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CHAPTER I
INTRODUCTION
1.1 HISTORICAL INTRODUCTION

The phenomenon of superconductivity was discovered
in 1911 by Kamerlingh Onnes(l). The explanation of super-
conductivity was to remain 'the shame and despair of

(2). The

theoretical physics' for almost half a century
only successful theories developed during this time were

phenomenological. The two fluid model developed by Gorter
(3)

and Casimir met with considerable success in describing
thermodynamic properties, but this was accomplished at the
expense of an unphysical x;5 dependence of the total free
energy of the electron fluid on the fraction x of the super-
fluid component. The phenomenological equations postulated

by F. and H. London(4)

to replace Ohm's law in a super-
conductor were very successful in describing low frequency,
long wavelength electromagnetic phenomena in superconductors.
Important empirical modifications of these equations were

made by Pippard(s). The Landau-~-Ginzburg equations(G)

, wWhich
were based on Landau's phenomenological theory of second
order phase transitions, were very successful in treating

situations in which the density of the superfluid could vary

from point to point in the metal due to the presence of a



magnetic field. However, these equations were valid only
near the transition temperature, T,

Great progress was made during the 1950's.
Frbhlich(7) pfoposed that the electron-phonon interaction was
responsible for superconductivity. He showed that the
electron-phonon interaction could lead to an effective
electron-electron interaction which is attractive for elec-

trons very near the Fermi surface. The experimental dis-

(9)
(10)

covery of the isotope effect by Maxwell(s) and Reynolds
was striking confirmation of Frbhlich's proposal. Cooper
investigated a model problem in which a pair of electrons
with zero total momentum interacted with each other through
an attractive two-body potential in the presence of an inert
filled Fermi sea. He considered the special case in which
the interaction was a constant (-V) when the electron energies
were within an average phonon energy of the Fermi energy
and zero otherwise. He found that a pair of electrons
interacting through this potential were bound relative to
the Fermi sea. This result suggested that in the presence
of an attractive electron-electron interaction the Fermi sea
would be unstable to the formation of electron pairs in zero
total momentum states above the Fermi level. The stage was
set for the theory of Bardeen, Cooper and Schrieffer(ll),
hereafter referred to as the BCS theory.

Bardeen, Cooper and Schrieffer were able to solve

the complicated many body problem by isolating the correlations



that give rise to superconductivity. They assumed, in the
Spirit of the Landau theory of a Fermi liquid(lz), that the
extremely complicated system of strongly interacting elec-
trons and ions could be replaced by a system of quasipar-
ticles (electrons in Bloch states of the normal metal and non-
interacting phonons) with some residual interactions between
them. The residual interaction between a pair of Bloch
electrons has two components, the repulsive screened Coulomb
interaction and the interaction mediated by the exchange of
virtual phonons. This latter interaction is attractive when
the quasiparticle energies are less than the energy of the
phonon exchanged between them. BCS showed that when the
residual interaction is attractive at the Fermi surface the
formation of Cooper pairs becomes energetically favourable
and a new ground state is formed which is characterized by
correlated occupancy of time-reversed quasiparticle states(l3).
BCS were able to show, using the simple model interaction
mentioned above, that this new ground state has the essential
features of the actual superconducting ground state. The

BCS theory, as originally fofmulated, was a one parameter
model, this parameter being the zero temperaturé energy gap

or the transition temperature. With this parameter chosen
phenomenologically the BCS theory agreed very well with
experiment for a wide range of phenomena and a large number

of materials(l4’15'16).

The BCS model is valid for weak coupling superconductors.



These are superconductors for which the Landau Fermi liquid
theory is valid, which is the case if the quasiparticles
used to form the BCS state are long lived. This condition
is satisfied only if the thermal energy, kBT, and the im-
portant quasiparticle excitation energies are much less than
a typical phonon energy. If an electron has enough energy
to emit real phonons its lifetime is very short and the
Landau theory breaks down. This is the case for strong
coupling superconductors which are characterized by large
transition temperatures and low Debye temperatures.

Migdal(l7)

showed using Green's function methods
that for the electron-phonon interaction in a normal metal
the corrections to lowest order self-consistent perturbation
theory are of the order of the square root of the electronic
to ionic mass ratio, (m/M)%. Migdal's results for the
normal metal were generalized to the superconducting case

by modifying the usual Green's function techniques to take
into account the anomalous processes corresponding to the
formation and breakup of Cooper pairs(lg’lg'zo). This led
to the Eliashberg gap equations, a set of two coupled non-
linear integral equations which are believed to be very
accurate, with errors not greater than a few percent(zl).
These equations are not based on the Landau theory of a
Fermi liquid and hence are valid even for strong coupling

(22)

superconductors. Recently, McMillan and Rowell established

experimentally that the corrections to the Eliashberg equations



are no more tﬁan a few percent and used these equations to
extract normal state properties of the electrons, phonons
' and their interactions from their tunneling data on strong
coupling superconductors. This was done by numerically in-
verting the Eliashberg equations using an electronic computer.
It is truly remarkable that the theory of super-
conductivity which was virtually non-existent fifteen years
ago has developed to the point where it can be used for an

accurate investigation of normal state properties.
1.2 SCOPE OF THESIS

The work to be presented in this thesis consisté of
two quite distinct contributions to the theory of super-
conductivity. In Chapter III simple theoretical expressions
for the zero temperature energy gap and the transition
temperature of a weak coupling superconductor are derived
and applied.to an investigation of several phenomena. In
Chapter IV the results of a detailed numerical investigation
of the anisotropy of the energy gap in aluminium due to the
anisotropy in the phonon density of states are presented.
Chapter II serves a double purpose. The first is to present
work previously done in the two areas investigated by the
author; the second is to present results, such as the
Eliashberg gap equations, which are essential to the work of
Chapters III and IV.

Section 2.1 is a brief summary of the essential



results of the one parameter model of BCS. In section 2.2
the Eliashberg gap equations are written down and discussed.
Particular emphasis is placed on the normal state information
needed for these equations and the information about the
superconducting state that one obtains by solving them.
Section 2.3 is a discussion of two simple theoretical ex-
pressions for the transition temperature of a superconductor.
The first is that of Morel and Anderson; the second is that
of McMillan. In section 2.4 previous work relating to the
anisotropy of the energy gap is reviewed in considerable
detail.

In section 3.1 the Eliashberg gap equations for an
isotropic superconductor are reduced to a much simpler set
of integral equations which are appropriate for a weak coup-
ling superconductor. In the weak coupling limit an approxi-
mate analytical solution of these equations is derived. 1In
the remainder of this section an attempt is made to justify
this solution for weak and medium coupling superconductors.
In section 3.2 the simplified integral equations of section
3.1 are generalized so as to be suitable for an anisotropic
pure single-crystal superconductor. In section 3.3 an ex-
pression is derived for the average energy gap in a pure
single-crystal superconductor in terms of certain gross
features of the anisotropy. In section 3.4 the pressure
dependence of the BCS parameter N(0)V, of the isotropic

energy gap, and of the anisotropy of the energy gap in a pure



single crystal is investigated. Section 3.5 contains the
derivation of a simple expression for the £ransition temper-
ature of a Weak coupling isotropic superconductor. A
correction to the BCS value for the ratio of twice the
energy gap to the transition temperature is obtained and the
pressure dependence of this ratio investigated. In section
3.6 an expression for the transition temperature in a pure
single-crystal superconductor is derived. A new expression
for the isotope effect is obtained in section 3.7 and the
pressure dependence of the isotope effect exponent is in-
vestigated. |

In section 4.1 a detailed description is given of
the method of calculating the function, o?F(v,0,¢), which is
central to most of this thesis. This function contains the
normal state information about the electron-phonon inter-
action and the phonon density of states that is essential
to the Eliashberg gap equations. The results of the author's
calculations of this function for aluminium are presented.
Results for the anisotropy of the mass enhancement factor
are also presented for the same element. In section 4.2 a
simple model is used to investigate the convergence of an
iteration procedure to determine the directional energy gaps
A0(6,¢). Directional energy gaps calculated by one iteration
of the Eliashberg equations are compared in section 4.3
with those calculated by one iteration of the integral

equations of section 3.1. These simplified integral equations



are used to perform a second iteration. 1In section 4.4 an
anisotropy distribution function for the energy gap in Al
is calculated and the mean squared anisotropy determined.
These are used to investigate the effect of anisotropy on
some thermodynamic properties of superconducting Al. The
temperature dependence of the anisotropy of the energy gap
in Al is studied in section 4.5.

In Chapter V the results of Chapters III and IV are
summarized and conclusions presented.

An appendix contains the results of a detailed study
for Na, K and Rb of the anisotropy of the Legendre polynomial
moments of the electron-phonon scattering function. These
moments are important in the Landau-Silin theory of a charged

normal Fermi liquid.



CHAPTER II
NECESSARY BACKGROUND MATERIAL
2.1 THE ONE PARAMETER MODEL OF BCS

In this very brief section we present only those
results of the BCS theory that are needed in Chapters III
and 1IV.

In the BCS theory the excitations of a supercon-
ducting system are long lived quasiparticles which have the

temperature dependent dispersion relation

2

B, = (e,.2 + 22(k,T)) (2.1)

k k

€x is the single-particle energy (measured relative to the
Fermi level) of an electron in the Bloch state (of the
normal metal) of wavevector k and A(k,T) is the temperature

dependent energy gap which vanishes as the transition tempera-

ture is approached from below. The BCS integral equation for

A(k,T) is
]
Ak,T) =2 v,,, 2T tann(r ,/2k.T) (2.2)
- k! kk 2EIS' k B ,
where ka, is the electron-electron interaction matrix

element and kB is the Boltzmann constant.

In order to calculate superconducting properties
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BCS introduced the model interaction

kal = =V ’ |€k|l|€k|| <UJD (h=l),
= 0 otherwise ,(2.3)

where Wy is the Debye frequency. It follows from (2.2)

that the model energy gap A(k,T) is equal to a constant

A(T) if [ekl < wy and is zero otherwise. In the weak coup-
ling 1imit-(A(0) << wD) two important results can be derived
analytically. They are

o~1/N(0)V

A(0) = 2w (2.4)

D

and kT = 1.134 w. e-']'/N(o)V

B c D »(2.5)

where N(0) is the single spin electron density of states

at the Fermi level. The simple model of BCS is a one para-
meter model, the single parameter being N(0)V or equivalently
A(0) or Tc' and leads to a law of corresponding states for
different metals.

BCS suggested that -V should be the average of ka.

for scattering at the Fermi surface:

[ ag, 4,
-V = J - VKE' , (k] = |k'| = kF) (2.6)
where v.., = vPB 4 v (2.7)
kk' kk' kk' T
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Vii, is the matrix element for the phonon mediated electron-

electron interaction and VEE' is the matrix element for the

repulsive screened Coulomb interaction between the electrons.

However, there is no a priori reason for cutting the Coulomb

al.(23)

interaction off at w.. Bogoliubov et. considered

D
a more realistic model interaction in which the phonon

mediated interaction was still cut-off at w. but the screened

D
Coulomb interaction was cut-off at EF ({because the character-
istic length for the Coulomb repulsion between electrons in

1

a metal is kF- ). They found in this way that the BCS para-

meter should be given by
N(O)V = N(O)Vph - N(O)Uc (2.8)

where
N(O)vc

l+N(0)Vc 1og(EF/wD)

N(O)Uc = .(2.9)

Vph

respectively.

. _yPh c
and Vc are the Fermi surface averages of VKE' and VEE'

One of the results to be presented in this thesis
is a new expression for the BCS parameter N(0)V. This
expression was derived from the Eliashberg gap equations

which are the subject of the next section.
2.2 THE ELIASHBERG GAP EQUATIONS

Within the very sophisticated and very accurate 'strong
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coupling' theory of superconductivity(ls'lg’20) a super-

conductor ié completely characterized by a frequency and
wavevector dependent generalization, A(w,k), of the BCS

energy gap and a renormalization function Zs(w,k). The central
result of the strong coupling theory is a set of non—;inear
integral equations, the Eliashberg gap equations, which

relate A(w,k) and Zs(w,g) to certain properties of the metal

in its normal state. Since there are many derivations of

(20,21,24) we

the Eliashberg equations in the literature
simply write them down. Their one dimensional form, which

is appropriate for an isotropic superconductor, is

wC
Aw)z (w) = [ dw' Re{—2L)L —} (K (0,0")-N(0)U_],
: Vw'%-2% (w")
w
C
[1-2_(w)lw = | dw' Ref O} R-(w,w') ,(2.10)
| V' 2-02 (")
0 @)
where -
K. (0,0') = | dv a2 (V)F(V) [~ * ] . (2.11)
S W +w+v+i0* T w'-w+v-10t' "

)
The essential normal state information is contained in the

function

, de, de, ,
a?(V)F(v) = N(0) T ~Ir § |?kg'x| 8 (v=wy _yay) (2.12)
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and the number(23)

N(O)VC
1+N(0)Vc 1og(EF/wc)

*
= N(O)Uc = .(2.13)
In (2.12), which is written for the special case of a
spherical Fermi surface, ko Z sin 6 d6d¢ is an element of

. *
area on the Fermi surface at the point k = (kF,e,¢), Ik ')

is the electron-phonon coupling constant, and w is the

k-k'A
phonon frequency corresponding to the wavevector (k-k')

and polarization index \A. a?(V)F(v) is an average of the
square of the electron-phonon coupling constant for all
those processes in which an electron scatters from any

point k on the Fermi surface to all points k' on the Fermi
surface that can be reached by the virtual emission of a
single phonon of frequency v:. 1In (2.13) Vc is the average
of the screened Coulomb interaction for scattering at the
Fermi surface. The upper phonon cut-off W is usually taken

to be five to ten times the Debye frequency w Equation

D.
(2.13) takes Coulomb excitations in the region wc<w<EF(wc<<EF)
into account. It is quite reasonable that the Coulomb inter-
action can be taken into account by a single number. When

the normal metal becomes superconducting important modifications

*
0,9 are the usual polar angles and are measured relative
to the [100], [010] and [00l1] directions which are taken

as the k_, ky and kz‘directions, respectively.



14

of the electronic structure occur only in a small shell in
momentum space about the Fermi level. The thickness of this
shell is of the order of 10 meV and is véry small compared
with the scale, EF' on which the Coulomb effects vary
significantly.

It should be noted that we have written down the
Eliashberg equationsonly for the zero temperature case. The
finite temperature equations are considerably more compli-
cated and are not needed for an understanding of the original
work to be presented in this thesis.

In order to calculate a?(v)F(v) one needs detailed
information about the lattice vibrations in the form of the
phonon frequencies qu and polarization vectors g(g,\) every-
where within the fir;; Brillouin zone. It is worth mentioning
at this point that for the very low temperatures of interest
in superconductivity the harmonic theory of lattice vibrations
is valid to a very good approximation. Although the phonon
frequencies can be calculated within pseudopotential theory
it is more usual to take them from experiment. The technique

(26) is capable of measuring

of inelastic neutron scattering
phonon dispersion curves with considerable accuracy. Although
these measurements are usually made only in high symmetry
directions information can be obtained for off symmetry
directions by means of a Born-von Karman force constant fit

to the measurements made in the symmetry directions.

We also need the electron-phonon coupling constant.



15

In the one orthogonalized-plane-wave (OPW) approximation and

for k and k' both on the Fermi surface it is given by(25)
= -i ~9-8(gsN) W (q) (2.14)

Ipepe
kA V2MNG (q, X)

where q = k-k', M is the ionic mass, N is the number of ions
per unit volume and W(q) is the pseudopotential form factor
for scattering at the Fermi surface.

With the above information the Eliashberg equations
can be solved by numerical iteration. Since first principle
calcuiétions of the Coulomb parameter u* are unreliable at
present it is usual to treat it as an adjustable parameter
which is véried during the iteration procedure so that the
gap edge

AO = Re{A(AO)} (2.15)

is equal to the experimental value at the end of each complete
iteration. Convergence is obtained when u* and A(w) are

the same for two consecutive iterations. This converged

value of u* is used in all subsequent caiculations.

(22) used the Eliashberg gap

McMillan and Rowell
equations to extract the function a?(v)F(v) and the Coulomb
parameter u* from their superconducting tunneling data.
According to tunneling theory(zo) the ratio of the differ-

ential conductance in the superconducting state to that

in the normal state at an applied voltage eV=w is
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Al () > {——2——1}) (2.1
= p{w) £ Re{—mm—— 2.16)
idI7dV5n /—T—TT—_—
w =A% (w)

where p(w) is the normalized single-particle tunneling
density of states Ns(w)/N(O). The function a?(v)F(v) and
the Coulomb parameter u* were adjusted until the density of
states p(w) emerging from the Eliashberg equations was equal

to the experimental density of states for w < w The

D.
calculated density of states was then compared with the

experimental density of states in the region w > w In

D*
this way McMillan and Rowell not only determined the normal
state data needed in the theory of superconductivity for
several strong coupling superconductors but also showed
experimentally that the corrections to the present theory
of supercondﬁctivity are not greater than a few percent.

(18) that the corrections

This justified the theoretical claim
to the Eliashberg gap equations were of the order of the

square root of the electronic to ionic mass ratio, i.e. (m/M)%.
2.3 THE MOREL-ANDERSON EQUATION AND THE MCMILLAN EQUATION

In this section we discuss very briefly two well
known theoretical expressions for the transition temperature
of a superconductor. Both of these expressions are similar
in form to the simple BCS expression, equation (2.5), so
that they can be used to identify the BCS parameter N(0)V
with certain normal state parameters.

(27)

Using both the deformation potential theorem and
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the Gorkov(zs) formulation of superconductivity Morel and

Anderson(zg)

argued that umklapp processes are no more
effective than normal processes in superconductivity and
that in fact only the local electron-phonon interaction,
mediated by the high frequency phonons, is important in
superconductivity. They further argued that the effective
phonon spectrum is well approximated by an Einstein model
because the high frequency phonons are sharply peaked about
a few definite frequencies. Using a single Einstein peak
for the effective phonon spectrum they obtained an approxi-
mate solution for the transition temperature within the
strong coupling formalism which correctly takes into account
the retarded nature of the electron-phonon interaction.
They included in their calculation an instantaneous Coulomb
repulsion between the electrons and showed that the Bogoliubov
expression for u*, equation (2.9), is a consequence of the
different frequency dependences of the electron-phonon and
Coulomb interactions. That is, they éhowed that the weaken-
ing of the Coulomb interaction relative to the retarded
electron-phonon interaction is a result of its instantaneous
nature. Their result for the transition temperature is
*

ke, = 1.14 uy e /(1) (2.17)

where XA is the electron-phonon mass-enhancement parameter

which is given by

A= 2 [ 9% a? (V) F (V) .(2.18)
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It is assumed in (2.17) that the Einstein peak is at Wy

Morel and Anderson made the identification
*
N(O)V = A=y _ .(2.19)

We now describe in some detail the derivation of the
McMillan equation. The Eliashberg equations at the transi-

tion temperature are

) (.00
Aw)Z(w) = { o0 RefA(w)} | Av a2 (WF(W) {IN(W)+E(-u")]
(o}
X [w'iv+w t w';h—w] - NV +E(w') ] [:57%315
Ep
+ ——1]1 - N(O)V J AT RefA(w")} [1-2£(w')]
-0 '+v-w c w' !
0
“o
1-Z2(wW)Jw =

[ dw' [ dv a2 (VF (v) {IN(W+f(-0")]
o 0

1 _ 1
w'+vtw w'+v=-w

x [ 1 + [IN(vV)+£(w")]

X =775 ~ o o

»(2.20)

where Wy is the maximum phonon fredquency, EB is the electronic

band width and N(w) and f(w) are the Bose and Fermi functions

[exp(m/kBTc)-T-ll_1 respectively.
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McMillan assumed a trial solution of the form

Alw) Ao v 0 < w < wg ’

o= A ’ w > wo .(2.21)

He substituted this trial solution into the right hand side

of (2.20) and required that

A(0)

It
>
-

and A(e) = A . (2.22)

He neglected thermal phonons and in the integrals over o'
neglected w' with respect to v (v with respect to w') in

the phonon propagators [i'w'+\)]'-l when the range of integration
was 0 < w' < Wo (wo < w'). In this way he obtained the

approximate theoretical expression

1+2
- * %
A= =(<w>/wg) Au
kBTc = w, e , (2.23)
where <w> is defined by
“o
<w> =2{ dv a2 (v)F(v) /A . (2.24)
0

The next step in McMillan's procedure was to solve
the Eliashberg equation numerically and to fit the solution

to the theoretical formula, equation (2.23). For this work
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F(v) was chosen to be the experimental phonon density of

states of Nb and a?(v) was taken to be

02 (V) 2 v>100°K

it
Q

=0 v<100°k .(2.25)

Tc and u* were fixed and the Eliashberg equations were

iterated. a? was adjusted at the end of each iteration so
that A(0) remained fixed. When convergence was reached the
solution was fitted to equation (2.23). This was repeated

*
for several values of T, and 1 . A good fit to the various

sets of data was obtained with the formula

_1.04(1+))
0 %*
_ Db A=u (1+0.62))
kBTC —me .(2.26)

This is the well known McMillan formula. It has been found
to work quite well for some superconductors but fails badly

for others, for example Hg and amorphous Ga.
2.4 ANISOTROPY OF THE SUPERCONDUCTING ENERGY GAP

The superconducting energy gap associated with an
electronic state of momentum k depends on the orientation of
k with respect to the crystallographic axes. This energy
gap anisotropy arises from a number of sources, the more
important of which are: anisotropy in the phonon spectrum,
distortions of the Fermi surface from sphericity, and

anisotropy in the single spin electron density of states at
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the Fermi surface. In a pure single-crystal superconductor
the electrons are able to take maximum advantage of the
anisotropy in the effective electron-electron interaction
in forming pairs. In a 'dirty' superconductor(l3), that is
a superconductor containing appreciable amounts of physical
or chemical impurities, an electron is rapidly scattered
about the Fermi surface. The effect of this smearing of
electronic states over the Fermi surface is that the electrons
are no longer able to take full advantage of the anisotropy
in forming pairs. Hence the effect of impurities is to
weaken superconductivity. Another effect of the smearing
of the electronic states over the Fermi surface is that the
experimenﬁally observed energy gap for a 'dirty' supercon-
ductor is essentially isotropic.

Markowitz and Kadanoff(3l) were able to account
theoretically for the experimentally observed effect of
impurities upon the critical temperature(32’33’34). They
considered the simplest possible model (which exhibited
anisotropy) for the pairing potential. This was the factor-
able potential

VBE' = (l+a()) V(l+a(Q')) (2.27)

where Q@ and Q' are the angular coordinates of k and k'.
Using this model interaction they showed (within the strong

coupling formalism) that the transition temperature of a
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pure single-crystal is given by

1
(1+<a>)N(0)V

kBTc = 1,14 wD e

(2.28)

where

tH

2 dao _2
<a > [ In a® () 1 (2.29)

while that of an isotropic or 'dirty' superconductor is given

by the usual BCS result

_ 1
= N(O)V
kBTc = 1,14 wD e .
Clem(35) used the factorable interaction matrix

element of Markowitz and Kadanoff to investigate (within
the weak coupling formalism of BCS)-the effects of energy
gap anisotropy upon the thermodynamic properties of pure
single-crystal superconductors. He showed that within this

model the directional energy gap is
A(Q) = <A(R)> (1+a(Q)) (2.30)

where the average energy gap is given by

1
- | 4aa _ o1 3y..2 T N(OV
<A(R)> = J in A(R) = (l+(ﬁ737v 2)<a >) 2wD e » (2.31)
to lowest order in the anisotropy. He introduced an aniso-
tropy distribution function P(a) by defining P(a)da to be

the fraction of the Fermi surface for which the anisotropy
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function a(Q) has a value between a and a+da. Knowledge of
this function and of the average energy gap is all that is
needed to calculate some thermodynamic propérties such as
the iow temperature specific heat and nuclear spin-lattice
relaxation rate. Clem calculated both of these properties
for various values of the parameter <a2> using a rectangular

model for the distribution function P(a). His model is

2_~1
= < > . < <
P(a) (2v3<a“>) -, A in a A ax P
= 0 otherwise ’
r .. a ini maximum va s of
where amln nd amax are the minimum and maximu lue

a(Q) encountered anywhere on the Fermi surface. Experimental
results(36) for the variation of the low temperature specific
heat with impurity concentration are in qualitative agree-
ment with Clem's theory.

Bennett's first-order calculation of the directional
energy gap in lead(37) was the first realistic calculation
of gap anisotropy. He assumed that the anisotropy in the
phonon density of states was the dominant source of gap
anisotropy and neglected all other sources (the effect of
energy-band structure was included as a perturbation after
the major calculation involving just the anisotropic phonon
density of states was performed). Bennett reduced the three
dimensional strong coupling integral equations for the

directional energy gap A(w,6,¢) to one dimensional integrals
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by assuming that in a first-order calculation whenever
A(w,0',¢') appeared in an integrand it could be replaced by
the isotropic gap, A(w), for dirty lead. With this assump-
tion the energy gap anisotropy was directly related to the
anisotropy [Ki(w,w',6,¢)fKi(w,w')] in‘the phonon kernels.

The anisotropic phonon kernels are given by

1 1
A
w'+w+v+i0

Ki(w,w',e,d)) = J dv GZF(V191¢) [
o}

where
ko. ‘ 2 *
a2F(v,6,¢) = N(0) g & |g,kk.l| §(V=wy 1 vy) - (2.33)
}\ - —

The above features of Bennett's calculation were followed in
our calculation of the energy gap anisotropy in aluminium.

We now continue with the discussion of Bennett's work
emphasizing the improvements that we have incorporated in
our work. The electron-phonon coupling involves the phonon
frequencies and eigenvectors and hence is highly anisotropic.
Bennett ignored this source of anisotropy and considered
only the anisotropy in the directional phonon frequency

distribution F(v,6,¢). He took a?(v,06,¢) to be a constant

*
For convenience we have written a?(v,8,¢)F (v,6,¢) as

a?F (v,8,¢). We dc not imply that o?(v,6,¢) is independent

of frequency and direction as it is in Bennett's work.
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independent of frequency and direction. Furthermore he
assumed that the electron-phonon coupling was the same for

all polarizations. These simplifications were not made in
our work. Bennett expanded the phonon frequencies in a
series of Kubic harmonics. The series was truncated after
the first three terms and the three expansion coefficients
(for each value of the wavevector q and each polarization
index A) were obtained by fitting to the experimental dis-
persion curves measured in the three principal symmetry
directions by means of inelastic neutron scattering. F(v,6,9¢)
was calculated and then expanded in the first three Kubic
harmonics. As a consequence the calculation of the directional
energy gap reduced to the determination of the coefficients
of an expansion of A(w,0,¢) in terms of the first three Kubic
harmonics. It is perfectly legitimate to expand the energy
gap in terms of Kubic harmonics but it is not at all obvious
that it is a good approximation to truncate the expansion
after the first three terms. In our work we did not employ
Kubic harmonics. Instead we calculated the phonon fre-
quencies and eigenvectors for non-symmetry directions using

a Born-von Karman force constant fit to the dispersion

curves measured in the high symmetry directions. The directional
energy gaps were calculated at a large number of points on
the irreducible (%g)th of the Fermi surface. It was not
possible to obtain even a good qualitative fit to these gaps
using the lowest three Kubic harmonics. The above are signi-

ficant improvements in Bennett's method of calculating
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the energy gap anisotropy and are the justification for the

large amount of computer time used in our calculations.



CHAPTER III
A CONTRIBUTION TO THE THEORY OF A WEAK COUPLING SUPERCONDUCTOR

3.1 THE ENERGY GAP OF AN ISOTROPIC WEAK COUPLING
SUPERCONDUCTOR
In this section we derive a very simple expression

for the energy gap at the gap edge, Re{A(AO)} = A of an

0’
isotropic or 'dirty' weak coupling superconductor at zero
temperature, by introducing certain simplifying approxi-
mations into the Eliashberg gap equations.

At low temperatures an electronic state has a long
lifetime if its excitation energy is much less than a typical
phonon energy (of order wD). For a weak coupling super-

conductor the gap parameter, A is much less than a typical

0!
phonon energy so that the energy gap, A(AO), and the re-
normalization function at the gap edge, ZS(AO), are real to

a very good approximation. Hence the Eliashberg gap equations

for the energy gap at the gap edge reduce to
w

C
DyZg (B) =_[ dw' Re{—2(w!) } IKS (Mg ") -N(0)U_] ,(3.1)
0 /rw'z—Az(w')
[1-z_(8,)18, = J du' Rel—=2— 3 xRa 00 ,(3.2)
/&'Z—Az(w')

0
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where the real parts of the kernels are given by

1 + 1 ]
1 - T
w +A0+v w A0+v

Ky(hg,u') =P J av a?(MF(V) I , (3.3)
[0}

and

aQ, 4. ,
a?(V)F(v) = N(0) J J *Z%'“z%— i lgkkuxlz S (Vv=wy _1ouy)
.(3.4)

' 4,29
The Coulomb pseudopotential parameter is given by(2 +29)

N(O)Vc

TN (0)V, Tog (E5/,) (3.5)

*—' —
u = N(O)Uc =

where Vc is the average of the screened Coulomb potential for
scattering at the Fermi surface.
We assume that in calculating AO for a weak coupling

superconductor we can ignore damping and detailed retardation

effects. That is, we assume that A(w') is real and we in-
clude only its gross frequency dependence. We assume that

A(w') has the form

— [
Adw') = AO ' Aosw swc ’
= Ac ’ w'>wc ,(3.6)
(38)

where Ac is given by

. |
A = -y log(—KE)AO | ,(3.7)
0
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and where We is the highest phonon frequency, i.e. the high
frequency cut-off of the function a?2(v)F(v). We know from

detailed solutions of the Eliashberg gap equations for a

(25)

weak coupling superconductor that, for small w', the

imaginary part of A(w') is very small and the real part
depends only slightly on w'. Because of this, approximation
(3.6) is a reasonable one for the purpose of calculating

A Small values of w' are weighted heavily in the inte-

0.
grand of (3.1). Equation (3.2) depends on A(w') only through

the quasiparticle density of states (20)

p(w') = Ref{ w" }

v w'z—Az(w')

Hence for a weak coupling superconductor (3.2) is very in-
sensitive to A(w') in the region, w'>>A0, where A(w') deviates
significantly from our model solution, equation (3.6). This
is reflected in the fact that, at the present time, the
tunneling experiments are not sufficiently accurate to yield
the function ao?(v)F(v) for a weak coupling superconductor,
such as aluminium, by inversion of the Eliashberg gap
equations(Zl’zz).

Figure (3.1l) shows the real and imaginary parts of
the energy gap in aluminium as calculated in reference 25.
Also shown is our model solution (3.6). Although our model

energy gap looks considerably different from the actual

energy gap for w'>>A0 it must be remembered that the Eliashberg



FIGURE 3.1 The real (solid line) and imaginary (dashed
line) parts of the energy gap, A(v) = Al(v)+iA2(v),
for aluminium as calculated in reference (25).
Also shown, the model energy gap (3.6) used
extensively in this work (dotted line). v—Ao
is the energy measured relative to the gap edge.
For the model energy gap the gap edge, Ao, is
.180 meV, the high frequency cut-off, W, s is
41.4 meV and the Coulomb psuedopotential para-

*
meter, p , is .l4.
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equations are not very sensitive to the detailed behaviour

of A(w') in this region, especially to that of the imaginary

part.
Using the assumed form for A(w') we obtain
Yo Yo
A
—u* [ dw' Re{ Alw’) } = -u* J dw' 0
l2_ 2 1 |2-_ 2
0 vV w A (w') Ao vV w AO
: * 2w
= -y log(=—)A. , (An<<w ) ; (3.8)
H K, 0 0" %
w
o c
]
(dw' Re { w’ } Kf_‘(Ao,w-) = _2[[ du' —
: v w'z-Az(w') A vV w? --AO2
0
w W
c o c
2 2
x | av 2IEO) gy gy & EDDI .(3.9)
(w'+v) —AO (w'+v)
0 W, 0

The second term in the above expression has been simplified
by using the fact that w'>>A0,[Ac| in the range of inte-
gration wc<w'<M.

w w

C C
do' Re{—2ALwD) Kf(Ao,w') = 2 —dw'
T3, ., 2 2
5 Vo' =A% (w'") A Y w —AO
0
wC
(w'+v)A0
x P dv a2 (v)F(v) 5 5
(w'+v) -Ao
0
/wcz—Aoz
- angoy || Sk D del x| 2 =kt o
T T 4n . BT Ik 'A ; 2 2
A == (E +wk—k'x) - AO
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In (3.10) €' = /w'z—A 2 is the free particle kinetic energy

0
measured relative to the Fermi energy and E' = /e'2+A02 is
‘the quasiparticle energy. We have introduced the definition
of 02(V)F(v), equation (3.4), into equation (3.10) and trans-
formed to the kinetic energy variable €' in order to make
explicit an approximation that might go unnoticed otherwise.
Let us consider the integral over €' in equation

(3.10) for fixed directions of k and k'. If we take into

account the fact that the variation of wE'E'A and ng'K with

e :Iw%/Zm is negligible in the very thin shell

—wc<e'<wc (wc<<EF) for the momentum transfers, q = k-k',

of importance in superconductivity, we can do the integral
over €' analytically. Small momentum transfers are un-
important in superconductivity for two reasons: 1) the
square of the electron-phonon coupling constant goes to zero

as g for small q,

. 2 2
i.e. |gg)\| alg.e\(q) | /8

where qu o g for small g; 2) the phonon density of states
goes to zero as w? for small w and hence the number of
available normal modes of the system of ions that can be

excited with an electron momentum transfer q is very severely

. . . '
restricted for small q. We define kmin and kmax by
] 2 1 2
E_~w = .]ir.n—.i—n_ E_+w = k_ma_}s_.
F "¢ 2m ! F 'c 2m )
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In doing the integral over €', k' varies over the range

kl

1 T ! : 1 - [}
min < k' < kmax' Since (k k

max min) << kF = o(kD)’

ngg)k and QKE'X' for the momentum transfers of interest,
do not vary significantly over the range of k' encountered
in the €' integral and can be evaluated at |k'| = kp and
treated as constants when doing the integral.

It is usual, for convenience in numerical calculations,
to take advantage of the fact that the phonon density of
states is very small at low w by cutting the density of states
off at some small value of w. We use a cut-off, w* = ZAO,
which for a weak coupling superconductor, is much smaller
than the most important phonon frequencies (this is certainly
not the case for a strong coupling superconductor). We note

that Morel and Anderson(zg)

; in their derivation of a simple
expression for Tc' carried the importance of the high
frequency phonons to an extreme in assuming that the effective
phonon density of states could be approximated by an Einstein
model with a delta function at the longitudinal phonon peak.
Our low frequency cut-off at w* greatly simplifies the
calculation without leaving out any important phonons. Of
course, the results are not sensitive to the exact cut-off
as long as it is sufficiently small.

The w' integrals can be reduced to standard forms
after a few transformations. Each w' integral has two

analytical solutions, one appropriate for v < 2AO and the

other for v > 2A0. Since the region v < 2A0 is unimportant
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for a weak coupling superconductor we cut the phonon spectrum,
*

and hence a?F, off at a frequency w = 2A,. Hence we need
0
only the solutions for v > 2A0. These are
w
c
dw' w'+v _
2 ) 2 2 - K(vlwcle) ’
/w'z—A 2 (w'+v) —AO
0
o
2 2 2
k(v ,0) = % 1 log{wc+p.-/wc -4, +/p; -4,
i=1 2 2 2 2 2 2
/pi -AO wc+pi-/wc -AO /pi AO
2 2
A +p.~Vp. A
x 2& "1 0, (3.11)
2 2
Ao+pi+/pi AO
and
w
c
i 1 1
2 duw w2 3 = L(\)Imcle) ’
AO 0
2 2 2
2 . o) w +p.~v/w _“=A. “+V/p. " =A
L(v’wc'Ao) = %_ Zl (—l)l+l i log{ i c2 02 12
0 i= _ ‘ _ _ _ _
/pi AO w tPy /wc A, /pi A
2 2
A +p.=vVp. “=-A
x 01 "1 0, | .(3.12)
2 2
Aotpi+VP; "=
In (3.11) and (3.12) Py = v+A0 i Py = v-Ao.

Combining equations (3.1), (3.2), (3.8), (3.9), (3.10)
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(3.11) and (3.12) we obtain a greatly simplified approximate
set of Eliashberg gap equations for the gap at the gap edge

in a weak coupling superconductor. These are

w
c
* 2wc
AgZg(Bg) = { dv az(v)F(v)K(v.wc,Ao) -u log(—gg)}Ao

5 .

® , (3.13)
c
— 2 ;
ZS(AO) =1 + J dv az(v)F(v)[L(v,wc,Ao) + ;:m;] .(3.14)
0

This set of equations can be iterated to convergence in a
very short time on an electronic computer. It takes one or
two seconds to obtain convergence to .01% (starting from a
reasonable trial solution) on the CDC 6400.

We now derive an approximate analytical solution to
(3.13) and (3.14) which is valid if the most important phonon
frequencies are much larger than Ao for the metal under
consideration.

For a weak coupling superconductor, Zs(w) is a slowly
varying function of w for small w. Since Ao is very small
for a weak coupling superconductor, we can, to a good approxi-
mation, replace ZS(AO) by Zn(O), the zero frequepcy normal
state renormalization function. Zn(O) is given by the well

known expression(Zl)

1+ ) ,(3.15)

I

2, (0)
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where

A= 2 [ d—% a2 (V) F () .(3.16)

(3.15) and (3.16) are obtained by setting A(w') = 0 in
equation (3.2). Table (3.1) contains Zn(O) calculated using
equations (3.15) and (3.16) and ZS(AO) calculated using (3.13)
and (3.14) for a weak coupling superconductor (Al) and three
medium coupling superconductors (Tl, In, Sn). The details

of the calculation will be given later. It is seen that re-
placing ZS(AO) by Zn(AO) is indeed a good approximation for

the superconductors of interest here.

TABLE 3.1

COMPARISON OF THE SUPERCONDUCTING AND NORMAI, STATE
RENORMALIZATION PARAMETERS

z_(0)
n
ELEMENT Zn(O) ZS(AO) W
Al 1.463 1.462 1.001
T1 1.774 1.761 1.007
In 1.822 1.805 1.009
Sn 1.787 1.777 1.006

Equation (3.13) is not so easily disposed of. We

first obtain a much simpler expression for K(v,wc,Ao), which
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is a very good approximation for all important values of

Vv (i.e. v >> AO). We expand the right hand side of (3.1ll)

in terms of the small quantity (Ao/v) to obtain, after a good
deal of algebra,

A

2V 0,2
) + o= :

= 2
K(v,u,r84) =5 l°‘3‘A0(1+v/wc)

Our approximate expression for K(v,wc,Ao) is then

i 2 2V

K(v,wc,Ao) = 5 log(Ao(l+v/wc)) .(3.17)

ny
Figure 3.2 is a plot of the relative error, (K-K)/K,

versus phonon frequency v, for w* < v < Wy for a weak cou-
pling (Al), medium coupling (In), and a strong coupling
superconductor (Pb). It is clear from the graph that ;

is a very good approximation to K for a weak coupling super-
conductor, a fairly good approximation for a medium coupling
superconductor, but a poor one for a strong coupling super-

conductor.

If we substitute (3.17) into (3.13) we obtain

w w

c c
v/w
by = I%T {2 9% a? (V)F (V) 109(113752) + [2 Q% a2 (V) F(v) =]
2wc
X log(-—A—-) }AO .(3.18)
0

We recall that the renormalization parameter, A, is given



FIGURE 3.2

The relative error (K—E)/K versus phonon
frequency w. The low frequency cut-offs are
.36 meV, 1.08 meV and 2.77 meV for Al, In and
Pb respectively. The high frequency cut-offs
are 41.4 mevV, 1l6.2 meV and 11.0 meV for Al, In

and Pb respectively.



14}

o
o

‘02

Al

o

4

Pb

12

1 i i 1 [ [

iI6 20 24 28 32 36 40
w(meV)

38



39

by

X = 2 { d—:’) a2 (V) F(v) ’ ,
0

and define a new parameter, A, by the equation

u)C

- dv V/wc

A= 2 J Yy Otz(\))F(\)) lOg(-]_—:m—;) .(3.19)
0

We assume that AO is non zero so that it can be cancelled
from both sides of (3.18). Substituting (3.16) and (3.19)

into the resulting equation and solving for A, we obtain the

0
very simple result

< (3.20)

This equation is the basis for much of the work to follow.

The usual BCS result for the energy gap in a weak

coupling superconductor(ll) is

A = 20 e NOV ,(3.21)

where V is the average effective electron-electron inter-
action for scattering at the Fermi surface. Our result is
formally identical with this result and suggests that,‘to the

extent that W, and w, are the same, the BCS parameter, N(0)V,

should be given by

*

N(O)V = —2"E . (3.22)
1+2-%
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Since A is comparable in magnitude to A but of opposite
sign there is no cancellation between A and X in the denomin-
ator of (3.22) so that our expression for N(0)V is quite

different from the Morel-Anderson result(zg)

N (OWIM™ = a-y” . (3.23)

If we renormalize the Morel-Anderson result by introducing
the renormalization parameter Zn(O)El+A into their analysis

we obtain

(0w 1R = 22U . (3.24)

This equation falls out of our analysis if we make one

further approximation. Essentially the same approximation

was made by McMillan (30

in the derivation of his equation
for Tc for a strong coupling superconductor. Consider the

integral

dw' (w'+v)

o Totro 2.5 2
/w|2_A0 ‘((D +\)) Ao

Ao

which we have evaluated analytically. One can argue that since
small values of w' are weighted heavily in the integrand and
since the important phonon frequencies, v, are large we can

neglect w' and A, in comparison with v to obtain

0
Yo Yo
duw' (w'+v) M1 ( de' V1 log(zwc
taur 2y 2V Y ALt
JurZop 2 (W) Tty L vurdea? 0
0 0
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With this rather crude approximation*kwe readily obtain the
Morel-Anderson result, equation (3.24).

Table (3.2) is a comparison of the values of N(0)V
given by the three equations (3.22), (3.23) and (3.24) for
Al, T1, In, Sn, Zn and Pb. (We have included results for Pb
even though the approximations that we have made are not
justified for a strong coupling superconductor.) A discussion
of our choice of the parameters A, A and u*, used in calcula-
ting N(0)V, will be given later. We just note at this point
that the value of u* occuring in (3.23) and (3.24) is not
exactly the same as the value occuring in (3.22). The ratio

%
of the two values of y 1is given by equation (3.5) to be

1+N(0)Vc log(EF/wc)
I+N (0)V_ Iog (Eg/wy) ’

Since W is roughly the same as Wy the difference between the

*
two values of u is negligible, at least for a gqualitative
comparison of the different expressions for N(0)V, and is

ignored. Table 3.2 also contains the experimental values of

MA

EXp is taken from reference (1l5) and is

N(0)V. [N(0)V]

obtained by fitting the BCS equation 1

1.134 w N(O)V

kBTc = D e

* ’ —
It is a good approximation only if log(ZwC/AO)A >> - A
which would be realized only for an extremely weak coupling

superconductor.
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to the experimental transition temperature.[N(O)V]Exp is

obtained by fitting the equation

1
Ao = 2w_ e N(O)V
c
to the experimental energy gap AOEXP. The difference between
MA

[N(O)V]Exp and [N(0)V] for a given metal reflects the

Exp
difference between Wy and Wry s and the deviation from the BCS
ratio, 2A0/kBTc = 3.53.

Table 3.2 contains two values of N(0)V for those
metals for which‘we have calculated A and X from o2 (V)F(v).
The‘first entry is calculated with a?(v)F(v) cut-off at
w* = ZAOEXP and the second entry is calculated with no low
frequency cut-off (excepting any cut-off inherent in the
experimental data). It is evident from the table that the
value of N(0)V is very insensitive to the exact choice of
the low frequency cut-off (provided, of course, that it is
not unreasonably large).

It is also evident from the table that our expression
for N(0)V is much better than the Morel-Anderson expressions
- (3.23) and (3.24) (even, it appéars, for strong coupling
superconductors for which our expression is not to be taken
seriously).

In this thesis we do not use equation (3.20) to

calculate superconducting energy gaps from first principles.

Instead we attempt to establish the validity of equation (3.20)



TABLE 3.2

A COMPARISON OF THEORETICAL AND EXPERIMENTAL VALUES

43

OF N(0)V
i MA MA MA
ELEMENT| N(0)V | [N(0) V], f} [N(D)V] [N(O)VI,™ | [N(O)VIg, .
.163
Al .163 .32 .22 .175
.163
.244
T1 .246 .67 .38 .27
.244
.241
In - 244 .72 .39 .29
.241
.236
Sn .240 .64 .36 .25
.236 ’
Zn .17 .17 .31 .22 .18
.322
Pb .362 1.4 .55 -39
.324
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for weak and medium coupling superconductors. This is'very
difficult to do by a direct comparison with experimental
energy gaps, because unless one is very certain of the para-
meters Wer A, X and u* (especially the latter three), one
does not know whether poor agreement with experiment is due
to a failure of the equation or to a poor choice of the
parameters entering it. This problem is especially critical
for weak coupling superconductors because of the extreme

sensitivity of A, to N(0)V when N(0)V is small. Fortunately

0
we can circumvent this problem by realizing that equation
(3.20) is an approximate solution of the Eliashberg gap
equations for the special case A(w) = A(AO). What we really
want to establish is that (3.20) is a good solution for a
weak coupling and a fairly good solution for a medium coup-
ling superconductor. Since it is generally believed that
the corrections to the Eliashberg gap equations are of the
order of the square root of the electronic to ionic mass

_ %(18,22) .
ratio, (m/M) , L.e. a few percent, we compare our
results for AO indirectly with experiment by comparing them

directly with the Eliashberg values of A Of course, this

0°
comparison is meaningful only if exactly the same normal
state data is used in both calculations. This is very easily
and accurately accomplished for the parameters W, A and X
which are obtained from the function ao?(v)F(v) used as input
data in the gap equations. If we denote by “Ef and ch

the parameters used in the Eliashberg equations then the
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* *
obvious choices for u and W are, (using equation (3.5)),

. N(0)V,
M IOV, Tog(E,/6,) r (3.25)
. N(0)V
1J'E = ,(3.26)

1+N (0)V_ log(Ey/u ")

where N(O)Vc is given by some approximate calculation, such
as an RPA calculation. With the above prescription one could
very clearly delineate the range and extent of validity of
equation (3.20) by solving the Eliashberg gap equations for

a series of values of “E* and a series of a2 (v)F(v)'s ranging
from weak coupling-like to strong coupling-like, and of
different shapes, and comparing the solutions for Ao with the
solutions given by (3.20). The u*'s and a?F's used in this
comparison could be arbitrary, not corresponding to any
particular real metal, as long as they were reasonable. Un-
fortunately this detailed comparison is very time consuming
and completely out of the question at McMaster with the
present rather severe restrictions on computer usage. So

we are limited to those metals for which solutions have al-

ready been generated at McMaster by P. N. Trofimenkoff(39),

the present author, and, much more extensively, P. Vashishta(40).
When we exclude the strong coupling metals we are limited

to weak coupling Al and medium coupling Tl1l, In, and Sn.
Unfortunately, the obvious scheme, mentioned above, for cal-

* * ¥%
culating y and Hg has to be abandoned because W was
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treated as an adjustable parameter in solving the Eliashberg
equations. As the zero temperature gap equations are
iterated uE* is adjusted so that at the end of each complete
iteration the gap at the gap edge, AO’ is equal to the
experimental value, AOEXP. Self consistency is obtained
when A(w') and ”E* have both converged. We denote this con-
verged value of “E* by uE*(Exp). Let us denote by uE*(TF)
the value of “E* given by equation (3.26) when N(O)Vc is
calculated using the Thomas-Fermi approximation(4l) for the
screened Coulomb interaction. The corresponding value of u*
is denoted by “TF*' A reasonable procédure is to apply the
same c¢orrection factor, (uE*(Exp)/uE*(TF)), to both Thomas-

*
Fermi values of 1 . We do this and obtain

* E

b = (—g—)u =
UE*(TF) TF l+{N(0)V]TF log(EF/mc)

uE*(Exp).(3.27)

Fortunately, of the metals considered, only the results for

*
Al are very sensitive to u .

* * *
Table 3.3 contains Mg (EXP) , and 4 . The values

Hop
of uE*(EXP) are taken from reference (40). Also included

for comparison purposes are the values of u* used by Cohen in
reference (42). He scaled the RPA values of N(O)Vc by a
constant factor to obtain a u* for Zn in agreement with the
experimental isotope effect exponent 8(43).

We note that there is good agreement between our

*
values of y and those of Cohen except in the case of Sn.



TABLE 3.3

' *
THE COULOMB PSEUDOPOTENTIAL PARAMETER u

ELEMENT u (Exp) @ n u ty
E TF COHEN
Al .166 .101 .140 .14
T1 .126 .095 .107 .11
In .138 .097 .117 .12
Sn 171 .096 .145 .12
Zn -- - -- .12

a. Reference 40

b. Reference 42
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* .
, are consistently lower than

The Thomas-~Fermi values, Hpp

* *
u  and HCOHEN ’ and differ little from .10 for the metals
considered.

— *
Table 3.4 contains the parameters W, r A, =A and y

that are needed to obtain A, from equation (3.20). A, A and

0
w, were obtained from the experimental a2 (v)F(v)'s for T1(44),
In(44) and Sn(zz). For Al a?(v)F(v) was calculated as

discussed elsewhere in this thesis. 2n is included in the
table because of the availability of an accurate empirical

value of A(45). W, Was taken from the calculated phonon

1 (46)

*
frequency distribution of Young and Koppe . W was taken

(42)

from Cohen's paper and -\ was set equal to A (a reasonable

estimate on the basis of the other entries in the table).

EXP
0

ZAO(O)/kB'I‘c = 3.53 to the value of Tc for Zn tabulated in

A for Zn was determined by applying the BCS ratio
reference (42).

Table 3.4 contains three values of AO. The first is
the value given by equation (3.20), the second is obtained
by solving the simplified integral equations (3.13) and (3.14),
EXP is the 'solution' obtained

0 ’
by iterating the Eliashberg gap equations(4o). The values

P

and the third, denoted by A

EX
of AO

(44), (44) and (22) respectively. Where there are two entries

for Al, T1, In and Sn are taken from references (47),

for a given metal, the first corresponds to cutting a? (v)F(v)

*
off at a value w = 2A0EXP and the second corresponds to no

cut-off. These double entries are included to demonstrate



COMPARISON OF CALCULATED AND EXPERIMENTAL ENERGY GAPS

TABLE 3.4

49

_ . Aocalc(mev) AOEXP
ELEMENT A -X wc U ‘
(mev) (1) (2) (mev)
.463 .517 .179 .180 a
Al 41.4 .140 .181
.465 .525 .180 -
.774 .9595 .354 .374 b
T1 10.7 .107 .369
.822 1.098 .512 .549 e
In » 16.2 .117 .540
.835 1.142 .5145 -
.787 .932 .535 556 a
Sn _ 18.5 .145 .575
.787 .932 .535 -
Zn .43 .43 26.3 | .12 .130 -- ].133%
a. Reference 47
b. Reference 44
c. Reference 44
d. Reference 22
e. Reference 42
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the insensitivity of the energy gap to the cut-off.

The agreement with AOEXP obtained using the simpli-
fied integral equations is excellent; that obtained using
eéuation (3.20) is about as good as one could hope to obtain
using a simple analytical expression (excluding, of course
phenomenological expressions). The worst agreement is for
Sn. Equation (3.20) gives a result that is too low by 7%,
equations (3.13) and (3.14) give a result that is too low
by 3%. Cohen's value of u* for Sn would give results some-
what too high. Equation (3.20) gives essentially the same
result as the simple integral equations, for Al. For the
medium coupling superconductors the approximations made in
going from (3.13) and (3.14) to (3.20), i.e. replacing K
by ; and zs(Ao) by Zn(o) lead to errors of roughly 4 to 7%.
It must be kept in mind that solving the Eliashberg gap
equations is a very difficult numerical problem and that
because of the various singularities that must be 'inte-
grated through' when doing the principal value integrals
and the rather coarse integration meshes that must be used
to save computer time it is very difficult to estimate the
accuracy of the Eliashberg solutions. Hence the discrepencies
between the three values of Ao, although }argely due to
the simplifying approximations that we have made, are to some
extent due to our choice of u* and to numerical inaccuracy

in the solution of the gap equations.

It seems safe to conclude from the results presented
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in Table 3.4 that given reliable normal state data, for
example 02 (V)F(v) and u*, equation (3.20) could be used with
confidence to calculate the superconducting energy gap

of a weak coupling superconductor and perhaps even that of

a medium coupling superconductor.

There are some very interesting experimental results

for a In-Tl1l alloy series(44). The energy gap AO varies

anything but smoothly from the value .540 meV for pure
indium to .369 meV for pure thallium as the thallium con-
centration increases. The tunneling data have been inverted

X
to obtain an experimental a?(v)F(v) and ug (EXP) for each

alloy(44). Hence we can readily calculate A, -X and W,

Unfortunately the experimental values of the Coulomb pseudo-

*
potential parameter, (EXP) , do not vary smoothly in going

Mg
from pure indium to pure thallium and the variation from the

average value is quite large. Furthermore there is a strong

*
correlation between Up (EXP) and AOEXP; when AOEXP

*
(EXP) is small, and visa versa. The energy gap of a

is large,
ME
medium coupling superconductor is fairly sensitive to u*
and to obtain good quantitative agreement with the experi-
mental results one would need reliable values of u* (which
would certainly vary with alloy composition in roughly the
same manner as uE*(EXP)). Rather than become involved in
the difficult task of trying to obtain reliable values of

*

*
U to use in equation (3.20) we use the same value of u

*
for all alloy compositions. For this average value of u
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we use

* *
Hpxp (IN) + Upyp (T1)
3

* *
where Uexp (In) and Hexp (Tl) are obtained by fitting equa-

tion (3.20) to the gaps, AOEXP, for the pure metals.

* *
Hexp (In) = .108, and Heyp (Tl) = .100, so that we take
*
Hu = .104. Of course, using an average value of u , we can-
not hope for good quantitative agreement with the experi-

— *
mental results. Table 3.5 contains A, -A, ® (EXP) ,

c’' Y
AOEXP and AOCALC for the alloy series. Figure 3.3 is a

comparison of the calculated energy gaps with the experi-

mental results. The qualitative agreement is excellent. It

EXP
0

) *
that reliable values of u could only improve the overall

. *
is evident from the tabulated values of Mg (EXP) and A

quantitative agreement, which is already fairly good.

It is worth noting that, although its theoretical basis
is rather weak for strong coupling superconductors, equation
(3.20) does not give unreasonable results even for this class
of superconductors. Table 3.6 contains W A and -X for the
strong coupling superconductors amorphous Ga, Pb, amorphous
Bi, and Hg. These parameters are calculated using the
experimental a?F's obtained from tunneling data. o?F and
AgXP for amorphous gallium, lead, amorphous bismuth and

mercury are taken from references (48), (22), &48), and (49)

respectively. Also tabulated are the experimental energy
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TABLE 3.5

COMPARISON OF EXPERIMENTAL AND CALCULATED ENERGY GAPS FOR
A Tl-In ALLOY SERIES

CONCENTRATION a
A X v, ug (Exp)® A FXF oy CRIC
“In Tl {(mev) (mev) (mev)
1.0 0.0 .834 1.14 16.2 .125 .540  .552
.9 .1 .850 1.20 15.9 .122 .530  .533
.73 .27 .933 .135  14.7 .126 .570  .559
.67 .33 .899 1.31  15.3 .127 .536  .539
.57 .43 .847 1.24  14.5 .134 .421  .453
.50 .50 .835 1.24  14.9 .133 .411  .4405
.27 .73 1.09 1.74 13.5 112 .640  .557
.17 .83 .980 1.50 13.3 .119 .535  .498
.07 .93 .889 1.22 11.9 .132 .453  .451
0.0 1.0 .780  .983 10.7 .127 .369  .360

a. Reference 44



FIGURE 3.3 Experimental (-) and calculated (x) energy
gaps for a Tl-In alloy series versus Tl con-

ceritration.
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gaps, A§XP, and the energy gaps calculated using equation

(3.20) with u*=0 (a reasonable approximation for a strong
coupling superconductor). The agreement is good enough to
indicate that equation (3.20) could be used (in much the same
way that McMillan used his approximate equation for Tc)

as the basis for a semiphenomenological expression for the
energy gap of a strong coupling superconductor. Equation
(3.20) with u"=0,

_ 1l4A-X
A, = 2wc e X »(3.28)

is to be contrasted with the simplified McMillan formula for

the transition temperature of a strong coupling superconduc-
tor(30)

T N O e . (3.29)

As pointed oﬁt earlier, McMillan's equation does not contain
a parameter corresponding to A because of his rather crude
approximation to an integral. From the excellent quali-
tative agreement that we have obtained for strong coupling
superconductors it is evident that we could fit the measured
energy gap with the expression

_ l+r-oX

T

Ao = 2wc e (3.30)

and that the fitted value of the adjustable parameter o

would not differ very much from 1 for any superconductor. The



TABLE 3.6

COMPARISON OF CALCULATED AND EXPERIMENTAL ENERGY GAPS

FOR STRONG COUPLING SUPERCONDUCTORS. (u*=0)
ELEMENT A Ny Wy A%XP AgAI‘C
(mev) (mev) (mev)
amorphous
Ga 1.70 3.20 26.7 1.66 2 1.67
Pb 1.51 1.80 11.05 1.385P 1.28
amorphous c
1.78 3.18 13.95 1.21 .97
Bi
4
Hg 1.45 2.66 14.45 .83 .85
a. Reference 48
b. Reference 22
c. Reference 48
d. Reference 49
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fitted o would certainly never be small enough, for a strong
coupling superconductor, to render -ai negligible in com-
parison to 1l+)\ because -\ is considerably larger than A for
these superconductors.. Table 3.7 contains the empirical
values of a for amorphous Ga, Pb, amorphous Bi, and Hg. The
exact value of u* is not important for these metals, because
A is so large, and we arbitrarily set it equal to .1l2.

This is a reasonable choice since Cohen's values for Ga,

Pb and Hg are .ll, .12 and .13'respectively(42). It is to

be noted that o is indeed close to 1 for all these metals.

It seems clear from the above considerations that

the theoretical McMillan equation(30),
1+A
* *
A-u" = (S5 Au
T.=uw_e ¢ ,{3.31).

is lacking an essential ingredient, the finite temperature
analogue of %, and that the semiphenomenological expression
based on (3.31),

_ _1.04(1+))
*
D A=y (1+40.62)) ,(3.32)

could be improved by the incorporation of the finite tem-

perature analogue of aX.

In any case, A is a very necessary ingredient of

our expression for AO’ even for a qualitative estimate of

the energy gap of a strong coupling superconductor. An



TABLE 3.7
EMPIRICAL VALUES OF da. (u*=.12)
ELEMENT o
Ga .873
Pb .750
Bi .760
Hg .855

58
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interesting example is a comparison of Pb and Hg using
equation (3.28). Wy is equal to 11 and 14 mev for Pb and Hg
respectively and (1+A)/)A is equal to 1.66 and 1.69 for the
two respective metals. If X did not occur in (3.28) the
fact that_the values of (1l+)A)/A are almost the same for the
two metals would lead us to the gqualitative conclusion that
AO(Hg) > AO(Pb) (because wc(Hg) > wc(Pb)). This conclusion
- is completely wrong; Ao(Pb) is very considerably larger
than Ao(Hg). It is only when we include A in equation (3.28)
and the fact that -X is considerably larger for Hg than for
Pb, 2.66 as compared to 1.80, that we arrive at the correct
qualitative result.

Let us return to our semiempirical expression (3.30)
for a moment. If the empirical values of a for two strong
coupling superconductors happened to be very nearly the same
and if a?(Vv)F(v) were available for a two component alloy
of the two elements it would be a good test of (3.30) to

calculate A, for the alloy using a (weighted) average value

0
of a.

It seems quite clear from the evidence presented in
this section that equation (3.20) is a very good approximate
solution of thé Eliashberg equations for the energy gap at
the gap edge of a weak coupling superconductor. Although
not quite so good a solution for medium coupling super-

conductors, it can be used with confidence for a qualitative

study of many phenomena in these superconductors, for example,
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the effect of alloying on the energy gap. The weak coupling
integral equations (3.13) and (3.14) can be solved very
quickly on an electronic computer and should give essentially
the same results as the Eliashberg equations when calculating
the energy gap parameter, AO' of weak or medium coupling
superconductors. Any small loss in accuracy is more than
compensated for by the huge saving in computer time.

In the next few sections we use the formalism
developed in this section to study several interesting
effects.

3.2 THE ANISOTROPY OF THE ENERGY GAP IN A PURE SINGLE-CRYSTAL
WEAK COUPLING SUPERCONDUCTOR :

Bennett(37)

used an approximate procedure to cal-
culate the energy gap Ao(e,¢) at the point k = (kF;9,¢) on
the Fermi surface of a strong coupling superconductor (Pb).
Bennett's proéedure is now described very briefly; it was
described in more detail in Chapter II. The Eliashberg gap

equations containing in the kernels K+(w,w') the function

o?F appropriate to the isotropic or 'dirty' metal,

ko ko.

a?F(v) = N(0) it "t z ng]i'k‘

are iterated until convergence is reached. The isotropic

a?F is then replaced by the directional ao?F,

Ay 2
OtzF(\),e,d)) = N(O0) T;Z\ lgkklkl a(v-wk-k'k) » (3.33)
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(all other guantities occuring on the right hand side of the
Eliashberg equations are fixed once and for all at their
converged 'isotropic' values) and one more iteration is
pe;fgrmed to yield approximate values for A(w,9,¢) and Zs(w,6,¢).
It is important to note that it is quite out of the question,
at the present time, to iterate the Eliashberg equations,
in their strong coupling form, a second time. The computer
time and memory required would be enormous.

We now apply the principle of Bennett's procedure
to the simplified weak coupling integral equations, (3.13)
and (3.14), to obtain an approximate expression for the
energy gap at the gap edge in a pure single-crystal super-

conductor. We obtain

c
(1) - 1 _ %
Ao (6,9) = m‘;‘ {J dv azF(\)lel¢) K(ercer) u
0
2wc
X lOg(—A—O-) }Ao (3.34)
where
w
c
2.0 (0,00 =1+ J av a*F(v,8,0) [L(v,ug,8g) + Fip-]

0 . (3.35)

In the above equations Ao is the solution obtained by it-
erating the integral equations, (3.13) and (3.14), to con-
vergence (using the isotropic function a?F(v), of course).
Our success in the previous section in calculating the

isotropic energy gap AO’ using equations (3.13) and (3.14),
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indicates that for weak and medium coupling superconductors
one can save a huge amount of computer time (at the expense
of a very small loss in accuracy) by using equations (3.34)
and (3.35), rather than the Eliashberg equations, to study
the anisotropy of the energy gap A0(6,¢). We can make one
further simplification by replacing Z;l)(6,¢)0 by Zn(6,¢)0,
which is giveh by

Zn(9,¢) = 1+2 [ av 02F(v,0,9¢) .(3.36)
0 \Y)

As shown in the previous section this is a very good approxi-
mation.

Equations (3.34) and (3.36) have been tested for Al
and found to work very well. This was accomplished by
calculating A0(6,¢) for several values of (0,¢) using both
the Eliashberg equations and the much simpler equations (3.34)
and (3.36). The Eliashberg equations, containing the iso-
tropic a?F(v), were iterated to convergence to obtain the
solutions A(w) and Z(w) appropriate to the isotropic case.
Bennett's procedure was then used to generate Aél)(e,¢) for
about 30 different directions. The value of u* to be used
in (3.34) was determined, using equations (3.13) and (3.14),
by requiring that the weak coupling value of AO be the same
as the Eliashberg value Re{A(AO)}. With this value of u*
equations (3.34) and (3.36) were used to calculate Aél)(6,¢).

The agreement between the two sets of directional energy
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gaps was excellent, the discrepancies being considerably less
than 1%. These discrepancies are very small compared to the
anisotropy in Aél)(9,¢). Table 3.8 contains Aél)(6,¢) for
several directions (6,¢) as calculated using the two different.
sets of equations.

Actually we can simplify things even further for a
weak coupling superconductor by replacing K(v,wc,Ao) in
(3.34) by %(v,wc,Ao). As shown in the previous section

this is a very good approximation for Al. We obtain

2
2l (o,4) = L (X(6,0) + [A(6,0) - u'1 log(+S)}A
0 ’ I3 (6,9) ' ’ H g B, 00

, (3.37)
where wc
A(8,0) = 2 [ D 44F(v,6,6) ,(3.38)
0
and
wc
A(6,9) = 2 av a?F(v,8,0) log(I;é;%—) .(3.39)
v (o
0

The value of Ao to be used in (3.37) is the value given by
equation (3.20). (3.37) is generalized, in a later section
to investigate the pressure dependence of the anisotropy of
the energy gap in Al.

Since the weak coupling integral equations are so
much simpler than the Eliashberg equations it does not take

an unreasonable amount of computer time to go beyond the one



TABLE 3.8

A COMPARISON OF TWO DIFFERENT CALCULATIONS OF THE
DIRECTIONAL ENERGY GAPS IN ALUMINIUM

0 ¢ adt (o,6) ast (6,6)
(1) (2)

0. 0. . 1847 .1856
15. 0. .1934 .1943
22.5 0. .2077 .2087
30. 0. .2035 .2043
37.5 0. .1806 .1813
45, 0. .1768 1774
54.75 .45, .1474 «1471

(1) a{ (6,0) as
equations.

(2) 85 (6,0) as
and (3.36).

calculated using the Eliashberg gap

calculated using equations (3.34)
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iteration result of Bennett. We first rewrite equations

(3.34) and (3.35) in their exact form

dq
- _N(0) k' 2 .
By (k) = Zs“-"o'{J T L g | © Ko gery, 0or Botk")) Bo(kh)
dﬂk. 2wc _
- U | =17 lOg(mEI—)-)AO(}& )} » (3.40)

z_ (k) = 1+N<b) E2-}1'—2 | 12 [L( An(K))
s'2y T am y 9kk'A “g-k'A,%c’ 02

2 / '
+ —1 A (k) : (3.41)
Qh-k'l+wc 0°= ’

where k = (kf,6,¢). K and L are given by equations (3.11)
and (3.12) with one minor modification. Py and p, are now

given by
Py = Wy * 850K 5 Py T o g — A (k) . (3.42)

Equations (3.34) and (3.35) follow at once from (3.40) and
(3.41) if we replace AO(E') and Ao(g) on the right hand side
by the isotropic solution Ao and make use of the definition
of a?F(v,9,9).

A second iteraticn can be performed by inserting the

*
first iteration result for the directional energy gap,

*
One needs a scheme for interpolating from the finite set of

one iteration results for A (k') to citain Aél)(&') for any

point (kF,6,¢). This will be discussed in detail in Chapter 1IV.
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a8V (k") into the right hand sides of (3.40) and (3.41)

and performing the surface integrals over Q " These in-

k'®
tegrals are very easily calculated by changing the weight
factor in the 0?F(v,6,9¢) computer programme, which will be

discussed in detail in Chapter IV, from ngk.)\|2 to

93312 Klogyeny weradt ey agh aen ,
2 (1) .., 2 (1) (o
and g | [Bluggy, 0cr8g™ (&) + 5 Tt N

respectively. The results for Aéz)(h) will be discussed in
detail later. We only remark here that the results of the
second iteration are little changed from the first iteration
results. |

The main purpose of this section has been to present
equations that will be used in some of the following sections,
particularly in Chapter IV.

3.3 THE AVERAGE ENERGY GAP IN A PURE SINGLE-CRYSTAL WEAK
COUPLING SUPERCONDUCTOR

When impurities are added to a pure single—crystél
superconductor the transition temperature decreases(32'33'34).
This is experimental evidence that the average energy gap
in a pure single-crystal is larger than the isotropic energy

gap in the corresponding 'dirty' superconductor. We use

equation (3.40) to derive an approximate expression for the
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average energy gap

dﬂk

<A0(5)> E J I L0 (k)
in a pure single-crystal weak coupling superconductor. This
expression can be used in conjunction with the directional
energy gaps calculated by the one iteration procedure dis-
cussed above to estimate <A (k)>.
We replace K(wk k X, ,A (k')) in equation (3.40)

by the approximate form K(wE_&.A'wC,AO(E_)) to obtain

{ an, |G vy |2 12/
Ay (k)Z_(k), = N(O) —= —}H&-——— [log( )
0'=""8'="0 4ﬂ A k—k N 1+wk K" l/wc

2w aq. ,
+ log(ZETiTT)]AO(ED - Ug l k 109(“—TETT)A (k") 1.

We average both sides of this equation over all directions of

k to obtain

an [ an - ae
k _ k' =, 4y - ' k' s,
[ 2 A (k)Z (k) = s A(E.)'AO(E.) + J e A (k)
x 1og<32—u§§—.)—>zsou_<:> - l Sk
o -
2wc ,
x log( )An (k') , (3.41)
E,(EN %o
where
PRI
d g ] )
A(k') = 2N(0) 2’; A= o | D oger(y,x") (3.42)
x “k-k'A v =
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and
2
dq lgy gl 13/ W
ity = o K A A
(k') = 2N(0) -——Z—k—h——log(—}—k’—ﬁ—)
{ 4Ty Yk-kra gk
| N
v/w
= 2 [ a?F(v,k') log(—;375—) .(3.43)
0

We define the anisotropy parameters a,, b, and Bk

by the expressions

A4 (k) <by(k)> (l+a

&) ’

A(k) = <A(k)> (1l+b,) ’
and

X(k) = <X(k)> (1+b,) ) (3.44)
where

‘ ko

<f(£)> = T f(k)
for any function f(k).
Since Ia&I, lb&" [5&] << 1

we can expand both sides of (3.41l) in terms of these small
quantities and retain only the lower order terms on the
right hand side. We ignore the very small difference

between Zs and Zn and obtain

> (1+<A>(1l+<ab>)) ’

ko
T A (k) 2 (k)0 = <Ao
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ae,, _ -
T— X8, (k") = <X><Ay> (1+<ab>) .

e

dﬂk, ch 2wc
% )\(]il)A ]_og(z—o—(z'ry) Ao (.]S.') = <A><A0>{(1+<ab>)log(<—AF)

- %<a2> - <ab>} ’
an,, 20 20 2
k! c Y oas Ve, _ <a%>
[ < log(’A—o—("ET')")Ao(]il) = <A0> {log(<Ao>) ) } .

Substituting these expressions into (3.41l) and solving for

<A0> we obtain

1+ (1+k<a®>+2<ab>)A - (1+<ab>)X - k<a’>y”
(1+<ab>) A=y

> =
<A0(E) 2u, e
. (3.45)
This equation is to be contrasted with the expression for
the isotropic energy gap in a 'dirty' superconductor

1+A=X
- iEAA

by = 20 e A-u . (3.20)

Equation (3.45) is not very useful as it stands because
we do not know the values of the quantities <a2>, <ab> and
<ab> (because we do not know A,(k)). Knowledge of 4, (k)
requires iterating the integral equations (3.40) and (3.41)
until convergence is reached, which is a very formidible task

even after all the simplifications that we have made. The
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assumption that we make, which is a very reasonable one, is
that, even though the anisotropy function a, may change
somewhat between thebfirst and last iterati;ns, the gross
average properties of this function, such as <a2>, <ab>

and <ab>, do not change appreciably. Hence to estimate
<Ay(k)> we use the one iteration results for A,(k) to
calculate <a2>, <ab> and <ab>. Our results for Al are
reported in detail elsewhere in this thesis. We just note
at the present time that (3.45) gives the correct qualitative
result that <A0(5)> is a few percent larger than Ao. One
cannot obtain this result in a straightforward way from the
one iteration results for AO(E). That is, 1if one averages
the one iteration results for A,(k) over all angles it is

found that<Aél)(E)> < A By applying an analysis similar

0.
to the above one to equation (3.37) one can easily show that
Ao

14 r<ab> (1)
I

adM @) = . (3. 46)

This is slightly less than A, because there is a very strong

0
correlation between X (k) and Aél)(g) so that <ab>(l) is

positive.
3.4 EFFECT OF PRESSURE ON A WEAK COUPLING SUPERCONDUCTOR

In this section we use equation (3.20) and equations
(3.13) and (3.14) to investigate the dependence of the
isotropic energy gap on the fractional volume change, v,

for Al, Tl, In and Sn. We then iterate the Weak coupling
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integral equations once to obtain an approximate expression
for the dependence of the directional energy gaps on v. This
expression is then applied to aluminium.

The fractional volume change is defined by

v = -4, (3.47)

where Q@ is the volume of the metal when it is subjected to

a hydrostatic pressure P; Qs is the standard or zero pressure

volume; AQ = O - Qs.

(i) Pressure Dependence of the Energy Gap for an Isotropic
Weak Coupling Superconductor
The zero temperature isotropic energy gap for a
superconductor which has undergone a fractional volume
change, v, is given by equation (3.20) when the v dependence
of the various quantities involved is introduced.

_ 1+ (v) =X (v)
%*
Av)=u (V) . (3.48)

Ao(v) = 2wc(v) e
We define qu(v) by the expression

wg}(v) = YEI_A(V) wg}(O) . (3.49)
We assume that the variation of qu(v) with momentum transfer,
g9, and polarization index, A, is not important, and replace

the exact relation (3.49) by the approximate relation

wg}(v) = y(v) ng(O) .{(3.50)
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To calculate the phonon frequency shifts we use the Griineisen

relation(SO),

0 in w

where YG(q,X) is the Gruneisen parameter for the mode (g,A).
In terms of an average Gruneisen parameter, Yo the scale

factor, y(v), is given by

y(v) = (1-v) .(3.52)

In the Thomas-Fermi approximation N(O)Uc varies more

slowly than %— with volume change(39). This variation is
F

very slow for small volume changes and will be neglected.
That is, we assume u*(v) = u*(O) in what follows.

A(v) and X(v) can be calculated by a simple modi-
fication of the a?F computer programme which involves
scaling all phonon frequencies by the factor y(v) and
scaling all lengths by the factor (9/95)1/3. The only non-
trivial change in A(v) and X(v), which cannot be immediately
written down, is the effect of rescreening the pseudopotential
form factor, W(q/ZkF), to take into account the changed
conduction electron density. Since the effect of rescreening
the pseudopotential is small relative to the effect of
scaling the phonon frequencies and since this direct method
of calculating A(v) and X (v) is quite time consuming,
especially if one wants to consider a large number of values

of v, we use the rescaling procedure of Carbotte and
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Trofimenkoff(51'39), instead. These authors showed by a
detailed numerical investigation of [az(v)F(v)]V for Al

that to a good approximation

B(v)

[a2 (WMF (V) ], = S5 [a® (V/Y(V)IF (v/Y(V))], (3.53)
Y& (v)
where
1 1
B(v) = [[ at t3|w(e) |2]v/[[ at £3|w(t) |2]o . (3.54)
0 0

They used the above scaling law to investigate the pressure
dependence of the energy gap by solving the Eliashberg gap
equations.at zero and finite pressure. This is an extremely
time consuming undertaking and they were able to consider
only one, or at most two, finite values of v for each of the
metals investigated. Our very simple result, equation (3.48),
is only an approximate solution of the Eliashberg gap
equations (for a weak coupling superconductor) but does not
suffer from the numerical uncertainties involved in the
complicated principal value integrals of the gap equations or
in the neceséarily coarse mesh of points used to represent
the function a? (V)F(v).

From equation (3.53) it readily follows that

A(v) = -]—;’-‘-Y-)- A (0) . (3.55)

Yo (v)
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It is not quite so easy to show that

.{(3.56)

T = 34 T(o)
Y (v)
The proof is as follows: Generalizing the definition of X,
equation (3;19), to finite v and using the scaling law,

(3.53), we obtain

wg (V)
_ _ av ., v/w, (V)
A(v) = 2 vy [a% (V)F (\))] lOg(—m) (3.57)
0
ch(o)
_ B(v) v/ch(O)
= -—Y-z—— .2 J [CX (\)/Y)F(\)/Y)]o 1°g(l+\)/Yw ﬁ) (Y=Y (v))
0
w_(0)
/w (0)
_ B(v)
= f;f— -2 [ =t [2OF(v)], 1og(l+v /w oy) (V'EV/Y)
0
= B2(V) 'X'(O)
Y (v)
Subgtituting (3.50), (3.55) and (3.56) into (3.48) we
obtain
_ 1+n(v)[A(0)-§(0)]
By (v) = 2y(v) w6 (0) e n(v)A(0) -u , (3.58)
where
n(v) = ?‘V) . (3.59)



75

We note that, within our model, the v dependence of

the BCS parameter N(0)V is given by

- n{w)Ar(0)-u
[N(O)V]V - l+n(V) [X(O)-—(—TTO .(3.60)

Figure 3.4 is a plot of [N(O)V]V versus v for Al, Sn, Tl and
In. The determination of n(v) for the various metals will
be discussed later. We note that the decrease of [N(O)V ],
with increasing v is linear to a good approximation.

The simplified integral equations (3.13) and (3.14)
are readily generalized to finite v. Using the scaling law

(3.53) we obtain

w, (0)
By (V2L (85 (0)) = {‘;—g—%-f v [a? (WF (V)14 K(Y(V)V,¥(V)u,(0),
* 2y (V) w,(0)
85(V)) = u log( Ty (V) ) 1A, (v) i(3.61)
w, (0)
2V (8 (v)) = 1+ %\%J v [a? (WF (V)14 (LY W)V, Y (Ve (0),
0
1l 2
AO(V)) + vy C V+wc(0)] .(3.62)

These equations have been put in a form that is convenient
for numerical calculations.

We use equation (3.58) and the integral equations



FIGURE 3.4 The dependence of the BCS parameter [N(O)V]V

on the fractional volume change v = - AQ/QS.
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(3.61) and (3.62) to calculate the ratio Ao(v)/AO(O) for
Al, Sn, Tl and In. We use the Griineisen parameters Yo

(39,52) in their

used by Carbotte, Trofimenkoff and Vashishta
investigation of the pressure dependence of superconductivity.
We obtain B(v) for arbitrary v by interpolating between the
values of B(v) tabulated by them for v = .025 and v = .050
and calculated using equation (3.54). Table 3.9 contains

Ygr B(.025) ahd B(.050) for the metals considered here. Since
we want to compare the results of the simple equation (3.58)
with those of the more correct equations (3.61) and (3.62)

we use the values of A and -) obtained by cutting o2 (V)F (v)
off at a value w* = 2A§XP(O). The results are not very
sensitive to this cut-off (as shown previously) and this
choice of cut-off avoids numerical difficulties associated
with the factors (piz--Aoz)-;5 occuring in both K(v,wc,Ao)

and L(v,wc,Ao). The only tricky point is the choice of u*

to be used for each metal. Ao(v) as given by (3.58) is very
sensitive to the factor n(v)A(O)-u* occuring in the expo-
nential and hence dquite sensitive to u*. The only unambig-
uous procedure is to use that value of u* which gives the
correct zero pressure energy gap. We denote these values

of u", obtained from (3.58) and equations (3.61) and (3.62),
by u;XP(l) and u;XP(Z) respectively. This procedure is the
correct one from another point of view. We compare our

results for AO(V) with those obtained by solving the Eliash-

berg gap equations. In this latter calculation, done by
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TABLE 3.9

PARAMETERS USED IN INVESTIGATING THE PRESSURE
DEPENDENCE OF THE ENERGY GAP

* *
ELEMENT Yo B(.025) B(.050) uEXP(l) uEXP(Z)
Al 2,22 . 1.0263 1.0563 .1335 .1336
Tl 2.25 1.0250 1.0500 .1006 .1090
1.80
In 1.0273 1.0604 .1087 .1196
2.50 :

Sn 2.25 1.0200 1.0445 .1339 .1402
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P. Vashishta(sz), the Coulomb pseudopotential parameter is

adjusted to give the correct zero pressure energy gdap, AO(O).
We should do the same if our comparison is to be meaningful.
It shoﬁld be remarked that our procedure is a most stringent
test of the relevant equations. We could easily pick values
of u* that would give very good agreement with Vashishta's
values of Ao(v)/AO(O) and at the same time a fairly good
value of AO(O). For example, in the work of Carbotte and
Trofimenkoff reasonable qualitative agreement with their
results for Tc(v)/Tc(O), obtained by solving the Eliashberg

gap equations, was obtained using the Morel-Anderson equation,
1
*

= A=y

with the same value of u* used in both calculations. This
agreement loses its significance when it is realizedbthat
the Morel-Anderson results for TC(O) are very bad. Table
3.9 contains the values of “;xp(l) and u;xp(Z) that are

u;XP(l) was used above in
the calculation of [N(O)V]V and is used below in the cal-

used to calculate Ao(v)/Ao(O).

culation of the pressure dependence of the isotope effect.
Figure 3.5 is a graph of Ao(v)/AO(O) versus v. The
solid curves are the results obtained using equation (3.58)
and the broken curves are those obtained using equations
(3.61) and (3.62). There is very good qualitative agree-

ment between the two sets of curves for the medium coupling



FIGURE 3.5 The dependence of the energy gap on the
fractional volume change v = - AQ/QS, as
calculated using equation (3.58) (solid lines)
and as calculated by solving the coupled set

of equations (3.61) and (3.62) (broken lines).
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elements and excellent quantitative agreement for weak
coupling Al.

Table 3.10 contains three values of the ratio
Ao(v)/Ao(O) for v = .025 and v = .050. They were calculated
using equation (3.58), equations (3.61) and (3.62), and

the Eliashberg gap equations(sz)

, respectively. The
Eliashberg solutions are those of P. Vashishta and were

calculated by scaling the phonon frequencies according to

y(v) =1 + Yo v .

This same scaling was used in calculating our values for
Ao(v)/AO(O) in table 3.10. (The calculations for figure
3.5 were done for values of y(v) given by (3.52).)

We note that there is very good quantitative agree-
ment between the values of Ao(v) obtained by solving the
Eliashberg gap equations and those obtained by solving the
greatly simplified integral equations (3.61) and (3.62).
The discrepancies are probably less than the numerical un-
certainties in the Eliashberg results. The Eliashberg
equations were solved for a fixed number of points (45)
in the a?(v)F(v) spectrum. For a fractional volume change
v, wc(v) = Y(v)wc(O). Hence to be consistent one should
increase the number of points used to represent the function
a2(Vv)F(v) by the factor y(v)/y(0). The values for Ay (V)
calculated using equation (3.58) are in fairly good quan-

titative agreement with the other values.
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TABLE 3.10

A COMPARISON OF THREE DIFFERENT CALCULATIONS
OF THE RATIO Ao(v)/Ao(O)

v = ,025
ELEMENT Yg (1) (2) (3)
T1 2.25 .875 .86 .85
In 1.80 .92 .90 .895
2.50 .865 .84 .83
Sn 2.25 .84 .825 .81
v = ,050
ELEMENT Yo (1) (2) (3)
T1 2.25 .755 .73 .71
in 1.80 .85 .82 .81
2.50 .75 .71 .70
Sn 2.25 .70 .68 .66

(1) Ao(v)/AO(O) calculated using equation (3.58).

(2) Ao(v)/Ao(O) calculated by solving the integral
equations (3.61) and (3.62).

(3) Ao(v)/AO(O) calculated by solving the Eliashberg

gap equations.
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It seems safe to conclude that, for an investigation
of the effect of pressure on the energy gap Ao of a weak
coupling superconductor, the simple expression (3.58) is
adequate; Equations (3.61) and (3.62) could be used for
slightly improved accuracy. For a qualitative study of the
effect of pressure on medium coupling superconductors
equation (3.58) is completely adequate, but for a quanti-
tative study the integral equations (3.61) and (3.62) should
be used. 1In fact, for some calculations these latter equa-
tions may be preferable to the Eliashberg equétions because
of the huge saving in computer time with, it appears, little
loss in accuracy.

(ii) Pressure Dependence of the Directional Energy Gaps
in a Pure Single-Crystal Superconductor

We readily extend to finite pressure the one it-
eration result, equation (3.34), for the direétional enerqgy
gap at the gap edge in a pure single-crystal weak coupling

superconductor. We obtain

wc(V)
L /
A0(9r¢,V) = T3 (6,6,V) { dv [GZF(V:9:¢)]V K(V,wc(V),AO(V))
0
* 2wc(v)
- U 109(-KET§T)}AO(V) (3.63)

where Ao(v) is the isotropic energy gap in the 'dirty' super-

conductor when subjected to the fractional volume change v.
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Ao(v) is given by equations (3.61) and (3.62).

The directional a?F computer programme, which is
discuésed in detail in Chapter IV, is easily modified to
calculate [azF(v,e,cb)]V for finite v. However the large
amount of computer time needed to calculate this function for
many directions (6,¢) and several values of v is not warranted
by the one iteration approximation. Instead we make the
reasonable assumption that the scaling law of Carbotte and

f(39)

Trofimenkof can be extended to the directional case.

That is, we assume that

(0% (v,0,0)1, = 5—‘-3—(% [0?F (v/y (v),8,8) 1, . (3.64)
YE(v

The expression for B(v), equation (3.54), was derived in
detail in reference (51). The analogous expression for
B(9,¢,v) is obtained by repeating this derivation with a?F (V)
replaced by o?F(v,6,¢). It turns out that, with our approxi-
mations of a spherical Fermi surface and a local pseudo-

potential, B(6,¢,v) is independent of direction. That is

B(6,9,v) = B(v) .(3.65)
Hence (3.63) becomes wc(o)
1 B(v) 2
AL(D,¢,v) = { dv [o2F (v,8,¢)]
0 142 s e,0,00 YV { 0
Yo {v) 0

* 2y (v)w, (0)
X K(Y(v)v,y(v)wc(O),Ao(v))—u log( Ao(V) )}Ao(v)

.(3.66)
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For Al, replacing K by ¥ is a very good approximation.

We do this and obtain

80(8:0,v) = TreyrTegoor (N(MT(8,6,0) + [N(MAG$,0)-u"]
2y (v)w_(0)
x log( AdTV) )}Ao(v) ,(3.67)

where Ao(v) is now given by equation (3.58). We use equation
(3.67) to calculate AO(6,¢,V) for Al for v=0, .025, and .050.
A(6,¢,0) and 1 (6,¢4,0) are calculated using the theoretical
a?F(v,0,¢)'s discussed in detail elsewhere in this thesis.
The results for Ao(6,¢,v) are shown in figure 3.6.

A measure of the anisotropy in A0(6,¢,v) for a given
value of v is the ratio of thewmaximum to the minimum
directional energy gap occuring for that value of v. We
define an anisotropy parameter A(v) accordingly.

8525 (0,0,v)

MIN

e .(3.68)
BTN (8,6,V)

A(v)

MIN
0

Al for v=0, .025 and .050. It is apparent from the tabulated

Table 3.11 contains 4,°X(8,6, v), Ay™(6,6,v) and A(v) for
values of A(v) that the anisotropy of the energy gap in Al
increases with increasing pressure. This very interesting
result is not hard to understand physically. The dominant
source of anisotropy in the energy gap is the anisotropy in
the phonon mediated electron-electron interaction. The set

of virtual phonons emitted or absorbed by an electron



FIGURE 3.6 The anisotropy of the energy gap Ao(e,¢)
in aluminium for three different fractional

volume changes.
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TABLE 3.11
EFFECT OF PRESSURE ON THE ANISOTROPY

OF THE ENERGY GAP IN ALUMINIUM

AR (4,6, v) o

v Ao (6,¢,v) A(v)
(mev) {mev)

0.000 .198 .147 1.35

0.025 .111 .079 1.41

0.050 .054 .036 1.50

87
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making Qirtual transitions from the state k = (kF,6,¢) to
all other points k' = (kF,e',¢') on the Fermi surface depends
on the initial state k. This is a geometrical effect. 1In
the extended zone scheme the set of all the phonon q vectors
generated above would terminate on the surface of a sphere
of radius kF‘ In the reduced zone scheme, which is the
physically meaningful representation, the g vectors corre-
sponding to umklapp processes would be remapped into the
first zone. The parts of the spherical surface lying out-
side the first zone would be mapped into the first zone
forming a complicated two dimensional surface. It is obvious
that, unless one had a spherical Brillouin zone or such a
small Fermi sphere that there were no umklapp processes,

the shape of this surface would depend on the coordinates
(6,¢) of the initial state k. When the metal is subjected
to a hydrostatic pressure the Fermi sphere and the Brillouin
zone scale together so that the shape of the complicated
surface generated for the initial point (6,¢) does not
change (its size does, of course). In the approximation

of a mode independent Griineisen constant we expect the
anisotropy in the phonon induced electron-electron inter-
action to be essentially independent of pressure. But,
because this phonon induced interaction decreases with
increasing pressure, the anisotropy in the total interaction

* .
increases . Hence the anisotropy in the energy gap increases

* %
The Coulomb pseudopotential parameter p changes very slowly

with pressure as compared to the phonon-mediated interaction.
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with increasing pressure. Furthermore, the smaller the ratio
of the strength of the phonon induced interaction to the
strength of the Coulomb interaction the faster will be the
increase of the energy gap anisotropy with preésure. Since
this ratio decreases with increasing pressure the rate of
increase of the anisotropy with increasing pressure will
ihcrease as the pressure increases. This qualitative effect
is clearly exhibited in figure 3.7 which is a plot of A(v)
versus v. The above considerations also lead to the con-
clusion that the effect of pressure on the anisotropy of the
energy gap will be more pronounced’ for a weak coupling super-
conductor than for a strong coupling one.

Even if one were to turn off the Coulomb interaction
the effect would persist. In this case the anisotropy of
the total interaction would be independent of pressure.
But the energy gap depends on the total interaction in a
very nonlinear way so that the anisotropy of the energy gap
would still increase with increasing pressure and the rate
of increase would be greater, the greater thé pressure.

Suppose, for example, that

-1/(N (0w 1d7?

Ao(er¢lv) = sz e .

It is obvious from this equation that even if the anisotropy
in [N(O)V]3’¢ were independent of v the anisotropy in the

energy gap would increase with increasing v, i.e. decreasing



FIGURE 3.7 The dependence of the anisotropy parameter
A(v) on the fractional volume change v for

aluminium.
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N(0)V, and the rate of increase would be larger, the smaller
the interaction. The effects predicted above should be
accessible to experimentalists because many thermodynamic
properties depend on gross features of the anisotropy, such
as the mean squared anisotropy. The qualitative arguments
given above indicate that it would be best to look for an
increase in the anisotropy of the energy gap with pressure
in a weak coupling superconductor. Our calculations for
aluminium indicate that the effect is quite large. The
anisotropy pérameter A(v) increases by slightly more than
10% for a fractional volume change of 5%.

3.5 THE TRANSITION TEMPERATURE OF AN ISOTROPIC WEAK
COUPLING SUPERCONDUCTOR

The BCS intégral equation for the energy gap of an

isotropic superconductor at zero temperature is(ll)

“p
ao, 4o, e
£y (0) = N(0) = T | S Vi 84(0) .(3.69)

The weak coupling version of equation (3.1) can be written

in this form. We obtain
w

(o]
ae, dae ‘
_ N(0) k Sy de
(0 = 717 107,0) J[ an Tam J 5T Vkk'80(0)/(3.70)
0
(E'+w )
- 2 k-k'\ -
where VBE' = 2 i 'gk&'ll o CEVITS U, .(3.71)
-k ' 0
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The phonon-mediated part of ka, is known as the Eliashberg

interaction.

The BCS result for the energy gap at a finite tem-

perature T ig (11

®p

dq, dq. , .
By (T) = N(0) {[ = — J dg. Viyr tanh(E'/2kpT) Ay (T)
(3.72)

where E' is now given by

E' = /e'2+A§(T) )

We use equations (3.69) and (3.72) to generalize our zero

temperature equation, (3.70), to finite temperature. We

obtain

w

c

dQ. dan -
_ _N(0) 'k k' de'!

AO(T) = T9(T) [[ Ir Ar [ —ETV].S]S.' tanh(E'/2kBT)A0('I‘)

0 ,(3.73)
where ka, is given by (3.71]) with AO(O) replaced by AO(T)

throughout. We have neglected the effect of thermal phonons
in extending (3.71l) to finite temperatures. This is a good
approximation for weak coupling superconductors because
their transition temperatures are very low. Moreover it

is the forced vibrations of the iomsdue to the electrons
themselves that are essential in superconductivity, not the
thermal vibrations. We have also neglected the very small

difference between ZS(AO(T),T) and Zn(O,T). This difference
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vanishes at the transition temperature.

The temperature Tc at which the superconducting

transition takes place is obtained by letting AO(T) go to

zero as T goes to Tc from below in equation (3.73). We

obtain
Yo
N(0) ko dﬂk 5 de" tanh(e'/szT)
l_——T+A(T Zr ar |9l €7 EFW, .
A =2 k-k'A
0
w
c
d )
- Uc — tanh(e'/Zk T )}
0
W W
© © /2k_T )
, tanh (e’ *
= et {2 | dv a2 (VF(v) | & — -y
1+A(TCS € e'+v
0 0
w
c
de' '
X — tanh (¢ /2kBTc)} -« (3.74)
0
The last integral is easily evaluated for a weak
coupling superconductor(53). Changing variables (x=e'/kBTc)

and integrating by parts we obtain

w
C

{ de:

0

w/kpT,
{ ax w
tanh(e'/2k T ) = —;-tanh(x/Z) = log(EET—)
J B ¢
0
[ d
- dx log x ax tanh (x/2) . (3.75)

O —
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We have used the fact that tanh(wc/kBTc) can be replaced
by 1 when W, >> kBTc (as it is for a weak coupling super-
conductor). Since d/dx tanh(x/2) decreases very rapidly as
X increases from zero and since the upper limit, wc/kBTc,
is very large we have replaced it by infinity. The last

integral in (3.74) is just a number, -log 1.134. Hence

w
C

J de? 1.134 w

] -—
~—+ tanh(e /2kBTc) = 109(—_EET;__

= ) . (3.76)

o]

We evaluate the remaining integral in (3.74) in a

similar fashion

e ?c/kBTc
)
de'! tanh (e /ZkBTc) _ 1 dx tanh(x/2)
[) [] = < _—7_—
£ e'+v kBTc X X+V kBTc
0 0
wc/kBTc wc/kBTc
+v/k_T x+v/k_T
I X X B c B¢
=35 { tanh(i) log( " ) + [ dx log( < )
0 0
d X
= tanh 5}
wc/kBTc
= L {10g¢ e ) + log 1.134 + dx log (x+2—) L tanh ¥}
=3 o9 WV °g ~-. g TkgT, X 27
b :

Since v/kBTc >> 1 for those phonon frequencies, v, which
are important in weak coupling superconductivity, and since

%; tanh(%) decreases very rapidly as x increases from zero,
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*
we can replace log(x+v/kBTc) by log(v/kBTc) in the remaining

integral to obtain

W
C

l de tanh(e/2kgT ) 1 W
€

= [log(
w FV

v
ey 5 ) + log 1.134 + log(E;T;)]

o
. (3.77)

Substituting (3.76) and (3.77) into (3.74) and solving for

Tc we obtain

1+A (T ) =X

-
*

_ A=y
kBTc = 1.134 w, e ,(3.78)

where A=A (0) and X=X(0). Equation (3.78) is very similar
to the corresponding equation, (3.20), for the zero temper-

ature energy gap. The BCS result for the transition temper-

ature of a weak coupling superconductor is(ll)

= | -1/N(0)V

A comparison of (3.20) and (3.78) with the corresponding
BCS results suggests that the BCS parameter N(0)V should
have a temperature dependence given by

*

A

[N(O)V]T = T:X%%T:f . (3.80)

(54,55)

Recent experimental determinations and

*
For \)/kBTc >> 1 and x small, log(x+v/kBTc) is a very slowly

varying function of x.
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theoretical calculations(56’57)

of the temperature dependence
of the renormalization parameter XA (T) indicate that for

small T, of the order of a few degrees, A(T) is a very

slowly increasing function of T. This implies that the
temperaturé dependence of the BCS parameter is very slight.

We now use equations (3.20) and (3.78) to obtain a

small correction to the well known BCS ratio

ZAO(O)

BCS
('_"'__'—") = 3.53 '(3081)
kBTC
Our result is
A(T.)-A
—-—c
2A,(0) _ %
() = 3.53e 7V . (3.82)
B ¢

Since A(Tc) is slightly larger than A this equation leads
to the result that the ratio ZAO(O)/kBTc for a weak coup-
ling superconductor is somewhat larger than the BCS ratio.
Our results for Al, T1, In and Sn are 3.53, 3.585, 3.60 and
3.57 respectively.
We now use the scaling law of Carbotte and Trofimenkoff,
eqguations (3.53) and (3.54), to derive a simple expression
for the pressure dependence of the ratio 2A0(0)/kBTc. The
temperature dependence of the renormalization parameter is

given by(58'59)

2
A(T) = 2 ] dE (-QE%%L) J dv ﬂ_%é%l »(3.83)



97

where f£(E) is the Fermi function

1
£(B) = : .
E7kBT
e +1
Within the scaling law approximation the dependence of A (T)

on the fractional volume change v is readily found to be

AT,y = B /v (v),0) = n(v)A(T/Y(0) .(3.84)
Yo (V)
We are using the notation: A(T)=A(T,v=0); A=A(T=0,v=0).
It follows from (3.82) and (3.84) that

[A(T, (V) /¥ (¥))=A]

(0,v) n(v) —
g = 3.53 e n{v)A-u . (3.85)

If A(T) is available for small T this equation can be solved
in a fraction of a second on an electronic computer.
The qualitative pressure dependence of (3.85) follows

from a simple argument. A calculation of A(T) for low

T(T << GD), using the model(sg)
a2F(v) = A (v/w.)? 0<V<w
D D
= 0 v>wD

leads to the result

A(T) = 4 212 T 2

°p
) = &2 109(-D) . (3.86)
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This result is qualitatively correct for a weak coupling
superconductor. Now, let us consider equation (3.78) for
a moment. Because of the exponential dependence of Tc on
(A—u*)_l it is obvious that Tc goes to zero much faster than
(X-u*) does. Hence, by equation (3.86), for small T the
difference (A(T)=-A) goes to zero much faster than (A-u*)
does. This means that the factor in the exponential of
equation (3.85) decreases with increasing pressure (i.e.
decreasing (X—u*)) and the ratio of twice the'zero temper-
ature energy gap to the transition temperature approaches
the BCS result. This effect has been experimentally observed
in lead(Go). As a further check equation (3.85) was solved
for In and Sn for several values of v using the low tem-
perature values of A(T) calculated in reference (56). For
both metals it was found that the ratio of twice the zero
temperature energy gap to the transition temperature approaches
the BCS value of 3.53 with increasing pressure.

Before proceeding to the next section we observe
that our more or less intuitive derivation of equation (3.73)
can be justified within the strong coupling formalism. As

(30)

already mentioned in Chapter II, McMillan used the finite
temperature Eliashberg gap equations to derive an approxi-
mate expression for the transition temperature of a strong
coupling superconductor. He assumed, as we have done, a
model solution of the form

A (w) A

0 0<w<wc

= L4 .
Ac wc w
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He neglected thermal phonons and obtained
w w
c c

A ' -t v
aloy = =9 f do’ 5 J dv a2r(v) (Ee) o _flel)y 3 g9

z(0) w' w'+v -w'+v
0 0
for the contribution of one-phonon exchange processes to the
energy gap. He then neglected w' relative to v in the phonon
propagators (iw'+v)_l (because the integrand in the w'
integral is heavily weighted at small w') and obtained

w w

(o] c
A 2
1 n 0 dw' w' dv a“F(v)
0 0

We treat equation (3.87) more accurately. For small T

f(-w') is equal to 1 over most of the range of integration
0<w'<wc so that it is not a good approximation to neglect

w' relative to v in the term containing f(-w')/(w'+v).

We leave this term unchanged. For small T f(w') decreases
very rapidly to zero as w' increases from zero. For a weak
coupling superconductor the important phonon frequencies, v,
are much larger than the values of w' which are heavily
:weighhadin the term f(w')/(-w'+v). Hence it is a good
approximation to replace this last expression by f£(w')/(w'+v).

We do this and obtain in place of (3.88)

w w
[o] C
tanh (w'/2k_.T )
1 n A(O) dw' B c
AT (0) 7oy J dv a?F(v) [ = —rs .(3.89)

This is precisely the one-phonon exchange contribution to the

energy gap occuring in equation (3.74). This justifies our

McMASTER UNIYERSITY L«BRARi



argument by analogy used in writing down (3.73) mmimnnsequenégp(3.74).

3.6 THE TRANSITION TEMPERATURE OF A PURE SINGLE-CRYSTAL
SUPERCONDUCTOR
We can easily generalize equation (3.73) for the
isotropic energy gap of a 'dirty' superconductor at a finite
temperature T to an equation for the directional energy gap

of a pure single-crystal superconductor. We obtain

aq “e
= —N(0) k! de' : -
Ay (ksT) = T (%, T) J Tr J 5 VE’]S,AO(En,T) tanh (E'/2kgT)

o
(3.90)

where E' E/g'2+Ag(g,T). This equation is used in Chapter IV
:to investigate the temperature dependence of the anisotropy.
Letting the energy gap go to zero as T goes to Tc

from below (3.90) becomes

w v
tanh (e /2kBTc)

aQ, | - c
- _N(0) k' 2 de'
BokrTe) = (i, Tyt | T 22 ggeral Re BT | G :
= A == o €' Wy 1y

a bc de'
-— e—— ¥ ]
UC e AO (]_(__ ,Tc) e tanh (e /ZkBTc)}

0

Using the following results from the previous section,

We S ge 1.134u,
tanh(e'/Zk o) = log (——F—) .,
e kBTc

w '
C ge! tanh (e /2kBTc) _1 (log ( w/w '+ 1o (1 134wc)]
e’ e' + w w g +w7w g k T !

Nic MAEST e uurf“Q*Y‘JBWARY
chAD T
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we obtain

dsy |9y |2 /o,
_ 1 \ Kk ' k-k '
An(k,T ) = Ag (k' T )2N(0)Z log ( )
05T = IR, T, y{ J ' R l+wk Y A/’w
 1.134u dgk. bk ra | )
+ log ( )1 (k',T,)2N(0) J—sa——0 - *]
kgTe %0 A “k-k'A

Integrating over Qk we obtain

de, ko, 1.1340

——— i — L ————————————

ar Do (keT) (144 (K, T L)) 2 A5 (k' T )X (k') +1og ( T,
f aQ,

x [] A Gt T AR 0T (3.91)

We let

A,(k,T))

A(E,Tc) A(Tc)(l+bE)

A(k) = A(1+b

E)

(A(k) = A(k,0))

(k)

7(1+Ek) A .(3.92)

We have assumed that the anisotropy parameters ay s bk and Ek
are independent of temperature over the small tempergéure
range from zero to the transition temperature. After
substituting (3.92) into (3.91), cancelling <A0Q5,Tc)>

from both sides of the resulting equation, and solving
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for kBTc we obtain

1+(1+<ab>)A(Tc)-(1+<a5>)X

- )

*
k.T = 1.1346_ e (1+<ab>) A-u
B cC C

.(3.93)

The one iteration results for <ab> and <ab> for Al are used
in Chapter IV to estimate the transition temperature of a
pure single-crystal of Al using the above equation.

Equation (3.93) is to be compared with the corre-
sponding equation for the average energy gap in a pure
single-crystal. We note that

*
2<A (k,0)> (1+k<a?>+2<ab>) A= (L+<ab>) A (T ) -4<a’>L
= 3.53 exp{-

kBTc

(1+<ab>)x—u*
.(3.94)
In Chapter IV this equation is used to arrive ét
the very interesting qualitative result that the rétio of
twicé the average zero temperature energy gap to the transi-
tion temperature for a pure single-crystal of Al is smaller

than the corresponding ratio. for isotropi¢ or 'dirty' Al.
3.7 THE ISOTOPE EFFECT FOR A WEAX COUPLING SUPERCONDUCTOR

We use the equation for the transition temperature

of a weak coupling superconductor,
- en(T ) =X

kT =1.130 e A=u* (3.95)
B ¢ ‘ c rA=e

to derive an expression for the isotope effect exponent.
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Differentiating the logarithm of both sides of (3.95) with

*
respect to the ionic mass M we obtain

an log Tc = an log We = -—(——;—:;———) .

X

We assume that T_ oM ® and recall that W, oM~ to obtain

dx(T )

d“ .(3.96)
Now u* = N(O)Vc
TFN(0VV, Tog (Ey/u ) |
Hence
* N(0)V
at _ () _ ) 2
a - " uo lmEov, log(EF/w)] = - ¥ -(3.97)
dx(T) d log T dr(T.)
d = c c_ _ B8 c
am TS = g 153 T, aw - " M Te TaT, -(3.98)

Substituting (3.97) and (3.98) into (3.96) and solving for

the isotope effect exponent, B, we obtain

(14+X1 (T _)=-})
(l - *C u*z)
8 =X (A=u) 2 (3.99)
= dA(T ) e
(1 + T =35 —/ (A=} ))
(o]

-R!

If we assume that AO oM (A0 is the zero temperature

*
M is the average ionic mass of a superconductor consisting

of a single element.
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energy gap given by equation (3.20)) we find in the same way

that
Bl = ;5 (1 $1+X—A)2u*2)
(A-n )
1 p* 2
=% (1 [ 19) (3.100)
1+2-% N0V

where N(0)V is given by (3.22). A(T) is a slowly increasing
function of T for values of T of the order of the super-
conducting transition temperature of a weak coupling super-

conductor(56’57)

so that (3.99) and (3.100) lead to the
conclusion that B is slightly smaller than B'. To a good
approximation they are the same.

We can readily apply the results of section 3.4 on
the.pressure dependence of the energy gap to a brief study

of the pressure dependence of the isotope effect. Using

the scaling law of Carbotte and Trofimenkoff we obtain

B'(v) = %(1 - (14+n (v) [A(O);X(O)]z) u*(0)2) L (3.101)
(h{(v)x(0)-u (0)) '

where n{v) = —%iZL .

Yo (V)

Table 3.12 contains B'(v) calculated, using the above
equation, for v=0, .025, .050 and .075 for Al, T1l, In and Sn.

* !
The values of A, A, War W oo B(v) and y(v) used in this section

are the same as those used in section 3.4 to calculate the
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TABLE 3.12

PRESSURE DEPENDENCE OF THE ISOTOPE EFFECT EXPONENT

ELEMENT YG B'(0) B'(.025) B'(.050) B'(.075)
Al 2.22 .325 .283 .229 .155
Tl 2.25 .469 .4645 .458 .450
In 1.80 .466 .462 .458 . 453
Sn 2.25 .443 .432 .419 .403

TABLE 3.13

COMPARISON OF OUR RESULTS FOR THE ISOTOPE
EFFECT WITH THOSE OF GARLAND

ELEMENT B! B

GARLAND
Al .325 .37
Tl .469 .48

Sn .443 .455
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pressure dependence of the energy gap. Figure 3.8 is a plot
of RB'(v) versus v for Al, Sn and In. Two qualitative features
are to be noted: (1) the isotope effect exponent B' is
smaller for a weak coupling superconductor than for a medium
coupling one; (2) B' decreases with increasing pressure

(the weaker the phonon induced electron-electron inter-

action the greater is the rate of decrease of B' with in-
creasing pressure). These gqualitative effects are not un-
expected because it is well known that deviations of the
isotope effect exponent from % are a measure of the relative
strengths of the Coulomb and phonon-mediated electron-electron
interactions(ZI).

We do not compare the calculated zero pressure
isotope effect exponents with experiment because the experi-
mental situation is far from clear at the present time. The
early experimental results for the simple metals were all
close to the BCS value of .5. 1In particular the experimental
value of B for Zn was .45 % .01(61). A recent measurement
gave .30 % .01(62).

In table 3.13 we compare our results for B' with
the latest results of Garland(63) for B. Our results are
consistently lower than Garland's. Garland cuts the Coulomb
interaction off at 4EF thus obtaining a smaller value of u*

than is obtained using the usual cut-off at E This cut-off

F.
has been criticized because there appears to be no sound

physical basis for such a large cut-off.



FIGURE 3.8 The dependence of the isotopé effect ex-
ponent RB'(v) on the fractional voluﬁe change

v for Al, Sn and In.
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A good criterion for the correctmess of any theo-
retical expression for the zero temperature energy gap (or
the transition temperature) 1is that it simultaneously gives
the correct energy gap and the correct isotope factor Bg'.
Hence, it will be very interesting and illuminating to
compare our results for the isotope effect exponent with
experiment when reliable experimental values for weak and

medium coupling superconductors'are made available.



CHAPTER IV

THE ANISOTROPY OF THE ENERGY GAP IN SUPERCONDUCTING
ALUMINIUM ARISING FROM THE ANISOTROPY OF THE PHONON DENSITY
OF STATES

4.1 CALCULATION OF DIRECTIONAL ELECTRON-PHONON MASS-
ENHANCEMENT PARAMETERS
For a pure single-crystal superconductor the essential
information about the electron-phonon interaction and the
phonon density of states is contained in the function

ko, 2
(12F(\),e,¢) = N(O) "'4T'§ ngk')\l 6(\)-‘3)&_&')\) -(4-1)

We emphasize again that we are neglecting any anisotropy in
the Fermi surface and in the electronic single spin density
of states at the Fermi surface. Hence k = (kF,6,¢), where
kF is the free electron Fermi wave vector (related to the
conduction electron density by kF = (3ﬂ2n)l/3), and N(O)

is the isotropic average of Nk.(O). We employ the one OPW
approximation and a local pse:aopotential so that the

electron-phonon coupling constant is given by(zs)

Oppry = i L:&ldeMy(q) (4.2)
o ?MquA
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Equation (4.1) then becomes

) ko,
a*F(9,0,9) = | —gp— I L,(Q) §(vug,) ) (4.3)
where
3z m (g,\) 2 2
Ly (@) = =5 () lg-alg M |° LA W (q) . (4.4)
- 4kF qX

In (4.4) z is the number of conduction electrons per ion.

At first sight it might appear that the calculation
of the isotropic function, a?F(v), is more difficult or at
least much more time consuming than the calculation of the
directional function, azF(v,9,¢), because the former involves
a double surface integral while the latter involves only a
single one. This is not the case. For a spherical Fermi
surface and a local pseudopotential the double surface in-
tegral can be transformed into a volume integral over a
sphere of radius ZkF. Symmetry considerations further reduce
the range of integration to the irreducible part of the first
Brillouin zone. This enables one to use the computer tech-

(64)

niques developed by Gilat and Raubenheimer so that the

calculation of the isotropic a?F actually involves only a

modest amount of computer time(zs). The calculation of the
anisotropic function a?F(v,08,¢) for an arbitrary point (6,¢)
requires a great deal of computer time. Moreover, one needs

the function for a large number of directions (6,¢) for a

meaningful study of anisotropy.
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We now describe in some detail the method of cal-
culating o?F(v,0,¢) used in this work. The eséential in-
formation about the lattice vibrations in Al (i.e. the phonon
eigenfrequencies ng and polarization vectors qu at every
point g in the first Brillouin zone) is readily-;vailable
in the litefature in the form of a Born-von Karman force-
constant fit to the dispersion curves measured in high
symmetry directions by means of inelastic neutron scattering(ss).
The electron-ion pseudopotential form factor W(g) is taken

(66) as tabulated in

to be that of Heine and Abarenkov
reference (67). With this information the numerical eval-
uation of a?F(v,0,¢) in histogram form is quite straight
forward. The range of frequencies 0 < v < w, is divided up
into 100 channels, each of width wc/loo. The surface of the
Fermi sphere is divided into 90 x 180 = 16,200 small areas
by ninety lines of latitude, 2° apart, and 180 lines of
longitude, also 2° apart. A random point (kF,e', ¢ ') is
selected from each of the 16,200 small areas and for each
of these points the frequencies and eigenvectors qu and
g(gAr), and then the weight factors, L, (q) sin 6' a;e cal-
culated. The weight factors are then added to the appro-
priate frequency channels as specified by the delta functions
G(v—wqx). The resulting histogram is not normalized. For
normaIization purposes we define the function

as, .

N(v,0,9) = [ ~In § d(v—ng) .(4.5)
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This is a difectional phonon frequency distribution function;
it gives the phonon frequency distribution for the set of
virtual processes in which an electron in the initial state
(kF,e,¢) scatters to every point (kF,G',¢') on the surface
of the Fermi sphere with the emission of a phonon of wave-
vector g = k-k'. Although this function is interesting in

its own right we have introduced it primarily because of the

useful property
{ dv N(v,0,¢) = 3 .(4.6)

The normalization procedure is now obvious. N(v,9,¢) is

calculated simultaneously with 0?F(v,8,¢) in exactly the same

manner (except.for the difference in weight factor, of

course). The resulting (unnormalized) histogram for N(v,0,¢)

is then used to calculate the integral (4.6). Since the

correct result is 3 the normalization constant is 3 divided

by the unnormalized value of the integral. This normalization

constant depends only on the procedure adopted for: -choosing the

points (kF,e',¢') and hence applies to the function a2F(v,0,9)

also. We further note that it is independent of (6,¢) if

the same set of points (6',¢') is used for all values of (6,¢).
our results for a2F(v,8,¢) for the high symmetry

directions will be presented later.

The phonon renormalized effective mass for an electron
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in the state (kF,6,¢) is given by(68)
*
m (0,¢) =1+ A(6,¢) ) (4.7)
where o
A(6,9) = 2 J L 42F(v,0,¢) (4.8)
o]

is the electron-phonon mass-enhancement parameter for the
direction (8,9).

The results of our calculation of A(6,¢) for about
30 directions in Al are presented in figure 4.1. The most
obvious feature of this graph is the singular behaviour of
A(6,¢) for values of 6 near 27°. rThis singularity is un-
physical and arises solely because the one OPW approximation
is not valid for an electronic state‘near a Bragg plane. This
shows up inAthe fact that the one OPW electron-phonon coup?
ling constant, (4.2), is singular if the momentum transfer
g_is equal to a reciprocal lattice vector K#0. If g=K then

wq=wK=m0=0 and the coupling constant becomes infinite.

The obvious way out of this difficulty is to do a
many OPW calculation. This involves mixing into the plane
wave state |k> those plane wave states, |k+K> (K is a reci-
procal lattice vector), which have roughly thé same energy
as |£>. An expression for the many OPW coupling constant is
easy to derive(Gg). However, before this expression can be

used, the many OPW Fermi surface must be calculated and, for

every vector, k or k', terminating on this surface in a



FIGURE 4.1 The directional electron-phonon mass-
enhancement parameter, A(0,¢), for Al as cal-
culated within the one OPW approximation.

The results for the two arcs ¢=0°,and
45° on the irreducible (%g)th are to be dis-

tinguished as follows:

]
o

- ¢
o ¢

457,
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region near a Bragg plane, the appropriate mixing coefficients
must be calculated. This is easy to do in principle but
would extend the amount of computer time needed to calculate
a?F(v,08,¢) beyond the limit of practicability.

It is the low frequency part of a?F which is causing
all the difficulty. For example, the low frequency portion
of the isotropic a?F(v) for Al calculated within the one OPW

(25) is linear in v while it is believed that

(22) (70)
a?F(v) should go to zero as Vv or faster for small v.

approximation

This means that the low frequency region of the correct
a?F(v) is unimportant in calculating the mass-enhancement A
or superconducting properties because the strongest weight
given to low frequencies in these calculations is consider?
ably weaker than v 2. Hence, as long as the calculated
02F(v) is roughly correct in the low frequency region there
is no cause for concern. It is only when it is completely
wrong that trouble arises. Even the linear behaviour of
the low frequency region of the calculated o?F(v) for Al
does not lead ﬁo serious errors in calculating A or the
isotropic superconducting energy gap.

The low frequency behaviour of the calculated
0?F(v,0,¢)'s is critical as evidenced by the singularity in

figure 4.1. The reason for this is easy to understand. 1In
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an investigation of anisotropy what is important are the

differences between 6?F(Vv,0,¢)'s in different directions

(6,9). In calculating anisotropy in the mass-enhancement
parameter, A(6,0¢), the anisotropy in o?F is weighted with

1 so that the low frequency region is important

a factor Vv~
unless ¢*F(},0,¢) is very small in that region for all di-
rections. This is the case for the correctwazF(v,e,¢)'s;
unfortunately it is not the case for the a?F(v,0,¢)'s calcul-
ated within the one OPW approximation. There are some points
(6,9) on the Fermi surface such that in scattering from them
to all other points (6',¢') on the Fermi surface no momentum

transfers are encountered which are approximately equal

to reciprocal lattice vectors. For these directions



117

(6,¢) the low frequency behaviour of a?F(v,6,¢) is correct.
In other directions (6,¢) momentum transfers are encountered
which are approximately equal to reciprocal lattice vectors
so that the low frequency behaviour of a?F(v,6,¢) for these
directions is completely wrong. Hence, it is evident that
the low frequency singularity in the coupling constant can
lead to large unphysical differences between a?F(v,0,¢)'s
calculated for different directions. This is a serious
difficulty. The above considerations are illustrated
schematically in figure 4.2 where we have sketched the

qualitative low frequency behaviour of the coupling function
a?(v,R) = a?F(v,R)/N(v,Q)

for two different directions Q=(6,¢). The solid curve is
representative of the behaviour of a?(v,Q) for a direction
in which the one OPW approximation is good for all the
momentum transfers encountered in scattering from Q to all
points Q' on the Fermi surface. The broken curve is re-
presentative of the behaviour for a direction in which the
one OPW approximation leads to a divergent electron-phonon
coupling constant for some of the scattering processes Q+Q'.

(68) of the temperature

In a recent calculation
dependence of the mass-enhancement parameter A Allan and
Cohen corrected their calculated isotropic a’F's by re-

placing the divergent one OPW coupling constant by a frequency



FIGURE 4.2 Qualitative low frequency behaviour of the

coupling function

a?(v,R) = a?F(v,Q)/N(v,Q)

for two different directions. The solid curve

is representative of a direction in which the

one OPW approximation is valid for all momentum
transfers; the broken curve, for a direction in

which it is not.
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independent coupling constant in the low frequency region
0 < v < wD/S. This is a reasonable procedure. We apply
essentially the same correction to the isotropic a?F(v) for
Al (calculated by Carbotte and Dynes) by multiplying it by
(5v/wc) in the low frequency region below mc/s. This
corrected function is denoted by aczF(v). It has the correct
low frequency behaviour, going to zero as vz as Vv goes to
zero. We also apply this same correction procedure to the
directional one OPW functions. This correction makes very
little change in those functions which were essentially correct
to begin with and at the same time it makes a drastic change
in those that were incorrect. The result is that aczF(v,6,¢)
is at least qualitatively correct at low frequencies for all
directions. This is all that is réquired since the low
frequency part of a?F is unimportant as long as it is
roughly correct.

Figure 4.3 is a graph of the corrected isotropic
a?F for Al. Figure 4.4 is a graph of aczF(v,6,¢) for the
three high symmetry directions in Al. The important thing
to notice in the latter figure is that the anisotropy in the

12

low frequency region (v < 2 x 10 c.p.s.) is negligible

compared with that in the high frequency region (v > 2 x 1012 C.p.S.).
Figure 4.5 is a graph of the directional electron-
phonon mass-enhancement parameter A(6,¢) calculated from the

corrected function aczF(v,6,¢). This graph is plotted on

the same scale as figure 4.1 to facilitate comparison of the



FIGURE 4.3

The corrected a?F(v) for Al,

w

W2F(v) = (3Y)a2F(v), O0<v<-<,
C wc
w

versus frequency.
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FIGURE 4.4 aiF(v,e,¢) for the three high symmetry
directions in Al versus phonon frequency v.
The three curves are displaced vertically
from each other to facilitate comparison.
The lower curve is for the [100] direction,
the middle curve is for the [110] direction,

and the upper curve is for the [11l] direction.
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FIGURE 4.5

The directional electron-phonon mass-
énhancement parameter, A(6,¢), for Al calcula-
ted with the corrected function azF(v,6,¢).

The results for the three arcs ¢=0°, 22%O
and 45° on the irreducible (%g)th are to be
distinguished as follows:

. ¢=0°
x  ¢=22%°
® ¢=45°.
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corrected and uncorrected A(0,¢)'s. Although the correction
has made a rather drastic change in A (6,¢) for values of ©
between roughly 20° and 30° the change in the average value
of A is quite small (approximately 4%). This substantiates
our assertion that the low frequency behaviour of a?F must
be essentially correct for a meaningful study of an aniso-
tropic superconductor even though the properties of an
isotropic superconductor are not too sensitive to the low
frequency behaviour of this function.

In section 4.3 we use the corrected functions,
aczF(v,6,¢), to calculate directional energy gaps using
Bennett's one iteration procedure. Before doing this we
investigate the importance of further iterations using a
simple model for the anisotropic electron-electron inter-
action. This is the subject of the next section.

4.2 A MODEL INVESTIGATION OF BENNETT'S ONE ITERATION

PROCEDURE FOR CALCULATING DIRECTIONAL ENERGY GAPS

In this section we use an unrealistic but mathe-

matically convenient model for the effective electron-
electron interaction matrix element, ka., to study the con-
vergence of the iteration procedﬁre fozocalculating direc-
tional energy gaps. We assume the simplest possible model
for v K which exhibits anisotropy. This is the factorable

k
interaction matrix element,

VEE' = VM(Q,Q') = (1+a(Q)) V(l+a(Q')) ,(4.9)
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of Markowitz and Kadanoff(3l).

The anisotropy function
a(Q) depends only upon the direction, Q=(6,¢), of k with
respect to the crystal axes. If we substitute (4.9) into

the zero temperature BCS integral equation we obtain(35)

A(Q) = <A(Q)> (1+a (D)) (4.10)

where, in the weak coupling limit, <A(Q) > is given by

2w
2 )
<A(Q')>(1+a(Q'"))

1= N(0)V [ 9%% (1+a(2')) 2 log( . (4.11)

Clem(35)

obtained an approximate analytical expression for
the average ehergy gap in terms of the mean squared aniso-
tropy by expanding the right hand side of equation (4.1l1)
in powers of the small parameter a('), performing the
angular averadges and neglecting terms of order <a3>. His

result is

<A(Q)> = [l+(ﬁT%TV - %)<a2>]A ,(4.12)
where
A = 20 e /NIOV

is the energy gap in the isotropic or 'dirty' superconductor
(<a2> = 0).
The BCS integral equation for the directional energy

gap A(Q), of an anisotropic superconductor is
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2w

A(Q) = N(O) J . via,a") AQY) 1og(A(Q, .(4.13)

))
Bennett's method of calculating an approximate value for A(Q)
is to replace A(Q') on the right hand side of this equation
by the isotropic energy gap of the 'dirty' superconductor.

One obtains in this way the one iteration result

s @) v

A 7 ,(4.14)
- aq’ '
where v(R) = { ~Zr v(Q,n") , (4.15)
- ag dan'
and vV = I in v{Q,Q") .(4.16)

For the special case of a factorable interaction matrix

element (4.14) becomes
A D @)y = a(1+a(a)) . (4.17)

Comparing this with equation (4.10) we see that for this
special case one iteration leads to the correct anisotropy
function but does not give the correct average energy gap.
On the basis of this, it is reasonable to assume, as Bennett
did, that for a realistic interaction one iteration would
produce a fairly good approximation to the energy gap aniso-

tropy function. However the extent to which this assumption
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holds should be investigated by iterating the integral equation
(4.13) with a realistic interaction until convergence is
attained. Whether this is feasible or not depends on how
quickly the iteration procedure converges. The rate of
convergence should be gqualitatively the same for the model
interaction of Markowitz and Kandanoff as it is for a real-
istic interaction. Hence we use the model interaction to
calculate the average energy gap to order <a2> in the aniso-
tropy by iterating the BCS integral equation starting with
the trial solution A.

We expand the energy gap and the factorable inter-

action matrix element in terms of Kubic harmonics:

M) = ] A" R_(9) ,(4.18)
=0

nn' 00

’VM(Q,Q') =V o Kn(Q) Kn.(Q'), (0" "=1) .(4.19)

I
nn'
We emphasize that the latter expansion is not valid for a
general interaction matrix element V(Q,Q'). It is easy to
show, using the orthonormality property of the Kubic harmonics,

that for a factorable matrix element

1
ann' = anO o 0 .(4.20)

It is also easy to show that the average energy gap, the

anisotropy function, and the mean squared anisotropy are
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given by
<A = A0
()> = A ,(4.21)
a(Q) = A(8215¢§Q)> - m£1 Ame(Q)/AO (4.22)

2. _ <(A(R)-<A(R)>) %> _ 7

<a?s = 2 (A™) 2,202 . (4.23)
<A (Q)> £1

The reason for expressing the factorable interaction of

Markowitz and Kandanoff in terms of Kubic harmonics is that
to second order in the anisotropy the surface integrals en-
countered in iterating (4.13) to convergence are trivial to
evaluate. This simplification is due to the orthonormality

property

ag _
J T Kn® R (@) =8

of the Kubic harmonics.
We expand the logarithm in equation (4.13) to second

order in the small quantity a(Q') to obtain

2w N ]
A(Q) = N(0) log(——%) f Q%F.VM(Q,Q') A(R') - N(0)A° J Q%F
A

x Vv, (2,2') {a(Q') + %a2(Q')} . (4.24)

We substitute equations (4.18), (4.19) and (4.22) into
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equation (4.24) and eqguate the coefficients of the linearly
independent functions Km(Q) on both sides of the resulting
equation., We obtain, to second order in the anisotropy,
the following set of coupled equations for the expansion

coefficients of the directional energy gap:

0 i _
m _ log(2up/87) - 16 ,0] e
tog(2up/B)  pizg 1og(2wD/Ao)
mo ) .
R — ,21 (™2 (m=0,1,2,...) .(4.25)
0 D m'=

2A log(-zfﬁ

These equations allow us to iterate equation (4.24) to con-
vergence with a minimum of computer time.

For our investigation of the rate of convergence of
the iteration procedure we truncate the set of gquations at
m=3. Our (arbitrary) choice for the expansion coefficients

of the interaction matrix element is

09921, o%%=.1, o%%=.01, «%3=.001, o%%0, ... .

1
The rest of the coefficients o™ follow from equation (4.20).
We iterate the set of equations (4.25) starting with the

trial set of coefficients

As we already know, the first iteration gives the correct

anisotropy function, equation (4.22), but does not change
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the average energy gap from the isotropic value A. The
results of successive iterations are shown in figure 4.6
where the average energy gap emerging from the ith iteration,
Ao(i), is plotted against i. It is apparent from the figure
that the convergence of the average energy gap to the value
given by equation (4.12) is very slow. This qualitative
conclusion is not changed by using a different set of ex-
pansion coefficients umm'.

The results of the model problem investigated above
give us some insight into what would be involved in iterating
equation (4.13) to convergence with a realistic interaction.
There is no reason to believe that the qualitative result
obtained above, that the average energy gap converges very
slowly from the value A appropriate to a dirty superconductor
to the value AO appropriate to a pure single-crystal super-
conductor, would be any different for the case of a realistic
interaction. This means that the labour involved in iter-
ating equation (4.13) to convergence with a physically real-
istic interaction is formidable. Since the convenient Kubic
harmonic expansion, (4.19), holds only for a very restricted
class of (unrealistic) .interactions, the surface integral in
(4.13) would mos