A VIDEOQ GRAPHICS TERMINAL

A VERSATILE, HIGH SPEED, RASTER SCAN

VIDEO GRAPHICS TERMINAL

By

PETER DOUGLAS MACDONALD, B.Sc.

A Project
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Master of Science

McMaster University

April 1979

MASTER OF SCIENCE (1979) McMASTER UNIVERSITY

(Computation) Hamilton, Ontario
Canada
TITLE: - A Versatile, High Speed, Raster Scan

Video Graphics Terminal

AUTHOR: Peter Douglas Macdonald, B.Sc. (Queen's University)

SUPERVISORS: Mr. G. J. Hicks
Professor K. A. Redish

NUMBER OF PAGES: wviii, 112

ii

OO WU

ABSTRACT

The design of a flexible, high speed, raster scan graphics
terminal is presented. The design is presented in general architec-
tural terms rather than from a detailed circuitry point of view.

Control is divided between the 'main' microprocessor, an
Intel 8086, and a subservient graphics controller which consists of
a microprogrammable, bit-sliced, AM2903/2910 special purpose micro-
processor. The high speed graphics controller is microprogrammed
to accept basic line and circle generating commands. The configu-
ration is felt to represent an effiﬁient balance between simplicity

and speed.

iii

ACKNOWLEDGEMENTS

I wish to express my appreciation to my supervisors,
Mr. G. Hicks and Professor K. Redish for their guidance and assistance
during the preparation of this project. I would also like to
acknowledge the very great contribution made by Mr. G. Hicks to fhe
design proposed in this . report. My special thanks to Mr. G. Hicks
and Professor K. Redish for the patience and cooperation which they

extended to me.

iv

TABLE OF CONTENTS

Page
CHAPTER 1: INTRODUCTION 1
I. 1 Cathode Ray Tubes 1
I. 2 Controlling CRT Displays 2
I. 3 Design Proposal 5
CHAPTER 2: BASIC DESIGN 8
II. 1 Five Concurrent Processes 10
II. 1.1 Dialogue Process 11
II. 1.2 Text Definition Process ~ 12
II. 1.3 Graphics Definition Process 13
II. 1.4 Text Display Process 14
ITI. 1.5 Graphics Display Process 16
I1. 2 Fully Interlaced Display 17
II. 3 Hardcopy Dump 18
II. &4 Process Coupling ' 18
II. 5 Modularity 22
CHAPTER 3: THE GRAPHICS CONTROLLER 24
III. 1 Microprogramming 25
III. 2 Basic Architecture 28
III. 3 Microinstruction Fields 32
III. 3.1 Sequence Controller 33
III. 3.2 ALU 39
III. 3.3 Data Bus Interface 44
IIT. 3.4 Bit Map Interface 47
CHAPTER 4: THE GRAPHICS CONTROLLER FIRMWARE 52
Iv. 1 Definition Variables 53
Iv. 2 Definition Instructions 56
v. 3 Drawing Instructions 57
IV. 4 Algorithms 62
IV. 4.1 Line Generator 65
IV, 4,2 Circle Generator A 70

CHAPTER 5:

V. 1l
V. 2

CHAPTER 6:

REFERENCES

APPENDIX A:

APPENDIX B:

PERFORMANCE

Line Generation
Circle Generation

CONCLUDING REMARKS

Line and Circle Generators (IFTRAN)

Sample Microprogram

vi

Page

78

79
81

83

85

87

109

Figure
Figdre
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

2.1:

3.1:

3.2:

3.3:

3.4:

3.5:

3.6:

4.1:

4.2:

4.4;

4.5:

The

The

The

The

The

The

The

LIST OF FIGURES

Video Graphics Terminal

CPU of a Coﬁputer

Graphics Controller

AM 2910 Microprogram Controller
ALU

Data Bus Interface

Bit Map Interface

Division of a Circle

Specification of Arc Endpoint

Example of Line Generation

Example of Circle Generation

Actual Motion Variables

vii

Page

26
29
34
40
45
48
‘61
63
69
74

76

Table
Table
Table
Table
Table

Table

LIST OF TABLES

Typical Video Graphics Terminal Specifications
The AM 2910 Instruction Set

Control Sequencer Fields

Further Microinstruction Fields

Data Bus Interface Fields

Bit Map Interface Fields

viii

Page
20
35
37
43
46

49

CHAPTER 1
INTRODUCTICN

Computers speak a language of bits, bytes, and registers. Man
is more fluent with sketches, words, graphs, tables and digits. Each
member of this unlikely pair, man and computer, can be indispensable
to the solving of a problem at hand. Man is needed for his creative
intuition and judgement. Thé computer is unmatched in its raw speed,
its ability to remember large quantities of data, and in its willing-
ness to perform simple repetitive tasks. In situations which require
talents from both of the above categories, the interactive video
graphics terminal provides a natural man-computer interface. Its
usefulness is as an interpreter in the dialogue between man and
machine. The development of this role has led to a wide range of
computer graphics épplications in fields ranging from engineering design
to mathematical analysis to business data processing.

I.1 Cathode Ray Tubes

At the heart of modern interactive graphics terminals, is the
cathode ray tube (CRT). A CRT is large pear shaped tube which has been
pumped free of air and closed off. At the narrow neck end of the tube
there is an electron gun from which a continuous beam of electrons may
be caused to emanate. At the other end of a tube there is a phosphorus
display screen onto which the electron beam is focused. As electrons
hit the screen and for a time afterwards, the phosphor glows and a spot
of light is seen. The colour of this light depends on the type of

phosphor used.

The electron beam is focused onto any point on the screen through
the application of the proper 'horizontal deflection' and 'vertical
deflection' analogue input signals. A third input signal controls the
intensity of the beam and thus, indirectly, the intensity of the resulting
screen dot. The range of this control includes the situation where the
electron gun is turned off and there is no electron beam.

Interactive graphics terminals exchange information with a user
on the one hand, and a 'hosf' computer on the other. Much of the
information which is received from the user is passed on to the host
computer. Information received from the host computer is translated,
by the graphics terminal, into corresponding CRT beam control input
signals, These signals, in turn, cause a visual image to be generated
on the face of the CRT screen. In this way, the user and host computer
communicate indirectly via the visual display.

Since phosphor glows for only a short time after the termination
of an electron bombardment, CRT images are transient and need to be
regenerated regularly in order to obtain a steady and ccherent picture.
The so called refresh rate is usually 30-60 Hz, depending on the type of
phosphor used. Refresh rates which are too low cause an annoying
'flicker' whereby the display is noticeably discontinuous in time.

I. 2 Controlling CRT Displays

Two distinctive methods for generating and manipulating CRT
displays have evolved. There are, accordingly, two general types of
interactive graphics terminals, the directed beam terminals and the
raster scan terminals. With directed beam terminals, digital display

data is converted into analogue waveforms which are used to drive the

horizontal deflection and vertical deflection inputs of the CRT. As

a result, the electron beam is directed, under program control, about the

display screen. By controlling when the electron beam is on and when it

is off, continuous or discontinuous outlines of display images are traced
onto the screen. The approach yields gnod line quality.

With directed beam refresh terminals, the flicker problem
ultimately results in an upper limit to the amount of information which
can be displayed. The display must be simple enough that it can be
completely generated in the time between two successive screen refreshes.,
High speed, but expensive, vector generators can be used to raise the
image complexity limit.

Alternatively, some directed beam terminals use storage tubes
which, unlike conventional CRT's, do not require that the image be
refreshed. While this strategy eliminates flicker problems, storage
tubes are expensive, inherently less bright, and wear out much more
quickly than refresh CRT's., A further disadvantage is that the entire
screen must be erased in order to delete any part of the picture.

With raster scan terminals, the screen is treated as a
rectangular mesh of defineable dot positions. For example, a screen
may be characterized by a matrix of 500 x 600 discrete positions. A
graphics display is composed of the complete set of defineable dots,
each of which is either bright or dark according to the specifications
of a bit map. This bit map is maintained in an internal memory and is
such that each bit in the map corresponds to a single screen position,
During each screen refresh, the contents of the bit map are mapped onto
the screen. Since the bit map is commonly maintained in random access

read/write memory, the image can be selectively modified by simply

changing the contents of the bit map.

The words 'raster scan' refer to the manner in which the-infor-
mation contained in the bit map is mapped onto the display screen.. The
term, raster, refers to the complete set of horizontal lines defined by
the discrete screen positions. Each raster line consists of a separate
row of screen dots. At the start of each screen refresh, a new scan of
the raster is begun. Starting with the electron beam focused on the
top leftmost screen position, the beam is automatically made to scan
through each raster line, in turn, from left to right. Upon reaching
the end of each line, the leftmost dot of the next line down is selected
as the starting position for the next horizontal scan.. Upon reaching
the bottom line, the beam is once»again directed to the top raster line
in preparation for the next screen refresh.

As the raster is scanned, the corresponding bits in the bit map
are accessed, in sequence, and used as ON/OFF input signals for the
electron gun. During the course of a complete raster scan, each bit in
the bit map is accessed exactly once and used momentarily as the electron
gun ON/OFF input signal. For each bit, this occurs at the precise
moment that the electron gun is focused at the bit's corresponding
screen positicn. In this manner, the information contained in the bit
map is transformed into the graphics display.

For a time, the directed beam storage~tube terminals represented
the only choice in relatively low cost graphics terminals. Memory
prices rendered raster scan graphics impractical., With the advent of
high density, inexpensive semiconductor memories, however; raster scan

graphics terminals have become an economically attractive, alternative,

low-cost terminal. The more expensive refresh directed beam terminals
remain uniquely useful in situations which require high speed and good
line quality.

I. 3 Design Proposal

This report presents the design of a raster scan graphics terminal.
In this design, commercially available LSI chips and, in particular,
microprocessors are used to control the terminal. The graphics processing
is distributed amongst two microprocessors which execute in parallel.

A microprocessor can be thought of as a programmable logic device which
can be made to synthesize any sequence of individual logic devices.

In effect, it corresponds to the CPU of a digital computer. The term,
microprocessor, usually refers to a single chip CPU although it can be
extended to include 'bit-sliced' CPU's which consist of several LSI
chips.

The control program of a microprocessor is stored in a separate
memory. Lt is this program which gives the microprocessor its distinct
personality. Since the control program is usually stored in Read Only
Memory (ROM), it is thought of as being more 'firm!' than regular soft-
ware. Hence, it is commonly referred to as the control firmware.

The advantages of microprocessor-based design are several.

Rather than design special purpose and, in comparison, inflexible hard-
ware, many terminal control functions are easily programmed. The resulting
firmware can be of a very general nature. Sophisticated, host independent
capabilities can be programmed into the terminal without any accom~

panying increase in hardware complexity. Furthermore, future additions

to the firmware are fairly readily accommodated. As more 'intelligence'

is built into the terminal, the burden on both the user and the host
computer is reduced. Finaily, the reduction in the number of discrete
integrated circuits, results in low cost, low maintenance and high
reliability,

A price for these benefits is paid for in processing speed.
Hardwired logic can be made to operate faster than programmed logic.
This compromise in speed prpvides the principle motivation for incor-
porating two microproze;éors into the design. By distributing the
graphics processing among two microprocessors rather than one, the
terminal performance is significantly enhanced. The objective is the
design of a capable raster scan graphics terminal which is able to keep
pace with modern host-terminal transmission rates. These rates may be
as high as 9600 baud (960 characters per second). This means that the
terminal must be able to process incoming characters at the average
rate of one character every millisecond.

In the proposed design, control is divided between the 'main'
mi;roprocessor, an Intel 8086, and a subservient graphics controller
which consists of a bit-sliced AM 2903/2910 special purpose microprocessor.
The main microprocessor supervises the hardware interfaces with the user,
host computer, display hardware and graphics controller. It sends
graphic commands to the high speed graphics controller whenever the
contents of the bit map are to be altered. The configuration is felt
to represent an efficient balance between simplicity and speed.

The graphics controller has been referred to as a 'bit-sliced!
microprocessor. The precise meaning of this terminology shall be made

clear in chapter 3. For the moment, it suffices to mention two prominent

aspects of the bit-sliced technology. Firstly, the bit-sliced approach
enables the design of a highly specialized CPU specifically equipped

for the task at hand. Secondly, bit-sliced microprocessors are micropro-
grammable. Microprogramming can be thoughf of as a level of programmable
control below that provided by machine language. It is, in effect, the
programming of the control unit of a CPU. It is inherently moré
complicated than regular machine language programming although, as a
reward, the efficient use of microprogramming techniques can lead to
further increases in speed.

In this report, the design is presented in general architectural
terms rather than from a detailed circuitry point of view. A discussion
of overall terminal design is followed by a more detaiied lock at the
microprogrammable graphics controller. Finally, algorithms which provide

basic graphics capabilities are developed.

CHAPTER 2
BASIC DESIGN

The hardware architecture of the video graphics terminal is shown
in figure 2.1. Control firmware stored ip the local memory is referred
to as the operating system. It is executed by the main microprocessor
(Intel 8086). Programmable control also resides in a separate control
store contained in the bit-sliced graphics controller. The two pro-
grammable processors are able to execute in parallel. They provide for
the basic flexibility of this design.

At any one time, the video display is entirely defined by the
digital information contained in both the text memory and graphics bit
map. The two separate memories are characteristic of the dual graphic
and text roles of which the terminal is capable. The bit map defines
the graphic image as described earlier. The text memory enables the
terminal to act as a conventional alphanumeric terminal as well. The
contents of the text memory are mapped onto the screen as characters.
This is accomplished through the use of a character generator. Each
alphanumeric character can be thought of as consisting of a rectangular
matrix of dots. Each matrix is identical in size, depending only on
character height and width. These matrix patterns are stored in the
character generator and are accessed simply by providing the appropriate
addresses.

In a typical application, the user's dialogue with the host

computer is stored in the text memory while the graphic commands are

Address Data

Micreprocasser

(nhd f010) ¢

Lire Drwver

Communicrtions,
\nter face Host
q — e Genguter

\werface h—j Feyboard

b
£
H
i

BEE J

3
] |
t I | Deviees _d“*evﬁuc y A
t | b D | character
| | ¢ genevator

m RAM
| | HMJMH
'] Potter,
] }
1 : v AP ');aﬁ- Sertal
' Tones Rasher | Soam —
! Disela

| \sher | | ' ! | R h
’ 'q G mphics Cerial G Stream > o WMonikor
| ‘

Fig. 2.1: The Video Graphics Terminal

10

sent to the graphics controller where they are transformed into graphics
output to be stored in the bit map. The two independent text and
graphics memories allow maximum user flexibility. Via the keyboard,

the user may request that the contents of both memories be displayed
simultaneously.Alternatively, either of the text or graphics displays
may be viewed singly. At any moment, the user's dialogue with the host
may be recalled to the screen for viewing or temporarily dismissed while
the graphical display is studied.

IT. 1 Five Concurrent Processes

The normal terminal operatiqn can be understood in terms of five
concurrent processes. The dialogue process enables communication
between user, terminal and host computer to take place. The text
definition and graphics definition processes are responsible for deposit-
ing information into the text memory and bit map respectively. The text
display and graphics display processes are concerned with mapping this
information onto the CRT display screen at the proper refresh rate.

Each of the five processes involves the operating system in some
manner. The graphics and text display processes are interrupt driven.
Each time a new frame needs to be displayed, the operating system is
interrupted and the display process serviced. This is accomplished by
sending the appropriate starting values to the graphics and text address
generators. Both display processes then proceed under automatic hard-
ware control. The operating system is free to resume its own processing.
There are, however, important limitations to this freedom which will be
discussed later. The 'background! or interrupt-enabled processing,

consists of either the text definition or graphics definition process.

11

The dialogue process is also interrupt driven. The host computer
communications interface issues data transmit and receiye interrupts to
the operating system. The dialogue process services these interrupts.

The keyboard and other slow input devices which interface with the user,
are conveniently polled at frame interrupt time, and therefore, db not
require separate interrupts. It should be noted that part of the graphics
display process is under control of the bit-sliced graphics controller

and is independent of the operating system. Each of the five concurrent
processes will now be described in detail. For these descriptions, the
reader should refer to figure 2.1.

ITI. 1.1 Dialogue Process

The dialogue process resides in the operating system. It re-
ceives input in the form of ASCII characters from the user via the key-
board. If a received character does not correspond to a local command,
it is passed onto the host computer where it is interpreted by mainframe
software. Thé host computer replies in accordance with its interpretation
by retufning more encoded ASCII characters. These characters are received
and stored in a character receive buffer in local memory which acts as an
interface between the dialogue and definition processes. This arrangement
can be used to afford the user either direct or indirect control over.the
display. Local commands can cause ASCII characters to be placed directly
in the character receive buffer without their having come from the host
computer.

Further dialogue with the user is provided by means of graphical
input devices. Devices like the joystick, tracker ball, and mouse may

be interfaced with the terminal (NEW). The 'steering' control of these

12

devices results in corresponding digital x and y coordinate values.
Each input device is polled at the 60Hz frame interrupt rate. Every
time a new effective X, y screen position is read, a request is issued
to the graphical display process to change the position of the small
cross or graphics cursor on the screen. Visual feedback enables the
user to position the graphics cursor at any addressable point on the
screen. Proper use of this feature greatly enhances the interaction
between terminal and user. Among other functions, the user is able to
specify lines through the use of endpoint positioning.

Notice the use made by the dialogue process of the 60Hz frame
interrupt rate. The regularity of this interrupt makes it an effective
real time clock. As such, it is frequently very useful in controlling
the several 'rates' which are maintained by the operating system. The
text cursor 'wink', automatic key repeat, keyboard polling, and text
scrolling, are among some of the functions which require a real time
clock.

IT. 1.2 Text Definition Process

While the dialogue process is filling up the character receive
buffer, the text definition and graphics definition processes are busy
emptying it. Control of the text definition process also resides in the
operating system. The characters which are passed to it are written in
ASCII form into the text memory. At any one time, several screenfuls
of alphanumeric text are stored in the text memory. Paging, scrolling
and text cursor motion are accomplished by changing the first word
address of the text display. General text editing capabilities may

also be provided.

13

There are occasions where it is useful to write nonstandard text
characters onto the screen. Although the standard ASCII character bit
patterns are stored in ROM and can't be altered, the character generator
also includes some RAM memory. This provision enables nonstandard
character sets to be downloaded from the host computer.

II. 1.3 Graphics Definition Process

The graphics definition process is organized somewhat differently
from the text definition process. Although some graphics processing
is done by the operating system, most is delegated to the high speed
graphics controller. This is necessary in order to handle situations
where graphic commands are coming from the host computer at a very high
rate. Whereas ASCIi characters passed to the text definition process
cause only a few text memory accesses, a character received by the
graphics definition process may result in the drawing of a vector which
requires hundreds of bit map accesses.

Any graphic image may be thought of as being composed of a set
of vectors between specified points. From this perspective, a minimal
requirement of the graphics controller is the ability to 'draw' vectors
which are arbitrarily positioned on the screen. The graphics controller
reads in the vector command sent by the operating system and then pro-
ceeds to modify the bit map accordingly. Single points are drawn by
specifying zero length vectors. The graphics controller must also be
able to 'erase' vectors. This is simply a matter of placing zeros in
the bit map instead of ones. A complement mode is useful whereby bits
in the map are 'flipped' rather than set or erased. This feature
requires that the graphics controller be able to read as well as write

to the bit map.

14

In many instances, it is desirable to include alphanumeric
text as an integral part of the graphic display. For example, labels
to diagrams must remain fixed with respect to the display. Regular text
from the text memory is scrolled past the graphic display in the con-
ventional manner of alphanumeric terminals. It is clear that the
character bit patterns must be written directly into the display bit map.
A convenient arrangement involves translating the bit patterns into
graphical commands capable of being accepted by the graphics controller.
This is accomplished by the operating system which reads the bit patterns
from the character generator, translates them into a series of vector
instructions, and sends these to the graphics controller. The operating
system can also perform effective scale, rotating and slanting
operations on the characters.

Up until now, the discussion has focused on the depositing of
the proper display information into the text and graphics memories.
Now, attention is shifted to getting information out of storage and
onto the screen. Once every 1/60 sec,two processes are activated,
whereby, the contents of both storage memories are simultaneously
mapped onto the CRT screen.

II. 1.4 Text Display Process

The text display process will be described first. At the
beginning of each screen refresh, the operating system sends the first
word address of the text display to the text address generator. In
hardware terms, the address generator simply consists of a few counting
registers and some control logic. It provides the contiguous sequences

of text memory addresses which correspond to the rows of text.

15

As an example, consider ASCII characters represented in the
character generator as 16 by 8 dot matrices. Each matrix row is stored
as a separate byte. The 8 bit ASCII character codes stored in the text
memory are used as addresses to thé corresponding character ﬁatterns.
In order to fully specify a row within a character pattern, a four bit
quantity must also be provided. Together, the four bit character row
count and ASCII character code constitute a presentable character
generator- address.

Imagine that the CRT screen is wide enough to accommodate
exactly 80 characters in a row of text. At screen refresh time, the
character row count is set to zero just as the electron beam is about
to begin a horizontal trajectory along the top raster. line of the
terminal screen. The first word address of the text display is inter-
preted as the address of the text memory byte which corresponds to the
leftmost’ character ofvthe top text rowAto be displayed.

As the electron beam sweeps across the screen, the first raster
line is displayed by generating a sequencé of 80 contiguous text
memory addresses. This sequence begins with the first word address.
The result is a sequence of 80 ASCII character codes being presented,
in combination with the zero valued character tow count, as addresses
to the character generator. The outputs of the character generator are
just the topmost rows of the specified 80 characters matrix bit
patterns. These bytes are loaded in sequence into the shift register
and clocked out at video rate as a serialized bit stream to the
electron gun.

Upon reaching the end of its horizontal trajectory, the electron

16

beam is shut off and swung quickly back (horizontal flyback) into
position for the display of the next raster line. The next raster line
is displayed by incrementing the character row count by one and
generating the exact same sequence of text memory addresses. This
process is continued until all 16 raster lines of the first row of

text have been displayed. At this time, the row count is reset to

zero and the first word address is incremented by 80. It now
corresponds to the first character of the next row of text. When a
complete screenful of text has been displayed, the electron beam is
repositioned (vertical flyback) so as to be ready for the next complete
raster.

IT. 1.5 Graphics Display Process

The graphics display process is organized in a similar way.
At the beginning of a screen refresh, the first word address is sent
to the graphics address generator. The graphics bit map is row-ordered
so that the raster-scan motion of the electron beam corresponds to
traversing through contiguous words in the bit map. As a result, the
graphics display process consists simply of the production, by the
graphics addfess generator, of contiguous memory addresses. The bit
map is read at appropriate intervals and the output is clocked at video
rate to form a second serial bit stream to the electron gun.

The two resultant bit streams from the text and graphics dis-
play processes are subject to the same timing constraint. Both streams
must be such that they can be OR'ed together to form a single digital
signal representative of both the text and graphics displays. As well,

depending on the display mode, either of the bit streams may be

17

inhibited. In this way, the display can be made to consist entirely
of text or entirely of graphics.Alternatively, text and graphics may
appear together on the screen.

II. 2 Fully Interlaced Display

Until now, we have assumed that during each screen refresh,
all the raster lines are displayed. For television compatibility (HOL),
a fully interlaced display may be implemented instead. This requires
that during any screen refresh, only half the raster lines are dis-
played. Consider raster lines to be numbered from the top to the
bottom of the screen. A fully interlaced display is one which is
characterized by alternate display frames of only the evenly numbered
lines and only the oddly numbered lines.

The implementation of a fully interlaced display has implications
for both the text and graphics display processes. For example, the
character row count in the text process is incremented by two during
each horizontal flyback instead of by one as before. During the
vertical flyback it is initialized according to the next frame type as
either zero or one. Perhaps the most significant implications, however,
has to do with the graphics display process. The simplest way to
accommodate a fully interlaced display is to split the bit map into two.
One contains the information for the even raster frames and the other,
the information for the odd raster frames. The organization of both
bit maps is still row-ordered. Depending on whether an even or odd
frame is to be displayed next, the starting graphics display address is

the first word address of either the even or odd bit maps.

18

II. 3 Hardcopy Dump

A sixth process may be discerned from the operation of the
graphics terminal. It ié different from the others in that it is only
infrequently activated at the user's command. This process has to do
with providing the user with a hardcopy of the graphic image. The
simplest way to provide this capability is to enable the operating
system to read the bit map directly. The dual port bit map memory
shown in figure one affords this access. When a graphics hardcopy is
deéired, the bit map is read by the operating system and sent to the
hardcopy plotter.

Until recently, a problem with this approach has been the
relatively small address space of available microprocessors. Typically,
they could address up to only 64 K bytes. The bit map alone may easily
require 40 K 8 bit bytes. This would leave minimal space for the
operating system and separate text memory. Use of the recently intro-~
duced Intel 8086 is one method of eliminating this problem (MOR). It
has an addressing capability of 1 M byte.

II. 4 Process Coupling

Earlier, passing comment was made on limitations to the
independence of the display and definition processes. This point is
now addressed. The six processes which have been discussed, are coupled
with one another by virtue of their shared resources. The integrity
of their operation must be carefully guarded by properly ensuring
mutual exclusion (HAN). A single resource must not be assigned to

more than one process at the same time.

19

The text definition and text display processes both share
access to the text memory and character generator. Conflict resolution
logic is required to prevent memory from being simulfaneously accessed.
A simple solution is to inhibit the main microprocessor from bus access
except during horizontal and vertical flybacks. With the Intel 8086,
external bus access is stopped by driving the 'hold!' pin_high. Simple
analysis reveals that this restriction on operating system processing
does not prevent the terminal from operating efféctively.

For example, consider the terminal specifications which are
presented in table 2.1. A host-terminal transmiséion rate of 9600 baud
requires that the terminal be able to process one character every milli-
second. In the processing of a single character by the operating system,
the dialogue process receives it. The text definition process writes
it into textAmemory or interprets it as a text command of some sort.
Alternatively, if passed to the graphics definition process, it is
'interpreted', and as a result, information is usually sent to the
graphics controller. This processing must last, on average, no longer
than one millisecond. |

One millisecond corresponds to the time required to display
approximately 15 raster lines. With the operating system processing
-restricted to horizontal and vertical flybacks, the actual operating
system processing time is only 225 usec. This corresponds to approx-
imately 625 Intel 8086 instructions which should be more than

enough to accomplish the processing required.

TABLE 2.1

- TYPICAL VIDEO GRAPHICS TERMINAL SPECIFICATIONS

Resolution 480 x 650 dots
Frame Interrupts 60 Hz

Fully Interlaced Display

Horizontal Electron Beam Scan 53 usec
Horizontal Flyback 15 usec
Vertical Flyback 280 usec

Average Execution Time of

Intel 8086 Imstruction +36 usec

Objective 9600 Baud (960 char/sec)
Host-terminal transmission rate or

approximately 1 character every msec

20

21

A necessary provision is, of course, that the graphics con-
troller is fast enough. New information can only be sent to the
graphics controller if it is ready to accept it. The performance of
the graphics controller will be discussed after the bit-sliced design
has been looked at in detail. It suffices to say at this point, that
a basic rationale for the graphics controller is its parallel operation
with the text and graphic display processes as well as with the
operating system. Unlike the operating system, it continues to operate
during the horizontal raster line time.

To realize this parallelism, special contention logic is re=-
quired to administer the sharing of another resource, namely, the
graphics bit map.. A flag protocol is used to resolve conflicts between
the graphics controller and graphics display process. The graphics
display process raises a hardware flag whenever it requires access to
the bit map. After the access, the flag is lowered until the need
arises again. The graphics controller must consult this flag before
every bit map access. If it is raised, it simply waits for it to be
lowered before proceeding. The flag is raised by the display process
gome time in advance of the actual access. This provides the graphics
controller with the time to finish any access of its own, which was
begun before the flag was raised.

A third process interested in accessing the bit map is the
graphics hardcopy display process. When a hardcopy plot is being made,
the graphics definition and graphics display processes are suspended.
The operating system does this by aisabling the visual display and

secondly, by refusing to send any further commands to the graphics

22

controller. Eventually, the graphics controller, after having finished
with its last received command, rests in an idle loop. It sets a
hardware idle flag in order to communicate this idle condition to the
operating system. The operating system then initiates the bit map
dump. Since both display processes are disabled, it proceeds without
competition.

It should be pointed out that the graphics hardcopy display
process corresponds to one of only two situations where the operating
system accesses the bit map directly. 1In both cases the protocol is
to disable the visual display and the graphic definition processes.

If this were not the case, further hardware logic would be required to
resolve conflicts between the graphics controller and operating system.
The other instance where the bit map is accessed by the operating
system, is during the clearing of the graphic display. The operating
system does this by 1oading zeros directly into the bit map.

Further process coupling involves the dialogue and both
definition processes. They all share the use of the character receive
buffer. Since the dialogue process is interrupt driven, the contention
logic is simple. It consists in momentarily disabling interrupts at
appropriate place; in the definition processes.

II. 5 Modularity

As mentioned earlier, the terminal has dual text and graphics
roles. It is possible to split the hardware design along these lines.
The dotted lines in figure 2.1 outline the various units which provide
the terminal with graphics capabilities. These may be incorporated

into a single functional unit. Essentially, the final product becomes

23

two. A conventional alphanumeric terminal which, when interfaced
properly with the separate graphics unit, becomes a full fledged
graphics terminal.

This flexibility is characteristic of the modular design
approach. With this approach, a design is broken into relatively
independent functional units or modules. The overall design problem
is then reduced to the proper interfacing of these modular units. The
details of each module's design are then faced separately. In the light
of this design concept, it is now appropriate to focus attention on
the graphics controller. It is this module which comprises the heart
of the graphics unit. We have discussed its purpose within the context

of the overall design. Now, it is time to look inside the black box.

CHAPTER 3
THE GRAPHICS CONTROLLER

The graphics controller is designed as a bipolar microprogrammable
bit-sliced microprocessor. GCompared with single-chip MOS microprocessors,
the bit-sliced bipolar approach represents a fundamentally different
philosophical direction. The current limitations, associated with
bipolar technologies, on chip complexity, pin numbers,and chip size,
dictate that the CPU be implemented on a multichip basis. This is
realized by splitting the CPU and implementing the control and processing
units on separate chips. The processing section or arithmetic logic unit
(ALU) is itself dispersed over several chips. The manner of this
dispersion is understood by imagining a single ALU which is vertically
sliced into identical 'bit-slices'. These slices operate in parallel
and may be cascaded to any width which is a multiple of the basic slice.
The basic slice is usually only two or four bits wide. Although
inherently less reliable, the use of more chips is justified with the
increased performance and flexibility.

Hardware flexibility arises from the fact that the designer
essentially builds his own customized CPU, The chips can be configured
to provide a wide variety of digital system architectures. Unconven-
tional word lengths can be provided by simply stacking the desired
number of bit-sliced ALU chips together. As well, there is the
programming flexibility which is inherent in the use of a micro-

programmable control unit. The designer may define the system's

24

25

instruction set by a program (microprogram) stored in ROM, The
microinstructions which constitute the microprogram, provide for a very
low level control over the hardware resources. As such, they can be
used to implement a very efficient graphical instruction set.

For our purposes, advantage is taken of this flexibility in
order to design a special purpose processor. The processor instruc-
tion set is an atypical set designed for the express purpose of mani-
pulating the bit map. Many of these insfructions are relatively high
level and correspond to hundreds of microinstructions. The graphics
instructions are not fetched from a central memory in the manner of a
conventional CPU but are received from the main microprocessor. In
order to see how the graphics controller is realized, it is necessary
to first introduce some fundamental concepts in microprogramming.

III. 1 Microprogramming

The central processing unit of a computer can be logically
divided into a control unit and an execution network as shown in
figure 3.1. The current instruction is contained in the instruction
register (IR). In general, it requires several clock cycles to execute,
depending on the particular instruction. The control unit decodes the
instruction and as a result, emits control signais or commands to the
execution network. A new set of commands is issued at every clock
cycle. More precisely, at each cycle, the control unit sends a set
of 'boolean' signals which defines the behaviour of the components of
the execution network for the duration of that cycle. This boolean

command vector can be regarded as a word, the command word.

Fig. 3.1:

nedwory

The central processing unit of a computer can be logically
divided into a control unit and an execution network
(BOU).

26

27

Conditional instructions require information concerning the
current status of the execution network. Such information is generally
called the condition code (CC). It may, for example, consist of the
value of a carry, the sign of the last result, or of an overflow status.
This information is maintained by the execution network and made avail-
able to the control unit at appropriate moments.

After the current instruction has been executed, the control
unit issues a sequence of command words which cause the next instruc-
tion to be placed in the instruction register. This sequence of command
words corresponds to what is referred to as the fetch cycle. It is
followed by an execute cycle whereby the instruction is executed.

This alternate sequence of fetch and execute cycles continues for
as long as the CPU is in operation. It should be stressed that
each fetch and execute cycle consists of several clock cycles.

In the course of executing an instruction, the control unit is
solely responsible for presenting the correct sequence of command
words to the execution network. Consequently, the control unit must
maintain a number of internal 'status bits' so as to keep track of the
state of its own processing. The form of these status bits depends on
the particular design of the control unit itself. At each clock cycle,.
the control unit must therefore perform two operations. It must
generate a command word and update its internal status bits.

Traditionally, there have been two approaches to the realization
of a suitable control unit. One method consists of using random hard-
wired logic to generate each control word at every clock cycle. The

second method is the microprogrammed solution. Command words.are stored

28

in a memory called the control store. At each clock cycle, a newv
command word is available from memory and sent to the execution network.
The internal status bits now correspond. to the specification of the next
command word to be used.

A single word contained in the control store is called a micro-
instruction. It consists not only of tﬁe command word, but, as well,
of the second set of boolean commands which are used to update the
internal designation of the next microinstruction. Whereas, at each
clock cycle, the command word is sent to the execution network, the
next microinstruction command vector is sent to the next - micro-
instruction - logic of the control unit itself.

Just as regular computer instructions can be combined to form
a program, so a logically coherent sequence of microinstructions is
called a microprogram. The terms, instruction, fetch and execute, are
now prefixed with 'macro' to distinguish them from the micro-fetch and
micro-execute cycles associated with the execution of each ﬁicro—
instruction. The execution of each macroimnstruction normally corres-
ponds to .the execution of a single associated microprogram.

Each microinstruction is logically divided into component
fields. Each field corresponds to a functionally independent set of
boolean commands. It can consist of varying numbers of bits. For
example, the carry control, ALU function control, and next microinstruc-
tion address control, may be tﬁree separate microinstruction fields.

I11. 2 Basic Architecture

Figure 3.2 shows the basic design of the graphics controller.

The figure is divided into the control unit and the ALU. The ALU

tendition
code
Muy

Select

N
o

data bus
<% ' 5
instract fon ' dala A
register (R) ! register (00|
¢ l
mapp inq ! i J"ﬂ?

A []
1 h';‘!_ ,3 3 sequence '-L

brid? e BT "
I Y |

4
A !
-g ¢confro|l stere gt
b 41} 2 {,—q. fal
4 [tireline register atlgl '
i il
4 & AL addess

AN1q%s5
(1]
ragisfers

bil - shiced
ALu
AMaa03

RAM

AMaates |

[

tegisters

AMa1105
R - d

moiﬂ&_s‘

5
m

A

o’“\e v

“The Conteol Ut ¢— t —p The ALU

Fig.

!
{
{

3.2 ;

PO

{L My insteychion

The Graphics Controller

Yo b
MA?

from

bd raap

\ 4
status reaishr

e b

Yo cordition
code ™Mux

6¢

30

consists of four 4 bit wide ALU chips (AM2903's) cascaded together to
form a 16 bit processor. The AM2903 contains 16 internal working regis-
ters. This working space is increased through the addition of extra
RAM (AM29705) and PROM (AM29751) bit-sliced register files. The final
ALU contains 32 RAM and 16 PROM registers.

At each clock cycle, a new microinstruction is latched from the
control store into what is called a 'pipeline register'. The contents
of this register provide control inputs to the sequence controller
(AM2910), the ALU, the bit map interface, and the data bus interface.

In terms of the previous discussion, the latter three components consti-
tute the execution network. The sequence controller is the next -
microinstruction - logic of the control unit.

The execution network maintains arithmetic status information
in the status register. This information, together with other various
hardware I/0 flags, constitutes the information from which the condition
code is selected. It is available to the control unit through the
condition code multiplexor.

The macroinstructions sent from the main microprocessor,
include both an operation code (opcode), and several 16 bit words of
data. The opcode is deposited in the instruction register while the
data are sent to the data register. The mapping prom maps the contents
of the instruction register into a starting microprogram address.

During each macro-fetch cycle, this starting address is accepted by the
sequence controller as the next microinstruction address. The instruc-

tion data are then read, under microprogram control, into the internal

31

register file. A 'handshaking' I/0 protocol ensures that the opcode
and data are received properly.

The pipeline register enables a time-saving technique known as
'pipelining'. With this technique, the next microinstruction is
fetched at the same time that the current microimstruction is executed.
By definition, the pipeline register always contains the microinstruc-
tion which is currently being executed. The contents of this register
must remain fixed for the entire clock cycle. They define the current
state of the execution network. While the contents of the pipeline
register remain fixed, the next microinstruction can be fetched from
the control store without affecting the integrity of the currently
executing microinstruction.

This parallelism is one way of maximising the clocking
frequency. In effect, there are two parallel processing paths. The
first path involves the fetching of the next microinstruction. Boolean
commands are sent from the control store to the sequence controller.
These commands, in combination with the condition code input, cause the
address of the next microinstruction to be presented to the control
store. The corresponding memory word is fetched and set-up at the inputs
to the pipeline register. This must all be accomplished during one
clock cycle.

The second processing path is through the execution network.
Control signals sent to the ALU cause arithmetical or logical operations
to be performed on operands which are brought into the ALU from the
data bus, bit map or the internal registers. After the results have

stabilized, the contents of the status register are updated. The

clocking period of the control unit and execution network must be at

32

least as 1oqg as the duration of the longest of the two parallel
processing paths. Typically, for the AM2900 LSI series, the clock
period is in the neighbourhood of 130 nsec.

Pipeliniﬁg has a further implication. The status register
is updated at the end of an execution network process path,
However, its contents are required as input to the condition code multi-
plexor early in the fetching of the next microinstruction. This means
that the condition code available to the control ﬁnit always corres-
ponds to a previous state of the execution network. As a consequence,
a microprogram branch, which is conditional on the results of the current
microinstruction, cannot be specified until the next microinstruction.

I1I. 3 Microinstruction Fields

The graphics controller micréinstruction contains four types of
fields. These fields are concerned with the sequence controller, the
ALU, the data bus interface, and the bit map interface, respectively.
In the following discussion, each of these components will be discussed
in more detail. As the discussion proceeds, the associated cbntrol
fields will be defined. The result of this discussion is the specifi-
cation of the complete set of microinstructions available for firmware
control of the graphicé controller.

For further details regarding the AMD (Advanced Micro Devices,
Inc.) devices which are presented in the following discussion, the
reader is referred to the appropriate technical specifications issued

by AMD (AMD), (MIC).

33

III. 3.1 Sequence Controller

Figure 3.3 shows the block diagram of the AM2910 sequence
controller, It operates according to signals received at the I input
pins. During the execution of each microinstruction, the sequence
controller presents the address of the next microinstruction to the
control store. This address comes from one of four sources. The
usual source is the microprogram counter register (UPC). In the graphics
controller configuration, this register always contains an address one
greater than the previous address. This provides for sequential
access to the control store.

A second address source is the external input (D). For our
purposes, this address ultimately comes from either the mapping prom
output or from a part of the pipeline register. The sequence controller
selects one of these two input sources by issuing either a mapping
prom enable signal (MAP) or a pipeline enable signal (PL). If these
output signals control tri-state output enables, for both input
sources, then the D input pins can be driven directly, by both sources,
without further contention logic. Note that the mapping prom and
pipeline register must never both be enabled at the same time.

Input from the mapping prom signals the start of a new macro-
execute cycle., It designates the start of the microprogram which
executes the associated graphical instruction. Address input from
the pipeline, on the other hand, affords a convenient branching capa-
bility. In this case, the microinstruction itself, contains the next

microinstruction address.

34

I’Aj“ﬂ“/
Counter
=D tor ,‘sum\ ‘
xia bit

, shack

a

B D R ¥ At
micra?r ram
g { . l Counter
o § mu\hp exey” reqister ufc
5| 13
o
EINS
;u- {
$ increment e
< <
p]
v -\gc‘ QE“ (hold /cle ﬁ
1 =&
4
2

ldEE v\/
::::::#>|r%4 data path

—————— con-‘m\ P“H\

Fig. 3.3: The AM 2910 Microprogram Controller

REG/ FAIL PASS
HEX CNTR | CCEN=1LOWand CC=HIGH | ECEN =HIGH or CC= LOW | e
1310 | MNEMONIC NAME SN Y STACK v STACK CNTR | ENABLE
o | a2z JUMP ZERO X 0 CLEAR 0 CLEAR HOLD | PL
1 cis COND JSB PL X PC HOLD D PUSH HOLD | PL
2 | imap JUMP MAP X D HOLD D HOLD HOLD | MAP
3 [cw COND JUMP PL X PC HOLD D HOLD HoLD | PL
4 | pusH PUSH/COND LD CNTR X PC PUSH PC PUSH Now1 | PL
5 | Jsmp COND JSB R/PL x R PUSH D PUSH HOLD | PL
6 | cw COND JUMP VECTOR x PC HOLD D HOLD HOLD | VECT
7 | JRe COND JUMP R/PL X HOLD D HOLD HOLD | L
] #0 F HOLD F HOLD DEC PL
8 | mrcT REPEAT LOOP, CNTR # 0
- PC POP PC POP HOLD | PL
#0 D HOLD D HOLD DEC PL
9 | mect REPEAT PL, CNTR # 0
- PC HOLD PC HOLD HOLD | L
A CRTN COND RTN X PC HOLD F POP HOLD | PL
B cIPp COND JUMP PL & POP x PC HOLD POP HOLD | PL
c LocT LD CNTR & CONTINUE X PC HOLD PC HOLD LOAD | PL
D LooP TEST END LOOP X F HOLD PC POP HoLD | pL
E CONT CONTINUE x PC HOLD PC HOLD HOLD | PL
£0 HOLD P POP DEC PL
F TWB THREE-WAY BRANCH F oL ¢
- POP PC POP HOLD | PL

Note 1: If CCEN = LOW and CC = HIGH, hold; else load. X = Don’t Care

TABLE 3.1 ¢

AM2910 INSTRUCTION SET

ce

36

A third address source is the register/counter (R). It is
preloaded via the D input from the pipeline register. The five deep
last-in first-out stack (F) is the fourth source. The stack provides
for microsubroutine return linkages and looping capabilities. Micro-
subroutines may be nested up to five levels deep.

The register/counter R can also be made to act as a loop
counter. It can be loaded from the D input and decremented each time
through a loop. When its contents become equal to zero, the loop
terminates. The arrangement is such that if it is preloaded with a
number N and subsequently used as a loop termination counter, the
loop will be executed N+1 times.

Table 3.1 presents the AM2910 instruction set. Many of these
instructions are conditional. The input signal'EE is used as the
test criterion. A low signal corresponds to a pass. Further flexibi-
lity is provided by the CCEN input, which enables the conditional testing.
When this signal is high, CC is ignored and the sequence controller
operates as though the result of the condition test were a pass. The
vector address enable signal (VECT) allows a third external source
to drive the D input. This capability is not utilized in the graphics
controller design. As a result, the CJV instruction in table 3.1 is
never used,

The microinstruction fields which control the operation of the
AM2910 are shown in table 3.2 and are described below.

AM2910 Instruction - Controls operation of AM2910. Mnemonics

correspond to those of table 3.1.

TABLE 3.2

CONTROL SEQUENCER FIELDS

37

AM 2910 Condition Force Test Condition Pipeline
Instruction Code Enable Polarity Code Data
4 Bits 1 Bit 1 Bit 3 Bits 12 Bits
JZ Ch NEG C Carry out
cJs UCD POS OVR Overflow
JMAP Z Zero 12 Bit
CJP S Sign Data
PUSH SO0 Shift Out Item
JSRP IRF IR Full
cJv DRF DR Full
JRP MPF Bit Map
Free
RFCT
RPCT
CRTN
CJPP
LDCT
LOOP
CONT
CD conditional
TWB Uch unconditional
NEG negative
POS positive

38

Condition Code Enable Provides the CCEN input signal. CCEN low

corresponds to the CD (conditional)
mnemonic.

Force Test Polarity - Provides the polarity select signal in
figure 3.2.The input to the polarity control
is either flipped (NEG) or passed to the
AM2910 CC input unchanged (POS).

Condition Code -~ Selects the condition code input from one
of the eight condition code multiplexor
inputs. The selected signal is subsequently
passed to the polarity control.

Pipeline Data - The 12 bit pipeline data field which, if
enabled, provides an external D input to the
AM2910.

With the condition code multiplexor and polarity control shown
in figure 3.2, the operation of the AM2910 can be made conditional on
the status of the execution network. For example, a nonzero result in
the ALU may lead to a branch in the microprogram. This would correspond
to the following microinstruction field values.

AM2910 Instruction Condition Code Force Test Condition Pipeline

Enable Polarity Code Data
CJP CD NEG A Branch
Address

The meaning of the various possible condition code inputs will be
explained more fully as the discussion of the execution network

proceeds.

39

III. 3.2 ALU

The ALU is fashioned from four AM2903 LSI chips. A principle
reason for using these chips rather than the less expensive AM2901
chips, is that the internal register file of the AM2903 is easily
expanded to virtually any required size. The AM2903 includes the nece-
ssary 'hooks' needed to accomplish this. On the other hand, the full
range of capabilities available with the AM2903 has not been used in
this design. In particular, the AM2903 has built-in floating point
logic, which is not required for our purposes.

Figure 3.4 illustrates the functional capabilities of the
proposed ALU, The diagram does .not correspond to a specific component
chip, but represents, instead, the complete ALU assembly. This
assembly consists of the bit-sliced AM2903's, AM29751's and AM29705°'s
as well as extra shift control logic. Specific chip assembly details
may be found in the AMD literature (AMD).

The extra shift control logic specifies whether a shift operation
is cyclic or linear. In any case, the actual shift operation is
performed by the AM2903'ss; The control logic merely controls where the
‘shift-in and shift-out bits come from and go to respectively. For
example, in a cyclic shift, the shift-in bit is made equal to the
shift-out bit, whereas, in a linear shift, the shift-in bit is

driven from the external shift-in input as shown below.

CDLShift Register[<#®Shift-Out Output

Cyclic Right Shift

Shift-In Input Shift Register |—Shift-Out Output

Right Shift (linear)

40

bsis\!r

File

A address——y B address

!

Y é.__*____ input Lrom bit map
carry out ¢ R) .
5ign ¢—— Function Sunchion select
overSlow et f_nerator carry n (ew)
ere —i
r
; leet
ALY shift se
4 out ‘
s‘;‘ii:uf Shifter | Shik- in iaput

!

(L A—————— m?u-\ fom data reﬁ'ﬁ"rer

ALV ou:\'pu’f de \ﬂ\- map interface

Fig. 3.4: The ALU

41

The operation of the arithmetic logic unit proceeds as follows.
At the beginning of a microinstruction, the A and B addresses are
presented to the ALU., As a result, two operands are sent to the func-
tion generator. Alternatively the B operand may come from the bit map.
Next, an operaﬁion, as selected by the function select input, is
performed. During the course of this operation, the carry out, sign,
overflow and zero status flags are generated. The result is sent to
the shifter, where, in like manner, the shifter operates on its input
and as well, creates the shift-out output. After the result is stable,
it may be written into the register file at the location specified by
the B address or it may be sent to the bit map interface. Finally,
the status register may be updated with the newly generated status
flags. The microprogrammer has the option of inhibiting this update.

It is also possible for input to be accepted directly from
the data register (fig. 3.2). In this case, the shifter output is
ignored and the contents of the data register is written to the
register file instead. Any operation to be performed on the data must
wait until the next microinstruction. This situation is in contrast
to input from the bit map, which, being presented directly to the
function generator, can be read and operated on in the same micro-
instruction.

In the ALU's operation, the B address has a dual role. It is
an operand address in the early part of the microinstruction cycle,
and a result destination address in the latter. This constitutes what
is known as a two address architecture. A three address architecture,

whereby, separate destination and operand addresses are specified, is

42

also possible with AM2903 chips. However, if implemented, a three
address configuration would involve more complex timing logic.

The preceding discussion enables further microinstruction
fields to be defined. These are presented in téble 3.3. Several
of the ALU functions are expressed in terms of Cn? an input which is
provided by the carry in field. For the shift control field, the only
difference between a 'NOP' and a 'NS' command, is that a NOP does not
cause the final result to be written into the register file. All
other shift control instructions cause a final write operation. The
NOP instruction is useful when the firmware designer wishes to idle the
ALU without overwriting any of the data in the register file.

The enable status load field offers the firmware designer
direct control over the updating of the status register. This feature
can lead to a reduction in the number of microinstructions needed to
accomplish a conditional operation. For example, consider the case of
a microprogram 'jump' which is performed only if the wvalue of a specific
variable is zero. If the status register were automatically loaded at
the end of every microinstruction, the variable in question would have
to pass through the function generator during the clock cycle which
immediately preceeds the execution of the conditional jump. In many
instances, an extra microinstruction would be required for this purpose
alone. If, on the other hand, the variable had been defined several
microinstructions back, and the status load disabled ever since, then,
the further microinstruction would not be required.

Notice that the input/output fields are classified as

belonging to either the data bus or bit map interfaces. The interface

ALU Fields Data Bus Bit Map
Interface Interface
Function |Carry Shift |[Shift-In [A B Enable |Data Req. Bit Map To |ALU
In (Cn) Input Addr. |Addr. [Status |[Input Enable |ALU Enable |Output Enable
A (R) (S) Load

4 bits 1 bit 3 bits |1 bit 6 bits |6 bits |T bit |1 bit 1 bit 1 bit
HIGH 0 CRS 0 E E E E
S-R-1+Cn 1 RS DIS DIS DIS DIS
R-S-1+Cn NOP
R+S+Cn NS
S+Cn CLS
S+Cn LS
R+Cn
R+Cn
LOW
RAS
R¥#S CRS : cyclic right shift

RS : right shift
R¥S NOP : no operation
RAS NS : no shift
RVS CLS : cyclic left shift

LS : left shift

E : enable

DIS : disable

TABLE 3.3 : Further microinstruction fields

ey

44

fields are used rather infrequently in comparison to those of the ALU
and sequence controller. Excepting microinstructions which perform I/0
operations, the contents of these fields do not vary from one micro-
instruction to the next.

I11. 3.3 Data Bus Interface

Figure 3.5 shows the data bus interface in more detail. The
IR full and DR full, flags are used to establish a 'handshaking'
input/output protocol. Using this protocol, the transfer of data from
the main microprocessor to the graphics controller, proceeds under
program control. For example, consider for the moment, the data path
to IR. Before the main microprocessor can deposit a graphics instruc-
tion into the IR, it must wait for the graphics controller to clear the
IR full flag. This flag is cleared immediately after each new macro-
instruction is 'accepted' by the graphics controller. A macroinstruc—
tion is accepted by selecting the mapping from output as the next
microinstruction address, Similarly,.before the graphics controller
can accept a new graphics instruction, it must wait for the main micro-
processor to set the IR full flag. This flag is set immediately after
each new macroinstruction is loaded, by the main microprocessor, into
the IR. This protocol protects the integrity of the data transfer.
In like manner, the DR full flag is used to regulate the trarnsfer of
data to the graphics controller via the data register.

It is clear that in order to establish the I/O protocol
properly, provision must be made for microinstructions which are con-
ditional to the value of either of the two I/O flags. Accordingly,

both flags are used as inputs to the condition code multiplexor. The

DATA

aus

IR
from clear Fust
plpe line FLAG
v
condition

code. mun.

MALPING
PROM

S —

Fig. 3.5

*e
AU

%
bR
P Futt
FLAG
L
k! v
(V) tondikion
code mMmux.
from
?ieg\.\'\e

: The Data Bus Interface

Y DLE
FLAG

Lrom
plee \ine

V)

46

TABLE 3.4

DATA BUS INTERFACE MICROINSTRUCTION FIELDS

IR DR Idle Data Register
Full Flag Full Flag Flag Input Enable
1 Bit 1 Bit 1 Bit 1 Bit
CLR CLR IDLE E
NCL NCL BSY DIS

CLR = Clear IR Full Flag

NCL No Clear

E = Enable

DIS Disable

BSY

i

Busy

47

set conditions correspond to the 'DRF' and 'IRF' condition code field
values shown in table 3.2

Another feature of figure 3.5 is the idle flag. This flag is
set by the graphics controller whenever it is in an idle state, waiting
for further graphics instructions. During this state, the bit map is
not accessed by the graphics controller. As discussed in the preceding
chapter, the main microprocessor must first test the idle flag before
addressing the bit map directly.

The complete set of data bus interface microinstruction fields
are shown in table 3.4. Except for I/O operations, these fields have

the following fixed values.

IR Full DR Full Idle Data Register
Flag Flag Flag Input Enable
NCL NCL BSY DIS

I1I. 3.4 Bit Map Interface

The finai microinétruction fields t§ be defined are those of
the bit map interface. Figure 3.6 shows the bit map interface in
more detail. Note that 220 bits may be stored in the 64K by 16 bit
word RAM. This is large enough to support a screen resolution of 1024
by 1024 dots. The bit map interface fields are shown in table 3.5
and are defined below.

ALU Output Enable - The enable signal causes data to be sent from
the ALU to the bit map interface.

Enable Register Load - The enable signal causes output from the ALU
to be latched into one of the two destination
registers. This destination is specified by the

field which is defined next.

from ALU
(e b'.h)-

select ——yselect (r
destination i 3 Yo ALU
. 'y f is“‘ef
P N b
REGISTER

r%is’rcr

hddress : (\}

<~ Yo disglay

oW BIT MAP? RAM process
4K X1k BIT LIORDS

BIT MAP

| PApORESS
REGISTER

Lrom disp‘lcuj

PP’CO"

4

::>: b bt data path

ey | ;i(\ale bit con\‘(o\yQoX\\

Fig. 3.6 : The Bit Map Interface

8%

TABLE 3.5

BIT MAP INTERFACE MICROINSTRUCTION FIELDS

49

ALU Enable Bit Map RAM RAM Bit Map to
Output Enable Register Load Address/Data Enable Read/Write ALU Enable
1 Bit 1 Bit 1 Bit 1 Bit 1 Bit 1 Bit
E E ADD E R E
DIS DI1S DAT DIs %) DIS
D = Disable
E = Enable
ADD = Address register
DAT = Data register
R = Read
W = Write

50

Bit Map address or data - This field specifies the destination of

RAM Enable

RAM Read/Write

Bit Map to ALU Enable

output from the ALU as being either the bit
map data register or the bit map address
register. When the graphics controller
performs bit map read/write operations, these
registers drive the corresponding address and
data lines of the bit map RAM. It is import-
ant to note that these registers are local

to the graphics controller. The graphics
display process uses its own separate address
and data registers.

Enables or disables the RAM read/write
operations.

Specifies whether a read or a write opera-
tion is to be performed by the bit map RAM,
Note that depending upon the particular read/
write access times of the RAM chosen for the
bit map, read/write operations may require
several microinstruction cycles to complete.
Iﬁ this case, RAM enable and read/write signals
must be held fixed over several microinstruc-
tions.

The enable signal causes bjt map output
available at the RAM data lines to be

accepted as input to the ALU.

51

Except for I/0 operations, the bit map interface fields have

the following default values.

ALU Enable Bit Map RAM RAM Bit Map to
Output Enable Register Load Address/Data Enable Read/Write ALU Enable
X DIS X DIS X DIs

where X = don't care

The bit map interface also provides a condition code multi-
plexor input. This input corresponds to the 'MPF' (Bit Map Free)
condition code field value found in table 3.,2. As discussed in the
preceding chapter, the graphics display process and the graphics
controller compete for access to the bit map memory. The graphic
display process has highest priority. It is respomnsible for raising a
bit map free flag whenever the graphics controller is to be allowed
access to the RAM. This flag provides the corresponding condition code
multiplexor input. Its value must be checked by the graphics controller
before every bit map access.

The complete set of microinstruction fields has now been
presented. It corresponds to a microinstruction which is 53 bits
wide, Now, it is appropriate to turn our attention to the firmware
control of the graphics controller. In the next chapter, a basic
graphics instruction set is presented, along with several algorithms

which enable its efficient realisation.

CHAPTER &
THE GRAPHICS CONTROLLER FIRMWARE

A basic graphics instruction set for the graphics controller
has been defined. This set consists of two types of instructions. The
first type shall be referred to as the definition instructions. They
are concerned with assigning values to so-called definition variables.
These variables define the 'manner' in which curves are 'drawn'. For
example, depending on their values, curves may be either solid or
broken, erased or made visible. In contrast, the drawing instrﬁctions
cause the actual drawing to occur. They, alone, cause a change in the
contents of the bit map. There are two instructions of this type,
VECTOR and CIRCLE, which generate line and circle segments respectively.

At the beginning of a graphics session, all the definition
variables must be assigned values. Only then can a circle or vector
instruction be executed properly. Once these variables have been
initialized, drawing instructions may be executed in succession, one
after the other. Alternatively, at any time, one or more definition
instructions may be executed in between any two drawing instructions.
This would have the effect of changing the drawing 'manner' from one
curve segment to the next.

The variables, which are discussed in this chapter, correspond
to 16 bit quantities. Two's complement arithmetic is used fof the
representation of negative values. Each variable can be classified as

belonging to one of only three possible data types. There is a bit

52

53

mask data type, an integer data type, and a coded information data type.

IV. 1 Definition Variables

The definition variables are defined below. The first three

definitions involve the assumption of a fully interlaced display

(see Chapter 2).

EVODD:

POSIIN:

BTMSK:

MODE:

PATERN:

PSCALE:

PATPOS:

Coded data type. Specifies whether the current screen position
corresponds to the even or odd raster bit map; O: even; 1: odd.
Integer data type. Represents the relative bit map address
which corresponds to the current screen position. The absolute
memory address is equal to POSITN + the first word address of
the bit map specified by EVODD.

Bit mask data type. A single bit bit mask which, together with
EVODD and POSITN, identifies the bit in a memory word which
corresponds to the current screen position.

Coded data type. It specifies the drawing mode; 1: visible
mode; O: erase mode; -1: complement mode.

Bit mask data type. It specifies the current dot pattern; one-
valued bits correspond to screen dots which are, depending on
the mode, made visible, erased or complemented. Zero-vélued
bits correspond to screen dots which are left unchanged.
Integer data type. It is a scaling factor which is applied to
PATERN. Each bit in PATERN is made to correspond to PSCALE
dots; PSCALE >0.

Bit mask data type. A single bit bit mask which specifies the

current position in PATERN.

54

SCLPOS: Integer data type. Specifies the number of consecutive

screen dot moves before the next bit in PATERN is in effect;

SCLPOS » 0.

The first three variables defined above, shall be referred to
as the position variables. Together, they define the bit in memory which
corresponds to the current screen position. The concept of a current
screen position is an important one. It implies that for each curve
segment, there is both a starting, and a finishing endpoint. The
current screen position is the starting endpoint from which subsequent
drawing begins.

The position variables are continually updated during the
execution of the drawing instructions. Upon termination of a drawing
instruction, the position variables are left with values which represent
the finishing position. This means that if two successive drawing
instructions are executed, the two resultant curve segments will share
an endpoint in common. Alternatively, a position instruction may be
used to redefine the current screen position before the second segment
is drawn. Thus, disjoint segments can be specified as well.

The mode variable, once set, remains unchanged unless it is
explicitly reset. There are three drawing modes. The visible mode
causes ones to be written into the bit map. These are translated by
the graphics display process, into visible screen dots. As well,
curves may be erased by specifying the erase mode, which causes zeros
to be deposited into the bit map. The complement mode changes the bit
map contents by complementing memory bits. This mode is of use in the

displaying of temporary or dynamic images. In particular, with moving

55

images, there is the problem of blank gaps being left behind wherever
previous images once intersected the static background display. This
problem can be avoided through proper use of the complement mode (DIC).

The last group of definition variables provides for dotted
curve segments. PATERN and PSCALE define the dotted pattern, whereas,
PATPOS and SCLPOS define the position within the pattern. As curve
segments are generated, the pattern position is cycled through the
pattern. By way of understanding the meaning of the pattern variables
more precisely, consider the process by which curve segments are
generated.

Drawing instructions can be thought of as causing a represent-
ative sequence of moves from one screen dot to the next. Starting with
the current screen position, each move is between contiguous dots,
until the process terminates at the final predesignated position.

Each move consists of selecting the next screen dot and making the
appropriate bit map modifications. If the current pattern position
corresponds to a zero-valued bit in PATERN, the selected screen dot is
left unchanged. Otherwise, it is changed according to the dictates of
the current drawing mode.

After each move, the current pattern position is updated.

This update is accomplished by decrementing SCLPOS which acts as a
scaling counter. Upon reaching zero, SCLPOS is automatically reset to
PSCALE and a one bit cyclic shift operation is performed on PATPOS.

In this manner, the dot pattern is repeatedly cycled through. As an
example, a dotted line of alternately 30 visible dots and 10 blank dots

may be specified by initializing PATERN to the binary string

'1110 1110 1110 1110' and by assigning PSCALE the value ten. PATPOS
may be assigned any allowable value (single bit bit mask) depending
upon whether the dotted line is to start on a blank or a visible line
segment. Similarly, the initial value for SCLPOS determines the
ultimate length of the starting line segment.

Once set, the actual dot pattern remains fixed, unless it is
explicitly changed through the use of a definition instruction. The
position within the pattern, however, is continually updated during the
execution of drawing instrucfions. From this point of view, PATPOS and
SCLPOS are similar to the position variables, whereas, PATERN, PSCALE
and MODE form a second, more static category.

It should be pointed out that although the normal range of
values for SCLPOS is between zero and PSCALE, the user is allowed the
option of specifying an initial value for SCLPOS which is greater than
PSCALE. This has the effect of scaling the starting bit in PATERN by
a factor greater than PSCALE. For example, a dotted line could be
generated, such that the first solid segment is longer than subsequent
segments. This feature could be used to ensure that at both endpoints
of a dotted line, there are solid segments.

IV. 2 Definition Instructions

Definition instructions translate incoming data into appropriate
values of associated definition variables. These values are subsequently
stored in the graphics controller register file. The data are in the
form of 16 bit quantities which are sent from the main microprocessor
to the graphics controller via the data register (figure 3.2). In these

terms, the definition instructions are:

57

1. POSITION

Data: PX, PY
Define: EVODD, POSITN, BTMSK

2. MODE

Data: MODE
Define: MODE

3. PATTERN

Data: PATERN, PSCALE
Define: PATERN, PSCALE

4. PATTERN POSITION
Data: PATPOS, SCLPOS
Define: PATPOS, SCLPOS

Apart from the POSITION instruction, which is more complex, the above
instructions simply inQolve writing received data directly into the ALU
internal register file. |

The POSITION instruction involves an actual translation. The
main microprocessor specifies defineable screen positions with discrete
X, y coordinate values. The corresponding coordinate systém shall be
referred to as the screen coordinate system. Its origin lies on the
bottom leftmost screen dot. The unit distance is the distance between
two adjacent horizontal, or two adjacent vertical, dots. The POSITION
instruction must translate the discrete coordinate values, PX and PY,
into their corresponding EVODD, POSITN and BTMSK wvalues.

This translation is in terms of parameters which define the
bit map:

GPHEVN: The first word address of the even raster bit map.

GPHODD: The first word éddress of the odd raster bit map.

58
WIDTH: The number of memory words which constitute a single
raster line.
LENGTH: The number of raster lines per screen.
These parameters are stored in the ROM part of the internal register
file. The POSITION instruction makes use of the following equations.

A 16 bit memory word is assumed:

EVODD = MOD2 (LENGTH - (PY + 1))
POSITN = ENGTH . (PY + 1) ¢ vrpTH + PX/16
BIMSK = 2(15-MOD16 (PX))

The division operations, in the above, are integer divisions.
The quotient is truncated to an integral value. Since the divisors,
in each case, are powers of two, the divisions correspond to simple
binary shift operation;. As well, the modular operations are with
respect to bases, which are also powers of two. As a result, each
modular operation simply involves the appropriate discarding of high
order bits. The single multiplication is accomplished through a
sequence of binary shift and add operations.

IV. 3 Drawing Instructions

Like the definition instructions, the drawing instructions
also require data which are deposited, by the main microprocessor, into
the data register. The received data are used to control the 'drawing'
of curve segments on the display screen. The two drawing instructions
are:

1. VECTOR
Data: VX, VY

Draw: Line Segment

59

2. CIRCLE
Data: X, Y, DOCT, FCORD
Draw: Circle Segment

A vector instruction causes a line segment to be drawn, from
the current screen position, to the end point designated by VX and VY.
These variables are defined below. Displacements are measured in the
units of the screen coordinate system.

VX: Integer data type. It specifies the horizontal displace-
ment, of the finishing endpoint, from the current screen
position. VX may be either positive or negative.

VY: Integer data type. It specifies the yertical displacement,
of the finishing end point, from the current screen
position. VY may be either positive or negative.

A circle instruction causes an arc to be drawn, from the current
screen position, to the endpoint specified by DOCT and FCORD. Points
which lie exactly on the 'true'!' arc, are equidistant from a unique
position which is referred to as the arc center. This position may lie
outside screen boundaries. Its whereabouts are specified by X and Y.
The CIRCLE variables are defined below. Again, distances are measured
in the units of the screen coordinate system.

X: Integer data type. It specifies the horizontal
displacement, of the arc centér, from the current
screen position. X may be either positive or negative.

Y: Integer data type. It specifies the vertical displace-
ment, of the arc center, from the current screen

position. Y may be either positive or negative.

60

DOCT: Composite data type. The most significant bit is a
code which specifies either a clockwise, or a counter
clockwise, drawing direction; O: counter clockwise;
1: clockwise. The remaining bits correspond to an
integer data type. They specify the number of octant
changes (see following discussion) required to
complete the arc segment.

FCORD: Integer data type. Imagine two lines which pass
through the arc center. One line is vertical and the
other, horizontal. FCORD is the shortest distance
between the final arc endpoint and the nearexr of

these lines; O & FCORD £ \/(Xz + YZ)IZ

where the upper limit is rounded down.

The position of the final arc segment endpoint can be deduced
from the specified values of FCORD and DOCT. For this purpose, circles
are imagined to be centered on a coordinate system, as shown in
figureAa.l. The coordinate system is divided into eight equivalent
sections, called octants. ' The hérizontal and vertical octant boundaries
are called square octant boundaries. Each octant has exactly one
square and one diagonal octant boundary.

Imagine that the graphics controller has been instructed to
draw.a circle segment. Starting at the current screen position, the
drawing proceeds in a clockwise or anti-clockwise fashion, depending on
the value of the most significant bit of DOCT. Every 45 degrees,

an octant boundary is crossed. This crossing from one octant into

Fig. 4.1:

The division of a circle into eight octants.

61

62

another, is called an octant change. DOCT specifies how many of these
are required to complete‘the arc segment. After the required number of
octant changes, the drawing terminates when the distance from the
current octant's square octant boundary, is exactly FCORD. In this
manner, the final arc segment endpoint is uniquely specified.

Note that an octant change occurs only when an octant boundary
is actually crossed. As figure 4.2 illustrates, care must be taken in
the assigning of values to DOCT, whenever an arc begins or ends on
an octant boundary.

It should be pointed out that in order for graphics instructions
to execufe properly, they must be provided with 'correct' data. No
testing is done by the controller firmware to ensure that incoming
data is meaningful. For example, the microprogram, which corresponds
to the CIRCLE instruction, does not test whether FCORD is within the
required range. Moreover, all incoming data must be such that each
specified curve segment lies entirely on the display screen. If this
is not the case, unpredictable résults may occur. For these reasons,
there is a level of program control between the user and the graphics
instruction éet. This level of control resides in the main micro-
Processor.

IV. 4 Algorithms

Thus far, in this chapter, the graphics instruction set has
been discussed in detail. In the remaining part of the chapter,
algorithms, which were used to realize the VECTOR and CIRCLE instructions

are presented.

63

pocT-Q

FCOR sl J._r_.zsl 3 :}. (roandu\ dcwﬂ)

DOCT = &
0 &FCORD & . x?-:tﬂ‘-
2
pocT = s
FcorD: O

Fig. 4.2: FCORD and DOCT specify the final arc segment endpoint.

64

The algorithms were implemented with the graphics controller
microinstruction set. Although the microcoded firmware is not
presented as a formal part of this report, the actual lengths of
critical sections will be used to provide an indication of the
graphics controller performance capabilities.

The realization of the VECTOR and CIRCLE instruction was
accomplished in two steps. First, the algorithms were implemented in
the high level programming language, IFTRAN. Secondly, they were
translated into microcode. The complete IFTRAN version of the circle
and line generating algorithms, is to be found in Appendix A. In the
discussion of algorithms, which follows, the reader is referred to
Appendix A for greater detail. The IFTRAN package was tested and de~
bugged on a CDC 6400 computer. For testing purposes, an on-line
Versatec plotter was used in place of the display screen.

Every attempt was made to render the final traﬁslation, from
_IFTRAN to microcode, a trivial one. For example, the same modular
bdivisions were made in both the IFTRAN and the microcode. Almost every
IFTRAN routine corresponds to a similar routine in the microcode. The
only exceptions are a group of IFTRAN subroutines, which are used
solely for testing purposes. In these routines, a Versatec library is
used to generate curves which serve as a basis of comparison for the
circle and line generating algorithms being tested.

The IFTRAN and microcode are similar in other ways as well.
For the most part, variables and coding structures are the same in

both packages. There are, however, some important differences.

65

Most of these differences occur in the input/output routines. In
particular, where the IFTRAN version sends information to the Versatec,
the actual firmware makes corresponding changes to the bit map. By
way of illustrating how the translation from IFTRAN to microcode was
achieved, a sample microcoded routine is included in this report in
Appendix B.

The line and circle generating algorithms are now presented.
These algorithms fulfill certain basic requirements. They generate
representative sets of contiguous dots, they are efficient, and they
involve only simple binary arithmetic and logical operations. Much of
the following development of these algorithms is owing to K.P. Horn
(HOR). The line generating algorithm will be presented first.

IV. 4.1 Line Generator

Imagine a coordinate system to be centered on the current
screen position. A line segment is to be drawn from the origin to the
discrete screen positioﬁ VX, VY. The equation of the corresponding
line is just (VX)Y = (VY)X. Consider for the time being a line which
lies in the first octant of the coordinate system. In other words,

VX and VY are both greater than or equal to zero, and VX is greater
than or equal to VY.

The screen can be thought of as a mesh of defineable screen
dots. The solution set is the set of contiguous dots which best
represent the line segment. For each column of dots, which intersects
the line segment, there is a dot which lies immediately above the line,
and a dot which lies immediately below the line. For each column, the

closest of these two dots is to be included in the solution set.

66

Clearly, thekclosest dot is at a vertical distance from the line, of
no more than 1/2 of a mesh unit. In contrast, the further dot is
vertically removed from the line, by a distance which is at least
1/2 of a mesh unit and probably more. As a result, the solution set
is bounded by the two lines, VX(Y-1/2) = (VY)X and VX(Y+1/2) = (VY)X,
which lie on either side of, and are parallel to, the line segment
which is to be generated.

There are also two vertical limits to the solution set.
Namely, the lines X = O and X = VX, These limits, together with the
previous two, define a bounded area. All dots within the bounded
area are members of the solution set. Each column of dots, which
intersects the bounded area, contains at most one dot within the band
defined by the upper and lower parallel limits. Furthermore, in most
instances, there is exactly one such dot. The exception occurs when-
ever the dot just below the prospective line segment, is as far from
the line as the nearest one above it. In this situation, one dot lies
on the uppér boundary, while the other dot lies on the lower. There
are no dots which lie entirely within the two limits. For the time
being, the lower dot, alone, wili be arbitrarily picked as belonging
to the solution set.

The line-generating algorithm selects dots, in sequence,
through incremental calculations. Essentially, the result of a test
dictates whether the next dot chosen, is horizontally or vertically
removed from its predecessor. Let the coordinates of the dot which
was last selected, be X, Y. The next dot is chosen by testing whether

the dot one column over (X+1, Y), falls below the lower limit.

If it does, the dot one column over and one row up (X+1, Y+1), must
be the solution set member for that column. Otherwise, the dot at
X+1, Y is selected. This process continues until X = VX,
The critical test amounts to whether or not D = 2 (VY(X+l1) -

VX(Y+1/2))>0. The 'greater than' test ensures that for equally good
dots, the lower dot is selected. A 'greater than or equal to' test
would result in the upper dot being selected. Since only fixed-point
additions and subtractions are allowed, the factor of two is used to
eliminate the fraction, 1/2. D is given an initial value of 2 VY-VX
- and incremented after every move. After each horizontal move, it is

incremented by 2 VY, and after each diagonal move, by -2(VX-VY).

It is easily seen that -2(VX-Y)+1IS D £ 2VY. This means that only one

more bit is required to store D, than is required for VX and VY.

The line generator is easily extended to include the general
case. For example, the following variables may be used to specify
motion in any octant. Once they are initialized correctly, any line-
generating problem can be mapped into its equivalent, in the first
octant.

INSTRX: Coded data type. Specifies direction of horizontal

moves; =-.1: decrement; l: increment.

INSTRY: Coded data type. Specifies direction of vertical

move; =-1: decrement; 1: increment.
_MOVEI: Coded data type. Specifies the coordinate which
undergoes the greatest change; 1: vertical;

2: horizontal.

67

68

The above variables shall be referred to as defining the
actual motion, whereas, VX and VY define the equivalent motion, As
an example, consider a line which is to be drawn in the sixth octant.
INSTRX and INSTRY are given 'decrement' values and MOVEI is made to
designape the vertical coordinate. Finally,three transformations map
the problem into the first octant. Reflections about the y and x
axes are accomplished by setting VX = -VX and V¥ = ~VY. A third
reflection about the 1iné y = X, involves swapping the values of VX and
VY. The previous developed procedure is‘now used to generate the line.
Only this time, the 'horizontal' move corresponds to a‘change in the
value of the coordinate specified by MOVEI. Each 'horizontal®' move
is actually a downward vertical move. Similarly, tﬁe tdiagonal' move
is now downward and towards the left.

There is a final, rather subtle point, which concerns the line
generator. Consider a line‘segment which has been drawn in an upward
direction. If this line segment is subsequently erased in a downward
direction, the same dots must be made blank, as were once made visible.
Most dot columns contain only a single 'best' dot, and as a result,
there isn't a problem. Care must be taken, however, with’columns
which contain equally good dots. Equally good dots are to be found,
for instance, at the center of line segments for which the greater
coordinate displacement is even, and the lesser, odd.

The following example illustrates the problem of equally good
dots. Consider a line which was originally drawn upwards into the
first octant. Upon subsequent erasure, it is erased downwards as a

line into the fifth octant. As discussed earlier, the line is erased

69

ib o i

<<UY
P S
Ny

NI W o

Fig. 4.3: An example of points selected by the line generator.

by effectively mapping the problem into its equivalent in the first
octant. Unfortunately, after this mapping, what was once up, is now
down. More specifically, the lower of two equally good dots, is now
effectively on top. As a result, a different dot is erased than was
originally made visible. In general, for any line which lies in an
octant below the x axis, the dot selection test should be for D > O
rather than for D> 0. This ensures that for equally good dots, the
actual dot selected in drawing downwards is the same dot which is

chosen in drawing upwards.

This solution can be implemented in a manner which involves no
extra testing inside the dot-select loop. If D is incremented by one,
the effect is of changing the DDO test to a D+1>0, or a D> - 1, test.

Since D is an integer, this is equivalent to the test, D 2 O, which is,

70

of course, exactly the desired result. Thus, for lines which fall in one

of the lower octants, D is initially incremented by one. This is done

only once, and before the dot-select loop is entered.

IV. 4.2 Circle Generator

The circle generator can be developed by analogy with the line

generator. This time, the discrete x-y coordinate system lies in the

2
center of the circle. The equation of the circle is XZ + Y = Rz,

where R is the radius of the cir;le. The starting position is, by
definition, a point on the circle. Consider, for the time being, a
circle segment which lies entirely within the first octant, and is
drawn counter-clockwise.

For each row of dots, which intersects the circle segment,

there is a dot which lies immediately to the right of the arc, and a

71

dot which lies immediately to the left of the arc. In fact, much like
before, the solution set is bounded by the two circles, (X + 1/2)2 +
Y2 = R2 and (X - 1/2)2 + Y2 = Rz. There are two horizontal limits to
the solution set, which simply correspond to the initial and final
(FCORD) values of Y. These four limits define a bounded area, within
which all dots are members of the solution set. For each row of dots,
which intersects the bounded area, there is but one dot within the
band defined by the inner and outer arc limits.

The circle generator also selects dots, in sequence, through
incremental calculations. Let the coordinates of the dot, which was
last selected, be X, Y. The next dot is chosen by testing whether the
dot one row up (X, Y + 1), falls outside the outer arc limit. If it
does, the dot one row up and one column to the left (X - 1, Y + 1),
must be the solution set member for that row. Otherwise, the dot at

X, Y+ 1 is selected. This process continues until Y = FCORD.

The critical test amounts to whether S* = (X - 1/2)2 + (Y + 1)2

R2 + 3/4 > 0. The fraction, 3/4, simply rounds st up to the nearest
integral value. By rounding up, rather than down, we ensure that none
of the test results are changed. The superscript indicates a positive,
or counter-clockwise, direction. Note that for circles, there is
never a choice between two equally good dots. This is proven by the
fact that (X - 1/2)2 + (Y + 1)2 - R2 is never equal to zero.

The value of S* ig updated as before. Since the starting
position satisfies the equation X2 + Y2 = R2, st reduces to an initial

value of 2Y - X + 2. After each vertical move, it is incremented by

2Y + 3, and after each diagonal move, by 2Y - 2X + 5.

72

Note that -2(X - Y) + 6 S'S+ < 2 Y + 3. This means that only one more
bit is required to store S+, than is required for X and Y. Allowing
for this extra bit plus an additional sign bit, radii of up to 214
mesh units in length, may be specified.

If the arc is to be drawn in a clockwise direction, thechoice
is between moving one row down, and one row down and to the right. The
test involves whether or not the inner, rather than the outer, arc

2

boundary has been crossed. If S = R” - (X + 1/2)2 - (y - 1)2 + 1/4 >0,
the dot at position X + 1, Y - 1 is selected, otherwise the dotbat
X + 1, Y is the correct choice. Again the fraction, 1/4, simply rounds
S” up to the nearest integral value. S~ has an initial value of
2Y -X - 1. After each verticallmove, it is incremented by 2Y - 3,
and after each diagonal move, by 2 Y - 2 X - 5. The limits for S~
are similar to those for $': -2(X - Y) 448 £27Y-3.

We have considered the case of a circle segment which lies
entirely within the first octant. Now, the question of how to
generate an arc of arbitrary length, is addressed. For the time being,
the arc must still begin in the first octant. Specifically, what
happens when an arc which is being drawn in a clockwise direction
runs into the diagonal octant boundary? The answer is what shall be
termed a diagonal octant change.

Moving from the diagonal octant boundary to the second
octant's vertical boundary is symmetrically equivalent to reversing
direction and returning to the first octant's horizontal boundary.

This is exactly what is accomplished by a diagonal octant change.

73

As in the previous vector discussion, there are two types of
motion. The actual drawing motion is defined by INSTRX, INSTRY and
MOVEI as before. The equivalent motion remains in the first octant,
and is described by X, Y, DX and DY. DX and DY’represent the incremental
thanges for X and Y. For counter-clockwise motion, DX = -1 and DY = 1.

In a diagonal octant change, two things happen. First, the
value of MOVEI 1is 'flipped'. A first octant vertical coordinate value
becomes the second octant horizontal coordinate value. Secondly, the
equivalent motion is reversed. DX and DY are multiplied by negative one
and ST is transformed into §”. As is easily deduced from their
definitions, s* and 8~ are related according to the -equation,
8™ = =87 + 4Y - 2X + 1. The equivalent motion now retraces the first
octant arc, while the actual motion extends the original arc info the
second octant.

In like maﬁner, the arc can be drawn through the second
octant and into the third. Of course, to accomplished this, a square
octant boundary must be crossed. When this occurs, the equivalent
motion again reverses, while the appropriate change is made to the
actual motion. This change amounts to 'flipping' either INSTRX or
INSTRY. 1If MOVEI corresponds to a vertical coordinate, then the
value of INSTRX is changed. Otherwise INSTRY is the variable whose
value changes.

At this point, it should be evident that whether the actual
curve is drawn clockwise or anti-clockwise, it can be extended to a
full circle. Every time an octant boundary is reached, an octant

change is required. This continues until the number of octant changes,

74

e ——
> =<
J/ N
” ~
/|
/
N

7 k

!
]
/

i \
" {
\ /
\\ /[

v
*\\‘ //j/
*\h\ u
PX = 39
PY = 20
X = -138
¥ = 0
DOCT = 7
FCORD = 0

Fig. 4.4: Example of points selected by the circle generator.

75

which have occurred, is equal to the number specified by DOCT. The
very next time Y = FCORD, the arc terminates.

The circle generator is easily made to accommodate arcs which
begin in any ACtant. As before, the problem is simply mapped into its
equivalent in the first octant. The actual motion, however, is defined
according to the actual starting octant and direction. Figure 4.5
indicates the values of the actual motion variables, INSTRX, INSTRY
and MOVEI, for the different octants. In this figure, a counter-
clockwigse direction is assumed. For a clockwise direction, INSTRX and
INSTRY have values which afe opposite to those of the figure. The
following procedure is used to define the equivalent and actual motions
properly.

First, the actual motion variables are set to their first
octant values. if the arc is to be drawn in a counter-clockwise
direction, INSTRX, INSTRY and MOVEI are given values of 'decrement',
'increment' and 'vertical' respectively. Secondly, the starting
position (X, Y), and the drawing direction (DIRECT) are mapped into
the first octant. As before, this is accomplished through
reflections Rx, Ry and Rxy, about the x axis, the y axis, and the
x-y diagonal, respectively. Each reflection results in a change in
the value of DIRECT, the drawing direction. Finally, the inverse
mapping is applied to the actual motion as represented by INSTRX,
INSTRY and MOVEIL. This inverse transformation maps the actual motion
into the starting octant.

As an example, consider a starting arc position which lies

in the sixth octant. The transformation Ry Rx Rxy, when applied to

(dec)dec)hor) ﬂ\ ¥ (Aec, 'mr_,\\or)

(Aec ,dec)ve_r) - {dec,ingy ver)
< 78
{ince ,deqU&r} . (incyinc,ver .1)
énc, dec)hor) (ineyine)kor)
v

Actual Motion: (INSTRX, INSTRY, MOVEIL)

inc = increment

dec = decrement

hor = horizontal coordinate
ver = vertical coordinate

Fig. 4.5: As an ordered set, the actual motion variables may
assume eight different values. . For a given drawing
direction, there is a one to one correspondence between
the actual motion values and the eight octants.

X, Y and DIRECT, maps them into their equivalents in the first octant.
The inverse transformation is simply Rxy Rx Ry. From figure 4.5, it
can be seen that the transformation RX corresponds to 'flipping' the
value for INSTRX. Similarly, the transformation RY corresponds to
'flipping' the value for INSTRY. Rxy is slightly more complicated.
If INSTRX = INSTRY, the values of INSTRX, INSTRY and MOVEI are all
changed. Otherwise, only the value of MOVEI is changed. The
actual implementation of this scheme is simplified by the fact that
Rx Ry:= Ry Rx., Thus, the inverse of T = Ry Rx Rxy is T-l = Rxy Ry Rx.
This allows the Ry Rx part of the two mappings to be accomplished at
the same time. For further details, the reader‘is referred to
Appendix A.

This completes the presentation of the circle and line
algorithms. In the next chapter, an estimate of the performance

capabilities of the graphics controller is made.

77

CHAPTER 5
PERFORMANCE

A stated pérformance objective of the graphics terminal design
is a host-terminal transmission rate of 9600 baud. In chapter two, it
was concluded that the Intel 8086 based operating system is fast enough
to process characters at the desired rate, providing that the graphics
controller is able to keep up. The discussion was deferred until the
graphics controller had been looked at in more detail. It is now
appropriate to complete the analysis.

For this purpose, the graphics terminal is assumed to have the
specifications found in table 2.1. In addition, it is assumed that a
graphics controller microinstruction requires 125 nsec to execute.

This is a typical clocking period for the particular AMD chip configu-
ration used. Finally, a typical static RAM access time of 250 nsec

is assumed to apply to bit map read/write operations. Read/write
signals must be held stable for at least that long, before the
operation can be assumed to have taken place.

Two worst-case situations shall be analyzed. In both instances,
the host computer sends a continuous stream of 8 bit characters to the
graphics terminal, at a rate of 960 characters per second. In the first
case, these incoming characters are interpreted as corresponding solely
to a sequence of line segment specifications. An image is being built
up on the screen, which consists entirely of line segments. Similarly,

in the second case, an image is being generated, which consists entirely

78

79

of circle segments. Each incoming character is interpreted as
contributing to the specification of the next arc to be generated.

Ve 1 Line Generation

In the line-drawing case, four characters are required to
specify the displacements, VX and VY, of a line segment. For each
incoming set of four characters, the operating system sends one VECIOR
instruction to the graphics controller; Thus, during the time that the
operating system takes to receive four characters, the graphics controller
must be able to generate a complete line segment.

Upon completion of the graphics controller firmware, it was
noted that the number of microinstruction executions required to generate
a single vector dot, is 4l1. This is the number of microinstructions
executed in one pass through the dot-select loop. For any given dot,
the actual number may in fact be less. For example, the above count
was made by assuming that a diagonal move was made in selecting the dot.
A horizontal or vertical move requires fewer microinstructions. The
important point, however, is that the number of microinstructions
executed can never be greater than 4l.

Forty-one microinstructions correspond to an execution time of
5.12 usec. During horizontal and vertical flybacks, this is the time
taken to generate a single vector dot. During forward horizontal
scans, however, the dot generation rate is less. Time is spent, before
bit map accesses, in waiting for the graphics display process to
relinquish its use of the bit map. |

As discussed earlier, the graphics display process indicates

its use of the bit map, by lowering a bit map free flag. During a

80

horizontal scan, 16 bits are mapped onto the screen every 1.3 usec.
This means that every 1.3 usec, the display process requires the use of
the bit map RAM for a 250 nsec read operation. However, the bit map
free flag must be lowered in advance of each read requirement. This

is necessary to provide ample time for the graphics controller to
finish any bit map access, which was begun immediately before the bit
map free flag was lowered. Enough time must be allowed for a complete
read or a complete write operation to be performed.

A complete graphics controller read operation requires exactly
four microinstructions. The first microinstruction issues the appropriate
read signals. These signals are then held stable for two subsequent
microinstructions. Finally, the execution of the fourth microinstruc-
tion brings the result into the ALU. in contrast, a write operation
requires only three microinstructions. Whereas, the first micro-~
instruction initiates the write operation, two further microinstruction
cycles are required for the operation to be completed.

The net result is that the bit map free flag must be lowered
for 250 nsec plus the duration of four microinstruction cycles, for
each display process access. This means that out of every 1.3 usec,
750 nsec are spent with the bit map free flag in a lowered state. At
any instant, the probability of the graphics controller not being able
to immediately access the bit map, is 75/130. As a result, the dot

generation process is lengthened by an average of 75/ x (¥ x 750)

130

nsec, for each bit map access. Note that % x 750 nsec is just the average

length of each access wait, whereas, 75/ is the probability that a

130

wait occurs. Since the dot select loop contains two bit map accesses,

81

a read and a write, the time required to generate each dot is increased
by 2 x (75/130) x (5 x 750) nsec = .433 usec. Thus, during forward
horizontal scans, a single vector dot is generated every 5.56 usec.

In the displaying of a single complete screen, there are 480
forward horizontal scans, 479 horizontal flybacks; and one vertical

flyback. This leads to a time averaged dot generation time of

(480 x 5.3 usec)(5.56 usec) + (479 x 15 usec)(5.12 usec)+(280 usec)(5.12 usec)

480 x 53 usec + 479 x 15 usec + 280 usec
= 5.46 usec/dot.

The longest line segments which fit on the screen, consist of
650 dots. This many dots are generated in 650 x 5.46 usec = 3.55 msec.
In other words, four incoming characters are processed in at least 3.55
msec. This corresponds to a baud rate of 11,300. In so far as line
generation is concerned, it appears that the 9600 baud objective has
been met.

Ve 2 Circle Generation

The situation where circle segments, alone, are generated, is
now analyzed. Seven eight bit characters are required to specify each
arc. Values of X, Y and FCORD are derived from six incoming characters.
The seventh character suffices to represent a value for DOCT. The
analysis proceeds in exactly the same manner as for the previous case.
This time, at most 47 microinstructions are executed each time an arc
dot is generated. This leads to a time averaged dot generation time
of 6.21 usec per dot.

The largest complete circle which may be generated is centered
in the display screen and with a radius of 240 screen units. For this

circle, the solution set is comprised of 1360 dots. This many dots is

http:usec)(5.12
http:usec)(5.12
http:usec)(5.56

82

generated in 6.21 usec x 1360 = 8.45 msec. In other words, seven
incoming characters are processed in at least 8.45 msec. This
corresponds to a baud rate of 8280 which is, of course, less than the
9600 baud objective. It should be pointed out, however, that the average
arc specified is most likely to require somewhat less than 1360 dots.

For arcs which require half as many dots, the baud rate is effectively
doubled. Such arcs are still relatively large. Bearing this in mind,

it appears that for circle generation, a host-terminal transmission

rate of 9600 baud can, in fact, be maintained.

CHAPTER 6
CONCLUDING REMARKS

The main microprocessor and the graphiés controller operate in
parallel; The graphics controller generates circle and line segments
at a rate which is fast enough to allow 9600 baud to be maintained.

At the same time, the Intel 8086 executes approximately 600 instruc-
tions. per each incoming character. This is enough to allow rather
sophisticated graphics and text processing capabilities.

In part, high speeds are achieved at the expense of the extra
complexity which is introduced through the use of microprogramming and
~bit-sliced technology. It is felt, however, that a favourable balance
between simplicity and speed has been attained. State-of-the-art LSI
technology is used in striking this balance. The use of standard,
readily available LSI devices enables the design to be kept relatively
simple. At the same time, recent breakthroughs in speed have lesseﬁed
- the severity of the ultimate tradeoff between speed and simplicity.

Programmable control provides the graphics terminal with a high
degree of flexibility. Features such as general‘text editing, the
specification of 'rubber band lines! (DIC),(NEW), image translation,
image scaling and provision for user programming in a language such as
PL/M (MCC), may be included as part of the operating system firmware.
The graphiﬁs controller firmware may be extended as ﬁell. The micro-
programmed graphics instruction set of chapter 4 requires 250 words
(53 bits wide) of the 4K word address space of the AM2910 sequence

‘controller (see fig. 3.2). Thus, the potential for extending the
' 83

84

graphics controller capabilities is‘very real. For example, the line
and circle generators can be generalized to include the drawing of any
conic section (PIT), (HOR).

On a closing note, comment is made on the basic modularity of
the graphics terminal design. At the end of chapter 2, the graphics
controller, the bit map, and the bit map address generator, were
collectively referred to as a single modular graphics unit. This
graphics unit can be succeésfully interfaced with any conventional,
microprocessor-based, alphanumeric terminal. Modifications to the
graphics controller firmware may be required, however, depending on
. whether or not a fully interlaced display is used.

The firmware was developed in a manner consistent with the
aforementioned modularity. For example, the firmware is independent of
the screen resolution. The number of disﬁlayable screen dots may vary
up to a maximum number of 220, without necessitating any change to
the firmware. For any particular resolution, the size of the corres=-
ponding bit map is fully specified by bit map parameter values stored

in the internal ROM registers.

(ALE)

(AMD)

(BAS)

(BOU)

(DAV)

(pIc)

(HAN)

(HOL)

(HOR)

(Mce)

(MIC)

REFERENCES

Alexandridis, N.A. "Bit-Sliced Microprocessor
Architecture. Computer. June 1978,
pp. 56-80.

Advanced Micro Devices, Inc. AM2903 Four-Bit
Bipolar Microprocessor Slice; AM2910
Microprogram Controller: Technical Data.

Baskett, F. and Shustek, L. " The Design of a
Low Cost Video Graphics Terminal", SLAC PUB-1715,
Stanford Linear Accelerator Center, Stanford
University, Stanford, Ca. Feb. 1976

Boulavye, G.G. Microprogramming. Halsted Press,
N.Y. (1975).

Davidson, S. and Shriver, B.D. "An Overview of
Firmware Engineering”. Computer. May 1978,
pp. 21-33.

Dickinson, P.D. '"Versatile Low-Cost Graphics Terminal
Is Designed for Ease of Use". Hewlett-Packard
Journal. January 1978, pp. 2-16.

Hansen, B. Operating System Principles. Prentice Hall, Inc.,

Englewood Cliffs, N.J. (1973).

Holm, W.A. How Television Works. N.V.
Philips' Gloeilampenfabrieken, Eindhoven,
Holland. (1958).

Horn, K.P. "Circle Generators for Display Devices'.

Computer Graphics and Image Processing.
Vol. 5, (1976), pp. 280-288.

McCracken, D.D. A Guide to PL/M Programming for
Microcomputer Applications. Addison-Wesley
Publishing Company, Inc., Philippines (1978).

Mick, J.R. and Brick, J. Advanced Micro Devices:

Microprogramming Handbook. Advanced Micro Devices,
Inc., Ca. (1976)

85

(MOR)

(NEW)

(08B 1)

(0SB II)

(PIT)

(RED)

(sHU)

86

Morse, S.P. and Pohlman, W.B. and Ravenel, B.W.
"The Intel 8086 Microprocessor: A 16-bit Evolution
of the 8080". Computer. June 1978, pp. 18-27.

Newman, W.M. and Sproull, R.F. Principles of
Interactive Computer Graphics. McGraw-Hill, Inc.,
N.Y. (1973).

Osborne, A. An Introduction to Microcomputers:
Volume I - Basic Concepts. Adam Osborne and
Associates, Inc., Ca. (1976).

Osborne, A. and Jacobson, S. and Kane, J.
An Introduction to Microcomputers: Volume II -
Some Real Products. June 1977. Revision,
Adam Osborne and Associates, Inc., Ca. (1976)

Pitteway, M.L.V. '"Algorithm for Drawing Ellipses
or Hyperbolae with a Digital Plotter". Computer
Journadl. Vol. 10, (1967-68), pp. 282-289.

Redfield, S.R. "A Study in Microprogrammed Processors:
A Medium Sized Microprogrammed Processor''. IEEE
Transactions on Computers. Vol. C-20, No. 7,

July 1971, pp. 743-750.

Shustek, L. "The Internals of the Video Graphics
Terminal'. SLAC Report 199. Stanford Linear
Accelerator Center, Stanford University,
Stanford, Ca. December 1976.

APPENDIX A

Line and Circle Generators (IFTRAN)

87

L R Ty

w o~ ('
-l O CO =
< ZJ Wl W oW o
NS DNk L
-t sNETAZOoWg aQ
O>DN o JOQWNWM
HEWNHEYXYZ O - D=
O Linkornig O a
OIOOLY «1(AD> =
O O OO0 O << -
Ty ul WwW=-odDa «
HIZ - CluN =" (] %
U Wed T - - Q..
DO =~ QX0 -
X Downm ww= - -
LUIETCE N i AO <«
ZHIHHYONNONECD - o]
IO he DLIH O O 34
O =Z =ON0 Q- Z o
OOAUH ZZD (&)
P\TOC IS0 I-HIO TR
O Za'uwwr S
FSLFOADRE\! o W -
ZIO0 T OT O b=
O WO =207 < Lt
T Ulpe =t Il (Y (&)
b e T I ST = T (o]
I g o2 N o
X = Wk e
Qi s T QU YOy » -
OXODI~IC L J XA U2
SowE=xT Lan RVSIVE LA T S
AT L ZTOTW OO wiiiuig
LNt~ Oalk! NWHOIZIZZIZTZ »
Zo LA D00 T _ 00000
IO 0NNNL - BAVZZIIZIZTX
[L d
c
Otn—\.
anN
L=t
b)
g
e]
Lt b
oot]
=zZ
bed b
NV} e
g
od It
wce
<1
= b=y <X
. fo o]
> <<t Y
e [awd - -1~ ¢
ﬂC [1) >
7] se Qo _J L}
(] Nl DT J
o desma g
24 AL =000
= IIZ DI UA0O
a QOO CWVL.J

QOOCOLOLOLLLLVLLOLLVOLOLCLL

*
»

»

»

%

*

%*

»

»

*»

»*

* > :
» o)
% {
% - .
% H
* b4 !
*» [an]

»

] -

*»

4 2 - -

% wn -

* (on] 0 o

%» o ¥ & b

* o O [+ R

* - QO QO

] i b W -

% amfplvd

» >0 - - bad

» NOO a

* TO b =

* [&2EN &) -

% e O

% <t o aQa]

¥ 1o Od (a5

» XYW - - C

» [d] O

% o 5> D= W o~
*» Z -

[P] 'S - b w MO
% ha (384 b < t >
% D= e DMCUINK Ot (e
* ol = NOoCOQ L

* X] e SO O -
% 0 e<q n 1 0O o

% The (D =YD oD Y~}
¥ NN BT e O
% wZ - N 4 [=]
% NN N e Y (O e

% Y Z Z d e« -
% LINYOOXOX> (n» o

» 0 IO O X LY ~]
% WL () Wi OX e
W b S e Y L o S DD -
¥ TOJUWUL T O IO~

% IO Sabttd e LD s
% OO S -
% NN\ Z IOHTa OO0
% = oY ORI
» OZIZZUNE MUINOQOQ .
» O OO O N -t

» JTTTO M- J-Hurae a0
¥ O Tt dId-d &dCOo
» ZOoO0O0AdIV AT II UL L=
* OO0 O OHOYOOOOML
% QO T =

3 g g -~ Z O

% w o 2 w Z

» e © = U iy

*»

o o O O o o

88

jong
e

FCORD
LOWER LEFT

P

EFLEERR LR FRRRERE
S

00CT

y

\4

’

THE INITIAL GRIN PQOSITION
IN UNITS _OF DOTS FROM TH

ORIGIN AT TH
HAMND CORH
THE D

[g VI

’ (723 4
w (23] [=1-4-4
i [72] TZy
LLEE - Pd e
gz tu ez

_IOQ X TIXus
CIXIL oIl ==C0
OIXOXYWm C
W Lo
bl T ZO &
TZITZE O C Ua
b e U HWUZ
— OTWO ~DHO
OO0 NL LIk
2Oz ¢y Ty
-t wow o>l |y
Wiy =T >
) O i N
= e O e D
QU X LJNL XD i
[TEE= AV P T Vo [O |
NI ZOZ0H
e T Z N e O ONO

Woa=IXoO-O i o
CL 200D

S USER™S ARC SPECIFICATIONS

Xe ¥

PURPOSE?

0oCT -
FCORD -

OOV OOLLLLOLLLLOLLCOOLLOLOLLLVLLULL

NONE

(

ICIT INTEGER
2 PX 3 PY 4 X

R

LOCAL VARIABLES?
L L e X IR Y.

%» %

% [&] *

*» we - %

* O %

» <0 > % i

*» nyw N W

*» O o " *» -

3 Ly Xui- O ”*

W ol o> X » -

% Ll O W N ¥

» N (TR g - » <

» X N - *

* W o oyl > % -

*» >0 = Net o

* Y O e g # -
- Zx Ol 10 %

4 C e (o] XN ® -
% [QUL Nt %
0% QO CZZ o0 =% n
On X d s CON e * -t
[&F] < QA iD= % »
(g3 - SUUIAN & % 3

% Q- it aly) % o
- za = TN %

% g4 O D % !
% <X AXZOONT %
C* c=Z [« oY % |t
Ca = - . % [
c% ol Q OO b -~ (=)
L N L N Wwid=) O % -
- —t] =0 oY %N

% NZ Jui<x 14 >y % fo
bk T X & 17, Y NT % (4]

¥ Ol=-Xay <« SN | (=2 |
- LSOO LIXO X <X

* aCOn>an NN % 4y LI
> % *»

% 'Y % _— o —— Ul -
o o. % o — - [7)]

* wels) * oy Nl O =z <+
bt oN % o= M Jd m Jd pv4
o % Wit * oy hat - SR - ¢ - -

% . [% D= n O . O (&)

-5 <t » L e TW0 > W ~t

* ok ¥ ¥ D e N1 >N C -
% (¥5] » < X - e (U N% -~ 1
Q. % T IO wH N Ot Z o [b b

» zZ % (N | TREN ¢ n = e I TN . [.
3 (o Lo - - Z « oo _} ¢ D et o W [&]
i 3 N> [=] OO O Onilt O s O
- [7:17%] .. %» O L) XX e O e e QD

¢ tortad (7] % WQ Jd NN - [T] ONY < X w

i -t d ul » U108 O . - . ~ T b= W
bt 3 o - » WU i e O e ith oo - ~
(%13 << m % e X (Ot b (O b fo e ul PN o

% et bt < ¥ ZWWNV W elel - 0 T H = O
[§3§ 3 . [o g0 4 L] D3 dd XK -t > < s ZWxE
Z* > et o % OZaqd XOAN_I= >O0LNIZ W Ul gW
—t% e m >> < N QOO N —ZoON 0 N =2
— L - = N0 e J N0 e JUN-LOT T OV
D Nee Qe P OZA) D wd) ZNOwI) Z O ¥ Cu=-
o OVW-DgI -l % HOOZ% b JdaX Tk JSad>D0I0 g Ji OO
% OdJDaccen < % IO HOON EH-HCON = CMHygOH_3 Ol
mz oI =-CO (& » AL ZO0OT U] - Q0 - Cd~ U1 CJd- v
D% oL ZD I) ¥ TOOMIUDS™XZ ZI>=Z ZAUL J ZTglu I
Mg ALOOHCOCOLWY - » Hodow N up N WD L O 1

% * = = QO

% 'S < < =

»* » [+4 [+ 4 <I

% » [m] [Q

» *

OOOLOLOWOLOLLOO (&) (&) (&)

;NW?ET = MOD(QCT - 1 ¢ DOCT 4 A) ¢+ 1
c :
ZOTHER = SORT(FLOAT({ X*%¥2 4 Y¥%¥2 - FCQORD¥¥2))
CALL FINALPT(OCT , FCORD , Z0THER o ZIX2 5 72Y2)
C CONVZRT TO AQSOLUTE COORDINATES AMNC DRAW ARC
ZXC = (. PX # X) * SCALE * .00>
ZYC = (PY ¢+ Y) * SCALE * 035
ZX1 = PX * SCALE * ,005
ZY1L = 2PY ¥ SCALE * ,005
7X2 = 7X2 % SCALE * ,005 ¢ ZXC
ZYe2 = 7Y¥2 ¥ SCALE * 035 & ZyC
IF(CLKHSE)
_LSQALL ARCU ZX2 o ZY2 o ZIXL » ZY1L 4 ZIXC 4 ZYC , 005)
oy s ¥ -
’ND%éLL ARC(ZX1 o 2ZY1 o ZX2 4 2ZY¥2 4 ZXC 4 ZYC » 065)
C PRINT DISPLAY INFORMATION ON VERSATEZC APLOT :
ENCOO=Z(140 4y 1 4 DISPLAY) SHPX = , PX 4 BHRY = , 2Y , 4HX
i %gx E s Y o 7THDOCT = 5, DOCT , AHFCORD = , FCORD , BHSCALE
S L
i1 FORMATL A5 4, I3 , 12X 4 A5 4, I3 , 12X 4, AL , I4 4, 12X , AL
1 12X 9 A7 4 I5 4, 8X 4 AB 4 I&4 , BX 4 AB 4, I3 4 9X)
DOC I = 1 , 7
CALL LETTER(20 s +15 » 0.0 4 11e2 4y 6.0 - I * .2 ,
DISPLAY(2 * T - 1))
ZNDDO
RTTURN
ZND

-

16

SUBRODUTINE OCTANT(X 4 Y o CLKHWHSZ , 0OCT)
I I R I R R R R R e e s L R R E R N T RS E S RN Y
C ' '
C PURPQSE?® DETERMINES WHICH OCTANT THE POINT
C . DESIGNATED BY X,Y IS LOCATED IN
C CALLSS NONE .
C CALLED 3Y? SMLATE
C INPUT S MONE
C QUTPUT NOME
C GLOBAL VARIABLES INHERITEDS Xy Y9 CLKWSE
C GLOBAL VARIAILZS INITIALIZED: OéT - CALCULATED OCTANT
C LOCAL VARIAJLESS NOME
84#&*444#44#4444444444¥¥###444444*#444444;4;4*44#4##444444;4#&44%*4%4%*#

IMPLICIT INTEGZER (A - Y) , RZAL(7)
LOGICAL CLKWS%

IF(X «GTa G
IFCY SGT. 8
X L] [] Y ‘
ocT = 1
ELSE
C SPZCIAL CARE MUST 3E_TAKEN FOR PQINTS ON OCTANT BOUNDARY
IF(X _<EQ. Y oAND. CLKWSE)
ocT = 1
ELSE
ocT = 2
ENDIF :
END IF
ELSE
IFC X JGT._TABSC Y))
IFC Y o20, 0 «AND. { JNOT, CLKWSE))
ocT = 1
ELSE
3CT = 8
END IF
ELSE _
IF(X +EQ. =Y LAND. (.NOT. CLKWSE))
ELSE
ACT = 7
END IF
ENDIF

z6

Y «GTe 0)
IFC IABS(X) +GT. Y)
0CcT = &4
FLSE
IFU X _«EQs O +AN), CLKWSE)
0CT = 2
ORIF({ X +EQes =Y AND. (+NOT., CLKWSE 1})
0CT = 4
ELSE
ocT = 3
ENDIF
INJIF
IFU _IABSC X) GT, IABSI)
IFL Y .EN. «ANDs CLKHWSE)}
OCT = &
ELST
gcrT = 5
ENOIF
ELSE
IFC Y _+«EQe X +AND. CLKWSE)
oCT = 5
ORIF(X «EQs O «AND. (+NOT, CLKWSE))
oCT = 7
ELSC
OCT = 6
ENDIF
£ND IF
ENDIF
IF
URN

£6

SURROQOUTING FINALPT({ QCT 4, FCORD 4 Z0THEPR , ZX2 4 7Y2)
R i I I I T I R R R R Y e R T Y
C
C PURPOSES DETZIRMINZS FINAL ZINDPOINT OF ARC
C CALLS? NONE
C CALLED BY? SMLATE
C INPUT S NONE
C QUTPUT ¢ NONE
C GLOBAL VARIABLES INHZIRITED: ocT , FCORD ,
C . Z0THER = OTHER FINAL COORDINATE
C GLOBAL VARIAILES IMNITIALIZED: 7ZX2472Y2 - FINAL POSITION RELATIVE TO
C ARC CENTER
% LOCAL VARIADBLESS NONE
A IS SRS LR R e R T Iy IR 2

IMPLICIT INTEGER (A - Y) 4, RZIALL Z)
CASE OF { 0OCT)

CASE(1)

2X2 = ZOTHER

Y2 = FCORD
CASE(2)

X2 = FCORD

Y2 = ZOTHER
CASZ(3)

7X2 = «FCORD

ZY2 = Z0THER
CASE(&)

X2 = =Z0THER

ZY2 = FCORD
CASZ(5

X2 = =-ZO0THER

7Y2 = =FCORD
CASE(b)

X2 = «FCORD

I¥Y2 = =-ZOTHER
CASE(7)

ZXe2 = FGCORD

Y2 = -ZOTHER
CASE(8)

ZX2 = ZOTHER
_IY2 = =FCORD
ZND CASc
RZITURN
ZND

76

SUBROUTINEGE INITALE X 4 Y nacrtT)
044%##44#4##4444#4&44#;44444#4¥§vv#&;#v###v&##%;4#4##v%##%#;######a#%##;
c
C PURPOSE INITIALIZES CIRCLE-GENERATING
C VARTABLES
C CALLS?® MAP
c CALLED AY * CIRCLE
C INPUT S NONMEZ
C QUTPUT NONE
C GLOBAL VARIADLES IMNHERITED? Xy YeNOCT
g GLODAL VARIABLES INITIALIZED: - g%eggNAL MOVE IF GV 0 ELSE

=

C 251 - ADD TO S AFTER MOVE1
c nsz - ADD TO S AFTZR DIAGONAL
C MOVE
C 0psy - ADD TO DS1 AFTER EVERY
C MOVE § ADD TO DS2 AFTER
C MOVE1L
8 0ps2 - AggFTO DS2 AFTER DIAGONAL

MAVE
C Nnx - ADD TO X AFTER HORIZONTAL
c MOVE
Cc . oy - ADD TO Y AFTER EVERY MOVE
C LOCAL VARIABLES?® DIRECT = IF GT 0y COUNTER~-CLKWISE
C ELSE CLKWISE
8444#444444444;#44444##4v#;#;44%4&444###4444*44#¥4444;5#44#444##444%44#;

IMPLICIT INTZGER (A - Y) 4 RZAL(Z)
/ INSTRX INSTRY , MOVYZQ

COMMON # FLTVYAR /7 S 4 D31 ,.DS2 , DDOSLi , DOS2 , NX , DY
C SEPARATE DIRECTION AIT FROM No&T AND INITIACLIZE DIRECT
IF(DOCT_ .GE. 2%¥15))
DIRECT = =1
D0CT = NOCT - 2%+%15
ZLSE
C TRANSFCRM X,Y TO COORDINATES OF INITIAL POSITION W.R.T, ARC CENTER
Y = =Y
C MAP X, Y, DI2ZCT INTO FIRST OCTANT
CALL'MAP(X,Y , DIPZCT)

66

IFA(

i

\

ORNDING T0O

NDIRECTION

96

IHMPLICIT INTEGER (A - Y)

SUBEQUTINE MAP{ X , Y , DIRECT
C¥¥¥¥‘V-+¥##4##4-\‘44%#4#4#%‘#4#44‘\‘4%‘3#444
C .

c PURPOSE

C

€

¢

C

C

¢ CALLS3:

¢ CALLED 8Y3

c INPUTS

c QUTPUT:

c GLOBAL VARIABLES INHERITED:
c GLOBAL VARIAILES IMITIALIZED:
c

c

¢

¢ LOCAL VARIABLESS

¢

)
N I I T E Y Y e P

MAPS X,Y AND DIRECT FROM THE START~-

ING OCTANT INTC THE FIRST OCTANT.

THZ INVERSE TRANSFORM IS APPLIZD

TO MOVEL,INSTRX, INSTRY TO MAP THE

ACTUAL MOVEMENT FROM FIRST TO START~-

ING OCTANT.

NOME

INITAL

NONE

NOME

Xy Yy DIRECT

INSTRX - Igzgaucrzou FOR HORIZONTAL
| M

INSTRY - INSTR FOR VERTICAL MOVE

MOVEL - YALUE OF 1 i VERTICAL HOVE

2 % HORIZONTAL MOVE
XYFLAG , TEMP

P R B Y I I Y I I I I R Y RNy ¥

REALL Z)

COMHON 7 MOVE 7 INSTRX , INSTRY , MOVE1

LOGICAL_XYFLAG

XYFLAG
C SET INSTRX, I
C MEANS DECREMENT
IF(DIRECT GT. 0)
INSTRX = =-%
INSTRY = 1§
ZLSE
INSTRX = 1
INSTRY = -4
ZNDIF
C REFLZCT X4Y,DIRECT IN LINE Y =
IF(TAASTO Y) .6T. IABSH{ X
TJEMP = ¥
Y = X
X = TEMP
DIRECT = =-DIRECT
INDIF

«FAL)
haT&Y AS IF IN FIRST OCTANT, GT 0 MEANS INCREMENT , LT O

f {F MECESSARY

L6

E 4]
[Ad]
n
~—

INST:

REFL

O
L]
B
T

i
>x Mo

~A

I~

[LR S}

MmO
-

moe =z

o~ q

-~ 3

O <

O
MXH T-Z XXTMHZV <X
~Z

-4
M= MW

-

o <

O -

XD AX -0

[V
e < M=

-

DN
M-

™

QG .

= R NMZZ

N

Do
v
£

LR

® =4

R

A
om

<o

CT AND INSTRY,INSTRY IN LINE
)

-z
> OV
1) -
OX
e Pat

ND INSTR)D)INSTRY IN LINE

NSTRY,HOVEL IN LINS Y = X

X «EQe INSTRY)
= =INSTRY
= =INSTRX

86

SUBRQUTINE D2AWC(X , Y 4 DOCT 4 FCORD 4 PX 4, PY)
CVHV"“V- PRV L ERLERER BV LELPRLIRRERNRETRRCELRE RSPV ERRLE AR RERRRERERRERR R
¢ ,
¢ PURPOSE $ GENERATES THZ CONTIGUOUS SET OF GRID
¢ POINTS WHICH BEST REPRESENT ARC
c CALLS? OVEPT ,DIAG,SQUARE
¢ CALLED 3V CI RGLE
¢ INPUT S NONE
¢ JUTPUT _ NONE
¢ GLOBAL VARIAALES INHERITED: X,Y,MOYELl,S,DS1,052,0DS1,DDS2,0X,0Y
c - - ndct,Fcorh, PX, oY
¢ GLOBAL VARIABLES INITIALIZED! NOMNE
¢ LOCAL VARIARLE St AZSTPT = 1 % VERTICAL MOVE
¢ 2 t YORTZONTAL MO
C 3 ¢ DIAGONAL MOVE
R R e R L

IMPLICIT INTEGER { A - Y) , RZIALL Z)
COMMON / MOVE / ;NSTRX » INSTRY , MOVE1L

COMMON / PLTYAR S 4 DSt , DS2 , DDSt , DOSZ2 , OX 4 DY
COMMON / VZIRSTC / SCALE)
C TEST IF STARTING MOVE CROSSES OCTANT BOUNDARY
IFL Y + DY GTe X +ORe Y + DY LT, 0)
DgCT = 00CT ¢ 1 '
ZNDI
C GENZRATE POINTS SEQUENTIALLY THRQOUGH INCREMENTAL CALCULATIONS
UNT%L(SOCTD§LE. 0 «AND. Y +EQe. FCORD)
= 'S
C TEST FOR OCTANT CHANGE, FORCE Xo,Y TO REMAIN IN FIRST OCTANT
IFC Y GT. X)
CALL DIAG(DOCT 4 X 4y Y)
ORIF({ Y LT. 0) A
CALL SQUAREZ(DOCT 4, X 5, Y)
ORIFI Y .,ENQe X AND. S .GT, 0)
B=STPT = 3
CaLL MOVEPY(RESTPT , PX 4 PY)
CALL DIAG(DOCT 4 X 4 Y)
_ GNDIF
C CHOOSE .BEST NEXT PQINT
IFUL S .GT, 0)
NESTPT = 3
S = S ¢ 0S?2
D32 = D32 ¢+ DAS2
X = X ¢ DX
ZLSE

66

C MOVEL I3 A VIRTICAL OR HORIZCNTAL MIVE
AESTPT = MOVDL
S = S ¢+ DSt
nseg = 082 ¢ NNS1
ZNDIF
NSt = D0S1 + DDS1
CALL MOVEPT({ BESTPT 4, PX 4 PY)
IND UNTIL
TITURMN
TND
SUBROUTINE HOVEPT(BESTPT , PX , PY)
C##l'l-###-!###\‘44'.’-44\‘4-\“@V-%##4#4#4'-##4¥¥¥44¥4¥¥44¥#4¥4¥4¥¥¥¥¥¥¥¥¥¥¥4¥4¥¥¥¥¥
C
C PURPQJSE: PERFORMS INCRE MENTAL MOVE FROM PX,°PY
C AND PLACES DOT ON GRID
C CALLSYS SeaT
(o CALLED BY ¢ BRAWC
C InNPUT 2 NONE
Cc ouUTPUT S VERSATEC PLOTTER
C GLOBAL VARIABLES INHERITEDS AESTPTyPX, PYHy INSTRXy INSTRY, SCALE
C GLOBAL VARIABLES INIVIALIZED: NONE
C LOCAL YARIANDLES: NONZ
8444##44*&44#44;44#44!’&4#’444;;44*!44#4444:Hw-«w&#¥¥¥¥4;¥¥444444444¥4¥444$
IMPLICIT INVTEGER (A - Y) o, REALC Z)
COMMON / MOVE / INSTRX , INSTRY , MOVEL
COMHMON /7 VERSTC / SCALE
C IF BIT ZR0 0OF BESTPT IS SET 4 MOVE VERTICALLY ACCOROING TQ INSTRY
IF{ ANDC CcaMPL{ MASK(59)}) 4, BESTPT) .NE., 0
IFC INSTRY 6T, 0)
PY = PY + 1
ELSE
PY = PY =~ 1
ENDIF
ZNDIF
C IF AIT ONE OF BESTPT IS SET, MOVE ORIZONTALLY ACCORDING TO INSTRYX
IF(AMNDC SHIFT(coMpL(MASK(59) 1 s BESTPT) NEWL 0)
“IFC INSTRX .6GT. 0)
PYX = PX + 1
EL.SE
PX = PX - §
ENDIF
INDIF
C PLACE DOQT
CALL SPOT(PX * ,005 ¥ SCALE - .01 o PY * SCALEZ = ,005 - .01 4 .02
1 1H* 4, 0.0

001

SUBRIUTING DIAGL N0CT 4 X Y)
C¥444@44&*4#44&444**####4444444454%&%44;44uu4¥4;$#4¥¥¥#44##4444444&44#44
C
C PURPQOSES DIAGONAL OCTANT CHANGE
C CALLS? REVERS
C CALLED 3Y3 NRAWC
c INPUT S NONE
C QUTPUTS NONE
C GLOBAL VARIABLES INHERITED? MOVE Ly INSTRXyINSTRYyNDOCT 4 X9Y,S,DS1,
C NsS2,0051,0NS2,0X,0Y
C GLORAL VARIAALES INITIALIZEM: NONE
C LOCAL VARIABLESS NONE
854;#;&44444¥%¥4##&*4444&&#;44444444&44&4##%4*4##444444;%44444%#44444#44

IMPLICIT INTEGER (& = Y) o REAL(Z)
COMAON / MOVE 7 INSTRX o INSTRY', MOVE1
COMMON 7/ PLTVAR 7/ 8 , DS1 , DS2 » DOSi , DDS2 , DX , DY

C FLIP H
a 0R(MOVEL , 3)
C REVERS

e
[y

m
Hii<orm
o
tmu

TIINDI'D‘<OUUDQDW<403
w

VIV | W MO
oo

[U TR aST o
[T

O+ 0T
OO0 XXt v+ wv

==
oD
o»=<

C DECR

-
it

NT CHANGE COUNT
T 1

ZMOZX =XxXIJIDWwWw
=
A
Z K

oO—-OMu
-

101

SUBRAUTINE SNUAREZ(DOCT X Y)
C;u%###%#%#####4##444#4¥¥4¥¥4¥£¥¥#&4¥¥¥¥¥¥4¥444*¥¥#¥¥¥¥¥F¥#¥¥¥¥4¥4¥¥§4¥4
C .

C PURPQOSE® >QUAQE OCTANT CHANGE

C .CALLSt REVEZRS

C CALLED BY? DRANC

C INPUT2 NONE

C oQUTPUT 3 NOME

C GLOBAL VARIAGLES INHERITED: Xe Yo DOCT,MOVZL, INSTRX,y INSTRY, S, NS,
C 290DS1,0D0S2,0X,DY

C GLOJAL VARTAASBLES INITIALIZZD: NONE

C LOCAL VARIABLESS NONE
844¢#44444¥4¥¥¥4*%4;&#;#444#4;&4%4##44444##44#444%#%;#444%444&4¥4444#44;

IMPLICIYT INTEGER (A - Y) , RIAL(Z)
COMMON / MOVE / INSTRX 4, INSTRY , MOVEZ YL
COMHON / FLTVAR /7 S , DSt , DS2 , DDS1 , DOS2 , DX & DY

C FLIP DIAGOMAL MOVE
IF{ MOVEL .EQ. 1)
INSTRX = =-INSTRX.
ZLSE
INSTRY = ~-INSTRY
ZNDIF
C REVERSE PRESINT DIRECTION
S = ~§ = 2% X+ 1
0S1 = D51 + 6
DS2 = D32 + 10
nNdS1L = -D0S1
0082 = -DO0S2
X = =-0X
aYy = =-0¥Y
Y =Y « 2 ¥ DY
C DECRZMENT OCTANT CHANGE COUNT
0OCT = DOCT - 1
RFBURN
<N

201

P I I I I R I I T YRR Y PR PRy

Z -~
-d (e o]
[4 g =
=T 1w - <<
L T < (73]
D= 4 ZTwe
= Z e 1 w-Z
Cey T Z0NWN L
O O A Wedb- -

C OLHNOIZWEZ Zy0
Zh O T WD ebb-_J
-Ta = aVndICCH0.
=~ = QAW <IHAQC o
< G TN~
CITNC =D Ixoca=
i O T e —
T T 20O<IWNHLIWO O
HIN e I T HIWITOWR
U CXay NN - e
Otul w o La>
Ebepp = o0 OUVN~LIOWNA
C e e Nk O <
L A O b HOW X N D= W T
Zhe OXHHOOTZOUI™ »
TO ZCLH =OOW >
aolt S 7R ¢ N> Y - >
b e bt UL TN=AY < =
Hd N0 D2 -
¥ ENLICIULY OooOoOX >
Ot b Db e > _Jib=D N >
X ZICOOTUL I D= - -
- QU N A Y D >
IS ==Y OCTCW-G o
OUZTITAOcCN LT
ZAuiO ITHOLWVMAXYOD
<IN VINQOC

. oy
S LI
. (on >><g
s .o >
oD e b-_Jd
N DI <L
P DU bl o 1§ o0] penll - 4
LA -QO0
<CILZIDIL0
QOORHOWLL I

PURPOS

COOCLOLLLLOLVLLLLLLOLLLLL

Lol
~
NO
= Q
bl T3]
- » b
<< <f -
LD - -
oo Q>
—_ N>=ui> S
o ZDD> >
< O ()
-t e T -
-~ OX<£
> I > X
CCV: c >
t X JdH Z 8
o<t whd

E /1

LIN

ST
{
U
v

]S] n
¥ wvwoxzao
-l

IHMPLICIT INTEGER

OMMON / MOV
COHUMON / VERSTC

AD STRAIGH

C DRAHA

~
[

I TS RIS R R R R R I SR N
£

C GENE

CR

C END

L PLO

c

o320 130 e
(=i Lo - E-Q - 4TRES 45 4 s
nb QXoOOCOONLI

103

http:OISCR.ET

SUIROUTINE READV(PX o PY o VX , VY)
C¥~¥¥¥¥1~4 ¥#¥#¥¥¥¥¥44¥’§4¥4¥ PSR PR B EREEFRSELIRER S FEEEEEEE WL REEREERETEEE P ERE
¢
¢ PURPOSE S READS LINZ SEGMENT SPECIFICATIONS
¢ CALLS: NONE
c CALLED 3Y 32 VECTOR
¢ INPUT 2 PXIPY VX, VY
C aquTPUT: NONE
c GLOBAL VARIABLES INHERITED: NONE
¢ GLOBAL VARIABLCES INITIALIZED: PX,PY - THZ INITIAL GRIOD POSITION
¢ IN UNLTS OF DOTS FROM THE
c ORIGIN AT THE LOWER LEFT
¢ HAND CORMER.
¢ VX,VY - THE DISPLACEMENT, IN DOTS,
¢ OF THE FINAL GPID POSITION
¢ FROM PXyPY o THE LINZ
C SEGMENT IS DRAWN FROM THE
¢ INITIAL TO FINAL GRID
¢ POSITION
¢ LOCAL VARIABLES: | NONE
C¥¥V~¥¥¥ I TS ISR RS RREFZEIIISIESESS SRR SS SRR RS PRSP R SRR R RS SRR RS RS R R R R RS EE RS R LR S Y

IMPLICIT INTEGER (A - Y) 4, REAL(Z)
RTAD* 5, PX o PY 5 VX o VY
“'_T)URN

A
(A)

-

701

SUBPOUTINE SULATV(PX , PY 4 UX , VY)
C¥¥#‘$¥44%‘¥¥¥¥4¥¥~.’.‘-&‘-\'~V~V~¥¥4¥ RPE VP EFE R EL YRR ERE R ORI REEREREREERE LR
b
C DURPOSE 3 PLOTS GRIOD AND LINE SEGMENT ON
C VERSATEQ
c CALLS? PLOT,LETTER
c CALLED AY3 VECTOR
¢ INPUT S SCALE
¢ OUTPUT: VERSATEC PLOT
c GLORAL VARIADLES INHERITEN: PX,PYyUX, V¥ ~ _
C GLODAL VARIANLES INITIALIZED: SCAL= - ' MNUMBER OF FINEST VERSATZC
G , DIVISIONS TO FINEST GRID
C NIVISION -

8 LOCAL VARIABLESS ZX2ZY,DISPLAY,I
C¥¥¥V~4¥-###44#4*¥4¥¥¥¥¥¥¥¥¥4¥4¥4¥¥¥¥4¥¥¥¥¥¥¥4¥¥-¥¥¥¥44¥¥4¥$¥¥¥¥¥¥¥4¥4#¥4¥¥

IHPLICIT INTEGER (A = Y) , RZAL(Z)

COMUAON / VERGTC / SCALE

OIFENSTON DISPLAY(10)

RZAD* , SCALZ
C DRAW VERTICAL GRID LINES

UNTILL ZX oGTe 1044) |

CALL PLOTC 7X 5, 0.0 4, 3)
CALL PLOT(7ZX 4, 10l 4 2)
IX = 7% + (<005 # SCALE)

END UNTIL
c anw7¢oaxgogrAL GRID LINES

UNTILL ZY oGTe 1044)

CALL PLOT(De0 9 ZY 4 3)
CALL PLOT(10+ » ZY 4 2)
IY = ZY ¢ (.005 * SCALE)

ZND UNTIL
C DRAW LINE SEGMENT USING VERSATEC ROUTINES

CALL PLOT(PX * ,005 * SCALE , PY * ,005 * SCALE , 3)

CALL PLOT(("PX ¢7VX) * 7,305 * SCALE » (PY + VY) * ,005 * SCALE

-1- o, !
C PRINT DISPLAY INFORMATION ON VERSATEC PLOT
INCODE(100 4 1 o DISPLAY) S5HPX = , PX 5 SHPY = , PY , GHUX = ,
1UX 4 SHVY = 4 VY , BHSCALE = o SCALE
1 FORMATU(AS 4 I3 » 12X s AB , I3 » 12X » A5 , I3 , 12X » AS , I3 ,
1 12X 4 A8 , I3, aX)
D0 I =1 4, 5
Lo cALL &E}TfR(20 » o145 4 D0 5 1162 o+ 548 = I * ,2 4 DISPLAY(2

SNNDO

RZTI RN

=MD

G0t

SUBROUTINE MAPY(L VX , VY
C%"F####-‘}-\"évi‘#%#4444%‘4##4-\‘\’-%#44
C
C PURPOSE S
Cc
c
Cc
C
C CALLS:
c CALLED BY:*
Cc INPUT:
C QuUTPYT ¢ .
C GLOJAL VARIABLES INHERITEDS
8 GLOTJAL VARIAALES INITIALIZED:
c
8
g LOCAL VAP IABLES?
c

IMPLICIT INTEGER (A = Y)}
IF(VX «GE. 0
IhSTRX = 1

NSTRX = =i
= -VX

+GE. 0)
TRY = 1

1
r
wn
OHCTHMM)

—tiii
-~ M
A0 <XKXMOKANI<KZ Z<TIX

(R3]
N =0

v =<
¥

-~
]
]
<
-

€ MOVE

e U]
-n
-0

6Ty VX)

[N}
-
<D
it oM m
[es
L LN 1
m=
= <
v xP

O—=H0 W

CHIMS <D
<
m
|
1]
n

=

TSI
Zinz

HEZZNZ0MmM0OMH -~

ZXO00mMomzZOZ I

e ZZOTZT Y=ttt
- ST M-

A =<
>
'

—
=
19}

prd
o
oy
m
-
]

TEMP

)
L Y I I Y I Iy Ry Y N Y Y T

COORDINATES VX,VY ARE MAPPZD

EQUIVALENTS IN THE FIRST
TRX y INSTRY , MOVEL ARE

S
g ACCORDING TO REAL

F MQOT ION

INSTRUCTION FOR

HORI ZONTAL MOVE

INSTR FOR VERTICAL MOVE
VALUZ OF 1% VERTICAL MOVZ
232 HORIZONTAL MOVE

Y Ty T E I Iy Y IS I SR RNy

REZAL(Z)
COMHMON 7/ MOVZ / INSTRX 4 INSTRY , MOVE1

C INITIALIZE INSTRX, INSTRY - 6T 0 MEANS INCREMENT , LT 0 MEANS DECREMINT

SPJNNS TO MOTION IM DIRECTION OF GREATEST CHANGE

901

o

QOOOOOOOOOOOOOOO0O0O00

o]

lole

O -

—
—

SUBROUTING D2AWV X PY o VX 5 VY)
P IRy N S Y Y Y Y R Y ST IR YT R R P Y S X T
PURPQSE ¢ GENERATES THE SET OF CONTIGUOUS
GRID POINTS WHICH 3EST REPRESENTS
THE LINE SEGMENT
CALLS: MOVE 2T
CALLED RAY:2 ECTOR
INPUT NONE
QUTPYT ¢ NOME
GLOJAL VARIABLES INHERITEDS PXyPYyUXy VY4 MOVEL, INSTRY
GLOBAL VARIABLZS INITIALIZED: NONE _
LOCAL VARIABLESS D - NDIAGONAL MOvE IF GT Q0
ELSE MOVzl _)
0D1L - ADD TO D FTER MOVEQ
bpe - AOD TO FTER NIAGONAL
MOVE
BESTPT - 0¢ NC MOVE
1t VERTICAL MOVZ
2% HORIZONTAL MOVE
2% DIAGONAL MOVZE
R T Y T R R Y IR Y Y

IMPLICYIT INTEGER (A Y) o RzZAL(Z)

COMMON /s MOVEZ / INSTRX o INSTRY , MOVEL
COMMON / VERSTC / SscaLgZ
TEST FOR GENEQATION OF A SINGLE POINT
IFC VX «Z2Qs G). :
PESTPT = 0
_LSEALL MOVEPT(BESTPT o PX o PY)
GENZRATE CONTIGUOUS POINTS SEQUENTTALLY THROUGH INCREMENTAL
CALCULATIONS
DD1 = 2 * vy
0D = 0D - VX
DD2 = D - VX
FUDGE TO ENSURE SAMZI POINTS CHOSZINM DRAWING FORWARDS AND BACKWARDS
IF{ INSTRY ,LT,
.. D =D ¢ 1
eNDIF
UNTIL(VX JLEe O)
IFC O .GT. 3)
D=0 +« NDND2
BLZSTPT = 3
ELSE
0. =0 ¢« DD1

L01

108

N
32
i

(L 41T

0
1
a

-—

N30

41

ILNN ON2
T = XA = XA
(Ad * Xd * 1diS3E)LdIAOH 1TVD
, 4I0N3

RE N IRE
IAOW TVINIZIGOK ¥O AVUIlaZA v ST T3A0M

3

APPENDIX B

Sample Microprogram

Working variables are mapped into tﬁe R/W part of the
internal register file as shown below. The global variables are
used in the implementation of both dréwing instructions. The local
variables are those which are local to either CIRCLE or VECTOR.

Global Variables

Register (R/W) Variable
1 POSITN
2 BTMSK
3 EVODD
4 MODE
5 PATERN
6 PSCALE
7 PATPOS
8 SCLPOS
9 INSTRX

10 INSTRY
11 MOVEIL
12 BESTPT
13 ADDR

14 ' MAPWRD

Local Variables

Register (R/W) Variable

VECTOR , CIRCLE
15 VX ' X
16 VY . Y
17 : D DOCT
18 ‘ DD1 FCORD
19 DD2 DIRECT
20 - XYFLAG
21 : - s
22 - DS1
23 - DS2
24 - DDS1

109

110

Register (R/W) Variable
VECTOR CIRCLE
25 - DDS2
26 - DX
27 - DY .
28 - -
29 - -
30 ' - -
31 - -
32 - -

The following constants are stored in the 16 register

ROM part of the internal register file.

Register (Read-Only) Constant
1 width
2 gphevn
3 gphodd
4 215
5 2
6 3
7 4
8 1
9 10

10 length
11 -
12 -
13 -
14 -
15 -
16 -

With the exception of the ADDR and MAPWRD, definitions for
the above variables and constants can be found in appendix A or im
chapter 4. ADDR is a bit map address and MAPWRD, a bit map word.

The following routine is representative of the graphics
controller firmware. The routine (DRAWC) is invoked during the
execution of a CIRCLE instruction. It generates the contiguous set
of grid points which best represents the specified circle segment.

For comparison, see the corresponding IFTRAN version in appendix A.

111

Note that in the following, the data bus interface and bit
map interface fields are not shown as a part of each microinstruction.
During the entire routine, these fields remain fixed at their default

values as is discussed in chapter 3.

112

Jado, weﬁkmm_u
anom wd:owa% R L I ‘ m

. 2 how ?;oﬂe..« v
*s..ou *.n..os #fua 8004

+<.¢mﬂvo +ws._uv wy

w..x)03 « DIUOYD +$(T0 AGY ﬂ.v.—
uatjrpuar w:..*.,.c..issb
s quied wwf?;;aw waym deoy

A.;dqcc..oﬁ

+¢dﬁo 5355032 AWM ff..w.

, X ﬁ...a; % “o iy x
SR : Yopitoy WA 3 9
, DAy ﬂ;a : X
‘ S Lot oevag oy ob | alug] «| ~ [aen] 1] wor 5 {Laseeag] x | o] asa| o
*.s.;.I 2 8 1804 F 156 =16d | x [22Yvng| x [N o [Wargis] (dmey] x| x jom| era] b
C 1648 4 334 =354 | x |sry{smy| ¢ SN} O Wiyt » x| %] x| el gl
) . {68 t¢ =5 x [veg]end) % [SN] o] “Iryis »x a | %= WMoa| it
R b2 2waq 94 % L xaaxax | x|sulow| # jon| o warvas]vzraceg) x| xf x| d23] oy
2644 £ 258 2256 | » [Sey|sn| x eN| o] Wi yss < x {2 | < | yuoa| iy
: . 260 44 2¢ [x |2y X o] o] Ut uks 3 x 1% | x| yvea| 2t
. ¢ % & 2 Hied9 | «jNaa| xfsn] o heel]] x| ¢ | el 43
vinow 2jdieag | L7 4 weoag o 05 0T Sa 3l | x [yl vy| v [N 0| Wy |uzhamesg) o B feon) Geal 7
e o 27f e | ox fdon}) Wit s 05 x | x| <f) m
: ‘ wd“.m Weo x| x| <] =fgnN]| % x wdmo A1 lomf ¢rsf ot
}danow m.cu v Ex 350 q | x|uv|ao] xisN] o] “auy ydonelgl x| 2 Lam] s e
2420734 2% 0% o % xuf I | x| > x] feon]| ~ * aamesg | 2] as] aes] e
! 12haee3g a3 0% 0% $- 4 1 |arglsryl = faon] v [worvey-s{veasewg] o [%m] as] s nt
g 12k 2medq o 0% falxfae | xipn] x x romgl x| x [em| apa] a
s0vbs qpoy | < |k | %] e few | x % savmbs | < b x [ew] epal s
L1} ameag 9} o% 0T h A gl x|« laen] vy g | B aamad] o [Tu] €2] as> A
Ve 4 el oy ob x) x| x| x |gon] » x tzb2owfl x [.w [4m] are it
wiowaa ol Yorg oo | ow | x| x| o [aon]| x x Tota| x| 2 jom| seaf v
F)+ Atng oy 08 02 A-x st | zfaw| x| x[am}o Ywore | A4 omosgl 5 [P daf a1s nk
. A1 M| x [daN] VI Fiy-g > ¥ | x|] o ol k
P IR 2P NS N > |avgjLnf x [N} o Wy¥yis » w | vl w| 1poe bh
. Vangay 0yord 2k A Sl v | w] xjdmwi x X 3 Z {s0d] ar] Wiy Fes
b +omug oy 0% 0% 170 51 | g {evs| x Jaowl ¥ [worry-s [b+ eveag] ¢ [sedf s3] gz b
3| v * JaONT ¢ b N s ¥ » x w | ana2 9t
' V1204 = 1000 I IEEER us kg % PREE KRSV st
9420vi8 9} 0% 07 Y- v A x|]l x{en| ¥ x A+amerg]| & [Bv] 2] a2 b
, 94 3evid ot o8 4 1h 1m0 =1000 | x Lyl e {2 Jon]| 1] va s |9 avewsa] x [x fom| arof <
LRI ALY ¥ ramvrg op o 02 Tey A g ety is] x Jsn | V] wortes~y| $ 4 omugl g |%dfea] apd 2t
MG b 2Ry a2ty AL x SN] o} “oasey x x }x | x] ana> e
R4] x |9yl % fsn] o vy 4y > se | % | %] imos] Imesg
~
. u:._ o > WJ .M...d M
o "' © " ‘.__ LR - W/W
. R EE N N
i ; E B x) Bond Bt B I &3
P ! L5 Y) +[3 s)
: : Bl & ..wo 5 P = o . -
& Fa 3 5 ~ ho
hl /u\ P ~
s 3
3
[sppu by [spimis sesusmies jespuf

UOT3eI9UsD) ©[OATO BUuTINg PONOAUI -~ OMVId

	Structure Bookmarks

