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SCOPE AND CONTENTS:

A quasi-steady state optimization of an adiabatic, fixed bed

tubular reactor, with catalyst decay, is considered.

The optimal inlet temperature (distribution) To(t), is sought,
so as to maximize the total amount of reaction in a fixed given period

of time. Upper and lower bounds are placed on the inlet temperature.

A single irreversible reaction is considered with a reaction
rate expressible as separable functions of inlet temperature, conversion

-

and catalyst activity.

The rate of catalyst decay is expressed in an analogous manner

and in particular, the conversion dependence is maintained.



The optimal policy of choosing the temperature so as to
maintain the exit conversion constant in time when catalyst decay is

independent of conversion, is examined.

The extension of this constant conversion policy to the

present system is discounted.

New optimum seeking methods are developed and numerical

calculations presented to illustrate the optimal profiles.
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CHAPTER 1
INTRODUCTION

Many examples in the chemical industry are to be found
where a fixed bed catalytic reactor forms the basis of the'process.
The catalyst may take several forms - one common form being small
solid porous pellets, which are packed into a tubular reactor. The
reaction fluid flows through and around the pellets and reacts to

form the products.

In the process of product formation, the catalyst begins
to "age" and its activity begins to fall off in time, until it reaches
a point where its catalytic properties have so deteriorated that it

must be either regenerated or exchanged for fresh catalyst.

This aging process is caused by several factors and can
usually be expressed as a function of the conversion in the reactor
as well as the temperature. Many reactors are controlled using the
temperature and it is of great interest to determine that temperature
profile which maximises some profit function, such as the integrated

exit conversion over time.

In practice it is usually not possible or economically
feasible to control the temperature at every point along the length of
the reactor, as well as at each point in time. In these instances,

one may have to be content with a uniform temperature control instead



of a distributed control, i.e. we maintain the temperature in the
reactor uniform along its Tength and- change this value (in some

optima1‘fashion) continuously in time as the reaction proceeds.

An alternative is boundary control of the reactor. Here
one would control only the inlet temperature to the reactor. This
type of control is encountered frequently in adiébatic reactors. The

temperature is often bounded between two 1imits.

Another area of boundary control is the determination
of the optimal initial catalyst activity distribution for an adiabatic

reactor.

It is, of course, possib1e to combine these problems
and determine the optimal inlet temperature and initial catalyst

distribution in the reactor.

In the above examples the control is a function of the
one variable (time or distance) only, as opposed to distributed control,
where the temperature is controlled at each point along the reactor
as well as in time. This restricted form of control can be loosely

“referred to as boundary control or uniform control.

A common practice in industry has been to control the
reactor temperature in such a way as to maintain the exit conversion
constant in time. It has been shown [Crowe (1970) and Thérieh (1971)]
that, for the class of reactions in a plug flow, fixed bed, tubular
reactor with catalyst decay (whose reaction rate equations may be
expressed as a single, separable function of conversion, catalyst

activity and temperature) this is indeed the optimal policy in that



it maximises the integrated exit conversion. However, these workers
in order to simplify the analysis, considered the decay rate or aging
of the catalyst to be independent of the conversion. This assumption
serves to decouple the system equations and greatly simplifies the

mathematical analysis of the optimal system.

No analytical or numerical work has been reported for the
more general case where catalyst decay depends on the conversion in
the reactor. The introduction of conversion dependence, coupIes the
decay rate eqdation with the reaction rate, seriously complicates the
analysis of the optimal profile and serves also, to introduce in-
stability into the numerical optimal seeking methods and integration
methods of the system equations. To date, no general or specific proof
exists, establishing the validity of the constant conversion policy,
when the catalyst decéy depends on conversion, irrespective of whether

distributed or boundary control is used.

Furthermore, no generally established proof of a strong
maximum principle for boundary control of distributed systems exists.
~ Pontryagins maximum principle (1962), which is a strona maximum
.principle (as described in Chapter 4), is not applicable to systems
described by partial differential equations. Other workers Sirazetdinov
and Degtyarev (1967) and Jackson (1965)7 have developed maximum
principles using first order perturbation methods: however, both these
formulations are weak forms (as explained in Chapter 4) for boundary
control of non linear systems and thus serve to introduce into the

analysis a large class of possible policies, called 'Pontryagin Policies'



which may or may not be optimal, but among which, the optimal policy
(if it exists) will be. The engineer then usually has to turn to the
physical system to ensure the existence of an optimum and to distinguish

between the possible policies.

In the present study, special cases of the more general forms
of catalyst decay are investigated analytically, to determine whether
the common principle of maintaining exit conversion constant, can be
extended to boundary (or uniform) cdntro] of tubular reactors, where the

catalyst decay is conversion dependent.

A new Fixed Point alaorithm is developed for the optimum
‘search and combined with existing gradient search methods to obtain

the optimum.

" - A brief literature survey of past and current developments

is given in Chapter 2.

In Chapter 3, the mathematical model for the reactor is
developed and a mathematical statement of the optimal problem is

presented.

Chapter 4 deals with the optimal system itself and formulates

the necessary condition for optimality.

Analytical properties of the optimal system are derived in

Chapter 5 and some properties of the optimal exit conversion are proved.

In Chapter 6 new algorithms are developed and used to in-

vestigate properties of the optimal profiles.

Chapter 7 presents a summary of the main conclusions. and

points to further work in this area.



CHAPTER 2
LITERATURE SURVEY

2.1 Distributed SyStems

The well known maximum principle of Pontryagin (1962) was
developed for lumped parameter systems, that is, for systems which
may be adequately described by variation in one dimension only, thus

leading to a set of ordinary differential equations.

For the present system, it is necessary to consider both
the spatial and time variation of the system variables and thus our
system 'is governed by partial differential equations and is referred

to as a distributed system.

Extension of Pontryagin's work to include distributed
systems has been partially successful but one notable area of deficiency

is the lack of a strong form for the boundary control of these systems.

The strong form of the maximum principle is discussed in

Chapter 4.

2.2. Early Work

Most of the early work is to be found in the Russian
literature; a comprehensive survey has been given by Butkovskiy,

Egorov and Lurie (1968).



Katz (1964) formulated a very general maximum principle
using akfunctiona1 analysis approach. His approach, though sound, has
not been adopted widely in the engineering fields; probably due to the
difficulties encountered in applying his general approach to specific
problems. However, there seems to be evidence that this functional
analysis approach is becoming more popular and recently there has'been
both analytical [Yang (1972)] and computational efforts [Chang (1970)]

in this direction.

2.3 Recent Work

2.3.1 Analytical

One of the most comprehensive papers brought out in this
area is due to Sirazetdinov and Degtyarev (1967). Sirazetdinov (1964)
initially derived a maximum principle for processes described by a
quasilinear, first order partial differential equation. A sericus
disadvantage was that only one dependent variable was allowed. He,
along with Degtyarev, extended this treatment in 1967, to cover systems
described by simultaneous sets of quasilinear equations of the following

form

T L T L

Maximise I = [ [6;(X,u)dzdt+[6,(X(L,t),u°(t))dt+[65[X(r,2)Idz (2-1)
00 0 0

subject to
X, N 53X,
i _J = i = -
=+ .21 Aij(z,t,X) v F (z,t,X.u) i=1....n (2-2)
J=



where
Xi(z,t) i =1,n are the dependent variables of the
system, varying spatially (z) and

in time (t)

Aij (z,t,X) are the generally non linear coefficients

Fi(z,t,x,g) are the inhomogeneous terms

I is the objective function which is to be maximized subject

to the system (2-2)

Gi are the integrands of the objective function and are

functions of the dependent variables and the controls u

_However, there is still the question of sufficiency to be dealt
with, for even though we have an admissible control which causes the
Hamiltonian to have its largest value, we are not assured that this
control is indeed the optimal control, since the maximum principle pro-

vides only a necessary condition for opntimal control.

The establishment of general sufficiency conditions in a
maximum principle is extremely complex. If both the system equations
(2-2) and the objective function are linear, second order perturbations
become zero and Sirazetdinov and Degtyarev's (1967) theorem becomes

a necessary and sufficient condition for the optimum.

Of course, one still has to consider the question of
uniqueness,for there may be more than one admissible control which

maximizes the Hamiltonian. In these cases the engineer (and often the



mathematician too) has to rely on his knowledge of the physical system.

Thérien (1971) has applied Sirazetdinov and Degtyarev'é

theorem to a fixed bed catalytic reactor system.

2.3.2 Boundary Control

in Sirazetdinov and Degtyarev's (1967) treatment of boundary
control, they defined a separate Hamiltonian function which due to their
first order perturbation analysis, provides them with a statement con-
cerning only the stationarity of the objective function and not its
extremum. Although this point is not emphasized in their paper, it is
quite clear if one examines the form of their optimal condition and the
perturbation analysis accompanying them. However, for the special case
where both the objective function and the system equations (2-2) are

linear, their boundary Hamiltonian is of the strong form.

Ogunye and Ray (1971) following Jackson's (1966) methods,
derive a generalized weak maximum principle which applies to both dis-
tributed and boundary control. It turns but that, if the control is distinct
from a state variable, the boundary Hamiltonians are functions in- \
tegrated aTong the dimension which is uncontrolled. For example, in
the present study, where control is sought at each point in time only,
the Hamiltonian is an integraT over the length of the feactor. In the
case of initial activity control the control is in fact a boundary con-
dition on a state variable. Here the Hamiltonian condition, although
derived analogously, turns out to be in the form such that the adjoint

variable (defined in Chapter 4 below) is constant.



2.4 Compdﬁaﬁfdﬁ :

2.4.1 Method of Charactékiétics

The method of characteristics has been used by Acrivos
(1966) with great success in semilinear systems and proved to be
superior to other methods in the case where the characteristics are of
constant slope; ‘when this is not the case the method can be used, but

may cause difficulties [Lapidus (1962)].

In this present study the characteristic Tines are parallel
to the z (length) and t (time) axes, making for an extremely convenient

application of this method.

2.4.2  Gradient Methods in Function Space

An early, reliable paper by Denn (1966) makes use of a gradient
method in function space, or.method of steep descent to compute the
optimum. He uses a second order diffusion equation and via the
method of Greens functions, obtains a necessary condition which forms

the basis of a steep descent algorithm to compute the optimal profile.

A comprehensive description is given by Chang and Bankoff

(1969) of the general algorithmic procedure for gradient methods.

As with gradient methods in Tumped parameter systems,this
method suffers from the disadvantage that in the neighbourhood of the
optimum, the method slows down and in fact may fail to reach the true

optimum within a reasonable number of iterations.

G



In an attempt to speed up the method Zone and Chang (1972)
developed a second order gradient method which is designed to take over
from the usual gradient method (which is a first order method) in the

neighbourhood of the optimum.

Using a second order expansion of the objective function,
a second order estimate of the improved control is obtained: A
disadvantage of the method 1is thaf this second order estimate is not
obtained directly from the Hamiltonian but appears as the solution to
a series of simultaneous, partial, two point boundary value equations,
which must be solved at each iteration. It appears too, from the
results, that the method may suffer from sérious instabilities and in
fact a smoothing routine is incorporated so as to smooth the second
order estimate béfqre it is used to provide a correction in the direction

of the optimal profile.

A functional analysis approach to computation has been taken
by Chang (1970). He used a steep descent method in Hilbert space. He
expresses the solution to the system equations in terms of an integral
equation. The objective function is expressed in terms of linear
operators and inner products in a Hilbert space. The solution to the
optimal control appears in an operator equation of the form

ATy = (2-3)

where
*
A is a self adjoint, positive operator formed from the system, and

W an integral expression.

The steepest descent method is obtained directly from this operator



equation and takes the form

o) 2 y0) _glodppy g0 112 a*gl0) | 40,1 (2-4)
where -
¢ = %0 _y (2-5)
and u(o) is an initial estimate of the optimal profile
Il || is the norm for this Hilbert space, and

<s,+> 1is the inner product for the space

2.5 Fixed Bed Reactors with Catalyst Decay

Much of the early Titerature on catalyst decay tended to
describe the catalyst activity as a function of time on stream, of the
reactor. This form gave an averaged description of the decay along the
length of the reactor whereas equations describing local decay were

avoided.

Anderson and Whitehouse (1961) showed that local
characterization of the catalyst activity can be expressed as a
function of the local concentration. Szepe (1966) used a deactivation
eqdation to describe the catalyst decay, with a form analogous to a
reaction rate equation. He showed that many of the recognised recent
forms -of catalyst decay are special cases of his general rate of de-
activation equation:

rate of deactivation = k(T)-g[y]-f(X) (2-6)

Crowe (1970) has given a comprehensive treatment of this class

of problem, based on Pontryagin's Maximum Principle. He considered a

11.



simplified form of (2-6) where decay rate does not depend on conversion.
He obtained an.anaTytica1 characterization of the optimum policy and
showed that the constant conversion policy holds at the optimum.

CroWe and Lee (1971) extended the results of the single reactor bed
case to include several beds ih series, each with uniform temperature

and catalyst activity.

Thérien (1971) studied this class of problems in the context

- of Sirazetdinov's and Degtyarev's (1967) maximum principle. He sought

to choose the best temperature at each point along the reactor length,
~as well as at each point in time, T(z,t), so as to maximize the
integrated exit conversion over time. He, as well, considered the
simplified decay form of (2-6) where conversion dependence is absent.
Upper and lower bounds were placed on the temperature ahd a single,
irreversible reaction was considered. His system was described then,

| by the two equations: |

K(T)F(X)y | - (2-7)
k(T)g(v) ‘ (2-8)

Thérien's study showed the strong influence of the parameter, p (p = ratio

rate of reaction

rate of deactivation

of the reaction activation energy to the deactivation energy for the
catalyst) on the optimal policy. Using this parameter, p,he eliminates
the possibility when p > 1,0f an unconstrained temperature profile forming

part of the optimum profile.

He obtains analytical forms for the exit conversion at the
optimum and shows, provided that temperature is unconstrained and inlet

conversion constant in time, that the policy of constant conversion at
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the optimum, holds. Thé%ien.considers briefly the influence of the
critical catalyst distribution on the optima1 policy. He shows that,
for a first order catalyst decay, the extremal control T(z,t) is uniform
a]ong~the length of the reactor irrespective of the uniformity or con-
tinuity of the catalyst activity distribution along the reactor length.

Nevertheless, for a second order decay form, the extremal control T(z,t)

is dependent on the uniformity and continuity of the catalyst profile.

Crowe and Lee (1970b) have considered the general catalyst
decay form (2-6) in a batch reactor system. They showed that Levenspiel's
and Szepe's (1968) optimal result, which required that the unconstrained
temperature be chosen so as to maintain the product of K(T)y constant,
cannot be extended to the case Where catalyst decay is a function of the

conversion, as in (2-6).

Ogunye and Ray (1971) derived a generalized weak maximum
principle using a first order perturbation analysis. They obtain three
Hamiltonian functions, one for distributed control and the remaining
two for boundary control of the inlet temperature in time, and initial
catalyst activity along the Tength of the reactor. They consider the

quasi-steady state system for r reactions and q catalyst activities

of the form

881- : .

..37_.= Q(SJ ]‘bk) i=1,r (2'9)

31!Jk

3T gk(e'i IPJ) k =1,q (2’]0).
11

Max I = [ [ G(e, y, U, v, w) dzdt (2-11)
00
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Where

e:. 1s the extent of reaction i,

i
Vi is the kth catalyst activity,

is the distributed control vector, and

<

v and w are boundary control Vectors in z and t respectively.

Based on their Hamiltonian forms, they develop an efficient
gradient method to solve for the optimum profile. For instances where
unconstrained policy was optimal they made use of a Conjugate gradient

method developed by Lasdon (1967).

A1l their computations were based on the sfmp]ified form of
catalyst decay, where no conversion dependence exists. Detailed numerical
examples are worked for isothermal and adiabatic reactors, with irreversible
and reversible reactions. Al1 their results confirm the constant con-

version policy.

For the case of an irreversible reaction in an adiabatic
reactor they do a parametric study, the basic results of which may be

summarized as follows:

(i) Increasing the heat of reaction, increases the constant
conversion portion of the optimal profile for both exothermic and en-

dothermic reactions.

(i1) Increasing the operating 1ife of the reactor decreases both
the constant conversion level and the fraction of time spent at the upper

constraint,

(ii11) Decreasing the reactor length increases the average temperature

in the reactor and reduces the fraction of time at constant conversion.



(iv) Increasing the parameter p (see 2.5 above) increases the
constant conversion level, increases the average temperature in the re-

actor, and decreases the fraction of time spent at constant conversion.

(v) Decreasing the maximum a]]owab1e inlet temperature for
both exothermic and endothermic reactions decreases the constant con-
version level, as well as the fraction of time spent at constant con-

version.

Ogunye and Ray also consider‘the catalyst distribution
probiem, that is, to choose the initial (time) catalyst distribution
so as to maximize an objective function which takes into account the
average catalyst cost over the Tifetime of operation, offset against

the exit conversion.

The authors then combine the problems to choose best
temperature and initial catalyst activity and require approximately
8 minutes of computing time on an IBM 360/75. For the single problem
of choosing best distributed temperature in an adiabatic reactor 3-5

minutes of computing time was required.



CHAPTER 3
THE REACTOR SYSTEM

3.1 Industrial Fixed Bed Catalytic Reactors

In the petrochemical industry a common use of the solid
catalyst is the selective inhibition of unwantéd side reactions, as
well as lowering the ignition point of the reaction. The forms which
the solid catalyst can take are many. Usually an important design
factor is the total surface area, and as a result, small porous

spherical pellets are often encountered.

It is not uncommon to find that, in the design of the reactor,
the catalyst is the most economically signfficant and as a result,
much importance is placed on careful contro]vof catalytic reactors,
to ensure maximum catalyst Tife or selectivity. In many processes,
the catalyst can be regenerated and optimum regeneration cycle studies

has received some attention in the literature.

For non-regenerative catalysts, it is usually economically
unfeasible to simply operate the reactor until the catalyst acfivity is
zero and little or no product is formed. In practice, there is often
some total time of operation (economically, legally or practically

determined) within which, we wish to obtain maximum production (conversion).

0f course, there is some optimal total operation time which can

16.
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be determined usina a simple one dimensional search technique, over a

series of optimal policies with different operation times.

In the present study the total operation time is given

as fixed.

3.2 Mathematical Model

3.2.1 Introduction

Froment (1970) has qiven an extensive review of the
analysis and design of fixed bed catalytic reactors. His models have
been grouped into two broad sections:
(1) Pseudo homogeneous models
* (ii1)  Heterogeneous models
The first class of models do not account‘exp1icit1y for the presence of
the catalyst, whereas the heterogeneous models describe the system as two

distinct phases, with separate equations for each.

Within each catedory, there are three subdivisions, each
“taking more effects into account and so increasing the complexity of the

mode1.

3.2.2 Pseudo Homogeneous Model

Froment's basic model in this category assumes that con-
centration and temperature gradients occur only in an axial direction.
The only transport mechanism operating in the axial direction,is the

overa11 flow itself, which is assumed to be plug flow.



18.

He states, that in most cases, pressure drop in the reactor
is relatively small and it is common to use a mean constant value for the

calculations.

The non-steady state reaction‘equation describing this system,
is a first order partial differential equation in z (length) and t (time).
The variation of the catalyst activity is incorporated into reaction

equation to give an effective reaction rate constant.

To increase the comp]exitykof the model, Froment successively
introduces axial mixing to give rise to a second order differential equation,
in the steady state, using the concept of effective diffusivity. He
comments, saying it has been shown [Carberry (1963)] several times, that
for flow velocities often encountered in industry, the effect of axial
dispersion of heat and mass is negligible, when the bed depth exceeds

about 100 times the catalyst particle diameter.

3.2.3 Heterogeneous Model

For very rapid reactions which are highly exothermic or
endothermic or for large catalyst particles it may be necessary to dis-

“tinguish between conditions in the fluid and the solid catalyst phase.

Froment introduces three levels of complexity for this
class of reactors, the basic model here having the same assumptions
as the basic pseudo homogeneous model, except that mass and heat
transfer are described in separate sets of equations for solid and

fluid respectively.

To increase the complexity of the model, Froment adds
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equations to the basic model, which account for interfacial and
intrapdrtic]e gradients, when, for the above mentioned case, these
properties cannot be assumed to be uniform. To simplify the inte-
grations the concept of an effectiveness factor is introduced. This
factor essentially corrects the surface catalyst conditions for the

non-uniform conditions within the pellet.

3.2.4 Present Reactor System

The model adopted here Ties somewhat closer to Froment's
(1970) pseudo homogeneous model. Unlike Froment's basic pseudo homo-
geneous model, the catalyst decay is explicitly accounted for in a
decay rate equation; nevertheless, thjs equation does not view the
catalyst as a distinct bhase, as does Froment's heterogeneous model,
but considers the catalyst deactivation to be a homogeneous effect,
analogous to, and simultaneous with,}the reaction rate equation,
[Szepe (1966)]. The catalyst decay rate is dependent on the conversion,

the temperature and the catalyst activity itself.

A physical picture of the model may be obtained if one
visualizes a high velocity, fixed bed reactor, perfectly mixed with stationary

catalyst particles of the same size as the reaction molecules themselves.

3.3. Generalized Reactor Equation

th

The generalized mass balance for the j~ species in a tubular

reactor with a homogeneous bulk flow in all directions may be written as:
EEJ.+ Svrcj . l_ave .

at ar r 30 ¥4

aC, 1 ? DCj 3°D;C.,

=13 Al 33 s p -
v artd5" oy 72 PRy (3-1)

Cj aszj




where
Cj = molar concentration of specieé J
vV, ve,‘vr = bulk flow velocities in 3 coordinate directions

Rj = reaction rate for species j (positive for production)

Rj is taken, for an irreversible reaction of the form A -~ B, to be a
separable function of concentration activity and~temperature '

Rj = Kj(T) Fj(C)w

K is of the Arrhenius form

K = K exp[—ER/T]

where K; is a constant and E, is activation energy for the reaction

R
divided by the gas constant. T(z,t) is distributed temperature.

In accordance with 3.2.2 above, we assume that

(i) Bulk flow is along length of reactor only

(z direction) and is assumed constant
(i1) Axial diffusion is negligible
(i11) Radial diffusion is negligible
(iv) Density of reacting fluid is constant

(3-1) then reduces to

(3-2)

(3-3)

(3-4)

20.
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3.4 Catalyst Decay

3.4.1 Causes of Decay

There are commonly three major causes for loss of activity

' in'cataTysts, viz., sintering, poisoning and fouling.

Sintering or melting of the catalyst particles often happens
when uncontrolled hot spots or runaway temperatures occﬁr in a reactor.
This is a recurring problem in highly exothermic reactions with in-
sufficient heat transfer. The cata]yst material, in the vicinity of the

hot spot, melts or undergoes an irreversible loss of activity.

Poisoning of the catalyst refers to the process whereby
impurities in the reactant feed, deposit on the catalyst or react with
the catalyst surface and reduce its active area. This may or may not

be an irreversible process.

Fouling is analogous to the poisoning process and is caused
by deposition of unwanted side products on the catalyst surface, causing

loss of active surface area, blocking of pores, etc.

3.4.2 Catalyst Decay Rate

Mechanisms for all three types of decay referred to above,
are to be found in the literature. [The key paners are
Maath and Mascov (1965); Froment and Bischoff (1962)]. However, what
is required is the additive effect of all these Hecay mechanisms.

Experimentally four types of equations expressing decay rate are



encountered:
(i) linear [Eley and Rideal (1941)]
(ii) exponéntia] [Herington and Rideal (1945)]
(iii) hyperbolic [Pozzi and Rase (1958)]
(iV) reciprocal power [Prater and Lago (1956)]
Szepe (1966) proposed a general equation of the form:

¢ = vrate of deactivation = -k(T)-g(y)-f(X) (3-5)
where ‘ :
g(y) = 4" (3-6)
He showed'that the four experimental forms are all special cases of
(3-5) and (3-6). |
k(T) is a decay rate constant of Arrhenius form

k(T) = k; exp[—EC/T] (3-7)

where EC is catalyst deactivation energy divided by the gas constant
and T is distributed temperature. k; is a constant.

¢ 1s defined precisely as the relative activity and is written

rate of reaction with catalyst in a given condition,s_g)

¥(z,t) = rate of reaction with fresh (or reference) catalyst'

f(X) is the conversion dependence term.for catalyst decay.

So we may write the catalyst decay equation as:

i
<

= ¢(T9¢, X) (3'9)

3.5 Quasi-Steady State

In practice, one often finds that the contact time of a reactor,

that is, the time to process one void reactor volume at inlet conditions,

22.



is small (seconds or minutes) compared to the total time of operation

(hours or days), then, it has been shown [Ogunye and Ray (1969a)] that:

o€ oy 2C (3-10)

3 <V 3z

and that (3-10) holds, except for very long tubes and very rapidly .-

decaying catalyst. The quasi-steady state form of (3-4) is written

then as:
5C.
—J =
v 57 RJ
3.6 Normalized Equations

(3-11)

Using a primed and barred set of variables we can write (3-9)

and (3-11) in terms of conversion X(z,t) as:

v 2 RTF(X) (3-12)
3Z
2o L (T)g(e)F(N) (3-13)

at

if we have a total time of operation t and length of reactor L and we

define dimensionless variables:

t = - 0<t<l  (3-14)
z = £ 0<z <1 (3-15)
K(T) = © R(T) (3-16)
k(T) = = K(T) (3-17)
t, = L/ (3-18)
Then we may write (3-12) and (3-13)
X _ Yy
= = = K(TF(X) (3-19)

23.



%%— = -k(T) g(v) F(X) | | (3-20)

Natural boundary conditions on (3-19) and (3-20) on inlet conversion

is:

X(0,t) = Xo(t) ' (3-21)

and for initial catalyst activity

¥(2,0) = v;(2) (3-22)

From (3-3) and (3-7) we may express K(T) as a function of k(T) as

follows (incorporating the constants te and 7 into K  and k+) in (3-19)

and (3-20)
K(T) = K, exp[-ER/T] (3-23)
k(T) = k, exp[-E./T] (3-24)
where o ‘ .
K, = K;t/r andk, = k; (3-24a)
K = akP (see also (3-51a) below) | , ' (3-25)
a = KJ/(k,)P | (3-26)

The general properties of the various functions may be summarized as
follows:
Conversion X(z,t) Continuous or piecewise continuous,non

negative function of z and t; solution

to (3-19)
X e [0,1] all z,t (3-28)
X (t) Continuous or piecewise continuous,

function of t with continuous or piece-

wise continuous first derivatives.

24,



Activity w(z,t)

a(y)

£(X)

~ Continuous or piecewise continuous,non

25.

negative function of z and t; solution
to (3-20)
v e [0,1] all z,t (3-29)

Continuous or piecewise continuous or
uniform function of z with continuous or

piecewise continuous first derivatives.

Continuous, non negative, monotonic, non
increasing function of X and twice
continuously differentiable with respect

to X such that for

0<X<1 | (3-30)
we have
0 < F(X) <1 (3-31)

Continuous, non negative, monotonic, non

decreasing function of y such that for

0<y <] (3-32)
we have
0 <g(y) <1 (3-33)

Continuous, non negative, monotonic,
twice continuously differentiable function

of X



T(z,t) Positive, piecewise continuous distributed
control variable, with finite number of
discontinuous lines, bounded between two
given finite limits

- % .
T, sT<T | . (3-34)

k(T) Continuous, positive, strictly monotonic,
increasing function of T. Likéwise for K(T).
‘Because of this strict monotonicity, k[T]
is used\to replace T as the control variable |
and we write the equation corresponding to
(3-34) as

k, = k[T,] < k[T] < K[T1 =K (3-35)

tA

For a single irreversible reaction we use F of the form
Fo= (1-x° | (3-36)
g(y) is of the form
gy) = " (3-37)
where
n is order of the reaction

m is the order of decay

3.7 Adiabatic Reactor

With the values of te and t absorbed into the Arrhenius constants

as in (3-23) and (3-24) we may write (3-19) and (3-20) as

%)2(- = K(T)yF(X) (3-38)
2= —k(Mg)F(X) (3-39)



For an adiabatic reactor with all the usual simplifying assumptions
(constant pressure, heat of reaction mildly dependent on temperature, etc.)

we may write the well known adiabatic relationship for a reaction of

the form
A > B » " (3-40)
as '
X - X0 = J](T - To) (3-41?
| J1 = -Cp/AH A ) (3-42)°
where

Cp is the specific heét of the reaction (3-40), and

AH° is heat of reaction for (3-40).(negat1ve for exothermic
reaction)

To(t) is the inlet temperature to the reactor and is the

boundary control variable.

Dividing (3-41) by T T, we obtain

- X = -1 -
X - X =TT J (To ) (3-43)

Now if we make the assumption that the change in our boundary control is

sufficiently Timited so that

. T2 -
T To = T0 (3-44)
and also that
- - 2 L] -
J = T0 J] (3-45)

is approximately constant in z and t, then we may write, remembering
that J'is positive for exothermic reactions

_ el )
X=X, = J(T;-T) (3-46)



From another viewpoint the alternate eXpwessions (3-41) and

(3-46) are seen to be direct consequences of the energy equations

' g&_ = MM 1
dX Cp J{
and
ad e
7 _ AH (T) . l__
dX -

2 T .
T’Cp(') J

(3-46a)

(3-46b)

Assuming J{ constant leads directly to (3-41) and assuming J constant

leads directly to (3-46). It may well be that if AHO(T) is a faster
rising function of temperature, the &ivision by T2
assumption that J'%s constant better than the more common assumption
that J{ is constant. In any case, assuming that T is constant with

Tittle different from assuming %-is constant with.X, as is called fo

here.

Thus using (3-46) we write the distributed control (3-35)

in terms of a boundary control Ky:

e = kolTo, s K@) skl =
using (3-23), (3-24)-and'(3-46)‘we have

kLTI = k [T Jexp[(X - X )E./3°]

KLTI = K [T JexpL(X - X )E./d7]

where

k,(t) =k, exp [-EC/To(f)]

k,(t) K, exp [-Ep/T (t)]

(3-25) applies and we may write

= P
K,0 a k0

serves to make the

X is

r

(3-47)

(3-48)

(3-49)

(3-50)

(3-51)

(3-51a)

28.
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If we now define

F(X)

FOX) expL(X = X )Eg/d] . (3-52)

£(X) = F(X) expl(X - X)JE/I] | | (3-53)

We may write the final forms of the state equations (3-38) and (3-39)

as:
X _ ,
22 = kLT (£)T v F(X) | | (3-54)
oo L [T ()] a()F(X) (3-55)

Hence we have our distributed_system on terms of the boundary control
ko[To]'

It can be seen that a reactor with uniform temperature (in z)
is obtained in the 1imit as J° (or J{) tends to infinity (zero heat of
reaction), i.e. as Ji > = from (3-41) T (t) > T(z,t) which states

that we have a uniform temperature reactor.

For a uniform reactor we have from (3-52) and (3-53)

F(X) F(X) (3-56)

it

and

f(X) £(Xx) (3-57)
Thus'fhe state equation forms for the adiabatic and uniform reactor

are equivalent and differ only in the functional forms of F and f.



3.8 Statement of the Optimal Boundary Control Problem

The precise statement of the optimal boundary control problem
is:
(1) Given state equations (3-54) and (3-55) with

initial boundary conditions (3-21) and (3-22).
(ii) Given constraint on the boundary control (3-47).

Maximize, by choice of the boundary control ko'(hence To(t)) at every
instant in time, so as to maximize P, where P is the net integrated
exit conversion, for a fixed reaction time

1
J o= Max P = [[X(1,t) - x (t)]dt (3-58)
k[T ()13 ° |
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CHAPTER 4
THE OPTIMAL SYSTEM

4.1 The Weak Maximum Principle

The implications of the weak form of a maximum principle
are best understood if they are contrasted with those of a strong form.
Given the strong form of the maximum principle we are instructed
unequivocally to choose our control from a given set of allowable
functions so that at any z,t we obtain the largest value of the
Hami1ton1an with respect to any other admissible control. If there
is a set of functions which give this largest value of the Hamiltonian,
we then need only choose from this reduced set, that control function,
which gives the largest value of the objective function. We can search
for this global maximum such that

H(g+“

x2)>Hu, x2) foralluel

where _
u ¢ U the set of all admissible controls,
x and ) are state and adjoint variables respectively,
g+ e U maximizes the Hamiltonian.
Instead we search among all the local maximums such that g+ causes
H to be maximum in local region or neighbourhood about g+. A1l these

policies will satisfy the local maximum condition which requires the
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- Hessian matrix of second derivatives of the Hamiltonian with respect

to the control to be non positive definite.

The set of all admissibie policies which obey this Tlocal
maximum condition may be called 'Pontryagin policies'. We search
among these Pontryagin policies for our optimal policy and if it
exists, it will be found among these.po1ic1es. We must, of course,
be prepared to assume from mathematical or physical reasoning, that

an optimal solution to the problem indeed exists.

There is no general existence theorem for distributed
systems, and even the special cases involve long and tedious proofs;
so, often, intuitive reasoning or foreknowledge of the physical

system has to be relied on.

| Given the weak form of the maximum principle we are to select
those controls from an allowable set which 1oéa1]y maximize the
Hamiltonian only if the control is at a constraint+, but otherwise,
only cause the Hamiltonian to be stationary, that is, cause the 1st
partial derivative of the Hamiltonian with respect to the control to
vanish. This immediately introduces a potentially larger set of
control functions which obey this necessary condition. This set of
functions consists of all the functions which obey the necessary con-
ditions for the strong form, as well:as a larger set of functions which
do not cause the Hamiltonian to have its largest value, but simply
cause it to be stationary. One now has to choose from this potentially
Targer set of extremal policies, that one, which causes the objective

function to have its greatest value.

TIn exceptional circumstances the Hamiltonian may be stationary at
the constraint in which case only the weak form applies at the constraint.



4,2 Perturbation Methods -

A well known method for producing a weak form for a

(Tocal) maximum principle is by the method of a first order per-
turbation on the objective function; that is, a11‘perturbations of
the order of (Gu)2 (where Su represents a permissible variation in
the control) are set to zero. This causes all second derivative
terms to vanish leaving only the first derivatives to affect the
sign of the perturbation of the objective function in the vicinity
of the optimum. In order to ensure the necessary condition for an
extremum in the objective function, these first derivatives are set

to zero and provide the stationarity condition for the Hamiltonian.

Given that this necessary condition for an extremum in
the objective function holds, that is, the first derivatives of the
Hamiltonian with respect to unconstrained control are zero, it then
becomes necessary to consider terms of the order of (Gu)2 and their
corresponding second partial derivatives. We use these to determine
whether this extremum is in fact a maximum, minimum or saddie point.
Only at this stage can one make statements which identify the maximum
(minimum) of the Hamiltonian with respect to the control, with the
maximum (minimum) of the objective function, and give a strong

maximum principle.
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4.2.1 Existence of a Strong Maiimum'Principle for Boundary Control

Ogunye and Ray (1971), following the method of Jackson
(1966) and using a first order perturbation method outlined in 4.2
above, obtained a weak form of a max imum principle for boundary as

well as distributed control.

Possibly the most general and usable work in this area
is that due to Sirazetdinov and Degtyarev (1967) who derive a strong
maximum principle for a system described by first order partial
differential equations. Hdwever; the strong form in their theorem
applies only to distributed control and not where control exists in

*
one dimension only, i.e., boundary control.

There have been numerous claims of the existence of a strong
form for boundary control (Chang (1967)) but to the authors knowledge

no concrete, well established, proof exists.

4.3 Perturbation Analysis

Using a first order perturbation of the objective function

(3-58) we obtain (see Appendix A) the following equations:

1 1 SH
0 0°0
where
H o= 2w FK - A, g f k0 ‘ (4-2)
and 1
A = f H dz ' (4-3)
o .

*
except for the case where the system and objective function
are linear.



A is the Hamiltonian function of the system. xl(z,t) and Az(z,t) are
the adjoint variables of the system}and are defined by the following

partial differential equations

1;. 1 1 '_
F-szogf-)\]leoF ‘ (44)

Boundary Condition
A (1,t) =1 (4-5)

] ]
where f and F denote the total derivatives with respect to the

single argument X, i.e.

v dF(X ’ i
F o= & ‘ 1 (4-6)
f' - df(X)
dx (4-7)
Also
8)\2 ’ 1
3 = )\2 kO fg - )\-l KO F (4'8)

Boundary Condition

X (z,1) = 0 : (4-9)
where g' denotes the total derivative with respect to the single
argument, vy, i.e
¢ - o (4-10)

Now for a maximum it is necessary that any perturbation in the control

be such that
P <0 (4-11)
From (4-1) then, seeing we are free to perturb sko in either a positive

or negative direction, it is necessary, in order that (4-11) be
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sat1sf1ed that

oH .
-12— = 0 _ (4-12)
0

@1:'»

1
= f(px1 v F Ko/ko - 9 fddz = 0 (4-13)
5 )

Q
o |

1.
= /3
0
Differentiating (4-2) partially with respect to ko we obtain
1
f

*l

(=]

3

Seeing that the control ko(t) is a function of t only we may multiply

through (4-13) by k0 to obtain
1 1

g PAy v FK dz = £ Ap ko o f dz (4-14)
Equation (4-14) is a necessary condition for the stationarity of the

system where the control is unconstrained.

*
If the control ko(t) is at either of its boundaries k, or k ,

*
then for k0 at its upper boundary k , any perturbation in k0 must be such
*

that for k0 k ,

sk, < 0 (4-15)

Thus from (4-11) and (4-1)

%E; - ({%E—o—dzzo (4-16)
Likewise for k0 = K,
oH 1 on

*
When ko is constrained at one of its boundaries, say k , then
any perturbation in k0 must decrease ko‘ From the sign of —E" in (4-16)
R will also decrease, (except for the special case where the strict

equality holds and one has stationary condition coincident with the



boundary (see 4.1 above)). Thus, since A decreases with respect.to ko
at the upper boundary, it is a (Tocal) maximum with respect to ko’ at
the upper boundary and not simply stationary, as it is in the interior
region for the weak maximum principle. Thus when the control is at a
constraint the weak form reverts to the local strong form of the

maximum principle.

4.3.1 Influence of p on the character of the Optimum Profile

If there were no doubt that the strong form of the
max imum prfncip]e for boundary contfb] existed, one would proceed to
investigate the sign of the second derivative of the Hamiltonian with
respect to k0 in order to distinguish between the possible stationary

conditions.

' From (4-13) differentiating again with respect to Ky

remembering from (3-51a) that

KO
dk, = p > dk, S (4-18)
B 0 : .
2, 1.2 AUFK
A - il - f[——é-— p(p-1)1dz (4-19)
ak0 ) ako o

Now assuming the existence of the strong form of the maximum principle
a necessary condition for the unconstqained maximum (as opposed to

~ stationarity) of the objective function would be
2 2

- 1 v
il o Sk (4-20)
30 080



. : A pFK v
From (4-14) provided —lz——g is positive (see Chapter 5 below) this
k .

would require 0 '

p<l (4-21)

Thus (4-21) would be the condition for the existence of an unconstrained
optimal profile, that is, an optimum profile for which

ki < kg < K (4-22)
where the strict inequalities are observed.

Likewise for p> 1, an unconstrained policy would be
inadmissible and the optimal profile would consist only of constrained

*
portions, with k = k or k = k,, or a mixture of these profiles.

This mixture of totally constrained profiles 1§ often referred
to as"bang-bang' control and describes the situation where, for example,
an optimum profile is constrained on a lower bound for some finite
Tength of time and then switches, over an infinitely small time span,
to the upper constraint, so that for no finite proportion of time is

the optimum profile within the open interval (4-22).

The parameter p (3-27), because it enters directly into
(4-19) plays a decisive role in the character of the extremal control
policy and in the admissibility of certain control sub-policies to the

extremal control policy.
If one considers the extreme values of p we have

(i) p = 0: From (3-54) and (3-23) it can be seen that
the reaction rate is independent of temperature. For this case the

obvious optimal policy is to maintain the temperature as low as possible



so as to retain the highest possible catalyst activity in the reactor.

(ii) p = «: From (3-55) and (3-24) it can be seen that
the catalyst decay rate is independent of temperature. Now the optimal
policy is to maintain the temperature on its upper limit at all times

to obtain the highest possible conversion.

The kinetic significance of the parameter p is that for p < 1
an increasé of the operating temperature would increase the rate constant
ko(To) for catalyst decay faster than the rate constant Ko(To) for
reaction. If the operating temperature were to be lowered a decrease in
ko(To) would result and hence a higher catalyst activity would be
maintained; however, this would, of course, cause a decrease in the

reaction rate through Ko'

These conflicting choices of temperature indicate that
somewhere between the two choices the 'best' choice lies, and it is this

‘best' choice that represents the optimization problem at hand.
/

4.3.2 Singular and Bang-Bang Control

For p = 1 we have a degenerate case. From (4-3) it is seen
that the Hamiltonian depends linearly on the control ko;

remembering from (3-5la) that for p =1

K, = a kg | (4-23)
1 1

H = [Hdz =k (£)[[(aprquF - 2, g f)dz] (4-24)
0 0

Hoo= k (t)A(t) (4-25)
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Now the stationary condition over a finite interval of t is:

Alt) = 0 (4-26)

where

1
A(t) [f(apA]wF =29 f)dz] | (4-27)
0 ‘ .

does not depend explicitly on ko'

Now the only allowable form for H, if it is to be.stationary
with respect to ko’ is for H to be a constant function of ko. Comparing

(4-25) and (4-26), we see that this constant must be zero.

There are in fact three possible cases for A (4-25)

(see Figure 4-1).

If A(t) is zero, as it must be to satisfy the §tationary
condition for unconstrained profiles, then the Hamiltonian H is no
longer a function.of the control; it trivially obeys the necessary
condition (4-13) and no longer provides us with information on the
stationarity of the objective function. This situation is commonly

called a singular policy. The conditions for the singular policy are:

(i) A(t) must vanish over a finite portion of the extremal

policy. (4-28)

r
(i4) :—ﬁ—(t-)— =0 forr=1,2,.... (4-29)
t

It should be noted, however, that the existence of singular
control policies, which satisfy (4-28) does not necessarily imply
existence of singular sub arcs which form part of optimal control

policy [Johnson (1965)].
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The analysis of singular control policy for a distributed
system, presents a major mathematical difficu1ty.v There is still no
génera] method for determining, a priori, whether control policies
obeying the singular conditions stated above, actually fdrm part of

an optimal policy.

In the case of lumped parameter systems; Kelly (1964)
derived a necessary condition for a candidate satisfying the singular
policy, to be optimal with respect to an arbitrary piecewise continuous
perturbation in the control. This result is now commonly known as the.

Generalized Legendre-Clebsch condition and is given as:

y1<0 1.2, e (4-30)

r
(-1)" 22
: BUS aZY‘ ous
s ¢[0,1,...N]

t

where N is the number of control variables of the system.

Nevertheless, there has been no successful extension‘to the

distributed system [Seinfeld (1967)].

Now if A(t) is non zero or contains only isolated zeros, then
H cannot be stationary, and only constrained po1ic1és may exist at the

optimum.

It was stated that the weak form of the maximum principle
reverts to the local strong form when the control is at one of its
cons’craim‘,s.Jr Hence if we now search in the set of all profiles such

that *
ko ¢ {kO: ky < ko <k} (4-31)

then we may choose ko’ in order to maximize H at a boundary and not

+Except for the unusual case where one has stationarity exactly at
the boundary.



- 42,

Case 1 |

H “ A>0
0
Ko
Case 2
H
0 A=0
Ko
Case 3
H
0 A<D
ko

Figure 4-1 Three typical forms for the Hamiltonian as a
function of the control ko for the degenerate case

of p=1



simply to make it stationary. From Figure (4-1) it can be seen that
the optimal profile will be governed by a 'bang-bang' policy where,
for A > O, kO is chosen at its maximum value to maximize the Hamiltonian

and vice versa, that is:

Optimal profile for A # 0: k (t) = k= A(t) > 0 SR
. 0 (4-32)

ko(t) =k, A(t) <0
Computation for the bang-bang policy involves the determination
of the switching points between upper and Tower constraints and the

function A(t) is commonly referred to as the switching function. However

the computational methods are somewhat more involved than the standard
gradient methods, and often involve the limit of a series of non-singular,

non-bang-bang solutions. [Edgar and Lapidus (1972)].

4.4 Fixed Point Formulation of Necessary Condition

In spite of the appearance of integrals in the necessary condition
(4-12) one can express the necessary condition in a functional form.
The solution to the optimal problem then takes a fixed point formulation
and opens the way to a new series of computational techniques, different

from the standard gradient methods.

Expressing K, as a function of k, via (3-51a) and solving
for ko in (4-14), remembering that integration is with respect to z and

k_1is a function of t only, we obtain:

43.

0o
k0 = G[ko] 1 1 (4-33)
where ap g MyF dz T-p
Gk, ()] = [~ (4-34)

frg f dz
A 2
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*
for k, < ko(t) <k and p # 1.

(4-34) holds for unconstrained ko(t) and for the constrained

regions we write

6Lk, ()]

it
~

" (4-34a)

k when ko(t)

GLk,(t)] Ky , (4-34b)

The equations (4-33) to (4-34b) define the functional G fully.

Ky when ko(t)

The profile which satisfies the necessary condition for
stationarity of the Hamiltonian will be the fixed point of (4-33) in

function space.

It can be seen from (4-33) that as t ~ 1, A, > 0 (boundary
condition) and k0 +>w (p <1), and if k0 is constrained, then a necessary
condition for a profile to be optimal, is that it end on the upper

*
constraint k .

4.4.1 Fixed Point Methods

A solution to an equation of the form

x = Te(x) ' (4-35)
is said to be the fixed point of the transformation Tf, since Tf leaves
X invariant. To find a fixed point by the method of successive
approximations, we compute a sequence of vectors of the form:

Xne1 = Telxg) (4-36)

under appropriate conditions, the sequence'{xn} converges to a solution

of (4-35).
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» *
If we define S* to be a closed subset of a Hilbert space X ‘
*
and let Tf be a transformation mapping of S* into S then Tf is said to
be a contraction mapping if there exists an o, 0 < o < 1 such that
1 Telxy) = Telx) 11 s |1 %y = %, 1] - (4-37)

*
for all Xys Xo € S .

*
[l || is a norm in X, which is induced by the inner product <x,y>

such that
x|l = /o | " (4-38)
The inner product may take several forms, a common form being:
Sy = } x(t) y(t) dt X, yeS (4-39)
0

Theorem: [Luenberger (1968)] Contraction Mapping

*
If Tf is a.contraction mapping on a closed subset S of a
*
Banach space, there is a unique vector Xo € S satisfying x = Tf(x).
Furthermore, X, can be obtained by the method of successive approximation

*
of the form (4-36), starting with an arbitrary initial vector in S .

Note that a Hilbert space is simply a Banach space equipped

with an inner product which induces the norm (4-38).

Now provided we could prove that G was a contraction mapping
according to (4-37) then k0 could be obtained by the method of successive
approximation, and furthermore it would be unique. Thus it would be the
only candidate satisfying the necessary condition for the unconstrained
optimum and provided we were sure a maximum solution existed, ko would
be the required solution and would satisfy the necessary and sufficient

conditions for the maximum of the objettive function.
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So, in a sense, one can strengthen the weaker maximum
principle by casting the necessary condition into a fixed point
“problem; examine the mapping G which must leave the control invariant,
and if one can prove that G is a contraction mapping, then the solution
to the fixed point problem will be unique. Further, if a solution
is known to exist, the solution obtained by successive approximation
will be the required (unconstrained) optimal control, since it is the

only solution satisfying the necessary condition.



CHAPTER 5

PROPERTIES OF THE OPTIMAL SYSTEM

5.1 Introduction

For many pﬁoperties of the optimal system it is necessary to
derive certain properties of the state variables i, v, as well as the
adjoint variables Al’ Xos including those boundary conditions not
already specified. In some instances, formal solutions to these variables
are required and these too are obtained.

Properties of the state variables are considered first, followed

by the adjoint variables. Using these derived properties, several properties

of the optimal system are derived in 5.4 below.

5.2 State Variables

We seek to derive the analytical expression for a first order
decay rate, this will allow us to obtain an expression for the activity

v, as a function of f(X).

5.2.1 First Order Reaction

If we set the order of the reaction n=1 in (3-36) and ¢onsider a

uniform reactor (3-56) then we may write:
F= (1-X) - (5-1)

*From the first state equation (3-54) we have

X _ ‘ .
%E = Ko (1-X) (5-2)

A7.



Separating variables and integrating formally we have

II—_-X- = Ko(t)[q;dz (5-3)
o |
which gives
[1-X(z,t)1 = [1-X (t)] exp [-Ko(t)ﬁdz'—] (5-4)

(]
For the special case of zero initial conversion we have

Xy(t) = 0 O 03t3l (5-5)

-and we may write (5-4) as

Z
X(zst) = 1 - exp [-Ko(t{/-wdz'] . ' (5-6)
L (I :
and exit conversion
|ﬁ(t).= 1 - exp [k, 0(t)] (5-7)
1 ' ’
where 0(t) =d(¢dz is called average activity (5-8)

0
5.2,2 First Order Decay Rate

For a uniform temperature reactor in which case F(X) = F(X)
[see(3-56)], an analytical expression for the conversion X(z,t) at any
point is easily obtained from the first state equation. This then leads
to an expression for the exit conversion from the reactor which is seen
to depend only on the average activity [see (5-8)] and not the activity
at the exit alone. From this expression it can be seen later (Chapter 6)

how K0 is chosen to Quard against an exit conversion greater than unity.
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If we set the decay order m = 1 in (3-37) we may write (3-55) as

W . (e
t kofw , (5-9)

proceeding as in 5.2.1 above we obtain
t

¥(z,t) = y,(2) exp [—fko(t')f(x)dt'] * (5-10)
]
For the special case of fresh uniform catalyst initially

wi(z) =1 0<z:1 - (5-11)

énd we write (5-8) as

t
b(z,t) = exp [- [ko(t‘)f(X)dt‘Ji (5-12)
0

L 4

th

5.2.3 n~ Order Reaction Rate

Under this section various analytical forms of the state
- variables X and y are derived. The forms are divided, for convenience,
into a first order reaction system and first order decay rate, and the

th

corresponding n order reaction systems for reaction and decay rates.

The reaction schemes apply to a uniform temperature reactors, in which
case F(X) = F(X) [see(3-56)17.

For a uniform reactor F(X) takes the form
F=(1-x)" (5-13)
" substituting (5-13) in (3-56) and integrating formally as in 5.2.1 we obtain
1 1 ?
[1-X(z,)11" = g1 (£)117" - (l—n)Ko(t)fwdz‘ (5-14)
0

n#1
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For the case of zero initial conversion (5-5) applies and we write

[1 - K(z,8)7 = 01 - (1en) K (8) [z 2T (5-15)
0

as in 5.2.1. The exit conversion may be obtained from (5-15) and is seen

to depend only on the average activity 0(t) in (5-8) and not the Tocal

activity y(z,t).
: 1
Xi(t) =1-[1- (1-n) K (t) o(t)1 2"  (5-16)

n#l
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5;2.4. mth Order Decay Rate

One may obtain an analytical expression for the catalyst decay
v(z,t) at any point by making use of the second rate equation (3-55)
If one sets the decay order m as in (3-37) then (3-55) may be

written

.3.,‘?, = -k (t) £(X) at | (5-17)

Integrating formally one obtains
t

1-m 1-m
w(z,t)777 = vy(z) - (1-m) | k (t7) f(X) dt° (5-18)
m# 1
If (5-11) applies we have
) , -
p(z,t) = 11 - (1) [k (£7) £ derg 17 (5-19)
m#l

5.2.5 Derivatives of State Variables

Derivatives of the state variables X and y are given in terms of
z and t respectively. However, it is useful to have the corresponding

derivatives along the opposite directions. What follows is a derivation

3X g 2
at and 32

Using the first state equation (3-54) separating variables and

of expressions for respectively.

. integrating between Xo and X we have,
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(z,t) z | |
f %)EX) = fwKo dz* | (5-20) -

Xo(t) 0

Differentiating both sides using Leibnitz's rule we have

z ' ,
13X 1 dXo _ [ 3K 4, -
Fat ~ F(X)) dt 'f 3t 92 (5-21)

0

if we now specify constant initial conversion, i.e.,

Xo(t) = constant for all t (5-22)
we have
z
9K _ vk .
X < F(x) {-—a“f“ dz (5-23)

Expressions for the activity derivative may be obtained likewise,

using (3-55), separating variables and integrating:

vlz,t) o

I gt

gty fko rt
¢1(Z) °

Differentiating with respect to z using Leibnitz's rule and
specifying
wi(z) = constant or piecewiseconstant for all z (5-24)

we obtain, using (3-54)

t

a’ LI V4 hd r~

-5‘—;=-9(w)fkof UKF dt (5-25)
5 |
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5.3 Adjoint Variables

-The édjoint variables are extremely important in the characterization
of the optimal profiles. Their derivatives in z and t, their signs and
their magnitudes all feature strongly in the determination of properties
of the optimal profiles. Various analytical properties and forms for the

adjoints are derived.

5.3.1 Integrated Forms

Analytical expressions for the adjoints may be obtained using an
integrating factor on the adjoint equations defined in chapter 4, above.

From (4-4) and (4-8) we may write

RIS
3z - Mot M% (5-26)
8)\2
LD VS P W ) (5-27)
5T 273 174

where
21 = kogf‘ (5-28)
%o =’wK°F' (5-29)

- ]

23 = kog f (5-30)

I
-~
-n



Where, as usual, the primes denote total derivatives with respect to

the particular arquments of the respective functions.

In (5-26) using an integrating factor of the form

1 : .
exp [- Jrzz(zgt)dz'] (5-32)
; , .

- and using the boundary condition on Al(l,t)=1 (4-5), the solution to

(5-26) may be written as

1 rl z
22(2',t)dz‘] -“’exp Ejlzz(z",t)dz“jkzzl(z',t)dz'

Al(z,t) = exp [
4 z
(5-33)

Proceeding in the same manner, using the boundary condition on

A2(2,1)=0 (4-9) and the integrating factor

1
exp [fz3(z,t')dt°] | - (5-34)
t

the solution to (5-27) may be written as

1 .
t
)\z(z,t) =fexp [—fz3(z,t")dt“] 24>\1(z,t')dt' (5-35)
t t

It should be noted that since %4 is non negative (3-31),

12 will be non negative, if Al is non negative.

54.



5.3.2 Adjoint Integral Equations

Certain statements regarding the sign of the adjoint variables
may be made from their integral equation forms. In general though, these
forms may be useful for any analytical endeavours in this area.

Substituting directly for 2, from (5-33) in (5-35) we obtain
1 .1
‘ Az(z,t) = Il(z,t) +‘[idf Cc(z,t,z°,t°) xz(z‘,t') dz*dt®  (5-36)
' | t-z |

where
1 t’ 1
Il(z,t) = {exp [fJ;z3(z,t")dt" +j;22(z",t')dz"] 24(z,t‘) dt’
-t (5-37)
>0

z° ' : t

55,

C(z,t,z°,t°) = -[exp‘[— 22(2",t')dz" +Jf 23(z,t")dt“]21(z‘,t’) 24(z,t’)
z -

t (5-38)

It is seen that since % is ncn negative [see 3.6 above], IiS 0 and C has

the opposite sign to 2 which depends on the sign of f' (X).

Similarly for A;» substituting for i, in (5-33) from (5-35) we

we obtain

1,1
Al(z,t) = Iz(z,t) -fff (z,t,z°,t°) dz* dt* (5-39)
z t '
where 1
IZ(Z,t) = exp fflz(z.,t) dZ.] >0 : (5'40)
z ,



and

z t ‘
Tz, t,z°,t°) = exp [ilrzz(z",t)dz" ijrz3(z',t")dt"]21(z‘,t) 24(2',t’)
' t (5-41)

-

It can be seen from (5-40) that the sign of 12 is such that 12>0 and
C from (5-41) has the same sign as 21’ since 24 is non negative,

[see 3.6 above].

56.
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5.3.3 Propertieé of the Adjoints

Combinations of certain adjoint variables and state variables
occur together, for example in the Hamiltonian equation and the expression
for the optimal exit conversion, (5.4) below. In order to make certain
concrete statements concerning the optimal profiles it is necessary to -
know the derivatives of these groups of variables as well as their signs
and relative magnitudes. Some of these groups are amenablée to analytica]
analysis and some derivationé of their properties are given below. Also
derived, are the all important signs of the adjoint variables themselves.

The signs of the various derivatives are treated below, as well.

Partial Derivative of A]F with respect to z

This particular derivative turns out to give an expression
which is closely related to the expression for the optimal exit conversion.
It forms the basis of a series of analytical proofs of constant exit
conversion for specific forms of F and f to be treated in 5.5 beiow.

3)\1 F 87\] '

- 3X | _
57 = F —a-z— + )\-IF -a—z- (5 42)
9 3 X
substitute for 55— from (4-4) and for gi-from (3-56)
3)\1F 1 I ]
=7 = Flgkogf = Ak F ) + ayF (uK F)
SK]F [}
57 - PoKodff (5-43)

]
It can be seen that this derivative has the same sign as f (X), from

(5-47) below and 3.6.

From (5.43) we may obtain an alternative expression for A



as f011dws:
1 aA]F _ Azkogf a]nx1F

NF 8z T T BT : - (5-44)

Integrating between 1 and z and remembering that A1(1,t) = 1,we obtain

FLX, (t)] 1k af -
)x-l (Z,t) =A 'F-['w exp [" £ ——-i-.lo———dz ] (5-45)

since F is non negative (3-31), for all z and t, the only values of M

satisfying (5-45), are A 2 0.

Sign of Adjoints

From (5-45), due to the sign of F and the exponential,we

require that:

A](z,t) >0 for all z and t (5-46)

Refering to (5-35), due to the sign of %5 the presence of the exponential

and (5-46), we require that the second adjoint be non negative, i.e.

Az(z,t) >0 for all z and t (5-47)

Partial Derivative of Ao with respect to t.

If we choose a particu1ar form for g(y) with m=1 we have from
(3-37)
g = v (5-48)

Consider the derivative with respect to t

58.



I 3Ny,

= 3y -
5t - Y3t T Tt ‘ (5-49)

substituting from (3-55) for%%?— taking (5-46) into account and likewise

32y
forgff— from (4-8) we have

3 Aoy k . (5-50)

3t Y (Azkof B A1K0F) N (=kyfv)
3 Aoy x ‘
27 -
It - A]wKoF <0 (5-51)
forg=y '

This derivative is non positive for all z and t (from (5-46) and 3.6)
From (5-51), we may obtain an alternative expression for A, for the
case g = ¢ by integrating between the limits t <t <1 taking into account

the boundary conditions (4-9) for A, we have

1

=] y | -
t

Again it is seen that for x] non negative we have AZ non negative.

See also 5.6 below to replace v by g

Partial Derivative of A]F with respect to t

This derivative occurs in an expression for the optimal exit
conversion over the unconstrained region to be derived in 5.4 below. It
"is thus important that both its sign and magnitude are known. It turns
out that this derivative, even though an expression can be derived for it,
leads to an integral to which neither magnitude nor sign can be attached.

The expression for the derivative and some of the difficulties encountered

59,



are given below
Differentiating (5-43) partially with respect to t, and

changing the order of integration, since (see 3.6) A 1F is fwice

continuously differentiable in z and t, we obtain

| ) 2 A,F

- () tXp Ok gFeY) - (5-53)

a3t

Integrating between limits z < z:< 1 and remembering the boundary con-

dition onA,(1,t)=1 (4-5) we obtain

N |

3 \F 3 , \ %

ST = | 5% ok 9FF )z* + F' [X(t)] g5 (5-54)
) .

Although it is important to determine the sign of this
derivative, this not an easy task, especially because the sign of the
integrand may change for only part of the distance along z, and because
of the presence of the integral, the entire past history of the
integral must be known up to the point at which the sign of the deri-

dX
vative is required. From 3.6 above F' < 0, but Efl' may be of either

sign or a mixture. However, the sign alone of the first term is insufficient;

the relative magnitude as well, is required, to set off against the
second term, and then only can the sign of the derivative be determined.
For the case where decay does not depend on conversion and

the term f';O, the sign of this derivative is easily seen to be opposite
X

to that of-7f% and we have, from (5-54), assuming that F' <0 from
3.6 above,
SA]F dX

- 1 )
3t PO e (5-55)

60.



61.

Partial Derivative oflxzw with respect to z

The significance of this derivative in determining the character
of the optimal conversion profile has been discussed in the paragraph
following (5~47) above. As well, in 5.4.3 below this precise derivative
~occurs alone in an expression for the optimal.exit conversion over the
unconstrained region. Its properties are‘thus of great importance.

A convenient expression to this derivative may be obtained
for the case g =y directly from (5-51). If a more generq] expression
is required it may be obtained by multiplying both sides of (5-35)
by % or g(# and differentiating partially with respect to z. However,
this produces a long involved expression‘which is virtually useless
ff one requires the sign of the derivative. Yet a further method 1is
shown in 5.6 below. |

Direct]y then, from (5-51), using the same assumptions as in
(5-53) and remembering the boundary condition onA 2(z,l)=0 (4-9), we
.have, | |

| 3 Aoy | :
) 2 - 3 -
7t (37— ) = - 37 (K F) . (5-56)

Integrating (5-56) between t <t <1 we obtain

1 .
3 Ao¥ 3 (\uF)
AR /K — gt (5-57)

3z 032
t

for g =y

To determine, (analytically) the sign of this derivative one experiences
3 A\ F

similar difficulties to those forgq;—- above. From section 3.6above

we can determine that



(i) K >0 for all t
A1

(ii) The sign of cannot be determined in general,

however, if we specify certain conditions on f we see that if f' > 0

3 A]
then > 0since from (5-43)
RN
) ]
F -5—2—.-' kzkogFf - X]F leoF

thus since all variables are positive except F' < O[see section 3.6, 6 46)'

3 A
and (5-47)] if ' >0, then——L > 0
3 A z -
If f'< O’a z‘ may be of either sign, depending on the relative

magnitudes of the two terms on the righthand side.

(iif) é}g;-= F' wKoF is non positive (all variables non neqative
except for F')

(iv) {}%—- may be determined from (5-25) to be

t
3 S - ! ¢ ’ -
—l’-a z g(w)/KokowFf dt (5-58)

It can be seen from (5-58) that the sign of the derivative is
opposite to that of f'(X). |

Hence the integrand consists of two neaative terms for £ > 0:
(iii) and (iv), bajanted off by one positive term (ii). The relative
magnitudes cannot be obtained, except numerica]ly,hence the difficulty
of obtaining the sign of (5-57).

Aiternative]y one may use (5-43) and(5-25), Teaving only two
terms, whose relative magnitudes need be determined before the s1gn of (5-57)

can be determined.



Boundary Conditicns for Adjoints

With the aid of expressions developed for the adjoint variables
and their derivatives above, the sign of these variables along the bound-
-aries may be obta1ned

From (5- 33), using the boundary condition on A 2(0 1) 0 in

(4-9):
A1(z,1) = exp Q}HQKOF'(z',1)dz‘] >0 (5-59)
_ z.. A L ‘
A]ternat1ve1y from (5- 45) using the same boundary condition on Ao
we have ——————o 4
F[xmn
A](Z,]) = r[-x—(z—’-r)-]' >0 (5-60)

Consider for the second adjoint (5-35) and use the known

 boundary condition A (1,t)=1 (4-5) to obtain

Boundary Derivatives cf the Adjoints

The significance of the properties of these derivatives is
discussed in the few paragraphs preceding (5-59) above.

Using (4-4), with known boundary conditions (4-9) we have, using
3.6 and (5-60)
RN

EE P AF 0z, 1)K, () 2 0 (5-62)

Az(l ,t) = fexp (- jk g'f(1 t")dt"]K F('l t )dt 3 (5-61)

63.



Similarly for i, at final time using (4-8) and (4-9)

2

i | K F(z,1)

U S, | - }‘ z’ _ )

ey T (5-63)
~From (5-69) and using (3.6)

T A v . (5-64)

5 t2 = - K (t)F[X](1)] <0 | independent of 2

(z,1) ¢ )

Hence the slope of A , with respect to t, at the final time, is

2
non positive and remains so for all z.

5.4 Stationarity Conditions

Using the properties of the state and adjoint variab]és derived
sb far, properties concerning the necessary condition for stationarity of
the system are derived. These properties eventually lead to two expressions
for the derivative of the optimal exit conversion. The one expression
apblies over all time, whereas the second, applies only to the un- |
constrained temperature region 0 < t < t (E defined in 5.4.1 below). These
two expressions, combined with expressions for the adjoint x]; eventually -
Jead to a proof for the constancy 6f conversion at the optimum for special

forms of F(X) and f(X) [see section 5.5 below].

5.4.1 Exit Conversion for a Stationary System

A necessary condition for optimality of the system has been
provided (see Appendix A) in the form of a stationary Hamiltonian which,

" from (4-14), may be'written as

pKo(t)G/rA]wF dz = ko(t)d/}ngf dz2 | (5-65)

64.



Define ¢ = - kofg . , (5-66)
then % =9 | | (5-67)
| 2 (2,9)
Consider the derivative —
From (5-66)
3 A0 3 A dk ' _
2° _ 2 36 .0 "o, ¢f 2X _
5t - ¢35t T [a v ¢ ko dt Y3t ] (5-68)
: 3 Ao
.substituting for-;i;- from (4-8).
3 A0 A-¢g‘ | dk .
2” . 277 ¢ ¢ _o ,efaX
at —¢[-)‘]K0F- g 3“2[3“1’ * koa't?'+ 5t ]
¢  dk 3 A F ' _
From (5-43) = - oA K F + —%—- a%-‘-’- 'JF —a'il"' —3—%— (5-69)
R | .
3 ¢K dK '
i = __._..Q_ .__—Q_ -
writing ¢A]K°F A1F ST A]Fw T | | (5-70)
. dK dk
andusingl_ "o _p o - -
ol ko T from (3-51a) (5 70a)
3 12¢ . 3 wKo . pwx]FKo . A2¢ ] dk° 1 3 A]F 3 X
3t 1T o3t ko k0 dt F a3z 3t
a0 AW, an dKe 1 AMF 4y (5-71)
at 13t ako dt Faz It

(5-71) when integrated leads directly (see below) to an expression
for the optimal exit conversion
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Optimum Exit Conversion

Crowe (1972) has shown that (5-71) leads directly to an
expression for the derivative of the exit conversion at the optimum
(poinf of stationarity). He proceeded as follows:

Integrate (5-71) over z to give

] |
3 And 3 ¥K  dk 3, F
2 - o ,9H o 177 ax

fat dz—ﬁAF T @ T X]dz (5-72)

0 1 0

iiﬂ—-. SEQ—- dz is zero at the
Now the term [ 3 dt

0
optimum irrespective of whether & is constrained or not (since for k
dk

constrained Eﬁ;—-o and for k unconstrained, the Hamiltonian condition

(4-12) applies).

Hence we may write (5-72) at the optimum as

1 1
3 Ao 3 yK 3 A F
2 - o _ 1" "1 353X
/at dz'![’leat F3z 3¢t Jdz " (5-73)
Integrating the second integral on the riaght hand side hy
parts we obtain
2=
3 ALY
2 o 13X ] X
fat ./(Al Frg )4 "F(F i +f>\1 th)d (5-74)
z=0

(5-74) holds for all 0 <t <1 at the optimum, irrespective of whether

. k0 is unconstrained or not.

‘Using the boundary condition on A 1 (4-5) and the condition

that

Xo(t) = constant (5-75)



he obtains
]

: ‘

ERYL dxl(t)/ 3K, 1 2% B 3X aX

ofﬁ"" iz = - g - JINF— - N g a5t - 2 57 =2 1dz
A |

Using continuity proﬁerties of X (see 3.6) interchange the order

of differentiation and using the first state equation (3-54) to give:
1

3 A, dX, (t) 3 yK 3 (yK_F)
2 S 9 _, __"0"° ' 3X
.O[at dz = - g5~ -/ IMF—g¢ M3t + \F' vk 5 oz
0
combining the terms inside the square brackets, the integrand is easily seen

to be zero; hence we have

d,(t) 1, -
T - ({ =00, kg gf)dz | (5-76)
for al1 0 <t <1 )

Crowe's condition (5-76), is a necessary condition for the optimum exit
profile irrespective of whetﬁer or not, ko is éonstrained.
| Define E'aé that point in time t at which the optimum (stationary)

profile reaches its upper constraint and remains there. It is easy to
see, if one considers the fixed point formulation of the necessary conditions
(4-33) for p#1 that as t -1, Ay > 0 and ko (optimum) tends to
infinity. So, as expected, the optimum profile will always end on its
upper temperature constraint. )

From (5-76) and {(5-65) it is seen that the expression foraé—-is
simply the derivative of the right half of the Hamiltonian equation (5-65).
If we restrict ourselves to the optimum unconstrained profile region, that
is for0 <t iid we may equate the remaim‘ng half of (5-65) to the

expression for Hfl y hence

67.



dX](t)

Thus (5-77) applies only over the unconstrained region, and is equal to

(5-76) over this region.

We may obtain an expression for the optimum exit conversion

itself by considering (5-76).

Interchanging the order of differentiation

and integration (continuity properties of variabl?? see 3.6 above), since

‘the derivatives of the two quantities X] (t) and

2kogfdz are

1

(5-78)

(5-79)

equal, their values differ by a constant c., that 1s
dx 1

From (5-77) "1 _d_
T - at f Apko9fdz

Therefore X, (t) = J{; o9fdz + ¢

" Now since (5-79) hoids for all 0 <t <1

(see (5-76)) we may use the

boundary condtion at t=1 ona, (z,1)=0 to obtain

1

Xy (t) - X,(1) = [,k gfdz

all

(5-80)
0 <t <1

Now since the integral in (5-80) is equal to the left hand side of (5- 65)

over the unconstralned region we may wr1te

1
X](t) - x](l) = p[)\]w KOF_dz

0

(5-81)

0 <t s E

: (5-77)

68.



A general expression for the derivative of the exit conversion
cah be obtained directly from the first state equation (3-54). From

5.2.2, with z=1, we have

X 1

____an = [yk  dz* . ) ' (5-82)
X0 0 ‘
Differentiating both sides using Leibnitz's rule, we have, remembering

that Xo(t)=constant

dX, (t) A9k, | B
-5 (5-83)

Derivative of the Hamiltonian with respect to Time

A very useful expression to obtain, is that of the time derivative
~of the Hamiltonian over the unconstrained region. This leads to another
form for the necessary condition for the 6pt1mum and provides an in-
- valuable relation between the adjoints and state variables, which in fact,
leads to a proof for constant conversion at the optimum for the case where
p=constant fsee appendix B]. , | |

If we multiply the Hamiltonian through by kd(t) under the integral
- sign, which we are permitted to do since integration is along z only, and
‘then differentiate with respect to t, we have over the unconstrained fegion

]
d 3
'd_f k —3-—:-:-~dz -/)[at(pk FwK -xkgf)]dz=

. 3 UK INF 30
using (5-66) J{[px] STt P STt Jdz = 0
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- ) 3 A ¢'
Now substituting for 3 tz dz from (5-73) over the unconstrained region
we obtaip_the necessary condtion
| 3 A F 3 A F
1 177 3 X _ .
j [p-1) MFg= * PKg3g— = g o 3gldz = O (5-83a)

(5-83a) is used to prove the constant conversion optimal policy for f=1

[see appendix B].

5.4.2 Decay Rate Independent of Conversion

It has been shown [Crpwe,(1970)] that for the simplified decay
raie, where f(X) is taken to be constaﬁt, that a necessary condition for
~ the optimum of the objective function P is that the temperature is chosen
SO as to maintain constan; exit conversion. This result drops out directly
from the derivative of the Hamiltonian (5-83a), (see appendix B).

It is assumed in the above paper, that y 1is essentially constant
over z. Note that this requires specifying a uniform initial activity.
For this case, the activity is uniform in z for all t and we may integrate

(5-82) to give

x |
{“ai'“ = WKg(t) (5-84)

Differentiating both sides using Leibnitz's rule we have

1 dX;(t) 3 (vK)) :
ﬂ:).(l'(t)]fﬂ q.t;._____,.. 1t (5-85)

Now from Appendix B we have, at the unconstrained optimum,
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dX

"0 R .
- 3 yK - -
hen;e from (5-85) 0.9 0<t<i (5-87)
3t - -
Now integrating (5-82) up to a general z from,(sdz.s)
3 (vK ) ; |
X L0 4 5-88)
S FJ 5% dz (
° ,
. ax_o ‘ . -

From (5-87) 3t At optimum O <t <t, for all z - (5-89)

Hence constant exit conversion 6f the optimum (unconstrained) implies
constant conversion at each point along fhe reactor length as well.

We may obtain a closed fonn expression for the optimum rate
constant (hence temperature) profile by making use of (5-87) and remembering
that f=1 in the second state equation (3-55), differentiating (5-87)
we obtain

o . (5-90)
vgr - Kokgdlv) =0 |

For the case gz ¥ using (5-70a)
b dk0 )
VK, [E; T - ko] =0 at optimum

0<t< E
From section 3.6 above, K0 is non negative, and provided activity remains

non zero up until the control reaches the upper constraint at t. we have

2
dk .
-2 - ° At optimum for g = ¢ ' (5-100)
dt P

~



Integrating between 0 <t <t we have the closed form expression for the

optimum rate constant profile

1 t -1
k (t "LKTey " p :
of )opt : kolod - p ] 0 <t <t (5-101)

for f=1 g=y

5.4.3 Alternative Expression for the Optimum Exit Conversion

If we depart“from'the more general expression,g(ﬂbyand choose
the specific case where n=1 we can obtain another expression for the
optimum (stationary) exit conversion profile using (5-51).

3 AW

3t M

oK F ‘ | (5-51)
forg =1y

If we multiply both sides of (5-51) by p and integrate over z between

"0 <z <1 we have
1 1

3 A0 B ‘
pf 2 - - (5-102)
/3 T dz p ]fxleoFdz
0

If we restrict ourselves to the unconstrained region0 <t <t and compare

(5-102) to (5-81) we obtain

x](t) - X](]) = -p 0"'3"‘{"‘""

at the optimum
for g=y and
0 <t <t

(5-103)

The derivative of the optimum exit converstion may be obtained simply as
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1

2 .

dX, (t) 3 (A,v)

a,ti - - pj_a_t_z_z__ (5-104)
0 ) .

‘

The integrand in (5-103) is non positive. The proof of this statement is
given below in section 5.6.

Consider also, the integral of the following product
1 1

) ) :
A dz = K_|[ »Fydz
f 13z °f‘ (5-105)

0 0

>

|

Q

Integrating the left hand side by parts and using the boundary conditions

ona ](1,t)=1, we have
1 1

A .
Xy (£) = A7 (0,8) X (t) ﬁa )X dz + KO[A]Fwdz (5-106)

32

0 0

If we consider the case of zero initial cohversibn the second term on the
left is eliminated; comparing the second integral on the right with (5-81)
an expression for the optimum exit conversion in the unconstrained region

is obtained.

1
Xy (t) =[557% dz + 5 [Xy(¢) - X, (1)]
o (5-107)

rearranging we obtain

P RN ](1)
() = 53 [j(laz)x dz - —5—]

At the opt1mum for -

- (5-108)
0 <t <t and

Xo(t)

0
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5.5 Analytically Predictable Optimal Exit Conversions

Using the properties of the adjoints and state variables defived
above in particular the expression for the optimal exit conversion, the
derivative of X]F with respect to z and the boundary derivative of A] with
respect to t, A11 derived above in 5.3.3, several statements concerning the
character of the optimal exit conversion may be made. Four propositions
regarding the slope of the exit conversion, at the optimum, for certain
forms of F(X) and f(X), are proved.

5.5.1 Zero Order Reactions

Proposition 1:

Given the two conditions below, a necessary condition for the
system to be optimal is that the exit conversion be constant over the

unconstrained region

Conditions: (i) f(X)=X ¢ arbitrary positive constant
(11) X, (t)=0 for all 0 <t <1
Proof
From (5-43) 3\F o ' .
37 ° }\zkoFgf

for zero order reaction, we may set F=1 without loss of generality, and
applying condition (i) we have
3 A] (5-109)

Tz = Mkedc

Q)

Multiply both sides of (5-109) by f and integrating between 0 <z <1
1

/1 2 2
c A,k gfdz = f— dz
f 2o 32 (5-110)

0 0
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A necessary condition for optimality for all o<t<l from (5-80) is

fxzkogfdz = X (t) - X;(1)

0

Hence using (5-110) and (5-80) we have at the optimum

1 3N
X (t) - X, (1) = ¢ [ f 55 dz

Integrating the right hand side by parts we have, using the boundary

condition on A](l,t)=], (3-54) and condition (i):
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(5-80)

X (t) - X](T) . l—[f[xl(t)] - £1%, ()14 0 ,t)] -ﬂxox] dz (5-110a)

A further necessary condition for obtima]ity but over the unconstrained

region only, i.e., Oftiz, is given by (5-81); for zero order reaction

‘ (X, (t) - X,(1))
A]w K0 dz =_ ) ’
0

From {5-110a) and (5-111), rearranging, we have

fLx,(t)] - fIX (t)] 2,(0,t)]
X(8) = p.l — eyt X (1)

using conditions (i)vand (i) on (5-111a) ahd rearranging

X (t) = X, (1) (1+p)

The right hand side of (5-112) is constant, so differentiating we have

dx,
=0
dt

(5-111)

(5-111a)

(5-112)

(5-113)
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~ If we do not specify zero initial conversion (condition (ii)), but
instead initial conversion just constant, i.e.

Xo(t)=c1, constant
then (5-112) may be written as

X (£)=%,(1) (149) = peyh, (0,t)

and IO R - (5-114)
dt Pey 74t ,

A d%;cussion on the difficulties involved in determining the sign of

dr; (0,t)

——%f—__"(F =1), s given in the paragraph following (5-54) above.

An alternative proof of (5-113) is given in appendix C. This

proof is somewhat more involved, but perhaps more general in that an analytical
dX
1

T is calculated

form for the derivative in (5-114) is used and

o

directly from (5-76) above.

5.5.2 Non Zero Order Reactions

The type of reaction forms referred to in this section, cannot
be conveniently classified under a general n th order reaction scheme.

Certain rea;tion schemes (eg. autocatalytic) are generated by
the requirement of the three specified conditions below and do not fit

into a general n th order reaction scheme.

Propos;ion 2
. Given the three conditions below, a necessary condition for the
system to be optimal, is that the exit conversion be constant over the
unconstrained region.
* Conditions (i) Ff'=cf ¢ non zero constant
(1) Flxo(£)1=0  [x,(t)=0] 0
(iii) F'[X](t)]fc 0

1A

1A
[nd (o d
IA LA
el el
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Proof

It is instructive to consider the limitations imposed by the
conditions, on the allowable forms of F and f.

Rewriting (i) as a differential equation in X and integrating to
solve for a particular f (with zero constant of inteagration) we obtain

f = exp [c’-“:— dx] | (5-115)

using the first state equation (3-54) we may write (5-115) as
f = exp [éfwKodi] (zero constant of integration) (5-115a)

Example For an autocatalytic reaction we will have F of the form (in
a uniform temperature reaction F=F)

F=X(1-X) ‘ o - (5-116)

(5-116) certainly satisfies the last two conditions and from (5-115) we have
f = [y | - (5-116a)
¢ may be any constant as léng és the last condition is not violated.
There are obviously an unlimite& numer of forms which satisfy
the conditions above; however, dnly a limited number are realistic from
the physical point of view, nevertheless if we remove the physical inter-
pretation of the two state equations, the system defined mathematically
should still exhibit the stationarity property, that the far end boundary
derivative of the first state variable (X) must be zero, for unconstrained
optimal control. This fact is hade use of in chapter 6 in order to test the
validity of the computer program used for the numerical studies. For this
purpose, then, we may use the mathematically acceptable (see 3.6 above) but
physically unrealistic form of F=X this produces via (5-115) f=chc#1, and
indeed these forms produce a constant "conversion" profile at the optimum,

whiqh is validated by the numerical studies.
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3 A
3 Z

]F

From (5-43) = 2k GFF'

From condition (i) = cxzkogf | o | (5-117)
Integrating with respect to z]and using the necessary condition (5-80)
1‘[3 MEO
,X,(t) = X](1) tol3— d2

Integrating out, using the béLndary condition on l](l,t)=1,
X (t) = X, (1) + l-f;[x (t)] - »,(0,t) F[X_]
1 1 c i1 1 o

Applying condition (ii) and differentiating both sides we have

dx, |
o E: - F [X-I(t)]:] =0 ' - (5-118)
. Using condition (iii), (5-118) implies that
%y () | (5-119)
— = () -
at _— .

If condtion (i) did not hold and F[Xo] was a non zero constant we would

have instead of (5-119)

dX) FIX,1 4y 0,t) | (5-119a)
dat [?T1X]$-c| dat

Example
It is instructive to consider the example of a first order reaction,

here we have using (5-115)

F=(1-X | (5-120)
f=(1-X ‘ | ) _ (5-120a)
with ¢ obviously equal to -1 in (5-115). Referina to condition (ii1) notice that
F(X)=c
deliberately. o (5-121)

From (5-115a) and (5-121) a particular value for f is given by



y4 .
P = exp [-ﬂKodz'] (5-122)
0

0

Now from (5-33) making use of the fact that, from (5-120), F' = -1, and

substituting the exponential in (5-122) for f we have (xo constgnt)‘
fIx (0] ff X .
A](O,t)— ——?12;7- - ?%X%T-- Azkogf dz
0

substituting for f' and f(Xo) from(5-120a), and using the optimal condition
(5-80) we obtain, at the optimum

1-X1(1)
| AT(O’t),=,—T:7—_f , gonstaﬁt

0

(5-122a)

It would appear then, from (5-122a) and (5-119a), that the constant
conversion policy holds for a first order reaction, but (5-122a) holds
only subject to all three conditions listed below propostion 2. With
the first order form for F in (5f120), equation (5-121) deliberately
violates condtion (iii) thereby rendering (5-119a) invalid and hence
the constant conversion conclusion.

For ¢ = +1 # F' we have for a first order reaction from (5-115)

el
Following the same steps, and using the fact that f' = fz, for this form
of f

1@ -0, 0-x1 (5-123)

X, (t) ~7

B

If we now substitute in (5-119a) we obtain an identity which provides no

information,
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A point to notice, is that, in neither of the above
propositions, is any restriction placed on the form of g(y) as it occurs

~in the second state equation (3-55).

5.6 Optimal Control where Exit Conversion is Constant

It has been demonstrated in 5.5 above, that the policy of :
constant exit conversion of the optimum does hold true for specific forms of
the conversion dependence term f(X) in the first state}equafion (3é54);

For these cases a formal (but not closed) expression for the optimal
unconstrained control may be obtained as follows: |

From the necessary condition (5-76) with constant exit conversion

we have the necessary condition

1

d S :
% [kof 2,9fdz] = 0 | (5-124)
o

this gives on differentiating,

1 1

dk 3 A9 (5-125)
0 = 13 X 2
® fngfdz = - kof[ngf, 5t e 1 d2
0 0
from (3-55) and (4-8)
3 A\,9
2 . A,k fg' - A;K F] - A,9'k gf
at 9 LAgK,T9 17 29 K9
3A,g v '
2 S - -
3t 9K F <0 (5-126)

- [see also (5-51) above in section 5.3.3.]
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From (5-126) and (5-125)

81.

dky _-ky D (z,t) | o (5-127)
at k } fgd
ApTgdZ
1 05 2
- R | . -
where D f[ngf 5T - fgx]KOF]dz | (5-128)
0

Using the necessary condition (5-80) again, and the fact that Xl(t) = X1, (5-129)

a constant here for o < t < £,

dko

o2 D
@& -k [T

(5-130)

(5-130) is analogous to the, expression derived previously (5-100). The
expression (5-130), reverts to (5-100) for the case where constant conversion

is known to exist (see appendix B) that is for f(X) = constant.

So, for { = constant, say 1, D becomes
D= -‘[gx]KoFdz (5-131)
2 .

using the further necessary condition (5-81) and specifyihg g=yv we

may write (5-131) as

-[x1 - (M]3
D=

(5-132)
P
substituting into (5-130) we revert to (5-100)
dk k2 (5-100)
-0 0
dt p

5.7 Falling Exit Conversion at the Optimum

Falling exit conversion is by far the most common form of profile
found in all the numerical studies. Most reasonable forms for F (first

and higher order reactions) and f(X) (linear and higher order in X,



exponential, etc. produce a falling exit conversion at the optimal. $ee |
Chaper 6 below.

Using the expression for the derivative of the optimal exit
conversion [(?-76) above], a sufficient condition on f(X) is provided
so as to guarantee a falling exit conversion..

The results of proposition 3 may also be used as a numerical test:
should there be any doubt as to the slope of the exit conversion profile
[see Chaptef 6], the proposition 3 provides both a weak and a stronger test
as to whether the exit conversion is falling in time. It also provides
and indication of the effect of f(X) and its derivative on the slope of the
optimal profiie [see 6.7.2 below]. ’

Proposition 3

If the conversion dependent term, f(X), in the catalyst decay
rate equation, is chosen so that the derivative in time, of the product
kof is non positive for all z and some t; then the optimal necessary
condition, is a'fa11ing exit conversion for'those't; unless 100 percent

conversion is reached or catalyst activity is zero.

Proof

From (5-126)

29 ’ 5-133
= - g AKF (5-133)

Now if we have not reached 100 percent conversion F(X)>0 and if catalyst
activity is not zero then g{p ) >0 [see (3-36) and (3-37)]. K>0 and from
(5-46) x]>0. Thus from (5-133)

3t

(5-134)

<0
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Proposition 3 contains the sufficient condition that f be chosen so that

-0 < 0 : (5-135)

Consider the necesSaryAcondition for the optimal exit conversion (5-76)
and differentiate | | A
d XT(t) i 1 3%y g ok f

= [ [k, f—— + 9 —3%—sz (5-136)
0 S

~ Now, from the properties of the variables in section 3.6 above and non
negativety of A 2 (5-47), from (5-134), the first integrand is negative and
the second is non positive. This gives rise to a falling exit conversion
at the optimum, for those t at which the sufficient Condition (5-135)
holds. B

The necessary condition is less stringenilipd simply requires
)

-4

that the average value, in z, of the product [Azg;TfL-—] if it is positive,
3

g
be less than the absolute value of the average of[kofjgﬁgl-

], at the times
in question.

. | One cannot extend the conclusions of proposition 3, and should
the iinequality be opbosite in (5-135), we would require knowledge about the
relative magnitudes for all z, of the two integrands, before a statement

on the slope of the exit conversion profile can be.made} ,

Proposition 4

There exists an f(X) which produces a falling exit conversion

profile at the optimum, for all forms of the catalyst decay term g(v).

Proof
The proof is provided by producing‘a counter example to the

statement of constant conversion at the optimum.
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For a uniform temperature reactor with first order reaction

we have

F=(1-X)

From (5-4) above we can solve directly for the form of conversion X, to

give

X=1-¢'exp [—Ko(t) ydz®]

: 0
¢'=1- Xo’ constant
choose f(X) = (1-X)r > 0

r = order of conversion dependence

~ Multiply (5-137) by kys to give

z
kof = cko exp [-rKofwdz ]

¢ = constant 0
From (5-126) above we have

2 2,9

7t =" MK <0

which is negative as long as we do not have 100% conversion or zero

activity

(5-4)

(5-137)

(5-138)

(5-126)

The optimal condition (5-136) above gives after substitution of (5-126)

d)(.I 1
a - g kofa [AKoF -

3 Ink f
A N
2 3t

(5-134)

A1l variables are positive except for the trivial case (of 100% conversion

" zero activity) stated above. [See Chapter 3.6 and equations (3-46) and

5-47) above].

Hence, if we can show that the derivativeﬁ;7;~—-

positive for some value of r, we will have the required proof of existence,
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dX
and Hfl will be negative at the optimum.

From (5-138) substituting for f from (5-137) and
for-%%% from (3-55) and using (5-70a)

- z
> MKoT =3 Tnko [1-rpK fwdz‘] + rK k (I-X)rgdz’ (5-140)
3t 3t oJ ™ S oot T

r sufficiently large and positive

Consider the expression (5-140) and note that z, ko’ Ko’ g(v)
are bounded functions [see chapter 3.6 above].

Note also that the term r (1-X)r is convergent at all times for
which we do not have 100% conversion or zero conversion and hence by

choosing r sufficiently large and positive the term

r L ]
r‘i(ok0 [(I-X) gdz
)

~can be made arbitrarily small and positive.
But in choosing r lafge and positive the remaining term in
(5-140) becomes large and negative (provided we have a rising temperature
profile at the optimum) and will dominate and thus for r sufficiently large
and positive.
3 Ink f - : (5-141)
_._._9._.<0
3t :
From (5-141) and (5-139) we have

py | (5-142)

for all t, as long as we do not have 100% or zero conversion, or zero

activity, and we have a rising temperature profile at the optimum,
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r equal to zero

This is the well analysed case where decay rate is independent
of conversion and from Appendix B,

dX

1 _
@ -0

Here we would have over the unconstrained region

ang dko '
kO ‘5“{-— dz = - dat kzgdz ‘ | (5-]43)

o - (o]

r large and negative

This case is not clear cut and probably produces a negative

derivative, as in (5-141), as well.

- Necessary Condition

Notice that the condition (5-141) is a sufficient condition for
falling optimum profile and that it is only necessary that the negative

- half of the integral in (5-139) %elgigger in absolute value than the
31n

remaining half, which includes—;q;—-—- qri(ﬁpis will pfoduce a falling
31n
exit conversion at the optimum, aven if X : is positive.

In practice then a value of r = 1 or 2 is sufficient to cause
a falling exit profile,as is borne out by the numerical studies in

Chapter 6 below. (see table 6-12)



5.8

1Y [
from the boxed =3 results and equations of chapter 5; in.point form

Summary of Important Equations and Results

A summary of the important equations, may be gleaned directly

by equation number:

- 1.

~nN — — a—d —t —d — —t —t w—h —t (Ve o] -~ (o)) o H [ N
o 0 [o0] ~ [*3} [3,] -3 W N -t o . . - . .
- . L] - L] . L] L] - -

(5-6)

(5-7)

(5-12)
(5-15)
(5-16)
(5-19)
(5-23)
(5-25)
(5-33)
(5-35)
(5-43)
(5-45)
(5-46)
(5-47)
(5-54)
(5-59)
(5-60)
(5-61)
(5-62)
(5-64)

Conversion X. First order reaction
Exit Conversion x]. First order reaction
Catalyst decay ¥. First order decay

Conversion X,n th order reaction

Exit Conversion X1,n th order reaction

Catalyst decay , m th order decay

t derivative of conversion:

2z derivative of catalyst acfivity:

Integral expression for A](Z,t)

Integral expression for AZ(Z,t)

z derivative of i,F: |

Integral expression for x(z,t)

Sign of k](z,t)

Sign of 1, (z,t)

t derivative of M oF

Boundary condition for xl(z,1)

Boundary condtion for 11(2,1) (alternative)
Boundary condition for Az(],t)

Boundary Derivative in z for A ax]/sz at (z,1)

Boundary Derivative in t for Aot axz/at at (z,1)
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21.
22,
23.
24,
25.
26.
27.
28.
29,
30.
31.
32.
33.

- 88.

(5-71) tderivative‘Of the variables r,p: 3(A2¢)/3t

(5-76) Optimum exit conversion o0 <

(5-83a) t derivative
(5-1b3) Optimum exit
(5-104) t derivative
(5-108) Opt%mum exit

- (6-77) Optimum exit conversion o <

(5-126) t derivative of A,

Propositions

1 Zero order reactions

t <1 (t derivative)

A

t

1A

£ (t derivative)

of Hamiltonian H
conversion as function of A,y
of optimum exit conversion as function of Azw

conversion as function of 33,/5z and X

¢ constant conversion

2 Non zero order reactions: constant conversion

3 Condition on f(X):

falling conversion

4 Counter example: falling conversion

C Zero order reaction:
(see Appendix C)

constant conversion (alternative)



~ CHAPTER 6
NUMERICAL ANALYSIS

6.1 Introduction

When no general analytical methods are available and\one has,
to some extent, to rely on numerical methods to investigate the propértiés
of the system, more confidence is generated if one can, by some other
independent méthod, verify the numerical methods ability to'predict the
system properties accurately. In the present system for example, the zero
order reaction system, with a particular form for f(X), has been shown,
analytically, to give constant conversion at the optimum [see 5.5.1 above].
The program when provided with the specific conditions, should without
exception, provide a constant conversion policy in agreement.

For the known case of constant conversion at each point along
the length of the réactor [section 5.4.3], i.e., for the case f=constant,
the computer program should again be in agreement and predict constant
conversion at each point in the reactor.

Very many analytical examples are provided by the non zero
reaction order scheme in 5.5.2 above. Only some will be physically
realistic, but as explained in 5.5.2, the mathematical system equations
still provides for a zero time derivative at the exit for the ‘con-
versibn' (first state variable X) at the optimum, as long as F(X), f(X)
have the properties indicated in 3.6 above.

If, for all the above analytically predictable optimal 'con-
versions', we are able to verify the program's ability to predict the
" correct optimal profiles, we will have more confidence in the program's
ability to predict profiles in those areas for which no general analytical
results are available. Also, proposition 4 above, assures us that there

exists an f that will produce a falling optimum conversion if we choose

89.
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the order of conversion dependence r sufficiently large. In table

6-12 r=1 is sufficient to produce a falling exit conversion profile.
A valid query exists as to whether or not the optimal profile

fs reached; especially in view of the known difficulties with gradient

methods in the vicinity of the optimum. This query may be answered -

partially by testing the optimum reached, from new initia14guesses,

but more strongly so by using a completely independent algorithm,

not based on the gradient methods, and comparing the profiles and

objective functions obtained.

6.2 Verification of Program

6.2.1 f(X) Constant

| The constant conversion policy is known to be valid for this
case (Appendix B), .f was set equal to unity. The optimum exit conversion
is seen in figure 6-1 to be constant as long the temperature policy
remains unconstrained. As soon és the temperature reaches an upper
constraint at t=t the exit conversion begins to fall, and continues to do
so until final time t=1. Also, parametric studies performed, agree with
those of Ogunye and Ray's (1971) [see section 2.5 above].

Table 6-1 gives the data produced for this case.

6.2.2 Zero and Non Zero Reaction Orders for f=f(X)

As a rule, the form of £ in (3-20) was taken to be

Fx) = X" (¢ + ax)"? (6-1)
¢,d constants ‘

so, for a uniform temperature reactor (%=f), with n1=0 and n2=1, we_ have a
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Figure 6-1 The constant conversion policy for decay independent
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T,e = 700°K, T, = 800°K
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t To(t) °K X](t)

0 837.9 .75 47
1 841.6 .75 49
2 845.5 .75 49
3 849.6 .75 49
4 854.1 .75 49
5 858.8 .75 49
6 863.8 .75 49
7 869.3 .75 49
8 875.2 .75 49
9 881.7 .75 49
10 888.8 .75 49
n 896.7 .75 50
12 900.0 .74 21
13 909.0 .72 02
14 900.0 .70 05
15 900.0 .68 10
16 900.0 .66 23
17 900.0 .64 45
18 900.0 .62 75
19 900.0 .61 12
20 900.0 .59 57
21 900.0 .58 07
22 900.0 .56 67
23 900.0 55 31
24 900.0 .54 0

Table 6-1 Exit conversion X(t) and initial temperature Ty(t) vs. t

at the optimum for figure 6-1
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linearhdepéndence of decay rate on conversion; nl=1 and n2=-1 would fit
the form for f encountered in 5.5.2, etc.

Zero order reaction in a uniform temperatﬁre reactor with f=X
is shown in figure 6-2 to give a constant optimal conversion for all
unconstrained Eemperatures and a falling conversion for t>£, in agreement
with the analytically predicted oplimal conversion fn 5.5.1. The data for
the plots are again provided (to four significant figures) so that the
high degree of numericg] constancy can be ascertained. As soon as the
temperature reaches the upper constraint, the conversion profiles drops
Sharply and continues to do so, until final time, t=1.

For the case f=1 the two staie equations are uncoupled and this
serves to make the numerical integration far more stable giving rise to
3 figure numerical constancy as opposed to 2.figure constancy for the case
where f=f(X). |

To demonstrate that only the particular form of f(X) specified
“in 5.5.1 gives rise to constant conversion, the author chose f(X) from
(6-1) with n1 =0 n2 = 3 for zero order reaction, and this produced
a rising exit conversion at the optimum [see figure 6-3 and the figures
in Table 6-3]. Again, a sharp drop in the conversion profile occurs as
soon as the téhperature reaches its upper limit (see also section 6.7
below). For other choices of f, falling profiles occur; see table 6-10.

For non zero order reactions several forms for F and f, as
indicated in 5.5.3, were used and all produced constant exit conversion
in agreement with analytically predictable 'conversions', over‘the
unconstrained region. The case for an autocatalytic reaction is shown
in table 6-4.

For falling conversion from propos%tion 4 we must choose

r sufficiently large and positive with f(X) such that
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t To(t)°K X1(t)
0 849.9 .67 04
1 851.9 .66 96
2 | 853.9 .66 88
3 856.1 .66 78
4 858.3 .66 78
5 860.7 .66 69
6 863.2 .66 59
7 865.9 .66 49
8 868.7 .66 38
9 871.7 .66 26
10 874.9 .66 13
111 878.4 .66 00
12 882.1 .65 87
13 886.2 .65 87
14 890.6 .65 57
15 895.6 .65 42
16 900.0 .65 28
17 900.0 .64 72
18 900.0 .62 60
19 900.0 .60 60
20 900.0 .58 73
21 900.0 .56 97
22 900.0 .55 32
23 900.0 .53 76
24 900.0 .52 28

Table 6-2 Exit conversion Xj(t) and initial temperature To(t) vs t

for figure 6-2
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t To(t) °K X;(£)x10”
0 886.3 .97 24
! 888.9 .97 28
2 891.7 .97 32
3 894.6 .97 36
4 897.7 .97 41
5 901.0 .97 46
6 904.4 .97 52
7 908.1 .97 60
8 912.1 .97 68
9 916.4 .97 77
10 921.0 .97 89
1 926.1 .98 02
12 931.7 .98 18
13 937.9 .98 38
14 944.8 .98 63
15 952.8 .98 89
16 962.1 .99 28
17 973.2 .99 82
18 987.1 1.00 60
19 1000.0 1.00 30
20 1000.0 .95 92
21 1000.0 .91 90
22 1000.0 .88 20
23 1000.0 84 78
24 1000.0 .81 60

Table 6-3 Rising exit conversion Xi(t) and initial temperature T,(t)

97.

t at the optimum for figure 6-3 [zero order reaction,
f=(243)73, TE=1000°K, T,#800°K, m=2, Jj== P=0.2]



t T, (t) °K X (t)x107
0 969.4 .19 63
1 972.6 .19 78
2 975.9 19 77
3 979.5 19 77
4 983.2 .19.77
5 987.1 .19 76
6 991.3 .19 76
7 995.8 .19 75
8 1000.6 .19 75
9 1005.8 19 74
10 1011.3 .19 74
1 1017.3 .19 73
12 1023.9 .19 72
13 1031.1 19 71
14 1039.1 .19 70
15 1048.0 .19 69
16 1058.2 .19 68
17 1069.8 .19 66
18 1083.5 .19 65
19 1099.6 .19 61
20 1100.0 19 17
21 1100.0 .18 77
22 1100.0 .18 40
2 1100.0 .18 06
24 1100.0 17 75

98.

Table 6-4 Constant conversion policy for autocatalytic
reaction [F=X(1-X), f=X/(1-X), p=0.15, m=2,
T; =1100°K, T0*=900°K]
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()= - x)"
We also require F=(1 - X) for a Ist order'dniform temperature reactor.

Table 6-11 shows a falling conversion for r=1,

6.2a - Numerical Integration

6.2a.1. Integration Procedure

| The method of characteristics has been widely used as the method
of integration for the present system [Acrivos (1956)] and is well described
in any competent book on digital computation [Lapidus (1962) Carnahan et al,
1962]. |

The present system consists of two sets of simultaneous, semi-

Tinear hyperbolic, partial differential equations, which remain hyperbolic
throughout the entire region of integration.

We write the two general state equations in differential form

as ‘
13X L 3X dt
dX -[az + 3 dz] dz (6-2)
3 9 '
dy = Ea—"z—?- 9{-+ 5{1] dt- (6-3)

It is seen that if we choose the two characteristic directions:

I %%-=’0 or t constant (6-4)
I %%-= 0 or z constant (6-5)

- The resulting characteristic equations are then
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The chardcteriétics I are parallel to the z axis and the characteristics
II are parallel to the t axis (see figure 6-4).
Since the equation (6-6) and (6-7) are coupled, and the

directions of integration do not coincide, several of the common numerical
integration schemes will lead to trial and error (or iterative) procedures
[Acrivos (1965)].

| Figure 6-4 shows a simplified grid pattgrn. From the given boundary
conditions

X(O,ti) = constant i=0..N (6-8)

t

w(zi,O) = constant 1'=0..Nz (6-9)

Hence one initial boundary, for each of the two equations, is known.

For the modified Euler scheme [Lapidus (1962), Chapter 3] we
require.the value of X and ¢ at the present point and the subsequent
point in order to proceed; eg., to calculate X]O we require knowledge of
Y10° ¢0;0 and XO,O' This presents no difficulty q1ong the boundaries in

(6-8) and (6-9), but off the boundary we require simultaneous iteration

of (6-€) and (6-7). For example to calculate X]] the following
‘simultaneous iteration scheme would be required:
| (i) Guess 2% and Xn (using predictor of the modified Euler
scheme)
‘(ii) Recalculate ¥ from X]], ¥10° X]0 using (6-7) (in
corrector form)
(iii) Using New w]], recalculate Xn from Y11° Yor° XO] from
(6-6) »
(iv) Using'New X]], return to step (ii)
(v) Iterate simultaneously until the relative error between
two successive values of both variables meet a given

error bound.
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Figure 6-4 Grid scheme for numerical integration of system

equations along characteristics I and 11, showing
directions for simultaneous iteration
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“ It is possible to eliminate the iterative nature of the
integration scheme by using one of the Newton-Cotes open ended in-
tegration formulas [Lapidus (1962), Chaptef 2]; these require'
only the values of the integrand at the present point and one or
more bast points in order to calculate the next point, unlike the
Euler or Runge-Kutta schemes which require information about the
integrands at the future point as well.

The modified Euler was found to be far superior to
either the Runge-Kutta 3rd or 4th order and Milne Predictor corrector
schemes which suffered from stability problems in the simultaneous
iteration scheme, or to the Newton-Cotes open ended systems which
had no iteration, but were plagued by error propagation.
The modified Euler on the other hand, was iteratively
stable‘énd could produce the desired accuracy by simply iterating
the predictor corrector parts to within the desired error limits
Needless to say, the modified Euler scheme had great advantages
in terms of computation time in view of the large- number of sets of
simultaneous equations that had to be solved. A grid size of 15 x 25

(N x Nt) was found to be quite adequate and doubling both dimensions

A
to give a 30 x 50 system produced no appreciable change in the
numerical values of any of the dependent variables (4th or 5th decimal
place) or in the objective functions (4th decimal place).

In a simila} manner the adjoint equations were solved along
_ the same chéracteristics as in figure 6-4, but in view of the given

boundary conditions

0‘ lN

Az(zi,o) =0 i

ANNst) =1 i=0..N

102.
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integration is backwards.
The adjoint characteristic equations for (4-4) and (4-8)

are:

dA] | ' . BN ‘

'a-i- /I = )\2 kogf - X]leoF ) | _ (5-]2)
d)\z ' ‘

at /11 = 2kofe' - MKGF (6-13)

6.2 a.2 System Constants

The numerical values of the parameters and constants were
as follows:
Inlet conversion

Xo(t) =0 all t ¢ [0,1]
Initial activity

wi(z) =1 all z ¢ [0,1]

Reactors average space time (3-18)

tb = 1,0 second
Total operational time (3-14)
c = 2.16 x 10° seconds (25 days)

Bounds on temperature °K

T,* = 900, (1000, 1100)

T . = 700, (800, 900)

0*

Catalyst deactivation energy divided by gas constant

Ec = 15000 °K

103.
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Arrheniius pre-exponential constant (3-24a)

k"= k, = 20.24

The reaction actiVEtion factor ER is easily calculated from (3-27)
i.e., ER = pEc.
The Arkhenius constant K{ is calculated using (5-16) or
(5-7) and corresponds to a maximum attainable exit conversion of
Xf(t) = 0.9 with fresh catalyst v(z,t) = 1,0 and maximum inlet

temperature T; = 900 °K from which a maximum exit temperature 1))

for the adiabatic reactor is calculated.

-eg.for n # 1 -
. [Ec . p/01 (1 - (0."))
K, = £ (T=n) (6-14)
' 6
where (@ = Tﬁ* + O.9/J]' maximum exit temperature : (6-15)
dJ = =C /aH° | -
an 1 p/ H ‘ (3-42)
eg, for n =1
) - exp [Ec.p/T] In(0.1) .
K+ = te (6-16)

6.3 Optimum Seeking Methods

6.3.1 Gradient Method in Function Space

The well known gradient or steep descent methods [Denn (1967)]
are easily extended to the distributed system via the Hamiltonian
expression (4-13} and from (4-1) it can be seen that, if,at any
iteration sko(t) is chosen, so that
sko(t) = v (t) JoH dz (6-17)
o'sk0

where y(t) is a sufficiently small positive function of t (usually
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taken as constant), then &P>0 and the objective function will
increase at each iteration towards the maximum value of the objective

function.

Gradient Algorithm’

q $ = =
1. Guess To (Ej), hence ko(% ) for all tj j=0.N_, g=0 for 1st

£
iteration.
2. Integrate the two state equations forward and store the'values
of Xq(zi,tj) and wq(zi,tj). |
3. Using the variables in steps 1. and 2. integrate the adjoint
equations backwards and store the values of A]q(zi,tj) and
Azq (zi’tj)' | ‘. |
4, From the values of the variables in steps 1. 2. and 3. form H
from (4-2) and integrate over all z at each time interval
tj j=0..Nt, to.form H.
5. Calculate 6ko(tj) at each'time interval according to (6-17)
given some y
6. set k(TN () = k{V(e ) + sk (t;) | | (6-18)
If ko > ko* set k0 = ko*

7. Test the objective function P (3-58) for an increase (decrease).
8. If there is an increase {decrease), double (halve) the value of ¥
and repeat step 2, and return to 6; save the values of Y and
Pi and continue in this manner until the objective function

decreases; double (halve) once more and save Yis Pi'
9. Pass a quadratic curve through the values of Yi» Pi’ find
maximum of the curve to estimate that vy which gives the largest

value of Pi call this v, Yopt®
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One alternative, occasionally used is simply to double
(or halve) the value of y until a decrease occurs in the objective

function, at say YN and set v =avy where o is some fraction

opt
eg 0.7. This saved total computation time even though the total

number of iterations may have increasedf

+] _ 3H .
7. Set kgq )(tj) = k((,“)(tj) * Yopt J 3K, dz j = 0..N, (6-19)

0

* p = *

If ky 2 k> set k= kg

8. Return to step 1. and continue until successive values of the

objective function differ by less than a given error criterion.

On a grid of 30 x 20 (NtXNz) approximately 3 1/2 minutes of
computing time on a CDC 6400 computer was required. This corresponded
to about 6 iterations from a constant starting function as a first
guess. In many cases though, it was obvious that, due to a slowing
~ down of thé method in the vicinity of the optimum, the optimum had
not been reached. This was indicated by the fact that the profile
has not yet reached the upper constraint at the final time [see
paragraphs following (4-34)]. See figure 6-5.

Another point that was observed, was the occassional sensitivity
of the derivative of the conversion profile to change in the temperature
profile. For example, in the case where f=1 (figure 6-1) to obtain a
reasonably good constant exit conversion profile, each optimum
temperature profile point had to converge to within a relative error

of less than 0.1 of one percent. See 6.3.2 below.
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6.3.2 Fixed Point Method In Function Space

In some cases the exit conversion profile character was
sensitive to the temperature profile; this condition was aggravated
by the fact that the gradient method failed, in many cases, to approach
the optimum profile sufficiently closely. So that in these cases, tﬁe
~ slope of the exit coﬁversion could not, without doubt, be separated

into a rising, constant or falling profile.

The fixed point formulation of the necessary condition for the
optimum profile has been given (4-34) and the successive iteration
method based on this form has been discussed (4.4.1).

In general, one has no quarantee that the operator G[ko]

in (4-34) will be a contraction mapping and that the process

ng+’)(ti) - G[kéq)(tj)], §=0..N, | (6-20)

will converge for whatever starting function kéo) we use,

Solving for the optimal profile is now no longer viewed
as astepwise climbing process, where, at each step, a higher value of
the objective function is guaranteed. Now we have a fixed‘point

equation of the form.
ko(t) = G[k,(t)] (6-21)

and we wish to find that function, ko(t), by whatevef method, which
satisfies (6-21)

We may now use many of the well known fixed point iterative
.techniques in function space, which are analogous to the more usual forms
in a one dimensional vector space. Examples are the Newton Raphson
Reguli-Falsi and Richmond iterative schemes applied to a function or

n dimensional vector space [Lapidus (1962) Chapter 6].



Due to the complex nature of the operator G (4-34) any
scheme which requires even the simplest numerical derivative is out of
the question (eg. Newton Raphson).

An alternative formulation of (6-20) is

1
K1) = apakl®)) - 87+ il

< <
0sasoanx

o may be varied between 0 and o at each iteration according to some

max
rule or may be kept constant at some Value indicated by numerical
experience of the specific problem. For the present problem fastest
convergence was obtained for 0.6 < o s .92.

The paramater, o, in a sense, regulates the fraction of the
full correction to be used at each iteration. For a = 1 in (6-22), we
have full correction and (6-22) reverts to (6-20), and for a = 0,
there is no correction and kg+] = koq. Note that Amax MY in principle

be greater than unity. If we set Grax - 1, the a acts as a damping -

ax
factor on the correction to k° as explained above; however, if the
problem indicates it, “max>] may speed up convergence of the process.
Convergence promotion of this iterative scheme is discussed below in
section 6.4,

With a scheme such as (6-22), there is, of course, no
guarantee that the value of the objective function P will increase
~at each step as it does in the gradient method. In using the gradient
method, where, essentially, the numerical process proceeds as if all the
"discretised control points ko(tj) j= 0..Nt, were unconstrained,

predicts each point, and if the point is outside the bound, the

predicted ko(tj) is replaced with k* (or k,)

(6-22)

(6-23)
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So also, for the scheme (6-22) the iteratiéﬁs converge and
when a predicted value converges outside a bound, this predicted value
is replaced by its bound [See (4-34a) and (4-34b)].

There are, in addition, several methods [wégstein,(Lapidus
(1962) Chapter 6), Orbach and Crowe (1971) and Crowe (1972)] for
ac¢e1erating the iterations obtained from (6-22) and these will be
discussed in 6.4 below. |

The fixed point algorithmvwas often used in conjunction

with the gradient method. An efficient scheme was found to be:

(1) First iteration with Gradient Method

(11) Followed by several convergence iterations with the
fixed point method until the optimum is reached.

However, in spite of the excel1ént pefformance of the
gradient method in the first iteration, aniinitial iteration with the
fixed point method almost always bettered the prediction of the gradient
‘method and reduced the total numer of iterations by about 20 percent.
One notable exception was the case where the opt%ma] profile was such
that most of the profile lay at an upper limit the remaining
unconstrained section lay close to the constraint so that any oscillating
jteration on either side of the true unconstrained value was hindered
by the close proximity of fhe upper constraint. The first few ’

iterations of the fixed point method were almost always oscillatory

in nature.

Fixed Point Algorithm

1. Guess To(o)(tj) hence kéo)(t.) for all tj and proceed to obtain
the gradient estimate of Té‘ using the gradient algorithm.

2. Integrate all the equations with the value of To(l) as in steps



2. and 3. of the gradient algorithm,
3. With all the stored variables calculate the value of G(tj) at

each point in time, using

Jf]
F(z,t.)d 1
(t.) - D J Aq¥ (ZAAJ) z =

i 1
0/. Ap0f(z,t;)dz §0. .\

4, With a given a, set kgf](tj) by

(@) ) = (@D (g )+ (a)
kot (t5) = kg V() + o [6(E)) - ko V()]

)

5. Option: accelerate the value of kgq+] by one of the procedures

in 6.4 beloW, to obtain an accelerated ko’ say L£q+1)’ and if

r (q+1) * c(g¥l) _, *
ko > k0 set k0 = k0

6. Test for convergence in the norm

21 +
eg. ” ko H = fl ko(q ])'ko(q)ldt
) 0
= +] q 2
or Il ke Il = §(k0?j) - ko))
0 k = M k (J
SRINTRE G

Comparison

Not only does the fixed point reduce the total computation
time by between 30 and 50 %, but a much closer approach to the optimal
profile is obtained. This last point is shown by:

(i) Significantly larger value of the objective function,

(i) For those cases where constant exit conversion is
\optimal a much finer level of constancy (10 or more-fold decrease in
numerical derivative) is observed, thus allowing the author to dis-
tinguish far more carefully, those cases where the sign of the slope
of the exit conversion is in doubt. | |

The large saving on computer time is due, partly to the

-(6-24)

(6-25

(6-26)
(6-27)

(6-28)
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saving of .

(i) Calculation and test of objective function at
each iteration.

(ii) Integration of the state equations several times
in the calculation of Y. (step 8, gradient algorithm).

] .
(iii) Curve fit and the calculation of Yopt®

In some cases, due to the relative insensitivity of the
objective function in the vicinity of the optimum, appreciably different
profiles may be obtained with a finer approach to the optimum, via the
fixed point method but with only a mild increase in fhe objective

function. Figure 6-6 compares the two optimum profiles obtained as well

as the corresponding objective functions and computation times.

6.3.3 Predictor-Corrector Method

Rather than use the gradient method or the fixed point
method independently, the question arises as to whether some combination
of the two methods may cause faster convergence. A predictor-corrector
scheme was implemented whereby the gradient step provided the
predictor estimate, and this estimate was refined using the fixed

point formulation as a corrector:

p
P: ko( )

(0) | '
ko + 6k0 (Gk0 from 6-17)

_ p p p
c: ki = kP v aekP) - (P

(6-29)

This scheme may be varied to suit the problem insofar as
how many correctors follow one predictor. In the present problem two
correctors after one predictor, seemed to produce the least number of

total iterations and total computation time.
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Predictor-Corrector Algorithm

1. Proceed as in steps 1. + 6. gradient method to obtain kép)=k£q+])
from (6-18). v

2. Use kép) to calculate kgczs invsteps 3. and 4. of fixed point
algorithm using (6-29).

3. Set kgc) = kép)and repeat iteration 2. n times (n= # corrector

steps following a single predictor).
4, Set kgc) = kgp) and use to integrate both the state variables

and the adjoint variables as in gradient algorithm steps 1. -+ 6.
and use the H obtained, to calculate the new predictor, via (6-18).
5. Option: accelerate as in fixed point algorithm step 5.

6. Test for convergence in the norm, as in fixed point algorithm step 6.

Comparison

The comparison between the predictor-corrector and the
- gradient method are analogous to those made between the fixed point
and gradient methods.

It is more instructive to compare the last two algorithms
and it turns out that the predictor-corrector may reduce the computation
time in some cases, but the reverse is true for the remainder‘of cases
and neither method stands out exclusively.

However, the predictor corrector does have one distinct
advantage over the fixed point‘method in that its rate of convergence
is not as sensitive to the choice of thelparamater o in (6-23),' Since
a 'good' value of this paramater is not known initially, a substantial

improvement on the fixed point method may be obtained see table 6-5.
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Figure 6-6 Comparison of Gradient and Fixed point methods

1.0

Curve Computation time t Objective'Function
1 232.0 secs .69532
2 161.8 secs .69671

+CDC 6400 |

Table 6-5 Legend to figure 6-6
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Computation Time | o Objective Function T Remarks
Fixed Point 144 secs 0.9 .69455 Time 1imit_
Predictor- :
Corrector 93 secs - .69443
+ CDC 6400

Table 6-6 Comparison of Fixed point and predictor corrector method

*
for the parameters: ‘To = 900°K, To*= 700°K, m = 2, n

1

p = 0.4, hhiform temperature reactor

6.4 Convergence Acceleration in Optimum Seeking Methods

6.4.1 Earlier Methods

Wegstein (1958) developed a method for promoting (accelerating)

the convergencaof an iterative process which may be represented as [see 4.4.1].

X = Telx) o (6-30)

or X 4= @ [Tf(xn) - xn] + X (6-30a)

n

where the solution to the fixed point problem of the form
X = Tf(x) (6-31)
is required. [cf equation 6-21)].

Newton's method, which has a higher order of convergence than
Wegstein's method, is out of the question in the present system, because
it requires an estimate of the first derivation of Tf if x is simply a one
dimensional vector, or the derivative of Tf at each point, as a discretised

function space, as is required by the numerical method here. To estimate
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the defivat%ves we would be required to integrate both sets of équations
twice at each iteration (unless the modified Newton method is used) causing
a substantial increase in the computation time. |
\ Wegstein's method does not require calculation of a derivativé
and is much more feasible in the present system. The convergence order
is 1.618 [Wegstein (1958)], compared to seconé order convergence for the
regular Newton Raphson method; nevertheless, if one includes the time
necessary to calculate the derivat{ves, Wegstein's method would converge
faster, even though moré iterations would be required.

Since, for the numerical calculations, the t and z scales are
discretised, we may consider the iteration scheme (6-30) or (6-30a) to
be in a vector space instead of a function space as it truly is, and
instead the vector ko with components ko(ti) 1’=0..Nt is iterated instead of

the continuous or piecewise continuous function ko(t).
ko = [ko(ty) = Kkolty) ----- ko(tmt)] (6-31a)

Now in the Wegstein method each one of the ko(ti) would be
accelerated separately based on its particular past three values. No
account is taken for the possible interaction between the components of
the 'vector'. A method, which takes interaction into account is discussed
in 6.4.2 below.

Crowe (1972a) has indicated that promotion using Wegstein's metﬁod
at every iteration (after the first three), may not be advisable: Wegstein's
method perturbs the normal iteration pattern, based on a direction indicated
by the past three iteration points. However, the system normally requires
several iteration steps to reestablish its normal iterative pattern
(geometric in nature) and indicate a direction upon which the rest of the -

promotion can be based. If Wegstein acceleration is immediately applied



before"the‘éystem is allowed to settle, convergence may be hindered and
result in an increase in the total number of iterations.

In the following section (6.4.2) a more recent method due

to Orbach and Crowe (1971) develops a measure of the extent to which

the system has ‘settled down', before a convergence promotion is

applied.

Unfortunately all ‘these methods require a fair number of

iterations before an appreciable saving in the total numbers of iterations
is obtained. In most of the present applications the total number of
iterations does not exceed ten (for the fixed point methods) and hence

no dramatic saving in computation time is obtained.

In some cases the

time involved in calculating the promoted values may outweigh the

decrease in the total number of iterations;

however the Wegstein

predictions involve relatively simple calculations and if any extra

time was involved it ususally led to a finer approach to the optimum

profile see Table 6-7.

Every 3rd Step

Computation + Objective
Time Function
Fixed Point Without
Acceleration 74 secs - 7549
Fixed Point With
Acceleration 83 secs .7582

Table (6-7) Comparison of Acceleration vs No acceleration in fixed point
*
iterations, for parameters: T0 = 900, To* = 700°K, m = 2,

n=1,p = 0.2, J]'= .01

+ CDC 6400
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6.4.2 Recent Methods

The Dominant Eigenvalue Method (DEM) for convergence promotion
was developed by Orbach and Crowe (1971) and can be applied to fixed

point problems of the form

4

Y= EY) \ o (6-32)

where Y and F are vectors and vector functions respectively. Because the
method is aimed at handling convergence of vector systems it is directly
applicable to the present vector system defined by equation (6-31a) and

the discretised version of (6-21), i.e.,
[ky] = GIK,] (6-33)
where ky = [ko(to) ko(t])""‘ko(tNt)] | (6-31a)

The method is based on the observations that most iterations
eventually approach a geometric progression. It is assumed that G can
be linearised by means of some method (Taylor), so that the iterations
may be represented, sufficiently accurately, by a linear matrix difference

equation of the form

LI R - | - (6-34)

where A represents a linearisation of G about some reference point and
b is a constant vector. If y is the largest (in absolute value)
eigenvalue’of the matrix A, a necessary and sufficient condition that

the process in (6-34) con;erge is that [Orbach and Crowe (1971)],

| Uy | <1 (6-35)
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They express (6-34) as a sum containing the eigenvalues of A
and use the fact that, as the number of iterations become large, only Ehe
largest eigénva]ue " will contribute significantly to the sum. They
obtain an expression which estimates the limit of.the sequence of vectors
!n’ calIed!g, ‘in terms of the latest two obsgrvatiqns, Hys and an

" acceleration factor, o« as in (6-23).

Xs = ¥n¥1+.TT?i{T (!n Yn_ﬂ (6-36)
0<a<ony ' (6-37)
Y, - Y
u, is estimated as |u, | = [ En, n-1/l (6-38)
1 1 Y Y o]
n-1 "n-2
where || ||, as usual, represents the norm [see (6-26), (6-27), (6-28)].

We see from (6-36) that iterations proceed in such a manner that
the entire vector is iterated and not each component separately and
‘independently, as in the Wegstein method. The dominant eigenvalue My is
estimated using (6-38) to which all components ofrthe vector contribute,
thus accounting for interactions among the vector components.

The DEM provides a criterion as towhen to accelerate in (6-39);
for if successive values of My are sufficiently close in value the system
can be said to have 'settled down' to a natural iterative pattern (which
will be geometric in nature) and this is the stage at which the accelera-
tion step (6-36) is applied. Several more iterations are required before
the process recovers and another acceleration is applied.

The point is made, that each acceleration is not necessarily
guaranteed to approach the fiied point solution more closely, but that
these random divergences are to be ‘taken lightly, insofar as the

objective of the DEM is to reduce the total number of iterations required



to solve (6:33). | A

A major disadvantage of the DEM for the solution of (6-33)
is the requirement of waiting several iterations until (6-38) produces
sufficiently constant values of-u] before an acceleration may be
applied. Initfa]]y, up to ten iterations of (9-33) may be required
" before the system approaches a geometric convergenceipattern, but by
then all the optimum seeking methods described in 6.3 above are "home
and dry".

Hence the DEM method was used to best advantage only for those
cases where convergence was particularly stubborn or alternatively those
cases which approached geometric convergence rapidly thus enabling an
early acceleration to be applied.

Crowe (1972b) recently generalised the DEM to include all N
eigenvalues to estimate§ Yé and this method may allow the user to

accelerate earlier and far more precisely.

This generalised DEM reduces to the previous estimating equation

with the modification that a ratio of two inner products is used to
estimate ¥y instead of a ratio of norms as in (6-37).

It was mentioned, that for those cases where the convergence
pattern quickly settled to a geometric pattern, and this was fairly
common, the convergence promotion routine, particularly the method due
to Orbach and Crowe (1971), showed improvement over the unpromoted
cases even where a single promotion was used.

See table 6-8.
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With Orbach /Crowe
Convergence Promotion

Without Convérgence

Paramaters m

Objective Function J

No. of iterations

Promotion on iteration no.

Computation Time
(CDC6400)

2,
1
0.4
0.01
© 700-900°K

.4706
4
4
87.4 secs

Promotion
S
1
0.4
0.01
700-900°K

.4660
7

117.0 secs
(Time limit)

Table 6-8 Comparison of Convergence Promotion using Orbach/Crowe method

vs no promotion for a given set of paramaters.
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6.5 Influence of Integration Step Size on Optimum Seeking

A question of practical importance arises when one is iteratively
searching for the optimum profile and one wishes to know whether a
particular,iteﬁation has brought the search 'closer' to the optimum

(unconstrained).

| There are two indicators that one can use to provide an answer:

(i) Is the numerical value of P (objective function) increasing?

- (i) Are‘the absoiute values of the derivatives of the Hamiltonian

at each discrete point in time decreasing?

Neither of the two indicators actua11y guarantee that the true
optimuﬁ is being approached but they are Qood pointers and besides, we
have no other method.

'The gradient methods rely on the first indicator and use this
as a test to determine whether the optimum has been reached.

The fixed point method ignores (i) and may use (ii) to determine
Qhen the necessary condition (4-12) has been obeyed on each discrete point
in tfme. However a better method is to test for convergence'in the
norm for the profile ko(t) at each iteration, and use indicator (ii)
above, only to verify than the optimum has been reached. |

The use of (ii) as a criterion of closeness to the optimum at
each iteration step, may be dangerous, since we know only that the
derivative of the Hamiltonian is zero once we have already reached the

unconstrained optimum. We do not know that the approach to the optimum

3

ak0

]lgg— | | does not necessarily converge uniformly to zero as d* ~ 0
0

is accompanied by a uniform decrease in the norm of , that is
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where d* = || ko(t) - ko(t)Opt

[Horn (1972)].

] |  (6-39)

Also the measure of 'closeness' to the optimum will depend on what norm we
choose [see (6-26) et seq.]. In many cases though, an increase of P will
be accompanied by a decrease iﬁ d*.

It is possible numerically, even when IIJ%%}— || converges
uniformly with d*, to obtain a decrease in the object?ve function at an
iteration which gives a profile which is 'closer' to the optimum. This
may be caused by a coarse selection of the integration step size and
occurs in the close vicinity of the optimum:

Referring to figure 6-7, To(t)‘represents a profile in the close
vgcinity of the'optimum such that the next iteration will move the uncon-
strained profile up and closer to the optimum that is t]' >ty etc.

The profiles shown in figures 6-7 close to the optimum may be
divided into 3 distinct séctions, two of which have a fixed number of

.discrete points.
| (i) Those discrete points which are unconstrained and move up
towards the optimum eg. t] and t2 (fixed in number).

(ii) Those discrete points which are constrained and remain
so (fixed in number).

(ii1) The middle section between t. and t, which would, if the

3
time steps were finer, experience a change in the number of discrete points,
in this case registering an increase in the number of points on the con-
strained section as the profile 2 moves up toward the optimum but due to a
coarse grid this section éontains no points.

Since in reality, a point is either constrained or unconstrained,

we divide the objective function into two parts: that part due to the

u - 3 ) 3
nconstralped section of the profile P], and that due to the constrained

section P2 such that the total objective function P is

P=P+P, (6-40)
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1 - true optimum
2 - pre-optimum

to ti tN
Figure 6-7 Effect of integration step size on the optimum
seeking methods. Number of discrete points for

unconstrained and constrained section is fixed
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Curve 1 represents the true optimum. We suppose that curve 2
which is approaching the optimum, will move upwards towards the optimal
curve 1 and register an increase in'P]. Thg 1eng£h of the constrained profile
will increase by A (see Fiqure §-7). Lenath A is less than one time step unit.
Since the length of a discrete profile can only be measured in terms of whole
units A will be lost and the constrained profile will not have increased in
length. P2 which depends on the lenath of unconstrained profile may accordinaly
decrease in vaiue. ) ‘

The increase in P] may be outWeighed by the decrease in P2
such that the total objective function P, from (6-40), registers a net
decréase, even though profile 1 is given as closer to the optimum than 2.

This problem will be most noticegb]e in the vicinity of the
optimum when the objective function is increasing more slowly, but will
always be present due to the discretised approximation of the optimal
profile. It may, however, be minimised by choosing the grid sufficiently

small.

6.6 Parametric Analysis of the Optimal Profile

6.6.1 Paramater p

The parameter p = ER/Ec features prominently in the character
of the optimal profile (see Chapter 4 aone) and if the strong form of
the Hamiltonian were assured, p > 1 would eliminate the possibility of
an unconstrained temperature profile for any finite time. For all the numerical

examples p > 1 was accompanied by a totally constrained temperature profile

aH
3k°

An increase of p in the range 0 < p < 1 was accompanied by

with T = T * and 2x—> 0, for all t [ see figure 6-8 1.

an increase in the average temperature in the reactor, as well as the

length of time spent at the upper temperature limit. Also a decrease
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- in the objective function with an increase in p was observed. ‘

These trends agree with those found By Ogunye and Ray (1971)

~and Thérien (1971) and are to be expected, since as p increases the

catalyst decay becomes rglatively less sensitive to temperature and the
reactor can operate more profitably at higher temperatures.

See figure 6-8.

6.6.2 Parameter <

‘In agreement with Ogunye and Ray (1971) and Therien(1971) )
increasing the operation time v (usually 25 days) decreases the average
temperature in the reactor and causes the femperature to reach an upper
| constraint closer towards the end of operation time. In general one
would expect that if more operational time were available a gentler
initial treatment (via lower temperature) of the catalyst would seem

desirable,

See Table (6-9)
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Operation time 7 time on To* Objective Function
t days J
10 60% . .6710
25 24% .4655
| 50 - 6% .3418

Table 6-9 Influence of Operational time t on the length of the constrained

temperature profile. parameter n=1, m=2,J1' = ,01, p=0.4,
f=(1+0.6X)

6.6.3 Parameter m

A decrease in the parameter m in g=wm cause the decay rate of

the catalyst via equation (3-55) to increase, thus making it less
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desirable to maintain a higher temperature and decreasing the time
Spent at the upper temperature constraint. These results agree with
those of Therien (1971) aﬁd Ogunye and Ray (1971).

See figure 6-9.

6.6.4 Paramater n

In agreement with Thérien (1971) an increase in the order of
the reaction causes a decrease in the éverage temperature in the
reactor. From the first state equation (3-54) it can be reasoned that
for large n the term F = (I-X)n will tend to dominate the right hand
side of (3-54). The effect of an increase in temperature with the
resultant increase in reaction rate, would be diminished by the F
term. It would thus not be profitable to raise the temperature as

much for larae n.

See Figure 6-10;

6.7 Rising and Falling Optimal Exit Conversions

6.7.1 Euler Formulation of Exit Conversion Derivative

From (5-76) we have an expression for the derivative of the

exit conversion at the optimum

1 .
dX, (t) J[
177 o J2a_(xp kyof) dz
5 2 °

dt -
o .
3
substituting for at 2 f{om (4-8) we have
dX] J{'
—3F [(k gg Az)f (A K k g)Ff + anhm1) £

0

+ (k o9 f'ldz

g
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Equation (6-42) is an expression for the derfvative of the exit

conversion at the optimum expressed as an explicit function of F and f.
We can view equation'(6-4é) és an objective function and

choose f and F at every point in z at some time, say to’ in order to

maximize the derivative at time t

Max  [dx (t,)
R J/’[B f2 - byFf + B.f + B

1.ldz Loy
3 4f] '(6-42)
F,f(z,to) to
where B, =k Zgg'x,(z,t,) | - | (6-43)
B, =xKkg (z.t) | (6-44)
3 k
B, =2
3 25— t (z,t))
ko 2X ~

By = ka5 (2ot)) , (6-46)

It is seen that all the Bi's i=1,4 are functions, either
direc¢tly or indirectly, of many variables including f(X), F(X). However,
it turns out for certain paramaters, the changes in the numerical
values of the Bi are small in comparison with the changes caused in
the values of F and f by changing their forms within a given restricted
form [see (6-48) and (6-49) below].

The Bi are thus not constants with respect to F and f and
the correct procedure would be to obtain the Bi's as explicit functions
of f, F and obtain true constants in the integrand of (6-42). However,
closed form analytical expressions for most of the variables as functions
of F and f are unavailable,

A semiquantitative approach is to numerically examine the Bi to
see whether (for a particular set of system paramaters) they are approximately

constant with respect to any variations in F and f (caused by a change



Table 6-10 Typical falling exit conversion profiles
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m=0.5, m=2, y =01
£=(140.6X) p=0.4

n=1, m=1, 3;° = .01
£=(140.6X) p=0.4,

n=l, me1, J,°=e
f=(1+X), p=0.5,

T* = 900°K T*=900°K T*= 1000°K
0 .4232 .4615 .6435
1 .4178 4565 .6261
2 4121 .4542 .6110
3 4063 .4523 .5977
4 .4005 .4506. .5859
5 .3947 .4488 .5753
6 .3886 4470 .5655
7 ..3823 .4451 .5565
8 .3756 .4431 .5482
9 .3687 .4410 .5403
10 - .3614 .4388 .5330
N 3542 4366 5259
12 .3478 .4342 .5192
13 3440 .4317 .5127
14 . 3449 .4291 .5064
15 .3440 .4262 .5002
16 3440 .4231 .4941
17 31M1<(T=T*) .4197 .4881
18 .2960 .4157 .4822
19 .2956 4112 .4763
20 .2779 .4055 .4707
21 .2625 :3989«(T=T*) 4659(T=T*)
22 .2490 .3654 .4581
23 .2371 .3081 .4466
24 .2264 .2629 .4365
J 0.3433 0.4228 0.5158



http:f=(l+0.6X

in the form of F or f). If this is found to be true over a particular
‘range of paramaters in the system, the Bi's are said to be “"weak
functiohs".of f and F at some point in time to. This numerical property
is made use of -at a later point [see (6-52) below].

' . Nevértheless, even if the Bi are not "weak functions" of F

and f we can simply proceed as if thgy were and if we find that we are
able to change the objective function in (6-42) to produce say, a
~ rising conversion, then this is indeed justification in itself.

By far the most common exit profile at the optimum is one of a

falling exit conversion and all the figures referred to in Chapter 6 except

6.2 exhibited a falling exit conversion profile at the optimum. Some
typical optimal exit conversion profiles for various reaction systems

are given in table 6-10. [See also Chapter 5 proposition 3].

" The constant conversion profiles were used to verify the
program and were given in 6.2. A |
The question naturally arises as tc whether it is possible to

choose some form for F and f which will cause a rising exit conversion

at the optimum. To this end we refer back to equation (6-42) and attempt.
to use this equation to indicate the.form that F and f should take, in
order to produce a rising optimum exit conversion at a particular pofnt
in time (to)

For convenience we choose to=0 and we choose a form for F and
f so as to produce a positive value for the slope:
. dX, (o)

[
opt
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> 0 < (6-47)



t X;(t) To(t) °k
0 8820 889.4
1 .8764 891.0
2 .8698 892.3
3 .8626 893.5
4 .8550 894.5
5 .8470 895.4
6 .8387 896.2
7 .8300 - 897.0
8 .8210 897.7
9 .8118 898.3
10 .8023 898.9
" 7926 899.4
12 7827 899.9
13 N8 900.0
14 7605 900.0
15 .7493 900.0
16 7381 900.0
17 .7269 900.0
18 7157 900.0
19 .7047 900.0
20 .6936 900.0
21 .6827 900.0
22 6719 900.0
23 .6612 900.0
24 .6506 900.0

.-Table 6-12 Falling optimal exit conversion profiel for r=1
in f=(1-)", T* = 900°, p=0.4, m=2, n=1
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There is no guarantee that the optimal profile will continue
tovrise for to > 0, but at least we have a direction in which to search |
among possible forms for F and f (or F and ?; F=F for uniform temperature).
| If we insist on a particular form for F and f such that

[using (6-1) (3-36)],

flor ) = (c+dx)" > 0 ¢, d constants (6-48)

Flor F) = (1-x)" >0 | ‘ (6-49)

then F and f are no longer our controls but instead n2 and n are manipulated
to produce different forms of F and f amongst the class of functions
restricted to forms (6-48) and (6-49). Striétly speaking n and n2,

since they are controls at to’ become functions of z, but since the

whole analysis is semi quantitative and we require only to differentiate
between poss1b1e forms of f and F in a d1rect1on of increasing X1(°) n

and n2 are perceived as average values. ®©

A bound is placed on n so that ? conforms to a general n th

order reaction 'scheme, i.e.,
nx0 ' (6-50)k

whereas n2 is allowed negative and positive values, but not zero. 'Bounds

are placed on F such that Fa min < Fe<l. (6-51)
From (6-48) and (6-42) we have no-1
2 _
dX (0) ne ,
Max [B - B,Ff + B,f + dn2 B,f ] |dz (6-52)
2 3 4 N
F, f to"o

)
A further assumption is necessary regarding (6-52) which
requires that the function B] to B4 are not 'strong' functions of F or

f: that is, any change in F or f within limits imposed by (6-48), (6-49)
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and (6-50) will cause significantly sma11er changes in the Bi i=1,4 .
so that we may treat them as approximately‘constant with respect to changes
in f and F. This assumption can be tested numerically for a

specific problem over a range of given paramaters. |

We may now cast (6-52) in the form of an Euler type optimisétion

problem and since the integrand does not depend on"gg(z) explicity,
' we may maximize the integral by maximizing the integrand [Denn (1967)].
n2-1
R = B f2 - B_Ff + B,f + dn2 B, 2 (6-53)
1 2 3 4 ‘ A

For a particular set of system paramaters with

c=1,d=2 in(6-1), p=0.2, m=2

it was determined numerically an average set of values for Bi were

e~
]

= 0.0011
B, = 0.1610
B, = 0.0200
dg, =107 (6-53a)

Referring to Table 6-3 the following paramater signs are easily verified
numerically where analytical properties are unavailable. We can show

(as long as we have less than 100% conversion or zero catalyst activity).

B] > 0 “analytically

from (6-48), 3.6, and (5-46), (5-47)
B2 > 0 analytically :
B3 > 0 numerically from (6-53a) (6-54)
84 > 0 numerically ‘

From (6-53) we can see that R is linear in F and since B2 f>0

[(6-54), (6-48)] to maximize R we must choose from (6-51).

F= Fmin (6-55)
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Fhin is a constant which can be normalised by adjusting the rate -

constant term K_(3-23)1in the first state equation so (6-55) says,

choose a zero order reaction i.e.

F = constant ' . (6-56)

Maximizing R with respect to f and Solving simultaneously with -
(6-55). | '

-1

R _ one . 02 . e
35F ZBf] BZFﬁin + 83 + B4d(n2 1)f 0 | (6 57)

If we choose ¢, d > 0 t,"0 (6-54)
Substituting for f from (6-48) and solving for n2 (6-57) (with F . =0.1) "
using the average values in (6-53a) we obtain a.large negative value for

n2.
n2 = - 6 x 10° | | (6-58)

6.7.2 Numerical Results

If we now use (6-55) and a negative n2 but of a more realistic

magnitude,the form of F and f, for example; become

F=0.1 constant . (6-59)
f=(2 +‘x)°3 (n2 = - 3) (6-60)
o ’ dXO(o)
We expect a positive value for —= and in fact with the above examples a
dt

rising exit conversion is obtained at the optimum [see Table 6-3 above] at

time t0 which continues to rise until an upper constraint is reached,
at which point the exit conversion decreases sharply.

Using the result of propoSition 3 in 5.7, we have



dt I J{E(k K,0A )FF + (dk°)f + (k'] dz (6-61)

opt o
the terms in brackets ( ) are all positive and one may, using similar

semi-quantitative analysis (as in 6.7.1, but now with analytically

obtainable signs of the bracket '( ) factors) to determine the relative

%) in (6-61) at some time t_.
dt dx .

For example, one obvious starting point for positive Efl' would be to

properties of f and F so as to maximize

choose

Fmin = constant

fairly small in abéo]ute value

F .
f(x)

f'(x) = large positive value

L

For many numerical cases examined, a rising exit conversion

profile at the optimum was obtained only for zero reaction order systems.

6.8 Optimum Uniform Temperature Profile vs Best Constant Temperature

A valid method for eva]bating the optimum uniform temperature pro-
* file for a reactor, 1is to compare the objective function so obtained,
with the objective function for the best constant temperature (i.e.
constant in time and uniform over all z).

The second objective function is obtained simply by a one
dimensional search for that single temperature which produces the highest
value of the objective function.

It is unrealistic to compare this case with the adiabatic
reactor where the temperature constraint is on the inlet temperature.

For an exothermic reaction the temperature constraint is most likely to
be violated towards the exit end of the reactor; it makes more sense to
place a temperature constraint on the outlet temnerature.

The improvement of the optimal temperature profile over the
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~

best conétant temperature was of the order of 10%, but usually it was
closer to 13%; altypical ekamp]e is given in Table 6-11.

Any numerical scheme which places a constraint on the exit
temperature of an adiabatic reactor will involve considerably hore
computation. This is so because one cannot determine,‘a priori, whether
a particular inlet temperature will cause violation of the exit end
constraint and thus trail and error integration of the state'equations

along z is necessary at each point in time.
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Profile 1 | Profile 2
f 2/(2-X) 2./7(2-X) '
n 1 1
m 2 2
p 0.4 0.4
To* 900°K -

Tow 700°K L -
Ji w(uniform temp) -
T(t) T,(t) optimal’ 875°K
J .2624 .2329
A% = 3 x 100 = 13.05%
1

Table 6-11 Optimal uniform temperature (1) vs best constant

temperature (2)



CHAPTER 7
SUMMARY AND CONCLUSIONS

A quasi-steady state catalytic reaction deactivation system
in d plug flow, fixed bed, adiabatic; tubular reactor is considered. The
chemical reaction scheme is an n th order (or autocatalytic), single
and irreversible reaction. Both the reaction rate and the deactivation
rate are expressed as a product of separable functions of conversion,
(catalyst) activity and inlet temperature.

. A first order perturbation analysis of the system equations
hasrbeen performed,‘and the problem of choosing the inlet temperature
profile, so as to maximize ihe total amount of reaction has been
considered,

A common industrial practice of choosing ﬁhis temperature
profile, so as to maintain the exit conversion constant, while the
‘choice of temperature is unconstrained, has been examined. This
practice is designated the “constant exit conversion policy". |

‘Analytical expressions for the optimal exit conversion were
derived and used to prove that for certain forms of F(X) and f(X), choosing
the inlet (or uniform) temperature in time so as to maximize the total
amount of reaction, produces a constant exit conversion, when the
choice of the inlet temperature is unconstrained.

The analytical forms, together with the case where f(X) is
constant, were used to verify a program which uses an efficient fixed
point search algorithm. The program was further used to investigate
the reactor system with the more general forms of F and f. The
necessary condition for the optimum was recast into a fixed point form.

The more usual gradient method in function space was replaced by an
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iterati}e f{xed point method in fqnction sﬁace. The fixed point method
was found to be superior to the gradient method; it reduced the
computation time and also produced a more precise optimal profile.
Various convergence promotion techniques were used to even further cut
computation time and were partially successful.

A general analytical property of f(X), as a sufficient
~ condition to produce a fa]]ing optimum conversion was derived. This
led to the probf of the existence of an f(X), such that a falling '
optimal exit conversion‘would result, and further, that this was valid
for any form of catalyst decay term g(y).

| The analytical expression for the time derivative of the
optimal exit conversion was cast into the form of a suboptimal problem,
in which the forms of F and f were chosen so as maximize this derivative,
in order to produce a rising optimal exit conversion. This sub problem
was analysed semi-qualitatively by casting it into a classical Euler
form.

It was demonstrated that all three types of exit conversion
profiles can exist at the optimum, viz., rising, constant and falling
profiles. Falling profiles are by far the most common type and rising
profiles were observed only for zero order reaction schemes, but the
possibility of rising profiles, for higher reaction order schemes .
accompanied with special decay kinetics cannot be ruled out. So a general

policy of constant exit conversion cannot be extended to the case of

boundary control of this reactor system,}where decay depends on'conversion.

The existence of a totally constrained temperature profile at
the upper limit, was demonstrated for all cases in which the paramaters
p = ER/EC is greater than unity. The lack of a well established proof

of a maximum princip1e for boundary control of non linear distributed
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systems was noted and thus any analytical analyses of this constrained
profile, although tempting, were dispensed with.

A parametric investigation of the optimal profile showed
agreement with related studies in this area, as well as s;tisfying a
more intuitive‘analysis. The optimal uniform temperature policies

are assessed by showing considerable improvement, in the total amount

of reaction produced, over the best isothermal temperature.

7.1 Future Work

The forms of equations’derived in Chapter 3 are .general and
allow the extension to include more complex reaction systems eg. reversible
reactions.

In 2.3.2 the co-problems of choosing the initial catalyst
‘distribution to maximize the total amount of'production is mentioned.

A natural direction would be to combine the catalyst choice problem with
the present problem and seek to choose both -the initial catalyst distribu-
tion and the inlet temperature profile, so as to produce the maximum
amount of reaction. | |

An extension of the pseudo-homogeneous system considered here,
to the simplest heterogeneous system, along the.lines mentioned in 3.2.3,
may be fruitful; this extension would allow the analysis of highly
exothermic or endothermic reactions systems or for those systems where

catalyst particles are fairly large.



LIST OF SYMBOLS
a constant defined (3-26)
A general reactant species for irreversible n th order

reaction (3-40);

™ 1o U

A(t) switching function (4-27).
matrix defined (6-34).
constant vector (6-34).
general product species for irreversible n th order
reaction (3-40) ‘
Bl’ 32’ B3, B4 variables defined in (6-34) et seq.
¢, molar concentration of j th species (3-1).
Cp ‘ specific heat capacity

c(z,t,z',t') function defined by (5-38).
C(z,t,z',t') function defined by (5-41).

CsCy arbitrary positive constants used in 5.5.1.

nc paramater used in (6-1).

Dj(r,e,z) diffusivity of j th species in cylindrical coordinates, (3-1).
d* a normed measure of 'closeness' to the optimum (6-39).

d parameter used in (6-1).

Ec activation energy for catalyst decay, divided by the gas

constant (3-7).

ER acti?ation energy for reaction divided by the gas constant (3-3).
Fj(C) concentration dependent term for j th species (3-2).

F vector function of variables (6-32).

F,F(X) conversion dependent term in reaction rate used in

(3-52) and (3-54).

F' (%) first derivative of F with respect to X.

144,



F(X)
f.f(X)
' (x)
Glky]

g(v)
- g'(v)
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=~

K

Ke
K,
Ko
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function related to F and used in (3-12), (3-36), and (3-52).
conversion dependent term in ¢ uséd in (3-53), and (3-55).
first derivative of f with respect to x.

functional expression used in fixed point formulation of
necessary condition (4-34).

activity dependent term in ¢, (3-5§.

first derintive of g with respect to y.

reaction rate for species k (2-10);

Hamiltonian function for the system (3-54) and (3-55)
defined in (4-3) as integral of H.

Hamiltonian integrand (4-2), (A-29).

non negative function (5-37).

non positive function (5-40).

cbjective function for which extreme required (2-1), (2-11).
variable considered approximately constant (3-45).

ratio of heat capacity to heat of reaction (3-42).

- maximum value of P (3-58).

reaction rate constant for j th species (3-3).

Arrhenius reaction rate constant (single species) (3-3),

(3-38).
reaction rate constant defined (3-16).
preexpoenential constant (3-3).

preexponential constant (3-24a).

inlet Arrhenius reaction rate constant, bounded through its

relation to Ko (3-51a) and defined in (3-49).

inlet Arrhenius deactivation rate constant and boundary control

of the system in 3.8; bounded between two finite limits as

in (3-47) and defined in (3-48) and (3-50).
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k . vector of discrete values; made up of ko(ti)’ (6-31a).
k,k[T] Arrhenius decay rate constant used as distributed control;

defined (3-7), (3-39).

ky preexponential constant (3-7).
k, preexponential constant (3-24a).
k decay rate constant defined (3-17).
; k*,k* lower and upper bounds resp., on k0 (or k), (3-35).
L total length or distance dimension of system 0 <z'<L, (3-15).
L* Lagrangian of P for system in 3.8 (see also App. A).

2yskpslarty functions defined in (5-28) to (5-30).

m order of decay (3-37).
n order of reaction (3-36).
nl,n2 parameters used in (6-1).
Nz . number of grid points along z'.
Nt number of grid points é]ong t'.
P objective function of system defined in 3.8.
P] unconstrained portion of objective function see 6.5.
PZ constrained portion of objective function see 6.5.
p equals Ep/E. (3-27).
Q reaction rate expression (2-9).
q iteration count, chapter 6.
R function defined by (6-53).
Rj reaction rate for species; (3-2).
r order of conversion dependence (5-137).
‘S(z.t) function defined in (6-13).
S* closed subset of Hilbet space X*.
“T,T(z,t) distributed temperature (3-34).
ET’E; Tower and upper bounds on T (3-34).
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X, X(z,t) -

xO(t) .
X ()
X1

equals T(o,t), inlet temperature to the reactor (3-43).
transformation in Hilbert space (4-35).

point in time t, at which the optimum temperature profile
reaches the upper constraint and remains there; defined
in paragraph following (5-76).

independent normalized time variablé for system 3.8.‘
indepen&ent time variable for system 0 <t' < =

discrete version of t',i = 0, N, .

average épace time of reactor (3-18).

set of allowable control functions.

vector of allowable control function u e U (2-2).
function defined in (C-10).

bulk flow velocities in cylindrical coordinates (3-1).
bulk flow in z direction (equals vz), assumed constant (3-4).
defined in (2-3).

boundary control vector in z (2-1).

distributed conversion, first state variable of system
3.8, governed by (3-54).

equals X(0,t) inlet conversion (3-21).

X(1,t) exit conversion (3-58), (A-6).

equals X](t) for the case where x](t) = constant at the

- optimum (5-130).

a Hilbert space containing vectors X

sequence of vectors in X* (4-36).

vector of variables defined (6-32).

limiting vector in sequenceY (6-34), (6-36).
independent variable of systgm in 3.8; distance along

reactor 0 <z' <L,
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independent normalized variable of system in 3.8,
distance along reactor.

discrete version of z', i=0, Nz’

Mathematical Symbols

€

¢

Greek Symbols

0

¢
vav(z,t)
¥;(2)

v(t)
u] ’
s ]
A] :A] (Z ,t)
Apahy(zst)
AH®
sP

6k°

norm on a Hilbert space (2-4), (4-38) etc.

inner produce of the above Hilbert space,

mathematical symbol, read as: "implies without exception”.
mathematical symbol, signifying end of a proof.

symbol read as: ‘“element containéd in the set..".

symbol read as: “element not contained in the set..".

average activity over 1engfh of reactor (5-7).

rate of deactivation (3-5), (5-66).

relative catalyst activity defined (3-8), goverened by (3-55).
equals ¢(z,0), initial catalyst activity, (3-22). -
final time for process (2-1), (3-14).

positive multiplying function (6-17)

dominant eigenvalue of Q (6-15).

accelerating factor (4-37) (6-23).

first adjoint variable defined by (4-4).

second adjoint variable defined by (4-8).

standard heat of reaction for irreversible reaction A+B (3-40).
first order perturbation of P (4-1).

first order perturbation of ko(4-1).
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APPENDIX A

-A Weak Maximum Principle for Boundary Control

Proceeding directly from the state equations (3-54) and (3-55) with their
associated boundary conditions (3-21) and (3-22) we have

i)i = ' A-]
- -
5t kofg . (A-2)

Boundary Conditions:

X(0,t) = X (t) . . (A-3)

v(2,0) = v;(z) : (A-4)
Objective Function P =1!([X1(t) - Xo(t)]dt (A-5)
where X](t) = X(1,t) (A-6)
Perturbing this equation by small admissible amounts and subtracting
from the original equations one obtains the variational equations:

32 6(KoF‘p) | (A-7)

afsv) _ | | -

8P = ] (sX; - 6X )dz (A-9)
The & notation simply represents a small admissible variation. It may
be viewed more strictly as the Gateaux differential, eg.,

1
dgf i_f -y - ]
&P @) [x] +8h(t) - X, -8 hO]dle=0 (A-10)
1
e = fIng(t) - hy(t))dz (A-11)
0 :

where h] and ho are small admissible variations in the same vector space
as X, and, in our notation, would be equivalent to 5X](t) and 5x°(t),
respectively.

If we now specify that Xo(t) and wi(z) are given functions in
time (t) and distance (z) respectively then,
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5wi =0

Accordingly P may be written

‘] .
[ 8X;(t)dt
0

153.

(A-12)

| (A-13)

(A-14)

Introduce two Lagrange-type multipliers N (z,t) & Az(z,t) called adjoint
variables, (associated with a Lagrangian L*) and consider the two equations

oA
d (x 8X) _ 3 (ax) 1
Y3 =M3 + 8X Y
A0,80) Ly 2(8w) g, 22
-t 2 3t ot

We define a Lagrangian of the system (Al > A6) to be L*, and we

require P to be stationary subject to equations (A-1),(A-2).

(A-14)

(A-15)

- Integrating both sides with respect to 2 and t and applying the boundary

conditions (A-12) and (A-13).

o1 a
‘ :/H A (1,t) 8% (t) dt + JCZ'[AI §§§X) + 85X 5il]dzdt

0
J/ Ap(251) 84(z,1)dz +// [ngt(“’)

From (A-9), (A-16) and (A-|7) form- the Lagrangian,perturbation
the Lagrangian L*

a,
+5 ¢ a—f-]dzdt

ff [1 a (‘Sx) 1]dzdt
f/[ 2?{-5'” —2 jdzdt

Now from (A-7) and (A-8) using (3- 51a)

3 = i’f_LKQ. '

s (4K F) = K F 6y + k, sky + w K, F oX
) = ! & * )

s(kofg, kofg sy + of ako + kogf §x

0 (A-16)

0 (A-17)

SL* from

1
SL* = j‘sx]dt jx (1,t) éx dt - Df}\z(z,l)ﬁw(z,l)dz

(A-18)

(A-19)

(A-20)
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dy (A-21)

Substituting in (A-18) from (A-19), (A-20) and (A-7) and (A-8) we obtain

1 1
oL = fn (LT sx (t)dt - [y (z01) sulz,1)dz
0

L Mo
/f[“ + A K F'0 - A,k gf'] 6X dzdt

1 3A
* MKF - Ay Ofg ] sy dzdt
pA wFK |
- Azgf]dz) sk, (t)dt (A-22)
o
If one now specifies the following conditions for the adjoint variables
3 A
et saa—ay ¢ - ! - -
¥ + A1K°F v Azkogf 0 (A-23
3, .
=5t x]K F - xzkofg =0 (A-24)
with boundary conditions
M(Lt) =1 | (A-25)
Az(z,l) =0 (A-26)

We then have the adjoint system defined by equations (4-4) to (4-10).

We may now write the Lagrangian sL* as:
1

. pA]wFK
sL 5{ (!(——q"— - 1,9 1dz) sk (t)dt (A-27)

The necessary conditions for an maximum Lagragian is

sL* <0 ' (A-27)
* 4
Note only the stationarity of L may be identified as a necessary

condition for the optimum of the constrained objective function P.



Seeing that for unconstrained ko’ 5k0 may be of either sign, it is

thus necessary, to satisfy (4-27), that

[—T—2 - 2,9fldz = 0
0
0

If we now define the Hamiltonian function

ﬁ =_}}Hdz

)
where H = A]wFKO - Azgfko

we have the necessary condition (A-28) equivalent to
, 1 '
aH _[3H _
3k, ",/ra g dz=0
g 0
Hence equation (4-12) for the weak maximum principle.

*
We may write S P in place of sL if it is understood that the
perturbation of the objective function P, is subject to the constraints

placed upon the system through equation Al and A2 and their associated

boundary conditions.
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(A°28)

(A-29)

(A-29)

(A-30)



APPENDIX B

The Constant Conversion Policy for Decay Independent of Conversion

From the equations derived in Chapter 5 we have, from

(5-83a), the necessary condition for the unconstrained optimum

3)\]F 1 BA]F 3 X - _
[(p'l) A" +pr03t "l:’az at]dz-o (B'])

Now when decay rate does not depend on conversion we set f(X) to

a constant (unity for convenience).
f(Xx) =1 for all z, t : (8-2)

From (B-2) we have f' =0and using (5-43)
a)\] 1
37 ° AzkogFf : (5-43)
=0 all z and t ’ (B-3)
thus A]F is a function of t only and using the boundary condition of

N (A-25) we have

= KX, ()] | - (8-4)

. d ]F dX](t)
and dt = F! [X](t)] 5 | (B-5)

substituting (B-4) and (BQS) into (B-1) we obtain

dX, ( ¥K
pKF' X (£)] —f— ‘ fw dz = (1-p) F(X Wjat (8-6)
0 ,
at the unconstrained optimum
From (5-83) we have
dX, (t) 39K, _
dt = F[X](t)] jri—-'dz (B-7)
0

From (B-7) and (B-6) we have
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dx (t) ¢ ]
N [pKOF'(x1(t)wadz : (pfl)]v 0 (8-8)
| R (AN EEEEEEEE
At the unconstrained optimum
Now if p <1 and from 3.6 F' <0 then the term in the square brackets is
- negative, and thus we reguire ‘
o AR . ' (8-9)
dt at the unconstrained optimum B

This is the constant exit conversion policy and represents a necessary
condition for the optimum of the unconstrained region.

See also section 5.4.2.



APPENDIX C

An Alternative Proof of the Constant Conversion Policy for Zero Order Reactions

Proposition C

Given the two conditions below, a necesséry condition for the
- system to be optimal, is that the exit conversion be constant over the
unconstrained region.

(i) f(X) = ¢X c arbitrary positive constant

(1) X (t) =0 forall 0 <t <1

Proof
From (5-77) with F=1 (without loss of generality) for an unconstrained

optimum, we require

1
dx1(t) _fa (A]wKo)

‘3 L= == dz | (e

0

dX T 3 T 5k
LI 1 O
p dt f‘pKo 5T 92 +_/>‘lat dz (C-2)
o 0 »
From condition (i) and (5-43) remembering that F=1

3

>

™1 Ak ac ' | (c-3)
7z - 20 :
From (4-8) 3 X,
m— = ' - -
7t 2% - MK | (c-4)
Integrating (C-3) gives
A](z,t) =1 + c.j;xzkogdz' . {c-5)

1
Differentiating (C-5) with respect to t, we have, using (C-4) and second

state equations (3-55)
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_3_{:— =C [[Azg a:t_ - KO ko A]g]dz (c"s)

From the first state equation (3-54), for zero order reaction, we

have (using the properties of variables in 3.6)

9 wKo 3 é X
T -5z G ) (c-7)

and also the particular integral

X = j ¥k dz (c-8)
Substitute (C-6) and (C-7) into (C-2)
1 z dk
R K, [ [ 095> - Kok, 19z 1dz + (22 (3Kydz (c-9)
p dt ¢ v f 294t 00 19/dz2 " Jdz 132V /9%
0 1 .
. - dkg '
Define V= T/( 29 ____dt 'Koko )\]g)dz‘ (C-10)
Substituting (C-10) and (C-5) into (C-9)

i f(wK )V dz + [3 - (2D (e i 2k gdz")1dz (c-11)
] 1

O |-
o.
—l

Integrating the first integral on the rhs by parts, we have, using (C-8)

-1 1 1
1 9% = : %, dX, y 3 X
B‘ '—{:—'—CXV Z=0—Cfxv dZ+a—f—-a—-*;f~(—T)S dz (c-12)
2 0 | 0
where S =fxzkogdz' ' (C-13)

1
Now using condition (ii), we may eliminate the second derivative on the

rhs of (C-12), also the conditions on V are such that

V(z=1,t) =0 | (C-14)
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From condition (ii) X(z=0,t) = 0, thus the first term on the rhs

of (6-12) is eliminated, leaving

L ‘ ). fxv'dz+ +c——( 34 s dz - - (C-15)

°‘|

Integrating the last term on the rhs by parts and using the fact that

S(z=1,t) = 0 : ' (C-15)

. and condition (ii) we obtain

1
dX dX
1 1 , Jfa X o 1
Fﬁ-—--cf)\V'dz c X stdz e b
0 ,
1
dX dk dX
127 _ 9 _ f_a_x A 1
pPdt - "¢ [f)((ngdt K k A]g)dz +0 Tt 2 kogdz] at
0
dX.| 1
ol XK, k oM dz - ¢ E/kXAzg 0 4+ A293 v ) dz] (C-16)
0 ‘
From (5-76) at the optimum, we require
dX 3 A9 dk
R R T R p

substituting the correct form for ﬁ = ¢X from condition (i) and substituting
for the last integral in (C-lG):d{.koA : ﬁ dz from (C-17) we have:

1 4y 9K ] 299

L Jxx k 9, dz - [a—— koxa £ dz] (c-18)

. 32,9
substituting forjyzg——-in (C-18) using (C-4) and the second state equation

(3-55).
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Also,
—————— o= ' ‘-
T Azg gkOX + g(xszXg A]KO)
. - gaK [cf 5-26 in 5.6] (C-19)

substitute (C-19) into (C-18) giving

1

a
-t

X
=0 | | (c-20)

|

1
F

jo¥

For non zero p this implies that the necessary condition for

unconstrained optimum is

ax, (¢) o
= =0 0 <t<t (c-21)

See also 5.5.1



APPENDIX D

COMPUTER PROGRAMS

The computer program is divided into 10 sections. The first
section is the main program; it sets all the paramaters and constants
in the system and controls the iterations according to one of the
three numerical algorithms outlined in Chapter 6.' The remaining 9
. sections are all subroutines which handle the integration and output

of the system variables. The program division is summarized peijow,

1. Main Program

Sets paramaters, constants, boundary conditions, controls
iterations according to either
(i) Gradient Algorithm (6.3.1)
'>(ii) Fixed point Algbrithm (6.3.2)
(iii) Predictor-Corrector Algorithm (6.3.3)

2. Subroutine STATE : t

Controls the grid point structure in the integration of the

state variables and uses subroutine EUL to perform the integrations.

3. Subroutine ADJINT

Controls the grid point structure in the backward integration

of the adjoint variables and use subroutines EUL to perfofm the integrations.

4. Subroutines F1, F2, F3, F4

These equations supply the right hand sides of the system

equations in the following order

SUB F1 = Right hand side of (6-6)
Fz = Right hand side of (6-7)
F3 = Right hand side of (6-12)
F4 = Right hand side of (6-13) (and calculates the Hamiltonian)
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5. Subroutine EUL .
| This is a modified Euler integration subroutine. It performs
the iterative, pointwise integration according to the scheme outlined |

in 6.2a.1. Used by subroutines STATE and ADJNT.

6. Subroutine ONC

Same as EUL, but used along boundaries where no trial and

- error, simultaneous iterations is required.

7. Subroutine OUTPUT

This is simply a data transfer routine and outputs all the

variables of interest.

A correspondence is drawn between program variables and the
symbols used here.

See Table 6-13.
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PROGRAM VARIABLE

 PRESENT VARIABLE

;
sl
B
B2
GAMM
ALPHA
NT
NZ
LCY
LC2

T8

X
TMAX
TMIN
TI
XM
XN
XKD

XKK
SIMIN
XMAX
TF

X(z,t) (3-54)

Wzt) (3-58)

A"(z’t) ) (4'4)
M(zit)  (4-8)

v(t) (6-17)
o (6-23)
Nt (6-8)
Nz (6-9)

line counter for OUTPUT
line counter for OUTPUT

T (t) (3-43)
P ~ (3-27)
3, (3-42)
T * (3-47)
T (3-47)
1{°) initial guess (6.3.1)
m (3-37)
n (3-36)
K, (t) (3-47)
c , (6-1)

d (6-1)
K, (t) (3-51a)
¥min (10-6)
Xmax - (6 14)

T (3-14)




PROGRAM VARIABLE

PRESENT VARIABLE

Tz

XKP
PERROR
ECR
AAA
SI
BII
B211

X1
PX

FF

t

ks

Test for increase in Objective P

Ee

a
v;(2)
A(1,t)
Az(o,z)
X,(t)

p

f(x)

F (X)

(3-18)

(3-24a)

(3-7)
(3-26)
(3-22)
(4-4)
(4-8)
(3-21)
(3-58)
(3-53)
(3-52)

Table 6-13 Program variables correspondence
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THE GRANIENT MFTHOD IN  FUNCTION SPACF

166.
)

C -2 Lt B 3E BB P iR R B ]
PROGRAM TST (;NPUToOUTPUT;TAPFS:INPUT.TAPF6 =0UTPUT)
COMMON TO(26 ) aX (17426 ) sSI(17926 )eBY1(17,26 )4B2(17426 ), B
1T DHAMTYTv36) ) - " -
DIMENSION Y((ﬁiv?(Zé)oXKO(26)
DIMENSTION XKnl (24 Y oPX(S0)eFEA(26)
lxCOMMON ZAY/PoaTFoXNe XM TZy XUy XKP s XKKPyECRoyAOR 9TAVISIMINS
MAX
COMMON /A2/7 JLPeIX29Jl 1l IX19LS2eLS19J10]Il
COMMON/A3 /N1
COMMON /A4/ NT.NZ.KlluLAll9L539LX3vLX4vL54:L1-L2
TIMENSTON Z1126) oY1 (SR Y2 (26 Y 72126V 3YI(CR)Y ¢ 23176)
COMMON /AG/STORY (17e26) 9L FIX 21STOR2 (17426)
INTEGER SWTrH
¢ MAIN PROGRAM . .
C SWTCcH3=] CAUSES HAMILTONTAN EVALUATION AT EACH STFP
c INTPOL=] CAUSES REST ESTIMATE OF GaAMM USING CURVE FIT
C INTPOL— GAMM= 7qPERCENT OF LATEST GAMM/o, FRETTO
ITERATIONS TO WAIT BEFORE ACCFLFRATION
C COUNTERS AND INITIAL CONDITIONS
ALPHA=0.7
GAMM"0.0a
NT= ;b
NZ=16
LC2=1 o
LCi=3
X =a0}
P=0 4
TMAX=900,
TMIN=T700.
TI=B00
XM=20
Xti=z o 0
B=U,.6
A=1,0
SIMIN=1,0E=06
XMAX=( 499999
TPe2284Eeq #Th
=8eb4E+4 .
c TF=1d.16£~na/?5 ) 925,
TZ=%4
XRP=48098%"TD
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MODIFIED FUIFR  INTEGRATINAN  SUBROUTINES

.~ O o T T gy WD T Nl e i T it s B N e wm TS W wm T N W mow S aay
. m m e R m T e I E e T e S e e e T w S e o o e

#**i?%%*'k'(-i}#**%%*'N'-r}%%#4.!-*******%*{}*%*%#**ﬁ

SURROUTINE STATE . .
il»-u»-;’,-l##-u%*%‘e%**%#%#-;HH#*%%*#%%*#%&ﬂ.***%%%%#

EXTERNAL FlsF2eF3.F4

COMMON TO (26 YeaX (17426 YoST(17926 YeB1 (17426 ) eB2(17926 )

I NHAM(17926) .

1x§OMMON ZAL/P s TF o XN XMaTZy XU XKP e XKKPyECRsA'R 9 TAVeSIMINY
1A X .

COMMON /A2/ JlL2eIX29J1 19IX19LS2sLS19J)10 ]

COMMONZA3Z/NT (
OMMON ZA4/7 NTeNZosKI1oLALYoLS391 X39LX490LS4eL 102
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X(T1eJd1)=X1
ST(TdeJl)=X2

33 CONTINUE
RFETURN
END
C 4 48 44 40 038 30 35 A3 3 342 34 4038 {3 3 38 2-4yth 20 3F 36 3 24 304y Sb 38 2F I3 38 3F -
SURROUTINE ADJNT
C b 36 45 38 38 48 3P 38 24 30 38 4k 32 3F 36 30 3 #ﬂ-*%%**%H#***##*%***#*#
EXTERNAIL FleF2sF3.F4
COMMON TO0 (26 )9X(17:26 YoSI(17926 YeB1 (17426 )eB2(17926 )
1 DHAM{17926)
GCUMMON ZAL/PeTFoXNeXMeTZoXJy XKP o XKKPsECRoeA'R ¢ TAVISIMINY
A
LOVMON /A7 T2V IXZ eI Ty IXTSLS2vLSTv I I
COMMON/A3 /NI
SQT”%Q 1A4/ NToNZeK110LAY19LS30t X39LX49LS49L14L2
i
NZ1i=NZ=2
N;I—NTTI
N NT=2
H7;}./N7
HT=1./NTl
L.S3=1
K11=NT
DO 40 T=19NZ1
LX3=%-1
CALL ONC(F39sXy 1Bl (NZ=T+19NT)INZos=y4)
60 R1(NZ=1 9NT)—X1
LS4=0
LAYl =N7
DO 61 T=1 NT]
LX4=1=1
CALL _ONCI(F49Xy YB2(NZsNT=I+1)oNToe=1e)
61 B2 (NZyNT=T )=X1
LL.e3=1
.54=0
D 34 J2=2.N7
LI=ENT=J2Z2+%)
Kll=L)
LX4=J2=2
DO 34 T12=29N7
LX3=172=~2
L2=N7=12+1
LALl=t2
CALL EUL(FIsFasX3, X49R1(L?*lvl1)99?(L20L1+1)0-100)
BI(LZYL1IT=X3
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B2(L2sL1)=X4
34 CoNTINUE
RE TURN
END

26 3 36 b 3 35 4% 45 3 38 31 38 35 46 45 48 35 3 36 6 45 3 38 2B 45 45 41 40 35 45 25 3F 48 30 25 20 35 46 &b

\URHUHTTNF‘FAgR7T s RB DY -

38 b 3¢ 48 b 3 7% 3P 48 38 oF 4F 42 3 v#«t}***#{HHHHX-%%*##%Q%ﬂ-%**#

COMMON TO (26 Y9 X (17426 19S1(17926 YsR1(17e26 Y9B2(17926 )

1 DHAM() 7926)

COMMON /A4/ NToNZoaKI1 4L A1 oL SI oL X3 0L X49LS49L1,L2
COMMON/ A3 /N]

GCOMMDN /AL/PeTF XN XMeTZ e XUy XKP 9y XKKPsFCReAIR 9 TAVISIMINY
MAX
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CAllL FR(P24RHR1)
XP2=p2+HT#RHR1 # XK
IF (XKeEQe=140) Gn TO 2
SI‘TloJ%):XE
- 60 To 20
2 BP(1.2+1.1)=x2
20 CONTTTIUE
N1=0
IF(XK.EOQ-IIO) N‘=1
DO 45 I=}QQ
Catl FA(X1sRHAR)
X1=P1 + H7Z/2%(RHAL+RHA2) #XK
IF (XK FQa=1aN)YGO TO 4
TESTI=ABS ((X(119J1)=X1)/X]1)
X{Ti J1)=X1
60 IO Zo
4 ThS£1= 89((81(L2.L1)«X1)/X1)
Bl{L g, . 1)=X]
40 CONTINUE
CALL FR{X24RHR?)
X2=p2+ HT/Z.*(RH81+RHP2)*XK
TESTZSARS (ST {TIT . i1V =Y2
SI(yfoJT)=X2
GQ T? 30
TEST22ABS ( (B2 (L24L1)=X2)/X2)
30 BEiLTiaL=x?
IFITESTIeLTeER «ANDOTEST2.LT.ER ) GO TO 16
15 CONnTINUE
16 CONTINUE
RF TURN
END
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