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PREFACE 

The use of the one-electron charge distribution, and 

in particular its associated forces on the nuclei, to interpret 

the nature of the binding in molecules has · not received the 

attention in the literature that it warrants. Not only are 

such calculations mathematically simple but also these proper­

ties being dependant on the real three-dimensional electron 

density, lend themselves to an easy physical interpretation. 

The present research is an attempt to elucidate the 

forces operative in binding the nuclei. In Part I the "best" 

one-electron charge distribution for the water molecule, using 

only a limited set of basis functions, is obtained by demanding 

that this distribution produces a zero resultant force on the 

three nuclei. According to the Hellmann-Feynman theorem, the 

force on a nucleus in a molecule is the sum of the electronic 

force (which does not require the calculation of integrals in­

volving the coordinates of more than one electron) and the 

classical forces of repulsion due to the other nuclei. This 

condition provides one with a number of constraints that any 

proposed density must fulfill and the successive steps leading 

to this equilibrium distribution of density contribute to an 

understanding of the principle of bond formation. 

In Part II, on the other hand, the binding in the 

first-row diatomic hydrides, AH, whose charge distributions are 

known accurately, are examined by means of a detailed force 
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a n a l ysis complimented with measurements made on the one-electron 

c h a r ge distributions. The results of Part II have been submit­

ted for publication in the Journal of Chemical Physics. 
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THE NATURE OF THE BINDING IN 


THE WATER MOLECULE 


1 




1. INTRODUCTION 


(a) HISTORICAL 

Molecules containing lone pairs of electrons have been of 

particular interest to chemists for a long time. The spatial 

distributions of such lone pairs and the part they play in 

determining the equilibrium configuration of the nuclei has 

received much attention in the literature. 

The water molecule is probably the most discussed ex­

ample in this class and consequently its historical treatment 

parallels the theoretical advances in wave mechanics. 

The general conclusion that an electron pair bond is 

formed by the interaction of two unpa~red electrons on each 

of two atoms was formally obtained by Beitler (1) and London (2) 

in 1927/1928. On thi~ basis and because the two unpaired elec­

trons on the oxygen atom are 2p, Pauling (3) suggested that the 

inter-bond angle in the water molecule was ideally 90°. The 

actual angle was, in fact, expected to be slightly larger due to 

the electrostatic interaction of the two hydrogen atoms. 

It was first realized in 1930 (4) and then confirmed in 

1932 (5) that three atoms in this molecule do form a triangle. 

The precise value of the H-0-H bond angle was then unknown but 

was believed to be between 102° and 110°. 

Van Vleck and Cross (6) did a simple calculation that 

took the hydrogen repulsions, suggested by Pauling, into account. 

They showed that it would result in a bond opening of about 10° 

which was indeed very close t o the experimental value. 
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In 1933 Bernal and Fowler (7), using Mulliken's (8) 

theory for the electronic structure of polyatomic molecules and 

Verwey (9) in 1941, again using qualitative arguments, pre­

dicted that the ne t e l e c tron d e n s i t y in the wa t e r mole cule would 

resemble a tetrahedron with two corners of positive charge 

and two corners of negative charge. If we now assume that an 

isolated water molecule retains its essential features in the 

formation of ice, this result was in full agreement with the 

crystallographic work of Barnes (10) . "The normal form of an 

ice crystal," he said, "is held together by hydrogen bonds 

in such a way that e ·ach molecule is surrounded by four others." 

Such a picture would also be consistent with the electrostatic 

theory of the hydrogen bond according to which the proton is 

attracted by a localised pair of electrons on another molecule. 

Sidgwick an~ Powell (11), in 1940, collected experi­

mental evidence on the stereochemistry of polyvalent atoms and 

attempted to relate it to the simplest explanation of their 

electronic structure, the size of their valency groups and the 

number of shared electrons they contain. It was concluded that 

both the lone and bonding pairs of electrons were equally im­

portant and that they were arranged symmetrically so as to 

minimize their mutual electrostatic repulsions. If this is the 

case then the geometrical configuration of these electron 

pairs depends only on their total number and not on their type. 

Thus, for example, molecules containing two, three or four 

val e ncy pai rs will be linear , trigonal and tetrahedral respec­
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tively. Accordingly the water molecule with eight valence 

electrons was predicted to be tetrahedral with a bond angle of 

109°28'. 

Heath and Linnett (12) in 1948 suggested that if, in 

fact, the structure of the water molecule was nearly tetrahed­

ral then it could be explained by means of a 2s/2p hybridi­

asation of the central oxygen atom . The extent of this hybri­

disation is dependent on the bond angle and in the limit of 

complete mixing we will obtain four equivalent orbitals that 

point towards the four corners of a tetrahedron; two of these 

orbitals will be doubly occupied and two will be singly oc­

cupied and hence available for bond formation. 

This description would give rise to a large concen­

tration of negative charge behind the oxygen atom and two 

directed bond orbitals. The concentration of negative charge 

is commonly referred to as lone pair density,' since it originates 

from atomic orbitals centred solely on one atom and consequently 

does not take part directly in the bonding. 

Pople (14) , allowing for the hybridisation suggested by 

Heath and Linnett, performed an equivalent molecular orbital 

calculation on the water molecule. He showed that a change in 

the bond angle will produce a change in the lone pairs and con-

eluded that it was the electrostatic interaction of the lone and 

bonding pairs of electrons that is important in determining the 

aThe concept of hybrid orbitals was first suggested by Slater (13) 
in January 1931 and then by Pauling (3) in February of the 
same year. 
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equilibrium configuration, a result that Sidgwick and Powell 

obtained by purely qualitative arguments eleven years previous. 

Sir Lennard-Jones (15) in 1952, argued that for an 

inert gas, like neon, in which all the orbitals are doubly oc­

cupied, then the electrons with a spin are correlated amongst 

themselves and tend to take up a tetrahedral configuration. 

Similarly, electrons with S spin are correlated amongst them­

selves and tend likewise to take up a tetrahedral configuration, 

there being no correlation between the two tetrahedrae of 

different spins. With this in mind Pople(l6) suggested that the 

electronic structure of certain hydride molecules can be dis­

cussed in terms of the basic neon structure by a successive 

removal of protons to their equilibrium bond length and angle. 

Consider, for example, the removal of two protons to form 

the water molecule. In the formation of these bonds there 

must be a correlation between the a and S spin tetrahedra 

described previously and, once again, we have a picture that 

predicts a bond angle of 109 0 28' and a large concentration of 

negative charge behind the oxygen nucleus. 

The actual bond angle is in fact 104.45° and a possible 

reason for this 5° shift has been suggested by Gillespie and 

Nyholm (17). The motion of the electrons in a bond, they said, 

is somewhat restricted by the electrostatic attraction of the 

protons. These electrons will tend to be more concentrated 

along the direction of the internuclear axis. Thus the elec­

trons in the lone pair orbitals are best described as occupying 
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large and diffuse orbitals, whereas the electrons in the bonding 

orbitals are best described as being localised. As a conse­

quence of both the Pauli and electrostatic forces there will be 

greater repulsions between the lone pairs than between the bonding 

pairs of electrons. Extensive use of this valence shell elec­

tron pair repulsion theorem., as it is known, by these workers 

has been instrumental in both predicting and explaining the 

structure of many molecules and in the case of H2o would ac­

count for bond closing. 

It has, however, been pointed out recently (18) that the 

Pauli repulsive forces were never operative in the lone pairs; 

it is rather a density shift into the binding region that causes 

the decrease in the bond angle. 

This then is a brief discussion of the qualitative argu­

ments pertaining to the water molecule. There is assumed some 

sort of relationship between the wave function and the molecular 

geometry; the bonding orbitals, for example, are made to point 

at the hydrogens. There is no prior reason for believing this 

to be the case and in fact it will be shown that such a descrip­

tion would lead, from a consideration of the forces acting on 

the nuclei, to an unstable molecule. 
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(b) THEORETICAL 

In wave mechanics the stationary state of a molecular 

system containing N e~ectrons is, in the Born-Oppenheimer 

approximation, given by the solution to the Schrodinger 

equation (19) 

H l/J (1,2 .... N) = E l/J (1,2 .... N) (1) 

where H is the Hamiltonian operator corresponding to the clas­

sical energy of the system and l/J a wave function that involves 

both the spatial and spin coordinates of all the electrons. 

As a consequence of writing the total wave function 

as an antisymmetrised ' product of orthonormal one-electron spin 

orbitals a 

b 
~l (1) • • •• ·~1 (N) 

1JJ = 1 
(2) 

INT 
.•... l/J (N)

n 

Fock (20)in 1931 was able to devise a method, originally pro­

posed in 1928 by Hartree (21), by which the 3N-dimensional 

problem represented by equation (1) could be reduced to the 
.. 

solution of N three-dimensional Schrodinger equations of the 

type 

1JJ. ( 1) (3)
l. 

aEach spin orbital l/J. is itself a product of a space function~., 
called a molecular 1 orbital, and an a or e spin function. 1 

bin future a determinantal wave function of this form will be 
written as 

1JJ = 1 llJJ1(1) l/12(2) ·····l/Jn{N)/
IN! 
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It was assumed that each electron i moved in an average 

potential field u. provided by the remaining electrons and nuclei. 
l 

Heff is now the "Effective Hamiltonian" and is simply the sum of 

t he kinetic energy of the electron and the above mentioned 

potential. If this field is chosen so as to be invariant under 

any of the symmetry operations of the point group to which the 

molecule belongs then the resultant molecular orbitals will be 

symmetry adapted. That is to say, they will span an irreducible 

representation of this point group. 

The so-called Hartree-Fock method can thus be represen­

ted schematically as 

~· l 
t 

u. 
1 

VJ. 
1 

By assuming an initial set of eigenfunctions the field entering 

the Hamiltonian can be estimated and a new set of eigenfunctions 

can be calculated together with the corresponding electron den­

sity. From this data the field could be re-calculated; the 

procedure being repeated until self-consistency is reached. 

A deterrninantal wave function as represented by equation 

(2) does not, in general, represent an exact solution of the 

Schrodinger equation; although electrons with parallel spins 

are kept apart, in accordance with the Pauli Principle. It is 

energetica lly unfavourable, because of coulombic repulsions, 

to put two electrons in the same orbital even though their 

spins are opposed and in an extended Hartree-Fock treatment, 
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all the electrons are represented by a different space function. 

A further improvement to the total wave function can be made by 

taking a linear combination of several determinantal wave func­

tions, each formed . from different spin orbitals; this being 

particularly necessary when we are dealing with open-shell 

configurations. 

In the present calculations we are, however, concerned 

with the molecule in its ground state and as such, all the mole­

cular orbitals will be doubly occupied. If this is the case then 

the total wave function can be adequately approximated by the 

singly determinantal form. 

In principle, therefore, the Hartree-Fock equations can 

be solved by an iterative procedure in which one postulates an 

initial set of eigenfunctions. This is an extremely arduous task 

and it is found necessary to set further restrictions on each 

molecular orbital. It is generally assumed that these can be 

represented by some linear combination of atomic functions, called 

a basis set, centred on the constituent atoms. 

q>. 	 =EC .. X. (40) 
J. j l.J J 

The methods of group theory have been particularly useful in 

this respect since it has been shown that the electron distri­

butions in closed shell molecules have the same symmetry as the 

nuclear framework. Thus in the case of water molecular 

orbitals 	constructed in this way necessarily span the A
1 

, A
2 

, 

or irreducible representation of the c2v point group.B1 B2 

The electrons are thus depicted as being spread over the whole 

nuclear framework and are consequently as delocalised as possible. 
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Roothaan (22) was among the first to develop the math­

ematical consequences of this theory and the atomic orbital 

coefficients were obtained by invoking the minimum energy con­

dition of the variation method. If the basis set is large 

enough then no error will be introduced by this approximation. 

However, if this is the case any attempt to interpret the 

chemical concepts of molecules and bonds in terms of the wave 

function are generally expressed as numerical coefficients and 

seem to bear very little relation to classical ideas (23). lt is 

more rewarding from the chemical point of view to use a re­

stricted basis set where accuracy is now sacrificed for insight. 

This consequently incurs an error and one might ask whether the 

electron density in molecules can be adequately described by 

a restricted set of basis functions which does not give a good 

energy - our criterion of accuracy lies in the agreement of 

calculated molecular properties. 

Quantum mechanically every observable or observation can 

be represented by an operator. For a stationary state molecu­

lar system a series of density matrices can be defined which 

allow, in a more direct way, the average values of these 

operators to be calculated. 

In atomic units for example the N-electron density ma­

trix is defined as being 

PN = ~(1,2 •.•.• N) ~ * (1,2 .•.. N) (5) 
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where the asterisk signifies the complex conjugate. The 

majority of physical properties, and in particular those of 

interest to the chemist, depend only on the coordinates of 

one electron at a time. That is to say, they are indicative 

of the first order density matrix - this being readily ob­

tained from equation (5) by integrating over the coordinates 

of all the electrons except those of electron number one. 

Thus 

JPl = N 1/! ( 1, 2 •••• N) 

or by writing the wave function in its determinental form 

p l =:! f ll/! 1 (1)1/! 2 (2) •••• 1/!n(N) I ll/!~(1)1/!;(2} •••• 1/!~(N) dT 2 ... dTN 

and since the electrons are indistinguishable, this will 

reduce to 

= N(N-1) ! E * * E ljJ. '* ( 1)pl lJJ.(l)lJJ.(l) = ljJ. ( 1)
N! l. l. l. l.

i i 
If we now represent the molecular orbitals by the symbol <P • 

then the one-electron density is simply given by 

l. 

l:n.<j>.(l)<j>. * (1)
J J J ] 

where the summation is over all the occupied molecular orbi­

tals j, n. being their respective occupation number. 
J 

The question one must now ask is whether the one-

electron density as determined by an energy calculation, 

approximating to each molecular orbital by a limited set 

of basis functions, provides the best possible description 

of a mo l ecule. 

This is not necessarily the case since the Hamiltonian 
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operator being dependent on the simultaneous position of 

any two electrons will weight different regions in space 

than will another operator. a Mukherji and Karplus (24) 

have shown this to be true for hydrogen fluoride and they 

concluded that a better description of this molecule can be 

obtained by allowing the total energy to vary, subject to 

additional constraints. They required the resultant den­

sity distribution to give the correct dipole moment and 

quadrupole coupling constant as well as a reasonable, but 

not necessarily an absolute minimum, energy. In this way 

excellent agreement can be obtained for these one-electron 

properties without any serious impairment of the energy. 

This would indicate that in a restricted basis set 

approximation, the one-electron properties associated with 

a molecule are important criteria when determining the form 

of the wave function. 

Rather than use the energy to investigate the quali­

tative and quantitative aspects of the chemical binding, 

these phenomena are examined in terms of the electric fields 

at the nuclei and hence the forces exerted on the nuclei. 

The calculation of the forces is considerably simplified by 

the theorem derived independantly by Hellmann(25) and Feynman 

(2Sa). The electrostatic, or Hellmann-Feynman theorem, was 

art should be noted however that as the wave function 
becomes more apropos the energy, it will ultimately become 
good for other properties as well. 
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stated by Feynman as follows: 

"The force on any nucleus (considered fixed} 

in a system of nuclei and electrons is just 

the classic~l electrostatic attraction exer­

ted on the nucleus in question by the other 

nuclei and by the electron density distri­

bution for all the electrons." 

In equation (1), we have defined the normalized elec­

tronic wave function that satisfies the Schrodinger wave 

equation for the system. By multiplying both sides of this 

equation by ~ * , the complex conjugate of ~' and integrating 

over all space, the molecular energy of the system can be 

defined as 

(7) 

The force on a given nucleus a in the z direction, defined by 

F 	 . and equal to -dE/dz will be from equation (7) 

-

aZ 

~~a f ~~: · H 

4 

lld T f II* ~~a • - f H.= 	 • - • l\d T II* 

and since H is a real Hermitian operator 

f 
i/J *H g__ dT =f d~ * . H i/JdT

dz 	 dz a a 

Furthermore, because ~ * satisfies the Schrodinger equation 

* * H~ = E~ the ·force will reduce to 
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F = f iµ * . ~~Cl iµd T - E [ f ~~: .iµd T + f iµ * . ~~Cl d T]az 

= J iµ* • ~~" • iµdT - E d~Cl J[iµiµ* dT J 

= f iµ * . ~~Cl • iµd T 

However, since the kinetic energy of the electrons is in­

dependant of the nuclear displacement coordinates then 

·dV 
F = -<.-)az dz 

In a system of nuclei (a,S) and electrons (i,j) the potential 

energy can be expressed as 

V = E Va S + S: i VS i + l: V..1a~S i<\j J 

and since L: V.. is also independant of the nuclear co­
1Ji<j 

ordinates 

d 
za Z B d 1Faz = L: . e2 + L: e z e lJld-rf- dza iµ a dz rra Ba~B i a ai 

or = (nuclear) + (electronic)Faz Faz Faz 

The nuclear contribution to the force is just the sum of the 

classical repulsive forces exerted by all the nuclei in the 

molecule. The electronic contribution is rather more compli­

cated. 

d 1The electronic force operator Zae ~- , or sim­
ft d~ ~i 

ply O(i), depends only on the coordinates of one electron at 

a time and as such is determined by the first order density 

matrix. If the total wave function is written as a single 
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determinant of orthonormal molecular orbitals then 

Faz (electronic) = e En. Jcj>J.(l) 0(1) cj>j * (1) dTl ( 8) . 
j J 

where the summation is over all the occupied molecular orbi­

tals, n. being their respective occupation numbers. 
J 

If we define the following coordinate system 

z 
a 

then since ral 
d 1 

the force operator 0(1) reduces to 

z a.coseae 
ra12 

Thus we have that the force in atomic unitsa (a.u.) on any 

nucleus a in the z-direction will be 

f cos eaz az S ~ + E r - z. E n. cj>. (1) 
. r al 2alB raB3 aS a j J J 

(9) 

2 3aOne atomic unit of force is defined as e = 8.2377 x 10­2 
dynes. The electronic charge is e and ao a is the Bohr 

0 

radius. 
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NOTE - The sign convention in equation (9) and the ensuing 
work is such that a repulsive force on nucleus a due 
to another nucleus is positive and an attractive force 
is negative. 

In a more general form, applicable to polyatomic molecules 

equation (9) can be written 

zz S ~ r al *J ..;a ._,.
-- r a - Z . r; n. ¢. (1) -- ¢ . (1) d1 (10)

3 aµ a . J J r 1 3 J 1 
raS J a 

Where now if we are considering a force along the bond 

~ ' r 0 S = raS cos Gas and ral = ral cos Gal 

and for a force perpendicular to the bond direction 

~ ~ 

raS = raS sin Gas sin ¢ and ral = ral sin Gal sin ¢ 

The Hellmann-Feynman theorem thus enables one to calculate 

the forces acting on a nucleus in a molecule if the electron 

density function is known. Alternatively we can calculate 

the equilibrium density from our knowledge of forces; the 

zero force requirement providing us with a number of con­

straints that any proposed density must fulfill. 

Since each molecular orbital is approximated by 

a linear combination of atomic functions the different orbi­

tal contributions to the electronic force, defined by 

equation (10), can be broken down into three components: 
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ATOMIC FORCEa 

..,. 
r 1 b 

z < x I-a-Ix > OR 
a a ra13 a 

This force arises from density centred on nucleus a that is 

not centrosymmetric (x ~x ) • Small amounts of polarisation
a a 

of this electron den~ity will give rise to large atomic 

forces. This same density contributes an atomic dipole to the 

molecular dipole moment. 

SCREENING FORCE 

OR pA 
a a 

This force on nucleus a arises from density centred on nucleus 

S The magnitude of the force depends on the depth of the 

penetration by nucleus a into the atomic orbital charge clouds 

surrounding nucleus S. Such forces are imvortant factors in 

determining the geometry of polyatomic molecules. 

OVERLAP FORCES 

ORz < x a a 

ain these definitions all the forces will be considered on 
nucleus a with a charge of Z x refers to an atomic orbital 

a a on nucleus a and Xs to one on nucleus s. 

bFor convenience an integration will be represented by the 
symbol < ••••••• > • 
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This force on nucleus a arises from an overlap charge dis­

tribution and its magnitude depends on the position of this 

charge density relative to the nuclei. 

a@~1in <~6~ in an i.mg~inativ@ t~@atme.nt gf thg 

Hellmann-Feynman theorem has shown how bond formation can be 

understood in a classical framework. The space surrounding 

a molecule, he said, can be divided into binding and anti­

binding regio~s dependent on whether charge situated in 

these regions exerts a net binding or antibinding force 

on all the nuclei. 

The formation of a molecule from its constituent 

atoms must therefore result in a density shift into this bin­

ding region by an amount required to overcome the nuclear 

electrostatic forces of repulsion. This redistribution of 

electrons in bond formation can readily be ~xamined by 

means of density difference maps, obtained by subtracting the 

atomic from the molecular density. If it is further re­

membered that the very existence of an electronic force is a 

direct result of bond formation then there will exist a fun­

damental and important relationship between the shift in 

density to the binding region accompanying molecular formation 

and the forces exerted by this density. In particular the 

three components of force will reflect a different aspect 

of the changes that take place in the atomic density distri­

bution on bond formation. Such a relationship enables one 

to interpret the forces in the light of the density difference 

mailto:t~@atme.nt
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maps and as a consequence will give one a greater insight as 

to the factors operative in both the formation and chemical 

nature of a molecule. 

It is convenient at this time to turn our attention 

to the form of the molecular orbitals. 

The symmetry adapted fully delocalised set as de­

scribed previously are a particularly useful starting point 

when we are considering properties that depend on the mole- . 

cule as a whole, such as the removal of an electron in the 

ionisation process. The wave functions obtained, however, 

seem to have very little connection with classical ideaso 

From the point of view of valency the chemist prefers to 

think of bond and lone pair orbitals as being localised. 

Fock has shown that the single determinantal wave 

function as represented by equation (2), is invariant to 

unitary transformations among the molecular orbitals. Sir 

Lennard-Jones (27) using group theoretical arguments was 

able, by means of these unitary transformations, to convert 

the fully delocalised set into what are known as "Equivalent 

Molecular Orbitals" (E.M.O.) that could now readily be 

related to the bonding and lone pair ideas. These equi­

valent orbitals (E.O.) unlike the molecular orbitals, now 

form a basis for a reducible representation of the point 
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g r oup to which the molecule belongs. Thus, for example, 

if ~ l a n d ~ are two molecular orbitals belonging to the A2 1 

irreduci ble representation, then two different ortho­

normal orbitals 

and 

can be written which are formally just as correct and from 

the wave theory point of view equally as valid. The problem 

therefore reduces to one of selecting the appropriate value 

of A by some convenient criteria of localisation. 

Pople (14) has suggested that A be chosen such that 

the ls orbitals on hydrogen make no contribution to the 

lone pair density. By writing a set of orbitals that re­

flected his "ideal" case he examined the variation of the 

spatial distribution of the orbitals with a change in 

configuration. It was shown that the structure of the water 

molecule can be described by approximately two equivalent 

sets of orbitals that pointed towards the corner of a 

tetrahedron. 
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Peters (28), on the other hand, using a different 

method of localisation required that the .hybrid bond orbitals 

pointed along the bond direction. In a recent publication he 

h as discussed the form of the equivalent orbitals obtained in 

this way from. reliable wave functions for a number of molecules. 

He was able to discuss quantitatively such terms as hybri­

disation and bond polarity. It was found that for the more 

complicated molecules, for reasons mentioned previously, 

it was not always possible to find an orthogonal transfor­

mation that would enable a description in terms of conventional 

lone pair and bonding pair ideas. When .this was the case the 

imperfections were simply deleted at the expense of his 

orthogonality requirements. Some of the results were not as 

expected, and in the case of the 0-H bond, the hybrid orbitals 

were in an opposite direction to that predicted. 

Edminston and Ruedenberg (29), following the ideas proposed 

by Lennard-Jones and Pople (29a) developed a method of local­

isation without the use of symmetry arguments. They defined 

"localised molecular orbitals" or "Energy localised orbitals" 

as that set of molecular orbitals that minimised the orbital 

self-repulsion terms. Only in the presence of a symmetry group 

can they acquire properties which under certain circumstances 

make them equivalent. These workers were likewise able to 

define bonding an d lone pair orbitals. However, they did not 

stipulate that the lone pairs had to be concentrated on one 

centre but rather allowed secondary contributions from neigh­
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bouring atoms. It was suggested by them that the unusual 

direction of the hybrid orbitals, found by Peters, together 

with his non-orthogonality can in fact only be eliminated by 

an introduction of these secondary contributions. 

Murell and co-workers (30) have recently discussed 

the above and other methods of localisation. They concluded 

that a method based on Pople's, in which the E.O. are made 

as localised as possible, is probably the most useful and at 

the same time the least tedious approach. 

These results indicate that the classical concepts of 

a chemical bond are indeed contained in a fully delocalised 

set of molecular orbitals, however, such ideas are in a con­

cealed form requiring the tise of unitary transformations. It 

would seem more logical therefore, if one's primary aim is 

to interpret the bonding in terms of the wave function, to 

approximate this total wave function by a set of molecular 

orbitals that were indicative of the bonding in the molecule. 

In the case of water this would lead to a description that 

involved two equivalent bonding orbitals, two equivalent 

lone pair orbitals and an inner shell orbital on the oxygen a • 

Bader and Jones (31) in such an approach, approximated to 

each of these orbitals by an appropriate linear combination 

of atomic functions. By requiring the resultant density 

distribution to give the correct forces they found that 

aThis implies a restricted basis set approximation since a 
separation into lone pair orbitals is only possible when the 
hydrogen nuclei are represented by a single atomic orbitai. 
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equilibrium could only be reached when the orbitals are al­

lowed to bend, each at an angle of 22°, from the corresponding 

bond angle (see also ref. 32). 

It was decided in the present work to proceed along 

similar lines to those of Bader and Jones, however, several 

important and necessary refinements both in the form and 

calculation of the molecular orbitals have been made. 

In the formation of the water molecule the ls electrons 

on the oxygen are expected to be non-bonding, however, it is 

well known that in the presence of an electric field they 

will polarise to an extent necessary to overcome the force 

exerted by the field. This polarisation can be represented 

mathematically by mixing into this ls function parametrically 

controlled amounts of 2s and 2p atomic functions. Mcweeney 

and Ohno (38) have shown that the extent of the mixing can be 

greatly reduced when h. a / ls orthogonality is taken into 
1 

account. Even so, there will be a concentration of charge on 

one side of the oxygen nucleus and will consequently give rise 

to an atomic force of the type A(ls.2p). It has been shown (33) 

that these forces are very sensitive to the choice of the 

atomic orbitals representative of 2s and 2p. If, for example, 

Slater type functions are employed, as in the work of Bader 

and Jones, then this will lead to unusually large atomic 

forces. A more reliable value of this integral requires the 

use of accurate Hartree-Fock self-consistent field atomic 

functions to describe the ls, 2s and 2p orbitals on the oxygen 

a hi represents the hydrogen's ls atomic orbital 
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atom in its ground state. These have been determined 

by Clementi et al. (34) using a linear combination of six 

basic functions to describe the ls and 2s atomic orbitals 

and a linear combination of four basic functions to describe 

the 2p atomic orbital. The values of the orbital coefficients 

and screening constants were obtained b~ the Hartree-Fock 

method described previously (see page 7). The use of 

these functions will, of course, greatly increase the mathe­

matical computation but the criticism of Salem and Alexander 

will now be taken into account. 

Hurley (35) has also criticised the use of the 

Hellmann-Feynman theorem in a molecular orbital calculation. 

He pointed out .the sensitivity of the force operators, con­

taining the term l/r2 , to small changes in electron density 

near the atomic centres. In an effort to overcome this, we 

have stipulated the dipole moment as an added requirement that 

our density distribution must simultaneously satisfy. This 

property is governed by density in the outermost regions 

of the molecule. 

Once the wave function for a molecule has been cal­

culated then before it can be meaningfully interpreted, we 

must be certain that our calculation is indeed accurate. This 

is most readily done by comparing the expectation values of 

certain operators with their experimental counterparts. 

We decided to use the proton shielding constant, quad­

rupole coupling constant and diamagnetic susceptibility as 
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our yardstick. These depend on the average values of l/rH, 

3 2l/r and r , respectively, and as a consequence will indicate 
0 0 

the accuracy of our density distribution close to the proton, 

c l ose to the oxygen nucleus and in regions removed from both 

nuclei. 

A more critical appraisal of this distribution would 

be, however, an energy calculation which depends simultaneously 

on the coordinates of two electrons. Such a calculation can 

readily be performed by the use of the so-called Integral 

Hellmann-Feynman theorem, originally proposed by Parr (37). 

Suppose the water molecule is in a static configuration 

X represented by a wave function ~X and another molecule is 

in a static configuration Y represented by a wave function ~Y 

then the difference in energy between the two systems is, in 

the Born-Oppenheimer approximation, given by 

a 

By a suitable choice of Y, isoelectronic neon, all the 

two electron operators in bH will vanish and since both ~Y and 

EY are known accurately, the energy EX associated with our 

wave function ~X can most readily be determined. 

Richardson and Pack (36) have looked at the usefulness 

and appl i cab i lity of this t h eorem. They compared values of 

aS i nce t h is equation does not satisfy a variational theorem,it 
cannot b e used to obtain the wave function. 
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the computed bond dissociation energies for different trial 

wave functions. The values they obtained were not, in the 

main, in good agreement with their experimental values. They 

did find though, that the more accurate wave functions did 

give the closer agreement. For this reason it was thought that 

although the absolute value of our energy was not to be relied 

upon, it would give us valuable information when we were 

comparing different proposed trail functions. 

Thus, in summary, the purpose of the present research 

has been to calculate the best one-electron density distribution 

for the water molecule using only a limited set of basic 

functions. By requiring this distribution to give both the 

correct dipole moment and zero resultant force on the nuclei, 

the values of the parameters contained in the basis set can be 

obtained. The accuracy of our description will then be 

assessed by comparing the expectation values of several observables 

with their experimental counterparts. An attempt will then be 

given to explain the nature of the bonding in terms of 

the wave function and the conclusions that have been reached. 



II DETERMINATION OF THE WAVE FUNCTION 

(a) 	 A description of the Equivalent Molecular Orbitals 

Coordinate system 

x' 
/i' 

.Figure I Figure II 

Points to Note 

a1) 	 ls, 2s, p , p 1 , p 2 , p and p are all atomic functions 
0 5 6 

centred on the oxygen atom. These p functions can be ex­

pressed in terms of the xy or x'y' coordinate system as follows 

-px COS(t:/2) sin ( c./2)Po 	= - PY 


= px cosw + py sinw
P1 
b = 	 px cost + py sintP2 


= px cos(a/2) cos(S/2) - PY sin (a/~) cos ( S/2)
P5 


p6 = -px cos(a/2) cos ( S/2) - PY sin(a/2) cos(S/2) 


a 
For 	simplicity all 2p atomic functions will be written as p. 

a + w 
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= px'Po 

= -px' cos(a./2) + py' sin(a./2)P1 

= px' cos ( a./2) - py'sin (a./ 2)P2 

= px' cos(S/2) + pz sin(B/2)P5 

= px' cos ( S/2) - pz sin(S/2)p6 

2) h and h are atomic ls functions centred on hydrogens one1 2 

(H ) and two (H ) respectively.1 2

3) p and p are atomic p functions centred on hydrogens one
3 4 

and two respectively and pointing along the bond direction. 

The most general set of orbitals that can be written, 

using our limited set of basis functions, to represent the 

bonding lone pair and ' inner shell orbitals will be 

BONDING ORBITALS 

~bl= A(cossb . 2s + sinsb . pl+ c ls) + µ(h 0 
- 6h 0

)
3 	 1 2 

The superscript zero in h~ and h~ denotes that these functions 

are made orthogonal to the ls atomic function on the oxygen and 

are thus given by 

1h~(i=l,2) = 	 (h. - S(h.ls) .ls) = N (h.-s ls)
1. 	 1/2 1. 1 0 1 0 


(1 - s 2 (h.ls))a

1 

Where N = ( 1 - s 2) -1/2 
0 0 

a An overlap integral of the type <x.x.> will be given the symbol
1 J 


S(xixj) and since S(h:ls), S(h1h 2 ) and S(p ls) will be used
3
extensively they are . given the symbols s 

081 
and 5 respectively.2 
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LONE PAIR ORBITALS 

<P .Q.l = cossl 2s + sinc:l 

¢.Q. 2 = cosc:l 2s + sinc:l 

It is found, however, more convenient to write these orbitals 

in the form 

¢.Q.l = cosc:l'2s + sinc:l'p
0 

<PI = pz.Q.2 

which are obtained from ¢ and ¢.Q. 2 by correct unitary trans­21 

formations. The parameters c:l and c:l' can now be shown to be 

related by the following three equations 

1 sin t:l' -1 2cosc:l = sin t:l = = cos . (-cot t:l)
12 cost:l' 12 cos (13/2) 

INNER SHELL ORBITAL 

<P = c ls + c 2s + c2p
0 0 1 0 
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(b) Me t hod of Calculation 

These five orbitals can be seen to embody ten para­

meters 

sb a n d s l are the hybridisation parameters of the bonding 

and lone pair orbitals 

A/µ the polarity factor for the bonding orbitals. 

a, the angle between the p and p functions. It is termed1 2 

the orbital angle and when a.;&E the bonds are "bent". 

0 a parameter that determines the extent of delocalisation of 

the equivalent orbitals. 

C , c and c determine the amount of ls polarisation.
0 1 2 

c dete r mines the amount of ls in the bonding orbital.
3 

In order that the total one-electron density can be written 

in the form 

2 2 2 \2 2 
p = 2 <<Pb1+ <Pb2 + $tl + <Pi2 + ¢0) 

the equivalent molecular orbitals are both normalised and 

mutually orthogonal. That is to say 

<¢ <P > = 1
0 0 

These conditionsenable six of the ten parameters to be 

determined and the requirement that the resultant density 

d i stribution give the correct zero force and dipole moment 

ma y be used to fix the remaining four. 
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FORCE REQUI REMENTS 

In the water molecule all the forces can be broken 

down int o three components F , Fil ~nd FL; the remaining com­
0 

ponents giving trivial conditions being zero by symmetry alone. 

0 

F~ 

F This is the force on the oxygen along the symmetry axis 
0 

in the direction shown. 

Fij and F~ - These are the forces on the hydrogen nucleus in 

a direction parallel and perpendicular to the bond axis. 

NOTE: 	 In all calculations of ~ and F~ hydrogen one, H1 , 

will only be considered. 

At equilibrium the nuclear forces of repulsion must equal the 

electrostatic forces of attr~ction. The nuclear forces of 

Nrepulsion, F . , can readily be shown to be 
i 

F N = 2 	 x ~ X COS (E/2) 
o R2 

= 8 x 0.3739 a.u. 

1= ~ X COS (E/2) 
. d 

= 0.0748 a.u. 
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N 8 1F = - + - x sin ( s/2)
11 R2 d2 

= 2.5383 a.u. 

2If we now represent F. (¢.) as being the force exerted by the 
l J 

electron d e nsity contained in the jth molecular orbital in 

the ith direction, then at equilibrium we have 

F..L(¢~1)+ F..L(cp~ 2 ) + 2F..L(¢~) +Fl.(¢~)=~ COS(E/2) (11) 
d 

Where no distinction is made between the forces exerted by 

¢bl and ¢b 2 or ¢il and cpt 2 then the two forces are equal. 

2 2 2 . ( 2) 8 1 
~(¢bl) + ~(¢b2) + 2 ~<¢i) + ~l <Po = 	 2 + 2 sin(E/2) (12) 

R d 

2 2
2F ( ¢b) + 2F ( cp ) + F (cp2) = ±___ cos(e:/2)a (13)

0 0 t 0 0 R2 

DIPOLE MOMENT REQUIREMENT 

For a molecule to possess a permanent dipole moment then there 

must be a separation of the centroids of positive and negative 

charge (39). If the centroids of these charge~ are taken to lie 

along the symmetry axis then the nuclear contribution·to the 

dipole moment will be 

DPN = 2 x 1.81 x COS(E/2) = 2.2179 a.u~ 

and since the dipole moment is a one-electron property the 

centroid of negative charge, along this same direction is given by 

fpl(;) ; dTl 

where 
-+ 
r is a vector equal to r cose, e being the angle between 

aa common factor of eight, the nuclear charge on the oxygen 
atom, has been removed from the nuclear and electronic forces 
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the one electron density at the point r and the symmetry axis. 

The total dipole moment, equal to 0.7240 from experiment, 

will be the sum of the nuclear and electronic contributions 

DP= DPN - DPE = 0.7240 a.u. 

The electronic contribution can again be broken up into a 

sum of separate orbital components and thus we have as our 

fourth equation, that the density distribution must satisfy 

2 2 2
DPN - DPE (~o) + 2DPE(~bl) + 2DPE(~t) = 0.7240 a.u. (14) 

The force and dipole moment equations together with 

the six orthonormal requirements enable one to calculate the 

ten parameters appearing in the equivalent molecular orbitals. 

The solutions to these ten equations are, however, not easy 

to find by conventional methods because of their complicated 

mathematical form - see appendix (1). For this reason we have 

found it necessary to proceed as follows: 

An initial choice of four parameters was made such 

that by means of the orthonormalisation requirements the 

remaining six could be determined. Using these ten parameters 

the values of the three forces and dipole moment were compared 

with their true results, the two only agreeing when the numeri­

cal values of our original choice was correct. This process 

could then be repeated, varying the initial four parameters, 

until a solution was obtained. 

For convenience o,a, £band c were chosen and using the3 



34 


orthogonality of the bonding and lone pair orbitals el' could 

be determined from the equation 

Orthogonality of the two bonding orbitals now allows A/µ the 

polarity factor, to be found the absolute values of A and .µ 

being obtained from the normalisation of these same orbitals. 

and 

1 
2= 
µ 

- ~c b S(h 0 2)S + · b S(h 0 >} + (1 + u~ 2 - 2 S(h °hu COSE SlnE °)).2 2p 1 1 2

By invoking (i) <¢ ¢ > = 1 (ii) <¢0 ¢~> = 0 and (iii) <¢ ¢b> = 0
0 0 0 

the three remaining parameters, c c and c 
2 

, that determine the 
0 1 

extent of inner shell polarisation, can readily be shown to 

be given by 

c2 =[,D~BE) 21 

+ i] 
1/2 

+ E2 

= -ECcl 2 

(BC + DC )1 2c = 0 A 
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where 	 A = A./µC3 

B = A./µCOSEb + S(h 0 2s) + oS(h~2s)1

D = A./µsine:b s (popl) + S(h~p0 ) - oS(h~p0 ) 

E = tan E 

The problem is thus one of finding the values of o,a , Eb and c
3 

such that equations (11), (12), (13) . and (14) are satisfied. 

This is most conveniently achieved by defining a function 

R(o,a, Eb, c ) such that it represents the squares of the dif­
3 

ferences of F , ~ , ~ and DP from their true values. That 
0 

is to say 

+ (~ -0.0748) 
2 (15) 

thus requiring us to find a solution that 

MINIMISATION OF R 

For simplicity of explanation, it will be assumed 

that R is a function of two variables, X and Y. In order that 

we might distinguish between 	the different approximations to 

these variables they will be 	given the subscript I where now 

thX(I) and Y(I) represent the I approximation to their true 

values. 
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By an initial arbitrary choice of X(I), Y(I) the value of 

R(X(I), Y(I)) can be determined and the slope at this point 

is given by 

dR = R(X(I) + h, Y(I)) - R(X(I) - h, Y(I)) 

d x ( 1) 2h 


dR = R(X(I) I Y(I) + h) - R(X(I) I Y(I) - h) 
dY (I) 2h 

wh ere h is a small increment dependant initially on the values 

of X(I) and Y(I). A new point X(2), Y(2) is now picked such 

that it reflects the magnitude and sign of the calculated slopes 

each coordinate X(2), Y(2) being weighted individually. A 

function VAL(2) is then defined 

VAL ( 2) = R ( x ( 2) y ( 2) ) - R (.X (I) ' y (I))I 

or more generally 

VAL (I) = R ( X (I) , Y (I) ) - R ( X ( I-1) , Y ( I-1) ) 

such that an examination of its sign would indicate whether 

we are in fact moving towards the correct point ~ R equals 

zero. 

With two variables the problem is three-dimensional. With 

four variables the problem is thus five-dimensional and con­

sequently becomes very much more complicated. Points of 

re£lection, minima ihat do not cross the planes containing 

R = 0 and other geometrical hazards cause this method to fail 
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or at least run into difficulties. The situation must somehow 

be simplified. The most logical way would be to reduce the 

number of parameters and hence the number of conditions that 

our deneity di§tribution must satisfy. 

It is known from previous experience {31) that F , the 
0 

force on the oxygen nucleus, is almost totally determined by 

an inner polarisation of the oxygen ls atomic orbital. If we 

thus assume c = l,c1 = = O, and consequently = O, 
0 

c2 c3 

and no longer have F as a requisite that our density distri­
o 

bution must satisfy then the problem reduces to one in four 

dimensions R now being defined as 

2 2 2
R {o , a , s b ) = { Fl. - 0 • 0 7 4 8 ) + ( F - 2.5383) + {DP - 0.7240) {16)

11 

It was not, however, possible to find a solution to this 

simplified equation. In order that we attain the force per­

pendicular and dipole moment requirement density has to be 

concentrated in the region defined by the H-0-H bonds and if 

possible close to the symmetry axis. This is achieved by both 

bending the bonding orbitals, a ~ s, and increasing the angle 

S between the lone pair orbitals. Such a removal of density 

both from the top of the molecule and from the bond direction 

causes the force parallel to fall well below its true value. 

One way in which we might expect to overcome this situation is 

by redefining R as being 

2 2 2R{o,a, t:b) = (Fo - 0.3739) + (F~ -0.0748) + (DP - 0.7240) {17) 
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where now a density shift into this previously defined region 

will help all the three forces. Again, no balance point could 

be reached and this time an examination of the analytical ex­

pressions contained in F , 1]_ and DP gave us the reason. Such 
0 

an examination ~evealed the importance of the atomic force 

integral 

which in the case of A equal to oxygen a had the impressive 

value of 2.8673 a.u. This importance can best be exemplified 

by comparing the two centre overlap force integrals on the 

oxygen due to the overlap density (h~p) and (h1p) defined as 

being 0 (h 0 p) and 0 (h p) respectively where1 1


-1/2 

h

0 2= (l-S ) (h -S ls) = 'l. 0018 (h - 0. 0560 ls)
1 0 1 0 1 

These integrals have the following values 

0 b0 (h px) = 1.0018(0 (h px)-S A (lspx)) = 0.1875 a.u.1 1 0 

0 (h px) = 0.3480 a.u.1

and 

O (h 0 py) = 1.0018(0 (hipy) - S A(lspy))= 0.0912 a.u.1 0
 

0 (hlpy) = 0.2517 


a The atomic orbitals on the oxygen are given in appendix (3). 

b The method of solving these integrals is given in appendix 
(2); t h eir analytical forms together with their numerical 
answers are given in appendix (4). 
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That is to say by introducing S = 0.0560, or in other words 
0 

by making the hydrogen ls orbital orthogonal to the ls orbital 

on the oxygen, we decrease 0 (h 0 px) from 0.3480 a.u. to 0.18751

a .u. a nd 0 (h1
0 py) from 0.2517 a.u. to 0.0912 a.u., this decrease 

b eing due to the large atomic force term - underlined in both 

e xpressions. It is for this reason that a balance point could 

not be reached. The introduction of S is in fact admitting
0 

t h e importance of the ls atomic orbital on the oxygen and we 

felt that before this could be done it must be represented more 

accurate l y by allowing for inner shell polarisation. This ls 

polarisation, as stated previously, is almost totally respon­

sible for F reaching its true value of 0.3740 a.u. ,and can 
0 

be made to compensate the decrease in the overlap forces due 

to the introduction of S . It was thus assumed, for the moment,
0 

. 0
that S = 0.0 and consequently h. = h .. This being the case 

0 1 1 

then a solution to equation (17) such that R(o,a, Eb) = 0 

was most readily obtained and the values of o,a , and Eb are 

8 

0.38 82 73.1652° 123.2862° 

A value of 1.32 has been used for the screening coefficient 

of the hydrogen ls atomic orbital. This figure was obtained 

by using an empirical rule discussed by Bader (41) which re­

lates the screening in the separated atom (1.0) to that in the 

uni t e d a t om. By this rule t = Zs - 6Ze-R where AZ = Zs - zu. 

The z a n d z refer to the effective nuclear charges calculated s u 
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by Slater's rules (including the factor l/n where n is the 

principal quantum number) for the electron in the separated 

and united atom respectively. What effect the value of this 

screening coefficient had on the equilibrium position is best 

exemplified by determining a new balance point using a value 

of 1. 2 

cS e:b 

0.4166 82 2745 134.9600 

Although there is a slight change in these parameters it is 

not serious and one can safely conclude that a slight variation 

around the chosen value of 1.32 will not drastically affect 

the final result. 

Introduction of S equal to its correct value now, as 
0 

predicted, caused the force on the oxygen nucleus to drop by 

0.18 a.u. leaving the dipole moment and force perpendicular 

unchanged. By allowing for inner polarisation F could be 
0 

increased to 0.3740 but now, because of the added parameter 

we must also require that our density distribution give the 

correct force parallel. The results of such a calculation 

are given below 

c 0 a. e:b 
0 cl c2 c3 

0.9951 -0.0439 -0.0880 -0.0850 0.3882 73.1652 123.2862 

F DP FFJ.0 11 

0.3686 0.0750 0.7210 , 2.4103 
TRUE 
VALUE 0.3739 0.0748 0.7240 2.5383 
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Although excellent agreement is obtained for F , 1]_ and DP,
0 

the force parallel fell 5% below its true value. One way in 

which we might expect to improve this value is to add a 2p 

function on t he hydrogen atoms, with a coefficient of c4 , in 

the hope that an atomic polarisation similar to that on the 

oxygen atom would cause a density shift of sufficient magni­

tude to raise the force parallel by the required 0.12 a.u. 

I f this is the case then the bonding orbitals can now be 

. awritten 

<Pbl = (cossb2s + sinsbp1 + c3ls) + µ(C4P3 
0 

+ (h
1 

- oh~)> 

= (cossb2s + sinsbp + c ls) + µ(C4P4 
0 + (h - oh~))<Pb2 2 3 2 

The superscript zero again signifies that they have 

been made orthogonal to the oxygen ls atomic orbital and hence 

p~ = (1 - 8(pils) 2)-l/
2 

(pi - 8(pils)ls) = N (1 - 8 2ls)1 
2 -1/2

where N1 = (1 - 8 2 ) and 8 2 = <pi ls> 

The orthonormali ty requirements together with the force an.d 

dipole moment equations must now be re-defined. Assuming c4 
bto be 0.03 and taking the screening coefficient of the 2p 

function to be 0.66, half that of the hydrogen ls, a new 

aThese o r bitals are no . longer the most general set of orbitals 
that can be written. 

b Nesbet ( 4 2) in a calculation on LiH found the 2p function on 
the hydr ogen t o have a coefficie n t b etween 0.01 and 0.02. 
Using t h is as a yardsti ck, the value of 0. 0 3 was estimated. 
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balance point produced the following results 

F 
0 F.l DP Fil 

0.3661 0.0747 0.7220 2.4052 

Not only have we gi ven an upper limit to c4 , but we have also 

g iven the 2p functions their maximum directional character, in 

a n attempt to increase the ~ , by pointing them along the bond. 

Even so, li has hardly changed. The atomic force integral, 

A (lsp ) , which we hoped would be important contributes only3

0.1825 a.u. to ~ . This low value is a consequence of the 

diffuse density around the hydrogen, explicable in terms of 

the low ls and 2p screening coefficients, when compared to that 

around t h e heavier oxygen nucleus. An increase in this co­

efficient from 0.66 to 1.00, although doubling A (lsp ) was
3

found to increase the force parallel by only 0.01 a.u. It was 

thus concluded that for all intents and purposes, no loss in 

accuracy would result in our description of the water molecule 

i f c is assumed to be zero in the equivalent molecular orbital
4 

scheme. Using a ~creening coefficient of 1.32 for the hydrogen 

ls atomic orbital and assuming = 0 • 0 I then the parametersc4 

obtained together with the resultant orbitals representative of 

the bonding, lone pair and inner shell electrons are given as 

cS = 0.3882 A = 0.7978 = -0.0880c2 

a = 7 3 .1652° µ = 0.4599 = -0.0850C3 

E: b =123.2862° c = 0.9951 = 0.0000c40 

E: 1 = 26.5336° cl =-0.0439 
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(d) RESULTS 

¢bl = -0. 4379 (2s) + 0 ~ 6668 (p1 ) - 0. 0678 (ls) 	+ 0. 4599 (h~) 


- 0.1785(h~) 


¢b = -0.4379(2s) + 0.6668(p ) - 0.0678(ls) 	+ 0.4599(h~)2 2

- 0.1785(h~) 

I 

¢£ 2 = Pz 

¢ = 0.995l(ls) = 0.0439(2s) - 0.0880(p )
0 	 0 

If we now define a coordinate system according to figures (I) 

and (II) and write the lone pair orbitals as 

¢£1 = COSE1(2s) + sinEl(ps) 


¢12 = COSE1(2s) + sin£l(p6) 


then 


P = cos ( 8/2) (px') + sin. ( 8/2) (pz)

5 


P = cos(8/2) (px') - sin(8/2) (pz)
6 


Thus we get by substitution 


¢ = cosE1(2s) + sin£lcos(8/2) (px') + sin£lsin(S/2) (pz)
11 


¢ = cosE1(2s) + sin£lcos(S/2)(px') - sin£lsin(s/2)(pz)

12 

I 

If on the other hand we took linear combinations of cp and
11 

' ¢ remembering that p = px , then12 0 


¢ = l/12(cosEl' (2s) + sin£1' (px') + pz)
11 


<Pi = l//2(cos£1' (2s) + sin£1' (px') - pz)
2 

- which leads on inspection to the fol~owing relationships 
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(A) COSEl = (l//2)cosel' 

sinEl'(B) cos (S/2) = 
12 sinEl 

1
(C) sin (S/2) = 

From our force calculation El' was determined to be -26.53° 

and from equation (A), since cos(X) = cos(-X), El will be 

± 50.76°. However, we know that since El' is negative, -sin{X) = 

sin(-X), then S, the angle between the lone pairs, will be 

greater than 180°, therefore cos(S/2) will be negative. For 

the coefficient preceeding the px' atomic function in ~tl and ~t 2 
to be negative sin(sl) must be positive and hence el will be 

+ 50.76°. From equation (C), 8/2 can be shown to be 114.06° 

and hence S will be 228.12°. 

Figure III represents the relative directions of the 

bonding and lone pair orbitals in the water molecule 

228.12°0 

Figure III 
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The features of these equivalent molecular orbitals 

strongly resemble those found by Bader and Jones. The lone 

pair orbitals are, however, at a much greater angle with a 

1 5hybridisation determineda to be sp • compared to sp. The 

bonding orbitals are slightly more polar having a A/µ ratio of 

1.735 compared with 1.563. These orbitals also contain a 

larger amount of 2s but again with a negative coefficient. 

The orbital angle a of 73.16 0 corresponds to an angle, w, 

between the bond and orbital direction of 15.64° compared 

with 22 0 as determined by Bader and Jones. 

A fuller discussion of these results and the conclusions 

drawn from them will be left until later, however, it is 

informative at the present time to take a closer look at the 

contributions that the different orbital densities make to the 

forces and dipole moment and examine what effect, if any, 

results from varying o, a, and Eb, the three parameters for 

which R(o,a, Eb) = O, about their accepted values. 

Table I lists the force and dipole moment c~ntributions 

for this equilibrium position. 

As a consequence of S being greater than 1800 , the lone 

pairs have a large positive contribution to both the force on 

oxygen and the electronic contribution to the total dipole 

moment, this latter quantity being measured in the same direc­

tion as F . The lone pair density, because of its location can 
0 

a 
~ 21=cosE12s + sinElp5 = 0.6326.2s + 0.7745p5 .= 40% 2s + 60% 2p 

http:0.6326.2s
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also be seen responsible for roughly one half of the force. 

parallel. If we now turn our attention to the bonding orbi­

tals then the force on the oxygen nucleus due to this density 

is in an unexpected direction. Because of the negative ls and 

2s coefficients appearing in these orbitals integrals of the 

type A(lsp) and A(2sp) account for over -0.50 a.u. of the 

total -0.57 a.u. contribution. It is for this reason that both 

inner shell polarisation and, to a large extent, re-orientation 

of the lone pair density is necessary. In the determination 

of DPE atomic integrals are not nearly as important; this 

2
being indicated by both the value and sign of DPE(~b) and 

2
DPE ( ¢ o) . 

Table II shows the effect of varying a about 73° keeping 

o and Eb fixed. As a is decreased then s, the angle between 

the equivalent lone pairs is decreased. This causes a shift 

in density to the top of the molecule and as such, one expects 

the contribution of these orbitals to F , ~ , ~ and DP to 
0 

drop. An increase in a causes the bonding orbitals, on the 

other hand, to concentrate more density in the region of the 

0-H bond. As a consequence of this there will be an increased 

contribution by these orbitals to both F.L and DP but a de.­

creased contribution to ~ 

Table III shows the effect of changing 6 while a ~nd Eb 

are fixed. As o is increased, then B also increases. This 

h a s the e ffect of placing density, contained in the lone pair 

orbitals, into the binding region below the oxygen nucleus 

and by definition, such density will increase all the force 
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contribut ions: since o determines the amount of delo­

calisation of the two bonding orbitals, an increase in o will 

cause a decrease in the overlap of the two hydrogens 

to 

Electron density contained in these orbitals will thus be 

removed from the vicinity of the symmetry axis and placed 

closer to the 0-H bonds. This will lead to an increase in ~ 

and a decrease in both F and DPE.
1 

Finally, Table IV shows the effect of varying £b, keeping 

a and o constant. As £b increases then S increases and for 

reasons described previously, all the force components due to 

the lone pair density will increase; £b determines the hybrid­

isation of the bonding orbitals. AS £b is increased, then 

since the 2s atomic function in the bond has a coefficient of 

cos (£b) and the p. atomic function a coefficient of sin(£b),
J_ 

such a bond will progressively lose its directionala character; 

caused by a decrease in the 2p coefficient and an increase in 

the 2s coefficient. The results of this "transformation" are 

reflected in the contributions that 2
~bl and 2

~b 2 make to the 

forces. 

If we now turn our attention to the total forces F , ~ · ' 
0 

and F~ and DP then their variation with o, a, and £b can best 

be represented graphically. (See Figure IV). 

The similarity in effect of a and o is immediately obvious 

being reflected in the slopes of their graphs. An increase in 

a This is assuming . 



48 

either of these parameters will not only cause a similar bond 

density shift, see previously, but also result in s, the lone 

pair angle, increasing in the same direction and by roughly 

the same amount. This ,equivalence in action causes the force 

components, due to the lone and bonding pair density, and 

consequently the total force to react in a similar way with 

a change in a or o. 

If on the other hand, we increase £b, then although S is 

increased; the density shift due to the bonding orbitals will 

be in an opposite direction - an increase in £b causes the 

bonding orbitals to be less directional and density is re­

moved from a region close to the 0-H bond. The slopes of the 

lines obtained by varying £b now depends on the relative 

magnitude of the bonding and lone pair components and will not 

necessarily be in the same direction as those obtained for 

a and o. 

In the light of this, it can now be understood why it 

was impossible to find a solution that would simultaneously 

give the correct dipole moment, force parallel and force 

perpendicular. An increase in either a or o or both is re­

quired to meet ~ Such an increase in these parameters1 
will seriously affect the dipole moment causing it to rise 

rapidly. This increase in the dipole moment can only be 

counter balanced by an increase in £b, however, this would 

cause F to drop and by roughly the same amount that a or
11 

o increased it. 



III DETERMINATION OF THE MOLECULAR PROPERTIES 

Before we can meaningfully interpret our results, we 

must be certain that the calculated density is a physically 

reasonable one. Many of the observable properties of a molecule 

are determined by the simple three-dimensional one-electron 

density. Three such properties, the diamagnetic suscepti­

bility, the diamagnetic contribution to the nuclear screening 

constant and the electric field gradient at the oxygen nucleus 

will provide us with a means of estimating this accuracy. 

(a) Diamagnetic Susceptibility 

Van Vleck (43) has pointed out that the total magnetic 

susceptibility of a molecule not having a resultant spin is 

composed of two terms 

xd' the diamagnetic term, has the form 

2 ex = - ~~ x 2 x ; J<P. (18) 
. 1 J.d 6mc 2 
i= 

where each <P., representative of our equivalent molecular 
]. 

orbitals, is averaged over the operator r~, rA being the dis­

tance of the one-electron density from the point A. XHF is a 

term that arises in all molecules and is the temperature in­

dependent paramagnetic contribution often being referred to 

as the "high ~requency" term or the Van Vleck paramagnetism. 

This high frequency term can be calculated knowing the ro­

tational magnetic moment of a molecule since ~he magnetic 

49 
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moment arising from this rotational motion is determined en­

tirely by the induced paramagnetism. Weltner (44), using the 

centre of mass as his origin of coordinates, obtained for xHF 

in' the cas e o f H 0 , 1 . 46 x 10- 6 e . m . u • I mo1e . If the total mag­2 

netic susceptibility for liquid water is taken as -13.0 x 10- 6 

(45), and assuming this t6 be fairly independant of phase, 

then a value of xd for water vapour equal to -14.46 x 10-6 

e.m.u./mole is to be expectedo 

From quantum mechanics, if the wave function for a mole­

cular system is known, then the expectation value of the 

diamagnetic susceptibility, from equation (18) is given by 

2 (x(<t>~> + x(<t>~ 1 > + x(<t>~ 2 > + x(<t>~ 1 > + x(<P~ 2 » 
<¢. lr2l<t>.> 

l 0 l 

taking the oxygen atom as the centre of coordinates. Although 

the total magnetic susceptibility is independent of our choice 

of origin, the values of xd and xHF are not, and since xHF has 

been measured relative to the centre of mass, then so must Xd· 

This means that the total wave function should be averaged over 

2 2 
r and not r I these two being related by

p 0 
0 

H2 

flR = 0.1232 

2 2 2 
r = r + flR - 2r cose 6R (19)p 0 0 o : 
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2The average value of r has been calculated, using the previously
0 

determined wave function, to be 19.1733 a.u. (see appendix (5)), 

and since the last term in equation (19) , r cose , is just the 
0 0 

~lectronic contribution to th@ dipole moment xd is given by 

X = 19.1733 + 10~R2 - 2~R(2.181 COS(E/2) - 0.7240)
d 

-6xd = -14.9318 x 10 e.m.u./mole 

Because of the nature of the operator, the diamagnetic suscep­

tibility is largely determined by the density in the outermost 

regions of the molecule. The bond polarity and orbital exponent 

on the hydrogen ls atomic orbital play an important role in 

determining its magnitude. The bond polarity because its 

ratio A/µ when small will weight the regions remote from the 

oxygen nucleus and the orbital exponent because it determines 

how diffuse or otherwise the electron density surrounding the 

hydrogen will be. A low value :of this screening coefficient 

will lead to a more diffuse density in the outer regions of 

the molecule and thus cause an incr~ase in the 
~ 

absolute value 

of Xd· 

In a recent publication, Hake and Baynyard (46), have 

quoted the diamagnetic susceptibility for the water molecule 

obtained by different approximations to the wave function. 

If to this list we add the results obtained by Bader and Jones 

and our present calculation then 
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METHOD xd x 10-6 

a Aextended O.C.E. -15.56 

b
minimal M.C.E.B -15.20 

c united atom -12.59 

d 
~.M.O. -12.19 

e 
present work -14.93 

f experimental -14.46 

a) Moccia (47) b) Ellison and Schull (48) c) this value 


was fixed from experiment d) Bader and Jones f) Weltner (44) 


A) one centre expansion B) multicentre expansion 


The discrepancies in the two central field treatments, a and c, 


is probably due to the d~fficulty i~ getting a reasonable elec­


tron density distribution far from the expansion centre, this 


fact being further emphasized by their expectation values for 


the dipole moment. The diamagnetic susceptibility, as deter­

mined by Ellison and Schull is too big and it has been suggested 


by Bader and Jones that this is due to both the low polarity 


of their 0-H bond and the small value of their orbital ex­

ponent (1.0) for the hydrogen ls atomic function. By taking a 


value of 1.32 these workers were able to get much closer agree­

ment between the calculated and experimental values. They do 


point out, however, that this value of 1.32 is probably too 


high overestimating the ls contraction and causing their cal­

culated xd to be too low. This is not found to be the case in 


our result. In the light of this · perhaps a more reasonable 
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explanation would be the inadequacy of Slater-type functions, 

used in their basis set, causing the density to be slightly 

compressed around the oxygen nucleus. 

-6Our value of xd equal to -14.93 x 10 e.m.u./mole, 


-6
yields a total magnetic susceptibility of -13.47 x 10 e.m.u./mole 

as compared t o the experimen a va ue o - . x e.m.u. mo e.· t 1 1 f 13 o lo- 6 / 1 

Part of this discrepancy can be attributed, according to 

Venkatachalam and Kabadi (49) , to hydrogen bond formation 

in the liquid phase for which the experimental value was ob­

tained. 
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(b ) Proton Magnetic Shielding Constant 

Th e contribution to the total proton magnetic shielding 


constant can be divided into two parts, a diamagnetic contri­

b u tion, 0 d, and a paramagnetic contribution, op. The para­


magnetic contribution can itself be divided into ground state, 


a (G), and excited state, a (E), terms. 
p p 

Unfortunately there is no experimental determination of 

. the spin rotational constant for water vapour and consequently 

no available measure of a • However, Chan and Das (50) have 
p 

s hown that by a suitable choice of origin, a can be estimated 
p 

for a mo l ecule with a known dipole moment. By taking this ori­

gin as the electronic centroid, a (E) , the excited state contri­. p 


bution to a , can be made to disappear. The ground state 

p 

contribution, op(G), is now proportional to the electric field 

at the proton along the line joining it to the electronic 

centroid, this field being equal and opposite to that produced 

by the nuclei. Thus in the case of water, defining the co­

ordinate system 
0 

it can be shown that 
2 coseH 

a (G) = - ~R [ + 
p 3 c 2 

~ 



55 


where R is the distance of the proton from the electronic cen­c 

troid and the angles e and 0 are measured relative to the
8 0 

proton. For water a (G) = -7.76 x 10-5 
p 

Thus -5 a= (a - 7.76 x 10 )
d 

where ad is the diamagnetic contribution to the proton shiel­

ding cons tant. This diamagnetic part measures what the 

shielding would be if the whole electronic structure was free 

to rotate about the nucleus without interference from the 

other nuclei. Since it is a measure of the potential energy 

of the nucleus in the electric field of the electrons, <l/r >,
8 

it can be evaluated from the ground state wave function of 

the molecule (51), (see appendix (6)) 

2 5 
ad= - -!!:_2 2 .l: <¢. l1;r !<P.> 

3mc i=l i H i 

That is to say, the one-electron density is averaged over the 

operator l/r . This operator by its very nature will weight the
8 

density distribution in a region close 

In the table below are listed the 

present calculation 

<P 0 

Aa 1.1070 

1.1060 

c 
B 

1.1070 

1.1070 
2 

D 

e 

<P 9,,l 

0.9810 

0.9808 

o.9809 

0.9808 

d sc; on 
3mc hi 

- --2 x 

<PR; 2 

1.2600 

1. 2998 

1.2582 

1.2576 

SC . on 

Ei 


to the proton. 

results obtained in the 

<Pbl 

1.3654 

1.1946 

1.3780 

1. 3916 

105 0 

<Pb2 

0.8008 

0.8848 

0.8050 

0.8050 

Aa l 51 51 40 1.32 I 
5.4662 1.20B I 
5.5294 1.32 .66c 
5.5422 1.32 1.00D 

2.03 

1.94 

2.05 

2.08 
a The molecular parameters in A,B,C , and D were obtained by 
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A) Here the hydrogens have been represented by a ls atomic 

func t ion with a screening coefficient (S.C.) of 1.32 

B) The hydrogens are again represented by a ls atomic func­

t ion but now with a S.C. of 1.2 

C) The hydrogens are represented by a linear combination of 

a ls (S.C. 1.32) and a 2p (S.C. 0.66) atomic functions 

D) 	 Finally, the hydrogens are represented by a linear combi­

nation of a ls (S.C. 1.32) and a 2p (S.C. l.O) atomic 

functions 

The experimental value is 2.97 x 10-5 according to Das and 

Ghose (52) obtained from measurements of Gutowsky and Hoffman (53) 

on the chemical shift of hydride molecules relative to methane 

This estimate is based on a value of 2.66 x 10-5 for the shield­

ing constant of the proton in the hydrogen molecule. 

The foregoing table of results does ~how that the one-

electron density as determined from force considerations, can 

give a reasonable measure of the proton magnetic shielding 

constant. Perhaps a more accurate determination of a will 
· p 

remove some of the discrepancy. 
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(c) Electric Field Gradient 

Unfortunately the quadrupole coupling constant of the 

oxygen atom in the water molecule has not been determined 

experimentally. However, by calculating the electric field 

gradient (q) at the position of the oxygen nucleus and using 

17the nuclear quadrupole moment {Q) for 0 , then a value can be 

predicted through the relationship 

quadrupole coupling constant= e .Q q 

The nuclear quadrupole moment measures the departure of the 

nuclear charge distribution from a spherical shape_Elongated 

nuclei have a positive Q and flattened nuclei have a negative 

Q;q is the field gradient at the position of the oxygen nucleus. 

If this field gradient changes rapidly with angle then the 

various orientations of the non-spherical nucleus with respect 

to a chosen axis will give different energies. In order to 
2d Vestimate q, we have only to calculate the mean value of ~-

dz2 
where z is taken to lie along the principle axis of symmetry 

and V is the electrostatic potential in the molecule. V can 

be broken down into two components, V and V , a nuclear and n e 

electronic potential respectively. As a consequence of this, 

q can be written 

q = q + qn e 

where q and q represent the electric field gradients due to n e 

the protons and all the electrons in the molecule 

d2V 2 
( 3cos 2 (e:/2)-l)n d (e/R) 0.0211 a.u.q = -- = e R =2n dz2 dz
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and since there are two protons 

qn = 0.0422 a.u. 

Using similar arguments for q e 

qe = -e f !Ji(3c:s~e-l) !Jidt 

0 

r is the length of the radius vector drawn from the oxygen
0 

nucleus to the electron that is inclined at an angle e to the 

symmetry axis. 

Using x equal to the calculated wave function for the 

water molecule then 

qe = -2e E q. · 
. . l. 

l. 

where each q. represents the different contributions to the 
l. 

electric field gradient due to density contained in ~ ~ ~ o' R.l' .e.2• 

¢bl and ¢b 2 . These have been calculated to be (see appendix 

( 7) ) 

0.0218 -0.7140 0.8536 0.3010 

therefore 

= - 2eqT = -0.6020 a.u. 

The magnitude of q is largely determined by the amount of 2p
e 

character along the q direction, in this case the symmetry 

axis, relative to the amount at right angles to this axis. 

The contribution from a p orbital is (-2) times that for Px 
2 

or Py orbital. Townes and Dailey (54), considering only the 

contr ibut ions from p orbitals, have attempted to predict the 

nature of the bonds in many molecules. . The qualitative basis 
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for their arguments is based on the incorrect assumption that 

bonds largely p in character must correspond to an orbital 

o · 
angle of 90 or greater. Their approach, in the case of am­

monia, has been criticized by Bader and Jones (55) and the 

arguments they have used also apply to the water molecule. 

From a knowledge of the electric quadrupole hyperfine 

17constant for the 0 nucleus Q, the nuclear electric quadru­

pole moment, can be determined (56). However, such a calculation 

requires an accurate description of the electric field gradient 

at the position of this nucleus. Bessis, Lefebvre-Brion and 

Moser (57) , using an approximation to the extended Hartree­

3P 3Fock (58) function for the and P states of the oxygen
2 1 

atom, determined this field gradient and predicted a value of 

Q equal to -0.024 barns. The small magnitude indicates the 

' 17
odd neutron in 0 produces a very small distortion of the 

closed shell eight protons and eight neutrons. Using this 

-20value and the previously calculated q, a value of 2.09 x 10 

e.s.u. for the quadrupole coupling constant of 017 in H 0 is2

predicted. 
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(d) Electronic Energy 

The majority of available molecular wave functions have 

been obtained by the minimum energy condition of the variational 

method (59) . The resultant approximate wave function, which is 

the best in terms of total energy, does not necessarily yield 

the best charge distribution which governs other molecular 

properties. Karplus and Mukherji (24) have found this to be 

the case, in the framework of a limited basis set approximation, 

for HF. It was concluded that a better overall picture of this 

molecule can be obtained by making a small sacrifice in the 

energy subject to additional one-electron constraints. The 

advantage of their method lies in the fact that a relatively 

simple basis set can now give a reasonable description of a 

molecule. The question we must now ask is whether a wave 

function obtained by satisfying one-electron properties can 

accurately predict two-electron properties. In particular,as 

the density in the water molecule becomes more apropos the 

forces will the energy also improve. Such an energy calcu­

lation is quite complicated since it involves the two-electron 

operator l/r ... A mathematically simpler and more elegant
l] 

method would be to use the so-called Integral Hellmann-Feynman 

theorem originally proposed by Parr (37). According to this 

theorem, the difference in energy, 6E, between two systems X 

and Y represented by the wave functions ~X and ~Y respectively 

is, in the Born-Oppenheimer approximation, given by 
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6E = (20) 

where 

6H = H - Hx y 

Equation (20) is exact for exact wave functions, however, since 

it does not satisfy a variational theorem it cannot be used to 

determine the wave function directly. 

Richardson and Pack (36) have recently examined the use­

fulness and applicability of this theorem. They compared for 

a number of molecules the computed values for the bond dis­

sociation energy with their experimental counterparts. In 

this case, ~X would represent the proposed ground state wave 

function for system X and ~y the wave function representative 

of the dissociated atoms also in their ground state. By 

using a constant approximation to ~Y' accurate Hartree-Fock 

functions, they compared 6E (experimental) with 6E (calculated) 

for different proposed trial wave functions. Although the 

agreement of these two quantities was, in the main not good 

they did show that the more accurate description of the mole­

cule did give the better result. The reason for this dis­

crepancy has been pointed out by Musher (60). For approximate 

wave functions ~X and ~Y which are accurate to certain orders 

in smallness parameters nx and ny respectively then the computed 

value o f 6E will be accurate to this same order in nx and ny. This 

suggests that the Integral Hellmann-Feynman theorem has 

little u t ilitY,for calculations involving app roximate systems 
, . I 

in determining the absolute value of the system's energy. 
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By taking ~Y to represent the proposed wave function 

f or the water molecule and ~X to represent the accurate 

Hartree-Fock function for the iso-electronic neon atom , then 

all t h e two- e lectron operators appearing in ~H will vanish. ~E 

is now given by (ENe - EH 
20 

) and since ENe is known, EH 0 . 2 
can 

be calculated. Following the arguments of Musher, the ab­

solute value of either the energy or energy difference cal­

culated in this way is not to be relied upon. The computed 

values can however, according to the results of Richardson 

and Pack, still be used to discuss the relative merits of 

different proposed trial functions. 

The proof of the relationship given by equation (20) is 

elementary. The two Schrodinger equations for system X and Y 

are of the form 

(21) 

(22) 

By multiplying equation (21) by ~Y integrating over all space 

and applying the Hermitian property 

Ex = s-1 ~*x1'1x*Y dt (23) 

where 

S = ~xWy dt 

Similarly for equation (22) 

1 
Ey = s- ~*xHyWy dt (24) 

On subtra c ting equations (23) and (24), then the required re­

s ult is obtained. 
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J
ilE = EX - Ey = S-1 ~XilH~y dT ( 2 5) 

Ll HI the difference in the Hamiltonian operators for the two 

systems, is defined as being 

ilH = H - H = ilV + ilV + EH' (i)X Y nn ee i 

where 

H I ( i) = 0 (i ) - Vy ( i ) 
ne ne 

Now, since the systems X and Y are chosen so as to be iso­

electronic, then ilV , the difference in the electron-electron ee 

repulsion energy, will vanish and the equation representative 

of ilH will contain only ilV and 6V (i). ilV is the dif­nn ne nn 

ference in the nuclear-nuclear repulsion energy and 6V (i) is ne 

the difference in the nuclear-electron attraction energy. 

Since ilV is dependent only on the coordinates of the nuclei nn 

and we are assuming the Born-Oppenheimer approximation, then 

ilE, the difference in energy, depends only on the coordinates 

of the ith electron. By remembering that all the electrons 

are equivalent, equation (25) can be further simplified to 

give 

ilE = 6V nn 



I 
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Here pXY is the one-electron normalized transition or rearrange­

ment density and N is the total number of electrons contained 

in the system X (and Y). 

If ~Y represents the calculated wave function for the 

water molecule and ~X the wave function for isoelectronic neon, 

then Pxy(l) is defined as being · 

where N(=lO) is the total number of electrons and 

~Y was approximated by a single Slater determinant of one­

electron equivalent molecular orbitals. 

1
~Y = i<P (l)o.(l)<P (2)s(2) ..................... q, (1o)s(10) I


1 1 5lfOT 

If we further take the best possible single-determinant approxi­

mation to ~X' namely the Hartree-Fock self-consistent field wave 

function 

1 
~x = --1 q, (1) a (1> q, (2> s (2> ••••••••••••••••••• cp (10> s (10> I6 6 10. /10T . 

then , according to Kim and Parr(61), the working formula for 

. 
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the Integral Hellmann-Feynman theorem will be 

N/2 
~E = ~V = 2 L: 

nn .Q.=l 
(.Q.=.e,+5) m'=m+5 

<¢ IH' l<P '> 
i m 

DXY 
IDXY ( Q, m') (26) 

where 

N/2 
E 

m~l · 

and 

DXY(ijm') =cofactor of the i,m' element in DXY. 

On replacing <¢.Q,IH' !<Pm,> by the symbol Him' and Dxy<ilm') by 

the symbol det (SQ,m') equation (26) can be. rewritten as 

N/2 N/2 
~E = ~V + 2 

Q,;l (HQ,Q,'det(SQ,R,') + ~ H ,det(S 0 ,))mn m:§: 1 .e,m ~m .det (S Q,m,) Q, I =Q,+5 
m'=m+S 

( 27) 

I 

Let us now turn our attention to the form of the operator H • 

This is defined as being the difference in the Hamiltonian for 

the water molecule and the neon atom 

a det. is take n to represent determinant. 
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HH 	 according .to the coordinate system below0
2 

/ 
I

i a (Hl ). 
-------~ 

will 	be 

= ! L:V~ -- z L:l/r. + L: l/r .. + Z L: l/r + l/R
2 J. 0 . J.O . . J. J O 	 o.O 2

i i i<J 	 a=a,b 

where z is the nuclear charge on the oxygen atom and o. defines 
0 

the hydrogens a and b. Similarly 

= l ~n 2 z ~1/r + ~ l/rH L.V - N L, "N L, ••
N e 2 . i 

. 
e. i e . . l.J 

J. J. J.<J 

By making the oxygen and neon nuclei lie at the origin of the 

coordinate system, then since .r. = r. 
J.O J.Ne 

H' = bH -2 L:l/r. + L: (l/r. + l/r.b) + bV
i io i ia i nn 

Where 
2Z 

0bV 	 = - -- ­nn Rl 

All the electrons are, however, equivalent in which case the one-

electron integral 

Jwx1f' cil wya' 
requires only a knowledge of the transition density, Pxy'' aver­

aged over the operator H' (1) 

H'(l) = (­ 2 

rlO 
+ 1 

rla 
+ _l_) 

rlb 
+ K ( 28) 
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where ra and rb are the distances of electron (1) from the 

hydrogens (1) and (2) respectively. 

Equation (27), which determines the difference in energy 

between the water molecule and the neon atom, thus depends on two 

distinct types of integrals. There is the conventional overlap 

integral S .. and an integral that involves the operator H', H' ..• 
J.] 	 1] 

In a form more applicable to the present calculation, this equa­

tion can be written 

llE = T;T (H 1 

16s.UM(l) + H 1 

17SUM(2) + .... H 1 

510SUM(25)) + K 

Here TOT _replaces det(Slm') and corresponds to the expansion of 

a 5 x 5 determinant of overlap integrals (see appendix (8)). 

Associated with every H' .. term appearing in the expression for 
J. J 

llE, there will be a determinant of overlap integrals, given the 

symbol SUM(I) . Each SUM(I) is defined as being the cofactor of 

the i,j element in the 5 x 5 determinant TOT and will consequen­

tly be of dimension 4 x 4 containing 4! or 24 terms (see 

appendix 	 (9)). 

The H.. 's are obtained by averaging the appropriate
1] 

transition density¢.¢. over the operator H'. Because of the 
J. J 

nature of H', equation (28), there will arise three distinct 

types of one-electron integrals 

( i) < ¢ . 	 l/r ¢ . > ( ii) < ¢ . 1/r ¢ . > (iii) «P. l/rbcp . > 
J. 0 J i a J J. J 

where i = 1,2,3,4, and 5 refers to the five occupied molecular 

orbitals a n d j = 6, 7, .8, 9, and 10. refers to the occupied atomic 
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orbitals on neon. By defining the <P. 's and <P • 's as being
l. J 

= = ls<P 1 <P 0 ¢6 


= 2s
¢2 = <Pb l ¢7 
-a r 5/2 ,,r;= = 2px = rcosee a I rr<P 3 ¢b2 <Pa 

. -ar 5/2/!";= = 2py = rcosesincpe a
<P 4 <P ,Q,l <P 9 

-ar 5/2;.r;= 2pz = rcosecoscpe a¢5 <P ,Q, 2 <Pio= 

then the analytical forms of the integrals represented by 

equations (i), (ii), (iii) and the overlap integrals <cj>.cj>.>,
l. J 

together with their numerical values are given in appendix (10) . 

.Although the calculation of ~E requires only the knowledge 

of relatively simple one-electron integrals, the form of the 

equations involved can be seen to be quite . complicated. In 

order to substantiate the present approach it was thought ad­

visable to duplicate a result obtained by Richardson and Pack. 

In a similar calculation on LiH they took the wave function for 

this molecule, obtained by Kahalas and Nesbit (62), to represent 

~Y and using ~X to represent the wave function for the iso- . 

' electronic beryllium atom calculated ~E. This is only a four-

electron problem, as compared to the present ten-electron 

problem, and as such is much simpler. If ¢ and cp represent1 2 

the two occupied molecular orbitals on LiH and cp and <P the3 4 

two occupied atomic orbitals on beryllium, then according to the 

p r eviou s arguments and symbolism 
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where now 

TOT = (Sl3S24 - sl4s23) 

SUM (1) = s24 

SUM ( 2) =-S 23 


SUM( 3) =-S 14 


SUM ( 4) = sl3 

K = ZLi/R 

The operator H', appearing in the integrals H.. , is now equal
l.J 

to (l/rb-1/ra) with a and b referring to the Li and H nuclei 

respectively. In this way, the result of Richardson and Pack 

was duplicated. 

For the present calculation on the water molecule 6E = 

(ENe - EH 0 ) and since from experiment, ENe and EH are known0
2 a 2 

to be-128.55 and -76.46, respectively, a value Qf 6E equal to 

- s2.09 · should be obtained. The results obtained are 

summarized in Table V. Each ~E calculation is representative 

of a different approximation to the forces. The orbital para­

meters were obtained by a minimisation of the previously defined 

function R in the usual way, however, it was only stipulated 

that the resultant density distribution give the correct dipole 

moment. This, of course, is not sufficient to characterize 

comp letely the parameters appearing in our basis set and con­

sequently there are a very large number of possible solutions 

that meet this requisite. Of t h e few listed in Table V, 

numbers 1, 2 and 3 were obtained for s = 0.056 and 4 and 5 
0 

a All the ene~gies are expressed in a.u. 

http:be-128.55
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were obtained for S = 0.0. The orbital parameters for 
0 

calculation number 1 approximate very closely those expected 

3from an sp hybridisation scheme and hence a tetrahedral 

electronic configuration. According to the results of earlier 

workers (7,9,14,17) this was assumed to be the case in the 

water molecule where a, the orbital angle, was taken to 

equal E, the bond angle. Table V shows, however, that the 

computed value of the energy for this point is the poorest 

of all the cases considered here. It can also be seen that 

from an examination of the forces acting on the nuclei an 

unstable molecule would result for such a description. 

Only by orbital bending, which essentially increases the 

p-character in the bonding orbitals and the s-character 

in the lone pairs, can electrostatic equilibrium be attained. 

~lthough it is very difficult to relate the form of the 6E 

equation with the orbital parameters, one point is clear, as 

the density distribution becomes more apropos the forces 

then the energy also improves. The best value for the 

energy difference was in fact obtained using the orbital 

parameters that gave the best forces. The absolute value 

of ~E was not, however, in good agreement with the predicted 

value of -52.09 but for reasons described previously, this 

is not surprising. The fact that 6E improves as the forces 

imp rove i s very e ncouraging and adds weight to the supposition 

t hat a wa ve fun c t ion as determined by satisfying a one-electron 

property does not necessarily predict inaccurate ~wo-electron 

properties. 



IV DISCUSSION 

Once the wave function for a molecule is known, then 

the problem reduces to one of interpreting it. From a chemical · 

viewpoint the binding in a molecule is of primary concern and 

such ideas as ionicity, covalency and partial ionic character 

have received widespread use in this context. The water mole­

cule is particularly useful from this point of view and in 

many instances has been used as a prototype for a series of 

molecules containing lone pairs of electrons. 

The general approach has been to assume a direct rela­

tionship between the orbital form of the wave functions and 

the geometry of the molecule. In particular, the bonding 

orbitals are made to point directly along the bond axis. 

Following the simple qualitative arguments given previously, 

this would lead to a description for the water molecule that 

involved two bonding and two lone pair orbitals in a near 

3tetrahedral and consequently sp configuration. 

The results of the present calculation have not found 

this to be the case. Not only are the bonding orbitals at 

an angle w to the bond direction but they are also associated 

with negative hybrids. This has the effect of removing bonding 

electrons from the internuclear region, and further, they put 

these electrons into that region of space previously occupied 

by the lone pairs. Meanwhile, the lone pairs, being at an 

71 
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angle S greater than 180 0 , cause this previously vacated 

density to be replaced. 

Such a description would seem to have little, if any 

connection with the more conventional picture. However, if 

one remembers the arguments of Edminston and Ruedenberg, then 

perhaps the unusual direction of our bond hybrids can be re­

moved by the introduction of secondary contributions into the 

lone pair orbitals from neighboring atoms. According to the 

results of these authors, the secondary contributions in­

variably appear with a negative coefficient and seem to lie 

within the range -0.1 to -0.2. 

The problem is thus to produce a new set of orbitals 

such that now the ls atomic functions centred on the hydrogens 

(1) and (2) are introduced into the lone pair descriptione 

This is most readily achieved, from our previous definitions 

of ¢£l' ¢£ 2 , ¢bl' and ¢b 2 ' by means of an orthonormal trans­

formation such that nowa 

<P 

0 

.Q, 1 = 1/(1 + g) ( (¢.Q,l - g¢.Q,2) -
g
1/2(¢

bl +¢b2)) 

¢ 
0 
.Q,2 ::::::: 1/(1 + g) ((¢.Q,2 - g¢.Q,l) -

g
1/2(¢

bl +cpb2)) 

0 

1/(1 + g) - 1/2(¢¢bl = ( ( <Pbl - g¢b2) g il +¢ .Q,2)) 

0 - 1/2(¢
¢b2 = 1/(1 + g) ( ( <Pb2 - g¢bl) g il +cp.Q,2)) 

The parameter g can now be varied at will and with every new 

value, the f orm of the orbital will change. The total density 

distribution, and consequently its associated molecular proper-

a for their expanded forms see appendix (11) 
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ties, are however invariant, for a given set of orbital para­

meters, to such an orthonormal transformation. By a careful 

manipulation of g, both the bonding and lone pair orbitals can, 

i n agreement with the predictions of Edminston and Ruedenberg, 

be made to point in the "correct" direction. This would cor­

respond, according to the coordinate system of Fig. 1, to the 

following signs in the oxygen 2s and p atomic orbital coefficients 

0 
-+ (+ 2s + px' + pz)¢ .Q,l 

0 
-+ (+ 2s + px' - pz)¢ .Q, 2 

0 
-+ (+ 2s - px' + PY I)¢bl 

0 
-+ (+ 2s - px' - PY I)¢b2 

0 0 0 0
By expanding ¢.Q,l' ¢.Q, 2 , ¢bl' and ¢b2 , the variation of the 

different atomic orbital coefficients with a change in g can 

be calculated and these are given, for a few sample points, in 

Table VI. A value of g greater than or equal to - 0.08 satis­

fies the above requirements; however, it should be remembered 

that the lone pair orbitals no longer have their conventional 

meaning since they are not centred on one nucleus and can conse­

quently take part directly in the bonding. The secondary contri­

butions c.Q,(h~ + h~), introduced into these orbitals is indeed 

both negative and within the predicted range. 

By now writing the new lone pairs in the familiar form 

¢
0
il =A' (cos s 1 ( 2s) + sins lcos ( $/2) (px') + sin£ ls in ( $/2)(pz) ) 

+ lJ I (h~ + h~) 
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¢~ 2 = >.' (cossl(2s) + sinslcos(S/2) (px') - sinslsin(S/2) (pz) 

+ µI (h~ + h~) 

it can be seen that 

>.'cossl = c~(2s)a 

>.'sinslcos(S/2.) = c 1 (px') 

>.'sin lsin(S/2) = c 1 (pz) 

µI = C 
1 (h

1 
+ h 

2
) 

and similarly for the bonding orbitals 

ACOSsb = cb(2s) 
b . 

->.sinsbcos(a/2) = c (px') 

ASinsbsin(a/2) 	 = cb(py') 

b
>.c ::= c (ls)3 

bl 
µ = c (hl) 

-µo = cb1 (h 	 )
2 

Using t h ese relationships, Table VII can be constructed. As 

g changes then >./µ and >.'/µ', the bonding and lone pair polarity 

factors, change drastically as do the other important parameters 

a, o, sb, and sl. These changes, brought about by our ortho­

gonal transformation, will not alter the overall picture of. 

the water molecule and in particular the total density and hence 

the resultant electrostatic forces will remain the same. The 

various orbital contributions to these forces will however be 

di f ferent. 

The equivalent molecular orbitals obtained from calcu­

latio n n umber 4, vaguely resembles the tetrahedral case and it 
a where no distinction is made between bl and b2 or il and i2 then 

bl b 2 11 R,2c = c and c · = C· • 
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is interesting to examine a force analysis for this data 

2 2 2 2 cp 2FORCE TOTAL¢ ,Q,l ¢ ,Q,2 ¢bl ¢b2 0 

F -0.5265 -0.5265 0.2112 0.2112 0.9988 0.3682 
0 

Fl! 0. 3833 0.3833 0.7208 0.3063 0.6127 2.4064 

F, 
J_ 

-0.0405 -0.0405 0.0569 0.0954 0.0030 0.0743 

DP 
E -0.5218 -0.5218 1.2651 1.2651 0.0112 -1.4978 

The charge distribution in the bonding orbitals is now such 

t hat it exerts a positive binding force on all the nuclei. The 

lone pair density similarly acts as predicted by the tetra­

hedral bonding scheme. One point to note about the lone pair 

orbitals is the large negative contributions that they now make 

to the electronic dipole moment; a point that has been used 

to reason the existance of both a large dipole, equal to 

3(DPN-DPE), and an sp hybridisation scheme. It should, however, 

be remembered that this state of affairs is only possible when 

the lone pair orbitals are no longer localised on one centre. 

The results listed in Tables VI and VII, of course, 

represent only a few of an. infinite number of possible hybrid 

schemes all · producing the same net density distribution. The 

large variation of the parameters contained in the lone pair 

and bonding orbitals with a change in g, emphasizes the point 

at hand. Any description of the bonding in terms of the mole­

c ular o rbi tals, and in particul ar in terms of A/µ,a ,o , Eb, 

and sl, is not unique and a s such not very useful. To talk of 

a parti cular bond or lone pair hybridisation is meaningless. 
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A more realistic approach to the problem would be one 

that is independant of the form of the orbitals. Such a prop­

erty is the one-electron density distribution. This can be 

represented pictorially by a contour map obtained by mapping 

the function 

p(~) = ~! J11/J 1 (1)1/! 2 (2) ••• 1/JN(N) I ll/!1 (1)1/! 2 (2) ••• ljJN(N)I dT 2 ... dTN 

5 

= 2 L: cp.(l)cp.(l)


J_ J_
i=l 

for different values of~ and connecting points of equal densitya. 

The in- and out-of-plane contour maps, defined by Fig. V below 

Fig. V 

and given in Fig. VI, adequately point out the lack in prominence 

3of the lone pair density. If the hybridisation had been sp , or 

better if the electron density distribution had been tetrahedral, 

abecause of the extensive use of these contour maps in the second 
part o~ this thesis, a fuller discussion of their calculation 

.will be left until later (see appendix (12)). It is sufficient 
to know at the moment that each line represents an equidense 
surface whose magnitude is indicated in atomic units. 
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a large concentration of charge above the oxygen nucleus would 

have been expected. The contours around this nucleus are in 

fact very nearly spherical with if anything a slight inward 

polarisation necessary to overcome the nuclear force of repul­

sion on this nucleus. 

According to the arguments of Berlin (26), a molecule 

can be divided into binding and anti-binding regions. Electron 

density placed in these regions will respectively, either exert 

forces on the nuclei pulling them together or alternately exert 

unequal forces on the nuclei and lead to a separation of the 

molecule into atoms. The binding region (BR) for a hetero­

nuclear diatomic molecule AB in which ZA)ZB consists of two 

boundary surfaces. One surface, through B, curls back onto itself 

to form an enclosed region, while the boundary surface t?rough 

the nucleus of greater charge opens up and approaches a straight 

line per~endicular to the bond axis (see Figure XVI) . The 

binding region for the water molecule can be constructed by 

superimposing two such 0-H diagrams inclined at the bond angle 

with a common oxygen nucleus. Since the antibinding regions 

in the vicinities of the protons (including those generated by 

the diatomic H-H group) lie outside the binding region, this 

will give 
0 

Hl 

The position of the boundary curves, dashed lines, clearly 
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answers the question where density must be concentrated in 

order to get a state of electrostatic equilibrium on mole­

cular formation. How much charge must be placed in this region 

is best answered by picking some standard density that is known 

to be insufficient from this point of view. If, for example, 

the molecule is taken to lie in the XY plane with the z-axis 

coincident with the axis of quantisation, the standard density 

could be chosen such that it places the nuclei (H 1 ,H 2 and 0) 

at their equilibrium positions each with its original atomic 

density. One particular description of the oxygen atom would 

3be to take the ML = 0 component of the P ground state. This 

would correspond to circular contours of density in the mole­

cular plane and a doubly occupied · "p "orbital. Since the density
1T 

on th~ oxygen atom is centro-symmetric, it will exert no atomic 

force on this nucleus. In addition, at the equilibrium bond 

length and arigle the hydrogen nuclei will penetrate the shell 

containing the oxygen density. According to Gauss's ·1aw, 

this density will now shield less than eight units of positive 

nuclear charge and consequently there will be a net force of 

repulsion on the hydrogen nuclei. Following similar arguments, 

each hydrogen nucleus is shielded by less than one unit of 

negative charge and there will be a net force of repulsion 

of the hydrogen nuclei due to a mutual penetration of the 

others charge cloud. There are, of course, many equivalent 

descriptions for p (~), each leading to an unstable molecule. 
0 

One alternative, for example, would be to sphericallise the 
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charge density on the oxygen nucleus by placing 4/3 electrons 

in each of px, py and pz. This, however, places less density 

in px(po ) than the chosen valence description and therefore 

will shield the hydrogen nuclei even less. 

The difference between the one-electron molecular 

density (p(~)) and the standard one-electron density (p (r))
0 

then tells us how the density is rearranged on molecular for­

mation. This rearrangement can similarly be represented by 

a contour map obtained by plotting the function 

+ + + 
b.p (r) = p (r) - p (r)

0 

+for different values of r and joining together points of 

equal density. A full contour in these maps is taken to mean 

a buildup of charge density in that region on molecular for­

mation whereas a dashed contour implies the removal of charge 

on molecular formation. 

Bader (63) has recently examined the form of the b.p map 

for . the frequently quoted tetrahedral description of the water 

molecule in which a, the orbital angle, equals £, the bond 

angle. The plots he obtained are given in Fig. VII DensityQ 

is clearly removed from the binding region and placed above the 

oxygen nucleus. ·Remembering that the original atomic density 

was insufficient to balance the nuclear forces of repulsion, 

then ther e will be a net force on the oxyge~ nucleus in a 

direction that opposed bond formation. It was concluded that 

only by assuming a~E could charge be accumulated 
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in the b i nding region. What effect does this orbital bin­

d ing have on the form of the wave function ? The p and p1 2 

atomic functions appearing in the bonding orbitals ~bl and 

~b 2 ' respective ly, can be written in terms of the X'Y' co­

ordinated system as follows 

p = -px' cos (a/2) + py' sin (a/2)1 

p = -px' cos (a/2) - py' sin (a/2)2 

Since a/2 is less than 90° then as a is decreased, sin(a/2) 

will decrease but cos(a/2) will increase. That is to say 

orbital bending, and hence electrostatic equilibrium will 

convert py' into px'. Figure VIII representative of the 

~P map obtained for the proposed wave function of the 

present work, reflects this transition. The dashed contours 

in the Y' direction are indicative of py' density removal 

and .the full contours in the X' direction are indicative of 

a px' de nsity build-up. Moreover, this transformation 

places density that was originally almost totally in the 

anti-binding region into a region above and below the oxygen 

nucleus. In particular, density is placed in the binding 

region between the three nuclei, a requirement that any pro­

posed density must satisfy. Charge is also concentrated 

around the hydrogen atoms and the inner polarisation obser­

ved is consistent with the large nuclear force of repulsion F. 

Since the density or density-difference maps are 

repres en t ative of the one-electron charge distribution, there 
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will exist a direct correlation between their form and any 

molecular property that depends on the first-order density 

matrix. The electrostatic forces of attraction are par­

ticularly important since their existence is a direct con­

sequence of bond formation. By accumulating information 

contained in both the contour maps and relating this in­

formation to the forces, it should be possible to interpret 

the nature of a chemical bond. 

However, before any general conclusions can be made 

it is necessary to know what characteristics are associated 

with a certain type of bond. This implies a detailed study 

into the form of the one-electron density distributions, 

with particular reference to the forces operative, for a 

series of molecules. Keeping this in mind, it is now con­

venient to introduce the second part of the thesis. 



PART II 


THE NATURE OF THE BINDING IN THE 


FIRST-ROW DIATOMIC HYDRIDES 
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I. INTRODUCTION 

The chemical nature of a bond is largely determined 

by the distribution of the valence electrons in the molecule 

and in particular whether these electrons are shared or lo­

calized. It is the way in which the original atomic cha~ge 

distributions rearrange on molecular formation that deter­

mines what forces are operative in binding the nuclei and 

consequently the physical and chemical properties of the 

molecule. 

The purpose of the present work is to interpret the 

nature of the binding in the first-row diatomic AH hydrides 

in terms of the molecular charge distribution and the forces 

that this charge density exerts on the nuclei. Furthermore 

a break-down of the electronic · forces into those exerted by 

the individual molecular orbital charge densities enables 

each molecular orbital to be classified as bindi~g, antibind­

ing or nonbinding. Such a description will provide a quan­

titative assessment of their relative binding ability; for a 

given molecule or through the complete series of molecules. 

While any chemical bond accumulates charge in the 

binding region, to an extent sufficient to balance the nuclear 

force of repulsion, there are two extreme ways in which elec­

trostatic equilibrium and hence a stable chemical bond can 

be attained. In an ionic bond, for example, valence cha~ge is 

83 
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transferred from one atom to another and it is the charge den­

sity localized on one . atom which exerts the net binding force 

on both nuclei. In a covalent bond on the other hand it is the 

migration of charge from both nuclei into the binding region 

and the mutual attraction of both nuclei by this density that 

is the identifying feature. Taking the lithium fluoride mole­

cule to be representative of the ionic bond and a series of 

homonuclear diatomics (A ) to be representative of the covalent2

bond, ionic and covalent binding have recently been given new 

definitions based on the disposition of the . charge density in 

a molecule (65,66). 

The majority of molecules however fall into a category 

that is intermediate between these two limiting cases having 

partial ionic or partial covalent character. Here charge is 

neither transferred completely nor shared equally. From this 

point of view the first-row diatomic hydrides LiH, BeH, BH, 

CH, NH, OH and HF form an interesting and important homologous 

series. It is of considerable interest to determine whether 

or not the binding in this series of molecules can be use­

fully c las sified according to the definitions previously 

proposed and found to hold for the extreme bindings found in 

LiF and the homonuclear diatomics. 

In the formation of an ionic bond A+B- an electron 

is completely transferred from nucleus A, with a charge of 

ZA, to nucleus B, with a charge of ZB. Nucleus A then has 

only (ZA-1) electrons associated with it while nucleus B has 
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(ZB + 1) electrons. According to Gauss's law the field ex­

ternal to the spherical charge distributions surrounding A 

and B can be considered as originating on the centres A and 

B respectively. Nucleus B thus experiences a net force of 

attraction whereas nucleus A experiences a net force of re­

pulsion. For a stable molecule to be formed in this way the 

charge density surrounding A and B must be polarized by an 

extent necessary to overcome these net attractive and re­

pulsive forces. If on the other hand an electron is only 

partially transferred from A to B dependent on the extent 

of this transfer atomic polarizations may or may not result. 

When this is the case the bond is said to have partial ionic 

character.Pauling (67) has suggested two ways in which this 

quantity can be estimated. One is based on the ratio of the 

observed dipole moment to the value eR , where R is the 
e e 

equilibrium bond length, and another is based on the difference 

in the electronegativities of the two atoms forming the bond. 

From a more theoretical point of view the binding can be 

studied in terms of the wave function If this wave funct­

ion can be written in the form 

where ~I and ~c refer to the ionic and covalent part of ~ 

then the partial ionic character of the bond, which is uni­

versally represented as being some function of the coefficients 

AI and Ac' can be estimated assuming <~I ~c> = O. Although 
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this overlap term might be zero when averaged over all space 

it is not necessarily zero at every point in space. When dis­

cussing the spatial distribution of electrons it must not be 

neglected because it is, after all, the basic issue in ionic 

character. Lowdin and Shull (68) in their interpretation of 

the bond character preferred to use natural spin orbitals ob­

tained from ~ by diagonalising the first-order density matrix • . 

It was shown by them that crude approximations to these natu­

ral spin orbitals X· using different proposed wave functions 
1 

share many of their invariant properties and most important 

to a bond analysis the invariance of the occupation numbers. 

Such a method is however unsophisticated and requires new 

definitions since now the X· 's no longer represent or can 
1 

readily be related to the covalent and ionic parts of the wave 

function. It is as yet not clear to what extent these new 

definitions will reproduce the concept that the chemist has 

of partial ionic character (69). 

As an increasing number of Hartree-Fock wave functions 

become available for molecules then it is obvious that a sim­

pler and more direct method of interpreting the chemical bond 

is needed. The very complexity of these functions seriously 

hanidcaps a discussion in terms of hybridization, polarities, 

ionic character, etc. An alternative approach, and one pro­

posed by Bader and Henneker (65), would be to examine the 

explicit characteristics of the molecular one-electron charge 

distribution; especially since a Hartree-Fock wave function 



87 


yields a one-electron density correct to the second order. 

By taking some standard atomic density (p ) which is known 
0 

to be insufficient to balance the nuclear forces of repulsion 

the molecular (p) minus at omic dens ity 

+ + + 
llP(r) = P(r) - P0 (r) 

+ can be plotted for different values of r; p could, for ex­o 

ample, be the separated atoms in their ground state in which 

case ~P is given the symbol ~PsA· The resultant density 

difference contour map would now show the regions in the 

molecule where charge had migrated in order to reach a state 

of electrostatic equilibrium and hence a stable chemical bond. 

The lithium fluoride molecule has a dipole moment of 

6.284D (70). Since the separation of equal and opposite 

charges at the observed lithium fluoride bond length gives 

a dipole moment of 7.51D it is obvious that this molecule is 

strongly ionic by any previous definition. In fact the dis­

crepancy between the observed and theoretical dipole moment 

is to be expected because of the back polarization of the 

density remaining on the Li and F nuclei which must accompany 

an electron transfer. The llpSA plot obtained by Bader and 

Renneker (Fig. IX) clearly shows that density has been 

transferred from the lithium atom to the fluorine atom. Both 

the charge increase around the fluorine atom, as indicated 

by the large diameter of the zero contour, and the direction 

of the atomic polarizations at the Li and F nuclei are con­

sistent with an electron transfer and hence an Li+F- description. 
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In t h is way the ionic bond can be given a new definition based 

on t h e characteristic features of the LiF 6p Amap, these are8

(i) a transfer of charge from one atom to another, the charge 

i ncreas e being localized on one atom as indicated by the fact 

that the contours are approximately centred on one of the 

nuclei a nd the region of increase is bounded by a zero contour 

which encompasses only a single nucleus (ii) a polarization of 

the density increase localized on the anion and of the density 

remaining on t~e cation in a direction counter to the direct­

ion of charge transfer. 

Using a similar approach Bader, Renneker and Cade (66) 

have· recently studied the rearrangement of charge on molecular 

formation for a series of homonuclear diatomic molecules A2 . 

The 6pSA maps they obtained are shown in Fig. X. In every 

case there is an increase of the charge density in the binding 

region which is symmetrically placed between both the nuclei. 

Since this increase in the density is relative to a distribu­

tion which does not ~lace - sufficient density in the binding 

region to balance the forces of nuclear repulsion it is the 

force exerted by this shared density which binds the nuclei 

in these molecules. The direction of the atomic polarizations 

now accompanying bond formation 9ould conceivably be in any~ di~ect­

ion. Th ey are, in fact, found to be opposite of those noted 

above as being a necessary consequence of ionic binding • . 

While it is the primary purpose of this work to ex­

amine t h e nature of the binding in the first-row hydrides 
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there are several other questions of interest concerning this 

series. Since the dipole moment of LiH is 5.882D(72) it is 

expected to be highly ionic in the sense Li+H-, HF on the other 

hand wi th a dipole moment of l.942D(73) is expected to be 

polarized in the opposite direction, H+F-. The fact that 

the hydrogen forms the negative pole in LiH and the positive 

pole in HF is suggestive that there is a change in the binding 

type as one goes along the series LiH ~ HF. Fajans (74) has re­

cently predicted that this change occurs between BH and CH. 

His arguments are based on the quanticule theory originally 

proposed with Berlin (75). Here the electrons are classified 

according to whether they are quantized with respect ·to the 

field of both nuclei or to the field of a single nucleus. 

Blinder (76) using quite different considerations based on 

the linear combina~ion of atomic orbitals-molecular orbital 

theory (LCAO-MO) suggested that the change in bonding type 

occurs between BeH and BH. Another question of interest con­

cerns repeatedly proposed models for the diatomic hydrides 

based on the penetration of the united atom (UA) by the proton. 

It has been known for some time, from spectroscopic obser­

vation (77), that the properties and electronic transitions 

of the diatomic hydrides AH are closely related to the appro­

priate united atom. If 6pUA represents the molecular minus 

united atom density , where the united atom is centred on the 

heavy nucleus A, then bond formation can now be identified 

with the removal of a proton from the united atom to the 



90 


equilibrium bond length. Thus dependant on the nature and 

magnitude of the density shifts observed in these ~PUA maps 

it should be possible to estimate the applicability of such 

models. 

Whether or not the density in the hydride series 

can still be classified as shared or localized, where the 

change-over from one mechanism to the other occurs and if 

they resemble the united atom approximation are however 

questions of secondary importance in this study. It is the 

relationship between the redistribution of charge on mole­

cular formation to the nature of the binding that is our 

primary aim. 

The physical picture provided by the one-electron 

charge distribution may be carried even further through the 

use of the Hellmann-Feynman theorem. This theorem relates 

the forces acting on a nucleus to the one-electron density. 

These forces of attraction are rigourously determined by 

classical electrostatics and hence provide an added basis for 

the discussion of a chemical band. Just as the formation of 

a molecule AB can be likened to the redistribution of atomic 

A and B charge density so can the forces of attraction hold­

ing the molecule together be compared with those experienced 

by the separated atoms. At large internuclear AB separations 

the total density of the system p is simply the sum of the 

atomic densities 



91 

P = PA + PB 

where pA and pB refer to some atomic density centred on the 

A and B nuclei respectively. In a similar way the forces of 

attraction can be broken down into those due to charge cen­

tred on A and those due to charge centred on B. Since these 

atomic densities are centrosymmetric the only forces of at­

traction on the A and B nuclei will be of the screening type 

due to density centred on the B and A nuclei respectively. 

Furthermore since the A nucleus does not penetrate the charge 

contained on the B nucleus and since this charge, according to 

Gauss's law, can be considered as centred on B the net force 

on the A nucleus simply reduces to 

The first term in this expression represents the nuclear 

force of repulsion and the second term represents the elect­

ronic force of attraction. At these distances QB will be · the 

the number of electronic charges on Band since FA(R ~ oo) = O, 

ZB must equal QB. Similarly for the net force on the B 

nucleus to be zero ZA =QA' where QA is the number of elect­

ronic charges on A. 

At the equilibrium bond length R the atomic densities e 

are rearr~nged in a manner that is characteristic of the na­

ture of the binding. The total molecular density can now be 

written in the form 
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As before pA and pB are the atomic densities centred on the 

A and B nuclei respectively, however there now appears in this 

expression for p a centra l overlap term due to density that 

is centred on both the A and B nuclei. The electronic forces 

i n a mol e cule can be broken down into three separate components; 

an atomic force, a screening force and an overlap force. Where­

as in the separated atoms it was the screening contribution 

due to the charge on the A and B nuclei that was responsible 

for electrostatic eq~ilibrium,molecular formation and the 

accompanying density shift will now cause the nature of the 

binding to change. At the equilibrium bond length the density 

around each of the nuclei is allowed to relax and rearrange 

Th e nature of this density shift ~PSA will be reflected in the 

values o f the atomic, overlap and screening force contributions 

to FA and FB relative to their values at large internuclear 

separation. Consider, for example, the forces on nucleus A 

du e to the molecular charge density. If the atomic density 

on A, pA is not centrosyrnrnetric there will result an atomic 

force on this nucleus equal to ZA<pAOA> . Because of the nature 

2of the operator, OA ; cos _eA/rA , where 

p......... .-f 

rA .,,,.. e \.,,,,-­

.,,,,-- e B'\, \ ...,,. k::- A ......... l a 

A B 
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the magnitude and direction of this force is determined by 

the magnitude and direction of the density shift, accompanyi~g 

molecular formation, near to the A nucleus. In a similar 

way the overlap or shared density pAB has associated with it 

an overlap force,ZA <pAB OA>. The magnitude of this force is 

dependant on the magnitude of the density shift into the over­

lap region and equally important the location of this charge 

increase with respect to both the A nucleus and the bond axis. 

~inally there is a screening force on A due to density that is 

completely localized on B, ZA <pAB OA>. In the case of 

the separated ·atoms it was this screening force that was totally 

responsible for electrostatic equilibrium. · The amount by 

which the A and B nuclei have been descreened on molecular 

formation and where this descreened density is transferred 

will, of course, be important factors when considering the 

nature of the binding. 

The net force on the A nucleus can now be written as 

ZA ' 

R2 (ZB - QB) 


eI 

The three components of QB atomic, overlap and screening re­

present the number of virtual charges which when placed on 

the B nucleus exerts the same field at the A nucleus as does 

the component of the density being considered pA' pAB or 

pB. Since at large internuclear separations the atomic and 

overlap charge contributions are zero and the screening charge 

contribution was $imply ZB their molecular values will be of 
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prime importance. 

Consider, for example,the case of a complete electron transfer 

from A to B. In an idealized ionic bond there is no overlap 

or shared density and hence no corresponding force contri­

bution. The complete transfer of an electron will increase the 

screening of the anion by unity and decrease the screening of 

the cation by unity. The increased screening of the anionic 

nucleus exerts a net force of attraction on the cation and 

there must result a negative atomic force due to a back polari­

zation of the density on the cation. The net force of repulsion 

acting on the anionic nucleus because of the charge transfer 

is in turn b~lanced by a positive atomic force term. Thus in 

an ionic bond the cationic nucleus is bound by the charge 

transferred to the anion and the anionic nucleus is bound by 

the force arising from an inwards polarization of the same 

density. In a similar way the identifying features of a co­

valent bond can be summarized in terms of the forces acting 

on the nuclei. In this case it is the migration of charge 

to the internuclear region that is responsible for bond for­

mation. This migration should be reflected in a decreased 

screening contribution for both nuclei to the total elect­

ronic force on A and B relative to their separated atomic 

values. Such a descreening will result in a net force of 

repulsion which is balanced by an overlap contribution. 

Using a similar approach Bader and Henneker (78) have 
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also given an interpretative discussion of the binding in 

t h e molecules LiH and HF. These workers used extended 

LCAO-MO-SCF wave functions which are only slightly less 

a ccurat e than thos e employed here. It is their general 

method that will be extended and applied to all of the 

first-row hydrides. By accumulating the information con­

tained in the charge distributions and a force analysis 

the binding in th~se molecules will be examined on the basis 

of classifications previously employed. Whether or not 

density can be classified as shared or localized in the 

intermediate cases of the hydrides and where, if at all, the 

alleged discontinuity occurs are questions that will also be 

dealt with. 

The molecular charge distributions, or charge density 

differences, are based on wave functions given by Cade and 

Huo (79) which are alleged to be very close approximations 

to the Hartree-Fock wave functions. The results presented 

. . 1 + 2 + 1 + 2 3 ­are for LiH ( X L: ) , BeH ( X E ) , BH ( X E ) , CH ( X TI ) , NH ( X E ) , 
r 

1OH(X2 Tir) and HF(X E+) states at Re (Exptl.). The calculated 

R value is usually very close to R (Exptl.) so that no 
e e 

significant misrepresentation is likely from the use of Re 

(Exptl.) instead of R (Calcd.).
e 

Each wave function is approximated by a single Slater 

determina nt of one-electron spin orbitals. The individual 

orbitals span an irreducible representation of the cooh point 

group to which the molecules belong and can therefore have 
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either a or TI symmetry. A molecular orbital of a symmetry 

is represented by a linear combination of 16 basis functions; 

12 centred on A and 4 centred on H. The TI molecular orbitals 

on the other hand are approximated by a linear combination 

of 8 basis functions; 6 centred on A and 2 centred on H. That 

is 

' ' +3dA+4fA+lsH+lsH+2sH+2pH) 

I II Ill 

W = (~2pA+TI2pA+n2pA+n2pA+n3dA+n4fA+n2pH+n3dH) 

aThe wave function for LiH is an exception in that 
one of the 2pA functions is s~bstituted by 3pA. 



II AN ANALYSIS OF THE BINDING IN TERMS OF THE 

CHARGE DISTRIBUTIONS 


a) TOTAL MOLE CULAR CHARGE DISTRIBUTIONS 

The three-dimensional one-electron charge distribution 

is obtained by plotting the function 

-+ 
p (r) = 	L n. cp2

i J_ i 

for different values of r. Here the summation is over all the 

occupied molecular orbitals cp., each with an occupation number 
1. 

n. equal to 1 or 2. By joining together points of equal charge
l. 

density the contour maps shown in Fig. XI were obtaineda. 

These represent the total charge distribution in a plane pas­

sing thr ough the A and H nuclei where the outer contour in 

each molecule is 0.002 a.u. which encloses over 95% of the 

total charge. 

The length of the molecule L is defined as being the 

distance between the points where the 0.002 a.u. contour cros­

ses the internuclear axis. If rA and rH are taken to represent 

the distances of the .A and H nuclei out to the 0.002 a.u. con­

tour respectively (see Fig. XII) ,then these together with L 

have been measured and are listed in Table VIII. The length 

L determines the molecular size. This is a very useful con­

cept since several of the latter numbers of the series (NH 

and CH) have been trapped as impurities in rare gas and other 

(80) .molecular crystals. A knowledge of the specific sizes can 

a see Appendix (12) 
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be used to predict, for example, the substitution of CH or NH 

for a neon atom in solid neon and the distortions one might ex­

pect. 

The length L takes on its lowest value for the HF 

molecule and increases regularly with increasing bond length 

through the series up to LiH where there is a sudden drop. 

The distance of the A atom to the 0.002 contour, rA, parallels 

the behaviour of L there being an almost constant increase of 

0.3 a.u. going from HF to BeH with again a sudden drop for 

The size of the non-bonded region on the hydrogen 

nucleus on the other hand increases regularly, as indicated 

by rH, through the series from a value of 1.9 in HF to a 

value of 2.9 in LiH. In fact the ratio of the molecular length 

to the bond length, L/R , which is related to the rate at 
·e . 

which density falls off on the non-bonded side of the nucleus, 

takes on an almost constant value. LiH is however exception­

al, due to its anomalous length L, where here the ratio L/R
e 

drops significantly from 3.7 to 2.6. 

While the actual changes in the atomic density dis­

tribution of the separated atoms and the appropriate united 

atom relative to the molecular density distribution will be 

considered in detail later, it is useful to obtain an idea 

of the relationship of the ."size" of the molecule relative 

to the size of the separated atoms A and H. For this reason 

the radius of the appropriate separated atom is also given 
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in Table VIII. In HF rF is slightly less than its atomic 

value of 2.8 whereas· ~e in BeH is slightly greater than its 

atomic value of 3.6 with rA for the intermediate members 

consistent with this gradual change. Once again LiH is ex­

ceptional where now the molecular rLi value of 1.7 is almost 

one-half the atomic value of 3.2 and very nearly equal to 

the radius of the Li+ ion (which is 1.8 bohr). This together 

with the unusual length of the LiH molecule is indicative of 

a charge removal from the non-bonded side of the lithium 

nucleus. 

Since the radius of the 0.002 contour in an isolated 

hydrogen atom is - 2.5 a.u. and keeping in mind the fact 

that rH for H is expected to be greater than this then the 

anomalous short length of LiH seems to result from a transfer 

of charge from near the Li nucleus to around the proton. 

Moreover the major fraction of negative ~harge in LiH appears 

as monocentric contours which can be considered as density 

localized on the Li nucleus. This charge transfer appears 

counter to, but not inconsistent with, the behaviour of the 

remaining first-row hydrides. In this series HF to BeH den­

sity is rather transferred in the opposite direction that 

is to say from the proton to· the A atom. The number of 

negative contours around the proton decreases and in HF such 

contours have almost disappeared the molecule now resembling 

a fluoride ion polarized by a proton. 

This reversal in charge transfer is also borne out 
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by the direction of outer polarization as indicated by the 

dipole moment. The dipole moment is determined by averag­

ing the charge distribution over the operator~= r cos e 

and consequently its magnitude and direction is governed 

by density in the outer regions of the molecule. Examination 

of the outer density contours in the total density maps in­

dicates that there is a change in the direction of polar­

ization between BeH and BH · in accordance with the change in 

sign of the observed dipole moment µ (Table VIII) . 

If the allocation of charge in these density maps 

is known then they can be used for a more quantitative dis­

cussion. One way · to determine 'how much charge is trans­

£erred or remains in a particular region of the molecule 

can be obtained by integrating the charge density, which is 
2 

elliptical coordinatesa will be I iµAH ( ~, n_, ct>) I • Integration 

over all space will just give the total number of electrons 

N. However, integration over certain restricted volumes will 

give the charge contained in these volumes. By taking a 

grid of 0.02 a.u. and assuming that the density contained in 

the volume element (.0008 x n x Y) is constant, where for 

example 
~- 0. 02 a. u. 

T'r·t.~ 0.02 a.u. 

y • . 

a see Appendix (2) MILLS MEMORIAL LIBRARY 
McMASTER UNIVERSITY. 
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the amount of charge on the non-bonded side of A and H can 

be calculated. The size of the grid chosen in the numerical 

integration is important and obviously the smaller it is 

then the more accurate the result. Such calculations are 

however limited by the number of iterations necessary to 

span a particular volume and hence the computational time. 

A value of 0.02 a.u. was considered reasonable as shown by 

integrating the total molecular volume. In the case of LiH, 

for example, this led to a total of 3.99 electrons as com­

pared to the expected value of 4. As further proof calcula­

tions were recorded using a 0.01 a.u. and 0.005 a.u. grid and 

the values obtained were invariant in the first two decimal 

places to those obtained using the on2 a.u. grid. 

The non-bonded charge on A corresponds to the amount 

of negative charge contained within the volume bounded by a 

plane perpendicular to the bond axis and passing through the 

A nucleus (see Fig. XII.) Similarly defined is the non-bonded 

charge on the hydrogen nucleus. 

The computed values of the atomic and molecular elec­

tron populations, as obtained by the numerical integration 

technique, are listed in Table IX. The atomic populations 

are defined by placing the A and H atoms in their ground 

state and at the equilibrium bond length R and integrating
e 

over the appropriate volume. 

If the A or H nuclei did not penetrate the electronic charge 
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on t he H and A atoms respectively then the total number of 

electrons in the three defined regions before molecular for­

mation could be readily calculated. Thus for example the 

2 2Be and H atoms with electronic configurations ls 2s and 

ls respectively would place le in the non-bonded region of 

the Be atom, O.Se in the non-bonded region of the H atom 

and 2.Se in the overlap region. The fact that 0.56e are 

found in the non-bonded region of the hydrogen atom shows 

that this nucleus has penetrated the atomic charge cloud on 

the Be atom to the extent of 0.06e-. 

The amount of non-bonded charge on the A nucleus 

before molecular formation approximates very closely the 

value· expected for the free atom and even in HF the hydrogen 

atom contributes only 0·.04e to . the non-bonded charge on F. 

On molecular formation the electrons will redistribute 

themselves. In an ionic description of LiH the single 2s 

valence electron in the Li atom will be transferred to the 

hydrogen atom. This leaves an inner-shell of two ls electrons 

on Li which, for reasons descriped previously, will polarize 

counter to the electron transfer. If this is the case then 

the number of electrons on the non-bonded side of the Li nu­

cleus should be slightly greater than 1. A value of l.09e­

is obtained. Similarly the ionic model for BeH demands an 

occupati on of l.Se in the non-bonded r egion of Be. The 

valu e o f l.96e- actually fo und indicites that the net amount 

of charge present in this region has not changed from the 
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atomic value. In the remaining members of the series, the 

formation of the molecule results in an average increase of 

0.23e over the atomic value of the population in the non­

-bonded density on A. Note that the presence of the F ion 

-in HF would require an increase of O.Se over the atomic 

value in the non-bonded region, or 0.25e more than is 

actually found. Turning now to the non-bonded charge on the 

hydrogen then again the series is clearly divided at BeH. 

The increase in the non-bonded charge on H in LiH is indicative 

that the charge lost by the Li atom in molecular formation is 

now on the H. For BH ~ HF this charge migration is rather 

in an opposite direction from the H atom to the A atom, being 

the greatest for HF and the least for BH. 

While the non-bonded charge population may be used 

as a ne~essary condition for the presence of ionic species 
I 

in a molecule, it is not a sufficient one since it gives no 

information of how the charge is distributed on the bonded 

side of the nuclei. Nevertheless the variat'ion in the number 

of non-bonded charges found in the hydrides is suggestive . 

of an ionic description for LiH, an equal partitioning of the 

charge for BeH and an unequal sharing of the charge distribu­

tion in the remaining molecules. 

Just as the total molecular density can be divided 

into bonding and non-bonding regions it can similarly be 

divided into binding and antibinding regions. According to 

the arguments of Berlin f or a diatomic molecule AB with nuclear 
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c h a r ges ZA and ZB then these regions are defined according 

to whether the quantity 

where 

A B 

is positive or negative respectively. For the case when 

ZA > ZB, as in the hydrides considered here, then the boun­

dary surface through ZBcurls back into itself and forms an 

enclosed · region (Y) while the other boundary surface through 

A extends in both directions (X) . 

z 

x 

A B 

As the di ffe rence between the n uclear cha rges ZA and ZB i n­

creases then the volume of the enclosed antibinding region Y 
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decreases and the surface defining the X region approaches 

aplane perpendicular to the bond axis. The number of elec­

trons contained in the regions X,Y and Z, within the boun­

dary curves F(~ 1 n) = 0 have been calculated in a manner 

similar to that described previously. These values together 

with the shapes of the binding and antibinding regions are 

given in Fig. XIII. While in every case more charge is 

placed in the binding region it is the magnitude of this 

charge and in particular its location with respect to the A 

and H nuclei that is important in determining the bond type. 

For the series HF to BeH .there is an almost constant 54% of 

the total electronic charge contained in the binding region 

z, BeH is intermediate with 57% and LiH contains 65%. This 

together with the anomalous distribution or partition of 

charge in LiH would suggest a different binding mechanism 

than in the remaining members of the series with BeH as in­

termediate between the two types. 

·while the analysis of the total charge distribution is 

suggestive of the kind and variation of the bonding in these 

molecules it does not allow for an unequivocal decision to 

be made for any of the species. The question as to whether 

the density is best described as shared or localized has not 

been answered. To answer this question one must be able 

to partition the total charge density in some unambiguous 

manner and this is impossible, particularly for the density 

in the region between the nuclei, if one considers . the total 

density maps. However, the difficulty of partitioning and 
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describing the character of a total charge distribution 

may be overcome in an objective manner through the use of 

density difference maps. 

(b) THE DENSITY DIFFERENCE DISTRIBUTION 

The density difference distribution as represented by 

a contour map shows the net re-organization of charge den­

sity on molecular formation. By . taking some standard atomic 

density p which is known to be insufficient to balance the 
0 

nuclear forces of repulsion then the molecular minus atomic 

density maps show the regions to which charge is either re­

moved or transferred to obtain a state of electrostatic equi­

librium and hence a stable chemical bond. One can, for ex­

ample, consider the hydride molecules AH as being formed from 

the separated atoms A and H. By placing the atoms A and H in 

their ground state and at the equilibrium AH bond length then 

the migration of charge density with bond formation can be 

related to the nature of the bond. An alternative descrip­

tion would be to consider the difference between the charge 

density distribution of the molecule AH and the charge den­

sity distribution of the united atom (UA) coincident with the 

A nucleus in AH. Here bond formation is identified with the 

removal of a proton from the united atom to the equilibrium 

bond length Re and now the contour maps are given the symbol 

6 PUA ( t;,' n) . 

Consider first the density difference distributions 

involving the separated atoms, 6pSA(t;,,n). These are given 
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for the first-row hydrides in projection in Fig. XIV and in 

profile in Fig. XV. The dashed contours denote that the value 

of the molecular density distribution is less than that obtained 

from the overlap of the atomic densities and hence that charge 

has migrated away from these regions in the formation of the 

molecule. The solid contours denote an increase in the mole­

cular density over the combined atomic densities. To ob­

~ain the maximum amount of chemical information from such a 

density different plot the densities of the atoms are taken 

to be in a valence state. Each atom A, in its ground state, 

will be in an axial electric field. If this field and the 

Z-direction are made coincident then there will result a 

splitting of the mi = +- 1 and mt = 0 components of the three­

+fold degenerate t = 1 atomic orbital on A. The m.ll = - 1 

components (~ PIT) although still degenerate are lowered in 

energy an~ the mt= 0 component (~P 0 ) increases in energy. 

This would imply that the atomic density distribution should 

be derived from the ML = 0 component of the atomic ground 

state with the exception of CH and OH for which equal mix­

tures of ML = ± 1 should be employed. Such a description 

preserves the very useful picture of a chemical bond for­

mation given by the valence bond theory since a spherical 

average over the ground state configuration would neglect 

the preferred direction towards the ·other atom. Thus for 

elements with partial occupation of the p orbitals this 

procedure results in a valence state density with a single 
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vacancy in the 2po orbital and in an averaging of the re­

maining P electrons in the 2pn orbitals. Finally since in 

all the 6p maps calculated Hartree-Fock wave functions are 

employed both for the molecule and for the separated atoms, 

these giving the one-electron density distributions correct 

to the second order, it is expected that the main and charac­

terizing features of the 6pSA and 6pUA' contour maps are 

correctly represented. 

Turning to Fig. XIV and the 6pSA diagrams for the 

hydride series the most striking feature is the large re­

moval of valence charge from behind the Li nucleus, as in­

dicated by the dashed contours, not present in the other 

molecules. There is also a large build up of charge, which 

can be considered localized on the hydrogen nucleus. Politzer 

and Brown (81) have recently given a similar 6pSA map for 

LiH which employs the very elaborate wave function of Browne 

and Master (82). While the LiH wave function is far beyond 

the Hartree-Fock quality used here, for some reason Politzer 

and Brown chose to also use the Hartree-Fock wave function 

for the lithium atom in constructing 6p A. Thus their LiH8

and Li densities are of considerably different quality. How­

ever a comparison of Fig. XIV with their 6pSA does show 

essential agreement of the qualitative features but unfor­

tunately a quantitative comparison was not possible with the 

data given by Politzer and Brown. The depletion of charge 

on the non-bonded side of Li and the build-up of charge on 
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the hydrogen nucleus can be identified with a charge trans­

fer from Li to H. Moreover the extreme localization of the 

density on the hydrogen nucleus, as .shown by the total density 

map as well , places a restriction on the direction of polari­

zation of the density localized on Hand of the . density 

remaining on Li. It is clear that the transfer of charge to 

a region which is localized on H and excludes the Li nucleus 

will lead to the creation of a net negative electric field 

at the Li nucleus .. Furthermore, if the localized charge was 

symmetrically placed with respect to the H nucleus this nu­

cleus would experience a net positive electric field origina­

ting from a partially descreened Li nucleus. For an ionic 

Li+H- description therefore there must be a polarization of 

the density surrounding the A and H nuclei in a direction 

counter to the electron transfer and hence counter to the di­

rection of the bond dipole moment. The magnitude and direction 

of this atomic polarization at the Li and H nuclei is determin~d 

by the distribution of charge in the immediate vicinity of 

these nuclei. The inner contours on H are indeed polarized in 

the right sense as is the transfer of charge from . the bonding 

side of Li to its non-bonding region. 

In the remaining members of the series BeH ~ HF an 

increasing amount of charge is removed from the non-bonded 

side of H, indicated by the magnitude and numbers of the 

dashed contours. The density difference maps for these hy­
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drides all show the density increase on A to be polarized 

o- 8+away from the positive end of the bond dipole A H More­

over the polarization of the density on H is directed towards 

the A atom and hence the negative end of the dipole. Such 

polarizations were also found for the homonuclear diatomics 

and are thus suggestive of a covalent binding scheme. Here 

the charge transfer from H to A is not of sufficient mag­

nitude nor sufficiently localized that the cations see a 

net negative field and the anion a net positive or repulsive 

field. In these molecules charge is also removed from a region 

that resembles a slightly inward polarized p atomic function 
TI 

centred on the heavy nucleus A; IT-density, because of its 

location, has little effect in binding the nuclei. Compared 

to say the 2pa density which lies along the internuclear 

axis it exerts a minimum shielding of the A. nucleus from the 

proton. In the formation of a molecule however this density 

is put to a more beneficial use where now it is partially 

transferred to the regions kand B (see Fig. XVI). The pattern 

of this charge increase can, in an orbital approximation, be 

associated with the presence of a 2pa atomic orbitala. The 

3a molecular orbital singly occupied in BeH and doubly oc­

cupied in the other hydrides BH + HF, will at large inter­

nuclear separations correlate with a 2pa on A and with a ls 

atomic orbital on H. According to the arguments of Blinder 

a Although the 2p atomic orbitals are unoccupied in 
the Be atom, it is the promotion of the valence electron 
into a 2pa atomic orbital, brought about by the formation of 
the molecule. 
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it is the relative energies of the atomic orbitals on A and 

H that, at the equilibrium bond length, will determine whether 

the molecular orbital has mono or bicentric character. Be­

cause of the close similarity in energy of the Hls,A2s and 

A2p atomic orbitals on B and C, s (H), s (A) and e (A)' 1 s 2s 2p 

respectively, one would expect the bonding orbital resulting 

from mixing these atomic orbitals to be delocalized over both 

nuclei in BH and CH. On the other hand one would expect 

~s !s2s(A) I - is2p(A) I >>lsls(H) which is progressively 

the case in NH, OH and HF, this particular orbital (3o) 

should simulate the features of a distorted 2po atomic or­

bital on A. The bonding in the hydrides, from these con­

siderations, can therefore only be considered bicentric in 

as much as the proton lies within the compass of the 2Po 

atomic orbital. The common charge accumulation in the density-

difference diagrams does support this view. As the energy 

difference between Hls and A2p increases, that is go from 

BeH ~ HF, then the molecular orbital becomes increasingly 

localized on A as a 2po atomic orbital. This being the case 

thei the change in shape through this series of the two re­

gions of charge increase, A and B, can be identified with an 

increasingly localized 3o molecular orbital on A with a 

proton embedded in its extremity. 

The gradual and almost constant change between each 

member in the series BeH ~ HF suggested in the 6pSA maps is 

even more impressive when the valence state of the A atom is 
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substituted by its sphericalized density. For the Li,Be and 

N atoms the two approaches will, of course, be the same. How­

ever for B, C, 0, and F each of the AP orbitals will now 

contain 1/3, 2/3; 4/3 and 5/3 electrons respectively instead 

of the valence state 1. The ~PSA maps obtained are given in 

Fig. XVII . The unusual change in the shape of the OH and HF 

contour maps, although not being inconsistent with the new 

BeH +HF ~P series, is now due to the large increase in theSA 

atomic density along the internuclear axis brought about by 

the increased population of the 2pcr atomic orbital. This same 

general pattern through the series BeH + HF again persists 

with BeH and HF as the two extremes. Moreover the anomalous 

density shifts observed for LiH not present in BeH and the 

remaining members of the series is not a result of the .method 

of calculation since both Li and Be have spherical atomic den­

sities. 

Whether one wishes to consider molecular formation 

from the sphericalized atomic densities or from the valence 

state approximation is dependent on which approach contains 

the most relevant information. In many cases the two methods 

can be used to supplement each other since features not im­

mediately obvious by one treatment might stand out in a second. 

The valence bond idea of a two-electron two-centre bond, which 

would correspond in a ~PSA map to placing one electron in a 

2p cr atomic orbital on A, is however more physically and chemi­

cally int erpretable. For this reason all the ensuing results 
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will be quoted for the ~PSA maps of Fig. XIV. 

The identifying features of the ~PSA maps are also 

borne out in the profile diagrams, all drawn to the same scale, 

of Fig. XV. These profiles represent the change in density 

that occurs along the internuclear axis on molecular formation. 

The density distribution along this axis is most important 

since it exerts a maximum effect on both the nuclei. Again 

the similarity in the profiles BH + HF is striking. The in­

creasing size of charge build-up on either side of A with a 

negative region at t~e A nucleus is characteristic. The 

maximum in the overlap density which is almost directly above 

the proton in BeH gradually broadens through the series and 

moves to the centre of the bond. This would suggest that the 

polarity of the latter members, as indicated by the position 

of this shared density, increases in the sense Ao- H0+. The 

removal of negative charge from behind the proton is also 

evident and its magnitude increases with decreasing R • One e 

further point to note is that the maximum appearing to the 

right of the A nucleus in BH + HF is lacking in both LiH and 

BeH. 

Despite the slightly different features in the den­

sity di fference and profile maps for BeH + HF there is really 

no strong evidence for a discontinuity in the bond type pre­

dieted by Fajans and Blinder. Rather a gradual change seems 

evident with BeH as one extreme and HF as the o ther . 

Table X lists the total amount of negative charge 
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which is transferred to and contained in the two isolated 

regions of charge accumulation. These values were obtained 

by the numerical integration technique using a 0.02 a.u. 

grid . The letter A denotes the region defined by the zero 

contour on the non bonded side of the A nucleus (see Fig.XVI), 

and B the region enclosed by the contour which encompasses 

the proton. The zero contour which defines the B region also 

includes all of the density increase in the binding region 

and is thus of particular interest. The amount of charge 

contained and transferred to this region together with the 

shape of the defining contours and hence the position of the 

charge increase are of primary importance in determining the 

nature of the binding. 

In LiH the contours of charge increase in the B region 

are spheroidal in shape and as such can be considered as a 

localized increase on the hydrogen. In fact this density 

simulates the case that an H ion might be present. Exactly 

the same state of affairs exists in the ~PSA maps for LiF 

where now the contours of charge increase around the F atom 

can be considered localized. While the charge increase in 

this region is localized in both LiH and LiF there remains 

the problem of partitioning the total charge density. The 

value of 0.55 e listed in Table IX is the amount of charge 

transferred to near the H nucleus, it does not represent the 

increase in charge from the free atomic value. This number 

represents the density increase of the molecule, in this 

region, over and above the sum of the atomic Li and H densities 
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since charge density from the Li atom is also placed in this 

region. To obtain the total charge contained on H and F in 

LiH and LiF, which should in an ionic Li+H- and Li+F- de­

scription be ~ 2e and ~ lOe- resp~ctively, then to a good 

approximation the total density distribution can be integrated 

over the volume bounded by the zero contour defining the B 

region in the ~PSA maps. This integration yields a total 

of l.83e for LiH and 9.84e for LiF. Both these values are 

< 0.2e below that expected for a charge increase of le-. The 

density distribution does however extend beyond the zero 

contour line of the B region and some discrepancy is expected. 

For the remaining members of the series the density in­

crease in the B region is rather shared in increasing amounts 

by the two nuclei A and H there being a strong polarization 

towards A with once again BeH acting as an intermediate. The 

position of this density increase and especially its relation 

to the two nuclei is important in determining molecular pro­

perties. Consider, for example, the electric field gradient 

at the proton obtained by averaging the charge distribution 

- 3 (3 2e - l)a. It . th t thover the operat or rH cos -H is seen a e 

proton gradually shifts its relative position from near the 

centre of the~pSA map for LiH to a point on a steep gradient 

of the ~PSA map for HF. This would suggest that the electric 

field gradient at the proton in the series LiH~ HF would 

c hange systematically through the series from a small, near-

a see page 57 
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zero value, at LiH to a much larger value at HF. This is 

actually the case found in the calculated values of the 

electric field gradients at the proton (82). 

The density increase on the non-bonded side of the 

A nucleus, within the region defined by the zero contour, is 

almost completely contained in Berlins anti-binding region. 

Both the small positive value of this increase in LiH together 

with its localized nature is indicative of a redistribution 

of the inner ls 2 density. Such a redistribution is completely 

consistent with an atomic polarization necessary for an ionic 

Li+H- description. In contrast the much larger and diffuse 

increase observed for BeH and the other hydride molecules 

seems to involve the redistribution of valence-shell density. 

The amount of charge contained in and transferred to the A 

region is however not easy to interpret. The fact, for 

example, that the charge increase ~A in the hydrides BH, CH 

and NH is the same rising slightly for OH and HF cannot readily 

be understood except perhaps suggesting a similarity in the 

binding mechanism. 

In summary, on the basis of the total density dis­

tributions and the density difference maps, the binding in 

LiH is ionic, the binding in BH, CH, NH, OH and HF is covalent 

and the binding in BeH is intermediate between these two 

extremes. The common bond or overlap density in the covalent 

mo lecules is, however, unequally shared between A and H. This 

. o+ o-unequal sharing is a maximum for HF in the sense H F 
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and a minimum for BH. From BH + HF the majority of the charge 

increase occurs at A but it changes character from being de­

localized over both nuclei to being centred principally near 

A. In BeH , which appears completely ambiguous referred to 

these two limiting classifications, the principal charge 

increase is near the proton. 

The similarity of this hydride series to the ap­

propriate united atom, centred on A, has led to a number of 

simplified models that approximate the nature of the bindi~g. 

These models consider the electrostatic equilibrium of a 

proton embedded in the charge density of either A or the 

united atom with or without polarization. Hund ( 8_3) ,_· for ex_~;mple, , 

has shown that the observed spectroscopic data for the first-

row hydrides can be predicted on the single assumption that 

the hydride molecule (e.g. NH) is equivalent to the cor­

responding united-atom (e.g. 0) in a strong electric field. 

Platt (84) has similarly made excellent predictions, for the 

interatomic distances and force constants of the diatomic 

hydrides, again assuming the density of these hydrides was 

not far removed from the united-atom. Another line of in­

vestigation has used wave-functions whose basis set is 

e'entred solely on the heavy nucleus ( 8 5) . 

In all of these treatments the departure of the united 

atom density from the molecular density is of prime impor­

tance. For this reason we have given in Fig. XVIII the ~PUA 

contours resulting f rom s ub tracting the appropriate united­
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atom densities from those of AH (at R = R ) . The allowed e 

spectroscopic states of the united atom can be obtained in 

the usual way. However, we are only interested in that atomic 

state which corresponds to the same spin multiplicity as the 

molecular state, lies lowest in energy and has the correct 

component of orbital angular momentum about a chosen axis. 

Thus for example BH(lL+)_ will, in the united atom approxi­

mation, correlate with the C atom which has a valence elec­

2tron configuration p . This gives rise to the atomic states 

3 1 1 1 1
P, D and S. The D and S have the correct spin multi­

plicity however the 1 D, with the highest L value, lies lowest 

in energy and consequently we are required to find the charge 

density for the ML = . O component of this state. Bingel (86) 

was able, using the results of Companion and Ellison (86a) to de­
1 

compose the atomic charge distribution into terms of different 

angular symmetry and has listed for the ML component of each 

term the appropriate orbital coefficients. By averaging the 

charge contained in the Pn atomic orbitals (p+ and P_ in 

Bingels notation) the coefficients of the atomic orbitals in 

the coriect united atom term can be obtained and these are 

given in Table XI. In two cases, BH and CH, the united atom 

is not the ground term. These ground terms would be respec­

tively 3p and 
4
s,however,a correlation with their respective molecu­

1 + 2
lar states L and n,would correspond to a change in the spin 

multiplicity. For this reason the states of BH and CH cor­

2relate with the 1n state of C and the n state of N, respec­

tively. 
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The negative contours in the immediate vicinity of 

the A nucleus in the ~PSA density difference maps is the 

result of a decrease in nuclear charge obtained when a proton 

is removed from the united atom nucleus. The united atom 

having the larger ·(ZA+l) nuclear charge will place more den­

sity in this region. In every case the symmetry of the united 

atom is distorted in the formation of the molecule. The 

charge increase in the region of the proton, almost symmetri­

cally placed in the case of LiH and slightly polarized towards 

the F atom in HF shows that the uniteq atom greatly under­

estimates the density at the proton. This itself is not sur­

prising but the degree of difference is unexpected. The large 

removal of valence charge from the Li nucleus in LiH is again 

consistent with an ionic descri~tion Li+H-. The density 

increase in this .molecule and BeH is confined primarily to only 

the region around the proton. In BH and CH the charge build 

up is both around the proton and on the non-bonded side of 

A. In NH, OH and HF these two regions of accumulation coalesce 

into a single region and the AH charge density is thus seen 

to exceed the united atom density in all regions except 

around the A nucleus. In the series BeH-HF the ~PUA maps are 

in agreement with the previously concluded A8-H +8polarity, 

where an increasing amount of charge is transferred from the 

H atom to the A atom. I n fact the pulling out of a proton 

from the Ne nucleus to form HF simulates , as did t he t o tal 

density distribution the presence of a polarized F ion. 
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Cade and Huo(87) have recently pointed out the more­

or-less constant decrease in the correlation energy of AH 

at R relative to the correlation energy of the united atom e 

for the first- and second-row hydrides. The correlation 

energy arises because of the electron-electron repulsion 

energy not taken into account in a Hartree-Fock treatment 

where here the position of each electron depends only on 

the average position of the others. It is usually defined as 

being the difference between the relativistically corrected 

experimental energy and the Hartree-Fock value. Because of 

the decrease in the molecular minus united atom correlation 

energies the ~PUA diagrams should show some constant charac­

teristic consistent with this. Consider first the increase 

in charge, around the proton contained within the 0.02 a.u. 

contour. Both the ·shape and magnitude of the contours in­

dicate the remarkable similarity of this region for the hydrides. 

Since this increase in charge is almost constant in the ·series 

LiH ~ HF more charge will be left on the A nucleus. There 

will thus be a slight decrease in the importance of instanta­

neous repulsions or electron correlation in the hydrides. 

Although a great deal of information is contained 

in the density and density difference charge_distributions 

it is impossible to giv~ a quantitative discussion of the 

bonding in terms of them. In the case of LiH, for example, 

it would seem that an ionic description is appropriate, how­

ever, just how close it approximates to an ideal separation 
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of equal and opposite charges is not answered. The infor­

mation contained in these maps must somehow be related to 

a property of the molecule that enables a fuller and more 

definite discussion of the bonding. For such a direct 

relationship to be possible the physical property 

chosen must be dependent only on the coordinates of one 

electron at a time . 



III AN ANALYSIS OF THE BINDING IN TERMS OF THE 

FORCES EXERTED ON THE NUCLEI 


a) INTRODUCTION 

The very existence of a stable molecule demands that 

the nuclear forces of repulsion are balanced by the electro­

static forces of attraction. It is not sufficient for the 

vector sum of the forces on the nuclei to vanish, for this 

is true at all internuclear distances. Thus for a diatomic 

molecule at any R value 

and at R = R e 

F (R ) = - F (R ) = 0
A e B e 

These equalities are also formally true (but in practice 

only approximately valid) when the forces acting are calcu­

lated using Hartree-Fock wave-functions (88,89). The well-

known Hellmann-Feynman theorem (25,25A) indicates how to 

calculate these forces making use of the total molecular 

charge density determined by quantum mechanical calculations. 

However, the Hellmann-Feynman theorem is valid for only a 

restricted class of approximate wave functions, but this 

includes the Hartree-Fock wavefunctions for closed-shell 

cases and open-shell cases considered here (8~) 

According to previous arguments the net forces 

122 
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the AH molecule will be given as 

' ' where QA and QH represent · the number of virtual charges which 

when placed on the A and H nuclei respectively exert the same 

field at the H and A nuclei respectively as does the density 

distribution in the molecule. Because of the three basic 

electron populations pA' · pAB and pB each Q will be the _sum 

of three components - atomic, overlap and screening. 

In an orbital approximation to the total wave function 

it is found more convenient to define a quantity f. for eachix 

molecular orbital as being the force exerted on nucleus x by 

the density contained in the ith molecular orbital multi­

plied by R2 . If~. represents the ith molecular orbital with 
e 1 

an occupation number n. equal to 1 or 2 then in a diatomic 
1 

molecule the total electronic force on A will be 

- ZA n. J~~E . 1 1 
1 

and on H 

Therefore 

E fiA = 
i 
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and 

J22 cos0>H 
L f. = - R L nl. ~l· dT 
. iH e i' 2 
i rH 

where now, for example, each fiA is numerically equal to, in 

dimensions of electronic charge, the number of point charges 

which, when placed on the H nucleus, exerts the same field 

at the A nucleus as does the density_distribution in the ith 

molecular orbital. Each fiA value can be either attractive 

or repulsive. They can thus be used as a quantitative gauge 

of the binding or antibinding characteristics of the ith 

molecular orbital using a significant reference standard (65, 

66) In these studies the reference standard is based on 

the contributions to the forces on A as R + 00 • Clearly ~t 

large R the unperturbed atom A possesses a centre of syrrunetry 

and exerts a zero net force on nucleus A. One may interpret 

the vanishing of the force at large R as resulting from each 

electron on B screening one of the .nuclear charges on B from 

nucleus A. Thus the limiting value at R +oo of the sum 

of the partial forces for nucleus A is the total electronic 

charge on atom H. Similarly the limiting value at R + oo of 

the sum of the partial forces for nucleus A is the total elect­

ronic charge on atom A. At the equilibrium bond length R = R , 
e 

where once again the resultant forces on the A and H nuclei 

are zero 

L f .A (R) = ZB L . f . T ( R ) = ZH 
i i e i.n 

T e 
i 
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The electronic contribution to the force on the A nucleus 

at any value of R may thus be equated to an effective number 

of charges situated at the B nucleus, this number being the 

sum of the partial forces. At Re the sum equals ZH. At 

intermediate distances it exceeds ZH, corresponding to a 

net force of attraction, and for large R the sum reduces to 

the number of electronic charges which correlate with the 

separated H atom. This suggests that th~ limiting value of 

each individual fiA should be taken as the number of elect­

rons in the ith molecular orbital which correlate with the 

H atom for large values of R, NiH: 

00fiA (R + ) = NiH ( = O, 1 or 2) 

Similarly the limiting value of fiH should be taken as the 

number of electrons in the ith molecular orbital which cor­

relate with the A atom for large values of R, NiA: 

fiA(R + 00
) = NiA(= O, 1 or 2) 

Unfortunately the correlation of the various molecular or­

bitals ~. into atomic orbitals centred on A and H is not 
i 

rigourous. However, Mulliken (91) has pointed out that the 

electron configuration of any state of a diatomic hydride 

can usually be - obtained by assuming that the electrons of 

the heavier atom are unchanged with respect to their quantum numb­

ers · (they do ,of course, assume definite A values) while the 

hydrogen electron is promoted to the lowest-energy o orbital 

which has at least a single vacancy. The e l ec t ronic con­
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2 "2 nfiguration of the first-row hydride~ are lo 2o 3a , 

n = 0,1,2 for LiH, BeH and BH respectively and 10 2 2o 2 3o 2 lnn, 

n = 1,2,3,4 for CH, NH, OH and HF. Following Mulliken's 

arguments a correlation of the Hls orbital with the 2cr mole-. 

cular orbital in LiH and with the 3o molecular orbital in 

the remaining hydrides is anticipated. The lo, 2o, 3o and 

ln molecular orbitals then correlate with the ls, 2s, 2po and 

2pn atomic orbitals respectively on the A nucleus. BeH does 

not however fit neatly into either of these correlation 

schemes since the ls orbital on H is considerably more stable 

than the 2s orbital on Be. 

At the equilibrium bond length the actual dispos~tion 

of charge in a molecular orbital will determine the m~gnitude 

and sign of each f .A(R). Although by necessity at this 
i e 

bond length L: f.A(R) must equal the nuclear charge on H 
i ei 

each f. A (R ) can in general be . greater than, equal to or less 
i e 

than NiH leading to the following definitions 

f.A(R) > bindingNiHi e 

f.A(R) - nonbindingNiHi e 

f.A(R) < antibindingNiHi e 

In a similar way the binding, nonbinding or antibinding char­

acter of the ith molecular orbital with respect to the H 

nucleus can be determined by comparing the f .H(R) value with 
i e 

NiA. Furthermore a comparison of the partial forces on the 

A or H nuclei for a particular orbital in the series BeH ~ HF 
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(which possess a common correlation scheme) will provide a 

quantitative comparison of the effectiveness of this orbital 

charge density in binding the nuclei. 

Just as the total charge density can be broken down 

into the three basic electron populations - atomic, overlap 

and screening so can the constituent molecular orbitals. 

Each molecular orbital is approximated by a linear combination 

of atomic functions centred on A and H, x1 and x~ respectively 

A B cp. = r c. . x. + r c . k xk 
J_ j J.] J k 1 

A AThe atomic, overlap and screening populations - X· x., ,
J J 

A H d H H . 1 '11 h . b xj xk an xk xk' respective y wi t us contri ute an 

atomic, overlap and screening force to each fiA. As a con­

sequence of this fiA can now be written as 

and similarly for f iH 

(AA)For example, f C= atomic force) denotes the contributioniA 

to the partial force on nucleus A from the atomic population 

on A fI~) <= overlap force) denotes the overlap contribution 

to the partial force on A from the overlap population and 

(HH)
f iA <= screening force) denotes the contribution to the 

partial force on A from atomic density centred on H. 

As important as the amount of charge in determining 

the binding in a molecule is the exact disposition of the 
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charge, whether it is polarized or whether it is diffuse or 

concentrated. The binding, nonbinding or antibinding nature 

of a particular molecular orbital can thus be described in 

t e rms of an atomic, overlap or screening contribution to its 

partial force. Moreover since the three components of each 

partial force are independent of both the nuclear charge 

and the equilibrium bond length it is possible to compare 

their values in a series of molecules for which A changes. 

This is particularly useful since it provides a quantitative 

assessment of the relative binding abilities of the orbital 

charge densities both for a given molecule or through a 

complete series of molecules. 

As R ~ then because the charge distribution around00 

the A and H nuclei is centrosynunetric f iA and f iH will simply 

reduce to the screening f l~H) and fl~) contributions respec­

tively which in turn are given by NiH and NiA. At R = R ,e 

however, the screening contribution will, in general, differ 

from the actual atomic population on A(or H) as the charge 

density on A, (or H) may be diffuse and hence partially pene~ 

trated by the proton (or A atom) at R or it may be polarizede 

either towards or away from the proton (or A atom). Similarly 

the magnitude of the overlap contribution is dependent upon 

whether the overlap charge density is diffuse in nature or 

concentrated along the inter-nuclear axis. Any inequality in 

the sharing of the overlap charge density by the nuclei in 

a heteronuclear molecule is made evident by the difference in 
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the partial forces. 

b ) AN ANALYSIS OF THE BINDING IN TERMS OF THE PARTIAL FORCES 

The partial forces for the la density together with 


their atomic, overlap and screening contributions are given 


in Table XII. The la molecular orbital correlates with , 


at large values of R, a doubly occupied ls atomic orbital on 

A. Because of the spherical symmetry of such an orbital the 

value of flaA( 00 ), which is a measure of the force on the A 

nucleus due to the ls density on A, should be O. The value of 

flaH( 00 ) on the other hand is expected to be 2 due to the 

fl~) (00 ) screening contribution. Because the ls orbital en­

ergies of the first-row elements all lie well below that of 

the Hls orbital (see ~able XIII) the la molecular orbital 

should be essentially localized on A as ls 2 in the molecule. 

This is borne out in the la density maps of Fig.XIX, which 

consists of spherical contours centred on the A nucleus. 

In every case the radius of the 0.0002 contour is considerably 

less than the bond length. One measure of the ls density re­

arrangement on molecular formation will be the values of 

f laH and flaA at R = Re. Considering first the forces on the 

proton then the values of f 10H(Re) are indeed very close to 


the predicted flaH( 00 ) value of 2. The fact that in LiH a 


value of 1.949 was obtained shows that there is a slight 


polarization of the ls-like density on the Li nucleus. As 


we go down the series, LiH ~ HF, then this density on A is 


held tighter, due to the increased nuclear charge ZA, such 
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that at BH it now effectively screens two units of posi­

tive charge from the proton. The lo orbital can thus be 

considered nonbinding with respect to the proton. The 

forces that the lo density exerts on the nuclei are also 

given in Table XII. In the case of LiH and BeH the negative 

value of f A(Re) indicates that this orbital is antibinding,10

equivalent to placing 0.49 and 0.13 positive charges res­

pectively on the proton. This is due to the large and 

negative atomic force caused by a polarization of the inner 

ls-like density in a direction removed from the hydrogen side 

of A. For the remaining molecules in the series BH + HF the 

lo orbital is binding for the A nucleus. Here there is a 

density shift rather to the bonqing side of A, which results 

in a positive atomic force with a charge equivalent of 

approximately 0.25e. The size, sign and ch~ngeover of this 

atomic force on A is also evident in the profile maps of 

Fig. XV. In the series BH + HF there is a spike-like in­

crease in charge to the immediate left and right hand side 

of the A nucleus brought about by the rearrangement of the 

i nner density on A. Both these regions of charge increa se 

will produce an opposing atomic force, however in each mole­

cule there is a net resultant force of approximately the same 

order of magnitude putting the A nucleus towards the hydrogen 

atom. In LiH and BeH however the charge increase is to the 

left hand side of the Li and Be nuclei tending to separate 

the A and H nuclei. · The atomic polarization and hence the 



131 


resultant atomic force at the Li nucleus is,moreover,com­

pletely consistent with an ionic Li+H- description. Finally 

the reversal in sign of this atomic force at the B nucleus 

in BH is suggestive that there is a change in the binding 

type between BeH and BH. 

Table XIV lists the partial forces with their atomic, 

overlap and screening contributions to the 2cr density dis­

tribution. The 2cr molecular orbital in the case of LiH cor­

relates with, at large R, a singly occupied 2s function on 

Li and a singly occupied ls function on H. For BeH and the 

remaining members of the hydride series it correlates with 

a doubly occupied 2s function on A. Because the energy 

difference between the A2s and Hls orbitals increases through 

the series, with the A2s function becoming lower in energy, 

at R = R the 2cr molecular orbital should increasingly re­e 

semble a 2s orbital localized on A. The contour diagrams 

representative of the 2cr orbital density are given in Fig. XX. 

In LiH and BeH the shape of these contours do indicate that 

the molecular orbital is primarily localized on the proton 

whereas from BH ~ HF the 2cr density gradually encompasses 

both nuclei becoming increasingly centred on A with spherical 

contours characteristic of a 2s atomic orbital. This change 

in localization of the 2cr charge density from H to A should 

be reflected in the values of f 2 H and f 2 A given in Table XIV· 
0 0 

In particular the change in the localized nature of the 2o 

molecular orbital from being primarily centred on H to being 
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primarily centred on A should be reflected in the screening 


contributions. Consider first the LiH molecule. The quan­

tities f 20H and f 20A measure the force on the H and A nuclei 


~esp.ective.ly due to the density contained in the 2o molecu­

lar orbital. At large values of R since the 2o orbital cor­


relates with a singly occupied A2s and Hls, f H( 00 ) and f A( 00 )

20 20

will simply be 1, in units of electronic charge, because of 

their respective f~~) ( 00 
) and f~:~) ( 00 

) screening contributions. 

In the remaining members of the series, BeH ~HF, f~~} (oo) 

and f ~~~) ( 00 
) where now the 2o molecular orbital correlates 

with a doubly occupied 2s function on A are expected to be 

2 and 0 respectively. 

Comparing the values of f 20 H(Re) with those at in­

finite atomic separation then the 2o charge density can be 

seen to be non-binding for the proton in LiH, antibinding with 

· respect to the proton in BeH and binding with respect to the 

proton in the hydrides BH ~ HF. The binding is due both to 

an increase in the screening contribution and a relatively 

large overlap force. On going from BH ~ HF the decrease in 

magnitude of the overlap force is paralleled by an increase 

in the screening force associated with the increasingly loca­

lized nature of the 2cr molecular orbital. This is also borne 

out by the 2o density diagrams of Fig. XX which increasingly 

resembles an atomic 2s function on A. In fact for HF the 

components of the force exerted on the proton by the 2cr density 

2axis approach in value those expected for a 2s atomic density 

http:esp.ective.ly
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on F at large R; zero atomic and overlap contributions, and 

a screening contribution of two. In BeH, BH and to a slight­

ly lesser extent in CH the A2s and Hls orbitals being of 

similar energies are predicted to mix strongly producing a 

bicentric 2o molecular orbital. The overlap forces are in­

deed the largest in the series and the screening of the Be, 

B and C nuclei is much less than the value of two required 

for an unperturbed 2s atomic orbital on A. 

The f A(Re) values in Table XIV all show that the20

2o charge distribution is binding with respect to the A nuclei, 

being t he gre~test for Be in BeH and the least for F in HF. 

As the density becomes increasingly localized on A then both 

the screening and overlap forces drop and the binding is due 

mainly to a large inward polarization of the now almost loca­

lized density on A. In BH, for example, the atomic force 

is only 0.23 whereas in HF the value of 0.52 accounts for 

over 70 % of its binding character. The atomic polarization in 

LiH and BeH is opposite to that for BH ~ HF and tends to 

separate the A and H nuclei. In BH and CH the original 

spherical distribution of the separated atoms has been greatly 

distorted and the binding is caused primarily by an overlap 

charge density and to a lesser extent by a partial screening 

of the proton. The f orce contributions exerted on the N nucleus 

in NH are intermediate in character. 

From a consideration of the lcr and 2cr density maps 

and their respective force contributions there would seem to 
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be a great similarity in the binding for LiH and BeH not 

immediately obvious in either the total density or density 

difference charge distributions of Figs. XI and XIV. The 

lo density is, for example, in both molecules non-binding 

with respect to the proton since on molecular formation it 

remains essentially as a doubly occupied Als orbital screening 

two units of positive charge. This same density is however 

strongly antibinding for the A nucleus (A=Li or Be) due to 

~ large negative atomic force brought about by a back polari­

zation of the Als density. The direction· of the atomic force 

on A, due now to the 2o density, is also characteristic of 

the LiH and BeH molecules. One further identifying feature 

is that in both LiH and BeH the screening of the proton by 

the 2o density is greater than that of the A nucleus,while 

in BH and the remaining molecules this situation is reversed 

to an ever increasing extent through the series. Any screening 

of the A and H nuclei is a consequence of localized density 

and the above observation confirms the previous conclusion 

that the 2o charge distribution in LiH and BeH can be con­

sidered localized primarily on H whereas for BH ~ HF it is 

localized primarily on A. 

It is the presence of the 3o molecular orbital, 

singly occupied in BeH and unoccupied in LiH, which causes 

t h e abrupt observed change in the densi ty distributions. The 

orbital density diagram (Fig. XXI) a nd the as s ociated force 

contribu tions (Table XV ) s how that this orbital in BeH is 
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largely localized on the Be nucleus. In the case of an in­

finite separation of the Be and H nuclei the 3o molecular 

orbital will correlate with a singly occupied ls orbital on 

H, for which f 30H( 00 
) and fJoBe( 00 

) will equal 0 and 1 respec­

tively. At . the equilibrium bond length the 3o charge density 

is binding with respect to the proton and antibinding with 

respect to the Be nucleus. The values of f H(Re) and · 30

f (R ) indicate that the only significant contributions3 OA e 

are of the screening and atomic type respectively. This atomic 

f orce on Be is however in a directio~ that opposes bond for­

mation while the screening force on H, because of the localized 

nature of the 3o charge, makes this orbital binding with 

respect to the proton. It is the large concentration of charge 

behind the Be nucleus, not present ·in LiH, that marks the dif­

ference between these two molecules. Furthermore, although 

BeH, because of near Hls and B2s degeneracy, is not adequately 

described by the correlation scheme relevant for LiH or to 

the correlation scheme relevant for the remaining members of 

the series its charge density and force contributions are 

clearly transitional between on the one hand LiH and on the 

other hand BH + HF. 

For this series BH + HF the 3o molecular orbital cor­

relates with, at large R, a singly occupied Hls and a singly 

occupied A 2po. As the energy difference between these two 

orbitals increases then the 3o charge density should increasing­

ly resemble a double occupied 2po atomic orbital on A, which 
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is indeed reflected in the partial density diagrams of Fig.xx~ 

In the separated atoms f H( 00 ) and f A(oo), or in particu­30 30
(AA) (HH )

lar f 3 H ( 00 ) and f 3 A ( 00 ), will both equal 1 since the cor­
0 0 

related Hls and A2pa atomic densities will screen one nuclear 

charge on each nucleus. The binding, antibinding and nonbinding 

nature of the 3a density with respect to the proton and A 

nucleus for the molecules BH 7 HF is dependant on the relative 

values of f H(R ) and f (R ) . In the case of the proton3 a e 30A e 

it is the overlap and screening contributions, fj~) and 

f~~) (Re) respectively, which are important. As we go through 

the series then there is an almost constant increase of 0.3 

for f 30H(Re) from its value in BH of 0.76, which.makes the 

3a density antibinding with respect to the proton, to its 

value o f 1.92 in HF, which makes the 3a density binding with 

respect to the proton. Furthermore this increase in f H(Re)30

is paralleled by an increase in the screening and overlap 

contributions explicable in terms of a charge transfer from 

the hydrogen atom to a localized 2pa orbital on A. If this is 

the case then because of the location of the charge increase 

on A, a l ong the internuclear axis, density is placed in in­

creasing amounts in the overlap region. If it is further 

remembered that the la density, being centred on A as a 

doubly occ upied ls atomic orbital , is essentially nonbinding 

for the proton and the 2a density is weakly binding then 

it is the 3a charge distribution in HF and OH which is im­

portant in this respect. In HF, for example, the force on 
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the proton is equivalent to that exerted by 1.92 electronic 

charges situated at the F nucleus as opposed to the separated 

atom equivalent of one electronic charge. The 3o molecular 

orbital has thus almost doubled the number of charges which 

are effective in binding the proton. For the molecules, BH 

and CH, on the other hand it is the 2a density wh~ch is now 

more important in binding the proton while in NH the 2a 

and 3a molecular densities can be considered of equal impor­

tance. 

Tne screening of the proton by . the 3a charge density, 

f (HH) ( R ) . . f 1 1 th h t h . f 1 t .A e , is uni orm y ow roug ou t e series re ec ing30

the localized nature of the 3a charge density on A. In NH, 

OH and HF the partial 3o density diagrams closely resemble 

a 2pa on A whereas in BH and CH it is more bicentric in 

character. It is however the relative position of this 

charge with respect to the A nucleus that is important in 

determining the f A values. In BH, for example, the low30

overlap force contribution and large negative atomic force 

indicates that the transfer of charge ·accompanying bond for­

mation is placed primarily behind the B nucleus whereas in 

HF thes e two same forces show that the charge transferred 

is roughly placed evenly on the bonding and non-bonding side 

o f F . Moreover the force exerted on the A nucleus by the 

3a overlap charge density is approximately twice as large 

as that exerted on the proton· for e ach molecule. In contrast 

this same overlap force on the A and H nuclei due to the 2cr 
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charge density are of equal magnitude. Thus one anticipates 

a more polar type of bond in HF and OH where the binding of the 

proton i s primarily by the 3o charge density than in BH and 

CH where the proton is bound primarily by the 2o charge den­

sity. This conclusion would also be consistent with the small 

and decreasing screening contribution f i~~) (Re) associated 

with a large and negative atomic force~ 

In summary therefore the o molecular orbitals show 

the different binding characteristics of the first-row hy­

drides. The lo molecular orbital is primarily localized on 

the A nucleus as a doubly occupied lo function screening two 

units of positive charge from the proton. This density is 

however unsymmetrically placed with respect to the A nucleus 

producing a negative atomic force (antibinding) on the Li 

and Be nuclei and a positive atomic force (binding) on the 

B, C, N, O and F nuclei. The 2o molecular density is binding 

with respect to both the H and A nuclei in the series BH ~ HF 

whereas the 3o molecular density in this same series is anti­

binding with respect to A and goes from weakly antibinding to 

strongly binding with respect to the proton. The proton in 

BH and CH is primarily bound by the charge contained in the 

2o molecular orbital whereas in OH and HF it is primarily 

bound b y density contained in the 3o molecular orbital. For 

NH these two orbitals can be considered as being equally im­

por~ant in binding H. The relative magnitude of the force 

contributions in the series BH ~ HF are suggestiv~ of increa­
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singly localized 20 and 30 molecular orbitals on A. There is 

still however an important overlap contribution. This over­

lap contribution for the 20 charge density is almost equally 

shared between the A and H nuclei whereas the overlap contri­

bution due to the 30 charge density is unequally shared being 

greater for the A nucleus. Accordingly the molecules HF and 

OH are expected to have a more polar type of bond than the 

hydrides BH and CH. However, the charge transfer in HF and OH 

is not of sufficient magnitude nor localized sufficiently for 

the A and H nuclei to see a net positive and negative electric 

field respectively. 

The molecules CH, NH, OH and HF contain 1, 2, 3 and 

4n-electrons respectively. At large internuclear distances 

the n molecular orbital correlates with a 2prr atomic orbital 

centred on A, containing 1, 2, 3 and 4 electrons for A= C, 

N, O and F, and as such will shield an equivalent number of 

nuclear charges from H. This would mean that f lnA (oo) = a· and 

f (AA) 
flnH(oo) = = 1, 2 I 3 and 4 for A= C,N,O and F respec­lnH 

tively. Both the orbital density diagrams of Fig. XXII and 

the overlap and screening force contributions (Table XV) sug­

gest that this orbital is still essentially centred on A in 

the AH molecules. There is however a small overlap density 

which is almost equally shared by the A and H nuclei. More­

over a s light inward polarization of this n density makes this 

density binding with respect to A. An analysis of the a force 

contribu tions showed that through the series CH ~ HF an in­
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creasing amount of charge was transferred from H to A. This, 

together with the results obtained for LiF(65),would suggest 

that it is a characteristic of the TI density in heteronuclear 

molecules to be polarized in a directi on counter to the di­

rection of charge transfer and that one effect increases 

with the other. If this is the case then the almost constant 

increase of f (AA) (R ) of 0.07 is suggestive of a gradual
lTIA e 

change in the binding of the series CH + HF with the charge 

transfer in HF being the greatest. 

Although the TI molecular orbital is primarily centred 

o n A as a localized 2pTI atomic function with no significant 

TI-bond f ormation it is the inefficiency of this density, 

at R = R , in screening the nuclear charges on A that results e 

in this orbital being antibinding with resp~ct to the proton. 



III A DISCUSSION OF THE BINDING IN THE AH MOLECULES 


The relative values o f the total atomic, overlap and 

screening forces can be used as a basis for the classification 

of the binding in molecules as being ionic or covalent (65,66). 

When comparing and contrasting the binding in a series of mole­

cules, however, it is the changing role of a particular molecu­

lar orbital, as shown by both the partial forces and its three 

components, that reflects a change in the nature of the binding. 

By examining, ·for example, the f A(Re), f A(Re) etc. partial
10 20

forces with particular reference to the magnitude and sign of 

the atomic, overlap and screening contributions, the relative 

importance of these orbitals in binding the A and H nuclei, 

which is after a l l the basic factor at issue, can be discus­

sed. Just how close the charge density in these hydride mole­

cules approximate to the ionic or covalent limiting cases are, 

however, questions of considerable interest and as such will 

also be considered. 

The charge equivalents of the total atomic, overlap 

and screening forces for the first-row hydrides are listed in 

TableXVI and are obtained by summing the various orbital con­

tributions. Also listed are the net forces FA and FH acting 

on · the A and H nuclei respectively, where 

ZA ZH '' F = (ZH - Q ) FH = -2- ( ZA - Q )
A H AR2 

e R e 

141 
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' f (AH) f (HH)
QH = E f. A (R ) = E fi~) + + 

l. e iA iAi i 

f (HH) f (AA)= E f.H(Re ) = E + f i~> + iHQA l. iHi i 

These resultant forces can be seen in every case to be close 

to the expected value of zero. Since ZA ls the nuclear charge 

on A and E f ~AAA) is the number of charge equivalents on A in 
. l. 
l. 

the molecule, then the quantity Z~ = (ZA - ~ f{~A)) represents 
l. 

the amount by which the A nucleus has been descreened on mole­

cular formation. Similarly defined for the proton is the quantity 

' (HH) ' ' ZH = (ZH - ~ fiA ). Both ZA and ZH thus represent the effect­
1 

ive nuclear charges on the A and H nuclei in the molecule. If 

the molecule is best described as being ionic in the sense 
+ _ II 

A H then ZA and ZH , which represent the number of positive 

charges left unscreened on the A and H nuclei respectively, 

should take on the respective values of +l and - 1. In addition 

the overlap forces, I fI~) and I f{~), should be zero and the 

(HH) (AA)atomic forces, E f.H . and E f.A , should be directed in oppo­
. l. . l. 
l. l. 

sition to the dipole moment and hence counter to the electron 

transfer. None of the molecules in the hydride AH series, accor­

ding to the calculations listed in Table -xvI, simultaneously 

satisfies these conditions. Although in LiH the atomic forces 

on the Li and H nuclei are in the correct direction and the 

overlap forces take on their smallest value, still being far 
I I 

from zero~ ~he values of ZA and ZH are very different from 
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t h ose pred ic t ed by an Li+H- description. The ratio ZA/ZH does, 

however , t ake on its high est value for this molecule suggest­

ing t h at i t does come closest to the ionic limiting_ case. 

Whil e the for c e contribut i ons based on a population 

analy~is a re not those predicted by the idealized model for 

ionic bind ing the density difference diagram for LiH and in 

particular a charge analysis of the different defined regions 

(see Tabl e X) possesses all the necessary characteristics. 

The number of electrons on the non-bonded side of the Li 

nucleus together with the charge considered localized on the 

hydrogen, come close to their ideal values of 1 and 2 

respectively. This discrepancy can best be understood in 

terms of t he separate lo and 2o density distributions and 

their associated forces. The lo orbital according to the par­

tial density diagram of Fig. XIX is predicted to be essentially 

localized at the Li nucleus as a doubly occupied ls atomic 

function. This is indeed reflected in the force analysis where 

in the mo l ecule .it simply screens two units of positive charge 

from the prot~n. Similarly, the 2o orbital, according to its 

density d i stribution, is predicted to be essentially localized 

on the hydrogen as a doubly occupied ls function. The forces 

however do not reflect this since there are now large overlap 

. (M) (M)con tribut i ons to the or~ital force, f A and f H . It would20 20

thus seem that t here i s not always a direct correspondence be­

t ween a n orb i t al populat i on ana l ysis and the appearance of the 
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final density distribution. Just as the one-electron den­

sities are not sufficient by themselves to interpret the nature 

of the binding neither are the forces but one should rather 

b e discussed in the light of the other. If this is the case 

then the density difference map, ~PsA(~,n), for LiH indicates 

that the charge transferred to the hydrogen is localized. 

Accordingly the charge equivalents of the force exerted by the 

overlap population can now be considered as localized atomic 

density on H. This would mean that ~ f ~HHH) and E . f (HH) 1'n
'A . l. l. l. l. 

f (AH))Table XV should be replaced by (E fI~H) + iH an 
d 


i
(HH) (AH) i 
(E f. + E f .A ) respectively. A similar situation arises in 

. i.A . l. 
l. l. 

the treatment of the LiF molecule where again there is no di­

rect correspondence between the orbital population analysis 

and the total density distribution. By likewise assuming the 

overlap charge to be localized on the F nucl~us the charge equi­

valent of the force as determined by the density difference 

maps can be obtained. Table XVII lists the results for LiH and 

LiF together with the values expected for ideal ionic binding. 

These molecules do indeed approach the ionic case. In LiF 

the transfer of one unit of charge is almost complete whereas 

in LiH it is not quite to the same extent, reflecting the 

difference in the electronegativities of the F and H atoms. 

The atomic force on the Li nucleus is however a little low. 

This force is due primarily to density that is close to - the Li 

·nucleus and hence a slight polarization can have a large 

effect. Such a shift in density close to the lithium nucleus 
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will not alter appreciably the outer or valence density distri­

bution and hence the chemical nature of the bond. 

In the remaining members of the series density is 

rather transferred in increasing amounts from the H to the A 

nucleus. The HF molecule of all the first-row hydrides approa­

ches most nearly the limiting ionic structure F-H+. Although 

neither the electron population analysis nor the charge equi­

valents o f the force, contained in Table XVI, suggest that 

this is the case it is interesting to partition these forces 

in a manner similar to that f or LiH and LiF. This would 

imply, contrary to the information contained in the ~PSA(~,n) 

map, that the overlap density can be considered localized on F. 

Even so the number of charge equivalents on the F atom is now 

only 8 .9 88e-. Since this is less than the nuclear charge 

on F the proton will experience a net force of repulsion 

rather than the expected attractive force. Electrostatic 

equilibrium can only be attained by an inward polarization of 

the density remaining on the proton. In general it is impos­

sible for an H+ i on to exist in a stable chemical bond outside 

the density sphere of an A- anion; there would be an inward 

force on the proton equal to (ZA - ~ f ~AAH>)R2 where 
l . l 

~ fiH = (ZA + 1). Once it penetrates this sphere density 
- l 

contours will appear around the pro ton, simulating localized 

density and hence an Ho+ c ation , and it is the associated at­

omic force together with the decreased s creening contribution, 
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L fl(.AAH ) , t h at preven t s bond c 1osure. 
i 

The similarity and gradual change in the ~PSA(~,n) 

maps for the series BH + HF is also reflected in their charge 

equivalents of the total atomic, overlap and screening forces. 

Consider, for example, the expected transitions in the re­

lative partial force contributions as th~ binding in a molecule 

changes from the predominantly covalent AH description to the 

. 11 . . o- o+ d . . h .partia y ionic A H escription. For AH t e screening 

contribution to the forces on A and H are both expected to be 

less than ZA and ZH respectively and dependant on the magnitude 

of the overlap force contribution, which should roughly be the 

same for A and H, the atomic forces on A and H could con­

ceivably be in any direction; although from experience in a 

covalent bond unlike the ionic case these are generally in the 

direction of the dipole moment. The formation of a polar 

molecule of Ao-Ho+ on the other hand implies that charge is 

transferred from H to A. This would cause the screening con­

tribution to the force on A to drop, as the number of charges 
,. 

on A left unscreened, ZA decreases, and the screening contri­
' 

bution to the force on the proton to increase. That is to say 

as the bond becomes more polar,, and hence closer to the ionic 
I I 

limiting case, ZA should decrease and ZH should increase. In 

a covalent bond it is shared or overlap density that simultaneous­

ly binds both the nuclei; in contrast the binding in an ionic 

molecule is due to localized de~sity with the correct atomic 

polarizations. Thus on going from a predominantly covalent AH 
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description to a partially ionic description the overlap 

force contributions should decrease and in particular the posi­

tion of the overlap density should shift towards the cationic 

nucleus and in the limit of a complete electron transfer 

should be localized on this nucleus. This would suggest that 

the ratio (~ fl~)/~ fl~)) should increase with increasing 
l l 

bond polarity Ao-Ho+ . Moreover the direction of the atomic 

forces should change in such a way that they approach that 

anticipated by the ionic model. 

With this in mind it is interesting to re-examine the 
I 

series BH ~ HF with special regard to the behaviour of ZH, 
I 

ZA and the overlap and atomic partial forces on the A and H 
I I 

nuclei.For BH, ZA takes on its highest value, ZH its lowest 

and the magnitude of the overlap force contribution on both 

the B and H nuclei suggests that this density is almost equally 

shared and hence close to the covalent bondi~g scheme. Pro­

' gressing through· the series a decrease in ZA is paralleled by 

an increase in both ZH and the ratio (E . f ~AH) /EiA . fl~AHH )). In 
l l 

fact for the molecules NH, OH and HF the overlap density ex­

erts a force on the A nucleus of respectively 1.23, 1.27 and 

1.36 times _greater than that exerted on the proton. This 

shift in the overlap density for these hydrides is also evident 

in the 6p SA(~ 1 n) contour maps of Fig. XIV and in the approp­

riate profile diagrams of Fig. XV. Similarly the change in 

magnitude of the atomic forces at the position of the A and 

H nuclei is also suggestive of some gradual change in the 
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electronic structure. · Although charge is transferred from the 

proton to the A atom in an increasing amount through the 

BH + HF series this transfer is not of sufficient magnitude 

that the A and H nuclei experience a net positive and negative 

field respectively. If this were the case the atomic forces 

on the A and H nuclei would be expected to be negative and 

positive respectively. However, in HF, where the atomic force 

on the proton is almost zero, it comes closest to this extreme 

case. 

In this way the binding in the molecules BH + HF can 

be written in a series which represents an increasing diver­

gence from the ideal covalent situation. This series is 

BH, CH, NH, OH and HF. 

According to this study the binding in BeH can be 

considered as intermediate between ionic LiH and the remain­

ing hydrides. Although the lo and 2o density distributions 

for th{s molecule suggest a more ionic-type pattern than is 

observed in the total density and density difference maps it 

is,, as mentioned previously, the presence of the 3o orbital, 

not occupied in LiH and doubly occupied in BH + HF, that causes 

the abrupt change in the density distributions between LiH and 

BH. This orbital density is almost completely contained on.. 

the non-bonded side of the Be nucleus and as such replaces the 

valence d ensity transferred to the hy~rogen by the 2a molecular 

orbital. 

Th ere have, of course, ~een many other studies pertain­
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ing to the bonding in the first-row hydrides. The predictions 

of Blinder (76) regarding this series are based on a conside­

ration of the relative energies of the atomic orbitals centred 

on A and H. Atomic orbitals on different centres, he said, 

will overlap and result in the formation of two bicentric 

molecular orbitals, · one bonding and one anti-bonding, if they 

are (a) of compatible symmetry and (b) have orbital energies 
..L 

that lie wi thin! 0.2 a.u. (~ 5 e.v) of one another (see 

Table XIII). When this matching of orbital energies is not 

found, the molecular orbital is essentially monocentric. 

The 10 atomic orbital centred on the heavy nucleus 

A is in every case well outside the range predicted for a bi-

centric molecular orbital. The lowest occupied molecular 

orbital, 10, will thus be expected to resemble a ls atomic 

orbital on A. The next lowest occupied molecular orbital will 

be the 20 . According to Blinder this orbital in LiH and BeH 

should be localized primarily on H as a doubly occupied ls or­

bital and the 30 orbital in BeH should be localized on Be as 

a singly occupred 2s orbital. This would indicate that these 

2two hydrides are best described as ionic, Li+(ls 2)H-(ls ) and 

+ 2 1 - 2Be (ls 2s )H (ls ) . The near degeneracy of the 2s energy level 

of B and the ls level of H results in strong mixing of the two 

orbitals and in the formation of a bicentric molecular orbital. 

The 20 o rbital is thus primarily the bonding combination of 

B2s and Hls while the 30 orbital is primarily a mixture of the 

B2s and Hls antibonding cox~i~ation with the non-bonding B2p0. 
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The changeover from monocentric to bicentric character will 

occur, according to Blinder, between BeH and BH and this is 

indicative of a change in the bonding type. From carbon 

through t he r emai ni ng members of t he fi r s t -row hydrides the 

energy gap between the A2s and the Hls orbitals increases 

and now the bonding will be mainly due to the 3o molecular 

orbital. This orbital results from the overlap of an A2o and 

Hls. That is to say as we go through the series LiH to HF the 

2a molecular orbital will become increasingly localized on A 

as a doubly occupied 2s function and the 3o molecular orbital 

resulting _in the bonding. However, because of increasing sta­

bility of the 2po orbital on A the 3o orbital will again 

resemble a 2po on A. Even so this 2po density encompasses 

the proton and can again be considered bicentric in nature. 

The qualitative predictions of Blinder are borne out 

remarkably well by the lo, 2o, 3o and ln orbital density dia­

grams shown in Figs. XIX, XX, XXI and XXII and in the orbital 

force analysis considered previously. The monocentric almost 

spherical lo density is indeed characteristic of the ls atomic 

function on A. In going from LiH to HF this density becomes 

less diffuse due to an increased atomic number; however even 

in LiH the proton is well outside the outer 0.0002 contour. 

The 2o density for LiH and BeH on the other hand approximates 

a highly ~istorted ls density on H. The position of the nodal 

line, dashed contour in Fig. XX, indicates that the 2o density 

distribution for LiH is localized on the H nucleus. This to­



151 


gether wi t h the localized nature of the lo density on Li bol­

sters an ionic description for LiH. The 2a density on BeH is 

also mainly localized on H whereas from BH on it encompasses 

both nucl e i and becomes increasingly centred on the A nucleus 

with the spherical contours characteristic of a 2s density 

distribut i on. The 3a molecular orbital according to Blinder's 

arguments is expected to be a singly occupied 2s atomic orbit­

al on Be. If this is the case, and assuming the 2o orbital 

to be mainly centred on H/a total of about l.Se non-bonded 

charges on the Be atom is expected. The amount of charge 

actually present is 2.0e-, the free atomic value. The reason 

for this is the extreme back-polarization of the 3cr density 

evident in both the partial force analysis and the density 

distribution diagram of Fig. XXI. It is the absence of this 

molecular orbital in LiH which accounts for its unusual short 

length L in contrast to the remaining hydrides'. 

From BH ~ HF as the energy difference between the 

Hls and A2p atomic orbitals increases then the 3o molecular 

orbital resembles a doubly occupied 2po function on A. Even 

so this density encompasses the proton and can again be con­

sidered bicentric in nature. 

Fajans (74) unlike Blinder predicts a break in the 

bonding t ype of the hydride series to occur between BH .and CH. 

His arguments are based on the quanticule theory o = chemical 

binding. Here the word ionic a nd covalent are avoided and the 

bonding in a molecule is classified according to w11ether the 
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electrons are quantized with respect to the field of one nu­

cleus or to the field of both nuclei. Accordingly the lo 

and 2a orbitals in BeH, as in Blinder's treatment, correspond 

to two mononuclear quanticules localized on Be and H respec­

tively. The 30 density on the other hand, although still 

predicted to be localized on Be, will now be strongly re­

pelled by the quanticule H-. The change from mononuclear to 

binuclear quantization occurs between BH and CH where here the 

30 . molecular orbital is predicted to be quantized with respect 

to the field of both the C and H nuclei. 

In the present work an analysis of the binding based 

on the individual orbital contributions does not 'indicate a 

marked difference between the hydrides BeH and BH or between 

the hydrides BH and CH. The partial forces would rather sug­

gest a gradual change with LiH and HF as the two extremes. 

Thus, for example, as the lo, 2o and 3a orbital densities be­

come increasingly localized on the A nucleus as Als, A2s and 

A2o respectively the atomic, overlap and screening contri­

butions to the forces change accordingly. 

While the orbital densities and their partial forces 

change uniformly throughout the series it is the absence of 

the 3a molecular orbital, as stated previously, that causes 

the abrupt change in both the total density and density dif­

ference c harge distributions between LiH and BeH. If one 

wishes, t h e r efore, to c lassify the binding in terms of the 

individual orbital contributions the binding in BeH can be 
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considered as being primarily ionic. If on the other hand the 

binding is classified in terms of the total density distri­

bution BeH can be considered as being primarily covalent. 

One point is clear, however, BeH marks the transition between 

the examples of charge transfer (the ionic binding) and the 

sharing of charge (and covalent binding) regardless of the 

criteria which are employed. The BeH molecule indicates the 

necessarily arbitrary character of insisting that all systems 

be clearly associated with well-defined limiting cases, in 

this case with either the ionic or covalent bond. 

In conclusion one further point that does seem sig­

nificant concerns the density difference plot for the 0-H 

bond. There is a marked similarity between this plot (Fig. 

XIV) and the one obtained for the water molecule (Fig. VIII). 

In the formation of the 0-H bond, density is ·removed from a 

.torus -like region surrounding the oxygen nucleus and per­

pendicular to the bond axis. This density is transferred 

along the bond axis, both to non-bonded side of the oxygen 

nucleus and to a region between the O and H nuclei that 

encompasses the proton. The formation of the water molecule 

from its separated atoms likewise removes density from a re­

gion that surrounds the oxygen nucleus but is now perpendicular 

to the symmetry axis of the molecule. Moreover the regions 

of charge build-up are similar being on the non-bonded side of 

the O nucleus and along the symmetry axis encompassing both 

the protons. Since in both cases the magnitude and shape of 

the density shifts are comparable it would su9gest that the 
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binding between the oxygen atom and the two protons in H o
2

can be lik ened to the binding between the oxygen atom and 

the hydrogen atom in OH, where the proton in the latter has 

been "split" into two equal parts. This result is very en­

couraging since it supports the previous calculation on the 

water molecule (and in particular the method used to cal­

culate the wave function) .Since , this is the case it does 

suggest that approximate wave functions obtained by meeting 

the zero force requirement, and in particular their one-electron 

density distribution, can be used to examine the binding in 

larger molecules for which the more accurate Hartree-Fock 

functions are not available. It should be possible, for 

example, t o examine the identifying features of the 6pSA maps 

obtained from these approximate wave functions and to relate 

these features to the forces operative in binding the nuclei 

and hence the nature of the chemical bond. 
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FIG. IV 

Graphical representation of the variation 

of the forces F , ~ , ~ and DP with a 
0 

change in the parameters o,a or Eb 
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FIG. VI 

Electron density contour map in a.u. for 

the water molecule. The bottom map is in 

a plane containing the three nuclei. The 

top map is in a plane perpendicular to the 

above passing through the oxygen nucleus 
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FIG. VII 

Plot of ~PSA for H2o corresponding to an 

3approximately sp hydridisation of the oxygen 

atom. (a) the hydrogen nuclei are located at 

the ends of the two lines subtending the 

largest angle at the oxygen nucleus. The 

two inner lines are boundaries dividing the 

binding and antibindi.ng regions. (b) plot 

of ~PSA in a perpendicular plane. The near­

ly horizontal line divides the binding 

region from the antibinding region. 

http:antibindi.ng
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FIGURE VIII 

The in- and out-of-plane density difference 

maps ,(a) and (b) respectively,for the water 

molecule 
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FIGURE IX 

An electron density difference map between 

the LiF molecule and the Li and F atoms 
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FIGURE X 

Density difference maps for the stable first 

-row homonuclear diatomic molecules. The 

same scale of length applies to all the maps. 

The dotted line (shown in full for N ) sep­2

arate the binding from the antibinding regions. 
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FIGURE XI 

Total molecular charge density contours for 

the first-row diatomic hydrides in a.u. All 

maps are drawn to the same scale of length. 

The A nucleus is on the left in this and 

all succeeding figures. The innermost con­

tours encircling the A nuclei have been 

omitted for the sake of clarity. The density 

at · the A nucleus and at the proton is given 

in Table VIII. 
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FIG. XII 

The definition of rA and rH. The outer 

line is to represent a typical 0.002 con­

tour. The shaded areas indicate the non­

bonded regions on A and H. The numerical 

integration used to obtain the non-bonded 

charges listed in Table IX was, however, 

extended beyond the 0.002 contour. 

FIG. XVI 

The definitions of the A and B regions 
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FIG. XIII 

The binding and antibinding regions in 

the AH molecules with their respective 

electron populations 
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FIG. XIV 

Contour maps of the density differences 

~PSA(~,n) (molecule-separated atoms) in 

a.u. for the first-row diatomic hydrides 
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FIG. XV 

Profiles 0£ ~PSA(~,n) in a.u. along the 

internuclear axis. The abscissa (dis­

tance along the internuclear axis) is in 

a.u. with the A nucleus as origin. 
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FIG. XVII 

Contour maps of the density differences 

~PSA(~,n) (molecule-separated atoms) 

employing the sphericallised atomic A 

density 
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FIG. XVIII 

Contour maps of the density difference 

~PUA(~,n) (molecule-united atom) in a.u. 

for the first-row diatomic hydrides 
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FIG. XIX 

Contour maps of the la molecular orbital 

charge densities for LiH and HF 
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FIG. XX 

Contour maps of the 2o molecular orbital 

charge densities for the first-row hydrides 

FIG. XXI 

Contour maps of the 3o molecular orbital 

charge densities for the first-row hydrides 
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FIG. XXII 

Contour maps of the lTI molecular orbital 

charge densities for· the £irst-row hydrides 
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TABLE I 


2 2 
 2 2 
 Total True %<P 2 
 (<P.Q,1+<Pt2)<Pb2<Pbl Value Value0 Error 

1.0000-0.5752 -0.5752 0.5190 0.3686F 0.3739 0.5 
0 

0.0309 0.0026 0.3-0.1111 0.1526 0.0750 0.0748~ 
0.3128 0.3745 0.6127 1.1103 2.4103 2.5383 4.7~I 

0.]085 . 0.2085 0.0113 1.0691 1.4974 1.4936 0DPE 
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TABLE II 

ranging a about 73° 

cS a Eb E 1 F F 	 DP f3
0 II ~ 

1) 0.3882 77° 123.286° 51.45° 0.345 2.441 0.067 0.856 231° 

2) 0.3882 73° 123.286° 50.73° 0.369 2.410 0.075 0.715 228° 

3) 0.3882 69° 123.286° 50.07° 0.390 2.370 0.084 0.579 225° 

contributions to the forces 

2 2 	 µ1) 	 <P'2 <P'2 <P 2
<Pbl <Pb2 tl t2 0 


F -0.5990 -0.5990 0.5410 I 1.0025 

0 

Fl 	 0.0264 -0.1232 0.1611 I 0.0026 0.8157 0.4283 

F 	 0.3224 0.2900 1.1158 0.6125 
II 

DPE 	 0.1184 ·0.1184 1.1132 I 0.0105 

2) F -0.5742 -0.5742 0.5181 I 0.9992 
0 

0.0311 -0.1106 0.1522 	 0.0027 0.7970 0.4613Fl I 


0.3123 0.3738 1.1100 0.6127
~I 
DPE +0.2123 +0.2123 +l. 0672 I 0.0113 

3) F -0.5497 -0.5497 0.4948 I 0.9944 
0 

Fl 	 0.0359 -0.0985 0.1435 I 0.0028 0.7790 0.4922 

0.3016 0.3586 1.1041 0.6128~I 
DPE 	 0.3038 0.3038 1. 0193 I 0.0121 
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TABLE III 

ranging c5 around 0.3882 

c5 a Eb El F 
0 

F 
J_ Fii DP B 

1) 0.3 73.165 123.286 49.418 0.425 0.084 2.379 0.545 223 

2) 0.4 73.165 123.286 50.920 0.362 0.074 2.413 0.739 229 

3) 0.5 7 3. ·16 5 123.286 52.201 0.318 0.066 2.435 0.872 233 

contribution to the forces 

1) 
2 

cj>bl 
2 

cj>b2 
cj>'2

R,l 
cj>'2

.Q,2 
cj>2

0 A. µ 

Fo -0.5327 -0.5327 0.4683 I 1.0220 0.7813 0.5012 

Fl 0.0336 0.0870 0.1340 I 0.0.030 

F~ 0.3068 0.3619 1.0972 0.6129 

DPE 0.3475 0.3475 0.9646 I 0.0129 

2) 

F 
0 -0.5795 -0.5795 0'!5245 I 0.9963 0.7994 0 •. 4552 

FJ_ 0.0306 -0.1139 0.1546 I 0.0027 

Ftl 0.3133 0.3758 1.1116 0.6126 

DPE 0.1934 0.1934 1.0803 I 0.0111 

3) 

F 
0 -0.6067 . -0.6067 0.5614 I 0.9702 0.8091 0.4197 

F.L 0.0284 -0.1343 0.1695 I 0.0025 

Fli 0.3161 0.3852 1.1208 0.6124 

DPE 0.0898 0.0898 1.1564 I 0.0098 
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TABLE IV 

ranging Eb about 123° 

0 a Eb El F DP 
0 Ej_ Fjj 	 f3 

1) 0.3882 73.165 115.000 +47.88 0.324 0.063 2.440 .876 215° 

2) 0.3882 73.165 123.000 +50.65 0.366 0.075 2.411 .726 228° 

3) 0.3882 73.165 131.000 +53.94 0.415 0.089 2.375 .551 238° 

contribution to the forces 

2 21) 	 <t>'2 <1>'2 <t>2 A µ<t>bl <t>b2 .n Q,2 0 

F -0.5630 -0.5630 0.3904 I 1. 0594 0.8000 0.4192 
0 

Fl 	 0.0397 -0.0883 ·o .1080 I 0.0033 


0.3844 0.3654 1.076 0.6133
Fi1 


DPE 0.2613 0.2613 0.8041 I 0.0152 


2) 

F -0.5754 -0.5754 0.5154 I 1. 0017 0.7979 0.4584 
0 

F..L 	 0.0312 -0.1105 0.1512 I 0.0027 


0.3152 0.3742 1.1093 0.6127
~I 
DPE 	 0.2093 0.2093 1.0615 0.0114 

3) 

F -0.5579 -0.5579 0.5990 I 0.9314 0.7958 0.5041
0 

0.0239 -:"0.1237 0.1865 0.0022Fl I 


0.2496 0.3838 1.1298 0.6122
Fi1 

DPE 0.2123 0.2123 1.2339 I 0.0082 




TABLE V 


1 

~ 0 

.15 36 

a. 

103° 

sb 

63° 

E: i' 

46° 

A/µ 

1.19 

s 
0 

0.056 

c 
0 

1. 0 

cl 

0.0 

c2 

0.0 

c3 

0.0 

F 
0 

~08 

F_i_ 

.03 

~I 

2.30 

DP 

.72 

6E 

-20.22 

2 .2031 97° 63° 44° 1. 25 0.056 1.0 0,0 0.0 0.0 .10 .04 2.31 .72 -20.87 

3 .247 4 91° 64° 41. 5° 1. 29 0.056 1. 0 o.o o.o 0 .. 0 .11 .04 2.33 .72 -21. 7 5 

4 

5 

*6 

.2037 

.. 2483 

.3882 

97° 

91 
0 

73°10' 

63° 

64 ° 

123° 

44° 

41. 5 
0 

0
26 

1. 25 

1. 29 

1. 73 

0.00 

0.00 

0.056 

1. 0 

1. 0 

.995 

0 .. 0 

0.0 

-.044 

0.0 

0.0 

-.088 

0 .. 0 

0.0 

-.085 

.. 28 

.30 

.37 

.04 

.041 

.075 

2.32 

2.33 

2.41 

.72 

.72 

.72 

-20.89 

-21. 77 

-27.01 

........ 

-..J 
O'I 



TABLE VI 


i 
 bb cblho cblhoCi (ho+ho)Ct(ls) Ct(2s) C (pX I) c i~pz)Calcn g Cb(ls) Cb ( 2s) C (pX I) c (py)1 2 
 1 
 2
No. 

1 
 0.0000 0.6326 -0.3161 0.00 -0.0678 0.39750.7070 0.0000 -0.5355-0.4378 0.4599 -.1785 

2 
 0.0355 0.7682 0.0112 -0.0416 -0.6218 0.39750.7070 0.08 -0.0578 0.4391-0.0737 -.1994 

3 
 0.0505 -0.5926 0.39750.7481 0.1884 -0.1049 0.24 -0.0452 0.1796 0.41300.7070 -.2254 

4 : . 0. 059-8 
 0.6840 -0.53090.3237 0.36 -0.0319 0.3521 0.3975 0.38540.7070 -0.1241 -.2530 

0.0657 0.5821 0.4395 -0.0170 0.5030 -0.4400 0.3975 0.35440.7070 0.6-0.1362 -.28405 : 

0.0678 0.4638 0.5219 -0.0028 0.6318 -0.3382 0.3975 0.32510.7070 -0.1406 0.92 -.31346 


Note: c 11x = coefficient preceeding the atomic orbital x in the lone pair orbital ¢~1 
_cb1 x = coefficient preceeding the atomic orbital x in the bonding orbital ~bl 


0 _ b2 0. bl 0 _ b2 0 • tl _ i2 bl I b2 I

Also, Cbl h 1 - C h 2 , C - C hl , C pz - - C pz ; C py =-C pyh 2 

~ 
-...J 
-...J 



TABLE VII 


Lone Bonds 
No AI
E:b c3 µ'µ_g cS a.A E: 1 
 Pair 

-SPl.5 
B 

-SP2.63-.0850 1.0000 0.0000123.2862°0.00 50.76° 228.12 

SP0.84 

1 
 73.1652°0.7978 0.4599 0.3882 

- p2 
 0.08 1.0043-.0781 40.10 -178°- .7391 0.4391 0.4541 65.1765° -.073793.2301° 

SP0.94 - p0.243 
 0.72 8 6 0.3043 0.5747 69.0265° 71.7375° -.0563 1.0465 -.1049 44.37° 150.17° 

SPl. 4 2 
 SP2.54 
 0.36 0.7509 62.0359° -.0425 1.03570.2854 0.6565 73.6352° -.1241 48.67° 130.80° 

SP2.02 SPl. 4
5 
 0.60 -.02180.7775 0.3544 49.6887° 1.03830.8015 84.1867° -.1362 55.90° 118.50° 

SP3.66 SP.650.926 
 0.8056 -.0035 0.99350.3251 99.2146° 40.3720° -.14060.9639 62.17° 107.11° 

I-' 
....J 
ro 



TABLE VIII 

PROPERTIES OF THE TOTAL DENSITY DISTRIBUTIONSa 

c c 
rA rH 

AH µ 
b R L L/R UA Molecule A Molecule p(H)d p(A)d

e e 

LiH -6.002 3.015 7.7 2.6 3.6 1.7 3.2 2.9 0.3752 13.801 

BeH -0.282 2.538 9.2 3.6 3.4 4.1 3.6 2.6 0.4286 35.050 

BH 1.733 2.336 8.7 3.7 3.2 3.8 3.4 2.5 0.4660 71.771 

CH 1.570 2.124 7.9 3.7 3.0 3.5 3.2 2.3 0.4705 127.246 

NH 1.627 1.961 7.2 3.7 2.9 3.2 3.0 2.1 0.4656 205.633 

OH 1.780 1.834 6.7 3.7 2.8 2.9 2.9 2.0 0.4468 311.153 

FH 1.942 1.733 6.3 3.6 2.7 2.7 2.8 1.9 0.4217 447.589 

aUnless otherwise indicated, all quantities are expressed in a.u.; length, 
0 

la.u. = 0.52917A; charge inunitsof one electronic charge, e; charge density 


3 _a3
la.u. = e/a = 67.49e/
0 

b 
µ is in Debye units 

crA and rH for the molecule are defined in Fig. XII In the united atom (U .A.) and the ~ 
\0 

free atom A rA gives the radius of the 0.002 density contour. 

dCharge density at the proton and the A nucleus. In the atom p(H) = 0.3183 a.u. 
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LiH 

Non-Bonded 
Charge on A 
Mol. Atom 

1. 09 1.50 

TABLE IX 

Charge in the 
Overla:e Region 
Mol. Atoms 

2.20 1. 95 

Non-Bonded 
Char9:e on B 
Mol. Atom 

0.71 0.55 

BeH 1.96 2.00 2.42 2.43 0.62 0.57 

BH 2.75 2.52 2.69 2.86 0.56 0.62 

CH 3.21 3.02 3.30 3.40 0.49 0.58 

NH 3.71 3.52 3.87 3.92 0.42 0.56 

OH 4.22 4.04 4.41 4.41 0.36 0.55 

FH 4.72 4.54 4.98 4.92 0.30 0.54 
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TABLE X 

TOTAL CHARGE MIGRATION IN DIATOMIC HYDRIDES AS 


DETERMINED BY DENSITY DIFFERENCE MAPSa 


AH Charge increase Charge increase 

in Region A in Region B 

/1A /1B 

LiH 0.01 0.55 

BeH 0.11 0.35 

BH 0.20 0.16 

CH 0.20 0.16 

NH 0.20 0.16 

OH 0.22 0.19 

FH 0.24 0.22 

a These figures were obtained by numerical integration 

using a grid of 0.02 a.u. R~gions A and B are defined 

in Fig. XVI. 
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TABLE XI 


UA CoefficientsMolecule 

UA 


1


2s 2pcr 2pnls 2pn 

LiH(lE+) Be( S) 

BeH ( 2 E+) 

2 
 02 
 0 0 

B (2P)2 
 1 
 0 02 


1
BH(ll:+) C ( D)2
2 
 4/3 1/31/3 

2 
 N ( 2D) CH ( IT r) 2 
 1 
 1
2 
 1 


0 (3P)NH ( 3 L: -) 2
2 
 2 
 1 
 1 


2 
 F (2P)2
OH ( ITr) 2 2 
 3/23/2 

1
FH ( l L: +) Ne( S)2
2 
 2
2 2 




TABLE XII 


PARTIAL FORCES AND THEIR CONTRIBUTIONS FOR THE lo DENSITY 


Forces on the Proton Forces on the A Nuclei 

AH floH(Re) Atomic Overlap Screening floH(oo) floA (Re) Atomic Overlap Screening floA (oo) 

LiH 1. 949 0.000 0.007 1. 942 2 -0~489 -0.506 0.017 0.000 0 

BeH 2.000 0.000 0.003 1.997 2 -0.127 -0.135 0.008 0.000 0 

BH 2.002 0.000 0.002 2.000 2 0.244 0.238 0.006 0.000 0 

CH 2.001 0.000 0.001 2.000 2 0.262 0.258 0.004 0.000 0 

NH 2.001 0.000 0.001 2.000 2 0.256 0.254 0.002 0.000 0 

OH 2.000 0.000 0.000 2.000 2 0.247 0.245 0.002 0.000 0 

FH 2.000 0.000 0.000 2.000 2 0.227 0.226 0.001 0.000 0 

1-1 
00 
w 
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TABLE XIII 

A 

Li 

Be 

B 

c 

N 

0 

F 

a 
sAls 

-2.48 

-4.73 

-7.70 

-11.33 

-15.65 

-:rn.67 

-26.38 

sA2s 

-0.20 

-0.31 

-0.49 

-0.71 

-0.95 

-1. 24 

-1. 57 

sA2p 

-0.31 

-0.43 

-0.58 

-0.63 

-0.73 

a All the energies 

sHls = -0.50 

are in atomic units, (1 a.u. = 28.2 eV); 



TABLE XIV 


PARTIAL FORCES AND THEIR CONTRIBUTIONS 


FOR THE 20 DENSITY 


Porces on the Proton Forces· on the A Nuclei 

AH Atomic Overlap Screening Atomic Overlap Screeningf 20H (Re) f20H(oo) f20A (Re) f20A( 00 
) 

LiH 1. 075 0.225 0.566 0.284 1 1. 495 -0.110 0.715 0.890 1 

BeH 1. 699 0.279 0.929 0.491 2 1. 624 -0.022 o.·971 0.675 0 

BH 2.280 0.242 1. 082 0.956 2 1. 607 0.234 0.959 0.414 0 

CH 2.397 0.119 0.780 1. 498 2 1. 367 0.564 0.654 0.149 0 

NH 2.366 0.064 0.533 1.769 2 1.109 0.623 0.423 0.063 0 

OH 2.315 0.040 0.381 1. 894 2 0.904 0.581 0.292 0.031 0 

FH 2.259 0.027 0.281 ' 1. 9 51 2 0.753 0.520 0.215 0.018 0 

j-1 

00 
Ul 



TABLE xv 

PARTIAL FORCES AND THEIR CONTRIBUTIONS FOR THE 

3a AND ln DENSITIES 

Forces on the Proton Forces on the A Nuclei 

AH f3oH(Re) Atomic Overlap Screening f3oH(co) f 3 A (Re) Atomic Overlap Screening f3oA(co) 

BeH 0.313 0.000 -0.007 0.320 0 -0.514 -0.605 0.065 0.026 1 

BH 0.762 0.041 0.013 0.708 1 -0.817 -1.384 0.385 0.182 1 

CH 1. 058 0.058 0.207 0.793 1 -0.668 -1.465 0.606 0.191 1 

NH 1. 370 0.068 0.363 0.939 1 -0.485 -1. 489 0.809 0.195 1 

OH 1. 681 0.068 0.472 1.141 1 -0.346 -1. 4 30 0.915 0.169 1 

FH 1. 920 0.065 0.521 1.334 1 -0.250 -1. 34 6 0.955 0.141 1 

flrrH (Re) Atomic Overlap Screening flrrH(co) f lrrA (Re) Atomic Overlap Screening flrrA (co) 

CH 0.608 0.000 0.019 0.589 1.00 0.079 0.059 0.019 0.001 0 

NH 1. 335 0.001 0.043 1. 291 ] . 00 0.158 0.116 0.041 0.001 0 

OH 2.086 0.001 0.044 2.041 3.00 0.226 0.180 0.045 0.001 0 

FH 2.902 0.001 0.062 2 . . 839 4.00 0.295 0.231 0.062 0.002 0 

!-J 
ro 

°' 
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TABLE XVI 

TOTAL ATOMIC OVERLAP AND SCREENING 

CONTRIBUTIONS FOR AH 

Forces on the Proton 

(HH) a . AH E.f.H E.f.~AH) E.f.~AA) Z -E f (AA) FHl. l. l. l. l l A i iH 

LiH 0.225 0.573 2.226 0.774 -0.003 

BeH 0.279 0.925 2.808 1.192 -0.002 

BH 0.283 1.097 3.664 1.336 -0.008 

CH 0.177 1.007 4.880 1.120 -0.014 

NH 0.133 0.940 5.999 1.001 -0.019 

OH 0.109 0.897 7.076 0.924 -0.024 

FH 0.093 0.864 8.124 0.876 -0.026 

Forces on the A Nuclei 

E. f. lAA) Z -E f (HH) a
AH l. l. 

E .f.iAH) E. f · lHH) H i iA FAl. l. l. l. 

LiH -0.616 0.732 0.890 0.110 -0.002 

BeH -0.762 1.044 0.701 0.299 0.010 

BH -0.912 1. 350 0.596 0.404 -0.031 

CH -0.584 1.283 0.341 0.659 -0.053 

NH -0.496 1.275 0.259 0.741 -0.069 

OH -0.424 1.254 0.201 0.799 -0.074 

FH -0.369 1.233 0.161 0.839 -0.075 

a Forces are expressed in a.u., la.u. = 
2 

e I 2 -3 
ao = 8.2378 x 10 dyn. 
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TABLE XVII 

FORCE CONTRIBUTIONS IN LiH AND LiF AS DETERMINED 

BY THE DENSITY DIFFERENCE MAPS 

aCharge equivalents of the force exerted by 

density localized density localized 

on H or F on Li 

Force on H 0.80 2.23 

Force on F 1.05 2.04 

Ideal ionic binding 1.00 2.00 (=ZLi-1) 

Force on Li(LiH) 1.62 -0.62 

Force on Li (LiF) 9.86 -0.71 

LiH 2.00 (=ZH+l)Ideal ionic binding -1.00 
LiF 10.00 (=Zp+l) 

a The charge density localized on F or H exerts atomic 

force on F or H and a screening force on Li. Simi­

larly the charge density localized on Li exerts an 

atomic force on Li and a screening force on F or H. 
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0 

PS 

p x ' 

px ' 

O"I 
rl s 

P n · 
2 

/ 

/ 

I 
H I 

21 
K-­---­
1 

d 

;R = 1,81 a.u. El 
0 

= 37.775° 

£ - 104.45° d = 2.2179 a.u. 
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Appendix 1 

Force eauations 

In these and the ensuing equations,- it is found convenient to 

make the following identities 

cos(t:b) - CEB cos ( w) - cw cos(t) CT-
sin(t:b) - SEB sin ( w) - SW sin (t) - ST 

cos (a.) - CA cos(a./2) - CA2 COS (el I) CEL-
sin(a.) - SA sin(a./2) - SA2 sin(t:l') SEL-

sin(t:/2) SE2 COS(t:/2) CE2 tan(e:l') TEL-
cos ( s) - CB cos ( S/2) CB2-

and also 

<xA6AxA> - A (xAxA) 

p ( x x )
B B 

Where, for example, O(xAxB) is taken to represent the force on 

nucleus A due to the overlap density (xAxB). Dependant on the 

nature of the operator OA this could be a force along the bond 

direction or perpendicular to the bond axis. For the forces F 

and F only H will be ,considered.1 

Force parallel 

F(~~l) =A2[CEB 2P(2s2s) + SEB 2CW2P(pxpx) + SEB 2SW2P(pypy) + C§P(lsls) 

+ 2SEB.CEB.CW.P(2spx)+2C3CEB.P(ls2s)+2C3SEB.CW.P(lspx)] 

+ 2Aµ[CEB.o(hl2s)+SEB.CW.o(hlpx)+C 3o(hls)+C4CEB.o(p32s) 

+ C4SEB.o(p3p1)+C3C40Cp32s)-o{CEB.T(h22s)+SEB.CW.T(h2px) 

+ C3T(h2ls)+SEB.SW.T(h2py) }]+µ 2 T.o2p• (h21~2>a,;..2oor(h:-].h2} 

+ A(hlhl}+2C4A(hl~~}-2C4od(h2p~} 

aThe pr.ime signifies that the parallel component has been taken. 
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F (¢~2)=A 2 [CEB 2 P(2s2s)+SEB 2CT 2P(pxpx)+SEB 2 ST 2 P(pypy)+C~P(lsls) 

+2SEB.CEB.CT.P(2spx)+2C3CEB.P(ls2s)+2C3SEB.CT.P(ls2s) 

+2Aµ[CEB.T(h22s)+SEB.CT.T(h2px)+SEB.ST.T(h2py)+C 3T(h2ls) 

+C4CEB.T(2sp4)+C4SEB.T(p2p4)+C3C4T(lsp4)-o{CEB.o(hi2s) 

+SEB.CT.o(h]_px)+C3o(h]_ls) }]+µ 2 [P' (h2h2)-2oo' (hih2) 

+o 2A(hlhl)+2C 4A(hlp))-2C 4 oo' (h2p])J 

F (¢' 2 )=CEL 2P(2s2s)+SEL 2SE2 2P(pypy)+SEL 2CE22P(pxpx) 

-2CEL.SEL.CE2 P(2spx) 

F (¢'~)=P(pzpz) 

F (¢~) =C~P(lsls)+CfP(2s2s)+C~CE22{pxpx)+C~SE2 2 P(pypy) 
2 2 


+2C C P(ls2s)-2C C CE2 P(lspx)-2c CE2 P(2spx)

0 1 0 2 1c 2

Force Perpendicular 

F (¢Ei)=A 2 [2SEB.SW.CEB.P(2spy)+2SEB 2 CW.SWP(pxpy)+2c 3SEB.SW.P(lspy)] 

+2Aµ[SEB.SW.o(hipy)+C4SEB.o(plp3)-o{CEB.T(h22s)+SEB.CW.T(h2px) 

+SEB.SW.T(h2py)+C3T(h2ls)}]+µ2[o2P"(h2h2)a-2oo"(hih2) 

-2c 4 oo"(h2p 3 )J 

F (¢E 2 )=A 2 [2SEB.CEB.ST.P(2spy)+2SEB 2ST.CT.P(pxpy)+2C3SEB.ST.P(lspy)] 

+2Aµ[CEB.T(h22s)-SEB.CT.T(h2px)+SEB.ST.T(h2py)+C T(h2ls)3

+C4CEB.T(2sp4)+C4SEB.T(p2p4)+C3C4T(lsp4)-o{CEB.T(h22s) 

+SEB.CW.T(h2px)+SEB.SW.T(h2py)+C3T(h2ls) }]+µ 2 [o 2P"(h2h2) 

-2oo"(hih2)+C~P"(p4p4)+2C4P"(h2p4)-28C4o"(hip4)] 

F (¢' 2 )=2SEL 2SE2.CE2.P(pxpy)-2CEL.SEL.SE2.P(2spy) 

F (¢~) =2C~SE2.CE2.P(pxpy)-2C0C 2 SE2.P(lspy)-2c1c 2 SE2.P(2spy) 

Force on oxygen 

F0 (¢E1 )=F0 (¢~ 2 )=A 2 [2SEB.CEB.SW.A(2spx)+2SEB.~EB.SW.A(2spy) 

athe double prime signifies the perpendicular component 
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+2C 3SEB.CW.A(lspx)+2C SEB.SW.A(lspy)]+2Aµ[CEB.o(2shl)3

+SEB.CW.o(pxhl)+SEB.SW.o(pyhi)+C 3o(lshi)+C 4 SEB.T(2sp~) 

+C4SEB.T(p2p4)+C3C4T(lsp4)-o{CEB.0(2sh2)+SEB.CW.o(pxh2) 

+SEB.SW.o(pyh2)+C 3o(lsh2) }]+µ 2 [P(hlhl)+P(h2h2) 

-2oT(hih2)+C ~P(p3p3)+2C4P(hip))-2C4oT(h2p3) 

Fo( ¢~ )=-2CEL.SEL.SE2.A(2spy)-2SEL.CEL.CE2.A(2spx) 

F0 ( ~ ;)=-2C0C 2CE A(lspx)-2C C2SE2.A(lspy)-2C1c CE2.A(2spx)0 2


-2c SE2.A(2spy)
1c 2

Dipole moment 

Here the integrals involved fall into one of two categories 

dependant on the nature of the dipole moment operator DA, where 

A refers to the oxygen nucleus. For a dipole moment measured 

along the bond axis DA = rAcoseA and for one measured perp~ndicular 

If the symbol D(x.x.) is taken 
1 J 

to represent the integral <xiDAxj> then 

DPE(¢~1 )=DPE(¢~2 )=A 2 [2SEB.CEB.CW.D(2spx)+2SEB.SW.CEB.o(2spy) 
+2C SEB.CW.D(lspx)+2C SEB.SW.D(lspy)]+2Aµ[ EB.D(2shl)3 3

+SEB.CW.D(pxhl)+SEB.SW.D(pyhl)+C3D(hlls)+C 4CEB.D(2sp3) 

+C 4SEB.D(plp3)+C3C4D(lsp3)-o{CEB.D(2sh2)+SEB.CW.D(pxh2) 

+SEB.SW.D(pyh2)+C3D(lsh2) }]+µ 2 [D(hihi)+o 2 D(h2h2) 

+2oD(hih2)+C~D(p)p3)+2C 4D(p3hi)-2C4 oD(h2p3)] 
DPE(¢~)=-2CEL.SEL.SE2.D(2spy)-2SEL.CEL.CE2.D(2spx) 

DPE(¢;)=-2C C2CE2.D(lspx)-2C C2SE2.D(lspy)-2c1c 2CE2.D(2spx)
0 0
 

-2c SE2.D(2spy)
1c 2
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Appendix 2 

A number of one-, two- and three-centre integrals appear in both 

the force and dipole moment equations. The one-centre integrals, 

defined as being <xAoAxA> a , can readily be solved by ordinary 

calculus techniques. The two- and three-centre integrals are, 

however a little more complicated and were solved as follows. 

Two-centre integrals 

1 -1 
Here AL and BE are respectively equal to (a+S)R/2 and (a-S)R/2 

where a and S refer to the two screening coefficients of the atomic 

orbitals xA and xB centred on the nuclei A and B respectively 

which are a distance R apart. In prolate spheroidal coordinates, 

namely 

8 b 

then 

A = (ra+rb)/R 

µ = (ra-rb)/R 

= ~ ~ 

a xA and xA refer to atomic orbitals centred on A and oA is the 

operator on centre A. 
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thus 

r = (A+µ) R/2 = (A-µ) R/2a rb 

cose = (l+A µ)/(A+µ) sine ~{ (A 2-l) (1-µ 2) }1-/(A+µ) a a 

coseb = -(1-Aµ)/(A-µ) sineb = { C\2-1) (l-µ2) }t/(A-µ) 

x = r sine cos<J> = R/2 { (A 2-l) (l-µ 2 ) }tcosq,a a 

y = r sine sin<J> = R/2 { (A 2-l) (l-µ 2 ) }~sin<J>a a 
Rz = r a cose a = 2Aµ 

The method of solving the integrals defined by FKI'f.illl / (AL,BE) has 

been given by Kotani (71) and it is his approach that will be 

used in the present work. 

Three-centre integrals 

A program enabling such integrals to be calculated was made 

available to us by "Quantum Chemistry Exchange Programme (92)". 

The coordinate system used in this program is 

x 
c 

x 
· a 

where all the three Y axes are at right angles to the plane of the 

paper. Thus, for example, the force on nucleus A in the Xa direction 

due to the overlap density <x~x~), where x~ and~~ are atomic 
1 J 1 J 
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C Xa B
orbitals centred on B and C respectively will be <xj ~xi>. 

a 
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APPENDIX 

orbitals 

3 

on the oxygen atom have been 

represented by accurate analytical self-consistent field atomic 

functions as calculated by Clementi et al (34 ) . These are of 

the form 

where 

2px.
l 

and 

i 

Cl • 
l 

i 

Cl 
i 

ls. 
l 

= 
Cl • 

3/2 
l 

;; 
-a..r 

l e . 2s. 
l. 

= r 
a. . 

1 

5/2 -a..r 
l. 

e 

i = 1,2 i = 3,4,5,6 

= rcose 

5.2 
Cl • 

l 

/TI 

-a..r 
l e 2py.

l. 
= rsinesincp 

5/2
a. . 

l. 

;; 
e 
-a..r 

l. 

i = 7,8,9,10 i = 7,8,9,10 

7.616 13. 3 24.3 1. 7582 2.5:2_7--+_4_._2_:_3_2-+l-5·_·_9_:_4_5--+-_l_._~_53_6--+--1-._7_:-6~0 
2 31 

3.4379 7.907 

9 10 

0.93850 0.03825 -0.00097 0.00439 -0.00829 . 0.04171 
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-0.21979 .-0.00573 0.42123 0.54368 0.23061 -0.17856 


0.16371 0.57600 0.33920 0.01495 

Atomic orbitals on the hydrogen 

The ls atomic orbital on the hydrogen has been given the sym­

bol h. (i = 1,2). When this orbital is made orthogonal to the 
l 

ls atomic function 	on oxygen there is a superscript zero such 

2
that h~ = (l-S 2)-l/ (h. - S (ls))= N (h. - S (ls))

l 0 l 0 0 l 0 

where 

2 -l/2 and S = <h.ls>
N = (1 - S ) 	 o i 

0 0 

Similarly for the p. atomic orbital on hydrogen (i = 3,4)
l 

2 -1/2
pi= (1 - s ) (pi-. s 1 (ls)) = N1 (2pi - s 1 (ls))1 

where 



____ _ 
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Appendix 4 

Overlap Integrals 

An overlap integral is defined as being <x.x.> and is given the 
1 J 

symbol S (x. x.). Assuming x. to have a screening coefficient a and 
1 J 1 

X· to have a screening coefficient S then 
J 

3/2 3/2= R 3_a. 8 (F030 - F012 + F021 - F003) 
4 

3/285/2 
S(h 2s) = R4°' (F040 - 2F022 + F004)1 813 

3/285/2
S '(h px) = R4°' (F030 - F012 + F021 - F003 - F041 + F0231 

8 - F032 + F014) 

3/285/2 
S(lsp ) = R4°' {F030 + F021 - F012 - F041 - F032 + F023

3 8 
+ F014) 

5/285/2
R setS(2sp ) = (F040 - 2F031 - 2F013 - F004 - F051 - 2F0423 16/3 

+ 2F024 + F015) 

5/2$5/2 
S(pxp ) =RS°' (F030 + F021 - F012 - F003 - F052 - F043

3
16 + F034 - F025) 

When a equals S then it is found more convenient to solve the 

integrals by a method developed by Coulson. Thus if t = ad 

3
S(PnlP7T2) = -(l+t+t2 /s-2t ;1s-t

4 /lS)e-~ 
2 3 -t(l+t+2t /5 +t /lS)e 

Force integrals 

These integrals fall into one of four categories; atomic,screening, 

overlap and three-centre integrals. If OA is taken to represent 

the appropriate force operator on centre A and the fol~owing 

identities are made 
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p ( X · X · ) - <6A X B · ( a ) X B . ( S ) > 
l J l J 

0 ( X · X · ) - <6A XA · ( a ) X B · ( S ) > 
l J l J 

T ( X · X · ) - <6A X B · ( a ) X C . ( S ) > 
l J l J 

Awhere, for example, x . (a) refers 
1. 

to an atomi~ _.orbital centred on 

A with a screening coefficient a . The force integrals appearing 

in ~I 

Force 

, F~ and F 
0 

aparallel 

will thus be 

= R3a5/2s5/2
P(2s2s) (3Fl21 - Fl30 + Fl03 + 3Fll2 + F040 + 3'F031 

12 + 3F022 - F013) 
= R3a5/2s5/2

P(pxpx) (FlOl - FllO + F020 - FOll - 2Fll2 + 2Fl21 
4 -2F031 + 2F022 + Fl23 - Fl32 + F042 - F033)

s;2 8s;2
= R3_a____P(pypy) (FllO + Fl21 - FlOl - 2Fll2 - Fl23 + Fl03 

8 + Fll4) 

= R3a3/2s3/2P(lsls) (FlOl - FllO + F020 - FOll) 
= R3_as_;_2_8_s_;_2_P(2spx) (2Flll - F030 - 2F021 2Fl22 + Fl31 - F041 

4/3 
-Fl20 + 2F032 - Fl02 + F012 + Fll3 - F023) 

= R2a3/2s5/2
P(ls2s) (2Flll - Fl20 + F030 - 2F021 - Fl02 + ~012} 

213 

3 2 5 2R2P(lspx) = a / s / (FlOl - FllO + F020 - FOll - Fll2 + Fl21 

- F031 + F022) 

P 1 312 s312(h h )= d a (FlOl - FllO + F020 - F0ll)cos02 2 0 

s3/2a5/2
P(po 2h 2 )= d 2 (FlOl - FllO + F020 - FOll ~ Fll2 + Fl21 

2 ~ F031 + F022) 
a 3/2 s 5/2

P(h2pn 2 )= d 2 (FllO - Fll2 - FlOl + Fl03) 
4 

312 312O(hlls) = R a s (FlOl - FllO + F020 - FOll) 

aall the forces are for H1 only. 
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a 3/2 83/2O(h1 2s) = R2 (2Flll - Fl20 + F030 - 2F021 Fl02 + F012) 

a3/2 S/28O(h px) = R2 (FlOl - FllO + F020 - FOll - Fll2 + Fl211 2 
- . F031 + F022) 

a3/2 s 3/2O'(h h )= d (FlOl - FllO + F020 - FOll) cose1 2 0 

s3/2 as /2
O(po h 2 )= d2 (FlOl + Fll2 - FllO - Fl21 + F020 + F0311 2 

- FOll - F022) 

a5/2 s 3/2
O(p n h 2 )= d2 (FllO - FlOl - Fll2 + Fl03)1 4 

a5/2S5/2
O(p 2s) = R3 (2Flll - Fl20 + F030 - 2F021 Fl02 + F0123 4/3 

+2Fl22 - Fl31 + F041 - 2F032 - Fll3 + F023) 

a5/2s3/2
O(p ls) = R2 (FlOl - FllO + F020 - FOll + Fll2 - Fl213 2 + F031 F022) 

aS/2 5/2 
O(p 3px)· = R3 8 (.FlOl ·- FllO ·+ F020 - FOll Fl23 + Fl32 

4 - F042 + F033) 

83/2a5/2
O(h po )= a2 (FlOl - FllO + F020 - FOll - Fll2 + Fl21

1 2 2 
- F031 + F022) 

a3/2s5/2
O(h1pn 2 )= d 2 (FllO - Fll2 - FlOl - Fl03) 

4 

For the three centre integrals the operator ca is taken to be 

Za/
r3 

a 

Force perpendicular 
a3/2SS/2

P(lspy) = R2 (FllO - F l Ol - Fll2 + Fl03) 
4 

aS/2 85/2 
P(2spy) = R3 (Fl20 - Fl22 - 2Flll + 2Fll3 + Fl02 - Fl04) 

873 

a3/2s3/2P" (h h )= d (FlOl - FllO + F020 - FOll) sineo2 2 
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R3 5 2 5 2P(pxpy) = a / s / (FllO - FlOl + Fl03 - Fl21 + Fl23 - Fll4) 

a3/2 S/2 
R2 6= (FllO - FlOl - Fll2 + Fl03) 


4 


0 11 a3/2 3/2(h h )= d 6 (FlOl - FllO + F020 - FOll)sine1 2 0 

a5/2s5/2 
O(P3P7T2)= d3 (FllO - Fl21 - FlOl + Fl23 + Fl03 - Fll4) 

8 

For the three centre integrals the operator oa is taken to be 

Xa/ . 
r3 

a 

Force on the oxygen 

The force on the oxygen atom is taken to lie along the symmetry 

axis since by symmetry all the other components will be zero. The 

integrals however have been calculated along and perpendicular to 

the bond direction and therefore the correct components, cos(E/2) 

and sin(E/2) respectively, must be taken. In the integrals below 

the primed superscript signifies that the integral must be 

multiplied by sin(E/2) otherwise the component is cos(E/2). 

a3/2 6S/2 
A(lsp) = 4 

3(a+S) 3 

= 8 a5/2s5/2
A (2sp) 

313 (a+ S) 3 

a3/2s3/2P(h h ) = R3 (FlOl - FllO + F020 - FOll)1 1 

a3/2s5/2 
p (hlp3) = (FlOl - FllO + F020 - FOll - Fll2 + Fl21 

2 - F031 + F022) 

R3 ss 
P(P3P3) = (FlOl - FllO + F020 - FOll + Fl23 .... ;F'l32 

4 + F042 - F033) 
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R a3/2S3/2O(lsh ) = (FlOl - FllO + F020 - FOll)1 

5/2s3/2
R2a0(2sh ) = (F030 Fl20 + Fl02 F012)1 2/3 

5/283/2
R2a0 (pxh ) = (FlOl - FllO + F020 - FOll + Fll2 - Fl211 

2 + F031 - F022) 

5/2 3/2

0 I (pyh ) = R 2 Cl s (FllO - FlOl - Fll2 - Fll2 + Fl03)


1 . 4 

3/2s5/2
0 (lsp ) = R2-a____ (FlOl - FllO + ·F020 - FOll - Fll2 + Fl213

2 - F031 + F022) 

5/285/2
R3a0(2sp ) = (F030 - Fl20 + Fl31 - F041 + Fl02 - F012

3 4r3 - Fll3 + F023) 

R3a5/2B5/2
0 (pxp ) = (FlOl - FllO + F020 - FOll - Fl23 + Fl32

3 4 - F042 + F033) 

5/285/2

O' (pyp3)= R3_a____ (FlOl - Fll2 - FlOl + Fl03 - Fl21 + Fl23 


8 
 + Fll2 - Fll4) 

Dipole moment 

The dipole moment like F is measured along the symmetry axis and 
0 

again the primed superscript signifies the perpendicular component 

must be taken. 

a3;2 5;2
8D (lsp ) = 32 

x 
(a+ S) 5 

170 a5/285/2 
= 

13 (a+S) 6 

a3/2 3/2 
D (hlh 1 ) = R4 8 (F030 - F012 + F031 - F031 + F041 - F023 

8 + F032 - F014) 

a3;2 5;2 
D(hlp3) = Rs 8 (F030 + F021 - F012 - F003 - F052 - F043 

16 + F034 + F025) 
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R6 BS 

(F030 + F021 - F012 - F003 - F052 - F043 + F034 
32 + F025 - F041 - F032 + F023 + F014 + F063 

+ F054 - F045 - F036) 

aS/2 83/2
D(pxh1 ) = Rs (F030 - F012 + F021 - F003 + 2F041 - 2F023 

16 + 2F032 - 2F014 + F052 - F034 + F043 - F025) 

aS/2 63/2 
D I (PYh 1) = R5 (FOSO + F041 - F030 - F003 + F012 - F021 

32 
+ F032 - FOOS - F014 - F052 + F025 - F043) 

a3/2 63/2
D(lsh1 ) = R4 (F030 - F012 + F031 F013 + F041 - F023 

8 + F032 - F014) 

a5/2s3/2
D(2sh1 ) = Rs (F040 + 2F031 - 2F013. - F004 F051 + 2F042

161_3_ 
+ 2F024 - FOlS) 

a3/2s5/2
D(lsp ) = Rs (F030 + F021 - F012 - F003 F052 - F0433 16 + F034 + F025) 

a5/2s5/2
D(2sp3 ) = R6 (F040 + 2F031 - 2F013 - F004 - p062 - 2F053 

321_3_ 
+ 2F035 + F026) 

a5/2s5/2 
D(pxp) = R6 (F030 - F012 + F021 - F003 - · F052 + F034 

32 
- F043 + F025 + F041 - F023 + F032 - F014 

- F063 + F045 - F054 + F036) 

(FOSO - F030 + 2F041 - F021 + F012 - F023 

+ F003 - F061 - 2F052 + F034 + F032 ~ F043 

- 2F014 + 2F025 - FOOS + F063 + F054 - F045 

- F036 + F016) 
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NUMERICAL VALUES OF INTEGRALS 


A B c D E 

S(h1ls) 0.056038 0.059961 0.052471 

S(h
1

2s) 0.466114 0.489242 0.457449 

S(h
1

px) 0.453394 0.444593 0.394475 

S(h
1

h
2

) 0.218211 0.269894 0.218210 

S (lsp
3

) 0.074363 0.112576 

S(2sp
3

) 0.452010 0.576369 

S(h2po 
1 

) 0.486487 0.492458 

S (pxp 3 ) -.148234 -.041864 

S (po 
1

po 
2

) -.280792 0.119727 

S(po 
1

po 
2

) 0.720805 0.497461 

P(2s2s) 0.273075 0.273075 0.271943 

P (pxpx) 0.336256 0.336256 0.380564 

P(pypy) 0.211285 0.211285 0.227782 

P(lsls) 0.305242 0.305242 0.305241 

P(2spx) 0.150608 0.150608 0.166433 

P(ls2s) -.000035 -.000035 -.000015 

P(lspx) 0.020771 0.020771 0.018227 

II 

p (h2h2) 0.094668 0.093367 0.094668 

O(h
1

2s) 0.176766 0.173968 0.184087 

O(h
1

px) 0.194063 0. 1 84211 0.234244 

O(h
1
ls) 0.019417 0.020508 0.018532 
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A B c D E 

0 " (hlh2) 0.042311 0.046312 0.042318 

P(P4P4) 0.051587 0.097054 

0(2sp
3

) 0.113242 0.188686 

O(lsp
3

) 0.022778 0.035495 

O (pxp
3

) 0.075178 0.170824 

O(p3h2) 0.049365 0.068586 

O(hlp4) 0.041656 0.073821 

P(h2p4) 0.025082 0.038695 

P ( 2spy) 0.099272 0.099272 0.100790 

P(pxpy) 0.070157 0.070157 0.068319 
I 

p (lspy) 0.010416 0.010416 0.009114 

p (h2h2) 0.073382 0.072385 0.073365 

O(h
1

py) 0.119798 0.118617 0.109553 
II 

0 (hlh2) 0.032802 0.035904 0.032796 

P(P4P4) 0.001178 0.031072 

p (h2p4) 0.003707 0.008172 

O(p
3

py) 0.413844 0.061883 

O(hlp4) -.008828 0.013433 

0 (p3h2) 0.020361 0.024640 
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NUMERICAL VALUES OF .INTEGRALS (continued) 

A B c o · E 

A ( 2sp) 0.324682 · o.324682 0.487736 

A ( lsp) 2.867280 2.867280 2.235130 

P(h
1

h
1 

) 0.261103 0.246594 . 0.261103 

0 (pxh
1 

) 0.348001 0.359243 0.336497 

0 (pyhl) 0.251696 0.271633 0.141007 

O(lsh
1 

) 0.089649 0.087622 0.089808 

0(2sh
1 

) 0.133526 0.128909 0.134039 

A(hlp3) 0.182528 0.375685 

p (P3P3) 0.007552 0.093896 

P(hlp3) 00032054 0 .. 070541 

O(lsp
3

) 0.009325 0.062185 

0(2sp
3

) -.006660 0.042997 

O(pxp
3

) 0.330779 0.491263 

0 (pyp
3

) 0 .. 343415 0.495995 

D ( 2sp) 0.668776 0.668776 

D ( lsp) 0.061803 0.061803 

D(pxh
1 

) 0.758803 0.773900 

D(pyh
1 

) 0.339436 0.380052 

--­D(2sh1 ) -0.400150 0.393311 

D(lsh1 ) 0.005793 0.005618 

D(h
1

h
1 

) 1.81 1. '81 
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NUMERICAL VALUES OF INTEGRALS (continued) 

A B c D E 
·------- ·~ 

D(lsp ) 0.000320 0.0031933

D(2sp )' -.146745 -.0679643

D(hlp3) -.564340 -.722056 

D(P3P3) 1.81 1.81 

D(pxp ) 0.259190 0.2308103

D(pyp3) 0.178496 0.285743 

T(2sh ) 0.082807 0.088204 0.0856692

T (pxh ) 0.019978 0.025379 0.0250842 

T(pyh ) 0.056413 0.054973 0.0551472

T(lsh ) 0.016487 0.0177102

T(2sh ) 0.031056 0.031021 0 .. 0300642

T(pxh ) 0.013183 0.014319 0.0124732

T (pyh ) 0.053857 0.056300 0.0499622

T(lsh ) 0.000830 0.0008122

A = Screening Coefficient on h. = 1.32 (i = 1, 2) • 
J. 

B = Screening Coefficient on h. = 1.20 (i - 1, 2) • 
J. 

c = Screening Coefficient on p. = 0.66 (i = 3 '4) •
1 

D = Screening Coefficient on p. = 1.00 (i = 3 '4) .
J. 

E = Results obtained by Bader and Jones. 
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Appendix 5 

Diamagnetic Susceptibility 

The expectation value for the diamagnetic susceptibility is 

obtained by averaging the charge distribution over the operator r~ 

where 

«p. r2 <j>.>
l 0 l 

thus 

x(<l>~1) = x(<l>~2) = A2 [CEB 2 x(2s2s)a + 2C3CEB.x(ls2s) + SEB 2 Cw2ipxpx) 

+ SEB 2 sw2 x(pypy) + c§ (lsls)] + 2Aµ[CEBx(hi2s) 

+ SEB.CW.x(h1px) + C3x(hils) - o{CEB.x(h22s) 

+ SEB.CW.x(h2px) + SEB.SW.x(h2py) + C3x(h2ls)}] 

+ µ 2 [x(hih1) - 2ox(hihi) +o 2 x(h2h2)l 

x(pzpz) 

3/2Q3/2
= 96 _a__µ __ 

where 

x(lsls) 
(a+ B} 5 

x(2s2s) = x(pxpx) = x(pypy) 
(a+ B) 7 

X(ls2s) 

x(h1hl = R2 (1 + 3) 
RaS 

<x. (a)r 2 X· (S) > where a and Sare the two screening
l 0 J 


coefficients of X· and x. respectively.

l J 
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x(pxh )1 

Using these relationships the numerical values of the integrals 

involved can thus be calculated 

x(lsls) = 0.3308 x(lshi) = 0.0110 

x(2s2s) = 1.5807 x (2sh]_) = 1.3095 

x(ls2s) = 0.0441 x(pxhi) = 1.7337 

= 5.0122 x(hOhO) = 0.8842x (h.1~1. ) 1 2 

x(pxpx) = 1.9741 x(pxh2) =- .4326 

x(pyh2) = 1.6789 

and therefore 

= = 2.9429x <<Psi) x<<Ps2) 

x (cp2 J = x<<Pi2) = 1.8167 

x(<P~) = 0.0675 

aThe analytical form of the J and K integrals are given by Barnett 

and Coulson (64). 
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Appendix 6 

The expectation value for the diamagnetic contribution to the 

proton shielding constant is obtained by averaging the charge 

distribution over the operator 1/ a. 
rH 

where 

a(¢?) = < <P • <P > 
]. 

1/ 
J. rH i 

Since each¢. is a linear combination of atomic functions,x,
]. 

the expression for <ad> will contain a number of one, two and 

three-centre integrals; o1 (x·X·), a2 (x·X·> and cr 3 (x·X·> respectively.
1 J ]. J 1 J 

Taking X· to have a screening coefficient a and X· to have a
]. J 

screening coefficient 8 then 

a3/2 S/28 (F030 + F003 - F021 - F012)
41_3_ 

a3/2 S/28 (F020 - F031 - F002 + F013) 
4 

a3/2 3/28= d2 (F020 - F002) 
2 

a3/2 3/28= R2 (F020 .- F002) 
2 

a3/2 83/2 
o 2 (lsls) = R2 (F020 - F002) 

2 
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3 3/2 5/2
6R a.a (ls2s) = 	 (F030 - F021 - F012 + F003)2 413 

4 s;2 5;2 

R a. 
 6a (2s2s) = 	 (F040 - 2F031 + 2F013 - F004)2 

24 

a.5/2 5/2 
a 2 (pxpx) = R4 6 (F020 - 2F031 + F042 - F002 + 2F013 

8 
- F024) 

a. 3/2 5/23 6o (lspx) = R 	 (F020 - F031 - F002 + F013)2 
4 

a.5/2 5/26o (2spx) = R 	 (F030 - F013 F021 + F003 F0412	 81_3_ 
+ f023 + F032 - F014) 

a. 5/2 5/2 
o2(pypy) 	 = R4 6 (Fl30 Fll2 + Fl21 Fl03 Fl32 

16 + Fll4 - Fl23 + Fl05) 

a.3;2 3;2 
o2(h2h2) = d2 6 (F020 - F002) 

2 

a.5/2 5/2 
o1(P3P3) = R4 6 (F020 + 2F031 + F042 - F002 2F013 

8 
- F024) 

a. 5/2 3/2 
0 1(P3h1) = R3 8 (F021 + F031 - F002 - F013) 

4 

a. s;2 3/2 
o2(p3h2) = d3 8 (F020 + F031 - F002 - F013)cose

04 

" 	 a.5/2 3/28= d3 	 (F020 - F0 31 + F002 - F013)cose0 2(P4h 2) 0 
4 
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5/2Q5/2
= [d4_a.__µ__ (F020 - 2F031 + F042 - F002 + 2F013 

8 
5/2 5/2 

- F024)cos 2 e ] + [ a f3 d4(F040 - F020 
0 16 

- F022 + F002 - F042 + F022 + F024 - F004) 

sin 2 e ] 
0 
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NUMERICAL VALUES FOR THE PROTON SHIELDING 
CONSTANT INTEGRALS 

A B c D 

0 (h ls) 0.03303 0.03511 0 (lsp ) 0.04115 0.104342 1 2 3

0 (h 2s) 0.40199 0.40183 0 (2sp ) 0.21229 0.514782 1 2 3

0 (h px) 0.52700 0.50700 02(p3px) . 0.05420 0.716482 1

0 (lsls) 0.55249 0.55249 0.33 0.501(P3P3)2 

0
2 

(ls2s) -.00001 -.00001 01 (hlp3) 0.0 0.0 

0
2 

(2s2s) 0.54294 0.54294 02(h2P3) 0.10693 0.10913 

0
2 

(pxpx) 0.61741 0.61741 02 (h2p4) 0.03390 0.03776 

02 (lspx) 0.01885 0.01885 02(h1P4) 0.78730 0.67674 

0 (2spx) 0.17968 0.17968 0.03931 0.1429802(P4P4)2 

02(pypy) 0.49046 0.49046 0 (2sp ) 0.19956 0.239133 4

01 (hlhl) 1.32 1.2 03(PYP4) 0.03590 0.07330 

03(hl2s) 0.21015 0.22284 0 (lsp ) 0.01114 0.01678
3 4

0 (h px) 0.17541 0.17191 0 (2sp ) 0 .10957 - 0.15284
3 2 3 4

0 (h ls) 0.03037 0.03263
3 2

,.. 
02(hlh2) 0.14435 0.17169 

02(h2h2) 0.34861 0.34787 

0 (h px) 0.01252 0.02056JI 3 2

A = Screening Coefficient on h. = 1. 32 (i = 1, 2) . 
l 

B = Screening Coefficient on h. = 1.20 (i = 1, 2) . 
l 

c = Screening Coefficient on p. = 0.66 (i = 3 I 4) .
l 

D = Screening Coefficient on p. = 1. 00 (i 3 I 4) •= l 
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Appendix 7 

The expectation value for the electronic contribution to the 

field gradient at the position of the proton, along the bond 

direction, is obtained by averaging the one-electron charge 

density over the operator (3cos 2 e -1) where 
0 

r3 
0 

Thus 

<q-e > = <p(3cos 2 e 
0 

-1)> 

r3 
0 

Because of the complicated nature of the operator, the two- and 

three-centre integrals are rather more difficult to solve. In 

the present work the method proposed by Barnett and Coulson (64) 

has been employed. 

In general a two-centre integral of the type 

<x~(a) (3cos 2 e -1) x~ (8)>, where x~ and x~ are atomic orbitals 
i a J i J 


r3 

a 

centred on the nuclei A and B respectively with the respective 
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screening · coefficiehts a and S, can be written in the form 

m-1 -srb 
If rb e is expanded in terms of ra and cosea, then dependant 

on whether m=O,l or 2 functions denoted by y (S,r ;p)~ p (S,r ;p)n a n a 

and q (S,r ;p) a~e obtained (Coulson 1937). In this way the n a 

integrals can be reduced to the form 

for m=O 

or -Kt R, 

IPn, £ + 1/2 ( K 'T) = je Pn(l,t;T)t + l/2 dt for m=l 

where 

K = a/B t= Sr T = BR a 

If the symbols q . (x. x.), q 2 (x. x.) and q 3 (x. x.) are taken to re­1 1 J 1J 1J ' 

present the one-, two- and three-centre integrals respectively 

in the expression for <qe>' where for example 

Hl 
q (x.x.) = <x. (a). (3cos 2 e -l)x. (8)>,2 J_ J 1 0 J 


r3 

0 


then 

5/2 5/2= 16 _g__e.___ 1 
q (pxpx) ------)

1 15 (q +s.> 2 



217 


Sas;2 6s;2 1
ql(pypy) = --) 

15 (a+ S) 2 

3/2 3/2
a S 8 IT 

5 
(Gl I -1 + 1/2 - G3, -1 + 1/2) 

a5/2s3/2 8 / T 
(Gl, 0 + 1/2 - G3, 0 + 1/2)

/3s 5 


a5/2 s3/2 
 8 

s~ 5 ( 2 1P1,-1 + 1/2 + 3 1P3,-l + 1/2) 

-2ar8 a. 3 e 

3 


The operator (3cos 2 e -1) was chosen such that the above field 
0 


r3 

0 

gradient integrals are measured with respect to the 0-H bond. 

In order that this gradient lie along the symmetry axis, a 

component must be taken (cos 2 (s/2) -(l/2)sin 2 (s/2)) where s/2 is 

the angle between the 0-H bond and the symmetry axis. Furthermore, 

s a s 
q (h1py) and q (pxpy) , which have a zero component along the 

bond, are now given as 

5/2 3/2 -ara -srb 
= cos(s/2)sin(s/2) a S 6{(e cosea e )-J(3,-l,l)} 

2 1T 
r2 

a 

= cos(s/2)sin(s/2) a5/2s5/2_24 

1S(a.+s) 2 


athe supersc~ipt s signifies that the integral is calculated with 
respect to the symmetry a x is . 
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Appendix 8 

TOT corresponds to the expansion of a SxS determinant of overlap 

integrals. If S .. (sij ) is taken to represent «p .cp .> where i=l, 
l] l J 

2,3,4 a nd 5 cor resp o nd t o t he five occup ied molecula r orbitals 

of the water molecule and j = 6,7,8,9 and 10 correspond to the 

five occupied atomic orbitals of the neon atom, then TOT will be 

equal to 

(s49s510-s410s59) (sl6s27s38-sl6s28s37-sl7s26s38+sl7s28s36-sl8s27s36 

+sl8s26s37) 


+(s27s510-s210s57) (sl6s38s49-sl6s39s48-sl8s36s49+sl8s39s46-sl9s38s46 


+sl9s36s48) 


+(s27s38-s28s37) (sl6s49s510-sl6s410s59-sl9s46s510+sl9s410s56 

-sll0s49s56+sll0s46s59) 

+{sl6s510-sll0s56) (s27s38s49-s27s39s48-s28s37s49+s28s39s47-s29s38s47 

+s29s37s48) 

+(sl6s38-sl8s36) (s27s49s510-s27s410s59-s29s47s510+s29s410s57 

-s210s49s57+s210s47s59) 

+(s27s49-s29s47) (sl6s38s510-sl6s310s58-sl8s36s510+sl8s310s56 

-sll0s38s56+sll0s36s58) 

+(sl6s27-sl7s26) (s38s49s510-s38s410s59-s39s48s510+s39s410s58 

-s310s49s58+s310s48s59) 

+(sl6s49-sl9s46) (s27s38s510-s27s310s58-s28s37s510+s28s310s57 

-s210s38s57+s210s37s58) 

+(s38s49-s39s48) (sl6s27s510-sl6s210s57-sl7s26s510-sl7s210s56 

-sll0s27s56+sll0s26s57 

+(s38s510-s3 1 0s58) (sl6s27s49-sl6s29s47-sl7s26s49+sl7s29s46 

-s l9s2 7s46+sl9s26s47) 
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Appendix 9 

Associated with each H.. integral in the equation that determines 
1.J 

6E there is a product of overlap integrals given the symbol SUM(I) 

and defined as being the co-factor of the ij element in the SxS 

determinant TOT. Listed below for each H.. are the diagonal
1.J 

elements of this co-factor. Again the symbol 5 ij is taken to 

mean the integral<¢.¢.> where i = 1,2,3,4 and 5 define the five 
1. J 

occupied molecular orbitals of water molecule and j = 6,7,8,9 and 

10 define the five occupied atomic orbitals of the neon atom. 

H.. I SUM (I)
2.1. 

Hl6 1 ls27 s38 s49 sSlOI 

Hl7 2 ls26 s38 s49 ss1ol 

Hl8 3 ls26 s37 s49 sSlOI 

Hl9 4 ls26 s37 s48 sSlOI 

HllO 5 !s26 s37 s48 ss91 

H26 6 ls11 s38 s49 sSlOI 

H27 7 lsl6 s38 s49 ss101 

H28 8 lsl6 s37 s49 s510l 

H29 9 !sl6 s37 s48 ss101 

H210 10 lsl6 s37 s48 ss91 
i 

... , sl 7H36 11 s28 s49 sSlOI 

H37 12 lsl6 s28 s49 ss101 

H38 13 lsl6 527 s49 s510l 

H39 14 lsl6 s27 s48 ss101 

H310 15 !sl6 s27 s48 s59j 

H46 16 lsl7 s28 s39 s510l 
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H.. I SUM (I)
__2:2 

H47 17 jsl6 s28 s39 sSlOI 

H48 18 lsl6 s27 s39 sSlOI 

H49 19 !sl6 s27 s38 sSlOI 

H410 20 !sl6 s27 s38 ss91 

H56 21 lsl7 s28 s39 s4101 

H57 22 lsl6 s28 s39 s4101 

H58 23 jsl6 s27 s39 s4101 

H59 24 Is16 s27 s38 s4101 

H510 25 lsl6 s27 s38 s4101 

Each SUM ( I) is of course, a sum of 4! or 24 terms, eachI 

term being a product of four overlap integrals. For example, 

SUM ( 1) is given as 

(+s27 s38 s49 s510 s29 s38 s47 s510 s28 s37 s49 s510 

-s27 s38 s410 s59 + s29 s38 s410 s57 + s28 s37 s410 s59 

-s27 s39 s48 s510 + s29 s310 s47 s58 + s28 s39 s47 s510 

+s27 s39 s410 s58 s29 s310 s48 s57 s28 s39 s410 s57 

+s27 s310 s48 s59 + s29 s37 s48 s510 s28 s310 s47 s59 

-s27 s310 . s49 s58 s29 s37 s410 s58 + ·s28 s310 s49 s57 

-s210 s37 s48 s59 + s210 s37 s49 s58 + s210 s38 s47 s59 

-s210 s38 s49 s57 s210 s39 s47 s58 + s210 s39 s48 s57) 
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Appendix 10 

Integrals required for the ~E calculation 

(a) overlap integrals 

These integrals are written in the form S(x·x·) = <x·x·> 
1 J 1 J 

where X· refers to an atomic orbital on the oxygen or hydrogen
J. 

nuclei and X· refers to an atomic orbital on the neon. 
. J 

816 = Co8(lsls) + c 8(2sls) - c (CE2.8(pxls) + SE2.S(~))1 2 

S26 = C 8(ls2s) + c s(2s2s) - c (CE2.S(px2s) + SE2. ff(~))
0 1 2 

S36 = COS(lspx) + c s(2spx) - c (CE2.S(pxpx) + SE2.S(~))1 2 

S46 = C 8(lspy) + cl s (~.EY) - c2 (CE2.S(~y_) + SE 2 • S (. pypy) )
0 

S56 = COS(lspz) + c1 s(2sEz) - c2 (CE2.S{~) + SE2.S{~)) 

Sl7 = A(CEB.8(2sls) + SEB(CW.S{pxls) + SW.S(~))+ c3S(lsls)) 

+ µ(S(hlls) - cS8(h2ls)) 

827 = A(CEB.S(2s2s) + SEB(CW.S{px2s) + SW.S(~))+C3S(ls2s)) 
+ µ(8{h}.2s) - cSS(h22s)) 

837 = A(CEB.8(2spx) + SEB(CW.S{pxpx) + SW. 8 (EXE~) ) + c3 s ( 1 s EX) ) 

+ µ(8(hlpx) - cSS (h2px) ) 

S47 = A(CEB.S (~) + SEB (CW. 8 ( E?:92.Y_) + SW. S ( pypy) ) + c 3s{~)) 
+ µ (S <~.EY) - cSS(h2py)) 

857 = A(CEB.S(2spz) + SEB {CW.B (~) + SW.8 (~)) + c3S(lsEz)) 

+ µ (S (~E) - cSS (~)) 

Sl8 = A(CEB.S(2sls) + SEB(CT.S(pxls) + ST.S(~) + c 8(lsls))3
+ µ(S(h2ls) - cSS(h}.ls)) 

S28 = A (CEB·. S ( 2s2s) + SEB(CT.S{px2s) + ST.S(~)) + c s(ls2s))3
+ µ(8(h22 s ) - cSS(hl2s)) 

http:cSS(h}.ls
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838 = (CEB.S(2spx) + SEB(CT.S(pxpx) + ST.S(~)) + c S(lspx))3
+ µ(S(h2px) - oS(hl~x)) 

848 = (CEB. s (~) + SE'B (CT. s (~) + ST. s (pypy)) + c3s (lspy)) 

+ µ(S(~2EY.) - oS(~lEl_)) 

858 = (CEB.S(2spz) + SEB(CT.S(pxpz)+ ST.S(EY.E!_)) c S(lspz))3
+ µ(S(h2pz) - oS(hl~)) 

819 = CEL.S(2sls) - SEL(CE2.S(pxls) + SE2.S(~)) 

829 = CEL.S(2s2s) SEL(CE2.S(px2s) + SE2.S(~)) 

839 = CEL.S(2spx) - SEL(CE2.S(pxpx) + SE2.S(~)) 

849 = CEL.S(~) - SEL(CE2.S(~) + SE2.S(pypy)) 

859 = CEL.S (~) - SEL(CE2.S(~) + SE2.S(~)) 


8110= S(pzls) 


S210= S(~) 


8310= S(~) 


8410= s (~) 

8510= s (~) 

All the integrals underlined are numerically equal to zero. 

If a refers to the screening coefficient of the oxygen atomic 

orbital and S refers to the screening coefficient of the neon 

atomic orbital, then the non-zero integrals in the above equations 

are given in appendix 4. 

Integrals involving the operators l/ra' l/rb and l/rc 

For simplicity the following identities will be made ~ 

a b
A(x.x.)

l. J 

a b
B(x . x.)

l. J 



223 


b a b<x~(a) l/r x · ( B) > C{xixj)l c J 

Where, for example, x~(a) is an atomic orbital centred on the 
l 

oxygen or neon atom with a screening coefficient a(the symbols 

b and c refer to H and H respectively)1 2 

a3/2 63/2 
A{ls a lsa ) = 4 

{a+B) 2 

a3/2 65/2 . 8A(lsa2sa) = 
13 (a+S)3 

aS/2 5/26A(2sa2sa) • 8= 
(a+ S) 4 

aS/2 65/2 
A{pxa px a ) = . 8 

(a+S) 4 

a3/2s3/2

A (lsah~) = R2 (F020 - F002) 


2 


. s;2.s3;2
A(2sah~) = R3 a (F030 .- F012 + F021 - F003) 

413 

a5/2 63/2
A{ ahb) = R3 (F020 - F002 + F031 - F013)Px 1 

4 

A( ahc) A ( . ahb)= COSE:Px 2 Px 1 

a3/2 63/2
B(l~l~) = R2 (F020 - F002) 

2 

a3/2 65/2
B(l~2~) = R3 (F030 + F003 - F021 . - F012)

4r3 
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• 
a5/2 5/2

B(2~2~) = R4 6 (F040 - 2F031 + 2F013 - F004) 
24 

aS/2 5/2a a 6B(pxpx) = R4 (F020 - 2F031 + F042 - F002 + 2F013 - F024) 
8 

aS/2 65/2a aB(pypy) = R4 (F040 - F042 - F020 + F024 + F002 - F004) 
16 

· 

~ 

a3/2 63/2 

B (h~l~) = R2 (F020 + 2F011 + F002)
~ 

2 

,,,, B(h~2~) = R3 a 

aS/2 5/2a a 6B(2spx) = R4 (F030 - F012 - F021 + F003 - F041 + F023 
813 - F032 + F014) 

a3/2 5/2a a 6B(lspx) = R3 (F020 - F002 - F031 + F013) 
4 

C ( lsals a)= B(lsalsa) 
~ 

a aC(ls 2s )= B(lsa2sa) 

a aC(2s 2s )= B(2sa2sa) 

2 a aC ( a a) = CE2. B ( a a) + SE .B(py py )PxPx PxPx 

a a 2 a a 2 a a


C(pypy) = SE B(pxpx) - CE .B(pypy) 

b aC(h~lsa) = B(h ls ) . 2

C(h~2sa) = B(h~2sa) 

b aC(hc a) B(h px)=2Px 1
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Numerical values of the inte9:rals 

S(lsalsa')a 

S(2sa2sa') 

S(lsa2sa') 

S (2salsa 
1 

) 

0.9810= 

0.9562= 

= 0.1090 

=-0.0739 

a a'S(pxpx ) 

b a'S(h1px ) 

s (h~lsa) 

S (h~2sa') 

= 

= 

= 

= 

a a'S(pypy ) 

0.3625 

0.0396 

0.3742 

= 0.9751 

A(lsalsa') 

A(2sa2sa') 

A(lsa2sa 
1 

) 

A(2salsa 
1 

) 

= 8.4647 

= 1.3573 

=-0.8379 

=-1. 42 06 

A(lsa 
1 

h~) 

A(2sa'h~) 

A(pxa' apx) 

a' bA (px h 1 ) 

= 

= 

= 

= 

0.1829 

0.3390 

1.2343 

0.2691 

y 

B(lsalsa') 

B(2sa2sa') 

B(2salsa') 

B(lsa2sa') 

a a'B(px px ) 

a a'
B(py PY ) 

b a'B(h1px ) 

= 0.5420 

= 0.5229 

=-0.0408 

0.0643= 

0.5999= 

0.4900= 

0.4244= 

B (h~lsa') 

B (h~2sa 
1 

) 

a a'B(ls px ) 

a a'B(2s px ) 

a' aB(ls px) 

B(2sa' apx) 

= 

= 

= 

= 

= 

= 

0.2310 

0.8623 

0.5364 

2.1662 

0.4248 

2.4584 

1 
<­
rb 

a'ls c
h2> = 0.2166 1 

<­
rb 

,,/ 

2sa' c
h2> = 0.1771 

1 
<­
rb 

a' 
Px 

c
h2> = 0.0123 1 

<­r c 

a' 
Px 

b 
hl> = 0.1373 

aThe superscript a s ignifies an atomic orbital on oxygen 
whereas the superscript a' signifies an atomic orbital on 
neon. 
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APPENDIX 11 

¢ ~l = (1 + .g)-l { (CEL(l - g) - 2g
1

/ 
2 

A CEB) 2s + (SEL.SB2(1 + g) )pz 

+ (-2g1/ 2 Ac )ls + (SEL.CB2(1 - g) + 2Agl/2SEB.CA2)px'
3 

112+ (-g µ ( 1 - 0) ) (h~ + h~) } 

1 / 2¢£ = (1 + g)-l {(CEL(l-g) - 2g CEB) 2s - (SEL.SB2(1 + g)pz2 

+ (-2g1/ 2 c (ls + (SEL.CB2(1 - g) + 2 g 1/ 2SEB.CA2)px'
3 

1I 2+ ( - g µ ( 1 - o ) .) ( h ~h ~ ) } 

¢bl= (1 + g)-l {(A.CEB(l - g) + 2g1/ 2CEL)2s + ( SEB.SA2(1 + g)py' 

+ (ASEB.CA2(g - 1) + 2g1/ 2SEL.CB2)px' + (AC (1 - g))ls3 

+ (µ(l + go))h 0 + (-µ(o + g))h2
0 }

1 

¢b = (1 + g)-l {(ACEB(l - g) + 2g1/ 2CEL)2s - (ASEB.SA2(1 + g)py'2 
1/2+ (ASEB.CA2(g - 1) + 2g SEL.CB2)px' + (AC3 (1 - g))ls 

+ (-µ(o + g))h~ + (µ(l + go)h~ } 
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APPENDIX 12
• 

CALCULATION OF THE DENSITIES 

In order to calculate the one-electron charge distri­

bution in a molecule all the orbitals were expressed in terms 

of one central polar coordinate system (r,8,~). For the water 

molecule this coordinate system was centred on the oxygen 

nucleus with the z-axis coincident with the symmetry axis. If 

this is the case then the two proton coordinates will be given 

as 

2R r(cos _E/2 cos 8/2 + sin E/2 sin 8/2 cos ~)) 11 2 
e 

2 r = (r 2 + R = 2R r(cos E/2 cos 8/2 - sin E/2 sin 8/2 cosH2 e e 

where ~ is measured from the plane passing through Hl, H2 and 0 

nuclei. For the hydride molecules AH the coordinate system was 

centred on A, in which case 

2 2 112 r = (r + R - 2rR cos 8)H e e 

The procedure is therefore to read in the orbital coefficients, 

bond parameters and orbital exponents and some chosen range of 

r,8 and ~ values. Lines of constant density are observed by 

interpolation between the computed values and are plotted. 

Any desired plane can be examined by a suitable choice 

of r,8 and~. Thus, for example, the In-and Out-of-Plane 

plots of Fig. VIII for the water molecule are obtained by 

setting ~ equal to 0° and 90° respectively and ranging r and 8. 

The atomic densities used in Parts I and II were taken 

from Clementi et al (34). However, a check using later, equi­

valent wave functions of Bagus and Gilbert (90) showed no 
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significant changes. Atomic densities based on wave functions 

worse than Hartree-Fock wavefunctions would, however, begin to 

show significant changes. 
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