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CHAPTER 1 

INTRODUCTION 

It is the p~rpose of this thesis to attempt to develop 

an °effective"internucleon interaction for use in "Hartree

Fock" and variatipnal calculations of various nuclear 

systems, in particular, the lighter nuclei. The need for 

such an interaction originates from the impossibility of 

performing such calculations using realistic potentials. 

Typicall!y realistic interactions have either .strong repulsive 

cores and/or. velocity dependence or various other forms of 

non-locality. The repulsive core, which is generally assumed, 

invalidates the use of the convenient (and often necessary) 

single particle wave functions which are finite. within the 

range of the core, since perturbative types of calculation 

of finite nuclei are extremely difficult to perform in an 

appropriate self consistent manner. Common single particle 

wave functions used are those of the three dimensional 

spherical or cylindrical harmonic oscillator well, or, 

more realistically, some form of the Woods-Saxon well. 

Even utilization of the reaction matrix technique, 

based on the Brueckner-Goldstone theory (Bru 57) , for 

realistic poten.tials presents great computational difficulty. 

It has been demonstrated by Moszkowski and Scott (Mos 60) 
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that the reaction matrix elements can be approximated by 

using simple "effective" interactions. Kallio and i<oltveit 

{Kal 64, Kal 65) and, more recently, Kuo and Brown {Kuo 

65, Kuo 66) have demonstrated that the Moszkowski-Scott 

separation method is a reasonable one for obtaining matrix 

elements which can be used to define effective potentials. 

It was in the spirit of such effective interactions that 

the potentials, considered in this thesis, were developed 

{Bro 67). 

In performing a variational or shell-model calculation 

for a finite nucleus, it is necessary to restrict or truncate 

the basis of the single particle states to just a few 

relevant states to make the calculation feasible. Even the 

use of modern fast computers has not altered this situation 

very dramatically. {It is now possible to rapidly calculate 

any nucleus with 4<A<l6 if the single particle basis is 

restricted' to the o-p shell, but it becomes virtually im

possible to allow the basis to include single particle 

states in the s-d shell in such a calculation.) 

Thus, in a practical calculation {Mcf 67), the 

Hilbert space D, of infinite extent, spanned by a complete 

set of single particle states, is truncated to a model 

space d, d being a subspace of D. 

Thus, if ~ is the trial wave function of a vari

ational calculation in which the complete set of single 

particle states l¢i> is used as the basis set i.e. 

llJJ> = L: a. 1¢ . > 
. J. . J. 
J.e::D 
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where the summation is over all single particle states which 

span the Hilbert space D, then a model trial wave function 

~d can be considered such that 

L: a. I<P. > 
1 1ie:d 

The summation is now restricted to the model space 

d, a sub-space of D, and I~d> is projected out·· of I~> by 

the projection operator P. 

Then, if V is the realistic interaction which would 

be used in a calculation in the space D, an ueffective" 

interaction Veff used in a calculation in the space d can 

be constructed to satisfy the requirement 

i.e. the matrix elements of Veff in the truncated basis are 

equal to the matrix elements of V in the complete basis. 

In this work, no attempt is made to derive an 

"effective" interaction from "first principles". Instead, 

a phenomenological viewpoint, guided by "first principle" 

calculations, is taken. It is assumed that an "effective" 

interaction should satisfy certain empirical data (e.g. the 

phase-shifts derived from nucleon-nucleon scattering data 

and the saturation properties of nuclear matter) , and also 

should reproduce various experimentally observed properties 

of finite nuclei in a calculation using a truncated basis 
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set of sing!~ particle states (e.g. excited st~te energy 

levels and binding energies of the A=4 to A=l6 nuclei) • 

The calculation of the properties of the "so-called" 

0-p shell nuclei has been used to test many theories and 

ideas {Ing 52; Ing 53; Kur 56; Tal 60; Ami 64; Boy 64; 

Vol 64; Coh 65; Vol 65; Bar 66; Hal 66; Gol 68). The 

reason is a practical one. The truncation of the single 

particle basis · to states of the O and O oscillator wells s p 

allows calculation of the nuclei A=4 through A=l6 in a 

reasonable time, while the effect of mixing from higher 

configurations in the wave function is believed to be 

minimal for most states under consideration. For these 

reasons, the excited state spectra of the 0-p shell nuclei 

are chosen, in this thesis, to test the validity of the 

effective interactions derived by fitting procedures to the 

scattering data and nuclear matter properties. 

The theory of the method employed to calculate these 

excited state spectra is outlined in Chapter 2. Chapter 

3 lists the criteria which the effective interactions are 

required to satisfy, and presents a selection of effective 

interactions which have been tested. 

Results for the usual local type of Volkov double

gaussian interactions are tabulated in Chapter 4 and the 

deficiencies of such local interactions are examined. 

Bhaduri and Tomusiak {Bha 66) have already pointed out 

that interactions of this type lead to the collapse of 
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nuclear systems heavier than those considered by Volkov 

(Vol 65). These authors suggest that effective inter

actions should be constructed so as to satisfy. the satur

ation properties of infinite nuclear matter~ 

This procedure has been adopted by many authors 

(Mut 65; Kri 66; Tab 66; Bri 67; Maxr 67; Nes 68) with 

encouraging results. As explained in Chapter 3, the nuclear 

matter criteria are satisfied, in this thesis, by adding 

density dependent terms to the basic Volkov-type interaction. 

Skyrme (Sky 59) was one of the first authors to 

suggest that the internucleon interaction should be dependent 

upon the local density within a nucleus. Many subsequent 

authors (Squ 58; Bru 59; Bun 65; Bar 66; tan 68; 

Spe 68) have found that density dependence is needed in the 

internucleon force to reproduce experimental results. 

Manning (Man 67a) has found that in a Hartree-Fock calcula

tion the 0-s single particle state is far too low for inter

actions which do not have any density dependent features. 

For such interactions Volkov (Vol 70a) finds that particle• 

16hole excitation calculations predict excited states in 0 

which are too high, and that adding density dependence to 

the interaction lowers these states. 

Brueckner (Bru 59) , in Hartree-Fock studies for 

finite nuclei, has suggested that a term proportional to 

the local density squared should be present in the effective 

internucleon interaction. Bethe (Bet 67; Bet 68; Nern 68) 
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• 


has suggested that the short range repulsive interaction be 

replaced by a density dependent interaction and, also that 

the tensor interaction be likewise treated. Wong (Won 67) 

proposes that the Pauli operator is dependenton the density 

to the one third <t> power. 

Kuo and Kuo and Brown (Kuo 65; Kuo 66; Kuo 67) 

have demonstrated that the 2nd order Born term for the long 

range tensor interaction (this tensor interaction does not 

contribute in first order) can be replaced by a central 

3interaction f6r the s state in a Moszkowski-Scott sepa1 

ration calculation. This central interaction is densit~ 

dependent. A similar conclusion has been reached by 

Bhaduri and Warke (Bha 68) , who, by explicit calculation 

for the O.P.E.P. tensor potential suggest that the density 

dependence is · p-l/3 • 

A number of calculations (Gre 62; Gre 67; Lan 67; 

Ban 69) using density dependent interactions have indicated 

that it is difficult to distinguish between different 

density dependencies. 

In consideration of the ambiguities associated with 

the exact nature of the density dependence, the point of 

view taken in this thesis has been that no form of density 

dependence should, in principle, be discarded without trial. 

Kuo (Kuo 65) and Bhaduri (Bha 68) indicate that the range 

of the density dependent interaction should be one half of 

that of the non-density dependent interaction. This point 
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is also examined in this work. 

The criteria adopted, and methods used in deriving 

the effective interactions used in this thesis are explained 

in Chapter . 3 and a number of interactions are tabulated. 

Density dependence has been attached to both the attractive 

and repulsive terms of the usual Volkov double-gaussian 

interaction. 

The role bf the Majorana exchange strength and the 

differences irt excited state spectra for similar interactions 

differing oniy in their predicted values for the binding 

16 d ' d . h . 5energy o f o are iscusse in c apter . The importance of 

. t ent 1ue f the 160 b ' d ' was t in-.a consis va or in ing energy no 

itially recognized and differences in the spectra brought 

about by different values of this binding energy have to be 

taken into consideration when other more fundamental 

modifications of the interaction are compared in later 

chapters. 

The form chosen for the local density and its 

connection with the actual nuclear density is examined in 

Chapter 6. It is demonstrated that use of a single gaussian 

form for the density, designed to fit the mean square radius 

of the nuclear density, and evaluated at the centre of mass 

of the interacting nucleons is a suitable approximation for 

the interactions of prime interest studied in this thesis. 

Chapter 7 illustrates the systematic behaviour of 

the 0-p shell excited states for interactions differing 
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essentially in their attractive and repulsive ranges. An 

examination of the excited state spectra for different 

density dependencies is undertaken in Chapter 8 in . an 

attempt to distinguish between different density de

pendencies. Consideration is also given to ·choosing the 

range of the density dependent interaction to differ 
! 
from 

that of the non-density interaction. 

The role of the repulsive core strength is subjected 

to examination in Chapter 9 and it is shown tha~ for 

reasonable core strengths, no difference in the properties 

of nuclear matter o·r the excited state spectra can be 

distinguished for core strengths differing by 50 Mev. 

Further consideration is given to the form of the central 

part of the density dependent interaction in this chapter. 

Chapter 10 contains results for all 0-p shell nuclei 

and compares various isobaric nuclei. Results are presented 

for two interactions whose primary difference is their 

density dependencies. For both interactions results are 

given for the excited state spectra, the binding energies, 

·the root-mean-square radii, deformation studies and nuclear 

density plots for all 0-p shell nuclei. Where possible, 

comparison with experimentally determined properties is 

attempted. 

With the exception of Chapter 10, no detailed 

comparison is made with experimental results, although such 

comparisons are utilized extensively in the search for the 
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"best" effective interactions which are used in Chapter 10. 

General conclusions are reported in Chapter 11. 

Appendix 1 lists the experimentally known binding energies, 

excited state energy levels and root-mean-square radii for 

0-pshell nuclei. Appendix 6 tabulates matrix elements in 

the j-j coupling scheme up through the ls-Od shell for the 

interactions ·used in Chapter 10. The appropriate matrix 

elements are compared with those of Kuo and Brown (Kuo 67). 



CHAPTER 2 

THE VARIATIONAL METHOD 

In general, it is desired to obtain stationary 

solutions for .~ system of n-particles (nucl~ons) in motion 

and interacting with each other. The interaction between 

the particles is usually considered to be of a .local two

body nature i.e. the interaction between the ith and jth 

nucleons is independent of the positions and velocities of 

the remaining particles in the system. Consideration of 

three-body interactions and non-local interactions are 

usually fairly complex. 

Most of the interactions considered in this thesis 

are non-local, in the sense that they are density dependent 

. t t ' b t h .th d .th t ' land thus, the in erac ion e ween t e i an J par ic es 

depends not only on their positions relative to each other, 

but also on their positions in relation to the rest of the 

nucleons in the system i.e. their positions in relation 

to the centre of the nucleus. A further non-locality is 

introduced by allowing the interactions to be velocity 

(or state) dependent. It has been noted by Kerman (Ker 69) 

that there is no real distinction between non-local and 

velocity dependent interactions. The exact nature of these 

non-localities and the approximations nece~sary to enable 

10 




11 

computations to be performed for finite nuclei are discussed 

in Chapter 3. 

The Hamiltonian of the A-particle system considered 

in this work is 

A A 
H = L Tl.. - TC.M. + L V .. (r.,r.)

1] -J.. -J .i=l i<j 

A A 2+ L: ' __e ____+ c L £. . s. 
-1 . <. Ir. -r. Ii=l -J. 1 J ' -1 -J 

where T. is the kinetic energy of the single particle state 
1 

i, 

TC.M. is the energy of the centre-of-mass, 

V.. (r. ,r.) is the two-body potential which depends
1) -1 -J 

on the positions of the interacting nucleus r. and r. (for
-i -J 

the local potentials considered in Chapter 4, the dependence 

is simply on the relative coordinates r .. r. - r .),
-1] -J.. -J 

£ .• s. is the usual form of the shell model spin
-1 -i 

orbit interaction and 
2 

I e I is the coulomb interaction,r.-r. 
-i -] 

the prime on the summation indicating that the sum is to 

be taken over proton coordinates only. 

No exact solution exists for the n-body problem 

with n>2 and approximate methods have to be employed. The 

most useful method used for physical systems is the vari

ational method. The variation principle consists of 

selecting a completely arbitrary trial function $ and 
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varying the functional <$IHI$> (the average energy for the 

state $), :in some completely arbitrary fashion to obtain 

a stationary value for <$IHI$> subject to the riormalization 

condition <$I$> = 1. 

Such a procedure would lead to the time-independent 

Schroedinger equation since it is required that (Bet 68) 

0 I W* H * dT = 0 

and 

I W* * dT = 1 

The .normalization condition is introduced in the 

usual Lagrange multiplier way; the real Lagrange · multiplier, 

in this case, being the energy E, i.e. 

ocf W* H wdT - E J W* * dT] = 0 

or 

cS lJ;* (H-E) 1J; dT = 0I 
Since H-E is hermitian this becomes 

I 0 W*(H-E}W dT + I[(H-E}WJ* 0 * dT = 0 

If the variation of ~* and 1JJ are considered to be 

independently arbitrary, then the time-independent 

Schroedinger equation 

(H-E)\J; = 0 
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is obtained since it is now required that 

J 8 W*(H-E)W dT = 0 and J W*(H-E)O w = 0 • (2.1) 

Approximate solutions to this problem can be obtained 

by the application of the variation principle where the 

trial function ¢ c~n be chosen in various fashions and the 

variation is carried out in some restricted manner. 

Thus in most physical applications the Hilbert 

space spanned by a complete set of orthonormal functions 

$n is truncated to a N dimensional sub-space and the vari

ational wave function is expressed as 

N 
$ = L: en ,,,'+'n

n=l 

The variation 8 ¢ is prescribed to be 

N 

cS $ = l: dn $n 


n=l 


so that 

N 
$ + 8 $ = L: (d +c )\l>n n nn=l 

Equation (2.1) now becomes 

and, since the dm's are arbitrary 

N 
L: en <~ JH-E I$ > = O 

n=l m n 
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The basis set of functions 1jJ .are orthonormal, so n 

that this can be written 

where 

and 

1 for n=m 
0mn = 

0 otherwise 

A solution exists for this set of homogeneous 

equations if and only if 

The stationary solutions E can thus be obtained by 

diagonalization of the matrix (H ) and the appropriatemn 
c 's can be simultaneously determined. 

n 

The expectation ground state energy obtained using 

the Ritz variational method is always greater than the 

correct solution. Moiseiwitsch (Moi 66) has shown that 

with . increasing N, the Ritz solution converges to the 

eigenvalue o~ the Schroedinger (or Sturm-Liouville) equation 

if the functions w form a complete set. n 

In shell model calculations the w 's are chosen 
n 

to be the product of a number of single particle functions, 
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the single particle functions being solutions of the 

Schroedinger equation for the spherically symmetric harmonic 

oscillator well. In this work, the single particle wave 

functions are chosen to be solutions of the Schroedinger 

equation for the cylindrically symmetric harmonic oscillator 

well. 

The single particle wave functions are taken to be 

the product of a space part, ~ spin part and an isospin 

part, 

ljJ (r,cr,T) = <t> (r) x (cr) <t> (T)n n n n 

Because of the presence of a Coulomb term and a 

spin-orbit interaction in the Interaction Hamiltonian, this 

is an approximation to the true single particle wave function. 

The contribution of the Coulomb and spin-orbit interactions 

to the total energy is small so that the separation of the 

wave function in the above manner should be a good approxi

mation. 

The nucleons, being fermions, should obey the 

Pauli explusion principle and thus have the appropriate 

symmetry property i.e. their wave functions should be 

totally antisymmetric with respect to the exchange of any 

pair of the coordinates. 

A wave function which satisfies these symmetry 

properties and also reduces to zero if two of the identical 

particles are in the same state is the Slater determinantal 
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wave function 

A 

'IT l/J (r.)
'¥Anti = n. 1i=l 1 

where P is the permutation operator and the summation is 

over all possible permutations. l/J is the single particlen. 
1. 

wave function and r. stands for the space, spin and iso
i 

spin coordinates of the single particle. That this wave 

function· satisfies the requirements outlined above can be 

seen by rewriting it in the form 

1 

IA! 

The exchange of any two columns of this determinant results 

in a change of sign for the wave function and, further, 

if any n. = n., i~j, then the wave function is zero. 
1 J 

The expectation energy of a Slater determinant is 

given by the Slater Sum Rule 

A 
<'l'IHl'l'> = E <tµ (r.)jTltt> (r.)>n . 1 n. 1i=l 1 1 

A 
+ L: <IJJ (r.) l/J (r.)IV.. !IJJ (r.) ~J (r.)n. 1 n. J 1J n. 1 n. Ji<j=l 1 J 1 J 
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+ like terms for the spin-orbit interaction 
(one-body) and the Coulomb interaction 

·(two-body) 

The centre of mass term becomes (Man 67) 


·2 A A
11 2
<1JJ (r.) Jk. 11'1 (r.)> l: <1/J (r.) \fJ (r.)- 2mA l: n. -1 -J.. n. -1 mA i<j=l ni -1 nj -Ji=l 1 1 

x !k .. k.I 1/J (r.) ljJ (r.)>
-1 -:J ni -1 nj -J 

where k. is the conjugate momentum to position r. and m 
-1 .· -1 

is the avera~e mass of the nucleons. 

The usual shell model approximation assumes that 

it is only necessary to consider the interactions between 

n of the A nucleons in the system. The A-n other nucleons 

are assumed to form an inert core. The expectation energy 

of a Slater determinant in the shell model approximation 

is then calculated to be 

A 
<~IHI~>= E + I: C·0 i=A-n+l J 

A 
+ l: <1/J (r.) ljJ (r.)JV .. J\fJ (r . ) \fJ (r . ) 

ni -1 nj -l 1J ni -1 nj -Ji<j=A-n+l 

- ljJ (r.) \fJ (r.)>n. -1 n. -J
J 1 

A 
where l: €. is formally equivalent to 

1i=A-n+l 

A 
l: <lJJ (r.) jT. 11/J (r.) > n. -1 1 n . -1i=A-n+l 1 1 
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A-n A 
+ E E <VJ (r. ) VJ ( r . ) Iv. . I VJ (r. ) VJ ( r . ) 

i=l j=A-n+l ni -1 nj -J 1J ni -1. nj -J 

- VJ (r.) VJ (r.) > n. -1 n. -JJ 1 . 

and E to
0 

A-n 

E <lJ; (r. ) IT. !VJ (r. ) > 


. n. -1 1 n. -1l.=1 1 .. . l. 

A-n 
+ L: <VJ (r.) lJJ (r.)!v .. llJJ (r.) VJ (r.) - VJ (r.)n. -1 n. -J l.J n. -1 n. -J n. _ii<j=l 1 J l. J . J 

x VJ (r.)>n. -1
l. 

The core energy, E is normally not calculated and0 

the single particle energies, £, are taken from experimental
l. 

results. The single particle energy can be determined as 

that energy required to remove a single valence nucleon 

in state i from the nucleus A+l leaving the core nucleus A. 

The strength of the oscillator well is often used 

as a parameter ~n a shell model calculation. In this 

calculation the oscillator well strengths are determined 

by requiring that the nucleus saturate i.e. that the ground 

state binding energy be a minimum. 

The basis set of single particle states can be 

characterized by the quantum numbers [n,m,n ] • In this z 

calculation the single particle states considered (Appendix 

2) are 

[O,O,O] state 
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[0,1,0] 0 state 
p+l 

[0,-1,0] op state 
-1 

(0,0,l] op state 
0 

Orthonormality conditions thus allow six independent 

oscillator parameters (if deformation is also considered) 

The total energy E thus is a function of six para-

However, since J is not a good quantum number for 

the basis chosen, meaningful calculations for the ~xcited 

state spectra can only be performed at zero deformation, 

a. = s. and a further necessary requirement that has to be 
1 1 

imposed is that ap = aP±l. 
0 

It should be noted that, with the restriction 

ap = aP±l' and at zero deformation, the expressions for 
0 

Ej and E of the shell model yield the same contribution0 

for given a and ap for any possible determinantal wave8 
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function. Thus a shell model calculation will give exactly 

the same excited state spectra for the same values of 

and ap as the more complete calculation performed ina 8 

this work. The shell model, however, is incapable of 

determining ·the correct a and 	ap which would lead to5 

saturation of the system. 

The ~inimum binding energy of most systems studied 

occurs when the system is deformed, a.~s.. The same de
i l. 

formation is assumed for all shells i.e. 

The deformation parameter. quoted in this thesis, 

e: 	 is that of Volkov (Vol 65) • It is related to o by 

21 - - e:38 = 1
1 + - e:3 

The direct and exchange potential matrix elements 

differ in their deformation properties. Their behaviour 

with deformation has been studied by Volkov (Vol 70). The 

volume V of the nuclear system remains almost constant 

during deformation and using this assumption, the dependence 

of the kinetic energy on the deformation is easily seen. 

The volume V ~ l/a/6 (= c/a/6) where a and S are 

the oscillator parameters for the state considered. 

Defining the dimensionless parameters A and B 
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as 

A - (V/c) 2/ 3 a 

B - (V/c) 2/ 3 8 

and 

A/B = 1 

A deformation d can be defined as 

d ::: ./A7B 

and a state is prolate, spherical or oblate as 

d ~ 1
< 

The kinetic energy for a particle in state [n,m,n ]
2 

can be written as 

· -n2 
= ~[(2n+!ml+l)a + (nz+~)B] mTnmn 

z 

where a = mw/11 and B = mw/1i. 

Thus 

Minimization of T with respect to A gives 

d T nmn 
2 = (2n+fmj+l) - 2(n2+~)/A3 

dA 

= 0 for a minimum 
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Thus 

A· = [(2nz+l)/(2n+jmj+l)] 1 / 3 
min 

3and dmin = [(2nz+l)/(2n+lmf+l)] l/

Extending this procedure to the minimization of 

the kinetic energy of a A particle product determinant, 

the deformations £ shown in Table 2.1 are predicted for 

the 0-p shell nuclei 

TABLE 2.1 

A £ A £ A e: 

4 0~00 9 0.48 14 -0.21 

5 0.32 10 ~a.so 15 -0.09 

6 0.46 11 -0.53 16 0.00 

7 0.55 12 -0.55 

8 0.60 13 -0.35 

For this calculation a equals ap. For smaller8 

values of cr, where cr = ap/a8 , identical results are obtained 

with regard to the sign of e: but 1·e:l is smaller. The 

predicted e:'s are larger generally than those found in 

actual calculations but, with the exception of . 9Be, the 

correct sign is predicted. The oblate solution for 9Be 

was very close to the prolate solution. A further extension 

of the above procedure is examined in Chapter 10. 

The interactions considered in this work also have 
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exchange operators built into their formalism. The basic 

• interaction is modified by the factor 

where PM is the space exchange operator 

- p p )
C5 T 

Pa is the spin exchange operator 

P is the isospin exchange operator
T 

The exchange strengths are defined so that 

W + M = 1 

In the calculation of the potential matrix element, 

<V .. >, since the space, spin and isospin wave functions
l.J 

are considered separable, the spin and isospin wave functions 

can be ignored and the direct matrix elements evaluated 


in coordinate space are multiplied by the factor 


[W + B o + H o - M 8 8 ]
C5 • C5 • "["."[". C5 • C5 • l•l• 

1 J J. J J. J J. J 

the exchange matrix elements, likewise, being multiplied 

by the factor 

[-M + W o 8 + B 8 + H ]
C5 • C5 • "["."[". l•l• C5 • C5 • 

J. J J. J . J. J J. J 

where 8 = 1 if the spins of the ith and jth particles
C5 • C5 • 

J. J 
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are the same, zero otherwise and 

cS = 1T 0 T 0 

l. J 

if the isospins of the ith and jth particles are the same, 

zero otherwise. 

Considering the interaction of one nucleon with 

the four nucleons of a closed sub-shell, it is easily seen 

that the direct matrix elements depend on the exchange 

strengths merely with respect to the factor \>D=(4W-M+2(B+H)), 

and that the exchange matrix elements merely depend on 

VE= (W - 4M + 2(B+H)) 

Since W + M = 1 v and vE can be rearranged to give0 

VD= lO(W-M) + 8(B+H))i(6 + 

VE= lO(W-M) + 8(B+H))t(-6 + 

Thus, for a determinantal state consisting of a 

single nucleon (or a single nucleon hole in a sub-shell) 

outside closed sub-shells, the total energy of the system 

is invariant to the exchange strengths if 

v = lO(W-M) + 8(B+H) 

is maintained at a constant value. 

This invariance is also true for determinants 

constructed from only closed sub-shells i.e.· those determinants 

having [ 4, 4, 4, -----, 4] supermul tiplet symmetry .• 



CHAPTER 3 


CHOICE OF AN EFFECTIVE INTERACTION AND CALCULATIONAL ASPECTS 

It has already been noted in Chapter 1 that the 

use of realistic internucleon interactions for the calcula

tion of finite nuclear systems precludes the use of simple 

single particle basis wave functions, such as the wave 

functions of the harmonic oscillator well. Goldstone 

(Gol 57) has indicated that this difficulty can be over

come by using a reaction matrix G instead of the inter

action V. Various approximations have been used to derive 

G from V (Bru 67) but these are all of a complex and time

consuming nature. The main point of interest is that the 

matrix elements of G can be reasonably well approximated 

by those of a well behaved potential (Bra 65) , thus en

abling the properties of finite nuclei to be calculated 

in a reasonable time. 

Moszkowski and Scott (Mos 60) have shown that the 

repulsive core can be effectively cancelled by part of the 

attractive tail, the resulting simple potential being zero 

inside a separation distance d. Bhaduri and Tomusiak (Bha 

65) have indicated that this separation distance is energy 

or velocity dependent; it depends on the relative energy 

of the interacting nucleons. The separation method results 

in just the long range part of the realistic potential, 

25 
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which gives approximately the same matrix elements as does 

the reaction matrix. Rather than following the forma lism 

to 	derive this long range velocity dependent interaction, 

the procedure adopted, in this work, is to obtain the 

interaction by fitting the s-wave phase shifts at a number 

of different relative energies. 

It has been noted in Chapter 1 that there is con

siderable evidence that the effective interaction should 

be density dependent. This density dependence derives from 

the observation that the G matrix elements depend on the 

local density (Bha 67; Won 67), and also, that the main 

contribution of the long range tensor interaction to the G 

matrix, the second order Born term; can be replaced by a 

density dependent central interaction (Kuo 66). The 

exact nature of these density dependencies is unclear at 

the present time. 

Bhaduri and Tomusiak (Bha 66) have shown how 

important it is to ensure that the effective interaction 

saturates nuclear matter. The criteria, thtls adopted in 

this thesis to determine the analytic form of the effective 

interaction are: 

1. 	that the interaction reproduce the experiment

ally determined S-wave phase shifts for free 

nucleon-nucleon scattering at various relative 

energies; in particular those energies which 

are important for nucleons interacting within 

a finite nucleus; 
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2. 	 that the interaction have roughly the same 

long-range behaviour as "realistic" poten

tials; 

3. 	 that the interaction saturate nuclear matter 

at the correct saturation density and binding 

energy per particle; 

4. 	 that the interaction have small second order 

correction terms in nuclear matter; 

5. 	 that the matrix elements for the interaction 

be easily evaluated. 

The first two criteria derive from the requirements 

of the Moszkowski-Scott separation prescription.. . The third 

condition ensures that the interaction does not. lead to the 

collapse of nuclear systems heavier than the light nuclei 

considered in this thesis. The interactions derived in 

this work are to be used in first order Hartree-Fock and 

variational calculations. Therefore, to obtain meaningful 

results for these calculations, the second order correction 

terms should be small. Sprung (Spr 6~) has indicated that, 

for the form of the effective interaction used in this work, 

the fourth requirement limits the size of the repulsive 

core height to a maximum of approximately 50 Mev. 

For a calculation of a finite nucleus, a rapid 

evaluation of the potential matrix elements is of great 

practical importance. If the calculation of these matrix 

elements is too involved there is not much advantage to be 
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gained by using an effective interaction rather than the 

more formally correct G reaction matrix technique. 

Criterion 5 is well satisfied by forces of the 

Volkov double-gaussian form: 

2 2 2 2[V exp(-r /~ )+V exp(-r /A )]a a r r 

where PM, P and P 't are the usual Ma.torana (space), spin and
0 

isospin exchange operators. 

This type of interaction has been used by Volkov 

(Vol 65) and Hughes and Volkov (Hug 66) in numerous com

putations. Its radial shape is very similar to that of the 

Moszkowski-Scott form (Bro 67) . 

Interactions 1, 2 and 3 of Table 3.1 are of this 

form. They were derived by_ crudely fitting the s-wave scat

tering data at zero relative energy i.e. the scattering 

length and the effective range. It was also required that 

they fit the binding energy of either 160 and/or 4He. These 

interactions do not saturate nuclear matter and thus tend 

to lead to the collapse of nuclear systems heavier than 

160. 

Interactions 4 and 5 represent an improvement over 

these interactions. They were designed to fit the S-wave 

scattering d_ata at a number of different relative energies. 

This was accomplished by making Ar' k dependent 

• (3.1) 
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k is the relative wave number which is related to the re

lative energy. 

This has the desired effect of changing the attractive 

tail of the interaction for different relative energies 

(the analogue of an energy dependent separation distance 

in the Moszkowski-Scott separation method) . 

For given V , V , A and k it is possible to find a r a 

a A which fits either the triplet or the singlet s-wave r 

phase shift. However, the desired matrix elements are not 

calculated in the relative coordinate system, and different 

Ar's for the singlet and triplet states are not meaningful. 

Instead an average A is used for which the triplet and 
r 

singlet values of Ar are weighted according to their rel

ative strengths, [l + (B-H)] and [l - (B-H)] respectively. 

These average values of Ar for different k's, k 1 , k etc.,2 

are well represented by the parabola (3.1). 

Thus, for given Va' Vr and Aa' the S-wave phase 

shifts can be used to determine the parameters Ar 0 , c 1 , c 2 

and (B-H) . It should be noted that the possibility of A 
r 

being greater than Aa (i.e. the interaction becoming re

pulsive) for large k now exists. For the interactions used 

in this thesis and, at the values of k prevelent in the 

finite nuclei studied, this feature does not appear. It 

does, however, provide a saturation mechanism in a nuclear 

matter calculation. In fact, Interactions 4 and 5 do satur

ate nuclear matter but at an unrealistically high binding 
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energy per particle and at a saturation density of 


kF = 2.5 fm-l (the accepted saturation density is kF= 1.36 fm-\ 


In order to more realistically saturate nuclear 

matter, density dependence is introduced into the inter

action. The form of the density dependence follows closely 

that suggested by Bethe (Bet 66), although no restriction 

is placed on · the power of the density dependence. The Va 

and Vr of the above form of the interaction are now replaced 

by 

n 1/3311"2 
VA (1 + C3 (-2- p) ) 

n 
(or VA(l + c 3 kF 1) in nuclear matter)I 

n 2/3371"2
and VR (1 + C4 (-2- p) ) 

n 
(or VR(l +·c4 kF 2) in· nuclear matter) 

where p is the local density and n and n are not necessarily1 2 

integers. At zero density, the free scattering case, this 

form of the interaction is identical to the form previously 

considered and thus the fitting procedure to the s-wave 

scattering data is unchanged. 

For all nuclear systems having [4, 4, . -~--] super-

multiplet symmetry, including nuclear matter and finite 

nuclei represented by closed sub shells, the total energy 

is invariant to individual changes in the strengths of the 

exchange operators, provided the parameter v is unchanged 
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(Chapter 2) , where 

v = lO(W-M) + 8(B+H) 

Thus using the first order formulae quoted in Appendix 

5 for nuclear matter properties, c and c can be deduced3 4 

by fitting the binding energy and saturation density of 

nuclear matter for any interaction characterized by VA' 

VR' Aa' Ar 0 , c 1 , c 2 , n1 , n 2 and v. The values chosen for 

the properties of nuclear matter fitted by most interactions 

presented in Table 3.1 are those suggested by Sprung (Spr 

69) . They are 

B.E./A = - 16 Mev and saturation density~ kF = 1.36 fm- 1 . 

"·. • ~ r 

I 


The procedure of determining the form of the inter

action (for given VA, VR' Aa' A. r 
0 

nl and n2} by fits toI 

the scattering data and nuclear matter results in a family 

of interactions all having identical values for c and1 c 2 

but having different values of v, c and c • This fami l y 3 4 

of interactions will also give different values for K, the 

compressibility of nuclear matter. At saturation K is 

defined as 

2
K = k 2 d (B.E./A) 

F d k 2 
F 

The final interaction chosen, from the family of 

interactions, ~o calculate the 0-p shell nuclei is obtained 

by fitting the binding energy of 160. This determines 
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unique values for v, c 3 and c 4 • 

Table 3.1 lists a number of interactions (Interactions 

6 - 37) obtained by following the above procedure. Some 

of the interactions listed have slightly different forms 

of the interaction than the form established above andt for 

some interactions the nuclear matter criteria are different. 

These exceptions are noted in Table 3.1. 

There is complete freedom in the choice of VA' VR' 

Aa' n1 and n2 for the effective interactions. However, the 

requirement that the second orde~ correction terms in nuclear 

matter be small imposes the restriction that IVAI - !vR I, 
the repulsive core height not be too large. The repulsive 

core height was fixed at approximately 5 Mev for the inter

actions first studied during the course of this work. Sub

sequent investigation of the role of the core height (sum

marized in Chapter 9) showed that, for reasonable core 

heights, there were no differences in the properties of 

nuclear matter or finite nuclei for interactions with the 

same value of VA but different va l ues of VR. 
The scattering data fit, taken with . the 160 binding 

energy fit and the normalization condition, W+M = 1, leaves 

just one degree of freedom in the choice of the exchange 

operator strengths. This point is examined in Chapter 5. 

The local density p is generally taken to be that 

pertaining at the centre of mass of the interacting nucleons. 

Other interpretations for the local density are considered 
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in Chapter 6. 

Determination of Matrix Elements 

For practical reasons the single particle basis 

chosen for this investigation is that of the cylindrically 

symmetric harmonic oscillator well. In this basis, some 

suitable meaning must be given to k in the context of the 

evaluation of the potential matrix elements <ijlVlki>. A 

suitable choice of k is fully discussed by Manning (Man 67) 

and he has demonstrated that a selection of k satisfying 

+ (2n. + jm. j + l)a.. + (2nk + !mkl + l)ak
J J J 

is a satisfactory approximation. 

It is. of paramount importance to choose. the form 

of the density function p so that the required matrix 

elements can be easily evaluated. Since, in fact, the 

dependence on the density p is such that, generally, p 

appears in the potential matrix elements raised to some 

non-integer power, a great limitation is placed on the 

choice of the form of the density function. .From this 

point of view, a satisfactory form of the density function 
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is the single gaussian form since this form considered to 

any power is still a gaussian. The necessary gaussian 

parameters are determined by the requirement that the 

gaussian distribution have the same mean square expectation 

values for the cylindrical coordinates p and z as does the 

actual nuclear density or, in practice, as does an approxi

mation to the true nuclear density. The approximation to 

the actual nuclear density is to consider the 4 S-states 

to be occupied by a single nucleon and the 12 P-states 

to be occupied by (A-4)/12 nucleons. This approximation is 

examined in Chapter 6. 

If Po and represent root-mean-square dimensionsz0 

of the approximate nuclear density, then the single gaussian 

density approximation is of the form 

- -1/2 -3/2 -2 -1 2 2 2 2 
p ( i) (r) - 2 1T p z A exp ( - p Ip z /2z 0 ) . 

0 0 0 

Manning (Man 67) has pointed out that this density 

approximation overestimates the true central density 

particularly for those nuclei which have a pronounced 

central dip in their density distributions. He considered 

a different form of the density approximation (approxi

mation (iv) of Chapter 6) . This approximation was designed 

to give the same central density (the density at the centre 

of the nucleus) and the same ratio <p 2 >/<z 2 > .as that of 

the actual nuclear density. In thi.s case, the density 

approximation is of the form 

P(iv)(r) = D exp(-p 
2
/K p 0

2
· 

http:p2>/<z2>.as
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where D is the central density of the true nuclear density 


and K is defined by 


K = (2-1/2 -3/2 A/D 2 ]2/3
TI Po zO 

For both of these approximations the local density 

is evaluated at the centre of mass of the interacting 

particles. In the case where the interacting nucleons are 

at opposite s~des of the nucleus these apprdximations would 

· consider the local density to be tha~ at the centre of 

nudleus. This is unrealistic, particularly for light nuclei 

where the nuclear surface is very important • .Thus, in 

Chapter 6, approximations (ii) and (iii) consider the local 

density to be evaluated at points other than the centre 

of mass. 

Thus, for approximation (ii), p(R) for approximation 

(i) (where R = ~(£..1+::.i>> is replaced by 

for the gaussian 
form of the density 
distribution 

and for approximation (iii) by 

Calculational Details 

The general variational method employed in the 
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calculations for finite nuclei has been outlined in Chapter 

2. The choice of cylindrically symmetric single particle 

wave functions means that, for the product determinantal 

states constructed from this single particle basis J is 

not a good quantum number. However M, the projection of J 

onto the symmetry axis, the z-axis, is. 

At z~ro deformation the Hamiltdnian is rotationally 

invariant and the eigenvalues calculated in different M 

sub-spaces will be degenerate provided the M sub-spaces 

span the same truncated space, i.e. the single particle 

basis includes all possible states of the oscillator well 

characterized by N, where N = 2n + - lml + n . The different z 
states satisfying this requirement must have the same 

oscillator strength (i.e. ap = ap ) . The procedure, thus, 
0 ±1 

followed in assigning the spins, J, of the ground state 

and excited states is to perform a variational calculation 

in the M = 0 (or M = ~) sub-space to obtain as . and ap . 
min min 

such that the ground state binding energy is a minimum. 

as . and ap . are used as the oscillator parameters in 
min min 

further diagonalizations of the Hamiltonian in higher M 

sub-spaces. A· simple counting procedure of the number of 

degeneracies in _the different M sub-spaces enables a J to 

be assigned to a level (e.g. J = 4 can be assigned to an 

eigenvalue which is degenerate in the M = 4, 3, 2, 1 and 0 

sub-spaces) • 

The gr6und state binding energy is minimized with 
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respect to the oscillator parameters of both the S and the 

P orbitals (a8 and ap) • The procedure adopted wa~ to 

parameterize the minimization with respect ··to a. and a,8 

where a= as/°'p· °'s's were found, for three different 

values of cJ, which minimized the ground state binding 

energy. From this data a a is evaluated which is con

sidered to be the value of a which will give· the lowest 

ground state binding energy and a °'s is calculated which 

gives the minimum ground state binding energy for this 

value of a. The basic assumption used in the minimization 

process was that the nuclear binding energy varies in a 

parabolic manner with °'sand with a (Vol 65)~ This min

imization procedure involves sixteen calculations for, 

and diagonalizations of, the Hamiltonian matrix. The 

procedure was found to be good for most nuclei studied if 

the initial choices for °'s and a were reasonable (i.e. not 

too different 'from the final as and cr) • 

The above minimization procedure can be followed 

at any deformation. By explicit testing, however, it has 

been found to be sufficient to determine q at zero defor

mation . and use this value of a at other deformations, thus 

merely minimizing the binding energy at these deformations 

with respect to °'s· 

The time required for a full minimization of the 

ground state binding energy of a nucleus (N,Z) varied 

considerably, the minimum time (for Z = N = 2) and one 
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determinantal state) being 3 secs. and the ma~imum time 

(for Z = N = 6 and 84 states in the M = 0 sub-space) being 

9 minutes. The quoted times are for calculations per

formed using the CDC 6400 computer at the McMaster University . 

Computational Centre. 



TABLE 3 .1 

Interaction 
VA VR A a 

A 0 
r B-H \) nl 

4He 

n 
It0 

No. cl c2 C3 C4 K B.E.den B.E. r.m.s. B.E. r.m.s. 

(Mev) (Mev) (Mev) (fm) 
. . 

(Mev) (fro) 

.,..79.03 · 82.8 1. 5 0.8 0.25 -3.0 

1 - - - - - - 31. 86 112.46 

1.45 2.08 

-83.34 144.86 1. 6 0.82 o.o -2.0 

2 - - - - - - 27.17 128.77 

1.68 2.23 

-60.0 60.0 1. 8 1.01 o.o -3.0 

3 - - - - - · - 27.49 104.04 

1.69 2.40 

-78.03 82.8 1. 5 0.76 0.25 -3.0 

4 0.496 0.7 - - - - 32.61 113.47 

1. 55 2.28 

-78.03 82.8 1.5 0.76 0.25 -2.5 

5 0.496 0.7 - - - - 32.61 127.12 

1.55 2.22 

-78.03 82.8 1. 5 0.76 0.25 -2.4 1 1 

6 0.496 0.7 +l. 21963 5.7207 257 2.18 30.34 128.90 

2.00 2.87 

v. 

"' 
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7 

-78.03 

0.496 

82.8 

0.7 

1. 5 

+0.36329 

0.76 

1.149 8 

0.25 

236 

-3.0 

-0.53 

1 

35.47 

1. 83 

2 

131. 21 

2.69 

* 
8 

-78.03 

0.496 

82.8 

0.7 

1. 5 

-0.72786 

0.76 

2.96976 

0.25 

280 

-2.5 

1.74 

1 

32.91 

1. 83 

2 

125.23 

2.67 

9 

-250.0 

0.15 

255.0 

0.836 

1. 5 

+0.14987 

1. 247 

0.2905 

0.4 

200 

-1. 5 

19.87 

1 

27.87 

2.07 

1. 5 

129.66 

2.89 

10 

-250.0 

0.15 

255.0 

0.836 

1. 5 

+0.034498 

1. 247 

0.1245 

0.4 

213 

-1. 5 

19.86 

1 

27.28 

2.04 

2 

124.73 

2.87 

11 

-250.0 

0.15 

255.0 

0.836 

1. 5 

-0.02853 

1. 247 

0.00763 

0.4 

301 

~2.5 

12.12 

1 

32.79 

1. 90 

6 

133.45 

2.76 

12 

-250.0 

0.15 

255.0 

0.836 

1. 5 

-0.04196 

1. 247 

0.00055 

0.4 

470 

. -2. 5 

12. 0 i· 

1 

31. 48 

1. 89 

12 

126.34 

2.75 

* 
13 

-250.0 

0.15 

255.0 

0.836 

1. 5 

+0.08737 

1. 247 

0.26774 

0.4 

207 

-2.0 

15.99 

1 

30.48 

1.99 

2 

133.28 

2.83 

14 

-250.0 

0.15 

255.0 

0.836 

1. 5 

-0.0169 

1. 247 

0.1066 

0.4 

248 

0.0 

31.5 

1 

18.68 

2.19 

2 

98.37 

2. 9 8 

~ 
0 
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t 
15 

-250.0 

0.15 

255.0 

0.836 

1. 5 

+0.03105 

1. 247 

0.09850 

0.4 

159 

-2.5 

14.01 

1 

31. 34 

1.95 

2 

125.62 

2.84 

t 
16 

-250.0 

0.15 

255.0 

0.836 

1. 5 

+0.0033 

1.247 

0.06291 

0.4 

173 

-2.5 

19 -~ 57 

1 

31.33 

1.91 

2 

126.24 

2.77 

17 

-250.0 

0.15 

255.0 

0.836 

1. 5 

+0.02149 

1.247 

0.09919 

0.4 

196 

-1.5 

19.87 

-1 

28.25 

2.05 

2 

128.45 

2.88 

18 

-250.0 

0.15 

255.0 

0.836 

1. 5 

-0.00687 

1. 247 

0.04998 

0.4 

236 

-2.0 

15.99 

-1 

29.76 

1.97 

3 

128.59 

2.81 

19 

-250.0 

0.15 

255.0 

0.836 

1. 5 

-0.02127 

1.247 

0.02047 

0.4 

287 

-2.5 

12.12 

-1 

32.32 

1.90 

4.5 

131. 6 7 

2.75 

20 

-250.0 

0.15 

255.0 

0.836 

1. 5 

-0.03774 

1. 247 

0.01015 

0.4 

366 

-2.5 

12.12 

-1 

30.69 

1.88 

6 

123.61 

2.73 

** 
21 

-250.0 

0.15 

255.0 

0.836 

1. 5 

+0.03479 

1.247 

-0.08429 

0.4 

212 

-1. 5 

-
1 

27.23 

2.02 

2 

122.4 

2.86 

** 
22 

-250.0 

0.15 

255.0 

0.836 

1. 5 

-0.05139 

1. 247 

0.12438 

0.4 

213 

-1. 5 

-
1 

27.25 

2.03 

2 

123.85 

2.86 

.i::. 
I-' 
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23 

-67.50 

0.7096 

72.5 

0.5869 

1. 5 

+0.38675 

0.602 

1. 71262 

0.312 

256 

-3.6 

-3.93 

1 

37.81 

1. 79 

2 

128.77 

2.68 

24 

-67.50 

0.7096 

72.5 

0.5869 

1.5 

+0.27323 

0.602 

0.84495 

0.312 

285 

-3.5 

-3.53 

1 

-
3 

125.61 

2.65 

* 
25 

-67.50 

0.7096 

72.5 

0.5869 

1. 5 

+0.59444 

0.602 

2.20965 

0.312 

320 

-3.5 

-3.52 

1 

37.91 

1.75 

3 

127.74 

2.61 

26 

-67.5 

0.7096 

72.5 

0.5869 

1. 5 

+0.34059 

0.602 

1.38381 

0.312 

332 

-4.0 

-5.56 

2 

40.73 

1. 75 

3 

131.15 

2.63 

* 
27 

-67.50 

0.7096 

72.5 

0.5869 

1. 5 

+0.73526 

0.602 

3.67981 

0.312 

385 

-4.0 

-5.56 

2 

41.66 

1.72 

3 

"133.53 

2.59 

28 . 

-73.0 

0.666 

73.0 

0.64238 

1.5 

+0.35872 

0.69818 

1. 36325 

0.32 

247 

-3.25 

-1.68 

1 

36.32 

1. 82 

2 

128.48 

2.70 

29 

-73.0 

0.38575 

123.0 

0.65844 

1. 5 

+0.35092 

0.58538 

1.32535 

0.32 

240 

-3.25 

-1. 7 

1 

35.98 

1. 80 

2 

128.11 

2.67 

·30 
-110.0 

0.35633 

110.0 

0.66273 

1. 375 

+0.33751 

0.85637 

0.69659 

0.32 

238 

-3.0 

. -0.97 

1 

35.99 

2 

130.93 

.i:::.. 
[\.) 

1. 82 2.86 
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31 

-146.77 

0.23516 

146.77 

0.58870 

1. 25 

+0.36614 

0.86103 

0.57321 

0.33 

251 

-3.0 

3.08 

1 

35.25 

1. 80 

2 

124.55 

2.67 

32 

-460.0 

0.10327 

460.0 

0.74921 

1.0 

+0.33679 

0.88111 

0.30743 

0.28 

330 

-1.0 

-5.26 

1 

33.13 

1. 77 

2 

129.83 

2.58 

33 

-485.0 

0.11616 

485.0 

0.82465 

1. 0 

+0.32272 

0.88769 

0.31042 

0.28 

371 

1.0 

-1. 85 

1 

28.24 

1. 82 

2 

126.80 

2.59 

34 

-510.0 

0.12674 

510.0 

0.87669 

1.0 

+0 . 31683 

0.89290 

0.31109 

0.28 

A07 

2.5 

0.46 

1 

25.95 

1. 84 

2 

130.19 

2.58 

35 

-510.0 

0.12674 

510.0 

0.87669 

1.0 

+0.16532 

0.89290 

0.11336 

0.28 

301 

-s.o 
5.99 

-1 

23.88 

1.96 

2 

126.81 

2.66 

36 

-110.0 

0.35633 

110.0 

0.66273 

1. 375 

+0.32907 

0.85637 

· 0.70753 

0.32 

242 

-2.8 

-0.15 

1 

34.4 

1.84 

2 

127.15 

2.70 

37 

-223.54 

0.15961 

223.54 

0.75275 

1. 375 

+0.01178 

1.11836 

0 . 01163 

0.35414 

316 

-2.7 

4.62 

-1 

34.15 

1. 83 

6 

127.19 

2.70 

-
~ 
w 
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V(r) 

v = lO(W-M) + 8(B + H) 

K - Compressibility of Nuclear Matter 

B.E.d - Energy of the density dependent part of en 

the interaction in nuclear matter. 

*For these interactions the range of the basic gaussian 

for the density dependent parts of the interaction is one 

half (Aa/2 and Ar/2) that of the non-density dependent parts 

of the interaction. 

tinteraction 15 has been fitted to a binding energy 

per particle in nuclear matter of -14 Mev. 

Interaction 16 fits nuclear matter at a saturation 

density of 1.5 fm. 

** Interaction 21 is of the basic form 

3TI2 nl/3 3TI2 n2/3 
(l+ c3(-2- p) · + c4(-2- p) )VA 

i 
2 2 2 2

exp(-r /Aa > + VR exp(-r /Ar (b)) 
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Interaction 22 is of the basic form 


2 2 3TI 2 nl/3 

V(r) =VA exp(-r /A.a) + (1 + c 3 <-- · p) .2 

3TI 2 n2/ 3 2 2 
+ c 4 (~2~ p) ) VR exp(-r /"-r (k)) 



CHAPTER 4 

LOCAL AND VELOCITY DEPENDENT INTERACTIONS 

This chapter is concerned with various non-density 

dependent interactions. The interactions considered do 

not fit the criteria established in Chapter 3. Inter

action 1 w~s determined by fitting the zero-energy scattering 

data of the s-wave i.e. the triplet-even and singlet-even 

effective ranges and scattering lengths. It was further 

required that it predict the experimental binding energy 

4of He. This interaction has been used in previous cal

culations (Hug 66) to investigate the 1st excited state of 

160. 

Interaction 2 has been used by Volkov (Vol 65) to 

investigate the deformation of the 0-p shell nuclei. It 

was derived by fitting the zero-energy s-wave scattering 

data in a very crude manner. Brink (Bri 65) has modified 

this interaction to the form listed as interaction 3 in 

Chapter 3. 

Since many calculations have been performed using 

these interactions without the Coulomb interaction being 

included in the interaction Hamiltonian, it was decided to 

calculate the o-p shell nuclei with and without the Coulomb 

term. Thus, not only oan the effect pf the Coulomb inter

action on ground state energies, excitation energies and 

46 
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root-mean-square radii, be ascertained but also comparisons 

can be made between· results for the type of calculation 

envisioned in Chapter 2 and those obtained from various 

projected Hartree-Fock calculations. 

A refinement of the basic Volkov interaction, con

sisting of making the repulsive range velocity (or state 

dependent) has been suggested (Hug 66a; Man 67) . Such an 

interaction (Interaction 3) is considered in this chapter. 

16This interaction underbinds 0 and a modified version 

(Interaction 4) is studied which predicts the correct 160 

binding energy. 

Deformation equilibrium studies are presented for a 

number of the interactions. 

With the exception of the interactions studied in 

Chapter 10, only one of the isobaric nuclei for a given A 

was calculated for the interactions. These nuclei were 

6 . 7 8 9 10 11 12 13 14Li, Be, Be, . B, B, B, c, c, N . . For each nucleus, 

the strength of the spin-orbit interaction, C, was varied 

over a given range in discrete steps. The values of c 

for the different nuclei are summarized in Table 4.1. 

It was generally found that these ranges of C 

variation were adequate either, to produce a "fit" to the 

spectra of the nucleus being studied, or, to indicate that 

no "fit" was possible for that interaction. A=lS nuclei were 

not .considered since it is always possible to choose a C 

such that the correct splitting of the two possible 0-p 
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TABLE 4.1 

A Initial c (Mev) Final c (Mev) Increment in c {Mev) 

6 

7 

8 

9 

10 

11 

12 

13 

14 

-0.5 

-1.0 

-1.5 

-3.0 

-4.0 

-3.5 

-3.5 

-3.5 

-4.0 

-2.5 

-3.0 

-3.5 

-6.0 

-6.0 

-6.5 

-5.5 

-5.5 

-6.0 

-0.5 

-0.5 

-0.5 

-1.0 

-1.0 

-1.0 

-0.5 

-0.5 

-0.5 
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states is reproduced. Similar considerations apply to the 

A=S system. In addition the A=S nuclei are underbound with 

respect to 4He and a full variation of the A=S system with 

respect to the 0-s and 0-p oscillator parameters gives a 

0-p shell oscillator strength of 0 Mev i.e. the minimum 

energy of the system is for four particles in _the 0-s shell, 

4He. 

Interaction 1 

Figs. 4.1-4.9 illustrate the results obtained using 

Interaction ·! following the procedure outlined. above. The 

results are presented for calculations with the Coulomb 

interaction both present and absent from the interaction 

Hamiltonian and with a value of the spin-orbit strength, C 

chosen to give the best fit to the experimentally observed 

spectra of the nucleus A with the Coulomb interaction in-

eluded. The excitation energies have a smooth behaviour 

with the variation in C and better fits to the spectra are 

possible for values of C intermediary to those considered. 

Since the purpose of this work is primarily to compare 

interactions ·; at this stage, this procedure was not followed. 

Tabl~ 4.2 lists the calculated binding energies and root

mean-square radii for the nuclei considered. 

Equilibrium deformation calculations were also per

formed for this interaction. Table 4.3 summarizes the 

results of these calculations, which were performed with 
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TABLE 4.2 

Coulomb included Coulomb excluded 

in Hamiltonian from Hamiltonian Difference of 
A (a) (b) binding energies 

B.E. (MeV) r. m. s .. ( fm) B. E. (Mev) r .m. s. (fm) between (a) and (b) 

4 31.86. 1. 45 32.84 1. 44 0.98 

6 21.22 2.17 23.12 2.14 1.90 

7 21.52 2.22 25.39 2 .13 . 3.87 

8 36.30 2.09 40.10 2.06 3.80 

9 31. 44 2.21 37.23 2.18 5.79 

10 41.19 2.23 46.97 2.20 5.78 

11 49.74 2.22 55.61 2.19 5.87 

12 67.24 2.16 76.16 2.14 8.92 

13 69.39 2.19 78.26 2.17 8.87 

14 78.02 2.16 90.43 2.13 12.41 

16 112.46 2.08 128.72 2.05 16.26 
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TABLE 4.3 

Prolate Oblate 

A Energy_gain EProlate Energy gain 8 0blate 
on deformation on deformation 

6 0.33 0.27 0.15 -0.l 

7 3.70 0.46 0.45 -0.27 

8 6.15 0.50 1.45 -0.35 

9 1.53 0.43 1. 68 -0.38 

10 1.68 0.30 2.45 -0.41 

11 0.60 0.20 3.85 -0.45 

12 0.30 0.15 4.10 -0.45 

13 0.20 0.10 1.70 -0.27 

14 o.oo 0.0 0.10 -0.10 
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the Coulomb term included. The shapes of the binding 

energy-deformation plots were similar to those reported by 

Volkov (Vol 6 S) ·• 

The root-mean-square radii at the equilibr~um 

minima are nearly the same as those at zero deformation 

for A=9 - A=l4 but are substantially less for A=6, 7 and 

8. This may be more a reflection on the minimization 

technique used (since the A=6, A=7 binding energies are 

calculated to be less than that calculated for 4He) than a 

realistic result. 

Comparisons of Figs. 4.1 - 4.9 with the experimental 

results indicate that interaction 1 is not capable of re

producing the experimental excitation energies with the 

exception of 6Li and 7Be. The calculated spectra of A=8 

and A=l2 could be improved by taking lower values of the spin-

orbit interaction but even then the discrepancies between 

the calculated and experimental excitation energies would 

be substantial. This interaction was designed to fit the 

16binding energy of 0 without the Coulomb interaction. 

Thus, no comparison can be made between the experimental 

binding energies and those quoted in (a) of Table 4.2. 

The calculated binding energies presented in (b) of Table 

4.2 can be compared with the binding energies deduced from 

experiment, although this procedure is unphysical. This 

comparison, however, reveals one of the major faults of 

local interactions of Volkov type; the binding energies 
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of the open shell nuclei are much too small. This is true 

even when the energy gained by permitting the nucleus to 

deform is added to the quoted figures of Table 4.2 (b). 

For example, the calculated binding energy of 14N is 14 Mev 

too small. A more alarming feature is that the calc~lated 

binding energies of 6Li and 1 Be are below the calculated 

binding energy ·of 4He. The calculated root~mean-square radii 

are all too small, indicating the tendency of nuclear systems 

calculated with this interaction to start collapsing (Bha 66). 

Since most calculations of excitation energies are 

performed with the omission of the Coulomb interaction, it 

is of some interest to attempt an estimation of the effect 

of this omission. The Coulomb interaction is repulsive 

and its inclusion in a calculation would be expected to 

increase the nticlear size. This is clearly seen in Table 

74.2, the greatest change being for the N=3, Z=4 system, Be. 

The excitation energies are generally only slightly 

changed (< 0. 25 Mev) by switching on the Coulomb interaction. 

Exceptions are: the ~ state of 7Be, lowered by 1.3 Mev, 

the higher states of 8Be, lowered by 0.6 Mev and the first 

o+ and l+ and the higher states of 12c, lowered by less than 

0.5 Mev. The most spectacular change is again for 7Be. 

This is not surprising since 7Be has proportionally more 

proton bonds than the rest of the nuclei studied. 

Interaction 2 

For the purposes of deriving an interaction which 
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reproduces the excited state spectra of 0-p shell nuclei, 

Interaction 2 is not very interesting since spectra calcuiated 

using this ·interaction (Figs. 4.1 - 4.9) have little corre

spondence with those determined by experiment. However, many 

authors (Bou 67; Bof 68; Fae 68; Bou 68; Boe 67; Boe 68) 

have performed Projected Hartree-Fock calculations using 

this interaction and, thus, a comparison of results can 

be made. The spin-orbit strengths used in the calculation 

for Figs. 4.1 - 4.9 are the same as those for Interaction 

1. Again calculations are performed both with the Coulomb 

force included and excluded from the Hamiltonian. The in

clusion of the Coulomb interaction has less effect on the 

excitation energies than for Interaction l; the ~- level 

of 7Be ch~nges by 0.38 Mev for Interaction 2. The rele

vent binding energies and root-mean-square radii are recorded 

in Table 4.4. 

The binding energies and root-mean-square radii 

are again too small; 6Li and 7Be are still not bound with 

respect to the binding energy of 4He. 

Interaction 2 has a longer attractive range than 

Interaction 1 so that generally the interacting nucleons 

will be further apart. Thus the root-mean-square radii for 

Interaction 2 are larger than thosefor Interaction 1. The 

Coulomb interaction is inversely proportional to the 

interaction distance and consequently the Coulomb contri

bution to the binding at equilibrium is smalle.r 'for Interaction 
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TABLE 4.4 

Coulomb included Coulomb excluded Di:fference of 

in Hamiltonian from Hamiltonian binding energy 
A (a) (b) between (a) 

B. E. (Mev) r. m. s. (fro) B.E. (Mev) r. m. s. ( fm) and (b) 

4 27.17 1. 68 28.01 1. 68 0.94 

6 20.70 . 2.38 22.41 2.36 1.71 

7 24.33 2.36 27.66 2.33 3.33 

8 36.97 2.29 40.44 2.28 3.45 

9 36.81 2.39 42.16 2.36 5.35 

10 47.82 2.40 53.19 2.37 5.37 

11 58.41 2.38 63.88 2.36 5.47 

12 76.10 2.35 84.37 2.32 8.27 

13 81. 60 2.35 89.92 2.32 8.32 

14 91.18 2.31 102.84 2.28 11.66 

16 128.77 2.23 144.87 2.21 16.10 
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2 than for Interaction 1. 

Although it is the intention of this thesis to 

attempt to find an "effective" interaction which will "fit" 

the 0-p shell excited state spectra and thus, to some 

extent, take into account configuration mixing from states 

outside the 0-p shell, it is of interest to compare the 

results of this calculation with those performed with a 

single particle basis which includes such configuration 

mixing. It is known that a Hartree-Fock calculation to 

first order will not predict much greater binding energies 

than the variational calculation performed in this thesis. 

(Beeker (Boe 67), using Interaction 2, obtains a 2.5 Mev 

gain for the binding energy of 8Be and an 0.5 Mev gain in 

the binding energy of 12c in a first order Hartree-Fock 

calculation.) However, a Projected Hartree-Fock (P.H.F.) 

calculation which includes states of the ls-Od. shell can 

produce much greater binding energy gains. (Bouten et. al. 
4 

(Bou 67) reports gains of 0.1 Mev for He, 4.04 Mev for 

6Li, 4.83 Mev for 7Be and 7.83 Mev for 8Be, with substan

tially smaller root-mean-square radii for all the above 

nuclei except 4He.) The equilibrium deformations reported 

by these authors are greater than those found by Volkov 

(Vol 65). 

P.H.F. calculations (in which states of definite 

orbital ang"'.llar momentum L are projected out of the usual 

Slater determinant wave function) also predict greater 
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L-band separations than are predicted by the variational 

methods used in this work. Table 4.5 illustrates this 

9 
60point for ee. is the band separation (E - ELTI)1

calculated with no admixture of ls-Od states and o is the 

band separation with ls-Od states admixed (Bou 68). No 

spin-orbit term is included in the calculation. 

TABLE 4.5 

o(Mev) 

2 

3 

4 

2.0 

7.1 

10.l· 

1.42 

3.54 

6.34 

are 

The 

admixed 

gain in bind

is 10.8 Mev. 

i

As can 

ng energy 

be 

when 

seen 

the ls-Od st

from Table 

ates 

4.5 

the projection method has a very great effect on the band 

separations. It is of some interest to note that for 

Interaction 2 the rotational energy, <J2
> is of the same 

order as the energy gained by deforming and projecting out 

of a nuclear system. (Faessler (Fae 68) obtains <J2
> = 

9.1 Mev in 12c to give a total binding energy of 88 Mev; 

P.H.F. calculations (Bof 68; Boe 68) predict a ground 

state binding energy of 87.5 Mev for 12c.) 

Interaction 3 

Interaction 3 has similar characteristics to 

Interaction 2. The calculated excited state spectra are 
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illustrated in Figs. 4.10 - 4.18 and the calculated binding 

energies and root-mean-square radii in Table 4.6. Again 

calculations were performed with inclusion and exclusion 

of the Coulomb interaction in the interaction Hamiltonian. 

Interaction 3 has a larger attractive range than 

Interactions 1 and 2 and thus the calculated r.m.s. radii 

are larger and the Coulomb energy is smaller. The difference 

between the calculated excitation energies with and with

out the Coulomb term is also smaller than for the first 

two interactions considered. 

The e~cited level spectra a~e generally very similar 

to those predicted by Interaction 2 although there are some 

significant differences. Although Interactions 2 and 3 

fit approximately the same scattering data, they have so 

few parameters in conunon that no useful guidelines, to 

designing an interaction to fit the 0-p spectra, can be 

obtained by a comparison of the excitation energies pre

dieted by them. 

P.H.F. calculations using Interaction 3 display 

the same tendencies exhibited by Interaction 2. Thus, for 

12c Bouten et. al. (Bou 67) find that the L=O and L=4 

bands, which lie at 2 Mev and 7 Mev excitation in the 

variational calculation, have excitation energies of 3.15 

Mev and 11 Mev for a P.H.F. calculation. Bouten et. al. 

(Bou 69) have performed a P.H.F. calculation of 9Be with a 

spin-orbit interaction, which is treated as a perturbation. 
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The strength of the spin-orbit interaction was -3.0 Mev. 

Coulomb interaction 

. included 
A (a) 

B.E. (Mev) r. m. s. ( fm) 

4 27.49 1. 69 

6 19.89 2.59 

7 22.55 2.47 

8 34.23 2.38 

9 32.79 2.53 

B. E. (Mev) 

28.33 

21.51 

25.73 

37.57 

37.86 

10 42.21 2.56 47.27 

11 50.75 2.54 55.87 

12 66.08 2.50 73.85 

13 68.72 2.52 76.47 

14 74.91 2.49 85.74 

16 104.04 2.40 119.07 

TABLE 4.6 

Coulomb interaction B.E . difference 

excluded between 

(b) (a) and (b) 

r. m. s. ( fm) 

1. 68 0.84 

2.54 1.62 

2.43 3.18 

2.36 3.32 

2.49 5.07 

2.53 5 •.06 

2.52 5.12 

2.47 7.77 

2.49 7.75 

2.45 10.83 

2.36 15.03 

Table 4.7 tabulates the excitation energies of the 

levels of 9Be calculated by Bouten et. al. (Bou 69) and com

pares them with those predicted in the type of calculation 

performed in this thesis. 

The excitation energies of the higher 2 
5 and 2 

7 

levels are much greater for the P.H.F. calculation. The 

binding energies predicted by P.H.F. calculations, for 

Interactions 2 and 3 are still much smaller than the 
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TABLE 4.7 

J7f E (P.H.F.) (Mev) E (Var.) (Mev) Expt. (Mev)
x x 


5 
 2.46 2.28 2.432 


1 
 2.59 2.902 


3 
 . 5.00 5.102 


5 
 7.95 5.402 


7 
 8.72 4.80 6.662 
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experimental values for the open-shell 0-p nuclei. The 

enhanced separation of levels for P.H.F. calculations is, 

however, still found for an interaction which overbinds 

these nuclei. Abragall et. al. (Abr 69) include the 

Coulomb force in their calculation and use a single 

16gaussian interaction which fits the binding en_ergy of 0. 

Table 4.8 lists the results of the P.H.F. calculation 

with those obtained at zero deformation in a variational 

calculation. 

TABLE 4. 8 

A B.E. (Mev) E . (Mev) :E (Mev)
X2+ x4+ 

Abragall Present Work Abragall Present Abragall Present 

8 66.2 54.04 3.1 1. 87 10.7 6.23 

12 93.9 86.20 3.01 I. 89 8.0l 6.29 

A r. m. s. ( fm) 


Abragall Present Work 


8 2.66 2.38 

12 2.68 2.61 

Although the results for the excitation energies 

for all three interactions considered are generally poor 

when compared with experimental results, it is encouraging 

that Interaction 1, which fits the zero energy sc;:attering 

data more closely than do Interactions 2 and 3, predicts 

excitation energies significantly closer to the experimental 
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values than do Interactions 2 and 3. Thus, it would seem 

possible to construct a local interaction of the type con-

side:i:ed so far which would "fit" the 0-p nuclei excited 

state spectra. However, there is no significant improvement 

in the open-shell binding energies for Interaction 1 over 

Interactions 2 and 3, and it seems likely that no modifi

cation of the local Volkov interaction will remove the 

discrepancy between the calculated and experimental binding 

energies of the 0-p open-shell nuclei. 

Since nucleons do not interact with zero relative 

energy it would be more meaningful to derive the inter

actions by fitting the scattering data at more realistic 

relative energies (10 - 100 Mev). Interactions developed 

with this criterion will now be discussed. 

Interaction 4 

Interaction 4 differs from Interaction 1 only in 

respect of the repulsive range. The repulsive range has 

been made velocity (state) dependent in accordance with the 

4form established in Chapter 2. The binding energies of He 
16 . 

and o are nearly identical for Interactions l and 4 but 

the r.m.s. radii are greater for Interaction .4. The cal

culated excited state spectra for this interaction are shown 

in Figs. 4.10 - 4.18, the same spin-orbit strengths being 

used in the calculations as was used for Interactions 1, 

2 and 3. The introduction ofvelocity dependence into the 

repulsive range improves the excitation energies with respect 



63 

to the experimental values. In particular, the results for 

12C are much improved for Interaction 4 compared with the 

results for Interaction 1. Better fits to the experimental 

spectra are obtained for Interaction 4 with values of the 

spin-orbit strength different from those in the calculations 

illustrated. 

Interaction 4, and all subsequent interactions, have 

only been used in calculations with the Coulomb interaction 

included in the interaction Hamiltonian. 

The binding energies and root-mean-square radii of 

the 0-p nuclei calculated using Interaction 4 are tabulated 

in Table 4.9. 

TABLE 4.9 

A B. E. (Mev) r.m.s. (fm) 

4 32.61 1. 55 

6 24.13 2.17 

7 25.41 2.21 

8 38.73 2.18 

9 35.99 2.29 

10 46.07 2.31 

11 54.81 2.32 

12 71.76 2.30 

13 77.28 2.28 

14 85.96 2.27 

16 113.47 2.28 
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The predicted binding energies are closer to the 

experimental values for this interaction than was so for 

the previous interactions but the calculated binding 

energies for the open-shell nuclei are still much too 

small. 6Li and 7Be are still predicted to be unbound with 

4respect to He. With the exception of these two nuclei 

the r.m.s. radii are very much greater for the velocity 

dependent interaction when compared with those calculated 

for the local Interaction 1. 

To explain this great difference for the r.m.s. 

radii between Interactions 1 and 4 it is necessary to 

examine the repulsive range of Interaction 4 closely. 

This range is velocity dependent and thus decreases with 

decreasing kinetic energy provided this energy is less 

than 40 Mev. In the nuclear systems studied the kinetic 

energies range from 10 to 30 Mev. Thus, since the potential 

energy matrix elements increase for a less repulsive inter

action (lower repulsive range), Interaction 4 favours 

regions of low kinetic energy much more strongly than 

does Interaction 1. The region of low kinetic energy in 

a nucleus is the surface. For 6Li and 7Be, the relatively 

few nucleons in the p shell are widely separated in the 

surface even for Interaction 1 and thus have a minimum 

kinetic energy already. Interaction 4 thus produces the 

same r.m.s. radii for these nuclei as Interaction 1. For 

other nuclei studied this is not so and the r.m.s. radii 
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are 	much greater. 

The results of equilibrium deformation calculations 

for Interaction 4 are summarized in Table 4.10. These 

calculations were performed with a spin-orbit strength 

of - 2. 0 Mev. The equilibrium point is reached in a de

formation calculation when the rate at which the potential 

energy is decreasing is equal to the rate at which the 

kinetic energy is decreasing. A detailed examination of 

these factors is extremely complicated. Consider, for 

example, a system which favours a prolate deformation. 

The matrix elements favouring the prolate deformation are 

(Vol 	6 S.) : 

the P 0 .kinetic matrix elements 

the P±l direct potential matrix elements 

the P exchange potential matrix elements.0 

The prolate deformation is opposed by 

the S kinetic matrix elements 

the S direct potential matrix elements 

the P±l kinetic matrix elements 

the P direct potential matrix elements0 

the P±l exchange potential matrix elements. 

Each of these matrix elements vary differently 

with the deformation parameter. 

The situation is even more complex for a velo

city dependent interaction since the potential energy 

matrix elements now depend on the kinetic energies of 
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the interacting particles. Comparison of matrix elements 

for Interactions 1 and 4 reveal that, of these matrix 

elements that favour prolate deformation, the P ex0 

change potential matrix elements are greater and the 

P ±l direct potential matrix elements are lesser for Interaction 

4 than for Interaction 1. A similar situation pertains 

when the matrix elements which oppose a prolate defor~ 

mation are compared. It is, thus, impossible to predict 

what the differences for the equilibrium deformation will 

be between calculations using Interactions 1 and 4. 

TABLE 4 .10 

Prolate Oblate 

A Energy Gain (Mev) E: p Energy Gain (Mev) so 
on deformation on deformation 

6 0.35 0.30 0 .10 -0.13 

7 3.45 0.45 0.45 -0.26 

8 5.15 0.47 1.35 -0.35 

9 1.20 0.40 1. 65 -0.37 

10 1.48 0.27 2~35 -0.43 

11 0.45 0.17 3.65 -0.44 

12 0.10 0.10 4.10 -0.45 

13 0. ff o.o 1.80 -0.30 

14 0.0 0.0 0.30 ..;.o .15 

Comparing Tables 4.3 and 4.10 it is seen that the 

equilibrium deformations for Interactions 1 and 4 are 
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remarkably similar. It would, therefore appear that the 

kinetic energy plays a dominant role in the equilibrium 

process for a deformed system (Vol 65). 

Interaction 5 

Interaction 4 does not predict the correct value 

16for the binding energy of 0. A slight change in the 

Mayorana exchange strength enables such a fit. Thus 

Interaction 5, ~hich predicts a 160 binding of 127 Mev, 

differs from Interaction 4 only in regard to the value of 

v(v=-2.5 for Interaction 5, v=-3.0 for Interaction 4). 

4He properties are, of course, unchanged, whilst the 

inter-shell binding energies increase and the root-mean

square radii of the nuclei considered decrease slightly. 
~ 

The increased v (decreased Matorana strength) for Inter

action 5, gives greater weight to the direct matrix elements 

than is the case for Interaction 4 • . These matrix elements 

increase faster for a decreasing interaction separation 

than do the exchange matrix elements and thus the nuclear 

size also decreases. The binding energies and root-mean

square radii calculated for the 0-p nuclei using Inter

action 5 are listed in Table 4.11. 

The binding energies of the open-shell nuclei are 

still too small and the problem of 6Li and 7Be being 

4underbound with respect to He is still unresolved. 

The excited state spectra calculated for Interaction 
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TABLE 4.11 

A B.E. (Mev) r .m. s. ( fm) 

4 32.61 1. 55 

6 25.09 2.13 

7 26.09 2.18 

8 40.98 2.15 

9 39.02 2.25 

10 49.89 2.28 

11 59.50 2.29 

12 76.20 2.25 

13 81.17 2.29 

14 92.00 2.26 

16 127.12 2.22 
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5 are shown in Figs. 4.9 - 4.18. They are virtually identical 

with those calculated for Interaction 4. Because the P0 

and P±l states have identical oscillator well parameters 

the differences v10 - and - are identical.v10x v11 v11x 

Hence, a change in the weighting factors between direct 

and exchange matrix elements cannot change the energy 

difference between different product determinantal states. 

The slight difference in excitation energies is due to the 

different sizes of the nuclei.for Interactions 4 and 5. 

It has been demonstrated in this chapter that, 

although it is possible to fit the excited state spectra 

of the 0-p nuclei with a local interaction of the Volkov 

type, such interactions tend to underbind the open-shell 

nuclei. This remains true for velocity dependent inter

actions of the kind considered in this thesis. The rest of 

the thesis is devoted to the study of density-dependent 

interactions. 
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FIGURE CAPTIONS 


For all figures, excitation energy (in Mev) is plotted 

to the left of the figure. Full lines designate the cal

culated levels and dashed lines designate certain experi

mental levels. For even nuclei the spin J of the level is 

indicated to the right of the calculated levels and at the 

left of the figure for the experimental levels, for odd 

nuclei the value of 2J is likewise indicated. 

Figures 4.1 - 4.9 plot the excited state spectra of the 0-p 

shell nuclei calculated for 

(a) 	 Interaction 1 with the Coulomb Interaction 

present in the Interaction Hamiltonian 

(b) 	 Interaction 1 with the Coulomb Interaction 

absent from the Interaction Hamiltonian 

(c) 	 Interaction 2 with the Coulomb Interaction 

present in the Interaction Hamiltonian 

(d) 	 Interaction 2 with the Coulomb Interaction 

absent from the Interaction Hamiltonian. 

6Figure 4.1 Excited State Spectra of Li with spin-orbit 

strength, c = -1.5 Mev. 

Figure 4.2 Excited State Spectra of 7Be with spin-orbit 

strength, c = -2.0 Mev. 

8 . hFigure 4.3 Excited State Spectra of Be wit c = -1. 5 Mev. 

Figure 4.4 Excited State Spectra of 9B with c ,= -3.0 Mev. 
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Figure 4.5 Excited State Spectra of lOg with C = -s.o Mev. 

Figure 4.6 Excited State Spectra of llB with · c = -4.5 Mev. 

Figure 4.7 Excited State Spectra of 12c with c = -5.5 Mev. 

Figure 4.8 Excited State Spectra of 13c with c = -5.0 Mev. 

Figure 4.9 Excited State Spectra of 14N with c = -4.5 Mev. 

Figure 4.10 - 4.18 plot the excited state spectra of the 0-p 

shell nuclei calculated for 

(a) 	 Interaction 3 with the Coulomb Interaction 

present in the Interaction Hamiltonian 

(b) 	 Interaction 3 with the Coulomb Interaction 

absent from the Interaction Hamiltonian 

(c) 	 Interaction 4 

(d) Interaction 5. 

Figure 4.10 Excited State Spectra of 6Li with c = -1. 5 Mev. 

Figure 4.11 Excited State Spectra of 7Be with c = -2.0 Mev. 

Figure 4.12 Excited State Spectra of 8Be with c = -1.5 Mev. 

Figure 4.13 Excited State Spectra of 9B with C = -3.0 Mev. 

lOBFigure 4.14 Excited State Spectra of with c = -5.0 Mev. 

Figure 4.15 Excited State Spectra of llB with c = -4.5 Mev. 

Figure 4.16 Excited State Spectra of 12c with c = -5.5 Mev. 

Figure 4.17 Excited State Spectra of 13c with c = -5.0 Mev. 

Figure 4.18 Excited State Spectra of 14N with c = -4.5 Mev. 
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Figure 4.1 
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Figure 4.2 
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Figure 4.3 
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Figure 4.4 
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Figure 4.5 
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Figure 4.7 
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Figure 4.8 
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Figure 4.9 
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Figure 4.10 
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Figure 4.11 
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Figure 4.12 
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Figure 4.13 
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Figure 4.15 
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Figure 4.17 
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Figure 4.18 
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CHAPTER 5 

BINDING ENERGY OF 160 AND EXCHANGE STRENGTHS 

All interactions considered in this and subsequent 

chapters are d~nsity dependent and of the form discussed 
I 

in Chapter 3. !These interactions are fitted to the proper

ties of nuclear matter and any change in the value of v 

also changes the strengths of the density dependence, c 3 

and c 4 . The v parameter for any interaction has been 

established by fitting the 160 binding energy. In Chapter 

4 it was demonstrated that the excitation energies of the 

0-p shell nuclei are essentially unchanged by variation 

of v for the local and velocity dependent interactions 

considered in that chapter. This is not the situation for 

density dependent interactions. Since the density dependent 

interaction~ considered have, in many instances, only been 

fitted approx~mately (to within 6 Mev) to the 160 binding 

energy, it is necessary, when comparing density dependent 

interactions, to make due allowance for the effect on the 

excitation energies, for the nuclei calculated, of the di

fferent 160 binding energy fits. In this chapter two inter

actions, 10 and 14, which differ primarily only in the 

value of v, are compared. 

Comparing the v values for interactions 10 and 14, 

it is seen that a decrease in v increases the 160 binding 

90 
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energy. The reverse is true for density independent inter

actions {Chapter 4). For density independent interactions, 

increased v weights the direct matrix elements more favour

ably compared with the exchange matrix elements and thus 

the binding energies of finite nuclei increase. The re

quirement that density dependent forces fit nuclear matter 

criteria complie,ates this simple situation. For inter

actions 10 and 14 the energy contribution in nuclear ma.tter of 

the density dependence is repulsive. Therefore, since the 

binding energ.y per .particle of nuclear matter fitted by 

the interactions is the same (-16 Mev per particle) de

creasing v (weighting the exchange ~atrix elements more 

strongly than the direct matrix elements) . forces the density 

dependence to become more attractive (from 31.50 Mev/particle 

for interaction 14 to 19.86 Mev/particle for interaction 

10) . Because the interactions are further required to 

saturate nuclear matter both c and c increase with, of3 4 

course, the attractive density dependent part of the inter

2
action increasing more (c 3 kF increases by 0.06~ c 4 kF

by 0. 03) • 

The binding energy situation is more confused for 

finite nuclei. For 4He, whose binding energy does not 

depend on the exchange strengths, it is clear that inter

action 10 will give a higher binding energy than interaction 

1614 (by 2.15 Mev per particle). For 0, the different 

weighting of the direct and exchange matrix elements will 
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reduce the binding energy gain due to the less repulsive 

16density dependence of interaction 10. Thus the 0 

binding energy is 1.65 Mev higher for interaction 10 than for 

interaction 14. The compressibility of nuclear matter being, 

at saturation, essentially the second derivative of the 

binding energy will be lower for interaction 10 Since the 
i 

attractive density dependence is now relatively stronger 

than is the case for interaction 14. 

Table 5.1 lists the binding energies and root-mean

square radii for the o-p shell nuclei calculated using 

interactions 10 and 14. The binding energy difficulties 

experienced for calculations using non-density dependent 

interactions (Chapter 4) are now resolved. The calculations 

were performed for the values of the spin-orbit strength 

extant in Chapter 4. 

The root-mean-square radii predicted for the 0-p 

shell nuclei are now generally too large. The radii decrease 

dramatically for interaction 10 in comparison with inter

action 14. It might be argued that the explanation of this 

is that the compressibility of nuclear matter for inter

action 10 is less than that for interaction 14 since the 

compressibility is a measure of how much energy is needed 

to reduce the radius of a nuclear system. However, the 

compressibility of nuclear matter is not a critical para

meter in determining the root-mean-square radius. For 

example, the calculated root-mean-square radii for interaction 
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TABLE 5.1 

A Interaction 14 Interaction 10 

B.E. (Mev) r. m. s. ( fm) B .E. (Mev) r .m. s. ( fm) 

4 18.68 2.19 27.28 2.04 

6 21. 47 2.67 29.85 2.48 

7 24.23 2.80 34.45 2.67 

8 36.83 2.78 49.81 2.64 

9 37.05 2.86 50.26 2.72 

10 49.44 2.88 63.24 2.75 

11 56.92 2.91 72.13 2.79 

12 71. 46 2.93 88.75 2.81 

13 74.55 2.95 92.98 2.83 

14 80.07 2.95 100.67 2.84 

16 98.37 2.98 124.73 2.87 
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12 (compressibility = 470 Mev) are smaller than for inter

action 10 (compressibility = 213 Mev). A more critical 

parameter is the overa11 ·contribution of the density 

dependent part of the interaction (B.E.d ) t the binding. o en . 

energy of nuclear matter. This provides a measure of how 

repulsive (or attractive) the density dependence is. The 

interacting nu¢leons will tend to attempt to move to 

regions of low density for an interaction which has a 

repulsive density dependent component and, thus the more 

repulsive the density dependence the larger the size of 

the nucleus will be. The contribution to the nuclear matter 

binding energy of the density dependent part of the inter

action is not an exact guide to the root-mean-square radii 

of the 0-p shell nuclei. However, for interactions which 

differ only in values for v, c and c 4 it is of critical3 

importance. Table 5.2 lists results for some interactions 

of this kind. 

It can be seen from this table that there is a 

fairly good correlation between B.E.d and root-mean-squareen 

radii. However, the above argument is a little too simple. 

The density dependence, in fact, should be further broken 

down into an attractive and a repulsive part. The attractive 

part usually is longer ranged than the repuls:L_ve part and 

thus the mechanism by which the interacting nucleons move 

further apart and to lower density regions is aided. How

ever, interactions 18, 19 and 20 have no attractive density 
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TABLE 5.2 

4He 160 

Interaction B.E.den(Mev) Compressibility (Mev) r.m.s. r.m.s. 

No. (fro) (fro) 

12 12.01 470 1. 89 2.75 

19 12.12 287 1. 90 2.75 

11 12.12 301 1. 90 2.76 

18 15.99 236 1.97 2.81 

10 19.86 213 ·2.04 2.87 

9 19.87 200 2.07 2.89 

17 19.87 196 2.05 2.88 

14 31.50 248 2.19 2.98 
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dependence • . Thus, interaction 20 (omitted from Table 5.2} . 

gives smaller r.m.s. radii than does interactions 19 and 12 

although B.E.den = 12.12 Mev for this interaction. For 

similar reasons interaction 17, whose attractive density 

component depends on the reciprical of the density to the 

one third power , {p-l/3 ) gives smaller r.m.s. radii than 
I , 

does interactioq 9. 

The excited state spectra calculated for interactions 

10 and 14 are exhibited in Figs. 5.1 - 5.9. As can be 

seen substantial differences exist between the results for 

interactions 10 and 14. These are summarized in Table 5.3 

where the difference between the excitation energy for 

interaction 10 and the excitation energy for interaction 14 

(~exc) for the excited state J~ is shown. The lower inde~, 

n, denotes the level order for interaction 10. 

. . . f 8 ' d 12 . . 1Th e excitation energies or Be an c, in particu ar, 

are very different for interactions 10 and 14. The case of 

8
Be is of critical importance. Because of the loose fit 

to the binding energy of 160, it is possible that, for two 

interactions' which it is desired to compare (e ,.g. two 

identical interactio~having different density dependencies), 

the 160 binding energy might differ by 10 Mev. It would 

then be meaningless to attribute a difference of 1 Mev in 

the excitation energy of the second 2+ state in 8Be to 

differences between the forms of the interactions. 

After the interaction has been derived from fitting 
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TABLE 5.3 


A Spin-orbit 
Strength, · C 

(Mev) 

J'IT 
n /:J.exc 

(Mev) 

A Spin-orbit 
Strength, c 

(Mev) 

J'IT 
n !:J. exc · 

(Mev) 

6 -1. 5· · 3+ 
1 

2+ 
1 

o+ 
1 

l+ 
1 

2+ 
2 

0.30 

0.30 

1.60 

0.50 

1.90 

7 -2.0 l/2i 

7/2i 

5/2i 

s;.2; 

3/2i 

0.00 

0.60 

1. 20 

0.55 

1.15 

8 -3.5 2+ 
1 

4+ 
1 

2+ 
2 

2+ 
3 

4+ 
2 

l+ 
1 

3+ 
1 

3+ 
2 

0.35 

1.50 

3.10 

2.25 

2.80 

3.40 

3.55 

3.00 

9 -3.0 5/2i 

l/2i 

3/2i 

7/2i 

5/2; 

1/2; 

3/2; 

112; 

0.10 

-0.60 

-0.45 

1.10 

-0.20 

1.30 

0.80 

1.20 

5/2; 0.00 

9/2i 0.55 

10 -5.0 l+ 
1 

o+ 
1 

l+ 
2 

2+ 
1 

2+ 
2 

4+ 
1 

3+ 
1 

0.00 

0.90 

-0.65 

-0.40 

1.40 

-0.05 

-0.10 

11 -4.5 l/2i 

5/2i 

112;: 

3/2i 

5/2; 

1/2; 

-0.75 

-0.20 

-0.25 

-0.15 

0.95 

1. 00 
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TABLE 5.3 - CONTINUED 

2+12 -5.5 -0.00 13 -5.0 3/2i -0.651 
l+ 1.30 5/2~ -0.401 
a+ -0.30 l/2i 0.501 

4+ 
 -0.80 3/2; 0.751 

l+ 
 1.802 
2+ o+1.75 14 -4.5 1.00

2 1 
2+ l+0.10 -0.453 1 
o+ 2+1.00 -0.152 1 

2+ 0.752 
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the scattering data, nuclear matter properties and the ~ 60 

binding energy, there is one degree of freedom left in the 

interaction parameters, namely the Choice of one of the 

exchange strengths. In all calculations quoted in this 

thesis the isospin exchange was chosen to be a constant, 

H=O.O. Other possible choices for H are now examined for 

interaction 23. i 
I 

These choices are t~bulated in Table 5.4 

where all the exchange strengths are recorded. 

Case (a) is the choice normally assigned for an 

interaction. Case (b) is considered since for this choice 

of H, the W'igner component of the exchange is zero and 

choice (c) corresponds to the Rosenfeld choice of the 

Mayorana exchange strength, M. 

The usual excited state spectra for the three cases 

are plotted in Figs. 5.9 - 5.18. The changes in the ex

citation energies are tabulated in Table 5.5. The nota

tion is the same as that in Table 5.3, the level ordering 

being for case (a) • 

The root-mean-square radii do not differ for the 

three interactions considered and the binding energies only 

differ by at the most 0.3 Mev. The excitation energy 

spectra show some substantial differences. However, they 

are not large compared with the changes of the excitation 

energies for interactions which differ in their calculated 

160 binding energies. The Bartlett exchange strengths for 

the interactions considered vary f~om 0.25 to 0.40 (H=O.O). 
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w 

M 

Case (a) 

0.1952 

i 
0.8048 

TABLE 5.4 

Case 

o.o 

1.0 

(b) Case (c) 

-0.22 

1. 22 

B · 0.3120 0.556 0.831 

H 0.0 0.244 0.419 

McMASTER UNIVERSITY 1 1Q0Aov 
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TABLE 5.5 


A J7T 
n 

E {a) - E {b)x . x 
(Mev) 

E {a) - E {c)
x x 

(Mev) 

6 3+ 
l 

o+ 
l 

2+ · 
l 

l+ 
l 

2+ 
1 

0.00 

o.oo 

0.00 

0.00 

0.05 

0.00 

0.00 

0.00 

0.00 

0.10 

7 1/2~ -0.05 -0.15 

7/2~ 0.05 0.05 

5/2~ -0.05 -0.05 

5/2; 0.30 0.70 

3/2~ 0.40 0.80 

8 2+ 
1 

4+ 
l 

2+ 
2 

2+ 
3 

l+ 
1 

3+ 
1 

3+ 
2 

l+ 
2 

a+ 
1 

0.00 

o.oo 

-0.30 

0.80 

0.20 

0.60 

-0.80 

-0.50 

-0.80 

0.00 

0.00 

-0.30 

1.30 

0.60 

1.30 

-1.30 

-1.00 
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TABLE 5.5 - CONTINUED 


9 5/2i 

1/2~ 

3/2~ 

s12; 

7/2i 

1/2
2 

3/2; 

112; 

9/2~ 

s12; 

l+10 1 
· + 
12· 

o+ 
1 

2+ 
1 

2+ 
2 

3+ 
1 

4+ 
1 

11 	 1/2~ 

5/2i 

7/2~ 

3/2i 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.10 0.10 

0.20 a.so 

0.40 0.80 

0.40 0.80 

0.10 0.20 

0.35 0.85 

-0.30 -0.55 

0.00 -0.10 

0.20 0.40 

0.05 0.10 

0.20 0.45 

-0'.10 -0.15 

0.15 0.25 

0.00 0.00 

0.05 0.15 

0.05 0.15 

-0.10 -0.10 
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TABLE 5.5 - CONTINUED 


12 2+ 
1 

o+ 
1 

l+ 
1 

4+ 
1 

l+ 
2 

2+ 
2 

2+ 
3 

o+ 
2 

0.00 

0.00 

0.30 

0.15 

0.55 

0.40 

0.20 

0.90 

o.oo 

0.20 

0.70 

0.35 

1.25 

0.90 

0.60 

1.80 

13 3/2
1 

5/2i 

0.10 

0.05 

0.20 

0.60 

l/2i 0.40 0.90 

3/2; 0.15 0.40 

14 l+ 
1 

o+ 
1 

2+ 
1 

0.10 

0.30 

0.15 

0.20 

0.60 

0.30 
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Thus, if the point of view is adopted that calculations . 
should be performed for constant Mc33'orana exchange strength 

rather than constant isospin exchange strength the compari

tive differences in the spectra will not be very great. 
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FIGURE CAPTIONS 

For all figures, excitation energy (in Mev) is 

plotted to the left of the figure. Full lines designate the 

calculated levels and dashed lines designate certain experi

mental levels. For even nuclei the spin J of the level is 

indicated to the right of the calculated levels and at the 

left of the figure for the experimental levels, for odd 

nuclei the value of 2J is likewise indicated. 

Figures 5.1 - 5.9 plot the excited state spectra of the 0-p 

shell nuclei calculated for 

(a) Interaction 10 

(b) Interaction 14. 

Figure 5.1 Excited State Spectra of 6Li with c = -1.5 Mev. 

Figure 5.2 Excited State Spectra of 7Be with c = -2.0 Mev. 

Figure 5.3 , Excited State Spectra of 8Be with c = -3.5 Mev. 

Figure 5.4 Excited State Spectra of 9B with C = -3.0 Mev. 

Figure 5.5 Excited State Spectra of lOB with c = -5.0 Mev. 

Figure 5.6 Excited State Spectra of llB with c = -4.5 Mev. 

Figure 5.7 Excited State Spectra of 12c with c = -5.5 Mev. 

Figure 5.8 Excited State Spectra of 13c with c = -5.0 Mev. 

Figure 5.9 Excited State Spectra of 14N with c = -4.5 Mev. 

Figures 5.10 - 5.18 plot the excited state spectra of the 0-p 

shell nuclei calculated for Interaction 23 with exchange 

strengths given in 
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(a) of Table 5.4 

(b) of Table 5.4 

(c) of Table 5.4. 

Figure 5.10 Excited State Spect~a of 6Li with c = -1.5 Mev. 

Figure 5.11 Excited State Spectra of 7Be with c = -2.0 Mev. 
I 

Figure 5.12 Excited State Spectra of 8Be with c = -3.5 Mev. 
i 

Figure 5.13 Excited State Spectra of 9B with C = -3.0 Mev. 

Figure 5.14 Excited State Spectra of lOB with c = -s.o Mev. 

Figure 5.15 Excited State Spectra of llB with c = -4.5 Mev. 

Figure 5.16 Excited State Spectra of 12c with c = -5.5 Mev. 

Figure 5.17 Excited State Spectra of 13c with c = -5.0 Mev. 

·Figure 5.18 Excited State Spectra of 14N with c = -4.5 Mev. 
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Figure 5.1 

9 

-------2 -----2 
8 

7 

2 
I 2 

5 

4 

2 
2 

0 
2 
0 

,i 

_____;.__3 


·t 


t 



108 
Figure 5.2 
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Figure S.3 
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Figure 5.4 
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Figure 5.5 
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Figure S.6 
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Figure 5.7 
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Figure s.8 
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Figure 5.10 
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Figure 5.11 
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Figure 5.12 
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Figure 5.13 
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Figure 5.14 
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Figure 5.15 
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Figure 5.16 
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Figure 5.17 
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CHAPTER 6 

THE DENSITY APPROXIMATION 

As explained in Chapter 3 the form used for the 

nuclear density in the calculation of the required matrix 

elements is that of a single gaussian evaluated at the 

centre of mass of the interacting nucleons. The validity 

of this approximation for the nuclear density is examined 

in this chapter. 

Manning (Man 67) has demonstrated that very different 

results are obtained if the single gaussian chosen for the 

density is determined by demanding that it duplicate the 

central density for the actual nuclear density. rather than 

the root-mean-square radius of the true nuclear density. 

He suggests that the actual nuclear density should be 

approximated by more than one gaussian. This presents a 

great technical difficulty since in the matrix element 

evaluation the density appears to a non-integer · power. For 

purposes of fast matrix element evaluation, it is required 

that the density to any power a be of the form 

where p(r) has the same root-mean-square radius and central 

density as the actual nuclear density. Thus, in general, 

there are four unknowns (A1 , B1 , a, b) to be fitted to 
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three physical quantities (the r.m.s. radius, - the central 

density and the normalization condition f p(r)dr =A). As 

a first approximation b is taken to be a/2 (results with 

the choice b = a/4 gave identical results to those cal

culated with b = a/2). 

In principle A1 , B and a can now be determined by1 

a numerical computation. This numerical computation is 

however very time consuming and, to test the validity of 

the single gaussian density approximation when compared 

with the double gaussian density approximation, the approach 

that has been taken is to evaluate the A1 , B and a using1 

a fixed density for the nucleus under consideration rather 

than the actual nuclear densities generated during the 

calculation. For comparison purposes, the same procedure 

has to be · adopted to determine the parameters of the single 

gaussian density approximation. Thus, the parameters of 

the density approximations were determined by fitting the 

root-mean-square radii (and the central density for the 

double gaussian approximation) quoted by Elton (Elt 61) for 

the A=6, 8, 10, 12, 14 nuclei. These parameters remain 

constant during the minimization procedure in the calculation. 

Table 6.1 tabulates the excitation energies calculated for 

Interaction 23 with Mayorana strength M = 1. 6. These are 

compared with the results obtained for the more self

consistent single gaussian density approximation outlined in 

Chapter 3. 



TABLE 6.1 


Spin-Orbit E (Mev)x E (Mev)x E (Mev)
x 

A strength, C(Mev) J Single Gaussian Double Gaussian Self-Consistent 

Single Gaussian 

6 -0.5 0 5.04 5.11 4.67 

1 0.0 0.0 o.o 

1 4.93 4.95 4.84 

2 4.45 4.48 4.37 

2 7.29 7.36 6.86 

3 3.70 3.73 3.62 

8 -1.5 0 0.0 0.0 o.o 

0 19.05 19.04 18.93 

0 19.67 19.66 19.54 

1 18.47 18.46 . 18. 34 

1 18.76 18.75 18.64 

1 19.43 19.41 19.32 

2 3.11 3.10 3.12 

2 17.15 17.14 17.02 . I--' 
rv 
.....,J 



TABLE 6.1 

2 17.71 

2 19' .12 

3 18.66 

3 19.82 

4 10.20 

10 -4.0 0 2.54 

1 0.00 

1 0.97 

1 8.93 

2 3.06 

2 5. 59 

2 5.93 

2 7.74 

3 0.04 

3 5.30 

3 9.40 

4 6.00 

CONTINUED 

17.70 17.59 

19.10 19.00 

18.65 18.56 

19.81 19.75 

10.19 10.46 

2.53 2.51 

0.00 0.00 

0.97 0.95 

8.93 8.97 

3.06 3.13 

5.60 5.65 

5 . 91 5.95 

7.73 7.76 

0.04 0.12 

5.30 5.37 

9.39 9.51 

5.99 6.16 ri 
r-...> 
00 



TABLE 6.1 - CONTINUED 

12 -3.5 0 0.00 0.00 0.00 

0 12.84 12·. 85 12.75 

0 17.05 17.06 16.96 

1 14.61 14.62 14.54 

1 15.98 15.99 15.87 

1 19.02 19.03 18.93 

1 19.30 19.31 19.21 

2 3.24 3.23 3.30 

2 16.32 16.33 16.22 

2 17.03 17.04 16.99 

2 19.23 19.24 19.13 

2 19.73 19.74 19.67 

3 19.06 19.06 19.00 

4 10.97 10.96 11. 21 

14 -4.0 0 3.76 3.75 3.67 

1 0.00 0.00 0.00 

1 2.68 2.68 2.61 ....... 
!\.) 

2 4.98 4.99 5.00 
\.D 



TABLE 6.1 - CONTINUED 

2 9.22 9.21 9.18 

3 10.98 10.99 11.0 

I-' 
w 
0 



As can be seen from Tables 6 .1 and 6. 2· the results 

calculated using the fixed single and double gaussian approxi

mations are almost identical. Of particular importance are 

the results for A=l2, 14 and 16 where the central densities 

for the single gaussian approximation are significantly 

larger than those for the double gaussian approximation. 

The results are also very similar for the more 
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self-consistent single gaussian approximation. For this 

interaction it seems appropriate to use the single gaussian 

density approximation for calculating the e~citation energies 

of the 0-p shell nuclei. It should be remembered, however, 

that this interaction is a weak density dependent inter

action in as much that the contribution of the density 

dependent part of the interaction to the nuclear matter binding 

energy is comparatively small. For strong density dependent 

interactions· it might be necessary to use a multiple gaussian 

density approximation. 

The single gaussian for the density is obtained by 

2 2demanding that it have the same values for <p > and <z > as 

the actual nuclear density (and, of course, the same nor

2 2malization). The values of <p > and <z > for t~e true 

nuclear density are obtained by assuming that each P state 

is populated by (A-4)/12 particles. If the true density 

distribution is used these expectation values will, in 

2 2general, be different (<r 2> = <p > + <z > is, however, 

identical in the two cases since the oscillator well para

meters are identical for the P 0 and P±l states). 

A more self-consistent approach to the evaluation 

2 2of <p > and <z > for the actual nuclear density is to use 

the wave functions obtained during the calculation. This 

can be done by an iteration process. The procedure adopted 

is as outlined below. 

At each stage of the minimization (i.e. for each 
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value of (a.8 ; a.P), the oscillator well parameters), the 

following procedure was followed. 

(a) The eigenfunctions were obtained wit~ the 

density zero everywhere. 

(b) 	 These wave functions were used to evaluate 

2 2<p > and <z > and a single gaussian density 


distribution was fitted to these values. 


(c) Another set of eigenfunctions were obtained 

using the single gaussian density function 

obtained at stage (b) • 

(d) If the ground state binding energy was 

identical (to within a given tolerence) at 

stages (b) and (c) the iteration procedure was 

ended. If not the iteration was repeated at 

stage (b) . 

2 2The <p > and <z > obtained by the above iteration 

procedure did -not, in general, satisfy the condition 

22<z 2> = <p > i.e. the quadrupole moment is not zero and the 

nuclear system was intrinsically deformed. For ground 

states with J=O and J=~, of course, the quadrupole moment 

was zero. The intrinsic deformation of the system meant 

that the eigenvalues were not degenerate when calculated 

in different M sub spaces. 

However, the intrinsic quadrupole moments that were 

obtained were sufficiently small that an identification of 

the spin of the excited states, J, could be . made. The 



TABLE 6.3 


A 

Spin-Orbit 

Strength, C{Mev) J E (Mev)x 

Self-Consistent 

B.E. {Mev) r .m. s. { fm) Q { fm2) E (Mev)x 

Closed-Shell 

B.E. (Mev) r .m. s. ( fm) 

6 -1.5 1 0.0 31. 25 2.80 -0.11 0.0 31.25 2.66 

3 2.17 2.17 

0 4.07 4.07 

2 4.42 4.42 

2 5.76 5.77 

1 5.51 5.51 

7 -2.0 3 
2 . 
1 
2 
7 
2 
5 
2 
s · 
2 
3 
2 

o.o 

0.48 

3.70 

5.32 

6.27 

7.73 

34.53 2.64 0.28 o.o 

0.48 

3.65 

5.10 

6.20 

7.50 

34.45 2.67 

7 
2 
1 
2 

7.91 

8.39 

7.70 

8.15 

....., 
w 
~ 



TABLE 6.3 - CONTINUED 


8 -2.0 0 o.o 48.86 2.63 o.o 0.0 48.78 2.63 

2 2.63 2.63 

4 8.64 8.66 

2 12.22 12.10 

2 13.80 13.70 

4 14.56 14.46 

3 14.67 14.55 

1 14.74 14.64 

1 14.98 14.90 

2 15.17 15.10 

0 15.25 15.18 

11 
3 
2 
1 
2 
5 
2 
7 
2 
3 
2 
5 
2 

0.0 

1. 89 

4.57 

5.28 

6.00 

8.17 

72 . 03 2~79 -0.51 o.o 

1. 96 

4.63 

5.21 

6.15 

8.17 

72.13 2.79 

r-i 
w 
U1 



TABLE 6.3 - CONTINUED 


1 
2 9.42 

3 
2 10.21 

12 -3.5 ,Q o.o 83.92 2.80 o.o 83.92 2.79 

2 2.79 2.79 

0 8.89 8.91 

4 9.43 9.41 

1 10.18 10.19 

2 12.12 12.14 

1 12.59 12.62 

2 13.40 13.42 

0 14.04 14.06 

3 14.99 15.01 

2 15.08 15.09 

1 15.50 15.52 

2 15.92 15.95 

13 -4.0 1 
2 o.o 90.47 2.83 0.0 90.47 2.83 

3 
2 2.81 2.81 

f-' 
w 
°' 



TABLE 6.3 - CONTINUED 

5 
2 
1 
2 
3 
2 
1 
2 
7 
2 
3 
2 

5 
2 

5.01 

7.19 

8.28 

9.14 

9.99 

11.11 

12.09 

5.01 

7.20 

8.29 

9.15 

9.98 

11.12 

12.10 

14 -4.0 1 o.o 99.98 2.84 -0.10 o.o 98.88 2.84 

1 3.25 3.25 

0 3.94 3.95 

2 4.99 4.95 

2 9.51 9.50 

3 11.00 11.00 

1 11. 83 11. 85 

I-' 
w 
.....J 
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calculations never ran for more than five and less than 

three ite~ations. This meant that at least 48 calculations 

had to be performed for each nucleus. Thus the A=lO and 

A=9 systems _were not calculated in the self-con:sistent 

manner outlined above since this would have been extremely 

time consuming. 

Table 6.3 shows the results of the self-consistent 

approach compared with those obtained by the "closed-shell" 

approach for Interaction 10. The excitation energies 

quoted for the self-consistent calculation-are those 

obtained in the M=O or M=~ sub space and Q = <p 2 > - 2<z 2>. 

The results quoted for A=ll are for a calculation in 

which the iteration procedure had not quite converged. The 

results for the self-consistent and closed-shell approaches 

are sufficiently close to indicate that the closed-shell 

approximation is valid. The greatest discrepancies are 

for 7Be. Calculations for the weaker density dependent 

Interaction 23 show that the self-consistent and the closed-

shell approach produce results even more identical than 

is the case for Interaction 10. It is now apparent that 

the single gaussian "closed-shell" density form is good 

enough to be used in 0-p shell calculations. 

The next question that arises is the validity of 

evaluating the local density at the centre of mass of the 

interacting particles. For example, if the interacting 

particles are at opposite sides of the nucleus, and in 
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particular if they are in the nuclear surface, the above 

approximation would take the local density to be that at 

the centre of the nucleus. Thus the local density is 

greatly overestimated for particles in the nuclear surface. 

In this section results for Interaction 23 (with 

• 
Ma~orana strength M=l.O) are presented for three different 

interpretations of the local density p(£1 ,E2). There are 

(i) p(~1':.2> = p[(~l+r2)/2] _ 

r 2+r 2 
-1· -2 ~ (ii) p (::_l '~) = p[{ 2 ) ] 

(iii) P <r i 1E2 > = ~ [ p <=.1> + p <..::2) ] 

Figs. 6.1 - 6.8 show the excited state spectra of 

the 0-p shell nuclei obtained with the above three inter

pretations of the local density. Also shown (iv) are 

results for Manning's (Man 67) approximation 2 where the 

single gaussian density function is designed to fit the 

central density of the actual nuclear density. Table 6.4 

list the relevant binding energies and root-mean-square 

radii. The excitation energies are almost identical for 

(i), (ii) and (iii) except for 6Li. Even these differences 

can be explained to a large degree if the differences in 

160 binding energies for (i) and (ii) are considered. The 

calculated excitation energies for interpretation (iv) 

are quite different than those for the other three interpretations. 



TABLE 6.4 

(i) (ii) (iii) (iv) 

A B. E. (Mev) r. rn. s. ( frn) B.E. (Mev) r.ro.s. (fro) B. E. (Mev) r.ro.s. (fro) B.E. (Mev) r.ro.s. (fro) 

4 37.81 1. 79 . 35.89 1 .. 81 36.03 1. 81 37.81 . 1. 79 

6 35.67 2.31 34.14 2.35 34.28 2.34 34.99 2.27 

7 38.26 2.37 36.54 2.39 36.71 2.39 38.14 2. 34 

8 53.80 2.39 51.69 2.40 51.91 2 .40 . 54.47 2.37 

9 52.40 2.49 50.28 2.50 50.51 2.50 53.28 2.45 

10 63.72 2.53 61. 40 2.55 61.65 2.55 65.19 2.49 

11 73.09 2.57 70.54 2.59 70.80 2.59 75.38 2.52 

12 90.22 2.60 87.32 2.61 87.64 2.61 93.79 2.53 

13 93.45 2.64 90.38 2.65 90.73 2.65 97.82 2.56 

14 102.26 2.65 98.85 2.67 99.23 2.67 108.12 2.56 

16 128.77 2.68 124.58 2.69 125.04 2.69 139.24 2.56 

I-' 
~ 
0 
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The calculated binding energies are lower for inter

pretation (ii) than for interpretation (i) (for (iii) the 

binding energies are slightly higher than for (ii)). Inter

pretation (ii) was designed to give lower local densities 

than interpretation (i) and since the density . dependent part 

of the interaction is attractive overall, as can be seen 

from the nuclear matter data (Chapter 3) , the binding energies 

for (ii) will ·be lower than for (i). It would also be 

expected that the root-mean-square radii for (ii) would be 

smaller than for (i). The reverse is true indicating that 

interpretation (ii) tends to lower the energy for particles 

interacting at smaller lr1-r 2 1 faster than for larger lr1-r 2 !. 

Interactions whose density dependence is essentially repulsive, 

such as Interaction 10, predict higher bindinq energies for 

(ii) than for '(i). 

The results for density approximation (iv) underline 

the danger in taking too simplistic an approach to consider

ation of the density dependence. Compared with approxi

mation (i), (iv) has much smaller values of the density 

in the core region and larger values of the density in the 

surface region. Thus, for Interaction 23 it might be 

expected that the binding energies for approximation (iv) 

would be less than for approximation (i) and that the root

mean-square radii would be larger. This is almost the 

reverse of the true situation. None of the root-mean-square 

radii conform to this pattern and only the binding energies 
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6 7f . d 1 f . . (' ) h fo Li an Be are ess or approximation iv t an or 

approximation (i) • 

The actual mechanism for this interaction appears 

to be that the interacting nucleons can gain more energy 

by moving closer together and thus reducing the contri

bution from the repulsive density dependence from that for 

approximation (i). This is possible because the core (i.e. 

the region where the density is approximately the same) 

is of longer range for approximation (iv) than for approxi

mation (i). However, for 6Li and 7Be the P state nucleons 

are constrained to move nearer the surface by the density 

independent part of the interaction. Thus, in general, 

the binding energies increase and the r.m.s. radii decrease. 

The gain in binding energy for 160 is 11 Mev for Interaction 

23. This is much less than for Manning's interaction 

4(52 Mev) (Man 67). Interactions whose density dependent 

contribution to the nuclear matter binding energy is re

pulsive would be expected to show greater changes than 

Interaction 23. Interaction 10, for example, exhibits a 

difference of 44 Mev. 

The differences in the excitation energies for 

approximations (i) and (iv) are slight for most states 

although there are differences for the more highly excited 

states. Some of these differences can be explained by the 

difference in the 160 binding energy for the two approxi

mations (Table 5.3). 
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Since the excitation energy spectra is _of prime 

interest in this thesis, it is apparent that the closed

shell density approximation (i) can be used in further 

studies without significant loss in generality. 
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FIGURE CAPTIONS 

For all figures, excitation energy (in Mev) is 

plotted to the left of the figure. Full lines designate 

the calculated levels and dashed lines designate certain 

experimental levels. For even nuclei the spin. J of the level 

is indicated to the right of the calculated levels and at 

the left of the figure for the experimental levels, for 

odd nuclei the value of 2J is likewise indicated. 

Figures 6.1 - 6.9 plot the excited state spectra of the 0-p 

shell nuclei calculated for Interaction 23 using 

(a) density approximation (i) 

(b) density approximation (ii) 

(c) density approximation (iii) 

(d) density approximation (iv) 

6Figure 6.1 Excited State Spectra of Li with c = -2.0 Mev. 

7Figure 6.2 Excited State Spectra of Be with c = -1.5 Mev. 

8Figure 6.3 Excited State Spectra of Be with c = -2.0 Mev. 

Figure 6.4 Excited State Spectra of 9B with . C = -3.0 Mev. 

Figure 6.5 Excited State Spectra of lOB with c = -5.0 Mev. 

Figure 6.6 Excited State Spectra of llB with c = -4.5 Mev. 

Figure 6.7 Excited State Spectra of 12c with c = -5.5 Mev. 

Figure 6.8 Excited State Spectra of 13c with c = -5.0 Mev. 

Figure 6.9 Excited State Spectra of 14N with c = -5.0 Mev. 
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Figure 6.1 
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Figure 6.2 
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Figure 6.3 

20 
 0012 022 022
0·13 3
013 0 ·133 


3
...\ 

2 

2 
a 2 


2 - - 2 2 
2 2


16'" 

14 


12 ...........____
4 
 _ 
--4 --4 --4 

10 


9 


6 ~ 

4 


2 --2 --2 · -----2. 

2 


0 
 --o ~b-o 0Q c d 0 



148 
Figure 6.4 
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Figure 6.5 
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Figure 6.6 
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Figure 6.7 
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Figure 6.8 
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Figure 6.9 
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· CHAPTER 7 

THE ATTRACTIVE AND REPULSIVE RANGE . 

In this chapter consideration is given to density 

dependent int~ractions differing from each other essen

tially only in ~egard to their attractive and repulsive 

ranges. All these interactions fit the same criteria and 

are of the same basic density dependent form viz. the 

l/3ttrac ive ensi y epen ence . p and t e 1 .a t . d •t d d is . h repu sive 

213density dependence is p • 

Consideration is first given to Interactions 10 

and 23 which have the same attractive range A = 1.5 fm, . a 

Aro being 1.247 fm and 0.602 fm respectively. The repulsive 

core height is the same for both interactions, 5 Mev. 

The fit to the scattering data imposes the condition that 

the attractive strength of the interaction must decrease 

as the repulsive range decreases. This fit also determines 

the Bartlett ~ Exchange Strength in relation to the Isospin 

Exchange Strength (B-H) since it is this parameter which 

determines the ratio of the singlet and triplet even 

strengths. It is observed that this parameter also de

creases with decreasing repulsive range. 

The decreased repulsive range means that the re

pulsive part of the interaction is weaker and thus to fit 

the nuclear matter binding energy and the binding energy 

154 




155 

of 160 it is necessary that the exchange matrix elements 

be weighted more strongly i.e. v decreases and M, the 

Ma;rorana exchange strength increases. To further satisfy 

the criteria that nuclear matter saturate at the correct 

saturation density c and c have to increase and the
3 4 

compressibility of nuclear matter increases. Because of 

the decreasing repulsive range c increases faster than c 3 .4 

The decreased repulsive range for Interaction 23 

means that the root-mean-square radii calculated using 

this interaction will be smaller. This is seen in Table 

7.1 where the binding energies and root-mean-square radii 

of the 0-p shell nuclei calculated using Interactions 10 

and 23 are listed. The corresponding excited state spectra 

are shown in Figs. 7.1 - 7.5. 

TABLE 7.1 

Interaction 10 Interaction 23 

A B.E. (Mev) r .m. s. ( fm) B. E. (Mev) r. m. s. (fro) 

4 27.28 2.04 37.81 1. 79 

6 31.37 2.66 35.67 2.31 

7 34.14 2.66 38.26 2.37 

8 48.78 2.63 54.84 2.39 

9 50.00 2.72 52.43 2.49 

10 63.24 2.75 63.83 2.53 

11 72.13 2.79 73.18 2.57 

12 88.75 2.81 90.49 2.60 
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TABLE 7 .1 CONTINUED 


13 92.98 2.83 92.82 2.63 

14 101.59 2.84 102.45 2.65 

16 124.73 2.87 128.77 2.68 

The different values for the 160 binding energies 

complicate the comparison between the binding energies of 

4the open shell nuclei for the two interactions. For He, 

where the v parameter plays no part, it is obvious that 

Interaction 23 will have the higher binding energy since 

it is the more attractive interaction, its repulsive range 

being much shorter than is Interaction lO's .. As more 

nucleons are added to the system the v parameter plays an 

increasingly more important role and for the nuclei A>lO 

the binding energies are virtually identical (due regard 

16having been paid to the difference between the 0 binding 

energies for the interactions). The r.m.s. radii follow the 

expected trend, decreasing with decreasing repulsive range. 

They also conform to the argument advanced in Chapter 5 

concerning the contribution to the nuclear matter binding 

energy of the density dependent part of the interaction. 

The Majorana exchange strengths and the 160 binding 

energies are sufficiently close for Interactions 10 and 23 

that any differences in the excitation energies of the 0-p 

nuclei for the interactions are brought about by the differ

ences between the interactions themselves. It is seen from 
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Figs. 7.1 - 7.5 that generally the excitation energies and 

the spacing between the excited states are much less for 

Interaction 10. The exceptions to this state of affairs 

1 3lOB, llB,(the lower states of the - state of the - state
2 2 

l+of 13c and the state of 14N) can partly be explained by 

the difference in the 160 binding energy for the inter

actions. This is not the case for the O+ states. It should 

be noted that the interaction whose density dependent part 

is the more attractive gives the higher excitation energies. 

It has been found, during the course of this in

vestigation, that any interaction which predicts approxi

mately the same excitation energy of the second 2+ state of 

8Be as does Interaction 23 will also give similar results 

to Interaction 23 for a large number of states in the 0-p 

nuclei. As a consequence some interactions were merely 

tested by calculating the A=6, 8 and 14 systems. Moreover, 

for some interactions, the attempt to obtain the minimum 

6binding energy for the A=6 system failed because Li was 

underbound with respect to the a-particle. Interactions 

32, 33 and 34 were treated in this way. 

The spectra of 8Be and 14N calculated using Inter

actions 32, 33 and 34 are shown in Figs. 7.6 and 7.7. The 

relevant binding energie~ and root-mean-square radii are 

listed in Table 7.2. 

These interactions all have the same attractive 

range Aa = 1.0 fro. The same trends noted in Table 7.2 in 



TABLE 7.2 


Interaction 32 Interaction 33 Interaction 34 

A B.E. (mev) r. m. s. (fro) B.E. (Mev) r. m. s. ( fm) B.E. (Mev) r .m. s. ( fm) 

4 33.13 1.77 28.24 1. 82 25.95 1. 84 

8 56.54 2.27 52.64 2.29 52.40 2.29 

14 103.24 2.54 101. 37 2.55 104.54 2.53 

16 129.83 2.58 126.80 2.59 130.19 2.58 

t-J 
Ul 
CX> 
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4the excitation energies, He binding energy and r.m.s. 

radii are exhibited for decreasing repulsive range. The 

density dependent contribution to the binding energy of 

nuclear matter once more decreases with increasing repulsive 

range. The compressibility, on the other hand shows the 

opposite trend, it now increases. Thus, although some loose 

correlation can be established between the calculated ex

citation energies and the contribution of the density 

dependence to the nuclear matter energy, no such correlation 

exists between the excited state spectra and the compress

ibility of nuclear matter. The small difference between 

the attractive and repulsive ranges for these interactions 

means that the v parameter changes drastically for small 

changes in the repulsive range. 

It has been indicated that the calculated excitation 

' + 8 
energy of the second 2 state in Be is a good guide to 

the separation of many excited states of the o~her 0-p 

nuclei. Thus 1n turning to the comparative study of inter

actions with differing attractive ranges the additional 

requirement, that the repulsive range be so chosen as to 

predict the excitation energy of this state, has been added 

to the criteria required of the interactions listed in 

Chapter 3. Thus for each A , A O is varied so that the a r . 

second 2+ state of 8Be is fitted approximately. 

This procedure was followed in deriving Interactions 

23, 20, 31 and 33 whose attractive ranges are A = 1.5 fm,a 



TABLE 7.3 

Interaction 23 Interaction 30 Interaction 31 Interaction 33 

A B. E. (Mev) r.m.s. (fro) B. E. (Mev) r. m. s. (fro) B. E. (Mev) r.m.s. (fro) B. E. (Mev) r.m.s. (fm) 

4 37.81 1. 79 35.99 1. 82 35.25 1.80 28.24 1. 82 

6 35.67 2.31 36.06 2.37 

7 38.26 2.37 38.83 2.38 - - 36.22 2.33 

8 53.84 2.39 54.83 2.40 - - 52.84 2.29 

9 52.43 2.49 53.81 2.49 - - 51. 27 2.41 

10 63.83 2.53 65.48 2.54 - - 64.59 2.42 

11 73.18 2.57 75.16 2.58 - - 73.05 2.50 

12 90.49 2.60 92 . 68 2.60 - - 92.01 2.48 

13 92.82 2.63 95 . 99 2.64 - - 95.34 2.52 

14 102.45 2.65 104.92 2.65 - - 103.21 2.55 

16 128.77 2.68 130.93 2.68 124.55 2.67 · 126.80 2.59 

I-' 

°' 
0 
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1.375 fro, l.~5 fro and 1.0 fro respectively. For Interaction 

31 only the spectra of 6Li, 8Be and 14N were calculated. 

The binding energies and root-mean-square radii calculated 

for these interactions are listed in Table 7.3, the excited 

state spectra being shown in Figs. 7.8 - 7.16. 

The · very different forms of the four interactions 

considered 'makes attempts to find smooth variations in the 

parameters a difficult undertaking. However, some results 

do show systematic behaviour. The v parameter increases 

with decreasing attractive range and following the argument 

used previously this means that the binding energy of 4He 

will decrease .. 

With decreasing attractive range the repulsive range 

increases and thus it is not clear how the root-mean-square 

radii will change. In fact, for Interaction 30 they are 

greater than for Interaction 23 but for Interaction 33 they 

are smaller. The inter-shell binding energies are almost 

identical. 

Inspecting Figs. 7. 8 - 7 .16 i t is seen .that the 

four interactions do not exactly predict the same excitation 

8energy for the second 2+ state of Be. In particular for 

Interactions 23 and 33 this excitation energy differs by 

0.7 Mev. In comparing the other excited state spectra for 

these interactions excitation energies differences of 1 Mev 

have been ignored. Within these limitations, it is seen 

that the excitation energies of many of the levels are 



162 

identical for all the interactions. The main exceptions to 

this statement are listed in Table 7.4 where the difference 

in excitation energy calculated with Interaction 33 to 

that calculated with Interaction 23 is listed. 

The most exceptions are .for 9B and 12c al though it 

should be pointed out that more levels are considered in 

9B than in other nuclei. The changes tabulated in Table 

7.4 are an oversimplification of the situation. The 

limitation of ignoring changes less than l .Mev is slightly 

misleading. The change in excitation energy of the second 

2+ state of 8Be (0.7 Mev) should cause consistently lesser 

changes in the excitation energies of most of the other 

states considered. Also some states will, for example, 

increase in excitation energy whereas with the difference 

8in the excitation energy of the 2+ state of Be they would 

be expected to decrease. In view of the existing complex

ity of the problem, this point is not emphasized in this 

discussion. However, in attempting to ascertain the "best" 

effective interaction it is taken into consideration. 

The results for the excitation energies do indicate 

8that the idea of fitting the 2; state of Be is good as a 

first test of any interaction. Having satisfied this 

criteria, however, it is important to examine the other 

8spectra and then possibly relax the Be fit. The very 

different results of Cohen and Kurath (Coh 65) and Amit 

and Katz (Ami 64) illustrate the dangers of too rigidly 
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TABLE 7.4 

A J7r 
n 

E ( 33)x - E (23)x (Mev) 

7 7 
21 

1. 45 

3 
-1. 40 

21 . 

8 2+ 
1 1. 45 

4+ 
1 3.75 

9 
5 
2 2 

1.75 

7 1. 70 
21 

1 -1.35 
22 

3 1.10 
22 

9 3.00 
21 

7 
2.55 

23 

10 4+ 
1 2.20 

11 7 1.30 
21 

12 2+ 
1 1.05 

l+ 
1 -1.60 

4+ 
1 2.65 

1+ 
2 -1.40 

2+ 
3 -1.00 
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TABLE 7.4 - CONTINUED 

13 1.60 

14 -1.35 
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fitting given · levels of the 0-p shell nuclei. 

Thus, to find the "best" effective interaction for 

0-p shell nuclei the following procedure was adopted. 

(a) Interactions were fitted exactly to the binding 

energy of 160. 

(b) For such interactions (with different attrac

i itive ranges Aa ) appropriate repulsive ranges Ar 

were found which predicted the correct excitation 

energy of the 2+ 
2 level of 8Be. 

(c) For each interaction characterized by (Aai; 

iAr ) the spectra of all the 0-p shell nuclei 


was calcul.ated. 


(d) By comparing these results with those deter


mined from experiment a Aab is chosen which 


displays the "best fit" to the spectra. 


In general, this A b might not be contained in the 
a 

set of Aai and it would be necessary to determine a Arb as 

outlined above. This A b should be readjusted to determine 
r 

8whether a relaxation of the Be criteria produces a better 

fit to the spectra. 

Before this procedure is followed other variations 

in the particular form of the density dependent interaction are 

examined. In particular the power of the density dependence 

and the role of the repulsive core height is examined. 
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FIGURE CAPTIONS 

For all figures, excitation energy {in Mev) is 

'plotted to the left of the figure. , Full lines designate 

the calculated levels and dashed lines designate certain 

experimental levels. For even nuclei the sp~n J of the 

level is indicated to the right of the calculated levels 

and at the left of the figure for the experimental levels, 

for odd nuclei the value of 2J is likewise indicated. 

Figure 7.1 (a) Excited State Spectra of 6Li calculated 

for Interaction 23 with C = -2.0 Mev 

(b) Excited State Spectra of 6Li calculated 

for Interaction 10 with c = -2.0 Mev 

(c) Excited State Spectra of 7Be calculated 

for Interaction 23 with C = -1. 5 Mev 

(d) Excited State Spectra of 7Be calculated 

for Interaction 10 with C = -1.5 Mev. 

Figure 7.2 (a) Excited State Spectra of 8Be calculated 

for Interaction 23 with C = -2.0 Mev 

(b) Excited State Spectra of 8Be calculated 

for Interaction 10 with c = -2.0 Mev

(c) Excited State Spectra of 9B calculated 

for Interaction 23 with C = -3.0 Mev 

(d) Excited State Spectra of 9B calculated 

for Interaction 10 with C = -3.0 Mev. 
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Figure 7.3 (a) Excited State Spectra of lOB calculated 

for Interaction 23 with C = -5.0 Mev 

(b) Excited State Spectra of lOB calculated 

for Interaction 10 with C = -5.0 Mev 

(c) Excited State Spectra of 11B calculated 

for Interaction 23 with c = -4.5 Mev 

(d) Excited State Spectra of 	11a calculated 

for 	Interaction 10 with C = -4.5 Mev. 

12Figure 7.4 (a) Excited State Spectra of c calculated 

for Interaction 23 with c = -5.5 Mev 

12(b) Excited State Spectra of c calculated 

for Interaction 10 with c = -5.5 Mev. 

Figure 7.5 · (a) Excited State Spectra of i 3c calculated 

for 	Interaction 23 with C = -5.0 Mev 

13 .·
(b) Excited State Spectra of C calculated 

fdr Interaction 10 with C = -5.0 Mev 

(c) Excited State Spectra of 14N calculated 

for Interaction 23 with C = -5.0 Mev 

{d) Excited State Spectra of 14N calculated 

for Interaction 10 with C = -5.0 Mev. 

8Figures 7.6 - 7.7 plot the excited state spectra of Be 

14and N calculated for 

(a) Interaction 32 

(b) Interaction 33 

(c) Interaction 34 
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Figure 7.6 Excited State Spectra of 8Be with c = -1.5 Mev. 

Figure 7.7 Excited State Spectra of 14N with c = -5.0 Mev. 

Figures 7.8 - 7.16 plot the excited state spectra of the 0-p 

shell nuclei calculated for 

(a) 	 Interaction 23 

(b) 	 Interaction 30 

(c) 	 Interaction 33 for Figures 7. 8' 7.9, 7.11, 

7.12, 7.13, 7.14 and 7.15 but Interaction 

31 for Figures 7.10 and 7.16 

(d) 	 Interaction 33 

Figure 7.8 Excited State Spectra of 	6Li with c = -2.0 Mev. 

Figure 7.9 Excited State Spectra of 	7Be with c = -1.5 Mev. 

8Figure 7.10 Excited State Spectra of Be with c = -2.0 Mev. 

Figure 7.11 Excited State Spectra of 9B with C = -3.0 Mev. 

Figure 7.12 Excited State Spectra of lOB with c = -5.0 Mev. 

Figure 7.13 Excited State Spectra of llB with c = -4.5 Mev. 

Figure 7.14 Excited State Spectra of 12c with c = -5.5 Mev. 

Figure 7.15 Excited State Spectra of 13c with c = -5.0 Mev. 

Figure 7.16 Excited State Spectra of 14N with c = -5.0 Mev. 



169 
Figure 7.1 
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Figure 7.2 
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Figure 7.3 
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Figure 7~•.1 
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Figure 7.5 
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Figure 7.6 
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Figure 7.7 
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Figure 7.8 
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Figure 7.9 
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Figure 7.10 

20· a3 3 
0 0 0I 13 13 33 

18 I I I 01 

2 2 2 

2 - -2 - · 2 
2 

2 

14 
--4 

12 ----4 

--4 
10 

8 

2 

2
22 

2 

0 0 0 0 00 m c d 



179 
Figure 7.11 
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Figure 7.12 
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Figure 7.13 

5
10 Ila 

5 


9:i-5 
. 

8 Im

7 


7 ~7 

3 3
6 37
"'" 
1 


_3_ 5
5 

.a I 


5 

~ 

4 I

3 Ii-

I 

2 Ii-

I 
 I 

Ii- I 

0 liiie !s 3
Q b c 



182 
Figure 7.14 
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Figure 7.16 
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CHAPTER 8 

DIFFERENT DENSITY DEPENDENCIES 

In previous chapters a number of density dependent 

interactions have been considered all of which have had the 

2/ 3same specific density dependence (a pl/3 term and a p

term). In this chapter other density dependencies are con

sidered. 

Thus, results are quoted in Table B • l for the 

binding energies and root-mean-square radii of the 0-p shell 

nuclei calculated using Interactions 9, 10 and 11. These 

interactions differ primarily only in the power of the 

repulsive density dependence (p 112, p 2/ 3 and p 2 respectively). 

The increased power of the density dependence for 

Interaction 11 compared with Interaction 9 means that to fit 

the nuclear matter binding energy c has to decrease. In4 

fact, the added condition that nuclear matter saturates causes 

c to decrease ~ so dramatically (from c kF 312 = 0.46 for4 4 

Interaction 9 to c 4 kF3 = 0.05 for Interaction 11) : that 

the attractive density dependence (c ) also decreases and
3

the exchange matrix elements are weighted more strongly 

(v .decreases). Even then the interaction (Interaction 11) 

with the highest power of the repulsive density ..dependence 

is the more attractive interaction (B.E.d (Ch.apter 3)en 

185 
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is 12.12 Mev for Interaction l.land ,is · 19~8-~r·'. Mevfer·Interaction' 

9). Although the inter-shell binding energies situation is 

confused by the differing fits to the 160 binding energy, 

they do increase for the more attractive interaction. The 

r.m.s. radii decrease for the more attractive interaction. 

As might be expected the compressibility of nuclear matter 

increases with increasing repulsive density dependence. 

The excited state spectra of the o-p shell nuclei 

calculated using Interactions 9 and 10 are illustrated in 

Figs. 8.1 - 8.9 and for Interaction 11 in Figs. 8~10 - 8.18. 

Taking into consideration the different 160 binding energies 

for the .three . interactions, the excitation energies cal

culated for the 0-p .shell nuclei are remarkably similar. 

Even higher powers of the repulsive density dependence 

(Interaction 22) have been used without changing the ex

citation energies significantly. It would thus appear that 

different density dependencies do not give very different 

results for the excited state spectra. 

However, if Interaction 6 (repulsive density de

pendence pl/3) is compared with Interaction 7 (repulsive 

density dependence p2/ 3), the results obtained for the 

excited state spectra are very different (Figs. 8.1 - 8.9). 

The binding energies of the nuclei are larger and the r.m.s. 

radii are smaller for the more attractive interaction 

(Interaction 7) • The excited state spectra calculated for 

the two interactions are very different, the excitation 
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energies being generally greater for Interaction 7. The 

reason for the large differences in excitation energies for 

Interactions6 and 7, where no such differences exist for 

Interactions 9j 10 and 11 would seem to lie in the nature 

of the repulsive range. The nuclear matter criteria is 

such that the contributions from the repulsive and attractive 

density dependent parts of the interaction cancel each 

other to some extent. In a finite nucleus this cancellation 

still takes place in the nuclear core but for interactions 

whose attractive range is much longer than the repulsive 

range there is no such cancellation in the nuclear surface. 

Thus for such interactions (Interactions 6 and 7) the 

precise form of the density dependence becomes important. 

For interactions whose attractive and repulsive ranges are 

nearly identical the exact form of the density dependence 

is not so important because the nuclear matter criteria 

guarantee the same order of cancellation everywhere within 

the nucleus whatever the form of the density dependence. 

Similar results hold true if interactions which differ 

in the form of the attractive density dependence are con~ 

sidered. Thus for Interactions 10 and 17, where the attrac

tive and repulsive ranges are nearly equal, the excited 

state spectra {Figs. 8.1 - 8.18) calculated for the 0-p 

shell nuclei are almost identical whilst for Interactions 

·24 and 26 (these results are not illustrated) where the 

attractive range is Aa = 1.5 fro and the repulsive range is 
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"Aro = 0.602 fm, (attractive density dependence is pl/3 

213for Interaction 24, and p for Interaction 26}, the 

excitation energies are very different. 

The nature of the changes in the excitation energies 

for different density dependencies is the same as that for 

interactions which differ merely with respect to the re

pulsive range (or the attractive range). Thus, if the 

procedure for "fitting" the attractive and repulsive ranges 

enunciated in Chapter 7 is followed, no unique density 

dependence can be established. 

Kuo and Brown (Kuo 65} suggest that density dependence 

should to incorporated into the effective interaction to re

place.. the 2nd order Born Term for the tensor interaction. 

They find that this term can be replaced by a central force 

of the form 

where VT 2 is the long range part of the tensor interaction 
.Q, 

and eeff depends on the local density. This ·suggests the 

possibility (for a gaussian interaction} that the density 

dependent part of the interaction should have half the 

range of the non-density dependent part of the interaction. 

Thus Interactions 8 and 13 are considered and results 

calculated using these interactions are compared with the 

results calculated for Interactions 7 and 10. Because of 

the differing 160 binding energies the comparison of the 
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excitation energies calculated for the interactions (Figs. 

8.1 - 8.18) is very confusing. Careful consideration of 

the excited spectra does, however, reveal that the excita

tion energies for Interaction 7 are generally higher than 

for Interaction 8 whose density dependent part of the 

interaction has one half the range of the non-density 

dependent pa~t. This result is to be expected since the 

region where the attractive density dependence dominates 

the repulsive density dependence is smaller for Interaction 

8 than it is for Interaction 7. Since the attractive and 

repulsive ranges for Interactions 10 and 13 are almost 

equal no great differences are found between excitation 

energies calculated using them. The reduction in range 

for the density dependent part of the interaction results 

in reduced r.m.s. radii for the 0-p shell nuclei. 



TABLE 0.1 

Interaction 6 Interaction 7 

A B. E. (Mev) r .rn.s. (frn) A B.E. (Mev) r • rn.. s • ( f rn) 

4 30.34 2.00 4 35.47 1. 83 

6 28.80 2.54 5 34.68 2.40 

7 32.28 2.62 6 38.70 2.39 

8 45.09 2.67 7 53.74 2.42 

9 46.93 2.74 8 52.98 2.51 

10 60.35 2.76 9 64.66 2.55 

11 69.43 2.80 10 74.55 2.59 

12 86.18 2.83 11 92.09 2.61 

13 91.67 2.84 12 95.63 2. 6"5 

14 101. 75 2.85 13 106.50 2.65 

16 128.90 2.87 14 131.21 2.69 

I-' 
\0 
0 



TABLE 8.1 - CONTINUED 


Interaction 8 Interaction 9 

A B .E. (Mev) r. m. s. ( fm) A B.E. (Mev) r.m.s. (fro) 

4 32.91 1.83 4 27.87 2.07 

6 32.32 2~40 6 32.50 2.70 

7 35.28 2.39 7 35.76 2.65 

8 50.39 2.40 8 50.69 2.66 

9 49.68 2.50 9 52.14 2.75 

10 60.98 2.53 10 65.83 2.77 

11 68.13 2.58 11 74.99 2.81 

12 87.24 2.59 12 91. 94 2.83 

13 90.52 2.63 13 96.60 2.85 

14 98.55 2.65 14 10 5. 96 2.86 

16 125.23 2.67 16 129.66 2.89 

...... 

"°...... 



TABLE 8.1 - CONTINUED 


Interaction 10 Interaction 11 
A B .E. (Mev} r .m. s. ( fm) A B. E. (Mev} r .m. s. ( fm} 

4 27.28 2.04 4 32.79 1.90 

6 30.13 2.48 6 35.07 2.56 

7 34.14 2.66 7 37.87 2.50 

8 48.78 2.63 8 53.59 2.49 

9 49.25 2.72 9 53.75 2.58 

10 63.24 2.75 10 67.03 2.62 

11 72.13 2.79 11 76.29 2.66 

12 88.75 2.81 12 93.89 2.68 

13 92.98 2.83 13 98.04 2.71 

14 101. 59 2.84 14 107.89 2.73 

16 124.73 2.87 16 133.45 2.76 

\0 
N 

1--1 



CONTINUED 

Interaction 17 


A B .E. (Mev) r .m. s. (fro) 


4 28.25 2.05 

6 37.53 3.48 

7 36.54 2.65 

8 51.80 2.64 

9 52.85 2.74 

10 66.14 2.76 

11 75.28 2.80 

12 92.15 2.82 

13 96.37 2.85 

14 105.35 2.86 

16 128.45 2.88 

A 

4 


6 


7 


8 


9 


10 


11 


12 


13 


14 


16 


TABLE -8.l 

Interaction 13 


B. E. (mev) 

30. 4 8

34.29 

37.49 

52.99 

53.90 

67.48 

76.78 

94.13 

98.66 

108.40 

133.28 

r. m. s. (fro) 

1.99 

2.61 

2.59 

2.59 

2.68 

2.70 

2.75 

2.77 

2.79 

2.80 

2.83 

...... 
\.0 
w 
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FIGURE CAPTIONS 

For all figures, excitation energy {in Mev) is 

plotted to the left of the figure. Full lines designate 

the calculated levels and dashed lines designate certain 

experimental levels. For even nuclei the spin J of the level 

is indicated to the right of the calculated levels and at 

the left of th~ figure fbr the experimental levels, for 

odd nuclei the value of 2J is likewise indicated. 

Figures 8 .1 - 8.9 plot the excited state spectra of the o-p 

shell nuclei calculated for 

(a) Interaction 6 

(b) Interaction 7 

(c) Interaction 9 


{d) Interaction 10 


Figure 8.1 Excited State Spectra of 6L;i with c = -2.0 Mev. 

Figure 8.2 Excited State Spectra of 7Be with c = -1.s Mev. 

Figure 8.3 Excited State Spectra of 8Be with c = -2.0 Mev. 

Figure 8.4 Excited State Spectra of 9B with C = -3.0 Mev. 

Figure 8.5 Excited State Spectra of lOB with c = -s.o M~v. 

Figure 8.6 Excited State Spectra of llB with c = -4.5 Mev. 

Figure 8.7 Excited State Spectra of 12c with c = -s.s Mev. 

Figure 8.8 Excited State Spectra of 13c with c = -s.o Mev. 

Figure 8.9 Excited State Spectra of 14N with c = -s.o Mev. 
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Figures 8.10 . - 8.18 plot the excited state spectra of the 0-p 

shell nuclei calculated for 

(a) Interaction 11 

(b) Interaction 17 

(c) Interaction 8 

(d) Interaction 13 

Figure 8.10 Excited State Spectra of 	6Li with c = -2.0 Mev. 

Figure 8.11 Excited State Spectra of 	7Be with c = -1.5 Mev. 

8Figure 8.12 Excited State Spectra of Be with c = -2.0 Mev. 

Figure 8.13 Excited State Spectra of 9B with C = -3.0 Mev. 

Figure 8.14 Excited State Spectra of lOB with c - -5.0 Mev. 

Figure 8.15 Excited State Spectra of llB with c = -4.5 Mev. 

Figure 8.16 Excited State Spectra of 12c with c = -5.5 Mev. 

Figure 8.17 . Excited State Spectra of 13c with c = -5.0 Mev. 

Figure 8.18 Excited State Spectra of 14N with c = -5.0 Mev •. 
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Figure 8.2 
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Figure 8.3 
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Figure 8.4 
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Figure 8.5 
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Figure 8.6 
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Figure 8.7 
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Figure 8.8 
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Figure 8.11 
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Figure 8.12 
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Figure 8.14 
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Figure 8.15 
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Figure S.16 
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CHAPTER 9 

CORE HEIGHT AND RELAXATION OF CRITERIA 

In previous chapters many variations of the basic 

density dependent interaction have been studied~ Most of 

these interactions have a repulsive core height of 5 Mev 

or less. In this chapter a comparison is made between two 

interactions, one ha*ing a zero core height and one with 

a core height of 50 Mev. 

All density dependent interactions so far con

sidered have consisted of two density dependent parts, one 

part having the same strength as the attractive non-density 

dependent interaction, the other part having the strength 

of the repulsive non-density dependent interaction. Inter

actions are considered in this chapter for which the 

strengths (and ranges) of the two density dependent parts 

of the interaction are identical. 

Although the effective interactions used in this 

thesis are expected to be such that the second order cor

rection terms in nuclear matter are small, it would be 

extremely fortuitous if these terms were zero. · It might, 

thus, be more meaningful to consider the binding energy . 

of nuclear matter to be different from 16 Mev per particle 

for a first order calculation. An interaction is constructed 

214 
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that predicts a binding energy of 14 Mev per particle for 

the first order nuclear matter calculation. Further, some 

authors (Spr 69) feel that the saturation density of nuclear 

-1matter should be less than kF = 1.36 fm • Many previous 

~nteractions {Man 67) have been fitted to higher values of 

kF and thus in this chapter an interaction which fits 

nuclear matte,r to a binding energy of 16 Mev per particle 

-1at a saturation density of kF = 1.5 fm is considered. 

A great restriction, as far as merely fitting the 

excited state spectra, imposed in the calculations for 

finite nuclei is that the nucleus is required to saturate 

i.e. the binding energy is minimized with respecit to the 

parameters of the single particle basis. Such a restriction 

is not {and generally cannot be) imposed in a typical 

shell-model calculation. In the calculations of the 

excited states of the 0-p shell undertaken by Halbert et. 

al. {Hal 66) and used as a . basis for comparison in Chapter 

10, the oscillator well parameter of the 0-p single particle 

wave functions {ap) is considered to be a free parameter. 

A calculation has been performed for Interaction 10 in 

which ap is treated as a free parameter, the nucleus being 

required to saturate only with respect to th~ 0-s oscillator 

well parameter. The results of this calculation are out

lined at the end of this chapter. 

Two variations of the basic form of the density 

dependent interaction outlined in Chapter 3 are considered. 
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They are 

and (B) 

2 2
V(rij) =VA exp(-rij /Aa } 

+ VR(l + C3(3;2 p(R))l/3 + C4(3;2 p(R))2/3) 

2 2 x exp(-r .. /A (k))
1J r 

Specifically, the basic interaction studied is 

Interaction 10, the (A) variation being Interaction 21 and 

the (B) variation being Interaction 22. The binding energies 

and root-mean-square radii for the 0-p shell nuclei are 

listed in Table 9.1 and the excited state spectra in Figs. 

9.1 - 9.9 for the three Interactions 10, 21 and 22. The 

binding energies, r.m.s. radii and excitation energies 

(with the exception of 6Li} ar~= almost identical for all 

6three interactions. The differences for Li are probably 

due to minimizatiort difficulties for Interactions 21 and 22. 

This is reflected in the large r.m.s. radii for 6Li pre

dicted by these interactions. The binding energies pre

dicted for 6Li are in excess of the expected binding 

energies (binding energy at "t:rue" local minimum) because 

with such large r.m.s. radii the density approximation 
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used in the calculation breaks down compietely. The com

pressibilities of nuclear matter and v's are identical 

for the three interactions. The only significant differ

ences for the variations are that c 4 has to change for 

variation (A) and c 3 for variation (B) •. The fact that 

the results are virtually identical for the three inter

actions is not very surprising since the attractive and 

repulsive ranges of the basic interaction are very nearly 

equal to each other. 

The role of the core height can be seen by comparing 

the results (Table 9.1, Figs. 9.9 - 9.18) obtained in 

calculations using Interaction 28 (O Mev Core Height) and 

Interaction 29 (50 Mev Core Height). The binding energies 

and excitation energies for the O-p shell nuclei are almost 

identical, as are the parameters derived from the nuclear 

matter fitting procedure. The phase-fitting procedure would 

seem to have imposed the condition that interactions 

having the same VA and "-a should be "identically strong"; 

the interaction with the greater VR having a shorter 

repulsive range "-ro and smaller c • The minimum of the parabola1

for "-r(k) is almost the same for the two interactions. 

The independence of the results for different core heights 

underlines the restrictive nature of the requirement that 

the interactions fit the scattering data. 

Interactions 15 and 16 are identical to Interaction 

10 except that they have been fitted to different nuclear 
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matter criteria. Interaction 15 predicts a nuclear matter 

binding energy of 14 Mev per particle at a saturation density 

-1kF = 1.36 fro ; Interaction 16 a nuclear matter binding 

energy of 16 Mev per particle at saturation density 

-1kF = 1.5 fm • The excitation energies of the 0-p shell 

nuclei calculated using Interactions 15 and 16 are very 

similar and generally greater than those calculated for 

Interaction 10. The root-mean-square radii ar~ smallest 

for Interaction 16. kF' the saturation density is related 

to the ro in the formula 

for the radius of a finite nucleus by 

It is thus apparent that Interaction 16 should 

predict smaller radii than interactions which saturate 

nuclear matter at a lower saturation density. Interaction 

15, which is a more attractive interaction (B.E.d = 14.01 Mev)en 

than Interaction 10 (B.E.d = 19.86 Mev), also predictsen 

smaller r.m.s. radii than does Interaction 10. 

The excitation energies of the states of the 0-p 

nuclei are generally greater for Interactions 15 and 16 

than for Interaction 10. In view of the fact that for 

Interaction 10 these excitation energies are smaller than 

the experimental values this is a desirable feature. 
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However, the changes in the excitation energies are not 

great enough to justify the abandonment of the nuclear 

matter criteria established in Chapter 3. 

Table 9.2 shows the results of calculations for 

Interaction 10 in which the binding energy is minimized 

only with respect to the o-s oscillator well parameter 

a , the ratio of the 0-p oscillator well parameter, aps . 

to the 0-s oscillator well parameter, cr = ap/as, being 

6kept constant. The difficulty of minimizing Li with 

respect to ap is clearly indicated. The calculation for 

6Li quoted in Table 9.1 found a local minimum between 

cr = 0.9 and cr = 1.0. The changes of the excitation energies 

with cr are substantial and it would be possible to "fit" 

the experimental excitation energies to a certain extent 

+if cr were a free parameter. For example, the second 2 

state of 8Be at 16.6 Mev excitation could be fitted by 

Interaction 10 for cr ~ lw3. 

The above results indicate the extreme importance 

of performing the minimization of the ground state binding 

with respect to cr very carefully if any confidence is to be 

placed in the results for the excitation energies. This 

~xcludes the possibility of determining a and a by min-s p 

imizing the energy of the nuclear system with a reduced 

basis (i.e. by considering a few of the "lead.0 determin

antal states (Vol 65)). 



TABLE 9.1 


Interaction 10 Interaction 15 Interaction 16 

A B.E. (Mev) 

4 27.28 

6 30.13 

7 34.14 

8 48.78 

9 49.25 

10 63.24 

11 72 . 13 

12 88.75 

13 92.98 

14 101. 59 

16 124.73 

r.m.s.(fro) 

2.04 

2.48 

2.66 

2.63 

2.72 

2.75 

2.79 

2.81 

2.83 

2.84 

2.87 

A 

4 

6 

7 

8 

9 

10 

11 

12 

13 

14 

16 

B. E. (Mev) 

31. 34 

34.28 

36.84 

52.11 

52.23 

65 .. 05 

71. 46 

90 . 36 

93. 86 

102.60 

125.62 

r. ro. s. (fro) 

1.95 

2.68 

2.57 

2.57 

2.67 

2.71 

2.75 

2.77 

2.80 

2.81 

2.84 

A 

4 

6 

7 

8 

9 

10 

11 

12 

13 

14 

16 

B. E. (Mev) 

31.33 

33.16 

35.77 

50.88 

50.93 

63.80 

72.48 

89.28 

93.00 

102.12 

126.24 

r. m. s. (fro) 

1.91 

2.55 

2.53 

2.53 

2.63 

2.66 

2.70 

2.72 

2.75 

2.75 

2.77 

N 
N 
0 



TABLE 9.1 - CONTINUED 

Interaction 21 Interaction 22 Interaction 28 

A B.E. (Mev) 

4 27.23 

6 33.17 

7 33.97 

8 48.56 

9 49.43 

10 62.41 

11 71.19 

12 87.64 

13 91.56 

14 ·100 .11 

16 122.39 

r .m. s. (fro) 

2.02 

3.17 

2.63 

2.61 

2.71 

2.74 

2.78 

2.79 

2.82 

2.83 

2.86 

A 

4 

6 

7 

8 

9 

10 

11 

12 

13 

14 

16 

B. E. (Mev) 

27.25 

31. 94 

34.11 

48.72 

49.73 

62.89 

71. 73 

88.29 

92.41 

101.18 

123.85 

r. m. s. ( fm) 

2.03 

2.91 

2.63 

2.62 

2.72 

2.74 

2.78 

2.80 

2.73 

2.84 

2.86 

A 

4 

6 

7 

8 

9 

10 

11 

12 

13 

14 

16 

B. E. (Mev) 

36.32 

35.25 

37.98 

53.55 

52.55 

64.25 

73.66 

90.97 

94.34 

103.35 

128.48 

r.m.s. (fro) 

1.82 

2.34 

2.39 

2.41 

2.51 

2.55 

2. 59 

2.62 

2.65 

2.67 

2.70 

tv 
tv 
~ 



TABLE 9.1 - CONTINUED 


Interaction 29 

A B.E. (Mev) r .m. s. ( fm) 

4 35.98 1.80 

6 34.58 2.35 

7 37 .13 2.38 

8 52.74 2.39 

9 51.50 2.49 

10 63.19 2.53 

11 72 . 47 2.57 

12 89.76 2.59 

13 92.97 2.63 

14 102.00 2.64 

16 . 128.11 2.67 

N 
N 
N 
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TABLE 9.2 

J1f 

A=6 

<J 0.2 

Ex(Mev) 

0.4 

E (Mev)x 

0.6 

Ex(Mev) 

0.8 

E~(Mev) 

1.0 

E (Mev)x 

0 1.15 3.04 4.36 5.17 5.65 

0 7.82 10.62 12.66 13.94 14.73 

1 3.65 5.51 6.31 6.46 6.34 

1 

l 

2 

5.26 

7.09 

1. 96 

8.36 

9.64 

4.53 

10.55 

12.14 

4.92 

11.91 

14.04 

. 4.91 

12.74 

15.39 

4.72 

2 3.55 4.56 6.20 7.08 7.53 

2 4.80 7.47 9.40 10.62 11.36 

3 

B.E. (Mev) 

r. m. s. ( fm) 

0.55 

34.05 

3.43 

1.53 

31.6 

2.59 

1.92 

31. 21 

2.58 

1.91 

30.53 

2.49 

1.72 

29.20 

2.47 

A=7 cr+ 0.2 0.4 0.6 o.a 1. 0 

1/2 

1/2 

3/2 

3/2 

5/2 

5/2 

7/2 

7/2 

B.E. (Mev) 

r .m. s. (fro) 

0.23 

3.90 

3.48 

3.55 

1.64 

3.54 

1. 59 

3.74 

33.44 

3.72 

0.24 

5.95 

5.48 

6.85 

3.73 

5.11 

3.24 

6.02 

33.09 

2.96 

0.31 

7.31 

6.78 

9.01 

5.06 

5.70 

3.81 

7.44 

34.08 

2.70 

0.37 

8.14 

7.58 

10.17 

5.53 

6.09 

3.85 

8.18 

34.12 

2.60 

0.42 

8.65 

8.08 

10.77 

5.43 

6.55 

3.69 

8.56 

33.11 

2.57 
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TABLE 9.2 - CONTINUED 


A=8 cr+ 0.2 0.4 0.6 0.8 1.0 

1 4.65 9.89 12.85 14.46 15.37 

1 5.62 10.40 13.11 14.60 15.48 

1 6.13 10.88 13.57 15.03 15.89 

2 1.41 2.47 2.72 2.67 2.56 

2 3.70 8.25 10.84 12.27 13.11 

2 4.44 9.44 12.20 13.72 14.60 

2 5.80 10.50 13.15 14.61 15.47 

3 5.29 10.15 12.81 14.28 15.13 

3 5.49 11. 06 14.02 15.52 16.33 

4 4.31 7.99 8.82 8.72 8.36 

B. E. (Mev) 36.91 42.44 46.75 48.50 48.32 

r .m. s. ( fm) 3.85 3.01 2.74 2.64 2.61 

A=9 cr+ 0.25 0.5 0.75 1.0 

1/2 2.36 3.05 3.01 3.00 

1/2 3.85 5.37 6.52 7.14 

3/2 4.34 4.86 4.99 5.00 

3/2 4.76 7.12 7.97 8.44 

5/2 1.44 2.04 2.18 2.08 

5/2 5.19 5.92 5.93 5.77 

5/2 5.83 7.90 8.87 9.36 

5/2 6.47 9.09 10 .17 10.01 

7/2 2.54 4.81 5.30 5.24 

7/2 5.74 7.20 7.83 8.10 

9/2 6.88 8.90 9.21 9.03 
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TABLE 9.2 - CONTINUED 

B.E. (Mev) 39.03 46.16 49.64 49.60 

r. m. s. ( fm) 3.69 2.95 2. 75 . 2.70 

A=lO cr+ 0.2 0.6 1.0 1.4 

0 0.47 2.20 3.35 3.95 

1 0.09 0.42 0.79 1.02 

1 5.34 3.11 3.22 3.46 

2 1.65 3.73 4.50 4.44 

2 6.18 5.01 6.27 6.85 

4 7.07 6.76 6.42 6 .19 

B.E. (Mev) 45.72 60.10 63.09 59.37 

r .m. s. ( fm) 4.16 2.89 2.73 . 2.74 

A=ll cr+ 0.25 0.50 0.75 1.0 

1/2 4.00 2.40 2.04 1. 95 

3/2 6.31 6.18 6.15 6.15 

5/2 5.40 4.84 4.69 4.61 

5/2 7.01 7.60 7.99 8.21 

7/2 6.28 5.82 5.44 5.14 

B.E. (Mev) 50.66 64.48 70.92 72.05 

r. m. s. ( fm) 3.81 3.04 2.83 2.77 

A=l2 cr+ 0.2 0.4 0.6 0.8 1.0 

0 11.53 9.35 9.27 9.45 9.60 

0 14.38 14.67 15.38 15.87 16.19 

0 16.00 18.11 19.61 20.46 20.97 
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TABLE 9.2 - CONTINUED 


1 7.74 8.61 9.38 9.83 10.08 

1 8.65 10.45 11.80 12.60 13.10 

2 6.14 4.83 4.33 4.08 3.92 

2 8.99 11.06 12.37 13.05 13.44 

2 13.22 12.77 13.21 13.58 13.82 

2 15.20 16.06 16.78 17.18 17.42 

4 14.39 13.50 12.83 12.29 11. 86 

B.E. (Mev) 53.72 70.59 81. 25 86.11 87 .31 

r .m. s. { fm) 4.22 3.23 2.94 2.83 2.80 

A=l3 cr-+ 0.2 0.4 0.6 0.8 1.0 

1/2 7.66 7.93 8.16 8.32 8.42 

3/2 6.04 4.82 4.41 4.27 4.20 

3/2 8. 02 8.70 9.07 9.25 9.35 

3/2 9.65 12.04 13.35 13.61 13.72 

5/2 7.38 7.02 6.69 6.43 6.23 

7/2 14.46 14.25 13.17 12.82 12.57 

B.E. {Mev) 51.94 73.41 85.84 91. 45 92.97 

r .m. s. ( fm) 4.21 3.24 2.97 2.87 2.83 

A=l4 cr-+ 0.2 0.4 0.6 0.8 1.0 

0 1.12 2.41 3.15 3.61 3.90 

0 15.59 16.64 17.33 17.77 18.06 

1 5.93 4.93 4.75 4.77 4.83 

1 9.32 11. 22 12.24 12.82 13.19 

1 15.74 17.71 19.06 19.90 20.47 
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TABLE 9.2 - CONTINUED 


2 7.09 6.31 6.52 6.42 6.36 

2 8.65 9.79 10.37 10.70 10. 92 

2 16.52 18.17 19.06 19.57 19.91 

3 14.59 14.21 14.02 13.92 13.86 

B. E. (Mev) 50.33 77.76 92.77 99.65 101. 82 

r .m. s. ( fm) 4.17 3.24 2.98 2.88 2.84 
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FIGURE CAPTIONS 

For all figures, excitation energy (in Mev) is 

plotted to the left of the figure. Full lines designate 

the calculated levels and dashed lines designate certain 

experimental levels. For even nuclei the spin J of the level 

is indicated to the right of the calculated levels and at 

the left of the figure for the experimental levels, for 

odd nuclei the value of 2J is likewise indicated. 

Figures 9.1 - 9.9 plot the excited state spectra of the 0-p 

shell nuclei calculated for 

(a) Interaction 21 

(b) Interaction 22 

(c) Interaction 10 

6Figure 9.1 Excited State Spectra of Li with c = -2.0 Mev. 

Figure 9.2 Excited State Spectra cf 7Be with c = -1.5 Mev. 

8Figure 9.3 Excited State Spectra of Be with c = -2.0 Mev. 

Figure 9.4 Excited State Spectra of 9B with C = -3.0 Mev. 

Figure 9.5 Excited State Spectra of lOB with c = -5.0 Mev. 

Figure 9.6 Excited State Spectra of llB with c = -4.5 Mev. 

Figure 9.7 Excited State Spectra of 12c with c = -5.5 Mev. 

Figure 9.8 Excited State Spectra of 13c with c = -5.0 Mev. 

Figure 9.9 Excited State Spectra of 14N with c = -5.0 Mev. 
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Figures 9.10 - 9.18 plot the excited state spectra of the 

0-p shell nuclei calculated for 

(a) Interaction 28 

(b) Interaction 29 

(c) Interaction 15 

(d) Interaction 16 

Figure 9 .10 Excited State Spectra of 	6Li with c = -2.0 Mev. 

7Figure 9.11 Excited State Spectra of Be with c = -1. 5 Mev. 

8Figu.re 9.12 Excited State Spectra of Be with c = -2.0 Mev. 

. hFigure 9.13 Excited State Spectra of 9B wit C ·= -3.0 Mev. 

Figure 9.14 Excited State Spectra of lOB with c = -5.0 Mev. 

Figure 9.15 Excited State Spectra of llB with c = -4.5 Mev. 

Figure 9.16 Excited State Spectra of 12c with c = -5.5 Mev. 

Figure 9.17 Excited State Spectra of 13c with c = -5.0 Mev. 

Figure 9.18 Excited State Spectra of 14N with c = -5.0 Mev. 
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Figure 9.1 
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10 

Figure ~.2 
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Figure 9.3 
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Figure 9.4 
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Figure 9.5 
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Figure 9.6 
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Figure 9.8 
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Figure 9.9 
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Figure 9.10 
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Figure 9.11 
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Figure 9.12 
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Figure 9.13 
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Figure 9.14 
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Figure 9.15 
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Figure 9.17 
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Figure 9.18 
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CHAPTER 10 


ISOBARIC NUCLEI 

In this chapter results are presented for two inter

actions, Interactions 36 and 37. Calculations have been 

performed for all possible nuclei that can be constructed 

from 0-p shell single particle states i.e. 2<Z<6 and 2<N<6, 

where z is the number of protons and N is the number of 

neutrons. 

Interaction 36 was derived using the procedure 

developed in Chapter 7 and is considered the "best" inter

action for the class of interactions having an attractive 

density dependence of pl/3 and a repulsive density depen

dence of p 213 • Interaction 37 has an attractive density 

dependence of p-l/3 and a repulsive density dependence of 

p2 • It has the same attractive range as Interaction 36. 

Slightly better fits to the excited state spectra could be 

achieved for this form of the density dependent interaction 

for a different attractive range. 

The relevant binding energies, root-mean-square 

radii and equilibrium deformation properties are listed in 

Table 10.1 and Table 10.2 for Interactions 36 and 37 

respectively. The binding energies and root-mean-square 

radii are very similar for both interactions, the binding 

energies for Interaction 37 being slightly larger than for 

248 
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Interaction 36. 4He and, consequently the A=6 nuclei are 

overbound for both interactions whilst for the other nuclei 

the calculated binding energies are in fair agreement with 

the experimentally deduced values. The worst agreement is 

for the A=9 nuclear system. Because of the small binding 

energy for the "last nucleon" in this system, the procedure 

of considering the P0 and P±l single particle states to be 

in the same oscillator well is not valid (Thomas-Ehrman 

Effect) and thus a calculation performed us~ng this assum

ption will give less than the true binding energy. The 

overbinding of the a-particle is a feature common to all 

density dependent interactions studied which fitted the 160 

binding energy. The situation may be that the contribution 

16to the 0 binding energy from excitations out of the o-p 

shell basis is proportionally greater than is the contri

bution to the 4He binding energy from excitations out of 

the 0-s shell basis. Crude estimates (Vol 70a) of these 

contributions indicate that for the form of density de

pendent interactions being studied, 160 gains 16 Mev and 

4He 4 Mev when such excitations are included. As was seen 

in the comparative study of Interactions 10 and 14 in 

Chapter 5 a reduction of 16 Mev in the binding energy of 

160 would cause a reduction of approximately 6 Mev for the 

binding energy of 4He. 

The r.m.s. radii calculated for the two interactions 

are generally too large. Inclusion of states from higher 
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shells has the effect of significantly reducing the r.m.s. 

radii (Chapter 4). It would, thus, appear that although 

effective interactions can be found to correctly predict 

the binding energies of the 0-p shell nuclei, other physical 

properties of these nuclei which are more sensitive to 

the admixture of states from higher shells will not be 

reproduced. 

The equilibrium deformation results for the two 

interactions are very similar. Tables 10.3 and 10.4 list 

the deformations predicted by minimizing the kinetic energies 

of the ground state of the nuclei (at zero deformation) 

calculated using Interactions 36 and 37 with respect to 

the deformation. This approximation, crude as it is, 

correctly predicts the sign of the deformation for a great 

number of nuclei. Since the calculation performed is a 

variational calculation in which the nuclear system is 

constrained to be undeformed the magnitude of the deformation 

predicted by the minimization of the kinetic energy should 

be less than that actually found. 

The excited state spectra calculated using Inter

action 36 are illustrated in Figs. 10.l - 10.9 and those 

calculated using Interaction 37 are illustrated in Figs. 

10.10 - 10.18. It should be noted, at this point, that 

although results are quoted for 6He, 6Be, 7He and 7B, not 

much reliance can be placed in these results. All these 

nuclei are underbound with respect to 4He and since, further, 
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they have just a few nucleons outside the a-particle core, 

the local minima of the binding energy in the variational 

space are shallow. 

The excitation energies calculated for the two 

interactions are compared with experiment and with the 

results of Halbert et. al. (Hal 66) below. In Figs. 10.19 

10.25 and 10.26 - 10.32 the excited states of the isobaric 

nuclei are plotted with respect to the ground state of the 

isobaric nucleus with the greatest binding energy, thus, 

enabling some tentative value to be assigned for T to some 

levels. This was not done for the A=6 and A=7 nuclei 

because of the ambiguities associated with the minimization 

procedure mentioned above. 

A=6 

The spectra for Interaction 36 is in general 

agreement with the experimental results and with those of 

+Halbert et. al. (Hal 66), although the two 2 states are a 

little high. Interaction 37 gives a very poor fit to the 

spectra. It should be emphasized that this interaction is 

not the best interaction for the specific density depen

dencies (p-l/3 and p2) used. In comparison with Inter

action 36 it is seen that the excited states for Inter

action 37 are more widely separated, the excitation energies 

+ +for the 0 and second 2 , in particular, being much greater. 
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A=7 


Again the agreement between the results for Inter

action 36 and those of Halbert and experiment are good. 

In particular, the change in excitation energy of the 

~ states for the nuclei 7ee and 7Li is of the order of 

that found experimentally. For this nucleus the results 

for Interaction 37 are in qualitative agreement with the 

experimental results. 

A=8 

The spectra calculated for both interactions are 

very similar for these nuclei and both agree closely with 

those of Halbert and with the experimental results. The 

main difference is that the density dependent interactions 

predict a number of o+ states at about 19 Mev excitation 

. 8 . 
energy in Be. The closeness of the higher levels do not 

allow any assignment of T for any of the states by the 

methods used in this chapter. 

A=9 

Interactions 36 and 37 again predict very similar 

spectra which agree with the experimentally assigned levels. 

They both predict more low-lying levels than does Halbert's 

interactioh. The experimental spectra of 9e, in fact, does 

9have a number of low-lying levels not seen in ee. Once 

more, the closeness of the excited levels does not allow 
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any definite T assignments to be made. 

A=lO 

The agreement between experiment and the results 

calculated for Interaction 36 is not very impressive. The 

spectra for Interaction 37 differs substantially from that 

of Interaction 36. The 2+ state at 9 Mev, the 2+ at 6 Mev 

and the a+ at 2 Mev in lOB are assigned to be T=l states. 

A=ll 

Interaction 37 predicts excitation energies greater 

than those for Interaction 36. Both spectra calculated 

have the same qualitative features as that of Halbert and 

both agree to some extent with the experimental results. 

11The first T=3/2 state occurs at 15 Mev excitation in B. 

A=l2 

Interactions 36 and 37 predict spectra that are in 

good agreement with the experimental situation with the 

exception of the low-lying a+ ~ state. They predict results 

very different, in regard to the second a+ state, than does 

Halbert. The assignment T=l is made to the l+ and 2+ states 

at 15 - 16 Mev excitation in 12c. 

A=l3 

The spectral results for Interactions 36 and 37 
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are similar to each other and to those found by Halbert. 

A ~- state is predicted at about 13 Mev excitation. The 

excitation energy of this state was found to be very de

pendent on ·thestrength of the spin-orbit interaction. 

It is substantially lower for more positive values of c. 

A=l4 

With the exception of the a+ state (assigned to 

be T=l) the results for Interactions 36 and 17 agree with 

those of Halbert. 

Slightly better fits for some of the excited states 

10(e.g. the a+ states of s and 14N) can be obtained by 

considering larger values for the ·MaJorana exchange strength. 

However, th~ changes are slight and do not justify fixing 

the Mayorana strength in this way. 

Density plots for some nuclei are shown in Figs. 

10.33 - 10.43. These were calculated at zero deformation 

for Interaction 36. The density plots for Interaction 37 

were virtually identical with those for Interaction 36, 

having slightly higher central regions (the r.m.s. radii are 

smaller). The even nuclei considered are the Tz=O nuclei. 

The odd nuclei have identical density plots for T =l and z 

T =-1.· The T =-1 are the ones illustrated. For the lightestz z 

nuclei the densities are too high when compared with those 

quoted by Elton (Elt 61). However, for A>lO the densities 

calculated using Interaction 36 do compare well with those of 

Elton. 



TABLE 10.l 

Spin-Orbit Undeformed Prolate Oblate 

A 

Strength T z 
C(Mev) B. E. (Mev) r. m. s. ( fm) B. E. (Mev) r .m. s. (fm) £ B .E. (Mev) . r .m. s. (fm) £ 

4 o.o 0 34.4 1. 84 

-2 32.30 2.50 

6 -2.0 0 34.37 2.57 

2 30.64 2.61 

-3 29.77 2.55 29.95 2.55 -0.15 

7 -2.0 -1 38.95 2.40 41.15 2.41 0.37 39 .10 2.40 -0.20 

1 37.43 2.87 39.60 2.94 0.40 37.60 2.88 -0.20 

3 26.28 2.87 26.35 2.87 -0.05 

-4 28.70 3.15 

-2 37.82 2.52 38.50 2.52 -0.25 

8 -1. 5 0 52.50 2.42 56.20 2.43 0.47 53.00 2.48 -0.25 

2 34.55 2.48 35.13 2.48 -0.23 

4 

-5 

22.40 

26.80 

2.86 

2.99 

(\.) 

Ul 
Ul 

-3 41. 63 2.60 42.00 2.61 0.17 
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9 -3.0 -1 53.70 2.51 53.00 2.52 0.37 54.38 2.51 -0.23 

1 51. 83 2.51 51.15 2.51 0.33 52.50 2.51 -0.25 

3 36.10 2.63 36.50 2.63 0.15 

5 18.15 2.99 

-6 23.55 2.91 

-4 42.20 2.69 42.40 2.69 0 .10 

-2 63.10 2.58 63.48 2.58 0.23 63.15 2.58 -0.15 

10 -5.0 0 63.43 2.56 64.75 2.57 0.27 64.70 2.57 -0.27 

2 58.93 2.59 59.20 2.59 0.23 59.00 2.60 -0.15 

4 34.20 2.72 34.40 2.72 0.10 

6 12.63 3.00 

-5 40.50 2.73 40.70 2.73 0.07 

-3 61.15 2.64 61. 25 2.64 0.15 

11 ..:4.75 ;..l 73.45 2.60 74.40 2.60 -0.27 

1 71.60 2.60 72.05 2.61 -0.27 

3 54.34 2.66 54.40 2.66 0.10 
l\.) 

5 29.50 2.78 29.65 2.78 0.06 Ul 

°' 
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12 -5.50 

-4 

-2 

0 

2 

4 

13 -5.00 

-3 

-1 

1 

3 

14 -5.00 

-2 

0 

2 

16 0.00 0 

62.86 

77.42 

90.00 

72.30 

52.95 

80 .. 20 

93.30 

90.56 

71. 64 

101. 20 

101.90 

95.60 

127.15 

2.69 

2.65 

2.61 

2.65 

2.71 

2.69 

2.65 

2.66 

2.69 

2.68 

2.67 

. 2. 69 

2.70 

62.90 

90.15 

53.00 

2.69 

2.61 

2.71 

0.05 

0.07 

0.05 

77.55 

90.15 

72.40 

2.65 

2.62 

2.65 

-0.07 

-0.25 

-0.07 

93.35 

90.60 

2.65 

2.66 

0.04 

0.04 

80.30 

71.70 

2.69 

2.69 

-0.04 

-0.04 

101. 30 2.68 0.02 

95.63 2.69 0.02 
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TABLE 10.2 

Spin-Orbit Undeformed Prolate Oblate 

A 

Strength, 

C (Mev) T z B.E. (Mev) r. m. s. (fro) B. E. (Mev) r.m.s. (fro) £ B.E. (Mev) r. m. s. (fro) £ 

4 0.00 0 34.15 1.83 

6 -1. 75 

-2 

0 

2 

33.10 

35.41 

28.31 

2.33 

2.42 

2.57 28.70 2.34 0.3 

35.45 

28.35 

2.42 

2. 33 . 

-0.05 

-0.15 

7 -1.50 

-3 

-1 

1 

3 

26.90 

39.15 

37.63 

22.74 

2.49 

2.39 

2.40 

2.51 

41.18 

39.65 

2.40 

2.41 

0.40 

0.40 

39.40 

37.90 

2.39 

2.40 

-0.20 

-0.20 

8 -1.50 

-4 

-2 

0 

2 

4 

31.91 

38.30 

53.20 

34.95 

27.96 

4.36 

2.51 

2.39 

2.55 

4.22 

57.00 2.40 -0.47 

38.85 

53.80 

35.45 

2.51 

2.40 

2.55 

-0.23 

-0.28 

-0.23 

rv 
Ul 
00 
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-5 

-3 

-1 

1 

3 

5 

26.40 

41. 80 

54.38 

52.48 

36.25 

18.30 

3.15 

2.60 

2.49 

2.49 

2.61 

2.99 

42.20 

53.68 

51. 85 

36.60 

2.60 

2.49 

2.49 

2.61 

0.16 

0.37 

0.33 

0.18 

55.08 

53.20 

2.50 

2.50 

-0.27 

-0.27 

10 -4.50 

-6 

-4 

-2 

0 

2 

4 

23.20 

41. 60 

62.41 

63.28 

58.18 

33.55 

2.96 

2.69 

2.56 

2.53 

2.57 

2.70 

41. 80 

62.78 

63 . 80 

58.55 

33.70 

2.69 

2.56 

2.55 

2.57 

2.70 

0.10 

0.25 

0.27 

0.25 

0 .10 

62.55 

63.90 

58.35 

2.56 

2.54 

2.57 

-0.20 

-0.32 

":"0. 23 

6 12.43 3.02 

11 -5.25 

-5 

-3 

-1 

1 

40.50 

62.35 

75.60 

73.20 

2.72 

2.62 

2.58 

2.58 

40.60 

62.45 

2.72 

2.62 

0.05 

0.12 

76.50 

74.10 

2.58 

2.59 

-0.30 

...:o.3o 
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U1 
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3 
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2.64 

2.78 
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2.64 
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O.Q5 

12 -5.50 

-4 

-2 

0 

2 
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62.97 

78.30 

91.17 

73.16 

53.00 

2.67 

2.63 

2.59 

2.64 

2.69 

63.00 

91. 20 

2.67 

2.59 

0.02 

0.08 

78.45 

91.55 

73.30 

2.63 

2.60 

1.64 

-0.06 

-0.30 

-0.07 

13 -5.00 

-3 

-1 

1 

3 

80.70 

94.40 

91.65 

72.40 

2.68 

. 2. 63 

2.64 

2.68 

94.45 

91.70 

2.63 

2.64 

0.01 

0.02 

80.80 

72.46 

2.68 

2.68 

-0.05 

-0.05 

14 -5.00 

~2 

0 

2 

102.10 

103.25 

96.12 
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TABLE 10.3 

A T A T z z 

-6 0.00 

-4 0.08 

-2 0.00 -2 0.00 

6 . 0 -0.02 10 0 -0.21 

2 o.oo 2 0.00 

4 0.08 
-3 -0.05 

6 0.00 
7 -1 0.16 

1 o.i6 -5 0.06 

3 -0.02 -3 o.oo 

11 -1 -0.12 
-4 0.00 

1 -0.12 
-2 -0.14 

3 0.00 
8 0 0.00 

5 0.06 
. . 2 -0.14 

4 0.00 -4 0.00 

-2 -0.07 
-5 0.00 

12 0 0.00 
-3 0.11 

2 -0.07 
9 -1 -0.14 

. 4 o.oo 
1 -0.14 

3 0.11 -3 -0.06 

5 o.oo 13 -1 0.00 

1 0.00 

3 -0.06 
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TABLE 10.3 - CONTINUED 

A T e: 
z 

o.oo 

14 0 -0.01 

-2 0.00 
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TABLE 10.4 

A T z e: A T z 

-2 0.00 2 0.00 

6 0 -0.01 4 0.08 

2 o.oo 6 o.oo 

-3 -0.11 -5 0.06 

7 -1 0.15 -3 o.oo 

1 0.15 11 -1 -0.12 

3 -0.11 1 -0.12 

3 0.00 
-4 0.00 

5 0.06 
-2 -0.14 

8 0 0.00 -4 0.00 

2 -0.14 -2 -0.07 

4 0.00 12 0 0.00 

2 -0.07 
-5 0.00 

4 o.oo 
-3 0.10 

..1 -0.14 -3 -0.06 

·l -0.14 13 -1 o.oo 

3 0.10 l o.oo 

5 o.oo 3 -0.06 

-6 o.oo "'."2 o.oo 

-4 0.08 14 0 -0.01 

-2 o.oo 2 0.00 

10 0 -0.21 



264 

FIGURE CAPTIONS 

For all figures, excitation energy (in Mev), is 

plotted at the left of the figure. The full lines represent 

the excited levels with the spin J (for even nuclei or 2J 

(for odd nuclei) appearing to the right of the level. 

Figures 10.l - 10.9 illustrate the excited state spectra 

for the O-p shell nuclei calculated for Interaction 36. 

Figure 10.1 Excited state spectra with C = -2.0 Mev for 

(a) 6Be, (b) 6Li, (c) 6He. 

Figure 10.2 Excited State Spectra with c = -2.0 Mev for 

(a) 7B, (b) 7Be, (c) 7Li, (d) 7He. 

Figure 10.3 Excited State Spectra with C = -1.5 Mev for 

(a) 8 c, (b) 8B, (c) 8Be, (d) 8Li, (e) 8He. 

Figure 10.4 Excited State Spectra with C = -3.0 Mev for 

(a) 9N , (b) 9C , ( c ) 9B , (d) 9Be , (e) 9Li , 

(f) 9He. 

Figure 10.5 Excited State Spectra with c = -5.0 Mev for 

(a) lON I (b) lOC I (c) lOB, (d) lOBe, (e) lOL.
l.. 

Figure 10.6 Excited State Spectra with c = -4.75 Mev for 

(a) 110, (b) llN, (c) llc, (d) llB, (e) llBe, 

(f) llL.
l. • 

Figure 10.7 Excited State Spectra with C = -5.5 Mev for 

(a) 120, (b) 12N, (c) 12c, (d) 12B, (e) 12Be. 
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Figure 10.8 Excited State Spectra with C = -5.0 Mev for 

(a) 130 ' (b) l 3N ' (c) 13C ' ( d) l 3B • 

Figure 10.9 Excited State Spectra with C = -5.0 Mev for 

(a) 140 ' (b) l 4N ' 	 (c) 14C • 

Figures 10.10 - 10.18 plot the excited state spectra of the 

O-p shell nuclei calculated using Interaction 37. 

Figure 10.10 Excited State Spectra with c = -1.75 Mev for 

· (a) 6Be, (b) 6Li, (c) 6He. 

Figure 10.11 Excited State Spectra with C = ~1.5 Mev for 

(a) . 7B, (b) 
7Be, (c) 7Li, (d) 7H:e. 

Figure 10.12 Excited State Spectra with C = -1.5 Mev for 

(a) 	 8c, (b) 8B, (c) 8Be, .(d) 8Li, (e) 8He. 

Figure 	10.13 Excited State Spectra with C = -3.0 Mev for 

9 9 9 9 9 .(a) 	 N, (b) c, (c) B, {d) Be, {e) Li, 

9{f) He. 

Figure 10.14 Excited State Spectra with C = -4.5 Mev for 

· {a) !ON, (b) lOC, {c) lOB, (d) lOBe, (e) lOLi. 

Figure 10.15 Excited State Spectra with C = -5.25 Mev for 

(a) 110' (b) llN' 	 (c) llc' (d) llB, (e) llBe, 

(f) 11Li. 

Figure 10.16 . Excited State Spectra with c = -5.5 Mev for 

(a) 120, (b) 12N, 	 (c) 12c, (d) 12B, (e) 12Be. 

Figure 10.17 'Excited State Spectra with c = -5.0 Mev for 

(a) 130, (b) 13N, (c) l3C; (d) 13B. 
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Figure 10.18 Excited State Spectra with C = -5.0 Mev for 

(a) 140 ' (b) l 4N ' (c) 14C • 

Figures 10.19 - 10.25 show the relative excitation energies 

of the levels of the isobaric nuclei calculated for Inter

action 36. 

Figure 10.19 Relative excitation energies for 

(a) 8L.1, (b) 8Be, (c) SB. 

Figure 10.20 Relative excitation energies for 

(a) 9L.1, '(b) 9Be, (c) 9B, (d) 9c. 

Figure 10.21 Relative excitation energies for 

(a) lOL.1, (b) lOBe, (c) lOB, (d) ioc. 

Figure 10.22 Relative excitation energies for 

(a) 11Be, (b) 11B, (c) 11 c, (d) 1~. 

Figure 10.23 Relative excitation energies for 

(a) 12B, (b) 12c, (c) 12N. 

Figure 10.24 Relative excitation energies for 

(a) 13B, (b) 13c, (c) 13N. 

Figure 10.25 Relative excitation energies for · 

(a) 14c' {b) 14N' (c) 140. 

Figures 10.26 - 10.32 show the relative excitation energies 

of the levels of the isobaric nuclei calculated for Inter

action 37. 

Figure 10.26 Relative excitation energies for 

8 8 8(a) Li, {b) Be, {c) B. 
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Figure 10.27 Relative excitation energies for 

(a) 9Li, (b) 9Be, (c) 9B, (d) 9c. 

Figure 10.28 Relative excitation energies for 

(a) 10Li, (b) 
10Be, (c) 10B, (d) 

10c. 

Figure 10.29 Relative excitation energies for 

(a) 
11Be, (b) 11B, (c) 11c, (d) 1~. 

Figure 10.30 Relative excitation energies for 

(a) 12B, (b) 12c, (c) 12N. 

Figure 10.31 Relative excitation energies for 

(a) 
13B, (b) 13c, (c) 13N. 

Figure 10.32 Relative excitation energies for 

(a) 14c' (b) 14N, (c) 140. 

Figures 10.33 - 10.43 show plots of the density of various 

nuclei calculated at zero deformation by Interaction 36. 

Figure 10.33 Plot of density for 4He. 

Figure 10.34 Plot of density for 6Li. 

Figure 10.35 Plot of density for 7Li. 

Figure 10.36 Plot of density for 8Be. 

9Figure 10.37 Plot of density for se. 

· Figure 10.38 Plot of density for 10s. 
11Figure 10.39 Plot of density for s. 
12Figure 10.40 Plot of density for c. 
13Figure 10.41 Plot of density for c. 

Figure 10.42 Plot of density for 14N. 

Figure 10.43 Plot of density for 160. 



268 
Fiqure 10.1 

tO·r __.....,.______..,;._.___._______ 

- .......--2 
, .... 

......---0 

8 , 

7 


· 2 6 
 ·'. t 

2 2 

5 


2 


4 

0 

3 


2 ---2 
---2 

c 0 0 



269 

8 

Figure 10.2 

7 

6 

' 

I 

-----5 

5 

4 

3 

2 

I . : 

3 
5 

7 7 

3 

5 

0 0 3 c 





-----
•••• 

271 

2 

Fiqure l<L 4 

f6 : 

l4 

f2 

IO' 

8 

4 

2 

=t 


. ·.rt.I 
i_lil, t ' 

:·1a 

· sf 
.......JI 


• 

••• 
................ 


1·rl 

~J___.7 

a 
I 

·I
•T 

_,
---..7 
... =-'3 

18 

I 
.=! $ 

===·•• 


·. · 1 1~ 
I• :I 

==9 


____? ____, 


---· 


-1 

IHM!~ 

.6 
? -a 

.............. • -f__.,
.......... 


........_7 
_...a e 

I 

t -· :..........a 


67 -·11 
-3_., 

----a ......._I 
 -a·. 

I 
. . '"''1 ·i-=! s---· 


-1 




___ 

7 

272 
Fiqure 10.S 

3 

2 

0 

-i 

-2 

-a 

--o, 

_, 

--3c 

-2 

-2 

cro 


-1 


---3_, 

----2 

-0 

_2 
.. -.• 




273 
FifUre 10.6 

tO::. ·I ---1 

• 
-I_37 

--..a ---1 
·----7 ......._..7
6 

---s 5 

.s ----..5 

---~·3 

2 

---· t 

t 

0 





275 
Figure 10.8 
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Figure 19.12 
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Figure 10.15 
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Figure l0.16 
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Figure 10.18 
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Figure 10.28 
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Figure 10.29 
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Figure 10.30 
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Figure 10.32 
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Figure 10.33 

4 .
H·e 

f(fm)-+ 



301 
Figure 10.34 
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CHAPTER 11 

CONCLUSIONS 

It Jlas been the purpose of this thesis to develop 

an "effective" interaction for use in Hartree-Fock and 

variational calculations. To test the interactions the 

excitation energies of the excited states and the ground 

state properties of the 0-p shell nuclei have been calcula

ted and a comparison of the calculated results with the rel

evant experimental results has been used as a basis in 

accepting the interaction as a "good" interaction or not. 

In Chapter 4 it has been demonstrated that inter

actions of the local double gaussian type are inadequate 

because the calculated binding energies of the o-p shell 

nuclei are too small for these interactions. A simple mod

ification of the local interaction (making the repulsive 

range velocity ·dependent) was also shown to be inadequate on 

these grounds, although the results for this' type of inter

action were an improvement on those of the simple local 

potentials. It was also shown that the admixture of states 

of the ls-Od shell had a substantial effect on the excitation 

energies and pinding energies of the 0-p shell nuclei. The 

idea of an "effective" interaction is to take into account 

such contributions from the admixture of states from higher 

311 
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shells. If the wave function basis used in the calculations 

in this thesis included states of the Os-ld shell (ar; nftr.' 

impossibility practically because of the large dimension

ality of the wave function basis that would be generated) 

the best "effective" interaction found would, obviously be 

very different from Interaction 36 of Chapter 10. It should, 

however be noted that even with admixtures of ls-Od states, 

the predicted binding energies of the open o-p shell nuclei 

were still too low. Interactions of the local type lead 

16to the "collapse" of nuclear systems heavier than · 0 which was 

reflected in the small r.m.s. ·radii for the 0-p shell nuclei. 

To prevent this collapse interactions were required 

to saturate nuclear matter, this being achieved by intro

ducing two density dependent terms into the basic interaction. 

The idea of adding density dependent terms to the inter

action is quite realistic. Bethe (Bet 67), Kuo and Brown 

(Kuo 65) and Bhaduri and Warke (Bha 68) have all, in realistic 

calculations, indicated that the internucleon interaction 

should be density dependent. Although no attempt has been 

made to link the effective interactions developed in this 

thesis to realistic interactions in a formal manner, some 

correspondence with reality has been maintained by insisting 

that the effective interactions fit some realistic data e.g. 

the scattering data in zero density ~ limit. and the properties 

of nuclear matter. 

Interactions were also required to predict the 
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experimental binding energy of 160 thus ensuring that .the 

surface energy term is taken into account. The changes 

in the excitation energies of the o-p shell nuclei which 

result by fitting the identical basic interaction to different 

values of the 160 binding energy was examined in Chapter 5 

and these changes wer.e shown to be substantial. Fitting the 

interactions to the scattering data, nuclear matter proper

ties and the 160 binding energy allows one degree of freedom 

in the choice of the parameters of the interaction; the 

strength of one of the exchange parameters. It has been 

indicated in Chapter 5 that the changes in the excitation 

energies of the excited states of the o-p shell. nuclei for 

different choices of this parameter were not great enough to 

uniquely define this parameter for any interaction • 

. It has been demonstrated in Chapter 6 that use of 

the closed-shell single gaussian density approximation was 

entirely adequate for the nuclei studied and for the inter

actions used in this thesis. For "strong" density dependent 

interactions (where B.E.den is large) this may ·no longer 

be true and multi-gaussian density approximations may be 

needed. 

It was shown in Chapter 7 that for the family of 

interactions having fixed Aa' n1 and n 2 , a Aro could be 

found which ''fitted" the excitation energies of.· a large 

number of excited states and that interactions which pre

dicted the same excitation energy of one of these states 
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(e.g. the sec·ond 2+ state of 8Be) also predicted the same 

excitation energies for the other states. The excited states 

not fitted in this way could be fitted by varying Aa· It 

was, thus, demonstrated that for any n1 and an· ."effective"n2 
interaction which fitted the binding energies and excited 

state spectra of the 0-p shell nuclei could be found. In 

this sense, u_nique values of n1 and n 2 could not be assigned. 

Different density dependencies were studied in 

Chapter 8 where it was seen that for an ;interaction having 

a repulsive range almost equal to the attractive range 

the excitation energies were virtually the same for any 

density dependence. The procedure of making the strengths 

and ranges of the density dependent terms of .the interaction 

identical to the attractive and repulsive non-density parts 

of the interaction is arbitrary. The results obtained by 

using different ranges (Chapter 8) and differeht strengths 

and ranges (Chapter 9) for the density dependent interaction 

were . · not substantially different from those obtained 

using this assumption. It was further demonstrated in 

Chapter 9 that (for reasonable repulsive core heights) the 

scattering data fit is such that "identical" interactions are 

produced (in the sense that the parameters deduced from the 

nuclear matter fit and the excitation energies etc. pre

dicted for-the 0-p shell nuclei were the same for inter

actions which differ primarily by having different repulsive 

core heights) •. 
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The effect of relaxing the nuclear matter ·criteria 

was examined in Chapter 9. The requirement that finite 

nuclei saturate was also relaxed in Chapter 9 and the im

portance (for excitation energy studies) of being careful 

in the minimization of the ground state binding energy of 

a finite nucleus was clearly seen. 

The "best" interaction for n =l and n =2 was used1 2 

in Chapter 10 to calculate all the 0-p shell nuclei. The 

only properties of the 0-p shell nuclei not adequately 

predicted by this interaction were the binding energy of 
4He and the . root-mean-square radii of the lighter nuclei. 

I 

In conclusion, the results for Interaction 36 in

dicate that interactions of the type considered are capable 

of predicting the qualitative behaviour of the excitation 

energies of the excited states of, and the binding energies 

of finite nuclei. The results for the 0-p shell nuclei 

quoted in Chapter 10 compare favourably with results ob

tained using ~he same truncated set of basis wave functions 

for realistic interactions by Halbert et. al. (Hal 66). 

Further the j-j coupling matrix elements calculated in 

Appendix 6 for Interaction 36 compare qualitatively with 

those of Kuo and Brown (Kuo 67). Thus, since .the inter

actions were also fitted to nuclear matter, calculations 

of nuclear systems heavier than those considered in this 

thesis can confidently be undertaken utilizi.ng the inter

actions developed in this thesis. 

http:utilizi.ng


APPENDIX 1 

EXPERIMENTAL INFORMATION 

In this appendix the experimentally determined 

excitation energies,· binding energies and root-mean-square 

radii of the nuclei 4He, 160 and A=6 to A=l4 which can be 

constructed py limiting the individual nucleons to the 

o-p. shell (2<Z<8 ; 2<N<8) are tabulated. 

Table Al.l lists the relevant binding energies and 

are taken from the work of Everling ~t. al. (Eve 60) with 

the exception noted (a) which refers to binding energies 

given by Detraz (Det 65). 

The root-mean-square radii (r.m.s.) -are tabulated 

in Table Al.2 where column (a) refers to the work of 

Wilkinson and Mafethe (Wil 66), column (b) to Elton (Elt 67) , 

column (c) to Backenstoss (Bae 67) and column (d) to 

Wilkinson and Hay (Wil 66a). The r.m.s. radius of 4He is 

that of Yearian for the charge distribution . (Yea 67) • 

Figures Al.l - Al.9 illustrate the excited state 

spectra. The levels plotted as full lines are those assigned 

by Lauritse·ri and Aj zenburg-Selove (La.u 6 6; Aj z 68; Lau 6 2) • 

The levels denoted by dashed lines are those found in the 

following references. 

A=6 (a) Man 66; (b) Man 68; (c) . Bat 65. 
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6For Be Man 66, Ecc 66 and Rog 66 find a level at 

1.6 Mev, the latter two authors finding no further levels 


up to 10 Mev excitation. 


A=7 (a) Man 68; (b) Bat 65. 


. ~ 7The J ; T assignment for the levels of Li at 

7.48 Mev and 11.13 Mev excitation is that of Presser et. al. 

(Pre 69) • 

A=8 (a) Ker 67; Pau 68. 

A=lO (a) Ra·il 69; (b) Alb 66; (c) Man 66; (d) Ben 67. 

The designation of spin for the 6.13 Mev and 6.56 


Mev levels .of lOB are suggested by Meyer et. al. (Mey 67). 


10
The 2+ assignment for the 3.36 Mev level of c 

is suggested by Rousch et. al~ (Roµ 69) and Benenson et. 

al. (Ben 67); Benenson et. al. also suggests that the 

5.96 Mev level of 10c is a 2+ level. 


A=ll (a) Pau 67. 


A=l4 (a) Bel 68; (b) Bla 67; (c) Tow 68. 


Blake et. al. (Bla 67) and Cookson (Coo 68) believe 

· that the 7.03 Mev level of 14N is a 2 and a 2+ respectively, 

Blake et. al. further suggests l+ assignment to the 6.21a 

Mev level of 14N. 
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TABLE Al.l 

z N A Binding Energy (MeV) 

2 2 4 He 28.30 

2 3 · 5 He 27.34 

3 2 Li 26.33 

2 4 6 He 29.26 

3 3 Li 31.99 

2 5 7 He 26.03 (b) 

3 4 Li 39.24 

4 3 Be 37.60 

5 2 B 27.99 (a) 

2 6 8 He 31.60<B.E.<32.40 (a) 

3 · · s Li 41.28 

. 4 4 Be 56.50 

5 3 B 37.73 

4 5 9 Be 58.16 

5 4 B 56.31 

4 6 10 Be 64.98 

5 5 B 64.75 

6 4 c 60.34 

5 6 11 B 76.20 

6 5 c 73.44 

5 7 12 B 79.57 

6 6 c 92.16 

7 s N 73.78 
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TABLE Al.l - CONTINUED 

z N A Binding Energy (MeV) 

5 8 13 B 84.46 

6 7 c 97.11 

7 '6 N 94.10 

6 8 14 c 105.28 

7 7 N 104.66 

8 6 0 98.73 

7 8 15 N 115.49 

8 7 0 111.95 

8 6 16 0 127.62 
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TABLE Al.2 

A z r .m. s. (fm) r .m. s. (fm) r .m. s. '( fm) r .m. s. (fm) 
·

(a) (b) (c) (d) 
(i) (ii) (iii) 

4 2 1.71 

5 2 2.32 

6' 3 2.38 

7 3 2.31 

8 4 2.17 

9 4 2.34 2.44 

10 5 2.26 2.44 2.31 

11 5 2.24 2.26 2.19 

12 6 2.32 2.58 2.41 
2.51 'V2.4 2.40 2.37 

13 6 2.30 2.37 

14 7 2.34 2.67 2.37 

15 7 2.34 2.45 

16 8 2.50 2.71 'V2.9 2.61 2.54 

In column (b), (i) are results derived from electron scattering 

data using wave functions of the Saxon-Woods well; (ii) using· 

wave functions of the harmonic oscillator well; (iii) results 

derived from µ-mesic x-ray scattering using a Fermi density 

distribution. 
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FIGURE CAPTIONS 

Figure Al.l Experimental Level Spectra for 

(a) 6He, (b) 6Li, (c) 6Be. 

Figure Al.2 Experimental Level Spectra for 

(a) 7Li, (b) 7Be. 

Figure Al.3 Experimental Level Spectra for 

.(a) 8Li, (b) 8Be, (c) 8a. 

Figure Al.4 Experimental Level Spectra for 

. (a) 9Li, (b) 9Be, (c) 9B. 

Figure Al.5 Experimental Level Spectra for 

(~) lOBe, (b) lOB, (c) lOC. 

Figure Al.6 Experimental Level Spectra for 

(a) l lBe ' .<b) l lB ' (c) 11c • 

. Figure Al.7 Experimental Level Spectra for 

(a) 12B, (b) 12c, (c) 12N. 

Figure Al.8 Experimental Level Spectra for 

(a) 13B, (b) 13c, (c) 13N. 

Figure Al.9 Experimental Level Spectra for 

( a) 14C ' (b) l 4N ' (c) 14o • 
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Figure Al.l 
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Figure Al.2 
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Figure Al.3 
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Figure Al.4 
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Figure Al.5 
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Figure Al.6 

10, : 


---· ---tS 

·----!Iar 

·1.....' 

--....-7 . -----7 

' """' 3(1)5 ~ 
3 

5 5 

4 

3'' _.....__. 
__......,, . 

·2 

f 

--------·" ? 
o · b I c 



328 
Figure Al.7 
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Figure Al.9 
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APPENDIX 2 

SINGLE PARTICLE WAVE FUNCTIONS 

The single particle wave functions used to build up 

the Slater product determinantal wave function. base were 

those of the harmonic oscillator well having cylindrical 

symmetry. 

They are the solutions of the equation 

h 2 row 2 mw 2 
2 z 2 .[- + -1L p2 + E . . 2in 'V ] 'linmn = l/Jnmn2 --r- z nmn z z z 

and are the form (Cop 66) 

where 

n== 
/ 2··z nz ! 

and 

row mwz 
a =T 8 = -:g

a, Shave the dimension (length)-2 and are related 

to the more conventional oscillator well parameters (Gol 63) 

331 
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by 

(a,B) 

Enmn / the kinetic energy of a sinqle particle 

z 


state is given by 


E · = (2n+lml+l)~w + (n +~)ttwrunn p z z 
z 

The specific single particle wave functions used in 

this thesis were 

al/2 61;4 -3/4 -J.ja.p 2 -~ez 
2 

= 'IT e eOS ll>o o o 
. 2 2+. <P

61;4 -3/4 e~i e"."'~ap .~~sz =a 'IT p e .. ·OP±l 1'>0±10 

2 
op = 21/2 ci.l/2 $3/4 'IT 

-3/4 z e-~ap2 e-~sz lP001 .o 

The mean square radius for a single particle state 

is the square root of the sum of the expectation values of 

2 2 p and z 

and 

2<p > = (2n+lml+l)/a 

<z 2> = (n +~)/8z 

The' state l/Jnmn is prolate, spherical, . or oblate as 
z 

{2nz+l)a - (2n+lml+l)S < 
> 0 
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The four single particle states considered in this 

thesis are orthonormal to each other for any and all values 

of the oscillator parameters. For higher states this is 

no longer true and the requirement of orthonormality imposes 

restriction·s on the different oscillator parameters (Man 67) • 

I 
.( 

:--.• 



APPENDIX 3 


POTENTIAL MATRIX ELEMENTS 

The most general form of the density dependence used 

in this work is of the kind pa(R) where 

R =!1 + £2 • 

pa(R) is approximated by gaussian and thus, essentially for 

purposes of matrix element evaluation a term exp(-k0 CE_1+~2 > 2 !2I 
appears in the integration over all space. 

The general matrix element that must be evaluated 

is {Cop 66) 

Iexp~- 1k ( (p -p ) 2 + · Cz1.... z2 ) 2> •
2 -1 :.2 

= M(n1m1a ,n2m2e,n3m3y,n4m48;k;k0 ) . 

0 

334 
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where the radial and angular parts of the matrix element, M, 

can be separated from I, the z-part of the matrix element. 

The Radial and Angular Matrix Element 

For, convenience, the normalization constants are 

ignored for the present and the unnormalized radial and angular 

matrix element is written as 

1 2 --yp2 1 
e 

1 2 
im4¢2 -~p2 

e e 

The angular variables are chosen as and X =¢ 2 = ¢12 

- ¢ 2 • The integration, which is performed second gives¢1 ¢2 

a factor 2mSm +m -m -m i.e. the selection rule which01 2 3 4' . 
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conserves the projection of the angular momentum along the 

z-axis. For the +12 integration use is made of the relation 

(Leb 65) 

<P 

J2wei(m3-ml) 12 e(k-kolP1P2 cos •12 dX 

0 

Defining . pi = £.pl where 

I 

:x_•· = 2(a+y+k+k )0 

M now becomes 
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But 

where 

k (p+k) ! (-a) 5 

cips(a) = (p-s)l(k+s)ls! 

Using this expression for the Laguerre polynomials 

·2 foo foo ~i (m3-ml) ;r ~I mll ~I m2 I 
M = 4;r e a 6 

0 0 

lm1 !+!m3 1+ 2r+2t !m2 1+1m4 !+2s+2u 
p I P2 

The integration over Pi can be performed by making 
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use of the relation (Leb 65a) 

oo 1 2 
2n+p+l -4x 

x e Jp(xy.)dxf 
0 

This expression is valid when p and n are integer 

for any complex y. Further 

J (x) = (-1) P JP (x)-p 


Thus p can be taken to be 


with 
-i(k-~) 

y = if'" P2 

n is defined as 

And Im -m I 
n l (k-k ) 3 1 

D 
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lm~ .j+ lm4 l+2s+2u 

P2 


K 12 2where = (a+y+k+k ) (S+6+k+k )-(k-k ) •
0 0 0 

Expanding the Laguerre polynomial and integrating 

over p 2, the unnormalized radial and angular matrix element 

bedomes 

n4 nn1 n 2 n 3 
E ~ E r E n! (~(!m3-m1 !+1m2 1+1m4 !)+s+u+v) 1 

r=O s=O t=O u=O v=O 

Im I · _, Im -m IrL 4 ( QA I /K I 2 ) ~ 3 1 ( - (k-k ) 2 /K I 2 ) 
n 4u nv D 

where 

A1 = 2(a+y+k+k )
0 
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and 

The Cartesian Matrix Element 

The unnormalized Cartesian matrix element is of 

the form 

l 2 --az2 1 HH (/az ) e (/bz )= f J nl 1 n2 2

1 2--k (z -z )2 l 2 e H ( /Cz
1

)
n3 

Use can be made of the relation (Bai 48) 

where [m] = ~ m i£ m is even 

= ~(m-1) if mis odd 

and 
= mlym-2r(y2-l)r 

r 1 (m-2r) l 
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· Now 

LL 


k -. 2
k 2 ::12. .--(z -z ) - 2 ( zl+z 2)e 2 1 2 
 e 

Redefining z to be1 

1 


2 2 

zl = (a+c+k+k ) · zl 

D 

which reduces to 

(k-kD) 2 

[ , J J - (z1 - - . z )
d.._, = ~lJ e (2(a+c+k+kD))l/2 2 


r=O 
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Using now the relation (Erd 54) 

. Joo - cx-y >2 
· . e Hm (ax) Hn (ax) dx 

-oo 

min(m,n) 

= liT L 

k=O 


where (~) is the binomial coefficient with 

Y = lz2 

(2(a+c+k+kD))2 

and 1 
2a 2 

a = <a+c+k+k )
D 
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l. = 


-~(b+d+k+k0)z~ · ((k-k0 ) 2/2(a+c+k+k0 ))z~ 

e e 


1 

h ((£)2) H (lbz ) H (/dz )n r a · 2 n 2
3

n 2 4 

1 
2 2 

<a+c+k+k ) dz2 
D 

Expanding the Hermite polynomials further and 

using (Erd 54a) 

-yeL 2 

l7f k! m! nl 2s 
= ( s - k) l ( s -m) ! ( s -n) 1 

where 2s = k+m+n is even or otherwise the integral vanishes, 

the integral vanishing also if any of the terms in the 

denominator becomes negative; the unnormalized matrix element 
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becomes 

a = 27r K-l 

[n3 ] 

E 

min (nl'n3-2r) 

'E 

[n1+n 3-2r-2s] 

E 

In2 ] 

E 
r=O s=O t=O u=O 

1c-a+k+k -(n +n -2r-2s)D 2 1 3 
<a+c+k+k )

D 

where 

K' 2 = (a+c) (b+d) + (a+b+c+d) (k+k0 ) + 4kk0 

and 2n = n 1+n 2+n 3+n -2r-2s-2t-2u-2r. 2n must be an even4

number for this integral to be non-zero. Thus n 1+n2+n3+n 4 

must be even. 
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The correct normalization constants for the complete 

matrix element 

can be easily evaluated from Appendix 2. 

Similarly other expressions for the matrix element 

can be easily worked out for the other forms of the density 

function in Chapter 6. 



APPENDIX 4 

COULOMB MATRIX ELEMENTS 

It i~ desired to evaluate the matrix elements for 

the Coulomb interaction e 21·1r. - r . I 
l. J 

i.e. 

~ JII fJJ 

For the case where the oscillator constants of the 

single particle states are equal it is comparatively easy 

to evaluate the coulomb matrix elements needed in this work. 

For the case of unequal oscillator constants the transfer

mation (Kum 66) 

346 
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z = zl - z2 


is used. 


The inverse transformation is 


a2 

= R + pe1 al+a2 

al 
= R - pe2 al+a2 

a2 
z + zzl = al+a2 

al 
= z - zz2 al+a2 

The volume element p1 dp 1 d¢ 1 dz 1 p2 dp dcp 2 dz 22 
2 2 2 2 .now becomes R dR d6dZpdpd¢dz and Ce 1-e2 > +cz1-z2> ..,e +z • 

The integration over R, e and z is easily performed 

but the integration over p and z presents some difficulty. 

Considering the integration over p first, use can 

be made of the relation (Rys 63} 

[ 1 - cp(az)] 2
fi a. 

0 

where cp(az) = ~ laze_t2 dt ' 
fi 

0 

Refining, for convenience, a function 

Erfc(a.z) = l - cp(a.z) 
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and noting that 

2 2
d¢(a.z) = ~ e-a. z z 

da Ii 

then higher powers of p can easily be integrated from this 

basic relation. Thus 

0 

2 2-a. pe p dp 

oo -a2p2
d e 

= - p dpda -./-2--2
Jo P +z 

d 
=  2a.da. 

2 2 
ea. z= 1 z + Erfc(a.z) (11T . - l:rr z2]

2a2 4a 3 2a. 

r a.2 2- p
p4 eand p dp 

v'p2+ 2 2 
0 

r -a.2p2
d 2 e= - p p dp2a.da. 

IP 2+z2 
0 

1 + _!__ [fi liT z2]= -- z ~-
20.4 lira 4a. 2a 

2 2 3 fi fi 2J ea z+ Erfc(a.z) (a a.S - -z 
4a.3 

a.2 2z2 e r1 liT _- Erfc(a.z) z fi z2]
4 3 2aa. 
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3 1 2 2 1 4 4 C - a z a. z J8 2 + 2 

For the further integration over z, use can be 

made of the integral (Erd 54b) 

\>+l 
; -2-; 

where 
00 (a)n (b)n n 

2F1 (a;b;c;x) = l ----x (A4 .1) 
n=O n1 (o) n 

and (a) n = a (a+l) (a+2) • • • • • • (a+n-l) 

(1) n = n 1 

The integrals that are of interest for this work 

are 

ooe(a.2-132)z2 
Erfc (cx.z) dz

J 

0 
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. 2 

~)} 
a 

r (a.2~{32)z2z4 e 	 Erfc(a.z)dz 

0 

22 	 5 7 = 2Fl (2; 3 ;2; (l L>). s 	 21T~5 a. 	 a. 

Using the relation (Rys 63a) 

J J+l ~ i· - ~ ~ 2F1 (2;-2-; f+°l; ~I 
a. 

~+l 
= (£.)

B 

the above 2Fl functions .can be expressed as 

2 2l 3 	 3B2 
= (~) 

1 (1;1; 2 ; (l - ~))2Fl (2; l;2; l - 2) {3 2F
a. 	 13 

13 23 5 l - -)22Fl (2; 2 ;2; 
a. 

4 25 = (~) 
2F l (2; 1; 2; (l - ~))s 	 132 

6 	 .2{3 27 	 7 
2F1 (3;1; 2 ;1 - 2) = (a.) 

2F1 (3;1; 2 ; (l - T>)sa. B 

Further, using expansion A4.l it is easily seen that 
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2 Ct 23 
2F1 (l;l; 2 ;1 - ~) = 1 + 3

2(1 - -)
a2 e2 

2a.28 7 
+15<1 - -) 2F 1 (3;1;2;1 - ~)s2 s 

r (c)"
Using = r(a)r(b) 

~ r(a+n) f (b+n) xn 
!.. r (c+n) nrn=O 

r (Z->· 7 ~ 00 r (n+3) · T (n+1) xn 
2Fl(3;l;2;x) = r(3)r(l) nlo r(n+~l nl 

r <12> 00l r(n+3) n 
= r(3)r(l) n=O r(n+~l x 

This function can be evaluated numerically to any degree 


of accuracy required. 


Writing z ca,b)

0
 

z (a,b)

2 

and 

then 
4 . 1 z (a,b) = 53F(e:)4 b 

z (a,b) = ~ l (l + 5 c1 - b)F(E)]2 3 b2 
4 a 

2z (a,b) = 2 ~[l + -(1 

8 a)2 

0 
; 

3 ~) 

+ rs<1 F (E)]- 0 
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'l'he basic integrals over p, q,, and z which have to 

be evaluated can be expressed as 

Il = r r r 
0 -co 0 . 

= '1TZO (a,b) 

2 -ap · -bzz e eI2 ·= p dp dz dcJ> 
{P2 + z2rr r 2 2 

0 -oo 0 

= '1TZ (a,b) 

24 -ap -bz2 
z e eI3 = p dp dz d4>r~ r r 2 

./ 2 +p z2 
0 -oo 0 

= 7TZ 4 (a,b) 

i.e-ap . e -b.z J2~ Joo Joop .. .·2.. 2I4 · = p dp dz dcJ> 
~2 2p + z 

0 - 00 0 

z0 ca,b) z ca,b)1 2 = 2 [ 2 ab + 4a - 2 ] 

2 -bz2 
-ap eP4 _e_____ 

p dp dz d4> 
IS= rr r {P2 + z2 

0 -00 0 

= 27T[___l__ .....!___ + .- --3 z0 ca,b) 
4a2b 2ab2 Sa2 
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-ap 2 -bz2 
z2I6 = e e p dp dz dcprrrp 2 

.,t p2 +z2 
0 -oo 0 

z (a,b) . · 
1 1 4 = 271"[--2 + z2 (a,b) - 2 ]4a2ab 

Writing the oscillator well parameters as 

(as,bs) for the 000 'state 

<ao ,bo) for the 001 state 

and (al ,bl) for the 0±1 0 state 

the explicit expressions for the coulomb matrix elements 

used in this thesis are 
2e 

<1Pooo 1Pooo 1Pooo 1Pooo> = csslr1-r2I 

2 b ~ Zo(as,bs)e a= s s 

1271" 


2 e I = 1JJ 1JJ . > cso<1Pooo 1Poo1 Ir1-r2 I I 000 001 

= 

+ 
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<'IJ 000 1'> 0.01 

= 

= csOx 

b +b0s )
4 

1 a +ao b +b0- z __,_s 
; s ,4 ) ] 

2 2 4 


<'/Jooo 

= 

a a b blz {-s__ 1 8
 
0 a

8
+a1 

; b
s 

+b 
1 

) 

2 

e " 

a +a b +bl1 z ( s 1 s )[.,,,..2__(a__+_a__) 0 ___,4r-- · 4 

8 1
 

b +bl4 + l as+al s ) ] - ~(a__+_a_....,)_(.,.._b__+-b__) 4 z2 ( 4 i 4 

5 1 8 1
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~ 
e2 aobo 3 . · = ---· z ca ;b0 ) - 2b0 z2 (a0 ;b0 )r2 0 0Ii 212 

+ 2 z <a0 ;b0 )lb 0
2 

4 

2 
e 

. <lJ>O±lO lJ.1001 

= 


ba bl 
b_a_+_E_ll 
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e2 
<$0±10 $0±10 lJ;O±lO $0±10> = ell 

lr1-r2I 

3a b · ~2 e 1 1 11 1= (--2 Zo Cal;bl) - al z2<a1;bl)
fi 412 4a1 

<$0±10 "'0+10 

e2 
= cllx = 

Ii 



APPENDIX 5 

NUCLEAR MATTER 

The binding energy of nuclear matter is given in 

first order by the expression (Bri l67) 
. . k 

F 
2 

3 -n 2 1 I 2 k (AS .1)· E/A = lO rn kF + TI 2 k G(kF) F(k)dk 

0 

wher~ kF is the Fermi wave number and 

G(x) 

.F(k) 

and 

e 1. k' ' x .r dr dr' 

The interactions considered in this thesis are of 

the form 

where PM' PB' PH are the u~ual Mayorana, Bartlett artd Iso

spin exchange operators. 

Any potential V can be written in the form 
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with 

WO= uO + S2 
ul(l-PM) 

wl = ul[PB - ~(1-PM)J 

w1 has zero matrix elements between all many particle states 

which have [444 --- 4] supermultiplet symmetry (Wig 37). 

Foi the interactions considered here 

2 . 
WO = (W + ~ 5 

B + 	S H)f(r) 

2+ (M - ~B - ....;.H)P f(r)
5 5 M 

- A f (r) f (r)+ c PM 

with A = (W + ~B + .£ H)
5 5 

2and 	 c = (M - .?_ B - - H)5 5 

Thus it is required to evaluate 

- A F + C Fx 

and 

2 3 3<klw0 !-k~ =A JJJ f(r) e- ik.r a r + c If I £{r) a r 

= A Fx + C F 
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Thus in AS.l 

B(A F +CF ) - 2(A F +CF) 
- x x r 

= (BA - 2C)F + (SC - 2A)Fx 

f (r) is of the form 

where Va and Vr will, in general, contain terms of the kind 

kFn and B will contain terms in powers of k. 

Therefore (ignoring the explicit k dependence of 

B for the moment) 

F = fff 

0 

= 4~(V ! v'7f a3 + V 1 ./7f" 63)· a 4 r 4 · 

Now 

Considering the relation (Erd 55c) 

00 

g (y) = J e-ex2 cos xy dx 

0 
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1 1/2 -1/2 -y2/4a= - 'IT 8 e2 
00 

I -Bx2 eiyx -iyx 
g{y) = e { ; e . }dx 

0 

00 

-Bx2 -iyx dx= e e~ I 

-oo 

Thus 
00 . 2 2 -2ikxx -a.2k2-x /a. 1Tl/2 ae e dx = eI 
-oo 

and 

-r2/a.2 -2ik.r d 3 ,,.3/2 3 -a.2k2 
e e r = a. e ·III 

Therefore 

-a2k2 -82k2'IT3/2 (V a. 3 s3+ v eFx = . a e r ) 

Thus 
kF 

3 -n:2 2 1 k 3 
E/A +~ I k 2 (1 - lL+ -~)= ro -m kF 2 .'IT2 2 kF .. ~F 

0 

x [{SA - 2C)F + (SC - 2A)Fx] dk 

Va and a. are not dependent in any way on k 

therefore 

2 

E/A ~ l._ ~ k 2 + .!__ l_ k 3 a. 3 Va(8A - 2C)


10 m F ,/TI 24 F 

kF 

+ 1 I k2{1
,;:rr 

0 
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. This integration can easily be evaluated numerically using 

a gaussian quadratute: formula (Spr 65). 

In general 

6 

where n, m are not necessarily integ·er. 

VA' VR' 60 , c 1 and are predetermined constants.c 2 

It is also required that the interactions saturate nuclear 

matter 

d(E/A)i.e. = 0dk
F 

where kF = 1.36 fro usually. 
0 

Now 

i-.:c compre: j_si~:. 
3 n+2 

+ c3 - 24 (n+3) a. kF VA (SA - 2C)
.;-; 
kF 

k 31 3+ I k 2 cl l - --) [VR 83 (8A - 2C)
2 k 2 2 k 3.r.rr 

0 F F 
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-e2k2 
x e (SC - 2A)]dk 

+ l (n-3) k 3 k n- 4) v a 3 e-a 
2 
k 

2 
(8C - 2A)]dk.

2 F A 

The integrals in this expression can again easily 

be evaluated numerically. Thus, for a given v (where 

v = lO(W-M) + S(B+H) and v =constant ensures unique values 

for (SA - 2C) and (8C - 2A)) the two conditions 

d{E/A)E/A = -16 Mev and = 0
dkF 

determine values for c and c •
3 4 

Compressibility 

Th! ~~m~resaiillity of nuclear matter at the sat

uration equilibrium is 
';';"" 

2 
K = k 2 d (E/A) 

F dk 2 
F 
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This again can easily be calculated since 

d (E/A) 
2dk

F 

(m(m-1) kFm- 2 - ~ (m-1) (m-2) k kFm- 3 

k 3+ (m~ 4 ) (m-3) k m-S) [VR f3 3 (8A - 2C)
2 F 


_0 2k2
3+ V $. e µ (SC - 2A) ] dk 
R 

k 
F 

+ L ·J· k:2 (n ( n-1) kFn-2 - ~ (n-1) (n- 2) k kF n- 3 
l7T . 

o· 

2k 21 3 5 3 -a+ 2 (n-3) (n-4) k kFn- ) VA a e (SC - 2A) dk]. 

The computer code written for a CDC 6400 is capable 

of determining c 3 , c 4 and K in less than io sec. 



APPENDIX 6 

j-j COUPLING MATRIX ELEMENTS 

It is desired to evaluate the matrix element 

~· ( 

where and r refer to the spin and isospin coordinatesr 1 2 

as well as the space coordinates; A indicates that the 

total wave function is antisymmetrized and the particles 

couple to given J and T. 

This is accomplished by first transforming the wave 

functions to the L. - S coupling scheme in the usual manner 

i.e. 

l
L,S 

1111 2 ;LST> ~an be expanded in terms. of single particle states 

which are solutions .of the Schroedinger equation of the 

spherically symmetric harmonic oscillator well which, in 

turn can be transformed to single particle states of the 
"4'\. 

cylindrically symmetric harmonic oscillator well and the 

formulae of Appendix 3 can be applied. 

364 
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It should be noted that in general 

j +j -J+l-T 
= (-1) 1 2 

so that 

with like expressions if the order of coupling is only 

changed in the bra or ket vectors. 

Table A6.l shows a comparison of matrix elements of 

the ls-Od shell calculated for Interaction 36 and those cal

culated by Kuo and Brown (Kuo 67) • The oscillator well 

parameter was the same in both cases (~w ; 14 Mev) • The 

density used in the calculation of the matrix elements was 

that of a single determinant forming a clos~d shell 160 

system. The value of both G, the first order G matrix element 

and the matrix element, Tot, with some higher- order terms 

included is quoted from the results of Kuo and Brown. Some 
4 

of the matrix elements of the kind L j ., odd calculated 
i=l J. 

for Interaction 36 differed in sign from those of Kuo and 

Brown. When this occured the sign of the matrix element was 

changed in Table A6.l to agree with the Kuo-Brown phase con

vention. The matrix elements of Interaction 36 are fairly 

close to the G matrix elements calculated by Kuo and Brown 

particularly for the more substantial matrix elements. 

Tables A6.2, A6.3, A6.4 list further matrix elements 
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calculated for·n-w = 14 Mev using Interaction 36 with the 
0closed shel_l density being that of 4ae, 160 and 4· ca. 

The identical matrix elements calculated using Interaction 

37 are listed in Tables A6.5, A6.6 and A6.7. 

It can be seen that there is no qualitative differ

ences between the matrix elements calculated for the two 

interactions. 

6 	 6 6 


4 :· 


~ 	 5 6 6 


4 	 6 4 6 


,.. 

5 	 (: 
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TABLE A6.l 

T=l Matrix Elements 

This Work Kuo and Brown 

J a b . c d (Mev) G(Mev) Tot(Mev) 

0 4 4 4 4 -2.16 -1.24 -2.44 

4 4 5 5 -0.82 -0.63 -0.97 

4 4 6 6 -2.43 -3.02 -3.79 

5 5 5 5 -1.63 -2.05 -1.95 

i i •• ' -0.66 -o. 53 , -0.74 

6 6 i 6 -l.17 . -0.09 -0.81 

1 4 6 4 6 0.81 -0.33 -0.13 

4 6 5 6 o.oo -0.17 -0.10 

5 6 5 6 0.50 -0.33 0.22 

2 4 4 4 4 -0.52 -1.01 -1.04 

4 4 4 5 -0.68 -0.56 -0.85 

4 4 4 6 -0.98 -0.41 -0.40 

4 4 5 6 -0.55 -0.55 -0.84 

4 4 6 6 -0.90 -0.60 -0.90 

4 5 4 5 -1.31 -1.17 -L29 

4 5 4 6 -0.48 -0.18 -0.22 

4 5 5 6 -1.48 -1.45 -1.55 
5 5 :> 5 
4 5 6 6 -0.52 -0.75 -0.74 
5 5 5 6 
4 6 4 6 0.05 -0.36 -0.20 

4 6 5 6 -0.39 -0.66 -0.77 

4 6 6 6 -0.52 -0.78 -1.01 
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TABLE A6 .1 - CONTINUED 

5 6 5 6 -0.71 -0.59 -0.33 

5 6 6 6 -0.42 -0.04 -0.21 

6 · 6 6 6 -0.24 -0.28 0.08 

3 4 5 4 5 0.50 -0.29 0.17 

4 5 4 6 o.oo -0.06 -0.09 

4 6 4 6 0.37 -0.40 0.13 

4 4 4 4 -0.21 -0.43 -0.05 

4 4 4 6 -1.17 -1.05 -1.36 

4 6 4 6 -1.96 -2.02 -1.66 

4 4 
T=O 

1 4 4 4 4 -1.04 -0.30 -1.03 

4 4 4 6 3.30 2.60 3.17 

4 4 5 5 -1.08 -0.27 -0.60 

4 4 5 6 -0.98 -0.11 -0.24 

4 4 6 6 3.75 2.10 1. 62 

4 6 4 6 -5.91 -4.33 -5.83 

4 6 5 5 1.63 1.61 1. 71 

4 6 5 6 -1.30 -1.42 -1.91 

4 6 6 6 0.19 -0.11 0.04 

5 5 5 5 -3.16 -3.01 -3.18 

5 5 5 6 o.oo -0.08 0.31 

5 5 6 6 0.58 -0.42 -0.21 

5 6 5 6 -4.88 -3.02 -3.28 

5 6 6 6 1.84 0.82 0.80 
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TABLE A6.l - CONTINUED 

6 6 6 6 -1.56 -0.22 -0.47 

2 4 5 4 5 -0.76 -0.53 -0.62 

4 5 4 6 -1.55 -1.30 -1.45 

4 5 5 6 -3.37 -2.51 -2.58 

4 6 4 6 -3.69 -3.59 -4.53 

4 · 6 5 6 -1.90 -1.59 -1.54 

5 6 5 6 -2.14 -1.57 -1.61 

3 4 4 4 4 -1.86 -0.79 -0.86 

4 4 4 5 -1.93 -1. 24 . -1.57 
1.. 

4 4 4 6 2.07 1.47 1.87 

4 4 6 6 1.41 .0. 39 0.50 

4 5 4 5 -4.88 -3.12 -3.69 

4 5 4 6 -1.49 1.01 1.16 

4 5 6 6 0.32 0.12 0.03 

4 6 4 6 -1.40 -1.11 · -1.13 

4 6 6 6 1.87 1.72 2.16 

6 6 6 6 -3.89 -2.43 -2.59 

4 4 6 4 6 -4.94 -4.16 -4.31 

5 4 4 4 4 -4.94 -3.42 -3.66 
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i·d L 1 2J l 1'14 L4 2,_;4 j T 1'1 • L • ( 1'IC. ·v' J 

0 (j 1 l v \..) 1 0 l i u 

0 u 1 0 u 1 v G l l u l 

u u 1 u u 1 u l l 0 l l l li 

u ,..J 1 0 u 1 v l l 1 l u l 

(J v l u v 1 J l l j l 

0 u 1 u u 1 J 1 j l l v 4oov 

() LJ J. J ij 1 v 1 3 1 1 

0 u l G 1 1 
l u u l 0 1 l l v 

0 ~) 1 0 1 1 u u ..i.. u l 
., 
l . u u 

0 u 1 1 l u u 1 G 1 
J. l l l -1. ;_j / 

u u 1 0 . 1 . 1 0 (j l 0 1 l i 

v \.) l 1 l u u 1 0 l 1 u 

() v 1 1 l u 0 1 u l j l l j • o ':I 

l 1 u u 1 u l 1 l u -/. du 

() 1.) 1 u 1 3 u l) l J l l l l 

0 G 'l 
J.. u 1 3 u u 1 (j 1 3 2 u 

0 li i 1 3 v lj 1 i.J l 3 l v -(~ • u.;; 

l l 3 u u l 0 l 3 ) 
' l • I '-.f. 

1 1 u u J. u l l - 1 • ., • .:+ '( 

u l 1 u 1 1 (J l l J l. l u 

\,) l 1 u l l u l l u l l u l 

( ; l l 0 l . l 0 l l 0 l j l u 

0 1 1 l.J 1 1 G l 3 ...i l j 1 i+ • i l 

l) .l. l u 1 l G 1 5 ...) l j l - j. i. .L 

\) i l u 1 3 u 1 1 J l l l l•vV 

u i 1 \..i l j v l l G l .) ) 

L. v - ( • .) I 

u l J. u 1 j u 1 l v l \,.J - "/ ./ ~) 

u l 1 \.J i j l l u l 1 

u l 1 u 1 u 1 l u l 1 l 

1 1 u l l 
, 
J. j 1 
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~) l l v J. _;, l .1 1 ~ 0 l j 2. l - ,:.: • J.. _) 

v .l j u l J I.) l _) u l j 3 u -7.J I 

(J l j u l j u l j Q l 3 
., 
.I. v -j. :.;(;; 

lJ 1 3 ( ' u 
., 
.I. 3 u l 3 0 l J 2 l -.(') 

0 1 j u l j u 1 j 0 l 3 u .i -_:;. v..:... 



TAulL ;;., 6·'.5 372 

f'H L l 2 J l i\J2 L2 ~J~ id L3 ~Jj j T 1." 1 • L • ( ;· i.:.:...., i 

(J l l 0 l l ._; 1 1 u l l 1 

u l u l 1 u l l u l l 1 

0 l 1 u 1 1 v l l J 1 3 l lebb 

0 l 1 J l l J 1 j (j 1 j 1 u 

u l l u 1 l v 1 3 v l J l -,!_• 'J o 

u l 1 (j 1 l 1 u 1 l u l l v 

0 l l u l l l u l l v l l 

(,) l l ij 1 l l 0 1 l _;_ • ) u 

0 l l 0 l 1 J 2 j l 

() i u l 1 u 2 l lev0 

() l 1 l y, j v l - ."/ / 

0 l 1 
. .J.. l l 

l l ....,, 1 l. u 

0 l 1 iJ 1 l 1 1 l l L • G c.1 

l l u l j v l l 1 u - /•UL.. 

u 1 J. u i . ..) J l 1 0 .i. . j u - 1. v .l 

1 
.l l u l j u l l l I... 

u .J.. l 1 3 v l l u 1 j l l • I<-+ 

1 l u 1 1 1 l 

0 l 1 u 1 ..) l l .) 1 - /~ • v :J 

u .l l \) l j l u ·1 
..l. l .J 1 i.J 

u l u l l u 1 u ) ..... j .L • . ) ~) 

l l \.) l l D l u l - • f '.J 

u 1 i .LU l u i - • .!.; (; 

l 10 1 v 

l 1 v .1 l .U l u l .~ / 

l l u l 2 v . 

0 l l u 1 j \_, 2 l a / v 

() l 1 u l :.> \ j 
.,· 
(.. 

I 
(_ 

0 1 1 u 1 ' ) 
' 3 
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u l 1 l; 1 j v 

0 l 1 0 1 3 u 2 1 
, 
.1. 

l 1 u 1 u l 

. () l 1 u 1 v J 2 1 leLJ 

0 1 1 1 l) I 1 1 1 u 1 l v 

0 1 1 1 u l 1 1 l \) l \ ) 

u l l 1 u I 
.J.. u l l l l l 1. - .. 4'+ 

(j. l J. l v· 1 J 1 1 l v l 1 . 01 

u .J.. l ..L 0 l 1 l G l 

l l 1 u 1 l l l 1 -.u7 

l l l u l 1 l u 1 
.I.. l 

0 l 1 1 u 1 1..J 1 1 1 1 -l.i v 

0 1 1 1 u l 1 3 u 2 j l u _,. c:..: • L 0 

u l 1 l . u l .__, 1 j u u 

u l l l l l J v j 1 l 

l l l 1 v 1 u j u l 

0 l l 1 u l l 

0 l l l J 1 1 l 

1 
.L l lJ l 1 l 1 1 l • .) u 

0 l 1 J l 1 l \.) 1 l 1 - .(., ./ 

u 1 l . u 1 1 . ) 
(. . - G • 'J j 

l .l. j l 1 j - J. J. J. 

u 1 1 2 _) 1 l \..) _) i . l o Vu 

u l 1 u .) 
., 
.I. l v i 

.I l -1 • v 'J 

J l 1 v v l l ) 
L. 

u l i 
.I lJ 2 v l 1 l 

u l 1 J 2 .__, 1 1 l 
•) 

' u .'..;.; 

u l l u 2 3 \) l 3 l l l l) - • I l 

l 1 u 1 1 J l l 

l.i 1 1 u 2 '.5 ,_; 1 J l v 1 l l 

u l l u 2 .) v !.. j L v -_;.0 / 
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l 1 u 2 l v 1 u 

u l 1 u 2 j 1 j l •Vu 

u l l 2 u 1 j 1 l • i 'J 

u 1 l u 2 1 3 0 2 

u l . l ' ) 
(... j 1 ~) 1 

u 1 l 1 I 
..) l - • .) -+ 

u l l u " ) 
(.. 1 1 l -,.. • "r I 

l l u l l 
. ) 

·'
l • .L () 

v' l l 
1 
.L l l 

l l 2 () l 1 .) v 

u l 1 2 •.) 1 
.J. .i. u -4. iJ v 

u 1 
, 
.l 2 0 1 1 ') 

... ) l 

u l 1 2 1 1 ) 

c... 1 

() l 1 v 2 5 u 1 3 1 1 

1...; .l. l . I 
\. ) l l v l l -. 0C 

Li l l \.) l 3 j . \._) 

l v 2 l 3 u ') 
£_ J . ::.,4 

1 l 2 1 J . ,:,. 

0 1 1 0 2 1 3 3 2 J. 

u l l u l '_, -.~ 1 

., 
v l ·1 

.l 1 v 

u 1 
J. 1 ~, u l j l - i. / 0 

l l v l l 

l. ..) u l v 1 j i .) -/•v t~ 

u l . .J v 1 j u l l - "~ • C• I 

.L l '.) l j .l. ....J t:.. 1 

\.} j v l .) v 1 v 
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