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SCOPE AND CONTENTS: 

A quasi-steady state optimization of an adiabatic, fixed bed 


tubular reactor, with catalyst decay, is considered. 


The optimal inlet temperature (distribution) T (t), is sou'ght,
0 

so as to maximize the total amount of reaction in a fixed given period 

of time. Upper and 	 lower bounds are placed on the inlet temperature. 

A single irreversible reaction is considered with a reaction 

rate expressible as separable functions of inlet temperature, conversion 

, and catalyst activity. 

The rate of catalyst decay is expressed in an analogous manner 


and in particular, the conversion dependence is maintained. 




The optimal policy of choosing the temperature so as to 

maintain the exit conversion constant in time when catalyst decay is 

independent of conversion, is examined. 

The extension of this constant conversion policy to the 

present system is discounted. 

New optimum seeking methods are developed and numerical 

calculations presented to illustrate the optimal profiles. 
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CHAPTER 1 

INTRODUCTION 

Many examples in the chemical industry are to be found 
. 

where a fixed bed catalytic reactor forms the basis of the process. 

The catalyst may take several forms - one common form being small 

solid porous pellets, which are packed into a tubular reactor. The 

reaction fluid flows through and around the pellets and reacts to 

form the products. 

In the process of product formation, the catalyst begins 

to "age" and its activity begins to fall off in time, until it reaches 

a point where its catalytic properties have so deteriorated that it 

must be either regenerated or exchanged for fresh catalyst. 

This aging process is caused by several factors and can 

usually be expressed as a function of the conversion in the reactor 

as well as the temperature. Many reactors are controlled using the 

temperature and it is of great interest to determine that temperature 

profile which maximises some profit function, such as the integrated 

exit conversion over time. 

In practice it is usually not possible or economically 

feasible to control the temperature at every point along the length of 

the reactor, as well as at each point in time. In these instances, 

one may have to be content with a uniform temperature control instead 

1 




2. 


of a distributed control, i.e. we maintain the temperature in the 


reactor uniform alonq its length and chanqe this value (in some 


optimal fashion) continuously in time as the reaction proceeds. 


An alternative is boundary control of the_ reactor. Here 

one would control only the inlet temperature to the reactor. Thi·s 

type of control is encountered frequently in adiabatic reactors. The 

temperature is often bounded between two limits. 

Another area of boundary control is the determination 

of the optimal initial catalyst activity distribution for an adiabatic 

reactor. 

It is, of course, possible to combine these problems 


and determine the optimal inlet temperature and initial catalyst 


distribution in the reactor. 


In the above examples the control is a function of the 

one variable (time or distance) only, as opposed to distributed control, 

where the temperature is controlled at each point along the reactor 

as well as in time. This restricted form of control can be loosely 

·referred to as boundary control or uniform control. 

A common practice in industry has been to control the 

reactor temperature in such a way as to maintain the exit conversion 

constant in time. It has been shown [Crowe (1970) and Th~rien (1971)] 

that, for the class of reactions in a plug flow, fixed bed, tubular 

· 	 reactor with catalyst decay {whose reaction rate equations may be 

expressed as a single, separable function of conversion, catalyst 

activity and temperature) this is indeed the optimal policy in that 
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it maximises the integrated exit conversion. However, these workers 

in order to simplify the analysis, considered the decay rate or aging 

of the catalyst to be independent of the conversion. This assumption 

serves to decouple the system equations and greatly simplifies the 

mathematical analysis of the optimal system. 

No analytical or numerical work has been reported for the 

more general case where catalyst decay depends on the conversion in 

the reactor. The introduction of conversion dependence, couples the 

decay rate equation with the reaction rate, seriou$1y complicates the 

analysis of the optimal profile and serves also, to introduce in­

stability into the numerical optimal seeking methods and inteqration 

methods of the system equations. To date, no general or specific proof 

exists, establishing the validity of the constant conversion policy, 

when the catalyst decay depends on conversion, irrespective of whether 

distributed or boundary control is used. 

Furthermore, no generally established proof of a strong 

maximum principle for boundary control of distributed systems exists. 

Pontryagins maximum principle (1962), which is a strong maximum 

principle (as described in Chapter 4), is not applicable to systems 

described by partial differential equations. Other workers Sirazetdinov 

and Degtyarev (1967) and Jackson (1965)] have developed maximum 

principles using first order perturbation methods: however, both these 

formulations are weak forms (as explained in Chapter 4) for boundary 

control of non linear systems and thus serve to introduce into the 

analysis a large class of possible policies, called 'Pontryagin Policies', 
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which may or may not be optimal, but among which, the optimal policy 

{if it exists) will be. The enqineer then usually has to turn to the 

physical system to ensure the existence of an optimum and to distinguish 

between the possible policies. 

In the present study, special cases of the more general forms 

of catalyst decay are investigated analytically,. to determine whether 

the common principle of maintaining exit conversion constant, can be 

extended to boundary (or uniform) control of tubular reactors, where the 

catalyst decay is conversion dependent. 

A new Fixed Point aloorithm is developed for the optimum 

·search and combined with existing gradient search methods to obtain 

the optimum. 

· · A brief literature survey of past and current developments 


is given in Chapter 2. 


In Chapter 3, the mathematical model for the reactor is 

developed and a mathematical statement of the optimal problem is 

presented. 

Chapter 4 deals with the optimal system itself and formulates 

the necessary condition for optimality. 

Analytical properties or the optimal system are derived in 

Chapter 5 and some properties of the optimal exit conversion are proved. 

In Chapter 6 new algorithms are developed and used to in-· 


vestigate properties of the optimal profiles. 


Chapter 7 presents a summary of the main conclusions and 


points to further work in this area. 




2.1 

CHAPTER 2 


LITERATURE SURVEY 

Distributed Systems 

The well known maximum principle of Pontryagin (1962) was 

developed for lumped parameter systems, that is, for systems which 

may be adequately described by variation in one dimension only, thus 

leading to a set of ordinary differential equations. 

For the present system, it is necessary to consider both 

the spatial and time variation of the system variables and thus our 

system·is governed by partial differential equations and is referred 

to as a distributed system. 

Extension of Pontryagin 1 s work to include distributed 

systems has been partially successful but one notable area of deficiency 

is the lack of a strong form for the boundary control of these systems. 

The strong form of the maximum principle is discussed in 

Chapter 4. 

2.2. Early Work 

Most of the early work is to be found in the Russian 

literature; a comprehensive survey has been given by Butkovskiy, 

Egorov and Lurie (1968). 

5. 
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Katz (1964) formulated a very general maximum principle 

using a functional analysis approach. His approach, though sound, has 

not been adopted widely in the engineering fields; probably due to the 

difficulties encountered in applying his general approach to specific 

problems. However, there seems to be evidence that this functional 

analysis approach is becoming more popular and recently there has been 

both analytical [Yang (1972)] and computational efforts [Chanq (1970)] 

in this direction. 

2.3 Recent Work 

2.3.l Analytical 

One of the most comprehensive papers brought out in this 

area i~ due to Sirazetdinov and Deqtyarev (1967). Sirazetdinov (1964) 

initially derived a maximum principle for processes described by a 

quasilinear, first order partial differential equation. A serious 

disadvantage was that only one dependent variable was allowed. He, 

along with Degtyarev, extended this treatment in 1967, to cover systems 

described by simultaneous sets of quasilinear equations of the following 

form 

Maximise I 

subject to 

ax. N ax. 
l \' A.. (z,t,X) _J = F. (z,t,X_,u_) i =l •..• n (2-2)

Cit + L lJ - az , 

j=l 
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where 

Xi{z,t) i = 1,n 	 are the dependent variables of the 

system, varying spatially (z) and 

in time {t) 

Aij {z,t,~) are the generally non linea( coefficients 

Fi(z,t,~,~) are the 	inhomogeneous terms 

I is the objective function which is to be maximized subject 

to the system (2-2) 

Gi are the integrands of the objective function and are 

functions of the dependent variables and the controls ~ 

. However, there is still the question of sufficiency to be dealt 

with, for even though we have an admissible control which causes the 

Hamiltonian to have its largest value, we are not assured that this 

control is indeed the optimal control, since the maximum principle pro­

vides only a necessary condition for optimal control. 

The establishment of general sufficiency conditions in a 

maximum principle is extremely complex. If both the system equations 

{2-2) and the objective function are linear, second order perturbations 

become zero and Sirazetdinov and Degtyarev's (1967) theorem becomes 

a necessary and sufficient condition for the optimum. 

Of course, one still has to consider the question of 

uniqueness,for there may be more than one admissible control which 

maximizes the Hamiltonian. In these cases the engineer (and often the 
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mathematician too) has to rely on his knowledge of the physical system. 

Therien (1971) has applied Sirazetdinov and Degtyarev's 

theorem to a fixed bed catalytic reactor system. 

2.3.2 Boundary Control 

In Sirazetdinov and Degtyarev's (1967) treatment of boundary 

control, they defined a separate Hamiltonian function which due to their 

first order perturbation analysis, provides them with a statement con­

cerning only the stationarity of the objective function and not its 

extremum. Although this point is not emphasized in their paper, it is 

quite clear if one examines the form of their optimal condition and the 

perturbation analysis accompanying them. However, for the special case 

where both the objective function and the system equations (2-2) are 

linear, their boundary Hamiltonian is of the strong form. 

Ogunye and Ray (1971) following Jackson's (1966) methods, 

derive a generalized weak maximum principle which applies to both dis­

tributed and boundary control. It turns out that, if the control is distinct 

from a state variable, the boundary Hamiltonians are functions in­

tegrated along the dimension which is uncontrolled. For example, in 

the present study, where control is sought at each point in time only, 

the Hamiltonian is an integral over the length of the reactor. In the 

case of initial activity control the control is in fact a boundary con­

dition on a state variable. Here the Hamiltonian condition, although 

derived analogously, turns out to be in the form such that the adjoint 

variable (defined in Chapter 4 below) is constant. 



2.4 Computation 

2.4.l Method of Characteristics 

The method of characteristics has been used by Acrivos 

(1966) with great success in semilinear systems and proved to be 

superior to other methods in the case where the characteristics are of 

constant slope; when this is not the case the method can be used, but 

may cause difficulties [Lapidus {1962)]. 

In this present study the characteristic lines are parallel 

to the z (length) and t (time) axes, making for an extremely convenient 

application of this method. 

2.4.2 Gradient Methods in Function Space 

An early, reliable paper by Denn {1966) makes use of a gradient 

method in function space, or method of steep descent to compute the 

optimum. He uses a second order diffusion equation and via the 

method of Greens functions, obtains a necessary condition which forms 

the basis of a steep descent algorithm to compute the optimal profile. 

A comprehensive description is given by Chang and Bankoff 

(1969) of the general algorithmic procedure for gradient methods. 

As with gradient methods in lumped parameter systerns,this 

method suffers from the disadvantage that in the neighbourhood of the 

optimum, the method slows down and in fact may fail to reach the true 

optimum within a reasonable number of iterations. 
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In an attempt to speed up the method Zone and Chan9 (1972) 

developed a second order gradient method which is designed to take over 

from the usual gradient method (which is a first order method) in the 

neighbourhood of the optimum. 

Using a second order expansion of the objective function, 

a ~econd order estimate of the improved control is obtained. A 

disadvantage of the method is that this second order estimate is not 

obtained directly from the Hamiltonian but appears as the solution to 

a series of simultaneous, partial, two point boundary value equations, 

which must be solved at each iteration. It appears too, from the 

results, that the method may suffer from serious instabilities and in 

fact a smoothing routine is incorporated so as to smooth the second 

order estimate before it is used to provide a correction in the direction 

of the optimal profile. 

A functional analysis approach to computation has been taken 

by Chang (1970). He used a steep descent method in Hilbert space. He 

expresses the solution to the system equations in terms of an integral 

equation. The objective function is expressed in terms of linear 

operators and inner products in a Hilbert space. The solution to the 

optimal control appears in an operator equation of the form 

A* u = W (2-3) 

where 
A* is a self adjoint, positive operator formed from the system, and 

W an integral expression. 

The steepest descent method is obtained directly from this operator 
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equation and takes the form 

(2-4) 


where 

d0 = A*u(o) - W .(2-5) 

and u(o) is an initial estimate of the optimal profile 

l I l I is the norm for this Hilbert space, and 

<•,•> is the inner product for the space 

2.5 Fixed Bed Reactors with Catalyst Decay 

Much of the early literature on catalyst decay tended to 

describe the catalyst activity as a function of time on stream, of the 

reactor. This form gave an averaged description of the decay along the 

length of the reactor whereas equations describing local decay were 

avoided. 

Anderson and Whitehouse (1961) showed that local 

characterization of the catalyst activity can be expressed as a 

function of the local concentration. Szepe (1966) used a deactivation 

equation to describe the catalyst decay, with a form analogous to a 

reaction rate equation. He showed that many of the recognised recent 

forms -of catalyst decay are special cases of his general rate of de­

activation equation: 

rate of deactivation = k(T)·g[~]·f(X) (2-6) 

Crowe (1970) has given a comprehensive treatment of this class 

of problem, based on Pontryagin's Maximum Principle. He considered a 
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simplified form of (2-6) where decay rate does not depend on conversion. 

He obtained an analytical characterization of the optimum policy and 

showed that the constant conversion policy holds at the optimum. 

Crowe and Lee (1971) extended the results of the single reactor bed 

case to include several beds in series, each with uniform temperature 

and catalyst activity. 

Th~rien (1971) studied this class of problems in the context 

of Sirazetdinov 1s and Degtyarev's (1967) maximum principle. He sought 

to choose the best temperature at each point along the reactor length, 

as well as at each point in time, T{z,t), so as to maximize the 

integrated exit conversion over time. He, as well, considered the 

simplified decay form of (2-6).where conversion dependence is absent. 

Upper and lower bounds were placed on the temperature and a single, 

irreversible reaction was considered. His system was described then, 

by the two equations: 

rate of reaction = K(T)F(X)~ (2-7) 

rate of deactivation = k(T)g(~) (2-8) 

Therien's study showed the strong influence of the parameter, p (p = ratio 

of the reaction activation energy to the deactivation energy for the 

catalyst) on the optimal policy. Using this parameter, p,he eliminates 

the possibility when p > l,of an unconstrained temperature profile forming 

part of the optimum profile. 

He obtains analytical forms for the exit conversion at the 

optimum and shows, provided that temperature is unconstrained and inlet 

conversion constant in time, that the policy of constant conversion at 
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the optimum, holds. Therien considers briefly the influence of the 

critical catalyst distribution on the optimal policy. He shows that, 

for a first order catalyst decay, the extremal control T(z,t) is unifonn 

along the length of the reactor irrespective of the uniformity or con­

tinuity of the catalyst activity distribution along the reactor length. 

Nevertheless, for a second order decay form, the extremal control T(z,t) 

is dependent on the uniformity and continuity of the catalyst profile. 

Crowe and Lee (1970b) have considered the general catalyst 

decay form (2-6) in a batch reactor system. They showed that Levenspiel 1 s 
' 

and Szepe 1 s (1968) optimal result, which required that the unconstrained 

temperature be chosen so as to maintain the product of K(T)w constant, 

cannot be extended to the case where catalyst decay is a function of the 

convers~on, as in (2-6). 

Ogunye and Ray (1971) derived a generalized weak maximum 

principle using a first order perturbation analysis. They obtain three 

Hamiltonian functions, one for distributed control and the remaining 

two for boundary control of the inlet temperature in time, and initial 

catalyst activity along the length of the reactor. They consider the 

quasf-steady state system for r reactions and q catalyst activities 

of the form 

ae. 

_l = i = l , r (2-9)
az Q(ej wk) 

awk _ 
rt - gk(e. 1/1·) k = l ,q (2-10)

l J 

1 1 
Max I y, '!!) dzdt (2-11)= f f G(~, 11!' ~' 

0 0 
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where 

ei is the extent of reaction i, 

~k is the kth catalyst activity, 

~ is the distributed control vector, and 

y and ~ are boundary control vectors in z and t respectively. 

Based on their Hamiltonian fonns, they develop an efficient 

gradient method to solve for the optimum profile. For instances where 

unconstrained policy was optimal they made use of a Conjugate gradient 

method developed by Lasdon (1967). 

All their computations were based on the simplified fonn of 

catalyst decay, where no conv~rsion dependence exists. Detailed numerical 

examples are worked for isothermal and adiabatic reactors, with irreversible 

and reversible reactions. All their results confirm the constant con­

version policy. 

For the case of an irreversible reaction in an adiabatic 

reactor they do a parametric study, the basic results of which may be 

summarized as follows: 

(i) Increasing the heat of reaction, increases the constant 

conversion portion of the optimal profile for both exothermic and en­

dothennic reactions. 

(ii) Increasing the operating life of the reactor decreases both 

the constant conversion level and the fraction of time spent at the upoer 

constraint. 

(iii) Decreasing the reactor length increases the average temperature 

in the reactor and reduces the fraction of time at constant conversion. 



15. 


(iv) IncreasinQ the parameter p (see 2.5 above) increases the 

constant conversion level, increases the average temperature in the re­

actor, and decreases the fraction of time spent at constant conversion. 

(v) Decreasing the maximum allowable inlet temperature for 

both exothermic and endothermic reactions decreases the constant con­

version level, as well as the fraction of time spent at constant con­

version. 

Ogunye and Ray also consider the catalyst distribution 

problem, that is, to choose the initial (time) catalyst distribution 

so as to maximize an objective function which takes into account the 

average catalyst cost over the lifetime of operation, offset against 

the exit conversion. 

The authors then combine the problems to choose best 

temperature and initial catalyst activity and require approximately 

8 minutes of computing time on an IBM 360/75. For the single problem 

of choosing best distributed temperature in an adiabatic reactor 3-5 

minutes of computing time was required. 



CHAPTER 3 . 

THE REACTOR SYSTEM 

3.1 Industrial Fixed Bed Catalytic Reactors 

In the petrochemical industry a common use of the solid 

catalyst is the selective inhibition of unwanted side reactions, as 

well as lowering the ignition point of the reaction. The forms which 

the solid catalyst can take are many. Usually an important design 

factor is the total surface area, and as a result, small porous 

spherical pellets are often encountered. 

It is not uncommon to find that, in the design of the reactor, 

the catalyst is the most economically significant and as a result, 

much importance is placed on careful control of catalytic reactors, 

to ensure maximum catalyst life or selectivity. In many processes, 

the catalyst can be regenerated and optimum regeneration cycle studies 

has received some attention in the literature. 

For non-regenerative catalysts, it is usually economically 

unfeasible to simply operate the reactor until the catalyst activity is 

zero an~ little or no product is formed. In practice, there is often 

some total time of operation (economically, legally or practically 

determined) within which, we wish to obtain maximum production (conversion). 

Of course, there is some optimal total operation time which can 

16. 
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be determined usina a simple one dimensional search technique, over a 


series of optimal policies with different operation times. 


In the present study the total operation time is given 


as fixed. 


3.2 Mathematical Model 

3. 2. 1 Introduction 

Froment (1970) has given an extensive review of the 


analysis and design of fixed bed catalytic reactors. His models have 


been grouped into two broad sections: 


(i) Pseudo homogeneous models 

(ii) Heterogeneous models 

The first class of models do not account explicitly for the presence of 

the catalyst, whereas the heterogeneous models describe the system as two 

distinct phases, with separate equations for each. 

Within each category, there are three subdivisions, each 

· taking more effects into account and so increasing the complexity of the 

model. 

3.2.2 Pseudo Homogeneous Model 

Froment's basic model in this cateqory assumes that con­


centration and temperature gradients occur only in an axial direction. 


The only transport mechanism operating in the axial direction,is the 


overall flow itself, which is assumed to be plug flow. 
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He states, that in ~ost cases, pressure drop in the reactor 

is relatively small and it is common to use a mean constant value for the 

calculations. 

The non-steady state reaction equation describing this system, 

is a first order partial differential equation in z (length) and~ (time). 

The variation of the catalyst activity is incorporated into reaction 

equation to give an effective reaction rate constant. 

To increase the complexity of the model, Froment successively 

introduces axial mixing to give rise to a second order differential equation, 

in the steady state, using the concept of effective diffusivity. He 

comments, saying it has been shown [Carberry (1963)] several times, that 

for flow velocities often encountered in industry, the effect of axial 

disper~ion of heat and mass is negligible, when the bed depth exceeds 

about 100 times the catalyst particle diameter. 

3.2.3 Heteroqeneous Model 

For very rapid reactions which are highly exothermic or 


endothermic or for large catalyst particles it may be necessary to dis­


tinguish between conditions in the fluid and the solid catalyst phase. 


Froment introduces three levels of complexity for this 


class of reactors, the basic model here having the same assumptions 


as the basic pseudo homogeneous model, except that mass and heat 


transfer are described in separate sets of equations for solid and 


- fluid respectively. 

To increase the complexity of the model, Froment adds 
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equations to the basic model, which account for interfacial and 

intraparticle gradients, when, for the above mentioned case, these 

properties cannot be assumed to be uniform. To simplify the inte­

grations the concept of an effectiveness factor is introduced. This 

factor essentially corrects the surface catalyst conditions for the 

non-uniform conditions within the pellet. 

3.2.4 Present Reactor System 

The model adopted here lies somewhat closer to Froment's 

(1970) pseudo homogeneous model. Unlike Froment's basic pseudo homo­

geneous model, the catalyst decay is explicitly accounted for in a 

decay rate equation; nevertheless, this equation does not view the 

catalyst as a distinct phase, as does Froment's heterogeneous model, 

but considers the catalyst deactivation to be a homogeneous effect, 

analogous to, and simultaneous with, the reaction rate equation, 

[Szepe (1966)]. The catalyst decay rate is dependent on the conversion, 

the temperature and the catalyst activity itself. 

A physical picture of the model may be obtained if one 

visualizes a high velocity, fixed bed reactor, perfectly mixed with stationary 

catalyst particles of the same size as the reaction molecules themselves. 

3.3. Generalized Reactor Equation 

The generalized mass balance for the jth species in a tubular 

reactor with a homogeneous bulk flow in all directions may be written as: 

ac. av c. 1 av cj avzcj_J + r J 8+- +at ar r ae az 
2 

- 1 a .acj l a 
2

DCj a DjCj 
- r~Djr ar) + 2 + 2 + R. 

J 
(3-1)7 ae az 
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where 

Cj =molar concentration of species j 

vz, v
0 

, vr = bulk flow velocities in 3 coordinate directions 

Rj = reaction rate for species j (positive for production) 

Rj is taken, for an irreversible reaction of the form A+ B, to be a 

separable function of concentration activity and temperature 

R. = 	 K.(T) F.(C)iµ (3-2)
J J J 

K is of the Arrhenius form 

(3-3) 

where K~ is a constant and ER is activation energy for the reaction 

divided by the gas constant. T(z,t) is distributed temperature. 

In accordance with 3.2.2 above, we assume that 

(i) 	 Bulk flow is along length of reactor only 


(z direction) and is assumed constant 


(ii) 	 Axial diffusion is negligible 

(iii) 	 Radial diffusion is negligible 

(iv) 	 Density of reacting fluid is constant 

(3-1) then reduces to 

ac. ac. 
atJ + v azJ = Rj 	 (3-4) 
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3.4 Catalyst Decay 

3.4.l Causes of Decay 

There are comnonly three major causes for loss of activity 

in catalysts, viz., sintering, poisoning and fouling. 

Sintering or melting of the catalyst particles often happens 

when uncontrolled hot spots or runaway temperatures occur in a reactor. 

This is a recurring problem in highly exothermic reactions with in­

sufficient heat transfer. The catalyst material, in the vicinity of the 

hot spot, melts or undergoes an irreversible loss of activity. 

Poisoning of the catalyst refers to the process whereby 

impurities in the reactant feed, deposit on the catalyst or react with 

the catalyst surface and reduce its active area. This may or may not 

be an irreversible process. 

Fouling is analogous to the poisoning process and is caused 

by deposition of unwanted side products on the catalyst surface, causing 

loss of active surface area, blocking of pores, etc. 

3.4.2 Catalyst Decay Rate 

Mechanisms for all three types of decay referred to above, 

are to be found in the literature. [The key paners are 

Maath and Mascov (1965); Froment and Bischoff (1962)]. However, what 

is required is the additive effect of all these decay mechanisms. 

Experimentally four types of equations expressing decay rate are 
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encountered: 

(i) linear [Eley and Rideal (1941)] 

(ii) exponential [Herington and Rideal (1945)] 

(iii) hyperbolic [Pozzi and Rase (1958)] 

(iv) reciprocal power [Prater and Lago (1956)] 

Szepe (1966) proposed a general equation of the foDTI: 

cf> = rate of deactivation= -k(T)·g(¢)·f(X) (3-5) 

where 
{3-6) 

He showed that the four experimental fonns are all special cases of 

(3-5) and (3-6). 

k(T) is a decay rate constant of Arrhenius form 

k(T) = k: exp[-Ec/T] (3-7) 

where EC is catalyst deactivation energy divided by the gas constant 

and T is distributed temperature. k~ is a constant. 

w is defined precisely as the relative activity and is written 

ili( t) = rate of reaction with catalyst in a given condition( 3_8 ) 
o/ z, rate of reaction with fresh (or reference) catalyst 

f(X) is the conversion dependence term.for catalyst decay. 

So we may write the catalyst decay equation as: 

a¢ - ( ). at - <f>T,¢,X (3-9) 

3.5 Quasi-Steady State 

In practice, one often finds that the contact time of a reactor, 

that is, the time to process one void reactor volume at inlet conditions, 
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is small (seconds or minutes) compared to the total time of operation 

(hours or days), then, it has been shown [Ogunye and Ray (1969a)] that: 

ac ac (3-10)at « v al" 

and that (3-10) holds, except for very long tubes and very rapidly 

decaying catalyst. The quasi-steady state form of (3-4) is written' 

then as: 
ac. 

V J = R (3-11)az- j 

3.6 Normalized Equations 

Using a primed and barred set of variables we can write (3-9) 

and (3-11) in terms of conversion X(z,t) as: 

v .£! - K(T) F( X)iji (3-12)
I az 

~ = - K(T)g(iji)f(X) (3-13)
at' 

if we have a total time of operation T and length of reactor L and we 

define dimensionless variables: 

t = t 
I 

0 < t < 1 (3-14)
T 

I 

z z = 0 < z < 1 { 3-15) L 

K{T) = T R(T) (3-16) 

k(T) = T K(T) (3-17) 

t 
8 

= L/v {3-18) 

Then we may write (3-12) and (3-13) 

t 
~; = f K(T)ijiF( X) {3-19) 
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~~ = -k(T) g(i/!) f(X) (3-20) 

Natural boundary conditions on (3-19) and (3-20) on inlet conversion 

is: 

I x ( 0 't) = XO (t ) I (3-21) 

and for initial catalyst activity 

I •(z,O) = •;(z) I 	 {3-22) 

From (3-3) and (3-7) we may express K(T) as a function of k(T) as 

follows (incorporating the constants t and T into K+ and k+) in (3-19)
9 

and (3-20) 

K(T) = K+ exp[-ER/T] {3-23) 

k(T) = k+ exp[-Ec/T] (3-24) 

where 
and k+ = k+ 

0 	

(3-24a} 

K = a kp (see also (3-51a) below) (3-25) 

a = K /(k )P (3-26)+ + 

(3-27) 

The general properties of the various functions may be summarized as 

follows: 

Conversion X{z,t) 	 Continuous or piecewise continuous,non 

negative function of z and t; solution 

to (3-19) 

Xe: [O,l] all z,t 	 (3-28) 

X
0 

(t) 	 Continuous or piecewise continuous, 

function of t with continuous or piece­

wise continuous first derivatives. 
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Activity ip(z,t) Continuous or piecewise continuous,non 

negative function of z and t; solution 

to (3-20) 

1/J e: [0,1] all z,t (3-29) 

ipi(z) 	 Continuous or piecewise continuous or 

uniform function of z with continuous or 

piecewise continuous first derivatives. 

F(X) 	 Continuous, non negative, monotonic, non 

increasing function of Xand twice 

continuously differentiable with respect 

to X such that for 

0 < x < 1 (3-30) 

we have 

o ~ F(X) 	 < l (3-31) 

g(ip) Continuous, non negative, monotonic, non 

decreasing function of ip such that for 

0 :: 1/J < l (3-32) 

we have 

0 :: g( 1/J) < l (3-33) 

f(X) 	 Continuous, non negative, monotonic, 

twice continuously differentiable function 

of X 
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T(z,t) 	 Positive, piecewise continuous distributed 

control variable, with finite number of_ 

discontinuous lines, bounded between two 

given finite limits 
·* T < T < T 	 . . (3-34) 

* - ­

k(T) 	 Continuous, positive, strictly monotonic, . 
increasing function of T. Likewise for K(T). 

Because of this strict monotonicity, k[T] 

is used to replace T as the control variable 

and we write the equation corresponding to 

(3-34) as 

* *k* = k[T*] ~ k[T] < k[T ] = k (3-35) 

For a single irreversible reaction we use F of the form 

F = (1 - X)n (3-36) 

g(¢) is of the form 

. g( 1/1) = 1/Jm 	 (3-37) 

where 

n is order of the reaction 

m is the order of decay 

3.7 Adiabatic Reactor 

With the values of t and T absorbed into the Arrhenius constants 
6 

as in (3-23) and (3-24) we may write (3-19) and (3-20) as 

K(T)l/IF(X) 	 (3-38) 

~ = -k(T)g( 1/1 )f ( X) 	 (3-39)at 



27. 

For an adiabatic reactor with all the usual simplifying assumptions 

(constant pressure, heat of reaction mildly dependent on temperature~ etc.) 

we may write the well known adiabatic relationship for a reaction of 

the form 

A -+ B (3-40) 

as 

(3-41) 

(3-42). 

where 

Cp is the specific heat of the reaction (3-40), and 
0 

6H is heat of reaction for (3-40) (negative for exothermic 


reaction) 


T0 (t) is the inlet temperature to the reactor and is the 


boundary control variable. 


Dividing (3-41) by T T we obtain

0 

X - X = T T J. (-1 - l) (3-43)o o 1 T T
0 

Now if we make the assumption that the change in our boundary control is 

sufficiently limited so that 

T2T T 
0 

~ 
0 

(3-44) 

and also that 

. J • = r2 J • (3-45)
0 1 

is approximately constant in z and t, then we may write, remembering 

that J·is positive for exothermic reactions 

x - x = J. (-1 - l) (3-46)o T T 
0 
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From another viewpoint the alternate exp~essions {3-41) and 

{3-46) are seen to be direct consequences of the energy equations 
0 

dT l = ::: - (3-46a)ax -~ cP Ji 
and 

d(l) 0 

t.H {T} lT - ::: - - (3-46b)crx- ­
T2cp{T) \J 

Assuming Ji constant leads directly to {3-41) and assuming J·constant 
0 

leads directly to (3-46). It may well be that if t.H (T) is a faster 

rising function of temperature, the division b; r2 serves to make the 

assumption that J·is constant better than the more common assumption 

that Ji is constant. In any case, assuming that T is constant with X is 

little different from assuming i is constant with.X, as is called for 

here. 

Thus using (3-46) we write the distributed control (3-35) 

in terms of a boundary control ko: 

k* = k [T ) ~ k (t} < k [T*] = k* (3-47)
0 0 0 - 0 0 

using (3-23), (3-24) and (3-46) we have 

k[T] = k [T ]exp[(X - X )Ec/J.] (3-48)0 0 0 

K[T] = K[T ]exp[(X - X )ER/J.] (3-49)0 0 0 

where 

(3-50) 

(t) = K+ exp [-ER/T (t)] (3-51)k0 0 

(3-25) applies and we may write 

K = a kp (3-5la)0 0 
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If we now define 

F(X) = ~(X) exp[(X - X
0 

)ER/J.] (3-52) 

f(X) = f(X) exp[{X - Xo)Ec/J.] (3-53) 

We may write the final forms of the state equations (3-38) and (3-39) 

as: 

ax = az 

21 = at 

(3-54) 


(3-55) 


Hence we have our distributed system on terms of the boundary control 

It can be seen that a reactor with uniform temperature (in z) 

is obtained in the limit as J. (or Ji) tends to infinity (zero heat of 

reaction), i.e. as Ji+~ from (3-41) T
0
(t) +T(z,t) which 

that we have a uniform temperature reactor. 

states 

For a uniform reactor we 

F(X) = F(X) 

have from (3-52) and (3-53) 

(3-56) 

and 
f(X) = f(X) (3-57) 

Thus the state equation forms for the adiabatic and uniform reactor 

are equivalent and differ only in the functional forms of F and f. 
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3.8 Statement of the Optimal Boundary Control Problem 

The precise statement of the optimal boundary control problem 

is: 

{i) Given state equations (3-54) and (3-55) with 

initial boundary conditions (3-21) and (3-22). 

(ii) Given constraint on the boundary control (3-47). 

Maximize, by choice of the boundary control k
0 

(hence T
0 
(t)) at every 

instant in time, so as to maximize P, where P is the net integrated 

exit conversion, for a fixed reaction time 

J = Max P = 
1
f [X(l ,t) - X (t)]dt (3-58)

0 
{ k [T ( t)]} 0 

0 0 



CHAPTER 4 


THE OPTIMAL SYSTEM 


4·.1 The Weak Maximum Prineiple 

The implications of the weak form of a maximum principle 

are best understood if they are contrasted with those of a strong form. 

Given the strong form of the maximum principle we are instructed 

unequivocally to choose our control from a given set of allowable 

functions so that at any z,t we obtain the largest value of the 

Hamiltonian with respect to any other admissible control. If there 

is a set of functions which give this largest value of the Hamiltonian, 

we then need only choose from this reduced set, that control function, 

which gives the largest value of the objective function. We can search 

for this global maximum such that 
+ . .

H(M , ! ~) ~ H(~, ! ~) for ~11 u c U 

where 
~ e U the set of all admissible controls, 

! and ~ are state and adjoint variables respectively, 

u+ & Umaximizes the Hamiltonian. 

Instead we search among all the local maximums such that u+ causes 

H to be maximum in local region or neighbourhood about~+. All these 

policies will satisfy the local maximum condition which requires the 

31. 
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Hessian matrix of second derivatives of the Hamiltonian with respect 

to the control to be non positive definite. 

The set of all admissible policies which obey this local 

maximum condition may be called 'Pontryagin policies'. We search 

among these Pontryagin policies for our optimal policy and if it 

exists, it will be found among these policies. We must, of course, 

be prepared to assume from mathematical or physical reasoning, that 

an optimal solution to the problem indeed exists. 

There is no general existence theorem for distributed 

systems, and even the special cases involve long and tedious proofs; 

so, often, intuitive reasoning or foreknowledge of the physical 

system has to be relied on. 

Given the weak form of the maximum principle we are to select 

those controls from an allowable set which locally maximize the 

Hamiltonian only if the control is at a constraintt, but otherwise, 

only cause the Hamiltonian to be stationary, that is, cause the 1st 

partial derivative of the Hamiltonian with respect to the control to 

vanish. This immediately introduces a potentially larger set of 

control functions which obey this necessary condition. This set of 

functions consists of all the functions which obey the necessary con­

ditions for the strong form, as well~ as a larger set of functions which 

do not cause the Hamiltonian to have its largest value, but simply 

cause it to be stationary. One now has to choose from this potentially 

larger set of extremal policies, that one, which causes the objective 

function to have its greatest value. 

tin exceptional circumstances the Hamiltonian may be stationary at 
the constraint in which case only the weak form applies at the constraint. 
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4.2 Perturbation Methods 

A well known method for producing a weak form for a 

(local) maximum principle is by the method of a first order per­

turbation on the objective function; that is, all· perturbations of 

the order of (ou) 2 (where ou represents a permissible variation in 

the control) are set to zero. This causes all second derivative 

terms to vanish leaving only the first derivatives to affect the 

sign of the perturbation of the objective function in the vicinity 

of the optimum. In order to ensure the necessary condition for an 

extremum in the objective function, these first derivatives are set 

to zero and provide the stationarity condition for the Hamiltonian. 

Given that this .necessary condition for an extremum in 

the objective function holds, that is, the first derivatives of the 

Hamiltonian with respect to unconstrained control are zero, it then 

becomes necessary to consider terms of the order of (ou)2 and their 

corresponding second partial derivatives. We use these to determine 

whether this extremum is in fact a maximum, minimum or saddle point. 

Only at this stage can one make statements which identify the maximum 

(minimum) of the Hamiltonian with respect to the control, with the 

maximum (minimum) of the objective function, and give a strong 

maximum principle. 
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4.2.i Existence of a Strong Maximum Principle for Boundary Control 

Ogunye and Ray {1971), following the method of Jackson 

(1966) and using a first order perturbation method outlined in 4.2 

above, obtained a weak form of a maximum principle for boundary as 

well as distributed control. 

Possibly the most general and usable work in this area 

is that due to Sirazetdinov and Degtyarev {1967) who derive a strong 

maximum principle for a system described by first order partial 

differential equations. However, the strong form in their theorem 

applies only to distributed control and not where control exists in 

one dimension only, i.e., boundary control. * 

There have been numerous claims of the existence of a strong 

form for boundary control {Chang {1967)) but to the authors knowledge 

no concrete, well established, proof exists. 

4.3 Perturbation Analysis 

Using a first order perturbation of the objective function 

(3-58) we obtain (see Appendix A) the following equations: 

oP = 
l l
f [f 
0 0 

~~ 
0 

dz]ak
0 

(t)dt (4-1) 

where 
H = A.l 1/1 F K0 

- A. 2 q f k
0 

{4-2) 

and 1 
R = I Hdz (4-3) 

0 

*except for the case where the system and objective function 
are linear. 
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Ris the Hamiltonian function of the system. A1(z,t) and A2(z,t) are 

the adjoint variables of the system and are defined by the following 

partial differential equations 

(4-4) 

Boundary Condition 

Al (l,t) = l (4-5) 

I I 

where f and F denote the total derivatives with respect to the 

single argument X, i.e. 

F, = ~~(X} (4-6) 

= df(X)f dX {4-7) 

Also 

(4-8) 

Boundary Condition 

A2 (z,1) = 0 (4-9) 
I 

where g denotes the total derivative with respect to the single 

argument,¢, i.e. 
dg(¢)g l - (4-10)- d¢ 

Now for a maximum it is necessary that any perturbation in the control 

be such that 

oP < 0 ( 4-11) 

From (4-1) then, seeing we are free to perturb ok
0 

in either a positive 

or negative direction, it is necessary, in order that (4-11) be 
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satisfied, that 

aFi 1·aH
aE" = JaE" dz = 0 {4-12) 

0 0 0 

Differentiating {4-2) partially with respect to k we obtain
0 

aR 1aH 1 
aE" = far dz= f {p;i.1 1/1 F K /k - ;i. 2 g f)dz = o { 4-13) 

0 0
0 0 0 0 

Seeing that the control k (t) is a function of t only we may multiply
0 

through (4-13) by k to obtain 
0 

1 1
f p ;i. 1 1/1 F K dz = J ;i. 2 k g f dz ( 4-14) 

0 0
0 0 

Equation (4-14) is a necessary condition for the stationarity of the 

system where the control is unconstrained. 

If the control k (t) is at either of its boundaries k* or *k , 
0 

then for k at its upper boundary k , * any perturbation in k must be such
0 0 

that for k = *k , 
0 

ok0 ::: O ( 4-15) 

Thus from (4-11) and (4-1) 
- 1 

aH = f aH dz > 0 (4-16)
~ 0 ~ ­

Likewise for k = k*
0 

- 1 
!I:!_ = J !I:!_ dz < 0 { 4-17) ak ak ­

0 0 0 

*When k
0 

is constrained at one of its boundaries, say k , then 

any perturbation in k
0 

must decrease k
0 

. From the sign of ~~ in (4-16) 
0 

Fi will also decrease, (except for the special case where the strict 

equality holds and one has stationary condition coincident with the 
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boundary (see 4.1 above)). Thus, since Rdecreases with respect to k
0 

at the upper boundary, it is a (local) maximum with respect to k
0 

, at 

the upper boundary and not simply stationary, as it is in the interior 

region for the weak maximum principle. Thus when the control is at a 

constraint the weak fonn reverts to the local strong form of the 

maximum principle. 

4.3.l Influence of p on the character of the Optimum Profile 

If there were no doubt that the strong fonri of the 

maximum principle for boundary control existed, one would proceed to 

investigate the sign of the second derivative of the Hamiltonian with 

respect to k
0 

in order to distinguish between the possible stationary 

conditions. 

From (4-13) differentiating again with respect to k
0 

remembering from (3-5la) that 
. Ko 

dK = p 'E" dk (4-18)
00 . 0 

'\2R 1 2H 1 A wFK 
a - l ~dz= f[ 1 2 0 p(p-l)]dz (4-19)
::-rk - '\ ..kc; 0 k 
a 0 0 a 0 0 

Now assuming the exist.erree of the strong fonn of the maximum principle 

a necessary condition for the unconst~ained maximum (as opposed to 

stationarity) of the objective function would be 

a2R 1 a2H 
~ = f -:-:7 dz < 0 (4-20) 
ak o ak

0 0 
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From (4-14) provided 
Al¢FK0k2 is positive (see Chapter 5 below) this 

would require 0 

p ~ 1 {4-21) 

Thus (4-21) would be the condition for the existence of an unconstrained 

optimal profile, that is, an optimum profile for which 

(4-22) 

where the strict inequalities are observed. 

Likewise for p> 1, an unconstrained policy would be 

inadmissible and the optimal profile would consist only of constrained 

portions, with k ~ k* or k = k*' or a mixture of these profiles. 

This mixture of totally constrained profiles is often referred 

to as 1 bang-bang 1 control and describes the situation where, for example, 

an optimum profile is constrained on a lower bound for some finite 

length of time and then switches, over an infinitely small time span, 

to the upper constraint, so that for no finite pr9portion of time is 

the optimum profile within the open interval (4-22). 

The parameter p (3-27), because it enters directly into 

(4-19) plays a decisive role in the character of the extremal control 

policy and in the admissibility of certain control sub-policies to the 

extremal control policy. 

If one considers the extreme values of p we have 

(i) p = 0: From (3-54) and (3-23) it can be seen that 

the reaction rate is independent of temperature. For this case the 

obvious optimal policy is to maintain the temperature as low as possible 
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so as to retain the highest possible catalyst activity in the reactor. 

(ii} p =ro: From (3-55} and (3-24) it can be seen that 

the catalyst decay rate is independent of temperature. Now the optimal 

policy is to maintain the temperature on its upper limit at all times 

to obtain the highest possible conversion. 

The kinetic significance of the parameter p is that for p < 1 

an increase of the operating ·temperature would increase the rate constant 

k {T ) for catalyst decay faster than the rate constant K (T ) for
0 0 0 0 

reaction. If the operating temperature were to be lowered a decrease in 

k
0 

{T
0 

) would result and hence a higher catalyst activity would be 

maintained; however, this would, of course, cause a decrease in the 

reaction rate through K
0 

. 

· These conflicting choices of temperature indicate that 

somewhere between the two choices the 'best' choice lies, and it is this 

'best' choice that represents the optimization problem at hand. 
I 

4.3.2 Singular and Bang-Bang Control 

For p = 1 we have a degenerate case. From {4-3) it is seen 

that the Hamiltonian depends linearly on the control k ;
0 

remembering from (3-5la) that for p =1 

~ = a k
0 

(4-23) 
1 1

H = J H dz = k (t)[f (apA,~F - A2 g f)dz] (4-24) 
0 ° 0 

H = k (t)A(t) {4-25)
0 
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Now the stationary condition over a finite interval oft is: 

= A(t) = 0 - (4-26) 

where 
l 

A{t) = [J(apAl~F - A2 g f)dz] (4-27) 
0 

does not depend explicitly on k
0

. 

Now the only allowable form for A, if it is to be .stationary 

with respect to k , is for Ato be a constant function of k . Comparing
0 0 

(4-25) and (4-26), we see that this constant must be zero. 

There are in fact three possible cases for A(4-25) 

(see Figure 4-1). 

If A(t) is zero, as it must be to satisfy the stationary 

condition for unconstrained profiles, then the Hamiltonian Ris no 

longer a function of the control; it trivially obeys the necessary 

condition (4-13) and no longer provides us with information on the 

stationarity of the objective function. This situation is commonly 

called a singular policx. The conditions for the singular policy are: 

(i) A(t) must vanish over a finite portion of the extremal 

policy. ( 4-28) 

for r = l ,2, .... (4-29)(ii) 

It should be noted, however, that the existence of singular 

control policies, which satisfy (4-28) does not necessarily imply 

existence of singular sub arcs which form part of optimal control 

policy [Johnson (1965)]. 
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The analysis of singular control policy for a distributed 

system, presents a major mathematical difficulty. There is still no 

general method for determining, a priori, whether control policies 

obeying the singular conditions stated above, actually form part of 

an optimal policy. 

In the case of lumped parameter systems, Kelly (1964) 

derived a necessary condition for a candidate satisfying the singular 

policy, to be optimal with respect to an arbitrary piecewise continuous 

perturbation in the control. This result is now conrnonly known as the 

Generalized Legendre-Clebsch condition and is given as: 

2r a a r aH
( -1) au- [~ (-;:u) J < o r = 1 ,2, .... (4-30) 
· s at 0 s 

s e:[O,l , ••• N] 

where N is the number of control variables of the system. 

Nevertheless, there has been no successful extension\to the 

distributed system [Seinfeld (1967)]. 

Now if A(t) is non zero or contains only isolated zeros, then 

Rcannot be stationary, and only constrained policies may exist at the 

optimum. 

It was stated that the weak form of the maximum principle 

reverts to the local strong form when the control is at one of its 

constraints.t Hence if we now search in the set of all profiles such 

that 
*k i {k : k* < k < k } (4-31)

0 0 0 

then we may choose k , in order to maximize Rat a boundary and not
0 

tExcept for the unusual case where one has stationarity exactly at 
the boundary. 
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Case 1 

A>O · · H 

ko 
case 2 

-
H 

A=O 

Case 3 

-
H 

A<O 

Figure 4-1 Three typical forms for the Hamiltonian as a 
function of the control k

0 
for the degenerate case 

of p =1 



43. 


simply to make it stationary. From Figure (4-1) it can be seen that 

the optimal profile will be governed by a 'bang-bang' policy where,, 

for A > 0, k is chosen at its maximum value to maximize the Hamiltonian 
0 

and vice versa, that is: 

Optimal profile for A ~ 0: k (t} = k* A(t) > 0
0 {4-32) 

Computation for the bang-bang policy involves the determination 

of the switching points between upper and lower constraints and the 

function A(t) is commonly referred to as the switching functio~. However 

the computational methods are somewhat more involved than the standard 

gradient methods, and often involve the limit of a seri~s of non-singular, 

non-bang-bang solutions. [Edgar and Lapidus (1972)]. 

4.4 Fixed Point Formulation of Necessary Condition 

In spite of the appearance of integrals in the necessary condition 

(4-12) one can express the necessary condition in a functional form. 

The solution to the optimal problem then takes a fixed point formulation 

and opens the way to a new series of computational techniques, different 

from the standard gradient methods. 

Expressing K
0 

as a function of k
0 

via (3-5la) and solving 

for k in (4-14}, remembering that integration is with respect to z and
0 

k is a function of t only, we obtain:
0 

ko = G[ko] 1 1 (4-33) 
a p J A ~F dz 1-pwhere 1

0 (4-34} 
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fork*< k
0 

(t) < k* and pf 1. 

{4-34) holds for unconstrained k (t) and for the constrained 
0 

regions we write 

· (4-34a) 

( 4-34b) 

The equations (4-33) to (4-34b) define the functional G fully. 

The profile which satisfies the necessary condition for 

stationarity of the Hamiltonian will be the fixed point of (4-33) "in 

function space. 

It can be seen from (4-33) that as t + 1, \ 2 + 0 (boundary 

condition) and k + (p < 1), and if k is constrained, then a necessary 
0 

oo 
0 

condition for a profile to be optimal, is that it end on the upper 

constraint k* . 

4.4.1 Fixed Point Methods 

A solution to an equation of the form 

(4-35) 


is said to be the fixed point of the transformation Tf' since Tf leaves 

x invariant. To find a fixed point by the method of successive 

approximations, we compute a sequence of vectors of the form: 

(4-36) 


under appropriate conditions, the sequence {xn} converges to a solution 

of (4-35). 

' ' 



45. 


If we define S* to be a closed subset of a Hilbert space X* 
* * and let Tf be a transformation mapping of S into S then Tf is said to 

be a contraction mapping if there exists an a, 0 < a < 1 such that 

I I Tf(x1) - Tf(x2) I I <a I I - I I . (4-37) x1 x2 
*for all x1 , x2 E S • 

II I I is a norm in X , * which is induced by the inner product <x,y> 

such that 

I I x I I = V<X,X> (4-38) 

The inner product may take several forms, a common form being: 
1 

<x,y> = f x(t) y(t) dt X, Y E S* ( 4-39) 
0 

Theorem: [Luenberger (1968)] Contraction Mapping 

If Tf is a.contraction mapping on a closed subset S * of a 

Banach space, there is a unique vector x e S* satisfying x = Tf(x).
0 

Furthermore, x
0 

can be obtained by the method of successive approximation 

of the form (4-36), starting with an arbitrary initial vector in S * . 

Note that a Hilbert space is simply a Banach space equipped 

with an inner product which induces the norm (4-38). 

Now provided we could prove that G was a ·contraction mapping 

accorqing to (4-37) then k
0 

could be obtained by the method of successive 

approximation, and furthermore it would be unique. Thus it would be the 

only candidate satisfying the necessary condition for the unconstrained 

optimum and provided we were sure a maximum solution existed, k would
0 

be the required solution and would satisfy the necessary and sufficient 

conditions for the maximum of the objective function. 
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So, in a sense, one can strengthen the weaker maximum 

principle by casting the necessary condition into a fixed point 

problem; examine the mapping G which must leave the control invariant, 

and if one can prove that G is a contraction mapping, then the solution 

to the fixed point problem will be unique. Further, if a solution 

is known to exist, the solution obtained by successive app~oximation 

will be the required (unconstrained) optimal control, since it is the 

only solution satisfying the necessary condition. 
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CHAPTER 5 

PROPERTIES OF THE OPTIMAL SYSTEM 

5.1 Introduction 

For many properties of the optimal system it is necessary to 


derive certain properties of the state variables X, iJi, as well as the 


adjoint variables ). 1, ). 2, including those boundary conditions not 


already specified. In some instances, formal solutions to these variables 


are required and these too are obtained. 


Properties of the state variables are considered first, followed 

by the adjoint variables. Using these derived properties, several properties 

of the optimal system are derived in 5.4 below. 

5.2 St~te Variables 

We seek to derive the analytical expression for a first order 


decay rate, this will allow us to obtain an expression for the activity 


$, as a function of f{X). 


5.2.1 First Order Reaction 

If we set the order of the reaction n=l in (3-36) and Consider a 


unifonn reactor (3-56) then we may write: 


F = (1-X) (5-1) 

'From the first state equation (3-54) we have 

~ = K iJi (1-X) ( 5-2)az o 

'17. 
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Separating variables and integrating formally we have 

{5-3)lh=K0(t)f ~z· 
0 

which gives 

{5-4)[1-X(~,t)J = [1-X0 (t)J exp [-K0(t)~dz'J 
0 

For the special case of zero initial conversion we have 

{5-5) 


and we may write (5-4) as 
z 

X(z,t) = 1 - exp [-K (t)J $dz•J (5-6)
0 

ll 

and exit conversion 

(x1(t) = 1 - exp [-K
0 

D(t)JI {5-7) 

where ~(t) ·~!dz is called average activity {5-8) 
0 

5.2.2 First Order Decay Rate 

For a uniform temperature reactor in which case F(X) =F(X) 

[see{3-56}J, an analytical expression for the conversion X{z,t) at any 

point is easily obtained from the first state equation. This then leads 

to an expression for the exit conversion from the reactor which is seen 

to depend only on the average activity [see {5-8}] and not the activity 

at the exit alone. From this expression it can be seen later {Chapter 6) 

how K
0 

is chosen to auard against an exit conversion greater than unity. 
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If we set the decay order m = 1 in (3-37) we may write (3-55) as 

olj! = -k fw ( 5-9) at o 

proceeding as in 5.2.1 above we obtain 

( 5-10) ;(z,t} = >;(z} exp [-~:0 (t"}f(X}dt"J . 

0 

For the special case of fresh uniform catalyst initially 

ljli{z) = 1 O<z<l ( 5-11) 

and we write (5-8) as 
t 

( 5-12) ;(z,t} =exp [-rk (t"}f(X}dt"J
0 

""o 

5.2.3 nth Order Reaction Rate 

Under this section various analytical forms of the state 

variables X and y are derived. The forms are divided, for convenience, 

into a first order reaction system and first order decay rate, and the 

corresponding nth order reaction systems for reaction and decay rates. 

The reaction schemes apply to a uniform temperature reactors, in which 

case F(X) =F(X) [see(3-56)J. 

For a uniform reactor F(X) takes the form 

nF = (1-X) (5-13) 

substituting (5-13) in (3-56) and integrating formally as in 5.2.1 we obtain 

z 
1-n ( ) 1-n ( )J[1-X(z,t)J = [l-X t :l - (1-n)K t iµdz' (5-14)

0 0 
0 

n t 1 
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For the case of zero initial conversion (5-5) applies and we write 

z: ~ 
(1 - X(z,t)J = (1 - (1-n) K0(t)~~dz·Jl-n-- {5-15) 

0 

as in 5.2.1. The exit conversion may be obtained from {5-15) and is seen 

to depend only on the average activity m(t) in (5-8) and not the local 

activity ~{z,t). 
1 

X1{t) =1 - [1 - (1-n) K {t) m(t)J r-n (5-16)
0 

n ~ 1 
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5.2.4. mth Order Decay Rate 

One may obtain an analytical expression for the catalyst decay 

~(z,t) at any point by making use of the second rate equation (3-55) 

If one sets the decay order m as in (3-37) then (3-55) may be 

written 

( 5-17) 


Integrating formally one obtains 

1 1-m rt 
w(z,t) -m = 1/li(z) - (1-m)..bk (t•) f(X) dt• (5-18)

0 

m'f 1 

If (5-11) applies we have 
1 

t .,,.­
1/l(Z, t) = [1 - (1-m)jk (t•) f(X) dt•J l-m (5-19)

:l"L 0 

m 'f 1 

5.2.5 Derivatives of State Variables 

Derivatives of the state variables X and w are given in terms of 

z and t respectively. However, it is useful to have the corresponding 

derivatives along the opposite directions. What follows is a derivation 

of expressions for ~~ and ~~ respectively. 

Using the first state equation (3-54) separating variables and 

integrating between X and Xwe have,
0 
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(5-20) 


Differentiating both sides using Leibnitz's rule we have 
z 

.!. .£! _ 1 dXo = JoiJ!Ko dz. ( 5-21) F at F(X ) dt at
0 

0 

if we now specify constant initial conversion, i.e., 

X
0 
(t) = constant for all t (5-22) 

we have 

z 

.£! = F(X) J0iJ!.& dz' 
 ( 5-23) at at 

0 

Expressions for the activity derivative may be obtained likewise, 

using (3-55), separating variables and integrating: 

1/J(Z, t) t 

o$ = f dt"J~ -Jk
0 

$;(z) o 

Differentiating with respect to z using Leibnitz's rule and 

specifying 

$1(::) =constant or piecewiseconstant for all z (5-24) 

we obtain, using (3-54) 

t 

;i =-g(w) Ik/' "'il dt. (5-25) 
0 
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5.3 Adjoint Variables 

The adjoint variables are extremely important in the characterization 

of the optimal profiles. Their derivatives in z and t, their signs and 

their magnitudes all feature strongly in the determination of properties 

of the optimal profiles. Various analytical properties and forms for the 

adjoints are derived. 

5.3.1 Integrated Forms 

Analytical expressions for the adjoints may be obtained using an 

integrating factor on the adjoint equations defined in chapter 4, above. 

From (4-4) and (4-8) we may write 

at-1 
= (5-26)az "2t1 - "112 

a>-2 
= (5-27)"2.1!.3 - "1.l!.4IT 

where 

1 1 = k
0
gf' (5-28) 

1 ;:. l/IK F' ( 5-29) 2 . 0 

1 = k g'f (5-30)3 0 

( 5-31) 
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Where, as usual, the primes denote total derivatives with respect to 

the particular arguments of the respective functions. 

In (5-26) using an integrating factor df the form 

1 
exp [- Ji 2(z',t)dz'J (5-32) 

z 

·and using the boundary condition on :>.. 1(1,t)=l (4-5), the solution to 

{5-26) may be written as 

1 r l Z 
1Al(z,t) =exp [fi2(z",t)dz"] -Jexp [-~= 2 (z ',t)dz 11 J:>.. 2i 1 (z• ,t)dz" 

z z 
(5-33) 

Proceeding in the same manner, using the boundary condition on 

). 2(z,l)=O (4-9) and the integrating factor 

1 
exp [ Ji 3(z,t")dt"J . (5-34) 

t 

the solution to (5-27} may be written as 

(5-35) 

It should be noted that since i 4 is non fiegative (3-31), 

). 2 will be non negative, if :>.. 1 is non negative. 
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5.3.2 Adjoint Integral Equations 

Certain statements regarding the sign of the adjoint variables 

may be made from their integral equation forms. In general though, these 

forms may be useful for any analytical endeavours in this area. 

Substituting directly for "'i from (5-33) in (5-35) we obtain 

1
1 1 

A2(z,t) = r1(z,t) + ~ C{z,t,z•,t•) A2(z" ,t•) dz"dt" (5-36) 

t z 

where 

1 t• 1 
I (z,t) = (exp [- (13(z,t11 )dt11 + ( t (z 11 ,t")dz11 J i (z,t") dt"1 4-t Jt Jz 2 

(5-37) 
; 0 

z• t 

C(z, t,z•, t•) = -[exp f t 2(z", t• )dz" +I. t 3(z, t" )dt"Jt1(z•, t•) t 4(z, t•) 

z t (5-38) 

It is seen that since i 4 is non negative [see 3.6 above], 1 > 0 and C has1

the opposite sign to i 1 which depends on the sign of f (X). 

Similarly for "l' substituting for ;i.. 2 in (5-33) from (5-35) we 

we obtain 

A1(z,t) = r2(z,t) -~~ ~ (z,t,z•,t•) dz" dt" (5-39) 

z t 

where 1 

I2(z,t) =exp [~t2(z",t) dz"] > 0 (5·40) 
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and 

It can be seen from (5-40) that the sign of 12 is such that 12>0 and 

C from (5-41) has the same sign as 1 1, since 14 is non negative, 

[see 3.6 above]. 
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5.3.3 Properties of the Adjoints 

Combinations of certain adjoint variables and state variables 

occur together, for example in the Hamiltonian, equation and the expression 

for the optimal exit conversion, (5.4) below. In order to make certain 

concrete statements concerning the optimal profiles it is necessary to 

know the derivatives of these groups of variables as well as their signs 

and relative magnitudes. Some of these groups are amenable to analytical 

analysis and some derivations of their properties are given below. Also 

derived, are the all important signs of the adjoint variables themselves. 

The signs of the various derivatives are treated below, as well. 

Partial Derivative of A1F with respect to z 

This particular derivative turns out to give an expression 

which is closely r~lated to the expression for the optimal exit conversion. 

It forms the basis of a series of analytical proofs of constant exit 

conversion for specific forms of F and f to be treated in 5.5 beiow. 

n 1F <n1 • ax 
az = F az + Al F az (5-42) 

ClA 
substitute for azl from (4-4) and for~; from (3-56} 

az 
I I 

Al¢K
0 
F ) + AlF (¢K

0 
F) 

(5-43) 


I 

It can be seen that this derivative has the same sign as f (X), from 

(5-47) below and 3.6. 

From (5.43) we may obtain an alternative expression for Al 
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as follows: 

l aA1F 
(5-44)Al Faz­ = 

Integrating between 1 and z and remembering that A1{1 ,t) = l ,we obtain 

F[X1{t)] exp [- lf A2kogf dz·]{ ) (5-45)Al z,t = F[X ] z Al
{z;t) 

since Fis non negative (3-31), for all z and t, the only values of Al 

satisfying (5-45), are Al ~ 0. 

Sign of Adjoints 

From (5-45), due to the sign of F and the exponential,we 

require that: 

I'1 (z.t) ~. 0 I for all z and t (5-46) 

Refering to (5-35), due to the sign of i 4, the presence of the exponential 

and (5-46), we require that the second adjoint be non negative, i.e. 

IA2(z,t) ~ 0 I for all z and t (5-47) 

Partial Derivative of A2¢ with respect to t. 

If we choose a particular form for g{¢) with m=l we have from 

(3-37.) 

g = ¢ (5-48) 

Consider the derivative with respect to t 
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(5-49) 


substituting from (3-55) for~ i taking (5-46) into account and likewise 
a ).2 

for3"["'" from (4-8) we have 

(5:-50) 

(5-51) 
for g = ip 

This derivative is non positive for all z and t (from (5-46) and 3.6) 

From (5-51), we may obtain an alternative expression for ). 2 for the 

case g =1" by integ~ating between the limits t ~t ~l taking into account 

the boundary conditions (4-9) for ). 2 we have 

(5-52} 


Again it is seen that for ).l non negative we have ). 2 non negative. 

See also 5.6 below to replace 1" by g 

Partial Derivative of ). 1F with respect tot 

This derivative occurs in an expression for the ootimal exit 

conversion over the unconstrained region to be derived in 5.4 below. It 

is thus important that both its sign and magnitude are known. It turns 

out that this derivative, even though an expression can be derived for it, 

leads to an integral to which neither magnitude nor sign can be attached. 

The expression for the derivative and some of the difficulties encountered 
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are given below 

Differentiating (5-43) partially with respect to t, and 

changing the order of integration, since (see 3.6) A 1F is twice 

continuously differentiable in z and t, we obtain 

(5-53) 

Integrating between limits z ~ z·~ 1 and remembering the boundary con­

dition on A (l ,t)=l (4-5) we obtain 

() 

() z 

(5-54) 


Although 1t is important to determine the sign of this 

derivative, this not an easy task, especially because the sign of the 

integrand may change for only part of the distance along z, and because 

of the presence of the integral, the entire past history of the 

integral must be known up to the point at which the sign of t11e deri ­
dX1

vative is required. From 3.6 above F1 
< 0, but dt may be of either 

sign or a mixture. However, the sign alone of the first term is insufficient; 

the relative magnitude as well, is required, to set off against the 

second·term, and then only can the sign of the derivative be determined. 

For the case where decay does not depend on conversion and 

the term f'=O, the sign of this derivative is easily seen to be opposite
dX

1to that of -at and we have, from (5-54), assuminq that F' ~O from 

3.6 above, 

f 1 (5-55)for = 0 
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Partial Derivative of ~ ~ with respect to z2
The significance of this derivative in detennining the character 

of the optimal conversion profile has been discussed in the paragraph 

following (5-47) above. As well, in 5.4.3 below this precise derivative 
• 

occurs alone in an expression for the optimal-exit conversion over the 

unconstrained region. Its properties are thus of great importance. 

A convenient expression to this derivative may be obtained 

for the case g =~directly from (5-51). If a more general expression 

is required it may be obtained by multiplying both sides of (5-35) 

by iii or g( 111) and differentiating partially v1ith respect to z. However, 

this produces a long involved expression which is virtually useless 

if one requires the siqn of the derivative. Yet a further method is 

shown in 5.6 belmv. 

Directly then" from (5-51), using the same assumptions as in 

(5-53) and remembering the boundary condition on A 2(z,l)=O {4-9), we 

(5-56) 

Integrating (5-56) between t ! t ~ 1 we obtain 

have, 

(5-57) 

for g = ip 

To determine, (analytically) the sign of this derivative one experiences 

a Al F 


similar difficulties to those for t above. From section 3.6above 

3 

we can determine that 
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(i) K > O for all t
0 


( .. ) Th . f a Al

11 e s1gn o a z cannot be determined in general, 

however, if we specify certain conditions on f we see that if f' > 0 
a A 

then ti- ~ 0 s i nee from ( 5-43) 

a Al 
F '"'f'Z'"" = A2k gFf' - A 1 F'~K0F0

-
thus since all variables are positive except F' < O[see section 3.6, ~ -46} 

~ Al ­
and {5-47)] if f' ! 0, then a-z ! O 

3 ). 
If f'< o,ti- may be of either sign, depending on the relative 

magnitudes of the two terms on the righthand side. 

(iii) 	! ~ =F' ~K0F is non positive {all variables non neqative 
except for F') 

(iv) : ~ may be determined from {5-25) to be 

t 

!~ • - g(•)~K0k0•Ff 'dt" (5-58) 

It can be seen from (5-58) that the sign of the derivative is 

opposite to that of f'(.X). 
I 

Hence the integrand consists of two ne~ative terms for f > 0: 

(iii) and (iv), balanced off by one positive term (ii). The relative 

magnitudes cannot be obtained, except numerically,hence the difficulty 

of obtaining the sign of (5-57). 

Alternatively one may use C,5-43) and(S-25), leaving only two 

terms, whose relative magnitudes need be determined before the sign of (5-57) 

can be determined. 
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B~undary Conditions for Adjoints 

With the aid of expressions developed for the adjoint variables 

and their derivatives above, the sign of these variables along the bound­

aries may be obtained: 

From (5-33), using the boundary condition on A 2(0,l)=O in 

(4-9): 

0 (5-59)A (z,1) •exp [~•K F'(z" ,l)dz"]. > O
1

z 

we have 

Alternatively from (5-45) using the 

F[X1(1)] 
= F[X(z,l)]-> O 

same boundary condition on >.2 

(5-60) 

Consider for the second adjoint (5-35) and use the known 

. boundary ~ndition A1(1, t)=l (4-5) to obtain 

Az(l ,t) • /••P [-/:og'f(l ,t")dt"]K/(1,t" )dt" > 0 (5-61) 

Boundary Derivatives of the Adjoints 

The significance of the properties of these derivatives is 

discussed in the few paragraphs precedirig (5-59) above. 

Using (4-4), with known boundary conditions (4-9) we have, using 

3.6 	and (5-60) 

a Al I (5-62) 
a z (z,l) 
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Similarly for A 2 at final time using (4-8) and (4-9) 

(5-63)(z ,1) 

. From (5-60) and using (3.6) 
(5-64) 

independent of z: 0 

Hence the slope of A with respect to t, at the final time, is2 

non positive and remains so for all z. 

5.4 Stationarity Conditions 

Using the properties of the state and adjoint variables derived 

so far, properties concerning the necessary condition for stationarity of 

the system are ·derived. These properties eventually lead to two expressions 

for the derivative of the optimal exit conversion. The one expression 

applies over all time, whereas the second, applies only to the un­

constrained t~mperature region 0 ~ t ~ t (t defined in 5.4.1 below). These 

two expressions, combined with expressions for the adjoint A,l, eventually. 

lead to a proof for the constancy of conversion at the optimum for special 

forms of F(X) and f(X) [see section 5.5 below]. 

5.4.l Exit Conversion for a Stationary System 

Anecessary condition for optimality of the system has been 

provided (see Appendix A) in the form of a stationary Hamiltonian which, 

from (4-14), may bl written as J 

pKO(t)/A1~F dz= ko(t) A2gf dz (5-65) 
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Define ' = - k0 fg (5-66) 

then (5-67)1.i ='at 
a (A ,)

2Consider the derivative at 

From (5-66) 

a ).2
.substituting forTt from (4-8). 

(5-68) 

).2' dk a Al F0 1 a x (5-69)From (5-43) = - ~AlKoF + ko dt -r a z TI 

a 1jlK
0 

dK 
0writing ,A1K 

0 
F = >.l F a t - ).1 Fl/I dt {5-70) 

and using 1 dKo =.E__ ddtko from (3-5la) (5-70a)
K dt k

0 0 

(5-71) 

(5-71) when integrated leads directly (see below) to an expression 
for the optimal exit conversion 
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02timum Exit Conversion 

Crowe {1972) has shown that {5-71) leads directly to an 

expression for the derivative of the exit conversion at the optimum 

{point of stationarity). He proceeded as follows: 

Integrate {5-71) over z to give 

f

a A2<I> f.l a ijJKO a H dko 1 3 Al F a xJat dz= J [->-1Fa t +""'3'"1< dt - F a z 'TI]dz {5-72 ) 
0 1 0 ° 

aH dko 
· dz is zero at theNow the term a k ~ 

0 

0


optimum irrespective of whether k is constrained or not {since for k
0 0dk 

constrained dto =O and for k unconstrained, the Hamiltonian condition 
0 

{4-12) applies). 

Hence we may write {5-72) at the optimum as 

I
l l 


d A2<I> a ijJK 1 a Al F a x
f 0dz = [-A F - - -- •-- ]dzat 1 at Faz at . {5-73) 

Integrating the second integral on the riaht hand side by 

parts we obtain 

{5-74) holds for all 0 ~ t ~ 1 at the optimum. irrespective of whether 

· k is unconstrained or not. 

Using the boundary condition on x 1 {4-5) and the condition 

that 

X
0 

{t) =constant (5-75) 

0 



67. 


he obtains 
~Ja "2~ 

0 
at (l lx- f I 3 x Ll-)]dz 

- "1 F F a z a t - F2 al" a t 

Using continuity properties of X (see 3.6) interchange the order 

of differentiation and using the first state equation (3-54) to qive: 

J~ "2~ dX1 (t) ) a l/JKO a (l/>KOF) a x 

a t dz = - dt · -J [1.l F dt - "1 a t + "1 F' l/>Ko IT ]dz 


0 0 

~ombining the terms inside the square brackets, the integrand is easily seen 

to be zero; hence we have 

dX1(t) 1 a 
(5-76)dt = f W"2 ko gf)dz

0 for a11 O < t < 1 

Crowe's condition (5-76), is a necessary condition for the optimum exit 

profile irrespective of whether or not, k
0 

is constrained. 

Define t·as that point in time t at which the optimum (stationary) 

profile reaches its upper constraint and remains there. It is easy to 

see, if one considers the fixed point fonnulation of the necessary conditions 

(4-33) for p f 1 that as t + 1, A.2 + 0 and k (optimum) tends to 
0 

infinity. So, as expected, the optimum profile will always end on its 

upper temperature constraint. 
dX1From (5-76) and (5-65) it is seen that the expression fordt is 

simply the derivative of the right half of the Hamiltonian equation (5-65). 

If we restrict ourselves to the optimum unconstrained profile region, that 
-is for 0 < t < t we may equate the remaining half of (5-65) to the 

- - dX 
expression for ai- ; hence 
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1 
p f ~t (Ka Al F 1/J )dz ­ (5-77)o for O < t < t 

Thus (5-77) applies only over the unconstrained region, and is equal to 

(?-76} over this region. 

We may obtain an expression for the optimum exit conversion 

itself by considering (5-76}. Interchanging the order of differentiation 

and integration (c.ontinuity properties of variabl)s see 3.6 above}, since 

·the derivatives of the two quantities x1 (t) andj).2k gfdz are 
0

0 
equal, their values differ by a constant c that is

1 

From (5-77) (5-78) 

l 

Therefore x1(t) =~).2k0gfdz + c (5-79)
1 

0 

· Now since (5-79) holds for all O < t < 1 (see (5-76)) we may use the 

boundary condtion a_t t=l on). (z,1)=O to obtain 2 

~ xl (1) • l•2kogfdz 
(5-80)0 

all 0 < t < 1 

Now since the integral in {S-80) is equal to the left hand side of (5-65) 

over the unconstrained region we may write 

1 


xl (t) - x, (1) =p f).11JJ KOF dz 

(5-81) 

0 ~ t ~ t 

0 
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A general expression for the derivative of the exit conversion 

can be obtained directly from the first state equation (3-54}. From 

5.2.2, with z=l, we have 

~l 

ja/ (5-82} 

XO 

Differentiating both sides using Leibnitz's rule, we have, remembering 

that X (t)=constant
0 

(5-83) 


Derivative of the Hamiltonian with respect to Time 

A very useful expression to obtain, is that of the time derivative 

of the Hamiltonian over the unconstrained region. This leads to another 

form for the necessary condition for the optimum and provides an in­

valuable relation between the adjoints and state variables, which in fact, 

leads to a proof for constant conversion at the optimum for the case where 

p=constant [see appendix B]. 

If we multiply the Hamiltonian through by k (t) under the integral 
0 

·sign, which we are permitted to do since integration is along z only, and 

then differentiate with respect to t, we have over the unconstrained region 
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() >-24>
Now substituting for a t dz from (5-73) over the unconstrained region 

we obtair--'..............l.Lllo.lor.lw.~u..i.~o~n~d~t~io~n!__~~~~~~~~~~~-... 

i a ljlKO a A1 F 1 a ~1 F a x 

[{p-1) >.lFat + pijiKoat - Faz· ·TI]dz = O 


(5-83a} 

(5-83a) is used to prove the constant conversion optimal policy for f=l 

[see appendix B]. 

5.4.2 Decay Rate Independent of Conversion 

It has been shown [Crowe (1970)] that for the simplified decay 

rate, where f(X) is taken to be constant, that a necessary condition for 

the optimum of the objective function P is that the temperature is chosen 

so as to maintain constant exit conversion. This result drops out directly 

from the derivative of the Hamiltonian (5-83a), (see appendix B). 

It is assumed iff the above paper, that 1jl is essentially constant 

over z. Note that this requires specifying a uniform initial activity. 

For this case, the activity is uniform in z for all t and we may integrate 

(5-82) to give 
x,

[a/ = +Ko(t) {5-84) 
0 

Differentiating both sides using Leibnitz's rule we have 

l dX1(t) _a (ijiK ) 
(5-85)IT\(t)J. dt -at 

0 

Now from Appendix B we have, at the unconstrained optimum, 
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dX - (5-86)1 0 0 < t <-= t
dt 

hence from {5-85) a $K0 - (5-87)
0 < t < t· at = O 

Now integrating (5-82) up to a general z from" (5.2.5) 

a X - /a (ij!Ko) dz' (5-88)TI-Fat 
0 

-
From (5-87) ~ At optimum 0 ~ t ~ t, for all z (5-89) 

Hence constant exit conversion of the optimum (unconstrained) implies 

constant conversion at each point along the reactor length as well. 

We may obtain a closed fonn expression for the optimum rate 

constant (hence temperature) profile by making use of (5-87) and rememberinq 

that f=l in the second state equation (3-55), differentiating (5-87) 

we obtain 

(5-90) 

For the case g~ $ using (5-70a) 

£_ dk0 ] at optimumij!Ko [ k dt - ko = O 
0 -

0 < t < t 

From section 3.6 above, K
0 

is non negative, and provided activity remains 

non zero up until the control reaches the upper constraint at t. we have 

k 2 
= _Q_ At optimum for g = $ (5-100) 

p 
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Integrating between 0 ~t ~ t we have the closed form expression for the 

optimum rate constant profile 

(5-101) 

for f=l y=ijl 

5.4.3 Alternative Expression for the Optimum ·Exit Conversion 

If we depart from the more general expression g(ijl) and choose 

the specific case where n=l we can obtain another expression for the 

optimum (stationary) exit conversion profile using (5-51). 

(5-51) 


for g = 1jl 

If we multiply both sides of (5-51} by p and integrate over z between 

·o < z < 1 we have 
l l 

pf 3 A21jl (5-102}dz Fdz= -pf>. 11jlK
00 3 t 

0 

If we restrict ourselves to the unconstrained region 0 < t < t and compare 

(5-102} to (5-81) we obtain 

0 
at the optimum 

(5-103}for g=ijl and 
0 < t < t 

The derivative of the optimum exit converstion may be obtained simply as 
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(5-104) 


The integrand in (5-103) is non positive. The proof of this statement is 

given below in section 5.6. 

Consider also, the integral of the following product 

f1 

Al : ~ dz. = Ko f
1 

Al F~dz 
(5-105)

0 0 

Integrating the left hand side by parts and using the boundary conditions 

on>.. (l ,t)=l, we have
1 l 

(5-106) 

If we consider the case of zero initial conversion the second term on the 

left is eliminated; comparing the second integral on the right with (5-81} 

an expression for the optimum exit conversion in the unconstrained region 

is obtained. 

(5-107) 


rearranging we obtain 

At the optimum for .,I 

(5-108}-
O < t < t and 

I 
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5.5 Analytically Predictable Optimal Exit Conversions 

Using the properties of the adjoints and state variables derived 

above in particular the expression for the optimal exit conversion, the 

derivative of A. F with respect to z and the boundary derivative of A. 1 with1
I ' 

respect to t, all derived above in 5.3.3, sev~ral statements concerning the 

character of 'the optimal exit conversion may be made. ~our propositions 

regarding the slope of the exit conversion, at the optimum, for certain 

forms of F(X) and f(X)~ are proved. 

5.5.1 Zero Order Reactions 

Proposition 1: 

Given the two conditions below, a necessary condition for the 

system to be optimal is that the exit conversion be constant over the 

unconstrained region 

Conditions: (i} f(X)=cX' c arbitrary positive constant 

(ii) X (t)=O for a11 0 < t < l 
0

Proof 

From (5-43) a A. F1 --- = A. k Fgf'a z 2 o 

for zero order reaction, we may set F=l without loss of generality, and 

applying condition (i) we have 

(5-109) 

Multiply both sides of (5-109) by f and integrating between 0 < z < 1 

1 

f l a Xcf A. 2k gfdz = f--1 dz
0 a z (5-110)

0
0 
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A necessary condition for optimality for all o<t<l from (5-80) is 

/ 2k gfdz • x1(t) - x1(1) (5-80)
0

0 

Hence using (5-110) and (5-80) we have at the optimum 

. x1(t) x1Cll •~If ::1 
- dz 

Integrating the right hand side by parts we have, using the boundary 

condition on>. 1(l ,t)=l, (3-54) and condition (i): 

x1(t) - x (1) • ! [ f[X1(t)] - f[X ( t) J.;1(O ,t~ -faK >. 1 dz (5-11 Oa)1 0 0 
0 

A further necessary condition for optimality but over the unconstrained 

region only, i.e., ~t:t, is given by (5-81); for zero order reaction 

(5-111) 


From (5-llOa) and (5-111}, rearranging, we have 

f[X1(t)] - f[X (t)] >. 1(0,t}J 
x1(t) = p.[ - c(p+l)o 3+ x1(1) (5-llla) 

using conditions (i) and (ii) on (5-llla) and rearranging 

(5-112) 

The right hand side of (5-112) is constant, so differentiating we have 

(5-113) 

• 
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If we do not specify zero initial conversion (condition (ii)), but 

instead initial conversion just constant, i.e. 

\ (t)=c1 , constant 

then (5-112) may be written as 

x1(t)=X1(1) (l+p) - pc1A1{0,t) 

dXl dAl (0 ,t) (5-114)and 
dt = -	 pcl dt 

A discussion on the difficulties involved in determining the sign of 

dA~~O,t),{F = 1), is given in the paragraph following {5-54) above. 

An alternative proof of {5-113) is given in appendix C. This 

proof is somewhat more involved, but perhaps more general in that an analytical
dX 

form for the derivative in (5-114) is used and dtl is calculated 

directly from {5-76) above. 

5.5.2 	 Non Zero Order Reactions 

The type of reaction forms referred to in this section, cannot 

be conveniently classified under a general n th order reaction scheme. 

Certain reaction schemes {eg. autocatalytic) are generated by 

the requirement of the three specified conditions below and do not fit 

into a general n th order reaction scheme. 

Propostion 2 

Given the three conditions below, a necessary condition for the 

system to be optimal, is that the exit conversion be constant over the 

unconstrained region. 

Conditions (i) Ff'=cf c non zero constant 

{ii) F[X
0
(t)]=O [X

0
{t)=O] 0 < t < 1 

(iii} F'[X1{t)];ic 	 0 < t < 1 
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Proof 

It is instructive to consider the limitations imposed by the 

conditions, on the allowable forms of F and f. 

Rewriting (i) as a differential equation in X and integrating to 

0

solve for a particular f {with zero constant of inteqration) 

f =exp [c~t dX] 

we obtain 

(5-115) 

using the first state equation (3-54) we may write (5-115) as 

f =exp [cfwK dz] (zero constant of integration) (5-115a) 

Example For an autocatalytic reaction we will have F of the fonn (in 

a uniform temperature reaction F=F) 

F = X (1-X) (5-116) 

(5-116) certainly satisfies the last two conditions and from (5-115) we have 

f = [l~X]c (5-116al 

c may be any constant as long as the last condition is not violated. 

There are obviously an unlimited numer of fonns which satisfy 

the conditions above; however, only a limited number are realistic from 

the physical point of view, nevertheless if we remove the physical inter­

pretation of the two state equations, the system defined mathematically 

should still exhibit. the stationarity property, that the far end boundary 

derivative of the first state variable (X) must be zero, for unconstrained 

optimal control. This fact is made use of in chapter 6 in order to test the 

validity of the computer program used for the numerical studies. For this 

purpose, then, we may use the mathematically acceptable (see 3.6 above) but 

physically unrealistic form of F=X this produces via (5-115) f=Xc c~l, and 

indeed these fonns produce a consta.nt 11 conversion 11 profile at the optimum, 

which is validated by the numerical studies. 

http:consta.nt
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From (5-43) 


From conditfon {i) = cA k gf (5-117)2 0

Integrating with respect to z and using the necessary condition (5-80}
l 

fa A F 
x1(t} = x1(l} + ~ ~ z l dz 

Integrating out, using the bo
0
undary condition on A. 1(l ,t}=l, 

X1(t) = X1{l} + ~ ~[Xl(t)] - ·1..1(0,t} F[Xo]] 

Applying condition (ii) and differentiating both sides we have 

(5-118} 


Using condition (iii), {5-118} implies that 


• (5-119) 

If condtion {ii) did not hold and F[X
0 

] was a non zero constant we would 

have instead of (5-119) 

dX1 
dt = 

F[X
0 

] 

U'°(X1)-c) 
dAl (0 ,t) 

dt 
(5-119a) 

Example 

It is instructive to consider the example of a first order reaction, 

here we have using (5-115) 

F = (1-X) (5-120) 

f = (1-X) (5-120a) 

with c obviously equal to -1 in (5-115). Referina to condition (iii) notice that 
I . 

F (X) = c (5-121)deliberately. 


From (5-115a) and (5-121) a particular value for f is given by 
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(5-122) 


Now from {5-33) making use of the fact that, fro~ (5-120), F' = -1, and 

substituting the exponential in (5-122) for f we have (X
0 

const~nt) . 

f[X1(t)] 
>.l(O,t}= f(X ) -ft!~~) ·>. 2k gf' dz0

0 
0 

substituting for f' and f(X } from(5-120a}, and using the optimal condition
0 

(5-80} we obtain, at the optimum 

, constant 
(5-122a} 


It would appear then, from (5-122a) and (5-119a), that the constant 

conversion policy holds for a first order reaction, but (5-122a) holds 

only subject to all three conditions listed below propostion 2. With 

the first order form for Fin (5-120), equation (5-121) deliberately 

violates condtion {iii) thereby rendering (5-119a) invalid and hence 

the constant conversion conclusion. 

For c =+l ~ F' we have for a first order reaction from (5-115) 

f = r!x­
Follow·ing the same steps, and using the fact that f' = t2, for this form 

of f 

(5-123) 


If we now substitute in {5-119a) we obtain an identity which provides no 

information. 
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A point to notice, is that, in neither of the above 

propositions, is any restriction placed on the fonn of g(w) as it occurs 

in the second state equation (3-55). 

5.6 Optimal Control where Exit Conversion is Constant 

It has been demonstrated in 5.5 above, that the policy of 

constant exit conversion of the optimum does hold true for specific fonns of 

the conversion dependence term f(X} in the first state. e.~uati.on (3-54}. 

For these cases a formal (but not closed) expression for the optimal 

unconstrained control may be obtained as follows: 

From the necessary condition (5-76) with constant exit conversion 

we have the necessary condition 

(5-124) 


this gives on differentiating, 

(5-125) 

(5..;126) 


· [see also (5-51) above in section 5.3.3.] 

http:e.~uati.on


81. 


From (5-126) and (5-125) 

where D = 

(5-127) 


(5-128) 


Using the necessary condition (5-80) again, and the fact that x1(t) = Xl, (5-129) 

a constant here for o ~ t ~ t, 

dk 
0 
~ 

-- -
2k · o 

0 
[ (Xl-X (1fj 

{5-130) 
1

(5-130) is analogous to the, expression derived previously (5-100). The 

expression {5-130), reverts to {5-100) for the case where constant conversion 
,.,,,,. 
is known to exist {see appendix B) that is for f{X) = constant. 

So, for f =constant, say 1, D becomes 

D = -fJ>..1 

1~Fdz {5-131) 
o· 

using the further necessary condition (5-81) and specifying g = ~ we 

may write {5-131} as 

-[Xl - X1{l)] 
D = {5-132) 

p 

substituting into (5-130) we revert to {5-100) 

dk k 2 {5-100)
0 - 0

dt --p 

5.7 Falling Exit Conversion at the Optimum 

Falling exit conversion is by far the most common form of profile 

found in all the numerical studies. Most reasonable forms for F (first 

and higher order reactions) and f{X) {linear and higher order in X, 
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exponential, etc. produce a falling exit conversion at the optimal. See 

Chaper 6 below. 

Using the expression for the derivative of the optimal exit 

conversion [{5-76) above], a sufficient condition on f{X) is provided 
' 

so as to guarantee a falling exit conversion .. 

The results of proposition 3 may also be used as a numerical test: 

should there be any doubt as to the slope of the exit conversion profile 

[see Chapter 6], the proposition 3 provides both a weak and a stronger test 

as to whether the exit conversion is falling in time. It also provides 

and indication of the effect of f(X) and its derivative on the slope of the 

optimal profile [see 6.7.2 below]. 

Proposition 3 

If the conversion dependent term, f{X), in the catalyst decay 

rate equation, is chosen so that the derivative in time, of the product 

k
0 
f is non positive for all z and some t; then the optimal necessary 

condition, is a falling exit conversion for those t; unless 100 percent 

conversion is reached or catalyst activity is zero. 

Proof 


From (5-126) 


(5-133) 


Now if we have not reached 100 percent conversion F(X)>Q and if catalyst 

activity is not zero then g(ip) > 0 [see (3-36) and {3-37)]. K>O and from 

{5-46) >. 1>0. Thus from (5-133) 

< 0 (5-134) 
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Proposition 3 contains the sufficient condition that f be chosen so that 


< 0 (5-135) 


d x, (t) 
=--,d'"'""t--

Consider the necessary condition for the optimal exit conversion (5-76) 

and differentiate 

(5-136) 

Now, from the properties of the variables in section 3.6 above and non 

negativety of >. 2 (5-47), from (5-134), the first integrand is negative and 

the second is non positive. This gives rise to a falling exit conversion 

at the optimum, for those t at which the sufficient condition (5-135) 

holds. -The necessary condition is less stringent and simply requires 
a k f 

that the average value, in z, of the product [>.2g
3 

to ] if it is positive, 
a >- 2g 

be less than the absolute value of the averaqe of[k f at ] , at the times
0 

in question. 

One cannot extend the conclusions of proposition 3, and should 

the jnequality be opposite in (5-135), we would require knowledge about the 

relative magnitudes for all z, of the two integrands, before a statement 

on the slope of the exit conversion profile can be made. , 

Pro,pos i ti on 4 

There exists an f(X) which produces a falling exit conversion 

profile at the optimum, for all forms of the catalyst decay term g(~). 

Proof 

The proof is provided by producing a counter example to the 

statement of constant conversion at the optimum. 
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For a uniform temperature reactor with first order reaction 

we have 

F = {l-X) 

From {5-4) above we can solve directly for the form of conversion x,, to 

give 

{5-4) 

0 
c'= 1 - X , constant

0 

choose f{X) = {l-X)r > O (5-137) 

r = order of conversion dependence 

Multiply (5-137) by k , to give 
0 

z 

k f = ck exp [-rK Jl/ldz ·]


0 0 0 {5-138) 
0c = constant 

From {5-126) above we have 

a A g
2 {5-126)---,,-- = - gA K F < 0at 1 o 

which is negative as long as we do not have 100% conversion or zero 

activity 

The optimal condition {5-136) above gives after substitution of (5-126) 

{5-134) 

All variables are positive except for the trivial case (of 100% conversion 

zero activity) stated above. [See Chapter 3.6 and equations {3-46) and 

5-47) above]. 
a 1 nk f

0Hence, if we can show that the derivative 3 t is non 

positive for sorre value of r, we will have the required proof of existence, 
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dXl 
and dt will be negative at the optimum. 

From (5-138) substituting for f from (5-137) and 

for ~ i from (3-55) and using (5-70a) 

0 (5-140)(1 - rpK
0 
f ;,dz"] + rv

0 
fi1~X(gdz

0 ....o. 

r sufficiently large and positive 

Consider the expression (5-140) and note that z, k
0 

, K , g(w)
0 

are bounded functions [see chapter 3.6 above]. 

Note also that the term r (1-X)r is convergent at all times for 

which we do not have 100% conversion or zero conversion and hence by 

choosing r sufficiently large and positive the term 
z 


rK k J (1-X)rgdz"

0 0 


. 0 


can be made arbitrarily small and positive. 

But in choosing r large and positive the remaining term in 

(5-140) becomes large and negative (provided we have a rising temperature 

profile at the optimum} and will dominate and thus for r sufficiently large 

and positive. 

a lnk f (5-141). 0 
0at < 

From (5-141) and (5-139} we have 

(5-142)~ 

l~i 


for all t, as long as we do not have 100% or zero conversion, or zero 

activity, and we have a rising temperature profile at the optimun. 
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r equa1 to zero 


This is the well analysed case where decay rate is independent 


of conversion and from Appendix B, 


.
dX1-= 0dt 


Here we would have over the unconstrained region 


(5-143) 

r large and negativ~ 


This case is not clear cut and probably produces a negative 


derivative, as in {5-141), as well. 


Necessary Condition 

Notice that the condition (5-141) is a sufficient condition for 

falling optimum profile and that it is only necessary that the negative 

··half of the integral in {5-139} be larger in absolute value than the 
3 1nk f

0remaining half, which includes 3 t and this will produce a falling 
a lnk f 


exit conversion at the optimum, even if at 0 is positive. 


In practice then a value of r = 1 or 2 is sufficient to cause 


a falling exit profile,as is borne out by the numerical studies in 


Chapter 6 below. (see table 6-12) 
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Summary of Imoortant Equations and Results 

A summary of the important equations, may be gleaned directly 
\ t 

from the boxed c:::l results and equations of chapter 5; in .point form 

by equation number: 

1. (5-6) 

2. (5-7) 

3. (5-12) 

4. (5-15} 

5. (5-16} 

6. (5-19) 

7. (5-23} 

8. (5-25} 

9. (5-33) 

10. (5-35) 

11. (5-43) 

12. (5-45) 

13. (5-46) 

14. (5-47) 

15. (5-54} 

16. (5-59) 

17. (5-60) 

18. (5-61) 

19. (5-62) 

20 (5-64) 

Conversion X. First order reaction 

Exit Conversion x1. First order reaction 

Catalyst decay ¢. First order decay 

Conversion X,n th order reaction 

Exit Conversion Xpn th order reaction 

Ca ta1ys t decay , m th order decay 

t derivative of conversion: 

z derivative of catalyst activity: 

Integral expression for \1(z,t) 

Integral expression for \ 2(z,t) 

z derivative of\ 1F: 

Integral expression for \ 1(z,t) 

Sign of ;>,: 1(z,t) 

Sign of \ 2 (z,t) 

t derivative of \l F 

Boundary condition for \ 1(z,l) 

Boundary condtion for \1(z,l) (alternative) 

Boundary condition for \ 2(1 ,t) 

Boundary Derivative in z for 1. 1: a\1/az at (z,l) 

Boundary Derivative int for \ 2: a\2/at at (z,l) 
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21. (5-71) t derivative of the variables 1.2¢: a(;i. 2~)/at 
22. {5-76) Optimum exit conversion o s t ~ 1 (t derivative) 

23. · {5-77) Optimum exit conversion o < t < t (t derivative) 

24. (5-83a) t derivative of Hamiltonian H 
I 

25. (5-103) Optimum exit conversion as function of ·A. 2ip 

26. {5-104) t derivative of optimum exit conversion as function of i 2iµ 

27. {5-108) Optimum exit conversion as function of dA 1/az and X 

28. {5-126) t de~ivative of >.. 2g 

29. Propositions 1 Zero order reactions: constant conversion 

30. 	 2 Non zero order reactions: constant conversion 

31. 	 3 Condition on f(X): falling conversion 

32. 	 4 Counter example: falling conversion 

33. 	 C Zero order reaction: constant conversion (alternative) 
(see Appendix C} 



CHAPTER 6 


NUMERICAL ANALYSIS 


6. 1 Introduction 

When no general analytical methods are available and one has, 

to some extent, to rely on numerical methods to investigate the properties 

of the system, more confidence is generated if one can, by some other 

independent method, verify the numerical methods ability to predict the 

system properties accurately. In the present system for example, the zero 

order reaction system, with a particular form for f(X), has been shown,· 

analytically, to give constant conversion at the optimum [see 5.5.1 above]. 

The program when provided with the specific conditions, should without 

exception, provide a constant conversion policy in agreement. 

For the known case of constant conversion at each point along 

the length of the reactor [section 5.4.3]s i.e., for the case f=constant, 

the computer program should again be in agreement and predict constant 

conversion at each point in the reactor. 

Very many analytical examples are provided by the non zero 

reaction order scheme in 5.5.2 above. Only some will be physically 

realistic, but as explained in 5.5.2, the mathematical system equations 

still provides for a zero time derivative at the exit for the 'con­

version' (first state variable X) at the optimum, as long as F(X), f(X) 

have the properties indicated in 3.6 above. 

If, for all the above analytically predictable optimal 'con­

versions', we are able to verify the program's ability to predict the 

correct optimal profiles, we will have more confidence in the program's 

ability to predict profiles in those areas for which no general analytical 

results are available. Also, proposition 4 above, assures us that there 

exists an f that will produce a falling optimum conversion if we choose 

89. 
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the order of conversion dependence r sufficiently large. In table 

6-12 r=l is sufficient to produce a falling exit conversion profile. 

A valid query exists as to whether or not the optimal profile 

is reached; especially in view of the known difficulties with gradient 

methods in the vicinity of the optimum. This query may be answered 

partially by testing the optimum reached, from new initial guesses, 

but more strongly so by using a completely independent algor,ithm, 

not based on the gradient me,thods, and comparing the profiles and 

objective functions obtained. 

6.2 Verification of Program 

6.2. 1 f(X) Constant 

The constant conversion policy is known to be valid for this 

case (Appendix B), .f was set equal to unity. The optimum exit conversion 

is seen in figure 6-1 to be constant as long the temperature policy 

remains unconstrained. As soon as the temperature reaches an upper 

constraint at t=t the exit conversion begins to fall, and continues to do 

so until final time t=l. Also, parametric studies performed, agree with 

those of Ogunye and Ray's (1971) [see section 2.5 above]. 

Table 6-1 gives the data produced for this case. 

6.2.2 Zero and Non Zero Reaction Orders for f=f(X) 
-

As a rule, the form off in (3-20) was taken to be 

f(X) = xnl (c + dX)n2 (6-1) 

c,d constants 

so, for a uniform temperature reactor (f=f), with nl=O and n2=1, we_ have a 
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Figure 6-1 	 The constant conversion policy for decay independent 
of conversion (f=l) T (t) and x1(t} vs. t T * = 900°K,

0	 0 
T = 700°K T = 800°Ko* 	 ' b 
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x1(t)T0 {t) °Kt 

.75 47
837.90 

.75 49
841.61 


' .75 49
845.52 
 . 
.75 49
849.63 


.75 49
854.14 


.75 49
858.85 


.75 49
863.86 


.75 49
869.37 


.75 49
875.28 


.75 49
881.79 


.75 49
888.810 


.75 50
896.711 


•74 21
900.012 


.72 02900.013 


.70 05900.014 


.68 10
15 
 900.0 

.66 23
900.016 


.64 45
17 
 900.0 

.62 75
18 
 900.0 

19 
 .61 12
900.0 

20 
 900.0 .59 57 


21 
 900.0 .58 07 

900.022 
 .56 67 


23 
 900.0 .55 31 


24 
 900.0 .54 01 

Table 6-1 Exit conversion X1(t) and initial temperature T0 (t) vs. t 


at the optimum for figure 6-1 
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linear dependence of decay rate on conversion; nl=l and n2=-1 would fit 

the form for f encountered in 5.5.2, etc. 

Zero order reaction in a uniform temperature reactor with f=X 

is shown in figure 6-2 to give a constant optimal conversion for all 
. ­

unconstrained temperatures and a falling conversion for t>t, in agreement 
l 

with the analytically predicted optimal conversion in 5.5.1. The data for 

the plots are again provided (to four significant figures} so that the 

high degree of numerical constancy can be ascertained. As soon as the 

temperature reaches the upper constraint, the conversion profiles drops 

sharply and continues to do so, until final time, t=l. 

For the case f=l the two state equations are uncoupled and this 

serves to make the numerical integration far more stable giving rise to 

3 figure numerical constancy as opposed to 2 figure constancy for the case 

where f=f(X}. 

To demonstrate that only the particular form of f(X) specified 

in 5.5.l gives rise to constant conversion, the author chose f(X) from 

(6-1} with nl = 0 n2 = 3 for zero order reaction, and this produced 

a rising exit conversion at the optimum [see figure 6-3 and the figures 

in Table 6-3]. Again, a sharp drop in the conversion profile occurs as 

soon as the temperature reaches its upper limit (see also section 6.7 

below). For other choices of f, falling profiles occur; see table 6-10. 

For non zero order reactions several forms for F and f, as 

indicated in 5.5.3, were used and all produced constant exit conversion 

in agreement with analytically predictable 'conversions', over the 

unconstrained region. The case for an autocatalytic reaction is shown 

in table 6-4. 

For falling conversion from proposition 4 we must choose 

r sufficiently large and positive with f(X) such that 
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Figure 6-2 	 The constant conversion policy for decay dependent 
on conversion with zero order reaction. T (t) and 
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t T0 (t}°K X1(t} 

0 849.9 .67 04 

1 
' 

851.9 .66' 96 

2 853.9 . .66 88 

3 856. l .66 78 

4 858.3 .66 78 

5 860.7 .66 69 

6 863.2 .66 59 

7 865.9 .66 49 

8 868.7 .66 38 

9 871.7 .66 26 

10 874.9 .66 13 

11 878.4 .66 00 

12 882. l .65 87 

13 886.2 .65 87 

14 890.6 .65 57 

15 895.6 .65 42 

16 900.0 .65 28 

17 900.0 .64 72 

18 900.0 .62 60 

19 900.0 .60 60 

20 900.0 .58 73 

21 900.0 .56 97 

22 900.0 .55 32 

23 900.0 .53 76 

24 900.0 .52 28 

-

Table 6-2 	 Exit conversion X1(t} and initial temperature T
0 

(t} vs t 

for figure 6-2 
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TIME ( NORMi:ILISED J 

Figure 6-3 	 Rising exit conversion at optimum for zero order 
reaction, f=(2+X)-3 x1(t)x10-l vs t, T * = 1000°K,

0 
T = 800°Ko* 
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. x (t)x10-lT0 (t) °Kt 1


886.3 .97 24
0 

888.9 .97 28
1 


891.7 .97 32
2 

. 

894.63 
 .97 36 
. 
897.74 
 .97 41 


901.05 
 .97 46 


6 
 904.4 .97 52 


7 
 908.1 .97 60 


8 
 912.1 .97 68 


9 
 916.4 .97 77 


921.010 
 .97 89 


926.111 
 .98 02 

931.712 
 .98 18 


937.913 
 .98 38 


944.8 .98 63
14 


952.815 
 .98 89 


962.116 
 .99 28 


973.217 
 .99 82 


987.118 
 1.00 60 


1000.019 
 1.00 30 


20 
 1000.0 .95 92 


1000. o·21 
 .91 90 


22 
 1000.0 .88 20 


1000.023 
 .84 78 


1000.024 
 .81 60 


Table 6-3 Rising exit conversion X1(t) and initial temperature T0 (t) 
tat the optimum for figure 6-3 [zero order reaction, 

f=(2+x)-J, T~=lOOO"K, T0 .;r800°K, m=2, Ji="' P=0.2] 
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x (t)xl0-2T (t) °Kt 
0 1 


0 

1 


2 


3 


4 


5 


6 


7 


8 


9 


10 


11 


12 


13 


14 


15 


16 


17 


18 


19 


20 


21 


22 


2 


24 


969.4 

972.6 

975.9 

979.5 

983.2 

987 .1 

991.3 

995.8 

1000.6 

1005.8 

1011. 3 

1017 .3 

1023.9 

1031.1 

1039.1 

1048.0 

1058.2 

1069.8 

1083.5 

1099.6 

1100. 0 

1100.0 

1100.0 

1100. 0 

1100 .0 

.19 63 


.19 78 


.19 77 


.19 77 


•19 77 


.19 76 


•19 76 


.19 75 


.19 75 


.19 74 


.19 74 


.19 73 


.19 72 


.19 71 


.19 70 


.19 69 


.19 68 


.19 66 


.19 65 


•19 61 


•19 17 


.18 77 


.18 40 


.18 06 


•17 75 


Table 6-4 	 Constant conversion policy for autocatalytic 
reaction [F=X(l-X), f=X/(l-X}, p=0.15, m=2, 
T* =ll00°K T =900°K]o ' o* 
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· f{X)=(l - X)r 


We also require F=(l - X) for a 1st order uniform temperature reactor.· 


Table 6-11 shows a falling conversion for r=l. 


6.2a . Numerical Integration 

6.2a.1. Integration Procedure 

The method of characteristics has been widely used as the method 

of integration for the present system [Acrivos (1956)] and is well described 

in any competent book on digital computation [Lapidus (1962) Carnahan et al, 

1962]. 

The present system consists of two sets of simultaneous, semi­


linear hyperbolic, partial differential equations, which remain hyperbolic 


throughout the entire region of integration. 


We write the two general state equations in differential form 

as 

dX =[M + ~ dt] d {6-2)az at dz z 

diji = ~ dz + aijl] dt (6-3)az dt at 

It is seen that if we choose the two characteristic directions: 


1 
 ~ = 0 or t constant (6-4) 

11 *= 0 or z constant {6-5) 

- The resulting characteristic equations are then 

dX/ = ipK F (6-6)dz I o 

{6-7) 
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The chara.cteristics I are parallel to the z axis and the characteristics 

II are parallel to the taxis (see figure 6-4). 

Since the equation (6-6) and (6-7) are coupled, and the 

directions of integration do not coincide, several of the corrmon numerical 

integration schemes will lead to trial and error (or iterative) procedures 

[Acrivos (1965)]. 

Figure 6-4 shows a simplified grid pattern. From the given boundary 

conditions 

x(o,i,) = constant i=O •• Nt (6-8) 

1'>(Zi ,0) = constant i=O .• Nz 	 (6-9) 

Hence 	one initial boundary, for each of the two equations, is known. 

For the modified Euler scheme [Lapidus (1962), Chapter 3] we 

require the value of X and 1'> at the present point and the subsequent 

point in order to proceed; eg., to calculate x10 we require knowledge of 

1'>10 , 1'>o,o and x0,0• This presents no difficulty along the boundaries in 

(6-8) and (6-9), but off the boundary we require simultaneous iteration 

of (6-6) and (6-7). For example to calculate the following x11 
simultaneous iteration scheme would be required: 

(i) 	 Guess "'ll and x11 (using predictor of the modified Euler 

scheme) 

(ii) 	 Recalculate 1'>11 from x11 , "'lo' x10 using {6-7) (in 

corrector form) 

(iii) 	 Using New "'ll' recalculate x11 from 1'> 11 , "'ol' x01 from 

(6-6) 

(iv) 	 Using New x11 , return to step (ii) 

(v) 	 Iterate simultaneously until the relative error between 

two successive values of both variables meet a given 

error bound. 



1 Ol. 

3 

t .. 
1 

( 1 , 1 ) (0, l l 
1 7' 

.+ 
(1 ,0) 

0 1 2 3 

zi 

Figure 6-4 Grid scheme for numerical integration of system 
equations along characteristics I and II, showing 
directions for simultaneous iteration 
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·It is possible to eliminate the iterative nature of the 

integration scheme by using one of the Newton-Cotes open ended in­

tegration formulas [Lapidus (1962), Chapter 2]; these require 

only the values of the integrand at the present point and one or 

more past points in order to calculate the next point, unlike the 

Euler or Runge-Kutta schemes which require information about the 

integrands at the future point as well. 

The modified Euler was found to be far superior to 

either the Runge-Kutta 3rd or 4th order and Milne Predictor corrector 

schemes which suffered from stability problems in the simultaneous 

iteration scheme, or to the Newton-Cotes open ended systems which 

had no iteration, but were plagued by error propagation. 

The modified Euler on the other hand, was iteratively 

stable and could produce the desired accuracy by simply iterating 

the predictor corrector parts to within the desired error limits 

Needless to say, the modified Euler scheme had great advantages 

in terms of computation time in view of the large num.ber of sets of 

simultaneous equations that had to be solved. Agrid size of 15 x 25 

(Nz x Nt) was found to be quite adequate and doubling both dimensions 

to give a 30 x 50 system produced no appreciable change in the 

numerical values of any of the dependent variables (4th or 5th decimal 

place) or in the objective functions (4th decimal place). 

In a similar manner the adjoint equations were solved along 

the same characteristics as in figure 6-4, but in view of the given 

boundary conditions 

(6-10) 

x (N ,t.) = 1 i = 0 •• Nt (6-11)1 z l 
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integration is backwards. 

The adjoint characteristic equations for {4-4} and {4-8} 

are: 
.(. 

(6-12) 

(6-13} 

6.2 a.2 System Constants 

The numerical values of the parameters and constants were 

as follows: 

Inlet conversion 

x (t} :: 0 all t £ [0,1]
0 

Initial activity 

ijii(z} = 1 all z £ [0,1] 

Reactors average space time (3-18) 

t = 1.0 second
0 

Total operational time (3-14} 

t = 2.16 x 106 seconds (25 days} 

Bounds on temperature °K 

T * = 900, (1000, 1100}
0 

T * = 700, (800, 900)0 

Catalyst deactivation energy divided by gas constant 

E = 15000 °K c 
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Arrhenius pre-exponential constant (3-24a) 

•, 

The reaction activation factor ER is easily calculated from {3-27) 

i.e.,ER=pEc. 

The Arrhenius constant K~ is calculated using (5-16) or 

(5-7) and corresponds to a maximum attainable exit conversion of 

xr(t) = 0.9 with fresh catalyst ~(z,t) = 1.0 and maximum inlet 

temperature T~ = 900 °K from which a maximum exit temperature© 

for the adiabatic reactor is calculated • 

. eg. for n 'I 	1 


[Ee • p/©.J (1 - (O. l")) 
 (6-14)K+. = t (1-n ) 

e 


where @ = T0 * + O. 9/J1• maximum exit temperature 	 (6-15) 

and J • = ~c /6H 0 	 {3-42)
1 p 

eg. for n = l 

- exp [Ec.p/T] ln(O.l)


K • 
+ = 	 (6-16)

te 

6.3 Optimum Seeking Methods 

6.3.1 Gradient Method in Fu~ction Space 

The well known gradient or steep descent methods [Denn (1967)] 

are easily extended to the distributed system via the Hamiltonian 

expression (4-13) and from (4-1) it can be seen that, if,at any 

iteration ok
0

(t) is chosen, so that 

6k (t) = y 	 (t)~H dz (6-17)0 
o ak

0 

where y(t) 	is a sufficiently small positive function oft (usually 
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taken as constant), then oP>O and the objective function will 

increase at each iteration towards the maximum value of the objective 

function. 

Gradient Algorithm 

1. Guess T~ (tj), hence k (tj) for all tj j = o.• Nt' q=O for 1st 
0 

iteration. 

2. 	 Integrate the two state equations forward and store the values 

of Xq(z.,t .) and •q(z .,t.).
1 	 J 1 J 

3. 	 Using the variables in steps 1. and 2. integrate the adjoint 

equations backwards and store the values of A1q(zi,tj) and 

A2q (zi,tj). 

4. 	 From the values of the variables in steps 1. 2. and 3. form H 

from (4-2) and integrate over all z at each time interval 
-t j j=O.. Nt, to form H. 

5. 	 Calculate ok 
0 
(tj) at each time interval according to (6-17) 

given some y 

6. 	 Set k(q+l)(t.) = k(q)(t ) (6-18)
0 J 0 j 


If k > k * set k = k * 

0 -	 0 0 0 

7. 	 Test the objective function P (3-58) for an increase (decrease). 

8. 	 If there is an increase (decrease), double (halve) the value of y 

an.d repeat step 2, and return to 6; save the values of y i and 

Pi and continue in this manner until the objective function 

decreases; double (halve) once more and save yi, Pi. 

9. 	 Pass a quadratic curve through the values of yi' Pi, find 

maximum of the curve to estimate that y which gives the largest 

value of Pi call this y, Yopt· 
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One alternative, occasionally used is simply to double 

(or halve) the value of y until a ·decrease occurs in the objective 

function, at say y N, and set y opt = a y Nwhere a is some fraction 

eg 0.7. This saved total computation time even though the total 

number of iterations may have increased. 
1 

7 Set k(q+l)(t) = k{q)(t.) + y J~ dz j = 0 N (6-19)• o j o J opt aK0 • • t 
0 

If k > k * set k = k * 
0 - 0 0 0 

8. 	 Return to step 1. and continue until successive values of the 

objective function differ by less than a given error criterion. 

On a grid of 30 x 20 {NtxN ) approximately 3 1/2 minutes of
2 

computing time on a CDC 6400 computer was required. This corresponded 

to about 6 iterations from a constant starting function as a first 

guess. In many cases though, it was obvious that, due to a slowing 

down of the method in the vicinity of the optimum, the optimum had 

not been reached. This was indicated by the fact that the profile 

has not yet reached the upper constraint at the final time [see 

paragraphs following (4-34)]. See figure 6-5. 

Another point that was observed, was the occassional sensitivity 

of the derivative of the conversion profile to change in the temperature 

profile. For example, in the case where f=l (figure 6-1) to obtain a 

reasonably good constant exit conversion profile, each optimum 

temperature profile point had to converge to within a relative error 

of less than 0.1 of one percent. See 6.3.2 below. 
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Figure 6-5 Gradient method iterations in the numerical search 

for the optimum T~ =1000°K, T
0 
* =800°K 
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6.3.2 Fixed Point Method In Function Space 

In some cases the exit conversion profile character was 

sensitive to the temperature profile; this condition was aggravated 

by the fact that the gradient method failed, in many cases, to approach 

the optimum profile sufficiently closely. So that in these cases, the 

slope of the exit conversion could not, without doubt, be separated 

into a rising, constant or falling profile. 

The fixed point formulation of the necessary condition for the 

optimum profile has been given {4-34) and the successive iteration 

method based on this form has been discussed {4.4.l). 

In general , one has no guarantee that the operator G[k
0

] 

in (4-34) will be a contraction mapping and that the process 

(6-20) 


will converge for whatever starting function k(o) we use. 
0 

Solving for the optimal profile is now no longer viewed 

as a stepwise climbing process, where, at each step, a higher value of 

the objective function is guaranteed. Now we have a fixed point 

equation of ~he form. 

{6-21) 


and we wish to find that function, k {t), by whatever method, which
0 

satisfies (6-21) 

We may now use many of the well known fixed point iterative 

.techniques in function space, which are analogous to the more usual forms 

in a one dimensional vector space. Examples are the Newton Raphson 

Reguli-Falsi and Richmond iterative schemes applied to a function or 

n dimensional vector space [Lapidus {1962) Chapter 6]. 
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Due to the complex nature of the operator G (4-34) any 

scheme which requires even the simplest numerical derivative is out of 

the question {eg. Newton Raphson). 

An alternative formulation of (6-20) is 

(6-22) 


(6-23) 

a may be varied between 0 and amax at each iteration according to some 

rule or may be kept constant at some value indicated by numerical 

experience of the specific problem. For the present problem fastest 

convergence was obtained for 0.6 s a s .92. 

The paramater, a, in a sense, regulates the fraction of the 

full correction to be used at each iteration. For a= 1 in {6-22), we 

have full correction. and (6-22) reverts to (6-20), and for a = 0, 

there is no correction and k~+l = k q. Note that amax may in principle 
0 

be greater than unity. If we set amax = l,_ the a acts as a damping· 

factor on the correction to k
0 

as explained above; however, if the 

problem indicates it, amax>l may speed up convergence of the process. 

Convergence promotion of this iterative scheme is discussed below in 

section 6.4. 

With a scheme such as {6-22), there is, of course, no 

guarantee that the value of the objective function P will increase 

at each step as it does in the gradient method. In using the gradient 

method, where, essentially, the numerical process proceeds as if all the 

'discretised control points k (tj) j = O.,Nt' were unconstrained,
0 

predicts each point, and if the point is outside the bound, the 

predicted k
0 
(tj) is replaced with k* (or k*) 
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So also, for the scheme (6-22) the iterations converge and 

when a predicted value converges outside a bound, this predicted value 

is replaced by its bound [See (4-34a) and {4-34b)]. 

There are, in addition, several methods [Wegstein,(Lapidus 

(1962) Chapter 6), Orbach and Crowe (1971) and Crowe (1972)] for 

accelerating the iterations obtained from (6-22) and these will be 

discussed in 6.4 below. 

The fixed point algorithm was often used in conjunction 

with the gradient method. An efficient scheme was found to be: 

(1) First iteration with Gradient Method 

(11) Followed by several convergence iterations with the 

fixed point method until the optimum is reached. 

However, in spite of the excellent performance of the 

gradient method in the first iteration, an initial iteration with the 

fixed point method almost always bettered the prediction of the gradient 

method and reduced the total numer of iterations by about 20 percent. 

One notable exception was the case where the optimal profile was such 

that most of the profile lay at an upper limit the remaining 

unconstrained section lay close to the constraint so that any oscillating 

iteration on either side of the true unconstrained value was hindered 

by the close proximity of the upper constraint. The first few 

iterations of the fixed point method were almost always oscillatory 

in nature. 

Fixed Point Al_gorithm 

1. Guess T (o)(tj) hence k~o)(tJ) for all tj and proceed to obtain 
0 

the gradient estimate of T~l) using the gradient algorithm. 

2. Integrate all the equations with the value of T (l) as in steps 
0 
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2. and 	 3. of the gradient algorithm. 

3. 	 With all the stored variables calculate the value of G(t.) at 
J 

(6-24) 
j=O •• Nt 

4. 

k(q+l)(t.) = k(q)(t.) +a [G(tJ.) - k(q){tJ.)] 	 {6-25
0 	 J 0 J 0

5. 	 Option: accelerate the value of k~q+l) by one of the procedures 

in 6.4 below, to obtain an accelerated k , say k~q+l), and if
0 

k {q+l) > k *set k (q+l) = k * 
0 	 - 0 0 0 

6. 	 Test for convergence in the norm 

eg. 1r k 11 = f~k0 (q+l)_k (q)I dt (6-26)
0 0 


0 


- ( 	 q+l q ,2
or 	 11 ko 11 - t k < . > - k c . > (6-27)

j 0 J 0 J 

or 	 I I k I I = Max k (j) (6-28)
0 	 j 0 

Comparison 

Not only does the fixed point reduce the total computation 

time by between 30 and 50 %, but a much closer approach to the optimal 

profile is obtained. This last point is shown by: 

(i) Significantly larger value of the objective function. 

(ii) For those cases where constant exit conversion is 

_optimal a much finer level of constancy (10 or more-fold decrease in 

numerical derivative) is observed, thus allowing the author to dis­

tinguish far more carefully, those cases where the sign of the slope 

of the exit conversion is in doubt. 

The large saving on computer time is due, partly to the 
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saving of, 

(;) Calculation and test of objecthe functfan at 

each aeration. 

(ii) Integration of the state equations several times 

in the calculation ofy {step 8, gradient algorithm). 
i 

{iii ) Curve fit and the ca1cu1 at ion of y opt. 

In some cases, due to the relative insensitivity of the 

objective function in the vicinity of the optimum, appreciably different 

profiles may be obtained with a finer approach to the optimum, via the 

fixed point method but with only a mild increase in the objective 

function. Figure 6-6 compares the two optimum profiles obtained as well 

as the corresponding objective functions and computation times. 

6.3.3 Predictor-Corrector Method 

Rather than use the gradient method or the fixed point 

method independently, the question arises as to whether some combination 

of the two methods may cause faster convergence. A predictor-corrector 

scheme was implemented whereby the gradient step provided the 

predictor estimate, and this estimate was refined using the fixed 

point fonnulation as a corrector: 

P: k {P) = k{o) + ok {ok from 6-17)
0 0 0 0 

C: 

{6-29) 

This scheme may be varied to suit the problem insofar as 

how many correctors follow one predictor. In the present problem two 

correctors after one predictor, seemed to produce the least number of 

total iterations and total computation time. 
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Predictor-Corrector Algorithm 

1. 	 Proceed as in steps 1. + 6. gradient method to obtain k~P)=k~q+l) 
from (6-18). 

2. 	 Use k~P) to calculate k~cAs in steps 3. and 4. of fixed point 

algorithm using (6-29). 

3. 	 Set k(c) = k(P)and repeat iteration 2. n times (n= #corrector 
0 0 

steps following a single predictor). 

4. 	 Set k(c) = k(P) and use to inteqrate both the state variables 
0 0 	 ­

and the adjoint variables as in gradient algorithm steps 1. + 6. 

and use the H obtained, to calculate the new predictor, via {6-18). 

5. 	 Option: accelerate as in fixed point algorithm step 5. 

6. 	 Test for convergence in the norm, as in fixed point algorithm step 6. 

Comparison 

The comparison between the predictor-corrector and the 

gradient method are analogous to those made between the fixed point 

and gradient methods. 

It is more instructive to compare the last two alqorithms 

and it turns out that the predictor-corrector may reduce the computation 

time in some cases, but the reverse is true for the remainder of cases 

and neither method stands out exclusively. 

However, the predictor corrector does have one distinct 

advantage over the fixed point method in that its rate of convergence 

is not as sensitive to the choice of the paramater a in {6-23). Since 

a 'good' value of this paramater is not known initially, a substantial 

improvement on the fixed point method may be obtained see table 6-5. 
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Figure 6-6 Comparison of Gradient and Fixed point.methods 

..­-~·~· 

Curve Computation time t Objective Function 

l 232.0 secs .69532 

2 161.8 secs .69671 

tCDC 6400 

Table 6-5 Legend to figure 6-6 
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Com_Q_utation Time t a Objective Function T Remarks 
Fixed Point 144 secs 0.9 .69455 Time limit . 
Predictor-
Corrector 

' 
93 secs - .69443 

t CDC 6400 

Table 6-6 Comparison of Fixed point and predictor corrector method 

*for the parameters: 'T = 900°K, T0*= 700°K, m =2, n = 10 

p = 0.4, uniform temperature reactor 

6.4 Convergence Acceleration in Optimum Seeking Methods 

6.4.1 Earlier Methods 

Wegstein (1958) developed a method for promoting (accelerating) 

the convergenceof an iterative process which may be represented as [see 4.4.1]. 

(6-30) 


or (6-30a) 

where the solution to the fixed point problem of the form 

(6-31) 


is required. [cf equation 6-21)]. 

Newton's method, which has a higher order of convergence than 

Wegstein's method, is out of the question in the present system, because 

it requires an estimate of the first derivation of Tf if x is simply a one 

dimensional vector, or the derivative of Tf at each point, as a discretised 

function space,, as is required by the numerical method here. To estimate 
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the der.ivatives we would be required to integrate both sets of equations 

twice at each iteration {unless the modified Newton method is used) causing 

a substantial increase in the computation time. 

Wegstein's method does not require calculation of a derivative 

and is much more feasible in the present system. The convergence order 

ts 1.618 [Wegstein (1958)], compared to second order convergence for the 

regular Newton Raphson method; nevertheless, if one includes the time 

necessary to calculate the derivatives, Wegstein's method would converge 

faster, even though more iterations would be required. 

Since, for the numerical calculations, the t and z scales are 

discretised, we may consider the iteration scheme (6-30) or (6-30a) to 

be in a vector space instead of a function space as it truly is, and 

instead the vector k
0 

with components k
0
(ti) i=O..Nt is iterated instead of 

the continuous or piecewise continuous function k
0 
{t). 

k {t ) ----- k (tN )] (6-Jla)
0 l 0 t 

Now in the Wegstein method each one of the k (t.) would be0 , 

accelerated separately based on its particular past three values. No 

account is taken for the possible interaction between the components of 

the 'vector'. A method, which takes interaction into account is discussed 

in 6.4.2 below. 

Crowe {1972a) has indicated that promotion using Wegstein's method 

at every iteration (after the first three), may not be advisable: Wegstein's 

method perturbs the normal iteration pattern, based on a direction indicated 

by the past three iteration points. However, the system normally requires 

several iteration steps to reestablish its normal iterative pattern 

(geometric in nature) and indicate a direction upon which the rest of the 

promotion can be based. If Wegste~n acceleration is immediately applied 
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" .· 
before the system is allowed to settle, convergence may be hindered and 

result in an increase in the total number of iterations. 

In the following section {6.4.2) a more recent method due 

to Orbach and Crowe (1971) develops a measure of the extent to which 

the system has'•settled down', before a convergence promotion is 

applied. 

Unfortunately all these methods require a fair number of 

iterations before an appreciable saving in the total numbers of iterations 

is obtained. In most of the present applications the total number of 

iterations does not exceed ten (for the fixed point methods) and hence 

no dramatic saving in computation time is obtained. In some cases the 

time involved in calculating the promoted values may outweigh the 

decrease in the total number of iterations; however the Wegstein 

predictions involve relatively simple calculations and if any extra 

time was involved it ususally led to a finer approach to the optimum 

profile see Table 6-7. 

Computation 
Time 

t Objective 
Function 

Fixed Point Without 
Acceleration 74 secs .7549 

Fixed Point With 
Acceleration 
Every 3rd Step 

83 secs .7582 

Table (6-7) 	 Comparison of Acceleration vs No acceleration in fixed point 
iterations, for parameters: T* =900 T =700°K m=2 o ' o* ' ' 
n = 1 , p = O. 2, J 1 · = • 01 


t .CDC 6400 
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6.4.2 Recent Methods 


The Dominant Eigenvalue Method (DEM) for convergence promotion 

was developed by Orbach and Crowe {1971) and can be applied to fixed 

point problems of the form 

! = ~(!) (6-32) 

where Y and F are vectors and vector functions respectively. Because the 

method is aimed at hand.ling convergence of vector systems it is directly 

applicable to the present vector system defined by equation (6-3la) and 

the discretised version of (6-21), i.e., 

where (6-3la) 


The method is based on the observations that most iterations 

_eventually approach a geometric progression. It is assumed that G can 

be linearised by means of some method (Taylor), so that the_iterations 

may be represented, sufficiently accurately, by a linear matrix difference 

equation of the form 

Y = A Y. + b (6-34)- n+l : n ­

where A represents a linearisation of G about some reference point and 

b is a constant vector. If lJ is the largest (in absolute value) 

eigenvalue of the matrix A, a necessary and sufficient condition that 
-the process in (6-34) converge is that [Orbach and Crowe (1971)), 

(6-35) 




0

119. 

They express (6-34} as a sum containing the eigenvalues of A 


and use the factthat, as the number of iterations become large, only the 


largest eigenvalue µl will contribute significantly to the sum. They 


obtain an expression which estimates the limit of the sequence of vectors 
. 
y , called Ys, in terms of the latest two obs~rvati~ns, µl, and an 

·acceleration factor, a as in (6-23). 

(6-36} 

0 < a < a (6-37) _ - max 

(6-38) 

where 11 11, as usual, represents the nonn [see (6-26), (6-27), (6-28)]. 

We see from (6-36) that iterations proceed in such a manner that 

the entire vector is iterated and not each component separately and 

·independently, as in the Wegstein method. The dominant eigenvalue µl is 

estimate:! using (6-38) to which all components of the vector contribute, 

thus accounting for interactions among the vector components. 

The DEM provides a criterion as towhen to accelerate in (6-39); 

for if successive values of µl are sufficiently close in value the system 

can be said to have 'settled down' to a natural iterative pattern (which 

will be geometric in nature) and this is the stage at which the accelera­

tion step (6-36) is applied. Several more iterations are required before 

the process recovers and another acceleration is applied. 

The point is made, that each acceleration is not necessarily 

guaranteed to approach the fixed point solution more closely, but that 

these random divergences are to be taken lightly, insofar as the 

objective of the DEM is to reduce the total number of iterations required 
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to solve (6-33}. 

Amajor disadvantage of the DEM for the solution of (6-33) 

is the requirement of waiting several iterations until (6-38) produces 

sufficiently constant values of µ1 before an acceleration may be 

applied. Initi
1

ally, up to ten iterations of (6-33) may be required 

· before the system approaches a geometric convergence pattern, but by 

then all the optimum seeking methods described in 6.3 above are 11 home 

and dry". 

Hence the DEM method was used to best advantage only for those 

cases where convergence was particularly stubborn or alternatively those 

cases which approached geometric convergence rapidly thus enabling an 

early acceleration to be applied. 

Crowe (1972b) recently generalised the DEM to include all N 

eigenvalues to estimates y5 and this method may allow the user to 

accelerate earlier and far more precisely. 

This generalised DEM reduces to the previous estimating equation 

with the modification that a ratio of two inner products is used to 

estimate µl instead of a ratio of norms as in (6-37). 

It was mentioned, that for those cases where the convergence 

pattern quickly settled to a geometric pattern, and this was fairly 

common, the convergence promotion routine, particularly the method due 

to Orbach and Crowe {1971), showed improvement over the unpromoted 

cases even where a single promotion was used. 

See table 6-8. 
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.. . ,. 

Paramaters m 

With Orbach /Crowe 
Conver~~nce Promotion 

2 

Without Convergence
Promotion 

' 
2 

I n 

p 

1 

0.4 
. 1 

0.4 

J ' 1 

To 

0.01 

700-900°K 

0.01 

700-900°K 

Objective Function J .4706 .4660 

No. of iterations 4 7 

Promotion on iteration no. ·4 -
Computation Time 
(CDC6400) 

87.4 secs 117.0 secs 
(Time limit) 

Table 6-8 Comparison of Convergence Promotion using Orbach/Crowe method 

vs no promotion for a given set of paramaters. 
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6.5 Influence of Integration Step Size on Optimum Seeking 

A question of practical importance arises when one is iteratively 

searching for the optimum profile and one wishes to know whether a 

particular iteration has brought the search 'closer' to the optimum 
' 

(unconstrained). 

There are two indicators that one can use to provide an answer: 

(i) Is the numerical value of~ (objective function) increasing? 

(ii) Are the absolute values of the derivatives of the Hamiltonian 

at each discrete point in time decreasing? 

Neither of the two indicators actually guarantee that the true 

optimum is being approached but they are good pointers and besides, we 

have no other method. 

The gradient methods rely on the first indicator and use this 

as a test to determine whether the optimum has been reached. 

The fixed point method ignores (i) and may use (ii) to detennine 

when the necessary condition (4-12) has been obeyed on each discrete point 

in time. However a better method is to test for convergence in the 

norm for the profile k (t) at each iteration, and use indicator (ii)
0 

above, only to verify than the optimum has been reached. 

The use of (ii} as a criterion of closeness to the optimum at 

each iteration step, may be dangerous, since we know only that the 

derivative of the Hamiltonian is zero once we have already reached the 

unconstrained optimum. We do not know that the approach to the optimum-
is accompanied by a uniform decrease in the norm of ~~ , that is 

- a 0 

I 1:~ I jdoes not necessarily converge uniformly to zero as d* ~ 0 
0 
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where d* = ·11 k
0 
(t) - k0 (t)~pt 11 (6-39) 

[Horn (1972)]. 

Also the measure of 'closeness' to the optimum will depend on what norm we 

choose [see (6-26) et seq.]. In many cases though, an increase of P will 

be accompanied, by a decrease in d*. 

It is possible numerically, even when II; ~o I I converges 

uniformly with d*, to obtain a decrease in the objective function at an 

iteration which gives a profile which is 'closer' to the optimum. This 

may be caused by a coarse selection of the integration step size and 

occurs in the close vicinity of the optimum: 

Referring to figure 6-7, T (t) represents a profile in the close 
0 

vicinity of the optimum such that the next iteration will move the uncon­

strained profile up and closer to the optimum that is t 1' ~ t 1 etc. 

The profiles shown in figures 6-7 close to the optimum may be 

divided into 3 distinct sections, two of which have a fixed number of 

discrete points. 

(i) Those discrete points which are unconstrain~d and move up 

towards the optimum eg. t 1 and t 2 (fixed in number). 

(ii) Those discrete points which are constrained and remain 

so (fixed in number). 

(iii) The middle section between t 3 and t 2 which would, if the 

time steps were finer, experience a change in the number of discrete points, 

in this case registering an increase in the number of points on the con­

strained section as the profile 2 moves up toward the optimum but due to a 

coarse grid this section contains no points. 

Since in reality, a point is either constrained or unconstrained, 

we divide the objective function into two parts: that part due to the 

unconstrained section of the profile P1, and that due to the constrained 

section P2 such that the total objective function p is 

p = pl + p2 ' (6-40) 
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T * 0 

1 - true optimum 
2 - pre-optimum 

t 0 t; tN 
Figure 6-7 Effect of integration step size on the optimum 

seeking methods. Number of discrete points for 
unconstrained and constrained section is fixed 
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Curve 1 represents the true optimum. We suppose that curve 2 

which is approaching the optimum, will move upwards towards the optimal 

curve 1 and register an increase in P1• The length of the constrained profile 

will increase by A (see Fioure 5-7). Lenqth A is less than one time step unit. 

Since the length of a discrete profile can only be measured in terms of whole 

units A will be lost and the constrained orofile will not have increased in 

length. P2 which depends on the lenath of unconstrained orofile may accordinqly 

decrease in value. 

The increase in P1 may be outweighed by the decrease in P2 
such that the total objective function P, from (6-40}, registers a net 

decrease, even though profile 1 is given as closer to the optimum than 2. 

This problem will be most noticeable in the vicinity of the ,, 

optimum when the objective function is increasing more slowly, but will 

always be present due to the discretised approximation of the optimal 

profile. It may, however, be minimised by choosing the grid sufficiently 

small. 

6.6 Parametric Analysis of the Optimal Profile 

6.6.l Paramater p 

The parameter p = ER/Ec features prominently in the character 

of the optimal profile (see Chapter 4 above) and if the strong form of 

the Hamiltonian were assured, p > 1 would eliminate the possibility of 

an unconstrained temperature profile for any finite time. For all the numerical 

examples p > 1 was accompanied by a totally constrained temperature profile 

with T
0 

= i
0 
*and ~~ > 0, for all t [ see figure 6-8 ]. 

0 
An increase of p in the range 0 < p < 1 was accompanied by 

an increase in the average temperature in the reactor, as well as the 

length of time spent at the upper temperature limit. Also a decrease 
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Figure 6-8 	 Influence of p =ER/Ec on the character of optimal 
profile with paramaters. 
n = 1, m= 2, J 1= .01, T = 25 days, f = (l+0.6X) 
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in the objective function with an increase in p was observed. 
~ 

These trends agree with those found by Ogunye and Ray {1971) 

and Therien {1971) and are to be expected, since asp increases the 

catalyst decay becomes relatively less sensitive to temperature and the 

reactor can operate more profitably at higher temperatures. 

See figure 6-8. 

6.6.2 Parameter T 

ln agreement with Ogunye and Ray {1971) and Therien (1971) , 

increasing the operation time T (usually 25 days) decreases the average 

temperature in the reactor and causes the temperature to reach an upper 

constraint closer towards the end of operation time. In general one 

would expect that if more operational time were available a gentler 

initial treatment (v1a lower temperature) of the catalyst would seem 

desirable. 

See Table (6-9) 

CfperatTon time 

T da_ys 


10 

25 

50:.... 

-% time on T~"' 

60% 

24% 

6% 

Objectfve Function 
J 

.6710 

.4655 

.3418 

Table 6-9 	 Influence of Operational time T on the length of the constrained 
temperature profile parameter n=l, m=2,J1' = .01, p=0.4, 
f={l+O. 6X) 

6.6.3 	 Parameter m 

A decrease in the parameter m in g=~m cause the decay rate of 

the catalyst via equation (3-55) to increase, thus making it less 
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desirable to maintain a higher temperature and decreasing the time 

spent at the upper temperature constraint. These results agree with 

those of Therien {l 971) and Ogunye and Ray (1971). 

See figure 6-9. 

6.6.4 Paramater n 

In agreement with Therien {1971) an increase in the order of 

the reaction causes a decrease in the average temperature in the 

reactor. From the first state equation {3-54) it can be reasoned that 

for large n the term F= (1-Xl" will tend to dominate the right hand 

side of (3-54l· The effect of an increase in temperature with the 
-

resultant ·increase in reaction rate, would be diniinished by the F 

term. It would thus not be profitable to raise the temperature as 

much ~or laroe n. 

See Figure 6..10. 

§.:7 Rising and Falling Optimal Exit Conversions 

6.7.l Euler Formulation of Exit Conversion Derivative 

From (5-76) we have an expression for the derivative of the 

exit conversion at the optimum 

1 

dXl (t) = jL<>.2 k 
0
gf) dz 

dt · at 
0 

a>. 
substituting for a-t-2 from (4-8) we have 

dX(t) f . 
~t -· = [(k

0 
2gg'). 2)f2 - (A 1K

0 
k

0 
g)Ff + ~ 2ak_og_} f 

o at 

{6-41) 

{6-42) 
+ (k

0
g>. 2 ~ ~)f' ]dz 
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Equation (6-42) is an expression for the derivative of the exit 

conversion at the optimum expressed as an explicit function of F and f. 

We can view equation (6-42) as an objective function and 

choose f and Fat every point in z at some time, say t 
0 

, in order to 

maximize the derivative at time t •
0 

~~(t0Jl j:a/Max - b Ff+ Bf+ B f 1]1 dz (6-42)°
' 2 3 4 

F,f{z,t )L J 0 to0 

where Bl = ko2gg' >-2(z,to) ·(6-43) 

B2 = >-1Kokog {z,to) (6-44) 
a k g=B3 >-2~ (z,t )

0 

·(} x 
B4 = kog>-2a t (z,to) (6-46) 

It is seen that all the Bi's i=l,4 are functions, either 

directly or indirectly, of many variables including f(X), F(X). However, 

it turns out for certain paramaters, the changes in the numerical 

values of the Bi are small in comparison with the changes caused in 

the values of F and f by changing their forms within a given restricted 

form [see (6-48) and (6-49) below]. 

The Bi are thus not constants with respect to F and f and 

the correct procedure would be to obtain the Bi's as explicit functions 

of f, F and obtain true constants in the integrand of {6-42). However, 

,closed form analytical expressions for most of the variables as functions 

of F and f are unavailable. 

A semiquantitative approach is to numerically examine the Bi to 

see whether (for a particular set of system paramaters) they are approximately 

constant with respect to any variations in F and f {caused by a change 
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Table 6-10 Typical falling exit conversion profiles 

t 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 
-

21 

22 

23 

24 

J 


m=0.5, m=2, J1·=.01 
f=(l+0.6X) p=0.4 
T* = 900°K

0 

.4232 


.4178 


.4121 


.4063 


.4005 


.3947 


.388~ 

' • 3823 

.3756 

.3687 

.3614 

.3542 

.3478 

.3440 

.3449 

.3440 

.3440 

•311 l+(~=T;) 

.2960 


.2956 


.2779 


.2625 


.2490 


.2371 


.2264 


0.3433 


n=l, m=l, J 1• = .ql 
f=(l+0.6 X) p=0.4, 
T*=900°K

0 

.4615 

.4565 

.4542 

.4523 

.4506 

.4488 

.4470 

.4451 

.4431 

.4410 

.4388 

.4366 

.4342 

.4317 

.4291 

.4262 

.4231 

.4197 

.4157 

.4112 

.4055 

.3989+(T=T*)
0 0 

.3654 


.3081 


.2629 


0.4228 

n=l, m=l, J ·=..,1 
f:=(l+X), p=0.5, 
T*= 1000°K

0 

.6435 

.6261 

.6110 

.5977 

.5859 

.5753 

.5655 

.5565 

.5482 

.5403 

.5330 

.5259 

.5192 

.5127 

.5064 

.5002 

.4941 

.4881 

.4822 

.4763 

.4707 

•4659+(T=T*)
0 0 

.4581 

.4466 

.4365 

0.5158 


http:f=(l+0.6X


133. 


in the fonn of For f). If this is found to be true over a particular 

range of paramaters in the system, the Bi's are said to be "weak 

functions" of f and F at some point in time t • This numerical property
0 

is made use of ·at a later point [see (6-52) below]. 

Nevertheless, even if the Bi are not "weak functions" of F 

and f we can simply proceed as if they were and ff we find that we are 

able to change the objective function in (6-42) to produce say, a 

rising conversion, then this is indeed justification in itself. 

By far the most common exit profile at the optimum is one of a 

falling exit conversion and all the figures referred to in Chapter 6 except 

6.2 exhibited a falling exit conversion profile at the optimum. Some 

typical optimal exit conversion profiles for various reaction systems 

are given in table 6-10. [See also Chapter 5 proposition 3]. 

· The constant conversion profiles were used to verify the 

program and were given in 6.2. 

The question naturally arises as to whether it is possible to 

choose some fonn for F and f which will cause a rising exit conversion 

at the optimum. To this end we refer back to equation (6-42) and attempt. 

to use this equation to indicate the.form that F and f should take, in 

order to produce a rising optimum exit conversion at a particular point 

in time (t
0 

) 

For convenience we choose t =0 and we choose a form for F and
0 

f so as to produce a positive value for the slope: 

dX (o)
1 ] > 0 (6-47)[ dt 

opt 
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t x1(t) T
0 
(t) °K 

0 .8820 889.4 
-

1 .8764 891.0 
2 .8698 892.3 
3 .8626 893.5 
4 .8550 894.5 
5 .8470 895.4 
6 .8387 896.2 
7 .8300 897.0 
8 .8210 897.7 
9 .8118 898.3 
10 .8023 898.9 
11 .7926 

I 

899.4 
12 .7827 899.9 

13 •7718 9·00.0 

14 .7605 900.0 
15 .7493 900.0 
16 . 7381 900.0 
17 .7269 900.0 
18 .7157 900.0 . 

19 .7047 900.0 
20 .6936 900.0 
21 .6827 900.0 
22 .6719 900.0 
23 .6612 900.0 
24 .6506 900.0 

.Table 6-12 Falling optimal exit conversion profiel for r=l 
in f=(l-X)r, T~ = 900°, p=0.4, m=2, n=l 
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There is no guarantee that the optimal profile will continue 

to rise for t > 0, but at least we have a direction in which to search 
0 

among possible forms for F and f {or F and f; F=F for unifonn temperature). 
-If we insist on a particular form for F and f such that 

[using (6-1) (3-36)], 

f{or f) = {c+dX)n2 
> o c, d constants (6-48) 

F(or F) = (1-x)n > o (6-49) 

then F and f are no longer our controls but instead n2 and n are manipulated 

to produce different forms of F and f amongst the class of functions 

·restricted to forms (6-48) and (6-49). Strictly speaking n and n2, 

since they are controls at t , become functions of z, but since the 
0 

whole analysis is semi quantitative and we require only to differentiate 

between possible forms off and Fin a direction of increasing dX1(o), n 
at 

and n2 are perceived as average values. 
-

A bound is placed on n so that F conforms to a general n th 

order reaction ~cheme, i.e., 

n ~ O {6-50) 

whereas n2 is allowed negative and positive values, but not zero. ·Bounds 

(6-51) 

(6-52) 

A further assumption is necessary regarding (6-52) which 

requires that the function s1 to s4 are not 'strong' functions of F or 

f: that is, any change in For f within limits imposed by (6-48), (6-49) 
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and (6-SO)'will cause significantly smaller changes in the Bi i=l,4 

so that we may treat them as approximately constant wi'th respect to changes 

in f and F. This assumption can be tested numerically for a 

specific problem over a range of given paramaters. 

We may now cast (6-52) in the form of an Euler type optimisatio11 

problem and since the integrand does not depend on ~:(z) explicity, 

we may maximize the integral by maximizing the integrand [Denn (1967)]. 
n2-l 

2R = s,f2 - B2Ff + B3f + dn2 84 fn (6-53) 

For a particular set of system paramaters with 

c =. 1 , d = 2 in ( ~-1 }, p = 0. 2, m = 2 

it was determined numerically an average set of values for Bi were 

= 0.0011Bl 

0.161082 = 
-

BJ 
> 
= 0.0200 

dB4 = 10-6 (6-53a) 

Referring to Table 6-3 the following paramater signs are easily verified 

numerically where analytical properties are unavailable. We can show 

(as long as we have less than 100% conversion or zero catalyst activity). 

B1 

B
2 

> 

> 

0 

0 

analytically 

analytically 
from {6-48), 3.6, and (5-46), (5-47) 

B3 > 0 numerically from (6-53a) (6..:54) 
B

4 
> 0 numerically 

From {6-53) we can see that R is linear in F and since B2 f > O 

((6-54), (6-48)] to maximize R we must choose from (6-51). 

(6-55) 
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Fmin is a constant which can be normalised by adjusting the rate 

constant tenn K+(3-23)in the first state equation so (6-55) says, 

choose a zero order reaction i.e. 

F = constant (6-56) 

Maximizing Rwith respect to f and solving simultaneously with 

(6-55). 

-1 
aR ( l) n2af = 2Bf1 - B2Fmin + s3 + B4d n2- f = O (6-57) 

t =OIf we choose c, d > O o (6-54) 


Substituting for f from (6-48) and solving for n2 (6-57) (with Fmin=O.l) 


using the average values in (6-53a) we obtain a large negative value for 


n2. 


. . 3 
n2 = - 6 x 10 (6-58) 

6.7.2 Numerical Results 

If we now use (6-55) and a negative n2 but of a more realistic 

magnitude,the form of F and f, for example; become 

F = 0.1 constant (6-59) 

f=(2+X)-J (n2=-3)· (6-60) 

dX. (o)

We expect a positive value for __Q_ and in fact with the above examples a 


. dt 

rising exit conversion is obtained at the optimum [see Table 6-3 above] at 

.time t 0 which continues to rise until an upper constraint is reached, 

at which point the exit conversion decreases sharply. 

Using the result of proposition 3 in 5.7, we have 
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d x. 1 
dt1 I • j f:(k0Kog•1) ff + (~~O)f + (ko)f'] dz (6-61) 

opt o 
the tenns in brackets ( ) are all positive and one may, using similar 

semi-quantitative analysis (as in 6.7.1, but now with analytically 

obtainable signs of the bracket'( )' factors) to determine the relative 

properties off and F so as to maximize d'X1 in (6-61) at some time t •
0

dt dX ­
For example, one obvious starting point for positive dtl would be to 

choose 

F · = Fmin = constant 


f(X) = fairly small in absolute value 


f'(X)= large positive value 


For many numerical cases examined, a rising exit conversion 

profile at the optimum was obtained only for zero reaction order systems. 

6 .8 Optimum Uni form Temperature Profile vs Best Constant Temperature 

A valid method for evaluating the optimum uniform temperature pro­

file for a reactor, is to compare the objective fun ct ion so obtained , 

with the objective function for the best constant temperature (i.e. 

constant in time and uniform over all z). 

The second objective function is obtained simply by a one 

dimensional search for that single temperature which produces the highest 

value of the objective function. 

It is unrealistic to compare this case with the adiabatic 

reactor where the temperature constraint is on the inlet temperature. 

For an exothermic reaction the temperature constraint is most likely to 

be violated towards the exit end of the reactor; it makes more sense to 

place a temperature constraint on the outlet temDerature. 

The improvement of the optimal temperature profile over the 
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best constant temperature was of the order of 10%, but usuallY, it was 

closer to 13%; a typical example is given in Table 6-11. 

Any numerical scheme which places a constraint on the exit 

temperature of an adiabatic reactor will involve considerably more 

computation. This is so because one cannot determine, a priori, whether 

a particular inlet temperature will cause violation of the exit end 
. 

constraint and thus trail and error integration of the state equations 

along z is necessary at 
' 
each point in time. 
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Profile 1 Profile 2 

f 

n 

m 

p 

T * 
0 

To* 

J~ 

T
0 
(t) 

J 

2/(2-X) 

1 

2 

0.4 

900°K 

700°K 

oo{uniform temp) 

T 
0 
(t) optimal· 

.2624 

2./ (2- X) 

l 

2 

0.4 

-
-
-

875°K 

.2329 

J -J 
b% = lJ 2 x 100 = 13.05% 

l 

Table 6-11 Optimal uniform temperature (1) vs best constant 

temperature (2) 



CHAPTER 7 

SUMMARY AND CONCLUSIONS 

A quasi-steady state catalytic reaction deactivation system 

in a plug flow, fixed bed, adiabatic, tubular reactor is considered. The 

chemical reaction scheme is an nth order (or autocatalytic), single 

and irreversible reaction. Both the reaction rate and the deactivation 

rate are expressed as a product of separable functions of conversion, 

(catalyst) activity and inlet temperature. 

A first order perturbation analysis of the s,ysteJl) equa,tions 

has been performed, and the problem of choosing the inlet temperature 

profile, so as to maximize the total amount of reaction has been 

considered. 

A conmon industrial practice of choosing this temperature 

profile, so as to maintain the exit conversion constant, while the 

choice of temperature is unconstrained, has been examined. This 

practice is designated the "constant exit conversion policy". 

Analytical expressions for the optimal exit conversion were 

derived and used to prove that for certain forms of F(X) and f(X), choosing 

the inlet (or uniform) temperature in time so as to maximize the total 

amount of reaction, produces a constant exit conversion, when the 

choice of the inlet temperature is unconstrained. 

The analytical forms, together with the case where f(X) is 

constant, were used to verify a program which uses an efficient fixed 

point search algorithm. The program was further used to investigate 

the reactor system with the more general forms of F and f. The 

necessary condition for the optimum was recast into a fixed point form. 

The more usual gradient method in function space was replaced by an 

141. 
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. 
iterative fixed point method in function space. The fixed point method 

was found to be superior to the gradient method; it reduced the 

computation time and also produced a more precise optimal profile. 

Various convergence promotion techniques were used to even further cut 

computation time and were partially successful. 

A general analytical property of f(X), as a sufficient 

condition to produce a falling optimum conversion was derived. This 

led to the proof of the existence of an f(X), such that a falling 

optimal exit conversion would result, and further, that this was valid 

for any form of catalyst decay term g{$). 

The analytical expression for the time derivative of the 

optimal exit conversion was cast into the form of a suboptimal problem, 

in which the fonns of F and f were chosen so as maximize this derivative, 

in order to produce a rising optimal exit conversion. This sub problem 

was analysed semi-qualitatively by casting it into a classical Euler 

form. 

It was demonstrated that all three types of exit conversion 

profiles can exist at the optimum, viz., rising, constant and falling 

profiles. Falling profiles are by far the most common type and rising 

profiles were observed only for zero order reaction schemes, but the 

possibility of rising profiles, for higher reaction order schemes 

accompanied with special decay kinetics cannot be ruled out. So a general 

policy of constant exit conversion cannot be extended to the case of 

boundary control of this reactor system, where decay depends on conversion. 

The existence of a totally constrained temperature profile at 

the upper limit, was demonstrated for all cases in which the paramaters 

p = ER/Ec is greater than unity. The lack of a well established proof 

of a maximum principle for boundary control of non linear distributed 
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systems was noted and thus any analytical analyses of this constrained 

profile, although tempting, were dispensed with. 

A parametric investig~tion of the optimal profile showed 
' agreement with related studies in this area. as well as satisfying a 

more intuitive analysis. The optimal uniform ~emperature policies 

~re assessed by showing considerable improvement, in the total amount 

of reaction produced, over the best isothermal temperature. 

7.1 Future Work 

The forms of equations derived in Chapter 3 are .general and· 

allow the extension to include more complex reaction systems eg. reversible 

reactions. 

In 2.3.2 the co-problems of choosing the initial catalyst 

distribution to maximize the total amount of production is mentioned. 

A natural direction would be to combine the catalyst choice problem with 

the present problem and seek to choose both the initial catalyst distribu­

tion and the inlet temperature profile, so as to produce the maximum 

amount of reaction. 

An extension of the pseudo-homogeneous system considered here, 

to the simplest heterogeneous system, along the lines mentioned in 3.2.3, 

may be fruitful; this extension would allow the analysis of highly 

exothermic or endothermic reactions systems or for those systems where 

catalyst particles are fairly large. 
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A 

A(t) 

A-
b 

8 

81, 82, 83, 

Cj 

cp 

c{z,t,z',t') 

-( I I)C z,t,z ,t 

c,c1 
c 

D. (r, e,z)
J 

d* 

d 

ER 

Fj (C) 

F 

F,F(X) 

F' ( X) 

LIST OF SYMBOLS 


constant defined {3-26} 


general reactant species for irreversible n th order 


reaction (3-40). 


switching function {4-27). 

\ 

matrix defined {6-34). 

constant vector (6-34). 

general _product species for irreversible n th order 

reaction {3-40) 

84 variables defined in (6-34} et seq. 

molar concentration of j th spe~ies {3-1). 

specific heat capacity 

function defined by (5-38). 

function defined by {5-41). 

arbitrary positive constants used in 5.5.1. 

paramater used in (6-1). 

diffusivity of j th species in cylindrical coordinates, (3-1). 

a normed measure of 'closeness' to the optimum (6-39). 

parameter used in (6-1). 

activation energy for catalyst decay, divided by the gas 

constant (3-7). 

activation energy for reaction divided by the gas constant (3-3). 

concentration dependent term for j th species (3-2). 

vector function of variables (6-32). 

conversion dependent term in reaction rate used in 

(3-52} and (3-54). 

first derivative of F with respect to X. 
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-
F(X) 

f, f(X) 

f' (X) 

G[k
0 

] 

g(iii) 

g I (iii) 

-H 

H 

I (z,t)1

I2(z,t). 

I 

J. 

J • 
l 

J 

Kj (T] 


K,K[T] 


-
K 

K • 
+ 

K+ 

- Ko ,Ko[TOJ 

function related to F and used in (3-12), (3-36), and (3-52): 


conversion dependent term in 4> used in (3-53), and (3-55). 


first derivative of f with respect to x. 


functional expression used in fixed point formulation of 


necessary condition (4-34). 


activity dependent term in 4> , ( 3-5). 


first derivative of g with respect to •· 


reaction rate for species k (2-10). 


Hamiltonian function for the system (3-54) and (3-55) 


defined in (4-3) as integral of H. 


Hamiltonian integrand (4-2), (A-29). 


non negatlve function (5-37). 


non positive function (5-40). 


objective function for which extreme required (2-1), (2-11). 


variable considered approximately constant (3-45). 


ratio of heat capacity to heat of reaction (3-42). 


maximum value of P (3-58). 


reaction rate constant for j th species (3-3). 


Arrhenius reaction rate constant (single species) (3-3), 


(3-38}. 


reaction rate constant defined (3-16). 


preexpoenential constant (3-3). 


preexponential constant (3-24a). 


inlet Arrhenius reaction rate constant, bounded through its 


relation to K
0 

(3-5la} and defined in (3-49). 


inlet Arrhenius deactivation rate constant and boundary control 


of the system in 3.8; bounded between two finite limits as 


in (3-47) and defined i~ (3-48) and (3-50). 
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~o 
k,k[T] 

-k 

L* 

n 

nl,n2 

q 


R 


R. 
J 

r 

S(z,t) 

S* 

-T,T(z,t) 

Tct ,r; 

vector of discrete values; made up of k (t1), (6-3la).
0 

Arrhenius decay rate constant used as distributed control;· 

defined (3-7), (3-39). 

preexponential constant (3-7). 

preexponential constant (3-24a). 

decay rate constant defined ( 3-17) •. 

lower and upper bounds resp., on k (or k), (3-35).
0 

total length or distance dimension of system 0 ~z· ~L, (3-15). 


Lagrangian of P for system in 3.8 (see also App. A). 


functions defined in (5-28) to (5-30). 


order of decay (3-37). 


order of reaction (3-36). 


parameters used in {6-1). 


number of grid points along z'. 


number of grid points along t'. 


objective function of system defined in 3.8. 


unconstrained portion of objective function see 6.5. 


constrained portion of objective function see 6.5. 

equals ER/Ec (3-27). 


reaction rate expression (2-9). 


iteration count, chapter 6. 


function defined by (6-53). 


reaction rate for species; (3-2). 


order of conversion dependence (5-137). 


function defined in (6-13). 


closed subset of Hilbet space X*. 


distributed temperature {3-34). 


lower and upper bounds on b (3-34). 
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equals T(o,t), inlet temperature to the reactor (3-43).· 

transformation in Hi 1bert space ( 4-35). 
-t 	 point in time t, at which the optimum temperature profile 

reaches the upper constraint and remains there; defined 

in paragraph following (5-76). 

t 	 independent normalized time variable for system 3.8. 

t' 	 independent time variable for system 0 ~ t' ~ -r 

discrete version of t',i =0, Nt. 

average space time of reactor (3-18). 

set of allowable control functions. 

u 	 vector of allowable control function u £ U (2-2). 

V(z,t) 	 function defined in (C-10). 

bulk flow velocities in cylindrical coordinates (3-1). 

bulk flow in z direction (equals vz), assumed constant (3-4). 

w defined in (2-3). 


w boundary control vector in z (2-1). 


X,X(z,t) distributed conversion, first state variable of system 


3.8, governed by (3-54). 


equals X(O,t) inlet conversion (3-21). 


X{l,t) exit conversion (3-58), (A-6). 


equals x (t) for the case where x1(t) =constant at the

1


optimum (5-130). 


X* 	 a Hilbert space containing vectors x • n 
'X n sequence of vectors in X* {4-36). 

y vector of variables defined (6-32). 

y 1imi ting vector in sequence Y ( 6-34), ( 6-36). -s -n 

z' independent variable of system in 3.8; distance along 


z 1reactor 0 ~ 	 < L. 



148. 


z 	 independent normalized variable of system in 3.8, 

distance along reactor. 

discrete version of z', i=O, Nz. 

Mathematical Symbols 

11 11 nonn on a Hilbert space (2-4), {4-38) etc. 

<• ,, -> inner produce of the above Hi 1bert space. 

==> mathematical symbol, read as: 11 implies without exception 11 
• 

Ill 	 mathematical symbol, signifying end of a proof. 

11
£ 	 symbol read as: 11element contained in the set .. • 

symbol read as: 11element not contained in the set •. 11 
• 

Greek Symbols 


ID average activity over length of reactor {5-7). 


<P rate of deactivation (3-5}, (5-66). 


!p,ljl(z,t) relative catalyst activity defined {3-8),goverened by {3-55}. 


"1 i (z) equals ip{z,O}, initial catalyst activity, {3-22). 


'{ final time for process {2-1), {3-14}. 


y{t) positive multiplying function (6-17) 


JJ 1 dominant eigenvalue of~ (6-15).
-

a accelerating factor (4-37} (6-23). 

x
1

,x 
1
(z,t) first adjoint variable defined by (4-4). 

x2,x2(z,t) second adjoint variable defined by {4-8). 

6H 0 standard heat of reaction for irreversible reaction A~B (3-40). 


first order perturbation of P (4-1). 


first order perturbation of k (4-l).

0 
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APPENDIX A 

A Weak Maximum Princiole for Boundary Control 

Proceeding directly from the state equations (3-54) and (3-55) with their 
associated boundary conditions {3-21) and {3-22) we have 

{A-1) 

~ = - k fg (A-2)at 0 

Boundary Conditions: 

{A-3) 

{A-4)
.1 

{A-5)
Objective Function P =/rx1(t) 


where x1(t) =X{l ,t) {A-6) 


Perturbing this equation by small admissible amounts and subtracting 
from the original equations one obtains the variational equations: 

a{oX)=o(KFw) (A-7)az o 

a{ow> = - a { k fg) (A-8)at o 

oP = j(ox1 - oX )dz (A-9)
0 

The o notation simply represents a small admissible variation. It may 
be viewed more strictly as the Gateaux differential, eg., 

1 

oP dgf ~al [Xl + B hl{t) - XO - B ho]dzla=O (A-10) 
1 0 

oP =/[h1(t) - h {t)]dz (A-11)
0 

0 

where h1 and h are small admissible variations in the same vector space 
0 

as X, and, in our notation, would be equivalent to oX1(t) and oX (t),
0 

respectively. 
If we now specify that X

0 
(t) and ljli(z) are given functions in 

time (t) and distance {z) respectively then, 
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ox ~ 0 (A-12)
0 

oljl. =o (A-13}
1 

Accordingly oP may be written 
l 

oP = f oX1(t)dt (A-14} 
0 

Introduce two Lagrange-typemultipliers A1(z,t) & A2(z,t) called adjoint 
variables, (associated with a Lagrangian L*) and consider the two equations 

(A-14) 

(A-15} 

We define a Lagrangian of the system (Al -+ A6) to be L*, and we 

require P to be stationary subject to equations (A-1),(A-2). 

Integrating both sides with respect to z and t arid applying the boundary 

conditions (A-12) and (A-13}. 
. 1 1 3A 

-j x (l ,t) ax (t) dt + jf [>. ~ox} + ex az1]dzdt = o (A-16)
1 1 1 

o o~ 


f 
l } } a (ov) a>-2 


- >-2(z,l) o!j!(z,l)dz + JJ [>-2ar + 0 l/J ar]dzdt = 0 (A-17) 

0 0 0 

From (A-9), (A-16) and (A-17) form the Lagrangian perturbation oL* from 
the Laqrangi an L* · · 

1 1 
OL* • / OX1dt - JAl (1,t) OXldt - / Az(Z,1)O~(z,1 )dz 

l 1 o 3 >. ­
+ ff [>. J_( 8 X) + oX __J_]dzdt ­

1 3 z az 
0 0 . 

1 1 a:>. 
-t· J/ [J. Lt tiip) + ot11_ _1 "'Jdzdt (A-18)2at at 

0 0 

Now from (A-7) and (A-8) using (3-Sla) 

o(l/JK F) =K F 01/J + ipFpKo ck + 1/J K Ff oX (A-19)o o k o o
0 

o(k fg) = k fg' 01/J + gf ck + k gf' ex (A-20)0 0 0 0 
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where F' - dF f' - df and g• =f!g_
- dX - dX dip (A-21) 

(A-22) 

If one now specifies the following conditions for the adjoint variables 

a >.l 
-- + >. K F'ip - >. k gf' = 0 {A-23a z 1 o 2 o 

{A-24) 


with boundary conditions 

).1 (1 ,t) = 1 (A-25) 

>. 2(z,1) = 0 {A-26) 

we then have the adjoint system defined by equations (4-4) to (4-10). 

We may now write the Lagrangian al* as: 

1 1 p). lJlfK
1 0al* =f (J[ - >- 2gf]dz) ak (t)dt (A-27)

0·O kO 

The necessary conditions for an maximum lagragian is 

cl* < o {A-27) 

Note only the stationarity of L * may be identified as a necessary 

condition for the optimum of the constrained ob.iective function P. 



Seeing that for unconstrained k
0 

, 0k
0 

may be of either sign, it is 

thus necessary, to satisfy (4-27), that 

If we now define the Hamiltonian function 

H=j Hdz 
0 

where H =Al~FK0 - A2gfk
0 

we have the necessary condition (A-28) equivalent to 

l 

a H =fiJL dz = o a k a k
0 00 

Hence equation (4-lZ) for the weak maximum principle. 

We may write 8 P in place of 8 L* if it is understood that the 

perturbation of the objective function P, ~s subject to the constraints 

placed upon the system through equation Al and A2 and their associated 

boundary conditions. 
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(A-28) 

(A:..29) 

(A-29) 

(A-30) 



APPENDIX B 

The Constant Conversion Policy for Decay Independent of Conversion 

From the equations derived in Chapter 5 we have, from 

(5-83a), the necessary condition for the unconstrained optimum 

; a 1/IKO a Al F 1 a Al F a x . 
J [(p-l) Al F a t + Pl/IKo a t - F az TI ]dz = O (B-1) 
0 

Now when decay rate does not depend on conversion we set f(X) to 

a constant (unity for convenience). 

f(X) = 1 for al 1 z, t {B-2) 

From (B-2) we have f' =0 and using (5-43) 

(5-43) 

= 0 all z and t (B-3) 

thus Alf is a function oft only and using the boundary condition of 

Al (A-25) 	we have 

Alf= F[X1(t)) (B-4) 

dAlF = F'[X (t)] dXl(t)and 	 (B-5)dt 1 dt 

substituting (B-4) and (B-5) into (B-1) we obtain 

dX (t) l la 1/IK 
pK

0 
F'[X1(t)] ~t f 1/1 dz= (1-p) F(X 1 (t)~,J-c~ to dz (B-6) 

0 	 0 
at the unconstrained optimum 

From (5-83) we have 

1 

dXl (t) J3 $K0
dt = F[Xl(t)] at dz 	 (B:-7) 

0 

From (B-7) and (B-6) we have 

156. 



157. 


(B-8) 


At the unconstrained optimum 

Now if p < 1 and from 3.6 F' !. 0 then the term in the square brackets is 

negative, and thus we require 

dXl (t) (B-9}
dt =0 at the unconstrained optimum Ill 

This is the constant exit conversion policy and represents a necessary 

condition for the optimum of the unconstrained region. 

See also section 5.4.2. 



APPENDIX C 

An Alternative Proof of the Constant Conversion Policy for Zero Order Reactions 

Proposition C 

Given the two conditions below, a necessary condition for the 

system to be optimal, is that the exit conversion be constant over the 

unconstra·i ned region. 

(i) f(X) = cX c arbitrary positive constant 

( i i ) X { t) = 0 fpr a11 0 < t < 1 
0 

Proof 

From {5-77) with F=l (without loss of generality) for an unconstrained 

optimum, we require 

{C-1) 


l a ijiK 
dz + J>-1 a t o dz {C-2) 

0 

From condition (i} and {5-43) remembering that F=l 

a >.. __l = >.. 2k
0 

gc {C-3) 
a z 

From { 4-8) a >..23t = >-2kofg' - >-1Ko {C-4) 

Integrating (C-3) gives 

>..1{z ,t) = 1 + c j)..2k gdz' (C-5)
0 

1 

Differentiating (C-5) with respect to t, we have, using (C-4) and second 

state equations (3-55) 
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(C-6) 


From the first state equation (3-54), for zero order reaction, we 

have (using the properties of variables in 3.6) 

(C-7) 


and also the particular integral 


(C-8) 


Substitute (C-6) and (C-7) into (C-2) 


Substituting (C-10) and (C-5) into (C-9) 

dX ] 1 z 
! - 1 = cj(l/IK )V dz +f[-3- (il) (l+cj>- k gdz 0 )]dz (C-11)p dt 0 JI 3 Z 3 t 2 0

0 0 1 

Integrating the first integral on the rhs by parts, we have, using (C-8) 

1 1z=l !3dX dXl dXo 3 X1l - = cXV - cjxv• dz + :n:-- - - + c - (-)S dz (C-12)p dt at dt a z .a tz=o 0
0z 

where S =J>- k gdz• {C-13)2 0 
1 

Now using condition (ii), we may eliminate the second derivative on the 

rhs of (C-12), also the conditions on Vare such that 

V(z=l,t) = 0 (C-14) 



160. 


From condition (ii) X(z=O,t} = O, thus the first term on the rhs 

of (6-12) is eliminated, leaving 

dX l dX .j
! _l(t)= -c jxv• dz + -1 + c h(il) s dz . (C-15) 
p dt dt a z a t 

0 ' 0 

Integrating the last term on the rhs by parts and using the fact that 

S(z=l,t) = 0 (c-15) 

and condition (ii) we obtain 

1-c}lL S' dz+ 
dX

a t dt 
0 

(C-16) 

From (5-76} at the optimum, we require 

{C•l 7) 

substituting the correct form for~= cX from condition (i) and substituting 


for the last integral in (C-16): [ k 
0 

t. 2g: ~ dz from (C-17) we have: 


l dX1 dX1 fl dX1 a t. 2gj
p Cit= dt + c XK k g>..1dz - [at - c k X t dz] (C-18)

0 0 0 3 
0 

a x2g
'substituting for 

0 
t in (C-18) using {C-4) and the second state equation 

{3-55}. 
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A1 so, 


[cf 5-26 in 5.6J 


substitute (C-19) into {C·18) qiving 

dX ' 
1 1 - 0 (C-20)'P dt ­

For non zero p this implies that the necessary condition for 

unconstrained optimum is 

-0 < t (C-21)<.. t 

-See also 5.5.1 




APPENDIX D 

COMPUTER PROGRAMS 

The computer program is divided into 10 sections. The first 

section is the main program; it sets all the paramaters and constants 

in the system and controls the iterations according to one of the ­

three numerical algorithms outlined in Chapter 6. The remaining 9 

sections are all subroutines which handle the integration and output 

of the system variables. The program division is summarized below. 

l. 	 Main Program 

Sets paramaters, constants, boundary conditions, controls 

iterations according to either 

(i) Gradient Algorithm (6.3.1) 

(ii) Fixed point Algorithm (6.3.2) 

(iii) Predictor-Corrector Algorithm (6.3.3) 

2. 	 Subroutine STATE 

Controls the grid point structure in the integration of the 

state variables and uses subroutine EUL to perform the -integrations. 

3. 	 Subroutine ADJNT 

Controls the grid point structure in the backward integration 

of the adjoint variables and use subroutines EUL to perform the integrations. 

4. 	 Subroutines Fl, F2, F3, F4 

These equations supply the right hand sides of the system 

equations in· the following order 

SUB 	 Fl = Right hand side of (6-6} 

F2 = Right hand side of (6-7) 

F3 = Right hand side of (6-12) 
F4 = Right 	hand side of (6-13) (and calculates the Hamiltonian) 
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5. Subroutine EUL 

This is a modified Euler integration subroutine. It performs 

the iterative, pointwise integration according to the scheme outlined 

in 6.2a.l. Used by subroutines STATE and ADJNT. 

6. Subroutine ONC 

Same as EUL, but used along boundaries where no trial and 

error, simultaneous iterations is required. 

7. 	 Subroutine OUTPUT 

This is simply a data transfer routine and outputs all the 

variables of interest. 

A correspondence is drawn between program variables and the 

symbols 	 used here. 

See Table 6-13. 
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PROGRAM VARIABLE 

x ­

SI 

Bl 

82 

GAMM 

ALPHA 
! 

NT 

NZ 

LCl 

LC2 

T0 
p 

XJ 

TMAX 

TMIN 

TI 

XM 

XN 

XK0 

A 

B 

XKK0 

SIMIN 

XMAX 

TF 

" PRESENT VARIABLE 


X(z,t) (3-54) 

w(z,t) (3-58) 

Al (z ,t) (4-4) 

).2(z;t) (4-8) 

y(t) (6-17) 

a (6-23) 
I 

Nt 	 (6-8) 

(6-9)NZ 

line counter for OUTPUT 

line counter for OUTPUT 

T (t) (3-43)
0 

p 	 (3-27) . 
Jl (3-42) 

' T * 	 (3-47)
0 

(3-47)To* 

T(o) 
 initial guess (6.3.1)

0 

m (3-37) 

n (3-36) 

k
0 
(t) (3-47) 

c (6-1) 

d 	 (6-1) 

K (t) 	 (3-Sla)
0 

{ l 0-6)1'1min 
Xmax 	 (6 14) 

T 	 (3-14) 
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PROGRAM VARIABLE 


TZ 

XKP 

PERROR 

ECR 

MA 

SIIl 

Bl Il 

B2I1 

XIl 
PX 

F 

FF 

PRESENT VARIABLE 


ta (3-18) 

k. 
~ 

+ (3-24a) 

Test for increase in Objective P 


Ee (3-7) 


a (3-26) 


4'; (z) (3-22) 


>-1 (1 ,t) (4-4) 


>. (0,z) (4-8)
2

X
0 
(t) (3-21) 

p (3-58) 

f(X' (3-53) 

F (X) (3-52) 

Table 6-13 Program variables correspondence 




----------------·-- --- --------­. 
l.O 
l.O c THE GRAn I fNT Mr nrnn I~! Fur--1CT I ON SPA CF- c ========================================= 

PROGRAM TST ( J NPUT, nUTPlJT, TAPF5:: J NPUT, TAPF6=01 ITPUT) 
COMMON TOC~6 1,xc17.?A >.sICl7•'6 ),A1<17,26 ),A2(17t26 ),

----------.....----,-,_fftf1'-'tTT7•-?nr-- --.---------------------------- ----------------­
0 T MENS! ON ~C2Al•7<2A),XK0(26)

nJµENSION XKn C2A >•PXC50)tfA(26)
COMMON /Al/P,TFtXN,X~,T7,XJ, XKPtXKKP,ECR•A•R tTAV,SIMINt

lXMAX . . 
CO~MON /A2/ JL2•IX2tJI l•IXltlS2tLSJtJl•Il 

COMMON/A3/Nl . 
COMMON /A4/ NT•NZ,KJl,LAlltlS3ttXJ,LX4tLS4•ll•l2 

-----------~__.~_EN5TO~Tr?Fl.Yrl?6Tt v2-c2-,,-r-. 77( 76T' YTC 2'6T .-z-:rrnT 
COMMON /AS/STORl tl7•?6)•LFIX

INTEGER SWTrH 
.sroR,clf,26) -

C MAIN PROGRAM _ . 
c SvJTcH3=1 CAUSES HAMTLTONTAN fVALUATION AT El\CH ~TFP 

---­

C 
c 
c 

INTPOL:l 
INTPOL:o 

NACtt 

CAUSES REST ESTIMATE nF GAMM USING CURVE FIT 
GA~M= 7oPEPCENT OF L~TEST GAMM/2.

IS NUMRER nF !Tf.:IZAl!ONS-10 WJ\IT gf-rDRE-A~Ol'\I 

C COUNTERS AND INITIAL rONDITIONS 
ALPHA:0.7 
GAMM=0.02 
NT=?~ 
NZ=16 

--------~-~L~r~2=xl~~---~~~~~~--~~~-~-~~~-~~-~~--~~-~~~~-
l =' 

XJ=•Ol
P=O 4 

TMAX:900. 
TMJN=700. 
TT.=800• 
.XM=2• x~-1=e. • n 

F:--U ;15 
A:l.O 
cqMJN:l .OE-06 
XMAX=o.99q9q 
TD=i>:> • 
TF=8•64E+4 *Tn ,

C TF~J~·16E+061?5•)*25•
TZ--• 

~~~-~~~- XKP-•8096~10 



. ,..... 
c.o Cr- XKP:20.24/C?.16f+n6)*TF 

PFPR0~<=.00001 
FCp=lt;OOO.

XK~AX:XKP*EXPc-f.CP/TM~X) 
XK~yN=XKP*EXPt-fCQ/TMTN) 
nMY=fXP(fCR*P/(T~AX +O.q/XJ)) 

----~-----~-ryN-;r_:Q;r;-) l(l(Kp:-;;-[)MY1fAt OB ( 0 • l ) I T7 
JF(XN.NE.l.lXKKP:nMY•<1.-co.1>•*<1.-XN))/CTZ•c1.-XN)) 
AAA~XKKp/(XKP*TFl**P 

2 F~~lif ~~fg~~~KP
TAV=(TMAX+TMJN>•n.s

HZ=t•/(NZ-1> ___________H~:~r-lf i ~ ~ ~ T-1 ) 
811 =1. 
B?I1=0. 
XIl=O• 


DO 15 I=i•"'T 

1~ q 1f;:g I 

_______l~S=---8~-~l~(N'-'-+-l•t>=~f~'~l~I~l______________________________________ 
DO ;q,-!=l •NZ 
SIJI.ll=srtl 

16 Ht:'. CTt f\! T) =R2 I1 
WRITE(6I 100)

100 FORMAT( Hl)
S\<: TCH=i.I 
JJ=o 

DO 510 I=l•NT 
------~5-1~0---x~K~O-'!fTl:XKP-~P (•EC -Hu-

DO 2000 LITER=lt4 
...IJ=JJ+ 1 

CALL STATE
IF(JJ.fQ.1lriO TO AOl 
GO TO 802 

801 CALL ADJNT 
__________o~o-t~-J-~~~t~-it~~---------------------------------

140 Y(JX2l=DHAM(JX2,JX1)

CALL QSFCH7tYtZtNZ)


EA (JXl l =Z CN7l
iRtTECbtl004l7CNZl 

1004 FORMATClOX,E]6.6>
141 CONTINUE 
802 CONTINUE 

DO 42 I=I,NT 



00 
. 

l.O ,..... 	 42 Y(J)=X(Nl,J)•)(CltT)
C/\LL QSFCHTtY,Z,l\IT)

rx_(,JJ>=ZCl\IT) 
WRrfF(6t304)~AMM . 

304 	 F0PMAT( ~ ~AMM:*tE16.4) 
1,1 R T T F ( 6 • 1 0 7 ) P X C J ,J ) . 

-------~~1-0---7------F-oRM"AI(- u PX =-----*--,T1c:; • S t I 
IFCJJ.FQ.l)WRTTF(~,120>

120 FORMAT( * TTER:O f)
121 FORMAT( * ITER:] o)

IF CJJ,f:Q• l > r.AI L OllTPUT <LCl tlC2)
IFC.JJ.EQ.llGO TO µOf!.
I F ( P X ( J J ) ·• <H • PX CJ,J-1 ) l G 0 TO 8 O 3 
Gn TO A04 	 . 

-------_,.,.s~o-3--_,,_rFTer-n:R-;-£~(~-.~4~,-G~o____...r-o~A~o~s~--------------------------

Gt.rv1M=GAMM*2 • 
GO TO 806 ­

804 SWTCH=l 
GAMM=GAMM13. 

806 	 CONT Il\!UE 
DO 700 	 I=ltNT 
GSTP=GAMM*FAC T>1TF 

-----------x.,..;K,...,,;0--o.,(~ll=XKO"TTIT-+-~s-T~P-_----------------------------

J F ( XKu CJ>. AE. XKMA X l XKo·c r > =XKMAX 
JFCXKQC!>.LE.XKMTN)XKOCI>=XKMIN
ToJI>=-EcR/ALOG(XKO(T)/XKPl

700 CONrINlJE . 
IFC~WTCH.EO.J>GO TO 8A5 

~000 	 CONTINUE
oOS 	 CONTINUE 

-------~--~-1'1P1:PXT~T.TY , 
IFfSWTCH.~0.1lCOMPJ=PX(JJ-l)

WPJyEC6t304)GAMM
WRyTEC6tl07lCOMPl

WRITEC6tl?.ll 
CALL OUTPUT(LC1,LC2)
DO 2001 MITE~=2•A 

CALL ADJr\JT
s1 oo 41 rn-=I•1'lT 

DO 40 II2=ltN7 
Y<II2>=DHA~CII2tITll _ 

Y2rII?l=sTOP?(J!?tII1>
Y1Ctl2l=STORJ<Il2•!Il)

4 0 	 CONTINUE 
CALL QSFCHZtY.ZtN7>

CALL QSFCHZiY2t72,N7)
CALL QSf CHZtY tZltNZ) 

http:WRITEC6tl?.ll
http:1'1P1:PXT~T.TY


.. ' 

(5, 

l.O 
r­ ~. I r ( 1- TJ • r· ,~ • "' 1 i ~:; c T n R , 

'"!n ru Pi 
R] )( I{ i.1 ( l J 1 ) ='( K ',/ /\ Y' 

:~i< u l (I I 1 l :: ;;<~•r.,,:< 
Gr1 Til n:o, 

R2 c(·;r\i r r r 11·;r 
K (1 ( f n ) :: ti l p w t\ {} ( ( ( !'>. l\ fl* 7? I f\i Z) ~~ p l I 7 1 ( N 7 ) , ~~ 

ll) +XKO(Jtll 
XK.· ill (IT 1 l =XKO (IT}) 

'93 CONllf'!Uf 
IF ( X Ko ( I I l l • LF. X K ~H f\.i) I( KO ( T I 1 ) =XKM IN 
IF C X Ko C I I 1 l • G F • X K ''A)() vK 0 C I I 1 ) =XKM AX 
TocII1l=-FCR/aLOGCXKOCIIlJ/XKP) 

1000 FnpMaT<El~·Sl 
----------~--~-rrr TETA' 91() o·o) 7TNzy-­

4 l CONT 1 NUE:' 
CALL STATF 
DO 72 T=l ,f'.JT 

72 Y3(y)::XCNZ,J)-X(l.Tl 
Ctd_l CJ~FCHT•Y1•73.f\IT) 

PX (MJTF.R) ::7] {f\IT) 
COMP?=PXCMTTFR) 

---------~···x ____________c-;1(0M Pl .;;. t nrJP ~f r-1 to IVir? 
TFCCAHS(XXrJl.LT•PfPRnRlGO TO Sn5 

COMPl=COMP2 . 
WRITEC6•101) M!TEq,pX(MITER)
CALL AnJNT . 

C.l\Ll OUTPUT CLCl •LC?) 
DO 341 JXl::l '"'T 
D0 340 JX?::l, r- 1 ?

3'4.,..,....0_ _,YTJX 2T::i 0 H'A M C~J X;? -.-J Xl r-------·-· 
CAIL QSFCH7•Ytlt1'.i7)

EAC,JXl)=ZCN7>
\illl(}Tt (6, 100~) 7 (N7l 

1003 fOQiv1ATCr:;X,fl6•6l 
341 CONT Jl'!UE 

on /Ql !=1 ,f\IT 
G~TP=GAMM*Fft( !)ITF 

-----------~~K·ocn =XKffTTn--+-f: s TP________________ 
IF ( X Ko ( I ) •GI:. XKM f\ X) X1< 0 ( T ) =X K ~AX 
IF(Xf\O(J) .. 1 f.XKMTN)Xi<O(!l=XKrv!If\1 
Tacil=-FCRIALOG(XKO(T)/XKP)

701 COi'.;T I NI Jf 
C:AL.L s r An: 

DO 85 I=ltl\IT 
85 Y3C1l=XCNZtJl-XCl,t) 

----cArc---osnHTtT~Zr.'Nn 

{; ( 1 • I ( 1 • .,;. p r ) -. IT F;.. xK0 t I I l' 

--------------~-------·------- -­

http:QSFCH7�Ytlt1'.i7
http:Y3(y)::XCNZ,J)-X(l.Tl


c 
---------------··---J-------- -------­. 

...... PXCMITERl:73CNT) . 
r­ WRJTEC6tl03) MITERtPX/MTTER)

103 FOR~AT(* TTER= *•I3•5X•* P=*,El6e6>
2001 cnNTil\llJE 
5 O 5 C: () t-.1 T J !\JUE ­

¥1PITE<6•100)
507 WRtTEC6t10Bl~IT~ , . 
108 FnRMATC/•20Xt* ITFP =*•I3t5Xe* ORJECTIVE FUNCTION=*•El6•~> 

CAIL oUTpUT CLC1,LC2)
STOP 
ENO 



-------------------------------------------

------·--·------------------ --------·~-------~-------- -----­,.... 
....... 
,.... c THE FIXED POINT METHOD IN FUNCTION SPACE c USING O~BACH/CROWE CONVERGENCE PROMOTION 

c ------------------------------------------­
PPOGRAM TST <INPUT~OUTPUT 1TAPE5=INPUT,TAPE6=0UTPUT) 

------------F-OHHON--tt<-26---t-,X-+1+--26----+t~I <-17-~6-7 81:-(-1:7-2-6-h-B2-t1-+7~2-&--+-)~-----------
i OHAM <17, 26) ' ' ' ' ' ' ' ' 

DIMENSION PX1<9> 1 Y(25 >.z.Z<26 >,AAX<30),XB<3>,PQ(<3), XK0<26)
OIMENSION XK01(C::'.t >,PX (?0)
COMMON /A1/P,TF,XN,XM,TZ,XJ, XKP,XKKP,ECR,A,B ,TAV,SIMIN,

1XMAX 
COMMON /A2/ JL2,IX2,JL1,IX1,LS2,LS1,J1,I1 

C 0 M ~1 ON I A3/N1 
-----------+,.,+to~~~~-~rr'A~lc~ ~-:~il,bA;~11~~r;~~l~~t'~~-~1 , L 2 

0 IM ENS I 0 N Z1 C 2 6 ) , Y 1 ( 2 6 ) 
COMMON /A5/STOR1C17126) ,LFIX

INTEGER SWTCHi,SWTCHc ,SWTCH3 


C MAit-1 PROGRAM 

C SWTCHi USED TO flOUNO MAX CORRECTION IN CONTROL 

---------+CT----~S...w-HT-G-H2 USEB--T-8--I-N!T-I-ATE-c2NO--GlH:ss-us-1-NG-8AGKWARt-tO-S+T+--Et-'-P-----------­
c SWTCH3=1 CAUSES HAMILTONIAN EVALUATION AT EACH STEP 
C INTPOL=1 CAUSES BEST ESTIMATE OF GAM~ USING CURVE FIT 
C INTPOL=O GAMM= 70PERCENT OF LATEST GAMM/2.
C NACEL IS NUMBER OF ITERATIONS TO WAIT BEFORE ACCfLERATION 

C COUNTERS AND INITIAL CONDITIONS 
SWTCH 3=0 

~---------~Nf~Bt--iiii-------~~---~-----~--------------~-~-~~---
NACEL=3 
ALPHA=0.6 

GAM=. 05 
NT=25 
NZ=16 
LC2=1 
LC1=3 

~-------~-+-= 

XJ=. 01 
TMA X=90 0 • 
TMIN=7 0 0 • 
TI=750. 
- XN= 1. 0 

XM= 2. 0 
B=0.6 

11 ... -t n 



. 
,.....C\J SIMIN=1.0E-06 
r­ .XMAX=o.ggggg

T0=25. 
TF=B.64Et4 •TO 

C TF=<2.16E+06/2S.>•2s.
T7=1. 

------~---~~P;-.8-0-96*1"0 
C XKP=20.24/(2.16E+Oo)•TF

PERROR=.'J1001 
EC~=15000. 

XKMAX=XKP•EXP<-ECR/TMAX)
XKMIN=XKP•EXP<-ECR/TMIN>
XKS=<XKMAX-XKMIN)

OMY=EXP<ECR•P/{TMAX +0.9/XJ))
-----------+-1-fXN--.EG.--h+XKKP-•-DM-¥-*-ALOG<0.1> 1T1-------------------------­

!FC XN.NE.1. >XKKP=DMV•<1.-<0.1> •• c1.-XN)) / CTZ• <1.-XN))
AAA= XKKP I CXKP•T F>•• P 
WRITEC6,2>XKKP

2 FORMATCE16.5)
TAV=CTMAX+TMIN>•o.s 

NZ1=NZ-1 

NT1=N T-1 


-----------t'H"-1i;-;N+-------------------------------------­
NZ 11=NZ-2 
HZ=i. l<NZ-1> 
HT=1. /(NT-1>

SII1=1. 
B1I1=1. 
8211=0. 
XI 1=0. 

------~9~9~9-t---~G.-ttON-l~NY-1"'--------------------------------__.. 
00 15 I=1,NT 


XC1fI>=XI1 

TO < >=TI 

15 B1CNZ,I>=B1I1 
no 16 I=1 NZ 
SI< I , 1> =sf I 1 

16 82CI,NT>=B2I1 
------------1~~1R~,IlEC6,100)

100 FORMATC1H1> 
KOUNT=i 
JJ=O 
IJK=1 

I JK1=1 


LXS=O 

SWTCH 1=0

LFIX­



-

M 

........ 
..... 	 KOUNTY=-1 

IAC=O 
ICOUNT=-1 

c INTFGRATION OF STATE VARIABLES 
500 	 CONTINUE 

St..JTCH 2= 0 
------~----€-Al:l-&TA-T~------------------------------­

IF <IJK. EQ. O) GO TO 501 


510 Q~or1~);~R~~~XPC-ECR/TOCI))

C INTEGRATION OF ADJOINT VARIABLES 

CALL AOJNT 
501 	 CONTINUE. 

JJ=JJ+-1 
-----------ttt-ic--u-C--J~-1--,-N-+-T---------------------------------­

42 	 Y<I>=X<NZ,I>-X<1,I>

CA LL QSF <HTtY, Z, NT>


PX CJ J) =Z ( N )
WRITEC6,304>GAMM

304 FORMAT( • GAMM=•,E16.4) 


I~~f6B~~f=tb!~~~~¥~E <o 10)

--------'11-f-101---+FBRM-A-T+l-,.....----AoeEt-ERA-Tf-~-/-1--------------------------­

107 FORMAT<!,• PX= •,E15.S>
IFCKOUNT.E0.1.AND.JJ.EQ.1)G0 TO 48 

GO TO 	 49 
48 COMP1=PXCJJ)

WRITE<6,103)KOUNT,COMP1
CALL OUTPUTCLC1,LC2>
KOUNT=2 · 

-----------+..++--fe-5~----------------------------------­
49 	 I Ft KO UN T. GT. 1. ANO. J J. Ea. 1>Go TO 50 

GO TO 	 51 
50 	 COMP2=PX ( JJ)

KOUNT=KOUNT+-1 
KKOUNT=KOUNT-1 
XXC=CCOMP1-COMP2)/COMP2
IF<<ABS<XXC>>.LT.PERROR>GO TO 505 

------------tt-·-+K*-BUN~~-G{}----1-1rt---c,....,..;1t-------------------­
G O TO 	 221 

220 l FI X=O 
SWTCH3=0 

KOUNTY=-1 
GO TO 	 421 

221 CONTINUE 
IFCKOUNTY.E0.1>GO TO 421 
IFC(ABSCXXC>>.L+.-o~.~1~>_..,G~Ot--+T~0--4~2-H-------------------------­



y 

"' """ 	 GO TO 421- 42 0 	 LFIX=1 
KOUN TY=i 

CALL AOJNT 
421 CONTINUE 

roMP1=COMP2 
-----------+F-H:FlKrEQ.,-1-)SWf-€-H3=-1----------------------------­

WR ITE <6~103> KKOU NT1C OMP2 

CALL OuTPUT(LC1,L~2>


10 3 FORMAT<• ITER= •,I3,5X,• P = •,E16.6)

51 	 CONTINUE 

IFCLFIX.EQ.1)G0 TO 4521 
!F{JJ.EQ.i)GO TO 47 
IFCIJKi.EQ.O>GO TO 512 

-----------+-R-PX·f·Jdh-Efh-P-X-+JJ-1+.A-NB.*K~**A-*9-A~-..O-+(.... ~ --------­N-+T-.-) • ..-E-Q~1-+X...-K-M-A...-X+-) 
1 GO TO 4521 

IFCPX(JJ>.EQ.PX(JJ-1>.ANO.SWTCH1.EQ.1> GO TO 4521 
IF<PX(JJ>.GT.PXCJJ-1))G0 TO 44 

GO TO 45 . 

44 GAMM=GAMM•2. 


GO TO 56 
45 	 IF<JJ.E0.2>GO TO 451 

----------t-r~~·-T-0-·~_,,_____________________________________ 
451 	 GAM=GAM/15.


IFCGAM.LT.1.0E-10>GO TO 507 

JJ=1 
GO TO 47 

60 0 GAMM=- .005 

GAM=-GA MM/5 • 


SW TC H2=1 
-----------,.-1J::.a---------------------~-------------------

GO TO 56 
452 	 IF<INTPOL.EQ.O>GO TO 4521 

GO TO 4522 
4521 	 GAMM=O.o•GAMMl2. 

GAM=GAMM•O. 75 
IJK1= O 
IXI=8 

~H"t-----------------
4522 	 CONT IN U E 

PX1 ( 9} =PX CJJ)
PX1 ( 5) =PX CJJ-1)
PX1C1>=PX(JJ-2)

P'O ( g ) =GAMM 

PQ9=PQ (9)

ZS=GAMM/2.
FLESQ-GAMM-ZS 



------------ -----
IJ') 
....... 
,.... YS=FLESQ•O. 25 


PQC1>=ZS•0.5 

PQC2>=-YS-"6.+ZS 

PQ{ 3>=-YS•4.+ZS 

PQC4>=-YS•2.+ZS 

PQC5>=ZS


----------P-0l6)--=Z-S +¥--"<--------------------------------­
PQ C 7 >=ZS +vs•2. 
PQC8>=ZS +vs•3. 

IJK1=0 
I JK=O 

JXI=1 

GO TO 513 

512 PX1 (IX! ) =PX ( JJ)
-----------+F--<--B<I.-£-G.-4->-I-X-1--------------------------------­

T F <I XI. EQ. 8) GO TO 514 
513 GAM~=PQ <IXI+1> 

GO TO 56 
47 GA MM=GAM 
56 CONTINUE 

IFCSWTCH3.E0.1>GO TO 57 
IFCJJ.EQ.1>GO TO 57 

-----------H-10-7-00---!--::--1-,N"f- -----------------------------­
GS TP= GAMM•8i (1, ! ) /TF
IFCCABSCGSTP>>.GT.XKS>GO TO 5 
GO TO 6 

5 GSTP=XKS 
IFtGSTP.LT.OlGSTP=-XKS 

SWTCH1=1 

6 CONT I NUE 


---------K--0<-I-+---XKS+-<-H • GS-T+'----------------------------------­
I F C XKO CI> .GE. XKMAX) XKO (!)::XKMAX
IF<XKO<I>.LE.XKMIN>XKO<I>=XKMIN 
TO(I>=-ECR/ALOGCXKO<Il/XKP)

70 0 CONTINUE 
GO TO 58 

57 DO 41 II1=1,NT
00 40 II2=1,NZ

-----------v-+-f--1-2}-::-QHAM-{-'I-I-2,I-I-1-+-------------------------------­
IF CL FIX. E Q. O) GO TO 40 
Y1 <II2> =STOR1<II2,II1> 

40 CONTINUE 
CALL QSF <HZ1Y1Z,NZ>
IF<LFIX.EO.oluO TO 80 
CALL QSF CHZ,Y1iZ1tNZ)

IF<II1.EQ.NT>l70 O 81 



. ---------- -­
c.o 
....... 
,.... XKO CI Ii) =XKMAX81 

GO TO 83 
CONTINUE82 

X K 0 ( I I1) = AL PH A..,. ( C(A AA..,. Z (NZ) ..,. P) IZ 1 <NZ> ) ..,. ..,. C 1 •I C1.- P) ) /TF -XKOCII1 
1>> +XKOCII1> 

ALPHA=ALPHA-.05 
----------~AtPHA-.-t-T-eil.-1-t-AtPftA=-6-.-+----------------------------­

83 CONT INUE 
IFCXKOCII1>.LE.XKMINlXKOCII1>=XKMIN 
IFCXKOCII1>.GE.XKMAX>XKO<II1>=XKMAX 
ACEL<IAC+11II1>=XKOCII1> 
IF<IAC.EQ.z)GO TO 91 
GO TO 90 

91 CONT !NUE 
----------1-<-l-I-il-;-A-GF.H-3-,-I--!4+--AGE--l:-+2-,-I-! -'l-+------------------------­

W2<II1>=ACEL<2, I I 1 > - ACE L <1, I! 1)
90 CONTINUE 

Tn<II1>=-ECR/ALOGCXKO<II1)/XKP>
GO TO 4i 

80 CONTINUE 
GSTP=GAMM•Z<NZ)/TF
IFC<ABSCGSTP>>.GT.XKS>GO TO 7 

------------1~+--~0 
7 GSTP= XKS 

IF<GSTP.LT.O>GSTP=-XKS 
SWTCHi=i 

8 CONTINUE 
XKOCIIi>=XK01<II1>tGSTP 
lFCXKOCII1>.GE.XKMAX>XKOCII1>=XKMAX 
IFCXKOCII1>.LE.XKMIN>XKOCII1l=XKMIN 

------------+-{H-I--!--1:) =-ECR-IA-t--9-G ( X K 9 +--'CI,_I,_,1,_,),___,./,_,X....,Ko--~---------------------------
81 Ci, II1> =Z CNZ> 
WRITEC6,iOOO>ZCNZ>

1000 FORMATCE16.5)
41 CONT I NUE 

IFCLFIX.EO.O>GO TO 88 
IFCIAC.EQ.2)GO TO 85 
GO TO 86 

------~s~s---I~AG~---------------------'---------------------------
I COUNT= IC OUN T •1 

IFCICOUNT.EQ.NACEL>GO TO 92 
GO TO 98 

92 ICOUNT=O 
94 CONTINUE 

SUM1= O. 
SUM2=0. 
00 96 I-1,NT 

http:ALPHA=ALPHA-.05


-----"--------------------------~ 
1' 
1' 
r­ SlJM2=SU'12+W2 CI) ••2 

SUM1=SUM1+W1CI>••296 
Wt1 =SQRT C SUM 1/SUM2>

SGN1=W1(1),.W2(1)
SGN2=W1C10>•w2c10> 
!FCSGN1.LT.O.OR.SGN2.LT.O>WM=•WM-----------xtiii>;A~rt-12, n +o. 9 • cXKO_<_I_> w_M_>---------------­___A_C_E_L_<_2_,_I_>_>_1_c_1_._o___ 

IF< X Ko< r >.GT. xKM AX> XKo< I>= XKH AX 
IFCXKOCI>.LT.XKMIN>XKOCI>=XKHIN 
Tn<I>=-ECR/ALOG(XKO<I>IXKP)

97 CO NT I NUE 
98 CONT I NUE 

00 87 I=1,NT 
----------~-,Et-th~~~~E+L~<~2--.-t-+---------------------------------

87 ACEL<2,r>=xKO<I>
GO TO 88 

86 JAC=IAC+1 
88 CONT I NUE 
58 IJK=O 

IFCSWTCH2.E0.1>IJK=1 
IF<IJK1.EQ.1>GO TO 500 

----------I~X)(-!I-~*f~~-- ---------------------------------­
IF< IX I. EQ. 9 >GO TO 515 

GO TO 500 

514 IF<GAMM.LT.1.o.oR.GAMM.GT.100.>GO TO 516 


GO TO 518 
516 no 517 I=1,9
517 PQCI>=PQCI)/PQC9>

LXS=1 
-------5-'l-1-l'.8--+.-GAt-t---t-E-S-0-<-A-AX 1 XB, PQ t PX 1y2, 9) ---­

4GAMM =- XB ( 2) I Cc:::• • XB <.5) ) 0 • 7 0 
GAMPQ=GAMM•PQ9

IFCLXS.EQ.1)GO TO 519 
GO TO 520 

519 GAM~1=GAMPQ
LXS=O 

520 CONTINUE 
----------.....6--T 0 5 6 

515 JJ=O 
IJK=1 

I JK1 =1 
SWTCH1=0 

GO TO 500 

505 CONTINUE 


LFIX=O 
f'I\ I I 11.n Ill.IT 

-~-----------------------------------------------------------------------------------------------------



-------------- ---
00 
,.... "' WRITE <o 100)

r:;o1 WRITE<i,108>KKOUNT,COMP2
10 8 FORMAT<lt20X,• ITER =•,I3,5X,• OBJECTIVE FUNCTION=•,E16.6}

CALL OU PUT <LC1,LC2>
STOP 
EN.D 



---------------------------------------------------

--

-------------------------·------------------------------------------­

~ ,_ c THE PREOIC TO~- CORRECTOR METH OD IN FUNCTION SPACE c --------------------------------------------------­
PROGRAM TST <INPUT,OUTPUT~TAPE5=INPUTlTAPE6=0UTPUT)
COMMON TOC51 >,XC31,51 >,~IC31,51 ),8 {31,51 >,B2<31,S1 >, 

------~---+--HtfAMf3t,-5f-l -- - - --------- - -------------------­
DIMENSION PXi(g)l. Y(51 >1Z<51 >,AAX<30>,xe<3>,PQ(Y), XKOC51)

0 IM ENS I 0 N X K 0 1 <? 1 > , PX <? 0 > 
COMMON /A1/P,TF,XN,XM,TZ,XJ, XKP,XKKP,ECR,A,B ,TAV,SIMIN,

1XMAX 
COMMON /A2/ JL2,IX2,JL1,IX1 7 LS2,LS1,J1,I1

C0"1MON/A3/N1 
· COMMON /A4/ NT,NZi~11,LA111LS3,LX3,LX4,LS4,L1,L2

----------+-HM-1-ITf-trER SHTCHi-,-S-W+titt-C--,SH-"ft.'tt-3-----------------------------­

C "1A IN PROGRAM 
C SWTCH1 USED TO BOUND MAX CORRECTION IN CONTROL 
C SWTCH2 USED TO INITIATE 2NO GUESS USING BACKWARD STEP
C SWTCH3=1 CAUSES HAMILTONIAN EVALUATION AT EACH STEP 
C !NTPOL=1 CAUSES BEST ESTIMATE OF GAMM USING CURVE FIT 
C INTPOL=O GAHM= 70PERCENT OF LATEST GAMH/2. 

C COUNTERS ANO INITIAL CONDITIONS 
GAM=.03 

SWTCH 3=0 
NT=25 

NZ=15 
LC2=1 

LC1=2 
-------------l(-,-f·!:h.rl0'+"11--------­

TMA X= 900. 
TI=800. 
TMIN=?OO. 

P=0.4 
XM=2. 
XN=1. 
n=o.o ____________.,__-4­

SI MIN=. 3 
XMAX=o.ggggg ­
1F=<2.16E+06/25.>•25.
TZ=1.
ECR=15000. 
XKP=20.24/C2.16E•06>•TF

PERROR=. 00001 
Xl<HAX=XKP*EXP<· EGR/TMAX> 



-------------------------
c 
. 

co,..... XKMIN=XKP•EXPC-ECR/TMIN)
XKS=CXKMAX-XKMIN> 12. 

OMY=EXP<ECR•P/{TMAX •0.9/XJ))
!FCXN.EQ.1.)XKKP=-DMV•ALOGC0.1)/TZ

IFCXN.NE.1.>XKKP=DMY•<1.-<o.11••c1.-XN))/(TZ•c1.-XN)}
WRITEC6,2)XKKP

-------------BRMA-7-CE--1-&e-57------------­
T AV= <TM AX• TMI N>•C. 5 

NZt=NZ-1 
NTi=NT-1 

NT11=NT-2 
NZ11=NZ-2 
HZ=1.l<NZ-1> 
HT=1./CNT-1>

--------------'."<--Hi:-----.------------------------------------­
8111=1. 
8211=0. 
XI 1= 0 • no 15 I=1,NT
XC1f I>=XI1 
TO< >=TI 

15 81CNZ!I>=B1I1 
-------------lo~o+~1~b..,__±-=-1. N-.;1------------------------------------~-

s 1 <I ,1> =St Ii 
16 8? CI, NT> =B2I1 

WRITEC6,100)
10 0 FORMATC1H1)

KOUNT=1 
JJ=O 

IJK=1 ___________,___._ ~~-+------------------------------------~----
LXS= O 

SWTCH 1=0 
INTPOL= 0 

c INTEGRATION OF STATE VARIABLES 
50 0 CONTINUE 

SWTCH2=0 
CALL STATE ­

------------+HN*---f-fh-fJ-~1-----------------------------------
no 510 1=1,NT

510 XK01CI>=XKP•EXPC~ECR/TOC!l)
C INTEGRATION OF ADJOINT VARIABLES 

CALL AOJNT 
501 CONTINUE 

IFCSWTCH3.EQ.t>CALL AOJNT 
JJ=JJ+1 
nn I.? T-'4 _t..IT 
"O'·-u---~--~....------. 



------------------------ ---
r-
o:> 42 YCI>=XCNZ,Il-Xf1~I>,.... .CALL OSFCHTfY,Z,NT>

PXCJJl=ZCN ) 
WRITF.C6,304>G~MM

304 FORMAT(• GAMM=•,E16.4>
WRITE<6,107)PX(JJ) 

-----~·'-"1!-+l0>-<1'7~-F-0RMAT-<l.-----P-X-:---,-Ei-5.-5-)
IF CKOUNT. E:Q.1. ANO.JJ • EQ.1) GO TO 48 

GO TO 49 
COMPi=PX CJJ)48 

WPITEC6,103)KOUNT,COMP1
CALL OUTPUTtLC1,LC2>
KOUNT=2 . 
GO TO 51 

________.4,.,_.g-t---I-HF~-fKSUNT.G-=r.-1--.-A-N-eWd-.--+-E»Q~.,_1+)-nGttO--+THQ-SH-0------------------------~-
GO TO 51 

50 COMP 2=PX ( JJ)
KOUNT=KOUNT+1 
KKOUNT=KOUNT-1 
XXC=CCOMP1-COMP2)/COMP2
IFCCABS<XXC>>.LT.PERROR>GO TO 505 

COMP i=C OMP2 
----------~,HE-tf>T-1--03-l--KK9UN-"h-G-BM~ 

CALL OUTPUTCLC1,LC2> · 
51 CONTINUE 
103 FORMAT(• ITER= •,I3,5X,¥ P = •,E16.6)

IFCJJ.EQ.1)G0 TO 47 
IFCIJK1.EQ.OlGO TO 512 

IFCPX<JJ>.EQ.PX<JJ-i>.AND.XKOC1>.EQ.XKMAX.ANO.XKOCNT>.EQ.XKMAX>
1 GO TO 4521 

------------F-tP-X+d--J-} • EQ. PX <-.td--1-t-.-A+W •SU TCH1 • EQ • il GO TQ-4~-'t------------------
I F <PX {JJ >.GT. PX <JJ-1)) GO TO 44 

GO TO 45 
44 GAMM=GAMM•2,

GO TO 56 
45 IFCJJ.EQ.2)GO TO 451 

GO TO 452 
451 r; A "1 =GA t1/15 • 

----------+F+G-AM.LT.1eBE•10)GO
JJ=1 
GO TO 47 

60 0 GAM"'I=- .005 
GAM=-GAMM/5.

SWTCH 2=1 
JJ=O 
GO TO 56 

l.C:., TC'/ '1"~1TDl'\I C'I'\ ft\ f"l"I Tl'\ I. C:.,-t 
..,.---7~~-.---~-,-~-~~.----u1-~ 1 -~;,,-~-.-



·---------·-------­. 
N 
c:o GO TO 4522 
r-: 4521 GAMM=0.6•GAMMl2. 

IJK1=0 
IXI=8 
GO TO 56 

4522 CONTINUE 
------~----X1·{~}=PX-h:hH -·-····­

PX1<5>=PXCJJ-1)
PX1 (1) =PX(JJ-2)

PQ(9)=GAMM
PQ9=PQ ( 9)

POC5>=GAMMl2. 
PQ(1)=GAM!vll4.
FLESQ=CGAMM-GAMM/2.> 

----------P-&{-2->-'=-FlE-SOl--2.-.._0-.-7-5-+&-AMtfA~---------------------------·· 
PQC3>=-FLESQ/2.•0.50 tGAMM/2e
P0<4>=-FLES0/2.•o.2s +GAMM/2.
POC6)=+FLES0•0.25 +GAMM/2.
POC7)=+FLESQ•0.50 +GAMM/2.
P0{8)=tFLESQ•0.75 tGAMM/2.
IJK1=0 

IJK=O 
-~---------~x~~-1-----------------------------------------

Go TO 513 
512 PXi<IXI >=PXCJJ}

IFCIXI.E0.4)!XI=5
IF<IXI.EQ.8) GO TO S14 

513 GAMM=PQCIXI+1)
GO TO 56 

47 GAMM=GAM 
--------..5io.-o---+G8NT-INUE­

IF< SWTCH 3. E0.1) G 0 TO 57 
IF<JJ.EQ.i)GQ TO 57 
00 700 I=i NT 
GSTP=GAMM•btct,IJ/TF · 
IF<CABSCGSTP>J.GT.XKS>GO TO 5 
GO TO 6 

5 GSTP=XKS 
----------;~-fG-STP-.-t;-h--0) GST P=-*K5---------------------------------­

S WT CH1=1 
6 CONTINUE . 

X K 0 C I >=XK 0 1 ( I > + GS T P 
IFCXKO<I>.GE.XKMAX)XKO<I>=XKMAX
IFCXKOCI>.LE.XKMIN>XKO<I>=XKMIN 
TO<I>=-ECR/ALOGCXKO (l)/XKP>

700 CONTINUE 
r:n Tn c:::A. 

http:P0{8)=tFLESQ�0.75
http:POC7)=+FLESQ�0.50
http:POC6)=+FLES0�0.25
http:P0<4>=-FLES0/2.�o.2s
http:PQC3>=-FLESQ/2.�0.50


("I') 
00.... 	 57 00 41 II1=1,.NT

00 4 0 I I 2=1, NZ 
40 YCII2>=DHAMCII2,TI1>

CALL QSFCHZ,Y,Z,NZ>
GSTP=GAMM•Z<NZ)/TF
IFCCA8SCGSTP>>.GT.XKS>GO TO 7 

------h.0---T0 -8---------------­
7 	 GSTP=XKS 

IF(GSTP.LT.O)GSTP=-XKS
SWTCH1=1 

8 CONTINUE 
XKO<II1>=XK01CII1>•GSTP 
IF<XKOCII1>.GE.XKMAX>XKOCII1l=XKMAX 
IFCXKOCII1l.LE.XKMIN>XKOCII1>=XKMIN 

-------------+--f'-H-I-H=-EGR/Al-OG--{*~G-t-H-i+l-~r---------------------------
81C1 II1>=Z<NZ>
WRIT~<6,1010>Z<NZ)

1000 FORHATCE1o.5)
41 	 CO NT I NUE 
58 	 IJK=O . 


IFCSWTCH2.EQ.1>IJK=1

IFCIJK1.EQ.1)G0 TO 500 

----------+-i\--I-=!*I+-1-------------------------------------­
IFCIXI.EQ.9lGO TO 515 

GO TO 	 500 
514 IFCGAMM.LT.1.o.oR.GAHM.GT.100.>GO TO 516

GO TO 	 518 
. 515 DO 517 I=1,9

517 	 PO<I>=PQCI)/PQC9)
LXS=1 

51--------~s---1g~h~~~t§~Tz:~~~7~~~ 1 iij:jh 
f;AMPQ=GAHM•PQ9

IFCLXS.EQ.1)GO TO 519 
GO TO 	 520 

519 GAMM =GAMPQ
LXS=O 

520 CONTINUE · 
l'""f'I Tf'I 	 C:C. 
'-JV-----,--~ 

515 JJ=O 
IJK=1 

IJK1=1 
SWTCH1=0 

GO TO 	 500 
505 CONTINUE 

-------~----c: n 7 w~i}~J~~:~~~K~o~u~N~r-,~c~o~M~P~2------

http:II1=1,.NT


184 
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-------. -------~-------·---· 

-LO 

co c IV'()D IF t ED Elli ER P.JTF:GR AT I nN SlJAPOlJT TNEc:; 


c ========================================= 


c *************************************** ___________ ---------- -------------­_,._.._,._,p RCT!TT!NF--STAT~---------------

C ****************'********************** 
EXTlR~AL Fl,F2,F3,F4 
C 0 ~~ M 0 N T 0 ( ? 6 > ' X ( l 7 , 2 ,_., ) • S I ( l 7 ' ? 6 ) • R 1 ( 1 7 t 2 6 ) t B2 ( 1 7 t 2 6 ) ' 

1 f)HtiMCl7t2i'd
COMMON IAl/P,Tf tXN,XM,TZ,XJt XKPtXKKPtECR•A•B tTAVtSIMINt 

lXMAX · 
___________c_n~MM01'1 /A?/ JI 2.rx2.J1 1' tx1tLS2.LS}'JpI1 -----------­

, _ MlVft'Tf\l/JY37N 1 . ­
COMMON IA4/ NTtNZ•Kll•LAlltLS3ttX3tLX4tLS4tLl•L2 
JLl=l 
LSl=l 
1'171 :1\17-1 
NZ!! =NZ-2 


NTl=NT-1 

---------------'-NTLl=~T-'--------------------------~--------------HZ= l • f\171 

H:l;=l .INTl 
00 C.O I=l tNZl 
IXl=I 
Cfl L L O 1\1 C ( F l • X 1 • XCI • 1 l • !'.I Z • 1 • ) 
IF(Xl.GTtXMAX)Xl=XMAX

20 X(J+l•l)=Xl 
----------+J-=L?=~l_________________ 

.c:;2=
Do ?l I=l,NTl
IX;;>=t 
CALL ONC<F?tXlt SI(l,I>tNT•l•)

IF(Xl.LT.SIMTN)X1=SJMJN

21 sl<ld+l>:Xl 


t:s2=0 
Lsl=l 
0033· ~J1=29NT 


JX2:Jl-l 

.._ILl=Jl 
DO ..:13 Il=2tNZ 
IXl::Il-1 
JLd=[l . 

CALL f_ UL ( F 1 • F,, ' X 1 • X 2' X CJ 1 • l • J l ) , SI ( I 1 t J 1-1 ) • l • 0 ) 
IF(Xl.r,TeXMAXlXl=XMAX
IF<X2.cr.sJMTN)X2=s~1~~~1~N~-~~~~~~~~~~~~~--

http:2.rx2.J1


------------------

. 
\,() 

ro X<Ilt,.Jll=Xl 

r- ST(J!,.Jl):X;:> 


33 
 CO~H I HJE 
RFrurm 

ENO 
---------------;t**~t#*~t**it***it*it****O--it*****if-"**~O**itit 

SllHPOIJT!l\IF. Afl,JNT 
c *************************************** 

fXTt.t<l'JAL Fl tF2tF3.F4 
C O M M 0 r'J T0 <? 6 I t X ( l 7 , 2 f., l t S I ( 1 7 • ;:> 6 l • B l ( 1 7 • ? 6 ) • F3 2 C1 7 t 2 6 ) • 

1 DHf\M<l7t26)
CUMMON /Al/PtTFtVN,Xµ,TZ,XJt XKPtXKKPtECRtA•R tTAVtSIMJNt 

lXMAX . 
------------opµON--/A ?-7 Jf_ 2.~-.rs-2--.i:sp-JT•Tr 

COM~"10N/ A3/Nl
C0 ~.1M0 ~.J I A 4 I NT t NZ • K 11 , l A 11 t LS 3 t L X 3 t l X 4 t LS 4 t l l , L 2 
NZ 1:1\IZ-l 
N7.l J.=NZ-2 

"1TJ=NT•l 
NT11=NT-2
HZ-1./NZI-------------H1=r;n1rr 

LS3:1 
Kl!=NT 
00 nO t=ltN71 

I X3=I-l 
CALL ONCCF3tX1 t8}CN7-I+1tNT>tNZt-1•> 

60 Rl CNZ-I tNTl =Xl 
LS'+=O 

·----------~AI-f=f~--------------------------------~ 

00 f>l t=ltNTl 
LX4=J-l 

CALL ONCCF4tXl t82CN7tNT-I+JltNTt .. 1•) 
61 R?,CNZtNT-I ):Xl

Lc:;3: 1 
L54=0 

rm .14 .J 2 =2 , ~.1 r-----------·rr=NT•Jz+1 --'----------------------------------­
1< 11=L1
LX4:J2-2 
DO J4 T2=2tNZ 

LX3:I?-2 

L~:N7-I2+1 
LAll=t2 . 

CALL UiL (f3tF4tX3.X4tRl CL2+l tl 1 l tR;> <L2tll+l) t•l •O>
81 CL2tLl):X3 ·-------------------­

http:tF2tF3.F4


. 
" 00 
..­ 34 

81?(L2,Lll=X4
coNTJNUE 

RF TURN 
Ef\JO 

c ********************•••••************** 
STJRRU11T TNP-Fl.-R?T iPR~,------ -­ -----­

c *************!************************* 
CO~uON T0(26 J,X(l7,26 lt51(17,;6 l•Rl(l7•26 ),R2(17,~6 ),

1 DH(IM(J.7,cfi)
com1iON /A4/ NTtNZ.Kll,LAll.LS3tLX3tLX4tLS4tLl.L2 
CO~MMJ/A3/Nl 
co~MON IAl/P,TFtXNtXMtTZ,XJt

1 XJV•A X 
XKP,XKKPtECR•A•R tTAVtSIMIN• 

cnr-:1r-.1on-n-s7S r OR 1 t] 7 t ?6) 'CF Ix 
!F(LS4eE~.Olr,O To 11 

GO TO 1.2 
12 l\i I\= N Z - N 1 - L X 4 

R1=tjl(NAtl\Jll
R2=X <~-IAt!<lll 

R3=SI CNA tKl l l 
R4:TO(Klll

-----------~,;:X(T9Rli~-------------------------

GO TO ~O 
11 NH=NT-Nl-LX4 

Rl=Rl (t All tl\IR\ 
Rc=X(LAllt NRl 

R3:s:1 <LAl l tl'lq)
0Rt+= T ( l'IR l 

Rt;:X(t•NR) 
-------------------------------------------------------~"----- "----­..-1	.....0----=ct:HITTl'.ITIE~-----

XKO= XKP* F X P ( - FCP / P 4) *T F 
XKK0=XKKP*FXPC-ErR*P/R4)

Z A 1 =f. r: J? I ( TI\ V -IHF?. -1~ X . I)
F:Xl=FXP( (R?-RSl*7Al)
F=(A+R*R?l*fYl . 
OF:H*FX}+(A+8*P2l*FX1*7Al
f--Y?:f_X}-1H~P 

------------~.A?=-1T;;;.-R?PHFXJ\J 

FF= ZA?*FX~*TZ 
nfF=<XN*<1~-P2f*~(XN-J,)*EX2+ZA2*EX2*P*ZAll*TZ
RA2=H2I*XKO*XM*R3**f~M-l.>*F -Rl*XKK0*FF 

!F(LfIX.EQ.l)r,n Tn ?0 
lJ:Rl {~R3*FF* XKKO 

V=R~I*R3**XM*F*XKO
IF(LS4,EQ,O)r,O Tn 15

Go-ru-14 



. 
co 
co f)HAM(LAlltNRl=U~•P/XKn -V/XKO.-- 15 

GO TO 13 
14 DHAMCNAtKll>=U*P/XKO-V/XKO 

r,o To 13 
20 IFCLS4.EQ.O)An Tn ??

Gn ro ?3 _ 
------· ---­-~--2....-2----<fJKl\MttATltl\JR) :R3*Ff"!~V-l 


STORl (LAlltNRl=R~T*R3**XM*F

GO ·To 13 

23 nHAM(NAtKll)=R3*FF*R1.
STOR1CNA•Klll=B?I*R3••XM*F 

13 RETURN 
f/\Jf) 

C ~tW***1''*'"'****-***~~*il'*~-ir*****~***"*****~ 

SURl~OUTINE F3 (Al T,R~l l 


c *************************************** 

COMMON TOC26 )tX(l7,2,_ >tSI<l7•?6 )tBl<l7•26 )t82<17•26 ), 

1 DHAM<l7•?6)
COMMON/A3/Nl . 

COMMON /A4/ NTtNZ1KlltlAll•LS3tl X3,LX4tLS4tlltl2
COMMON /AllP.TFtXN,XMiTZ,XJ, . XKP,XKKPtECRtA•B tTAVtSIMINt 

------'-------~!~Xfv1AX .. . . ---'-'-------------­
IF CL S3. EQ, Q) liO Tn 11 


GO TO 12 

11 N8:NT•Nl-LX3 


Rl =R~ ( L A 1 1 .' N 8 ) 
R2=X (LAll tl\IR) 

R3=SI <LAl l tf-.JB)

Rl+:TO (i\IR)

·--------~5:XTr9-l\IR·~------------------------------------

GO TO 10 
12 NA=NZ-""1-LX3 

Rl:R2(~.JA,Kll)
R?=X (l\!A tK} l) 

f~3=SI (NAtKll)


R4=TU(Kll) . 
R5=X<l•Kll)

--~~~~-1-o~~C~(~lHTfNTW -~~-----~~~~~-~~-~--------~~----~ 

XKo= K~BEXP(-FCR/R4)*TF 
XKKU:XKKP*FXP<-ErR*P/R4) 

ZA1=E.CRl(TAV~H>2*X.J)
fX.l.=t:XP( (R2-r<'l)*7Al)
F=<A+R*R2>*Ex1 . .. 
Df=B*EXl+CA+R*R2>*EXt*ZAl 
EX2=EXl**P 
ZA2=<r-;-;.·-R-2-.~,-*-*~X.~N---~~~~--



·-------- - . ·----­. 
O'l 
co 	 FF= 7A2*FX?*TZ.-	 DFF=cXN•cl.-R?)*•CXN-1.)•EX2+ZA2•FX2•P•ZAI>*TZ

RRJ:Rl*XKO*R3**XN•nF-P1I*R3*XKK~*DFF 
RFT8RN

EN 
------__,.~--~Ht-.it~l-~*****'tH~***""***1t***itiHHHHt·~*****i!o*it­

SlJRROlJ TJ Nf F?cSST,RST)
c *************************************** 

COMMON 	 T0(26 ltX07t26 hSI(}71?6 )981(17,26 )t82(}7t26 >• 
l 	 DHAMC17t?6) . 

co~MON /A)/P,TFtXN.x~.rz.xJ, XKP,XKKPtECRtAtB tTAVtSIMINt 
lXMAX 	 . 
C0~1MON 	 IA?I JL2'1X2tJI ltIXltLS2tLS}fJltll 

-----------~·uw~nW.AJ7 	 ­
l 	 :1 =I x? + l - N lL 	.IF( S?fEQ.O)GO TO 11
GO TO .2 

. 12 R):TOCJL2)
R2=X(1•JL2>
R3=x <1_I3,jL2> 

Go.To IO 
------~1~1---rR..-.1·=TU-TCT3T­

R;:::>=X < l tlJ3)
R3=X(JL2tLJ3)

10 	 CONTINUE . 

JF<RJ.GT.XMAX)RJ:XMAY

Jf (h3.LT.O.>R1=0. . 

IFCSSI.Gr.1.n>ss1=1.n 
Tf(SSI•Ll.SIMTN)~St=~IMIN

-----------v-.,.,0 =X.KPl}FTPT-.;;F--P-TRTT -..~~..-..."'--'--'--------------------------------­
XKKU =XK K P*FX P~-frR*P/Rl)

ZA 1:E:.CR/ (TA V**?.* X,J)
EX.l.::.:F:XP( CR3-P2)*7A])


F=<A+R*R3)*fX1 . 

Hsl=-XKO*SST**X~*F

RF TURN 
f NO 

c 	 *************************************** 
SllRROllTJNF Fl cXX~RX) _ 

c *************************************** 
Cf)MtviON T0(2ir, )tXCl7t2f, >•SI<l7t:,6 )tRlC17t26 )t82<17t26 ),

l l1HAM!l7,26) ­
COMMON IAl/P,TF,XN,X~,TZ,XJ, XKP,XKKPtECRtA•B tTAV1SIµINt 

1~~AX~-. 
vOMMUf\I 	 /A2/ JL2• IX2tJI I• IX! •LS2,LSI tjyfiI 

http:A)/P,TFtXN.x~.rz.xJ


--c 
0) 

COMMON/ A 3/f\11
LJ?:IXl+l-Nl 
lF(LSl.Eo.o)r,n TO 11 
GO TO 12 

11 Rl=Tfl <LI?) 
R?.:;X(ltLI::i>

-----------M-G~=~t;Tyhr,-tr·_,..,_.--.--------------------------------------­

12 Rl =TO (JLl > 
R?=X ( l hJLl)

Rl=SI<LI?..JLl)


10 CONT Tl'llJf .
IF(XX.GT.XMAX)XX:XMAV


IF<XX.t_T.o.>Xx=o.

------------,.,r-rH1•cT-;STMfNrrr,-=sTPTT\I 

XKo:XKP*EXP(-FCR/Rl) •TF 
XKKU:XKKP*fXP(-ErR*PIRl)

Zf\l=ECR/ (TAV*••2<1tX.J)
EX1=EXP((XX-R2)*1Al)
EX2=EXl**P 
FF=<l.-XX)**XN*EX2
fH:R3 *XKK 0 *FF~•TZ 

-----------..~--URN~~- --------­
END 

c ********************•****************** 
SUHROUTINE Flll cFA,FR,'l) ,x2,Pl.P;>,XK) 

c *************************************** 
COMMON T0(26 )tX(l7t26 )tSI<J7t;6 >•81(17•26 )t82(17t26 ),

l DHAM(l7t26) 
______________,..._HM0f\f/1f4T.~f\~,-r-.~N-z-.R'. 11 • LA 11 • L 53 • L x 3 • t:X4i Ls 4 ' L I • L2 

COMMON /A?/ JI 2tIX2tJI ltIX1'LS2,LSltJldl
COMMON/A3/Nl
COMMON /Al/P,TF,XN,XM,TZ,XJ, XKP,XKKP,ECR,A,8 ,TAV,SIMIN,

lXMAX ­
t:f~=.001 
H7=l•l<NZ-1> 
HT=l•/(NT-ll 

-----------~-=] 

IF<xK.EQ.-1.0>Nl=n
CALL FA(Pl 9 RHA1) 
Xl=Pl+HZ~•RHAl *XK 
JY(~K.EQ.-1,0)GO TO 1 
X<I1•Jl>=Xl 

i_ A1~~2!e1l~x1 
lU - CONTINUE 



-----~~~~~~~~~~~~~~~~~~~~~~-· ..... 
O'\ ....... c·ALL FR (P2,RH81) 

X?=P2+HTU.RHRl•XK 
IfjXK.EQ.-1.0)

srcrl•.Jl>=X2 
Gn TO 2 

GO TO 20 -
2 R?(L2•L.l):X2CTINTHJUE-----------------------------------·___________..,.____ 

Nl=O 
IF(XK.EQ.-1.n> N1=1 

on J.5 I=1.i:;
CALL FA<Xl~RHA2) _ .

Xl=Pl + H71?..*!RHA1+QHA2)*XK
IF(XK.ra.-1.0)GO TO 4 
TESTl=ABS ( (X (Tl •J1 )-X1) /Xl)

------------w-.-.-·t-'J1l=x-t-
Go TO 40

4 TESTl=ABc:; ( CBl (L2•L 1 >-Xl) /Xl)
Bl (l2 tll) :Xl 

40 COf\!TtNUE
CALL FR(X?,RHR;.>)
X2=P2+ HT/2.*!RHR1+PHP2>*XK

Tf (XK.E0.-1.fl) Gn TO 3 -----------......._..._S-f2=-AffSTT s I <I l • .1 l r•v-2~~...-+---------------------------
S I< r l • J l> =X2 
GO TO 30

3 J'ESJ2=ABS ( <B? (L2•Ll >-X2> /X2)
B2 (L2,Ll ):X?.

30 CONTINUE 
IF!TESTl•LT.ER •ANO.TEST?.LT.EP > GO TO 16 

; CONTIMN~U~E________________________________________ ________,,_1·5~---cuf.ffT 

RElURN 
ENO 

c *************************************** 
SllBROUTINE 0Ni,(F 9 Xl,P1 ,t-.t,XKl . 

c *****************'********~************ COMMON T0(26 ·)9X(l7,26 )tSI(l7•-:)6 )981(17,26 )tB2Cl7t26 ), 
~~~~~~~~~~--.l.-,D'"'"RAMT!7,26) . ·---------------------­

CO~MON /A4/ NTtNZ,Kll~LAlltLS3tLX3iLX4•LS4tlltL2
COM,.,.ON /A2/ JL2tl·X2,Jt l,IXltLS;',LS ,Jltil 
CO~MON/A3/Nl 
.CO~MON /Al/P,TF,xN,x~,TZ,XJ, XKPtXKKP,ECRtAtB tTAVtSIMINt 

lX~AX 
ER:,001 
H=}.!(N•l)

NT:J; 

http:COM,.,.ON
http:�ANO.TEST?.LT.EP
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N 

O"l 

r­ IF(XK.EQ.-l~OlNl=n 

CALI F(Pl tRH1)
XlP=Pl+H*RHl-ll-XK 
l\Jl:U 
lF(~K.fQ•-l•O)N}=i
DO ,5 J=l,s ___________,...7itL-FTX:lP-t-PT-T?1- . 

\ 
XlC:Pl+H/2.*CRHl+RH?l*XK
TfST=ARS((XlP-X}C)/X}r) 
TF(T~ST.LT.ER ) ~OT~ 16 
!F(T•fQ,5)GO TO lf. 

XlP=XlC 


15 CN•TINUf 
16 Xl=O•S•(XlP+X]C) _______..;_____,..,...____Jffi\J ------~-----~-----~------------------~ 

nm 

c *************************************** 


SllRROUTINF 011TPllT (LC1 ,LC?) 

c *************************************** 


COMMON TOC2f. ,,xo7,2f, hSI<l7•?6 )tRl<l7t?6 )tB2Cl7•26 ).
l UHAM(l7t26)

-------------·nM1"11JNIA17~ir--.xt<r,XT1--;--l~--XKP-9-XK~f<,A, B , TAV t SI ~f!N t 
lX~AX ­

CO t--1 M0 N I A 4 / NT , NZ • K 1 1 , L A 11 , l S 3 t I X 3 , L X 4 t LS 4 ·, L l • l 2 
DIMENSION TTncSl~ 

NZ1:1'i7-l 

f\Jl ~ =.NT-1 


WPJlt(n•211) . 

211 FOHMAT(//,7X•* CONVfRCJON X*t//)

-----------rr--()i:ts-J:r-,r-;r1 tLC7 . --------------------­
WRJTEC6t200) (X(It,I) •I:ltNZltLcl> •XCNZ,J> 

605 CONT P,!UF: 
WF"1lf:: (6,100)


100 FOPMAT(l.Hl)

wt--<ITE (6•?1 ?> 


212 FORMAT(7Xt~} rAT 11.CTJ\/JTY SI {tt//) 

D 0 6 0 n J: 1 , f\I T · , LC? . 


~f'i--0~6-----T.-tw_,...,_Rrrr-10•2-orrrsrrr.-J>-.r=TtNZT--.r-r:Tr•srrNZtJ1 
l•IRJTF (6,20?) CTO (Tl' I=l •NT> 

200 FORMAT( (9fl4.4))
201 FORMAT( ('1fl4•4))

202 fORMAT(//17X•* TE~PFRATURE *•//, C5E15•5>> 


214 ~~A~~f~i7!j~,• nERIVATIVE OF HA~ILTONIAN*t/) 

OTO D~R~f~(~~~o~I<b~~M(I,:i, ,I:l,N71,l.Cl) .n~(NZ,J) 


http:I:l,N71,l.Cl
http:FOPMAT(l.Hl
http:TF(T~ST.LT.ER


------------

---------------------------------------------------------------------------------------------------------

M 

..... O"l 
WRITE<6t216) 

?.16 FORMAT(//,7X,* TFMPfRATlJRE Dic:;TRIRlJTED{>,//) 

on 632 I=l,Nr,LC2 

DO A31 J:} 9f\!Z . 

631 TTO<Jl:XCJttl/XJ+TOCll 
~~~~~~~~6~3~?~-~~W~~~~J~~¥09> <TTO<KltK=l•NZltl.~),TT~(NZl_~~~~--~~~--~~~~~~~~~ 

21 7 F 0 RM AT ( I I ,tX ' {> AD, J0 INT Al {> • 11 > 
DO 633 J:J ,NT,LC2 . 

633 1•1RJTE C6t200) CAI (TtJl • I=ltNZltll"l) ,Al CNZtJ) 

WRITECbt?l8) ¥ 


218 FORMATCl/t7X•* AnJOINT 82*•11)
DO 634 J=l•NT.LC2 . . 

634 \.II RI 1' E C 6, 2 0 0 ) <82 C T t J) , I= 1 , NZ 1 , Lr. l ) , 82 CNZ' J) 
~ru~rn 
END 
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