.10)

where µ̂ ∈ R and τ 2 ≥ 0. This is done by taking partial derivatives with respect

to µ and τ 2 and setting them equal to zero and solving for µ̂ and τ̂ 2. The resulting

estimate for τ 2 is

τ̂ 2 =

∑k
i=1 w̃

2
i [(yi − µ̂)2 − vi]∑k

i=1 w̃
2
i

. (2.11)

The equation for µ̂ (2.2) contains w̃i which must be calculated using τ̂ 2 therefore a

closed form solution does not exist for both µ̂ and τ̂ 2 simultaneously. The estimates

are typically computed numerically in an iterative procedure with some starting value

for one of the parameters.

The third method of estimation that will be used in this thesis is the restricted

maximum likelihood (REML), the log-likelihood for which includes a penalty term

and it is maximized for τ̂ 2, the log-likelihood is

log(L̃(µ, τ 2)) = log(L(µ, τ 2))− 1

2
log

k∑
i=1

1

vi + τ 2
(2.12)

again where µ̂ ∈ R and τ 2 ≥ 0. Estimating the parameters here is done in a similar

iterative manner as in the ML method.
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Recently, abiding by this generally accepted assumption of normally distributed

random-effects has received some criticism. Lee and Thompson (2008) outline some

of the concerns around this assumption, including the argument that the normal

distribution is not appropriate for any situation where there are departures from

normality. Specifically, the normal assumption can lead to poor inference when

there are outliers involved as it will tend to give an inflated variance estimate to

account for observations which lay further out in the tails.

2.3.2 t-Distribution for Random-Effects

The t-distribution has been proposed as natural choice for a robust random-effects

distribution because it has heavier tails than the normal distribution (Baker and

Jackson, 2007; Lee and Thompson, 2008). Figure 2.2 is a generic example of how

the t-distribution can have heavier tails than the normal distribution. However, with

higher degrees of freedom, the t- converges toward the normal.

The usual assumption of a normally distributed random-effect comes from the

desire for simplicity and asymptotic approximation by the Central Limit Theorem

(CLT). However, the approximations due to the CLT may be poor when applied to

the random-effect since meta-analyses typically have a low number of studies (Baker

and Jackson, 2007).

Referring again to the notation in Baker and Jackson (2007), the pdf of observing

yi is equation 2.6 where

g(µi|τ, ν) =
Γ((ν + 1)/2)

τ
√
πνΓ(ν/2)

(1 + µ2
i /(ντ

2))−((ν+1)/2) (2.13)
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Figure 2.2: Normal Distribution vs. t-Distribution

and the shape parameter φ is the inverse of the degrees of freedom ν. The pdf of

g(µi|τ, ν) is formulated by taking the product of τ and a random variable with a

t-distribution (Baker and Jackson, 2007). Both Baker and Jackson (2007) and Lee

and Thompson (2008) are referenced by Beath (2015) for the methods used in the

metaplus package for the calculations using the t-distribution.

log(L(µ, τ 2, ν)) = nlog

(
Γ
(
ν+1
2

)
πτ
√

2νΓ
(
ν
2

))+
k∑
i=1

log

(
1
√
vi

×
∫ ∞
−∞

exp

(
−(yi − µ− µi)2

2vi

)(
1 +

µ2
i

ντ 2

)− ν+1
2

dµi

) (2.14)

25



M.Sc. Thesis - Melanie Stacey McMaster - Mathematics & Statistics

The likelihood (equation 2.14) contains an integral over µi which is intractable

and requires more computationally intensive methods to estimate µ. Baker and

Jackson (2007) used a Fortran program as well as NAG library routines to complete

the estimation. Lee and Thompson (2008) used WinBUGS to carry out Bayesian

MCMC methods for the estimation process. Beath (2015) uses functions in R to

compute the numerical integrals as well as a quasi-Newton method to find the µ̂, τ̂ 2

and ν̂ which maximizes the likelihood.

Referring back to the CDP data in Figure 1.1, using the t-distribution for the

random-effect yields an overall mean estimate of 0.195 with a 95% confidence interval

of [0.053,0.361]. This new estimate is much smaller than the previous estimate of

0.39, thus it is clear that study 8 was too far out in the tails for the normal distribution

to handle properly. Using the t-distribution yields a new estimate of -0.27, a smaller

confidence interval of [-0.313,-0.247] and a p-value< 0.0001 for the fluoride data in

Figure 1.2. This change is not drastic due to the large number of studies, as expected.

The exercise data in Figure 1.3 produces almost identical estimates indicating that

there is no benefit of using the t-distribution in this case.

2.3.3 Finite Mixture Model for Random-Effects

The finite mixture model attempts to identify outlying studies and model them using

a larger variance for the random-effects distribution. The two-component model

is a mixture distribution of a non-outlier distribution and an outlier distribution.

Similar to the t-distribution, the finite mixture model includes the outliers in the

calculation of the overall mean estimate but gives them less weight (Beath, 2014).
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The distribution of this mixture model will be heavier tailed, conforming to the

general approach suggested by Lee and Thompson (2008).

The detection of the outliers is based on a method proposed by Gumedze and

Jackson (2011) which uses a random variance shift outlier model (RVSOM) to fit a

mixture model with the current observation having a different random-effect vari-

ance than the rest of the observations. Each identified outlier exists in its own group

of the mixture model. This approach is favoured over the method of removing po-

tential outlying observations from a meta-analysis. However, Gumedze and Jackson

(2011) do not suggest that this method should replace the standard random-effects

methodologies for meta-analyses; it should be used as a supplementary tool. More

details on this method can be found in Appendix A.

The methods in Beath (2014) differ from the approach developed by Gumedze and

Jackson (2011) in that all identified outliers are modeled using a single distribution

with a larger random-effects variance (ie. there are only two-components in the

model), whereas Gumedze and Jackson (2011) estimates a different variance for each

outlying study using a separate model for each outlying study. Also, Beath (2014)

allows for any number of outliers, instead of Gumedze and Jackson (2011) allowing

only up to three due to the method of using third order statistics.

The mixture model proposed by Beath (2014) assumes that each study belongs

to one of two groups, both of which have different random-effects variance. The

hierarchical model is

yi|m = θi|m + εi

θi|m = µ+ µi|m

(2.15)

27



M.Sc. Thesis - Melanie Stacey McMaster - Mathematics & Statistics

where εi is the same random within-study-variance as the standard model and µi|m

is the random-effect for group m with corresponding random-effect variances τ 2m for

m = {1, 2}. Now the pdf of observing yi is the following mixture distribution

f(yi|µ, τ1, τ2) =
2∑

m=1

πmfm(yi|µ, τm)

=
2∑

m=1

πm
1√
2π

1√
vi + τ 2m

exp

(
−1

2

(yi − µ)2

vi + τ 2m

)
(2.16)

where π1 + π2 = 1 and πi ≥ 0. This is a weighted sum of the pdfs for each group m

where each is a standard pdf as in 2.7 and is weighted by the proportion of studies

in each group (π1 and π2).

Beath (2014) uses an expectation-maximization algorithm to determine the pos-

terior probabilities of a study being an outlier, the mixture model membership prob-

abilities, as well as the estimates for µ, τ 2 and τ 2out. Some details for this method

are included in Appendix A. As a faster alternative, in the metaplus package, Beath

(2015) uses a greedy search and score algorithm (also known as a best-first search

and score algorithm) to determine the mixture model memberships. This method

starts by assuming there are no outliers (that is, the mixture distribution has one

component) then models all possible mixture models with one single outlier, using

each study in turn as a potential outlier. The process chooses the model with the

highest likelihood and the corresponding point is determined to be the first outlier.

Next, all remaining studies are added to the single outlier model one by one to create

possible two-outlier models and the one with the highest likelihood is kept. This is

repeated until the addition of more studies to the outlier model does not increase
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the likelihood (Beath, 2015). Model parameters are estimated using a quasi-Newton

method. The estimates µ̂, τ̂ 21 and τ̂ 22 are the values which are found to maximize the

log-likelihood equation 2.17.

log(L(µ, τ1, τ2)) =
m∑
i=1

log
2∑

m=1

πm
1√

(2π)(vi + τ 2m)
exp

(
− (yi − µ)2

2(vi + τ 2m)

)
(2.17)

Using the mixture model for the random-effects of the CDP meta-analysis (Figure

1.1) yields a new estimate of 0.191 with a 95% confidence interval of [0.056,0.348].

Both the t-distribution and the mixture model were able to down weight the effects of

study 8 and produce a smaller overall mean estimate of the data. Under the mixture

model, the fluoride data in Figure 1.2 has an overall treatment effect estimate of -0.28

and a slightly shifted confidence interval of [-0.315,-0.248]. The associated p-value

is < 0.0001. The results have accounted for the outlier but the overall conclusion is

the same. The exercise data from Figure 1.3 gives almost identical results under the

mixture model and the normal distribution.

2.3.4 Confidence Intervals

For a fixed-effects meta-analysis with heterogeneity present, the standard method of

computing confidence intervals using the standard error of the estimate will result

in an overestimated (narrower) interval, and thus, low coverage. The DerSimonian

and Laird method for random-effects was proposed to fix this by incorporating the

estimate for the random-effects variance. However, this method has weaknesses
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the confidence interval for the treatment effect does not account for the fact that

the heterogeneity is an estimate using observed data (Hardy and Thompson, 1996).

REML is often used to improve on this issue. However, the profile likelihood method

proposed by Hardy and Thompson (1996) can be used for all of the distributions

discussed in Beath (2014), therefore it is the favoured choice for computing the

confidence intervals. It is ultimately concluded that the confidence intervals produced

are wider than those produced by the standard method, and that the proposed

method is preferred to the previously standard approaches (Jackson et al., 2010;

Hardy and Thompson, 1996).

Beath (2014) calculates the profile likelihood confidence intervals by using a grid

search approach and a step-halving method. The corresponding p-values are com-

puted using a likelihood ratio test. The methods of Beath (2014) have been em-

phasized throughout this chapter because the R package metaplus (Beath, 2015)

implements these specific methods and is used in the following chapter.
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Chapter 3

Simulation Study

The main goal of the following simulation study is to investigate the effect of outliers

on various optimality measures and hypothesis test measures when the random-

effects distribution is heavier-tailed and provides different estimates than the stan-

dard method. Based on the literature, it was expected that a heavy-tailed distri-

bution would outperform the normal distribution. This simulation study explores

differences in three models when 5 input parameters are manipulated.

3.1 Design

There are 5 parameters with a total of 216 scenarios. Each scenario was replicated

1,000 times for a total of 216,000 meta-analyses. Table 3.1 displays the parame-

ter values and descriptions. Our algorithm follows applicable aspects of previously

published simulations.
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Parameter Description Values

µ True overall µ 0, 0.5, 1

k Number of studies in each meta-analysis 10, 20, 30, 40

p Probability each study being an outlier 0.1, 0.2

c Multiple of non-outlier study standard deviation which
is added to µ for the distribution of the outliers

2.5, 4, 6

τ 2 Heterogeneity parameter 0.01, 0.3, 0.5

Table 3.1: Simulation Parameters Descriptions and Values

The following is a systematic account of how the data were simulated with dis-

cussion on the approach following the algorithm:

1. Choose values of µ, τ 2, p, k and c.

2. Generate k observations from a χ2
1 distribution and divide them by 4. These

are the vi values. If vi ∈ (0.009, 0.6) then keep vi, if not, redraw for a new vi

(Brockwell and Gordon, 2001; Kontopantelis and Reeves, 2012).

3. Generate a single observation from a Binomial(k,p) distribution to obtain the

number of studies (kout)which will be outliers .

4. Generate k − kout observations from a Normal(µ,τ 2) distribution. These are

the non-outlier θi values.

5. Generate k − kout observations from a Normal(0,vi) distribution, for each of

the first k − kout vi’s. These are the random study errors εi for the non-outlier

studies.

6. Compute yi = θi + εi for the k − kout non-outlier studies.
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7. Generate kout observations from a Normal(µ+ c× SD(yi),τ
2) where SD(yi) is

the sample standard deviation of the k − kout non-outlier yi values. These are

the θiout values for the outlier studies. (This method of shifting the mean and

utilizing the sample standard deviation is similar to some methods incorporated

by Filzmoser (2005), Knight and Wang (2009) and Hardin and Rocke (2004),

this is discussed further in this section.)

8. Generate kout observations from a Normal(0,vi) distribution, for each of the

last kout vi’s. These are the random study errors εiout for the outlier studies.

9. Compute the yiout = θiout + εiout for the kout outlier studies.

10. Together, the k−kout yi and kout yiout make up the sample of k studies from one

meta-analysis with corresponding within-study-variances. vi. Repeat Steps 2-9

1,000 times to have 1,000 simulated samples under the selected scenario.

11. Return to Step 1 and select the next scenario parameter values.

The method for inserting outlying observations is a combination of some methods

found in the literature. Filzmoser (2005) generates “shift outliers” in a multivariate

setting, where the “clean data” are realizations of Np(0, I) and the nout outlying

studies are generated away from the clean data using Np(η · 1, I) where η = {1.5, 3}

and nout/n ∈ [0.05, 0.45]. This is a relatively small shift distance compared to other

studies. The values c = {2.5, 4, 6} were selected through trial simulations as well

as real data sets to ensure that the generated outliers were far enough away from

the rest of the data. Rousseeuw and Driessen (1999) uses a similar “shift” method
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for outlier generation. Knight and Wang (2009) insert either 0, 1 or 2 outliers into

the simulated data. The sizes of the outliers were randomly generated to be either

between three and six standard deviations or six and nine standard deviations from

the simulated data.

Rather than increasing the variance of the outlier distribution, which will produce

some points close to the mean of the non-outlier distribution (Hardin and Rocke,

2004), shifting the mean of the outlier distribution encourages the points to fall in the

tails (Filzmoser, 2005). Also, by utilizing the standard deviation of the “clean data”

similar to Knight and Wang (2009) we can ensure to some degree that the outlying

points will not severely overlap with the rest of the points. For example, if we take

study 8 of the CDP data (Figure 1.1) to be an outlier, then the standard deviation of

the non-outlier treatment effects is 0.186. A random-effects meta-analysis of the data

with study 8 removed gives a treatment effect estimate of 0.189. Thus, study 8 is

more than 10 standard deviations away from the estimated mean of the non-outlier

data. More examples of similar approaches to outlier generation can be found in

Peña and Prieto (2001) and Yong et al. (2008).

An example of simulated data with varying values of c can be found in Figure

3.1. The first panel displays the two mild outliers. These outliers are not always

prominent and may be masked by they other data points. The second panel displays

the two moderate outliers, which are more visibly detectable, but other randomly

generated “clean” points might still be close in value to the outlier points due to a

higher parameter of heterogeneity. The third panel displays the two extreme outliers.

These are more likely to be detected visually.
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c = 2.5

RE Model

−3.00 0.00 2.00
Observed Outcome

Study  10
Study  9
Study  8
Study  7
Study  6
Study  5
Study  4
Study  3
Study  2
Study  1

 2.04 [  1.66 ,  2.43 ]
 0.94 [  0.07 ,  1.81 ]

 0.13 [ −0.56 ,  0.81 ]
−1.58 [ −2.67 , −0.49 ]

 0.09 [ −0.45 ,  0.63 ]
−0.88 [ −1.78 ,  0.02 ]
 0.10 [ −0.80 ,  0.99 ]

−1.13 [ −1.95 , −0.32 ]
 0.78 [ −0.05 ,  1.61 ]

−0.01 [ −0.46 ,  0.43 ]

 0.09 [ −0.53 ,  0.72 ]

Author, Year Study Effect Estimate (95% CI)

c = 4

RE Model

−2.00 1.00 3.00 5.00
Observed Outcome

Study  10
Study  9
Study  8
Study  7
Study  6
Study  5
Study  4
Study  3
Study  2
Study  1

 3.13 [  2.39 , 3.87 ]
 3.75 [  3.49 , 4.01 ]
 0.79 [  0.27 , 1.31 ]

−0.22 [ −1.29 , 0.85 ]
 0.38 [ −0.14 , 0.91 ]
 0.61 [  0.37 , 0.84 ]

 0.09 [ −0.30 , 0.48 ]
 0.78 [ −0.22 , 1.79 ]
 1.26 [  0.40 , 2.11 ]
 1.27 [  0.63 , 1.91 ]

 1.20 [  0.43 , 1.97 ]

Author, Year Study Effect Estimate (95% CI)

c = 6

RE Model

−2.00 4.00 8.00
Observed Outcome

Study  10
Study  9
Study  8
Study  7
Study  6
Study  5
Study  4
Study  3
Study  2
Study  1

 6.93 [  6.00 ,  7.85 ]
 8.70 [  8.49 ,  8.91 ]
 2.01 [  1.62 ,  2.40 ]

−0.91 [ −1.75 , −0.06 ]
 1.58 [  0.12 ,  3.05 ]

 0.25 [ −1.05 ,  1.55 ]
 0.21 [ −0.13 ,  0.55 ]

−0.21 [ −1.15 ,  0.73 ]
 1.26 [  1.02 ,  1.51 ]
 2.17 [  1.74 ,  2.60 ]

 2.21 [  0.35 ,  4.08 ]

Author, Year Study Effect Estimate (95% CI)

Figure 3.1: Forest plots of 3 sample simulated data sets with different values of c

3.2 Computational Methods

The R package metaplus (Beath, 2015) is used extensively, methods for which are

outlined in Beath (2014).

Using a sample of yi and
√
vi values, the function metaplus() can perform a

meta-analysis using either a normal distribution or a t-distribution for the random-

effect, or can model the studies using the finite mixture model described in Chapter

2.

For the normally distributed random-effects, the metaplus() function is actually

using the metafor package (Viechtbauer, 2010) with the ML method to produce esti-

mates of the overall mean (µ), the heterogeneity parameter (τ 2) and a 95% confidence

interval for µ.

When the random-effects variance is specified to have a t-distribution the meta-

plus() function produces estimates for the overall mean (µ), the heterogeneity pa-

rameter (τ 2) and degrees of freedom (ν) using ML, a 95% confidence interval for

µ.
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For the finite mixture model, the metaplus() function produces estimates for the

overall mean (µ) and the heterogeneity parameter for the non-outliers and outliers (τ 2

and τ 2out, respectively) using ML, a 95% confidence interval for µ, and the probability

that each study is an outlier. These probabilities are not explored in this thesis

project.

For consistency, the profile log likelihood (Hardy and Thompson, 1996) is used to

compute the confidence intervals for each random-effects model (Beath, 2015). This

method takes into account the iterative process of the ML method that results in es-

timating both parameters simultaneously. The profile likelihood confidence intervals

produced are allowed to be asymmetric. Each method uses likelihood ratio tests to

compute the corresponding p-values for the mean estimates. All computations and

simulations were done using R (R Core Team, 2015).

3.3 Performance Measures

The performance measures used were bias, mean squared error (MSE), coverage

probability, confidence width, power and Type I error.

The definition of bias of the estimator θ̂ for the parameter θ is

Biasθ̂ = E[θ̂ − θ].

Thus, we estimate bias as the average

bias =
1

1000

1000∑
j=1

µ̂j − µ

36



M.Sc. Thesis - Melanie Stacey McMaster - Mathematics & Statistics

where µ̂j is the estimate of the overall mean for the jth meta-analysis and µ is the

true mean.

The definition of mean squared error of the estimator θ̂ for the parameter θ is

MSEθ̂ = E[(θ̂ − θ)2].

Similarly, the mean squared error was calculated as the average

mse =
1

1000

1000∑
j=1

(µ̂j − µ)2.

In the frequentist framework, the confidence intervals are random and the true

parameter value is fixed but unknown. The coverage probability is defined as the

probability that the random interval contains the true µ or P (L(X) < µ < U(X))

where L(X) and U(X) are the random variables for the lower and upper confidence

bounds, respectively, and X is a random sample from the probability distribution

determined by µ. Calculating the coverage probability analytically is only possible

if the distribution of the random intervals is known. In practice, the distribution

is unknown. Therefore, the coverage probability is estimated using simulation by

calculating the proportion of simulated intervals which contain the true µ (Brockwell

and Gordon, 2001). It is desirable to have the coverage probability closely match

the level of confidence assigned to the intervals (Brockwell and Gordon, 2001). The

coverage probability is
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coverage =
1

1000

1000∑
j=1

Iµ∈[Lj ,Uj ]

where Lj and Uj are the lower and upper confidence limits for the jth meta-analysis,

respectively, and IA is the indicator function which equals 1 for the subset A.

The confidence width is simply a measurement of the distance between the upper

confidence limit and the lower confidence limit. The average was taken of the 1,000

confidence widths as follows

width =
1

1000

1000∑
j=1

(Uj − Lj).

Power is defined as the probability of rejecting the null hypothesis when it is

false. The p-value given by the metaplus() function tests the null hypothesis that

the true mean is equal to zero (H0 : µ = 0) thus, the power can only be calculated

for scenarios which have a true mean µ not equal to zero (ie. for which the null

hypothesis is actually false). The power for each scenario was calculated to be the

proportion of the 1,000 p-values which are smaller than the significance level. Here,

the significance level was chosen to be 0.05. Equation 3.1 is used for scenarios with

µ 6= 0 only.

power =
1

1000

1000∑
j=1

Ipj≤0.05 (3.1)

where pj is the p-value for the jth meta-analysis.

Type I error is defined as the probability of rejecting the null hypothesis when it
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is true. In order to measure this, only the scenarios with µ = 0 can be used since

this means the null hypothesis is actually true. Therefore, equation 3.1 can still be

used but for scenarios with µ = 0.

3.4 Results

The performance measure results for µ = 0.5 and τ 2 = 0.5 can be seen in Table 3.2.

The main trend that can be seen in this table is that as c increases, the measures get

worse for the normal and t-distribution, but often improve with c for the mixture

model. The hypothesis testing measures can be seen in Table 3.3 for τ 2 = 0.5. More

trends are also explored using graphical methods.
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Number of Proportion of Outlier Bias MSE Cov. Prob. Conf. Width

Studies (k) Outliers (p) Shift (c) Norm t Mix Norm t Mix Norm t Mix Norm t Mix

10

0.1

2.50 0.19 0.16 0.14 0.13 0.13 0.14 0.91 0.90 0.87 1.25 1.22 1.15

4.00 0.32 0.22 0.14 0.29 0.24 0.20 0.90 0.90 0.88 1.51 1.41 1.28

6.00 0.45 0.15 0.05 0.49 0.24 0.14 0.93 0.89 0.90 1.91 1.41 1.22

0.2

2.50 0.39 0.36 0.31 0.29 0.28 0.26 0.84 0.84 0.82 1.43 1.41 1.34

4.00 0.63 0.51 0.38 0.68 0.62 0.53 0.80 0.80 0.81 1.87 1.79 1.66

6.00 0.98 0.67 0.38 1.55 1.28 1.10 0.80 0.78 0.87 2.59 2.18 1.88

20

0.1

2.50 0.19 0.15 0.13 0.09 0.08 0.08 0.89 0.89 0.87 0.89 0.88 0.84

4.00 0.32 0.15 0.10 0.19 0.11 0.09 0.85 0.89 0.89 1.11 0.99 0.89

6.00 0.48 0.11 0.03 0.39 0.12 0.06 0.83 0.84 0.91 1.43 0.86 0.80

0.2

2.50 0.41 0.38 0.32 0.24 0.23 0.21 0.68 0.70 0.71 1.02 1.02 0.99

4.00 0.65 0.51 0.34 0.55 0.46 0.32 0.55 0.64 0.78 1.35 1.31 1.23

6.00 0.99 0.61 0.17 1.23 0.87 0.22 0.44 0.59 0.87 1.85 1.45 1.13

30

0.1

2.50 0.20 0.16 0.14 0.08 0.07 0.06 0.83 0.85 0.83 0.72 0.72 0.69

4.00 0.31 0.13 0.09 0.15 0.07 0.06 0.78 0.85 0.88 0.90 0.77 0.72

6.00 0.48 0.11 0.02 0.33 0.10 0.03 0.73 0.72 0.93 1.20 0.62 0.65

0.2

2.50 0.40 0.37 0.32 0.20 0.19 0.17 0.55 0.59 0.64 0.82 0.83 0.81

4.00 0.64 0.49 0.31 0.49 0.40 0.24 0.38 0.55 0.73 1.10 1.09 1.01

6.00 0.96 0.52 0.11 1.09 0.67 0.12 0.26 0.48 0.90 1.52 1.08 0.84

40

0.1

2.50 0.20 0.16 0.14 0.07 0.05 0.05 0.78 0.83 0.82 0.63 0.62 0.60

4.00 0.32 0.13 0.08 0.14 0.06 0.04 0.67 0.83 0.87 0.78 0.65 0.62

6.00 0.50 0.12 0.03 0.32 0.09 0.02 0.58 0.65 0.93 1.03 0.48 0.56

0.2

2.50 0.40 0.38 0.33 0.20 0.18 0.16 0.40 0.46 0.53 0.71 0.72 0.72

4.00 0.64 0.50 0.29 0.49 0.39 0.21 0.21 0.47 0.71 0.94 0.96 0.88

6.00 1.00 0.60 0.10 1.14 0.77 0.08 0.12 0.37 0.89 1.32 0.91 0.70

Table 3.2: Table of Optimality Measures for µ = 0.5 and τ 2 = 0.5
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Number of Proportion of Outlier Power for µ = 0.5 Power for µ = 1 Type I Error Average p-value for µ = 0.5

Studies (k) Outliers (p) Shift (c) Norm t Mix Norm t Mix Norm t Mix Norm t Mix

10

0.1

2.50 0.60 0.61 0.61 0.96 0.96 0.94 0.10 0.10 0.13 0.10 0.11 0.11

4.00 0.60 0.60 0.56 0.96 0.96 0.94 0.10 0.11 0.12 0.09 0.11 0.12

6.00 0.49 0.55 0.50 0.93 0.96 0.95 0.08 0.15 0.12 0.10 0.13 0.15

0.2

2.50 0.70 0.69 0.67 0.98 0.98 0.97 0.17 0.17 0.18 0.06 0.07 0.09

4.00 0.69 0.68 0.62 0.98 0.97 0.94 0.20 0.20 0.17 0.06 0.09 0.11

6.00 0.64 0.64 0.52 0.94 0.95 0.90 0.21 0.27 0.15 0.06 0.10 0.15

20

0.1

2.50 0.87 0.84 0.83 1.00 1.00 1.00 0.14 0.13 0.14 0.02 0.03 0.04

4.00 0.88 0.81 0.78 1.00 1.00 1.00 0.15 0.13 0.13 0.02 0.04 0.05

6.00 0.84 0.81 0.75 1.00 1.00 1.00 0.17 0.23 0.10 0.03 0.05 0.07

0.2

2.50 0.96 0.94 0.89 1.00 1.00 0.99 0.32 0.31 0.30 0.01 0.02 0.03

4.00 0.96 0.91 0.83 1.00 1.00 1.00 0.43 0.33 0.21 0.01 0.02 0.04

6.00 0.97 0.89 0.75 1.00 1.00 0.99 0.49 0.41 0.10 0.01 0.03 0.06

30

0.1

2.50 0.98 0.96 0.95 1.00 1.00 1.00 0.16 0.14 0.14 0.01 0.01 0.01

4.00 0.98 0.94 0.91 1.00 1.00 1.00 0.24 0.17 0.11 0.01 0.01 0.02

6.00 0.97 0.92 0.90 1.00 1.00 1.00 0.31 0.31 0.06 0.01 0.02 0.02

0.2

2.50 1.00 0.99 0.98 1.00 1.00 1.00 0.50 0.45 0.39 0.00 0.00 0.01

4.00 1.00 0.96 0.92 1.00 1.00 1.00 0.64 0.47 0.24 0.00 0.01 0.02

6.00 1.00 0.95 0.87 1.00 1.00 1.00 0.77 0.55 0.12 0.00 0.01 0.03

40

0.1

2.50 0.99 0.99 0.98 1.00 1.00 1.00 0.24 0.20 0.19 0.00 0.00 0.00

4.00 1.00 0.98 0.97 1.00 1.00 1.00 0.34 0.20 0.12 0.00 0.00 0.01

6.00 0.99 0.97 0.96 1.00 1.00 1.00 0.44 0.43 0.06 0.00 0.01 0.01

0.2

2.50 1.00 1.00 1.00 1.00 1.00 1.00 0.61 0.56 0.47 0.00 0.00 0.00

4.00 1.00 0.99 0.97 1.00 1.00 1.00 0.80 0.55 0.30 0.00 0.00 0.01

6.00 1.00 0.98 0.94 1.00 1.00 1.00 0.88 0.65 0.10 0.00 0.00 0.01

Table 3.3: Table of Hypothesis Measures for τ 2 = 0.5
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Figure 3.2: Bias for simulation scenario µ = 0.5, k = 40 and p = 0.2

The normally distributed random-effects model proved to have the most weak-

nesses in the presence of outliers. Figure 3.2 shows that as heterogeneity increases,

bias is highest for the normal distribution with the largest outlier shift. Note that

the bias is always positive because the outliers are generated to be on the positive

side of the true mean. Figure 3.3 illustrates that the same weaknesses are true for

the MSE. In general, all of the performance measures for the normal distribution

are consistently worse when c increases which illustrates that it is ill-equipped to

handle observations which lay much further out in the tails. This is because this

method inflates the estimate of τ 2 to account for the distant points, which leads to

an inaccurate estimate of µ.

When the t-distribution is used for the random-effect the bias and MSE are

improved over the normal for the majority of the scenarios. For extreme outliers the
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Figure 3.3: MSE for simulation scenario µ = 0.5, k = 40 and p = 0.2

bias is lower for p = 0.1, but is higher for p = 0.2 (see Figure 3.6). This suggests that

the t-distribution performs poorly when there are a higher number of outlying studies,

but still better than the normal distribution. The coverage probability performs well

for τ 2 = 0.01 but deteriorates with higher heterogeneity, it is especially low when

p = 0.2 (see Figure 3.4). In general, the t performs poorly when c is higher and when

p = 0.2. It is suspected the t-distribution might perform better for higher c and p

when outliers are present on both sides of the mean, rather than only one side. This

will be discussed further in the next section.

When the mixture model is used for the random-effect there is significant im-

provement in the bias and MSE as compared to the normal and t-distribution. It

is able to maintain the lowest bias and MSE, especially when p = 0.2 since it is

easier to identify the two groups when there are more outliers present. The coverage
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probability deteriorates the least and the Type I error is the smallest for c = 6 (see

Figure 3.9).

The coverage probability quickly deteriorates as k increases for all scenarios and

distributions, as shown in Figure 3.4. As k increases so does the number of outliers

(while the proportion stays constant) which causes the estimate of µ to shift dra-

matically away from the true mean. The bias stays constant (see Figure 3.6) while

the confidence widths simultaneously get smaller (see Figure 3.5) due to decreased

variance of the estimate, therefore it is more probable that the confidence interval

does not capture the true µ. Figure 3.7 demonstrates how the confidence interval

for an example scenario are less likely to include the true mean as k increases. Fur-

thermore, a supplementary simulation was done for τ 2 = 0.5, µ = 0.5, c = 6 and

fixing the number of outliers at 2. It can be seen in Figure 3.8 that the bias, MSE

and confidence widths are similar to the previous results. The coverage probability

is no longer drastically decreasing, it stays reasonably constant for the normal and

mixture models, while the t-distribution has a slight reduction in coverage. This

verifies that the decrease in coverage as k increases seen in Figure 3.4 is due to the

increasing number of outliers rather than an inherent flaw in the methods.

The confidence widths follow a similar trend for all three distributions. With

all scenarios having the largest widths when k = 10, and decreasing as k increases

due to the decreasing variance of the estimates as k increases. A sample scenario

is shown in Figure 3.5. Also, the confidence width increases by approximately 50%

when the proportion of outliers increases from p = 0.1 to p = 0.2.

Figure 3.10 shows that power increases as k increases, Figure 3.11 also shows that
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Figure 3.4: Coverage Probability for µ = 0.5
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Figure 3.5: Confidence Width for simulation scenario µ = 0.5, τ 2 = 0.5 and p = 0.2

power increases as µ increases. This behaviour is expected. The mixture distribution

with c = 6 has the lowest power while the normal distribution scenarios have the

highest. This is a reflection of the normal distribution rejecting the null hypothesis

too often due to the presence of outliers on the positive side of µ and far from

zero, whereas the robust distributions are able to down weight the outliers and make

a more conservative decision about rejection. The low power given by the robust

distributions is balanced out by the low Type I error in Figure 3.9. Typically, Type I

error is considered the more severe error since a high Type I error leads to incorrectly

detecting significance. Though the mixture distribution has the least power in the

more extreme scenarios, it has the best Type I error, indicating that it handles

outliers well.
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Figure 3.6: Bias for µ = 0.5
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Figure 3.8: Coverage probability for µ = 0.5, τ 2 = 0.5, c = 6 and 2 outliers
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Figure 3.9: Type I Error
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Figure 3.10: Power for µ = 0.5
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Figure 3.11: Power for k = 40
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Figure 3.12: P-values by distribution for µ = 0.5, τ 2 = 0.01

3.4.1 p-Values

Figure 3.12 shows that for almost-zero heterogeneity both the t-distribution and the

mixture model result in smaller p-values than the normal. The robust distributions

are more likely to correctly reject the null hypothesis (H0 : µ = 0). However,

Figure 3.13 indicates that for higher heterogeneity, the normal distribution results

in smaller p-values than the other two distributions. In the presence of outliers, the

normal distribution estimates µ further from the truth than the t-distribution and

mixture model. The consequences are that the conclusions of the meta-analysis using

the normal random-effects distribution in the presence of outliers may be misleading

since it will use a distant outlier as strong evidence against the null hypothesis.

Friedrich et al. (2011) suggests that the 1/4 power transformation is most useful

for displaying p-values and thus was used in Figures 3.12 and 3.13, and will continue

to be used throughout this paper. This transformation preserves relative order but

helps distribute values near zero to be closer to one, while larger p-values already
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Figure 3.13: P-values by distribution for µ = 0.5, τ 2 = 0.5

close to one are only slightly adjusted.

Figure 3.14 shows the p-value from 4 different scenarios traveling across the y = x

line as τ 2 increases incrementally from 0.06 to 0.26, the numeric label on each point

indicates the value of τ 2. The heavy-tailed distributions results in larger p-values

than the normal distribution as the heterogeneity of the meta-analysis model is

increased.

3.5 Investigation into Symmetrically Distributed

Outliers

In the main simulation, the artificially inserted outliers were only simulated on the

positive side of the true mean. This was done to mimic the “outlier shift” methods of

Filzmoser (2005) and Rousseeuw and Driessen (1999). It also exaggerated the effect
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Figure 3.14: P-values by distribution for µ = 0.5, τ 2 = [0.06, 0.26]

of the outliers on point estimates. However, it is possible that the selected random-

effects distribution are performing specifically better or worse due to the design of

the simulated outliers. A supplementary investigation was done on 24,000 of the

previously simulated meta-analyses by randomly permuting the generated outliers

about the true mean µ.

Figure 3.15 shows that the bias is nearly zero in all cases. This is because the

estimate µ̂ is no longer pulled away from the true mean in one direction and is instead

centered around the true mean due to the outliers on both sides. On average, the

bias is small, however, the symmetrically distributed outliers cause the estimates to

be biased on either side of the true mean in individual cases. Figure 3.16 plots the

standard deviation of the biases. We see that the bias for c = 6 is most variable, and

the bias for the mixture model is the least variable for each c.

The MSE follows a similar trend but with smaller values than the previous results,

for the same reason as for the bias. The mixture model still outperforms the other
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Figure 3.15: Performance measures for τ 2 = 0.5 and p = 0.2 for symmetric outliers
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two distributions. The most notable difference between the one-sided and two-sided

outliers is that the coverage probability is no longer drastically decreasing. The

coverage is better in this situation for the same reason that the bias is better: the

estimate is not being pulled in only one direction anymore, therefore, the confidence

interval is more likely to capture the true mean.

For moderate and extreme outliers the t-distribution has decreasing coverage

with k, this is a function of the absolute bias and the confidence width. For extreme

outliers, the t-distribution has lower coverage then the normal because it has smaller

confidence widths but still relatively high absolute bias. The t-distribution has lower

coverage than the mixture model because it has relatively small confidence widths

but a higher variation in bias meaning it is more likely have confidence intervals

which do not include the true mean.

Figure 3.17 and 3.18 illustrate two examples of simulated data with symmetric

outliers using the t-distribution. The forrest plot in Figure 3.17 contains five outliers

on each side of the true mean µ = 0.5, two of which have high precision on the left

and one of which has high precision on the right. The overall estimate is slightly

smaller than the truth (0.38) but the confidence interval contains 0.5. The forest

plot in Figure 3.18 has six unbalanced outliers, four of which are influencing the

estimate toward the negative side. The estimate using the t-distribution is 0.15 and

the confidence interval does not contain the true mean. This is an example of high

absolute bias and a small confidence width that contributes to a smaller coverage

probability for the corresponding scenario.

The power in Figure 3.19 illustrates that symmetric outliers allows the mixture
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Figure 3.17: Example 1 of symmetric outliers for the t-distribution
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Figure 3.18: Example 2 of symmetric outliers for the t-distribution
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Figure 3.19: Type I Error and Power for τ 2 = 0.3 and p = 0.2 for symmetric outliers

model to attain the highest power while the normal has the lowest power. The

normal distribution is less likely to detect significance because the estimate of the

heterogeneity is inflated while the bias is very small. This gives a small test statistic

and a large p-value. The mixture model gives a smaller estimate of the heterogeneity

than the normal and smaller p-values and is, therefore, correctly rejecting the null

hypothesis more often.

For extreme outliers, the Type I error for the t-distribution deteriorates with k,

though at its maximum it is still an improvement over the Type I error in the corre-

sponding scenario from the main simulation (see Figure 3.9). It is falsely detecting

significance due to the high absolute bias which also causes low coverage.
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The purpose of this investigation was to check that the results of the main sim-

ulation apply when there are outliers present on both sides of the mean. This has

been verified for the sample scenario of τ 2 = 0.5, p = 0.2, the parameter values

for which where chosen to reflect a more extreme case where we would expect the

greatest disparity in results, if they exist. As with the results found with the main

simulation, it can be expected that the methods will perform better overall with a

smaller proportion of outliers. Performance measures and hypothesis measures for

this investigation can be found in Appendix Tables B.1 and B.2.

Regardless of the position of the outliers relative to the true mean, the normal

distribution under performs as compared to the alternative distributions. The high

coverage probability of the normal is a reflection of inflated confidence widths rather

than accuracy, and the estimates produced using the normal are highly biased with

more extreme outliers present. The t-distribution offers some improvement over the

normal with average bias and confidence width, however, due to the variability of

the bias in individual cases, the t-distribution has poor absolute bias and decreasing

coverage, especially with extreme outliers. Overall, the mixture model proves to be

the most advantageous in the case of extreme and abundant outliers.

3.6 Limitations

This simulation study was limited by computational power and time. Each of the

216,000 meta-analyses needed to be evaluated 3 separate times using the metaplus()

function, one for each random-effects distribution. The computation using normally
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distributed random-effects was not very intensive, however, the t-distribution re-

quired the approximation of an integral for each meta-analysis, and both the finite

mixture model and the t-distribution required a quasi-Newton method for maximiz-

ing the likelihoods. In total, the main simulation and analysis took approximately

5 weeks to complete in parallel on 30 nodes. Ideally, more comprehensive scenarios

with greater granularity in parameters would have been run.

Another limitation was the heavy reliance on the metaplus package. There were

meta-analyses which produced errors and warnings. It was expected that some esti-

mates would not converge, or some matrices requiring inversion were near singular

and failed to compute. With more time and experience it may have been possible to

solve the problems.

Although errors are not desirable, they are not synonymous with mistakes. Of-

ten, computational limitations will lead to errors which cannot be easily rectified,

this does not necessarily mean there is a problem with the method, it may mean

that no solution has been implemented. In this simulation study, the computational

limitations arose mainly from using the t-distribution to estimate the parameters

of the random-effects model. As seen in equation 2.14, the likelihood contains an

intractable integral which must be solved numerically, and then the quasi-Newton

method requires the inversion of a matrix to maximizes the likelihood. If these

methods do not work for some combinations of values then we can say it is a com-

putational limitation. However, if there is a relationship between the values which

cause problems then by excluding those instances we may have a misleading result

within the simulation scenario.

63



M.Sc. Thesis - Melanie Stacey McMaster - Mathematics & Statistics

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0
50

10
0

15
0

20
0

To
ta

l E
rr

or
 w

ith
in

 S
ce

na
rio

Figure 3.20: Boxplot of error counts per scenario of 1,000 for the t-distribution

There were a total of 11,034 errors out of the 216,000 (5.1%) simulated data sets

which were analyzed using the t-distribution. An error instance did not produce

a result, thus the total number of results are lessened by the number of instances

which produced errors. Using the normal distribution produced relatively few errors

(< 1e−4%) and using the mixture model produced none. Some data sets produced

reliable parameter estimates with unreliable confidence intervals due to multi-modal

profile likelihoods. These results were kept but their respective confidence limits

were not included in the coverage or confidence width calculations.

The t-distribution errors are due to a combination of non-invertible matrices

and difficult-to-estimate likelihoods. Interpreting error messages was aided through

correspondence with the author of metaplus. Figure 3.20 displays the frequencies of

errors within each of the 216 scenarios, the median is 30 errors per scenario of 1,000
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Parameter Value Error Count Total Simulations Percentage

µ

0 3,832 72,000 5.32%

0.5 3,560 72,000 4.94%

1 3,642 72,000 5.06%

τ 2

0.01 2,679 572,000 3.72%

0.3 3,984 72,000 5.53%

0.5 4,371 72,000 6.07%

k

10 1,105 54,000 2.04%

20 2,595 54,000 4.81%

30 3,209 54,000 5.94%

40 4,125 54,000 7.63%

p
0.1 4,869 108,000 4.51%

0.2 6,165 108,000 5.71%

c

2.5 1,160 72,000 1.61%

4 2,595 72,000 3.60%

6 7279 72,000 10.1%

Total 11,034 216,000 5.11%

Table 3.4: Error Counts by Parameter Value

replicates. The value of the extreme upper whisker is 152 and there are 14 scenarios

which contain more than 152 errors. Table 3.4 displays all of the error counts when

broken down by parameter values. It is especially clear that for c = 6 the function

encounters more errors.

The more frequent errors for c = 6 reflects a limitation in the metaplus() func-

tion. There was no pattern in the simulated data which caused errors in the c = 6

scenarios and the simulated data which did not cause errors when c = 6. Figure 3.21
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illustrates the means and variances of the simulated effect sizes (yi and yiout), the

means and variances of the simulated within-study-variances (vi and viout), as well

as the number of outliers produced (kout). Finally, Figure 3.22 compares the means

of the simulated outlier values and their associated within-study-variances as well as

the distance between the means of the “clean data” and the outlier studies. With no

obvious difference between the data which did and did not produced errors within

c = 6, it would be reasonable to assume that the errors are not occurring for any

particular type of data within c = 6. Given the chance to re-run this simulation,

we would re-simulate enough data to ensure that each scenario had 1,000 useable

results.

Ideally, it would be important to attempt to rectify the problem by adjusting

the function. Due to the high number of error and warning messages, as well as the

complexity of the methods included in metaplus it was not possible to individually

explore each error instance and attempt to resolve the problem. Instead, it was

sufficient to report on the errors and present them as limitations.

It is worth noting that although the t-distribution is less computationally reliable

for extreme outliers, it is also questionable whether a researcher would always allow

for an extremely distant point to be included in a meta-analysis. We discussed that

it is disadvantageous to remove potential outliers, in reality however, a point which

is so distant from the rest of the points may be irrelevant to include in the meta-

analysis, especially if the alternative distribution encounters computational problems.

Furthermore, the design of our simulation allowed for a probability of outliers of up to

0.2, which means on average there are 6 and 8 outliers for k = {30, 40}, respectively.
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Figure 3.21: Boxplot of simulated data summaries for c = 6 scenarios using the
t-distribution
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Figure 3.22: Boxplot of outlier summaries for c = 6 scenarios using the t-distribution

Having so many outliers indicates that the data should be modeled using two groups,

which means a t-distribution would inherently perform poorly in this case and a

mixture model would perform best.
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Chapter 4

Real Data Application

While a simulation study allows us to understand the behaviour of certain perfor-

mance measures across the three random-effects distributions, application to real

data provides more verification for the results of the study as a whole.

4.1 Data and Methods

We used the data set assembled by Friedrich et al. (2011) using The Cochrane Library

(2008). The included meta-analyses had to have at least 5 trials and used either the

mean difference (MD) or standardized mean difference (SMD) as the effect measure.

There were some other exclusion criteria which ensured consistency in the values.

The resulting data set contained 232 meta-analysis. We were only able to calculate

the mean difference (MD) for 142 of these, due to the use of subjective measurement

scales in the remainder of the meta-anlyses. Calculations of standardized mean

difference (SMD) and ration of means (RoM) were possible for all 232 meta-analyses.
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Friedrich et al. (2011) compared the MD and SMD for these meta-analyses against

the proposed ratio of means measure (RoM). The ratio of means is calculated by

dividing the mean of the treatment group by the mean of the control, or second

treatment group (Friedrich et al., 2011). In the following real data application we

will compare these three effect measures using the t-distribution and mixture model

for the random-effects against the normally distributed random-effects model, for

which τ 2 has been estimated using either DerSimonian and Laird (DL), maximum

likelihood (ML) or restricted maximum likelihood (REML).

4.2 Results

Figure 4.1 and 4.2 compare the p-values from the meta-analyses using the normally

distributed random-effect model (y-axis) and robust distributions for the random-

effects (x-axis). The majority of the points are below the y = x line, which indicates

that the proposed robust distribution is producing larger p-values and is being more

conservative in general. The most disparity in p-values between the two methods

can be found in the lower left quadrant. The meta-analyses with fewer studies are

getting consistently higher p-values.

There are a number of studies which fall into the lower right quadrant which are

found to be significant at the 5% level under the normal random-effects model, but are

not significant under the robust model. We can test whether the proportion of meta-

analyses which switch significance from one method to another is itself significant

using a McNemar test and a sign test. The McNemar test is used to test the null
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Figure 4.1: P-Values for Normal vs. t using SMD
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Figure 4.2: P-Values for Normal vs. Mixture using SMD
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Robust Distribution

p < 0.05 p ≥ 0.05

Normal Distribution p < 0.05 a b

p ≥ 0.05 c d

Table 4.1: Example 2x2 Contingency table used in McNemar tests

hypothesis of marginal homogeneity (H0 : pb = pc) in paired nominal data. An

example of a 2x2 contingency table is Table 4.1, where a, b, c, d are the counts of the

meta-analyses and pb, pc are the probabilities of falling into the off-diagonal categories

in which the p-values disagree. The McNemar tests performed on the real data using

a 5% significance level for the meta-analysis did not detect significant differences

in the off diagonal entries (see an example in Table 4.2). However, using a more

conservative significance level of 1% yielded a significant result in the majority of the

tests (see Table 4.3). The associated sign test is a non-parametric test which tests

if one group of the paired observations is equally likely to be larger or smaller than

the other group. The sign test in Table 4.2 does not reject the null hypothesis, while

the sign test in Table 4.3 rejects the null hypothesis in favour of one group having

a higher probability of being larger than the other group. According to these tests,

under the 1% significance level, if the normal method and the alternative method do

not agree in regards to the significance of the meta-analysis, then it is more probable

that the alternative method has resulted in non-significant results while the normal

method has claimed that there are significant results.

The limits of agreement plot was proposed by Bland and Altman (1999) to inves-

tigate where the differences between two methods are expected to lie based on the
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Mixture Model

p < 0.05 p ≥ 0.05

Normal Distribution p < 0.05 138 10

(ML on SMD) p ≥ 0.05 3 81

McNermar p-value = 0.0961 Sign test p-value = 0.0923

Table 4.2: 2x2 Contingency table used in McNemar tests with p = 0.05 cut-off

Mixture Model

p < 0.01 p ≥ 0.01

Normal Distribution p < 0.01 102 24

(ML on SMD) p ≥ 0.01 2 104

McNemar p-value=3.814e−5 Sign test p-value = 1.049e−5

Table 4.3: 2x2 Contingency table used in McNemar tests with p = 0.01 cut-off

assumption that the differences are normally distributed. Since there are more points

above the upper 95% agreement boundary in Figure 4.3 the p-values produced by the

robust method are often larger than the p-values produced by the normal method.

This indicates that the robust methods are acting more conservatively and would be

less likely to reject the null hypothesis. This trend is true for all combinations of

effect measures and estimation methods, for both the t-distribution and the mixture

model.

Figure 4.4 plots the difference between p-values produced using the t-distribution

and p-values produced using the normal distribution against the number of studies.

It is clear that the differences are most pronounced for smaller meta-analyses. This

suggests that for smaller meta-analyses, outlier analysis should be performed and a

robust distribution considered if appropriate. A practitioner should exercise caution
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Figure 4.3: Limits of Agreement for Normal vs. Mixture using DL and SMD
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since some distributions may not be practical for a meta-analysis with very few

studies.

Meta-analyses 78 and 110 are large meta-analyses which are found to have positive

outliers. Figure 4.5 shows the forest plot for meta-analysis 78, the potential outlier

is study 25. This outlier pulls the treatment effect estimate away from zero when the

normal distribution is used. When the heavy-tailed alternative is used, the estimate

relaxes toward zero. The p-value is smaller for the normal since it is erroneously

detect more evidence against the null hypothesis. This is why ∆P is positive in

Figure 4.4. The same holds for meta-analysis 110, there is a negative outlier, but

there are more positive outliers with higher precision. Meta-analyses 65 and 193 are

displaying the opposite effect; the outlying study is negative while the non-outliers

are positive, see Figure 4.6. The negative outlier pulls the treatment effect estimate

from positive toward zero, therefore, using the normal distribution will produce a

larger p-value than using the robust distribution, this is why ∆P is negative.

In general, the differences between the standard method and the robust meth-

ods are most pronounced for small number of studies and for meta-analyses with

identifiable outliers.

While the differences in the p-values are informative, the purpose of the study is

to investigate the effects on meta-analyses which contain outliers. To classify studies

as outliers, the following method of simulated envelopes proposed by Julious and

Whitehead (2012) was used:

1. Simulate k treatment effects from Normal(0, w̃−1i ) where w̃i is the random-

effects study weight (equation 2.1) for study i using the known study variance
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Figure 4.5: Forest plot of meta-analysis 78 using DL and SMD
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RE Model

−2.00 −0.50 0.50

Standardized Mean Difference

Study  9
Study  8
Study  7
Study  6
Study  5
Study  4
Study  3
Study  2
Study  1

 0.46 [  0.03 ,  0.89 ]
 0.22 [  0.03 ,  0.40 ]

−1.16 [ −1.53 , −0.78 ]
 0.03 [ −0.12 ,  0.17 ]
 0.26 [ −0.31 ,  0.83 ]
 0.54 [  0.10 ,  0.98 ]
 0.24 [  0.04 ,  0.45 ]
 0.24 [  0.02 ,  0.46 ]

 0.12 [ −0.27 ,  0.51 ]

 0.10 [ −0.14 ,  0.34 ]

Study Study Effect Estimate (95% CI)

Figure 4.6: Forest plot of meta-analysis 65 using DL and SMD
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vi, and τ̂ 2 is the estimate from the random-effects meta-analysis using the

observed data.

2. Perform a random-effects meta-analysis using the simulated treatment effects

and the study variances vi, calculate the standardized weighted residuals qi for

each study i where qi = (yi−µ̂)
√
w̃i√

1−w̃i/
∑k
i=1 w̃i

.

3. Order the qi from smallest to largest: q(1) ≤ q(2) ≤ ... ≤ q(k).

4. Repeat the simulation 1,000 times to obtain 1,000 vectors of ordered standard-

ized weighted residuals.

5. Order all of the 1,000 q(i) for each i and take the 25th and 975th of each to

obtain the 2.5% and 97.5% interval for the ith ordered residual.

A study whose residual falls outside of the corresponding interval is considered an

outlier. Figure 4.7 and 4.8 compare the p-values of the normal method against the

robust distributions with the meta-analyses containing outlier studies differentiated

from those which do not. For meta-analyses with at least 10 studies we can see

the majority of the outlier points fall below or on the y = x line. This indicates

that the robust method is less likely to detect significance than the normal, since

the outliers are down-weighted and do not pull the estimate away from the null

hypothesis value as much. The non-outlier points below the line are expected, since

the robust distributions are more conservative.

This real data application verifies that there are indeed differences between the

p-values produced by the standard normal approach and by the alternative distribu-

tions. This is consistent across all three different effect sizes (MD, SMD and RoM).
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Figure 4.7: P-values for t vs Normal using ML and SMD
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Figure 4.8: P-values for Mixture vs Normal using ML and SMD
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These differences are often more severe in the presence of outliers, as well as in

meta-analyses with a low number of studies. The t-distribution and mixture model

perform very similarly to each other in this real data application.
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Chapter 5

Discussion and Future Directions

5.1 Discussion

While meta-analysis is a highly utilized and useful tool for synthesizing clinical study

results, the quality of a meta-analysis can be compromised in the presence of outliers.

Outlier analysis is important in any data application and should be considered a

mandatory step in meta-analysis. Recently, this problem has attracted attention,

and many researchers believe that the random-effects should not be automatically

assumed to be normally distributed. It is advantageous to consider using a heavier

tailed distribution for the random-effects because a suspected outlier can still be

included in the analysis without heavily influencing the outcome.

In Chapter 2, we presented the methods which can be used to perform a random-

effects meta-analysis using the normal distribution, the t-distribution and the mix-

ture model for the random-effects during the estimation of the model parameters.
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Chapter 3 included a novel simulation study which explored the performance of each

method in the presence of outliers with varying degrees of severity. Both alternative

distributions proved to outperform the standard method in the presence of outliers

and high heterogeneity. The conclusions hold true in the presence of outliers on both

sides of the true mean.

The main advantage of using one of the alternative distributions is that there is

no need to consider removing a suspected outlier. Meta-analyses typically have a

small number of studies and it would be unfavourable to further reduce the size. A

specific advantage of the mixture model is that each study is assigned a probability

of being an outlier, which can be very useful in an analysis. The mixture model

was also much more computationally reliable using metaplus as compared to the

t-distribution which incurred more computational issues. Additionally, the mixture

model supplies two estimates for the heterogeneity. This can provide some extra

insight about how the “non-outlier” studies are different from the “outlier” studies.

The t-distribution and the mixture model both proved to be an improvement over

the normal, and they both behaved similar with respect to p-values. However, the

mixture model out-performed the t- in terms of bias, mean squared error, coverage

probability and Type I error, especially in the presence of the most extreme outliers.

In the presence of symmetrically distributed outliers, the mixture model had the

highest power and the best coverage for larger meta-analyses. With all of this in

mind, a researcher may find the mixture model proposed by Beath (2014) to be the

most favourable.
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In Chapter 4, we verified the advantages of the robust distributions using a col-

lection of meta-analyses from the Cochrane Collaboration. It was generally observed

that the alternative distributions acted more conservatively than the normal distri-

bution.

With careful consideration, the accuracy of a meta-analysis can be greatly im-

proved in the presence of outliers by using a robust random-effects distribution such

as the t-distribution or the proposed finite mixture model.

5.2 Future Directions

The simulation study in this paper has revealed that the t-distribution and mixture

model proposed give more accurate analysis in the presence of outliers when the

interest is to down-weight the outlying points. The mixture model has shown a

particular strength in the presence of multiple outliers as well as very large outliers.

A next step in this research would be to determine at what threshold the mixture

becomes more favourable than the t-, and when the t- offers an improvement over

the normal. This could be done by incrementally adding outliers to fixed data sets.

It would also be informative to study how the performance of the methods changes

for more granular values of τ 2 and how this interacts with the number and size of

outliers. As the true heterogeneity in the non-outlier data increases it can mask the

effect of the outlier.

Learning from this simulation study, a future researcher may be interested in

inserting a less variable random outlier. This can be achieved by shrinking the
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variance of the distribution from which the outlier will be generated. These outliers

will be more prominent, which reflects the type of real situation that leads to the

consideration of outlier removal or robust distributions.

Investigating the sensitivity of the proposed methods in relation to the size, preci-

sion and distance of the outlier study would help in the understanding of when these

particular distributions are no longer beneficial. In which case another alternative

distribution, such as the sinh or Subbotin may warrant investigation.

Furthermore, as it is common to have a small number of studies in a meta-

analysis, an investigation into the lower threshold of studies for which these methods

still perform well would be advantageous.
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Appendix A

Finite Mixture Model

Supplementary Details

The following are supplementary details about the finite mixture model which are

not used in the metaplus package (Beath, 2015) but are still valid methodologies.

The method of detecting outliers is based on a random variance shift outlier

model (RVSOM) proposed by Gumedze and Jackson (2011) to fit a mixture model

with the current observation having a different random-effect variance than the rest

of the observations. The RVSOM for the jth study is

yj = µj + δIi=j + µ+ εj (A.1)

where µj and εj are the same as in equation 2.5, δ ∼ N(0, α) is an unknown random

coefficient for α ≥ 0, and δ is only included for the jth study. It is clear that the jth

study will have inflated variance as compared to all other studies.
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A parametric bootstrap is used to generate test statistics under the null hypoth-

esis and the likelihood ratio test determines if the observation should in fact be

modeled with a higher random-effect variance. This is repeated for each observation

in turn. The RVSOM assesses whether or not the point is an outlier depending on

how shifted the new variance parameter is. The threshold for this is determined by

ordering the bootstrap likelihood ratio tests and getting 100(1-α)th percentiles for

up to third order statistics (Gumedze and Jackson, 2011). The overall effect estimate

can be calculated by down-weighting the observations which were determined to be

outliers according to how distant the shifted variance is (Beath, 2014; Gumedze and

Jackson, 2011).

To identify the outliers Gumedze and Jackson (2011) use order statistics on the

ordered set of likelihood ratio test results to determine which set of studies cross the

determined threshold. Once the outliers are identified they can be down-weighted

during the process of estimating the overall mean.

Beath (2014) uses posterior probabilities from standard literature such as McLach-

lan and Peel (2000) to determine the probability of a study being an outlier. The

posterior probability of study i belonging to the mth class is

pim =
πmfm(yi|µ, τm)∑2
j=1 πjfj(yi|µ, τj)

. (A.2)

The estimates for pim and πm are found simultaneously using the standard expectation-

maximization algorithm, with a quasi-Newton method used for the maximization

step, to iterate between the estimates.

The study is classified as an outlier when pm > 0.9 where m corresponds to the

89



M.Sc. Thesis - Melanie Stacey McMaster - Mathematics & Statistics

outlier group; this is considered strong evidence. The study is indeterminate for

0.1 ≤ pm ≤ 0.9. Finally, the study belongs to the non-outlier group for pm < 0.1.

The outliers and non-outliers will be weighted fully based on their classification,

whereas the indeterminate studies will be weighted proportionally to their posterior

probability (Beath, 2014).

It must be determined if the mixture model is an appropriate model for the given

data, thus the fit of the standard model (equation 2.5) is tested against the fit of the

mixture model (equation 2.15) (Beath, 2014). Since this requires testing a boundary

condition, Beath (2014) refers to McLachlan (1987) in order to assess a test of a

single normal distribution against a mixture of two normals. The purpose of this

test is to indicate whether the studies should be modeled using a single standard

distribution with a normal random-effect, or if a proportion of the studies should be

modeled using a secondary standard distribution with a normal random-effect but

with a larger random-effects variance.

In McLachlan (1987), the null hypothesis is the simple case of one element in the

mixture distribution (ie. a single univariate density), and the alternative hypothesis

has two elements in the mixture distribution (ie. a mixture of two normal densi-

ties). This is equivalent to saying that the null distribution assumes that all studies

share one random-effects variance (Beath, 2014). This test is carried out using boot-

strapping techniques for the log-likelihood ratio statistic (McLachlan, 1987). The

bootstrap sample is generated under the null hypothesis from the original data and

then both the standard model and mixture model are fitted to the data. The like-

lihood ratio test is computed using these two fits, and the comparison between the
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observed value and the simulated value yields the p-value (Beath, 2014; McLachlan,

1987).

The bootstrap simulation of size k used by Beath (2014) is as follows:

1. Simulate a sample of size k of µi random-effects from Normal(0,τ̂ 2) where τ̂ 2

is the estimate of the heterogeneity from the standard (one-component) model

2. Sample n times with replacement from the observed within-study-variances (vi)

3. Simulate the random study errors (εi) from Normal(0,vi) and then determine

the n bootstrap values of yi using equation 2.5 (yi = µ̂+µi + εi, where µ̂ is the

estimated grand mean from the standard model)

4. Fit both the standard (null) model and the robust model to the meta-analysis

of size n and perform the likelihood ratio test

Repeating K times will provide K values of −2log λ where λ is the likelihood

ratio statistic, thus the distribution of −2log λ can be evaluated and p-value for the

test can be found using the ordered bootstrap replicates of the likelihood ratio tests

(McLachlan, 1987). Thus, it can then be determined if the one or two component

mixture model should be used.
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Appendix B

Tables for Symmetric Outliers
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True µ Number of Outlier Bias MSE Cov. Prob. Conf. Width

Studies (k) Shift (c) Norm t Mix Norm t Mix Norm t Mix Norm t Mix

0

10

2.50 0.00 0.00 0.00 0.15 0.16 0.17 0.93 0.92 0.90 1.51 1.47 1.37

4.00 -0.02 -0.03 -0.02 0.28 0.24 0.26 0.94 0.92 0.89 2.03 1.82 1.49

6.00 0.03 0.00 0.01 0.59 0.43 0.40 0.94 0.91 0.88 2.79 2.12 1.49

20

2.50 0.00 0.00 -0.01 0.07 0.07 0.08 0.95 0.95 0.89 1.07 1.03 0.95

4.00 0.02 0.00 0.01 0.14 0.10 0.09 0.94 0.94 0.91 1.44 1.21 0.99

6.00 0.00 0.00 -0.01 0.26 0.17 0.11 0.95 0.91 0.91 2.05 1.31 0.91

30

2.50 0.01 0.01 0.01 0.05 0.05 0.05 0.93 0.93 0.89 0.88 0.85 0.78

4.00 0.01 0.02 0.01 0.09 0.06 0.06 0.95 0.94 0.92 1.20 0.97 0.79

6.00 0.02 0.03 0.01 0.18 0.09 0.04 0.95 0.82 0.92 1.68 0.96 0.70

40

2.50 0.00 0.00 0.00 0.04 0.04 0.04 0.94 0.93 0.91 0.76 0.73 0.68

4.00 0.01 0.01 0.00 0.08 0.06 0.04 0.93 0.91 0.91 1.04 0.83 0.67

6.00 0.00 0.02 0.00 0.15 0.10 0.03 0.93 0.66 0.94 1.44 0.75 0.61

0.5

10

2.50 0.01 0.01 0.01 0.15 0.15 0.17 0.93 0.93 0.90 1.50 1.42 1.34

4.00 0.00 0.00 0.00 0.31 0.26 0.26 0.93 0.93 0.88 2.00 1.83 1.53

6.00 0.04 0.04 0.03 0.59 0.42 0.40 0.95 0.92 0.91 2.82 2.13 1.50

20

2.50 0.00 -0.01 -0.01 0.07 0.07 0.08 0.95 0.95 0.90 1.08 1.04 0.95

4.00 0.00 0.01 0.00 0.14 0.11 0.10 0.95 0.94 0.90 1.45 1.24 1.01

6.00 0.01 0.05 0.03 0.26 0.13 0.10 0.94 0.91 0.92 2.03 1.26 0.88

30

2.50 -0.01 0.00 -0.01 0.04 0.04 0.05 0.96 0.95 0.92 0.87 0.84 0.78

4.00 -0.01 0.01 -0.01 0.09 0.06 0.05 0.95 0.94 0.90 1.18 0.97 0.78

6.00 0.00 0.01 -0.01 0.18 0.10 0.05 0.95 0.81 0.94 1.67 0.89 0.71

40

2.50 0.00 0.00 0.00 0.03 0.03 0.04 0.95 0.95 0.91 0.75 0.73 0.68

4.00 0.00 0.00 0.00 0.07 0.04 0.03 0.95 0.94 0.93 1.02 0.81 0.67

6.00 0.00 0.03 0.00 0.13 0.08 0.03 0.95 0.73 0.93 1.45 0.79 0.61

Table B.1: Performance measures for τ 2 = 0.5 and p = 0.2 with symmetric outliers
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Number of Outlier Power for µ = 0.5 Type I Error Average p-value for µ = 0.5

Studies (k) Shift (c) Norm t Mix Norm t Mix Norm t Mix

10

2.50 0.33 0.35 0.38 0.07 0.08 0.10 0.26 0.25 0.23

4.00 0.25 0.30 0.36 0.06 0.08 0.11 0.32 0.28 0.24

6.00 0.20 0.35 0.38 0.06 0.11 0.13 0.36 0.24 0.21

20

2.50 0.46 0.49 0.53 0.05 0.06 0.10 0.17 0.16 0.15

4.00 0.34 0.48 0.53 0.06 0.07 0.08 0.28 0.20 0.15

6.00 0.21 0.58 0.62 0.05 0.13 0.10 0.35 0.15 0.10

30

2.50 0.63 0.68 0.71 0.07 0.07 0.11 0.10 0.09 0.09

4.00 0.39 0.62 0.67 0.05 0.09 0.09 0.21 0.12 0.09

6.00 0.25 0.71 0.76 0.04 0.21 0.09 0.32 0.10 0.06

40

2.50 0.74 0.76 0.78 0.06 0.07 0.09 0.06 0.06 0.05

4.00 0.51 0.72 0.79 0.07 0.11 0.09 0.16 0.09 0.05

6.00 0.30 0.73 0.87 0.07 0.36 0.07 0.27 0.10 0.03

Table B.2: Hypothesis measures for τ 2 = 0.5 and p = 0.2 with symmetric outliers
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