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In this thesis we examine a generalized notion of
ordinary two dimensional affine and projective geometries
The first six chapters deal very generally with coordin-
atization methods for these geomctries and a direct con-
struction of the analytic model for the affine case.
Thé last two chapters are concerned with a discussion of

these structures viewed as topological geometries.
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Introduction

Each subsection is usually prefixed with a brief
discussion concerning content and motivation. Hence we
shall restrict ourselves to general considerations here.
Our basic desire is to examine objects known as Hjelmslev
planes. These were introduced by J. Hjelmslev in the late
twenties, but from a modern point of view, this discussion
was initiated in 1954 by W. Klingenberg {cf. (xi], [xz]
and {Eii} . The subject has gained much appeal and has
been studied extensively, especially by B. Artmann and
D. Drake.

To a geometer,a Hjelmslev plane can be thought of
as a geometry where more than one line may pass through
two distinct points. To an algebraist , & Hjelmslev plane
is to an ordinary plane, as a local ring is to a division
ring.

Chapter one introduces the affine and projective
Hjelmslev planes and considers certain groups of mappings
associated with each. |

Chapter two summarizes known algebraic results
which we shall employ later. The definition of a local
monoid is new.

In Chapters three and four we deal with a general-
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mmization.of,the»resultsrofWF vArtin~E§ff-EAﬂi} which was
initiated by Klingenberg in 1954 [;f [Kﬂ.] and continued
by Lineburg in 1962. {éf [Lﬁ) . Liineburg,however, was
more interested in generalizing the results of André for
ordinary planes (Sf' [}iﬂ . We reprove some of Luneburg's
and Klingenberg's results in the Artin setting'utilizing
dilatations which Artin employed in 1958 in Eﬁi] and
Luneburg in 1962 1n[§11
Our main concern in Chapter five is niotivating
and then constructing the analytic model of an affine
H-plane. 1In {Kf}, Klingenberg constructed the projective
model but not the affine one directly. We shall discuss
this problem in the preliminary comments for Section 5.3.
Chapter six introduces the ternary field of a
Hjelmslev plane. A very detailed introduction to this
generalization is found in Section 6.1. The results of
this section are used extensively in Chapter eight.
Again except for a few results in Section (7.3),
the material on Q-COﬁnectedness and  some additional
results in Section (7.2), Chapter seven is a compilation
of known results in topology. We shall employ them in
Chapter eight,
Lastly Chapter eight commences a study of topol-
ogical Hjelmslev planes. The works of H. Salzmann
[cf. Isy, {sz] and [_83.5) are the primary source which

motivates the results in this chapter. We o¢btain general-



izations of the fact each ordinary topological affine or
projective plane is connected or totally disconnected.
Finally, we consider the topological properties of the
group of translations and the ring of trace preserving
endomorphisms of an affine H-plane; which, to my knowledge,

has not been done for the ordinary case.

(viii)‘



Notation

'The following is a compilation of notational
usage within the thesis, which is not described inter-
nally,

The complement of a subset A of a set X is written,
XNAor CA. The notation A by B denotes A is strictly
contained in B.

With regards to an equivalence relation 6 on a set
X,  the equivalence class containing the point x is
written (x], x]g orAEZ x8y means (x, y)e€ and xﬁ& is
its negation. X/6 is the set of all equivalence classes.

If f and g are two functions, f g will designate

theiy composition.



CHAPTER 1
§1.1. Affine Hjelmslev Planes

Definition (1.1.1). <P , 2 , 1,|| > is

called an incidence structure with parallelism iff

(a) P and K are sets.
(b)Y IC P x X .
) I < & x & is an equivalence relation.

{l is called parallelism.

The elements oflp are called points and are
denoted by P, Q, R, .... . The elements of K are
called lines and are denoted by 2, m, n .;. .8, mel
is written ¢t m and is read 2 is parallel to m.
(P, #)el is written PI% and reads . ‘P lies on .

PI% means (P, 2)¢I and £# m means (2, m)¢ll.

Definition (1.1.2). P, QI%, m means P, QIL and

P, OIm.

gAh = {P|Pe P such that P Ig, h},

gvh = {P|pe? such that PIg or PIh}.
PlgVvh means PIg or PIh,
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If A is a subset of [P and 2e & , then
AA % = {P|PecA and PIL}.

|A] is the cardinality of the set A.

Definition (1.1.3). Let P,.0e P and %, me &

where <P , & , 1,I> is an incidence structure

with parallelism.

(a) (P, Q)eop iff there exist £, me K , 2 # m,such
that P, QIg, m.

If (P, QJeop , we write PoF,Q and say

P and Q are neighbouring points.

(b) (¢, m)soae iff for every PIfL there exists a
QIm such that Pop Q 5 and for every QIm there
existsa PI2 such that QoF,P.

¥

If (2, m)sosf , write zoaf m and say £ and

m are neighbouring lines.

(c) Pgp Q means (P, Q);ton:> and 2¢j,m means
(%, m)#ow.

Definition (1.1.4). [L1) 2 =< P, L, 1,I>

is called an affine Hjelmslev Plane or affine H-Plane




iff the following axioms are satisfied.

(A1) For any two points P and Q, there exists Le X

such that P, Qiﬂ.

The symbol PQ means P¢W>Q and PQ is the unique

line through P and Q.

(A2) There exist three points {Pl, Pz,‘PS} such that
PiPiB, PiPy, 1 F 5 FkFd3d, 0, k=1, 2,3,

(A3) oy is a transitive relation on P .
(A4) If PIg, h, then g, h iff [gAh| = 1.
[“ad

(AS) If gp., hy Pogy Q; P, RIg; and Q, RIh; then
&£ P
Rog, P, Q.

(A6) If gqg,h; jéz g; Plg,j; and QIh,j: then Pos Q.

(A7) 1f gl h; PIj, g; and géj; then jdh and there

exists Q such that QIh, j.

(A8) For every PelP and for every ze‘zf, there

exists a unique line he¥ such that PIh and 2}l h.

Clearly if op is a transitive relation on

'W> then o is a transitive relation on && .

b d

From now on assume we are dealing with an affine H-plane 2f ,



.4 will bé called proper iff o, is not the
jdentity relation on ¥ . If ¥ is proper, clearly Op is

also different from the identity relation on £ ; cf. (A2).

Definition (1.1.5). We define the map‘L: W x}i - i ,

where L(P, &) is the unique line through P pafallel to 2.

Notation: We will write PoQ for Po@,Q and fom

for %o

e . {P = Q} oR means P = Q and QoR.

Lemma (1.1.1). [Ll]

VD

(1) For every fe & , there exists Pe W such that PIf.

(2) For every Pe ¥ , there exist &, m, RX# m such that

PIg, m.

Proof: (1) From (A2) there exists Re{P;, P,, P;}
such that Ri%. Let it be Py Define m = L(Pl,z). Since
P1P3¢P1P2, then PP gm or Pleém by (A3). Suppose PP gm.
Then P11P1P3, m; and m HQ implies 2¢P1P3 and there exists

Q1g, PIPS by (A7). A similar argument holds for P1P2¢m.

(2) From (A2) it follows that there exist

i, j; i # j,such that PgP,, Py , where P, Hje{Pl, Pys Py},

Let i = 1, j = 2. Define 2 = PPl and 2, = PP,. Choose
25 such that P, Py10, by (Al). If %4 # %5, then we are
finished. If &; = 2,, then Ly # 21 otherwise P;, P,,

P3123. Contradiction.



Corollary. o and 0@_ are equivalence relations.

¥
Proof: It suffices to show this for 0, as the

other follows immediately from it. Om is reflexive

by Lemmaz (1.1.1). It is clearly symmetric, and is tran-

sitive by (A3).

Lemma (1.1.2). The following are equivalent,

(1) (A5) and (A3).

(2) If PoQ and R#P, then RgQ and PRoQR.

Proof: (1)==>(2): PoQ and R¢P implies

RFQ by (A3). If PRAQR, then P, RIPR; Q, RIQR; and

PoQ implies RoP, Q by (AS5). Contradiction.

(2)=>»(1): (A3) is obvious. To show
(A5), let PoQ; P, RIg; Q;RIh; and ggh. If RgP, then
PoQ implies R#Q and {PR = g} o {QR = h}., Contradiction.

Similarly we may show RoQ.

Notation: (AS)* will denote condition (2)

of Lemma (1.1,2),

Lemma (1.1, 3).

(1) 1f gllh, then gAh = § or g = h.

(2) If gah = f, or goh, then there exists j such that
j

Lghi jog@éi&ﬁ?‘ﬁo



Proof: (1) This is an immediate consequence of
(A8).
(2) Assume gan h = § or goh. Choose
PIg by Lemma (1.1.1). Let j = L{(P, h) by (A8). Hence
gnj # P. Them jog, otherwise  idgs PIi,g; il h
imply that ggh and gAh # § by (A7), Contradiction..

Definition (1.1.6) (a) m=<® , & , I,W>

is called an a ffine plane iff the following axioms

hold:s
(Al)0 For any two distinct points P, Q, there exists

a unique line through P and Q.

(AZ)o For each pair (P, &), there exists a unique

line m such that PIm and ml 2.
(A3)° There exist 3 mon-collinear points.

M) nr=<® , L ,I,I>

is called an ordinary a ffine plane iff I is ana ffine

plane such that %{{m is equivalent to £ = m or 2.m = P.

The next remark assures us that every ordinary
affine plane is an affine H-plane and indicates the

reason for (A7).

Remark (1.1.1). Let I be an @ ffine plane.

The following are equivalent.



(1) ﬁis an ordinary affine plane.

(2) If P =gajs j #g; and gli h then j # h and
jah # 2.

Proof: (1)=(2): Let P = gAj; j # g; and

gll h.
Claim. j # h and jah # 8.

_Suppose j = h. Then jfl g and j # g inply jag =

by Definition (1.1.6)(b). Contradiction.

Next suppose jah = ., Then jilh by Definition
(1.1.6)(b). But gl h and hence jl|| g since || is

transitive. Hence,since j # g, jag = #. Contradiction.

(2)=>(1): If %llm, then 2am = §
or £ = m is an immediate consequence of (AZ)O. Now
suppose Lam = ff or £ = m. If 2 = m, then ¢llm since
Il is reflexive. If gam = §, choose PIg; hence PHi. Such
a P exists by (A1)0-(a3)0 and (2); cf. Lemma (1.1.1)(1).
Let n = L(P, m).

Claim. n = §.
If this is false, then & # n; P = 2an; and nl{m imply
that & # m and ¢am # § by (2). Contradiction. Hence

n= % and so nmnll 2.

Corollary. Every ordinary affine plane i n

affine H-plane where o, and oy, are the ideﬁtity relations




on ﬁ and W respectively.

Notation. From now on in this section,{P,,

PZ, P3}w111 be the points of (A2) and pi; = P,P

J'o

wa

Lemma (1.1.4). If (i, j, k) is a permutatioﬁ

~——

of {1, 2, 3}§then‘%i¢X for every Xijk.

Proof. If this is false, then there exists

X such that XIp; and XoP;. Then p: &v. and P:oX
Pix 1 Jk 7k 1

imply ProP; by (A5). Contradiction.

Lemma (1.1.5). For every Pe ¥ , there exist

i, ji # j, such that PP;¢PP,.

Proof: Case (1): P = P;, Then Pipjépipk.

Case (2): PIp; and PH{P, P,, Pg)
J
for some ije{1l, 2, 3}.
Since Piépj, we may assume PgP;. Hence PPy = pij.
Then by Lemma (1.1.4), P gX for every XIp; , k % i,

J
and ke{l, 2, 3}. Thus PPy¢g {p; = PP;}.
J

Case (3): PXp;. , for i, je{l, 2, 3}.
J

Without loss of generality we may assume PéPl, P,y
We consider two possibilities: (i) PoPy and (ii) P¢P3.
(i) 1f PoP;, then Psépl implies P3P10PP1 by (AS)* and
P3¢P2 implies pSPZOPPZ by (AS)®. Since P1P3¢P3P2 it
follqws by (A3) that PP1¢PP2.



(ii) Assume P¢P3. If our claim is false, then

PP,0PP,0PP;. We then show PPlo%?z and PP, 0BP, by

contradiction., If PP1¢P1P2, then PP,0PP, implies

P,oP, by (A6). Contradiction. Similarly PP1¢P1P3
implies that P 0P, Thus by (A3), P1P20P1P3.

Contradiction. Hence our claim 1is true.

Lemma (1;1;6). For each fe £ , there exists

Pe{P;, P,, P;} such that PgX for every XIZ.

Proof: Suppose our lemmsz is false. Then there
exist Qs QiIR such that QoP;5 i =1, 2, 3. Now
choose SI%. By Lemmz (1.1.5)There exist J, k such that

P.pSP, . .00, . impl .0SP.
S J¢ P . Now PJoQJ and S¢PJ imply that SQJo%P by

j
(AS)*. Similarly SQo0SP,. But SQ ='SQJ., and hence

SPJ.oSPk by (A3). Contradiction.

Lemma (1.1.7). [m] If g{\h; PIg; Q, RIh;

PoQ; and QgR, then goh.

Proof: PoQ and Q¢R imply  RPoRQ by (A5)*.
Let h = OR and j = RP. Hence joh and RIj, h. Thus by
(A7), jog and by (A3), goh.

Lemma (1.1.8). Let P, = g.aj; i=1, 2. Let

QIg;such that Q¢P; and gl“ g,. The following are then

eqivalent,



(1) PyoP,.

(2) £1°8&,-

10

Proof: (1)=>(2): 1If P,0P,, then Q¢Ri

implies gIOgZ‘by Lemma (1.1.7).

(2)=>>(1): 1If 810855 then by

(A4), jdg;s 1 =1, 2, We obtain PloPZ.by

Lemma (1.1.9) QJJ For each fe

exist P, QIL such that PgQ.

Proof: We choose PIf by Lemma
Then by Lemma (1.1.6) there exists S su
SgX for each XI2 . Define j = PS. The
ja L = P by the choice4§f S and (A4)t

(A6).

£, there

(1.1.1)(1).
ch.that

n 5¢£ and

By Lemma (1.1.6),

there exists R such that RgY  for each YIj. Define

h = L(R, j). Then by (A7), hg% and the

re exists Q

such that Q = hAﬁ,.A By the choice of R, hgj. Hence

by Lemma (1.1.8), Pg¢q.

Lemma (1.1.10) (L1} Let g;)| g,.

following are equivalent.

(1)_glog2'

(2) There exist PiIgi, i=1, 2, such

Proof: This follows immediateil

Lemmas (1.1.7) and (1.1.9).

Then the
that PIOPZ'
y from
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Lemna (1.1.11). Let Pi = g A js i=1, 2,

such ghgg_glu gy Then the following are equivalent.
(D g£1085-
(2) P1°p2'

Proof: This is an immediate consequence of

Lemmas (1.1.8) and (1.1.9).

Lemma (1.1.12). ILf] For every P, there

i=1, 2, 3,such that Pi%; and zi¢£j;

Proof: By Lemma (1.1.5), we may assume without

loss of generality that PP1¢PP2.

Claim. P1P2¢PP1; i=1, 2,

1f P, P,oP Pi, then since PP1¢PPi, it follows

2
that PoPj; j = 1, Z,by (A6). Contradiction.
Define j = L(P, P;P,). Then by (A7), jéPPij;

i=1, 2. Hence j, PP, and PP, are our desired lines.

Definition (1.1.6). A &R , is called a

pencil of lines iff Ais an equivalence class with

respect to Al . Ag = {2]2e R and 21 g}.

Remark (1.1.2). Let Al and .5 be two pencils
and tyel;. If t,gt, for every t,el,, then tiat, # 17

for each tzeﬁz.
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Proof: Suppose this is false. Then there
exists %}eAz such that tya %} = f. Hence by Lemma
(1.1.3)(2), there exists t;eAz such that t;otl.

Contradiction.

Conditions (3) and (4) of the next lemma are

due to Luneburg.

Lemma (1.1.13). Let A, and A, be two pencils.

The following are equivalent.

(1) For each pair {zl, 22}, z;e@i, Lya %y = § or

11022.

(2) There exist zieﬁi; i=

1
fo
[a]

A
[7)]
=
O
=
(a3
=
0
(a3
o

[
7
b

™~

!
=

(3) There exist 2;eh;; i = 1, 2, such that 2,0%,.

(4) For each 2;eh,, there exists f2,eh, such that 2;0%,.

Proof: (1)=>(2). Take any pair {21, 2,1

such that f;eh;, i =1, 2. If 21n %, = # we are finished.
If zlozz,then by Lemma (1.1.6), there exists P

such that PgX, XItyv &,. Define j = L(P, 21). Clearly
j # %, and jéll,zz by the choice of P. Then jllﬂl

and hence A £1~= f by Lemma (1.1.3)(1).

Claim. ja %, = p.

If jag, # P, then since j¥2, and jll 2;, we

have ERT # § and 2198 2, by (A7). Contradiction.
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Heqce jeHl, %,€l, and ja £, = f.

(2) =>(3). Let 2;ehk; such that L1482, = 8.
Then by Lemma (1.1.3)(2), there exists jtlzl such that
jos,. Since jeA, and RZEAZ’ (3) is satisfied.

1
(3)=3»(4). Assume there exist zisAi such that
£10%,-

Claim. For each tleAl there exists t28A2

such that tjot,. If this is false, then there exists

tjed; such that t;dt, for each téeﬁz. Then by Remark
(1.1.2), tya t, # § for each tzeﬁz‘ Thus, in particular,
t; a2, # f and t;g2,. But tlu %;. Hence by (A7),

21“ 22 # p and 21522. Contradiction.

(4)=>(1). Take any pair {21, 22} such that
lieAi, i =1, 2. Then there exists t, such that
t,024 and tze/\z. If "1“2 and £ya %, # f, then by
(A7), 21* t, # f and llétz. Contradiction. Thus

210£2 or 21A 22 = #.

‘Definition (1.1.7). Let A, and AZ be two

1
pencils. Then AIOA L, iff one of the coanditions of

Lemma (1.1.13) holds. There is no danger of ambiguity

if we write o for oy .
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Lemma (1.1.14). The following are true.

(1) Mgdly iff géh and gah # § iff |gah] = 1.

(2) °, is an equivalence relation on {A]A is a pencil

of lines}.

Proof: (1) The first part is just the negation
of condition (1) of Lemma (1.1.13) and the second is
(A4).

(2) This is an immediate consequence

of conditions (3) &nd (4) of Lemma (1.1,13).

Corollary. For any two pencils Al’ AZ’ there

exists A3 such that A3¢Al, Az.

‘Proof: Let gieA. , i=1, 2. Hence A =
- i g4
i=1, 2, Take PIg,. Then there exist jl, i,

A,
i
such that PIjl, jZ;.g1¢j1, jz;andvjléjz by Lemma (1.1.12).
Thus g1¢ji and gah; # ¢; 1 =1, 2. Hence by (1)

of the Lemnma Ag gh. 3 i =1, 2. Similarly Aj éAj .
i 1

| 1 Ji 2
Since o, 1s an equivalence relation, we have
A. A or A, éA_ . Thus A, gA_, A or A. dA _ , A_ .
1 B2 Jz¢ 82 31¢S g1 #2 J2¢ 1 82

.

Notation. For each Pe &% , P = {Q]0c?P and QoP}.

Definition (1.1.8)Eﬂ&€ is a uniform affine

H-plane iff goh; Plg, h; 0lg; and PoQ imply QIh,

1

Equivalently, goh - and PIg, h imply Pag = Pa h,
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Remark (1.1.5). If }® is a proper affine

H-plane, that 1is, O is not the identity relation on

W , then |Pa ] > 1 if PIL,

Proof: Since X is proper there exists |
Q such that @ #vP and Q oP., If Q 1%, we are finishéd.
Suppose Q 2. By Lemma (1.1.12),we may choose m
such that PIm, mg2 and Q Im. Thus m # L(Q , m).
PoQ then implies moL(Q , m) by Lemma (1.1.10). By
(A7), there exists S such that S = L(Q , m)a £ and P # S.
By Lemma (1.1.11), PoS. Thus ];}.z] > 1.

Definition (1.1.9). Define an incidence structure

on 2 as follows. ‘egp = <P, éip’ Ip> where
2 4 Pe Xp iff ge £ , and Q4P iff QoP and QIL.

The next theorem characterizes proper uniform

affine H-planes.

Theorem (1.1.1). [Li} The following are equi-

valq&i:

(1) &2 is a proper uniform affine-H-plane.

B

(2) Each &Qp is an ordinary affine plane for every Pg;?

Proof: (1)==3(2): We show Q2 p satisfies

Definition (1.1.5).(A1)°. Let Q # R; Q, ReP such that

Q, RIg, h. By (A4), goh. Then by uniformity gnP = hAP.
(A2)°.  Let Q&:; and g/\;€ b P

By (A8), there exists h such that h¥l g and QIh. Lemna
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(1.1.3)(1), implies that haog = # and heﬁce (h/\;)l\ (ga-l;) = ﬂ
Moreover QI?FA h. We must show hA.; is unique. Suppose
(f,\-l;)/g(g/\}.;) = f and QIpfA;. Choose RIgA; and hence

RoQ. Since hljg; RIg; and QIh, we have hog by Lemma

(1.1.10). Now we claim that foh aﬁd hence by uniformity,

fA; = hA;. Suppose fgh., Since QIf, h and gl{ h, there
exists S such that S = gaf by (A7). Then (fA;)A(gA;) =

) impiies that RgS. Because hog, it follows that QoS

by Lemma (1.1.11). Hence RgQ. Contradiction.

(A3)°. By Lemma (1.1.12) there exist (zi)le
such that PIL. and Qi¢2j; i#3§si,3 =1, 2, 3. By
Remark (1.1.3), there exist Ti such that Ti # P, TioP
and T;I%;5 1 =1, 2, 3. Clearly {T;, T,, T;} satisfy
(A3)°.

(2)=>(1): Let aep be an ordinary éffine plane
for each P, Take PoQ; goh; P, QIg; and PIh. (A4)
implies that there exists R, R # P, such that RIg, h.
FIf RgP, then g ='h'and hence QIh. If RoP, then by
(A1)°, gA; = hAa. Thus QIh. It follows that 2 is

‘uniform. (A3)° clearly implies that &2 is proper.



§1.2. Homomorphisms of Affine-H-Planes

Definition (1.2.1). Let e 1 and ‘\"“?2 be two

»

ine-H- ' = <2 >
affine-H-planes, such that t\,\Ql < 4P i Oﬁi’ Ii’ “1>
i=1, 2,

(a) £ = (6, ¥): Q;QI-”D’&,?Z is a homomorphism from

o2, into @ , iff the following conditions hold:

(i) ¢: 7 1 “&‘}b"%w?z and y: x lmbgz are functions.
(i1) P11£ implies that ¢(P)I2¢(£).

(1i1) 211i,%; implies that O zw(z{sii.

Notation., For the sake of convenience we shall
write I and || for both I; and .31 =1, 2,
1.

in the above definition unless ambiguity arises.
Similarly, we shall put L for Li;i=1,2; cf. Definition (1.1.5).

(b) £ = (6, ¥): R ;=>¢l, is a epimorphisn iff both

¢ and ¢y are surjective.

(c) £ = (6 ,0): P 1"—~>¢‘22 is a monomorphism iff both

¢ and*y¥ are injective.

(d) f= (o ,¥): R 1—-->§{2 is an isomorphism iff f is a

monomorphism and an epimorphism., If M@ 1" 2 20

then f = (¢, ¥) is called an automorphism.

- 17 -
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Notation. R lﬂé’ &2 means that ¢@ y and

8? , are isomorphic.

Lemma (1.2.1). (Ll] Let T =<® , & v, I,i >

with the property that for each % @:-;f; , there exist

P, Q such that P, QI% and PgQ. Define II* = <37 , ff&*,

I*, fl *> as follows: f*e ¥ ¥ iff there exists 2,322,

such that-2* = {P|PIL};
PI*g% iff Peg#;

2% ||*m* iff 2||m.

Then N* is an incidence structure with parallelism such

o

that II* = 1.

Proof: T* is obviously an incidence structure

with parallelism. Define f = (¢ ,w):' N+T® by
¢: %’ 3P is the identity map.
v: £ +. ‘é’\* such thgt V(L) = -8."‘.
Qlearly f is ahepimorphism and ¢ is injective.We show

$ is injective.Suppose y(2) = Y(m) or {P|PIL} =

{P|PIm}. Let P, QI2 such that PgQ, by assumption.


http:injective.We
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Then P, QIm. Hence & = PQ = m. Hence f is an isomor-

phisn.

Remark (1.2.1). Since an H-plane has the

property'of Lemma (1.2.1), we may assume from now on
that i S P(T ) = the power set of =P . That is,
ge £ 1is the set {P|PIg}.

Lemma (1.2.2). Let g, he ﬁ . Then there

exists a bijective map ¢é: g-+h with the property
SoR iff ¢(S)od(R).

Proof: Consider Ag and Ah' By the corollary
of Lemma (1.1.14), there exist Ajéﬁg, Ah. By Lemna
(1.1.14) (1), jdg, h and jag # # # jah. Define
¢: g+h by ¢(S) = L(S, j)a h. Because of (A4), ¢ is
clearly a function from gy into h since L(S, j)gh
and L(S, j)ah # # by (A7). Similarly X: hwg,defined
by X(R) = L(R, j) 4 g,is also a function. Clearly
¢ X = X ¢ = the identity map and so ¢ is bijective.
Finally if S, RIg, then SoR iff L(S, jIoL(S, j) iff
¢ (S)od(R) follows from Lemma (1.1.11),

Corollary. {pq Each line has the same cardin-

ality.



Lemma (1.2.3). Let ge.!? . Then there exist

je £ , Pe W such that P = j, g and a bijective

map §: 'Ag+j with the property for h, fEAg, hof
iff Y (h)oy(£). |

Proof: Such a P and j exist by Lemma (1.1.12)

Define y: ﬁg*j by ¥(h) = haj. ¥ is a function since
P = gaj implies by (A7) and (A4)_thaf [haj| = 1.
Clearly X: j-»Ag defined by X(S) = L(S, g) is also a
function. Moreﬁver simple calculation shows ¢ X =
XAy = the identity map. Hence wvis bijective ,

From Lemma (1.1.11), we have hyof, iff y(h)oy(f).

Corollary. [Ff] v[ngl = |g| for each ge & .

Proof: This is an immediate consequence of the

Lemma and the coroliary of Lemma (1.2.2).

" Lemma (1.2.4). Let f = (¢, ¥): &2 1“%%532

be a homomorphism. The following statements are true.

(1) If y is injectivethen PoQ implies ¢(P)od(Q).
(2) $(L(P, 2)) = L(8(P), ¥(4)).

(3) If PgQ and o(P)4é(Q), then ¥(PQ) = o(P)6(Q).

(4) I Ay(gy8hynys 2nd AjgA , then (L) x¥(m) =
¢ (2 am).

20
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Proof: (1) Let PoO Thus there exist 21,,22608
such that 2 # zz and P, QIzl, 2. Since f is a homo-
morphism ¢ (P), ¢(Q)Iw(2l), w(nz). Because y is injective
v(2) # ¥(2,). Hence ¢(P)o¢(Q).

(2) since f is a homomorphism, v |\
V(L(P, £)) and ¢(PITY(L(P,R)). Hence by (A8), w(L(P,£)) =
L(6(P), ¥(2)).

(3) Let PgQ and ¢(P)4¢(Q). Since f is
a homomorphism, ¢(P), ¢(Q)Iv(PQ). Thus Y(PQ) = ¢(P)¢(Q).

(4) Let A and A ¢ m*  BY

b))

Lemma (1.1.14)(1) there exist P and Q such that Q =

V(YA U(m) and P = £ o m. Since f is a homomorphism,
PI2, m implies ¢(P)Iy(2), ¥v(m). Thus ¢(P) = Q or

$(2am) = $(L)A ¥(m).

Theorem (1.2.1). Let f = (4, ¥): @ =D,

be a homomorphism. The following are then equivalent.

(1) PIZ iff ¢ (P)Iy(L).

(2) £ is @ monomorphismn.

(3) ¥ is injective.

Proof: (1)=>(2). We show ¢ is injective.

Assume ¢ (P) = ¢(Q) and P # Q. Choose ze'i such that
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PIL, but QPL. Now ¢(P) = 6(Q)IV(2), because f is a
homomorphism. This implies that QIf by (1). Contra-
diction. Similarly if y(2) = y(m) and £ # m, there
exists P, PI%ysuch that Pfm. Then ¢(P)IVY(2). But

$(2) = v(m) and hence PI by (1). Contradiction.
(2) ==»(3). Obvious.

(3= ( )(1) Suppose ¥ is injective. We must show
d(PYIY(R) ;mplles PI2. Suppose PIZ. Then & # L(P,L).
Since y is injective v (2) # Y (L(P,2). But y(L(P,L)) =
L(8(P);9(2)) by Lemma (1.2.4)(2). Thus () aL(6(P),
¥(2)) = § by Lemma (1.1.3)(1). However, ¢(P)Iv(2),

L(¢(P), w(2)). Contradiction.

Lemma (1.2.5). The following are true when f =

(cb ¥): ¢& 1> X, is a homomorphism.

(1) 1f ¢ is surjective and ¢ is injective, then y(g) =

{¢(p)|P111 o .
(2) If 6 is surjective and v is injective, then fom implics

Y (2)oy (m).

Proof: (1) Since f is a homomorphism,

{6(PY)|PIL} & w(R). Now we show the reverse inclusion.
Let RIY(R). Since é is onto theré exists P such that
¢(P) =

Claim, PIg.
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If this is false, then PIf. Define m = L(P,2).
ence m # 2. Since ¢y isinjective w(h) # v(r). Bufy
W(m) = P(L(P,0)) = L(6(P), ¥ (%)) by (2) of Lemma (1.2.4),
and so y(m) lw(e). By Lemma (1.1.3)(1), v(m) AU (R) =

. But R = ¢(PYIV(R), v(m). Contradiction.

) follews frem (4) and the definition of Of»v
Lemma (1.2.6). Let f = (¢, ¢v): & 1—->532 be

a monomorphism. Then 2 m iff v (L)l y(m).

Proof: If gfm, then v (&)l y(m) by definition.
Conversely suppose w(z){lw(m). Withoﬁt loss of general-
ity &« # m and hence since ¥ isinjective1p(z) # v(m).

Thus p(2) Av(m) = f. It follows that Lam = §, by
Theorem'(l.Z.l) (1). Now assume ¢Ym. Since Lam = f,
theré exists j such that jllm, jof and jat # # by Lemma
(1.1.3)(2). Since 2£4'm, it follows that j # 2. Thus

V() # v(e), v o) and v()aw(R) # A. But v () v(m)

and hence w(z)\lw(j). Thus w(ﬁ)p;w(j) = f. Contradid&on;
o . . ..l - o
Remark. If (¢, ¥) is an isomorphism, then (¢7°,¥ ) is a
homomorphism; cf. Definition (1.2.1), Theorem (1.2.1) and
Lemma (1.2.6).
Theorem (1.2.2). Let £ = (¢, ¥): ¥ 1> 2,

be a homomorphism. The following are equivalent,

PR

(1) f is an isomorphisn.

(2) ¢ is surjective and ¢ is injective,

Proof: (l)ﬁ%?(Z). Obvious.

(2)=>(1). By Theorem (1.2.1), ¢ is injective.



24

Now to show ¢ is onto, choose 2,€ f’z. Then choose

P,, Q,I% such that P,¢Q,. Since ¢ is onto there exist

P, and Q; such that ¢(P;) = P, and'¢(Q1) = Q,. By

Lemma (1.2.4)(1), P;¢0;. Define &; = P,Q; and 2;¢ £ 1
Then by Lemma (1.2.4), W(ﬁl) = w(PlQl) = ¢(p1)¢(Q1) = szZ
. , : ,

L}

2.
Definition (1.2.2). Let ¢ be an affine H-plane
Aut ¥ = {f|f is an automorphism of & }.
Notation: For convenience, let feAutd = be
f = (f, f).
Theorem (1.2.3). Autd is a group under

functional composition.

Proof: Clearly if f, ge Autd?. , then fg e
Aut 3¢, For if PI%, then g(P)Ig(%) and so £g(P)I fg(i).
Similarly 2/l m implies +€g(2)ll fg(m). Since composition-

is associative and the identity map is the unit it 1is

enough to show £ le purd for each f EAut®
where £1 = (£71, £1y.
Let fe Aut df.. By Theorem (1.2.1), PIg

iff F(P)IF(2), and 2llm iff £(2) 1] £(n) by Lemma (1.2.6).

1

Hence f "€ Auto .

Definition (1.2.3). 2 =<®R , & , I,]> is

defined as follows. % = {P|P is an eqhivalence class
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with respect to op L = {2]% is an equivalence
class with respect to o, e PIf iff there exist S and

m such that SoP, mof and SIm, Equivalently PIg iff there exist S suc

that SI2 and SoP, Z\lm iff f = m Or EA]“ = f.

—
-

Lemma (1.2.7). Let X = <ﬁ§ , 8, I ,0> be

as in the above definition., Then the follewing conditions

hold.

- wm e

(1) 1f 2,4l ¢2, then 22,

-

(2) ;g 21 A%y = §, then 21\ L.

(3) ;1“ EZ iff there exist my, m, such that mlozl,

m,0%, and mlﬂ M, .

Proof: (1) Let Rlﬂ £,. We assume EIA E; # 9

and show E& = Eé. Let PI 215152. Hence there exist

S. such that SioP and Silzi; i=1, 2. Thus SloS2

and hence by Lemma (1.1.10), zlozz. Therefore E} = 22.

(2) Let Lin Ly = p. By Lemma (1.1.3)(2),

there exists m such that mof; and m\\lz. By (1),

ﬁ'ﬁiz. But m = El' Hence Elﬂ 52.

(3) Assume Iih Eé = fi or 21 = 2,
Thus Lyn by = § or £,0%,. By Lemma (1.1.3)(2), there
exists m such that mjo 2, and mlﬂ 5. Letm, = &,.

Then my and m, satisfy the conditions. Conversely if
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m,04;, m,0%, and mln m,, then by (1) ﬁitlﬁé and so
zltlzz.

—

Lemma (1.2.8)., X is an incidence structure

with parallelism.

Proof: W is clearly reflexive and symmetric

by Lemma (1.2.7)(3) and the fact o and M are equivalence

relations. Now let El\ ﬁzﬁ 13. We must show Elﬂ 13.

1

Without loss of generality we may assume EIA %5

=
>

X
i

# such that 21 # RZ # 23. Thus an\zz =

£2A.23 = §. By Lemma (1.1.3)(2) there exist jl, j3
such that jlozl, jlﬂ L9, j30£3 and 53ﬁ g If LqA Ly =
g, then Ili\EZ by Lemma (1.2.7)(2). 1If there exists

P such that PIL,,& then,since j;0%; and j302%y,there

1°73°

exist X.Ij.,; i = 1, 3,such that X;, X;oP. Hence

1 73
Xj0X4. But ji;\jg gnd thus by Lemma (1.1.10), j{0is-

Thus 21 = j1

Jg = L2

3.
The next two theorems of Luneburg estahlish
the fundamental relationships between affine H-planes

and ordinary affine planes.

Theorem (1.2.4).[Lq éé is an ordinary affine

plane. Moreover X = (Xg , Xy )¢ &—-fi defined by X (P) =

P and Xﬁ (2) =2 is an epimorphism with the properties
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(1) x(P) = x(Q) iff PoQ,
® "
(i1) Xy (8) = x4 (m) iff gom.

(1i1) If 2am = 9, then x4 (2)lxy (m).

Proof: We verify the axioms of Definition

(Al)o. Let E& # ;2. Hence ?1¢P2. Clearly

—nm— a——— ——

51, PZIP1 5+ We must show Plpz is unique. Let Pl’

leﬂ. Then there exist X,, X, such that X,oP,, X,Im,

1 %2 171 71
XZOPZ and XZIm. Since P1¢P2, it follows that X1¢X2.
Thus m = X;X2. Now by (AS)#, PIPZOPZX1 and X1X20P2X1{
Thus {¢ = P,P,}o{X;X, = m}. Hence 2 = m.

—— —_—

ﬁégli' Let Pe ¥ and ge ﬁ. . From (A8) there
exists m such that PIm and mil £. Hence PIf and ﬁiii
by lemma (1.2.7)(1). We must show m is unique. Let
te f ‘such that Pit and TI Z. Since I is an equivalence

relation by Lemma (1.2.8), tlm. But PI%, @ and hence

t = m,

(A3)°. Let {Py, P,, P;} be the points of (A2).

Then {51, P

,» Py} satisfy (A3)°.

Now clearly PIZ implies Pif. Also 21\\22
implies x(20) \l x(%,) by lemma (1.2.7)(1). Thus x
is a homomorphism. Clearly x is an epimorphism.

Properties (i) and (ii) follow from the definition of ¥
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and property (iii) is just Lemma (1.2.7)(2).

Notation: Throughout this thesis, x = (xx),xg )
will refer to the map of Theorem (1.2.4).

Theorem (1.2.5). [Ll] Let 32 be an incidence

structure with parallelism. The following are then

equivalent.

(1) & 1is an affine H-plane.

(2) R satisfies axioms (A1), (A4) and (A8) and there

exists an ordinary affine plane ¢ and a epimor-

phism x = (x » ’XX): 2 > gé with the properties
(1) x(®) = x(Q) iff PoqQ.
(ii) x(2) = x(m) iff gom.

(iii) If f2am = §, then x(2) || x(m).

Proof. (1)=>(2). This is just Theorem (1.2.4).

(2)==>({1). We must verify axioms (A2),
(A3), (AS), (A6) and (A7). Since X, is a homomorphism,

we may use the properties in Lemma (1.2.4).

(AZ). By (AZ)O, there exist three non-collinear

points {Xﬁ’ (Pi)] i=1, 2, 3} since )(3;‘) is onto.

Claim. {Pl,, Py P3} satisfy (A2). By (i),
x,ﬂ,(Pz) # Xe(pj) iff PiéPj i# j. Also {xg(Pin) =
X @(Pi)x?(Pj)} # {X@(Pi)x@»(pk) - XK (pipk_)}iff
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L€f PiP.gPiPy by (ii).

Next we show (AS)* in place of (A3) and (AS).
(cf£. Lemma (1.1.2)). | |

~Na

(A5)* Let Po} and Qg¢R. Hence XW(P) = X?P (Q)
'Xé(R) and so PR by (i). Thus X g (PR) = XFP(P)XR’(R)
= XF? (Q)X'R’ (R) = Xf(QR)~ Hence PRoQR by (ii).

(A6). Let goh; jdg; PIg, J; and QIh, j.
Then Xi(h) = Xi(g) # Xi(j)’ by (ii). Also P = gu ]
and Q = hnj by (A3) and (A4). Moreover, X (P =
xx(g),\xﬁ(j) and x o (Q) = Xp (h) A X, (3. Thus
X o (P) = X Q).

R &
Hence PoQ by (i).

(g), x

(j) = xﬁ(h),\xﬁ(j) = Xp

3

(A7) . Let. géj; gad # P; and gl h. Then

——

Xx(g) 7 X:&Ej)’ Xg (g)ﬁxg (j) # P and Xi(g)“ Xp (h).

-~

1 2y ’ = 1
Hence x (8)J{x p (3). If hog, then xp (h) = x (3
and thus X p (2) | E(h). Contradiction. If h,j = §,
then xg(h) Hx&(j) by (iii). Hence Xg (2)}f Xg (3).

Contradiction. Hence hgj and h,j # B.



.§1.3. Projective Hjelmslev Planes

Definition (1.3.1). (k1] &R =<F , £ , I>

is a projective Hjelmslev plane or projective H-plane

iff the following axioms are satisfied,

(Pl) For every P, Qe T , there exists zeK such that
P, QIf.

R
(P2) For every 2, nm:Ji , there exists Pe ¥ such that

PIg, m,

We define Pop Q iff there exist g, me Z? ,
% # m,such that P, QI2, m and L0y Mm iff there exist P,Q

€, P # Q,such that P, QI%, m. Pg.,Q and 860 m

mean that POE,Q and Lox m respectively are fal'se. PQ has
the same meaning as in Definition (1.1.3). We note that

the definition of fom differs from that of Definition (1.1.3).

(P3) There exist four points {Pl, PZ, P3, P4} such that

PiéPj and PinéPiPk; i3 #k#1; 1, j, k =
1, 2, 3, 4.
(P4) If PIg, m, n such that fom and mgn, then 2¢n.
(P5) If fom; mgn,; PIm, n and QIL, n, then PoQ.

(P6) If PoO; QFR; G, RIL; and P, RIm, then fom.

- 30_
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Clearly a projective-H-piane is an ordinary
projective plane iff op and op are the identity
relations on ?? and jf respectively. A Projective H-
plane also has a dual structure just as in the ordinary

case.

Definition (1.3.2). Let =< ¥ , L 1>
be a projective H-plane. For each Pe P , op =

{2|PI1&} is called the pencil of lines through P.

Re=< P, g I uhere Pre g, Lt

{¢p|pe’§'9 } and g%, iff Pig is called the dual of &2

It is obvious that & * is also a projective
H-plane. Thus any theoren conterning points and lines

has a dual statement in terms of lines and points.

We now state some results, due to Klingenbergg
We omit the proofs, as they follow along the same

lines as the analogous theorems for affine H-planes.

Theorem (1.3.1). [KI} Let ;})_e_:__z_i_projective

H-plane.
(1) For each 2e £, there exist Xl, Xy, X3 such that
X;#X558 # 35 1, § =1, 2, 3 and X3, X,, XgIL.
(2) oﬁ, and EX are'equivalence relations.
(3) % = @,%, I> , defined by
P ep iff P is fﬁ equivalence class of Op
Ee% iff E__'_§_§1___ equivalenctg class of O\O<




PI? iff there exists R, m such.that RoP, mof

and RIm)

is an ordinary projective plane.

(4) The map x = ()(r;> ’Xcﬁ'):  » ¢ defined by

Xp (P) = P and Xaf (2) = 2 is a epimorphsim
with the properties
(3) X p (P) = X, (@) iff Poq.
(b) X;\,, (2) = x&a (m) iff 2om.

3la

Notation: Let Xy ! 2-+4/0 be Xp restricted to ¢,

for any e X .
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Lemma (1.3.1). (A1l Let {P;, P,, P;} be

three points such that Piépj; i# j, and PindPiPk;
idjfkyisi, j, k= 1f 2, 3. Let py = P;P;
where (i, j, k) is a permutation of {1, 2, 3}. Clearly

such points exist by (P3). Then we have:

(1) For each Pg*ﬁ? , there exists ge{pl, pz; p3} EEEE

that SIg implies PgS.

PRI RV iy

(2) Dually, for each Re:ﬁ , there exists Pe(Pl, Pz, P3}

such that PIk implies kd¢. Moreover for any such P,

PgS for each SIg.

Proof: (1) Suvpose there exist Ry and RZ

such that Ri Ipl, PoRl, RZI'p2 and PoRZ.

Claims. (i) R;OR,.
(11) RIOPS'
(1i11) R,0P4 and PoP4.
(i) This follows since Ry and R2 are both
neighbouring points of P.
(ii) If R1¢P3 then from (i) and (P6) we have
R2P30R1P3“or P10P ;- Contradiction.

(iii) This follows immediately from (i) and (ii).

We now show that Py is our desired 1line. Let R31p3.
We must show R3¢P. If RL0P, then P1¢R3, for otherwise

35 RgoP and PoP; imply that P,oP;. Contradiction.

P 3

1oR
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Now PoP3 and P1¢P3 imply pzoplpr Also P1¢SR3 and

RzoP imply psoPPI. Hence P,OPz- Contradiction.

(2) The lsf part follows by duality. Now suppose
the second part is false. Then there exists S such that
SI%2 and PoS. Choose RI% such that RgS by Theorem (1.3.1)(1).
Then RgS and PoS imply  PRoSR by (P6). But £ = SR.

Contradiction.

Corcllary. If Pe I and fe ﬁ , then there

RS S & —

exists Qg W such that P4Q and Q4S for ?ach Sis.

Proof. Let {Pl, P,y Ps, P4} be four points
satisfying (P3). By the Lemwa there exists R efPl, PZ, P3}

such that RéX for each XIP. Let R =P for instance.

1’
Then applying the Lemma again, there exists Qe{Pz, Pg, P4}
such that Q4X for each XI%. Since Q¢ﬁ it follows that

PdQ or PQSRj and this is our desired point.

Lemma (1.3.2). If %, me éf , the following

are equivalent:

(1) fom.

(2) For each Qif, there exists PIm such that PoqQ.

L
(3) For each PIm, there exists QIm such that PoO.

—— o ——

Proof: We first show (i) is equivalent to (2).
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(1) =>(2). Let fom. Take QI2. Choose
“”“§e¢d‘such that gdf by the dual of Theorem (1.3.1)(1).
Hence Q = ga 2. Then fLom and %¢g imply  there exists

P such that P = m, g and PoQ by (P5).

(2)=>(1). Let RIfZ, m. Now by Theorem (1.3.1)(1)
there exists Q such that QIf and Q¢R; By (2) there
exists P such that PIm and PoQ. By (PS), PRoQR or
mof. |

Clearly in the same fashion we may show (1) is

equivalent to (3) and hence our Lemma js proveﬁ.

Remerk (1.3.1). If X 1is an affine H-plane,

then in the above lemma, (1) is equivalent to

(2) and (3) combined.

Lemma (1.3.3). If 2, me py , then there exists

R such that for each l€¢R, kg% and kgm. Moreover

RgX for each XIQ\/m;

Proof. We consider two cases.

Case (1): gfom.
By Lemma (1.3.1)(2), there exists R such that

-ke¢R implies kg2. Since fom, kgm is also true.

Case (2): 2¢m.

By the dual of Theorem (1.3.1)(1), there exists
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~{ty, t,, tS} such that tiétj; i# 3y, i, j=1,2,3.
Now there exists te{ti, t,, t3} such that tgL, m.

For suppose t;of. Then t,, tsdl. If tyom, then t3¢m.

Hence choose te¢, such that tge, m. By Lemma
(1.3.2), there exists B such that BgS for each SIt

and BIf. Choose € such that CIt and CgA.

Claim. {A, B, C} satisfy the conditions of
Lemma (1.3.1).

By choice AgB4C4A. Also by choice 24t or
ABSAC. We must show BCgL, t. Suppose BCot. Then tgg
implies AoB by (P5). Contradiction. Similarly BCo2
implies the contradiction, AoC. Hence by Lemma (1.3.1)(2),

C fulfils the demands of the lemna.

Definition (1.3.3). For each ¢ £ , define

Z(2) = {Plthere existsme & such that mof and PIm}.

and @ (2) = <), R@),1, Il> where
Ty =Wy, RE)=Mma.® @)ne & 1},

m A iP(Q)“ n A% (&) iff there existtP such that PIg,

m, n and PIm 4 ¥ (2) iff PIm and Pe ¥ (2).

Remark (1.3.2). (L) = {Plthere exist$ Q such

that QoP and QIf}.
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' Proof: Let {P|there exists Q such that QoP
and QI%} = T. From Lemma (1.3.2), it immediately
follows that (2) < T. Conversely let PeT. Hence
there exists Q, QoP, such that QIf. Suppose PEI(R).
Then for each te¢p, tdt. It follows from Lemma

(1;3.1)(2), that P¢S for each SIt. Contradiction.

Lemma (1.3.4). Let 2e £ . Then we have

(1) If Pex(2) and Xe ¥ (&), then PgX.
(2) If mog, then'X(m) = Z(2).

(3)y m A P (&) = ¢ iff mol.

Proof: (1)ien immediate consequence of Remark
(1.3.2).

(2) This follows immediately from
Lemma (1.3.2).

(3) If fom, then m ATP(R) = fi because
of (2).
Conversely suppose L¢m. Then by Lemma (1.3.2), there
exists P such that PIm and PgS for each SIL. Hence

PemnA P (2).

Theorem (1.3.2). EKI] Let ¥2 be a projective

H-plane. Then for each 2e X , & (%) is an affine H-plane.

Proof: We must show R (£) satisfies (A1) to
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(A8). (Ai) follows from (P,), i =1, 2, 3.(A3) follows
from Theorem (1.3.1)(2). For the rest of the proof,
let g' = g 4 B (1).

| (A4). Let g', h' # p. Put XIg', h', Then
g'dh' iff ggh. For, clearly ggh implies g'gh'. Con-
versely if g'dh' there exists QIg' such that Q¢S
for each SIh'. Thus by Lemma (1.3.4)(1), Q¢S for each
STh. Hence g'gh' iff gdh iff g4 h = X.

(AS) and (A6) follow easily frem (P6) and
(PS).

(A7). Let g'ﬂ h'; PIg', j'; and g'dj'.
From (A4), P

g'a j'. We show hdj. If hoj, then h = ;.

Hence P = }A g = ha g. Now g'ﬂ‘h' implies there exists
R such that RIg, h, £. Hence R = §'Aﬁ = P or PoR.
But by Lemma (1.3.4)(1),P¢R. Thus hgj and soh'dj'.
Let S = haj. We must show SéZ(i), and hence h'a j' #
fi. Assume Sel(L). Then there exists m, mo%,such that

SIm. Hence S = £ Ag. But RI%, h. Hence RoS. Since

PpR, it follows that PRoPS or jog. Contradiction.

(A8). Let Pe P (2) and g'e ﬁ.(z). Then there
exists T, such that T = ga 2, by Lemma (1.3.4)(3).
Then P$T. Let m = PT. Hence m'l g' and PIm'. To show

m is unique,let t'{ g' and PIt'. Then from the properties
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of Lemma (1.3.4), gam=1t,g =T, and hencem = PT = t,



§1.4. Projectivities of Projective H-planes

In this section, we generalize a result found

in Pl on page 9.

Definition- (1.4.1). Let £, me . ¢X is

called a perspectivity with centre R from & to m iff

ké2, m for each k€¢R and ¢R: ¢+m is the mapping ¢R(P) =

PRA m.

¢R is defined since by Lemma (1.3.3), R¢X for

each XI2vm. Moreover ¢R is clearly a bijective map whose
1

inverse is (%) 1: me2, (6N 71(Q) = qrAs.

Lemma (1.4.1). For any two lines £, m, there

exists a perspectivity ¢R: L-+m.

Proof: This is an immediate consequence of

Lemma (1.3.3).

Lemma (1.4.2). Each perspectivity @R: L-+m

has the property XoY iff ¢R(X)0¢R(Y).
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Proof: Let XoY. By (P5), RXoRY. From the

choice of R, we have RXgm. Hence RX AamoRY.m or
v¢R(X)o¢R(Y). Since (¢R)-1 is eésentially the same as
¢R, structurally, we also have ¢RCK)0¢R(Y),which implies
XoY.

Definition (1.4.2). ¢:&+m is called a project-

ivity of order n iff ¢ is a finite chain of n perspectivities
n . 3 = ' .
{o.}; ; where ¢,: 2, »2;, 1 =1, ..., n. ¢: &m

is called a projectivity iff ¢ is a projectivity of

order n for some n.
PI(8) = {¢]¢: 2+%, is a projectivityl. _
PJ(%/0) = {o]ld: 2/0+2/0, is a projectivity}
where 2/0 = {P|PIR}.

Remark (1.4.1). Each projectivity has the

property XoY iff ¢ (X)oo(Y).

Proof: This is an immediate consequence of

Definition (1.4.2) and Lemma (1.4.2)..

Theorem (1.4.1). The following are true.

(A) PJ(Q) is a group under composition, for each e R .

(B) The map h: PJ(2)»PJ(2/0), defined by h(¢) = ¢

such that ¢ (P) = ¢(P), ig a onto group homomcrphism,

Moreover, X 0% = $ox£, for each 6ePJ(L).
(C) The kernel of h = K(&) = {¢{6(P)oP, for each PIL}.
Hence PJ(2)/K(2) £ PJ(&/0). |
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Proof: (A) PJ(L) is clearly closed under

composition and is associative. Since each perspectivity
is (1 - 1) onto, so is each projectivity. Finally if

R#X for each XIL, then @R = the identity map.

(B) ¢ is well defined,since if Pi’ PZIQ,
P,0P,, then ¢(P;)o¢(P,), and so §(F)) = $(P,).

Rn Rl .
Let ¢ =(¢ eee 0 }EPJ(Q). By induction on n,
R

and some easy computations, it follows that h(¢ n

R R
(@ nooL. ¢ 1)@ Hence h(¢)ePJ(2/0). Since

Sn S Rm Rl
h(o; 6,0 =h( ¢ ™ ... % o™ .. ot

by the above remark, it follows that h is a_homomor-
' . R R
phism. h is onto, since if ¢ =(¢6 * ... ¢ %EPJ(Q/O),

then Rilgi-lv %; and hence R.¢X for each XI2,v 2,

R +1
i=1, ..., n. Thus ¢ 'ePJ(2), i =1, ..., n. It
R Ry
then. follows that(¢ e b kPJ(Q) and
R R R R '

hee ™ ... 6 Dy =(e™ ... ¢l Finally, (x, ¢)(P) =

-

o (6(P)) = 6(P) = $(P) ={3 xp)(P).

(C) This follows by some easy calculafions and a

well known theorem from group theory.
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~Definition (1.4.3). Let G be a group of auto-

morphisms on a set X. Let 6 be an equivalence relation

on X. G is n-ply-transitive with respect to 8 iff for

each pair of n-tuples, (al, ceey an), (bl, ey bn)
of X, such that aj g{aj; bigbjB'i 334,31, ..., n,

there exists geG such that g(ai) = b i=1, ..., n.

i’

Theorem (1.4.2). Let &, ¢'e X . Let A, B, CIg
and A', B', C'I2', such that AgBGCPA and A'gB'@C'gA".

Then there existsa projectivityfof order < 4 such

that A(A) = A', A(B) = B' and A(C) = C'.
Proof: We consider two cases, each with three subcases.
Case (1): 2ge'.

(IA): A = A'., This implies that B¢gB' and

CgC'. For suppose BoB'. Then A'¢R' implies A'B'oA'B.
Since A = A', we obtain 2'0%. Contradiction. Similarly

CgC'.

Claim (1). (a) BB'$2,2' and CC'4R,2"'.
(b) BB'g¢CC'.

(a) If BB'of, then £42%' implies that £ . £'08'A BB'.
Hence A'oR'. Contradiction. The rest of (a)

follows similarly.
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(b) If BB'oCC', then BB'g%, by (a), It follows that
BB'A 20CC', 2 and so BoC. Contradiction.

In view of Claim (1)(b) we may define S = BB, CC'.

Claim (2). (a) S¢B, B'.
(b) SgX, for each XIg&v 2'.

(a) If SoB, then B¢C implies BCoSC or 20CC'. Contradiction

to Claim (1)(a). Similarly SEB' .

(b) Suppose there exists X, XI&, such that SoX. Since

S@dB, we have SBoXB or BB'oZl. Contradiction to Claim

(1)(a). Similarly if there exists X, XIL', such that

SoX, then BB'of', which again contradicts Claim (1) (a).
S

The perspectivity ¢~ : £&+2' then satisfies the

claim of the lemma.

(IB): AdA'. Since 24%', we have AA'gL’

or AA'¢%. Without loss of generality let us assume
AA'¢L', Then let P = 24 2'. Thus A¢P, for otherwise
AgA' implies AA'OA'P or AA'o2'. Now choose a€¢A such
that adAA', AB. Hence agA'B'. Otherwise, a o 20LRL’
or AoP. Contradiction. Choose SIIAA' such that

S’1¢A’ A' .

Claim (4). sl¢x, for each XIt'v a.

If there exists XIf' such that S,o0X, then

1
SléA' implies SIA'OXA' or AA'o2'. Contradiction.
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1° Contradiction.
S
1: 2'»a. Clearly ¢ 1(A') = A.

Also if §,0X, XIa, then AA'da implies AoS
S
Thus we may define ¢

Claim (5). (a) B#X for each XIa and C¢X

for each Xla.
1 51
(b) ¢ “(B')4B and ¢ “(C')gC.

s w1 S1
(c) Bo “(B")gCe ~(C').
(a) If there exists X, XIa, such that BoX, then
agf implies AoB. Contradiction. Similarly if there
exists X, XIa such that CoX, then AoC.

S
(b) This follows immediately from (a), since ¢ 1(B'),

S .
6 1(CIia.
| S1 Sy
(c) Suppose B ¢ " (B')oC¢d “(C'). Since Lga, it follows

| 5y 5 Sy
that B¢ “(B')da or Bé “(B')¢gr. If B¢ ~(B')ga, then

S S
d 1(B')o¢ 1(C'). Hence B'oC' by Remark (1.4.1). Contra-
diction. Similarly if B¢ 1(B')¢2, then BoC. Contradiction.
Thus (c¢) is proveﬂ.

In view of {laim (5), we may define
S
S, = B¢ 1(B'),\Cq‘s 1(C'). Let j; = Bo 1(B') and

Vq
[}

S
Co 1(C').

f

ml

5y Sy
Claim (6). SzéB, C; SZ¢¢ (B'), ¢ “(C").

If S,0B, then BgC implies zészc and so gom;. Then
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S
—agl,-implies ﬂ.AaomlA a. Tius Aod 1(C'). Since

S
(¢

by Remark (1.4.1). Contradiction. Similarly $S,4C.

Sy .1 S

1)-l(A) = A' and (¢ 1) ¢ 1(C') = C' we have A'oC!'

51 S S1
Now suppose S,0¢ ~(C'). Since B'¢C', ¢ “(B')d¢ ~(C')

S

and so SZ¢ 1(C')oa. Thus myoa . Then fga implies

that 24 a0f am, and so AoC. Contradiction. Similarly

S
Szo¢ 1(C') implies the contradiction AoB.

Claim (7). (2) j1¢m1l
(b) SZ¢X for each XIfv a.

(a) If jloml, then since fda, jl, m1¢2 or jl, mléa
If jl, m1¢ a, then BoC. 1If jl’ mléa, then

S S
¢ 1(B')o¢ 1(C'). In both cases we obtain-a contradiction,

SRR o
since BgC, and ¢ “(B')d¢ ~(C') by Claim (6).

(b) 1If there exists X, XIg, such that S,oX, then SzéB

2
by Claim (6), implies SZBoBX or jloﬁl. By (a), jlgiml
and hence jja m02 s my. Thus S,0C. Contradiction.
If there exists X, XIa, such that SzoX, then since

S

. S S
5,8¢

1(8'), by Claim (6), we have S,6 1 (B')oYs *(B').

Hence jloa. Since jl¢m1,‘it follows that le moa A my and
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S R .
SO Szo¢ 1(C'). Contradiction.

Thus, in view of Claim (7), we maycbfine

S .
the perspectivity ¢ 2, 2%a |, It easily follows that

.S S : S, S S
6 (M) = A; ¢ Z(B) = ¢ E(B'); and ¢ 2(C) = ¢ 1(C).
| 51.-1_.%2
Now, finally define A = (¢ ) "0 “: 2=2 ', Hence
S s S
AA) = (6 D7) = A A = 0 Dl e = B

S S
and A(C) =(¢ )1 Lcny) = cr.

(IC): AoA' but A¥A'. Choose ae@B such that
agf, L', Let A", C"Ia such that BgA", C'" and A"gC".
Apply (IA) to (B, A, C) and (B, A", C"). Hence
there exists Ay: f%+c such that A (B) = B, Aj(A) = A"
and Al(C) = C'", Now A"gA': for if A'oA'", then AoA'
implies AoA". But A"¢R, and so A"BoAB. Thus foua.
Contradiction. Thus we may apply (IB) to (A', B*, C')

and (A”, B, C"), to obtain A a+%' such that

2:
Ay(A™) = A', A,(B) = B' and A,(C") = C'. Hence

A = AzoAl_ is our desired projectivity.

Case (II): £fo%'. Choose ae¢A such that a:ﬁfg'

(ITA): A = A',

Choose T, such that TgX, for each XI2v a by Lemma (1.3.3).
Then define B" = a aTB and C" = o A TC, which exist by

the choice of T. Apply (IA) to (A, B, C) and (A, B", C')
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to obtain Alz 2+a such that Al(A) = A, Al(B) = B"
and Al(C) = C", We must show AgB"¢4C'"gA, however, to
use (IA). Now since BgC, then Al(B)éAZ(C) and so

B"4C". Also AgB, C, implies AI(A)¢A1(B),'A1(c), and
so Ag, B", C". Again by (IA), there exists Ay: od!

such that A,(A) = A, A,(B") = B' and AZ(C") = C',
Thus A = AZ.Al is our desired projectivity.

(IIB). AgA'. Choose A" such that A"gX for

each XIt. Define « = BA". By the choice of A", A"¢A
and oa¢2. Choose C'"Ia such that C"gA", B. Apply (IA)
to (A, B, C) and (A", B, C") to obtain Al: 2+a such
that AI(A) = A", AI(B) = B, and AI(C) = C", Now since
tof', A"¢X for each XIL'. Thus in particular A"gA'.
Also agf'. Thus by (IB) there exists Ayt a+2' such
that AZ(A") = A', AZ(B) = B' and AZ(C") = C'. Hence

A= AzoA1 is our desired projectivity.

(IIC). AoA' but A # A'. We choose A", a

and C" as in (IIB). Then we use (IA) and (IC) to

obtain our desired projectivity as in (IIB).

Corollary. PJ(2)is triply-transitive with

respect to og, for each e £ .
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CHAPTER 2

Algebraic Prerequisites

In this section we list, for convenience, algebraic
results we will quote later. We shall give

proofs only when the result is new.

2.1. Monoids.

Definition (2.1.1). (a) A pair (M,-) is called

a monoid iff M is a set,+ is an associative binary
operation and there exists 1eM such that x-1 =

l1.x = x for each xeM. 1 is called the unit of M, and
is uniquely determined by this property. We write Xy for x.y.

(b) y is a zero of a
monoid M iff xy = yx = y for each xeM,

If M has a zero, it is clearly unique.

(c) S is a submonoid of

M iff S+S ¢S and 1eS.

(d) S is a right (left) ideal

of M iff SM &S (MS £ 8). S is called an ideal iff S
is both a left and right ideal. S is called a proper
ideal iff S ¢ Mg or equivalentiy 1¢#S.

- 48 -
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(e) S is called a meximal left (right) ideal

or a maximal ideal iff (i) S is proper.

(i1) If I is a left (right) ideal

or an ideal such that S & 1 3 M, then I = S or 1 = M.

(£) If M is a monoid, M* = {m | there exists s&M such that
sm = m§ = 1}

is called the set of units. Clearly for each meM

there exists stmoit one s such that sm = ms = 1. If
ms = sm = 1, we write § = m L,
M* is clearly a group.

Lemma (2.1.1). Let M be a monoid and.{Im}m€I

a family of left (right) ideals or ideals. Then

_ Q{.Ja and rﬁ

o JCY.

are both left (right) ideals or

ideals.

Lemma (Z2.1.2). Let M be a monoid. Then cvery

proper left (right) ideal or ideal is contained in a

maximal left (right) ideal or ideal.

Definition (2.1.2). M is called a local monoid

iff M has a"unique maximal ideal.
The notion does not appear in the literature,

I believe, but'it parallels the concept of a local ring.

Lemma (2.1.3). Let M be a monoid and ¥i{ = (CM*,

If ¢ is an ideal, then M is a local monoid and VIQ is
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its unique maximal ideal.

Proof: Since ¥{l is an ideal and 1&T{(, there
exists a maximal ideal J such that TIL & J. Hence

maximal ideals exist

Claim. If J is any maximal ideal, then J =T,
We show J & TfU . 1If this is false there exists x,

1

xeJ\Til . Hence xeM* and so 1 = xx "eJM & J. Contra-

diction. Thus J %'TT{ & Mand so J =XT.

Definition (2.1.3). Let M and L be monoids

f: M-»L is a menoid homomorphism iff

(1) f(ml, mz) = f(ml)f(mz) for each m , mst.
(ii1) f(1) = 1.

Lemma (2.1.4). Let f: ML be a ﬁonoid homo -

morphism. Then (1) £(M¥] & L*. In fact £f(n"!) = £(m) ™ .

(2) If S is a submonoid of My then
£f{S)-is a submonoid of L. |

(3) Ker f = {m|f(m) = 1}
is a submonoid of M.

(4) fIM#%: MAaL® is a group homomorphism.

We next introduce the concept of ann-ary-
4lgebra, which is just a special universal algebra.

The next result on universal algebras in general can be
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found in Gratzer's book, [61 _].

Definition (2.1.4). The pair (K, T) is called an

nsaTy-algebra iff K is a set and T is a map from

kK" into K. S is a sub-algebra iff TESn_z c s.

Clearly a monoid is a 2-ary-algebra.

Definition (2.1.5). Let A= (XK, T) be an

n-ary-algebra. 8 SKx X is a congruence on A

iff:

(i) 9 is an equivalence relation;
(i1) If aiQ bi,i=l, ..., n, then T(Al, ...,an)g
T(by, ..., b). Let x] = {yl(x, y)e © }.

Lemma (2.1.5). Let ® be a congruence on an

n-ary-algebra A = (X, T). Then A/8 = (X/ 9, T )

is also ann-ary-algebra with operations defined by

— o m———————

’Ié (Cal’,\, cees 1an]) = [’I‘(a1 an)] .

If 4 is a monoid, then the unit of A /0 is {1].

Definition. f£: (X, T)={L, H) is an-ary-algebhra

homomorphism iff f(T(al, ceey an)) = H(f(ay), ..., flay)).

Lemma (2.1.6). Let f:/(r—’(K, T)-—-—>ﬁ,== (L, H)
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be ann-ary-algebra homomorphism., Define a 6 £b

iff f(a) = £(b). Then Gf is a congruence and

Ao .= £[4].

Corollary. If f: M»L is a monoid homomorphism,

then M*/Ker(f) n M* = f {M#].

Proof: This follows from the lemma and Lemma

(2.1.4)(4).

Terminology: We give the definition of a uni-

versal algebra from [Gi) for later use.

A universal algebraic type is a family X =

(Ad)deI of ordinal numbers. An algebra of type X is a

pair (A, f), where A is a set and f = (fa) is a family

ocl
of maps fa: A-A.

Each fa is called a Aa-ary4operation. If Aa = 0,
then A0 = {g} and usually one writes a = f0(¢) for fo.

For example, in a group G, the unit, e, is a 0-ary opera-

tion.



2.2. Local Rings

The following results are taken from Lambek , CLOT),

Throughout this section L is an associative ring with

0# 1.

Definition (2.2.1). Let L be an associative

ring such that 0 # 1.

(2) helL is a left (right) sided zero divisor

iff there exists meL, m # 0, such that mh = 0 (hm = 0).

(b) hel is left (right) invertible iff there

exists mel such that mh = 1(hm = 1) of L«

U ‘(U#) is the set of left (right) invertible elements.

h is called a unit of L iff h is both right and left

invertible. U is the set gf_units.

(c) T is a left (right) ideal of L iff

(DI1T+1<1I.
(ii) LI €T (IL €1).

I is an ideal iff i1t is both a right and left ideal.
1 is' a proper left (right) ideagl or ideal iff T # L; i.c.,

iff 141.

(d) 1 is a maximal left (right) ideal iff

(1) I is a proper ideal}

-5% -
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(ii) 1f J is a left (right) ideal or ideal such
that 1€ J< L, thenJ =1 or J = L.

set of right-sided zero divisors.

Notation: D+

D = set of left-sided zero divisors.

D, = D.aD_.

T( , = set of non-right invertible elements.
T . = set‘of‘noﬁ-left invertible elements.
T = set of non-units.

Lémma (2.2.1). The following are true.

(1) U=UaU. znd [U=T(, ¢ T{ .

(2) For every proper left (right) ideal I, I & T{ (I &TL.).

Hence for every proper ideal I, I &€7T¢

(3) P. € T ,: D, &« TL_ and D, &V

Definition (2.2.2). J(L) = Y R, (R is a maximal

right ideal), is called the_Jacobson radical of L.

Theorem (2.2.1). The following are true.

(1) J(L) = {r|1 - rs§TU, for each seL}.

(2) J(L) is a proper ideal,

(3) J(L) is the largest ideal K such that for each

'reK, 1
(4) J(L)

r is a unit.

1l

N M, is a maximal left ideal)

o

{r|1 - sr¢T|_ for each selL}.
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The next theorem is stated, but not proved,
in Lambhek's book. We shall exhibit a proof here and

use it to derive some additional results5 ¢ T LL_O]JP~7§ '

Theorem (2.2.2). The following are equivalent.

(1) L/J(L) is a division ring.

——

(2) L has a unique maximal right ideal.

(3) There exists a proper ideal I such that f( & I.

At g o s

(4) T 1is a proper ideal.

———

(5) For cach hel, either h¢ T or 1 - h¢TL

(6) For each heL, either h¢ [{ , or 1 - he T, -

Proof. (1)=5(2). We show for every maximal

right ideal, R, R = J(L). If this is false, there cxists
a maximal right ideal R such that J(L) & R. Hence

we may chéose xeRNJ(L). Thus x + J(L) # J(L). Since
L/J(L) is a division ring, there exists y such that

xy + J(L) = 1 + J(L)'. Thus 1 - xyeJ(L) < R. But

xyeRL € R and so 1leR. Contradiction.

(2)==(3). Let R be the unique maximal right

Hi

idezl. Hence R

R

J(L).

Claim, ‘R 15 g_maximal left ideal, Let I be a

left ideal such that R & 1< H. Then there exists
xeINR = INJ(L). Hence by Theorem (2.2.1)(4), there

existsy €L such that 1 - yxe \/{ _.
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Claim. 1 - yxe |l p

If this is false, then 1 - yx¢ T1 .- Hence there
exists uel such that (1 - yx)u = i_vor 1 -u= (-yx)u.

We now claim that uf TU If ue T(,, then uL is a

+.
proper right ideal. Hence ueuH € R. Thus 1 - u =
(-yx)uelR € R. This implies leR. Contradiction.
Therefore there exists vel such that uv = 1. It follows

that

<
[}

bt
L]

<
"

(1 - yx)u)v = (1 - yx)(uv)
1 - yx.

Thus u(l - yx) = uv = 1 which implies 1 - yxe TU _.
Contradiction.

From the claim it follows that (1 - yx)L is a
proper right ideal and hence (1 - yx)e{l - yx)L < R & 1.
But yxeLl € I. Hence 1lel and so I = L. Hence R is a
unique maximal left ideal also.

Next we show [J{ € J(L). Since J(L) is a proper
ideal by Theorem (2.2.1)(2), our result will be proved .
Let xe TL . Then xe TU , or xe '\ _ Hence xH is a
proper right ideal and xH < J(L) or Hx is a proper left

ideal and Hx € J(L). 1In both cases, xeJ(H).
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(3)=>(4). Let I be a proper ideal such that
TLe 1. If TLS I, then there exists xeI \TU .

1

Hence xeU and so 1 = xx “eIH & I. Contradiction.

(4)=>(5). Let T be a prdper ideal. Suppose
there exists hel such that he T{ and 1 - he T{. Then

1e T . Contradiction.
(5)=>(6). This follows easily since 1( , < TL .

(6)==r(1). Assume condition (6)..

Claim. (i) T( ,< J(L) and so J(ﬁ)
(i1) U« J(L) and so T _

'V'L+

[}

J(L).

Let xe T{ ,. Then xye J{ , for each yeL. By (6),
1 - xy¢T{ , for ecach yeL. Hence xeJ(L) by Theorenm
(2.2.1)(1). To show YU _ & J(L) it is enoﬁgh, in view
of Theorem (2.2.1)(4), to show for each hel, h{: —TZ _or
1 - h¢ VL.

Let heL. By (6), hf TL , or 1 - héTZ+.
Suppose 1 - hf Y] ,. Then there exists u€lL such that
(1 - h) u=1. Hence 1l - u = - hu. We now show u¢ I( .
If ue ¥{

and so 1eJ(L). Contradiction. Hence there exists v

. then ueJ(L) by (i). Hence -hu =1 - ueJ(L)

such that uv = 1, Thus v = 1 v = (1 - hJuv = (1 - h)(uv) =
1 - h. Therefore u(l - h) = uv = 1 and so 1 - h{ T _.
similarly h{ YU , implies h§ 1l _. It follows that h¢ T( _
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or 1 - h{ T{ _. Now we show (1). Let h + J(L) # J(L),

and so th(H). By Theorem (2.2.1) parts (1) and (4),

and the above claims, there exists Y1 éuch that 1 - xyleaﬂ.+ =
J(L) and there exists Y, such that 1 - yzxef?l o= J(L).

Hence xXy; *+ J(L) = 1 + J(L) ='y2x + J(L). Therefore

L/J(L) is a division ring.

Definition (2.2.3). L is called a local ring

iff one of the conditions of Theorem (2.2.2) is satisfied.

The mnext theorem is a comsequence of Theorem
(2.2.2). Since it is not explicitly stated in[LO])

we prove it here.

Thecrem (2.2.3). The following statements are

true.

(1) L is local iff Tl is a unique maximal ideal.
(2) If L is local JU, = T _ =TL = J(L).

(3) If-L is local, L/4y is a division ring.

——

Proof: (1) If TL is a unique maximal ideal,
then L is local by condition (4) of Theorem (2.2.2).
Now let L be a local, By condition (4) of Theorem (2.2.2),
TU is a proper ideal. Let V¥{ be any maximal ideal. By
Lemma (2.2.1)(2), ¥IUETL . Since Il is a proper ideal
and T is maximal, T =W . Thus TU is a unique maximal
ideal.

(2) Let L be local. From (6)==>(1), of



Theorem (2.2.2), T, = TU _ = J(L). Thus since Tl =

T« U’Tl _, we have our desired result.

(3) This follows from (2) and condition (1) of
Theorem (2.2.2).
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CHAPTER 3

Dilatations gf Affine H-Planes

In this section we quote some results from {Lil,
as well as adding some new ones. We will include
proofs of theorems frbm {}I} only when the proof as well
as the statement of the theorem is to be used later in

this thesis, or when we have a new or improved proof.

Notation: A will denote a pencil henceforth.

3.1, Dilatations

Definition (3.1.1). Let & =< ® ,f , 1,l>

be an affine H-plane. A functiono: W% - % is called
a dilatation iff for each ge £ , if P, QIg, then P IL(Q ,g),

where for any Xe R X is the image of X under @,

Definition (3.1.2). Let ¥ be an affine H-

plane. Then i: ¥ + ¥ is the identity map. For each

0 .
Pe ¥ OP:T?ugf%? is the map Q P 2 P for each Qe % .

Clearly i and OP, for any p, are dilatations.
Throughout this chapter we are dealing exclusively with

an affine H-plane & . We next prove an elementary

- 60 -
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lemma, which was never explicitly stated in {}i], even

* though it was used there.

Lemma (3.1.1). The following are true.

(1) If o is a dilatation and SIOSZ’ then Sgosg'
(2) If o is a dilatation with an inverse o™, then
o1 is also a2 dilatation.

Proof: (1) Let S;0S,. Then there exist g, h,

1

g # h, such that Sl’ S,Ig, h. Since 0 is a dilatation,
~t
s] IL(S;, g), L(S;, h). Let g = L(s3, g) and
~ ~o
h = L(SZ, h). Then ¢ # h, otherwise gl[ h and
6 ©

hence goh = . Contradiction. Thus S{» S Ig, h and
IR S 4 L
SO SIOSZ‘

4 (2) Let Q;, Q,Ig. We must show

-
i (Qzag)a

Vo)
s Q
-

Case (1)1 glégz. Then since 0 is surjective there
. g .
exist P, Pz such that Pi = Qi; i=1, 2. Also P1¢P2
by (1). Since 9 is a dilatation, PlpzllQle and so

P, = .Q‘l”ln(q‘;'l, g).

Case (2)¢ Q;00,. Choose Qy1g sﬁch that
Q3¢Qi; i=1, 2. Then there exist , as in Case (1),
P 3
This by Case (1), P,P;|l Q;0; and P2p3\{QZQ3. But

o .
Py, P such that P3¢P1, PZ and Pi = Qi; i=1, 2, 3.
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Q;Q; = Q,Q5. Hence Plpsn P,?; and so P Py = P,P..
g-1

Thus L(QZ , 8) = L(Pz, g) = L(Pz, QzQs) = P2P3 = p1p3
o-1 s

and so {Qq = PI}IL(QZ‘ , £).

Remark (%.1.1). Assume £ = PQ and S¢X for each

XI2. Then SPgSQ.

Proof: If SPoSQ, then since 24SP, by the

choice of S, it follows that PoQ by (A6). Contradiction.

Remark (3.1.2). Assume % = PQ; S¢X for each

XIg; and RoM for some MIfL, where R is any point. Then

REX for each XIPS or RgX for each XIQS.

Proof. Assume our claim is false. Then there

- exists X, XIPS,such that XoR and there exists Y, YIQS
such that YoR. Thus XoY. Since PSg0NS by Remark (3.1.1),
it follows that So X, Y by (A6). Since RoX, it follows

that RoS. But RoM. Hence SoM for MI%. Contradiction.

The next theorem determines in its proof the

structure of a dilatation.

Theorem (3.1.1). {L1]. Every dilation o is

uniquely determined by its action on any two points

P, Q such that Pg0Q.
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Proof: Let R be any point such that R # P, 0.

Let & = PQ.

Case (1): RgX for Siih X1g. Hence'Rép, Q.
Define ¢ = PR and h = OR. B} Remark (3.1.1), gdbh.
From Lemma (1.1.14), A gh,. Now define g = LP%, g)
and h = L(Qc, h). Hence AgdAh and so there exists S
such .that' S = gah. Since 0 is a dilatation, R%1 g, h.

o
Thus R = S,

Case (2)¢ There exists M such that RoM.

Choose S such that S¢X for every XI%, by Lemma (1.1.6).
From Remark (3.1.1) and Remark (3.1.2), R¢gX for each
XIPS or R¢X for each XI0S. Then we may apply Case (1)

to P and S or Q and S to find T such that % = R.

Theorem (3.1.2) {L1]. Let o be a dilatation and

P3Q.

(e}
(1) If P°¢0 , then o is bijective.

(2) If PPoQ°, then P?0S? for every S.

Proof: We shall not prove (1). We will deal with
(2) as it is here Lemma (3.1.1) was used, even though it
waslnot mentioned in [ﬁil. If (2) is false, then there
exists S such that P°¢. By Lemma (3.1.1)(1), P4S.

Thus by (1) and Lemma (3.1.1)(2), 0 has an inverse o-l,
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which is a dilatation. Then DOOQU implies by Lemma
' o071 o071 |
(3.1.1)(1) that {p = (P) }o{(Q) = Q}. Contra-

diction.

From the above theorem we prove the following

additional corollaries.

Corollary (1). Let 0 be a dilatation such that

PgQ. The following are then equivalent.

(1) p%g0°.

(2) 0 is biject}?@,

(3) o is surjective.

Proof: (1)=%>(f). This is the theoremjpart (1).
(2) =3%7(3). Obvious.
(3)=9(1). Suppose P°oQ’. By (2) of

the theorenm, PGoSU for each S. Choose R, R¢PO. Since

. . o
0 is onto, there exists S such that § = R. Thus

g, 0 s
S ¢P . Contradiction.

. . ‘ 0 O
Corollary (2). 1If o is not surjective then SloS2

1» “2°¢

Proaf: This follows from Corollary (1) and

part (2) of the theorem.

Definition (3.1.3). Let O be a dilatation. Then

(1) g is called a trace of o iff go < g,

for each
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(2) 0 is called degenerate iff o is not surjective.

Otherwise o is called non-degenerate.

Remark (3.1.3). ‘Lili' Let 0 be a dilatation,

g is a trace of ¢ iff there exists P, PIg, such that

(¢}
p Ig.

Theorem (3.1.3). [Li}. Let 0 be a dilatation.

Then

(1) If g and h are traces of o, and P = ga h, then

P is a fixed point of o,

(2) If each line of g¢ is a trace of o, then o = i,

(3) P is a fixed point of o iff all lines through P are

traces of o,

Lemma (3.1.2). Let o, a dilatation, have no

fixed points. If g and h are traces of 0, then AgoAh.

Proof: Suppose Ag¢Ah. Then by Lemma (1.1.14)
there exists X = gAh. Hence by Theorem (3.1.3)(1),

X is a fixed point. Contradiction.

Theorem (3.1.4). [Lf). if a dilatation¢ has

no fixed points, then 0 is non-degenerate.

Proof: Assume O is degenerate. By Corollary

(2) of Theorem (3.1.2)J §§o§2 for allvpairs Sl’ Szo
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Choose P and Q such that P°gQ. Hence P%0Q° and so
Q®4Q. Let g = 0QY.- By‘Lemma (1.1.12), there exist§
h, hég, such that Q°Ih. Thus Ag¢Ah' Nowrchoose R,
RIh such that RéPU, by Lemma (1;1.9). Since
R%0P% we have RﬁRc. Let j = RR®. Next we show hoj.
For if this were false, then h¢j and R%0Q° would Tonply
RoRU by (AS). Contradiction. Thus by Lemma (1.1.13),
AhoAj. Also by Lemma (3.1.2), AgoAj. Hence AgoAh.

Contradiction.

Theorem (3.1.5). If 0 is degenerate with a fixed

point P, then there exists Pl, Pl # P, PloP such that
c
1

P, = P,

Proof: Without loss of generality we may assume

0 # o0 Now choose Q such that Qg¢P. By Corollary (2)

pe
of Theorem (3.1.2), PoSG for each S. Choose X such that
X$T for each TIPQ by Lemma (1.1.6). Define g = PQ

and h, = PX. Then X IPX by Theorem (3.1.3)(3). By the
choice of X, gléhl. Since PIg,, hy, it follows by

Lemma (1.1.14) that Ag1¢Ah1' Since PoQ®, there exist

g1 873 gl“f 8,» 8108, such that P, QGIgl, g, Similarly
PoX implies the existence of hy, hyy hy # hy, hloh2
such that P, X'Th;, h,. Hence AhloAhZ and AgloAgz by

Lemma (1.1.13). Thus A, 8 A Define h = L(X, h,)
2 8 ,

2
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and ¢ = L(Q, gz). Hence AhéAg. Thus there exist$§

P A

diction. Moreover P?IL(XO, h), L(QG, g). Hence L(Xa, h) =

1> P = hag. P # Py otherwise h, = h;= h. Contra-

o a .
h2 and L{(Q7, g) = 8o+ Thus Pl = th g, = P. Finally

Plgp. For if this were not so,then o = Op by Theorem (3.1.1).

Contradiction.

Notation. D

?

the set of dilatations,

M = set of degenerate dilatations.
Dy = {o]aeD such that PY = P},
M. =D M..
pP° @,
If gy, dzeD, we write for their composition P 17z
6, U
: 2,71
r " "

Theorenm (3.1.6). The following are true,

(1) D is a local monoid with M as its unique maximal ideal,

under functional composition, M = LJ Mp .
P
(2) Dp ii a local monoid with a zero element o

ps and Mp

its unique maximal ideal.

(3) M, = {oloer such that Po0? for all Q}.
(4) 1f PgQ, then DN Dg = {i}.
Proof: (1) Let ¢,, o,eD. Take P, QIg. Then
At 1 2 g
o, oy o,
o,eD implies P “IL(Q °, g). Let g, = L(Q °, g). Then

cleD implies
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0'10'2 g

o o (o} o
P = H it ! 2

0'
» 85) = Lt ?, g)l.

Hence GlczeDl. Also ieD and so D 1s a monoid.

To show D is local we invoke Lemma (2.1.3).

Since D* = M, we show M is an ideal. Let o;eM and o,eD.
o o
Choose P, R, such that PgQ. Since gj€ M, P 1oQ 1 by
Corollary (2) of Theorem (3.1.2). By Lemma (3.1.1)(1),
0, O o, O 0,0 0.0
(P 1) 2o(Q 1) 2. Thus P 2 1oQ 2 and so GzoleM by
Corollary (1) of Theorem (3.1.2). Thus M is a left

92,% 2, 1
ideal. Since ojeM, (P %) "o(Q “) ° by Corollary (2) of
0.0

©1%2 %1%
Theorem (3.1.2). Hence P oQ or olozeM. Hence M 1is a
right ideal, and thus an ideal.
Clearly Theorem (3.1.4) implies M = p€§$’Mp.
(2) Clearly Dp is a submonoid of D. Since M is an

ideal and D, is a sub monoid we obtain that My is an ideal

P
as follows:s

M

)
!

2
(M,D )D, € MD, n Dy €

D

=
1

2 e
pMp = DP(M D )<1 DPM n DP

op is a zero element since for each oer, and each Q,

0,00 . ’
P 0p go

Q = Q% "=Pand Q " = (Q



(3) follows from Corollary (2) of Theorem (3.1.

~and (4) follows from Theorem (3.1.2).

The next theorem was proved essentially by

——-

Luneburg for J(T,Ji") type planes, which we will men-

tion later. We give a different proof 1in our context.

Theorem (3.1.7). If ¢2 is uniform, then

Mg = {o,)} for each P. [cf. Definition (1.1.8)))

Proof. Let o1, GZEVP. Hence by Corollary (2)
o

of Theorem (3.1.2), PoQ i for each 0¢ 1 = 1, 2.

Now choose g;, g,, g1¢g2 such that Plg,, g,
by Lemma (1.1.12). Select P;Ig; such that PgP.;

i =1, 2, by Lemma (1.1.9). Thus g; = PPi; i=1, 2.
.
ntd 2= 1; - - P
Define Qi Pi i 1, 2. Thus P o Oi and QiIgi,

i=1, 2. Now Pé?2>and Q0P implies szopzol by

(A5)®#. Define Ly = PoQy and L, = L(Qz, 21). Thus
zlogz. Since g1¢g2, it follows that llégl.
0,0,
Since Pé?l, it suffices to show Pl = P by

Theorem {3.1.1). Now we have

g,0 (o} AO'
291 91 .9
P = (P17,

g
2

since 0,0, €D. Becguse 2,085 211(22; and PZIQI, g,

69
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it follows from (A7) that £,0g,. Since o,eMp,
% %2 .
0,70 {P,” = Q,} by Corollary (2) of Theorem (3.1.2).

o o,
2 2 .
Then 250855 QZIQZ, g3 Q1 122; and QZOQI imply

o} o3
lelgz by uniformity. Hence lelgl, g5 Thus we have

h T g gy =P



§3,2. Translations

Definition (3.2.1). [L1] Let 0eD. Then

(1) ¢ is called a quasi-translation iff 0 has no fixed

points or O = 1.

(2) ¢ is called translation iff (i) © is a quasi-

translation, (ii) If g is a trace of O and hl| g,

then h is a trace of 7.

Notat{gg. D% = DNM,

{¥]7 is a quasi-translation}’

H

h ]
Pl

i}

{tlt is a translation!.
We note that D* is a group.
(3) M is called a direction of T iff A is a pencil of

%

traces of T.

D
T

T

i

{AJA is a direction of 1} = {Aglg is a trace of t}.

"

{t]7eT such that AeDT}.

The next theorem of Klingenberg's is proved
in a sligh?ly different manner, as we shall use the

actual structure of the proof later on.

Theorem (3.2.1). (X2} Each teT is uniquely

determined by its action on one point P,

- 71 -
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Progﬁf Let ¢ be any line such that P, PTIg.

Let Q be any point, 0 # P, Take h any line such that
P, OTh.

Case (1): hgg. Since'PIg, h, we have AgdAh.

Thus A )éA . Since <teD, QTIL(PT, h).

L(Q
(Q,¢ L(P ,h)
Because g is a trace of 1, teT, it follows that L(Q, g)

is a trace of 1t and hence QTIL(Q, g). Thus by Lemma

(1.1.14), QT = L(Q, g)a L(PT, h).

Case (2): hog. By definition, there exists Y,

YIg such that Yo(. By Lemma (1.1.10), goL(Q, g).
Choose R such that R$gX for each XIg. Since goL(Q, g),
RgX for each XIL(Q, g), and so L(R, g)4L{Q, g). By
Lemma (1.1.10), Q#X for each XIL(R, g). Thus

ORPL(R, g)  (1).

Now since g is a trace of t, L(R, g) is one also and

hence RTIL(R, g).

By the choice of R,
RPgg (I1).

Applying Case (1) to (I1), we may determine RT from



P and PT. Applying Case (1) to (I) we may determine
Q" from R and R'.
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Definition (3.2.2). Let G be a group and T & G.

T is called a normal subset of G iff ng'l = T for each

gelG,

The next theorem,except for parts (2) and (5);

is due to Luneburg in W1l .

Theorem (3.2.2). The fbllowing are true.

(1) T is a normal subset of D%,
(2) 1f ¥eT, then ¥ 1eT,
(3) T is a normal subset of D® and D, =D 1 for

cach teT and oeD=.

(48) TA is a normal subset of D%,

(5) If €T, then 7 leT and D_ =D .
2= .

Proof: We prove only (2) and (S5).

-1 T
(2) If P = P, then P = P, Hence 1 = 1
-1

and so T i,

(5) From (2), tveT. However,

-1
p, Pl1g iff PT 7, pTIg
and
-1 -1 -1
P, P' Ig iff P'' , PT 1Ig.
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Thus 1t and T'l have the same traces. Therefore DT =

1

D .4, and so t "eT.

Comment (3.2.1). It is not known, in general,

whether T or 1 are groups. From Theorem (3.2.2),

we see that T has all the properties of a group except
it is not closed under its binary operation, Of

course for ordinary affine planes T = Tand T is a group
(cf. fA@). We shall see later that there exist planes

~
such that T = T.

Definition (3.2.3).

~ ain s ¥
(1) N = {7|TeT such that PoP  for each P}, is called

~
the set of neighbour quasi-translations. N = NnT

is called the set of neighbour translations.

-

(2) D is the set of dilatations of @

——

T is the set of translations of ¥

Theorem (3.2.3).- Define the map ¢: D -+ D by

P e

#(0) = o where (5)0 = p9, Then 9 is a monoid homomorphism
and Ker ¢ = {0]|QoQ° for each Q}. Moreover ?ch =
cr-)(T‘P

Proof: We first show that o i1s a function,

Let P = Q and so Po). By Lemma (3.1.1)(1), quQO.

-
-

Thus (5)a = p7 = 53 = (@°.



Claim. oegD. Let Py, P,I&. Hence there exist

i

Yl’ Y2 such that YiIR and YioPi; 1 1, 2. Since

oeD, YllL(Yz, 2). Because X 1is a homomorphism, then

using the results of Lemma (1.2.4), we obtain
(FP% = (% = xOPIIX (g, 2)),

X(LY,)) = Lx(Y), x(2)) = LOYG, 1) = L((T%,D)
= L((P)7, 2.

Hence oeD.

Next we show ¢ is a monoid homomorphism. It

is enough to show 0,0, = 3102 and i is the identity map

of D. But for any P,

0,0 0.0 0., O 0., O G, O,
=, 172 172 2.1 2.1 o021
P) =P = (P ") = (P ") = ((P) 7)

Next we have oeKer ¢ 1iff 4(o) = i iff (6)0 = a for
all , iff Q%0 for all Q iff 0%Q for all Q.

Finally for any P,

75
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Corollary. (a) D/9_¢ = ¢[ﬁ].

(b) Ker ¢ n» D* is a normal

subgfoup of D% and D*/Ker ¢ a» D¥ ¥ g CDﬁl.

Procf: (&) This follows from the corollary
of Lemma (2.1.6).
(b) This follows from the first isomor-

phism theorem of group theory and Lemma (2.1.4)(4).

Lemma (3.2.1). [KZ] The following are true.
(1) N = {t|7eT and there exists P such that PoP'}.
(2) {1} & T.

Lemma (3.2.2). Let FeT. If any two traces .

of ¥ are parallel, then YeT.

Proof: Let g be a trace of ¥ and hllg. Let

QIh. Choose T such that Q‘QTIh. Thuslﬁ is a trace of

~ ~

¥ and so Ki}g. Hence h = h since QIh, h. Thus h is

~
a trace of T.

RN

Lemma (3.2.3). Let teT. The following are

equivalent.
(1) TéN,
(2) If h and g are traces of 1, then h}‘g.

(3) |p | = 1.

76
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Proof: (1)=%(2). Let T%N. Hence by

Lemma (3.2.1)(1), P#PT for each P. Let h and g be
traces of T. Thus there exist P and Q such that

L(Q, g). Then T is

g = PP and h = QQT. Define i

a T-trace and so QTIﬁ. Thus h QQ'r and so hli g.

(2) =5 (3). oObvious.

(3)==,(1). Suppose TEN, Hence there
exists P such that PoP'. Thus there exist 81> 8y
g1 # 253 g408,,such that P, PTIgl, g,. Now gy and g,

are traces, but glﬁ”gz. Hence Ag # Ag and so |D | > 1,
A T

1 2

Lemma (3.2.3). Let ¢ be uniform. Let TeN

it !
and AeDT. Then AEDT iff Aok,

Proof: 1If XEDT, then by Lemma (3.1.2), Roh.
Conversely, assume AoA. Let geh and gek, such that
PIg, g. Since Koh and gag # P, it follows that goy by
Lemma (1.1.13). Since g is a trace of T, PTIg. Also
PoP " since TEN. Thus PoPT; gog; PIg, § and PTIg
imply P I% by uniformity. Hence g is a T-trace and so

AED%-

Corollary. (1) Let & be uniform and 7€ N.

'If g is a trace of T and hog or hag = f, then h is a

— o r——

trace of T.
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A €D

Proof: From Lemma (1.1.13), AgoAh. g€0¢ -

The result then follows from the lemma.

Corollary. (2) If ® is uniform and Ajo0h,,

then TA n N =T
1

Proof: This follows easily from the lemma.

Definition (3.2.4). An affine H-plane & is

called a T-plane iff T is a group.

Theorem (3.2.4). [K2] Let 3¢ be a T-plane.
Then

(1) T is a normal subgroup of D¥.

(2) TA is a normal subgroup of T.

(3) ’ N is a normal subgroup of T and T /N s

Theorem (3.2.5). {lf} Let 2 be a T-plane.

Moreover suppose there exist Al,_AZ, A1¢A2 such that

TA.n &N # ps i =1, 2. Then T is gbeliag.
i

We end this section with two technical lemmas

we shall use later.

Lemma (3.2.4). Let AigA,. Then TA£§ TA2 = {i}.

Proof: Let TelAln TAZ. Then Al" zeDT.

Thus by Lemma (3.1.2), A 194,- Contradiction,

A

““‘

I"‘“‘



Lemma (3.2.5). Assume the conditions of

Theorem (3.2.5). Furthermore let A1°A2; TieTA_;
i

PIg;; and g;eA;s i = 1, 2. Then there exists 13¢N,

where D = {AS} E?f. Lemma (3.2.3)] with the proper-

3
ties
(a) A3¢A1, A7
(b) If £13 is a trace of TTzs then g13¢g1, gy

Proof: By our assumptions there exist two
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pencils A and N such that AgX and TA;\<£N N TX:\GlN.

Since Ajoh,, one of A and X, say A3, has the property
A3¢Al, A,. Choose T3€TA3"& N. Hence DT3 = {A3}.
It is clear that (a) is satisfied. We show (b) next,

recalling by Theorem (3.2.5) that T is abelian.

Assume (b) is false. Hence there exists 813>

a trace of Tlrs,such.that 81308, OT g;:0g8;. Let g1398;-

Let g be a trace of Tg through P.
T
Define h = L(P, g;5) and j = L(P L)

Claims. (1) hog,.
T T

2y ¢ b 313,

(3) jdgq.

3T

(4) P Ih.



(1)

(2)

(3)

(4)

~Supp05€ h¢g2. Hence PIh, g, and gsll h
imply. 83108, by (A2). Contradiction.

. T
Since jil g, then j is a trace of t; through P

T, T
Hence (P 1) 3Ij.

Since {Aj = As}é{Al = Agl}; by (a), we have

j1%g; by Lemma (1.1.14).

1
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h is a trace of 4T3 through P. Since T is abelian

our result follows.

' T3T1 T1..
Then hog,; jégi; P Ij, h; and P "Ij, g,

imply  that

1,7 T T T
P31 Ly 3op 1 by a6).

Hence teN by Lemma (3.2.1). Contradiction. Hence

: g13¢g2. Similarly glségl.



CHAPTER 4

Minor Desarguesian Planes

§4.1. A brief Discussion of J(T, @) types planes.

———

In [li], Luneburg defines an incidence structure
with parallglism, J(T, @))where T is a group and 8 is a
set of subé%‘oups(called components); as follows:
Points are. the elements of T; lines are the right cosets
of the components; incidence is given by inclusion;
lines are taken to be parallel iff they are cosets of
the same components. Liineburg then proved the following

theorems in E@i}.

Theorem (4.1.1). {Ll} J(T,@) is an affine H-

plane iff the following conditions hold,

(1) The components cover T.

(2) If A, Be@ such that AaB = 1, then T = AB,

(3) There exist A, Be@wit}l AnB = 1.

(4) The set N = {7eT|[tcl} is a normal subgroup of T.

(5) If Ae@, then A § N.

L]
=z
b=
2
=z
=

(6) If AnB = 1, then N

(7) If AnB # 1, then NA = NB.
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Definition (4.1.1). Let J(T, g) be an affine H-

%
plane. For each 7eT, define 1*: T-+T by o' = gt
for each oeT. Clearly the set T* = {1*|teT} is the set

of quasi-translations of J(T, @) ch.I)efinition (3.2.Lﬂ_

It easily follows that f: T->T#%* defined by f(t) = =%

is a group i somorphism,

Remark (4.1.1). T* is a transitive group and

each t* is uniquely determined by its action on 1.

Proof. Let t;, 71,eT . Next consider
(TZTil)*. This clearly maps 1, onto 7,. Moreover

%
the last part follows since (1)1 = 1 for each teT.

Notation. If J(T,8) is an affine H-plane,

then let T(J) be its set of translations.
We then obtain the following important result.

Theorem (4.1.2). {L1 If &2 1is a T-plane such
- 1s a l1-plan€ such

that T is a transitive group, then T is abelian; and

there exists a collection E,gf subgroups of T such that

X < J(T,g). Moreover if J(T, g) is an affine H-plane,

then T(J) = T* iff T is agbelian,.

We prove the following corollary.

Corollary. 1If J(T, 6)‘13 an affine H-plane,

~then the following are equivalent.
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(1) T ii_ﬁ.transitive group.

(2) T(J) = T*.

(3) T is abelian.

Proof: (1)=(2). We first show T % T(J).

Since T(J) is transitive, for each xeT, let Ty be the
unique translation mapping 1 to x. The uniqueness of
T¥ follows from Theorem (3.2.1). Defin@ g: T->T(J)

by g(x) = Ty Clearly T, = x* from Remark (4.1.1).

g is (1 - 1) and onto from the uniqueness of T, and the
transitivity of T(J) respectively. To show g is a
homomornhism it is enough to show TxTy = Txy‘ Now

T,7T i & .

Txy. Thus T = T(J). From the theorem T(J) is abelian.
Hience T is abelian and thus also from the theorem,

T* = T(J).

(2)==7(3). Since T(J) = T* and T* is transitive
by Remark (4.1.1), T(J) is transitive, and hence abelian
by the theorem. Hence as in (1)=2(2), T(J) = T and

so T is abelian.

(3)==2(1). This follows from the theorem.



§4.2. The ring of trace preserving homomorphisms

of a minor Desarguesian affine H-plane

Definition (4.2.1). [KZ] Ef is called a minor Desarguesian

affine H-plane iff it satisfies the axiom

(A9): T is a transitive group. If £ is minor

————

Desarguesian we say it is a M.D. plane. Liineburg

calls minor Desarguesian planes, <{ranslation planes.

He studied their structure, in the form of J(T, 1)
planes, in view of Theorem (4.2.1), just as André

did in [Af] for ordinary nlanes.

We shall however proceed in the manner of

Artin in YAZ], in the general geometric form.

Notation: If & satisfies (A9), and T is the

unique translation taking P to Q, we write t = TPQ'

Lemma (4.2.1). [K2] Let & be a M.D. plane.

Then ¢ {T] = T and T/N ¥ T,

Proof: From the Corollary of Lemma (3.2.1),
<b[T?E T. Conversely, if ggf, then 1 is uniquely
determined by its action on any point P. Let 0 = (5)1.

By (A9), there exists 7eT such that 1 = Tpo* Since

- 84 -
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it follows that T = I.

The last part follows from the first and

Theorem (3.2.4)(3).

Now let us recall some results from group

theory.

Theorem (4.2.1). Let G be an abelian group.Let

A and B be subgroups such that AmB = 1 and G = AB.

Then, (a) Every element of G has a unique representa-

tion as 3 Qrodch of an element of P and an element of

Q.

o

(h) G/A £ B,

Definition (4.2.2). Let.G be a group. Then

G=A@B iff (i) A and B are subgroups of G.
(ii) G = AB.
(iii) AnB = 1.
(iv) Each element has a unique represen-
tation as a product of elements of A and B.

By Theorem (4.2.1), (iv) is obviously redundant, if G is Abelian.

Theorem (4.2.2). Let ¥ be a M.D. plane. Then

(1) There exist A., A_, A 4dA. such that T,.n TN # §;
1 2 1772 A 2 Al
i =1, 2., Hence T is abelian,

(2) If Ajgh,, then T = TA1 @TAZ
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Proof: (1) We invoke Theorem (3.2.5). Select
any point®. Choose g1 & such that PIgl, g5 and
g1¢g2. Take QiIgi' such that g; = PQi; i=1, 2.

By (A9), Ty 57 exists; and TiSN since PéQi; i=1, 2.

PQ
It follows that Ag

¢Ag and TA n N#p:1=1, 2.

1 2 g;

Y
p—

(2) From Lemma (3.2.4), TA s} TA
1

2

Now we must show T T, T, .
A1 A2

Let teT such that v # i. By (A9), let

T = TPQ. Choose £ and g, as in (1). Define h1
L(Q, gl) and h2 = L(P, gz). Since Ag1¢Ag2, we have

Ay @A and hence there exists T such that T = h,a h,.
h1 h2 . 1

Define Ty = Tpp and t, = TTQ. Then TieTAit i=1, Z)and
T T 1T,

(3) Choose A such that ABAL, A,

by the corollary to Lemma (1.1.14). By (2) and (b)

of Theorem (4.2.1), T/A; 4 T, = T/A,.

Definition (4.2.3). Let ¥ be a M.D. plane.

§: T»T is a trace preserving endomorphism iff

(i) 6 is a group endomorphism of T.

S

(ii) I%,S DTG; for each t¢T, where 1t~ is the image of

v under 6. Let H be the set of these endomorphisms.
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Theorem (4.2.4). {¥2] If ¥ is a M.D. plane,

then H is a ring with unit in the following manner:

§, 8, (87+6)) &, &

- 172 (T 2) 1; T - 1 1-1 2;
1« Tl = v for each TeT)ii the unit of H;
O: TO = i for each Teg is the zero of H.

Luneburg, then showed for J(T, g) in (L;?,that Dp is a rin
and Dp is isomorphic to H. The proof proceeds
beautifully, due to the fact the group of quasi-
translations, T%*, coincides with the group of transla-
tions, which is ndt true in general, We shall generalize
Artin's proof of this fact, in his setting. Then we
obtain much nicer proofs of the properties of H, obtained
by Klingenberg 1in {kz], as well as see more clearly
how each‘dilatation is related to a unique trace pre-

serving endomorphism.

Definition (4.2.3). Let-rt be the set of non-

units of H.

Before we prove the main result of this section

we require the following technical lemma.

Lemma (4.2.2). Let ceDy and Q any point such that




PgQ. Let QG = R and g = PO Further let 1 = Tyg

and & be a t-trace through P such that 24g. Then 0.7 =

(Tpsf) 0.

Proof: From Theorem (3.1.1), it suffices to

show the two dilatations map P and O identically. Now

o] Tl (tpe0)0
p%°T = (pTY% = 5% = p PS %) PS” _ p PS .

It remains to show they coincide on . By Case (1)

of the proof of Theorem (3.1.1), we have, since g#2,

~

-~

A
"

L(SG, g)A L(R, 2). (1)

Let h = L(S, g) and m = L(Q, &). Hence hgm. Thus by

Case (1) of the proof of Theorem (3.2.1), we have
QT = ham,

Now (09)91{L(s%, h) = L(SY, &) , L(Q%, m) = L(R, 2)}.
Thus by (I), we have

P

Trel Tyl (the0)00
Ocor - (QT)O = (R) PS” _ (QU) PS™ _ Q PS

Theorem (4.2.5). Let % be a M.D. plane and P
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any point. Then (I), For each 8§eH there exists a unique ©

such that (i) oeDP;
(ii) (rps)é = Tpg0 for each T,qeT.

Let o(8) be this unique dilatation.

(II). ¢p: H»Dp, defined by ¢,(8) = o (8),

P

is a monoid iscmorphism.

Hence ée ({ iff o (8)eMp.

Proof:

(1).

Let o have properties (i) and (ii). Select any point Q.

We first show the uniqueness of o.

Ton ) P(TPQ)5

Then P® = P and QG = P , which is independent
of 0. Now we show the existence of o.
L (Tpa)®
Define o: % - , by s’ =p PS Now
(tpp)8 0
p® = p PPT . pl” . pl . p,

To show oerjtake S, M such

that S, MIg. Since g is a trace of =« L(Mo, g) is

MS?

a Tyg trace through M7,  Thus L(MU, g) is a T%s trace
x$ |
N

through M°. Hence (M%) MS 1L(M%, g). But

S -6 s s 8
T e T Tye*T
%) MS _ P PM) MS _ p MS 'PM

5
_ p{TMsTey) ps

= P =

Therefore SUIL(MG, g).

s%,

Property (ii) is easily satisfied
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since TPSG = TP

(I1) ?p is a function by (I). To show ¢p is a
monoid homomorphism, it is énough to show 0(61] 0(62) =

0(6162) and o(1) = 1.
6162 ) 8§, 8

$
Ry 1
Tps = (Tpg)

= (tpgo(8)) = = 7p
(

1
o(8,) o(8;)
S 2 ) 1

= TPSU(GI)U(GZ).

Clearly 0(6]), O(GZ)EDP. Thus from the uniqueness of

- .1
Tps ® Tps

(1), 0(8,)9(8,) = 0(8;6,). Finally g L)

implies Sc(l) = S for any S, and so o(1) = i.

Claim (1). ¢, is injective. Now let o(8;) = a(6,).

$ . 8
o 1 . _ _ %2 .
Then Tpg = TPSG(51) = Tpsc(dz) = Tpg for each S. Hence
8y %
T = 1 for each teT and so 61 = 62. Therefore ¢P is
(1 - 1).

Claim (2). ¢p is surjective. Let oeDy. Choose 0
such that QgP. Let Qc = R and g = PQ. Define &: T-»T
by Tgs = Tpg0 for each SEZP . We must show (a) (T2T1)6 =

5.8 - e n '
T,Tq and (b) DT = DTG.



a) Let T, = Tpp.s i=1, 2. Thus we
T2
T,T; = Tpg such that S = 'I‘1
and
(1) (1211)5 =T L =T T
PS p(Tl 2)0
8 &
T,T, = T .7 = T such t
2°2 e o PM
sz PT1

Since T is abelian we also obtain

ToTy % T9T, = Tpg such that S

: 8 8
(11) (1211) = (TlTZ) =T =T
PS p
§ 8§ _ 6.6 _ <
PTY PT :
1 2
T )
g
such that M = (Tz) Thus_by (I)
Tpﬁo TPTO
oot T o
§. 6 . 2 o 2 _ 2
T, iff T1 = (Tl) = Tl a
T
&1 1, pTY
) § & . . 1 S | 1
(TZTI) = 1,7 iff FZ (Fz ) =

Hence it suffices to show (A) o T, =(T

(B) o 14 =(T Bo.
: pTY

obtain

= Tpp (UOTZ).

1

haf M

]
—~
~3
- Q
~

8
(TZTI) =
nd by (II)

T

o
. PTl.o
2

(o}
pTg)

91
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Case (1): At least one of '% has a trace g3

—— a———— w—————tny @t

through P such that gi¢g; i=1, 2,

If g1¢g, then by Lemma (4.2.2), (A) is satisfied.

If g,ég, then similarly (B) is satisfied.
Case (2)! gjog; i =1, 2. Thus A_oh_ ; i =1, 2,
B — g; &

and so® oh . By Lemma (3.2.5), there exists T.4N such
g1 82 3

that DTS = {AS}; gségl, g, where g4 is a T4 trace

31
83198, 8, Since g og and g, g48g;; 1 =1, 2, it

through P; and 831 is a trace of 1.,7T, through P such that

follows that g3,g31¢g. Then applying Case (1), we obtain

L

A . § 6 _ s .
(1) (z 3T1) T 2 ((T:SLI)TZ) since g31¢g'
. § _.
(2) Tg(Tsz)G = Ts(rsz) 51nce»g3¢g.
§ &
(3) (TSTI)G = T3T1 since g3¢g.

Hence we finally obtain, using (3), (1) and (2)

§ 66 6.6, 8
T3T1T, = (T37)7,

86
(T371) 7

((rg1)7,)°



93
- ' $
= 13(1112)-.

6.8 _ )
Hence T T, = (1112) .

(b) Let AeD . Take heA such that PIh. Define T = P'

and so P'Th. To show AeD 5 it is enough to show
8 5 T 5.

T s _ o
P" Th., Now 1~ = TpT

= 1 implies PT = T°.
PT .

But
TOI{L(P°, h) = L(P, h) = h}.

Thus we have finally shown that 6eH and clearly
QP(G) = g. To complete the proof we see from Lemma
(2.4.1)(1) and the fact $p is an isomorphism, that
6 TL iff o (8)eMp.

The following corollaries, except for (1) and (2)
are theorems from EXZT. We exhibit new proofs using the
above theorem. The assumptions for the corollaries are

the same as for the theorem.

Corollary (1). [FZ} Each 8eH is uniquely deter-

_mined by its action on one T, TN,

Proof: Take P any point. Let Q = P'. Thus
8

Now choose gEH such that

PgQ since 14N. Put T Tpgr*
&

T = Tppe Then by the theorem, there exist ¢ =¢(§)

ond & = 5(8) with properties (i) and (ii). Thus
S
L ¢ ¥ =T
PG PG PR and
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o O

Thus Q° = Q° and since PgQ,

~

= T A~ o= T

Q" Tpf PR*

G = o by Theorem (3.1.1). Because ¢p is injective
n
§ = 6.
Corollary (2). If T#N and &eH, then
(a) 16 =1 implies o = 0.

(b) ’r(S TB implies 6§ = B,

Proof: (a) follows from Corollary (1) and
(b) from (a).

Corollary (3). NS & N for each Ge—ﬂ

Proof: Let 8¢ T . Hence there exists oeM

Lt P

s 4
such that Tpg = Tpsg. Let TPS€N and so PoS. By Lemma

(3.1.1) (1), PoS® and consequently T GEN.
' PS

Corollary (4). Let 8eH. The following are

equivalent.

(1) There exists T, T¢N, such that tSeN.

2) T8 e n.

(3) se Y.

Proof: (1)==4(2). Let 1, 14N be chosen such

S -
that 1 eN. Let 1 = TPQ
§ _ § _
oeDP such that Tpg = TPSG. Now let TPQ = TPREN and so
Qc = R and PoR. Hence oeMp. Let Tpg be any translation.
Since ceMp, PoSO, by (2) of Theorem (3.1.2) and so
8

T = T € N.
PS‘ PSO

and so P¢gQ. Then there exists
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(2)=D(3). Assume TSS N. Let o = o(8). Take

8 o
TpQéN and so PgQ. Then Tpg = TPQGEN. Put Q° = R,

Hence PoR. Thus by Theorem (3.1.2), Corollary (2),
ceMp and hence $§¢ 71,.

Corollary (5). If 6e T , there exists 1.¢N,

T £ 1, such that 16 = i,

Proof: Let se TU and hence ¢ = o(G)aMp. By
Theorem (3.1.5), there exists Pl, Pl # P, PloP such
that P1 = P, Then 1 = Tpp # i and teN. Finally

1
s _ = = 3
TS T Tpp = 1.

Corollary (6). H is a local ring.

Proof: Since ¢p is a monoid isomorphism, and D

p

is a local monoid, with maximal ideal My, by Theorem

p
(3.1.6)(2), it follows that T{H GT{ and HTCET
Now we show TU +¥T(L @ TL . Take §, £€e TU . By
‘Corollary (4), T¥eT and TPE&TC . Hence

(T)B+€ c S.pd e U Z2e T and so & + £e VL by

Corollary (4).

We complete this chapter with the following
result, Parts (i) and (ii) are essentially the devices

used to prove Theorem (4.1.2).

Notation. If G is a'group, End 6 is the

set of endomorphisms of G.
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For a fixed P, {PT/TET} =P , since T is transitive on P .

Theorem (4.2.6). Let & be a M.D. plane and P

a fixed point. Then, (ijn P i a group

T T ~
under the following multiplication: P 1op2 . I>%L

3t

’
> Y
4

'Pi'= P is clearly the unit of ’EJ

(11) fp: [P »T, defined by

fP(PT) = 1,is a group isomorphism with inverse fé defined

-1
fp

%Z Tpx = X.
(iii) P, & End 1P.

(iv) ¢;1: Dp+H has the form,

¢él(o) = fpcfél, for each oeDy.

Prooi: (i) This follows immediateiy from the fact

T is a group.

(11) We need only show fp is a homomorphism,

and clearly

1172

1.2
p(P ) = T, = fp(rl)fp(rz).

£,(P P °) = f

(iii) Let ost. Then we have

T.7T
1Ty TP(P 1 2)0

(P ) =P > (A)

2, ~ ~~

2

€T,
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= (7 8 (9)

T4 T
pp 1 2

_ 8 = 8(0) 8(o
pep 1720 = (170 = G @

Combining (A) and (B),we obtain

1720 Tffc);fg(c) _

6(o) _8(0)
(P l2)9=0p -pl . p2

P

T T
5 1 2
) PTp(p )C-PTPCP N

!
~
)
et
Nt
Q
°
~~
=)
N

Hence oeknd -E?

(iv) Now ¢;1(c) = §(o) such that Téég) - T

ps®
But
fpof;I ER 150 £
(Tpg) - 5% P PS
- - .8(o)
T Tps



CHAPTER 5

Desarguesian Affine H-planes

In ‘KZ], this discussion was initiated without
the concept of a dilatation. We shall employ dilatations

and continue it in the fashion of Artin.

§5.1. Desarguesian affine H-planes

Definition (5.1.1), We define the following

axioms.
(A10). IfD_ < D_, 1 kN, then there exists SeH
e Ty T, 1

s
such that ) T T,

(A10) (P:£). For each collinear triple (PQR) such that

P4gQ and P¢R, there exists geD,, such that Q0 = R.

p

(A10) (P:8). For each collinear triple (PQR), PgQ,

PoR, there exists oeD, such that Q° = R,

P
(A10) (P). For each collinear triple (PQR) such that

P4Q, there exists oeD, such that 07 = R,

P

Notation: If (Al10)(P) is valid, let ¢ =

OEXNQ be the unique dilatation mapping P to P and Q to R.

- 98 -
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Comment (5.1.1). (Al10) is a generalization of

Artin's axiom 4b and (A10) (P) of Artin's axiom 4bP. \¢f.
[Az]] Klingenberg, in {K2] , defined (A10) without the
stipulation TI&N. However this is sufficient and, in

view of Corollary (1) to Theorem (4.2.5), quite natural.

Theorem (5.1.1). Let 2 be a M.D. plane. The

following are equivalent.

(1) (A10).
(2) (A10)(P) holds for every P.

(3) For each set {P, 0O, R, S|P#Q and there exist m,

R, SIm,such that m|{ PQ} there exists oeD such that

———— —— e

P = R and Q° = s,

(4) There existgPO such that for each set

{P,, 0, R, SlPoéQ and there exists m; R, SIm,such

Ebﬁf,m‘(PQ}i there exists$ oeD such that PY = R

thar Py

and Q° = s.

Proof: (1)=3»(2). Take (PQR) such that PgQ.
Define Ty = TPQ and T, = Tpp- Thus T1€N. Since P, Q

and R are collinear, D_ = D_ . (A10) then implies
' 2

there exists 8§eH such that Ti = T,. From Theorem
T
PS

(4.2.5), let o o(8). Hence oeDP and S = P Thus

TG T(S
°=pPopl.p?.p,
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(2)==(3). Select {P, Q, R, S} such that P¢Q

and there exists mj R, SIm,such that mil PQ. Define
-1

t—3 T E~4
T TpRr and S T. Hence

-1 -1
(T = ST 3JII{L(RY , m) = L(P, m)

2}.

t¢. This is

Thus there exists o = O[PQf]. Define

our desired dilatation since

[

PO'

[}
J
-
Q
tt
7~
o
Q
~—
Y
it
o
~
]
<

al

(3)==(4). Obvious.

(4)==>(1). Let D_ & D_ such that t,4N. Let
S i3 Ty 1
T, = TPOTl and 1, = TPOTZ by (A9). Thus P gT. Since

. .
DTl-* DTZ’ we have TZIPOTI' By (A10)(P), there exists
o = OI?OTngl' Define 6 = ¢;1(0); thus o = a(38)s

0

cf. Theorem (4.2.5). Then clearly we have
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Corollary. (A10)(P:o) holds iff D_ i D
__— 1 2

such that TiéN, T2€N implies there exists §e¢ TU such

- $
that ©; = 1,.

Proof: The results follows from Corollary (4)

of Theorem (4.2.5) and the above theorem,

Definition (5.1.2). Let &2 be a M.D. plane.

&€ is called a Desarguesian plane or D-plane iff one

of the conditions of Theorem (5.1.1) holds.

Lemma (5.1.1). Let & be a D-plane. Then

¢: D»D is onto and D/6 = D. [cf. Theorem (3.2.3)].
¢

Proof: Let 6eD. If & = 05 for some P, then

¢(Op) = 05. Hence we may assume & is non-degenerate.

——

-~ — Rand el - 6
Choose Pl, P2 such that P1 # PZ. Let (Pi) = Qi;

i =1, 2. Since 8eD*, Q; # O, and P,P,ll §,0,. By
Lemma (1.2.7)(3), there exist my, My, mlozl,

such that ml” m, . Thus there exist Xl, XZ; Xl’ XZIml’

mzoﬂ,2

such that XloP and XzoPZ. Hence X1¢X2. Also there
exist Yl’
Now consider {Xl’ Xy, Y

YZ; Yl’ Y21m2 such that Ylle and YZOOZ.

10 YZ}. Clearly X ¢X, and

Y;, Y,Im, such that m2[[X1X2.

By condition (3) of Theorem (5.1.1), there

exists o€ such that X% = Y

1 and X% = Y,. We next show

1
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y = g = \ P E; = Y. 6 ::—_.8‘ = 2 = 3 ¢« 3 =
Hence the result follows from Theorem (3.1.1). The last

statement is a consequence of Theorem (3.2.3).

Corollary.

¢Dp: DP*DP is surjective

and
s -
Dp/Grﬁ(Dprp) = Dp.

The next result, was proved by in [Li} for Desarguesian

JCT,@) structures. We will present a proof in our

context,

Theorem (5.1.2). Let ¢ be a M.D. plane

with (A10)(P:0). The following conditions are equivalent.

(1) €  is unifornm.
(2) M5 = {0,} for each P.
3) T = (o).

Proof: From Theorem (4.2.5), it follows that

. (2) and (3) are equivalent. From Theorem (3.1.7),
(1)==§(2). It remains only to show (2)==>(1). Let

Q,Ig,, %,; g,0%,, PIg,; and PoQ,. We must prove PIg,.
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By the Corcllary of Lemma (1.1.14), there exists

Agl such that AgléAgz, Agz, and PIgl. Thus P = g1~ 8

and S = 28102, exists. Choose Pngz such that P¢P2;
define g, = L(P,, 2,). Then A21¢A22 and so Q; = £~ g;.

Select P P,Ig, such that P;gP. Since 2,08, and £i¢g2;

1’
i =1, 2,then by (A7), 2;0g,. Thus g;dg, implies
g1¢£1. However, g1¢g2; 2108455 PIgy, 855 and'QlIll, gy
imply  Po0; by (A6). Let o, = ci[ppio.l‘]; i=1, 2

which exist by (A10)(P:0). Moreover oieM by Corollary

p’
(1) of Theorem (3.1.2). Hence by (2), 0,0, = 0P and

thus

0,0 6, © o,
_ 271 _ 1,72 _ 2 =

Dembowski, in {Dﬂ , remarks that *is Desarg-
uesian iff H is transitive on TA for each A, The following
remark shows this is a hasty generalization of Artin's

axiom 4b, which is exactly what Dembowski quoted.

Remark (5.1.1). Let Bﬂ be a M.D. plane.

The following are equivalent:
(1) 2? is an ordinary Desarfguesian affine plane.

(2) H is transitive on TA for each A,
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Proof: (1)==(2). This follows immediately

from Theorem (5.1.1).

(2)=>(1). It is enough to show N = {i}.

Suppose there exists TeN, T #i.

Choose TléN such that DT C DT . Hence TicTA; i=1, 2,

1 2
for some A, (2) then implies therelexists 8eH such
8 § 16 '

that T, = Tq. But then Ty = T2€N & N, by Corollary (3)

of Theorem (4.2.5). Contradiction. //

The next result is, in a sense, a converse of

Theorem (3.1.5).

Theorem (5.1.2). Let & be anaffine H-plane

with (A10)(P:0). Then if S; # S,, S;0S,, there exist

: o o
P and oeMp, © # Op, such that Sy = SZ‘

Proof: Choose g such that S SZIg. Take P such

l’
that PgX for each XIg. Define h = PS; and f = PS,. New hof,

otherwise PIh, f; Sllh; SZIf; and Slos2 imply

PoS

there exists R, R # P, such that RIh, f. By definition,

1> S2 by (A6). Contradiction. Now hof implies

PoR. Thus by (A10)(P:0), there exists o = o[PS;R}jeMp.
o # 0p since P # R.

Claim. S5 = R. Define g = L(R, g).

By the choice of P, hdg. Hence ggh by (A7) and so



g#f. Thus R = ga f. But oeM, implies

P

SSI{L(ST, &) = L(R, g) = g}iL(p, §) = £}

R. //

c
Hence S2

The following two corollaries were proved in

(Xil where ée was a M.D. plane with (AIO).,

Corollary fké]. For each t # i1, teN, there
)

exists 8e (s § # 0, such that 1° = i, lf&o i

n
| &

|

M.D. plane with (A10)(P:0).

Proof: Let 1 # i; where 1eN. Choose any

pointSland put S, = SI.’Then T#F i, 1 = TSISZEN

implies §,08, and §; # S,. By the theorem there exist

0 _ O
P and‘c, ceMP;such_that Sl =S,
§ = ¢§l(o) and hence o = o(8). Thus & # 0, since

and o # Op. Put

o # OP‘ Then

TgS=To=To=TgS=(TPS'TSS)6
1 PSl PS2 2 1 Yiv2
S 8
T P B
PS1 SISZ
) ) .
Hence 1 = 1T = 1,

Corollary (2). [kz] . I£¥ is a M.D. plane

105
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with (A10)(P:0), then |{ = Dy [pf. Definition (Z.Z.Ii].

Proof: 1In any riﬁg, D, C T . We show the
converse. Let 6e fl . By Corollary (5) of Theoren
(4.2.5), there exists Téj{ , T#i,such that TG = i,
Select TEN such that Dv &D_. Then by the Corollary to
Theorem (5.1.1), there exists peH such that ¥6= T.

Then since T¢N,

implies 6P = 0 by Corollary (2) to Theorem (4.2.5).
Hence &eD, . Now ¥5€N69E N by Corollary (3) of Theorem
(4.2.5). Moreoverv“{5 # i, in view of Corollary (1) to
Theorem (4.2.5). By Corollary (1), there exists Ee Il
& # 0 such that i = (¥G)E = ?gé. Hence £6 = 0 and so
§eD_.  Thus éeD _n D_ = D. //

It would be nice to know whether or not the
various systems of axioms are independent. For ordinary
affine planes we know A(10) (P) implies (A9) but (A10)
does not. I tried to show (Al10)(P) implies (A9), but
I had to assume T = ?. However, for J(T, @) type

planes, this result is meaningless in view of the

Corollary to Theorem (4.1.2).

Remark (5.1.2). The foilowing are equivalent.
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(1) Every line & has three points Sl’ 52’ SS such that
SI¢SZ¢SS¢51.
(2) There exists £ with three points Sl’ SZ’ S3 such

that 51¢SZ¢S3¢SI.

Proof: This is an immediate consequence of

Lemma (1.2.2).

Remark (5.1.3). If T ='¥, then T is a group.

Proof: From Comment (3.1.1), it suffices

at
to show T is closed under composition. Let Ty, ToeT = T.

T2 Til
If T;T, has a fixed point P then P = P

Theorem (3.2.1), 1, = ril or 1,7; = i. Thus 7,7,€T.

Hence by

Theorem (5.1.3). Let & ©be an affine H-plane

with T = T. Also there exist 2, and S., S

10 Sy 5311 such
that S,85,85.4S;. Then (A10)(P) implies ® 1is a

M.D. plane.

Proof: By Remark (5.1.3), T is a group.
It suffices to prove (A9) for PgQ. For it PoQ, choose

R, RgP, Q. Then since T is a group, TPQ = TPR.TRQ.

Now let g = PQ. Let Rig such that RgPgQgR.

By (A10) (R), there exists 01 = o(?Pd] eDﬁ.

Now choose T such that TgX for each XIg. Let

T =S; 2 =PT and h = RT, Then S I{L(R, RT) = h}.
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Define j = L(T, g) and k = L(Q, 2). By the choice of
T, j # g, gé2 and so Ag¢A2. Hence Aj¢Ak. Let M = ja k.
Since PgT and oleD*, it follows by Corollary (2) to
Theorem (3.1.2) that PolﬁTol, or equivalently, QgS.

Let a = TQ.

Claims. (a) adg, 2, k.
(b) T¢M.
(a) From the choice of T, adg. If aof, then agg;
PI%, g; and QIa, g implies PoQ by (A6). Contradiction.
Since k|| &, agk follows from (A7).

(b) Suppose ToM. Then agk; T, OIa; and M, QIk imply

QoT, by (A5). Contradiction.

o [osM] by (A10)(0). Define

Now define o,

Q. We need only show GeT.

c
0 = 0,0;. Clearly P

Suppose there exists X such that X% = X,

Claimg, (a) If X, PIr, then XIg.
(b) If X, TIn, then XIj.
(a) Let X, PIr. Then XOIL(PU, r),or.eduivalently,
XIL(O, r). Then XIr, L(Q, r) implies r = L(Q, r).
‘Since PgQ, r = PQ and so Xlg.

(b) The proof is the same as (a) using the facts that

T = M and TgM.
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Hence XIg, j. But ¢ # j and g} j. Contradiction.

LY
Hence o0 T.



5.2. Coordinates in Desarguesian Affine H-planes

We shall assume & is Desarguesian throughout
this section. KXlingenberg coordinatized the plane in
[Ki}, generalizing the methods of Artin. We shall
introduce coordinates for lines and divide the lines
into two kinds. We shall then study the interaction of
the two line kinds and this will motivate us in our
construction of an analytic model of a Desarguesian affine

H-plane.

Theorem (5.2.1). [K2] Let AjdA,. Let 1.eT, n @N;
1

i=1, 2. Then for each 1eT there exist 8§, BeH such

§_B.
T1T,-

that v =

Proof: Take teT. By (2) of Theorem (4.2.2),

there exists a unique representation of 1t such that

T =Ty T,, TieTAi; i=1, 2.

Now DTiSi D% . and 11¢N. Hence by (A10) and

Corollary (2) to Theorem (4.2.5), there exists a unique

S. 61 62
GicH such that = Ty 1, 2. Hence 1 = T T,

o
i
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is a unique representation,. //

The next result is never stated explicitly in
(XZ], but seems to be unconsciously employed, as in

Theorem (5.2.2).

Lemma (5.2.1). Let t, and 1, be gg in Theorem

1 2
(5.2.1). Let 7t = Tgrg, be the unique representation of
1. The following are equivalent.

(1) TéN.
(2) at T or 8¢ T

Proof: (1)==>(2). Suppose o, Be (L . Thus

| T = TgrgeN.N & N by Corollary (3) of Theorem (4.2.5).

Contradiction.

(2)=%${1). Suppose teN. Without loss
| - -1
of generality,assume afT| . Define ¥ = t® . Then

T=n - = (T?Tg)a'l = Tng-lsn (Ij
But T = 1~ €N~ & N, by Coroliary (3) of Theorem (4.2.5).
Choose 744N such that DT3¢5 Dr. By (A10), there exists
8eH such that Tg = T. Since T4¢N and ?éN, it follows
that 8¢ TU by Corollary (4) of Theorem (4.2.5). Now
T = D, by Corollary (2) of Theorem (5.1.2). Hence

6eD, and so there exists z # 0, zeH such that
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z6

#

0 (11)

By Theorem (5.2.1), there exist unique x, yeH such

that Ty = T?Tg. Then we obtain from (I)
lo B _w~ & _ x_y 8 _ _fx_ Sy
TiT, =T = Ty = (TlT ) 17 (I11I1)

From (III), since 1t has a unique representation, we have

édx = 1. Combining this with (II1) we obtain
0 = 286 = (z8)x = z(6x) = z.1 = z.
Contradiction.

Introduction of Coordinates,

Let {0, X, Y} be choosen as in (A2). Define
Ty = Tox and T, = Ty Let Al = AOX and AZ = AOY'.
Since 0¢X, 04Y and 0Xa 0Y = 0, we have Ti¢N; i=1, 2

b

and A1¢A2. We then apply Theorem (5.2.1). Let P be

any point. Then Top = r?rg such that a and B are unique.

We associate P with (a,B), Conversely if a, BeH, define

f
.T = T?Tg and P = 0°. Then Top = T F T?Tg and hence

P is associated with (a,B).

Definition (5.2.1). ‘For every point P, the elements
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obtained above are called its coordinates. {0, X, Y}

is called a coordinate system. O0X is the X-axis and

0Y is the Y-axis. For convenience, we write P = (a,B).

Throughout this section {0, X, Y} is a fixed
coordinate system. Clearly 0 = (0, 0), X = (1, 0)
and Y = (0, 1).

In view of the remark preceding Lemma (5.2.1),
we shall include a proof of the following theorem.

Our proof is more direct than Klingenberg's.

Theorem (5.2.2). (K2) Let P = (§, B) and Q =

(o, ¥). The following are equivalent.
(1) PoqQ.
(2) 6 - a, B - ye TU .

Proof: (1)==>(2). Let PoQ. Select a

Tl-tracelthrough P and a Tz-tracemthrough Q. Since

A1¢A2, A gh . and hence there exists R = 2am. Then

T T

(PP 1R) and (QQ 2R) are both collinear triplés. Now

g¢m; R, PI%; R, QIm; and PoQ imply RoP, Q by (A6).

1 -0

N -1 _ -B
Thus TQR, TRPeN. Now TQO = (TOQ) =TT,

and Top =

(oS JRon]

Also TOPEN since PoQ. Hence

8-

= = a B'Y
Tgp * TqoTop = T1 Ty 'eN.
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By Lemma (5.2.1), 8§ - a, B - Ye T
(2)=f>(1). Assume § - o, B - ye TL . Then

oo © TiaTéy and 14, = Tff% as in (1)=3»(2). Since

§ - o, B - vel(l , then Ti e, Tg-YEN by Corollary (3)

of Theorem (4.2.5).

Hence we obtain?

T = Top T TooTop T (14 Y)(Tsz)

Hence 0QoP. //

Again in the next theorem we give a slightly more

direct proof.

Theorem (5.2.3). [Kil Let & be any line and

P = (c, d)I2. Choose 1 = TlrgeN such that ¢ is a

1- trace through P. Then £ = {(ta +c, tb + d)|teH}.

Proof. Let QIf. Thus DT < DT and T%N. Hence

PQ
there exists teH such that Tt = TPQ. Thus
_ _ ta_tb ta+c tb+d
TOQ = TOPTPQ = (T 12)(1 T, ) = T, .
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Hence Q‘= (ta + ¢, tb + 4d).

Conversely,let Q = (ta + <, tb + d)., Then
TPQ = TPOTOQ. Thus

. - ta+C th+dy _ _ta_tb _ a
Tpg = (1505 (o] T, ) =TT, (T1T2)

Now since % is a t-trace, £ is a Tt—trage and hence

{PTt =
= Q}Ig.

Definition (5.2.2). If & is any line and 1 =

T?TgsN has ¢ as a t-trace through P, where P = (c, d), then

{(ta + c, tb +a)|teH} is the unique line through P

with direction v, and we call it 2(t, P).

Remark (5.2.1). If P= (a, b) and Q = (c, d)

such that‘P¢Q, then PQ = ¢(t, P) such that Ti Tz = T.

Proof: Pg0) implies a - c €T or b - dg T
Hence by Lemma (5.2.1), t¢N. Then 2(t, P) defines a
line containing P and Q, by Theorem (5.2.3). Since

PQ, PQ = (1, P).

Definition (5.2.3). 2 is called a line of the

first kind iff ¢ = [m, ﬂ]I = {(tm + n, t)|teH and me TU}.

£ 1is called a line gg the second kind iff

(m, n]II = {(t, tm + n)|teH}.
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Theorem (5.2.4). For every line 2 therc exists

m, neH such that £ = [m, n]I or [m, n]H. Converseiy

given m, neH, there exists a line % such that £ = [.m, n}I '

or ¢ = [m, n]n.

Proof: Let £ = 2(t, P) such that t = T?T}Z)%N
and P = (¢, d). Since 14N, a¢ Tl or b¢ T by Lemma (5.2.1).
If a¢ T , then £ = [a'lb, qd -4da-1b]I- If ae TU ,
then be T{ and so b'laeHTL & TU . Therefore & -‘Qb a,C- db~ la]I.v

Now choose m, neH. If me TL , define P =. (0, n)
and 1 = T%T?. T¢N since 1¢ TU by Lemma (5.2.1). Hence
g(t, P) = [m, n};;. If me Tl , define P = (0, n) and

T =T Th. Consequently &(P, t) = (m, n]rp- Also if

ax m 1 ~
Q = (n, 0) and T = 7;7,, then £(Q, T) = (m, n']I.

Coroliary (1). If & is a line through 0, then

L = [m, O]I or f_m, 'OIH.

Corollary (2). If tv = 1571, such that a¢ T(

then 2(X, 1) = Ea b, - a b]II' particular
= (o, O]H If aeTU , then 2(X, 1) = Lb7'a, 1] ,.

3

Corollary (3). If 1= 137b and a¢ Tl , then
p(Y, 1) = [a’1b, 12]1,1. If ae TU ,then 2(Y, T) =

[b'la', -b71a) 1. In particular, 0Y = [o, O]I.

Theorem (5.2.5). [Kg If a, be TL , then

aecbH or beaH.
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Proof: Let P = (a, b). Hence there exists
X such that P, 0I%. By Corollary (1) of Theorem (5.2.4),

2 = [m, 0]; or [m, 0];; and our result then follows.

Notation. [m, ﬁl refers to an arbitrary line

whose kind is not stipulated.

Theorem (5.2.6). The following are true.
(1) [m, iIIA (u, VJII = ((vm + n)(1 - um)'l, (nu + v)

'(l-mm'H._&ﬂﬁ[ﬁ,ﬂIﬂp,ﬂllgg(%xﬂlnb,ﬂll
7 B. |

(2) If (m, n] a lu, vl = 9, then [m, n} and [u, v] are

of the same kind and m - ue [

Proof: (1) By definition, me Il . Hence
umeH T & T and mu £ TUHS T . Since H-is local,
1 - ume T0 and 1 - mu¢ TU by Theorem (2.2.2). Let
P = (x, y). Then ' ‘

PI(m, n aQu, ﬁlII

I

and y = xu + v
= vm +nand Y(1 - mn) = nu + v
1

X= (vm + n)(l - un) ! and ¥ = (nu + v)(1 - mn) t.

(2). By (1), the lines must be of the
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same kind. If both are of the first kind then m, ne [{
Hence m - ugll . If we have [m, nj;; and @, V]II, and
m - u &T( , define

x=(v-n)(m-u)'1éndy:xm+n.

Then P = (x, y)I En, n]II" [u, V]II. lContradiction.

Theorem (5.2.7). The following are equivalent.

(1) lﬁn, n}II"[u’ V]II ‘4= 1.
(2) m - ugM .

Proof: (1)==(2). Levt P= (&, b)) = [m, n]II '\LU,V]II.

Then b is the unique solution of the equation

x(m - u) =v - n. (1)

If m - ue W\ , then since Tl = Dy, there exists ty # 0

such that to(m - n) = 0. Define y = b + tys

f # b since t, # 0. Then we obtain
g(m—u)=b(mA-u)+t0(m-u)A=v‘-n+0=v-n.

Hence b #7bis a solution of (I). Contradiction.

(2)=»(1). Letm - u¢TU . Then we
have P = (x, y)I[m, n]II A[u, V]II iff x(m - u) =v - n



119

iff x = (v - n)(m - u)-l. Then it follows that

[m, n}II,\[_u, V]II = ((v - n)(m - u)'l, (v - n)(m - u)'lm + n).

Corollary. If [m, n_-lII'\ [_u, V]II # 0, then

[m, n]no@, V]H iff m - ue [{ .

Theorem (5.2.8). The following are equivalent.

(1) [m, n]o(_u, v].

(2) [m, n] and Tu, v] are of the same kind and m - u,

n - ve [{

Proof: (1)=%§(2). By (1) of Theorem (5.2.6),

both lines are of the same kind.

Case (1): Both lines are of the second kind.
Hence by Theorem (5.2.7), m - ue (L . We must show
n-ve{l . NowP = (0, n)Im, n]II‘ Hence there
exists Q = (&, 'b)IEu, v] I such that QoP,or equivalently,
b =au + vandn -%b, ae ({ . Hence au £l H €T
Thus

n-b=n-3au-vs=(n-v) - aue ((

Hence n - ve 'R .

Case (2): Both lines are of the first kind.
By definition m, ue {{ . Hence m - ue ({ . We show
n - ve (L in the same fashion as we did for Case (1),

utilizing the point (n, 0)I(m, n]I.
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(2)==)(1). Consider the case where both lines
are of the second kind. Let P = (&, b)I En, n']n and
so b = am + n. Define x = (n - v) +ﬂandy=xu+v.

Clearly Q = (x, u)Ifu, v],,. We must show QoP. Now
11

n - ve ({

>
'
o
]

and

am+n-[{(n-v)+a}u+v}

ot
'

<
]

&2m + n - (n - v)u - du - v

a(m - u) + (n - v)(1 - u)
eHTM + TMHE M+ e W

Thus PoQ. Similarly for each 0I{u, V]II’ there exists
PI[m, n];y such that PoQ. Hence [u, V]IIof_m, n)qg-

A similar argument works for lines of the first kind.

Corollary (1). If [m, n]IA (u, v]I# #, then

[m, n}Io[u, V]I‘

Proof: By definition, m, ue U and hence

m - ue (¢ . Now by our assumption there exists P,

P = (a, b)Tm, nlI “[u, V]I. Then
8 =Dbm + n = bu + v.
Thus we obtain

v -n=%m - uw)eH TS T
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Corollary (2).

| Cns n]ya o, V]Il X

\[m, nj (u, VII\ > 1.

Proof: This follows immediately from Corollary (1)
and (A3).

Corollary (3). The following are equivalent.

(1) \ [m, xﬂ A [u, vﬁ} =1,

(2) [m, n} and {u, v] are of the second kind and m - ut™

or the lines are of different kinds.

Proof: This is an immediate consequence of

Corollary (2), Theorem (5.2.6) (1) and Theorem (5.2.7).

Corollary (4). 1If both lines [m, n} and Qu, vl

are of the same kind and m - ue {{ , then |(m, n] . fu, v]| =0

or |[m, n}Afn, v]| > 1.

Proof: This follows from Corollaries (2) and

(3).

Corollary (5). ‘{m, n] is a line of the second
kind iff A

[m,@éAéY'

Proof: By Corollary (3)

A fm ’ n] ¢AnY
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Y

’ [m, n] 4 (o, O]I( =1

[m, n] is of the second kind.

(1) [n,
(2) (n,

Theorem (5.2.9). The folléwing are equivalent.
nj H fu, v}.

n] and [u, \a are of the same kind and m = u.

Proof: From Lemma (1.1.3) and Theorem (5.2.6)

the lines must be of the same kind. Suppose both are

. 3 _ 1.1 _L~u.l
of the first kind. Let Tm = Tr{ (2 and Tu =TT, be

172

the directions of [m, n] and {u, v'l respectively.

By Lemma (5.2.1), Ty rmsN. Thus

there exists teHH such that TE =

(ul)t__: m 1
Tl"z/ﬂ\ 1172
tu tv m1

Tl TZ = Tsz-

By Theorem (5.2.1), this is equivalent to

tu

n <@3

=

[}
=3
[a W
ﬂ
]
—
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A similar argument holds for lines of the second kind.



§5.3. The Analytic Model of an Affine.H-plane

Let us first give the following definition.

Definition (5.3.1). [K1] H is a projective

Hjelmslev ring or H-ring iff H has the following

properties.

(1) H is a local ring with a maximal ideal {( .
(2) T = D,.

(3) If a, be {{ , then aebH or beaH.

(4) If a, be 71 , then aeHb or bsHa.

Klingenberg actually called this an H-ring.
He then constrdcted the analytic model of a projective

H-plane in the fellowing fashion.
P(H) = <<%> ,é& , I> where
‘P(xo,xl,xz)gxP iff P(xo,xl,x2)={(sx0,sx1,sxz)lscH},
such that at least one xi¢71 , i=0,1, 2.
‘ﬂ[po,ul,uileii iff R[po,ul,uilﬂ{(uot,ult,uzt)lteﬂ}.

- 124 -
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such that at least one of the ui%7T , and P(X,, X, X,)
Iz[uo, ug, ué] iff'izo xzuy = 0. For each z[ho, ug, uzj,
P(H) () is an affine H-plane by Theorem (1.3.2). Define
P(H)(2) = A(H: ).

Dembowski states in [Di}, on page 299, that given
a projective H-ring, Klingenberg constructed an affine

H-plane A(H), and then embedded it in P(H) such that
A(H) ¥ A(H: &) for &, a line of P(H). '

However in [Kﬂ and [Kﬂ , Klingenberg constructs
P(H) and then considersA(H: 2), when H, in fact, is
assumed to be commutative. In [Kil, Section 5.3, page
20-21, he refers to the construction A(H:'z) again,

He does not construct A(H) directly.

I shall now proceed to construct A(H) over a
non-commutative ring which has properties (1), (2) and
(3) buf not property (4). One could not construct
P(H) over this type of ring as it is property (4) which

allows one to prove axiom (P2) of a projective H-plane.

Definition (5.3.2). H is called an affine

Hjelmslev ring or AH-ring iff the following conditions

are valid
(i) H is local with a maximal ideal JT .
(ii) T = D,

(iii) For every a, be 10 , aebH or beaH.
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Comment (5.3.1). Tf H is commutativé then clearly

H is projective-H-ring iff H is anA H -ring. However
if H is not commutative, it is not known if they are
still equivalent. If theyiwere, there would be no need

to construct A(H), directly as we could construct P(H)

and then A(H: 2&).

Lemma (5.3.1). Let H be an A H .ring. Thenb

1y 7T, =M. =T.

(2) b, = D_ = D,.

Proof: (1) This follows from Theorem (2.3.2)(2).
(2) D,&T. =Dy = Df“ D_& D, and so

Do - D+o

Similarly Dy = D_. //

Construction of the analytic model over H,

A(H) where H is EBA H -ring.
Define A(H) = <% , %, I,ll> as follows:
P - ((a, b)|a, beH.

L = £ I °i11

such that

Ly (@A)

s

me ({ and neH [

and
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‘in = {(m, r;_]II!m, neH},

where

[m, ﬁ]I = {(tm + n, t)|teH} such that meTT

and

[m, n]II = {(t, tm + n)|teH}.

131 is the set of lines of the first kind. ji'II is
the set of lines of the second kind. We write [m, ﬂ]eﬁi ,

for an arbitrary line.
P = (A4, L)ILED Peg.

In view of Theorem (5.2.9), we finally define
(m, nl\l (s, € iff both lines are of the same kind and

m= s,

Remark (5.3}1). Each line ¢ has the form

2 = {(ta + c, tb + d)|teH}, such that a¢Tl or bg TL.

Converéely each set of the above form is a line.

Proof: Obviously (m, ﬁ}I has b = 1 and [m, ﬁ]II

has a = 1., The converse is shown as in Theorem (5.2.4).

Remark (5.3.2). Let P = (a, b) and Q@ = (c, d).

Then P, QIQn, ﬂ]I iff n=a -bmand a - ¢ = (b - d)m

and P, QI[m, n]II iff n=b - amand b - d = (a - c)m,



128

Lemma (5.3.2). A(H) is an incidence structure

with parallelism satisfying (Al) and (A8).

Proof: The first part is obvious. Next we
show.

(Al). Let P = (a, b) and Q = (c, d).

Case (1): a - c§Tl or b - dé7i .
Then ¢ = {(t(a - ¢) + a, t(b - d) + b)|teH} is a line

containing both P and , by Remark (5.3.1).

Case (2): a - c, b - de{{ . From (iii) of
Definition (5.3.2), there exists my such that a - ¢ =

(b - d)m, or there exists m, such that b - d = (a - ¢)m,.

-1
1 Z

L4 ‘ - 1 ¢
am, if m;¢TU . Then P, QIle, ni}y; P, QI [ml , nilll’
or P, QI[mél, mZ]II’ by Remark (5.3.2).

Define n, =a - bml, ﬁl = b - am if mleTland n b -

Finally, we show

(A8). Let P = (&, b) and & = (m, ﬂll (Om, n}qp)-

Define t = [m, a - b} I(ﬁﬂ,b - &QJII)
= {m, 311(@“ ﬁ]11)'

Clearly, tll £ and PIt. Let T = Cu, v]\\z and PIt.

Hence u = m and & = bu + v (b = au + v). But a =

bm o+ T (b = am +‘K). Hence v = n and so t t.

Lemma (5.3.3), (1)[m, ﬁﬂl ~Lu, VlII = ((vm + n)

-
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(2) If [m, n] afu, v] = #, thenm - ue {L .
Proof: It is the same as that of Theorem (5.2.6).

Lemma (5.3.4), Let P = (a, b) and Q = (c, d).

The following are eqdivalent.
(1) PoqQ.
(2) a - ¢, b - de 1.

Proof: (1)=3 (2). Let PoQ. Hence there exist &ﬂﬂQ

2 # m, such that P, QI%, m. By Lemma (5.3.3), the lines
are of the same kind. Let 2 = {m, ﬁ]I and m = (s, €II’

By Remark (5.3.2) we obtain

(b - d)m

[+
]

(g]
i}

?

(b - d)s.

jab)
'
(@]
o

Hence (b - d)(m - s) = 0. Butm - s # 0, for otherwise
m = s and then 2‘\ m. By (A8), 2am = f. Contradiction.

Since by Lemma (5.3.1)(2), D, = DO’ we obtain

and

a-c=(b-dml{H&ET
Thus b - d, a - ceTz .

(2)=H(1). Let a - ¢, b - de Il . Since (Al) is
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valid by Lemma (5.3.2), there exists 2 = [m, n} such
that P, QIX%.

Case (1)t b - d = 0. Here we may assume £ =
[b, b]II' Since a - ceTl = Dy, there exists t #0
such that (a - c)t0 = (. Define h = [to, b - atd]II‘ Be -
cause t, # 0, h # 2 . It clearly follows from Remark

(5.3.2) that P, QIh. Hence PoqQ.

Case (2): b - d # 0. Suppose £ = [m, ﬁll.
Thus

n=a->bmand a - ¢ = (b - d)m . (1)

by Remark (5.3.2). Now b - de [ = Dy. implies there

exists t, # 0 such that (b - d)t0 = 0, Since b - d # 0,

and D_ = Dy =T\ by Lemma (5.3.1), we have tOETI .

Because £ = (m, d]i, we have me [{ and hence m + toeTl + 1
S TC . Thus we may define h = [m + tg, M - btd]I'

h # 2 since t; # 0. Also, by (1),

a - b(m + tO) = a - bm - bto =n - bt0
- and

(b - d)(m+ty) = (b-dm+ (b-dt,

= (b -dm+ 0= a - c.
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From Remark (5.3.2), P, QIh. Similarly, if & = [m, n]n

we may find h # 2, such that P, QIh. Hence PoQ{

Lemma (5.3.5). The following are equivalent.

) | m, A]qpa (o, "]11\ = 1.
(2) m - ug (] .

Proof: The proof is exactly the same as that

of Theorem (5.2.7).

Remark (5.3.3). P = @, b)e[m, n]I A Lu, V]I iff

the following conditions hold.

(i) a = bm + n

(ii) p(m - u) = v - n.

Lemma (5.3.6). If [m, n]I,\[p, v]I # P, then

}[m, njya [u, V]I\ > 1.

Proof: Let P = (a, p)I(m, n]I,\[u, vl;. By
Remark (5.3.3), @ =bm +n and b(m - u) = v - n. Since
both lines are of the first kind, m, ue {{ and som - ue "\ =
DO‘ Thus there exists ty # 0 such that to(m - u) =0,
Define §”= b o+ ty, and & =bm + n. Clearly b #% and

so (I, 5) # (@, b). Now

and
- w = (bt t)m - u)

=P - u) + ty(m - u) =bm - u) =v - n.
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Hence by Remark (5.3.3), (a, b)I[m, Y [u, v]l.
Thus {m, n}; A fu, v]; > 1.

Lemma (5.3.7). The following are equivalent.

(2) Both lines are of the same type and m - u, n - ve ({ .

Proof: Since Theorenms (5.2.2), (5.2.6) and
(5.2.7) are exactly the same as Lemmas (5.3.4), (5.3.3)
and (5.3.5) respectively, the proof of this Lemma is

the same as that of Theorem (5.2.8).

Lemma (5.3.8). Let & = {(ta + u, tb + v)|teH};
a¢TL or bgT{ ; and h = {(tc +u, td + v)[teH}; c¢TU or
b4 TU ; such that P = (u, v)I%, h. The following are

equivalent,

(1) 2¢h.

(2) There exists t*eH such that for each teH, t*a - tcqgT(
or t*b - td¢ T

OR
there exists tell such that for each teH, te - ta¢g T
or td - tbéT\ .

DI

Proof: This follows immediately from the

definition of fom and Lemma (5.3.4).

e

—— ey mpany

Lemma (5.3.9). Let P, 2 and h be chosen as in

Lemma (5.3.3). The following are equivalent.
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(1) P = ¢ A h.
(2) 2¢nm,

Proof: (1)=>(2).. Let P = &a hs £=[mn7, hzlr,s],

Ry Lemma (5.3.7) it is sufficient to show the lines are of
different kinds or m - v¢T{ . If the lines.are of the
first kind, then [f2a h| > 1 by Lemma (5.3.6). Contra-
diction. Hence we may assume £ = _m, n);; and h = [t, 5]11.

The result then follows from Lemma  (5.3.5).

(2)=£%(1). Let 24m. Without loss of
generality we may assume, by Lemma (5.3.8),there exists

t*eH such that for each teH
t*a - tcd TU or t*b - tb - tdé¢TL . (1)

We must show 2am = P. Let QI%, m.

Thus

Q= (tla U, tlb +V) = (tzc +u, tzd +V),

and so
| tla' = t,c and t;b = t,d. (I1)

Claim. "tl = 0. Withoﬁt loss of generality
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let c¢{{ . Then from (I), t, = tlac'l and so
. ac 'd
From (III), we obtain
t (b - ac'ld) = O,where t; # 0. (1V)

Hence by (IV), b - ac'ldsD_ =D =({ . Therefore

t* (b - ac'ld) = t*b - (t*'ac'l)deHTZ < T . (V)

1

Hence by (I), t*a - (t*ac ~)c = t*a - t*a = OéYZ .

Contradiction.

Thus t, = 0, and so Q = (u, v) = P,

Theorem (5.3.1). A(H) ii an affine H-plane.

Proof: We invoke Theorem (1.2.5). Now A(H)

satisfies (Al), and (A8) from Lemma (5.3.2). From

Lemma (5:3.9), A(H) satisfies (A4). Since H is a

local ring, H/my 1is a division ring by Theorem (2.2.3)(3).
Then ii is Yvell known that A(H/TU ) = <’4§ ,i , I>

where qp = {(a +T, b’+71 |a, beH}; the lines jl are
of the form ET({ n +7i1 I and [m +fl , n +'ﬂ] I1 and
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incidence is inclusion, is an ordinary affine plane.

(cf. (az]).

Define x: A(H}§A(H/W1 ) by

x(a, b) = (a +TU, b +T{) and x({m, 1])

= [m+T, n W] .

X 1s clearly an epimorphism. Also.by Lemma
(5.3.4), x((a, b)) = x((c, d)) iff (a +TL , b +T )
= (c+TM ,d+T ) iffa-c, b-deTl iff PoQ.
From Lemma (5.3.7), x(m, nJ) = x(f, v]) iff En +T1 ,
n + 1] =£u+TLA ,V+TL] iff m - u, n-veﬂ and
[m, n] and {u, v] are of the same kind iff [m, n] ofu, V] .

Finally if [m, n]n[u, V] = p, then by Lemma (5.3.3)(2),
m - ue [{ or equivalently m+T{ =u + L. Hence

{x([m, n]) = m +TW , n +'T7.1}“ {[u s, v + T

= x(u, v)}

Theorem (5.3.2). The following are equivalent.
(1) o is a dilatation of A(H).

(2) There exists C = (¢, d) and aeH such that

(x, ) = (ax + ¢, ay +4d),
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Proof: We first show every map of the form
(x, y)U = (ax +¢, ay +d, is a dilatation. Choose

£ = [m, ﬁ]I and let (x, y), (S, t)I[m, n]I.
Claim. (s, ©)°IL((x, )7, [m, 8} ).

From the proof of Lemma (5.3.2), we obtain

L(x, Y9, G, 1)) = [m, (ax +¢) - (ay + ddm] |

- [, 5],

Since (s, t)° = (as + ¢, at + d) it suffices to show
as + ¢ = (at + d)m + 7.

But

(at + d)m + X = atm + dm + ax + ¢ - aym - dm

a (t - y)m + ax + ¢

a(s - x) + ax +¢

o

as + €,

u

The same argument holds for [m, nj,,.
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Conversely, we show every dilatation o¢ is of this

form. Let (0, 0)% = (¢, d) = C.(0, 0)(1, 0) = [0, 0];;-

Claim, (1, 0)o = (u,d) for some ueH. Since ¢ is
a dilatation, (1, 0)°I{L((¢,d), (o, 0] p) = [0, d} g}

Let (1, 0)0 = (u, v). Hencé v =20.u-=+d=4d,
Now define a = u - ¢. Then the map ¥ defined by

~
(x, Y)o = (ax + ¢, ay +d) is a dilatation. Now

n [d

(0, 0% =cand (1, 009 = (a +¢,d) = (u, 4).

Since (0, 0)é¢(1, 0), it follows that =0 , by Theoren
(3.1.1). '

Notation. o(a, C) is the dilatation defined by
(x, y)o(a,C) = (ax + ¢, ay + d), where C = (¢ , d).

Also we write, in general,
X +Y = (x1’ xz) + (yl’ )’2) = (xl Y X + }’2)

and aX = a(x, y) = (ax, ay).

Theorem (5.3.3). Let o = o(a, C). Then

(1) o is ‘non-degenerate iff at Tl

(2) o has a unique fixed point iff 1 - afTl .

Proof: (1) Let adTl . Then clearly ot =

1

o(a” -, C). Conversely, suppose ¢ is non-degenerate.

Then there exists o + such that o ! = o(b, D). Let



Let D = (p, q). Now 616 = i. Thus

-1 ) -1
(0, 0) = (0, 0)° % = (¢,d) ¢

=(bc+p,bd+§L

Hence bc + p = 0 and bd + 4 = 0. (1)
Then

(1, 0) = (1, )% °° = (a«+c,d)°

(b(a +¢) + p, bd + q)

(ba + bc + p, bd + q).

By (I), this is equal to (ba, 0). -Hence
1. Thus a¢ TU _ = (L by Lemma (5.3.1)(1).

ba

1

(2) Let 1 - agT| . Define P = (1 - a) "C.

Then

1

<
Q
n

a(l - a) lc+c= (a1 - 3371 + 1)C

(a(1 -a) s+ (1-a)a - a)he

(1 - a) lc = p.

P is unique since if Q = (X, y) is any fixed point of
then x = ax +¢ and y = ay + d. Hence we obtain since

1 -adT,x= (1 - a)-lc and y = (1 - a)'ld. Thus

138
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Conversely, assume o has a unique fixed point,

P = (xO, yo). Then the equations
(1 -a)x =c and (1 - a)y =d (1)

have (x;, y,) as their unique solution,

If1 - aef{ = Dy then there exists t5 # 0
such that (1 - a)tO = 0., Define ;0 =

+ t, and ;0 =

*o " %o
Yo * ty- Hence (%b, Yo) # (g, ¥g). Let P = (x4, ¥q)-

Now
(1 -a)xy=(1-a)xy+ (1-a)ty=(l-a)x,=c.
(1-a)yg=(1-ayy+ (1-a)tg=(1=aly,=d.

~ ) .
Hence P is another solution of (I). Contradiction.

Thus 1 - a¢ ] .

Theorem (5.3.4). Let o = o(a, C).

(1) If o is a quasi-translation, then 1 - ae {{ .

(2) Ljﬁl'-.as_rl and C40, then ¢ is a quasi-translation,

Proof: (1) This follows immediately from
Theorem (5.3.3)(2).

(2) Suppose o has a fixed point P =
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(x, y). Then

~
n

ax +C and y = ay +d.
Hence since 1 - aeTl,

(1 - a)x =ce NMH&ETL and (1-a)y’=a€“}1&"ﬂ

Hence Co0. Contradiction. //

The next theorem was proved in [Kil for A(H: £).

The proof for A(H) is naturally the same.

Theorem (5.3.5). T is a translation iff

there exists C = (¢, 4) such that (x, y)T = (x, y) +
(c, d). |

Notation. 1(C) is the translation, (x, y)-r =

(x, y) + C.

Corollary. A(H) is a minor Desarguesian plane.

Hence T is an abelian transitive group.

We next give necessarily and sufficient condi-

tions for T = % in A(H).

Theorem (5.3.6). The following are equivalent

in A(H).
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~
(1) T =T.

2 1Tl = 1.

(3) H is a division ring.

(4) A(H) is an ordinary affine piane.

~ "’

Proof: (1)=%»(2). Since T = T, then T is

an abelian group by the Cofollary to Theorem (5.3.5).
Suppose | {{ | > 1. Then there exists a, a # 0,such
that aeT{ . Let b =1 - a, Hence 1 - b = ac ([ . Define
C = (1, 0). Clearly C40. Then by Theorem (5.3.4)(2),
o(b, C)s?. But T = T and so o(b, €C) = t(C). Hence

c

b

1l and so a = 0. Contradiction.
(2)==2(3). Obvious.

(3)==(4). This is a well known result.

[cf. [AZ]] .
(4)=>(1). This is also a result from faz] .

Comment (5.3.1). The above theorem is not true

for an arbitrary Desarguesian H-plane.

Proof: To see this take an A H -ring H such
that [T | > 1. We shall see presently that such
rings exist. Then A(H) is Désargucsian such that
T # T and not an ordinary affine plane by Theorem

(5.3.6). By Theorem (4.1.2), there exists J(T, I)
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such that A(H) ¥ J(T, T). Thus J(T, II) is a Desarguesian
H-plane but it is not an ordinary affine plane. But

by the Corollary to Theorem (4.1.2). T(J) = T®. 47

Klingenberg showed in EKZ], that A(H: &) was
Desarguesian; by proving his variation of axiom (Al0)
[cf. Comment (5.1.1)] . We next shall show A(H)

satisfies (A10)(0).

Theorem (5.3.7). A(H) is Desazguesiaﬁ.‘

Proof: We show A(H) satisfies (A10)(0).
Choose three collinear points O, (¢q dl) and (¢,, dz),
such that 0g(¢y, dl). Hence Cléﬂi or dl¢11 . Define

Te(ey, d3)s i =1, 2.

-1

Case (1): C1¢71 . Define a = ¢,¢ Let
o =o(a, 0). Then
c(a,0) _ ‘ -1
Tlc ) - (a(’l, adl) = (Czs €204 dj)' (1)

Now 0(cy, d,) = [ejldy, 0] 11. Then (c,, d)1 [cjtd), o] ;

implies dz = czcil dl' Hence from (I) we obtain

19{2> O . (c24) = Ty

Case (2): '(leTl and 41¢71 . Let a
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dzdil and define o = o(a, 0). Now 0(¢qy, dl) =
\:«li]él, -011’ since dilcleHTLC_-Tl . Since (¢,, d,)

-1, -1 :
I[Hl 1 d}I we have ¢, = dzdl ¢,y Hence as in Case (1),

2

o(a,0) _
Tl ks = TZ'

Therefore A(H) 1is Desarguesian.

We next state a result, shown in [Ké] for

A(H: %), which we shall use later.

Theorem (5.3.8). Let H be the ring of trace

[a%4
preserving endomorphisms of A(H), with U its unique

maximal ideal. Then

(1) SeH iff there exists  ceH such that

S

%(a, b) = t(ca, cb).

~

We write 8 = g(c), where 16(1, 0) = t(c, 0).
(2) 6(c)e TU iff ce TL.

(a4 n
(3) The map f: H-»H defined by f(8§(c)) = c¢ is a ring

isomorphism.

Corollary. The coordinate division ring of

A(H/7 ) is isomorphic to ﬁ/@i . 1/
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We end this section with the following résult,
mentioned in [D1], without the stipulation that H
be commutative and quoted as being a result from [KZ],

which it, in fact, is not.

Theorem (5.3.9). If H is a commutative A H -

ring then A(H) may be embedded into P (H).

Proof: Since H is commutativé, H is a projective
H-ring and P (H) can be constructed. Then 0 = (0, 0, 1),
E=(1,1,1), X= (1, 0, 0), X.= (0, 1, 0) and
XY = [0, 0, f] form a coordinate structure for P (H).
That is 0, E, X, Y satisfy axiom (P3). Then let
L = [b, 0, i]. We define

g: A(H)=A(H: 2)
by

g((a, b)) = (a, b, 1),

g({m, n]I) = (m, -1, n)

and

g([m, n]II) = [’1’ mn, II-J.



This is

whether
H-ring.

H-plane
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an isomorphism, and so our Theorem is proved.

Comment. As mentioned before it is not known
an A.H. ring is necessarily a projective-

that v
Thus we cannot say, cvery Desarguesian affine-

can be embedded in a projective-H-plane.



§5.4. Examples of H-rings and affine H-planes.

I. Let H = Z# /pn = integers modulo pn,
where p is a prime number. This is a projective H-

ring and hence A(H) is an Desarguesian affine H-plane.

IT. We exhibit a uniform Desarguesian affine

H-plane such that T # T. The example is from {Ll],

but we may show the fact that T # T in an easier
fashion using Theorem (5.3.6). The construction 1is

as follows,

Let D be a division ring. Then define H(D) =

{(a, b)|a, beD} with the following operations;
(al’ bl) + (aza bz) = (al + az, bl + b2)3
(al, bl)(az, bz) = (alaz, alb2 + blaz).

Then H(D) is an A.H. ring with TU= {(0, y)|yeD}. It
is in fact a projective H-ring. Clearly-‘r(2 =0

Thus from Se¢tion 5.3 and Theorem (5.1.2) A(H(D)) is a
uniform~Desafguesian H-plane. Since |TU ]| = |D],

")
A(H(D)) has T # T provided [D]| > 1. Finally H(D)

- 146 -
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is commutative iff D is commutative. We shall show

this as it is not mentioned in ‘Lf].
H(D) is commutative iff (a, b)(c, d) = (c, d)(a, b)

iff (ac, ad + bc) = (ca, cb + da)

iff ac ca and ad + bc = ¢cb + da for all a, b, c, deD

iff ac

ca for all a, beD,

III. The next example is due to Kleinfeld,

and found in (ﬁjl.
Let F be a field and accAut F
Let H(F) = {(a, b)|a, beF}.

Addition is defined as in Example (I). Multiplication
is (a, b)(c, d) = (ac, ad + bc%).
Then H(F) is a projective H-ring such that

'712 = 0. Moreover H(F) is commutative iff a = 1.

'IV. We exhibit a non-uniform Desarguesian

affine H-plane.

The example is found in [K1].

Let K be a field. K{x] is the ring of polynomials.
(x™) is the ideal generated by x™. Let K{xJ/(x") =
K(n). Let [ﬁln, where PeK[x] , represent an arbitrary

- ’ b — = n'l
member of K(n). Then 1] = D, {[ﬁlx +o..%a (X .]n}’
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such that ,Tln-l # 0 but 11? = 0. Thus for n > 2,
A(K(n)) is a non-uniform Desarguesian H-plane. Again
K(n) is in fact a projective H-ring, I can find no

A H -fing which is not a projective H-ring.



§5.5. The Fundamental Thecorem of a Desarguesian affine

H-plane.

In this section we generalize a result of Artin's
in [AZ], for ordinary Desarguesian affine H-planes,
Throughout this section {0, X YO} is'a fixed coor-
dinate system for a Desarguesian H-plane ¢ . Let

0= (0, 0), Xg = (1, 0) and Y, = (0, 1).

 Remark (5.5.1). The set of points of a

Desarguesian H-plane may be regarded as a left H-

——— i S i it ittt b

M
module over the local ring H in the obvious manner,
A

namely;

(a, b) + (c, d) = (a+c, b+ d) and

a{a, b) = (aa, ab) for each acH.

Remark (5.5.2)., Take P(a, b) such that Pgo0.

Then QIOP iff Q = tP for some teH.

Proof: Since PgQ, the result follows immediate-

ly from Remark (5.2.1).
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Lemma (5.5.1). Ist P = (a, b) and Q = (c, d).

Assume (1) Pgo0,
(ii) Q$X for each XIOP.

Then P and Q are 1inear1y independent with respect to

the module structure on the points gflgz [gf. Remark

(5.5.1)] .

Proof: From (i), (ii) and Remark (5.5.2),

we obtain the relations

ag T or b¢ T ’ (1)

and for each t ¢H,

c - tag M or d - tbdT . (I1)

Now assume AIP +'A2Q = 0. Hence

Aja * A, ¢ 0 (a)

(III)

Aph + A4 = 0 (b),

From (I), assume atT] . Hence from (III)(a), we

obtain

Al = -cha .

150
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Substituting -in III(b), we obtain

1 1

-x,ca b+ Azd = 0or A, d=- (ca )b =0, (IV)

2

Let t, = ca’l. Then

C-tja=c - cala = 0,

Thus (II) yields d - ca “bdT{ . Hence from (IV),

AZ = 0, Then III reduces to

Hence (I) implies Al = 0, A similar argument applies
in the case bé?i . Hence P and Q are linearly indepen-

dent.

Lemma (5.5.2). Let 0, PIg and 0, QIh. If

géh, then P + Q = L(P, h) A L(Q, g).

Proof: Let 71 t(P). Then by Case (1) of

Theoreni " {3.2.1),

| P+ Q= QT(p) = L(P, g)a L(Q, g).

Lemma (5.5.3). Let 0, PIg; 0, Qlh; such that

) ‘ f _

ggh. Further, let f be an automorghis& such that f(0) = 0.
- — N
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Then f£(P + Q) = £(P) + £(7)

Proof: Since f is an automorphism and f(0) =
0,we have by Lemma (1.2.5)(2), 0, £f(PYIf(g)y O, £(Q)If(h)
and f(g)#f(h). Thus by Lémma (5.5.2), we obtain

£(P) + £(Q) = L(£(P), £(h)) ~L(£(Q), f(g)).

By Lemma (1.2.4) and Lemma (5.5.2), we also obtain

£(P + Q) = £(L(P, h) A L(Q, h)) = £(L(P, h)) A £(L(Q, h))

L(£(P), f(h)) A L(£(Q), £(h)).

Hence f(P) + f(Q) = (P + Q).

Lemma (5.5.4). If PIg, h then there exists

R, RgX;for each XIgv h.

Proof: By Lemma (1.1.12), there exists
fe¢P such that fdg, h. Choose R, RIf,such that
Rgp. If there exists X, XIgysuch that RoX, then since
gpf, RoP by (A6). Contradiction. Hence RgX for each
XIg. Similarly RgX for each XIh.

¢]

. Theorem (5.5.1). Let feAut . T

following are equivalent.
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(1) £(0) = 0.
(2) £(P + Q) = £(P) + £(Q).

Proof: (2)=5?(i). £f(0) = £(0 + 0) = £(0) +

f(0). Hence £(0) = 0.

(1)==>(2). Let 0, PIg and 0, QIh.

Case (1): gdh. This follows immediately from

Lemma (5.5.3).

Case (2): goh. Choose £ such that 0, P + QIZ%.

By Lemma (5.5.4), we may sélect R such that R#X for

each XI2v h. Choose m and t such that 0, RIm and
0, Q + RIt. |
Claim. (i) mgh, %.
(ii) gdt.

(i) This follows immediately from the choice of R.

(ii) It suffices to show that Q + RgX for each XIh,

Because by (i), hgm, it follows from Lemma

since goh.

(5.5.2), that

Q + R = L(R, h) aL(Q, m). (D

By the choice of R, L(R, h)gh. But from (I), Q + RIL(R,h).

Hence by Lemma (1.1.10), Q + RgX for each XIh.
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By applying Case (i) to the three situations of the

above claim, we obtain

£(Q + R) = £(Q) + £(R) (a)
£{(P +Q +R]=£(P+Q + £(R) (b)
£(P + [Q + R]) = £(P) + £(Q + R) (c).

Combining (a), (b) and (c), we obtain
f(P + Q) + f(R) = f([P{+Qj + R) = £(P + (Q + R))
= f(P) + £(Q + R) = £(P) + £(Q) + £(R).

Hence f(P + Q) = f(P) + £(Q).

To formulate our main result in algebraic terms

we need the following definition and two remarks.

Definition (5.5.1). Aut (¥ : 0) = {f|feAut &

such that f(0) = OI.Aut H = {§l¢ is a ring automor-

phism of H}. feG.L.(X : 0) iff feAut ¥ and £: ¥ ¥
is an isomorphism with respect to the left H-module
structure On?Pt7ﬁq1f:1W +1P is a member of the general

linear group of this left H-module structure.



155

Remark (5.5.3). Aut (¥ : 0), Aut H and

G.L.(X : 0) are all groups under functional composi-

tion.

Proof: Aut X is a group by Theorem (1.2.3).
Aut (X : 0) and G.L.(& : 0) are easily seen to be a
subgroup of Aut X, It is well known that Aut H,

is a group.

Remark (5.5.4). If PoQ and Q@¢0, then P - Qg0.

Proof: Let P = (a, b) and Q = (c, d). By
our assumptions, ¢4TL or d¢4TU . P -Q= (a - c,
b - d). Suppose P - Qo0. Then a - ¢, b - de T,

But a, be {{ . Hence c, de Tl and so Qo0. Contradiction.
We may now state the fundamental theorem.

Theorem (5.5.2). [fundamental Theoreﬁ]

(I) If feAut (X : 0), then
(a) {£(Xy), f(YO)} is a basis of M.

(b) There exists a unique ring isomorphism

-»~¢eAut H such that f(aP) = ¢(a)f(P) for each
$(a)f(Xy) +

¢Gb)f(Y0). Let ¢f denote this unique ring

P, P40. Moreover f(a, b)

isomorphism.

Let h: Aut (¥ : 0)>Aut (H) be the map
h(f) = ¢ .
f



(I1) The map h: Aut (¥ : 0)»Aut H is an onto group

homomorphism, whose kernel is G.L(&X : 0). Hence

Aut (% : 0)/G.L.(& : 0) = Aut H .

Proof: (I) (a) By the choice of {0, X,, Y

0’ 0}’
and Lemma (1.1.4), we obtain 0¢XO and YO¢T for each
TIOXO. Since feAut (¥ : 0), we have from Lemma

(1.2.4),
£(0Xy) = 0f(X,) and £(Yy) 8T for each TIOf(X,).

Thus (a) follows from Lemma (5.5.1).
~/
(b) We first show the uniqueness of ¢. Suppose ¢

has this property. Then choose P such that f(P) =

(1, 1). Let (1, 1) = E. Clearly Eg0. Then

(6(a), ¢(a)).

i

£(aP) = $(a)E

n

Also

f(aP)

$(a)E = (¢(a), ¢(a)).

Hence g(a) = ¢(a).

Now we show the existence of ¢. Choose PgO0.

For each aeH, aPIOP. Hence 0gf(P) and f(aP)IO0f(P),

156
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and f(aP)I10f(P). By Remark (5.5.2),

f(aP) = ¢(a, P)f(P).

Claim (1). ¢(a, P) is independent of the choice

of P, PF0. Choose Q, Q40. Let h = 0Q and g = OP.

Case (1): gdh., By (A6), it follows that
Q#X for each XIg. Thus by Lemma (5.5.1), P and Q

are independent.
P +Q =L(P, h), L(Q, g), by Lemma (5.5.1).

By Lemma (1.1.10), L(Q, g)dg, and so P + QX for each

XIg, 1in particular, P + Q40. Thus

¢(a, PYE(P) + ¢(a, Qf(Q) = f(aP) + f(aQ)

f(a(P + Q) = ¢(a, P+ Qf(P + Q)

¢(a, P+ QEf(P) + ¢(a, P + Qf(Q).

Hence we obtain

¢(a, P) = ¢(a, Q) = ¢(a, P + Q).

Case (2): goh. Choose R such that R¢gX for
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for each XIg. Since goh, RgX for each XIh. Choose f
suéh that 0, RIf. By the cheice of R, fdg, h. By
Case (1), we obtain

¢(a, R) = ¢(a, P) and ¢(a, R) = ¢(a, Q).

Hence ¢(a, P) = ¢(a, Q).

Thus we may replace ¢(a, P) by ¢(a) and obtain
f(aP) = ¢(a)f(P) for each Pgo0.
Similarly,

£ lcary = x(a)£ 1(P) for each Pgo.

Claim (2). ¢ is a ring isomorphism. For each

aeH,

$(x(a))Xy = S(x(@)E(ETT (X)) = £x(a)E 1 (Xy))

f(f‘l(axo)) = aX,.

Hence ¢(x(a)) = a. Similarly x(¢(a)) = a.

Hence ¢ is a (1 - 1) onto map with inverse Y.



Now choose P such that f(P) = XO‘ Then

¢(a + b)XO = ¢(a + b)f(P) - f((a + b)P) = f(éP + bP)

[}

£(aP) + £(bP) = ¢(a)f(P) + ¢ (bIE(P)

[oca) + o] £P) = (sCa) + 0(b)IX,.
Hence ¢(a + b) = ¢(a) + ¢(b). Also

¢(ab)X0 = ¢(ab)f(P) = f(abP) = f(a(bP))

= ¢(a)f(bP) = ¢(a)e(b)£(P) = ¢(a)o(bIX,.

Hence ¢(ab) = ¢(a)¢(b). Thus ¢ is a ring isomorphism,

Finally,

f((a, b)) = f(aX0 + bYo) = f(aXO) + f(bYO)
= 0 (a)f(Xy) + ¢ (BIF(Y,).

(II) From (a), h is a mapping. To show h is

a homomorphism, it is enough to show ¢, ¢, = ¢
fl fZ f

1 -2

Now for Pgo0,
(fl fz)(ap) = fl(fz(ap)) = f1(¢f2(a).fz(p))

= g (0 (DE(F,(P) = (85 6 ) (@) (£ £5)(P).

Hence by the uniqueness of (I), ¢fl ¢f2 = ¢f1 fZ.

e
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To show h is onto, choose ¢cAut 'H . Define

f: 3? -*ée by
£(P) = ¢(x)E(Xp) + ¢(¥)£(Yy), where P = (x, y),
and

£(m, n}) = Lo, ¢(nl).

It is easy to show that f€Aut (& : 0). Moreover

£(aP) = £((ax, ay)) = ¢(ax)£(Xy) + 6(ay)£(Yy)

8(2)6 (XV£(Xp) + 6(a)o(Y)E(Y,)

"

o) [o()EXg) + 6 E(YQ) |

8 (a)E(P).

Hence h(f) = ¢.
Finally, feKer H &>¢f = i. Let feKer h .

To show feG.L.(® : 0), we must prove

f(aP) = af(P) for all Pe P
~Case (1). Pg0. Immediately the definition of

¢f yields
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f(aP) = ¢f(a)f(P) = af(P).
Case'(Z)e Po0. Choose Q¢0. By Remark (5.5.4),

P - Q40. Thus by applying Case (2) to Q and P - Q

we obtain

f(aP) = f[a[(P - Q) + ij = fla(P - Q + aQ]

£latp - Q) + £(aQ) = af(P - Q) + af(Q

af(P) - af(Q) + af(Q) = af(P).

Conversely if feG.L.( & : 0), then this yields for

any P

£(aP) = af(P).
But by definition,
£(aP) =

¢f(a)f(P).

Hence ¢f = i,
The last statement of the theorem then follows

immediately from group theory.



CHAPTER 6

The Ternary Ring of an Affine H-plane

§6,1. Intreoduction

The ternary ring of an ordinary projective
or affine plane was first introduced by M. Hall and
Skornyakov in [Ml_] and [54] We will generalize these
results, which are collected nicely in [ﬁéﬂ. Let
us first indicate the results for the ordinary case,

and discuss to what extent they have been generalized.

Definition (6.1.1). A pair (I', T) is called a

ternary fieldiff the following properties are valid.
(To) (r, T) is a S?ary algebrajcf. Definition (2.1.4).

(T1) There exist two distinct elements of T called 0 and 1.

(T2) 17(a, 0, c) T(0, b, ¢) ct

(T3) T(a, 1, 0) T(1, a,. 0) a.

(T4) T(x, m, n)

T(x, m', n') has a unique solution
for x if m # m'.
(T5) T(a, x, y) = b and T(a', x, y) = b' has a unique

solution for (x, y) if a # a'.
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163
(T6) T(a, m, x) = ¢ has a unique solution for Xx.

The first main result was

Theorem (6.1.1). Let A be an ordinary affine

plane. Each quadruple of points {0, E, X, Y} such that

{0, X, Y} are three non-collinear points and E = L(Y, 0X)

A L(X, 0Y) determines a ternary ring (Og, T).

Conversely, if (', T) is a ternary ring, then
A(T) = <1E>, i , I> is an ordinary affine plane where
P=rxr
" and

X ={f(x, y)ly = T(x, m, n)}

aé?}-

N Ef"} U {{(a, y)|yerl}

Also, because of (T2), {a] = {(x, y)|x = T(x, 0, a)l.
Im, ﬁ]II = {(x, y)|y = T(x, m, n)} is called a line of
the second kind and [p, é]I = {(x, yY)|x = T(x, 0, a)}
a line of the first kind. //

Given (OE,T) as in Theorem (6.1.1), addition

and multiplication were defined as follows:
X +y="T(x,1, y) and x.y = T(x, y, 0). (6.1.1)
The relations between the configuration theorems

of the geometry and the algebraic properties of the ternary

field were then studied extensively.
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Klingenberg in [ki] was the first to consider
the generalizationsof these problems. However, while
: a.
he did define an addition and,multiplication, he did not

introduce a ternary ring. It was done as follows for

H-planes.

Let g, g' be chosen such that 0 = gag'.
Select PlIg, PiIg! such that O¢P1,.Pi‘ Define g¥% =
L(Pi, gx and g, = OP;. Let a, b, c ... bé the elements

of g. Then let

ha = aPi

g, = L(a, g;)
a' = gaa.gf
gs = L(a, g")

X = ® *

Hence gz =aa*., Then taking a, beOPl we define
a +b = OPI,\L(b*, hy),

and ‘ (6.1.2);
a.b = OPyalL(b', hjy).

Next Klingenberg defined configuration theorems

in Q(l'}, generalizing the minor Desarguesian and
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Pappian configurations of ordinary affine planes.

He did not, or could not, define a configuration

theorem for the Desarguesian planes.

In order to state Klingenberg's results, we

make the next two definitions.

Definition (6.1.2). A pair (L,+) is called

a loop iff the following conditions are valid:

(1) L is a set and + is a binary relation.

(2) There exists 0ecL such that a+0 = 0+a = a for each
ael.

(3) Each equation x; *+ x, = Xz can be solved uniquely
fér X4 if we are given xj, Xy where (1, j,'k)
is a permutation of {1, 2, 3}.
We now summarize Klingenberg's results, from [Kﬂ

using the notation just introduced after Theorem (6.2.1).

Definition (6.1.3): Let > be an affine H-plane.

Choose g, g' such that 0 = gAg'. Choose PIg and P'Ig’.
Define addition, +, and multiplication, ., as in equations
(6.1.2), page 164, Finally we define

"75 {a]ae0P, such that ao0},

i}

D0 the set of two sided zero divisors of (Op, .).
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Theorem (6.1.2). Let ¥ be an affine H-plane.
Choose 0, P, P' as in Definition (6.1.3). Then

(1) (OPl, +) is a loop.
(2) (i) a.1l = 1.a = a.

(ii) a.0 = 0.a = 0.
(3) If ag0, and beOP

1 then there exist unique x, y

such that xa = b and ay = b.

(4) If ao0, then there exist b # 0 and c # 0 such

that ab = 0 and ca = 0,

—

(5)'11 0 = {a]ao0} is an ideal of (OPl, +, .) and
To = Do- That is, 7‘(0+7(0§7'(0,7“((0P1)§770 and
(0P )77 o< 7T

%heorem é%.l.Z)&d]Let gz be - minor Desarg-

uesian {cf. k), Definibion Diz ) Then (OPl, +, .) has the prop-

erties

(1) (OPI, +) is an abelian group.

(2) a(b + ¢) = ab + ac.

‘Theorem (6.1.3). Letd? be 4 Pappian,

(cf.0i), Defivibiow oiffhen (0P, +, .) is a commutative

projective H-ring with maximal ideal'Tz 0°

In [Kil, coordinates for lines and points
were then introduced in a Pappian plane. It is not
known how to construct an affine or projective II-
plane over what one would naturally call an H-ternary-
ring;

Let us recall the following definition from tAS].



167

. Definition (6.1.4). (_Asl A pair (T, T) is

called a generalized ternary ring iff it satisfies

(To), (T1), (T2), (T3) and (T6) of Definition (6.1.1).

Artmann,in tAi], has taken a modular lattice
with a normalized basis of order 3, constructed a
generalized ternary riﬁg with respect ta this basis
and defined addition and multipliéation as in equations
(6.1.1). By assuming certain related groups'of the
lattice to.be transitive in some manner, he builds up
algebraic properties on:this ring. Then in (A3), arn A
Artmann defined the notion of a_H-lattice; a special
type of modular lattice with normalized 3 basis. He
then showéd:
(A) Every li-lattice, L, determines auniform projective H-
plane,»'aﬁ(L).
(B) Every uniform projective H—plane'determines an H-lattice
L(R ).
(C) Every ordinary projective plane, & may be extended

to a uniform projective H-plane ¢Z (), such that
Xm =2,

Finally he studied the structure of the general-
ized ternary ring of L(&2 (£)), where £ is an ordinary
projective-plane.

In this section I will do the following:
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(A) Introduce a ternary ring in the sense of Artmann
of an affine H-plane. (cf.’DEfinition (6.1.3)).

(B) Define addition and multiplication as in equations
(6.1.1). |

(C) Coordinatize the points and the lines of & ,
before introducing any configuration theorems or
their equivalents, as in [Xi).

(D) Investigaie more closely the relations between the
algebraic structure of the ternary ring and the
configuration theorems. Here we will see the
basic difficulty in generalizing the construction

of A(T).

Our addition and multiplication is structurally
different than that of Klingenberg's (éf. equations
(6.1.2)] but we shall not exhibit proofs of results
which are the same as Klingenberg's, as they are
essentially the same. In fact we are primarily inter-
ested in applying these results to our next chapter on

topological affine and projective H-planes.



§6.2. The ternary ring of an affine H-plane X .

Lemma (6.2.1). Let {0, X, Y} be a coordinate

(1) There exists E = L(Y, 0X) a L(X, 0Y).

(2) L(Y, 0X)$0X and L(X, 0Y)g4OY. Hence E¢S for each
SI0X v 0Y.

(3) AggBhpxs Aoy

Proof: This follows directly from Lemmas (1.1.4),

(1.1.10) and (1.1.11).

Notation: Let {0, X, Y} be a coordinate systen.

Then g = 0X; h = 0Y; E = L(X, h)a L(Y, g). The

elements of OE are written a, b, c¢. ... . We fix

{0, X, Y} now throughout this section.

Lemna (6.2.2). The map h2: 0E x OE»'i?
defined Ez_hz((a, b)) = L(a, h) AL(b, g), is bijective
‘with inverse, hy1(P) = (0EaL(P, h), OEaL(P, g)).

Proof: h, and hil are defined from Lemma (6.2.1).
The claim of the Lemma is then easily verified by

straightforward calculations,
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Definition (6.2.1). Let P be any point.

The coordinates of P with respect to {0, E, X, Y},

are x and y, where hil(P) = (x, y). We write P =

(x, y).

From Lemma (6.2.1), x and y are unique and if

X, yeOE, then there exist a unique Pejp such that

P = (x, y).

Remark (6.2.1). (A). 0 = (0, 0); X = (1, 0);

Y

(0, 1); E= (1, 1); (B), PICE iff P = (P, P);
PIXE iff P = (1, m); PIOY iff P = (0, y); and PIOX
iff P = (x, 0).

Lemma (6.2.3). Let Pi = (ai, bi); i=1, 2.

Then the following are equivalent.

1on.

(2) ajob,, i = 1, 2.

(1) p

Proof: (1)=2»(2). Let P;oP,. By Lemma

h) and L(Pl, g)oL(Pz, g).

(1.1.10), L(P;, h)oL(P,,

The result then follows from Lemma -(1.1.11).

(2)=7(1). Assume aiobi; i=1, 2.

Define P = L(Pl, g) A L(Pz, h). Then blob2 implies

L(b;, h)oL(b,, h) by Lemma (1.1.10). By Lemma (1.1.11),

2,

PoP;. Similarly a,oa, implies PoP,. Hence P,oP,.
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Corollary. For each & such that AZ¢Ah’ there

exists a unique s = L(0,2) AXE.

Definitjon (6.2.2). (i) XE is called the line

of slopés (ii) 2 is called a line of the second kind

iff A£¢Ah1' Otherwise 2 is a line of the first kind.
cy

th

Let jii-= set of lines of the i~ kind; i =1, 2.

Lemma (6.2.4). The map

g;: 2{ 2*0EXOE defined by

g,(2) = (OB AL(L(0,2) AXE, g), OBAL(2A0Y, g))

is bijective  with inverse gil defined by

g5 ([m, 5]) = L((0, n), 0(1, m)).

Proof: g, and gél are defined due to Lemma
(6.2.1) and the Corollary to Lemma (6.2.3). The rest

is direct calculation.

Definition (6.2.3). Let lezﬂ 2+ The coordinates

of £ are m, n where g,(2) = [m, ﬁ]. Iﬁf. Lemma (6.2.4) 1
We write 2 = [m, ﬁ]II' Clearly 2 aA0Y = (0, n) and
(1, m) = L(O, 2)A XE. m is called the slope of &

and (0, n) the Y-intercept.




172

Lemma (6.2.5). Let 2, = [my, 3{111; i=1, 2.

The following are equivalent, (1) m; = m,,

(2) [my, n) 7)) Igys mo] g1

Proof: Let [m;, ni}II\\[WZ’ né]II‘ Then

(1, my)

= L(0, 2,1)/\ XE = L(0, 22),\ XE = (1, mz_)',
and so my = m,.

Conversely, if m = m,; i = 1, 2, then

1’

(1, m) = L(0O, 2;)a XE = L(0, 2,)a XE

implies L(O, 21) = L(0, 22). Hence 21‘\22.

Remark (6.2.2). If mlomz,kthen 0(1, m;)o0(1, m,).

1

Proof: m, om, implies (1, ml)o(l, mz) by Lemma
(6.2.3). Now 04(1, ml). Hence by (AS)*,
0(1, ml)oO(l, mz).

Lemma (6.2.6). Let zi = (mi, ni]II; i=1, 2,

Then 210 22 iff m, om, and njon,.

Proof: (1)==>(2). Let %2,0%,. Then 0(1, mi) =

.[mi’ 0]; i=1, 2. By Lemma (6.2.5), [mi’ 01” [mi, ni];
i=1, 2,
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Thus A[mpO] °»A[m2,o]' Since 0I[m;, 0], [my, 0],

[ml, (ﬂo[mz, (a by Lemma (1.1.13). Since ):mi, 0]¢XE;
i=1, 2,we have (1, ml)o(l, mz) by (A6). By Lemma

(6.2.3), mjom,. Finally since 2,40Y; i =1, 2,and 2 04

1722

(0, nl)o(O, nz) by (A6). Hence njon,.

(2)==>(1). Let myom, and njon,. Thus by

Remark (6.2.2), le, 610{m2, Q). Heﬁce AlloAzz. By

‘Lemma (1.1.13), f,0%5 or 2,4 %, = f. Suppose L AL, =
f. By Lemma (1.1.3), there exist's%,fl3 = L((0, n,),
21)}022. Also (0, n;)o(0, n,). Hence by Lemma (1.1.11),

23021. Hence 21022.

3

Definition (6.2.4). Define T: OE *0E by

T(x, m, n) = 0EAL(L((0, n), 0(1, m))a L(x, h), g).
This is defined since L((0, n), 0(1, m)) = [mﬁIaII

and h 0Y. (OE; T) is called the associated ternary

ring of 3@ with respect to {0, E, X, Y}.

Lemma (6.2.7). P = (x, y)I[m, n]H iff y =

T(x, m, n).

Proof: Let (x, m, n) be given and 2% =
Em, d]II and PI2, Then x = 0EA L(P, h); y = 0OEAL(P, g):
P=2AL(x, h) and £ = L((0, n), 0(1, m)). lence we

obtain

v = 0E, LCL((O0. n). O(1l. mMNAL(x. WY. Y =T/ v m n)
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Lemma (6.2.8). (0E, T) is a generalized ternary

ring.

Proof: We verify the axioms of Definition

(6.1.4). (T10) and (T1) are obvious;let E =1.
(TZ) T(a’ 0; n) = OEAL(L((O, n), g)’\ L(a9 h)9 g)

= 0EA L((0, n), g) =

-and
T(O) a, n) = OE/\ L(L((O, n)) 0(1, a))/\ h) g)
= 0E4 L((O, n), g) = n.
(T3) T(a, 1, 0) = OEa L(L(0, OE)a L(a, h), g)
= 0Ea L(a, g) = a
and

T(1, a, 0) = OEaL(L(O, O(CL, a)) A EX, g)
= 0EA L((1, aj, g) = a.

(T6) Take a, m, beOE. Let P = (a, b) and
L = En, q]II' Then L(P, 2)a 0Y = (0, n) for some n.

L(P, ) = [m, n]II' Thus b = T(a, m, n). Suppose n
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also has the property T(a, m,'X) = b. Hence P = (a, b)

I{m, ﬁ]II‘ Since [m, ﬁ]II” [m, %jII’ it follows that
Em, ﬁ]II = [m, H]II and so 1 = n.

Theorem (6.2.1). o is a cbngruencé on (0E, T).

[c£. Definition (2.1.5) g

Proof: Let X10X5; mlom2,~and_nlon2. By
Lemma (1.1.10), L(xl, h)oL(xz, h). By Lenimas (6.2.3)
-and (6.2.6), 0(1, ml)oO(l, mz) and (0, nl)o(O, nz)
respectively. Define T, = L((o, ni), 0(1, mi))A L(xy, h);
i=1, 2. Since 0(1, ml)OO(l, mz), L((0, nl), 0(1, ml))oL
((o, nl), 0(1, mz)) by Lemma (1.1.13). . Let Sl =

L((0, ny), 0(1, my))a L(xy, h). By (AS5)
S.0T « (1)

. N ’
Now let T1 = L((0, nz), 0(1, mz))A L(xl, h). Since

L(xl, h)oL (x h) (A6) yields

2 ’

~
TloT2 . (11)

Also by Lemma (1.1.11), L((O, nl), 0(1, ml))oL((O, nz),
0(1, my)). Since L(x;, h)gL((0, ny), 0(1, my)),
Lemma (1.1.11) yields
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T (I11)

1971 ¢
Combining (I), (II) and (III), we obtain TloTz.
Hence by Lemma (1.1.10), L(Tl, g)oL(T,, g). Since

OE¢L(T;, g); i = 1, 2,we obtain by Lémma (1.1.11),
OE a L(T19 g)OOE A L(TZ s g)’

or equivalentlx,T(xl, My, nl)oT(xz, My, nz).
(Theorem (6.2.1) also follows from Lemma 6.2.9 (below) and
Lemma (2R£m%%k)(6.2.3). {0, X, Y} is a coordinate

system ofR . Let P = (a, b) and 2 = {nm, 5311-
Then P = (Z, b) and & = 1, ﬁ]II' '

Proof: The first part follows easily. Now

(x, y). Then

let'F

1
i}

0EAL(P, h) = Xy (0E) s xy (L(P, h))

= x5 (0E L(P, h)) = X (a) = a.

Similarly y = b and 2 = [m, nq-

=t

Lemma (6.2.9). Let (DE, T) be the associated
E i, }. Then

ternary ring ggXE with respect Eg_{@ﬁ,

is amonto

W

the map Xog* OE-0E, defined by XOF(a) =

homomorphism. Hénce (0E/o, T) 2,(65, ?).
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Proof: X OE is clearly onto. Moreover by

Lemma (1.2.4 ),

XOE(T(X’ m, n)) = XOE(OEA L(L((Os n)’ 0(1: m))AL(x’ h) ’ g;

xg (0E)a xg (L(L((0, n), 0(1, m))a L(x, h), g))

[}

OE 4 L(L(0, n), 0(T, ™) L(X, h), g)

-'F(;(’ Rl: ;1) = %(XOE(X)’ XOE[m)’ XOE(’D‘))'.

]
0

Hence X0E is a homomorphism. Since 0& , the

oc
result follows from Lemma (2.1.6 ).

| s a3
Corollary. X0 T=T XgE*

We next coordinatize lines of the first kind.
Notice that for ordinary planes, this is no problen.
It is in fact the lines of the first kind which cause

thé difficulty in generalizing the construction A(T).

Coordinatization g£ lines g£ the first kind.

Let ze:ﬁl. Then AzoAOY‘ Hence A£¢A0X. We then
proceed in exactly the same fashion as we did for ji 2

with X replaced by Y. Define

2A0X = (n, 0); L(O, L) AYE = (m, 1).



178

m and n are the coordinates of 2 and we write £ =

[, nf;

Similarly we obtain a new ternary ring, (c;ev ql-ﬁ

with respect to {0, E, Y,'X),
Ty(y, m, n}) = 0EA L(L((n, 0), O(m, 1})A L(y, g), h)
where
y)I[m, ﬁll iff X = T;(y, m, n).

Lemma (6.2.10). The following statements

are valid.

(1) [ml, n \\Enz, n iff m o= m,.

(2) lng, nilIoEpz, né]l iff myom, and njon,.

Proof: This proof is completely analogous to

the proofs of Lemmas (6.2.5) and (6.2.6).

Lemma (6.2.11). If & = [m, d]I, then moO.

Conversely if m, neOE such that moO, then there exists

-

a unique fe il’ such that Qﬂ[m n]I

Proof: Agohgy. Hence Ay yyOh (1) gy

But (m, 1)IL(m, h)A L((m, 1),2). Hence by Lemma
(1.1.13), L(m, h)oL((m, 1),2). Since A0E¢Ah, we have
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AOE¢AL((m, 1),2) and hence by (A6), moO0. Conversgly,
choose m, ne0E such that mo0. Define 2 = L((m, 0),
O(m, 1)). To show ze‘i'l, it suffices to prove

L((m, 1),2)oL(m, h). Suppose this is false. Since
(m, 1)IL((m, 1),2)a L(m, h) and mo0, (AS) yields

(m, 1)o0. Contradiction.

Lemma (6.2.12)(OET;)has the same properties as (oe,T)

Lemma (6.2.13). If a,da,, then (a,, bl)(az,~b2)==ﬂ

iﬁ a line 9£ the second kind.

Proof: By Lemma (6.2.3), (a;, bj)é(az, by),
for all b,, b,e0E. Suppose se R |- Hence & = (m, n]I
such that mo0, by Lemma (6.2.10). Thus a; = Tl(bi, m, n);
i =1, 2. Hence Tl(bl’ n, n)¢T1(b2, m, n). Now since
0 is a congruence on (0E, Tl)’ by Lemma (6.2.12),
mo0. implies T;(b;, m, n)oT,(b,, 0, n), i = 1, 2.
But by (T2), Tl(bi’ 0, n) = n; i=1, 2. Hence

Tl(bl, m, n)oTl(bz, m, n). Contradiction.

Lemma (6.2.14).

(1) l[m-;~~n]1,\ [u, V]II! = 1.

(2) If [Qf nﬂ A (pz, nz] = B, then both lines are of

the same kind and m,om, .

Proof:

(1) Since A _—— ¢A0Y and A ¢AOY’ we have

T LY II
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A[m»»“hm[“"’ju'

(2) By (1), both are of the same kind. Let £ i =

[mi, ni]I. Hence by Theorem (1.2.4 ),'21” £,
By Remark (6.2.3), ﬁl = ﬁé and so myom,. A similar
argument applies to lines of the second kind.

T

We may now state the main properties of (CE,

Theorem (6.2.2). The universal algebra (cf.

Page 52) (OE, T, Tl’ 0, E) has the properties,

(HT1) (OE, T) and (OE, Tl) are 3-ary algebras where

E = 1, and Eg0.

"
=

(HT2) T(a, 0, n) T(0, a, n)

(HT3) T(a, 1, 0)

i

T(1, a, 0)

i}
24

(HT4) T(a, m, n) b has a unique solution for n.

(HTS) T(a;, m, n) = b, i

1, 2,has a unique solution

fQI (m, n) if a1¢32'

(HT6) T(a, ms, n.) = b; 1

i 1, 2,has a unique solution

for (a, b) if ml¢m2.

(HT7) For every choice of (ai:;bi)§ i=1, 2,either

T(ai, m, n) = bi

3

Tl(bi’ m, n) = a; has a

solution (m, n).

Jli

o¢g’

Yy 2
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(HT8) T(a, m, n) = b has a unique solution for a if mgo0.

(HT9) T(a, m, n) = b has a unique solution for m if

ago.
Proof: (HT0) to (HT4) were shown in Lemma (6.2.8).

| (HTS) Since a;da,, (a;, by)(a,, by) = [m, d]II
by Lemma (6.2.13), where m, n are cleérly unique.

Hence bizT(ai, m, n); i =1, 2.

(HT6) Let 23 = [ml, nilll; i=1, 2. Since
m1¢m2,21A 22# #, by Lemma (6.2.14)(2), and 21¢ 22

by Lemma (6.2.6). Hence by (A4), |24 £,| = 1.

2|
(HT7) This is just the algebraic statement of

(A1).

(HT8) By (HT2), T(a, m, n) = T(a, 0, b) = b.

Since mg0, the result follows from (HTS).

(HT9) By (HT3), T(0, m, n) = n., Then

T(a, my n) = b and ag0 implies the result by (HT6).

Definition (6.2.4). Define the maps #, M, N

as follows:

(i)}Z(ml, n;, my, n,) = x iff T(x, mi, Ny

) =Y
i=1, 2,for some y,where ml¢m2.

(ii) M@ll, bl’ a,, bz)‘= miff T(a;, m, n) = bi}
i =1, 2,for some neOE,where al¢az.

(iii) N(x, m, y) = n iff T(x, m, n) = y.



182

These 3 maps are called the inverses of T.

Lemma (6.2.15).

(l) N(X, m, }') = OE&L(L((X) Y), 0(1’ m)A h) g)'

(2) M(aly bl) aZ’ bz) OEAL[L(O’ (albl)(aZ’ bzgl\ h: g),
where a1¢a2.

(3) Z(ml, Ny, My, n,) = OE A L([m, n]H,\[mZ, nZ-)II’ h),

where mlémz.

Proof: (1) follows from the proof of (HT4)
in Lemma (6.2.8).(2) and (3) follow from the proof of

Theorem (6.2.2).

Lemma (6.2.16). LetZ, M, N be the inverses

of T. Then

———

. _ 3
(1) Xgp N =N XoL *
. _ 3

(ii) Xop M = M Xpg-
4
(1i1) xop Z = Z XgoE-

Proof: The proofs follow from Lemma (6.2.15)

by direct compulations.

Definition (6.2.5).7F (cg, T) is the associated

ternary ring of (O, E, X, Y)S We define addition

and multiplication in (0E, T) by

(i) a + b =T(a, 1, b),
(ii) a.b = T(a, b, 0).
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T is called linear iff T(x, m, n) = xm + n,

Similarly, we may define addition and multiplication

for (OE, Tl). We shall write this as
(1i1) a +1 b = Tl(a, 1, b).
(iv) a. b = Tl(a, b, 0).
1

Comment (6.2.1). We wish to describe all lines

in terms of T. At present we have

Em’ n]II = {(X, Y)Iy = T(X,' m, n)}’

Im, ﬁ]I = {(x, y)|x = T, (¥, m, n)}, where mo0.

Now in the ordinary case, T{ o = {0}, Hence by (HT2),
[m, ﬁ]I = {(x, n)J x =T (x, 0, n)}) . However in an

arbitrary affine H-plane, our problem is to show for

me T{ 0
T(x, m, n) = Ty (x, m, n).

I will show this for a Desarguesian plane. However,

one would hope this would be true for at least uniform

planes.

We may now restate Klingenberg's results in our

setting, and add some additional recsults.

Zbeoreﬁ (6.2.3).

(1) (OE, +) is a loop. To be precise,



the unique solutions of x + a = b and a + y =b

x = 0EAL(L(S, h)a g, h)

where
S = L((0, a), OE)a L(b, g)
and
y = 0OEA L(L((a, b), 0E)a h, g).
a _
(2) a.1 = 1.a = & and a.0 = 0.a = a.

184

are

———

(3) If ag0 and b€OnL, there exist unique x, y such

that xa = b and ay = b,

(4).‘('(0 is an ideal of (OE, +, .) and [{, = D,.

(5) o is a congruence of (0E, +) and (0E, .).

(6) If y#0, then xy = xz or yz = zx implies y =

(7) If x$0, then  (xy)o(xz) or (yx)o(zx) imnlies

yoz.

Proof. (1) to (4) are esssentially the

same as

Z.
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Theorem (6.1.2). The precise statements of (3) are

easily verified. (5) is an immediate consequence of

Theorem (6.2.1). (6) is a speéial case of (HT8) and

(HT9) where n = 0. Now we show (7).‘ First suppose
{xyjokz). Hence L(xy, g)oL(xz, g) by Lemma (1.1.10).
Define‘Ai = 0(1, y)a L(x, h) and A, = 0(1, z)a L(x, h).
Since L(x, h)¢L(xy, g), (A5) yields A10A,. Now A, 40,
otherwise OE¢L(x, h) implies xo0. Contradiction.

Thus 0A;00A, by (AS)*. Since 0A; = (y, 0] ; and 04, =
(?, dlII’ the result follows from Lemma (6.2.6).

Secondly assume yxozx. Let A1 = L(y, h)a [x, 6}11
and AZ = L(z, h)a {x, O]II' Now xg0 implies [_x, 0]1195 [-9’0311
and hence (A7) yields, (}, d)II¢L(Ai, g); i =1, 2,

Then utilizing Lemma (1.1.11) several times we obtain,

(zXpy KDL (zx, glol(yz, g)&EPL(A;, g)oL(A,, g)

<==> A10A2<=>L(Al, h)oL(A,, h)¢=>yoz.

Corollary (1). Let T{ _ and T{ , be the set

of non-left invertible and non-right invertible

elements of (0E, .). Then [{ 5= T . = .-

Proof: From (3) of the theorem, T{ ., Tl , & T o

Conversely suppose xe ({ o+ BY (4) of the theorem, xye ({ 0
for each ye0OE. Then if xé 'r(+, there exists y # 0

such that xy = 1. Hence le [{ 0° Contradiction.
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Corollary (2). If ao0 and beOE, then {a + b),
(b + a)ohb). |

Proof: Since ao0 and bob we have from (5) of

the theoren,
(2 + Bo(0 + b) =b and (b + ap(0 +b) = b.

Corollary (3). If boa, then there exists

' ye 'FKO such that a + y = b.

Proof: From (3) of the thecorem, we have
y = OEAL(M, g) such that M = L(S,0E)A h, and S = (a, b).

Since aob, we have So(a, a) by Lemma (6.2.3). Hence
by Lemma (1.1.10), L(S, OE)oOE. Then L(M, g)d0E,
implies Moy by (A6). Similarly by (A6) hgOE implies

Mo0. Hence yoO and so y€ TX'O'

Corollary (4). For each acOE, a=a+ 0°

where a = {b|boa and beOE}. Hence O0E/c = {a + ({ ,|acOE}.

Proof: Let bea + (\ 0° Hence there exists no0

such that b = a + n. By Corollary (2) of Thecoren
(6.2.3), a + noa and so bea.

Conversely let bea. Hence boa. By Corollary
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(3) of Theorem (6.2.3), there exists ye {{  such that
b. Hence bea + T{ 0

a+y-=
Corollary (5). The mapa¢ : OE+0OE defined by
a¢'(b) = a+ b ii (1 - 1) onto. 1Its inverse is
-1 _
(Mgcm-th@ua,@,omAh,g.
Similarly ¢ ¢ OE+0E_defined gz_¢é(b) = b + a
a
is a (1 - 1) onto map whose inverse is
(¢,) 1) = oEa L[L(S, B)ag, h)
where
S = L((0, a), OE)a L(b, g)).
Proof: This follows easily from (1) of Theorem
(6.2.3).

Tr

Corollary (6). Let a be the unique solution

of a + x = 0. Then the map ﬁr: OE0E defined by n_(a) =

n.(a) = 0EAL(L((a, 0), OE)a h, g).

Proof: This is just a special case of property

(HT4).
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Corollary (7). .f abe T 0> then ac TK 0

or be ( ¢

Proof: Suppose a¢'T( o- Since a.0 = 0 it follows
that a.0oab and hence by (7) of the theorem, be T .

Corollary (8). Thevunique solution of ax =1

x = 0EaL{XEr0(a, 1), g).

Proof: This is just a special case of (3) of
the theorem.
Let us now consider the configuration theorems

defined in [k2].

Définition (6.2.6). tKi] !& minor Desarguesian
Confjguratjgn Cl‘{}ee Figure (6.2;15] is a set of six points
and\S lines satisfying the condition§i

(1) gieA; i=1, 2, 3.
(ii) Py, Q;Ig;; 1 =1, 2, 3.

-

(iii) Py, PyIpy and Q4, Qs Iqp - i (i, j, k)

is a permutation of {1, 2, 3}.
(iv) p, | a, and p;ll q;.
(v) Py, pofgs.
(vi) P,¢P,.
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Lemma (6.2.17). [Ki]. Let C1 be a minor

Desarguesian configuration. Then

(a) pydg, and p,dg;.
(b) q1¢g2, g4 and q2¢gl’ g3

Lemma (6.2.18) KILet C; be a minor Desarguesian

configuration. Then
(a) Q;4Q,;.
(b) If gjog,, then psogy, g,; P3¥py, Py; P3P, Py

236815 825 Q39Q;, Q5 P1#p; 2nd q.dq; and Q;4Q;.

Comment (6.2.2). If Cy is a minor Desarguesian

configuration, the previous lemma says the line qz

is uniquely determined and is QlQZ'

Lemma (6.2.19). Let Cl be a minor Desarguesian

configuration. Then p3¢g3.

Proof: Case (1): gl¢g2. If psogs, then

P308,, 8, by (A7). Hence g og,. Contradiction.

Case (2): g,08,. From (b) of Lemma



190

(6.2.18) we have P3081, 837 and g3¢g1, g,. Hence
P #g,. ' '
33

Definition (6.2.7). We say?f has the property

D, iff for each minor Desarguesian configuration Ci»
%_\lq3-

Remark (6.2.4).

(1) If one line has three pairwise non-neighbouring
points, then each line has this property.

(2) If one line has three pgirwise non-neighbouring
points then each pencil has three pairwise non-

neighbouring lines.

Proof:
(1) follows immediately from Lemma (1.2.2).
(2) follows from (1) and Lemma (1.2.3).

In (Ki], a plane with prépefty Dl was called
minor Desarguesian. In[kZ], a plane with (A9) was
called minor Desarguesian. We shall show if  is a
T-plane, these two definitions are both equivalent to

each terndry ring being linear.

Theorem (6.2.4). Let ¥ be a T-plane, having

a line with three pairwise non-neighbouring points;

cf. Definition (3.2.4). Then the foilowing are equivalent,
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(1) Every ternary ring (OE, T) is linear.

(2) Dy is valid.

(3) T is a transitive group.

Proof: (1)=5?(2). Let C1 be a minor Desarguesian

configuration. From Lemma (6.2.19), g3¢p3 and so
g3¢L(P3, ps). Let g = L(PS, ps). Choose"ﬁ2 such that
P3152 and'§2¢g3, g by Lemma (1.1.12). Thus g3, 8 and

'52 may be regarded as a coordinate system such that

P3 = (0, 0), g3 = 0Y, g = 0X and p, = 0E.

Let (0OE, T) be the associated ternary ring. Thus

(0, n) for some n§OE. Let p, = [m, 6]11 and

p; = (mz, d]II‘ Hence q, = {m, i]II and q; = [(m,, n]II‘

o
w
J

Poo=(x, xmy); Q = (x, T(x, my, ng);

and

%

P, = (a, am,); Q, = (a, T(a, m,, n).

_Now {P;P, = pg} “ g implies xm;, = am,. Thus

the linearity of T implies that



Hence Q3 and Q, have the same y-coordinates. Thus

Q1L (Q;, 8) and so @ 0, |l &

(2)=>(3). Choose P, ngﬁp . Without loss
of generality we may assume P;#Q;. For if P.0Qs,
select X such that X¢P3, Q3. Then siﬁceéf is a T-

plane, and X¢P3, Q3, t= would be our desired

T T
| P3X XQ3
translation.

- Now let g = pSQS‘ From Remark (6.2.4)(2)
there exist g1, gyehg, such that gi¢gj; i# 38 1,

j =1, 2,3, Let A = Ags. Choose P.Ig.; i = 1, 2.

From Lemma (1.1.10), pi¢pj; i, j=1,2,3. Letp; =
Pij where (1, j, k) is a permutation of (1, 2, 3).
Claim (1). A, 6 A5 i=1,2, 3. Lleti=1
i
If P1083 then there exists TIg; such that ToP,. But
P,I1g,, and hence by Lemma (1.1.10), g,085. Contradic-

tion. The rest follows in a similar manner.

Thus, in particular, and A

AL(Q3’pl)¢AgZ L(QS:p2)¢Ag1

by (A7). Then we may define

Ql = L(Q3’ pz)/\ gl and QZ = L(Q3) pl)'\ g2'
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Next define the maps Tyo i=1, 2, 3 as follows:

S = L(S, gi)A L(Qi’ PiS), if S¢X for each XIgi.

This is clearly defined from our choice of S and (A7).

Claim (2). If S¢X for each XIg.v 855 i# s
T. T-
i, j =1, 2, 3,then S * =S J. Let g = L(S, g;) and

k # 1, j such that ke{l, 2, 3}. From our choice of
.S and Claim (1), Pi, Pj¢S; and Pk» PjS¢gj.
P Figure (6.2.2) CDC g,

& v, I';\>\\ Q,s' 3.‘-

Now S

i gAL(Qi» PiS) = gASiQi

and

wn
n

j g/\L(Qj, PjS) = gAsin

exist by Lemma (1.1.10) and Claim (2). Thus Figure
(6.2.2) is a ¢y configuration and hence by Dy, PiS\\QiSj.
But P.S|| Q;S; and so Qisjn Q;S;. Herice Q;S; = Q;5;.

But Qi¢X for each XIg by Lemma (1.1.10), and so

Claim (3). For each S, there exists ie{l, 2, 3}

such that S¢X for each SIgi. If this is false, then
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there existg XjIgj such that Soxj; j =1, 2, 3. Hence
for 1 # j, XioXj and hence giogj by Lemma (1.1.10).

Contradiction.

Now define t: WP +¥® as follows: For each

Ss-qp

sT =5t
= , if S¢gX for each SIgi.

In view of claims (2) and (3),t is . well defined,.
T
Clearly Pg = P32 = Qz. We must now show 1eT. By
Lemma (3.2.2) it suffices to show:
) L4
(1) 7eT.
(ii) $$ST for each S.

(ii1) Any-two traces of 1t are parallel.

(i) We first show teD. Let X, Y be any two points

and g any line such that X, YIg. -

Claim (4). There exists ie{1l, 2, 3} such that

for each SIg;, S#X, Y. If this were false, then therewould
exist XlIg1 such that XoX1 or Yoxl. Assume XoXle

Also thére exists X,Ig, such that XoX, or YoX,. Hence
X,0Y;  otherwise X;0X, and thus by Lemma (1.1.10),

8108, Contradiction., Finally there exists X31g3

such that X30X or XSOY. If XSOX then X10X3 and so
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g,98, by Lemma (1.1.10). Contradiction, Similarly

X30Y implies the contradiction géogS.

Let us assume without loss of generality

then that S¢X, Y for each SIg,. Hence‘XP3, YP.dgx.

+

3 T3

Case (1)3 XgY. Let X = X3 and Y = YS'
Figure (6.2.3)
X A3
/ Y S~ s
P @s : ' 33

Since XgY and XP-, YP3¢g3, Figure (6.2.3)
is a C; configuration and hence xyl| X4Y<, OT

equivalently, YZIL(Xg, XY).

Case (2): XoY. Choose zIg such that zgX, Y.
Thus g = XZ = YZ., By Case (1), we have

z'I{L(YY, XZ) = L(Y', g)} and so L(Y', g) = L(ZT, g).
Using Case (1) again we obtain
X'1{Lz%, g) = L(Y', g)}.

Now from the definition of t it is obvious

o~
T has no fixed points. Hence 7eT.
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(ii) Let S be any point. Let us assume that S¢X for

each SIg;. Hence ST = L(S, gs)A L(Qs, SP3).

Thus from the choice of S, (A7) and Lemma (1.1.10)

we have
S = P;SA L(S, g5) and ST = Q;8"a Lgs, g<) .
Hence Lemma (1.1.11) vyields
P#QEPP-SEL(Qg, P3S)EPSHST .

In particular Pi¢Qi; i =1, 2. Thus if we replace
g3 by g, Or g, we may use the identical argument to

show_S¢ST if S¢X for each XIgi; i=1, 2.
(iii) Choose h any trace of 7.

It is sufficient to show hl| g . Let S, SsT1h.

Then by Claim (3) there exists ie{l, 2, 3} such that
).

SgX for each XIg;. Thus S' = L(S, g;)a L(Q;, SP,

Hence we obtain S, ST IL(S, g;). Since by (ii),
S4ST, we have {h = L(S, gi)}“ g5-

(3)=>(1). We must show T(a, m, n) = am + n,
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o

Rylon)
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Figure (6.2.4) R am) bs

R (am)

Q‘ (am, amen)

(lam o)

(0, n); P2 = (a, am); Pl= am,

Q, = (am, am + n); Q, = (a, (a, m, n)); py = [ml’ dzII;

= = 0 . - b
Qg = (m, n]yp, pp = (1, 0fpps ap = 1, n}yp and
= L(Pz, g). In view of (HT2) and (HT3) we may

°
w
I

assume m # 0, 1 and n # 0. Consider figure (6.2.4).

By the definition of ‘iz, Py p2¢h. Let t =‘TP3Q3.

Then by Case (1) of the proof of Theorem (3.2.1),

T _ T _ v

Now T(a, m, n)

{Q, = PJ}I{L(P}, p3) = L(Q,, £)}.

am + n iff QlIL(QZ, g). But



198

Comment (6.2.2). Notice in the above proof of

(3)=> (1), we could not invoke D; from figure (6.2.4),
since we do not know P2¢P1. In fact, this is true

iff amga, which is not true in general..

Theorem (6.2.5). [Kl-l Let }e' be minor Desarg-

uesian. Then

(1) (0E, +) is an abelian group.

(2) a(b + ¢) = ab + ac.

Proof: It is essentially the same as Theorem

(6.1.2).

Theorem (6.2.6). Let & be minor Desarguesian.

Then a + b = a +1.b.

Proof: Now a 0 b = 0EA L(L((b, 0), OE)A L(a, g),
h)). Let T = L((b, 0), OE)A L(a, g). Now since OEgoY,
L((b, 0), 0E)e § ,. By Corollary (6) of Theorem

(6.2.3) and the fact (OE, +) is an abelian group we

obtain,
L((b, 0), OE)AOY = (0, - b).
Hence L((b, 0), OE) = [l, 'tJII' Clearly T = (x, a)

for some x. But TIL((b, 0), OE). Hence x = a + b.
Thus,
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a+1.b= OEAL((a + b, a), h) = a + b. //

We next wish to obtain the statement of
Theorem (6.1.3), by replacing the assumption that
.33 is Pappian with the assumption that ¢ is Desarg-
uesian. Now as mentioned before no Desarguesian |
configuration has been defined. I can define one and
show it is equivalent to (A10)(P: #). However the
proof is very long and technical and so we shall omit
it. Moreover we actually need the full force of (A1l0)(P),

not just (Al10) (P:4).

Remark (6.2.5). Let oeDy; PgQ and Q° = R.

If S is any point such that S, PIf;, S, QIj and f#j
then S° = faL(R, j).

Proof: This follows immediately from Case (1)

of the proof of Theorem (3.1.1).

Lemma (6.2.19). Let & be Desarguesian.

_Then a(b + c) = ab + ac.

Proof: (0, c)(1, b + ¢c) = [b, é]II by Lemma
(6.2.13). Let o = of0, (1, ¢), (a, ac)], which exists
by (A10)(0) since 04(1, ). Thus since XE¢{b + ¢, 0]
and h¢{b, c|i; Remark (6.2.5) ylields
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(1, b + ) = (a, a(b + c)),

and
(0, )% = (0, ac).
Hence
(a, a(b + c)I{L((0, ac), [b, ], = (b, ac) ;3
and so
a(b + ¢) = ac + ac.
Lemma (6.2.20). Let 32 be Desarguesian.

Then

(ab)c = a(bc).
this
Proof: It is enough to show, for b} T{ 0
For if be T} , then b* = b - 1¢ T{ ,. - Thus we obtain
from Theorem (6.2.5)(2), and Lemma (6.2.19),
(ab)c = (a(b* + 1))c = (ab* + a)c

= (ab*)c + ac = a(b*c) + ac

= a(b*c‘ + c—} = a[.bc - c + c] = a(bc).



201
Now we consider 3 casesfor bg ({ ..

Case (1)¢ bgc. Choose j such that (l,rb),
(b, bc)Ij. -

Claim. jé[c, O]II‘ Suppose jo[c, OJII'
Since bgc, we have [c, O] 119 Eb, QII' Thus (A6)

yields (1, b)o(0, 0). Contradiction.

Now let o, = o[o, b, ab] , which exists since
b4 T 0* Since L(b, h)¢ fc, 6]11 and
lo, t;l“gt[b, o]H,Remark (6.2.5) yields

%1
(b, bc) © = (ab, (ab)c)

and

(¢}

(1, by !

= (a, ab).

Thus (a, ab)IL((ab, (ab)c), j), since oleD.

Now define o, = 0’[0 (1, b), (a, ab)] Then
since XE¢[bc, O.]II and jé[c, 0]11 by the above claim,

we obtain

92
(1, be) = (a, a(bc))

and



%2
(b, bc) = (ab, (ab)c).

Hence (a, a(bc))I{L((ab,(ab)c), {0, bé]II) = L((ab,
(ab)c), g)}. Thus (a , a(bc)) and (ab, (ab)c) must
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have the same y-coordinate and so our result follows.

Case (2): b c. Now bgb - 1, otherwise

1e T} o+ Thus by Case (1) we obtain

(ab)b = ab{( b -1 + 1) = ab(b - 1) + ab

a(b(b - 1)) + ab = a(bb - b) + ab

a(bb) - ab + ab = a(bb).

Case (3): b # c but boc. Now boc implies

c =b +n for some ne T{ ;. Hence bgn. Thus by

Case (1) and Case (2) we obtain
(ab)c = (ab)(b + n) = (ab)b + (ab)n
= a(bb) ¢ a(bn) = a(bb + bn)

= a(b(hb + n)) = a(bc).

Theorem (6.2.6). Let ® be Desarguesian,

Then

(1) If at T o» then

a™l = OEA L(XEa O(a, 1), g) where

XEa O(z, 1) = (1, a~1y.
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(2) a.lb = ab.
k3)_lf_me'TI o> T(a, m, n) = T,(a, m, n) and héggg
(n, 5; = {20y, m, n), y)|ye0E) , for each [m, Ae X,
(4) (OE, +, .) is an A H -ring.

(5) If H is the ring of trace preserving endomorphisms

ne

then (0E, +, .) H.

Proof: (1) This follows from Corollary (1)
and Corollary (8) of Theorem (6.2.3) and Lemma (6.2.20).

(2) Now a.b = OEAL(O(1, b)aL(a, h), g)

and
a1b=OEAM0w,l)AMa,@,hL

Case (1): bg TU ;. Thus from Lemma (6.2.13),
o(b, 1) § ,. By (1), 0(b, 1)AXE = (1, p~1

o, 1) = [b™t, 0]y, Let T = bt Qata, 9.
-1

). Hence

Hence T = (x, a) for some x such that a = xb
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By Lemma (6.2.20), x = ab., Thus
a.;b = 0EAL(T, h) = OF Al@ab, a), ﬁ} = 3b.

Case (2): be TYO‘ Define b* = b - 1. Clearly
b* ¢Tl,. By Theorem (6.2.6),

X 4y =Xx+y- S (1)
Then using (I) and Case (1),we obtain

a.lb = a.l(b* +1) = al.b* +

= a.b* + a = a(b* + 1) = a.b.

(3) This follows immediately from Theorem (6.2.6)
that
(2) and the fact, T is linear.

(4) We have already shown all the properties of an

A H -ring.

(5) We may consider &€ as A(OE). The result then follows
from Theorem (5.3.8)(3). .



CHAPTER 7

Topological Prerequisites

In this chapter we 1list known results
as well as proving some new results. which we shall

utilize in the next chapter.

Notation. (1) Let (Xa)asI be a family of tep-
ological spaces. Then[IXa 1is the set theoretic product

el _
endowed with the product tonologyji.e.)if pr, " HXr+Xa

is the o projection map, pra((XB)) = xa,'the sets
{p;l(Ua)]Ua open in Xd}form a subbase for the product
topglogy.

If we have just two spaces, Xj, X, we write

lex X2 for the nroduct.

(2) If X is a space and xeX, we use
}{(x) or Q2(x) to represent neighbourhood filters
about x.
| (3) X is T, means X"is Hausdorff and
X is T, means X is a Fréchét space.
(4) If S & X, then T(S) is the

closure of S in X and I(S) is the interior of S. If

- 205 -
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A S S <X, then FS(A) and Ig(A) are the relative closure
and interior of A with respect to S. It is well known

that T'S(A) =T(A)pn Sand I(A)nS SI(A) S Ig(A).



§7.1. Quotient Tovnology

The results may all be found in [KOO].

Definition (7.1.1). Let X be a topological

space and R an equivalence relation on X. Let X/R =
{IxJ1Dx) = {yl(x, y)eR}} be the quotient space, and let
f: X+X/R b€ the quotient map, €(x) = [x]. We define
a.tonoloqy on X/R as follows:

U is open in X/R iff £ 31 (Y4) is open in X. This

is called the quotient topnology of X/R.

Theorem (7.1.1). Let f£: X»X/R be as in defin-

ition (7.2.1). Then

(1) f is a continuous man.

(2) C is closed in X/R iff £ 1(C) is closed in X.

(3) The quotient topology is the largest topology on

X/R such that f is continuous.

Theorem (7.1.2).1EiX i

a topological space,

R is an equivalence relation on X, and X/R is endowed

with the quotient topology) +hen
(1) If X/R is T,, R is closed in X x X.

(2y If f: X»X/R is oven and R is closed, then X/R

————

is T,.

207
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(3) If R is closed in X x X, then [x] is a closed

set in X.



§7.2. Connectedness

The well known results may be found in (ﬁ i}.

Definition (7.2.1). (1) A topological space

X is connected 1iff it is not the disjoint union of
two onen (closed) sets. Equivalently the only sets
which are both open and closed are # or X.

If X is not connected, it is called disconnected.

(2) If A, B& X, then the
pair (A, B) is called separated iff I'(A) n B = AnT(B) =
p.

Theorem (7.2.1).

(1) Let C & X. C is connected iff for each separatecd

pair (A, B) in X such that C = Auv B, A= or B = .

(2) If C £X and C is connected, then for each separ-

ated pair (A, B) such that C € A v B, we have C < A

(4) If (X)) eg is a family of connected subspaces such
that Xa # P, thegﬁHXa is connected iff Xa is connected
acl

- 200 -
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for each «

(5) The continuous image of a connected set is connected.

(6) If C is connected, then F(C).ii conﬁected.

Theorem (7.2.2). Let R be an equivalence

relation on X.

(1) If X is connected, so iS X/R.

(2) If X/R is connected and each [x] is connected, then

X is connected.

Definition (7.2.2). Let X be a topological space and

xeX. C(x) = largest connected subset containing x, is

called the component of x.

X is called totally disconnected

iff C(x) = {x} for each x.

Q(x) = F\ A (A is open-closed) is called the
XeA

quasi-comnonent of x.

Theorem (7.2.3). The following are true.

(1) If (Xa)ael is a family of topological spaces, then
Cllxy, )) = MC(x,).

ael

. Hence X, is totally disconnected iff each X, is

totally disconnected.

(2)'C{x) and Q(x) are closed sets.
(3) C(x) & Qx).

(4) If Q(x) = X, then X ifﬂconnected.
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Theorem (7.2.4). Let X be a space. Then

{C(x)|xeX} formsa disjoint partition. Let C be the

corresponding equivalence relation. Then X/C is

totally disconnected.

Lemma (7.2.1). Let X be a space. Let A& X,

be closed such that xeA implies C(x) g:A.

Then C,(x) = C(x) for each xeA.

Proof. It is enough to show that for each

xXcA,

(a) C(x) is a connected subspace of A.
(b) CA(x) is connected in X.

Lgl Supposc C(x) 1is disconnected in A, as by assumption
C(x) C€A. Hence there exist Cy, C,, non-void, closed
in A such that C(x) = CpC,, CinC, = . Now C; = S;nA,
where Sy is closed in X; 1 =1, 2. Since A is closed,
in X, C, and C, are closed in X. Hence C(x) is dis-

connected in X. Contradiction.

(b) Sunpose CA(x) is disconnected in X." Then there
exist Cl' C, closed and non-void such that CinC, =
# and CA(x) = C1L’C2' Hence Ci" A= Cy is closed in
A. Thus CA(x) = (Cln A)u:(CZn A) imnilies CA(x) is

disconnected in A. Contradiction.
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Lemma (7.2.2). Let 8 be an equivalence relation

on X, such that C(x) ¢ x yhgzg_?~= {v] (x, y)eR}.

Moreover cach X is closed in X. Then

Ce(y) = C(y) for each yeX.

Proof: Since X is closed and for each yex,

C(y) € {y = x}, the result follows from Lemma (7.3.1).

The next result is an-exercise on page 261

of (E1). The proof may be found in (Kd].

Theorem (7.2.5). lLet X

1

Hxa Eﬂi (xalel = xeX
oel
Then 0(x) = HO(xa).

‘ ' ael

| , , The next result, or to be precise, the idea for
‘ . that

| its proof, is used in [Pi] and [Sfl to show a topolo-
‘ A

| gical projective nlane is connected or totally disConnect-

ed. We shall prove the theorem in its most general

3 setting.

2 | Theorem (7.2.6).

Let X be a topological space.

Suppose G is a set of homeomorphisms from X into X with

; the pronerty: for any two pairs of points (x, y),

(x, z) such that x # y and x # 2z, there exists feG,

\ such that f(x) = x and f(y} = z. Then X is connected
| Sden Ladt ane aen A 1s tonlerted
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or totally disconnected.

Proof: Suppose X is not connected. By

',Theorem (7.2.3)(4), Q(x) # X.

Claim. Q(x) = {x}.» If this is false, there
exists yeO(x) such that y # x. Since Q(x) # X, there
exists ze € 0O(x). Hence there exists feG such that
f(x) x and f(y) = z. Thus f{p(xil = Q(x) and so
f(y) zeQ(x). Contradiction. Thus Q(x) = {x} and
so by Theorem (7.2.3)(3), C(x) = {x}.

t

Next we consider a new concept of connectedness

of a space X with respect to an arbitrary equivalence

relation R.

Definition (7.2.1). Let X be a space and 8 an

equivalence relation on X. Let [x]be any equivalence class

(1) X is called 8-disconnected iff X = Ulu U2 such that
U

Ul’ 5 are non-void onen sets with the property,

xelly, vell, implies xg@y.

Clearly ugn U2 = f and each Ui; i=1, 2,is
saturated with respect to 63 i.e.)eri impliesﬁx]E:Ui,

i=1, 2. Clearly we may replace open by closed.

If X is not @-disconnected, we say X is

f-connected.
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(2) A pair (A, B) is called 6-separated in X iff
xel' (A) and yeB or xeA and yeT(B) implies x¢y.

Let 8 be an arbitrary equivalence relation on a space

'X, for the rest of this section.

Remark (7.2.1). TIf (A, B) is a pair such that

A, B are open and xeUj, yelU,, implies xéy, then (A, B)

is B-separated.

Proof: Take xel(u;) and thZ, such that xBy.
Then since each U; is saturated,[x}={yl© U,. Thus
xeP(ul)n U2 and hence Ulﬁ_U2 # .

Remark (7.2.1). If 6 is the identity relation

then @-connectedness is-connectedness. Also 6-discon-

ectedness implies disconnectedness.

Comment (7.2;1). We may now obtain results for

8-conncctedness which are completely analogous to the

well known results on connectedness. Since the proofs,

as in Remark (8.3.1), are essentially the same, we

shall not include them except where the generalization

is not obvious.

Theorem (8.3.7). The following are equivalent, for CCX

(1) C is 6-connected.

(2) For each @-separated pair (A, B) in X, such that

C=AuB, A= fior B=f.
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(3) The only open-closed set V saturated with respect

lr"’

8 is # or X.

Corollary (1). If C is @-connected and C E:Ulu u,

such that (y, UZ) are 6-separated, then C & U; o

c
C & UZ'

Corollary (2). If {C,}, ; is & family of

8-connected sets such that frﬁci # p, then O ¢
iel

i
is f-connected.

Corollary (3). If for each x, yeX therc exists

a B-connected set C such that x, yeC, then X is

6-connected.

Lemma (7.2.2). If C &€ X is B-connected, then

r(c) is 8-connected.

Lemma (7.2.3). If Cy and C, are O-connected,

then

C1 X C2 is (8 X 9)-connected,where (xl, X,)

(8 x 9)(y1, yz) iff xle-y1 and ngyz.

Proof: We invoke Corollary (3) of Theorem (7.3.6).

Let (xl, xz), (yl, yz) be two points of C1 X CZ‘ Define

C=0C x {x;}ulyr x €. Since Cy and C, are §-connected,
C; x {x,} and {yy} x C, are (6 X 8)-connected. Since
(vys x)eCy X {x7}k’{y1} X C,, C is (8 X 8)-connected

by Corollary (2) of Theorem (7.3.6). Since (Xy, X;),
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(y, yz)eC, the result follows.

Lemma (7.2.4).

Let C be 8-connected in X, and

f: C X C+X be a homeomorphism such that (al, az)

(8 X 9)(by, by) iff f(a;, a,) B £(by, b,). Then X is

G-EQBpected.

Proof: If V is open-closed.and saturated with

respect to 8, then f'l(V) is open-closed and saturated
by the assumptions of the Lemma. Hence f'l(V) =

CXCor $ and so V = X or §.

Theorem (7.2.8). li X is @-connected, then

X/8 ig connected. If f: X+X/8 is open,'the converse

is true.

Proof: Let X be 8-connected. Choose V open-

closed in X/8. Then f'l(V) is open-closed in X and

saturated with respect to 8. Hence f“l(V) = # or X,
and so V = f or X/&. Conversely if f is open let

X = Ulu UZ such that UPUZ are non-void bpen and erl, yeU,

implies xdy. Hence f(X) = f(Ul)\If(UZ) such that f(Ui)
are open non-void and f(Ul)ﬁ f(Uz) = p.

Definition (7.2.2). For each xeX, define,

(1) A(x) =

{V|V is open-closed, saturated with respect

to ® and xeV}, and
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T(x)

{y| For each VeA(x), YaV # 9}

{y|For each VeA(x), ¥ € V}.
M\ vvea(x)).

]

(2) If AS X, A (x) = {V]V is open-closed, saturated in A
such that xeV} and TA(x) = {y|lynV # 2 for each
VSAA(X)}.

(%) X is called totally 8-disconnected iff T(x) = X

for each xe X.

Theorem (7.2.9). The following are true, where

f£: X+X/8 is the quotient map.
(1) T(x) is a closed set.
(2) If T(x)

X, then X is 8-connected.
(3) x & T(x) and Q(x) & T(x).
(4) T(x) & £ e,

(5) If X/6 is totally disconnected, then X is totally

8-disconnected.

Proof: (1) is obvious. (2) is proved essen-
tially the same as Theorem (7.3.3)(4). (3) is easily
shown. (4) follows from the continuity of f and the fact

that f-l(A) is saturated for any A. (5) follows

‘immediately from (4).

Lemma (7.2.5). Let A Q;X3 f: X+A  a continuous

onto map such that xfy imnlies f(x)ff(y). Then
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Proof: Let C be open-closed in A and satur-
ated such that f(x)eC. Then xef'l(C) and f'l(C) is
open-closed. Also if yef°l(C) and zQy, then f(z)Bf(y)
and f(y)eC. Hence £(z)eC or ze£ 1(C). Thus £ 1(C)eA(x).

Hence it easily follows that foj E-f'l(TA(f(x)).
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§7.3. Miscellaneous Results

Theorem (7.3.1). Let X be a topological

space which is not indiscreie.

Let G be a .doubly
transitive set gi homeomorphisms from X to X.

X is T,.

Then

Proof: Let x # y. Since X is not indiscrete,

there exist s, teX, s # tyand VeQ(s) such that t}V.

There exists feG such that £(x) = s and f(v) = t.

Since f is continuous, there exists WeQ(x) such that
f[w €& V. Then clearly yéw, otherwise f(y) = teV.

Contradiction. Similarly there exists Ua%?y) such that

x¢U. Thus the theorem is proved.

The next two results are easy to show. We omit

their proofs. -

Theorem (7.3.2). Let f: X-Y;

g: Y-L;
a4
f: Y+Z and Aér'

X+Y, where X, Y, Z are topological

snaces. Then

~

~N o . . 4
(1) 1f f ¢ is continuous and g is open-onto, then f

is continuous.
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Ay o, .
(2) If f ¢ is open and ¢ is continuous onto then
or
T i

1 opeén.

(3) If ¢ f is continuous and g is open-(1 - 1)},

then f is continuous.

(4) If g f is open and g is continuous-onto, then f

is open.

Theorem (7.3.3). Let X, Y be topological

spaces and f: X-Y.

If for each xéX, there exists an

open set UeQ(x), such that f‘U: U+Y is continuous,

then f 1s continuous.

Definition (7.3.1). Lkt A& X and X is a tcpolog-

ical space. Then 3(A) = I'{A)n T (& A) is called the
boundary of A.

From vage 37 of [ﬁil, we quote the {b‘ibWIﬂg,

Lemma (7.3.1).[}22] Let AS X and RE X, X

a topological space.

(1) 3(A) = ¢ i{f A is open-closed.
(2) T(A) = Ava(A).

(3) 3(AaBYS3(A)uwa(B).

We end this chapter by proving the following
technical lemma we shall use later.
Lemma (7.3.2).

Let X be a topological space;

0 €X; V&X. Assume (i) Q is closed in X,

(ii) V is open-closed in X\ Q.
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Then 3 (V) & Q.

Proof: Claim. (a) V is open in X.
(b) Va 3 (V) = p.

(a) Since Q is closed, XN\ is open. Hence by (ii)

V is open in X.

(b) From (a), V is open and hence T@ V = € V. Then

Vad(Vv)

Va[P(VnT (€ V)

VaT (V)n v = g.

. Now V closed in X\ Q implies V

Ca(XN 0)

for some closed set C in X.

Hence V = Ca(XaATN) =

Ca€0. Therefore we obtain

VuQ=(Can€QQuQ=(CvQn (QudQ =cCuv .

Since C and 0O are closed in X, C v Q is closed in X,
and so Vv Q is closed. Now T(V) = Vu3(V) by Lemma

(7.5.1)(2), and since T(V) is the smallest closed set

containing V, we obtain
3I(V)&E Vud(V) =T(V)S Vu Q.

But by Claim (b), Va3 (V) = #. Hence 3(V) < 0.
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A

§7.4. The compact-open topology

Definition (7.4.1). Let X and Y be topologi-

cal spaces. C(f, Y) = {f]|f: X+Y is a continuous map}.

We define two topologies on C(X,‘Y) as follows:

Let *ﬁ = get of finite subsets of X.

@ .
S

set of compact subsets of X.

[}

open sets of Y.

The sets T(F, u) = {f|feC(X, Y) such that f{F] & U},
where :FE\% (€ ) and Ue 6’3 form a subbase for a

topology called the topology of pointwise convergenc:
-(the compact-open topology).

We denote the former by

p and the latter by c¢. If we wish to make explicit

which topology we are considering,we write Cp(X, Y)
or CC(X, Y). Moreover, we write, fag f and fa § f
if we are talking about convergence in p or c respect-
ively. If, A S C(X, Y), then r.(A) and FP(A) refer to

the closure of A with resnect to ¢ or p.

The following results may be found in [ﬁi}.
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Theorem (7.4.1). Let X and Y be two topological

spaces.
(1) p € c in €(X, Y).
(2) I‘C(A) < I‘p(A) for each A € C(X, Y).

(3) p is the product topology on C(X, Y).
(4) 1£ Y is T

25 then C.(X, Y) and Cp(X, Y) are T2.

Definition (7.4.1). Let X, Y, Z be topological

~/
spaces. Let f: X x Y»Y. Define f: X»Cé(Y, Z) by

f(x) = fx where fx: Y+Z is the map fx(y) = f(x, y).

Theorem (7.4.2). Llet X, Y, Z, f and £ b

o

S

in Definition (7.1.1). The following are true.

. ~
(1) If f is continuous, then f is continuous.

(2) If Y is locally compact TZ’ the map

H: C_(X, Y) x C_(Y, 2)>C_(X, Z) defined by

H(g, £) = ¢ f is continuous.
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§7.5. Topological groups and rings

Definition (7.5.1). Let G be a group. G

is a topological group iff G is a topological space

such that
(i) The map g1: G x G+G,"gl(x, y) = Xy is continucus,.

(i1) 2,1 GG, g,(x) = x 1 is continuous.

If G is only a monoid under gy, then G is a tovologi-

—

cal monoid iff g, is continuous.

Theorem (7.5.1). {Pf] Every T2 tonological

group is completelyregular.

Theorem (7.5.2). [Pl] Let X be a topological

space and G a topological group. Then C.(X, G) is a

topological groun with the operation (f.g)(x) =

f(x)-ﬁ(x)-

Theoren (7.5.3).[?2] If X is a locally compact

—

space, then CC(X, X) = CC(X) is a topological monoid,

under composition.

Proof:* This follows immediately from Theorer


http:continue.us
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(7.1.2)(2).

Definition (7.5.2). (R, +, .) is a tonological

ring iff (i) R is a set with a topology.
(i1) - (R, +) is a topological group.

(iii) (RN {0} .) is a topological monoid.

If R is a division ring, then R.is a topolo-

gical division ring iff R is a tonological ring and

(R \N{0}, .) is a topological group.

Definition (7.5.3). Let G and H be tonological

grouns. Hom(G, II) = {f|f: G-+H is a continuous groip

homomorphism}. End G = Hom(G, G).

Theorem (7.5.4). {Pl] Let G and H be topolo-

gical groups. Then

(1) If H is TZ’ HomC(G, M) is closed in CC(G, H).

(2) If H is abelian, Hom(G, H) is a topological sub-

group of CC(G, H) .

Theorem (7.5.5). [Pf} Let G be a locally con-

pact T2 topological additive abelian group. Then

End . G is a topological ring with the onerations;

(f+ 2)(x) = £(x) + g(x) and (fg)(x) = f(g(x)).

Theorem (7.5.6). [ﬁl] Let G; and G, be tonolo-

gical groups. Let h : G1+G2 be a topological group
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isomorphism. Then ¢h: End c G1ﬁ+End CQGZ; defined
‘EX ¢h(f) = h f h'l, is a monoid isomorphism with respect

to composition and a homeomorphism,

Corollary. Let G; and G, be locally compact

T2 grouns. Then if h: G1->G2 is a topological group

isomorphism ¢ End Gy ~End G, is a topological

monoid isomorphisn.

Definition (7.5.4). {Hl] G is called a semi-

topological groun iff g1 G X GG, ql(x, y) = xy 1§

continuous in both variables separately.

Theorem (7.5.7). {EZ] Every locally compact

T2 semi-topological group is a topological group.

‘Theorem (7.5.8). [Hfl Let G be a semi-topolog-

ical group and N? normal subgroup. Then

(1) G/N is a semi-topological group.

(2) The quotient map f: G»G/N is open.

The thcorem remains true if we replace semi-topological

group with topological group.

Theorem (7.5.9). {Hl]. Let G and H hglgggglg-

gical groups. Let f: G-»H be an open-continuous ontn

N
homomorphism. Then G/K = H, where € is a topological

group isomorphism.




CHAPTER 8

Topological H-planes

In this chapter we initiate a study of top-

ological affine and projective H—planesﬂ

The theory for the ordinary cases is of
course due to Salzmann and Skorhyakc?. We shall

obtain generalizations of these results.

§8.1. Tonological affine H-planes

<P ,?{ , I> is a

topological incidence structure iff QP and 'L are

Definition (8.1.1). 8

: o
topological spaces and I& T x L. Such a structure

is said to have a topological property "P" iff‘x?

has this property.

Notation. If A is an incidence structure, then

for PE:ﬁD » bp = {zlle‘ﬁ and PIL}, and tﬁi = {P|PIg}.

Lemma (8.1.1). Let A be a topological incidence

structure satisfying (P1) [cf. Definition (1.3.1)].

- 227 -
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Then |
(1) -'XP}_?_ a indiscret e (Ty) space iff each"%EQ

an indiscrete (Ty) space, where Zei .

(2) If each —w%% is connectéd, then :\P is connected.

Proof: (1) If @ is indiscrete or Tl’
clearly %‘Dx is also. Conversely let eachfpl be-

indiscretg (Tl). By (P1), '“',[-D, = U'{'E.Q » for any P.
Led
P

First assume U is open in:{P , U# f#. Select Pel.

Hence U = LU TIP ] Since ;CP is indiscrete,
- f.£¢ -

Un ‘;fpﬁ =?R>Q P . Hence U =3§) . Secondly sunpose

each :%32 is T;. Hence I‘«_@ {r} = I‘{P}n-—:'t{:’sz = {P}, and so

T{P} = L)[r{v}n j;P] {P}

£€¢P

(2) Since m':?? # 9§ and :{P U‘-;PJL’ the result

Qeép £e¢

follows from Theorem (7.3.1)(3).

Definition (8.1.2). Leté& = <P , L, 1,1 > be
an affine H-plane. Let :\??2 =‘-_1‘P XT{P \ 0—{? and .29\2 =
\ﬁx‘}i N {2, m)] ALOAm}'

Define ¢1 /\,ﬁ by q> (P, Q) = PQ and
. ) k -— — .
2" ‘é:*. P by (bzfz,m) = Lam. Recall, X = (G » Xg):

®—>» R/o is the quotient map. $15 95, . are callad

¢

the associated maps of the plane L . Let —51, :5'2, T
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be the associated mans of X = af/o.

Notation: If f: X=¥, g: X< and h: X X Y22

then for anv integer n
f" is the man fn(xl, coes X)) =(F(xg), e, FUX)),

(f X g) is the map (f X g)(x, y) = (f(x),g(y)), and h"

is the map 'thy) = h(x, v).

Remark (8.1.1). The following identities hold:

9
(2) ¢- )(2 = Xp d?z-

(3) ¢ x2 = Xy L.

Proof: These all are easily shown using

the fact x is a homomorphism,.

Definition (8.1.3). Let ®'™ = =W\ 7P and

o .
A(j) = éx\ {£|A20Aj}where Pe P and je %R . Define

o7 BT R vy 6P = rq.

o3: A>T by od(1) = 1.
P vy ie = e,
P X % by P =L, 0.
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Definition (8.1.4). :&? =<P 8, 1, I

is a topological affine H-plane iff }E is an affine

H-plane with the pronerties
(TAL), EQ is a topological incidence structure.

(TA2). The maps ¢1, ¢, and L are continuous.

Clearly o', ¢, P ]

1 are also continuous.

and L

Lemma (8.1.2). lff\D is an affine-H—nlane

sat1sfv1no (TA1) and having ¢2 and I continuous thcn

0E X Ot+1%>(cf Lemma (6.2.2

for any ternary field 0E, X, Y}, h,:

. W _ .
a homcomorphism. In general, for any fe & , £ X £ is

homeomornhic to ?P

Proof: We may clearly choose a coordinate

system {0, E, X, Y} such that £ = 0E. From Lemma
(6.2.2), there is a (1 - 1) onto man hZ: 0E OE+'E)

such that

hy = ¢, (1" x 18) and b3t = (63 Lhxed" 1),

lHlence since ¢, and L are continuous, h2 is a homeoror-

phism.

Definition (8.1.5).

(1) (L, .) is a topological loop iff L is a topnological space and

is a continuous map. If (L, .) is a loop, then ¢a and
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a¢ are the maps ¢a(x) = xa and _¢(x) = ax.

(2) (', T) is a topological ternary ring iff T and

its inverses are continuous. Eﬂi Definitions (6.1.1)

and (6.2.4i].

Lemma (8.1.3). If (L, .) is a tonological lodn

such that ¢a and b¢ are homeomornhisms, then for anv

ael, 2(a) = {aU} = {Ua} where {U} = Q(1).

Proof: This follows immediately since ¢, and

a¢ arc homeomornhisms.

Theorem (8.1.1). Let 32 be a topological affine

H-piagg and (0, E, X, Y) any coordinate system, with

{0E,T} its associated ternary ring. Then

(1) T and its inverses are continuous maps.

(2) (0E, +) is a topological loop, and multiplication

is also continuous.

(3) The mans ¢a and 2® in (0E, +)_are homcomorphisms.

(4) If Q(0) = {U}, then {U + a} = {a + U} = Q(a).

In particular if, A & OE then for any onen set U,

U+ A ii also open.

Proof:

(1) From Definition (6.2.4), we obtain
= (o"E L% e ). M x ). % h? xel.nE). From (TA2)
2 2 2 172
and Lemma (6.1.2), T is clearly composed of products and

compositions of continuous maps. From Lemma (6.2.15),


http:x(�:1.hz
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we see the same is true for N, M and X. Hence (1)
is proved.
(2) Since T is continuous, this follows immediately.
(3) This follows immediately from Corollary (S5) of
Theorem (6.2.5).
(4) This comes from (2), (3) and Lemma (6.1.3).

Finally U + A = L,i(U + a) is open since

: ac! ’

each U + a is open. //

Notation:
(1) Recall ¢ = {m|mo%}. We let &/o = {P|PIZ}. In
view of Corollary (4) of Theorem (6.2.3), we may

write, for any ternary ring (0E, T),

OL/© = OE/“T10 = {a +T1,0|a€OE}.

Also P = :?/0 and X, = ﬁ/c arc used interchangcahly.

(2):P ,fi and 2/o0 will all be endowed with their

respcctive quotient topologies. //

For the rest of this section & is a topological

affine H-nlane unless otherwise specified.

Theorem (8.1.2). For ecach e éi , the map

X' 22/ 0 is open.
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Proof: We may assume for some coordinate

system (0, E, X, Y}, that & = OF.

Claim. If U £ 0E, then
{x|x + 770 =u + {{g, for uel} = {x}x = u+n,ns'F(0+u€U}.

Since 0 €Ty, we have the inclusion & . Now sunpose
X = u + n. Since ne 'ﬂo we have (u + n)ch) by Corollary
(2) of Theorem (6.2.3). Hence we obtain from Corollary

(4) of Theorem (6.2.3)

Moreover again by Corollarvy (4) we have

Xge(a) = a + T{,- let U be open in OE. Then X, (1)
is open in OE/e iff x"l x (U) is open in OE. But by
NE OF

the ahbove claim

-1 N
XopXop (M = {xlx + Ty = u + [, uell} = U +T,,

which is open by (4) of Theorem (8.1.1).
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Corollary (1). Let (0, E, X, Y) be a coordinate

system, with T, M, N, Z its associated ternary operator

and inverscs. Let ?, ﬁ: N, Z be the associated ternary

-

operator and inverses of (0, T, X, Y) for ¥ . Then T,

—

ﬁ, N and Z are continuous mans. Thus (0E/¢, ?) is

a tonological ternary ring where ¢5 and 5¢ are homeo-

mornhisms.,

Proof: Since Xy, is open, continuous,onto,
the results follow from the Corollary to Lemma (6.2.9),

Lemma (6.2.16), Theorem (7.5.2) and the fact ¢; X, =

Xop %a-

Corollary (2).'QP is not compact and each

ge & is not compact.

Proof: Let £ = O0E. From page 48, (7.9)

of E;ﬂ, no topological ternary fieldmay he compact

and so (0E/¢, T) is not compact. But if OF is compact,
then OE/ﬂ is compact since XoE is continuous. Also

if ¥ is compact, then since 9 = 0E x OF, OFE is compact
by the Tychonoff theorem, and again 0OE/¢ is comnact.

Contradiction.

Theorem (8.1.3). Let (OE, T) and (0E, T) b=

the associated ternary fieldsof {0, E, X, Y} and

{6, L, X, Y} respectively. Then we have,
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(1) OE/T(O is Tl iff T 0 is closed in OE.

(2) The following are equivalent.

(a) OE/'T( 0 is discrete.
(b) o is open.
(c) {0} is open in OB/ ,-

Proof: (1) If OE/7TY, i; T,, then {"ﬁo} is
closed in 0E/Ty,. Hence x(‘);({'ﬂ o) = W, is closed
in OE. Conversely if T, is closed, then a +T ,

%

is closed, since a is a homeomorphism by Theoren
(8.1.1)(3). Thus 0EN (a + {{ 0) is onen. Because
Xop 1S open, Xop (OE\ (a + Tt o)) = OE/TY 0\{a + T O}
is open. llence {a + T(O}‘ is closed for each aeOQL

and so OL/TY 0 is T,-
(2) ()= (b) If OE/T1 0 is discret¢, then
{a +T 4} is onen for each aeOE. Thus {Q o} is oven.

llence x&é({‘n O}) = 'T(O is open.

_(l).)jt-—-j(c). Let T 0 be open. Since XOEiS
open, XOF(T(O) = {T(()} = {0} is open.

() "—%?“(d_)_. This follows since cba is a homeo-

morphism, from Corollary (1) of Theorem (8.1.2).

Corollary. - If PI% and {P} is open in 2/v,

then 2/0 is discrete.
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The next theorem was shown in EH] , for ordinary
topological planes. The proof for H-planes is exactly

the same,

Theorem {8.1.4). Each ¢ 11 is a regular

space. -{P is a regular space.

Proof: Choose £ = 0E. Take UQQ(O). Since
addition is continuous, there exists VeQ(0) such that
V+VCU., Now for each xeOE, f;I(V)= M{x; Vye(x),
since the function, fx(t)‘= the'unique’solution of y + t = Xx,
is continuous by Theorem (6.2.3) (1), fx(x) = 0 and
f;l(V) = M(x; V). Hence I'(V) & u, The result follows
from Lemma (8.1.3)(4). 7 is regular as P = 0E x 9E.

Corollary. Fach ¢/0 is a regular space.

Theorem (8.1.5). Egijﬁ? satisfy (TAl) with

¢, and L continuous. Then

(1) If g, me?ﬁ , there exists a homeomorphism f:

2-+m such that SoT€m$f(s)of(T). Moreover if 2/o,

m/oc & /0, then they are homeomornhic.

(2) If 2fl2'; A, BIL and A', B'I2' such that A$B

and A'¢B', then therc exists a homcomorphisn,
f: 2+2' such that f(A) = A', £(B) = B' and XoY&S
f(X)of(Y).
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Proof: (1) The map f from Lemma (1.2.2)
clearly satisfies the first statement since |
£(X) = L(j, X)~ 2 and £1(X) = L(j, X)A m. We prove
the last part as follows. DNefine f: 2/o0sm/o by
?(g) = f?EB. f is well defined since SoT(==f(s)of(T).
Also X f = E'XE' By Theorem (6.1.2), X and Xy
are open onto maps. £ is easily seen to be bijective,

Finally since f is a homeomornhism, f is one

also by Theorem (7.5.2).
(2) We consider two cases.

Case (1): 2¢2'. By Lemma (1.1.10), A, B,
A', B' are pairwise non-neighbouring points. Define
t = A'B, j = A'A and k = RB'., By Lemma (1.1.10) and
the aséumptions of the theorem, we obtain jétl, and
kégt, 2'. Hence> we may define the following maps.
fl: 2+t by fl(X) = ta L(X, j) and fZ: t+2', such
that FZ(X) = 2'a L(X, k). Just as in the proof of
(1) we see both fl and f, are homeomorphisms with the
property XoY%“)fi(X)ofi(Y)5 i=1, 2. Then f =
f, f;: 2+2' is a homeomornhism such that XoY<=f(x)o

£(Y) and f(A) = A', f(B) = B'.

Case (2):! fof'. Choose 2"\‘£ such that
l”él,vl'. Let A", B"IL" such that A"¢B". Then by

Case (I)Jthere exists a homeomorphism f;: 22"

1
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such that f(A) = A", £(B) = B" and XoY iff £(X)o£(Y).
Similarly we obtain a homeomorphism_fzz 2"+% with the
same property such that fZ(A”) = A and fZ(B”) = B

Thus f = fz fl is our desired homeomorphism,

Let the following corollaries (1) and (2)

have the same assumpntions as the above thecorem.

Corollary (1). Each 2/o has a doubly transitive

set of homeomorphisms.

Proof: Take K s ﬁ, R', ﬁ'Iz/o, such that
A # B and A' # B'. Hence there exist X, Y, X,y
such that XoA, YoB, X'oA' and Y'oB', and X, Y, X',
Y'IL. By the theorem, since 2” 2, there exists a
homeomorphism f such that f(X) = X' and f(Y) = Y'.
Define.E: L/o+8/0 by %(ﬁ) = ??ﬁ). Then as in the
proof of (1) from Theorem (8.1.5), f is a homeomor-
phism. Moreover, F(K) = E(i) = ?7&3 = ;T = 2:.

Similarly f(A') = B'.

Corollary (2). Each &/o is connected or totally

disconnected.

Proof: This follows from Corollary (1) and

Theorem (7.2.5).

Corollary (3). If A = <® fﬁ , I> is an

ordinary affine plane satisfying (TA1) with ¢, and L



continuous, then P is connected or totally dis-

connected,

Proof: Since 9 = identity reclation, this

follows from Corollary (2).

For the rest of this chanter assume there

exists z/be‘g,snuﬂlthat 2/e is neither indiscrete

nor discrete. In view of Theorem (8.1.5)(1), each

m/® then has this property.

Remark (8.1.1). (1) ¥ /0 is neither discrete

mor indiscrete.
(2) Each % 1is neither discretenor indiscrete and the same

holds for:P

Proof: (1) This follows from Lemma (8.1.1)
and the fact a subspace of a discrete space is discrete.
(2) In view of the nroof of (1) it is enough to show this
for £ . Since 2/© is not indiscrete, there exists an
onen set ] # f such that U < /6. Now x'l(U) is
open in £, and xil(U) # f. If 2 is indiscrete, X;l(u) =
2, and so U = 9/0, Contradiction. Since Xy is open,

it easily follows that 2 is not discrecte.

Lenma (8.1.4). let A = <® , %, I> be an

ordinary affine plane satisfying (TAl) such that ¢,

and L are continuous. Then ¥ is either connected or




240

totally disconnected.

Proof: This follows immediately from Corollary

(1) of Theorem (8.1.5) and Theorem (7.3.5).

Lemma (8.1.5). If {0, E, X, Y} is a coordinate

system and 0 = P(0, 0), then h, [(En.OE) X (br\OEﬂ = 0.

na

Thus in general if fedy, (Png) x (Png) = P,

Proof: Now h2: 0E x 0E49q? is a homeomorphism

by Lemma (8.1.2).

Since h,((0A0E) x (0AOE)) = 0, by Lennma
(6.2.3), the result follows. //

It should be noted that until now we do not

know if & is an ordinary topological affine plane.
We next consider TZ planes and end this section by
determining necessary and sufficient conditions for

——

R to be a topolooical nlane.

Definition (8.1.6). X o= <® R, 1,0 s

a Ty tonological affine H-nlane iff the following

conditions are valid
(a) ® and jl are T, spaces.
(h) QW and OX are closed in:§ x?@ and ﬁ,ij

respectively.
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Comment (8.1.1). If ¥ is an ordinary

topological affine plane, conditions (a) and (b) in

the above definition are equivalent.

Remark (8.1.2). 1If aE_ is T,, then each & is
closed in ji . |

Proof: This follows as a consequence

of Thecorem (7.1.2)(3).

Definition (8.1.7). Let'izz 0Efo x OF/o —>

®/o be the map 32(5, b) = P such that @, b are the

coordinates of P in Rwith respect to {0, E, X, Y}.
Remark (8.1.2). The following are true.

= 2
(1) X'{p hZ = hz Xog-

(2)-Fé is a (1 - 1) onto continuous man.

(3) qu is open iff hZ is oven.

Proof: (1) is an easy calculation, (2) and

(3) follow from Thcorem (7.3.2) since ¥y is ovnen,

P

continuous onto and h, is a homoemornhism.

Remark (8.1.3). The map g,: ;ﬁz»nr. X 0OE

defined by gz(z) = Bn,rqll is a homeomorphism.

Proof: This follows immediately from Lemma (6.2.4)



242

Remark (8.1.4). If X is a topological space

such that for each pair x # y there exists a T,

subspace S(x, v) such that x, yeS(x, y),then X is Tl'

Theorem (8.1.6). The following are equivalent,
L P is 1.

(2) & is T.
(3) £ is a closed set of I for each le‘j; .

Proof: (1)==>(2). We invoke Remark (8.1.4).

Choose £ # m. Select j&‘ﬁ, such that Aj¢A£, Am'
Choose a coordinate system {0, E, X, Y} such that
j = 0Y. Then %, me éiz' From Remark (8.1.3), éi 5

is homeomorphic to OE ¥ OE and hence is Ty -

(2)=(3). Let Qa‘g and {Py} be a met in 2
such that Pa+P. Hence (Pa, 2)+(P, 2) and so L(Pa, L)~
L(P, 2). But L(P,, 2) = & for each a. Thus L(P, 2)er{e}.

But since ‘R is T,, r{2} = 2. Therefore L(P, 2) = ¢

1)
and so PIg.

(3)==5(1). Let Pe-xp. Choose £, me¢, such

that P = £ am. Since 2 and m are closed sets, so i§ {P}.

Lemma (8.1.6). If :f is a T1 space, then each

pencil A is closed in r g
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Proof: Let {ma} be a net in A such that.
m om. Take 2eA. Choose PIZ. ‘Define F, = (p, ma) and
F = (P, m). Hence L(Fa)+L(F). But L(Fa) = ¢ for each a.

Thus since é? is Tl’ L(F) = ¢ and so 2l m.

Theorem (8.1.7). The following are valid lﬁ?ﬁ
- is TZ’

(1) Each line is a closed set of &

(2) Each parallel nencil is a closed set gf_"&

(3) Each set of lines ¢p - is closed in ji.
(cf. Notation page 227).
Proof: (1) and (2) follow from Theorem (8.1.6)

and Lemma (8.1.6) respectively.

Qz) Let {za} be a net in ¢, such that za»n. Hence

P
L(P, £,)-L(P, 2). But L(P, 2,) = 2 . Since ¥ s

T,, L(P, 2) = X and so Le6,.

Definition (8.1.8). If ge ¥ and P(»:'-'l}> , we

define
(i) H(g) = {P|PgX for each XIg}.
(ii) H(rP) = {g|PgX for each XIg}.
(iii) A(eg) = {mlAq¢Am}.

Lemma (8.1.7). Let 22 be Tz. Then

(1) H(h) is oven in P , for each line g.

(2) H(P) and A(g) are open in j{ for each point P and

line §&.
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"Proof: We show the complements of each of these

sets is closed. Let {Pa} be a set in @ H(g) such that
Pa+P. Hence there exists XaIg such that XaoP . To
show there exists XIg such that XoP it suffices to show
L(P, g)og, by Lemma (1.1.10). Now PQ*P implies L(Pa, g)-
L(P, g). Since XaoP , L(Pa, g)og for each a. Thus by

Remark (8.1.2), L(P, g)ee or L(P, glog.

A Next we show (U H(P) is closed. Let {ga} be a
net in € H(P) such that g,”ge- Hence there exists XaI'ga
such that X,oP and so L(P, ga)og , for each a. Now
L(r, g )*L(P, g). Since Op is closed, (L(P, g), g)

EOX or L(P, g¢)og. Thus ge @ H(P).

Finally we show & A(g) is closed in ji . Let

{m } be a net in € A(g) such that msm. Let A =
o

Aa' Hence AaOAg for each a. We must show AmoA By

.
Lemma (1.1.13), it is enough to show gom or gam = f.

Suppose PIg, m. Choose Aj¢ Ag, A such that PIj. Then

m’

P = ja T and Aj¢Aa for each a. Define Pa = jam,.
Since ¢% is continuous, P »P. Now A oA implies there

exists Ly ¥ ]|m(jl such that 2,09, by Lemma (1.1.3).

o

Since (P_, ma)+(P, m), we have L(Pa, ma)*L(P, m). Put

¢
L(P,, m ) = L(P,, 2)

Qa and L(P, m) = m and so
Qajm. Since ang and E is closcd, we obtain the desired

result, gom. //
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We next show the topology on %i is essentially
determined by the topology on ¥ or the tonology on

9. for each Zeji .

Notation: QPU(V) is the relative neighbourhood

filter of V with respect to PU,

Definition (8.1.9). Let 281; , such that 2 = UV,

Uev . Select P such that P¢gX for each XI%. Then

define 81 and 82 as follows:

(1) w€el iff there exists WIEQ(U) and WZEQ(V) such that

W = {RS|ReW, and SEWZ}.

1 .
(2) WEBZ iff there exists UIEQPU(u) and UzerV(V) such

that P¢u1, U, and
W = {RS]ReQPu(u) and SEQPV(VY}.

Clearly 61 and B, are filter bases.

(3) Let Ql(Q: u, v) be the filter generated by 3, and

1
Q,(%: u, v, P) be the filter genecrated by Ry

Theorem (8.1.8). Suppose ¥ is T,. Let & =

&

UV and P¢gX for each XI%. Then

Q(e) = 2,(8: U, V) = 0,(2: U, V, P).
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Proof: (i), Q(2) 991(2: U, V). Take VeQ(R).

By the choice of P, PU, PV#L. Thus £ = (PUa 2)(PVA 2) =
¢1(U, V). Hemce there exist Wlefz(u) and WZEQ(V) such

1 = {RS|st1 and
Sewz}. Clearly V,e®;(2: U, V). Also RSeV; imnlies

that ¢l[w1 X W, n ’-RZ}S_V. Define V

R, S)el, x W, n B%. Thus {6;(R, S) = RS}eV. Thereforc

V1 € V and so vml(z: u, V).

(ii). 9,(2: U, V)S @,(2: U, V, P). Let
Vléﬂl(l: U, V). Thus there exist W ,eQ(u) and W,eQ(v)
such that V1 = {RS]REWl and SEWZ}. Now P # U and

~F
being Tz imply  there exists WleQ(u) such that PQWI.

~Similarly there cxists ?\726.‘2(\/) such that P’%WZ.

; 7 = v T w
Define Wi = Wln Wln PU and WZ = Wzn Wzn PV.

Then WeQp;;(u) and WjeQp, (V). Then V, = {RSIR&:Wi

and SeWé}eQZ(!L: U, .V, P) and V, € V; imply V,eQ,

(L: U, VvV, P).

(iii), 522(2: U, Vv, PYE&Q (2). Let VzeQZ(JL:
U, V, P). Then there exist Wle:Q(U), WZEQ(V), such that

P{.Wl‘u WZ and V, = {RSIREWin PU and SeW, nPV}. By the

2

. _ . PU
choice of P, A2¢ADU, APV' Then U= dﬁ (2) and V ¢2 (9.)

Thus there exist TeQ(2) and SeQ(z) such that ¢>2U[T A(PU)]

W, and 6)V[ sa A(PV)] Clearly 2el(P) a A(PU) n A(PU)

and each of these sets it open by Lemma (8.1.7). Thus
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V= Ta SAH(P)aA(Pu) n A(PV)eQ(2).

Claim, V §;V2 and hence VZeQ(Z). By Remark

(2.2.2) PUAPV. Take meV. Since meA(PU) there exists

R = maPU and meA(PV) implies there exists S = maPV.
Since mel(P), PgR, S. Next R4S. For if this is false,
then RoS; PUAPV; P, RIPU; and P, SIPU imply PoR, S

by (A5). Contradiction. Finally since meTnS we have

(R = o2 (m)teod? [TnA(PU)] S ;. Similarly SeW,. Hence

m =.RSeV2.

Corollary. ¢4 is an open map if ¥ is T,.

Recall the following Lemma from topology.

Lemma (8.1.8). Let X be a set. Let B be a

filter basec such that X = U B. Then B is a base for
BeB - T T

a topology on X.

_Lemma (8.1.9). Let R bhe a T, plane. Define B on

L0 as follows:

W[ﬁ: V] eB iff U, V are open in /o such that

ol

eU and ?e\.}} = '.'\'\-_I.J: {/}

——

{XY|

Then B is a base for a tOpologyU - on }f/o if

X 1is open.
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Proof: It is easy to see that B is a filter
base. We must show &£/0E€ (JB. Select 2c £/o.
- - BeB
Let £ = PQ. Since 0 is closed and X is open,
®/0 is T2 by Theorem (7.1.2)(2). Hence there exist
open sets, UeQ(P) and VeQ(ﬁ) such that UaV = p. Thus

vew(l: V).
Now recall the following facts from-[xd].

Definition (8.1.10). Let X be a topological

snmace. Let Y be a set and f: X»Y, a map. Then define (§)
to beonen in Y iff f'1(U§ is open in X. This is a

topology called the quotient topology of Y with respect

to f.

If 6 is an equivalence relation on X, then the
quotient topology of X/0 with respect to the quotient
map f: X»X/8 is just the usual quotient topology of X/6.
[ct. Definition (7.1.13.

Theorem (8.1.9). [Kd} Let W/;PE.E topology on

a set Y. Let X be a topological space and f: X-Y an

onto, open continuous map with respect ng\f . Then

V' is the quotient topology of Y with resnect to f.

Lemma (8.1.10). Let X, be open and ¥ a T,

plane. Let J be the tonology of Lemma (8.1.9). Then

v is the quotient tonology of § /o. Moreover xi

is opem.
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Proof: We invoke Theorem (8.1.9). First we

show Xp is continuous. Let W{U: V3}eJ be an onen

neighhourhood of £ = RS. Since X3 is open, and 0p

is closed, /o0 is T, by Theorem (7.1.2)(2). Hence

2
we may assumc U = X (v, V= XT? (V), and TaV =4
where U and V are open sets such that ReU and SeV.

Thus U x V & ®°. By Theorem (8.1.8), M = {XY|XeU

and YeV}eQ(RS). It easily follows that M & x'l(WU_J: v])

and so X'i is continuous.

Next we show Xf\ is open. Let 2 = XY be any
line, Select W = {RS|ReU and SeV} an arbitrary neighbour-

hood of & by Theorem (8.1.8), where UeQ(X) and VeQ(Y).

B Sj_ljl_@. Xg (M-). = {ﬁglﬁsxqp (U) and SEX? (V)
Let {RS[RCX.P (V) and SEX"P (V)} = A. Clearly XX (M € A,
since y = (X?%P , x&) is a homomorphism. Conversely let
RSeA. Then R = W such that WeU and 'S = . where ZeV.
Hence WZegM. Then we obtain, since x is a homomorphism,

WZ) = WZ = RSe 1y,
Xi() xi()

Since ¥ is onen, and U and V are onen it

»
follows by the claim that )(i (M) is a neighbourhood of
2 = XY with respect to the topology J .  Thus x&

is open and our result follows,

Theorem (8.1.10). TIf W is a T, plane then the

following are cquivalent.
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(1) qu is an open map.

(2) X"H’ and X“é’. are onen maps.

(3)5% is an ordinary tonoiogical affine nlane.

(4) Kz is an open map, |cf. Definition (8.1.7].

Proof: (1)==>(2). This is just Lemma (8.1.10).

(2)=§>(3). This follows from the equations of
Remark (8.1.1), the fact Xp and &f are open, continuous

onto and Theorem (7.3.2).
(3)==>(4). This foliows from Lemma (8.1.2).

Lilfﬁ>(l). Remark (8.1.2)(3) yields this result

immediately. //

It is not know, in general, whether topological
nlanes are completely regular, However, we may prove

the following.

Theorem (8.1.11). Let 2 be minor Desarguesian.

Then

(1) If {0, £, X, Y} is a coordinate system (0, +)

is a topological group.

(2) If ¥ is T,, then P is a completely regular space.

Proof: (1) From Theorem (8.1.1), (0OE, +) is a

topological loop. Since (0OE, +) is a group by Theorem
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(6.2.5), Corollary (6) of Theorem (6.2.3) yields

-a = (¢2E L% ¢g LOE hg)(a). Hence (0E, +) is a topolo-

gical group.

By a famous theorem of Pontrjagin , we have
by (1) that (0E, +) is a completely regular space. Since
0E x OF TP , and the product of comnletely regular

spaces is completely regular we have our result.

Theorem (8.1.12). Let 3 be Desarguesian.

Then

(1) (or, +, .) is a topological ring. Moreover the map

£: OE \ T{;70E defined by f(x) = x™' is continuous.

(2) OE/T 0 is a topological division ring and 0E/7y 0 <

0E.

Proof: (1) From Theorem (8.1.11), (0E, +)
is a topological grbup. By Theorem (6.2.6) and Theorem
(8.1.1)(2) (0E, +, .) is a topological ring. Finally by
Corollary (8) of Theorem (6.2.35 |

Fx) = (69" L8 037 6] nhy ()

and hence f is continuous.

(2) It is well known if OE is a topological ring then OE/71 0

is also a topological ring. Now OE/Tq 0 is a division ring
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by Theorem (2.2.3). To show 0E/Tq 0 is a topological

division ring we must show the map

F: OB/ T[N (T g}*0B/ T o0 F(x + T ) = (x + T 7"

is continuous. Let f be the map of (1). Then clearly
f'XOE = Xog f. Since f is continuous and Xop 1s 2
open, continuous, onto man, the result follows from

Theorem (7.3.2).

Since X0k is open, continuous, onto,the last
result followsin the samec fashion as Theorem (7.5.9)

for tonological groups.

Notation. Let C(P ,P ) = c(P ). [cf. pefin-
ition (7.4.1)).

Theorem (8.1.13). Let € be a T, plane. Then

every dilatation is continuous. Hence D< C(73P ).

Proof: We invoke Theorem (7.3.3). Take

oceD. Let R be any noint. Choose a line g such that RgX
for each XIg. Select P, QIg such that Pg0. By Lemma
(8.1.7), H(g) is an open set containing R. From Case (1)

of the nroof of Theorem (3.1.1) we have for each XeH(g),

o

<
[

L(P%, PX) A L(Q%, 0X)

a

P Q%0
5 pp X LT 6) (X).
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o
Let £ = ¢, (LPG ¢§ X LQ ¢2). Clearly ¢ restricted

to H(g) is f. Hence our result is proved.

Theorem (8.1.14). Let & be a T, plane. The

following are true.

(1) D is closed in CP(Q? ) and hence in CC([P ).
(2) M is closed in C,(#) and hence in c.(IP).
(3) Dp is closed in D and M, is closed in Dy

(4) N and 'I‘A are closed in T.

Proof: (1) Let {U&Qbe a net in D such that
: o o
0a+f. Choose P, 0Ig. Since oaen, P “IL(0 *, p) for
o o
each a. Then L(P a, a) = L(Q %, ¢). Now oa+F implies

[e) e} g
P %pf and 0 %af. Hence L(P @, o)»L(Pf, o) and

(e} .
L(O.O‘, Q)~>L(Qf, g). Since & is TZ’ we have L(Pf, g) =
L(Qf, a) and so PfIL(Qf, g). The last part follows by
Theorem (7.3.1).

(2) Let {oa} he a net in M suchoﬁhaé oa»f.
By (1) f€D. Choose P#N., Since cazM, P %0 aoby
Corollary (2) of Theorem (3.1.2).P %“,p% and 0 a+00
and.so (Poa, Ooa)+(PG, 0%). Since 0;? is closed,

(Pc, Qo)e&W or PUOQO. Hence oeM.

(3) This follows easily since ¥ is T,.

(4) We first show TA is closed in T. Let
{Ta} be a net in T, such that T LLet heA such that

PIh.
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fa T
Since TaETA, P “1h. But P

by Theorem (8.1.7)(1), PTIh. Hence TETA.

a»PT. Since h is closed

Now take {7 },a net in N such that 7 »t. Let
P be any point. Thas P %opT for ecach a, by Lemma
(3.2.1).7 We must show PToP. Select % such that P,
such that P =2aA h. Let g = L(PT, h).

P
T T
By Lemma (1.1.11), P ®oP iff goh. P %oP implies g, 0h.

PTIZ. Choose hed

T T
Let gCt = L(P a, h). Now P a-b'PT, Hence ga»g.

Since h is closed, by Remark (8.1.2) and qaeﬁ, we have

geﬁ or equivalently goh.

Theorem (8.1.15). Let & be T2 minor Desarguesian.

Let Pe ¥ . Then,

(1) QP is a T2 semi-topological group (pf. Theorgm
(4.2.6)] .
(2) P = {PT]PTOP, and teT} is a closed normal

subgroun of P

T
Proof: (1) Let P 0 be any point of'la

Let fo be the map fo(PT) = pT. PTO. Clearly fO = Tqo»
which is continuous by Theorem (8.1.3). Hence P

is a semi-topological groun. |

(2) Since M is a normal subgroup of T, P is clearly
a normal subgrounp of P by Theorem (4.2.6)(ii).

P is closed by Theorem (8.2.1)(4).



255

Corollary. :B’/'[S = V.

Theorem (8.1.16). Let¥ be T, minor Desarg-

uesian. Then

g

(2) ¥ is a T2 ordinary topological nlane.

ne,

(1) Xp is an open map and P/ P

Proof: (1) From Theorem (8.1.15) and its Cor-

ollary, WP'-——>¥P /P is the quotient map of

X_'P:
the grouns 4P and P . The result then follows

from Theorem (7.5.8).

(2) From (1) and Theorem (8.1.10), ® is an ordinary
topological plane. Since op and oy are closed and
X't'? and x\g are open by Theorem (8.1.10), —}:ﬁ is 'I‘2 by
Theorem (7.1.2)(2).

Theorem (8.1.17). Let ® be a T, minor Desarguesian

plane. Then for each P, fp is an open map where T has the

compact open topology. [cf. Theorem (4.2.6)(iiﬂ .

Proof: L&t f,(X) = Choose WeQ(P'), W

] T Tpx-
U.p 0 where U is an open neighbourhood

open. Thus W
of P.

Tpu
{P ""|ueU}. It easily follows that

1}

Now I

To
{TPU.TOIUEU}.



Claim. {b p }EQ(TO). Let M = {Pg‘and
T
(u) 0. M is clearly compact and V is open since
T is a homeomorphism by Theorem (8.1.13). Thus

T(M, Ve@(ry). If we show T(M, V {U P ] our
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claim and the thcorem will be proved. Let teT(, V).

T
. T
Then PY V and so P' = 0 0 such that Q&¢U. Thus, P =

T T TpnT
(p po) L. p PQ0 Consequently



§8.2. Connectedness in topological affine

H-planes

In this section we obtain generalizations
of the result by Salzmann that each plane is connected

or totally disconnected.

Theorem (8.2.1). The following statements

are valid.

(1) For each le?ﬁ , /o is a connected or totally

disconnected regular T, space.

(2) I1f L Pal is closed in ¢ and 12(5'\2) =
f.
(3) ®/ is T,.

(4) P is closed and I(P) = B.

Proof: (1) From Corollary (1) of Theorenm
(8.1.4) and Corollary (2) of Theorem (8.1.5),
£/0 is a connected or totally disconnected space.
From Theor?m (8.3.1), &/o is T;. Since Ty is equi-

valent to T, in regular spaces our result follows.
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(2) Some /o is T,, op n (£ x &) is closed
in 2 X & by Theorem (7.1.2)(1). Hence by (3) of the

same theorem, Pn £ is closed.

If IQ(P,\R) # §, there exists an open set
Ue Pnat, U# p. Since Xy, is open, X, (U) = {P}
is open. lence by the Corollary to Theorem (6.1.3),

2/0 is discrete. Contradiction.

(3) ¥/ is T; from (1) and Lemma (8.1.1).

(4) Since ® fb is Ty, xil({P}) = D is
closed. Finally if I(P) # f, then without loss of
generality there exists an open set UeQ(P). Hence
for !Lé:cb‘P, Un 2 1s open in 2 and Up e & Pn 2. Hence

I,(Pa2) # . Contradiction to (2) of the theorem.
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Theorem (8.2.2). (1) Each ge § is connected

or QQ(P) < qu, for each PIg.

(2) "'HD is connected or
0(P) € P.

Proof: (1) Assume % is disconnected. Let

PI&.

Claim. @ (0 (P)) n &(Pa2) # #. If this

is false then Cl.'.(()}e (P)) € Pa £. Since Qz(P) is closed,

(E(Qn(P)) is open. By (2) of Theorem (8 .2.1),
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Iz(ﬁn 2) = f. Hence GZ(QK(P)) = f and so QI(P) = 2.
Thus by (4) of Theorem (7.2.3),% is connected.

Contradiction.

Now we show 0,(P) & P. If this is false,
there exists_YeQz(P) such that Y¢P. By the above
claim, there exists Ze ¢.Q£(P) such that ZIf and ZgP.
By Theorem (8.1.5)(2) therevexistsa homeomorphi§m
£ such that f(P) = P and f(Y) = Z.‘ Hence we obtain

{(Z = f(Y)}e{f(Qg(P)) = OQ(P)}. " Contradiction.

(2) AssumetﬂDis disconnected. By Lemma
( 8.1.1)(2) and Theorem (8.1.5)(1), each line & is
disconnected. Let Pe1P . Choose a coordinate

0. Let & = OE.

system {0, E, X, Y} such that P
By Theérem (7.3.5), Q((0, 0)) = QL(O) X Qz(O). By
Lemma (8.1.5), - Lemma (8.1.2) and (1) we obtain
Q(0) = h, (0, (0) x Q,(0))

Ehz(ﬁnz X 0nt) = 0.

Corollary, If (A is totally disconnected,

then Q,(P) S Pn % and Q(P) € P.

Next we obtain another generalization using

o-connectedness. [bf. Definition (7.2.13.
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Theorem (8.2.3).

(1) Each £ is o -connected or o-totally disconnected.

(2) P is ¢-connected or o-totally disconnected.

Proof: (1) Suppose 2 is o-disconnected.

Then let PI4.

Claim. @ (T,(P)) n C(Pnt) #.#. This
follows, in view of Theorem (7.2.9)(1) and (2),
essentially the same as in the claim in the proof of
Theorem (9.2.2). By Theorem (7.2.9)(3), P ST, (D).

To show the converse, we use the above claim and employ
essentially the same argument as we did to show QQ(P) c P

in Theorem (9.2.2).

- Lemma (8.2.1). The following are equivalent.

(1) There exists PO such that PO is connccted.

(2) There exists PO such that'ﬁon £ is connected for

each 2€¢P.

(3)-5 is connected for cach P,

(4) Fr,n ii connected for each P and each £s¢p.

Proof: By Lemma (8.1.2), (Pn %) x (Pnt) 2
® . Thus from Theorenm (7.3.1)(4), (1) is equivalent
to (2) and (3) is equivalent to (4). Obviously (4)

imnlies (2). We have only to show (2) imnlies (4).
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Let A be any point, A # PO. Choosc 2 such
that P, POIR. Select a coordinate system {0, E, X, Y}

such that PO = 0 and ¢ = 0E. Let a = A in OE.

Claim. 7 nOF -aga(r_)"nom. 'Using the fact,

Mo is an ideal, it easily follows that.
2P (0n 0F) € 34 OE.

Utilizing Corollary (3) of Theorem (6.2.3), the converse

inclusion is easily shown,.

Sinceaaij is a homeonmorphism, the result

follows.

Lemma (8.2.2). Assume there exists Py such

—

that Py is connected. Then P is connected iff P s

15 connected and 2 ii connected iff 2/c ii connectei.

Proof: 1In view of Lemma(&O.E.l), the result

follows immediately from Theorem (7.2.2).

Theorem (8.2.4). Assume there exists P

0
such that FO is connected. Then

(1) P is connected or Q(P)
pe P

(2) % is connected or Q, (P)

C(P) = P for each

[}

Cz(P) = Fr)ﬂ for each
PIL. |
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(3) W/ is connected or totally disconnected.

Proof: (1) vaWP is disconnected, then
O(P) € P by Theorem (8.2.2). Since P is connected
for each P by Lemma (8.2.1) the result follows.
} (2) By Lemma (8 .2.1), Pn & is connected.
Thé claim then follows ¢ sm (1).
(3) 1f P /s is dlsconnected then
is disconnected. Hence by (1), C(P) = P for each P.

The result then follows by Theorem (7.3.4).

Corollary. Assumec there exists PO such that

—

Py is connected. Then the following are .equivalent.

1y P is connected'[Q(P) = C(P) = Pl.
(2) X is connected for each %e . (?z(P) = C (P) =

Sag).

(3) 2/e is connected for each fe 31 E}ﬁ: is totally

disconnectecﬁ .

(4) qF/o is connected ( ® /o is totally disconnected),

Proof: We prove the first part. From Lemma
(9.2.3), (1) is equivalent to (4) and (2) is equivalent

to (3). Also (1) 1is equivalent to (2) since & x % :‘TP

Now we prove for the second set of assumntions.
(1) =>(2). If Q(P) = C(P) = P, then (2)

follows from the theorem and Lemma (8§.1.1).
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(2)=5?(3). This follows from Theorem (7.2.4).
(3)=24). 1f /o is not totally discon-

nected, then by (3) of the theorem, /o is connected.
flence by Lemma (8.2.3), "B is connected and so ¢ is
connected since £ x 2 2 . Thus 2/0 is connected.

Contradiction.

(4) = (). Let P /o be totally disconnected.
If (1) is false, then by the theorem, :? is connected

and hence tP/o is connected. Contradiction.
We next examine uniform planes.

Notation. Let ¥ be a uniform affine H-plane.

Then each & p is an ordinary affine plane. Let

¢p1{ ¢p2 and Lp be the associated mans of BQ p

Comment (8.2.1). Let & be a uniform affine
H-plane. Then |
(1) 6py(0, R) = f£a’P such that 0, RIf,
(2) 6p,(Fa P, gaP) = 0,(F, g).
(3) Lp(Q, 24 P) = L(0, g)nP.

5;oof: This follows from the proof of Theorem

(1.2.4 ).

Comment (8.2.2). Let ¥ be uniform. Each

X p is a topological incidence structure with the
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following topologies. ; has the relative topology
of QP , and the neighbourhood filter of any line in
L p, £nP, 95 (£ P) is defined as VyeQy(fa P)

iff there exists VeQ(f) such that
Vs = {haP|heV},

Theorem (8.2.5). Let ¥ be uniform. Then

(1) Each & p satisfies (TAl). Also $py and LP

are continuous.

(2) Each P is connected or each P is totally disconnected.

(3) P is connected, totally disconnected or

c(p) = q(r) ={Ph

Proof:

(1), From Remark (8.2.2) and the equations of Comment
(8.2.1), the result easily follows.

(2) This follows from (1), Corollary (3) of Thcorem
(6.1.5) and Lemma (8.2.1).

(3) Now by (2), each P is connected or totally dis-

connected. Also P is closed by Theorem (8.2.1).

If 1P is disconnected, then by Theorem (8.2.2),

C(P). € Q(PY &€ P. (1)
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Lemma (7.3.2), then yields,
Cﬁ(P) = C(P) for each P. (11)

Hence if each P is connected, C(P) = Q(P) = 3'hy (1)
and if each P is totally disconnected, ¥ is totally

disconnected by (II).

Corollary. If & is uniform and ¥ is

disconnected, then 7§> is totally disconnected or

C(P) = Q(P) = P. In fact,

(1) CE(P) = C(P) for each P.

(2).;P is totally disconnected iff each P is totall

disconnected.

(3) C(P) = Q(P) = P iff each P is connected.

———

Proof: This follows from the proof of the

theorem.



§8.3. Tonological Projective H-planes

In [Sf], Salzmann defines an ordinary vnro-
jective plane, A = <P , L , I>, to he tonologicai
iff B and § are Hausdorff spaces and the maps
¢1(P, Q) = PQ and ¢2(2, m) = 2am are continuous.

In terms of the neighbourhood relations oq? and Og

f}n this case Ap and A*_ , the identity relations On
P and ¢ resnectively] this is identical to saying
o and oy are closed in P xP and R x & respect-
ively. Thus it is quite natural to make the following

definition,

Definition (8.3.1). & = <P ,8L , I> is

a topological projective-H-plane iff ¥ is a project-
ive H-plane with the properties; (fPl),Eﬁ is a topologiéal
incidence structure.
(TPZ),Q-W and og are

closed sets in T x I and e XK respectively.

S (TP3) The maps o,

TP 2\ op +\i , defined by ¢1(P, Q) = PQ and 4,:

712\ Qi~§ P defined by ¢,(2, m) = £am are continuous.

T 266 -
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The maps ¢1 and ¢, are called the associated
maps of & . zbi, and cp%, Peqp and Ze‘ﬁ, are also con-

tinuous map defined by ¢5(0) = PQ and ¢3(m) = £a m.

As with the affine case 'W/o , €/ and Ltk are

endowed with their quotient topologies.

Lemma (8.3.1).

(1) Each P and % are closed sets }.’l’ﬂ) and ‘& respect-

ively.

2y P /s and R/ are T, spaces.

Proof:

(1) This follows immediately from Theorem (7.2.2)(3).
(2) Since x;‘?l ({rP}H) = P and X:&I({l}) = % our result

follows from (1) and Theorem (7.1.1)(2).

Theorem (8.3.1). ¥ *, the dual of X ,

is also a topological projective-H-plane.

Proof: Pt % is already a topological
space. We define a topology on %L* = {¢P|PeqP } as
follows, Let h: ii*_;qp be the man h(¢p) = P,

Then U* is open in i* iff h(u*) is open in P .
Then ‘&* is a topological space and h is a homeomor-
phism. The associated maps of & * are ¢%(2, m) =

80 m and 65(6p, 69) = PO. Then ¢f = h"! 6, and

1

¢§. (hxh) = ¢y - ‘Since , and h™' are continuous, ¢’{ is
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continuous. Because h X I is 'a homeomorphism, and
¢1 is continuous, ¢§ is continuous from Theorem (7.3.2)

(1).

Lemma (8.3.2). For each zeﬁ , T(&) is a
closed set. [cf. Definition (1.3.3 5].

Proof: Let {Pé be a net in Iz (%) such that

P +P., Hence there exist X If such that P _oX .
a a o o

By the Corollary of Lemma (1.3.1),there exists
X such that XgY for each YIZ and X4P. Hence XgP_
for each a. Now Pa+P, implies (X, Pq)+(X, P). Since
¢1 is continuous, XP +»XP. Let h_ = P X and h = PX.

a a a

By the choice of X and Lemma (1.3.2 ) hge, and ha¢2
for each a. Hence there exist Ta = ha“ 2 and T = h A 2.
Then Taopa, otherwise TaoX would imply haoz by
(P5). Contradiction. Now ha»h implies (hy, 2Y>(h, 2).
Since %, is continuous, TG+T. Hence (Ta’ Pa)+(T, P).
But (Ta’ Pa)equ , for each a. Then bhecause oxp 1s
closed by (TP2), (T, P)ecx._rP and hence ToP. Since
TIg, it follows that PeZ(2).

Theorem (8.3.2). For each 2¢f , ¥(2) s a

topological affine H-plénc and P (L) is onen.

Moreover if {pl, Dy, p3} are lines with

the pronerties of those in Lemma (1.3.1)(1),
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then :F = G-i) Ei (p;)-
i=

Proof: By Lemma ('8.3.2),'-H) (2) is an open
set. lLet the associated maps of & (2) be ¢21’ ¢22
and L. Since 4, and ¢, are continuous it easily

follows that %01 and ¢ are continuous. Finally,

¥
L(P, g) = P(ta g) = ¢ (iX063)(P, g) and s0 L, is

continuous. The last part is just a restatement of

Lemna (1.341)(1) .

Corollary. If 2ef , then B (%) = PN ek

—
-

is an open set in j:-P .

—

Proof: Since x'l(TP (2)) =1 (2) the result

follows by Theorem (7.1.1)(2).

Theorem (8.3.3). For each 2, Xg: 22 o is an

open map.

Proof: From Theorem (8.3.2) we may choose

{pl, Py DS} such that :rP = @J'-\P(pi). From Theorem
i=1

(8.1.2) we have leqp (pi) =4x;‘: L ";P(Di)_’z n P (pi)/o
is ‘an operi'map. Then if u £ 2 is open in ¢, xg(_U) =

Xp“(ig UaP () ) = ieglxé(_un@(pi)), Let U, =

x;(”r\:g)(ﬁi))l i =1, 2,3 Then U, is open in
2 n :IP (pi)/o. But 2 ,,T;EP (ni)/o = l/o.nqp (5'1) and
:FP (ﬁi) is open in 9P from the Corollary to Theorem
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(8.3.2). Hence £a T (ni)k> is open in 2/o and so

Ui is oven in /o . llence xz(u) =3 U; is open in
i=1

276' .

Lemma (8.3.3). Every perspectivity is a homeo-

‘morphism. Hence each projectivity is a homeomorphism.

Proof: Let ¢R: 2+ m be a vmerspectivity with

1

centre R. Then ¢R = ¢g ¢§ and (¢R)' = ¢§ ¢¥. Herce

¢R

is a homeomorphism.

Theorem (8.3.4).

(1) For each 2, PJ(L) is gjhiply-transitive group c¢f

homeomorphisms with resnect to op - Moreover cach

PJ(2/e) is a4riply-transitive group of homeomorphismg,

(2) Any two lines of WY are homeomorphic. Moreover

any two lines of @ are homeomorphic.

(1) The first part follows from the Corollary to Theorem
(1.4.2) and Lemma (8.3.3). 1If ?EPI(Z/p) there exists
FefJ(z) such that Xy £=f xz,bby Theorem (1.4.1).

Since f is a homeomornhism and xl.is open onto, f is

~a homeomornhism by Theorem (7.3.3).

(2) Let 2, me ¥ . vBy Lemma (1.4.1 ) there exists a
projectivity ¢R: L+ m.. By Lemma (8.3.3) our result

follows.
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Next choose 2/0, m/o in X /s. Choose R such that
RFLvm. Hence REX for each XILvm. Thus¢R: 2->m
is defined. Since ¢R has the property ¢R(X)0¢R(Y)
iff XoY by Lemma (1;3.7), éﬁ is well defined and

R

o Xg = Xp ¢ Since x, and X, are open, continuous

-—

R . . R . .
onto and ¢ is a homeomorphism, ¢ is a homeomorphism

by Thcorem (7.3.3).

ggyollary; Each 2/o is connected or totally

disconnected.

Proof: This follows from Theorem (7.3.6)

and the fact PJ(2/0) is atriply transitive set of

homeomorphisms.

Remark (8.3.1). /5 is discrete iff there

exists PI2 such that (P} is open in 2/o.

Proof: Assume {P} is open. Take O # P. By
Theorem (8.3.4), PJ(¢/o) is a triply transitive aroup
of homeomorphisms. Hence there exists ;EPJ(Q/é) such that

E(ﬁ) = 0. Hence {0} is open.

Y

From now on we assume there exists /o such

———— — ——

that it is neither discrete or indiscrete. By Theorem

(8.3.4)(2) ecach line in ® has this pronerty. In

view of Remark (8.3.1) cach 2/o has no isolated points.
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Theorem (8.3.5). “he following are valid,

(1) Each ge & has no isolated points.

(2)ﬁ§> has no isolated points.

(3) I(P) = I(%) = # for each PeP and 2e§
(4) 1(2(2)) = # for each 2e§ .

Proof:
(1) 1f {P} is oren in 2, then since Xy is onen
xz({P}) = {P} is onen and so bv Remark (8.3.1), &/¢
is discrete. Contradiction.
(2) 1f {P} is onen in I , then {P} is open in 2,
for Ledy. Contradiction to (1).
(3) If I(P) # #, therc exists an open set U < P, suzh
that without loss of cenerality PelU. Select Ledy.
Then XE(”r\Q) is onen in &/o. But clearly Xz(”'\l) =
{P}. Contradiction. :
(4) Sunposc I(5(%2)) # &. Ilence there existsan onen
set I such that # # U € %(¢). Thus there exists Pel
and m such that PIm and mof. Thus I{m) = 5(2). Choose

jed_>p such that jédm. Thus Pellqg j.

Ciaim. =(m)a j € P. If XeX(m)nj, then there
exist k and Y such that YoX and kom. Since kom anil
jgm, we havc'jk moj » K or equivalently PoX. Hence

XeP. Therefore Pelinj & I(m)n j € P. Thus X; (Unj) =

{P} is open in j/o . Contradiction.
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Lemma (8.3.4). Fach 2 is op -connected or

totally o-disconnected.

Proof: Because PJ(2) is atriply transitive
groun of homeomorphisms the nroof is the same as

that of Theorem (8.2.3).

Lemma (8.3.5). The following are equivalent.

(1) ¢ is o-connected (totally o-disconnected).

(2) /0 ii connected (totally discqpnected).‘

Proof: Since Xg is open, the first part follows

from Theorem (7.2.8). Now if 2/o is totally disconnected
then 2 is totally o-disconnected by Theorem (7.2.9)

(5). Conversely if £ is totally o-disconnected, then

2 1is fotally disconnected. Otherwise by the Cor-
ollary of Theorem (8.3.4), ¢ is cbnnectcd and hence 2/

is e-connected by the first part of the lemma.

Definition (8.4.2). {0, E, U, V} is called a

complete quadrangle iff {0, E, U, V} have the nropnerties

of the points in (P3).

Lemma (8.3.6). Let {0, E, U, V} be a complete

quadrangle. Then P N I(uv) 4 (OEN W) x (OE~W),

~where W = 0F A UV.

Proof: It is easy to see that OENW is just
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a line of the affine plane 9 (UV). The result

then follows from Lemma (8.1.2).

We now may prove the main generalization on
connectedness in topological projective H-planes.
The technique is motivated by Saltzmann's proof in

the ordinary case in Bl] .

Theorem (8.3.6). The following are equivalent.

(1) P is o -connected.

(2) 31 is o -connected.

(3) Each 2e & is °n -connected.

(4) 2/ is connected.

(5) ¢P is oy -connected.

(6) [N i§~°?P -connected for each SIZ and 2e§ .

(7) 1? (2) is op -connected for each ge f .

Proof: By duality (1) is equivalent to (2)
and (3) is equivalent to (5). Lemma (8.3.5) yields
(4) equivalent to (3). Thus it suffices to show (1)=>

(3)=(6)=> (7)=2(1).

(1)=5§g§l. Supnose 2 is c“,-disconnected.
Let PIZ. By Lemma (8.3.4), T,(P) = Paf. Choosc
Q such that 0gX for each XI2. Definc T*(P) = T1$\;§ (P)

and x: P\ 0+2 by x(X) = XQa 2. Clearly x|g& = i.

Claims.
(1) x is a continuous onto map such that XoY implies

k (X)ok (Y).
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() 1£Aace, ey = U0ox~dl.

xe A

3 UL ox~3] & repoin @
XCP/\Q

(4) T*(P) S £(PQ)~ 0.

1) x = ¢? ¢§ and so is continuous onto. If XoY,
then X, YgN implies QXoQY. But QX4L by the choice of
Q. Hence «(X)ox (Y). “

(2) Obvious.

£§l If Ae L)(QX\ 6], then there exists XIZ such that
XoP, AgQ and AIOX. But P40 and so POo0X. Thus

Aez (P0O) by the definition of I (PQ).

(4) Claims (1), (2), (3) and Lemma (7.2.5) yield

T*(P) S L (PO)N O.

Now choose R such that RgX for each RIPQ

and so R§Z(PQ). Since PgN it follows that 0¢I(PR).

Claim. There exists Ve@w _(P) such that
\0 D

-~

Moreover 3 (V) 5-6- If this is False; then
ReT*(P) € I(PO)\ Q. Contradiction. Since Q is closed
| Lemma (8.3.2) yields the last statement.
We may easily interchange the roles of Q and

R to ohtain WQATP\'F'{ (P) such that QaW = # and (W) & R.
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Claim. 3(Va W) = f. By the previous claim and
Lemma (7.5.1)(3) we obtain 3(Va W) <& a\»i. It is
enough to show 3(VaW)aQ = 3(VaW)nR = f. Let

XoQ and Xed(VaW). Hence for each UeQ(X), TaW # f.

Also T nCW # § since if not, TE W and W saturated

implies @ € W. Contradiction. Thus Xed (W) & R.

Thus XoR. But QoX then implies Ro0. Contradiction.

Similarly B(Vr\W)r\ﬁ = ff.  Thus by Lemma (7.3.1)(1),

ValW is onen-closed in ¥ VaW is saturated since
V and W are. Finally PeVa ¥ but R¢Vna W. Hence P s

0-disconnected.

(3)=>(6).

Since £\s is a line of some affine plane

Assume £\ s is e-disconnected.
X (m),
Theorem (8.2.3) yields Tz\ E(P) = PaAa(L~ s), for PIAN s.

Choose P, QIZN's such that P¢qQ.

p.

Similarly there

VEAQ\ g(P) such that ar\V
Lemma (7.3.2).
such that SaV = p and 9 (W) & 5

(1)=>(3), 3(VaW) = f# and so £

Assume each

(6I=>(7).

v-connected. Choose a comnlete

such that s = U. Then by Lemma

(£V3) X (2\3S). Moreover this

lHlence there exists

Moreover 3 (V) < s by

exists We Az\_a(P)
Hence just as in

is 01P -disconnected.

affine line 2~ s is

quadrangle {0, E, X, Y}

(8.3.6), ¥ (2)

homeomorphism is just

) )
the map h” with respect to & (2). {:cf. Lemma (8.1.2).] _
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h2 clearly satisfies the assumptions of Lemma (7.2.4)

and so our result follows.

(7)=>(1). By Théprem (8.3.5)(4) and the fact

C P(r) = £(2) we obtain IC B () =TT (1) =
p,or cquivalently,T B (2) = . The result then follows
from Lemma (7.2.2). |

Theorem (8.3.7). Each of the sets P , & ,

L, ¢p, 2\s and P (L) ig ©o-connected or totally

o-disconnected.

Proof: We have already shown this for 2,

2\s and P (2. 5 ‘is true by duality. Then by duality
it suffices to sho;t?or‘q> .  Sunpose ;P is o-disconnected.
Then 2 is o-disconnected by Theorem (8.3.6) and Lemna
(8.3.4). If 5 ELT(P), then there exists 0Q¢P suéh that
QeV for each VeA(P). Choose 2€¢P such that 04X for
each XI2. Then from the proof of (1) =>>(2) in Theorem

(8.3.6), there exists WeA(P). Contradiction. //

We finish this section with results analogois

to the affine case for uniform projective H-planes.

Notation. If ® is uniform, X p = <5, ¥ py I>
such that 2aPe { (= 2ef and OILa P iff 0I2 and
QoP. &£ p is rendered a topoloqical incidence structure

in the usual fasion. {Ff. Remark (8.2.2) .] !/
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From [AS] we obtain the following result which

we have shown in the affine case.

Lemma (8.3.7). ¥ is uniform iff each X p

is an ordinary affine plane.

Corollary. Let & be uniform. Let ¢y,

¢p, and L, be the associated maps of ¥ p+ Then,

¢py(Q, R) = f,\‘f’ such that Q, RIf,

¢P2(2A5, mnf’) = % Am,

I.P(Q, 2:\.15) = RO P such that P is any point

with the properties RgP and RIR. //
Thus we obtain the follew ing.

Lemma (8.3.8). If X is uniform then

(1) Each ¥ p is a topological incidence structure

such that ¢’p2 and Lp are continuous.

(2) P is connected or totally disconnected.

Proof: The proof is the same as that of
Theorcm (8.2.5)(1) and (2) except for showing Lp

is continuous. Now from Theorem (8.3.2)”“) = L3) P (pi].
i=1

Also X (r;) is a uniform affine H-plane. Let LY he
the parallel mavn: for X (R,i) and L; the one for ¥ D(pi)'

Lrl, are continuous; ‘i = 1, 2, 3,by Theorem (8.2.5).
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_We will show L, restricted.to P n"ﬁ)(pi) is essentially

P
LIIJ. Since '{P (pi) is open, the result follows from
Theorem (7.3.3). Using Comment (8..2.1)J the Corollary to
Lemma (8.3.7) and the fact (ZAPi)IJL but (2421)(6?’

we obtain

Lilo, 2 a® ()4 7] - Lo, 24P (Di)]r\ It

= Q(2ap;)n P = Lp[o, an—).

Definition (8.3.3). & is a T, plane iff
both 1P and \f\ are T, spaces.

Lemma (8.3.9). If X is a T, plane then cach

2e ¥ is closed in R

Proof: Let % = PN, Choose Xef. Hence without

loss of gcnerality. XgP. Then PX # & and since ¥ 1is
T,, we have  VveQ(PX) such that 2&V. Since ¢Il) is
continuous and P is closed, there exists UeQ(X)

such that ¢?[U] S V. Then Us? = ¢ since SeUaf implies

PS = 2€V. ]/

Notice for the next lemma we neced to usc the fact
that X is T, , whereas we could prove it in general

in the affine case utilizing the ternary ring.



Lemma (8.3.10). Let ¥ be a T, plane.

The following are equivalent.

(1) There exists PO such that ;b is connected.

(2) There exists PO such that FO“ % is connected for

each fed, .
- —_— P
0

(3) P AL is connected for each fe‘f and PIg.

—

(4 F iﬁ connected for each P.

Proof: (1)=>(2). Select Q such that QgP,.

Then the man «: ?P\\ 5»2, k(X) = PXA 2 is continuous

and XoY imnlies «(X)ox(Y), a$ in the proof of Theorem

—

(8.3.6). Since P is closed, P
nected in ¥ \ P.  Because k is continuous with the

above property, K(FO) = Fb“ 2 is connected in 2. By

is ccn-
0
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Lemma (8.4.9), £ is closed, and hence ;bA 2 is connected

in B .

(2)=ﬁ>(3). Since PJ(L) is triply transitive

with respect to Vp s there exists a homeomorphism f

such that £(P) = Q and f[Pas} = Dat.

since 6 = U [ (0an), (3)=2(4) is a result
. 2€¢O

of Theorem (7.3.1)(3). Finally (4)=5>(1) is obvious.

Lemma (8.3.11). If ® is a uniform T, plane,

and there exists PO such that Fb is connected, then for
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2 and ¥ , o-connectedness is equivalent to connectad-

ness.

Proof: By Lemma (8.3.10), each Pag is connect-
ed. The result for £ then follows from Theorem (7.3.2)

and Lemma (8.3.5).

Fimally)by Theorem (8.3.6), and the above
iP is o-connected iff ¢ is o-connected iff & is connected.

The result fortw then follows from Lemma (8.1.1).

Theorem (8.3.8). Let ¥ be a Ty uniform

plane. Then‘qp and each % are connected, o-connected,

C(P) = Q(P) = T(P) = P, or totally disconnectel.

Proof: By Lemmas (8.3.8) and (8.3.10), each

P is connected or totally disconnected.

Case (1): Each P is connected. Then from

Lemma (8.3.11) and Theorem (8.3.7),2 and P are

-—

connected or C(P) = Q(P) = T(P) = P,

Case (2): Fach P is totally disconnected.

Then since &6-disconnectedness implies
C(P) 2 Q(P) € T(P) =P

and C(P) = C5(P) by Lemma (7.3.2), ¢ and ¥ ars

o-connected or totally disconnected.



8.4. Locally comnect H-planes

Salzmann has shown, in (52] and [Sﬁ], that
every locally comnact T2 ordinary plane is metrizable.
Moreover each locally comnact projective pnlane is
€-comnact with the 2nd axiom of counfahility, The
proof of this result for Hl-planes, excent for a fow

minor points which we shall exhibit, is exactly the same.

¥ will be a locally comnact T2 plane throucghout

this section unless otherwise specified.

Theorem (8.4.1). (1) If X is a O-compact,

locally compact metric snace, then X has the second

axiom of countability.

(2) Every regular T, space with the second axion of

countability is metrizable.

Proof: (1) This follows immediately from
Theorem (5.6) pnage 137 and Theorem (7.2) page 239 of [Dé].

(2) is well-known resnlt.(;f. (Kd}-].

- 282 -
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The next Lemma apnears in [SZ] with only (b) changed.

We shall »nrove, then only (b).

Lemma (8.4.1). Let ¥ be a locally compact

T, affine plane and (OE, T) a ternary fieldof X

Then

(a) OE is locally compnact T,.

(b) There exists a sequence {a } S 0F such that a fi0

+0,
and a,

(c) lf WeR(0) and K is compact then there exists VeR(0)

such that TV & W,

(d) If a >0 (an # 0), and Ue@(0), such that T'(u) is

compact then {U.an} is a neighbourhood basis for 0.

Proof: Since 0E/o is not discrete, then OF

is not discrete by Remark (8.1.2)(2). Hence each neigh-

bourhood has infinitely many points since I(Fr;ﬂﬁ) = p.

Claim: If P¢g0, then there exist a comnact

CeQ(P) such that OnC = $. Since 0E/o is Tz, and OE

is regular there exist closed neighbourhoods Uel(P)
and WeQ(0) such that XeW and YeU implies Xd4Y. Hence
BnU = @, ”ﬁy (a), there exists a comnact neighbourhoad
C of P. Hence since U is closed and C is closed, Un<
is comnact and En(UnC) = f.

Now take C is in the above claim. Thus C is
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infinite. Select a sequenc: {bnz in C and hence bn¢0.

Since C is compact, {bnz has a cluster point beC. Hance

there exists a subsequence {an such that Cneb. Finally
a_ =c_ - b—0 since addition and its inverses are

n n
continuous.

Theorem (8.4.2). Every locally compact T,

affine plane satisfies the first axiom of countability.

Proof: By (b) and (d) of Lemma (8.4.1), OE
has the first axiom of countability. Hence since 0OE X

or T

, our result follows.

Theorem (8.4.2). Let X be a locally compact

'I‘2 affine H-nlane. Then

(1) Each ternary field {0E,T} is metrizable.

(2) X 1is metrizable.

Proof: (1) In view of Lemma (8.4.1)(b), the
proof is exactly the same as in the ordinary case
[cf. 7.8 page 48 of [SS]]

(2) follows immediately from (1) since OE X 0OE I

“«

Definition (8.4.1). Let (OE, T) be a ternarv

fieldof an affine H-plane. We say (OLF, T) has inversion

', = b implies b_»0.

near zero iff an+0 (an¢0) and a “b,

Lemma (8.4.2). Let X be a projective H-plune.
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Let {0, E, X, Y} be choosen as in (P3). Put W = 0Ea XY.

Then the ternary field of the affine H-nlanc X (XY),

T: (OE\\W)§o0R-W has the form

T(x, m, n) = {(Xma0Y) [(Xma YE)O AXY] } A Yx)X A OE,

Proof: This follows easily from Definition

(6.2.4) and the definition of the associated maps of

L (XY).

Lemma (8.4.3). Let our assumptions be the same

as those of Lemma (8.4.2).

——— o —a

NDefine the maps

gyt (OENW)NT(0ENW) N0 by

—

gl(z) is the unique solution of x.z = 1, and for begFk

gy, * (0OF \1_\1) N 5—7(013\ i.;)\ 0 by

gb(x)'ii the unique solution of x.z = b.

hold:

(1) g1 (z)

The following

0 o Y[XE » 0(YE A X2)] and o, (0)

W.

fl

!
2

(2) g, (x) = 0EA {YE, (Yx A Xb}0}X and g (W)

Proof: This follows from the previous Lemma and

some straightforward calculations.
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,,,,, __Lemma {8.4.4). (1) £ X is a Desarguesian

affine plane then each ternary field has inversion near

Z€TO.

(2) If ® 1is a projective H;plane)thcn the ternary fields

of each associated affine H-plane, X (R) have inversion

near 2Zcro.

Proof: (1) This follows easily since maltiplica-
tion is then associative.
1

b_ = b.

(2) Let a >0 (an¢0), and a “b

Now take the mans €y and % of Lemna (8.4.2).
Then define g = 8871 - Clearly from Lemma (8.4.2),
g4 and o, are continuous and hence so is g. Moreover

we also obtain from Lemma (8.4.2) that

g(0) = gu2,(0) = g (W) = 0 (1)
and

g(a,) = b for each n. ‘ (I1)
Hence the continuity of g plus (I) and (II) implies
b_=0. .
n

Th.eorem (8.4.3). If P4 is a locally comnact T,

affine H-nlane and (0, T) has iﬁversion ncar zero, =hen,
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(1) OF is 6-compact and so is ¥ .

(2) OFE and & have thc second axiom of countability.

Proof: Choose WeQ(0) such that T(W) is compact.
By Lemma (8.4.1)(b), there exists {an} converging tc
zero such that an¢0.

clain. 0f = © a“lrqn.
i=1

Since multiplication is continuous, ailr(W)
is comnact. Clearly 0&0E. Take beOE such that b # 0,

1y = b by

. -1 .
Since ag ¢0, there exists {bn} such that a, n

Theorem (6.2.3)(3). Since we have inversion near zero,

b_+0 and b_ # 0. Since We2(0) there exists b_ eW.
n n ng,

~

Thus beaélr(W). Since ® 2 0FE x OE our result follows.
0

(2) Since 0E x OE >R the result follows from (1),

Theorem (8.4.2) and Theorem (8.4.1)(1).

Corollary (1). If X is a Desarguesian locailly

compact T2 affine H-plane, then each line 4 and ¥ are

o-compact metric spaces with the second axiom of count-

ability.

Corollary (2). If & (&) is the associated

affine H-plane of a locally compact TZ projective H-nlane,

then & (2) is a o-compact metric space with the second

R —_— e




288

axiom of countability.

Theorem (8.4.4)., Every locally compact T2

projective H-plane is a o-compact metric space with the

second axiom of countability.

Proof: Now by Theorem (8.3.2), each 1?(2) is
open and theve exists {p;, »,, pz} such that P -
Fi)?P(pi). Since an open set of a locally compact
;;;ce is locally compact, each ‘;P(pi) is a o-compact
metric space with the .second axiom of countability by
Corollary (2) of Theorem (8.4.3). Hence it follows,
since the 1? (pi) are open, that P is a & -compact space
with the second axiom Qf countability. Thus by Thecrem
(8.4.1)(2) and the factfﬁtlocally compact T, space is

regular, we have our final result.

Notation. For each P, fp: QP -T is the map

fP(PT) = 1 and fﬁ: D ST is the map fﬁ(PT) = T.

Theorem (8.4.5). Let @ be minor Desarguesian.

Then

(1) P is a topological group. (cf. Theorem (4.2.6)).

(2) D is a topological monoid with the compact-open

topology.

(3) f,: P T is a homeomorphism and so is fg:
P = = - =P

P '*i; where T and T have the compact-onen topology.

-~
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(4) T and T are locally compact T2 topological grours

with the compact-open topology and

ne,

T/N = T.

Proof: (1) In view of Theorem (8.1.15), this
follows immediately from Theorem (7.5.75.
(2) This follows from Theorem (7.5.3).

(3) From Theorem (8.1.17), f, is open. We must show it

p
is continuous, Define F: IPX-'P - P by
1 T2 T1T2 L. . .
f(p ~, P )y =" . f is continuous by. (1). Hence by
Theorem (7.4.2), the mapn P +CC(1P) , where
~ T T To To
f(P ") = ¢ T such that 4 T (P = f(p 7, P )
p 0 p n
is continuous.
~/
Claim. f = f_ . We must show ¢ =T for eacn

e P

teT. Now for any Y,

Hence by our claim fp is continuous.

Since &€ 1is a topological plane by Theorem



(8.1.6), fﬁ is also a homeomorphism.
(4). This follows from (1), (3) Theorem (7.5.9) and
" Theorem (3.2.4), if we can show ¢: T»T [cF. Theorens
(3.2.3)dhd(3.2.4ﬂ is omen. But it is eas¥ to show
- ' that
¢.Fp = Fﬁ-Xﬁ, . Hence (3) and the factAxp is onen-

onto vields this result using Theoren (7.3.2).

Theorem (8.4.6). Let ® be minor Desarguesian.

Then every trace preserving endomorphism is continuous.

Proof: Ry the previous theorem Fp is a homeo-

mornhism., Take deH. By Theorem (4.2.5), there exists
oer such that Tgs = Tpgo. It is then easy to show
o f;l = f;l §. Now 6 is continuous by Theorem (8.1.13).

llence our result follows from Theorem (7.3.2).

Theorem ¢8.4.7). H is a closed topological

subrina of Hndkc T . [ ¢t. Definition (7.5.3i].

Proof: By Theorem (7.5.5), End T 1is a ton-

LSS AN : C
ological ring, and so H is a topological ring. It is
enough to show H is closed in End p T . Let {Ga} be
a net in H such that Ga*f, feEnd - T . "By Theorem (4.2.5)

§

. . o _ A

there exists {oa} in D, such that Tpg = T oa. Define
PS

f

‘ T
o: :P—r? bySo=PpS



291

Claim. o »c (Hence oeD, by Theoren (8.1.14)

(3)). Take se ¥ . Then,

$ o
o} T % Tpg
1im(S %) = 1im(p "5y = p PS = g9
o a
. . 6a f . . . .
512cc. 6a+f implies Tps*Tpg» which in turn implies
. Tf
p PS+p PS.

Since oe there exists a unique SeH such

| p>
that 6 = o(8) [ ¢f. Theorem (4.2.5)]. We finish the

proof by showing f = 8. Since fp is a homecomornhism
by Theorem (8.9.5)(3),

)

Tﬁs = lim(rpg) = lim(t 5
a o

ps ¥

ag o)
lim(F,(8 ) = f,(Lim(s *))
o . o

8
£,089) = 1 = (15,0)°.
P ps® PS

Theorem (8.4.8). D ii a topological monoid

P
and,¢p: H?Dp is a topological monoid isomorphism. (cf. Theorem (4.2

Proof: The first part follows from Theorem
(8.4.5)(2). ﬁow fp:‘qP +T is a homeomorphism by

Theorem (8.4.5)(3). By Theorem (7.5.6), the map

. . -1
6y End 1? +End T defined by @h(g) = fp.g.fp

is a tonological monoid isomorphism. But by Theorem
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H.

D S U — ‘ . B | S
14.2.6), ppgi End I , ¢plDp * 4,7 and ¢h‘p;}

~——tenee our result follows,

Corollary, Tl is -closed in H.

Prggf: Mp is closed in DP and ¢p(?é] = 1l

— P

Theorem (8.4.9). Let & be Desarguesian. Then
(1) The map f: OF+ll defined by f(a) = é(a) is a

tanol@g}gg% ;ing isomornhism, [éf. Theorem (S.3.§i].

(2) T, H and each D, are locally compact o-compact

metric spaces with the sccond axiom of countability.

Proof: (1) We know f is an algebraic isomor»nhism

by Theorem (5,3,8). We must show it is a homeomorphism.

Now define Tog = {rOalaEOE}. Let £; be the map,

fl: 0E=Top by £1(a) = 14,

f, can be shown to be a topological group
isomorphism in the same fashion that fp was. (gf.
Theoren cs.4ls)csi]. Let £,: T> P  be the map of
0. Let h,: P >0E

Theorem (8.4.5)(3) such that P
- X OE be the map of Lemmai(8.1.2). Let'_f2 = hZ. Definc
f5: OE X OE>Top X Typ by f5 = f) X fi; Then the mav

g T*Typ X Top defined by
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et (a,b)) = (Toar Top)

has the form g = f, f, f, and hence is a topolocical

~
group isomorphism. Now define §(a): TOB b4 TOE*TO X

$a) _
(@) - (TO(ax)’ TO(ay))'

{g(a)[aEOE}. Bv Theorem (7.5.6), the map ¢q: Endo

E

~JS
TOE by (Tox, Toy) Let H =

(TOB X TOE)ﬁEnd T 1is a topological monoid isomorphism;
e.)¢g(h) = g'lhg. It is easy to show ¢g{g(a)) =

§(a) and hence H is homeomorphic to H.

Now definc h: T ,+ﬁ by h(rt = 3ka). Clearly

0L Oa)

f = ¢q h f Thus in order to show f is continuous it

1°
suffices to show h is continuous. Now define

ki Top X (Tgp x Top)=>Typ X Top
by ‘
k(toc, (Toar Ton)) = (Tgreays To(en)):
Since multiplication is continuous in 0E and fl is
continuous, we have that k is continuous. Then by

"Theorem (7.4.2), the map K: T, >C. (Tgp X Tpp) defined

g~

by k(roc) = ¢ , is continuous. A simple calculation
Oc
T4

shows k = h and our result is proved.

Finally we must show f is open. Let WeQOF(a).
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Then W = UnOE such that Uen(a) Now define x = {ToE}
and V = fal[U]. Hence since Toéa) = toa,’FUC \ﬂeQ(G(a)).

We show T{K, V]S h(W). Now §(b)eT{K, V] implies

0a? uell. But Tgéb) = Typ aind so b = u.

o) 2 h =
Since 0E is a trace of an’ 1t is a trace of Tob* Hence

be0E. Consequently §(b)eh(W).

(2). By Corollary (1) of Theorem (8.4.3), OE and P are
c-compact metric spaces with the second axiom of couatab-
'ility. By the theorem, H also has this property. By
Theorem (8.4.5), T has these pronerties. Finally by

Theorem (8.4.3), each DP has this pronerty.
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