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SCOPE AND CONTENTS: 

Simple theoretical expressions for the zero tern­

perature en~rgy gap and the transition temperature of a 

weak coupling superconductor are derived and applied to an 

investigation of several phenomena. 

The anisotropy of the energy gap in aluminium arising 

from the anisotropy in the phonon spectrum is calculated. 

The effect of this energy gap anisotropy on some thermo­

dynamic properties of superconducting aluminium is investigated. 
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CHAPTER I 

INTRODUCTION 

1.1 HISTORICAL INTRODUCTION 

The phenomenon of superconductivity was discovered 

in 1911 by Kamerlingh Onnes(l). The explanation of super­

conductivity was to remain 'the shame and despair of 

theoretical physics' for almost half a century( 2). The 

only successful theories developed during this time were 

phenomenological. The two fluid model developed by Gorter 

and Casimir( 3 ) met with considerable success in describing 

thermodynamic properties, but this was accomplished at the 

expense of an unphysical x~ dependence of the total free 

energy of the electron fluid on the fraction x of the super­

fluid component. The phenomenological equations postulated 

by F. and H. London( 4) to replace Ohm's law in a super­

conductor were very successful in describing low frequency, 

long wavelength electromagnetic phenomena in superconductors. 

Important empirical modifications of these equations were 

made by Pippard(S). The Landau-Ginzburg equations( 6), which 

were based on Landau's phenomenological theory of second 

order phase transitions, were very successful in treating 

situations in which the density of the superfluid could vary 

from point to point in the metal due to the presence of a 
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magnetic field. However, these equations were valid only 

near the transition temperature, Tc. 

Great progress was made during the 19SO's. 

Frohlich(?) proposed that the electron-phonon interaction was 

responsible for superconductivity. He showed that the 

electron-phonon interaction could lead to an effective 

electron-electron interaction which is attractive for elec­

trans very near the Fermi surface. The experimental dis­

covery of the isotope effect by Maxwell(B) and Reynolds( 9 ) 

was striking confirmation of FrBhlich's proposal. Cooper(lO) 

investigated a model problem in which a pair of electrons 

with zero total momentum interacted with each other through 

an attractive two-body potential in the presence of an inert 

filled Fermi sea. He considered the special case in which 

the interaction was a constant (-V) when the electron energies 

were within an average phonon energy of the Fermi energy 

and zero otherwise. He found that a pair of electrons 

interacting through this potential were bound relative to 

the Fermi sea. This result suggested that in the presence 

of an attractive electron-electron interaction the Fermi sea 

would be unstable to the formation of electron pairs in zero 

total momentum states above the Fermi level. The stage was 

set for the theory of Bardeen, Cooper and Schrieffer(ll), 

hereafter referred to as the BCS theory. 

Bardeen, Cooper and Schrieffer were able to solve 

the complicated many body problem by isolating the correlations 
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that give rise to superconductivity. They assumed, in the 

spirit of the Landau theory of a Fermi liquid< 12>, that the 

extremely complicated system of strongly interacting elec­

trons and io~s could be replaced by a system of quasipar­

ticles (electrons in Bloch states of the normal metal and non­

interacting phonons) with some residual interactions between 

them. The residual interaction between a pair of Bloch 

electrons has two components, the repulsive screened Coulomb 

interaction and the interaction mediated by the exchange of 

virtual phonons. This latter interaction is attractive when 

the quasiparticle energies are less than the energy of the 

phonon exchanged between them. BCS showed that when the 

residual interaction is attractive at the Fermi surface the 

formation of Cooper pairs becomes energetically favourable 

and a new ground state is formed which is characterized by 

correlated occupancy of time-reversed quasiparticle states< 13>. 
BCS were able to show, using the simple model interaction 

mentioned above, that this new ground state has the essential 

features of the actual superconducting ground state. The 

BCS theory, as originally formulated, was a one parameter 

model, this parameter being the zero temperature energy gap 

or the transition temperature. With this parameter chosen 

phenomenologically the BCS theory agreed very well with, 

experiment for a wide range of phenomena and a large number 

of materia1s<l4 ,lS,lG). 

The BCS model is valid for weak coupling superconductors. 
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These are superconductors for which the Landau Fermi liquid 

theory is valid, which is the case if the quasiparticles 

used to form the BCS state are long lived. This condition 

is satisfied only if the thermal energy, kBT' and the im­

portant quasiparticle excitation energies are much less than 

a typical phonon energy. If an electron has enough energy 

to emit real phonons its lifetime is very short and the 

Landau theory breaks down. This is the case for strong 

coupling superconductors which are characterized by large 

transition temperatures and low Debye temperatures. 

Migdal(l?) showed using Green's function methods 

that for the electron-phonon interaction in a normal metal 

the corrections to lowest order self-consistent perturbation 

theory are of the order of the square root of the electronic 

to ionic mass ratio, (m/M)~. Migdal's results for the 

normal metal were generalized to the superconducting case 

by modifying the usual Green's function techniques to take 

into account the anomalous processes corresponding to the 

formation and breakup of Cooper pairs(lB,l9 , 2o>. This led 

to the Eliashberg gap equations, a set of two coupled non­

linear integral equations which are believed to be very 

accurate, with errors not greater than a few percent( 2l). 

These equations are not based on the Landau theory of a 

Fermi liquid and hence are valid even for strong coupling 

superconductors. Recently, McMillan and Rowell( 22 ) established 

experimentally that the corrections to the Eliashberg equations 
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are no more than a few percent and used these equations to 

extract normal state properties of the electrons, phonons 

and their interactions from their tunneling data on strong 

coupling superconductors. This was done by numerically in­

verting the Eliashberg equations using an electronic computer. 

It is truly remarkable that the theory of super­

conductivity which was virtually non-existent fifteen years 

ago has developed to the point where it can be used for an 

accurate investigation of normal state properties. 

1.2 SCOPE OF THESIS 

The work to be presented in this thesis consists of 

two quite distinct contributions to the theory of super­

conductivity. In Chapter III simple theoretical expressions 

for the zero temperature energy gap and the transition 

temperature of a weak coupling superconductor are derived 

and applied to an investigation of several phenomena. In 

Chapter IV the results of a detailed numerical investigation 

of the anisotropy of the energy gap in aluminium due to the 

anisotropy in the phonon density of states are presented. 

Chapter II serves a double purpose. The first is to present 

work previously done in the two areas investigated by the 

author; the second is to present results, such as the 

Eliashberg gap equations, which are essential to the work of 

Chapters III and IV. 

Section 2.1 is a brief summary of the essential 
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results of the one parameter model of BCS. In section 2.2 

the Eliashberg gap equations are written down and discussed. 

Particular emphasis is placed on the normal state information 

needed for these equations and the information about the 

superconducting state that one obtains by solving them. 

Section 2.3 is a discussion of two simple theoretical ex­

pressions for the transition temperature of a superconductor. 

The first is that of Morel and Anderson; the second is that 

of McMillan. In section 2.4 previous work relating to the 

anisotropy of the energy gap is reviewed in considerable 

detail. 

In section 3.1 the Eliashberg gap equations for an 

isotropic superconductor are reduced to a much simpler set 

of integral equations which are appropriate for a weak coup­

ling superconductor. In the weak coupling limit an approxi­

mate analytical solution of these equations is derived. In 

the remainder of this section .an attempt is made to justify 

this solution for weak and medium coupling superconductors. 

In section 3.2 the simplified integral equations of section 

3.1 are generalized so as to be suitable for an ani~otropic 

pure single-crystal superconductor. In section 3.3 an ex­

pression is derived for the average energy gap in a pure 

single-crystal superconductor in terms of certain gross 

features of the anisotropy. In section 3.4 the pressure 

dependence of the BCS parameter N(O}V, of the isotropic 

energy gap, and of the anisotropy of the energy gap in a pure 
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single crystal is investigated. Section 3.5 contains the 

derivation of a simple expression for the transition temper­

ature of a weak coupling isotropic superconductor. A 

correction to the BCS value for the ratio of twice the 

energy gap to the transition temperature is obtained and the 

pressure dependence of this ratio investigated. In section 

3.6 an expression for the transition temperature in a pure 

single-crystal superconductor is derived. A new expression 

for the isotope effect is obtained in section 3.7 and the 

pressure dependence of the isotope effect exponent is in­

vestigated. 

In section 4.1 a detailed description is given of 

the method of calculating the function, ~ 2 F(v,8,~), which is 

central to most of this thesis. This function contains the 

normal state information about the electron-phonon inter­

action and the phonon density of states that is essential 

to the Eliashberg gap equations. The results of the author's 

calculations of this function for aluminium are presented. 

Results for the anisotropy of the mass enhancement factor 

are also presented for the same ele1nent. In section 4.2 a 

simple model is used to investigate the convergence of an 

iteration procedure to determine the directional energy gaps 

~0 (8,~). Directional energy gaps calculated by one iteration 

of the Eliashberg equations are compared in section 4.3 

with those calculated by one iteration of the integral 

equations of section 3.1. These simplified integral equations 
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are used to perform a second iteration. In section 4.4 an 

anisotropy distribution function for the energy gap in Al 

is calculated and the mean squared anisotropy determined. 

These are used to investigate the effect of anisotropy on 

some thermodynamic properties of superconducting Al. The 

temperature dependence of the anisotropy of the energy gap 

in Al is studied in section 4.5. 

In Chapter V the results of Chapters III and IV are 

summarized and conclusions presented. 

An appendix contains the results of a detailed study 

for Na, K and Rb of the anisotropy of the Legendre polynomial 

moments of the electron-phonon scattering function. These 

moments are important in the Landau-Silin theory of a charged 

normal Fermi liquid. 



CHAPTER II 

NECESSARY BACKGROUND MATERIAL 

2.1 THE ONE PARAMETER MODEL OF BCS 

In this very brief section we present only those 

results of the BCS theory that are needed in Chapters III 

and IV. 

In the BCS theory the excitations of a supercon­

ducting system are long lived quasiparticles which have the 

temperature dependent dispersion relation 

• ( 2 .1) 

E~ is the single-particle energy (measured relative to the 

Fermi level) of an electron in the Bloch state (of the 

normal metal) of wavevector ~ and ~(~ 1 T) is the temperature 

dependent energy gap which vanishes as the transition tempera­

ture is approached from below. The BCS integral equation for 

~ (~ 1 T) is 

(2.2) 


where v~~· is the electron-electron interaction matrix 

element and kB is the Boltzmann constant. 

In order to calculate superconducting properties 

9 
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BCS introduced the model interaction 

("h=l) ,v~Js' = -v 

= 0 otherwise , (2.3) 

where °b is the Debye frequency. It follows from (2.2) 

that the model energy gap ~(~,T) is equal to a constant 

~(T) if 1£1£1 < w
0 

and is zero otherwise. In the weak coup­

ling limit (~(O) << °b) two important results can be derived 

analytically. They are 

~(O) = 2wo e-1/N(O)V ( 2. 4) 

and , (2.5) 

where N(O) is the single spin electron density of states 

at the Fermi level. The simple model of BCS is a one para­

meter model, the single parameter being N(O)V or equivalently 

~(O) or T , and leads to a law of corresponding states for c 

different metals. 

BCS suggested that -V should be the average of Vkk' 

for scattering at the Fermi surface: 

-v = , <IJi I = lk' I = kF) ( 2. 6)ff 
ph cwhere .(2.7)= v~k, + vls.k' 
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V~~· is the matrix element for the phonon mediated electron­

electron interaction and V~t' is the matrix element for the 

repulsive screened Coulomb interaction between the electrons. 

However, there is no a priori reason for cutting the Coulomb 
( 23) .

interaction off at wD. Bogoliubov et. al. considered 

a more realistic model interaction in which the phonon 

mediated interaction was still cut-off at wD but the screened 

Coulomb interaction was cut-off at EF (because the character­

istic length for the Coulomb repulsion between electrons in 

-1 a metal is kF ) • They found in this way that the BCS para­

meter should be given by 

N(O)V = N(O)Vph - N(O)Uc ( 2. 8) 

where 
N(O)Vc 

• (2.9)= l+N(O)Vc log(EF/w0 ) 

Vph and Ve are the Fermi surface averages of -v~~· and V~k' 
respectively. 

One of the results to be presented in this thesis 

is a new expression for the BCS parameter N(O)V. This 

expression was derived from the Eliashberg gap equations 

which are the subject of the next section. 

2.2 THE ELIASHBERG GAP EQUATIONS 

Within the very sophisticated and very accurate 'strong 
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coupling' theory of superconductivity(lS,l9 , 2o> a super­

conductor is completely characterized by a frequency and 

wavevector dependent generalization, ~(w,~), of the BCS 

energy gap and a renormalization function Zs(w,~). The central 

result of the strong coupling theory is a set of non-linear 

integral equations, the Eliashberg gap equations, which 

relate ~(w,~) and Zs(w,~) to certain properties of the metal 

in its normal state. Since there are many derivations of 

the Eliashberg equations in the literature< 20121124 > we 

simply write them down. Their one dimensional form, which 

is appropriate for an isotropic superconductor, is 

WC 


~{w)Zs(w) dw ' Re { ~ (w' ) } [ K+ ( w , w ' ) -N ( 0) Uc] , 
= f 2 2./w' -!>. (w')
0 

I (J.) I } ( I)[1-Z (w)] w d w Re{ K- w,w , ( 2 .10)s 
./w'2-~2(w') 

where 
00 

2
K±(w,w') = J dv a (v)F(v) [w'+w+~+iO~ ± w'-w!v-io+l.(2.11) 

0 

The essential normal state information is contained in the 

function 

o. 2 (v)F(v) = N(O) ( 2 .12)ff 

http:w'-w!v-io+l.(2.11
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and the number< 23 > 

. (2.13)µ* - N(O)Uc 

In (2.12), which is written for the special case of a 

spherical Fermi surface, dQk = sin 8 d8d~ is an element of 

* area on the Fermi surface at the point k = (kF,8,¢), g~~·A 

is the electron-phonon coupling constant, and w~-k'A is the 

phonon frequency corresponding to the wavevector (~-~') 

and polarization index A. a 2 (v)F(v) is an average of the 

square of the electron-phonon coupling constant for all 

those processes in which an electron scatters from any 

point ~ on the Fermi surface to all points ~· on the Fermi 

surface that can be reached by the virtual emission of a 

single phonon of frequency v. In (2.13) Ve is the average 

of the screened Coulomb interaction for scattering at the 

Fermi surface. The upper phonon cut-off we is usually taken 

to be five to ten times the Debye frequency w • Equation0 

(2.13) takes Coulomb excitations in the region wc<w<EF(wc<<EF) 

into account. It is quite reasonable that the Coulomb inter­

action can be taken into account by a single number. When 

the normal metal becomes superconducting important modifications 

*8,¢ are the usual polar angles and are measured relative 

to the [100], [010] and [001] directions which are taken 

as the k , k and k directions, respectively.x y z 
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of the electronic structure occur only in a small shell in 

momentum space about the Fermi level. The thickness of this 

shell is of the order of 10 mev and is very small compared 

with the scale, EF' on which the Coulomb effects vary 

significantly. 

It should be noted that we have written down the 

Eliashberg equation;only for the zero temperature case. The 

finite temperature equations are considerably more compli­

cated and are not needed for an understanding of the original 

work to be presented in this thesis. 

In order to calculate a 2 (v)F(v) one needs detailed 

information about the lattice vibrations in the form of the 

phonon frequencies w , and polarization vectors e:(q,:>t) every-q_/\ - ­
where within the first Brillouin zone. It is worth mentioning 

at this point that for the very low temperatures of interest 

in superconductivity the harmonic theory of lattice vibrations 

is valid to a very good approximation. Although the phonon 

frequencies can be calculated within pseudopotential theory 

it is more usual to take them from experiment. The technique 

of inelastic neutron scattering( 2 G) is capable of measuring 

phonon dispersion curves with considerable accuracy. Although 

these measurements are usually made only in high symmetry 

directions information can be obtained for off symmetry 

directions by means of a Born-von Karman force constant fit 

to the measurements made in the symmetry directions. 

We also need the electron-phonon coupling constant. 
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In the one orthogonalized-plane-wave (OPW) approximation and 

fork and k' both on the Fermi surface it is given by< 25 
> 

= -i ca·~<ca,1..> w<q> ( 2 .14) 
12MNw (~,A.) 

where~= ~-Ji', Mis the ionic mass, N is the number of ions 

per unit volume and W(~) is the pseudopotential form factor 

for scattering at the Fermi surface. 

With the above information the Eliashberg equations 

can be solved by numerical iteration. Since first principle 

calculations of the Coulomb parameter µ * are unreliable at 

present it is usual to treat it as an adjustable parameter 

which is varied during the iteration procedure so that the 

gap edge 

(2.15) 

is equal to the experimental value at the end of each complete 

iteration. Convergence is obtained when µ * and ~(w) are 

the same for two consecutive iterations. This converged 

value of µ* is used in all subsequent calculations. 

McMillan and Rowe11< 22 > used the Eliashberg gap 

equations to extract the function a 2 (v)F(v) and the Coulomb 

parameter µ * from their superconducting tunneling data. 

According to tunneling theory< 20 > the ratio of the differ­

ential conductance in the superconducting state to that 

in the normal state at an applied voltage eV=w is 
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(dI/dV)s 
- Re{ w } (2.16)(dI/dv)n = p(w) 

/w2-~2(w) 

where p(w) is the normalized single-particle tunneling 

density of states Ns(w)/N(O). The function a 2 (v)F(v) and 

the Coulomb parameter µ * were adjusted until the density of 

states p(w) emerging from the Eliashberg equations was equal 

to the experimental density of states for w < wD. The 

calculated density of states was then compared with the 

experimental density of states in the region w > wD. In 

this way McMillan and Rowell not only determined the normal 

state data needed in the theory of superconductivity for 

several strong coupling superconductors but also showed 

experimentally that the corrections to the present theory 

of superconductivity are not greater than a few percent. 

This justified the theoretical claim(lS) that the corrections 

to the Eliashberg gap equations were of the order of the 

square root of the electronic to ionic mass ratio, i.e. (m/M)~. 

2.3 THE MOREL-ANDERSON EQUATION AND THE McMILLAN EQUATION 

In this section we discuss very briefly two well 

known theoretical expressions for the transition temperature 

of a superconductor. Both of these expressions are similar 

in form to the simple BCS expression, equation (2.5), so 

that they can be used to identify the BCS parameter N(O)V 

with certain normal state parameters. 

Using both the deformation potential theorem< 27 > and 
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the Gorkov( 2S) formulation of superconductivity Morel and 

Anderson< 29 > argued that umklapp processes are no more 

effective than normal processes in superconductivity and 

that in fact only the local electron-phonon interaction, 

mediated by the high frequency phonons, is important in 

superconductivity. They further argued that the effective 

phonon spectrum is well approximated by an Einstein model 

because the high frequency phonons are sharply peaked about 

a few definite frequencies. Using a single Einstein peak 

for the effective phonon spectrum they obtained an approxi­

mate solution for the transition temperature within the 

strong coupling formalism which correctly takes into account 

the retarded nature of the electron-phonon interaction. 

They included in their calculation an instantaneous Coulomb 

repulsion between the electrons and showed that the Bogoliubov 

expression for µ * , equation (2.9), is a consequence of the 

different frequency dependences of the electron-phonon and 

Coulomb interactions. That is, they showed that the weaken­

ing of the Coulomb interaction relative to the retarded 

electron-phonon interaction is a result of its instantaneous 

nature. Their result for the transition temperature is 

(2.17) 

where Ais the electron-phonon mass-enhancement parameter 

which is given by 

.(2.18)A = 2 I 
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It is assumed in (2.17) that the Einstein peak is at w0 . 

Morel and Anderson made the identification 

N(O)V = A.-µ * • (2.19) 

We now describe in some detail the derivation of the 

McMillan equation. The Eliashberg equations at the transi­

tion temperature are 
WO00 

6. (w) Z (w) a 2 (v)F(v){[N(v}+f(-w')]=Id~: Re{ACoo'l} l dv 

l·1 + 1 ]x [w'+v+w w'+v-w - [N(v)+f(w')] [-w'+v+w 

EB 

1+ ] } - N ( 0 )V I d~ ', Re { 6. (w I ) } [ 1-2 f ( w I ) ] ' -w'+v-w c w 


0 


00 

[1-Z (w)] w dv a 2 (v)F (v) { [N(v)+f (-w')]
= J 

0 

1 1 
x [w'+v+w - w'+v-wl + [N(v)+f(w')] 

'(2.20) 

where is the maximum phonon frequency, EB is the electronicw0 

band width and N(w) and f(w) are the Bose and Fermi functions 

- -1[exp(w/kBTc)+l] respectively. 
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McMillan assumed a trial solution of the form 

11 Cw) = 11 , o < w <0 w0 	 ' 

• (2.21) 

He substituted this trial solution into the right hand side 

of (2.20) and required that 

' 

and 	 • (2.22) 

He neglected thermal phonons and in the integrals over w' 

neglected w' with respect to v (v with respect to w') in 

the phonon propagators [±w'+v]-l when the range of integration 

was O < w' < w (w < w'). In this way he obtained the
0 0 

approximate theoretical expression 
l+A. 

'(2.23) 

where <w> is defined by 

WO 

<w> 	 =2f dv a 2 (v)F(v)/A • (2.24) 

0 

The next step in McMillan's procedure was to solve 

the Eliashberg equation numerically and to fit the solution 

to the theoretical formula, equation (2.23). For this work 
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F(v) was chosen to be the experimental phonon density of 

states of Nb and a 2 (v) was taken to be 

. (2.25)= 0 

Tc and µ * were fixed and the Eliashberg equations were 

iterated. a 2 was adjusted at the end of each iteration so 

that ~(O) remained fixed. When convergence was reached the 

solution was fitted to equation (2.23). This was repeated 

for several values of Tc and µ * • A good fit to the various 

sets of data was obtained with the formula 

l.04(l+A) 

A-µ * (l+0.62A) .(2.26) 

This is the well known McMillan formula. It has been found 

to work quite well for some superconductors but fails badly 

for others, for example Hg and amorphous Ga. 

2.4 ANISOTROPY OF THE SUPERCONDUCTING ENERGY GAP 

The superconducting energy gap associated with an 

electronic state of momentum ~ depends on the orientation of 

~with respect to the crystallographic axes. This energy 

gap anisotropy arises from a number of sources, the more 

important of which are: anisotropy in the phonon spectrum, 

distortions of the Fermi surface from sphericity, and 

anisotropy in the single spin electron density of states at 
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the Fermi surface. In a pure single-crystal superconductor 

the electrons are able to take maximum advantage of the 

anisotropy in the effective electron-electron interaction 

in forming pairs. In a 'dirty' superconductor< 13>, that is 

a superconductor containing appreciable amounts of physical 

or chemical impurities, an electron is rapidly scattered 

about the Fermi surface. The effect of this smearing of 

electronic states over the Fermi surface is that the electrons 

are no longer able to take full advantage of the anisotropy 

in forming pairs. Hence the effect of impurities is to 

weaken superconductivity. Another effect of the smearing 

of the electronic states over the Fermi surface is that the 

experimentally observed energy gap for a 'dirty' supercon­

ductor is essentially isotropic. 

31Markowitz and Kadanoff < > were able to account 

theoretically for. the experimentally observed effect of 

· · · h · . l t ure (32,33,34) Theyimpurities upon t e critica tempera • 

considered the simplest possible model (which exhibited 

anisotropy) for the pairing potential. This was the factor-

able potential 

Vt~' = {l+a{n)) V{l+a(n')) (2.27) 

where n and n• are the angular coordinates of~ and~·. 

Using this model interaction they showed (within the strong 

coupling formalism) that the transition temperature of a 



22 

pure single-crystal is given by 

1 

(l+<a2>)N(O)V 
(2.28) 

where 

'(2.29) 


while that of an 

by the usual BCS 

isotropic or 'dirty' superconductor is given 

result 

1 

Clem< 35 > used the factorable interaction matrix 

N (O) V 

element of Markowitz and Kadanoff to investigate (within 

the weak coupling formalism of BCS) the effects of energy 

gap anisotropy upon the thermodynamic properties of pure 

single-crystal superconductors. He showed that within this 

model the directional energy gap is 

D.(n) = <D.(n)> (l+a(n)) (2.30) 

where the average energy gap is given by 

1 
an .· 1 

<D.(O)> - 4TI D.(n) = (l+(N(O)V
J 

to lowest order in the anisotropy. He introduced an aniso­

tropy distribution function P(a) by defining P(a)da to be 

the fJraction of the Fermi surface for which the anisotropy 
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function a(Q) has a value between a and a+da. Knowledge of 

this function and of the average energy gap is all that is 

needed to calculate some thermodynamic properties such as 

the low temperature specific heat and nuclear spin-lattice 

relaxation rate. Clem calculated both of these properties 

2for various values of the parameter <a > using a rectangular 

model for the distribution function P(a). His model is 

a . < a < a ,min max 

= 0 otherwise , 

where amin and amax are the minimum and maximum values of 

a(O) encountered anywhere on the Fermi surface. Experimental 

results< 3G) for the variation of the low temperature specific 

heat with impurity concentration are in qualitative agree­

ment with Clem's theory. 

Bennett's first-order calculation of the directional 

energy gap in lead< 37 > was the first realistic calculation 

of gap anisotropy. He assumed that the anisotropy in the 

phonon density of states was the dominant source of gap 

anisotropy and neglected all other sources (the effect of 

energy-band structure was included as a perturbation after 

the major calculation involving just the anisotropic phonon 

density of states was performed). Bennett reduced the three 

dimensional strong coupling integral equations for the 

directional energy gap 6(w,e,~) to one dimensional integrals 
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by assuming that in a first-order calculation whenever 

1 1~(w,8 ,¢ ) appeared in an integrand it could be replaced by 

the isotropic gap, ~(w), for dirty lead. With this assump­

tion the energy gap anisotropy was directly related to the 

anisotropy [K±(w,w',8,¢)-K±(w,w')] in the phonon kernels. 

The anisotropic phonon kernels are given by 

00 

K±(w,w•,e,~) = f d" a 2 F(v,9,~) [ 1 + ± 1 ] 
w'+w+v+iO w'-w+v-iO+ 

0 ,(2.32) 

where 

The above features of Bennett's calculation were followed in 

our calculation of the energy gap anisotropy in aluminium. 

We now continue with the discussion of Bennett's work 

emphasizing the improvements that we have incorporated in 

our work. The electron-phonon coupling involves the phonon 

frequencies and eigenvectors and hence is highly anisotropic. 

Bennett ignored this source of anisotropy and considered 

only the anisotropy in the directional phonon frequency 

distribution F(v,8,¢). He took a 2 (v,8,¢) to be a constant 

* For convenience we have written a 2 (v,8,¢)F(v,8,¢) as 

a 2F (v,8,¢). We do not imply that a 2 (v,8,¢) is independent 

of frequency and direction as it is in Bennett's work. 



25 


independent of frequency and direction. Furthermore he 

assumed that the electron-phonon coupling was the same for 

all polarizations. These simplifications were not made in 

our work. Bennett expanded the phonon frequencies in a 

series of Kubic harmonics. The series was truncated after 

the first three terms and the three expansion coefficients 

(for each value of the wavevector q and each polarization 

index A) were obtained by fitting to the experimental dis­

persion curves measured in the three principal symmetry 

directions by means of inelastic neutron scattering. F(v,e,~) 

was calculated and then expanded in the first three Kubic 

harmonics. As a consequence the calculation of the directional 

energy gap reduced to the determination of the coefficients 

of an expansion of ~(w,8,~) in terms of the first three Kubic 

harmonics. It is perfectly legitimate to expand the energy 

gap in terms of Kubic harmonics but it is not at all obvious 

that it is a good approximation to truncate the expansion 

after the first three terms. In our work we did not employ 

Kubic harmonics. Instead we calculated the phonon fre­

quencies and eigenvectors for non-symmetry directions using 

a Born-von Karman force constant fit to the dispersion 

curves measured in the high symmetry directions. The directional 

energy gaps were calculated at a large number of points on 

the irreducible (! )th of the Fermi surface. It was not8

possible to obtain even a good qualitative fit to these gaps 

using the lowest three Kubic harmonics. The above are signi­

ficant improvements in Bennett's method of calculating 
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the energy gap anisotropy and are the justification for the 

large amount of computer time used in our calculations. 



CHAPTER III 

A CONTRIBUTION TO THE THEORY OF A WEAK COUPLING SUPERCONDUCTOR 

3.1 	 THE ENERGY GAP OF AN ISOTROPIC WEAK COUPLING 
SUPERCONDUCTOR 

In this section we derive a very simple expression 

for the energy gap at the gap edge, Re{6(6 )} = 6 0 , of an0 

isotropic or 'dirty' weak coupling superconductor at zero 

temperature, by introducing certain simplifying approxi­

mations into the Eliashberg gap equations. 

At low temperatures an electronic state has a long 

lifetime if its excitation energy is much less than a typical 

phonon energy (of order w0 ) • For a weak coupling super­

conductor the gap parameter, 6
0 

, is much less than a typical 

phonon energy so that the energy gap, 6(6 ), and the re­
0 

normalization function at the gap edge, Zs(60), are real to 

a very good approximation. Hence the Eliashberg gap equations 

for the energy gap at the gap edge reduce to 

w c 

dw ' Re { 6 ( w ' ) } [ K~ ( 6 , w ' ) - N ( 0 ) Uc] t ( 3 .1)= f 	 0 
/ w• 2-6 2 (w') 

00 

dw ' Re{ w' } K_R(Au ,w ') I (3.2)= f 	 0 
/w' 2_6 2 (w')

0 

27 

0 
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where the real parts of the kernels are given by 

00 

1 1pK: (110 I w I} = dv a 2 (v}F(v) [w'+/1 +v ± w'-11 +) '(3.3)
J 0 0 
0 

and 

dnk dnk' 

= N(O) J J ~ -;r-rr- ~ lg~~·AI 

2 
o(v-w~-~·A) 


.(3.4) 

(24,29}
The Coulomb pseudopotential parameter is given by 

N(O}Vc 
].l * - N(O}Uc = ( 3. 5)l+N(O}V log(EF/w }c c 

where V is the average of the screened Coulomb potential for c 

scattering at the Fermi surface. 

We assume that in calculating 11 for a weak coupling
0 

superconductor we can ignore damping and detailed retardation 

effects. That is, we assume that '1(w'} is real and we in-

elude only its gross frequency dependence. We assume that 

'1(w'} has the form 

{).(WI} ,= ().0 ().o~w·~wc 

= 11 w'>w ,(3.6}c c 

where (). is given by (38) 
c 

2wc 
(). 

c = -µ * log <--r-> ().O I ( 3 • 7) 
0 
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and where wc is the highest phonon frequency, i.e. the high 

frequency cut-off of the function a 2 (v)F(v). We know from 

detailed solutions of the Eliashberg gap equations for a 

weak coupling superconductor< 25 > that, for small w', the 

imaginary part of 6(w') is very small and the real part 

depends only slightly on w'. Because of this, approximation 

(3.6) is a reasonable one for the purpose of calculating 

6 0 • Small values of w' are weighted heavily in the inte­

grand of (3.1). Equation (3.2) depends on 6(w') only through 

20the quasiparticle density of states< > 

w'p (WI) - Re{ . } 

I w• 2-6 2 (w') 

Hence for a weak coupling superconductor (3.2) is very in­

sensitive to 6(w') in the region, w'>>6 0 , where 6(w') deviates 

significantly from our model solution, equation (3.6). This 

is reflected in the fact that, at the present time, the 

tunneling experiments are not sufficiently accurate to yield 

the function a 2 (v)F(v) for a weak coupling superconductor, 

such as aluminium, by inversion of the Eliashberg gap 

equations( 21122 ). 

Figure (3.1) shows the real and imaginary parts of 

the energy gap in aluminium as calculated in reference 25. 

Also shown is our model solution (3.6). Although our model 

energy gap looks considerably different from the actual 

energy gap for w'>>6 it must be remembered that the Eliashberg0 



FIGURE 3.1 The real (solid line) and imaginary (dashed 

line) parts of the energy gap, 6{v) = 6 {v)+i6 (v),1 2 

for aluminium as calculated in reference (25). 

Also shown, the model energy gap (3.6) used 

extensively in this work (dotted line) • v-6 0 

is the energy measured relative to the gap edge. 

For the model energy gap the gap edge, 60 , is 

.180 meV, the high frequency cut-off, w , is 
0 

41.4 meV and the Coulomb psuedopotential para­

meter, µ* , is .14. 
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equations are not very sensitive to the detailed behaviour 

of Ll(w') in this region, especially to that of the imaginary 

part. 

Using the assumed form for Ll (w') we obtain 
w w c c 


fl (WI) Llo 

-µ * dw' Re{ } = -µ * dw' 

Ll
f 

./ w• 2-Ll 2 (w') 
f 

./ w,2- 2 
0 0!lo 

2w 
;(3.8) 

0 
= -µ * log( Llc)Llo 

w 
00 c 

w' w' 

f 
dw' Re{ } K~ (Ll 0 ,w • > = -2rJ dw' 

,2 Ll 2./ w• 2-Ll 2 (w') ./ w - 00 flo 
w w

00c c 

2 
a 2 (v) F(v) a (v) F (v) ]flx p dv dw' dv .(3.9)2 2 + Jf (w '+v) -fl 0 J (w'+v)2 0 


0 0
WC 

The second term in the above expression has been simplified 

by using the fact that w'>>fl0 ,lllcl in the range of inte­

gration w <w'<oo. c 

w c 

dw' Re{ fl(w') } ~~Cfl 0 ,w') = 2 
dw' 


J ,2 fl 2
./w 12-Ll 2 
(w') ./ w ­ 0flo 

WC 

(w'+v)fl 0 x P I dv ~•cvlF(vl 2 2
(WI +v) -fl

00 
./w 2_Ll 2 

IIf c 0 
de:: I E I 12 = 2N (0) E' A gls~ I A 

0 
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0 2In (3.10) £' = /w• 2-~ is the free particle kinetic energy 

measured relative to the Fermi energy and E' = 1£ 12+~ 0 2 is 

the quasiparticle energy. We have introduced the definition 

of a 2 (v)F(v), equation (3.4), into equation (3.10) and trans­

formed to the kinetic energy variable £ 1 in order to make 

explicit an approximation that might go unnoticed otherwise. 

Let us consider the integral over £' in equation 

(3.10) for fixed directions of ~and£'. If we take into 

account the fact that the variation of w~-~·A and g~~·A with 

£ 1 = ~ 2/2m is negligible in the very thin shell 

-wc<£'<wc (wc<<EF) for the momentum transfers, q = k-~·, 
of importance in superconductivity, we can do the integral 

over £' analytically. Small momentum transfers are un­

important in superconductivity for two reasons: 1) the 

square of the electron-phonon coupling constant goes to zero 

as q for small q, 

i.e. 

where w~A a q for small q; 2) the phonon density of states 

goes to zero as w2 for small w and hence the number of 

available normal modes of the system of ions that can be 

excited with an electron momentum transfer q is very severely 

restricted for small q. We define k~in and k~ax by 

2k'. 2 k'min maxE -w = F c 2m 2m 
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In doing the integral over£', k' varies over the range 

k'. < k' < k' Since (k' - k'. ) << k = O(k ),min max max min F 0 

wk-k'A and gk~'A' for the momentum transfers of interest, 

do not vary significantly over the range of k' encountered 

in the £' integral and can be evaluated at I~' I = kF and 

treated as constants when doing the integral. 

It is usual, fo~ convenience in numerical calculations, 

to take advantage of the fact that the phonon density of 

states is very small at low w by cutting the density of states 

off at some small value of w. We use a cut-off, w * = 2~ 0 , 

which for a weak coupling superconductor, is much smaller 

than the most important phonon frequencies (this is certainly 

not the case for a strong coupling superconductor) • We note 

that Morel and Anderson< 29 >, in their derivation of a simple 

expression for Tc' carried the importance of the high 

frequency phonons to an extreme in assuming that the effective 

phonon density of states could be approximated by an Einstein 

model with a delta function at the longitudinal phonon peak. 

Our low frequency cut-off at w* greatly simplifies the 

calculation without leaving out any important phonons. Of 

course, the results are not sensitive to the exact cut-off 

as long as it is sufficiently small. 

The w' integrals can be reduced to standard forms 

after a few transformations. Each w' integral has two 

analytical solutions, one appropriate for v < 26 and the
0 

other for v > 260 . Since the region v < 26 is unimportant0 
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for a weak coupling superconductor we cut the phonon spectrum, 

and hence a 2 F, off at a frequency w* = 26 0 . Hence we need 

only the solutions for v > 260 • These are 

dw' w'+v 

/w'2-602 (w'+v)2-602 

( 3 .11) 

and w c 

dw' w'
2 = L(v,wc,6 0 )J 2 (w'+v)2-602lw •2-6

060 

_ 1 r (-l) i+l 
6 0 i=l 

• (3.12) 


In (3.11) and (3.12) p = v+60 = v-~0 .1 P 2 

Combining equations (3.1)1 (3.2), (3.8), (3.9), (3.10) 
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(3.11) and (3.12) we obtain a greatly simplified approximate 

set of Eliashberg gap equations for the gap at the gap edge 

in a weak coupling superconductor. These are 

, (3.13) 

dv a 2 (v)F(v) [L(v,wc,t.0 ) + vlw] • (3.14) 
c 

This set of equations can be iterated to convergence in a 

very short time on an electronic computer. It takes one or 

two seconds to obtain convergence to .01% (starting from a 

reasonable trial solution) on the CDC 6400. 

We now derive an approximate analytical solution to 

(3.13) and (3.14) which is valid if the most important phonon 

frequencies are much larger than t. for the metal under0 

consideration. 

For a weak coupling superconductor, Z (w) is a slowlys 

varying function of w for small w. Since t. is very small
0 

for a weak coupling superconductor, we can, to a good approxi­

mation, replace Zs(t. ) by Zn(O), the zero frequency normal0

state renormalization function. Zn(O) is given by the well 
. ( 21)k nown expression 

Zn(O) = 1 +A , (3.15) 
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where 

. dv 
A= 2 -V a 2 (v)F(v) .(3.16)f 

(3.15) and (3.16) are obtained by setting ~(w') = 0 in 

equation (3.2). Table (3.1) contains Zn(O) calculated using 

equations (3.15) and (3.16) and Zs(~0 ) calculated using (3.13) 

and (3.14) for a weak coupling superconductor (Al) and three 

medium coupling superconductors (Tl, In, Sn). The details 

of the calculation will be given later. It is seen that re­

placing Zs(~0 ) by Zn(~0 ) is indeed a good approximation for 

the superconductors of interest here. 

TABLE 3.1 


COMPARISON OF THE SUPERCONDUCTING AND NORMAL STATE 


RENORMALIZATION PARAMETERS 


ELEMENT 

Al 1. 463 1.462 1.001 

Tl 1.774 1.761 1.007 

In 1.822 1.805 1.009 

Sn 1.787 1. 777 1.006 

Equation (3.13) is not so easily disposed of. We 

first obtain a much simpler expression for K(v,wc'~O), which 
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is a very good approximation for all important values of 

v (i.e. v >> ~ 0 ). We expand the right hand side of (3.11) 

in terms of the small quantity (~ 0/v) to obtain, after a good 

deal of algebra, 

Our approximate expression for K(v,wc,~o> is then 

2 . 2v • (3.17)v log(~ (l+v/w })
0 c 

'V 

Figure 3.2 is a plot of the relative error, (K-K)/K, 

versus phonon frequency v, for w* < v < w , for a weak cou­
0 

pling (Al) , medium coupling (In) , and a strong coupling 

superconductor (Pb) • It is clear from the graph that K 

is a very good approximation to K for a weak coupling super­

conductor, a fairly good approximation for a medium coupling 

superconductor, but a poor one for a strong coupling super­

conductor. 

If we substitute (3.17) into (3.13) we obtain 

WC 

dv *I -V a 2 (v)F(v)-µ ]+ [2 

0 

2w 
x log( ~c)}~ 0 • (3.18) 

0 

We recall that the renormalization parameter, A, is given 



FIGURE 3.2 

~ 

The relative error (K-K)/K versus phonon 

frequency w. The low frequency cut-offs are 

.36 mev, 1.08 meV and 2.77 meV for Al, In and 

Pb respectively. The high frequency cut-offs 

are 41.4 meV, 16.2 mev and 11.0 mev for Al, In 

and Pb respectively. 
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by 

dv o. 2 (v)F(v) 
\) 

and define a new parameter, r, by the equation 

WC 

A - 2 J • (3.19) 

0 

We assume that ~O is non zero so that it can be cancelled 

from both sides of (3.18). Substituting (3.16) and (3.19) 

into the resulting equation and solving for ~O we obtain the 

very simple result 

1+1..-r 
:>..-µ* .(3.20) 

This equation is the basis for much of the work to follow. 

The usual BCS result for the energy gap in a weak 

coupling superconductor(ll) is 

1 
N (O)V , (3.21) 

where V is the average effective electron-electron inter­

action for scattering at the Fermi surface. Our result is 

formally identical with this result and suggests that, to the 

extent that we and w0 are the same, the BCS parameter, N(O)V, 

should be given by 

• (3.22)N(O)V = 
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Since I is comparable in magnitude to A but of opposite 

sign there is no cancellation between A and I in the denomin­

ator of (3.22) so that our expression for N(O)V is quite 

different from the Morel-Anderson resu1t< 29 > 

MA . * • (3.23)[N ( 0 )V] = A-µ 

If we renormalize the Morel-Anderson result by introducing 

the renormalization parameter Zn(Q);l+A into their analysis 

we obtain 

* [N(O)V)~ = i~~ .(3.24) 

This equation falls out of our analysis if we make one 

further approximation. Essentially the same approximation 

was made by McMillan( 30) in the derivation of his equation 

for Tc for a strong coupling superconductor. Consider the 

integral 

which we have evaluated analytically. One can argue that since 

small values of w' are weighted heavily in the integrand and 

since the important phonon frequencies, v, are large we can 

neglect w' and 6. in comparison with v to obtain0 

WC WC 


I I 
2wdw' (WI+\)) 1 dw' "' 1"' = - = - log ( 6. c)2 2 \) \)

v'w I 2_/j_ 2 (w '+v) -6. YW I 2_/j_ 2 0006.o 6.o 0 
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. . * With this rather crude approximation we readily obtain the 

Morel-Anderson result, equation (3.24). 

Table (3.2) is a comparison of the values of N(O)V 

given by the three equations (3.22), (3.23) and (3.24) for 

Al, Tl, In, Sn, Zn and Pb. (We have included results for Pb 

even though the approximations that we have made are not 

justified for a strong coupling superconductor.) A discussion 

of our choice of the parameters A, X and µ * , used in calcula­

ting N(O)V, will be given later. We just note at this point 

*that the value ofµ occuring in (3.23) and (3.24) is not 

exactly the same as the value occuring in (3.22). The ratio 

of the two values *of µ is given by equation (3.5) to be 

l+N(O)Vc log(EF/wc) 

l+N(O)Vc log(EF/wo> 

Since wc is roughly the same as the difference between thew0 

two values of µ * is negligible, at least for a qualitative 

comparison of the different expressions for N(O)V, and is 

ignored. Table 3.2 also contains the experimental values of 

N(O)V. [N(O)V]~p is taken from reference (15) and is 

obtained by fitting the BCS equation 
1 

N(O)Vk T = 1.134 w eB c 0 

* It is a good approximation only if log(2wc/~0 )A >> - r 
which would be realized only for an extremely weak coupling 

superconductor. 
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to the experimental transition temperature. [N(O)V]Exp is 

obtained by fitting the equation 

1 
N (O)V 

to the experimental energy gap ~OExp. The difference between 

[N(O)V]Exp and [N(O)V]~p for a given metal reflects the 

difference between wc and w0 , and the deviation from the BCS 

ratio, 2~0 /kBTc = 3.53. 

Table 3.2 contains two values of N(O)V for those 

metals for which we have calculated A and I from a 2 (v)F(v). 

The first entry is calculated with a 2 (v)F(v) cut-off at 

* Expw = 2~0 and the second entry is calculated with no low 

frequency cut-off (excepting any cut-off inherent in the 

experimental data) • It is evident from the table that the 

value of N(O)V is very insensitive to the exact choice of 

the low frequency cut-off (provided, of course, that it is 

not unreasonably large) • 

It is also evident from the table that our expression 

for N(O)V is much better than the Morel-Anderson expressions 

(3.23) and (3.24) (even, it appears, for strong coupling 

superconductors for which our expression is not to be taken 

seriously) • 

In this thesis we do not use equation (3.20) to 

calculate superconducting energy gaps from first principles. 

Instead we attempt to establish the validity of equation (3.20) 
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TABLE 3.2 


A COMPARISON OF THEORETICAL AND EXPERIMENTAL VALUES 


OF N ( O)V 


ELEMENT N(O)V [N ( 0) V] Exp . [N (0) Vj MA [N (0) V]~ [N (0) V]:p 

Al 
.163 

.163 
.163 .32 .22 .175 

Tl 
.244 

.244 
.246 .67 .38 .27 

In 
.241 

.241 
.244 .72 .39 .29 

Sn 
.236 

.236 
.240 .64 .36 .25 . 

Zn .17 .17 • 31 .22 .18 

Pb 
.322 

.324 
.362 1.4 .SS .39 
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for weak and medium coupling superconductors. This is very 

difficult to do by a direct comparison with experimental 

energy gaps, because unless one is very certain of the para­

meters w , A, -A and µ * (especially the latter three), one
0 

does not know whether poor agreement with experiment is due 

to a failure of the equation or to a poor choice of the 

parameters entering it. This problem is especially critical 

for weak coupling superconductors because of the extreme 

sensitivity of 60 to N(O)V when N(O)V is small. Fortunately 

we can circumvent this problem by realizing that equation 

(3.20) is an approximate solution of the Eliashberg gap 

equations for the special case 6(w) = 6(60). What we really 

want to establish is that (3.20) is a good solution for a 

weak coupling and a fairly good solution for a medium coup­

ling superconductor. Since it is generally believed that 

the corrections to the Eliashberg gap equations are of the 

order of the square root of the electronic to ionic mass 
(18,22) 

ratio, (m/M)~ , i.e. a few percent, we compare our 

results for 60 indirectly with experiment by comparing them 

directly with the Eliashberg values of 60 • Of course, this 

comparison is meaningful only if exactly the same normal 

state data is used in both calculations. This is very easily 

and accurately accomplished for the parameters w , A and I c 

which are obtained from the function a 2 (v)F(v) used as input 

* Edata in the gap equations. If we denote by µE and w
0 

the parameters used in the Eliashberg equations then the 
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obvious choices forµ * and µE * are, (using equation (3.5)), 

* _ N(O)Vc 
I (3.25)µ - l+N(O)Vc log(EF/wc) 

µ * = I (3.26)
E 

where N(O)Vc is given by some approximate calculation, such 

as an RPA calculation. With the above prescription one could 

very clearly delineate the range and extent of validity of 

equation (3.20) by solving the Eliashberg gap equations for 

a series of values of µE * and a series of a 2 (v)F(V) 's ranging 

from weak coupling-like to strong coupling-like, and of 

different shapes, and comparing the solutions for ~O with the 

solutions given by (3.20). The µ* 's and a 2F's used in this 

comparison could be arbitrary, not corresponding to any 

particular real metal, as long as they were reasonable. Un­

fortunately this detailed comparison is very time consuming 

and completely out of the question at McMaster with the 

present rather severe restrictions on computer usage. So 

we are limited to those metals for which solutions have al­

ready been generated at McMaster by P. N. Trofimenkoff <39 >, 

the present author, and, much more extensively, P. Vashishta< 40). 

When we exclude the strong coupling metals we are limited 

to weak coupling Al and medium coupling Tl, In, and Sn. 

Unfortunately, the obvious scheme, mentioned above, for cal­

culating µ* and µE * has to be abandoned because µE * was 
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treated as an a4justable parameter in solving the Eliashberg 

equations. As the zero temperature gap equations are 

iterated µE * is adjusted so that at the end of each complete 

iteration the gap at the gap edge, 60 , is equal to the 

experimental value, 6 Exp. Self consistency is obtained0

when 6(w') and µE * have both converged. We denote this con­

verged value of µE * by µE * (Exp) • Let us denote by µE * (TF) 

the value of µE * given by equation (3.26) when N(O)Vc is 

calculated using the Thomas-Fermi approximation< 41 > for the 

screened Coulomb interaction. The corresponding value of µ* 

. * is denoted by µTF • A reasonable procedure is to apply the 

same correction factor, (µE * (Exp)/µE * (TF)), to both Thomas-

Fermi values of µ* • We do this and obtain 

** µE (Exp) * 
µ = ( * )µTF

µE (TF) 

Fortunately, of the metals considered, only the results for 

Al are very sensitive to µ* . 

Table· 3.3 contains µE * (EXP), µTF * and µ * . The values 

of µE * (EXP) are taken from reference (40). Also included 

for comparison purposes are the values of µ* used by Cohen in 

reference (42). He scaled the RPA values of N(O)Vc by a 

constant factor to obtain a µ* for Zn in agreement with the 

experimental isotope effect exponent s< 43 >. 
We note that there is good agreement between our 

values of µ* and those of Cohen except in the case of Sn. 
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TABLE 3.3 


THE COULOMB PSEUDOPOTENTIAL PARAMETER µ * 


ELEMENT µE*(EXP)a µ * * b 
µCOHEN 

Al 

Tl 

In 

Sn 

Zn 

.166 .101 .140 

.126 .095 .107 

.138 .097 .117 

.171 .096 .145 

a. Reference 40 

b. Reference 42 

.14 

.11 

.12 

.12 

.12 
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The Thomas-Fermi values, µTF * , are consistently lower than 

* * µ and µCOHEN , and differ little from .10 for the metals 

considered. 

Table 3.4 contains the parameters w , A, -rand µ* 
c 

that are needed to obtain ~O from equation (3.20). A, rand 

wc were obtained from the experimental a 2 (v)F(v) 's for Tl< 44 >, 
In< 44 > and sn< 22 >. For Al a 2 (v)F(v) was calculated as 

discussed elsewhere in this thesis. Zn is included in the 

table because of the availability of an accurate empirical 

value of A< 45 >. wc Was taken from the calculated phonon 

frequency distribution of Young and Koppe1< 4G). µ*was taken 

42from Cohen's paper< > and -r was set equal to A (a reasonable 

estimate on the basis of the other entries in the table). 

~OEXP for Zn was determined by applying the BCS ratio 

2~0 (0)/kBTc = 3.53 to the value of Tc for Zn tabulated in 

reference (42). 

Table 3.4 contains three values of ~0 • The first is 

the value given by equation (3.20), the second is obtained 

by solving the simplified integral equations (3.13) and (3.14), 

and the third, denoted by ~OEXP, is the 'solution' obtained 

by iterating the Eliashberg gap equations< 4o>. The values 

of ~OEXP for Al, Tl, In and Sn are taken from references (47), 

(44), (44) and (22) respectively. Where there are two entries 

for a given metal, the first corresponds to cutting a 2 (v)F(v) 

* EXPoff at a value w = 2~0 and the second corresponds to no 

cut-off. These double entries are included to demonstrate 



49 

TABLE 3. 4 


COMPARISON OF CALCULATED AND EXPERIMENTAL ENERGY GAPS 


ELEMENT A -r w * .µ 

b. Cale ( )
0 mev b. EXP 

0 

(mev) 
c 

(mev) . ( 1) ( 2) 

.463 .517 .179 .180 
Al 41. 4 .140 .18la 

.465 .525 .180 -­

Tl 
.774 

.781 

.9595 

.982 
10.7 .107 

.354 

.355 

.374 

-­
.369b 

In 
.822 

.835 

1.098 

1.142 
16.2 .117 

.512 

.5145 

.549 

-­
.540c 

Sn 
.787 

.787 

.932 

.932 
18.5 .145 

.535 

.535 

.556 

-­
.575d 

Zn .43 .43 26.3 .12 .130 -­ .133e 

a. Reference 47 
b. Reference 44 
c. Reference 44 
d. Reference 22 
e. Reference 42 
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the insensitivity of the energy gap to the cut-off. 

The agreement with 6 EXP obtained using the simpli­
0

fied integral equations is excellent; that obtained using 

equation (3.20) is about as good as one could hope to obtain 

using a simple analytical expression (excluding, of course 

phenomenological expressions) • The worst agreement is for 

Sn. Equation (3.20) gives a result that is too low by 7%, 

equations (3.13) and (3.14) give a result that is too low 

by 3%. Cohen's value of µ* for Sn would give results some­

what too high. Equation (3.20) gives essentially the same 

result as the simple integral equations, for Al. For the 

medium coupling superconductors the approximations made in 

going from (3.13) and (3.14) to (3.20), i.e. replacing K 
~ 

by Kand Zs(6 ) by Zn(O) lead to errors of roughly 4 to 7%.0

It must be kept in mind that solving the Eliashberg ga~ 

equations is a very difficult numerical problem and that 

because of the various singularities that must be 'inte­

grated through' when doing the principal value integrals 

and the rather coarse integration meshes that must be used 

to save computer time it is very difficult to estimate the 

accuracy of the Eliashberg solutions. Hence the discrepencies 

between the three values of 6 0 , although ~argely due to 

the simplifying approximations that we have made, are to some 

extent due to our choice of µ * and to numerical inaccuracy 

in the solution of the gap equations. 

It seems safe to conclude from the results presented 
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in Table 3.4 that given reliable normal state data, for 

example a 2 (v)F(v) andµ * , equation (3.20) could be used with 

confidence to calculate the superconducting energy gap 

of a weak coupling superconductor and perhaps even that of 

a medium coupling superconductor. 

There are some very interesting experimental results 

for a In-Tl alloy series( 44 >. The energy g~p ~Ovaries 

anything but smoothly from the value .540 meV for pure 

indium to .369 meV for pure thallium as the thallium con­

centration increases. The tunneling data have been inverted 

to obtain an experimental a 2 (v)F(v) and µE * (EXP) for each 

alloy( 44 >. Hence we can readily calculate A, -rand we. 

Unfortunately the experimental values of the Coulomb pseudo-

potential parameter, µE * (EXP), do not vary smoothly in going 

from pure indium to pure thallium and the variation from the 

average value is quite large. Furthermore there is a strong 

* EXP EXPcorrelation between µE (EXP) and ~O ; when ~O is large, 

µE * (EXP) is small, and visa versa. The energy gap of a 

medium coupling superconductor is fairly sensitive to µ * 

and to obtain good quantitative agreement with the experi­

mental results one would need reliable values of µ * (which 

would certainly vary with alloy composition in roughly the 

same manner as µE * (EXP)). Rather than become involved in 

the difficult task of trying to obtain reliable values of 

µ * to use in equation (3.20) we use the same value of µ * 

for all alloy compositions. For this average value of µ * 
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we use 

* 	 * µEXP (In) 	 + µEXP (Tl) 
2 

where µEXP * (In) and µEXP * (Tl) are obtained by fitting equa-

EXPtion (3.20) to the gaps, ~O , for the pure metals. 

µEXP * (In) = .108, and µEXP * (Tl) = .100, so that we take 

µ* = .104. Of course, using an average value of µ * , we can­

not hope for good quantitative agreement with the experi­

mental results. Table 3.5 contains A, -r, we' µE * (EXP), 

~OEXP and ~OCALC for the alloy series. Figure 3.3 is a 

comparison of the calculated energy gaps with the experi­

mental results. The qualitative agreement is excellent. It 

* 	 EXPis evident from the tabulated values of µE (EXP) and ~O 

that reliable values of µ * could only improve the overall 

quantitative agreement, which is already fairly good. 

It is worth noting that, although its theoretical basis 

is rather weak for strong coupling superconductors, equation 

(3.20) does not give unreasonable results even for this class 

of superconductors. Table 3.6 contains we' A and -A for the 

strong coupling superconductors amorphous Ga, Pb, amorphous 

Bi, and Hg. These parameters are calculated using the 

experimental a 2 F's obtained from tunneling data. a 2 F and 
EXP

~O for amorphous gallium, lead, amorphous bismuth and 

mercury are taken from references (48h (22), ~8), and (49) 

respectively. Also tabulated are the experimental energy 
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TABLE 3.5 

COMPARISON OF EXPERIMENTAL AND CALCULATED ENERGY GAPS FOR 

A Tl-In ALLOY SERIES 

CONCENTRATION 
* a EXPa 6 CALC-X" WC µE (EXP) O6 0 

In Tl (mev) (mev) (mev) 

1.0 o.o .834 1.14 16.2 .125 .540 .552 

.9 .1 .850 1.20 15.9 .122 .530 .533 

.73 .27 .933 .13S 14.7 .126 .S70 .559 

.67 .33 .899 1.31 15.3 .127 .536 .539 

.57 .43 .847 1.24 14.5 .134 .421 .453 

.so .so .83S 1.24 14.9 .133 .411 .4405 

.27 .73 1.09 1.74 13.S .112 .640 .557 

.17 .83 .980 l.SO 13.3 .119 .S3S .498 

.07 .93 • 889 1.22 11.9 .132 .453 .4Sl 

o.o 1.0 .780 .983 10. 7 .127 .369 .360 

a. Reference 44 



FIGURE 3.3 Experimental (·) and calculated (x) energy 

gaps for a Tl-In alloy series versus Tl con­

centration. 
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EXP gaps, ~O , and the energy gaps 	calculated using equation 

(3.20) with µ *=O (a reasonable approximation for a strong 

coupling superconductor). The agreement is good enough to 

indicate that equation (3.20) could be used (in much the same 

way that McMillan used his approximate equation for Tc) 

as the basis for a semiphenomenological expression for the 

energy gap of a strong coupling superconductor. Equation 

(3.20) 	with µ *=O, 

1+:x.-r 
x ,(3.28) 

is to be contrasted with the simplified McMillan formula for 

the transition temperature of a 	 strong coupling superconduc­

tor <30> 

• (3.29) 

As pointed out earlier, McMillan's equation does not contain 

a parameter corresponding to X because of his rather crude 

approximation to an integral. From the excellent quali­

tative agreement that we have obtained for strong coupling 

superconductors it is evident that we could fit the measured 

energy gap with the expression 

l+A.-aX' 
X-µ* (3.30) 

and that the fitted value of the adjustable parameter a 

would not differ very much from 1 for any superconductor. The 



56 

TABLE 3.6 

COMPARISON OF CALCULATED AND EXPERIMENTAL ENERGY GAPS 
FOR STRONG COUPLING SUPERCONDUCTORS. (µ*=O) 

6.EXP 6.CALCELEMENT -A" WC 0 0 
(mev) (mev) (mev) 

amorphous 

Ga 1.70 3.20 26.7 1.66 a 1.67 

1. 28Pb 1.51 1.80 11.05 

amorphous 
1.78 3.18 13.95 1.21 c .97 

Bi 

Hg 1.45 2.66 14.45 .83 d .85 

a. Reference 48 

b. Reference 22 

c. Reference 48 

d. Reference 49 
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fitted ex would certainly never be small enough, for a strong 

coupling superconductor, to render -ex.I negligible in com­

parison to l+A because -I is considerably larger than A for 

these superconductors. Table 3.7 contains the empirical 

values of ex for amorphous Ga, Pb, amorphous B~ and Hg. The 

exact value of µ * is not important for these metals, because 

A is so large, and we arbitrarily set it equal to .12. 

This is a reasonable choice since Cohen's values for Ga, 

Pb and Hg are .11, .12 and .13 respectively< 42>. It is to 

be noted that ex is indeed close to 1 for all these metals. 

It seems clear from the above considerations that 

the theoretical McMillan equation< 3o>, 
l+A 

* <w> * A-µ -(-)Aµ
WC 

,(3.31). 

is lacking an essential ingredient, the finite temperature 

analogue of I, and that the semiphenomenological expression 

based on (3.31), 

l.04(l+A) 

).-µ * (1+0.62).) 
, ( 3. 32~ 

could be improved by the incorporation of the finite tem­

perature analogue of ex.I. 

In any case, r is a very necessary ingredient of 

our expression for ~O' even for a qualitative estimate of 

the energy gap of a strong coupling superconductor. An 
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TABLE 3.7 


EMPIRICAL VALUES OF a. (µ *=.12) 


ELEMENT a 

Ga .873 

Pb .750 

Bi .760 

Hg .855 
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interesting example is a comparison of Pb and Hg using 

equation (3.28). wc is equal to 11 and 14 mev for Pb and Hg 

respectively and (l+A)/A is equal to 1.66 and 1.69 for the 

two respective metals. If I did not occur in (3.28) the 

fact that the values of (l+A)/A are almost the same for the 

two metals would lead us to the qualitative conclusion that 

~0 (Hg) > ~0 (Pb) (because wc(Hg) > wc(Pb)). This conclusion 

is completely wrong; ~ 0 (Pb) is very considerably larger 

than ~O(Hg). It is only when we include I in equation (3.28) 

and the fact that -r is considerably larger for Hg than for 

Pb, 2.66 as compared to 1.80, that we arrive at the correct 

qualitative result. 

Let us return to our semiempirical expression (3.30) 

for a moment. If the empirical values of a for two strong 

coupling superconductors happened to be very nearly the same 

and if a 2 (v)F(v) were available for a two component alloy 

of the two elements it would be a good test of (3.30) to 

calculate ~O for the alloy using a (weighted) average value 

of a. 

It seems quite clear from the evidence presented in 

this section that equation (3.20) is a very good approximate 

solution of the Eliashberg equations for the energy gap at 

the gap edge of a weak coupling superconductor. Although 

not quite so good a solution for medium coupling super­

conductors, it can be used with confidence for a qualitative 

study of many phenomena in these superconductors, for example, 
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the effect of alloying on the energy gap. The weak coupling 

integral equations (3.13) and (3.14) can be solved very 

quickly on an electronic computer and should give essentially 

the same results as the Eliashberg equations when calculating 

the energy gap parameter, 60 , of weak or medium coupling 

superconductors. Any small loss in accuracy is more than 

compensated for by the huge saving in computer time. 

In the next few sections we use the formalism 

developed in this section to study several interesting 

effects. 

3.2 	 THE ANISOTROPY OF THE ENERGY GAP IN A PURE SINGLE-CRYSTAL 
WEAK COUPLING SUPERCONDUCTOR 

Bennett< 37 > used an approximate procedure to cal­

culate the energy gap 60 (8,¢) at the point~= (kF,8,¢) on 

the Fermi surface of a strong coupling superconductor (Pb). 

Bennett's procedure is now described very briefly; it was 

described in more detail in Chapter II. The Eliashberg gap 

equations containing in the kernels K±(w,w'} the function 

a 2 F appropriate to the isotropic or 'dirty' metal, 

are iterated until convergence is reached. The isotropic 

a 2 F is then replaced by the directional a 2 F, 

I (3.33) 



61 


(all other quantities occuring on the right hand side of the 

Eliashberg equations are fixed once and for all at their 

converged 'isotropic' values) and one more iteration is 

performed to yield approximate values for A(w,0,<j>) and Zs(w,6,¢). 

It is important to note that it is quite out of the question, 

at the present time, to iterate the Eliashberg equations, 

in their strong coupling form, a second time. The computer 

time and memory required would be enormous. 

We now apply the principle of Bennett's procedure 

to the simplified weak coupling integral equation~ (3.13) 

and (3.14), to obtain an approximate expression for the 

energy gap at the gap edge in a pure single-crystal super­

conductor. We obtain 

f 
w 

0 

(3. 34) 

where 

2z~l) c0 ,<1>> o = dv a. 2 F(v,e,¢) [L(v,wc,AO) + v+w ] 

c 


• (3.35) 

In the above equations Ao is the solution obtained by it­

erating the integral equations, (3.13) and (3.14), to con­

vergence (using the isotropic function a. 2F(v), of course). 

Our success in the previous section in calculating the 

isotropic energy gap A0 , using equations (3.13) and (3.14), 
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indicates that for weak and medium coupling superconductors 

one can save a huge amount of computer time (at the expense 

of a very small loss in accuracy) by using equations (3.34) 

and (3.35), rather than the Eliashberg equations, to study 

the anisotropy of the energy gap ~ 0 (6,¢). We can make one 

further simplification by replacing z~l) (6,¢) by Zn(6,¢) ,
0 0 

which is given by 

• (3.36) 

As shown in the previous section this is a very good approxi­

mation. 

Equations (3.34) and (3.36) have been tested for Al 

and found to work very well. This was accomplished by 

calculating 60 (6,¢) for several values of (8,¢) using both 

the Eliashberg equations and the much simpler equations (3.34) 

and (3.36). The Eliashberg equations, containing the iso­

tropic a 2F(v), were iterated to convergence to obtain the 

solutions 6(w) and Z(w) appropriate to the isotropic case. 

Bennett's procedure was then used to generate 66 1) (6,¢) for 

about 30 different directions. The value of µ* to be used 

in (3.34) was determined, using equations (3.13) and (3.14), 

by requiring that the weak coupling value of 60 be the same 

as the Eliashberg value Re{6(6 0)}. With this value of µ* 

equations (3.34) and (3.36) were used to calculate 66 1>c0,¢). 

The agreement between the two sets of directional energy 
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gaps was excellent, the discrepancies being considerably less 

than 1%. These discrepancies are very small compared to the 

anisotropy in Acil) (8,~). Table 3.8 contains Acil) (8,~) for 

several directions (8,~) as calculated using the two different 

sets of equations. 

Actually we can simplify things even further for a 

weak coupling superconductor by replacing K(v,wc,AO) in 

(3.34) by "'K(v,wc,AO). As shown in the previous section 

this is a very good approximation for Al. We obtain 

1 * ~cAJl) (8 ,~) = l+A( 8 ,~) {X°(8,~) + [A(8,~) - µ 1 log<r>}A 00 

I (3.37) 

where 
dv

).(8,~) - a."F(v,8,~) I (3.38)v 

and 

rc0 ,~> • (3.39) 

The value of Ao to be used in (3.37) is the value given by 

equation (3.20). (3.37) is generalized, in a later section 

to investigate the pressure dependence of the anisotropy of 

the energy gap in Al. 

Since the weak coupling integral equations are so 

much simpler than the Eliashberg equations it does not take 

an unreasonable amount of computer time to go beyond the one 
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TABLE 3. 8 


A COMPARISON OF TWO DIFFERENT CALCULATIONS OF THE 

DIRECTIONAL ENERGY GAPS IN ALUMINIUM 


11~ 1 )(8,<I>) 

(2) 

o. 	 o. 
15. 	 o. 
22.5 	 o. 

30. 	 o. 
37.5 	 o. 
45. 	 o. 
54.75 .45. 

.1847 

.1934 

.2077 

.2035 

.1806 

.1768 

.1474 

.1856 

.1943 

.2087 

.2043 

.1813 

.1774 

.1471 

(1) 	 ~~l) (6,<t>) as calculated using the Eliashberg gap 

equations. 

(2) 	 l\~l) (8,<t>) as calculated using equations (3.34) 

and (3.36). 
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iteration result of Bennett. We first rewrite equations 

(3. 34) and (3. 35)· in their exact form 

,(3.40) 

+ 	 2 ] b. (k) '(3.41) 
w~-~, A. +w0 0 ­

where£= (kF,e,~). K and L are given by equations (3.11) 

and (3.12) with one minor modification. p1 and p 2 are now 

given by 

• (3.42) 

Equations (3.34) and (3.35) follow at once from (3.40) and 

(3.41) if we replace 6 0 (~') and t. 0 (~) on the right hand side 

by the isotropic solution 6
0 

and make use of the definition 

of a 2 F(v,e,~). 

A second iterati~n can be performed by inserting the 

first iteration n;,sult* for the directional energy gap, 

*One needs a scheme for interpolating from the finite set of 

one iteration results for ~ 0 (~') to ottain 6~l) (~') for any 

point (kF,e,~). This will be discusse1 in detail in Chapter IV. 
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6cil) Us,.'), into the right hand sides of (3.40) and (3.41) 

and performing the surface integrals over nk'" These in­

tegrals are very easily calculated by changing the weight 

factor in the a 2 F(v;0,~) computer programme, which will be 

discussed in detail in Chapter IV, from lgkk'Al 2 to 

respectively. The results for 6J 2> (~) will be discussed in 

detail later. We only remark here that the results of the 

second iteration are little changed from the first iteration 

results. 

The main purpose of this section has been to present 

equations that will be used in some of the following sections, 

particularly in Chapter IV. 

3.3 	 THE AVERAGE ENERGY GAP IN A PURE SINGLE-CRYSTAL WEAK 
COUPLING SUPERCONDUCTOR 

When impurities are added to a pure single-crystal 

superconductor the transition temperature decreases< 32 , 33 , 34 >. 
This is experimental evidence that the average energy gap 

in a pure single-crystal is larger than the isotropic energy 

gap in the corresponding 'dirty' superconductor. We use 

equation (3.40) to derive an approximate expression for the 



67 

average energy gap 

in a pure single-crystal weak coupling superconductor. This 

expression can be used in conjunction with the directional 

energy gaps calculated by the one iteration procedure dis­

cussed above to estimate <A0 (~)>. 

We replace K(wk-k'A wc,A0 Ct')) in equation (3.40) 
- l'\; ' 

by the approximate form K(wk-k'A wc,AO(k')) to obtain - - ' 

We average both sides of this equation over all directions of 

]£ to obtain 

I 
an 
4~ Ao<~>zs(k)o = 

r dQ 

J 
~ 

4'1T 

. 
"X° (k 1 ) -.A

0 
(k 1 

-
) + 

I dQk. ,
~A(~) 

x 
2w 

log ( A ( ~ 
0 -

, »6 O (jt' ) * I- µ 
ank, 
~ 

x 
2wc 

log c6 (k, > > 60 Ck'> 
0 -

,(3.41) 

where 

Igtt.' AI
2 

dvA (k I) 2N (0) = 2 
\) 

a..2F ( V '1!,') (3. 42)- rflic 
WC 

4iT ~ Wx:-k' A l 
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and 

re~·> =2N co> 


• (3.43) 


We define the anisotropy parameters a~, b~ and bk 

by the expressions 

, 

:\(~) = <).(~)> (l+bk) ,-
and 

X"C]i> = <X"(k) > (l+b~) , (3.44) 

where 
dnk 

<f (~) > - f q~>4~
J 

for any function f Os> • 
Since Iak I , Ibk I , Ibk I < < 1 

we can expand both sides of (3.41) in terms of these small 

quantities and retain only the lower order terms on the 

right hand side. We ignore the very small difference 

between z and Zn and obtain
8 

<~0 > Cl+<:>.>(l+<ab>)) , 
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I 

2w 
<A><60>{(l+<ab>)log(<Ec>) 

0 

- ~<a2 > - <ab>} 

Substituting these expressions into (3.41) and solving for 

l+(l+~<a2>+2<ab>)A - (l+<ab>)A - ~<a2 >µ* 
( l+<ab>) A-µ * 

• (3.45) 

This equation is to be contrasted with the expression for 

the isotropic energy gap in a 'dirty' superconductor 

l+A-X" 

A-µ * .(3.20) 

Equation (3.45) is not very useful as 	it stands because 

2we do not know the values of the quantities <a >, <ab> and 

<ab> (because we do not know 6 0 (~)). Knowledge of 6 0 (~) 

requires iterating the integral equations (3.40) and (3.41) 

until convergence is reached, which is a very formidible task 

even after all the simplifications that we have made. The 
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assumption that we make, which is a very reasonable one, is 

that, even though the anisotropy function a~ may change 

somewhat between the first and last iterations, the gross 

2average properties of this function, such as <a >, <ab> 

and <ab>, do not change appreciably. Hence to estimate 

<~0 (~)> we use the one iteration results for ~ 0 (~) to 

2calculate <a >, <ab> and <ab>. our results for Al are 

reported in detail elsewhere in this thesis. We just note 

at the present time that (3.45) gives the correct qualitative 

result that <~0 (t)> is a few percent larger than ~0 • One 

cannot obtain this result in a straightforward way from the 

one iteration results for ~ 0 (~). That is, if one averages 

the one iteration results for 60 (k) over all angles it is 

found that<6~l) (~)> < 60 • By applying an analysis similar 

to the above one to equation (3.37) one can easily show that 

~o<~ ( 1) (k) > = • (3.46)
0 - A.<ab> (l)

1 + l+X 

This is slightly less than 60 because there is a very strong 

correlation between A.(~) and 6cil) (~) so that <ab>(l) is 

positive. 

3.4 EFFECT OF PRESSURE ON A WEAK COUPLING SUPERCONDUCTOR 

In this section we use equation (3.20) and equations 

(3.13) and (3.14) to investigate the dependence of the 

isotropic energy gap on the fractional volume change, v, 

for Al, Tl, In and Sn. We then iterate the weak coupling 
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integral equations once to obtain an approximate expression 

for the dependence of the directional energy gaps on v. This 

expression is then applied to aluminium. 

The fractional volume change is defined by 

l.\O > 0 	 ( 3. 4 7)v - - ns 

where n is the volume of the metal when it is subjected to 

a hydrostatic pressure P; Os is the standard or zero pressure 

volume; !in = n - ns • 

(i) 	 Pressure Dependence of the Energy Gap for an Isotropic 
Weak Coupling Superconductor 

The zero temperature isotropic energy gap for a 

superconductor which has undergone a fractional volume 

change, v, is given by equation (3.20) when the v dependence 

of the various quantities involved is introduced. 

l+A.(v)-X°(v) 

A. (v) -µ* (v) • (3.48) 

We define y~A.(v) by the expression 

.(3.49) 

We assume that the variation of y~A.(v) with momentum transfer, 

q, and polarization index, A., is not important, and replace 

the exact relation (3.49) by the approximate relation 

• (3.50) 
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To calculate the phonon frequency shifts we use the GrUneisen 

relation(SO), 

I (3.51) 

where yG(~,A) is the Gruneisen parameter for the mode eq,A). 

In terms of an average Gruneisen parameter, yG' the scale 

factor, yev>, is given by 

-y 
y (v) = ( l"'.""V) G • e3.52) 

In the Thomas-Fermi approximation N(O)Uc varies more 

slowly than ~ with volume changee 39 >. This variation is 
F 

very slow for small volume changes and will be neglected. 

That is, we assume µ* (v) = µ * eo) in what follows. 

A(v) and X(v) can be calculated by a simple modi­

fication of the a 2 F computer programme which involves 

scaling all phonon frequencies by the factor y(v) and 

scaling all lengths by the factor (Q/Qs) 113 • The only non­

trivial change in Aev) and rev) I which cannot be immediately 

written down, is the effect of rescreening the pseudopotential 

form factor, weq/2kF), to take into account the changed 

conduction electron density. Since the effect of rescreening 

the pseudopotential is small relative to the effect of 

scaling the phonon frequencies and since this direct method 

of calculating A(V) and rev) is quite time consuming, 

especially if one wants to consider a large number of values 

of v, we use the rescaling procedure of Carbotte and 
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Trofimenkoff (Sl, 39 >, instead. These authors showed by a 

detailed numerical investigation of [a 2 (v)F (v)] for Al v 

that to a good approximation 

[a 2 (v)F (v) ]v = ~~~~) [a 2 (v/y (v) )F (v/y (v))] 0 (3.53) 

where 
1 1 

B (v) - cJ dt t 3 1wCtl 121,;cf dt t 3 lwctl 1210 
• (3.54) 

0 0 

They used the above scaling law to investigate the pressure 

dependence of the energy gap by solving the Eliashberg gap 

equations at zero and finite pressure. This is an extremely 

time consuming undertaking and they were able to consider 

only one, or at most two, finite values of v for each of the 

metals investigated. Our very simple result, equation (3.48), 

is only an approximate solution of the Eliashberg gap 

equations (for a weak coupling superconductor) but does not 

suffer from the numerical uncertainties involved in the 

complicated principal value integrals of the gap equations or 

in the necessarily coarse mesh of points used to represent 

the function a 2 (v)F(v). 

From equation (3.53) it readily follows that 

A(v) = B(v) A(O) • (3.55) 
Y2 (v) 
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It is not quite so easy to show that 

• (3.56)B(V) I(O)I<v> = 
Y2 (v) 

The proof is as follows: Generalizing the definition of X", 

equation (3.19), to finite v and using the scaling law, 

(3.53), we obtain 

WC (V) 


v/wc (v)
Icv> - 2 -dv 

\) 
[a 2 

( V )F (V) ] v log(l+v/w (v)) (3.57)
J 	 c 
0 


ywc(O) 

v/ywc (O)B (v) 	 dv= 7 .2 I [a. 2 (v/y)F (v/y)] 0 	 CY-=Y (v) ) -

\) 	 log(l+v/yw (0))
c 

0 

w (0)
0 

v'/w (0)
B (v) d'V I 	 0.2 I [a 2 (v')F(v')] 	 (v' :v/y)= -2- V' 	 0 log ( 1 +v 1/ w (0) ) 

y c 
0 

= 	 B(v) X°(O) 


Y2 (v) 


Substituting (3.50), (3.55) and (3.SQ into (3.48) we 

obtain 
l+n (v) [:\ (0) -X"(O) 1 

n(v):\(0)-µ * 
, (3.58) 

where 

B (v)n (v) 	 • (3.59) 
- y2 (v) 
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We note that, within our model, the v dependence of 

the BCS parameter N(O)V is given by 

= n(v)l..(O)-µ * [N (O)V] v 	 • (3.60)l+n(v) [>.(O}-X"(O)] 

Figure 3.4 is a plot of [N(O)V]v versus v for Al, Sn, Tl and 

In. The determination of n(v) for the various metals will 

be discussed later. We note that the decrease of [N(O)V]v 

with increasing v is linear to a good approximation. 

The simplified integral equations (3.13) and (3.14) 

are readily generalized to finite v. Using the scaling law 

(3.53) 	we obtain 
wc(O) 

60 CvlZ~(60 (v)) = {~~~j 	 f dv [c.2(v)F(v)J K(y(v)v,y(v)wc(O),0 
0 

2y(v)wc(O) · 
6 (v)) - µ * log ( (v) ) }6 (v) ; (3.61)0 	 6 00 

wc(O) 

= l + B (v) dv [a. 2 (v)F (v)] 0 [L(y(v)v,y(v)wc(O),Y (v) 
J 
0 

2 	 • (3.62)v+w (0) ]
c 

These equations have been put in a form that is convenient 

for numerical calculations. 

We use equation (3.58) and the integral equations 



FIGURE 3.4 The dependence of the BCS parameter [N(O)V]v 

on the fractional volume change v = - ~n/n5 • 
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(3.61) and (3.62) to calculate the ratio ~0 (v)/~0 (0) for 

Al, Sn, Tl and In. We use the Gruneisen parameters yG 

used by Carbotte, Trofimenkoff and Vashishta< 39 , 52 > in their 

investigation of the pressure dependence of superconductivity. 

We obtain B(v) for arbitrary v by interpolating between the 

values of B(v) tabulated by them for v = .025 and v = .050 

and calculated using equation (3.54). Table 3.9 contains 

yG' B(.025) and B(.050) ·for the metals considered here. Since 

we want to compare the results of the simple equation (3.58) 

with those of the more correct equations (3.61) and (3.62) 

we use the values of A and -X obtained by cutting a 2 (v)F (v) 

off at a value w* = 2~~XP(O). The results are not very 

sensitive to this cut-off (as shown previously) and this 

choice of cut-off avoids numerical difficulties associated 

with the factors (pi 2 -~0 2 )-~ occuring in both K(v,wc'~O) 
and L(v,wc'~o>. The only tricky point is the choice of µ * 

to be used for each metal. ~ 0 (v) as given by (3.58) is very 

sensitive to the factor n(v)A(O)-µ * occuring in the expo­

nential and hence quite sensitive to µ* • The only unambig­

uous procedure is to use that value of µ* which gives the 

correct zero pressure energy gap. We denote these values 

of µ* , obtained from (3.58) and equations (3.61) and (3.62), 

* *by µEXP(l) and µEXP(2) respectively. This procedure is the 

correct one from another point of view. We compare our 

results for ~ 0 (v) with those obtained by solving the Eliash­

berg gap equations. In this latter calculation, done by 
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TABLE 3.9 

PARAMETERS USED IN INVESTIGATING THE PRESSURE 
DEPENDENCE OF THE ENERGY GAP 

*ELEMENT B(.025) B(.050) µEXP( 2 ) 

Al 2.22 1.0263 1.0563 .1335 .1336 

Tl 2.25 1.0250 1.0500 .1006 .1090 

1.80 
In 1.0273 1.0604 .1087 .1196 

2.50 

Sn 2.25 1.0200 1.0445 .1339 .1402 
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P. Vashishta< 52 >, the Coulomb pseudopotential parameter is 

adjusted to give the correct zero pressure energy gap, A0 (o). 

We should do the same if our comparison is to be meaningful. 

It should be remarked that our procedure is a most stringent 

test of the relevant equations. We could easily pick values 

of µ * that would give very good agreement with Vashishta's 

values of A0 (v)/A0 (0) and at the same time a fairly good 

value of A0 (0). For example, in the work of Carbotte and 

Trofimenkoff reasonable qualitative agreement with their 

results for Tc(v)/Tc(O), obtained by solving the Eliashberg 

gap equations, was obtained using the Morel-Anderson equation, 

1 - --. 
A.-µ 

I 

with the same value of µ* used in both calculations. This 

agreement loses its significance when it is realized that 

the Morel-Anderson results for Tc(O) are very bad. Table 

* *3.9 contains the values of µEXP(l) and µEXP(2) that are 

*used to calculate A0 (v)/A 0 (0). µEXP(l) was used above in 

the calculation of [N(O)V] and is used below in the cal­v 
culation of the pressure dependence of the isotope effect. 

Figure 3.5 is a graph of A0 (v)/A 0 (0) versus v. The 

solid curves are the results obtained using equation (3.58) 

and the broken curves are those obtained using equations 

(3.61) and (3.62). There is very good qualitative agree­

ment between the two sets of curves for the medium coupling 



FIGURE 3.5 The dependence of the energy gap on the 

fractional volume change v = - /J.0./0.s' as 

calculated using equation (3.58) (solid lines) 

and as calculated by solving the coupled set 

of equations (3.61) and (3.62) (broken lines). 
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elements and excellent quantitative agreement for weak 

coupling Al. 

Table 3.10 contains three values of the ratio 

~ 0 (v)/~0 (0) for v = .025 and v = .050. They were calculated 

using equation (3.58), equations (3.61) and (3.62), and 

the Eliashberg gap equations< 52 >, respectively. The 

Eliashberg solutions are those of P. Vashishta and were 

calculated by scaling the phonon frequencies according to 

y(v) = 1 + YG v 

This same scaling was used in calculating our values for 

~ 0 (v)/~0 (0) in table 3.10. (The calculations for figure 

3.5 were done for values of y(v) given by (3.52) .) 

We note that there is very good quantitative agree­

ment between the values of ~ 0 (v) obtained by solving the 

Eliashberg gap equations and those obtained by solving the 

greatly simplified integral equations (3.61) and (3.62). 

The discrepancies are probably less than the numerical un­

certainties in the Eliashberg results. The Eliashberg 

equations were solved for a fixed number of points (45) 

in the a 2 (v)F(v) spectrum. For a fractional volume change 

v, wc(v) = y(v)wc(O). Hence to be consistent one should 

increase the number of points used to represent the function 

a 2 (v)F(v) by the factor y(v)/y{O). The values for ~ 0 (v) 
calculated using equation (3.58) are in fairly good quan­

titative agreement with the other values. 
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TABLE 3.10 


A COMPARISON OF THREE DIFFERENT CALCULATIONS 


OF THE RATIO 6o(v)/6o(O) 


v = .025 


ELEMENT ( 1) ( 2) ( 3) 

Tl 2.25 .875 .86 .85 

In 1.80 •92 .90 .895 

2.50 .865 .84 .83 

Sn 2.25 .84 .825 .81 

v = .050 


ELEMENT ( 1) (2) (3) 

Tl 2.25 .755 .73 .71 

In 1. 80 .85 .82 .81 

2.50 .75 .71 .70 

Sn 2.25 .70 .68 .66 

(1) 

(2) 

6 0 (v)/60 (0) calculated using equation (3.58). 

6 0 (v)/60 (0) calculated by solving the integral 

equations (3.61) and (3.62). 

(3) 6
0 

(v)/60 (0) calculated by solving the Eliashberg 

gap equations. 
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It seems safe to conclude that, for an investigation 

of the effect of pressure on the energy gap 6 of a weak0 
coupling superconductor, the simple expression (3.58) is 

adequate. Equations (3.61) and (3.62) could be used for 

slightly improved accuracy. For a qualitative study of the 

effect of pressure on medium coupling superconductors 

equation (3.58) is completely adequate, but for a quanti­

tative study the integral equations (3.61) and (3.62) should 

be used. In fact, for some calculations these latter equa­

tions may be preferable to the Eliashberg equations because 

of the huge saving in computer time with, it appears, little 

loss in accuracy. 

(ii) 	 Pressure Dependence of the Directional Energy Gaps 
in a Pure Single-Crystal Superconductor 

We readily extend to finite pressure the one it­

eration result, equation (3.34), for the directional energy 

gap at the gap edge in a pure single-crystal weak coupling 

superconductor. We obtain 

WC (v) 

= 
1 

l+A(6,cp,v) {I dv [ct 2F (v,6,$llv K(v,w
0 

(v) .~0 (v)) 
0 

* - µ (3.63) 


where 60 (v) is the isotropic energy gap in the 'dirty' super­

conductor when subjected to the fractional volume change v. 
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~ 0 (v) is given by equations (3.61) and (3.62). 

The directional a 2 F computer programme, which is 

discussed in detail in Chapter IV, is easily modified to 

calculate [a 2F ('VI 8 I <P>] v for finite v. However the large 

amount of computer time needed to calculate this function for 

many directions (8,<j>) and several values of vis not warranted 

by the one iteration approximation. Instead we make the 

reasonable assumption that the scaling law of Carbotte and 

39Trofimenkoff < > can be extended to the directional case. 

That is, we, assume that 

[ a 2F ( " , 8 , <I> ) l = B <8 ' <I> ' v > [a 2F <vI y <v > , 8 , <I> ) l 0 • (3.64) 
v Y2 (v) 

The expression for B(v), equation (3.54), was derived in 

detail in reference (51). The analogous expression for 

B(8,¢,v) is obtained by repeating this derivation with a 2 F(v) 

replaced by a 2 F(v,8,<j>). It turns out that, with our approxi­

mations of a spherical Fermi surface and a local pseudo-

potential, B(8,<j>,v) is independent of direction. That is 

B(8,<f>,v) = B(v) • (3.65) 

Hence (3.63) becomes 
wc(O) 

~0(8,<j>,v) = l+B(v) 
1 {B (v) J d v [a}F (v , 8 , <I> ) l

Y (v) 0;>..(8,<j>,O)2Y (v) 0 

2y(v)w (O) 
x K (y (V) v ,y (v) WC (O) '~O (v)) -µ * log( ~ocv) )}~o<v> 

• (3.66) 
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For Al, repiacing K by ~ is a very good approximation. 

We do this and obtain 

1 * t. (8 ,cp ,v) = l+n(v)J..( 8 ,cp,o) {n(v)X°(8,cj>,O) + [n(v)J..(8,cj>,O)-µ)0 

2y(v)w (0) 
x log( t.o(~) )}t.0 (v) ,(3.67) 

where t. 0 (v) is now given by equation (3.58). We use equation 

(3.67) to calculate t. (8,cj>,v) for Al for v=O, .025, and .050.0 

J..(8,cj>,O) and X°(6,cj>,O) are calculated using the theoretical 

a 2 F(v,8,cj>) 's discussed in detail elsewhere in this thesis. 

The results for t. (8,cj>,v) are shown in figure 3.6.
0 

A measure of the anisotropy in t. (6,cj>,v) for a given
0 

value of v is the ratio of the!"·maximum to the minimum 

directional energy gap occuring for that value of v. We 

define an anisotropy parameter A(v) accordingly. 

t.MAX (8,cj>,v) 
A(v) 0 . (3.68) 

- t.~IN ( 6 ' cj> 'V) 

MAX MINTable 3.11 contains t. (6,cj>, v), t. (6,cj>,v) and A(v) for
0 0 

Al for v=O, .025 and .050. It is apparent from the tabulated 

values of A(v) that the anisotropy of the energy gap in Al 

increases with increasing pressure. This very interesting 

result is not hard to understand physically. The dominant 

source of anisotropy in the energy gap is the anisotropy in 

the phonon mediated electron-electron interaction. The set 

of virtual phonons emitted or absorbed by an electron 



FIGURE 3 .6 The anisotropy of the energy gap ~ 0 (8,~) 

in aluminium for three different fractional 

volume changes. 



• 

• • 

• • 

86 

·20r­

• • • • A 

' •l~ 

~ v•O· 18 • 
•• • 

· 16 t- • • . ,. 
• • 

·14 r­

·I 2 r­

•~.(8,+> • . ' • • 
1(meV>.10 ~ • • Iv• 0.25 

•11 

• .,,• ' 
·08r- • 

·06r­

• • . . . ' .
' I •It tiVllt0.50 ' 

• 

• • 

J. l .J. 

0 15· so 45· 

8 (deor•••> 


http:Vllt0.50


v 

87 

TABLE 3.11 

EFFECT OF PRESSURE ON THE ANISOTROPY 

OF THE ENERGY GAP IN ALUMINIUM 

MAX MINt. (0,Q>,v) t. (0,Q>,v) A(v)
0 0 

(mev) (mev) 

o.ooo .198 .147 1.35 

0.025 .111 .079 1.41 

0.050 .054 .036 1.50 
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making virtual transitions from the state k = (kF,0,¢) to 

all other points~·= (kF,e',~') on the Fermi surface depends 

on the initial state ~· This is a geomemcal effect. In 

the extended zone scheme the set of all the phonon ~ vectors 

generated above would terminate on the surface of a sphere 

of radius kF. In the reduced zone scheme, which is the 

physically meaningful representation, the q vectors corre­

spending to umklapp processes would be remapped into the 

first zone. The parts of the spherical surface lying out­

side the first zone would be mapped into the first zone 

forming a complicated two dimensional surface. It is obvious 

that, unless one had a spherical Brillouin zone or such a 

small Fermi sphere that there were no urnklapp processes, 

the shape of this surface would depend on the coordinates 

(6,¢) of the initial state k. When the metal is subjected 

to a hydrostatic pressure the Fermi sphere and the Brillouin 

zone scale together so that the shape of the complicated 

surface generated for the initial point (8,¢) does not 

change (its size does, of course). In the approximation 

of a mode independent GrUneisen constant we expect the 

anisotropy in the phonon induced electron-electron inter­

action to be essentially independent of pressure. But, 

because this phonon induced interaction decreases with 

increasing pressure, the anisotropy in the total interaction 

.increases * • Hence the anisotropy in the energy gap increases 

*The Coulomb pseudopotential parameter µ * changes very slowly 

with pressure as compared to the phonon-mediated interaction. 
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with increasing pressure. Furthermore, the smaller the ratio 

of the strength of the phonon induced interaction to the 

strength of the Coulomb interaction the faster will be the 

increase of the energy gap anisotropy with pressure. Since 

this ratio decreases with increasing pressure the rate of 

increase of the anisotropy with increasing pressure will 

increase as the pressure increases. This qualitative effect 

is clearly exhibited in figure 3.7 which is a plot of A(v) 

versus v. The above considerations also lead to the con­

clusion that the effect of pressure on the anisotropy of the 

energy gap will be more pronounced for a weak coupling super­

conductor than for a strong coupling one. 

Even if one were to turn off the Coulomb interaction 

the effect would persist. In this case the anisotropy of 

the total interaction would be independent of pressure. 

But the energy gap depends on the total interaction in a 

very nonlinear way so that the anisotropy of the energy gap 

would still increase with increasing pressure and the rate 

of increase would be greater, the greater the pressure. 

Suppose, for example, that 

-l/[N(O)V] 8 '¢ 
~ 0 (8,¢,v) = 2wc e v 

It is obvious from this equation that even if the anisotropy 

in [N(O)V] 81 ¢ were independent of v the anisotropy in the v 
energy gap would increase with increasing v, i.e. decreasing 



FIGURE 3.7 The dependence of the anisotropy parameter 

A(v) on the fractional volume change v for 

aluminium. 
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N{O)V, and the rate of increase would be larger, the smaller 

the interaction. The effects predicted above should be 

accessible to experimentalists because many thermodynamic 

properties depend on gross features of the anisotropy, such 

as the mean squared anisotropy. The qualitative arguments 

given above indicate that it would be best to look for an 

increase in the anisotropy of the energy gap with pressure 

in a weak coupling superconductor. Our calculations for 

aluminium indicate that the effect is quite large. The 

anisotropy parameter A{v) increases by slightly more than 

10% for a fractional volume change of 5%. 

3.5 	 THE TRANSITION TEMPERATURE OF AN ISOTROPIC WEAK 
COUPLING SUPERCONDUCTOR 

The BCS integral equation for the energy gap of an 

isotropic superconductor at zero temperature is{ll) 

• (3.69) 

The weak coupling version of equation { 3 .1) can be written 

in this form. We obtain 
WC 

dnk dnk, de:' .N ( 0)
ti 0 co> 	 ~ v~~·ti 0 co> ,{3.70)= Zs (ti 0 (O) ,o) 4iT" 4iTff 	 I 

0 

where - uc .{3.71) 
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The phonon-mediated part of V~~· is known as the Eliashberg 

interaction. 

The BCS result for the energy gap at a finite tem­

perature T is(ll) 

N(O) ff d:~ d~~· jD dE'
~O (T) = Jr' v~~· tanh(E'/2kBT) ~ 0 CT) 

0 (3.72) 

where E' is now given by 

We use equations (3.69) and (3.72) to generalize our zero 

temperature equation, (3.70), to finite temperature. We 

obtain 

N (O) dE' 
~O(T) ~ v~~· tanh(E'/2kBT)~ 0 CT)= l+A (T) 

,(3.73) 

where v~~· is given by (3.71) with ~ 0 (0) replaced by ~ 0 (T) 

throughout. We have neglected the effect of thermal phonons 

in extending (3.71) to finite temperatures. This is a good 

approximation for weak coupling superconductors because 

their transition temperatures are very low. Moreover it 

is the forced vibrations of the io:rsdue to the electrons 

themselves that are essential in superconductivity, not the 

thermal vibrations. We have also neglected the very small 

difference between Zs(~0 (T) ,T) and Zn(O,T). This difference 
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vanishes at the transition temperature. 

The temperature T at which the superconductingc 

transition takes place is obtained by letting ~ 0 (T) go to 

zero as T goes to T from below in equation (3.73). We
0 

obtain 

E +W~-~'A. 

w 

= l+l}Tc) {2 	 Jc dv a 2 (v)F(v) 


0 
 0 

.(3.74) 

The last integral is easily evaluated for a weak 

coupling superconductor< 53 >. Changing variables (x=E'/kBT )
0 

and integrating by parts we obtain 

w c we/kBTc 
w 

7 
dE 1 

tanh(E'/2kBTc) = dx 
x 

tanh (x/2) = log(kT) 
B cI 

r 	
c 

J 
0 	 0 

00 

f dx log x ~x tanh(x/2) .(3.75) 

0 
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We have used the fact that tanh(wc/kBTc) can be replaced 

by 1 when wc >> kBTc (as it is for a weak coupling super­

conductor). Since d/dx tanh(x/2) decreases very rapidly as 

x increases from zero and since the upper limit, wc/kBTc' 

is very large we have replaced it by infinity. The last 

integral in (3.74) is just a number, -log 1.134. Hence 

( 
w 

.(3.76) 

0 

We evaluate the remaining integral in (3.74) in a 

similar fashion 

w 

dE' tanh(£ 1 /2kBTc) 1 dx tanh (x/2}=( ET £ +v kBTc x x+v/kBTc 
0 

x+v/kBTc
dx log ( x ) 

~x tanh ~} 

1 WC \) d x
log(x+----k= - {log(w-+v) + log 1.134 + dx T >er- tanh 2}.

\) c B c x 

Since v/kBTc >> 1 for those phonon frequencies, v, which 

are important in weak coupling superconductivity, and since 

~x tanh(~) decreases very rapidly as x increases from zero, 



95 

I 

we can replace log(x+v/kBTc) by log(v/kBTc) * in the remaining 

integral to obtain 

WC 

de: tanh(c:/2kBTc) 
~ = ! [log(ww~v) +log 1.134 + log(kvT )]

E E+V v c B c 

.(3.77) 

Substituting (3.76) and (3.77) into (3.74) and solving for 

Tc we obtain 
l+A (T ) -'A 
- c 

A-µ * kBT = 1.134 w e ,(3.78)c c 

where A.:::A.(O} and "f:::X°(O). Equation (3.78) is very similar 

to the corresponding equation, (3.20), for the zero temper­

ature energy gap. The BCS result for the transition temper­

ature of a weak coupling superconductor is(ll) 

.(3.79) 


A comparison of (3.20) and (3.78) with the corresponding 

BCS results suggests that the BCS parameter N(O)V should 

have a temperature dependence given by 

* = A-µ[N ( O)V] T .(3.80)l+A(T)-r: 

55Recent ~xperimental determinations<s 4 , > and 

*For v/kBTc >> 1 and x small, log(x+v/kBTc) is a very slowly 

varying function of x. 
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theoretical calculations< 56157 > of the temperature dependence 

of the renormalization parameter A(T) indicate that for 

small T, of the order of a few degrees, A(T) is a very 

slowly increasing function of T. This implies that the 

temperature dependence of the BCS parameter is very slight. 

We now use equations (3.20) and (3.78} to obtain a 

small correction to the well known BCS ratio 

2tio(O) BCS 
( k T ) = 3. 53 .(3.81) 

B c 

Our result is 

2.10 (0) A-µ * 
( k T ) = 3.53 e .(3.82) 

B c 

Since A(T} is slightly larger than A this equation leads c 

to the result that the ratio 2ti0 (0)/kBTc for a weak coup­

ling superconductor is somewhat larger than the BCS ratio. 

Our results for Al, Tl, In and Sn are 3.53, 3.585, 3.60 and 

3.57 respectively. 

We now use the scaling law of Carbotte and Trofimenkoff, 

equations (3.53) and (3.54), to derive a simple expression 

for the pressure dependence of the ratio 2.1 0 (0)/kBTc. The 

temperature dependence of the renormalization parameter is 

given by(58,59) 

A (T) 
a. 2 F(v} ,(3.83)v+E 
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where f (E) is the Fermi function 

1
f (E) = 

Within the scaling law approximation the dependence of A(T) 

on the fractional volume change v is readily found to be 

A (T, v) = B(v) A(T/y(v) ,0) = n(v)A(T/y(v)) • (3.84)
y2(v) 

We are using the notation: A(T)=A(T,v=O); A=A(T=O,v=O). 

It follows from (3.82) and (3.84) that 

n (v) [A (Tc (v) /y~v)) -A] 
2Li (0,v)

0 n(v)A-µ= 3.53 e .(3.85)
kBTc (v) 

If A(T) is available for small T this equation can be solved 

in a fraction of a second on an electronic computer. 

The qualitative pressure dependence of (3.85) follows 

from a simple argument. A calculation of A(T) for low 

T(T << 0 ), using the model< 59 >
0 

a 2 F(v) = A(v/w0 >
2 O<v<w0 

= 0 v>w0 

leads to the result 

eA(T)-A % 27T2 ('.!-) 2 log ( ~) • (3.86)A "'3 00 
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This result is qualitatively correct for a weak coupling 

superconductor. Now, let us consider equation (3.78) for 

a moment. Because of the exponential dependence of T on c 

(A-µ*)-l it is obvious that Tc goes to zero much faster than 

(A-µ *) does. Hence, by equation (3.86), for small T the 

. * difference (A(T)-A) goes to zero much faster than (A-µ ) 

does. This means that the factor in the exponential of 

equation (3.85) decreases with increasing pressure (i.e. 

decreasing * and the ratio of twice the zero temper­(A-µ)) 

ature energy gap to the transition temperature approaches 

the BCS result. This effect has been experimentally observed 

in lead( 60). As a further check equation (3.85) was solved 

for In and Sn for several values of v using the low tern­

perature values of A(T) calculated in reference (56). For 

both metals it was found that the ratio of twice the zero 

temperature energy gap to the transition temperature approaches 

the BCS value of 3.53 with increasing pressure. 

Before proceeding to the next section we observe 

that our more or less intuitive derivation of equation (3.73) 

can be justified within the strong coupling formalism. As 

already mentioned in Chapter II, McMillan< 30) used the finite 

temperature Eliashberg gap equations to derive an approxi­

mate expression for the transition temperature of a strong 

coupling superconductor. He assumed, as we have done, a 

model solution of the form 

~(w) 	 = ~o O<w<w c 

= ~ w <w c c 
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He neglected thermal phonons and obtained 
w w c c 

~ 1 (0) = 
~o 

I dw' 
zcor WT 2 I dv f (-WI)a 2 F(v) · { w•+v - f{w')}

-w•+v (3.87) 

0 0 

for the contribution of one-phonon exchange processes to the 

energy gap. He then neglected w' relative to v in the phonon 

-1propagators (±w'+v) (because the integrand in the w' 

integral is heavily weighted at small w') and obtained 

dw' w' .(3.88)WT tanh( 2k T ) 2 
B c 

We treat equation (3.87) more accurately. For small T 

f (-w') is equal to 1 over most of the range of integration 

O<w'<w so that it is not a good approximation to neglectc 

w' relative to v in the term containing f(-w')/(w'+v). 

We leave this term unchanged. For small T f (w') decreases 

very rapidly to zero as w' increases from zero. For a weak 

coupling superconductor the important phonon frequencies, v, 

are much larger than the values of w' which are heavily 

weightedin the term f (w')/(-w'+v). Hence it is a good 

approximation to replace this last expression by f(w')/(w'+v). 

We do this and obtain in place of (3.88) 

w w c c 
tanh(w'/2kBTc)

~ (O) 2 dw'~1(0) ~ dv a 2 F(v) • (3.89)
Z (O) WT w•+vI I 

0 0 
This is precisely the one-phonon exchange contribution to the 

energy gap occuring in equation (3.74). This justifies our 



argument by analogy used in writing down (3. 73) an~consequenft~O (3. 74). 

3.6 	 THE TRANSITION TEMPERATURE OF A PURE SINGLE-CRYSTAL 

SUPERCONDUCTOR 


We can easily generalize equation (3.73) for the 


isotropic energy gap of a 'dirty' superconductor at a finite 


temperature T to an equation for the directional energy gap 


of a pure single-crystal superconductor. We obtain 


N(O) J ank, Jwc de:' 
!::,,o(~,T) = l+A(~,T) ~ 0 ""E' v~,~·!::,,o(1',T) tanh(E'/2kBT) 

(3.90) 

where E' =le:• 2+t::,,~(k,T). This equation is used in Chapter IV 

.to investigate the temperature dependence of the anisotropy. 

Letting the energy gap go to zero as T goes to Tc 


from below (3.90) becomes 


tanh(e:'/2kBTc) 

e:'+w~-k'A 

dnk, 	
w 

c d , 
!::,, k I T £- u ~ o<-' c) ei­c J J0 

Using the following results from the previous section, 

l.134wc 
= log ( k T ) ' 

B c 

de:' tanh(e:'/2kBTc) 	 w/wc l.134wc1 = w[log(l+w/w) +log( k T )]~ e:' + w c 	 B c 
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we obtain 

Integrating over nk we obtain 

= I 

dnk' * 
~~0 (k',T )A(k')-µ] (3.91)x cJ 4 - ­7T c 

We let 

A(k,T ) = 
- c 

X°(j!) = X°(l+bk) • (3.92) 
-

We have assumed that the anisotropy parameters a~, bk and bk 

are independent of temperature over the small temperature 

range from zero to the transition temperature. After 

substituting (3.92) into (3.91), cancelling <~0 (k,Tc)> 

from both sides of the resulting equation, and solving 
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l+(l+<ab>)A(T )-(l+<ab>)A 
- ( c * )

( l+<ab>) A-µ • (3.93) 

The one iteration results for <ab> and <ab> for Al are used 

in Chapter IV to estimate the transition temperature of a 

pure single-crystal of Al using the above equation. 

Equation (3.93) is to be compared with the corre­

spending equation for the average energy gap in a pure 

single-crystal. We note that 

2<b.0 (~ 1 0) > (l+~<a2>+2<ab>)A-(l+<ab>)A(T )-~<a2 >µ* 
= 3.53 exp{- * c }

kBTc (l+<ab>) A-µ 

• (3.94) 

In Chapter IV this equation is used to arrive at 

the very interesting qualitative result that the ratio of 

twice the average zero temperature energy gap to the transi­

tion temperature for a pure single-crystal of Al is smaller 

than the corresponding ratio. for isotropic or 'dirty' Al. 

3.7 THE ISOTOPE EFFECT FOR A WEAK COUPLING SUPERCONDUCTOR 

We use the equation for the transition temperature 

of a weak coupling superconductor, 

l+A(T )-X'
- c 

A-µ*= l.13wc e '(3.95) 

to derive an expression for the isotope effect exponent. 
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Differentiating the logarithm of both sides of (3.95) with 

respect to the ionic mass M* we obtain 

d
dM log Tc 

We assume that Tc aM-S and recall that wc aM~~ to obtain 

* dA(Tc) d * * 2
13=~+M{(A;.i) dM + (l+:\(Tc)-X) ~M}/(:\-µ) • (3.96) 

Now µ * 

Hence 

(~) *2 --µ • (3.97)
M 

d dA(Tc) d log Tc 
.§. T • (3.98)A(Tc) = d 1 T = dM og c dM M c 

Substituting (3.97) and (3.98) ~nto (3.96) and solving for 

the isotope effect exponent, 13, we obtain 

(l+A. (Tc) -X) * 2(l - * 2 µ )
(A-µ )

13 = ~ • (3.99)
dA (T ) * 

(1 + Tc dT c /(A-µ)) 
c 

-13 ' If we assume that ~O aM (~ 0 is the zero temperature 

*M is the average ionic mass of a superconductor consisting 

of a single element. 
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energy gap given by equation (3.20)) we find in the same way 

that 

* = ~ (1 - 1 [ }l ] 2) ,(3.100)
l+>.-I N(O)V 

where N(O)V is given by (3.22). >.(T) is a slowly increasing 

function of T for values of T of the order of the super­

conducting transition temperature of a weak coupling super­

conductor (SG, 57> so that (3.99) and (3.100) lead to the 

conclusion that a is slightly smaller than a•. To a good 

approximation they are the same. 

We can readily apply the results of section 3.4 on 

the pressure dependence of the energy gap to a brief study 

of the pressure dependence of the isotope effect. Using 

the scaling law of Carbotte and Trofimenkoff we obtain 

aI (V) = ~(l _ (l+n(v)[>.(O)-X°(O)]} µ*(o)2) 
I (3.101)

<n<v>~co>-µ*co>> 2 

B (v)where n (v) = 
Y2 (v) 

Table 3.12 contains a'Cv) calculated, using the above 

equation, for v=O, .025, .050 and .075 for Al, Tl, In and Sn. 

The values of >., ->., w , µ * , B(v) and y(v) used in this section 
0 

are the same as those used in section 3.4 to calculate the 
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TABLE 3.12 


PRESSURE DEPENDENCE OF THE ISOTOPE EFFECT EXPONENT 


ELEMENT e • <o> S'(.025) aI ( • Q50) a• c.015> 

Al 2.22 .325 .283 .229 .155 

Tl 2.25 .469 .4645 .458 .450 

In 1.80 .466 .462 .458 .453 

Sn 2.25 .443 .432 • 419 • 403 

TABLE 3.13 


COMPARISON OF OUR RESULTS FOR THE ISOTOPE 

EFFECT WITH THOSE OF GARLAND 


ELEMENT aI SGARLAND 

Al .325 .37 

Tl .469 .48 

Sn .443 .455 
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pressure dependence of the energy gap. Figure 3.8 is a plot 

of S'(v) versus v for Al, Sn and In. Two qualitative features 

are to be noted: (1) the isotope effect exponent S' is 

smaller for a weak coupling superconductor than for a medium 

coupling one; (2) S' decreases with increasing pressure 

(the weaker the phonon induced electron-electron inter­

action the greater is the rate of decrease of S' with in­

creasing pressure). These qualitative effects are not un­

expected because it is well known that deviations of the 

isotope effect exponent from ~ are a measure of the relative 

strengths of the Coulomb and phonon-mediated electron-electron 

interactions< 21>. 
We do not compare the calculated zero pressure 

isotope effect exponents with experiment because the experi­

mental situation is far from clear at the present time. The 

early experimental results for the simple metals were all 

close to the BCS value of • 5 • In particular the experimental 

value of s for Z was • 45 ± .01(61) • A recent measurement n 
gave • 30 ± .01 (62) • 

In table 3.13 we compare our results for S' with 

the latest results of Garland<G 3) for$. Our results are 

consistently lower than Garland's. Garland cuts the Coulomb 

interaction off at 4EF thus obtaining a smaller value of µ * 

than is obtained using the usual cut-off at EF. This cut-off 

has been criticized because there appears to be no sound 

physical basis for such a large cut-off. 



FIGURE 3.8 The dependence of the isotope effect ex­

ponent S' (v) on the fractional volume change 

v for Al, Sn and In. 
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A good criterion for the correctness of any theo­

retical expression for the zero temperature energy gap (or 

the transition temperature) is that it simultaneously gives 

the correct energy gap and the correct isotope factor B'. 

Hence, it will be very interesting and illuminating to 

compare our results for the isotope effect exponent with 

experiment when reliable experimental values for weak and 

medium coupling superconductors are made available. 



CHAPTER IV 

THE ANISOTROPY OF THE ENERGY GAP IN SUPERCONDUCTING 

ALUMINIUM ARISING FROM THE ANISOTROPY OF THE PHONON DENSITY 


OF STATES 


4.1 	 CALCULATION OF DIRECTIONAL ELECTRON-PHONON MASS­
ENHANCEMENT PARAMETERS 

For a pure single-crystal superconductor the essential 

information about the electron-phonon interaction and the 

phonon density of states is contained in the function 

We emphasize again that we are neglecting any anisotropy in 

the Fermi surface and in the electronic single spin density 

of states at the Fermi surface. Hence k = (kF,8,~), where 

kF is the free electron Fermi wave vector (related to the 

conduction electron density by k = (3TI 2n) 113), and N(O)
F 

is the isotropic average of N~ 1 (0). We employ the one OPW 

approximation and a local pseudopotential so that the 

electron-phonon coupling constant is given by< 25 > 

( 4. 2) 


where q : ]S-]S' • 

109 
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Equation (4.1) then becomes 

, (4.3) 

where 

LA(~) . (4.4) 

In (4.4) z is the number of conduction electrons per ion. 

At first sight it might appear that the calculation 

of the isotropic function, a 2F(v), is more difficult or at 

least much more time consuming than the calculation of the 

directional function, a 2F(v,9,¢), because the former involves 

a double surface integral while the latter involves only a 

single one. This is not the case. For a spherical Fermi 

surface and a local pseudopotential the double surface in­

tegral can be transformed into a volume integral over a 

sphere of radius 2kF. Symmetry considerations further reduce 

the range of integration to the irreducible part of the first 

Brillouin zone. This enables one to use the computer tech­

niques developed by Gilat and Raubenheimer<G 4) so that the 

calculation of the isotropic a 2 F actually involves only a 

modest amount of computer time< 25 >. The calculation of the 

anisotropic function a 2F(v,e,¢) for an arbitrary point (9,¢) 

requires a great deal of computer time. Moreover, one needs 

the function for a large number of directions (9,¢) for a 

meaningful study of anisotropy. 
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We now describe in some detail the method of cal­

culating a 2 F(v,8,¢) used in this work. The essential in­

formation about the lattice vibrations in Al (i.e. the phonon 

eigenfrequencies w~A and polarization vectors ~qA at every 

point ~ in the first Brillouin zone) is readily available 

in the literature in the form of a Born-von Karman force-

constant fit to the dispersion curves measured in high 

symmetry directions by means of inelastic neutron scattering( 6S). 

The electron-ion pseudopotential form factor W(q) is taken 

to be that of Heine and Abarenkov< 66 ) as tabulated in 

reference (67). With this information the numerical eval­

uation of a 2F(v,8,¢) in histogram form is quite straight 

forward. The range of frequencies 0 < v < w is divided upc 

into 100 channels, each of width wc/100. The surface of the 

Fermi sphere is divided into 90 x 180 = 16,200 small areas 

by ninety lines of latitude, 2° apart, and 180 lines of 

longitude, also 2° apart. A random point (kF,e•, ¢ ') is 

selected from each of the 16,200 small areas and for each 

of these points the frequencies and eigenvectors wSA and 

~(~A), and then the weight factors, LA(~) sin 8' are cal­

culated. The weight factors are then added to the appro­

priate frequency channels as specified by the delta functions 

o(v-w<I_A). The resulting histogram is not normalized. For 

normalization purposes we define the function 

• (4.5)N(v,8,¢) = J 
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This is a directional phonon frequency distribution function; 

it gives the phonon frequency distribution for the set of 

virtual processes in which an electron in the initial state 

(kF,8,¢) scatters to every point (kF 1 8 1 ,¢') on the surface 

of the Fermi sphere with the emission of a phonon of wave-

vector q = k-k'. Although this function is interesting in 

its own right we have introduced it primarily because of the 

useful property 

f dv N(v,e,~l = 3 .(4.6) 

The normalization procedure is now obvious. N(v,8,¢) is 

calculated simultaneously with a 2 F(v,8,¢) in exactly the same 

manner (except for the difference in weight factor, of 

course). The resulting (unnormalized) histogram for N(v,8,¢) 

is then used to calculate the integral (4.6). Since the 

correct result is 3 the normalization constant is 3 divided 

by the unnormalized value of the integral. This normalization 

constant depends only on the procedure adopted for,choosing the 

points (kF,8',¢') and hence applies to the function a 2 F(v,9,¢) 

also. We further note that it is independent of (8,¢) if 

the same set of points (8',¢') is used for all values of (8,¢). 

Our results for a 2 F(v,8,¢) for the high symmetry 

directions will be presented later. 

The phonon renormalized effective mass for an electron 
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in the state (kF,9,~) is given by< 68 ) 

m * (9,~) = 1 + A(9,~) ,(4.7) 

where 
00 

dv 2 )A(9,~) - 2 --Va F(v,9,~ (4.8)J 
0 

is the electron-phonon mass-enhancement parameter for the 

direction (9,~). 

The results of our calculation of A(9,~) for about 

30 directions in Al are presented in figure 4.1. The most 

obvious feature of this graph is the singular behaviour of 

A(9,~) for values of 9 near 21°. This singularity is un­

physical and arises solely because the one OPW approximation 

is not valid for an electronic state near a Bragg plane. This 

shows up in the fact that the one OPW electron-phonon coup­

ling constant, (4.2), is singular if the momentum transfer 

q is equal to a reciprocal lattice vector ~FO. If ~=K then 

w =w =w =O and the coupling constant becomes infinite. q K Q 
The obvious way out of this difficulty is to do a 

many OPW calculation. This involves mixing into the plane 

wave state jk> those plane wave states, I~+!,> (!S_is a reci­

procal lattice vector} , which have roughly the same energy 

as lk>. An expression for the many OPW coupling constant is 

easy to derive< 69 ). However, before this expression can be 

used, the many OPW Fermi surface must be calculated and, for 

every vector, k or£', terminating on this surface in a 



FIGURE 4.1 The directional electron-phonon mass-

enhancement parameter, A(8,¢), for Al as cal­

culated within the one OPW approximation. 

The results for the two arcs ¢=0°.and 

45° on the irreducible <tr> th are to be dis­

tinguished as follows: 

¢ = 00 

E> ¢ = 45
0 

• 
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region near a Bragg plane, the appropriate mixing coefficients 

must be calculated. This is easy to do in principle but 

would extend the amount of computer time needed to calculate 

a 2 F(v,8,$) beyond the limit of practicability. 

It is the low frequency part of a 2 F which is causing 

all the difficulty. For example, the low frequency portion 

of the isotropic a 2 F(v) for Al calculated within the one OPW 

. . <25 > . l' . h'l . . b l' d happroximation is inear in v w i e it is e ieve t at 
222 < > (70)

a 2 F(v) should go to zero as v or faster for small v. 

This means that the low frequency region of the correct 

a 2 F(v) is unimportant in calculating the mass-enhancement A 

or superconducting properties because the strongest weight 

given to low frequencies in these calculations is consider­
. -2 

ably weaker than v • Hence, as long as the calculated 

a 2F(v) is roughly correct in the low frequency region there 

is no cause for concern. It is only when it is completely 

wrong that trouble arises. Even the linear behaviour of 

the low frequency region of the calculated a 2 F(v) for Al 

does not lead to serious errors in calculating A or the 

isotropic superconducting energy gap. 

The low frequency behaviour of the calculated 

a 2 F(v,8,$) 's ~critical as evidenced by the singularity in 

figure 4.1. The reason for this is easy to understand. In 
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an investigation of anisotropy what is important are the 

differences between a 2 F(v,6,4>) 's in different directions 

(6,4>). In calculating anisotropy in the mass-enhancement 

parameter, A(6,4>), the anisotropy in a 2 F is weighted with 

a factor v-l so that the low frequency region is important 

unless a 2 F(A,0,4>) is very small in that region for all di­

rections. This is the case for the correct,ta 2 F(v,6,<j>) 's; 

unfortunately it is not the case for the a 2 F(v,6,<j>) 's calcul­

ated within the one OPW approximation. There are some points 

(6,<j>) on the Fermi surface such that in scattering from them 

to all other points (0' 1 4>') on the Fermi surface no momentum 

transfers are encountered which are approximately equal 

to reciprocal lattice vectors. For these directions 
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(8,¢) the low frequency behaviour of a 2 F(v,8,¢) is correct. 

In other directions (8,¢) momentum transfers are encountered 

which are approximately equal to reciprocal lattice vectors 

so that the low frequency behaviour of a 2 F(v,8,¢) for these 

directions is completely wrong. Hence, it is evident that 

the low frequency singularity in the coupling constant can 

lead to large unphysical differences between a 2 F(v,8,¢) 's 

calculated for different directions. This is a serious 

difficulty. The above considerations are illustrated 

schematically in figure 4.2 where we have sketched the 

qualitative low frequency behaviour of the coupling function 

for two different directions n:(8,¢). The solid curve is 

representative of the behaviour of a 2 (v,n) for a direction 

in which the one OPW approximation is good for all the 

momentum transfers encountered in scattering from n to all 

points n• on the Fermi surface. The broken curve is re­

presentative of the behaviour for a direction in which the 

one OPW approximation leads to a divergent electron-phonon 

coupling constant for some of the scattering processes n~n·. 

In a recent calculation< 68 ) of the temperature 

dependence of the mass-enhancement parameter A Allan and 

Cohen corrected their calculated isotropic a 2 F's by re­

placing the divergent one OPW coupling constant by a frequency 



FIGURE 4.2 Qualitative low frequency behaviour of the 

coupling function 

a 2 (v,n) ; a 2 F(v,n)/N(v,n) 

for two different directions. The solid curve 

is representative of a direction in which the 

one OPW approximation is valid for all momentum 

transfers; the broken curve, for a direction in 

which it is not. 
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independent coupling constant in the low frequency region 

O < v < w0 /5. This is a reasonable procedure. We apply 

essentially the same correction to the isotropic a 2 F(v) for 

Al (calculated by Carbotte and Dynes) by multiplying it by 

(5v/wc) in the low frequency region below wc/5. This 


2
corrected fuhction is denoted by ac F(v). It has the correct 

2low frequency behaviour, going to zero as v as v goes to 

zero. We also apply this same correction procedure to the 

directional one OPW functions. This correction makes very 

little change in those functions which were essentially correct 

to begin with and at the same time it makes a drastic change 

2in those that were incorrect. The result is that ac F(v,8,¢) 

is at least qualitatively correct at low frequencies for all 

directions. This is all that is required since the low 

frequency part of a 2 F is unimportant as long as it is 

roughly correct. 

Figure 4.3 is a graph of the corrected isotropic 

a 2 F for Al. Figure 4.4 is a graph of ac 2F(v,8,¢) for the 

three high symmetry directions in Al. The important thing 

to notice in the latter figure is that the anisotropy in the 

12low frequency region (v < 2 x 10 c.p.s.) is negligible 

12compared with that in the high frequency region (v > 2 x 10 c.p.s.). 

Figure 4.5 is a graph of the directional electron-

phonon mass-enhancement parameter A(8,¢) calculated from the 

corrected function a 2F(v,8,¢). This graph is plotted on c 

the same scale as figure 4.1 to facilitate comparison of the 



FIGURE 4.3 The corrected a. 2F(v) for Al, 

w c
O<v<51 

= a. 2 F(v), 

versus frequency. 
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2FIGURE 4.4 acF(v,8,¢) for the three high symmetry 

directions in Al versus phonon frequency v. 

The three curves are displaced vertically 

from each other to facilitate comparison. 

The lower curve is for the (100] direction, 

the middle curve is for the (110] direction, 

and the upper curve is for the (111] direction. 
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FIGURE 4.5 The directional electron-phonon mass-

enhancement parameter, A(6,¢), for Al calcula­

ted with the corrected function a 2F(v,6,¢).c 

The results for the three arcs ¢=0°, 22~0 

and 45° on the irreducible (~ 8 )th are to be 

distinguished as follows: 

¢=00 

x ¢=22~0 

e ¢=4s0 . 
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corrected and uncorrected A(8,¢) 's. Although the correction 

has made a rather drastic change in A(8,¢) for values of e 

between roughly 20° and 30° the change in the average value 

of A is quite small (approximately 4%). This substantiates 

our assertion that the low frequency behaviour of a 2 F must 

be essentially correct for a meaningful study of an aniso­

tropic superconductor even though the properties of an 

isotropic superconductor are not too sensitive to the low 

frequency behaviour of this function. 

In section 4.3 we use the corrected functions, 

a 2F(v,8,¢), to calculate directional energy gaps using
0 

Bennett's one iteration procedure. Before doing this we 

investigate the importance of further iterations using a 

simple model for the anisotropic electron-electron inter­

action. This is the subject of the next section. 

4.2 	 A MODEL INVESTIGATION OF BENNETT'S ONE ITERATION 
PROCEDURE FOR CALCULATING DIRECTIONAL ENERGY GAPS 

In this section we use an unrealistic but mathe­

matically convenient model for the effective electron-

electron interaction matrix element, V~~·' to study the con­

vergence of the iteration procedure for calculating direc­

tional energy gaps. We assume the simplest possible model 

for V~~· which exhibits anisotropy. This is the factorable 

interaction matrix element, 

v~k' 	 = vMcn,n'> = Cl+acn>> vc1+a(n')) ,(4.9) 
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of Markowitz and Kadanoff (3l). The anisotropy function 

a(Q) depends only upon the direction, n=<e,¢), of~ with 

respect to the crystal axes. If we substitute (4.9) into 

the zero temperature BCS integral equation we obtain< 35 > 

8( m = <8( m> < l+a <m> 	 ( 4 .10) 

where, in the weak coupling limit, <8(Q) >is given by 

dQ' 2 	 2Wo 
1 = N(O)V --i:rr (l+a(Q')) log(<A(Q')>(l+a(Q'))) • (4.11)

I 

Clem< 35 > obtained an approximate analytical expression for 

the average energy gap in terms of the mean squared aniso­

tropy by expanding the right hand side of equation (4.11) 

in 	powers of the small parameter a(Q'), performing the 

3angular averages and neglecting terms of order <a >. His 

result is 

I<8(Q)> = [l+(N(~)v - ~)<a2 >]8 	 (4.12) 

where 

8 = 2w e-1/N(O)V
D 

is 	the energy gap in the isotropic or 'dirty' superconductor 

2
(<a > = 0). 

The BCS integral equation for the directional energy 

gap 8(Q), of an anisotropic superconductor is 
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an• 2wo 
6 cn> = N co> 47r vcn , n ' > 6 rn ' > log c6 cn , > > • (4.13)

I 

Bennett's method of calculating an approximate value for ~(n) 

is to replace ~(n') on the right hand side of this equation 

by the isotropic energy gap of the 'dirty' superconductor. 

One obtains in this way the one iteration result 

~(l)(n) 
= '(4.14)

~ 

where V(Q) = I d~~ V(Q,Q') '(4.15) 

and v = JJ an an• vcn n•> . (4.16)
47T 47T ' 

For the special case of a f actorable interaction matrix 

element (4.14) becomes 

~ (l) (n) = 6 (l+a en>} . (4.17) 

Comparing this with equation (4.10) we see that for this 

special case one iteration leads to the correct anisotropy 

function but does not give the correct average energy gap. 

On the basis of this, it is reasonable to assume, as Bennett 

did, that for a realistic interaction one iteration would 

produce a fairly good approximation to the energy gap aniso­

tropy function. However the extent to which this assumption 
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holds should be investigated by iterating the integral equation 

(4.13) with a realistic interaction until convergence is 

attained. Whether this is feasible or not depends on how 

quickly the iteration procedure converges. The rate of 

convergence should be qualitatively the same for the model 

interaction of Markowitz and Kandanoff as it is for a real­

istic interaction. Hence we use the model interaction to 

2calculate the average energy gap to order <a > in the anise­

tropy by iterating the BCS integral equation starting with 

the trial solution ~. 

We expand the energy gap and the factorable inter­

action matrix element in terms of Kubic harmonics: 

co 

~(n) = l ~m Km(n) , (4.18) 
m=O 

nn'
V 	 L L ct (a00=1) • (4.19) 

n n' 

We emphasize that the latter expansion is not valid for a 

general interaction matrix element V(n,n'). It is easy to 

show, using the orthonormality property of the Kubic harmonics, 

that for a factorable matrix element 

.(4.20) 

It is also easy to show that the average energy gap, the 

anisotropy function, and the mean squared anisotropy are 
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given by 

'(4.21) 

00 

!::,. (n) -</::,. (n) > = a (Q) - l (4.22)<6. (n) > 
m=l 

<(6.(Q)-<6.(Q)>)2> = 00 

l . (4.23)
<6.(Q)>2 m=l 

The reason for expressing the factorable interaction of 

Markowitz and Kandanoff in terms of Kubic harmonics is that 

to second order in the anisotropy the surface integrals en­

countered in iterating (4.13) to convergence are trivial to 

evaluate. This simplification is due to the orthonormality 

property 

an K (n) K (n) = of 4TI m n m,n 

of the Kubic harmonics. 

We expand the logarithm in equation (4.13) to second 

order in the small quantity a(Q') to obtain 

• (4.24) 

We substitute equations (4.18), (4.19) and (4.22) into 
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equation (4.24) and equate the coefficients of the linearly 

independent functions Km(n) on both sides of the resulting 

equation. We obtain, to second order in the anisotropy, 

the following set of coupled equations for the expansion 

coefficients of the directional energy gap: 

log(2w /b.o)
0 

00 

l 
[1-o ' al mm' m' 


= {l - m ' } a b.

log(2w /b.)


0 m'=O log ( 2w / b. O)

0
 

mo 00 

a 	 l (m=O, 1, 2, .•• ) .(4.25)
0 2wD 

2b. log C-z;:-> m'=l 

These equations allow us to iterate equation (4.24) to con­

vergence with a minimum of computer time. 

For our investigation of the rate of convergence of 

the iteration procedure we truncate the set of equations at 

m=3. Our (arbitrary) choice for the expansion coefficients 

of the interaction matrix element is 

00 01 02 	 03 04 a =1, a =.l, a =.01, 	 a =.001, a =O, 


mm'
The rest of the coefficients a follow from equation (4.20). 

We iterate the set of equations (4.25) starting with the 

trial set of coefficients 

0
b. = b., 

As we already know, the first iteration gives the correct 

anisotropy function, equation (4.22), but does not change 
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the average energy gap from the isotropic value ~. The 

results of successive iterations are shown in figure 4.6 

where the average energy gap emerging from the ith iteration, 

~O(i), is plotted against i. It is apparent from the figure 

that the convergence of the average energy gap to the value 

given by equation (4.12) is very slow. This qualitative 

conclusion is not changed by using a different set of ex­

. . mm'pansion coefficients a • 

The results of the model problem investigated above 

give us some insight into what would be involved in iterating 

equation (4.13) to convergence with a realistic interaction. 

There is no reason to believe that the qualitative result 

obtained above, that the average energy gap converges very 

slowly from the value ~ appropriate to a dirty superconductor 

to the value ~O appropriate to a pure single-crystal super­

conductor, would be any different for the case of a realistic 

interaction. This means that the labour involved in iter­

ating equation (4.13) to convergence with a physically real­

istic interaction is formidable. Since the convenient Kubic 

harmonic expansion, (4.19), holds only for a very restricted 

class of (unrealistic) .interactions, the surface integral in 

(4.13) would most certainly have to be evaluated numerically. 

This is very time consuming but is not the most difficult 

problem. For each iteration after the first, one needs an 

accurate interpolation scheme for obtaining, from the finite 

set of directional energy gaps calculated in the previous 



FIGURE 4.6 The convergence of the iteration procedure 

for calculating the average gap in a pure single­

crystal superconductor. ~O(i) is the result of 

the ith iteration. 
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iteration, the value of ~(Q') at an arbitrary point Q'. 

Clearly, in order to obtain convergence, the errors in­

volved in the interpolation procedure must be less (every­

where on the Fermi surface) than the differences between 

successive iterations. This is a severe limitation and leads 

us to conclude that it is unfeasible to iterate the weak 

coupling integral equation (4.13) to convergence for the 

case of a physically realistic electron-electron interaction, 

such as the Eliashberg interaction. Unfortunately many 

thermodynamic properties such as the low temperature specific 

heat and nuclear spin-lattice relaxation rate depend on the 

energy gap essentially exponentially so that the difference 

between~ and ~o, although quite small, is important. Hence 

one needs some scheme for calculating ~o. We use the pro­

cedure proposed in section 3.3 and carried out in section 4.4. 

This method is based upon the assumption that the gross 

features of the anisotropy, such as the mean ·squared aniso­

tropy, can be calculated to a good approximation using the 

one iteration results, ~(l) (Q), for the directional energy 

gaps. Since much of the remainder of this chapter is based 

on the as.sumption that Bennett's one iteration procedure is 

valid to a good approximation for calculating the aniso­

tropy in the energy gap (even though it does not give the 

correct average energy gap), we conclude that it is advisable 

to obtain some justification for this assumption by per­

forming at least two iterations. This is done in the next 

section. 
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4.3 	 CALCULATION OF THE ANISOTROPIC ENERGY GAP IN SUPER­
CONDUCTING ALUMINIUM 

In this section the results of our calculation of the 

directional energy gap at the gap edge, 

Re{b. (w=b. (Q) ,n)} = b. (n) 	 (4.26)
0 0 	

I 

1for a large number of points on the irreducible (48)th of 

the Fermi surface of aluminium are presented. 

Within the strong coupling formalism the procedure 

used to calculate the directional energy gap b. (n) was as
0 

follows: (1) the Eliashberg gap equations containing the 

isotropic function a 2 F(v) and an adjustable Coulomb pseudo-

potential parameter µ* were iterated to convergence so as 

to obtain the experimental energy gap at the gap edge, 

b. = 	 .18 meV; (2) the isotropic gap function b.(w') appearing
0 

on the right hand side of the Eliashberg equations and the 

Coulomb parameter µ * were fixed once and for all at their 

converged values; (3) the isotropic function a 2 F(v) was 

replaced by the directional function a 2 F(v,n) in the phonon 

kernels K±(w,w'); (4) one more iteration of the gap equations 

was performed to generate the approximate directional so­

lution fl (l) (w,n) and the gap edge b.6 1 ) (n). The calculation 

of ll6l) (Q) within the weak coupling formalism of Chapter III 

followed essentially the same procedure. The only difference 

was that the simplified integral equations (3.34) and (3.36) 

were used in place of the Eliashberg equations. 



FIGURE 4. 7 The real (solid line) and imaginary (dashed 

line) parts of the frequency dependent gap 

function for aluminium: 

(a) 	 A(w) versus w for isotropic or 'dirty' 

aluminium; 

(b) 	 A(w,n) versus w for the [111] direction in 

a pure single-crystal of aluminium. 
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The isotropic gap function ~(w') and the strong coup­

ling value of the coulomb parameter µ * were obtained by 

iterating the Eliashberg equations to convergence using the 

isotropic function a 2F(v) of Carbotte and Dynes< 25 >. The 

final value of µ* , .166, gave an isotropic gap edge of .181 

meV. The real and imaginary parts of the isotropic solution, 

~(w'), are shown in the upper half of figure 4.7. 

It was not until after the isotropic solution had 

been generated that the full importance of the low frequency 

region of the function a 2F, for an investigation of anise­

tropy, was appreciated. Hence much of the work of this 

section was originally based on the uncorrected a 2F(v,n) 's. 

For some of this work, this is of no importance whatsoever 

and the calculations have not been repeated with the corrected 

a 2F(v,n) 's. In this category falls the comparison of the 

directional energy gaps calculated using the Elia·shberg 

equations with those calculated using equations (3.34) and 

(3.36). Since the agreement is very good for the uncorrected 

a 2 F(v,n) 's it most certainly would be at least as good for 

the (less anisotropic) corrected a 2F(v,n) 's. Hence the 

qualitative result of this particular investigation would 

remain unchanged. Also in this category is the comparison 

of the second iteration values of the directional energy 

gap with those of the first iteration. On the other hand, 

the first iteration results for the directional energy gaps 

were recalculated with the corrected directional a 2 F's. 
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However, the isotropic solution ~(w') was not recalculated. 

There are three reasons for this: (1) the calculation of the 

isotropic energy gap ~(w') is extremely time consuming; (2) 

the low frequency behaviour of a 2 F(v) is not very important 

in calculating an isotropic property and would have led to 

only a few percent reduction in the gap edge; (3) the gap 

function ~(w') calculated with the uncorrected a 2 F(v) is 

actually a better trial solution for the iteration procedure 

than that calculated with the corrected a 2F(v) because the 

average energy gap in a pure single-crystal is a few percent 

larger than the isotropic energy gap of the corresponding 

'dirty' crystal. For these reasons the isotropic solution 

~(w') generated with the uncorrected a 2 F(v) of Carbotte and 

Dynes was used as the trial solution in calculating the 

directional energy gaps with the corrected a 2 F(v,n) 's. 

The real and imaginary parts of the directional gap 

function, ~(w,n), for the [111] direction are shown in the 

bottom half of figure 4.7. This particular example was chosen 

because a 2 F(v,n) is essentially the same as a 2F(v,n) for the c 

[111] direction. The important point to note in figure 4.7 

is that while the directional and isotropic solutions are 

quite different for first order processes (v<wc)' they are 

very much the same for higher order processes (v>wc). This 

is easily explained(?l). The anisotropy of the effective 

phonon density of states is washed out to a large extent by 

the average over all possible intermediate states for 
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multi-phonon processes. 

The directional energy gaps calculated using the weak 

coupling integral equations (3.34) and (3.36) were compared 

with those calculated using the Eliashberg equations in 

section 3.2. The very good agreement between these two 

calculations is sufficient justification for performing a 

second iteration with the weak coupling directional integral 

equations (3.40) and (3.41). Since it is completely out of 

the question to perform a second iteration within the strong 

coupling formalism (i.e. using the three dimensional directional 

Eliashberg equations) the usefulness of the simplified 

integral equations of Chapter III should be very evident. 

As pointed out in section 3.2, a second iteration of the 

directional equations (3.40) and (3.41) is not difficult 

since it involves little more than a trivial modification 

of the weight factor in the directional a 2 F(v,n) computer 

programme. One does need, however, an interpolation procedure 

for obtaining 66 1 ) en') at each of the 16,200 points n• used 

in evaluating the surface integrals occuring on the right 

hand sides of equations (3.40) and (3.41). A procedure that 

was found to work quite satisfactorily is now outlined. The 

first iteration was carried out for about forty points n:(8,¢) 

1 on the irreducible <! 8)th of the Fermi surface (0<8<tan- (1/cos¢); 

0<¢<~/4) • These points were chosen so as to obtain a smooth 

curve for 66 1 ) (Q) along each of the arcs ¢=0°, ¢=22~0 and 
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¢=45°. A tenth order polynomial fit 

10 
~cil) (8,¢=constant) = L ai(¢=constant)8i 

i=O 

was made for each of the three arcs ¢=constant. A fourth 

order polynomial fit 

4 
L (i=O,l, ••. ,10) 

j=O 

was then made (for each value 	of i) to the five calculated 

0 0 0 0expansion coefficients a. (-22~ ) , a. (0 ) , a.(22~ ), a.(45)
1 1 1 1 

0 0and a. (67~0). We have used the fact that a. (-22~ ) =a. ( 22~ ) = 
1 	 1 1 

ai(67~0 ) (this follows readily from the cubic symmetry of 

a pure single-crystal of aluminium) to improve the polynomial 

fit without any additional labour. The resulting inter­

polation formula, 

10 4 
L L I (4.27) 

i=O j=O 

was used to obtain ~Jl) (8,¢) at any point (8,¢) on the ir­

reducible <!8)th of the Fermi surface. In our actual cal­

culations the irreducible <! )th was broken up into two8

regions by a line of latitude (8~30°) and the above inter­

polation procedure was applied to each reqion separately. 

To test this formula we calculated ~cil) (Q) (using the 

Eliashberg equations) for a few additional points in the 

region where the ¢variation of ~cil) (8,¢) was largest. These 
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8 

values are compared in table 4.1 with the interpolated values 

obtained using equation (4.27). The very good agreement 

indicates that the interpolation formula is more than adequate 

for our purposes. 

TABLE 4.1 


A TEST OF THE INTERPOLATION FORMULA, EQUATION (4.27) 


DIRECTION Ll~l) (8,<J>) 


<I> actual value interpolated value 

45° 7.5° .1738 .1719 

045° 15 .1656 .1655 

045° 30 .1541 .1542 

45° 37.5° .1513 .1513 

<! 

There is one further complication. LiJ 1 > (n) is needed 

everywhere on the Fermi surface not just on the irreducible 

8>th of it. It is evident that equation (4.27) is valid 

1only on the ( )th. Hence a scheme is needed to map any point
48

1 non the Fermi surface into its equivalent point on the (48)th 

so that the interpolation formula can be applied. We used 

the following procedure: (1) the absolute values of the 

cartesian components kx,ky,kz of the point (kF 1 8,<J>) were 

calculated to generate an equivalent point <lkxl ,lkyl ,lkzl> 
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on the positive octant of the Fermi surface; (2) the angular 

coordinates of the point (jk I ,lk I ,lk I> were calculatedx y z 
and then tested to see if they were in the range 

(0<8<tan- 1 (1/cos~); 0<~<~/4); (3) if not, successive per­

mutations of lk I ,jk I ,lk I were performed until the corre­x y z 

spending angular coordinates were found to belong to the 

irreducible (~ 8 )th (this required a maximum of 5 permutations). 

With these difficulties cleared up a second iteration 

of equations (3.40) and (3.41) was straightforward. Our 

results for the second iteration are presented in table 4.2 

where ~J 2 > (n) is compared with ~J 1 > (n) for several directions 

n. The values for ~cil) (n) are those which were calculated 

using the Eliashberg equations. It is evident from this 

table that the main effect of the second iteration is to 

shift the energy gaps for all directions upwards by a small 

amount without changing the anisotropy very much. This is 

what the simple model of section 4.2 led us to expect. For 

the model interaction of Markowitz and Kadanoff the only 

effect of successive iteratiorswas to increase the average 

energy gap by a small amount leaving the anisotropy function 

a(n) unchanged. We further note that the largest differences 

between the first and second iteration results occur in those 

directions where the one OPW approximation is suspect. If 

we had used the corrected a 2F(v,n) 's these differences would 

have been smaller. 

Although we have not proved that Bennett's one iteration 
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TABLE 4.2 


A COMPARISON OF THE FIRST AND SECOND ITERATION RESULTS 

FOR THE DIRECTIONAL GAP EDGE 8 (n)
0 

8 (1) (Q) 8 (2) (Q)a 
0 0 

(degrees) (degrees) 

o. o. 

7.5 o. 

15. o. 

22.5 o. 

30. o. 

37.5 o. 

45. o. 

15. 22.5 

22.5 22.5 

30. 22.5 

37.5 22.5 

45. 22.5 

15. 45. 

22.5 45. 

30. 45. 

37.5 45. 

45. 45. 

52.5 45. 

54.75 45. 

.181 


.181 


.181 


.181 


.181 


.181 


.181 


.181 


.181 


.181 


.181 


.181 


.181 


.181 


.181 


.181 


.181 


.181 


.181 


.185 


.187 


.193 


.208 


.2035 


.181 


.177 


.195 


.205 


.195 


.167 


.159 


.196 


.204 


.192 


.161 


.150 


.148 


.147 


.185 


.187 


.194 


.211 


• 207 


.182 


.178 


.196 


.208 


.198 


.168 


.160 


.196 


• 207 


.195 


.162 


.152 


.150 


.149 
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procedure is a good approximation we have obtained some 

justification for it by showing that nothing drastic happens 

when a further iteration is performed. We did not perform 

further iterations for the following reasons: (1) it would 

take a large number of iterations for the average energy 

gap to converge (section 4.2); (2) each iteration requires 

a very large amount of computer time; (3) the interpolation 

procedure would have to be made more accurate as the differ­

ences between successive iterations became smaller; (4) 

we did not expect that the anisotropy function a(n) would 

change very much with further iterations; (5) we did not 

need the converged value of the average energy gap because 

an approximate result for the average energy gap in terms of 

quantities calculated from the first iteration anisotropy 

function, a(l) (Q), was available (section 3.3). 

The one iteration calculation of the directional 

energy gaps ~0 Cn) was repeated using the Eliashberg equations 

for the corrected a 2 F(v,n) 's. The results are shown in 

figure 4.8. From the figure it is obvious that the aniso­

tropy of the energy gap in aluminium is considerable and 

should have an appreciable effect on many superconducting 

properties. This is investigated in some detail in the next 

section where the directional energy gaps of figure 4.8 are 

used in a calculation of the low temperature electronic 

specific heat and nuclear spin-lattice relaxation rate for 

a pure single-crystal of aluminium. 



FIGURE 4.8 The directional energy gap ~0 (n) for Al 

as calculated with the corrected function 

2acF(v,n). 

The results for the three arcs ~=0°, 22~0 

and 45° on the irreducible <!8)th are to be 

distinguished as follows: 

~=00 

x ~=22~0 

E> ~=45 
0 • 
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4.4 	 SOME EFFECTS OF THE ANISOTROPY OF THE ENERGY GAP IN 
ALUMINIUM 

In this section we present the results of our cal­

culation of the low temperature behaviour of the specific 

heat and the nuclear spin-lattice relaxation rate for a 

pure single-crystal of aluminium. 

In the temperature regime T<.25 Tc the temperature 

dependence of the energy gap can be neglected and the ex­

pressions for the electronic specific heat and the nuclear 

spin-lattice relaxation rate of an anisotropic weak coupling 

superconductor are given by< 35 > 

00 

2Cs(T) = 2N(O)kB a2 I dw w f(w) [l-f(w)] <n(Q,w)> (S=l/kBT) 

-oo ( 4. 28) 

and 
00 

dw f(w) [1-f(w)] {<n(n,w)> 2 + <n(n,w)> 2 }k:Tc 	f 
-oo 	 ( 4. 29) 

respectively. In (4.28) and (4.29) n(Q,w) is the anisotropic 

quasiparticle density of states, 

n(r2,w) - Re{ w } ,(4.30) 
./w2-t:,. 2 ( Q)

0 

and n(Q,w) is given by 

n(n,w) 
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where the energy variable w is measured relative to the Fermi 

level and the sign of the square root is such that 

00+ w as lwl + 

The angular brackets denote a Fermi surface average, i.e. 

<F(Q,w)> = J ~~ F(Q,w) 

for any function F(n,w). 

Clem introduced the anisotropy distribution function, 

P(a), which has the property that P(a)da is the fraction of 

the Fermi surface for which the anisotropy function a(n) 

has a value between a and a+da. Since a is known to be 

small the first three moments of P(a) are often useful. 

They are 

J da P (a) = 1 I 

J da P(a)a = 0 

J da P(a)a
2 = <a2> 

This distribution function enables one to reduce a two di­

mensional Fermi surface integral to a one dimensional in­

tegral over a. Since ~ 0 (n) = <~ 0 Cn)>(l+a(n)) it follows 

immediately from the definition of P(a) that 

<G(~ 0 cm ,w)> = J da P(a) G(<~0 (n}>(l+a) ,w) (4.33) 
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for any function G(~ 0 (n) ,w). 

In his theoretical investigation of the effects of 

anisotropy, Clem(JS) used a rectangular model for the aniso­

tropy distribution function. That is, he assumed that P(a} 

could be approximated by 

a . <a<amin max 

= 0 otherwise '(4.34) 

where amin and amax are the minimum and maximum values of 

the anisotropy. For this model, amin=-amax· Clem also used, 

for the average energy gap and the transition temperature of 

a pure single-crystal, the values obtained by solving the 

BCS integral equation with the factorable interaction, 

V(Q,Q'} = (l+a(Q)} V(l+a(Q')), of Markowitz and KandanoffC 3l). 

These are 

1 3 2 e-1/N(O}V
<~0 cm> = - -)<a >]2w[l+ (N (O)V 2 D 

1 _ ~)<a2>]~BCS= '(4.35)[l+ (N (O)V 2 0 

<a2> -1/N(O)V= 1.134 w ekBTc [l+N (O)V] 0 


<a2> 
 k TBCS= '(4.36)[l+N (O)V] B c 

where ~~cs and T~cs are the usual BCS results for the iso­

tropic energy gap and the transition temperature of an 
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isotropic or 'dirty' superconductor. Clem's model is a one 

parameter model; the single parameter is the mean squared 
. 2anisotropy <a >. 

Cheeke and Ducla-Soares( 3G) analyzed their low 

temperature specific heat data for pure superconducting Al 

using a model which gave results very similar to those for 

Clem's model (to within 0.5% at Tc/T=6). They concluded 
2that, within their model, <a > = 0.010 ± .003 for pure Al. 

We now use our one iteration results for the direction­

al energy gaps in pure Al to calculate the anisotropy dis­

tribution function and the anisotropy parameters <a 2 >, 

<ab> and <ab>. The procedure is simple. For example, to 

calculate P(a), the directional energy gaps are calculated, 

using the polynomial interpolation scheme, for a fine mesh 

1of points on the irreducible (49)th of the Fermi surface 

(0<8<tan- 1 (1/cos~), 0<~<~/4) and these calculated gaps are 

sorted into their appropriate histogram channels. From this 

directional energy gap distribution function we readily 

obtain the average gap and hence the anisotropy distribution 

function. Figure 4.9 is a plot of the anisotropy distribution 

obtained in this way for Al. We note that its shape is far 

from rectangular and that it is not symmetric about a=O 

as a rectangular distribution function must be. Of course, 

our distribution function and that of Clem do not represent 

quite the same thing. We have determined the anisotropy 

in the energy gap arising from the anisotropy in the phonon 



FIGURE 4.9 The anisotropy distribution function, P(a), 

for Al, calculated assuming that the anisotropy 

in the phonon density of states is the only 

source of anisotropy in the superconducting 

energy gap. 
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spectra and have neglected all other sources of anisotropy. 

Clem's rectangular distribution function is a model for the 

anisotropy in the energy gap arising from all sources. If 

the anisotropy in the phonon density of states is the dominant 

source of anisotropy in the energy gap, then the actual P(a) 

for Al must be qualitatively similar to the one that we have 

calculated. It most certainly will exhibit the 2 dimensional 

types of Van Hove singularities, an upward step, a downward 

step and a logarithmic infinity, all of which are evident in 

figure 4.9, although they are somewhat smeared by the finite 

histogram channel width and the polynomial interpolation 

scheme. Figure 4.10 is a graph of the averaged quasiparticle 

density of states function, 

p(w) = <n(O,w)> = I da P(a) Re{ w } , 
lw 2 -<~0 cn>> 2 c1+a) 2 

calculated with the anisotropy distribution function of 

figure 4.9. The dominant features of P(a) are reflected in 

p(w) although they are smeared considerably. 

The mean squared anisotropy calculated using the 

P(a) of figure 4.9 is <a 2> = .0084. We note, in passing, 

2that the value of <a > obtained using the uncorrected 

a 2 F(v,e,~) 's to calculate the directional energy gaps is 

.013. This value certainly represents an upper limit to the 

phonon density of states contribution to the anisotropy of 

the energy gap. 



FIGURE 4.10 The averaged quasiparticle density of 

states calculated with the anisotropy distri­

bution function of figure 4.9. 
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Substituting the one iteration results for <ab> and 

<ab>, .0081 and .0142 respectively, into equations (3.45) 

and (3.93) we obtain 

<ti 0 Cn)>/ti 0 = 1.022 c1.021) , 

TPSC/T = 1.039 (1.056)c c 

where T~SC is the transition temperature of a pure single­

crystal and where ti 0 and Tc refer to the isotropic super­

conductor. The values in brackets represent upper limits 

and were calculated using the uncorrected directional 

a 2F(v,8,~) 's. The experimental values of Cheeke and Ducla-

Soares for the transition temperatures of pure and 'dirty' 

Al are l.19°K and l.132°K respectively. Hence the experi­

mental ratio of the transition temperatures is 

We see that the anisotropy of the phonon density of states 

accounts for roughly 80% of this effect. 

Results for the low temperature behaviour of the 

electronic contribution to the specific hear in Al are shown 

in figure 4.11 where log(Cs/yTc) is plotted against Tc/T. 

(yTc is the normal state electronic contribution to the specific 

heat at the transition temperature.) The solid curve is 

the BCS result for the isotropic crystal. The two dashed 



FIGURE 4.11 Low temperature behaviour of the electronic 

contribution to the specific heat of aluminium. 

The solid curve is the BCS result for the 

isotropic superconductor. The lower (upper) 

dashed curve was calculated using Clem's one 

2parameter model with <a > = .007 (.013). The 

points are our results for a pure single-crystal 

of aluminium. 
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lines are results for the pure single-crystal calculated 

using Clem's rectangular model for the distribution function 

P(a) and using equations (4.35) and (4.36) to determine the 

average energy gap and the transition temperature. The upper 

2dashed curve is for <a > = .013 and the lower dashed curve 

2is for <a > = .007. The points lying between the two dashed 

lines are our results calculated using the anisotropy dis­

tribution function of figure 4.9 and using equations (3.45) 

and (3.93) to calculate the average energy gap and transition 

temperature. It is evident from the graph that our results 

fall within the experimental limits set by Cheeke and 

Ducla-Soares. If the best fit curve were included in the 

figure our results would lie somewhat below it. We conclude 

that the anisotropy of the phonon density of states can 

account for most of the low temperature enhancement of the 

electronic contribution to the specific heat in a pure 

single-crystal superconductor. 

In figure 4.12 we present results for the low tem­

perature nuclear spin-lattice relaxation rate. The solid 

curve is the usual BCS result for an isotropic superconductor. 

The circled points are our results for anisotropic aluminium 

calculated using the anisotropy distribution function of 

figure 4.9. It is to be noted that the curve for the 

isotropic superconductor lies below that of the anisotropic 

superconductor at very low temperatures but rises above it 

as the temperature is increased. This reflects the fact 



FIGURE 4.12 Low temperature behaviour of the nuclear 

spin-lattice relaxation rate for aluminium. 

The solid curve is the BCS result for the 

isotropic superconductor; the points are our 

results for pure single-crystal aluminium. 



0------------------------------------
153 

-5 

-10 

1,1 Rs (T) 
RnlTc) 

-2 

-25 

-30 

-3& 

0 IO 10 20 25 
Tc/T 




154 


that the BCS result for the isotropic case diverges lo­

garithmically as the transition temperature is approached 

from below. This divergence can be washed out by energy 

gap anisotropy, spatial inhomogeri~ities< 72 , 73 > or quasi­

particle damping< 74>. 
In this section we have assumed that the energy gap 

anisotropy in aluminium is independent of temperature. This 

assumption is investigated in the next section. 

4.5 	 TEMPERATURE DEPENDENCE OF THE ENERGY GAP ANISOTROPY 
IN ALUMINIUM 

In section 4.4 it was assumed that the energy gap 

anisotropy in aluminium was independent of temperature. 

This is a reasonable assumption to make because the transition 

temperature of aluminium is very low {l.9°K). In this section 

we show, within the weak coupling formalism of Chapter III, 

that this assumption is essentially correct. 

The one iteration result for the directional energy 

gap ~0 (n,T) at a finite temperature T follows immediately 

from equation {3.90) on replacing ~ 0 (n,T) on the right hand 

side by the isotropic energy gap ~0 {T) appropriate to 'dirty' 

aluminium. We obtain 

j° 
 {E'+v)tanh(E'/2kBT)
de: I2~~ 1) {Q ,T) = l+ltD,T) {2 I dv a F(v,D) ET (E'+v) 2 -~~(T) 
0 


, {4.37) 
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where E' = /E 12+~~(T). We consider only one temperature, 

T = .98 Tc' in this study. To determine ~0 (T) we use the 

BCS value for the ratio ~0 (T)/~0 (0) as calculated by 

Mtthlschlege1< 75 >. P. Truant(?G) has calculated A(Q,T) for 

Al using our a 2 F(v,Q) 's. It is clear from his results that 

the temperature dependence of A(Q,T) can be neglected to 

a very good approximation for the temperatures of interest 

here. The calculation of ~cil) (Q,T) is then straightforward. 

The integrals occuring in (4.37) are easily performed 

numerically. Our results are presented in table 4.3. 

Since the total variation in the ratio ~Jl) (Q,O)/~Jl) (Q,.98Tc) 

is less than 1% it is safe to conclude that the temperature 

dependence of the energy gap anisotropy in aluminium can be 

neglected to a very good approximation. 
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TABLE 4.3 

TEMPERATURE DEPENDENCE OF THE ENERGY GAP 

ANISOTROPY IN ALUMINIUM. (T = .98T
0 

) 

DIRECTION ~61) (Q,0) 

~61) (Q,T)80 <Po 

o.o o.o 4.08 

7.5 o.o 4.08 

15.0 o.o 4.08 

22.5 0.0 4.07 

30.0 o.o 4.09 

37.5 o.o 4.08 

45.0 o.o 4.08 

22.5 45.0 4.07 

54.75 45.0 4.11 

22.S 22.5 4.07 

45.0 22.s 4.09 



CHAPTER V 


SUMMARY AND CONCLUSIONS 


5.1 	 A CONTRIBUTION TO THE THEORY OF A WEAK COUPLING 
SUPERCONDUCTOR 

For the special case of weak and medium coupling 

superconductors reasonable approximations were employed to 

reduce the Eliashberg gap equations for the zero temperature 

gap edge ~O of an isotropic superconductor to a very much 

simpler approximate set of integral equations. The fact 

that for weak coupling superconductors the important phonon 

energies are much larger than the energy gap was exploited 

to obtain an approximate analytical solution to the simpli­

fied integral equations. The resulting simple expression 

is formally identical to the BCS result for the zero tern­

perature energy gap and hence the BCS parameter N(O)V can 

be identified with a certain simple function of the normal 

state properties. We compared our expression for N(O)V 

with that of Morel and Anderson for several superconductors 

for which reliable normal state data was available. It was 

found that, even after renormalizing the Morel-Anderson 

expression, our equation gave much better agreement with 

experiment for all of the metals considered. A careful in­

vestigation established, for weak and medium coupling 
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superconductors, that the gap edge obtained by solving the 

simplified integral equations is in good quantitative agree­

ment with that obtained by solving the Eliashberg equations. 

It was also found that the simple analytical expression for 

~O is a good approximation to the Eliashberg value for weak 

coupling superconductors and a fairly good approximation 

for medium coupling superconductors. The importance of these 

conclusions lies in the fact that one can save an enormous 

amount of computer time at the expense of a small loss in 

accuracy by using the simplified integral equations in place 

of the Eliashberg equations for certain investigations. 

The analytical expression for ~O was applied to a 

Tl-In alloy series with very satisfactory results. 

The simplified integral equations were generalized 

so as to be suitable for an anisotropic pure single-crystal 

superconductor. The anisotropic energy gap in aluminium was 

calculated for several directions and the results found to be 

in very good agreement with the corresponding results cal­

culated using the Eliashberg equations. An expression was 

derived for the average energy gap in a pure single-crystal 

superconductor in terms of certain gross features of the 

anisotropy. It was found that the average energy gap in a 

pure single-crystal of aluminium is a few percent larger 

than the isotropic energy gap in dirty aluminium. 

The pressure dependence of the BCS parameter N(O)V 

was investigated for Al, Tl, In and Sn. It was found for 
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all of these elements that to a good approximation the 

decrease of N(O)V was linear in the fractional volume change. 

The pressure dependence of the isotropic energy gap in dirty 

Al, Tl, In and Sn was studied using the weak coupling in­

tegral equations and the simple analytical expression for 

~ 0 • A comparison was made with the pressure work done by 

P. Vashishta for Tl, In and Sn using the Eliashberg gap 

equations. The quantitative agreement obtained with the 

simplified integral equations was very good while that 

obtained with the analytical expression was satisfactory. 

The pressure dependence of the anisotropic energy gap in a 

pure single-crystal of aluminium was calculated. It was 

found that the anisotropy increased quite markedly with 

pressure. It is hoped that this effect will be investigated 

by experimentalists in the near future. 

A simple expression was derived for the transition 

temperature of a weak coupling isotropic superconductor by 

introducing certain approximations into the finite tem­

perature Eliashberg equations. A correction to the BCS value 

for the ratio of twice the energy gap to the transition 

temperature was obtained and it was shown that this correction 

decreases with increasing pressure so that the BCS ratio is 

obtained in the limit of very high pressure. 

A new expression for the isotope effect was obtained 

and the pressure dependence of the isotope effect exponent 

for Al, Tl, In and Sn was studied. It was found that the 
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exponent decreases with increasing pressure i.e. that the 

deviation from the BCS value of ~ increases with pressure. 

This effect should be of interest to experimentalists. 

A crucial test of any equation for the transition 

temperature of a superconductor is that it be capable of 

giving both the correct transition temperature and the 

correct isotope effect exponent. It is hoped that reliable 

experimental values of the isotope effect exponent will be 

available in the near future for a large number of super­

conductors so that we can test our simple expression for 

the transition temperature further. 

5.2 ENERGY GAP ANISOTROPY IN ALUMINIUM 

The function a 2 F(v,8,¢) for aluminium was calculated 
1for a large number of points (8,¢) on the irreducible (49)th 

of the Fermi surface. This function was then used to cal­

culate the directional electron-phonon mass-enhancement 

parameter. We found considerable anisotropy in the mass-

enhancement parameter. 

We calculated the energy gap anisotropy in aluminium 

arising from the anisotropy in the phonon spectrum. We 

neglected all other sources of anisotropy. The Eliashberg 

gap equations containing the directional a 2 F(v,8,¢) 's were 

iterated once (using the isotropic solution as a trial 

solution) to obtain the gap edge for a large number of points 

1on the (48)th of the Fermi surface. A procedure was devised 
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to interpolate between these values so that the directional 

energy gap could be obtained quite accurately at any point 

on the Fermi surface. A second iteration was performed 

using the weak coupling integral equations. The results 

of the second iteration differed from the first iteration 

values for the energy gap by only a small amount. This gave 

some justification for Bennett's one iteration procedure. 

An energy gap anisotropy distribution function was 

calculated and found to be very different from the rec­

tangular model of Clem. The distribution function was used 

2to calculate the mean squared anisotropy <a >. We found 
2 2 '\J<a > = .0084. Since experiments indicate that <a > rv .01 

for aluminium we conclude that the anisotropy in the phonon 

spectrum is the dominant source of energy gap anisotropy, 

accounting for roughly 80% of the observed anisotropy. We 

calculated the average energy gap and the transition tem­

perature of a pure single-crystal of aluminium using the 

results for the directional mass-enhancement parameter, the 

one iteration values of the directional energy gap and the 

theoretical equation derived in Chapter III. It was found 

that the ratio of the transition temperature of a pure 

single-crystal of aluminium to that of dirty aluminium was 

1.04. The experimental value is 1.05. We again conclude 

that the anisotropy in the phonon spectrum accounts for most 

of the experimental effect. The anisotropy distribution 

function was used to calculate the Fermi surface averaged 
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quasiparticle density of states and this in turn was used to 

calculate the low temperature electronic contribution to 

the specific heat of a pure single-crystal of aluminium. 

Our results fell well within the experimental limits. In 

the specific heat calculation it was assumed that the energy 

gap anisotropy in aluminium was independent of temperature. 

This assumption was investigated by calculating several 

directional energy gaps at a temperature very close to the 

transition temperature (.98 Tc) and comparing them with the 

corresponding zero temperature gaps. It was found that the 

energy gap anisotropy in aluminium is independent of temper­

ature to a good approximation. 

The qualitative conclusions of this investigation can 

be summarized as follows: the principal source of energy 

gap anisotropy in superconducting aluminium is the aniso­

tropy in the phonon spectrum; the anisotropy in the energy 

gap is independent of temperature to a good approximation. 
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APPENDIX 

ANISOTROPY OF THE ELECTRON-PHONON SCATTERING FUNCTION 
OF FERMI LIQUID THEORY FOR Na, K AND Rb 

liquid( 12177178The Landau theory of a Fermi > is a 

semiphenomenological description of a normal Fermi liquid 

i.e. of a system of strongly interacting fermions whose 

essential properties are not qualitatively different from 

those of a system of noninteracting fermions. The great 

success of the independent particle model of the conduction 

electrons in a metal in describing qualitatively and even 

quantitatively a wide variety of experiments implies that the 

electrons in the conduction band of a metal form a normal 

Fermi liquid (provided, of course, that the metal is not in 

the superconducting state). Landau's theory, which described 

a system of neutral fermions interacting through a short 

range potential, was extended by Silin( 79 > to describe a 

system of charged fermions interacting through the long 

ranged Coulomb repulsion. Recently, Prange and Sachs(BO) 

have extended the theory to describe a system of electrons 

interacting via the Coulomb repulsion and the virtual ex­

change of phonons. In a real metal there are modifications 

due to the periodic crystal potential. However in the 

alkali metals we can, to a good approximation, ignore these 

band structure effects (the Fermi surfaces of Na and K are 
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free electron-like to within .2%(Sl)) and treat the electrons 

in the one OPW approximation. 

The basic ingredients of the Landau theory of an 

isotropic system are an effective mass, m* , which relates 

the quasiparticle velocity at the Fermi surface to the 

Fermi momentum through the expression 

(A. l) 

and the expansion coefficients fis and fia of the Legendre 

polynomial expansion of the quasiparticle interaction function 

co 

f(Jsg:,~Q:.') = l (fis+fia~·£.') Pi(cos ek__k,) • (A. 2)
i=o 

In the above equation Q and o' are the usual spin operators 

and e~~· is the angle between the wavevectors ~and k'· 
For an anisotropic situation one must introduce many 

additional parameters to describe the anisotropy of the 

effective mass and the interaction function. The anisotropy 

of the Fermi surface of an alkali metal is very small and 

can be ignored to a good approximation. However, the anise­

tropy in the phonon spectra of the alkali metals is con­

siderable and cannot be ignored a priori since the electrons 

interact with each other by the virtual exchange of phonons. 

The anisotropy in the electron-phonon interaction enters the 

Fermi liquid theory of a real metal through the Legendre 
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polynomial moments of the directional electron-phonon 

. . . ( 82)
scattering function • These moments are given by 

* * 
m m mk I= (~) (~) 2 F 1 .,. 


m m* 7 · 2NM ~ 


x w2 
Os-k' > P JI. (cos ekt.') ,(A.3) 

* * * where m m and m are, respectively, the Coulomb renor­ee' ep 

malized, phonon renormalized and fully renormalized electron 

masses. In (A.3) k and k' are confined to the Fermi surface; 

82i.e. Ji= (kF,8,~), k' = (kF,8',~'). Rice< > suggests that 

omitting all frequency dependent vertex corrections and all 

quasiparticle renormalization factors for the Coulomb inter­

action is better than including the latter but omitting the 

former. This suggestion is based on the supposition 

that there is an approximate cancellation between the Coulomb 

quasiparticle renormalization factors and the Coulomb vertex 

corrections. This supposition has been borne out by detailed 

calculations< 93 >. If we follow Rice's suggestion by re­

placing * by m and * by mep in equation (A.3) we obtain* mee m 

Aep(k)
JI, ­ , (A. 4)l+A 

where 

2N (0) l: • (A.5) 
A 
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In writing down equation (A.4) we used the well known 
.expression ( 21) 

* 
mep = l+A. (A. 6)m 

for the phonon renormalized effective mass. 

Although the moments of the directional electron-

phonon scattering function are not relevant to superconduc­

tivity (particularly for the alkali metals) they are closely 

related to the directional electron-phonon mass-enhancement 

parameter, A.(~), which was calculated in Chapter IV for 

aluminium. If we compare equation (A.5) for A.~p(~) with the 

equation, 

A. (~) = 2N ( 0 ) r ,(3.42) 
A. 

for the directional mass-enhancement parameter, it is immedi­

ately apparent that A.~p(~) can be calculated by multiplying 

the weight factor in the computer programme for A.(~) by 

P~(cos e~k'). In fact, 

can be calculated with no modification whatsoever. Moreover, 

the average moments, 

I (A. 7) 
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can be calculated by making the same modification in the a 2 F 

computer programme of Carbotte and Dynes< 25 >. 
To calculate A~p(k) within the one OPW approximation 

we need the following information: (1) the phonon frequencies 

w(s_,A) and polarization vectors ~(q,A) in the first Brillouin 

zone; (2) the electron-ion pseudopotential form factor W(q) 

for O < q < 2kF. The information about the lattice dynamics 

is readily available for each of the metals Na< 94 >, K(BS) and 

Rb(BG) in the form of a force constant fit to the phonon 

dispersion curves measured by the technique of inelastic 

neutron scattering. The one parameter pseudopotential form 

factors of Ashcroft(B?) were used in our investigation. 

B. Hayman(BB) was able to obtain a good fit to the experi­

mental electrical resistivity over a wide temperature range 

with a single value of the adjustable parameter, r ,
0 

for each of the alkali metals Na, K and Rb. Our calculations 

were done with his fitted values of r • In order to investi­c 

gate the sensitivity of the directional moments of the electron-

phonon scattering function to the exact form of the pseudo-

potential we repeated the calculation for Na and K with the 

pseudopotential form factors of Shaw< 99 >. 
We now present our one OPW results for the first 

few moments of the directional electron-phonon scattering 

function for the alkali metals Na, K and Rb. Some interesting 

intermediate results are also presented. 

Figures A.land A. 2 contain our results for a 2 F (v, e, <f>) 



FIGURE A.l a 2 F{v,8,~) for the three high symmetry 

directions in Na. The curves are, from bottom 

to top, for the [001], [011] and [111] directions. 

The three curves are displaced vertically from 

each other to facilitate comparison. 
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FIGURE A.2 a 2 F(v,8,~) for the three high symmetry 

directions in K. The curves are, from bottom 

~o top, for the [001], [011] and [111] directions. 



176 

' 
0,------r·----~Nr·----~""r~--~--~..;·:.....--~e.11~·~----

-• 

N. 
0 

0 

-0 



177 

for the three high symmetry directions in Na and K respecti­

vely. Only fifty histogram channels were used for these 

calculations so that the two dimensional Van Hove singular­

ities are smeared considerably. However, even with this 

smearing, the large amount of anisotropy in a 2 F(v,8,$) for 

the alkali metals is quite evident. It is worth pointing 

out that the corresponding curves for Na and K are quite 

similar. We further note that the one OPW approximation 

does not break down for the alkalis as it does for Al because 

the Fermi sphere of an alkali metal is small enough that 

momentum transfers in the range O < q < 2kF are all consider­

ably less than any reciprocal lattice vector K~O. 

In figures A.3, A.4 and A.5 we present our results 

for the directional functions A~p(t), A~p(k) and A~p(~) for 

Na, K and Rb respectively. These calculations were all 

performed with the Ashcroft pseudopotential. Figures A.6 

and A.7 contain our results for Na and K respectively using 

the Shaw pseudopotential. 

In order to have a quantitative measure of the 

amount of anisotropy in the various moments of the directional 

electron-phonon scattering function we introduce an aniso­

tropy parameter 

Max(g~P(~)) - Min(g~P(~)) 
• (A. 8)ep

gi 

Our results for ai appear in table A.l. A glance at this 



FIGURE A.3 The directional functions A~p(k), A~P(~) 

and A;p(k) for Na as calculated with Ashcroft's 

pseudopotential. 

The results for the three arcs 4>=0°, 22~0 

and 45° on the irreducible <!a>th are to be 

distinguished as follows: 

4>=00 

x 4>=22~0 

0 4>=45 0 • 
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FIGURE A.4 The directional functions A~P(~), A~p(~) 

and A~p(~) for K as calculated with Ashcroft's 

pseudopotential. The legend for the points is 

the same as in figure A.3. 
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FIGURE A.S The directional functions A~p(~}, A~p(~} 

and A~p(~} for Rb as calculated with Ashcroft's 

pseudopotential. The legend for the points 

is the same as in figure A.3. 
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FIGURE A.6 The directional functions A~p(~), A~p(~) 

and A~p(~) for Na as calculated with Shaw's 

pseudopotential. The legend for the points 

is the same as in figure A.3. 



• • 

• • • • • • • 

181 

~· ·1710 .. • 
• . 

• •').ep •• 
·1784 .. II 

• 
l .l 

• • 

~· • 
·084~ • 
').ep • • 

I ••\012io- • • •' ' 
.l _l .l 

~· • 
·OIOI').., I­ a 

I 

·0100 .. " 

" 
·0092.. • • 

_l 1 ..l 

0 15 30 49 

9 (detr•••> 



FIGURE A.7 The directional functions A.ep(k) A.ep(k)\ Q - I 1 ­
\ and A.;P(~) for K as calculated with Shaw's 

pseudopotential. The legend for the points 

is the same as in figure A.3. 
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TABLE A.l 


ANISOTROPY OF THE MOMENTS OF THE ELECTRON-PHONON 

SCATTERING FUNCTION 


SODIUM 

(1) (2) 

0 .024 • 016 

1 .12 .05 

2 .36 .20 

\ 
\ 

POTASSIUM a Q, 

(1) ( 2) 

0 .024 .018 

1 .11 .07 

2 .48 .24 

RUBIDIUM aQ, 

/' (1) (2) 

0 .10 

1 .60 

) 2 4.6 

(1) Ashcroft pseudopotential with r adjusted to fit the low
0 

temperature electrical resistivity. 

(2) Shaw pseudopotential. 
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table reveals that the amount of anisotropy in the g~P(~) 's 

depends quite sensitively on the pseudopotential. This is 

particularly true for the higher moments. For both pseudo-

potentials the anisotropy is appreciable, especially for the 

higher moments. The anisotropy for rubidium is very 

considerable. 

In tables A.2, A.3 and A.4 we report our results for 

the phonon renormalized electronic effective mass m * and for ep 

the average moments g~P for Na, K and Rb respectively. Also 

included are the results for these same quantities as 

calculated in reference (82). We note that, almost without 

exception, there is order of magnitude agreement between 

the results calculated with the different pseudopotentials 

but that the quantitative agreement is not good, particularly 

for the higher moments. However, not all of the difference 

between our results and those of Rice are attributable to 

the different pseudopotentials used. Some of it is due to 

the way in which Rice obtains information about the phonons 

propagating in non-symmetry directions. He uses the method 

of Darby and March< 90). The phonon spectrum is expanded 

in Kubic harmonics and the expansion coefficients are 

obtained by fitting the inelastic neutron scattering data 

which is available for the symmetry directions. He also 

assumes that the polarization vectors are purely longitudinal 

or transverse so that the electrons are coupled to trans­

verse phonons only for umklapp processes. Grimva11< 91 
> 



" 

TABLE A.2 

LEGENDRE POLYNOMIAL MOMENTS OF THE ELECTRON-PHONON SCATTERING FUNCTION FOR SODIUM 

m* 
~ ep gep ep gep gep gep 	 epgo g2 	 g6m 1 	 3 4 5 

10-1 	 10-3 -4(1) 	 1.190 1. 60 x 5.46 x 10-2 4.8 x 10-3 1. 4 x -9. 7 x 10 -4.4 x 10-4 5. 7 x 10-5 

-4(2) 1.177 1. 51 x 10-l 7.02 x 10-2 8.4 x 10-3 -6.0 x 10-3 -8.0 x 10 -1. 2 x 10-3 8. 0 x lo-5 

(3) 1.15 1.3 x 10-l 5. x 10-2 -1. x 10-3 2. x lo-3 

Calculated with: 

(1) Ashcroft pseudopotential with r adjusted to fit the low temperature electrical resistivity< 99 >;c 

(2) Shaw pseudopotentia1< 99 >; 

(3) Ashcroft pseudopotentia1< 82187 >. 

I-' 

U1 
00 
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TABLE A.3 

LEGENDRE POLYNOMIAL MOMENTS OF THE ELECTRON-PHONON SCATTERING FUNCTION FOR POTASSIUM 

m* 
~ gep 	 ep gep gep gep ep gep

gl 	 gsm 0 	 2 3 4 6 

(1) 1.134 1.19 x 10-1 4.05 x 10-2 .2. 7 x 10-3 1.9 x 10-3 -1.0 x 10-s -1.9 x 10-4 1. 2 x 10-4 

( 2) 1.130 1.15 x 10-1 4.73 x 10--2 4.6 x 10-3 -1.4 x 10-3 -8.1 x 10-4 -2.8 x 10 -4 2.0 x 10-6 

(3) 1.12 1.1 x 10-1 s. x 10-2 -1. x 10-3 

( 4) 1.11 1.0 x 10-l 4. x 10-2 1. x 10-3 

Calculated with: 
88(1) Ashcroft pseudopotential with re adjusted to fit the low temperature electrical resistivity< ); 

(2) 	 Shaw pseudopotentia1< 89 >; 
. (82 87)(3) Ashcroft pseudopotential ' ; 

(4) Lee-Falicov pseudopotentia1< 82181>. 

I-' 
IX> 
0\ 
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TABLE A. 4 

LEGENDRE POLYNOMIAL MOMENTS OF THE ELECTRON-PHONON SCATTERING FUNCTION FOR RUBIDIUM* 

m * 
gep gep ep gep gep gep gep~ g2m 0 1 3 4 5 6 

1.179 1.51 x 10-l 2.41 x 10-2 1.6 x 10-3 3.1 x 10-3 -5.4 x 10-4 4.2 x 10-4 1.0 x 10-5 

* Calculated with the Ashcroft form of the pseudopotential with re adjusted to fit the low 

temperature electrical resistivity(BB). 

..... 
CX> 
-..J 
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finds that this approximation tends to underestimate the 

phonon renormalized effective mass enhancement for sodium 

by about 10%. This accounts for a large measure of the 

discrepancy between our values of m* and those of refer­ep 

ence (82). Nevertheless it is clear from our investigation 

that the choice of a reliable pseudopotential is very im­

portant in the calculation of the electron-phonon contri­

bution to the Fermi liquid parameters. 

Grimva11< 92> has derived a relation between the high 

temperature (T>>00 ) electrical resistivity and the first 

two moments of the electron-phonon scattering function. This 

relation enables one to obtain an experimental value for the 

difference g~P-g~P. In table A.5 we compare our results for 

this difference with the 'experimental'results determined by 

Grimvall. The agreement is quite satisfactory for both 

pseudopotentials. 

TABLE A.5 

EXPERIMENTAL TESTS OF THE DIFFERENCE BETWEEN THE FIRST 

TWO MOMENTS OF THE ELECTRON-PHONON SCATTERING FUNCTION 


THEORY 

ELEMENT EXPERIMENT 

(1) (2) 

Na .10 .105 .080 

K .07 .078 .068 

Rb .127 
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TABLE A.5 - CONTINUED 

Calculated with: 

(1) 	 Ashcroft pseudopotential with re adjusted to fit the low 

. 1 . . . t ( 88)temperature e 1ectrica resistivi y ; 

(2) Shaw pseudopotentia1<B9). 

On the basis of this comparison it seems that the fitted 

Ashcroft pseudopotential is preferable to that of Shaw for 

Na but that there is little to choose between them for K. 

Brinkman, Platzman and Rice< 93 > have derived an 

exact sum rule for the Legendre polynomial moments of the 

electron-phonon scattering function. It is 

00 

l (2i+l)g~P = Cep 	 , (A.12)
i=o 

where 

and where q is a unit vector in the direction of~ and VA(q) 

is the sound velocity in the direction q for the Ath mode. 

The average is over all directions q. In table A.6 we com­

pare our results for cep calculated using the force constant 

model for the phonons with those of reference (93) which were 

calculated from the experimental elastic constants. The 

agreement between the two calculations is good. 

It is interesting to see how well our calculated 
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TABLE A.6 

CALCULATED VALUES OF THE PHONON AVERAGE ENTERING THE SUM 
epRULE FOR THE MOMENTS, gi , OF THE ELECTRON-PHONON 

SCATTERING FUNCTION 

m * ELEMENT 
m 

( 1) 	 (2) 

Na 1.24 ± .02 .330 .325 

K 1.21 ± .02 .248 .235 

Rb 1.20 ± .05 .239 

m*/m is taken from reference (94) 

(1) 	 Calculated from a force constant fit to the dispersion 

curves measured by means of inelastic neutron scattering. 

(2) 	 Calculated from experimental elastic constants by 

Brinkman, Platzman and Rice< 93>. 
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moments, g~P, satisfy the sum rule (A.12). The comparison 

of the two sides of equation (A.12) is made in table A.7. 

We have truncated the sum at i=6 which is reasonable since 

ll3g:PI << g~P. The agreement obtained with either pseudo­

potential is quite good although our results lie outside the 

experimental uncertainty in m */m. Since, in calculating the 

g~P's, we have consistently set m:e equal to m and m* equal 

to m * it is perhaps a better test of the electron-phononep 

our * equal * onpart of calculation to set m to mep the right 

hand side of the sum rule (A.12). To this end we have in­\ 

cluded the values of (m*/m:p)Cep in table A.7. With this 

modification the sum rule is satisfied very well for Na and 

K with the Ashcroft pseudopotential giving somewhat better 

agreement than the Shaw pseudopotential. Since some of the 

higher moments are quite different for the two pseudopoten­

tials (both as regards magnitude and sign) it is rather 

disconcerting that the sum rule does not give a clear cut 

answer as to which pseudopotential is the better. 

It should be clear from the above results that there 

is much work to be done in calculating the electron-phonon 

contribution to the Landau Fermi liquid parameters. Since 

the results for both the average moments and the anisotropy 

in the directional moments are very sensitive to the choice 

of pseudopotential it is evident that the greatest need is 

for an accurate pseudopotential, if indeed such a thing 

exists. 
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TABLE A.7 


SUM RULE TEST OF THE CALCULATED MOMENTS OF THE 


ELECTRON-PHONON SCATTERING FUNCTION 


(1) 	 Ashcroft pseudopotential with re adjusted to fit the low 

temperature electrical resistivity. 

6 
cep m * cep 	 gepELEMENT -:;;- l (2.Q.+l) 

.Q,
.Q.=O 

\ 
mep 

Na .330 .344 .345\ 

\ K .248 .265 	 .266 
\. 

Rb .232 .237 	 .253 

(2) Shaw pseudopotential. 

6 
m * 	 cepELEMENT 	 l (2.Q.+l) g~P-r 

.Q.=Omep 

Na • 330 .348 	 .341 

K .248 .266 	 .260 
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