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Abstract

To human viewers, sharp edges and rich details in an image are often interpreted as

high perceptual quality. Due to various types of degradation during the acquisition

of an image and the limitations of display devices and human visual system, some

information that exists in the acquired image can be difficult to distinguish when the

image is displayed directly, affecting its perceptual quality. Many image enhancement

techniques have been proposed to fully utilize the dynamic range of the image data

and reproduce a visually more appealing and informative image.

In this dissertation, we present two image enhancement techniques. The first is a

global approach that utilizes advanced image statistics and finds the best compromise

among the factors that affect image quality; the second is a local approach exploiting

the fact that the maximum discrimination power of human vision system can only

be achieved in a relatively small locality of an image. These two approaches produce

visually pleasing results consistently over a wide range of images.

Besides the various types of artifacts, another practical problem affecting the per-

ceptual quality of an enhanced image is the compression noise. Due to the low pass

nature of image compression, the high-frequency components of a compressed image

with sharp edges often carry large compression error, which can be amplified by im-

age enhancement operator deteriorating the perceptive quality of enhanced image. By
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incorporating the non-linear DCT quantization mechanism into the formulation for

image enhancement, we propose a new sparsity-based convex programming approach

for joint quantization noise removal and enhancement. Experimental results demon-

strate significant performance gains of the new approach over existing enhancement

methods.
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Notation and abbreviations

1D one dimensional.

2D two dimensional.

BBHE brightness preserving bi-histogram equalization.

CLAHE contrast-limited adaptive histogram equalization.

DCT discrete cosine transform.

DSIHE dualistic sub-image histogram equalization.

EME enhancement measure.

HDR high dynamic range.

HE histogram equalization.

HVS human visual system.

i.i.d. independent and identically distributed.

LARCOTM locally adaptive rank-constrained optimal tone mapping.
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MSE mean square error.

NNS nonlocal self-similarity.

NQCS narrow quantization constraint set.

OCTM optimal contrast-tone mapping.

PSNR peak signal-to-noise ratio.

QF quality factor.

RMSE root mean square error.

SVT singular value thresholding.
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Chapter 1

Introduction

To human viewers, sharp contrast of edges and subtle tone of smooth surfaces in

an image are often interpreted as high perceptual quality. But various conditions,

such as foggy weather, poor illumination, camera motion, etc., can make an acquired

image look faded and blurry. However, it is not uncommon that the raw image

with low perceptual contrast still contains information on the details of the captured

scene. Modern image acquisition devices can generate digital images of intensity

resolution that exceeds 16 bits (65536 levels of grey). In comparison, the human

visual system (HVS) has a quite limited sensitivity in minating different light intensity

levels. Under ideal viewing conditions, human viewers can only distinguish up to

around 720 levels of grey on a typical medical display (Kimpe and Tuytschaever,

2007). Therefore, there exists a substantial gap between the achievable precision of

devices and the discrimination capability of HVS in pixel intensity. This gap presents

a serious obstacle in applications where images of high dynamic range (HDR) are

scrutinized and acted upon ultimately by human viewers; for instance, in medical

imaging it is the doctors not computers that make diagnostics and clinic decisions
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relying primarily on visual examination of the input HDR image. Since very early days

of image processing many image enhancement techniques have been proposed and

used, aiming to fully utilize the dynamic range of the raw sensor data and reproduce

a visually more appealing and informative image.

1.1 Image Enhancement Techniques

One of the earliest and most widely used image enhancement techniques is histogram

equalization (HE), which remaps pixel values of the input image such that the pro-

cessed image has as uniform a histogram as possible. Although HE has been taught in

almost all image processing and computer vision textbooks for decades, the reasoning

why and in what conditions HE can be used as a technique of image enhancement

was not well analyzed and understood until very recent (Wu, 2011). As a general

purpose image enhancement technique, HE has an intrinsic weakness: its tendency to

over-exaggerate contrast at the expense of tone discontinuities in smooth waveform,

producing unnatural looking results for many types of images. Visual defects of HE

were also observed by many other authors long ago, and they proposed several im-

proved histogram-based contrast enhancement techniques (Gauch, 1992; Stark, 2000;

Chen et al., 2006a,b). For instance, brightness preserving bi-histogram equalization

(BBHE), which partitions the histogram of the input image and runs HE on each part

independently, could prevent the shift of the average intensity in the output image,

thus maintaining the brightness outlook of the original image (Kim, 1997). Following

the same basic idea, dualistic sub-image histogram equalization (DSIHE) preserves

the median intensity of the input image (Wang et al., 1999). These two techniques

can bring an improvement visually over HE for very dark or bright images, but still
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suffer from the same problem of distorting tone subtlety when the histogram contains

spikes, i.e., a large number of pixels share the (or almost) same intensity level.

Contrast-limited adaptive histogram equalization (CLAHE) is one of the first

attempts to handle spikes in the input histogram. It applies the standard HE to

an intermediate histogram generated from the input histogram with all the spikes

being cut down to a threshold (Pisano et al., 1998). Based on the similar procedure,

Arici et al. proposed to construct the intermediate histogram by balancing between

the original input histogram and the uniform histogram (Arici et al., 2009). This

idea was further extended using second-order image statistics in (Celik and Tjahjadi,

2011). With proper parameter settings by user, those methods can suppress some

undesirable artifacts of HE.

In a more rigorous study of histogram-based image enhancement (Wu, 2011),

the author formulated the problem as one of optimal allocation of output dynamic

range to maximize contrast gain but with constraint on tone distortion, and pro-

posed an optimal contrast-tone mapping (OCTM) algorithm. The OCTM algorithm

generally produces visually more pleasing results compared with the aforementioned

techniques. But this work still does not break away from a common shortcoming of

all its predecessors: the use of only first-order statistics, namely, the histogram. This

shortcoming is very serious, at least theoretically, considering that the very notions

of contrast and tone involve the second-order statistics (autocorrelations and signal

spectrum of image signals). In fact, the author of (Wu, 2011) realized that spatial

structures of pixels should not be ignored in any approach of image enhancement, and

accordingly categorized OCTM together with other histogram-based methods into a

so-called context-free class of image enhancement methods.
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The quality of image sensor has made big strides in the last decade since the pop-

ularization of high-quality but inexpensive digital cameras. In recent years, instead

of pixel count, the dynamic range of an image sensor is gradually becoming the new

focus of digital imaging technology research and development due to the demand of

better image quality in low-light conditions. Nowadays, most high-end image sensors

on professional grade digital cameras support 14-bit depth for each colour channel.

Even mobile devices, like cellphone cameras, start to employ 10-bit image sensors.

In contrast, during the same period of time, image display devices receive almost no

improvement in terms of bit depth; most latest consumer grade displays still only

support 8-bit depth per colour channel. This is because 8-bit depth is sufficient for

most applications. The fundamental limiting factor in perceiving high bit-depth im-

age is not technical limitation of display devices but the human viewers themselves;

HVS can only distinguish a limited number of light intensity levels in the brightness

range of a typical display. The problem of filling the gap between the high precision

of image sensors and the low discrimination capability of HVS in pixel intensity gives

rise to HDR tone mapping, a new category of image enhancement technologies.

A straightforward way of visualizing subtle details in an HDR image is to display

and examine it in different intensity subranges on screen. In medical imaging soft-

ware, for example, different representations of the HDR image are placed side by side

in different windows (Barnes, 1992), as illustrated by Figure 1.1. The drawback of this

scheme is that the wholeness and coherence of the image are compromised causing

missing or misreading of some vital information by radiologists (John et al., 2004).

If in some professional applications (e.g., medical diagnosis) it cannot be helped to

display an HDR image in multiple windows of different intensity subranges out of

4
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Figure 1.1: A CT image is displayed in four separate windows in four subranges of
pixel values, emphasizing on lung, soft tissue, liver and bone, respectively.
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the fear of missing any nuances in the raw image data, HDR presentation by inten-

sity windowing is unacceptable in consumer applications. In the latter case, users

just want to leisurely appreciate rich details of HDR images in an intuitive, holistic

representation; they should not endure the burden and weariness of cross-examining

multiple versions of an HDR image. This is the reason for the wide use of display

methods of dynamic range compression or commonly referred as HDR tone mapping

(Larson et al., 1997; Reinhard et al., 2010). The objective of HDR tone mapping

is to augment human vision so that viewers can see details that are otherwise in-

discernible to naked eyes. The basic premise of HDR tone mapping is a so-called

retinex principle: HVS is more sensitive to relative intensity changes or contrast than

to absolute luminance levels (Land and McCann, 1971). This is because as a result

of long evolution process, HVS infers intrinsic properties of object surfaces based on

contrast and hue, largely factoring out variations of external illumination.

In the retinex principle, all existing HDR tone mapping techniques are designed to

squeeze the dynamic range of the low-pass signal and graft the high-pass signal onto

the squeezed low-pass signal. Unlike the approach of intensity windowing, the com-

pression of intensity dynamic range is necessarily a many-to-one tone mapping; the

process inevitably causes loss or distortion of information for the simple reason that

the amplitude quantization precision of pixels exceeds the raw discrimination power

of HVS. Therefore, the challenge of HDR tone mapping is how to make as much

wanted information conspicuous as possible while preventing or minimizing informa-

tion loss and visual artifacts, mathematically casting the problem into a framework

of constrained optimization.

In the above optimization perspective, HDR tone mapping is a resource allocation

6
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problem: how to allocate a limited discriminating power of HVS and/or display

hardware to best visualize subtle details spread in a very large dynamic range of

intensity. One common approach to the problem is to first decompose the input

image into multiple layers containing coarse to fine scale signals, then reallocate coarse

layers with reduced dynamic range so that the recombined image is tone compressed.

Early natural HDR image tone mapping techniques, such as homomorphic filtering

(Oppenheim et al., 1968), retinex algorithm (Land and McCann, 1971; Rahman et al.,

2004) and the like, fall into this class. These techniques often produce visual artifacts,

such as halo, double edging, ghosting, etc., near strong image edges. In order to

alleviate the problem, many state-of-the-art methods do the decomposition using

edge-aware filters to preserve local waveform near edges more faithfully (Aubry et al.,

2014; Farbman et al., 2008; Fattal, 2009; Paris et al., 2011). Another HDR tone

mapping approach, called gradient-based method, reallocates dynamic range resource

in gradient domain and reconstructs a tone compressed image from the modified

gradients (Fattal et al., 2002; Mantiuk et al., 2006). Similar to the aforementioned

idea of preserving local waveform, this approach tries to retain the same sign of the

original derivative wherever in the tone mapped image to reduce visual artifacts.

Čad́ık et al. (Čad́ık et al., 2008) gives an excellent overview and evaluation of many

of the HDR tone mapping methods.

1.2 Original Contributions

This dissertation devotes itself to optimization approaches to the field of image en-

hancement. Several original contributions can be drawn as following.

Our critique of using first-order statistics for image enhancement, histograms in

7
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particular, suggests the necessity of including second-order statistics, i.e., exploiting

the spatial information of an image. Following this line of investigation, a natural

inquiry is whether the role of histogram in image enhancement can be replaced by

the joint distribution of spatially adjacent pixel values. This generalization from

first-order to second-order statistics, we find out, can be realized in the existing

OCTM framework. Quite surprisingly, the use of joint distribution in the OCTM

objective function does not materially increase the complexity of the underlying design

algorithm. Besides the above progress, we also propose a new remedy for a common

adverse side effect of histogram-manipulation contrast enhancement methods: the

distortion of tone subtlety caused by mapping two or more different grey levels into

the same value in the output image. Although this side effect is often inevitable for

the benefit of increased contrast, a good balance between high contrast of edges and

tone subtlety of smooth shades is a critical design issue. In the adoption of joint

distribution in the OCTM objective function, we also include an entropy heuristic

to control the loss of tone continuity in the enhanced image. The final result is a

generalized and significantly improved OCTM algorithm that obtains superior visual

quality over a wide range of images consistently.

As discussed above, many current researches on HDR tone mapping do realize the

importance of preserving local waveform in maintaining the coherence of the image

and reducing visual artifacts, however, none of their solutions are rigorously formu-

lated. As a result, without given carefully chosen parameters, unnatural appearance

and visual artifacts due to HDR compression are still plaguing these HDR tone map-

ping methods. To advance the state of the art, first, we associate common visual

8
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artifacts of HDR compression with changes of order statistics in the image, and pro-

pose to constrain tone mapping in terms of rank preservation in an appropriate spatial

neighbourhood. Second, we rigorously formulate HDR tone mapping as a constrained

optimization problem, with a general objective function to quantify the level of detail

conspicuity and a user-tunable parameter to impose a desired degree of consistency

in image order statistics. Third, it is shown how the formulated problem of adaptive

local rank preserving optimal tone mapping can be solved by linear programming, and

the resulting images do achieve superior visual quality to competing HDR methods.

In this research, we notice that, along with the subtle detail, image enhancement

techniques often amplify objectionable compression artifacts making them discernible

in the enhanced images. But to our surprise, in the very large existing body of research

literature on image enhancement, no study has been reported on how compression

noises affect the performances of image enhancement. All published works of image

enhancement, except few papers explicitly on the topic of combating compression

artifacts (a.k.a., soft decoding), assumed the input image data to be uncompressed or

mathematically losslessly compressed. This long-time tradition is, unfortunately, an

operational convenience in contrary to the real world settings. In this dissertation, we

analyze the nature of quantization noises in the discrete cosine transform (DCT) do-

main, in which most popular JPEG and H.264/HEVC compression standards operate.

In particular, we find that the quantization errors of DCT coefficients exhibit com-

plex behaviours after being mapped back into the spatial domain. These behaviours

are highly sensitive to quantization precision (QF in JPEG and H.264/HEVC), the

9



Ph.D. Thesis - Xiao Shu McMaster - Electrical & Computer Engineering

amplitude and phase of the input image signal. Second, we manage to incorpo-

rate the non-linear DCT quantization mechanism into the image enhancement prob-

lem. Specifically, we propose a new sparsity-based convex programming approach for

joint quantization noise removal and enhancement and demonstrate significant per-

formance gains of the new approach over existing image enhancement methods with

DCT-domain compressed images.

1.3 Outline of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 introduces a global

approach that utilizes advanced image statistics and finds the best compromise among

the factors that affect image quality. Chapter 3 presents a local approach exploiting

the fact that the maximum discrimination power of human vision system can only

be achieved in a relatively small locality of an image. In Chapter 4, we study the

impact of compression noise to image enhancement and propose a new sparsity-based

convex programming approach for joint quantization noise removal and enhancement.

Finally, Chapter 5 summaries this dissertation and suggests some interesting future

work.

10



Chapter 2

Second Order Statistics

Image enhancement techniques can be broadly categorized into two classes: local

and global. A local approach enhances the detail of an input image by altering the

rate of change in intensity between neighbouring pixels on a pixel-by-pixel basis. For

example, traditional edge enhancement and high-boost filtering techniques fall into

this class. Although the local techniques are effective to enhance certain types of

images, they are prone to objectionable artifacts such as ringing and halo, resulting

in severely distorted image features. The global image enhancement techniques, such

as HE and OCTM, in comparison, do not directly adjust the local waveform. Instead,

they manipulate the image histogram using a monotonic tone mapping function that

is determined by the histogram of the input image.

Visual defects of HE were well documented by many authors long ago, and many

improved histogram-based enhancement techniques have been proposed since (Stark,

2000; Kim, 1997; Chen et al., 2006a,b; Wang et al., 1999; Pisano et al., 1998). How-

ever, the use of only first-order statistics, namely, the histogram, does not provide

enough information of an image. This fundamental problem prevents these image
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enhancement techniques from over or under enhancing certain types of input image.

Thus, it is necessary to include second-order statistics, i.e., the spatial information of

an image, in the design of a more robust image enhancement technique.

2.1 Joint Distribution in OTCM

In (Wu, 2011) the problem of OCTM is formulated as the following linear program,

maximize
L−1∑
i=1

pisi

subject to 1Ts ≤ L

0 ≤ s ≤ u∑d−1
j=0 si+j ≥ 1, i = 1, . . . , L− d,

(2.1)

where p is the histogram vector of the input image of L grey levels; variable si is called

the context-free contrast at grey level i, which is the unit rate of change from level i to

level i+ 1 in the output image independent of pixel locations. Collectively, the L− 1

elements of vector s ∈ RL−1 uniquely determine the integer-valued monotonically

non-decreasing transfer function

T (i) =

⌊
i∑
t=1

st

⌋
, 0 ≤ i ≤ L− 1 (2.2)

that maps grey level i to T (i). It is clear from the definitions of p, s and T (i) that

the objective function

C(T ) =
L−1∑
i=1

pisi =
L−1∑
i=1

pi · [T (i)− T (i− 1)] (2.3)
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is a measure of expected context-free contrast achieved by the transfer function T (i),

and hence it is the term to be maximized in the linear program. In addition, parameter

u is an upper bound on each incremental step si and parameter d is for limiting the

maximum tone distortion allowed. For the sake of simplicity, we assume that the

input and output dynamic ranges are the same, however, the techniques presented in

this paper can still work with simple modifications if such assumption is not true.

Like all existing contrast enhancement techniques, OCTM uses histogram as the

only image statistics to construct the transfer function T (i) (Kim, 1997; Wang et al.,

1999; Pisano et al., 1998). If the population pi of grey level i is large in the input

image, based on its optimization criterion, OCTM allocates a large increment si

in T (i), increasing the context-free contrast between grey levels i and i − 1. This

strategy is essentially the same for all existing histogram-based contrast enhancement

techniques. For example, HE allocates a piece of dynamic range proportional to the

population of each grey level. However, first-order statistics alone cannot characterize

perceptual image quality well. In a smooth area consisting of a large number of pixels

whose values are close to each other, boosting contrast is counterproductive because

this deprives valuable dynamic range resources from some other more interesting or

eye-catching areas, and even worse introduces objectionable contour artifacts in the

smooth area.

One way of overcoming the limitation of histogram in contrast enhancement is

to employ qij, i ≤ j, the joint probability that two spatially adjacent pixels take on

grey levels i and j respectively. Based on the joint probability qij, which brings in

second-order statistics, we now define the expected context-sensitive contrast Ĉ(T )

13
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under transfer function T (i) to be

Ĉ(T ) =
L−1∑
i=0

L−1∑
j=i

qij · [T (j)− T (i)]. (2.4)

The fundamental difference between C(T ) and Ĉ(T ) is that the latter accounts for

spatial adjacency of two pixels together with their grey levels, but the former totally

disregards the spatial relationship between pixels.

For our primary goal of image enhancement, the task becomes to design the trans-

fer function T (i) for a given qij such that Ĉ(T ) is maximized. This can easily be

integrated into the OCTM framework by replacing the objective in Eq. (2.1) with

Ĉ(T ). Since T (j)− T (i) is the sum of sk, i < k ≤ j, Eq. (2.4) is equivalent to,

L−1∑
i=0

L−1∑
j=i

qij ·

(
j∑

k=i+1

sk

)
=

L−1∑
k=1

sk ·

(
k−1∑
i=0

L−1∑
j=k

qij

)
. (2.5)

Then, by letting p̂ ∈ RL−1 be a vector, such that

p̂k =
k−1∑
i=0

L−1∑
j=k

qij, (2.6)

we have

Ĉ(T ) = p̂Ts, (2.7)

thus, the new context-sensitive contrast measure has the same form as C(T ), the

objective function of the original OCTM, except for the definition of p. Therefore,

the efficient linear program solvers for OCTM are still applicable to the new problem.
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Figure 2.1: The joint distribution of adjacent pixel intensities of an image.

2.2 Perceptual Fine Tuning

The advantages of adopting joint distribution qij in the framework of OCTM go be-

yond the inclusion of spatial information in the context-sensitive contrast measure

Ĉ(T ) to rectify a serious flaw in the context-free contrast measure C(T ). Perhaps,

more importantly, qij makes it possible to factor in many other psychovisual attributes

in the design of image enhancement algorithms. For example, most human viewers

rate tone subtlety on smooth surfaces and edge sharpness at object boundaries both

high in contributing to good image quality for these are vital visual cues in cogni-

tion. For this reason, image enhancement cannot be a single minded pursue of high

contrast; maximizing Ĉ(T ) directly can still be problematic, risking objectionable

contour artifacts in smooth regions as existing histogram-based techniques do.
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Consider an image with a large smooth area, in which adjacent pixels have the

nearly identical grey levels; the joint probability qij is very high for pairs of grey levels

(i, j) that are in the narrow dynamic range of the smooth area. Figure 2.1 plots qij

for such an example image; the energy of the joint distribution qij is concentrated

along the diagonal where the values of i and j are very close. Simply maximizing

Ĉ(T ) would increase T (j) − T (i) drastically, turning the original smooth shade into

contour artifacts. In order to account for the sensitivity of human visual system to

tone subtlety in smooth regions, one should reduce the weight of qij in the objective

function when i and j values are very close.

On the other hand, when i and j values differ greatly, i.e., a high contrast can be

easily observed between two corresponding adjacent pixels, increasing the contrast

further will not noticeably improve image quality. Therefore, the dynamic range

of the display should not be wasted on pixels that already exhibit sufficiently high

contrast.

In general, different waveforms in pixel localities affect the perceptual image qual-

ity differently. In order to account for these effects in image enhancement algorithms,

we propose the use of a perceptual weighting function W (i, j) for adjacent pixel pairs

having values i and j in the OCTM framework for image enhancement. Combining

all the above points, we finally present a new algorithm of linear program for image

enhancement:

maximize
L−1∑
k=1

sk ·

[
k−1∑
i=0

L−1∑
j=k

qijW (i, j)

]

subject to 1Ts ≤ L

0 ≤ s ≤ u∑d−1
j=0 si+j ≥ 1, i = 1, . . . , L− d.

(2.8)
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Compared with the original OCTM in Eq. (2.1), this new problem only differs in how

the step vector s is weighted in the objective functions; while OCTM uses histogram p,

the new problem employs the joint probability qij adjusted by W (i, j). In either case,

the weighting vector for s is constant to the corresponding optimization problem.

Therefore, by simply changing the definition of the constants, the original OCTM

solvers can also solve the new problem efficiently without much increase in complexity.

2.3 Entropy Heuristics

The transfer function T of a global image enhancement algorithm is a monotonic

integer function that preserves rank consistency, i.e., for all i, j such that i ≥ j, T (i) ≥

T (j). However, unless T is an identity function, it is not invertible, which makes it

impossible to revert back the enhancement done by T with another transfer function.

From another point of view, when multiple intensity levels are merged to the same

histogram bin by a transfer function, corresponding pixels become indistinguishable,

and some fine detail might be flattened consequently in the enhanced image. This

undesired loss of rank information is unavoidable as its a trade-off for higher contrast.

But, in order to achieve the overall superior visual quality, it is important to limit the

loss and its side effect. To strike a balance between contrast gain and loss of image

details, we quantify rank information using the histogram entropy and introduce a

new optimization objective function for OCTM as follows,

p̂Ts− λ
L−1∑
i=0

p̄i log p̄i. (2.9)
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The first part of the function is a contrast measure as presented before, and the

second part, which is prioritized with a Lagrangian multiplier λ, is the entropy of

the normalized histogram p̄ of the enhanced output image. If, for example, intensity

levels i and i + 1 are merged to the same histogram bin by T , i.e., T (i) = T (i + 1),

then the histogram entropy decreases after enhancement, as

−pi log pi − pi+1 log pi+1

≥ −(pi + pi+1) log(pi + pi+1)

= −p̄T (i) log p̄T (i).

(2.10)

At the same time, the contrast defined by p̂Ts might benefit from the extra grey

level saved from the dynamic range compression. Overall, the new objective function

is to find the optimal combination of the often conflicting goals of rank information

preservation and image enhancement.

With the introduction of the entropy heuristics, the proposed optimization prob-

lem is now nonlinear, and cannot be solved by the original OCTM solvers, however,

we can still efficiently solve the integer version of this problem, where s ∈ ZL−1,

using dynamic programming. First, let a1, a2, . . . , an be the indices of the n nonzero

components of s in ascending order, and define a0 = 0 and an+1 = L to simplify the

argument. Then, by removing the nonzero components of s, the contrast measure

can be reformulated as

p̂Ts =
L−1∑
i=1

p̂isi =
n∑
i=0

p̂aisai . (2.11)

Since for each i ∈ [0, n], sai+1, sai+2, . . . , sai+1−1 = 0 by the definitions, grey levels

from ai to ai+1 − 1 are all mapped to the same bin T (ai), i.e., T (ai) = T (ai + 1) =

. . . = T (ai+1 − 1). Thus, similar to the contrast measure, the histogram entropy can
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Figure 2.2: Constructed graph for solving OCTM with entropy heuristics. Only edges
that come out from node i are shown.

be rewritten as

−
L−1∑
i=0

p̄i log p̄i = −
n∑
i=0

p̄T (ai) log p̄T (ai), (2.12)

where p̄T (ai) = pai + pai+1 + . . . + pai+1−1. Combining Eq. (2.11) and (2.12), the

objective function defined in Eq. (3.5) becomes

n∑
i=0

[p̂ai(sai − 1)] + [p̂ai − λp̄T (ai) log p̄T (ai)]. (2.13)

After reformulating the objective function as above, an equivalent problem of

finding maximum weight path in a directed graph of L+ 1 nodes can be constructed

accordingly. As illustrated in Figure 2.2, each node in the graph connects to the next

d consecutive nodes, where d is the tone distortion constraint defined in Eq. (2.1).

The weight of the edge from node i to node i+ k for 1 ≤ k ≤ d is set as

p̂i − λ

(
i+k−1∑
j=i

pj

)
log

(
i+k−1∑
j=i

pj

)
. (2.14)

Except node 0 and L, each node i also has a self-loop with weight p̂i. Suppose that

a path, which takes no more than L steps from node 0 to L, visits different nodes

a′0, a
′
1, . . . , a

′
n′+1 in order, and the self-loop of each node a′i is visited s′a′i

−1 times, then

the total weight of the path is exactly the same as the objective function in Eq. (2.13)
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Figure 2.3: Constructed graph for solving OCTM with entropy heuristics without
self-loop.

with a, s being replaced by a′, s′, respectively. If the number of times of each node i

being visited, s′i, is less than an upper bound u as defined in Eq. (2.1), vector s′ is

a feasible solution to the optimization problem. To implement the constraint on the

number of times that a node can be visited in a path, we break each self-loop into

u− 1 dummy nodes i′, i′′, . . . , i(u−1) for each node i and add an edge to each dummy

node i(j) with weight jp̂i from node i, as shown in Figure 2.3. Each dummy node has

the same weighed edges connecting to the other non-dummy nodes as the original

node. Obviously, a path from node 0 to L in this reconstructed graph corresponds to

a path with no node visited more than u times in the original graph. Thus, a path in

the graph also has a corresponding feasible solution to the the optimization problem

in Eq. (2.13).

The reverse is also true; each feasible solution has an equivalent valid path in the

20



Ph.D. Thesis - Xiao Shu McMaster - Electrical & Computer Engineering

(a) Original (b) HE

(c) OCTM (d) Proposed

Figure 2.4: Enhancement results of the moon scene.

graph, because the indices a1, a2, . . . , an of the n nonzero components of a solution s

directly map to the visited nodes and each sai indicates the number of times that node

ai is visited in a path by the design of the constructed graph. Hence, s′ of a maximum

weight path must be also optimal to the optimization problem, since otherwise, it is

possible to find a path with higher weight using the real optimal solution, which

contradicts to the assumption. Since the graph is acyclic except for the self-loops,

there exist dynamic programming algorithms that can solve the maximum weight

path problem in O(L2) time. Thus, the corresponding optimization problem can also

be solved efficiently.
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(a) Original (b) HE

(c) OCTM (d) Proposed

Figure 2.5: Enhancement results of the dolphin scene.

(a) Original (b) HE

(c) OCTM (d) Proposed

Figure 2.6: Enhancement results of the car scene.
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2.4 Experimental Results

Figures 2.4, 2.5 and 2.6 present three sets of images being enhanced by the proposed

technique exploiting second-order statistics and entropy heuristics in comparison with

those produced by HE and the original OCTM. The transfer functions designed by

each technique are also plotted in accompany with the corresponding input histograms

to show different behaviours of these techniques in different image statistics.

The test image Moon in Figure 2.4 is a difficult case for traditional histogram-

based enhancement methods as we discussed earlier. The input image has a large

nearly uniform background region; the corresponding highly skewed histogram mis-

leads HE to disproportionally expand the dynamic range of the background. As a

result, HE does not offer the object of interest sufficient dynamic range and ironically

reduces its contrast, defeating the very design goal of HE. The quality of HE image

is further deteriorated by magnified noises in the background. On the contrary, both

OCTM and the proposed method introduce no visible artifact and improve the quality

of the input image substantially. Comparatively, the Moon in the enhanced image by

the proposed method has higher contrast, because, unlike OCTM which still allocates

grey levels to the background pixels, it recognizes the uniformity of the dark region

and allocates very few grey levels to the large background and consequently a large

dynamic range to the object.

Figures 2.5 and 2.6 compare the performances of the tested enhancement tech-

niques on natural images with narrow but relatively evenly distributed histograms.

Despite the good contrast due to the full utilization of the dynamic range, the output

of HE flattens subtle smooth shades in some regions and looks unnatural as a whole.

The overall impressions of the enhanced images by OCTM and the proposed method,
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Dolphin Car
Entropy EME Entropy EME

Original 6.552 36.8 7.114 25.5
HE 5.893 113.3 5.866 37.4

Proposed (λ = 1.3) 5.906 117.4 5.878 44.8
GCE 6.487 61.9 6.949 37.3

OCTM 6.487 68.2 6.946 37.5
Proposed (λ = 5.1) 6.486 71.3 6.944 40.7

Table 2.1: The contrast (EME) and histogram entropy of images enhanced by various
techniques.

on the other hand, are visually more pleasing; however, compared with OCTM, the

new method preserves details in smooth regions better.

To assess the improvement in the perception of an image by image enhancement,

we use image enhancement measure (EME) (Agaian et al., 2007; Panetta et al., 2008)

to quantify the perceived contrast of the output. For an input image x, its EME is

defined as,

EME(x) =
1

N

N∑
i=1

20 ln
max(xi)

min(xi)
(2.15)

where image block xi is one of the N non-overlapping sub-blocks of image x. As

shown in Table 2.1, when the histogram entropy of the enhanced image by each

technique is tuned to the same level so that the enhanced images have similar level

of detail, the proposed technique provides better quality of enhancement than the

competitors, HE, GCE (Arici et al., 2009) and OCTM, measured by EME.

The proposed technique is also more flexible. Demonstrated in Figure 2.7 is the

EME of enhanced image as a function of its histogram entropy. As shown in the

figure, the contrast of enhanced image, i.e., EME, decreases when we require higher

histogram entropy of the output. Most compared techniques only operate in a small

range of histogram entropy, but the proposed technique can easily trade off contrast
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Figure 2.7: The contrast (EME) of enhanced image as a function of its histogram
entropy.

gain and histogram entropy for each other based on the preferences of the user.

2.5 Conclusion

This chapter introduces a new image enhancement algorithm in a recently published

framework of OCTM. The new algorithm represents a fundamental departure from

traditional histogram-based image enhancement techniques (i.e., histogram equaliza-

tion and all of its variants), in that second-order rather than first-order statistics

is used. Perceptual quality attributes, such as contrast and tone, are quantified by

joint distribution of the values of spatially adjacent pixels instead of histograms as

of today. The problem of image enhancement is then formulated as one of dynamic

programming, at the heart of which is a joint distribution-based objective function
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that can accommodate various psychovisual properties related to image quality. The

new dynamic program algorithm for image enhancement is implemented and its su-

perior performance in visual quality is empirically verified, corroborating with our

analytical reasoning.
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Chapter 3

Preservation of Order Statistics

We bring the reader into this chapter with the following interesting observation: the

type of artifacts commonly found in the results of the retinex HDR image enhance-

ment methods and high-pass filtering methods, such as double edging, ghosting, halo,

and ringing are absent in the output images of tone mapping methods based on global

histogram transformation (Kim, 1997; Mantiuk et al., 2008; Stark, 2000; Wang et al.,

1999; Wu, 2011). The histogram transform type of tone mapping methods (e.g., his-

togram equalization and its many variants) are classified as global operator because

they map an intensity value to another independent of the pixel context (the 2D local

waveform), whereas all other methods are classified as local operator as long as the

output value of a pixel depends not only on its original value but also on those of

its neighbours (Farbman et al., 2008; Fattal et al., 2002; Mantiuk et al., 2006; Paris

et al., 2011; Rahman et al., 2004; Reinhard et al., 2002).
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3.1 Order Statistics and Perception

The vital difference between the global and local tone mapping operators is in that

the former conserves the order statistics of the input image but the latter does not.

A tone mapping algorithm is said to preserve order statistics if it maintains the rank

of any two pixels’ intensity values xi and xj, namely T (xi) ≤ T (xj) if xi ≤ xj with

T being the tone mapping function. Global histogram transform methods, being a

point process, necessarily require the non-decreasing monotonicity of T (·) and hence

they are order statistics preserving. However, preserving order statistics globally is

unnecessarily restrictive in most application scenarios, reducing the effectiveness of

an image enhancement method.

On the other hand, local tone mapping do not preserve order statistics because

they are local operators in the image domain without imposing relative rank consis-

tency of the processed pixels. Not preserving order statistics lends the existing HDR

image enhancement methods greater room for manipulating grey levels to achieve

stronger enhancement effects than histogram transform methods, but it also has bad

side effects. As relative brightness of object surfaces is an important cue to human

visual cognition, HVS is predisposed to distortions of order statistics in an image.

Those objectionable artifacts of dynamic range compression, identified at the begin-

ning of this section, are all caused by changed image order statistics within a local

proximity in which HVS is sensitive to relative ranking of pixel intensities (Mantiuk

et al., 2006).

The strengths and weaknesses of both local and global methods lie in the choice of

whether to preserve order statistics globally; while preserving order statistics globally
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Figure 3.1: Adelson’s checker shadow illusion. In the left image, tile A appears to
be much darker than B to a human viewer despite the fact that they have the exact
same grey level. However, when a bridge connecting A and B is added as in the right
image, the illusion disappears and their shades look identical.

is often too restrictive for tone mapping, ignoring order statistics causes many unde-

sirable artifacts. Conventional tone mapping methods have to sacrifice one merit or

another. However, by only preserving order statistics in local regions, a method can

be perceptually artifact-free like global methods while not compromising its flexibility

like local methods. The reason is that, only if two pixels are adjacent, they can be

differentiated easily and accurately, and the artifacts due to rank inconsistency such

as those in the existing HDR tone mapping methods become more noticeable. As

demonstrated in Figure 3.1, it has been shown that a human viewer cannot reliably

tell which one of the two distant pixels has higher intensity, especially when their

intensities are similar (Adelson, 2000). Thus, forcing order statistics over two dis-

tant pixels provides no or little cognitive value; preserving order statistics locally is

functionally the same as preserving order statistics globally in terms of preventing

perceptual visual artifacts, while the former is far less restrictive than the latter and

offers a greater degree of freedom in tone mapping.

29



Ph.D. Thesis - Xiao Shu McMaster - Electrical & Computer Engineering

Similar to the global case, preserving order statistics locally can also be defined

formally as follows. Suppose x is the original image and y is the tone mapped image.

If for any pixel i and any pixel j in the neighbourhood set Di of i, xi− xj and yi− yj

have the same sign, i.e.,

sgn(xi − xj) = sgn(yi − yj), (3.1)

where sgn(·) is the sign function, then tone mapped image y of x is said to preserve

order statistics locally. If for each pixel i, its neighbourhood set Di contains all pixels

in the image, then this definition of preserving local order statistics is equivalent to

the global case. Thus, preserving order statistics locally is a more generic case of

preserving order statistics globally.

3.2 Locally Adaptive Rank-Constrained Optimal

Tone Mapping

The ultimate goal of HDR tone mapping is to enhance an image so that its local

details become more visible to human viewers without compromising the wholeness

and coherence of the image. Several researches have documented that the detail of an

image can be boosted reliably by maximizing the sum of the absolute local contrast

(Agaian et al., 2007; Celik and Tjahjadi, 2011; Shu and Wu, 2013); moreover, as the

previous discussion suggests, the enhanced image can be perceptually artifact-free by

preserving order statistics either globally or locally. Marrying these two ideas together
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results a new formulation for HDR image tone mapping as follows,

maximize
N∑
i=1

|yi − si|
si

subject to 0 ≤ yi ≤ 1, i = 1, . . . , N,

sgn(xi − xj) = sgn(yi − yj),

i = 1, . . . , N, j ∈ Di,

(3.2)

where the enhanced image y is the variable, and original image x and the number

of pixels, N , are constant to the problem. Variable si, representing the average pixel

intensity in the neighbourhood of pixel i, is defined as,

si =
1

|Di|
∑
j∈Di

yj . (3.3)

The objective function is simply the summation of the absolute local Weber contrast

of all pixels. The first constraint is to bound the dynamic range of y to [0, 1] and the

second constraint is to preserve order statistics locally as defined in Eq. (3.1).

This optimization problem is non-convex and difficult to solve directly, however,

since the enhanced image y is tone-mapped from the original image x with the con-

straint of preserving order statistics, these two images are highly correlated. Thus,

the denominator si in the objective function can be approximated using the local

average pixel intensities of x,

s̃i =
1

|Di|
∑
j∈Di

xj . (3.4)

In addition, if the tone mapping method also preserves the order statistics between
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each pixel and its local average, or in order words, yi− si always shares the same sign

with xi − s̃i, then

|yi − si|/s̃i = (yi − si) · sgn(yi − si)/s̃i

= (yi − si) · sgn(xi − s̃i)/s̃i.
(3.5)

Since xi and s̃i are constant to the optimization problem, the approximated objective

function is linear. The local order statistics preserving constraints in Eq. (3.2) can

also be written as equivalent linear inequalities as follows,

 yi − yj ≤ 0 if xi ≤ xj,

yi − yj ≥ 0 if xi ≥ xj.
(3.6)

Therefore, this reformulated problem is a linear program. However, the optimal

solution of the problem often over-enhances the input image resulting black-white

output image with extremely high local contrast and little gradient detail. This is

because the order statistics preserving constraint alone cannot prevent the contrast of

neighbouring pixels being boosted drastically by the objective function. To alleviate

the over-enhancement problem, intuitively, not only does the intensity difference yi−

yj need to share the same sign as xi − xj, it should also be relatively proportional to

xi − xj so that if the original intensity difference of two neighbouring pixels is small,

the difference should still be relatively small after enhancement. This idea can be

implemented by constraining the ratio of yi−yj to xi−xj within a certain range, i.e.,

l ≤ yi − yj
xi − xj

≤ h. (3.7)
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The parameter h sets the maximum allowed contrast gain in order to maintain the

smooth and natural look of the input image; and the purpose of parameter l is to

prevent flattening local detail for the sake of global contrast gain. Since in Eq. (3.7),

the denominator xi− xj is 0 when two adjacent pixels xi, xj share the same intensity

value, to employ this constraint in a linear program, it must be rewritten in an

equivalent linear form as follows,

l · (xi−xj) ≤ yi−yj ≤ h · (xi−xj) if xi≤xj,

h · (xi−xj) ≤ yi−yj ≤ l · (xi−xj) if xi≥xj.
(3.8)

Combining the two cases xi ≤ xj and xi ≥ xj together, Eq. (3.8) is equivalent to,

Li,j ≤ yi − yj ≤ Hi,j, (3.9)

where

Li,j = min(l · (xi − xj), h · (xi − xj)),

Hi,j = max(l · (xi − xj), h · (xi − xj)).
(3.10)

Since xi, xj, l, h are all constant to the optimization problem, Li,j, Hi,j are also con-

stant. As the lower bound l of the local contrast gain must be greater than or equal

to 0, the constraint for local contrast gain in Eq. (3.7) implies the property of preserv-

ing order statistics locally in the solution, thus, it is not necessary to use local order

statistics preserving constraint as in Eq. (3.6) explicitly in the optimization problem.

Incorporating these constraints, a more practical locally adaptive rank-constrained
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optimal tone mapping (LARCOTM) problem can be formulated as,

maximize
N∑
i=1

|yi − si|
s̃i

subject to 0 ≤ yi ≤ 1, i = 1, . . . , N,

Li,j ≤ yi − yj ≤ Hi,j,

i = 1, . . . , N, j ∈ Di,

sgn(yi − si) = sgn(xi − s̃i),

i = 1, . . . , N,

(3.11)

Constants l, h are user given parameters based on the requirements of applications.

To guarantee the existence of at least one feasible solution, those constants should

satisfy the following inequalities,

 l ≤ 1,

h ≥ 1.
(3.12)

Obviously, if these inequalities are all true, the original image x can satisfy all the

constraints in the optimization problem hence a feasible solution.

In some applications, however, it might not be desirable or possible to apply all

the restrictions as in Eq. (3.14), as a result, there does not necessarily exist a feasible

solution for every input image. Ideally, a robust tone mapping method should always

produce some results albeit imperfect. To improve the robustness of the new method,

we make the pixel dynamic range constraint a soft constraint and arrive at a more
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general formulation LARCOTM as follows,

maximize
N∑
i=1

∑
j∈Di

|yi − yj| − λ
N∑
i=1

|zi|

subject to ai ≤ yi + zi ≤ bi, i = 1, . . . , N,

Li,j ≤ yi − yj ≤ Hi,j,

i = 1, . . . , N, j ∈ Di,

(3.13)

where the enhanced image is y + z and z is a relaxation vector of the pixel dynamic

range constraint. Unlike the previous formulation, if the new tone mapping method

cannot find a feasible solution yi within dynamic range [ai, bi], it does not give up

but tries to clip yi to a value yi + zi within the given dynamic range. The amount of

the clipping, −zi, is penalized in the objective function to constrain the compromise.

The strength of the penalization is adjustable through setting the Lagrange multiplier

λ; the larger the multiplier, the lower enhancement strength and the lower clipping

artifacts in the resulted image as well. With this new formulation in Eq. (3.13),

a feasible solution exists regardless the constants ai, bi, li,j, hi,j. For example, the

following solution must be feasible.

 y = x,

z = b− x.
(3.14)

Thus, this new method can always yield some results. This LARCOTM problem

remains one of linear programming and hence it is still solvable.
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Original Mantiuk2008

|Di| = 3× 3, h = 6 |Di| = 9× 9, h = 6

Figure 3.2: This example shows the effect of different sizes of neighbourhood window
Di. Generally, the output of LARCOTM is of higher contrast for smaller Di, and the
output looks more natural and closer to the result of a global tone mapping operator
such as Mantiuk’s method, when Di is larger.

3.3 Experimental Results

By its formulation, LARCOTM strictly preserves the order statistics between each

pixel i and its adjacent pixels in a neighbourhood set Di. As demonstrated in Fig-

ure 3.2, when the neighbourhood Di is a small 3 × 3 window centred at pixel i, the

result of LARCOTM has high level of contrast and its detail is much more visible

than the original. In comparison, using a larger neighbourhood Di, such as a 9 × 9

window, the tone-mapped image exhibits relatively lower contrast but looks more
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|Di| = 3× 3, h = 3 |Di| = 3× 3, h = 12

Figure 3.3: This example demonstrates the effect of contrast gain upper bound h. As
expected, larger h setting results higher contrast of the output images.

natural. Both settings of neighbourhood sizes yield better detail than a global tone

mapping operator such as Mantiuk’s global method (Mantiuk et al., 2008). On the

other hand, similar to a global operator, images enhanced by LARCOTM are free of

halo and double edge artifacts. As smaller window results higher contrast without

causing artifacts, in all of the following presented experiments, the neighbourhood Di

is set to a 3× 3 window for all pixels.

Another important parameter of LARCOTM is the upper bound h of contrast

gain. In Figure 3.2, h is set to 6, and in Figure 3.3, h is set to 3 and 12, respectively. As

expected, with higher upper bound h, the enhanced images have higher contrast grain.

However, over exaggerating contrast might distort the relative intensity of different

regions resulting unrealistic output images. Thus, the best choice of h depends on

the requirements of application, input image and user preferences. Since LARCOTM

maximizes local Weber contrast, its results are less sensitive to the choice of the lower

bound l of contrast gain. In the presented experiments, the lower bound l is all set

to 0.5.
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Figure 3.4: 12-bit input infrared images and the enhanced images by Mantiuk’s global and local methods, Paris’
method, DDE and the proposed LARCOTM method, respectively.
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In order to demonstrate the efficacy of the LARCOTM principle, we implemented

LARCOTM for various application scenarios. The first test case is the visualization

of infrared HDR images as presented in Figure 3.4. The previously mentioned global

method by Mantiuk et al. (Mantiuk2008) (Mantiuk et al., 2008), a local approach

also by Mantiuk et al. (Mantiuk2006) (Mantiuk et al., 2006), Paris et al.’s local

Laplacian filtering method (Paris et al., 2011) and the well-known commercial DDE

software (DDE, 2014) in the field of infrared imaging are also tested for comparison

purposes. All the four local methods are superior than the global method in terms of

exposing image details. Comparatively, while the output images of both Mantiuk’s

local method and Paris’ method show the excellent level of detail, they are overly

sensitive to noise and often magnify noise in low quality images. The output images

of DDE also have good detail; however, the objects in those images appear flattened

and unnatural. By using high-boost filter to enhance edges the DDE method is

prone to double-edge artifacts, distorting natural boundaries between objects. The

output images of LARCOTM are obtained with the upper bound h of contrast gain

set to 8. The results look sharper and more realistic than the competitors, and the

relative intensity (temperature) of adjacent objects remains intact in the enhanced

images. For example, in the bulldozer case, a human viewer can easily and accurately

distinguish the relative temperatures of different parts of the bulldozer in the enhanced

infrared image, whereas the other methods can even reverse the ranking of adjacent

pixels in temperature (unacceptable in some critical applications). This advantage of

LARCOTM can be further visualized using order statistics error image as presented

in Figure 3.5. The intensity ei of each pixel i in these images represents the maximum

order statistics error between pixel i in the output image and its neighbours in a 7×7
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Mantiuk2006 Paris

DDE LARCOTM

Figure 3.5: The order statistics error images for the bulldozer case. The brighter a
pixel is, the larger order statistics error at that location is generated by the corre-
sponding tone mapping method.
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window, i.e.,

ei = max
j∈Di

f(i, j), (3.15)

where f(i, j) = 0 if sgn(xi−xj) = sgn(yi−yj), or f(i, j) = |xi−xj|+|yi−yj|, otherwise.

Although in the experiment, LARCOTM is set to preserve the order statistics only

in a small 3 × 3 window, the order statistics in the result is often preserved in a

much larger region due to the transitivity of the order relation of pixel intensities.

Therefore, as demonstrated by Figure 3.5, the result image of LARCOTM has much

smaller order statistics error than its competitors even when we check the error in a

large window. Mantiuk’s global method is not included in this test because global

methods produce no order statistic error by their nature.

The LARCOTM algorithm can also be used for medical imaging. The same CT

test image in Figure 1.1 is now enhanced by the proposed LARCOTM algorithm and

displayed as an integral image with all pieces of anatomy unified as they physically are

(see Figure 3.6). Contrasting the holistic approach of Figure 3.6 with the separation

approach of Figure 1.1, radiologists in a small, informal comparative study prefer the

new LARCOTM visualization approach.

Compared to the previous infrared image case, two small adjustments are made

on the LARCOTM algorithm in retooling it for CT images. First, to ensure that each

type of tissue (which can be identified by the intensity) maps to a certain dynamic

range as required by radiologist, the first constraint of Eq. (3.11) is replaced with a

more restrictive output dynamic range constraint ai ≤ yi ≤ bi, where ai and bi are

constants determined by the tissue type of each pixel i. Second, the upper bound of

contrast gain h is set to 18 for soft tissue pixels and 3 for other pixels, separately. The

reason for having a greater enhancement strength for soft tissues is that the intensity
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Mantiuk2008 Mantiuk2006 BACCT LARCOTM

Figure 3.6: 12-bit input CT images and the enhanced images by Mantiuk’s global
and local methods, BACCT and the proposed LARCOTM method, respectively.
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of soft tissue pixels falls in a very small dynamic range, thus, even if the amplitude of

soft tissue pixels is allowed to increase by three times more than others, it is still not

sufficient to expose all the detail of the soft tissues. To address this difficulty facing

all CT image enhancement methods Cohen-Duwek et al. introduced a pre-process

phase to increase the dynamic range of soft tissue region with a histogram-based

transfer function in their BACCT algorithm (Cohen-Duwek et al., 2011). Although

this method does improve the visualization of soft tissues, it often generates false

edges around soft tissue regions, hindering the diagnosis. The proposed method,

however, can easily allocate more dynamic range resources to soft tissues within

the LARCOTM optimization framework without introducing any artifacts. Since the

dynamic range of soft tissue is known a prior and it does not overlap with the dynamic

ranges of other objects, assigning the soft tissue regions a higher contrast gain h will

enhance those regions without much affecting other regions. A general purpose HDR

tone mapping technique is also tested for comparison (Mantiuk et al., 2006). Since

Mantiuk’s global and local methods are not optimized for CT image, the test images

have to be pre-processed to boost the contrast of soft tissue using the subroutine of

the BACCT algorithm before using the HDR tone mapping techniques, thus these

two methods inherit the false edge artifacts from BACCT inevitably. Moreover, as

Mantiuk’s local method provides no mechanism to preserve the pixel rank consistency

and constrain output dynamic range, the same tissue might have noticeable different

shades in different positions.
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Figure 3.7: Tone mapped natural HDR images by different methods. The second and third rows contain magnified
patches of the images in the first row.
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Figure 3.8: Tone mapped natural HDR images by different methods. The second and third rows contain magnified
patches of the images in the first row.
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The LARCOTM algorithm is also applicable to natural HDR images; its perfor-

mance is competitive compared to other HDR tone mapping techniques, as shown in

Figures 3.7 and 3.8. In this test case, the upper bound of contrast gain h is set to 4.

For colour images, we run the LARCOTM algorithm on intensity channel only and

keep the colour unchanged. Beside Mantiuk’s and Paris’ methods, the comparison

group includes other two popular methods by Reinhard et al. (Reinhard et al., 2002)

and Fattal et al. (Fattal et al., 2002). Similar to the other tested methods, LAR-

COTM exhibits rich details in both bright (as in the second row of Figure 3.7) and

dark (as in the third row of Figure 3.7 and the second row of Figure 3.8) regions, and

it is free of halo artifacts in high-contrast regions (as in the third row of Figure 3.8).

As a whole, the results of LARCOTM appear more realistic because of its ability to

preserve order statistics.

3.4 Conclusion

The results of this research substantiate the validity of the LARCOTM high dynamic

range image display methodology. Operationally, the proposed LARCOTM frame-

work is also simple to use yet flexible enough to be fine tuned for meeting stringent

requirements of different applications, in particular for medical and scientific visual-

ization.
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Chapter 4

Enhancement of Compressed

Image

In most practical image enhancement scenarios, particularly those of consumer appli-

cations, the input images are compressed in DCT domain with some loss of fidelity.

For practical systems constrained by bandwidth and storage economy, lossy compres-

sion is inevitable because mathematically invertible image coding typically achieves

only roughly 2:1 compression ratio (Wu and Memon, 1997), still leaving the image

file size too large to handle.

Granted, after years of research, development and investment, international com-

pression standards such as JPEG, H.264, HEVC, etc., can offer very high reconstruc-

tion quality to the level of perceptual transparency; namely, naked eyes cannot easily

discern the differences between the original and the decompressed images. But as

demonstrated by this work, small compression noises, despite being transparent to

human eyes, can adversely affect the results of many image processing operations,
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if left unaccounted for. Especially, compression noises are highly detrimental to in-

verse operators of high-boosting (sharpening) nature, such as image enhancement,

deblurring and superresolution against a convolution kernel.

The compression-induced quality degradation is more pronounced for compound

document images, which are characterized by the embedding of graphics arts or texts

into an acquired photograph, as exemplified by Figure 4.1. This type of quantization

artifacts infect graphic arts commonly found in webpages, such as logos, cartons,

fonts, etc. The infection becomes highly objectionable after image enhancement or

size magnification, or both, which are mundane manipulations in multimedia presen-

tations on large displays. The problem has troubled many users for a long time but

no satisfactory solutions have yet been found. As compound images mix acquired and

synthetic contents, they cannot be compressed effectively as vector graphics. Content

providers and users have to apply compression standards for natural images/videos

on compound images.

4.1 Quantization Error in DCT Domain

The process of capturing, storing and displaying a digital image is far from perfect; it

often introduces objectionable errors, such as motion blur, lens distortion, moiré pat-

tern, sensor noise, compression noise, etc., into the final reproduction of a scene. Some

errors are independent to and statistically distinct from signal. For example, sensor

noise can be modelled as random variables following an independent and identically

distributed (i.i.d.) Gaussian distribution, while true signal has repetitive patterns

hence sparse in some basis (Mairal et al., 2009; Dong et al., 2011). By exploiting

this statistical difference between signal and sensor noise, denoising techniques can
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(a) Original image

(b) Enhanced by CLAHE

(c) Enhanced by the proposed technique

Figure 4.1: JPEG compression artifacts become highly objectionable after image
enhancement or image size magnification, or both. The second and third sub-figures
from left are regions up-scaled by bi-cubic interpolation and A+ (Timofte et al.,
2014), respectively.
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(a) Original (b) JPEG (QF = 75) (c) JPEG (QF = 50) (d) JPEG (QF = 25)

Figure 4.2: JPEG compression noise is corrected with signal.

effectively separate signal and noise in a given noisy observation (Gu et al., 2014).

Compression noises, on the other hand, are much more difficult to model than other

degradation sources, e.g., motion blur and sensor noises. The non-linearity of quan-

tization operations in image compression systems makes quantization noises image

dependent, far from being white and independent.

In main stream DCT-based compression systems, the encoding of signal x is a

three-step process. 1. The discrete cosine transform T is performed on signal x;

2. the transformed signal T (x) is subject to quantization Q; 3. the quantized version

(Q◦T )(x) is coded by an entropy coder C, resulting the code stream (C◦Q◦T )(x) for

storage or transmission. The decoding process reverses the above three-step encoding

process and generates the decompressed signal

x̂ = (T−1 ◦Q−1 ◦ C−1)((C ◦Q ◦ T )(x)). (4.1)

In this closed loop, the entropy decoder C−1 and the inverse transform T−1 are

invertible operators, namely, C−1 ◦ C = I, T−1 ◦ T = I, but the dequantization

operator Q−1 is not. The approximation error due to Q−1 ◦ Q 6= I is aggravated

and complicated by the non-linearity of the quantization operation Q. In the interest
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of gaining compression performance, the quantizer Q inclines to demote or outright

discard high-frequency DCT coefficients. Setting high frequency components of x to

zero causes periodic ringing artifacts in the reconstructed signal x̂, which are easy to

perceive as demonstrated in Figure 4.2. In this set of JPEG-decompressed images,

the ringing artifacts not only accompany sharp edges in close proximity and they also

agree with the image signal in orientation; in other words, the quantization noises are

correlated with the image signal.

Unlike other noise mechanisms in image or video restoration, compression noises

are not random in the sense that coding blocks of similar high-frequency contents

tend to have similar ringing artifacts. As a result, a particular artifact pattern may

occur repetitively in a pixel vicinity. Such signal-dependent noises may resist the

treatment of sparsity-based denoising techniques, because the assumption that only

the signal as self-similarity is no longer valid.

There is yet another complication in modeling and removing DCT quantization

errors. That is, the same signal structure can, after through the loop of compression

C ◦Q◦T and decompression T−1 ◦Q−1 ◦C−1, exhibit much varied temporal or spatial

patterns, with even immaterial changes in the phase or amplitude of the input signal,

and in compression quality factor (QF). This high sensitivity and nonlinearity of error

patterns are depicted graphically in Figure 4.3. In this example, the reconstructed

versions of the same one dimensional (1D) unit pulse signal of minor linear-type alter-

ations, such as shifting and scaling, behave drastically differently. In two dimensional

(2D) image, there are more factors affecting quantization noise. Figure 4.4 shows

the quantization effects on image blocks of the same sharp edge but different phases

and angles. In each case, there are visible false lines parallel to the edge, however,
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(c) Amplitude = 0.15, QF = 50.

Figure 4.3: DCT quantization noise appears drastically different with small changes
in QF, signal phase or amplitude.
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(a) Original (b) JPEG (QF = 75) (c) JPEG (QF = 50) (d) JPEG (QF = 25)

Figure 4.4: Besides QF, JPEG compression noise is sensitive to the angle and phase
of the signal.

the position, strength and sign of the compression noise vary with a small change in

angel or phase. Since there are so many factors affecting the quantization error, using

learning based techniques to build a map from noisy observation to true signal for

each scenario is impractical.

4.2 DCT Quantization Error Model

DCT based lossy compression techniques realize data volume reduction by trading off

the accuracy of the DCT-domain representation of the input signal through quanti-

zation. By the definition of DCT, the k-th DCT coefficient of 1D signal x0, . . . , xN−1

is,

Xk =
N−1∑
n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
. (4.2)

After quantization, the true value of Xk is commonly estimated as,

X̂k = bXk/qk + 0.5c · qk, (4.3)
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where qk is quantization interval for the k-th DCT coefficient. In general, qk is set to

decrease with k, due to the fact that most energy of a signal is commonly concentrated

in low frequency components.

Using Fourier transform, DCT can be approximated in continuous domain as

follows,

Xk = N

N−1∑
n=0

1

N
xn cos

(
2π ·

n+ 1
2

N
· k

2

)
≈ N

∫ 1

0

f(t) cos

(
2πt

k

2

)
dt

= Re

[
N

2

∫ ∞
−∞

f(t)e−2πt
k
2 dt

]
= Re

[
N

2
F

(
k

2

)]
, (4.4)

where f is an integrable function such that


f(

n+ 1
2

N
) = xn,

f(t) = f(−t),

f(t) = 0, t > 1,

(4.5)

and F is the Fourier transform of f . By this equation, if sequence x0, . . . , xN−1

consists of equally spaced samples of function f and f satisfies Eq. (4.5), then a DCT

coefficient of the sequence is a sample of f in frequency domain.
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4.2.1 Quantization Effects on Linear Signal

Suppose input signal xr = {x0, . . . , xN−1} is a decreasing linear sequence, in which

the n-th element is,

xn = a ·
n+ 1

2

N
, 0 ≤ n ≤ N − 1. (4.6)

Then triangular function a · tri(t), where,

tri(t) =


1− |t| if |t| < 1

0 otherwise,

(4.7)

satisfies the conditions in Eq. (4.5), thus by Eq. (4.4), the k-th DCT coefficient of the

sequence can be approximated as,

Xk ≈ Re

[
N

2

∫ ∞
−∞

a · tri(t)e−i2πt
k
2 dt

]
=
aN

2
· sinc2

(
k

2

)
, (4.8)

where sinc(·) is the normalized sinc function defined as,

sinc(x) =
sin(πx)

πx
. (4.9)

This linear input signal xr is easy to model in temporal domain; its second order

derivative is zero everywhere hence sparse. It is comparable to a simple gradient ramp

in 2D digital image. However, as visualized in Figure 4.5, this signal is not sparse

in DCT domain. By the approximation in Eq. (4.8), the k-th DCT coefficient Xk is

only zero for even positive integer k, thus, more than half (bN/2c+1 out of N) of the
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Figure 4.5: DCT coefficients of a decreasing linear sequence.

(a) Original (b) JPEG (QF = 10)

Figure 4.6: Quantization removes small AC components causing perceivable blocking
artifacts in a simple gradient ramp image.
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coefficients in DCT domain are non-zero. To effectively compress this signal, some of

the non-zero DCT coefficients need to be quantized to zero. Suppose for some odd

positive integer k0, the k0-th quantized DCT coefficient is zero, then

Xk0 <
qk0
2
⇐⇒ aN

2
· sinc2

(
k0
2

)
<
qk0
2

⇐⇒ aN · 4

π2k20
< qk0

⇐⇒ a <
π2k20qk0

4N
. (4.10)

Since non-zero DCT coefficient Xk decreases with k while in general, quantization

interval qk increases with k, all the quantized DCT coefficients after the k0-th one are

zero as well. For example, if we use JPEG with QF = 25 to compress a horizontal

gradient ramp, then by Eq. (4.10), quantized DCT coefficient X1 is zero when a is less

than about 4.8. In this case, each coding block becomes uniform after compression

as its AC components in DCT domain are all zeros. As shown in Figure 4.6, it is

not sufficient to reconstruct the gradient ramp accurately in each block with only the

DC component X0. More importantly, due to Mach bands illusion, the discontinuity

around coding block boundaries is highly perceivable to human, greatly deteriorating

the perceptual quality of the compressed image.

4.2.2 Quantization Effects on Piecewise Constant Signal

Similar to linear signal, piecewise constant signal is another case which is simple to

model in temporal domain but complex in DCT domain. For instance, let input signal
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xs = {x0, . . . , xN−1} be a sequence of two steps, i.e.,

[a, a, . . . , a︸ ︷︷ ︸
m

, 0, 0, . . . , 0︸ ︷︷ ︸
N−m

], (4.11)

where a > 0 and 0 ≤ m ≤ N . This sequence is a discrete version of rectangular

function fs(t), where,

fs(t) = a · rect

(
t

2r

)

= a ·


0 if |t| > r

1
2

if |t| = r

1 if |t| < r,

(4.12)

and r = m/N . As fs(t) satisfies Eq. (4.5), the DCT of sequence xs can be approxi-

mated as follows by Eq. (4.4),

Xk ≈ Re

[
N

2

∫ ∞
−∞

a · rect

(
t

2r

)
e−i2πt

k
2 dt

]
=
N

2
· 2ar · sinc

(
2r · k

2

)
= arN · sinc(rk). (4.13)

As sinc(rk) decreases with frequency k in general, if quantization intervals are

large enough, quantization effects can be approximated by cutting off high frequency
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components. Suppose only the first b DCT coefficients are preserved after quantiza-

tion, then the restored sequence is

x̂t =

∫ b

−b

2

N
Xk e

i2πt k
2 d

k

2

= a

∫ b

−b
r sinc(rk) ei2π

t
2
k dk

= a · [Si(br − bt) + Si(br + bt)], (4.14)

where function Si(z) is sine integral defined as

Si(z) =

∫ z

0

sinc(t) dt. (4.15)

By aligning the sequence {x̂t | 0 ≤ t ≤ 1} to the location of the edge, we get the

following sequence such that y0 is the transition of two steps,

ŷt = x̂t+r = a[Si(−bt) + Si(2br + bt)]. (4.16)

As shown in Figure 4.7, quantization noise in ŷt has a relatively fixed pattern

regardless of the phase. Therefore, if we align the signals by their phases, the noises

become aligned as well. This correlation between signal and quantization noise makes

them much more difficult to distinguish.

If sequence xs is smoothed with a Gaussian kernel resulting sequence ys, then ys

is a discrete version of fg(t) = (fs ∗ g)(t), where,

g(t) =
1

σ
√

2π
e−

t2

2σ2 . (4.17)
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Figure 4.7: A sharp edge causes similar quantization artifacts regardless of the phase
r.

By convolution theorem, the Fourier transform of function fg(t) is,

Fg

(
k

2

)
= Fs

(
k

2

)
·G
(
k

2

)
= 2ar · sinc(rk) · e−2π2σ2k2/22 (4.18)

Thus the k-th DCT coefficient of the blurred sequence ys is approximately equal to,

Yk ≈ arN · sinc(rk) · e−π2σ2k2/2 (4.19)

For a given frequency k, the absolute quantization error is

εk = |vk · qk − Yk| . (4.20)
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where vk = bYk/qk + 0.5c. If the absolute quantization error εk of DCT coefficient Yk

is sufficiently small, say less than a constant Cε, it has little impact on the quality

of the compressed image; if εk is large, but the relative error εk/|Yk| is small, it

still contributes little to the artifacts of the compressed image, as in this case, the

quantized DCT coefficient is strong enough to hide the error perceptually. Suppose

that to hide the quantization artifacts from frequency k, the relative error εk/|Yk|

must be less than 1/3, i.e.,

ek
|Yk|

=

∣∣∣∣vk · qk − YkYk

∣∣∣∣ < 1

3
. (4.21)

This inequality is true if and only if |Yk| ≥ 3qk/4. Thus, when,

Cε ≤ |Yk| ≤
3

4
qk, (4.22)

quantization of DCT coefficient Yk results both large absolute error and relative error.

Plotted in Figure 4.8 is DCT coefficient Yk as a function of k. Each curve represents

a signal with a different phase r, and amplitude of the first step is a = 50; and the

quantization intervals are based on the quantization matrix of JPEG with QF = 50.

Regions where a coefficient can cause large absolute error and relative quantization

error are marked as gray. As demonstrated in Figure 4.8a, the strength and sign of

a DCT coefficient and its quantization error depend on various factors, e.g., phase

r, smoothness σ and amplitude a. In Figure 4.8b, the sequence is smoothed by

a Gaussian kernel with variance σ2. As a result, the quantization errors of high

frequency coefficients are small (not in the gray regions) compare to the previous

case, as those coefficients are close to zero.
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Figure 4.8: DCT coefficient Yk as a function of frequency k.

4.3 Enhancement Model

Recent nonlocal self-similarity (NNS) based image denoising techniques, such as

BM3D (Dabov et al., 2006), SAIST (Dong et al., 2013) and WNNM (Gu et al.,

2014), have demonstrated their great strength in reconstructing the original image x

from an observation y = x + n contaminated by additive white Gaussian noise n.

NNS refers to the fact that there are many repeated local patterns across a natural

image, and those nonlocal similar patches to a given patch can help much the recon-

struction of it (Cai et al., 2010). For a local patch yi of size m in image y, we can

stack M of its similar patches yi,j = Ri,jy across the image together into a matrix

Y i ∈ <m×M , where Ri,j is a matrix extracting the j-th similar patch of the local

patch at location i for 1 ≤ i ≤ N, 1 ≤ j ≤ M . Then solving the following nuclear

norm minimization (NNM) problem yields a matrix X̂ i consisting of noise reduced
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patches,

X̂ i = argmin
Xi

‖Y i −X i‖2F + λ‖X i‖∗, (4.23)

where ‖ · ‖F and ‖ · ‖∗ represent the Frobenius norm and nuclear norm of a matrix,

respectively. Although this problem is non-convex, it is tractable by an efficient sin-

gular value thresholding (SVT) algorithm (Cai et al., 2010). The whole reconstructed

image can be then estimated by aggregating all the denoised patches as,

x̂ =

(
N∑
i=1

M∑
j=1

Rᵀ
i,jRi,j

)−1 N∑
i=1

M∑
j=1

Rᵀ
i,jx̂i,j (4.24)

Following this idea, we can formulate the enhancement of DCT-domain com-

pressed image problem as a constrained nuclear norm minimization problem,

x̂ = argmin
x

N∑
i=1

‖X i‖∗

s. t. |QTR̃iHx− γi| ≤ 0.5,

i = 1 . . . n

(4.25)

where H is a matrix modelling the degradation of image quality caused by various

image capturing conditions, R̃i is a matrix extracting the coding block at location i,

T is the DCT transform matrix, Q is a diagonal matrix storing quantization table

and vector γi is the DCT coefficient of the block at location i.

Using hard-decoding technique, each block yi of y is obtained by inverse DCT

transform from coefficient vector γi as follow,

yi = R̃iy = (QT )−1γi, (4.26)
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and the observed image y is a degraded version of image Hx contaminated mainly

by DCT-domain quantization noise. Existing sparsity based denoising techniques

designed for reducing additive white Gaussian noise generally use ‖x̂ − y‖2 as the

fidelity term in their optimization frameworks and leave x̂ unconstrained. In the case

of DCT-domain quantization noise, we have more information about the noise: the

true value of each DCT coefficient before scalar quantization lies in a known interval,

Q−1(γi − 0.5) ≤ TR̃iHx < Q
−1(γi + 0.5) (4.27)

This constrain confines the solution space of the optimization problem in Eq. (4.25),

preventing the sparsity objective function from over-smoothing the output image.

To solve the problem in Eq. (4.25), we split it into two parts. The first part is to

find a sparse estimation ẑ of the original image from a given noisy version x̃, i.e., for

each patch group of image ẑ,

Ẑi = argmin
Zi

‖X̃ i −Zi‖2F + λ‖Zi‖∗ (4.28)

The noisy version x̃ of the original image can be estimated directly using x̃ = H−1y.

Here we use H−1 to represent an inverse operator of H rather than matrix inverse.

Although many types of image degradation can be modelled by a simple product of

a degradation matrix H and the original image x, the inverse problem is often iso-

posed and requires complex non-linear algorithm to find a good solution. Since the

observed image y contains compression noise, if operator H−1 exhibits high-boosting

property, which is often the case for unsharp and edge enhancement operators, H−1

could amplify the noise and make an inaccurate estimation of the original image.
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Using sparsity prior, the boosted noise can be greatly alleviated by the optimization

problem in Eq. (4.28), resulting a better estimation of the original image in vector ẑ.

The second part of the problem is to impose the DCT-domain constraint in

Eq. (4.25) on the noise reduced estimation ẑ from the first part using the follow-

ing optimization problem,

x̂′ = argmin
x

‖x− ẑ‖2

s. t. |QTR̃iHx− γi| ≤ 0.5,

i = 1 . . . n

(4.29)

This is a convex problem solvable by off-the-shelf convex optimization problem solvers.

However, if the input image is large, a general purpose solver is too time-consuming

for this problem. Instead, we can solve a similar but much simpler problem as follows,

x̂′ = argmin
x

n∑
i=1

‖R̃iH(x− ẑ)‖2

s. t. |QTR̃iHx− γi| ≤ 0.5,

i = 1 . . . n

(4.30)

Compared with the original problem, the only difference of the reduced problem is

that the new problem measures the norm of the error in degraded image domain

rather than original image domain. Since the DCT tranform matrix T is unitary,

‖R̃iH(x− ẑ)‖2 = ‖TR̃iH(x− ẑ)‖2

= ‖Tyi − TR̃iHẑ‖2, (4.31)
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where coding block yi = R̃iHx. On the other hand, the DCT coefficient constraint

in Eq. (4.27) is applied on each element of vector Tyi, thus, the optimization problem

has a closed-form solution,

ŷi = C0.5(R̃iHẑ,yi), (4.32)

where, the DCT-domain clipping operator Cβ(·, ·) is defined as

Cβ(α,ρ) = (QT )−1 min(max(QTα,QTρ− β)

,QTρ+ β). (4.33)

Aggregating these DCT blocks together, we get ŷ, an estimation in degraded image

domain with reduced compression noise, from which an approximate solution x̂′ =

H−1ŷ of the problem in Eq. (4.30) can be easily found. Compared with image x̂,

the initial inverse of the observed image y, x̂′ has lower level of compression noise

because of sparsity prior in Eq. (4.28) and still satisfies the DCT domain constraints

due to Eq. (4.30).

4.4 Algorithm

Based on the enhancement model discussed in the previous section, our purposed algo-

rithm can be implemented as an iterative process alternatively finding a reconstructed

original image and a compression noise reduced observation image as in Algorithm 1.

In this section, we address some of the technical issues in the implementation of the

algorithm.
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Algorithm 1 Image enhancement from compressed image

Input: Compressed image y, contrast degradation matrix H

1: Estimate compression RMSE ε of y
2: Estimate threshold λ using ε . Eq. (4.43)
3: β = 0.2
4: x(0) = H−1y
5: for k = 1 to K do
6: for each patch xi in x(k−1) do
7: Find similar patch group X i

8: [U ,Σ,V ] = SVD(X i)
9: Zi = UTλ(Σ)V ᵀ . Eq. (4.38)
10: end for
11: Aggregate Zi to form image z(k) . Eq. (4.24)
12: if k = K then
13: β = 0.5
14: end if
15: Clip Hz(k) using threshold β to get y(k) . Eq. (4.32)
16: x(k) = H−1y(k)

17: λ = λ/2
18: end for

Output: Enhanced image x(K)
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Figure 4.9: Avoid collecting patches of the same phase.

4.4.1 Nonlocal Self-Similarity

NNS based techniques have achieved the state-of-the-art results in removing Gaussian

noise (Gu et al., 2014). The NNS prior assumes that noise is independent to signal,

hence by comparing a group of similar patches, noise can be isolated from signal.

However, as we argued in previous sections, compression noise is not random but

correlated with the signal; similar patches have similar compression noise, especially

when they also have the same relative position to DCT coding blocks. Moreover,

patches with matched artifacts can be easily mistaken as being similar using square

error metric. Thus, collecting similar patches without taking their contents or posi-

tions into consideration inevitably puts multiple instances of the same quantization

artifacts into a sample patch group; consequently, such reoccurring noises cannot be

separated from the true signal by the NNS prior alone.

For example, as shown in Figure 4.9, patches p0 and p2 are both located on a 45◦
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high-contrast edge, and their positions relative to coding blocks are the same, hence

they have matching ringing artifacts caused by the quantization of the edge in DCT

domain. In contrast, patch p1 on the same edge also suffers from ringing artifacts but

with a different pattern than those of p0 and p1 as a result of being aligned differently

to coding blocks than the other two. Due to its distinct noise patterns, patch p1 is

ranked lower in terms of the similarity to p0, however, it is a better candidate for the

sample patch group in combating reoccurring artifacts. Therefore, when compiling

the sample patch group for patch p0, other patches of the same position in relative

to coding blocks, like p2, should be avoided if p0 is around a high-contrast edge. A

special case is that, when the edge is horizontal or vertical, patches in the same row

or column are potentially distorted by the same artifacts, thus their similarity rating

must be reduced accordingly as well.

In addition to considering patch positions in choosing similar patches, the mea-

surement of patch similarity should be carefully designed to decouple noise from

signal. As discussed previously, compression noise in input image can mislead the

selection of similar patches. Thus, instead of comparing two patches directly by their

squared error, a denoised version of a patch can be used to measure similarity. A sim-

ple low-pass filtering can generate a good enough denoised image effectively reducing

the impact of compression noise to the measurement of similarity. This technique is

only used in the first iteration of a denosing algorithm when the strength of noise is

high. In the later iterations, input image becomes less subject to compression noise

and it is not necessary to clean up the input image for a more robust measurement

of similarity.

The above discussed techniques are designed to deal with patches with ringing
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artifacts around strong edges. Patches in smooth areas are generally free of ringing

artifacts since their high frequency coefficients are near zero and the corresponding

quantization errors are negligible. However, these patches are not immune to block-

ing artifacts. Due to the lack of other textures, the boundaries of coding blocks are

actually more discernible perceptually in those smooth areas as demonstrated in Fig-

ure 4.6. To prevent these blocking artifacts being matched as similar patch features

causing reoccurring artifacts in sample patch group, the same strategy of choosing

only unaligned patches as previous case can be employed. For example, in Figure 4.9,

patch p3 is in a smooth area located across two coding blocks; any patch in the same

row as p3 is likely to have the identical blocking artifacts, hence it should not be

considered in the patch group of p3. Moreover, since natural images are smooth in

general, patches in a small windows of smooth area are similar to each other. Fur-

thermore, since natural images are smooth in general, patches in a small windows of

smooth area are similar to each other. Therefore, for a patch from a smooth area,

patches in close proximity are sufficient to build a good sample patch group. If the

search window is small enough, there are few patches perfectly aligned with the given

patch, hence reducing the risk of collecting too many patches with repeated artifacts.

In practice, we set the search windows to 60 × 60 for normal patch and shrink the

window to 10× 10 when the variance of the given patch is less than 3.
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4.4.2 Singular Value Thresholding

Ideally, finding a low-rank reconstruction of patch group matrix Y i should be formu-

lated as an `0-norm minimization problem as follows,

X̂ i = argmin
Xi

‖Y i −X i‖2F + λ‖X i‖0. (4.34)

Since this problem is NP-hard (Cai et al., 2010), in practice, we approximate it with

a nuclear norm minimization problem as in Eq. (4.23), which has an efficient closed-

form solution,

X̂ i = UDλ(Σ)V ᵀ, (4.35)

where U ,Σ,V represent the the singular value decomposition (SVD) of Y i and Dλ(·)

is a soft-thresholding operator,

Dλ(Σ)jj =


Σjj − λ Σjj > λ,

0 otherwise,

(4.36)

or simply Dλ(Σ)jj = max(Σjj − λ, 0).

Although this is a reasonable approximation employed by many applications (Cai

et al., 2010; Xie et al., 2014; Dong et al., 2013), it still has some weaknesses. One of

its problems is that, in addition to having a lower rank, the Frobenius norm of the

optimal solution X̂ i also decreases with larger threshold λ, since,

‖X̂ i‖2F = ‖UDλ(Σ)V ᵀ‖2F =
M∑
j=1

Dλ(Σ)2jj (4.37)

and Dλ(Σ)jj is a decreasing function to λ. In the context of image denoising, when we
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try to increase the strength of the denoising algorithm by selecting a large threshold

λ, it inevitably decreases the second moment of the image reducing the brightness and

contrast of the output. Unlike white Gaussian noise, DCT-domain quantization noise

could contribute negatively to the second moment of the image, especially when the

quality factor is low, hence, image denoising using NNM may pull the result further

away from the statistics of the original image.

An intuitive solution to this problem is to completely preserve all the singular

values that are above the threshold λ, i.e., to replace the soft-thresholding operator

Dλ(·) with a hard-thresholding operator

Tλ(Σ)jj =


Σjj Σjj > λ,

0 otherwise.

(4.38)

Since Tλ(Σ)jj > 0 if and only if Tλ(Σ)jj > 0, the resulting matrices X̂ i by the two

threshold operators have the exact same rank. Thus, the new operator Tλ(·) does not

change the low rank property of the solution, however, in this case, the solution is

closer to Y i statistically in terms of the second moment.

This method coincides with the idea of reweighted nuclear norm minimization

where large singular values are given smaller weight to achieve better low rank ap-

proximation (Li et al., 2014). It can also be interpreted as a spacial case of weighted

nuclear norm minimization (WNNM) (Gu et al., 2014) as follows. If for σj(X i), the

j-th singular value of X i, we assign a weight wj,

wj =


0 σj(Y i) > λ,

λ otherwise.

(4.39)
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Since the weights w1...M are in a non-descending order, by the theory of WNNM,

applying the hard-thresholding operator Tλ(·) on Σ yields an optimal solution for the

following optimization problem,

X̂ i = argmin
Xi

‖Y i −X i‖2F + ‖X i‖w,∗ (4.40)

where ‖X i‖w,∗ is the weighted sum of the singular values of matrix X i.

Now, the question is how to set the parameter λ of the NNM problem mak-

ing it more effective against DCT-domain quantization noise. In the formulation

of Eq. (4.23), λ is a weight balancing the sparse and fidelity regularization terms.

If sparsity is given too much weight, it tends to over-smooth the image and cause

degradation in brightness and contrast as discussed previously; if the weight is too

small, noise remains visible. From the perspective of the solution to the problem in

Eq. (4.35), λ is a threshold eliminating small singular values of matrix Y i = UΣV ᵀ,

where row vector σjv
ᵀ
j in matrix ΣV ᵀ consists of the coefficient of each patch in Y i

with respect to the j-th basis vector in sparse dictionary U (Dong et al., 2013). Im-

age denoising by sparse optimization is based on the fact that signal is likely sparse

under some basis while noise is i.i.d. under the same basis. Furthermore, the energy of

compression error generally is small in comparison with the strength of signal, espe-

cially when the quantization factor is set to a practical range. Thus, removing small

coefficients, which originated most likely from noise than signal, results an output

closer to the true signal. The mean square error (MSE) ε2 of compression can then
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be approximated by,

ε2 =
1

mM
‖Y i −X i‖2F

≈ 1

mM
‖Y i − X̂ i‖2F

=
1

mM
‖UΣV ᵀ −UTλ(Σ)V ᵀ‖2F

=
1

mM
‖Σ− Tλ(Σ)‖2F

=
1

mM

∑
j∈L

σ2
j (4.41)

where set L contains indices of singular values that are less than λ. For the same input

image, using a lower quality setting increases the compression noise (i.e., ε2), which

in turn increases the small singular values according to Eq. (4.41). To compensate

this, threshold λ must increase as well to keep the size of set L unchanged so that

the sparsity of the signal is preserved. Considering that the compression error is

i.i.d. on each basis vector, implying that small singular values are of similar strength,

threshold λ should be proportional to root mean square error (RMSE) ε as,

ε2 ∝ 1

mM

∑
j∈L

λ2 (4.42)

Therefore, with an empirical constant Cλ, threshold λ can be set as

λ = Cλε

√
mM

|L|
≈ Cλε

√
max(M,m), (4.43)

where we assume |L| ≈ min(M,m) due to the sparsity of the true signal. This

threshold selecting method requires the knowledge of the strength of the compression
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error ε, which is commonly unknown to the decoder. If error ε is indeed not provided

by the encoder, various no-reference peak signal-to-noise ratio (PSNR) estimation

techniques (Turaga et al., 2004; Ichigaya et al., 2006; Brandão and Queluz, 2008) can

be used to estimate ε with sufficient accuracy for finding an appropriate threshold λ.

4.4.3 DCT Coefficient Constraint

Most iterative denoising techniques, such as (Osher et al., 2005; Dong et al., 2013;

Gu et al., 2014), employ some regularization mechanisms to add a portion of filtered

noise back to the denoised image in each iteration in order to reduce the loss of

high frequency information as the result of multiple rounds of smoothing operators.

The idea of adding noise back enables denoising techniques to remove large noise

aggressively by over-smoothing the image in the first few iterations without completely

removing the detail in the process. Then, during the following iterations, the image

can be refined gradually using smoothing operators of lower strength. Mainly designed

to deal with Gaussian noise, many of these above mentioned denoising techniques

implement this iterative regularization by simply adding the difference between the

observed noisy image and smoothed image back to the smoothed image, and use the

result as the input noisy image for the next iteration.

For our DCT quantization noise reduction algorithm, this noise feedback method

can be written as,

y
(k)
i = z

(k)
i + δ(yi − z

(k)
i )

= δyi + (1− δ)z(k)i

= T−1[δTyi + (1− δ)Tz(k)i ] (4.44)
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where coding block yi is at location i in the observed image y as defined in Eq. (4.32),

coding block y
(k)
i is the denoised version of yi from the k-the iteration of the algorithm,

coding block z
(k)
i = R̃iHz

(k) is the smoothed block at location i as in Eq. (4.30) and δ

is a weight parameter adjusting the strength of noise feedback. As shown in Eq. (4.44),

in DCT domain, this noise feedback process finds a weighted average between DCT

coefficients Tz
(k)
i of the smoothed image and coefficients Tyi of the noisy observation,

adding image detail along with some reduced noise back to the result.

Similarly, the clipping operator Cβ(α,ρ) introduced in the previous section in

Eq. (4.33) has the effect of blending the smoothed image α with DCT-domain quan-

tization error tainted observation image ρ as well. By design, the clipping operator

finds an image that is close to image α and has all of its DCT coefficients lying within

the given quantization intervals [QTρ− β,QTρ+ β]. The output image Cβ(α,ρ) is

closer to α if threshold β is large, and it is closer to ρ if β is small. Therefore, with

adjustable strength using parameter β, the clipping operator is also a suitable noise

feedback function for our algorithm as follows,

y
(k)
i = Cβ(z

(k)
i ,yi). (4.45)

This formulation is the same as the solution to the DCT coefficient constraint problem

in Eq. (4.32) except for the threshold β. Since applying the clipping operator multiple

times is equivalent to applying it once with the smallest threshold β, i.e.,

Cβ(C0.5(z(k)i ,yi),yi) = Cmin(β,0.5)(z
(k)
i ,yi), (4.46)

we only need to use the clipping operator once with threshold β ≤ 0.5 to solve the
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DCT coefficient constraint problem and add filtered noise back to the result.

By the theory of narrow quantization constraint set (NQCS), the DCT coefficient

clipping threshold β should be sufficiently small in order to achieve the optimal re-

sults in terms of PSNR (Park and Kim, 1999). For example, the authors of NQCS

demonstrated that fixing threshold β = 0.1 is good enough for various images; sev-

eral research papers on JPEG image deblocking and denoising reported that setting

β = 0.3 often yields best results (Zhai et al., 2008b; Liew and Yan, 2004; Sun and

Cham, 2007). The best choice of β depends on the distributions of the DCT coeffi-

cients of the original image, quantization factors and characteristics of the smoothing

technique. Although smaller threshold β generates PSNR-plausible results, it often

brings blocking and ringing artifacts back to the result, deteriorating its perceptual

visual quality.

To alleviate this problem, in the last iteration of our algorithm, instead of solving

the optimization problem in Eq. (4.30), whose solution is given in Eq. (4.32) using

the clipping operator, we solve a modified problem as follows,

y(k) = argmin
y

‖∇2(y −Hz(k))‖22

+α
n∑
i=1

‖R̃i(y −Hz(k))‖22

s. t. |QTR̃iy − γi| ≤ β,

i = 1 . . . n.

(4.47)

In addition to minimizing the difference between the smoothed image and output

image, the objective function of this modified problem also minimizes the difference

between their second order derivatives. This new regularization term encourages
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adding filtered noise back to locations that are discontinuous in the smoothed image,

so that, artifacts are less noticeable in the output image perceptually. The modified

problem in Eq. (4.47) is solvable using augmented Lagrangian method, which is more

expensive than the clipping operator in Eq. (4.32) in terms of computational com-

plexity. However, since our algorithm only solves this problem once during the last

iteration, this technique can improve the visual quality of the output image without

significantly increasing the overall cost.

Alternatively, we can obtain the goal of eliminating the visual artifacts by adjust-

ing DCT clipping threshold β and singular value threshold λ in the last two iterations.

The idea is that, if in the last iteration K, most of the DCT coefficients of smoothed

block z
(K)
i are already within the quantization intervals [QTyi−0.5,QTyi+0.5], then

artifacts cannot be reintroduced to the results by the clipping operator in Eq. (4.32)

with threshold β(K) = 0.5. To insure the condition that most DCT coefficients satisfy

the quantization interval constraints, the strength of the smoothing operator must

be reduced in the last iteration by using a smaller singular value threshold λ(K). By

Eqs. (4.41) and (4.43), the standard deviation of the difference between the noisy

input image y and smoothed image z(K) is,

‖y − z(K)‖2√
n

≈ λ(K)

Cλ
√

max(M,m)
, (4.48)

which is roughly proportional to threshold λ(K), thus, decreasing threshold λ(K) also

reduces the variance of y−z(K) in DCT domain and makes DCT coefficients of image

z(K) more likely stay within quantization interval. On the other hand, the clipping

threshold β(K−1) in the second last iteration should also be small in order to make

each DCT coefficient of the clipped image close to the centre of quantization interval,
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Figure 4.10: Several widely used test images.

limiting DCT coefficient overflow caused by the next smoothing operator. However,

if both thresholds β and λ are too small, it weakens the effect of noise reduction.

In practice, we find that setting clipping threshold β(K−1) = 0.2 and singular value

threshold λ(K) = λ(1)/4 works well for most input images.

4.5 Experimental Results

To demonstrate the performance of the proposed technique, we first turn off the

image enhancement part by setting degradation matrix H as an identity matrix, and

compare the results with the state-of-the-art denoising and JPEG artifact removal

techniques. The comparison group is composed of the following methods: one JPEG

deblocking method: the ACR algorithm (Zhai et al., 2008a); two denoising methods:

the BM3D algorithm (Dabov et al., 2006) and WNNM algorithm (Gu et al., 2014);

and three JPEG soft-decoding methods: the TV algorithm (Bredies and Holler, 2012),

DicTV (Chang et al., 2014) algorithm and DTPD algorithm (Liu et al., 2015). As

the denoising approaches BM3D and WNNM are not designed specifically for dealing
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Image JPEG ACR BM3D WNNM TV DicTV DTPD Proposed

Lenna 30.64 +0.23 +0.92 +0.66 +0.12 +0.48 +1.45 +1.58
Parrot 32.37 +0.28 +0.75 −2.85 −0.17 +0.41 +1.36 +1.68
Hat 31.47 +0.22 +0.89 −2.56 +0.21 +0.45 +1.39 +1.53

Flower 30.10 +0.16 +0.99 −0.48 +0.12 +0.32 +1.49 +1.78
Monarch 28.32 +0.07 +1.32 +1.94 +1.56 +1.39 +2.64 +2.90
Leaves 28.90 +0.26 +1.70 +1.17 +0.70 +1.69 +3.14 +3.44
Barbara 30.41 +0.15 +1.36 +1.43 −1.19 +1.20 +2.81 +3.25
Boat 31.65 +0.34 +1.17 −0.94 −0.27 +0.60 +1.55 +1.84
House 33.72 +0.39 +0.95 −13.98 +0.10 +0.14 +1.70 +1.60
Bike 27.22 +0.08 +1.03 +1.21 +0.06 +0.87 +1.98 +2.27

Median 30.53 +0.22 +1.01 +0.09 +0.11 +0.54 +1.62 +1.81

Table 4.1: PSNR gains (dB) of different denoising algorithms at QF = 25.

Image JPEG ACR BM3D WNNM TV DicTV DTPD Proposed

Lenna 32.96 +0.05 +0.80 +0.85 −0.05 +0.06 +1.44 +1.70
Parrot 34.80 +0.10 +0.64 −0.49 −0.39 −0.11 +1.39 +1.63
Hat 33.64 +0.05 +0.89 +0.01 +0.01 −0.01 +1.60 +1.83

Flower 32.43 +0.02 +0.98 +0.46 +0.12 −0.20 +1.68 +2.08
Monarch 30.73 +0.00 +1.32 +1.99 +1.75 +1.33 +2.62 +3.12
Leaves 31.64 +0.04 +1.78 +0.45 +0.64 +1.58 +3.29 +3.86
Barbara 33.56 +0.05 +1.28 +1.68 −1.75 +0.56 +2.51 +2.98
Boat 34.42 +0.09 +1.20 +0.89 −0.64 −0.11 +1.52 +2.04
House 35.79 +0.13 +0.81 −10.87 −0.11 −0.69 +1.48 +1.52
Bike 29.95 +0.01 +1.10 +1.45 −0.15 +0.84 +2.21 +2.64

Median 33.26 +0.05 +1.04 +0.66 −0.08 +0.03 +1.64 +2.06

Table 4.2: PSNR gains (dB) of different denoising algorithms at QF = 50.

with JPEG compression noise, they cannot estimate the compression error from the

input JPEG image but require an estimation of the error variance as a user input.

To make a fair comparison, we provide the true variance of the compression error to

these methods as a known parameter, so their performances should reflect their best

results in removing JPEG compression noise.

We select several widely used images in the literature as test images (thumbnailed

in Figure 4.10). All images are 256 × 256 in size. Tables 4.1, 4.2 and 4.3 list the

PSNR results of the compared algorithms on the test images compressed using JPEG

with QF set to 25, 50 and 80, respectively. As shown in the tables, the proposed
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Image JPEG ACR BM3D WNNM TV DicTV DTPD Proposed

Lenna 36.59 +0.00 +0.57 +0.53 −0.69 −1.25 +1.22 +1.57
Parrot 38.31 +0.01 +0.46 +0.49 −0.99 −1.45 +1.07 +1.47
Hat 37.27 +0.02 +0.77 +0.96 −0.71 −1.41 +1.65 +2.14

Flower 36.20 +0.00 +0.98 +1.29 −0.57 −1.56 +1.71 +2.32
Monarch 34.73 −0.00 +1.22 +1.87 +1.01 +0.11 +2.33 +3.10
Leaves 35.92 −0.01 +1.74 +2.63 −0.30 −0.02 +3.10 +3.97
Barbara 37.61 +0.00 +0.89 +1.20 −2.59 −1.56 +1.69 +2.09
Boat 38.38 +0.01 +1.04 +1.21 −1.55 −2.29 +1.04 +1.77
House 39.11 +0.01 +0.87 +0.90 −0.88 −2.52 +1.70 +1.98
Bike 34.53 +0.00 +1.12 +1.63 −1.19 −0.52 +2.03 +2.70

Median 36.93 +0.00 +0.94 +1.21 −0.80 −1.43 +1.69 +2.12

Table 4.3: PSNR gains (dB) of different denoising algorithms at QF = 80.

Image JPEG ACR BM3D WNNM TV DicTV DTPD Proposed

Lenna 0.8835 +0.0097 +0.0231 +0.0177 +0.0041 +0.0050 +0.0260 +0.0310
Parrot 0.9060 +0.0114 +0.0186 −0.0141 +0.0063 +0.0032 +0.0193 +0.0243
Hat 0.8752 +0.0094 +0.0221 +0.0021 +0.0058 +0.0058 +0.0272 +0.0315

Flower 0.8816 +0.0080 +0.0271 +0.0123 +0.0040 +0.0045 +0.0306 +0.0382
Monarch 0.8969 +0.0069 +0.0425 +0.0453 +0.0396 +0.0371 +0.0514 +0.0536
Leaves 0.9234 +0.0112 +0.0386 +0.0431 +0.0302 +0.0362 +0.0472 +0.0487
Barbara 0.9033 +0.0079 +0.0245 +0.0210 −0.0255 +0.0078 +0.0348 +0.0395
Boat 0.8905 +0.0102 +0.0254 +0.0188 −0.0004 +0.0045 +0.0293 +0.0340
House 0.8741 +0.0060 +0.0110 −0.0431 +0.0006 +0.0024 +0.0168 +0.0166
Bike 0.8798 +0.0055 +0.0259 +0.0180 +0.0019 +0.0134 +0.0401 +0.0458

Median 0.8870 +0.0087 +0.0250 +0.0179 +0.0040 +0.0054 +0.0299 +0.0361

Table 4.4: SSIM gains of different denoising algorithms at QF = 25.

Image JPEG ACR BM3D WNNM TV DicTV DTPD Proposed

Lenna 0.9221 +0.0021 +0.0107 +0.0071 −0.0011 −0.0094 +0.0144 +0.0186
Parrot 0.9374 +0.0033 +0.0084 −0.0031 −0.0017 −0.0108 +0.0096 +0.0134
Hat 0.9182 +0.0032 +0.0142 +0.0070 −0.0025 −0.0095 +0.0200 +0.0236

Flower 0.9253 +0.0014 +0.0174 +0.0107 +0.0029 −0.0076 +0.0218 +0.0277
Monarch 0.9300 +0.0009 +0.0282 +0.0294 +0.0278 +0.0229 +0.0350 +0.0377
Leaves 0.9533 +0.0013 +0.0248 +0.0240 +0.0203 +0.0211 +0.0299 +0.0322
Barbara 0.9456 +0.0019 +0.0130 +0.0132 −0.0174 −0.0056 +0.0181 +0.0215
Boat 0.9319 +0.0029 +0.0165 +0.0145 −0.0017 −0.0069 +0.0189 +0.0237
House 0.9103 +0.0015 +0.0040 −0.0369 −0.0085 −0.0166 +0.0100 +0.0124
Bike 0.9280 +0.0008 +0.0162 +0.0130 +0.0022 +0.0005 +0.0276 +0.0321

Median 0.9290 +0.0017 +0.0152 +0.0118 −0.0014 −0.0072 +0.0194 +0.0237

Table 4.5: SSIM gains of different denoising algorithms at QF = 50.
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Image JPEG ACR BM3D WNNM TV DicTV DTPD Proposed

Lenna 0.9559 +0.0001 +0.0015 −0.0018 −0.0045 −0.0198 +0.0061 +0.0079
Parrot 0.9629 +0.0003 +0.0018 −0.0001 −0.0041 −0.0192 +0.0041 +0.0061
Hat 0.9580 +0.0010 +0.0053 +0.0031 −0.0060 −0.0214 +0.0109 +0.0131

Flower 0.9623 +0.0001 +0.0090 +0.0089 −0.0004 −0.0156 +0.0119 +0.0150
Monarch 0.9626 +0.0000 +0.0121 +0.0120 +0.0131 +0.0050 +0.0174 +0.0191
Leaves 0.9789 −0.0003 +0.0114 +0.0128 +0.0081 +0.0046 +0.0131 +0.0147
Barbara 0.9738 +0.0001 +0.0034 +0.0028 −0.0116 −0.0169 +0.0056 +0.0073
Boat 0.9659 +0.0002 +0.0066 +0.0065 −0.0053 −0.0204 +0.0069 +0.0101
House 0.9530 +0.0002 +0.0040 +0.0023 −0.0133 −0.0346 +0.0111 +0.0121
Bike 0.9679 +0.0000 +0.0087 +0.0086 −0.0011 −0.0118 +0.0130 +0.0156

Median 0.9627 +0.0001 +0.0060 +0.0048 −0.0043 −0.0180 +0.0110 +0.0126

Table 4.6: SSIM gains of different denoising algorithms at QF = 80.

technique improves over the hard-decoded JPEG by around 2dB in PSNR. It leads

in PSNR gain in almost every test case and has more than 0.2dB advantage over the

second best method. As a reference, we also list objective fidelity assessment results

by more sophisticated image quality metric SSIM (Wang et al., 2004) in Tables 4.4,

4.5 and 4.6 for different QF settings. As shown in the tables, the SSIM results also

confirm the superiority of the proposed algorithm over the tested technologies.

Compared with other techniques, the proposed technique works consistently well

at vastly different QF settings. As demonstrated in Figures. 4.11 and 4.12, the pro-

posed technique is ahead of the competitions at all QF settings except when QF = 5.

Only in that case, the proposed technique does not perform as well as DTPD in terms

of median PSNR and SSIM gain. Although QF = 5 is often used in JPEG denois-

ing research to showcase the capability of a technique, it has no practical value as

compressing a down-scaled version of the input image with slightly larger QF could

easily yield better output image than using QF = 5 directly. Furthermore, if we

trade off time by increasing the number of iterations K, the proposed technique can

outperform DTPD in both PSNR and SSIM while still being faster than DTPD at

82



Ph.D. Thesis - Xiao Shu McMaster - Electrical & Computer Engineering

0 10 20 30 40 50 60 70 80 90
−4

−3

−2

−1

0

1

2

3

QF

P
S

N
R

 g
ai

n 
(d

B
)

 

 

ACR
BM3D
WNNM
TV
DicTV
DTPD
Proposed

Figure 4.11: The median PSNR gain as a function of QF.
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Figure 4.12: The median SSIM gain as a function of QF.
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QF = 5.

In addition to its superior performance in objective fidelity metric, the proposed

approach also obtains better perceptual quality of the denoised images. As shown in

Figures 4.13, 4.14 and 4.15 are some samples of the results from the tested algorithms.

The output images of the proposed approach shows no discernible blocking and ringing

artifacts even at low QF settings. The proposed approach preserves detail and edge

structure visibly better than most of other techniques.

Like all the tested techniques except BM3D whose main functions are implemented

in C++ and compiled to native code, the reference implementation of the proposed

technique is written in pure MATLAB language, rendering it unfavourable in com-

parison of time cost with BM3D. Besides BM3D, the only other method faster than

the proposed technique in the comparison group is ACR, which only reduces blocking

artifacts and does not perform as well as most of the compared techniques in terms

of either PSNR or SSIM.

As shown earlier in this chapter in Figure 4.1, image enhancement routines often

exaggerate small compression error in the JPEG compressed input image, deterio-

rating the perceptive qualities of enhancement results in real-world applications. By

using the tone-mapping function introduction in Chapter 2 as the inverse degrada-

tion matrix H−1, we can jointly optimize for reduction of compression artifact and

output contrast of tone mapping with the proposed image enhancement framework

in order to combat artifacts caused by image enhancement. In addition to the images

fetched directly from popular websites as demonstrated in Figure 4.1, we also tested

our approach using JPEG compressed satellite and natural images and present the

results in Figure 4.16. In these test cases, the JPEG compression QF of input image
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JPEG ACR BM3D WNNM

TV DicTV DTPD Proposed

JPEG ACR BM3D WNNM

TV DicTV DTPD Proposed

Figure 4.13: Comparison of tested methods in visual quality at QF = 5.
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JPEG ACR BM3D WNNM

TV DicTV DTPD Proposed

JPEG ACR BM3D WNNM

TV DicTV DTPD Proposed

Figure 4.14: Comparison of tested methods in visual quality at QF = 15.
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JPEG ACR BM3D WNNM

TV DicTV DTPD Proposed

JPEG ACR BM3D WNNM

TV DicTV DTPD Proposed

Figure 4.15: Comparison of tested methods in visual quality at QF = 25.
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Original CLAHE Proposed

Figure 4.16: Results of image enhancement techniques applied on JPEG compressed
images with QF = 90.

88



Ph.D. Thesis - Xiao Shu McMaster - Electrical & Computer Engineering

is set to 90, which is considered as a high-quality compression setting in most ap-

plications. As shown in Figure 4.16, the compression artifacts of the original images

are indeed hardly perceivable in normal scale. However, conventional image enhance-

ment routines mistake the small compression artifacts as image detail and boost their

visibility along with the contrast of true signal. Our approach, on the other hand,

successfully separates true signal from compression noise and exhibits little artifacts

in the presented examples.

4.6 Conclusion

Due to the low pass nature of image compression, the high-frequency components

of a compressed image with sharp edges often carry large compression error. While

high-frequency compression noise is relatively indiscernible in the original image as

HVS is more sensitive to low-frequency noise, image enhancement operator with high-

boosting property can amplify the problem deteriorating the perceptive quality of en-

hanced image. By incorporating the non-linear DCT quantization mechanism into the

formulation for image enhancement, we propose new sparsity-based convex program-

ming approach for joint quantization noise removal and enhancement. Experimental

results demonstrate significant performance gains of the new approach over existing

enhancement methods.
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Chapter 5

Conclusion and Future Work

Human viewers perceive images with sharp edges and rich details as of high visual

quality. Because of various types of degradation during the capture of an image

and the limitations of display devices and HVS, some information that exists in the

acquired image can be difficult to distinguish when the image is displayed directly,

resulting poor quality of the image to human viewers. Aiming to fully utilize the

dynamic range of the image data and reproduce a visually more appealing and in-

formative image, many image enhancement techniques have been proposed and used

since very early days of image processing.

Existing image enhancement techniques can be broadly categorized into two classes:

global and local. The global image enhancement techniques, such as HE, manipulate

the image histogram using a monotonic tone mapping function that is determined

by the histogram of the input image. Based on the OCTM framework, the tech-

nique proposed in Chapter 2 is one of such global techniques. Different than existing

techniques in the same class, our proposed image enhancement technique utilizes ad-

vanced image statistics and finds the best compromise among the factors that affect
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image quality, and produces visually pleasing results consistently over a wide range

of images. Despite the complexity introduced by the advanced image statistics, the

problem can still be solved efficiently.

LARCOTM, the technique introduced in Chapter 3, belongs to the second class,

local image enhancement techniques. A local technique enhances the detail of an input

image by altering the rate of change in intensity between neighbouring pixels on a

pixel-by-pixel basis. Although the local techniques have a larger degree of freedom

in manipulating images hence more effective against images with low contrast, they

are prone to objectionable artifacts such as ringing and halo, resulting in severely

distorted image features. To alleviate these common problems of local techniques,

LARCOTM utilizes the fact that the maximum discrimination power of human vision

system can only be achieved in a relatively small locality of an image. LARCOTM

is fundamentally different from existing image enhancement techniques in that the

former can preserve pixel value order statistics within localities in which human foveal

vision retains maximum sensitivity, while the latter cannot. As a result, images

enhanced by LARCOTM are free of artifacts that plague other local methods.

Although image enhancement can reveal subtle details and enhance the contrast of

the original image, it also inevitably magnifies noise due to its high-boosting nature.

In Chapter 4, we investigate the problem of enhancing image distorted by compression

noise. To suppress noises, some techniques add a noise reduction phase; some com-

mon denoising algorithms, such as median filter or Wiener filter, are used before or

after the enhancement phase. However, since DCT quantization noise is not indepen-

dent from signal, these techniques are ineffective against compression artifacts. By

incorporating the non-linear DCT quantization mechanism into the formulation for
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image enhancement, we propose new sparsity-based convex programming approach

for joint quantization noise removal and enhancement. Experimental results demon-

strate significant performance gains of the new approach over existing enhancement

methods.

For future studies, we find that the current implementation of LARCOTM requires

to solve a large scale linear programming problem, which is difficult to do in real

time on a computer commonly used in hospitals and clinics. A possible strategy of

improving computational efficiency is to find the optimal solution to a downscaled

version of the original image first, then upscale the solution and use it as the starting

point for a larger version, so on and so forth, until the solution to the original image

is found. Another possible improvement worth investigating is to find approximate

solution using greedy algorithm. A simple example of such approach is to find the

local optimal solutions to all small blocks and then fuse them into an approximate

solution for the whole image.
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