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Lay Abstract 

Earthquakes remain a significant and potentially devastating threat to both 

developed and developing countries. Structural elements within a building, such as beams 

and columns, must deform considerably to accommodate the relative floor displacements 

that develop due to ground motion. Conventional construction materials are not capable 

of undergoing these large deformations without irreversible and potentially catastrophic 

damage. The introduction of a flexible layer at the foundation level of a structure, using 

elements known as isolators, can dramatically reduce damage. The deformation is 

concentrated at the flexible layer, which can undergo large displacements without any 

damage. This concept, known as base isolation, protects both the structure and its 

contents. Traditional isolators are expensive, thus far hindering the application of base 

isolation systems. A novel isolator design has been proposed that has the potential for 

widespread economical application. To increase the application, building codes need to 

be developed, requiring substantial research on the isolator properties. A key component 

of the novel isolator is the ability to alter the isolator geometry to further enhance the 

response. This is validated through experimental testing and complex computer models.   
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Abstract 

Seismic base isolation has become an increasingly common approach to reduce 

earthquake induced losses. Base isolation aims to decouple  structures, such as buildings 

or bridges, from strong ground motions through the introduction of a flexible layer, 

typically located at the foundation. Base isolation is a well-established concept and 

accepted as an effective method of protecting both the structure and its contents from 

damage due to earthquakes.  

Elastomers are ideal for base isolation due to their soft material properties and 

ability to undergo large recoverable strains. Steel-reinforced elastomeric isolators (SREIs) 

have been widely applied as base isolators; however, the weight and cost of SREIs have 

been perceived as barriers to the widespread application of base isolation. In order to 

alleviate these concerns, it has been proposed that the steel reinforcement could be 

replaced with lighter fiber reinforcement with similar tensile properties as steel. Recent 

investigations have demonstrated that fiber-reinforced elastomeric isolators (FREIs) are 

viable and have desirable characteristics. 

An additional proposed cost saving measure was to place the FREI unbonded 

between the upper and lower supports. The combination of the flexible fiber 

reinforcement and the unbonded application resulted in a unique rollover deformation 

under horizontal displacement. Rollover causes a nonlinear force-displacement 

relationship characterized by a softening and stiffening phase. This nonlinear relationship 

is believed to be advantageous and to allow the performance of the device to be tailored 

to the earthquake hazard level.  

This work investigates the adaptive characteristics of unbonded FREIs. It is 

demonstrated that the softening and stiffening characteristics of the isolator can be altered 

through modifications to the isolator or to the surrounding support geometry. Equations 

are developed to predict the horizontal force-displacement relationship. Furthermore, 

simple expressions appropriate for use in building and bridge design codes are proposed 

for critical isolator properties. Potential limitations introduced due to the unbonded 

application are identified and addressed through the development of a new partially 

bonded hybrid isolator. It is demonstrated that unbonded FREIs are highly versatile and a 

potentially competitive device appropriate for widespread application in developed and 

developing countries.  
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1 Introduction 

Current building codes around the globe, including the National Building Code of 

Canada (NBCC) [1], use a force-based design approach that predicts the performance of 

the structure based on the elastic stiffness. It is anticipated and accepted that some level of 

damage will occur within the structure during a strong earthquake event. In order to 

accommodate this, the structure is designed such that plastic hinges form in strategic 

locations to utilize ductility and allow deformations to occur without compromising the 

structural integrity. Although plastic hinges aid to protect the structure from catastrophic 

failure, the cost of repairing localized damage remains high [2], and the economic 

consequences of the loss of functionality of the structure during repairs cannot be 

overlooked. 

In addition to the tragic loss of thousands of lives, 2011 saw the largest economic 

losses ever recorded worldwide due to earthquake related damages [3]. Included in these 

losses are the Canterbury earthquakes, a series of earthquakes that were larger than 

anticipated and occurred in an unexpected area. Although relatively small in a global and 

historical perspective, this series of earthquakes devastated the downtown core of 

Christchurch, New Zealand, and resulted in the deaths of nearly 200 people [3]. While the 

scale of this devastation was intolerable, losses from earthquake events are also 

inevitable. Large areas of Canada are relatively seismically inactive; however, large 

portions of the population reside along the west coast and the St. Lawrence River valley, 

two of the most seismically active areas in Canada. Scenarios portraying moderate 

seismic events in these areas project losses exceeding 60 billion [4], in addition to a large 

number of potential injuries and fatalities. 

For conventional structures, the issue of repair or replacement requirements after a 

significant earthquake event will always remain to some degree. Furthermore, the value 

of an average office building is dominated by the contents and non-structural components 

contained within it, which can account for 80 % of the total value, far surpassing the 

worth of the structure [5]. Conventional seismic design approaches offer little protection 

to equipment within the structure which may be damaged due to the high floor 

accelerations induced by an earthquake event. In this way, it is possible to compromise 

the functionality of a facility without necessarily damaging the structure itself. 

The inherent large uncertainties associated with earthquake events and the 

probabilistic nature of design procedures make it imperative to investigate and appreciate 

the consequences of making an error. These uncertainties present unique challenges to 

designers when considering earthquake loading on a structure. The long return periods of 

large seismic events, which can be hundreds or thousands of years, allow past events to 

fade from memory as the general public becomes complacent and less concerned of the 
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looming hazard. Designing a structure to withstand earthquakes is a delicate balancing act 

between perceived hazard, actual hazard, the cost of the structure, insurance premiums, 

and potential repairs or replacements. 

Substantial improvements to earthquake engineering practices often come after a 

major seismic event. The drive to develop effective methods of mitigating the potential 

for damage or the loss of functionality of the structure or the contents has seen many new 

and innovative approaches proposed as the knowledge of the response of structures to 

strong ground motions increases. Amongst these innovative technologies is seismic base 

isolation, a passive approach to earthquake engineering that seeks to prevent the 

development of large seismic forces within the structure, simultaneously protecting the 

structure, the contents, and most importantly the people within the structure. 

1.1 Basic Concept of Base Isolation 

Conventional buildings and bridges are constructed directly on top of a foundation 

that transfers the loads from the structure to the ground. In the case of strong ground 

motions, the reverse is also true, and the foundation can be viewed as an avenue for loads 

to be transferred to the superstructure, causing the structure to experience large 

accelerations and related inertial forces. In lieu of constructing the structure directly on 

top of the foundation, a soft horizontal layer can be introduced. The soft horizontal layer 

decouples the structure from ground motions in the horizontal direction, resulting in 

concentrated large displacements at the isolation layer that dominate the response of the 

structure, as demonstrated in Figure 1-1. The resulting fundamental frequency of the base 

isolated structure is in a range where the energy content of a typical earthquake is much 

less severe, causing lower response accelerations, as illustrated in Figure 1-2. The new 

low frequency mode shape introduced by the isolation layer experiences minor inter-

storey displacements; consequently, the structure ideally responds as a near-rigid block on 

top of the isolation layer. The overall result is a significant reduction of accelerations and 

associated forces and other key performance indicators within the structure.  

The benefits of a base isolation system are closely related to the shift in the 

fundamental frequency with secondary benefits and further reductions in accelerations 

obtained due to superior damping characteristics within the isolation system. The amount 

of damping introduced by the isolation system varies significantly depending on the type 

of isolator [6]. It is also not uncommon to include a supplementary damping system (e.g. 

steel U-shaped dampers or lead dampers) as an addition to the isolation system to 

improve the overall damping characteristics of the system.   
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1.2 Main Design Considerations 

There are three main design considerations associated with base isolated structures: 

a high vertical stiffness, low horizontal stiffness and sufficient damping [7]. Intuitively, 

the isolation layer must be capable of supporting the vertical load of the structure. The 

vertical accelerations of an earthquake event are often considered to be of lesser concern 

than the horizontal accelerations, or simply neglected by designers. Isolation elements 

with a high vertical stiffness are necessary to supress potential rocking modes introduced 

by the isolation system [6]. The high vertical stiffness minimizes the vertical movement 

of the structure, supressing potential vertical motions and ideally resulting in similar 

vertical performance as a conventional fixed base structure.  

The effectiveness of a base isolation system is primarily associated with horizontal 

flexibility; therefore, the horizontal stiffness must be sufficiently low to ensure that the 

fundamental frequency is displaced out of the critical high energy range of a typical 

earthquake. Despite the shift in fundamental frequency, some energy will always occur at 

the isolation frequency. A lower fundamental frequency is associated with large 

displacements, which are responsible for an increase in cost and loss of real estate value 

as the size of the seismic gap, or area around the structure that the building displaces into, 

must be increased. It is necessary to ensure that the displacements of the structure do not 

exceed the seismic gap to prevent the structure from impacting the moat walls. Sufficient 

damping is required at the isolation level to restrict the displacements to an acceptable 

level. Some level of initial stiffness is also required to prevent excessive movement under 

small earthquakes and service wind loading.   

1.3 Economics and Application 

There are many obstacles to overcome before base isolation becomes common 

worldwide. One of the most significant obstacles is the additional cost associated with the 

isolation system. There are four principle cost considerations as a consequence of 

earthquakes for the construction of new facilities [8]: the initial cost of construction; 

annual earthquake insurance premium; physical damage that must be repaired after an 

earthquake; and damage to building contents, injury to occupants, and loss of building use 

during repairs. Although a base isolation system increases the initial cost of construction, 

it has the potential to significantly reduce the costs associated with the other three 

considerations.  

The cost of implementing a base isolation system has thus far largely restricted the 

application to high importance structures, primarily those of historical significance such 

as city halls and government buildings [6].   New construction projects can be viewed as 

having an advantage over the retrofit of existing structures simply due to increased access 

to the isolation layer, resulting in reduced labour in the installation process. It is important 
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to compare the performance of the seismically isolated structure with a traditional fixed 

base structure designed to provide the same degree of protection [6]. In this scenario, the 

base isolated structure is always more cost effective since stiffening a structure to prevent 

damage typically also results in increased force demand.  

Existing structures, constructed according to older building codes based on limited 

knowledge of structural response to earthquakes, pose a greater risk of catastrophic 

failure or significant damage. Ultimately, the cost of the isolation system would be 

substantially less than the costs associated with replacing the structure, including 

economic losses. In some cases, such as for historical structures, the building is simply 

irreplaceable. When considering the loss of life that can be prevented by widespread base 

isolation practice, the initial cost is well justified. Despite this, developing a cost-effective 

and practical method to apply base isolation in developing countries, where loss of life 

from seismic events is generally more severe due to poor construction practices, remains 

a primary focus within the research community.  

The acceptance of base isolation within the engineering community is primarily 

dependant on code requirements and appreciation of the benefits. Current code 

requirements are generally complicated and conservative, not allowing the full benefits of 

a base isolated structure to be realized [6]. Full scale data on base isolated structures and 

performance reviews are generally restricted to the occurrence of a significant earthquake 

event.  Furthermore, although the concept has been recognized for over 100 years, it has 

only gained significant recognition in the academic community in the last few decades. 

As the engineering community becomes more familiar with the concept and application, 

and as earthquake events occur and clearly emphasize the benefits of base isolation, it is 

anticipated that base isolation will become common practice in high seismicity zones 

around the world.  

1.4 Types of Isolators 

Seismic base isolators generally fall into two broad categories: sliding and 

elastomeric. The former is characterized by sliding between two or more surfaces with a 

low coefficient of friction. Variations of the friction pendulum system, shown in Figure 

1-3, use a spherical sliding surface to provide a restoring force. If the curvature is 

constant, the system will have a linear restoring force. Non-linear adaptive responses (i.e. 

the properties of the device change depending on the loading level) can be obtained by 

introducing multiple sliding surfaces, such as the triple friction pendulum (TFP) [9] or 

sliding systems with variable curvature [10].  

Elastomers have been used in base isolation since 1969 and are ideal for base 

isolation due to the soft material properties and near incompressibility [11]. The near 

incompressibility of the elastomer causes it to bulge laterally when compressed under the 
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weight of the structure as shown in Figure 1-4. Without reinforcement, the vertical and 

horizontal stiffness values of a solid elastomeric pad are comparable. In order to supress 

potential rocking modes, alternating horizontal layers of elastomer and reinforcement are 

used. The reinforcement restrains the lateral bulging which develops a high vertical 

stiffness with little change to the horizontal stiffness.  

1.4.1 Steel-Reinforced Elastomeric Isolators 

Steel shims were originally selected as the reinforcement of choice to reduce lateral 

bulging and vertically stiffen the isolator. A steel-reinforced elastomeric isolator (SREI) 

typically contains two large steel end plates and many thin reinforcing plates. After an 

extensive preparation process, the steel is bonded to the elastomeric layers during 

vulcanization [11]. The large steel end plates are used to mechanically fasten the isolator 

to the structure and the foundation. A profile view of a bonded SREI is illustrated in 

Figure 1-5. SREIs are inherently heavy and expensive, weighing one ton or more and 

costing as much as $10,000 for a single isolator [12, 13]. The cost and weight of this type 

of isolator have been perceived to act as barriers to its widespread application. 

1.4.2 Fiber-Reinforced Elastomeric Isolators 

Fiber-reinforced elastomeric isolators (FREIs) were proposed as an alternative to 

conventional SREIs [13]. The fiber reinforcement is substantially lighter than steel but 

has similar mechanical properties in tension. In this preliminary study [13], advantageous 

damping characteristics were identified and attributed to the inter-fiber movements. 

Furthermore, it was suggested that FREIs could be manufactured in larger pads and 

subsequently cut to the desired size. Isolators cut from a larger pad were evaluated by 

Toopchi-Nezhad et al. [14] in an experimental study and shown to perform well in the 

vertical and horizontal direction, thus validating the concept.  

1.4.3 Unbonded Fiber-Reinforced Elastomeric Isolators 

The installation costs could be further reduced by positioning the isolator unbonded 

between the supports, thereby eliminating the need for large steel end plates to 

mechanically fasten the isolator to the supports. Finite element analysis has identified that 

the unbonded application also prevents the development of large tensile stresses that 

occur within the elastomeric layers of bonded isolators [15]. Due to the lower tensile 

stress demand, the bond requirements between the elastomer and reinforcement are also 

reduced. Note that the unbonded application determines that this device is unable to resist 

tensile forces and is also susceptible to slip and residual displacements in extreme loading 

conditions.  

As a consequence of the unbonded application and the lack of flexural rigidity of 

the fiber reinforcement, unbonded FREIs undergo a unique rollover deformation. 
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Rollover occurs as the initially horizontal surfaces of the isolator rotate and lose contact 

with the supports, illustrated in Figure 1-6a. Rollover will continue until the initially 

vertical faces of the isolator become horizontal and contact the supports, denoted as full 

rollover, illustrated in Figure 1-6b. Rollover is the characteristic feature of unbonded 

FREIs and is associated with several potentially advantageous performance 

characteristics.  

The size of the rollover section is proportional to the horizontal displacement [16]. 

The resistance to horizontal displacement is greater in pure shear than an equivalent 

rollover section. Therefore, as rollover occurs the isolator softens. This softening 

continues until full rollover occurs, restricting further rollover, stiffening the isolator. The 

magnitude of the softening is proportional to the aspect ratio, defined as the ratio of the 

width-to-total height in the direction of horizontal displacement. Isolators with low aspect 

ratios are highly sensitive to rollover. Originally observed by Toopchi-Nezhad et al. [17], 

as the aspect ratio increases, the size of the rollover section, which remains constant, 

becomes small in comparison to the size of the isolator, reducing the sensitivity to the 

rollover and the softening. If the tangential horizontal stiffness remains positive at all 

levels of imposed horizontal displacement, the isolator is defined as being horizontally 

stable and to have undergone stable rollover. Isolators exhibiting this type of stable 

behaviour were denoted as stable unbonded fiber-reinforced elastomeric isolators (SU-

FREIs) [14]. In Toopchi-Nezhad et al. [17] stable rollover was observed in unbonded 

FREIs with an aspect ratio of 2.5.   

The softening and stiffening regimes of SU-FREIs are believed to be ideal to meet 

the multiple performance objectives, implying that SU-FREIs can serve as adaptive 

devices. At very low displacements the horizontal stiffness is initially large, which 

reduces excessive movement due to smaller service loads. If a substantial seismic event 

occurs, the isolator will operate in the softening regime, maximizing the efficiency of the 

system. During extreme events, the stiffening regime caused by full rollover is believed to 

serve as a self-restraint mechanism to restrict excessive displacements. An idealized 

force-displacement relationship of a SU-FREI and bonded isolator is compared in Figure 

1-7. 

1.5 Impetus and Research Objectives 

Though the concept of base isolation is well established, the application of this 

technology has varied significantly globally and is limited in Canada. Initially proposed 

as potentially low-cost isolators, the development of FREIs has greatly increased the 

practicality and potential application of elastomeric isolators. While some of the benefits 

of FREIs have been identified in experimental and finite element studies, understanding 

and predicting the performance of this type of isolator is largely unexplored. The 
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characteristic softening and stiffening of SU-FREIs are believed to be ideal for SU-FREIs 

to function as an adaptive device, enabling the device to meet multiple performance 

objectives at different hazard levels. To fully appreciate and utilize the identified benefits, 

a detailed understanding of the factors influencing the characteristics is required, thus 

enabling designers to obtain the desired hysteretic response for the specific case being 

considered. 

This study demonstrates that the horizontal force-displacement relationship of 

unbonded FREIs can be predicted, and that critical properties, such as the compression 

modulus and bending modulus, can be determined from simple expressions appropriate 

for use in design codes. The versatility and adaptability of unbonded FREIs is established 

through experimental testing and numerical modelling investigating changes to the 

geometry of the isolator and the supports to tailor the hysteresis to the desired response.  

Potential limitations are identified and addressed by proposing a new device: a hybrid 

isolator merging the beneficial characteristics of an unbonded and fully bonded isolator. 

This study generates original knowledge aimed at increasing base isolation practice with 

fiber-reinforced elastomeric isolators by transitioning fiber-reinforcement from being 

viewed as an unknown variable, to a known variable that offers beneficial features.  

1.6 Structure of Thesis 

This thesis contains previously published and prepared materials. Chapter 3 to 

Chapter 8 were designed to become stand-alone documents and, as such, each chapter 

contains references. Due to the structure of the thesis, it is likely that overlap will occur 

between chapters, mainly in the introduction and background of each.  

Chapter 2 provides a brief literature review with focus on FREIs. The chapter 

discusses material considerations and fundamental concepts relating to the vertical and 

horizontal stiffness. Other considerations, such as stability, are also discussed. Many of 

these concepts are discussed in greater detail in the literature reviews contained within 

subsequent chapters.  

Chapter 3 develops an analytical model for the shear behaviour of unbonded FREIs 

that includes the contributions of the rollover sections. Large deflection theory is used to 

model the deformed shape of the rollover section and predict full rollover. The model is 

used to conduct a parametric study on the width-to-total height aspect ratio and 

reinforcement stiffness.  

Chapter 4 proposes generalized expressions for the compression modulus, bending 

modulus and maximum shear strain due to compression for use in design codes. The 

expressions are obtained through a procedure involving Taylor series expansions and 

truncations. The generalized expressions include bulk compressibility and reinforcement 
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extensibility and can be adapted to different pad geometries by selecting coefficients from 

a table.  

Chapter 5 expands on Chapter 4, developing generalized expressions for the 

maximum shear strain due to rotation. Generalized expressions for the compression 

modulus, bending modulus, and maximum shear strain due to compression for a 

rectangular pad are also derived. Together, Chapter 4 and 5 present a full suite of 

generalized equations appropriate for use in design. It is demonstrated that both the 

compressibility of the elastomer and reinforcement extensibility can be accounted for in 

simple expressions that are often more accurate than expressions used in existing codes 

and standards.  

Chapter 6 and 7 investigate methods of modifying the hysteretic characteristics of 

FREIs. Chapter 6 proposes that rectangular isolators can be modified with the 

introduction of holes to soften the horizontal response. The paper includes an 

experimental and numerical study on the sensitivity of the vertical properties of modified 

rectangular FREIs to the size and geometry of the hole. Chapter 7 numerically models a 

structure subjected to increasing earthquake hazard levels. The study investigates the 

effect of the softening and stiffening characteristics on the structure based on selected key 

performance indicators. The stiffening characteristics are altered using modified support 

geometry to accelerate or delay full rollover.  

Chapter 8 proposes the concept of partially bonding FREIs to form a hybrid 

between bonded and unbonded isolators. An experimental program is conducted with two 

different isolator layer designs and bond lengths. The experimental results are used to 

develop a finite element model that investigates the sensitivity of the horizontal properties 

to bond length and the possibility of vertical tensile loading.  

Chapter 9 concludes the thesis. It summarizes the primary findings from each 

chapter. It also provides recommendations and sets a direction for future research into 

FREIs.   
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Figure 1-1:  Mode shapes of a discretized three storey structure 

 

Figure 1-2: Idealized acceleration response spectra showing the decrease in response 

acceleration caused by a base isolation system 

 

Figure 1-3: Friction Pendulum System 

 
  (a) (b) 

Figure 1-4: Lateral bulging of an (a) unreinforced and (b) reinforced elastomeric 

isolator under vertical load 
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  (a) (b) 

Figure 1-5: Profile view of a bonded (a) an undeformed and (b) deformed SREI  

 
  (a) (b) 

Figure 1-6: Profile view of an unbonded FREI showing (a) rollover and (b) full 

rollover 

 

Figure 1-7: Idealized horizontal force-displacement relationship for a bonded FREI 

and SU-FREI 
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2 Literature Review of Elastomeric Isolators 

2.1 Elastomeric Materials 

2.1.1 Main Considerations 

Elastomers are materials that can undergo large recoverable strains at relatively low 

stress levels [1]. The near incompressibility and soft material properties of elastomers 

make them ideal for application as base isolators. Elastomeric base isolators are typically 

manufactured using natural rubber, although Neoprene has also been used [2]. The stress 

strain relationships of elastomeric materials are inherently non-linear due to the cross-

linked molecular chains that are highly twisted, kinked, and coiled [1]. This non-linear 

behaviour is characterized by three main phenomena: non-linear elastic response under 

static load; rate-dependent hysteretic behaviour under cyclic loading; and the Mullins 

effect [3]. The Mullins effect is a strain-induced stress softening during loading cycles. 

The Mullins effect can be observed in tension, compression, or shear loading. The stress 

variation over successive cycles is largest between the first and second cycle and 

decreases over each subsequent cycle.  After six to ten cycles, the stress variation often 

becomes negligible [4]. In light of the Mullins effect, design codes often indicate which 

cycle the isolator properties should be determined from or stipulate the maximum 

decrease in horizontal stiffness allowed between successive cycles [5, 6].  

Despite the non-linear properties of the elastomer, elastomeric bearings are often 

studied analytically assuming the elastomer to be linear elastic [7-18]. Material 

properties, such as the shear modulus, are often selected depending on the magnitude of 

the expected strain, if possible, or selected from a standardized test at a suggested strain. 

Numerous FEA investigations have modelled the elastomer using simple material models 

based on one or two material parameters and obtained good agreement with experimental 

results [19-23]. Other investigations (e.g. [24]) have selected material models requiring 

more terms to better capture the non-linear characteristics. Despite the commonly 

assumed linear elastic behaviour in analytical investigations and simplified material 

models in FEA, it should be appreciated that the material and load conditions may have 

considerable influence on the performance of the elastomeric isolator. 

2.1.2 Long-Term Performance 

The inherent long design life of structures requires the consideration of the long-

term performance: notably, the evolution of the elastomeric properties due to aging, creep 

due to sustained loads, and fatigue due to repeated cycles. Seismic isolation with 

elastomeric bearings remains in the early stages of its application and development, 

consequently research in these areas can be limited.  
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Aging refers to exposure of the elastomer to environmental factors (e.g. ozone, heat, 

oxygen, sunlight, humidity, etc.). The aging process of elastomers notably causes 

stiffening, decrease in ductility before failure and decreased tensile strength. An accurate 

understanding of the aging characteristics of the elastomeric material is necessary to 

prevent additional financial burdens due to the premature replacement of a functioning 

system; or having a system perform otherwise than intended by design due to an increase 

in the stiffness and decrease in the ductility; which could have significant consequences.  

Smaller isolators are more sensitive to aging due to the larger ratio of exposed 

surface area to total volume of elastomer [25]. The permeability of the elastomer 

decreases significantly with oxidation, subsequently acting as a mechanism to prevent 

further oxidation of the interior volume of elastomer. This was demonstrated 

experimentally on Neoprene and natural rubber by Yura et al. [26]. The investigation 

used accelerated aging to compare three sizes of square Shore A 50 and 70 Durometer 

specimens with lengths of 25 mm, 51 mm and 76 mm.  

Aging of elastomers has been studied extensively using the Arrhenius approach, 

which aims to accelerate the natural aging process by heating the elastomer and 

translating the change in properties into aging at ambient temperatures. This approach has 

been adapted in numerous design codes; however, it is often difficult to quantify what 

time period the accelerated approach represents at ambient temperatures. Experimental 

investigations on the aging of natural rubber using accelerated methods [25-29]; and 

Neoprene with natural aging [2, 30] and accelerated methods [26, 30-32] have all 

concluded that the aging of the elastomer may be significant and should be included in 

the design process; however, the magnitude of the aging varies significantly between the 

studies and time periods considered.  

2.2 Reinforcement 

The primary function of the reinforcement is to restrain the lateral bulging of the 

elastomeric layers when vertically compressed under the weight of the structure. Due to 

the near incompressibility of the elastomer, the restraint of lateral bulging vertically 

stiffens the isolator while leaving the horizontal stiffness relatively unchanged. As the 

lateral bulging is increasingly restrained, the bulk compressibility can play an important 

role in the properties of the isolator. The reinforcement generates shear stresses in the 

elastomer as lateral bulging develops. The reaction to the shear stress in the elastomer is a 

horizontal tensile stress in the reinforcement. The analytical solution for tensile stresses in 

the steel reinforcement of a circular pad was presented in Kelly and Konstantinidis [8, 33] 

assuming a compressible or incompressible elastomer. The solution showed that the stress 

in the circular steel plates is often considerably less than the yield stress, with the 

maximum stress occurring at the center.  
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Unlike steel reinforcement, the mechanical properties of fiber reinforcement can 

vary considerably by type of fiber, weave, and density of fibers. For example, Russo et al. 

[31] compared FREIs with bi-directional and quadri-directional carbon fiber weaves. It 

was found that the quadri-directional weave increased the vertical stiffness and the energy 

dissipation during horizontal cyclic tests. Note that the fabric density in the quadri-

directional weave was larger than the bi-directional weave. An increase in fabric density 

(i.e. more fibers are present) is expected to allow for increased inter-fiber movements and 

consequently increased energy dissipation [10].  

In an earlier study on FREIs, Kevlar fiber was used [7]. The experimental portion of 

the study identified that the use of fiber reinforcement was able to substantially increase 

the equivalent viscous damping from 8 % associated with the elastomeric compound to 

between 14 % and 19 % depending on the shear strain. It was postulated that the 

increased energy dissipation characteristics originate from slip between the individual 

fibers of the reinforcement [7]. A subsequent study compared the use of Polyester, FIBP, 

Nylon, carbon and glass fibers as reinforcement [34]. The study confirmed, through 

experimental testing, that fiber reinforcement was able to provide substantial vertical 

stiffness and increased damping in comparison to steel reinforcement.  

More recently, two experimental programs have compared FREIs and SREIs that 

either observed no appreciable difference in equivalent viscous damping [35] or that the 

equivalent viscous damping improved with fiber reinforcement [36]. Naghshineh et al. 

[35] experimentally compared bonded circular and annular SREI and FREI specimens 

with different thicknesses of elastomer and reinforcement. The bearings were compared 

by matching the shape factor, but the total height of the specimens varied. The fiber 

reinforcement was a bi-direction carbon fiber mesh, which was selected to accommodate 

better bonding between the elastomeric layers. Based on horizontal cyclic experiments, 

Naghshineh et al. [35] found that the equivalent viscous damping of the SREI was 

between 90 % and 128 % of the FREI depending on the specimen and cycle amplitude. 

Naghshineh et al. [35] concluded that since the equivalent viscous damping was 

comparable, that the elastomer provides most of the energy dissipation.    

Strauss et al. [36] experimentally investigated square bonded and unbonded FREIs 

and bonded SREIs. The fiber reinforcement was plain weave bi-directional carbon fiber. 

Three layer designs were considered with the shape factor held consistent between 

specimens of the same layer design, allowing the total height to vary.  Strauss et al. [36] 

observed that FREIs achieved higher values of equivalent viscous damping than SREIs 

over a range of vertical stress. By comparing bonded and unbonded FREIs, it was found 

that the unbonded FREIs generally had lower equivalent viscous damping than the 

bonded FREIs.  
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These studies suggest that the energy dissipation of the fiber reinforcement in 

FREIs is not yet quantifiable. It should be noted that the fundamental differences between 

a SREI and FREI make a direct comparison difficult to achieve (e.g., the thickness of the 

reinforcement, and consequently the height and vertical stiffness, amongst other 

parameters are not necessarily identical). 

In general, SREIs and FREIs are analyzed in a similar fashion. Assumptions 

relating to the elastomer apply to both isolator types with the analysis varying only on 

assumptions related to the mechanical properties of the reinforcement. Steel 

reinforcement is often assumed to be rigid in flexure and inextensible, whereas fiber 

reinforcement is conversely assumed to be extensible and to provide no appreciable 

resistance in bending. Methods of analyzing elastomeric isolators are further investigated 

in the subsequent sections.  

2.3 Vertical Stiffness 

The volumetric strain and volume of lateral bulging, and consequently the vertical 

stiffness, is dependent on the elastomeric layer geometry and thickness. This dependency 

is often represented by the shape factor of the elastomeric layer, defined as the ratio of 

loaded area to unloaded area. The assumption of incompressibility is convenient for 

simplifying the analysis, although it can lead to unconservatively high estimates of the 

vertical stiffness for moderate and high shape factors [37]. The vertical deformation is 

accommodated either by lateral bulging, related to the shape factor, or by volumetric 

strain, related to the bulk modulus. For very small shape factors (i.e. very thick pads) the 

vertical deformation is accommodated almost entirely by lateral bulging; thus the isolator 

can be assumed to be incompressible. The reinforcement restrains the elastomeric layers, 

reducing the volume of elastomer that bulges laterally, which, for equal vertical strain, 

increases the volumetric strain and dependency on the bulk modulus, thus stiffening the 

isolator.  

2.3.1 SREIs 

Closed form solutions for the compression modulus of SREIs have been developed 

using the pressure solution. The basic assumptions of the pressure solution used to 

simplify the analysis are [38]: 

 the elastomer is perfectly bonded to the steel shims 

 horizontal planes remain plane and parallel 

 lateral bulging follows a parabolic vertical profile 

 that the elastomer is linear elastic 

 the normal stresses within the elastomer are dominated by the internal 

pressure 

 the shear stresses in the horizontal plane are negligible 
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 all normal stresses are zero at the free lateral surfaces 

The pressure solution is considered valid for elastomeric pads with a shape factor of 

about 5 or higher [38]. The pressure solution has been used to develop closed form 

solutions for the compression modulus, Ec, assuming an incompressible and compressible 

elastomer for infinite strip [39], circular [37], rectangular [8, 38], and annular [17, 8] 

pads, respectively. Analytical solutions derived using the pressure solution have been 

validated numerically with finite element analysis [40].The vertical stiffness, kv, is related 

to Ec by: 

 
   

   

  
 (2-1) 

where A is the plan area of the pad, and tr is the total thickness of the elastomeric layers in 

the isolator. Other studies, such as Pinarbasi et al. [41, 42] and Qiao and Lu [43], reduced 

the number of simplifying assumptions made by the pressure solution, but showed that 

the solution converged to the pressure solution for pads with large shape factors.  

It is interesting to note the high sensitivity of the compression modulus of an 

annular isolator to the presence of a small hole. The purpose of the hole varies depending 

on the application and often is a result of the manufacturing procedure; in some situations 

the hole is intended to contain a lead plug to introduce additional damping, in other 

situations the hole may be used as a method to reduce horizontal stiffness. In the case of a 

lead plug, it may be acceptable to assume that the lead plug prevents lateral bulging and 

thus the influence of the hole is negligible. Otherwise, introducing a small hole can 

significantly reduce the compression modulus [17], quickly converging to the solution for 

an infinite strip isolator. Due to this rapid convergence, Kelly and Konstantinidis [8] 

recommended that the compression modulus of annular isolators conservatively be taken 

as identical to an infinite strip isolator.  

2.3.2 FREIs 

Using the pressure solution, the vertical compression modulus of a FREI can be 

determined similar to a SREI with the inclusion of an additional term to the assumed 

horizontal displacements of the elastomeric layers to account for the extension of the fiber 

reinforcement [10]. Following the pressure solution, closed form solutions for Ec 

assuming incompressible and compressible elastomers and including the extensibility of 

the fiber have been developed for infinite strip [10, 44], circular [45, 46], rectangular [11, 

47], and annular [8, 18] pads, respectively.  

All of the analytical solutions for FREIs referenced above indicate that a decrease 

of the in-plane stiffness of the fiber reinforcement will decrease the compression modulus 

due to a reduction in restraint of the lateral bulging. This can also be observed in a 

phenomenon known as run-in, where a certain level of vertical load is required before the 

vertical stiffness develops. The run-in effect is believed to occur as the fiber 
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reinforcement is pulled taut and aligned. Initially, the lack of straightness may have a 

large effect on the vertical stiffness due to reduced restraint of the elastomeric layers; 

however, the stiffness is recovered as the fibers straighten [48].  

2.3.3 Boundary Conditions 

The analytical solutions for SREIs and FREIs were derived considering only a 

single elastomeric pad. The solutions can be extended to consider multiple layers by 

treating the pads as springs in series. In this case, the boundary conditions of the two 

exterior layers of elastomer, either bonded or unbonded, may be influential over the 

vertical stiffness.  The possibility of slip between the exterior elastomeric layers and the 

upper and lower supports is illustrated in Figure 2-1. The effect of friction on unbonded 

SREIs was investigated by Kelly and Konstantinidis [12]. In this study, the isolators 

considered had unbonded exterior elastomeric layers with half the thickness of the interior 

layers. If the isolator was fully bonded, the two outer layers would have a stiffness that 

was four times the stiffness of the interior layers. In the opposing limit, if no friction 

developed at the upper and lower supports, the two layers combined would have an equal 

stiffness to a single interior layer. Therefore, the coefficient of friction in unbonded 

FREIs can also play a critical role in the vertical properties, especially in isolators with a 

low number of elastomeric layers.  

2.4 Horizontal Stiffness 

2.4.1 Bonded SREIs and FREIs 

The shear modulus of the steel reinforcement is several orders of magnitude greater 

than the shear modulus of the elastomer, as such, the shear deformation is assumed to 

occur entirely within the elastomeric layers. Although the steel reinforcement restrains 

lateral bulging, the elastomer can still deform freely in horizontal shear [8]. 

Consequently, overlooking non-linearity associated with the elastomer and other effects 

such as coupling between horizontal and vertical loading, the horizontal stiffness of a 

bonded SREI can be assumed constant. The assumed concentrated deformation in the 

elastomeric layers has also been applied to FREIs. Therefore, the basic expression for 

horizontal stiffness of a bonded FREI is identical to a bonded SREI. 

2.4.2 Unbonded FREIs 

It is often assumed that the length of the rollover surface that has lost contact with 

the supports is equal to the horizontal displacement [13, 31, 49]. By also assuming that 

the elastomer is incompressible and that the rollover follows a parabolic deformed shape, 

Kelly and Konstantinidis [49] determined that full rollover would theoretically occur at a 

shear strain, γ, of: 
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 (2-2) 

where h is the total height of the isolator.  

It is convenient to consider an unbonded FREI in sections; a central section that is 

in contact with the upper and lower supports and two rollover sections as illustrated in 

Figure 3-1. The lower bound approximation on the horizontal force-displacement 

relationship obtained by ignoring the contribution of the rollover sections was proposed 

by Kelly and Konstantinidis [49]. The lower bound approximation of the horizontal force, 

F, is: 

 
  

   (    ) 

  
 (2-3) 

where G is the shear modulus of the elastomer, 2a and 2b are the width and length of the 

isolator and s is the horizontal displacement. The expression gives a parabolic force-

displacement relationship that reaches a maximum as the tangential stiffness becomes 

negative and the isolator becomes unstable.  

Russo et al. [31] compared Eq. (2-3) with available experimental data and showed 

that the prediction could be improved by including the vertical deflection of the isolator. 

Including the vertical deflection delays the loss of contact between the upper and lower 

supports and the isolator; thereby increasing the size of the central section and decreasing 

the size of the rollover section. Russo et al. [31] averaged the area of the central section at 

zero horizontal displacement and at the full rollover displacement to determine a constant 

horizontal stiffness. Note that the approach presented in Russo et al. [31] required the 

experimentally obtained vertical deflection and full rollover displacement for the model.  

The models by Kelly and Konstantinidis [49] and Russo et al. [31] both neglect the 

benefits of the rollover section and full rollover, which has been shown experimentally to 

prevent horizontal instability [50]. The model proposed by Toopchi-Nezhad [51] includes 

the contributions of the rollover sections by assuming the shear strain in the rollover 

sections is between zero and half of the shear strain in the central section. Toopchi-

Nezhad [51] proposed the use of an effective area to equivalently represent the assumed 

lower shear strains in the rollover sections. Based on an assumed equivalent area of 25 % 

of the rollover section, and with the full rollover prediction from Kelly and Konstantinidis 

[49], it was shown by Toopchi-Nezhad [51] that stability could be achieved with aspect 

ratios of at least 2.5. This result was in good agreement with the experimental 

observations of Toopchi-Nezhad et al. [50], which showed that an isolator with an aspect 

ratio of 1.9 was unstable, but that stability could be achieved at an aspect ratio of 2.5. 

These analytical models are simplified representations of a complex problem but have 

significant short comings, such as not predicting or including full rollover or accounting 

for the influence of the bending rigidity of the reinforcement.  
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SU-FREIs are believed to be beneficial over traditional bonded elastomeric 

isolators due to the adaptive softening and stiffening that occurs with increasing 

horizontal displacement; however, secondary benefits have been identified. A comparison 

between a bonded and unbonded FREI using finite element analysis showed that the 

unbonded application significantly reduces the stress demand on the elastomer and the 

reinforcement; notably, a significant reduction in tensile and peeling stresses was 

observed. Although experimental studies on unbonded FREIs are limited, with fewer yet 

investigating full rollover, existing studies have all observed desirable performance 

characteristics and properties [31, 35, 36, 50-56]. 

2.5 Stability 

Elastomeric isolators can be viewed as short columns supporting the weight of the 

structure and are therefore also susceptible to buckling instability. The isolator is often 

idealized as a continuous composite system that acts as a beam. In this case, plane 

sections normal to the undeformed axis are assumed to remain plane, but not necessarily 

normal to the deformed axis [8]. The current buckling theory extends from work 

conducted by Haringx [57] and later Gent [58, 59]. A critical load can be determined 

according to the theory and it is necessary to ensure that the applied load does not exceed 

the critical buckling load. The bending modulus of an elastomeric pad, which differs from 

the compression modulus, is required in the derivation of the critical load. The bending 

modulus has been derived following the pressure solution for an infinite strip [39, 8], 

circular [37, 8], rectangular [8] and annular [38, 8] SREI assuming an incompressible and 

compressible elastomer, respectively and an infinite strip [60], and rectangular FREI [47] 

assuming a compressible elastomer. Note that the bending modulus for a circular and 

annular pad including reinforcement extensibility and elastomer compressibility has not 

been derived.  

Buckle et al. [61] showed that the critical buckling load decreases with increasing 

horizontal displacement and that the horizontal stiffness decreases with increasing axial 

load and increasing horizontal displacement; however, elastomeric isolators may retain 

significant critical load carrying capacity as the horizontal displacement approaches the 

diameter of the bearing [62]. If the applied load approaches the critical load, it may also 

be necessary to reduce the horizontal stiffness accordingly since an interaction exists 

between the horizontal load and the applied vertical load [8].  

The analytical solutions developed by Tsai and Kelly [15, 16] for the buckling load 

of SREIs at zero horizontal displacement assumed that the steel reinforcement was 

flexible and extensible, thus making it appropriate for FREIs as well. The solution 

determined the horizontal stiffness accounting for stability, shear and warping effects and 

established the buckling load by equating the horizontal stiffness to zero. This analytical 
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solution represents the most comprehensive solution available for SREIs or FREIs, but it 

is limited to zero horizontal displacement.  

The analytical investigation by Kelly and Marsico [9] for unbonded FREIs ignored 

the rollover sections, which is believed to provide a lower estimate of the actual buckling 

characteristics of the isolator. An experimental investigation on the dynamic buckling of 

SU-FREIs concluded that the buckling load, defined as the load that resulted in a zero 

tangential stiffness during cyclic sinusoidal testing, was significantly larger than the 

expected design load of SU-FREIs [54].  
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Figure 2-1: Bulging of the exterior layers with zero slip and zero friction 

 

 

Figure 2-2: Division of an unbonded FREI into sections 
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3 Model of the Shear Behavior of Unbonded Fiber-Reinforced 

Elastomeric Isolators 

Reproduced with permission from ASCE. 

Van Engelen NC, Tait MJ, Konstantinidis D. 2014. Model of the Shear Behavior of 

Unbonded Fiber-Reinforced Elastomeric Isolators. Journal of Structural Engineering 

(ASCE), 141(7): 04014169, DOI: 10.1061/(ASCE)ST.1943-541X.0001120. 

Abstract 

In this paper, an analytical model is developed and used to predict the horizontal 

behaviour of unbonded Fiber Reinforced Elastomeric Isolators (FREIs). An advantageous 

feature of unbonded FREIs is the ability to undergo rollover due to the lack of flexural 

rigidity of the reinforcement, and the unbonded support conditions of the isolator. The 

rollover causes a characteristic softening, followed by stiffening, as the initially vertical 

faces of the isolator come into contact with the upper and lower supports; defined as full 

rollover. The force-displacement relationship is modelled by dividing the isolator into 

three sections: a central section, which experiences pure shear, and two rollover sections 

which experience combined shear and bending. The displacements of the rollover section 

are used to establish the curved deformed profile and predict full rollover. The model is 

evaluated with experimental data from four unbonded FREI designs. A parametric study 

is conducted to determine the influence of the aspect ratio and bending stiffness of the 

composite fiber reinforcement matrix on the horizontal force-displacement relationship. 

3.1 Introduction 

The seismic demand on a structure can be significantly reduced by introducing a 

flexible horizontal layer between the foundation and the structure. This concept, known as 

base isolation, causes a shift in the fundamental period of the structure, increasing it out 

of the critical high energy range of an earthquake. The displacements of the structure are 

concentrated at the isolation level, where specially designed isolators are capable of 

undergoing large deformations, while the structure essentially displaces as a rigid body.   

Elastomers function as a unique engineering material due to their near 

incompressibility and low shear modulus. The application of elastomeric materials as 

base isolators can be divided into two categories: conventional Steel Reinforced 

Elastomeric Isolators (SREIs); and, more recently, Fiber Reinforced Elastomeric Isolators 

(FREIs). The reinforcement, which is positioned in alternating horizontal layers with the 

elastomer, enhances the vertical behaviour by restraining the lateral bulging of the 

elastomer caused by the vertical compressive load (Kelly and Konstantinidis 2011). Due 

to the steel shims and thick steel end plates, SREIs are inherently heavy and expensive, 

and require an intensive manufacturing process to bond the elastomer to the steel. By 
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replacing the steel reinforcement with lighter fiber layers of similar tensile behaviour to 

that of steel, FREIs may be used to address these concerns (Kelly 1999). Initial 

investigations of FREIs identified advantages in the manufacturing process and 

performance of the isolator (Kelly 1999; Toopchi-Nezhad et al. 2008).  

An additional method of reducing the costs associated with a base isolation system 

is to position the isolators in an unbonded application, i.e., with no bonding or mechanical 

fastening between the contact surfaces of the isolators and the upper and lower supports. 

The unbonded application eliminates the need for heavy steel end plates, as shown in 

Figure 3-1. A unique result of unbonded FREIs is the possibility of rollover at the ends of 

the isolator due to relative horizontal displacement of the upper and lower supports. 

Rollover occurs when a portion of the horizontal surface of the isolator loses contact with 

the upper and lower supports and is a consequence of the lack of flexural rigidity in the 

fiber reinforcement and the unbonded application. As rollover occurs, the horizontal 

stiffness of the isolator decreases.  The rollover deformation continues until the initially 

vertical faces of the isolator become horizontal and come into contact with the upper and 

lower supports, referred to as full rollover (Toopchi-Nezhad et al. 2008). The occurrence 

of full rollover begins to increase the horizontal stiffness of the isolator. If the tangential 

horizontal stiffness remains positive, the isolator is considered stable and is denoted as a 

Stable Unbonded Fiber Reinforced Elastomeric Isolator (SU-FREI) (Toopchi-Nezhad et 

al. 2009). This variable stiffness, observed with certain width-to-total height aspect ratios, 

is the characteristic feature of SU-FREIs. This differs from the near constant stiffness of a 

traditional bonded isolator, illustrated in Figure 3-2. The softening at intermediate 

displacements increases the efficiency of the isolation system, represented by a larger 

shift in the fundamental period during design-basis events, while the stiffening at full 

rollover acts as a self-restraint against the maximum considered earthquake displacement 

demands (Toopchi-Nezhad et al. 2008). Provisions in design codes define the amount of 

allowable softening to ensure the retention of a horizontal restoring force and stability 

(ASCE 2010). In a study utilizing finite element analysis, unbonded FREIs were shown to 

have several advantages over similar bonded FREIs, such as increased seismic isolation 

efficiency caused by the softening, reduced stress demand on the elastomeric layers, and 

negligible peeling stress demand on the bond between layers (Toopchi-Nezhad et al. 

2011). 

Current methods of evaluating the horizontal stiffness of unbonded FREIs are 

generally conducted through experimental testing or complex finite element analysis 

(Mordini and Strauss 2008, Osgooei et al. 2014). This paper presents an approach for 

predicting the horizontal force-displacement relationship of unbonded FREIs. The 

proposed model, which formulates the deformed shape of the rollover and predicts full 

rollover, is evaluated using experimental data from previous studies (Toopchi-Nezhad 
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2008; Foster 2011; Van Engelen et al. 2012; de Raaf 2009). The model is expanded to 

predict the horizontal force-displacement relationship for displacements exceeding full 

rollover and is subsequently used to conduct a parametric study on the effect of the aspect 

ratio and bending stiffness of the reinforcement. These are important factors in 

determining the horizontal stability of an unbonded isolator. 

3.2 Background 

3.2.1 Full Rollover Prediction 

Kelly and Konstantinidis (2007) developed a model to predict the limiting shear 

strain of an unbonded elastomeric bridge bearings with thin steel reinforcing plates. The 

limiting strain was defined as the strain at which full rollover occurs. Based on 

experimental observations, it was noted that, for the unbonded bearings investigated, 

displacement beyond full rollover may result in sliding between the bearing and the 

supports and possible damage to the bearing itself. The model was developed assuming 

incompressibility, completely flexible reinforcement, and that the free surfaces of the 

rollover sections are completely stress free. The deformed edge of a rollover section of 

the bearing, neglecting the thickness of the reinforcement, was assumed to follow a 

parabolic curve described by: 

 
  

  

  
 (3-1) 

where d is the extension of the initially vertical face of the bearing at full rollover, and x 

and y describe the horizontal and vertical components of the deformed edge, as shown in 

Figure 3-3. All parameters are normalized by the total height of the isolator. The limiting 

shear strain was found to be c = 5/3. To account for the thickness of the reinforcement, 

which does not deform in shear, the value of c was increased by the ratio of the total 

height of the bearing to the total thickness of the elastomeric layers. For a typical steel-

reinforced bridge bearing, this increase is approximately 15 %. The extension of the 

initially vertical face of the bearing was determined to be d = 1.25, implying that 

significant extension occurs during rollover. Although the model was developed for thin 

steel reinforcing plates, the assumption of completely flexible reinforcement lends itself 

to FREIs, and this model can be used to describe the deformed shape of unbonded FREIs 

at full rollover.  

3.2.2 Horizontal Force-Displacement Relationships 

Peng et al. (2009) conducted a preliminary theoretical study on the horizontal shear 

behaviour of unbonded FREIs. A model was developed to relate the horizontal 

displacement and associated force by dividing the isolator into three sections: a central 

section, which undergoes pure shear; and two curved shear coupling sections on either 

end of the central section, which are the rollover sections of the isolator. The deformation 
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of the two rollover sections was described by two components: shear and bending. When 

combined, the deformations create the curved profile exhibited by the rollover sections of 

unbonded FREIs. The shear and bending deformations were related to each other through 

the horizontal displacement of the isolator and the flexural-to-shear stiffness ratio. The 

interpretation of the shear and bending deformation involved numerous approximations 

and assumptions. A relationship between the angle of deflection of the rollover sections 

and the horizontal displacement was developed and used to calculate the forces for each 

of the assumed sections. Although it was indicated that the shear and bending 

displacement could be added together to create the curved profile of the rollover section, 

the model did not include how these displacements should be combined.  

Konstantinidis et al. (2008) proposed a lower-bound force-displacement 

relationship by assuming that the rollover sections are stress free and contribute no 

resistance to the horizontal displacement. Therefore, the horizontal force for an unbonded 

FREI is considered to be only a function of the central section of the isolator. This lower-

bound solution is identical to the central pure shear section in the model by Peng et al. 

(2009). By differentiating the force-displacement relationship, Konstantinidis et al. (2008) 

identified that the tangential horizontal stiffness would become zero at a horizontal 

displacement equal to half of the width of the bearing and negative, or unstable, beyond 

that displacement. Maintaining a positive tangential horizontal stiffness is a requirement 

to prevent residual displacement. Russo et al. (2013) proposed a modified version of the 

Konstantinidis et al. (2008) model that used the experimentally obtained vertical 

deflection of the isolator to increase the area of the central section based on when contact 

is lost. The models by Peng et al. (2009) and Konstantinidis et al. (2008) are discussed in 

detail in the following section. 

3.3 Model Description 

In the proposed model, the elastomeric material is assumed to be linearly elastic, 

and to be incompressible. The influence of the vertical compressive load on the horizontal 

response will be neglected, assuming that the load is small and does not approach the 

critical buckling load of the isolator. However, the compressive load is assumed to 

provide sufficient friction between the FREI and the upper and lower supports to prevent 

slip at all levels of displacement. These assumptions are common for analytical models 

involving elastomeric isolators, including those by Kelly and Konstantinidis (2007), Peng 

et al. (2009), and Konstantinidis et al. (2008). 

3.3.1 Displacement Prior to Full Rollover 

It is appropriate to analyze the isolator in sections that act independently of one 

another but are subjected to an identical horizontal displacement, s. The dimensions of the 

isolator considered are 2a, 2b, h, and tr, for the width, length, total height, and total 
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thickness of the elastomeric layers, respectively. Figure 3-4 shows plan and profile views 

of a FREI, where horizontal displacement is in the x direction. Following Peng et al. 

(2009), the division of the isolator into sections can be determined by the deformed shape. 

Thus, the size of each section is displacement dependent, although the definition of the 

sections remains unchanged at all levels of displacement. The isolator is divided into a 

central section, which experiences pure shear deformation, and two rollover sections, 

which experience a combination of shear and bending deformation. The division between 

these sections is considered to be a vertical line located at the point where the isolator first 

loses contact with the horizontal supports, vertically in line with the opposing edge of the 

isolator, shown in Figure 3-5. The point where the isolator loses contacts with the 

supports is held fixed, although, as discussed by Russo et al. (2013), the vertical 

deflection of the isolator will shift this point.  

The total horizontal force, F, is given by: 

          (3-2) 

where F1 and F2 are the force contributions from the central and rollover sections, 

respectively. Since the shear deformation is limited to the elastomeric layers, the 

horizontal displacement is related to the shear strain, γ, by: 

    
 

  
 (3-3) 

The length of the free surface of the rollover section is assumed to be equal to s 

(Kelly and Konstantinidis 2007), thus, the effective length of the pure shear section is also 

reduced by s as horizontal displacement occurs (Figure 3-5). The force contribution from 

the central pure shear section is: 

          (3-4) 

where Ge is the shear modulus of the elastomer and Ar is the reduced shear area of the 

central section defined as: 

    (  )(    ) (3-5) 

Equation (3-4) can alternatively be expressed as: 

       
 

  
(  )(    ) (3-6) 

Equation (3-6) is the lower-bound solution proposed by Konstantinidis et al. (2008). 

As s increases, Ar decreases, resulting in a parabolic force-displacement relationship that 

reaches a maximum when the horizontal displacement is equal to half the width of the 

isolator. If the maximum is reached at a horizontal displacement before significant 

resistance is provided by the rollover sections, the isolator will exhibit unstable 

behaviour. This type of horizontal instability is common to isolators with lower width-to-

total height aspect ratios, where Ar reduces rapidly in comparison to the initial loaded 

area. The sensitivity to Ar decreases as the aspect ratio increases, allowing the isolator to 

retain stability.  
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The curve length of the free edge of the rollover sections is due to contributions 

from both shear and bending displacements, ds and db, respectively. Therefore, the 

horizontal displacement, which is also the arc length of the stress-free surface that has 

rolled over (Figure 3-5), can be expressed as the sum of the shear and bending 

displacements of the rollover sections: 

          (3-7) 

The force causing these displacements is identical for both components and is the 

horizontal force contribution from the rollover section, F2. The total shear area of a single 

rollover section is half the rollover area of the free edge due to the wedge-shaped 

geometry of the rollover portion. The shear displacement contribution can be related to F2 

by: 

 
   

     
  (  ) 

 (3-8) 

Contrary to Peng et al. (2009), the bending displacement is assumed to follow an 

arc with constant radius equal to the total height of the isolator. Following this 

simplification, the bending displacement can be approximated as an arc length:  

       (3-9) 

where ζ is the angle of deflection, defined in Figure 3-6.  

The rollover section is treated as a cantilever with a length s and an equivalent 

follower point load, V, applied to the free-edge. The cantilever representation was 

proposed in Peng et al. (2009), although the interpretation of how the cantilever relates to 

the horizontal force and displacement of the isolator vary. The equivalent follower point 

load is representative of the force required to create the rollover deformation and remains 

perpendicular to the free-edge of the rollover section. The horizontal component is F2, 

which is related to V by ζ, as shown in Figure 3-7: 

           (3-10) 

The magnitude of V is determined using an iterative process and large deflection 

theory for a cantilever subjected to a follower force as described by Shvartsman (2007). 

The nonlinear differential equation governing the Euler-Bernoulli beam is: 

 
      

        (  
 

 
  ( ))    (3-11) 

with the boundary conditions: 

  ( )    

 ( )    

where EIeff is the effective bending stiffness of the rollover section and φ(l)  is the rotation 

of the beam as a function of the arc length, l, beginning from the free end, as represented 

in Figure 3-8, with ζ  = φ(0). In Shvartsman (2007), it was shown that Eq. (3-11) could be 

reduced to a system of nonlinear differential equations in lieu of the elliptic-function 

solution, thereby simplifying the calculation.   
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The assumed cantilever and equivalent follower point load is a simplified 

representation of a complex problem. Finite element analysis, as described in Osgooei et 

al. (2013), was utilized to obtain the local stress initially parallel to the fiber 

reinforcement in the rollover section, as shown in Figure 3-9. The layer design of the 

model is identical to isolator B2 and B3, described later in Table 3-1.  The isolator was 

initial loaded to an average vertical compressive stress of 2.0 MPa and displaced 

horizontally to 1.50 tr before being vertically unloaded. Unloading the isolator reduced 

the influence of the vertical compressive load on the internal stresses and provided a more 

accurate representation of the stresses associated with the rollover deformation. Lateral 

bulging is observed at the initially vertical face of the isolator and a band of localized 

tensile and compressive stresses occur along the composite fiber reinforcement matrix. 

The level of compressive stress increases towards the point of rotation. Although no 

external force is applied on the rollover section, significant internal stresses develop. 

Figure 3-9 shows that the local stress of the interior elastomeric layers at the interface of 

the central and rollover sections are dominated by tension. The magnitude of the tensile 

stress increases along the height of the isolator when taken at the interface of the rollover 

and central section. Based on these observations, the effective bending stiffness of the 

rollover section is simplified as a composite section with bending about the base of the 

rollover section. Selecting a value of the elastic modulus of the composite fiber 

reinforcement matrix in bending, Em,, based on the fiber reinforcement tensile properties 

will significantly over-estimate the bending resistance of the rollover section. The value 

of Em should reflect the low flexural rigidity of the composite fiber reinforcement matrix 

layer. For the isolators investigated in this study, it was considered reasonable to assume 

Em to be of the same order as the elastic modulus of the elastomer, Ee, and as such a value 

of Em = Ee was used. The sensitivity of the response to Em is investigated in this study.   

The procedure used in the proposed model for displacement prior to full rollover is 

outlined in Figure 3-10. The level of V is increased until the total displacement from Eq. 

(3-7) converges to the current level of assumed horizontal displacement within a 

predefined error, ϵ. Once ζ has been determined for a level of V, the shear displacement 

can be determined from Eq. (3-8) as a function of F2, which is determined from Eq. 

(3-10). The bending displacement can be solved from Eq. (3-9) and the total displacement 

is the sum of the bending displacement and shear displacement, as indicated in Eq. (3-7).  

Figure 3-11 shows an example of the relationship between ζ and s. Table 3-1 offers 

details on the design of the particular isolator. Initially no rotation occurs due to the high 

bending stiffness of the rollover section. As the size and length of the rollover section 

increases, an increasing amount of rotation occurs at an increasing rate.  
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3.3.2 Deformed Shape and Full Rollover Prediction 

Full rollover of the initially vertical face of the isolator can be predicted using the 

deformed shape of the assumed cantilever. The surface of the rollover section is assumed 

to follow the deformed edge of the rollover section. From Shvartsman (2007), the 

location of the free edge at any level of horizontal displacement can be obtained from:  

 
  ( )  ∫       ̃

 

 

 (3-12) 

 
  ( )  ∫       ̃

 

 

 (3-13) 

for the vertical, dv, and horizontal, dh, displacement.  

When dv = h the free edge has contacted the supports and full rollover has occurred. 

The horizontal displacement corresponding to full rollover is denoted as sr. When full 

rollover occurs, the magnitude of dh is representative of the extension of the initially 

vertical face of the isolator and is denoted as dhr. 

3.3.3 Displacement Exceeding Full Rollover 

Toopchi-Nezhad et al. (2008) showed that SU-FREIs have desirable characteristics 

after full rollover occurs; most notable is a significant increase in effective horizontal 

stiffness. This increase in effective horizontal stiffness acts as a self-restraining 

mechanism for beyond design-basis displacements. The ability of the isolator to reach 

strains past full rollover is dependent on the geometry and quality of the isolator; 

specifically its capacity to resist sliding between the supports and internal delamination 

between the layers of reinforcement and elastomer. For the purposes of this model, it is 

assumed that the integrity of the isolator is not compromised. Thus, any additional 

displacement will cause the curved profile to deform as shown in Figure 3-12. Due to the 

restriction caused by the contact of the vertical faces, it is assumed that the entire isolator 

reverts back to pure shear deformation. Any additional horizontal displacement adds 

shear deformation to the curved profile, resulting in an overall similar curved profile.  

The division of the isolator previously defined remains unaltered, with the 

exception that the rollover sections are now in contact with the upper and lower supports. 

The total horizontal force after full rollover can be described by the individual 

contributions of these sections: 

                 (3-14) 

where F1r is the contribution of the central pure shear section after full rollover, F2r is the 

force which caused full rollover, and F3r is the additional contribution from the rollover 

section, now in shear.    

As the rollover sections are no longer increasing, the area of the central section is 

constant: 

            (3-15) 
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where: 

     (  )(     ) (3-16) 

Therefore, Eq. (3-15) can be expressed as: 

       

 

  
(  )(     ) (3-17) 

The rollover sections are assumed to only undergo shear deformation. Any further 

rollover is restricted by the supports and the approach previously used to describe the 

force contribution is no longer valid. However, the applied force F2 required to incur full 

rollover is still present and remains constant for horizontal displacements exceeding full 

rollover, denoted as F2r.  

Due to the rollover behaviour, the shear area of the rollover sections is now the 

initially vertical face which has been extended during the rollover deformation. By 

ignoring the now curved fiber reinforcement, and assuming that the shear area has a 

length approximately equal to half the extension of the initially vertical face at full 

rollover, dhr, as shown in  

Figure 3-13, the horizontal force for F3r, can be determined as:  

 
    

  (    )(  )   

   
 (3-18) 

3.4 Model Evaluation 

The model is evaluated against four different unbonded FREI designs from previous 

studies. The properties of the isolators considered are shown in Table 3-1. B1 is based on 

one isolator from Toopchi-Nezhad (2008); B2 is based on the average of seven isolators 

from Foster (2011); B3 is from Van Engelen et al. (2012); and B4 is the average of three 

isolators from de Raaf (2009). All experimental data is based on the effective horizontal 

stiffness from the unscragged cycles from cyclic tests performed in the respective study. 

All mechanical and geometric properties were selected as indicated in the respective 

study. The isolators were tested under an applied average vertical compressive stress of 

1.6 MPa or 2.0 MPa which corresponds to a vertical compressive load of approximately 8 

kN. These experiments were conducted under vertical load control and horizontal 

displacement control. The maximum considered displacement was 2.00 tr and 2.50 tr for 

B1, B4, and B2, B3, respectively; only three specimens of B2 were cycled up to 2.50 tr. 

All of the isolators exhibited stable rollover behaviour.  

3.4.1 Horizontal Force-Displacement Relationship 

The normalized experimental and theoretical horizontal force displacement curves 

are shown graphically in Figure 3-14. It can be observed that in all cases the model 

demonstrates the characteristic softening and stiffening associated with SU-FREIs. A 

variable amount of error exists between the different isolators and the different 
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displacements. Isolators B1, B3, and B4 show good agreement at 2.00 tr and also 2.50 tr 

for isolator B3, with a maximum error of 10.6 %. The under-prediction of the 

experimental force observed at low displacements is attributed to the assumed linear 

elasticity of the elastomer.   

The model over-predicts the horizontal forces for isolator B2 and B3 at the 

intermediate displacement range, 0.75 tr to 1.50 tr. In general, this range represents the 

primary operating range of a SU-FREI system as it provides the lowest effective 

horizontal stiffness; maximizing the efficiency of the isolator. For these isolators, B2 and 

B3, the model provides a higher stiffness, which would result in a lower prediction of the 

isolator’s potential period shift, but also a lower displacement demand. Full rollover is 

represented as an instantaneous change in tangential stiffness, visible at approximately 

2.00 tr in the isolators considered. It was identified in de Raaf (2009) that the initially 

vertical face does not instantaneously contact the supports. The contact increases from the 

point of rotation along the height of the isolator, stiffening gradually prior to full rollover.  

3.4.2 F1 Contribution 

The contribution of the central section, identical to the lower-bound approach 

proposed by Konstantinidis et al. (2008), is also shown in Figure 3-14 without including 

full rollover. Note that the model proposed by Konstantinidis et al. (2008) was not 

intended to predict the performance of the isolator past the point of instability. The model 

is extended beyond instability and full rollover herein for comparative purposes. The 

lower-bound approach is almost identical to the proposed model at low displacements. As 

the horizontal displacement increases, the size and force contribution of the rollover 

sections increases, and the two approaches begin to diverge. Overall, an improved 

prediction occurs for isolators B1 and B4 in the intermediate displacement range. The 

approach in Konstantinidis et al. (2008), which predicts that instability occurs in every 

isolator, neglects the advantages associated with SU-FREIs and provides no indication of 

the performance after full rollover. It is also important to note that, with the exception of 

B3, the instability is predicted before full rollover occurs, reducing the available 

displacement range of the isolator.  

3.4.3 Vertical Compressive Load 

The proposed model was developed by assuming that the influence of the vertical 

compressive load was negligible. In a study conducted by de Raaf et al. (2011), it was 

shown the effective horizontal stiffness of unbonded FREIs decreases with increasing 

compressive load. Tsai and Kelly (2005a,b) presented a solution for the buckling capacity 

of bonded SREIs with extensible and flexible reinforcement at zero horizontal 

displacement. Currently no such solution for describing the influence of vertical 

compressive load on unbonded FREIs at horizontal displacements exists in the literature. 
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The complexity of the problem is increased due to the rollover sections, and again at full 

rollover, as the stress distribution changes when the rollover sections contact the supports.  

The solution by Tsai and Kelly (2005a,b) is applied to provide an indication of the 

sensitivity of the isolators considered to the vertical compressive load. Including the 

vertical compressive load reduces the horizontal stiffness at zero horizontal displacement 

by approximately 21 % and 13 % for B2 and B3, respectively, while B1 and B4 are 

relatively unaffected due to the larger shape factor. It is postulated that the magnitude of 

the reduction would increase as Ar decreases, and then decrease at full rollover as the 

rollover sections increase the area in contact with the supports; reducing the overall 

vertical stress. The accuracy of the proposed model could be improved by including the 

influence of vertical compressive load. Furthermore, note that the representation of the 

experimental data provided by the lower-bound approach, F1, for B2 and B3 (see Figure 

3-14), would be considerably reduced if the influence of the vertical compressive load 

were included. 

3.4.4 Full Rollover Prediction and Deformed Shape 

Table 3-2 shows the full rollover and extension of the initially vertical face 

predictions determined according to the Kelly and Konstantinidis (2007) approach and 

from the proposed model, normalized by the total height of the isolator. Since isolators 

B2 and B3 had identical designs in terms of the thickness and number of elastomeric and 

reinforcement layers the predicted values are identical for both models.  

For the three isolator designs considered, the displacement at which full rollover 

occurs is predicted within a 0.7 % error.  The extension of the initially vertical face of the 

isolator predicted by the proposed model is less than the Kelly and Konstantinidis (2007) 

estimates for all designs, with a maximum error of 2.5 %. The two approaches are 

compared in Figure 3-15 for isolator B1. The deformed shape is consistent between the 

two models. The proposed model encloses approximately equal area as the Kelly and 

Konstantinidis (2007) approach, which was developed assuming incompressibility. A 

similar deformed shape can be obtained for the other isolators considered in this study.    

3.5 Parametric Study 

3.5.1 Influence of Aspect Ratio 

Stable rollover is dependent on the aspect ratio, R, of the isolator (Toopchi-Nezhad 

et al. 2008). The full rollover prediction and F2 is independent of R in the proposed 

model. Therefore, as R increases, the relative contribution of the rollover sections, F2, 

decreases in comparison to the central section contribution, F1. As a consequence, the 

desirable softening at intermediate displacements observed in SU-FREIs will become less 

apparent.  
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Figure 3-16 shows the normalized horizontal force as a function of displacement for 

values of R ranging between 2.0 and infinity for isolator B2. At low displacements, less 

than 0.50 tr, the normalized horizontal force is almost identical for all aspect ratios since 

the amount of rollover is small. At intermediate displacements, the characteristic 

softening of SU-FREIs is observed, and in the case of R = 2.0, the softening leads to 

instability. The amount of softening quickly reduces with increasing R, and by R = 2.5 the 

isolator approaches stability over the displacement range. At full rollover, substantial 

stiffening is observed for lower values of R. Similar to the softening, the stiffening 

becomes less substantial with increasing R.  

It was observed in a study conducted by Toopchi-Nezhad et al. (2008) that an 

unbonded FREI with R = 1.9 was unstable, but that stable rollover could be obtained with 

R = 2.5. It is postulated that the transition to stability occurs near R = 2.5, depending on 

the isolator’s design, as indicated by the proposed model. By R = 10.0, the overall 

influence of the rollover sections becomes negligible. It is recommended that isolators 

with R < 2.5 be treated as unstable FREIs, where the contribution of the rollover sections 

should not be included, and SU-FREIs with R > 10.0 can satisfactorily be modeled as 

strip FREIs with a constant effective horizontal stiffness. Unbonded FREIs within 2.5 ≤ R 

≤ 10.0 should be treated as SU-FREIs, and the contributions of the rollover sections 

should be considered.   

3.5.2 Influence of Em 

In the evaluation of the proposed model, it was assumed that the composite fiber 

reinforcement matrix had an identical elastic modulus in bending as the elastomer, Em = 

Ee. Figure 3-17 shows the influence of Em on the horizontal force-displacement 

relationship of isolator B1, where Em = αEe. A similar trend can be observed as with the 

aspect ratio, where increasing Em, represented by an increase in α, reduces the softening 

of the isolator in the intermediate displacements. Unlike the aspect ratio, Em also 

influences sr. As Em increases the isolator stiffens in bending and the amount of bending 

deformation decreases, resulting in an increased horizontal force for an identical angle of 

deflection. The increased horizontal force also causes an increase in the amount of shear 

displacement. Thus, as Em approaches infinity, the amount of bending displacement 

becomes negligible, and the isolator deforms in pure shear, identical to an isolator with 

rigid reinforcement, as indicated in Figure 3-18. This shows that full rollover may not 

occur within the displacement range of interest, depending on the value of Em.  

The influence of Em on the shear and bending displacement of the rollover sections 

is shown in Figure 3-19. In all cases, the total displacement is initially dominated by 

shear. At small displacements, the effective length of the rollover section is small, 

creating a substantial bending stiffness. As a result, the isolator will initially deform in 

nearly pure shear. As the length of the rollover section increases, the bending stiffness 



Ph.D. Thesis – N.C. Van Engelen; McMaster University – Civil Engineering 

 38   

 

quickly reduces, and the amount of bending displacement increases. For α = 1, the 

amount of shear displacement remains relatively constant at displacements exceeding 

1.00 tr. Note that although the shear displacement remains constant, the force contribution 

from the rollover sections is increasing because the shear area also increases. As Em 

increases, the shear displacement increases, approaching pure shear deformation as Em 

approaches infinity. 

3.6 Conclusions 

A method of analyzing and predicting the horizontal force-displacement 

relationship for unbonded FREIs has been presented. The proposed model employs large 

deflection theory to predict the deformed shape of an unbonded FREI. The deformed 

shape was used to determine the occurrence of full rollover, and the model was modified 

to account for the changing boundary conditions after full rollover.  

The proposed model was evaluated against experimental data from previous studies. 

Overall, good agreement was found between the proposed model and the experimental 

data. It was observed that in some instances the proposed model over-predicted the 

horizontal force at intermediate displacements. This over-prediction was attributed in part 

to the fact that the model does not take into account the vertical compressive load, which 

is known to reduce the effective horizontal stiffness. An existing lower-bound 

approximation, which ignores the influence of the rollover sections, was shown to 

incorrectly predict instability, neglecting significant advantages associated with SU-

FREIs. The horizontal force contribution of the rollover sections retains the stability of 

the isolator up to full rollover where the isolator returns to pure shear deformation.  

A parametric study using the proposed model was conducted on the aspect ratio and 

the elastic modulus of the composite fiber reinforcement matrix in bending. Based on the 

parametric study, the following observations were made: 

1) An unbonded FREI becomes stable at an aspect ratio of about 2.5, depending 

on the layer design. At this aspect ratio, the isolator exhibits the characteristic 

softening and stiffening associated with SU-FREIs. As the aspect ratio 

increases, the observed softening and stiffening become less significant. It is 

recommended that unbonded FREIs be treated as SU-FREIs if the aspect ratio 

is between 2.5 and 10.0, implying that the influence of the rollover sections 

cannot be ignored. At lower aspect ratios, the unbonded FREI should be 

considered unstable, while at higher aspect ratios the unbonded FREI can 

satisfactorily be modeled in pure shear.  

2) By assuming the elastic modulus of the composite fiber reinforcement matrix 

in bending is equal to the elastic modulus of the elastomer, satisfactory 

predictions were obtained for the force-displacement relationship and the full 

rollover prediction for the unbonded FREIs considered. Increasing Em results 

in an increased force response, and an increased displacement at full rollover. 
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As Em approaches infinity, the unbonded FREI undergoes pure shear and has 

no rollover, exhibiting a linear force-displacement relationship.  

The proposed model serves as a method to predict the horizontal force-displacement 

relationship of SU-FREIs based on the isolator’s geometry and design. The model also 

aids to predict potential instability and the occurrence of full rollover. Further 

investigation is required to include the influence of the vertical compressive load on the 

FREI at horizontal displacement.  

Nomenclature 

a  half width of the isolator 

Ar reduced area of the central section 

Arr reduced area of the central section at full rollover 

b  half length of the isolator 

c  limiting shear strain 

d  horizontal extension of the initially vertical face normalized by h 

db rollover section bending displacement 

dh free-edge horizontal displacement 

dhr extension of the initially vertical face at full rollover 

ds rollover section shear displacement 

dv free-edge vertical displacement 

Ee elastic modulus of the elastomer 

EIeff effective stiffness of the rollover section 

Em elastic modulus of the composite reinforcement matrix in bending 

F  total horizontal force 

F1 central section horizontal force 

F1r full rollover central section horizontal force 

F2 rollover section horizontal force 

F2r rollover section horizontal force at full rollover 

F3r additional full rollover section horizontal force after full rollover 

Ge shear modulus of the elastomer 

h  total height of the isolator 

l  arc length 

R  aspect ratio 

s  horizontal displacement 

sr horizontal displacement at full rollover 

tr  total thickness of the elastomeric layers 

V  equivalent follower point load 

α  ratio of Em/Ee 

ϵ  displacement error tolerance 
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γ  shear strain 

ζ  rollover section maximum angle of deflection 

φ  angle of a deflection as a function of the arc length 
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Table 3-1:  Material and Geometric Properties of Selected Isolators 

Property B1 B2* B3* B4 

Material         

Ge (MPa) 0.40 0.35 0.35 0.40 

Ee (MPa) 1.20 1.05 1.05 1.20 

Geometric 

    2b (mm) 70 63 52 70 

2a (mm) 70 63 76 70 

tr (mm) 19 19 19 19 

h (mm) 25 22 22 24 

R 2.8 2.8 3.5 2.9 

     Average Stress (MPa) 1.6 2.0 2.0 1.6 

* The two exterior layers of elastomer were half the thickness of the interior layers, all values given 

pertain to the interior layers 

Table 3-2:  Full Rollover and Extension of the Initially Vertical Face Predictions 

 Approach 
C D 

B1 B2 and B3 B4 B1 B2 and B3 B4 

Kelly and Konstantinidis (2007) 1.67 1.67 1.67 1.25 1.25 1.25 

Proposed Model 1.65 1.67 1.66 1.22 1.24 1.23 
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Figure 3-1: Profile view of (a) a bonded SREI and (b) an unbonded FREI 

 

Figure 3-2: Generalized horizontal force-displacement relationship for bonded isolator 

and SU-FREIs 

 

Figure 3-3: Deformed unreinforced elastomeric isolator as described by Kelly and 

Konstantinidis (2007) 
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Figure 3-4: (a) Plan view and (b) elevation view of a FREI 

 

Figure 3-5: Division of the isolator into sections at a horizontal displacement, s  

 

Figure 3-6: Definition of db, h and ζ 
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Figure 3-7: Relationship between the assumed equivalent follower point load, V, and 

F2 

 

Figure 3-8: Deformed and undeformed cantilever with an applied follower point load, 

V 

 

Figure 3-9: Local stresses initially parallel to the fiber reinforcement in the rollover 

section at 1.50 tr with zero vertical load 
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Figure 3-10: Procedure for displacement prior to full rollover 
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Figure 3-11: Example of the normalized relationship between the angle of deflection 

and horizontal displacement for isolator B2 

 

Figure 3-12: Deformed shape after full rollover showing the influence of additional 

horizontal displacement 

 
Figure 3-13: Idealized representation of the isolator after full rollover 

0.0 0.5 1.0 1.5 2.0 
0.0 

0.2 

0.4 

0.6 

0.8 

1.0 



Ph.D. Thesis – N.C. Van Engelen; McMaster University – Civil Engineering 

 48   

 

 
 

Figure 3-14: Normalized horizontal force as a function of displacement compared with 

experimental values with 15 % error bars 

 

Figure 3-15: Comparison of the proposed model and theoretical full rollover deformed 

shape for isolators B1 
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Figure 3-16: Normalized horizontal force as a function of displacement with various 

aspect ratios for isolator B1 

 

Figure 3-17: Normalized horizontal force as a function of displacement with various 

values of α for isolator B1 
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Figure 3-18: Deformed shape of the rollover sections with various values of α at 2.00 tr 

for isolator B1 

 

Figure 3-19: Normalized (a) shear displacement and (b) bending displacement of the 

rollover section as a function of horizontal displacement and various 

values of α for isolator B1 
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4 Development of Design Code Orientated Formulas for 

Elastomeric Bearings Including Bulk Compressibility and 

Reinforcement Extensibility 

Reproduced with permission from ASCE. 

Van Engelen NC, Tait MJ, Konstantinidis D. 2015. Development of Design Code 

Orientated Formulas for Elastomeric Bearings Including Bulk Compressibility and 

Reinforcement Extensibility. Journal of Engineering Mechanics (ASCE). 

Abstract 

The introduction of alternative reinforcement types for elastomeric bearings has 

rendered it necessary to consider the extensibility of the reinforcement as an additional 

design parameter. The extensibility of the reinforcement reduces the lateral restraint on 

the elastomer and, similar to the compressibility of the elastomer, reduces important 

design parameters such as the compression modulus and bending modulus. Neglecting the 

compressibility of the elastomer or the extensibility of the reinforcement may result in an 

unconservative overestimation of these design parameters. The existing analytical 

solutions, which have been developed based on the pressure solution, are usually not 

suitable for design purposes. In this study, the analytical solutions for infinite strip, 

circular, square and annular pad geometries are expanded and simplified to form 

geometry-specific approximations that account for reinforcement extensibility and bulk 

compressibility. The derived approximations closely and conservatively follow the 

analytical solutions over a large range of shape factors and values of the elastomer bulk 

modulus and reinforcement extensibility. A similar procedure used for the compression 

modulus and bending modulus is applied to approximate the maximum shear strain due to 

compression also including bulk compressibility and reinforcement extensibility. 

Generalized equations are proposed that can be adapted to the elastomeric pad geometries 

considered. 

4.1 Introduction 

Fiber-reinforced elastomeric isolators (FREIs) were originally proposed as a 

potential low-cost alternative to conventional steel-reinforced elastomeric isolators 

(SREIs) (Kelly 1999). The concept was centered on the light-weight nature of the fiber 

reinforcement, which has comparable mechanical properties in tension to steel, and the 

ability to manufacture and cut FREIs to the desired size from larger pads. From an 

analytical perspective, the primary difference between FREIs and SREIs is that the 

assumption of rigid reinforcement is relaxed and the extensibility and lack of flexural 

resistance of the fiber reinforcement must be considered. Similar to the compressibility of 
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the elastomer, the extensibility of the reinforcement can play an important role in the 

design and performance of the isolator. From a design perspective, not including the 

compressibility of the elastomer and/or the extensibility of the reinforcement could 

seriously and unconservatively overestimate important properties, such as the 

compression modulus and bending modulus, or impose unwarranted design restrictions 

due to substantial errors in calculated values, such as the maximum shear strain due to 

compression.  

The sensitivity of elastomeric isolators to the compressibility of the elastomer is 

well recognized (Kelly and Konstantinidis 2011). This sensitivity is demonstrated in 

Figure 4-1 as a function of the shape factor, S, for an infinite strip pad where the 

compression modulus, Ec, has been normalized by the compression modulus assuming an 

incompressible elastomer, 
cE . The compressibility of the elastomer is represented by the 

ratio of the bulk modulus, K, to the shear modulus, G. Even for a relatively low shape 

factor of 10, the compressibility of the elastomer decreases Ec by 19 %. Similarly, 

elastomeric isolators are sensitive to the extensibility of the reinforcement as 

demonstrated a finite element investigation by Osgooei et al. (2014). Despite this, 

compressibility is often ignored, accounted for in a limited capacity, or erroneously 

corrected for in current design codes and standards (AASHTO 2014a,b, CSA 2014, ISO 

2010). The development of generalized expressions for critical design parameters, such as 

the compression and bending modulus and the maximum shear strain due to compression, 

inclusive of the compressibility of the elastomer and extensibility of the reinforcement is 

valuable from a design perspective.  

Analytical solutions for the compression modulus and bending modulus, which 

include the compressibility of the elastomer and extensibility of the reinforcement, are 

available for most simple elastomeric pad geometries. These analytical solutions are often 

complex and unsuitable for design purposes. Alternatively, Constantinou et al. (2011) 

presented simplified expressions for the maximum shear strain due to compression and 

rotation that include tabulated correction factors to account for the bearing geometry and 

elastomer bulk compressibility. Van Engelen and Kelly (2015) developed a generalized 

expression for the compression modulus and bending modulus that included bulk 

compressibility based on a Taylor series expansion and inversion of the analytical 

solutions. These studies assume rigid reinforcement and do not account for the 

extensibility of the reinforcement.  

In this paper, the analytical solutions that include the extensibility of the 

reinforcement are expanded and truncated using the procedure from Van Engelen and 

Kelly (2015) to provide simplified generalized expressions more suitable for design 

codes. The simplified expressions are similar to the ad hoc approximation originally 

proposed by Gent and Lindley (1959) but include mathematically determined correction 
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factors to the terms representing the compressibility of the elastomer and extensibility of 

the reinforcement. The analytical solutions for the maximum shear strain due to 

compression, often omitted from the analytical derivations for the compression modulus, 

are presented, and a similar procedure is used to propose a generalized approximation 

which is subsequently compared to current code equations. The procedure is given in 

detail for the compression modulus of an infinite strip pad, while a condensed derivation 

is presented for the circular, square and annular pad geometries considered in this study. 

4.2 Accounting for Compressibility 

4.2.1 Compression Modulus and Bending Modulus 

The compression modulus and bending modulus, Eb, of elastomeric bearings can be 

highly sensitive to the compressibility of the elastomer, especially for large shape factors, 

defined as the ratio of the loaded area to unloaded area of a single layer of elastomer 

(Kelly and Konstantinidis 2011). Prior to the development of analytical solutions based 

on the pressure solution, it was proposed that the effects of compressibility could be 

included by assuming incompressibility and correcting with the bulk modulus. The ad hoc 

approximation is (ISO 2010) 

 
1 1 1

c cE E K
   (4-1) 

 
1 1 1

b bE E K
   (4-2) 

where 
bE  is the bending modulus assuming the elastomer is incompressible. This ad hoc 

approximation is intuitively based, capturing the correct limits, for a small S, 
c cE E  

and as S  , cE K  (Gent and Lindley 1959). 

In Van Engelen and Kelly (2015), it was demonstrated that the ad hoc 

approximation may significantly and unconservatively overestimate Ec and Eb in 

comparison to the analytical solutions. The procedure originally presented in Chalhoub 

and Kelly (1991) based on the expansion and truncation of the analytical solution using a 

Taylor and binomial series, respectively, was applied to derive a correction factor to K 

dependent on the geometry of the pad. The inclusion of the correction factor provided a 

conservatively lower approximation relative to the analytical solution and generally 

reduced the magnitude of the error over the entire range of K and S considered.  

In this study, the effect of the extensibility of the reinforcement is included by 

adding an additional term and geometry-specific correction factor in the form of 

 
1 1 1

c ec

c c f f

t

E E K E t
 


    (4-3) 
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1 1 1

b eb

b b f f

t

E E K E t
 


    (4-4) 

where t is the thickness of the elastomeric pad, tf is the thickness of the extensible 

reinforcement, Ef is the elastic modulus of the extensible reinforcement, and κc, κb, κec and 

κeb are the mathematically derived correction factors for the compression modulus, 

bending modulus, and reinforcement extensibility for compression and bending, 

respectively.  

4.2.2 Maximum Shear Strain due to Compression 

Design codes, such as AASHTO (2014a,b) and CSA (2014) impose restrictions to 

limit the maximum shear demand resulting from compression, rotation, imposed lateral 

displacements and earthquake displacements, individually and/or in combination. These 

limitations are imposed to prevent failure, such as the delamination of the reinforcement 

from the elastomer. The maximum shear strain due to compression, c , is given as 

(AASHTO 2014a,b, CSA 2014) 

 c c
c

D

GS


   (4-5) 

where c  is the average vertical stress due to compression, and Dc is a geometry 

dependent factor. If incompressibility and inextensibility are assumed, it can be shown 

that 2

cE GS  and c cS  based on the pressure solution (Kelly and Konstantinidis 

2011). Thus, the derivation of Eq. (4-5) is relatively simple, although AASHTO (2014a,b) 

and CSA (2014) only provide values of Dc for circular and rectangular pad geometries. 

The value of Dc is recommended as 1.0 (AASHTO 2014b, CSA 2014) or 1.4 (AASHTO, 

2014a) for a rectangular pad. 

The commentary of AASHTO (2014a,b) allows Dc to be determined including the 

compressibility of the elastomer for a rectangular pad based on best-fit equations from 

Stanton et al. (2008). The best-fit equations recommended are 

  1 2 3max ,c a a aD d d d L W     (4-6) 

with 

 
2

1 1.06 0.210 0.413ad      (4-7) 

 
2

2 1.506 0.071 0.406ad      (4-8) 

 
2

3 0.315 0.195 0.047ad       (4-9) 

and 

 
23GS

K
   (4-10) 
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where L is the plan dimension perpendicular to the axis of rotation and W is the plan 

dimension parallel to the axis of rotation. For a square pad with an incompressible 

elastomer L/W = 1, 0   and from Eq. (4-6), Dc = 1.19.  

4.3 Analytical Solutions 

The analytical solutions presented in this paper were derived based on the 

assumptions of the pressure solution. Solutions developed based on the assumptions of 

the pressure solution are often characterized as being appropriate for elastomeric pads 

with a shape factor of approximately 5 or greater (Kelly 1997). The accuracy of the 

analytical solutions for several pad geometries including the effects of compressibility has 

been verified in Constantinou et al. (2011), and in Osgooei et al. (2014) and Toopchi-

Nezhad et al. (2012) including compressibility and the extensibility of the reinforcement 

using finite element analysis. The procedure for the pressure solution is outlined in this 

section, focusing on the derivation of the maximum shear strain due to compression.   

An arbitrarily shaped elastomeric pad with a constant thickness and a rectangular 

Cartesian coordinate system (x, y, z) is presented in Figure 4-2. If a vertical load is 

applied in the z direction, the elastomeric pad will bulge laterally, restrained by the 

extensible reinforcement at the top and bottom of the pad. It is assumed that the lateral 

bulging of the elastomer follows a parabolic curve and horizontal planes remain plane and 

horizontal. Following these kinematic assumptions, the displacements in the elastomeric 

layer along the coordinate directions are (Kelly 1997) 

 

     

     
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w x y z w z

 
   

 

 
   

 



 
(4-11) 

where the functions u0 and v0 are related to the lateral bulging of the elastomer and u1 and 

v1 to the extension of the fiber reinforcement. Figure 4-3 shows the lateral bulging in the 

x-z plane. The vertical deflection, Δ, is accommodated by volumetric strain, determined 

by the compressibility of the elastomer, and by lateral displacement and bulging, 

determined by the extensibility of the reinforcement and shape factor.  

The compressibility constraint gives 

 xx yy zz

p

K
       (4-12) 

where xx , yy , and zz  are the normal strains, and p is the internal pressure (i.e. the 

hydrostatic portion of the stress tensor). Substitution of the respective strains, determined 
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from Eq. (4-11) into Eq. (4-12) and integrating through the thickness of the elastomeric 

layer gives 

  , , 1, 1,

3 3 3

2 2 2
o x o y x y c

p
u v u v

K
      (4-13) 

where /c t    is the compression strain in the pad (with compression taken as positive), 

and the commas denote partial differentiation with respect to the indicated coordinate.  

The pressure solution assumes that the stress state is dominated by the internal 

pressure such that 
xx yy zz p       and that 

xy  is negligible compared to xz  and 
yz   

(Kelly 1997).  Applying these assumptions reduces the equations of equilibrium, under 

the assumption of no body forces, to 

 
, , ,

, , ,

xz z xx x x

yz z yy y y

p

p

 

 

  

  
 (4-14) 

Assuming that the elastomer is linear elastic, the relationship between the shear 

stresses, xz  and 
yz , and shear strains, , ,xz z xu w    and , ,yz z yv w   , yields 

 

02

2

8

8

xz

yz o

z
G u

t

z
G v

t





 

 

 (4-15) 

With the equilibrium conditions, Eq. (4-14), and definition of the shear stress, Eq. 

(4-15), the relationship between the shear strain and pressure is  

 
,

,y

xz x

yz

z
p

G

z
p

G









 (4-16) 

Lateral bulging causes shear strains to develop in the elastomer. Analytically, the 

maximum shear strain due to compression occurs at the free edge interface of the 

elastomer and extensible reinforcement where 2z t   (see Figure 4-3). In reality, the 

maximum occurs just before this point, and the shear stresses rapidly drop to zero at the 

free surfaces: thus the analytical values can be considered as a slightly conservative 

estimate (Constantinou et al. 2011). 

With the definition of the shear stress, Eq. (4-15), the equilibrium conditions, Eq. 

(4-14), become 
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 (4-17) 

The complete system of equations is formed by considering the stress in the 

reinforcement, resulting in five equations, Eq. (4-13), Eq. (4-17), and 

 

0
1,

0
1,

8
0

8
0

f f xx

f f yy

Gu
E t u

t
Gv

E t v
t

 

 
 (4-18) 

for the five unknowns: ou , ov , 1u , 1v , and p .  

While solving, the solutions often define two dimensionless parameters, 2  and 
2

, which are functions of the extensibility of the reinforcement and compressibility of the 

elastomer, respectively. Often, the two parameters are summed as 

 2 2 2     (4-19) 

or 

 
2 2 1

f f

t
cGS e

K E t


 
   

 
 (4-20) 

where the coefficients c and e depend on the pad geometry. The definitions used herein 

express 2  and 
2  as functions of the shape factor, which may differ from the definitions 

used in the analytical solution derivations presented elsewhere. For convenience, an 

equivalent parameter, eK , which accounts for compressibility and extensibility is 

introduced 

 
1 1

e f f

t
e

K K E t
   (4-21) 

where the subscript represents the value of the coefficient e.    

4.4 Proposed Approximation Derivation 

4.4.1 Material and Geometric Properties 

In addition to the geometric properties, the proposed approximations are dependent 

on three material properties; the shear and bulk modulus of the elastomer, and the elastic 

modulus of the extensible reinforcement. The results are presented over a range of shape 

factor values of 5 50S  with the lower bound being determined due to the limitations 

of the pressure solution (Kelly 1997). The bulk modulus of elastomers can vary 

significantly and is several orders of magnitude larger than the shear modulus; estimates 

place it between 1000 MPa and 3500 MPa for natural rubber and Neoprene (Lindley 
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1978, Fuller et al. 1988, Burns 1990). In this paper, the bulk modulus was normalized by 

the shear modulus of the elastomer, G, and a range of 1000 / 10000K G   was 

considered.  

Many different types of fibers have been investigated for the extensible 

reinforcement; accordingly, Ef can vary substantially depending on the type of extensible 

reinforcement selected. A range of 3000 60000f fE t t G   was considered in this study, 

which encompasses a large range due to dependency on the ratio of layer thickness, 
ft t . 

Note that Ef is designated to represent the elastic modulus of the extensible reinforcement 

as a composite, including the bonding agent, not as the elastic modulus of the fiber 

reinforcement alone. Thus, Ef can also change substantially depending on the density and 

weave of the fiber, in addition to the type of fiber material. It is essential that the value 

accurately represents the stiffness of the extensible reinforcement to avoid an over-

estimate of the lateral restraint provided by the reinforcement. 

4.4.2 Infinite Strip Pad 

4.4.2.1 Compression Modulus 

The analytical solution for the compression modulus of an infinite strip pad, 

including the compressibility of the elastomer and extensibility of the reinforcement, is 

(Kelly and Takhirov 2002) 

  1

1
1 tanhc eE K 




 
  

 
 (4-22) 

where 

 
2 212

f f

t
GS

E t
 

            

2 2 1
12GS

K
   (4-23) 

Note that Eq. (4-22) is identical to the analytical solution of an infinite strip pad 

assuming rigid reinforcement (Chalhoub and Kelly 1991) if fE   (i.e. 1eK K  ). As 

S   lateral bulging is largely restrained, implying that the vertical deflection is 

accommodated almost entirely by volumetric strain, dependent on K, and the uniform 

lateral extension due to the extensibility of the fiber reinforcement, dependent on f fE t t .     

Equation (4-22) can be expanded and simplified using the procedure from Chalhoub 

and Kelly (1991), and Van Engelen and Kelly (2015). The hyperbolic tangent function is 

expanded with a Taylor series for small values of  , which yields 

    3 5 7 91 2 17
tanh

3 15 315
O           (4-24) 

Substituting the first three terms of the Taylor series into Eq. (4-22), and with the 

definition of  , approximates Ec as  
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24
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e

GS
E GS

K 

 
  

 
 (4-25) 

From Eq. (4-25) it can be observed that for small S or large K the bracketed term 

approaches unity and 24cE GS , which is the analytical solution of an infinite strip pad 

assuming rigid reinforcement and incompressibility (Chalhoub and Kelly 1991). The 

volume of elastomer that laterally bulges in elastomeric pads with a small S is large in 

comparison to the volumetric strain or uniform lateral extension due to the extensible 

reinforcement. Consequently, for very small values of S, the elastomeric pad can be 

assumed incompressible.        

Inverting Eq. (4-25) yields 

 

1
2

2

1

1 1 24
1

4 5c e

GS

E GS K





 
  

 
 (4-26) 

Applying a binomial series expansion in the form of 

  
1 21 1 ( )x x O x


     (4-27) 

for the bracketed terms gives 

 2

1 1 6 1 6

4 5 5c f f

t

E GS K E t
    (4-28) 

which is identical to the approximation from Chalhoub and Kelly (1991) and Van 

Engelen and Kelly (2015), with an additional term representing the extensibility of the 

reinforcement.  

The compression modulus can be highly sensitive to the compressibility of the 

elastomer and extensibility of the reinforcement, as demonstrated in Figure 4-4. The 

results with 6 5c ec    for the compression modulus of an infinite strip pad are shown 

in Figure 4-5. The compressibility of the elastomer and extensibility of the reinforcement 

in this derivation appear together in an inverted summation, which is equivalent to 11 eK  . 

As such, it is convenient to show the percent error as a function of S and 1eK  . A range of 

1500 10000eK G  is shown in Figure 4-5 which encompasses the range of 

approximately 1750 8500eK G  based on the selected ranges of K/G and /f fE t tG .  

4.4.2.2 Shear Strain due to Compression 

The maximum shear strain due to compression which occurs at the interface of the 

elastomer and extensible reinforcement at the unloaded edge of the bearing, derived from 

the solution for Ec presented in Kelly and Takhirov (2002), is 

 
 tanh

6c

c

S


 
  (4-29) 
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where c c cE   is the vertical compression strain. A similar procedure as with the 

compression modulus, based on a Taylor series expansion, truncation, inversion and 

application of the binomial series, is employed to develop a simplified expression for the 

strain ratio. This procedure yields 

 

1

1

1 2

6 3

c

c e

GS

S K









 
  
 

 (4-30) 

Unlike Ec, as S increases Eq. (4-30) diverges from the analytical solution and the 

error becomes large and unconservative. It is necessary to present a second approximation 

based on large values of S. Note that as   increases, the hyperbolic tangent function 

rapidly approaches unity. Thus, the analytical solution, Eq. (4-29), for large S can be 

approximated as    

 
6c

c

S

 
  (4-31) 

Using the definition of λ from Eq. (4-19) and Eq. (4-23), Eq. (4-31) can 

equivalently be expressed as 

 13c e

c

K

G




  (4-32) 

which is independent of S and represents the horizontal asymptote that Eq. (4-29) 

approaches as S becomes infinitely large.  

An example of the proposed approximations is shown in Figure 4-6. The 

approximation for small shape factors (Eq. (4-30)) reaches a maximum before diverging 

from the analytical solution. It is proposed that the transition between the approximation 

based on small shape factors (Eq. (4-30)) and large shape factors (Eq. (4-32)) occur when 

Eq. (4-30) reaches a maximum at 

 11

4

eK
S

G

  (4-33) 

Up to this point, the error gradually increases with increasing S, after this point Eq. 

(4-30) will decrease and begin to diverge, rapidly increasing the error. Using this 

criterion, an example of the percent error is provided in Figure 4-7. The procedure to 

determine this criterion was applied to all pad geometries.  

4.4.2.3 Bending Modulus 

The analytical solution for the bending modulus of an infinite strip pad, including 

the compressibility of the elastomer and extensibility of the reinforcement, is (Kelly and 

Takhirov 2002) 
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 



 
   

 
 (4-34) 

where e = 1 from Eq. (4-23).  

Equation (4-34) is identical to the solution assuming rigid reinforcement (Kelly and 

Konstantinidis 2011) if fE  . Following the expansion and truncation procedure, the 

bending modulus can be approximated as 

 2

1 1 10 1 10

4 7 7

5
b f f

t

E K E t
GS

    
(4-35) 

The results with 10 7b eb    for the bending modulus of an infinite strip pad are 

compared in Figure 4-8.   

4.4.3 Circular Pad 

4.4.3.1 Compression Modulus 

It is assumed that the  reinforcement in orthogonal directions acts as a uniaxial 

material with no interaction between the opposing directions (i.e. Poisson’s ratio for the 

fiber reinforcement is zero). Including the compressibility of the elastomer and 

extensibility of the reinforcement, the compression modulus of a circular pad, is 

expressed as (Kelly and Calabrese 2013) 
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 (4-36) 

where I0, and I1 are order 0 and 1 modified Bessel functions of the first kind, respectively, 

and for a circular pad 

 
2 248

f f

t
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E t
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2 2 1
48GS

K
   (4-37) 

Expanding Eq. (4-36) in a Taylor series yields 
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  
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 (4-38) 

Inverting the expression and expanding with a binomial series gives 

 2

1 1 4 1 7

6 3 3c f f

t

E GS K E t
    (4-39) 

The results with 4 3c   and 7 3ec   for the compression modulus of a circular 

pad are compared in Figure 4-9. Unlike the infinite strip isolator, where the 

compressibility and extensibility terms can be replaced with Ke, the circular pad is 
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necessarily compared against the selected ranges of K/G and /f fE t tG
 
 since these terms 

in Eq. (4-36) cannot be replaced by Ke.    

4.4.3.2 Shear Strain due to Compression 

The maximum shear strain due to compression, derived from the solution for Ec 

presented in Kelly and Calabrese (2013), is  
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 (4-40) 

Following the procedure used herein, Eq. (4-40) can be simplified to 
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which reaches a maximum at  

 21

6

eK
S

G

  (4-42) 

The limit of Eq. (4-40) as S   gives 
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Introducing the following approximation  
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which was determined by minimizing the squared residuals over the range of K/G and 

Eftf/tG considered, a similar expression as with the infinite strip pad is obtained  

 13/43c e

c

K

G




  (4-45) 

The percent error from the proposed approximation is shown in Figure 4-10. 

Equation (4-41) is selected if S is less than Eq. (4-42), and Eq. (4-45) is selected if S is 

greater than Eq. (4-42). 

4.4.4 Square Pad 

4.4.4.1 Compression Modulus 

The compression modulus of a rectangular pad, including the compressibility of the 

elastomer and extensibility of the reinforcement, was first investigated by Angeli et al. 

(2013) using a double Fourier series solution. The method presented by Kelly and Van 

Engelen (2015), based on a single Fourier series, is selected since it converges rapidly and 
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conveniently simplifies to the analytical solutions of a square pad assuming rigid 

reinforcement and a compressible or an incompressible elastomer (Kelly 1997, Kelly and 

Konstantinidis 2011). The compression modulus of a square pad, a special case of the 

solution for a rectangular pad, including the compressibility of the elastomer and 

extensibility of the reinforcement is (Kelly and Van Engelen 2015) 
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where 
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and e = 2 is determined from the analytical solution.   

Following the expansion and truncation procedure, the proposed approximation is 
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1 1 7 1 14

6.748 5 5c f f

t

E GS K E t
    (4-48) 

The results with 7 5c   and 14 5ec   for the compression modulus of a square pad are 

compared in Figure 4-11.  

4.4.4.2 Shear Strain due to Compression 

For a square pad, the maximum shear strain due to compression is (Kelly and Van 

Engelen 2015) 
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which can be approximated as 
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The maximum of Eq. (4-50) occurs at 

 21

7.658

eK
S

G

  (4-51) 

Similar to the infinite strip pad, for large values of S the hyperbolic tangent function 

will approach unity and the expression becomes proportional to the inverse of n . Taking 

the limit as S   of Eq. (4-49) yields    
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Summing the series gives approximately  
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 23c e
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
  (4-53) 

The percent error from the proposed approximation is shown in Figure 4-12. Equation 

(4-50) is selected if S is less than Eq. (4-51), and Eq. (4-53) is selected if S is greater than 

Eq. (4-51). 

4.4.4.3 Bending Modulus 

The bending modulus of a square pad including the compressibility of the elastomer 

and extensibility of the reinforcement is (Angeli et al. 2013) 
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(4-54) 

In Angeli et al. (2013), the thickness of the reinforcement layer was divided by two 

to represent the assumed bi-directional fiber reinforcement. Following the definition of Ef 

used herein, selected to represent the flexible reinforcement layer as a composite with the 

bonding agent, the definition of 2  and 2  are 
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Following the expansion and truncation procedure, the proposed approximation is 
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1 1 8 1 16

2.228 5 5b f f

t

E GS K E t
    (4-56) 

The results with 8 5b   and 16 5eb   for the bending modulus of a square pad are 

compared in Figure 4-13.  

4.4.5 Annular Pad 

4.4.5.1 Compression Modulus 

The compression modulus of an annular pad including the compressibility of the 

elastomer and extensibility of the reinforcement is (Pinarbasi and Okay 2011) 
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(4-57) 

where 
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and ε is the ratio of the inner radius to the outer radius, and K0, K1 are order 0 and 1 

modified Bessel functions of the second kind, respectively. Modified Bessel functions of 

the second kind cannot be expanded in a Taylor series, and this expression, as with the 

case assuming inextensible reinforcement, cannot be simplified with the procedure used 

herein (Van Engelen and Kelly 2015).  

Alternatively, the following expression is proposed: 

 2

1 1 6 1 12

6 5 5c c f f

t

E GS K E t
    (4-63) 

where (Constantinou et al. 1992) 
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(4-64) 

Note that c , which accounts for the presence of the hole, quickly converges to 2/3 

and
24cE GS  , which is the solution for an infinite strip pad. Based on this observation, 

Van Engelen and Kelly (2015) proposed selecting 6 5c   which was derived for an 

infinite strip pad. The correction factor of 12 5ec  for the extensibility was selected 

based on the observation that for small values of ε, cE  approximately approaches Ke=2 as 

S  . Note that, with the exception of the circular pad, which also converges to Ke=2 as 

S  , ec c   is equal to e. The result with 6 5c   and 12 5ec   for the 

compression modulus of an annular pad are compared in Figure 4-14 with ε = 0.1. Due to 

the rapid convergence of the solution to an infinite strip pad, the error is not sensitivity to 

changes in ε, increasing only slightly as ε increases, as shown in Figure 4-15.  
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4.4.5.2 Shear Strain due to Compression 

The maximum shear strain due to compression occurs at the inner surface of an 

annular pad; however, the maximum value at the outer surface may also be of interest. 

The shear strain due to compression assuming an incompressible elastomer and 

inextensible reinforcement, derived from Kelly and Konstantinidis (2011), is     

 6c
s
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S
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
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  (4-65) 

with 
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where a is the inner radius, b is the outer radius and r is the radius.  

4.4.5.2.1 Outer Surface (r = b) 

The shear strain due to compression at the outer surface of an annular pad, 

including reinforcement extensibility and bulk compressibility, is (Pinarbasi and Okay 

2011) 
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All of the parameters for an annular bearing, 2 , 
2  and 2 , are equivalent to a 

circular isolator with the same outer radius since 
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where Sc and Sa are the shape factors for a circular and annular pad, respectively. Using 

this relationship, Eq. (4-67) can be expressed in terms of Sc as 
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The shear strain at the outer surface is less in an annular pad than a circular pad 

with equal c  and equal outer radius. This occurs because the hole in an annular pad 

provides an additional free surface for lateral bulging which reduces the magnitude of 

lateral bulging at the outer surface. Due to these similarities, it is proposed that the 

expression for the maximum shear strain at the outer surface of an annular pad be 

expressed similar to the circular pad, Eq. (4-41) and Eq. (4-45). Furthermore, it can be 

shown that for small values of ε that the limit of Eq. (4-67) as S   is approximately 

equal to the limit for a circular pad, Eq. (4-45). Therefore, the proposed approximation is 
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which reaches a maximum at  
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The percent error from the proposed approximation is shown in Figure 4-16. 

Equation (4-70) is selected if S is less than Eq. (4-71), and Eq. (4-45) is selected if S is 

greater than Eq. (4-71). The percent error is not largely sensitive to changes in ε.  

4.4.5.2.2 Inner Surface (r = a) 

The shear strain due to compression at the inner surface is (Pinarbasi and Okay 

2011) 
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The general trend observed in the other pad geometries, where the strain ratio 

increases with S and approaches a horizontal asymptote (see Figure 4-6), does not occur. 

An example of the trend is provided in Figure 4-17 which shows that the shear strain ratio 

increases to a maximum. Although the horizontal asymptote is identical to the outer 

surface, the rate of convergence is slower and the asymptote is approached gradually from 

above with very large S. Note that Eq. (4-72) is governed by the incompressible and 

inextensible solution for small values of S. Therefore, the following expression is 

proposed 
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where 

  0.1 ln 5.25a    (4-74) 

accounts for the increased sensitivity to the hole that occurs at the inner surface. The 

function a  and coefficient e were determined using an iterative least squares regression 

procedure over the selected range of S, K/G, 
f fE t tG and 0.02 0.4  .   

The maximum of Eq. (4-73) occurs at 
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e
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S
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Unlike the other pad geometries considered, the decrease that occurs after the 

maximum is beneficial as it follows the analytical solution. The analytical solution 

approaches Eq. (4-45) as S  , thus Eq. (4-45) is imposed as a lower limit if S exceeds 

Eq. (4-75). The percent error from the proposed approximation is shown in Figure 4-18 

and an example of the sensitivity of the error to ε is shown in Figure 4-19.  
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4.5 Discussion 

4.5.1 Compression and Bending Modulus 

The proposed approximation for the compression and bending modulus are 

especially useful for design since they build on the popular ad hoc approximation, Eq. 

(3-7), proposed by Gent and Lindley (1959) and used in design standards (ISO 2010). The 

proposed approximations introduce derived correction factors for various pad geometries 

that take into account both the elastomer compressibility and reinforcement extensibility. 

The coefficient to the incompressible analytical solution and correction factors of the 

compression and bending modulus are summarized in Table 3-1. Table 3-1 also includes 

the correction factor and coefficient for the bending modulus of a circular and annular pad 

in bending with 
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which corrects the incompressible solution for the presence of the hole in bending (Van 

Engelen and Kelly 2015). Pressure solutions under pure bending including the 

compressibility of the elastomer and extensibility of the reinforcement are not available in 

the literature for circular and annular pads.  

The proposed approximation, from Eq. (4-3), can alternatively be expressed as 
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or as  

 
1 1 c

c c eE E K




   (4-78) 

where ec ce   . If Ke = K in Eq. (4-78), the expression is identical to the proposed 

approximation from Van Engelen and Kelly (2015) and many of the observations in that 

study apply when including reinforcement extensibility. This is the case for the infinite 

strip pad and square pad geometries. In Van Engelen and Kelly (2015), it was observed 

that the ad hoc approximation (Eq. (1)), assuming rigid reinforcement, captures the 

correct limits for small S or as S  , but otherwise may have a significant and 

unconservative error over the practical range of S for elastomeric bearings. The inclusion 

of the correction factor determines that
c cE K   and the error approaches a maximum 

of  1 1 c  as S  . Although the upper limit is not captured correctly, the inclusion 

of the correction factor results in an improved and conservative approximation for the 

range of S typical in elastomeric bearing design. The inclusion of the extensibility of the 

reinforcement implies 
c e cE K   as S  (from Eq. (4-78)), and results in a 
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decreased lower bound of Ke in comparison to K (i.e. the minimum value of Ke/G is less 

than the minimum value of K/G considered). The error of the proposed approximation 

increases as Ke decreases. Consequently, the decrease in the lower bound of Ke increases 

the magnitude of the maximum percent error over the range considered. Regardless, the 

maximum percent error obtained as S   is unchanged. Identical observations can be 

made for the bending modulus.  

For the analytical solutions to circular and annular pad geometries, 2  and 
2  

appear individually, consequently the error was shown as a function of S, K/G, and 

/f fE t tG . The error was only sensitive to small values of /f fE t tG . From a mathematical 

perspective, if /f fE t t  is significantly greater than K, than 
eK K  and both the analytical 

solution and the approximation will not be sensitive to small changes in /f fE t t . In a 

physical sense, this represents increased dependency on the bulk compressibility as the 

reinforcement becomes near-rigid. From Eq. (4-36), in the limit as S  , 
2c eE K  . 

Thus the maximum error of the proposed approximation is  1 1 c  if rigid 

reinforcement is assumed, or  1 ece  , where 2e  , if the elastomer is incompressible 

and extensibility of the reinforcement is allowed.              

4.5.2 Shear Strain due to Compression 

Two generalized approximations dependent on the elastomeric pad geometry can be 

used to determine the maximum shear strain due to compression. The approximations are 
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The factors, 1 , 2 , and e, required to determine the shear strain due to 

compression are listed in Table 4-2. These proposed approximations are similarly easy to 

use and can be applied to multiple pad geometries.   

The inverted expression obtained using a Taylor and binomial series expansion for 

small values of S contains S in the denominator of the first term, and in the numerator of 

the second term. The denominator of the first term is identical to 
c c   assuming an 

incompressible elastomer and inextensible reinforcement and, as with Ec and Eb, the 

second term corrects for these effects. However, the appearance of S in both terms 

determines that 0c c    as S  , thus the error increases substantially after the 

maximum of the approximation for small S is obtained. Comparable to Ec and Eb, this 
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approximation will always provide a lower estimate than the analytical solution, which 

with respect to the shear strain ratio is unconservative, although the magnitude of the 

error is small.  

The criterion selected to determine which shear strain approximation should be 

selected minimized the error for small values of S to below 20 %, depending on the 

geometry of the pad. The shear strain ratio increases with increasing S, and approaches a 

horizontal asymptote, independent of S. This is analogous to Ec and Eb approaching Ke as 

S becomes infinitely large. By selecting this limit as the strain ratio for large values of S, 

the approximation will always provide a conservative estimate for larger values of S. Note 

that the shear strain ratio, unlike Ec and Eb and with the exception of the inner surface of 

an annular pad, rapidly converges to this limit within the range of S considered for typical 

elastomeric bearing design. Similar to the approximation for small values of S, the error 

was found to not exceed -20%, which is conservative for the shear strain ratio, decreasing 

in magnitude with increasing S.      

4.5.3 Example 

The maximum shear strain due to compression is investigated for a square pad with 

an average vertical stress of 7.0 MPa, corresponding to the maximum value allowed at the 

serviceability limit state (CSA 2014). Note that stability considerations and limitations on 

c  due to specific load cases are omitted from this example. Figure 4-20 compares c  

determined by the analytical solution to the approximations in CSA (2014) (i.e. 

neglecting compressibility and extensibility), AASHTO (2014a,b) including 

compressibility, and the proposed approximation with G = 0.5 and 1.0 MPa and various 

values of Ke=2. Note that the extensibility was included in AASHTO (2014a,b) by taking 

K = Ke=2 in Eq. (4-10). 

The value of c  is directly proportional to c . For low values of S, c , and 

consequently c , are large due to the low compression modulus. As S increases, Ec 

increases and c  
decreases. Determining c  based on a value of Ec neglecting 

compressibility and extensibility may significantly under estimate the actual value, which 

will consequently result in large and unconservative errors in the calculated value of c .  

The sensitivity to the compressibility of the elastomer or the extensibility of the 

reinforcement increases as S increases. Deriving Eq. (4-5) from the pressure solution 

assuming an incompressible elastomer and inextensible reinforcement yields a coefficient 

of approximately Dc = 1.2 for a square pad. In light of the recommend value of Dc = 1.0, 

the code approximation is unconservative before the effects of compressibility and 

extensibility are included. Neglecting compressibility and extensibility significantly and 
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unconservatively underestimates c , as shown in Figure 4-21 over 

2500 MPa 10000 MPaeK   .  

The best-fit approximation presented by Stanton et al. (2008), and recommended in 

the commentary of AASHTO (2014a,b), fits the analytical solution well over much of the 

range considered, but diverges quickly for large values of S and low compressibility, 

which presumably exceeds the range considered. Despite the low error, the equations in 

AASHTO (2014a,b) are not as convenient for use as the proposed approximation and are 

exclusive to a single pad geometry (i.e. rectangular). The proposed approximation closely 

follows the analytical solution (see Figure 4-20) with minimal error, ranging between -20 

% to 10 %, as shown in Figure 4-21. Furthermore, the proposed approximation can easily 

be adapted to other pad geometries by selecting the appropriate coefficients.   

4.6 Conclusion 

The introduction of alternative types of reinforcement, such as fiber, for elastomeric 

bearings has required that the extensibility of the reinforcement be considered as an 

additional design parameter. It was demonstrated that the often complex analytical 

solutions that include the compressibility of the elastomer and extensibility of the 

reinforcement could be expanded and truncated to simple approximations. The pad 

geometry is accounted for through the inclusion of correction factors; otherwise the 

proposed approximations take a similar form for all pad geometries considered.  

The procedure was used to develop proposed approximations for the compression 

and bending modulus and maximum shear strain due to compression. Recognizing that 

design codes often remain technology neutral, it is recommended that these expressions 

be adapted as simple approximations for the compression modulus, bending modulus, and 

the maximum shear strain due to compression. If it is appropriate to assume an 

incompressible elastomer or rigid reinforcement, the appropriate terms of the proposed 

approximations can be eliminated and the expressions reduced. 
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Table 4-1: Compression and bending modulus for an incompressible elastomeric pad and 

correction factors to take into account elastomer compressibility and 

reinforcement extensibility 

Pad Geometry 1 1 1
c ec

c c f f

t

E E K E t
 


     

1 1 1
b eb

b b f f

t

E E K E t
 


    

2

cE GS
 c  ec   

2

bE GS
 b  eb  

Infinite Strip 4 6/5 6/5  4/5 10/7 10/7 

Circular 6 4/3 7/3  2 3/2 - 

Square 6.748 7/5 14/5  2.228 8/5 16/5 

Annular 6λc 6/5 12/5  2λb 10/7 - 

where λc is given by Eq. (4-64) and λb by Eq. (4-76) 

 

Table 4-2: Factors for the proposed approximations for the maximum shear strain due to 

compression, Eq. (4-66) 

Pad Geometry 1  2  e  

Infinite Strip 6 2/3 1 

Circular 6 1 2 (13/4)* 

Square 8.104 0.945 2 

Annular 

(Outer Surface) 
6 s  1 2 (13/4)* 

Annular 

(Inner Surface) 
6 s  a  7/4 (13/4)* 

where λs is given by Eq. (4-65) and λa by Eq. (4-74) 

*For large shape factors 
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Figure 4-1: Compression modulus assuming a compressible elastomer normalized by 

the compression modulus assuming an incompressible elastomer as a 

function of shape factor for an infinite strip pad.  

 

Figure 4-2: Arbitrarily shaped elastomeric pad with a Cartesian coordinate system and 

displacement field (u, v, w).   

 

Figure 4-3: Lateral bulging of a constrained elastomeric pad under compression 

identifying the locations of the maximum shear strain due to compression.  
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Figure 4-4: Normalized compression modulus as a function of α and β for an infinite 

strip pad.  

 

Figure 4-5: Percent error of Ec for an infinite strip pad. 
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Figure 4-6: Example relationship of the maximum shear strain due to compression 

normalized by the compression strain of an infinite strip pad as a function 

of the shape factor for the i) analytical solution and ii) proposed 

approximation. 

 

Figure 4-7: Percent error of γc/εc for an infinite strip pad. 
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Figure 4-8: Percent error of Eb for an infinite strip pad.  

 

Figure 4-9: Percent error of Ec for a circular pad.  
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Figure 4-10: Percent error of γc/εc for a circular pad. 

 

Figure 4-11: Percent error of Ec for a square pad. 
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Figure 4-12: Percent error of γc/εc for a square pad. 

  

Figure 4-13: Percent error of Eb for a square pad. 
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Figure 4-14: Percent error of Ec for an annular pad (ε = 0.1). 

 

Figure 4-15: Sensitivity of the percent error for Ec of an annular pad to ε (K/G = 2000, 

Eftf/tG 20000). 
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Figure 4-16: Percent error of γc/εc for the outer surface of an annular pad (ε = 0.1). 

 

Figure 4-17: Example of γc/εc as a function of S for the inner surface of an annular pad 

(ε = 0.1, K/G = 2000, Eftf/tG = 20000). 

 

0 
10 

20 
30 

40 
50 

0 
2500 

5000 
7500 

10000 
-30

-20

-10

0

10

20

0 
10 

20 
30 

40 
50 

0 

20000 

40000 

60000 
-30

-20

-10

0

10

20

0 
20000 

40000 
60000 

0 
2500 

5000 
7500 

10000 

-30

-20

-10

0

10

20

0 
20000 

40000 
60000 

0 
2500 

5000 
7500 

10000 

-30

-20

-10

0

10

20

0 10 20 30 40 50 
60 

80 

100 

120 

140 



Ph.D. Thesis – N.C. Van Engelen; McMaster University – Civil Engineering 

 83   

 

 

Figure 4-18: Percent error of γc/εc for the outer surface of an annular pad (ε = 0.1). 

 

Figure 4-19: Sensitivity of the percent error for γc/εc at the inner surface of an annular 

pad to ε (K/G = 2000, Eftf/tG = 20000). 
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Figure 4-20: Maximum shear strain due to compression as a function of S for selected 

values of G and Ke=2 (ζc = 7.0 MPa). 
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Figure 4-21: Percent error of (a) CSA (2014), (b) AASHTO (2014a,b) including 

compressibility and (c) the proposed approximation for a square pad with 

G = 0.5 MPa (left) and G = 1.0 MPa (right).  
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5 Shear Strain Demands in Elastomeric Bearings Subjected to 

Rotation 

 

Van Engelen NC, Konstantinidis D, Tait MJ. 2015. Shear Strain Demands in Elastomeric 

Bearings Subjected to Rotation. To be submitted to the Journal of Engineering 

Mechanics (ASCE). 

Abstract 

Fiber reinforcement was initially proposed as a potential cost-saving alternative to 

conventional steel reinforcement in laminated bearings. Steel reinforcement is often 

assumed to be rigid, but the extensibility of the reinforcement serves as an additional 

design parameter that must be considered. Similar to the compressibility of the elastomer, 

the extensibility of the reinforcement has a pronounced effect on important design 

parameters such as the compression modulus, bending modulus and shear strains that 

develop due to compression or rotation. Analytical solutions for the compression modulus 

and bending modulus developed based on the pressure solution are available for most 

common pad geometries and can be used to derive the maximum shear strain due to 

rotation. These solutions are often complex and unsuitable for design purposes. In this 

study, the analytical solutions for an infinite strip, circular, square, rectangular and 

annular pad geometries are derived and simplified to form geometry-specific 

approximations for the maximum shear strain due to rotation. The simplified 

approximations account for the reinforcement extensibility and the compressibility of the 

elastomer. The derived approximations are evaluated based on the analytical solutions 

and provide accurate values over a wide range of shape factors and values of bulk 

compressibility and reinforcement extensibility.  

5.1 Introduction 

Laminated elastomeric bearings have been used extensively as bridge bearings and, 

more recently, as seismic isolators. Conventional steel-reinforced elastomeric isolators 

(SREIs) are composed of alternating horizontal layers of steel and elastomer. The steel 

reinforcement restrains the lateral bulging of the elastomeric bearing under a compressive 

load, substantially increasing the vertical and rotational stiffness. The horizontal 

properties are relatively uninfluenced by the reinforcement and the elastomer enables the 

bearing to undergo large recoverable horizontal displacements.  

Fiber-reinforced elastomeric isolators (FREIs), initially proposed as a potentially 

light-weight and low-cost alternative to SREIs, have been investigated for application as 

seismic base isolators (Kelly 1999, Kelly and Takhirov 2002, Toopchi-Nezhad et al. 

2008). Fiber reinforcement, which is allowed in specific applications in design codes, 
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such as CSA S6-14 (CSA 2014), is attractive due to the light-weight, comparable tensile 

properties to that of steel, and the ability to manufacture and cut FREIs from a larger pad. 

Analytically, FREIs differ from SREIs primarily on the extensibility of the reinforcement. 

Steel shims are often assumed inflexible and inextensible, but the extensibility of the fiber 

reinforcement is included in the analysis. The extensibility of the reinforcement and 

compressibility of the elastomer can have a pronounced effect on critical design 

parameters (e.g. compression modulus), especially for moderate-to-large shape factors, 

defined as the ratio of the loaded area to the unloaded area of a single layer of elastomer 

(Osgooei et al. 2014).   

Analytical solutions including the compressibility of the elastomer and extensibility 

of the reinforcement, for brevity hereinafter referred to as compressibility and 

extensibility, are available for the compression modulus and bending modulus of most 

simple elastomeric pad geometries. These solutions are often complex and not appropriate 

for use in design. Alternatively, approximations have been presented based on tabulated 

results (Constantinou et al. 2011) or best-fit approximations derived from analytical 

solutions (Stanton et al. 2008) to account for these effects. Van Engelen and Kelly (2015) 

proposed a generalized approximation for the compression modulus and bending modulus 

based on the pressure solution including compressibility. The proposed approximation 

takes the form of the ad hoc approximation originally proposed by Gent and Lindley 

(1959) that has been used in design standards (ISO 2010). The inclusion of a 

mathematically derived correction factor provided a more accurate and conservative 

approximation based on the analytical solution. In Van Engelen et al. (2015), the same 

procedure was extended to include the extensibility of the reinforcement and was applied 

to develop a generalized expression for the maximum shear strain due to compression.  

In this paper, the procedure from Van Engelen and Kelly (2015) and Van Engelen 

et al. (2015) is extended to derive an approximation for the maximum shear strain due to 

rotation for an infinite strip, square and rectangular pad geometry including the effects of 

compressibility and extensibility. Approximations are also presented for circular and 

annular pad geometries that include the effects of compressibility. An example compares 

the proposed approximation and code equations (CSA 2014, AASHTO 2014a,b) to the 

analytical solution derived using the pressure solution.  

5.2 Rotations in Elastomeric Bearings 

5.2.1 Code Considerations 

In addition to the shear strain due to imposed horizontal displacement and 

compression, shear strain due to rotation is an important parameter in the design of 

elastomeric bearings. The maximum shear strain due to compression, c , and the 
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maximum shear strain due to rotation, r , occur at the interface of the extensible 

reinforcement and elastomer near the edge of the bearing, illustrated in Figure 5-1. 

Design codes (CSA 2014, AASHTO 2014a,b) impose restrictions on the maximum shear 

strain due to compression, rotation, imposed lateral displacements and earthquake 

displacements, individually and/or in combination. For elastomeric bearings in isolation 

systems, CSA S6-14 (2014) imposes the following limitation 

 5.5c r d      (5-1) 

where d  is the maximum shear strain due to imposed lateral displacements. Similarly, in 

AASHTO (2014b) the seismic shear strain combination is 

 0.5 5.5c r d      (5-2) 

In AASHTO (2014b) it is indicated that the factor of 0.5 applied to r  is intended to 

differentiate between static and cyclic loading (i.e. static rotation is less damaging) which 

will both occur. Note that a similar expression in AASHTO (2014a) differentiates static 

and cyclic loading for non-seismic load combinations.  

Some level of rotation will always occur due to tolerances in the construction 

process, or in some applications, notably in bridge bearings, rotations can be introduced 

due to the deflections of the structure due to traffic and other effects. The need to 

accommodate shear strains caused by compression and rotation becomes challenging due 

to opposing trends as a function of the shape factor. Increasing the shape factor vertically 

stiffens the bearing, reduces the vertical compression strain, which is proportional to c ; 

however, it also increases the rotational stiffness, resulting in an increased value of r  for 

the same level of rotation. In unbonded applications, gaps may form between the bearing 

and the structure under large levels of rotation (Konstantinidis et al. 2008, Al-Anany and 

Tait 2015).  

Despite being an important design consideration, rotation has received considerably 

less attention than shear or compression (Stanton et al. 2008). Studies involving rotation 

typical focus on stability (Gent 1964, Stanton et al. 1990, Nagarajaiah and Ferrel 1999, de 

Raaf et al. 2011), whereas the maximum shear strain due to rotation has been of lesser 

focus. Stanton et al. (2008) conducted a comprehensive study on the rotation of steel-

reinforced elastomeric bearings including an experimental program, analytical and finite 

element analysis, and proposed design rules. Currently, considerations for r  in design 

codes (CSA 2014, AASHTO 2014a,b) primarily originate from this study.  

According to CSA (2014) and AASHTO (2014a,b) r  may be determined as 

 

2

r
r t

i

D B

t T
   (5-3) 
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where Dr is a geometry dependent factor, B is the plan dimension in the direction of 

loading (diameter for a circular bearing), ζt is the total rotation of the isolator, ti is the 

thickness of the ith layer of elastomer, and T is the total thickness of the elastomer. Note 

that Eq. (5-3) does not include the compressibility of the elastomer. For a rectangular pad, 

Dr = 0.55 or 0.5 in CSA (2014) and AASHTO (2014a,b), respectively, and for a circular 

pad, Dr = 0.375 (CSA 2014, AASHTO 2014a,b).  

AASHTO (2014a) allows Dr to be determined for a rectangular pad including the 

compressibility of the elastomer based on a best-fit approximation over a range of aspect 

ratios from Stanton et al. (2008). The recommended expression is: 

 
1.552 0.627

0.5
2.233 0.156 /

rD
L W






 

 
 (5-4) 

 

where 

 
23GS

K
   (5-5) 

and L is the plan dimension perpendicular to the axis of rotation, W is the plan dimension 

parallel to the axis of rotation, S is the shape factor, G is the shear modulus of the 

elastomer, and K is the bulk modulus of the elastomer. 

5.2.2 Analytical Solutions 

The pressure solution has been commonly applied to develop the analytical solution 

for the bending modulus of elastomeric pads, from which the maximum shear strain due 

to rotation can be derived. References to these analytical solutions are provided in the 

subsequent sections. The pressure solution notably assumes that the normal stresses 

within the elastomer are dominated by the internal pressure, that the elastomer is linearly 

elastic, that the lateral bulging of the elastomer follows a parabolic profile and that 

horizontal planes remain plane (Kelly 1997). The extensibility of the reinforcement has 

been included by the addition of a uniform displacement term to the assumed parabolic 

lateral bulging (Kelly 1999). Solutions developed based on the simplifying assumptions 

of the pressure solution are often characterized as being appropriate for elastomeric pads 

with a shape factor of approximately 5 or greater (Kelly 1997).  

The derivation of the bending modulus, following the assumption of the pressure 

solution, produces two terms representative of the sensitivity of the solution to 

compressibility and extensibility. These two terms are often summed as 

 
2 2 1

f f

t
cGS e

K E t


 
   

 

 (5-6) 

where c and e are constants dependent on the pad geometry, t is the thickness of the 

elastomeric pad, tf is the thickness of a reinforcement layer, and Ef is the effective elastic 



Ph.D. Thesis – N.C. Van Engelen; McMaster University – Civil Engineering 

 90   

 

modulus of the reinforcement. Note that λ is often defined as a function of a geometric 

property (e.g. diameter or width) in lieu of the shape factor. Thus, the definition used 

herein may vary from the respective analytical derivations. 

The extensibility of the reinforcement is represented by Ef, corrected by the ratio 

/ft t . The direct summation of the inverted bulk modulus and reinforcement effective 

elastic modulus in Eq. (5-6) determines that the analytical solution is often equally 

sensitive to these parameters. In Van Engelen et al. (2015), the value in the parenthesis 

was represented by an equivalent parameter, Ke, defined as 

 
1 1

e f f

t
e

K K E t
   (5-7) 

where the subscript represents the magnitude of the coefficient e.  

The analytical solutions in subsequent sections present the relationship between the 

shear stress and pressure distribution. The analytical solutions for the maximum shear 

strain due to rotation presented herein were derived from this relationship. According to 

the pressure solution, the maximum shear strain occurs exactly at the free surface, 

whereas in reality the maximum shear strain occurs very near to the free surface.  Note 

that the location of the maximum shear stress was selected to provide a positive value in 

all cases.  

5.3 Generalized Approximations 

5.3.1 Material and Geometric Properties 

Previous studies (Van Engelen and Kelly 2015, Van Engelen et al. 2015) evaluated 

the proposed approximation against the analytical solutions over a selected range of S, 

K/G, and /f fE t tG . Herein, the proposed approximations are compared against the 

analytical solutions as a function of the dimensionless parameter λ, as defined in Eq. 

(5-6). Using λ is convenient for evaluation of the proposed approximations since a single 

value of λ can represent infinite combinations of G, S, and Ke. The range of λ differs 

depending on the pad geometry and can be determined from the ranges of S, and Ke/G 

considered. A range of 5 50S   and 500 10000eK G   was selected, as presented in 

Van Engelen et al. (2015). 

The lower bound of the shape factor was determined by the limitations of the 

pressure solution (Kelly 1997). The range of Ke/G is intended to encompass achievable 

values of K/G and /f fE t tG . In absence of testing, AASHTO (2014a) allows a value of K 

= 3100 MPa to be assumed. Comparatively, the extensibility of the reinforcement is 

easier to determine and to control. The variety of fiber reinforcement types, weaves, 

densities and thicknesses available allow the designer to have considerable flexibility 

over the reinforcement design. Note that Ef should be selected to represent the effective 



Ph.D. Thesis – N.C. Van Engelen; McMaster University – Civil Engineering 

 91   

 

elastic modulus of the extensible reinforcement as a composite within the bearing, and not 

the fiber reinforcement. An accurate value of Ef is necessary to avoid an over-estimate of 

the restraint on the elastomeric layers provided by the reinforcement.  

The following sections develop approximate expressions for the maximum shear 

strain due to rotation in bearings with different geometries. Previously published closed-

form solutions for the pressure distribution under pure rotation are used in conjunction 

with the assumptions that the magnitudes of the normal stresses are approximately equal 

to the pressure in the equilibrium equations, and that the in-plane shears are negligible, to 

recover closed-form solutions for the maximum shear stress in the elastomer. From the 

closed-form solution, the maximum shear strain is obtained under the assumption of 

linear elastic material.     

5.3.2 Infinite Strip Pad 

The analytical solution for the maximum shear strain due to rotation of an infinite 

strip pad, including the compressibility of the elastomer and extensibility of the 

reinforcement, can be derived from the pressure distribution provided in Kelly and 

Takhirov (2002) as 

  
2

2

6
coth 1r S

 
 
   (5-8) 

where 

 

2
2

1

12

e

GS

K




  (5-9) 

Equation (5-8) is non-linear, but approaches a constant slope as S  . The rate at 

which Eq. (5-8) approaches the constant slope is governed by 1 /eK G , demonstrated in 

Figure 5-2. 

The procedure from Chalhoub and Kelly (1991), which has subsequently been 

applied in Van Engelen and Kelly (2015) and Van Engelen et al. (2015), can be used to 

expand and simplify Eq. (5-8) to a generalized expression. The terms contained in the 

parenthesis are expanded with a Taylor series for small values of      

  
2 4

6coth 1
3 45

O
 

       (5-10) 

Truncating Eq. (5-10) and substituting the first two terms into Eq. (5-8) yields: 

 

2
22 1

15

r S
 



 
  

 
 (5-11) 

Inverting Eq. (5-11) and expanding with a binomial series gives 
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1
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The denominator of the first term in the parenthesis is the maximum shear strain 

due to rotation assuming an incompressible elastomer and inextensible reinforcement. As 

S becomes large, the first term of Eq. (5-12) becomes negligible and the maximum shear 

strain due to rotation approaches a horizontal asymptote equal to the inverse of the second 

term. Thus, Eq. (5-12) diverges from the analytical solution, which approaches a constant 

slope with increasing S, as described above, and demonstrated in Figure 5-3. 

Consequently it is necessary to determine a second approximation to correct for this 

divergence similar to the maximum shear strain due to compression as presented in Van 

Engelen et al. (2015).  

Differentiating Eq. (5-8) with respect to S and taking the limit as S  yields 

 13 er

S

Kd
lim

dS G







  (5-13) 

Ideally, the transition to the second approximation should occur when the slope of 

Eq. (5-12) and Eq. (5-13) are equal. However, differentiating the proposed 

approximation, Eq. (5-12), and equating it to Eq. (5-13) results in a quartic equation with 

no real roots. Alternatively, the transition shape factor, St, is established when the 

absolute difference of the first derivative of Eq. (5-12) and Eq. (5-13) is minimized (i.e. 

the point of inflection of Eq. (5-12)). The transition shape factor for an infinite strip pad is 

 115

6

e
t

K
S

G

  (5-14) 

If S exceeds St, a linear approximation can be used defined by 

  13 er r
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 (5-15) 

where 
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is the approximated maximum shear strain due to rotation at St.  

It is convenient to analyze the proposed approximation in terms of λ in lieu of S, G 

and Ke. Equivalently, the proposed approximation, Eq. (5-12), becomes 
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 (5-17) 

with the transition from small values of λ to large values of λ determined by λt from Eq. 

(5-14) 

 5t   (5-18) 

For λ ≥ λt, expressing Eq. (5-15) in terms of λ, the proposed approximation 

becomes: 
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 (5-19) 

Figure 5-4 shows  2

r S  and the associated percent error over a range of 

0 7.75  , which encompasses the considered range of Ke=1/G and S. The proposed 

approximation closely follows the analytical solution over the entire range of λ 

considered. The transition between approximations is visible in Figure 5-4 as the slope of 

the percent error instantaneously changes. In the case of the maximum shear strain due to 

rotation, a negative percent error is representative of a conservative over prediction. The 

magnitude of the error does not exceed 3.0 % over the range considered. Therefore, the 

proposed approximation and criterion for transition between approximations were 

considered acceptable. Figure 5-5 shows the percent error as a function of Ke=1/G and S. 

5.3.3 Circular Pad 

The analytical solution for the maximum shear strain due to rotation of a circular 

pad assuming rigid reinforcement and including the compressibility of the elastomer can 

be derived from the pressure distribution presented in Chalhoub and Kelly (1990) as 
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 (5-20) 

where 
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K
   (5-21) 

and I0 and I1 are order 0 and 1 modified Bessel functions of the first kind.  

Following the expansion, truncation and inversion procedure yields 
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where the factor before the parenthesis represents the maximum shear strain due to 

rotation assuming an incompressible elastomer.   

If λ ≥ λt, the following approximation is recommend 
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where 

 2 2t   (5-24) 

for a circular pad. The analytical solution and proposed approximation are presented in 

Figure 5-6 with the percent error over 0 15.5  . The proposed expression is highly 

accurate; the magnitude of the percent error is below 4 % over the range considered.  
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5.3.4 Square Pad 

The analytical solution for the maximum shear strain due to rotation of a square 

pad including the compressibility of the elastomer, derived from the expression for shear 

strain presented in Angeli et al. (2013), is 
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where  
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Angeli et al. (2013) recommended that tf be divided by two to represent the reinforcement 

weaved in perpendicular directions. The definition used herein assumes that Ef is selected 

appropriately to encompass the effective properties of the layer and the expression is 

based on the full thickness of tf.  

Following the expansion and truncation procedure yields 

  
1

2 27.576 1 0.056r S







   (5-27) 

where the factor before the parenthesis represents the maximum shear strain due to 

rotation assuming an incompressible elastomer and inextensible reinforcement.   

If λ ≥ λt, the following approximation is recommend 
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where 

 2.439t   (5-29) 

for a square pad. The analytical solution and proposed approximation are presented in 

Figure 5-7 with the percent error over 0 15.5  . The magnitude of the error of the 

proposed approximation is below 3 % over the range considered.  

5.3.5 Rectangular Pad 

The analytical solution for the maximum shear strain due to rotation of a 

rectangular pad including compressibility and extensibility, derived from the expression 

for shear strain due to rotation presented in Angeli et al. (2013), is  
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(5-30) 

where 
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Following the expansion and truncation procedure yields 
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where 
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   (5-33) 

and the factor before the parenthesis in Eq. (5-32) represents the maximum shear strain 

due to rotation assuming an incompressible elastomer and inextensible reinforcement and 

the function ρr corrects for the aspect ratio of the pad. The function ρr was determined by 

minimizing the least squares regression over 0.5 10  .  

If λ ≥ λt, the following approximation is proposed 
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where 
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   (5-37) 

for a rectangular pad. The percent error of the proposed approximation is shown in  

Figure 5-8 over 0 7.75  . The magnitude of the error is below 10 % over the range of 

aspect ratio and λ considered.  

5.3.6 Annular Pad 

5.3.6.1 Outer Surface 

The maximum shear strain due to rotation of an annular pad with an incompressible 

elastomer and rigid reinforcement, derived from the pressure distribution presented in 

Chalhoub and Kelly (1990), is 

 
26r

rS
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where 
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and ε is the ratio of the inner diameter to the outer diameter.  Note that Eq. (5-38) is valid 

at the inner surface and the outer surface of an annular pad.  
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The maximum shear strain due to rotation of an annular pad with a compressible 

elastomer and rigid reinforcement on the outer surface, derived from the pressure 

distribution presented in Kelly and Konstantinidis (2011), is  
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(5-40) 

with 
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where K0, K1 are order 0 and 1 modified Bessel functions of the second kind, respectively. 

Modified Bessel functions of the second kind approach infinity as 0   and cannot be 

expanded in a Taylor series.  

The maximum shear strain due to rotation on the outer surface of an annular pad is, 

in comparison to the inner surface, less sensitive to ε.  The properties on the outer surface 

of an annular pad are similar to a circular pad with the same radius. The shape factors of 

an annular and circular pad can be related by  1c aS S    where Sc and Sa are the shape 

factors for a circular and annular pad, respectively, with the same outer radius. 

The general trend of the maximum shear strain due to rotation at the outer surface 

of an annular pad follows a similar trend as observed in the other pad geometries 

considered (see Figure 5-2). Thus, the proposed approximation is  
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The coefficient before the parenthesis represents the incompressible solution, whereas the 

terms within the parenthesis were selected based on a circular pad and corrected for the 

presence of the hole.  

Similar to a circular pad, it is necessary to establish an approximation for λ ≥ λt 

  (5-43) 

where 

 
2

2 2

1
t





 (5-44) 

2

2

tr
b mm

S


  

 
  

 



Ph.D. Thesis – N.C. Van Engelen; McMaster University – Civil Engineering 

 97   

 

 

 
2

24

1
m





 

(5-45) 

 1
2

2 21
6 1

24
r t tb


  



 
  

 
 

(5-46) 

for the outer surface of an annular pad. The percent error of the proposed approximation 

is shown in Figure 5-9 over 0 17.2    and 0 25.8   for ε = 0.1 and ε = 0.4, 

respectively.  

5.3.6.2 Inner Surface 

The maximum shear strain due to rotation of an annular pad with a compressible 

elastomer and rigid reinforcement on the inner surface, derived from the pressure 

distribution presented in Kelly and Konstantinidis (2011), is  
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(5-47) 

Unlike the other pad geometries considered, the shear strain at the inner surface of 

an annular pad is unique due to a change in concavity that generally occurs within the 

range of interest. Initially the slope increases at an increasing rate and then decreases 

approaching a constant slope as S  , this general trend is demonstrated in Figure 

5-10.  

The following approximation is proposed 

 

1
2

2 21
6 1

8

r
r

I

S
 

 
 



 
  

 
 (5-48) 

where 

 5.5 1I    (5-49) 

corrects for the sensitivity of the compressibility term to ε at the inner surface. Equation 

(5-49) was determined by minimizing the squared residuals over the range considered.  

Equation (5-48) accurate approximates the maximum shear strain due to rotation 

over much of the range considered; however, similar to the other pad geometries, it is 

necessary to correct the approximation for large values of λ. It is proposed that the 

transition to a corrected expression occurs at  
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The slope of the analytical solution, Eq. (5-40), as S  is approximately 
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determined through least squares regression analysis.  

Thus, if λ > λt, by expressing Eq. (5-51) in terms of λ, the following approximation 

is proposed 

 
2

2

tr
b mm

S


  

 
  

 
 (5-52) 

where 

 
 48 7.59 2.68

1
m

 







 (5-53) 

 1
2

2 21
6 1

8
r t t

I

b


  




 
  

 
 

(5-54) 

Figure 5-11 shows the percent error over 0 17.2    and 0 25.8   for ε = 0.1 and ε 

= 0.4, respectively. The magnitude of the error is within 12 % over 0.02 0.40  .  

5.4 Discussion 

5.4.1 Generalized Approximation 

The maximum shear strain due to rotation can be represented by generalized 

approximations dependent on the elastomeric pad geometry, as functions of G, S, and Ke, 

or of a single dimensionless parameter, λ. Expressed as a function of λ, the proposed 

approximation is 
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 (5-55) 

The coefficients for each pad geometry are listed in Table 1.   

The approximation for λ < λt obtained from the truncated Taylor and binomial 

series is accurate for all the pad geometries considered. With the exception of the annular 

and rectangular pad, the percent error for λ < λt is below 5 %.  In the S, G, and Ke space 

with λ > λt, the proposed approximation is a straight line parallel to the analytical solution 

(see Figure 5-2). Thus, the percent error decreases with increasing λ from a maximum at λ 

= λt as the magnitude of the difference between the analytical solution and proposed 

approximation remains nearly constant. The result is an accurate approximation that is 

adaptable to any pad geometry.    

The analytical solutions for the bending modulus and the maximum shear strain due 

to rotation of an annular and circular pad including extensibility and compressibility have 

not been derived in the literature. Consequently, the value of e for these geometries is 

unknown. In Van Engelen at al. (2015), it was found that e ≈ 2 for the compression 

modulus and maximum shear strain due to compression with small values of S. It is 
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postulated that the value of e for the maximum shear strain due to rotation will likewise 

be approximately equal to 2. Validation of the proposed value of e is required either 

through derivation of the analytical solutions, or comprehensive numerical modelling.   

5.4.2 Example: Square Pad (ρ = 1) 

For a square pad of equal side lengths, B, and expressing in terms of a single pad 

(i.e. t iT t  ), Eq. (5-3) becomes 

 
28.8r S   (5-56) 

 28.0r S   (5-57) 

based on the CSA (2014) and AASHTO (2014a,b) values of Dr, respectively. The 

coefficient of Eq. (5-56) and Eq. (5-57) are conservative in comparison to the analytical 

solution, which has a coefficient of 7.576 when assuming incompressibility and 

inextensibility (see Eq. (5-27)). For a square pad with an incompressible elastomer L/W = 

1, 0   and from Eq. (5-4), Dr = 0.48, which yields a coefficient of 7.68, which is also 

conservative. Note that Eq. (5-56) and Eq. (5-57) are independent of the aspect ratio.  

Figure 5-12 compares the predicted values of r   to the analytical solution based 

on CSA (Eq. (5-56)), AASHTO (2014b) (Eq. (5-3)) modified to include compressibility 

and extensibility, and the proposed approximation for a square pad as a function of S for 

various values of Ke/G.  Note that extensibility was included in AASHTO (2014a) by 

taking K = Ke=2 in Eq. (5-5). As S increases the pad becomes increasingly sensitive to 

rotations. The CSA (2014) approximation, which is similar to, but more conservative 

than, the analytical solution assuming incompressibility and inextensibility, rapidly 

diverges from the analytical solution including these effects. Although the CSA (2014) 

approximation is conservative, the magnitude of the error determines that the 

approximation is restricting, particularly for low values of Ke=2/G and large values of S 

(i.e. a large value of λ). The AASHTO (2014a) approximation, based on the proposed 

approximation by Stanton et al. (2008), but modified to include compressibility and 

extensibility, accurately represents r   for small values of S, but rapidly diverges as S 

increases, presumably exceeding the best-fit range considered. The proposed 

approximation accurately predicts  r   over the entire range considered. The percent 

error of the AASHTO (2014b) and proposed approximations are compared in Figure 

5-13. Note that the large percent error for large values of S and small values of Ke=2/G 

(i.e. large values of λ) based on AASHTO (2014b) has not been shown. Although both 

approximations have minimal error over the range considered, the proposed 

approximation has the advantage that it can easily be adapted to any pad geometry with a 

similar level of accuracy. The accuracy of AASHTO (2014b) suggests that extensibility 

could be included by replacing K with Ke=2 in Eq. (5-4).   
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5.4.3 Example: Circular Pad  

For a circular pad with a diameter, B, expressed as a single pad, Eq. (5-3) becomes 

 
26r S   (5-58) 

for CSA (2014) and AASHTO (2014a,b). Note that Eq. (5-58) is identical to the 

analytical solution assuming an incompressible elastomer and inextensible reinforcement 

(see Eq. (5-22)). Neither CSA (2014) nor AASHTO (2014a,b) provide a correction for 

compressibility or extensibility. Figure 5-14 compares the predicted values of r   

determined by CSA (2014) or AASHTO (2014a,b), and the proposed approximation to 

the analytical solution. Similar to the square pad, the CSA (2014) and AASHTO 

(2014a,b) approximations are conservative, but the magnitude of the error becomes large 

and restricting from a design perspective as S increases. The proposed approximation 

closely follows the analytical solution over the entire range considered.  

5.5 Conclusion 

The complexity of analytical solutions developed based on the pressure solution 

inclusive of elastomer compressibility and reinforcement extensibility renders the 

expressions inappropriate for use in design codes. Design codes currently use equations 

derived by neglecting these effects, or include them in a limited capacity for specific pad 

geometries. Neglecting compressibility and/or extensibility severely limits the range over 

which these expressions are accurate, resulting in unacceptable large errors if applied to 

pads with moderate or large shape factors. It was demonstrated that the maximum shear 

strain due to rotation could be represented by a simple generalized approximation for 

infinite strip, circular, square, rectangular and annular pad geometries. The pad geometry 

is incorporated through the inclusion of geometry-specific correction factors. Both the 

compressibility of the elastomer and the extensibility of the reinforcement have a 

pronounced effect on the design properties of elastomeric bearings. It is recommended 

that these expressions be adopted in design codes as simple approximations for the 

maximum shear strain due to rotation.   
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Table 5-1:  Summary of the proposed approximate formulas for maximum shear strain 

due to rotation 
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Figure 5-1:  Location of the maximum shear strain due to (a) compression and (b) 

rotation. 

 

Figure 5-2:  Normalized maximum shear strain due to rotation as a function of the 

shape factor for an infinite strip pad.  

 

Figure 5-3:  Example of the divergence of the analytical solution and proposed 

approximation for an infinite strip pad with Ke=1/G = 1000. 
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Figure 5-4:  Comparison of the analytical solution and proposed approximation and 

percent error as a function of λ for an infinite strip pad. 

 

Figure 5-5:  Percent error of γr/ζ for an infinite strip pad.  

 

Figure 5-6:  Comparison of the analytical solution and proposed approximation and 

percent error as a function of λ for a circular pad.  
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Figure 5-7:  Comparison of the analytical solution and proposed approximation and 

percent error as a function of λ for a square pad. 

 

Figure 5-8:  Comparison of the analytical solution and proposed approximation and 

percent error as a function of λ for a rectangular pad. 

 

Figure 5-9:  Comparison of the analytical solution and proposed approximation and 

percent error as a function of λ for the outer surface of an annular pad. 
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Figure 5-10:  Normalized maximum shear strain due to rotation as a function of the 

shape factor for the inner surface of an annular pad (ε = 0.1). 

 

Figure 5-11:  Comparison of the analytical solution and proposed approximation and 

percent error as a function of λ for the inner surface of an annular pad. 

 

Figure 5-12: Comparison of the CSA (2014), AASHTO (2014b), and proposed 

approximations to the analytical solution. 

 

0 10 20 30 40 50 
0 

5 

10 

15 

20 

0 4 8 12 16 20 24 28 
0 

1 

2 

3 

4 

5 

6 

0 4 8 12 16 20 24 28 
-4 

-2 

0 

2 

4 

6 

8 

0 10 20 30 40 50
 0 

 2 

 4 

 6 

 8 

10 

12 

0 10 20 30 40 50 0 10 20 30 40 50



Ph.D. Thesis – N.C. Van Engelen; McMaster University – Civil Engineering 

 108   

 

 

Figure 5-13:  Percent error of (a) AASHTO (2014b) and (b) the proposed 

approximation.  

 

Figure 5-14:  Comparison of the CSA (2014), AASHTO (2014a,b), and proposed 

approximations to the analytical solution. 
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6 Experimental and Finite Element Study on the Compression 

Properties of Modified Rectangular Fiber-Reinforced 

Elastomeric Isolators (MR-FREIs) 

Reproduced with permission from Elsevier. 

Van Engelen NC, Osgooei PM, Tait MJ, Konstantinidis D. 2014. Experimental and Finite 

Element Study on the Compression Properties of Modified Rectangular Fiber-Reinforced 

Elastomeric Isolators (MR-FREIs). Engineering Structures, 74: 52-64, DOI: 

10.1016/j.engstruct.2014.04.046. 

Abstract 

This study investigates the compressive behaviour of Modified Rectangular Fiber-

Reinforced Elastomeric Isolators (MR-FREIs). The geometric modifications are 

introduced to reduce the horizontal stiffness and increase the energy dissipation of the 

isolation system, allowing long rectangular isolators that provide uniform support along 

walls to be utilized. It is of critical importance that MR-FREIs maintain adequate vertical 

stiffness to satisfy the requirements for an isolation system. Experimental data from 

vertical tests of four rectangular FREIs with and without geometric modifications is used 

to evaluate a three-dimensional (3D) finite element (FE) model. The 3D FE model is then 

used to conduct a parametric study on two MR-FREI configurations with varying 

geometry. The parametric study investigates the effect of the geometric modifications on 

the vertical stiffness and compression modulus in addition to stress and strain 

distributions in the elastomer and fiber reinforcement. The study identifies that, similar to 

annular isolators, introducing a minor geometric modification to the interior of the 

isolator results in a significant decrease in vertical stiffness and compression modulus. 

This influence is considerably less for geometric modifications positioned on the exterior 

of the isolator.     

6.1 Introduction 

Elastomeric isolators consist of alternating horizontal layers of elastomer and 

reinforcement. The reinforcement serves primarily to restrain the lateral bulging of the 

elastomeric layers under vertical compressive stresses. The restraint of the elastomer 

enhances the vertical stiffness of the isolator due to the near incompressibility of the 

elastomer, resulting in a vertical stiffness that is significantly greater than the horizontal 

stiffness. The horizontal stiffness is comparatively uninfluenced by the reinforcement. A 

high vertical stiffness is necessary for the suppression of a rocking mode which may be 

introduced by the isolation system. Historically, steel plates in the form of shims have 

been the reinforcement of choice; however, conventional Steel-Reinforced Elastomeric 
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Isolators (SREIs) are heavy and expensive. The weight is attributed to the steel shims and 

thick steel end plates used to mechanically fasten the isolator to the supports.  The cost is 

in part due to the highly labour-intensive process required to prepare the steel for bonding 

to the elastomeric layers [1]. It was proposed by Kelly [2] that the steel reinforcement be 

replaced with lighter fiber reinforcement of similar mechanical tensile properties. The 

concept of Fiber-Reinforced Elastomeric Isolators (FREIs) has been investigated 

experimentally in numerous studies, including Kelly [2], Moon et al. [3, 4], and Toopchi-

Nezhad et al. [5, 6], and shown to perform well with several distinct advantages, such as 

superior energy dissipation and, for unbonded FREIs with a sufficiently large width-to-

height aspect ratio, a unique stable rollover behaviour. 

The positioning of FREIs between the upper and lower supports can be in a bonded 

or unbonded application. In a bonded application, the isolator is bonded to two steel end 

plates that are mechanically fastened to the supports. In an unbonded application, the 

thick steel end plates are eliminated, and the isolator is placed between the upper and 

lower supports with no mechanical restraints. Stable unbonded FREIs exhibit unique 

stable rollover due to the unbonded application and the lack of flexural rigidity of the 

fiber reinforcement. In addition to stable rollover, this type of isolator has been shown, 

through finite element analysis, to have desirable advantages over identical bonded 

FREIs, such as lower tensile stress demand on the elastomeric layers and on the fiber 

reinforcement when displaced horizontally [7].  

A significant advantage of FREIs is the ability to manufacture large pads and cut 

individual isolators from the pads to the desired size [2]. Individual FREIs manufactured 

using this technique have been utilized in numerous experimental studies such as 

Toopchi-Nezhad et al. [6] and de Raaf et al. [8]. In buildings with structural walls as the 

lateral-force-resisting system, conventional square or circular isolators are often 

orientated in a grid pattern and require the use of a structural system to adequately 

transfer the loads applied to the walls to the isolators. Long rectangular FREIs allow for 

uniform support to be provided along shear walls [2], which reduces the requirements of a 

load transfer system. This approach has the potential for significant cost savings in the 

construction process and is well suited to structures with concrete or masonry shear walls. 

A comparison of a base-isolated masonry wall using square or circular and rectangular 

isolators is illustrated in Figure 6-1.  

The performance of a base isolation system is primarily a function of the horizontal 

stiffness. The horizontal stiffness should be sufficiently low in order to shift the 

fundamental period out of the high-energy range of a typical earthquake event and 

essentially decouple the structure from the ground motion. If long rectangular isolators 

are used, a relatively high horizontal stiffness is expected due to the large plan area of the 

isolator, thereby reducing the shift in the fundamental period and, thus, the overall 
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efficiency of the isolation system. In the interest of improving the design of the isolation 

system, the horizontal stiffness and energy dissipation characteristics can be adjusted 

through the introduction of geometric modifications to the plan loaded surface. This 

concept, denoted as Modified Rectangular Fiber-Reinforced Elastomeric Isolators (MR-

FREIs), is demonstrated in Figure 6-2. Although intended to alter the horizontal 

performance, the geometric modifications also influence the vertical properties of the 

isolator relative to an unmodified isolator. It is critical that the rectangular geometry and 

high vertical stiffness necessary for isolation systems be maintained despite the 

modifications. Therefore, it is vital to understand how modifications to the plan loaded 

surface will simultaneously alter both the horizontal and vertical performance of the 

isolator, including increased stresses and changes in pressure distributions caused by the 

modifications.  

In this paper the effect of modifications to the plan loaded surface on the vertical 

stiffness and compression modulus of MR-FREIs is investigated. A three-dimensional 

(3D) Finite Element (FE) model is developed and evaluated using experimental data from 

four isolators. The model is subsequently used to conduct a parametric study on the 

influence of the diameter of the circular modifications on the vertical stiffness and 

compression modulus for two different configurations. Furthermore, the FE model is used 

to examine the variations in the stress and strain distributions of the elastomeric layers 

and fiber reinforcement.    

6.2 Background 

6.2.1 MR-FREIs 

Selecting an elastomer with a low shear modulus, Ge, alone often permits the 

targeted horizontal stiffness to be achieved; however, additional measures may be 

required for long rectangular isolators. The introduction of modifications will 

simultaneously decrease the plan loaded area, decrease the shape factor, S, defined as the 

ratio of the loaded area to the unloaded area of a single layer of elastomer, and modify the 

pressure distribution. A reduction in plan loaded area directly decreases both the 

horizontal and vertical stiffness, whereas changes in the shape factor and pressure 

distribution will also alter the horizontal and vertical behaviour of the isolator, as 

discussed in Van Engelen et al. [9].  

It is common for shape factors greater than approximately 5 to assume that the 

stress within the elastomeric layers is dominated by the internal pressure, known as the 

pressure solution [10]. This assumption is often made in analytical solutions for 

rectangular and circular elastomeric isolators [2, 10-17], although analytical solutions 

exist that relax this assumption, such as Pinarbasi and Mengi [18] and Tsai [19, 20]. 

Modifications can significantly alter the pressure distribution depending on the 



Ph.D. Thesis – N.C. Van Engelen; McMaster University – Civil Engineering 

 112   

 

orientation, resulting in areas of higher stress concentrations. Therefore, changes in the 

pressure distribution as a result of the modifications are also expected to influence the 

horizontal and vertical properties.   

Modifications will decrease the shape factor since the unloaded area increases and 

the plan loaded area decreases simultaneously, which both act to reduce the shape factor. 

It has been shown through analytical solutions that the vertical stiffness of rectangular 

FREIs [16] and horizontal stiffness of infinite strip FREIs [21, 22] are influenced by the 

shape factor. In a FE study, the compression modulus for unmodified unbonded FREIs 

was shown to have a greater rate of increase than the rate of increase of the shape factor, 

rendering the shape factor an important design parameter [23].  

A preliminary study on the vertical stiffness and compression modulus of MR-

FREIs was conducted by Van Engelen et al. [24]. The purely experimental study 

considered six specimens with three modification configurations and two modification 

diameters. The test results showed that a substantial drop in vertical stiffness occurred 

with minor modification, but that the decrease was dependent on the configuration of the 

modification. Similar trends observed with the vertical stiffness were noted with the 

compression modulus, but to a lesser degree, suggesting that the shape factor and pressure 

distribution are important considerations.  

The effective horizontal stiffness and energy dissipation characteristics of four 

isolators presented in Van Engelen et al. [24] were experimentally examined in Van 

Engelen et al. [9] over a displacement range of 0.25 tr to 2.50 tr, where tr is the total 

thickness of the elastomeric layers. The study, which only considered isolators with holes 

placed in the interior of the plan area, indicated that the effective horizontal stiffness and 

equivalent viscous damping, in comparison to the control specimen, were dependent on 

the horizontal displacement. With the exception of large displacements, i.e., 2.00 tr to 

2.50 tr, the decrease in effective horizontal stiffness was larger than the decrease in the 

plan loaded area of the specimen. The equivalent viscous damping was found to increase 

at all displacement amplitudes considered in comparison to the control specimen. The 

increase in damping was attributed to the decrease in effective horizontal stiffness and a 

decrease in the length of the fiber reinforcement. It was postulated in the study that the 

modifications allowed for an increase in inter-fiber movement causing an increase in the 

energy dissipation characteristics of the isolator.  

In a FE study conducted by Dezfuli and Alam [25], it was shown that the vertical 

stiffness of FREIs reinforced with carbon fiber was more sensitive to changes in the shear 

modulus, thickness of the fiber reinforcement and number of elastomeric layers than the 

effective horizontal stiffness or equivalent viscous damping. In that study, the total height 

was held constant, thus the number of elastomeric layers is also representative of the 

shape factor since an increase in the number of layers requires a decrease in the layer 
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thickness resulting in a larger shape factor. Utilizing FE analysis, Toopchi-Nezhad et al. 

[23] identified that the compression modulus was highly sensitive to changes in the shape 

factor, while the horizontal stiffness was not. The preliminary findings in Van Engelen et 

al. [9, 24] suggest that the decrease in the vertical properties due to the modifications can 

be significant. Therefore, assessing the effect of various design parameters is critical to 

accurately characterizing the vertical behaviour of MR-FREIs.   

6.2.2 Annular Isolators 

Modifications have been investigated analytically for circular SREIs and FREIs in 

the form of annular isolators. Constantinou et al. [11] developed a factor to take into 

consideration the addition of a circular hole at the center of a circular SREI forming an 

annular isolator. Figure 6-3 shows the profile view of a section of a circular and annular 

isolator with an outer radius, R1, and inner radius, R2. The introduction of the modification 

creates an additional free surface where lateral bulging occurs. As the ratio of R2/R1 for an 

annular isolator with an incompressible elastomer approaches unity, the compression 

modulus, Ec, initially that of a circular isolator, Ec = 6GS
2
, converges to the solution of an 

infinite strip isolator, Ec = 4GS
2
. The compression modulus drops abruptly at small values 

of R2/R1 and quickly converges to the solution of an infinite strip isolator. Due to this 

rapid convergence, it has been indicated that regardless of the size of the central hole, the 

compression modulus for annular isolators should conservatively be taken as the solution 

for an infinite strip isolator, Ec = 4GS
2
 [14].  

An analytical study conducted by Pinarbasi and Okay [17] investigated the 

performance of annular FREIs focusing on four key parameters: the reinforcement 

extensibility, modification diameter, shape factor and elastomer compressibility. The 

deformed shape was defined according to the assumptions of the pressure solution. An 

additional displacement term was included to capture the extensibility of the fiber 

reinforcement and the compressibility of the elastomer was also considered. The study 

concluded that Ec drops abruptly with the introduction of a minor modification for 

incompressible elastomers, similar to the analytical solution obtained for SREIs. The 

magnitude of the drop decreases with compressibility, especially for isolators with a high 

shape factor where the restraint effect is reduced due to the compressibility.   

6.3 Experimental Testing 

6.3.1 Isolator Design 

The isolators considered in this study are of the same geometry and layer design as 

four of the isolators used in Van Engelen et al. [9, 24]. The isolators were manufactured 

in large pads and subsequently cut to the desired plan dimensions with a width, (2a), of 

76 mm and length, (2b), of 52 mm, as illustrated in the plan and profile view in Figure 
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6-4. The quarter scale layer design is identical to the design described in Foster [26]. The 

isolators contained seven layers of Neoprene; the five interior layers of elastomer had a 

thickness of 3.18 mm, and the two exterior layers of elastomer had a thickness of 1.59 

mm. Bidirectional plain weave carbon fiber reinforcement with a 0.25 mm thickness was 

bonded to the elastomer. After bonding, the reinforcement layer thickness was 

approximately 0.55 mm for a total thickness of elastomeric layers of 19.05 mm, and a 

total height, h, of 22.35 mm.  

A plan view of the four specimens considered and the test specimens are shown in 

Figure 6-5. Two modification configurations and two diameters were considered. The 

geometric characteristics of the specimens considered are summarized in Table 6-1. The 

modifications were circular with a diameter, d, of 18 mm and 24 mm, or normalized by 

the length, d/2b = 0.35 and 0.46, respectively. The specimens are numbered C2 through to 

C4. If the specimen has been modified, a designation is included after the specimen 

number. The designation represents the normalized diameter of the modification, d/2b, 

expressed as a percent and placement of the modification as interior, I, or exterior, E. For 

example, C2-46I refers to specimen C2 with an interior modification of d/2b = 0.46. As 

shown in Figure 6-5b, Specimen C2-46I and C3-35I each had a single circular 

modification placed at the geometric center of the isolator, referred to as an interior 

modification. Specimen C4-46E and C5-35E had a half-circle modification removed from 

each side of the isolator at the center of the 76 mm width, referred to as an exterior 

modification. By placing modifications on the interior and exterior, isolators of identical 

loaded area but different shape factors can be analyzed. The modifications reduced the 

loaded area of the specimens by 6.4 % and 11.4 % for the d/2b = 0.35 and 0.46 

modifications, respectively.  

6.3.2 Experimental Setup and Vertical Test Procedure 

A photograph and schematic of the experimental test apparatus emphasising the 

components for vertical tests are shown in Figure 6-6. The setup was configured to 

conduct horizontal displacement controlled and vertical load-controlled tests. The vertical 

load was applied to a steel plate and distributed to three identical load cells. The specimen 

was situated between two steel plates, and the vertical displacement was measured at four 

locations between the upper and lower platen with laser displacement transducers. The 

lower platen was on linear bearings and connected to a horizontal actuator, a brace on the 

upper platen provided the reaction force to the horizontal actuator during horizontal tests. 

Each isolator was placed unbonded into the setup between two level steel plates.   

The compressive force was selected assuming application of the isolators on a 

structure similar to those considered in experimental tests conducted by Foster [26] and 

Toopchi-Nezhad et al. [27]. In the test program, the load was held constant for all 

specimens to simulate the application of the isolators on an identical structure. The 
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loading was conducted according to procedures outlined in ISO-22762 [28]. Each 

specimen was monotonically loaded to a compressive force of 7.9 kN at zero horizontal 

displacement, which corresponds to an average vertical compressive stress of  ̅ = 2.0 

MPa for the unmodified specimen plan area. Once the compressive load was achieved, it 

was fluctuated ±20 % over three sinusoidal cycles at a frequency of 0.2 Hz and then 

monotonically unloaded, as shown in Figure 6-7 for an unmodified isolator. Each 

specimen was initially tested unmodified and visually inspected for damage. The 

modifications were then introduced, and the specimens were re-tested following the same 

procedure at an average vertical stress of 1.0 MPa and 2.0 MPa according to the 

unmodified area and visually inspected for damage after each experiment.  

The vertical tests in this study were all conducted at zero horizontal displacement, 

and the properties with horizontal deformation were not considered. The influence of 

horizontal displacement on low-damping rubber and lead-rubber bearings was 

experimentally investigated in Warn et al. [29]. The study concluded that the vertical 

stiffness of the bearings considered decreased with increasing horizontal displacement. A 

similar decrease in vertical stiffness is expected in MR-FREIs with increasing horizontal 

displacement.  

6.3.3 Experimental Results 

The vertical stiffness was determined by using the third cycle maximum and 

minimum force, P, and maximum and minimum displacement, δv, observed over the 

cycle [28]. The vertical stiffness, kv, is: 

 
   

         

             
 (6-1) 

The compression modulus is determined by: 

 
   

    
 

 (6-2) 

where A is the plan loaded area.   

Figure 6-8 presents the average vertical stress as a function of the vertical 

compressive strain for the unmodified isolator C2. The slope of the dashed line is 

representative of the compression modulus of 108 MPa obtained for the third cycle using 

Eq. (6-1) and (6-2). All isolators considered displayed some degree of run-in prior to 

developing the vertical stiffness. The level of run-in is a function of the development of 

stresses within the fiber reinforcement which may not be initially taut [6, 12] and 

potential strain sensitivity of the elastomer. Table 6-2 shows the vertical stiffness and 

compression modulus values, where E is the elastic modulus of the elastomer, for the 

unmodified and modified specimens. The unmodified isolator performance was consistent 

for the four isolators considered and overall good agreement was obtained with a mean, μ, 

of 101 MPa, standard deviation, ζ, of 5 MPa, and coefficient of variation, cv, of 0.05.  
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6.4 Finite Element Modeling 

6.4.1 Model Development 

The 3D FE analysis was conducted using MSC Marc [30], a general purpose 

commercially available FE software. Both the elastomeric and fiber reinforcement layers 

were modeled using eight-node linear full integration isoparametric hexahedron elements. 

The compressible Neo-Hookean model used in this study was used to describe the 

elastomer. This material model is characterized by the shear and bulk moduli of the 

elastomer. The fiber reinforcement materials were modeled using a linear-elastic isotropic 

material model. Table 6-3 gives the material properties used in the FE analysis where Ke 

is the bulk modulus of the elastomer and Ef and vf are the elastic modulus and Poisson's 

ratio of the fiber reinforcement. A bulk modulus of Ke = 2000 MPa was selected for the 

Neoprene elastomer. The shear modulus of the Neoprene used in the FE analysis was 

based on the experimental test results of the unmodified isolators.   

The top and bottom supports were modeled using rigid surface elements. A glue 

contact was defined between the rigid surfaces and the top and bottom elastomer layers to 

prevent any slip along the interface. The hexahedron elements used to model elastomeric 

layers use a mixed formulation to overcome the numerical difficulties associated with the 

near incompressibility of the elastomeric material [30]. Figure 6-9 shows the FE model of 

C4-46E highlighting the element size.  

6.4.2 Model Evaluation 

Figure 6-10 shows a cross section of the deformed shape of C2-35I obtained from 

FE analysis. Similar to the experimental program, the FE analysis was conducted using a 

constant load determined from  ̅  based on the unmodified plan area and the vertical 

stiffness was calculated using Eq. (6-1). Table 6-4 compares the experimental and FE 

analysis ratios of the modified-to-unmodified vertical stiffness. The Neoprene used in 

these isolators was found to be nonlinear, with a stiffening behaviour observed under 

larger vertical compressive stresses that occur due to the reduced plan area. The 8.6 % 

average error between the FE predictions and test results can partially be attributed to this 

nonlinear behaviour. A more sophisticated constitutive model than the compressible Neo-

Hookean constitutive model is required for the elastomeric material in order to capture 

this stiffening behaviour in the FE analysis. However, the 13.3 % maximum error 

between the FE analysis and experimental results was deemed acceptable given the 

limitations of the material model. 

The average compression modulus of the unmodified isolators from the 

experimental tests was Ec = 101 MPa. The closed form solution derived by Tsai and Kelly 

[16] was used to estimate the compression modulus of the unmodified isolator. From Tsai 

and Kelly [16], with the material properties given in Table 6-3, the compression modulus 
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of the elastomer pads with thicknesses of 3.18 mm and 1.59 mm were calculated as Ec = 

90 MPa and Ec = 347 MPa, respectively. The closed form solution derives the 

compression modulus using a single elastomeric layer that is assumed to be perfectly 

bonded to flexible reinforcement. In reality, the isolator is composed of a finite number of 

elastomeric layers and the contact of the elastomer and the end supports, which are 

usually assumed to be rigid in comparison to the flexible reinforcement, will affect the 

vertical response of the isolator. Neglecting the effects of the rigid end boundary 

condition of the supports on the vertical response of the isolator, the total compression 

modulus of the isolator can be calculated by treating the elastomeric layers as springs in 

series. Using this approach, it was calculated that Ec = 103 MPa, which is 2.0 % higher 

than the FE analysis result. It should be noted that considering the bulk compressibility of 

the elastomer would reduce the predicted value of vertical stiffness. Also, considering the 

rigid end condition would increase the predicted vertical stiffness value. Osgooei et al. 

[31] showed that neglecting the rigid end condition in a circular isolator with S = 5 can 

reduce the vertical stiffness value by 8.5 %. Therefore, the results obtained from FE are 

considered to be in good agreement with the experimental results and analytical solution, 

and the FE model was deemed appropriate for proceeding with the parametric study.  

6.5 Parametric Study 

A parametric study was conducted to determine the influence of modifications on 

the vertical stiffness, compression modulus, and stress and strain distributions. The study 

considered isolators with interior and exterior circular modifications with diameters 

ranging between d/2b = 0 and d/2b = 0.58.  

6.5.1 Vertical Stiffness 

Figure 6-11shows the vertical stiffness of the modified isolators normalized by the 

unmodified isolator vertical stiffness, kvo, as a function of d/2b and S/So, where So is the 

unmodified shape factor. Figure 6-11a includes the vertical stiffness of an isolator that is 

directly proportional to the area removed (P). It can be seen that both interior (I) and 

exterior (E) modifications result in a larger decrease in normalized stiffness than can be 

attributed to the reduction in area alone. The interior modification results in a significant 

decrease even at low values of d/2b. For example, at d/2b = 0.12 an interior modification 

has kv/kvo = 0.84, in comparison to the exterior modification for which kv/kvo = 0.97. The 

exterior modification normalized stiffness is comparable to the proportional area 

normalized stiffness of kv/kvo =  0.99. The interior modification trend is concave upwards 

while the exterior modification trend is concave downwards. The contrasting behaviour 

results in a maximum difference in normalized stiffness of 0.27 at d/2b = 0.35 and 

reduces to 0.17 at the maximum considered normalized diameter of d/2b = 0.58. The 

minimum normalized stiffness was 0.42, 0.59 and 0.82 over the range considered for the 
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interior, exterior and proportional representations, respectively. Figure 6-11b shows kv/kvo 

as a function of S/So. The change in S for interior modifications is larger than that of 

exterior modification with the same diameter. Consequently, the difference between 

interior and exterior modifications is reduced and begins to converge as S/So decreases.  

6.5.2 Compression Modulus 

Similar to the vertical stiffness, the introduction of an interior modification results 

in an abrupt decrease in normalized compression modulus, Ec/Eco, as shown in Figure 

6-12, where Eco is the unmodified isolator compression modulus. The magnitude Ec/Eco is 

larger than the respective normalized stiffness values with equal diameters, indicating that 

the compression modulus is less sensitive to the modifications. The minimum relative 

compression modulus was 0.51 and 0.71 for interior and exterior modifications, 

respectively. It is interesting to note that the relative compression modulus of 0.85 for an 

interior diameter of d/2b = 0.12 is not surpassed until a diameter of d/2b = 0.46 for an 

exterior modification. This demonstrates that the diameter of the exterior modification 

can be several times larger than an interior modification and still achieve a comparable 

compression modulus. Similar to the vertical stiffness, the compression modulus of the 

interior and exterior modifications begins to converge as the diameter is increased. In the 

limit, as d/2b approaches unity, the isolator approaches two individual isolators and the 

influence of the modification configuration diminishes.  

The shape factor initially decreases at a larger rate for interior modifications than 

exterior modifications, as illustrated in Figure 6-13. The shape factor for interior 

modifications is nearly inversely proportional to the diameter. Initially, exterior 

modifications result in a small change in the shape factor. An exterior modification 

removes a portion of the unloaded area equal to 2dt, where t is the thickness of the 

elastomeric layer, but increases the unloaded area by πdt for a total increase of dt(π-2). In 

comparison, an interior modification adds an unloaded area of πdt without removing any 

of the existing unloaded area. Therefore, with equal diameters, the change in the interior 

modification shape factor is more aggressive due to the larger unloaded area. The lower 

shape factor is representative of a reduction in the restraint of the elastomer by the fiber 

reinforcement and is believed to be in part responsible for the larger sensitivity of the 

interior modifications.    

6.5.3 Vertical Strain 

Figure 6-14a and b plot FE results of the vertical strain, εzz, at the center of the mid-

height elastomer layer with interior modifications where 0 represents the center of the 

isolator and 1 the respective edge. It can be seen that for the unmodified isolator, with the 

exception of the edges where lateral bulging occurs, the vertical strain is nearly constant 

across segments AA and BB. This is in conformance with the assumption in the pressure 
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solution that horizontal planes remain horizontal. Furthermore, the strain in the modified 

specimens also remains nearly constant. The interior modification caused an increase in 

the normalized vertical strain in the elastomeric layer. As the diameter increases, the rate 

of increase in the vertical strain also increases, which is primarily attributed to the 

increasing rate of area removed.  

Figure 6-14c and d compare εzz in the mid-height elastomer layer for exterior 

modifications. Similar to interior modifications, as the diameter increases, the rate of 

increase in εzz increases. The magnitude of the strain for exterior modifications is 

significantly less than interior modifications. Introducing a d/2b = 0.12 exterior 

modification results in a 4 % increase in the average εzz, which is notably lower than the 

36 % increase in εzz observed in the isolator with an equal diameter interior modification. 

Figure 6-15 shows the average εzz, ignoring the lateral bulging at the edges, as a function 

of the percent of area removed. It can be seen that the average εzz is nearly a linear 

function of the area removed, with the exception of interior modifications, where an 

abrupt increase in strain magnitude occurs with a minor amount of area removed.  

6.5.4 Vertical Stress 

Figure 6-16a and b compare the normalized vertical stress distribution,      ̅, 

where     is the vertical stress at the center of the mid-height elastomer layer, for isolators 

with interior modifications. Introducing the interior modification alters the vertical stress 

distribution significantly along both segments. An overall decrease in the magnitude of 

     ̅ was observed along both segments at a diameter of d/2b = 0.12. As the diameter 

increases,      ̅ along segment AA increases, exceeding the peak      ̅ of the 

unmodified isolator at a diameter of d/2b = 0.46. Along segment BB, however, the 

magnitude of the peak      ̅ continues to decrease with increasing diameter. As the 

diameter increases, the width of the two portions of the isolator that segment BB crosses 

become small. As a consequence, the distance to a free edge is reduced, reducing the 

restraint effect of the reinforcement. Due to the loss of restraint in these regions the 

primary vertical load resistance is supplied by the ends of the isolator on either side of 

segment BB.  

Figure 6-16c and d show the      ̅  distribution at the center of the mid-height 

elastomer layers for isolators with exterior modifications. Initially, the introduction of 

exterior modifications has little influence over the vertical stress distribution with only a 

modest increase in peak      ̅ along both segments up to a diameter of d/2b = 0.35. At a 

diameter of d/2b = 0.46, two peaks of equal magnitude occur along segment CC. The 

emergence of these two peaks is representative of the response of the isolator approaching 

two individual isolators. Along segment DD, it can be seen that the small diameter 

modifications cause a slight increase in the peak      ̅, but a minor decrease along the 

majority of the segment. As the diameter increases, a substantial drop in vertical stress is 
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observed along the entire segment, indicative of reduced restraint in the center of the 

isolator and the response approaching two individual isolators.  

6.5.5 Shear Stress 

Figure 6-17 and Figure 6-18 show the Sxz shear stress contours normalized by  ̅ at 

the interface of the center elastomer layer and fiber reinforcement for isolators with 

interior and exterior modifications, respectively. A peak      ̅ value of 0.17 was 

observed in the unmodified isolator. As described earlier, the modifications create an 

additional free surface that allows additional lateral bulging and increased shear stresses 

to develop in the vicinity of the modification. For interior modifications, the peak      ̅ 

value occurs near the edge of the modification, whereas for exterior modifications the 

peak      ̅ value occurs at either end of the isolator, similar to an unmodified isolator. 

Large      ̅ values are also observed near the edges of the modifications. With a 

modification diameter of d/2b = 0.23, the peak      ̅ value increased by 92.6 % for 

interior modifications (Figure 6-17) in comparison to a 13.2 % increase for exterior 

modifications (Figure 6-18). At the maximum considered modification diameter of d/2b = 

0.58, the peak      ̅ value increased by 149.8 % and 76.6 % for interior and exterior 

modifications, respectively. A peak      ̅ value of 0.42 was observed for the interior 

modification d/2b = 0.58.  

The normalized Syz shear stress contours are shown in Figure 6-19 and Figure 6-20 

for interior and exterior modifications, respectively. Similar to the      ̅ contours, 

significant shear stresses develop in the vicinity of the modifications. A peak      ̅ value 

of 0.19 was observed in the unmodified isolator. The peak      ̅ value occurs near the 

edge of the modification for d/2b = 0.23 and 0.35, and near the outer edge of the isolator 

for the largest considered interior modification, d/2b = 0.58. For the exterior modification, 

the peak      ̅ value occurs near the modification. A modification diameter of d/2b = 

0.23 resulted in a similar increase in peak      ̅ value of 40.2 % and 41.1 % for interior 

and exterior modifications, respectively. A maximum increase of 64.4 % and 78.8 % was 

observed for interior and exterior modifications, respectively.  A peak      ̅ value of 

0.34 was observed for the exterior modification at d/2b = 0.58.  

In all modification diameters considered, the overall peak shear stress was observed 

in Sxz for interior modifications and in Syz for exterior modifications. The peak shear stress 

was larger for all diameters considered for the interior modification in Sxz and the exterior 

modification in Syz. The magnitude of the peak stress in both directions, Sxz and Syz, was 

larger for interior modifications at all diameters considered. Therefore, the shear stresses 

in the isolators considered in this study with interior modification are more sensitive to 

the modifications, although significant increases occurred in both geometries.   
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6.5.6 Fiber Reinforcement Von Mises Stress 

Figure 6-21 and Figure 6-22 show the Von Mises stress contours normalized by the 

average vertical pressure,     ̅, in the center fiber reinforcement layers in the isolators 

with interior and exterior modifications, respectively. It can be seen that, similar to the 

observations made with the vertical stress distribution, introducing an interior 

modification causes a minor decrease in the peak value of     ̅. As the diameter 

increases the peak value of     ̅  also increases, exceeding the peak value of an 

unmodified isolator.  For exterior modifications, a minor increase is immediately 

observed. This increase in     ̅ continues until two peaks begin to form as seen with a 

diameter of d/2b = 0.58. The peak value of     ̅ in the center fiber reinforcement layers 

is 10.5 % and 11.1 % greater than the unmodified isolator at a diameter of d/2b = 0.58 for 

exterior and interior modifications, respectively.   

6.6 Conclusions 

This paper investigated the vertical behaviour of unbonded Modified Rectangular 

Fiber-Reinforced Elastomeric Isolators (MR-FREIs). Experimental results were used to 

evaluate a three-dimensional finite element model. A parametric study was conducted on 

interior and exterior geometric modifications. It was found that both the vertical stiffness 

and compression modulus were highly sensitive to interior modifications and, to a lesser 

extent, exterior modifications. Similarly, the peak shear stress was also greater in isolators 

with interior modifications, and the peak shear stress usually occurred in the vicinity of 

the modification. The modifications generally increased the vertical stress and Von Mises 

stress distribution in the fiber reinforcement. As the diameter of the modification 

increased, the isolator began to behave as two individual isolators.  

The primary purpose of MR-FREIs is to reduce the potentially high horizontal 

stiffness; consequently the horizontal behaviour of MR-FREIs requires further 

investigation. An ongoing study by the authors indicates that the influence of 

modifications on the horizontal properties is displacement dependent, but a favourable 

decrease in horizontal stiffness and an increase in energy dissipation capability have been 

observed. Furthermore, the performance of a structure utilizing MR-FREIs, which has a 

direction-dependent horizontal stiffness, has yet to be investigated. It is expected that the 

modifications will provide designers with an additional parameter to optimize unbonded 

FREI design.  
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Table 6-1: Specimen geometric characteristics. 

Specimen 
Area 

(mm
2
) 

S 
d/2b 

Area Removed 

(%) Interior Exterior 

Unmodified 3952 4.9 9.7 - - 

C2-46I 3500 3.3 6.7 0.46 11.4 

C3-35I 3698 3.7 7.5 0.35 6.4 

C4-46E 3500 3.9 7.8 0.46 11.4 

C5-35E 3698 4.2 8.4 0.35 6.4 

 

Table 6-2: Experimental results. 

Property C2 C3 C4 C5 μ ζ cv 

(kvtr) / 

(4Eab) 

Unmodified 67 58 61 61 62 4 0.06 

Modified 37 39 51 52 - 

Ec 

(MPa) 

Unmodified 108 98 97 102 101 5 0.05 

Modified 67 69 91 93 - 

 

Table 6-3: Material properties. 

Elastomer Reinforcement 

    0.6 MPa     23 GPa 

   2000 MPa     0.2 

 

Table 6-4: Comparison of the experimental and FE analysis ratios of modified to 

unmodified vertical stiffness. 

Specimen Experimental FE 
Error 

(%) 

C2-46I 0.55 0.50 9.1 

C3-35I 0.66 0.59 10.6 

C4-46E 0.83 0.72 13.3 

C5-35E 0.85 0.86 1.2 
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(a) (b) 

Figure 6-1: Isolation system supporting a masonry wall with (a) localized square or 

circular isolators and (b) large rectangular isolators that provide uniform 

support. 

 

Figure 6-2: Plan view of potential MR-FREI designs. 

 

(a) (b) 

Figure 6-3: Profile view of the lateral bulging of (a) a circular isolator and (b) an 

annular isolator. 
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(a) (b) 

Figure 6-4: (a) Plan and (b) profile view of a FREI. 

 

(a) (b) 

Figure 6-5: (a) Photograph and (b) plan view of the specimens. 

  

(a) (b) 

Figure 6-6: (a) Photograph of the test apparatus and (b) schematic. 
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Figure 6-7: Compression test time history for an unmodified isolator. 

 

Figure 6-8: Unmodified specimen C2 experimental results showing the compression 

modulus determined from the third cycle. 

 

Figure 6-9: FE model of C4-46E. 
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Figure 6-10: Deformed shape cross section of C2-35C at the design load. 

  
(a) (b) 

Figure 6-11: Normalized vertical stiffness as a function of (a) diameter and (b) shape 

factor. 
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(a) (b) 

Figure 6-12: Normalized compression modulus as a function of (a) normalized diameter 

and (b) normalized shape factor. 

 

Figure 6-13: Normalized shape factor as a function of normalized diameter. 
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(a) (b) 

  
(c) (d) 

Figure 6-14: Vertical strain distribution along the respective segments at the center of 

the mid-height elastomer layer. 
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Figure 6-15: Average vertical strain as a function of area removed. 
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(a) (b) 

  
(c) (d) 

Figure 6-16: Normalized vertical stress distribution along the respective segments at the 

center of the mid-height elastomer layer.  
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Figure 6-17: Normalized Sxz shear stress contours at the interface of the center 

elastomeric layer and fiber reinforcement for isolators with interior 

modification diameter d/2b = a) 0 , b) 0.23, c) 0.35 and d) 0.58. 
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Figure 6-18: Normalized Sxz shear stress contours at the interface of the center 

elastomeric layer and fiber reinforcement for isolators with exterior 

modification diameter d/2b = a) 0 , b) 0.23, c) 0.35 and d) 0.58. 
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Figure 6-19: Normalized Syz shear stress contours at the interface of the center 

elastomeric layer and fiber reinforcement for isolators with interior 

modification diameter d/2b = a) 0 , b) 0.23, c) 0.35 and d) 0.58. 
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Figure 6-20: Normalized Syz shear stress contours at the interface of the center 

elastomeric layer and fiber reinforcement for isolators with exterior 

modification diameter d/2b = a) 0 , b) 0.23, c) 0.35 and d) 0.58. 
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Figure 6-21: Normalized Von Mises stress contours in center fiber reinforcement layers 

for isolators with interior modification diameter of d/2b = a) 0 , b) 0.23, c) 

0.35 and d) 0.58. 
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Figure 6-22: Normalized Von Mises stress contours in center fiber reinforcement layers 

for isolators with exterior modification diameter of d/2b = a) 0 , b) 0.23, c) 

0.35 and d) 0.58. 
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7 Structural and non-structural performance of a seismically 

isolated building using stable unbonded fiber-reinforced 

elastomeric isolators 

Reproduced with permission from Elsevier. 

Van Engelen NC, Konstantinidis D, Tait MJ. 2015. Structural and non-structural 

performance of a seismically isolated building using stable unbonded fiber-reinforced 

elastomeric isolators. Earthquake Engineering and Structural Dynamics. 

Summary 

Stable unbonded fiber-reinforced elastomeric isolators (SU-FREIs) exhibit a 

characteristic horizontal softening and stiffening response, similar to other adaptive 

devices such as the triple friction pendulum and sliding systems with variable curvature. 

The transition between the softening and stiffening occurs at a displacement 

corresponding to a unique deformation known as full rollover. In this paper, the full 

rollover displacement of SU-FREIs is altered by using modified support geometry 

(MSG), a geometric modification of the upper and lower supports applied to tailor the 

hysteresis loops of the isolator. Experimental results are used to calibrate a numerical 

model of a base isolated structure. The model demonstrates that the stiffening regime 

provides minimal restraint against displacements during events that meet or exceed the 

maximum considered earthquake. A parametric study revealed that the level of stiffening 

required to restrain displacements during large events is significant. This increase in 

stiffness is reflected in an increase in the response of the structure and light non-structural 

components. Full rollover and MSG is considered advantageous to maintain horizontal 

stability and provide control over the stiffening of SU-FREIs.  

7.1 Introduction 

Fiber-reinforced elastomeric isolators (FREIs) have been introduced as a potential 

low-cost alternative to conventional steel-reinforced elastomeric isolators (SREIs) [1]. 

Low-cost isolation systems are pertinent to the seismic protection of structures in 

developing countries where the devastation due to earthquakes is often more severe; but, 

are also desirable to encourage economical widespread base isolation application in 

developed countries. The concept of FREIs is based on the premise that the steel 

reinforcement, which requires a costly manufacturing process and produces a heavy 

bearing, can be replaced with lighter fiber reinforcement that has similar mechanical 

properties in tension, thereby retaining a large vertical stiffness.  

A key component of the low-cost concept is the positioning of the bearing 

unbonded between the upper and lower supports. SREIs often require thick steel end 
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plates to mechanically fasten the bearing to the upper and lower supports. The removal of 

these plates further reduces the cost and weight of the bearing. The unbonded application 

has also been found to reduce the stress demand on the elastomer and fiber reinforcement 

in comparison to an identical bonded FREI through finite element analysis [2]. In a 

bonded isolator, large horizontal displacements develop an unbalanced moment that is 

equilibrated by the development of tensile stresses in the triangular end sections 

protruding beyond the overlap of the top and bottom supports, as illustrated in Figure 

7-1a. In an unbonded application, the triangular sections of the bearing lose contact with 

the supports, as illustrated in Figure 7-1b, mitigating the development of large tensile 

stresses. In this case, the unbalanced moment is equilibrated by a resisting couple caused 

by the offset of the vertical force resultants on the top and bottom surfaces [3].  

The unbonded application, combined with certain FREI designs, results in a 

nonlinear horizontal force-displacement relationship characterized by a softening regime 

and a subsequent stiffening regime [4]. Unbonded FREIs that maintain a positive 

tangential stiffness throughout all levels of imposed displacement are horizontally stable 

and denoted as stable-unbonded FREIs (SU-FREIs) [5]. Similar adaptive characteristics 

can be achieved with rubber isolators with strain induced crystallization [6], the triple 

friction pendulum [7-9] and sliding systems with variable curvature [10, 11]. The 

softening regime increases the efficiency of the isolation system by shifting the 

fundamental period further out of the critical high-energy range of a typical earthquake 

event; whereas, the stiffening regime is believed to behave as a self-restraint against 

excessive displacements at events that meet or exceed the maximum considered 

earthquake (MCE) [6, 7, 10, 12, 13].   

Quantification of the non-structural components and systems (NCS) response has 

not received as much attention as the isolation system or structure. The effect of different 

seismic isolation systems on the performance of attached equipment that behaves like 

viscously damped linear oscillators has been studied at various levels in [6, 14-21]. 

Recently, full-scale physical testing programs were undertaken to investigate the system-

level performance of NCS in base-isolated buildings. Shake table tests of a full-scale, 

four-story, base-isolated reinforced-concrete specimen representing a medical facility 

housing a wide variety of NCS, including furniture and medical equipment, were carried 

out by the Nakashima group [22-24]. Furukawa et al. [23] studied the effects of vertical 

motion on the structure and its contents, while Shi et al. [24] focused on the seismic 

performance of the contents.  

In this paper, the sensitivity of a base isolated structure and the NCS to modified 

support geometry (MSG) is investigated. MSG uses the surrounding support conditions, 

in lieu of modifying the isolator, to tailor the shape of the hysteresis loops. MSG can be 

used to accelerate or delay the stiffening regime of SU-FREIs without affecting the 
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softening regime. An element was developed in OpenSees [25] and calibrated to the 

experimental results of a SU-FREI with MSG. A set of 14 ground motions was 

considered and scaled to hazard levels that fall between the service level earthquake 

(SLE) and hazard levels that exceed the MCE to investigate the effect of the softening 

and stiffening regimes. The performance was evaluated based on the response of the 

structure, as well as the NCS, represented by light attached equipment and unanchored 

equipment vulnerable to sliding.  

7.2 SU-FREIS and MSG 

The softening and stiffening characteristics of SU-FREIs occur due to the lack of 

flexural rigidity of the fiber reinforcement and the unbonded application. As relative 

displacement occurs between the upper and lower supports, the ends of the isolator lose 

contact with the supports through a unique deformation denoted as rollover. This process 

continues until full rollover, when the initially vertical faces become horizontal and 

contact the supports. It is convenient to analyze an unbonded FREI in three sections: a 

central section and two equivalent rollover sections (see Figure 7-1b). The size of the 

rollover section is proportional to the horizontal displacement [26], while the horizontal 

resistance of the rollover section is less than an equivalent volume in simple shear [27]. 

Consequently, as the horizontal displacement increases, the size of the rollover sections 

increases and the central section decreases; horizontally softening the isolator. Full 

rollover restricts additional rollover and causes the horizontal response to stiffen. The 

retention of a positive tangential stiffness (i.e. horizontal stability) has been determined 

analytically and demonstrated experimentally to be dependent on the width-to-total height 

aspect ratio. Horizontal stability can be achieved at a width-to-total height aspect ratio of 

about 2.5 and greater, depending on the layer design [4, 27-29]. The full rollover 

displacement has analytically been shown to be a function of the layer design of the 

bearing and independent of the width-to-total height aspect ratio [26, 27]. Thus, full 

rollover and the concept of MSG are largely dependent on geometric properties, which 

can be controlled to a high accuracy.  

Tait et al. [30] first proposed that the stiffening regime of a SU-FREI could be 

modified by either altering the geometry of the bearing rollover surfaces, or by modifying 

the contact surfaces of the supports. A proof-of-concept experimental study [30] 

identified that the latter approach could be used to accelerate or delay full rollover, 

effectively shifting the stiffening regime without altering the softening regime up to full 

rollover. Notably, the study demonstrated that the softening regime could be extended 

while still maintaining horizontal stability. It was suggested that MSG could be used as an 

additional design parameter to configure the stiffening regime based on the geometric 
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characteristics of the isolator and the upper and lower supports. Figure 7-2 illustrates 

MSG that will accelerate or delay full rollover.  

7.3 Predicting Full Rollover 

Kelly and Konstantinidis [26] analytically predicted the full rollover displacement 

of unbonded steel-reinforced elastomeric bridge bearings. Van Engelen at al. [27] 

developed an analytical model to predict full rollover and the horizontal force-

displacement relationship including rollover and full rollover based on large deflection 

theory. The procedure used by Kelly and Konstantinidis [26] is expanded herein to 

determine an approximation of the full rollover displacement for SU-FREIs with MSG 

independent of the material properties. It is assumed that the elastomer is incompressible, 

the reinforcement is completely flexible, and the length of the curved arc of the rollover 

section is equal to the horizontal displacement, u. Initially the thickness of the 

reinforcement is neglected, and the bearing is assumed to have a unit height. The curved 

free surface of the rollover section is assumed to follow a parabolic arc: 
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x
y

a
   (7-1) 

where a is the length of the horizontal surface at y = 0 and x and y are the Cartesian 

coordinates of the respective surface, illustrated in Figure 7-3. The MSG is assumed as a 

linear surface:  

 cy m x  (7-2) 

where mc is the slope of the MSG. For small values, mc is approximately equal to the 

angle of the MSG with the horizontal plane.   

The area enclosed within the rollover section, Ar, is: 
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where ao is the x coordinate of the point of intersection of the parabolic curve and the 

MSG (see Figure 7-3). Equation (7-1) and (7-2) evaluated at x = ao give: 
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The curved arc length, which is equal to the horizontal displacement, is: 
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Following Kelly and Konstantinidis [26], a change of variables is introduced, 
22s x a : 
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and again with sinhs t : 
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Evaluating the integral yields: 
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 (7-8) 

The condition of incompressibility requires / 2rA u ; therefore, a can be solved using 

Eq. (7-3) and Eq. (7-8). Figure 7-4 shows u, a, and ao over the range of 0.3 0.3cm   . 

Over this range of mc, the value of u varies between 2.12 and 1.31, while for unmodified 

supports (i.e., mc = 0) u = 1.67. To correct for the thickness of the reinforcement, u is 

increased by the ratio of the total height to the total thickness of the elastomeric layers. 

The maximum level of MSG that accelerates full rollover is limited to prevent impact of 

the upper and lower supports, whereas MSG that delays full rollover is limited by the 

requirement of horizontal stability, which was not considered in this derivation.  

7.4 Experimental Program 

A SU-FREI bearing with MSG that accelerates (A-MSG), delays (D-MSG) or 

leaves rollover unaltered (i.e., unmodified support geometry (USG)) was considered.  The 

quarter-scale specimen was comprised of seven layers of Neoprene with a shear modulus 

of G = 0.43 MPa and reinforced with plain weave bi-directional carbon fiber. The total 

height of the specimen was 22.35 mm and the total thickness of the elastomeric layers, tr, 

was 19.05 mm. The specimen was cut from a larger pad to a length of 52 mm and a width 

of 76 mm and had a shape factor of 4.9.  

In order to mitigate the influence of the Mullins effect and to provide a more direct 

comparison between the different levels of MSG, the specimen was initially cycled 

horizontally before conducting the experiments for this study. The experimental tests 

were conducted with horizontal displacement control and vertical load control. A 

schematic of the experimental apparatus is shown in Figure 7-5. The vertical load was 

measured with three load cells, and the vertical displacement was measured with four 

laser transducers. The horizontal load was measured directly with a single load cell, and 

the displacement was measured with a string potentiometer. The specimen was placed 

unbonded between two level steel plates and monotonically loaded to an average vertical 

compressive stress of 2.0 MPa. Three sinusoidal cycles were conducted at each of the 

seven horizontal displacement amplitudes in ascending order: 0.25, 0.50, 0.75, 1.00, 1.50, 

2.00 and 2.50 tr. The specimen was then monotonically unloaded, removed from the 

apparatus and visually inspected for damage.  
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The MSG was constructed using steel plates that were machined to the desired 

slope of mc = ±0.2, corresponding to an expected full rollover displacement of 1.67, 1.96 

and 2.30 tr for A-MSG, USG and D-MSG, respectively. Note that these values have been 

corrected for the thickness of the reinforcement. The MSG plates were bolted to the upper 

and lower steel plate supports; for USG, additional steel plates were not required. The use 

of steel plates to create the MSG was convenient for adaptability of the experimental 

apparatus; although, in other applications, the MSG could be built on site by concrete 

formwork or by other means.  

The effective horizontal stiffness, keff, was calculated as: 
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where Fmax, Fmin and umax, umin are the maximum and minimum force and displacement 

over each cycle, respectively. The equivalent viscous damping, eff , was calculated as: 
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where Wd is the area contained within the hysteresis loops and  max min 2aveu u u  .  

The normalized force-displacement hysteresis loops from the third cycle for the 

three levels of MSG are compared in Figure 7-6; the horizontal restoring force, F, has 

been normalized by G and the plan area, A. The associated values of keff and eff  are 

provided in Table 7-1. The hysteresis loops were consistent at smaller amplitudes since 

the MSG only affects full rollover and has no influence on the softening regime. The 

deformed shape of the isolator at 1.50, 2.00 and 2.50 tr with various levels of MSG is 

shown in Figure 7-7. Note that D-MSG was created with a recession in the steel plate 

which is not visible in the figure. Over the 1.50 tr cycle, the A-MSG began to stiffen in 

comparison to the USG and D-MSG, and significant stiffening was observed over the 

2.00 tr cycle. Stiffening began over the 2.00 tr cycle and 2.50 tr cycle for the USG and D-

MSG, respectively (see Table 7-1). The observed stiffening corresponds well with the 

predicted full rollover displacements, 1.67, 1.96 and 2.30 tr. Note that the exact full 

rollover displacement cannot be determined from the hysteresis loops due to the desirable 

smooth transition that occurs between the softening and stiffening regimes. The ratios of 

the effective horizontal stiffness, keff, at both the 2.00 and 2.50 tr cycles were 

approximately 1.34A MSG USG

eff effk k   and 0.75D MSG USG

eff effk k  , indicating that the effective 

horizontal stiffness was more sensitive to A-MSG. The equivalent viscous damping 

generally decreased with increasing displacement amplitude and remained above 10 % 

with the exception of the A-MSG and USG cases at the 2.00 tr and 2.50 tr cycles.   
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7.5 Model and Methodology 

7.5.1 Structure and Equipment 

The analysis was conducted using OpenSees [25] in two dimensions. The single 

bay, two storey prototype planar frame was selected from a previous experimental 

investigation on unbonded FREIs [32]. The total weight of the planar frame, illustrated 

schematically in Figure 7-8, was distributed equally over the six nodes, including the 

isolation layer. The beams and columns were represented using elastic beam column 

elements and were assumed to be axially rigid. The inherent equivalent viscous damping 

of the structure was assumed to be 2 % and was applied to the structure using initial 

stiffness proportional damping. Initial stiffness proportional damping, rather than the 

commonly applied Rayleigh damping, avoided exaggerated damping in the low frequency 

first mode [33, 34]. The fixed-base fundamental period of the full scale model was 

determined to be 0.21 s.  As the experimental tests were conducted under constant vertical 

load with level plates and no rotation, the rotation and vertical degrees of freedom at the 

isolators were held fixed and these effects were not considered in the model. The analysis 

was conducted in quarter scale consistent with the experimental results and planar frame; 

the results are presented in full scale.  

The sliding and attached equipment was assumed to be light, and, under this 

assumption, the dynamic interaction between the structure and the equipment was 

neglected [35, 36]. Light sliding and attached equipment was positioned at level three of 

the structure. The sliding equipment was modelled using a Flat Slider Bearing Element, 

presented in Schellenberg et al. [37], with a Coulomb friction model having a coefficient 

of friction of μ = 0.025, 0.05 and 0.1. The response of light attached equipment was 

evaluated on the basis of the mean floor spectral accelerations with frequencies greater 

than 2.00 Hz considered to be the primary range of interest [6].  

7.5.2 SU-FREIs 

Love et al. [38] numerically modelled a base isolated structure with SU-FREIs and 

a tuned liquid damper calibrated from experimental results. The SU-FREIs were 

represented by adapting the Bouc-Wen model from Chen and Ahmadi [39] with a fifth 

order polynomial to better represent the softening and stiffening regimes. In the model, 

the horizontal restoring force was proportional to a higher order of the hysteretic 

parameter, z, and both hysteretic and viscous damping were included.  

The model used herein is derived from the traditional Bouc-Wen model, based on 

an initial, ki, and post-yield stiffness. The horizontal restoring force is: 

 (1 )i y iF k u u k z     (7-11) 

where uy is the yield displacement, and α is the ratio of the post-yield stiffness to initial 

stiffness. The hysteretic parameter is determined from the differential equation: 
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  ̇  
 ̇

  

*  ,    (  ̇)   -| | + (7-12) 

where A, β, γ and n are dimensionless quantities that control the shape of the hysteresis 

and sgn is the sign function.  

Adapting this model with the inclusion of a fifth order polynomial results in the loss 

of the physical interpretations associated with the yield and post-yield stiffness (i.e. the 

relationship between ki, α, uy is lost). Accordingly, the restoring force becomes: 

 
3 3 5

1 2 3 4 5F a u a u u a u a u u a u Bz       (7-13) 

with 
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where Y replaces uy and B absorbs the coefficients of z in Eq. (7-11). It should be noted 

that the model used herein assumes only hysteretic damping; although, viscous damping 

could also be included.  

A comprehensive model for SU-FREIs including damping, rollover, full rollover, 

MSG and other effects, has not been developed; thus, the model needs to be calibrated 

based on experimental results. A best-fit procedure minimizing the squared residuals over 

the third cycle of the experimental results was used to determine the model parameters for 

each level of MSG (e.g., A-MSG, USG, and D-MSG). Note that the isolator softens over 

successive cycles due to the Mullins effect, thus the model calibration should be 

considered a lower-bound. An upper-bound analysis taking into account aging effects in 

the Neoprene is beyond the scope of this study. The Bouc-Wen model and experimental 

third cycle hysteresis loops are compared in Figure 7-9, and Table 7-2 compares the ratio 

of the model and experimental effective horizontal stiffness, keff, and equivalent viscous 

damping, δeff, over each cycle. The model properties are in almost all cases within 10 % of 

the experimental results with the notable exceptions of the lowest displacement 

amplitude, 0.25 tr, and largest displacement amplitude, 2.50 tr. By calibrating the model 

to all cycle amplitudes, the necessity for an iterative procedure that has been used in other 

numerical SU-FREI studies [32, 40] was avoided. Since shear displacement demands on 

an isolation system are generally substantially larger than 0.25 tr, even at the SLE hazard 

level, and that the peak values are of primary interest, the Bouc-Wen model was deemed 

appropriate to capture the performance of SU-FREIs with MSG for this study. Although, 

it was noted that the peak displacement may be increased in comparison to what would be 

expected from experimental results due to the lower modelled damping over the 2.50 tr 

cycle.  

7.5.3 Earthquakes and Scaling 

The response of the structure was investigated based on a set of 14 fault-normal 

broadband ground motions. The ground motions were selected at random from the 
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standardized set of broadband ground motions on rock provided in Baker et al. [41]. The 

ground motion records were scaled to a design spectrum [42] for Victoria City Hall, 

Canada, assuming all site class factors of unity, and a 2% probability of exceedance over 

50 years [43].  The scaling was conducted to minimize the squared residuals over the 

period range of 0.5TM to 1.25TM for each record, where TM = 1.74 s is the effective period 

at the MCE hazard level determined according to ASCE 7-10 [42] for a base isolated 

structure. This period corresponds to an isolator displacement of u/tr = 1.82. The values of 

keff and δeff were selected from the third cycle of the USG experimental values with linear 

interpolation between displacement amplitudes. The selected records are listed in Table 

7-3 and the displacement, D, and pseudo-acceleration, Sa, response spectra are provided 

in Figure 7-10. In order to provide a direct comparison, the scaling was not changed 

between different levels of MSG. The SLE and design basis earthquake (DBE) hazard 

levels were determined as 1/3 MCE and 2/3 MCE, respectively. The MCE level was used 

as the baseline, and the records were further scaled from 0.4 MCE to 1.2 MCE in 

increments of 0.2 MCE to investigate the softening and stiffening regimes of the 

response.  

7.6 Results 

7.6.1 Structure 

The normalized mean peak isolator displacement, u/tr, and base shear through the 

isolation layer, Vb, normalized by the total weight of the base isolated structure, W, as a 

function of the hazard level are shown in Figure 7-11. The peak isolator displacement 

increases nearly linearly with increasing hazard level. The hysteresis loops of the USG 

and two types of MSG primarily deviate beginning at 1.50 tr, which is approached at 0.8 

MCE and exceeded at the MCE level and greater. At low hazard levels, below the DBE, 

the systems performed consistently with respect to the mean peak values of u/tr and Vb/W 

with little variation. At hazard levels exceeding the DBE, the systems deviate with respect 

to the mean peak Vb/W values. It was found that the stiffening provided minimal restraint 

to the isolation system displacements. At 1.2 MCE, the mean peak u/tr values were 1.87, 

1.89 and 1.89 for A-MSG, USG and D-MSG, respectively; however, the mean peak 

values of Vb/W was 0.24, 0.19 and 0.15. Note that A-MSG USG 0.99u u  , while 

A-MSG USG 1.27b bV V  . Similarly, D-MSG had no appreciable difference to USG with 

respect to mean peak u/tr, but D-MSG USG

b bV V reduced to 0.80. The change in Vb relative to 

the USG case corresponded well with the experimentally obtained ratios of the effective 

horizontal stiffness at 2.00 and 2.50 tr of approximately 1.34 and 0.75 for A-MSG and D-

MSG, respectively.  
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The mean peak inter-storey drift ratio (IDR) for the first (IDR12) and second (IDR23) 

story and mean peak absolute floor acceleration (PFA) at level three of the structure, 

PFA3, are shown in Figure 7-12 and Figure 7-13, respectively.  Similar observations can 

be made as with Vb. Namely, at higher hazard levels, the A-MSG amplified the response, 

and the D-MSG reduced the response relative to the USG. At the DBE level, the PFA3 

was 0.15, 0.14, and 0.13 g with A-MSG, USG and D-MSG, respectively. Increasing the 

hazard level to 1.2 MCE (1.8 DBE) increased, respectively, the PFA3 to 0.27, 0.21 and 

0.17 g, corresponding to an 81, 52 and 30 % increase, respectively. The IDR was low 

over both storeys of the structure, representative of the structure moving in near rigid 

motion on-top of the isolation system. Regardless of the low values of the IDR, over the 

first and second levels of the structure at the 1.2 MCE hazard level 
D-MSG USG 0.80IDR IDR   and A-MSG USG 1.27IDR IDR  .  

7.6.2 Light Equipment 

The mean floor pseudo-acceleration response spectra at level 3 for light attached 

equipment are shown in Figure 7-14. Two dominant peaks can be observed at all hazard 

levels considered. Note that the range of interest for attached equipment was considered 

to be frequencies greater than 2.00 Hz. At the SLE, the isolation systems were nearly 

identical; the two peaks occurred at approximately 0.81 Hz and 7.77 Hz. These 

frequencies correspond closely to the first and second mode of the base isolated structure 

determined by initial-stiffness eigenvalue analysis. As the hazard increases to DBE, the 

PFA increases and there is a slight leftward shift in the first mode (left) peak; 

representative of the softening in the isolation layer. This leftward shift continues as the 

hazard level increases and at 1.2 MCE, the largest peak occurred at a frequency of 0.66, 

0.65 and 0.63 Hz for the A-MSG, USG and D-MSG, respectively. Within the frequency 

range of interest for light attached equipment, the peak occurred at approximately 7.69 Hz 

independent of the MSG. At this frequency, the different levels of MSG amplified the 

floor acceleration by a factor of 2.15, 2.24 and 2.40 for A-MSG, USG and D-MSG, 

respectively. These observations suggest that light attached equipment is sensitive to the 

increase in peak floor acceleration, but is otherwise relatively uninfluenced by the 

changes in the stiffening regime of the isolator hysteresis due to MSG. This is because, 

unlike the first mode peak, the second mode peak in a base isolated structure is primarily 

governed by the superstructure, which in this study was assumed elastic.   

The response of the unanchored equipment vulnerable to sliding was evaluated 

based on mean peak displacement demand, U, over the different levels of MSG; 

compared in Figure 7-15. A similar sliding response was observed between the different 

levels of MSG. An increase in the coefficient of friction, as expected, reduced U.  With μ 

= 0.1, sliding only occurred at hazard levels exceeding 0.6 MCE due to the low floor 
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accelerations. As the hazard level increased to 1.2 MCE, U increased to a maximum of 

141 mm, 104 mm and 59 mm for the A-MSG, USG and D-MSG, respectively. The 

increased floor accelerations that developed due to the stiffening regime resulted in an 

increased duration of sliding, which is related to the peak displacement demand. With μ = 

0.025 and μ = 0.05, the low coefficients of friction caused approximately equal durations 

of sliding, independent of the isolation system, and thus achieved a similar response.  

7.7 Effect of Stiffening 

A parametric study was conducted to investigate the sensitivity of the structure and 

NCS to changes in the stiffening regime; notably the magnitude of stiffening required to 

act as an effective displacement restraint. The hysteretic parameters for USG were 

considered and the changes in the stiffening regime were introduced by modifying the 

fifth order polynomial coefficients. The model by Van Engelen et al. [27] was used to 

determine the full rollover displacement and force-displacement relationship prior to full 

rollover. The post-full rollover force-displacement relationship was selected to provide an 

effective period of T = 0.5, 1.0 and 1.5 s at a displacement of 2.50 tr, assuming a single 

degree of freedom system, designated as k-1, k-2, and k-3, respectively. Figure 7-16 

shows the fifth-order polynomials selected for each case. A total of nine were considered, 

corresponding to the three stiffness levels and three levels of MSG. A smooth transition, 

as observed in experimental testing, was allowed between the softening and stiffening 

regimes. The post-full rollover tangential stiffness of the A-MSG and D-MSG with mc = 

±0.2 was selected to equal the USG tangential stiffness. The resulting effective periods at 

u/tr = 2.50 are listed in Table 7-4. The primary focus of the parametric study was to 

investigate the stiffening regime, and only the SLE and hazards greater than 0.6 MCE 

were considered. The structure, NCS and selected earthquake ground motions were 

otherwise identical to those previously discussed.  

The hysteretic responses obtained for this parametric study do not necessarily 

reflect achievable SU-FREI designs. Furthermore, the substantial increase in stiffness 

required to meet the selected effective periods significantly reduces the equivalent 

viscous damping over the large amplitude cycles. By only modifying the fifth order 

polynomial, a direct comparison between the stiffness levels can be achieved.  The area 

contained within the loops, represented by the hysteretic parameters of the Bouc-Wen 

model, is independent of the polynomial if the displacement time history and remaining 

model parameters are identical.  

7.7.1 Structure 

The increased post-full rollover stiffness provided minimal displacement restraint, 

as shown in Figure 7-17. The mean peak isolator displacements at 1.2 MCE are provided 

in Table 7-5.  As the post-full rollover stiffness increases, or full rollover displacement 
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decreases (accelerated full rollover), the mean peak displacement decreases. At the k-2 

and k-3 stiffness level, the mean peak displacements were all within 2.1 % of the mean. 

At the k-1 stiffness level, accelerating full rollover decreased the mean peak displacement 

by 3.4 %, whereas delaying full rollover resulted in a 4.4 % increase over the USG case. 

The difference between the k-1 A-MSG case and the k-3 D-MSG case was 0.20 tr. These 

decreases in displacement were achieved by a considerable increase in the mean peak 

Vb/W, PFA3, and IDR12 (see Figure 7-17). Accelerating full rollover or increasing the 

post-full rollover stiffness increased the response of the structure. For k-1 A-MSG at 1.2 

MCE, Vb/W = 0.94, PFA3 = 1.26 g and IDR12 = 0.26 %. These values represent an 

increase of 53, 53 and 54 %, respectively, over the k-1 USG case at the same hazard level.    

7.7.2 Light Equipment 

For attached light equipment, similar observations as previously discussed can be 

made with respect to the mean floor pseudo-acceleration response spectra, shown in 

Figure 7-18, for k-1 at level 3 of the structure. Note that the scale has been increased from 

Figure 7-14. As previously observed, at the MCE and 1.2 MCE hazard levels the 

accelerated and delayed full rollover causes a shift in the lowest frequency peak. The 

peak within the range of interest for light attached equipment remains relatively 

unaffected by the changes at the isolation layer since it is associated with the stiffness of 

the superstructure, which was assumed to remain linear elastic. Several additional peaks 

emerge, most notable in the A-MSG case. At 1.2 MCE, three dominant peaks occur with 

A-MSG; the third significant peak occurs at 3.31 Hz. The frequency corresponding to the 

tangential stiffness of k-1 post-full rollover was 4.17 Hz and a smooth transition was 

allowed between the softening and stiffening regime. The development of this peak 

demonstrated that the system response became sensitive to, and operated within, the 

stiffening regime. The amplification of the peak floor acceleration at approximately 7.81 

Hz was 1.88, 2.21 and 2.15 for A-MSG, USG and D-MSG, respectively, showing 

increased sensitivity to MSG, but overall comparable magnification as the previously 

discussed results. 

The mean peak displacement demand on unanchored light equipment is compared 

in Figure 7-19 for the three stiffness levels and the three coefficients of friction 

considered. A reduction in U, as previously observed, can be achieved by an increase in 

μ. The increase in μ also increases the sensitivity to the different levels of MSG, 

represented by a larger spread between A-MSG and D-MSG. At 1.2 MCE, with k-1 and μ 

= 0.025, the coefficient of variation of 0.11 increased to 0.28 when μ = 0.1.  The overall 

maximum U occurred with k-1 and μ = 0.025 and was 467, 429, and 378 mm for A-MSG, 

USG and D-MSG, respectively. Reducing the magnitude of the stiffening and increasing 

μ reduced the response, respectively, to 27, 26 and 26 % of the maximum U for the three 

levels of MSG. The decrease in response achieved by increasing the coefficient of friction 
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was greater than the changes due to the post-full rollover stiffness. Similar to changes in 

the level of MSG, an increase in μ also increased the sensitivity to the post-full rollover 

stiffness. At 1.2 MCE with μ = 0.025, changing the stiffness level from k-1 to k-3 

decreased U by a mean of  13 % across the different levels of MSG, and by 56 % with μ = 

0.1.  

7.8 Discussion 

If the structure is idealized as a single degree of freedom system, the fundamental 

period, determined from the experimental keff of the USG isolation system, is 1.75 s and 

1.58 s at 2.00 tr and 2.50 tr, respectively. By applying MSG, the fundamental period can 

vary between 1.37 and 2.02 s at displacements exceeding full rollover, depending on the 

displacement amplitude and level of MSG. A distinct change occurs in the mean 

displacement response spectrum at about 1.2 s (see Figure 7-10). Over the range of 1.37 s 

to 2.02 s, the spectral displacement is relatively constant. Consequently, the isolator 

displacement increases near-linearly with increasing hazard regardless of the different 

levels of stiffening generated by the MSG. At the SLE, the mean peak value of u/tr was 

approximately 0.50, which corresponds to a fundamental period of about 1.3 s, depending 

on the level of MSG. The softening due to rollover from 0.50 tr to 2.50 tr similarly did not 

result in a significant shift in the fundamental period with respect to spectral 

displacement.  

Accelerating full rollover and increasing the full rollover stiffness did reduce the 

displacements, the parametric study concluded that the magnitude of stiffening required 

to provide significant displacement restraint was substantial. Note that at large 

displacements, a large increase in the restoring force is required to substantially increase 

keff and adequately decrease the fundamental period. Consequently, the decrease in 

displacement was achieved at the expense of a substantial increase in the structure and 

NCS response, proportional to the change in the post-full rollover stiffness. The structure 

and NCS response should be carefully reviewed if significant stiffening is introduced. 

This becomes an impact problem if the tangential stiffness of the stiffening regime 

becomes very large, analogous to pounding against the seismic gap wall [44, 45].  As is 

expected, the performance of an adaptive device is dependent on the ground motion 

characteristics and the ability of the device to shift the fundamental period.  

A numerical investigation by Kromodromos [46] considered the application of 

elastomeric bumpers to provide a smooth transition between the isolation stiffness and the 

post-impact stiffness. Comparing three cases, an upper and lower seismic gap wall limit, 

and elastomeric bumpers between the upper and lower seismic gap wall limits (i.e., 

collision with the elastomeric bumper occurs at the lower limit), it was found that the 

inclusion of the elastomeric bumper reduced the peak responses compared to the other 
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two cases. Although this was considered a favourable result, it was noted that a building 

without bumpers may avoid impact, but by including bumpers, which reduces the seismic 

gap, impact may occur that otherwise would have been avoided.  In this respect, the 

stiffening regime may also serve to mitigate pounding against the seismic gap wall. If the 

stiffening regime is sufficient to provide the desirable smooth transition prior to impact, 

then the bumpers could be reduced or eliminated entirely. An experimental program 

conducted by Foster [32] included horizontal tests on SU-FREIs up to u/tr = 4.00. The 

tests identified a favourable increase in damping characteristics over these large 

amplitude cycles that exceeded full rollover. These damping characteristics are also 

anticipated to favourably reduce the peak response of the structure; although they were 

not considered in the parametric study.  

The stiffening regime is necessary to maintain horizontal stability, which is a 

requirement for isolation systems [42]. It is postulated that the stiffening regime could be 

used in conjunction with bumpers to mitigate the pounding of the structure against the 

seismic gap wall in extreme events by providing a smoother transition between the 

isolation stiffness and impact stiffness. Furthermore, the reduction in mean peak 

horizontal displacement obtained could be critical if it prevents impact from occurring.  

It is postulated that by accelerating full rollover with A-MSG, the reduction in the 

softening regime would allow isolators with width-to-total height aspect ratios less than 

2.5 to be horizontally stable. This could be used to reduce the size of the isolators, 

softening the isolation layer and resulting in a larger shift in the fundamental period. 

Applying D-MSG can also be used to increase the softening regime and reduce the 

magnitude of the stiffening, reducing the response of the key performance parameters at 

lower displacements.  

7.9 Conclusions 

This paper numerically investigated modifying the stiffening regime of SU-FREIs 

with MSG. Experimental results were used to model an elastic base isolated structure 

with MSG over a range of hazard levels. The stiffening regime has often been considered 

to act as a self-restraint mechanism against excessive displacements at events that meet or 

exceed the MCE hazard level. The findings, which are limited to the scope of this study 

and selected earthquake records, indicate that the stiffening regime for he isolators 

considered provided minimal displacement restraint. This is primarily contributed to the 

characteristics of the selected earthquake records, in particular the constant mean spectral 

displacements exhibited over the period range of interest. The parametric study 

demonstrated that the level of stiffening required to significantly restrain displacements is 

substantial and results in amplification of the response of the structure and light 

equipment.  
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The stiffening regime caused by full rollover in SU-FREIs and MSG are important 

and advantageous features. Full rollover is critical for maintaining horizontal stability by 

preventing further softening and could potentially be used in conjunction with bumpers to 

mitigate pounding against seismic gap walls. It is recommended that similar studies be 

conducted considering more complex structures, ground motions with different 

characteristics, and with other isolation systems that exhibit adaptive characteristics, such 

as rubber isolators with strain induced crystallization, the triple friction pendulum and 

sliding systems with variable curvature.  
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Table 7-1: Experimentally determined effective horizontal stiffness and equivalent 

viscous damping.  

u/tr 
A-MSG USG D-MSG 

kefftr/GA δeff (%) kefftr/GA δeff (%) kefftr/GA δeff (%) 

0.25 1.11 12.6 1.08 12.6 1.13 16.4 

0.50 0.87 11.8 0.83 12.1 0.80 14.8 

0.75 0.72 11.4 0.67 11.7 0.64 13.8 

1.00 0.62 11.0 0.57 11.5 0.55 12.9 

1.50 0.52 10.1 0.46 11.0 0.43 12.4 

2.00 0.63 7.4 0.47 9.1 0.36 12.4 

2.50 0.75 6.2 0.56 7.7 0.42 10.0 

 

Table 7-2: Ratio of the model to experimental effective horizontal stiffness and 

equivalent viscous damping. 

u/tr 
A-MSG USG D-MSG 

keff δeff keff δeff keff δeff 

0.25 0.87 0.76 0.84 0.74 0.86 0.69 

0.50 0.96 0.96 0.98 0.94 0.98 0.93 

0.75 1.01 1.04 1.04 1.01 1.04 1.02 

1.00 1.03 1.10 1.06 1.06 1.04 1.05 

1.50 1.09 1.07 1.05 1.10 1.04 1.07 

2.00 0.98 1.09 0.98 1.11 1.00 1.05 

2.50 1.03 0.88 1.05 0.87 1.05 0.86 
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Table 7-3: Selected broadband fault normal records and scale factors. 

Earthquake Station Scale Factor 

San Fernando - 1971 Lake Hughes #4 4.21 

Loma Prieta - 1989 Gilroy Array #6 1.76 

Northridge-01 - 1994 LA - Wonderland Ave 2.74 

Hector Mine - 1999 Hector 0.83 

Hector Mine - 1999 Heart Bar State Park 6.55 

Coyote Lake - 1979 Gilroy Array #6 0.80 

Northridge-01 - 1994 Pacoima Dam (downstr) 1.32 

Denali, Alaska - 2002 Carlo (temp) 2.53 

Chi-Chi, Taiwan - 1999 WNT 0.71 

Victoria, Mexico - 1980 Cerro Prieto 0.69 

Loma Prieta - 1989 Gilroy Array #1 1.64 

Northridge-01 - 1994 LA Dam 0.47 

Northridge-01 - 1994 LA - Chalon Rd 2.28 

Chi-Chi, Taiwan - 1999 TCU129 0.63 

 

Table 7-4: Effective period at u/tr = 2.50. 

 

T (s) 

k-1 k-2 k-3 

A-MSG 0.42 0.88 1.39 

USG 0.50 1.00 1.50 

D-MSG 0.62 1.20 1.66 

 

Table 7-5: Mean peak displacement. 

  
u/tr 

k-1 k-2 k-3 

A-MSG 1.68 1.81 1.86 

USG 1.74 1.84 1.86 

D-MSG 1.81 1.86 1.88 
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Figure 7-1: Idealized division of a (a) bonded and (b) unbonded FREI.  

 

Figure 7-2: MSG that (a) accelerates full rollover, and (b) delays full rollover. 

 

Figure 7-3: Cartesian coordinate system and deformed shape of the isolator with A-

MSG at full rollover.  

 

Figure 7-4: (a) Full rollover displacement and (b) corresponding parameters a and ao 

for an isolator with unit height, neglecting the thickness of the 

reinforcement. 
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Figure 7-5: Schematic of the experimental setup. 

 

Figure 7-6: Normalized force-displacement experimental hysteresis loops for different 

levels of MSG. 
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Figure 7-7: Isolator deformed shape at u/tr = 1.50 (left), 2.00 (center) and 2.50 (right). 

 

Figure 7-8: Idealized prototype structure and light equipment.  

 

Figure 7-9: Comparison of the normalized experimental and model hysteresis loops. 
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Figure 7-10: Scaled displacement and pseudo-acceleration response spectra showing the 

mean spectrum of the 14 ground motions and the design spectrum at 

Victoria City Hall, Canada.  

 

Figure 7-11: Normalized mean peak isolator displacement and normalized base shear as 

a function of the earthquake hazard level. 

 

Figure 7-12: Mean peak IDR as a function of the earthquake hazard level. 
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Figure 7-13: Mean peak floor absolute acceleration at level 3 of the structure as a 

function of the earthquake hazard level.  

 

Figure 7-14: Mean floor pseudo-acceleration response spectra (Level 3). 
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Figure 7-15: Mean displacement of sliding equipment as a function of hazard level 

(Level 3).  

 

Figure 7-16: Fifth order polynomials used in the parametric study displaying the three 

stiffening levels for each MSG.  
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Figure 7-17: Mean response of key performance indicators as a function of earthquake 

hazard level. 
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Figure 7-18: Mean floor pseudo-acceleration response spectra (k-1).  

 

Figure 7-19: Sliding equipment mean displacement demand. 
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8 Partially Bonded Fiber-Reinforced Elastomeric Isolators (PB-

FREIs) 

Reproduced with permission from Elsevier. 

Van Engelen NC, Osgooei PM, Tait MJ, Konstantinidis D. 2014. Partially Bonded Fiber-

Reinforced Elastomeric Isolators (PB-FREIs). Structural Control and Health Monitoring, 

22(3): 417-432, DOI: 10.1002/stc.1682. 

Summary 

Although stable unbonded fiber-reinforced elastomeric isolators (SU-FREIs) have 

desirable characteristics for seismic isolation, the unbonded application also introduces 

limitations in comparison to bonded elastomeric isolators. SU-FREIs are not capable of 

resisting tensile forces, making SU-FREIs unsuited for situations where overturning is of 

concern or where large vertical accelerations are anticipated. Furthermore, as SU-FREIs 

rely on friction to transfer horizontal forces, the isolator could potentially slip under 

certain loading conditions, resulting in permanent displacements. This paper proposes that 

concerns over the transfer of tensile forces and potential slip can be addressed by partially 

bonding the SU-FREI to the upper and lower supports. In this way, Partially Bonded 

FREIs (PB-FREIs) retain the beneficial characteristics of an unbonded FREI, but also 

inherit characteristics of a bonded isolator; notably tensile and horizontal forces can be 

transferred through the partial bond. Experimental results from isolators tested unbonded 

and partially bonded under vertical compression are used to evaluate a finite element 

model. The experimental data and finite element analysis demonstrate that portions of a 

FREI can be bonded without substantially altering the rollover characteristics of the 

isolator within the range of average vertical compressive and tensile stresses considered. 

Despite an unconventional deformed shape under tensile vertical stress, the horizontal 

force-displacement relationship exhibits negligible deviation from a conventional 

unbonded SU-FREI under a compressive vertical stress. It is postulated that with further 

development PB-FREIs can retain the beneficial characteristics of unbonded FREIs while 

addressing concerns over tensile forces and slip.     

Key Words 

partially bonded; base isolation; fiber-reinforced; elastomeric isolator; finite element 

analysis  

8.1 Introduction 

The concept of fiber-reinforced elastomeric isolators (FREIs) was initially proposed 

to reduce the high cost and weight associated with conventional Steel Reinforced 

Elastomeric Isolators (SREIs) [1]. Experimental testing of FREIs revealed that similar 
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performance to SREIs could be obtained with the benefit of additional damping attributed 

to the inter-fiber movement of the reinforcement [1, 2]. In addition to replacing the steel 

reinforcement, the design and installation of FREIs can be further simplified by installing 

the isolator unbonded between the upper and lower supports. Placing the isolator 

unbonded between the supports eliminates the high tensile stress regions that develop in a 

bonded isolator when it is displaced horizontally [3]. Unlike the nearly rigid steel 

reinforcement, fiber reinforcement is extensible and provides no appreciable resistance in 

bending. The lack of bending rigidity, combined with the unbonded installation, results in 

a unique rollover deformation in the end sections that would otherwise be in tension, as 

illustrated in Figure 3-1. As the horizontal displacement increases, and the size of the 

rollover section of the isolator increases, the effective horizontal stiffness decreases. 

Toopchi-Nezhad et al. [4] demonstrated experimentally that the reduction in effective 

horizontal stiffness can result in instability if the tangential stiffness becomes negative. It 

was identified that the instability could be prevented by increasing the width-to-total 

height aspect ratio. An increase in horizontal stiffness occurred as the rollover sections 

contacted the upper and lower supports, completing full rollover. Unbonded FREIs 

exhibiting this type of behaviour were denoted as Stable Unbonded FREIs (SU-FREIs) 

[5]. The stiffening of the isolator is deemed to be an advantageous characteristic to 

protect against instability and to limit excessive displacements during beyond design 

basis events [4].  

Despite the potentially advantageous softening and stiffening characteristics of the 

unbonded application there are two limitations associated with unbonded FREIs. Firstly, 

the unbonded application prevents the transfer of tensile forces through the isolator, 

making this type of isolator inappropriate for situations with a tensile minimum vertical 

design load. A tensile vertical design load may occur in near fault applications where high 

vertical ground accelerations are expected or in situations where overturning is of 

concern. Secondly, the horizontal force is transferred by friction only, rendering 

unbonded FREIs susceptible to slip under certain loading conditions resulting in 

permanent displacements. The frictional resistance of the contact interface between the 

unbonded FREI and the upper and lower supports is proportional to the compressive 

force. If the compressive force on an unbonded isolator approaches zero during an 

earthquake event the likelihood that the shear force will exceed the friction resistance is 

increased.  

It is proposed that the above limitations related to unbonded FREIs can be 

addressed by partially bonding a portion of the isolator to steel end plates. Partially 

bonded fiber-reinforced elastomeric isolators (PB-FREIs) require the reintroduction of 

steel end plates, which can be mechanically fastened to the upper and lower supports, but 

addresses limitations over the transfer of tensile forces and slip under certain loading 
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conditions. The resulting isolator inherits advantageous characteristics from both 

unbonded and bonded isolators. This paper introduces the concept of PB-FREIs through 

finite element analysis (FEA) and an experimental program that compares PB-FREIs and 

unbonded FREIs. 

8.2 Background 

8.2.1 Isolation Systems in Tension 

It is possible for the minimum vertical design load to be tensile as a result of the 

geometry of the structure, or the proximity of the structure to a geographical region with a 

high expected vertical acceleration component. Provisions for tensile testing are often 

provided and required in design codes and standards [6, 7]. In general, experimental 

testing of elastomeric isolators subjected to tension is limited due to difficulties in 

simultaneously applying a tensile load while displacing the isolator horizontally [8]. 

Theoretical analysis of SREIs has identified [9], and FEA has confirmed [10], that the 

isolator may also buckle in tension, therefore, as the tensile load increases, the horizontal 

stiffness of a bonded SREI will decrease. In practice, the tensile buckling load cannot be 

achieved due to cavitation of the elastomer [10]. Cavitation in multilayer elastomeric 

isolators has been a concern in the seismic isolation community. However, although the 

elastomer is susceptible to cavitation at very low tensile strains under the state of triaxial 

stress generated by pure tension, under the combined action of tension and shear the 

isolator can avoid this damaging effect [10].  

As described earlier, unbonded isolators are limited to situations where the 

minimum vertical design load is compressive. Partially bonding the isolator allows 

vertical tensile forces to be resisted. The performance of FREIs in tension is a unique 

problem due to the load dependent nature of the fiber reinforcement. As a vertical 

compressive load is applied, the elastomeric layers bulge outwards, restrained by the 

reinforcement. The restraint of the elastomeric layers introduces a horizontal tensile stress 

in the reinforcement.  As a vertical tensile load is applied, an opposite type of response is 

expected to occur. The near incompressibility of the elastomer develops a horizontal 

compressive stress in the reinforcement as the elastomer is restrained from bulging 

inwards. When loaded along its plane as a homogeneous material, fiber reinforcement 

provides no appreciable resistance in compression; however, the performance of fiber 

reinforcement in compression as a composite with an elastomer, such as with bonded 

FREIs under a vertical tensile stress, has not been investigated.  

8.2.2 Friction and Slip 

An experimental investigation and literature review on neoprene-concrete friction 

characteristics was conducted by Magliulo et al. [11]. A comparison between code 
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equations, results from existing studies in the literature and the experimental data 

presented in the study demonstrated substantial variation in the friction coefficient as a 

function of vertical compressive stress. Magliulo et al. [11] contributed the variation in 

part to differences in the roughness of the concrete surface. It was stated that in many of 

the reviewed studies the quality and finish of the concrete surface was not specified or 

discussed. This variation contributes to uncertainties of the horizontal force transfer 

capacity of unbonded elastomeric isolators.  

Kelly and Konstantinidis [12] analytically investigated the effect of friction at the 

contact interface between an unbonded SREI and the supports on the compressive 

behaviour. It was found that the vertical behaviour can be highly sensitive to the friction 

developed and level of slip depending on the layer design of the isolator. In an 

experimental study investigating the seismic response of unbonded elastomeric bridge 

bearings, slip between the bearing and the concrete supports was observed at a shear 

strain of about 2.25 [13]. Monotonic and cyclic testing on unbonded elastomeric bridge 

bearings conducted by Steelman et al. [14] observed slip at shear strains between 1.25 and 

2.50 depending on the interface roughness, compressive load and magnitude of the 

velocity.  

While conducting an experimental shake table program on a scaled base isolated 

structure with unbonded SU-FREIs, Foster [15] identified that permanent displacement 

occurred in a scaled earthquake record where the seismic demand significantly exceeded 

the design basis of the isolation system. The permanent displacement was observed when 

the peak displacement of the isolation layer reached 3.11 tr, where tr is the total thickness 

of the elastomeric layers. This peak displacement was far in excess of the target design 

displacement of approximately 2.00 tr for the isolators considered in the study. The level 

of permanent displacement was reduced by 66 % when grit paper was introduced to 

increase the friction between the elastomer and the steel and aluminum support surfaces. 

The introduction of grit paper was found to have negligible influence on the response of 

the structure; however, it resulted in a substantial decrease in the level of permanent 

displacement. Russo and Pauletta [16] experimentally investigated the friction properties 

of unbonded FREIs on concrete surfaces with varying vertical compressive stress. In the 

experimental program, it was observed that at the end of a single horizontal displacement 

cycle that the contact surface of the isolator had some level of permanent displacement. 

The magnitude of the permanent displacement was found to be a function of the vertical 

compressive stress and the location along the surface of the isolator, attributed to the 

rollover deformation. Moment equilibrium in unbonded FREIs is maintained by a change 

in the vertical stress distribution; areas of the contact surface with high vertical stress 

concentrations displayed less residual deformation than areas with lower vertical stress.  
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These studies demonstrate that properties of unbonded elastomeric isolators can be 

strongly influenced by the friction between the elastomer and the supports. In some cases, 

the slip observed in the experimental studies [13, 14] occurred at shear strains that can 

expected in a seismic event. Therefore, the friction properties of unbonded FREIs are an 

important consideration for design and an area that requires further investigation. The 

decreased size of the unbonded portion provided by partially bonding the isolator is 

postulated to decrease the sensitivity to friction.  

8.2.3 Partially Bonded Region 

The limiting shear strain of an unbonded SREI with thin steel reinforcing plates was 

investigated by Kelly and Konstantinidis [10, 17]. The limiting shear strain was defined 

as the strain at which full rollover occurs. Assuming incompressibility in the elastomer, 

that the reinforcement was perfectly flexible, and that the length of the free surface of the 

rollover section was equal to the horizontal displacement of the isolator, the limiting shear 

strain, γc, was determined as: 

 
   

 

 

 

  
 (8-1) 

where h is the total height of the isolator.  

Utilizing the limiting shear strain, a bond length, B, which does not enter the 

rollover section, can be established and is denoted as Bmax. The bond length is expressed 

as a percentage of the total width of the isolator for square and rectangular designs, or as a 

percentage of the diameter for circular isolators. It is desirable to have the rollover 

sections of the isolator unbonded such that the rollover section is not influenced by the 

presence of the bond. To achieve this, from Equation (8-1), the bond must be located a 

distance of 5/3 h from the free edge of the isolator. The maximum percentage of the 

isolator that can be bonded without entering the rollover region, Bmax, can be expressed 

as:  

 
     (  

  

  
)      (8-2) 

where R is the width-to-total height aspect ratio. By equating Equation (8-2) to zero, the 

minimum theoretical aspect ratio required such that a bonded portion can be introduced 

that does not enter the rollover section is R = 10/3 ≈ 3.3. For isolators with aspect ratios R 

< 3.3, Equation (8-2) will be negative, implying that any level of bonding will enter the 

rollover section. The concept of a PB-FREI with a bonded region that has no influence 

over the rollover is well suited for isolators with aspect ratios R > 3.3. A comparison of an 

isolator of aspect ratio R = 2.5 and 4.0 demonstrating Bmax and an isolator where the entire 

width loses contact is illustrated in Figure 8-2. Russo et al. [18] proposed an analytical 

model for unbonded FREIs that included the vertical deflection of the isolator. The model 

recognized that the vertical deflection would delay the loss of contact between the 
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supports and the rollover section of the isolator as demonstrated in Figure 8-3. 

Consequently, it is anticipated that the bond could also be extended into the rollover 

section without influencing the rollover deformation. The estimate presented here is 

considered a lower bound.    

8.3  Experimental testing 

8.3.1 Isolator Design 

Two scaled isolator designs, denoted as type E1 and type E2, were considered in 

this study. Figure 8-4 shows the two isolator design types considered with the bond 

identified. Both designs were reinforced with plain weave bidirectional carbon fiber. The 

isolators were initially manufactured in large pads and subsequently cut to the desired 

size. Four specimens, two of each type, were considered. Type E1 isolators have a layer 

design matching the isolators investigated by Foster [15] and type E2 have a layer design 

matching the isolators described in de Raaf [19]. Type E1 isolators were cut to an aspect 

ratio of R = 3.5 and type E2 isolators were cut to an aspect ratio of R = 5.0. Isolator E1-1 

was tested unbonded while isolator E1-2, as illustrated in Figure 8-4(a), was bonded such 

that the bond enters the rollover section at a horizontal displacement of 1.0 tr or B = 50 % 

(Bmax = 5 %). Isolator E2-1, was tested unbonded and isolator E2-2, as shown in Figure 

8-4(b), was bonded such that the bond does not enter the rollover section of the isolator, 

or B = Bmax = 33 %. Isolators E1-2 and E2-2 were bonded to the steel plates using a cold 

vulcanization agent. The total height, h, was 22.4 mm and 24.0 mm for type E1 and type 

E2 isolators, respectively, while the total thickness of elastomeric layers, tr, was 19.1 mm.  

8.3.2 Experimental Setup and Horizontal Test Procedure 

The experimental apparatus used in this study was configured to conduct testing 

under vertical load control and horizontal displacement control. The horizontal load was 

measured directly with a single load cell and the horizontal displacement was measured 

with a string potentiometer. The vertical load was measured with three load cells and the 

vertical displacement was measured with four laser transducers. Each unbonded isolator 

was placed between two level steel plates, whereas the partially bonded isolators were 

mechanically fastened to the two level steel plates through the steel end plates that were 

bonded to the isolator.  

Each isolator was tested under an average vertical stress,  ̅, of 2.0 MPa. Figure 8-5 

shows the horizontal test displacement history where the horizontal displacement, u, has 

been normalized by tr. Each isolator was subjected to eight displacement amplitudes at 

three cycles each. The displacement amplitude, 0.10 tr, was conducted at a constant rate 

of 30 mm/s and the remaining cycles, ranging from 0.25 tr to 2.00 tr, were conducted at a 

constant rate of 76.2 mm/s. Each isolator was monotonically loaded to the design 
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compressive stress before beginning the cycles and monotonically unloaded after the 

cycles were complete.  

8.3.3 Experimental Results 

Table 3-1 presents the ratio of the respective partially bonded values to the 

unbonded values for the effective horizontal stiffness, keff, and equivalent viscous 

damping ratio, δeq, for displacement amplitudes from 0.25 tr to 2.00 tr. For type E1 

isolators, in all instances isolator E1-2 had a larger effective horizontal stiffness than 

isolator E1-1 with the largest ratio of 1.20 occurring at 0.50 tr. As the displacement 

amplitude increases that the ratio of E1-2 to E1-1 decreases and approaches unity. The 

largest ratio of 1.20 occurring at 0.50 tr was unexpected since the influence of the 

partially bonded region is not anticipated to influence the results for displacements below 

1.00 tr. The ratio for E2-2 to E2-1 remained relatively constant with minor fluctuations 

from the average of 0.96. The ratio of equivalent viscous damping for E1-2 to E1-1 is, 

with the exception of 0.50 tr, approximately unity. The minimum ratio was 0.82, 

suggesting a decrease due to the partial bond, however, this may be in part due to the 

effective horizontal stiffness ratio of 1.20 observed at that displacement amplitude. 

Similar to the effective horizontal stiffness, the equivalent viscous damping ratio for E2-2 

to E2-1 is near unity at all displacement amplitudes considered with the largest ratio of 

1.08 occurring at 0.50 tr.    

Figure 8-6 shows the normalized hysteresis loops for the partially bonded and 

unbonded isolators for both designs considered where the horizontal force, F, has been 

normalized by the shear modulus of the elastomer, G, and plan loaded area of the isolator 

at zero horizontal displacement, A. All isolators displayed the characteristic softening and 

subsequent stiffening associated with stable rollover of SU-FREIs. The softening and 

stiffening is less pronounced for type E2 isolators due to the larger aspect ratio, which 

mitigates the effect of the rollover. Figure 8-6(a) shows that, although the bond enters the 

rollover section at 1.00 tr for isolator E1-2, no appreciable change in the shape of the loop 

occurs; both the area contained within the loops and the peak normalized force remain 

consistent with isolator E1-1. Similarly, Figure 8-6(b) shows that the response of isolator 

E2-2 is nearly indistinguishable from that of isolator E2-1.  

Although no significant deviation in the hysteretic loops of the isolator was noted, 

the deformed shape of the rollover section of the isolator is altered by the introduction of 

a partial bond as demonstrated in Figure 8-7, which compares the deformed shape of E1-1 

and E1-2. Prior to 1.00 tr the bond has not entered the rollover section, and the deformed 

shape of the rollover section between isolator E1-1 and E1-2 is comparable.  As the 

displacement increases to 1.50 tr only a minor difference in deformed shape is noted. 

Although the bond is now in the rollover section, the vertical deflection of the isolator 

delays the loss of contact between the isolator and the supports. As a consequence, 
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although the bond is in the rollover section, the influence is minimized. At a displacement 

of 2.00 tr the bonded portion is visible and results in localized deformations representative 

of the tensile stresses introduced in this portion by the bond. Despite the localized 

deformation, based on the experimental results, the global impact on the performance of 

the isolator has been shown to be negligible. Isolator E1-2 was visually inspected after the 

test program. The integrity of the elastomer-to-fiber and the elastomer-to-steel bond was 

not compromised. No delamination or other forms of damage were visually observed.  

8.4 Finite element analysis 

8.4.1 Model Description 

Previous studies have been conducted that utilize FEA to compare unbonded and 

fully bonded FREIs [3, 20] and square unbonded FREIs with different aspect ratios and 

orientations [21]. In this study, the FEA was conducted using MSC Marc [22], a 

commercially available finite element software package. A three dimensional analysis 

was performed using an updated Lagrangian framework. In this framework, the reference 

configuration is updated, and the discrete equations are formulated in the current 

configuration. Eight-node hexahedron isoparamteric elements were used to model the 

elastomeric layers. The fiber reinforcement layers were modeled using four-node 

quadrilateral membrane elements with no flexural rigidity. The nonlinear behaviour of the 

elastomeric materials was modeled using a hyperelastic material model. Unlike linear 

elastic materials where the stress-strain relationship is described using a constant factor, 

in the hyperelastic materials the stress-strain relationship is derived from a strain energy 

density function. In this study, the hyperelastic material law used for the rubber materials 

was compressible Neo-Hookean, with the following strain energy density function: 

 
     (  ̅   )  

 

 
(    )  (8-3) 

where     is the coefficient of the Neo-Hookean material model, K is the bulk modulus of 

the elastomeric material,   ̅ is the first deviatoric strain invariant and J3 is the total volume 

ratio. The coefficient of the Neo-Hookean material model is related to the shear modulus 

of the elastomeric material by        . The first deviatoric strain invariant is 

expressed as: 

   ̅   ̅ 
   ̅ 

   ̅ 
  (8-4) 

where  ̅  is the deviatoric stretches and is given by 

 
 ̅ 

    
 

 
    

(8-5) 

and    is the principal stretches with          . Strain dependence of the shear 

modulus was not taken into consideration in this study. Constant values of G = 0.4 MPa 

and 0.7 MPa were selected for E1 and E2, respectively, determined from experimental 

horizontal cyclic tests. The bulk modulus was selected as K = 1900 MPa.  
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The FEA was conducted under the plane strain assumption, representing infinitely 

long strip isolators. The isolators were modeled with a unit length and restrained from 

lateral deformation perpendicular to the plane of the isolator in the direction of loading. A 

specific contact was defined between the isolators and the contact surfaces to allow the 

unbonded portions of the isolators to detach from the contact surfaces as the compressive 

contact stress approaches zero. The contact between the bonded regions of the FREIs and 

the contact surfaces was defined such that no separation or slip was allowed. Figure 8-8 

shows the FEA model of isolator type E1 along with the mesh size that was used.  

Figure 8-9 shows experimental results for E1-1 and E2-1 isolators compared to the 

FEA results of the respective isolator with B = 0 % normalized by GA. It can be observed 

that the FEA prediction is in good agreement with experimental results for displacements 

exceeding 0.50 tr and 0.75 tr for E1-1 and E2-1, respectively. The FEA prediction is lower 

than the experimental results for low displacement amplitudes; this is primarily attributed 

to the assumed constant value of G, which ignores the nonlinearity of the elastomer at low 

strains. According to Equation (8-1), full rollover occurs at 1.96 tr and 2.10 tr for E1-1 

and E2-1, respectively. Therefore it is expected that E1-1 will display substantial 

stiffening as a result of full rollover before E2-1, which is observed in Figure 8-9(a) 

before 2.00 tr. This is in reasonable agreement with the full rollover prediction from 

Equation (8-1) and also matches well with the stiffening observed in the experimental 

results. Therefore the FEA model was considered to perform well in comparison to the 

experimental results and expected full rollover from theory and, as such, was considered 

suitable for this study. 

8.4.2 Vertical Modulus 

Isolator type E1 with B = 50% was investigated through FEA under a 1.0 MPa 

average compressive vertical stress and 0.4 MPa average tensile vertical stress determined 

by the total plan area. Figure 8-10 shows that a nearly linear local vertical stress, ζ33, and 

vertical strain, ε33, relationship is obtained from the FEA. The vertical tensile modulus 

was determined to be 39.4 MPa, which is significantly lower than the compression 

modulus of 208 MPa. Figure 8-11 shows the normalized stress,         | ̅|, contours 

for both vertical loading cases. As anticipated, in the compression case the magnitude of 

the stress increases approaching the center of the isolator from the edge, rendering the 

entire isolator effective in resisting the compressive load. As friction develops between 

the unbonded sections and the supports, slip is prevented and increases the restraint of the 

lateral bulging.  

In the tensile case, only the bonded portion is largely effective in resisting the load 

while the unbonded sections exhibit minor tensile and compressive stresses. These 

unbonded sections have a unique deformed shape as the sections lose contact with the 

supports. The result is a reduced effective area of the isolator, the size of which is a 
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function of the bond length. As a consequence of the reduced size of the effective 

isolator, the magnitude of the normalized stresses observed is greater than that of the 

compression case which distributes the stresses over the entire width of the isolator. It 

should be noted that the system must be properly designed such that the expected tensile 

loads do not cause cavitation or delamination of the elastomer-fiber bonds.   

8.4.3 Horizontal Behaviour (Under Compression): B < Bmax 

The FEA force-displacement relationship, where the force is normalized by GA, 

with a maximum considered displacement of 2.00 tr for B = 0 % and B = Bmax = 5 % is 

compared in Figure 8-12 for isolator type E1. As anticipated, the force-displacement 

relationship for B = 0 % and B = Bmax are indistinguishable from each other at all levels of 

displacement considered. Similar results were obtained for isolator type E2. The 

deformed shape at 2.00 tr is shown in Figure 8-13 for isolator type E1 and comparing the 

unbonded, B = 0 %, and bonded, B = Bmax, cases. It is evident that for both isolators, as 

with the experimental results, the deformed shape was also indistinguishable between the 

two cases. Furthermore, the stress contours of the normalized local stresses S33, which are 

initially in the vertical direction, are shown. Results indicate that the bonded region does 

not introduce any stress concentrations, nor is any substantial alteration in the contours 

noted. In addition, the central section of the isolator that remains in contact is dominated 

by a compressive stress, whereas the rollover sections display a low tensile stress. Based 

on these observations is it postulated that any length of bond, 0 % < B < Bmax will have 

negligible influence on the horizontal force-displacement relationship under vertical 

compressive stress.  

8.4.4 Horizontal Behaviour (Under Compression): B > Bmax  

The influence of bond length for B > Bmax is considered in increments of 25 % from 

Bmax to a fully bonded FREI with B = 25 %, 50 %, 75 % and 100%. The FEA force-

displacement relationships, where the force is normalized by GA, are compared in Figure 

8-14. For the type E1 isolator, similar to the B = 0 % and B = Bmax = 5 % case, there is 

negligible difference between B = 5 % and B = 25 %. As B is increased to 50 % an 

increase in the horizontal force is observed at approximately 1.25 tr. This slight increase 

is observed until full rollover occurs at approximately 1.90 tr where the cases of B = 5 %, 

25 % and 50 % once again become indistinguishable. The maximum increase over this 

range was 15 %. In the experimental program no appreciable difference was noted in the 

hysteresis between E1-1 and E1-2.  

The deformed shape of B = 50 % at 2.00 tr is shown in Figure 8-15 where, similar 

to the experimental results, localized deformations in the bonded rollover section occur. 

This localized deformation is associated with the minor increase in horizontal force 

observed in the 1.25 tr to 2.00 tr range.  The rollover section is otherwise relatively 
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uninfluenced by the bond and completes full rollover, although delayed due to the bond. 

As a consequence of the bond, an increase in tensile stress is observed in the bonded 

rollover section. The central section also experiences an increase in compressive stress to 

accommodate the introduction of tensile stresses in the bonded rollover section.  

Five distinct sections of the isolator are now observed: the central section, 

dominated by compressive stresses; two bonded rollover sections, which are a 

consequence of the bonded portion and are dominated by tensile stresses; and two 

conventional rollover sections, which are restrained by the bonded rollover section. These 

sections are illustrated schematically in Figure 8-16.  

As the bond was increased to B = 75 % further softening was prevented at 

approximately 0.75 tr (see Figure 8-14). Despite the unbonded portion of the rollover 

section being approximately 0.50 tr in length, the influence of the partial bond was not 

observed until 0.75 tr. This is once again attributed to the vertical deflection of the isolator 

as described above. As the horizontal displacement increased, the size of the rollover 

section remained constant as additional rollover was restricted. As a consequence, the 

force-displacement relationship of the isolator becomes similar to that of a bonded 

isolator with a length equal to the bonded portion. Due to the increase in bond length, the 

size of the bonded rollover section was increased at the expense of the rollover section, as 

illustrated in Figure 8-17 at a displacement of 2.00 tr. The additional tensile stress that 

develops in the bonded rollover section, similar to a fully bonded isolator, was 

accommodated by an additional increase in compressive stress in the central section in 

comparison to the unbonded case (see Figure 8-13). In lieu of bulging outwards, the 

elastomeric layers bulged inwards and an increased amount of deformation was noted in 

the fiber reinforcement and elastomer at the interface of the rollover and bonded rollover 

sections. At this level of bonding, full rollover and the contact of the initially vertical face 

of the isolator with the supports was entirely prevented. Therefore, in this case, the 

stiffening observed is attributed to the bond and not to the occurrence of full rollover. The 

ratio of the horizontal force of B = 75 % in comparison to a fully bonded isolator, B = 100 

%, at 2.00 tr was 91 %. Since the ratio is larger than the bond length of B = 75 % this 

suggests that the rollover sections still contributes significantly to the horizontal force 

resistance capacity and that the horizontal force-displacement relationship of the isolator 

is not entirely dominated by the bonded portion.  

Similar to type E1 isolators, the horizontal force-displacement relationship for type 

E2 isolators was indistinguishable for bond lengths slightly larger than Bmax, and no 

appreciable difference was noted between B = Bmax = 33 % and B = 50 %. As the length 

of the bond was increased to B = 75 % it was observed that further softening was 

prevented at approximately 1.00 tr. Review of the FEA results revealed that the bonded 

portion became effective at approximately 1.00 tr, thus preventing further rollover. The 
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deformed shape at 2.00 tr is shown in Figure 8-18. In both cases full rollover was 

prevented and the initially vertical face did not contact the supports. It was determined 

that the ratio of the horizontal force between B = 75 % and a fully bonded isolator, B = 

100 %, at 2.00 tr was 88 %. As with type E1 isolators, it can be concluded that the 

restrained rollover section continues to provide substantial horizontal force resistance.  

It is important to note that despite having identical bond lengths of B = 75 % that 

the horizontal force-displacement relationship for type E1 and type E2 isolators diverged 

at different horizontal displacements, 0.75 tr and 1.00 tr, respectively. In this respect, the 

bond length, B, alone is not sufficient to give an accurate indication of the influence of the 

bond on the horizontal force-displacement relationship of the isolator. It has been 

demonstrated that the bond length can be significantly extended beyond Bmax without 

notable change to the force-displacement relationship in comparison to an unbonded 

isolator. It is postulated that the level that the bond can be extended without notable 

influence is dependent on the level of vertical deflection of the isolator as previously 

discussed. It was observed that further softening was prevented when the bond prevented 

the loss of contact of the rollover section and the support.   

8.4.5 Horizontal Behaviour (Under Tension): B > Bmax 

A key component of the concept of PB-FREIs is the ability to provide tensile 

resistance. Accordingly, the horizontal properties under a vertical tensile load are 

important performance characteristics to investigate. FEA was used to investigate isolator 

type E1 with B = 50 % under tension. The isolator was monotonically loaded to an 

average tensile stress of 0.2 MPa, based on the total plan area, before being displaced 

horizontally to a maximum displacement of 2.00 tr. Figure 8-19 compares the normalized 

force and stiffness of the tensile stress case to the reference unbonded case, conducted 

under a compressive stress of 2.0 MPa. It can be observed in Figure 8-19(a) that despite 

the tensile stress, the isolator exhibits the softening and stiffening response associated 

with SU-FREIs. While the response is similar to that of the reference case, the isolator 

under tension is initially softer and the stiffening at larger displacements is less than the 

reference case, as shown in Figure 8-19(b). Due to the tensile load, the unbonded portions 

of the isolator do not remain in contact with the supports. Subsequently, negligible shear 

forces are transferred through the unbonded portions at small displacements and the 

response of the isolator is dominated by the bonded portion.  

As the horizontal displacement increases, the unbonded portions move in a near-

rigid-body mode until contacting the supports, as shown in Figure 8-20(a). The 

normalized stress S33 contours are in essence the opposite of those previously observed 

for a partially bonded isolator under compression. The central section of the isolator is 

now dominated by a tensile stress whereas the rollover regions are largely in 

compression. Similar to full rollover of a SU-FREI, this contact is associated with an 
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increase in horizontal resistance. As the horizontal displacement increases the unbonded 

sections are forced into the supports resulting in a contact compressive stress. The 

development of this compressive stress allows for horizontal forces to be transferred 

through the contact regions. In addition, conventional rollover occurs as the initially 

vertical faces become horizontal and contact the supports. The deformed shape of the 

isolator at a displacement of 1.50 tr is shown in Figure 8-20(b). At this displacement the 

isolator begins to stiffen and the horizontal force begins to exceed the horizontal force of 

the unbonded reference case. Similar to the previously discussed partially bonded cases 

under compression, the partial bond restrains additional rollover, which prevents further 

softening. It can be seen that the portion of the isolator where the upper and lower bond 

overlap are dominated by tension. The remainder of the central section displays both 

minor tensile and compressive stresses. The contact that occurs due to the secondary 

rollover develops a moment equilibrating compressive stress.  

The tangential stiffness for displacements between 1.50 tr and 2.00 tr is 

approximately constant (see Figure 8-19(a)). Despite the large horizontal displacement 

the isolator does not complete full rollover as regions of the initially vertical face of the 

isolator do not contact the horizontal supports. The unique deformed shape at 2.00 tr is 

shown in Figure 8-20(c). Throughout the levels of imposed horizontal displacement a gap 

develops between the bonded region and the rollover sections. The bonded region of the 

isolator is entirely in tension. Portions of the rollover section remain in contact with the 

supports but the overall level of compressive stress is significantly reduced. For isolators 

displaced horizontally under compression, the horizontal force and vertical compressive 

stress act together to increase the moment on the isolator that must be equilibrated. 

Conversely, the moments generated by the vertical tensile force and horizontal force 

counteract each other, reducing or eliminating the development of an equilibrating 

moment through changes in the vertical pressure distribution. Therefore, as the horizontal 

force increases, it reduces the compressive stress necessary to maintain moment 

equilibrium and consequently the compressive stresses generated due to contact of the 

rollover sections were reduced.  

Regardless of the unique deformation and reduced contact area, the tangential 

stiffness remains positive over all levels of imposed displacement, maintaining stability. 

Furthermore, the overall force-displacement relationship remains comparable to the 

reference case of an unbonded FREI under compression. These findings suggest that PB-

FREIs have the potential to provide tensile resistance without significantly altering the 

horizontal properties and performance of the isolator.  

8.4.6 Influence of Vertical Load 

It has been shown experimentally that the horizontal stiffness of unbonded FREIs 

decreases as the vertical compressive load increases [23]. Similarly, in bonded SREIs 
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analytical and FEM results demonstrate that the horizontal stiffness decreases with 

increasing vertical tensile load [9, 10]. It is postulated that PB-FREIs are likewise 

influenced by the vertical load; softening as the magnitude of the load increases. The 

findings of this study have indicated that the properties of PB-FREIs with vertical tensile 

load are sensitive to the length of the bonded section. Accordingly, it is expected that the 

sensitivity to the bonded section will also apply to the influence of the vertical tensile 

load. Conversely, under compression the length of the bond did not significantly change 

the horizontal properties for bond lengths substantially exceeding Bmax. Therefore, the 

influence of the vertical compression load is expected to be comparable to an unbonded 

FREI of identical design for bond lengths lower than Bmax.      

8.5 Conclusion 

In this paper partially bonded fiber-reinforced elastomeric isolators (PB-FREIs) 

were proposed to allow the transfer of tensile forces and to address concerns over 

permanent displacement due to slip under certain loading conditions in unbonded FREIs. 

By bonding an interior portion of the isolator it is postulated that adequate tensile 

resistance can be introduced and permanent displacement may be prevented without 

compromising the advantages associated with rollover of the isolator. Preliminary 

experimental and finite element analysis demonstrated that large portions of the isolator 

could be bonded without notably influencing the rollover characteristics of the isolator. 

From the experimental study and finite element analysis conducted, the main observations 

are: 

1. For isolators with an aspect ratio R > 3.3 a portion of the isolator does not 

rollover. FEA showed that bonding this portion of the isolator had negligible 

effect on the force-displacement response, deformed shape and local stress 

distribution.   

2. Under pure tensile loading a reduced effective isolator develops based on the 

bond length. Due to the reduced area under tensile loads, the vertical modulus 

of a PB-FREI was found to be lower in tension than compression.  

3. It was observed that further softening was prevented when the bonded portion 

prohibited further loss of contact and prevented additional rollover. The bond 

length that could be provided before a change in the horizontal force-

displacement response was observed could be substantially larger than the 

maximum bond length determined from theory. It was postulated that this was 

a consequence of the vertical deflection of the isolator which prevented loss of 

contact between the isolator and the supports in the rollover section.  

4. Under tension, the isolator can retain a positive incremental force-

displacement relationship. The response of the isolator was characterized by a 

central section that formed around the bonded portion and two rollover 

sections. The rollover sections demonstrated two levels of rollover; one 
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similar to a conventional isolator and a secondary rollover that occurred as the 

unbonded regions contacted the supports.  

The concept of PB-FREIs requires experimental investigation under pure tension 

and combined shear-tension to assess any possible vulnerability of the isolators to 

cavitation in the elastomer or failure of the elastomer-to-fiber or elastomer-to-steel bonds. 

It is suggested that with further development PB-FREIs can be used to address concerns 

over the transfer of tensile forces and slip under certain loading conditions while still 

retaining the desirable characteristics of unbonded FREIs. 
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Table 8-1: Comparison of the ratio of partially bonded to unbonded experimental results. 

Disp. keff δeq 

(tr) E1-2/E1-1 E2-2/E2-1 E1-2/E1-1 E2-2/E2-1 

0.25 1.05 0.94 0.99 1.02 

0.50 1.20 0.96 0.82 1.08 

0.75 1.10 0.95 0.99 1.02 

1.00 1.06 0.95 0.97 1.01 

1.50 1.04 0.96 0.95 1.00 

2.00 1.01 0.97 0.94 0.95 
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Figure 8-1: Deformed shape of (a) an unbonded FREI and (b) a bonded isolator 

 

Figure 8-2: Deformed shape of an isolator with R = 2.5 and R = 4.0 at full rollover, 

showing the portion of the width that remains in contact with the supports 

 

Figure 8-3: Exaggerated delayed loss of contact due to vertical deflection, dv 
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(a) 

 

(b) 

Figure 8-4: Profile view identifying bonded and unbonded regions of (a) isolator E1-2 

(B = 50 %) and (b) isolator E2-2, (B = 33%) 

 

Figure 8-5: Horizontal experimental displacement history 
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(a) (b) 

Figure 8-6: Normalized experimental force-displacement hysteresis loops for (a) 

isolator E1-1 and E1-2, and (b) isolator E2-1 and E2-2 
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Figure 8-7: Comparison of the deformed shape of the rollover of E1-1 and E1-2 
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Figure 8-8: FEA model of isolator E1 

 

(a) (b) 

Figure 8-9: Comparison of FEA and experimental results with 15 % error bars for (a) 

E1-1 and (b) E2-1 

 

Figure 8-10: Vertical stress strain relationship for isolator type E1 from FEA under 

tension and compression 
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 (a) 

 

(b) 

Figure 8-11: Normalized local stress S33 contours for isolator type E1 with B = 50 % 

under (a) 1.0 MPa compressive and (b) 0.4 MPa tensile stress 

 

Figure 8-12: Comparison of B = 0 % and B = Bmax = 5 % results for isolator type E1 

showing negligible difference between the bonded and unbonded case 
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 (a) 

 

(b) 

Figure 8-13: Normalized local stress S33 contours for isolator type E1 with (a) B = 0 % 

and (b) B = Bmax at 2.00 tr. 

 
(a) (b) 

Figure 8-14: Normalized force-displacement relationship with B > Bmax for (a) isolator 

type E1 and (b) isolator type E2 
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Figure 8-15: Normalized local stress S33 of isolator type E1 with B = 50 % at 2.00 tr. 

 

Figure 8-16: Idealized division of a PB-FREI into five sections. 

 

Figure 8-17: Normalized local stress S33 of isolator type E1 with B = 75 % at 2.00 tr 

 

 

Figure 8-18: Normalized local stress S33 of isolator type E2 with B = 75 % at 2.00 tr 
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(a) (b) 

Figure 8-19: Normalized (a) force and (b) stiffness as a function of displacement for 

isolator type E1 with B = 0 % and a 2.0 MPa average vertical compressive 

stress and B = 50 % with a 0.2 MPa average vertical tensile stress 
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(a) 

 

(b) 

 

(c) 

Figure 8-20: Normalized local stress S33 of isolator type E2 with B = 50 % and 0.2 MPa 

average vertical tensile stress at (a) 1.00 tr, (b) 1.50 tr, and (c) 2.00 tr 
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9 Conclusions and Recommendations 

9.1 Summary 

Earthquakes pose a significant risk to many densely populated areas in Canada and 

around the world. The application of base isolation technology has the potential to 

improve on life safety performance objectives, and to extend protection to the structure 

and non-structural components and systems. In this respect, SU-FREIs have been 

proposed as a potential low-cost isolation system with adaptive characteristics appropriate 

for application in developed and developing countries. The research conducted in this 

thesis expands the understanding of SU-FREIs by identifying and addressing potential 

limitations and proposing variations to modify the horizontal hysteresis loops and 

performance characteristics. Chapter 2 presented a literature review of existing 

investigations into elastomeric isolators. The chapter included a discussion on the 

different materials available and how FREIs vary from conventional SREIs. Chapter 3 

proposed an analytical model on the horizontal force-displacement relationship of a SU-

FREI that included full rollover and the deformed shape. Chapter 4 and Chapter 5 

proposed general formulas for the compression modulus, bending modulus, maximum 

shear strain due to compression, and maximum shear strain due to rotation for use in 

design. The formulas were derived from the analytical solutions and could be adapted to 

different pad geometries by selecting appropriate correction factors from a table. Chapter 

6 and Chapter 7 demonstrated how the geometry of the isolator or the supports could be 

modified to alter the vertical and horizontal properties of the isolator. Chapter 8 proposed 

partially bonding the isolator to form a hybrid between a SU-FREI and fully bonded FREI 

in order to address concerns over permanent displacement in extreme loading conditions 

and the transfer of vertical tensile forces. Major conclusions for these chapters are 

presented in the subsequent sections.  

9.1.1 Model of the Shear Behavior of Unbonded Fiber-Reinforced Elastomeric 

Isolators 

The rollover deformation that occurs in unbonded FREIs is a complex response 

resulting from the flexibility of the fiber reinforcement and the unbonded application. 

Most simple analytical models of unbonded FREIs neglect the rollover deformation of the 

isolator. An analytical model was developed to determine the horizontal force-

displacement relationship using a cantilever representation of the rollover sections and 

large deflection theory. The model accounted for the reinforcement flexibility and 

captured the deformed shape of the rollover section, which was subsequently used to 

predict full rollover. After full rollover, the model was adjusted to predict the post-full 

rollover response of the isolator. The model was used to conduct a parametric study on 

the width-to-total height aspect ratio and reinforcement flexibility. It was found that the 
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transition between a horizontally unstable and stable isolator occurred at a width-to-total 

height aspect ratio of approximately 2.5. Furthermore, by an aspect ratio of about 10.0, 

the amount of softening was minimal and could be neglected. Increasing the bending 

modulus of the flexible reinforcement was found to delay full rollover and reduced the 

softening characteristics of the isolator.   

9.1.2 Development of Design Orientated Formulas for Elastomeric Bearings 

Design codes often remain technology neutral; however, the assumption of rigid 

reinforcement (i.e. steel reinforcement) is typical in codes and standards related to 

elastomeric bearings. In order to include the effects of reinforcement extensibility and 

elastomer bulk compressibility, which can influence the isolator properties, generalized 

expressions were proposed for the compression modulus, bending modulus, maximum 

shear strain due to compression and maximum shear strain due to rotation. These 

generalized expressions are simple to use in comparison to the often complex analytical 

solutions and can easily be adapted to the specific geometry of the bearing. It was 

demonstrated that the error of the proposed approximations was generally low and 

conservative when compared to the analytical solution. It was recommended that the 

generalized expressions be adopted in design codes in lieu of the often complex analytical 

solutions and current approximations that neglect these critical effects.  The development 

of technology neutral code equations is anticipated to remove barriers to the application 

of FREIs.  

9.1.3 Experimental and Finite Element Study on the Compression Properties of 

Modified Rectangular Fiber-Reinforced Elastomeric Isolators  

MR-FREIs were proposed as a method of reducing the potentially high horizontal 

stiffness of long rectangular FREIs. Large rectangular isolators are able to provide 

uniform support along walls, reducing the requirements of structural systems to transfer 

loads to smaller isolators. The vertical properties of rectangular FREIs with modifications 

to the exterior and interior portions of the loaded surface were investigated 

experimentally and numerically. It was found that both the vertical stiffness and 

compression modulus were highly sensitive to interior modifications and, to a lesser 

extent, exterior modifications. The maximum shear strain was also greater in isolators 

with an interior modification. The primary purpose of MR-FREIs is to reduce the 

potentially high horizontal stiffness; consequently, the horizontal behaviour of MR-FREIs 

requires further investigation. A subsequent study by the authors indicated that the 

influence of modifications on the horizontal properties is displacement dependent, but a 

favourable decrease in horizontal stiffness and an increase in energy dissipation capability 

have been observed.  
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9.1.4 Structural and Non-structural Performance of a Seismically Isolated 

Building using Stable Unbonded Fiber-Reinforced Elastomeric Isolators 

The stiffening that occurs in isolators that exhibit adaptive characteristics (e.g. the 

TFP and SU-FREIs) has often been considered to act as a self-restraint against excessive 

displacements in events that meet or exceed the maximum considered earthquake. The 

findings of this study indicated that this claim may not be accurate in all circumstances. 

The stiffening regime of SU-FREIs was effectively altered by applying MSG, which 

could accelerate or delay full rollover. It was demonstrated that, for the earthquake 

records considered, the stiffening regime provided minimal displacement restraint. 

Furthermore, the stiffening was proportionally reflected in the response of the structure 

and the NCS. Despite the minimal displacement restraint provided for the earthquake 

records considered, it was noted that the stiffening regime was still advantageous and 

necessary to maintain horizontal stability. Furthermore, it was postulated that the 

stiffening could be used in conjunction with elastomeric bumpers to mitigate pounding 

against seismic gap walls.  

9.1.5 Partially Bonded Fiber-Reinforced Elastomeric Isolators 

The unbonded application, in combination with the flexibility of the fiber 

reinforcement, allows for the desirable rollover deformation observed in unbonded FREIs 

to occur. However, it is simultaneously the source of perceived limitations, such as the 

potential for permanent displacements due to slip and the inability to transfer vertical 

tensile forces. It was proposed that these concerns could be eliminated by partially 

bonding the isolator to the upper and lower supports to form a hybrid of an unbonded 

FREI and a fully bonded FREI. In this way, the isolator retains the beneficial rollover 

deformation, but also resists slip and provides some level of tensile resistance through the 

partial bond. The investigation analytically derived that isolators with a width-to-total 

height aspect ratio of 3.3 and greater would have a region that does not enter into the 

rollover sections.  

Finite element analysis determined that a partial bond that enters the rollover 

section could potentially prohibit further softening and delay or prevent full rollover. The 

length of the partial bond that could be introduced before altering the horizontal force-

displacement relationship was substantial. The numerical investigation also investigated 

the horizontal force-displacement relationship of a PB-FREI under tension. It 

demonstrated that horizontal stability could be maintained with a vertical tensile load and 

had a similar overall relationship as observed in compression; however, this portion of the 

study lacked experimental verification.  
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9.2 Recommendations for Future Study 

The following details recommendations for future research on SU-FREIs and other 

variations of FREIs: 

 FREIs are often described as a potentially low-cost alternative to SREIs; however, 

a detailed cost analysis to verify this claim has not been conducted. Although 

FREIs and SREIs have been compared directly experimentally and numerically 

using finite element analysis, to fully verify the potential cost saving, a detailed 

study considering the manufacturing costs, installation, constructability, life-cycle 

costs, and performance objectives must be conducted. Such a study would be 

instrumental in validating the low-cost claim made in numerous studies on FREIs 

and promoting the use of low-cost base isolation systems.  

 A numerical study presented herein identified that the stiffening regime for the 

SU-FREI considered did not provide substantial displacement restraint for the 

selected earthquakes. This was contrary to the claims made in many studies on 

adaptive devices with similar softening and stiffening characteristics. It was noted 

in the study that the findings were limited to the specific ground motions and 

isolator type and design considered. Therefore, a similar investigation should be 

conducted considering other adaptive devices and a broader range of ground 

motions with different characteristics. Furthermore, to avoid an iterative 

procedure, a single calibration was used to model the SU-FREI considered over 

the entire displacement range. It was noted that this approach did not accurately 

capture the damping characteristics as the equivalent viscous damping increases 

over larger amplitude cycles (i.e. 2.50 tr). It is anticipated that the damping 

characteristics will play a greater part in preventing excessive displacements, 

warranting further investigation and potential revision to the calibrated element. 

While the stiffening characteristics may not provide substantial displacement 

restraint, it was postulated that the stiffening could be used in conjunction with 

elastomeric bumpers to mitigate moat-wall pounding. A numerical investigation 

should be conducted to further investigate this potential benefit.  

 Studies that compare SREIs and FREIs directly have been conflicting; notably, 

these studies have provided differing conclusions on the damping characteristics 

of FREIs. Some studies have claimed that the damping characteristics of FREIs 

derive entirely from the elastomer, whereas other studies attribute additional 

damping to the inter-fiber movement of the fiber reinforcement. These conflicting 

conclusions alone suggest that additional investigation is required. These 

conclusions could be verified by comparing FREIs with different types of fiber 

reinforcement (i.e. different material, density, weaves, etc.) while using the same 

elastomer. It should be noted that a direct comparison between SREIs and FREIs 
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is difficult since the thickness of the fiber reinforcement is often much less than 

the steel reinforcement, resulting in different geometric properties.   

 It is well established through theoretical analysis and experimental studies that the 

vertical force reduces the horizontal stiffness in SREIs. An experimental study 

demonstrated that a similar relationship exists for unbonded FREIs. However, 

theoretical analysis that includes the rollover sections has not been conducted. 

This is a critical component of a comprehensive model to predict the horizontal 

force-displacement relationship of unbonded FREIs.  

 The aging of elastomers and of SREIs has been investigated in numerous studies. 

Only studies using accelerated aging methods have been conducted for FREIs and 

no investigation with natural aging has yet been conducted. The verification of 

long-term performance is a necessity. Although these characteristics are largely 

dependent on the elastomer, it is unclear if the introduction of fiber reinforcement 

will have any consequence or benefit. Furthermore, the performance of FREIs in 

colder climates should also be investigated. This is critical to determine the 

applicability of SU-FREIs in a Canadian climate and to establish the necessary 

temperature conditions of the isolation layer, if any.      
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Appendix A: Generalized Approximations for a Rectangular Pad 

Preamble 

Proposed approximations for the compression modulus, bending modulus and 

maximum shear strain due to compression are derived in this section. Approximations for 

these critical properties were omitted from Van Engelen and Kelly [1] and Van Engelen 

at al. [2]. The procedure used herein is identical to Van Engelen et al. [2].  

Compression Modulus 

The compression modulus of a rectangular pad, including compressibility and 

extensibility, is given in Kelly and Van Engelen [3] as 
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Ec is the compression modulus, G is the shear modulus, S is the shape factor, ρ is the 

aspect ratio, and Ke is an equivalent parameter accounting for the compressibility of the 

elastomer and extensibility of the reinforcement.  

The following approximation is proposed 
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K is the bulk modulus of the elastomer, t is the thickness of an elastomeric layer, and tf is 

the thickness of a reinforcement layer.  

The values of 7 5c   and 14 5ec   (i.e. the coefficients to the compressibility 

and extensibility terms in Eq. (A3), respectively) were selected from Van Engelen at al. 

[2] based on a square pad geometry. It was observed that only the first term of Eq. (A3) 

(i.e. the incompressible and inextensible solution) was significantly sensitive to changes 

ρ. The function ρc was developed based on least squares regression over 1 10   to 

correct for the influence of the aspect ratio. Figure A1 shows the percent error with 2   
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and Figure A2 shows the sensitivity of the error to ρ. The form and magnitude of the error 

is similar to the approximation for a square pad, as presented in Van Engelen et al. [2]. 

Maximum Shear Strain due to Compression 

The maximum shear strain due to compression, c , normalized by the compression 

strain, c , for a rectangular pad is [3] 
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The following approximation is proposed 
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The function ρs was developed based on least squares regression over 1 10   to 

correct the incompressible solution for the influence of the aspect ratio, and the 

approximation is otherwise identical to a square pad, presented in Van Engelen et al. [2].  

Equation (A6) is selected if the following criterion is satisfied 
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If the criterion in Eq. (A8) is not satisfied, the following approximation is selected 
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Figure A3 shows the percent error with 2  ; the percent error is not largely sensitive to 

ρ and remains within ±14% over 1 10  .   

Bending Modulus 

The analytical solution for the bending modulus, Eb, of a rectangular pad including 

the compressibility of the elastomer and extensibility of the reinforcement is [4] 
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The following approximation is proposed 
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The function ρb was developed based on least squares regression over 0.5 10   

to correct the incompressible solution for the influence of the aspect ratio, and the 

approximation is otherwise identical to a square pad from Van Engelen et al. [2]. Note 

that 1   is representative of bending about the strong axis. The percent error of the 

proposed approximation is shown in Figure A4 with 2  . The percent error is not 

largely sensitive to ρ if 1  ; if 1   the maximum error approaches 30 %, although the 

general trend remains the same.  
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Figure A1: Percent error of Ec for a rectangular pad (ρ = 2). 

 

Figure A2: Sensitivity of the percent error for Ec of a rectangular pad to ρ (Ke=2/G = 

2000). 

 

Figure A3: Percent error of γc/εc for a rectangular pad (ρ = 2). 
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Figure A4: Percent error of Eb for a rectangular pad (ρ = 2). 
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