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In Part I the one-electron charge distribution in
the water molecule is obtained by demanding that this dis-
tribution balance the nuclear forces of repulsion and
reproduce the observed dipole moment. Parameters contained
in the molecular orbital description are then related to
such concepts as hybridisation and bond polarities.

In Part II the electronic forces of attraction and
the one-electron charge distribution, calculated from near
Hartree-Fock wave functions, are used to interpret the

binding in the first-row diatomic hydrides.
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PREFACE

The use of the one-electron charge distribution, and
in particular its associated forces on the nuclei, to interpret
the nature of the binding in molecules has not received the
attention in the literature that it warrants. Not only are
such calculations mathematically simple but also these proper-
ties being dependant on the real three-dimensional electron
density, lend themselves to an easy physical interpretation.

The present research is an attempt to elucidate the
forces operative in binding the nuclei. In Part I the "best"
one-electron charge distribution for the water molecule, using
only a limited set of basis functions, is obtained by demanding
that this distribution produces a zero resultant force on the
three nuclei. According to the Hellmann-Feynman theorem, the
force on a nucleus in a molecule is the sum of the electronic
force (which does not require the calculation of integrals in-
volving the coordinates of more than one electron) and the
classical forces of repulsion due to the other nuclei. This
condition provides one with a number of constraints that any
proposed density must fulfill and the successive steps leading
to this equilibrium distribution of density contribute to an
| understanding of the principle of bond formation.

In Part II, on the other hand, the binding in the
first-row diatomic hydrides, AH, whose charge distributions are
known accurately, are examined by means of a detailed force
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analysis complimented with measurements made on the one-electron
charge distributions. The results of Part II have been submit-
ted for publication in the Journal of Chemical Physics.
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GLOSSARY OF SYMBOLS EMPLOYED

o alpha B beta Y gamma § delta

e epsilon £ éeta © theta A lambda

oo mu T pi p rho o sigma

T tau v upsilon ¢ phi x chi

y psi w omega

] - the single determinantal electronic wave function.

) - moleculaf orbital.

Xq - an atomic orbital on nucleus g

Za - charge on nucleus a

o - the single particle density arising from the electronic

wave function.

a - the orbital exponent in the analytical expression for

an atomic orbital.
. . _ 3 1/2
ls - a ls atomic orbital on oxygen = (o~ /m) exp. (=ar) .
h - a ls atomic orbital for the hydrogen atom.
So - the overlap between ls and h.
S1 - the overlap between two h orbitals.
2s - a 2s atomic orbital on oxygen = (m5/317)l/2 r exp(-ar).

P3Py~ 2p atomic functions centred on hydrogens (1) and (2)
respectively and pointing along the bond axis.

px - a 2px atomic orbital on oxygen = (015/1r)l/2 r coso exp(-er)

Py - a 2py atomic orbital on oxygen = (m5/1r)l/2 r sineexp(-ar) cgi g
82 - the overlap between P, and ls. sin §
NOTATION

The terminology conforms to that proposed by Mulliken as far

as rossible. The abbreviation L.C.A.0. is used to designate a
linear combination of atomic orbitals, and an S.C.F. calculation
refers to an energy variational calculation based on the self
consistent field method.
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PART I

THE NATURE OF THE BINDING IN

THE WATER MOLECULE



1. INTRODUCTION

(a) HISTORICAL

Molecules containing lone pairs of electrons have been of
particular interest to chemists for a long time. The spatial
distributions of such ione pairs and the part they play in
determining the equilibrium configuration of the nuclei has
received much attention in the literature.

The water molecule is probably the most discussed ex-
ample in this class and consequently its historical treatment
parallels the theoretical advances in wave mechanics.

The general conclusion that an electron pair bond is
formed by the interaction of two unpaired electrons on each
of two atoms was formally obtained by Heitler (1) and London (2)
in 1927/1928. On this basis and because the two unpaired elec-
trons on the oxygen atom are 2p, Pauling (3) suggested that the
inter-bond angle in the water molecule was ideally 90°. The
actual angle was, in fact, expected to be slightly larger due to
the electrostatic interaction of the two hydrogen atoms.

It was first realized in 1930 (4) and then confirmed in
1932 (5) that three atoms in this molecule do form a triangle.
The precise value of the H-O-H bond angle was then unknown but
was believed to be between 102° and 110°.

Van Vleck and Cross (6) did a simple calculation that
took the hydrogen repulsions, suggested by Pauling, into account.
They showed that it would result in a bond opening of about 10°

which was indeed very close to the experimental value.



In 1933 Bernal and Fowler (7), using Mulliken's (8)
theory for the electronic structure of polyatomic molecules and
Verwey (9) in 1941, again using qualitative arguments, pre-
dicted that the net electron density in the water molecule would
resemble a tetrahedron with two corners of positive charge
and two corners of negative charge. If we now assume that an
isolated water molecule retains its essential features in the
formation of ice, this result was in full agreement with the
crystallographic work of Barnes (10). "The normal form of an
ice crystal," he said, "is held together»by hydrogen bonds
in such a way that each molecule is surrounded by four others."
Such a picture would also be consistent with the electrostatic
theory of the hydrogen bond according to which the proton is
attracted by a localised pair of electrons on another molecule.

Sidgwick and Powell (11), in 1940, collected experi-
mental evidence on the stereochemistry of polyvalent atoms and
attempted to relate it to the simplest explanation of their
electronic structure, the size of their valency groups and the
number of shared electrons they contain. It was concluded that
both the lone and bonding pairs of electrons were equally im-
portant and that they were arranged symmetrically so as to
minimize their mutual electrostatic repulsions. If this is the
Case then the geometrical configuration of these electron
pairs depends only on their total number and not on their type.
Thus, for example, molecules containing two, three or four

valency pairs will be linear, trigonal and tetrahedral respec-



tively. Accordingly the water molecule with eight wvalence
electrons was predicted to be tetrahedral with a bond angle of
109°28".

Heath and Linnett (12) in 1948 suggested that if, in
fact, the structure of the water molecule was nearly tetrahed-
ral then it could be explained by means of a 2s/2p hybridi-
sation of the central oxygen atom®. The extent of this hybri-
disation is dependent on the bond angle and in the limit of
complete mixing we will obtain four equivalent orbitals that
point towards the four corners of a tetrahedron; two of these
orbitals will be doubly occupied and two will be singly oc-
cupied and hence available for bond formation.

This description would give rise to a large concen-
tration of negative charge behind the oxygen atom and two
directed bond orbitals. The concentration of negative charge
is commonly referred to as lone pair density, since it originates
from atomic orbitals centred solely on one atom and consequently
does not take part directly in the bonding.

Pople (14), allowing for the hybridisation suggested by
Heath and Linnett, performed an equivalent molecular orbital
calculation on the water molecule. He showed that a change in
the bond angle will produce a change in the lone pairs and con-
cluded that it was the electrostatic interaction of the lone and

bonding pairs of electrons that is important in determining the

4The concept of hybrid orbitals was first suggested by Slater (13)
in January 1931 and then by Pauling (3) in February of the
same year.



equilibrium configuration, a result that Sidgwick and Powell
obtained by purely qualitative arguments eleven years previous.

Sir Lennard-Jones (15) in 1952, argued that for an
inert gas, like neon, in wﬁich all the orbitals are doubly oc-
cupied, then the electrons with o spin are correlated amongst
themselves and tend to take up a tetrahedral configuration.
Similarly, electrons with B spin are correlated amongst them-
selves and tend likewise to take up a tetrahedral configuration,
there being no correlation between the two tetrahedrae of
different spins. With this in mind Pople(l6) suggested that the
electronic structure of certain hydride molecules can be dis-
cussed in terms of the basic neon structure by a successive
removal of protons to their equilibrium bond length and angle.
Consider, for example, the removal of two protons to form
the water molecule. In the formation of these bonds there
must be a correlation between the a and B spin tetrahedra
described previously and, once again, we have a picture that
predicts a bond angle of 109°28' and a large concentration of
negative charge behind the oxygen nucleus.

The actual bond angle is in fact 104.45° and a possible
reason for this 5° shift has been suggested by Gillespie and
Nyholm (17). The motion of the electrons in a bond, they said,
is somewhat restricted by the electrostatic attraction of the
protons. These electrons will tend to be more concentrated
along the direction of the internuclear axis. Thus the elec-

trons in the lone pair orbitals are best described as occupying



large and diffuse orbitals, whereas the electrons in the bonding
orbitals are best described as being localised. As a conse-
quence of both the Pauli and electrostatic forces there will be
greater repulsions between the lone pairs than between the bonding
pairs of electrons. Extensive use of this valence shell elec-

tron pair repulsion theorem., as it is knbwn, by these workers

has been instrumental in both predicting and explaining the
structure of many molecules and in the case of HZO would ac-

count for bond closing.

It has, however, been pointed out recently (18) that the
Pauli repulsive forces were never operative in the lone pairs;
it is rather a density shift into the binding region that causes
the decrease in the bond angle.

This then is a brief discussion of the qualitative argu-
ments pertaining to the water molecule. There is assumed some
sort of relationship between the wave function and the molecular
geometry; the bonding orbitals, for example, are made to point
at the hydrogens. There is no prior reason for believing this
to be the case and in fact it will be shown that such a descrip-
tion would lead, from a consideration of the forces acting on

the nuclei, to an unstable molecule.



(b) THEORETICAL

In wave mechanics the stationary state of a molecular
system containinglN electrons is, iﬁ the Born-Oppenheimer
approximation, given by the solution to the Schrédinger
equation (19)

Hvy (1,2....N) =E ¢ (1,2 ....N) (1)
where H is the Hamiltonian operator corresponding to the clas-
sical energy of the system and y a wave function that involves
both the spatial and spin coordinates of all the electrons.

As a consequence of writing the total wave function
as an antisymmetrised product of orthonormal one-electron spin

orbitalsa

: b
vy (1) .....tyl(N)

1 s
VN! . s
v (1) .....wn(N)
Fock (20)in 1931 was able to devise a method, originally pro-
posed in 1928 by Hartree (21), by which the 3N-dimensional
problem represented by equation (1) could be reduced to the
solution of N three-dimensional Schradinger equations of the

type

8Each spin orbital wl is itself a product of a space function ¢
called a molecular “orbital, and an o or B spin function.

bIn future a determinantal wave function of this form will be

written as

v = (1) ¥,(2) iy (D)

1
VNI



It was assumed that each electron i moved in an average
potential field Uy provided by the remaining electrons and nuclei.
Hore is now the "Effective Hamiltonian" and is simply the sum of
the kinetic energy of the electron and the above mentioned
potential. If this field is chosen so as to be invariant under
any of the symmetry operations of the point group to which the
molecule belongs then the resultant molecular orbitals will be
symmetry adapted. That is to say, they will span an irreducible
representation of this point group.

The so-called Hartree-Fock method can thus be represen-

ted schematically as

Vi Ui Heff — ¥y

By assuming an initial set of eigenfunctions the field entering
the Hamiltonian can be estimated and a new set of eigenfunctions
can be calculated together with the corresponding electron den-
sity. From this data the field could be re-calculated; the
procedure being repeated until self-consistency is reached.

A determinantal wave function as represented by equation
(2) does not, in general, represeﬁt an exact solutioh of the
Schrédinger equation; although electrons with parallel spins
are kept apart, in accordance with the Pauli Principle. It is
energetically unfavourable, because of coulombic repulsions,
to put two electrons in the same orbital even though their

spins are opposed and in an extended Hartree-Fock treatment,



9
all the electrons are represented by a different space function.

A further improvement to the total wave function can be made by
taking a linear combination of several determinantal wave func-
tions, each formed from different spin orbitals; this being
particularly necessary when we are dealing with open-shell
configurations.

In the present calculations we are, however, concerned
with the molecule in its ground state and as such, all the mole-
cular orbitals will be doubly occupied. If this is the case then
the total wave function can be adequately approximated by the
singly determinantal form.

In principle, therefore, the Hartree-Fock equations can
be solved by an iterative procedure in which one postulates an
initial set of eigenfunctions. This is an extremely arduous task
and it is found necessary to set further restrictions on each
molecular orbital. It is generally assumed that these can be
represented by some linear combination of atomic functions, called

a basis set, centred on the constituent atoms.

J
The methods of group theory have been particularly useful in
this respect since it has been shown that the electron distri-
butions in closed shell molecules have the same symmetry as the
nuclear framework. Thus in the case of water molecular
orbitals constructed in this way necessarily span the Al, A2,
Bl or B2

The electrons are thus depicted as being spread over the whole

irreducible representation of the C2v point group.

nuclear framework and are consequently as delocalised as possible.
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Roothaan (22) was among the first to develop the math-
ematical consequences of this theory and the atomic orbital
coefficients were.obtained by invoking the minimum energy con-
dition of the variation method. If the basis set is large
enough then no error will be introduced by this approximation.
However, if this is the case any attempt to interpret the
chemical concepts of molecules and bonds in terms of the wave
function are generally expressed as numerical coefficients and
seem to bear very little relation to classical ideas (23), It is
more rewarding from the chemical point of view to use a re-
stricted basis set where accurécy is now sacrificed for insight.
This consequently incurs an error and one might ask whether the
electron density in molecules can be adequately described by
a restricted set of basis functions which does not give a good
energy - our criterion of accuracy lies in the agreement of
calculated molecular properties.

Quantum mechanically every observable or observation can
be represented by an operator. For a stationary state molecu-
lar system a series of density matrices can be defined which
allow, in a more direct way, the average values of these
operators to be calculated.

In atomic units for examplé the N-electron density ma-

trix is defined as being

b = $(1o2eeeesl) ¥ (1,2000.0) (5)



i

where the asterisk signifies the complex conjugate. The
majority of physical properties, and in particular those of
interest to the chemist, depend only on the coordinates of
one electron at a time. That is to say, they are indicative
of the first order density matrix - this being readily ob-
tained from equation (5) by integrating over the coordinates
of all the electrons except those of electron number one.
Thus |

pp =N J(w(l,Z....N) il o 8- 7. 2 S I

or by writing the wave function in its determinental form

- N ( * * *
Pl = ﬁTJ (03 (D ¥p (@) e v (N 9 (145 (2) v () dry..dryg

and since the electrons are indistinguishable, this will

reduce to

p, = NI i VoY1) = i b (1) V(1)
If we now represent the molecular orbitals by the symbol ¢i
then the one-electron density is simply.given by
e :
§Hj¢j(l)¢j (1)
where the summation is over all the occupied molecular orbi-
tals j, nj beihg their respective occupation number.

The question one must now ask is whether the one-
electron density as determined by an energy calculation,
approximating to each molecular orbital by a limited set
of basis functions, provides the best possible description

of a molecule.

This is not necessarily the case since the Hamiltonian
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operator being dependent on the simultaneous position of

any two electrons will weight different regions in space

than will another operator.a Mukherji and Karplus (24)
have shown this to be true for hydrogen fluoride and they
concluded that a better description of this molecule can be
obtained by allowing the total energy to vary, subject to
additional constraints. They required the resultant den-
sity distribution to give the correct dipole moment and
quadrupole coupling constant as well as a reasonable, but
not necessarily an absolute minimum, energy. In this way
excellent agreement can be obtained for these one-electron
properties without any serious impairment of the energy.

This would indicate that in a restricted basis set
approximation, the one-electron properties associated with
a molecule are important criteria when determining the form
of the wave function.

Rather than use the energy to investigate the quali-
tative and quantitative aspects of the chemical binding,
these phenomena are examined in terms of the electric fields
at the nuclei and hence the forces exerted on the nuclei.
The calculation of the forces is considerably simplified by
the theorem derived independantly by Hellmann(25) and Feynman

(25a) . The electrostatic, or Hellmann-Feynman theorem, was

@It should be noted however that as the wave function
becomes more apropos the energy, it will ultimately become
good for other properties as well.
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stated by Feynman as follows:

"The force on any nucleus (considered fixed)
in a system of nuclei and electrons is just
the classical electrostatic attraction exer-
ted on the nucleus in question by the other
nuclei and by the electron density distri-

bution for all the electrons."”

In equation (1), we have defined the normalized elec-
tronic wave function that satisfies the Schrodinger wave
equation for the system. By multiplying both sides of this
equation by w*, the complex conjugate of y, and integrating

over all space, the molecular energy of the system can be

* *
E =f v H wdr/]w ypdt (7)

The force on a given nucleus a in the z direction, defined by

defined as

Faz and equal to —dE/dza will be from equation (7)

*
dE f dy j * dH I * dy
- = - . H . ypdtr - (/R . Ydt - vV H. =—/— . dt
dza dza dza dza

and since H is a real Hermitian operator

*
*. dy - | dv
flpHa—z—; drt —jdza-HWdT

%*
Furthermore, because y satisfies the Schrodinger equation

* %
Hy = Ey the force will reduce to



14

*
o * dH _ dy * dy
Faz = flb o dza ydrT E [ [—dza . ydrt +f¢ v dza dr]

1l
1
\“’_\
<
*
Qi Qs
N |
Q
<
0,
—
|
t=
{
N |
Q
i
<
<
o))
)
L

1l
1
<
*
O O
N |
(o]
<
o))
—~

However, since the kinetic energy of the electrons is in-
dependant of the nuclear displacement coordinates then
F = —(g_Y—

0z az
o

In a system of nuclei (a,B8) and electrons (i,j) the potential

energy can be expressed as

V= 3§ V., + L, V,. + £ V..
0B aB B,i "Bi i< ij
and since I V,. is also independant of the nuclear co-
i<j
ordinates
Z Z
Foz = - dg z ra B . e2 + I e J/w Z e dg ;l— pdr
o aFB TaB i . a ol
or By = Faz (nuclear) + 1 (electronic)

The nuclear contribution to the force is just the sum of the
classical repulsive forces exerted by all the nuclei in the
molecule. The electronic contribution is rather more compli-

cated.

d 1
. dza rai
ply 0(i), depends only on the coordinates of one electron at

, Or sim-

The electronic force operator Z,e

a time and as such is determined by the first order density

matrix. TIf the total wave function is written as a single
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determinant of orthonormal molecular orbitals then

. _ » *
Faz (electronic) = e ; nj Jr¢j(l) 0(1) ¢j(l) dTl (8)

where the summation is over all the occupied molecular orbi-
tals, nj being their respective occupation numbers.

If we define the following coordinate system

: 2 2 212
then since r ; = (xa * ¥, ¥ Za) P oa— = = -

the force operator 0(l) reduces to

a.cosf@ae
ralz

Thus we have that the force in atomic units® (a.u.) on any

nucleus o in the z-direction will be

zaZB s cosOa *
+ I 3 raB - Z. I n.’J’¢j(l) 7 ¢j (1) drl (9)

a s J
aF#B raB J ol
a e2 -3
One atomic unit of force is defined as — = 8.2377 x 10
dynes. The electronic charge is e and ) ag is the Bohr

radius.
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NOTE - The sign convention in equation (9) and the ensuing
work is such that a repulsive force on nucleus o due
to another nucleus is positive and an attractive force
is negative.

In a more general form, applicable to polyatomic molecules
equation (9) can be written

zZ 7. 9, 2 *
Do =2fr . -z, nny | g (D) Z¥601) dr (10)
a#B roe j J ol

Where now if we are considering a force along the bond

+

7 r cos 0 and ? = cos
rdB afB oB al ral @al

and for a force perpendicular to the bond direction
- , . > ;
g = Tup sin eaB sin ¢ and r, = r,; sin Oal
The Hellmann-Feynman theorem thus enables one to calculate

sin ¢

the forces acting on a nucleus in a molecule if the electron
density function is known. Alternatively we can calculate
the equilibrium density from our knowledge of forces; the
zero force requirement providing us with a number of con-
straints that any proposed density must fulfill.

Since each molecular orbital is approximated by
a linear combination of atomic functions the different orbi-
tal contributions to the electronic force, defined by

equation (10), can be broken down into three components:
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ATOMIC FORCE?

T
ol
Z < X l 3
o ¢ Xyl

b
[x, > OR A (x,x,)

This force arises from density centred on nucleus o that is
not centrosymmetric (xa#xa). Small amounts of polarisation

of this electron density will give rise to large atomic
forces. This same density contributes an atomic dipole to the

molecular dipole moment.

SCREENING FORCE

> OR P (XBXB)

AG. < XB lral3lXB o

This force on nucleus ¢ arises from density centred on nucleus
8. The magnitude of the force depends on the depth of the
penetration by nucleus @ into the atomic orbital charge clouds
surrounding nucleus B. Such forces are important factors in

determining the geometry of polyatomic molecules.

OVERLAP FORCES

7

ol
zZ < x |—= > OR O ( )
|ral3lx8 o (X X,

@In these definitions all the forces will be considered on
nucleus o with a charge of Zaxa refers to an atomic orbital
on nucleus o and Xg to one on nucleus 8.

bFor convenience an integration will be represented by the
Symbol <icseseede
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This force on nucleus o arises from an overlap charge dis-
tribution and its magnitude depends on the position of this
charge density relative to the nuclei.

Berlin (26) in an imaginative treatment of the
Hellmann-Feynman theorem has shown how bond formation can be
understood in a classical framework. The space surrounding
a molecule, he said, can be divided into binding and anti-
binding regions dependent on whether charge situated in
these regions exerts a net binding or antibinding force
on all the nuclei.

The formation of a molecule from its constituent
atoms must therefore result in a density shift into this bin-
ding region by an amount required to overcome the nuclear
electrostatic forces of repulsion. This redistribution of
electrons in bond formation can readily be examined by
means of density difference maps, obtained by subtracting the
atomic from the molecular density. If it is further re-
membered that the very existence of an electronic force is a
direct result of bond formation then there will exist a fun-
damental and important relationship between the shift in
density to the binding region accompanying molecular formation
and the forces exerted by this density. In particular the
three components of force will reflect a different aspect
of the changes that take place in the atomic density distri-
bution on bond formation. Such a relationship enables one

to interpret the forces in the light of the density difference
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maps and as a consequence will give one a greater insight as
to the factors operative in both the formation and chemicall
nature of a molecule.

It is convenient at this time to turn our attention
to the form of the molecular orbitals.

The symmetry adapted fully delocalised set as de-
scribed previously are a particularly useful starting point
when we are considering properties—that depend on the mole-.
cule as a whole, such as the removal of an electron in the
ionisation process. The wave functions obtained, however,
seem to have very little connection with classical ideas.
From the point of view of valency the chemist prefers to
think of bond and lone pair orbitals as being localised.

Fock has shown that the single determinantal wave
function as represented by equation (2), is invariant to
unitary transformations among the molecular orbitals. Sir
Lennard-Jones (27) using group theoretical arguments was
able, by means of these unitary transformations, to convert
the fully delocalised set into what are known as "Equivalent
Molecular Orbitals" (E.M.O.) that could now readily be
related to the bonding and lone pair ideas. These equi-
valent orbitals (E.O.) unlike the molecular orbitals, now

form a basis for a reducible representation of the point
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group to which the molecule belongs. Thus, for example,
if vy and v, are two molecular orbitals belonging to the Al
irreducible representation, then two different ortho-

normal orbitals
(51nAwl - cosxwz)

and

(—sinxw2 + coskwl)

can be written which are formally just as correct and from
the wave theory point of view equally as valid. The problem
therefore reduces to one of selecting the appropriate wvalue
of X by some convenient criteria of localisation.

Pople (1l4) has suggested that A be chosen such that
the 1ls orbitals on hydrogen make no contribution to the
lone pair density. By writing a set of orbitals that re-
flected his "ideal" case he examined the variation of the
spatial distribution of the orbitals with a change in
configuration. It was shown that the structure of the water
molecule can be described by approximately two equivalent
sets of orbitals that pointed towards the corner of a

tetrahedron.
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Peters (28), on the other hand, using a different
method of localisation required that the hybrid bond orbitals
pointed along the bond direction. 1In a recent publication he
has discussed the form of the equivalent orbitals obtained in
this way from reliable wave functions for a number of molecules.
He was able to discuss quantitatively such terms as hybri-
disation and bond polarity. It was found that for the more
complicated molecules, for reasons mentioned previously,
it was not always possible to find an orthogonal transfor-
mation that would enable a description in terms of conventional
lone pair and bonding pair ideas. When this was the case the
imperfections were simply deleted at the expense of his
orthogonality requirements. Some of the results were not as
expected, and in the case of the O-H bond, the hybrid orbitals
were in an opposite direction to that predicted.

Edminston and Ruedenberg (29), following the ideas proposed
by Lennard-Jones and Pople (29a) developed a method of local-
isation without the use of symmetry arguments. They defined
"localised molecular orbitals" or "Energy localised orbitals"
as that set of molecular orbitals that minimised the orbital
self-repulsion terms. Only in the presence of a symmetry group
can they acquire properties which under certain circumstances
make them eguivalent. These workers were likewise able to
define bonding and lone pair orbitals. However, they did not
stipulate that the lone pairs had to be concentrated on one

centre but rather allowed secondary contributions from neigh-
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bouring atoms. It was suggested by them that the unusual
direction of the hybrid orbitals, found by Peters, together
with his non-orthogonality can in fact only be eliminated by
an introduction of these secondary contributions.

Murell and co-workers (30) have recently discussed
the above and other methods of localisation. They concluded
that a method based on Pople's, in which the E.O. are made
as localised as possible, is probably the most useful and at
the same time the least tedious approach.

These results indicate that the classical concepts of
a chemical bond are indeed contained in a fully delocalised
set of molecular orbitals, however, such ideas are in a con-
cealed form requiring the use of unitary transformations. It
would seem more logical therefore, if one's primary aim is
to interpret the bonding in terms of the wave function, to
approximate this total wave function by a set of molecular
orbitals that were indicative of the bonding in the molecule.
In the case of water this would lead to a description that
involved two equivalent bonding orbitals, two equivalent
lone pair orbitals and an inner shell orbital on the oxygena.
Bader and Jones (31) in such an approach, approximated to
each of these orbitals by an appropriate linear combination
of atomic functions. By requiring the resultant density

distribution to give the correct forces they found that

This implies a restricted basis set approximation since a
separation into lone pair orbitals is only possible when the

hydrogen nuclei are represented by a single atomic orbital.
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equilibrium could only be reached when the orbitals are al-
lowed to bend, each at an angle of 220, from the corresponding
bond angle (see also ref. 32).

It was decided in the present work to proceed along
similar lines to those of Bader and Jones, however, several
important and necessary refinements both in the form and
calculation of the molecular orbitals have been made.

In the formation of the water molecule the 1ls electrons
on the oxygen are expected to be non-bonding, however, it is
well known tha£ in the presence of-an electric field they
will polarise to an extent necessary to overcome the force
exerted by the fieid. This polarisation can be represented
mathematically by mixing into this 1ls function parametrically
controlled amoﬁnts of 2s and 2p atomic functions. McWeeney
and Ohno (38) have shown that the e#tent of the mixing can be
greatly reduced when hia / ls orthogonality is taken into
account. Even so, there will be a concentration of charge on
one side of the oxygen nucleus and will consequently give rise
to an atomic force of the type A(ls.2p). It has been shown (33)
that these forces are very sensitive to the choice of the
atomic orbitals representative of 2s and 2p. If, for example,
Slater type functions are employed, as in the work of Bader
and Jones, then this will lead to unusually large atomic
forces. A more reliable value of this integral requires the
use of accurate Hartree-Fock self-consistent field atomic

functions to describe the l1ls, 2s and 2p orbitals on the oxygen

@ hi represents the hydrogen's ls atomic orbital
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atom in its ground state. These have been determined

by Clementi et al. (34) using a linear combination of six
basic functions to describe the 1ls and 2s atomic orbitals

and a linear combination of four basic functions to describe
the 2p atomic orbital. The values of the orbital coefficients
and screening constants were obtained by the Hartree-Fock
method described previously (see page 7). The use of

these functions will, of course, greatly increase the mathe-
matical coﬁputation but the criticism of Salem and Alexander
will now bé taken into account.

Hurley (35) has also criticised the use of the
Hellmann-Feynman theorem in a molecular orbital calculation.
He pointed out the sensitivity of the force operators, con-
taining the term l/r2, to small changes in electron density
near the atomic centres. 1In an effort to overcome this, we
have stipulated the dipole moment as an added requirement that
our density distribution must simultaneously satisfy. This
property is governed by density in the outermost regions
df the molecule.

Once the wave function for a molecule has been cal-
culated then before it can be méaningfully interpreted, we
must be certain that our calculation is indeed accurate. This
is most readily done by comparing the expectation values of
certain operators with their experimental counterparts.

We decided to use the proton shielding constant, quad-

rupole coupling constant and diamagnetic susceptibility as
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our yardstick. These depend on the average values of l/rH,
l/rg and ri, respectively, and as a consequence will indicate
the accuracy of our density distribution close to the proton,
close to the oxygen nucleus and in regions removed from both
nuclei.

A more critical appraisal of this distribution would
be, however, an energy calculation which depends simultaneously
on the coordinates of two electrons. Such a calculation can
readily be performed by the use of the so-called Integral
Hellmann-Feynman theorem, originally proposed by Parr (37).

Suppose the water molecule is in a static configuration
X represented by a wave function wx and another molecule is
.in a static configuration Y represented by a wave function wY
then the difference in energy between the two systems is, in

the Born-Oppenheimer approximation, given by

a
E, - E, = AE = ftpAdey
X Y _ X Y
J;xdeT

where AH = HX - HY

By a suitable choice of Y, isoelectronic neon, all the
two electron operators in AH will vanish and éince both by and
EY are known accurately, the energy EX associated with our
wave function wx can most readily be determined.

Richardson and Pack (36) have looked at the usefulness

and applicability of this theorem. They compared values of

a_. . : 8 o i .
Since this equation does not satisfy a variational theorem,it
cannot be used to obtain the wave function.



26

the computed bond dissociation energies for different trial
wave functions. The values they obtained were not, in the
main, in good agreement with their experimental values. They
did find though, that the more accurate wave functions did

give the closer agreement. For this reason it was thought that
although the absolute value of our energy was not to be relied
upon, it would give us valuable information when we were
comparing different proposed trail functions.

Thus, in summary, the purpose of.the present research
has been to calculate the best one-electron density distribution
for the water molecule using only a limited set of basic
functions. By requiring this distribution to give both the
correct dipole moment and zero resultant force on the nuclei,
the values of the parameters contained in the basis set can be
obtained. The accuracy of our description will then be
assessed by comparing the expectation values of several observables
with their experimental counterparts. An attempt will then be
given to explain the nature of the bonding in terms of

the wave function and the conclusions that have been reached.



II DETERMINATION OF THE WAVE FUNCTION

(a) A description of the Equivalent Molecular Orbitals

Coordinate system

, Pg

S X
o
(8}

Figure I Figure II

Points to Note

1) 1s, 2s, p 2

o ' Pyr Py p5 and Pg are all atomic functions

centred on the oxygen atom. These p functions can be ex-

pressed in terms of the xy or x'y' coordinate system as follows

P, = ~Px cos(e/2) - py sin(;/Z)
P, = PpPx cosw + py sinuw
P, = PX costb + py sint

ps = px cos(a/2) cos(B/2) - py sin(a/2) cos(8/2)

Pg = -px cos(a/2) cos(B/2) - py sin(a/2) cos(8/2)

%For simplicity all 2p atomic functions will be written as P;

27
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P, = px'

p; = -px' cos(a/2) + py' sin(a/2)
Py, = px' cos(a/2) - py'sin (a/2)
Ps = px' cos(B/2) + pz sin(B/2)

Ps = px' cos(B/2) - pz sin(B/2)

2) hl and h2 are atomic ls functions centred on hydrogens one

(Hl) and two (H2) respectively.

3) P3 and p, are atomic p functions centred on hydrogens one

and two respectively and pointing along the bond direction.
The most general set of orbitals that can be written,

using our limited set of basis functions, to represent the

bonding lone pair and inner shell orbitals will be

BONDING ORBITALS

_ . o _ o
op1 = A(coseb . 2s + sineb . py t C3 . 1s) + u(hl 6h2)

- : o _ o
¢b2 = )A(coseb . 2s + sineb . Psy + C3 . 1s) + u(h2 Ghl)

The superscript zero in hi and h; denotes that these functions
are made orthogonal to the 1ls atomic function on the oxygen and

are thus given by

O yiu_ _ 1 _ — _
hi(l—l,2) = ; al/2 (hi S(hils).ls) No(hi Sols)
(1L - s (hils»
" _ _ 2,-1/2
Where NO = (1 SO)
a

An overlap integral of the type <xixj> will be given the symbol
S(x;x;) and since S(hzls), S(h;h,) and S(pyls) will be used
extensively they are given the symbols S.S1 and Sz respgctively.
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LONE PAIR ORBITALS

¢Ql = cosel . 2s + sinel . Ps

¢22 = cosel . 2s + s;nel - Pg
It is found, however, more convenient to write these orbitals

in the form

cosel'2s + sinel'po

bp2 = PZ
which are obtained from ¢21 and ¢22 by correct unitary trans-

formations. The parameters €l and e€l' can now be shown to be

related by the following three equations

. . _
cosel = N S sin el = sin el = Ccos l(-cotzel)
Y2 cosel! /2 cos (B/2)

INNER SHELL ORBITAL

¢o = Cols + ClZS + C2po
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(b) Method of Calculation

These five orbitals can be seen to embody ten para-
meters
eb and el are the hybridisation parameters of the bonding
and lone pair orbitals
X/u the polarity factor for the bonding orbitals.
a, the angle between the Py and Py functions. It is termed
the orbital angle and when o#e the bonds are "bent".
§ a parameter that determines the extent of delocalisation of
the equivalent orbitals.

Co’ Cl and C2 determine the amount of 1ls polarisation.

C3 determines the amount of 1ls in the bonding orbital.

In order that the total one-electron density can be written

in the form

- 2 2 12 \2 2
= 20+ dpp * Ogy F by * 4

the equivalent molecular orbitals are both normalised and

mutually orthogonal. That is to say

0 Op19e1” =

pilei® = 4 Op19p2” =

<¢o¢o g 1 <¢bl¢o> = % <¢’oq’;Ll> = 0

These conditionsenable six of the ten parameters to be
determined and the requirement that the resultant density
distribution give the correct zero force and dipole moment

may be used to fix the remaining four.
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FORCE REQUIREMENTS

In the water molecule all the forces can be broken

down into three components Fo' qland EL; the remaining com-

ponents giving trivial conditions being zero by symmetry alone.

O

Fo- This is the force on the oxygen along the symmetry axis

in the direction shown.

FIJ and FL - These are the forces on the hydrogen nucleus in
a direction parallel and perpendicular to the bond axis.
NOTE: In all calculations of ﬂ and %_ hydrogen one, Hl’

will only be considered.
At equilibrium the nuclear forces of repulsion must equal the
electrostatic forces of attraction. The nuclear forces of

repulsion, FiN, can readily be shown to be

F N 2 X e X cos (e/2)
o 2
R
=8 x 0.3739 a.u.
N 1
Py = —5 X cos (e/2)

.d
0.0748 a.u.
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Im

+ X sin (e/2)

N
N
w oA
N

.5383 a.u.
If we now represent Fi(¢§) as being the force exerted by the
electron density contained in the jth molecular orbital in
the ith direction, then at equilibrium we have
2 2 2 2, 1
F (9, 1)+ F (op5) + 2F (¢)) + F (o)) = 57 cos (e/2) (11)

Where no distinction is made between the forces exerted by

91 @RA ¢, OF ¢,1 and 942 then the two forces are equal.
2 2 2 : 2, . 8 1 .
E(opq) + Flo,) + 2E(6) + FleJ) = 2 # 57 sin(e/2) (12)
2 2 2, _ 2 a
2Fo(¢b) + 2Fo(¢g) + FO(¢O) = ;7 cos(e/2) (13)

DIPOLE MOMENT REQUIREMENT

For a molecule to possess a permanent dipole moment then there
must be a separation of the centroids of positive and negative
charge (39). 1If the centroids of these charges are taken to lie
along the symmetry axis then the nuclear contribution to the
dipole moment will be

DPN =2 x 1.81 x cos(e/2) = 2.2179 a.u.
and since the dipole moment is a one-electron property the
centroid of negative charge, along this same direction is given by

> >
lj;l(r) r drl

where r is a vector equal to r cos®, 0 being the angle between

%2 common factor of eight, the nuclear charge on the oxygen
atom, has been removed from the nuclear and electronic forces
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the one electron density at the point ¥ and the symmetry axis.

The total dipole moment, equal to 0.7240 from experiment,

will be the sum of the nuclear and electronic contributions
DP = DPN = DPE = 0.7240 a.u.

The electronic contribution can again be broken up into a

sum of separate orbital components and thus we have as our

fourth equation, that the density distribution must satisfy

2 2 -
DP - DP (6.) + 2DP.(¢1) + 2DP_(47) = 0.7240 a.u. (14)

The force and dipole moment equations together with
the six orthonormal requirements enable one to calculate the
ten parameters appearing in the equivalent molecular orbitals.
The solutions to these ten equations are, however, not easy
to find by conventional methods because of their complicated
mathematical form - see appendix (l1). For this reason we have
found it necessary to proceed as follows:

An initial choice of four parameters was made such
that by means of the orthonormalisation requirements the
remaining six could be determined. Using these ten parameters
the values of the three forces and dipole moment were compared
with their true results, the two only agreeing when the numeri-
cal values of éur original choice was correct. This process
could then be repeated, varying the initial four parameters,
until a solution was obtained.

For convenience §,a, eb and C3 were chosen and using the
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orthogonality of the bonding and lone pair orbitals el' could

be determined from the equation

[A/ucoseb + S(hfzs) - GS(h;2s)]

tanel' = B o
[-sineb S(plpo) + S(hlpo) = S(h2PO)]

Orthogonality of the two bonding orbitals now allows A/u the
polarity factor, to be found the absolute values of A and yu

being obtained from the normalisation of these same orbitals.

Ay 2 2 2 .2 A
() {cO + cos“eb + sin“eb S(p;p,)} + i {2(coseb S(hi2s) +
\ 0] ' (0] . .
sineb S(hlpz) = §(coseb S(h12s) + sineb S(hlpz)}+
S(h°n%) (1 + 6%) - 26 =0
172
and
1 a2 2. . 2 0 .
;5 = (H) (1 + C3) + o {coseb S(hIZS) + sineb S(hlpl»

2

[e] . [e] 0.0
- §(coseb S(h225) + sineb S(thl)} + (1 + §° = 2 s(hthD.

By invoking (i) <¢o¢o> =1 (ii) <¢_¢,> = 0 and (iii) <4y bp> = 0

the three remaining parameters, COC and C that determine the

ik 27

extent of inner shell polarisation, can readily be shown to

be given by 1/2
€ = 2 :
D-BE 2
( = ) + ET + 1
Cl = --EC2
(BCl + DC2)
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where A = A/uC3
B = A/ucoseb + S(h)2s) + 6S(hj2s)
_ . o - ¢]
D = A/usineb S(popl) + S(hlpo) GS(tho)
E = tan ¢

The problem is thus one of finding the values of §,a , eb and C3
such that equations (11), (12), (13) and (14) are satisfied.
This is most conveniently achieved by defining a function

R(S8,0, €b, C3) such that it represents the squares of the dif-
ferences of Fo’ ﬂ, 7 ?L and DP from their true wvalues. That

is to say

R(6,a, €b,Cy) = (FO-O.3739)2 ¥ (F ~2.5383)2 + (DP-0.7240) 2
+ ( ~0.0748) 2 (15)

thus requiring us to find a solution that

R(S ., sb,C3) =0

MINIMISATION OF R

For simplicity of explanation, it will be assumed
that R is a function of two variables, X and Y. In order that
we might distinguish between the different approximations to
these variables they will be given the subscript I where now
th

X(I) and Y(I) represent the I approximation to their true

values.
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By an initial arbitrary choice of X(I), Y(I) the value of
R(X(I), ¥(I)) can be determined and the slope at this point

is given by

dR _ R(X(I) + h, Y(I)) - R(X(I) - h, Y(I))
d x (1) 2h

dR  _ R(X(I), Y(I) + h) - R(X(I), Y(I) - h)
av(r) =~ 2h

where h is a small increment dependant initially on the values
of X(I) and Y(I). A new point X(2), ¥Y(2) is now picked such
that it reflects the magnitude and sign of the calculated slopes
each coordinate X(2), Y(2) being weighted individually. A

function VAL(2) is then defined

VAL(2) = R(X(2), ¥(2)) - R(X(I), Y(I))

Or more generally

VAL(I) = R(X(I), ¥Y(I)) - R(X(I-1), ¥Y(I-1))
such that an examination of its sign would indicate whether
we are in fact moving towards the correct point — R equals
zero.

With two variables the problem is three—dimensional.. With
four variables the problem is thus five-dimensional and con-
sequently becomes very much more complicated. Points of
reflection, minima that do not cross the planes containing

R = 0 and other geometrical hazards cause this method to fail
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or at least run into difficulties. The situation must somehow
be simplified. The most logical way would be to reduce the
number of parameters and hence the number of conditions that
our density distribution must satisfy.

It is known from previous experience (31) that Fo’ the
force on the oxygen nucleus, is almost totally determined by
an inner polarisation of the oxygen ls atomic orbital. If we
thus assume co = 1rC1 = C2 = 0, and consequently C3 =0,
and no longer have FO as a requisite that our density distri-
bution must satisfy then the problem reduces to one in four

dimensions R now being defined as

R(s,a, cb) = (F - 0.0748)2 +(F - 2.5383)2 + (DP - 0.7240)%

il
It was not, however, possible to find a solution to this
simplified equation. In order that we attain the force per-
pendicular and dipole moment requirement density has to be
concentrated in the region defined by the H-O-H bonds and if
possible close to the symmetry axis. This is achieved by both
bending the bonding orbitals, a # €, and increasing the angle
B between the lone pair orbitals. Such a removal of density
both from the top of the molecule and from the bond direction
causes the force parallel to fall well below its true value.
One way in which we might expect to overcome this situation is

by redefining R as being

(16)

R(6,a, €b) = (Fo = 0.3739)2 + (EL -0.0748)2 + (DP = 0.7240)2 (17)
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where now a density shift into this previously defined region
will help all the three forces. Again, no balance point could
be reached and this time an examination of the analytical ex-

pressions contained in FO, and DP gave us the reason. Such

gl
an examination revealed the importance of the atomic force

integral
<ls.p cosOA/r2> = A (1lsp)
AT A A

which in the case of A equal to oxygena had the impressive
value of 2.8673 a.u. This importance can best be exemplified
by comparing the two centre overlap force integrals on the
oxygen due to the overlap density (h;p) and (hlp) defined as
being 0 (hip) and 0 (hlp) respectively where

. 2 -1/2
hl = (l—So) (hl--SO 1s) = 1.0018(hl - 0.0560 1s)

These integrals have the following values
0 (hipx)b = 1.0018(0 (h px)-S_A (lspx)) = 0.1875 a.u.

0 (hlpx) = 0.3480 a.u.

and
0 (hipy) = 1.0018(0 (h;py) - S_A(lspy))= 0.0912 a.u.

0 (h;py) = 0.2517

% The atomic orbitals on the oxygen are given in appendix (3).

B The method of solving these integrals is given in appendix
(2); their analytical forms together with their numerical
answers are given in appendix (4).
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That is to say by introducing SO = 0.0560, or in other words
by making the hydrogen 1ls orbital orthogonal to the lé orbital
on the oxygen, we decrease 0 (hipx) from 0.3480 a.u. to 0.1875
a.u. and 0 (hipy) from 0.2517 a.u. to 0.0912 a.u., this decrease
being due to the large atomic force term - underlined in both
expressions. It is for this reason that a balance point could
not be reached. The introduction of SO is in fact admitting
the importance of the ls atomic orbital on the oxygen and we
felt that before this could be done it must be represented more
accurately by allowing for inner shell polarisation. This 1ls
polarisation, as stated previously, is almost totally respon-
sible for FO reaching its true value of 0.3740 a.u. @nd can
be made to compensate the decrease in the overlap forces due
to the introduction of So' It was thus assumed, for the moment,
that SO = 0.0 and consequently hz = hi' This being the case
then a solution to equation (17) such that R(8,a, €b) = 0
was most readily obtained and the values of §,a , and eb are
S a eb

0.3882 73.1652° 123.2862°
A value of 1.32 has been used for the screening coefficient
of the hydrogen ls atomic orbital. This figure was obtained
by using an empirical rule discussed by Bader (41l) which re-
lates the screening in the separated atom (1.0) to that in the
united atom. By this rule & = zs}- rze R where 42 = z_ - z_.

S u

The Zs and Zu refer to the effective nuclear charges calculated
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by Slater's rules (including the factor 1/n where n is the
principal quantum number) for the electron in the separated
and united atom respectively. What effect the value of this
screening coefficient had on the equilibrium position is best
exemplified by determining a new balance point using a value
of 1.2

$ _ | a eb

0.4166 82 2745 134.9600

Although there is a slight change in these parameters it is
not serious and one can safely conclude that a slight variation
around the chosen value of 1.32 will not drastically affect
the final result.

Introduction of SO equal to its correct value now, as
predicted, caused the force on the oxygen nucleus to drop by
0.18 a.u. leaving the dipole moment and force perpendicular
unchanged. By allowing for inner polarisation F could be
increased to 0.3740 but now, because of the added parameter
we must also require that our density distribution give the
correct force parallel. The results of such a calculation
are given below

c C C & 8 o eb

o) 1 2 3
0.9951 -0.0439 -0.0880 -0.0850 0.3882 73.1652 123.2862

Fo p DP dl
0.3686 0.0750 0.7210 2.4103
TRUE
VALUE 0.3739 0.0748 0.7240 2.5383
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Although excellent agreement is obtained for Fo’ %_ and DP,
the force parallel fell 5% below its true value. One way in
which we might expect to improve this value is to add a 2p
function on the hydrogen atoms, with a coefficient of C4, in
the hope that an atomic polarisation similar to that on the
oxygen atom would cause a density shift of sufficient magni-
tude to raise the force parallel by the required 0.12 a.u.

If this is the case then the bonding orbitals can now be

written®
_ . o _ 0
¢bl = (coseb2s + 51nebpl -+ C3ls) -+ u(C4p3 + (hl shz))
. : o _ o)
¢b2 = (coseb2s + 51nabp2 + C3ls) + u(C4p4 + (h2 ahl))

The superscript zero again signifies that they have

been made orthogonal to the oxygen 1ls atomic orbital and hence
-1/2
2)=H/2

¢}

p; = (1 - S(pils) - S(pils)ls) = Nl(l —-Szls)

i
2 =1/2

where Nl = (1 - 82) and 82 = <pils>

The orthonormality requirements together with the force and

dipole moment equations must now be re-defined. Assuming C4

to be 0.03b and taking the screening coefficient of the 2p

function to be 0.66, half that of the hydrogen ls, a new

SThese orbitals are no longer the most general set of orbitals
that can be written. '

bNesbet (42) in a calculation on LiH found the 2p function on

the hydrogen to have a coefficient between 0.01 and 0.02.
Using this as a yardstick, the value of 0.03 was estimated.
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balance point produced the following results
FO FJ_ DP Fu

0.3661 0.0747 0.7220 2.4052
Not only have we given an upper limit to C4, but we have also
given the 2p functions their maximum directional character, in
an attempt to increase the ﬂl , by pointing them along the bond.
Even so, ﬁl has hardly changed. The atomic force integral,
A (lsp3), which we hoped would be important contributes only

0.1825 a.u. to ﬂ This low value is a consequence of the

X
diffuse  density around the hydrogen, explicable in terms of
the low 1ls and 2p screening coefficients, when compared to that
around the heavier oxygen nucleus. An increase in this co-
efficient from 0.66 to 1.00, although doubling A (lsp3) was
found to increase the force parallel by only 0.01 a.u. It was
thus concluded that for all intents and purposes, no loss in
accuracy would result in our description of the water molecule
if C4 is assumed to be zero in the equivalent molecular orbital

scheme. Using a screening coefficient of 1.32 for the hydrogen

ls atomic orbital and assuming C, = 0.0, then the parameters

4

obtained together with the resultant orbitals representative of

the bonding, lone pair and inner shell electrons are given as

§ = 0.3882 A = 0.7978 c, = -0.0880
o« = 73.1652° W= 0.4599 Cy = -0.0850
eb  =123.2862° C, = 0.9951 c, = 0.0000
£l = 26.53367 C, =-0.0439
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(d) RESULTS

o _ o)
6, = -0.4379(2s) + 0.6668(p;) - 0.0678(ls) + 0.4599(hJ)
- 0.1785(h§)
6,5 = -0.4379(2s) + 0.6668(p,) - 0.0678(ls) + 0.4599(hi)
- 0.1785<h§)
¢,,= 0.8946(2s) - 0.4469(p_)
$gp = P2

¢o = 0.9951(1s) = 0.0439(2s) - 0.0880(p0)

If we now define a coordinate system according to figures (I)

and (II) and write the lone pair orbitals as

9,1 = cosel(2s) + sinsl(ps)
¢22 = cosel(2s) + sinel(p6)
then

P = cos(B/2) (px') + sin(B/2) (pz)

v}
|

= cos(B/2) (px') - sin(B/2) (p2)

Thus we get by substitution

¢zl cosel(2s) + sinelcos(B/2) (px') + sinelsin(B/2) (pz)

¢22 = cosel(2s) + sinelcos(B/2) (px') = sinelsin(B/2) (pz)

]
If on the other hand we took linear combinations of 901 and

¢22 remembering that P, = PX , then
do1 = 1/V/2(cosel' (2s) + sinel'(px') + pz)
by 5 = 1//2(cosel' (2s) + sinel'(px') - pz)

which leads on inspection to the following relationships
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(A) cosel = (1/V2)cosel’
(B) cos (p/2) = Sinel’
Y2 sinel
(C) sin (B/2) = =
/2 sinel

From our force calculation ¢l' was determined to be -26.53°
and from equation (A), since cos(X) = cos(-X), €l will be

=z 50.76°. However, we know that since e€l' is negative, =-sin(X) =
sin(-X), then B, the angle between the lone pairs, will be
greater than 1800, therefore cos(B8/2) will be negative. For

the coefficient preceeding the px' atomic function in ¢21 and ¢£2
to be negative sin(el) must be positive and hence ¢l will be

+ 50.76°. From equation (C), B/2 can be shown to be 114.06°

and hence B will be 228.12°.

Figure III represents the relative directions of the

bonding and lone pair orbitals in the water molecule

228.12°

Figure III
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The features of these equivalent molecular orbitals
strongly resemble those found by Bader and Jones. The lone
pair orbitals are, however, at a much greater angle with a

hybridisation determined® to be sp compared to sp. The
bonding orbitals are slightly more polar having a A/u ratio of
1.735 compared with 1.563. These orbitals also contain a
larger amount of 2s but again with a negative coefficient.

The orbital angle o of 73.16° corresponds to an angle, w ,
between the bbnd and orbital direction of 15.64° compared

with 22° as determined by Bader and Jones.

A fuller discussion of these results and the conclusions
drawn from them will be left until later, however, it is
informative at the present time to take a closer look at the
contributions that the different orbital densities make to the
forces and dipole moment and examine what effect, if any,
results from varying 6, o, and eb, the three parameters for
which R(S8,a, €b) = 0, about their accepted values.

Table I lists the force and dipole moment contributions
fér this equilibrium position.

As a consequence of B being greater than 1800, the lone
pairs have a large positive contribution to both the force on
oxygen and the electronic contribution to the total dipoie
moment, this latter quantity being measured in the same direc-

tion as FO. The 1lone pair density, because of its location can

a ¢ .=cosel2s + sinelp5 =‘O.6326.2s,+ 0.7745p5A= 40% 2s + 60% 2p

21


http:0.6326.2s
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also be seen responsible for roughly one half of the force
parallel. If we now turn our attention to the bonding orbi-
tals then the force on the oxygen nucleus due to this density
is in an unexpected direction. Because of the negative 1ls and
2s coefficients appearing in these orbitals integrals of the
type A(lsp) and A(2sp) account for over =-0.50 a.u. of the
total -0.57 a.u. contribution. It is for this reason that both
inner shell polarisation and, to a large extent, re-orientation
of the lone pair density is necessary. In the determination
of DPE atomic integrals are not nearly as important; this
being indicated by both the value and sign of DPE(¢§) and
DPE(¢§).

Table II shows the effect of varying a about 73° keeping
§ and eb fixed. As a is decreased then B, the angle between
the equivalent lone pairs is decreased. This causes a shift
in density to the top of the molecule and as such, one expects
the contribution of these orbitals to FO, EI = EL and DP to
drop. An increase in a causes the bonding orbitals, on the
other hand, to concentrate more density in the region of the
O-H bond. As a consequence of this there will be an increased
contribution by these orbitals to both EL and DP but a de-
creased contribution to ﬂ] .

Table III shows the effect of changing § while a and eb
are fixed. As § is increased, then B also increases. This
has the effect of placing density, contained in the lone pair

orbitals, into the binding region below the oxygen nucleus

and by definition, such density will increase all the force
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contributions: since § determines the amount of delo-
calisation of the two bonding orbitals, an increase in 6 will
cause a decrease in the overlap of the two hydrogens

0,0 2 0,0 ' 2 ;
S(hlh2)(l + 67) - 286 to S(hlhg)(l + 6'7) - 26

Electron density contained in these orbitals will thus be
removed from the vicinity of the symmetry axis and placed
closer to the O-H bonds. This will lead to an increase in %

and a decrease in both ﬂ- and DPE.

Finally, Table IV shows the effect of varying eb, keeping
a and § constant. As eb increases then B increases and for
reasons described previously, all the force components due to
the lone pair density will increase; eb determines the hybrid-
isation of the bonding orbitals. As eb is increased, then
since the 2s atomic function in the bond has a coefficient of
cos (eb) and the Py atomic function a coefficient of sin(eb),(
such a bond will progfessively lose its directional?® character;
caused by a decrease in the 2p coefficient and an increése in
the 2s coefficient. The results of this "transformation" are
reflected in the contributions that ¢bi and ¢§2 make to the
forces.

If we now turn our attention to the total forces Fo, ﬂl"
and FL and DP then their variation with §, o, and eb can best
be represented graphically. (See Figure 1IV).

The similarity in effect of a and 6§ is immediately obvious

being reflected in the slopes of their graphs. An increase in

& This is assuming. 180°> b > 90°
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either of these parameters will not only cause a similar bond
density shift, see previously, but also result in B, the lone
pair angle, increasing in the same direction and by roughly
the same amount. This equivalence in action causes the force
components, due to the lone and bonding pair density, and
consequently the total force to react in a similar way with

a change in o or §.

If on the other hand, we increase eb, then although B8 is
increased; the density shift due to the bonding orbitals will
be in an opposite direction - an increase in eb causes the
bonding orbitals to be less directional and density is re-
moved from a region close to the O-H bond. The slopes of the
lines obtained by varying eb now depends on the relative
magnitude of the bonding and lone pair components and will not
necessarily be in the same direction as those obtained for
a and §.

In the light of this, it can now be understood why it
was impossible to find a solution that would simultaneously
give the correct dipole moment, force parallel and force
perpendicular. An increase in either o or § or both is re-
quired to meet g’ . Such an increase in these parameters
will seriously affect the dipole moment causing it to rise
rapidly. This increase in the dipole moment can only be
counter balanced by an increase in e¢b, however, this would

cause Fi to drop and by roughly the same amount that o or

§ increased it.



IIT DETERMINATION OF THE MOLECULAR PROPERTIES

Before we can meaningfully interpret our results, we
must be certain that the calculated density is a physically
reasonable one. Many of the observable properties of a molecule
are determined by the simple three-dimensional one-electron
density. Three such properties, the diamagnetic suscepti-
bility, the diamagnetic contribution to the nuclear screening
constant and the electric field gradient at the oxygen nucleus
will provide us with a means of estimating this accuracy.

(a) Diamagnetic Susceptibility

Van Vleck (43) has pointed out that the total magnetic
susceptibility of a molecule not having a resultant spin is

composed of two terms

X=Xd+XHF

Xgr the diamagnetic term, has the form
e2 > 2
Xq = - px2x I erl 4,4t (18)
6omc i=1l

where each ¢i, representative of our equivalent molecular

orbitals, is averaged over the operator ri,

tance of the one-electron density from the point A. Xy is a

T being the dis-

term that arises in all molecules and is the temperature in-
dependent paramagnetic contribution often being referred to
as the "high frequency" term or the Van Vleck paramagnetism.
This high frequency term can be calculated knowing the ro-

tational magnetic moment of a molecule since the magnetic

49
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moment arising from this rotational motion is determined en-
tirely by the induced paramagnetism. Weltner (44), using the
centre of mass as his origin of coordinates, obtained for XHF
in the case of H,0, 1.46 x 1070 e.m.u./mole. If the total mag-
netic susceptibility for liquid water is taken as =-13.0 x 10-6
(45), and assuming this to be fairly independant of phase,
then a value of Xg for water vapour equal to -14.46 x 10_6
e.m.u./mole is to be expected.

From quantum mechanics, if the wave function for a mole-
cular system is known, then the expectation value of the

diamagnetic susceptibility, from equation (18) is given by

2

xgr = - g 2 xied) ¢ X(op1) + (0250 + x(957) + x(82,))
mc
2 2

where X (¢i) = <¢; |r0|¢i>

taking the oxygen atom as the centre of coordinates. Although
the total magnetic susceptibility is independent of our choice
of origin, the values of Xg and Xyp are not, and since XHP has
been measured relative to the centre of mass, then so must Xg*
This means that the total wave function should be averaged over

r; and not ri, these two being related by

AR = 0.1232
r2 = r2 + AR2 - 2r cdse AR ) (19)
o} o o o -
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The average value of ri has been calculated, using the previously
determined wave function, to be 19.1733 a.u. (see appendix (5)),
and since the.last term in equation (19), rocoseo, is just the
electronic contribution to the dipole moment Xgq is given by

xg = 19.1733 + 10AR% - 24R(2.181 cos(e/2) - 0.7240)

xg = -14.9318 x 107% e.m.u./mole

Because of the nature of the operator, the diamagnetic suscep-
tibility is largely determined by the density in the outermost
regions of the molecule. The bond polarity and orbital exponent
on the hydrogen ls atomic orbital play an important role in
determining its magnitude. The bond polarity because its

ratio A/u when small will weight the regions remote from the
oxygen nucleus and the orbital exponent because it determines
how diffuse or otherwise the electron density surrounding the
hydrogen will be. A low value of this screening coefficient
will lead to a more diffuse density in the outer regions of
the molecule and thus cause an increase in therabsolute value
of Xd'

In a recent publication, Hake and Baynyard (46), have
quoted the diamagnétic susceptibility for the water molecule
obtained by different approximations to the wave function.

If to this list we add the results obtained by Bader and Jones

and our present calculation then
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METHOD Xq ¥ 1070

extended O.C.E.A -15.56
® inimal M.C.E.B -15.20
Cunited atom ~ -12.59
dE.M.O. -12.19
epresent work - -14.93

£ .

experimental -14.46

a) Moccia (47) b) Ellison and Schull (48) c¢) this value

was fixed from experiment d) Bader and Jones f) Weltner (44)

A) one centre expansion B) multicentre expansion

The discrepancies in the two central field treatments, a and c,
is probably due to the difficulty in getting a reasonable elec-
tron density distribution far from the expansion centre, this
fact being further emphasized by their expectation values for
the dipole moment. The diamagnetic susceptibility, as deter-
mined by Ellison and Schull is too big and it has been suggested
by Bader and Jones that this is due to both the low polarity
of‘their O-H bond and the small value of their orbital ex-
ponent (1.0) for the hydrogen ls atomic function. By taking a
value of 1.32 these workers were able to get much closer agree-
ment between the calculated and experimental values. They do
point out, however, that this value of 1.32 is probably too
high overestimating the ls contraction and causing their cal-
culated Xgq to be too low. This is not found to be the case in

our result. In the light of this perhaps a more reasonable



53

explanation would be the inadequacy of Slater-type functions,
used in their basis set, causing the density to be slightly
compressed around the oxygen nucleus.

Our value of x, equal to -14.93 x 1070

e.m.u./mole,

yields a total magnetic susceptibility of -13.47 x 10—6 e.m.u./mole
as compared to the experimental value of -13.0 x lO-6 e.m.u./mole.
Part of this discrepancy can be attributed, according to
Venkatachalam and Kabadi (49), to hydrogen bond formation

in the liquid phase for which the experimental value was ob-

tained.
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(b) Proton Magnetic Shielding Constant

The contribution to the total proton magnetic shielding
constant can be divided into two parts, a diamagnetic contri-

bution, and a paramagnetic contribution, op. The para-

Gd'
magnetic contribution can itself be divided into ground state,
op(G), and excited state, op(E), terms.

Unfortunately there is no experimental determination of
the spin rotational constant for water vapour and consequently
no available measure of cp. However, Chan and Das (50) have
shown that by a suitable choice of origin, cp can be estimated
for a molecule with a known dipole moment. By taking this ori-
gin as the electronic centroid, cp(E), the excited state contri-
bution to o_, can be made to disappear. The ground state
contribution, op(G), is now proportional’to the electric field
at the proton along the line joining it to the electronic
centroid, this field being equal and opposite to that produced

by the nuclei. Thus in the case of water, defining the co-

ordinate system

)
(C]

o)
H H
2 OH 1

it can be shown that :

a2 coseH 8cose0
0,(6) = = R, [=—5—+ —5—7]
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where Rc is the distance of the proton from the electronic cen-

troid and the angles 0_ and OO are measured relative to the

H
proton. For water op(G) = =7.76 x 10-5
Thus ’ _5
o= (o, =-7.76 x 10 7)
d
where o, is the diamagnetic contribution to the proton shiel-

d

ding constant. This diamagnetic part measures what the
shielding would be if the whole electronic structure was free
to rotate about the nucleus without interference from the
other nuclei. Since it is a measure of the potential energy
of the nucleus in the electric field of the electrons, <l/rH>,
it can be evaluated from the ground state wave function of

the molecule (51), (see appendix (6))
e2 >

I <o 6 >
d Imc® i=1 i Il/rHl i

That is to say, the one-electron density is averaged over the
operator l/rH. This operator by its very nature will weight the
density distribution in a region close to the proton.

In the table below are listed the results obtained in the

present calculation

* o Y21 %2 ‘m b2

a®| 1.1070] 0.9810| 1.26001.3654 |0.8008
B | 1.1060| 0.9808 | 1.2998 |1.1946 |0.8848
c | 1.1070| 0.9809 | 1.2582{1.3780 |0.8050
D | 1.1070| 0.9808 |1.2576 [1.3916 |0.8050

- ez x d SC on SC on lO5 Y

3mc hi pi

Aai 515140 | 1.32 | / | 2.03

B | 5.4652 1.20 | / | 1.94

c |5.5294 11.32 | .66 2.05

D |5.5422/1.32 | 1.00| 2.08

|
@ The molecular parameters in A,B,C, and D were obtained by
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A) Here the hydrogens have been represented by a ls atomic
function with a screening coefficient (S.C.) of 1.32

B) The hydrogens are again represented by a ls atomic func-
tion but now with a S.C. of 1.2

C) The hydrogens are represented by a linear combination of
a ls (S.C. 1.32) and a 2p (S.C. 0.66) atomic functions

D) Finally, the hydrogens are represented by a linear combi-
nation of a 1s (S.C. 1.32) and a 2p (S.C. 1.0) atomic
functions

The experimental value is 2.97 x lO_5 according to Das and

Ghose (52) obtained from measurements of Gutowsky and Hoffman (53)

on the chemical shift of hydride molecules relative to methane

3 for the shield-

This estimate is based on a value of 2.66 x 10
ing constant of the proton in the hydrogen molecule.

The foregoing table of results does show that the one-
electron density as determined from force considerations, can
give a reasonable measure of the proton magnetic shielding

constant. Perhaps a more accurate determination of op will

remove some of the discrepancy.
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(c) Electric Field Gradient

Unfortunately the quadrupole coupling constant of the
oxygen atom in the water molecule has not been determined
experimentally. However, by calculating the electric field
gradient (q) at the position of the oxygen nucleus and using
the nuclear quadrupole moment (Q) for 017, then a value can be
predicted through the relationship

quadrupole coupling constant = e Q g
The nuclear quadrupole moment measures the departure of the
nuclear charge distribution from a spherical shape_gElongated
nuclei have a positive Q and flattened nuclei have a negative
Q;qg is the field gradient at the position of the oxygen nucleus.

If this field gradient changes rapidly with angle then the

various orientations of the non-spherical nucleus with respect

to a chosen axis will give different energies. In order to
2

estimate g, we have only to calculate the mean value of Q_%
dz

where z is taken to lie along the principle axis of symmetry
and V is the electrostatic potential in the molecule. V can
be broken down into two components, Vn and Ve’ a nuclear and
electronic potential respectively. As a consequence of this,
g can be written |

q=q, +qg

where q, and dg represent the electric field gradients due to
the protons and all the electrons in the molecule

L a2v_ _ a2 (e/R) _ .- ( |
B o4z . az® dz?  x?+v%+32

2
- e(3cos ée/Z)-l)

= 0.0211 a.u.
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and since there are two protons
Gy = 0.0422 a.u.
Using similar arguments for I

2
q = _e’J,w(3cosze—l) vdt

r
(e}

ry is the length of the radius vector drawn from the oxygen
nucleus to the electron that is inclined at an angle o to the
symmetry axis.

Using X equal to the calculated wave function for the

water molecule then

9e f2e 5 93
i

where each q; répresents the different contributions to the

electric field gradient due to density contained in ¢o'¢zl'¢22'

¢bl and ¢b2' These have been calculated to be (see appendix

(7))
%o Q1™ 92 9p1 T Ip2 A
0.0218 -0.7140 0.8536 0.3010
therefore
ée = - 2eqT = -0.6020 a.u.

The magnitude of SO is largely determined by the amount of 2p
character along the g direction, in this case the symmetry
axis, relative to the amount at right angles to this axis.
The contribution from a P, orbital is (-2) times that for Py
or Py orbital. Townes and Dailey (54), considering only the
contributions from p orbitals, have attempted to predict the

nature of the bonds in many molecules. The gualitative basis
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for their arguments is based on the incorrect assumption that
bonds largely p in character must correspond to an orbital
angle of 90° or greater. Their approach, in the case of am-
monia, has been criticized by Bader and Jones (55) and the
arguments they have used also apply to the water molecule.
From a knowledge of the electric quadrupole hyperfine

B nucleus Q, the nuclear electric quadru-

constant for the 0l
pole moment, can be determined (56). However, such a calculation
Yequires an accurate description of the electric field gradient
at the position of this nucleus. Bessis, Lefebvre-Brion and
Moser (57), using an approximation to the extended Hartree-

Fock (58) function for the 3P2 and 3Pl states of the oxygen

atom, determined this field gradient and predicted a value of

Q equal to -0.024 barns. The small magnitude indicates the

odd neutron in 017 produces a very small distortion of the

closed shell eight protons and eight neutrons. Using this

value and the previously calculated g, a value of 2.09 x 10—20

17

e.s.u. for the guadrupole coupling constant of 0 in H20 is

predicted.
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(d) Electronic Energy

The majority of available molecular wave functions have
been obtained'by the minimum energy condition of the variational
method (59) . The resultant approximate wave function, which is
the best in terms of total energy, does not necessarily yield
the best charge distribution which governs other molecular
properties. Karplus and Mukherji (24) have found this to be
the case, in the framework of a limited basis set approximation,
for HF. It was concluded that a better overall picture of this
molecule can be obtained by making a small sacrifice in the
energy subject to additional one-electron constraints. The
advantage of their method lies in the fact that a relatively
simple basis set can now give a reasonable description of a
molecule. The guestion we must now ask is whether a wave
function obtained by satisfying one-electron properties can
accurately predict two-electron properties. In particular,as
the density in the water molecule becomes more apropos the
forces will the energy also improve. Such an energy calcu-
lation is quite complicated since it involves the two-electron
operator l/rij' A mathematically simpler and more elegant
method would be to use the so-called Integral Hellmann-Feynman
theorem originally proposed by Parr (37). According to this
theorem, the difference in energy, AE, between two systems X
and Y represented by the wave functions wx and wY respectively

is, in the Born-Oppenheimer approximation, given by
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AE = waAHder/prder (20)

AH = -
H HX HY

where

Equation (20) is exact for exact wave functions, however, since
it does not satisfy a variational theorem it cannot be used to
determine the wave function directly.

Richardson and Pack (36) have recently examined the use-
fulness and applicability of this theorem. They compared for
a number of molecules the computed values for the bond dis-
sociation energy with their experimental counterparts. 1In

this case,

wX would represent the proposed ground state wave

function for system X and by the wave function representative
of the dissociated atoms also in their ground state. By

using a constant approximation to Yy o accurate Hartree-Fock
functions, they compared AE (experimental) with AE (calculated)
for different proposed trial wave functions. Although the
agreement of these two guantities was, in the main not good
they did show that the more accurate description of the mole-
cule did give the better result. The reason for this dis-
crepancy has been pointed out by Musher (60). For approximate
wave functions wx and wY which are accurate to certain orders
in smallness parameters n_ and n, respectively then the computed

X Y

value of AE will be accurate to this same order in ny and Ny This
suggests that the Integral Hellmann-Feynman theorem has

little utility,for calculations involving approximate systems ,

in determining the absolute value of the system's energy.
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By taking Uy to represent the proposed wave function
for the water molecule and wx to represent the accurate
Hartree-Fock function for the iso-electronic neon atom , then
all the two-electron operators appearing in AH will vanish. AE
is now given by (ENe = EHZO) and since ENe is known, EHZO can
be calculated. Following the arguments of Musher, the ab-
solute value of either the energy or energy difference cal-
culated in this way is not to be relied upon. The computed
values can however, according to the results of Richardson
and Pack, still be used to discuss the relative merits of
different proposed trial functions.

The proof of the relationship given by equation (20) is

elementary. The two Schrodinger equations for system X and Y

are of the form

H (21)

x¥x = "x¥x

= E (22)

Hyby = Bydy
By multiplying equation (21) by by integrating over all space

and applying the Hermitian property

-1
E, = S J/waxwY dt (23)

S = J;XwY dt

Similarly for equation (22)

S|
E, = S ’j@XHYWY dr | (24)

On subtracting equations (23) and (24), then the required re-

where

sult is obtained.’
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_ L
AE = Ey - Ey, = S ijAHq;Y dt (25)
AH, the difference in the Hamiltonian operators for the two

systems, is defined as being

— - - [] .
AH = HX HY Avnn Lo AVee + iH (i)
where
E AR e % . WE  aa
H'(1) = Vi (i) - V. (i)

Now, since the systems X and Y are chosen so as to be iso-
electronic, then Avee’ the difference in the electron-electron
repulsion energy, will vanish and the equation representative

of AH will contain only AV and AV__(i). AV is the dif-
n ne nn

n
ference in the nuclear-nuclear repulsion energy and AVne(i) is
the difference in the nuclear-electron attraction energy.
Since AVnn is dependent only on the coordinates of the nuclei
and we are assuming the Born-Oppenheimer approximation, then
AE, the difference in energy, depends only on the coordinates
of the ith electron. By remembering that all the electrons

are equivalent, equation (25) can be further simplified to

give

[ZH' (1) Ty dr

nn wx .
1

N '
AVpn * 5 <Vl (1) 0y>

AV +

]
nn <pXYH (1)>
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Here o, is the one-electron normalized transition or rearrange-
ment density and N is the total number of electrons contained
in the system.X (and Y).

4 4 by represents the calculated wave function for the
water molecule and Yy the wave function for isoelectronic neon,

then pXY(l) is defined as being

N
oxy(l) = 3 wa(l,2..,.....N) by (l,20000e i iN) drgyeenene. dry

where N(=10) is the total number of electrons and

S = prx(l,Z ....... N) wY(l,Z ....... N)dTldrz.......dTN

b, was approximated by a single Slater determinant of one-

electron equivalent molecular orbitals.

— [60 (D al1)61(2)B(2)enn.. cwsusssansssanig (LO}E(10) |
/I01

Yy
If we further take the best possible single-determinant approxi-
mation to Vs namely the Hartree-Fock self-consistent field wave

function

L
= - 1 3 2 2) ceeeeecccrcsccecnas 10 10
x = T=lts (M allleg(2)8(2) ¢3¢ (10) 8 (10) |

then, according to Kim and Parr(6l), the working formula for
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the Integral Hellmann-Feynman theorem will be

N2 <o |H'[o,> N/2 N/2
LE = AV =2 I = DXY(zlz') + 2 I z
=1 XY =1 m#l
(2=2+5) m'=m+5
<¢ ]H‘Iq) t>
f—T— D (¢[m") (26)
XY
where
_ _ a
Dyy = <¢X|¢Y> det® (< ¢2|¢m,>)
and
1 — 1 3
DXY(zlm ) = cofactor of the &,m' element in D.
g 1 ]
On replacing <¢2IH'I¢m'> by the symbol H, , and DXY(QIm ) by

the symbol det (ng,) equation (26) can be rewritten as

5 : N/2
AE = Avmn + 421 (sz,det(szz.) + z Hzm,dgt(szm,))
det(Somr) v Zg45 e
m'=m+5
(27)

|}
Let us now turn our attention to the form of the operator H .

This is defined as being the difference in the Hamiltonian for

the water molecule and the neon atom

- -
B HNe HH 0

%3et. is taken to represent determinant.
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H,0

H according to the coordinate system below
2 ;

4
0.”
.

Tio

- 4 -
H,0 = 5 LV Zo ;l/riO + .Z.l/rij + Zo z l/rao + l/R2
i _ i i<j

where Zo is the nuclear charge on the oxygen atom and a defines

the hydrogens a and b. Similarly

2
Vi - Z eil/ri + I l/ri.

Hye = N Ne T I, 3
1<7

Ne

N+

z
i

By making the oxygen and neon nuclei lie at the origin of the

i 1 L . = X,

coordinate system, then since i iNe
| J— =
H AH =2 J;_l/rio + E (l/ria + l/rib) + AVnn
where
22
0 1

AV = = — - — =K

nn Ry R,

All the electrons are, however, equivalent in which case the one-

J;XH'(i)deT

electron integral

requires only a knowledge of the transition density, Pyyrs aver-
aged over the operator H' (1)
" _ o 2 Jl 1
H'(1) ( = * o= * 2 ) + K (28)

10 la 1b
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where r, and r,, are the distances of electron (1) from the
hydrogens (1) and (2) respectively.

Equation (27), which determines the difference in energy
between the water molecule and the neon atom, thus depends on two
distinct types of integrals. There is the conventional overlap
integral Sij and an integral that involves the operator H', H'ij’
In a form more applicable to the present calculation, this equa-

tion can be written

AE = —2- (H'._SUM(1) + H'

[— |}
TOT 16 suM(2) + .... H 5

SUM(25)) + K

L7 10

Here TOT replaces det(Slm,) and corresponds to the expansion of
a 5 x 5 determinant of overlap integrals (see appendix (8)).
Associated with every H'ij term appearing in the expression for
AE, there will be a determinant of overlap integrals, given the
symbol SUM(I). Each SUM(I) is defined as being the cofactor of
the i,j element in the 5 x 5 determinant TOT and will consequen-
tly be of dimension 4'x 4 containing 4! or 24 terms (see
appendix (9)).

The Hij's are obtained by averaging the appropriate
transition density ¢i¢j over the operator H'. Because of the
nature of H', equation (28), there will arise three distinct

types of one-electron integrals
(1) <¢i l/ro¢j> (ii) <¢i l/ra¢j> (iid) <¢i l/rb¢j>

where 1 = 1,2,3,4, and 5 refers to the five occupied molecular

orbitals and §j = 6, 7, 8, 9, and 10 refers to the occupied atomic
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orbitals on neon. By defining the ¢i's and ¢j's as being

¢, = ¢o ¢6 = ls

92 = %p1 ey ™= i

43 = by ¢g = 2px = rcoseéaras/z//?

b = 0,1 ¢g = 2Py = rcososinge*Ta 5/2//?
b = 9,9 $10= 2PZ = rcosocos¢e*Ta 5/2/»/—7?

then the analytical forms of the integrals represented by
equations (i), (ii), (iii) and the overlap integrals <¢i¢j>,
together with their numerical values are given in appendix (10).
Although the calculation of AE requires only the knowledge
of relatively simple one-electron integrals, the form of the
equations involved can be seen to be quite complicated. 1In
order to substantiate the present approach it was thought ad-
visable to duplicate a result obtained by Richardson and Pack.
In a similar calculation on LiH they took the wave function for
this molecule, obtained by Kahalas and Nesbit (62), to represent
Uy and using 2% to represent the wave function for the iso-
electronic beryllium atom calculated AE. This is only a four-
electron problem, as compared to the present ten-electron
problem, and as such is much simpler. If ¢l and 95 represent
the two occupied molecular orbitals on LiH and ¢3 and 94 the
two occupied atomic orbitals on beryllium, then according to the
previous arguments and symbolism

= 2 (g
bE = 5= (H,;SUM(1) + Hy,SUM(2) + H,,SUM(3) + H,,SUM(4)) + K

14 23 24
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where now

R (813834 ~ 814573
SUM(1) = S,,

SUM(2) =-SZ3

SUM(3) =-Sl4

SUM(4) = Sl3

K = 7_./R

The operator H', appearing in the integrals Hij’ is now equal
to (l/rb-l/ra) with a and b referring to the Li and H nuclei
respectively. In this way, the result of Richardson and Pack
was duplicated. |

For the present calculation on the water molecule AE =

(E are known

Ne H20

a
to be=-128.55 and -76.46, respectively, a value of AE equal to

e = EH20) and since from experiment, E and E

- 52.09° should be obtained. The results obtained are
summarized in Table V. Each AE calculation is representative

of a different approximation to the forces. The orbital para-
meters were obtained by a minimisation of the previously defined
function R in the usual way, however, it was only stipulated
that the resultant density distribution give the correct dipole
moment. This, of course, is not sufficient to characterize
completely the parameters appearing in our basis set and con-
sequently there are a very large number of possible solutions
thét meet this requisite. Of the few listed in Table V,

numbers 1, 2 and 3 were obtained for SO = 0.056 and 4 and 5

a :
All the energies are expressed in a.u.


http:be-128.55
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were obtained for SO = 0.0. The orbital parameters for
calculation number 1 approximate very closely those expected
from an sp3 hybridisation scheme and hence a tetrahedral
electronic configuration. According to the results of earlier
workers (7,9,14,17) this was assumed to be the case in the
water molecule where o, the orbital angle, was taken to

equal e, the bond angle. Table V shows, however, that the
computed value of the energy for this point is the poorest

of all the cases considered here. It can also be seen that
from an examination of the forces acting on the nuclei an
unstable molecule would result for such a description.

Only by orbital bending, which essentially increases the
p-character in the bonding orbitals and the s-character

in the lone pairs,can electrostatic equilibrium be attained.
Although it is very difficult to relate the form of the AE
equation with the orbital parameters, one point is clear, as
the density distribution becomes more apropos the forces

then the energy also improves. The best value for the

energy difference was in fact obtained using the orbital
parameters that gave the best forces. The absolute value

of AE was not, however, in good agreement with the predicted
value of -52.09 but for reasons described previously, this

is not surprising. The fact that AE improves as the forces
improve is very encouraging and adds weight to the supposition
that a wave function as determined by satisfying a one-electron
property does not necessarily'predict inaccurate two-electron

properties.



IV DISCUSSION

Once the wave function for a molecule is known, then
the problem reduces to one of interpreting it. From a chemical
viewpoint the binding in a ﬁolecule is of primary concern and
such ideas as ionicity, covalency and partial ionic character
have received widespread use in this context. The water mole-
cule is particularly useful from this point of view and in
many instances has been used as a prototype for a series of
molecules containing lone pairs of electrons.

The general approach has been to assume a direct rela-
tionship between the orbital form of the wave functions and
the geometry of the molecule. 1In particular, the bonding
orbitals are made to point directly along the bond axis.
Following the simple qualitative arguments given previously,
this would lead to a description for the water molecule that
involved two bonding and two lone pair orbitals in a near
tetrahedral and consequently sp3 configuration.

The results of the present calculation have not found
this to be the case. Not only are the bonding orbitals at
an angle w to the bond direction but they are also associated
with negative hybrids. This has the effect of removing bonding
electrons from the internuclear region, and further, they put
these electrons into that region of space previously occupied

by the lone pairs. Meanwhile, the lone pairs, being at an
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angle B greater than 1800, cause this previously vacated
density to be replaced.

Such a description would seem to have little, if any
connection with the more conventional picture. However, if
one remembers the arguments of Edminston and Ruedenberg, then
perhaps the unusual direction of our bond hybrids can be re-
moved by the introduction of secondary contributions into the
lone pair orbitals from neighboring atoms. According to the
resulﬁs of these authors, the secondary contributions in-
variably appear with a negative coefficient and seem to lie
within the range -0.1 to -0.2.

The problem is thus to produce a new set of orbitals
such that now the 1ls atomic functionsvcentred on the hydrogens
(1) and (2) are introduced into the lone pair description.
This is most readily achieved, from our previous definitions

of ¢21’ ¢22 , ¢bl’ and ¢b2’ by means of an orthonormal trans-

formation such that nowa

o _ _ _ 1/2

6%, = 1/(L+ ) ((b,, = 90,7 = 972 (07 +op,))

0
b1 - gt/

/(1 + ) ({0 = 98, 20y, +0,9))

Il

(0]
*p2

The parameter g can now be varied at will and with every new

/(L + 9) (o, = gopp) = 9772 (6,0 +6,,))

value, the form of the orbital will change. The total density

distribution, and consequently its associated molecular proper-

@ for their expanded forms see appendix (11)
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ties, are however invariant, for a given set of orbital para-
meters, to such an orthonormal transformation. By a careful
manipulation of g, both the bonding and lone pair orbitals can,
in agreement with the predictions of Edminston and Ruedenberg,
be made to point in the "correct" direction. This would cor-
respond, according to the coordinate system of Fig. 1, to the

following signs in the oxygen 2s and p atomic orbital coefficients

o v
¢Zl + (+ 2s + px' + pz)
o .
¢22 - (+ 2s + px pz)
¢gl +> (+ 2s - px' + py')
¢g2 > (+ 2s = px' - py'")
By expanding ¢Zl’ ¢32, ¢gl’ and ¢g2, the variation of the

different atomic orbital coefficients with a change in g can

be calculated and these are given, for a few sample points, in
Table VI. A value of g greater than or equal to ~ 0.08 satis-
fies the above requireﬁents; however, it should be remembered
that the lone pair orbitals no longer have their conventional
meaning since they are not centred on one nucleus and can conse-
guently take part directlyAin the bonding. The secondary contri-
o % ho), introduced into these orbitals is indeed

1 2

both negative and within the predicted range.

butions cz(h

By now writing the new lone pairs in the familiar form

]

¢zl =1"'(cosel(2s) + sinelcos(B/2) (px') + sinelsin(B/2)pz))

3 u'(hi + hg)
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¢22 = )'(cosgl(2s) + singlcos(B/2) (px') - sinelsin(B/2) (pz)
i o) o
+ u (hl + h2)
it can be seen that
A'cosel = cg‘(2s)a
A'sinelcos(B/2) = cz(px')

cl(pZ)

A'sin 1sin(B/2)
P )
u' = ¢ (hl + h2)
and similarly for the bonding orbitals

ACOoseb = cb(25)

-\sinebcos (a/2) cb(px')

cb(py')

Asinebsin (a/2)

= cP(1s)

-ué = cbl(h

Using these relationships, Table VII can be constructed. As

g changes then A/u and A'/u', the bonding and lone pair polarity
factors, change drastically as do the other important parameters
a, §, eb, and el. These changes, brought about by our ortho-
gonal transformation, will not alter the overall picture of

the water molecule and in particular the total density and hence
the resultant electrostatic forces will remain the same. The
various orbital contributions to these forces will however be
different.

The equivalent molecular orbitals obtained from calcu-

Yation number 4, vaguely resembles the tetrahedral case and it

@ where no distinction is made between bl and b2 or 21 and 22 then

cbl = cD2 and c21 = czz.
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is interesting to examine a force analysis for this data

2 2 2 2 2
FORCE 901 900 o1 952 %5 TOTAL
FO -0.5265 -0.5265 0.2112 0.2112 0.9988 0.3682
0 0.3833 0.3833 0.7208 0.3063 0.6127 2.4064
%_ -0.0405 -0.0405 - 0.0569 0.0954 0.0030 0.0743
DPE -0.5218 -0.5218 1.2651 1.2651 0.0112 -1.4978

The charge distribution in the bonding orbitals is now such
that it exerts a positive binding force on all the nuclei. The
lone pair density siﬁilarly acts as predicted by the tetra-
hedral bonding scheme. One point to note about the lone pair
orbitals is the large negative contributions that they now make
to the electronic dipole moment; a point that has been used
to reason the existance of both a large dipole, equal to
(DPN—DPE), and an Sp3 hybridisation scheme. It should, however,
be remembered that this state of affairs is only possible when
the lone pair orbitals are no longer localised on one centre.
The results listed in Tables VI and VII, of course,
represent only a few of an infinite number of possible hybrid
schemes all producing the same net density distribution. The
large variation of the parameters contained in the lone pair
and bonding orbitals with a change in g, emphasizes the point

at hand. Any description of the bonding in terms of the mole-

cular orbitals, and in particular in terms of A/u,a ,8 , €b,

and €1, is not unique and as such not very useful. To talk of

a particular bond or lone pair hybridisation is meaningless.
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A more realistic approach to the problem would be one
that is independant of the form of the orbitals. Such a prop-
erty is the one-electron density distribution. This can be
represented pictorially by a contour map obtained by mapping

the function

o(¥) = %T /(]wl(l)wz(Z)...wN(N)ijl(l)wz(z)...wN(N)ldrz...drN
5
=2 T ¢,(1)¢,(1)
i=1l

for different values of y and connecting points of equal densitya.

The in- and out-of-plane contour maps, defined by Fig. V below

Fig. VvV
and given in Fig. VI, adequately point out the lack in prominence
of the lone pair density. If the hybridisation had been sp3, or

better if the electron density distribution had been tetrahedral,

%pecause of the extensive use of these contour maps in the second
part of this thesis, a fuller discussion of their calculation
will be left until later (see appendix (12)). It is sufficient
to know at the moment that each line represents an equidense
surface whose magnitude is indicated in atomic units.
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a large concentration of charge above the oxygen nucleus would
have been expected. The contours around this nucleus are in
fact very nearly spherical with if anything a slight inward
polarisation necessary to overcome the nuclear force of repul-
sion on this nucleus.

According to the arguments of Berlin (26), a molecule
can be divided into binding and anti-binding regions. Electron
density placed in these regions will respectively, either exert
forces on the nuclei pulling them together or alternately exert
unequal forces on the nuclei and lead to a separation of the
molecule into atoms. The binding region (BR) for a hetero-
nuclear diatomic molecule AB in which N consists of two
boundary surfaces. One surface, through B, curls back onto itself
to form an enclosed region, while thé boundary surface tprough
the nucleus of greater charge opens up and approaches a straight
line perpendicular to the bond axis (see Figure XVI). The
binding region for the water molecule can be constructed by
superimposing two such O-H diagrams inclined at the bond angle
with a common oxygen nucleus. Since the antibinding regions
in the vicinities of the protons (including those generated by
the diatomic H-H group) lie outside the binding region, this

will give

A
The position of the boundary curves, dashed lines, clearly
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answers the question where density must be concentrated in
order to get a state of electrostatic equilibrium on mole-
cular formation. How much charge must be placed in this region
is best answered by picking some standard density that is known
to be insufficient from this point of view. If, for example,
the molecule is taken to lie in the XY plane with the z-axis
coincident with the axis of quantisation, the standard density
could be chosen such that it places the nuclei (Hl,H2 and 0)

at their equilibrium positions each with its Qriginal atomic
density. One particular description of the oxygen atom would
be to take the M= 0 component of the3P ground state. This
would correspond to circular contours of density in the mole-
cular plane and a doubly occupied'"pﬂ" orbital. Since the density
on the oxygen atom is centro-symmetric, it will exert no atomic
force on this nucleus. In addition, at the equilibrium bond
length and angle the hydrogen nuclei will penetrate the shell
containing the oxygen density. According to Gauss's law,

this density will now shield less than eight units of positive
nuclear charge and consequently there will be a net force of
repulsion on the hydrogen nuclei. Following similar arguments,
each hydrogen nucleus is shielded by less than one unit of
negative charge and there will be a net force of repulsion

of the hydrogen nuclei due to a mutual penetration of the
others charge cloud. There are, of course, many equivalent
descriptions for po(;), each leading to an unstable molecule.

One alternative, for example, would be to sphericallise the
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charge density on the oxygen nucleus by placing 4/3 electrons
in each of px, py and pz. This, however, places less density
in px(po} than the chosen valence description and therefore
will shield the hydrogen nuclei even less.

The difference between the one-electron molecular
density (p(f)) and the.standard one-electron density (po(f))
then tells us how the density is rearranged on molecular for-
mation. This rearrangement can similarly be represented by

a contour map obtained by plotting the function

o (%) - po(g)

Ap (T)
for different values of r and joining together points of
equal density. A full contour in these maps is taken to mean
a buildup of charge density in that region on molecular for-
mation whereas a dashed contour implies the removal of charge
on molecular formation.

Bader (63) has recently examined the form of the Ap map
for the frequently quoted tetrahedral description of the water
molecule in which a, the orbital angle, equals ¢, the bond
angle. The plots he obtained are given in Fig. VII . Density
is clearly removed from the binding region and placed above the
oxygen nucleus. Remembering that the original atomic density
was insufficient to balance the nuclear forces of repulsion,
then there will be a net force on the oxygen nucleus in a
direction that opposed bond formation. It was concluded that

only by assuming a#e could charge be accumulated
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in the binding region. What effect does this orbital bin-
ding have on the form of the wave function ? The Py and P,
atomic functions appearing in the bonding orbitals ¢bl and

¢b2 4

ordinated system as follows

respectively, can be written in terms of the X'Y' co-

py = —px' cos (a/2) + py' sin (a/2)
P, = —px' cos (a/2) - py' sin (a/2)

Since o/2 is less than 90° then as a is decreased, sin(o/2)
will decrease but cos(a/2) will increaée. That is to say
orbital bending, and hence electrostatic equilibrium will
convert py' into px'. Figuie VIII representative of the
Ap map obtained for the proposed wave function of the
present work, reflects this transition. The dashed contours
in the Y' direction are indicative of py' density removal
and the full contours in the X' direction are indicative of
a px' density build-up. Moreover, this transformation
places density that was originally almost totally in the
anti-binding region into a region above and below the oxygen
nucleus. In particular, density is placed in the binding
region between the three nuclei, a requirement that any pro-
posed density must satisfy. Charge is also concentrated
around the hydrogen atoms and the inner polarisation obser-
ved is consistent with the large nuclear force of repulsion F.
Since the density or density-difference maps are

representative of the one-electron charge distribution, there
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will exist a direct correlation between their form and any
molecular property that depends on the first-order density
matrix. The electrostatic forces of attraction are par-
ticularly important since their existence is a direct con-
sequence of bond formation. By accumulating information
contained in both the contour maps and relating this in-
formation to the forces, it should be possible to interpret
the nature of a chemical bond.

However, before any general conclusions can be made
it is necessary to know what characteristics are associated
with a certain type of bond. This implies a detailed study
into the form of the one-electron density distributions,
with particular reference to the forces operative, for a
series of molecules. Keeping this in mind, it is now con-

venient to introduce the second part of the thesis.



PART 1II

THE NATURE OF THE BINDING IN THE

FIRST-ROW DIATOMIC HYDRIDES

82



I. INTRODUCTION

The chemical nature of a bond is largely determined
by the distribution of the valence electrons in the molecule
and in particular whether these electrons are shared or lo-
calized. It is the way in which the original atomic charge
distributions rearrange on molecular formation that deter-
mines what forces are operative in binding the nuclei and

consequently the physical and chemical properties of the

molecule.

The purpose of the present work is to interpret the

nature of the binding in the first-row diatomic AH hydrides

in terms of the molecular charge distribution and the forces

that this charge density exerts on the nuclei. Furthermore

a break-down of the electronic' forces into those exerted by
the individual molecular orbital charge densities enables
each molecular orbital to be classified as binding, antibind-

ing or nonbinding. Such a description will provide a quan-

titative assessment of their relative binding ability; for a
given molecule or through the complete series of molecules.
While any chemical bond accumulates charge in the

binding region, to an extent sufficient to balance the nuclear

force of repulsion, there are two extreme ways in which elec-

trostatic equilibrium and hence a stable chemical bond can

be attained. 1In an ionic bond, for example, valence charge is
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transferred from one atom to another and it is the charge den-
sity localized on one atom which exerts the net binding force
on both nuclei. 1In a covalent bond on the other hand it is the
migration of charge from both nuclei into the binding region
and the mutual attraction of both nuclei by this density that
is the identifying feature. Taking the lithium fluoride mole-
cule to be representative of the ionic bond and a series of
homonuclear diatomics (A2) to be representative of the covalent
bond, ionic and covalent binding have recently been given new
definitions based on the disposition of the charge density in

a molecule (65,66).

The majority of molecules however fall into a category
that is intermediéte between these two limiting cases having
partial ionic or partial covalent character. Here charge is
neither transferred completely nor shared equally. From this
point of view the first-row diatomic hydrides LiH, BeH, BH,

CH, NH, OH and HF form an interesting and important homologous

series. It 1s of considerable interest to determine whether

or not the binding in this series of molecules can be use-

fully classified according to the definitions previously

proposed and found to hold for the extreme bindings found in

LiF and the homonuclear diatomics.

In the formation of an ionic bond ATB~ an electron
is completely transferred from nucleus A, with a charge of

Z to nucleus B, with a charge of Z Nucleus A then has

A’ B*®

only (ZA-l) electrons associated with it while nucleus B has
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(Z, + 1) electrons. According to Gauss's law the field ex-

B
ternal to the spherical charge distributions surrounding A

and B can be considered as originating on the centres A and

B respectively. Nucleus B thus experiences a net force of
attraction whereas nucleus A experiences a net force of re-
pulsion. For a stable molecule to be formed in this way the
charge density surrounding A and B must be polarized by an
extent necessary to overcome these net attractive and re-
pulsive forces. If on the other hand an electron is only
partialiy transferred from A to B dependent on the extent

of this transfer atomic polarizations may or may not result.
When this is the case the bond is said to have partial ionic
character.Pauling (67) has suggested two ways in which this
quantity can be estimated. One is based on the ratio of the
observed dipole moment to the value eRe, where Re is the
equilibrium bond length, and another is based on the difference
in the electronegativities of the two atoms forming the bond.
From a more theoretical point of view the binding can be

studied in terms of the wave function . If this wave funct-

ion can be written in the form

V= Ap bt AL Ve
where wI and wc refer to the ionic and covalent part of v
then the partial ionic character of the bond, which is uni-

versally represented as being some function of the coefficients

AI and Ac’ can be estimated assuming <wI wc> = 0. Although
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this overlap term might be zero when averaged over all space
it is not necessarily zero at every point in space. When dis-
cussing the spatial distribution of electrons it must not be
neglected because it is, after all, the basic issue in ionic
character. Lowdin and Shull (68) in their interpretation of
the bond character preferred to use natural spin orbitals ob-
tained from y by diagonalising the first-order density matrix.
It was shown by them that crude approximations to these natu-
ral spin orbitals X4 using different proposed wave functions
share many of their invariant properties and most important

to a bond analysis the invariance of the occupation numbers.
Such a method is however unsophisticated and requires new
definitions since now the xi's no longer represent or can
readily be related to the covalent and ionic parts of the wave
function. It is as yet not clear to what extent these new
definitions will reproduce the concept that the chemist has

of partial ionic character (69).

As an increasing number of Hartree-Fock wave functions
become available for molecules then it is obvious that a sim-
pler and more direct method of interpreting the chemical bond
is needed. The very complexity of these functions seriously
hanidcaps a discussion in terms of hybridization, polarities,
ionic character, etc. An alternative approach, and one pro-
posed by Bader and Henneker (65), would be to examine the
explicit characteristics of the molecular one-electron charge

distribution; especially since a Hartree-Fock wave function
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yields a one-electron density correct to the second order.
By taking some standard atomic density (po) which is known
to be insufficient to balance the nuclear forces of repulsion
the molecular (p) minus atomic density
bo(7) = p(r) - pg(E)

can be plotted for different values of f; Pes could, for ex-
ample, be the separated atoms in their ground state in which
case Ap is given the symbol Bogp- The resultant density
difference contour map would now show the regions in the
molecule where charge had migrated in order to reach a state
of electrostatic equilibrium and hence a stable chemical bond.

The lithium fluoride molecule has a dipole moment of
6.284D (70). Since the separation of equal and opposite
charges at the observed lithium fluoride bond length gives
a dipole moment of 7.51D it is obvious that this molecule is
strongly ionic by any previous definition. In fact the dis-
crepancy between the observed and theoretical dipole moment
is to be expected because of the back polarization of the
density remaining on the Li and F nuclei which must accompany
an electron transfer. The Apgp plot obtained by Bader and
Henneker (Fig. IX) clearly shows that density has been
transferred from the lithium atom to the fluorine atom. Both
the charge increase around the fluorine atom, as indicated
by the large diameter of the zero contour, and the direction
of the atomic polarizations at the Li and F nuclei are con-

sistent with an electron transfer and hence an Li'F~ description.
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In this way the ionic bond can be given a new definition based
on the characteristic features of the LiF ApSAmap, these are
(1) a transfer of charge from one atom to another, the charge
increase being localized on one atom as indicated by the fact
that the contours are approximately centred on one of the
nuclei and the region of increase is bounded by a zero contour
which encompasses only a single nucleus (ii) a polarization of
the density increase localized oﬁ the anion and of the density
remaining on the cation in a direction counter to the direct-
ion of charge transfer.

Using a similar approach Bader, Henneker and Cade (g¢)
have recently studied the rearrangement of charge on molecular
formation for a series of homonuclear diatomic molecules A2.
The ApSA maps they obtained are shown in Fig. X. In every
case there is an increase of the charge density in the binding
region which is symmetrically placed between both the nuclei.
Since this increase in the density is relative to a distribu-
tion which does not place sufficient density in the binding
region to balance the forces of nuclear repulsion it is the
force exerted by this shared density which binds the nuclei
in these molecules. The direction of the atomic polarizations
now accompanying bond formation could conceivably be in any'direct?
ion. They are, in fact, found to be opposite of those noted
above as being a necessary consequence of ionic binding.

While it is the primary purpose of this work to ex-

amine the nature of the binding in the first-row hydrides
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there are several other questions of interest concerning this
series. Since the dipole moment of LiH is 5.882D(72) it is
expected to be highly ionic in the sense LiH™, HF on the other
hand with a dipole moment of 1.942D (73) is expected to be
polarized in the opposite direction, H+F_. The fact that

the hydrogen forms the hegative pole in LiH and the positive
Pole in HF is suggestive that there is a change in the binding
type as one goes along the series LiH -+ HF. Fajans (74) has re-
cently predicted that this change occurs between BH and CH.

His arguments are based on the quanticule theory originally
proposed with Berlin (75). Here the electrons are classified
according to whether they are quantized with respect to the
field of both nuclei or to the field of a single nucleus.
Blinder (76) using quite different consideratiohs based on

the linear combination of atomic orbitals-molecular orbital
theory (LCAO-MO) suggested that the change in bonding type
occurs betweeﬁ BeH and BH. Another question of interest con-
cerns repeatedly proposed models for the diatomic hydrides
based on the penétration of the united atom (UA) by the proton.
It has been kndwn for some time, from spectroscopic obser-
vation (77), that the properties and electronic transitions

of the diatomic hydrides AH are closely related to the appro-
priate united atom. If ApUA represents the molecular minus
united atom density, where the united atom is centred on the
heavy nucleus A, then bond formation can now be identified

with the removal of a proton from the united atom to the
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equilibrium bond length. Thus dependant on the nature and

magnitude of the density shifts observed in these AOUA maps
it should be possible to estimate the applicability of such
models.

Whether or not the density in the hydride series
can still be classified as shared or localized, where the
'change—over from one mechanism to the other occurs and if
they resemble the united atom approximation are however
questions of secondary importance in this study. It is the
relationship between the redistribution of charge on mole-
cular formation to the nature of the binding that is our
primary aim.

The physical picture provided by the one-electron
charge distribution may be carried even further through the
use of the Hellmann-Feynman theorem. This fheorem relates
the forces acting on a nucleus to the one-electron density.
These forces of attraction are rigourously determined by
classical electrostatics and hence provide an added basis for
the discussion of a chemical band. Just as the formation of
a molecule AB can be likened to the redistribution of atomic
A and B charge density so can the forces of attraction hold-
ing the molecule together be compared with those experienced
by the separated atoms. At large internuclear AB separations
the total density of the system p is simply the sum of the

atomic densities
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where Pa and °gp refer to some atomic density centred on the

A and B nuclei respectively. In a similar way the forces of
attraction can be broken down into those due to charge cen-
tred on A and those due to charge centred on B. Since these
atomic densities are centrosymmetric the only forces of at-
traction on the A and B nuclei will be of the screening type
due to density centred on the B and A nuclei respectively.
Furthérmore since the A nucleus does not penetrate the charge
contained on the B nucleus and since this charge, according to
Gauss's law, can be considered as centred on B the net force

on the A nucleus simply reduces to

2.0 z
A" B A~B A

Fp(R > =) = - = == (& = Qg)
A R2 R2 R2 B B

The first term in this expression represents the nuclear

force of repulsion and the second term represents the elect-
ronic force of attraction. At these distances Qp will be the
the number of electronic charges on B and since FA(R +> ) ='O,
Z_, must equaliQB. Similarly for the net force on the B

B

nucleus to be zero Z, = Q., where QA is the number of elect-

A A

ronic charges on A.

At the equilibrium bond length Re the atomic densities
are rearranged in a manner that is characteristic of the na-
ture of the binding. The total molecular density can now be

written in the form
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+ p + p

p=g AB

A B

As before oa and py are the atomic densities centred on the

A and B nuclei respectively, however there now appears in this
expression for p a central overlap term due to density that

is centred on both the A and B nuclei. The electronic forces

in a molecule can be broken down into three separate components;
an atomic force, a screening force and an overlap force. Where-
as in the separated atoms it was the screening contribution

due to the charge on the A and B nuclei that was responsible

for electrostatic equilibrium,molecular formation and the
accompanying density shift will now cause the nature of the

binding to change. At the equilibrium bond length the density

around each of the nuclei is allowed to relax and rearrange

itself in such a way that once again FA(Re) = FB(Re) = 0.

The nature of this density shift ApSA will be reflected in the
values of the atomic, overlap and screening force contributions

to FA and FB relative to their values at large internuclear

separation. Consider, for example, the forces on nucleus A
due to the molecular charge density. If the atomic density

on A, is not centrosymmetric there will result an atomic

°a

force on this nucleus equal to Z Because of the nature

a<PaOa> -

- 8-
of the operator, 0, = cos GA/rA , where

- K 0
A// o \
— _ 0 Bwn

P e fK
B
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the magnitude and direction of this force is determined by

the magnitude and direction of the density shift, accompanying
molecular formation, near to the A nucleus. In a similar

way the overlap or shared density °aB has associated with it

an overlap force,Z The magnitude of this force is

A <Pap 0A>.
dependant on the magnitude of the density shift into the over-
lap region andAequally important the location of this charge
increase with respect to both the A nucleus and the bond axis.
Finally there is a screening force on A due to density that is
completely localized on B, ZA <PaR 0A>. In the case of
the separated atoms it was this screening force that was totally
responsible for electrostatic equilibrium. The amount by
which the A and B nuclei have been descreened on molecular
formation and where this descreened density is transferred
will, of course, be important factors when considering the
nature of the binding.
The net force on the A nucleus can now be written as
Z '
FA(Re) = — (ZB - QB)
! Re
The three components of Qg atomic, overlap and screening re-
present the number of virtual charges which when placed on

the B nucleus exerts the same field at the A nucleus as does

or

the component of the density being considered Pa’r Pap

Py Since at large internuclear separations the atomic and

overlap charge contributions are zero and the screening charge

contribution was simply ZB their molecular values will be of
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prime importance.

Consider, for example,6the case of a complete electron transfer
from A to B. In an idealized ionic bond there is no overlap
or shared density and hence no corresponding force contri-
bution. The complete transfer of an electron will increase the
screening of the anion by unity and decrease the screening of
the cation by unity. The increased screening of the anionic
nucleus exerts a net force of attraction on the cation and
there must result a negative atomic force due to a back polari-
zation of the density on the cation. The net force of repulsion
acting on the anionic nucleus because of the charge transfer
is in turn balanced by a positive atomic force term. Thus in
an ionic bond the cationic nucleus is bound by the charge
transferred to the anion and the anionic nucleus is bound by
the force arising from an inwards polarization of the same
density. In a similar way the identifying features of a co-
Valent bond can be summarized in terms of the forces acting

on the nuclei. 1In this case it is the migration of charge

to the internuclear region that is responsible for bond for-
mation. This migration should be reflected in a decreased
screening contribution for both nuclei to the total elect-
ronic force on A and B relative to their separated atomic
values. Such a descreening will result in a net force of
repulsion which is balanced by an overlap contribution.

Using a similar approach Bader and Henneker (78) have
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also given an interpretative discussion of the binding in
the molecules LiH and HF. These workers used extended
LCAO-MO-SCF wave functions which are only slightly less
accurate than those employed here. it is their general
method that will be extended and applied to all of the
first-row hydrides. By accumulating the information con-
tained in the charge distributions and a force analysis

the binding in these molecules will be examined on the basis
of classifications previously employed. Whether or not
density can be classified as shared or localized in the
intermediate cases of the hydrides and where, if at all, the
alleged discontinuity occurs are questions that will also be
dealt with.

The molecular charge distributions, or charge density
differences, are based on wave functions given by Cade and
Huo (79) which are alleged to be very close approximations
to the Hartree-Fock wave functions. The results presented

2:%y, BH(XxT:T), CH(szr), NH(x3:7),

are for LiH(xX i'), BeH(x
OH(szr) and HF(XlZ+) states at Re (Exptl.) . The calculated
Re value is usually very close to Re (Exptl.) so that no
significant misrepresentation is likely from the use of Re
(Exptl.) instead of Re(Calcd.).

Each wave function is approximated by a single Slater
determinant of one-electron spin orbitals. The individual

orbitals span an irreducible representation of the C % point

group to which the molecules belong and can therefore have
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either o or m symmetry. A molecular orbital of ¢ symmetry

is represented by a linear combination of 16 basis functions;
12 centred on A and 4 centred on H. The 7 molecular orbitals
on the other hand are approximated by a linear combination

of 8 basis functions; 6 centred on A and 2 centred on H. That
is

a— ] ] ] "
o —(lsA+lsA+23A+2§A+3sA+2pA+2pA +2pA+2pA +3dA
) 1
+3dA+4fA+lsH+lsH+2sH+2pH)

1 n
T = (w2pA+n2pA+w2pA+n2pA+n3dA+n4fA+n2pH+n3dH)

8The wave function for LiH is an exception in that
one of the 2pA functions is substituted by 3pA'



IT AN ANALYSIS OF THE BINDING IN TERMS OF THE
CHARGE DISTRIBUTIONS

a) TOTAL MOLECULAR CHARGE DISTRIBUTIONS

The three-dimensional one-electron charge distribution
is obtained by plotting the function

o(Z) = = n; ¢2
i i

for different values of r. Here the summation is over all the
occupied molecular orbitals Iy each with an occupation number
n. equal to 1 or 2. By joining together points of equal charge
density the contour maps shown in Fig. XI were obtained®.

These represent the total charge distribution in a plane pas-
Sing through the A and H nuclei where the outer contour in

each molecule is 0.002 a.u. which encloses over 95% of the
total charge.

The length of the molecule L is defined as being the
distance between the points where the 0.002 a.u. contour cros-
ses the internuclear axis. If T and ry are taken to represent
the distances of the A and H nuclei out to the 0.002 a.u. con-
tour respectively (see Fig. XII) ,then these together with L
have been measured and are listed in Table VIII. The length
L determines the molecular size. This is a very useful con-
cept since several of the latter numbers of the series (NH
and CH) have been trapped as impurities in rare gas and other

molecular crystalsSBO)A knowledge of the specific sizes can

2 see Appendix (12)

a7
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be used to predict, for example, the substitution of CH or NH
for a neon atom in solid neon and the distortions one might ex-
Pect.

The length L takes on its lowest value for the HF
molecule and increases regularly with increasing bond length
through the series up to LiH where there is a sudden drop.

The distance of the A atom to the 0.002 contour, parallels

N
the behaviour of L there being an almost constant increase of
0.3 a.u. going from HF to BeH with again a sudden drop for
ros-
The size of the non-bonded region on the hydrogen
nucleus on the.other hand increases regularly, as indicated

by r through the series from a value of 1.9 in HF to a

HY
value of 2.9 in LiH. In fact the ratio of the molecular length
to the bond length, L/Re, which is related to the rate at

which density falls off on the non-bonded side of the nucleus,
takes on an almost constant value. LiH is however ekception-
al, due to its anomalous length L, where here the ratio L/Re
drops significantly from 3.7 to 2.6.

While the actual changes in the atomic density dis-
tribution of the separated atoms and the appropriate united
atom relative to the molecular density distribution will be
considered in detail later, it is useful to obtain an idea
of the relationéhip of the "size" of the molecule relative

to the size of the separated atoms A and H. For this reason

the radius of the appropriate separated atom is also given
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in Table VIII. In HF rn is slightly less than its atomic

value of 2.8 whereas r in BeH is slightly greater than its

Be

atomic value of 3.6 with ra for the intermediate membérs
consistent with this gradual change. Once again LiH is ex-

ceptional where now the molecular r value of 1.7 is almost

Li
one-half the atomic value of 3.2 and very nearly equal to
the radius of the Li+ ion (which is 1.8 bohr). This together
with the unusual length of the LiH molecule is indicative of
a charge removal from the non-bonded side of the lithium
nucleus.

Since the radius of the 0.002 contour in an isolated

hydrogen atom 1is 2.5 a.u. and keeping in mind the fact

that Ty for H is expected to be greater than this then the
anomalous short length of LiH seems to result from a transfer
of charge from near the Li nucleus to around the proton.
Moreover the major fraction of negative charge in LiH appears
as monocentric contours which can be considered as density
localized on the Li nucleus. This charge transfer appears
counter to, but not inconsistent with, the behaviour of the
remaining first-row hydrides. 1In this series HF to BeH den-
sity is rather transferred in the opposite direction that

is to say from the proton to:the A atom. The number of
negative contours around the proton decreases and in HF such
contours havé almost disappeared the molecule now resembling
a fluoride ion polarized by a proton.

This reversal in charge transfer is also borne out
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by the direction of outer polarization as indicated by the
dipole moment. The dipole moment is determined by averag-
ing the charge distribution over the operator Z = r cos ©
and consequently its magnitude and direction is governed
by density in the outer regions of the molecule. Examination
of the outer density contours in the total density maps in-
dicates that there is a change in the direction of polar-
ization between BeH and BH in accordance with the change in
sign of the observed dipole moment u (Table VIII).

If the allocation of charge in these density maps
is known then they can be used for a more gquantitative dis-
cussion. One way to determine how much charge is trans-
ferred or remains in a particular region of the molecule
can be obtained by integrating the charge density, which is
elliptical coordinates® will be IwAH(E’nf¢)|2‘ Integration
over all space will just give the total number of electrons
N. However, integration over certain restricted volumes will
give the charge contained in these volumes. By taking a
grid of 0;02 a.u. and assuming that the density contained in
the volume element (.0008 x ™ X Y) is constant, where for

example

-0.02 a.u.
\/

'rtzlé‘*-0.0Z a.u.

a . 2
Bee Bppeudix [=) MILLS MEMORIAL LIBRARY
McMASTER UNIVERSITY
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the amount of charge on-the non-bonded side of A and H can
be calculated. The size of the grid chosen in the numerical
integration is important and obviously the smaller it is
then the more accurate the result. Such calculations are
however limited by the number of iterations necessary to
span a particular volume and hence the computational time.

A value of 0.02 a.u. was considered reasonable as shown by
integrating the total molecular volume. In the case of LiH,
for example, this led to a total of 3.99 electrons as com-

pared to the expected value of 4. As further proof calcula-

tions were recorded using a 0.01 a.u. and 0.005 a.u. grid and

the values obtained were invariant in the first two decimal
places to those obtained using the 002 a.u. grid.

The non-bonded charge on A corresponds to the amount
of negative charge contained within the volume bounded by a

plane perpendicular to the bond axis and passing through the

A nucleus (see Fig. XII.) Similarly defined is the noh—bonded

charge on the hydrogen nucleus.

The computed values of the atomic and molecular elec-
tron populations, as obtained by the numerical integration
technique, are listed in Table IX. The atomic populations
are defined by placing the A and H atoms in their ground
state and at the equilibrium bond length Re and integrating
over the appropriate volume.

If the A or H nuclei did not penetrate the electronic

charge
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on the H and A atoms respectively then the total number of
electrons in the three defined regions before molecular for-
mation could be readily calculated. Thus for example the

Be and H atoms with electronic configurations 152 252 and

lsl respectively would place l; in the non-bonded region of
the Be atom, 0.5e in the non-bonded region of the H atom
and 2.5e  in the overlap region. The fact that 0.56e are
found in the non-bonded region of the hydrogen atom shows
that this nucleus has penetrated the atomic charge cloud on
the Be atom to the extent of 0.06e .

The amount of non-bonded charge on the A nucleus
before molecular formation approximates very closely the
value expected for the free atom and even in HF the hydrogen
atom contributes only 0.04e to the non-bonded charge on F.

On molecular formation the electrons will redistribute
themselves. In an ionic description of LiH the single 2s
valence electron in the Li atom will be transferred to the
hydrogen atom. This leaves an inner-shell of two 1ls electrons
on Li which, for reasons described previously, will polarize
counter to the electron transfer. If this is the case then
the number of electrons on the non—bonded side of the Li nu-
cleus should be slightly greater than 1. A value of 1.09e”
is obtained. Similarly the ionic model for BeH demands an
occupation of 1.5e  in the non-bonded region of Be. The
value of 1.96e actually found indicates that the net amount

of charge present in this region has not changed from the
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atomic value. In the remaining members of the series, the
formation of the molecule results in an average increase of
0.23e over the atomic value of the population in the non-
bonded density on A. Note that the presence of the F  ion
in HF would require an increase of 0.5e over the atomic
value in the non-bonded region, or 0.25e more than is
actually found. Turning now to the non-bonded charge on the
hydrogen then again the series is clearly divided at BeH.
The increase in the non-bonded charge on H in LiH is indicative
that the charge lost by the Li atom in molecular formation is
now on the H. For BH - HF this charge migration is rather
in an opposite direction from the H atom to the A atom, being
the greatest for HF and the least for BH.

While the non-bonded charge population may be used
as a necessary condition for the presence of ionic species
in a molecule, it is not a'sufficient one since it gives no
information of how the charge is distributed on the bonded
side of the nuclei. Nevertheless the variation in the number
of non-bonded charges found in the hydrides is suggestive
of an ionic description for LiH, an equal partitioning of the
charge for BeH and an unequal sharing of the charge distribu-
tion in the remaining molecules.

Just as the total molecular density can be divided
into bonding and non-bonding regions it can similarly be
divided into binding and antibinding regions. According to

the arguments of Berlin for a diatomic molecule AB with nuclear
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charges ZA and Zg then these regions are defined according

to whether the guantity

ZAcoseA N ZBCOSOB
r2 r2
A B
where
=\
r /', )
-1 ‘\rB
-
il . 0
1/\ B/\\
A B

is positive or negative respectively. For the case when

Z, > Z as in the hydrides considered here, then the boun-

A B’

dary surface through ZBcurls back into itself and forms an

enclosed region (Y) while the other boundary surface through

A extends in both directions (X).

As the difference between the nuclear charges Z, and Z5 in-

A

creases then the volume of the enclosed antibinding region Y
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decreases and the surface defining the X region approaches
avlane perpendicular to the bond axis. The number of elec-
trons contained in the regions X,Y and Z, within the boun-
dary curves F(g,n) = 0 have been calculated in a manner
similar to that described previously. These values together
with the shapes of the binding and antibinding regions are
given in Fig. XIII. While in every case more charge is
placed in the binding region it is the magnitude of this
charge and in particular its location with respect to the A
énd H nuclei that is important in determining the bond type.
For the series HF to BeH'there.is an almost constant 54% of
the total electronic charge contained in the binding region
Z, BeH is intermediate with 57% and LiH contains 65%. This
together with the anomalous distribution or partition of
charge in LiH would suggest a different binding mechanism
than in the remaining members of the series with BeH as in-
termediate between the two types.

"While the analysis of the total charge distribution is
suggestive of the kind and variation of the bonding in these
molecules it does not allow for an unequivocal decision to
be made for any of the species. The question as to whether
the density is best described as shared or localized has not
been answered. To answer this question one must be able
to partition the total charge density in some unambiguous -
manner and this is impossible, particularly for the density
in the region between the nuclei, if one considers the total

density maps. However, the difficulty of partitioning and
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describing the character of a total charge distribution
may be overcome in an objective manner through the use of

density difference maps.

(b) THE DENSITY DIFFERENCE DISTRIBUTION

The density difference distribution as represented by
a contour map shows the net re-organization of charge den-
sity on molecular formation. By taking some standard atomic
density Py which is known to be insufficient to balance the
nuclear forces of repulsion then the molecular minus atomic
density maps show the regions to which charge is either re-
moved or transferred to obtain a state of electrostatic equi-
librium and hence a stable chemical bond. One can, for ex-
ample, consider the hydride molecules AH as being formed from
the separated atoms A and H. By placing the atoms A and H in
their ground state and at the equilibrium AH bond length then
the migration of charge density with bond formation can be
related to the nature of the bond. An alternative descrip-
tion would be to consider the difference between thebcharge
density distribution of the molecule AH and the charge den-
sity distribution of the united atom (UA) coincident with the
A nucleus in AH. Here bond formation is identified with the
removal of a proton from the united atom to the equilibrium
bond length Re and now the contour maps are given the symbol
ApyalErm) .

Consider first the density difference distributions

involving the separated atoms, ApSA(g,n). These are given
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for the first-row hydrides in projection in Fig. XIV and in
profile in Fig. XV. The dashed contours denote that the Value
of the molecular density distribution is less than that obtained
from the overlap of the atomic densities and hence that charge
has migrated away from these regions in the formation of the
molecule. The solid contours denote an increase in the mole-
cular density over the combined atomic densities. To ob-

tain the maximum amount of chemical information from such a
density different plot the densities of the atoms are taken
to be in a valence state. Each atom A, in its ground state,
will be in an axial electric field. If this field and the
Z-direction are made coincident then there will result a

splitting of the m, = I3 ana m, = 0 components of the three-

fold degenerate &= 1 atomic orbital on A. The m, = |
compbnents {+ PH) although still degenerate are lowered in
energy and the m, = 0 component (+PO) incréases in energy.
This would imply that.the atomic density distribution should
be derived from the ML = 0 component of tﬁe atomic ground
state with the exception of CH and OH for which equal mix-

x

tures of M_ = 1 should be employed. Such a description

L
preserves the very useful picture of a chemical bond for-
mation given by the valence bond theory since a spherical
avefage over the ground state configuration would neglect
the preferred direction towards the'other atom. Thus for

elements with partial occupation of the p orbitals this

procedure results in a valence state density with a single
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vacancy in the 2poc orbital and in an averaging of the re-
maining P electrons in the 2pm orbitals. Finally since in
all the Ap maps calculated Hartree-Fock wave functions are
employed both for the molecule and for the separated atoms,
these giving the one-electron density distributions correct
to the second order, it is expected that the main and charac-
terizing features of the ADSA and ApUA’ contour maps are
correctly represented.

Turning to Fig. XIV and the Apga diagrams for the
hydride series the most striking feature is the large re-
moval of valence charge from behind the Li nucleus, as in-
dicated by the dashed contours, not present in the other
molecules. There is also a large build up of charge, which
can be considered localized on the hydrogen nucleus. Politzer
and Brown (81l) have recently given a similar AOSA map for
LiH which employs the very elaborate wave function of Browne
and Master (82). While the LiH wave function is far beyond
the Hartree-Fock quality used here, for some reason Politzer
and Brown chose to also use the Hartree—fock wave function
for the lithium atom in constructing Bpgp- Thus their LiH
and Li densities are of considerably different quality. How-
ever a comparison of Fig. XIV with their ApSA does show
essential agreement of the qualitative features but unfor-
tunately a quantitative comparison was not possible with the
data given by Politzer and Brown. The depletion of charge

on the non-bonded side of Li and the build-up of charge on
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the hydrogen nucleus can be identified with a charge trans-

fer from Li to H. Moreover the extreme localization of the
density on the hydrogen nucleus, as shown by the total density
map as well, places a restriction on the direction of polari-
zation of the density localized on H and of the density
remaining on Li. It is clear that the transfer of charge to
a region which is localized on H and excludes the Li nucleus
will lead to the creation of a net negative electric field
at the Li nucleus. Furthermore, if the localized charge was
symmetrically placed with respect to the H nucleus this nu-
cleus would experience a net positive electric field origina-
ting from a partially descreened Li nucleus. For an ionic
Litu~ description therefore there must be a polarization of
the density surrounding the A and H nuclei in a direction
counter to the electron transfer and hence counter to the di-
rection of the bond dipole moment. The magnitude and direction
of this atomic polarization at the Li and H nuclei is determined
by the distribution of charge in the immediate vicinity of
these nuclei. The inner contours on H are indeed polarizéd in
the right sense as is the transfer of charge from the bonding
side of Li to its non-bonding region.

In the remaining members of the series BeH - HF an
ihcreasing amount of charge is removed from the non-bonded
side of H, indicated by the magnitude and numbers of the

dashed contours. The density difference maps for these hy-



110

drides all show the density increase on A to be polarized

Gy ¥ More-

away from the positive end of the bond dipole A
over the polarization of the density on H is directed towards
the A atom and hence the negative end of the dipole. Such
polarizations were also found for the homonuclear diatomics
and are thus suggestive of a covalent binding scheme. Here
the charge transfer from H to A is not of sufficient mag-
nitude nor sufficiently localized that the cationg see a

net negative field and the anion a net positive or repulsive
field. 1In these molecules charge is also removed from a region
that resembles a slightly inward polarized P, atomic function
centred on the heavy nucleus A ; I-density, because of its
location, has little effect in binding the nuclei. Compared
to say the 2poc density which lies along the internuclear

axis it exerts a minimum shielding of the A nucleus from the
proton. In the formation of a molecule however this density
is put to a more beneficial use where now it is partially
transferred to the regions A'and B (see Fig. XVI). The pattern
of this charge increase can, in an orbital approximation, be
associated with the presence of a 2poc atomic orbital®. The

30 molecular orbital singly occupied in BeH and doubly oc-
cupied in the other hydrides BH + HF, will at large inter-
nuclear separations correlate with a 2pc on A and with a 1s

atomic orbital on H. According to the arguments of Blinder

= Although the 2p atomic orbitals are unoccupied in

the Be atom, it is the promotion of the valence electron
into a 2po atomic orbital, brought about by the formation of
the molecule.



i s §

it is the relative energies of the atomic orbitals on A and
H that, at the equilibrium bond length, will determine whether
the molecular orbital has mono or bicentric character. Be-
cause of the close similarity in energy of the Hls,A2s and
A2p atomic orbitals on B and C, els(H), EZS(A) and ezp(A)
respectively, one would expect the bonding orbital resulting
from mixing these atomic orbitals to be delocalized over both
nuclei in BH and CH. On the other hand one would expect
as e, (R)] |32p(A)] >>|e; (H) , which is progressively
the case in NH, OH and HF, this particular orbital (30)
should simulate the features of a distorted 2pc atomic or-
bital on A. The bonding in the hydrides, from these con-
siderations, can therefore only be considered bicentric in
as much as the proton lies within the compass of the 2Po
atomic orbital. The common charge accumulation in the density-
difference diagrams does support this view. As the eﬁergy
difference between Hls and A2p increases, that is go from
BeH - HF, then the molecular orbital becomes increasingly
localized on A as a 2poc atomic orbital. This being the case
then the change in shape through this series of the two re-
gions of charge increase, A and B, can be identified with an
increasingly localized 30 molecular orbital on A with a
proton embedded in its extremity.

The gradual and almost constant change between each

member in the series BeH -+ HF suggested in the Ap maps is

SA

even more impressive when the valence state of the A atom is
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substituted by its sphericalized density. For the Li,Be and
N atoms the two approaches will, of course, be the same. How-
ever for B, C, 0, and F each of the AP orbitals will now
contain 1/3, 2/3; 4/3 and 5/3 electrons respectively instead
of the valence state 1. The ApSA maps obtained are given.in
Fig. XVII. The unusual change in the shape of the OH and HF
contour maps, although not being inconsistent with the new

BeH -+ HF ApSA series, 1is now due to the large increase in the
atomic density along the internuclear axis brought about by
the increased population of the 2poc atomic orbital. This same
general pattern through the series BeH - HF again persists
with BeH and HF as the two extremes. Moreover the anomalous
density shifts observed for LiH not present in BeH and the
remaining members of the series is not a result of the method
- 0of calculation since both Li and Be have spherical atomic den-
sities.

Whether one wishes to consider molecular formation
from the sphericalized atomic densities or from the valence
state approximation is dependent on which approach contains
the most relevant information. In many cases the two methods
can be used to supplement each other since features not im-
mediately obvious by one treatment might stand out in a second.
The valence bond idea of a two-electron two-centre bond, which
would correspond in a ADSA map to placing one electron in a
2po atomic orbital on A, is however more physically and chemi-

cally interpretable. For this reason all the ensuing results
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will be guoted for the bpg, Maps of Fig. XIV.

The identifying features of the ADSA maps are also
borne out in the profile diagrams, all drawn to the same scale,
of Fig. XV. These profiles represent the change in density
that occurs along the internuclear axis on molecular formation.
The density distribution along this axis is most important
since it exerts a maximum effect on both the nuclei. Again
the similarity in the profiles BH -+ HF is striking. The in-
creasing size of charge build-up on either side of A with a
negative region at the A nucleus is characteristic. The
maximum in the overlap density which is almost directly above
the proton in BeH gradually broadens through the series and
moves to the centre of the bond. This would suggest that the
polarity of the latter members, as indicated by the position

of this shared density, increases in the sense A6_ H5+.

The
removal of negative charge from behind the proton is also
evident and its magnitude increaées with decreasing Re‘ One
further point to note is that the maximum appearing to the
right of the A nucleus in BH - HF is lacking in both LiH and
BeH.

Despite the slightly different features in the den-
sity difference and profile ﬁaps for BeH + HF there is really
no strong evidence for a discontinuity in the bond type pre-
dicted by Fajans and Blinder. Rather a gradual change seems

evident with BeH as one extreme and HF as the other.

Table X lists the total amount of negative charge
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which is transferred to and contained in the two isolated
regions of charge accumulation. These values were obtained
by the numerical integration technique using a 0.02 a.u.
grid. The letter A denotes the region defined by the zero
contour on the non bonded side of the A nucleus (see Fig.XVI), -
and B the region enclosed by the contour which encompasses
the proton. The zero contour which defines the B region also
includes all of the density increase in the binding region
and is thus of particular interest. The amount of charge
contained and transferred to this region together with the
shape of the defining contours and hence the position of the
charge increase are of primary importance in determining the
nature of the binding. |

In LiH the contours of charge increase in the B region
are spheroidal in shape and as such can be considered as a
localized increase on the hydrogen. In fact this density
simulates the case that an H ion might be present. Exactly

the same state of affairs exists in the Ap maps for LiF

SA
where now the contours of charge increase around the F atom
can be considered localized. While the charge increase in
this region is localized in both LiH and LiF there remains
the problem of partitioning the total charge density. The
value of 0.55 e 1listed in Table IX is the amount of charge
transferred to near the H nucleus, it does not represent the
increase in charge from the free atomic value. This number

represents the density increase of the molecule, in this

region, over and above the sum of the atomic Li and H densities
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since charge density from the Li atom is also placed in this
region. To obtain the total charge contained on H and F in
LiH and LiF, which should in an ionic Li'H™ and LitF~ de-
scription be ~ 2e” and ~ 1l0e respectively, then to a good
approximation the total density distribution can be integrated
over the volume bounded by the zero contour defining the B
region in the ApSA maps. This integration yields a total
of 1.83e for LiH and 9.84e  for LiF. Both these values are
< 0.2e  below that expected for a charge increase of le . The
density distribution does however extend beyond the zero
contour line of the B region and some discrepancy is expected.
For the remaining members of the series the density in-
crease in fhe B region is rather shared in increasing amounts
by the two nuclei A and H there being a strong polarization
towards A with once again BeH acting as an intermediate. The
position of this density increase and especially its relation
to the two nuclei is important in determining molecular pro-
perties. Consider, for example, the electric field gradient
at the proton obtained by averaging the charge distribution

=3 2 a

0 (3cos OH - 1) . It is seen that the

proton gradually shifts its relative position from near the

over the operator r

centre of theApSA map for LiH to a point on a steep gradient
of the ApSA map for HF. This would suggest that the electric
field gradient at the proton in the series LiH-+ HF would

change systematically through the series from a small, near-

Gcee page 57
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zero value, at LiH to a much larger value at HF. This is
actually the case found in the calculated values of the
electric field gradients at the proton (82).

The density increase on the non-bonded side of the
A nucleus, within the region defined by the zero contour, is
almost completely contained in Berlins anti-binding region.
Both the small positive value of this increase in LiH together
with its localized nature is indicative of a redistribution
of the inner 152 density. Such a redistribution is completely
consistent with an atomic polarization necessary for an ionic
Li+H_ description. In contrast the much larger and diffuse
increase observed for BeH and the other hydride molecules
seems to involve the redistribution of valence-shell density.
The amount of charge contained in and transferred to the A
region is however not easy to interpret. The fact, for
example, that the charge increase AA in the hydrides BH, CH
and NH is the same rising slightly for OH and HF cannot readily
be understood except perhaps suggesting a similarity in the
binding mechanism.

In summary, on the basis of the total density dis-
tributions and the density difference maps, the binding in
LiH is ionic, the binding in BH, CH, NH, OH and HF is covalent
and the binding in BeH is intermediate between these two
extremes. The common bond or overlap density in the covalent
molecules is, however, unequally shared between A and H. This

unequal sharing is a maximum for HF in the sense o FG-
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and a minimum for BH. From BH - HF the majority of the charge
increase occurs at A but it changes character from being de-
localized over both nuclei to being centred principally near
A. 1In BeH, which appears completely ambiguous referred to
these two limiting classifications, the principal charge
increase is near the proton.

The similarity of this hydride series to the ap-
propriate united atom, centred on A, has led to a number of
simplified models that approximate the nature of the binding.
These models consider the electrostatic equilibrium of a
proton embedded in the charge density of either A~ or the
united atom with or without polarization. Hund (83), for example,-
has shown that the observed spectroscopic data for the first-
row hydrides can be predicted on the single assumption that
the hydride molecule (e.g. NH) is equivalent to the cor-
responding united-atom (e.g. Q) in a strong electric field.
Platt (84) has similarly made excellent predictions, for the
interatomic distances and force constants of the diatomic
hydrides, again assuming the density of these hydrides was
not far removed from the ﬁnited—atom. Another line of in-
vestigation has used wave-functions whose basis set is
centred solely on the heavy nucleus (85).

In all of these treatments the departure of the united
atom density from the molecular density is of prime impor-
tance. For this reason we have given in Fig. XVIII the

APua

contours resulting from subtracting the appropriate united-
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atom densities from those of AH (at R = Re). The allowed
spectroscopic states of the united atom can be obtained in

the usual way. However, we are only interested in that atomic
state which corresponds to the same spin multiplicity as the
molecular state, lies lowest in energy and has the correct
component of orbital angular momentum about a chosen axis.
Thus for example BH(lZ+) will, in the united atom approxi-
mation, correlate with the C atom which has a valence elec-
tron configuration p2. This gives rise to the atomic states

3P, lD and lS. The lD and lS have the correct spin multi-

lD, with the highest L value, lies lowest

plicity however the
in energy and consequently we are required to find the charge
density for the Mo = 0 component of this state. Bingel (86)

was able, using the results of Companion and Ellison (8Gahto de-
compose the atomic charge distribution into terms of different

angular symmetry and has listed for the M. component of each

L
term the appropriate orbital coefficients. By averaging the

Charge contained in the pr atomic orbitals (p+ and p_ in

Bingels notation) the coefficients of the atomic orbitals in

the correct united atom term can be obtained and these are

given in Table XI. In two cases, BH and CH, the united atom

is not the ground term. These ground terms would be respec-

tively 3P and 4S,however,a correlation With their respective molecu-
lar stateslz+ and 2n,would correspond to a change in the spin
multiplicity. For this reason the states of Bﬁ and CH cor-

relate with the lD state of C and the 2D state of N, respec-

tively.
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The negative contours in the immediate vicinity of
the A nucleus in the Apgyn density difference maps ig the
result of a decrease in nuclear charge obtained when a proton
is removed from the united atom nucleus. The united atom
having the larger-(ZA+l) nuclear charge wiil place more den-
sity in this region. In every case the symmetry of the united
atom is distorted in the formation of the molecule. The
charge increase in the region of tﬁe proton, almost symmetri-
cally placed in the case of LiH and slightly polarized towards
the F atom in HF shows that the united atom greatly under-
estimates the density at the proton. This itself is not sur-
prising but the degree of difference is unexpected. The large
removal of valence charge from the Li nucleus in LiH is again
consistent with an ionic description Li+H—. The density
increase in this molecule and BeH is confined primarily to only
the region around the proton. In BH and CH the charge build
up is both around the proton and on the non-bonded side of
A. In NH, OH and HF these two regions of accumulation coalesce
into a single region and the AH charge density is thus seen
to exceea the united atom density in all regions except
around the A nucleus. In the series BeH-HF the Apy, Maps are
in agreement with the previously concluded AG—H +<Spolarity,
where an increasing amount of charge is transferred from the
H atom to the A atom. In fact the pulling out of a proton

from the Ne nucleus to form HF simulates, as did the total

density distribution the presence of a polarized F ion.
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Cade and Huo(87) have recently pointed out the more-
or-less constant decrease in the correlation energy of AH
at Re relative to the correlation energy of the united atom
for the first- and second-row hydrides. The correlation
energy arises because of the electron-electron repulsion
energy not taken into account in a Hartree-Fock treatment
where here the position of each electron depends only on
the average position of the others. It is usually defined as
being the difference between the relativistically corrected
experimental energy and the Hartree-Fock value. Because of
the decrease in the molecular minus united atom correlation
energies the ApUA diégrams should show some constant charac-
teristic consistent with this. Consider first the increase
in charge, around the proton contained within the 0.02 a.u.
contour. Both the shape and magnitude of the contours in-
dicate the remarkable similarity of this region for the hydrides.
Since this increase in charge is almost constant in the ‘series
LiH - HF more charge will be left on the A nucleus. There
will thus be a slight decrease in the importance of instanta-
neous repulsions or electron correlation in the hydrides.
Although a great deal of information is contained
in the density and density difference charge distributions
it is impossible to give a guantitative discussion of the
bonding in terms of them. In the case of LiH, for example,
it would seem that an ionic description is appropriate, how-

ever, just how close it approximates to an ideal separation
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of equal and opposite charges is not answered. The infor-
mation contained in these maps must somehow be related to
a property of the molecule that enables a fuller and more
definite discussion of the bonding. For such a direct
relationship to be possible the physical property

chosen must be dependent only on the coordinates of one

electron at a time .



IIX AN ANALYSIS OF THE BINDING IN TERMS OF THE
FORCES EXERTED ON THE NUCLEI

a) INTRODUCTION

The very existence of a stable molecule demands that
the nuclear forces of repulsion are balanced by the electro-
static forces of attraction. It is not sufficient for the
vector sum of the forces on the nuclei to vanish, for this
is true at all internuclear distances. Thus for a diatomic

molecule at any R value
F,(R) = - F,(R)

and at R = R
()

FA(Re) = - FB(Re) =0

These equalities are also formally true (but in practice
only approximately valid) when the forces acting are calcu-
lated using Hartree-Fock wave-functions (88,89). The well-
known Hellmann-Feynman theorem (25,25A) indicates how to
calculate these forces making use of the total molecular
charge density determined by quantum mechanical calculations.
However, the Hellmann-Feynman theorem is valid for only a
restricted class of approximate wave functions, but this
includes the Hartree-Fock wavefunctions for closed-shell
cases and open-shell cases considered here (89)

According to previous arguments the net forces

on the A and H nuclei, FA(Re)and FH(Re) respectively, in

122
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the AH molecule will be given as

Fp(R)) = ) F (R) = —— (2, - Q

where QA and Qé represent the number of virtual charges which
when placed on the A and H nuclei respectively exert the same
field at the H and A nuclei respectively as does the density
distribution in the molecule. Because of the three basic

electron populations LI and Py each Q will be the sum

° AB
of three components - atomic, overlap and screening.

In an orbital approximation to the total wave function
it is found more convenient to define a quantity fix for each
molecular orbital as being the force exerted on nucleus x by

th

the density contained in the i molecular orbital multi-

plied by Ri. If ¢i represents the ith molecular orbital with
an occupation number n, equal to 1 or 2 then in a diatomic

molecule the total electronic force on A will be

cos0
2 A
-ZA).:niJ"bi 7 dr

i rA
and on H
2 cosO@
- ZH i ni/( ) r2 dt
H
Therefore
©]
v ~ 2 5 Cos
QH—zflA-—Re)_:nijq,l >— dr
i i o
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and

cosO
v B 2 H
QA—ifiH-— Re):ni[q).-——-2 drt

where now, for example, each fi is numerically equal to, in

A
dimensions of electronic charge, the number of point charges
which, when placed on the H nucleus, exerts the same field
at the A nucleus as does the density distribution in the ith
molecular orbital. Each fiA value can be either attractive
or repulsive. They can thus be used as a quantitative gauge
Of the binding or antibinding characteristics of the ith
molecular orbital using a significant reference standard (65,
66) . In these studies the reference standard is based on

the contributions to the forces on A as R » », Clearly at

large R the unperturbed atom A possesses a centre of symmetry
and exerts a zero net force on nucleus A. ‘One may interpret
the vanishing of the force at large R as resulting from each
electron on B screening one of the nuclear charges on B from
nucleus A. Thus the limiting value at R »» of the sum

of the partial forces for nucleus A is the total electronic
charge on atom H. Similarly the limiting value at R + « of

the sum of the partial forces for nucleus A is the total elect-
ronic charge on atom A. At the equilibrium bond length R = Re'

where once again the resultant forces on the A and H nuclei

are zero
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The electronic contribution to the force on the A nucleus

at any value of R may thus be equated to an effective number
of charges situated at the B nucleus, this number being the
sum of the partial forces. At Re the sum equals ZH‘ At

intermediate distances it exceeds Z corresponding to a

H’
net force of attraction, and for large R the sum reduces to
the number of electronic charges which correlate with the
separated H atom. This suggests that the limiting value of
each individual fiA should be taken as the number of elect-
rons in the ith molecular orbital which correlate with the

H atom for large values of R, NiH:

£ (R »- ») = N, (=0, 1 or 2)

iA iH

Similarly the limiting value of fiH should be taken as the
number of electrons in the ith molecular orbital which cor-
relate with the A atom for large values of R, NiA:

fiA(R + o) =N, (=0, 1 or 2)

iA
Unfortunately the correlation of the various molecular or-

bitals ﬁi into atomic orbitals centred on A and H is not
rigourous. However, Mulliken (91) has pointed‘out that the
electron configuration of any state of a diatomic hydride

can usually be obtained by assuming that the electrons of

the heavier atom are unchanged with respect to their quantum numb-
ers- (they do ,of course, assume definite A values) while the

hydrogen electron is promoted to the lowest-energy o orbital

which has at least a single vacancy. The electronic con-
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ifiguration of the first-row hydrides are 102 202 3cn,

0,1,2 for LiH, BeH and BH respectively and 102 202 302 lnn,

gl
n=1,2,3,4 for CH, NH, OH and HF. Following Mulliken's
arguments a correlation of the Hls orbital with the 2¢ mole-
cular orbital in LiH and with the 3¢ molecular orbital in

the remaining hydrides is anticipated. The lo, 20, 3¢ and

lm molecular orbitals then correlate with the 1ls, 2s, 2poc and
2pm atomic orbitals respectively on the A nucleus. BeH does
not however fit neatly into either of these correlation
schemes since the ls orbital on H is considerably more stable
than the 2s orbital on Be.

At the equilibrium bond length the actual dispos%tion
of charge in a molecular orbital will determine the magnitude
and sign of each fiA(Re)' Although by necessity at this
bond length L fiA(Re) must equal the nuclear charge on H

i

each fiA(Re) can in general be greater than, equal to or less

than N, leading to the following definitions

1H
fiA(Re) > NiH binding
fiA(Re) T Ny 'nonblndlng
fiA(Re) < NiH antibinding

In a similar way the binding, nonbinding or antibinding char-
acter of the ith molecular orbital with respect to the H
nucleus can be determined by comparing the fiH(Re) value with
NiA' Furthermore a comparison of the partial forces on the

A or H nuclei for a particular orbital in the series BeH -+ HF
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(which possess a common correlation scheme) will provide a
quantitative comparison of the effectiveness of this orbital
charge density in binding the nuclei.

Just as the total charge density can be broken down
into the three basic electron populations - atomic, overlap
and screening so can the constituent molecular orbitals.

Each molecular orbital is approximated by a linear combination

of atomic functions centred on A and H, x? and xi respectively

¢ , =

Css i +*
1 X >

z c XH
i 1) %3 k ik *k

; ; : A A
The atomic, overlap and screening populations - x. x.,

J 73
X? Xi and Xi xi, respectively will thus contribute an

atomic, overlap and screening force to each fi As a con-

Ao

sequence of this fiA can now be written as

(AA)
iA

(AH)

- (HH)

iA + f

and similarly for fiH

(HH)
iH

(AH)
in

(AA)

fig= [If i

1H

For example, fiiA) (= atomic force) denotes the contribution

+ f + f 1s

to the partial force on nucleus A from the atomic population

(AH)

on A fiA (= overlap force) denotes the overlap contribution

to the partial force on A from the overlap population and
(HH)
iA

partial force on A from atomic density centred on H.

f (= screening force) denotes the contribution to the

As important as the amount of charge in determining

the binding in a molecule is the exact disposition of the
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charge, whether it is polarized or whether it is diffuse or
concentrated. The binding, nonbinding or antibinding nature
0of a particular molecular orbital can thus be described in
terms of an atomic, overlap or screening contribution to its
partial force. Moreover since the three components of each
partial force are independent of both the nuclear charge
and the equilibrium bond length it is possible to compare
their values in a series of molecules for which A changes.
This is particularly useful since it provides a quantitative
assessment of the relative binding abilities of the orbital
charge densities both for a given molecule or through a
complete series of molecules.

As R + « then because the charge distribution around

the A and H nuclei is centrosymmetric fiA and fiH will simply'

reduce to the screening fiiH) and fiﬁA) contributions respec-
tively which in turn are given by NiH and NiA' At R = Re’

however, the screening contribution will, in general, differ
from the actual atomic population on A(or H) as the charge
density on A (or H) may be diffuse and hence partially pene-
trated by the proton (or A atom) at Re or it may be polarized
either towards or away from the proton (or A atom). Similarly
the magnitude of the overlap contribution is dependent upon
whether the overlap charge density is diffuse in nature or
concentrated along the inter-nuclear axis. Any inequality in
the sharing of the overlap charge density by the nuclei in

a heteronuclear molecule is made evident by the difference in
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the partial forces.

b ) AN ANALYSIS OF THE BINDING IN TERMS OF THE PARTIAL FORCES

The partial forces for the 10 density together with
their atomic, overlap and screening contributions are given
in Table XII. The lo molecular orbital correlates with ,
at large values of R, a doubly occupied 1ls atomic orbital on
A. Because of the spherical symmetry of such an orbital the
value of floA(w), which is a measure of the force on the A
nucleus due to the 1ls density on A, should be 0. The value of
flOH(w) on the other hand is expected to be 2 due to the
f{?ﬁ)(w) screening contribution. Because the 1ls orbital en-
ergies of the first-row elements all lie well below that of
the Hls orbital (see Table XIII) the lo molecular orbital
should be essentially localized on A as 152 in the molecule.
This is borne out in the lo density maps of Fig.XIX, which
consists of spherical contours centred on the A nucleus.
In every case the radius of the 0.0002 contour is considerably
less than the bond length. One measure of the 1ls density re-
arrangement on molecular formation will be the values of

f and £ at R = Re' Considering first the forces on the

loH loA

proton then the values of £ (Re) are indeed very close to

loH

the predicted £ (») value of 2. The fact that in LiH a

1oH
value of 1.949 was obtained shows that there is a slight

polarization of the ls-like density on the Li nucleus. As
we go down the series, LiH » HF, then this density on A is

held tighter, due to the increased nuclear charge 2 such

A'
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that at BH it now effectively screens two units of posi-
tive charge from the proton. The 1o orbital can thus be
considered nonbinding with respect to the proton. The

forces that the lo density exerts on the nuclei are also
given in Table XII. 1In the case of LiH and BeH the negative

value of f (Re) indicates that this orbital is antibinding,

loA
equivalent to placing 0.49 and 0.13 positive charges res-
pectively on the proton. This is due to the large and
negative atomic force caused by a polarization of the inner
ls-1like density in a direction removed from the hydrogen side
of A. For the remaining molecules in the series BH - HF the
lo orbital is binding for the A nucleus. Here there is a
density shift rather to the bonding side of A, which results
in a positive atomic force with a charge equivalent of
approximately 0.25e. The size, sign and changeover of this
atomic force on A is also evident in the profile maps of

Fig. XV. In the series BH -+ HF there is a spike-like in-
crease in charge to the immediate left and right hand side

of the A nucleus brought about by the rearrangement of the
inner density on A. Both these regions of charge increase
will produce an opposing atomic force, however in each mole-
cule there is a net resultant force of approximately the same
order of magnitude putting the A nucleus towards the hydrogen
atom. In LiH and BeH however the charge increase is to the
left hand side of the Li and Be nuclei tending to separate

the A and H nuclei. The atomic polarization and hence the
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resultant atomic force at the Li nucleus is, moreover, com-
pletely consistent with an ionic Litu” description. Finally
the reversal in sign of this atomic force at the B nucleus
in BH is suggestive that there is a change in the binding
type between BeH and BH.

Table XIV lists the partial forces with their atomic,
overlap and screening contributions to the 20 density dis-
tribution. The 2¢ molecular orbital in the case of LiH cor-
relates with, at large R, a singly occupied 2s function on
Li and a singly occupied ls function on H. For BeH and the
Yemaining members of the hydride series it correlates with
a doubly occupied 2s function on A. Because the energy
difference between the A2s and Hls orbitals increases through
the series, with the A2s function becoming lower in energy,
at R = Re the 20 molecular orbital should increasingly re-
semble a 2s orbital localized on A. The contour diagrams
representative of the 20 orbital density are given in Fig. XX.
In LiH and BeH the shape of these contours do indicate that
the molecular orbital is primarily localized on the proton
whereas from BH -+ HF the 2¢ density gradually encompasses
both nuclei becoming increasingly centred on A with spherical
contours characteristic of a 2s atomic orbital. This change
in localization of the 20 charge density from H to A should
be reflected in the wvalues of f2OH and f20A given in Table xI1V.
In particular the change in the localized nature of the 2¢

molecular orbital from being primarily centred on H to being
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primarily centred on A should be reflected in the screening
contributions. Consider first the LiH molecule. The gquan-

tities f and f measure the force on the H and A nuclei
20H 20A

respectively due to the density contained in the 20 molecu-
lar orbital. At large values of R since the 20 orbital cor-

relates with a singly occupied A2s and Hls, fZOH(m) and f ()

20A
will simply be 1, in units of electronic charge, because of

(AR) (HH)
20H 20A

In the remaining members of the series, BeH -+ HF, f

(HH)
20A

with a doubly occupied 2s function on A are expected to be

their respective £ (») and £ (») screening contributions.

(AA)
20H ()

and f (») where now the 20 molecular orbital correlates
2 and 0 respectively.

Comparing the values of £ (Re) with those at in-

20H
finite atomic separation then the 20 charge density can be
seen to be non-binding for the proton in LiH, antibinding with
"respect to the proton in BeH and binding with respect to the
Proton in the hydrides BH -+ HF. The binding is due both to

an inérease in the screening contribution and a relatively
large overlap force. On going from BH - HF the decrease in
magnitude of the overlap force is paralleled by an increase

in the screening force associated with the increasingly loca-
lized nature of the 20 molecular orbital. This is also borne
out by the 20 density diagrams of Fig. XX which increasingly
resembles an atomic 2s function on A. In fact for HF the

components of the force exerted on the proton by the 2¢ density

axis approach in value those expected for a 252 atomic density
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on F at large R; zero atomic and overlap contributions, and
a screening contribution of two. In BeH, BH and to a slight-
ly lesser extent in CH the A2s and Hls orbitals being of
similar energies are predicted to mix strongly producing a
bicentric 20 molecular orbital. The overlap forces are in-
deed the largest in the series and the screening of the Be,
B and C nuclei is much less than the value of two required
for an unperturbed 2s atomic orbital on A.

The fZOA(Re) values in Table XIy all show that the
20 charge distribution is binding with respect to the A nuclei,
being the greatest for Be in BeH and the least for F in HF.
As the density becomes increasingly localized on A then both
the screening and overlap forces drop and the binding is due
mainly to a large inward polarization of the now almost loca-
lized density on A. In BH, for example, the atomic force
is only 0.23 whereas in HF the value of 0.52 accounts for
over 70% of its binding character. The atomic polarization in
LiH and BeH is opposite to that for BH - HF and tends to
separate the A and H nuclei. In BH and CH the original
spherical distribution of the separated atoms has been greatly
distorted and the binding is caused primarily by an overlap
charge density and to a lesser extent by a partial screening
of the proton. The force contributions exerted on the N nucleus
in NH are intermediate in character.

From a consideration of the lo and 2¢ density maps

and their respective force contributions there would seem to
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be a great similarity in the binding for LiH and BeH not
immediately obvious in either the total density or density
difference charge distributions of Figs. XI and XIV. The

lo density is, for example, in both molecules non-binding
with respect to the proton since on molecular formation it
remains essentially as a doubly occupied Als orbital screening
two units of positive charge. This same density is however
strongly antibinding for the A nucleus (A=Li or Be) due to

a large negative atomic force brought about by a back polari-
zation of the Als density. The direction' of the atomic force
on A, due now to the 2¢ density, is also characteristic of
the LiH and BeH molecules. . One further identifying feature
is that in both LiH and BeH the screening of the proton by
the 20 density is greater than that of the A nucleus,while

in BH and the remaining molecules this situation is reversed
to an ever increasing extent through the series. Any screening
of the A and H nuclei is a consequence of localized density
and the above observation confirms the previous conclusion
that the 2¢ charge distribution in LiH and BeH can be con-
sidered localized primarily on H whereas for BH » HF it is
localized primarily on A.

It is the presence of the 3¢ molecular orbital,
singly occupied in BeH and unoccupied in LiH, which causes
the abrupt observed change in the density distributions. The
orbital density diagram (Fig. XXI) and the associated force

AY

contributions (Table XV ) show that this orbital in BeH is
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largely localized on the Be nucleus. In the case of an in-
finite separation of the Be and H nuclei the 3¢ molecular

orbital will correlate with a singly occupied 1ls orbital on
H, for which fBGH(w) and f3oBe
tively. At the equilibrium bond length the 3¢ charge density

(») will egqual 0 and 1 respec-

is binding with respect to the proton and antibinding with

respect to the Be nucleus. The values of £ (Re) and

30H

f3cA (Re) indicate that the only significant contributions

are of the screening and atomic type respectively. This atomic
force on Be is however in a direction that opposes bond for-
mation while the screening force on H, because of the localized
nature of the 30 charge, makes this orbital binding with
respect to the proton. It is the large concentration of charge
behind the Be nucleus, not present ‘in LiH, that marks the dif-
ference between these two molecules. Furthermore, although
BeH, because of near Hls and B2s degeneracy, is not adequately
described by the correlation scheme relevant for LiH or to

the correlation scheme relevant for the remaining members of
the series its charge density and force contributions are
clearly transitional between on the one hand LiH and on the
other hand BH - HF.

For this series BH -~ HF the 3¢ molecular orbital cor-
relates with, at large R, a singly occupied Hls and a singly
occupied A 2po. As the energy difference between these two
orbitals increases then the 30 charge density should increasing-

ly resemble a double occupied 2pc atomic orbital on A, which
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is indeed reflected in the partial density diagrams of Fig.xxr

In the separated atoms f3GH(w) and £ (@) , or in particu-

AR) (HH)
oH 30A

related Hls and A2poc atomic densities will screen one nuclear

30A

lar fé (o) and £ (@), will both equal 1 since the cor-

charge on each nucleus. The binding, antibinding and nonbinding
nature of the 3¢ density with respect to the proton and A
nucleus for the molecules BH - HF is dependant on the relative
values of £ (R) and £ (R.). in the case of the proton

3cH '"e 30A €
it is the overlap and screening contributions, féﬁg)
f(AA)(Re) respectively, which are important. As we go through

30H
the series then there is an almost constant increase of 0.3

and

for fBGF(Re) from its value in BH of 0.76, which- makes the

30 density antibinding with respect to the proton, to its

value of 1.92 in HF, which makes the 3¢ density binding with
respect to the proton. Furthermore this increase in fBOH(Re)
is paralleled by an increase in the screening and overlap
contributions explicable in terms of a charge transfer-from
the hydrogen atom to a localized 2po orbital on A. If this is
the case then because of the location of the charge increase
on A, along the internuclear axis, density is placed in in-
creasing amounts in the overlap region. If it is further
remembered that the lo density, being SERted. o, &8 &
doubly occupied 1ls atomic orbital, is essentially nonbinding
for the proton and the 20 density is weakly binding then

t 1s the 3¢ charge distribution in HF and OH which is im-

}-

portant in this respect. In HF, for example, the force on
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the proton is equivalent to that exerted by 1.92 electronic
charges situated at the F nucleus as opposed to the separated
atom equivalent of one electronic chafge. The 3¢ molecular
orbital has thus almost doubled the number of charges which
are effective in binding the proton. For the molecules, BH
and CH, on the other hand it is the 2¢ density which is now
more important in binding the proton while in NH the 20

and 3¢ molecular densities can be considered of equal impor-

tance.
The screening of the.proton by the 30 charge density,
f;?i)(Re), is uniformly low throughout the series reflecting

the localized nature of the 30 charge density on A. In NH,
OH and HF the partial 30’density diagrams closely resemble

a 2poc on A whereas in BH and CH it is more bicentric in
character. It is however the relative position of this
charge with respect to the A nucleus that is important in
determining the f3OA values. 1In BH, for example, the low
overlap force contribution and large negative atomic force
indicates that the transfer of charge -accompanying bond for-
mation is placed primarily behind the B nucleus whereas in

HF these two same forces show that the charge transferred

is roughly placed evenly on the bonding and non-bonding side

th

of F. Moreover the force exerted on the A nucleus by the
30 overlap charge density is approximately twice as large
as that exerted on the proton for each molecule. In contrast

this same overlap force on the A and H nuclei due to the 2¢
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charge density are of equal magnitude. Thus one anticipates
a more polar type of bond in HF and OH where the binding of the
proton is primarily by the 3¢ charge density than in BH and
CH where the proton is bound primarily by the 2¢ charge den-

sity. This conclusion would also be consistent with the small

(HH)

and decreasing screening contribution f3aA

(Re) associated
with a large and negative atomic force.

In summary therefore the ¢ molecular orbitals show
the different binding characteristics of the first-row hy-
drides. The lo molecular orbital is primarily localized on
the A nucleus as a doubly occupied lo function screening two
units of positive charge from the proton. This density is
however unsymmetrically placed with respect to the A nucleus
producing a negative atomic force (antibinding) on the Li
and Be nuclei and a positive atomic force (binding) on the
B, C, N, O and F nuclei. The 2¢ molecular density is binding
with respect to both the H and A nuclei in the series BH - HF
whereas the 30 molecular density in this same series is anti-
binding with respect to A and goes from weakly antibinding to
strongly binding with respect to the protoﬁ. The proton in
BH and CH is primarily bound by the charge contained in the
20 molecular orbital whereas in OH and HF it is primarily
bound by density contained in the 3¢ molecular orbital. For
NH these two orbitals can be considered as being equally im-

portant in binding H. The relative magnitude of the force

contributions in the series BH -+ HF are suggestive of increa-
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singly localized 20 and 3¢ molecular orbitals on A. There is
still however an important overlap contribution. This over-
lap contribution for the 20 charge density is almost equally
shared between the A and H nuclei whereas the overlap contri=-
bution due to the 30 charge density is unequally shared being
greater for the A nucleus. Accordingly the molecules HF and
OH are expected to have a more polar type of bond than the
hydrides BH and CH. However, the charge transfer in HF and OH
is not of sufficient magnitude nor localized sufficiently for
the A and H nuclei to see a net positive and negative electric
field respectively.

The molecules CH, NH, OH and HF contain 1, 2, 3 and
4m-electrons respectively. At large internuclear distances
the m molecular orbital correlates with a 2pr atomic orbital
centred on A, containing 1, 2, 3 and 4 electrons for A = C,

N, O and F, and as éuch will shield an equivalent number of
nuclear charges from H. This would mean that flnA(w) = 0 and
£ (=) = £iBB)

1nH 17H
tively. Both the orbital density diagrams of Fig. XXII and

=1, 2, 3 and 4 for A = C,N,0 and F respec-

the overlap and screening force contributions (Table XV) sug-
gest that this orbital is still essentially centred on A in
the AH molecules. There is however a small overlap density
which is almost equally shared by the A and H nuclei. More-
over a slight inward polarization of this 7 density makes this
density binding with respect to A. An analysis of the ¢ force

contributions showed that through the series CH -+ HF an in-
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creasing amount of charge was transferred from H to A. This,
together with the results obtained for LiF (65),would suggest
that it is a characteristic of the 7 density in heteronuclear
molecules to be polarized in a direction counter to the di-
rection of charge transfer and that one effect increases
with the other. If this is the case then the almost constant
increase of f{?i)(Re) of 0.07 is suggestive ofia gradual
change in the binding of the séries CH - HF with the charge
transfer in HF being the greatest.

Although the 7 molecular orbital is primarily centred
on A as a localized 2prm atomic function with no significant
m-bond formation it is the inefficiency of this density,

at R = Re’ in screening the nuclear charges on A that results

in this orbital being antibinding with respect to the proton.



IIT A DISCUSSION OF THE BINDING IN THE AH MOLECULES

The relative values of the total atomic, overlap and
screening forces can be used as a basis for the classification
of the binding in molecules as being ionic or covalent (65,66).
When comparing and contrasting the binding in a series of mole-
cules, however, it is the changing role of a particular molecu-
lar orbital, as shown by both the partial forces and its three
components, that reflects a change in the nature of the binding.

By examining, for example, the £ (Re), f

1A (Re) etc. partial

20A
forces with particular reference to the magnitude and sign of
the atomic, overlap and screening contributions, the relative
importance of these orbitals in binding the A and H nuclei,
which is after all the basic factor at issue, can be discus-
sed. Just how close the charge density in these hydride mole-
cules approximate to the ionic or covalent limiting cases are,
however, questions of considerable interest and as such will
also be considered.

The charge equivalents of the total atomic, overlap
and screening forces for the first-row hydrides are listed in
Table XVI and are obtained by summing the various orbital con-

tributions. Also listed are the net forces F, and FH acting

A

on the A and H nuclel respectively, where

Z Z
1] — A -— ! = H - '
I’A" 2 (ZH QH) FH' 2 (ZA QA)
R :
e R,

141
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- _ (ARn) (AH) (HH)
Qq = i £ia(Rg) = i £ia * Ea tEia

' _ (HH) (AH) (AR)
Qp = i £in(Rg) = i £t Eig  t+ fiy

These resultant forces can be seen in every case to be close

to the expected value of zero. Since ZA is the nuclear charge

on A and I fiiA) is the number of charge equivalents on A in
i '
the molecule, then the quantity Z, = (Z2, - I fSAA)) represents
A~ ‘Y*a 7 % tiH P
"

the amount by which the A nucleus has been descreened on mole-
cular formation. Similarly defined for the proton is the quantity
Zé = (ZH - i fiiHB. Both ZA and Zé thus represent the effect-
ive nuclear charges on the A and H nuclei in the molecule. If
the molecule is best described as being ionic in the sense

atu” then ZA and Zé , which represent the number of positive

charges left unscreened on the A and H nuclei respectively,

should take on the respective values of +1 and - 1. In addition

the overlap forces, f‘AH) and I ngH), should be zero and the
i T1H i 1A
atomic forces, I figﬂ) and I fiiA), should be directed in oppo-
i i

sition to the dipole moment and hence counter to the electron
transfer. None of the molecules in the hydride AH series, accor-
ding to the calculations listed in Table XVI, simultaneously
satisfies these conditions. Although in LiH the atomic forces

on the Li and H nuclei are in the correct direction and the
overlap forces take on their smallest value, still being far

)

]
and Z_ are very different from

from zero, the values of Zy -
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those predicted by an Li+H— description. The ratio ZA/Z% does,
however, take on its highest value for this molecule suggest-
ing that it does come closest to the ionic limiting case.

While the force contributions based on a population
analysis are not those predicted by the idealized model for
ionic binding the density difference diagram for LiH and in
particular a charge analysis of the different defined regions
(see Table X ) possesses all the necessary characteristics.

" The number of electrons on the non-bonded side of the Li
nucleus together with the charge considered localized on the
hydrogen, come close to their ideal values of 1 and 2
respectively. This discrepancy can best be understood in

terms of the separate lo and 2¢ density distributions and

their associated forceg. The lo orbital according to the par-
tial density diagram of Fig. XIX is predicted to be essentially
localized at the Li nucleus as a doubly occupied 1ls atomic
function. This is indeed reflected in the force analysis where
in the molecule it simply screens two units of positive charge
from the proton. Similarly, the 20 orbital, according to its
density distribution, is predicted to be essentially localized
on the hydrogen as a doubly occupied 1ls function. The forces

however do not reflect this since there are now large overlap

(AH) (AH)
20A and f20H .

thus seem that there is not always a direct correspondence be-

contributions to the orbital force, £ It would

tween an orbital population analysis and the appearance of the
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final density distribution. Just as the one-electron den-
sities are not sufficient by themselves to interpret the nature
of the binding neither are the forces but one should rather

be discussed in the light of the other. 1If this is the case
then the density difference map, ApSA(g,n), for LiH indicates
that the charge transferred to the hydrogen is localized.
Accordingly the charge equivalents of the force exerted by the

overlap population can now be considered as localized atomic

density on H. This would mean that % ngH) and I g o
1, 4H i 1A
Table XV should be replaced by (Z figH) + figH))and
i :
(Z fiiH) + I fiiH)) respectively. A similar situation arises in

u
the treatment of the LiF molecule where again there is no di-

rect correspondence between the orbital population analysis
and the total density distribution. By likewise assuming the
overlap charge to be localized on the F nucleus the charge equi-
valent of the force as determined by the density difference
maps can be obtained. Table XVII lists the results for LiH and
LiF together with the values expected for ideal ionic binding.
These molecules do indeed approach the ionic case. In LiF

the transfer of one unit of charge is almost complete whereas
in LiH it is not quite to the same extent, reflecting the
difference in the electronegativities of the F and H atoms.
The atomic force on the Li nucleus is however a little low.
This force is due primarily to density that is close to the Li
‘nucleus and hence a slight polarization can have a large

effect. Such a shift in density close to the lithium nucleus
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will not alter appreciably the outer or valence density distri-
bution and hence the chemical nature of the bond.

In the remaining members of the series density is
rather transferred in increasing amounts from the H to the A
nucleus. The HF molecule of all the first-row hydrides approa-
ches most nearly the limiting ionic structure F—H+. Although
neither the electron population analysis nor the charge equi-
valents of the force, contained in_Table XVI, suggest that
this is the case it is interesting to partition these forces
in a manner similar to that for LiH and LiF. This would
imply, contrary to the information contained in the ApSA(g,n)
map, that the overlap density can be considered localized on F.
Even so the number of charge equivalents on the F atom is now
only 8.988e . Since this is less than the nuclear charge
on F the proton will experience a net force of repulsion
rather than the expected attractive force. Electrostatic
equilibrium can bnly be attained by an inward polarization of
the density remaining on the proton. In general it is impos-
sible for an H' ion to exist in a stable chemical bond outside

the density sphere of an A  anion; there would be an inward

force on the proton equal to (ZA -z ngA»/RZ N —
1 "1H
z fiH = (ZA + 1). Once it penetrates this sphere density

* L

contours will appear around the proton, simulating localized

6+

density and hence an H cation, and it is the associated at-

omic force together with the decreased screening contribution,
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p £(BR)

g that prevents bond closure.
i

The similarity and gradual change in the ApSA(g,n)
maps for the series BH -+ HF 1is also reflected in their charge
equivalents of the total atomic, overlap and screening forces.
Consider, for example, the expected transitions in the re-
lative partial force contributions as the binding in a molecule

changes from the predominantly covalent AH description to the

§—_. 8+

partially ionic A° H°'  description. For AH the screening

contribution to the forces on A and H are both expected to be

less than ZA and ZH respectively and dependant on the magnitude

of the overlap force contribution, which should roughly be the
same for A and H, the atomic forces on A and H.could con-
ceivably be in any direction;‘although from exéerience in a
covalent bond unlike the ionic case these are generally in the

direction of the dipole moment. The formation of a polar

§=,6+

molecule of A° H on the other hand implies that charge is

transferred from.H to A. This would cause the screening con-

tribution to the force on A to drop, as the number of charges
;

on A left unscreened, ZA decreases, and the screening contri-

3

bution to the force on the proton to increase. That is to say
as the bond becomes more polar, and hence closer to the ionic

1
limiting case, ZA should decrease and ZH should increase. 1In
a covalent bond it is shared or overlap density that simultaneous-
ly binds both the nuclei; in contrast the binding in an ionic

molecule is due to localized density with the correct atomic

polarizations. Thus on going from a predominantly covalent AH
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description to a partially ionic description the overlap
force contributions should decrease and in particular the posi-

tion of the overlap density should shift towards the cationic

)

nucleus and in the limit of a complete electron transfer

should be localized on this nucleus. This would suggest that

the ratio (Z fiiH)/Z fééH)) should increase with increasing
i i
bond polarity A8 H6*+ . Moreover the direction of the atomic

forces should change in such a way that they approach that
anticipated by the ionic model.

With this in mind it is interesting to re-examine the
)
H 14
: ; :
ZA and the overlap and atomic partial forces on the A and H
I 1

nuclei.For BH, ZA takes on its highest wvalue, ZH its lowest

and the magnitude of the overlap force contribution on both

series BH - HF with special regard to the behaviour of 2

the B and H nucleili suggests that this density is almost equally

shared and hence close to the covalent.bonding scheme. Pro-

A is paralleled by
' (AH)

i se i z io (T z ¢(BH)
an increase in both H and the ratio (i fiA /i le

fact for the molecules NH, OH and HF the overlap density ex-

gressing through the series a decrease in Z

}» In

erts a force on the A nucleus of respectively 1.23, 1.27 and
1.36 times greater than that exerted on the proton. This

shift in the overlap density for these hydrides is also evident
in the ADSA(i,n) contour maps of Fig. XIV and in the approp-
riate profile diagrams of Fig. XV. Similarly the change in
magnitude of the atomic'forces at the position of the A and

H nuclei is also suggestive of some gradual change in the
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electronic structure. ' Although charge is transferred from the
proton to the A atom in an increasing amount through the

BH - HF series this transfer is not of sufficient magnitude
that the A and H nuclei experience a net positive and negative
field respectively. If this were the case the atomic forces
on the A and H nuclei would be expected to be negative and
positive respectively. However, in HF, where the atomic force
on the proton is almost zero, it comesclosest to this extreme
case.

In this way the binding in the molecules BH -+ HF can

be written in a series which represents an increasing diver-

gence from the ideal covalent situation. This series is

BH, CH, NH, OH and HF.

According to this study the binding in BeH can be
considered as intermediate between ibnic LiH and the remain-
ing hydrides. Although the lo and 20 density distributions
for this_molecule suggest a more ionic-type pattern than is
observed in the total density and density difference maps it
is, as mentioned previously, the presence of the 3¢ orbital,
not occupied in LiH and doubly occupied in BH + HF, that causes
the abrupt change in the density distributions between Liﬁ and
BH. This orbital density is almost completely contained on..
the non-bonded side of the Be nucleus and as suéh replaces the
valence density transferred to the hydrogen by the 2¢ molecular
orbital.

There have, of course, been many other studies pertain-
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ing to the bonding in the first-row hydrides. The predictions
of Blinder (76) regarding this series are based on a conside-
ration of the relative energies of the atomic orbitals centred
on A and H. Atomic orbitals on different centres, he said,
will overlap and result in the formation of two bicentric
molecular orbitals, one bonding and one anti-bonding, if they
are (a) of compatible symmetry and (b) have orbital energies
that lie within = 0.2 a.u. (i 5 e.v) of one another (see
Table XIII). When this matching of orbital energies is not
found, the moiecular orbital is essentially monocentric.

The lo¢ atomic ofbital centred on the heavy nucleus
A is in every case well outside the range predictéd for a bi-
centric molecular orbital. The lowest occupied molecular
orbital, lo, will thus be expected to resemble a ls atomic
orbital on A. The next lowest occupied molecular orbital will
be the 2¢ . According to Blinder this orbital in LiH and BeH
should be localized primarily on H as a doubly occupied l1ls or-
'bital and the 30 orbital in BéH should be localized on Be as
a singly occupred 2s orbital. This would indicate that these
two hydrides are best described as ionic, Li+(lsz)H_(ls2) and
Be+(182251)H—(152). The near‘degeneracy of the 2s energy level
of B and the 1ls level of H results in strong mixing of the two

orbitals and in the formation of a bicentric mdlecular orbital.

H
oy
o

20 orbital is thus primarily the bonding combination of
B2s and Hls while the 3¢ orbital is primarily a mixture of the

B2s and Hls antibonding combination with the non-bonding B2po.
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The changeover from monocentric to bicentric character will
occur, according to Blinder, between BeH and BH and this is
indicative of a change in the bonding type. From carbon
through the remaining members of the first-row hydrides the
energy gap between the A2s and the Hls orbitals increases
and now the bonding will be mainly due to the 3¢ molecular
orbital. This orbital results from the overlap of an A2¢ and
Hls. That is to say as we go through the series LiH to HF the
20 molecular orbital will become increasingly localized on A
as a doubly occupied 2s function and the 3¢ molecular orbital
resulting in the bonding. However, because of increasing sta-
bility of the 2poc orbital on A the 30 orbital will again
resemble a 2pc on A. Even so this 2poc density encompasses
the proton and can again be considered bicentric in nature.
The qualitative predictions of Blinder are borne out
remarkably well by the lo, 20, 30 and ln orbital density dia-
grams shown in Figs. XIX, XX, XXI and XXII and in the orbital
force analysis considered previously. The monocentric almost
spherical lo density is indeed characteristic of the 1s atomic
function on A. In going from LiH to HF this density becomes
less diffuse due to an increased atomic number; however even
in LiH the proton is well outside the outer 0.0002 contour.
The 20 density for LiH and BeH on the other hand approximates
a highly distorted 1ls density on H. The position of the nodal
line, dashed contour in Fig. XX, indicates that the 2¢ density

distribution for LiH is localized on the H nucleus. This to-
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gether with the localized nature of the lg density on Li bol-
sters an ionic description for LiH. The 2¢ density on BeH is
also mainly localized on H whereas from BH on it encompasses
both nuclei and becomes increasingly centred on the A nucleus
with the spherical contours characteristic of a 2s density
distribution. The 3¢ molecular orbital according to Blinder's
arguments is expected to be a singly occupied 2s atomic orbit-
al on Be. If this is the case, and assuming the 2¢ orbital
to be mainly centred on H,a total of about 1.5e non-bonded
charges on the Be atom is expected. The amount of charge
actually present is 2.0e , the free stemic value, The ressen
for this is the extreme back-polarization of the 3¢ density
evident in both the partial force analysis and the density
distribution diagram of Fig. XXI. It is the absence of this
molecular orbital in LiH which accounts for its unusual short
length L in contrast to thelremaining hydrides. |

From BH - HF as the energy difference between the
Hls and A2p atomic orbitals increases then the 3¢ molecular
orbital resembles a doubly occupied 2pc function on A. Even
so this density encompasses the proton and can again be con-
sidered bicentric in nature.

Fajans (74) unlike Blinder predicts a break in the
bonding typelof the hydride series to occur between BH .and CH.
His arguments are based on the guanticule theory of chemical
binding. Here the word ionic and covalent are avoided and the

bonding in a molecule is classified according to wiasther the
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electrons are guantized with respect to the field of one nu-
cleus or to the field of both nuclei. Accordingly the 1lo
and 20 orbitals in BeH, as in Blinder's treatment, correspond
to two mononuclear quanticules localized on Be and H respec-
tively. The 30 density on the other hand, although still
predicted to be localized on Be, will now be strongly re-
pelled by the gquanticule H . The change from mononuclear to
binuclear quantization occurs between BH and CH where here the
30 molecular orbital is predicted to be quantized with respect
to the field of both the C and H nuclei.

In the present work an analysis of the binding based
on the individual orbital contributions does not indicate a
marked difference between the hydrides BeH and BH or between
the hydrides BH and CH. The partial forces would rather sug-
gest a gradual change with LiH and HF as the two extremes.
'Thus, for example, as the lo, 20 and 3¢ orbital densities be-
come increasingly localized on the A nucleus as Als, A2s and
A0 respéctively the atomic, overlap and screening contri-
butions éo the forces change accordingly.

While the orbital densities and their partial forces
change uniformly throughout the series it is the absence of
the 30 molecular orbital, as stated previouély, that causes

the abrupt change in both the total density and density dif-

ference charge distributions between LiH and BeH. If one
wishes, therefore, to classify the binding in terms of the

individual orbital contributions the binding in BeH can be
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considered as being primarily ionic. If on the other hand the

binding is classified in terms of the total density distri-

bution BeH can be considered as being primarily covalent.

One point is clear, however, BeH marks the transition between
the examples of charge transfer (the ionic binding) and the
sharing of charge (and covalent binding) regardless of the
criteria which are employed. The BeH molecule indicates the
necessarily arbitrary character of insisting that all systems
be clearly associated with well-defined limiting cases, in
this case with either the ionic or covalent bond.

In conclusion one further point that does seem sig-
nificant concerns the density difference plot for the O-H
bond. There is a marked similarity between this plot (Fig.
XIV) and the one obtained for the water molecule (Fig. VIII).
In the formation of the O-H bond, density is removed from a
.torus -like region surrounding the oxygen nucleus and per-
pendicular to the bond axis. This density is transferred
along the bond axis, both to non-bonded side of the oxygen
nucleus and to a region between the O and H nuclei that
encompasses the proton. The formation of the water molecule
from its separated atoms likewise removes density from a re-
gion that surrounds the oxygen nucleus but is now perpendicular

to the symmetry axis of the molecule. Moreover the regions

of charge build-up are similar being on the non-bonded side of
the O nucleus and along the symmetry axis encompassing both
the protons. Since in both cases the magnitude and shape of

the density shifts are comparable it would suggest that the
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binding between the oxygen atom and the two protons in HZO
can be likened to the binding between the oxygen atom and
the hydrogen atom in OH, where the proton in the latter has
been "split" into two equal parts. This result is very en-
couraging since it supports the previous calculation on the
water molecule (and in particular the method used to cal-
Culate the wave function).Since this is the case it does
suggest that approximate wave functions obtained by meeting
the zero force requirement, and in particular their one-electron
density distribution, can be used to examine the binding in
larger molecules for which the more accurate Hartree-Fock
Afunctions are not available. It should be possible, for

example, to examine the identifying features of the A4p maps

SA
obtained from these approximate wave functions and to relate
these features to the forces operative in binding the nuclei

and hence the nature of the chemical bond.
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FIG. IV

Graphical representation of the variation

of the forces Fo’ ﬁl . ﬂ_ and DP with a

change in the parameters 6,a or eb
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FIG. VI

Electron density contour map in a.u. for

the water molecule. The bottom map is in
a plane containing the three nuclei. The
top map is in a plane perpendicular to the

above passing through the oxygen nucleus






FIG. VII

Plot of ApSA for H,O corresponding to an

2
approximately sp3 hydridisation of the oxygen
atom. (a) the hydrogen nuclei are located at
the ends of the two lines subtending the
largest angle at the oxygen nucleus. The

two inner lines are boundaries dividing the
binding and antibinding regions. (b) plot

of Ap in a perpendicular plane. The near-

SA
ly horizontal line divides the binding

region from the antibinding region.
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FIGURE VIII

The in- and out-of-plane density difference
maps ,(a) and (b) respectively ,for the water

molecule
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FIGURE IX

An electron density difference map between

the LiF molecule and the Li and F atoms



FIG. IX



FIGURE X

Density difference maps for the stable first
-row homonuclear diatomic molecules. The
same scale of length applies to all the maps.
The dotted line (shown in full for N2) sep-

arate the binding from the antibinding regions.
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FIGURE XI

Total molecula; charge density contours for
the first-row diatomic hydrides in a.u. All
maps are drawn to the same scale of length.
The A nucleus is on the left in this and

all succeeding figures. The innermost con-
tours encircling the A nuclei have been
omitted for the sake of clarity. The density
at the A nucleus and at the proton is given

in Table VIII.






FIG. XII

A H

line is to represent a typical 0.002 con-

The definition of r, and r... The outer

tour. The shaded areas indicate the non-
bonded regions on A and H. The numerical
integration used to obtain the non-bonded
charges listed in Table IX was, however,‘

eéxtended beyond the 0.002 contour.

FIG. XVI

The definitions of the A and B regions






FIG. XIII

The binding and antibinding regions in
the AH molecules with their respective

electron populations
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FIG. XIV

Contour maps of the density differences

ApSA(g,n) (molecule-separated atoms) in

a.u. for the first-row diatomic hydrides
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FIG. XV

Profiles of ApSA(E,n) in a.u. along the
internuclear axis. The abscissa (dis-
tance along the internuclear axis) is in

a.u. with the A nucleus as origin.
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FIG. XVII

Contour maps of the density differences
ApSA(g,n) (molecule-separated atoms)
employing the sphericallised atomic A

density
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FPIG. XVIII

Contour maps of the density difference

ApUA(g,n) (molecule-united atom) in a.u.

for the first-row diatomic hydrides
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FIG. XIX

Contour maps of the lo molecular orbital

charge densities for LiH and HF
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FIG. XX

Contour maps of the 20 molecular orbital

charge densities for the first-row hydrides

FIG. XXI

Contour maps of the 30 molecular orbital

charge densities for the first-row hydrides
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FIG. XXII

Contour maps of the 1lm molecular orbital

charge densities for the first-row hydrides
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TABLE I
2 2 2 2 2 Total True %
p1 p2 %5 (601%%42) | value | value [Error
F_ |-0.5752 | -0.5752 | 1.0000| 0.5190 | 0.3686 | 0.3739 0.5
F 0.0309 | -0.1111 | 0.0026 0.1526 | 0.0750 | 0.0748 0.3
E, 0.3128 | 0.3745 | 0.6127| 1.1103 | 2.4103 | 2.5383 4.7
DP_ | 0.]085 | 0.2085 | 0.0113| 1.0691 | 1.4974 | 1.49360 0




ranging a about 73

o]

§ o

1) 0.3882 77°
2) 0.3882 73°
3) 0.3882 69°

contributions to

eb

123.286°
123.286°

123.286°

the forces

2
1) o5l
F =0.5990
O
ﬂ_ 0.0264
F 0.3224
DP_  0.1184
2) F_ -0.5742
o
K 0.0311
F 0.3123
DP_ +0.2123
3) F_ -0.5497
o
F 0.0359
F  0.3016
DP_ 0.3038

¢§2
~0.5990
~0.1232
0.2900

‘0.1184

-0.5742
-0.1106
0.3738

+0.2123

-0.5497
-0.0985
0.3586

0.3038

TABLE ITI
el F
51.45°
50.73°
50.07°
#%1 5>
0.5410 /
0.1611 /
1.1158
1.1132 /
0.5181 /
0.1522 !
1.1100
+1.0672 /
0.4948 /
0.1435 /
1.1041
1.0193 7

0.345
0.369

0.390

ﬂ

2.441
2.410

2,370

2
%

1.0025
0.0026

0.6125

0.0105

0.9992
0.0027
0.6127

0.0113

0.9944
0.0028
0.6128

0.0121

173

E_ DP B
0.067 0.856 231°
0.075 0.715 228°
0.084 0.579 225°

A u
0.8157 0.4283
0.7970 0.4613
0.7790 0.4922



ranging § around 0.3882

§ o
1) 0.3 73.165

2) 0.4 73.165

3) 0.5 73.165

contribution to

eb
123.286

123.286

123.286

the forces

2

1) b1
F, =0.5327
F,  0.0336
F, 0.3068

DPy 0.3475

2)
Fy =0.5795
F 0.0306
E 0.3133
DPo  0.1934
<y

Fy, -0.6067
F 0.0284
F 0.3161

DPL 0.0898

¢§2
-0.5327
0.0870
0.3619
0.3475

=« 3795
=0,11389
0.3758

0.1934

-0.6067
-0.1343
0.3852

0.0898

TABLE IIT

el F
o]

49.418 0.425
50.920 0.362

52,201 0.318

1
0.4683  /
0.1340  /

1.0972

0.9646  /
0.5245 /
0.1546  /

Lle1116
1.0803  /

0.5614  /

0.1695  /
1.1208
1.1564  /

174

F F
L I

0.084 2.379 0.545 223

DP B

0.074 2.413 0.739 229

0.066 2.435 0.872 233

o ! y
1.0220 0.7813 0.5012
0.0030
0.6129
0.0129

0.9963 0.7994 0.4552
0.0027
0.6126

0.0111

0.9702 0.8091 0.4197
0.0025
0.6124

0.0098



ranging €b about 123°

1)
2)

3)

contribution to the

S
0.3882 73.
0.3882 73.
0.3882 73.

1)

2)

3}

2
*p1

F, =0.5630
F,  0.0397
F, 0.3844
DP, 0.2613
F, =-0.5754
F .

| 0.0312

ql 0.3152

DPE 0.2093
FO ={.5579
%_ 0.0239
F, 0.2496
DP 0.2123

E

TABLE IV
o eb el FO F.‘L
165 115.000 +47.88 0.324 0.063
165 123.000 +50.65 0.366 0.075'
165 131.000 +53.94 0.415 0.089
forces
2 2 2 2
52 1 902 %
-0.5630 0.3904 v 1.0594
-0.0883 0.1080 / 0.0033
0.3654 1.076 0.6133
0.2613 0.8041 / 0.0152
-0.5754 0.5154 / 1.0017
-0.1105 0.1512 / 0.0027
0.3742 1.1093 0.6127
0.2093 1.0615 0.0114
-0.5579 0.5990 / 0.9314
-0.1237 0.1865 / 0.0022
0.3838 1.1298 0.6122
0.2123 1.2339 / 0.0082

E

2.440
2.411

2+375

A

0.8000

0.7979

0.7958

175

DP R
.876 215°
.726 228°
.551 238°
H
0.4192
0.4584
0.5041



) a eb el A/u So Co ¢y c, C3 F. ¥, E, DPp AE
1 {.1536] 103°| 63°| 46° |1.19| 0.056| 1.0] o0.0| o0.0| o0.0| .08 | .03 .30 .72 | -20.22
2| .2031 97° | 63°| 44° |1.25|0.056| 1.0/ 0.0l 0.0l 0.0 .10 .04 .31 | .72 | -20.87
3] .2474 91°| 64°|41.5°1.29{ 0.056| 1.0] 0.0| 0.0l o0.0| .11 ] .04 331 .72 | =%1.75
4 | .2037 97°| 63°| 44° |1.25{0.00 | 1.0 0.0l 0.0l o0.0| .28} .04 .32 .72 | -20.89
51 .2483] 91°| 64°)41.5°1.29 | 0.00 | 1.0| 0.0l o0.0| o0.0| .30 ].041 .33 .72 | -21.77
*6 | .3882|73%10" | 123°| 26° |1.73] 0.056|.995|-.044|-.088|-.085 | .37 |.075 .41 .72 | -27.01

9LT



TABLE VI

2
calen |c* (15){ c*(25) [t (px) [cMhpz) [P 0+ | g [ Pas) [Pras) [ Pexn|c® oy [PTnS | Ping
No.
1 : 0.0000{0.6326|-0.3161(0.7070 0.0000 {0.00|,-0.0678|-0.4378|-0.5355{0.3975{0.4599| -.1785
2 0.0355(0.7682| 0.0112|0.7070| -0.0737 |0.08/-0.0578|-0.0416[-0.6218|0.3975[/0.4391| -.1994
3 ]0.0505{0.7481| 0.1884[0.7070| -0.1049 |0.24]|-0.0452| 0.1796[/-0.5926/0.3975|0.4130| -.2254
4 0.0598(0.6840| 0.3237}0.7070{ -0.1241 [0.36{-0.0319} 0.3521({-0.5309{0.3975(0.3854| -.2530
5_‘ 0.0657|0.5821| 0.4395|0.7070| -0.1362 | 0.6 |~-0.0170| 0.5030{-0.4400{0.3975[0.3544 | -.2840
6 0.0678{0.4638| 0.5219(0.7070f -0.1406 |0.92[-0.0028| 0.6318[{-0.3382/0.3975(0.3251| -.3134
Note: Czlx = coefficient preceeding the atomic orbital x in the lone pair orbital ¢3l
valx = coefficient preceeding the atomic orbital x in the bonding orbital 411
o _ b2 o, bl .o _ b2 o 21 _ 22 bl _ .+ _ b2
Also, cPl by =C" hy; €7 hy=C"h; ; C7pz =-C"pz; Cpy' =-Cpy'

LLT



TABLE VII

Lone Bonds
A u 8 o eb c3 At p' el B Pair

.000.79780.4599 |0.3882]73.1652°|123.2862° -.0850| 1.0000| 0.0000|50.76°|228.12 |-spt:> |-gp2-03
.08(-.7391(0.4391(0.4541(65.1765°| 93.2301° -.0781|1.0043|-.0737[40.120 |~178° spf-84| - p
.2410.7286]0.304300.5747/69.0265°| 71.7375° -.0563|1.0465|-.1049|44.37°|150.17°| sp?:%4|-~ p
.3610.7509|0.2854 |0.6565(73.6352°| 62.0359° -.0425|1.0357| -.1241|48.67°|130.80°| spr-%?| gp?-°
.6010.77750.3544 [0.8015|84.1867°| 49.6887° -.0218/1.0383|-.1362[55.90°|118.50°| sp?:92| gpl-4
.9210.80560.325110.9639[99.2146°| 40.3720° -.0035/0.9935| -.1406]62.17°|107.11°| sp3-0%| gp-©°

8LT



TABLE yIII

PROPERTIES OF THE TOTAL DENSITY DISTRIBUTIONS®

rs rS
b = i a a
AH U Re T L/R UA Molecule A Molecule o (H) p (A)
LiH -6.002 3.015 % 2.6 3.6 1.7 3.2 2.9 0.3752 13.801
BeH -0.282 2,538 9.2 3.6 3.4 4.1 3.6 2.6 0.4286 35.050
BH 1.733 2.336 8.7 3.7 3.2 3.8 3.4 25 0.4660 71.771
CH 1.570 2.124 7.9 3.7 3.0 3.5 3.2 2.3 0.4705 127.246
NH 1.627 1.961 7.2 3.7 2.9 3.2 3.0 2.1 0.4656 205.633
OH 1.780 1.834 6.7 P 2.8 2.9 2+9 2.0 0.4468 311.153
FH 1.942 1.733 B3 3.6 2T 2.7 2.8 1.9 0.4217 447.589
%Unless otherwise indicated, all quantities are expressed in a.u.; length,
0

la.u. = 0.52917A; charge in units of one electronic charge, e; charge density

la.u. = e/ag = 67.49e/£3

u is in Debye units
crA and Iy for the molecule are defined in Fig. XII . 1In the united atom (U.A.) and the

free atom A ra gives the radius of the 0.002 density contour.

dCharge density at the proton and the A nucleus.

In the atom p (H)

= 0.3183 a.u.

=
~
{Xe]



LiH

BeH

BH

CH

NH

OH

FH

Non-Bonded

Charge on A

TABLE IX

Charge in the
Overlap Region

Mol. Atom Mol. Atoms
1.09 1.50 2.20 1.95
l.96 2:00 2.42 2.43
2:.75 2.52 2:69 2+86
3.2% . 3.02 3.30 3.40
3«71 3:52 3.87 3.92
4.22 4.04 4.41 4.41
4.72 4.54 4.98 4.92

Non-Bonded
Charge on B

Mol. Atom

0.71 055
0.62 0.57
0.56 0.62
0.49 0.58
0.42 0.56
0.36 0.55
0.30 0.54
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AH

LiH

BeH

BH

CH

NH

OH

FH
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TABLE X

TOTAL CHARGE MIGRATION IN DIATOMIC HYDRIDES AS

DETERMINED BY DENSITY DIFFERENCE MAPS®

Charge increase Charge increase
in Region A in Region B

AA AB
0.01 0.55
0.11 0.35
0.20 0.16
0.20 0.16
0.20 0.16
0.22 0.19
0.24 0.22

SThese figures were obtained by numerical integration

using a grid of 0.02 a.u. Regions A and B are defined

in Fig. XVI.



TABLE XI
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Molecule UA" Coefficients

1s 2s 2po 2pm 2pmw UA
Lin(lz™) 2 3 0 0 0 | Be(ts)
BeH (°zT) 2 2 1 0 o | B (%p)
BH (13 T) 2 2 4/3 1/3 1/3| ¢ (*p)
CH (%Il y) 2 2 i 1 1 | N (%)
NH (317) 2 2 2 1 1 1o (3p
OH (%niy) 2 2 2 3/2 3/2 | F (°p)
rH (12 ) 2 2 2 2 2 | ne(1s)




AH £

LiH

BeH

BH

CH

NH

OH

FH

loH

L

949

.000

.002

.001

.001

.000

.000

(R)

0.

0.

0.

Atomic

000

000

000

.000

.000

.000

.000

TABLE XII

PARTIAL FORCES AND THEIR CONTRIBUTIONS FOR THE lc¢ DENSITY

Forces on the Proton

0.007

0.003

0.002

0.001

0.001

0.000

0.000

Lo

1

2

Overlap Screening

942

« T

.000

.000

.000

.000

.000

108(7) £

ch(Re)

-0.489
=) L]
0.244
0.262
0+ 256
0.247

0.227

Forces on the A Nuclei

Atomic

-0.5086
=0 135
0.238
0.258
0.254
0.245

0.226

Overlap Screening

0.017
0.008
0.006
0.004
0.002
0.002

0.001

0.

)

18

000

000

000

.000

.000

.000

.000

f

locA

0

€8T

(=}
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TABLE XIII
a
A eAls eA2s eA2p
Li -2.48 -0.20
Be -4.73 ] -0.31
B -7.70 -0.49 -0.31
Cc -11.33 =0« 7l -0.43
N -15.65 =0.95 -0.58
0o -20.67 -1.24 -0.63
F -26.38 -1.57 ;0.73
a All the energies are in atomic units, (1 a.u. = 28.2 eV);

eHls = -0.50



LiH
BeH
BH
CH
NH

OH

FH

20H(Re)

1075
1.699
2.280

2.397

2w 366

22315

2,259

PARTIAL FORCES AND THEIR CONTRIBUTIONS

TABLE XIV

Forces on the Proton

Atomic Overlap Screening f

0.225

0.279

0.242

0.119
0.064
0.040

0.027

0.566
0.929
1.082
0.780
0.533
0.381

0.281

0.284

- 0.491

0.956

1.498

1.769

1.894

> o951

oH

FOR THE 20 DENSITY

(=) onA(Re

1.89%
1.624
1.607
1.367
1.109
0.904

0.753

)

Forces on the A Nuclei

Atomic Overlap Screening f

~0.110
~0..022
0.234
0.564
0.623
0.581

0.520

0715
0,971
0.959
0.654
0.423
0.292

0:215

0.890
0.675
0.414
0.149
0.063
0.031

0.018

20A

) &

(=)

g8l



AH

BeH

BH

CH

NH

OH

FH

CH

NH

OH

FH

f

30H

0

0.

[

1,

1

1.
flnH(Re)
0.
1.5
2.

.

313

762

058

370

<681

920

608

335

086

902

(R.)

PARTIAL FORCES AND THEIR CONTRIBUTIONS FOR THE

TABLE XV

30 AND 17 DENSITIES

Forces on the Proton

Atomic

0.000
0.041
0.058
0.068
0.068
0.065

Atomic

0.000
0.001
0.001

0.001

Overlap Screening fBOH(w)
-0.007 0.320 0
0.013 0.708 ]
0.207 0.793 1
0.363 0.939 1
0.472 1.141 1
0.521 1.334 1

Overlap Screening flnH
0.019 0.589 1.00
0.043 1.291 ].00
0.044 2.041 3.00
0.062 2,839 4.00

(=)

f3 A(Re)

-0.514
-b.817
-0.668
-0.485
-0.346
-0.250

flnA(Re)

0.079
0.158
0.226

0.295

Atomic

-0.605
-1.384
-1.465
-1.489
-1.430
-1.346

Atomic

0.059
0.116
0.180

0.231

Forces on the A Nuclei

Overlap Screening

0.
0.
o 8
0.
0's
0.

Overlap

Qs
0.
0.

0.

065

385

606

809

915

955

019

041

045

062

0.026
0.182
0.191
0.195
0.169
0.141

Screening

0.001
0.001
0.001

0.002

£

f

98T
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TABLE XVI

TOTAL ATOMIC OVERLAP AND SCREENING

CONTRIBUTIONS FOR AH

Forces on the Proton

. (HH) (AH) (AR) (AR) 2
A Eifyy 2ifim Zifin Zp=2. g By
LiH 0.225 0.573 2.226 0.774 -0.003
BeH 0.279 0.925 2.808 1.192 -0.002
BH 0.283 1.097 3.664 1.336 -0.008
CH 0.177 1.007 4.880 1.120 -0.014
NH 0.133 0.940 5.999 1.001 -0.019
OH 0.109 0.897 7.076 0.924 -0.024
FH 0.093 0.864 8.124 0.876 -0.026

Forces on the A Nuclei
(AA) (HH)

L. E. z (AH) (HH) Z . -1.f. a
AH 1 1A lflA zlflA H 171A FA
LiH =-0.616 0.732 0.890 0.110 -0.002
BeH -0.762 1.044 0.701 0.299 0.010
BH -0.912 1.350 0.596 0.404 -0.031
CH -0.584 1.283 0.341 0.659 -0.053
NH -0.496 1.275 0.259 0.741 -0.069
OH -0.424 1.254 0.201 0.799 -0.074
FH -0.369 1.233 0.161 0.839 -0.075

a .
Forces are expressed in a.u., la.u. =

2
e
/a2 = 8.2378 x 107> ayn.



Force
Force

Ideal

Force

Force

Ideal

TABLE XVII
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FORCE CONTRIBUTIONS IN LiH AND LiF AS DETERMINED

BY THE DENSITY DIFFERENCE MAPS

on H
on F

ionic binding

on Li(LiH)

on Li(LiF)

ionic binding

4The charge density localized on F or H exerts

force on F or H and a screening force on Li.

density localized

on H or F

0.80
L.08

1.00

1.62

9.86

LiH 2.00
LiF 10.00

(=ZH+1)

Charge equivalents of the force exerted bya

density localized

on Li

2.04

2.00 (=ZLi-l)

-0.62

=071

-1.00

atomic

Simi-

larly the charge density localized on Li exerts an

atomic force on Li and a screening force on F or H.
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6
px'
/t B
/
\>Py'
/2 px R
P
3 P"lA i
By a
G] £
(@] .
o ]
1 | Hy
J
1
= 1.81 a.u. 0, = 37.775°

104,45° d = 2.2179 a.u.
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Appendix 1

Force equations

In these and the ensuing equations,

make the following identities

it is found convenient to

cos(eb) = CEB cos (w) = CW cos (t) = CT

sin(eb) = SEB sin(w) = SW sin(t) = ST

cos (a) = CA cos(a/2) = CA2 cos(el') E CEL

sin(a) = SA sin(a/2) = SA2 sin(el') = SEL

sin(e/2) = SE2 cos(e/2) = CE2 tan(el') = TEL

cos (B) = CB cos(B/2) = CB2 '

and also

Xp%axa” = AlGgxp) “Xa%xp> = 0lxpxp)
XgOaX = X X =

<AB"AABs» = P B B) <XgOaXc> = T(XBXC)

Where, for example, O(xAxB) is taken to represent the force on

nucleus A due to the overlap density (XAXB)' Dependant on the

nature of the operator ¢, this could be a force along the bond

A

direction or perpendicular to the bond axis. For the forces F

1 will be considered.

Force parallel

and F only H

F(¢§l) =12 [CEB?P(2s2s) + SEB2CWZ2P (pxpx) + SEB2SW2P (pypy) + C%p(lsls)

+ ZSEB.CEB.CW.P(2spx)+2C3CEB.P(lsZs)+2C3SEB.CW.P(lspx)]
+ qu[CEB.o(hiZs)+SEB.CW.o(h px)+C o(h°s)+C CEB. o(p 2s)
+ C,SEB. o(p3pl)+C3C4o(p 2s) -6 {CEB. T(h°Zs)+SEB CW.T ke px)

+ c3T(h§1s)+SEB.sw.T(h py) Y +u?[s2p" (h°h°) —250‘(h?h°)

272

+ A(hjh$)+2C 42 (h{p3) -2C,8d (hp3)

8The prime signifies that the parallel component has been taken.
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F (¢§2)=A2[CEBZP(2s2S)+SEBZCT2P(pxpx)+SEBZST2P(pypy)+c§P(1s1s)

+2SEB.CEB.CT.P (2spx)+2C,CEB.P (1ls2s)+2C,SEB.CT.P (1ls2s)

3 3
+2Au[CEB.T(h§25)+SEB.CT.T(hgpx)+SEB.ST.T(hapy)+C3T(h%ls)

o]
+C4CEB.T(2sp4)+C4

+SEB.CT.o(hipx)+C

SEB.T (p,p§)+C5C,T (1sp3) -6 {CEB.0 (h2s)

o(hils)}]+u2[P'(h°h°)-2éo'(hih§)

3 272

+62A(hihi)+2C4A(hipg)-2C460'(hgpg)]
F (¢'?)=CEL?P (2s2s)+SEL2SE22P (pypy) +SEL2CE22P (pxpx)
-2CEL.SEL.CE2 P(2spx)
F (¢'5)=P(pzpz)
F (¢é) =CéP(lsls)+CiP(2525)+C%CE22(pxpx)+C%SE22P(pypy)

2 2
CE2 P(lspx)=-2C,C,CE2 P(2spx)

+2COC1P(1523)—2COC 1S5

-

Force Perpendicular

E (¢§1)=A2[2SEB.sw.CEB.P(2spy)+2SEBZCW.SWP(pxpy)+2c3SEB.SW.P(15py)]
+2Au[SEB.SW.O(hipy)+C4SEB.o(plp§)—6{CEB.T(h§2s)+SEB.CW.T(h%px)

+SEB.SW.T(h§py)+C3T(h§ls)}]+u2[62P“(h%h%)a—Zdo"(hihg)

-2C 60" (h§p,) ]
F (¢ﬁ2)=A2[2SEB.CEB.ST.P(2spy)+ZSEBZST.CT.P(pxpy)+2C3SEB.ST.P(lspy)]
+2)u [CEB.T (h§2s) -SEB.CT.T (h§px) +SEB.ST.T (h§py) +C,T (h§1ls)
+C4CEB.T(2spj})+C,SEB.T (p,p3)+C5C,T (1spg) -8 {CEB.T (h52s)
+SEB.CW.T(h§px)+SEB.SW.T(h§py)+C3T(h%ls)}]+u2[62P"(h§h§)
_ "W (0o 2PN (1~ 00 W (o - " (}H 0,0
| 2680 (hlh2)+C4P (p4p4)+2C4P (thZ) 26C4o (h1p4)]
F (¢'2)=2SEL2SE2.CE2.P (pxpy)-2CEL.SEL.SE2.P (2spy)
2y =902 =
F (¢2) =2C3SE2.CE2.P(pxpy)-2C_C

Force on oxygen

SE2.P(lspy)-2C,C,SE2.P(2spy)

2 2

2 == 2 =y 2 y
Fo(¢2,)=F_(¢2,)=A2[2SEB.CEB.SW.A (2spx)+2SEB.CEB.SW.A (2spy)

%the double prime signifies the perpendicular component
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+2C38EB.CW.A(lpr)+2C3SEB.SW.A(lspy)]+2Au[CEB.O(Zshi)
+SEB.CW.o(pxhi)+SEB.SW.0(pyhi)+C3o(lshi)+C4SEB.T(ZSpZ)

+C SEB.T(p2p2)+C3C4T(lspZ)-6{CEB.0(25h§)+SEB.CW.O(pxh°)

4 2
o ) 2 ol o
+SEB.SW.o(pyh2)+c3o(lsh2)}]+u [P(hihi)+P(h2h2)
- 0140 2 0.~0 Onm© Y o o
26T (h3h3) +CFP (p§p %) +2C,P (h$p3) =2C, 6T (hgp3)

FO(¢%)=—2CEL.SEL.SE2.A(ZSpy)—2SEL.CEL.CE2.A(25px)

SEZ;A(lspy)-ZC C,CE2.A(2spx)

2y =—
Fo(¢o) 2Coc 12

,CE A(lspx)-ZCoC

—2ClCZSE2.A(25py)

Dipole moment

2

Here the integrals involved fall into one of two categories
dependant on the nature of the dipole moment operator DA’ where
A refers to the oxygen nucleus. For a dipole moment measured

along the bond axis DA = rAcoseA and for one measured perpendicular

to the bond axis DA = rAsineAsin¢. If the symbol D(xixj) is taken

to represent the integral <XiDij> then
2, Y= I T
DPE(¢bl)—DPE (¢b2) =)“%[2SEB.CEB.CW.D(2spx)+2SEB.SW.CEB.o(2spy)

+2C,SEB.CW.D(1lspx)+2C SEB.SW.D(lspy)]+2Au[ EB.D(ZShi)

3 3

+SEB.CW.D (pxh$) +SEB.SW.D (pyh$)+C,D (h$1s) +C,CEB.D (2sp})

4

o - o
+C,SEB.D (p,p$) +C5C,D (1spg) 5{CEB.D(2sh§)+SEB.cw.D(pxh2)

2 2 01 0
+SEB.SW.D(th§)+C3D(lsh§)}]+u [D(h3h3)+¢ D(h$h3)

+26D(hih§)+CﬁD(p§p§)+2C4D(pghi)-2c46D(h§p§)]
DPE(¢§)=—2CEL.SEL.SE2.D(2$py)—ZSEL.CEL.CEZ.D(Zspx)

DPE(¢é)=-2COC CE2.D(1spx)-2C_C,SE2.D (1spy)-2C,C,CE2.D (2spx)

2

-2C,C,SE2.D (2spy)

2 172
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Appendix 2

A number of one-, two- and three-centre integrals appear in both
the force and dipole moment equations. The one-centre integrals,
defined as being <XAOAXA> ? can readily be solved by ordinary
calculus teéhniques. The two=- and three-cehtre integrals are,
however a little more complicated and were solved as follows.

Two-centre integrals

These integrals, <y BOAXC>’ can in general be written in the form
=2 1
M N_-AL)
ue e

(x21) A “BEN 4 ay

FKMN (AL,BE) =
(A+u)K+l

1 -1 i
Here AL and BE are respectively equal to (a+B)R/2 and (a-B)R/2

where o and B refer to the two screening coefficients of the atomic
orbitals Xa and Xp centred on the nuclei A and B respectively

which are a distance R apart. In prolate spheroidal coordinates,

namely
b
%
then
ro = (rytrp) /R

= (ra—rb)/R

= ¢
aXA and XA refer to atomic orbitals centred on A and SA is the

operator on centre A.
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thus
r, = (A+u)R/2 ry = (A=-u)R/2
cose_ = (l+iu)/(r+u) sine_  ={ (A%-1) (l-uz)}‘}/(Hu)
cosby = = (1-au)/(A-u) sing, = {(r2-1) (l-uz)}'}/()\-u)
X = rasineacos¢ = R/2‘{(A2-l)(l-u2)}%bos¢
y = r_ sine_sin¢ = R/2'{(A2-l)(l—u2)}%5in¢
Z = ZI:'aCOSGa = %K}J

The method of solving the integrals defined by prMN (AL,BE) has
been given by Kotani (71) and it is his approach that will be
used in the present work.

Three-centre integrals

A program enabling such integrals to be calculated was made
available to us by "Quantum Chemistry Exchange Programme (92)".

The coordinate system used in this program is

where all the three Y axes are at right angles to the plane of the
paper. Thus, for example, the force on nucleus A in the Xa direction

due to the overlap density (ngg), where X? and X? are atomic
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orbitals centred on B and C respectively will be <X§ %% x?>.
a
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APPENDIX 3

Atomic orbitals on the oxygen

The 1ls, 2s and 2p atomic orbitals on the oxygen atom have been
represented by accurate analytical self-consistent field atomic
functions as calculated by Clementi et al (34 ). These are of

the form

ls = Cllsl + C2152 + C32s3 + C4284 + C5255 + C6256

2s = C,,1s, + C,,1s., + C,,28, + C,,28, + C__2s_ + C__.2s

11771 22772 33772 4474 55775 66" "6
2p = C72p7 + C82p8 + C92p9 + C102p10
where
ai3/2 —air ai5/2 —air
ls. = e 2s, = r e
e V3T
i=1,2 i = 3,4,5,6
Bs 2 5/2
OLi -OLir . . Ot.i _OLi
2px. = rcoso e 2py. = rsine@sing e
vV h T
i=17,8,9,10 i=17,8,9,10
and

i |7.616 | 13.3243 |1.7582| 2.5627 | 4.2832 | 5.9445 |1.1536| 1.7960
l'2|3‘4|5|6|7l8

i [3.4379] 7.907

o, 9 I 10

i
Cy l C2 , C3 l C4 l C5 | C6
0.93850 0.03825 l -0.00097 l 0.00439 I -0.00829 l 0.04171
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C11 €2 Cy3 Caa Css Cs6
~0.21979 .-0.00573  0.42123  0.54368  0.23061 -0.17856
Cy Cg Cq €10
0.16371 0.57600 0.33920 0.01495

Atomic orbitals on the hydrogen

The 1ls atomic orbital on the hydrogen has been given the sym-

bol hi(i = 1,2). When this orbital is made orthogonal to the

ls atomic function on oxygen there is a superscript zero such

2 =1/2

o _ _ _ - -
that hi = (1 So) (hi So(ls)) No(hi So(ls))
where
-1/2 -
g = (L= 82) and So = <hils>
o o
Similarly for the p. atomic orbital on hydrogen (i = 3,4)
5 =1/2
P; (L - Sl) (py - Sl(IS)) = Nl(2pi - Sl(IS))
where
5 =1/2
N, = (1L - Sl) and Sl = <pils>
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Appendix 4

Overlap Integrals

An overlap integral is defined as being <xixj> and is given the
symbol S(xixj). Assuming X to have a screening coefficient a and

X3 to have a screening coefficient B then

372 g3/2
S(h;ls) = s = R3 (FO30 - F0l12 + F021 - F003)
4
3/2,5/2
S(hy2s) = R**——"—— (F040 - 2F022 + F004)
8V 3
; 3/2,5/2
S(h px) = R4 —F _ (F030 - F012 + F021 - F003 - F041 + F023
8 - F032 + F014)
3/2,5/2 :
S(lspy) = R*2——rt—— {F030 + F021 - FO12 - F041 - F032 + F023
+ F014)
5/2,5/2
S(2sp,) = R52—"—— (F040 - 2F031 - 2F013 - F004 - FO51 - 2F042
1673 + 2F024 + F015)
5/245/2
S (pxp,) = RE—F _ (F030 + F021 - F01l2 - F003 - F052 - F043
16

+ F034 - F025)
When o equals B then it is found more convenient to solve the
integrals by a method developed by Coulson. Thus if t = ad
—(1+t+t2 s5-2t3/15-¢1 /15)e"t

‘S(Prm.Pr

1B75)

3 _
S (Po,Po,) (1+t+2t2 /5 +t° /15)e” ¢t

Force integrals

These integrals fall into one of four categories; atomic,screening,

overlap and three-centre integrals. If On is taken to represent

the appropriate force operator on centre A and the following

identities are made

A(xixj) = <0, xAi(a) xAj(B)>
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P(x;xy) T <0y x'g(a) X 5(8)>
0(xyx5) = <0y X'y (@) X (8)>
T(x;xy) = <0y xojla) xC4(8)

where, for example, xAi(a) refers to an atomis .orbital centred on

A with a screening coefficient a. The force integrals appearing
in E! i %_ and Fo will thus be
Force parallela
5/2,3/2
A(hlp3) A S —
3(a+B)?
5/2 5/2
P(2s2s) = R3%—E "~ (3F121 - F130 + F103 + 3F112 + F040 + 3F031
o + 3F022 - F013)
5/2,5/2
P (pxpx) = R3%—F __ (F101 - F110 + F020 - F01ll - 2F1ll2 + 2Fl21
& -2F031 + 2F022 + F123 - F1l32 + F042 ~ F033)
5/2,5/2
P (pypy) = jr 1L M N— (F110 + F121 - F101 - 2Fll1l2 - F1l23 + F1l03
8

+ F114)

P(lsls) = R3a3/283/2 (F101 - F110 + F020 - FO11)

5/2,5/2
P(2spx) = R3%—EB ~___ (2F111 - F030 - 2F021 - 2F122 + F13l - F041
4V 3 _p120 + 2F032 - F102 + FO12 + F113 - F023)
3/2 5/2
P(ls2s) = R2% B~ (2F111 - F120 + F030 -~ 2F021 ~ F102 + FO12)
2/ 3

P(lspx) = R?2 o>/28°/2 (F101 -~ F110 + FO20 - FOll - F112 + Fl21
~ FO31 + F022)

P* (h,h,)= d 037253/2 (5101 - F110 + F020 ~ FO11)cos®_

3/2 5/2
. (F101 - F11l0 + F020 ~ FOll ~ F1l1l2 + Fl21

-~ FO031 + F022)

- g2 B
P(p02h2)— s |

43/2,5/2

4

(F110 - F1l12 F101 + F103)

O(h1s) = R 037/253/2 (5101 - F110 + F020 - FO11)

%all the forces are for Hl only.



O(h12s)

O(hlpx)

O'(hlh2)=

O(po h,)=

O(pﬂlh2)=

O(p32s)

O(pgls)

O(p3px)‘

O(hlp02)=

= g2 &
O(hlpwz) d

R2

d2

R3

d2

372,372

,3/2,5/2

2

B2 312

5
43/2.5/2

25/243/2

4

a5/265/2

4V 3

25/2,3/2

2

25/2,5/2

4

43/2,5/2

3/2 573

B
4
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(2F111 - F120 + F030 - 2F021 - F102 + F012)

(F101 -

(F101 -

(F101 +

(F110 -

F110 + F020

F110 + F020

Fll2 - F110

P10l - Fil2

- FO11l -~ Fll2 +

FO31 +

- FO11l) coseo

- F121 + FO020 +

+ F103)

(2F111 - F120 + F030 - 2F021
+2Fl122 - F131 + F041 - 2F032

(F101 -

(F101

(F101

(F110

For the three centre integrals

Za/

r3
a

Force perpendicular

3/2,5/2
P(lspy) = R2 & _*°
4
5/2,5/2
P(2Spy) = R3 9‘——_—__————
8v 3

(F110 -

(F120 -

(F101 -

F110 + F020

F110 -+ F020

F110 + F020

F112 = F10l

- FOl1ll
+ FO031

- FO1ll

- FO11

- F103)

FOLYL =

- Pl02
- Fl1l13

Fli2 =
F022)

Fl23 +
F042 +

Fl1l2
FO31l +

+

the operator 6a is taken to

F101l - F112 + F1l03)

F121
F022)

FO31
F022)

+ FO012
+ F023)

Fl21

F132

F033)

F121
F022)

be

Fl22 - 2F1l1ll + 2F113 + F102 - F104)

F110 + F020 - F011) sin@o
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02/25%/2 (p110

P (pxpy) = R3 F101 + F103 - F1l21 + F123 - F114)

3/2,5/2
O(h,py) = R2 2t (F110 - F101 - F112 + F103)
4
0" (hyh,)= d 03/2g3/2 (F101 - F110 + F020 - FO11)sine_
,5/2,5/2
O(pgpm,)=a® &—F  (r110 - F121 - F101 + F123 + F103 - F114)
8

A

For the three centre integrals the operator = is taken to be

Force on the oxygen

The force on the oxygen atom is taken to lie along the symmetry
axis since by symmetry all the.other components will be zero. The
integrals however have been calculated along and perpendicular to
the bond direction and therefore the correct components, cos(e/2)
and sin(e/2) respectively, must be taken. In the integrals below
the primed superscript signifies that the integral must be

multiplied by sin(e/2) otherwise the component is cos(e/2).

3/2 5/2
A(lsp) = 4 _Ol.____ﬁ_____
3(a+B) 3
5/2 5/2
A(2sp) = 8B
3V 3 (a+B)3

P(hlhl) = R3 a3/263/2 (F101 - F110 + F020 - FO11)

3/2,5/2
P(h;py) = —*——F— (F101 - F110 + F020 - FOll - F112 + Fl21
£ - FO031 + F022)
3 5
P(pypy) = ——E— (F101 - F110 + F020 - FOll + F123 ~ F132
4

+ F042

F033)



O(lshl) = R a
0(2sh;) = r22
O(pxh,) = r2%
0! (pyhl) - R20L
O(lspy) = R22
O(2sp,) = R32

O(pxp3) = R3

O' (pyp)= R?

Q.

Dipole moment

3/283/2

5/283/2

2V 3

5/2,3/2

2

5/2,3/2

4

3/245/2

2

5/285/2

4v 3

5/2,5/2

¢}

4

5/2,5/2

8

(F101

(FO30

(F101

(F110

(F101

(FO30

(F101

(F101

F110

F120

Fl1l0

FlOL

F110

F120

F110.

Fdl2

F020

F102

F020

Fll2

"F020

Fl131

F020

F101l

FO011)
F012)

FOl1ll

Fll2

FO1ll

FO41

FOl1ll

F103

-

Fl1l2 -

+ FO3l -

F103)

Fl1l2 +
FO31 +

F102 -
F113 +

Fl23 +

F042 +

FL2l +
Fll2 -~

203

P12l
F022)

Fl21
F022)

FO01l2
F023)

F132
F033)

Fl23
F114)

The dipole moment like Fo is measured along the symmetry axis and

again the primed superscript signifies the perpendicular component

must be taken.
a3/285/2

D(lspx) = 32

D(ZSpX) =
= nb
D(hlhl) R
= RS
D(hlp3) R

(at+B)°

170 a5/285/2

Vv 3 (c:.+8)6
3/2,3/2
¢ (FO30 - FOl2 + FO031 - FO31 + F041l - F023
8 + F032 - F014)
3/2,5/2
g (FO30 + F021 - FOl2 - F003 - F052 - F043
16

+ F034 + F025)
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/ 6
D(p4py) = R_E (FO30 + F021 - FO012 - F003 - FO52 - FO43 + F034
32 + F025 - FO41 — FO32 + F023 + FOl4 + F063
+ FO54 - F045 - F036)
(5/2,3/2
D(pxhy) = R (FO30 - FO12 + F021 - FOO3 + 2F041 - 2F023
+ + 2F032 - 2F014 + F052 - FO34 + F043 - F025)
,5/2,3/2
D' (pyh,)= RS =— (FO50 + F041 - F030 - F003 + F0l2 - FO021
32 + F032 - F005 — FOl4 — FO52 + F025 — F043)
3/2,3/2
D(lsh;) = RY Sl (FO30 - F0l1l2 + F031 - FO1l3 + F041 - F023
8 + F032 - F014)
5/2,3/2
D(2shy) = RS &—FB_—— (F040 + 2F031 - 2F013 - F004 - FO51 + 2F042
16v°3 + 2F024 - FO15)
3/2,5/2
D(lsp,) = gS & (FO30 + F021 - FOl2 - F003 ~ F052 - F043
16 + F034 + F025)
5/2,5/2
D(2sp,y) = R® &—F —— (F040 + 2FO31 - 2F013 - FOO4 - F062 ~ 2FO053
32/°3 + 2F035 + F026)
5/2,5/2
D(pxp;) = RE 2 (FO30 - F012 + F021 - FO03 - F052 + FO034
a2 — FO43 + F025 + F041 ~ FO023 + F032 ~ FOl4
- F063 + F045 - F054 + F036)
5/2,5/2
D' (pypy)= RS & (FO50 ~ F030 + 2F041 - F021 + FOl2 - F023
64

+ F003 - FO061 - 2F052 + F034 + F032 ~ FO043
- 2F014 + 2F025 ~ F005 + F063 + F054 -~ F045
- F036 + F01l6)



NUMERICAL VALUES OF INTEGRALS
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A B c D E
S(h;1s)  0.056038  0.059961 0.052471
S(h;2s)  0.466114  0.489242 0.457449
S(h;px)  0.453394  0.444593 0.394475
S(hyh,)  0.218211  0.269894 0.218210
S (1sp,) 0.074363 0.112576
S (2sp5) 0.452010 0.576369
S (h,po ) 0.486487 0.492458
S (pxps) -.148234 -.041864
S (po P9 ,) -.280792 0.119727
S (po,p9,) 0.720805 0.497461
P(2s2s) 0.273075 0.273075 0.271943
P (pxpx) 0.336256 0.336256 0.380564
P(pypy)  0.211285 0.211285 0.227782
P(lsls) 0.305242 0.305242 0.305241
P(2spx) 0.150608 0.150608 0.166433
P(ls2s) =-.000035 -.000035 -.000015
P(lspx) 0.020771 0.020771 0.018227
P"(h2h2) 0.094668 0.093367 0.094668
O(hy2s)  0.176766  0.173968 0.184087
O(h,;px)  0.194063  0.184211 0.234244
0.019417 0.020508 0.018532

O(hlls)
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(continued)
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A B C D E

O"(hlhz) 0.042311 0.046312 0.042318
P(p,p,) 0.051587 0.097054
0(2sp,) 0.113242 0.188686
0(1sp,) 0.022778 0.035495
0 (pxp.) 0.075178 0.170824
0(p,h,) 0.049365 0.068586
0(hp,) 0.041656 0.073821
P(h,p,) 0.025082 0.038695
P(2spy)  0.099272  0.099272 0.100790
P(pxpy) 0.070157 0.070157 0.068319
P (lspy) 0.010416 0.010416 0.009114
P(h,h,)  0.073382  0.072385 0.073365
O(h py)  0.119798  0.118617 0.109553
O"(hlhz) 0.032802 0.035904 0.032796
P(p,p,) 0.001178 0.031072
P(h,p,) 0.003707 0.008172
O(p3py) 0.413844 0.061883
0(h,p,) ~.008828 0.013433

0.020361 0.024640

O(p3h2)
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D (hlhl)

A B c D E
A(2sp) 0.324682  0.324682 0.487736
A(lsp) 2.867280 2.867280 2.235130
P(hjh))  0.261103  0.246594 0.261103
O(pxh;)  0.348001  0.359243 0.336497
O(pyh;)  0.251696  0.271633 0.141007
O(lsh;)  0.089649  0.087622 0.089808
O(2sh;)  0.133526  0.128909 0.134039
A(h;p,) 0.182528 0.375685
P(p4p,) 0.007552 0.093896
P (h;P,) 0.032054 0.070541
0(1sp,) 0.009325 0.062185
0(2sp,) -.006660 0.042997
0 (pxp,) 0.330779 0.491263
0 (pyp,) 0.343415 0.495995
D(2sp) 0.668776 0.668776
D(1lsp) 0.061803 0.061803
D(pxh;)  0.758803  0.773900
‘D(pyh;)  0.339436  0.380052
D(2sh;)  0.400150  0.393311
D(lsh;)  0.005793  0.005618

1.81 1.81
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NUMERICAL VALUES OF INTEGRALS (continued)
A B C D E

D(lsp3) 0.000320 0.003193
D(23p3) -.146745 -.,067964
D(hlp3) -.564340 -.722056
D(p5pP5) 1.81 1.81
D(pxp3) 0.259190 0.230810
D(pyp3) 0.178496 0.285743
T(2sh2) 0.082807 0.088204 0.085669
T(pxhz) 0.019978 0025379 0.025084
T(Pyhz) 0.056413 0.054973 0.055147
T(lsh2) 0.016487 0.017710
T(25h2) 0.031056 0.031021 0.030064
T(pxhz) 0.013183 0.014319 0.012473
T(PYhz) 0.053857 0.056300 0.049962
T(lshz) 0.000830 0.000812

A Screening Coefficient on hi = 1,32 (i = 1,2).

B Screening Coefficient on hi =1.20 (i - 1,2).

€ Screening Coefficient on p; = 0.66 (i = 3,4).

D Screening Coefficient on p; = 1.00 (i = 3,4).

E Results obtained by Bader and Jones.
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Appendix 5

Diamagnetic Susceptibility

The expectation value for the diamagnetic susceptibility is

obtained by averaging the charge distribution over the operator rg

Xg> = - 62:2 x 2 x (x(62) + x(827) + x(92,) + x(s21) + x(¢2,))
where

x($3) = <¢; xr2 ¢.>

thus

x(¢él) = x(¢é2) = A2 [CEB2y (2s2s)2 + 2C,CEB.x (1s2s) + SEB2CW2  pxpx)
| +.SEBZSW2X(pypy) + C% (1sls)] + 2Au[CEBx (h]2s)
+ SEB.CW.x (h{px) + C3X(hils) - S{CEB.X(hEZS)
+ SEB.CW.x (h§px) + SEB.SW.x (hjpy) + Cyx(h3ls)}]

4 Uz[X(hihi) - 26x(hihi) +62x(h§h§)]

x(@il) = CEL?y (2s2s) + SEL2CE22y (pxpx) + SEL2SE22y (pypy)

X(¢i2) = x(pzpz)

X(¢é) = ng(lsls) + 2C_Cyx(1s2s) + C%CE22X(pxpx) + CZSE22x(pypy)
where :
3/2,3/2
x (lsls) = 96 - SO - M-
(a+BY?®
5/2,5/2
x (2s2s) = x(pxpx) = x(pypy) = 960
(a+B)7
3/2.5/2
X(1s2s) = 480 &—E
Y3 (a+B)®
x(h;h) = RZ2(1 + 3)
RapB
ax(ﬁxj) = <Xi(a)r§ xj(8)> where o and B are the two screening

coefficients of X5 and Xj respectively.
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- a
X(ZShl) = J27

_ _ d
X(pxhy) = ——F= Jgg

— D2 - :
X(hlhz) = R S(hlhz) + Kyq 2R51n(e/2)K7

Using these relationships the numerical values of the integrals

involved can thus be calculated

x (1sls) = 0.3308 x(lshi) = 0.0110
x(2s2s) = 1.5807 x (2sh$) = 1.3095
x (1s2s) = 0.0441 X(PXhi) = 1.7337
ohOo) = ORlo) —
X(hlhl 5.0122 X(hlhz) 0.8842
X (pxpx) = 1.9741 x(pxhs) =- .4326

x(pyhg) = 1.6789

and therefore

2.9429

x(021) = x(o3,)

x (2,9 = x(¢Z,) = 1.8167

0.0675

x (92)

4The analytical form of the J and K integrals are given by Barnett

and Coulson (64).
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Appendix 6

The expectation value for the diamagnetic contribution to the
proton shielding constant is obtained by averaging the charge

distribution over the operator l/r a.

H
Og> = 2(0(¢g) + o(¢él) + c(¢ﬁ2) + o(¢2 ) + o(¢%2)

where

0(¢§) = <¢., 1/

>
1 X ¢

H i

Since each ¢i is a linear combination of atomic functions,y,
the expression for <04> will contain a number of one, two and
three-centre integrals; cl(xixj), cz(xixj) and 03(xixj) respectively.
Taking My to have a screening coefficient o and Xj to have a
screening coefficient B then
ol(hlhl) = o
a3/285/2
4773
a3/285/2
4

oz(hlZS) = R3 (FO30 + F003 - F021 - FOl1l2)

o, (hypx) = R3 (F020 - FO31 - F002 + FO013)
43/2,3/2

2

(F020 F002)

= 2
cz(hlhz) d

1

23/2,3/2
2

oz(hlls) = R2 (F020 F002)
a3/283/2

2

(F020 F002)

cz(lsls) = R2



02(1525)

02(2525)

cz(pxpx)

oz(lspx)

02(25px)

9, (PYpPY)

2)

02(h2h

Gl(P3P3)

91 (P3hy)

02(P3h2)

02(P4h2)

R

R

RH

3
R

R

R‘+

d2

RH

R3

343/2,5/2
4/3
4o 5/245/2

24

a5/265/2_

8

43/2,5/2

4
572 5/2
8V 3
25/2,5/2
16
23724372
2

a5/285/2
8

,5/2,3/2

4

,5/2,3/2

a3

as

4

,5/2,3/2

%

(FO030

(FO40

(FO20

(F020

(FO30

(F130

(F020

(F020

(FO21

(F020

(F020
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F021 - F01l2 + F003)

2F031 + 2F013 - F004)

2F031 + F042 - F002 + 2F013

- F024)
FO031 - F002 + F013)
F013 - F021 + F003 - F041
+ F023 + F032 - F014)
Fll2 + Fl121 - Fl1l03 - F1l32

+

F114 - F123 + F105)

F002)
2F031 + F042 - F002 - 2F013
- F024)

FO031 - F002 - FO013)

F03l1l ~ F002 - F013)coseo

FO31l + FOO2 = F013)coseo
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5/2

5/2
o, (pyp,) = [q4

B
8

(F020 - 2F031 + F042 - F002 + 2F013

,5/2,5/2

~ F024)cos2eo] + [ d%(F040 - F020

16
- F022 + F002 - F042 + F022 + F024 - F004)

¢ s D
sin eO]



NUMERICAL VALUES FOR THE PROTON SHIELDING
' CONSTANT INTEGRALS ‘
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A B C D

Gz(hlls) 0.03303 0.03511 02(lsp3) 0.04115 0.10434
62(h12s) 0.40199 0.40183 02(28p3) 0.21228 0.51478
02(hlpx) 0.52700 0.50700 02(p3px) 0.05420 0.71648
02(lsls) 0.55249 0.55249 Ol(p3p3) 0.33 0.5
02(1528) -.00001 -.00001 Gl(hlp3) 0.0 0.0
02(2525) 0.54294 0.54294 02(h2p3) 0.10693 0.10913
Oz(pxpx) 0.61741 0.61741 02(h2p4) 0.03390 0.03776
02(lspx) 0.01885 0.01885 02(h1p4) 0.78730 0.67674
02(2spx) 0.17968 0.17968 02(p4p4) 0.03931 0.14298
GZ(PYPY) 0.49046 0.49046 03(25p4) 0.19956 0.23913
Ol(hlhl) 1:32 12 03(pyp4) 0.03590 007330
03(h125) 0.21015 0.22284 03(lsp4) 0.01114 0.01678
03(h2px) 0.17541 0.17191 03(25p4) 0.10957- 0.15284
03(hzls) 0.03037 0.03263
Gz(hlhz) 0.14435 0.17169
02(h2h2) 0.34861 0.34787
03(h2px) 0.01252 0.02056

A Screening Coefficient on hi =1.32 (i = 1,2)

B Screening Coefficient on hi = 1.20 (i = 1,2)

C Screening Coefficient on p; = 0.66 (i = 3,4).

D Screening Coefficient on p; = 1.00 (1 = 3,4).
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Appendix 7

The expectation value for the electronic contribution to the
field gradient at the position of the proton, along the bond
direction, is obtained by averaging the one=-electron charge

density over the operator (3coszeo—l) where

Thus

<q > <p(3coszeo—l)>

r3
O

<G> = A(62) + A(of;) + alefy) + qlefy) + qle?y)

Because of the complicated nature of the operator, the two- and
three-centre integrals are rather more difficult to solve. 1In
the present work the method proposed by Barnett and Coulson (64)
has been employed.

In general a two-centre integral of the type

<xi(a)(300529a—1) X? (B) >, where x? and X? are atomic orbitals

3
ra

centred on the nuclei A and B respectively with the respective
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screening coefficients a and B, can be written in the form

-ar_, -Bx 2=1 m-1
a b k
2 =
J(k,%,m) J e‘ e cos’b, r_ Iy dv
m-1 —Brb
If ry e is expanded in terms of r, and coso_, then dependant

on whether m=0,1 or 2 functions denoted by Yn(B,ra;p); pn(s,ra;p)

and qn(e,ra;p) are obtained (Coulson 1937). 1In this way the

integrals can be reduced to the form

r

-kt
= Loyt 1/2 -
Ghyp + 172 (/T) = |e vy (1,tiT)t dt for m=0
J
or .
-kt
= : . L+ 1/2 _
Ph o4 1206/ = Je PL(l, 651t at for m=1
/
where
kK = a/B t= Br_ T = BR

If the symbols qi(xixj)’ qZ(Xin) and qS(Xin) are taken to re-

present the one-, two- and three-centre integrals respectively

in the expression for <dg > where for example

H1
qZ(Xin) = <Xi(a)-(3005290‘1)Xj (B)>,
3
)
then

5/2 5/2
8 S W
15 (OL+B<)2

Q

ql(pxpx) = 16
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§45/245/2

1
q; (pypy) = - ( )
15 (a+B) 2
2,372,372 —
Qpilely) = T8 8y, 1w 12 7 G, <L s 172
5/2 3/2 -
8 8V 1
q,(2sh.) = S (G -G )
5 1 ey - 1, 0 + 1/2 3, 0 + 1/2
2 5/2,3/2 8
q, (pxhy) = BT 5 (2]P1,-1 + 1727 3lP3,—1 + 1/2)
8 -2 oX )
q,(h;hy) = -=ad e + _ P(hqhy)
3 R

The operator (3coszeo—l) was chosen such that the above field

r3

o
gradient integrals are measured with respect to the O-H bond.
In order that this gradient lie along the symmetry axis, a
component must be taken (cos?(e/2) -(1/2)sin?(e/2)) where e/2 is
the angle between the O-H bond and the symmetry axis. Furthermore,
qs(hlpy)a and qs(pxpy), which have a zero component along the

bond, are now given as

| =oX - Rr
a®(p b)) = cos(c/2)sin(e/2) o*/?6%/% 61ce Pcoso, e Dy-3(3,-1,1) ]
2
r2 "
a
qs(pxp y = Sos(e/2)sin(e/2) a5/285/2.24
& 15 (o+8) 2

%the superscript s signifies that the integral is calculated with
respect to the symmetry axis.
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Appendix 8

TOT corresponds to the expansion of a 5x5 determinant of overlap
integrals. If Sij(sij ) 1s taken to represent <¢i¢j> where i=1,
2,3,4 and 5 correspond to the five occupied molecular orbitals
of the water molecule and j = 6,7,8,9 and 10 correspond to the
five occupied atomic orbitals of the neon atom, then TOT will be

equal to

(s49s510-s410s59) (s16s27s38-516528537-517s26538+s17s28s36-518527s36
+s18s26s37)

+(s27s510-5210s57) (s16538s49-516s39548-5185365s49+518s39546~-s19s38s46
+s519s36s48)

+(s527s38~-528537) {s16s49s510~-5165410559~-5195s46s510+s19s410s56
-s5110s49s56+s110s46s59)

+(s16s510-s110s56) (s27s38s49-527s39s48~-528537s49+s28s39547-529s38s47
+529s37s48)

+(s16s38-s18s36) (s27s49s510~-s27s410s59-529s47s510+s29s410s57
-5210s849s57+s210s47s59)

+(827s49-529s47) (s16s38s510-516s310s58-518s36s510+s18s310s56
-5110s38s56+s110s36s58)

+(sl6827—sl7s26)(s38s495510—5388410859—8398485510+s395410558
-5310s49s58+s310s48s59)

+(s16s49-519s46) (s27s38s510-827s310s58-528s37s510+s28s310s57
~5210s38s57+s210s37s58)

+(s38s49-s539s48) (s16s27s510-s516s210857-s517s26s510~-s17s210s56
-s5110s27s56+s110s26s57

+(838s510-5310s58) (s16527549-516529s547-517526549+s17s29s46
~-s519527s46+s19s26547)
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Appendix 9

.Associated with each Hij integral in the equation that determines
AE there is a product of overlap integrals given the symbol SUM(I)
and defined as being the co-factor of the ij element in the 5x5
determinant TOT. Listed below for each Hij are the diagonal
elements of this co-factor. Again the symbolsij is taken to
mean the integral <¢i¢j> where i = 1,2,3,4 and 5 define the five
occupied molecular orbitals of water molecule and j = 6,7,8,9 and

10 define the five occupied atomic orbitals of the neon atom.

Eii _E_ SUM (I)
H16 1 |s27 s38 s49 s510]
H17 2 |s26 s38 s49 s510|
H1i8 3 |s26 s37 s49 s510|
H19 4 |s26 s37 s48 s510|
H110 5  |s26 s37 s48 s59]|
H26 6 |s17 s38 s49 s510|
H27 7 |s16 s38 s49 s510|
H28 8 |s1l6 s37 s49 s510]|
H29 9 |s1l6 s37 s48 s510|
H210 10 |s16 s37 s48 s59|
H36 | ' O ‘|s17 s28 s49 s510]|
H37 12 |sl6 s28 s49 s510|
H38 13 |s16 s27 s49 s510]
H39 14 |s16 s27 s48 s510|
H310 15 |sl6 s27 s48 s59|

H46 16 |s17 s28 s39 s510]



H48

H49

H410

H56

H57

H58

H59

H510

Each €UM(I) is , of course,

17

18

19

20

21

22

23

24

25

a sum of 4!

|sl6
|slé
|sl6
|sl6
1517
|sl6
|sl6
|sl6

|sl6

or 24

term being a product of four overlap integrals.

SUM (1)

(+s27
-s27
-s27
+s27
+s27

-s27

s38 s49 s510
s38 s410 s59
s39 s48 s510
s39 s410 s58
s310 s48 s59

s310:s49 s58

-s210 s37 s48 s59

-s210 s38 s49 s57

is given as

s29 s38 s47 s510
s29 s38 s410 s57
s29 s310 s47 s58
s29 s310 s48 s57
s29 s37 s48 s510
s29 s37 s410 s58
s210 s37 s49 s58

s210 s39 s47 s58

s28
s28
s28
s28
s28

's28

s210 s38 s47

s210 s39 s48

SUM

s28
s27
s27
s27
s28
s28
s
s27

s27

(I)

s39
s39
s38
s38
s39
s39
s39
s38

s38

220

s510 |
s510]|
s510|
s59 |
s410 |
$410 |
s410 |
s410 |

s410 |

terms, each

For example,

s37

s37

s39

s39

s310 s47

s310 s49

s49

s510

s410 s59

sd7

s510

s410 s57

s59
s57
s59

s57)
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Integrals required for the AE calculation

(a)

overlap integrals

These integrals are written in the form S(xixj) =

221

<xixj >

where R refers to an atomic orbital on the oxygen or hydrogen

nuclei and Xj

S16
526
$36
546

556

S17

S27

S37

S47

857

S18

S28

C,S(1lsls) + C;S(2sls) - C,(CE2.S(pxls) + SE2.
C_S(1ls2s) + C;S(2s2s) - C,(CE2.S(px2s) + SE2.
C_S (1spx) +‘cls(g§R§) - C,(CE2.S (pxpx) + SE2.
C,S(lspy) + C;S(2spy) - C,(CE2.S(pxpy) + SE2.
c_S(lspz) + C,S(2spz) - C,(CE2.S(pxpz) + SE2.

refers to an atomic orbital on the neon.

S(pyls))
S(py2s))
S (pypx))
s (, pypy))

S (pypz))

A (CEB.S(2sls) + SEB(CW.S(pxls) + SW.S(pyls))+ C3S(lsls))

A (CEB.S(2s2s)

/

X (CEB.S (25px)

A (CEB.S (2spy)

A (CEB.S(2spz)

A (CEB.S(2s1ls)

A (CEB.S (2s2s)

SEB (CW. S (px2s)

SEB (CW. S (pxpx)

SEB (CW. S (pxpy)

SEB (CW.S (pxpz)

SEB(CT.S (pxls)

SEB(CT.S (px2s)

in

-+
+

+
+

+
+

+
-+

u(S(hils)

- 5s(h§1s))

SW.S(EXZS))+C3S(ls2s))

u(s(hg2s) -

SW.S (pypx) )
U(S(hiPX) =

SW.S (pypy))
u(S(hggz) -

SW. S (pypz) )
u(s(hypz) -

ST.S(pyls))
u(S(h%ls) =

ST.S (py2s))
u(S(h§2s)

GS(hEZS))

+ C3S(lsEx))
GS(hpr))

+ c3s(1sgz))
6S(h§py))

+ C3S(lsgz))
GS(hEEz))

+ C3S(lsls))
GS(hils))

+ C3SGSZS))

- GS(hEZS))


http:cSS(h}.ls
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S38 = (CEB.S(2spx) + SEB(CT.S(pxpx) + ST.S (pypx)) + C3S(lsEx))
+ u(S(h%px) - GS(hipx))

S48 = (CEB.S(2spy) + SEB(CT.S(pxpy) + ST.S(pypy)) + C3S(lspy)).
+ u(s(hgpy) - &S (h3py))
§58 = (CEB.S(2spz) + SEB(CT.S(pxpz)+ ST.S(pypz)) C3S(lsEz))

+ u(s(hspz) - 6S(h3pz))
S19 = CEL.S(2sls) - SEL(CE2.S(pxls) + SE2.S(pyls))
S29 = CEL.S(2s2s) - SEL(CE2.S(px2s) + SE2.S(py2s))
$39 = CEL.S(2spx) - SEL(CE2.S(pxpx) + SE2.S(pypx))
S49 = CEL.S(2spy) - SEL(CE2.S(pxpy) + SE2.S(pypy))
S59 = CEL.S(2spz) - SEL(CE2.S(pxpz) + SE2.S(pypz))
S§110= S(pzls)
S210= S(pz2s)
S$310= S(pzpx)
S410= S (pzpy)
S§510= S(pzpz)
All the integrals underlined are numerically equal to zero.
If o refers to the screening coefficient of the oxygen atomic
orbital and B refers to the screening coefficient of the neon
atomic orbital, then the non-zero integrals in the above equations
are given in appendix 4.

Integrals involving the operators l/r_, 1/r. and l/r

For simplicity the following identities will be made:

<G (a) 1/r x?(s) > A(xix?)

<x?(a) l/rb x?(6)> B(x?x?)
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oG la) 1z, x3(8)> C(x5xd)

Where, for example, x?(a) is an atomic orbital centred on the

oxygen or neon atom with a screening coefficient o (the symbols

b and c refer to Hl and H2 respectively)

3/2.3/2
a(1s%1s?) Bt 4
(a+B) 2
3/2 5/2
A(lsa2sa) i_ 8 - 8
V"3 (a+B)3
5/2 5/2
A(2s%2s?) = 28 . 8
(a+B) ™
5/2 5/2
A(pxapxa) = a B 8
(a+B)"
| 3/2.3/2
A(lsah?) = rao " 8 (F020 - F002)
2
5 s 45/2,43/2
A(2s%h)) = R3—2—— (F030 .- FOl2 + F021 - F003)
4/ 3
5/2 3/2
a(p3nd) = 3 8 (F020 - FOO2 + FO31 - FO013)
4
a, c _ a, b
A(pxhz) = cose A(pxhl)
3/2.3/2
B(1818) = r2 ¢ _ 8 (FO20 - F002)
)
4 3/2,5/2
B(1828) = Rr3 2 (FO30 + F003 - F021 - F012)

4v 3



B(2828)

B (p%pR)

B (p¥p¥)

B (18p%)

C(lsalsa)

c(1s%2s%)=

C(2Sa2sa)=

C(pipi)

a a
C (pypy)
C(hglsa)

C(hSZSa)

c_a
C(thx)

Il

R3q

R’+

R3

B(1l
B(1l
B(2

CE2

se?
B (h

B(h

B (h

45/2,5/2

24

25/2,5/2

8

o5/2,572

16

,3/2,3/2

2

,5/2,5/2

8/ 3

,3/2,5/2

b

4
salsa)
saZSa)

sa2sa)

(FO40

(FO20

(FO40

(FO20

(FO30

(FO20
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2F031 + 2F013 - F004)

2F031 + F042 - F002 + 2F013 - F024)

F042 - F020 + F024 + F002 - F004)

2F011 + F002)

F0l2 - F021 + FO003 - F041 + F023
- F032 + F014)

F002 - F031 + F013)

.B(pipi) - SEZ.B(pyapya)

2
B(p%pg) - CE .B(p?p?)

a
215 ) .

b, a
l2s )

b a
1P%)



Numerical values of the integrals

S(1s®1s? )@

8{2s%2s® )
]
S(lsa2sa )

I
S(2salsa )

1}
A(1s%1s?)

A(2sa28a )
1
A(1s%2s? )

a(2s%1s% )

B(1s%1s? )
B(2sa25a )
B(Zsalsa )

]
B(lsaZSa )

B(pxapxa )

1
B (py®p¥ )

]
B(h?p% )

Il

0.9810
0.9562
0.1090

=0.0738

8.4647
1.3573
-0,8379

-1.4206

0.5420
0.5229
-0.0408
0.0643
0.5999
0.4900

0.4244

0.2166

0.0123

22

]
s (p¥pd )
0.3625
0.0396

0.3742

0.1829
0.3390
1.2343

0.2691

0.2310
0.8623
0.5364
2.1662
0.4248

2.4584

0.1771

0.1373

a g
The superscript a

whereas the superscript

neon.

signifies an atomic orbital on oxygen
signifies an atomic orbital on

5

0.9751
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APPENDIX 11

¢zl = {1 +g)'l {(CEL(1 - q) - Zgl/2A CEB) 2s + (SEL.SB2(l + g))pz
g (—2gl/2AC3)ls + (SEL.CB2(1 - g) + 2xg-/?sEB.ca2)px'
+ (=g™ %@ - ) (1 + nd}
6,, = (1 + @) ™" {(CEL(1-g) - 2¢7/? CEB) 2s - (SEL.SB2(1 + g)pz
+ (-2g7/% c (1s + (SEL.CB2(L - g) + 2 gt/ %sEB.ca2) px’
+ (- ¢7%u1 - 8) (nnY !

- =1 1/2 1
oy = (1 + 9) {[(A.CEB(1 - g) + 2g°/“CEL)2s + ( SEB.SA2(l + g)py
+ (ASEB.CA2(g - 1) + 2g7/?SEL.CB2)px' + (AC5(1 - g))1s

+ (u(1 + g8))h] + (~u(8 + g))hj}
= =" 1/2 ]
opy = (1 + q) {(ACEB(1 - g) + 29~/ “CEL)2s - (ASEB.SA2(1l + g)py

1/2

+ (ASEB.CA2(g - 1) + 2g SEL.CB2) px' + (AC3(1 - g))ls

+ (-u(8 + g))h] + (u(l + gé)hg }
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APPENDIX 12

CALCULATION OF THE DENSITIES

In order to calculate the one-electron charge distri-
bution in a@ molecule all the orbitals were expressed in terms
of one central polar coordinate system (r,0,d). For the water
molecule this coordinate system was centred on the oxygen
nucleus with the z-axis coincident with the symmetry axis. If

this is the case then the two proton coordinates will be given

as
.2 2 . . 1/2

o = (r= + Re - 2Re r(cos €/2 cos 0/2 + sin €/2 sin 0/2 cos f))
.2 2 : . 1/2

Tuo = (r= + Re = 2Re r(cos /2 cos 0/2 - sin e/2 sin 0/2 cos f4))

where @ is measured from the plane passing through H1, H2 and O
nuclei. For the hydride molecules AH the coordinate system was

centred on A, in which case

ry = (r2 + Ri - 2rRe cos 9)1/2
The procedure is therefore to read in the orbital coefficients,
bond parameters and orbital exponents and some chosen range of
r,0 and @ values. Lines of constant density are observed by
interpolation between the computed values and are plotted.
Any desired plane can be examined by a suitable choice
of r,0 and @. Thus, for example, the In-and Out-of-Plane
plots of Fig. VIII for the water molécule are obtained by
setting g equal to 0° ana 90° respectively and ranging r and 0.
The atomic densities used in Parts I and II were taken

from Clementi et al (34). However, a check using later, equi-

valent wave functions of Bagus and Gilbert (90) showed no
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significant changes. Atomic densities based on wave functions
worse than Hartree-Fock wavefunctions would, however, begin to

show significant changes.
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