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non-local pesudopotentials were an approximation in which
the repulsive potentials of the outer atomic core states were
explicitly represented by non-local projection operators.
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CHAPTER I

INTRODUCTION

In recent years there have.been a considerable
number of ex?efimental investigations into the Fermi sur-
face of mercury and the topology and shape of the surface
are now fairly well known, although a few dimensions still
remain uncertain. There have also been several calculations
of the Fermi surface using different theoretical approaches.

The pseudopotential method for mercury was first
used by Brandt and Rayne (1966), while Dishman and
Rayne (1968) carried out a pseudopotential calculation which
included spin-orbit coupling. Bogle, Coon, and Grenier
(1969) have also reported a pseudopotential calculation for
mercury.

The oﬂly first principiés calculation that has been
reported for the energy bands and Fermi surface of mercury
is the RAPW calculation of Keeton and Loucks (1966).

Pseudopotentials are usually determined by fitting
a few disposable parameters to selected experimental data
and this was the method used in all the cases that have been
mentioned, But in 1965 Heine and Animalu published tables
of theoretical pseudopotential form factors for 25 elements

including mercury. These tables indicated a particular region

1



2
of parameter space for the local pseudopotential coefficients
in mercury.

The pseudopotentials of Brandt and Rayne, Dishman and
Rayne, and of Bogle, Coon, and Grenier, all differed some-
what from one another, but they were all simple local pseudo-
potentials (except for Dishman and Rayne who inciuded spin-
orbit coupling with a local pseudopotential) and they were
all in the same general area of parameter space as had been
given by Heine and Animalu.

All the theoretical calculations gave the same topology
and shape for the Fermi surface but there were large varia-
tions in the calculated dimensions of the surface, and in
né case were the theoretical dimensions in particularly good
agreement with experiment.

Although there are quite strong resemblances between
the pseudopotential energy bands and the relativistic bands
there are also important differences, in particular the rela-
tivistic energy bands have a significantly higher Fermi energy.

All the previous pseudopoteﬁtial calculations used a
local pseudopotential, but this is an approximation and
in general the pseudopotential is a non-local operator. 1In
their work on zinc and cadmium Stark and Falicov (1967) tried
local and non-local approximations and found that the non-
local pseudopotentials gave much better fits to the experi-

mental Fermi surface. The work described in this thesis was



an attempt to calculate a more accurate Fermi surface of
mercury by using non~local pseudopotentials similar to those
used by Stark and Falicov.

In this investigation it was assumed that the area
of parameter space indicated by Heine and Animalu might
possibly be wrong, and a large region of parameter space was
explored in an empirical fashion. All the regions which
were found to be interesting were examined in some detail,
farticular attention was paid to the structure of the energy
bands because of the differences that existed between the

local pseudopotential and the RAPW energy bands.



CHAPTER II

PSEUDOPOTENTIAL THEORY

It has been found that in most metals, semimetals,
and semiconductors that the energy bands for'the highest ener—
gy states, which correspond to the outermost atomic electrons,
are a recognizable distortion of the nearly free electron
structure. The energy bands are most free-electron like
in the simple metals, in the case of semimetals and semi-
conductors the distortions from the free electron band struc-
ture are much greater.
The evidence for these facts is that in most metals

which have been studied the Fermi surface can be recognized
as a distortion of the free electron sphere. This suggests
that the conduction electrons of the metal are behaving very
much like freé electrons being weakly scattered by the ionic
cores. In phenomenological terms it appears as if the
conduction electrons are satisfying a Schrddinger equation
in which the dominant term is the kinetic energy operator T,
with a comparatively weak pseudopotential W replacing the usual
potential eﬁergy operator V(r)

Pseudopotential theory provides a rigorous justifi-
cation for this substitution, and a good approximation for

the conduction energy bands of a metal can often be obtained



by solving a Schrddinger equation of the form,
[T + w]|¢k> = E [ ¢)>

in which W is the weak pseudopotential, and ¢k is a pseudo-
wavefunction which is related to the true wavefunction wk'

The band structures of the group IV semi—conductgfs
and the III-V compounds have been probed by optical inter-
band transitions, and these structures could also be interpre-
ted in pseudopotential terms (Brust 1964, Cohen and Bergstresser
1966). Fermi surface studies coupled with band structure
calculations on the semimetals As, Sb, Bi, (Cohen, Falicov,
and Golin (1964), Priestley, Windmiller, Ketterson, and
Ekstein (1967), Lin and Falicov (1966)), have indicated that
in these substances also a pseudopbtentiai approach is véry
useful.

In metals of the transition, rare earth, and actinide
groups the situation is more complicated because of the exis-
tence of incomplete inner d and f shells.

If pseudopotentials can be successfully applied it
implies that the ions of the solid are behaving very much
like weak scattering centres so far as the electrons belonging
to the highést energy states are concerned. This is at first
somewhat surprising because the deep potential wells of the
ionic cores are not weak scattering centres.

If a phase shift analysis is carried out, the scat-

tering can be expressed in terms of the phase shift Ny -


http:scatteri.ng

where,

nz = plﬂ + 62 (2.1)
In this equation the integer Py which has been chosen so that
2' < %ﬂ, counts the number of internal radial nodes.

Since the usual phase shift formula for the scattering onl

| 8

involves exp(Zinz), multiples of 7 do not cbntribute and the
scattering is determined by 62, which is relatively small in those
metals and semiconductors where the pseudopotential approach is valid.

A pseudopotential is a relatively weak potential, having
the same effective scattering power as the strong real poten-
tial. In general it is a com?licated non local operator. A
local operator F is a function of r only and F¢ denotes
F(r)¢(x). A non local operator depénds on two variables,
F(x,r'), and F¢ is given by

F¢ =J F(r,r')¢(x')dac'.

When setting up the theory it is assumed that a clear
physical distinction can be made between the conduction elec-
trens of the system and the core eléctrons. It is desirable
that the core states be strongly localized in the vicinity
of the ions and that the ionic cores be small so that the
outermost states do not significantly overlap with the outer-
most states of the nearest neighbours. If this last condition
does not hold the outermost core states may participate in

the conduction band to some extent, causing problems of band
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overlap and hybridization. This situation exists in the noble
metals and it is uncertain to what extent pseudopotential
theory may be used in these cases. This problem also exists
to a lesser extent in mercury.

In the case of a metal the conduction band Bloch

states satisfy the Schrodinger equation.
HH’_kf = Ek|¢k> (2.2)

where the Hamiltonian H given by # = T + V(x); T being the
kinetic energy operator and V(r) the real crystal potential.

The solution of equation (2.2) requires the use of
a convenient complete set of functions. The most simple
complete set to use is the set of plane waves, but wk
possesses several radial nodes and a good representation
Qould require a large number of terms in the expansion and
the resulting secular equation wouid be extremely large and
difficult to héndle.

Herring (1940) recognized that the problem could be
simplified if the expansion were made in terms of plane waves
that had already been orthogonalized to the core states of
the system. If a plane wave is represented by the ket:-

k> = & élE'£ ,» where V is the volume of the crystal and

a core state represented b o> = ¢ (r). Then if P represents
P ¥ o P

the operator introduced by Pick and Sarma (1964), which projects

any function on to the subspace of the core states.



P =131 |a><a]
o

In terms of this operator an orthogonalized plane wave takes

the form

lopw> = (1-P) |k>.
It has been found that good convergence can often be obtained
by using a linear combination of a small number of OPW's.
> = % a (k) (1-P) |k+g>;
¥y Ioglk |ktg

Or, more generally

o> = (Q-P) [ > (2.3)

The pseudo-wave fﬁnction ¢k(£) is equal to the true
wave function wk(E) outside the io;ic cores but inside the
cores.¢k(£) is—slowly varying and has no radial nodes.
Equatio; (2.3) does not completely define ¢k(£) it being
undefined to fhe extent that any linear comgination of core
states can be added to it.

Substituting wk from equation (2.3) into equation

{2 23
Hgl—P>|¢k> =‘Ek(l—P)[¢k> | (2.4)

Phillips and Kleinman (1959) noted that the equation can be

rearranged to give

o+ (& ~MPI[o> = E Jo, > (2.5)



In which the pseudo~Hamiltonian

Hp = H + (Ek—H)P,

can be written as
H =T+ W .
p P

where the pseudopotential operator Wp is given by

W, o= VIZ) 4 (E-H)P.

In this case
Wp = V(E) + Z (Ek—Eu)|a><a|,

Where Ea is the energy of the o h core state which satisfies

the eqguation.
Hlo> = Ea|u>
The pseudo-~Hamiltonian that has been introduced is
only one of many possibilities. Austin, Heine and Sham (1962)

have shown that the general class of pseudo-Hamiltonians

H =H + Z|a><f(£,a)| ; (2.6)

o
in which f(g,a) is an arbitrary function of position and

core index o, all have exactly the same eigenvalues EK in

the conduction band as the original Hamiltonian.

Solution of the Pseudopotential Eigenvalue Problem

ll
The . equation to be solved is

e (Ek—Eak)luk><“k|)|¢k> = B lo> et

k
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in which the core states Iak> can be written in the tight
binding approximation.

W | ks -
Iat,h> = e ? exp (ik Rjg)¢at(£ Ri@) (2.8)

vﬁhere N the number of unit cells in the crystal.
j = the unit cell index.

ot refers to the tth level corresponding to the atom

at r. in the unit cell.
o Since ¢k(£) has wave number k, then by Bloch's
theorem, N .
¢ (x) = e™= = a, (r

where ak(g) is a function having the exact periodicity of

the lattice. This means that ¢k(£) can be completely expanded

in terms of the subset of plane waves.

¢, (x)> = &
k c ¢
where G is a reciprocal lattice vector multiplied by 2m.

The matrix elements of the pseudo-Hamiltonian will all

be of the form <k+G, |H_|k+G,>.
= e pl= 32

2. ‘Calculation of the Matrix Elements

The general matrix elements <5+91|Hp[£+g2> is equal

to a sum of terms,

<ktGy [H, [ k46> = <kiGy |T[ktGy> + <kiGy [Vir) [k+G,>

2 l| 2 2

F § (EK—EQK)<E¢91]aK><aK|§+§2> (2.9)
K



1.x

Each term can be evaluated separately,

2
’ﬁl V2 |kiG o= o |kig, | %

<k4Gl|T|k+u2> <k+G (2.10)

lI G,.,G

=1'=2
The real potential V(x) has the periodicity of the real lattice,

it can be expanded in a Fourier series.

V(r) = ¥ V(G)exp(iG*xr),

z
8
giving

<k+G |V (2) |k+G,> = VI(G,-G,) (2.11)

‘where the Fourier components V(G) are equal to

vig) = %- V(r)exp (-iG*r)dxr;

the V in the denominator referring to the crystal volume.
It is sometimes useful to treat V(r) as a superposition

of atomic sources.

V(r) = I G ol T
= j,a p,a e —jO
Giving
1 _ ’
vig) = v jza» UPrQ(EfRiq)egp(Mlg.L)dE
, 0

which can be rewritten

v(e) = X {2~ Rl )exp(—ig'(E—RiJ)exp(—igogja)d(E—Rja)

1
¥ & Pr
or,

V(g) = % exp{~iG<R. ) Upa(E)exp(—ig-g)dg

1
v . - Jjo

Defining the atomic form factor by
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Upa(g) = 1 Upa(E)eXP(”ig'E)dE'

vV(G) = % L eXP("i§°Ri)exP("i§°£a)qu(9)

Therefore,

% . N . i _a :
V(G) = 55 i exp ( 1g.ga)upd(§).
If there is only one type of atom present

vig) = & (2 exp (-iG-R,)) 0, (6)

2 ie the volume of the unit cell. The unit cell structure

factor is defined by

S(G) = I exp(-iG*R ).
. (x a
Giving L
V(g) =‘§ S (G) Up(g)- (2.12)

To calculate the last term in equation (2.9) it is
easiest to take the various factors separately

<k+@ [ay>=<k+G, |at, k> = ;

1
N

<A e

(2 I exp(—i(E+§l)~£)exp(i&'Riq)

3
X ¢at (E—Rl(l)d £)

=Ye) that,
A . pr : : 3
<k+G, |at, k> = 5 N (J eXP(—l(Efgl)'(£fRig)¢at(£rRig)d (ngjg))

x (% exp(-~i(k+G

. )-Ria+i§-Riq)

1



3.3

Therefore
1 1 ; 3
< k4G, ot k> = i (| exp(-1kt6,) )¢, (x)d x)
V ¥N
X ; exp(—igl'Rju) (2.43)
J
The sum § exp(—igl-Rju) = exp(—igloga) § exp(mlgl.Ri),
but exp(—1§l~Ri) = 1,
So that ' ? eXp(—lgl'RjQ) = N exp(wlgl.Ra)

Substituting back into equation (2.13)

<k+G) lat,k> =/ & exp(-iG

1Ry} [ eXp(—i(gﬁgl)-r)x¢a£(£)d3£. (2.14)

This means that

<k+G, ot k><at,k|kt6,> = § exp(-i (G

v *QZ).RQ)

1
. ’ - T ; * 3

x| exp(-i(k+Gy)r)¢  (x)d7r x | exp(i(ktG,) xr)¢ ,(x)d7xr .
Summing over the atoms in the unit cell o

" 1 §. P » 3
<E¢g1|at,§><ut,§|§+92>= g S(gl—gz)x J exp(»1(&+gl)-r)x¢t(£)d r

X J exp(i(ﬁfgz)‘£)¢z(£)d3£

In this way equation (2.9) simplifies to the expression

P
| _ e 1
<kﬁ§lal|Eﬁ§2> = 5 |k¢62| 1'G + g sle,-¢, JU, Gy

-1 ~?)
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+ ?12- S(gl-gz)E[J exp (-i (k+G,) -rv)¢t(§_)d3£

x [ exp(i(5f§2)°£)¢;(£)d3£] X (Eg=E.) (2.15)

To simplify the last term in equation (2.15), take
¢t(£) to be given in the standard form as computed and recorded

by Herman and Skillman (1965).

Pnﬂ(r)

b (E) = —— Y, (8,0) = ¢, (r).

nim

The radial wave function Pnz(r) is necessarily zero at r = 0.

[}

Also by normalization J Pnzz(r)dr = 1.
o

To evaluate expressions like

z (E_-E ) e ) (r)dr x e
n,%,m K "nim J nfm =""—=

-i(k)+x) ik, x

¢n1m(£)d£ ’

it is possible to sum over the magnetic quantum number m

first, assuming that E is independent of m.

nim
_i-]slo£ == 2
Pnz(r)Yzm(8,¢)r drdQ

R

t (E_-E e
o K "nim) J

ik, °r
=2 =1 * 2
x J e = Pnl(r)Yzm (6,9)r“drdQ

'El'E
Pnz(r)rYlm(6,¢)der)

= (EK-EnZ) 3[:1 ([ e

ik.*r
X ('J e 27 Pnz(r)rYzm*(e,Cb)der) (2.16)

The integrals can be transformed by making use of the expansion,



15

]
© 2 '
- A1 3 : (i)t
=O m'=—£' .

iker
e——

Jl.(kr)Y .(e )Yzm(er,¢r) (2.17}

k%%

(ek ¢k), (er ¢r) are the spherical polar angles of the vectors
14 ’

k and r. If the expansion for exp(iker) is substituted into

each integral, and the angular parts are integrated immediately

by making use of the orthonormality of the spherical harmonics

* =

Expression (2.16) now simplifies to
o«

2 2 .
lém (Ek-Enl)i(-l) J jz(klr)Yzm( kl'¢k1) (r)dr
o

==}

x (WY | 3, 0,0y, *le, .8, (dr  (2.19)

o

which is equal to

2 *
167" (Ey=Brg) [Z Ypn (Bpn o0y Yo (Opryp)]

X [ jz(klr)rPnz(r)dr X [ jk(kzr)rPnl(r)dr.

But from the addition theorem of spherical harmonics

m=+2

*

_ (22+1)
m=-g M

T Pz(cosa) (2.20)

where a is the angle between the directioms (61,¢l) and (62,¢2).
Pz is the Legendre polynomial of order 1.

Finally expression (2.16) reduces to
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4m(22+1) (B, -E )P, (cos(k;,k,)) x J o Okyr)rP o (r)drx
X J jz(kzr)rPnZ(r)dr ” ot 2L 2L)

the matrix element being given by

<k+G. |H_|k+G. > =‘ﬁi | k+G |25 F5 TIC, -G, )
=721 1"pl="22 2m 1! 76,6, " 8 " A1T=22

4m

+o 2 (Ek-EnR)(2£+1)P2(cos(hf§1,Efg2))x I jz(lﬁfgllr)rPnz(r)dr

ng

x J jz(lgfgzlr)rPnz(r)dr (2.22)

3. Conversion to Atomic Units

It is convenient in energy band calculations to use

ﬁZ

atomic units. One atomic unit of length = 4—7 = 0.52917

me
Angstrom units. To convert formulae to the atomic system put
e=1, m=1, r=1. This will give energies in atomic units,

buk it is customéry to express energies im Rydbergs.
1 atomic unit of energy = 2 Rydbergs.

In this system of units equation (2.22) can be re-

written as

_ 2 1
<5+§1IHPIE+§2> = |].E+.(_;.]_I 5§_l,§_2 4 EU(_G_]_-EZ)
4 | .
o nz2 (E -E_,) (22+1) P, (cos (k+G; ,k+G,) )x ﬁ J£(|k+G1|r)rPn£(r)dr
14

x J j, (Ik+G, [r)xP , (r)ar (2.23)
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where all energies are understood to be in terms of Rydbergs.

4, The Evaluation of Integrals Containing Spherical Bessel
Functions

When calculating integrals containing spherical Bessel

functions it is possible to make use of the formulae

But the half integral regular Bessel functions are given by
the simple trigonometric formulae

3. (p) = sinp x (=2)%
iR} = sing TP

2 .
= (8inp _ _2y%
Ji(p) = p cosp) (ﬂp)
> :
_ 3 . : _ 3 2. %
Jgp) = ((55 - l)sinp - S cosp)  (75)
7 p
L
A5 6 . 15 . g . F
J7(p) ((»3 5)31np (-5 l)cosp) x (FB) .
) p p

Rearranging terms so that the same powers of p are grouped to-

gether,
; _ sinp
Jo (o) 5
: = 1sinp _
jl(p) =z = cosp)
i, (p). = 2 (i(sinp—pcosp%sinp) (2.24)
2 o) p2
j3(p) = X (ié(sinp—pcosp)—l(6sin—pcosp)).
p p3 P

The variation of j, (p) as p = 0, is given b
Jg g Y

s PRCII -~~,9_~5—! [1 v grallesccc # Wy e s] (2.25)
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5. Other Types of Pseudopotential

The pseudopotential introduced in equation (2.7)

W, o= Vi) o+ i (B, -E ) |a><a] (2.26)

is a non local operator. A local operator is easier to use
because it has matrix elements <E+QIWP|E> which depend upon
g only. Whereas in the case of the a non local operator it
depends upon (k+g) and k.

As was noted earlier Austin, Heine and Sham (1962) have
sﬁown that thé pseudopotential of equation (2.26) is only one
of a more general class.

W = V() + % la><f(r,a)] ‘ (2.27)
P i o -

The general pseudopotential Wp is an operator not a function,
it is incorrect to write it in the form Wp(g). It can be

completely specified in terms of its action on a set of plane

waves.
Wp“‘? = V]k> + I f(k,0)<a|k>|a> (2.28)
o
where
* '
f(r,o) = ¥ £ (k,a) <k|a>|k> ,
k
defines f(k;a). The general pseudopotential operator can be

completely specified in terms of its matrix elementS'<E+g]Wpl§>.
These matrix elements are called form factors.
An approximation that is often used is to restrict

the set of form factors to those cases in which the magnitude
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of k and k+g are both equal to the single value kF, where
kF is equal to the radius of the free electron sphere. For
a given g with magnitude less than 2 kF the angle between k
and k+g is fixed and a single value of <§¢3|wp|5> obtains.
This restricted set of form - factors which are referred to
as the OPW form factors have the property of a local operator.
For this reason the approximation is often made that the
pseudopotential to be used should be a local operator. Whether
or not this is a good approximation will depend upon the
element being investigated and also upon which property is
being considered.

The reason the pseudopotential operator is weak is not
guite obvious but there is one formulation in which it is easier

to demonstrate that Wp is small. Following Austin, Heine and

Sham one particular form of Wp that is admissible is

/

W_ = (1-P)V.
My (1-P)
Giving

wp|¢> = V|¢> - Z|a><aV]|o> (2.29)
Inside the ionic cores the set of core states will form almost
a complete set so far as the real potential is concerned, so
that Wp will be almost exactly zero inside a certain radius and
outside that radius it canbpe approximated by the coulomb po-

tential of the ion.

This approach leads to the model potential of Abarenkov
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and Heine (1965). In this model there is a simple square well

of depth A inside some model radius RM and the appropriate

coulomb potential outside.

Wp = - i AQ(E)PR (r<RM)
W o B (r>R.) (2.30)
p r Ry ‘

In these expressions Z is the coulomb charge of the ion, Py
is a projection operator that picks out the gth angular
momentum components from any function upon which Wp acts. The

parameters A, are adjustable so that (2.30) reproduces exactly

2
the spectroscopically cbserved energy levels of one electron
added to the ion. Az also has to depend slightly on e to

give exactly the correct energy seguence.

It is also necessary to include the effects of the
conduction electrons. The most important of these effects are
correlations, exchange and screening. Correlation is related
to the fact that each electron in the system exerts a coulomb
repulsion upon the other electrons thus surrounding itself with
a correlation hole. Exchange is due to the Pauli principle
in that two electrons of the same spin cannot occupy the same
position simultaneously, so there will also be an exchange
hole surrounding each electron so far as electrons of the same

spin are concerned.

Screening is a very important effect that can be treated
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approximately by using the Hartree dielectric function for
free electrons. In this approximation the unscreened matrix
element <k+q|Wp°|k> is divided by e(q) to give the screened

matrix element <k+qlwp|k>.

<k+q|Wplk> = <k+q|Wp°|k>/e (q) (2.31)
€(g) is the Hartree dielectric function
2 . l+n
elg) = 1 + —B0¢ — (122 Lo !I:ﬁ’ % L)
21k 41N e
F
n =g - (2.32)

The Abarenkov-Heine pseudopotential is not a pseudo-
potential in the sense of Austin, Heine, and Sham, which is
applied to a mathematical class involving projections on to
the core states. The term pseudopotential has been extended
to cover any model potential/which has the same phase shifts

as the real potential but with the multiples of m removed.

Preferably the model potential should be as weak as possible.

6. The Choice of a Suitable Approximation

The pseudo-Hamiltonian equation introduced in equation
(2.7)

(H + 2 (B -E) la><a]) [¢,> = E [¢,> ,

is really an exact expression. If the core energies Ea and

the core wave functions were known exactly, then it would be
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possible to get an exact solution once the Fourier components
V(G) of the real potential haa been found. |

One problem that arises from using equation {(2.7) is that
if it is used to calculate the energy bands, the equation will
ﬁave to be solved iteratively because it has an enexrgy depen-
dence on both sides. To facilitate the calculation it is pos-
sible to put the coefficients (Ek—Eq) arbitrarily equal to

constants (EF~Eu), where E_ is the Fermi energy. This will

F
give energy bands that are correct around the Fermi energy but
wbich will systematically deviate from the correct values at
other energies.

As most pseudopotential calculations make use of adjus-
table parameters that have been determined by an empirical fit
to the measured dimensions of the Fermi surface, it is intrin-
sic that energy bands calculated by the pseudopotential will be
most correct near the Fermi energy and will be increasingly in
error the farther away from the Fermi energy.

Kimball, Stark, and Mueller (1967) have made use of
experimental de Haas van Alphen periods and the magneto-acoustic
calipers of magnesium to yield a pseudopotential which could
then be used to calculate the rest of the Fermi surface. They
first tried a purely local pseudopotential, but although this
worked fairly well they obtained substantially better agree-
ment by making use of the non-local pseudopotential (2.7}« In

the case of magnesium the problem is fairly well defined in the
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sense that the only core states that have to be considered

are the 1s, 2s, and 2p levels. Relativistic effects are small
and the pseudopotential that is finally determined involves the
Fourier components of the real potential V(G).

Mercury is a heavy element, atomic number Z = 80, and
it should be expected that relativistic effects are important.
There is also some experimental evidence, Wilson and Rice (1966),
and theoretical evidence; Keeton and Loucks (1966), that the
top of the 5d bands cuts across the bottom of the conduction
bgnds. In this respect mercury resembles the noble metals to
some extent. It is not immediately obvious that the pseudo-
potential concept can be applied to the noble metals and it
appears that mexcury is a borderline case. If a partial wave
analysis were applied to those conduction band states that
overlap with or are.just above the d bands there should be a
strong scattering resonance for the 2=2, partial wave. But
if the Fermi energy is sufficiently far above the d bands then
some sort of pseudopotential approximation may suffice for
Fermi surface calculations.

In mercury the occupied core states are 1ls, 2s, 2p,
3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s, 5p, 5d. The use of the
pseudopotential of equation (2.7)

W, = Viz) + 2 (E,~E ) |o><a]

involves the calculation of matrix elements of the form



24
<51|wp|_152> = V(k;-k,) + I (E-E )<k, |a><alk,>

It follows from equation (2.23) that the matrix elements in-
volving s like core states are independent of the angle between
El and &2. The core states of higher angular momentum will de-
pend on this angle through the Legendre polynomial Pz(cos(kl,kz)).
If it can be demonstrated that for the values of k, and k, of
interest, values having |k]| < 2k, approximately, that the p,

d, and f core states yield terms that are very small whilst

the s states yield terms that are not so small but are effec-
tively independent of |k,| and |k,|, then it may be possible

to group the inner core states with the real potential to give

the model pseudopotential.

Wy = Wpoo(ky=kp) + 2 (B, -E,) |a><a|. (2.33)

summing over
outer core states
in which WLoc is a local operato;.
The next approximation that can be made is to set
(Ek-Ea) equal to the constant (EF-Ea) if only properties of

the Fermi surface are being considered.

As there is a strong relativistic interaction in heavy
elements the energies of the core levels relative to the con-
duction band will not necessarily be the same as in the cal-
culations of Herman and Skillman relating to the atom. The
crystal field can also significantly alter the relative energies

of the outer bands.
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With such a model pseudopotential as (2.33) the dis-
posable parameters are WLOC(Q) and (EF—Ea). This can easily
lead to an inconveniently large number of parameters if too
many outer core states are explicitly considered. The prob-
lems of using a large number of disposable parameters are that
if a search is carried out in parameter space to find those
regions which give good agreement to experimental data the
search can be extremely costly in computer time. It may also
be possible to find several regions which give equally good
agreement to the available experimental data. Increasing the
number of disposable parameters may eventually yield a better
fit to more experimental data, but the resulting pseudopoten-
tial may also be physically meaningless because the use of
purely arbitrary parameters could also provide an improved
fit,

A good pseudopotentiél is an approximation that is
simple in form and easy to use, it should incorporate those
terms that are physically significant, and should ideally be a
good approximaté representation of the interaction between the
system of conduction electrons.and the ions.

An example of a non-local pseudopotential has been given
by Stark and Falicov (1967) for the elements zinc and cadmium .
In their model which includes spin-orbit coupling the matrix
elements are given by

x2x2

Tiat T — ,
<k s_|Hp|ks> e GE'E.SSS,+6§_E.'§§(§){UL(§)SSS,

+ wW__(ks,k's")} (2.34)
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where S(G) is a structure factor, s's are spin indices, UL, VN'
and Wso correspond to a local potential, a mon local potential and
the spin orbit interaction respectively. The non local poten-

tial is a sum of projecticn operators over the outer s, p and

d core states.

V= I ovit) [e><t].
t

In this expression v(t) are disposable constants. In the case
of zinc and cadmium it was found that v(s) could be set equal
to zero, effectively grouping the s non local term with the
local pseudopotential. For zinc v(p) was 2lso set at zero,
but for cadmium v(p) came to the relatively small value of
0.38 Rydbergs. In both cases the contribution from the outer
d level was large, especially in zinc where it was 3.15 Rydbergs,
in cadmium it was smaller being 1.78 Rydbergs.

In these substances it appears that the d-like contri-
bution of the non-local pseudopotential is especially impor-
tant, particularly for those portions of the Fermi surface
where the wave functions have an appreciable d like character.
If the outermost d levels of the core have energies only a
little below the conduction band it is possible that the per-
turbation of the crystal field may hybridize a significant
amount of the core d wave function into ﬁge conduction band
wave functions producing a strong repulsiwe d like perturbation.

In any particular case it is not immediately clear

what approximation will produce a good pseudopotential. To
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some extent it can be legitimate to proceed in a pragmatic

experimental fashion.

7. Spin-Orbit Coupling

A method for including spin-orbit coupling in the pseudo-

 potential formalism has been given by Weisz (1966). The theory

is developed in a way analogous to that already described.
Beginning with equation (2.4) which was given for the

no spin situation

H(l—P)]¢k> = Ek(l~P)|¢k>,
This can be transformed to the more symmetrical form.

(1-P)H(1-P) |9, > = B, (1-P) % |4, >. (2.35)

However P is a projection operator, and s is (1-P). This means
that P2 = P and also (l-—P)2 = (1-P). Equation (2.35) now
becomes |
(l—P)H(l—P)|¢k> = Ek(l—P)l¢k> (2.36)
The theory leading up to equation (2.36) can be ex-

tended to the more general case in which the total Hamiltonian

can be written as a sum of two parts.

=" = U I(S) + #°7° , in which i
p o '
is the term that represents spin-orbit coupling. It mixes

the spin up and spin down components of the wave function which

I(S)

is now represented by a two component spinor. is the

identity operator in spin space.



28

The projection operator in equation (2.36) has so far
been implied to mean the operator projecting on to the core
states of the total Hamiltonian H. But if it is assumed
that the actual core states are linear combinations in spin
space of the no spin core functions, them the projection

operator for the space spanned by the core states is

p=18 1 |as<al (2.37)
(o}

where |o> is now understood to mean the two component spinor.

la> = (W (x)t, ¥ (r)+).

Substituting from equation (2.37) into equation (2.36),
it being understood that the equations are now being applied to

spin space.
s-0 = =
[(1-P)H_(1-P)+(1-P)H~ " (1-P) |¢k> = E, (@-P) |q>k>
which can be rearranged to the form
/ _0 ‘
[(H + (B =H)P) + (1-PIHST"(1-P)1|#> = E [6,>.

The first term of the left hand side of tihe equation is now in

the form of the pseudohamiltonian of equation (2.5) so that

the spin-orbit pseudohamiltonian is equal to,

Hps'° " Hp° + (1-p)#5~0(1-p) (2.38)

where H_° is the original no spin pseudolmmiltonian Hp multi-
plied by 1'S),
If the basis set of plane waves with spin up and spin

down components is selected, a typical matrix element will be
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given by
0 ekl los, ¢ ke | QT R e (2.39)
k's',ks) ”

The last term which explicitly represents spin-orbit coupling

can be written out in full.

<k's'| (1-P)H5TO (1-P) |ks> = <k's' |H57O|ks>
- ¥ <k's'|a><o|#%7 9 ks>
Q

- % <k's'|H%"®|a><a ks>
o

+ 5 I <k's'|o><a|H®TC|a'><al [ks> ... (2.40)
o o

The spin-orbit Hamiltonian is given by an approximation de-
rived from the Dirac relativistic theory.

2
S—
HEO o A gy ¥ peg) (2.41)
2 2 = =
dm”~c
in which VV is the gradient of the real potential and o
is the Pauli spin operator.

Earliex OPW calculations have shown that for states
that possess an § symmetry already included in the core states
the double summation core-core term of equation (2.40) makes
the largest contribution. In magnesium the core-core and core-
plane wave terms are reported to account for $9% or more of
the contributions.

The biggest contribution to the integrals comes from

the singularity in VV near the nuclei. 1In this region the

overlap of core orbitals and potentials is negligible, allowing
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H5"C to be expressed as a sum of atomic Hamiltonians.
- av(|r-r.|)
H8~0 = ——%~§ E 4 e M. SO 2(£~£i)‘0 (2.42)
4m“c”® all atoms |£f£i| alr-x, |

Using this approximation Weisz has obtained the final formula

2
Hs—O _ = S(Ew&')[‘ﬁ

p U(]k‘»—kl)-—Ap——Ad(};_' 'k)Ixik'xkro o (2.43)
mnc

The terﬁ involving the crystal potential U comes from
the matrix elements of the spin-orbit Hamiltonian between two
plane waves. It is believed to contribute 1% or less to the
total spin-orbit matrix element. For this reason it is often
neglected. The positive constants xp and Ad account for the
contributions of the core p and d states. If the state under
consideration had a considerable f-like symmetry component
and there was an f like core state then another term would
have to be included ‘in the middle bracket of eguation (43)
to put it into the form

&ﬁ

4dnc

L. = - LIS — e 2
5 Ulk'-k]) Ap ~ Aglkek) = ALK,

Which spin-orbit parameters should be included depends
upoﬁ the symmetry character of the state being considered. If
the conduction band wave function were entirely s like it
would be possible to set xp,xd,xf all equal to zero. As the
remaining term is very small in any case, s like states will
be very little affected by spin-orbit coupling. If the wave

function were mainly p like in character then to a good approxi-
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mation it would be sufficient to put Ap as the only non zero

parameter and so on.

8. Explicit Calculation of the Spin-orbit Coupling Matrix
Elements

The matrix element for spin-orbit coupling is
152

4mc

HS'O ks=s (k_k' ) [

k's', UHIR-E" [1A 2y Get -k Ixik ' xkooy o

2

It is implied in this notation that the indices s and s' are
equal to 1 or 2. The spin up state 4+ being represented by 1,
and the spin down state ¥ by 2.

Since g, k' and k can all be written in the form,
g =0yl + 0+ 0k

K= —

(1, j, k being a right-handed triad of unit cartesian vectors)

V - 1 - 1 ) A, [ 1 R '
and (k'xk) = (ky kz kykz ,kz kx kzkx ,kx kY kxk ). Therefore,

Y
0 R - 1, - 1y .S'S 1" - ' s's
(k'xk) G (ky kz kykz )cx + (kz kx kzkx )o
"e _ 1y.S'S :
+ (kx ky kxky )cz (2.44)

In matrix notation (g) represents the spin up state
| +> and (g) the spin down state |+>. The Pauli spin matrices
are given by

. 01 .
O = G olr 9y = (4

It follows immediately that

o lt> = |[¥>, o |¥> = |+>
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cy|+> il¥>, oy|+> = -i|+>

oz|+> = 4>, o |¥> = -] ¥> (2.45)

This means that

<tlo |t> = oi'l =0 ; <t|o ]¥> = oi'z = 1.
2,1 2y
<Hlog 4> = 0" =1 <tlo f+> =0 *% = 0.
1,1 1,2 .
< A> = g " =0 ;3 <o |¥> =0 "'" = -1,
tlo, | v o, | e
<t|lo. (2> = 087" =1 ; <¥|o_ _|¥> = 07" = 0,
oy | 7 i loy | e
<+|oz|+> = cz’ =1 ; <+|cz|+> oz' = Q,
I % - . S
<tlo 4> = 0,'" =0 ; <tlo |+ "ol m -1 (2.46)
From these formulae it follows that
» sS—=0 ] coat” " ] ] -
<kl|H® Z|k'l> = is(k'-K)F (k, k') (k ky ky'kx)
s-0 ' = i 1w 1 ' e 1
<kl|H® "|k'2> = is(k'-k)F (k,k ) [k "k, =k, 'k )
' ! - 1
ik, 'k e~k 'k )1,
S-0 . 1 ' '
<k2|H” T |k'l> = ;5(5 -k)F(k,k )[(ky L
+i(k, 'k -k 'k ) 1.
S=0 - .' "o ' e 1 !
<k2|[H® " |k'2> - is(k'-K)F (k,k') (k k, -k k)
where 2
A
F(k,k') = - > Ullk-k'|) + Ap+xd(5}§). (2.47)
4mc -

The general spin—orbit coupling matrix element for

the full pseudohamiltonian is given by equation (2.39),
8=0 s-0
<§s|Hp |k's'> = <£|Hp|§'>6ss, + <ks|H> " |k's'>.

The equations (2.47) provide the expressions for the spin de-

pendent term on the right of (2.39).
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9. The Repulsive Potential of the Inner-core States

It is implicitly assumed in this thesis that the
effect of the orthogonalization to the inner core states
can be represented by an effective repulsive potential that
can be lumped £ogether with the reai potential. The fol-
lowing arguments are presented to justify this assumption
and also to emphasize the physical importance of such effects
as screening.

The OPW-type of pseudopotential given in equation

(2.7) has a pseudohamiltonian of the form,

Hp =T + V(r) + g (Ek-Ea)|a><a|

The matrix elements that arise when this pseudopotential is

being used are given by equation (2.23),

) . 2 1
<kitGy [H|k4G > = |kiG, | B 6, * i 8Ty
i
+ 5 )3 (Ek—En£(22+l)P£(cos(k&Gl,k+G2))

n,4L
% J j£(|E+§l|f)rPnz(r)dr x J jg(]£+§2|r)rPn2(r)dr.
It will be convenient to adept the notation that
<wn2|k> = J jl(kr)rPnl(r)dr. (2.48)

In terms of this notation equation (2.23) can be rewritten

in the form
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_ 2 1
<};+§_1|Hp|_}5+9_2> - I}_{.'*'gl] 69_1'92 * 0 U((_;.l 9_2)
4 _ .
+ 5 b2 (Ek Eng)(22+1)P2(cos(§fgl,§l§2))
n,»y%
x <k+Gy |9, ><y o |kH+G,> (2.49)

Figure (II,l) shows the variation of the form factors
<5s5|k>, <5p|k>, <5d|k>, <4s|k> , <4p|k> , and <4d|k> as a
function of wave number |k|, for the atomic wave functions
of mercury. The points L, X, and T on the axis of this graph
show the magnitudes of the reciprocal lattice vectors which
are bisected by the L, X, and T faces of the Brillouin zone of
mercury which is illustrated in Figure (III.1).

Most of the important matrix elements involve values
of |£l which are less than approximately 2.5 (reciprocal
atomic units). 1In any particular matrix element there are two
of these form factors which are multiplied together in the
fashion <E¢§l|¢n£><wnzlg+g2>. It can be seen that the form
factors of the 5s, 5p, and 5d states vary a great deal overx
the important range of k. The 4s form factor varies much
more slowly, while the 3s, 2s, and 1ls form factors are almost
constant over this range of k.

Another important observation is that the 4p and 4d
form factors are relatively small when k is small, and when
the product of two of them is taken the result is even smaller.

The form factors for the states 3p, 3d, 2p, ahd Af are
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relatively negligible over the range of interest.

In this thesis all calculations involving the use of
atomic wave functions make use of the tabulated radial wave
functions of Herman and Skillman.

Table (II.1l) shows the variation of the Fourier trans-
form form factors for the different atomic wave functions.
The energies listed are the atomic energy levels derived by
Herman and Skillman.

The effective repulsive potential of an inner-core

state is given by the term

an

a k+G,))

(Ek~Enzxz£+l)P2(cos(Efgl,

x <ktGy [ o ><¥ o [KH+G,> (2.50)

This effective repulsive potential depends upon the angle
between fhe two vectors (£+§l), and (g&gz), through the
Legendre polynomials. However for s-states, the Legendre
polynomial is always equal to unity and there is no angular
dependence in the effective repulsive potential. States for
which 2 =1,2,3, ... , do have an angular dependence, but
these states have very small form factors when k is small
This means that the effective repuléive potential mostly comes
from the s-states in the core.

The atomic form factors of the inner-core s-states
are almost constant over the range of k, which is important,

this means that they can be approximated by their value at k=0.
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TABLE (fI.1)

A comparison of the Fourier transforms of the radial part of
the Herman-Skillman atomic wave functions

Atomic Energy Value of k (reciprocal atomic units)

Level  (Rydbergs) 0 L 2 3 4 ]
54 ~1.2703 0 0.5018 0.4239 0.2067 0.0737 0.0107
5p =5:0123 0 -0.5512 -0,4298 -0,1619 ~-0.0120 0.042
58 =T 3714 1.2937 0.8856 0.2619 -0.0438 =-0.1037 -0.0754
4f -9,386 0 0.0049 0.0272 0.0513 0.0659 0.0697
4d -27.430 0 -0.0141 -0.0465 -0.0771 -0.0935 -0.0944
4p -40.749 0 0.0778 0.1309 0.1489 0.1373 0. 1091
rds  -47.934 -0.3715-0.3455 ~0.2778 -0.1943 =0.1090 -0.0447
3d ~173.33 0 0.0006 0.0023 0.0048 0.0079 0.0112
3p —204.12 0 -0.0110 -0.0212 -0,0300 -0.,0368 -0.,0415
3s =-220.49 0.1210 0.11¢1 0.1136 0.1050 0.0941 0.0816
2p ~896.92 0 0.00115 0.0023 0.0034 0.0044 0.0054
2s -930.98 ~0.0354-0.0353 =~0.0350 -0.0345 =~0.0338 -0.033

1s —-5535.7 0.00568 0.00568 0.00568 0.00567 0.00566 0.00564



Using this approximation the effective repulsive
potential of an inner core s-state is given by,

: . ; 4
Effective repulsive potential = o (Ek~ES)<kle><wS|k>

evaluated at k = 0, (2.51)

These effective repulsive potentials have almost the ‘same

value in every matrix element and they have the effect of

adding a constant positive term on to the local pseudopoten-
; 1 .

If E, is taken as the eﬁergy of the 6s atomic energy
level, then (Ek—ES) can be calculated for each inner-core

s state and an order of magnitude estimate obtained for the
strength of the repulsive forces. The actual energy levels
in the solid will not be exactly the same as for the free
atom, however the inner-core levels should not be strongly
perturbed and ﬁhe use of atomiq energy levels should be a
sufficiently good approximation. This will not necessarily
be true for the 5s, 5p, and 5d outer core states which may
be quite strongly affected by the crystal field.

The effective repulsive potentials of the inner-core
s-states have been calculated and are given in Table (II.2).
These repulsive potentials tend to cancel out the attractive
potentials of the ionic potential wells, however screening
also plays a very important role in determining the strength

of the pseudopotential.
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TABLE (II.2)

The effective repulsive potential of inner-core s-states.
—i.

(Energies in Rydbergs). E63 =-0.5653

State |¢> Energy? (E-E,. ) <y|k> _ [<¢|k>]2~ Repulsive
6s k=0 k=0 gy

(E) potential

o " (Rydbergs)

4s -47.934 47.37 =0 .35715 0.1380 0.5297

3s ~-220.49 219.9 01210 0.01464 0.2615
2s -930,98 930.4 -0.0354 0.001253 0.0945
ls =5535.7 5535 0.005688 0.00003234 0.0145

Total repulsive potential from 4s, 3s, 2s, and ls inner core

states = 0.9002 Rydbergs.

Repulsive potential of 5s state at k=0

. 2 .
State |¢> hnii?y (E-Bg <Plk> _q |<¢[k>]k=0 Repulsive

58 =7,3714 6.806 1.293 1.672 0.9217

Total repulsive potential at k = 0, = 1.822 Rudbergs

t , Atomic energy levels have been taken from Herman and
Skillman.
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The coulomb potential (relative to an electron) of

2
a point charge Ze is given by =~ &%_ , which means that
V(r) = - %E, if energies are expressed in Rydbergs and dis-

tances in atomic units.
Herman and Skillman make use of a normalized quantity
U(r) to express the atomic potential,

U(r) = - £21£l, (Z is the atomic number of the

<& element) .

U(r) is egual to unity near the nucleus where the full nuclear
cﬁarge determines the potential. As r increases U(r) gradually
falls because of the screening of the nuclear charge by the
electrons of the atomic core.

In the interior of the ion the Herman-Skillman atomic

potential is given by,

_ 2z 2 (* 8k 3 (1/3)
Vo(r) = < = [ o(t) Ef 6 T p(r)] (2.52)
o

where p(r) = (4ﬂr2)—lc(r) is the spherically averaged total
electronic charge density (both spins). The quantity o(x) is
given by

o(r) = - % w_.[P (r)]2 (2.53)

nx- " ni o
n,a

Wi is the occupation number for the orbital (n,A) when both
spins are included. 1In the case of closed shells W= 2(2x+1).
The last term in equation (2.52) is the Slater free electron

exchange potential. It is a correction term added to the

atomic potential as an approximation to include the effect of
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exchange. If the total number of electrons on the ion is equal
to N, the ionic charge will be equal to (Z-N).

The atomic potentials of Herman and Skillman were
assumed to be given by the approximation,

V(r)

il

Vo(r), r<xr

V(r)

I

—2(2-N+1) /x, r21r

The radius r_ is defined by the equality
Vo(ro) = —2(Z~N+l)/ro
The value of o is a measure of the ionic radius, for mercury
o
r, = 3.398 atomic units, or r, = 1.798 A,
The Fourier transform of the atomic potential is
given by
U (q) =A[ e "3'E y(r)ar.
This can be transformed to the expression

r [ee]

o
U(gq) = - i U(r)sin(qgr)dr - §%§

4 U051n(qr)dr (2.54)

o "To
In this last equation L is the constant value which U(x)
assumes when r > L

The quantity of interest which enters in equation (2.49)
is V(q), where Vig) = U(q)/Q. 2 is the volume of a unit cell
which in the case of mercury is equal to 25.986 cubieg
angstroms.

The function V(g) is shown in Figure (II.2). In

this graph the value of V(q) is seen to tend towards -« as

qg > 0. In fact as g » 0,
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. ‘ U . |
Vigq) » - oo Ui{r)rdr ~ —p—~.=% . (2.55)
o
The divergent behaviour of the function V(g) arises because
of the second term in equation (2.54). It is related to the
fact that the ionic coulomb potential falls off relatively
slowly as %~and is a long range potential.

In fact the screening by the conduction electrons
limits the effective range of the ionic potentials to the
immediate neighbourhood of the unit cell in which a particular
ion is located. The screening can be approximately treated by
dividing V(q) by e({g), where e (q) is‘the Hartree diélectric

screening function given in equation (2.32).

2 "
1 1- 1+
elq) = 1 + - 22 LOge11:% + 1) (2.56)
21k_n
F
where n = . k., = the radius of the free electron sphere.

2kF L
This function is also shown in Figure (II.2). The imporxtant

property of e(g) is that it also tends towards infinity as

A —% , as q - 0,
q
4kF 1
e(g) -~ (’"an“) 5 o0 97 0.
g

If V(g) of Figure (II.2) is divided by e(g) the resul-
ting atomic form factor will be véry unphysical. It seems
reasonable to suppose that the screening processes are unim-
portant inside the ionic cores.

V(g) can be written as the sum of two parts
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Vig) = Vcore(q) & Vextra-—core(q)'
where ro
v (g) = - eng U(r)sin(gr)dr
core gf !
[}
and o
s, = NG |
Vextra-core (4} = af U(r)sin(gr)dr.

X
O

The approximation was adopted that the effective

atomic form factor will be given by the approximation

Vextra-core(q) ' (2.57)

e (q)

Ws(q) =V (q) +

cOre

The screened atomic form factor Ws(q) is shown in Figure
(II.3). The parallel curve Ws*(q) is the value of the atomic
form factor when the repulsive potentials of the inner core
(4s,3s,2s,1s) s-states are taken into account.

The preceding arguments are approximate they are
presented as an attempt to estimate the order of magnitude

of the various terms invclved in an OPW type pseudopotential.
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CHAPTER III

GENERAL CHARACTERISTICS OF THE ENERGY BANDS OI' MERCURY

i. Intreduction

The simplest approximation that it is possible to make
when computing the conduction electron energy bands in a metal
is to assume that the electrons are completely free. 1In this
approximation which contains virtually no physics at all, the
e}ectronic eigenstates are simply the plane wave states with

a spin degeneracy.

V is the volume of the crystal.
X is a spin function.
With energies given by,

2

By = k

~e

using atomic units with energies in Rydbergs.
In the extended zone representation the occupied
states will be confined to a sphere of radius kF at 0°K; kF
is called the Fermi radius._ The freeAelectron Fermi radius
can be calculated by making use of periodic boundary conditions
and using the Pauli principle.

If the crystal has basis vectors a and it

jr Sar B3

is assumed that it has the form of a parallelepiped with sides

46
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equal to Nlil’ N232' Nja, respectively. Then if periodic

boundary conditions are imposed on the free electron wave func-

tion
exp (ik+x) = exp(lg-(£$N131+N222+N333))
Giving, 1l = exp(i&-(ngl+N?32+N3§3))
So that, £'(N121+N252+N3§3) = 27M,
where M is any integer (3.1)

If the reciprocal lattice vectors are represented by El’ 22, §3
which satisfy the relation

a.*b. = 6,. " {3.2)

-1 =j ij
Then k can be written as

£ = Ay8; ¥ AaBy + Agly,
which on substituting into equation (3.1) gives
NjAp + Nohy + Ndg = 2mM {3:3)

This means that the only permissible values of Al,k2,k3 are
integral multiples of ZW/Nl, 2ﬂ/N2, 21r/N3 respectively.
In this way k space is divided up into small cells

of volume Ver where

v = ,"fﬁﬁiw, b, (b.xb.)
e NN, "1 =27=3
But .l
b, (b,xb,) = (e ’
1" 23 (ay+(a,xaz)
and
V = (NlN2N3)§_l' (9_2X§_3) *
’ _
. . = 8’”
Bl v, = o , (3.4)
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The Pauli principle permits two electrons of opposite spin
to each cell. This result for the density of allowed states in
phase space is general and is not restricted to the special
case of free electrons.

If each atom in the system contributes z valence
electrons to the conduction band there will be Nz free elec-
trons in the crystal. The free electron sphere must be large

enough to accommodate this number of electrons.

4 3 A _
5 kF —é':];? 2 = Nz .
Ox,
3 2 N 2 2
¢ - -—-..\ — s
kF 37 (V,z 37 v

v = the volume of a unit cell of the crystal.

This gives the free electron Fermi radius equal to,
- 2 z (%)

kF = (3m -V) (3.5)
This spherical surface separating occupied states from empty
states is the free electron Fermi surface at 0°K.

In the real crystal the array of ions scatters the
electrons producing Bragg reflections. This produces distor-
tions of the free electron energy bands, especially on the
Brillouin zone boundaries and at points where several zone
boundaries intersect.

The free electron energy bands possess a great number

of accidental degeneracies which are destroyed once the effects
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of the ionic pseudopotentials are included. Some intrinsic
degeneracies persist however at points and along lines of
special symmetry in k space. It is possible to make use of
group theoretical arguments and other symmetry considerations
£o predict the types of degeneracy which occur in mercury.

In mercury there are two valence electrons per atom,
which is sufficient to f£ill one complete Brillouin zone. In
general it is necessary to calculate the geometry of the
Brillouin zone so as to be able to predict what kinds of dis-
tortions of the spherical free electron Fermi surface will be

produced.

2. The Crystal Structure and Brillouin Zone of Mercury

Mercury crystallizes at approximately 223°K into a
rhombohedral lattice at atmospheric pressure with one atom
per unit cell.
It is customary to relate the three basis vectors to
a fixed coordinate system so that each one is equally inclined
to the z axis at an angle 6. In the diagram the z axis is
taken to be normal to the plane of
the paper and the arrows show the
3 projections of the primitive basis

vectors on to the xy-plane.

The length of each vector is called

the rhombohedral vector, and it is

P
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customary to refer to the angle between two vectors as the
rhombohedral angle.

If the rhombohedral vector is equal to agr then,

_ sind o 73
a; = ao(— 5 sinbd > cosf) .
a, = ag( sint 0 , cosb).
n Sinb ; V3
aj a (- ===, sind 5 cosf ).

By considering the inner product of two vectors, it follows

that the rhombohedral angle o satisfies the relation.

KE inod
5 sind.

1

sin 2
2

If the reciprocal lattice vectors El' b b, are assumed to

=2 =3
satisfy,
a; * by = 2% 61]’

theno_em 1_1 11 1 1

=1 a 3 sinf '’ /3 sinf ' 3 cos®

_2n ,2 1 4 1

By =5 S r ¥+ T 550

b2 1 1 1 1 1.1

=3 a 3 sin® ' /3 sin® ' 3 cos6’”

The rhombohedral angle for the reciprocal lattice, B, is related
to the direct lattice rhombohedral angle, o, by
sin % = ~»l~a-.
2sinzx

2
Figure (III.1) is a diagram of the first Brillouin zone,
of mercury with points of special interest shown. Directions

are indicated using the convention that (%mn) represents a
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direction in reciprocal space, or & plane perpendicular to .

the (&mn) direction. Real space directions and planes normal

to them are represented by [f2mn]. Sets of equivalent directions
will be written as {f%mn} in reciprocal space and as <fmn> in
.real space.

The three orthogonal real space directions [111], [115],
and [110], specify the same directions as the corresponding
reciprocal lattice directions (111), (112), and (110).

The Brillouin zone possesses the same point group symmetry
about the centre T as the real lattice. The (111) direction is
an axis of threefold symmetry and is referred to as the trigonal
axis. The trigonal-bisectrix {110} planes which bisect the
Brillouin zone along the line T - U, - Xy - U3 - L, are the
mirror planes for mercury. There is an inversion symmetry
about the centre T', and an axis of two-fold symmetry about the
line (110) which is called the binary axis.

The smallest slice of the zone which will reproduce the
entire Brillouinzone if these symmetry operations are applied
to it is shown outlined in the figure. It is bounded by two
mirror planes, the plane perpendicular to I'T, and the planes
forming the zone boundary. This section which is 1/12 of
the complete zone, will be referred to as the basic section in
this thesis. Ié has T'T along the positive Z axis (111), with
rs' along the positive X axis. The Y axis forms a right-handed

set with the X and %2 axes.



Figure (III.1)
The Brillouin zone of meféury, and the
'vasic section' of the zone

The diagram shows the Brillouin zonc of mer-
éury and some of the important symmetry points and
directions.

I' is at the centre of the zone and is the origin
of an orthogonal set of axes. THe Z axis lies along
I'T in the trigonal direction, TI'S' defines the X axis which
lies in the mirror plane T—Ul»Ll-S'—F. The Y axis is at
9b° to this plane.

The 'basic section' is equal to'%ﬁ of the com-
plete zone and is bounded by two mirror planes, the
plane Z = 0, and the zone boundary. The (111) face is a
perfect hexagon with T at the centre, U, and U, bisect
two of the edges of.the hexagon, Xl is at the centre
of a rectangular face with K at the mid-point of the
edge W Ws. Ll is at the centre of the pseudo-hexagonal
(010) face.

The point K' is equivalent to K, and S' is
equivalent to S. There are three bisectrix and three
binary axes in the Z=0 plane. I'S and I'S' are both bisec-

,trix axes, the (110) binary axis is showm on the diagram,

F'K' is also a binary axis.
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The points Ul' U2, U3 etc, are really equivalent but
have been labelled with a suffix for convenience.
Table (III.1l) given by Brandt and Rayne (1966), lists

some of the important crystallographic data for mercury.

3. The Free Electron Model

In a pseudopotential band structure calculation a

secular equation is solved which has as its matrix elements,

 ly—c 12 1 -
<E—§1|le§—92> - lE gll 6 + 9) U(gz gl)

G, .G

s B

+ AT 5 g

q . ~En£)(22+1)P£(cos(£~gl,§—§2))
[

1

X J jz(lk—Gllr)rPnz(r)Qr X l jz([k—Gzlr)rPng(r)dr.

For any particular value of k the set of eigenvalues
Ei(k) can be extracted and it is possible to construct graphs
showing the variation of these energy bands along various lines
in k space. The solutions of the secular equation will auto-
matically be given in the repeated zone scheme.

In the free electron approximation the equation be-
comes diagonal with the eigenvalues given by

B, (k) = |k-g,|°.

The free electron energy bands are thus given by the squares
of the distances from the various points k to the different
reciprocal lattice vectors. Figures (III.2) and (III.3) show
the free electron bands computed for mercury along various

lines in the Brillouin zone. The free electron Fermi energy
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Crystallographic data for Hg

Symbol Value Value
(units of b )

e e —— ——————

(]
a 2.9863 A
(@}
o 70°44.6"
b 1.0932(2n/a ) 1.000
o s O
(=2.3002 A~y
B 104.36°
o' 65.80°
o' 48.05°
v 0.8631 a >
&5
(=22.986 A3
(<]
I'-L 1.1500 a~1 0.5000
(<]
I-X 1.4103 a~1 0.6131
[e]
r-7 1.4114 a1 0.6149
(o]
K 1.3708 A~1 0.5960
Ep 0.5240 Ryd.
X-U 0.2363
T-U 0.2719
L=~U 0.4494
X-K 4
I 0.1570

T-W 0.3139

Definition

Rhombohedral vector at 5°K
Rhombohedral angle at 5°K

Reciprocal lattice vector

Rhombohedral angle for
reciprocal lattice

Angle between (100), bo’ and
trigonal axis, (111)

Angle between (110) and
(111)

Volume of unit cell

1
7(100)

!
2(110)

1

7(111)

Fermi radius

Fermi énergy (Free electron)

> length of (110) face of

Brillouin zone

%—width of (111) face of

Brillouin zone

2 wigth of (110} face of

2
Brillouin zone
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is indicated by the dotted line at 0.5240 Rydbergs. Some
of the degeneracies are indicated by small numerals on the
graph. These degeneracies do not include the extra degeneracy
of 2 due to the electron spin.

Figures (1IT1.4) and (IIX.5) show the electron bands
computed using a local pseudopotential. The pseudopotential
used is that of Brandt and Rayne (1266) in which the matrix
elements are given by the formula
%6

GyGy

In Brandt and Rayne's local pseudopotential all the

+ W(G

<¥_—§1|le}§'§2> = l.}i".c.;.z 23

-Gl).

Fourier components W(G) are zero except for those corresponding

to the L, X, and T faces of the Brillouin zone Wor Wy and Wi,

respectively, which have the values

W, =W

L 100 -0.066 Rydbergs.

Wy = Wiq9 = 0.047 Rydbergs.
WT =Wy = 0.047 Rydbergs.

A comparison of these bands with the free electron bands shows
there is a great deal of similarity, but the pseudopotential
has destroyed the accidental degeneracies of the free electron
model. The degeneracies that remain are intrinsic and are a
consequence of the crystal structure. Group theory and simple
perturbation theory can be used to calculate approximate values
of the energy gaps and the energy level sequence produced by

a weak pseudopotential.
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At a general point in the Brillouin zone, first order
perturbation theory gives the energy of the lowest band as
2

B = k* + <k|Wp|k> (3.6)

If the notation is adopted that

>

Wp(kl’kz) = <k, Np|k2

then 9
E =k + Wp(k,k), (3.7)

Wp can be written in the feorm of a sum of operators

Wo=w, o+ w oy gP) oy

D ¥ o F geaw

in which WLoc is the local part of the operator and the
suffixes s, p, d refer to the different angular momentum
components of the non local-part.

This gives

" _ - ,(s)
W Utyad = Bpon By kot + 7 18y oRp)

(p) ;, - @)
+ W (ki k) + W (k)rky) + oeenn
But w (ko k) = T (k)T (k)
—] 72 s 71l 7s V72
(p) _ " -
a . ~
W) = T )T ) G ocos ik, k) - (B.8)

where the factors Is(k), Ip(k), Id(k) depend only on the
modutus of the vector k.

Subgstituting into equation (3.6)

B . ) 2 . B
Ek = k° + WLOC(O) - Is(k) + Ip(k) + I (k) (3.9)

If a purely local pseudopotential is being used
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2
Ek = k" + WLoc

(0).
This means that over most of the Brillouin zone the energy
levels will strongly resemble the free electron bands except
for a constant shift in energy equal to WLOC(O).

The preceding treatment will be inadequate at points in
k space that are at almost equal distances from more than one
reciprocal lattice vector. Points that lie on the faces of
the first Brillouin zone are equally close to two reciprocal
lattice vectors, points such as U and K which lie on an edge
are equally near three, and vertex points such as W are equi-
distant from four reciprocal lattice vectors. These points

need special treatment.

4. The Energy Gap at a General Point on a Zone Face

The simplest approximation that can be used at a point
that is equally close to two reciprocal lattice points is to
/

diagonalize a (2x2) secular equation.

If |ky> = |k>, and [|k,> = |k-G>

and A
I kl' = lk2| =k = B
then the (2x2) secular equation is
s , :
[k + <k1|Wp|kl> - R <kl|Wp|k2> -0
' 2
‘<k2|Wp|kl> (k€ + <k2|wp|k2> - Al (3.10)

This equation has an eigenstate of even symmetry

.
lw+> = 75 (|k1> + lk2>)7
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with energy equal to

o1l

And another eigenstate of odd symmetry
1
lv_> = = (|ky> = |k,> ),
- Ml ¢

with energy equal to

= k2 -
E_ = k° = W, (k) k) + W Cky k) (3.12)

The wave-function
. G
i(k-5 )-r
o> =/2 & =20 %

G
=y e cos (E.E)

has some similarity to an atomic s-like wave function, whilst

. G
i(k== )-r
lv_> = /f% g - 4 sin(%og)

resembles an atomic p-like wave function.
The energies can also be written as

2

E+ = k“ + L (0) + W (G) - ZI (k)
+ I;(k)(l+cos(k k) 1 (k)(—cos (k) ky) + %) (3.13)
and
- 1.2 - 2 -
B o= % WL (0o (G) + To(K) (L-cos Gy k)
+ Ig(% -3 cosz(kl,kz)). (3.14)

The fact that WLOC(O) is present in both (3.13) and
(3.14) is because WLoc(O) is élways present as a constant
term on the diagonal elements of a pseudopotential secular

équation, it shifts all the energy bands by a constant amount
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and has no effect upon the band structure.
At points such as L, X, and T on the zone faces the

vectors k, and k, are equal and opposite, giving cos(kl,kz) = -1.

At such points

E = k® +

, . 2
H Wy oo (0) + W (G) + 2I_ (k) + 2I4 (k)

and

.. R 2
E_=k" +WwW (0) -w (G + 2Ip(k). (3.15)

From equations (3.13) and (3.14) the energy gap on the zone

face is given by
- - - 2 2
AE = E_-E_ = 2WL°C(§) + ZIs(k) + ZIp(k)cos(kl,kz)
2 3 2 1
+ ZId(k)(f cos (kl kz) - 3) (3+16)

The various terms in equation (3.1&) do not vary very
much over quite a large area around the cemtres of the zone faces.
There is a tendency for the two lowest bands to run parallel

in these regions.

5. Group Theoretical Considerations

The pseudopotential splits most of the accidental.dege—
neracies of the free electron model, however there are still some
doubly degenerate energy levels along the trigonal axis. On
this axis some of the levels are singléts and others are
doublets. This is a consequence of the symmetry of the
rhombohedral lattice.

At the points T and T the 'group of k' is the same as
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the point group of the crystal 3m (or D This group con-

3a) -

sists of 12 operations divided up into 6 classes.

E The identity
C,%,C;l Rotations of 120° and 240°
N about the trigonal axis.
ml,mé,m3 Three reflection planes passing
through the trigonal axis.
J : The inversion.
JC3,JC5l Two rotation inversions by 120°
and 240°
3C2=Jm ,Jm ,Jm Three two-fold rotations about
1 2 3 axes perpendicular to the

trigonal axis.
The character table of this group has been given by Jones
(H. Jones, The theory of Brillouin zones and electronic states
in erystals, p. 95).

TABLE III.2
The character table for the group 3m

E g Sm - J 20€5  3C,
rt 1 1 1 1 o 1
1
r; 1 1 -1 1 1 -1
+
r} 2 -1 0 2 -1 0
r 1 1 1 =], -1 -1
Iy 1 1 -l =1 =l 1
I 2 =1 0 -2 1 0

w
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This table shows that the energy levels at T and T
(neglecting the spin degeneracy) are singly or doubly degenerate.

At a general point on the trigonal axis the inversion
is not a member of the group and the symmetry belongs to the
~group 3m (or D3). This group consists of six operations di-
vided into three classes, consequently there are three irreducible
representations, two of them are one dimensional and the other
is two dimensional. This means that at a general point on
the trigonal axis the energy levels are also singly or doubly
degenerate.

It is possible that the irreducible representatiéns of
3m might become reducible under the lower symmetry of the group
3m. However this is not the case and it can be shown that the
degeneracies remain constant as k increases from zero along
the trigonal axis.

At points which do not lie on the trigonal axis, all
the energy levels are singly degenerate (except for a spin
degeneracy) .

In the free electron approximation the second energy
level at T is a six~fold degenerate level at an energy
Ek = 1.4820 Rydbergs. This six fold accidental degeneracy
arises from the {100} set of reciprocal lattice vectors.

The corresponding set of plane waves may be written as
|gl> corresponding to (100) , |§l> cérresponding to (100)
|g2> corresponding to (010) , |§é> corresponding to (010)

|g3> corresponding to (001) , ]§2> corresponding to (001).
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In the presence of a pseudopotential this six~-fold accidental
degeneracy will split up into two singlets and two doubleté.

If suitable linear combinations of these plane waves
are taken the (6%x6) secular equation will diagonalize aﬁd
first order perturbation theory can be used to estimate the
energy levels. Some theorems of group theory show how this
can be done.

One theorem (Tinkham, Group Theory and Quantum Mechanics,
p. 80) states that the matrix elements of an operator H which
i§ invariant under all the operations of a group will vanish
between functions belonging to different unitary representa-
tions or to different rows of the same unitary representation.
Another theorem (Tinkham, Theorem (3-33), p. 40) states that
any function F which is in the space operated on by a group of
transformations P_ can be uniquely decomposed into a sum of

R

the form, & zj _
F= 3 I f:j),

j=1 k=1
where f(j) th th ; :
K belongs to the «k row of the j irreducible
representation.

There is a set of projection operators which can be

used to effect this decomposition. The most general operator
is given by,

. L, .
P(:1) - oy r(j)(R)

(3.17)
AK h R

*
AKPR
where j specifies the representation which is of dimensiona-

lity zj, h is the number of group elements T(J)(R)A is the
AK



67

(>\,|<)th element of the unitary matrix that represents the group
element R, the transformation operators PR are defined in the
sense that PRf(E) = f(R“lg); where R is a real orthogonal
transformation of the coordinates that corresponds to one

of the geometrical group operations.

(3)
AK
will yield zero unless F has a component belonging to the k

(3)

The application of P to an arbitrary function F

th

row of T in which case the transformed function will belong

to the Ath row of P(J). If the function ¢(3) belongs to the

K
th )

K row of F(J then,

(3) . G) _ , (3)
Pk ¢K - ¢K ’

so that Pég)is a typical idempotent projection operator.
Another more general projection operator can be defined
where,

.

. x : "
p) _ 3 p0) Ty w3 (r)*p (3.18)
KK h R
K R
This operator simply picks out that part of a function which
belongs to the jth representation. It is a convenient form
to use because it only requires a knowledge of the group
characters X(J)(R).
This operator can be used to find the linear combi-
nations of plane waves which will diagonalize the (6x6)

secular equation. Selecting one of the plane waves and applying

the group transformation operators in turn gives,

=l
P(E) [g> = |g,> & P(Cy) |gy> = |g,>5 P(CST) 9> = |gq>
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Il

- = 1 -
P(J) |g;> = [g;> i P(ICy) [gy> = |g,> 5 P(IC3T) [g> = [g3>
P(Jml)lgl>: |§3> ; P(Jm2)|g1> = |§l> ; P(Jm3)|gl> = |§2>

Taking each irreducible representation in turn for the
group (3m), using the group characters given in Table (III.2).

For the Fi representation this gives,

)
1 1. -1
lg;> = 73 [P(E) |gy> + P(C3) [gy> + P(C37) |gy>
+ P(ml)|gl> + P(m2)|gl> + P(m3)|gl> + P(J)[gl>
-1 "
+ P(IC,) |gy> + P(ICTT) [g> + P(Jml)lgl>
+ P(Jm )|gl> + P(Jm )|gl>],
| 2 3
which reduces to,
+
1 1 _ i _
P [gl> = E[lgl> + |g2> + |g3> + |g1> + g, + |g3>].

In a similar way it can be shown that,

ry

P “lg;> = 0;
+ .
'y 1 - _ _

P Zlgy> = gl2lgy> - lay> - lgg> + 2l9y> - lgy> - lgy2).
Iy 1 - - -

P —Igl> % €[|gl> + lg2> + |93> - |g1> - [g2> - ]g3>].
Ty

P “lg;> =0
Iy 1 - _ -

P lgl> . g[2|91> - |gz> - |g3> - 2‘gl> + 192> + Jg3>]-

With these linear combinations of plane waves as basis

functions (suitably normalized) the equation will diagonalize
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sufficiently so that first order perturbation theory can be

used. Thus the T! linear combination will form a singlet with

%
energy given by

_ 1 45 4T T
B 4 = Byt g<9t9yte3te te,tas W o) taytagta ta s>,

Ty
which reduces to,
E , =E + w{000} + 2w{110} + 2w{101} + w{o02}.
T
1

The other representations may be treated in exactly the same

way and the predicted energy levels are

I} singlet, E = 1.4820 + W(000)
r; doublet, E = 1.4820 + W(000)
r; singlet, E = 1.4820 + W(000)
Iy doublet, E = 1.4820 + W(000)

-+

-+

The energy bands shown in

2wW{110} + 2w{101} + w{002}
wi{l10} - w{101} + w{002}
2w{110} + 2w{101} - w{002}

w{110} - w{101} - w{o002}.

Figures (III.4) and (III.5)

were computed using Brandt and Rayne's local pseudopotential

for which W{110} = 0.047 Rydbergs, W{101} = 0, w{002} = 0.

(3.19)

The value of W{000} is irrelevant and has been taken to be zero.

The following table compares the energies predicted using the

simple formulae of equations

by diagonalizing a (15x15)

potential.

(3.19) with the energies calculated

secular equation for this pseudo-

Energy level Energy (perturbation theory) Energy (secular

PI singlet

I'. doublet

w

1.576

1.

5

2

9

" ‘equations)

. 1.597 singlet

1.552 doublet
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1"; doublet 1.435 1.443 doublet
PI singlet" 1.388 1.372 singlet.

In the previous table all the energies are in Ryd-
bergs, It is clear that the simple perturbation theory formulae
are very useful for providing insight into the nature of the

local pseudopotential energy bands.

6. The Effect of Spin-orbit Coupling

In the simple theory of metals it is usual to regard
each state in the Brillouin zone as doubly degenerate with
respect to spin. If spin-orbit coupling is included this
simple description may not be correct. However it can be shown
(H. Jones, The theory of Brillouin zones and electronic states
in crystals, p. 262) that the energy levels will still be
doubly degenerate if the crystal has inversion symmetry.

The spin-orbit Hamiltonian

I
H=E +vix) + (VVxpeg)
2m = 4m2c2 =
has the property that a H*o-l = H; where o = (0 -i) is
prop Y ) y y ; y i 0

the Pauli spin operator. This means that if ¢ (r) is a two
‘component wave-function of energy E, so also is dyw*(r).
However the two components of v, wl and wz are both Bloch
functions of the form eiE'Euk(g), so that Uyw*(E) is a Bloch
function having wave number -k. This gives the result that
the energy bands possess inversion symmetry and E{(E) = E+(-£).

This result, which is a consequence of the time reversal symmetry
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of the Schrddinger equation is true irrespective of whether
the crystal itself has inversion symmetry.
If the Schrddinger equation is written out in full and

solved for the periodic parts of the wave function uk(£),
the resulting equation contains terms of the form,

52k 2

2m

V2u + 2ik+Vu +’§§ (E - - V(r))u;

together with other terms from the spin-orbit part of the
Hamiltonian. This equation has the property that if k is
replaced by -k and an inversion ié carried out so that r is
transformed to -r, then the equation will remain invariant
if and only iva(E) = V(-r). If this is true it means that
u_E(£) = uk(—£), so that u£(£) and uk(—£) which are two
different functions belong to the sa;e energy.

This establishes the important result that there is a
twofold degeneracy at a general point in the Brillouin zone
if the crystal has an inversion centre. This means that every
energy level in mercury is at least twofold degenerate.

On the trigonal axis some of the orbital levels belonging
to P3 are already doubly degenerate. This means that they are
really fourfold degenerate when spin is taken into account.
Spin-orbit couplig could split these levels into a pair of
twofold levels.

To determine the types of degeneracy that occur when
spin-orbit coupling is included it is necessary to make use of

the double group. If the direct product representation F(j)XD(l/z)
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is reduqible under the Operétions of the appropriate double
group, then orbital degeneracies belonging to F(j) may be
partially or completely lifted.

Falicov and Golin (1965) have carried out this type
of analysis for the symmetry points of. the Brillouin zone of
arsenic. Mercury has the same type of Brillouin zone so the
results for the arsenic structure can be applied to mercury.
The most important physical result is that the orbital twofold
degeneracies that occur on the trigonal axis are split.

Mercury is a heavy element and spin-orbit coupling is
important. This means that all the energy levels of mercury
are doubly degenerate, no other degeneracies occur. In
mercury the only degeneracies that are lifted by the spin-
orbit effect are at energies well above the Fermi level.
Spin—-orbit coupling must influence the precise shape of the

Fermi surface of mercury but it is difficult to separate these

effects from the effects of a pseudopotential.



CHAPTER IV

THE METHOD OF THE PSEUDOPOTENTIAL CALCULATIONS

Thé work deséribed in this chapter was an attempt to
find a pseudopotential that would give a better description
of the energy bands and a better fit to the observed Fermi
surface of mercury than had hitherto been given by the pseudo =

potentials reported by other workers.

1. The Fermi Surface of Mercury

Previous experimental and théoretical invesfigations
indicate that the Fermi surface of mercury is aivided into
two main sheets. 1In the first zone there is a multiply
connected 'hole surface' which makes contact with the zone
faces around the X and T, the areas of contact apparently
being quite small. The region of contact on the L faces
is much bigger. It is possible that the area is so large
that it overlaps on to the X faces to a small extent. These
contact regions are approximately circular on the T faces,
elliptical on the X faces, while the L face contact area
is a large 'distorted circle'. The symmetry of the zone
demands that the elliptical areas on the X faces must have
their semi-major axes in the direction XU and their semi-
minor axes in the direction XK.

In the extended zone representation there are

73
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narrow cylindrical sections of the first zone surface which
are located near the points K on the zone boundary with their
axes parallel to the long edges of the X faces, so that

their orientation is in the <100> direction. This feature

6f the Fermi surface of mercury is referred to as the B arms.

In the second zone there are lens shaped pieces of
Fermi surface which are located on the L faces, their centres
are at L and their maximum cross sections are either in the
L faces or are in planes that are tilted from these faces
by a very small amount, perhaps a few degrees. As a rough
approximation the lenses can be regarded as ellipsoids with
two almost equal orthogonal axes along the LW and LU direc-
tions, with a much shorter axis at right angles to the other
two and directed along the LT line. The lenses have inver-
sion symmetry about L and théy also possess a mirror symmetry
because they are bisected by the (110) mirror planes.

The first zone surface is topologically complex and
it supports a large number of different types of closed and
open orbits. The second zone lenses are geometrically simple
and -support the o orbits which are observed in de Haas van
Alphen and Azbel-Kaner cyclotron resonance experiments.

This model of the Fermi surface has been deduced from
a number of different experiments which have been carried
out on oriented crystal of mercury. De Haas van Alphen effect

experiments have been reported by Brandt and'Rayne (1966), by
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Poulsen, Moss, and Datars (1970), and by Poulsen (1970).
Datars and Dixon (1967) and Dishman and Rayne (1968) have
interpreted their magnetoresistance data in terms of sets of
open orbits whose existence is compatible with the topological
model of the hole surface provided certain constraints are
placed on the possible sizes of the breakthrough regions

on the zone faces. Other experiments are the Azbel-Kaner
cyclotron resonance experiments of Dixon and Datars (1968), and
of Poulsen (1970). The magnetoacoustic attenuation experi-
ments of Bogle, Coon, and Grenier (1969) have provided infor-
mation on some of the important ‘extremal calipers' of the

Fermi surface.

2. The General Approach of the Pseudopotential Calculations

It is characteristic of most pseudopotential calcula-
tions that the pseudohamiltonian contains a number of parameters
whose values are not known in advance. The usual procedure is
to select some experimental data and to vary the paraméters
until the best fit possible has beeﬁ achieved. Once this
has been done it is then possible to calculate other physical
variables and to compare them with experiment.

The most accurate data relating to the dimensions of
the Fermi surface of mercury that was available during the
time that this research was being carried out were the de Haas

van Alphen effect measurements of Poulsen (1970).
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Poulsen's ekperiments provide accuréte information (to within
2%) about many of the extremal cross sectional areas of the
Fermi surface for various orientations of the magnetic field
in the trigonal-bisectrix, trigonal-binary and trigonal
crystallographic planes. However the amount of computation in-
volved in calculating cross sectional areas is rather excessive
and the observed values of the de Haas van Alphen effect
frequencies are not a convenient form of data to use in an
extensive search of parameter space.

In this investigation another approach was adopted.
The experimental calipers reported by Bogle, Coon, and Grenier
(1969) were used to deduce the approximate locations of several
points on the Fermi surface. The procedure was then to solve
the pseudopotential secular equation and thus calculate the
energy eigenvalues at these points. In principle there should
be a common eigenvalue, points situated on the first zone
hole surface should have their lowest energy levels equal,
while points located on the second zone lenses should have their
second energy levels equal to the same value. If the points

are designated P P P,. and the corresponding energy

l' 2, « s e g N

levels are written'El, E2, e g EN'. The mean energy at all the
points is equal to E, where,

B = E, (4.1)

1 1

Z|
N~z

<!
A criterion of good fit was defined by introducing the

quantity AE, where



77

(%)

AE (8, -E) °) (4.2)

I
=]
™M=

i=1
Using this method a search was carried out in parameter space
until those regions were found for which AE was as small as

~ possible.

Once a pseudopotential had been found for which AE
was small, the value of E was regarded as a provisional
approximation to the Fermi energy. The next step was to cal-
culate the energy bands and to check whether the resulting
band structure would generate a Fermi surface having the
correct topology. The most delicate and sensitive feature
of the Fermi surface of mercury is the B arms. The Fermi
energy was arbitrarily selected to make the minimum cross
sectional areas of these arms come to the experimental value
of 74 Tesla. With this value for the Fermi energy dif-
ferent extremal cross sectional areas were then calculated and
compared with experiment.

This method of defining the Fermi energy is obviously
somewhat arbitrary. Mercury is a compensated metal and ideally
the Fermi energy should be defined so as to satisfy this con-
dition. However this involves a density of states calculation
which requires much computation. The method that was used
is approximate and the best test of its validity is the con-
sistency with which the other calculéted cross sectional areas

agree with experiment. It is also important that the Fermi
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enerqgy defined in this way should not differ greatly freﬁ
the mean energy E at the experimental points which were used
in the original fitting procedure.

It is possible that some of these experimental points
may have been slightly mislocated due to experimental error.
‘Ideally the points should be located as accurately as pos-
sible and there should be a sufficient number of them so
that if a few of them are slightly in error, the effect is
minimized. It is also desirable to distribute the points
so that all the important sections of the Fermi surface
are represented. Using a given type of pseudopotential it
may happen that it is not ‘possible to achieve a very good
fit and AE may never become very small no matter how the
parameters are varied. If this happens it may be that some
of the peints are seriously mislocated, or it may be that
the type of pseudopotential that is being used is inadequate
in some way. It could be that a local pseudopotential is
being used in a situation where this is not a good approxima-
tion and a non-local pseudopotential is needed. Another
possibility is that spin-orbit coupling has been neglected
when it should really be included. If there are good reasons
for supposing that a certain type of pseudopotential must
be a good approximation and poor fits are obtained then it
is reasonable to suppose that some of the points are mis-
located and better fits may be obtained if tﬁese points

are shifted by a small amount. This method of correction was
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not used in the research described in this thesis, this was
because of thevuncertainty.in the pseudopotential itself, It
was not clear in advance which type of pseudopotential would
be best for mercury.

The experimental points that were used were located
on the second zone lenses and on various parts of the first
zéne hole surface. Among the epxerimental dimensions re-
ported by Bogle, Coon, and Grenier (1969) were the radial
calipers of the Fermi surface,

L L-T .L-U ,L-U kx—u’ L-U T-U X-U T-W

kLens’ Lens’ 7in’ Tin 'kout' out’ kout' kout )

- refers to the

The meaning of this notation is that kﬁ—
distance in k space from the point A to the Fermi surface
measured in the direction of the point B. The suffix a
indicates the section of the Fermi surface referred to. If
the word lens is used as a suffix it means that thelsurface‘
referred to is the second zone lens. The suffixes 'in' and
'out' refer to internal and external calipers of the first zone.
hole surface. Table (IV.1l) gives the experimental.valueé of

these calipers as reported by Bogle et al.

Table (IV.1)

Experimental calipers of the Fermi surface as determined by
Bogle, Coon, and Grenier (units are in A;l)
L-T L-U kL-—U X-U L=lJ, k‘I‘—U X-U T-W

kLens kLens _in kln kout out out out

0.176 0.538 0.90  0.30 1.14 ¢.77 0.765  0.90
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These 8 points on the Fermi surface were used to deter-
mine what will subsequently be called an 8 point fit. When
this research was started it was hoped that achieving a good
fit to these points would uniquely determine a good Fermi
surface. It was later discovered that this was not a sufficient
condition and that a pseudopotential that gave a good fit
to these 8 points could generate a set of energy bands and a
Fermi surface that was unsatisfactory in other ways.

Only two of the 8 points were located on the lenses
while five were situated around the T minimum cross section
It seemed possible that the 1 section of the Fermi surface
was over-represented and it was decided to look for more
experimental points on the lenses.

Figure (7) of the paper of Bogle, Coon, and Grenier
(1969) shows a plot of the experimental data for the (110)
mirror plane cross section of the second zone lens. Six
experimental points were taken from an enlarged version of
this graph and used to supplement the previous 8 points. It
was hoped that the increased errors which were probably in-
herent in the use of these other six points would be offset
by having a more general sampling of the Fermi surface. Three
of the six points were taken from the half of the lens that lay
inside the first Brillouin zone, the other three were taken
from the half that was outside the zone.

It eventually became clear that achieving a good fit
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to either the 8 experimental points or to the 14 points

would not necessarily give a Fermi surface of the correct
topology or yield cross sectional areas that were in very
good agreement with the accurate de Haas van Alphen effect
measurements of Poulsen (1970), however the procedure of
varying the pseudopotential parameters so as to obtain a good
8 point fit or a good 14 point fit was effective as an
efficient means of exploring parameter space to find regions

of interest.

3. The Coordinates in Reciprocal Space of the Experimental
Points

A convenient way todescribe the locations of the
experimental points used in the fitting procedure is in terms
of the X,Y,%Z coordinate system shown in the diagram of the
Brillouin zone which is illustrated in Figure (III.1l). For
the sake of comparison the coordinates of the important sym-
metry points on the Brillouin zone are first given in Table

(IvV.2).
Table IV.2)

The -coordinates in reciprocal space of important symmetry
points on the Brillouin zone. (The dimensions are in reci-
procal atomic units.)

Point KX KY Kz
T 0 0 0
T 0 0 0.7485
X 0.2776 0.4808 . 0.4990
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i 0.5552 0 0.2495
Ul 0.3310 0 0.7485
Wl 0.3310 0.1911 0.7485
U2 0.1655 0.2866 0.7485
W3 0.5552 0.5795 0.2495
U3 0.3897 . 0.6750 0.2495
s 0.3337 0.5779 0

K' 0.6673 0.3853 0

s - 0.6673 0 0

K ©0.4431 0.3853 0.4990

The coordinates of the points used in the fitting procedure

are listed in Table (IV.3).

Table (IV.3)

The coordinates in reciprocal space of the points on the
Fermi surface that were used in the fitting procedure. (The
dimensions are in reciprocal atomic units).

Point KX KY KZ
e 0.4703 0 0.2113
Lens
=1 0,4385 0 0.5092
Lens g
L-U
¥er 0.3600 0 0.6839
Tt 0.3080 0 0.7997
out ¢ . *
k§;U 0.2246 0.3889 0.6170
i 0.1423 0.2465 . 0.8000

out
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Point KX KY Kz
T-U |

Kob 0.4075 0 0.7485
T-W 0.4124 0.2381 0.7485
Tout ‘ * e :

3 points on the trigonal-bisectrix cross section of the
second zone lens. (Inside the Brillouin zone.)

Point KX Ky KZ
L1 0.4035 0 | 0.4015
L2 0.4159 | 0 0.3415
L3 0.4298 0 0.2733

3 points on the trigonal-bisectrix cross section of the
second zone lens (External to the Brillouin zone.)

L4 0.5095 0 0.4847
L5 0.58i7 0 0.4109
L6 0.6219 | 0 | 0.3506

4, .The Fermi Enerdqgy

It often happens that when a band structure has been
calculated using several different theoretical methods,
there seems to be a surprisingly large variation in the
predicted Fermi energies. 1In the case of mercury there have
been several semi-empirical pseudopotential calculations

reported while Keeton and Loucks (1966) have carried out a
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first principles calculation using the method of relativis-
tic augmentéd plane waves.

The local pseudopotential calculations of Brandt
and Rayne (1966), Dishman and Rayne (1968) which also included
spin-orbit coupling, and of Bogle, Grenier, and Coon (1969),
all produced Fermi energies that were close to the free
electron energy of 0.5240 Rydbergs. In fact it is charac-
teristic of weak local pseudopotentials that they give a
Fermi energy close to the free electron value. By contrast
Keeton and Loucks RAPW energy bands had the Fermi energy
at the much higher level of 0.680 Rydbergs relative to the
bottom of the conduction band. This variation of the Fermi
energy also occurs in other instances.

In the case of zinc, Harrison (1962) calculated an
energy band structure using a modified OPW technique that
was equivalent to using a rather complicated non-local
pseudopotential. The Fermi energy was reported as 0.708
Rydb?rgs wh;ch is equivalgnt to the free electron energy
of 0.7076 Rydbergs. A non-relativistic APW calculation for
ziné was reported by Mattheiss (1964). This gave a Fermi
energy of 0.76 Rydbergs. The non-local pseudopotential of
Stark and Falicov (1967) gave a Fermi energy of 0.8005
Rydbergs.

An extreme case of this type of variatiqn occurs in
tungsten. Loucks (1966) has reéorted a Fermi energy of 0.548

Rydbergs from an APW calculation, but when an RAPW calcula-
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tion was pérformed the conduction band was much broader with
a Fermi energy of 0.760 Rydbergs.

There do not appear to be any published experimental
values for the Fermi energy of mercury, but it seems reasonable
to suppose that an RAPW calculation should give a description
of the energy bands of mercury that is closer to the truth
than the local pseudopotential approximation. For this
reason when the search in parameter space was carried out
particular attention was paid to the question of the Fermi
energy. N »
It was earlier mentioned that the parameters v(s)
and v(p) of Stark and Falicov's pseudopotentials, equation
(2.34), were both zero in the case of zinc, but there was a
strong repulsive term from the 3d level causing v(d) to
have the‘large value of 3.15 Rydbergs. A similar reéult was
given for cadmium wheré V(s)_was_again‘zero while v(p) was
comparatively small at 0.38 Rydbergs, the parameter v (d)
corresponding to the 4d level was relatively large at 1,78
Rydbergs. The'free électroh Fermi energy of zinc is 0.708
Rydbergs while Stark and Falicov obtained 0.8005 Rydbergs.
In the case of cadmium the free electron Fermi energy is
equal to 0.557 Rydbergs, while Stark and Falicov obtained a
value of 0.651 Rydbergs. These elevated Fermi energies can

be understood as an effect of the non-local pseudopotential

operations. The d-like projection operator has the effect of
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raising the energy of all wave-functions which contain a
significant d-like component, similarly the p-like projection
operator will raise the energy levels of all states with a
p-like compénent. The bottom of the bands around T .are

. s=like this means they will be unaffected by the p and d-like
rnbn—local operators. :This means that if s-like projection
operators are excluded from the pseudopotential the Fermi
‘energy will be increased; because the energy levels away from
I' and towards the zone boundaries will be varied in energy
while the bottom qf the bands remain fixed. If an s-like
projection operator is included the Fermi energy is reduced

- because in this case the bottom of the bands will be raised
more in energy than the remainder. These arguments are depen-
dent upon the parameters v(s), v(p), and v(d) all being

 positive.

5 The Cﬁoicé of a PséudOpbteﬂiial

Iﬁ Chaptef I of this‘thésis (section 6) the question
of the choice of a suitable approkimation for the pseudo-
potential was discussed. In view of the fact that mercury
iies in the samé column of the peribdic table as.zinc and
cadmium and like them has two electrons in the conduction
band it was decided to uﬁdertake the investigation into the
Fermi surface of mercury using an andlogous pseudopotential

to that used by Stark and Falicov for these two metals. The
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pseudopotentials used in most of this research were of the
form

Hp = T + W + R5S|5s><5s| + R5P|5p><5p]| + R5D|5d><5d[ (4.3)

Stark and Falicov included épin—ofbit cbupling in theif calcu-
lations. In the case of mercury thererare.no specific features
of the Fermi surface which owe their existence to the spin-
orbit effect. For this reason spin-orbit coupling was not
included in most of this research. However some investigations
were made into the order of magnitude of this interaction-
on the band structure. | ' Vo

It was not clear a priori what values of the para-
meters R5S, R5P, and R5D would give the best pseudopotential.
It was assumed that a region of interest might lie in'that -
part of parameter space where R5S, R5P, and R5D had the values
corresponding to the OPW-pseudopotential of equation (2.7)
in which, X | " ‘ |

- R5S = (E -E

i Eggl » BIPOEEL-R

»R5D-=i(Ek—E

5p)' Sd)“

In this approximation E, could be taken to be the energy of

k

the 6s atomic levels as computed by Herman and. Skillman, while

E E._, and E.. would be the corresponding energies of

5s' T5p 5d
the 5s, 5p, and 5d atomic energy levels.- The energies in the
solid will be differenﬁ from the situation in the free atom;

however it is reasonable to suppose that the inner core states

will not be strongly perturbed by the crystal field. On the
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other handithe 5s, 5p, and 5d levels might be strongly oer—
turbed, so the use of Herman and Skillmans atomic energy -
levels may not be a good guide to the values of the non-local
parameters. | { |

In Stark and Falicov's calculations the d-like opera-
tors were the dominant terms in the non-local pseudopotential.
This could be due to a hybridization'effect duevto the proxi-
mith of the d baods to the conductioﬁ band. In the case of
zinc Mattheiss (1964) has calculated that in this metal the
.3d band was about 0.5 Rydbergsubeiow the bottom of the (4s-4p)
bands. It was mentioned earlief that there is some\evidence
.that the 5d bands actually cut across the bottom of the 6s-6p
conduction band in mercury, so hybridization‘effects could |
be important-in mercury too.

Using a pesudopotential of the form given~iﬁ eqﬁation.
(4.3) an extensivedeearch was cerried-out-ih perameter spéce

to look for regions of interest.

6, Methods of Calculatlng Pseud0potent1al Band Structures

A Variety of computer programs were developed to

" calculate the-enefgy-bands of mercury using noh—local,pseudo—;
potentials. Some of these programs were used in an exploration
of parameter space to find regions of good fit to the experi-
mental Fermi surface. Another set of programs was built which

could calculate the cross sectional areas and the cyclotron
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masses of piane séctioﬁs of the Fermi surface generated by
a given pseudopotential. A program was also developed that
could calculate the energy bands for a non-local pseudopoten-
tial with spin-orbit coupling included. All of these programs
were based on a similar principle. The éimplest to explain
initially are those that calculated the band stfucture for
a non—lo;al pésudopotential omitting.spin—orbit céupling.

The parametrized pséudohamiltonian whose energy

eigenvalues it was desired to calculate was of the form given
in equation (4.3) | |

Hy = T + W+ R5S |5s><5s| + RSP |5p><5p| + R5D|5d>€5d|

where |5s>, |S5p>, and |5d> are tight binding iinear comﬁina—
tions of atomic 5s, 5p, and 5d wavefunctions as calculated .
by Herman and Skillman. - 7“ .

In analogy to equation (2.23) of Chapter 1 the general
matrix element fovbe célculated‘iévof the.fofm A

5

<Ef§l|Hp|Ef§2> = |57§l|.691,92 + W(G,-G;)
g Ui [R5S P (cosa)I._(|k-G,|)I. (|k-G,|)
Q o 5g = 2117 5 12D

+3R5?l(cosa)15p(|k—G11)Isp(|5—§2|). |
o . PRt T T L4y
+5R5D P, (cosa)Igq([k=Cy[) Iz (k=G [)]. : (4.4)
where o is the angle between the vectors (Efgl),'and (gjgz).

PO’ Pl' and P, are the Legendre polynomials for which,

2
Po(cosa)"= 1, P,(cosn) = cosu , ,Pz(cosa)'= %(3cosza—l).
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The integrals I : 4 and I_. are defined by

5s' “5p! 5d
I (k]|) = J jo'{|kIXr}rP55(?)dr

Isa(rkl) = J-jz {Iklxr}rPSd(r)dr,,

where Pss(r), Psp(r), and P_,(r) are the normalized radial

5d
functions of Herman and Skillman. In equation (4.4), Q is
the volume of the unit cell of the real lattice, and W(Qz"ﬁl)v
.is the lécal,pseudopotential cérresponding to the reciprocal
vector (gz—gl). | R
In all the calculations that have been performed

reduced atomic units have been used throughout. Distances
in reciprocal space were in reciprocal atomic units while
all energies were expressed in Rydbergs.

: To speed up thé calculations,thg integfals“isst]kl)
ISp(lkl)' and ISd(IkI) were first célculatéd éeparately for
a range of values of |k|, equally spaced between 0 and 5
at intervals of 0.0i'reciprocal atomic uhits. The values of
these integrals were punched on to cards which were incorpora-
ted as part-of the data of:every<prbgram. An interpolatiQn»
subroutine was built into .the programs so thaf the. value of ..

the integrals could be ‘extracted when needed for any value

of |k| within the tabulated range.
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When the energy eigenvalues were to be calculatéd at
‘a point k in reciprocal space the following procedure was
4fpllowed in all the programs. The point k was first trans-
;ated into the equivalent position in the first Billouin zone.
It was then subjected to a series of inversions, reflections
- in mirror-planes, and rotations by #120° about the trigonal
axis until k was in an equivalent position in the sﬁalieét
reducedwéectibn 6f the Brillouin éone. Td% diagram in FigureA
(ITII.1) shows the Brillouin zone of mercury with the smallest
reduced section showh‘outlined. In the figure the origin of a
rectangular coordinate system is at I' with the 7 axis positive
in the direction I'T. The X axis is perpendicular to TI'T lying

in the mirror plane passing through the points T, Ul' and Ll'

Ll is at the centre of a pseudohexagonal face and the X axis
- )

cuts this face at 8§ . The X axis is measured positive in the

direcﬁiop r's'. The Y axis is perpendiculaf to the (X-2)

_plane, with its positive diréction to the right in the figure.
Before building the band structure programs another
program was built that could calculate the locations of the
points of the reciprocal lattice and then arrange fhem in
shells éf increasing distance from.an arbitrary.point in k
space._  This program was applied‘to all the principal_points
shown in Figure (III.1l) which are situated on the boundary
of the smallest reduced section. The'results_of these calcu-

lations were used to determine the appropriaté order of the
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.secular equation at these points. For example the'F point

at the origin has itself as its nearest neighbour, there are,6
second nearest neighbours, 6 third nearest neighbours, and

2 fourth nearest neighbour reciprocal vectors and so on.

This means that the appropriate order of secular equation at

- T should be (1x1), 7x7)7, :(13x13)., (15x15) etc. :Any other .
numbers would deviate from the symmetry requirements‘and
cause.a'distortlon in the calculated energy bands .

The order of secular equation used at the principal
points varied. For most local pseudopotential calculationsv
it was adequate to have the folloWing orders at the various
points ; I (1l5), T(14), X(20), L(12), U(17), W(14), s(14),
and K(lﬁ). When non—local pseudopotentials were used it was
found that the ccnvergence.was not.always very good when
the secular equations were this small. Accordingly'for most
noh-lccal‘pseuddpotential calculations the orders used were;
P(33), T(40), X(34), L(34), U(38), W(40), S(34), and K(40).

'When calculating the energy bands at a given point
k in re01procal space the procedure was as follows. The pro-
gram flrst translated k to an equlvalent p051tlon in the
flrst Brlllouln zone and in the smalle t reduced sectlonl>
The next step was to search for the nearest principal point
to the new position of k. The matrix elements’<£—§l|H |k-6,>
were then calculated, where the vectors Gl’ G2, etc. were

selected from the symmetrical set of vectors belonging to
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this principal point. The formula for these matrix ele¥
ments was given in equation (4.4). In calculating such an
e;ement involving two reciprocal vectors G, and §2 which
Tay be the same, the program first calculated the.cartesian
~coordinate of the vectors (k-G;) and (£5§2). It then cal-
culated the moduli of these two vectors and the cosine of
the angle between them. The moduli were used to find the
55! I5p! and ISd' The cosine of

the angle between the vectors was used to calculate the values

values of the functions I I
of the Legendre polynomials. The local pseudopotential
W(gz—gl) was calculated using a special subroutine called
ADDRES..

Once all the matrix elements were calculated the pro-
gram diagonalized the matrix and arranged the resulting energy

eigenvalues in ascending order.

7. Programs to Calculate Cross Sectional Areas of the Fermi

Aigiven pseudopotential will generate a set of con-
stant energy surfaces in k space. One of these surfaces will
be the theofetical 'Fermi surface' appropriate to the particular
: pseudopotential{'AIt will not be known initially what the Fermi
energy will be, but if it is guessed or arbitrarily selected
in some way then it is possible to build programs which search
for the required energy contoﬁr and follow it around in a

plane section. In this way cross sectional areas of the 'Fermi
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surface' can be calculated and compared with the observéd
de Haas van Alphen effect periods.

A set of programs was built which calculated such
cross sectional areas and simultaneously found the 'rigid
band value' of the cyclotron mass of the orbit. In a typical
calculation a point O'(El,gz, §3) was selected and a plane
through O0' perpendicular to the magnetic field H intersected
the 'Fermi surface' in a closed curve whose area was to be
calculated.

It was convenient to use two coordinate systems in
these calculations, the two systems being related through
a set of Euler angles. The X, Y, and Z axes‘used to define
positions in the Brillouin zone have been described. Unit
vectors I, J, K can be drawn through O0' parallel to these
axes. The other set of mutually orthogonal axes X, y, and z
were oriented so that the positive z direction was parallel
to the magnetic field H. Unit vectors i, j, k can also
be drawn through 0' parallel to these other axes. The
relationship between the two sets of axes can be seen by
considering the following sequence of operations. The explana-
tion is clearer if reference is made to Figure (IV.1l) which
shows the Euler angles.

Beginning with the orthogonal vectors I, J, and K,
(i) Rotate by an angle ¢ around K, this gives a new set of

axes and unit vectors I', J', (K'=K).
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Figure (IV.1l)

The system of Euler angles used in the programs that
calculated cross sectional areas of the Fermi surface.
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(ii) Rotate by an angle 06 around the new 'y' axis 'the

line of nodes' to get a new set of axes ", Ja', k.

(iii) Rotate by an angle Y around the new z axis to get the
final set of axes i, j, k.
Table (IV.4) represents the direction cosines of the
unit vectors (i, j, k) relative to the original set of unit

vectors (I, J, K).

‘Table (IV.4).

The table gives the mutual scalar products between the two sets
of unit vectors (i, j, k) and (I, J, K), in terms of the
Euler angles (6,¢,V).

I J K

, cosfcosdcosy cosfsindcosy
i -sinfcosy
-sindsiny S +cosdsiny
~cosfcos¢siny -cosOsindsiny
] i sin6siny
~-sin¢cosy +cos¢cosy
k | sinbcos¢ sinfsingd coso

The set of Euler angles (6,¢,¥) thus described
the direction of H(6,¢) in terms of spherical polar angles.
The angle Y gave the direction of i in the plane perpendicular

to H.

The cross sectional areas of greatest interest were
the extremal areas which could be compared with the de Haas
van Alphen periods. When these areas were calculated the

origin O'(kl,kz,k3) was previously selected so that it was
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situvated in a position somewhere near the centre of the closed
contour. The Euler angles 6 and ¢ were given by the direction
of H. The angle ¥y was initially set equal to zefo and . the
program carried out an exploration along the X axis until
the Fermi energy contour was located. y was then incremented
in'equal steps around a complete circle. As Y was increased
the x axis was rotated, and with each increment in ¢ the pro-
gram made a search along this axis until it had found the
energy contour. The area of the contour was then obtained using

an integration subroutine. The area is given by

A = %rzdlp A (4-5)

The values of r(wi) having been found for equally spaced
intervals of wi,the integration subroutine was then used to
compute the resulting area. The subroutine made use of a
combination of Simpson's rule and Newton's % rule. In most
of the caiculations Y was incréméntéd at intervals of 5
degrees, although some calculations used an interval of 10
degrees.

As extremal cross sectional areas were of interest
it was important to locate O' as near as possible to the
correct position to obtain extremal areas. In the case of
the second zone lens, O' was put at the centre of the lens
at L. When computing the extremal area of the B arms, O'
was located on the XK line near the centre of the minimum

cross section.-
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The programs that were used were limited to contours
for which r(y) was a single valued function of Y. More general
programs could have been constructed to compute the areas of
more complicated closed contours, however these would have

required a lot of computer time and such programs were not

used.
‘The formula for4the cyclotron mass of the orbit is
given by
mc* ='m {% %%} (4.6)

where it is assumed that A is in (atomic units)“2 and € is in
Rydbergs, m is the free electron mass.

The cross sectional area is given by equation (4.5)

1 2
A=c}—2—r ay
so that
2
%=§r<%§)dw
~giving _ ”
mc 1 or
= = F | TG e o', it}

The progréms'simultaneouslj calculated the reduced
effective mass of the orbits in the following way. For each
value of ¥, the radial ‘distance r(y) out to the Fermi energy
contour was determined by the search procedure that hés just

been described. The program then calculated the energy at



29

the slightly larger radius (r+d8r). In this way the derivative
or

found for each incremented value of y and the cyclotron mass

was determined. The product of r(y) and of.(%%)"!J was

was then found using the integration subroutine and making
ﬁse of equation (4.7).

Whenever the program was to calculate the energy
eigenvalues at a point P which was at a position ri relative
to O0', the coordinates of the point were first converted into
the X, Y, Z system used to locate points in the Brillouin
zone. If the point O' was at position vector Q', then P
was at the vector position

P =0"+ ri. (4.8)
Expressed in terms of the unit vectors Ly Js K
0' = kjI + k,J + kjK.

and
i= (A'DI+ (1293 + (i'KK .

This means that the X, Y, 2 coordinates of P were given by

P, = k1 + (cosbcos¢dcosyP-sindsiny)r
PY = k2 + (cosbsin¢dcosy + cos¢siny)r
P, = k3 - sinfcosyr. (4.9)

In deriving these coordinates the scalar products listed
in Table (IV.4) have been used.
Once the position of Pwas located in terms of the

conventional system of coordinates, P was then subjected to
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the process of translation into the Brillouin zone) and sub-
jected to the necessary symmetry operations to transport it
to an equivalent position inside the smallest reduced section.
The nearest principal point was then selected and the corres-

ponding secular matrix was set up and diagonalized.

McMASTER UNIVERSITY LIBRARY



CHAPTER V

RESULTS OF THE PSEUDOPOTENTIAL CALCULATIONS

l. Some Examples of 8 Point Fits

In Table (Vv.1l) the 8 point figure of merit is com-
pared for several local pseudopotentials. In each case the
mean energy E was obtained from the appropriate energy
eigenvalues'at the 8 experimental points. A convenient

figure of merit was given by the number AE, where

i=s  _ ., (2 ,
AE = [ £ (E,-E)7] x 107,
: A

i
The pseudopotentials given in the Table are (i) the
free electron model, (ii) the local pseudopotential of
Heine and Animalu, . (iii) the local pseudopotential of
Brandt and Rayne, and (iv) the best two parameter local
pseudopotential.
The best two parameter local-pseudopotentiai was a

model in which W. and W, . (W W

% et ) were the only non zero

X~y
pafameters and which gave a better fit using the 8 point

criterion than any other similar two parameter model.

In these calculations the order of the secular equations

varied between (12x12) at L and (20820) at X.
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TABLE (V.1l)

102

Examples of 8 Point Fits [Energies in Rydbergs]

The free electron model

T3]

L-T L-U L-U
kLens Lens kin
0.4926 0.4515 0.5973

X~-U X-U T-U
kin k'out ‘koug
0.5824 0.5666 0.5564

Mean energy

0.5809

T-W
’ k'O'th

0.6061

0.5542 Rydbergs., Figure of merit

= 143
(ii) The Heine-Animalu pseudopotential
L-T L-U L-U L-U
kLens kLeng_ Ein N kout
0.4861 0.4617 0.5327 0.5274
X~-U . X~-U T-U T-W
kin kout kout k'out
0.5090 0.5177 0.5206 0.5636
Mean energy = 0.5149 Rydbergs. Figure of merit
= 81
" (iii) The Brandt-Rayne Pseudopotential. W, = -0.066 Ryd.
‘EXT'=‘O.O47 Ryd.
L~T L-U kL-—U kL—-U
Lens Lens " Min - “out
0.5096 0.5080 0.5292 0.5428
X-U X-U T-U T-W
kin out 'EQBE 'kout
0.5303 0.5283 0.5277 0.5521
Mean energy = of merit

0.5285 Rydbergs. Figure

39.
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TABLE (V.l) (continued)

(iv) The best two parameter local pseudopotential

EL = -0.0879 Rydy';ﬂXT‘= 0.049 Ryd.

L-T ' L-U L-U L-U
kLens oo kLens kin kout
0.5207 0.5260 0.5139 0.5346

X-U X-U T-U T-W

‘kin_ 'kout ‘ﬁput 'kout
0.5272 0.5177 0.5178 0.5355

Mean energy = 0.5242 Rydbergs. Figure of merit
= 21

2. Some Examples of 14 Point Fits

The two examples of 14 point fits which are illus~-
trated in Table (V.2) both belong to the form of nqn—local
pesudopoﬁential given in equation (4.3). In each case the
local pseudopotential parameters were limited to the two
non;zero terms WL and WXT° In these calculations the order
of the secular equation varied between 33 at I', and 40 at

T, W, and K.

In this case the figure of merit was given by

» f=14 g () - —5
AE = (3 (Ei—-E)z) /1.2. x 103 .

i=1
/ 8 ;
The factory 1z was put. in to make AE come to numbers of a

comparable size as obtained when only 8 points were used.



(1)

(ii)

TABLE (V.2)

Examples of 14 Point Fits (Energies in Rydbergs)

Pseudopotential

R55=0 , R5P=3, R5D=1, W

L-T kL»U
Lens " “Lens
0.6448 0.6482
X-U X-U

‘kih 'kout
0.6546 0.6595
e SN L2
0.6716 0.6659
- 2 e
0.6606 0.6632

Mean energy = 0.6594
= 24

Pseudopotential

R5S=0, R5P=0, R5D=0,

L-T L-U
Lens Lens
0.5133 0.5186
X-U X-U
Kin_ *out
0.5282 0.5172

Ll‘ Eg.

0.5317 0.5277
Ly Ye

0.5273 0.5283

=~0,004, WXT=~O.012
L-U L-U
'kin 'kout
0.6545 0.6738
T-U kT—-W
out " “out
0.6556 0.6574
L3 Ly
0.6712 0.6512

Rydbergs, Figure of merit

WL=—O.O825, WXT=0'0475

ol kL U
in __9_11'\_
0.5140 0.5353
T-U L IW
out out
0.5170 0.5328
By, Ly .
0.5325  0.5225

Mean energy = 0.5247 Rydbergs. Figure of merit

=20.5.
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3. The Best Two Parameter Model (8 Point Fit)

The two parameter local pseudopotential which gave

the best fit to the 8 points, was given by W. = -0.0879 Ryd-

L

bexrgs, WXT

ture is shown‘in Figures (V.l) and (V.2). As is to be ex-

= 0.049 Rydbergs. The corresponding band struc-

pected there is a strong resemblance between these energy
bands and those generated by the Brandt-Rayne pseudopotential
which was illustrated in Figures (III.4) and (III.5).

The mean energy at the 8 points was 0,5242 Rydbergs,
but this value for the Fermi energy gave B arms that were too
small., The following table shows how the calculated values
of the minimum cross sectional area of the B arms, and the
corresponding cyclotron masses, varied as a function of
'Fermi energy'. The frequencies are in Tesla and the cyclotron

masses are in units of m (the free electron mass).

Fermi energy Minimum B arm Cyclotron mass
" Cross Section (Tesla) ~ (units of mol
0.5100 169 ~0.152
0.5150 103 =0, 089
0.5180 19.5 7 -0.085
0.5185 . 74.0 ' -0.084
0.5242 30.0 -0.050.

The Fermi energy was arbitrarily set at 0.5185 Rydbergs so as

to make the B arms the correct size.
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Figure (V.3) shows the variation of the calculated
B arm periods when the magnetic field is rotated in the
trigonal-bisectrix plane. The experimental points of Poulsen
,(1970) are also shown superimposed on the graph. Figure (V.4)
shows the corresponding set of calculated cyclotron masses.
The two experimental points for comparison are taken from
Brandt and Rayne (1966). These experimental masses were ob-
tained from measurements of the variation of the amplitude of
the de Haas-van Alphen oscillations as a function of tempera-
ture. The fact that the experimental masses are always larger
than the calculated values is related to the electron-electron
and electron-phonon mass enhancenent.

The corresponding graphs for the trigonal-bisectrix,
trigonal-binary, and trigonal cross secticns of the second zone
lenses are shown in- Figures (V.5),.....,(V.10). In each case
the experimental values obtained by Poulsen are also shown.

Cyclotron masses have not been measured for these
exact orientations but Poulsen (1970) has given a ten para-
meter model for the variation of the cyclotron mass as a
function of magnetic field orientation relative to the lenses.
These parameters were derived from a fit to the cyclotron
masses measured in other planes. The curves shown as experi-
mental cyclotron masses in Figures (V.G), (Vv.8), and (V.10)

were derived from this formula.



Figures (Vv.3), .. , (V.10) show the calculated results
for the 'best 8 point local pseudopotential' for which
W, = -0.0879, Wom = 0.049 Rydbergs. The Ferﬁi energy
of 0.5185 Rydbergs was obtained by a fit to the mini-
mum Cross secLion of the B arms. |

In Figures (V.3), (V.5), (V.7), and (V.9) the open
triangles are the experimental dHvVA frequencies measured
by Poulsen. The solid curves are the corresponding
theoretical frequencies, In Figures (V.6), (V.8), and
(V.10) the dotted curve shows the cyclotron masses
calculated by Poulsen using a ten parameter fit. The
solid curves are the theoretical masses in the 'rigid
band' approximation.

In Figure (V.4) the two experimental masses shown for

comparison were measured by Brandt and Rayne.
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It is clear that the calculated cross sections of the
lenses are too small. The minimum cross section in the
trigonal-bisectrix plane has been measured at 3410 Tesla,
whereas the calculated value is 2850 Tesla. This was obtained
_ for a Fermi energy of 0.5185 Rydbergs. When the Fermi
energy of 0.5243 Rydbergs was used the minimum period came
to 3200 Tesla.

These calculations were carried out using secular
equations with an average size of (15x15). Subsequent calcu-
lations using non-local pseudopotentials usually made use
of larger secular equations, up to 6rder (40x40) . vThis in-
volved a considerable increase in the amount of computer time
required. For this reason these calculations were limited to
extremal areas in the symmetry planes, or in the case of

the B arms to the minimum cross section.

4, Three Regions of Parameter Space

Three regions of parameter space which were of
interest were discovered. These will be called pseudopotentials
of Class A, Class B, and Class C. In each case the pseudo-

hamiltonian was of the form given in equation (4.3)

Hy = T + W+ R5S|58><5s| + R5P|5p><5p| + R5D|5d><5d

In class A and class C, R5S was equal to zero and the only
local parameters were WL and WXT‘ In the class B pseudopoten-
tials the 5s non-local operator was included and W was given

a parameterized form.
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Table (V.3) shows the regions of parameter space
which gave the best fits to the 8 points with Class A
pseudopotentials. In this and in subsequent similar tables
’EF is an. estimated value for the Fermi energy based on an

average taken at the calculated points.

TABLE (V.3)

Class A Pseudopotentials (8 Point Fits)

The values of the local pseudopotential parameters WL’ WXT

which gave the best fits using the 8 point criterion are
listed for various values of R5P and R5D, (all energies are

in Rydbergs).

R5P = 0.0 Rydbergs
R5D 0.0 0.50 0.75 1.00 1.25 1. 50 2.00
W -0.039 -0.020 =-0.011 ~-0.0025 0.010 0.0lé 0.035
—;,T -0.062 -0.0925 ~0.1075 -0.1250 ~-0.1475 -0.1600 -0.2025
AE 16.92 9,82 7.82 7.50 6.34 6.41 7.60
o 0.5036 0.5041 0.5031 0.4985 0.4926 0.4904 0.4750
R5P = 1.0 Rydbergs
R5D 0.50 .75 1.00 .25 1.50 2.00
W -0.016 -0.007 0.001 0.008 0.015 0.032
%;& -0.053 -0.070 -0.085 =-0.100 -0.115 -0.155
;gf 14.60 11.50 9.40 7.98 1536 7.33
E 0.5686 0.5660 0.5640 0.5604 0.5565 0.5402

&3]
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TABLE (V.3) (continued)
R5P = 2.0 Rydbergs
1 0.50  0.75 1.00 1.25 1.50 2.00
-0.014 -0.007 0.000 0.008 0.016 0.031
-0.027 ~-0.040 -0.054 =-0.070 -0.087 =-0.125
18.10 14.20 11.20 9.60 8.52 7.92
0.6097 0.6097 0.6081 0.6045 0.5988 0.5828
R5P = 3.0 Rydbergs
1 0.50  0.75 1.00 1.25 1.50 2.00
-0.012 -0.004 0.002 0.009 0.016 0.0285
-0.007 -0.0225 -0.036 -0.050 =-0.0675 -0.098
20.9 16.47 13.20 10.90  9.65 8.52
0.6390 0.6382 0.6369 0.6347 0.6282 0.6713
R5P = 4.0 Rydbergs
0.50 0.75 1.00 1.25 1.50 2.00
~0.010 -0.003 0.003 0.011 0.017 0.029
0.005 -0.0075 -0.021 =-0.0375 -0.0525 -0.0825
23.1 18.1 14.5 12.0 10.3 8.9
0.6583 0.6600 0.6591 0.6553 0.6508 0.6402
RP5 = 5.0 Rydbergs
0.50 0.75 1.00 1.25  1.50 2.00
-0.007 -0.001 0.005 0.011 0.017 0.029
0.015 0.0025 --0.010 -0.025 =-0.040 =-0.070
24.6 19.5 15.6 12.8 11.0 9.35
0.6739 0.6758 0.6761 0.6728 0.6685 0.6578
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In class A the lowest energy bands between X and K
were below the Fermi energy and there were no B arms, also
' the extreme flatness of the energy bands in this region im-
'plied heavy cyclotron maéses for the B orbits, whereas these
masses are known to be light. This defect of class A ex-
tended over the entire range indicated in Table (V.3).
Figures (V.1l1l) and (V.1l2) show the band structure for one
of these pseudopotentials.

The investigation of this region of parameter space
was repeated using the 14 point criterion. These results are

shown in Table (V.4).

TABLE (V.4)

Class A Pseudopotential (14 Point Fits)

The values of the local pseudopotential parameters WL' WXT which
gave the best fits using the 14 point criterion are listed
for various values of R5P and R5D. (All energies are in

Rydbergs) .

R5P = 0.0 Rydbergs

0.0 - 0.50 0.75 1.00 1.25 L.50 ©2.00

-0.044 -0.029 -0.024 -0.019 -0.013 -0.010 0.00
~-0.0470 ~0.0700:-0.0775 -0.0850 -0.0950 -0,1000 -0.1175"

20.34 . 19,55 20 . 11 20,93 21.84 224 5 24,44

= }xz | l?ﬁ
3 >

0.5166 0.5228 0.5261 0.5288 0.5290 0.5313 0.5307
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TABLE (V. 4) (continued)

R5P = 1.0 Rydbergs

0.0 0.50 0.75 1.00 X 1.50 2.00

-0, 035 -0.022 ~-0,017? -0.013 -=0.007 =0.004 0.004

-0.0125 -0,035 -0.0425 -0.050 -0.060 -0.065 -0.080
24.43 21,73 21,95 22:69 23:73 24,84 26.99

0.5769 0.5851. 0.589) 0.5919 0.5927 0.5955 0.5%63

R5P = 2,0 Rydbergs

0.00 0.50 0.75 1.00 1.25 .50 2.00

-0.029 -0.018 -0.012 -0.008 ~-0.004 0.00 0.008

0.0125 ~0,0100 -0.0200 ~0,02%95 ~0.035 ~0.0425 -0.0575
27.54 23.26 23.07 23.64 24.69 25,93 28.49

0.6152 . 0.6256 0.6287 0.6321 0.6345 0.6360 0.6372

R5P = 3.0 Rydbergs

0.00 0.50 0.75 1.00 1.25 1.50 2.00

~0.024 -0.014 -0.009 -0.004 =-0.001 0.004 0.010
0.030 0.006 -0.003 =-0.012 -0.018 -0.0275 —0.040
29.78 24.45 23.79 24.19  25.20 26.51  29.30

0.6408 0.6525 0.6566 0.6594 0.6630 0.6636 0.6665

R5P = 4.0 Rydbergs

0.00 0.50 0.75 1.00 Ledd 1.50 2.00

— e——

-0.019 -0.010. -0.006 =-0.001 0.002 0.006 0.013
0.0425 0.018 0.009 0.00 -0.0075 -0.015 =-0.030
31.37 25.37 24.33 24.52 25.46  26.77 29.78

0.6585 0.6718 0.6765 0.6795 0.6825 0.6844 0.6860



122
TABLE (V.4) (continued)

" R5P = 5.0 Rydbergs

" R5D 0.00 0.50 0.75 4+ 00 L1.25 L.50 2,00

W -0.015 -0.007 =-0.003 0,001 0.004 0.008 0.014
%;& 0.0525 0.0275 0.0175 0.009 0.0025 -0.006 =-0.018
;ET' 32.48 25.98 24.73 24.71  25.98, 26.90  30.05
Ep 0.6718 0.6865 0.6911 0.6947 0.6985 0.6999 0.7037

For a given value of R5P and R5D there are quite large

éhanges in the values of W_ and Wy when changing from the

L 5
best 8 point fit to the best 14 point fit. The reason for this
is that if contour lines of equally good fit are drawn in

the W W i plane it is found that the region of best fit is

L* "X
a very elongated valley with almost equally good fits occur-
ring along a considérable length. For example for R5P = 2.0,

and R5D = 1.0 Rydbergs, AE (8 point) assumed the following

values at two points along the axis of the valley,

I
i

W= 0.03 , W

W ==0.02 , Wy,

~0.060, AE 11.65, E, = 0.6042 Ryd.

F

12.00, E, = 0.6127 Ryd.

XT

-0.048, AE

Il

The best 8 point fit reported in Table (V.3) for this value
of R5P and R5D was at the point

W, = 0,00, W

L = -0.054, AE = 11.50, E_, = 0.6081.

XT F

By comparison the best 14 point fit for this value of R5P

and R5D was given by

W, = -0.008, W

L = -0.0275, AE = 23.64, E_ = 0.6321.

XT P
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The reason for the large shift in the parameters
is that fhe 14 point fit reached an optimum value further
~along the elongated minimum. It was found that the original
defects remained, the B arms did not appear and the lowest

bandsalong the XK line were extremely flat.

In Table (V.4) there is a tendency for AE to reach
a minimum value somewhere near R5D = 0.75 Rydbergs, which
is near the value which would be expected in an OPW-type
pseudopotential similar to that given in equation (2.7).
With the non-local parameters set at the approximate

OPW-values of R5S = (EGS"E ), R5P = (E_ -E__), and

5s 6s “5p

R5D = (E (making use of the atomic energy levels of

6s Fsa ¢

Herman and Skillman) there is a region of parameter space

corresponding to the class B pseudopotentials which produces

energy bands very similar to the bands generated by the

local pseudopotentials such aé‘those of Brandt and Rayne,

This set of pseudopotentials generates a Fermi surface having

the correct topology, with second zZone lenses and first

zone contact regions around X and T. There were also B arms.
Using the above values for R5S, R5P, and R5D, and

varying WL'and WXT’

W, = -0.200 Rydbergs, Wep = -0.140 Rydbergs, with a Fermi

the optimum value of AE ccurred at

energy relative to the bottom of the band of 0.5760 Rydbergs, .

and a 14 point figure of merit of 29.
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A parameterized form for the local pseudopotential
was also used in which W(g) was given by the four parameter
empirical approximation

W(a) = alg?-8)/lexp(y(g®-6)) + 1]. (5.1)
Using this parameterized form it was quite easy to find
values of o, B, vy, and 8§ which gave 14 point figures of merit
of about 20.

An example of a band structure generated by such a
pseudopoteritial is shown in Figures (V.13) and (V.1l4), for
which,

o = 0.07,B = 3.5, y= 1.5, and § = 4.0,

These parameters gave WL = ~0.138, Wy = -0.083, and Wp =

-0.082 Rydbergs.

A comparison of the energy bands with those of Brandt
and Rayne illustrated in Figures (III.4) and (III.5), and
with those shown in Figures (V.l) and (V.2) for the best two
parameter local pseudopotential (8 point criterion), show
strong gualitative resemblances. There was an important
difference, whereas the local pseudopotentials just mentioned
have second zone lenses that are essentially p-like, the
class B pseudopotentials have lenses of predominaﬁtly 's-d'
symmetry.

At the present time there appear to have been no
experimental investigations to determine the general symmetry

character of the states responsible for the second zone lenses,
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Table (V.5) shows the variation of AE (14 point
figure of merit) as R5S, R5P, anleSD were varied in turn
and all other parameters were held fixed. Three new
parameters CS, CP, and CD were introduced and the non-

local parameters were given by,

R5S = CS x (Ec _~E; ), RSP = CP x (E¢ ~E. ),

s 5p

R5D

CD x (EGS-ESd).

In the example shown B, y, and § were held fixed at the values

For each set of parameters CS, CP, and CD, o was varied

until AE reached a minimum.

_TABLE (V.5)
A Set of Class B Pseudopotentials
The variation of the 'best fit to 14 points' of one of the
parameterized pseudopotentials, as a function of the strength
of the 5s, 5p, and 5d non-local operators R5S = CS X (EGS~E

SS) 14

5p 54 5’ Espr

are the corresponding atomic energy levels as

= -R = E — 3
R5P Cp X (EGS E__), R5D CD x ( 6i E..), where E

E5d’ and E6S
computed by Herman and Skillman. The local pseudopotential
is of the form
2
Wig) = olg®-B)/lexp y(a°~§) + 1].
In this model B = 2.5, vy = 1.5, § = 4.0, all energies are

in Rydbergs.
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TABLE (V.5) (continued)

Varying the strength of the 5s projection operator

cs Cp CD o (giving best fit) E (mean energy AE(l4 points)
of 14 points)
0.5 X 1. o 0.0225 , 0.6193 33.00
0.7 1. 1. 0.0375 0.6033 22.39
0.8 1. 1. 0.0475 0.5964 20.97
0.9 L. 1. 0.0600 0.5899 20.89
L. Y. (g 0.0650 0.5838 20.79
1.1 1. i [ 0.0700 0.5783 21.80
1:3- 1. 1. - 0.0850 0.5678 24,36
1.5 1. L. 0.0920 0.5588 27.60

Varying the strength of the 5p projection operator

Cs CP CD o E 2B

1, 0.8 1. 0.0825 0.5642 31.04
1. 0.9 1. 0.0700 0.5755 : 24.40
1 1. 1. 0.0650 0.5838 20,79
L. 1.1 1I. 0.0600 0.5908 20.09
L. 1.2 1. 0.0550 0.5965 21.29
1. 1.3 . 0.0500 0.6013 23,52
1. Leb - L . 0.0450 . 0.6091 28.68

Varying the strength of the 5d projection operator

Cs CP CD o E AE
i i 0 0.0650 0.5038 27.49

X o 0.5 0.0625 0.5492 26.85



131

TABLE (V.5) (continued)

=
> .
=

cs c cD o AE

i dis 0.6 0.0625 0.5565 23,17
1. [ 0.7 0.0625 0.5637 20.79
L 1. 0.8. 0.0650 0.5707 19.57
1 i 09 0.0650 57738 19.58
1. 1. 1. 0.0650 0.5838 20.79
1. 1, 1, ~ 0.0650 0.5902 23.00
i  IFF 1.3 0.0675 0.6020 29,13
) 1., 145 0.0700 0.6131 36.37

The class C pseudbpotentials generated a Fermi surface
of the correct topology and B arms were present. Table (V.6)
shows the regions of parameter space which gave the best 14
point fits.

TABLE (V.6)
Class C Pseudopotentials

The values of the local pseudopotential parameters WL' WXT
which gave the best fits using the 14 point criterion are listed

for various values of R5P and R5D. (All energies are in Rydbergs).

R5P = 0.0 Rydbergs

RSD 0.00  0.50  1.00 2,00  3.00
WL -0.0825 -0.0775 =-0.0725 =0.0625 =-0.055
;;& 0.0475 0.0425 0.0375 0.030 0.0225
Z;“ 20.45 23.35 27..50 36.42 44.67

|

0.5247 0.5443 0.5609 0.5869 0.6058

&
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R5P = 0.5 Rydbergs
R5D 0.00 0.50 1.00
W
L -0.070 -0.0675 -0.065
Werp 0.0725 0.0625 . 0.0575
AE ~20.13 23.72 28.14
By 0.5512 0.5751 0,.5831
R5P = 1.0 Rydbergs
R5D 0.00 0.50 1.00 L B0 2.00
W -0.0575 ~-0.060 ~-0.,0575 -0.0525 -0.0475
XT 0.0925 0.080 0.075 0.062 0.0625
AE 19.52 23.84 28.68 33.28 3768
Eg 0.5698 0.5977 0.6167 0.6331 - 0.6471
R5P = 2.0 Rydbergs
R5D 2.0
HE =0, 0375
Yﬁ! 0.0875
AE 38.75
EF 0.6830

Table (V.7) shows some of the extremal cross-sectional
areas and cyclotron masses (% %é) which were calculated for
some of the class C pseudopotentials. The Fermi energy was
defined by fitting the B arms to the experimental frequency

of 74 Tesla.
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The extremal cross sections are the 'large section'
of the lens, (H is the direction TL), the 'up section' of
the lens, (H in the direction LU), and the 'side section'
of the lens (H in the direction LW). The 't minimum cross
section' is the minimum cross sectional area ofvthe T
orbit, with H in the ¢TI0 binary direction. The other two
areas given in Table (V.7) refer to the T face and X face
holes.

Poulsen obtained a value of 3240 Tesla for the 'side
section' of the lens, and 3410 Tesla for the 'up section'
The large cross sectional area of tﬁe lens has not‘been mea-
sured. Poulsen reported a frequency for the minimum T cross
section of 1580 Tesla.

The X and T face breakthrough regions have not been
positively identified in dHvVA experiments, although Moss (1968)
reported weak signals with H oriented in the (111) direction
at a frequency of 1950 Teslé. These could have come from the
T face hole. In Table (V.7) the notation C(P,D) means that
R5P = P Rydbergs and R5D = D>Rydbergs.

In Table (V.7) Mhie lenges ars & Dittle’ foo small
but only by a few per cent. There is a consistent tendency
for the 1T orbit to be too small énd for the T face hole to
be large. These two conditions are correlated, .a contrac-
tion of the T face hole wduld be accompanied by an increase

in the size of the T orbits.
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Computed Values of the de Haas-van Alphen Frequencies and Cyc-

lotron Masses (% %é) for Various Non-local Pseudopotentials

Frequencies (Tesla)

Paenlo- By B, boms - - Lens  lops Tmin . Tface *face
potential (Ryd.) (large) (up) (side) :
C(0,0) 0.5168(74.25 0888 3160| 3052 1126 | 4441 1107
c(o,1) 0.5497174.70 |10417 3213| 3026 1129 | 4344 2569
c(0,2) 0.5731(74.44 10881 3172 2977 1164 | 4160 3027
c{l,0} 0.5606(74.12 9905 3057 3024 1257 | 3216 1076
E1l,4) 0.6020(74.30 9765 3059 2898- 1228 | 3594 2476
c(1,2) 0.6312174.26 110452 3135 2969 1258 | 3463 2898

Effective Masses (reduced units).
B By S R R Fain Jres, mRe
vC(O,l) 0.5168 ~0.0812 1.2166/0.4078/0.3881}|-0.3231;1.2235/1.092
c(0,1) 0.5497|~-0.0627|0.8932{0.3140;0.2912{~-0.2436{0,7953/0.7013
C{0,2) 0.5731|~0.0588|0.7687(0.2833/0.2606{-0.2218/0.6310{0.5649
C(1,0) 0.5606|~0.0833{1.3350{0.4256|0.4123|-0.3596|1.3445|1.1945
c{l,1) 0.6020{~0.0591|0.8903|0.3044|{0.2841|-0.2450{0.8036{0.7055
€c{1,2) 0.64711-0.053910.741210.265810.24701-0.2137{0.613110.5475
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The rather wide fluctuations in the calculated
sizes of the X and T face holes can be understood in terms
of the flat gradient (related to the high effective mass)
of the constant energy surfaces in the region of these
faces. This means that a small change in the value chosen
for Fp will produce quite a large change in the areas of these
openings.

The diagrams shown in Figures (V.15),....,(V.21)
show various sections of the Fermi surface for the local
pseudopotential C(0,0). In this model W, = -0.0825 Rydbergs,

L
W = 0.0475 Rydbergs, and the Fermi energy was equal to

XT

0.5168 Rydbergs. These diagrams were constructed using the
‘output of the computer programs that calculated the cross
sectional areas and the cyclotron masses, the order of the
secular equations varied between (33x33) and (40%x40) accor-
ding to the position in the Brillouin zone.

These cross sections resemble similar figures which
have been given by Brandt and Rayne (1966). The outer edge
of the B arm shown in Figure (V.1l5) is inset from the edge
of the X face, as was first predicted by the RAPW calculations
of Keeton and Loucks (1966). |

Table (V.8) shows the set of extremal orbits for the
class B pseudopotential whose band structure is illustrated
in Figures (V.13) and (V.14). There was some difficulty

with convergence when calculating the cross sectional areas

for this class of pseudopotentials and the figures given are



Figures (V.15), ... , (V.21) show different
computed cross sections of the Fermi surface
for the local pseudopotential C(0,0) for

which W, = -0.0825, W = 0.0475 Rydbergs,

XT
the Fermi energy has been set equal to
0.5168 Rydbergs by fitting to the experimental

minimum B arm cross section.
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Figure (V.,17)

The 'up sectian' of the lens for the local
pseudopotential C(0,0)
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Figure (V.18) The 'side section' of the lens for the local
pseudopotential C(0,0)
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Figure (V.19) The 'minimum T section' for the local pseudo-
potential C(0,0)
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Figure (V.20) The 'T face opening' for the local pseudo-
potential C(0,0)
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potential C(0,0)
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probably not very accurate, but the table gives some idea

of the orders of magnitude that were obtained.

TABLE (V.8)

Computed de Haas-~van Alphen Frequencies and Cyclotron
Masses for a Class B Pseudopotential

[In this table the values reported were obtained using a
secular equation of approximate order 40x40 , it was
found that the convergence was not very good, and the figures

listed have meaning only in an approximate order of magnitude

sense. )
Parametrized Pseudopotential
R5S = 6.8061, R5P = 4,447, R5D = 0.705
o = 0,07 , B =3.5 ,yvy=1.5 ¢ =4.0
Minimum B Arm Cross Sections
EF(Fermi energy) ’ Frequency Cyclotron Mgss
(Tesla) (reduced units)
0.5720 46.628 -0.0556
0.5690 68.123 | -0.0678
0.5684 [poor convergence encountered over part of
range, assumed Fermi energy by interpolation]
Extremal Sections for E, = 0.5684 Rydbergs
'QEEEE Frequency Cyclotron Mass
- (Tesla) - (reduced units)
Lens (large section) 9349 ' 1:3397
Lens (up section) 2802 . - 0.4143

Lens (side section) 2677 0.4005
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TABLE (V.8) continued

Orbit - Frequency Cyclotron Masé
~(Tesla) " (reduced units)

T (minimum section) 1512 ‘ -0.3009

/T face » 2123 0.8478

X face 2427 0.4970

5. Tests to Determine the Symmetry Character of the Energy

" Bands at Special Points in the Brillouin Zone

One method of testing the general symmetry character
of the energy bands generated by a given pseudopotential is
to calculate the energy bands and then to investigate the
effect of increasing the s,p and d-like parts of the non-
local pseudopotential. Table (V.9) shows the results of such
an analysis when applied to one of the class A pseudopotentials,
The results show that the lowest level at T' is s-like while
the second level is 's-d' like. At each of the points, T,
X, and L the lowest levels aré 's-d' like and the second
levels are p-like.

The symmetry analysis for the local pseudopotential
C(O!O) is given in Table (V.10). In this model the contact
regions around X and T are p~-like and the second zone lenses
are also predominantly of p-like symmetry. A similar result
holds for the Brandt-Rayne and the Heine-Animalu local pseudo-
potentials which also lie in this general area of parameter

space.
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TABLE (V.9)

Symmetry Analysis for a Class A Pseudopotential

Testing the symmetry character of the lowest energy bands at

special points in the Brillouin zone.

Pseudopotential. (All energies in Rydbergs)

R5S RE5P R5D W W | EF(14 points)

0. 3, 1. -0.004 -0.012 0.6594

The lowest energy levels at special symmetry points

R5S R5P R5D L X
Zero per- 0. 3 L+ -0.00057 0.6417 0.4306 0.6352
turbation 1.4823 0,.,7717 0.5380 0.7851
Small s-1like -1 3 ds 0.0133 0.6680 0.4544 0.6617
perturbation 1512 0.7717 0.5380 0.7851
Small p-like 0. ded ) -0.00057 0.6417 0.4306 0.6352
perturbation 1.4823 0.7753 0,.5412 0.7893
Small d-like 0. 3 Lol -0.00057 0.6485 0.4358 0.6413
perturbation 1..4840 0.7717 00,5380 0.7851

L r



TABLE (V.10)
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Symmetry Analysis for a Class C Pseudopotential

Testing the symmetry character of the lowest energy bands at

special points in the Brillouin zone.

" Pseudopotential (All energies in Rydbergs)

R5S R5P

0. 0.

R5D

0.

W

-0,0825

WXT

~-0.0475

EF(l4 points)

0.5247

" The lowest energy bands at special symmetry points

Zexro
perturbation

small s-like
perturbation

small p-like
perturbation

small d-like
perturbation

R5S

0.

0.2

R5P

O

RSD

0.

0.

r

-0, 0332
1.3314

-0.00239
1.3314

=0 . 0332
1.3534

~0.0327
1.3314

.

0.4517
0.5910

0.4517
0.6337

0.4791
0.5910

0.4517
0.6109

&

0.2682
0.4097

0.3089
0.4097

0.2682
0.4306

0.2859
0.4097

i

0.4750
0.5250

0.4750
0.5772

0.4999
0.5250

0.4750
0.5428
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The class B pesudopotentials differ from the prévious
example by having second zone lenses of essentially 's-d'
symmetry. This is shown in Table (V.11l) which gives the
symmetry analysis for the pseudopotential whose band struc-
ture is illustrated in Figures (V.13) and (V.14). 1In this
table the perturbations used are very strong.R5S, R5P, and
R5D are given by R5S = CS x (E65~ESS)' R5P = CP x (E6S—E5p),

and R5D = CD x (E (using the atomic energy levels of

6s Fsa) *
Herman and Skillman). In this particular example the local
pseudopotential was given in the parametrized form of

equation (5.1).

6. The Order of Magnltude of th@ Spln ~orbit Interaction

The spin-orbit term of the Hamiltonian in equation
(2.43) 1is

- (5.2)

1., (ks,k's") = LA A (ke k") ) (k'xk 0
where the parameters Ap and Ad arise from the p-like and -like
core states respectively. Those conduction band states which
contain a p-like component will be affected by kp’ while Ad
will affect states with a d-like component.

It'is possible to estimate the size of the spin-orbit

coupling parameters in mercury. The spin-orbit Hamiltonian

for an atom can be written,
2

_p "o
H——j—ﬁ+V(£)+ ZZEVVXE.
2n ¢
d
an' V=§§—Y-
r or’



TABLE (V.11)

Symmetry Analysis for a Class B Pseudopotential
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Testing the symmetry character of the lowest energy bands at

special points in the Brillouin zone.

" Pseudopotential (All energies

in Rydbergs)

o By 8 ¢ cr oD

0.07 3.5 1.5 4.0 : 1 X

The lowest energy bands at special

cs cp cp r
Zero I« Xa da 0.2140
perturbation a 1.547
s-like
perturbation 0. 1. I, ~0:3695
1. 081
1.547
p-like 1. 0. 1. 0.2140
perturbation | 1.,0339
' 1,0338
d-like l: L. -8, 0.2138
perturbation 1.2977

1.2977

R5S

6.8061

R5P

4,447

symmetry points

T

0.7553
0.8715

0.2051
00,7553

0.3410
0.8305
0.8305
0.8715

0.7142
0.7553

L

0.5609
0.7213

-0.1315
0.5609

0.2070
0.7213

0.5609
0.6237

R5D

0.705

X

0.7737
0.8446

-0.0105
0.7137%

0.3369
0.6020
0.8446

0.6763
0.7737
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This means that the spin-orbit term is given by

2
W= AT 1BV

s = =) 84,
SO 2m2c2 r ar’ — =

If a coulomb potential is assumed, so that

Ze2 1 oV _ Ze2

Vil =5 = v wm T T

it follows that spin-orbit effects are most important in heavy
atoms, both on account of large Z and small r.

For zinc and cadmium, Stark and Falicov (1967) gave

the following values for Ap and Ad , (the units are in Rydbergs).
Zinc (Z = 30, configuration 3d10452), kp = 0.0050, Xd = 0.
Cadmium (Z = 48, configuration 4d10552), Ap ='0.0105, Ad = 0.

In the case of white tin the values are Craven (1969).
(z = 50, configuration 5s25p?), Ap = 0.013, Ay = O.

In all of these examples it was sufficient to set
Ad = 0, This is because the conduction bands are mostly
's-p' like. In the case of mercury also, Dishman and Rayne
(1968) found that the inclusion of Kd produced a negligible
effect and restricted their spin—orbit parameter to a p like
term. |

There‘is no experimental information that can be ﬁsed
~to give an estimate for Xp and Aa in mercury, however the

10652),

atomic number of mercury is (Z = 80, configuration 5d
and the trend of the previous figures for the elements zinc,

cadmium, and white tin, suggest that kp ~ 0.02 and kd = 0
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Rydbergs, might be a suitable approximation for these para-
meters. |

Table (V.12) shows the effect of the spin-orbit
coupling on the energy bands at special symmetry points in the
Brillouin zone. In this table Ap is gradually increased in
strength and Ad is zero. The local pseudopotential that is
being used in Table (V.12) is the example C(0,0).

The secular equation is complex when spin-orbit coup-
ling is included. There were no’convénient subroutines
available to diagonalize a complex Hamiltonian matrix of the
form (A+iB). Inétead an unfolding technique was used and the
real symmetric matrix (_g i) was generated. This enlarged
matrix has exactly the same eigenvalues as the original complex
matrix,except that each eigenvalue repeats itself and occurs
twice. The inclusion of spin increased the size of the
secular equation from (15x15) to (30x30), which was then

doubled by the unfolding technique.

TABLE (V.12)

The effect of spin-orbit coupling on a Class C
: pseudopotential

The effect of the spin~orbit interaction on the energy bands
at symmetry points is shown for different values of the spin-

orbit coupling parameter Ap.



~0.03304
1.3339
1.4138
1.4138
1.5278
1.5278

1.5733

Iy
-0.03304
1.3171
1.4138
1.4138
1.4870
1.5665

1.5733
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g
0.5288

0.6407
0.7178
1.02009
1.0879
1.7544

1.7780

" Pseudopotential

R5P = 0., R5D = 0., W, = -0.0825, Wep = 0.0475,
t P Ag = 0. (all energies are in'Rydbergs)

Energy levels at symmetry points

g L & = 2
0.4548 0.5604 0.2733 0.4836 0.4765
0.5934 0.6008 0.4147 0.5152 0.5269
1.1225 0.7506 11,4165 0.7029  0.9110
1,2071 0.8268 1.4194 1.2680 0.9505
1.2071 1.4371 1.4%57 1.3452 1.3066
1.3778 1.4592 . 1.5307 11,3963 1.3D80
1.3778 1.8691
1.5064 1.8948

Including spin-orbit coupling

Ap = 0.01 Rydbergs, Ad =_0, Rydberxgs
T W L K X

0.4525 0.5558 0.2733 0.4828 0.4734
0.5934  0.6020 0.4133 0.5131 0.5269
1.1225 0.7500 1.4031 0.7024 0.9069
1.1715 0.8272 1.4165 1.2644 0.9505
1.2388  1.4303 1.4957 1.3384 1.3026
1.3778 1.4628 1.5397 1.4009 1.3080
1.3778 1.8679

1.5604 1.8948

U
0.5250
0.6404
0.7176
1.0191
1.0879

1.7403
1.7858



lp = 0.02 Bydbergs;Aa'= 0. Rydbergs
r T WL K x U
~0.03304 0.4448 0.5415 0.2733 0.4789 0.4623 0.5115

1.2533 0.5934 0.6050 0.4087 0.5069 0.5269 0.6396
1.4138 1.1225 0.7489 1.3617 0.7009 0.8929 0.7174
1.4138 1.1302 0.8282 1.4165 1.2499 0.9505 1.0136
1.4617 1.2689 1.4136 1.4957 1.3246 1.2901 1.088
1.5733 1.3778 1.4691 1.5595 1.4119 1.3080 1.7079
1.6013 1.3778 1.8652 1.7982

1.5066 1.8948

A, = 0.03 Rydbergs, A4 = 0 Rydbergs

r T W L 3 x U
~0.03304 0.4304 0.5170 0.2733 0.4662 0.4385 0.4849

1.1465 0.5934 0.6087 0.4003 0.4999 0.5269 0.6386
1.4138 1.0844 0.7476 1.3063 0.6990 0.8664 0.7172
1.4138 1.1225 0.8297 1.4165 1.2188 0.9505 1.0042
1.4546 1.2973 1.3895 1.4957 1.3139 1.2693 1.0881
1.5732 1.3778 1.4752 1.5811 1.4246 1.3080 1.6616
1.6323 1.3778 1.8619 | 1.8098

1.5068 1.8948

An investigation was also made into the effects of
spin—-orbit coupling on the band structure generated by the
class A pseudopotentials. It was found that the inclusion of

spin-orbit coupling did not rectify the main defect of this
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class of pseudopotentials which was the absence of B arms.

The energy levels shown in Table (V.12) show the
effect of wave-function symmetry. All those states with a
significant p-like component are perturbed when Ap is in-
creased from zero. Double degeneracies are split apart by
this component of the spin orbit coupling whenever the degenerate
levels are p-like. All other energy levels remain unaffected.
Near the Fermi surface most of these levels are 's-d'-like
in character with a dominant s-component. These levels will

be affected by A, if this.parameter is increased from zZero,

d
however the s-like part of these states will not be affected
by Ad and since this is the dominant component near the Fermi

surface, X, will probably not be a very important parameter.

d

7. Discussion

The results which have been presented show that
the class A pseudopotentials are almost certainly spurious.
They showed a persistent failure to generate B arms and
formed a continuum in parameter space with local pseudopotentials
for which WL < 0 and WXT < 0. This failure of class A lends
support to class C because this set of pseudopotentials
always generated a Fermi surface of the correct topology
and formed a continuum with those local pseudopotentials for

which W, < 0 and Wep > 0, which is the region of the theore-

tical local pseudopotential given by Heine and Animalu.
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The class B pseudopotentials generate band structures
and Fermi surfaces very similar to those given by class C.
However in class B the second zone lenses have 's-d' symmetry
whereas in class C they are p~like. This important difference
between these two classes of pseudopotentials means that one
of them must be wrong.

In Table (V.5) there is a tendency for AE to minimize
in the region where the parameters are close to the approximate

OPW values of R5S = (EGC—E ), R5P = (E_ -E_ ), and R5D =

5s 6s " 5p

(E, ~E This suggests that class B is an approximation for

6s Sd)'
the OPW pseudopotential. The Fermi energy for this class was
typically 0.57 Rydbergs, but it is possible that the bottom
of the conduction band has been lifted by the 5s operator by
an amount that is too large relative to the top of the band.
In Table (II.2) the repulsive potential of the 5s
state was listed as being equal to 0.9217 Rydbergs at k=0. This

repulsive potential applied for (EGS—E ) = 6.806 Rydbergs.,

5s
The bottom of the conduction bands is approximately 10% nearer
to the 5s levels than is the Fermi level. This means that the
Fermi energy just quoted of 0.57 Rydbergs could be enhanced up
to 0.65 Rydbergs which is not far from the RAPW value of
Keeton and Loucks which was at 0.68 Rydbergs.

In class B the absolute energies were too high, but

this was only because the local pseudopotential element W(o)

was not negative enough. The Fermi surface is mostly deter-
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mined by W W, and W, ,W(o) only appears as a constant term in

L' "X
the diagonal elements of the secular matrix and its only func~
tion is to fix the origin for the energy bands.

The analysis given in Chapter II (section 9) was only
approximate but the curve WS*(q) in Figure (II.3) suggests
that appropriate values for WL and WXT in class B would be

= -0.500 Rydbergs, and W = -0.250 Rydbergs.

given by W XT

L
There is a region of mediocre fits in this area of parameter
space but the Fermi energy is very low. When WL = -0.60

Rydbergs, and WXT = ~0.30 Rydbergs there was an 8 point figure
of merit of 39.5 with a Fermi energy of 0.4420 Rydbergs. Using
the earlier argument for the enhancement of the Fermi energy,
the energy of 0.4420 Rydbergs could be increased up to 0.5300
Rydbergs which is near the free electron Fermi energy.

It is possible that this other region of parameter
space in which the non-local terms are the same as in class B,
but which has more negative local pseudopotential elements is
the correct approximation for the OPW pseudopotential but
this is not certain.

If this region is the correct approximation for the
OPW pseudopdtential it means that if a complete non-relativistic
OPW calculation were carried out for mercury, that the con-
duction energy bands would have a Fermi energy near the free

electron level and the energy bands would resemble those genera-

ted by the local pseudopotentials of the Brandt-Rayne and
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Heine-Animalu type. If this is the case it means that these
local pseudopotentials are nearly correct at their level of
approximation but that they cannot account for the high Fermi
energy generated by the RAPW calculation. Phenomenologically
this high energy could be due to a combination of two factors:
(i) hybridization of the 5d band into the conduction band,
and (ii) relativistic effects.

The pseudopotentials of class C have the strongest
resemblance to those used by Stark and Falicov in zinc and cadmium.
Class C pseudopotentials gave better agreement with the experi;
mental cross sectional areas than did class B, although the
calculations for this latter class were troublesome because
of convergence difficulties. The inclusion of the non-local
operators in class C produced some of the increase in Fermi
energy that was looked for, but not so much as was obtained by
Keeton and Loucks. The class C pseudopotentials appear to be
the best for a non-local pseudopotential representation of the
Fermi surface of mercury. <

One problem that wés encountered in this investigation
was the great stability of the Fermi surface to changes in
the pseudopotential parameters. Once a region of/parameter
space was located which generated approximately the correct
Fermi surface, it was found that the parameters could be
varied with quite a degree of latitude while the topology of
the surface remained constant. This means that questions

of methodology are very important for pseudopotential calcu-
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lations in mercury, and that the experimental data that is
used in the search in parameter space should be as accurate
as possible. It seems possible that the low resolving power
of the method used in this investigation was because the experi-

mental points used as a control were not accurate enough.

8. Comparison with Previous Calculations of the Fermi Surface
of Mercury

Table (V.13) compares the local pseudopotential para-

meters for several models.

Table (V.13)

Comparison of local pseudopotential coefficients
different models. '

Model Wloo WllQ '?hli

Brandt-Rayne ~-0.066 0.047 0.047
Heine~Animalu -0.028 0.053 0.053

2091?' Coon, and _g4° o546 0.0616 0.0616
renier o

C(0,0) -0.0825 0.0475 0.0475

Brandt and Rayne (1966) limited their pseudopotential
to the simple local form and used only two parameters Wy and

WXT' In their calculations the secular equations never exceeded
(6x6), and the parameters were obtained by fitting to the
o, B, and T orbits.

The pseudopotential of Bogle, Coon, and Grenier (1969)

was derived from a fit to the second zone lenses determined

from magneto-acoustic calipers. This calculation was limited
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to four plane waves and there is some evidence that the con-

vergence was not good. For example two different values for

the T face opening were reported. A minimum value of kiU o

IN
1 T-W o i
IN = 0.340 A-1. Thls

0.270 A” , and a maximum value of k
large deviatioh from a circle probably resulted from the use
of a small secular equation.

Table (V.14) compares some of the extremal frequencies pre-

dicted by various theoretical models.

TABLE (V.14)

Comparisons of extremal frequencies for model Fermi
surfaces with experimental dHVA areas

Model Extremal frequency (tesla)
o 8 T
Experimenfal ‘ 3240 74 1580
Brandt-Rayne - 3600 74 1120
RAPW 3706 74 1382
8PW (Dishman-Rayne) 4429 74 1580
c(0,0) 3052 74 1126

In all the calculations listed in Table (V.14) the parameters
were adjusted so'tﬁat the B arms caﬁe to the correct size.

In previous reported calculations on the Fermi surface
of merxrcury the second zéne lenses were always too large. The
present calculations are an exception in that the lenses are

too small as in C(0,0). There is a persistent tendency for the
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T orbits to be too small except for Dishman and Rayne (1968)
who used the orbit for fitting. Dishman and Rayne included
spin-orbit coupling using a formalism due to Animalu (1966).
Their final fitting parameters were obtained by a fit to the
first zone hole surface, and their second zone lenses were
‘much too large. In their RAPW calculation Keeton and Loucks
set the Fermi energy equal to 0.680 Rydbergs by making the
B arms with the correct cross section.

In Table (V.13) the different values of Wllo and Wlll
do not differ very much from each other., However there are
lérge variations in WlOO'_ These variations are related to the
different sizes of the second zone lens. In the free electron
‘model the second zone lens is too large, and when IWLI is
small the lens remains large. As WL increases in absolute value
the lenses become smaller., It seems that the result WL = ~0.066
which was obtained by Brandt and Rayne was not quite negative
enough. On the other hand the value of W, = -0.0825 Rydbergs
given by pseudopotential C(0,0) may be slightly too negative.

It appears that at the level of the local approximation

-0.066 > W, -0.0825 Rydbergs.

This correlates with the observation of Dishman and Rayne that
they found exact agreement with the minimum area of the lens

when Wy = -0.074 Rydbergs.



CHAPTER VI

CONCLUSION

The pseudopotential approximation gives a theore-
tical model of the Fermi surface of mercury that agrees
fairly well with experiment. A surface is produced which
has the correct topology although it does not appear pos-
sible to produce exact quantitative agreement with all the
experimental dimensions of the Fermi surface. The pseudo-
potential energy bands resemble the free electron bands to some ex-
tent but most of the accidental degeneracies are removed.
There are some doubly degenerate energy levels on the
trigonal axis which are a consequence of the crystal symmetry
but the levels are split when the spin-orbit interaction
is taken into account. The only degeneracy that remains
is the spin degeneracy whiéh is a consequence of time
reversal symmetry and of the inversion symmetry of the
rhombohedral lattice.

There is a tendency for the two lowest energy bands
to run parallel over the central regions of the zone faces.
This is explained by simple perturbation theory. Group
theory can be used to derive approximate expressions for
the energy levels at symmetry points.

The inclusion of non-local operators into the pseudo-

160
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potential affects different parts of the energy bands and
Fermi surface in different ways depending upon the symmetry
of the bands. A non-local operator with a given angular
momentum character perturbs the bands in those regions
where the wavefunctions possess a.significant component
having the same angular momentum. When this is not the case,
the non-local operatorrhas little or no effect, This
property can be used to test the general symmetry characteris-
tics of the energy bands.

The spin-orbit coupling operators are also characterized
by their angular momentum, and these operators perturb
the energy bands and split residual degeneracies whenever the
wavefunctions possess a component with the same angular'
momentum.

The non-local operators have a strong influence on
the value of the Fermi energy. When a simple local pseudo--
potential is used the Fermi level is close to the free electron
value of 0.5240 Rydbergs relative to the bottom of the con-
duction band., The p-like and d~like non .local operators
cause the Fermi energy to increase. The s-like non-local
operator acts in.the opposite senée and causes a decrease
by raising the bottom of the band., This occurs because
the electron states of the Fermi surface contain significant
higher angular momentum components, but the bottom of the

conduction band is almost entirely s-like.
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There are three regions of parameter space where the
pseudopotentials generate a Fermi surface with a good fit
to the experimental magneto-acoustic calipers reported by
Bogle, Coon, and Grenier (1969).

The c¢lass A non~local pseudbpotentials generate second
zone lenses, and X and T face contact regions, but the
lowest energy band between X and K is too low in energy to
generate B arms. The band is also extremely flat in this
region. This implies heavy cyclotron masses for the B orbits
but experimentally these are known to be light.

The class B and class C non-local pseudopotentials
génerate a Fermi surface with the correct topology, but class
B possesses second zone lenses of 's-d' symmetry and class C
has lenses of p-like symmetry. The class C pseudopotentials
had the better fits to the experimental dHvA frequencies.
This class alsc included the region of parameter space
given by the theoretical model of Heine and Animalu. The
question of which is the best member of class C depends upon
the criterion adopted. The local pseudopotential C(0,0) has the
best fit to the magneto-acoustic data, C(1,0), C(1,1), and C(1,2)
have better agreeﬁent to the 7 orbits. C(2,2) has a Fermi energy
of 0.6830 Rydbergs which is almost the same as the RAPW value
of 0.680 Rydbergs.

The ambiguities and uncertainties which exist are

partially due to a lack of sufficient information, in particular
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there is a need for an experimental value of the Fermi
energy in mercury. More accurate data specifying the Fermi
surface would be useful, although achieving a fit to the
Fermi surface is not sufficient. It is also necessary
to have the correct band structure, which might be obtained
from optical measurements. The experimental values of the
energy gaps at the symmetry points would be useful for fixing
the pseudopotential parameters.

If this information becomes available classes B and

C should be re-investigated in the regions indicated in

Chapter V, with the inclusion of spin-orbit coupling.
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