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ABSTRACT 

 

Anthracycline-based chemotherapy is the mainstay neoadjuvant therapy for breast cancer. 

However, it is efficacious in only 60% of patients while carrying substantial toxicity. The 

application of a predictive marker of response may spare predicted ‘poor responders’ from 

the toxicity. Previously, we demonstrated a gene expression signature that predicts 

chemotherapy resistance which is linked to TP53 integrity. Further investigation showed 

that p53 signatures predict response in only ER+ tumors. We hypothesized that the loss of 

p53 confers an elevated chemotherapy sensitivity in ER+ breast tumors. We engineered 

isogenic p53 mutant ER+ breast cancer cell lines and assayed their cell cycle kinetics and 

chemotherapy sensitivity. Our results demonstrated that the loss of p53 is necessary to 

abrogate p53-mediated cell cycle arrest and produce an increase in apoptosis. Therefore, 

p53 signatures may be utilized as a predictive marker of response for patients with ER+ 

breast tumor and spare ‘poor responders’ from toxicity. Since ER+ p53 wild-type breast 

tumors are associated with anthracycline resistance, new anticancer drugs against that 

subgroup of tumors are needed. Phenotypic drug screening approach, which do not focus 

on isolated targets but instead classify compounds by their impact on cell physiology, is 

highly suitable for this purpose. Current cell-based phenotypic assays require fixation and 

staining for phenotypic markers, which reduce screen throughput and introduce potential 

variations and artifacts. Here we describe a high-content live-cell phenotypic assay, which 

streamlines the process of cytological profiling and provides a consistent platform for 

empirically evaluating drug action. Importantly, when combined with chemical similarity 

clustering, the phenotypic assay provided an inference of structure-activity relationships. 
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Finally, a small-scale phenotypic screen of natural products enabled classification of 

unknown compounds against the cytological profiles of commercial compounds. Hence, 

the phenotypic screen provides a new and robust opportunity for accelerating the evaluation 

of compound activity during high-throughput drug screens.  
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INTRODUCTION 

 

Breast Cancer 

Cancer is one of the most critical health problems and also a leading cause of death 

worldwide (Stewart and Wild 2014; Canadian Cancer Statistics 2015). It is a heterogeneous 

and complex system of related diseases, and as such, despite advances in targeted 

therapeutics, cancer treatment remains a formidable challenge. Cancer is characterized by 

uncontrolled cell division, which can lead to tumor formation, and some cases can 

metastasize to distant sites. 

Breast cancer has the highest incidence among women in Canada, with 1 in 9 

females expected to develop breast cancer in their lifetime (Canadian Cancer Statistics 

2015). In 2015, an estimated 25,000 new breast cancer patients will be diagnosed, 

accounting for 26% of all new female cases. Despite advances in therapy, breast cancer 

remains the secondly most deadly type of cancer. In 2015, 1 in 7 of all cancer patients 

succumbing to breast cancer. The cause of breast cancer is complex and not fully 

understood. Familial breast cancer due to germline mutations of tumor suppressor genes 

BRCA1, BRCA2 and/or TP53 accounts for approximately 5-10% of all breast cancer cases 

(Fackenthal and Olopade 2007).  

 

Molecular classification of breast cancers 

Breast cancer is a heterogeneous group of tumors that differ in clinical behavior and 

response to therapy (Niemeier et al. 2010). Analysis at the molecular level by gene-

expression profiling has revealed that each breast tumor has its own unique molecular 

portrait, providing the basis for a molecular taxonomy of this disease (Perou et al. 2000). 
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Based on this molecular taxonomy, breast tumors are broadly divided into 2 groups: ER-

positive and ER-negative, according to their expression of the estrogen receptor (ER). The 

first broad group, the ER-positive tumors, contribute to 75% of breast cancers (Niemeier 

et al. 2010). This group is subdivided into two subgroups: luminal A and luminal B. The 

second broad group, the ER-negative tumors, contribute to 20-25% of breast cancers 

(Niemeier et al. 2010). This group is subdivided into three subgroups: HER2 (ERBB2)-

overexpressing (HER2+), basal-like, and normal-like. More recent studies revealed 2 

additional albeit less common subtypes: claudin-low (Prat et al. 2010) and molecular 

apocrine (Doane et al. 2006; Sanga et al. 2009). 

Table 1. Molecular subtype of breast cancer based on gene-expression profiling 

Molecular subtype Gene-expression profile Frequency (%) 

Luminal A ER+, PR+, HER2–, AR+/– 50-60 % 

Luminal B ER+, PR+, HER2+, AR+/– 10-20 % 

HER2+ ER–, PR–, HER2+,  15-20 % 

Basal-like ER–, PR–, HER2–, AR– 10-15 % 

Normal-like  ER–, PR–, HER2– <10 % 

Claudin-low ER–, PR–, HER2– 

Molecular apocrine ER–, PR–, HER2–, AR+ 

 

 

Treatment of breast cancer  

Breast cancer treatment aims to control cancer progression and eliminate cancer cells. 

Breast cancer treatment is generally classified into two groups: local therapy and systemic 

therapy (Fig. 1) (NCCN 2013). Local therapy mainly involves surgery that is aimed to 

remove the tumor, while preserving normal breast tissue. In some instances, when the 

tumor is massive, mastectomy may be one of treatment options. Local therapy is often 

aided by radiation or chemotherapy as a method to shrink the tumor before the surgery. 
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Systemic therapy consists of chemotherapy and hormonal therapy, which targets cancer 

cells throughout the body. Chemotherapy can be given before the surgery (neoadjuvant) to 

shrink a tumor that is inoperable in its existing state or after the surgery (adjuvant) to reduce 

the risk of tumor recurrence and prolong disease-free survival (Early Breast Cancer 

Trialists’ Collaborative Group (EBCTCG) 2005). The most common chemotherapy 

combinations used to treat breast cancer are anthracyclines and taxanes (NCCN 2013). 

Anthracyclines, most notably doxorubicin (DOX), are topoisomerase II inhibitors. During 

DNA replication, topoisomerase II causes transient double-strand DNA breaks, unwinds 

the DNA and ligates them, thereby relieving tension. Anthracyclines act by stabilizing a 

reaction immediate; they covalently link to topoisomerase II while the DNA strands are cut 

thus impeding DNA resealing. Topoisomerase II-mediated DNA damage can be followed 

by cell cycle arrest in G1, G2, and apoptosis (Perego 2001, Zunino 2001).  

Anthracycline-based regimens are the preferred neoadjuvant chemotherapy for 

breast cancer patients because anthracycline-containing regimens were shown to be 

significantly more effective at preventing recurrence (0.89 to 1, p = 0.001) and increasing 

survival (0.84 to 1, p < 0.00001) than the standard CMF regimens (Early Breast Cancer 

Trialists’ Collaborative Group (EBCTCG) 2005). An established standard of measuring 

clinical response to neoadjuvant chemotherapy is a pathological complete response (pCR) 

(Kuerer et al. 1999). pCR is defined as the absence of residual invasive disease in the breast 

and in the axillary lymph nodes at the completion of the neoadjuvant treatment (Kuerer et 

al. 1999). It is recognized that patients that had a pCR with neoadjuvant therapy tend to 

have a significantly better prognosis. In a study examining the response of breast cancer 
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patient to DOX-based neoadjuvant chemotherapy, the 5-year overall and disease-free 

survival rates were significantly higher in the group who had a pCR than in the group who 

had not (88% to 61%; p < 0.01) (Kuerer et al. 1999). Hence, patients that achieve a pCR 

are at much lower risk for subsequent distant disease recurrence. However, more recent 

large randomized long-term studies have revealed that  among breast cancer patients who 

had anthracycline chemotherapy, 60% achieved long-term disease-free survival and only 

20% had a pCR (Evans et al. 2005; Mansi et al. 2010). 

 

 
Figure 1. Treatment of breast cancer.  
This figure is adapted from (Waddell 2013) 

  

 

Cell cycle kinetics dictate chemotherapy response and is linked to TP53 integrity 

Given that chemotherapy fails to provide a durable cure for the majority of cancer patients, 

it is evident that additional insight to the mechanisms associated with chemotherapy 

resistance is necessary (Hallett 2015). Genes that express differentially in breast tumors 

before and after neoadjuvant chemotherapy treatment were identified and compared to the 

follow-up patient response data (Hallett 2015). Following chemotherapy, tumors that show 

a decrease in cell cycle related gene expression are found to be associated with 
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chemotherapy resistance and poor clinical response (Fig. 2) (Hallett 2015). The gene 

expression signature that predicted these changes proved to be a reliable predictor of 

response for patients with breast, ovarian, and colon tumors to chemotherapy (Hallett 

2015). Moreover, the decrease in cell cycle related gene expression is linked to p53-

mediated G1/G0 cell cycle arrest. Thus suggesting that the chemotherapy resistance is 

associated with the functional p53 activity (Fig. 2) (Hallett 2015).  

 

 
Figure 2. Cell cycle kinetics dictate chemotherapy response and is linked to TP53 

integrity 
 

 

TP53 gene  

The TP53 gene is the most frequently mutated gene in breast cancer (Muller and Vousden 

2013). Its occurrence is highly associated with molecular tumor subtypes and ER 

expression (Dumay et al. 2012; Coates et al. 2012). Mutations in TP53 are less frequent in 

ER+ tumors (17% of luminal A, 41% of luminal B) and more frequent in ER– tumors (50% 

of HER2 amplified, 69% of molecular apocrine, and in 88% of basal-like) (Philippe 
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Bertheau et al. 2013). The p53 tumor suppressor protein, encoded by the TP53 gene, is a 

transcription factor that when activated as part of the cellular stress response, regulates 

suites of genes involved in cellular processes including the cell cycle, apoptosis, and 

senescence to maintain the integrity of the genome (Brosh and Rotter 2009). In response 

to DNA damage, wild-type p53 mediates a G1 cell cycle arrest through the transactivation 

of p21Cip1/Waf1, a cyclin-dependent kinase inhibitor. p21Cip1/Waf1 inhibits the 

phosphorylation and activation of Cdk2 associated with Cyclin D or Cyclin E, which in 

turn prevents the phosphorylation of one of the critical downstream protein targets, 

retinoblastoma protein (Rb). Rb, in its hypophosphorylated state, binds and sequesters E2F. 

E2F is a transcription factor that is required for cells to enter S phase (Johnson et al. 1993). 

Thus, DNA damage can trigger a p53 mediated p21 induced G1 cell cycle arrest that blocks 

cells from S-phase entry. In addition, p53 can induce apoptosis in susceptible cells in which 

the damage is beyond repair thereby protects the tissue against transmission of DNA 

abnormalities. The current model of an apoptotic cascade begins with cell death signals 

reaching the BH3-domain proteins (Fridman and Lowe 2003). BH3-domain proteins bind 

and activate to pro-apoptotic proteins, Bax, and Bak, which in turn drive the release of 

cytochrome C by the mitochondria. Cytochrome C activates the Apaf-1/caspase-9 pathway 

leading ultimately to caspase 3 activation and cell death (Fridman and Lowe 2003). 

Mutations in p53 adversely affect its ability to bind regulatory DNA sequences of pro-

apoptotic genes thus preventing a cascade of downstream effects. Mutation of the p53 gene 

increases the risk of developing breast cancer and affects the biology of cancer cells and 

their response to therapy (Olivier, Hollstein, and Hainaut 2010). 
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Investigate the role of p53 status in ER+ breast cancer and response to chemotherapy 

Given that TP53 status is related to cell cycle kinetics and changes in cell cycle kinetics is 

related to chemotherapy response, further investigation between TP53 integrity and 

chemotherapy response is necessary. Evaluation of reported gene signatures that predict 

p53 mutation (p53 signatures) (Fig.  4A) show that they have significant capacity to 

identify p53 mutations in a TCGA breast cancer cohort (Fig. 4B&C) and predict patient 

response to neoadjuvant chemotherapy (Fig. 4D–F), indicating at relationship between p53 

status and patient response (Hallett and Huang, unpublished). However, the signatures are 

also significantly associated with breast cancer subtype and estrogen receptor (ER) status 

(Fig. 5A&B). A stratified analysis of the ER+ or ER– only cohort reveals that the signatures 

predict response in ER+ tumors (Fig. 5C&D) but not ER– tumors (Fig. 5E–G). Hence, the 

data suggests that p53 predictive signatures are only able to indicate response in the ER+ 

tumors. Based on the preliminary result, an investigation into the role of p53 and 

chemotherapy sensitivity in ER+ breast cancer cell lines and tumors is launched. 

 

Drug discovery 

Although there has been an enormous increase in our knowledge concerning the molecular 

pathogenesis of cancer and mechanisms associated with chemotherapy resistance in the 

past two decades, our ability to control, much less cure, cancer has been disappointing 

(Ruddon 2010). Anthracycline chemotherapy, the mainstay neoadjuvant treatment that 

produces a relatively superior outcome, is efficacious in only 60% of treated BC patients 

(Evans et al. 2005; Mansi et al. 2010). Latest information indicates that wild-type p53 is 
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associated with chemotherapy resistance in BC patients with ER+ tumors (Hallett 2015; 

Hallett and Huang unpublished). As such, new anticancer agents effective for the group of 

BC patients with ER+ p53 wild-type tumors are urgently needed. Development in 

personalized medicine where drugs are tailored to groups of patients who share a common 

response to a therapeutic agent is also necessary. Unfortunately, oncological research has 

one of the poorest records in terms of novel drugs in clinical development (Kamb, Wee, 

and Lengauer 2007). So why is cancer drug discovery so difficult? Based on an insightful 

article by Kamb et al., there are broadly three elements linked to the poor success in 

anticancer drug discovery and development: targets, drugs and patients (Kamb, Wee, and 

Lengauer 2007). First, anticancer drug targets are divided between those that have essential 

functions and those that have non-essential functions. Drug targets that have an essential 

function directly impact the survival of a cell. As a result, drugs that modulate these targets 

usually have a narrow therapeutic window, and becomes toxic once outside of the 

beneficial dose range. In contrast, non-essential targeting drugs act on a drug target that is 

non-essential in normal cells but is essential for tumor cells. However, it is limited by the 

discovery of selective tumor-depend druggable targets. Even in cases where such drugs are 

developed, the accumulation of mutations may enable tumor cells to lose their dependency 

on the non-essential target. Over time tumors may become drug resistance. Next, an 

optimal target is incomplete without a corresponding drug. There are two categories of 

anticancer drugs: selective and multi-targeted. Selective drugs are beneficial such that they 

require a lower therapeutic dose and few to none off-target effects making the clinical data 

easier to interpret. However, due to target specificity, prolong use of selective drugs may 
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cause tumors to acquire drug resistance. Conversely, multi-targeted drugs that inhibit 

several effectors or pathways are less susceptible to drug resistance. Nevertheless, they are 

prone to off-target effects. In the clinic, increasing the dose of multi-targeted drugs is 

associated with improved efficacy but also increased toxicity and unforeseen side-effects. 

Lastly, cancer is an exceptionally heterogeneous disease and patient variability adds 

additional complications, hence compounding the complexity of anticancer drug discovery. 

Genetic variability in patients can affect their pharmacokinetic and pharmacodynamic 

responses to anticancer agents. Also, tumors found in the same location in different patients 

can originate from different cell types and location within their body, have entirely distinct 

gene expression profile, and response to therapy. 

In spite of the challenges facing anticancer drug discovery, there has been much 

exciting development in the field associated with a host of disciplines and technologies. 

Advances in organic chemistry have facilitated that complete synthesis of complex natural 

products with powerful pharmacological activities (Pors et al. 2009). Combinatorial 

chemistry has expanded greatly the numbers of drug-like compounds which can be 

analyzed for anticancer activities (Lam 1997). Publicly accessible databases of compounds, 

such as PubChem, ChemSpider, DrugBank, and ChemBank, provide chemical structure, 

physiological effect and biological mode of actions on tens of millions of compounds 

(Lazo, Brady, and Dingledine 2007). Advances in automated liquid handling platforms 

have enabled high-throughput screening of hundreds of thousands of compounds for 

bioactivity (Linask and Lo 2005; Pegan et al. 2010). Similarly, high content platforms have 

enabled researchers to directly assess compounds for cellular actions (Perlman et al. 2004). 
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Ultimately, the development in these various disciplines integrates and benefit the process 

of new anticancer drug discovery. 

 

Two main strategies of drug discovery – targeted-based versus phenotypic screen 

High-throughput drug screening has been the mainstay of drug discovery for 

pharmaceutical and biotechnology companies over the last two decades (Swinney and 

Anthony 2011). Fundamentally, there are two main types of screening strategies that are 

typically employed to identify new drug candidates at a preclinical stage: target-based 

screening and phenotypic screening. (Fig. 3) (Schenone et al. 2013) Target-based screen is 

conducted with the goal of finding a modulator, usually an inhibitor, of a molecular target 

that is believed to be critical for the cancer phenotype (Drews 2000) It often requires testing 

a vast number of compounds against a single target protein, whereby the active hits then 

undergo more optimization via chemical methods (Drews 2000). However, a landmark 

study on new molecular entities (NME) has revealed that the target-based approaches trail 

behind the traditional phenotype-based approaches according to the number of first-in-

class small molecule drugs generated (Swinney and Anthony 2011). An NME is a drug that 

contains an active moiety that has not been approved by the FDA previously. Between 

1999 and 2008, 37% of all NMEs are discovered via phenotypic screening compared to 

23% by target-based approach (Swinney and Anthony 2011). A crucial limitation of target-

based methods is the fact that many compounds are discovered to interactive with multiple 

targets (Mestres et al. 2009). As a result, compounds identified using target-based 

approaches often undermine the one drug, one target dogma which is held to be the 

cornerstone of target-based methods (J. Lee and Bogyo 2013). This limitation has lead 
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facilitated a paradigm shift and combined with the latest technological development in 

proteomics, genomics, and image-based methods have catalyzed a renewed interest for 

phenotypic screening methods (J. Lee and Bogyo 2013). In contrast, phenotypic screen 

relies on observing phenotypic changes of cells, organs, or organisms produced by 

chemical substances (J. Lee and Bogyo 2013). An important benefit of phenotype-based 

methods is that it provides an unbiased approach to discover active compounds in a 

complex biological systems (J. Lee and Bogyo 2013). Since phenotypic screening occurs 

in a physiologically pertinent settings of cells, organs, or organisms, the results in this 

context offer a more direct view of the desired responses while highlighting potential side 

effects (J. Lee and Bogyo 2013). Moreover, phenotypic screens can bring about the 

discovery of multiple proteins or pathways which may be formerly associated with a given 

biological output. Thus, narrowing down and distinguishing the molecular targets of active 

hits from phenotypic screens are important processes that are necessary to comprehend 

underlying mechanisms and optimize active compounds further (J. Lee and Bogyo 2013). 

However, subsequently determining the relevant molecular targets has often proven slow 

or impossible (Swinney and Anthony 2011). 
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Figure 3. High-throughput screening approaches.  

Target-based screen starts with target validation followed by assays to identify candidate 

compounds. Phenotypic screen starts with the desired phenotype induced by compounds 

on a system then proceed to pinpoint their target. This figure is adapted from (Schenone et 

al. 2013) 

 

 

Target identification approaches in phenotypic screening 

In the past decade, a number of technologies have been developed to identify targets from 

phenotypic screens. In particular, transcriptional (Butte 2002; Yang and Speed 2002), 

proteomic (Stockwell, Haggarty, and Schreiber 1999; H Zhu et al. 2001), and cell-based 
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(Iorio et al. 2010; Perlman et al. 2004; Tanaka et al. 2005) approaches have achieved 

successful target detection.  

Gene expression profiling, using a cDNA microarray, measures the mRNA 

transcript level of hundred or even thousands of genes in an experiment (Butte 2002; Yang 

and Speed 2002). The technology was designed more than ten years ago and is now widely 

used (Butte 2002; Yang and Speed 2002). One of the advantages of this method is that it 

has demonstrated moderate success in identifying the mode of action of a drug using 

microarray data (Gunther et al. 2003; Hughes et al. 2000). However, apart from the inability 

to apply this technique in a high-throughput setting, the gene expression profiling approach 

suffers from two main drawbacks: high cost and the lack of standardization among 

experimental data sets thus making the comparison a challenge (Bugelski 2002; Butcher 

and Schreiber 2005). 

Protein level and its modifications are crucial indicators of cell signaling and 

activities (Eipper 2008). Their precise measurement using accurate probes can offer a 

detailed evaluation of the biological activities and state of a cell (Eipper 2008). 

Development in the proteomic analysis has produced many new detection approaches. 

Antibody-based assays, immunoblots (Western blots) and ELISAs (Enzyme-Linked 

Immunosorbent Assays) are used to detect a protein-state change in HTS (Stockwell, 

Haggarty, and Schreiber 1999). A great number of multiplexed chip-based protein assays 

rely on the selective antibodies to be available for detecting the relevant protein 

modification (Heng Zhu and Snyder 2003). However, the development of selective 
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antibodies to accurately detect protein modifications remains lacking (Heng Zhu and 

Snyder 2003). 

The application of cell-based phenotypic screening to identify drugs has been 

demonstrated by a number of studies (Iorio et al. 2010; Perlman et al. 2004; Tanaka et al. 

2005) using cutting-edge technologies in high content imaging to measure simultaneously 

many cellular features while developing cytological profiles that alter according to the drug 

exposure. Across these studies, cells are drug-treated, fixed, stained with dyes or 

fluorescent conjugated antibodies to demonstrate cytological features, and measured using 

high content imaging. Some drawbacks of this method include small library size, cell-loss 

and systemic artifacts due to cellular fixation, and the high cost and some lot-to-lot 

variation of immunofluorescent antibodies especially in the case of high-throughput 

screening. 

 

Hypotheses and Research objectives 

The research objectives of this thesis were to 1) investigate the relationship between TP53 

status and chemotherapy response in ER+ human breast cancer. Given that mutant TP53 

status is associated with chemotherapy sensitivity and TP53 status is a predictor of patient 

response to chemotherapy but limited to ER+ tumors, it is hypothesized that among ER+ 

breast tumors, mutant TP53 confers an elevated chemotherapy sensitivity compared to 

wild-type TP53 and 2) demonstrate a streamlined high-content cell-based phenotypic 

profiling assay that elucidates the mode of action of unknown compounds. Given the 

underlying molecular heterogeneity of breast cancer, the predominantly used anthracycline 

chemotherapy produces an overall clinical response in only 60% of the treated BC patients 
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(Evans et al. 2005; Mansi et al. 2010). Also, BC patients with ER+ p53 wild-type tumors 

are shown to be associated with chemotherapy resistance (Hallett 2015; Hallett and Huang 

unpublished). Taken together, an approach that enables the discovery of anticancer agents 

tailored to a specific group of patients who share a common response to a therapeutic agent 

is required. A phenotypic drug discovery approach is highly suitable for this purpose. In 

order to deduce MoA from drug response phenotype, their relationship must be determined 

first. It is hypothesized that compounds with related mode of action (MoA) induce similar 

cellular phenotypes. 

 

The specific aims of this research were two-fold: 

First, investigate the role of p53 status in ER+ breast cancer and response to chemotherapy 

1) Engineer isogenic p53 mutant ER+ breast cancer cell lines (MCF7, BT474, ZR751)  

2) Compared cell cycle kinetics and chemosensitivity of isogenic BC cell lines 

expression WT and MUT p53  

3) Determine the effect of p53 mutations in isogenic cell lines on chemotherapy 

response in vivo 

Next, demonstrate a high-content and high-throughput live-cell phenotypic assay, which 

streamlines the process of cytological profiling and provides a consistent platform for 

empirically evaluating drug action and drug discovery. 

1) Assess the relationship between compounds’ MoA and the induced cellular 

phenotype  

2) Employ structural clustering and phenotypic profiling to elucidate SAR 
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3) Use the phenotypic profiling platform to identify a novel group of potentially anti-

cancer agents derived from natural products  
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MATERIALS AND METHODS 

 

Cell culture 

MCF-7, BT474, ZR-75-1 and T-47D breast cancer cell lines were obtained from the ATCC. 

MCF-7 cell lines were grown in Dulbecco’s modified Eagle’s medium (DMEM, GIBCO) 

supplemented with 10% fetal bovine serum (FBS), 1% GlutaMAX (Life Technology), 1% 

non-essential amino acid (NEAA, GIBCO). BT474, ZR-75-1 and T-47D cell lines were 

grown in Roswell Park Memorial Institute medium (RPMI) supplemented with 10% FBS, 

1% GlutaMAX, 1% NEAA. All cell lines were grown at 37°C and 5% carbon dioxide.  

 

Table 2: ER+ p53 wild-type and mutant breast cancer cell lines 
Cell line p53 status  

(Wasielewski et al. 

2006; Neve et al. 

2006) 

ER status  

(Neve et al. 2006) 

Culture medium  

(Neve et al. 2006) 

MCF7 wild-type ER+ DMEM + 10% FBS + 

1% GlutaMax + 1% 

NEAA 

BT-474 wild-type ER+ RPMI + 10% FBS + 

1% GlutaMax + 1% 

NEAA 

ZR-75-1 wild-type ER+ RPMI + 10% FBS + 

1% GlutaMax + 1% 

NEAA 

T-47D mutant ER+ RPMI + 10% FBS + 

1% GlutaMax + 1% 

NEAA 

 

 

TP53 targeting vector construction  

Construction of the CRISPR-Cas9 short guide against TP53 was previously described 

(Malina et al. 2013). The single guide RNA sequences were depicted below along with 

orientation and genomic coordinates within the human genome. pX459 TP53 was created 
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by ligating the TP53 insert into a BbsI digested pSpCas9(BB)-2A-Puro plasmid (pX459) 

(Addgene #48139), and validated by sequencing (MOBIX; McMaster University). 

 

Table 3: Sequences of sgRNA targeting TP53 
sgRNA Genomic 

coordinate 

Target Sequence 

TP53 

exon 7 

Chr 17: 

7585011..7585030 

3’ splice 

acceptor  

Forward 5’– CACCGgcctgtgttatctcctaggt     

–3’ 

Reverse 3’–     ccggacacaatagaggatccaCAAA 

–5’  

 

 

Generation of isogenic p53 mutant breast cancer cell lines  

Isogenic cell lines (MCF7 p53 mutant, BT-474 p53 mutant, ZR-75-1 p53 mutant) were 

produced by transfection with 2.5 μg of pX459-TP53 plasmid DNA. 48 hours post-

transfection, the transfected cells were passaged as single cells and plated at low density 

with media containing 10μM of Nutlin-3a, which causes cells with wild-type p53 to cease 

proliferation. After 1-2 weeks of incubation in the presence of Nutlin-3a, proliferating cells 

formed colonies, which were picked and gradually expanded for subsequent experiments. 

TP53 mutations were validated by sequencing (MOBIX; McMaster University). Primer 

sequences used as follows: p53-seq1-S, ACCATCCTGGCTAACGGTGAAACCCCGTC 

(sense strand), p53-seq1-AS, TCCAGTGTGATGATGGTGAGGATGGGCCT 

(antisense), p53-ex5seq1-F, ACTCCCCTGCCCTCAACAAGATGTTTTGCC (sense 

strand), p53-ex8seq1-R, GGCTCCCCTTTCTTGCGGAGATTCTCTTCC (antisense). 

 

Immunofluorescence staining and analysis  

Breast cancer cells were cultured in 96 well plates, washed with PBS, fixed with 4% PFA, 

washed with PBS, permeabilized with 100% ice-cold methanol and washed with PBS. 
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Cells were stained with antibodies to Ki67 (mouse monoclonal, Cell Signaling 8D5; 1:100 

dilution) or p21 (rabbit monoclonal, Cell Signaling 12D1; 1:400 dilution) in 1% BSA in 

PBS at 4°C overnight, washed with PBS and stained with secondary antibodies donkey 

anti-mouse AlexaFluor 647 (Life Technology A31571; 1:500 dilution), donkey anti-rabbit 

AlexaFluor 647 (Life Technology A31573; 1:500 dilution). Nuclei were co-stained with 

Hoechst 33342. Plates were imaged on an Operetta High Content Screening System (Perkin 

Elmer) and images uploaded to a Columbus database (Perkin Elmer) and image analysis 

of immunofluorescence and reporter fluorescence was performed using Acapella high 

content and analysis software (Perkin Elmer). Cell nuclei were identified by Hoechst 33342 

staining and the fluorescence intensity of the same nuclei in the GFP, Cy3 and Cy5 

channels measured. Custom scripts were then used to quantify the fluorescent intensity of 

each nucleus in all channels and output statistics. 

 

Immunohistochemical staining of explanted tumors  

IHC staining for human mitochondria (hMito), α-smooth muscle actin (αSMA), Ki67, p21, 

cleaved caspase 3 (CC3), CK5, CK8, Sox2 and Sox9 expression was performed on 

explanted tumors and lungs of MCF7 p53 wild-type or mutant mice. Excised tumors were 

cut into 2-3 mm sections, fixed in 10% neutral buffered formalin for a minimum of 48 h 

and then paraffin embedded. A set of 5 µm thick sections were dewaxed in xylene and 

rehydrated prior to antigen retrieval. The primary antibodies used were mouse anti-hMito 

(1:500 dilution, Sigma), rabbit anti-αSMA (1:200 dilution, Sigma), mouse anti-Ki67 (1:400 

dilution, Cell Signaling 8D5), rabbit anti-p21 (1:50 dilution, Cell Signaling 12D1), mouse 
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anti-cleaved caspase 3 (1:1000 dilution, TBD), rabbit anti-CK5 (1:500 dilution, TBD), rat 

anti-CK8 (1:3 dilution, Troma hybridoma supernatant), mouse anti-sox2 (1:400 dilution, 

BD 561469), rabbit anti-sox9 (1:400 dilution, abcam ab76997). Secondary antibodies used 

were donkey anti-mouse AlexaFluor 488 (Life Technology A21202), donkey anti-rabbit 

AlexaFluor 647 (Life Technology A31573), goat anti-rat AlexaFluor 488 (Life Technology 

A21212), and Hoechst 33342.  

 

Flow cytometric analysis of apoptosis 

To quantify the apoptotic cell death, breast cancer cells were stained with Annexin V-

AF647 and the results were analyzed using flow cytometry according to the manufacturer’s 

specifications. Briefly, cells were harvested following treatment with chemotherapy agents 

(Doxorubicin, 100 nM, L.C. Laboratories D-4000-200MG; Etoposide, 1 M, L.C. 

Laboratories E-4488-2G; Docetaxel, 10 M, L.C. Laboratories D-1000-500MG; 5-

Fluorouracil, 10 M, Sigma F6627-1G) and washed twice with PBS. Cells treated with the 

DMSO (as a vehicle) were considered as a control. Cell pellets were resuspended in 400 µl 

of 1× annexin V binding buffer, following gentle vortex, 1 µl of annexin V-AF647 and 

20µl of 7-AAD were added to each sample. Cells were incubated 15 min at room 

temperature in the dark and further analyzed by LSRII flow cytometer (BD). Analysis was 

performed using FlowJo software. 
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Transplantation assay 

Female NOD/SCID mice, six weeks old, were transplanted subcutaneously with 1x107 

MCF7 H2GFOIP (Calder et al. 2013) cells into the second thoracic mammary fat pad. Half 

of the mice received MCF7 WTp53 cells while the other half received MCF7 Mutp53 cells. 

Mice were monitored for tumor development and tumor volume was measured with a 

digital caliper using the formula Tumor volume = (length × width2)/2. Seven weeks post 

transplantation, the mice were injected with 5 mg/kg doxorubicin (L.C. Laboratories, D-

4099-100MG) in PBS intraperitoneally once a week for 4 consecutive weeks. Once the 

mice reached endpoint, tumors and potential organ for metastasis (lungs, liver, and brain) 

were harvested, and portions were fixed in 10% formalin for 48 hours and paraffin 

embedded. 

 

Cell culture and compound screening 

The generation and culture of the MCF7 cells containing the H2BGFP-FUCCI reporter 

were described elsewhere (Hallett 2015). Prior to the screen, MCF7 cells were established 

in a passage routine of 1.5 x 106 cells seeded per 60 cm2 every 2 days to yield exponential 

growth, as gauged by FUCCI-G1 expression. For the screen, 384 well plates (Perkin Elmer 

cat #6007550) were seeded with 3,000 H2BGFP-FUCCI MCF7 cells per well and 

compounds added 24 hours later. Compounds were sourced from the Canadian Compound 

Collection bioactive subset (fhs.mcmaster.ca/cmcb/hts_small_molecule_libraries.html) at 

1mM and screened in triplicate at a final concentration of 1M. 48 hours after compound 

addition, plates were scanned using an Operetta High Content Screening System (Perkin 
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Elmer) to image the H2BGFP-FUCCI reporter. A minimum of 300 cells was counted per 

well.  

 

Image analysis 

All images acquired on the Operetta were uploaded into Columbus Image Data Storage 

and Analysis System (Perkin Elmer). Individual cells were identified via H2B-GFP and 12 

distinct parameters, including percentage of cells in G1-phase (via FUCCI), nuclear 

roundness, nuclear shape (normal, fragmented, and condensed), texture features (SER 

(http://www.perkinelmer.com/Content/ApplicationNotes/APP_PKCActivation_texturean

alysis.pdf), Haralick (Haralick, Shanmugam, and Dinstein 1973), Gabor (Grigorescu, 

Petkov, and Kruizinga 2002)), were measured. Image analysis was completed 

autonomously using custom scripts providing a consistent and accurate measurement of 

requested phenotypic parameters. 

 

Compound-activity clustering 

Activity clustering was performed using Cluster 3.0 

(http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm). Activity was calculated by 

filtering for compounds that displayed at least 1 observation with an absolute value change 

of >=2.5. Hierarchical clustering of compounds and phenotypic scores was performed 

using the Absolute Correlation (uncentered) similarity metric with average linkage. 

 

 

http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
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Chemical structure network generation 

For each dataset, 1,024-bit circular fingerprints were generated using the ECFP algorithm 

with a radius of 6 (Rogers and Hahn, 2010). A Tanimoto coefficient matrix was generated 

by calculating the Tanimoto coefficient of each fingerprint pair. The Chemistry 

Development Kit (version 1.5.9) (Steinbeck et al. 2006) was used to generate chemical 

fingerprints and calculate Tanimoto coefficients. Fingerprint pairs with a Tanimoto 

coefficient greater than 0.45 were used to construct a tabular network file with a single 

interaction type and the Tanimoto coefficient corresponding to the edge weight. Chemical 

structure networks were rendered using Cytoscape (version 3.2.1) using the yFiles organic 

layout algorithm. Attribute data was imported as node tables and used to stylize the 

networks.  
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RESULTS 

 

p53 status is a significant predictor of breast cancer patient response to neoadjuvant 

chemotherapy 

In a previous study (Hallett 2015) using detailed genomic analyses in large cohorts of breast 

cancer patients, we found that p53 status was both a predictor and functionally involved in 

tumor cell responses to neoadjuvant chemotherapy. To investigate further, we proposed to 

identify transcriptional predictors of p53 mutations in breast cancers.  We identified 40 

previously reported signatures of p53 status from the literature as well as using the GSEA 

database (Fig. 4A). We assessed each signature’s capacity to identify breast tumors with 

mutant TP53 from the TCGA cohort of breast cancer patients (n~1,000) using the 

Wilcoxon Rank Sum test, and then ranked them based on their predictive accuracy. 

Ranking based on p-value score (-log[p-value]) revealed a set of 10 p53 status signatures 

that were robust predictors of breast tumor p53 status.  For instance, the p53 signature 

described by Gatza et al. 2014 (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300117/), 

that predicts WTp53, was nominally the best predictor of p53 status as assessed by t-test 

and receiver-operator characteristic curve analysis (Fig. 4C&D). 

To assess the relationship between p53 status and chemotherapy response, we 

tested the capacity of the 10 best p53 signatures to predict breast cancer patient response 

to neoadjuvant chemotherapy.  We obtained gene expression profiling data derived from 

approximately 500 breast tumors for which response to neoadjuvant chemotherapy was 

also available (GSE25066). Based on the Wilcoxon Rank Sum test, we observed that each 

of the 10 best p53 status signatures was a robust predictor of patient response to 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300117/
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neoadjuvant chemotherapy (Fig. 4A). Using the P53 signature as an example, we found 

that p53 signature scores were significantly elevated in non-responders (Fig. 4B), and was 

associated with a response based on ROC analysis (Fig. 4C AUC: 0.68, p<0.0001). Hence, 

these data suggested that p53 status is a significant predictor of breast cancer patient 

response to neoadjuvant chemotherapy. 

 
Figure 4. p53 status is a significant predictor of breast cancer patient response to 

neoadjuvant chemotherapy.  
(A, B, C) Top 10 p53 signatures are selected from 40 published p53 signatures based on 

their capacity to identify p53 mutations in the TCGA breast cancer cohort (>1,000) 

patients. (D, E, F) The top p53 signatures are also significant at predicting response to 

neoadjuvant chemotherapy. Analysis and figures generated by Dr. R. Hallett. 
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p53 status is associated with breast cancer patient response to neoadjuvant 

chemotherapy only in ER+ tumors 

Given differences in response to chemotherapy and the prevalence of p53 mutations in 

ER+/ER- breast tumors or among the molecular subtypes of breast cancer, we tested 

whether the relationship between the p53 status signatures and chemotherapy response 

signatures might be confounded by ER expression.  Hierarchical clustering of GSE25066 

samples revealed a significant relationship between p53 signature score, molecular subtype 

and ER status (Fig. 5 D). ER+ tumors were clearly enriched in tumors with high scoring 

tumors based on the P53 signature, and generally showed low scores for signatures 

associated with MUTp53 (Remaining 9). Indeed, P53 signature scores were significantly 

higher in ER+ tumors relative to ER– tumors (Fig. 5E). Based on this data we concluded 

that TP53 status signatures are associated with patient response to chemotherapy, however, 

these observations are potentially confounded by ER status. To confirm that that the 

relationship between TP53 status and chemotherapy response was not completely 

confounded by ER status, we examined the capacity of TP53 status signatures to predict 

chemotherapy response in stratified subsets of only ER+ or ER– breast cancer patients.  

Based on the Wilcoxon Rank Sum test we observed that most of 8/10 of the best TP53 

status signatures were significantly associated with response in ER+ patients (Fig. 5F), 

whereas only 2/10 were associated with response in ER– patients. Overall, these data 

suggest that in pan-breast cancer TP53 status is a predictor of patient response to 

chemotherapy, however in stratified breast cancer on the basis of ER status, TP53 predicts 

outcome in patients with ER+ tumors but not those with ER– tumors.   
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Figure 5. p53 status is associated with breast cancer patient response to neoadjuvant 

chemotherapy only in ER+ tumors.  

(A) Top p53 signatures are significantly associated with breast cancer subtype, especially 

ER status. (B) The signatures are significant at identifying ER+/ER– tumors. (C, D) In a 

stratified cohort of only ER+ tumors, the signatures predict patient response. (E, F, G) In a 

stratified cohort of the only ER– tumors, the signatures do not predict patient response. 

Analysis and figures generated by Dr. R. Hallett. 
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Isogenic p53 mutant BC lines generated from TP53 targeting CRISPR/Cas9 show 

resistance to Nutlin-3A 

In order to address the relationship between TP53 status and chemotherapy response in 

ER+ breast cancer, we assayed ER+ isogenic p53 wild-type and mutant BC cell line pairs’ 

response to chemotherapy. Three isogenic p53 mutant cell lines (MCF7, BT474, ZR751) 

were engineered from natively p53 wild-type human BC cell lines with CRISPR/Cas9-

mediated genome editing (Ran et al. 2013; Drost et al. 2015) by introducing a mutation in 

the 3’ splice-acceptor site of exon 7 of TP53. Cells from the three ER+ p53 wild-type BC 

cell lines were transfected with a Cas9-TP53 targeting vector. Nutlin-3a (Vassilev et al. 

2004) was used to select for cells with a functionally inactive TP53 pathway (Fig. 6A). 

Nutlin-3 inhibits p53-MDM2 interaction and activates p53-dependent p21-mediated cell 

cycle arrest, and as such Nutlin 3A addition acts as a functional test of p53 activity 

(Vassilev et al. 2004). In the presence of Nutlin-3a, cells transfected with an empty control 

vector (PX459) underwent p53-dependent cell cycle arrest (Fig. 6A), whereas cells 

transfected with Cas9-TP53 targeting vector produced cells that proliferate continuously 

into colonies and visualized by Giemsa staining (Fig. 6A). p53 mutant stable cell lines were 

generated after picking colonies and weeks of clonal expansion. We assayed the isogenic 

mutant cell lines for p53 expression and observed it in all but one of the MCF7 isogenic 

p53 cell lines (Fig. 6B, lane 2). We postulated that it is p53 null. Mutations introduced by 

CRISPR/Cas9 can cause pre-mature stop codons, thereby trigger nonsense mediated decay 

(NMD) of the mRNA transcript. To confirm NMD is responsible for the absence of p53, 

we treated the cells with an NMD inhibitor, G418 (gentamicin), and it revealed the 
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truncated p53 protein (Fig. 6B, lane 4). We further examined the isogenic mutant cell lines 

(n=4) for TP53 mutations by sequence analysis of exon 5 to exon 8 of their genomic DNA. 

Sequencing analysis showed that the MCF7 p53 mutant and null lines carry different 

mutations. The MCF7 and BT474 p53 mutant cell lines had a single base-pair deletion at 

the 3’ splice acceptor site located at the intron 6/exon 7 junction. The disruption of the 3’ 

splice acceptor site resulted in alternative splicing via the use of a cryptic splice acceptor 

located in intron 6.  Use of the cryptic splice acceptor led to the in-frame retention of part 

of intron 6 in the p53 ORF, and incorporation of this intronic sequence into the p53 DNA 

binding domain (Fig. 6C&D). The MCF7 p53 null cell line, however, had a five base-pair 

deletion at the 3’ splice acceptor site, and use of the cryptic splice acceptor here led to a 

frame-shift which introduced a pre-mature stop codon. For subsequent assays, we chose to 

only use the p53 mutant MCF7 and BT474 cell lines because most cancers that carry p53 

mutations are p53 mutant rather than p53 null (Hashimoto et al. 1999). It is explained by 

the fact that some p53 mutations (gain-of-function mutations) confer a selective advantage 

to cells that carry it (Doyle et al. 2010). 
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Figure 6: Isogenic p53 mutant BC lines generated from TP53 targeting CRISPR/Cas9 

show resistance to Nutlin-3A.  
(A) Colony forming assay of MCF7 and BT474 transfected with TP53 CRISPR. Ten-

thousand cells were seeded, exposed to 10 M of Nutlin-3A. The cells were stained with 

Giemsa. (B) p53 protein expression levels of p53 wild-type, mutant and null cells, as 

evaluated by western blotting. (C) Schematic diagram of the TP53 locus and various 

protein domains. Target site in the splice acceptor site upstream of exon 7 is shown. Sanger 

sequencing of confirmed a single based deletion in the TP53 exon 7 splice acceptor in 

Nutlin 3A resistant clones. Clonal colonies were isolated and expanded to establish stable 

p53 mutant cell lines. (D) Sequencing alignment shows an additional 16 amino acids are 

translated in the mutant p53 due to intron retention (the non-highlighted region between 

exon 6 (yellow) and exon 7 (blue)).  

 

 

Isogenic resembles native p53 mutant breast cancer cell lines in cell cycle response to 

chemotherapy  

To investigate the cell cycle kinetics following chemotherapy, we treated p53 wild-type 

(WTp53 MCF7 and BT474), isogenic (MUTp53 MCF7 and BT474) and native (T47D) 

p53 mutant breast cancer cell lines with an anthracycline chemotherapeutic, doxorubicin 

(DOX), at 100 nM for 2 days. We then measured the cell cycle response using the 

H2BGFP-FUCCI cell cycle reporter (Calder et al. 2013; Hallett 2015), the mKO2-Cdt1 

expression (FUCCI-G1) is restricted to G1/G0. Cell imaging showed that all the p53 wild-

type cell lines increased expression of the FUCCI-G1 reporter after treatment, whereas the 

isogenic and native p53 mutant cell lines remained constant or decreased (Fig. 7A&D). We 

also stained DOX-treated breast cancer cells for markers of cell proliferation, Ki67 

(Scholzen and Gerdes 2000; Hallett 2015), and cell cycle arrest, p21 (Gartel and 

Radhakrishnan 2005). The p53 wild-type cell lines, MCF7 WTp53 and BT474 WTp53, 

showed a marked decrease in Ki67 expression (97.88±0.35 to 16.22±3.29, p = 0.0006 and 

89.47±1.82 to 12.30±1.05, p < 0.0001 %Ki67+ve, respectively) while the isogenic and 
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native p53 mutant cell lines, MCF7 MUTp53, BT474 MUTp53 and T47D, remained 

constant (98.79±0.43 to 98.28±0.62, p = ns; 96.24±0.45 to 95.08±1.06, p = ns, and 

55.50±10.45 to 55.53±9.56, p = ns %Ki67+ve, respectively) (Fig. 7B). The p21 expression 

demonstrated the converse trend (MCF7 WTp53 12.50±3.20 to 95.07±1.74, p = 0.0012; 

BT474 WTp53 32.12±0.84 to 87.67±1.88, p = 0.001 %p21+ve, and MCF7 MUTp53 

0.40±0.28 to 4.87±0.54, p = 0.0095; BT474 MUTp53 4.82±0.73 to 12.04±2.35, p = 0.026; 

T47D 26.72±30.22 to 22.70±20.82, p = ns %p21+ve) (Fig. 7C). Taken together these 

findings suggest that the isogenic resembles native p53 mutant breast cancer cell lines in 

cell cycle response to chemotherapy.   
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Figure 7. Isogenic resembles native p53 mutant breast cancer cell lines in cell cycle 

response to chemotherapy. 

(A) FUCCI-G1 expression is consistent among isogenic and mutant p53 mutant breast 

cancer cell lines in response to DOX (100 nM). T47D is an endogenously mutant p53-

expressing cell lines. (B) Ki67 expression is maintained in isogenic and mutant p53 mutant 

breast cancer cell lines following treatment with DOX (100 nM). (C) p21 expression not 

up-regulated in isogenic and mutant p53 mutant breast cancer cell lines following treatment 

with DOX (100 nM). (D) Representative micrographs of WTp53 and MUTp53 MCF7 & 

BT474 cell response to DOX (100 nM). Scale bar = 20 um. 
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Isogenic p53 mutant breast cancer cells directly confirmed functional p53 signaling 

induced chemotherapy resistance 

We previously showed that activation of functional p53 signaling and G1/G0 arrest protects 

cells during exposure to the cytotoxic effects of docetaxel (TAX) (Hallett 2015), but the 

comparison was made between different breast cancer cell lines expressing either wild-

type or mutant p53. To minimize any cell line specific response variation between wild-

type and mutant p53, we examined cell nuclear morphology in response to TAX in isogenic 

cell line pairs that differed only in TP53 integrity. p53 wild-type cell lines that were pre-

treated with Nutlin3A underwent G1/G0 arrest and subsequent exposure to TAX did not 

induce nuclear fragmentation (Fig. 8A). However, the isogenic versions of these lines that 

contained mutant p53 underwent nuclear fragmentation in ~60% of nuclei similar to TAX 

treatment alone (Fig. 8B). This data shows that functional p53 signaling alone triggers a 

cell cycle arrest that can protect cells from the chemotherapy-induced mitotic catastrophe. 
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Figure 8. Isogenic p53 mutant breast cancer cells provided definitive evidence that 

functional p53 signaling confers chemotherapy resistance in ER+ BC cell lines.  
(A) Representative micrographs of wild-type and mutant p53 MCF7 and BT474 cell 

response to TAX only or combined Nutlin 3A and TAX treatment. Isogenic p53 mutant 

breast cancer cell lines show mitotic catastrophe following treatment with Nutlin 3A and 

TAX indicating the loss of wild-type p53 mediated chemotherapy resistance. Scale bar = 

20 um. (B) Graphs comparing the percentage of TAX-induced nuclear fragmentation at 

day 3 in the absence and presence of Nutlin 3A. (C) Colony forming efficiency of wild-

type p53 and isogenic mutant p53 cell lines following 24, 36, 48 and 72 hr of DOX (100 

nM) treatment. 
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p53 mutant breast tumors, mirroring the response profile of adherent cells, show 

improved sensitivity to chemotherapy 

To examine the relationship between p53 status and chemotherapy response in vivo, we 

chose an orthotopic human tumor xenograft model (Fig. 9A). We injected p53 wild-type 

or mutant breast cancer cells orthotopically into the second thoracic mammary fat pads of 

NOD/SCID mice (Clarke 1996; Fleming et al. 2010). After the development of primary 

xenograft tumors, mice were treated with DOX and the size of the tumors was monitored 

(Fig. 9B).  

To delineate the significance of p53 status in chemotherapy response, we analyzed 

the correlations between p53 status and overall survival. The survival curves of DOX-

treated mice with p53 wild-type and mutant tumors are indistinguishable (p = ns, log rank 

test) (Fig. 9C). However, the mice with p53 mutant tumors died earlier than p53 wild-type 

tumor mice with a median survival of 18 and 20 days, respectively (Fig. 9C).  

Next, we analyzed the correlations between p53 status and tumor volume. We found 

that, regardless of p53 status, tumors of vehicle-treated mice underwent rapid and 

continuous growth with an average 10.67-fold increase in tumor volume, whereas tumors 

from DOX-treated mice remained relatively stagnant with an average 2.21-fold increase 

(Fig. 9D). We did not find a significant difference in tumor volume in p53 wild-type versus 

mutant tumors. One possible explanation for the lack of a significant difference is that the 

5mg/kg of DOX used in the study may be too toxic for the mice, thereby killing them before 

a difference be observed. However, the most likely explanation is that the difference in 

response may have been masked. Untreated p53 wild-type MMTV-Wnt1 tumors were 
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reported to be highly positive for Ki67, a marker of cells outside G0 of the cell cycle 

(Jackson et al. 2012). However, following DOX treatment, p53 wild-type MMTV-Wnt1 

tumors were Ki67 negative (sparsely positive), demonstrating cell-cycle exit (Jackson et 

al. 2012). This corresponds with our in vitro data showing that the p53 wild-type cells 

undergo chemotherapy-induced p53-mediated cell cycle arrest, which explains why the 

DOX-treat p53 wild-type tumors were on average 1/5 of the volume of the same tumors 

but treated with a vehicle. Conversely, p53 mutant MMTV-Wnt1 tumors were shown to be 

Ki67 positive following DOX treatment (Jackson et al. 2012). They also showed a 

significant increase in both cleaved caspase-3 and terminal deoxynucleotidyl transferase 

dUTP nick end labeling (TUNEL)-positive cells (two established methods for quantifying 

apoptosis) after DOX treatment (Jackson et al. 2012). Following DOX treatment, tumors 

lacking wild-type p53 unable to exit cell cycle resulted in aberrant mitosis and apoptosis 

(Jackson et al. 2012). We, therefore, postulated that an increase in apoptosis contributed to 

the reduced volume in the DOX-treated p53 mutant tumors. 

We examined the cell cycle kinetic response to chemotherapy in wild-type and 

mutant p53 tumors by immunohistochemically staining tumor tissues for Ki67 and p21. 

Following treatment, only p53 wild-type MCF7 tumors had large areas that were Ki67 

negative, demonstrating cell cycle exit, while p53 mutant tumors remained positive for 

Ki67 (Fig. 9E). p21 expression demonstrated the opposite trend. Quantification reveals a 

significantly higher percentage of DOX-treated p53 mutant breast tumor cells undergoing 

cellular proliferation compared to p53 wild-type tumor cells (45.29 ± 20.62 to 30.26 ± 

16.96 %Ki67+ve; p=0.0289) (Fig. 9F). Conversely, it shows a lower percentage of DOX-
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treated p53 mutant breast tumor cells in cell cycle arrest compared to p53 wild-type tumor 

cells (4.19 ± 3.41 to 7.24 ± 6.85 %p21+ve; p=ns).  

The p53 mutant MCF7 tumors also showed a significant increase in cleaved caspase 

3 positive cells after DOX treatment (Fig. 9G). p53 wild-type tumors, however, underwent 

apoptosis only marginally following treatment (Fig. 9G). Quantification reveals a 

significantly higher percentage of DOX-treated p53 mutant breast tumor cells undergoing 

apoptosis compared to p53 wild-type tumor cells (11.25% ± 6.06% to 1.67% ± 1.29% 

cleaved caspase 3+ve; p=0.0157) (Fig. 9H).  

Taken together, our data show that the presence of functional p53 induced growth 

arrest, not apoptosis, in p53 wild-type tumors following DOX treatment, whereas the lack 

of functional p53 in mutant tumors resulted in continued cell cycle progression, aberrant 

mitoses, cell death and, ultimately, a superior clinical response in the short term. 
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Figure 9: p53 mutant breast tumors, mirroring the response profile of adherent cells, 

show improved sensitivity to chemotherapy.  
(A) Schematic illustrating the experimental approach of our orthotopic human tumor 

xenograft model. (B) Representative image of tumors generated in mice that were injected 

with MCF7 p53 wild-type or mutant BC cells. (C) Kaplan-Meier survival curve for DOX-

treated p53 wild-type (n=10) and p53 mutant (n=10) mice are shown. p53 mutant mice did 

not show a survival advantage in response to DOX treatment (p = ns). (D) Mean tumor 

volume for DOX-treated p53 wild-type (n=10), p53 mutant (n=10) mice, and p53 wild-

type (n=4), p53 mutant (n=4) vehicle-treated control mice are shown. Mean tumor volume 

was plotted in mm3 ± SEM. Each mouse was injected with 1x107 MCF7 p53 wild-type or 

mutant BC cells and treated with the vehicle or 5 mg/kg of DOX via i.p. injection once a 

week for three weeks. The tumor volume was measured three times a week. (E) 

Representative images of DOX-treated p53 wild-type or mutant MCF7 breast tumor slides 

stained with DAPI (blue), p21 (red) and Ki67 (green) antibodies. (F) The DOX-treated 

mutant p53 xenografts demonstrated a 1.5-fold increase in proliferation in response to 

chemotherapy.  Quantification showed that the DOX-treated p53 mutant tumors have a 

lower %p21+ve cells (4.19±3.41 to 7.24±6.85; p=NS) while a significantly higher % 

Ki67+ve cells (45.29±20.62 to 30.26±16.96; p=0.0289). The converse trend was observed 

in the p53 wild-type tumors. (G) Representative images of DOX-treated p53 wild-type or 

mutant MCF7 breast tumor slides stained with DAPI (blue) and cleaved caspase 3 (red) 

antibody. (H) The DOX-treated mutant p53 xenografts demonstrated a 10-fold increase in 

apoptosis in response to chemotherapy. Quantification showed that the DOX-treated p53 

mutant tumors had a significantly higher %cleaved caspase 3+ve cells (11.25±6.06 to 

1.67±1.29; p=0.0157). 

 

 

A streamlined cell-based phenotypic screening platform  

In order to address the problem of breast cancer, an improved understanding of 

chemotherapy resistance is insufficient, we also need new anticancer agents. Phenotypic 

screening, which focuses on the perturbation of cellular phenotype by chemical substances 

rather than specific molecular targets, is an unbiased and suitable method to discover active 

compounds in a complex biological system. Previously reported cell-based phenotypic 

assays typically require fixation and staining for phenotypic markers to reveal the 

cytological status, which reduce screen throughput and introduce the potential for reagent-

based variation between assays (Iorio et al. 2010; Perlman et al. 2004; Tanaka et al. 2005). 
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To overcome some of the limitations of existing cell-based phenotypic assays, we 

developed a high-content and high-throughput live-cell phenotypic assay, which 

streamlines the process of cytological profiling and provides a consistent platform for 

empirically evaluating drug action. 

We chose the MCF7 FUCCI cell line for the assay because it is equipped with an 

H2BGFP-FUCCI cell cycle reporter (Sakaue-Sawano et al. 2008; Calder et al. 2013; Hallett 

2015) that encodes a fusion of H2B-GFP, which decorates chromatin, and mKO2-Cdt1 

(Calder et al. 2013; Hallett 2015) (FUCCI-G1), the expression of which is restricted to 

G1/G0. The H2BGFP provided a means for the nuclear identification in high-content 

imaging while the FUCCI-G1 permitted the live measurement of cells in G1/G0 phase. 

Moreover, the FUCCI cell cycle reporter enabled a streamlined phenotypic profiling assay 

that dispensed with the need to fix and stain cells to obtain cytological profiles (Fig. 10A). 

We screened 3,923 bioactive compounds (of which 3,580 were unique) at a 

concentration of 1M in triplicate. All compounds were drawn from the Canadian 

Compound Collection, which is curated by The Centre for Microbial Chemical Biology at 

McMaster University, and includes bioactive compounds sourced from several libraries 

such as Lopac-1280, Prestwick Chemical Library, BIOMOL Natural Products Library and 

Microsource Spectrum Collection. The compound libraries are composed of FDA-

approved drugs, bioactive molecules, and natural products. A bioactive compound enriched 

library was chosen to increase the potential of identifying hits when contrasted to similar 

sized non-enriched chemical library. 
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Forty-eight hours after compound addition, high content imaging was performed 

on the live cultures. Using automated image analysis, measurements for cell cycle position 

(FUCCI-G1), nuclear morphology (nuclear roundness, nuclear integrity (normal, 

fragmented and condensed)) and nuclear texture (SER (Spot, Hole, Valley, Ridge), 

Haralick (Homogeneity, Correlation) and Gabor) were calculated (Fig. 10B). Haralick 

Homogeneity or Correlation, which are not shown in Fig. 10B, measure as their namesake 

the texture homogeneity or correlation of an image. The data of 12 distinct parameters for 

each compound were aggregated and standardized. Hierarchical clustering was performed 

and the resultant heat map is herein referred to as the General Cluster (Fig. 10C). The 

General cluster then underwent a Z-score transformation with a threshold of 2.5 and 

produced a list of 340 ‘active’ compounds that elicited a phenotypic change. Clustering of 

these compounds produced an Active Cluster (Fig. 10D). Within the Active Cluster, 14 

subclusters contained four or more compounds and reached a clustering coefficient ≥ 0.85 

were considered for subsequent investigation.  
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Figure 10: Phenotypic screen setup and compound-activity profiling  
(A) Strategy for a cell-based multiparametric phenotypic profiling of compounds (B) 

Individual cells were evaluated on 12 distinct parameters, including the percentage of cells 

in G1-phase (via FUCCI), nuclear roundness, nuclear shape (normal, fragmented, and 

condensed) and texture features (SER, Haralick, Gabor). (C) The General cluster was 

established through a hierarchical clustering of 3921 compounds based on their phenotypic 

parameters’ scores. Increased scores were represented in yellow and decreased in blue, 

with intensity encoding magnitude. (D) Passing the General cluster through a Z-score 

transformation with a threshold greater than 2.5 distilled the list down to 340 ‘active’ 

compounds. Clustering of these compounds generated the Active cluster. A group of four 

or more compounds with a clustering coefficient greater than 0.85 was considered a 

subcluster. There were 14 subclusters within the Active cluster. 

 

 

A common drug-induced phenotypic profile is associated with a similar MoA 

Before investigating the relationship between drug-induced phenotypic alteration and 

MoA, compounds within each subcluster were validated to share a common phenotype 

(Fig. 11A). To examine the relationship between drug-induced phenotypic alteration and 

MoA, the MoA information for each compound of was obtained from published databases 

(DrugBank, ChemBank, PubChem, and ChemSpider).  The mechanism of actions 

indicated by the databases is based on the U.S. Food and Drug Administration’s (FDA) 

Pharmacologic Classes. According to the FDA, “pharmacologic class is a group of active 

moieties that share scientifically documented properties” (FDA 2013). A pharmacologic 

class is defined by three attributes of the active moiety: mechanism of action (MOA), 

physiologic effect (PE), and chemical structure (CS) (FDA 2013). As part of the drug 

approval process, each new molecular entity must provide empiric evidence showing that 

its active moiety’s pharmacologic class is known, relevant and specific to its indication 

(FDA 2013).  MoA annotation of each compound in the sub-clusters revealed that ~80% 

of compounds within each subcluster have the same MoA (Fig. 11B). The molecular 
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similarity concept suggests structural similarity and functional similarity are associated 

(Bender and Glen 2004), so we next investigated if the clustered phenotypic profiles could 

provide insights into the structural relationships of the screened compounds. Tanimoto 

coefficients (Godden, Xue, and Bajorath 2000) were used to calculate the structural 

similarity relationships for compounds using extended connectivity fingerprint 6 

(ECFP_6), a 2D fingerprint for molecular characterization. Tanimoto coefficients were 

calculated for the compounds, and used to graph chemical structural similarity networks. 

The structural similarity networks showed a significant (0.45) structural correlation among 

compounds in each subcluster (Fig. 11C). However, not all compounds that induced a 

similar phenotype were structurally related, and likely reflects that multiple different 

targets can converge on a common phenotypic outcome. 
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Figure 11: Compounds within a sub-cluster showed a common phenotype and MoA, 

and might belong to the same chemical class.  

(A) Compounds in each individual subclusters shared a common phenotype as shown in 

the fluorescence micrographs. (B) Clustering of compounds by phenotype showed that 

compounds within each subcluster also shared a common mode of action. (C) Chemical 

structure similarity networks presented compounds in each subcluster. Each compound was 

a node in the network, and an edge was drawn between two nodes if the Tanimoto 

coefficient was greater than 0.45. 

 

 

Drug-induced phenotypic profile with chemical structural network can provide 

inference to SAR  

To examine the connection between phenotype and structure-function relationship, a 

chemical structural similarity network was generated from 147 steroids in the screen (Fig. 

12A). The network graph showed the steroids are separated into two different groups. 

Overlaying the information of cluster status (Active vs. General) revealed that almost all 

of the compounds that appear in the Active Cluster localized on one branch of the network, 

whereby compounds that appear only in the General Cluster occupied mostly the other 

branch. Chemical moiety analysis showed that steroids with a three specific moieties were 

confined to the Active Cluster, and absent from the General Cluster.  These moieties 

including a double bond between C1 and C2, a fluorine group attached to C9 and a hydroxyl 

group attached to C11 (Fig. 12B), all of which have previously been described to be 

important in the steroid receptor activation (He et al. 2014; Ponec et al. 1986a). Receptor 

binding preference for all of the steroids in the screen was obtained from the literature 

(Derendorf and Hochhaus 1995), and  revealed that nearly all Active steroids bind to the 

glucocorticoid receptor, whereas steroid members of the General Cluster bound either to 
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one of the remaining four types of steroid hormone receptors or are steroid hormone 

precursors that do not bind (Fig. 12C).  

From evaluating the screening platform, it has become apparent that the phenotypic 

screen platform we have developed can be used to determine the MoA of novel compounds. 

We hypothesized that the primary screen data could be used as a training set for new 

compounds with unknown MoA. Co-clustering of compounds with unknown MoA with 

our dataset would then reveal insights into MoA for these new compounds, which could be 

inferred known MoA for cluster neighbors. 
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Figure 12: Phenotypic profiling based on compound-activity in conjunction with 

chemical structural similarity network revealed SAR.  
(A) A chemical structural similarity network was generated from 147 steroids in the screen. 

Steroids from the General and Active cluster are represented by gray and black circles, 

respectively. A steroid cluster was established through a hierarchical clustering based on 

their phenotypic parameters’ scores. (B) Three moieties that were common to the Active 

steroids but absent the General, including a double bond between C1 and C2, a fluorine 

group attached to C9 and a hydroxyl group attached to C11. (C) Receptor binding analysis 

revealed that nearly all Active steroids bind to the glucocorticoid receptor, whereas the 

General steroids bound either to one of the remaining four types of steroid hormone 

receptors or were steroid hormone precursors that do not bind. 

 

 

Phenotypic profiling is independently reproducible between screens and suitable for 

screening unknown compounds 

To assess the robustness of the screening platform, a short list of compounds, including 

two compounds from each subcluster and 8 compounds from the General cluster as 

controls, were screened under the same conditions as the primary screen. After the data 

was standardized and clustered, the re-screened compounds emerged in the same subcluster 

they were previously. After the robustness of the screening platform was confirmed, 

another screen was performed with 34 previously unknown microbial natural products and 

8 controls. Among the unknown molecular entities, 5 of them induced a significant 

phenotypic change. A speckled pattern was observed in the nuclei. Four of the five 

compounds were found in a significant sub-cluster with a known anticancer, pro-apoptotic 

drug, SU 9516 (Fig. 13). 
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Figure 13: Four unknown compounds clustered significantly with an identified 

anticancer drug, SU 9516. Reference compounds appeared in their original clusters which 

indicate reproducible measurement between screens. Reference compounds were denoted 

by a string of asterisks proceeding their name. Four novel compounds are found in a sub-

cluster with a known anticancer drug, SU 9516. 
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DISCUSSION  

Breast cancer is the most commonly diagnosed and the second most deadly cancer among 

women in Canada. Anthracycline-based chemotherapy is the mainstay regimen in the 

adjuvant/neoadjuvant setting. Although it gives improved outcomes compared with 

cyclophosphamide, methotrexate and fluorouracil, only a small percentage of treated 

patients actually receives a benefit while these agents are associated with significant 

toxicity (Henderson 2013). The utilization of a predictive marker of patient response to 

chemotherapy should spare predicted ‘poor responders’ from the toxicity associated with 

such treatments. 

The TP53 gene is a prime candidate for predicting the response of tumors to classic 

chemotherapy (Bonnefoi et al. 2011). It is a master gene in the stress response pathway that 

plays a critical role in cancer development. TP53 is the most frequently mutated gene in 

human cancer, with mutations occurring in at least 50% of human cancers (Tewari, 

Krishnamurthy, and Shukla 2008). p53 mediates checkpoint or stress responses to several 

insults and suppresses tumor formation through several mechanisms, including apoptosis, 

senescence, and autophagy (Zilfou and Lowe 2009). Experimental evidence suggests a key 

role for p53 in apoptosis in response to genotoxic agents (Lowe et al. 1993; Fridman and 

Lowe 2003).  

The use of TP53 status as a biological marker to predict the response of breast 

cancer to neoadjuvant chemotherapy, however, has yielded conflicting results. While some 

reports show wild-type TP53 activity is beneficial to response (Berns et al. 2000; Kröger 

et al. 2006), others show that TP53 mutant tumors respond better (P Bertheau et al. 2002; 
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Anelli et al. 2003; Aas et al. 2003). The relevance of this gene to clinical therapy thus 

remains unknown. 

We described the novel observation that p53 status predicts patient response to 

neoadjuvant chemotherapy but only in ER+ tumors. To date, many p53 signatures have 

been reported. We found that these signatures have the capacity to identify p53 mutations 

and predict response to neoadjuvant chemotherapy, suggesting there is a relationship 

between p53 status and response. However, our examination of the top p53 signatures 

revealed that they are also significantly associated with breast cancer subtype and ER 

status. To confirm that the relationship between TP53 status and chemotherapy is not 

confounded by ER status, we examined the p53 signatures separately in ER+ or ER– group. 

The signatures predict response in ER+ tumors but not ER– tumors, which suggests that 

p53 mutations are only associated with response in the ER+ tumors.  

Base on the p53 signature study, we proceed to investigate the relationship between 

p53 and chemosensitivity among ER+ breast tumor. Using CRISPR-Cas9 mediated gene 

knockout, we generated p53 mutant lines from three ER+ isogenic breast cell lines, and 

differing only in the expression of p53. We showed that activation of functional p53 

induces G1/G0 arrest only in the p53 wild-type lines, which in turn protected cells from 

further chemotherapy treatments. However, in the absence of functional p53, the tumors 

are more susceptible to chemotherapy, as measured by a significantly higher expression of 

cleaved caspase 3 compared the p53 wild-type tumors. This susceptibility appears to arise 

from the lack of a chemotherapy-induced wild-type p53-mediated cell cycle arrest. p53 
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mutant cells proceeding through the cell cycle, which permits genotoxic agents to cause 

aberrant mitosis events, and cell death.  

This is consistent with the results from our previous study where we examined cell 

cycle response of human breast cancer cell lines to DOX treatment and found that the 

integrity of cell cycle regulator gene, TP53, is associated with chemotherapy outcome 

(Hallett 2015). However, data from comparing isogenic cell line pairs provides a more 

robust evaluation because it minimizes line-line variation, and any confounding mutations 

that non-isogenic lines may not share. The similar response to chemotherapy between the 

native and isogenic p53 mutant breast cancer cell lines suggests that the relationship 

between p53 status and chemosensitivity is independent of any cell line specific variations.  

It is a possible, however, that the cell cycle kinetic and chemotherapy response that 

we observed in the isogenic p53 mutant cells are not because of Cas9 mediated TP53 

mutation but off-target events. One way to rule out any off-target effect is by conducting a 

whole-genome sequencing. However, a more practical way may be to repair the original 

TP53 mutation that was introduced with the CRISPR/Cas9 using homologous 

recombination with a donor template in combination with the same CRISPR/Cas9 to see if 

it recovers the wild-type TP53 phenotype. It is highly improbable that the off-target events 

would be correctly repaired by this approach. 

We further explored chemotherapy response associated with p53 status using an 

orthotopic human tumor xenograft model. We showed that following DOX treatment, p53 

wild-type breast tumors underwent cell cycle arrest whereas p53 mutant tumors failed to 

arrest resulted in aberrant mitosis and apoptosis. These results are consistent with MMTV-
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Wnt1 mouse mammary tumors which showed p53 mutant breast to produce superior 

clinical response than its p53 wild-type counterpart (Jackson et al. 2012). 

To examine the relationship between p53 status and chemotherapy response in 

vivo, we chose a human tumor xenograft model. After the development of primary 

xenograft tumors, mice were treated weekly with 5mg/kg of DOX. We found that the dose 

we administered was too toxic for the mice. They started to become sick after the second 

treatment and after the third treatment, very few had survived. In a similar study looking at 

the role of TP53 mutation in breast cancer response to chemotherapy (Jackson et al. 2012), 

MMTV-Wnt1 p53 wild-type, heterozygous mutant and null mice were treated with 4 mg/kg 

doxorubicin once daily for 5 consecutive days. However, the dose was tolerated in the p53 

wild-type and heterozygous mutant mice. It is possible that the 20% increase in dose (4 to 

5 mg/kg) is intolerable in the NOD/SCID strain. As such the maximum-tolerated dose for 

the NOD/SCID strain needs to be determined for future experiments, otherwise the dose 

should be reduced to 3mg/kg. 

Overall, we showed that p53 status is a significant predictor of breast cancer patient 

response to neoadjuvant chemotherapy for patients with ER+ tumors. We also 

demonstrated that p53 mutant breast tumors are more susceptible to neoadjuvant 

chemotherapy. One important implication of finding would be its adoption in the clinic to 

distinguish patients likely to receive benefit from those who are not, sparing predicted ‘poor 

responders’ from chemotherapy-associated toxicity. 

 

A streamlined cell-based phenotypic screening platform  
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Although there has been an enormous increase in our knowledge concerning the molecular 

pathogenesis of cancer and mechanisms associated with chemotherapy resistance in the 

past two decades, our ability to control, much less cure, cancer has been disappointing 

(Ruddon 2010). Anthracycline chemotherapy is a prefer treatment yet produces clinical 

response in only 60% of the treated BC patients (Evans et al. 2005; Mansi et al. 2010). 

Latest information indicates that wild-type p53 is associated with chemotherapy resistance 

in BC patients with ER+ tumors (Hallett 2015; Hallett and Huang unpublished). As such, 

new anticancer agents effective for the group of BC patients with ER+ p53 wild-type 

tumors are urgently needed. This is further exacerbated by the fact that oncology has one 

of the poorest records in terms of novel drugs in clinical development (Kamb, Wee, and 

Lengauer 2007). To address this issue, we designed a streamlined high-content cell-based 

phenotypic profiling assay that facilitated the identification of MoA of four natural 

products which are potential anticancer agents. A cell-based phenotypic screen is not a 

novel concept (Jones et al. 2009; Perlman et al. 2004; Woehrmann et al. 2013; Young et 

al. 2008), and the reports thus far required cells to be treated with drugs, fixed and then 

cytological features, such as nuclear DNA, organelle morphology or protein expression, 

are highlighted by stains/dyes or antibody-based immunofluorescence and then measured 

by high content imaging. However, stain- and immunofluorescence-based visualization 

introduces additional steps that limit throughput by significantly elongating the screening 

workflow, and can induce other unintended consequences: fixation/staining require wash 

steps that can cause loosely attached cells to slough off, resulting lost phenotypes, while 

reagent batch-to-batch variation can compromise screen-to-screen consistency. Here we 
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demonstrated a live multi-parameter cellular phenotypic screening assay that reduces the 

workflow for acquiring compound cytological profiles. In this approach, multivariate 

clusters were generated from quantitative phenotypic measurements of cellular responses 

in live cells and used to classify and provide MoA insights for synthetic compounds, as 

well as novel natural product derivatives. 

 

A common drug-induced phenotypic profile is associated with a similar mode of 

action 

Compound-clustering based on phenotypic activity enabled us to demonstrate that a 

common drug-induced phenotype is a reflection of a similar MoA. Furthermore, 

phenotypic resemblance also suggested closely relation in chemical structure. For example, 

a sub-cluster of 10 compounds all displayed nuclei with a ‘halo’ appearance (Fig. 11A-C). 

Their MoAs revealed that 8 of them are cardiac glycosides with the exception of SU 6656 

and Mafenide hydrochloride which were not reported as cardiac glycosides. The structural 

similarity network of this sub-cluster showed a small network of five compounds that are 

structurally related to ouabain, a pair of compounds associated with bufalin and two 

independent compounds, mafenide hydrochloride and SU 6656. Not surprisingly, the two 

independent compounds that were not reported as cardiac glycosides are also structurally 

distinct from the others in the cluster. However, a question arises: why the other seven 

compounds, all of which are cardiac glycosides, did not cluster together? Further 

investigation revealed that chemically there are two classes of cardiac glycosides: 

cardenolides and bufadienolides (Allmaier and Schmid 1986; Kumar et al. 2013). They are 
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separated by the R group attachment at the C-17 position (Kumar et al. 2013). The small 

network of five compounds that were structurally related to ouabain belong to cardenolides 

class, whereas the pair of compounds associated with bufalin is a member of the 

bufadienolides class (Kumar et al. 2013). 

Another sub-cluster of 20 compounds shared a distinct feature – fragmented nuclei 

(Fig. 11A-C). Their MoAs revealed that 18 of them are mitotic inhibitors with the exception 

of caffeic acid and chelidonine (+). The structural similarity network of this sub-cluster 

showed that 9 compounds are benzimidazole derivatives (MacDonald et al. 2004). They 

were known to function as ‘mitotic poison’ by binding to tubulin and inhibiting 

microtubule polymerization (MacDonald et al. 2004). Another group of three compounds 

is podophyllotoxin glucosides which also inhibits microtubule assembly (Qi et al. 2005). 

Taxol (Paclitaxel) is a cytotoxic chemotherapy drug (Xiao et al. 2006), and unlike 

benzimidazoles and podophyllotoxin glucosides, taxol stabilizes microtubules and reduces 

their dynamicity, promoting mitotic arrest and cell death (Xiao et al. 2006). It is worth 

noting that caffeic acid and chelidonine (+), two compounds that did not share the MoA of 

its sub-cluster, also did not share a similar structure with the others.  Although caffeic acid 

and chelidonine are not recognized as mitotic inhibitors, a reasonable account is available 

to explain how these two compounds may induce a comparable phenotype and thus be 

misidentified. Caffeic acid is an antioxidant which has been shown to induce apoptosis in 

human leukemic HL-60 cells (Chen, Shiao, and Wang 2001). It causes mitochondrial 

dysfunction by selectively scavenging hydrogen peroxide (Chen, Shiao, and Wang 2001). 

Chelidonine, on the other hand, is an alkaloid extract from Chelidonium majus (El-Readi 
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et al. 2013). It was reported to inhibit the activity of CYP3A4, a key enzyme associated 

with drug metabolism, and to also induce apoptosis (El-Readi et al. 2013). More 

importantly, DNA fragmentation and nuclear morphological changes have been a well-

documented phenomenon in the later stages of apoptosis (Collins et al. 1997). 

A third sub-cluster of 8 compounds readily induced G1-phase cell cycle arrest that 

was reflected by the high FUCCI expression (Fig. 11A-C). Their MoAs revealed that all of 

them are DNA intercalators (Frost et al. 2006). These compounds have a common 

anthracycline backbone and different R group attachments. The structural similarity 

network of this sub-cluster showed a great level of interconnectedness because of the high 

level of structural similarity, illustrating the power of our phenotypic screen to identify 

compounds with like MoA. 

In summary, the phenotypic cluster aligned closely with MoA for some compounds. 

In addition, a similar phenotypic profile was correlated with similar chemical structure. 

However, it may not be a one-to-one relationship because activating different signaling 

pathways may ultimately converge onto a common downstream effector and elicit an 

identical response. 

 

Drug-induced phenotypic profile with chemical structural network provided 

inference to SAR 

Phenotypic profiling enabled us to demonstrate that phenotypic resemblance is a reflection 

of a similar MoA. Furthermore, our data supported the long-standing notion that activity is 

related to chemical structure. To test whether phenotypic profiling can demonstrate SAR, 
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we looked closely at the steroid molecules from our screen, a class of compound that are 

structurally similar but functionally distinct. All steroid hormones are derived from 

cholesterol. They share a common 4-rings structure. There are five types of steroid 

hormones: glucocorticoids, mineralocorticoids, androgens, estrogens and progestogens. 

Among the 3921 compounds in the General cluster, there are 147 steroids. Intriguingly, 

nearly half of the steroids induce significant phenotypic changes and belong to the Active 

cluster, while the rest do not (Fig. 12A).  

To ask whether this phenotypic difference is related with their chemical structure, 

a chemical structural similarity network was graphed on Cytoscape with the Tanimoto 

coefficients calculated using the ECFP6 algorithm. The resultant network graph displayed 

a clear bifurcation among the steroids. Overlaying the information of cluster status 

(compounds appear in the Active cluster vs. those only appear in the General cluster) 

revealed that compounds appear in the Active cluster all localized on one branch of the 

network (Fig. 12A). It suggested that they are structurally distinct from the other 

compounds.  

Next, we asked whether the steroids from the General and the Active cluster are 

functionally distinct as well. To assess the function of steroid hormones, we examined the 

receptor binding of each compound and overlaid the data onto the structural similar 

network. Intriguingly, nearly all Active compounds bind exclusively to the glucocorticoids 

receptor (Fig. 12B). Steroids from the General cluster bind either to the remaining four 

types of steroid hormone receptor or are steroid hormone precursors that do not bind.  
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We then asked whether there is any structural-functional relationship between 

steroid hormones and receptor affinity. Based on their chemical structures, we noticed three 

moieties that are common to glucocorticoids but absent in other steroid hormones, 

including a double bond between C1 and C2, a fluorine group attached to C9 and a hydroxyl 

group attached to C11 (Fig. 12C). The information was overlaid onto the structure 

similarity network and it revealed that these moieties were found almost exclusively among 

the Active compounds. In addition, a nearly perfect correlation was observed between 

compounds with a hydroxyl attachment at C11 and the Active compounds (Fig. 12C).  

Previous work has shown that the most important substituents which increase the 

binding affinity of steroid are an olefinic (double) bond between C-1 and C-2, a fluorine 

atom at the 9a position, a hydroxyl group at the 11B position, and an ester group at the 17a 

position (Ponec et al. 1986b). Further evidence from the literature helped to explain the 

high FUCCI expression and low viability associated with the Active compounds. Studies 

have shown that glucocorticoids (esp. dexamethasone (Li et al. 2012)) inhibit thymidine 

incorporation into DNA (Cidlowski and Cidlowski 1981), cause DNA damage and induce 

glucocorticoid receptor-activated p53-mediated cell cycle arrest (Goya et al. 1993; 

Rogatsky, Trowbridge, and Garabedian 1997). Taken together, our results showed that the 

phenotypic profiling can provide the inference of SAR. 

 

Phenotypic profiling was independently reproducible between screens and suitable 

for screening unknown compounds 
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Based on the success of our result, we then asked whether we can use our phenotypic screen 

platform to deduce MoA of unknown compounds. But first we had to ascertain the 

reproducibility of our phenotypic platform. To test the reproducibility of our phenotypic 

platform, we re-screened a short list of compounds including two compounds from each 

subcluster and 8 compounds from the General cluster as controls. After standardizing the 

data, we found that the re-screened compounds appeared in the same subcluster they were 

previously. Our data suggested that we established a robust assaying platform and it gave 

us the confidence to use it to screen novel compounds.  

 

Potential discovery of novel anticancer agents  

SU 9516 is a drug that has anti-proliferative and pro-apoptotic activity in tumor cells(Lane 

et al. 2001). It is a potent, selective inhibitor of cyclin-dependent kinases (CDKs) with 

selectivity for Cdk2 (Lane et al. 2001). Four unknown microbial nature products, A7, A9, 

C7, C9, clustered significantly with SU9516 suggesting that they share potentially related 

MoA (Fig. 13). Chemical structural analysis revealed that the A9 molecule is identical to 

JBIR-06, a grp78 inhibitor (Ueda et al. 2008). A follow-up experiment using the CRISPR-

Cas9 system to knockout grp78 and comparable the phenotypic change to compound 

addition will elucidate the genetic target of A7, C7 and C9 and their relationship to A9. 

An improved cell-based phenotypic screening platform with good potential despite a 

few shortcomings 

Despite the results we have demonstrated, the use of phenotypic profiling to identify 

compound MoA could use some refinement. For instance, we identified 14 subclusters 
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denoting 8 unique MoAs.  In reality, there are more than 20 MoAs of anticancer drugs 

alone (Payne and Miles 2008). In theory, we could screen a compound library that is 

sufficiently large to contain compounds with all known modes of action. Also, due to the 

nature of the phenotypic clustering, each compound can only be identified by one MoA. 

For compounds with more than one MoA, they will be identified based on their primary or 

most prominent phenotypic perturbation. Moreover, in situations where multiple 

phenotypic changes are manifesting in similar proportion, the mode of action of that 

compounds could be misidentified. However, we have made progress in phenotypic 

screening by demonstrating a streamlined approach to identify MoA of unknown 

compounds – a step closer to target elucidation. We believe this method has considerable 

potential. Further integration of a CRISPR genomic knockout screen could lead to target 

identification.  
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FUTURE DIRECTIONS 

To confirm that the cell cycle kinetics and chemotherapy response in the isogenic p53 

mutant cells were due to Cas9-mediated TP53 mutation and not any off-target events, a 

donor template can be used to repair the TP53 mutation that was introduced with the 

CRISPR/Cas9 via homologous recombination to see if the wild-type TP53 phenotype is 

restored. So far, we introduced a p53 mutation in natively p53 wild-type BC cell lines and 

showed an increase in chemotherapy sensitivity. However, we can also reverse the process 

by repairing the p53 mutation in a natively p53 mutant cell line, T47D, and assess if it 

confers chemotherapy resistance. 

We examined the growth kinetics and apoptosis in tumors explanted from 

doxorubicin-treated mice and found that the p53 mutant tumors had a 1.5-fold increase in 

proliferation and a 10-fold increase in apoptosis. An analogues experiment can be followed 

up in the p53 wild-type and isogenic p53 mutant cell lines. Following doxorubicin 

treatment, we can stain the isogenic p53 cell line pairs with annexin V and quantify the 

cells in apoptosis via flow cytometry. 

So far we used our streamlined high-content cell-based phenotypic profiling assay 

to identify the mode of action of four novel natural products which are potential 

proapoptotic and anticancer agents. However, to understand the drug action we must first 

identify the drug targets, which can be accomplished using a CRISPR-Cas9 genetic KO 

screen. The purpose of the genetic knockout screen is to determine whether the loss of a 

gene can recapitulate the phenotypic response to a compound. Identical cellular imaging 

process to the compound screening is implemented to quantify any targeted gene knockout-
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induced perturbations on cellular phenotype. A phenotypic readout is be based on 

morphological and texture-based parameters. Clustering the readout from the genetic KO 

screen with the compound treatment screen gives an unbiased comparison of phenotypic 

resemblance. Significant correlation in phenotype clustering between the genetic KO 

screen and the compound treatment screen indicate the genetic target is associated with the 

observed phenotype. 8 genetics targets are chosen for the screen (6 targets, 1 positive 

control, and 1 negative control).  

GRP78 

GRP78 is a chaperone located in the lumen of ER that binds newly synthesized 

proteins as they are translocated into the ER (A. S. Lee 2005). It maintains the protein 

in a state ready for subsequent folding. When there is an accumulation of unfolded 

polypeptides in the ER, the unfold protein response (UPR) triggers an increase 

expression of GRP78 (A. S. Lee 2005). One of the novel compound A9 is known in 

the literature as JBIR-06. JBIR-06 is reported to inhibit the expression of GRP78 

(Ueda et al. 2008). I hypothesize that knocking out GRP78 in MCF7s may result in 

comparable phenotypic change as adding one of the novel compounds A7, A9, C7, 

C9.  

 

PERK 

PERK, an ER transmembrane kinase, is activated by ER stress and functions as an 

effector of UPR (Brewer and Diehl 2000). PERK links stress in the ER to the 

regulation of cell-cycle progression(Brewer and Diehl 2000). One study 

demonstrated that the activation of PERK is sufficient to mediate loss of cyclin D1 

and promote cell-cycle arrest (Brewer and Diehl 2000). Based on the screen, 

compounds A7, A9, C7, and C9 induced a significantly elevated FUCCI-G1 

expression. I hypothesize that after knocking out PERK in MCF7s, the addition of a 

novel compound (A7, A9, C7, and C9) may no longer induce a significantly elevated 

FUCCI-G1 expression. 

 

TOP2A  

DNA topoisomerase 2-alpha is an enzyme that catalyzes the transient breaking and 

rejoining of the double-stranded DNA during mitosis. Anthracyclines, such as 

Doxorubicin and Daunorubicin, are known topoisomerase II poisons (Bodley et al. 

1989; Tewey et al. 1984). They intercalate into DNA and prevent its re-ligation after 

breaking (Bodley et al. 1989; Tewey et al. 1984). I hypothesize that knocking out 

TOP2A in MCF7s may result in comparable phenotypic change as adding a 

topoisomerase IIa poison.  
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KATNA1 and STMN1 

Paclitaxel (Taxol) binds to beta-tubulin and inhibits the depolymerisation of the 

microtubules(Amos and Löwe 1999). Exposure to paclitaxel is known to cause cell 

death through mitotic catastrophe (Merlin et al. 2000). Both Katanin and 

Op18/Stathmin are considered microtubule destabilizers and facilitate microtubule 

disassembly (Hung et al. 2004). Katanin (KATNA1) is a microtubule destabilizing 

protein that functions as a severing factor. Op18/Stathmin (STMN1) increases the 

catastrophe rate of microtubules, sequestering tubulin dimers and promoting GTP 

hydrolysis. I hypothesize that knocking out either KATNA1 or STMN1 in MCF7s 

may result in comparable phenotypic change (nuclear fragmentation) as adding a 

mitotic inhibitor.  

 

ATP1A1  

Na+/K+-ATPase is an enzyme found in the plasma membrane of all animal cells that 

pumps sodium out of cells while pumping potassium into cells, both against their 

concentration gradients. Cardiac glycosides inhibit the pumps by stabilizing it in the 

E2-P transition state (Weiford 2005). It results in an elevated intracellular sodium 

concentration. I hypothesize that knocking out Na+/K+-ATPase (ATP1A1) in MCF7s 

may result in comparable phenotypic change as adding a cardiac glycoside.  

 

MDM2 - Positive control 

MDM2 is a protein that in humans is encoded by the MDM2 gene. Mdm2 is an 

important negative regulator of the p53 tumor suppressor. Increase expression of p53 

will lead to cellular senescence and cell cycle arrest in the G1/G0 phase. This can be 

measured from an increase in FUCCI-G1 expression. I hypothesize that knocking out 

MDM2 in MCF7s may result in comparable phenotypic change as adding a p53 

activator. 

 

HPRT - Negative control  

HPRT is a housekeeping gene and will be used a negative control. 
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CONCLUSIONS  

First, we investigated the relationship between TP53 status and chemotherapy response in 

ER+ human breast cancer. We used isogenic p53 mutant ER+ BC cell lines and human BC 

cancer cell line xenografts to demonstrate that p53 mutations confer an elevated 

susceptibility to anthracycline-based chemotherapy compared to p53 wild-type in ER+ 

breast cancer. By circumventing p53-mediated cell cycle arrest, p53 mutant ER+ cancer 

cells become more sensitive to cytotoxic assault that lead to increased apoptosis and 

improved response. The relationship between TP53 status and treatment response remains 

controversial. While some reported that wild-type p53 activity is beneficial in breast cancer 

response, others have shown the opposite. In this study, we provided some compelling 

evidence that TP53 mutation in human breast tumors leads to an improved response to 

anthracycline-based chemotherapy which is consistent with previous studies (Jackson et 

al. 2012; P Bertheau et al. 2002). TP53 status is not used clinically to manage breast cancer 

(Harris et al. 2007). However, given that TP53 mutation occurs in over 50% of cancers and 

30% of breast cancer (Varna et al. 2011), it would be ideal if TP53 is a useful biomarker 

for the management of breast cancer. In this study, we also provided the evidence 

supporting the notion that TP53 gene signatures can be a clinically meaningful predictive 

and prognostic marker of response to chemotherapy for patients with ER+ breast cancer. 

Next, we described a streamlined high-content cell-based phenotypic profiling 

assay that elucidate the mode of action of novel natural products. Our streamlined pipeline 

harnessed the benefit of high content screening, which combines the efficiency of high-

throughput techniques with the capability of cellular imaging to quantify any compound-
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induced perturbations on cellular phenotype via a series of morphological and texture-

based parameters, while eliminating the need for fixation and staining, which affects 

existing assays in reducing screen throughput and introducing the potential variations and 

artifacts. To further couple it with a CRISPR-Cas9 knockout screen would enable a faster 

identification of drug targets. Ultimately, using differentiated cells derived from patients 

for the phenotypic screening assay can contribute the development of cell-based disease 

models and personalized medicine.  
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