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ABSTRACT 

The design of a flexible, high speed, raster scan graphics 

terminal is presented. The design is presented in general architec­

tural terms rather than from a detailed circuitry point of view. 

Control is divided between the 'main' microprocessor, an 

Intel 8086, and a subservient graphics controller which consists of 

a microprogrammable, bit-sliced, AM2903/2910 special purpose micro­

processor. The high speed graphics controller is microprogrammed 

to accept basic line and circle generating corrunands. The configu­

ration is felt to represent an efficient balance between simplicity 

and speed. 
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CHAPTER 1 

INTRODUCTION 

Computers speak a language of bits, bytes, and registers. Man 

is more fluent with sketches, words, graphs, tables and digits. Each 

member of this unlikely pair, man and computer, can be indispensable 

to the solving of a problem at hand. Man is needed for his creative 

intuition and judgement. The computer is unmatched in its raw speed, 

its ability to remember large quantities of data, and in its willing­

ness to perform simple repetitive tasks. In situations which require 

talents from both of the above categories, the interactive video 

graphics terminal provides a natural man-computer interface. Its 

usefulness is a:s an interpreter in the dialogue between man and 

machine. The development of this role has led to a wide range of 

computer graphics applications in fields ranging from engineering design 

to mathematical analysis to business data processing. 

I. 1 Cathode Ray Tubes 

At the heart of modern interactive graphics terminals, is the 

cathode ray tube (CRT). A CRT is large pear shaped tube which has been 

pumped free of air and closed off. At the narrow neck end of the tube 

there is an electron gun from which a continuous beam of electrons may 

be caused to emanate. At the other end of a tube there is a phosphorus 

display screen onto which the electron beam is focused. As electrons 

hit the screen and for a time afterwards, the phosphor glows and a spot 

of light is seen. The colour of this light depends on the type of 

phosphor used. 
1 
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The electron beam is focused onto any point on the screen through 

the application of the proper 'horizontal deflection' and 'vertical 

deflection' analogue input signals. A third input signal controls the 

intensity of the beam and thus, indirectly, the intensity of the resulting 

screen dot. The range of this control includes the situation where the 

electron gun is turned off and there is no electron beam. 

Interactive graphics terminals exchange information with a user 

on the one hand, and a 'host' computer on the other. Much of the 

information which is received from the user is passed on to the host 

computer. Information received from the host computer is translated, 

by the graphics terminal, into corresponding CRT beam control input 

signals. These signals, in turn, cause a visual image to be generated 

on the face of the CRT screen. In this way, the user and host computer 

communicate indirectly via the visual display. 

Since phosphor glows for only a short time after the termination 

of an electron bombardment, CRT images are transient and need to be 

regenerated regularly in order to obtain a steady and coherent picture. 

The so called refresh rate is usually 30-60 Hz, depending on the type of 

phosphor used. Refresh rates which are too low cause an annoying 

'flicker' whereby the display is noticeably discontinuous in time. 

I. 2 Controlling CRT Displays 

Two distinctive methods for generating and manipulating CRT 

displays have evolved. There are, accordingly, two general types of 

interactive graphics terminals, the directed beam terminals and the 

raster scan terminals. With directed beam terminals, digital display 

data is converted into analogue waveforms which are used to drive the 
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horizontal deflection and vertical deflection inputs of the CRT. As 

a result, the electron beam is directed, under program control, about the 

display screen. By controlling when the electron beam is on and when it 

is off, continuous or discontinuous outlines of display imageB are traced 

onto the screen. The approach yields good line quality. 

With directed beam refresh terminals, the flicker problem 

ultimately results in an upper limit to the amount of information which 

can be displayed. The display must be simple enough that it can be 

completely generated in the time between two successive screen refreshes. 

High speed, but expensive, vector generators can be used to raise the 

image complexity limit. 

Alternatively, some directed beam terminals use storage tubes 

which, unlike conventional CRT's, do not require that the image be 

refreshed. While this strategy eliminates flicker problems, storage 

tubes are expensive, inherently less bright, and wear out much more 

quickly than refresh CRT 1 s. A further disadvantage is that the entire 

screen must be erased in order to delete any part of the picture. 

With raster scan terminals, the screen is treated as a 

rectangular mesh of defineable dot positions. For example, a screen 

may be characterized by a matrix of 500 x 600 discrete positions. A 

graphics display is composed of the complete set of defineable dots, 

each of which is either bright or dark according to the specifications 

of a bit map. This bit map is maintained in an internal memory and is 

such that each bit in the map corresponds to a single screen position. 

During each screen refresh, the contents of the bit map are mapped onto 

the screen. Since the bit map is commonly maintained in random access 

read/write memory, the image can be selectively modified by simply 
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changing the contents of the bit map. 

The words 'raster scan' refer to the manner in which the infor­

mation contained in the bit map is mapped onto the display screen. The 

term, raster, refers to the complete set of horizontal lines defined by 

the discrete screen positions. Each raster line consists of a separate 

row of screen dots. At the start of each screen refresh, a new scan of 

the raster is begun. Starting with the electron beam focused on the 

top leftmost screen position, the beam is automatically made to scan 

through each raster line, in turn, from left to right. Upon reaching 

the end of each line, the leftmost dot of the next line down is selected 

as the starting position for the next horizontal scan. Upon reaching 

the bottom line, the beam is once again directed to the top raster line 

in preparation for the next screen refresh. 

As the raster is scanned, the corresponding bits in the bit map 

are accessed, in sequence, and used as ON/OFF input signals for the 

electron gun. During the course of a complete raster scan, each bit in 

the bit map is accessed exactly once and used momentarily as the electron 

gun ON/OFF input signal. For each bit, this occurs at the precise 

moment that the electron gun is focused at the bit's corresponding 

screen position. In this manner, the information contained in the bit 

map is transformed into the graphics display. 

For a time, the directed beam storage-tube terminals represented 

the only choice in relatively low cost graphics terminals. Memory 

prices rendered raster scan graphics impractical. With the advent of 

high density, inexpensive semiconductor memories, however, raster scan 

graphics terminals have become an economically attractive, alternative, 
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low-cost terminal. The more expensive refresh directed beam terminals 

remain uniquely useful in situations which require high speed and good 

line quality. 

I. 3 Design Proposal 

This report presents the design of a raster scan graphics terminal. 

In this design, commercially available LSI chips and, in particular, 

microprocessors are used to control the terminal. The graphics processing 

is distributed amongst two microprocessors which execute in parallel. 

A microprocessor can be thought of as a programmable logic device which 

can be made to synthesize any sequence of individual logic devices. 

In effect, it corresponds to the CPU of a digital computer. The term, 

microprocessor, usually refers to a single chip CPU although it can be 

extended to include 'bit-sliced' CPU's which consist of several LSI 

chips. 

The control program of a microprocessor is stored in a separate 

memory. It is this program which gives the microprocessor its distinct 

personality. Since the control program is usually stored in Read Only 

Memory (ROM), it is thought of as being more 'firm' than regular soft­

ware. Hence, it is commonly referred to as the control firmware. 

The advantages of microprocessor-based design are several. 

Rather than design special purpose and, in comparison, inflexible hard­

ware, many terminal control functions are easily programmed. The resulting 

firmware can be of a very general nature. Sophisticated, host independent 

capabilities can be programmed into the terminal without any accom­

panying increase in hardware complexity. Furthermore, future additions 

to the firmware are fairly readily accommodated. As more 'intelligence' 
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is built into the terminal, the burden on both the user and the host 

computer is reduced. Finally, the reduction in the number of discrete 

integrated circuits, results in low cost, low maintenance and high 

reliability. 

A price for these benefits is paid for in processing speed. 

Hardwired logic can be made to operate faster than programmed logic. 

This compromise in speed provides the principle motivation for incor­

' 
porating two microprocessors into the design. By distributing the 

graphics processing among two microprocessors rather than one, the 

terminal performance is significantly enhanced. The objective is the 

design of a capable raster scan graphics terminal which is able to keep 

pace with modern host-terminal transmission rates. These rates may be 

as high as 9600 baud (960 characters per second). This means that the 

terminal must be able to process incoming characters at the average 

rate of one character every millisecond. 

In the proposed design, control is divided between the 'main' 

microprocessor, an Intel 8086, and a subservient graphics controller 

which consists of a bit-sliced AM 2903/2910 special purpose microprocessor. 

The main microprocessor supervises the hardware interfaces with the user, 

host computer, display hardware and graphics controller. It sends 

graphic commands to the high speed graphics controller whenever the 

contents of the bit map are to be altered. The configuration is felt 

to represent an efficient balance between simplicity and speed. 

The graphics controller has been referred to as a 'bit-sliced' 

microprocessor. The precise meaning of this terminology shall be made 

clear in chapter 3. For the moment, it suffices to mention two prominent 
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aspects of the bit-sliced technology. Firstly, the bit-sliced approach 

enables the design of a highly specialized CPU specifically equipped 

for the task at hand. Secondly, bit-sliced microprocessors are micropro~ 

grammable. Microprogramming can be thought of as a level of programmable 

control below that provided by machine language. It is, in effect, the 

programming of the control unit of a CPU. It is inherently more 

complicated than regular machine language programming although, as a 

reward, the efficient use of microprogramming techniques can lead to 

further increases in speed. 

In this report, the design is presented in general architectural 

terms rather than from a detailed circuitry point of view. A discussion 

of overall terminal design is followed by a more detailed look at the 

microprogrannnable graphics controller. Finally, algorithms which provide 

basic graphics capabilities are developed. 



CHAPTER 2 


BASIC DESIGN 

The hardware architecture of the video graphics terminal is shown 

in figure 2.1. Control firmware stored in the local memory is referred 

to as the operating system. It is executed by the main microprocessor 

(Intel 8086). Programmable control also resides in a separate control 

store contained in the bit-sliced graphics controller. The two pro­

grammable processors are able to execute in parallel. They provide for 

the basic flexibility of this design. 

At any one time, the video display is entirely defined by the 

digital information contained in both the text memory and graphics bit 

map. The two separate memories are characteristic of the dual graphic 

and text roles of which the terminal is capable. The bit map defines 

the graphic image as described earlier. The text memory enables the 

terminal to act as a conventional alphanumeric terminal as well. The 

contents of the text memory are mapped onto the screen as characters. 

This is accomplished through the use of a character generator. Each 

alphanumeric character can be thought of as consisting of a rectangular 

matrix of dots. Each matrix is identical in size, depending only on 

character height and width. These matrix patterns are stored in the 

character generator and are accessed simply by providing the appropriate 

addresses. 

In a typical application, the user's dialogue with the host 

computer is stored in the text memory while the graphic commands are 

8 
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sent to the graphics controller where they are transformed into graphics 

output to be stored in the bit map. The two independent text and 

graphics memories allow maximum user flexibility. Via the keyboard, 

the user may request that the contents of both memories be displayed 

simultaneously.Alternatively, either of the text or graphics displays 

may be viewed singly. At any moment, the user's dialogue with the host 

may be recalled to the screen for viewing or temporarily dismissed while 

the graphical display is studied. 

II. 1 Five Concurrent Processes 

The normal terminal operation can be understood in terms of five 

concurrent processes. The dialogue process enables communication 

between user, terminal and host computer to take place. The text 

definition and graphics definition processes are responsible for deposit­

ing information into the text memory and bit map respectively. The text 

display and graphics display processes are concerned with mapping this 

information onto the CRT display screen at the proper refresh rate. 

Each of the five processes involves the operating system in some 

manner. The graphics and text display processes are interrupt driven. 

Each time a new frame needs to be displayed, the operating system is 

interrupted and the display process serviced. This is accomplished by 

sending the appropriate starting values to the graphics and text address 

generators. Both display processes then proceed under automatic hard­

ware control. The operating system is free to resume its own processing. 

There are, however, important limitations to this freedom which will be 

discussed later. The 'backgroundt or interrupt-enabled processing, 

consists of either the text definition or graphics definition process. 
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The dialogue process is also interrupt driven. The host computer 

corn.~unications interface issues data transmit and receive interrupts to 

the operating system. The dialogue process services these interrupts. 

The keyboard and other slow input devices which interface with the user, 

are conveniently polled at frame interrupt time, and therefore, do not 

require separate interrupts. It should be noted that part of the graphics 

display process is under control of the bit-sliced graphics controller 

and is independent of the operating system. Each of the five concurrent 

processes will now be described in detail. For these descriptions, the 

reader should refer to figure 2.1. 

II. 1.1 Dialogue Process 

The dialogue process resides in the operating system. It re­

ceives input in the form of ASCII characters from the user via the key­

board. If a received character does not correspond to a local command, 

it is passed onto the host computer where it is interpreted by mainframe 

software. The host computer replies in accordance with its interpretation 

by returning more encoded ASCII characters. These characters are received 

and stored in a character receive buffer in local memory which acts as an 

interface between the dialogue and definition processes. This arrangement 

can be used to afford the user either direct or indirect control over the 

display. Local commands can cause ASCII characters to be plac.ed directly 

in the character receive buffer without their having come from the host 

computer. 

Further dialogue with the user is provided by means of graphical 

input devices. Devices like the joystick, tracker ball, and mouse may 

be interfaced with the terminal (NEW)~ The 'steering' control of these 
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devices results in corresponding digital x and y coordinate values. 

Each input device is polled at the 60Hz frame interrupt rate. Every 

time a new effective x, y screen position is read, a request is issued 

to the graphical display process to change the position of the small 

cross or graphics cursor on the screen. Visual feedback enables the 

user to position the graphics cursor at any addressable point on the 

screen. Proper use of this feature greatly enhances the interaction 

between terminal and user. Among other functions, the user is able to 

specify lines through the use of endpoint positioning. 

Notice the use made by the dialogue process of the 60Hz frame 

interrupt rate. The regularity of this interrupt makes it an effective 

real time clock. As such, it is frequently very useful in controlling 

the several 'rates' which are maintained by the operating system. The 

text cursor 'wink', automatic key repeat, keyboard polling, and text 

scrolling, are among some of the functions which require a real time 

clock. 

II. 1.2 Text Definition Process 

While the dialogue process is filling up the character receive 

buffer, the text definition and graphics definition processes are busy 

emptying it. Control of the text definition process also resides in the 

operating system. The characters which are passed to it are written in 

ASCII form into the text memory. At any one time, several screenfuls 

of alphanumeric text are stored in the text memory. Paging, scrolling 

and text cursor motion are accomplished by changing the first word 

address of the text display. General text editing capabilities may 

also be provided. 
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There are occasions where it is useful to write nonstandard text 

characters onto the screen. Although the standard ASCII character bit 

patterns are stored in ROM and can't be altered, the character generator 

also includes some RAM memory. This provision enables nonstandard 

character sets to be downloaded from the host computer. 

II. 1.3 Graphics Definition Process 

The graphics definition process is organized somewhat differently 

from the text definition process. Although some graphics processing 

is done by the operating system, most is delegated to the high speed 

graphics controller. This is necessary in order to handle situations 

where graphic commands are coming from the host computer at a very high 

rate. Whereas ASCII characters passed to the text definition process 

cause only a few text memory accesses, a character received by the 

graphics definition process may result in the drawing of a vector which 

requires hundreds of bit map accesses. 

Any graphic image may be thought of as being composed of a set 

of vectors between specified points. From this perspective, a minimal 

requirement of the graphics controller is the ability to 'draw' vectors 

which are arbitrarily positioned on the screen. The graphics controller 

reads in the vector command sent by the operating system and then pro­

ceeds to modify the bit map accordingly. Single points are drawn by 

specifying zero length vectors. The graphics controller must also be 

able to 'erase' vectors. This is simply a matter of placing zeros in 

the bit map instead of ones. A complement mode is useful whereby bits 

in the map are 'flipped' rather than set or erased. This feature 

requires that the graphics controller be able to read as well as write 

to the bit map. 
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In many instances, it is desirable to include alphanumeric 

text as an integral part of the graphic display. For example, labels 

to diagrams must remain fixed with respect to the display. Regular text 

from the text memory is scrolled past the graphic display in the con­

ventional manner of alphanumeric terminals. It is clear that the 

character bit patterns must be written directly into the display bit map. 

A convenient arrangement involves translating the bit patterns into 

graphical commands capable of being accepted by the graphics controller. 

This is accomplished by the operating system which reads the bit patterns 

from the character generator, translates them into a series of vector 

instructions, and sends these to the graphics controller. The operating 

system can also perform effective scale, rotating and slanting 

operations on the characters. 

Up until now, the discussion has focused on the depositing of 

the proper display information into the text and graphics memories. 

Now, attention is shifted to getting information out of storage and 

onto the screen. Once every 1/60 sec,two processes are activated, 

whereby, the contents of both storage memories are simultaneously 

mapped onto the CRT screen. 

II. 1.4 Text Display Process 

The text display process will be described first. At the 

beginning of each screen refresh, the operating system sends the first 

word address of the text display to the text address generator. In 

hardware terms, the address generator simply consists of a few counting 

registers and some control logic. It provides the contiguous sequences 

of text memory addresses which correspond to the rows of text. 
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As an example, consider ASCII characters represented in the 

character generator as 16 by 8 dot matrices. Each matrix row is stored 

as a separate byte. The 8 bit ASCII character codes stored in the text 

memory are used as addresses to the corresponding character patterns. 

In order to fully specify a row within a character pattern, a four bit 

quantity must also be provided. Together, the four bit character row 

count and ASCII character code constitute a presentable character 

generator· address. 

Imagine that the CRT screen is wide enough to accommodate 

exactly 80 characters in a row of text. At screen refresh time, the 

character row count is set to zero just as the electron beam is about 

to begin a horizontal trajectory along the top raster. line of the 

terminal screen. The first word address of the text display is inter­

preted as the address of the text memory byte which corresponds to the 

leftmost character of the top text row to be displayed. 

As the electron beam sweeps acrossthe screen, the first raster 

line is displayed by generating a sequence of 80 contiguous text 

memory addresses. This sequence begins with the first word address. 

The result is a sequence of 80 ASCII character codes being presented, 

in combination with the zero valued character row count, as addresses 

to the character generator. The outputs of the character generator are 

just the topmost rows of the specified 80 characters matrix bit 

patterns. These bytes are loaded in sequence into the shift register 

and clocked out at video rate as a serialized bit stream to the 

electron gun. 

Upon reaching the end of its horizontal trajectory, the electron 
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beam is shut off and swung quickly back (horizontal flyback) into 

position for the display of the next raster line. The next raster line 

is displayed by incrementing the character row count by one and 

generating the exact same sequence of text memory addresses. This 

process is continued until all 16 raster lines of the first row of 

text have been displayed. At this time, the row count is reset to 

zero and the first word address is incremented by 80. It now 

corresponds to the first character of the next row of text. When a 

complete screenful of text has been displayed, the electron beam is 

repositioned (vertical flyback) so as to be ready for the next complete 

raster. 

II. 1.5 Graphics Display Process 

The graphics display process is organized in a similar way. 

At the beginning of a screen refresh, the first word address is sent 

to the graphics address generator. The graphics bit map is row-ordered 

so that the raster-scan motion of the electron beam corresponds to 

traversing through contiguous words in the bit map. As a result, the 

graphics display process consists simply of the production, by the 

graphics address generator, of contiguous memory addresses. The bit 

map is read at appropriate intervals and the output is clocked at video 

rate to form a second serial bit stream to the electron gun. 

The two resultant bit streams from the text and graphics dis­

play processes are subject to the same timing constraint. Both streams 

must be such that they can be O~!ed together to form a single digital 

signal representative of both the text and graphics displays. As well, 

depending on the display mode, either of the bit streams may be 
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inhibited. In this way, the display can be made to consist entirely 

of text or entirely of graphics.Alternatively, text and graphics may 

appear together on the screen. 

II. 2 Fully Interlaced Display 

Until now, we have assumed that during each screen refresh, 

all the raster lines are displayed. For television compatibility (HOL), 

a fully interlaced display may be implemented instead. This requires 

that during any screen refresh, only half the raster lines are dis­

played. Consider raster lines to be numbered from the top to the 

bottom of the screen. A fully interlaced display is one which is 

characterized by alternate display frames of only the evenly numbered 

lines and only the oddly numbered lines. 

The implementation of a fully interlaced display has implications 

for both the text and graphics display processes. For example, the 

character row count in the text process is incremented by two during 

each horizontal flyback instead of by one as before. During the 

vertical flyback it is initialized according to the next frame type as 

either zero or one. Perhaps the most significant implications, however, 

has to do with the graphics display process. The simplest way to 

accommodate a fully interlaced display is to split the bit map into two. 

One contains the information for the even raster frames and the other, 

the information for the odd raster frames. The organization of both 

bit maps is still row-ordered. Depending on whether an even or odd 

frame is to be displayed next, the starting graphics display address is 

the first word address of either the even or odd bit maps. 
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II. 3 Hardcopy Dump 

A sixth process may be discerned from the operation of the 

graphics terminal. It is different from the others in that it is only 

infrequently activated at the user's command. This process has to do 

with providing the user with a hardcopy of the graphic image. The 

simplest way to provide this capability is to enable the operating 

system to read the bit map directly. The dual port bit map memory 

shown in figure one affords this access. When a graphics hardcopy is 

desired, the bit map is read by the operating system and sent to the . 
hardcopy plotter. 

Until recently, a problem with this approach has been the 

relatively small address space of available microprocessors. Typically, 

they could address up to only 64 K bytes. The bit map alone may easily 

require 40 K 8 bit bytes. This would leave minimal space for the 

operating system and separate text memory. Use of the recently intro­

duced Intel 8086 is one method of eliminating this problem (MOR). It 

has an addressing capability of 1 M byte. 

II. 4 Process Coupling 

Earlier, passing comment was made on limitations to the 

independence of the display and definition processes. This point is 

now addressed. The six processes which have been discussed, are coupled 

with one another by virtue of their shared resources. The integrity 

of their operation must be carefully guarded by properly ensuring 

mutual exclusion (HAN). A single resource must not be assigned to 

more than one process at the same time. 
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The text definition and text display processes both share 

access to the text memory and character generator. Conflict resolution 

logic is required to prevent memory from being simultaneously accessed. 

A simple solution is to inhibit the main microprocessor from bus access 

except during horizontal and vertical flybacks. With the Intel 8086, 

external bus access is stopped by driving the 'hold' pin high. Simple 

analysis reveals that this restriction on operating system processing 

does not prevent the terminal from operating effectively. 

For example, consider the terminal specifications which are 

presented in table 2.1. A host-terminal transmission rate of 9600 baud 

requires that the terminal be able to process one character every milli­

second. In the processing of a single character by the operating system, 

the dialogue process receives it. The text definition process writes 

it into text memory or interprets it as a text command of some sort. 

Alternatively, if passed to the graphics definition process, it is 

'interpreted', and as a result, information is usually sent to the 

graphics controller. This processing must last, on average, no longer 

than one millisecond. 

One millisecond corresponds to the time required to display 

approximately 15 raster lines. With the operating system processing 

· restricted to horizontal and vertical flybacks, the actual operating 

system processing time is only 225 usec. This corresponds to approx­

imately 625 Intel 8086 instructions which should be more than 

enough to accomplish the processing required. 
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TABLE 2.1 

TYPICAL VIDEO GRAPHICS TERMINAL SPECIFICATIONS 

Resolution 480 x 650 dots 

Frame Interrupts 60 Hz 

Fully Interlaced Display 

Horizontal Electron Beam Scan 53 usec 

Horizontal Flyback 15 usec 

Vertical Flyback 280 usec 

Average Execution Time of 

Intel 8086 Instruction .36 usec 

Objective 9600 Baud (960 char/sec) 

Host-terminal transmission rate or 

approximately 1 character every msec 
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A necessary provision is, of course, that the graphics con­

troller is fast enough. New information can only be sent to the 

graphics controller if it is ready to accept it. The performance of 

the graphics controller will be discussed after the bit-sliced design 

has been looked at in detail. It suffices to say at this point, that 

a basic rationale for the graphics controller is its parallel operation 

with the text and graphic display processes as well as with the 

operating system. Unlike the operating system, it continues to operate 

during the horizontal raster line time. 

To realize this parallelism, special contention logic is re­

quired to administer the sharing of another resource, namely, the 

graphics bit map •. A flag protocol is used to resolve conflicts between 

the graphics controller and graphics display process. The graphics 

display process raises a hardware flag whenever it requires access to 

the bit map. After the access, the flag is lowered until the need 

arises again. The graphics controller must consult this flag before 

every bit map access. If it is raised, it simply waits for it to be 

lowered before proceeding. The flag is raised by the display process 

some time in advance of the actual access. This provides the graphics 

controller with the time to finish any access of its own, which was 

begun before the flag was raised. 

A third process interested in accessing the bit map is the 

graphics hardcopy display process. When a hardcopy plot is being made, 

the graphics definition and graphics display processes are suspended. 

The operating system does this by disabling the visual display and 

secondly, by refusing to send any further commands to the graphics 
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controller. Eventually, the graphics controller, after having finished 

with its last received command, rests in an idle loop. It sets a 

hardware idle flag in order to communicate this idle condition to the 

operating system. The operating system then initiates the bit map 

dump. Since both display processes are disabled, it proceeds without 

competition. 

It should be pointed out that the graphics hardcopy display 

process corresponds to one of only two situations where the operating 

system accesses the bit map directly. In both cases the protocol is 

to disable the visual display and the graphic definition processes. 

If this were not the case, further hardware logic would be required to 

resolve conflicts between the graphics controller and operating system._ 

The other instance where the bit map is accessed by the operating 

system, is during the clearing of the graphic display. The operating 

system does this by loading zeros directly into the bit map. 

Further process coupling involves the dialogue and both 

definition processes. They all share the use of the character receive 

buffer. Since the dialogue process is interrupt driven, the contention 

logic is simple. It consists in momentarily disabling interrupts at 

appropriate places in the definition processes. 

II. 5 Modularity 

As mentioned earlier, the terminal has dual text and graphics 

roles. It is possible to split the hardware design along these lines. 

The dotted lines in figure 2.1 outline the various units which provide 

the terminal with graphics capabilities. These may be incorporated 

into a single functional unit. Essentially, the final product becomes 
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two. A conventional alphanumeric terminal which, when interfaced 

properly with the separate graphics unit, becomes a full fledged 

graphics terminal. 

This flexibility is characteristic of the modular design 

approach. With this approach, a design is broken into relatively 

indepen9ent functional units or modules. The overall design problem 

is then reduced to the proper interfacing of these modular units. The 

details of each module's design are then faced separately. In the light 

of this design concept, it is now appropriate to focus attention on 

the graphics controller. It is this module which comprises the heart 

of the graphics unit. We have discussed its purpose within the context 

of the overall design. Now, it is time to look inside the black box. 



CHAPTER 3 

THE GRAPHICS CONTROLLER 

The graphics controller is designed as a bipolar microprogrammable 

bit-sliced microprocessor. Compared with single-chip MOS microprocessors, 

the bit-sliced bipolar approach represents a fundamentally different 

philosophical direction. The current limitations, associated with 

bipolar technologies, on chip complexity, pin numbers,and chip size, 

dictate that the CPU be implemented on a multichip basis. This is 

realized by splitting the CPU and implementing the control and processing 

units on separate chips. The processing section or arithmetic logic unit 

(ALU) is itself dispersed over several chips. The manner of this 

dispersion is understood by imagining a single ALU which is vertically 

sliced into identical Vbit-slices 1 • These slices operate in parallel 

and may be cascaded to any width which is a multiple of the basic slice. 

The basic slice is usually only two or four bits wide. Although 

inherently less reliable, the use of more chips is justified with the 

increased performance and flexibility. 

Hardware flexibility arises from the fact that the designer 

essentially builds his own customized CPU. The chips can be configured 

to provide a wide variety of digital system architectures. Unconven­

tional word lengths can be provided by simply stacking the desired 

number of bit-sliced ALU chips together. As well, there is the 

programming flexibility which is inherent in the use of a micro­

programmable control unit. The designer may define the systemis 
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instruction set by a program (microprogram) stored in ROM. The 

microinstructions which constitute the microprogram, provide for a very 

low level control over the hardware resources. As such, they can be 

used to implement a very efficient graphical instruction set. 

For our purposes, advantage is taken of this flexibility in 

order to design a special purpose processor. The processor instruc­

tion set is an atypical set designed for the express purpose of mani­

pulating the bit map. Many of these instructions are relatively high 

level and correspond to hundreds of microinstructions. The graphics 

instructions are not fetched from a central memory in the manner of a 

conventional CPU but are received from the main microprocessor. In 

order to see how the graphics controller is realized, it is necessary 

to first introduce some fundamental concepts in microprogramming. 

III. 1 Microprogramming 

The· central processing unit of a computer can be logically 

divided into a control unit and an execution network as shown in 

figure 3.1. The current instruction is contained in the instruction 

register (IR). In general, it requires several clock cycles to execute, 

depending on the particular instruction. The control unit decodes the 

instruction and as a result, emits control signals or commands to the 

execution network. A new set of commands is issued at every clock 

cycle. More precisely, at each cycle, the control unit sends a set 

of 'boolean' signals which defines the behaviour of the components of 

the execution network for the duration of that cycle. This boolean 

command vector can be regarded as a word, the command word. 
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Fig. 3.1: 	 The central processing unit of a computer can be logically 
divided into a control unit and an execution network 
(BOU). 
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Conditional instructions require information concerning the 

current status of the execution network. Such information is generally 

called the condition code (CC). It may, for example, consist of the 

value of a carry, the sign of the last result, or of an overflow status. 

This information is maintained by the execution network and made avail­

able to the control unit at appropriate moments. 

After the current instruction has been executed, the control 

unit issues a sequence of co:mmand words which cause the next instruc­

tion to be placed in the instruction register. This sequence of command 

words corresponds to what is referred to as the fetch cycle. It is 

followed by an execute cycle whereby the instruction is executed. 

This alternate sequence of fetch and execute cycles continues for 

as long as the CPU is in operation. It should be stressed that 

each fetch and execute cycle consists of several clock cycles. 

In the course of executing an instruction, the control unit is 

solely responsible for presenting the correct sequence of command 

words to the execution network. Consequently, the control unit must 

maintain a number of internal 'status bits' so as to keep track of the 

state of its own processing. The form of these status bits depends on 

the particular design of the control unit itself. At each clock cycle, 

the control unit must therefore perform two operations. It must 

generate a command word and update its internal status bits. 

Traditionally, there have been two approaches to the realization 

of a suitable control unit. One method consists of using random hard­

wired logic to generate each control word at every clock cycle. The 

second method is the microprogrammed solution. Co:mmand words.are stored 
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in a memory called the control store. At each clock cycle, a new 

command word is available from memory and sent to the execution network. 

The internal status bits now correspond to the specification of the next 

command word to be used. 

A single word contained in the control store is called a micro­

instruction.. It consists not only of the command word, but, as well, 

of the second set of boolean commands which are used to update the 

internal designation of the next microinstruction. Whereas, at each 

clock cycle, the command word is sent to the execution network, the 

next microinstruction command vector is sent to the next - micro­

instruction - logic of the control unit itself. 

Just as regular computer instructions can be combined to form 

a program, so a logically coherent sequence of microinstructions is 

called a microprogram. The terms, instruction, fetch and execute, are 

now prefixed with 1macro' to distinguish them from the micro-fetch and 

micro-execute cycles associated with the execution of each micro­

instruction. The execution of each macroinstruction normally corres­

ponds to .the execution of a single associated microprogram. 

Each microinstruction is logically divided into component 

fields. Each field corresponds to a functionally independent set of 

boolean commands. It can consist of varying numbers of bits. For 

example, the carry control, ALU function control, and next microinstruc­

tion address control, may be three separate microinstruction fields. 

III. 2 Basic Architecture 

Figure 3.2 shows the basic design of the graphics controller. 

The figure is divided into the control unit and the ALU. The ALU 
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consists of four 4 bit wide ALU chips (AM2903 1 s) cascaded together to 

form a 16 bit processor. The AM2903 contains 16 internal working regis­

ters. This working space is increased through the addition of extra 

RAM (AM29705) and PROM (AM29751) bit-sliced register files. The final 

ALU contains 32 RAM and 16 PROM registers. 

At each clock cycle, a new microinstruction is latched from the 

control store into what is called a 'pipeline register'. The contents 

of this register provide control inputs to the sequence controller 

(AM2910), the ALU, the bit map interface, and the data bus interface. 

In terms of the previous discussion, the latter three components consti­

tute the execution network. The sequence controller is the next ­

microinstruction - logic of the control unit. 

The execution network maintains arithmetic status information 

in the status register. This information, together with other various 

hardware I/O flags, constitutes the information from which the condition 

code is selected. It is available to the control unit through the 

condition code multiplexor. 

The macroinstructions sent from the main microprocessor, 

include both an operation code (opcode), and several 16 bit words of 

data. The opcode is deposited in the instruction register while the 

data are sent to the data register. The mapping prom maps the contents 

of the instruction register into a starting microprogram address. 

During each macro-fetch cycle, this starting address is accepted by the 

sequence controller as the next microinstruction address. The instruc­

tion data are then read, under microprogram control, into the internal 
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register file. A 'handshaking' I/O protocol ensures that the opcode 

and data are received properly. 

The pipeline register enables a time-saving technique known as 

'pipelining'. With this technique, the next microinstruction is 

fetched at the same time that the current microinstruction is executed. 

By definition, the pipeline register always contains the microinstruc­

tion which is currently being executed. The contents of this register 

must remain fixed for the entire clock cycle. They define the current 

state of the execution network. While the contents of the pipeline 

register remain fixed, the next microinstruction can be fetched from 

the control store without affecting the integrity of the currently 

executing microinstruction. 

This parallelism is one way of maximising the clocking 

frequency. In effect, there are two parallel processing paths. The 

first path involves the fetching of the next microinstruction. Boolean 

commands are sent from the control store to the sequence controller. 

These commands, in combination with the condition code input, cause the 

address of the next microinstruction to be presented to the control 

store. The corresponding memory word is fetched and set-up at the inputs 

to the pipeline register. This must all be accomplished during one 

clock cycle. 

The second processing path is through the execution network. 

Control signals sent to the ALU cause arithmetical or logical operations 

to be performed on operands which are brought into the ALU from the 

data bus, bit map or the internal registers. After the results have 

stabilized, the contents of the status register are updated. The 

clocking period of the control unit and execution network must be at 
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least as long as the duration of the longest of the two parallel 

processing paths. Typically, for the AM2900 LSI series, the clock 

period is in the neighbourhood of 130 nsec. 

Pipelining has a further implication. The status register 

is updated at the end of an execution network process path. 

However, its contents are required as input to the condition code multi­

plexor early in the fetching of the next microinstruction. This means 

that the condition code available to the control unit always corres­

ponds to a previous state of the execution network. As a consequence, 

a microprogram branch, which is conditional on the results of the current 

microinstruction, cannot be specified until the next microinstruction. 

III. 3 Microinstruction Fields 

The graphics controller microinstruction contains four types of 

fields. These fields are concerned with the sequence controller, the 

ALU, the data bus interface, and the bit map interface, respectively. 

In the following discussion, each of these components will be discussed 

in more detail. As the discussion proceeds, the associated control 

fields will be defined. The result of this discussion is the specifi­

cation of the complete set of microinstructions available for firmware 

control of the graphics controller. 

For further details regarding the AMD (Advanced Micro Devices, 

Inc.) devices which are presented in the following discussion, the 

reader is referred to the appropriate technical specifications issued 

by AMD (AMD), (MIC). 
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III. 3.1 Sequence Controller 

Figure 3.3 shows the block diagram of the AM2910 sequence 

controller. It operates according to signals received at the I input 

pins. During the execution of each microinstruction, the sequence 

controller presents the address of the next microinstruction to the 

control store. This address comes from one of four sources. The 

usual source is the microprogram counter register (UPC). In the graphics 

controller configuration, this register always contains an address one 

greater than the previous address. This provides for sequential 

access to the control store. 

A second address source is the external input (D). For our 

purposes, this address ultimately comes from either the mapping prom 

output or from a part of the pipeline register. The sequence controller 

selects one of these two input sources by issuing either a mapping 

prom enable signal (MA.P) or a pipeline enable signal (PL). If these 

output signals control tri-state output enables, for both input 

sources, then the D input pins can be driven directly, by both sources, 

without further contention logic. Note that the mapping prom and 

pipeline register must never both be enabled at the same time. 

Input from the mapping prom signals the start of a new macro­

execute cycle. It designates the start of the microprogram which 

executes the associated graphical instruction. Address input from 

the pipeline, on the other hand, affords a convenient branching capa­

bility. In this case, the microinstruction itself, contains the next 

microinstruction address. 
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REG/ FAIL PASS 
HEX CNTR CCEN = LOW and CC= HIGH CCEN =HIGH or CC= LOW 
13-10 MNEMONIC NAME CON- y STACK y STACKTENTS 

0 JZ JUMP ZERO x 0 CLEAR 0 CLEAR 
1 CJS COND JSB PL x PC HOLD D PUSH 
2 JMAP JUMP MAP x D HOLD D HOLD 

--1 ---­
t----PC3 CJP CONDJUMPPL x HOLD D HOLD 

4 PUSH PUSH/COND LO CNTR x PC PUSH PC PUSH 
5 JSRP CONO JSB R/PL x R PUSH D PUSH 
6 CJV COND JUMP VECTOR x PC HOLD D HOLD 
7 JRP COND JUMP R/PL x R HOLD D HOLD 

-------1 -~ 

*o F HOLD F HOLD 
8 RFCT REPEAT LOOP, CNTR * 0 

=O PC POP PC POP 

*o D HOLD D HOLD 
9 RPCT REPEAT PL, CNTR * 0 

=O PC HOLD PC HOLD 
-­

A CRTN COND RTN x PC HOLD F POP 
B CJPP COND JUMP PL & POP x PC 

- r---~-------1 
HOLD D POP 

c LDCT LO CNTR & CONTINUE x PC HOLD PC HOLD 
D LOOP TEST END LOOP x F HOLD PC POP 
E CONT CONTINUE x PC HOLD PC HOLD 

F TWB THREE-WAY BRANCH *o F HOLD PC POP 
=O D POP PC POP 

REG/ 
CNTR 

HOLD 
HOLD 
HOLD 
HOLD 
Note 1 
HOLD 
HOLD 
HOLD 
DEC 
HOLD 
DEC 
HOLD 
HOLD 
HOLD 
LOAD 
HOLD 
HOLD 
DEC 
HOLD 

ENABLE 

PL 
PL 
MAP 
PL 
PL 
PL 
VECT 
PL 
PL 
PL 
PL 
PL 
PL 
PL 
PL 
PL 
PL 
PL 
PL 

Note 1: If CCEN =LOW and CC= HIGH, hold; else load. X =Don't Care 

TABLE 3.1: AM2910 INSTRUCTION SET 

w 
\JI 
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A third address source is the register/counter (R). It is 

preloaded via the D input from the pipeline register. The five deep 

last-in first-out stack (F) is the fourth source. The stack provides 

for microsubroutine return linkages and looping capabilities. Micro­

subroutines may be nested up to five levels deep. 

The register/counter R can also be made to act as a loop 

counter. It can be loaded from the D input and decremented each time 

through a loop. When its contents become equal to zero, the loop 

terminates. The arrangement is such that if it is preloaded with a 

number N and subsequently used as a loop termination counter, the 

loop will be executed N+l times. 

Table 3.1 presents the AM2910 instruction set. Many of these 

instructions are conditional. The input signal CC is used as the 

test criterion. A low signal corresponds to a pass. Further flexibi­

lity is provided by the CCEN input, which enables the conditional testing. 

When this signal is high, CC is ignored and the sequence controller 

operates as though the result of the condition test were a pass. The 

vector address enable signal (VECT) allows a third external source 

to drive the D input. This capability is not utilized in the graphics 

controller design. As a result, the CJV instruction in table 3.1 is 

never used. 

The microinstruction fields which control the operation of the 

AM2910 are shown in table 3.2 and are described below. 

AM2910 Instruction - Controls operation of AM2910. Mnemonics 

correspond to those of table 3.1. 
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TABLE 3.2 

CONTROL SEQUENCER FIELDS 

AM 2910 
Instruction 

4 Bits 

Condition 
Code Enable 

1 Bit 

Force Test 
Polarity 

1 Bit 

Condition 
Code 

3 Bits 

Pipeline 
Data 

12 Bits 

JZ CD NEG c Carry out 

CJS UCD POS OVR Overflow 

JMAP z Zero 12 Bit 

CJP s Sign Data 

PUSH so Shift Out Item 

JSRP IRF IR Full 

CJV DRF DR Full 

JRP MPF Bit Map 
Free 

RFCT 

RPCT 

CR1N 

CJPP 

LDCT 

LOOP 

CONT 
CD conditional 

TWB UCD unconditional 
NEG negative 
POS positive 
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Condition Code Enable 	 ·Provides the CCEN input signal. CCEN low 

corresponds to the CD (conditional) 

mnemonic. 

Force Test Polarity 	 Provides the polarity select signal in 

figure 3.2.The input to the polarity control 

is either flipped CNEG) or passed to the 

AM2910 CC input unchanged (POS.). 

Condition Code 	 Selects the condition code input from one 

of the eight condition code multiplexor 

inputs. The selected signal is subsequently 

passed to the polarity control. 

Pipeline Data 	 The 12 bit pipeline data field which, if 

enabled, provides an external D input to the 

AM2910. 

With the condition code multiplexor and polarity control shown 

in figure 3.2, the operation of the AM2910 can be made conditional on 

the status of the execution network. For example, a nonzero result in 

the ALU may lead to a branch in the microprogram. This would correspond 

to the following ro;croinstruction field values. 

AM2910 Instruction Condition Code 
Enable 

Force Test 
Polarity 

Condition 
Code 

Pipeline 
Data 

CJP CD NEG z Branch 
Address 

The meaning of the various possible condition code inputs will be 

explained more fully as the discussion of the execution network 

proceeds. 
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III. 3.2 ALU 


The ALU is fashioned from four AM2903 LSI chips. A principle 

reason for using these chips rather than the less expensive AM2901 

chips, is that the internal register file of the AM2903 is easily 

expanded to virtually any required size. The AM2903 includes the nece­

ssary 'hooks' needed to accomplish this. On the other hand, the full 

range of capabilities available with the AM2903 has not been used in 

this design. In particular, the AM2903 has built-in floating point 

logic, which is not required for our purposes. 

Figure 3.4 illustrates the functional capabilities of the 

proposed ALU. The diagram does not correspond to a specific component 

chip, but represents, instead, the complete ALU assembly. This 

assembly consists of the bit-sliced AM2903 1 s, AM2975l's and AM29705's 

as well as extra shift control logic. Specific chip assembly details 

may be found in the AMD literature (AMD). 

The extra shift control logic specifies whether a shift operation 

is cyclic or linear. In any case, the actual shift operation is 

performed by the AM2903's• The control logic merely controls where the 

shift-in and shift-out bits come from and go to respectively. For 

example, in a cyclic shift, the shift-in bit is made equal to the 

shift-out bit, whereas, in a linear shift, the shift-in bit is 

driven from the external shift-in input as shown below. 

ci Shift Register~Shift-Out Output 

Cyclic Right Shift 


Shift-In Input _ __,91i-.1 Shift Register ~Shift-Out Output 


Right Shift (linear) 
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The operation of the arithmetic logic unit proceeds as follows. 

At the beginning of a microinstruction, the A and B addresses are 

presented to the ALU. As a result, two operands are sent to the func­

tion generator. Alternatively the B operand may come from the bit map. 

Next, an operation, as selected by the function select input, is 

performed. During the course of this operation, the carry out, sign, 

overflow and zero status flags are generated. The result is sent to 

the shifter, where, in like manner, the shifter operates on its input 

and as well, creates the shift-out output. After the result is stable, 

it may be written into the register file at the location specified by 

the B address or it may be sent to the bit map interface. Finally, 

the status register may be updated with the newly generated status 

flags. The microprogrannner has the option of inhibiting this update. 

It is also possible for input to be accepted directly from 

the data register (fig. 3.2). In this case, the shifter output is 

ignored and the contents of the data register is written to the 

register file instead. Any operation to be performed on the data must 

wait until the next microinstruction. This situation is in contrast 

to input from the bit map, which, being presented directly to the 

function generator, can be read and operated on in the same micro­

instruction. 

In the ALU 1 s operation, the B address has a dual role. It is 

an operand address in the early part of the microinstruction cycle, 

and a result destination address in the latter. This constitutes what 

is known as a two address architecture. A three address architecture, 

whereby, separate destination and operand addresses are specified, is 
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also possible with AM2903 chips. However, if implemented, a three 

address configuration would involve more complex timing logic. 

The preceding discussion enables further microinstruction 

fields to be defined. These are presented in table 3.3. Several 

of the ALU functions are expressed in terms of Cn, an input which is 

provided by the carry in field. For the shift control fieldt the only 

difference between a 1 NOP 1 and a 1 NS 1 command, is that a NOP does not 

cause the final result to be written into the register file. All 

other shift control instructions cause a final write operation. The 

NOP instruction is useful when the firmware designer wishes to idle the 

ALU without overwriting any of the data in the register file. 

The enable status load field offers the firmware designer 

direct control over the updating of the status register. This feature 

can lead to a reduction in the number of microinstructions needed to 

accomplish a conditional operation. For example, consider the case of 

a microprogram 1 jump 1 which is perfo:i:med only if the value of a specific 

variable is zero. If the status register were automatically loaded at 

the end of every microinstruction, the variable in question would have 

to pass through the function generator during the clock cycle which 

immediately preceeds the execution of the conditional jump. In many 

instances, an extra microinstruction would be required for this purpose 

alone. If, on the other hand, the variable had been defined several 

microinstructions back, and the status load disabled ever since, then, 

the further microinstruction would not be required. 

Notice that the input/output fields are classified as 

belonging to either the data bus or bit map interfaces. The interface 



ALU Fields 

Function 

4 bits 

Carry 
In (Cn) 

l bit 

Shift 

3 bits 

Shift-In 
Input 

1 bit 

A 
Addr. 
(R) 
6 bits 

B 
Addr. 
(S)
6 bits 

Enable 
Status 
Load 
l' bit 

Data Bus IBit Map 
Interface 
Data Reg. 
Input Enable 

l bit 

Interface 

Bit Map To 

ALU Enable 


l bit 

ALU 
Output Enable 

l bit 

HIGH 0 CRS 0 

S-R-1 +Cn l RS l 

R-S-1 +Cn NOP 
R+S+Cn NS 
S+Cn CLS 
S+Cn LS 
R+Cn 
R+Cn 
LOW 
RI\ S 
RJ/"S 
RVS 
RAS 
RVS 
RAS 
RVS 

E 

DIS 
E 

DIS 
E 

DIS 

E 

DIS 

CRS 
RS 
NOP 
NS 
CLS 
LS 
E 
DIS 

: cyclic right shift 
: right shift 
: no operation 
: no shift 
: cyclic left shift 
: left shift 
: enable 
: disable 

TABLE 3.3 : Further microinstruction fields +:'­
w 
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fields are used rather infrequently in comparison to those of the ALU 

and sequence controller. Excepting microinstructions which perform I/O 

operations, the contents of these fields do not vary from one micro­

instruction to the next. 

III. 3.3 Data Bus Interface 

Figure 3.5 shows the data bus interface in more detail. The 

IR full and DR full, flags are used to establish a 'handshaking' 

input/output protocol. Using this protocol, the transfer of data from 

the main microprocessor to the graphics controller, proceeds under 

program control. For example, consider for the moment, the data path 

to IR. Before the main microprocessor can deposit a graphics instruc­

tion into the IR, it must wait for the graphics controller to clear the 

IR full flag. This flag is cleared immediately after each new macro­

instruction is 1 accepted 1 by the graphics controller. A macroinstruc­

tion is accepted by selecting the mapping from output as the next 

microinstruction address. Similarly, before the graphics controller 

can accept a new graphics instruction, it must wait for the main micro­

processor to set the IR full flag. This flag is set immediately after 

each new macroinstruction is loaded, by the main microprocessor, into 

the IR. This protocol protects the integrity of the data transfer. 

In like manner, the DR full flag is used to regulate the transfer of 

data to the graphics controller via the data register. 

It is clear that in order to establish the 1/0 protocol 

properly, provision must be made for microinstructions which are con­

ditional to the value of either of the two I/O flags. Accordingly, 

both flags are used as inputs to the condition code multiplexor. The 
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TABLE 3.4 

DATA BUS INTERFACE MICROINSTRUCTION FIELDS 

IR DR Idle Data Register 
Full Flag Full Flag Flag Input Enable 

l Bit l Bit l Bit l Bit 

CLR 

NCL 

CLR 

NCL 

IDLE 

BSY 

E 

DIS 

CLR 

NCL 

E 

DIS 

BSY 

= 

= 

= 

= 

= 

Clear IR Full Flag 

No Clear 

Enable 

Disable 

Busy 
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set conditions correspond to the 1 DRF 1 and 1 IRF 1 condition code field 

values shown in table 3.2 

Another feature of figure 3.5 is the idle flag. This flag is 

set by the graphics controller whenever it is in an idle state, waiting 

for further graphics instructions. During this state, the bit map is 

not accessed by the graphics controller. As discussed in the preceding 

chapter, the main microprocessor must first test the idle flag before 

addressing the bit map directly. 

The complete set of data bus interface microinstruction fields 

are shown in table 3.4. Except for I/O operations, these fields have 

the following fixed values. 

IR Full DR Full Idle Data Register 
Flag Flag Flag Input Enable 

NCL NCL BSY DIS 

III. 	3.4 Bit Map Interface 

The final microinstruction fields to be defined are those of 

the 	bit map interface. Figure 3.6 shows the bit map interface in 

20 more detail. Note that 2 bits may be stored in the 64K by 16 bit 

word RAM. This is large enough to support a screen resolution of 1024 

by 1024 dots. The bit map interface fields are shown in table 3.5 

and are defined below. 

ALU Output Enable - The enable signal causes data to be sent from 

the ALU 	 to the bit map interface. 

Enable Register Load - The enable signal causes output from the ALU 

to be latched into one of the two destination 

registers. This destination is specified by the 

field which is defined next. 
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TABLE 3.5 

BIT MAP INTERFACE MICROINSTRUCTION FIELDS 

ALU Enable Bit Map RAM RAM Bit Map to 

Output Enable Register Load Address/Data Enable Read/Write ALU Enable 


1 Bit 1 Bit 1 Bit 1 Bit 1 Bit 1 Bit 

E 

DIS 

E 

DIS 

ADD 

DAT 

E 

DIS 

R 

w 

E 

DIS 

D = Disable 

E = Enable 

ADD = Address register 

DAT = Data register 

R = Read 

W = Write 
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Bit Map address or data - This field specifies the destination of 

output from the ALU as being either the bit 

map data register or the bit map address 

register. When the graphics controller 

performs bit map read/write operations, these 

registers drive the corresponding address and 

data lines of the bit map RAM. It is import­

ant to note that these registers are local 

to the graphics controller. The graphics 

display process uses its own separate address 

and data registers. 

RAM Enable - Enables or disables the RAM read/write 

operations. 

RAM Read/Write - Specifies whether a read or a write opera­

tion is to be performed by the bit map RAMo 

Note that depending upon the particular read/ 

write access times of the RAM chosen for the 

bit map, read/write operations may require 

several microinstruction cycles to complete. 

In this case, RAM enable and read/write signals 

must be held fixed over several microinstruc­

tions. 

Bit Map to ALU Enable - The enable signal causes b~t map output 

available at the RAM data lines to be 

accepted as input to the ALU. 
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Except for I/O operations, the bit map interface fields have 

the following default values. 

ALU Enable Bit Map RAM RAM Bit Map to 
Output Enable Register Load Address/Data Enable Read/Write ALU Enable 

x DIS x DIS x DIS 

where X =don't care 

The bit map interface also provides a condition code multi­

plexor input. This input corresponds to the 1MPF 1 (Bit Map Free) 

condition code field value found in table 3.2. As discussed in the 

preceding chapter, the graphics display process and the graphics 

controller compete for access to the bit map memory. The graphic 

display process has highest priority. It is responsible for raising a 

bit map free flag whenever the graphics controller is to be allowed 

access to the RAM. This flag provides the corresponding condition code 

multiplexor input. Its value must be checked by the graphics controller 

before every bit map access. 

The complete set of microinstruction fields has now been 

presented. It corresponds to a microinstruction which is 53 bits 

wide. Now, it is appropriate to turn our attention to the firmware 

control of the graphics controller. In the next chapter, a basic 

graphics instruction set is presented, along with several algorithms 

which enable its efficient realisation. 



CHAPTER 4 

TiiE GRAPHICS CONTROLLER FIRMWARE 

A basic graphics instruction set for the graphics controller 

has been defined. This set consists of two types of instructions. The 

first type shall be referred to as the definition instructions. They 

are concerned with assigning values to so-called definition variables. 

These variables define the 'manner' in which curves are 'drawn'. For 

example, depending on their values, curves may be either solid or 

broken, erased or made visible. In contrast, the drawing instructions 

cause the actual drawing to occur. They, alone, cause a change in the 

contents of the bit map. There are two instructions of this type, 

VECTOR and CIRCLE, which generate line and circle segments respectively. 

At the beginning of a graphics session, all the definition 

variables must be assigned values. Only then can a circle or vector 

instruction be executed properly. Once these variables have been 

initialized, drawing instructions may be executed in succession, one 

after the other. Alternatively, at any time, one or more definition 

instructions may be executed in between any two drawing instructions. 

This would have the effect of changing the drawing 'manner' from one 

curve .segment to the next. 

The variables, which are discussed in this chapter, correspond 

to 16 bit quantities. Two's complement arithmetic is used for the 

representation of negative values. Each variable can be classified as 

belonging to one of only three possible data types. There is a bit 
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mask data type, an integer data type, and a coded information data type. 

IV. 1 Definition Variables 

The definition variables are defined below. The first three 

definitions involve the assumption of a fully interlaced display 

(see Chapter 2). 

EVODD: Coded data type. Specifies whether the current screen position 

corresponds to the even or odd raster bit map; 0: even; 1: odd. 

POSI1N: Integer data type. Represents the relative bit map address 

which corresponds to the current screen position. The absolute 

memory address is equal to POSI1N + the first word address of 

the bit map specified by EVODD. 

BTMSK: Bit mask data type. A single bit bit mask which, together with 

EVODD and POSI1N, identifies the bit in a memory word which 

corresponds to the current screen position. 

MODE: Coded data type. It specifies the drawing mode; 1: visible 

mode; 0: erase mode; -1: complement mode. 

PATERN: Bit mask data type. It specifies the current dot pattern; one-

valued bits correspond to screen dots which are, depending on 

the mode, made visible, erased or complemented. Zero-valued 

bits correspond to screen dots which are left unchanged. 

PSCALE: Integer data type. It is a scaling factor which is applied to 

PATERN. Each bit in PATERN is made to correspond to PSCALE 

dots; PSCALE >O. 

PATPOS: Bit mask data type. A single bit bit mask which specifies the 

current position in PATERN. 
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SCLPOS: Integer data type. Specifies the number of consecutive 

screen dot moves before the next bit in PATERN is in effect; 

SCLPOS > 0. 

The first three variables defined above, shall be referred to 

as the position variables. Together, they define the bit in memory which 

corresponds to the current screen position. The concept of a current 

screen position is an important one. It implies that for each curve 

segment, there is both a starting, and a finishing endpoint. The 

current screen position is the starting endpoint from which subsequent 

drawing begins. 

The position variables are continually updated during the 

execution of the drawing instructions. Upon termination of a drawing 

instruction, the position variables are left with values which represent 

the finishing position. This means that if two successive drawing 

instructions are executed, the two resultant curve segments will share 

an endpoint in common. Alternatively, a position instruction may be 

used to redefine the current screen position before the second segment 

is drawn. Thus, disjoint segments can be specified as well. 

The mode variable, once set, remains unchanged unless it is 

explicitly reset. There are three drawing modes. The visible mode 

causes ones to be written into the bit map. These are translated by 

the graphics display process, into visible screen dots. As well, 

curves may be erased by specifying the erase mode, which causes zeros 

to be deposited into the bit map. The complement mode changes the bit 

map contents by complementing memory bits. This mode is of use in the 

displaying of temporary or dynamic images. In particular, with moving 
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images, there is the problem of blank gaps being left behind wherever 

previous images once intersected the static background display. This 

problem can be avoided through proper use of the complement mode (DIC). 

The last group of definition variables provides for dotted 

curve segments. PATERN and PSCALE define the dotted pattern, whereas, 

PATPOS and SCLPOS define the position within the pattern. As curve 

segments are generated, the pattern position is cycled through the 

pattern. By way of understanding the meaning of the pattern variables 

more precisely, consider the process by which curve segments are 

generated. 

Drawing instructions can be thought of as causing a represent­

ative sequence of-moves from one screen dot to the next. Starting with 

the current screen position, each move is between contiguous dots, 

until the process terminates at the final predesignated position. 

Each move consists of selecting the next screen dot and making the 

appropriate bit map modifications. If the current pattern position 

corresponds to a zero-valued bit in PATERN, the selected screen dot is 

left unchanged. Otherwise, it is changed according to the dictates of 

the current drawing mode. 

After each move, the current pattern position is updated. 

This update is accomplished by decrementing SCLPOS which acts as a 

scaling counter. Upon reaching zero, SCLPOS is automatically reset to 

PSCALE and a one bit cyclic shift operation is performed on PATPOS. 

In this manner, the dot pattern is repeatedly cycled through. As an 

example, a dotted line of alternately 30 visible dots and 10 blank dots 

may be specified by initializing PATERN to the binary string 



'1110 1110 1110 1110' and by assigning PSCALE the value ten. PATPOS 

may be assigned any allowable value (single bit bit mask) depending 

upon whether the dotted line is to start on a blank or a visible line 

segment. Similarly, the initial value for SCLPOS determines the 

ultimate length of the starting line segment. 

Once set, the actual dot pattern remains fixed, unless it is 

explicitly changed through the use of a definition instruction. The 

position within the pattern, however, is continually updated during the 

execution of drawing instructions. From this point of view, PATPOS and 

SCLPOS are similar to the position variables, whereas, PATERN, PSCALE 

and MODE form a second, more static category. 

It should be pointed out that although the normal range of 

values for SCLPOS is between zero and PSCALE, the user is allowed the 

option of specifying an initial value for SCLPOS which is greater than 

PSCALE. This has the effect of scaling the starting bit in PATERN by 

a factor greater than PSCALE. For example, a dotted line could be 

generated, such that the first solid segment is longer than subsequent 

segments. This feature could be used to ensure that at both endpoints 

of a dotted line, there are solid segments. 

IV. 2 Definition Instructions 

Definition instructions translate incoming data into appropriate 

values of associated definition variables. These values are subsequently 

stored in the graphics controller register file. The data are in the 

form of 16 bit quantities which are sent from the main microprocessor 

to the graphics controller via the data register (figure 3.2). In these 

terms, the definition instructions are: 
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1. POSITION 

Data: PX, PY 

Define: RVODD, POSITN, BTMSK 

2. MODE 

Data: MODE 


Define: MODE 


3. PATTERN 

Data: PATERN, PSCALE 

Define: PATERN, PSCALE 

4. 	 PATTERN POSITION 


Data: PATPOS, SCLPOS 


Define: PATPOS, SCLPOS 


Apart from the POSITION instruction, which is more complex, the above 

instructions simply involve writing received data directly into the ALU 

internal 	register file. 

The POSITION instruction involves an actual translation. The 

main microprocessor specifies defineable screen positions with discrete 

x, y coordinate values. The corresponding coordinate system shall be 

referred to as the screen coordinate system. Its origin lies on the 

bottom leftmost screen dot. The unit distance is the distance between 

two adjacent horizontal, or two adjacent vertical, dots. The POSITION 

instruction must translate the discrete coordinate values, PX and PY, 

into their corresponding EVODD, POSITN and BTMSK values. 

This translation is in terms of parameters which define the 

bit map: 

GPHEVN: The first word address of the even raster bit map. 


GPHODD: The first word address of the odd raster bit map. 
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WIDTH: The number of memory words which constitute a single 
raster line. 

LENGTH: The number of raster lines per screen. 

These parameters are stored in the ROM part of the internal register 

file. The POSITION instruction makes use of the following equations. 

A 16 bit memory word is assumed: 

EVODD = (LENGTH - (PY + 1)) 

LENGTH - (PY + 1)
POSITN 	 = X WIDTH + PX/16

2 

(15-MOD (PX))BTMSK 	 = 2 16 

The division operations, in the above, are integer divisions. 

The quotient is truncated to an integral value. Since the divisors, 

in each case, are powers of two, the divisions correspond to simple 

binary shift operations. As well, the modular operations are with 

respect to bases, which are also powers of two. As a result, each 

modular operation simply involves the appropriate discarding of high 

order bits. The single multiplication is accomplished through a 

sequence of binary shift and add operations. 

IV. 3 Drawing Instructions 

Like the definition instructions, the drawing instructions 

also require data which are deposited, by the main microprocessor, into 

the data register. The received data are used to control the 'drawing' 

of curve segments on the display screen. The two drawing instructions 

are: 

1. 	 VECTOR 


Data: n,w 

Draw: Line Segment 
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2. CIRCLE 

Data: X, Y, DOCT, FCORD 

Draw: Circle Segment 

A vector instruction causes a line segment to be drawn, from 

the current screen position, to the end point designated by VX and VY. 

These variables are defined below. Displacements are measured in the 

units of the screen coordinate system. 

VX: 	 Integer data type. It specifies the horizontal displace­

ment, of the finishing endpoint, from the current screen 

positiono VX may be either positive or negative. 

VY: 	 Integer data type. It specifies the vertical displacement, 

of the finishing end point, from the current screen 

position. VY may be either positive or negative. 

A circle instruction causes an arc to be drawn, from the current 

screen position, to the endpoint specified by DOCT and FCORD. Points 

which lie exactly on the 'true' arc, are equidistant from a unique 

position which is referred to as the arc center. This position may lie 

outside screen boundaries. Its whereabouts are specified by X and Y. 

The CIRCLE variables are defined below. Again, distances are measured 

in the units of the screen coordinate system. 

X: 	 Integer data type. It specifies the horizontal 

displacement, of the arc center, from the current 

screen position. X may be either positive or negative. 

Y: 	 Integer data type. It specifies the vertical displace­

ment, of the arc center, from the current screen 

position. Y may be either positive or negative. 
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DOCT: Composite data type. The most significant bit is a 

code which specifies either a clockwise, or a counter 

clockwise, drawing direction; 0: counter clockwise; 

1: clockwise. The remaining bits correspond to an 

integer data type. They specify the number of octant 

changes (see following discussion) required to 

complete the arc segment. 

FCORD: Integer data type. Imagine two lines which pass 

through the arc center. One line is vertical and the 

other, horizontal. FCORD is the shortest distance 

between the final arc endpoint and the nearer of 

2these lines; O < FCORD <. '1cx2 + Y )/2 

where the upper limit is rounded down. 

The position of the final arc segment endpoint can be deduced 

from the specified values of FCORD and DOCT. For this purpose, circles 

are imagined to be centered on a coordinate system, as shown in 

figure 4.1. The coordinate system is divided into eight equivalent 

sections, called octants. · The horizontal and vertical octant boundaries 

are called square octant boundaries. Each octant has exactly one 

square and one diagonal octant boundary. 

Imagine that the graphics controller has been instructed to 

draw a circle segment. Starting at the current screen position, the 

drawing proceeds in a clockwise or anti-clockwise fashion, depending on 

the value of the most significant bit of DOCT. Every 45 degrees, 

an octant boundary is crossed. This crossing from one octant into 
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1 

Fig. 4.1: The division of a circle into eight octants. 
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another, is called an octant change. DOCT specifies how many of these 

are required to complete the arc segment. After the required number of 

octant changes, the drawing terminates when the distance from the 

current octant's square octant boundary, is exactly FCORD. In this 

manner, the final arc segment endpoint is uniquely specified. 

Note that an octant change occurs only when an octant boundary 

is actually crossed. As figure 4.2 illustrates, care must be taken in 

the assigning of values to DOCT, whenever an arc begins or ends on 

an octant boundary. 

It should be pointed out that in order for graphics instructions 

to execute properly, they must be provided with 'correct' data. No 

testing is done by the controller firmware to ensure that incoming 

data is meaningful. For example, the microprogram, which corresponds 

to the CIRCLE instruction, does not test whether FCORD is within the 

required range. Moreover, all incoming data must be such that each 

specified curve segment lies entirely on the display screen. If this 

is not the case, unpredictable results may occur. For these reasons, 

there is a level of program control between the user and the graphics 

instruction set. This level of control resides in the main micro­

processor. 

IV. 4 Algorithms 

Thus far, in this chapter, the graphics instruction set has 

been discussed in detail. In the remaining part of the chapter, 

algorithms, which were used to realize the VECTOR and CIRCLE instructions 

are presented. 
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Fig. 4.2: FCORD and DOCT specify the final arc segment endpoint. 
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The algorithms were implemented with the graphics controller 

microinstruction set. Although the microcoded firmware is not 

presented as a formal part of this report, the actual lengths of 

critical sections will be used to provide an indication of the 

graphics controller performance capabilities. 

The realization of the VECTOR and CIRCLE instruction was 

accomplished in two steps. First, the algorithms were implemented in 

the high level programming language, IFTRAN. Secondly, they were 

translated into microcode. The complete IFTRAN version of the circle 

and line generating algorithms, is to be found in Appendix A. In the 

discussion of algorithms, which follows, the reader is referred to 

Appendix A for greater detail. The IFTRAN package was tested and de­

bugged on a CDC 6400 computer. For testing purposes, an on-line 

Versatec plotter was used in place of the display screen. 

Every attempt was made to render the final translation, from 

IFTRAN to microcode, a trivial one. for example, the same modular 

divisions were made in both the IFTRAN and the microcode. Almost every 

IFTRAN routine corresponds to a similar routine in the microcode. The 

only exceptions are a group of IFTRAN subroutines, which are used 

solely for testing purposes. In these routines, a Versatec library is 

used to generate curves which serve as a basis of comparison for the 

circle and line generating algorithms being tested. 

The IFTRAN and microcode are similar in other ways as well. 

For the most part, variables and coding structures are the ~ame in 

both packages. There are, however, some important differences. 
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Most of these differences occur in the input/output routines. In 

particular, where the IFTRAN version sends information to the Versatec, 

the actual firmware makes corresponding changes to the bit map. By 

way of illustrating how the translation from IFTRAN to microcode was 

achieved, a sample microcoded routine is included in this report in 

Appendix B. 

The line and circle generating algorithms are now presented. 

These algorithms fulfill certain basic requirements. They generate 

representative sets of contiguous dots, they a~e efficient, and they 

involve only simple binary arithmetic and logical operations. Much of 

the following development of these algorithms is owing to K.P. Horn 

(HOR). The line generating algorithm will be presented first. 

IV. 4.1 Line Generator 

Imagine a coordinate system to be centered on the current 

screen position. A line segment is to be drawn from the origin to the 

discrete screen position VX, VY. The equation of the corresponding 

line is just (VX)Y = (VY)X. Consider for the time being a line which 

lies in the first octant of the coordinate system. In other words, 

VX and VY are both greater than or equal to zero, and VX is greater 

than or equal to VY. 

The screen can be thought of as a mesh of defineable screen 

dots. The solution set is the set of contiguous dots which best 

represent the line segment. For each column of dots, which intersects 

the line segment, there is a dot which lies immediately above the line, 

and a dot which lies immediately below the line. For each column, the 

closest of these two dots is to be included in the solution set. 
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Clearly, the closest dot is at a vertical distance from the line, of 

no more than 1/2 of a mesh unit. In contrast, the further dot is 

vertically removed from the line, by a distance which is at least 

1/2 of a mesh unit and probably more. As a result, the solution set 

is bounded by the two lines, VX(Y-1/2) = (VY)X and VX(Y+l/2) = (VY)X, 

which lie on either side of, and are parallel to, the line segment 

which is to be generated. 

There are also two vertical limits to the solution set. 

Namely, the lines X = 0 and X = VX. These limits, together with the 

previous two, define a bounded area. All dots within the bounded 

area are members of the solution set. Each column of dots, which 

intersects the bounded area, contains at most one dot within the band 

defined by the upper and lower parallel limits. Furthermore, in most 

instances, there is exactly one such dot. The exception occurs when­

ever the dot just below the prospective line segment, is as far from 

the line as the nearest one above it. In this situation, one dot lies 

on the upper boundary, while the other dot lies on the lower. There 

are no dots which lie entirely within the two limits. For the time 

being, the lower dot, alone, will be arbitrarily picked as belonging 

to the solution set. 

The line-generating algorithm selects dots, in sequence, 

through incremental calculations. Essentially, the result of a test 

dictates whether the next dot chosen, is horizontally or vertically 

removed from its predecessor. Let the coordinates of the dot which 

was last selected, be X, Y. The next dot is chosen by testing whether 

the dot one column over (X+l, Y), falls below the lower limit. 
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If it does, the dot one column over and one row up (X+l, Y+l), must 

be the solution set member for that column. Otherwise, the dot at 

X+l, Y is selected. This process continues until X = VX. 

The critical test amounts to whether or not D = 2 (VY(X+l) ­

VX(Y+lf2)))0. The 'greater than' test ensures that for equally good 

dots, the lower dot is selected. A 'greater than or equal to' test 

would result in the upper dot being selected. Since only fixed-point 

additions and subtractions are allowed, the factor of two is used to 

eliminate the fraction, 1/2. D is given an initial value of 2 VY-VX 

and incremented after every move. After each horizontal move, it is 

incremented by 2 VY, and after each diagonal move, by -2(VX-VY). 

It is easily seen that -2(VX-Y)+l < D < 2VY. This means that only one 

more bit is required to store D, than is required for VX and VY. 

The line generator is easily extended to include the general 

case. For example, the following variables may be used to specify 

motion in any octant. Once they are initialized correctly, any line­

generating problem can be mapped into its equivalent, in the first 

octant. 

INSTRX: Coded data type. Specifies direction of horizontal 

moves; - 1: decrement; 1: increment. 

INSTRY: Coded data type. Specifies direction of vertical 

move; -1: decrement; 1: increment • 

. MOVE I: Coded data type. Specifies the coordinate which 

undergoes the greatest change; 1: vertical; 

2: horizontal. 
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The above variables shall be referred to as defining the 

actual motion, whereas, VX and VY define the equivalent motion, As 

an example, consider a line which is to be drawn in the sixth octant. 

INSTRX and INSTRY are given 'decrement' values and MOVEI is made to 

designate the vertical coordinate. Finally, three transformations map 

the problem into the first octant. Reflections about the y and x 

axes are accomplished by setting VX = -VX and VY = ~VY. A third 

reflection about the line y = x, involves swapping the values of VX and 

VY. The previous developed procedure is now used to generate the line. 

Only this time, the 'horizontal' move corresponds to a change in the 

value of the coordinate specified by MOVEI. Each 'horizontal' move 

is actually a downward vertical move. Similarly, the 'diagonal' move 

is now downward and towards the left. 

There is a final, rather subtle point, which concerns the line 

generator. Consider a line segment which has been drawn in an upward 

direction. If this line segment is subsequently erased in a downward 

direction, the same dots must be made blank, as were once made visible. 

Most dot columns contain only a single 'best' dot, and as a result, 

there isn't a problem. Care must be taken, however, with columns 

which contain equally good dots. Equally good dots are to be found, 

for instance, at the center of line segments for which the greater 

coordinate displacement is even, and the lesser, odd. 

The following example illustrates the problem of equally good 

dots. Consider a line which was originally drawn upwards into the 

first octant. Upon subsequent erasure, it is erased downwards as a 

line into the fifth octant. As discussed earlier, the line is erased 
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by effectively mapping the problem into its equivalent in the first 

octant. Unfortunately, after this mapping, what was once up, is now 

down. More specifically, the lower of two equally good dots, is now 

effectively on top. As a result, a different dot is erased than was 

originally made visible. In general, for any line which lies in an 

octant below the x axis, the dot selection test should be for D > 0 

rather than for D > O. This ensures that for equally good dots, the 

actual dot selected in drawing downwards is the same dot which is 

chosen in drawing upwards. 

This solution can be implemented in a manner which involves no 

extra testing inside the dot-select loop. If D is incremented by one, 

the effect is of changing the D)0 test to a D+l >O, or a D) - 1, test. 

Since D is an integer, this is equivalent to the test, D > O, which is, 

of course, exactly the desired result. Thus, for lines which fall in one 

of the lower octants, D is initially incremented by one. This is done 

only once, and before the dot-select loop is entered. 

IV. 	4.2 Circle Generator 

The circle generator can be developed by analogy with the line 

generator. 	 This time, the discrete x-y coordinate system lies in the 

2 2 2 
center of the circle. The equation of the circle is x + Y = R , 

where R is the radius of the circle. The starting position is, by 

definition, a point on the circle. Consider, for the time being, a 

circle segment which lies entirely within the first octant, and is 

drawn counter-clockwise. 

For each row of dots, which intersects the circle segment, 

there is a dot which lies immediately to the right of the arc, and a 
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dot which lies immediately to the left of the arc. In fact, much like 

2before, the solution set is bounded by the two circles, (X + 1/2) + 

2 2 2 2 2
y = R and (X - 1/2) + Y = R • There are two horizontal limits to 

the solution set, which simply correspond to the initial and final 

(FCORD) values of Y. These four limits define a bounded area, within 

which all dots are members of the solution set. For each row of dots, 

which intersects the bounded area, there is but one dot within the 

band defined by the inner and outer arc limits. 

The circle generator also selects dots, in sequence, through 

incremental calculations. Let the coordinates of the dot, which was 

last selected, be X, Y. The next dot is chosen by testing whether the 

dot one row up (X, Y + 1), falls outside the outer arc limit. If it 

does, the dot one row up and one column to the left (X - 1, Y + 1), 

must be the solution set member for that row. Otherwise, the dot at 

X, Y + 1 is selected. This process continues until Y = FCORD. 

2 2
The critical test amounts to whether s+ = (X - 1/2) + (Y + 1) 

R4" + 3/4 > O. The fraction, 3/4, simply rounds s+ up to the nearest 

integral value. By rounding up, rather than down, we ensure that none 

of the test results are changed. The superscript indicates a positive, 

or counter-clockwise, direction. Note that for circles, there is 

never a choice between two equally good dots. This is proven by the 

2 2 2
fact that (X - 1/2) + (Y + 1) - R is never equal to zero. 

The value of s+ is updated as before. Since the starting 

2 2 2 
· · · f · he · x + Y R , s+ d to initia· · 1position satis ies t equation = re uces an · 

value of 2Y - X + 2. After each vertical move, it is incremented by 

2Y + 3, and after each diagonal move, by 2Y - 2X + 5. 
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+Note that -2(X - Y) + 6 < S < 2 Y + 3. This means that only one more 

bit is required to store S+ , than is required for X and Y. Allowing 

14
for this extra bit plus an additional sign bit, radii of up to 2 · 

boundary has been crossed. If s R (X + 1/2) (Y 1) + 1/4 )O, 

mesh units in length, may be specified. 

If the arc is to be drawn in a clockwise direction, thechoice 

is between moving one row down, and one row down and to the right. The 

test involves whether or not the inner, rather than the outer, arc 

2 2 2 
= - - ­

the dot at position X + 1, Y - 1 is selected, otherwise the dot at 

X + 1, Y is the correct choice. Again the fraction, 1/4, simply rounds 

S- up to the nearest integral value. S has an initial value of 

2 Y - X - 1. Af.ter each vertical move, it is incremented by 2Y - 3, 

and after each diagonal move, by 2 Y - 2 X - 5. The limits for S­

are similar to those for S+: -2(X - Y) -4 < S- < 2 Y - 3. 

We have considered the case of a circle segment which lies 

entirely within the first octant. Now, the question of how to 

generate an arc of arbitrary length, is addressed. For the time being, 

the arc must still begin in the first octant. Specifically, what 

happens when an arc which is being drawn in a clockwise direction 

runs into the diagonal octant boundary? The answer is what shall be 

termed a diagonal octant change. 

Moving from the diagonal octant boundary to the second 

octant's vertical boundary is symmetrically equivalent to reversing 

direction and returning to the first octant's horizontal boundary. 

This is exactly what is accomplished by a diagonal octant change. 
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As in the previous vector discussion, there are two types of 

motion. The actual drawing motion is defined by INSTRX, INSTRY and 

MOVEI as before. The equivalent motion remains in the first octant, 

and is described by X, Y, DX and DY. DX and DY represent the incremental 

thanges for X and Y. For counter-clockwise motion, DX = -1 and DY = 1. 

In a diagonal octant change, two things happen. First, the 

value of MOVEI is 'flipped'. A first octant vertical coordinate value 

becomes the second octant horizontal coordinate value. Secondly, the 

equivalent motion is reversed. DX and DY are multiplied by negative one 

and S+ is transformed into S-. As is easily deduced from their 

definitions, S+ and S are related according to the equation, 

S- = -S+ + 4Y - 2X + 1. The equivalent motion now retraces the first 
I 

octant arc, while the actual motion extends the original arc into the 

second octant. 

In like manner, the arc can be drawn through the second 

octant and into the third. Of course, to accomplished this, a square 

octant boundary must be crossed. When this occurs, the equivalent 

motion again reverses, while the appropriate change is made to the 

actual motion. This change amounts to 'flipping' either INSTRX or 

INSTRY. If MOVEI corresponds to a vertical coordinate, then the 

value of INSTRX is changed. Otherwise INSTRY is the variable whose 

value changes. 

At this point, it should be evident that whether the actual 

curve is drawn clockwise or anti-clockwise, it can be extended to a 

full circle. Every time an octant boundary is reached, an octant 

change is required. This continues until the number of octant changes, 



74 

~,,,.,. 
V' v 

.L 
/ 

.L 

v 
.l_ 
T 

j_ 
i 

1 
[ 

l 
l 

l 
LS: 

cs: 
"'­

\I 
~ 

!"' 
r"l 

'b,. 
~ 

""" 

J...-1""" 

f-......... 

-f-.. 

,....i.­1-

F'-I' 

v 

~ 

]7 

"1-... 
"'­ is: 

!\.. 
l'I.. 
""'\ 

I\ 

I7 
_L 
v 

17 
v 

v 
1:7

..l'1 

i\ 

l 
1 
1 

_l 
1., 

I/_ 

PX == 39 
PY == 20 
x = -19 
y = 0 
DOCT 7 
FCORD 0 

Fig. 4.4: Example of points selected by the circle generator. 
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which have occurred, is equal to the number specified by DOCT. The 

very next time Y = FCORD, the arc terminates. 

The circle generator is easily made to accommodate arcs which 

begin in any octant. As before, the problem is simply mapped into its 

equivalent in the first octant. The actual motion, however, is defined 

according to the actual starting octant and direction. Figure 4.5 

indicates the values of the actual motion variables, INSTRX, INSTRY 

and MOVE!, for the different octants. In this figure, a counter­

clockwise direction is assumed. For a clockwise direction, INSTRX and 

INSTRY have values which are opposite to those of the figure. The 

following procedure is used to define the equivalent and actual motions 

properly. 

First, the actual motion variables are set to their first 

octant values. If the arc is to be drawn in a counter-clockwise 

direction, INSTRX, INSTRY and MOVEI are given values of 'decrement', 

'increment' and 'vertical' respectively. Secondly, the starting 

position (X, Y), and the drawing direction (DIRECT) are mapped into 

the first octant. As before, this is accomplished through 

reflections Rx, Ry and Rxy, about the x axis, the y axis, and the 

x-y diagonal, respectively. Each reflection results in a change in 

the value of DIRECT, the drawing direction. Finally, the inverse 

mapping is applied to the actual motion as represented by INSTRX, 

INSTRY and MOVEI. This inverse transformation maps the actual motion 

into the starting octant. 

As an example, consider a starting arc position which lies 

in the sixth octant. The transformation Ry Rx Rxy, when applied to 
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(dee> dee. Jve.r) 

G_f\c.
1

deeJhor) 

Actual Motion: (INSTRX, INSTRY, MOVEI) 

inc increment 

dee = decrement 

hor horizontal coordinate 

ver = vertical coordinate 


Fig. 4.5: 	 As an ordered set, the actual motion variables may 
assume eight different values. For a given drawing 
direction, there is a one to one correspondence between 
the actual motion values and the eight octants. 
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X, Y and DIRECT, maps them into their equivalents in the first octant. 

The inverse transformation is simply Rxy Rx Ry. From figure 4.5, it 

can be seen that the transformation RX corresponds to 'flipping' the 

value for INSTRX. Similarly, the transformation RY corresponds to 

'flipping' the value for INSTRY. Rxy is slightly more complicated. 

If INSTRX = INSTRY, the values of INSTRX, INSTRY and MOVEI are all 

changed. Otherwise, only the value of MOVEI is changed. The 

actual implementation of this scheme is simplified by the fact that 

-1
Rx Ry = Ry Rx. Thus, the inverse of T = Ry Rx Rxy is T = Rxy Ry Rx. 

This allows the Ry Rx part of the two mappings to be accomplished at 

the same time. For further details, the reader is referred to 

Appendix A. 

This completes the presentation of the circle and line 

algorithms. In the next chapter, an estimate of the performance 

capabilities of the graphics controller is made. 



CHAPTER 5 

PERFORMANCE 

A stated performance objective of the graphics terminal design 

is a host-terminal transmission rate of 9600 baud. In chapter two, it 

was concluded that the Intel 8086 based operating system is fast enough 

to process characters at the desired rate, providing that the graphics 

controller is able to keep up. The discussion was deferred until the 

graphics controller had been looked at in more detail. It is now 

appropriate to complete the analysis. 

For this purpose, the graphics terminal is assumed to have the 

specifications found in table 2.1. In addition, it is assumed that a 

graphics controller microinstruction requires 125 nsec to execute. 

This is a typical clocking period for the particular AMD chip conf igu­

ration used. Finally, a typical static RAM access time of 250 nsec 

is assumed to apply to bit map read/write operations. Read/write 

signals must be held stable for at least that long, before the 

operation can be assumed to have taken place. 

Two worst-case situations shall be analyzed. In both instances, 

the host computer sends a continuous stream of 8 bit characters to the 

graphics terminal, at a rate of 960 characters per second. In the first 

case, these incoming characters are interpreted as corresponding solely 

to a sequence of line segment specifications. An image is being built 

up on the screen, which consists entirely of line segments. Similarly, 

in the second case, an image is being generated, which consists entirely 

78 
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of circle segments. Each incoming character is interpreted as 

contributing to the specification of the next arc to be generated. 

v. 1 Line Generation 

In the line-drawing case, four characters are required to 

specify the displacements, VX and VY, of a line segment. For each 

incoming set of four characters, the operating system sends one VECTOR 

instruction to the graphics controller. Thus, during the time that the 

operating system takes to receive four characters, the graphics controller 

must be able to generate a complete line segment. 

Upon completion of the graphics controller firmware, it was 

noted that the number of microinstruction executions required to generate 

a single vector dot, is 41. This is the number of microinstructions 

executed in one pass through the dot-select loop. For any given dot, 

the actual number may in fact be less. For example, the above count 

was made by assuming that a diagonal move was made in selecting the dot. 

A horizontal or vertical move requires fewer microinstructions. The 

important point, however, is that the number of microinstructions 

executed can never be greater than 41. 

Forty-one microinstructions correspond to an execution time of 

5.12 usec. During horizontal and vertical flybacks, this is the time 

taken to generate a single vector dot. During forward horizontal 

scans, however, the dot generation rate is less. Time is spent, before 

bit map accesses, in waiting for the graphics display process to 

relinquish its use of the bit map. 

As discussed earlier, the graphics display process indicates 

its use of the bit map, by lowering a bit map free flag. During a 
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horizontal scan, 16 bits are mapped onto the screen every 1.3 usec. 

This means that every 1.3 usec, the display process requires the use of 

the bit map RAM for a 250 nsec read operation. However, the bit map 

free .flag must be lowered in advance of each read requirement. This 

is necessary to provide ample time for the graphics controller to 

finish any bit map access, which was begun immediately before the bit 

map free flag was lowered. Enough time must be allowed for a complete 

read or a complete write operation to be performed. 

A complete graphics controller read operation requires exactly 

four microinstructions. The first microinstruction issues the appropriate 

read signals. These signals are then held stable for two subsequent 

microinstructions. Finally, the execution of the fourth microinstruc­

tion brings the result into the ALU. In contrast, a write operation 

requires only three microinstructions. Whereas, the first micro­

instruction initiates the write operation, two further microinstruction 

cycles are required for the operation to be completed. 

The net result is that the bit map free flag must be lowered 

for 250 nsec plus the duration of four microinstruction cycles, for 

each display process access. This means that out of every 1.3 usec, 

750 nsec are spent with the bit map free flag in a lowered state. At 

any instant, the probability of the graphics controller not being able 

to inunediately access the bit map, is 75/ 130 • As a result, the dot 

generation process is lengthened by an average of 75/ x (~ x 750)130 

nsec, for each bit map access. Note that ~ x 750 nsec is just the average 

length of each access wait, whereas, 75/ is the probability that a130 

wait occurs. Since the dot select loop contains two bit map accesses, 



81 


a read and a write, the time required to generate each dot is increased 

by 2 x (75/130) x (~ x 750) nsec = .433 usec. Thus, during forward 

horizontal scans, a single vector dot is generated every 5.56 usec. 

In the displaying of a single complete screen, there are 480 

forward horizontal scans, 479 horizontal flybacks, and one vertical 

flyback. This leads to a time averaged dot generation time of 

(480 x 5.3 usec)(5.56 usec) + (479 x 15 usec)(5.12 usec)+(280 usec)(5.12 usec) 
480 x 53 usec + 479 x 15 usec + 280 usec 

= 5.46 usec/dot. 

The longest line segments which fit on the screen, consist of 

650 dots. This many dots are generated in 650 x 5.46 usec = 3.55 msec. 

In other words, four incoming characters are processed in at least 3.55 

msec. This corresponds to a baud rate of 11,300. In so far as line 

generation is concerned, it appears that the 9600 baud objective has 

been met. 

v. 2 Circle Generation 

The situation where circle segments, alone, are generated, is 

now analyzed. Seven eight bit characters are required to specify each 

arc. Values of X, Y and FCORD are derived from six incoming characters. 

The seventh character suffices to represent a value for DOCT. The 

analysis proceeds in exactly the same manner as for the previous case. 

This time, at most 47 microinstructions are executed each time an arc 

dot is generated. This leads to a time averaged dot generation time 

of 6.21 usec per dot. 

The largest complete circle which may be generated is centered 

in the display screen and with a radius of 240 screen units. For this 

circle, the solution set is comprised of 1360 dots. This many dots is 

http:usec)(5.12
http:usec)(5.12
http:usec)(5.56
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generated in 6.21 usec x 1360 = 8.45 msec. In other words, seven 

incoming characters are processed in at least 8.45 msec. This 

corresponds to a baud rate of 8280 which is, of course, less than the 

9600 baud objective. It should be pointed out, however, that the average 

arc specified is most likely to require somewhat less than 1360 dots. 

For arcs which require half as many dots, the baud rate is effectively 

doubled. Such arcs are still relatively large. Bearing this in mind, 

it appears that for circle generation, a host-terminal transmission 

rate of 9600 baud can, in fact, be maintained. 



CHAPTER 6 

CONCLUDING REMARKS 

The main microprocessor and the graphics controller operate in 

parallel. The graphics controller generates circle and line segments 

at a rate which is fast enough to allow 9600 bau.d to be maintained. 

At the same time, the Intel 8086 executes approximately 600 instruc­

tions. per each incoming character. This is enough to allow rather 

sophisticated graphics and text processing capabilities. 

In part, high speeds are achieved at the expense of the extra 

complexity which is introduced through the use of microprogramming and 

bit-sliced technology. It is felt, however, that a favourable balance 

between simplicity and speed has been attained. State-of-the-art LSI 

technology is used in striking this balance. The use of standard, 

readily available LSI devices enables the design to be kept relatively 

simple. At the same time, recent breakthroughs in speed have lessened 

the severity of the ultimate tradeoff between speed and simplicity. 

Programmable control provides the graphics terminal with a high 

degree of flexibility. Features such as general text editing, the 

specification of 'rubber band lines' (DIC),(NEW), image translation, 

image scaling and provision for user programming in a language such as 

PL/M (MCC), may be included as part of the operating system firmware. 

The graphics controller firmware may be extended as well. The micro­

programmed graphics instruction set of chapter 4 requires 250'words 

(53 bits wide) of the 4K word address space of the AM2910 sequence 

controller (see fig. 3.2). Thus, the potential for extending the 
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graphics controller capabilities is very real. For example, the line 

and circle generators can be generalized to include the drawing of any 

conic section (PIT), (HOR). 

On a closing note, corrnnent is made on the basic modularity of 

the graphics terminal design. At the end of chapter 2, the graphics 

controller, the bit map, and the bit map address generator, were 

collectively referred to as a single modular graphics unit. This 

graphics unit can be successfully interfaced with any conventional, 

microprocessor-based, alphanumeric terminal. Modifications to the 

graphics controller firmware may be required, however, depending on 

whether or not a fully.interlaced display is used. 

The firmwa~e was developed in a manner consistent with the 

aforementioned modularity. For example, the firmware is independent of 

the screen resolution. The number of displayable screen dots may vary 

20 up to a maximum number of 2 , without necessitating any change to 

the firmware. For any particular resolution, the size of the corres­

ponding bit map is fully specified by bit map parameter values stored 

in the internal ROM registers. 
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OROGf~A M C IRCL::: { I NPIJT , CUT PUT ) . - . 

C•••••v•••••~•••••••••••~•••••••••••••••••••••••••••••••••••••••••••••••
c . 

C PlJRPOSC:: AN ALGORITHM FOR GcNSRATING OIGI14L 

c APPROXIMATIONS TO CIRCULAR CURVES IS 
c TESTED. T4E ALGORITHM GENERATES AN 
c OPTIMUM SET OF CONTIGUOUS DOTS, ALL 
c OF WHICU LIE ON A DISCRETE G~IO, 

c SUCH AS IS CHARACTERISTIC OF RASTE~ 

c SCAU DISPLAY DEVICES. THE USER MUST 
c SPECIFY THE GRIO SIZE ( SEE SHLATE > 
c AS WELL AS THE ARC SPECIFICATIONS 
c ( SEE REAOIN ) IN ORDER. TO PRODUCE 
c THE GRID, ARC, AND CONTIGUOUS SET OF 
c GRID PCINTS AS OUTPUT ON A VcRSATEC 
c PL OTTER.. 
c CALLS: ~EADIN, SHLATE .. INITAL, D~AWC, PLOT 
c CALLEO RY 1 NONE 
c INPUT: NONE 
c OUTPUT: NONE 
c GLOBAL VARIABLES INHERITEDi NONE 
c GL01AL VARIAIJLES INITIALIZED: NONE 
c LOCAL VARIABLC:S: X , Y , OOCT , FCORO , PX , PY 
cc•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

IHPLICIT INTEGER ( A - Y } , REALC l )
C-OMHON I HOVE I INSTRX , INSTRY , HOVE1 
COMMON I PLTVAR I S , 051, OS2 , 0051 , 0052 , OX , OY 
COMMON I VERSTC I SCALE 

C PEAD ARC s 0 r:CIFATIONS 
CALL REAOHH PX , PY , X , Y , OOCT , FCORO )

C ORAH GRID ANO ARC ON VERSATEC 
CALL SMLATE( PX PY X , Y , OOCT , FCORO1 1C INITIALIZE CIRCL:. VAKIAijL~S
CALL INITAL( X , Y , OOCT t 

·11_C GENERATE CONTIGUOUS GiU!J POIHS ' 
CALL DRAWC< X , Y , OOCT t FCORO , PX , PY )

C ENO OF PLOT 
CALL PLOT( 14.0, O.O , -3)

CA LL PL OT ( 0 • 0 t 0. 0 t 9qq )

STOP 
2'.NO 

CX> 

CX> 




0.SlJfl.iJQIJTI~E R'.:ADIN( X , oy , X , Y , OOCT , FCORO ) 
c~~••••••••••••••••••••••••••••~••••••••··~••••••••••••••••••••••••••••• c 
c PURPOSE I R.EADS lJSER"S ARC SPECIFICATIONS 
c CALLS: NONE 
c CA.LLEO BY: CIRCLE 
c I NPlJT: PX , PY , X , Y , OOCT , FCORO 
c OUT PllT: NONE 
c GLOflAL VARIA'1LES INllERITEO: NONE 
c GLOAAL VARIA3LES INITIALIZED: PX,PY - THE INITIAL GRIO POSITION 
c IN UNITS OF nors FROM THE 
c ORIGIN AT THE LOWE~ LEFT 
c HANO CORNER. 
c x, y .. TH£ OI SPL ACE ME NT, IN OOTS, 
c OF THE A~C CENTER FROM PX, 
c PY. 
c OOCT - ij!TS 0 - 14: T~E TOTAL 
c NUMA~R OF OCTANT CHANGES 
c <RELATIVE TO THE Aqc 
c CENTER ) ENCOUNTERED IN 
c COMPLETING THE ARC. 
c RIT 15: IF ZERO DRAW 
c COUNTER - CLOCKWISE ELSE 
c CLOCKWIS!:. 
c FCORO - UPON TERM PM TION, THE 
c ABSOLUTE VALUE OF THE MOST 
c RAPIDLY VA~YING COORDINATE 
c ( RELATIVE TO ARC CENTE~ )
c LOCAL VARIAflLES: NONE 
cc••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

IMPLICIT INTEGER ( A - Y ) 1 REAL( 7 ) 
?.~AO•,, PX , PY , X , Y , OO~T , FCORO 

~.C:TURN 

E Ni'l 

\0 
00 



5Ut1ROUTINE S,"fLAT:'.:( PX , PY , X , Y. ,. OOCT , FCOR.fl t 
c•••••••••••••••••••••••••••••••••••••~•••••••••••••••••••••••••••·~····c . 
C PURPOSE: PLOTS GRID ANO A~C ON VERSATEC 
C CALLS: OCTANT,FINALPT,PLOT,ARC,LETTER
C CALLED BY: CIRCLE 
C I NPIJT t SCALE 
C OUTPUT: VER.SATEC PLOT 
C GLOOAL VARIAnLES IN~ERITEO: PX , PY , X , Y , OOCT , FCORD 
C GLOnAL VARIA~LES INITIALIZED: SCALE - NUHnER OF FINEST VERSATECc . DIVISIONS TO FINEST GRIO 
c DIVISION 
c LOCAL VARIABLES: zx,zv,ocr,zx2,zv2,zx1,zv1,zxc,zvc, 
c ZOTHER,CLKWISE,I,OISPLAY 
cc••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

IMPLICIT INTEGER ( A - Y ) , REAL( Z )
COMMON I VERSTC I SCALE 
LOGICAL CLKH SE 
OIHENSION DISPLAY( 14 
READ• SCA LE 

c DRAW VERTICAL GRID LINES 
zx = o.o 
UNTIL ( Z X •GT• 10. 4 )

CALL PLOT( ZX , O.O , 3 )
CALL PLOT( ZX , 10.4 , 2 l 
ZX = ZX + ( .005 •SCALE)

END UNTIL 
C DRAW HORIZONTAL GRID LINES 

zv = o.o 
UNTIL( ZY .GT. 10.40 l 

CALL PLOT( Q.O , ZY , 3 )
CALL PLOT( 10.4 , 7Y , 2 
ZY = ZY + { .005 • SCALE

ENO UNTIL . 
C CALCULATE FINAL ENDPOINT OF ARC 

IF< DOCT .GE. 2••15 ) 
·~LKWSE: = • TRUE. 

ELSE 
CLKWSE = .FALSE, 

C: NO IF 
CALL OCTANT( -X , -Y , CLKWSE , OCT )
IF( CLKWSE )

OCT = MIJO( ( OCT - 1 ) • ( >J - ( !)OCT - 2'H'15 ) ) , -'I ) • 1 
ELSE 

\0 
0 



OCT = MOO( OCT - 1 t oor.T ' 8 • t- 1
z:unIF 
ZOTHER = SQRT( FLOAT( x••2 + Y••2 - FCORa••z )
CALL FINALPT( OCT, FCORO, ZOTHER, ZX2, lY2 

C COl'IVC:RT TO AC1SOLUT£ COO~OINATES ANC lJRAii ARC
zxc:.: (.PX .. x , .. SCALE ... oo:> 
ZYC :.:. C PY • V ) • SCALE • .0~5 
ZX1 = PX • SCALE • .005 
ZY1 = 0 v • SCAL~ • .005 
7X2 = 7.X2 • SCALE • .005 t ZXC 
ZY2 = ZY2 • SCALE • .OJ5 ~ ZYC 

I F ( CL Kl·I S E: )
CALL ARC( ZX2, ZY2, ZX1, ZY1, ZXC, ZYC, .005)

::LSE 

CALL ARC< ZX1 , ZY1 , ZX2 , ZY2 , ZXC , ZYC , .005 


~NOIF 
C PRINT DISPLAY INFORMATION ON VERSATEC PLOT 

~NC00~{140 , 1 , DISPLAY ) 5HPX = , PX , 5HPY = , oy , 4HX = , X L 

1 ~HY = , Y , 7HOOCT = , OOCT , RHFCORO = , FCORO , 6HSCALE = ,
1 SCALE 

1 F 0 RMAT ( A 5 , I 3 , 12 X , A 5 , I .1 , 12 X , A 4 , I 4 · , 12 X , A 4 , I 4 , 
1 12X ' A7 ' !5 ' ax ' A6 ' 14 ' tlX t AE\ , Il ' 9X )

DO( I = 1 , 7 )
CA L L L ET TE R ( 2 0 , • 1 5 , 0 • 0 , 11. 2 , o • 0 - I • • 2 , 


1 0 I S PL A Y ( 2 • I - 1 ) ) 

::: NDOO 
~::TU~N 
=:NO 

\J) 
t-' 



SIJuROUTINE OCTANT( x , y , CLKvlS::: ' OCT )c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c 
c PURPOSE: O~TERMINES WHICH OCTANT THE POINT 
c DESIGNATED RY x,v rs LOCATfO IN c CALLS; NONE 
c CALLEO av: SM LATE 
c I NPlH t NOMF 
c OUTPUT: NONE 
c GLOnAL VARIA~LES I~HERITEO: X1 V,CLKWSE
c GLOBAL VARIA1LES INITIALIZED: OLlT - CALCULATED OCTANT 
c LOCAL \/ARIAflLES: NONE 
cc••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

IMPLICIT INTCG::~ (A - Y) , ~.:'.AL( Z)

LOGICAL CLKWSE 

IFC X .GT. 0 l 

IF< Y .GT. 0 > 
IF ( X • GT. Y ) 


OCT = 1 

ELSC: 

C SP~CIAL CARE MUST 9E TAKEN FOR POINTS ON OCTANT nOUNDARY 
IF< X .EQ. Y .AND. CLKWSE > 

OCT = 1 
ELS:: 

OCT = 2 
ENO IF 


C:NO IF 

£LSE 

IF( X .GT. Il\f.lS( Y ) )
IF( Y .:::Q. 0 .At\O. ( .NOT. CLKWSE ) ) 

OCT = 1 
ELSE 

OCT :: 8 

ENO IF 


ELSE 
IF( X .EQ. -Y .ANO. ( • NOT. CLKWSE ) ) 

OCT = .~ 
ELSE 

·1CT = 7 
ENO IF 

END IF 
C:NO IF 

\0 
N 



:: L 3E: 
IF< Y .GT. 0 )

IF< !ABS( X > .GT. Y )
OCT = 4 

ELSE 
IF( X .EQ. 0 .Af\O. CLKWSE 

OCT = 2 
ORIF( X .EQ. -Y .ANO. (.NOT. CLKWSC: l) 

OCT = 4 
ELSE 

OCT = 3 
EMO IF 


:'.NJ IF 


cLS;::
IF( IABS< X l .GT. IABS< Y l )

IF( Y .EQ. 0 .ANO. CLKWSE ) 
OCT = it 

C:LSi:: 
OCT = 5

ENO IF 
ELSE 

IF( V .EQ. X .ANO. CLKWSE )
OCT = 5 

ORIF( X .EQ. 0 .ANO. ( .NOT. CLKWSE ) l 
OCT = 7 

ELSE 
OCT = 6 

ENO IF 
t: N:J IF 

ENO IF 
C: NO IF 
RETURN 
i::ND 

'°w 



3 U fl i( OIJ TIN C: FIN AL i> T ( 0 C T , F C OR 0 , Z 0 T 'i EP. , Z X 2 , 7. Y 2 )c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c 
C PURPOSEJ DETERMINES FINAL ~NOPOINT OF ARC 
C CALLS: NONE 
C CALLEO BY i SHLA TE 
C INPUT: NONE 
C OUTPUTi NOtJE 

C GLOuAL VAfHAALt:S I.NH:::RITEO: OCT z. FCORO , 

C ZOTH~R - OTHER FI~AL COORDINATE 
c GLOBAL VARIA~LES INITIALIZEn1 zx2,zv2 - FINAL POSITION RELATIVE TO 
C ARC CENTER 
C LOCAL VARIABLES: NONE 
c 
c••••••~••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

IMPLICIT INTEGEP. ( A - Y ) , R·::AL( Z )
CASE OF { OCT t 

CA SEC 1 )


ZX2 = ZOTHER 
ZY2 = FCORO 

CASE( 2 )
ZX2 :: FCO~O 
ZY2 = ZOTHER 

CASE( 3 ) 
ZX2 = -FCORO 
ZY2 :: zontER 

CASE( 4 ) ' ' 
ZX2 = -ZOTHER 
ZY2 = FCO~O

cAs::c ? ,
ZX2 = -ZOTHER 
7.Y2 = -FCORO

CASE:( o )
ZX2 :: -FCO~D 

ZY2 = -ZOHtER 


CASC:C 7 )

ZX2 = FCO~O 

7.Y2 = -ZOTHE~


CASE( ft ) 

ZX2 = ZOTllER 

ZY2 :: -FCORO 

=:NO CASE 
~.::TURN 
C: NO 

'°.p. 



3Ui31WUTitlE IllITAL( X , Y OOCT IC••••••••••••••••••••••••••••••'••••••••••••••••••••••••••••••••••••••••
c . 
C PURJ'lOSC: INITIALI7ES CIRCL~-GENERATING 
c VA~IAOLSS 
c CALLS: MAP 
c CALLEO flY: CIRCLE 
c I NPllT: NON=: 
c OUT;:>UT1 MONE 
c GLOOAL VARIAnLES INHERITED: X, Y, 110CT 
c GLOOAL VARIAflLES INITIALIZ~D: s - OIAGONAL HOVE IF GT 0 ELSE 
c HOVE1 
c DS1 - ADO TO S AFTER HOVE1 
c OS2 - AOO TO S AFTcR DIAGONAL 
c HOVE 
c OOS1 - ADO TO OS1 AFTER EVE~Y 
c MOVE ; ADO TO DS2 AFTEQ 
c 1-tOVEl 
c OOS2 - ADO TO OS2 AFTER DIAGONAL 
c MOVE 
c nx - ADO TO X AFTER HORIZONTAL 
c MOVE 
c DY - ADO TO Y AFTER EVERY HOV~ 
c LOCAL VAR IA BL ES: DIRECT - IF GT O, COUNTE~-CLKWISE 
c ELSE CLKWISE 
cc•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

IMPLICIT INTEGER CA - Y) , R:::AL( Z l 
COMMON I HOVE I INSTRX INSTRY , HOVE1
COMMON I FLTVAR I S , 0§1 OS2 , 0051 , DOS2 , OX , OY 

C SEPA~ATE OI~ECTION AIT FROM OO~T ANO INITIALIZE DIRECT 
IF< OOCT .GE. 2••15 )

DIRECT : -1 
DOCT : OOCT - 2••15 

~LSC: 
DIRECT =1 

i::NOIF
C TRAN~FCRM X,Y TO COORDINATES OF INITIAL POSITION W.~.T. ARC CENTER 

x : -x 
y : -v 

C MAP X, Y, DI~~CT INTO FIRST OCTANT 
CALL MAO( x,v f or 0~CT ) 

\0 
V1 



C INITIALIZ~ VARIAlLES AGCORQING TO OIRECTION 
IF( DIRECT .GT. 0 » 

s = 2 .. y - x .. 2 

OS1 = 2 • y l
.. 
OS 2 = 2 • y - 2 .. x + 5 
ODS1 = 2 
OOS2 = 4 
DX = -1 
OY = 1 

C:LSE
:>=2•v 2 .. x - 1 
flS1 = 2 "' y - 3 
ns2 = 2 • y - 2 .. x - 5
oos1 = -2 
OOS2 = -4 
1lX = 1 
DY = -1 

::'.NOIF 
R!::TlJRN 

::ND 


\0 

°' 



SU'1F.OUTINE i1"P( X , Y , DIRECT ) 
c•~•••~••••••••••••••••••4•••••••••••••••••••••••••••••••••••••••••••••• 
c 
c PURPOSE: MAPS X,Y ANO DIRECT FROM THE START­
c ING OCTANT INTC THE FIRST OCTANT. 
c THE INVERSE TRANSFORM IS APPLI~O 
c TO MOVE1,INSTRX,INSTRY TO MAP THE 
c ACTUAL MOVEMENT FROM FIRST TO STA~T­
c ING OCTANT. 
c CALLS: NONE 
c CALLEO qy; IN ITAL 
c I NPllT: NONE 
c OUTPUT: NONE 
c GLOBAL VAPIAt3LES INH~RITEO: X,Y DIRECT 
c GLOBAL VARIA1LES INITIALIZED: INSf~X - INSTRUCTION FOR HORIZONTAL 
c MOVE 
c INSTRY - INSTR FOR VERTICAL HOVE 
c MOVE! - VALUt:: OF 1 : VE~TICAL MOVE 
c 2 : HORIZONTAL MOVE 
c LOCAL VARIAOLES: XYFLAG , TEMP 
c 
c•••••••••·~··••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

IMPLICIT INTEGE~ ( A - Y ) , REAL ( Z t 
COMHON I MOVE I INSTRX , INSTRY , MOVE1 
LOGICAL XYFLA G 
XYFLAG = .FALSE. 

C SET INSTRX, If\ST<{Y AS IF IN FIRST OCTANT, GT 0 HEANS INCREMENT , LT 0 
C MEAN:> DECREMENT 

IFC OIRC:CT .GT. 0 ) 
It~STRX = -1 
INSTr<Y :: 1 

C:L SE 
INSTRX :: 1 
INSTRY :: -1 

::NOIF 
C PEFL~CT X,Y,DIRECT IN LINE Y :: X IF NECESSARY 

IF( IAr\S( Y > .GT. IAAS( X ) t 
T:::MP = Y 
y = x 
X = TE HP 
DIRECT = -DIRECT 
XYFLAG = .TRUE • 

.:'.NDIF 

\0 
........ 




c ~EFL:cr x,v,or~~CT ANO INSTR>,INSTRY IN LINE x = 0 
IF< Y .LT. iJ ) 

y = - y 
c INST~X rs FLIP?EO 

INSTRX = -INSTRX 
DIRECT = -DIR~CT 

C: NO IF 
C REFLECT X,Y,DI~ECT AND INSTR>,INSTRY IN LINE Y = 0 

IF( X .LT. 0 ) 
x = -x 
INSTRY = -INSTRV 
DIRECT = -OIP.ECT 

:NOIF 

C REFL:::CT INSTRX,INSTP.Y,110Vf.1 IN LIN~ Y = X
IF( XYFLAG )

IF( INSTRX .EQ. INSTRY 

INSTRY = ·INSTRY 

INSTRX = -INSTRX 


£NDIF 

r·IOVE 1 = 2 


C: L s=: 
MOVE1 = 1 

~NDIF 

~::::TUf;N 

.:: NO 

"' 
00 



SIJflROllTINf. 02AWC( X , Y , OOCT , FC0.(0 , PX , PY > 
c~···~~••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c
C t>URPOSE; GENERA'fES TH:: CONTIGUOUS SET OF G~IO 
C POINTS WHICH B~ST REPRESENT ARC 
C Cl\LLS: i10VEPT,OIAG,SQUARE 
c CALLED av: er RCLE 
C INPUT: ~,,ONE 
C OUTPUT: NONE 
c GLOBAL 1/ARIAflLES INHERIT::o: X,YtHO\/E1!,S,os1,os2,oos1,oos2,ox,ov 
c noc1,FCORu,PX,PY
C GLOBAL VARIABLES INITIALIZED: NONE 
C LOCAL VARIAflLESl R=:STf>T - 1 : VERTICAL HOVE 
C 2 : llOQtZONTAL MOVE 
C 3 : DIAGONAL HOVEc•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

IMPLICIT INTEGER ( A - Y ) , RC:AL C Z )
COMMON I MOVE I INSTRX t INSTRY , MOVE1 
CJHNON I PLTVAR I S , DS1, OS2 1 DOS1 , OOS2 , OX , OY 
COMMON I V::RSTC I SCALE . 

C TEST IF STARTING HOVE CROSSES OCTANT OOUNOA~Y 
IF( Y • OY .GT. X .OR. Y -t OY .LT. 0 )


OOCT :: OOCT • 1 

i: ND IF 

C GEN~~ATE POINTS SEQUENTIALLY THROUGH INCREMENTAL CALCULATIONS 
UNTIL( OOCT .LE. 0 .ANO. Y .EQ. FCORO ) 

Y = Y • OY c TEST FOR OCTANT CHANGE, FO~CE x,r TO REMAIN IN FIRST OCTANT 
IF< V • GT. X )

GALL OIAG( OOCT , X , Y )
OR IF ( V • LT • () l 


CALL SQUARE: ( OOCT , X , Y ) 

O~IF( Y .EQ. X .ANO. S .GT. 0


nc:s TPT :: 3 
CALL MOVEPTC AESTPT , PX , PY 
CALL DIAG( OOCT t X , V l 


C:NO IF 

C CHJOSE .B~ST NEXT POINT 

IF l s .ca. o > 
il~S TPT = 3 
s :: s .. 052 
DS2 = ns2 • flilS2 
x :: x t ox 

ELSE 

"' "' 



c MOVE1 I3 A v::r~TICAL OR ~IORIZCNTAL M:>VE 
f1ES TPT = MOVE1 
S = S • OS1
ns2 = os2 • oost 

.::NDIF 
OS1 = OS1 t DOS1
CALL MOVEPT( AESTPT , PX , Py ) 

::NO UNTIL 
~;:ru~M 
·~ ~lO 

SURROUTINE HOVEPT( ~ESTPT , PX , PY tc••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c 
c PURPOSE: PERFOR~S INCRE~ENTAL MOVE FROH Px,oy 
c ANO PLACES oar ON GRID 
c CALLS: SPOT 
c CAL LEO AV: OR.AW C 
c I tlPUT: NONE 
c OUTPUT: VcRSATEC PLOTT~R 
c GLOnAL VARIA~LES INl-lf:RITEOt ~ESTPT,PX,PY,INSTRX,INSTRV,SCALE 
c GLOflAL VARIAllLC:S INITIAL IZEO: NONE 
c LOCAL 1/ARIAflLES: NONC: 
cc•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

IMPLICIT INTEGER ( A - Y ) , REAL( Z )
COMMON I HOVE I INSTRX , INSTRV , HOVE1 
COMMON I VERSTC I SCALE 

c IF arr Z~RO OF 02STPT IS SET ' MOVE VERTICALLY ACCORDING TO INSTRY 
IF( ANO( COtlPL( t1ASKC 59)), AESTPf) .NE. 0 l 


IF< INSTRY .GT. 0 ) 

PY = PY t 1 

ELSE 
PY = PY - 1 

ENO IF 
=:NO IF 

c IF nrr ONE OF OESTPT IS SET, MOVE HORIZONTALLY ACCO~OING TO INST~X 
IFC MW( SHIFT( C0'1PL( MASK( Sq > > , 1 t , llESTPT ) .NE. 0 l 


·IF( INSTRX .GT. 0) 

PX = PX t 1 

ELSE 
PX = PX - 1 

ENO IF 

:NOIF 


C PLACE DOT 
CALL SPOT( PX• .005 •SCALE - .01, PY• SCALE• .005 - .01, .02 

1 , 1H• , O.O ) r­
;~ETURN 0 

0:: NO 



S IJ ~ iW U T UJC: D I A G ( !J 0 C T , X , Y > 
c•~···~~··•••••••••••*•••••••••••••••••••••••••••••••••••••••••••••••••• c 
c PURPOSE: DIAGONAL OCTANT CHANGE 
c CALLS: ~EVERS 
c CALLEO tlY: ORAWC 
c I NPIH: NONE 
c OUTf>IJT1 ~ONE 
c GL03AL VARIAGLES INHERITEOl HOVE1,tNSTRX,I~STRY,oocr,x,y,s,os1. 
c os2,oos1,ons2,ox,ov 
c GLOnAL VARIAnL~S INITIALIZE~: NONE 
c LOCAL VARIABLES: ~ONE 
cc•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

IMPLICIT INTEGER ( A - Y ) , RF.AL( Z ) 
COM~ON I "OVE I INSTRX INSTRV , MOVE1 
COHMON I PLTVAR I S , 0§1 , OS2 , OOS1 , OOS2 , OX , DY 

C FLIP MOVE1 
MOVE1 = XO~( HOVE1 t 3 )

C QEVE~SE PRESENT DIRECTION 
Y=Y-1 
s = -s + 4 • y - 2 • x + 1 
OS! = 0$1 - 6 
0 ::>2 = DS2 - 10 
ODS1 = -DOS! 
oosz = -oos2 
i1X = -OX 
0 Y = -DY 
Y = Y t OY 

C DE:~~HENT OCTANT CHANGE COUNT 
DOCT = OOCT - 1 
R.=:TU~N 
i:: 'ID 

...... 

...... 
0 



SU8ROU THIE Sf)U~~C:: ( flOCT X 'f )
C•••••••••••••••••••••••••~•••i•••i••••••••••••••••••••••••••••••••••••• c 
c PU~POSE ~ SQUARE OCTANT CHANGE 
c CALLS: REVE~S 
c CALLEO BY: ORA WC 
c INPUT: NONE 
c 0 UT PUT; NONE 

c GLOBAL VARIAflLES INHERITED: X,Y,OOCT,HOV~1,INSTRX,INSTRY,S,OS1, 

c os2,oos1,oos2,ox,ov 
c GLO~AL VARIA1LES INITIALIZED: NONE 
c LOCAL VARIABLES: NONE 
cc•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

IMPLICIT INTC:GER ( A - Y ) , R.E:AL ( Z l 
COMMON I HOVE I INSTRX , INSTRY , HOVE! 
COMMON I FLTVAR I S , OS1 , OS2 , OOS1 , OOS2 , OX , DY 

C FLIP DIAGONAL ~OVE 
IF ( MOVE1 .Ef.l. 1 t 

INSTRX = -INSTRX 
::LSE 

INSTP.Y = -INSTRY 
C:NOIF 

C REVE~SE PR~S::Nr DIRECTION 
s = -s - 2 • x t 1 
DS1 = DS1 t 6 
;JS2 = OS2 + 10
11os1 = -oos1
oos2 = -oos2 
.JX = -fJX 
l.l Y = -OY 
Y = Y + 2 "" OV 

C DEC~C:MEtlT OCT ANT CHANGE COtJNT 
OOCT = OOCT - 1 
RETURN 
:1-10 

...... 
N 
0 



PROGRAM Vr?.CfrlRC ItJi.,IJT , OUTPIJT ) 
c•••••~••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c 
c r>tJRPOSF: AN ALGO~ITHrl FOR G~NfRATING OI~ITAL 
c AP 0 ROXIHATIONS TO STRAIGHT LIN~ 
c SE G~EN TS IS TEST EO. TUE ALGO~I THM 
c GC:"-IE ~A Tt:S AN OPT IMlJH SET OF 
c CONTIGUOUS OOTS, ALL OF WHICH LIE ON 
c A OISCR.ET::::: G~IO, SUCH AS IS 
c CHA~ACTERISTIC OF ~AST~~ SCAN 
c OISPLAV DEVIC2S. TllE USER MUST 
c SP:::CIFY THE GRIO s rz:: ( SEE St1LATI/ ) 
c AS HELL AS THE STRAIGHT LINE 
c SP!::CIFICATIONS C SE::: REAOV ) IN 
c ORDER TO PRODUCE THE GRIO, LINE ANO 
c CONTIGUOUS SET OF GRIO POINTS AS 
c OUTPUT ON A VERSATEC PLOTTER 
c CALLS: R~AOV,SMLATV,HAPV,ORAWV,PLOT 
c CAL LEO IJV: NONE 
c INPUT: NONE 
c OUTPUT: NONE 
c GLOBAL VARIA9LES HHER ITEO: NONE 
c GLOi\Al VA RIA llLES INITIAL IZEO: NONE 
c LOCAL VARIAflLES: PX,PY,VX,VY 
cc••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

IMPLICIT INTEGC:R ( 4 - Y ) , R'.::AL( Z )
COMMON I MOVE I INSTRX , INSTRY , HOVE1 
COMMON I VERSTC I SCALE

C READ STRAIGHT LINE SPECIFICATIONS 
CALL REAOV( PX , PY , VX , VY t 

C DRAW GRID ANO STRAIGHT LINE CN VERSATEC 
CALL S~ILA TV( PX PY VX VY t c GENC:~ATE CON1IGIJOIJS G~TO b()If\TS
CALL MAPV( VX , VY t 
CALL Oi~AHV( 0 X , PY , \IX , VY 

C END OF PLOT 
CALL PLOT( 14.0 ' a.o ' -3 )
CALL PLOT( o.o' a.a' qgq)
STOP 
::: l'-lO 

._. 
w 
0 

http:OISCR.ET


iUJROUTIN~ R~AOV( PX , PY , VX , VY t .c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• c 
0c UR»OSE: REAOS LIN~ S~GMENT SPECI FICA TIONS 

c CALLS: NONE 
c CALLEO ilY: VECTOR 
c INPUT: PX,PY,VX,VY 
c 0 UT PUT: NONE 
c GLOi1Al VARIABLES INHERITED: NOME 
c GLO~AL VARIABLC:S INITIALIZED: PX, PY - THC: IN tT IAL GRIO POSITICl"I 
c IN UNITS OF DOTS F~OM Tli~ 
c ORIGIN AT THE LOWE~ LEFT 

HANO COR~IER. 
c 
c 

vx 'v y - THE DISPLACEMENT IN DOTS, 
c OF TllE: FINAL GPIO POSITION 
c FROM PX,PY • THE LINE 
c SEGMENT IS DRAWN FROM THE 
c INITIAL TO FINAL G~In 
c PO':HTI ON 
c LOCAL VARIABLES: NONE 
cc•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

IMPLICIT INTEGER ( A - Y ) , RC:AL( Z ) 
~~AO• , PX , PY , VX , VY 
RETURN 
~NO 

I-' 

+' 
0 



c 
':;IJ'i~OllTINf. S>ILATI/( PX , PY , VX , VY tc••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

c DURPOSE: PLOTS GRID AND LINE SEGMENT ON 
c 
c 
c 
c 
c 
c 
c 

CALLS: 
CALLEO 11Y;
INPUT: 
OUT PUT: 
GLOnAL VARIARLES 
GLOflAL VAiUAflLC:S 

INHERIT~n: 
INITIALIZEO: 

\IERSATEC 
PLOT,LETTER
VECTOR 
SCALE 
VEP..SATEC flLOT 
PX,PY,VX,VY
SCALE - NUHB~R OF FINEST V~RSAT~C 

c DIVISIONS TO FINEST GRIO 
c 
c LOCAL VARIAIJLESt 

flIVISION 
zx,zv,oISPLAY,I 

cc••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
IMPLICIT HHE:GER ( A • Y t , R.::AL( Z > 
COMMON I Vt:RSTC I SCALE 
orr-:::NSION DISPLAY( 10 • 

RC:AD• , SCAL.:: 


C DRAW VERTICAL GRID LINES 
zx ;: o.o 
lJ NT IL ( ZX • GT• 10. 4 )


CA LL P L 0 T < l X , 0 • 0 , 3 )

CA LL PLOT ( 7.X 1 10 • 4 ! 2 )
ZX = lX + ( .Ou5 • SCALE , 

ENO UNTIL 
C O~AW HORIZONTAL GRID LINES 

ZY = G.O 
U~HIL( ZY .GT. 10.4 l 


CALL PLOT( O.O , ZY t 3 t 

CALL PLOT< 10.i+ , ZY , 2 ) 
zy = zy t ( .005. SCALE )

::NO UNTIL 
C DRAW LINE SEG~ENT USING VERSATEC ~OUTINES 

CALL PLOT( PX '*' .005 ,,. SCALE , PY • .005 • SCALE , 3 ) 
CALL PLOT( (PX t VX l • .i)05 •SCALE" (PY+ VY) • .005 •SCALE 


1 ' 2 l
C PRINT DISPLAY INFO~MATION ON VERSATEC PLOT 
C:NCOOEC 100 , 1 , DISPLAY ) 5HflX = , PX , 5.HPY = , PY , 5HVX = , 


1 VX , ?HVY = , VY , RHSCALE = , SCALE 

1 FORMAT< AS, 13, 12X , A5, I3, 12X, AS, IJ, 12X, AS, I3,

1 12X , A8 , IJ , 9X l 

00( I :: 1 , 5 l 


CALL LETT:'.:R( 20' .1s' n.o' 11.2' 5.1\ - I ••2' DISPLAY( 2 

1'' I - 1 > l 
~Nnno 

R::TIJ~N 

C:NO 	 0 

I-' 

lJl 



SU nR.O ll TIN f. MA P V ( VX , VY ) 
c•••••••••••••••••~•••••••••••••••••••~••••••~•••••••••••••••••••••••••• c 
c PU~POSE; THE COORDINATES VX,VY ARE MAPP~D 
c INTO THEIR EQUIVALENTS IN THE FI~ST 
c OCTANT. INSTRX , INSTRY , HOVE1 A~E 
c INITIALIZED ACCORDING TO REAL 
c OIPECTION OF MOTION 
c CALLS: NOtJE 
c CALLEO flY ~ VECTOR 
c INPUT; NONE 
c OUTPUTi NONE 
c GLOJAL VARIAflLES INHERIT£n: vx,vv
c GL01AL VA ~IA·lLES INITIAL !ZED: INSTRX - IMS T ~U CT I 0 N F 0 R 
c HO~I ZO NT AL MOVE 
c INSTRY - INSTR FOR VfqTICAL HOV£ 
c MOVE 1 - VALU~ OF 1: VERTICAL HOV~ c 2: HORIZONTAL MOVE 
c LOCAL VAP. 11\flLESi TEMP 
cc•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

IMPLICIT INTF.GE~ ( A - Y l , RE:AL( Z )
COMMON I HOVE I INSTRX , INSTRV , MOV~1 

C INITIALIZE INSTRX,INSTRY - GT 0 MEANS INCREllENT, LT 0 MEANS OECREH:::~IT 
IFC VX .GE. 0 )

INSTRX = 1 
::LS·t: 

INSTRX = -1 
Vl( = - VX 

::: tlD IF 
IF( VY .GE. 0 ) 

INSTRY = 1 
=:LS£ 

INSTRY = -1 
VY = -VY 

i::NOIF 
C MOVC:! CORRESPOiWS TO MOTION IM DIRECTION OF GREATEST CHANGE' 

IF< VY .GT. VX ) 
t10VE 1 =1 
TEHP = VX 
VX = VY 
VY = TEMP 

::'.LSE 
~IOVE1 = 2 

;.: MO IF 
f~ETURN 
C: Nfl t-' 

0 
Cl' 



sunF:OllfI"t:: D~AIN( '.lx PY' vx' VY.
C•••~••••~••••••••••~•••~•~~•••••••••••••••••••••••••••••••••••••••••••• 
c 
c PUR 0 0SF.: GE NE RA TES TH:.: SET OF CONT IGUOlJS 
c GRID POINTS WHICH BEST REPRESENTS 
c THE LINE SEGMENT c CALLS: MOVE Of 
c CALLED FlY: VECTOR 
c I Nf>llT: NONE c OUTPUT: NOME 
c GLO'lAL VAkIABLC::S !NHERITEOi PX,PY,VX,VY,MOVE1,INSTP.Y 
c GL0i3AL \IARIARLcS INITIALIZEO: NONE 
c LOCAL VARIAOLESI 0 - OI~GONAL HOVE IF GT 0 ,
c ELSE MOVC:1 
c 001 - ADO TO 0 AFTER HOVE1 
c 002 - 400 TO n AFTER DIAGONAL 
c ~1ovE 
c '1ESTPT - 0: NC MO \IE 
c 1 'I VC:RTICAL MOV:: 
c 2: HORIZONTAL HOVE 
c 3: DIAGONAL HOVc 
cc••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

IMPLICIT INTEGER ( A - Y t , R'.::AL C Z )
COMMON I MOVE I INST'X , INST~Y ~ MOVE1 
COMMON I VERSTC I SCAL~ 

C TEST FOR GENERATION OF A SINGLE POINT 
IFC VX .c:a. 0 t. 

flES TPT = 0
CALL MOVEPT( aESTPT , PX , PY ) 

~LSf 
C GEN~~ATE CONlIGUOUS POINTS SEQUENTIALLY THROUGH INCREMENTAL 
C CALCULATIONS 

001 :: 2 • VY 
· 0 = OD! - VX 

002 = 0 - vx 
C FUOGc TO ENSLJ Rt: SA~:: POINTS CHOS=:N ORAWit~G FORWA~OS AND AACKHA~OS 

IFC INSTRY .LT. 0 )
0 = 0 • 1 

!::NO IF 

UNTIL ( VX • LS. 0 )


IFC 0 .GT. il ) 
0 = D + 002 
Bi:STPT = 3 


ELSE 

0 = 0 • DQ1 ..... 

0 
....... 
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APPENDIX B 

Sample Microprogram 

Working variables are mapped into the R/W part of the 

internal register file as shown below. The global variables are 

used in the implementation of both drawing instructions. The local 

variables are those which are local to either CIRCLE or VECTOR. 

Global Variables 

Register (R/W) Variable 

1 POSITN 
2 BTMSK 
3 EVODD 
4 MODE 
5 PATERN 
6 PSCALE 
7 PATPOS 
8 SCLPOS 
9 INSTRX 

10 INSTRY 
11 MOVEI 
12 BESTPT 
13 ADDR 
14 MAPWRD 

Local Variables 

Register (R/W) Variable 

VECTOR CIRCLE 

15 vx x 
y16 VY 

17 D DOCT 
18 DDl FCORD 
19 DD2 DIRECT 
20 XYFLAG 
21 s 
22 DSl 
23 DS2 
24 DDSl 

109 
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Register (R/W) Variable 

VECTOR CIRCLE 

25 DDS2 
26 DX 
27 DY 
28 
29 

30 

31 

32 


The following constants are stored in the 16 register 

ROM part of the internal register file. 

Register (Read-Only) Constant 

1 width 

2 gphevn 

3 gphodd 


215
4 
5 2 

6 3 

7 4 

8 1 

9 10 


10 length 

11 

12 

13 

14 

15 

16 


With the exception of the ADDR and MAPWRD, definitions for 

the above variables and constants can be found in appendix A or in 

chapter 4. ADDR is a bit map address and MAPWRD, a bit map word. 

The following routine is representative of the graphics 

controller firmware. The routine (DRAWC) is invoked during the 

execution of a CIRCLE instruction. It generates the contiguous set 

of grid points which best represents the specified circle segment. 

For comparison, see the corresponding IFTRAN version in appendix A. 
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Note that in the following, the data bus interface and bit 

map interface fields are not shown as a part of each microinstruction. 

During the entire routine, these fields remain fixed at their default 

values as is discussed in chapter 3. 
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