
 
 
 
 
 
MECHANISMS OF BDNF DOWN-REGULATION BY THE PATHOLOGICAL 

CORRELATES OF ALZHEIMER’S DISEASE 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   ii	
  

  
MECHANISMS OF BDNF DOWN-REGULATION BY THE PATHOLOGICAL 

CORRELATES OF ALZHEIMER’S DISEASE 
 

 

 

By 

ELYSE ROSA, B.Sc. 

 

 

A Thesis 

Submitted to the School of Graduate Studies in Partial Fulfillment of the 

Requirements for the Degree 

Doctor of Philosophy 

McMaster University 

© Copyright by Elyse Rosa, October 2015 

 
 
 
 
 
 
 
 
 
 



 iii	
  

DOCTOR OF PHILOSOPHY (2015)   McMASTER UNIVERSITY 

 Science—Neuroscience       Hamilton, ON  

 

 

TITLE: Mechanisms of BDNF down-regulation by the pathological correlates of 

 Alzheimer’s disease   

AUTHOR: Elyse Rosa, B.Sc. (McMaster University)  

SUPERVISOR: Dr. Margaret Fahnestock 

NUMBER OF PAGES: xvii, 158 

 

 

 

 

 

 

 

 

 

 

 



 iv	
  

ABSTRACT 

Alzheimer’s disease is a progressive neurodegenerative disorder that is the 

leading cause of dementia among the elderly. Alzheimer’s disease presents as 

global cognitive decline with associated memory loss and altered personality. The 

neuropathological hallmarks of Alzheimer’s disease include extracellular beta-

amyloid-containing plaques and intracellular neurofibrillary tangles formed by 

hyper-phosphorylated tau protein. There is increasing evidence that although the 

primary insult in Alzheimer’s disease may be over-expression of amyloid-β, it 

may ultimately lead to cognitive dysfunction and neurodegeneration by inducing 

alterations in tau. While the precise toxic mechanism of these accumulated 

proteins is not well understood, our hypothesis is that both amyloid-β and tau 

exert their neurotoxicity via down-regulation of brain-derived neurotrophic factor 

(BDNF). BDNF is crucial for synaptic function, neuronal survival and learning 

and memory and is decreased in Alzheimer’s disease, tauopathies and in several 

relevant animal and cellular models of Alzheimer’s disease.  

 Using differentiated, human neuroblastoma cells, we found that treatment 

with oligomeric Aβ down-regulates basal levels of BDNF as a consequence of 

Aβ-induced CREB transcriptional down-regulation. Similarly, these cells, when 

made to over-express wild-type tau, also exhibit reduced BDNF expression. They 

specifically lose the major CREB-regulated BDNF transcript, transcript IV. Using 

transgenic mice, we showed that neither tau mutations nor neurofibrillary tangles 

are required for BDNF reduction, but that wild-type tau over-expression is 
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sufficient to down-regulate BDNF. Lastly, we crossed APP23 mice, which over-

express Aβ and exhibit reduced BDNF, with Tau knockout (TauKO) mice. BDNF 

levels were partially rescued in the APP23xTauKO animals, indicating that tau is 

an intermediate in Aβ-induced BDNF down-regulation. 

These results demonstrate that both soluble Aβ and tau down-regulate 

BDNF, which likely contributes to learning and memory deficits. Furthermore, 

the partial rescue of BDNF levels by tau knockout suggests that tau contributes to 

Aβ-induced BDNF down-regulation. Thus, loss of BDNF may mediate tau 

neurotoxicity down-stream of Aβ, which has profound implications for 

therapeutic intervention in Alzheimer’s disease and tauopathies, suggesting that 

current treatments used to alleviate AD symptoms by targeting Aβ pathology 

alone may not be sufficient, and that combined treatments targeting tau may be 

required.  
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CHAPTER 1: INTRODUCTION 
 
 
1.1 Alzheimer’s Disease 

 
 

1.1.1 Clinical presentation:  
 

 Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that is the 

most common form of dementia among the elderly. AD presents as global cognitive 

decline with associated memory loss and altered personality. Perhaps the most clinically 

apparent symptom of AD is the decline of declarative memory, including both episodic 

and semantic memories (Aronoff et al., 2006). Episodic memory loss is not only an early 

event, but in mild cognitive impairment (MCI), a preclinical stage of AD, it is associated 

with an increased risk for conversion to AD (Aggarwal et al., 2005; Devanand et al., 

2007). MCI is considered a preclinical stage of AD, since as many as 8% of persons with 

MCI progress to AD per year (Mitchell and Shiri-Feshki, 2009). Transgenic mouse 

models of AD are also significantly impaired compared to control animals on tests of 

episodic-like memory (Davis et al., 2013). In addition, animal models of AD are impaired 

in long-term potentiation (LTP), a model for synaptic plasticity and a major cellular 

constituent underlying learning and memory processes. Like episodic memory in humans, 

the LTP deficit in rodent models of AD occurs early, prior to plaque formation, and is 

accompanied by deficits in spatial learning and memory (Jacobsen et al., 2006; Liu et al., 

2008).  
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1.1.2 Pathological features 
 

  The neuropathological hallmarks of AD include extracellular amyloid-beta (Aβ)-

containing plaques and intracellular neurofibrillary tangles (NFTs) formed by hyper-

phosphorylated tau protein, resulting in synaptic loss and neurodegeneration (Coleman 

and Flood, 1987; Coleman and Yao, 2003; Hyman et al., 2012; Hyman and Trojanowski, 

1997; McKhann et al., 1984; Scheff and Price, 2003). Neurofibrillary tangles and 

amyloid-β plaques are both required for the pathological diagnosis of AD (Hyman et al., 

2012). AD primarily affects several regions of the brain that are known for their role in 

learning and memory, namely the basal forebrain, hippocampus, cortex and entorhinal 

cortex (Coyle J., 1983; Gomez-Isla et al., 1996; Hyman, 1984). 

A significant decline in synaptic connections in AD is followed by the pronounced 

loss of neurons in the basal forebrain, entorhinal cortex, hippocampus and cortex. AD has 

been characterized as a disconnection of the hippocampus, as projections from the basal 

forebrain, entorhinal cortex, and cortex to the hippocampus are lost in AD (Hyman, 

1984). Among these brain areas, the entorhinal cortex is one of the earliest areas 

vulnerable to synaptic degeneration and because of its connection with the hippocampus 

and cortex, entorhinal cortex damage in AD significantly impacts memory deficits (Van 

Hoesen et al., 1991). In addition, studies have indicated that the memory deficits seen in 

AD are also directly related to the degree of basal forebrain cholinergic atrophy (Coyle J., 

1983). The basal forebrain is the major cholinergic output of the central nervous system, 

and these neurons as well as their projections to hippocampal and cortical regions are 

critical for learning, memory and attention (Baxter and Chiba, 1999). The loss of basal 
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forebrain innervation to these areas is associated with aging and age-related memory loss 

(Terry and Katzman, 2001; Ypsilanti et al., 2008). In fact, the major drugs for AD on the 

market today are cholinergic enhancers. 

Several theories exist to explain the molecular mechanisms that could lead to this 

devastating disease. One such theory (the amyloid cascade hypothesis) suggests that it is 

the accumulation of toxic Aβ that is the upstream driving force behind subsequent AD 

neuropathology, and that other pathological correlates are a result of an imbalance 

between Aβ production and clearance (Hardy and Selkoe, 2002; Iqbal and Grundke-Iqbal, 

2008). Nevertheless, amyloid plaques do not correlate well with cognitive decline; 

neurofibrillary tangles correlate with dementia better than amyloid plaques (Guillozet 

A.L., 2003). However, it is the loss of functional synapses in AD that correlates most 

strongly with loss of cognitive abilities (Terry et al., 1991).  

In addition to neurodegeneration, there may be a loss of functional neurogenesis 

associated with AD. In many different AD transgenic mouse models, significantly less 

proliferation of new neurons is present in the hippocampal formation compared to control 

animals (Mu and Gage, 2011).  Without the generation of new neurons, the synaptic 

degeneration resulting from AD is not compensated and learning and memory are 

impaired. The case is not so clear in human hippocampus however, where 

immunostaining with different markers of immature neurons suggests that there is either 

increased (Jin et al., 2004), unchanged (Boekhoorn et al., 2006), or decreased (Crews et 

al., 2010) neurogenesis in AD. More research is needed to determine whether reduced 

hippocampal neurogenesis contributes significantly to memory loss in AD. In addition, a 
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close examination of the molecular mechanisms required for learning and memory and 

how they are disrupted in AD is essential.  

 

1.2 Molecular pathway for learning and memory:  

 A molecular pathway essential for learning and memory that is disrupted in AD 

involves the transcription factor cAMP response element binding protein (CREB) (Barco 

et al., 2003). Aβ interferes with hippocampal LTP via signaling pathways including the 

Ca(2+)-dependent protein phosphatase calcineurin, Ca(2+)/calmodulin-dependent protein 

kinase II (CaMKII), and CREB (Yamin, 2009). CREB transcription is decreased in AD 

and in vitro following treatment with Aβ (Pugazhenthi et al., 2011).  Further active, 

phosphorylated CREB is reduced in the AD brain (Yamamoto-Sasaki et al., 1999) and is 

also decreased in neurons following treatment with Aβ in vitro (Garzon and Fahnestock, 

2007; Tong et al., 2001). CREB phosphorylation recruits transcriptional coactivators, 

which are required for the transcription of genes involved in learning and memory. Aβ-

induced suppression of transcription induced by the CREB coactivator CRCT1 has been 

demonstrated in transgenic AD mice, and this is mediated by blockade of L-type voltage-

gated calcium channels, reduced calcium influx and disruption of PP2B/calcineurin-

dependent CRTC1 dephosphorylation (Espana et al., 2010). Restoration of CREB activity 

in AD transgenic mice by inducing expression of another coactivator, CREB binding 

protein (CBP), ameliorates learning and memory deficits (Caccamo et al., 2010). Among 

the genes induced by CREB and its coactivators that are required for learning and 

memory, the most important for AD may be brain-derived neurotrophic factor (BDNF).  
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1.3 Brain-derived neurotrophic factor (BDNF) 
 

Brain-derived neurotrophic factor (BDNF) was initially purified in 1982 (Barde et 

al., 1982), making it the second neurotrophin to be discovered following the purification 

and description of nerve growth factor (NGF) (Levi-Montalcini and Hamburger, 1951). In 

the seminal research paper, BDNF was purified from pig brain and found to support the 

survival and fibre outgrowth from embryonic chick sensory neurons in culture (Barde et 

al., 1982). Since its initial discovery, BDNF is now considered to be the most 

synaptogenic protein known and has been shown to support the survival of neurons and 

their connections that are vulnerable in aging and diseases of the aging brain, such as AD 

(Alderson et al., 1990; Knusel et al., 1991). Further, BDNF plays a critical role in 

neuronal survival, differentiation and learning and memory, making it an extremely 

important molecule to investigate when considering toxic mechanisms in AD.  

 

1.3.1 BDNF structure and transcripts  
 

In order to investigate BDNF regulation in AD, the complicated structure of 

BDNF must be understood. The human BDNF gene is 70kb long and consists of 11 exons 

and 9 functional promoters, which by alternative splicing result in at least 17 different 

BDNF transcripts (Pruunsild et al., 2007) (Figure 1). This variation in transcript 

expression allows for tissue-specific regulation of BDNF in response to a variety of 

developmental and environmental cues (Pruunsild et al., 2007; Timmusk et al., 1993). 

BDNF transcripts II, III, IV, V and VII are exclusively localized to the brain, while other 
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BDNF transcripts are expressed in neuronal as well as non-neuronal tissues (Pruunsild et 

al., 2007). Within the brain, BDNF transcript IV accounts for approximately half of the 

total BDNF mRNA found in the cortex (Garzon and Fahnestock, 2007). Further, BDNF 

transcript IV is regulated at least in part by CREB (Pruunsild et al., 2007; Shieh et al., 

1998; Timmusk et al., 1995). 

 BDNF protein is synthesized as a 36kDa precursor, proBDNF, which can be 

cleaved by enzymes including plasmin, furin and matrix metalloproteases to produce 

14kDa mature BDNF (Lee et al., 2001; Lu et al., 2005; Mowla et al., 2001). ProBDNF is 

expressed widely in the human brain, where it is only partially cleaved to its mature form. 

Both BDNF and proBDNF are found in relatively high amounts in the hippocampus, 

cortex, and basal forebrain (Michalski and Fahnestock, 2003), areas that are particularly 

vulnerable in AD. 
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Figure 1: Human BDNF structure. BDNF has a complicated structure whereby 

alternative splicing results in at least 17 different BDNF transcripts. Filled boxes here 

represent translated regions of the exons, and unfilled boxes represent untranslated 

regions. BDNF transcripts are named according to the upstream exons present (Figure 

from Pruunsild et al., 2007).  
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1.3.2 BDNF function: Neuronal survival, neurogenesis & dendritic modulation  

BDNF supports the survival of neurons and their connections that are vulnerable 

in AD, such as the hippocampus, entorhinal cortex, neocortex and basal forebrain 

(Alderson et al., 1990; Ghosh et al., 1994; Hyman, 1984; Knusel et al., 1991; Lindholm et 

al., 1996; Lowenstein and Arsenault, 1996). Early studies demonstrated a more than 2-

fold increase in survival of septal cholinergic neurons following BDNF treatment as 

measured by acetylcholinesterase (AChE) histochemical staining (Alderson et al., 1990). 

Further, blocking BDNF signaling either using antibodies or BDNF gene knockdown 

decreases survival of cortical (Ghosh et al., 1994), hippocampal (Lindholm et al., 1996) 

and dorsal root ganglion neurons (Korte et al., 1995). Although these results demonstrate 

that BDNF is a survival-promoting factor for critical neuronal populations during 

development, conditional knockdown of BDNF in the adult suggests that BDNF is not 

required for postmitotic neuronal survival, but rather for dendritic maturation and growth 

of specific neuronal populations such as medium spiny neurons of the striatum (Rauskolb 

et al., 2010). These results suggest that decreases in BDNF may trigger altered spine 

morphology, reduced dendritic complexity, synaptic dysfunction and degeneration but not 

outright neuronal loss.  

BDNF also promotes neurogenesis. Direct infusion of BDNF into rat 

hippocampus increases the number of developing neurons compared to saline injections 

in both the ipsilateral and contralateral hemispheres, suggesting a widespread effect 

(Scharfman et al., 2005). This hippocampal neurogenesis is directly related to subsequent 

cognitive functions, as new neurons are integrated into neural circuitry and play an 
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important role in specific learning and memory tasks such as learning in the Morris water 

maze, a spatial memory task (Zhao et al., 2008). Studies investigating the exact molecular 

mechanisms underlying BDNF-mediated increases in neurogenesis are still underway; 

however, the activation of CREB is associated with hippocampal neurogenesis, as 

phosphorylated CREB is consistently found in newborn hippocampal neurons (Jagasia et 

al., 2009; Nakagawa et al., 2002a; Nakagawa et al., 2002b). Further, BDNF is known to 

activate CREB by signaling through the TrkB receptor via the PI3K/Akt, Ras/ERK and 

PLCγ pathways (Blanquet and Lamour, 1997; Finkbeiner et al., 1997; Gonzalez and 

Montminy, 1989; Minichiello et al., 2002; Pizzorusso et al., 2000). Together, these 

findings support the possibility that BDNF promotes neurogenesis via mechanisms that 

rely on its ability to activate the neurogenesis-promoting transcription factor CREB.  

BDNF also regulates dendritic growth, branching and spine maturation by a 

balance between mature BDNF and its precursor form, proBDNF. Both mature BDNF 

and proBDNF signal through the TrkB receptor and the pan-neurotrophin receptor 

p75NTR, however mature BDNF has a greater affinity for TrkB while proBDNF 

preferentially binds to p75NTR (Fayard et al., 2005; Teng et al., 2005) (Figure 2). 

Signaling through TrkB promotes dendritic growth and spine maturation via activation of 

the PI3K/Akt/mTOR signaling pathway, a pathway long associated with axonal growth 

and dendritic complexity (Atwal et al., 2000; Kumar et al., 2005; Kuruvilla et al., 2000; 

Markus et al., 2002). Therefore, the preferential binding of BDNF to TrkB promotes 

synaptic development through increased dendritic growth and spine maturation. 

Conversely, proBDNF inhibits neurite outgrowth through its preferential binding to 
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p75NTR, which negatively alters dendrite and spine morphology in addition to spine 

density (Koshimizu et al., 2009; Singh et al., 2008; Yamashita et al., 1999; Zagrebelsky et 

al., 2005). p75NTR reduces dendritic morphology through activation of a Rho-GTPase, 

RhoA (Sun et al., 2012), by releasing Rho from its inactive Rho-GDI (Yamashita and 

Tohyama, 2003). These findings suggest that the balance between proBDNF and BDNF 

plays a critical role in the regulation of spine maturation, dendritic growth and synaptic 

density, which underlie learning and memory processes. 
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Figure 2: Mature BDNF/proBDNF signaling pathways. Mature BDNF preferentially 

binds to TrkB, which activates three signaling cascades upstream of CREB to promote 

differentiation and survival: the PLCγ/CAMKII, PI3K/AKT and Ras/MAPK pathways. 

Conversely, proBDNF preferentially binds p75NTR, which promotes either apoptosis via 

the JNK pathway, cell survival via the NF-κB pathway or reduces dendritic morphology 

via activation of RhoA. (Figure from Chao, 2003).  
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1.3.3 BDNF and learning & memory 
 

Multiple studies have shown that decreases in BDNF such as in heterozygous 

BDNF knockout mice or BDNF knockdown result in learning and memory deficits 

(Gorski et al., 2003; Heldt et al., 2007; Linnarsson et al., 1997). A Val66Met 

polymorphism in the pro-domain of proBDNF, which interferes with BDNF secretion, 

results in episodic memory impairments	
   and reduced hippocampal volume, key 

endophenotypes of AD (Egan et al., 2003; Hariri et al., 2003). This finding shows that an 

alteration in BDNF levels is sufficient to affect hippocampal activity and that BDNF is 

critically involved in hippocampal learning and memory processes.  

The expression of BDNF is also strongly correlated with cognitive status. BDNF 

mRNA and proBDNF and mature BDNF protein are decreased in the entorhinal, frontal, 

temporal and parietal cortices as well as the hippocampus of AD subjects compared to 

controls (Amoureux et al., 1997; Connor et al., 1997; Fahnestock et al., 2002; Ferrer et 

al., 1999; Hock et al., 2000; Holsinger et al., 2000; Michalski and Fahnestock, 2003; 

Murray and Lynch, 1998; Narisawa-Saito et al., 1996; Peng et al., 2009; Peng et al., 2005; 

Phillips et al., 1991). Further, BDNF decreases with increasing age in the cognitively 

impaired primate brain (Hayashi et al., 1997). In addition, in human post-mortem parietal 

cortex, lower levels of both mature BDNF and proBDNF protein correlate with decreased 

cognitive test scores as measured by the Mini Mental State Examination (MMSE) and 

Global Cognitive Score (GCS) (Peng et al., 2005). 
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1.4 BDNF down-regulation in Alzheimer’s disease & tauopathies 
 

1.4.1 BDNF loss is an early event in the progression of AD 

Early in the progression of AD, BDNF levels are diminished. This loss of BDNF 

occurs prior to plaque and tangle deposition in transgenic mice and coincides with 

memory deficits (Francis et al., 2012). We now know that amyloid plaques correlate 

poorly with cognition, and further evidence has suggested that the cause of cognitive 

decline in AD precedes Aβ pathology (Hanna et al., 2009; Van Dam et al., 2003; 

Westerman et al., 2002). This has been supported in transgenic mouse models of AD, 

where deficits in novel object recognition and spontaneous alternation performance in a 

"Y" maze occurred prior to the deposition of Aβ plaques (Francis et al., 2012; Holcomb et 

al., 1998). To explain the early deficit in learning in memory, prior to AD pathology, it 

has been found that BDNF is lost early in the progression of AD, as demonstrated by a 

significant decline in BDNF in individuals with MCI. While MCI corresponds with the 

initiation of Aβ and tau aggregation, the distribution of amyloid deposits are thought to be 

intermediate between that of non-cognitively impaired individuals and those with AD 

(Markesbery 2010). However, more than a 30% reduction in cortical BDNF expression 

was found in MCI subjects compared to age- and gender-matched, non-cognitively 

impaired controls (Peng et al., 2005), an expression nearly as low as in AD subjects. 

Further, BDNF mRNA levels are significantly decreased and correlated with cognitive 

status in aged, cognitively impaired canines (Fahnestock et al., 2012), which like humans, 

develop cognitive impairment and amyloid deposition as they age and are an excellent 

model of MCI (Cotman and Berchtold, 2002; Cotman and Head, 2008). This result 
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supports human findings that BDNF loss coincides with memory impairments. Thus, in 

both animal models and humans, BDNF is lost early, coinciding with memory loss and 

prior to the appearance of significant plaque deposition typical of AD. 

 

1.4.2  BDNF transcript-specific and protein decreases in AD: 

BDNF mRNA expression in the hippocampus is decreased nearly 2-fold in 

individuals with AD (Phillips et al., 1991), and BDNF mRNA is reduced approximately 

3-fold in the AD parietal cortex (Garzon et al., 2002; Yamashita et al., 1999). This 

decrease in BDNF mRNA is due to a decrease specifically in four BDNF transcripts: I, II, 

IV & VI (Garzon et al., 2002). Of particular interest is transcript IV, since it is the most 

prevalent transcript in human cortex (Garzon and Fahnestock, 2007) and is specifically 

decreased in human and mouse models of AD (Garzon et al., 2002; Peng et al., 2009).  

 The decreased BDNF mRNA in AD corresponds to a similar decrease in BDNF 

protein. Mature BDNF protein is significantly reduced in AD hippocampus (Connor et 

al., 1997; Hock et al., 2000; Narisawa-Saito et al., 1996), frontal cortex (Ferrer et al., 

1999), temporal cortex (Connor et al., 1997) and parietal cortex (Hock et al., 2000; Peng 

et al., 2005) compared to controls, and proBDNF protein is reduced in AD parietal cortex 

(Michalski and Fahnestock, 2003; Peng et al., 2005).  

 

1.4.3     Increasing BDNF levels can counteract memory impairments: 

The strong correlation between lowered BDNF and diminished cognition, learning 

and memory makes the possibility of rescuing these behavioral symptoms of AD with 
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BDNF an enticing undertaking. Knocking down BDNF in mice results in loss of 

synapses, learning and memory deficits and diminished LTP, whereas BDNF 

administration rescues or increases LTP and synapses and subsequently restores learning 

and memory (Blurton-Jones et al., 2009; Korte et al., 1995; Nagahara et al., 2009; 

Patterson et al., 1996). Early studies substantiated findings that BDNF is necessary for 

LTP, as mice with a deletion in the BDNF gene exhibited significantly weakened LTP 

expression (Korte et al., 1995).  Treating hippocampal BDNF knockout tissue with 

recombinant BDNF completely restored LTP (Patterson et al., 1996). Similarly, 

knockdown of the BDNF receptor TrkB can also significantly reduce hippocampal LTP 

(Minichiello et al., 1999). These early studies led to efforts in recent years to exogenously 

deliver BDNF as a method of restoring cognitive abilities in animal models of AD. 

However, expression of truncated TrkB receptors in the ventricular ependyma effectively 

prevents diffusion of BDNF to target tissues when it is administered by 

intracerebroventricular infusion (Anderson et al., 1995). Furthermore, BDNF does not 

readily cross the blood-brain-barrier.  Fusions of BDNF with factors that allow it to be 

transferred across the blood-brain barrier such as an antibody to the transferrin receptor 

(Zhang and Pardridge, 2001; Zhang and Pardridge, 2006) or to the insulin receptor 

(Boado et al., 2007) have facilitated entry of intravenously administered BDNF into brain 

tissue.  

The brain, however, is exquisitely sensitive to BDNF levels, which presents 

another significant barrier to the successful use of this trophic factor in vivo.  

Microinjections of microgram levels of BDNF into the hippocampus increases neuronal 
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excitability and can even cause spontaneous seizures, whereas chronic infusions of 

similar amounts will decrease the TrkB receptor and TrkB activation, resulting in loss of 

responsiveness to BDNF (Scharfman, 1997; Xu et al., 2004).  Further, delivery of BDNF 

can result in impairment of spatial learning rather than improvement if BDNF expression 

is too high (Pietropaolo et al., 2007).  Therefore, more physiological delivery of low 

doses of BDNF via viral vectors has been extensively investigated.  

In the entorhinal cortex-lesioned aged rat, BDNF gene delivery enhanced LTP and 

partially restored cognitive function (Ando et al., 2002). BDNF gene delivery via 

lentiviral injection to the entorhinal cortex in a transgenic mouse model of AD not only 

increased synaptic density (synaptophysin-IR) and synaptic function (p-Erk signaling), 

but importantly, improved spatial memory performance in the Morris water maze task.  

BDNF treatment did not affect neuronal number in this model, although it did rescue 

neurons from cell loss in a perforant path transection model.  BDNF administration also 

exerted similar effects and rescued learning and memory in the aged, cognitively 

impaired non-human primate (Nagahara et al., 2009). Further, this expression system has 

been used to maintain delivery of nerve growth factor (NGF) for up to 1 year in primate 

basal forebrain, eliminating transient expression as a disadvantage of the system. These 

experiments were carried out after the onset of disease symptoms in the transgenic mice 

and after cognitive impairment was demonstrated in aged primates, suggesting that BDNF 

may be an effective therapy for reversal of cognitive deficits as well as prevention. 

However, this delivery method suffers from poor viral diffusion within the parenchyma. 

This complication is somewhat ameliorated by the implantation of neural stem cells 
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(NSC) which can migrate within brain parenchyma. NSC delivery into hippocampus of 

the triple-transgenic (3xTg-AD) mouse model of AD increased synaptic density and 

improved hippocampal-dependent learning and memory (Blurton-Jones et al., 2009). 

BDNF knockdown in these NSCs eliminated the beneficial effects of the cells, 

demonstrating that BDNF secreted by the NSCs was the active factor (Blurton-Jones et 

al., 2009).  

Another approach, viral delivery of CREB activators (Caccamo et al., 2010; 

Espana et al., 2010), has successfully reversed synaptic atrophy and learning and memory 

impairments in transgenic mice. Alternative approaches to gene delivery include methods 

of increasing endogenous BDNF levels or signaling. For instance, rolipram, a 

phosphodiesterase inhibitor and CREB activator, can increase BDNF expression 

(DeMarch et al., 2008) and therefore may have therapeutic effects in AD. Additionally, 

small molecule BDNF mimetics or TrkB agonists, which promote signalling through the 

TrkB receptor, can restore synaptic plasticity and cognitive function (Massa et al., 2010). 

Further, natural products and their derivatives such as certain flavonoids are 

neuroprotective and can enhance LTP and improve memory by activating CREB, TrkB 

and its downstream signaling pathways PI3K/Akt and MAPK/Erk (Jang et al., 2010; 

Maher et al., 2006). Finally, lifestyle adjustments such as exercise, environmental 

enrichment and dietary restriction have enhanced BDNF expression in both animal 

models and human studies (Mattson et al., 2004). An enriched environment has been 

shown to increase BDNF mRNA in rats (Falkenberg et al., 1992), while an exercise 

routine can regulate transcript-specific BDNF mRNA and protein (Berchtold et al., 2002; 
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Cotman and Berchtold, 2002; Zajac et al., 2010). Further, the combination of an 

antioxidant-rich diet and environmental enrichment has been shown to significantly 

increase BDNF expression which was correlated with an improvement in memory scores 

in old, cognitively impaired canines (Fahnestock et al., 2012). Although a variety of 

molecular, pharmacological and lifestyle interventions are under investigation and may 

pave the way for future clinical trials in subjects with AD, increasing brain BDNF levels 

safely and effectively is not yet a reality. A greater understanding of the molecular 

mechanisms in AD that result in reduced BDNF expression is required to more 

effectively counteract the detrimental down-regulation of BDNF that occurs. As such, the 

contribution of the main neuropathological components of AD, amyloid-β and tau, must 

be closely examined in order to understand the down-regulation of BDNF in AD. 

 

1.5 Amyloid-beta  
 

Although Aβ has been recognized as having non-disease associations, such as 

acting as an anti-microbial agent (Soscia et al., 2010), it is most well studied as the 

precipitating insult in AD. Early studies suggested that it was the formation of Aβ plaques 

that was the primary neurotoxic insult in AD. However, plaques do not correlate well 

with decreased cognition, and more recent evidence suggests that soluble forms of Aβ 

may be more toxic (Ferreira et al., 2007; Garzon and Fahnestock, 2007; Hardy and 

Selkoe, 2002; Lacor et al., 2007; Walsh and Selkoe, 2007).  
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1.5.1 Formation of toxic amyloid-β  
 

Amyloid-β is a peptide formed by the proteolytic processing of the amyloid 

precursor protein (APP) (Citron et al., 1992; Haass et al., 1992; Hardy and Selkoe, 2002; 

Shoji et al., 1992). APP is an integral membrane protein with a small intracellular C-

terminus and a large extracellular segment, with the Aβ sequence contained mostly in the 

extracellular segment and partially in the intramembrane sequence (Mattson et al., 2004). 

APP is initially proteolytically cleaved by α- or β-secretase (also known as beta-site APP 

cleaving enzyme 1; BACE-1), which releases a soluble fragment of APP (De Strooper 

and Annaert, 2000; Lahiri and Maloney, 2010). Following primary cleavage by β- or α-

secretase, a secondary cleavage of the trans-membrane domain, or C-terminal fragment, 

of APP by γ-secretase results in either the formation of Aβ peptide or the p3 fragment of 

APP, respectively (De Strooper and Annaert, 2000; Haass et al., 1992) (Figure 3). 

Gamma-secretase is a complex of integral membrane proteins that includes presenilin-1 

(PS-1) or presenilin-2 (PS-2), which when mutated can dramatically alter the production 

of Aβ. Gamma-secretase cleavage following cleavage by β-secretase can result in Aβ 

peptides of various lengths (De Strooper and Annaert, 2000; Haass et al., 1992). Aβ1-40 is 

most commonly produced following the successive cleavage of β- and γ-secretases, 

however it is Aβ1-42 that is of particular interest in the progression of AD because of its 

greater propensity to aggregate (Glabe, 2001; Tabaton et al., 2010). The aggregation of 

Aβ involves several conformational states from dimers to high-molecular-weight 

oligomers and protofibrils and finally insoluble Aβ fibrils (Glabe, 2004) and requires a 
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structural change from an α-helical conformation to a more organized β-sheet 

configuration characteristic of Aβ aggregation (Xu et al., 2005). 

 Formation of soluble Aβ is increased by mutations in APP, PS-1 and PS-2, which 

are hallmarks of familial forms of AD (Citron et al., 1992; Haass et al., 1994; Hutton and 

Hardy, 1997; Scheuner et al., 1996). Such mutations result either in Aβ over-production 

or in an increase in the aggregation-prone Aβ42 (Burdick et al., 1992; Hardy and Selkoe, 

2002; Jarrett et al., 1993; Selkoe, 1994). Increased levels of Aβ increase aggregation and 

toxicity prior to plaque deposition. Levels of soluble Aβ oligomers in the frontal cortex of 

individuals with AD are up to 70-fold higher than in control brains (Gong et al., 2003).  
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Figure 3:  Proteolytic processing of amyloid precursor protein. Initially, amyloid 

precursor protein (APP) is proteolytically cleaved by either α-secretase or β-secretase 

followed by a secondary cleavage by γ-secretase to release either soluble amyloid-β or 

the p3 fragment of APP resulting in dissociation of the APP intracellular domain 

(AICD). The cleavage of β-secretase followed by γ-secretase is referred to as the 

“amyloidogenic pathway” as it promotes the accumulation of toxic amyloid-β. 

Conversely, cleavage by α-secretase followed by γ-secretase is referred to as the “non-

amyloidogenic pathway”. Modified figure (Dislich and Lichtenthaler, 2012). 
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1.5.2 Amyloid-beta toxicity 
 

 Amyloid-β has many proposed toxic effects that could result in the neuronal 

dysfunction and neurodegeneration characteristic of AD. One well-studied toxic effect of 

Aβ accumulation is altered calcium homeostasis. Aβ oligomers have been shown to alter 

calcium regulation by modulating ion channels, including voltage-gated calcium and 

potassium channels, nicotinic and NMDA receptors, and by forming its own calcium-

conducting pores, thereby increasing levels of cytosolic calcium (Demuro et al., 2005; 

Ferreiro et al., 2006; Green et al., 2007; Mattson et al., 1993; Resende et al., 2007). 

Further, Aβ has also been shown to promote increased reactive oxygen species (ROS) 

production in primary cortical and hippocampal neurons (De Felice, 2007; Sponne et al., 

2003), which has been associated with inflammation and neurodegeneration. Amyloid-β 

may also indirectly induce neurotoxicity through the activation of pro-inflammatory 

responses (Akiyama et al., 2000; Giovannini et al., 2002; Lukiw and Bazan, 2000), which 

may have a role in inhibiting hippocampal memory formation (Heneka and O'Banion, 

2007; Murray and Lynch, 1998; Tancredi et al., 2000; Tancredi et al., 1992). Further, the 

APP intracellular domain (AICD) has proposed toxicity resulting from its modulation of 

intracellular calcium homoestasis (Hamid et al., 2007), and cell death (Nakayama et al., 

2008; Passer et al., 2000; Vazquez et al., 2009). However, Aβ has the most direct effect 

on synaptic degeneration is via its modulation of specific signalling cascades. 
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1.6 Aβ alters signalling pathways upstream of BDNF:  

Aβ toxicity results in neurodegeneration by altering signalling pathways upstream 

and downstream of CREB. CREB phosphorylation and signalling are reduced by 

exposure to soluble, oligomeric Aβ in vitro (Garzon and Fahnestock, 2007; Tong et al., 

2001). Aβ treatment inhibits the Ras/ERK and PI3K/AKT signalling pathways (Tong et 

al., 2004), which are downstream of BDNF/TrkB but are also essential for the 

phosphorylation of CREB and subsequent expression of BDNF. It has been shown that 

inhibiting glycogen synthase-3β (GSK3β), which can be activated by Aβ, is an effective 

way to decrease inhibitory phosphorylation of CREB and increase BDNF protein 

(DaRocha-Souto et al., 2012). Additionally, Aβ has been shown to inactivate PKA in 

vitro, and increasing PKA activity reverses decreased CREB activation induced by Aβ 

treatment (Vitolo et al., 2002). Therefore, Aβ disrupts several kinase cascades, leading to 

a reduction in activity of CREB and in BDNF expression (Figure 4). 

 Specifically, soluble oligomeric Aβ, but not the fibrillar Aβ found in plaques, 

decreases CREB activation and down-regulates BDNF in vitro, largely via transcript IV 

(Garzon and Fahnestock, 2007). In transgenic mouse models of AD, which also exhibit 

down-regulation of transcript IV, BDNF expression is inversely proportional to the 

amounts of soluble, high-molecular-weight Aβ oligomers (Peng et al., 2009). Thus, 

inactivation of CREB by soluble, aggregated Aβ may down-regulate BDNF transcript IV, 

resulting in the diminished synaptic connections and memory loss characteristic of AD. 

A major consequence of Aβ-induced CREB reduction that is mediated by BDNF 

is diminished LTP. Soluble Aβ oligomers have been shown to effectively inhibit 
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hippocampal LTP (Lambert et al., 1998; Walsh et al., 2002). Aβ inhibits LTP by 

specifically interfering with CaMKII and CREB signalling pathways (Yamin, 2009), and 

Aβ-induced reductions in LTP are rescued by BDNF (Zheng et al., 2010). These effects 

on LTP suggest that Aβ interferes with learning and memory by similar mechanisms. 

Therefore, although Aβ has many proposed mechanisms of toxicity, its modulation of 

kinase pathways affecting transcription of genes involved in learning and memory, 

particularly BDNF and CREB, is perhaps the most significant for AD. 
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Figure 4: Aβ-induced inactivation of CREB via phosphorylation. Aβ has been shown 

to inhibit the activation of CREB via phosphorylation both by inhibiting PKA (Vitolo et 

al., 2002) and activating GSK3β (DaRocha-Souto et al., 2012), possibly via inactivation 

of the PI3K/AKT pathway (Tong et al., 2004). As such this pathway represents a possible 

mechanism of Aβ-induced BDNF down-regulation, whereby CREB activity is inhibited 

via phosphorylation.  
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1.7 Amyloid cascade hypothesis 
 

The predominant theory to explain neuropathology in Alzheimer’s disease is the 

amyloid cascade hypothesis. This hypothesis essentially states that Aβ is the upstream 

driving force behind subsequent AD pathology and synaptic degeneration and that all 

other pathological correlates of AD result from an imbalance of Aβ production and 

clearance (Hardy and Selkoe, 2002; Iqbal and Grundke-Iqbal, 2008; Selkoe, 1994). As 

such, tau pathology characteristic of AD is thought to be down-stream of Aβ and 

therefore possibly a more direct mediator of neurodegeneration (Ittner et al., 2010; Lewis 

et al., 2001; Masliah et al., 2001; Pennanen and Gotz, 2005). Specifically, it has been 

shown that Aβ enhances tau hyperphosphorylation and the subsequent formation of 

neurofibrillary tangles in animal models (Gotz, 2001; Lewis et al., 2001; Masliah et al., 

2001; Murray and Lynch, 1998) and in human neuroblastoma cells in vitro (Pennanen and 

Gotz, 2005). This suggests that Aβ may exert its neurotoxic effects via tau 

hyperphosphorylation and subsequent neurofibrillary tangle formation (Iqbal and 

Grundke-Iqbal, 2008). Furthermore, Aβ-induced neurodegeneration is prevented in 

primary neuronal cultures from TauKO mice (Rapoport et al., 2002), and knocking out 

tau in a transgenic AD mouse model can block Aβ-induced cognitive impairments 

(Roberson et al., 2007). Whether this rescue of cognitive impairment was mediated by 

BDNF was not tested. These findings taken together, suggest that tau may be a more 

direct mediator of toxicity in AD and that further investigation into tau structure, function 

and pathology are required. 
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1.8    Tau  

Although the primary insult in AD may be Aβ over-expression, ultimately cognitive 

dysfunction and neurodegeneration are a result of alterations in tau (Gotz, 2001; Iqbal and 

Grundke-Iqbal, 2008; Lewis et al., 2001; Masliah et al., 2001; Pennanen and Gotz, 2005; 

Roberson et al., 2007). However, the mechansims that lead from alterations in tau to the 

physical symptoms of AD are not clear. 

 

1.8.1 Tauopathies  

In addition to AD, non-Alzheimer’s disease tauopathies, such as frontotemporal 

dementia and parkinsonism linked to chromosome 17 (FTDP-17), Pick’s disease (PiD), 

corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) are also 

characterized by intracellular accumulations of tau protein (Crowther and Goedert, 2000; 

Goedert and Spillantini, 2011; Iwatsubo et al., 1994; Lee et al., 2001; Pollock et al., 

1986). While the phenotypic manifestation of specific cell types and brain areas affected 

vary among tauopathies, the presence of accumulated tau protein in the absence of other 

pathological hallmarks substantiates the toxicity of tau independent of Aβ. The 

phenotypic expression of tauopathies vary a great deal because the regional distribution of 

tau aggregation within the brain is different between these diseases, however they each 

present with hyperphosphorylation of tau and a change in the ratio of tau isoforms (Lee et 

al., 2001). This suggests that an increased understanding of tau structure and both 

physiological and pathological function could lend great support to therapeutically 

intervening with a number of devastating neurodegenerative diseases. 	
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1.8.2 Tau structure and function 

 The human tau gene is over 110kb long and is found on the long arm of 

chromosome 17 at position 17q21. The tau gene contains 16 exons, and in the human 

adult brain exons 2, 3 and 10 are alternatively spliced (Andreadis et al., 1992). Exons 2 

and 3 are always spliced together, while exons 2 and 10 can be found independently. 

Therefore, splicing of these exons results in six possible tau isoforms (Figure 5). These 

tau isoforms vary in size by the insertion of 29 or 58 amino acids (corresponding to exon 

2 or exon 2+3; also known as 1N or 2N tau) at the N-terminus and by having either three 

or four repeat-regions (3R or 4R) in the microtubule-binding domain of the C-terminal 

sequence (Buee et al., 2000). In a healthy adult the ratio of 3R:4R tau isoforms is 

approximately 1:1 in most regions of the brain (Goedert and Jakes, 1990; Kosik et al., 

1989; Lee et al., 2001). Deviations from this ratio could become problematic and is a 

recognized characteristic of neurodegenerative tauopathies. The complexity of tau is 

furthered by its propensity to be truncated in disease states. This truncated form of tau is 

found in AD and is thought to increase tau hyperphosphorylation and aggregation 

(Hrnkova et al., 2007). Therefore, there seems to be a functional difference between 

various tau alterations. However, specifically how different forms of tau change its 

normal functioning and dictate disease progression remains largely unclear.  

The most well-known function of tau, as a protein that is most abundant in the 

axons of neurons (Binder et al., 1985), is its ability to bind to and stabilize microtubules 

(MTs). However, alterations in tau caused by a number of post-translational 

modifications can alter tau structure and subsequently its function (Carrell and Gooptu, 
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1998; Grundke-Iqbal et al., 1986; Kuhla et al., 2007; Min et al., 2010; Mondragon-

Rodriguez et al., 2008; Perry et al., 1989; Reynolds et al., 2005). These post-translational 

modifications can also cause a detrimental missorting of soluble tau to the 

somatodendritic compartment. Which modifications dictate this intracellular trafficking 

and which tau isoforms are capable of being mislocalized is poorly understood.  
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Figure 5: Structural organization of tau isoforms. The six predominant tau isoforms 

vary by the presence or absence of exon 2 or exon 2+3 in the N terminus and exon 10 in 

the microtubule-binding domain. The microtubule-binding domain consists of either 3 

or 4 repeat domains, depending on the presence or absence of exon 10. The longest 

isoform contains both exons 2 and 3 in the N terminus and exon 10 and is therefore 

denoted 2N4R, whereas the shortest isoform lacks exons 2, 3 and 10 and is denoted 

0N3R. Modified figure (Johnson and Stoothoff, 2004).  
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1.8.3 Pathological tau modifications  

 Phosphorylation of tau is thought to be the most relevant and impactful post-

translational modification, decreasing its ability to promote microtubule polymerization 

(Lindwall and Cole, 1984) and to aggregate into toxic species, effectively altering its 

function (Hernandez and Avila, 2007). There are nearly 80 serine/threonine tau 

phosphorylation sites identified to date (Kolarova et al., 2012), and phosphorylation is 

regulated by the coordinate action of kinases and phosphatases. Hyperphosphorylation of 

tau causes diminished tubulin binding of tau, allowing the free tau proteins to self-

polymerize and aggregate (Avila et al., 2008; Iqbal and Grundke-Iqbal, 2008). Most of 

the phosphorylation sites of tau are located in or near the microtubule (MT)-binding 

domain (Buee et al., 2000; Kolarova et al., 2012; Sergeant et al., 2008) and have an 

increased propensity to be phosphorylated in disease (Figure 6). For example, the AT8, 

AT100 and AT180 phospho-epitopes, located near the MT-binding domain of tau, 

experience increased phosphorylation in tauopathies. The abnormal phosphorylation of 

these sites and others could be a result of tau kinase up-regulation and/or tau phosphatase 

down-regulation (Buee et al., 2000; Trojanowski and Lee, 2005). Further, 

hyperphosphorylation of tau leading to tubulin disengagement results in somatodendritic 

mislocalization of tau from the axons (Delacourte and Buee, 2000; Goedert, 2004). 

 The somatodendritic mislocalization of tau is one of the earliest predictors of 

neurodegeneration. However, this intracellular trafficking of tau is poorly understood. It 

is known that the misprocessing and trafficking of tau involves tau that is not associated 

with MTs (Lee et al., 2012), which suggests that hyperphosphorylation is a critical step in 
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tau missorting. It is also known that tau can be trafficked by slow axonal transport 

(Mercken et al., 1995). Further, exposure to exogenous tau can result in dose-dependent 

changes in tau distribution and phosphorylation (Lee et al., 2012; Thies and Mandelkow, 

2007) supporting the idea that tau will be trafficked to MT-poor regions of the cell if the 

amount of tau present exceeds the MT tau-binding capacity (Lee et al., 2012; Samsonov 

et al., 2004). Recently, it has also been found that depending on the conformation and size 

of tau aggregates, tau can be taken up at either the somatodendritic compartment or 

axonal compartment and transported anterogradely or retrogradely (Wu et al., 2013). 

 Once soluble tau is transported to the cytoplasm, it can form the neurofibrillary 

tangles (NFTs) characteristic of neurodegenerative tauopathies. The formation of NFTs 

from free, unbound tau is thought to be a multi-step process and it is in the form of NFTs 

that tau has long been thought to result in toxicity and subsequent cell death. The number 

and progression of NFT-positive neurons correlates relatively well with the cognitive 

decline seen in AD (Ballatore et al., 2007; Giannakopoulos et al., 2003; Gomez-Isla et al., 

1997), and NFTs have been associated with the activation of caspase cascades (Arriagada 

et al., 1992), as well as with diminished binding of calcium (Bezprozvanny and Mattson, 

2008) (Mattson, 2006) and synaptic proteins (Coleman and Yao, 2003). However, nearly 

40% of the tau that is mislocalized to the soma remains soluble, and a significant amount 

of cell death and neuronal dysfunction occurs in the absence of, or precedes, NFT 

pathology (Arriagada et al., 1992; Giannakopoulos et al., 2003). As such, understanding 

the toxic mechanisms of soluble tau is of utmost importance. 
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Figure 6: Sites of tau hyperphosphorylation in Alzheimer’s disease. Many 

phosphorylation sites on tau that have been found to be hyperphosphorylated in 

Alzheimer’s disease are located in regions surrounding the microtubule-binding domain 

(Figure from Noble et al., 2013).  
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1.8.4 Tau toxicity 

Abnormal phosphorylation and mislocalization of tau are accepted as early 

characteristics of neurodegeneration, which precede NFT formation (Braak et al., 1994; 

Giannakopoulos et al., 2003) however, the toxic species of tau remains somewhat 

controversial. Historically, it was believed that NFTs exerted neurotoxic functions. 

However, more recent evidence suggests that toxicity is also spread by soluble low-

molecular-weight oligomers (Kopeikina et al., 2012), which are recognized as NFT 

precursors (Lasagna-Reeves et al., 2012). Although tau aggregation has been shown to 

correlate well with neuronal loss and cognitive decline (Santacruz et al., 2005), animal 

models over-expressing tau without NFT pathology also present with neurodegeneration 

(Wittmann et al., 2001). Further, in AD before the formation of NFTs, neuronal loss can 

be detected along with tau oligomers (Gomez-Isla et al., 1996) suggesting that at the early 

stages of disease, soluble tau species are neurotoxic. Additionally, it has been shown that 

significant synaptic loss can occur prior to NFT formation (Yoshiyama et al., 2007).  

Moreover, in a repressible tauopathy mouse model, despite the persistent buildup of 

NFTs, cognitive function and neuronal survival can be re-established following 

suppression of transgenic tau (Santacruz et al., 2005). This indicates that NFTs are not 

sufficient to cause cognitive impairment in this model. However, the mechanism of tau 

toxicity is still not well understood. 

Several hypotheses exist to explain the relationship between tau and 

neurodegeneration, such as a loss-of-function resulting from tau detachment from MTs 

and consequent MT instability (Alonso et al., 1996), as well as a gain-of-toxic function 
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resulting from aggregated tau physically interfering with intracellular transport (Wolfe, 

2012). Further, tau has been shown to inhibit the ubiquitin-proteasome system vital for 

cellular homeostasis (Bandyopadhyay et al., 2007; Keck et al., 2003), and to activate 

caspases (Rohn et al., 2002), suggesting it may directly signal cellular apoptosis. 

However, among the most feasible hypotheses for tau-induced neurotoxicity is its ability 

to decrease trophic support for affected neurons.  

 

1.9   BDNF is down-regulated in human tauopathy subjects 

 While little investigation has been done focusing on tau regulation of neurotrophic 

factors, our lab previously showed that there is decreased BDNF mRNA and protein in 

the parietal cortex of human tauopathy (PiD and CBD) subjects (Belrose et al., 2014).  

Specifically, in these tauopathies, we reported down-regulation of BDNF transcript IV. 

These results suggest that tau alone may decrease BDNF expression. However, there have 

been no in vitro investigations of tau-induced BDNF down-regulation, nor have 

transgenic animal models been utilized to avoid possible confounds of post-mortem 

human tissue. Further, it is still unclear whether soluble tau, not aggregated as NFTs, is 

capable of down-regulating BDNF and whether soluble tau mediates Aβ-induced BDNF 

down-regulation.  
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CHAPTER 2: SPECIFIC AIMS, HYPOTHESES & RATIONALE 
 

The overall objective of this work is to understand the mechanisms of BDNF 

down-regulation in Alzheimer’s disease. More specifically, the purpose of this work is to 

investigate the down-regulation of BDNF by the main pathological correlates of AD: 

amyloid beta and tau.  

 
 
2.1  Objective #1: To determine the mechanism of Aβ-induced BDNF down-

regulation 

 
It has previously been shown that soluble, oligomeric Aβ down-regulates BDNF 

in vitro, largely via transcript IV (Garzon and Fahnestock, 2007). Further, in transgenic 

mouse models of AD, BDNF expression is inversely proportional to the amounts of 

soluble, high-molecular-weight Aβ oligomers (Peng et al., 2009). However, the 

mechanism of Aβ-induced BDNF down-regulation has not been determined.  

Following cell stimulation, Aβ has been shown to inhibit both the Ras/ERK and 

PI3K/AKT signalling pathways (Tong et al., 2004), and to activate GSK3β (DaRocha-

Souto et al., 2012), resulting in the inactivation of CREB (DaRocha-Souto et al., 2012; 

Tong et al., 2004). Given that CREB transcription plays a major role in regulating BDNF 

expression (Pruunsild et al., 2007; Shieh et al., 1998; Timmusk et al., 1995), the main 

objective outlined here is to determine if CREB mediates Aβ-induced BDNF down-

regulation.  
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2.1.1 Specific Aim #1: To determine if Aβ-induced basal BDNF down-regulation is 

mediated by inactivation of CREB via phosphorylation 

 Aβ has been shown to both decrease the activating phosphorylation of CREB 

(pCREB133) and increase the inactive form of CREB phosphorylated at Ser-129 

(pCREB129) following cell stimulation. However, the effect of this CREB regulation on 

BDNF expression has not been investigated in the absence of cell simulation. It is 

hypothesized here that Aβ treatment will down-regulate basal BDNF levels by either 

increasing the deactivating phosphorylation of CREB (pCREB129) via GSK3β activation 

and/or by decreasing the activating phosphorylation of CREB (pCREB133) via PKA 

inactivation. 

 

 
2.1.2 Specific Aim #2: To determine if Aβ-induced basal BDNF down-regulation is 

mediated by sequestration of CREB outside the nucleus 

 Another mechanism of transcription factor inactivation is their sequestration outside 

of the nucleus. This has been shown to be mechanistically relevant in AD, where the 

transcription factor SFPQ is sequestered into the cytoplasm (Ke et al., 2012) as well as in 

Huntington’s disease, where mutant huntingtin sequesters CREB-binding protein (CBP) 

outside the nucleus, preventing it from entering the nucleus to enhance CREB binding 

(Choi et al., 2012). It is hypothesized here that Aβ treatment will down-regulate BDNF by 

sequestering CREB outside the nucleus, rendering it inactive. 
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2.1.3 Specific Aim #3: To determine if Aβ-induced basal BDNF down-regulation 

is mediated by transcriptional down-regulation of CREB 

 CREB transcription has been shown to be decreased in AD and in vitro following 

treatment with Aβ (Pugazhenthi et al., 2011). Therefore, it is hypothesized here that Aβ 

treatment will down-regulate basal BDNF by decreasing CREB mRNA. 

 
 
 
2.2 Objective #2: To determine if tau is capable of down-regulating BDNF  
 

There is increasing evidence that although the primary insult in AD may be 

increased Aβ; it may ultimately lead to cognitive dysfunction and neurodegeneration by 

inducing alterations in tau (Iqbal and Grundke-Iqbal, 2008; Lewis et al., 2001). How tau 

might lead to memory loss and neurodegeneration is unclear. Recent findings showing 

that BDNF mRNA is down-regulated in the cortex of human non-AD tauopathy subjects 

(FTDP-17, PiD and CBD) (Belrose et al., 2014) suggest that tau might decrease BDNF 

expression. However, there have been no in vitro investigations of tau-induced BDNF 

down-regulation, nor have transgenic models been utilized to avoid possible confounds of 

post-mortem human tissue. Thus, the main objective outlined here is to investigate tau-

induced BDNF down-regulation.  
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2.2.1 Specific Aim #1: To determine if over-expression of wild-type tau is capable of 

down-regulating BDNF 

While, amyloid-β has been shown to decrease BDNF expression (DaRocha-Souto 

et al., 2012; Garzon and Fahnestock, 2007; Rosa and Fahnestock, 2015; Tong et al., 2004) 

tau is thought to be down-stream of Aβ and therefore possibly a more direct mediator of 

neurodegeneration (Ittner et al., 2010; Lewis et al., 2001; Masliah et al., 2001; Pennanen 

and Gotz, 2005). It is hypothesized here that over-expression of wild-type tau alone in 

transgenic mice and tau-transfected cells will down-regulate BDNF.  

 
 

2.2.2 Specific Aim #2: To determine if NFTs are required for BDNF down-

 regulation 

In AD, before the formation of NFTs, neuronal loss can be detected along with the 

presence of tau oligomers (Gomez-Isla et al., 1996) suggesting that soluble aggregated tau 

species are neurotoxic. In addition, soluble tau over-expressing animal models exhibit 

neurodegeneration despite their lack of NFT-like pathology (Andorfer et al., 2005; 

Wittmann et al., 2001), supporting the notion that NFTs are not the primary cause of 

neurodegeneration. Therefore, it is hypothesized here that NFTs are not required for 

BDNF down-regulation, and rather that soluble tau is responsible for down-regulating 

BDNF.  
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2.2.3 Specific Aim #3: To determine if BDNF Transcript IV is down-regulated by tau 

BDNF transcript IV is down-regulated in human AD cortical tissue (Garzon et al., 

2002), in mouse models of AD (Peng et al., 2009) and in SH-SY5Y cells treated with Aβ 

(Garzon and Fahnestock, 2007). BDNF transcript IV is also down-regulated in the 

parietal cortex of human tauopathy (PiD and CBD) patients (Belrose et al., 2014). 

Therefore, it is hypothesized that soluble tau will specifically down-regulate BDNF 

transcript IV in the tested models.  

 

 
2.3 Objective #3: To determine if tau mediates Aβ-induced BDNF down-regulation 

 

Aβ is thought to be the upstream driving force behind subsequent AD pathology 

and synaptic degeneration (Hardy and Selkoe, 2002; Iqbal and Grundke-Iqbal, 2008; 

Selkoe, 1994). As such, tau pathology characteristic of AD is thought to be down-stream 

of Aβ and therefore a more direct mediator of neurodegeneration (Ittner et al., 2010; 

Lewis et al., 2001; Masliah et al., 2001; Pennanen and Gotz, 2005). The main objective of 

this work is to determine if tau mediates Aβ-induced BDNF down-regulation.  

 
 
 
2.3.1 Specific Aim #1: To determine if Aβ over-expressing APP23 mice down-

 regulate BDNF 

 Aβ has been shown to down-regulate BDNF in both cell culture (DaRocha-Souto 

et al., 2012; Garzon and Fahnestock, 2007; Rosa and Fahnestock, 2015) and in transgenic 
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mice (Peng et al., 2009). However, this has yet to be determined for the APP23 mice. It is 

hypothesized that the over-expression of Aβ characteristic of APP23 mice will result in 

significantly diminished BDNF expression.  

 
 
 

2.3.2 Specific Aim #2:  To determine if TauKO rescues BDNF levels in APP23 mice. 

 It has been suggested that Aβ may exert its neurotoxic effects via tau 

hyperphosphorylation and subsequent neurofibrillary tangle formation (Iqbal and 

Grundke-Iqbal, 2008). Furthermore, Aβ-induced neurodegeneration is prevented in 

primary neuronal cultures from TauKO mice (Rapoport et al., 2002), and knocking out 

tau in a transgenic AD mouse model can block Aβ-induced cognitive impairments 

(Roberson et al., 2007). Therefore, it is hypothesized here that TauKO animals as well as 

those crossed with Aβ over-expressing animals (APP23xTauKO) will not display the 

down-regulated BDNF expression seen in Aβ over-expressing animals (APP23) alone, 

suggesting that tau mediates Aβ-induced BDNF down-regulation.  
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CHAPTER 3: METHODOLOGY  
 
 
3.1 OBJECTIVE 1: 
 
 
3.1.1 SH-SY5Y cell culture & treatment 

Human neuroblastoma SH-SY5Y cells are an immortalized cell line that exhibits 

neuronal morphology, expresses BDNF and its receptor TrkB and is dependent on BDNF 

for survival (Encinas et al., 2000; Feng et al., 2001; Kaplan et al., 1993). This cell line 

was chosen instead of primary neuronal cultures for this study, as it allows for more 

complex manipulations, such as stable transfections, which traditionally have very low 

efficiency in primary neuronal cultures. SH-SY5Y cells (ATCC, Manassas, VA) were 

grown in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% FBS (GIBCO 

BRL, Carlsbad, CA), 1% L-glutamine (GIBCO) and 1% penicillin/streptomycin 

(GIBCO). Cells were incubated at 37ºC and 5% CO2 in a 75cm2 flask and split at a ratio 

of 2:3 with growth medium every 3-4 days. Cells were differentiated (Figure 7) and 

treated with 5µM oligomeric Aβ as previously described (Garzon and Fahnestock, 2007) 

and outlined in Table 1. 

Lyophilized Aβ42 peptide (rPeptide, Athens, GA) was dissolved to 1mM in 100% 

1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, Sigma-Aldrich) and dried to create biofilms as 

described (Garzon and Fahnestock, 2007). Aβ oligomers, which have previously been 

shown to specifically down-regulate BDNF (Garzon & Fahnestock 2007), were prepared 

24 hours prior to treatment by dissolving the biofilm in 100% dimethyl sulfoxide 

(DMSO) (Sigma-Aldrich) to obtain a 2mM solution and sonicating at 37°C for 10 
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minutes. This solution was diluted 1:10 in Ham’s F-12 (phenol red free; BioSource, 

Camarillo, CA), vortexed for 30 seconds and incubated for 24 hours at 4oC.  The Aβ 

solution was then diluted 1:40 in DMEM containing 1% FBS, 1% N2 Supplement, 1% L-

glutamine and 1% penicillin/streptomycin (treatment medium), giving a final 

concentration of 5µM Aβ and 0.25% DMSO. This treatment concentration of Aβ was 

determined previously to both disrupt cellular signalling (Tong et al., 2001, 2004) and 

down-regulate BDNF mRNA (Garzon and Fahnestock 2007) without affecting cell 

viability. Vehicle-treated cells were exposed to 0.25% DMSO in treatment medium.  

There was no difference in BDNF expression between DMSO-treated cells and non-

vehicle (medium only) treated controls (data not shown, p=1.00).    

CT 99021 is an ATP-competitive inhibitor of GSK3β and is considered the most 

potent GSK3β inhibitor available (Bain et al., 2007). CT 99021 was used here to decrease 

GSK3β activity, in order to determine if increased levels of inactivated pCREB129 

mediate Aβ-induced BDNF down-regulation. Conversely, to determine if decreased 

levels of activated pCREB133 mediate Aβ-induced BDNF down-regulation, the PKA 

activator forskolin was used. Forskolin is a naturally occurring diterpene compound 

which effectively activates adenylyl cyclase to subsequently increase levels of cAMP and 

increase the activity of PKA (Seamon & Daly 1981). Both CT 99021 (Sigma-Aldrich) 

and forskolin (Sigma-Aldrich) were solubilised in 100% DMSO to obtain 4mM and 

50mM solutions, respectively. Stock solutions of both CT 99021 and forskolin were 

diluted further into treatment medium, giving a final concentration of 2µM CT 99021 

(Bain et al., 2007) with 0.05% DMSO and 30µM forskolin with 0.06% DMSO. The 
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treatment concentration of forskolin was determined through my own experimental 

manipulations. I tested a variety of forskolin treatment concentrations and durations: 

50µM for 15 minutes, 30µM for 30 minutes, and 10µM for 24 hours.  Treatments with 

either 50µM forskolin for 15 minutes and 10µM forskolin for 24 hours were not sufficient 

to increase PKA activity (data not shown), while PKA activity was significantly 

increased (as assessed by increased levels of pCREB133) by a 30-minute treatment with 

30µM forskolin, when compared to vehicle-treated control cells (Figure 14). Additionally, 

a 30-minute pre-treatment with CT 99021 has been shown to be sufficient to prevent Aβ-

induced inhibition of LTP (Jo et al., 2011). As a result of this previous CT 99021 

literature, and my own experimentation with forskolin, cells were treated with either CT 

99021 or forskolin for 30 minutes prior to 48 hour Aβ treatment.  30µM forskolin was 

also administered 24 hours after Aβ treatment and remained on the cells to determine if 

forskolin is capable of rescuing BDNF expression following down-regulation by Aβ.  

Following treatment, GSK3β inactivation or PKA activation (via Western blot) and 

BDNF mRNA levels (via qRT-PCR) were compared to cells treated with Aβ42 alone and 

to vehicle-treated groups.  
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Figure 7: SH-SY5Y cell culture. A) Undifferentiated SH-SY5Y cells at passage 

11; B) SH-SY5Y cells after 10 days of differentiation with retinoic acid have a 

more neuronal appearance, with increased elongation and neurite outgrowth 

compared to undifferentiated SH-SY5Y cells.   

 

A 

B 
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3.1.2   RNA extraction  
 
 SH-SY5Y conditioned medium was removed and cells were harvested 48 hours 

after treatment. After removal of cell medium, 1ml of TrizolTM (Invitrogen, Burlington, 

ON) was used to lyse 3.65x105 cells, which were then stored at -80oC until RNA 

extraction took place. RNA was extracted using RNeasyTM Mini Spin Columns (Qiagen, 

Mississauga, ON) according to the manufacturer’s protocol. Once RNA was bound to the 

column, it was treated with RNase-free DNaseI in Buffer RDD (Qiagen) for 15 minutes 

prior to RNA elution with autoclaved water. Resulting RNA concentration and purity 

were determined by Multiskan GO and SkanIT software (Thermo Scientific, Nepean, 

ON) at 260/280 nm (Rosa & Fahnestock, 2015). 

 
 

3.1.3 Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) 

 BDNF expression was determined by qRT-PCR. This method allows for an 

accurate quantification of BDNF mRNA and is a superior method over protein 

quantification because of a lack of specific BDNF protein antibodies commercially 

available at this time. However, we have previously shown that a down-regulation of 

BDNF mRNA as quantified by qRT-PCR correlates well with decreased BDNF protein 

levels as measured by ELISA (Belrose et al., 2014). Here, 1µg of SH-SY5Y RNA was 

reverse transcribed with SuperscriptTM III, following the manufacturer’s protocol 

(Invitrogen). Briefly, a total reaction volume of 20ul was composed of 1ug of sample 

RNA, 200 units of SuperscriptTMIII RT reagent, 250ng of random primers (Invitrogen), 

0.5mM deoxynucleotide triphosphates (Invitrogen), 1x first strand buffer, 0.05mM 
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dithiothreitol and 1 unit of RNaseOUTTM (Invitrogen). Negative controls (“No-RT”) were 

included in the reverse transcription reaction that had water substituted for Superscript III. 

The reverse transcription reaction was carried out in a GeneAmp PCR system 2400 

thermal cycler (Applied Biosystems, Streetsville, ON) at 25°C for 5 minutes, 50°C for 50 

minutes, and 70°C for 15 minutes. 

The real-time PCR reaction mixture was composed of 300 nM each forward and 

reverse BDNF primers or 300 nM each forward and reverse β-actin primers or 300 nM 

each forward and reverse CREB primers (Mobix, Hamilton, ON, Canada) (Table 2). In 

addition to primers, the reaction mixture was composed of 10 µl SYBR Green qPCR 

Supermix UDG ™ (Invitrogen), 30 nM of reference dye ROX (Stratagene, La Jolla, CA, 

USA or Invitrogen), and 1 µL of cDNA (from 50 ng RNA), in a total volume of 20 µL 

(Rosa & Fahnestock, 2015; Rosa et al., 2015; Michalski et al., 2015; Garzon & 

Fahnestock, 2007). BDNF and CREB PCR standards were generated from purified PCR 

products using the primers listed, whereas β-actin standard was generated from a plasmid 

obtained from Invitrogen (Garzon and Fahnestock, 2007). Amplifications of samples, 

standards and controls (no-RT and no-template controls) were run in triplicate. A 

MX3000P real-time PCR system (Stratagene) was used to run the following thermal 

profile: 2 min at 50°C, 2 min at 95°C followed by 40 cycles of 95°C for 30 s, 58°C for 30 

s, and 72°C for 45 s (Rosa & Fahnestock, 2015; Michalski et al., 2015; Garzon & 

Fahnestock, 2007). A dissociation curve after 40 PCR cycles confirmed a single product 

for both targets. Copy numbers using absolute quantification and PCR efficiencies were 

calculated with MXPro Mx3000P Software (Stratagene). Only experiments in which the 



Ph.D. Thesis—E. Rosa; McMaster University—MiNDS Neuroscience Program 

	
   48 

real-time PCR efficiency was between 90%-100% and standard curves yielded a 

R2>0.990 were used for analysis. BDNF mRNA expression and CREB mRNA expression 

were normalized to the housekeeping gene β-actin (Rosa & Fahnestock, 2015). 

 

3.1.4 Cell viability assay 

Cell viability was determined by quantifying the release of lactate dehydrogenase 

(LDH) into conditioned medium. LDH is a stable enzyme released from all cell types 

upon plasma membrane damage (Koh and Choi, 1987) and is a commonly used marker to 

assess cytotoxicity because of its sensitivity. The procedure used here was modified in 

our lab from previous reports (Koh and Choi, 1987; Lobner, 2000). Briefly, 30µl of 

conditioned medium was combined with 200µl of LDH buffer (1M Tris pH 7.4, 1.4mM 

Na pyruvate, 3.15mM NADH), and LDH levels from each sample were quantified using a 

Multiskan GO microplate reader and SkanIT software (Thermo Scientific). Rabbit muscle 

LDH type II, in ammonium sulfate suspension (800-1200 units/mg protein) (Sigma-

Aldrich), was diluted 1:5000 and 1:25000 and used as a positive control, and medium 

alone was used as a negative control. All samples were read at 340nm every 30 seconds 

for 5 minutes.  

 

3.1.5 Protein extraction 

3.65x105 SH-SY5Y cells were lysed in 150 µL of lysis buffer [50mM Tris pH 7.4, 

150mM NaCl, 5mM EDTA, 1% Triton, 1 complete EDTA-free tablet (Roche, 

Mississauga, ON) and 1 complete PhosSTOP Phosphatase Inhibitor Cocktail Tablet 
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(Roche) per 10ml cell lysis buffer] (Michalski et al., 2015; Rosa et al., 2015; Rosa and 

Fahnestock, 2015). Cell lysates were centrifuged at 14000 x g for 5 minutes, supernatants 

were collected and protein concentrations determined using the DCTM Protein Assay (Bio-

Rad Laboratories, Mississauga, Ontario, Canada) as described by the manufacturer, prior 

to Western blotting.  

 

3.1.6 Nuclear/Cytoplasmic localization of CREB 

SH-SY5Y cells were harvested using NE-PERTM Nuclear and Cytoplasmic 

Extraction Kit (Thermo Scientific) reagents according to manufacturer’s protocols. 

Briefly, cells were lysed in a cytoplasmic extraction buffer and centrifuged. Nuclear 

extraction buffer was added to the pellet, which was vortexed and centrifuged (14000 x g) 

to extract the remaining nuclear fraction. Protein concentrations of the samples were then 

determined using the DCTM Protein Assay (Bio-Rad Laboratories) prior to Western 

blotting.   

 

3.1.7 Western blotting  

 12% sodium dodecyl sulfate (SDS)-polyacrylamide gels were used to separate 15-

35ug of total protein under reducing conditions prior to transferring to polyvinylidene 

fluoride (PVDF) membranes (Bio-Rad, Hercules, CA, USA). Membranes were then 

blocked with a 1:1 solution of phosphate-buffered saline (PBS) pH7.4 and Odyssey 

Blocking Buffer (BB) (Cedarlane, Burlington, Ontario, Canada) for 1 hour. After 

blocking, the blots were probed overnight at 4˚C with the following primary antibodies: 
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human CREB, pCREB-Ser133, pCREB-Ser129, β-catenin or alpha-tubulin (Table 3). 

After washing with PBS containing 0.5% Tween-20 (PBS-T), blots were incubated with 

the secondary antibodies IRDye 680-conjugated goat anti-rabbit and IRDye 800CW-

conjugated goat anti-mouse (Table 3) for 1 hour at room temperature, washed with PBS-T 

and scanned using an Odyssey Infrared Imaging System (LI-COR Biosciences). Band 

intensities were quantified by densitometry with local background subtraction using LI-

COR Odyssey Software, version 2.0 (Michalski et al., 2015; Rosa & Fahnestock, 2015; 

Nicolini et al., 2015).  

 

3.1.8   Statistical analysis  

 Data collected throughout this work is defined as either interval or ratio data and as 

such, parametric analysis was carried out using IBM Statistics 22 software (SPSS, 

Chicago, IL). A two-sample t-test, assuming equal variances or a one-way ANOVA with 

post-hoc Tukey’s test for pairwise comparisons was done, according to the experimental 

design. Significance was set at p<0.05, using a two-tailed critical value. 

 

3.2 OBJECTIVE 2: 

 
3.2.1 Transgenic mice 
 
 Cortical tissue from tau over-expressing mice (hTau and 8c-het mice), were 

compared to their non-transgenic wild-type control mice (Swiss Webster/B6D2F1 mice). 

Cortical tissue from these mice was dissected, frozen and generously donated by Dr. 

Stephen Ginsberg from the Nathan Kline Institute and New York University Langone 
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Medical Center.  

 Three to 16 month-old hTau transgenic mice, which over-express human tau on a 

mouse tau knockout background (Andorfer et al., 2005; Andorfer et al., 2003; Levine et 

al., 2009) and 8c-het transgenic mice, which over-express human tau on a heterozygous 

mouse tau background (Duff et al., 2000), were used in this study.  hTau mice develop 

NFTs in a similar pattern and distribution as seen in human tauopathies (Andorfer et al., 

2003) and experience age-dependent cognitive and physiological impairments similar to 

that observed in AD patients (Polydoro et al., 2009). hTau mice exhibit insoluble pre-

tangles at approximately 9 months of age (Andorfer et al., 2003), neuronal loss in the 

piriform cortex between 8 and 17 months of age and NFT pathology beginning at 15 

months of age (Andorfer et al., 2005; Andorfer et al., 2003; Levine et al., 2009). In 

contrast, 8c-het transgenic mice exhibit increased tau phosphorylation and altered tau 

isoform expression prior to 8 months of age compared to wild-type mice but do not 

develop insoluble tau aggregates (Duff et al., 2000). Both of these tau over-expressing 

models have an advantage over other models in that they over-express wild-type tau 

without any pathological mutations. Historically, transgenic animals harboring tau 

mutations, such as the P301L tau mutation, which is the pathogenic mutation in FTLD-17 

(Lewis et al., 2000), are the most widely used. However, studying animals that over-

express wild-type tau such as the 8c-het and hTau mice is highly relevant to 

understanding the pathophysiology of sporadic AD, by far the most common form of this 

neurodegenerative disease and a disorder which does not exhibit mutations in tau.  
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3.2.2  Cell culture 

Human neuroblastoma SH-SY5Y cells (ATCC, Manassas, VA, USA) were grown 

in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 10% fetal bovine serum 

(Gibco BRL, Carlsbad, CA, USA), 1% L-glutamine (Gibco) and 1% 

penicillin/streptomycin (Gibco), as described previously in Section 3.1.1. 

 

3.2.3 Construction of hTau40-V5/DEST plasmid  

The human 4-repeat tau isoform, hTau40, was expressed in a pENTR entry vector 

that was generously donated by Dr. Lars Ittner from University of New South Wales 

(Sydney, Australia). This plasmid was then transformed into DH5α Escherichia coli 

(Invitrogen) prior to purification using the QIAprep Spin Miniprep Kit (Qiagen, 

Mississauga ON). Following purification, the hTau-pENTR plasmid underwent a 

Gateway® L-R cloning reaction using L-R Clonase® (Invitrogen) with pcDNA3.2-

V5/DEST vector (Invitrogen) to insert the hTau gene into the destination vector. This 

destination vector includes a V5 epitope tag, which is a 14 amino acid sequence derived 

from simian parainfluenza virus type 5 (Southern et al., 1991) and is a commonly used 

epitope tag because of its small size and availability of high-affinity antibodies. 

Following the cloning reaction, the plasmid was again transformed into DH5α 

Escherichia coli (Invitrogen) prior to purification. The purified hTau40-pcDNA3.2/V5-

DEST plasmid (Figure 8) was then sequenced using T7 promoter (5’-

TAATACGACTCACTATAGGG-3’) and V5 reverse primers (5’-
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ACCGAGGAGAGGGTTAGGGAT-3’) to ensure successful insertion of hTau40 into the 

pcDNA plasmid (MOBIX, Hamilton, ON) prior to mammalian transfection.  
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Figure 8: hTau40-pcDNA3.2/V5-DEST plasmid map. Following Gateway® L-R 

cloning, a pcDNA3.2/V5-DEST plasmid containing the hTau40 sequence with V5 

epitope tag for quantification was generated.  

 

 

 

V5#epitope#hTau40#
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3.2.4   Cell transfection 

 2µg of human 4-repeat wild-type tau plasmid, hTau40/V5-DEST, was transfected 

into 1.95x106 SH-SY5Y cells using Lipofectamine 3000®, with slight modifications to the 

maunfacturer’s instructions (Invitrogen).  In brief, transfectants were grown on 100mm2 

cell+ dishes (Sarstedt, Montreal, QC, Canada) prior to selection with 300µg/ml G418 

(BioShop, Burlington, ON, Canada) for 30 days (Pennanen and Gotz, 2005). To induce 

neuronal differentiation, cells were treated with 10µM retinoic acid (Sigma-Aldrich, 

Oakville, ON) for 10 days, as described in Section 3.1.1 (Garzon and Fahnestock, 2007; 

Rosa and Fahnestock, 2015). V5 expression was visualized via immunocytochemistry and 

quantified via Western blotting to ensure hTau expression following differentiation (see 

Section 3.2.5), and total BDNF mRNA and BDNF transcript IV mRNA levels were 

quantified via qRT-PCR and compared to non-transfected control cells (see Section 

3.2.6).  

 

3.2.5     Immunocytochemistry for detection of V5-tagged plasmid  

 Following 30 days of selection with G418 and 10 days of retinoic acid-induced 

differentation, hTau40-V5-pcDNA transfected SH-SY5Y cells were fixed and stained to 

visualize the V5-tagged protein present and confirm that cells stabilized the transfection 

and that it was maintained following differentiation. In brief, media was removed from 

wells containing 3.65x105 SH-SY5Y cells, and wells were rinsed twice with PBS.  Cells 

were then fixed by exposure to 100% methanol for 5 minutes followed by 5 washes with 

PBS. Next, cells were blocked with the addition of PBS + 10% FBS for 20 minutes prior 
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to the addition of a V5-FITC conjugated antibody (Life Technologies, Burlington, 

Ontario, Canada) at a dilution of 1:500, which was incubated for 1 hour in the dark. The 

antibody was then removed and wells washed again with PBS prior to mounting 

coverslips with ProLong® Gold Antifade Mountant with DAPI (Life Technologies) prior 

to imaging on a Zeiss Axiovert A1 microscope using filter set 09 (excitation/emission of 

450 nm/515 nm) and filter set 49 (excitation/emission of 365 nm/450 nm) (Carl Zeiss 

International, Toronto, Ontario, Canada).  

 

3.2.6        Quantitative real-time reverse transcription-polymerase chain reaction  

 Frozen cortical tissue (13-27mg) from all transgenic mice and SH-SY5Y cells 

were sonicated (Sonic Dismembrator Model 100, Fisher Scientific) in a 1:20 w/v ratio in 

Trizol® (Invitrogen, Burlington, Ontario). Sonicates were centrifuged for 3 minutes at 

9000 x g at 4oC, and RNA was extracted as described in Section 3.1.2 (Rosa et al., 

2015a). Resulting RNA concentration and purity were determined by Multiskan GO and 

SkanIT software (Thermo Scientific, Nepean, ON, Canada) at 260/280 nm, where 

260/280 ratio values were consistently within a reliable range of purity between 1.8-2.0. 

1µg of RNA from each sample was used for reverse transcription with SuperscriptTM III, 

following the manufacturer’s protocol (Invitrogen). Real-time PCR was carried out as 

described in Section 3.1.3 (Rosa and Fahnestock, 2015), using 300 nM each forward and 

reverse BDNF primers, BDNF Transcript IV primers or β-actin primers (Mobix, 

Hamilton, ON, Canada) (Table 2). Amplifications of samples, standards and controls (no-

RT and no-template controls) were run in triplicate as described previously (Rosa et al., 
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2015; Rosa and Fahnestock, 2015). 

 

3.2.7   Protein extraction and western blotting  

3.65x105 hTau-transfected SH-SY5Y cells were lysed in 150 µL of lysis buffer 

[50mM Tris pH 7.4, 150mM NaCl, 5mM EDTA, 1% Triton-X, 1 complete EDTA-free 

tablet (Roche, Mississauga, ON, Canada) and 1 complete PhosSTOP Phosphatase 

Inhibitor Cocktail Tablet (Roche) per 10ml cell lysis buffer], as described previously in 

Section 3.1.5 (Rosa and Fahnestock, 2015) prior to Western blotting. Frozen cortical 

tissue from tau over-expressing transgenic mice (8c-het and hTau and non-transgenic 

controls) was sonicated (Sonic Dismembrator Model 100, Fisher Scientific) in a 1:15 w/v 

ratio in lysis buffer without the presence of Triton-X detergent, in order to isolate the 

TBS-soluble protein fraction (Michalski et al., 2015). Tau present in the TBS-soluble 

fraction may be considered the most soluble, while an additional fraction of tau protein 

may be extracted using buffer containing detergent, known as the detergent-soluble tau 

fraction (Eckermann et al., 2007; Greenberg and Davies, 1990; Michalski et al., 2015; 

Planel et al., 2009; Sahara et al., 2002). Lastly, insoluble tau can be extracted by adding 

an acid such as formic acid to the lysis buffer (Eckermann et al., 2007; Ishihara et al., 

1999; Julien et al., 2012). For the purposes of this study, to confirm genotyping of the 

transgenic animals used, only the TBS-soluble fraction was examined. 

Twelve percent sodium dodecyl sulfate (SDS) polyacrylamide gels were used to 

separate 25-30µg of total protein under reducing conditions before transferring to 

polyvinylidene fluoride membranes (Bio-Rad, Hercules, CA, USA) as described 
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previously in Section 3.1.7 (Rosa & Fahnestock 2015). After blocking, the blots 

containing transgenic mouse cortex homogenates were probed overnight at 4oC with total 

tau antibody 39E10 (Table 3), while blots containing human tau-transfected SH-SY5Y 

cells were probed with Anti-V5 antibody (Table 3). After washing with PBS containing 

0.5% Tween-20 (PBS-T), blots were incubated with the secondary antibody IRDye 

800CW-conjugated goat anti-mouse for 1 hour at room temperature, washed with PBS-T, 

and scanned using an Odyssey Infrared Imaging System (LI-COR Biosciences). Band 

intensities were quantified by densitometry with local background subtraction using LI-

COR Odyssey Software, version 2.0.  

 

3.2.8  Statistical analysis 

 Statistical analyses were carried out using IBM Statistics 22 software (SPSS, 

Chicago, IL, USA) as described in Section 3.1.8. A Pearson correlation was also used 

according to the experimental design. PCR product synthesis for the 8c-het and hTau 

mouse data was modeled as a function of mouse genotype using a general linear model 

(GLM; McCulloch et al. 2011). Significance was judged at the level (α = 0.05), two-

sided. 

 
 
3.3 OBJECTIVE 3: 

 

3.3.1 Transgenic mice 
 
 Cortical tissue from Aβ over-expressing APP23 mice and Tau knockout (TauKO) 
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animals were compared to their non-transgenic wild-type control mice (C57BL6 mice). 

Dr. Lars Ittner from the Dementia Research Unit at the University of New South Wales 

generously donated cortical tissue from these animals.   

 APP23 mice exhibit a 7-fold over-expression of mutated APP harboring the 

Swedish mutation, resulting in significantly increased soluble Aβ and plaques depositing 

at about 6 months of age (Sturchler-Pierrat et al., 1997) with cognitive impairments 

beginning as early as 3 months of age (Van Dam et al., 2003). TauKO (Mapt -/-) mice 

(Tucker et al., 2001) lack tau but do not have any detectable phenotype. Mice used in this 

study were 24 months of age. 

 
3.3.2  Quantitative real-time reverse transcription-polymerase chain reaction  

Frozen cortical tissue (20-50mg) from non-transgenic control mice and APP23, 

TauKO and APP23xTauKO transgenic mice were sonicated (Sonic Dismembrator Model 

100, Fisher Scientific) in a 1:20 w/v ratio in Trizol® (Invitrogen, Burlington, Ontario) 

and purified as described in Section 3.2.4 (Rosa et al., 2015a), where 260/280 ratio values 

were consistently within a reliable range of purity between 1.8-2.0. 1µg of RNA from 

each sample was used for reverse transcription with SuperscriptTM III, following the 

manufacturer’s protocol (Invitrogen). Real-time PCR was carried out as described in 

Section 3.1.3 (Rosa & Fahnestock 2015), using 300 nM each forward and reverse BDNF 

primers or β-actin primers (Mobix, Hamilton, ON, Canada) (Table 2). Amplifications of 

samples, standards and controls (no-RT and no-template controls) were run in triplicate as 

described previously (Rosa et al., 2015; Rosa and Fahnestock, 2015).  
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3.3.3  Statistical analysis 

Statistical analyses were carried out using IBM Statistics 22 software (SPSS, 

Chicago, IL, USA) as described in Section 3.1.8. A one-way ANOVA with post-hoc 

Tukey’s test for pairwise comparisons was performed. Significance was judged at the 

level (α = 0.05), two-sided.  
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Table 1: SH-SY5Y differentiation protocol 
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Table 2: Real-time PCR primers  
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Table 3: Western blotting antibodies  
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CHAPTER 4: RESULTS 
 
 
4.1 OBJECTIVE 1  

 

4.1.1 Oligomeric Aβ1-42 down-regulates basal BDNF expression without affecting cell 

viability  

BDNF mRNA was significantly down-regulated in differentiated SH-SY5Y cells 

following treatment with 5µM oligomeric Aβ (Figure 9A; p<0.001), without affecting cell 

viability (no difference in LDH released; Figure 9B; p=0.65), as we previously reported 

(Garzon and Fahnestock, 2007).  This concentration of Aβ has also been shown to 

decrease cellular signaling without affecting cell viability following cell stimulation with 

KCl and NMDA (Tong et al., 2001). However, it is important to note that our 

experimental conditions do not include cell stimulation. 
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Figure 1: Aβ significantly down-regulates BDNF mRNA. Following treatment of differentiated 
SH-SY5Y cells with 5µM oligomeric Aβ, BDNF mRNA was significantly reduced (Student’s t- 
test; **p<0.001). Error bars represent S.E.M. n=6/group; Results were replicated over 7 
independent experiments  
!

!

Figure 2: Aβ treatment does not affect cell viability. There was no difference in amount of LDH 
released between control cells and cells treated with 5µM oligomeric Aβ (Student’s t-test; p=0.65). Error 
bars represent S.E.M. n=11-12/group 
!

A 

B 
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Figure 9: Aβ significantly down-regulates BDNF mRNA without affecting cell 

viability. Following treatment of differentiated SH-SY5Y cells with 5µM oligomeric Aβ, 

A) BDNF mRNA was significantly reduced (Student’s t-test; **p<0.001). Error bars 

represent S.E.M. n=6/group. This experiment was carried out 7 times with similar group 

sizes and results.	
  B) There was no difference in amount of LDH released between control 

cells (treated with 0.25% DMSO in treatment medium) and cells treated with 5µM 

oligomeric Aβ also exposed to 0.25% DMSO (Student’s t-test; p=0.65). Error bars 

represent S.E.M. n=11-12/group. This experiment was carried out 3 times with similar 

group sizes and results. 
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4.1.2 Aβ treatment of differentiated SH-SY5Y cells decreases CREB transcription but 

does not alter CREB phosphorylation or nuclear localization  

CREB mRNA was significantly down-regulated in differentiated SH-SY5Y cells 

treated with 5µM Aβ compared to control cells (Figure 10; p=0.009). To determine 

whether decreased BDNF transcription following Aβ treatment, in the absence of cell 

stimulation, could also be due to altered CREB phosphorylation, the activating 

phosphorylation (pCREB133) and inactivating phosphorylation (pCREB129) of CREB 

were quantified by Western blotting in Aβ-treated cells compared to control cells. 

Phosphorylated CREB at Ser-133 (normalized to total CREB) in cells treated with 5µM 

Aβ was not significantly different than in control cells (Figure 11A; p=0.65). Similarly, 

phosphorylated CREB at Ser-129 (normalized to total CREB) in cells treated with 5µM 

Aβ was not significantly different than in control cells (Figure 11B; p=0.43).  

To assess whether Aβ treatment of differentiated SH-SY5Y cells inactivates 

CREB by sequestering it outside the nucleus, phosphorylated and total CREB levels were 

quantified from both the nuclear and cytoplasmic fractions following Aβ treatment and 

compared to controls. Phosphorylated CREB at Ser-133 was not significantly different in 

either the cytoplasmic (Figure 12A; p=0.55) or the nuclear (Figure 12B; p=0.39) fractions 

following Aβ treatment compared to controls. However, total CREB protein was 

significantly decreased in both the cytoplasmic (Figure 12C; p=0.009) and the nuclear 

(Figure 12D; p=0.008) fractions following Aβ treatment compared to controls. 
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Figure 10: Aβ significantly down-regulates CREB mRNA. Following treatment of 

differentiated SH-SY5Y cells with 5µM oligomeric Aβ, CREB mRNA was significantly 

reduced (Students t-test; **p=0.009). CREB mRNA expression was normalized to β-actin 

mRNA for each sample. Error bars represent S.E.M. n=6/group. This experiment was 

carried out 3 times with similar group sizes and results. 

 

 

 

 

 

 

!

Figure 3:!Aβ significantly down-regulates CREB mRNA. Following treatment of differentiated 
SH-SY5Y cells with 5µM oligomeric Aβ, CREB mRNA was significantly reduced (Students t- test; 
**p=0.009). CREB mRNA expression was normalized to β-actin mRNA for each sample. Error bars 
represent S.E.M. n=6/group 
!
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Figure 4: Aβ treatment does not affect phosphorylation of CREB. Following treatment with 5µM 
oligomeric Aβ there was no difference in A) pCREB133 levels (Students t-test; p=0.65) or B) 
pCREB129 levels (Student’s t-test; p=0.43). Error bars represent S.E.M. n=18/group 
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Figure 4: Aβ treatment does not affect phosphorylation of CREB. Following treatment with 5µM 
oligomeric Aβ there was no difference in A) pCREB133 levels (Students t-test; p=0.65) or B) 
pCREB129 levels (Student’s t-test; p=0.43). Error bars represent S.E.M. n=18/group 
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Figure 11: Aβ treatment does not affect phosphorylation of CREB. Western blot 

analysis of vehicle (V) and Aβ (A) treated SH-SY5Y cells revealed that, following 

treatment with 5µM oligomeric Aβ, there was no difference in A) pCREB133 levels 

(Students t-test; p=0.65) or B) pCREB129 levels (Student’s t-test; p=0.43) compared to 

untreated controls. Graphs represent integrated intensity of each target as defined by 

densitometric counts/mm2. Error bars represent S.E.M. n=18/group. These experiments 

were carried out 3 times with similar group sizes and results.  
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Figure 5: Aβ does not sequester CREB outside the nucleus; Total CREB protein is decreased by 
Aβ treatment. Following treatment with 5µM oligomeric Aβ there was no difference in pCREB133 
levels in either the A) cytoplasmic fraction (Student’s t-test; p=0.55) or B) nuclear fraction (Student’s 
t-test; p=0.39) of differentiated SH-SY5Y cells. Conversely, 5µM oligomeric Aβ treatment resulted in 
significantly reduced total CREB protein in both the C) cytoplasmic fraction (Student’s t-test; 
**p=0.009) and D) nuclear fraction (Student’s t-test; **p=0.008). Error bars represent S.E.M. n=4-
5/group.  
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Figure 12: Aβ does not sequester CREB outside the nucleus; Total CREB protein is 

decreased by Aβ treatment. Western blot analysis of vehicle (V) and Aβ (A) treated SH-

SY5Y cells revealed that, following treatment with 5µM oligomeric Aβ, there was no 

change in pCREB133 levels in either A) cytoplasmic fraction (Student’s t-test; p=0.55) or 

B) nuclear fraction (Student’s t-test; p=0.39) of differentiated SH-SY5Y cells compared 

to untreated controls. Conversely, 5µM oligomeric Aβ treatment resulted in significantly 

reduced total CREB protein in both the C) cytoplasmic fraction (Student’s t-test; 

**p=0.009) and D) nuclear fraction (Student’s t-test; **p=0.008). Graphs represent 

integrated intensity of each target as defined by densitometric counts/mm2. Error bars 

represent S.E.M. n=4-5/group. 
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4.1.3  Activation of PKA, but not inactivation of GSK3β, prevented Aβ-induced down-

regulation of BDNF  

An inhibitor of GSK3β or activator of PKA was added in conjunction with Aβ42 

treatment to determine if manipulating either pathway could prevent Aβ-induced BDNF 

down-regulation. CT 99021 is a potent inhibitor of GSK3β that prevents phosphorylation 

of GSK3β substrates (Bain et al., 2007). Cells were exposed to either 2µM CT 99021 

alone or in combination with Aβ42 and compared to both Aβ42 alone and vehicle treated 

groups. CT 99021-treated SH-SY5Y cells exhibited significantly reduced activation of 

GSK3β, as indicated by significantly increased levels of β-catenin (normalized to alpha-

tubulin), which active GSK3β works to decrease, compared to control cells (Figure 13A; 

p=0.012). There was no effect of CT 99021 treatment on BDNF expression in the absence 

of Aβ (Figure 13B; p=0.50).  Furthermore, CT 99021 inactivation of GSK3β was not 

sufficient to prevent Aβ-induced down-regulation of BDNF, as there was no difference 

between cells treated with Aβ and those treated with Aβ+CT 99021 (Figure 13B; p=0.87).  

Forskolin, a selective activator of adenylate cyclase (Seamon and Daly, 1981; 

Vitolo et al., 2002), was used to activate PKA. Following treatment with 30µM forskolin, 

differentiated SH-SY5Y cells exhibited significantly increased activation of PKA, as 

indicated by significantly increased pCREB133 levels (normalized to total CREB), 

compared to control cells (Figure 14A; p<0.001). However, there was no effect of 

forskolin treatment on BDNF expression in the absence of Aβ (Figure 14B; p=0.86). 

Unlike the inactivation of GSK3β, activation of PKA prior to Aβ administration was 

sufficient to prevent Aβ-induced BDNF down-regulation. Cells treated with Aβ42 alone 
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had significantly lower BDNF mRNA than cells treated with Aβ + forskolin (Figure 14B; 

p=0.01). However, when forskolin was administered 24 hours after Aβ administration (a 

time at which BDNF was down-regulated compared to vehicle-treated cells, data not 

shown; p=0.006), forskolin was not able to rescue Aβ-induced BDNF down-regulation. 

Cells exposed to forskolin after Aβ treatment exhibited BDNF levels that were not 

significantly different from cells treated with Aβ42 alone (Figure 14C; p=0.654). 
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Figure 13: Inhibiting GSK3β is not sufficient to prevent Aβ-induced BDNF down-

regulation. Treating differentiated SH-SY5Y cells with 2µM CT 99021 was sufficient to 

A) significantly decrease GSK3β activity as measured by increased levels of β-catenin 

levels (normalized to alpha-tubulin) (Student’s t-test; *p=0.012). Western blot analysis 

was performed on all groups: vehicle (V), Aβ alone (A), CT 99021 (C) and Aβ+CT (AC).  

CT 99021 was unable to rescue Aβ-induced BDNF down-regulation: B) Aβ alone and 

Aβ+CT significantly down-regulated BDNF compared to control cells (one-way ANOVA 

and post-hoc Tukey’s test **p<0.001). Error bars represent S.E.M. n=5-6/group.  
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Figure 6: Inhibiting GSK3β is not sufficient to prevent Aβ-induced BDNF down-regulation. Treating 
differentiated SH-SY5Y cells with 2µM CT 99021 was sufficient to A) significantly decrease GSK3β activity 
as measured by phosphorylated β-catenin levels (normalized to alpha-tubulin) (Student’s t-test; *p=0.012). CT 
99021 was unable to rescue Aβ-induced BDNF down-regulation: B) Aβ alone and Aβ+CT significantly 
down-regulated BDNF compared to control cells (one-way ANOVA and post-hoc Tukey’s test **p<0.001). 
Error bars represent S.E.M. n=5-6/group.  
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Figure 6: Inhibiting GSK3β is not sufficient to prevent Aβ-induced BDNF down-regulation. Treating 
differentiated SH-SY5Y cells with 2µM CT 99021 was sufficient to A) significantly decrease GSK3β activity 
as measured by phosphorylated β-catenin levels (normalized to alpha-tubulin) (Student’s t-test; *p=0.012). CT 
99021 was unable to rescue Aβ-induced BDNF down-regulation: B) Aβ alone and Aβ+CT significantly 
down-regulated BDNF compared to control cells (one-way ANOVA and post-hoc Tukey’s test **p<0.001). 
Error bars represent S.E.M. n=5-6/group.  
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Figure 14: Activating PKA is sufficient to prevent but not rescue Aβ-induced BDNF 

down-regulation. A) Treating differentiated SH-SY5Y cells with 30µM forskolin 

significantly increased PKA activity as measured by phosphorylated CREB Ser-133 

levels (normalized to total CREB) (Students t-test; **p<0.001). Western blot analysis was 

performed on all groups: vehicle (V), Aβ alone (A), forskolin (F) and Aβ+forskolin (AF). 

B) Aβ alone significantly down-regulated BDNF compared to control cells (one-way 

ANOVA and post-hoc Tukey’s test *p=0.02), but when forskolin was administered prior 

to Aβ (Aβ+forskolin), this treatment resulted in levels of BDNF mRNA that were not 

significantly different from control cells (one-way ANOVA and post-hoc Tukey’s test, 

p=0.86). Error bars represent S.E.M. n=5-6/group. C) Administration of forskolin 24 hr 

following Aβ did not rescue BDNF levels. Both Aβ alone (one-way ANOVA and post-

hoc Tukey’s test **p<0.001) and Aβ+forskolin (one-way ANOVA and post-hoc Tukey’s 

test **p=0.006) groups had significantly reduced BDNF mRNA normalized to β-actin 

mRNA. Error bars represent S.E.M. n=6/group.  
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4.2 OBJECTIVE 2: 

 

4.2.1 Over-expression of wild-type tau in transgenic mice down-regulates BDNF 

hTau and 8c-het transgenic mice both over-express human, wild-type tau, but 8c-

het mice are on a heterozygous mouse tau background whereas hTau mice are on a 

homozygous mouse tau knockout (KO) background (Andorfer et al., 2003; Duff et al., 

2000). The expression of tau in 8c-het and hTau mice and lack of tau expression in tau 

KO mice was confirmed via Western blotting (Figure 15A).   In both of these transgenic 

tau over-expressing mouse models, BDNF mRNA was significantly down-regulated 

[hTau mice vs. wild-type mice (GLM and post hoc Tukey’s test, p=0.006) and 8c-het 

mice vs. wild-type mice (GLM and post hoc Tukey’s test, p=0.017); Figure 15]. BDNF 

mRNA levels, however, did not differ between TauKO mice and non-transgenic controls 

(GLM and post hoc Tukey’s test, p=0.537, Figure 15B). 
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Figure 15: Expression of human, wild-type tau in transgenic mice down-regulates 

BDNF expression. A) Both 8c-het and hTau mice express TBS-soluble tau protein as 

measured via Western blot, while TauKO mice are completely devoid of tau protein 

expression. B) Both 8c-het (*p=0.017) and hTau (**p=0.006) transgenic mice show 

significantly down-regulated BDNF mRNA compared to non-transgenic controls. There 

was no significant difference in BDNF expression between TauKO mice and non-

transgenic controls (p=0.537). Generalized Linear Model (GLM) and post hoc Tukey’s 

test.  Error bars represent S.E.M. n=11-15/group.  
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4.2.2 Tau-induced BDNF down-regulation is independent of age  

Tau-induced neurotoxicity is thought to precede the formation of NFTs (Gomez-

Isla et al., 1996; Yoshiyama et al., 2007). Further, loss of BDNF is an early event in the 

progression of AD, occurring in mild cognitive impairment (MCI) and in mouse models 

of amyloid-β and tau over-expression prior to the formation of plaques and NFTs (Francis 

et al., 2012; Peng et al., 2005). In this study, mice sampled were between 3 and 16 

months of age. This age range was intentionally large to determine if BDNF expression 

preceded the development of NFTs in the hTau animals. Our findings support the early 

loss of BDNF expression in both 8c-het and hTau mouse models, where BDNF levels are 

consistently lower than non-transgenic control animals across all ages tested. 

Furthermore, our results support the toxicity of soluble tau, prior to the formation of 

NFTs in hTau mice (Figure 16). There was no correlation between age and BDNF 

expression in non-transgenic control animals (Pearson correlation r=0.22, p=0.438; 

Figure 16A), 8c-het mice (Pearson correlation r=-0.24, p=0.345; Figure 16B) or hTau 

mice (Pearson correlation r=-0.12, p=0.690; Figure 16C).   
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Figure 16: Tau-induced BDNF loss is an early event, prior to the formation of NFTs 

in hTau mice. Both 8c-het and hTau transgenic mice show significantly down-regulated 

BDNF expression, compared to control mice, starting at the earliest developmental age 

tested. BDNF expression (normalized to β-actin) in these tau over-expressing transgenic 

models, as well as in non-transgenic control mice, does not correlate with age.  There was 

no correlation between BDNF expression and age in A) non-transgenic control mice 

(Pearson correlation r=0.22, p=0.438, B) 8c-het mice (Pearson correlation r=-0.24, 

p=0.345) or C) hTau animals (Pearson correlation r=-0.12, p=0.690). 
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4.2.3 Over-expression of wild-type tau in transfected human cells down-regulates total 

BDNF and BDNF transcript IV 

Tau-transfected, differentiated SH-SY5Y cells expressed significant amounts of 

V5 protein compared to non-transfected, V5-negative controls (Figure 17A), which was 

indicative of the presence of hTau40-V5-pcDNA3.2 plasmid in the transfected cells 

following differentiation (Figure 17B).  

BDNF mRNA was significantly down-regulated in wild-type human tau hTau40-

transfected SH-SY5Y cells compared to non-transfected controls (Student’s t-test, 

p<0.0001; Figure 17C).  Additionally, BDNF Transcript IV mRNA was also significantly 

decreased in these wild-type tau over-expressing human neuroblastoma cells compared to 

controls (Student’s t-test, p<0.0001; Figure 17D).  
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Figure 17: Human neuroblastoma cells over-expressing wild-type human tau down-

regulate BDNF and BDNF Transcript IV expression. A) SH-SY5Y cells transfected 

with hTau40-V5-pcDNA3.2 plasmid (H) express V5-tagged protein that was absent from 

non-transfected control cells (C) B) Fluorescent micrograph depicting V5-tagged human 

tau proteins (green) and DAPI-stained nuclei (blue) in hTau40-V5-pcDNA3.2 transfected 

SH-SY5Y cells after 30 days of selection with G418. C) BDNF mRNA (normalized to β-

actin) compared to controls (Student’s t-test, **p<0.0001) and C) BDNF Transcript IV 

mRNA (normalized to β-actin) compared to controls (Student’s t-test, **p<0.0001). Error 

bars represent S.E.M. n=9/group.	
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4.3 OBJECTIVE 3:  

 

4.3.1 Aβ over-expressing APP23 mice significantly down-regulate BDNF  

BDNF mRNA was significantly reduced in APP23 mice compared to wild-type 

animals (one-way ANOVA and post hoc Tukey’s test, p=0.017; Figure 18). In agreement 

with previous reports of Aβ-induced BDNF down-regulation in vitro and in vivo (Garzon 

and Fahnestock, 2007; Tong et al., 2004), the over-expression of Aβ in APP23 mice was 

sufficient to significantly decrease BDNF expression. 

 

4.3.2 Tau partially mediates Aβ-induced BDNF down-regulation  

While APP23 mice significantly down-regulate BDNF, crossing these APP23 

mice with TauKO mice partially rescued BDNF levels, as BDNF expression in 

APP23xTauKO mice was intermediate between non-transgenic control mice and APP23 

mice and was not statistically different from non-transgenic mice (one-way ANOVA and 

post hoc Tukey’s test, p=0.128; Figure 18).  
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Figure 18: Tau partially mediates Aβ-induced down-regulation of BDNF expression. 

Over-expression of Aβ in APP23 transgenic mice resulted in a significant reduction of 

BDNF mRNA compared to non-transgenic animals (one-way ANOVA and post hoc 

Tukey’s test *p=0.017). However APP23xTauKO mice expressed levels of BDNF 

mRNA that were intermediate between wild-type and APP23 mice and were no different 

from non-transgenic animals (one-way ANOVA and post hoc Tukey’s test p=0.262). 

Error bars represent S.E.M. n=5-9/group. 
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CHAPTER 5: DISCUSSION 
 
 
 
5.1 OBJECTIVE 1 
 
 In Alzheimer’s disease, soluble aggregated amyloid-β is thought to be the primary 

neurotoxic insult leading to synaptic loss and neurodegeneration. However, the 

mechanisms that lead from Aβ aggregation to the pathological and physical symptoms of 

AD are not clear. In this study, we confirmed that oligomeric Aβ significantly down-

regulates basal BDNF transcription (Garzon and Fahnestock, 2007) and determined the 

mechanism. While previous work has examined the regulation of CREB and BDNF 

following cell stimulation (Vitolo et al., 2002; Tong et al., 2004), this work focuses on 

unstimulated regulation of BDNF. BDNF is sorted into vesicles of both the constitutive 

and regulated protein secretion pathways (Brigadski et al., 2005; Heymach et al., 1996; 

Mowla et al., 2001; Mowla et al., 1999; Thomas and Davies, 2005). Further, the 

localization of different BDNF transcripts within a neuron is altered following cell 

stimulation, which is thought to be crucial for conferring spatial and temporal specificity 

to the different effects of BDNF (Baj et al., 2013; Tongiorgi et al., 2006). As such, 

understanding the regulation of basal levels of BDNF in the absence of exogenous 

stimulation is also critical. Further, the dramatic down-regulation of BDNF in AD is not 

solely activity-dependent. The data presented here demonstrate a new mechanism for Aβ-

induced BDNF down-regulation, different from its activity-dependent regulation. 
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5.1.1  Oligomeric Aβ1-42 down-regulates basal BDNF expression without affecting cell 

viability  

 In this study, we used retinoic acid (RA)-differentiated human neuroblastoma SH-

SY5Y cells to replicate previous findings that sub-toxic treatment with oligomeric 

amyloid-β results in significant reduction of basal BDNF expression (Garzon and 

Fahnestock, 2007). RA-differentiated SH-SY5Y cells were chosen because they exhibit 

neuronal morphology, express BDNF and its receptor TrkB and are dependent on BDNF 

for survival (Encinas et al., 2000; Feng et al., 2001; Kaplan et al., 1993). Further, the 

response of these cells to Aβ treatment mirrors that of human cortical neurons (Lambert et 

al., 1994). In addition, using this immortalized cell line allows for further manipulations 

to these cells, such as stable transfections, which traditionally have very low efficiency in 

primary neuronal cultures. Here, these differentiated SH-SY5Y cells were treated with 

5µM Aβ, specifically because this concentration has been shown to disrupt cellular 

signaling (Tong et al., 2001, 2004) and has been shown previously in our lab to 

specifically down-regulate BDNF mRNA (Garzon & Fahnestock 2007) without resulting 

in cell death.  Treatment with this sub-toxic dose of Aβ allows us to demonstrate that 

basal BDNF expression is down-regulated by Aβ specifically and not as a consequence of 

cell death.  The down-regulation of BDNF was quantified via qRT-PCR, which allows for 

an accurate assessment of the quantity of BDNF mRNA. This study did not include an 

analysis of BDNF protein via Western blot to correlate with the decreased BDNF 

expression, given a lack of specific BDNF protein antibodies commercially available at 

this time. However, we know from previous work in our lab and other reports that both 
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cortical BDNF mRNA (Holsinger et al., 2000; Garzon et al., 2002; Yamashita et al., 

1999) and BDNF protein (Connor et al., 1997; Ferrer et al., 1999) are down-regulated in 

Alzheimer’s disease, suggesting that the reduction in BDNF mRNA correlates with 

reduced BDNF protein. BDNF expression under sub-toxic Aβ conditions is reduced by 

half (Figure 9), approximating the amount of BDNF decrease found in cortex of 

Alzheimer’s disease patients (Holsinger et al., 2000).  This degree of BDNF down-

regulation is consistent with the notion that BDNF reduction still allows neurons to 

survive, albeit with reduced function, producing synaptic loss and memory dysfunction 

long before frank cell loss (Fahnestock, 2011).  

It has been shown previously that RA-differentiated SH-SY5Y cells express all 

seven BDNF transcripts tested at similar levels as in human cortical tissue, with BDNF 

transcript IV accounting for more than half the total BDNF expressed (Garzon and 

Fahnestock, 2007). BDNF transcript IV is not only the most highly expressed BDNF 

transcript in RA-induced SH-SY5Y cells and in human cortex, but it is significantly 

reduced in AD and following Aβ treatment (Garzon et al., 2002; Garzon and Fahnestock, 

2007). BDNF transcript IV is regulated at least in part through CREB (Pruunsild et al., 

2011; Shieh et al., 1998; Tao et al., 1998). The phosphorylation and subsequent activation 

of CREB results from the activity of several kinase pathways including PKA, PKC and 

PI3K/AKT (Walton and Dragunow, 2000). 
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5.1.2 Aβ treatment of differentiated SH-SY5Y cells decreases CREB transcription but 

does not alter CREB phosphorylation or nuclear localization  

 It has been shown that following cell stimulation, Aβ can inactivate PKA in vitro, 

which decreases pCREB133 (Vitolo et al., 2002). Aβ also inhibits the Ras/ERK and 

PI3K/AKT pathways (Tong et al., 2004), thereby decreasing CREB activation by 

increasing GSK3β activity and pCREB129 levels. While the inactivation of CREB via 

phosphorylation may play an important role in the effect of Aβ on stimulated cells in 

vitro, we show here that the levels of phosphorylated CREB (both pCREB133 and 

pCREB129) are unaffected by Aβ treatment in the absence of cell stimulation. 

Understanding the regulation of basal levels of BDNF in the absence of stimulation 

remains critically important, as the dramatic down-regulation of BDNF in AD is not 

solely activity-dependent. Results here suggest that Aβ-induced basal BDNF down-

regulation is not mediated by changes in CREB phosphorylation. Thus, Aβ reduces basal 

and activity-induced BDNF expression by different mechanisms, which implies that 

therapeutic interventions targeting BDNF regulation in AD must consider both 

mechanisms of Aβ-induced BDNF down-regulation in order to be fully effective.    

 Another mechanism of transcription factor inactivation is their sequestration outside 

of the nucleus. For example, the transcription factor SFPQ is sequestered in the cytoplasm 

in AD and in mutated tau-transfected SH-SY5Y cells (Ke et al., 2012). Additionally, 

mutant huntingtin sequesters CREB binding protein (CBP), preventing it from entering 

the nucleus to enhance CREB binding (Choi et al., 2012). We investigated whether Aβ 

could sequester CREB outside the nucleus, but instead we found that the levels of total 
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CREB in both the nucleus and the cytoplasm of Aβ-treated cells were significantly lower 

than in control cells. Thus, CREB is not sequestered in the cytoplasm, but rather the 

amount of total CREB protein in the cell is reduced following treatment with Aβ 

oligomers. This was verified by our finding that Aβ treatment significantly down-

regulates CREB mRNA. Reduced CREB, in turn, significantly decreases BDNF 

transcription.  

 CREB is an essential component of molecular pathways required for learning and 

memory (Barco et al., 2003). Therefore, down-regulation of CREB by Aβ is expected to 

lead to cognitive deficits in AD. While it was long believed that CREB regulation was 

mediated only by phosphorylation, there have been several reports of CREB 

transcriptional regulation (Brecht et al., 1994; Walker et al., 1995; Widnell et al., 1996; 

Widnell et al., 1994). It has been reported that CREB mRNA expression may be regulated 

at least in part by activation of the cAMP pathway (Widnell et al., 1996; Widnell et al., 

1994). However, this finding was shown to be dependent on the cell type used (Coven et 

al., 1998; Widnell et al., 1996). Recent findings have shown that CREB transcription is 

reduced in both AD post-mortem hippocampal tissue and in Aβ-treated rat hippocampal 

neurons (Pugazhenthi et al., 2011). Our work confirms these data in an Aβ-treated human 

neuroblastoma cell line. The current report is the first to show that this Aβ-induced CREB 

mRNA down-regulation is associated with the significant down-regulation of basal levels 

of BDNF expression. It has been suggested that Aβ may down-regulate CREB 

transcription via oxidative stress, as pre-incubation of neurons with the antioxidant N-

acetyl cysteine prevented Aβ-induced decreases in CREB mRNA (Pugazhenthi et al., 
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2011).   

 

5.1.3 Activation of PKA, but not inactivation of GSK3β, prevented Aβ-induced down-

regulation of BDNF  

While others have shown that both the activating phosphorylation of CREB 

(Vitolo et al., 2002) and inactivating phosphorylation of CREB (DaRocha-Souto et al., 

2012) play an important role in Aβ-induced toxicity, we show here that in the absence of 

cell stimulation, Aβ has no effect on the phosphorylation of CREB. This importantly 

distinguishes that basal and activity-induced BDNF down-regulation rely on different 

mechanisms. Furthermore, while inactivating GSK3β and thus reducing pCREB129 has 

no effect on Aβ’s ability to down-regulate basal BDNF, increasing the levels of 

pCREB133 using forskolin prior to Aβ addition can prevent Aβ-induced BDNF down-

regulation. However, if administered after Aβ-induced BDNF down-regulation, forskolin 

is unable to rescue BDNF expression. This result supports the view that altering CREB 

phosphorylation after Aβ down-regulates CREB transcriptionally is not sufficient to 

rescue Aβ-induced basal BDNF down-regulation. 

 
 
5.1.4 Significance 
 

While brain-derived neurotrophic factor is significantly down-regulated in 

Alzheimer’s disease and the amount of BDNF decrease is directly correlated with the 

degree of cognitive decline (Peng et al., 2005), the mechanism of basal BDNF down-

regulation remained unclear. However, our current findings reveal a novel mechanism of 
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BDNF down-regulation, which could lead to new methods to combat BDNF decline in 

Alzheimer’s disease. Increasing BDNF levels has been shown to greatly improve learning 

and memory deficits in animal models (Ando et al., 2002; Blurton-Jones et al., 2009; 

Fahnestock et al., 2012; Nagahara et al., 2013; Nagahara et al., 2009). Further, increasing 

CREB activity via viral delivery of CREB activators, CBP (Caccamo et al., 2010; Espana 

et al., 2010) and CRTC1 (Espana et al., 2010), has successfully reversed synaptic atrophy 

and learning and memory impairments in transgenic mice. These findings highlight the 

possibility that increasing BDNF expression by modulating CREB mRNA levels in AD, 

even after clinical onset of the disease, could rescue memory impairments and cognitive 

function.  

 
 
5.2 OBJECTIVE 2  
 
 

In AD, although the primary insult may be Aβ over-expression, ultimately 

cognitive dysfunction and neurodegeneration are thought to be a result of alterations in 

tau (Gotz, 2001; Iqbal and Grundke-Iqbal, 2008; Lewis et al., 2001; Masliah et al., 2001; 

Pennanen and Gotz, 2005; Roberson et al., 2011). However, the mechansims that lead 

from alterations in tau to the cognitive symptoms of AD are not clear. Our lab has 

previously shown that there is decreased BDNF mRNA and protein in the parietal cortex 

of human tauopathy (PiD and CBD) patients (Belrose et al., 2014).  In tauopathies, we 

reported down-regulation of BDNF transcript IV, which is largely regulated by CREB-

mediated transcription (Pruunsild et al., 2011; Shieh et al., 1998; Tao et al., 1998). In the 

present study, we demonstrate that soluble, wild-type tau significantly down-regulates 
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BDNF transcription in vitro and in vivo.  Furthermore, we determined that tau down-

regulates BDNF transcript IV in vitro.   

 
 
5.2.1 Over-expression of wild-type tau in transgenic mice down-regulates BDNF 
 
 Both 8c-het and hTau transgenic mice significantly down-regulate BDNF mRNA 

compared to non-transgenic control animals. These results importantly demonstrate that 

the over-expression of wild-type tau devoid of mutations is sufficient to cause 

neurotrophin dysregulation. Historically, the majority of research into understanding tau 

toxicity has focused on both transgenic animal and cell culture models harboring disease-

causing tau mutations, such as transgenic mice expressing the P301L tau mutation (Lewis 

et al., 2000) or mutated Tau441 cell lines (Loffler et al., 2012). In contrast, the current 

study focuses on wild-type tau toxicity, which highlights that without any mutation, the 

over-expression of wild-type tau, whether induced by Aβ or some other toxic insult, is 

capable of down-regulating BDNF, which is highly relevant to understanding the 

pathophysiology of sporadic AD, by far the most common form of this neurodegenerative 

disease.  

 
 
5.2.2 Tau-induced BDNF down-regulation is independent of age 
 

The results presented here further demonstrate that tau-induced BDNF down-

regulation is an early event. The down-regulation of BDNF in both the 8c-het and hTau 

animals observed was independent of the ages examined. An intentionally large age range 

was used for these transgenic animals to determine whether BDNF down-regulation was 
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correlated with age. Previously our lab reported that BDNF down-regulation is an early 

event in the progression of AD (Peng et al., 2005). This is supported here by findings that 

BDNF was down-regulated in tau over-expressing transgenic mice from the earliest ages 

examined.  Specifically the down-regulation of BDNF in hTau mice younger than 15 

months, the age at which NFT formation is initiated, supports that tau down-regulates 

BDNF prior to the formation of NFTs. This is consistent with a previous report of cell 

death in the hTau model preceding the formation of NFTs (Andorfer et al., 2005). The 

present study is the first to demonstrate early and persistent neurotrophin dysregulation by 

soluble tau.   

5.2.3 Tau-induced BDNF down-regulation is independent of the formation of NFTs 

By examining the age of BDNF down-regulation in hTau animals we determined 

that BDNF is down-regulated prior to the formation of NFTs. However, we also 

determined more directly that tau-induced BDNF down-regulation is independent of the 

formation of NFTs by examining tau-induced BDNF down-regulation in 8c-het mice, 

which do not develop NFT pathology. It has previously been shown that significant 

synaptic loss can occur prior to NFT formation (Yoshiyama et al., 2007). Furthermore, in 

AD before the formation of NFTs, neuronal loss can be detected along with the presence 

of tau oligomers (Gomez-Isla et al., 1996), suggesting that soluble, aggregated tau species 

are neurotoxic. In addition, both 8c-het mice (Andorfer et al., 2005) and a Drosophila 

tauopathy model (Wittmann et al., 2001) exhibit neurodegeneration despite their lack of 

NFT-like tau pathology. Lastly, hTau mice begin to experience neuronal cell loss prior to 

the onset of NFT pathology, supporting the notion that NFTs are not the primary cause of 
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neurodegeneration (Andorfer et al., 2005). However, the mechanism of soluble tau 

induced cell death is not clear. In this study, we have shown that both 8c-het and hTau 

mice down-regulate BDNF, and further that their reduction of BDNF is roughly equal. 

These findings provide further evidence that NFTs are not required for toxicity. Rather, 

soluble, hyperphosphorylated tau exerts its toxicity, at least in part, via reduction in 

BDNF expression. 

 

5.2.4 Over-expression of wild-type tau in transfected human cells down-regulates 

BDNF and BDNF transcript IV 

To build upon results obtained using transgenic mice, human neuroblastoma SH-

SY5Y cells were transfected with human wild-type tau to determine if tau is capable of 

down-regulating BDNF in a human culture system. As discussed in Section 5.1.2, 

differentiated SH-SY5Y cells are an excellent model for human cortical neurons, and 

determining the effect of soluble wild-type tau over-expression on these cells is an ideal 

way to understand the effect of tau on BDNF regulation in AD.  Similar to tau over-

expression in transgenic mice, tau over-expressing human SH-SY5Y cells significantly 

down-regulate BDNF mRNA compared to non-transfected control cells. Further, BDNF 

transcript IV was also significantly down-regulated in cells over-expressing wild-type 

human tau. 

BDNF transcript IV is down-regulated in human AD cortical tissue (Garzon et al., 

2002), in mouse models of AD (Peng et al., 2009) and in SH-SY5Y cells treated with Aβ 

(Garzon and Fahnestock, 2007). We know that BDNF transcript IV accounts for 
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approximately half of the total BDNF mRNA found in the cortex (Garzon and 

Fahnestock, 2007; Pruunsild et al., 2007) and is transcriptionally regulated by CREB 

(Pruunsild et al., 2011; Shieh et al., 1998; Tao et al., 1998). The current investigation 

demonstrates that over-expression of wild-type tau alone is capable of down-regulating 

BDNF and that it does so via transcript IV.  Together with our previous findings that 

amyloid-β down-regulates BDNF transcript IV (Garzon and Fahnestock, 2007), these 

results suggest that Aβ and tau may down-regulate BDNF via the same pathway.  

 
 
5.2.5 Significance 

 
The current investigation has established that over-expression of wild-type tau, 

devoid of pathological mutations and prior to the formation of NFTs, down-regulates 

BDNF. This is the first direct report of tau-induced dysregulation of trophic support. 

While the previous investigation from our lab was the first to provide evidence for a link 

between tau and BDNF (Belrose et al., 2014), it was confounded by the limitations of 

post-mortem tissue. A number of contributing factors could result in BDNF down-

regulation in post-mortem tissue, including: the cause of death, post-mortem interval, and 

use of medications or comorbid disorders. The current investigation has eliminated these 

confounds by examining tau over-expression in both transgenic animals and human 

neuroblastoma cells. We demonstrated in both systems that the over-expression of 

soluble, wild-type tau alone causes significant BDNF down-regulation. Taken together 

with our previous findings that amyloid-β down-regulates BDNF (Garzon and 

Fahnestock, 2007; Rosa and Fahnestock, 2015), and findings that tau is a down-stream 
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effector of Aβ (Ittner et al., 2010; Lewis et al., 2001; Masliah et al., 2001; Pennanen and 

Gotz, 2005), these results suggest that Aβ and tau may down-regulate BDNF via the same 

pathway. 

 
 
5.3 OBJECTIVE 3  

 
 
5.3.1 Tau partially mediates Aβ-induced BDNF down-regulation  
 
 Results here demonstrate that Aβ-induced BDNF down-regulation is at least 

partially rescued by the depletion of tau in APP23xTauKO mice. Prior to the current 

investigation, it was known that increased Aβ down-regulates BDNF in both cell culture 

(DaRocha-Souto et al., 2012; Garzon and Fahnestock, 2007; Rosa and Fahnestock, 2015) 

and transgenic mice (Peng et al., 2009). The latter is further supported by the current 

findings that APP23 transgenic mice, which over-express Aβ, also experience a 

significant reduction in BDNF mRNA compared to non-transgenic control animals. 

While this finding was expected based on previous reports of Aβ-induced BDNF down-

regulation, this was the first report that this well-studied model of AD does significantly 

diminish BDNF expression. While this is a significant finding in itself, tau is now thought 

to be down-stream of Aβ and therefore a more direct mediator of neurodegeneration 

(Ittner et al., 2010; Lewis et al., 2001; Masliah et al., 2001; Pennanen and Gotz, 2005). 

Specifically, it has been shown that NFT-like changes can be induced by Aβ in vivo (Gotz 

et al., 2001) and in vitro (Busciglio et al., 1995). Furthermore, Aβ-induced 

neurodegeneration is prevented in primary neuronal cultures from TauKO mice (Rapoport 

et al., 2002), and knocking out tau in a transgenic AD mouse model can block Aβ-
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induced cognitive impairments (Roberson et al., 2007). Whether the rescue of cognitive 

impairment is mediated by BDNF was not tested. In this study we demonstrate that tau 

mediates Aβ-induced BDNF down-regulation, as knocking out tau in APP23 mice 

restores BDNF levels to control values. BDNF levels in APP23xTauKO animals are not 

statistically significantly different from controls; however, they are intermediate between 

APP23 and control animals.  Thus, while our findings demonstrate that tau mediates Aβ-

induced BDNF down-regulation, we cannot rule out the possibility that Aβ also affects 

BDNF levels independently of tau.   

 
 
5.3.2 Significance  

 
This is the first report to show that tau is required for Aβ-induced neurotrophin 

dysregulation. These results suggest that BDNF loss may mediate tau neurotoxicity 

down-stream of Aβ, which greatly increases our understanding of BDNF regulation in 

AD. Additionally, other neurodegenerative diseases are also characterized by pathological 

accumulations of aggregated protein, including α-synuclein in Parkinson’s disease (PD) 

(Polymeropoulos et al., 1997; Spillantini et al., 1997), huntingtin in Huntington’s disease 

(HD) (Davies et al., 1997), and TDP-43 in amyotrophic lateral sclerosis (ALS) (Kwong et 

al., 2007; Neumann et al., 2006). In addition to AD, these neurodegenerative diseases also 

result in a significant down-regulation of BDNF mRNA (Howells et al., 2000; Mogi et 

al., 1999; Zuccato et al., 2001; Zuccato et al., 2008) and protein (Ferrer et al., 2000; Hock 

et al., 2000; Parain et al., 1999; Zuccato et al., 2008). Further, recent evidence 

demonstrates that accumulation of tau is a downstream consequence of protein 
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aggregation and a feature of all these disorders (Constantinescu et al., 2011; Fernandez-

Nogales et al., 2014; Lei et al., 2010; Sengupta et al., 2015; Yang et al., 2003). These 

findings suggest that the current investigation focusing on tau-induced BDNF down-

regulation, which mediates Aβ-induced BDNF down-regulation may have important 

implications for a variety of neurodegenerative diseases.  
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CHAPTER 6: CONCLUSIONS & FUTURE DIRECTIONS  
 
 
6.1   CONCLUSIONS 
 

Brain-derived neurotrophic factor is essential for cognition and memory and is 

decreased early in the progression of a number of neurodegenerative diseases including 

Alzheimer’s disease. The amount of BDNF decrease in Alzheimer’s disease is directly 

correlated with the degree of cognitive decline (Peng et al., 2005). The findings presented 

here have revealed a novel mechanism of Aβ-induced BDNF down-regulation, proven 

that wild-type soluble tau, devoid of any pathological mutations can down-regulate tau 

and determined that tau mediates Aβ-induced BDNF down-regulation. Taken together, 

these findings have greatly improved our understanding of BDNF down-regulation in AD 

and could have profound implications for therapeutic interventions in AD and 

tauopathies, primarily by suggesting that current treatments used to alleviate AD 

symptoms by targeting Aβ pathology alone may not be sufficient. Rather, targeting tau as 

a therapeutic approach in AD may be a more direct way to interrupt BDNF down-

regulation, and also the subsequent impairments in memory and cognition. Further, 

evidence of the accumulation of tau as a downstream consequence of protein aggregation 

in other neurodegenerative diseases, such as HD, PD and ALS and the subsequent down-

regulation of BDNF in these diseases, suggest that the understanding of tau-induced 

BDNF down-regulation revealed here may not only be important for therapeutic 

intervention in AD, but in a variety of neurodegenerative disorders. 
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6.2 FUTURE DIRECTIONS 
 
 

This work has exposed a novel mechanism of Aβ-induced BDNF down-regulation 

and determined that soluble, wild-type tau is capable of down-regulating BDNF. Beyond 

expanding our current understanding of BDNF down-regulation in AD, this work has 

opened up several avenues for future experimentation. At the forefront is to determine 

what pathological modification of tau is required for tau-induced BDNF down-regulation 

and to begin to elucidate a mechanism of tau-induced BDNF down-regulation as was 

done for Aβ. As such, the most direct future directions to expand on this work would 

answer the following questions: 1) which pathological modification of tau is required for 

tau-induced BDNF down-regulation? 2) Does dysregulated CREB mediate tau-induced 

BDNF down-regulation? 3) Does tau interfere with BDNF axonal transport?  

 

6.2.1  Which pathological modification of tau is required for tau-induced BDNF down-

regulation?  

 There are a number of post-translational modifications of tau that may be required 

for tau toxicity, and specifically for tau-induced BDNF down-regulation. Namely, 

hyperphosphorylation, aggregation and truncation of tau are all increased in AD (Buee et 

al., 2000; Hrnkova et al., 2007; Kolarova et al., 2012; Sergeant et al., 2008). As such, it 

would be a suitable follow-up from the current investigation to determine which of these 

modifications of tau is required for tau-induced BDNF down-regulation. It is 

hypothesized here that hyperphosphorylation, aggregation and/or truncation are required 

for BDNF-down-regulation. To address this hypothesis, human neuroblastoma SH-SY5Y 
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cells will be transfected with mutated tau plasmids following the same protocol used in 

Objective 2 of the presented research. These tau plasmids will be mutated either at 

specific epitopes that are known to be hyperphosphorylated in AD, or sites required for 

tau aggregation and/or truncation. The mutations at these specific epitopes will prevent 

the hyperphosphorylation, aggregation and/or truncation of tau. Therefore, if any of these 

pathological modifications of tau are required for tau-induced BDNF down-regulation, 

BDNF levels will be rescued in cells expressing mutated tau when compared to cells 

expressing wild-type tau, which I have shown here significantly down-regulate BDNF. 

Overall, this future direction will help to determine which pathological modifications of 

tau mediate tau-induced BDNF down-regulation. This information will significantly 

impact our ability to intervene with tau-induced BDNF down-regulation. For instance, if 

the aggregation of tau alone mediates BDNF down-regulation, inhibiting the aggregation 

of tau alone may rescue BDNF levels.  

 
 
6.2.2   Does dysregulated CREB mediate tau-induced BDNF down-regulation?  
 
 In order to understand how wild-type, soluble tau is capable of down-regulating 

BDNF, another future direction is to determine if CREB mediates tau-induced BDNF 

down-regulation. Objective 1 of the presented work highlighted the importance of CREB 

in Aβ-induced BDNF down-regulation, Objective 2 demonstrated that tau down-regulates 

BDNF transcript IV, transcription of which is predominantly controlled by CREB and in 

Objective 3 it was determined that tau mediates Aβ-induced BDNF down-regulation. As 

such, the next step should be to investigate the role of CREB in tau-induced BDNF down-
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regulation. It is hypothesized here that the inactivation of CREB or decreased 

transcription of CREB mediates tau-induced BDNF down-regulation. To address this 

hypothesis, CREB mRNA and phosphorylation levels (both of activating pCREB133 

levels and inactivating pCREB129 levels) can be quantified from the hTau-transfected 

human SH-SY5Y cells developed in the current investigation. This suggested future 

direction would help to elucidate the mechanism of tau-induced BDNF down-regulation.  

 
 
6.2.3   Does tau interfere with BDNF axonal transport?  
 

Another possible mechanism of tau toxicity is its ability to impair axonal 

transport. This may result from a gain-of-toxic function whereby aggregated tau 

physically interferes with intracellular transport (Wolfe, 2012) or a loss-of-function 

resulting from tau detachment from MTs and consequent MT instability (Alonso et al., 

1996). In AD, the loss of cholinergic neurons in the basal forebrain and their projections 

to the cortex and hippocampus underlie learning and memory impairments (Bierer et al., 

1995; Coyle J., 1983; Fahnestock, 2011). While the cause basal forebrain cholinergic 

neuron (BFCN) death is not clear, it is known that BFCNs receive trophic support via 

connections with the hippocampus and cortex (DiStefano et al., 1992; Lapchak et al., 

1993; Seiler and Schwab, 1984) and that these connections are critical for learning, 

memory and attention (Baxter and Chiba, 1999). As such, it is hypothesized here that 

pathological forms of tau result in neuronal and synaptic degradation of cholinergic 

neurons by specifically impeding BDNF axonal transport, resulting in learning and 

memory impairments. To address this hypothesis, we will grow BFCNs from hTau mice 
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in microfluidic chambers (Figure 19). The axon terminals of cells grown in microfluidic 

chambers are isolated from cell bodies, which allows for the study of retrograde transport 

within axons, without dendritic or somal contamination (Taylor et al., 2005). BFCNs 

from hTau or wild-type animals will be grown on the somal side of the chambers, and 

will extend axons through microgrooves that can be microscopically imaged. We will 

then compare the efficiency of BDNF trafficking in these tau over-expressing (hTau) 

neurons compared to wild-type cells. Efficiency of BDNF trafficking will be assessed by 

quantifying the speed, direction and amount of axonal transport of fluorescently labeled 

BDNF-GFP added to the axonal compartment of the chambers using Metamorph 

software. I have optimized conditions for growth of BFCNs as well as use of microfluidic 

chambers. Completing this future direction will help us to understand whether tau 

interferes with BDNF axonal transport as a mechanism of cellular and synaptic 

degeneration.  
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Figure 19: Microfluidic chambers allow for isolation of axon terminals from cell 

bodies. Cells are plated in the two wells on the somal side of the chamber and will grow 

in the channel connecting the two wells. Cells will then project axons through 

microgrooves to the axonal side of the chamber. The somal and axonal sides of the 

chamber are microfluidically isolated, as such transfer of proteins from one side of the 

chamber to the other is dependent on axonal transport. (Figure from Taylor et al., 2005). 
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