
A VIDEO GRAPHICS TERMINAL

A VERSATILE, HIGH SPEED, RASTER SCAN

VIDEO GRAPHICS TERMINAL

By

PETER DOUGLAS MACDONALD, B.Sc.

A Project

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

.McMaster University

April 1979

MASTER OF SCIENCE (1979) McMASTER UNIVERSITY
(Computation) Hamilton, Ontario

Canada

TITLE: A Versatile, High Speed, Raster Scan
Video Graphics Terminal

AUTHOR: Peter Douglas Macdonald, B.Sc. (Queen's University)

SUPERVISORS: Mr. G. J. Hicks
Professor K. A. Redish

NUMBER OF PAGES: viii, 112

ii

ABSTRACT

The design of a flexible, high speed, raster scan graphics

terminal is presented. The design is presented in general architec­

tural terms rather than from a detailed circuitry point of view.

Control is divided between the 'main' microprocessor, an

Intel 8086, and a subservient graphics controller which consists of

a microprogrammable, bit-sliced, AM2903/2910 special purpose micro­

processor. The high speed graphics controller is microprogrammed

to accept basic line and circle generating corrunands. The configu­

ration is felt to represent an efficient balance between simplicity

and speed.

iii

ACKNOWLEDGEMENTS

I wish to express my appreciation to my supervisors,

Mr. G. Hicks and Professor K. Redish for their guidance and assistance

during the preparation of this project. I would also like to

acknowledge the very great contribution made by Mr. G. Hicks to the

design proposed in this report. My special thanks to Mr. G. Hicks

and Professor K. Redish for the patience and cooperation which they

extended to me.

iv

TABLE OF CONTENTS

Page

CHAPTER 1: INTRODUCTION 	 1

I. 1 Cathode Ray Tubes 	 1

I. 2 Controlling CRT Displays 	 2

I. 3 Design Proposal 	 5

CHAPTER 2: BASIC DESIGN 	 8

II. 1 Five Concurrent Processes 	 10

II. 1.1 Dialogue Process 	 11

II. 1.2 Text Definition Process 	 12

II. 1.3 Graphics Definition Process 	 13

II. 1.4 Text Display Process 	 14

II. 1.5 Graphics Display Process 	 16

II. 2 Fully Interlaced Display 	 17

II. 3 Hardcopy Dump 	 18

II. 4 Process Coupling 	 18

II. 5 Modularity 	 22

CHAPTER 3: THE GRAPHICS CONTROLLER 	 24

III. 1 Microprogramming 	 25

III. 2 Basic Architecture 	 28

III. 3 Microinstruction Fields 	 32

III. 3.1 Sequence Controller 	 33

III. 3.2 ALU 	 39

III. 3.3 Data Bus Interface 	 44

III. 3.4 Bit Map Interface 	 47

CHAPTER 4: THE GRAPHICS CONTROLLER FIRMWARE 	 52

IV. 1 Definition Variables 53

IV. 2 Definition Instructions 	 56

IV. 3 Drawing Instructions 	 57

IV. 4 Algorithms 	 62

IV. 4.1 Line Generator 	 65

IV. 4.2 Circle Generator 	 70

v

CHAPTER 5: PERFORMANCE

v. 1 Line Generation
v. 2 Circle Generation

CHAPTER 6: CONCLUDING REMARKS

REFERENCES

APPEJ.~DIX A: Line and Circle Generators (IFTRAN)

APPENDIX B: Sample Microprogram

Page

78

79
81

83

85

87

109

vi

LIST OF FIGURES

Page

Figure 2.1: The Video Graphics Terminal 9

Figure 3.1: The CPU of a Computer 26

Figure 3.2: The Graphics Controller 29

Figure 3.3: The AM 2910 Microprogram Controller 34

Figure 3.4: The ALU 40

Figure 3.5: The Data Bus Interface 45

Figure 3.6: The Bit Map Interface 48

Figure 4.1: The Division of a Circle 61

Figure 4.2: Specification of Arc Endpoint 63

Figure 4. 3: Example of Line Generation 69

Figure 4.4: Example of Circle Generation 74

Figure 4.5: Actual Motion Variables 76

vii

LIST OF TABLES

Page

Table 2.1: Typical Video Graphics Terminal Specifications 20

Table 3.1: The AM 2910 Instruction Set 35

Table 3.2: Control Sequencer Fields 37

Table 3.3: Further Microinstruction Fields 43

Table 3.4: Data Bus Interface Fields 46

Table 3.5: Bit Map Interface Fields 49

viii

CHAPTER 1

INTRODUCTION

Computers speak a language of bits, bytes, and registers. Man

is more fluent with sketches, words, graphs, tables and digits. Each

member of this unlikely pair, man and computer, can be indispensable

to the solving of a problem at hand. Man is needed for his creative

intuition and judgement. The computer is unmatched in its raw speed,

its ability to remember large quantities of data, and in its willing­

ness to perform simple repetitive tasks. In situations which require

talents from both of the above categories, the interactive video

graphics terminal provides a natural man-computer interface. Its

usefulness is a:s an interpreter in the dialogue between man and

machine. The development of this role has led to a wide range of

computer graphics applications in fields ranging from engineering design

to mathematical analysis to business data processing.

I. 1 Cathode Ray Tubes

At the heart of modern interactive graphics terminals, is the

cathode ray tube (CRT). A CRT is large pear shaped tube which has been

pumped free of air and closed off. At the narrow neck end of the tube

there is an electron gun from which a continuous beam of electrons may

be caused to emanate. At the other end of a tube there is a phosphorus

display screen onto which the electron beam is focused. As electrons

hit the screen and for a time afterwards, the phosphor glows and a spot

of light is seen. The colour of this light depends on the type of

phosphor used.
1

2

The electron beam is focused onto any point on the screen through

the application of the proper 'horizontal deflection' and 'vertical

deflection' analogue input signals. A third input signal controls the

intensity of the beam and thus, indirectly, the intensity of the resulting

screen dot. The range of this control includes the situation where the

electron gun is turned off and there is no electron beam.

Interactive graphics terminals exchange information with a user

on the one hand, and a 'host' computer on the other. Much of the

information which is received from the user is passed on to the host

computer. Information received from the host computer is translated,

by the graphics terminal, into corresponding CRT beam control input

signals. These signals, in turn, cause a visual image to be generated

on the face of the CRT screen. In this way, the user and host computer

communicate indirectly via the visual display.

Since phosphor glows for only a short time after the termination

of an electron bombardment, CRT images are transient and need to be

regenerated regularly in order to obtain a steady and coherent picture.

The so called refresh rate is usually 30-60 Hz, depending on the type of

phosphor used. Refresh rates which are too low cause an annoying

'flicker' whereby the display is noticeably discontinuous in time.

I. 2 Controlling CRT Displays

Two distinctive methods for generating and manipulating CRT

displays have evolved. There are, accordingly, two general types of

interactive graphics terminals, the directed beam terminals and the

raster scan terminals. With directed beam terminals, digital display

data is converted into analogue waveforms which are used to drive the

3

horizontal deflection and vertical deflection inputs of the CRT. As

a result, the electron beam is directed, under program control, about the

display screen. By controlling when the electron beam is on and when it

is off, continuous or discontinuous outlines of display imageB are traced

onto the screen. The approach yields good line quality.

With directed beam refresh terminals, the flicker problem

ultimately results in an upper limit to the amount of information which

can be displayed. The display must be simple enough that it can be

completely generated in the time between two successive screen refreshes.

High speed, but expensive, vector generators can be used to raise the

image complexity limit.

Alternatively, some directed beam terminals use storage tubes

which, unlike conventional CRT's, do not require that the image be

refreshed. While this strategy eliminates flicker problems, storage

tubes are expensive, inherently less bright, and wear out much more

quickly than refresh CRT 1 s. A further disadvantage is that the entire

screen must be erased in order to delete any part of the picture.

With raster scan terminals, the screen is treated as a

rectangular mesh of defineable dot positions. For example, a screen

may be characterized by a matrix of 500 x 600 discrete positions. A

graphics display is composed of the complete set of defineable dots,

each of which is either bright or dark according to the specifications

of a bit map. This bit map is maintained in an internal memory and is

such that each bit in the map corresponds to a single screen position.

During each screen refresh, the contents of the bit map are mapped onto

the screen. Since the bit map is commonly maintained in random access

read/write memory, the image can be selectively modified by simply

4

changing the contents of the bit map.

The words 'raster scan' refer to the manner in which the infor­

mation contained in the bit map is mapped onto the display screen. The

term, raster, refers to the complete set of horizontal lines defined by

the discrete screen positions. Each raster line consists of a separate

row of screen dots. At the start of each screen refresh, a new scan of

the raster is begun. Starting with the electron beam focused on the

top leftmost screen position, the beam is automatically made to scan

through each raster line, in turn, from left to right. Upon reaching

the end of each line, the leftmost dot of the next line down is selected

as the starting position for the next horizontal scan. Upon reaching

the bottom line, the beam is once again directed to the top raster line

in preparation for the next screen refresh.

As the raster is scanned, the corresponding bits in the bit map

are accessed, in sequence, and used as ON/OFF input signals for the

electron gun. During the course of a complete raster scan, each bit in

the bit map is accessed exactly once and used momentarily as the electron

gun ON/OFF input signal. For each bit, this occurs at the precise

moment that the electron gun is focused at the bit's corresponding

screen position. In this manner, the information contained in the bit

map is transformed into the graphics display.

For a time, the directed beam storage-tube terminals represented

the only choice in relatively low cost graphics terminals. Memory

prices rendered raster scan graphics impractical. With the advent of

high density, inexpensive semiconductor memories, however, raster scan

graphics terminals have become an economically attractive, alternative,

5

low-cost terminal. The more expensive refresh directed beam terminals

remain uniquely useful in situations which require high speed and good

line quality.

I. 3 Design Proposal

This report presents the design of a raster scan graphics terminal.

In this design, commercially available LSI chips and, in particular,

microprocessors are used to control the terminal. The graphics processing

is distributed amongst two microprocessors which execute in parallel.

A microprocessor can be thought of as a programmable logic device which

can be made to synthesize any sequence of individual logic devices.

In effect, it corresponds to the CPU of a digital computer. The term,

microprocessor, usually refers to a single chip CPU although it can be

extended to include 'bit-sliced' CPU's which consist of several LSI

chips.

The control program of a microprocessor is stored in a separate

memory. It is this program which gives the microprocessor its distinct

personality. Since the control program is usually stored in Read Only

Memory (ROM), it is thought of as being more 'firm' than regular soft­

ware. Hence, it is commonly referred to as the control firmware.

The advantages of microprocessor-based design are several.

Rather than design special purpose and, in comparison, inflexible hard­

ware, many terminal control functions are easily programmed. The resulting

firmware can be of a very general nature. Sophisticated, host independent

capabilities can be programmed into the terminal without any accom­

panying increase in hardware complexity. Furthermore, future additions

to the firmware are fairly readily accommodated. As more 'intelligence'

6

is built into the terminal, the burden on both the user and the host

computer is reduced. Finally, the reduction in the number of discrete

integrated circuits, results in low cost, low maintenance and high

reliability.

A price for these benefits is paid for in processing speed.

Hardwired logic can be made to operate faster than programmed logic.

This compromise in speed provides the principle motivation for incor­

'
porating two microprocessors into the design. By distributing the

graphics processing among two microprocessors rather than one, the

terminal performance is significantly enhanced. The objective is the

design of a capable raster scan graphics terminal which is able to keep

pace with modern host-terminal transmission rates. These rates may be

as high as 9600 baud (960 characters per second). This means that the

terminal must be able to process incoming characters at the average

rate of one character every millisecond.

In the proposed design, control is divided between the 'main'

microprocessor, an Intel 8086, and a subservient graphics controller

which consists of a bit-sliced AM 2903/2910 special purpose microprocessor.

The main microprocessor supervises the hardware interfaces with the user,

host computer, display hardware and graphics controller. It sends

graphic commands to the high speed graphics controller whenever the

contents of the bit map are to be altered. The configuration is felt

to represent an efficient balance between simplicity and speed.

The graphics controller has been referred to as a 'bit-sliced'

microprocessor. The precise meaning of this terminology shall be made

clear in chapter 3. For the moment, it suffices to mention two prominent

7

aspects of the bit-sliced technology. Firstly, the bit-sliced approach

enables the design of a highly specialized CPU specifically equipped

for the task at hand. Secondly, bit-sliced microprocessors are micropro~

grammable. Microprogramming can be thought of as a level of programmable

control below that provided by machine language. It is, in effect, the

programming of the control unit of a CPU. It is inherently more

complicated than regular machine language programming although, as a

reward, the efficient use of microprogramming techniques can lead to

further increases in speed.

In this report, the design is presented in general architectural

terms rather than from a detailed circuitry point of view. A discussion

of overall terminal design is followed by a more detailed look at the

microprogrannnable graphics controller. Finally, algorithms which provide

basic graphics capabilities are developed.

CHAPTER 2

BASIC DESIGN

The hardware architecture of the video graphics terminal is shown

in figure 2.1. Control firmware stored in the local memory is referred

to as the operating system. It is executed by the main microprocessor

(Intel 8086). Programmable control also resides in a separate control

store contained in the bit-sliced graphics controller. The two pro­

grammable processors are able to execute in parallel. They provide for

the basic flexibility of this design.

At any one time, the video display is entirely defined by the

digital information contained in both the text memory and graphics bit

map. The two separate memories are characteristic of the dual graphic

and text roles of which the terminal is capable. The bit map defines

the graphic image as described earlier. The text memory enables the

terminal to act as a conventional alphanumeric terminal as well. The

contents of the text memory are mapped onto the screen as characters.

This is accomplished through the use of a character generator. Each

alphanumeric character can be thought of as consisting of a rectangular

matrix of dots. Each matrix is identical in size, depending only on

character height and width. These matrix patterns are stored in the

character generator and are accessed simply by providing the appropriate

addresses.

In a typical application, the user's dialogue with the host

computer is stored in the text memory while the graphic commands are

8

9

l'loit\
l'llcn,,-s..,..

~~'"'1~~~----+------al

I~ ~~t------+

bl\ l (lAf11 l"l~-----1-------
- -, ..------1---M~'laa~........

14---- ~'4t 14---1 \'~.......

r- ­ - - - ..J

• ~IC.t'
I G,.plu...J

l,,.M H l..te~I llev•ces A
I i...

I

I H--~IL
I ~.

I&.

I r­

" I •
I
I c;.'!!~~iC.!> ~...l\3;\. ';trea"' _..

~l.i~

~i*e.-
I

I_ _I

Fig. 2.1: The Video Graphics Terminal

10

sent to the graphics controller where they are transformed into graphics

output to be stored in the bit map. The two independent text and

graphics memories allow maximum user flexibility. Via the keyboard,

the user may request that the contents of both memories be displayed

simultaneously.Alternatively, either of the text or graphics displays

may be viewed singly. At any moment, the user's dialogue with the host

may be recalled to the screen for viewing or temporarily dismissed while

the graphical display is studied.

II. 1 Five Concurrent Processes

The normal terminal operation can be understood in terms of five

concurrent processes. The dialogue process enables communication

between user, terminal and host computer to take place. The text

definition and graphics definition processes are responsible for deposit­

ing information into the text memory and bit map respectively. The text

display and graphics display processes are concerned with mapping this

information onto the CRT display screen at the proper refresh rate.

Each of the five processes involves the operating system in some

manner. The graphics and text display processes are interrupt driven.

Each time a new frame needs to be displayed, the operating system is

interrupted and the display process serviced. This is accomplished by

sending the appropriate starting values to the graphics and text address

generators. Both display processes then proceed under automatic hard­

ware control. The operating system is free to resume its own processing.

There are, however, important limitations to this freedom which will be

discussed later. The 'backgroundt or interrupt-enabled processing,

consists of either the text definition or graphics definition process.

11

The dialogue process is also interrupt driven. The host computer

corn.~unications interface issues data transmit and receive interrupts to

the operating system. The dialogue process services these interrupts.

The keyboard and other slow input devices which interface with the user,

are conveniently polled at frame interrupt time, and therefore, do not

require separate interrupts. It should be noted that part of the graphics

display process is under control of the bit-sliced graphics controller

and is independent of the operating system. Each of the five concurrent

processes will now be described in detail. For these descriptions, the

reader should refer to figure 2.1.

II. 1.1 Dialogue Process

The dialogue process resides in the operating system. It re­

ceives input in the form of ASCII characters from the user via the key­

board. If a received character does not correspond to a local command,

it is passed onto the host computer where it is interpreted by mainframe

software. The host computer replies in accordance with its interpretation

by returning more encoded ASCII characters. These characters are received

and stored in a character receive buffer in local memory which acts as an

interface between the dialogue and definition processes. This arrangement

can be used to afford the user either direct or indirect control over the

display. Local commands can cause ASCII characters to be plac.ed directly

in the character receive buffer without their having come from the host

computer.

Further dialogue with the user is provided by means of graphical

input devices. Devices like the joystick, tracker ball, and mouse may

be interfaced with the terminal (NEW)~ The 'steering' control of these

12

devices results in corresponding digital x and y coordinate values.

Each input device is polled at the 60Hz frame interrupt rate. Every

time a new effective x, y screen position is read, a request is issued

to the graphical display process to change the position of the small

cross or graphics cursor on the screen. Visual feedback enables the

user to position the graphics cursor at any addressable point on the

screen. Proper use of this feature greatly enhances the interaction

between terminal and user. Among other functions, the user is able to

specify lines through the use of endpoint positioning.

Notice the use made by the dialogue process of the 60Hz frame

interrupt rate. The regularity of this interrupt makes it an effective

real time clock. As such, it is frequently very useful in controlling

the several 'rates' which are maintained by the operating system. The

text cursor 'wink', automatic key repeat, keyboard polling, and text

scrolling, are among some of the functions which require a real time

clock.

II. 1.2 Text Definition Process

While the dialogue process is filling up the character receive

buffer, the text definition and graphics definition processes are busy

emptying it. Control of the text definition process also resides in the

operating system. The characters which are passed to it are written in

ASCII form into the text memory. At any one time, several screenfuls

of alphanumeric text are stored in the text memory. Paging, scrolling

and text cursor motion are accomplished by changing the first word

address of the text display. General text editing capabilities may

also be provided.

13

There are occasions where it is useful to write nonstandard text

characters onto the screen. Although the standard ASCII character bit

patterns are stored in ROM and can't be altered, the character generator

also includes some RAM memory. This provision enables nonstandard

character sets to be downloaded from the host computer.

II. 1.3 Graphics Definition Process

The graphics definition process is organized somewhat differently

from the text definition process. Although some graphics processing

is done by the operating system, most is delegated to the high speed

graphics controller. This is necessary in order to handle situations

where graphic commands are coming from the host computer at a very high

rate. Whereas ASCII characters passed to the text definition process

cause only a few text memory accesses, a character received by the

graphics definition process may result in the drawing of a vector which

requires hundreds of bit map accesses.

Any graphic image may be thought of as being composed of a set

of vectors between specified points. From this perspective, a minimal

requirement of the graphics controller is the ability to 'draw' vectors

which are arbitrarily positioned on the screen. The graphics controller

reads in the vector command sent by the operating system and then pro­

ceeds to modify the bit map accordingly. Single points are drawn by

specifying zero length vectors. The graphics controller must also be

able to 'erase' vectors. This is simply a matter of placing zeros in

the bit map instead of ones. A complement mode is useful whereby bits

in the map are 'flipped' rather than set or erased. This feature

requires that the graphics controller be able to read as well as write

to the bit map.

14

In many instances, it is desirable to include alphanumeric

text as an integral part of the graphic display. For example, labels

to diagrams must remain fixed with respect to the display. Regular text

from the text memory is scrolled past the graphic display in the con­

ventional manner of alphanumeric terminals. It is clear that the

character bit patterns must be written directly into the display bit map.

A convenient arrangement involves translating the bit patterns into

graphical commands capable of being accepted by the graphics controller.

This is accomplished by the operating system which reads the bit patterns

from the character generator, translates them into a series of vector

instructions, and sends these to the graphics controller. The operating

system can also perform effective scale, rotating and slanting

operations on the characters.

Up until now, the discussion has focused on the depositing of

the proper display information into the text and graphics memories.

Now, attention is shifted to getting information out of storage and

onto the screen. Once every 1/60 sec,two processes are activated,

whereby, the contents of both storage memories are simultaneously

mapped onto the CRT screen.

II. 1.4 Text Display Process

The text display process will be described first. At the

beginning of each screen refresh, the operating system sends the first

word address of the text display to the text address generator. In

hardware terms, the address generator simply consists of a few counting

registers and some control logic. It provides the contiguous sequences

of text memory addresses which correspond to the rows of text.

15

As an example, consider ASCII characters represented in the

character generator as 16 by 8 dot matrices. Each matrix row is stored

as a separate byte. The 8 bit ASCII character codes stored in the text

memory are used as addresses to the corresponding character patterns.

In order to fully specify a row within a character pattern, a four bit

quantity must also be provided. Together, the four bit character row

count and ASCII character code constitute a presentable character

generator· address.

Imagine that the CRT screen is wide enough to accommodate

exactly 80 characters in a row of text. At screen refresh time, the

character row count is set to zero just as the electron beam is about

to begin a horizontal trajectory along the top raster. line of the

terminal screen. The first word address of the text display is inter­

preted as the address of the text memory byte which corresponds to the

leftmost character of the top text row to be displayed.

As the electron beam sweeps acrossthe screen, the first raster

line is displayed by generating a sequence of 80 contiguous text

memory addresses. This sequence begins with the first word address.

The result is a sequence of 80 ASCII character codes being presented,

in combination with the zero valued character row count, as addresses

to the character generator. The outputs of the character generator are

just the topmost rows of the specified 80 characters matrix bit

patterns. These bytes are loaded in sequence into the shift register

and clocked out at video rate as a serialized bit stream to the

electron gun.

Upon reaching the end of its horizontal trajectory, the electron

16

beam is shut off and swung quickly back (horizontal flyback) into

position for the display of the next raster line. The next raster line

is displayed by incrementing the character row count by one and

generating the exact same sequence of text memory addresses. This

process is continued until all 16 raster lines of the first row of

text have been displayed. At this time, the row count is reset to

zero and the first word address is incremented by 80. It now

corresponds to the first character of the next row of text. When a

complete screenful of text has been displayed, the electron beam is

repositioned (vertical flyback) so as to be ready for the next complete

raster.

II. 1.5 Graphics Display Process

The graphics display process is organized in a similar way.

At the beginning of a screen refresh, the first word address is sent

to the graphics address generator. The graphics bit map is row-ordered

so that the raster-scan motion of the electron beam corresponds to

traversing through contiguous words in the bit map. As a result, the

graphics display process consists simply of the production, by the

graphics address generator, of contiguous memory addresses. The bit

map is read at appropriate intervals and the output is clocked at video

rate to form a second serial bit stream to the electron gun.

The two resultant bit streams from the text and graphics dis­

play processes are subject to the same timing constraint. Both streams

must be such that they can be O~!ed together to form a single digital

signal representative of both the text and graphics displays. As well,

depending on the display mode, either of the bit streams may be

17

inhibited. In this way, the display can be made to consist entirely

of text or entirely of graphics.Alternatively, text and graphics may

appear together on the screen.

II. 2 Fully Interlaced Display

Until now, we have assumed that during each screen refresh,

all the raster lines are displayed. For television compatibility (HOL),

a fully interlaced display may be implemented instead. This requires

that during any screen refresh, only half the raster lines are dis­

played. Consider raster lines to be numbered from the top to the

bottom of the screen. A fully interlaced display is one which is

characterized by alternate display frames of only the evenly numbered

lines and only the oddly numbered lines.

The implementation of a fully interlaced display has implications

for both the text and graphics display processes. For example, the

character row count in the text process is incremented by two during

each horizontal flyback instead of by one as before. During the

vertical flyback it is initialized according to the next frame type as

either zero or one. Perhaps the most significant implications, however,

has to do with the graphics display process. The simplest way to

accommodate a fully interlaced display is to split the bit map into two.

One contains the information for the even raster frames and the other,

the information for the odd raster frames. The organization of both

bit maps is still row-ordered. Depending on whether an even or odd

frame is to be displayed next, the starting graphics display address is

the first word address of either the even or odd bit maps.

18

II. 3 Hardcopy Dump

A sixth process may be discerned from the operation of the

graphics terminal. It is different from the others in that it is only

infrequently activated at the user's command. This process has to do

with providing the user with a hardcopy of the graphic image. The

simplest way to provide this capability is to enable the operating

system to read the bit map directly. The dual port bit map memory

shown in figure one affords this access. When a graphics hardcopy is

desired, the bit map is read by the operating system and sent to the .
hardcopy plotter.

Until recently, a problem with this approach has been the

relatively small address space of available microprocessors. Typically,

they could address up to only 64 K bytes. The bit map alone may easily

require 40 K 8 bit bytes. This would leave minimal space for the

operating system and separate text memory. Use of the recently intro­

duced Intel 8086 is one method of eliminating this problem (MOR). It

has an addressing capability of 1 M byte.

II. 4 Process Coupling

Earlier, passing comment was made on limitations to the

independence of the display and definition processes. This point is

now addressed. The six processes which have been discussed, are coupled

with one another by virtue of their shared resources. The integrity

of their operation must be carefully guarded by properly ensuring

mutual exclusion (HAN). A single resource must not be assigned to

more than one process at the same time.

19

The text definition and text display processes both share

access to the text memory and character generator. Conflict resolution

logic is required to prevent memory from being simultaneously accessed.

A simple solution is to inhibit the main microprocessor from bus access

except during horizontal and vertical flybacks. With the Intel 8086,

external bus access is stopped by driving the 'hold' pin high. Simple

analysis reveals that this restriction on operating system processing

does not prevent the terminal from operating effectively.

For example, consider the terminal specifications which are

presented in table 2.1. A host-terminal transmission rate of 9600 baud

requires that the terminal be able to process one character every milli­

second. In the processing of a single character by the operating system,

the dialogue process receives it. The text definition process writes

it into text memory or interprets it as a text command of some sort.

Alternatively, if passed to the graphics definition process, it is

'interpreted', and as a result, information is usually sent to the

graphics controller. This processing must last, on average, no longer

than one millisecond.

One millisecond corresponds to the time required to display

approximately 15 raster lines. With the operating system processing

· restricted to horizontal and vertical flybacks, the actual operating

system processing time is only 225 usec. This corresponds to approx­

imately 625 Intel 8086 instructions which should be more than

enough to accomplish the processing required.

20

TABLE 2.1

TYPICAL VIDEO GRAPHICS TERMINAL SPECIFICATIONS

Resolution 480 x 650 dots

Frame Interrupts 60 Hz

Fully Interlaced Display

Horizontal Electron Beam Scan 53 usec

Horizontal Flyback 15 usec

Vertical Flyback 280 usec

Average Execution Time of

Intel 8086 Instruction .36 usec

Objective 9600 Baud (960 char/sec)

Host-terminal transmission rate or

approximately 1 character every msec

21

A necessary provision is, of course, that the graphics con­

troller is fast enough. New information can only be sent to the

graphics controller if it is ready to accept it. The performance of

the graphics controller will be discussed after the bit-sliced design

has been looked at in detail. It suffices to say at this point, that

a basic rationale for the graphics controller is its parallel operation

with the text and graphic display processes as well as with the

operating system. Unlike the operating system, it continues to operate

during the horizontal raster line time.

To realize this parallelism, special contention logic is re­

quired to administer the sharing of another resource, namely, the

graphics bit map •. A flag protocol is used to resolve conflicts between

the graphics controller and graphics display process. The graphics

display process raises a hardware flag whenever it requires access to

the bit map. After the access, the flag is lowered until the need

arises again. The graphics controller must consult this flag before

every bit map access. If it is raised, it simply waits for it to be

lowered before proceeding. The flag is raised by the display process

some time in advance of the actual access. This provides the graphics

controller with the time to finish any access of its own, which was

begun before the flag was raised.

A third process interested in accessing the bit map is the

graphics hardcopy display process. When a hardcopy plot is being made,

the graphics definition and graphics display processes are suspended.

The operating system does this by disabling the visual display and

secondly, by refusing to send any further commands to the graphics

22

controller. Eventually, the graphics controller, after having finished

with its last received command, rests in an idle loop. It sets a

hardware idle flag in order to communicate this idle condition to the

operating system. The operating system then initiates the bit map

dump. Since both display processes are disabled, it proceeds without

competition.

It should be pointed out that the graphics hardcopy display

process corresponds to one of only two situations where the operating

system accesses the bit map directly. In both cases the protocol is

to disable the visual display and the graphic definition processes.

If this were not the case, further hardware logic would be required to

resolve conflicts between the graphics controller and operating system._

The other instance where the bit map is accessed by the operating

system, is during the clearing of the graphic display. The operating

system does this by loading zeros directly into the bit map.

Further process coupling involves the dialogue and both

definition processes. They all share the use of the character receive

buffer. Since the dialogue process is interrupt driven, the contention

logic is simple. It consists in momentarily disabling interrupts at

appropriate places in the definition processes.

II. 5 Modularity

As mentioned earlier, the terminal has dual text and graphics

roles. It is possible to split the hardware design along these lines.

The dotted lines in figure 2.1 outline the various units which provide

the terminal with graphics capabilities. These may be incorporated

into a single functional unit. Essentially, the final product becomes

23

two. A conventional alphanumeric terminal which, when interfaced

properly with the separate graphics unit, becomes a full fledged

graphics terminal.

This flexibility is characteristic of the modular design

approach. With this approach, a design is broken into relatively

indepen9ent functional units or modules. The overall design problem

is then reduced to the proper interfacing of these modular units. The

details of each module's design are then faced separately. In the light

of this design concept, it is now appropriate to focus attention on

the graphics controller. It is this module which comprises the heart

of the graphics unit. We have discussed its purpose within the context

of the overall design. Now, it is time to look inside the black box.

CHAPTER 3

THE GRAPHICS CONTROLLER

The graphics controller is designed as a bipolar microprogrammable

bit-sliced microprocessor. Compared with single-chip MOS microprocessors,

the bit-sliced bipolar approach represents a fundamentally different

philosophical direction. The current limitations, associated with

bipolar technologies, on chip complexity, pin numbers,and chip size,

dictate that the CPU be implemented on a multichip basis. This is

realized by splitting the CPU and implementing the control and processing

units on separate chips. The processing section or arithmetic logic unit

(ALU) is itself dispersed over several chips. The manner of this

dispersion is understood by imagining a single ALU which is vertically

sliced into identical Vbit-slices 1 • These slices operate in parallel

and may be cascaded to any width which is a multiple of the basic slice.

The basic slice is usually only two or four bits wide. Although

inherently less reliable, the use of more chips is justified with the

increased performance and flexibility.

Hardware flexibility arises from the fact that the designer

essentially builds his own customized CPU. The chips can be configured

to provide a wide variety of digital system architectures. Unconven­

tional word lengths can be provided by simply stacking the desired

number of bit-sliced ALU chips together. As well, there is the

programming flexibility which is inherent in the use of a micro­

programmable control unit. The designer may define the systemis

24

25

instruction set by a program (microprogram) stored in ROM. The

microinstructions which constitute the microprogram, provide for a very

low level control over the hardware resources. As such, they can be

used to implement a very efficient graphical instruction set.

For our purposes, advantage is taken of this flexibility in

order to design a special purpose processor. The processor instruc­

tion set is an atypical set designed for the express purpose of mani­

pulating the bit map. Many of these instructions are relatively high

level and correspond to hundreds of microinstructions. The graphics

instructions are not fetched from a central memory in the manner of a

conventional CPU but are received from the main microprocessor. In

order to see how the graphics controller is realized, it is necessary

to first introduce some fundamental concepts in microprogramming.

III. 1 Microprogramming

The· central processing unit of a computer can be logically

divided into a control unit and an execution network as shown in

figure 3.1. The current instruction is contained in the instruction

register (IR). In general, it requires several clock cycles to execute,

depending on the particular instruction. The control unit decodes the

instruction and as a result, emits control signals or commands to the

execution network. A new set of commands is issued at every clock

cycle. More precisely, at each cycle, the control unit sends a set

of 'boolean' signals which defines the behaviour of the components of

the execution network for the duration of that cycle. This boolean

command vector can be regarded as a word, the command word.

26

e.xt.c.~hol".
l\ct~Ot"ii:'

Fig. 3.1: 	 The central processing unit of a computer can be logically
divided into a control unit and an execution network
(BOU).

27

Conditional instructions require information concerning the

current status of the execution network. Such information is generally

called the condition code (CC). It may, for example, consist of the

value of a carry, the sign of the last result, or of an overflow status.

This information is maintained by the execution network and made avail­

able to the control unit at appropriate moments.

After the current instruction has been executed, the control

unit issues a sequence of co:mmand words which cause the next instruc­

tion to be placed in the instruction register. This sequence of command

words corresponds to what is referred to as the fetch cycle. It is

followed by an execute cycle whereby the instruction is executed.

This alternate sequence of fetch and execute cycles continues for

as long as the CPU is in operation. It should be stressed that

each fetch and execute cycle consists of several clock cycles.

In the course of executing an instruction, the control unit is

solely responsible for presenting the correct sequence of command

words to the execution network. Consequently, the control unit must

maintain a number of internal 'status bits' so as to keep track of the

state of its own processing. The form of these status bits depends on

the particular design of the control unit itself. At each clock cycle,

the control unit must therefore perform two operations. It must

generate a command word and update its internal status bits.

Traditionally, there have been two approaches to the realization

of a suitable control unit. One method consists of using random hard­

wired logic to generate each control word at every clock cycle. The

second method is the microprogrammed solution. Co:mmand words.are stored

28

in a memory called the control store. At each clock cycle, a new

command word is available from memory and sent to the execution network.

The internal status bits now correspond to the specification of the next

command word to be used.

A single word contained in the control store is called a micro­

instruction.. It consists not only of the command word, but, as well,

of the second set of boolean commands which are used to update the

internal designation of the next microinstruction. Whereas, at each

clock cycle, the command word is sent to the execution network, the

next microinstruction command vector is sent to the next - micro­

instruction - logic of the control unit itself.

Just as regular computer instructions can be combined to form

a program, so a logically coherent sequence of microinstructions is

called a microprogram. The terms, instruction, fetch and execute, are

now prefixed with 1macro' to distinguish them from the micro-fetch and

micro-execute cycles associated with the execution of each micro­

instruction. The execution of each macroinstruction normally corres­

ponds to .the execution of a single associated microprogram.

Each microinstruction is logically divided into component

fields. Each field corresponds to a functionally independent set of

boolean commands. It can consist of varying numbers of bits. For

example, the carry control, ALU function control, and next microinstruc­

tion address control, may be three separate microinstruction fields.

III. 2 Basic Architecture

Figure 3.2 shows the basic design of the graphics controller.

The figure is divided into the control unit and the ALU. The ALU

Ccm41-\-ior\
code.
MU'(

t
"ii"

ll .,.

'3

IW'l'\"fP ,,...,
fl'.BM

~
RA°t D
CC S~"~U.
'Ziii c..M...l•r ft
'l ~M:a.4'10

ll.

,-+

01'.er

tob't\­ f roM
b"r\- l'C\Qp

Oi

1

d-t" bus

store. I I 1111

1t
r~ir.t~r

hi"f

1he Con+ro\ Uni\"._ I -+ Tile. AL\4.

To co~\-\io..,
co4e M"' IC

Fig. 3.2 The Graphics Controller
 l'V

'°

30

consists of four 4 bit wide ALU chips (AM2903 1 s) cascaded together to

form a 16 bit processor. The AM2903 contains 16 internal working regis­

ters. This working space is increased through the addition of extra

RAM (AM29705) and PROM (AM29751) bit-sliced register files. The final

ALU contains 32 RAM and 16 PROM registers.

At each clock cycle, a new microinstruction is latched from the

control store into what is called a 'pipeline register'. The contents

of this register provide control inputs to the sequence controller

(AM2910), the ALU, the bit map interface, and the data bus interface.

In terms of the previous discussion, the latter three components consti­

tute the execution network. The sequence controller is the next ­

microinstruction - logic of the control unit.

The execution network maintains arithmetic status information

in the status register. This information, together with other various

hardware I/O flags, constitutes the information from which the condition

code is selected. It is available to the control unit through the

condition code multiplexor.

The macroinstructions sent from the main microprocessor,

include both an operation code (opcode), and several 16 bit words of

data. The opcode is deposited in the instruction register while the

data are sent to the data register. The mapping prom maps the contents

of the instruction register into a starting microprogram address.

During each macro-fetch cycle, this starting address is accepted by the

sequence controller as the next microinstruction address. The instruc­

tion data are then read, under microprogram control, into the internal

31

register file. A 'handshaking' I/O protocol ensures that the opcode

and data are received properly.

The pipeline register enables a time-saving technique known as

'pipelining'. With this technique, the next microinstruction is

fetched at the same time that the current microinstruction is executed.

By definition, the pipeline register always contains the microinstruc­

tion which is currently being executed. The contents of this register

must remain fixed for the entire clock cycle. They define the current

state of the execution network. While the contents of the pipeline

register remain fixed, the next microinstruction can be fetched from

the control store without affecting the integrity of the currently

executing microinstruction.

This parallelism is one way of maximising the clocking

frequency. In effect, there are two parallel processing paths. The

first path involves the fetching of the next microinstruction. Boolean

commands are sent from the control store to the sequence controller.

These commands, in combination with the condition code input, cause the

address of the next microinstruction to be presented to the control

store. The corresponding memory word is fetched and set-up at the inputs

to the pipeline register. This must all be accomplished during one

clock cycle.

The second processing path is through the execution network.

Control signals sent to the ALU cause arithmetical or logical operations

to be performed on operands which are brought into the ALU from the

data bus, bit map or the internal registers. After the results have

stabilized, the contents of the status register are updated. The

clocking period of the control unit and execution network must be at

32

least as long as the duration of the longest of the two parallel

processing paths. Typically, for the AM2900 LSI series, the clock

period is in the neighbourhood of 130 nsec.

Pipelining has a further implication. The status register

is updated at the end of an execution network process path.

However, its contents are required as input to the condition code multi­

plexor early in the fetching of the next microinstruction. This means

that the condition code available to the control unit always corres­

ponds to a previous state of the execution network. As a consequence,

a microprogram branch, which is conditional on the results of the current

microinstruction, cannot be specified until the next microinstruction.

III. 3 Microinstruction Fields

The graphics controller microinstruction contains four types of

fields. These fields are concerned with the sequence controller, the

ALU, the data bus interface, and the bit map interface, respectively.

In the following discussion, each of these components will be discussed

in more detail. As the discussion proceeds, the associated control

fields will be defined. The result of this discussion is the specifi­

cation of the complete set of microinstructions available for firmware

control of the graphics controller.

For further details regarding the AMD (Advanced Micro Devices,

Inc.) devices which are presented in the following discussion, the

reader is referred to the appropriate technical specifications issued

by AMD (AMD), (MIC).

33

III. 3.1 Sequence Controller

Figure 3.3 shows the block diagram of the AM2910 sequence

controller. It operates according to signals received at the I input

pins. During the execution of each microinstruction, the sequence

controller presents the address of the next microinstruction to the

control store. This address comes from one of four sources. The

usual source is the microprogram counter register (UPC). In the graphics

controller configuration, this register always contains an address one

greater than the previous address. This provides for sequential

access to the control store.

A second address source is the external input (D). For our

purposes, this address ultimately comes from either the mapping prom

output or from a part of the pipeline register. The sequence controller

selects one of these two input sources by issuing either a mapping

prom enable signal (MA.P) or a pipeline enable signal (PL). If these

output signals control tri-state output enables, for both input

sources, then the D input pins can be driven directly, by both sources,

without further contention logic. Note that the mapping prom and

pipeline register must never both be enabled at the same time.

Input from the mapping prom signals the start of a new macro­

execute cycle. It designates the start of the microprogram which

executes the associated graphical instruction. Address input from

the pipeline, on the other hand, affords a convenient branching capa­

bility. In this case, the microinstruction itself, contains the next

microinstruction address.

34

'5 woni
Xlil bi{.

...-~~~~--1'--~..1+s~k
~ '"

f'lli'ropr°'"',..
Coo.41\....

r~i~-te1£Pe

---> ·~·\i;.\. c:Ulta ~+i..
c.Ot\~rol \""-th

Fig. 3.3: The AM 2910 Microprogram Controller

---------­ -­ --­

REG/ FAIL PASS
HEX CNTR CCEN = LOW and CC= HIGH CCEN =HIGH or CC= LOW
13-10 MNEMONIC NAME CON- y STACK y STACKTENTS

0 JZ JUMP ZERO x 0 CLEAR 0 CLEAR
1 CJS COND JSB PL x PC HOLD D PUSH
2 JMAP JUMP MAP x D HOLD D HOLD

--1 ---­
t----PC3 CJP CONDJUMPPL x HOLD D HOLD

4 PUSH PUSH/COND LO CNTR x PC PUSH PC PUSH
5 JSRP CONO JSB R/PL x R PUSH D PUSH
6 CJV COND JUMP VECTOR x PC HOLD D HOLD
7 JRP COND JUMP R/PL x R HOLD D HOLD

-------1 -~

*o F HOLD F HOLD
8 RFCT REPEAT LOOP, CNTR * 0

=O PC POP PC POP

*o D HOLD D HOLD
9 RPCT REPEAT PL, CNTR * 0

=O PC HOLD PC HOLD
-­

A CRTN COND RTN x PC HOLD F POP
B CJPP COND JUMP PL & POP x PC

- r---~-------1
HOLD D POP

c LDCT LO CNTR & CONTINUE x PC HOLD PC HOLD
D LOOP TEST END LOOP x F HOLD PC POP
E CONT CONTINUE x PC HOLD PC HOLD

F TWB THREE-WAY BRANCH *o F HOLD PC POP
=O D POP PC POP

REG/
CNTR

HOLD
HOLD
HOLD
HOLD
Note 1
HOLD
HOLD
HOLD
DEC
HOLD
DEC
HOLD
HOLD
HOLD
LOAD
HOLD
HOLD
DEC
HOLD

ENABLE

PL
PL
MAP
PL
PL
PL
VECT
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL
PL

Note 1: If CCEN =LOW and CC= HIGH, hold; else load. X =Don't Care

TABLE 3.1: AM2910 INSTRUCTION SET

w
\JI

36

A third address source is the register/counter (R). It is

preloaded via the D input from the pipeline register. The five deep

last-in first-out stack (F) is the fourth source. The stack provides

for microsubroutine return linkages and looping capabilities. Micro­

subroutines may be nested up to five levels deep.

The register/counter R can also be made to act as a loop

counter. It can be loaded from the D input and decremented each time

through a loop. When its contents become equal to zero, the loop

terminates. The arrangement is such that if it is preloaded with a

number N and subsequently used as a loop termination counter, the

loop will be executed N+l times.

Table 3.1 presents the AM2910 instruction set. Many of these

instructions are conditional. The input signal CC is used as the

test criterion. A low signal corresponds to a pass. Further flexibi­

lity is provided by the CCEN input, which enables the conditional testing.

When this signal is high, CC is ignored and the sequence controller

operates as though the result of the condition test were a pass. The

vector address enable signal (VECT) allows a third external source

to drive the D input. This capability is not utilized in the graphics

controller design. As a result, the CJV instruction in table 3.1 is

never used.

The microinstruction fields which control the operation of the

AM2910 are shown in table 3.2 and are described below.

AM2910 Instruction - Controls operation of AM2910. Mnemonics

correspond to those of table 3.1.

37

TABLE 3.2

CONTROL SEQUENCER FIELDS

AM 2910
Instruction

4 Bits

Condition
Code Enable

1 Bit

Force Test
Polarity

1 Bit

Condition
Code

3 Bits

Pipeline
Data

12 Bits

JZ CD NEG c Carry out

CJS UCD POS OVR Overflow

JMAP z Zero 12 Bit

CJP s Sign Data

PUSH so Shift Out Item

JSRP IRF IR Full

CJV DRF DR Full

JRP MPF Bit Map
Free

RFCT

RPCT

CR1N

CJPP

LDCT

LOOP

CONT
CD conditional

TWB UCD unconditional
NEG negative
POS positive

38

Condition Code Enable 	 ·Provides the CCEN input signal. CCEN low

corresponds to the CD (conditional)

mnemonic.

Force Test Polarity 	 Provides the polarity select signal in

figure 3.2.The input to the polarity control

is either flipped CNEG) or passed to the

AM2910 CC input unchanged (POS.).

Condition Code 	 Selects the condition code input from one

of the eight condition code multiplexor

inputs. The selected signal is subsequently

passed to the polarity control.

Pipeline Data 	 The 12 bit pipeline data field which, if

enabled, provides an external D input to the

AM2910.

With the condition code multiplexor and polarity control shown

in figure 3.2, the operation of the AM2910 can be made conditional on

the status of the execution network. For example, a nonzero result in

the ALU may lead to a branch in the microprogram. This would correspond

to the following ro;croinstruction field values.

AM2910 Instruction Condition Code
Enable

Force Test
Polarity

Condition
Code

Pipeline
Data

CJP CD NEG z Branch
Address

The meaning of the various possible condition code inputs will be

explained more fully as the discussion of the execution network

proceeds.

39

III. 3.2 ALU

The ALU is fashioned from four AM2903 LSI chips. A principle

reason for using these chips rather than the less expensive AM2901

chips, is that the internal register file of the AM2903 is easily

expanded to virtually any required size. The AM2903 includes the nece­

ssary 'hooks' needed to accomplish this. On the other hand, the full

range of capabilities available with the AM2903 has not been used in

this design. In particular, the AM2903 has built-in floating point

logic, which is not required for our purposes.

Figure 3.4 illustrates the functional capabilities of the

proposed ALU. The diagram does not correspond to a specific component

chip, but represents, instead, the complete ALU assembly. This

assembly consists of the bit-sliced AM2903 1 s, AM2975l's and AM29705's

as well as extra shift control logic. Specific chip assembly details

may be found in the AMD literature (AMD).

The extra shift control logic specifies whether a shift operation

is cyclic or linear. In any case, the actual shift operation is

performed by the AM2903's• The control logic merely controls where the

shift-in and shift-out bits come from and go to respectively. For

example, in a cyclic shift, the shift-in bit is made equal to the

shift-out bit, whereas, in a linear shift, the shift-in bit is

driven from the external shift-in input as shown below.

ci Shift Register~Shift-Out Output

Cyclic Right Shift

Shift-In Input _ __,91i-.1 Shift Register ~Shift-Out Output

Right Shift (linear)

40

S address

~ 0 .., ,,__ _,_---~--..L.¥­

--­ -'°"""c..\-10" w\&c.t
GQrr~ '1n (C.,)

s~n

over~\•w.--'""
-z.ero ,--""L..--....--_J

:."'i~.\­ u.le'*
s\.i~~ - '" ·, "'~'"'\.

Fig. 3.4: The ALU

41

The operation of the arithmetic logic unit proceeds as follows.

At the beginning of a microinstruction, the A and B addresses are

presented to the ALU. As a result, two operands are sent to the func­

tion generator. Alternatively the B operand may come from the bit map.

Next, an operation, as selected by the function select input, is

performed. During the course of this operation, the carry out, sign,

overflow and zero status flags are generated. The result is sent to

the shifter, where, in like manner, the shifter operates on its input

and as well, creates the shift-out output. After the result is stable,

it may be written into the register file at the location specified by

the B address or it may be sent to the bit map interface. Finally,

the status register may be updated with the newly generated status

flags. The microprogrannner has the option of inhibiting this update.

It is also possible for input to be accepted directly from

the data register (fig. 3.2). In this case, the shifter output is

ignored and the contents of the data register is written to the

register file instead. Any operation to be performed on the data must

wait until the next microinstruction. This situation is in contrast

to input from the bit map, which, being presented directly to the

function generator, can be read and operated on in the same micro­

instruction.

In the ALU 1 s operation, the B address has a dual role. It is

an operand address in the early part of the microinstruction cycle,

and a result destination address in the latter. This constitutes what

is known as a two address architecture. A three address architecture,

whereby, separate destination and operand addresses are specified, is

42

also possible with AM2903 chips. However, if implemented, a three

address configuration would involve more complex timing logic.

The preceding discussion enables further microinstruction

fields to be defined. These are presented in table 3.3. Several

of the ALU functions are expressed in terms of Cn, an input which is

provided by the carry in field. For the shift control fieldt the only

difference between a 1 NOP 1 and a 1 NS 1 command, is that a NOP does not

cause the final result to be written into the register file. All

other shift control instructions cause a final write operation. The

NOP instruction is useful when the firmware designer wishes to idle the

ALU without overwriting any of the data in the register file.

The enable status load field offers the firmware designer

direct control over the updating of the status register. This feature

can lead to a reduction in the number of microinstructions needed to

accomplish a conditional operation. For example, consider the case of

a microprogram 1 jump 1 which is perfo:i:med only if the value of a specific

variable is zero. If the status register were automatically loaded at

the end of every microinstruction, the variable in question would have

to pass through the function generator during the clock cycle which

immediately preceeds the execution of the conditional jump. In many

instances, an extra microinstruction would be required for this purpose

alone. If, on the other hand, the variable had been defined several

microinstructions back, and the status load disabled ever since, then,

the further microinstruction would not be required.

Notice that the input/output fields are classified as

belonging to either the data bus or bit map interfaces. The interface

ALU Fields

Function

4 bits

Carry
In (Cn)

l bit

Shift

3 bits

Shift-In
Input

1 bit

A
Addr.
(R)
6 bits

B
Addr.
(S)
6 bits

Enable
Status
Load
l' bit

Data Bus IBit Map
Interface
Data Reg.
Input Enable

l bit

Interface

Bit Map To

ALU Enable

l bit

ALU
Output Enable

l bit

HIGH 0 CRS 0

S-R-1 +Cn l RS l

R-S-1 +Cn NOP
R+S+Cn NS
S+Cn CLS
S+Cn LS
R+Cn
R+Cn
LOW
RI\ S
RJ/"S
RVS
RAS
RVS
RAS
RVS

E

DIS
E

DIS
E

DIS

E

DIS

CRS
RS
NOP
NS
CLS
LS
E
DIS

: cyclic right shift
: right shift
: no operation
: no shift
: cyclic left shift
: left shift
: enable
: disable

TABLE 3.3 : Further microinstruction fields +:'­
w

44

fields are used rather infrequently in comparison to those of the ALU

and sequence controller. Excepting microinstructions which perform I/O

operations, the contents of these fields do not vary from one micro­

instruction to the next.

III. 3.3 Data Bus Interface

Figure 3.5 shows the data bus interface in more detail. The

IR full and DR full, flags are used to establish a 'handshaking'

input/output protocol. Using this protocol, the transfer of data from

the main microprocessor to the graphics controller, proceeds under

program control. For example, consider for the moment, the data path

to IR. Before the main microprocessor can deposit a graphics instruc­

tion into the IR, it must wait for the graphics controller to clear the

IR full flag. This flag is cleared immediately after each new macro­

instruction is 1 accepted 1 by the graphics controller. A macroinstruc­

tion is accepted by selecting the mapping from output as the next

microinstruction address. Similarly, before the graphics controller

can accept a new graphics instruction, it must wait for the main micro­

processor to set the IR full flag. This flag is set immediately after

each new macroinstruction is loaded, by the main microprocessor, into

the IR. This protocol protects the integrity of the data transfer.

In like manner, the DR full flag is used to regulate the transfer of

data to the graphics controller via the data register.

It is clear that in order to establish the 1/0 protocol

properly, provision must be made for microinstructions which are con­

ditional to the value of either of the two I/O flags. Accordingly,

both flags are used as inputs to the condition code multiplexor. The

OA1"f\ eus

]I
I It

..ff'DWI

IR
FULL

pire li"c.. FLA& 41

11

.:h1
"II

@

fLMCr
I ll>L.E"

FLl\G­

I.

~o

~lU
l'\Atr1N4

ffl01'1
I.

I.) toneii·\.-.o n ~ Oh
Col'\dihon c.o4e ,.... ._.. p•e• line.
code. mul'.

fn:>m

fif'L\; ... e

~Fig. 3.5 The Data Bus Interface \Jl

46

TABLE 3.4

DATA BUS INTERFACE MICROINSTRUCTION FIELDS

IR DR Idle Data Register
Full Flag Full Flag Flag Input Enable

l Bit l Bit l Bit l Bit

CLR

NCL

CLR

NCL

IDLE

BSY

E

DIS

CLR

NCL

E

DIS

BSY

=

=

=

=

=

Clear IR Full Flag

No Clear

Enable

Disable

Busy

47

set conditions correspond to the 1 DRF 1 and 1 IRF 1 condition code field

values shown in table 3.2

Another feature of figure 3.5 is the idle flag. This flag is

set by the graphics controller whenever it is in an idle state, waiting

for further graphics instructions. During this state, the bit map is

not accessed by the graphics controller. As discussed in the preceding

chapter, the main microprocessor must first test the idle flag before

addressing the bit map directly.

The complete set of data bus interface microinstruction fields

are shown in table 3.4. Except for I/O operations, these fields have

the following fixed values.

IR Full DR Full Idle Data Register
Flag Flag Flag Input Enable

NCL NCL BSY DIS

III. 	3.4 Bit Map Interface

The final microinstruction fields to be defined are those of

the 	bit map interface. Figure 3.6 shows the bit map interface in

20 more detail. Note that 2 bits may be stored in the 64K by 16 bit

word RAM. This is large enough to support a screen resolution of 1024

by 1024 dots. The bit map interface fields are shown in table 3.5

and are defined below.

ALU Output Enable - The enable signal causes data to be sent from

the ALU 	 to the bit map interface.

Enable Register Load - The enable signal causes output from the ALU

to be latched into one of the two destination

registers. This destination is specified by the

field which is defined next.

-tron\ A\. U
(II. \,',h)·

seted·

&l'f MAP
At>\\RESS

iQE:G-1~TE R

~ro"" di:;p~14
J

air MAP
t>llTI\

RE«;"TU.

Adclress

r~i•\-er
1.r...d--

--- ------ -- .

..\-o ALUE Ed•~~io\Q... io"
,..~1~\-er

proces•

~
HfXR

J I, 'Dci~q
+o ,{".~p\a'j
'Process

--- ··- -- .. ·-·- ··- . -­--~-----· ·-··~

P./w ~IT Mfl-V RAM ··1

eM\ile ---- ~~K)<, I• L tr wo<o '.
~
--~ : II. ~t Jal-~ pa.\~

..... $i~le. ~it COf\tf~\. \)~'\.,. .

Fig. 3.6 The Bit Map Interface
.i:-­
co

49

TABLE 3.5

BIT MAP INTERFACE MICROINSTRUCTION FIELDS

ALU Enable Bit Map RAM RAM Bit Map to

Output Enable Register Load Address/Data Enable Read/Write ALU Enable

1 Bit 1 Bit 1 Bit 1 Bit 1 Bit 1 Bit

E

DIS

E

DIS

ADD

DAT

E

DIS

R

w

E

DIS

D = Disable

E = Enable

ADD = Address register

DAT = Data register

R = Read

W = Write

50

Bit Map address or data - This field specifies the destination of

output from the ALU as being either the bit

map data register or the bit map address

register. When the graphics controller

performs bit map read/write operations, these

registers drive the corresponding address and

data lines of the bit map RAM. It is import­

ant to note that these registers are local

to the graphics controller. The graphics

display process uses its own separate address

and data registers.

RAM Enable - Enables or disables the RAM read/write

operations.

RAM Read/Write - Specifies whether a read or a write opera­

tion is to be performed by the bit map RAMo

Note that depending upon the particular read/

write access times of the RAM chosen for the

bit map, read/write operations may require

several microinstruction cycles to complete.

In this case, RAM enable and read/write signals

must be held fixed over several microinstruc­

tions.

Bit Map to ALU Enable - The enable signal causes b~t map output

available at the RAM data lines to be

accepted as input to the ALU.

51

Except for I/O operations, the bit map interface fields have

the following default values.

ALU Enable Bit Map RAM RAM Bit Map to
Output Enable Register Load Address/Data Enable Read/Write ALU Enable

x DIS x DIS x DIS

where X =don't care

The bit map interface also provides a condition code multi­

plexor input. This input corresponds to the 1MPF 1 (Bit Map Free)

condition code field value found in table 3.2. As discussed in the

preceding chapter, the graphics display process and the graphics

controller compete for access to the bit map memory. The graphic

display process has highest priority. It is responsible for raising a

bit map free flag whenever the graphics controller is to be allowed

access to the RAM. This flag provides the corresponding condition code

multiplexor input. Its value must be checked by the graphics controller

before every bit map access.

The complete set of microinstruction fields has now been

presented. It corresponds to a microinstruction which is 53 bits

wide. Now, it is appropriate to turn our attention to the firmware

control of the graphics controller. In the next chapter, a basic

graphics instruction set is presented, along with several algorithms

which enable its efficient realisation.

CHAPTER 4

TiiE GRAPHICS CONTROLLER FIRMWARE

A basic graphics instruction set for the graphics controller

has been defined. This set consists of two types of instructions. The

first type shall be referred to as the definition instructions. They

are concerned with assigning values to so-called definition variables.

These variables define the 'manner' in which curves are 'drawn'. For

example, depending on their values, curves may be either solid or

broken, erased or made visible. In contrast, the drawing instructions

cause the actual drawing to occur. They, alone, cause a change in the

contents of the bit map. There are two instructions of this type,

VECTOR and CIRCLE, which generate line and circle segments respectively.

At the beginning of a graphics session, all the definition

variables must be assigned values. Only then can a circle or vector

instruction be executed properly. Once these variables have been

initialized, drawing instructions may be executed in succession, one

after the other. Alternatively, at any time, one or more definition

instructions may be executed in between any two drawing instructions.

This would have the effect of changing the drawing 'manner' from one

curve .segment to the next.

The variables, which are discussed in this chapter, correspond

to 16 bit quantities. Two's complement arithmetic is used for the

representation of negative values. Each variable can be classified as

belonging to one of only three possible data types. There is a bit

52

53

mask data type, an integer data type, and a coded information data type.

IV. 1 Definition Variables

The definition variables are defined below. The first three

definitions involve the assumption of a fully interlaced display

(see Chapter 2).

EVODD: Coded data type. Specifies whether the current screen position

corresponds to the even or odd raster bit map; 0: even; 1: odd.

POSI1N: Integer data type. Represents the relative bit map address

which corresponds to the current screen position. The absolute

memory address is equal to POSI1N + the first word address of

the bit map specified by EVODD.

BTMSK: Bit mask data type. A single bit bit mask which, together with

EVODD and POSI1N, identifies the bit in a memory word which

corresponds to the current screen position.

MODE: Coded data type. It specifies the drawing mode; 1: visible

mode; 0: erase mode; -1: complement mode.

PATERN: Bit mask data type. It specifies the current dot pattern; one-

valued bits correspond to screen dots which are, depending on

the mode, made visible, erased or complemented. Zero-valued

bits correspond to screen dots which are left unchanged.

PSCALE: Integer data type. It is a scaling factor which is applied to

PATERN. Each bit in PATERN is made to correspond to PSCALE

dots; PSCALE >O.

PATPOS: Bit mask data type. A single bit bit mask which specifies the

current position in PATERN.

54

SCLPOS: Integer data type. Specifies the number of consecutive

screen dot moves before the next bit in PATERN is in effect;

SCLPOS > 0.

The first three variables defined above, shall be referred to

as the position variables. Together, they define the bit in memory which

corresponds to the current screen position. The concept of a current

screen position is an important one. It implies that for each curve

segment, there is both a starting, and a finishing endpoint. The

current screen position is the starting endpoint from which subsequent

drawing begins.

The position variables are continually updated during the

execution of the drawing instructions. Upon termination of a drawing

instruction, the position variables are left with values which represent

the finishing position. This means that if two successive drawing

instructions are executed, the two resultant curve segments will share

an endpoint in common. Alternatively, a position instruction may be

used to redefine the current screen position before the second segment

is drawn. Thus, disjoint segments can be specified as well.

The mode variable, once set, remains unchanged unless it is

explicitly reset. There are three drawing modes. The visible mode

causes ones to be written into the bit map. These are translated by

the graphics display process, into visible screen dots. As well,

curves may be erased by specifying the erase mode, which causes zeros

to be deposited into the bit map. The complement mode changes the bit

map contents by complementing memory bits. This mode is of use in the

displaying of temporary or dynamic images. In particular, with moving

55

images, there is the problem of blank gaps being left behind wherever

previous images once intersected the static background display. This

problem can be avoided through proper use of the complement mode (DIC).

The last group of definition variables provides for dotted

curve segments. PATERN and PSCALE define the dotted pattern, whereas,

PATPOS and SCLPOS define the position within the pattern. As curve

segments are generated, the pattern position is cycled through the

pattern. By way of understanding the meaning of the pattern variables

more precisely, consider the process by which curve segments are

generated.

Drawing instructions can be thought of as causing a represent­

ative sequence of-moves from one screen dot to the next. Starting with

the current screen position, each move is between contiguous dots,

until the process terminates at the final predesignated position.

Each move consists of selecting the next screen dot and making the

appropriate bit map modifications. If the current pattern position

corresponds to a zero-valued bit in PATERN, the selected screen dot is

left unchanged. Otherwise, it is changed according to the dictates of

the current drawing mode.

After each move, the current pattern position is updated.

This update is accomplished by decrementing SCLPOS which acts as a

scaling counter. Upon reaching zero, SCLPOS is automatically reset to

PSCALE and a one bit cyclic shift operation is performed on PATPOS.

In this manner, the dot pattern is repeatedly cycled through. As an

example, a dotted line of alternately 30 visible dots and 10 blank dots

may be specified by initializing PATERN to the binary string

'1110 1110 1110 1110' and by assigning PSCALE the value ten. PATPOS

may be assigned any allowable value (single bit bit mask) depending

upon whether the dotted line is to start on a blank or a visible line

segment. Similarly, the initial value for SCLPOS determines the

ultimate length of the starting line segment.

Once set, the actual dot pattern remains fixed, unless it is

explicitly changed through the use of a definition instruction. The

position within the pattern, however, is continually updated during the

execution of drawing instructions. From this point of view, PATPOS and

SCLPOS are similar to the position variables, whereas, PATERN, PSCALE

and MODE form a second, more static category.

It should be pointed out that although the normal range of

values for SCLPOS is between zero and PSCALE, the user is allowed the

option of specifying an initial value for SCLPOS which is greater than

PSCALE. This has the effect of scaling the starting bit in PATERN by

a factor greater than PSCALE. For example, a dotted line could be

generated, such that the first solid segment is longer than subsequent

segments. This feature could be used to ensure that at both endpoints

of a dotted line, there are solid segments.

IV. 2 Definition Instructions

Definition instructions translate incoming data into appropriate

values of associated definition variables. These values are subsequently

stored in the graphics controller register file. The data are in the

form of 16 bit quantities which are sent from the main microprocessor

to the graphics controller via the data register (figure 3.2). In these

terms, the definition instructions are:

57

1. POSITION

Data: PX, PY

Define: RVODD, POSITN, BTMSK

2. MODE

Data: MODE

Define: MODE

3. PATTERN

Data: PATERN, PSCALE

Define: PATERN, PSCALE

4. 	 PATTERN POSITION

Data: PATPOS, SCLPOS

Define: PATPOS, SCLPOS

Apart from the POSITION instruction, which is more complex, the above

instructions simply involve writing received data directly into the ALU

internal 	register file.

The POSITION instruction involves an actual translation. The

main microprocessor specifies defineable screen positions with discrete

x, y coordinate values. The corresponding coordinate system shall be

referred to as the screen coordinate system. Its origin lies on the

bottom leftmost screen dot. The unit distance is the distance between

two adjacent horizontal, or two adjacent vertical, dots. The POSITION

instruction must translate the discrete coordinate values, PX and PY,

into their corresponding EVODD, POSITN and BTMSK values.

This translation is in terms of parameters which define the

bit map:

GPHEVN: The first word address of the even raster bit map.

GPHODD: The first word address of the odd raster bit map.

58

WIDTH: The number of memory words which constitute a single
raster line.

LENGTH: The number of raster lines per screen.

These parameters are stored in the ROM part of the internal register

file. The POSITION instruction makes use of the following equations.

A 16 bit memory word is assumed:

EVODD = (LENGTH - (PY + 1))

LENGTH - (PY + 1)
POSITN 	 = X WIDTH + PX/16

2

(15-MOD (PX))BTMSK 	 = 2 16

The division operations, in the above, are integer divisions.

The quotient is truncated to an integral value. Since the divisors,

in each case, are powers of two, the divisions correspond to simple

binary shift operations. As well, the modular operations are with

respect to bases, which are also powers of two. As a result, each

modular operation simply involves the appropriate discarding of high

order bits. The single multiplication is accomplished through a

sequence of binary shift and add operations.

IV. 3 Drawing Instructions

Like the definition instructions, the drawing instructions

also require data which are deposited, by the main microprocessor, into

the data register. The received data are used to control the 'drawing'

of curve segments on the display screen. The two drawing instructions

are:

1. 	 VECTOR

Data: n,w

Draw: Line Segment

59

2. CIRCLE

Data: X, Y, DOCT, FCORD

Draw: Circle Segment

A vector instruction causes a line segment to be drawn, from

the current screen position, to the end point designated by VX and VY.

These variables are defined below. Displacements are measured in the

units of the screen coordinate system.

VX: 	 Integer data type. It specifies the horizontal displace­

ment, of the finishing endpoint, from the current screen

positiono VX may be either positive or negative.

VY: 	 Integer data type. It specifies the vertical displacement,

of the finishing end point, from the current screen

position. VY may be either positive or negative.

A circle instruction causes an arc to be drawn, from the current

screen position, to the endpoint specified by DOCT and FCORD. Points

which lie exactly on the 'true' arc, are equidistant from a unique

position which is referred to as the arc center. This position may lie

outside screen boundaries. Its whereabouts are specified by X and Y.

The CIRCLE variables are defined below. Again, distances are measured

in the units of the screen coordinate system.

X: 	 Integer data type. It specifies the horizontal

displacement, of the arc center, from the current

screen position. X may be either positive or negative.

Y: 	 Integer data type. It specifies the vertical displace­

ment, of the arc center, from the current screen

position. Y may be either positive or negative.

60

DOCT: Composite data type. The most significant bit is a

code which specifies either a clockwise, or a counter

clockwise, drawing direction; 0: counter clockwise;

1: clockwise. The remaining bits correspond to an

integer data type. They specify the number of octant

changes (see following discussion) required to

complete the arc segment.

FCORD: Integer data type. Imagine two lines which pass

through the arc center. One line is vertical and the

other, horizontal. FCORD is the shortest distance

between the final arc endpoint and the nearer of

2these lines; O < FCORD <. '1cx2 + Y)/2

where the upper limit is rounded down.

The position of the final arc segment endpoint can be deduced

from the specified values of FCORD and DOCT. For this purpose, circles

are imagined to be centered on a coordinate system, as shown in

figure 4.1. The coordinate system is divided into eight equivalent

sections, called octants. · The horizontal and vertical octant boundaries

are called square octant boundaries. Each octant has exactly one

square and one diagonal octant boundary.

Imagine that the graphics controller has been instructed to

draw a circle segment. Starting at the current screen position, the

drawing proceeds in a clockwise or anti-clockwise fashion, depending on

the value of the most significant bit of DOCT. Every 45 degrees,

an octant boundary is crossed. This crossing from one octant into

61

3

s

1

Fig. 4.1: The division of a circle into eight octants.

62

another, is called an octant change. DOCT specifies how many of these

are required to complete the arc segment. After the required number of

octant changes, the drawing terminates when the distance from the

current octant's square octant boundary, is exactly FCORD. In this

manner, the final arc segment endpoint is uniquely specified.

Note that an octant change occurs only when an octant boundary

is actually crossed. As figure 4.2 illustrates, care must be taken in

the assigning of values to DOCT, whenever an arc begins or ends on

an octant boundary.

It should be pointed out that in order for graphics instructions

to execute properly, they must be provided with 'correct' data. No

testing is done by the controller firmware to ensure that incoming

data is meaningful. For example, the microprogram, which corresponds

to the CIRCLE instruction, does not test whether FCORD is within the

required range. Moreover, all incoming data must be such that each

specified curve segment lies entirely on the display screen. If this

is not the case, unpredictable results may occur. For these reasons,

there is a level of program control between the user and the graphics

instruction set. This level of control resides in the main micro­

processor.

IV. 4 Algorithms

Thus far, in this chapter, the graphics instruction set has

been discussed in detail. In the remaining part of the chapter,

algorithms, which were used to realize the VECTOR and CIRCLE instructions

are presented.

63

l)OC.T =-._
0 ~ FCORtl 4. ·../

Fig. 4.2: FCORD and DOCT specify the final arc segment endpoint.

64

The algorithms were implemented with the graphics controller

microinstruction set. Although the microcoded firmware is not

presented as a formal part of this report, the actual lengths of

critical sections will be used to provide an indication of the

graphics controller performance capabilities.

The realization of the VECTOR and CIRCLE instruction was

accomplished in two steps. First, the algorithms were implemented in

the high level programming language, IFTRAN. Secondly, they were

translated into microcode. The complete IFTRAN version of the circle

and line generating algorithms, is to be found in Appendix A. In the

discussion of algorithms, which follows, the reader is referred to

Appendix A for greater detail. The IFTRAN package was tested and de­

bugged on a CDC 6400 computer. For testing purposes, an on-line

Versatec plotter was used in place of the display screen.

Every attempt was made to render the final translation, from

IFTRAN to microcode, a trivial one. for example, the same modular

divisions were made in both the IFTRAN and the microcode. Almost every

IFTRAN routine corresponds to a similar routine in the microcode. The

only exceptions are a group of IFTRAN subroutines, which are used

solely for testing purposes. In these routines, a Versatec library is

used to generate curves which serve as a basis of comparison for the

circle and line generating algorithms being tested.

The IFTRAN and microcode are similar in other ways as well.

For the most part, variables and coding structures are the ~ame in

both packages. There are, however, some important differences.

65

Most of these differences occur in the input/output routines. In

particular, where the IFTRAN version sends information to the Versatec,

the actual firmware makes corresponding changes to the bit map. By

way of illustrating how the translation from IFTRAN to microcode was

achieved, a sample microcoded routine is included in this report in

Appendix B.

The line and circle generating algorithms are now presented.

These algorithms fulfill certain basic requirements. They generate

representative sets of contiguous dots, they a~e efficient, and they

involve only simple binary arithmetic and logical operations. Much of

the following development of these algorithms is owing to K.P. Horn

(HOR). The line generating algorithm will be presented first.

IV. 4.1 Line Generator

Imagine a coordinate system to be centered on the current

screen position. A line segment is to be drawn from the origin to the

discrete screen position VX, VY. The equation of the corresponding

line is just (VX)Y = (VY)X. Consider for the time being a line which

lies in the first octant of the coordinate system. In other words,

VX and VY are both greater than or equal to zero, and VX is greater

than or equal to VY.

The screen can be thought of as a mesh of defineable screen

dots. The solution set is the set of contiguous dots which best

represent the line segment. For each column of dots, which intersects

the line segment, there is a dot which lies immediately above the line,

and a dot which lies immediately below the line. For each column, the

closest of these two dots is to be included in the solution set.

66

Clearly, the closest dot is at a vertical distance from the line, of

no more than 1/2 of a mesh unit. In contrast, the further dot is

vertically removed from the line, by a distance which is at least

1/2 of a mesh unit and probably more. As a result, the solution set

is bounded by the two lines, VX(Y-1/2) = (VY)X and VX(Y+l/2) = (VY)X,

which lie on either side of, and are parallel to, the line segment

which is to be generated.

There are also two vertical limits to the solution set.

Namely, the lines X = 0 and X = VX. These limits, together with the

previous two, define a bounded area. All dots within the bounded

area are members of the solution set. Each column of dots, which

intersects the bounded area, contains at most one dot within the band

defined by the upper and lower parallel limits. Furthermore, in most

instances, there is exactly one such dot. The exception occurs when­

ever the dot just below the prospective line segment, is as far from

the line as the nearest one above it. In this situation, one dot lies

on the upper boundary, while the other dot lies on the lower. There

are no dots which lie entirely within the two limits. For the time

being, the lower dot, alone, will be arbitrarily picked as belonging

to the solution set.

The line-generating algorithm selects dots, in sequence,

through incremental calculations. Essentially, the result of a test

dictates whether the next dot chosen, is horizontally or vertically

removed from its predecessor. Let the coordinates of the dot which

was last selected, be X, Y. The next dot is chosen by testing whether

the dot one column over (X+l, Y), falls below the lower limit.

67

If it does, the dot one column over and one row up (X+l, Y+l), must

be the solution set member for that column. Otherwise, the dot at

X+l, Y is selected. This process continues until X = VX.

The critical test amounts to whether or not D = 2 (VY(X+l) ­

VX(Y+lf2)))0. The 'greater than' test ensures that for equally good

dots, the lower dot is selected. A 'greater than or equal to' test

would result in the upper dot being selected. Since only fixed-point

additions and subtractions are allowed, the factor of two is used to

eliminate the fraction, 1/2. D is given an initial value of 2 VY-VX

and incremented after every move. After each horizontal move, it is

incremented by 2 VY, and after each diagonal move, by -2(VX-VY).

It is easily seen that -2(VX-Y)+l < D < 2VY. This means that only one

more bit is required to store D, than is required for VX and VY.

The line generator is easily extended to include the general

case. For example, the following variables may be used to specify

motion in any octant. Once they are initialized correctly, any line­

generating problem can be mapped into its equivalent, in the first

octant.

INSTRX: Coded data type. Specifies direction of horizontal

moves; - 1: decrement; 1: increment.

INSTRY: Coded data type. Specifies direction of vertical

move; -1: decrement; 1: increment •

. MOVE I: Coded data type. Specifies the coordinate which

undergoes the greatest change; 1: vertical;

2: horizontal.

6&

The above variables shall be referred to as defining the

actual motion, whereas, VX and VY define the equivalent motion, As

an example, consider a line which is to be drawn in the sixth octant.

INSTRX and INSTRY are given 'decrement' values and MOVEI is made to

designate the vertical coordinate. Finally, three transformations map

the problem into the first octant. Reflections about the y and x

axes are accomplished by setting VX = -VX and VY = ~VY. A third

reflection about the line y = x, involves swapping the values of VX and

VY. The previous developed procedure is now used to generate the line.

Only this time, the 'horizontal' move corresponds to a change in the

value of the coordinate specified by MOVEI. Each 'horizontal' move

is actually a downward vertical move. Similarly, the 'diagonal' move

is now downward and towards the left.

There is a final, rather subtle point, which concerns the line

generator. Consider a line segment which has been drawn in an upward

direction. If this line segment is subsequently erased in a downward

direction, the same dots must be made blank, as were once made visible.

Most dot columns contain only a single 'best' dot, and as a result,

there isn't a problem. Care must be taken, however, with columns

which contain equally good dots. Equally good dots are to be found,

for instance, at the center of line segments for which the greater

coordinate displacement is even, and the lesser, odd.

The following example illustrates the problem of equally good

dots. Consider a line which was originally drawn upwards into the

first octant. Upon subsequent erasure, it is erased downwards as a

line into the fifth octant. As discussed earlier, the line is erased

69

_Ll
17

7
[2l

/

v
IZl

.L

17

JL'.

,I
[7

IZ
[7

_L
Y"

[7

17
/

_tl

v
17

7

[7
/y

17
r7

/v
l7

lZ
.L

PX 6

PY 3

vx - 27
VY 35

Fig. 4.3: An example of points selected by the line generator.

70

by effectively mapping the problem into its equivalent in the first

octant. Unfortunately, after this mapping, what was once up, is now

down. More specifically, the lower of two equally good dots, is now

effectively on top. As a result, a different dot is erased than was

originally made visible. In general, for any line which lies in an

octant below the x axis, the dot selection test should be for D > 0

rather than for D > O. This ensures that for equally good dots, the

actual dot selected in drawing downwards is the same dot which is

chosen in drawing upwards.

This solution can be implemented in a manner which involves no

extra testing inside the dot-select loop. If D is incremented by one,

the effect is of changing the D)0 test to a D+l >O, or a D) - 1, test.

Since D is an integer, this is equivalent to the test, D > O, which is,

of course, exactly the desired result. Thus, for lines which fall in one

of the lower octants, D is initially incremented by one. This is done

only once, and before the dot-select loop is entered.

IV. 	4.2 Circle Generator

The circle generator can be developed by analogy with the line

generator. 	 This time, the discrete x-y coordinate system lies in the

2 2 2
center of the circle. The equation of the circle is x + Y = R ,

where R is the radius of the circle. The starting position is, by

definition, a point on the circle. Consider, for the time being, a

circle segment which lies entirely within the first octant, and is

drawn counter-clockwise.

For each row of dots, which intersects the circle segment,

there is a dot which lies immediately to the right of the arc, and a

71

dot which lies immediately to the left of the arc. In fact, much like

2before, the solution set is bounded by the two circles, (X + 1/2) +

2 2 2 2 2
y = R and (X - 1/2) + Y = R • There are two horizontal limits to

the solution set, which simply correspond to the initial and final

(FCORD) values of Y. These four limits define a bounded area, within

which all dots are members of the solution set. For each row of dots,

which intersects the bounded area, there is but one dot within the

band defined by the inner and outer arc limits.

The circle generator also selects dots, in sequence, through

incremental calculations. Let the coordinates of the dot, which was

last selected, be X, Y. The next dot is chosen by testing whether the

dot one row up (X, Y + 1), falls outside the outer arc limit. If it

does, the dot one row up and one column to the left (X - 1, Y + 1),

must be the solution set member for that row. Otherwise, the dot at

X, Y + 1 is selected. This process continues until Y = FCORD.

2 2
The critical test amounts to whether s+ = (X - 1/2) + (Y + 1)

R4" + 3/4 > O. The fraction, 3/4, simply rounds s+ up to the nearest

integral value. By rounding up, rather than down, we ensure that none

of the test results are changed. The superscript indicates a positive,

or counter-clockwise, direction. Note that for circles, there is

never a choice between two equally good dots. This is proven by the

2 2 2
fact that (X - 1/2) + (Y + 1) - R is never equal to zero.

The value of s+ is updated as before. Since the starting

2 2 2
· · · f · he · x + Y R , s+ d to initia· · 1position satis ies t equation = re uces an ·

value of 2Y - X + 2. After each vertical move, it is incremented by

2Y + 3, and after each diagonal move, by 2Y - 2X + 5.

72

+Note that -2(X - Y) + 6 < S < 2 Y + 3. This means that only one more

bit is required to store S+ , than is required for X and Y. Allowing

14
for this extra bit plus an additional sign bit, radii of up to 2 ·

boundary has been crossed. If s R (X + 1/2) (Y 1) + 1/4)O,

mesh units in length, may be specified.

If the arc is to be drawn in a clockwise direction, thechoice

is between moving one row down, and one row down and to the right. The

test involves whether or not the inner, rather than the outer, arc

2 2 2
= - - ­

the dot at position X + 1, Y - 1 is selected, otherwise the dot at

X + 1, Y is the correct choice. Again the fraction, 1/4, simply rounds

S- up to the nearest integral value. S has an initial value of

2 Y - X - 1. Af.ter each vertical move, it is incremented by 2Y - 3,

and after each diagonal move, by 2 Y - 2 X - 5. The limits for S­

are similar to those for S+: -2(X - Y) -4 < S- < 2 Y - 3.

We have considered the case of a circle segment which lies

entirely within the first octant. Now, the question of how to

generate an arc of arbitrary length, is addressed. For the time being,

the arc must still begin in the first octant. Specifically, what

happens when an arc which is being drawn in a clockwise direction

runs into the diagonal octant boundary? The answer is what shall be

termed a diagonal octant change.

Moving from the diagonal octant boundary to the second

octant's vertical boundary is symmetrically equivalent to reversing

direction and returning to the first octant's horizontal boundary.

This is exactly what is accomplished by a diagonal octant change.

73

As in the previous vector discussion, there are two types of

motion. The actual drawing motion is defined by INSTRX, INSTRY and

MOVEI as before. The equivalent motion remains in the first octant,

and is described by X, Y, DX and DY. DX and DY represent the incremental

thanges for X and Y. For counter-clockwise motion, DX = -1 and DY = 1.

In a diagonal octant change, two things happen. First, the

value of MOVEI is 'flipped'. A first octant vertical coordinate value

becomes the second octant horizontal coordinate value. Secondly, the

equivalent motion is reversed. DX and DY are multiplied by negative one

and S+ is transformed into S-. As is easily deduced from their

definitions, S+ and S are related according to the equation,

S- = -S+ + 4Y - 2X + 1. The equivalent motion now retraces the first
I

octant arc, while the actual motion extends the original arc into the

second octant.

In like manner, the arc can be drawn through the second

octant and into the third. Of course, to accomplished this, a square

octant boundary must be crossed. When this occurs, the equivalent

motion again reverses, while the appropriate change is made to the

actual motion. This change amounts to 'flipping' either INSTRX or

INSTRY. If MOVEI corresponds to a vertical coordinate, then the

value of INSTRX is changed. Otherwise INSTRY is the variable whose

value changes.

At this point, it should be evident that whether the actual

curve is drawn clockwise or anti-clockwise, it can be extended to a

full circle. Every time an octant boundary is reached, an octant

change is required. This continues until the number of octant changes,

74

~,,,.,.
V' v

.L
/

.L

v
.l_
T

j_
i

1
[

l
l

l
LS:

cs:
"'­

\I
~

!"'
r"l

'b,.
~

"""

J...-1"""

f-.........

-f-..

,....i.­1-

F'-I'

v

~

]7

"1-...
"'­ is:

!\..
l'I..
""'\

I\

I7
_L
v

17
v

v
1:7

..l'1

i\

l
1
1

_l
1.,

I/_

PX == 39
PY == 20
x = -19
y = 0
DOCT 7
FCORD 0

Fig. 4.4: Example of points selected by the circle generator.

75

which have occurred, is equal to the number specified by DOCT. The

very next time Y = FCORD, the arc terminates.

The circle generator is easily made to accommodate arcs which

begin in any octant. As before, the problem is simply mapped into its

equivalent in the first octant. The actual motion, however, is defined

according to the actual starting octant and direction. Figure 4.5

indicates the values of the actual motion variables, INSTRX, INSTRY

and MOVE!, for the different octants. In this figure, a counter­

clockwise direction is assumed. For a clockwise direction, INSTRX and

INSTRY have values which are opposite to those of the figure. The

following procedure is used to define the equivalent and actual motions

properly.

First, the actual motion variables are set to their first

octant values. If the arc is to be drawn in a counter-clockwise

direction, INSTRX, INSTRY and MOVEI are given values of 'decrement',

'increment' and 'vertical' respectively. Secondly, the starting

position (X, Y), and the drawing direction (DIRECT) are mapped into

the first octant. As before, this is accomplished through

reflections Rx, Ry and Rxy, about the x axis, the y axis, and the

x-y diagonal, respectively. Each reflection results in a change in

the value of DIRECT, the drawing direction. Finally, the inverse

mapping is applied to the actual motion as represented by INSTRX,

INSTRY and MOVEI. This inverse transformation maps the actual motion

into the starting octant.

As an example, consider a starting arc position which lies

in the sixth octant. The transformation Ry Rx Rxy, when applied to

76

(dee> dee. Jve.r)

G_f\c.
1

deeJhor)

Actual Motion: (INSTRX, INSTRY, MOVEI)

inc increment

dee = decrement

hor horizontal coordinate

ver = vertical coordinate

Fig. 4.5: 	 As an ordered set, the actual motion variables may
assume eight different values. For a given drawing
direction, there is a one to one correspondence between
the actual motion values and the eight octants.

77

X, Y and DIRECT, maps them into their equivalents in the first octant.

The inverse transformation is simply Rxy Rx Ry. From figure 4.5, it

can be seen that the transformation RX corresponds to 'flipping' the

value for INSTRX. Similarly, the transformation RY corresponds to

'flipping' the value for INSTRY. Rxy is slightly more complicated.

If INSTRX = INSTRY, the values of INSTRX, INSTRY and MOVEI are all

changed. Otherwise, only the value of MOVEI is changed. The

actual implementation of this scheme is simplified by the fact that

-1
Rx Ry = Ry Rx. Thus, the inverse of T = Ry Rx Rxy is T = Rxy Ry Rx.

This allows the Ry Rx part of the two mappings to be accomplished at

the same time. For further details, the reader is referred to

Appendix A.

This completes the presentation of the circle and line

algorithms. In the next chapter, an estimate of the performance

capabilities of the graphics controller is made.

CHAPTER 5

PERFORMANCE

A stated performance objective of the graphics terminal design

is a host-terminal transmission rate of 9600 baud. In chapter two, it

was concluded that the Intel 8086 based operating system is fast enough

to process characters at the desired rate, providing that the graphics

controller is able to keep up. The discussion was deferred until the

graphics controller had been looked at in more detail. It is now

appropriate to complete the analysis.

For this purpose, the graphics terminal is assumed to have the

specifications found in table 2.1. In addition, it is assumed that a

graphics controller microinstruction requires 125 nsec to execute.

This is a typical clocking period for the particular AMD chip conf igu­

ration used. Finally, a typical static RAM access time of 250 nsec

is assumed to apply to bit map read/write operations. Read/write

signals must be held stable for at least that long, before the

operation can be assumed to have taken place.

Two worst-case situations shall be analyzed. In both instances,

the host computer sends a continuous stream of 8 bit characters to the

graphics terminal, at a rate of 960 characters per second. In the first

case, these incoming characters are interpreted as corresponding solely

to a sequence of line segment specifications. An image is being built

up on the screen, which consists entirely of line segments. Similarly,

in the second case, an image is being generated, which consists entirely

78

79

of circle segments. Each incoming character is interpreted as

contributing to the specification of the next arc to be generated.

v. 1 Line Generation

In the line-drawing case, four characters are required to

specify the displacements, VX and VY, of a line segment. For each

incoming set of four characters, the operating system sends one VECTOR

instruction to the graphics controller. Thus, during the time that the

operating system takes to receive four characters, the graphics controller

must be able to generate a complete line segment.

Upon completion of the graphics controller firmware, it was

noted that the number of microinstruction executions required to generate

a single vector dot, is 41. This is the number of microinstructions

executed in one pass through the dot-select loop. For any given dot,

the actual number may in fact be less. For example, the above count

was made by assuming that a diagonal move was made in selecting the dot.

A horizontal or vertical move requires fewer microinstructions. The

important point, however, is that the number of microinstructions

executed can never be greater than 41.

Forty-one microinstructions correspond to an execution time of

5.12 usec. During horizontal and vertical flybacks, this is the time

taken to generate a single vector dot. During forward horizontal

scans, however, the dot generation rate is less. Time is spent, before

bit map accesses, in waiting for the graphics display process to

relinquish its use of the bit map.

As discussed earlier, the graphics display process indicates

its use of the bit map, by lowering a bit map free flag. During a

80

horizontal scan, 16 bits are mapped onto the screen every 1.3 usec.

This means that every 1.3 usec, the display process requires the use of

the bit map RAM for a 250 nsec read operation. However, the bit map

free .flag must be lowered in advance of each read requirement. This

is necessary to provide ample time for the graphics controller to

finish any bit map access, which was begun immediately before the bit

map free flag was lowered. Enough time must be allowed for a complete

read or a complete write operation to be performed.

A complete graphics controller read operation requires exactly

four microinstructions. The first microinstruction issues the appropriate

read signals. These signals are then held stable for two subsequent

microinstructions. Finally, the execution of the fourth microinstruc­

tion brings the result into the ALU. In contrast, a write operation

requires only three microinstructions. Whereas, the first micro­

instruction initiates the write operation, two further microinstruction

cycles are required for the operation to be completed.

The net result is that the bit map free flag must be lowered

for 250 nsec plus the duration of four microinstruction cycles, for

each display process access. This means that out of every 1.3 usec,

750 nsec are spent with the bit map free flag in a lowered state. At

any instant, the probability of the graphics controller not being able

to inunediately access the bit map, is 75/ 130 • As a result, the dot

generation process is lengthened by an average of 75/ x (~ x 750)130

nsec, for each bit map access. Note that ~ x 750 nsec is just the average

length of each access wait, whereas, 75/ is the probability that a130

wait occurs. Since the dot select loop contains two bit map accesses,

81

a read and a write, the time required to generate each dot is increased

by 2 x (75/130) x (~ x 750) nsec = .433 usec. Thus, during forward

horizontal scans, a single vector dot is generated every 5.56 usec.

In the displaying of a single complete screen, there are 480

forward horizontal scans, 479 horizontal flybacks, and one vertical

flyback. This leads to a time averaged dot generation time of

(480 x 5.3 usec)(5.56 usec) + (479 x 15 usec)(5.12 usec)+(280 usec)(5.12 usec)
480 x 53 usec + 479 x 15 usec + 280 usec

= 5.46 usec/dot.

The longest line segments which fit on the screen, consist of

650 dots. This many dots are generated in 650 x 5.46 usec = 3.55 msec.

In other words, four incoming characters are processed in at least 3.55

msec. This corresponds to a baud rate of 11,300. In so far as line

generation is concerned, it appears that the 9600 baud objective has

been met.

v. 2 Circle Generation

The situation where circle segments, alone, are generated, is

now analyzed. Seven eight bit characters are required to specify each

arc. Values of X, Y and FCORD are derived from six incoming characters.

The seventh character suffices to represent a value for DOCT. The

analysis proceeds in exactly the same manner as for the previous case.

This time, at most 47 microinstructions are executed each time an arc

dot is generated. This leads to a time averaged dot generation time

of 6.21 usec per dot.

The largest complete circle which may be generated is centered

in the display screen and with a radius of 240 screen units. For this

circle, the solution set is comprised of 1360 dots. This many dots is

http:usec)(5.12
http:usec)(5.12
http:usec)(5.56

82

generated in 6.21 usec x 1360 = 8.45 msec. In other words, seven

incoming characters are processed in at least 8.45 msec. This

corresponds to a baud rate of 8280 which is, of course, less than the

9600 baud objective. It should be pointed out, however, that the average

arc specified is most likely to require somewhat less than 1360 dots.

For arcs which require half as many dots, the baud rate is effectively

doubled. Such arcs are still relatively large. Bearing this in mind,

it appears that for circle generation, a host-terminal transmission

rate of 9600 baud can, in fact, be maintained.

CHAPTER 6

CONCLUDING REMARKS

The main microprocessor and the graphics controller operate in

parallel. The graphics controller generates circle and line segments

at a rate which is fast enough to allow 9600 bau.d to be maintained.

At the same time, the Intel 8086 executes approximately 600 instruc­

tions. per each incoming character. This is enough to allow rather

sophisticated graphics and text processing capabilities.

In part, high speeds are achieved at the expense of the extra

complexity which is introduced through the use of microprogramming and

bit-sliced technology. It is felt, however, that a favourable balance

between simplicity and speed has been attained. State-of-the-art LSI

technology is used in striking this balance. The use of standard,

readily available LSI devices enables the design to be kept relatively

simple. At the same time, recent breakthroughs in speed have lessened

the severity of the ultimate tradeoff between speed and simplicity.

Programmable control provides the graphics terminal with a high

degree of flexibility. Features such as general text editing, the

specification of 'rubber band lines' (DIC),(NEW), image translation,

image scaling and provision for user programming in a language such as

PL/M (MCC), may be included as part of the operating system firmware.

The graphics controller firmware may be extended as well. The micro­

programmed graphics instruction set of chapter 4 requires 250'words

(53 bits wide) of the 4K word address space of the AM2910 sequence

controller (see fig. 3.2). Thus, the potential for extending the

83

84

graphics controller capabilities is very real. For example, the line

and circle generators can be generalized to include the drawing of any

conic section (PIT), (HOR).

On a closing note, corrnnent is made on the basic modularity of

the graphics terminal design. At the end of chapter 2, the graphics

controller, the bit map, and the bit map address generator, were

collectively referred to as a single modular graphics unit. This

graphics unit can be successfully interfaced with any conventional,

microprocessor-based, alphanumeric terminal. Modifications to the

graphics controller firmware may be required, however, depending on

whether or not a fully.interlaced display is used.

The firmwa~e was developed in a manner consistent with the

aforementioned modularity. For example, the firmware is independent of

the screen resolution. The number of displayable screen dots may vary

20 up to a maximum number of 2 , without necessitating any change to

the firmware. For any particular resolution, the size of the corres­

ponding bit map is fully specified by bit map parameter values stored

in the internal ROM registers.

REFERENCES

(ALE) Alexandridis, N.A. "Bit-Sliced Microprocessor
Architecture". Computer. June 1978,
pp. 56-80.

(AMD) Advanced Micro Devices, Inc. AM2903 Four-Bit
Bipolar Microprocessor Slice; AM2910
Microprogram Controller; Technical Data.

(BAS) Baskett, F. and Shustek, L. " The Design of a
Low Cost Video Graphics Terminal". SLAC PUB-1715.
Stanford Linear Accelerator Center, Stanford
University, Stanford, Ca. Feb. 1976

(BOU) Boulaye, G.G. Microprogramming. Halsted Press,
N.Y. (1975).

(DAV) Davidson, S. and Shriver, B.D. "An Overview of
Firmware Engineering". Computer. May 1978,
pp. 21-33.

(DIC) Dickinson, P.D. "Versatile Low-Cost Graphics Terminal
Is Designed for Ease of Use". Hewlett-Packard
Journal. January 1978, pp. 2-16.

(HAN) Hansen, B. Operating System Principles. Prentice Hall, Inc.,
Englewood Cliffs, N.J. (1973).

(HOL) Holm, W.A. How Television Works. N.V.
Philips' Gloeilampenfabrieken, Eindhoven,
Holland. (1958).

(HOR) Horn, K.P. "Circle Generators for Display Devices".
Com uter Gra hies and Ima e Processin •
Vol. 5, 1976 , pp. 280-288.

(MCC) McCracken, D.D. A Guide to PL/M Programming for
Microcomputer Applications. Addison-Wesley
Publishing Company, Inc., Philippines (1978).

(MIC) Mick, J.R. and Brick, J. Advanced Micro Devices:
Microprogramming Handbook. Advanced Micro Devices,
Inc., Ca. (1976)

85

86

(MOR) Morse, S.P. and Pohlman, W.B. and Ravenel, B.W.
"The Intel 8086 Microprocessor: A 16-bit Evolution
of the 8080". Computer. June 1978, pp. 18-27.

(NEW) Newman, W.M. and Sproull, R.F. Principles of
Interactive Computer Graphics. McGraw-Hill, Inc.,
N.Y. (1973).

(OSB I) Osborne, A. An Introduction to Microcomputers:
Volume I - Basic Concepts. Adam Osborne and
Associates, Inc!, Ca. (1976).

(OSB II) Osborne, A. and Jacobson, S. and Kane, J.
An Introduction to Microcomputers: Volume II ­
Some Real Products. June 1977. Revision,
Adam Osborne and Associates, Inc., Ca. (1976)

(PIT) Pitteway, M.L.V. "Algorithm for Drawing Ellipses
or Hyperbolae with a Digital Plotter". Computer
Journal. Vol. 10, (1967-68), pp. 282-289.

(RED) Redfield, S.R. "A Study in Microprogranuned Processors:
A Medium Sized Microprogrammed Processor". IEEE
Transactions on Computers. Vol. C-20, No. 1-;--­
July 1971, pp. 743-750.

(SHU) Shustek, L. ''The Internals of the Video Graphics
Terminal". SLAC Report 199. Stanford Linear
Accelerator Center, Stanford University,
Stanford, Ca. December 1976.

APPENDIX A

Line and Circle Generators (IFTRAN)

87

OROGf~A M C IRCL::: { I NPIJT , CUT PUT) . - .

C•••••v•••••~•••••••••••~•••
c .

C PlJRPOSC:: AN ALGORITHM FOR GcNSRATING OIGI14L

c APPROXIMATIONS TO CIRCULAR CURVES IS
c TESTED. T4E ALGORITHM GENERATES AN
c OPTIMUM SET OF CONTIGUOUS DOTS, ALL
c OF WHICU LIE ON A DISCRETE G~IO,

c SUCH AS IS CHARACTERISTIC OF RASTE~

c SCAU DISPLAY DEVICES. THE USER MUST
c SPECIFY THE GRIO SIZE (SEE SHLATE >
c AS WELL AS THE ARC SPECIFICATIONS
c (SEE REAOIN) IN ORDER. TO PRODUCE
c THE GRID, ARC, AND CONTIGUOUS SET OF
c GRID PCINTS AS OUTPUT ON A VcRSATEC
c PL OTTER..
c CALLS: ~EADIN, SHLATE .. INITAL, D~AWC, PLOT
c CALLEO RY 1 NONE
c INPUT: NONE
c OUTPUT: NONE
c GLOBAL VARIABLES INHERITEDi NONE
c GL01AL VARIAIJLES INITIALIZED: NONE
c LOCAL VARIABLC:S: X , Y , OOCT , FCORO , PX , PY
cc•••

IHPLICIT INTEGER (A - Y } , REALC l)
C-OMHON I HOVE I INSTRX , INSTRY , HOVE1
COMMON I PLTVAR I S , 051, OS2 , 0051 , 0052 , OX , OY
COMMON I VERSTC I SCALE

C PEAD ARC s 0 r:CIFATIONS
CALL REAOHH PX , PY , X , Y , OOCT , FCORO)

C ORAH GRID ANO ARC ON VERSATEC
CALL SMLATE(PX PY X , Y , OOCT , FCORO1 1C INITIALIZE CIRCL:. VAKIAijL~S
CALL INITAL(X , Y , OOCT t

·11_C GENERATE CONTIGUOUS GiU!J POIHS '
CALL DRAWC< X , Y , OOCT t FCORO , PX , PY)

C ENO OF PLOT
CALL PLOT(14.0, O.O , -3)

CA LL PL OT (0 • 0 t 0. 0 t 9qq)

STOP
2'.NO

CX>

CX>

0.SlJfl.iJQIJTI~E R'.:ADIN(X , oy , X , Y , OOCT , FCORO)
c~~••••••••••••••••••••••••••••~••••••••··~••••••••••••••••••••••••••••• c
c PURPOSE I R.EADS lJSER"S ARC SPECIFICATIONS
c CALLS: NONE
c CA.LLEO BY: CIRCLE
c I NPlJT: PX , PY , X , Y , OOCT , FCORO
c OUT PllT: NONE
c GLOflAL VARIA'1LES INllERITEO: NONE
c GLOAAL VARIA3LES INITIALIZED: PX,PY - THE INITIAL GRIO POSITION
c IN UNITS OF nors FROM THE
c ORIGIN AT THE LOWE~ LEFT
c HANO CORNER.
c x, y .. TH£ OI SPL ACE ME NT, IN OOTS,
c OF THE A~C CENTER FROM PX,
c PY.
c OOCT - ij!TS 0 - 14: T~E TOTAL
c NUMA~R OF OCTANT CHANGES
c <RELATIVE TO THE Aqc
c CENTER) ENCOUNTERED IN
c COMPLETING THE ARC.
c RIT 15: IF ZERO DRAW
c COUNTER - CLOCKWISE ELSE
c CLOCKWIS!:.
c FCORO - UPON TERM PM TION, THE
c ABSOLUTE VALUE OF THE MOST
c RAPIDLY VA~YING COORDINATE
c (RELATIVE TO ARC CENTE~)
c LOCAL VARIAflLES: NONE
cc•••

IMPLICIT INTEGER (A - Y) 1 REAL(7)
?.~AO•,, PX , PY , X , Y , OO~T , FCORO

~.C:TURN

E Ni'l

\0
00

5Ut1ROUTINE S,"fLAT:'.:(PX , PY , X , Y. ,. OOCT , FCOR.fl t
c•••••••••••••••••••••••••••••••••••••~•••••••••••••••••••••••••••·~····c .
C PURPOSE: PLOTS GRID ANO A~C ON VERSATEC
C CALLS: OCTANT,FINALPT,PLOT,ARC,LETTER
C CALLED BY: CIRCLE
C I NPIJT t SCALE
C OUTPUT: VER.SATEC PLOT
C GLOOAL VARIAnLES IN~ERITEO: PX , PY , X , Y , OOCT , FCORD
C GLOnAL VARIA~LES INITIALIZED: SCALE - NUHnER OF FINEST VERSATECc . DIVISIONS TO FINEST GRIO
c DIVISION
c LOCAL VARIABLES: zx,zv,ocr,zx2,zv2,zx1,zv1,zxc,zvc,
c ZOTHER,CLKWISE,I,OISPLAY
cc•••

IMPLICIT INTEGER (A - Y) , REAL(Z)
COMMON I VERSTC I SCALE
LOGICAL CLKH SE
OIHENSION DISPLAY(14
READ• SCA LE

c DRAW VERTICAL GRID LINES
zx = o.o
UNTIL (Z X •GT• 10. 4)

CALL PLOT(ZX , O.O , 3)
CALL PLOT(ZX , 10.4 , 2 l
ZX = ZX + (.005 •SCALE)

END UNTIL
C DRAW HORIZONTAL GRID LINES

zv = o.o
UNTIL(ZY .GT. 10.40 l

CALL PLOT(Q.O , ZY , 3)
CALL PLOT(10.4 , 7Y , 2
ZY = ZY + { .005 • SCALE

ENO UNTIL .
C CALCULATE FINAL ENDPOINT OF ARC

IF< DOCT .GE. 2••15)
·~LKWSE: = • TRUE.

ELSE
CLKWSE = .FALSE,

C: NO IF
CALL OCTANT(-X , -Y , CLKWSE , OCT)
IF(CLKWSE)

OCT = MIJO((OCT - 1) • (>J - (!)OCT - 2'H'15)) , -'I) • 1
ELSE

\0
0

OCT = MOO(OCT - 1 t oor.T ' 8 • t- 1
z:unIF
ZOTHER = SQRT(FLOAT(x••2 + Y••2 - FCORa••z)
CALL FINALPT(OCT, FCORO, ZOTHER, ZX2, lY2

C COl'IVC:RT TO AC1SOLUT£ COO~OINATES ANC lJRAii ARC
zxc:.: (.PX .. x , .. SCALE ... oo:>
ZYC :.:. C PY • V) • SCALE • .0~5
ZX1 = PX • SCALE • .005
ZY1 = 0 v • SCAL~ • .005
7X2 = 7.X2 • SCALE • .005 t ZXC
ZY2 = ZY2 • SCALE • .OJ5 ~ ZYC

I F (CL Kl·I S E:)
CALL ARC(ZX2, ZY2, ZX1, ZY1, ZXC, ZYC, .005)

::LSE

CALL ARC< ZX1 , ZY1 , ZX2 , ZY2 , ZXC , ZYC , .005

~NOIF
C PRINT DISPLAY INFORMATION ON VERSATEC PLOT

~NC00~{140 , 1 , DISPLAY) 5HPX = , PX , 5HPY = , oy , 4HX = , X L

1 ~HY = , Y , 7HOOCT = , OOCT , RHFCORO = , FCORO , 6HSCALE = ,
1 SCALE

1 F 0 RMAT (A 5 , I 3 , 12 X , A 5 , I .1 , 12 X , A 4 , I 4 · , 12 X , A 4 , I 4 ,
1 12X ' A7 ' !5 ' ax ' A6 ' 14 ' tlX t AE\ , Il ' 9X)

DO(I = 1 , 7)
CA L L L ET TE R (2 0 , • 1 5 , 0 • 0 , 11. 2 , o • 0 - I • • 2 ,

1 0 I S PL A Y (2 • I - 1))

::: NDOO
~::TU~N
=:NO

\J)
t-'

SIJuROUTINE OCTANT(x , y , CLKvlS::: ' OCT)c••• c
c PURPOSE: O~TERMINES WHICH OCTANT THE POINT
c DESIGNATED RY x,v rs LOCATfO IN c CALLS; NONE
c CALLEO av: SM LATE
c I NPlH t NOMF
c OUTPUT: NONE
c GLOnAL VARIA~LES I~HERITEO: X1 V,CLKWSE
c GLOBAL VARIA1LES INITIALIZED: OLlT - CALCULATED OCTANT
c LOCAL \/ARIAflLES: NONE
cc•••

IMPLICIT INTCG::~ (A - Y) , ~.:'.AL(Z)

LOGICAL CLKWSE

IFC X .GT. 0 l

IF< Y .GT. 0 >
IF (X • GT. Y)

OCT = 1

ELSC:

C SP~CIAL CARE MUST 9E TAKEN FOR POINTS ON OCTANT nOUNDARY
IF< X .EQ. Y .AND. CLKWSE >

OCT = 1
ELS::

OCT = 2
ENO IF

C:NO IF

£LSE

IF(X .GT. Il\f.lS(Y))
IF(Y .:::Q. 0 .At\O. (.NOT. CLKWSE))

OCT = 1
ELSE

OCT :: 8

ENO IF

ELSE
IF(X .EQ. -Y .ANO. (• NOT. CLKWSE))

OCT = .~
ELSE

·1CT = 7
ENO IF

END IF
C:NO IF

\0
N

:: L 3E:
IF< Y .GT. 0)

IF< !ABS(X > .GT. Y)
OCT = 4

ELSE
IF(X .EQ. 0 .Af\O. CLKWSE

OCT = 2
ORIF(X .EQ. -Y .ANO. (.NOT. CLKWSC: l)

OCT = 4
ELSE

OCT = 3
EMO IF

:'.NJ IF

cLS;::
IF(IABS< X l .GT. IABS< Y l)

IF(Y .EQ. 0 .ANO. CLKWSE)
OCT = it

C:LSi::
OCT = 5

ENO IF
ELSE

IF(V .EQ. X .ANO. CLKWSE)
OCT = 5

ORIF(X .EQ. 0 .ANO. (.NOT. CLKWSE) l
OCT = 7

ELSE
OCT = 6

ENO IF
t: N:J IF

ENO IF
C: NO IF
RETURN
i::ND

'°w

3 U fl i(OIJ TIN C: FIN AL i> T (0 C T , F C OR 0 , Z 0 T 'i EP. , Z X 2 , 7. Y 2)c••• c
C PURPOSEJ DETERMINES FINAL ~NOPOINT OF ARC
C CALLS: NONE
C CALLEO BY i SHLA TE
C INPUT: NONE
C OUTPUTi NOtJE

C GLOuAL VAfHAALt:S I.NH:::RITEO: OCT z. FCORO ,

C ZOTH~R - OTHER FI~AL COORDINATE
c GLOBAL VARIA~LES INITIALIZEn1 zx2,zv2 - FINAL POSITION RELATIVE TO
C ARC CENTER
C LOCAL VARIABLES: NONE
c
c••••••~••

IMPLICIT INTEGEP. (A - Y) , R·::AL(Z)
CASE OF { OCT t

CA SEC 1)

ZX2 = ZOTHER
ZY2 = FCORO

CASE(2)
ZX2 :: FCO~O
ZY2 = ZOTHER

CASE(3)
ZX2 = -FCORO
ZY2 :: zontER

CASE(4) ' '
ZX2 = -ZOTHER
ZY2 = FCO~O

cAs::c ? ,
ZX2 = -ZOTHER
7.Y2 = -FCORO

CASE:(o)
ZX2 :: -FCO~D

ZY2 = -ZOHtER

CASC:C 7)

ZX2 = FCO~O

7.Y2 = -ZOTHE~

CASE(ft)

ZX2 = ZOTllER

ZY2 :: -FCORO

=:NO CASE
~.::TURN
C: NO

'°.p.

3Ui31WUTitlE IllITAL(X , Y OOCT IC••••••••••••••••••••••••••••••'••
c .
C PURJ'lOSC: INITIALI7ES CIRCL~-GENERATING
c VA~IAOLSS
c CALLS: MAP
c CALLEO flY: CIRCLE
c I NPllT: NON=:
c OUT;:>UT1 MONE
c GLOOAL VARIAnLES INHERITED: X, Y, 110CT
c GLOOAL VARIAflLES INITIALIZ~D: s - OIAGONAL HOVE IF GT 0 ELSE
c HOVE1
c DS1 - ADO TO S AFTER HOVE1
c OS2 - AOO TO S AFTcR DIAGONAL
c HOVE
c OOS1 - ADO TO OS1 AFTER EVE~Y
c MOVE ; ADO TO DS2 AFTEQ
c 1-tOVEl
c OOS2 - ADO TO OS2 AFTER DIAGONAL
c MOVE
c nx - ADO TO X AFTER HORIZONTAL
c MOVE
c DY - ADO TO Y AFTER EVERY HOV~
c LOCAL VAR IA BL ES: DIRECT - IF GT O, COUNTE~-CLKWISE
c ELSE CLKWISE
cc•••

IMPLICIT INTEGER CA - Y) , R:::AL(Z l
COMMON I HOVE I INSTRX INSTRY , HOVE1
COMMON I FLTVAR I S , 0§1 OS2 , 0051 , DOS2 , OX , OY

C SEPA~ATE OI~ECTION AIT FROM OO~T ANO INITIALIZE DIRECT
IF< OOCT .GE. 2••15)

DIRECT : -1
DOCT : OOCT - 2••15

~LSC:
DIRECT =1

i::NOIF
C TRAN~FCRM X,Y TO COORDINATES OF INITIAL POSITION W.~.T. ARC CENTER

x : -x
y : -v

C MAP X, Y, DI~~CT INTO FIRST OCTANT
CALL MAO(x,v f or 0~CT)

\0
V1

C INITIALIZ~ VARIAlLES AGCORQING TO OIRECTION
IF(DIRECT .GT. 0 »

s = 2 .. y - x .. 2

OS1 = 2 • y l
..
OS 2 = 2 • y - 2 .. x + 5
ODS1 = 2
OOS2 = 4
DX = -1
OY = 1

C:LSE
:>=2•v 2 .. x - 1
flS1 = 2 "' y - 3
ns2 = 2 • y - 2 .. x - 5
oos1 = -2
OOS2 = -4
1lX = 1
DY = -1

::'.NOIF
R!::TlJRN

::ND

\0

°'

SU'1F.OUTINE i1"P(X , Y , DIRECT)
c•~•••~••••••••••••••••••4••
c
c PURPOSE: MAPS X,Y ANO DIRECT FROM THE START­
c ING OCTANT INTC THE FIRST OCTANT.
c THE INVERSE TRANSFORM IS APPLI~O
c TO MOVE1,INSTRX,INSTRY TO MAP THE
c ACTUAL MOVEMENT FROM FIRST TO STA~T­
c ING OCTANT.
c CALLS: NONE
c CALLEO qy; IN ITAL
c I NPllT: NONE
c OUTPUT: NONE
c GLOBAL VAPIAt3LES INH~RITEO: X,Y DIRECT
c GLOBAL VARIA1LES INITIALIZED: INSf~X - INSTRUCTION FOR HORIZONTAL
c MOVE
c INSTRY - INSTR FOR VERTICAL HOVE
c MOVE! - VALUt:: OF 1 : VE~TICAL MOVE
c 2 : HORIZONTAL MOVE
c LOCAL VARIAOLES: XYFLAG , TEMP
c
c•••••••••·~··••

IMPLICIT INTEGE~ (A - Y) , REAL (Z t
COMHON I MOVE I INSTRX , INSTRY , MOVE1
LOGICAL XYFLA G
XYFLAG = .FALSE.

C SET INSTRX, If\ST<{Y AS IF IN FIRST OCTANT, GT 0 HEANS INCREMENT , LT 0
C MEAN:> DECREMENT

IFC OIRC:CT .GT. 0)
It~STRX = -1
INSTr<Y :: 1

C:L SE
INSTRX :: 1
INSTRY :: -1

::NOIF
C PEFL~CT X,Y,DIRECT IN LINE Y :: X IF NECESSARY

IF(IAr\S(Y > .GT. IAAS(X) t
T:::MP = Y
y = x
X = TE HP
DIRECT = -DIRECT
XYFLAG = .TRUE •

.:'.NDIF

\0
........

c ~EFL:cr x,v,or~~CT ANO INSTR>,INSTRY IN LINE x = 0
IF< Y .LT. iJ)

y = - y
c INST~X rs FLIP?EO

INSTRX = -INSTRX
DIRECT = -DIR~CT

C: NO IF
C REFLECT X,Y,DI~ECT AND INSTR>,INSTRY IN LINE Y = 0

IF(X .LT. 0)
x = -x
INSTRY = -INSTRV
DIRECT = -OIP.ECT

:NOIF

C REFL:::CT INSTRX,INSTP.Y,110Vf.1 IN LIN~ Y = X
IF(XYFLAG)

IF(INSTRX .EQ. INSTRY

INSTRY = ·INSTRY

INSTRX = -INSTRX

£NDIF

r·IOVE 1 = 2

C: L s=:
MOVE1 = 1

~NDIF

~::::TUf;N

.:: NO

"'
00

SIJflROllTINf. 02AWC(X , Y , OOCT , FC0.(0 , PX , PY >
c~···~~•••
c
C t>URPOSE; GENERA'fES TH:: CONTIGUOUS SET OF G~IO
C POINTS WHICH B~ST REPRESENT ARC
C Cl\LLS: i10VEPT,OIAG,SQUARE
c CALLED av: er RCLE
C INPUT: ~,,ONE
C OUTPUT: NONE
c GLOBAL 1/ARIAflLES INHERIT::o: X,YtHO\/E1!,S,os1,os2,oos1,oos2,ox,ov
c noc1,FCORu,PX,PY
C GLOBAL VARIABLES INITIALIZED: NONE
C LOCAL VARIAflLESl R=:STf>T - 1 : VERTICAL HOVE
C 2 : llOQtZONTAL MOVE
C 3 : DIAGONAL HOVEc•••

IMPLICIT INTEGER (A - Y) , RC:AL C Z)
COMMON I MOVE I INSTRX t INSTRY , MOVE1
CJHNON I PLTVAR I S , DS1, OS2 1 DOS1 , OOS2 , OX , OY
COMMON I V::RSTC I SCALE .

C TEST IF STARTING HOVE CROSSES OCTANT OOUNOA~Y
IF(Y • OY .GT. X .OR. Y -t OY .LT. 0)

OOCT :: OOCT • 1

i: ND IF

C GEN~~ATE POINTS SEQUENTIALLY THROUGH INCREMENTAL CALCULATIONS
UNTIL(OOCT .LE. 0 .ANO. Y .EQ. FCORO)

Y = Y • OY c TEST FOR OCTANT CHANGE, FO~CE x,r TO REMAIN IN FIRST OCTANT
IF< V • GT. X)

GALL OIAG(OOCT , X , Y)
OR IF (V • LT • () l

CALL SQUARE: (OOCT , X , Y)

O~IF(Y .EQ. X .ANO. S .GT. 0

nc:s TPT :: 3
CALL MOVEPTC AESTPT , PX , PY
CALL DIAG(OOCT t X , V l

C:NO IF

C CHJOSE .B~ST NEXT POINT

IF l s .ca. o >
il~S TPT = 3
s :: s .. 052
DS2 = ns2 • flilS2
x :: x t ox

ELSE

"' "'

c MOVE1 I3 A v::r~TICAL OR ~IORIZCNTAL M:>VE
f1ES TPT = MOVE1
S = S • OS1
ns2 = os2 • oost

.::NDIF
OS1 = OS1 t DOS1
CALL MOVEPT(AESTPT , PX , Py)

::NO UNTIL
~;:ru~M
·~ ~lO

SURROUTINE HOVEPT(~ESTPT , PX , PY tc••• c
c PURPOSE: PERFOR~S INCRE~ENTAL MOVE FROH Px,oy
c ANO PLACES oar ON GRID
c CALLS: SPOT
c CAL LEO AV: OR.AW C
c I tlPUT: NONE
c OUTPUT: VcRSATEC PLOTT~R
c GLOnAL VARIA~LES INl-lf:RITEOt ~ESTPT,PX,PY,INSTRX,INSTRV,SCALE
c GLOflAL VARIAllLC:S INITIAL IZEO: NONE
c LOCAL 1/ARIAflLES: NONC:
cc•••

IMPLICIT INTEGER (A - Y) , REAL(Z)
COMMON I HOVE I INSTRX , INSTRV , HOVE1
COMMON I VERSTC I SCALE

c IF arr Z~RO OF 02STPT IS SET ' MOVE VERTICALLY ACCORDING TO INSTRY
IF(ANO(COtlPL(t1ASKC 59)), AESTPf) .NE. 0 l

IF< INSTRY .GT. 0)

PY = PY t 1

ELSE
PY = PY - 1

ENO IF
=:NO IF

c IF nrr ONE OF OESTPT IS SET, MOVE HORIZONTALLY ACCO~OING TO INST~X
IFC MW(SHIFT(C0'1PL(MASK(Sq > > , 1 t , llESTPT) .NE. 0 l

·IF(INSTRX .GT. 0)

PX = PX t 1

ELSE
PX = PX - 1

ENO IF

:NOIF

C PLACE DOT
CALL SPOT(PX• .005 •SCALE - .01, PY• SCALE• .005 - .01, .02

1 , 1H• , O.O) r­
;~ETURN 0

0:: NO

S IJ ~ iW U T UJC: D I A G (!J 0 C T , X , Y >
c•~···~~··•••••••••••*•• c
c PURPOSE: DIAGONAL OCTANT CHANGE
c CALLS: ~EVERS
c CALLEO tlY: ORAWC
c I NPIH: NONE
c OUTf>IJT1 ~ONE
c GL03AL VARIAGLES INHERITEOl HOVE1,tNSTRX,I~STRY,oocr,x,y,s,os1.
c os2,oos1,ons2,ox,ov
c GLOnAL VARIAnL~S INITIALIZE~: NONE
c LOCAL VARIABLES: ~ONE
cc•••

IMPLICIT INTEGER (A - Y) , RF.AL(Z)
COM~ON I "OVE I INSTRX INSTRV , MOVE1
COHMON I PLTVAR I S , 0§1 , OS2 , OOS1 , OOS2 , OX , DY

C FLIP MOVE1
MOVE1 = XO~(HOVE1 t 3)

C QEVE~SE PRESENT DIRECTION
Y=Y-1
s = -s + 4 • y - 2 • x + 1
OS! = 0$1 - 6
0 ::>2 = DS2 - 10
ODS1 = -DOS!
oosz = -oos2
i1X = -OX
0 Y = -DY
Y = Y t OY

C DE:~~HENT OCTANT CHANGE COUNT
DOCT = OOCT - 1
R.=:TU~N
i:: 'ID

......

......
0

SU8ROU THIE Sf)U~~C:: (flOCT X 'f)
C•••••••••••••••••••••••••~•••i•••i••••••••••••••••••••••••••••••••••••• c
c PU~POSE ~ SQUARE OCTANT CHANGE
c CALLS: REVE~S
c CALLEO BY: ORA WC
c INPUT: NONE
c 0 UT PUT; NONE

c GLOBAL VARIAflLES INHERITED: X,Y,OOCT,HOV~1,INSTRX,INSTRY,S,OS1,

c os2,oos1,oos2,ox,ov
c GLO~AL VARIA1LES INITIALIZED: NONE
c LOCAL VARIABLES: NONE
cc•••

IMPLICIT INTC:GER (A - Y) , R.E:AL (Z l
COMMON I HOVE I INSTRX , INSTRY , HOVE!
COMMON I FLTVAR I S , OS1 , OS2 , OOS1 , OOS2 , OX , DY

C FLIP DIAGONAL ~OVE
IF (MOVE1 .Ef.l. 1 t

INSTRX = -INSTRX
::LSE

INSTP.Y = -INSTRY
C:NOIF

C REVE~SE PR~S::Nr DIRECTION
s = -s - 2 • x t 1
DS1 = DS1 t 6
;JS2 = OS2 + 10
11os1 = -oos1
oos2 = -oos2
.JX = -fJX
l.l Y = -OY
Y = Y + 2 "" OV

C DEC~C:MEtlT OCT ANT CHANGE COtJNT
OOCT = OOCT - 1
RETURN
:1-10

......
N
0

PROGRAM Vr?.CfrlRC ItJi.,IJT , OUTPIJT)
c•••••~•••
c
c r>tJRPOSF: AN ALGO~ITHrl FOR G~NfRATING OI~ITAL
c AP 0 ROXIHATIONS TO STRAIGHT LIN~
c SE G~EN TS IS TEST EO. TUE ALGO~I THM
c GC:"-IE ~A Tt:S AN OPT IMlJH SET OF
c CONTIGUOUS OOTS, ALL OF WHICH LIE ON
c A OISCR.ET::::: G~IO, SUCH AS IS
c CHA~ACTERISTIC OF ~AST~~ SCAN
c OISPLAV DEVIC2S. TllE USER MUST
c SP:::CIFY THE GRIO s rz:: (SEE St1LATI/)
c AS HELL AS THE STRAIGHT LINE
c SP!::CIFICATIONS C SE::: REAOV) IN
c ORDER TO PRODUCE THE GRIO, LINE ANO
c CONTIGUOUS SET OF GRIO POINTS AS
c OUTPUT ON A VERSATEC PLOTTER
c CALLS: R~AOV,SMLATV,HAPV,ORAWV,PLOT
c CAL LEO IJV: NONE
c INPUT: NONE
c OUTPUT: NONE
c GLOBAL VARIA9LES HHER ITEO: NONE
c GLOi\Al VA RIA llLES INITIAL IZEO: NONE
c LOCAL VARIAflLES: PX,PY,VX,VY
cc•••

IMPLICIT INTEGC:R (4 - Y) , R'.::AL(Z)
COMMON I MOVE I INSTRX , INSTRY , HOVE1
COMMON I VERSTC I SCALE

C READ STRAIGHT LINE SPECIFICATIONS
CALL REAOV(PX , PY , VX , VY t

C DRAW GRID ANO STRAIGHT LINE CN VERSATEC
CALL S~ILA TV(PX PY VX VY t c GENC:~ATE CON1IGIJOIJS G~TO b()If\TS
CALL MAPV(VX , VY t
CALL Oi~AHV(0 X , PY , \IX , VY

C END OF PLOT
CALL PLOT(14.0 ' a.o ' -3)
CALL PLOT(o.o' a.a' qgq)
STOP
::: l'-lO

._.
w
0

http:OISCR.ET

iUJROUTIN~ R~AOV(PX , PY , VX , VY t .c••• c
0c UR»OSE: REAOS LIN~ S~GMENT SPECI FICA TIONS

c CALLS: NONE
c CALLEO ilY: VECTOR
c INPUT: PX,PY,VX,VY
c 0 UT PUT: NONE
c GLOi1Al VARIABLES INHERITED: NOME
c GLO~AL VARIABLC:S INITIALIZED: PX, PY - THC: IN tT IAL GRIO POSITICl"I
c IN UNITS OF DOTS F~OM Tli~
c ORIGIN AT THE LOWE~ LEFT

HANO COR~IER.
c
c

vx 'v y - THE DISPLACEMENT IN DOTS,
c OF TllE: FINAL GPIO POSITION
c FROM PX,PY • THE LINE
c SEGMENT IS DRAWN FROM THE
c INITIAL TO FINAL G~In
c PO':HTI ON
c LOCAL VARIABLES: NONE
cc•••

IMPLICIT INTEGER (A - Y) , RC:AL(Z)
~~AO• , PX , PY , VX , VY
RETURN
~NO

I-'

+'
0

c
':;IJ'i~OllTINf. S>ILATI/(PX , PY , VX , VY tc•••

c DURPOSE: PLOTS GRID AND LINE SEGMENT ON
c
c
c
c
c
c
c

CALLS:
CALLEO 11Y;
INPUT:
OUT PUT:
GLOnAL VARIARLES
GLOflAL VAiUAflLC:S

INHERIT~n:
INITIALIZEO:

\IERSATEC
PLOT,LETTER
VECTOR
SCALE
VEP..SATEC flLOT
PX,PY,VX,VY
SCALE - NUHB~R OF FINEST V~RSAT~C

c DIVISIONS TO FINEST GRIO
c
c LOCAL VARIAIJLESt

flIVISION
zx,zv,oISPLAY,I

cc•••
IMPLICIT HHE:GER (A • Y t , R.::AL(Z >
COMMON I Vt:RSTC I SCALE
orr-:::NSION DISPLAY(10 •

RC:AD• , SCAL.::

C DRAW VERTICAL GRID LINES
zx ;: o.o
lJ NT IL (ZX • GT• 10. 4)

CA LL P L 0 T < l X , 0 • 0 , 3)

CA LL PLOT (7.X 1 10 • 4 ! 2)
ZX = lX + (.Ou5 • SCALE ,

ENO UNTIL
C O~AW HORIZONTAL GRID LINES

ZY = G.O
U~HIL(ZY .GT. 10.4 l

CALL PLOT(O.O , ZY t 3 t

CALL PLOT< 10.i+ , ZY , 2)
zy = zy t (.005. SCALE)

::NO UNTIL
C DRAW LINE SEG~ENT USING VERSATEC ~OUTINES

CALL PLOT(PX '*' .005 ,,. SCALE , PY • .005 • SCALE , 3)
CALL PLOT((PX t VX l • .i)05 •SCALE" (PY+ VY) • .005 •SCALE

1 ' 2 l
C PRINT DISPLAY INFO~MATION ON VERSATEC PLOT
C:NCOOEC 100 , 1 , DISPLAY) 5HflX = , PX , 5.HPY = , PY , 5HVX = ,

1 VX , ?HVY = , VY , RHSCALE = , SCALE

1 FORMAT< AS, 13, 12X , A5, I3, 12X, AS, IJ, 12X, AS, I3,

1 12X , A8 , IJ , 9X l

00(I :: 1 , 5 l

CALL LETT:'.:R(20' .1s' n.o' 11.2' 5.1\ - I ••2' DISPLAY(2

1'' I - 1 > l
~Nnno

R::TIJ~N

C:NO 	 0

I-'

lJl

SU nR.O ll TIN f. MA P V (VX , VY)
c•••••••••••••••••~•••••••••••••••••••~••••••~•••••••••••••••••••••••••• c
c PU~POSE; THE COORDINATES VX,VY ARE MAPP~D
c INTO THEIR EQUIVALENTS IN THE FI~ST
c OCTANT. INSTRX , INSTRY , HOVE1 A~E
c INITIALIZED ACCORDING TO REAL
c OIPECTION OF MOTION
c CALLS: NOtJE
c CALLEO flY ~ VECTOR
c INPUT; NONE
c OUTPUTi NONE
c GLOJAL VARIAflLES INHERIT£n: vx,vv
c GL01AL VA ~IA·lLES INITIAL !ZED: INSTRX - IMS T ~U CT I 0 N F 0 R
c HO~I ZO NT AL MOVE
c INSTRY - INSTR FOR VfqTICAL HOV£
c MOVE 1 - VALU~ OF 1: VERTICAL HOV~ c 2: HORIZONTAL MOVE
c LOCAL VAP. 11\flLESi TEMP
cc•••

IMPLICIT INTF.GE~ (A - Y l , RE:AL(Z)
COMMON I HOVE I INSTRX , INSTRV , MOV~1

C INITIALIZE INSTRX,INSTRY - GT 0 MEANS INCREllENT, LT 0 MEANS OECREH:::~IT
IFC VX .GE. 0)

INSTRX = 1
::LS·t:

INSTRX = -1
Vl(= - VX

::: tlD IF
IF(VY .GE. 0)

INSTRY = 1
=:LS£

INSTRY = -1
VY = -VY

i::NOIF
C MOVC:! CORRESPOiWS TO MOTION IM DIRECTION OF GREATEST CHANGE'

IF< VY .GT. VX)
t10VE 1 =1
TEHP = VX
VX = VY
VY = TEMP

::'.LSE
~IOVE1 = 2

;.: MO IF
f~ETURN
C: Nfl t-'

0
Cl'

sunF:OllfI"t:: D~AIN('.lx PY' vx' VY.
C•••~••••~••••••••••~•••~•~~••
c
c PUR 0 0SF.: GE NE RA TES TH:.: SET OF CONT IGUOlJS
c GRID POINTS WHICH BEST REPRESENTS
c THE LINE SEGMENT c CALLS: MOVE Of
c CALLED FlY: VECTOR
c I Nf>llT: NONE c OUTPUT: NOME
c GLO'lAL VAkIABLC::S !NHERITEOi PX,PY,VX,VY,MOVE1,INSTP.Y
c GL0i3AL \IARIARLcS INITIALIZEO: NONE
c LOCAL VARIAOLESI 0 - OI~GONAL HOVE IF GT 0 ,
c ELSE MOVC:1
c 001 - ADO TO 0 AFTER HOVE1
c 002 - 400 TO n AFTER DIAGONAL
c ~1ovE
c '1ESTPT - 0: NC MO \IE
c 1 'I VC:RTICAL MOV::
c 2: HORIZONTAL HOVE
c 3: DIAGONAL HOVc
cc•••

IMPLICIT INTEGER (A - Y t , R'.::AL C Z)
COMMON I MOVE I INST'X , INST~Y ~ MOVE1
COMMON I VERSTC I SCAL~

C TEST FOR GENERATION OF A SINGLE POINT
IFC VX .c:a. 0 t.

flES TPT = 0
CALL MOVEPT(aESTPT , PX , PY)

~LSf
C GEN~~ATE CONlIGUOUS POINTS SEQUENTIALLY THROUGH INCREMENTAL
C CALCULATIONS

001 :: 2 • VY
· 0 = OD! - VX

002 = 0 - vx
C FUOGc TO ENSLJ Rt: SA~:: POINTS CHOS=:N ORAWit~G FORWA~OS AND AACKHA~OS

IFC INSTRY .LT. 0)
0 = 0 • 1

!::NO IF

UNTIL (VX • LS. 0)

IFC 0 .GT. il)
0 = D + 002
Bi:STPT = 3

ELSE

0 = 0 • DQ1

0
.......

108

>­
w Cl.
>
0 ..
r

x
....J Cl.
<t ..I­
:z
u
N a..
H~ I­
C..::4_; C/'l
C> w
~o ro
cc
C II ._

0.
....JI- !J.j t
<t 0.. >
(.;I- ex
HU') l:::>....J
I- I JJ LL. 1-1
C:.: C::H..I II I­

0.....1 "'­'"> Zc:::x~
WU>

<t 0 z
ZLLIX

(/') l1,.jl-4:;,
H 01-0

ZILl:Z
wn:ru

u

•

APPENDIX B

Sample Microprogram

Working variables are mapped into the R/W part of the

internal register file as shown below. The global variables are

used in the implementation of both drawing instructions. The local

variables are those which are local to either CIRCLE or VECTOR.

Global Variables

Register (R/W) Variable

1 POSITN
2 BTMSK
3 EVODD
4 MODE
5 PATERN
6 PSCALE
7 PATPOS
8 SCLPOS
9 INSTRX

10 INSTRY
11 MOVEI
12 BESTPT
13 ADDR
14 MAPWRD

Local Variables

Register (R/W) Variable

VECTOR CIRCLE

15 vx x
y16 VY

17 D DOCT
18 DDl FCORD
19 DD2 DIRECT
20 XYFLAG
21 s
22 DSl
23 DS2
24 DDSl

109

110

Register (R/W) Variable

VECTOR CIRCLE

25 DDS2
26 DX
27 DY
28
29

30

31

32

The following constants are stored in the 16 register

ROM part of the internal register file.

Register (Read-Only) Constant

1 width

2 gphevn

3 gphodd

215
4
5 2

6 3

7 4

8 1

9 10

10 length

11

12

13

14

15

16

With the exception of the ADDR and MAPWRD, definitions for

the above variables and constants can be found in appendix A or in

chapter 4. ADDR is a bit map address and MAPWRD, a bit map word.

The following routine is representative of the graphics

controller firmware. The routine (DRAWC) is invoked during the

execution of a CIRCLE instruction. It generates the contiguous set

of grid points which best represents the specified circle segment.

For comparison, see the corresponding IFTRAN version in appendix A.

111

Note that in the following, the data bus interface and bit

map interface fields are not shown as a part of each microinstruction.

During the entire routine, these fields remain fixed at their default

values as is discussed in chapter 3.

112

......... ...

:i
"" :~
·~"
cl "';)
-o
s:
d
~4;... ,
.! ~

Ill

t
4

~
4

';
"]

""\::
~
d

-1
d

.s;:i.

Q.­
9

JI.

"'f'..,o

)(... 14 .(le "

•()

wiaic"<111\u)(l< I<(A ~ ... ll ll. .)("')(" x " l(")C .:· l&I

.a~~s
... ,..., .9~ ...

~ ;t ;;z;:){;;;:~QC le l<;::; J(... "' il..i"'-""""-3..iJ;z. (,-ZJ\ .z.z:1.:i.~:J :i.2<»

~i~ ... i l(<~.. '(:i~ '()(le J(ll le~ J i! ll ~-~en"'9. ~+1
~ ... :t :t.:i 01<:!. .<(

" .. l< "')< l< ;(.. :(x x x x ~ .(~ JC " l(l<. l< l< '(l<)(JC ... x J(. " "

+- .9 .9
.,..

:!:' _,.. 01;<;r ~ r'"... .., .,,,. _ ~
.... + ... +. ~-~ ~ ¥ "'""'~~!r~-1!J
.. J J lt lC ~ l('< \. ..) J:I ... 4-,)

\. 'IC " x ~ ... :I"",) 'lo>.,..,. It l(.... 1)(l(. ;\. 'l'3 .. '3~;1,'7,<!_)(~~ l ~ d 0 ~ ~ ~"'.,. .. - !. -;. ~ ~ ~~ ~ ~ i p ~ J;. ~ 0
•..
"'..
3.....

V)

~-~~*~~~~ro-~~~~~~~~!~~~~~~~~~$
~~~~~-~~~~;~~~~~~~~~~~~~~~~~-~~ ... 


	Structure Bookmarks

