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Abstract

This thesis studies continuous logic and its application to metric geometry.
An adaptation of continuous logic for unbounded pointed metric spaces is in-
troduced and developed. Background on CAT(k) spaces, asymptotic cones,
symmetric spaces, and buildings is provided. Various de�nability results are
proved regarding geodesic rays and the building structure on them. We con-
clude with a proof of the instability of asymptotic cones of a certain class of
symmetric spaces.
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1. Introduction

This thesis is divided into two parts. The �rst part introduces and develops
a version of continuous logic and model theory for unbounded pointed metric
structures. The second part uses this logic to study important spaces and
constructions in metric geometry.
A version of continuous logic for bounded metric structures was introduced

in [3] and has earlier roots. It is a [0, 1]-valued logic which uses bounded metric
spaces as sorts, and lets the structure carry bounded, uniformly continuous
functions and relations. The quanti�ers in this setting are given by sup and
inf, rather than the ∀ and ∃ quanti�ers of discrete �rst-order logic. Many basic
results from discrete model theory have analogs in this setting. So, it has a
strong claim to the title of �rst order logic for metric structures.
However, many important metric spaces are unbounded, and dealing with

unbounded spaces in this logic is handled in ad hoc or undesirable ways. Usu-
ally, one has to think of the space as an in�nite family of nested, bounded
sorts, or else have some reason to know that a single bounded subset is su�-
cient to understand the space. Including the balls as sorts sometimes imposes
unwelcome structure. The restriction on functions and relations can also be
awkward to work around. For example, addition on the real line would have to
be viewed as an in�nite family of addition functions from balls to larger balls.
In [4], Ben Yaacov addresses these shortcomings. There, he presents a con-

tinuous logic for unbounded metric structures and applies it to study perturba-
tions of norms. Elsewhere, he uses it to study metric valued �elds. Both areas
of study are awkward to work with in the bounded logic. A fundamental issue
in the unbounded setting is the role played by quanti�ers in the logic. Ben
Yaacov handles this by restricting the application of sup and inf quanti�ers to
a subclass of formulas which behaves well.
The version of continuous logic developed in this thesis takes a di�erent

approach. We will focus on unbounded pointed metric spaces. We introduce
new quanti�ers to account for the problems with sup and inf in the unbounded
setting. We also allow a wider class of functions and formulas in our structures
and logic. Ultimately, these functions and formulas are implicitly in the other
versions of continuous logic, but we emphasize their status from the beginning.
This is motivated by the application in the second part of the thesis. There,
we are almost entirely concerned with quantifation over sequences in an un-
bounded space. Our development fundamentally acknowledges this possibility.
We feel this approach provides more agreeable semantics.
The novel content in this development is the de�nition of this wide class

of functions and formulas, the new quanti�ers, working with sequences, and
demonstrating the analogs of basic model theoretic results in this setting.
Many of the basic results can be carried over from the bounded case, or
adapted with little trouble. But there are also many subtleties introduced

1



McMaster University - Mathematics Ph.D. Thesis - M. Luther

in some fundamental notions, most notably in the sections on ultraproducts
and �o±'s Theorem and on de�nable sets.
The second part of this thesis studies CAT(κ) spaces and asymptotic cones

of symmetric spaces of noncompact type. These are fundamental objects in
metric geometry. We review some background material, and then propose a
model theoretic approach to the area. Various de�nability results are proved,
and instability of these asymptotic cones is demonstrated.
CAT(κ) spaces M are spaces with a notion of bounded curvature described

via the comparison of triangles in M with triangles in euclidean spaces, hy-
perbolic spaces, and spheres. The curvature bounds in these spaces makes
them very amenable to geometric arguments that work in the more familiar
spaces. We provide axiomatizations of CAT(κ) spaces in our logic, and prove
several de�nability results for geodesics in CAT(κ) spaces. For example, we
show how in a language with just the distance predicate, we can obtain the
set of geodesic rays in a CAT(0) space as a de�nable set of sequences.
Asymptotic cones were introduced by Gromov in his work [13] characterizing

groups of polynomial growth. A de�nition later in terms of ultra�lters was
given by van den Dries and Wilkie in [19]. The concept has seen ongoing
interest in the decades since. A main reference for us throughout the second
half is the work of Kleiner and Leeb [14], where asymptotic cones of symmetric
spaces are studied as a way to understand the boundary of the space and prove
an important rigidity result. Asymptotic cones are a construction where one
takes a metric space (X, d) and produces a limit space out of the rescaled
metrics (X, d

n
). This is sometimes described intuitively as taking the tangent

space at in�nity, as opposed to the tangent space at a point, which would
be by seen by something like (X,n · d). We check that the asymptotic cone
construction is an ultraproduct in our setting, and prove a few results about
the general construction.
Our interest and work on the cones of symmetric spaces was inspired by the

paper [15] and its main result, which we now state.

Theorem 1.0.1. Suppose G is a connected semisimple Lie group with at least
one absolutely simple factor S with R-rank(S) ≥ 2 and let Γ be a uniform
lattice in G.
If the continuum hypothesis holds, then Γ has a unique asymptotic cone up

to homeomorphism.
If the continuum hypothesis fails, then Γ has 22ℵ0 many asymptotic cones up

to homeomorphism.

This result addresses a question posed by Gromov about when �nitely gen-
erated or �nitely presented groups have unique asymptotic cones. To a model
theorist having familiarity with continuous logic, the result and its proof sug-
gest an instability result. Namely, instability is suggested by the combination
of Theorem 5.6 of [12], a result from [11] which we include as Proposition
4.0.9, and the argument in [15] constructing di�erent ultra�lters to distinguish

2
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order types of a �eld associated to the asymptotic cones. The �rst of these in
particular proves the following.

Theorem 1.0.2. If A is a separable metric structure in a separable language
and the theory of A is stable, then the ultrapowers AU and AV are isomorphic
for any two non-principal ultra�lters U , V on N.

The proof of this result involves showing that the ultrapowers are saturated
(and elementary equivalent since they are both ultrapowers of A), and so must
be isomorphic. In our setting, Bradd Hart suggested an analogous argument
that if the asymptotic cones of Γ were stable for all ultra�lters U , then even
when the continuum hypothesis fails, one would expect elementary equivalence
to imply isomorphism, and so there would be at most 2ℵ0 many asymptotic
cones. Since the result above �nds 22ℵ0 many asymptotic cones, this points to
at least one asymptotic cone being unstable. The argument in [15] then sug-
gests that the instability should come from an ordering in the �eld associated
to the asymptotic cone.
We prove this instability result in the �nal section of the thesis, Section 11.2.

Our general strategy is to interpret the associated �eld in the theory of each
asymptotic cone, and to demonstrate the order property within the �eld.
A substantial amount of the second part of this thesis builds up the back-

ground to discuss the objects involved. We need to know enough about sym-
metric spaces, euclidean and spherical buildings, and projective geometry. We
prove de�nability of geodesics, certain subsets of geodesic rays which capture
the spherical building structure in asymptotic cones of a symmetric space, and
�nally obtain an associated projective plane and the desired �eld.
All of these de�nability results develop a foundation for studying these

spaces via continuous logic. We suspect the meeting of continuous logic with
these spaces has value because of the style of many arguments and importance
of ultraproducts in metric geometry. For example, once familiar with our logic,
one can see de�nability results and special cases of �o±'s Theorem in [14].

3
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Part 1: Model Theory

The �rst part of this thesis develops a version of continuous logic. The ap-
proach is novel, but draws heavily from [5], [3], and [4]. This particular version
is designed for dealing with unbounded, pointed spaces. The guiding motiva-
tion is to obtain a framework for working with �rst-order-de�nable sequences
in ultraproducts of unbounded metric spaces.

2. Unbounded Continuous Logic

Continuous logic is a real-valued logic that fundamentally depends on the
notion of distance rather than equality. The objects it applies to are complete,
pointed metric spaces endowed with functions. But, in order to develop a useful
theory, we have to restrict our attention somewhat. The reason is that we want
to be able to carry out certain limit constructions, and not all functions behave
well under limits.

2.1. A collection of guiding examples. We begin with a few simple ex-
amples to guide the construction of our logic. In each example, we take a
sequence of metric spaces Mn and functions and consider candidates for the
limit spaces M and limit functions. The discussion here is informal and is
meant to develop awareness of key features.

Example 2.1.1. Let Mn = {0, n} with the usual metric d(0, n) = n. There
are two natural candidates for the limit space M :

• One has a point at in�nity, M = {0,∞} where d(0,∞) =∞, but this
is not a metric space.
• The other isM = {0}, which discards the point at in�nity and remains
a metric space.

Example 2.1.2. LetMn = {0, 1
n
} with the usual metric, and let fn be de�ned

by fn(0) = 0 and fn( 1
n
) = 1.

• We could let the limit consist of two distinct points, that isM = {0, 0′}
with d(0, 0′) = 0, and let the limit function be de�ned by f(0) = 0 and
f(0′) = 1. This is not a metric space.
• If M should be a metric space, it should just be M = {0}. In other
words, the sequences (0)n∈N and ( 1

n
)n∈N should be identi�ed. But then

f = lim fn does not have a clear de�nition.

Example 2.1.3. Let Mn = [0, 1] with the usual metric, and fn given by
fn(x) = xn. The limit should be M = [0, 1] with the same metric. In this
case, there is also a seemingly clear candidate for the limit function, namely
the pointwise limit of the fn, which is f with f(x) = 0 for x < 1 and f(1) = 1.
However, f not being continuous leads to some ambiguity. Consider the

sequence (1− 1
n
)n∈N viewed as an element of

∏
n∈NMn. It is reasonable to say

that this sequence tends to 1 ∈ M . But f(1) = 1, while limn→∞ fn(1 − 1
n
) =

e−1 6= 1.

4
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Example 2.1.4. Let Mn = {0} and de�ne functions fn : Mn → R by setting
fn(0) = n. The expected limit space M = limnMn is {0}, but lim fn(0) tends
to in�nity, a value outside of R.

Example 2.1.5. Let Mn be the set {0, 1 − 1
n
} with the usual distance. We

would expect M = {0, 1} as the limit space. Notice that supx,y∈Mn
d(x, y) =

1− 1
n
, and that this sequence has limit 1, which agrees with supx,y∈M d(x, y) =

1.
However, if we instead consider supremums supx,y∈B1(Mn) d(x, y) over the

open ball of radius 1 rather than the entire space (in this case, the closed ball
of radius 1 is the whole space), the sequence is still 1− 1

n
and has limit 1, but

the open ball of radius 1 in M only has a single point and so supx,y∈B1(M) = 0.

Example 2.1.6. Let Mn be the set {0, 1 + 1
n
} with the usual distance. Again,

the limit space should be M = {0, 1}. Similarly to the last example, there is
a supremum which is poorly behaved with respect to the limit, but this time
it is the supremum over the closed ball of radius 1 which is problematic.

Example 2.1.7. For each n ∈ N, let Mn be {0, 1}N, and de�ne fn by

fn(x) = max
k≤n

(xk)

for each x ∈ Mn. For each n, de�ne two elements x, y ∈ Mn which are
themselves sequences (xn,k : k ∈ N) and (yn,k : k ∈ N) as follows.

xn,k =


0 when k < n

0 when k = n

1 when k > n

yn,k =


0 when k < n

1 when k = n

1 when k > n

Then it would be reasonable to say that x and y both converge (as n→∞) to
the 0-sequence. But fn(xn) = 0 for all n, while fn(yn) = 1 for all n. So these
sequences always di�er by 1 in some coordinate.

2.2. Basic de�nitions and notation. This section collects a few general
de�nitions and notation we will use throughout our discussions.

Notation 2.2.1. We will indicate when a tuple or sequence has �nite length by
referring to it as a �nite tuple or �nite sequence. Otherwise, it is not assumed
to be constrained and could have any index set. That is, a tuple or sequence
might be �nite or in�nite, and not necessarily indexed by N when in�nite.
Though, we will generally prefer tuple for �nite lengths, and prefer sequence
for arbitrary lengths.

Notation 2.2.2. We will generally write tuples or sequences with notation like
(xn : n ∈ α) or (xn)n∈α. Once a sequence is introduced, we might drop the
index set from the notation but emphasize that it is still a sequence rather
than a coordinate by maintaining the parentheses, as in (xn). Often we will
use the unsubscripted letter as a name for the sequence, as in x = (xn : n ∈ α).

5
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For convenience, we might introduce the sequence just as a single letter, such
as writing x ∈ Rα, but refer to coordinates of x by using subscripts, essentially
assuming that we have written x = (xn : n ∈ α).

Notation 2.2.3. When we want to call attention to the index set, say the index
set I for the sequence x = (xi : i ∈ I), we will refer to this as an I-indexed
sequence. If we are discussing a projection of this sequence onto coordinates
J ⊆ I, we might refer to this as the J-projection of (xi : i ∈ I), or denote it
by πJ(x).

This thesis is concerned almost entirely with the following spaces.

De�nition 2.2.4. A pointed metric space (M,d, ?) is a metric space (M,d)
with a distinguished basepoint ? ∈M .

Notation 2.2.5. We will write R+ for the positive reals, and similarly N+ for the
positive subset of the naturals N = {0, 1, 2, . . . }. We write R≥0 for nonnegative
reals. The default metrics assumed for R and N are the usual d(x, y) = |x−y|.
The default basepoint for R is taken to be 0.

Geometers have identi�ed the following subclass of metric spaces, and un-
surprisingly it plays an interesting role in continuous logic.

De�nition 2.2.6. A metric space is proper if every closed ball is compact.

Proper spaces are to continuous logic what �nite sets are to discrete logic.
The meaning of this last statement becomes clear once the fundamental results
in model theory are established in this setting.
We will often be interested in products of pointed metric spaces. To simplify

the discussion, we will assume the following default basepoint and metric for
�nite products.

De�nition 2.2.7. Let α be a �nite set and let (Mn, dn, ?n) for n ∈ α be
pointed metric spaces. Our default basepoint for

∏
Mn will be taken to be

(?n : n ∈ α), and our default metric for
∏
Mn will be given by de�ning the

distance between (xn : n ∈ α) and (yn : n ∈ α) to be the maximum over the
distances taken coordinate-wise, that is,

max
n∈α
{dn(xn, yn) : n ∈ α} .

In any pointed metric space, there is a natural notion of magnitude for
points given by d(x, ?). We will often need to refer to this in our discussions,
both for single and product spaces, so we use the following notation.

Notation 2.2.8. We will write ||x|| for the distance d(x, ?) and call this the
magnitude of x. This notation extends to the case where x is a point in
a product of pointed metrics and we use the default basepoint and metric
above. Also, instead of writing ||x|| ≤ r with r ∈ R, we might just say that x
is bounded by r.

6
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So, for example, saying ||x|| ≤ r in a product space with r ∈ R means that
every coordinate xn of x satis�es dn(xn, ?n) ≤ r.
We will sometimes need to generalize this last situation. For example, if the

�rst coordinate needs to be bounded by r1 but the second coordinate bounded
by r2. We will handle this with a generalized notation for balls around the
basepoint.

Notation 2.2.9. Let (Mn, dn, ?n) be pointed metric spaces for n ∈ α, and let
M =

∏
Mn with the default metric and basepoint. Let r ∈ Rα

≥0 be a sequence
of nonnegative reals. We will write Br(M) to mean the set of x ∈M such that
||xn|| < rn for all n ∈ α. This means that

Br(M) =
∏
n∈α

Brn(Mn)

where for each n ∈ α, the set Brn(Mn) is the open dn-ball of radius rn centered
at ?n in Mn. We will similarly handle closed balls, using B̄ rather than B to
indicate that it is closed.
If we need to emphasize the metric or basepoint, we will add them inside

the parentheses, as in Br(M,d), Br(M, ?), or Br(M,d, ?).

2.3. Controlled functions. In our logic, we will allow our structures to carry
certain associated functions. This section de�nes the class of functions we
allow. These functions generalize the behavior of continuous functions on
proper spaces. For example, all continuous functions on R will be in this class.
The most notable properties of these functions are that, when restricted to

any ball around the basepoint, they are uniformly continuous and bounded.
This makes the functions work well with the ultraproduct construction that
we discuss in 3.7.
It will turn out that to obtain expected model theory results, we need to dis-

cuss certain limits of functions with those properties. This should be familiar
to readers acquainted with bounded continuous logic, where there is a distinc-
tion between formulas and de�nable predicates. To avoid this distinction, we
will use a larger class of functions from the start.
The motivation for the de�nition below is most evident in the ultraprod-

uct construction and the proof of the analog of �o±'s Theorem in this setting
(Theorem 3.7.4). This class of functions seems to arise straightforwardly from
attempting to assume as little as possible in the proof of �o±'s Theorem. No-
tably, we will allow functions on arbitrarily indexed products in our logic. The
applications in the second part of this thesis make this seem like a natural
admission.

De�nition 2.3.1. Let α be any set, and let (Mn, dn, ?n) for n ∈ α be pointed
metric spaces. Let (M,d, ?) be any pointed metric space, and let

f :
∏
n∈α

Mn →M

7
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be a function.
We say f is controlled if there are functions

• λ : Rα
+ → R+

• N : Rα
+ × R+ → Pfin(α)

• δ : Rα
+ × R+ → R+

such that for all r ∈ Rα
+ and ε > 0, and for all x ∈

∏
n∈αMn and y ∈

∏
n∈αMn,

the following hold.

(1) If for all n ∈ N(r, ε) we have ||xn|| < rn, then ||f(x)|| ≤ λ(r).
(2) If for all n ∈ N(r, ε) we have ||xn|| < rn, ||yn|| < rn, and d(xn, yn) <

δ(r, ε), then d(f(x), f(y)) ≤ ε.

In this case, we say that f is controlled by (λ,N, δ), and that (λ,N, δ) are
controllers or controlling functions for f . Note that controllers for f are
not unique.
We will refer to any triple of functions (λ,N, δ) as controllers if they are

controllers for some f .

Before we check some properties of controlled functions, we will make a
comment on the roles of the functions λ, N , and δ. Together, these functions
answer the question of what needs to be known about the inputs to f in order to
get some property, either a bound or some amount of continuity. If we provide
a sequence of bounds r ∈ Rα

+ we are willing to admit for the coordinates of
the inputs and a maximum allowable ε > 0, then N tells us what �nite subset
of coordinates n we must check are bounded and close enough, δ tells us how
close is close enough for these coordinates, and λ tells us how large the output
can possibly be.

Proposition 2.3.2. Compositions of controlled functions are controlled.

Proof. Let t be a function of the form f(tk : k ∈ α) where f is controlled by
(λf , Nf , δf ) and each tMk :

∏
n∈αkM(k,n) → Mk is controlled by (λk, Nk, δk),

respectively. The domain of t is β =
⋃
k∈α ({k} × αk). We make the following

de�nitions of the controllers for t.

• For all r = (r(k,n)) ∈ Rβ
+, de�ne r

∗ = (r∗k : k ∈ α) by

r∗k = λk(r(k,n) : n ∈ αk) + 1

for each k ∈ α.
• De�ne λ by r 7→ λf (r

∗).
• For each r as above and ε > 0, let Nr,ε ∈ β denote the �nite set of
pairs (k, n) such that k ∈ Nf (r

∗, ε) and n ∈ Nk((r(k,m) : m ∈ αk), ε).
• De�ne N by (r, ε) 7→ Nr,ε.
• De�ne δ by sending (r, ε) to the minimal value of

δk((r(k,n) : n ∈ αk),
1

2
δf (r

∗, ε))

with k ∈ Nf (r
∗, ε).

8
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Let r = (r(k,n)) ∈ Rβ
+ and ε > 0.

Suppose ||x(k,n)|| < r(k,n) for all (k, n) ∈ N(r, ε). Then for all k ∈ Nf (r
∗, ε)

and all n in Nk((r(k,m) : m ∈ αk), ε), we have ||x(k,n)|| < r(k,n). Hence, for all
k ∈ Nf (r

∗, ε), we have

||tMk (x)|| ≤ λk(r(k,n) : n ∈ αk) < r∗k

and thus
||fM(tMk (x) : k ∈ α)|| ≤ λf (r

∗) = λ(r).

Suppose for all n ∈ N(r, ε) that we have

• ||x(k,n)|| < r(k,n),
• ||y(k,n)|| < r(k,n), and
• d(x(k,n), y(k,n)) < δ(r, ε).

Then for all k ∈ Nf (r
∗, ε) and all n in Nk((r(k,m) : m ∈ αk), ε), we have

||x(k,n)|| < r(k,n), ||y(k,n)|| < r(k,n), and

d(x(k,n), y(k,n)) < δk((r(k,n) : n ∈ αk),
1

2
δf (r

∗, ε))

Hence, for all k ∈ Nf (r
∗, ε), we have ||tMk (x)|| < r∗k, ||tMk (y)|| < r∗k, and

d(tMk (x), tMk (y)) < δf (r
∗, ε).

This implies

d(fM(tMk (x) : k ∈ α), fM(tMk (y) : k ∈ α)) ≤ ε.

�

The in�nitary controlled functions always arise as certain kinds of limits of
the �nitary controlled functions.

De�nition 2.3.3. Let f :
∏

n∈αMn → M . For each k ∈ ω, let αk ⊆ α, and
let fk :

∏
n∈αkMn →M .

We say that f is the controlled limit of the sequence (fk)k∈ω if for all
r ∈ Rα

+ and ε > 0, there is some �nite subset Nr,ε ⊆ α and some index
Kr,ε ∈ ω such that for all K ≥ Kr,ε and for all x ∈

∏
n∈αMn with ||xn|| < rn

whenever n ∈ Nr,ε, we have

d(fK(xn : n ∈ αK), f(x)) ≤ ε.

Proposition 2.3.4. Controlled limits of controlled functions are controlled.

Proof. For each k, let (λk, Nk, δk) be controllers for fk. Suppose f is the
controlled limit of (fk)k∈ω.
For all r ∈ Rα

+ and ε > 0, the controlled limit assumption gives us some Nr,ε

and Kr,ε such that in particular, whenever ||xn|| < rn for n ∈ Nr,ε, we have

d(fKr,ε(x), f(x)) ≤ ε.

De�ne λ by
r 7→ λKr,1(r) + 1.

9
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De�ne N by

(r, ε) 7→ Nr,min(1,ε/3) ∪NKr,min(1,ε/3)
(r,min(1, ε/3)).

De�ne δ by
(r, ε) 7→ δKr,min(1,ε/3)

(r,min(1, ε/3)).

Let r ∈ Rα
+ and ε > 0. Without loss of generality, we will suppose ε ≤ 1.

Suppose ||xn|| < rn for n ∈ N(r, ε). Then we have ||xn|| < rn for n ∈ Nr,ε/3 ∪
NKr,ε/3(r, ε/3). So,

d(fKr,ε/3(x), f(x)) ≤ ε/3

and
||fKr,ε/3(x)|| ≤ λKr,ε/3(r).

By the triangle inequality, we get

||f(x)|| ≤ λKr,ε/3(r) + ε/3 = λ(r, ε).

Suppose we also have ||yn|| < rn and d(xn, yn) < δ(r, ε) for n ∈ N(r, ε). Then
we have ||yn|| < rn and d(xn, yn) < δKr,ε/3(r, ε/3) for n ∈ Nr,ε/3∪NKr,ε/3(r, ε/3).
So we get

d(fKr,ε/3(y), f(y)) ≤ ε/3

and
d(fKr,ε/3(x), fKr,ε/3(y)) ≤ ε/3.

By the triangle inequality, we get

d(f(x), f(y)) ≤ 3(ε/3) = ε.

�

For countable products, we can check a converse to the previous proposition.
This shows how a controlled function on a countable product is a controlled
limit of �nitary controlled functions.

Proposition 2.3.5. Let f :
∏

n∈ωMn →M . Then f is controlled if and only
if there is a sequence of controlled functions fk :

∏
n<kMn → M such that f

is the controlled limit of the sequence (fk)k∈ω.

Proof. (→) For each k, de�ne fk by

(x0, . . . , xk−1) 7→ f(x0, . . . , xk−1, ?k, ?k+1, ?k+2, . . . )

where the ?i are the basepoints of the corresponding spaces. Each fk is essen-
tially a restriction of f , so it remains controlled.
Let r ∈ Rω

+ and ε > 0. We will refer to controllers λ,N, δ for f . Note
that x coincides with the sequence (x0, . . . , xK−1, ?K , ?K+1, . . . ) on coordinates
k < K. Let K ≥ maxN(r, ε), and suppose x has ||xn|| < rn for all n ∈ N(r, ε).
We have that

d(f(x?), f(x)) ≤ ε

where
x? = (x0, . . . , xK−1, ?K , ?K+1, . . . )

10
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since x∗ and x agree on all coordinates in N(r, ε). But f(x?) = fK(x) by
de�nition, so we have shown that d(fK(x), f(x)) ≤ ε.
This veri�es the de�nition of being a controlled limit using Nr,ε = N(r, ε)

and Kr,ε = maxN(r, ε).
(←) By the last proposition. �

The next few propositions explain how the de�nition of controlled functions
degenerates to familiar properties in simpler cases involving �nite products.

Proposition 2.3.6. Suppose f is a function whose domain is a �nite product
of spaces. Then f is controlled i� the restriction of f to any bounded subset is
a bounded and uniformly continuous function.

Proof. Let f :
∏

n<KMn →M .
(→) Let λ,N, δ be controllers for f . Fix a bounded subset B of the domain

of f . Choose r ∈ RK
+ so that B ⊆ Br(

∏
Mn). Then x ∈ B implies ||f(x))|| ≤

λ(r) by the de�nition of λ, and so f is bounded on B. For any ε > 0, we get
that x, y ∈ B and d(xn, yn) < δ(r, ε) for all n < K implies d(f(x), f(y)) ≤ ε
by de�nition of δ. So f is uniformly continuous on B.

(←) For each r ∈ RK
+ , let Ur be an upper bound for f on the set Br(

∏
Mn),

and let δr be a uniform continuity modulus for f on that same set.
De�ne λ by r 7→ Ur.
De�ne N to be the constant function returning all K indices of the domain.
De�ne δ by (r, ε) 7→ δr(ε).
It is trivial to check that f is controlled by these functions. �

Corollary 2.3.7. Let f :
∏

n∈ωMn → M . Then f is controlled if and only if
f is the controlled limit of some functions fk :

∏
n<kMn → M , where each fk

restricts to a bounded and uniformly continuous function on any bounded set.

Proof. The last two propositions. �

Corollary 2.3.8. Suppose f is a function whose domain is a �nite product of
bounded spaces. Then f is controlled i� f is bounded and uniformly continuous.

Corollary 2.3.9. Suppose f is a function whose domain is a �nite product of
compact spaces. Then f is controlled i� f is continuous.

Proof. Compact spaces are bounded, and continuous functions on compact
spaces are bounded and uniformly continuous. �

Corollary 2.3.10. Suppose f is a function whose domain is a �nite product
of proper spaces. Then f is controlled i� f is continuous.

Proof. (→) Since the restriction of f to any bounded set is uniformly contin-
uous, f is continuous.

(←) Closed balls are compact in proper spaces, so the restriction of f to
any closed ball is bounded and uniformly continuous. Any bounded subset is
contained in some closed ball, so the restrictions of f to bounded subsets are
bounded and uniformly continuous. �

11



McMaster University - Mathematics Ph.D. Thesis - M. Luther

Corollary 2.3.11. Suppose f is a function whose domain is a �nite product
of spaces with the discrete metric. Then f is controlled i� f is bounded.

Proof. Every function is uniformly continuous with respect to the discrete
metric. �

We end this section with a lemma that appears frequently when proving
fundamental results in continuous model theory. The lemma and its argument
are slightly adapted from Proposition 2.10 of [3]. It turns an ε-δ relation
between two real-valued functions into a continuous, increasing function that
lets us bound one of the functions in terms of the other.

Lemma 2.3.12. Let X be any metric space. Let f, g : X → R be functions
where for all ε > 0 there is δ > 0 such that for all x ∈ X we have

f(x) ≤ δ implies g(x) ≤ ε.

Then there is a continuous, increasing function α : R≥0 → R≥0 such that

• α(0) = 0, and
• for all x ∈ X, we have g(x) ≤ α(f(x)).

Proof. First we will obtain a function ∆ : R≥0 → R≥0 capturing some of
the ε-δ behavior. Consider the subset A of R≥0 × R≥0 which contains (ε, δ)
whenever f(x) ≤ δ implies g(x) ≤ ε for all x ∈ X. We have the following
closure properties of A.

• (ε, δ) ∈ A implies (ε, δ′) ∈ A whenever δ′ < δ.
• (ε, δ) ∈ A implies (ε′, δ) ∈ A whenever ε′ > ε.

If we view R≥0 × R≥0 as a quarter-plane with a horizontal axis for ε and a
vertical axis for δ, then this means A is closed downward and to the right. That
is, A can be viewed as a union of sets of the form [ε,∞)×[0, δ]. The hypotheses
ensure that for every ε > 0 there is a positive δ such that A contains a set
of this form. It is not hard in this case to construct a continuous, increasing
function ∆ : R≥0 → R≥0 whose graph is inside A and thus satis�es

f(x) ≤ ∆(ε) implies g(x) ≤ ε

for all ε > 0.
Next, we de�ne a function β : R≥0 → R≥0 by

β(t) = inf{ε > 0 : ∆(ε) > t}.
This β has the following properties:

• β(0) = 0,
• β is increasing,
• for any ε > 0, whenever t < ∆(ε), we have β(t) ≤ ε,
• limt→0 β(t) = 0,
• for all x ∈ X, we have g(x) ≤ β(f(x)), since otherwise there would
be an x with β(f(x)) < g(x), which by de�nition of β would give an
impossible ε > 0 with ε < g(x) and ∆(ε) > f(x).

12
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Finally, we will use β to construct the desired function α. By the above
properties of β, it will su�ce to make α continuous, increasing, have α(0) = 0,
and have α(t) ≥ β(t) for all t ∈ R≥0. Our approach is to construct a piecewise
linear function above β. We will start rather arbitrarily at α(1), �rst de�ning
α(t) for t ∈ [0, 1] and then for t ∈ (1,∞).
We start with de�ning α on [0, 1]. Let (tn : n ∈ N) be a decreasing sequence

in R≥0 with t0 = 1 and limn→∞ tn = 0. De�ne the following.

α(0) = 0

α(1) = β(2)

α(tn) = β(tn−1) for n ≥ 1

Complete the de�nition of α for t ∈ [0, 1] by making α linear on each segment
[tn+1, tn] with n ≥ 0. This de�nition keeps α increasing on [0, 1] because β is
increasing. To see that α(t) ≥ β(t) for t ∈ [0, 1], notice that if t ∈ [tn+1, tn]
for n ≥ 1, then t ≤ tn and (t, α(t)) is on the increasing linear segment from
(tn+1, β(tn)) to (tn, β(tn−1)), so we have β(t) ≤ β(tn) ≤ α(t). For the case
where t ∈ [t1, t0], we have that t ≤ 1 and (t, α(t)) is on the segment from
(t1, β(1)) to (1, β(2)), and so β(t) ≤ β(1) ≤ α(t).
Now we extend α to (1,∞). Let (sn : n ∈ N) be an increasing sequence

in R≥0 with s0 = 1, s1 = 2, and limn→∞ sn = ∞. We have already de�ned
α(1) = β(2), and we continue to de�ne

α(sn) = β(sn+1) for n ≥ 1

and then complete the de�nition of α by making α linear on each segment
[sn, sn+1] with n ≥ 0. Again, α stays increasing because β is increasing. To
see that α(s) ≥ β(s) for s ∈ [1,∞), notice that if s ∈ [sn, sn+1] for n ≥ 1, then
s ≤ sn+1 and (s, α(s)) is on the increasing linear segment from (sn, β(sn+1))
to (sn+1, β(sn+2)), so we have β(s) ≤ β(sn+1) ≤ α(s). For the case where
s ∈ [s0, s1], we have s ≤ 2 and (s, α(s)) is on the segment from (1, β(2)) to
(2, β(s2)), and so β(s) ≤ β(2) ≤ α(s). �

2.4. Examples of controlled functions. The propositions and corollaries
from the last section show that many familiar functions are controlled. We
call attention to a few in this section.

Example 2.4.1. Any �nitary, continuous real function is controlled since R
is proper. In particular, the addition and multiplication maps + and · are
controlled.

Example 2.4.2. For any complex Hilbert space H, the addition operator and
the map λz : H → H de�ned by scaling by z ∈ C are both controlled, since
they are bounded and uniformly continuous when restricted to any bounded
subset of H2 or H, respectively.

The next example represents one typical way in which in�nitary controlled
functions arise.

13
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Example 2.4.3. Consider f : RN → [0, 2] given by de�ning f(xn : n ∈ N) to
be ∑

n∈N

min(1, |xn|)
2n

.

This f is controlled. Consider the functions fN giving the partial sums

fN(xn : n < N) =
∑
n<N

min(1, |xn|)
2n

.

Each fN is bounded and uniformly continuous, hence controlled. Let ε > 0.
Then for all N such that 21−N < ε and for all x, we have d(fN(x), f(x)) ≤ ε.
This veri�es that f is the controlled limit of the fN . Note that we did not
need to consider bounds rn for xn because of the min(1, ·) compositions.

The next example is a slight variation of the last which does not have as
much uniform behavior.

Example 2.4.4. Consider the map f : RN → R given by de�ning f(xn : n ∈
N) to be

x0x1 +
∑
n∈N

min(1, |xn|)
2n

.

This f is controlled. Consider the functions fN de�ned by

fN(xn : n < N) = x0x1 +
∑
n<N

min(1, |xn|)
2n

.

Each fN is controlled since it is bounded and uniformly continuous when re-
stricted to bounded sets. An argument like in the last example shows that f
is the controlled limit of the fN . Notice that we would need bounds on x0 and
x1 in order to bound f and provide continuity moduli.

The �nal example shows one way that limits of sequences can appear in
the logic we are developing. We will make signi�cant use of functions like this.
This construction appears in section 3.2 of [5], under the name of forced limits.
The idea is to take an arbitrary sequence (xn) and inductively project each
xn+1 into an interval around xn. This provides a sequence which converges
at a known rate. If the original sequence already converged that quickly, the
limit will be the same.

Example 2.4.5. Consider the map f : RN → R given by de�ning

f(xn : n ∈ N) = lim
n→∞

(x′n : n ∈ N)

where we de�ne the cauchy sequence x′n inductively as follows. Let x′0 = x0.
For each n > 0, let x′n be the element in the interval

[x′n−1 −
|x0|
2n

, x′n−1 +
|x0|
2n

]

which is closest to xn.

14



McMaster University - Mathematics Ph.D. Thesis - M. Luther

We now check that f is controlled. For each N ∈ N, de�ne fN by

fN(x0, x1, . . . , xN−1) = x′N−1

with x′N−1 inductively de�ned as it was above. Each fN is controlled since it is
bounded and uniformly continuous when restricted to bounded subsets. Also,
notice that for all x, the value of fN(x) di�ers from f(x) by at most∑

n≥N

|x0|
2n

= |x0|21−N .

Let r0 ∈ R+ and ε > 0. For any N such that |r0|21−N < ε, whenever we have
|x0| < r0, we get d(fN(x), f(x)) ≤ ε. So f is the controlled limit of the fN and
hence is controlled.

2.5. Structures and signatures. We will now de�ne the kinds of objects for
which our logic is suited.

De�nition 2.5.1. Ametric structure M is a tuple (SM ,FM ,RM) such that
the following hold:

(1) Each S ∈ SM is a pointed, complete metric space (MS, dS, ?S) where
dS is the metric and ?S ∈MS. We call these spaces in SM the sorts of
the structure M .

(2) Each f ∈ FM is a controlled function from a product of sorts into
another sort, i.e.

f :
∏
n∈α

MSn →MS

with α any index set. We call these the functions of M .
(3) EachR ∈ RM is a controlled function from a �nite or countable product

of sorts into R, i.e.

R :
∏
n∈α

MSn → R

with α any index set. We call these the relations of M .

Notation 2.5.2. For convenience, we will often use the same notation for a
metric structure M and the underlying metric space of the sort. For example,
when there is only one sort MS, we often just say points in M rather than
points in MS. Similarly, we drop the subscripts and just talk about the metric
d and basepoint ? of the structure M .

One goal when applying model theory is to understand a structure by study-
ing related, nicer structures and transporting the information back. To facil-
itate this, we want a notion of when structures are of the same type so that
there is a common language for statements about them. The way we do this
is to de�ne an object that keeps track of key features of the structure, such
as how many sorts they have and how many functions with what domains,
ranges, and controllers. This determines a framework that allows us to ask
questions which will be meaningful in any structure �tting that framework.
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De�nition 2.5.3. A signature is a tuple (S,F ,R, domain,range, control)
where

(1) S, F , and R are disjoint sets, whose elements are called the sort
symbols, function symbols, and relation symbols, respectively.

(2) domain is a function on F ∪R that assigns a sequence of sort symbols.
(3) range is a function on F that assigns a sort symbol.
(4) control is a function on F ∪R that assigns controllers (λ,N, δ).

Informally, we want to say that a structure �ts a signature if there is a way
to pair each sort, function, and relation with a corresponding symbol in a way
that respects the domains, ranges, and controllers.

De�nition 2.5.4. Given a signature L = (S,F ,R, . . . ), an L-structure is
a metric structure M = (SM ,FM ,RM) such that there are maps S → SM ,
F → FM , and R → RM satisfying the conditions below.
First, we establish some notation. For each function symbol f ∈ F and

relation symbol R ∈ R, the maps above determine a corresponding function
and relation in the structure M , which we denote by fM and RM respectively.
For each sort symbol S, we will denote the corresponding sort by MS.
For each f ∈ F we must have

• domain(f) = (Sn : n ∈ α) i� the domain of fM is
∏

n∈αMSn ,
• range(f) = S i� the range of fM is MS,
• control(f) are controllers for fM ,

and similarly for each R ∈ R we must have

• domain(R) = (Sn : n ∈ α) i� the domain of RM is
∏

n∈αMSn ,
• control(R) are controllers for RM .

The bene�t of this abstraction is that this lets us write down formal ex-
pressions made of symbols from L. These can be assigned a meaning in any
L-structure. This is analogous to treating polynomials as formal objects and
varying the �eld over which we consider them. For example, we can consider
x · x + 1 over R, C, or Z2. We can ask questions like whether it has a root,
comparing the answers in the di�erent number systems. The abstraction to
structures and signatures gives us a formal way to work like this.

2.6. Languages and formulas. In this section we inductively de�ne a formal
language for each signature.
If the reader is unfamiliar with presentations of logic, keep in mind that the

symbols in a signature are formal objects and are not actually functions. We
will be discussing sequences of symbols at a level detached from any particular
metric structure. The notation is suggestively chosen so that these sequences
look like usual functions on a structure, because later we will specify a struc-
ture and assign an actual function. This is similar to how the symbol + and
expression x + y do not meaningfully correspond to functions until we de-
cide where we are working. It could be real addition, or matrix addition, or
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an arbitrary binary function which has nothing to do with any usual kind of
addition.
If the reader is familiar with discrete logic, the transition to a more analytic

setting makes for some initially strange-looking changes. In place of the famil-
iar boolean connectives �and�, �or�, �implies�, and so on, we have compositions
with a seemingly large family of real-valued functions. In place of the familiar
∀ and ∃ quanti�ers, we have decorated sup and inf quanti�ers. We will see in
the next section how these are interpreted in a structure.
We keep careful track of sort symbols in the following de�nition. This is in

order to avoid oddities like composing symbols when their domains and ranges
do not coincide. Each object introduced below is assumed to be distinct from
the others.

De�nition 2.6.1. Given a signature L = (S,F ,R, ...), its language, which
we continue to denote L, consists of the following.
The L-variables consist of in�nitely many objects v1, v2, v3, . . . for each

sort symbol S. If x is a variable for sort S then we say x is of sort S.
The L-basepoint symbols consist of a symbol ?S for each sort S.
The L-distance symbols consist of a symbol dS for each sort S.
The L-terms are inductively de�ned as follows.

(1) For each sort symbol S, each variable

x

of sort S is a term of sort S
(2) For each sort symbol S, the basepoint symbol

?S

is a term of sort S.
(3) If tn for n ∈ α are terms of sort Sn respectively, and f ∈ F has

domain(f) = (Sn : n ∈ α) then

f(tn : n ∈ α)

is a term of sort range(f).

The atomic L-formulas are de�ned as follows.

(1) If t1, t2 are both terms of the same sort S, then

dS(t1, t2)

is an atomic L-formula.
(2) If tn for n ∈ α are terms of sort Sn respectively, and R is a relation

symbol with domain(R) = (Sn : n ∈ α), then

R(tn : n ∈ α)

is an atomic L-formula.

The L-formulas are inductively de�ned as follows. We simultaneously de�ne
the free variables of a formula.
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(1) Each atomic L-formula φ is an L-formula, and all variables appearing
in φ are free in φ.

(2) If φn for n ∈ α are L-formulas and u is a controlled real-valued function
u : Rα → R, then

u(φn : n ∈ α)

is an L-formula. If a variable x is free in some φn, then it is free in
u(φn : n ∈ α) as well.

(3) If φ is an L-formula, x is a �nite tuple of variables, and r, r′ are both
real tuples of the same length as x, then

sup
x

]r
′

r φ

and
inf
x

]r
′

r φ

are L-formulas. The variables in x are not free in these formulas. If y
is a variable which is free in φ and not a member of the tuple x, then
y is also free in these formulas.

If φ is constructed without any application of step (3), that is, if no sup or inf
appears in φ, we say φ is quanti�er-free.
If φ is an L-formula with no free variables, then we say that φ is an L-

sentence.

De�nition 2.6.2. If L and L′ are languages such that every sort and symbol
from the signature of L is also in L′ with the same control, domain, and range
values, then we say L′ is an extension of L, and we write L ⊆ L′. We also
say in this case that L is a reduct of L′.
With L,L′ as above, if M ′ is an L′-structure and M is an L-structure ob-

tained from M ′ by ignoring the sorts and symbols outside of L, then we call
M ′ an extension of M to L′, and we call M a reduct of M ′ to L.

2.7. Interpretation of terms and formulas. Given an L-structure M , we
explain in this section how to assign to every L-term or L-formula φ a function
φM :

∏
n∈αMn → R. We will see that such φM are controlled functions, and

moreover that controllers (λ,N, δ) can be determined inductively just from the
signature of L. Hence the controllers obtained actually control φM for every
choice of M .
First we de�ne interpretation of terms.

De�nition 2.7.1. Given an L-structure M and an L-term t, we inductively
de�ne the interpretation tM of t in M as follows.

(1) If x is a variable of sort S, then xM is the identity function MS →MS.
(2) If ?S is the basepoint symbol for S, then ?MS is the constant 0-ary

function M0
S →MS which maps to the basepoint of MS.

(3) If f(tn : n ∈ α) is a term where f is a function symbol and each tMn is
already de�ned, then (f(tn : n ∈ α))M is the function fM(tMn : n ∈ α).
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Now we extend the de�nition of interpretation to formulas.

De�nition 2.7.2. Given an L-structureM and an L-formula φ, we inductively
de�ne the interpretation φM of φ in M as follows.

(1) If φ is an atomic formula dS(t1, t2) where tM1 and tM2 are already de�ned
and dS is the distance symbol for the sort S, then φM is dMS (tM1 , t

M
2 ).

(2) If φ is an atomic formula R(tn : n ∈ α) where each tMn is already
de�ned, then φM is the real-valued function RM(tMn : n ∈ α).

(3) If φ is of the form u(ψn : n ∈ α) where each ψMn is already de�ned,
then φM is the real valued function u(ψMn : n ∈ α).

(4) Suppose φ is of the form supx]
r′
r ψ, with �nite variable tuple x = (xk)k<K

having x0, . . . , xK−1 of sorts S0, . . . , SK−1 respectively, real tuples r =
(rk)k<K and r′ = (r′k)k<K , and where ψM is already de�ned. If rk 6= r′k
for all k < K, we de�ne φM to be the real-valued function(∏
k<K

1

|r′k − rk|

)
·
ˆ r′K−1

rK−1

· · ·
ˆ r′1

r1

sup
x∈B(ρk:k<K)(MS)

ψM(x)dρ1 · · · dρK−1

where MS =
∏

k<KMSk . If any rk = r′k, we just de�ne φM to be
the constant 0 function. This makes φM the average supremum as
we vary the radii of the balls between bounds given in r and r′. We
verify in propositions below that this is a Riemann integral with some
nice properties determined by the language. We also check that it is
equivalent to use either open or closed balls above.

(5) If φ is of the form infx]
r′
r ψ, we handle it as in the supx]

r′
r ψ case, but

with inf in place of each sup.

Note that the quanti�er cases give functions on a domain which is typically
a product with fewer factors factor than the domain of ψM . For example, if
x was the only free variable in ψ, so that φ no longer has free variables, then
supx]

r′
r ψ interprets as a constant 0-ary function M0

S → R.

As promised, we check the claims made at the start of this section and in
the de�nition.

Lemma 2.7.3. (Terms are controlled) For every L-term t, there are con-
trollers (λ,N, δ) such that for all L-structures M , the interpretation tM is
controlled by (λ,N, δ).

Proof. The proof is by induction. Variables interpret as identity functions, and
basepoint symbols interpret as constant functions with 0 magnitude, so both
are easily checked. Since compositions of controlled functions are controlled,
any term of the form f(tk : k ∈ α) is controlled. The construction of con-
trollers for the composition can be done with controllers given by L, and so is
independent of the structure over which we work. �
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Lemma 2.7.4. (Formulas are controlled) For every L-formula φ, there
are controllers (λ,N, δ) such that for all L-structures M , the interpretation
φM is controlled by (λ,N, δ).

Proof. We continue with induction on formulas, having established the case of
terms above. Nothing is substantially di�erent for the cases of atomic formu-
las and composition with controlled u : Rα → R. So, we will only discuss the
quanti�er case. Since inf is similar to sup, we will only discuss sup. For con-
venience, we will moreover assume the quanti�cation is over a single variable.
The �nite tuple case is an easy generalization, but would require an extra set
of indices.
Suppose φ is of the form supx]

R2
R1
ψ where ψM :

∏
n∈αMn →Mψ is controlled

by (λψ, Nψ, δψ). The case R1 = R2 is trivial, and the case R1 > R2 follows
from the R1 < R2 case by composition with multiplication by −1. So we
assume R1 < R2. If x is not free in ψ, then φM is just ψM and we are done.
So we assume x is free in ψ. Let S be the sort of x, and for convenience
assume the indexing is such that M0 = MS. This lets us view φ as a function∏

n∈α+
Mn →Mψ, where α+ is α−{0}. Let y = (yn : n ∈ α+) be the sequence

of remaining free variables in φ.
For any r = (rn : n ∈ α+) ∈ Rα+

+ , de�ne r∗ = (r∗n : n ∈ α) as follows.

r∗n =

{
R2 + 1 when n = 0

rn otherwise

De�ne λ by

λ(r) = λψ(r∗).

De�ne N by

N(r, ε) = Nψ(r∗, ε)− {0}.
De�ne δ by

δ(r, ε) = δψ(r∗, ε).

We check that these control φM . Let r = (rn : n ∈ α+) ∈ Rα+

+ and ε > 0.
Suppose ||yn|| < rn for all n ∈ N(r, ε). Then whenever ||x|| ≤ R2 (hence
||x|| < r∗0) we get ||ψ(x, y)|| ≤ λψ(r∗) = λ(r). This implies

sup
x∈Bρ(M0)

ψM(x, y) ≤ λ(r)

for all ρ ≤ R2, and so

1

R2 −R1

ˆ R2

R1

sup
x∈Bρ(M0)

ψ(x, y)dρ ≤ λ(r)

as required.
Suppose ||yn|| < rn, ||zn|| < rn, and d(yn, zn) < δ(r, ε) for all n ∈ N(r, ε).

Then whenever ||x|| ≤ R2, we get d(ψ(x, y), ψ(x, z)) ≤ ε. So for all ρ ≤ R2,
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we have that supx∈Bρ(M0) ψ
M(x, y) is within ε of supx∈Bρ(M0) ψ

M(x, z). Thus,∣∣φM(y)− φM(z)
∣∣

=
1

R2 −R1

∣∣∣∣∣
ˆ R2

R1

(
sup

x∈Bρ(M0)

ψM(x, y)− sup
x∈Bρ(M0)

ψM(x, z)

)
dρ

∣∣∣∣∣
≤ 1

R2 −R1

ˆ R2

R1

∣∣∣∣∣ sup
x∈Bρ(M0)

ψM(x, y)− sup
x∈Bρ(M0)

ψM(x, z)

∣∣∣∣∣ dρ
≤ 1

R2 −R1

ˆ R2

R1

εdρ

= ε

as required.
This veri�es that φM is controlled, and we constructed (λ,N, δ) indepen-

dently of M . �

We will extend our terminology a bit to more conveniently refer to controllers
that work independently of the L-structure.

De�nition 2.7.5. Given an L-formula φ, we say φ is controlled by (λ,N, δ)
if for every L-structure M , every φM is controlled by (λ,N, δ).

So what we have proved is that every formula is controlled in this sense.
Now we will check that the integrals in the interpretation of quanti�ed for-

mulas are well-de�ned. We also show a useful result about how L determines
partition data and rates of convergence for Riemann sums approximating these
integrals.

Lemma 2.7.6. Riemann Integrals and Good Partitions
Let α be a set, let x be a variable of sort M0, and let α+ = α − {0}. Let
ψ(x, yn : n ∈ α+) be an L-formula, and let r < r′ be reals.
Then we have the following.

• Let M be any L-structure, and let b = (bn : n ∈ α+) with each bn in
the sort of M corresponding to yn.
� The function sMb : R≥0 → R de�ned by

sMb (ρ) = sup
x∈Bρ(M0)

ψM(x, b)

is Riemann integrable.
� The function s̄Mb : R≥0 → R de�ned by

s̄Mb (ρ) = sup
x∈B̄ρ(M0)

ψM(x, b)

is Riemann integrable.

� The integrals
´ r′
r
sMb (ρ)dρ and

´ r′
r
s̄Mb (ρ)dρ are equal.
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• For any R = (Rn : n ∈ α+) and ε > 0, there are N ⊆ α+, ∆ > 0,
and a partition ρ0 < · · · < ρK of [r, r′] with |ρk − ρk+1| = ∆ for all
k < K, such that for any L-structure M , any b = (bn : n ∈ α+) with
||bn|| < Rn for all n ∈ N , and any s∗0, . . . , s

∗
K−1 ∈ R satisfying

sMb (ρk) ≤ s∗k ≤ sMb (ρk+1)

for all k < K, we have∣∣∣∣∣
ˆ r′

r

sMb (ρ)dρ−
∑
k<K

s∗k∆

∣∣∣∣∣ < ε.

We call this partition an (L,R, ε)-good partition for the formula
supx]

r′
r ψ.

Similar statements hold when sup is replaced by inf, and when x is a �nite
tuple of variables.

Proof. Let (λ,N, δ) control ψ. Let R be as in (2). De�ne R∗ to be the
sequence given by R∗0 = r′ + 1 and R∗n = Rn otherwise. Then provided
||x|| ≤ r′ and ||yn|| < Rn for all n ∈ N(R, ε) − {0}, we have ||ψM(x, y)|| ≤
λ(R∗). Thus, whenever ||yn|| < Rn for all n ∈ N(R, ε) − {0}, the function
supx∈Bρ(MS) ψ

M(x, y) is bounded by λ(R∗) and monotonic on [r1, r2]. This is
su�cient to carry out the standard development of the Riemann integral. Since
the bounds are determined by L, the partitions involved in the Riemann sums
approximating the integrals can be chosen independently of the L-structure
M . This veri�es (1a), (1b), and (2), so we just need to check (1c).
Notice that for all ρ ∈ [r, r′] and ε > 0, we have

sup
x∈Bρ

ψ ≤ sup
x∈B̄ρ

ψ ≤ sup
x∈Bρ+ε

ψ ≤ sup
x∈B̄ρ+ε

ψ.

Integrating each term gives usˆ r′

r

sup
x∈Bρ

ψdρ ≤
ˆ r′

r

sup
x∈B̄ρ

ψdρ ≤
ˆ r′

r

sup
x∈Bρ+ε

ψdρ ≤
ˆ r′

r

sup
x∈B̄ρ+ε

ψdρ.

But by changing variables this is the same asˆ r′

r

sup
x∈Bρ

ψdρ ≤
ˆ r′

r

sup
x∈B̄ρ

ψdρ ≤
ˆ r′+ε

r+ε

sup
x∈Bρ

ψdρ ≤
ˆ r′+ε

r+ε

sup
x∈B̄ρ

ψdρ.

This holds for all ε > 0, and the integrals are continuous with respect to their
endpoints, so we get the claim. �

2.8. Some comments on the quanti�ers. Since our langauge includes com-
position with multiplication by any real number, we could just as well have
chosen to forego the scaling by 1

r2−r1 when de�ning the quanti�ers. The average
seems more natural when explaining the semantics.
An important observation about the quanti�ers is that given an L-formula

ψ and any r, ε > 0, we will know that the interpretation of supx]
r+ε
r ψ in any
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M is between supx∈B̄r(M) ψ
M and supx∈B̄r+ε(M) ψ

M . At �rst glance, this might

seem like enough to approximate the actual value of supx∈B̄r(M) ψ
M arbitrarily

well, but issues arise when supx∈B̄ρ(M) ψ
M(x) is discontinuous as a function of

ρ around ρ = r. This potential discontinuity makes us unable to generally
guarantee the existence of an L-formula whose interpretation is within ε of
supx∈B̄r(M) ψ

M across all L-structures. The discontinuity of this sup function
is the motivation for introducing an integral into the quanti�ers.
However, in many natural classes of structures, each supx∈B̄ρ(M) ψ

M is con-
tinuous with respect to ρ, and moreover this continuity can often be described
independently of the structure in the class. For example, Hilbert spaces and
geodesic spaces have this property. In such classes, we can obtain a formula
which interprets as the function supx∈B̄r(M) ψ

M for eachM in the class. We can

obtain it using a forced limit connective u composed with formulas supx]
r+δ
r ψ

when this continuity is understood well enough. We will see another way to
obtain this function in nice classes when we discuss de�nable sets. Readers
familiar with bounded continuous logic will see how this relates to the use of
sup quanti�ers in that setting.

2.9. Multivariable quanti�ers. In discrete logic, we often quantify over
multiple variables at once and do not need to give much thought to the dis-
tinction between ∀x ∈M,∀y ∈ N and ∀(x, y) ∈M×N . Similarly, in bounded
continuous logic we just have sup and inf quanti�ers without the averaging,
and we can use that supx supy is the same as sup(x,y). However, in the current
setting we need to be a bit more careful. In general,

avg
ρ∈[r,r′]

sup
x∈Bρ(M)

(
avg
τ∈[t,t′]

sup
y∈Bτ (M)

ψM(x, y)

)
is not the same as

avg
(ρ,τ)∈[r,r′]×[t,t′]

sup
(x,y)∈Bρ(M)×Bτ (M)

ψM(x, y).

For a simple example, consider that in general

max
x∈{0,1}

(f(x, 0) + f(x, 1)) 6= max
x∈{0,1}

f(x, 0) + max
x∈{0,1}

f(x, 1).

This is demonstrated by the function f(x, y) de�ned by the following.

(0, 0) 7→ 0

(0, 1) 7→ 0

(1, 0) 7→ −1

(1, 1) 7→ 1

The language we have de�ned provides us naturally with both of the above
kinds of quanti�cation. The �rst arises from interpreting nested quanti�ers as
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in the formula

sup
x

]r
′

r sup
y

]t
′

t ψ(x, y).

The other cases such as

sup
x,y

]
(r′,t′)
(r,t) ψ(x, y)

are explicitly provided as a single quanti�cation step in the de�nition of the
language.
These tuple quanti�ers can be expressed using the nested cases by par-

titioning the box determined by (r, t) and (r′, t′) and building the required
multivariable integral as a limit of Riemann sums. However, the rate of con-
vergence of these Riemann sums will depend on the remaining free variables.
Because of this, attempting to express this limit via composition, for exam-
ple by composing with a forced limit function u, will only result in a formula
guaranteed to be accurate given bounds on the free variables.

2.10. Quantifying over sequences. Since we can compose with in�nitary
real functions in our formulas, our logic has formulas which quantify over
in�nitely many variables in a certain way. Of course, we cannot quantify in an
arbitrary way over sequences. We are limited to what can be built using our
�nitary quanti�ers and composition with (controlled) connectives. But this
still includes some important limited versions of in�nite quanti�cation which
will play an important role in our applications.
For example, the following is a valid sentence σ in any language.∑

n∈N

supxn ]10d(xn, ?)

2n

This sentence contains countably many variables, and none of them are free.
It is easy to come up with other examples like this by taking weighted sums
of �nitely quanti�ed formulas.
We can think of the above σ as a sum of sentences about single variables.

Notice that σM = 0 i� for all n, the ball B1(MSn) contains only its basepoint
?MSn . But we can also view σ as a sentence about countable sequences. That is,
it is also true that σM = 0 i� the only sequence in

∏
B1(MSn) is (?MSn : n ∈ N).

Informally, we can get away with this in�nite quanti�cation and still get
expected results in model theory because given any ε > 0, the value of the
above sum can be determined to within ε using only �nitely many variables.
In other words, the quanti�cation can be thought of as �nite up to ε.
Next, we will look at another approach to in�nite quanti�cation formulas

by using forced limits and knowledge of controllers. Again, this is possible
because being controlled essentially means that a formula ψ only depends up
to ε on some known �nite subset of its coordinates.
To clarify the meaning of the limit taken in the following proposition, recall

that any interpretation ψM of a formula ψ with free variables indexed by α
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is some function Mα → R. When we quantify over some �nite tuple x of
variables indexed by {1, . . . , N}, we get a formula ψN given by

sup
x

]r
′

r ψ

whose interpretation (ψN)M is a function Mα−{1,...,N} → R. This function
(ψN)M extends uniquely to a functionMα → R which is constant with respect
to the coordinates {1, . . . , N}, de�ned by setting the value on m ∈ Mα to be
the value of (mn : n ∈ α − {1, . . . , N}) under (ψN)M . So, for the purposes of
the following de�nition, we can consider the lim to be a limit of functions all
viewed as having a common domain.

Proposition 2.10.1. Suppose we have an L-formula ψ, countable sequence of
variables (xn : n ∈ α) of sorts Sn respectively, reals (Rk : k ∈ β) corresponding
to each remaining free variable yk of ψ, and countable real sequences (rn) and
(r′n) with rn < r′n for all n.
There is an L-formula φ such that in every L-structureM , the interpretation

φM satis�es

φM = lim
N→∞

(
sup

(x1,...,xN )

]
(r′1,...,r

′
N )

(r1,...,rN )ψ

)M

when restricted to a subset where ||yk|| ≤ Rk for all k.

Proof. We will write r∪R for the indexed set of reals {r′n : n ∈ α}∪ {Rk : k ∈
β}.
Let (λ,N, δ) be the controllers for ψ, and for each ε > 0, let ψN(r′∪R,ε) denote

the formula supx∗ ]
r′∗
r∗ ψ

∗, where

• ψ∗ is obtained from ψ by replacing all variables having coordinates
outside N(r′ ∪R, ε) with the basepoint of their respective sort,
• x∗ is the tuple of variables xn whose indices appear in N(r′∪R, ε), and
• r∗ and r′∗ are the corresponding tuples for the variables in x∗ from
among rn and r′n.

By de�nition of the controllers, the value of ψM can be determined to within ε
by just the coordinates in N(r′∪R, ε), provided they satisfy the corresponding
bounds in r′ ∪ R. This implies convergence of ψMN(r′∪R,ε) as ε → 0, but even
stronger, for all ε > 0 and L-structures M , there is some nε such that all
ψMN(r′∪R,n−1) with n ≥ nε are within ε of the limit function inM . Since this rate

of convergence is determined just from L, we can use a controlled u : RN → R
to compute the limit. The composition u(ψN(r′∪R,n−1) : n ≥ 1) gives us the
L-formula claimed in the proposition. �

For example, this last proposition gives an unambiguous formula in every
L-structure equivalent to an expression like

sup
x

]r
′

r

∑
n∈N

max(1, d(xn, ?))

2n
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where x, r, and r′ are countable sequences.
There are clear ways to generalize the above proposition to cases with un-

countably many variables, since we can similarly build an increasing collection
of �nite subsets of coordinates, but we would need to pick a more general
notion of limit.

2.11. Logical distance between formulas. In discrete logic there is a no-
tion of logical equivalence of formulas. This is typically de�ned either proof
theoretically, by saying that φ ↔ ψ is provable with no additional assump-
tions, or de�ned semantically by saying that for every L-structure, φM and
ψM have equivalent interpretations. In this section we de�ne the analogous
notion for formulas in the continuous setting.

De�nition 2.11.1. Let φ(x) and ψ(x) be L-formulas, where x is a �nite or
contable sequence of variables. We de�ne the logical distance between φ and
ψ to be the supremum of the values |φM(a) − ψM(a)| across L-structures M
and tuples a from M .

Since our formulas are potentially unbounded, the logical distance between
φ and ψ could be ∞. For example, if φ is just the 0 formula, and ψ is d(?, x).
So this notion of distance is extended real valued. Moreover, two formulas may
have a logical distance of 0. A trivial example is the pair of formulas d(x, ?)
and max(0, d(x, ?)). These are technically distinct formulas, but their logical
distance is easily seen to be 0.

De�nition 2.11.2. If φ and ψ have a logical distance of 0, we say that they
are logically equivalent.

At best, we could describe this logical distance as an extended real valued
pseudometric. Symmetry and the triangle inequality can be easily veri�ed.
The other interesting behavior to discuss is that we can �nd pairs of formulas

which are arbitrarily close with respect to logical distance. A trivial example
of this is that for any formula φ(x), and any ε > 0, there is also a formula
φ(x) + ε. These formulas will have a logical distance of ε.
Moreover, we can look for dense sets of formulas. This is important to

notice because the notion of the size of a language L in the continuous setting
is a bit subtle. We will see when we get to some of the basic theorems from
model theory that we are not so much interested in the cardinality of the set
of L-formulas as we are in the cardinality of a dense subset.

De�nition 2.11.3. We say a set F of L-formulas is dense if for every L-
formula φ and every ε > 0, there is some φε in F such that the logical distance
between φ and φε is ≤ ε.

Notably, while the cardinality of the set of L-formulas will be uncountable
for any L, for example because we allow composition with any continuous
u : R → R, there will often be a countable, dense subset of formulas. Since
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the cardinality of these dense subsets will be the more important notion, we
make the following de�nition.

De�nition 2.11.4. We de�ne the density of a language L to be the smallest
cardinality among the dense subsets of L-formulas. We denote the density by
density(L).

2.12. Bounded or discrete structures. In this section, we will make some
observations about our logic applied to structures with bounded sorts. Notably,
we will see how the sup]r

′
r and inf]r

′
r quanti�ers degenerate to ordinary sup and

inf quanti�ers over the entire bounded space. Then we will see how bounded
continuous logic and discrete logic can be viewed as special cases of our logic.

Proposition 2.12.1. Let r ∈ [D,∞), and let φ be an L-formula of the form
sup]r+1

r ψ. Then in any L-structure M where the sort MS is bounded with
diameter D, the interpretation φM is the function supx∈MS

ψM . A similar
statement holds with sup replaced by inf.

Proof. By de�nition, the interpretation φM is
´ r+1

r
supx∈Bρ(MS) ψ

Mdr. This

is the average supremum of ψM(x) over the balls of radius ρ ∈ [r, r + 1].
But each ρ ∈ [r, r + 1] is at least D, so Bρ(MS) is all of MS. This means
supx∈Bρ(MS) ψ

M(x) is constantly equal to supx∈MS
ψM(x) for these ρ, and its

average value is just supx∈MS
ψM(x). �

The comments in the rest of this section assume familiarity with bounded
continuous logic and discrete logic. It is not completely straightforward that
bounded continuous logic and discrete logic are special cases of the current
logic, but a few comments make it clear in what sense this is true.
First, note that any discrete structure can be viewed as a discrete metric

space by giving it the metric d de�ned by d(x, y) = 0 when x = y and d(x, y) =
1 otherwise. This d essentially plays the role of equality. Any relation can be
viewed as a function to {0, 1} rather than {True,False}. In light of the previous
proposition, we can quantify with sup and inf over the whole structure. Since
the metric is discrete, sup and inf values will have to be actually realized.
This makes any sup or inf equivalent to a discrete formula using ∀ or ∃. In the
context of a discrete metric, our connectives include analogs of �nite boolean
connectives. In discrete spaces, the interpretations of unbounded continuous
logic formulas can degenerate and account for all of the expected discrete
formulas.
Continuous logic has some extra formulas however. For example, consider

a discrete structure M with a subset A consisting of the realizations of a
countable type p. In discrete logic, A might not be de�nable by a single
formula. However, in continuous logic, if A is {x ∈ M : φn(x) = 0 for all
n ∈ N}, then we can also realize A as the zero set of the single formula∑

n∈N φn(x) · 2−n.
Our setting also requires �xing a basepoint for each sort. A bounded or

discrete structure might not have a natural constant to serve as this basepoint.
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One way to address this is to amalgamate the logics, forming a logic with two
kinds of sorts: bounded with no basepoint but an assigned diameter, and
unbounded with a basepoint. Another ad hoc approach is the following way.
Say (M,d) is a metric space with diameter D. De�ne (M ′, d′) by adding a new
point to get M ′ = M ∪ {?} and extending d by setting d(x, ?) = D + 1 for all
x ∈ M . When we study de�nable sets, it will be clear that M = M ′ − {?} is
de�nable in M ′ and hence can be quanti�ed over as though it were a bounded
sort inM ′. This observation allows us to translate between bounded or discrete
formulas about M and unbounded formulas about M '.

2.13. Ben Yaacov's unbounded continuous logic. The quanti�ers supx]
r′
r

and infx]
r′
r in our setting are interpreted as an averaged supremum or in�mum

over balls with radii varying in some bounded range. The motivation comes
from wanting our logic to behave well with respect to the ultraproduct con-
struction, i.e. satisfy a version of �o±'s Theorem, which we prove as Theorem
3.7.4. The issue being address is that in general the function supx∈Br(M) φ(x) is
not continuous with respect to r. We get around this by integrating to smooth
things out.
The interested reader can contrast this approach with the approach in [4].

There, the author achieves the same goal (i.e. a logic for unbounded met-
ric spaces with this expressivity) in a di�erent manner. He uses sup and inf
quanti�ers with the variable ranging over the entire sort, and without any inte-
gration. Doing so requires restricting the formulas to which the sup and inf are
allowed to apply. The author develops syntactic notions of eventual constancy
and boundedness of formulas, and additionally modi�es the semantics for sup
and inf so that they account for an ideal point ∞ at which a formula takes
on its eventual constant value. He later develops formulas which interpret as
an approximate version of quanti�cation over balls, noting its convenience for
stating axioms. For example, these are formulas supr,r

′
x φ with the property

that

sup
ν(x)≤r

φ ≤ r,r′

sup
x
φ ≤ sup

ν(x)<r′
φ

when evaluated in any structure, where ν(x) is the gauge of x, a more general
notion of magnitude which is su�cient for discussing continuity and bounded-
ness restrictions needed for these logics.
Our quanti�ers supx]

r2
r1

could be constructed in that setting using uniform

limits of formulas involving the approximate quanti�ers supr,r
′

x mentioned above.
One would simply use Riemann sums, paying attention to the rate of conver-
gence ensured by the properties demanded of the formula φ. Conversely, it is
not di�cult to see:

(1) how our supx]
r2
r1
quanti�ers could be used to obtain �space-wide� quan-

ti�cation over the formulas with the eventual constancy property, or
to
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(2) obtain formulas with the same property as approximate quanti�ers
above.

For (1), average the supremum of an eventually constant formula over su�-
ciently large r1, r2. For (2), average over radii between r1 and r2 to obtain the
desired inequalities. There are various assumptions hidden here: the gauge
ν(x) might not be equivalent to distance to a basepoint, one may need a fam-
ily of uniformly continuous functions to account for a controlled function, and
so on.
It is worth noting that the supr,r

′
x constructions in [4] combined with the

Riemann sum comment above can show how our supx]
r2
r1

quanti�ers can be
built even in bounded versions of continuous logic.

2.14. Pseudometrics. The de�nitions and constructions in any version of
continuous logic can be carried out extremely similarly when working with
pseudometric spaces rather than metric spaces. That is, when we use sorts
which are a set M or pointed set (M, ?) equipped with a function µ : (x, y) 7→
R≥0 which is symmetric and satis�es the triangle inequality, but might have
µ(x, y) = 0 for some x 6= y. This is analogous to how, in discrete logic, things
are very similar if one uses an equivalence relation rather than equality.
It became clear near the completion of this thesis that a logic could be de-

veloped like the present one, but where sorts are taken to be a setM equipped
with a sequence of pseudometric-basepoint pairs (µi, ?i). This would essen-
tially be a logic for the much more general class of uniform spaces.
This would primarily require a slight extension of the de�nition of controlled

functions. For example, the purpose of the N controller for a function f :∏
n∈αMn → M would be to select �nitely many pseudometrics from among

the collection of all pseudometrics µn,i associated to one of the factors Mn in
the domain of f . The other major change would come later in the ultraproduct
construction, where additional boundedness requirements with respect to the
pseudometrics would be necessary in order for the construction to remain in
the correct class of spaces.
There are of course many details to be checked, but we suspect the develop-

ment would closely mirror the development here. This project is not taken up
in this thesis, but given the potential usefulness of the more general setting, it
seems worthwhile to call attention to this observation.

3. Model Theory

We will now begin discussing topics having to do with the properties of struc-
tures and how structures relate to one another, as measured by the formulas
of a given language.

3.1. Theories and elementary maps. We have seen that L-structures as-
sign functions to L-formulas. In particular, L-structures assign a constant
function to each L-sentence, and we can think of this constant function as just
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a real number. Interesting properties of M can be related to the values of
sentences φ.
If we build a nicer structure N which we know agrees with M on φ, then we

can learn about M by studying N instead. This line of thought is one of the
fundamental insights of model theory.
Below, we de�ne the theory of a structure. The theory of M summarizes

the values of all sentences in M . Let us pause to consider the analogy with
discrete logic. In the discrete setting, there are only two possibilities for the
value of a sentence in: true or false. There, we can keep track of all values of
all sentences inM by just noting which sentences are true. The false sentences
are necessarily everything else, and this gives a complete account of the values
of all sentences in M .
In the continuous setting, sentences take values in R rather than {True,False}.

However, we will easily see that we still only need to keep track of the sentences
corresponding to some �xed single value in R. We will focus on those sentences
with value 0. Of course, knowing that φM 6= 0 does not tell us the value of φM .
But if we have a complete list of all sentences ψ such that ψM = 0, then we
can determine the value of φM by looking for which r satis�es (φ − r)M = 0,
since φ− r will also be a sentence.
It is not particularly important that we use 0. We could choose any value

for this purpose. But it is convenient to focus on the sentences which evaluate
to 0. One advantage to focusing on 0 is that basic algebraic facts let us read
these sentences in familiar, boolean-like ways. For a quick example, remember
that ab = 0 i� a = 0 or b = 0. These are easy algebraic facts, but we will call
attention to them in a later section. Also, focusing on sentences with value 0
means that theories will always contain things like supx]

r′
r d(x, x), which is the

closest analog to a discrete sentence like ∀x(x = x).

De�nition 3.1.1. The theory of an L-structure M is denoted Th(M) and
de�ned to be the collection of L-sentences φ such that φM = 0. More generally,
we may call any collection T of L-sentences a theory if there is at least one
M such that φM = 0 for all φ ∈ T .
When we have identi�ed some theory T , we are usually interested in talking

about the structures whose theory contains T . So we have names and notation
for this situation.

De�nition 3.1.2. If φ is a sentence, we say M satis�es φ and write M |= φ
whenever φM =0. If T is a collection of sentences, we say M is a model of T
and write M |= T whenever φM = 0 for all φ ∈ T .
Clearly, every structure is a model of its own theory. A more interesting

case is when two di�erent structures share the same theory.

De�nition 3.1.3. Let M,N be L-structures. We say M and N are elemen-
tarily equivalent if Th(M) = Th(N). Elementary equivalence of M and N
is usually denoted by M ≡ N .
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That is,M and N are elementarily equivalent exactly when they agree about
which sentences are 0. We now check that elementary equivalence implies
agreement of interpretation for all sentences, not just the 0 sentences.

Proposition 3.1.4. Let M and N be two L-structures with Th(M) = Th(N).
Then for any L-sentence φ, we have φM = φN .

Proof. Suppose φM = r. Let ψ be the sentence φ − r . Note that ψ is an L-
sentence since we obtained it by composing φ with the connective x 7→ x− r.
Now, ψM = 0 by interpretation, and hence ψ ∈ Th(M). The hypothesis then
gives ψN = 0, from which we get φN = r as well. �

Now we will de�ne several important kinds of maps between L-structures.

De�nition 3.1.5. Let M,N be L-structures. Suppose E is a collection of
functions ES : MS → NS for each sort S in L. We will denote this as follows.

E : M → N

We say E is an L-embedding if it respects distances, functions and relations
as follows:

• for each distance symbol dS and a, b ∈MS,

dNS (ES(a), ES(b)) = dMS (a, b),

• for each function symbol f with domain(f) = (Sn : n ∈ N) and
range(f) = S, and each an ∈MSn ,

fN(ESn(an) : n ∈ N) = ES(fM(an : n ∈ N)),

• for each relation symbol R with domain(f) = (Sn : n ∈ N) and each
an ∈MSn ,

RN(ESn(an) : n ∈ N) = RM(an : n ∈ N),

We say E is L-elementary if for any L-formula φ(xn : n ∈ N) with each xn
of sort Sn respectively, we have

φN(E(an) : n ∈ N) = φM(an : n ∈ N)

whenever an ∈MSn .
We say E is an L-isomorphism if it is a surjective L-embedding. Iso-

morphism of M and N is usually denoted by M ∼= N when the language is
understood.

The next proposition highlights basic relations between these kinds of maps.
Informally, the di�erence between embeddings and elementary maps is that,
when E : M → N is only an embedding, there may be some elements of
N − E(M) which can be indirectly referred to by quanti�ers. That is, the
embedded copy of an element E(a) ∈ N might relate to �new� things in N
di�erently than a did to things just in M . The sup and inf quanti�ers can
detect this occuring. A simple example can be built by noticing that {0}
embeds in {0, 1}, but supx]

2
1d(x, 0) is 0 in {0} and is 1 in {0, 1}. Elementary
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maps avoid this by requiring the map to respect formulas, not just symbols.
Isomorphisms avoid it by requiring surjectivity, so that there is nothing new
in N .

Proposition 3.1.6. Any isomorphism is elementary. Any elementary map is
an embedding. Any embedding is an isometry.

Proof. We will assume we have single-sorted structures, and functions and
relations are unary operators. The general cases are similar, but this makes
things more readable.
Suppose E is an embedding. Then by de�nition we have

dN(E(a), E(b)) = dM(a, b)

for all a, b ∈M . This is the de�nition of isometry.
Suppose E is elementary. For the distance symbol d, notice d(x, y) is a

formula. Similarly, for any relation symbol R, R(x) is a formula. So we
immediately get both

dN(E(a), E(b)) = dM(a, b)

and

RN(E(a)) = RM(a)

for all meaningful a, b ∈M by assumption. For any function symbol f , notice
d(f(x), y) is a formula. This means

dN(fN(E(a)), E(b)) = dM(fM(a), b)

for all a, b ∈M by assumption. But, for any a ∈M , we have

dM(fM(a), fM(a)) = 0

and hence using b = fM(a) above gives us

dN(fN(E(a)), E(fM(a))) = 0.

This is equivalent to

fN(E(a)) = E(fM(a))

for any a ∈M , so we are done.
Suppose E is an isomorphism. We can argue that E is elementary by induc-

tion on formulas. It is clear that if φ is quanti�er free, we have

φN(E(a)) = φM(a)

since φN is just a composition of functions with this property. So, we just need
to handle the quanti�er case. Suppose φ is of the form supx]

r′
r ψ(x, y) where ψ

has the desired property. Then for any b ∈M , we have that φN(E(b)) is
ˆ r′

r

sup
x∈Bρ(N)

ψN(x, E(b))dr.
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In particular, E is assumed to be a surjective isometry, so this integral is
equivalent to ˆ r′

r

sup
x∈Bρ(M)

ψN(E(x), E(b))dr

where the sup now ranges over balls in M . By the inductive assumption on ψ,
this is equivalent to ˆ r′

r

sup
x∈Bρ(M)

ψM(x, b)dr

which is φM(b). The more general forms of φ and the inf case are similar. �

De�nition 3.1.7. Let M,N be L-structures. We say M is a substructure
of N and write M ⊆ N if for each sort S in L, we have MS ⊆ NS and the
inclusion maps MS → NS form an L-embedding. In this case, we also say N
is an extension of M .
If moreover, this collection of inclusions MS → NS is elementary, then we

say M is an elementary substructure of N and write M � N . In this case,
we also say N is an elementary extension of M .

Proposition 3.1.8. If M � N , then Th(M) = Th(N).

Proof. Sentences are a special case of the formulas preserved by the elementary
inclusion map. �

We will close this section with the Tarski-Vaught test. This provides a su�-
cient condition for an elementary embedding to exist by exploiting the obser-
vation that obstructions to elementary embeddings are detected by quanti�ers.

Proposition 3.1.9. (Tarski-Vaught Test) Let M,N be L-structures with
M ⊆ N . The following are equivalent.

(1) M � N
(2) For all r1, r2 ∈ R, all L-formulas φ(x, (yn)), and all sequences (an)

from M , whenever we have(
inf
x

]r2r1φ(x, (an))
)N

< r

for some r ∈ R, then there is some b ∈ Br2(M) such that

(φ(b, (an)))N < r.

(3) Let D be a dense subset of R, let F be a dense subset of L-formulas,
and let A be a dense subset of M . For all r1, r2 ∈ D, all φ(x, (yn))
from F , and all sequences (an) over A, whenever we have(

inf
x

]r2r1φ(x, (an))
)N

< r

for some r ∈ R, then there is some b ∈ Br2(M) such that

(φ(b, (an)))N < r.
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Proof. The (1→ 2) direction is by de�nition of�. The bound on the quanti�ed
formula carries over to M , and then we can select the witness b ∈ M by
considering the bound on the integral we get by interpretation.
For (2 → 1), just note that induction on complexity of L-formulas can be

carried out, using M ⊆ N to establish the base case, and (2) to deal with the
inductive steps involving quanti�cation. Notice that we have (2) for all pairs
r1, r2. So when we want to compare infx]

r2
r1
φ in M and N , we can arbitrarily

partition [r1, r2] into subintervals [r′1, r
′
2] where (2) applies to �nd witnesses in

every ball of N .
The implication (3 → 2) follows by using density of F , continuity of for-

mulas, and continuity of integrals with respect to their endpoints in order to
verify the conditions in 2 to within ε for every ε > 0. �

Notice that in (3) it su�ces to check enough formulas and parameters, in the
sense that we only need to consider dense sets. In particular, since formulas
are controlled, we only actually need to worry about �nite tuples (an).

3.2. Notation for common subformulas. It becomes immediately appar-
ent in applications that we want to assert equalities and inequalities using
formulas or sentences in theories. For a simpli�ed example with equality, con-
sider the following.

Example 3.2.1. We might want to assert that two constant points a and b
must be at distance 1 from each other in some theory, i.e. that d(a, b) = 1. We
have the distance symbol in our language, but we do not have equality. Instead,
we can use the sentence φ given by |d(a, b)− 1|. By de�nition, φ ∈ Th(M) if
and only if M evalutes |d(a, b) − 1| to be 0. So we have that φ ∈ Th(M) i�
d(a, b) = 1.
In our setting, φ is not �true� or �false� in M ; it is assigned a real number.

Knowing φ /∈ Th(M) only tells us φM 6= 0, but not what value φM is. Consid-
ering the de�nition of φ, a reasonable way to think of φM is as the (absolute
value of the) error in the equality statement, i.e. how much d(a, b) di�ers from
1.

Now a simple example with inequality.

Example 3.2.2. Suppose we want to assert d(a, b) ≤ 1. Again, we do not
have ≤ in our language, so this is not a sentence. But we can consider the
sentence φ given by max(d(a, b) − 1, 0). We have max(d(a, b) − 1, 0) = 0 i�
d(a, b) ≤ 1, so we have φ ∈ Th(M) exactly when d(a, b) ≤ 1 in M . More
generally, we have that max(d(a, b)− 1, 0) = r i� d(a, b) = 1 + r. That is, φM

can be considered the error in the ≤ statement, i.e. how much greater d(a, b)
is than 1.

Because these are very typical situations, we introduce the following nota-
tion.

Notation 3.2.3. Let L be any language, and let φ, ψ be L-formulas.
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(1) φ ≈ ψ is the formula |φ− ψ|.
(2) φ . ψ is the formula max(φ− ψ, 0).
(3) φ & ψ is the formula max(ψ − φ, 0).
(4) For each ε > 0, φ ≈ε ψ is the formula (φ ≈ ψ) . ε, i.e.

max(|φ− ψ| − ε, 0).

The inclusion of absolute values for ≈ forces the formula to be nonnegative.
This is convenient when working with quanti�ers and theories.

Proposition 3.2.4. The following hold

(1) (φ ≈ ψ)M = 0 i� φM = ψM .
(2) (φ . ψ)M = 0 i� φM ≤ ψM .
(3) (φ & ψ)M = 0 i� φM ≥ ψM .
(4) (φ ≈ε ψ)M = 0 i� |φM − ψM | ≤ ε.

3.3. Reading, writing, and arithmetic. Provided x, y ≥ 0, the equations
xy = 0 and x+ y = 0 correspond to boolean claims about the terms involved.
We have xy = 0 i� at least one of x = 0 or y = 0 holds. When x, y ≥ 0, we
have x+ y = 0 i� both x = 0 and y = 0 hold.
Similarly, still provided x, y ≥ 0, the equation max(x, y) = 0 holds i� both

x, y = 0, and min(x, y) = 0 holds i� at least one of x, y is 0.
As was suggested earlier, these facts are part of the motivation for de�ning

Th(M) to be the set of sentences evaluating to 0.

Example 3.3.1. Consider the statement �the distance from a to b is 1, or
the distance from a to b is 2�. In discrete logic, it is clear enough how one
might express this; for example, d(a, b) = 1 ∨ d(a, c) = 2. We have seen how
to handle =, but now we need to handle ∨. Consider the formula φ given by
the following.

(d(a, b) ≈ 1) · (d(a, c) ≈ 2)

We have φM = 0 i� at least one of the terms in the product is 0. Equivalently,
we have φM = 0 i� d(a, b) = 1 or d(a, c) = 2. We could similarly have used
the formula ψ given by

min (d(a, b) ≈ 1, d(a, c) ≈ 2) .

Example 3.3.2. Consider the statement �the distance from a to b is 1, and
the distance from a to c is at most 2�. Again, in discrete logic, we could express
this as d(a, b) = 1 ∧ d(a, c) ≤ 1. For continuous logic, consider the formula φ
given by the following.

(d(a, b) ≈ 1) + (d(a, c) . 1)

Then, since both terms in the sum are bounded below by 0, we have φM = 0
i� both terms in the sum are 0. Equivalently, we have φM = 0 i� d(a, b) = 1
and d(a, c) ≤ 1. We could similarly have used the formula ψ given by

max (d(a, b) ≈ 1, d(a, c) . 1) .
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We will summarize these observations in the following proposition.

Proposition 3.3.3. Let φ and ψ be L-sentences, and let M be an L-structure.
These four statements are equivalent:

• M |= φ or M |= ψ.
• φM = 0 or ψM = 0.
• (φ · ψ)M = 0.

• (min(φ, ψ))M = 0.

When φM , ψM ≥ 0, these four statements are equivalent:

• M |= φ and M |= ψ.
• φM = 0 and ψM = 0.
• (φ+ ψ)M = 0.

• (max(φ, ψ))M = 0.

3.4. Chains. When M ⊆ N , it is trivial that we can take the union of the
sorts inM and N to form an L-structure (in this case, N) which contains both
M and N . It is also easy to see that this generalizes to chains of substructures.

De�nition 3.4.1. Let I be an ordered set. For all i ∈ I, let Mi be an L-
structure, such that Mi ⊆ Mj whenever i < j. The union

⋃
i∈IMi is the

L-structure formed by taking the union and metric completion along each
sort, function, and relation.

If, moreover, the chain consists of elementary substructures, rather than just
substructures, we have the following.

Proposition 3.4.2. Let I be an ordered set, and let Mi be an L-structure for
each i ∈ I. If Mi �Mj whenever i < j, then the union satis�es

Mi �
⋃
j∈I

Mj

for all i ∈ I.

Proof. By the Tarski-Vaught test, it su�ces to only consider inf] quanti�ed
formulas. We can approximate such a formula with a Riemann sum to reduce
to �nding �nitely many witnesses to inf statements. But any �nitely tuple in⋃
M must be contained in a common Mi. �

3.5. Downward Löwenheim-Skolem. Given a structure M and a subset
A, we might want to construct an elementary substructure N which is smaller
than M but still contains A. That is, we might want a smaller model which
still respects some core behavior.
The next result explains when and how this can be done. The main idea is

to start with A, and inductively add the elements needed in order to satisfy
the Tarski-Vaught test. That is, we just need to add witnesses for things like
infx]

q2
q1
φ(x, a). Since the language is determined by density(L) many formulas,

we will not have to expand A by too much.
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In the following, we write density(A) ≤ κ to mean that A has a subset B
which is dense in A and whose cardinality is ≤ κ.

Proposition 3.5.1. (Downward Löwenheim-Skolem) Let κ be an in�nite
cardinal, let L be a language with density(L) ≤ κ. Let M be an L-structure,
and let A ⊆M with density(A) ≤ κ.
There exists an elementary substructure N � M such that A ⊆ N and

density(N) ≤ κ.

Proof. Let F be a dense set of L-formulas such that each φ ∈ F has �nitely
many variables. Choose some dense subset B of A with cardinality ≤ κ. Let
B0 = B, and let B̄0 be the closure (under functions from M) and completion
of B0. Note that since L has density ≤ κ, we still have that the density of B̄0

is ≤ κ, but now B̄0 can be taken to be an L-structure.
Now, for each n ∈ {1, 2, 3, . . . }, construct the �witness set� Wn as follows.

For each φ(x1, . . . , xk, y) in F and each b1, . . . , bk ∈ Bn−1, whenever there is
an m ∈ N and an element c satisfying

c ∈ B 1
n

(m+1)(M)−B 1
n

(m)(M)

and

M |= |φ(b1, . . . , bk, c)| .
1

n
,

we add one such c (for each m) to Wn. Note that this means we add at most
countably many such c for each φ.
For n ∈ {1, 2, 3, . . . }, de�ne Bn to be Bn−1 ∪Wn, and de�ne B̄n to be the

closure (under functions) and completion of Bn. Each Bn still has density ≤ κ
since we assumed the density of L is ≤ κ. So, the union of the B̄n is now an
L-structure of density ≤ κ.
Moreover, for any φ ∈ F and b1, . . . , bk ∈

⋃
B̄n, and for any d ∈ M , our

construction ensures that we can always approximate

(φ(b1, . . . , bk, d))M

to within any ε > 0 by some

(φ(b1, . . . , bk, c))
⋃
B̄n

with c ∈
⋃
B̄n having ||c|| within ε of ||d||. This is su�cient to verify the inf]

equalities needed in the Tarski-Vaught test and conclude that

A ⊆
⋃

Bn �M.

�

3.6. Ultra�lters. If we have a collection of L-structures {Mi : i ∈ I}, we
would like to produce an L-structureM which ideally represents the tendencies
of the collection. That is, we want a metric structure where each interpreted
formula φM should in some way represent the collection {φMi : i ∈ I}.
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Formalizing this begins with the idea of an ultra�lter, which gives us one
way to de�ne being a �su�ciently large� subset of I. A choice of ultra�lter is
will give the collection of Mi some notion of direction or tendency.

De�nition 3.6.1. An ultra�lter on a set I is a collection U of subsets of I
such that:

(1) ∅ is not in U .
(2) If F1 ∈ U and F2 is a subset of I with F1 ⊆ F2, then F2 ∈ U as well.
(3) If F1, F2 ∈ U , then the intersection F1 ∩ F2 is in U .
(4) If F is a subset of I, then either F ∈ U or I \ F is in U .

An ultra�lter is nonprincipal if it does not contain a singleton set.

Nonprincipal ultra�lters are far more interesting for our purposes. We will
discuss limits with respect to ultra�lters, and if U contains a singleton {i}
(i.e. if U is principal), then these limits only depend on the single element i.
This would be like de�ning a limit of real sequences xn by choosing a speci�c
coordinate of the sequence, rather than by considering the tails of the sequence.
As mentioned above, a good way to think of an ultra�lter is that it decides

whether any subset of I is su�ciently large. In this sense, ∅ is not U -large,
anything containing a U -large set is U -large, and the intersection of U -large
sets is U -large. The �ultra� part of the ultra�lter is the requirement that every
set is either considered U -large or else has a U -large complement.
The next proposition is just a dual version of the intersection property above.

Proposition 3.6.2. If none of F1, . . . , Fn are in U , then F1 ∪ · · · ∪ Fn is not
in U .

Proof. We have that the complements I \ F1, . . . , I \ Fn are each in U . Thus
their intersection (I \ F1) ∩ · · · ∩ (I \ Fn) is in U . But this intersection is
I \ (F1 ∪ · · · ∪ Fn). So, its complement F1 ∪ · · · ∪ Fn is not in U . �

It is straightforward from the last proposition that any nonprincipal ul-
tra�lter on N must contain the co�nite sets. In particular it must contain
{1, 2, 3, . . . }, {2, 3, 4, . . . }, {3, 4, 5, . . . }, and so on. This is useful to keep in
mind when seeing how ultra�lters can be used to generalize the usual notions
of a limit from analysis.

De�nition 3.6.3. Let xi be an I-indexed collection of points in a metric space
(X, d), and let U be an ultra�lter on I. We say p ∈ X is the ultralimit of xi
and write limU xi = p if for all ε > 0, there is F ∈ U such that for all i ∈ F ,
we have d(xi, p) ≤ ε.

The proposition below shows an equivalent way to de�ne ultralimits.

Proposition 3.6.4. For any ε > 0, the following are equivalent:

(1) There is F ∈ U such that for all i ∈ F , we have d(xi, p) ≤ ε.
(2) The set {i ∈ I : d(xi, p) ≤ ε} is contained in U .
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Proof. For (1) implies (2), note that the set in (2) is a superset of F . For the
other direction, let F be the given set. �

The next few propositions show the advantages of using ultralimits. Namely,
ultralimits have very general convergence properties.

Proposition 3.6.5. If (xi) has an ultralimit limU xi, the ultralimit is unique.

Proof. For contradiction, suppose p1 and p2 are two distinct ultralimits of (xi)
with respect to U . Take balls B1 and B2 centered at p1, p2 respectively, and
having B1 ∩ B2 = ∅. Then {i ∈ I : xi ∈ B1} ∈ U and {i ∈ I : xi ∈ B2} ∈ U ,
but their intersection is ∅. This is impossible. �

Proposition 3.6.6. If (M,d) is compact, then limU xi exists in M for any
sequence (xi).

Proof. For contradiction, suppose no p ∈ M is an ultralimit of (xi). This
means that for each p ∈M , there is some εp > 0 such that

{i ∈ I : d(x, p) ≤ εp} 6∈ U .
Cover M by the balls centered at each p of radius εp, then let B1, . . . , Bn be
the balls in a �nite subcover. Now,

{i ∈ I : xi ∈ Bk} 6∈ U
for each k, so the complements satisfy

{i ∈ I : xi 6∈ Bk} ∈ U .
Since there are �nitely many, their intersection satis�es

{i ∈ I : xi /∈ B1 ∪ · · · ∪Bn} ∈ U
and hence is nonempty. This implies the existence of points xi not contained
in B1 ∪ · · · ∪Bn, contradicting that these sets form a cover. �

We can easily generalize this to proper spaces if we also know ||xi|| is
bounded on a U -large set. In particular, this is useful later when we look
at ultralimits of values of formulas.

Corollary 3.6.7. Let (M,d, ?) be a proper pointed metric space, and let (xi)
be a sequence in M such that for some r ∈ R+, the set

F = {i ∈ I : ||xi|| ≤ r}
is in U .
Then limU xi exists and is unique.

Proof. Since M is proper, the closed ball B̄r(M) is compact. Consider the
sequence (x′i) de�ned as follows.

x′i =

{
xi when i ∈ F
? when i 6∈ F
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The last proposition applies to (x′i) as a sequence in B̄r(M, p), so it has an
ultralimit p. By de�nition, this means that for any ε > 0, there is G ∈ U such
that d(x′i, p) ≤ ε for i ∈ G. But then d(xi, p) ≤ ε for all i in the intersection
F ∩ G ∈ U . So p is an ultralimit of (xi). Uniqueness follows from the earlier
proposition. �

This last corollary shows that, for example, the alternating sequence

(1, 0, 1, 0, . . . )

has an ultralimit once we choose an ultra�lter. For this sequence, the ultralimit
can be decided by determining whether the ultra�lter contains the set of even
indices, or its complementary set of odd indices. If we choose an arbitrary
ultra�lter, then we will not know what limit to expect. Also, of course, more
elaborate examples can be constructed. It is comforting to know the following,
at least.

Proposition 3.6.8. If (xn : n ∈ N) is a sequence in M which has a limit
limn→∞ xn in the usual metric sense, then for any non-principal ultra�lter U ,
we have

lim
U
xn = lim

n→∞
xn.

Proof. This is because any non-principal ultra�lter must contain the co�nite
sets

{n, n+ 1, n+ 2, . . . }
for each n. The usual de�nition of convergence then ensures that for each
ε > 0, there is a co�nite set of indices where d(xi, limn→∞ xn) ≤ ε. �

3.7. Ultraproducts. In this section we now de�ne ultraproducts of L-structures
and prove a fundamental theorem about them. The de�nition makes heavy use
of the ultralimits from the previous section. We will check after the de�nition
that the construction we describe is well-de�ned, and the resulting object is
actually an L-structure.
Since the construction is long, we will break it up into two parts. The �rst

part constructs the sorts for the ultraproduct. The second part de�nes the
functions and relations on the sorts.

De�nition 3.7.1. Let Mi be a collection of L-structures indexed by I, and
let U be an ultra�lter on I. Let S be a sort symbol from L, and let (Mi)S
denote the corresponding sort in each structure Mi.
We de�ne the ultraproduct sort

∏
U(Mi)S below in several steps.

(1) Let ∏
i∈I

(Mi)S

be the cartesian product of the sorts (Mi)S. Recall that each (Mi)S
has a basepoint ?Mi

S and metric dMi
S .
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(2) De�ne M ′
S to be the subset

{(ai) ∈
∏
i∈I

(Mi)S : lim
U
dMi
S (ai, ?

Mi
S ) <∞}.

This is the set of sequences whose corresponding sequence of coordinate-
wise distances to the basepoint has �nite ultralimit.

(3) De�ne a pseudometric d′S on M ′
S by

d′S(a, b) = lim
U
dMi
S (ai, bi)

for each a = (ai) and b = (bi) in M ′
S. This is the ultralimit of the

coordinate-wise distances.
(4) De�ne MS to be the quotient of M ′

S by d′S. That is, MS is the metric
space M ′

S/ ∼ where ∼ is the equivalence relation given by

a ∼ b i� d′S(a, b) = 0.

This identi�es the sequences whose ultralimit of coordinate-wise dis-
tances is 0.

(5) De�ne dMS to be the resulting quotient metric d′S/ ∼.
(6) De�ne ?MS to be the class (?Mi

S : i ∈ I)/ ∼.
(7) The ultraproduct sort

∏
U(Mi)S is the pointed metric space (MS, d

M
S , ?

M
S )

Now we de�ne the full ultraproduct.

De�nition 3.7.2. Let Mi be a collection of L-structures indexed by I, and
let U be an ultra�lter on I. The ultraproduct

∏
UMi is the L-structure M

de�ned as follows.

(1) For each sort symbol S in L, the sort MS is the ultraproduct sort∏
U(Mi)S de�ned above.

(2) For each function symbol f ∈ F with domain(f) = (Sn : n ∈ α) and
range(f) = S, we de�ne

fM :
∏
n∈α

MSn →MS

as follows. For each (an : n ∈ α) ∈
∏
MSn , we de�ne

fM(an : n ∈ α) = (fMi(an,i : n ∈ α))i∈I/ ∼
where for each �xed n, the sequence (an,i)i∈I is any representative for
the class of an.

(3) For each relation symol R ∈ R with domain(R) = (Sn : n ∈ α), we
de�ne

RM :
∏
n∈α

MSn → R

as follows. For each (an : n ∈ α) ∈
∏
MSn , we de�ne

RM(an : n ∈ α) = lim
U
RMi(an,i : n ∈ α)
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where for each �xed n, the sequence (an,i)i∈I is any representative for
the class of an.

If all Mi are the same structure N , then we call
∏
UMi the ultrapower of N ,

and denote it by NU .

Proposition 3.7.3. The functions and relations above are well-de�ned and∏
UMi is an L-structure.

Proof. We consider the case of functions. Relations follow from a similar ar-
gument. We need to check the existence and uniqueness of the value assigned
to fM(an : n ∈ α) in the construction above. Moreover, we need to verify that
fM is controlled by the tuple control(f) = (λ,N, δ) assigned by the language.
For each n ∈ α, let (an,i)i∈I be a representative for the class an, and let

r = (rn) ∈ Rα
+ be a real sequence with ||an|| < rn for all n ∈ α.

First, we will check that there is some F ∈ U where for each i ∈ F the value
of

fMi(an,i : n ∈ α)

is bounded. This will verify that

(fMi(an,i : n ∈ α))i∈I

actually represents a class in MS. So that we can apply controllers, choose
any ε > 0. For all i, the function fMi is controlled by (λ,N, δ). For each
n ∈ N(r, ε), since an is represented by (an,i)i∈I , there is Fn ∈ U such that

||an,i|| < rn for i ∈ Fn.
Since N(r, ε) ⊆ α is �nite, by intersecting these �nitely many Fn, we get a
single F ∈ U where for all n ∈ N(r, ε) and i ∈ F we have ||an,i|| < rn. Hence,
for all i ∈ F , we have by de�nition of the controllers that

||fMi(an,i : n ∈ α)|| ≤ λ(r).

So (fMi(an,i : n ∈ α))i∈I represents some class in the closed ball of radius λ(r).
Next, we check that this class is independent of the choice of representatives

for each an. For each n, let (bn,i)i∈I also be a representative for the class an.
Let ε > 0. For each n ∈ N(r, ε), since (an,i)i∈I and (bn,i)i∈I are both in the
class of an, there are Fa,n and Fb,n in U such that

||an,i|| < rn for i ∈ Fa,n,
||bn,i|| < rn for i ∈ Fb,n,

and moreover there is Fa,b,n ∈ U such that

dMi(an,i, bn,i) < δ(r, ε) for i ∈ Fa,b,n.
By intersecting the �nitely many Fa,n, Fb,n, and Fa,b,n with n ∈ N(r, ε), we
obtain a single Fε such that for all n ∈ N(r, ε) and all i ∈ Fε, the above three
inequalities hold. Hence, for all i ∈ Fε, we have by de�nition of the controllers
that

d(fMi(an,i : n ∈ α), fMi(bn,i : n ∈ α)) ≤ ε.
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We can make this argument for any ε > 0, so we have that

(fMi(an,i : n ∈ α))i∈I

and
(fMi(bn,i : n ∈ α))i∈I

represent the same class, since the ultralimit of their distances is 0.
This veri�es the well-de�nedness of fM . Now we will check that the con-

trollers are preserved.
Let r = (rn) ∈ Rα

+ and let ε > 0. Suppose that we have sequences

a = (an : n ∈ α)

b = (bn : n ∈ α)

from the ultraproduct M , such that for all n ∈ N(r, ε) we have

||an|| < rn,

||bn|| < rn,

d(an, bn) < δ(r, ε).

For each n ∈ α, let (an,i)i∈I be a representative for an, and let (bn,i)i∈I be a
representative for bn.
For all n ∈ N(r, ε), since ||an|| < rn, there is some Fn ∈ U such that

||an,i|| < rn for i ∈ Fn.
If we intersect these �nitely many Fn, we get a single F ∈ U such that for all
n ∈ N(r, ε) and i ∈ F , we have ||an,i|| < rn. For i ∈ F , we thus have

||fMi(an,i : n ∈ α)|| ≤ λ(r).

So, taking the class shows ||fM(a)|| ≤ λ(r) as required.
For all n ∈ N(r, ε), since ||an|| < rn, ||bn|| < rn, and d(an, bn) < δ(r, ε), we

have Fa,n, Fb,n, and Fa,b,n such that

||an,i|| < rn for i ∈ Fa,n,
||bn,i|| < rn for i ∈ Fb,n,

dMk(an,i, bn,i) < δ(r, ε) for i ∈ Fa,b,n.
Intersecting these �nitely many Fa,n, Fb,n, and Fa,b,n for n in N(r, ε) gives a
single Fε ∈ U such that for all n ∈ N(r, ε) and i ∈ Fε, we have ||an,i|| < rn,
||bn,i|| < rn, and d

Mi(an,i, bn,i) < δ(r, ε). Hence, for i ∈ Fε, we get
d(fMi(an,i : n ∈ α), fMi(bn,i : n ∈ α)) ≤ ε.

So, d(fM(a), fM(b)) ≤ ε as required. �

We have arrived at the analog of �o±'s Theorem for this logic. It shows
that the interpretation of any formula in the ultraproduct is determined by
ultralimits over the factors. The ultraproduct is a fundamental construction
in model theory, and this theorem along with the compactness theorem we
obtain from it below are central.
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Theorem 3.7.4. (Fundamental theorem of ultraproducts) Let M =∏
UMi be an ultraproduct of L-structures, and let φ be an L-formula with

free variables (xn : n ∈ α). The functions φM and φMi satisfy

φM(a) = lim
U
φMi(ai)

for all sequences a = (an : n ∈ α) over appropriate sorts of M and sequences
ai = (an,i : n ∈ α) over appropriate sorts of Mi, where for each n ∈ α, (an,i)i∈I
represents the class an in M .
In particular, if φ has no free variables, then the constant real value of φM

is equal to the ultralimit of those for the φMi.

Proof. The proof is by induction on φ.
First, we check that for any L-term t, we have

tM(a) = (tMi(ai) : i ∈ I)/ ∼ .

This is true by de�nition for ?M , and true for variables since at any element
b ∈M , it is true by construction of the ultraproduct. Suppose it is true for all
tn with n ∈ α, and let f be a function symbol. By interpretation,

f(tn : n ∈ α)M(a)

is
fM(tMn : n ∈ α)(a).

By the inductive hypothesis, this is the same as

fM((tMi
n (ai) : i ∈ I)/ ∼) : n ∈ α).

By de�nition of the function fM in the ultraproduct, this is

(fMi(tMi
n (ai) : n ∈ α) : i ∈ I)/ ∼

as required.
Suppose φ is an atomic formula

R(tn : n ∈ α).

By interpretation φM is
RM(tMn : n ∈ α)

and so φM(a) is

RM((tMi
n (ai) : i ∈ I)/ ∼) : n ∈ α)

by the above paragraph on terms. By de�nition of the relation RM in the
ultraproduct, this means φM(a) is

lim
U
RMi(tMi

n (ai) : n ∈ α).

Finally, by de�nition of interpretation in each Mi, this is the same as

lim
U
R(tn : n ∈ α)Mi(ai)

as required.
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Suppose φ is of the form

u(ψn : n ∈ α)

where u is controlled on RN and the theorem holds for each ψn. By interpre-
tation, φM(a) is

u(ψMn (a) : n ∈ α).

We want to show that this is the same limU u(ψMi
n (ai) : n ∈ α) to verify this

case of the theorem. Let r = (rn) ∈ Rα be a sequence such that

|ψMn (a)| < rn

for all n ∈ α, and let ε > 0. Choose controllers (λ,N, δ) for u. By the inductive
hypothesis on each ψn, we have

ψMn (a) = lim
U
ψMi
n (ai)

for all n ∈ α. So for each n ∈ N(r, ε), there is Fn ∈ U such that∣∣ψMi
n (ai)− ψMn (a)

∣∣ < δ(r, ε) for i ∈ Fn
and

|ψMi
n (ai)| < rn for i ∈ Fn.

Intersecting these �nitely many Fn with n ∈ N(r, ε) gets us a single Fε ∈ U
such that for all i ∈ Fε, we have by de�nition of the controllers that∣∣u (ψMi

n (ai) : n ∈ α
)
− u

(
ψMn (a) : n ∈ α

)∣∣ ≤ ε.

This shows

u
(
ψMn (a) : n ∈ α

)
= lim

U
u
(
ψMi
n (ai) : n ∈ α

)
as required.
Suppose φ is of the form infx]

r2
r1
ψ(x, y), where the theorem holds for ψ. We

want to show that

lim
U

ˆ r2

r1

inf
x∈B̄ρ(Mi)

ψMi(x, ai)dρ =

ˆ r2

r1

inf
x∈B̄ρ(M)

ψM(x, a)dρ.

Let A be the value of the left-hand side, and let B be the value of the right-hand
side. We will prove the theorem by showing that for any L ∈ R,

A < L =⇒ B ≤ L

and

B < L =⇒ A ≤ L.

First, suppose A < L. Then there is some F1 ∈ U such that for all i ∈ F1,
we have ˆ r2

r1

inf
x∈B̄ρ(Mi)

ψMi(x, ai)dr < L.

Let ε > 0. We will select witnesses close to the in�mums in each B̄ρ(Mi) as
we vary ρ, i, and use these witnesses to establish bounds on the infumums in
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the ultraproduct. For each ρ ∈ [r1, r2] and i ∈ I, choose some wρ,i ∈ B̄ρ(Mi)
satisfying

ψMi(wρ,i, ai) < inf
x∈B̄ρ(Mi)

ψMi(x, ai) + ε.

Taking ultralimits on both sides of this inequality and writing wρ for each
(wρ,i)/ ∼, we get

ψM(wρ, a) ≤ lim
U

inf
x∈B̄ρ(Mi)

ψMi(x, ai) + ε.

Since wρ,i ∈ B̄ρ(Mi) holds for all ρ and i, we have each wρ ∈ B̄ρ(M). So, we
get the inequality

inf
x∈B̄ρ(M)

ψM(x, a) ≤ ψM(wρ, a).

By transitivity, we have

inf
x∈B̄ρ(M)

ψM(x, a) ≤ lim
U

inf
x∈B̄ρ(Mi)

ψMi(x, ai) + ε.

Now, note that there is an F2 ∈ U where for all i ∈ F2 we have

lim
U

inf
x∈B̄ρ(Mi)

ψMi(x, ai) ≤ inf
x∈B̄ρ(Mi)

ψMi(x, ai) + ε.

Combining the last two inequalities yields for all i ∈ F2 that

inf
x∈B̄ρ(M)

ψM(x, a) ≤ inf
x∈B̄ρ(Mi)

ψMi(x, ai) + 2ε.

By integrating this inequality over ρ ∈ [r1, r2], we get for all i ∈ F2 thatˆ r2

r1

inf
x∈B̄ρ(M)

ψM(x, a)dr ≤
ˆ r2

r1

(
inf

x∈B̄ρ(Mi)
ψMi(x, ai) + 2ε

)
dr.

Finally, letting Fε = F1 ∩ F2, we have found a single Fε ∈ U such that for all
i ∈ Fε we have the following.

B =

ˆ r2

r1

inf
x∈B̄ρ(M)

ψM(x, a)dr

≤
ˆ r2

r1

inf
x∈B̄ρ(Mi)

ψMi(x, ai)dr + 2ε

ˆ r2

r1

1dr

< L+ 2ε · |r2 − r1|

This holds for all ε > 0, so we have shown B ≤ L. This establishes the �rst
part.
Now, suppose B < L. Let ε > 0. This argument is easier if we use the open

ball version of the integrals. That is, we have assumed

B =

ˆ r2

r1

inf
x∈Bρ(M)

ψM(x, a)dρ < L.
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Let R = (Rn) ∈ RN
+ be such that ||a|| < Rn for all n. Choose an (L,R, ε)-good

partition ρ0 < · · · < ρK−1 for (the formula for) B on [r1, r2], as in 2.7.6. This
partition is such that B is strictly within ε of the Riemann sum

∆ ·
∑
k<K

inf
x∈Bρk (M)

ψM(x, a).

Moreover, as long as we have ||an,i|| < Rn for some �xed �nite number of
coordinates, we will also have∣∣∣∣∣

ˆ r2

r1

inf
x∈Bρ(Mi)

ψMi(x, ai)dρ−∆ ·
∑
k<K

inf
x∈Bρk (Mi)

ψM(x, ai)

∣∣∣∣∣ < ε.

Let G ∈ U be such that ||an,i|| < Rn for i ∈ G and for the �nitely many
required n. For each k < K, choose some witness wk ∈ Bρk(M) satisfying

ψM(wk, a) < inf
x∈Bρk (M)

ψM(x, a) + ε∆−1K−1.

Fix a choice of representative (wk,i)i∈I for each wk. By the inductive hypothesis
on ψ, for each k < K, there is some F1,k ∈ U where for all i ∈ F1,k we have

ψMi(wk,i, ai) < inf
x∈Bρk (M)

ψM(x, a) + ε∆−1K−1.

For each k < K we can also �nd an F2,k ∈ U where for all i ∈ F2,k we have
||wk,i|| < ρk and hence wk,i ∈ Bρk(Mi). Let F be the intersection of G with
the �nitely many F1,k and F2,k having k < K. Then F ∈ U and for all i ∈ F
and k < K, we have

inf
x∈Bρk (Mi)

ψMi(x, ai) ≤ ψMi(wk,i, ai)

and so by transitivity

inf
x∈Bρk (Mi)

ψMi(x, ai) < inf
x∈Bρk (M)

ψM(x, a) + ε∆−1K−1.

Take the Riemann sum over both sides to get the following for all i ∈ F .

∆ ·
∑
k<K

inf
x∈Bρk (Mi)

ψMi(x, ai) < ∆ ·
∑
k<K

(
inf

x∈Bρk (M)
ψM(x, a) + ε∆−1K−1

)
= ∆ ·

∑
k<K

(
inf

x∈Bρk (M)
ψM(x, a)

)
+ ε

< B + 2ε

< L+ 2ε

Since the partition was (L,R, ε)-good, we also have for all i that

∆ ·
∑
k<K

inf
x∈Bρk (Mi)

ψMi(x, ai)
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is strictly within ε of ˆ r2

r1

inf
x∈Bρ(Mi)

ψMi(x, ai).

So by combining this with the above set of inequalities, we have the following
for all i ∈ F .ˆ r2

r1

inf
x∈Bρ(Mi)

ψMi(x, ai) < ∆ ·
∑
k<K

inf
x∈Bρk (Mi)

ψMi(x, ai)

< L+ 3ε

Taking an ultralimit then shows the following.

A = lim
U

ˆ r2

r1

inf
x∈Bρ(Mi)

ψMi(x, ai)

≤ L+ 3ε

This holds for all ε > 0, so we have A ≤ L.
This completes the proof. The case where φ is a supx] formula is similar, or

can be obtained via the fact that sup(x) = − inf(−x). �

Corollary 3.7.5. (The Compactness Theorem) Let T be a collection of
L-sentences. The following are equivalent.

(1) For each �nite F ⊆ T and each ε > 0, there is an L-structure M such
that

|φM | ≤ ε for all φ ∈ F.
(2) For each �nite F ⊆ T , there is an L-structure M such that

M |= φ for all φ ∈ F.

(3) There is a model M |= T .

Proof. (3→ 2) and (2→ 1) are both clear, so we only need to check (1→ 3).
Consider the set of pairs

I = {(F, ε) : F is a �nite subset of T , and ε > 0}.

For each (F, ε) ∈ I, let M(F,ε) be an L-structure with |φM(F,ε) | ≤ ε for each
φ ∈ F . We construct an ultra�lter U on I as follows. For each (F, ε) ∈ I, let

↑ (F, ε) ↓

denote the subset of I given by

{(F ′, ε′) ∈ I : F ⊆ F ′ and ε′ ≤ ε}.

The collection J of all such subsets ↑ (F, ε) ↓ has the �nite intersection prop-
erty, i.e. any �nitely many ↑ (Fn, εn) ↓ have at least the element (

⋃
n Fn,minn εn)

in common. So we can construct an ultra�lter U on I containing the collection
J .
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Now, consider the ultraproduct M =
∏
UM(F,ε), and suppose φ ∈ T . Then

{φ} is a �nite subset of T , and so for each ε > 0, we have ({φ}, ε) ∈ I and
↑ ({φ}, ε) ↓ in U . But we know that

|φM(F ′,ε′) | ≤ ε

for all (F ′, ε′) ∈↑ ({φ}, ε) ↓. So by de�nition of ultralimits, we get

lim
U
φM(F,ε) = 0.

The fundamental theorem of ultraproducts yields φM = 0. �

In discrete logic and in the bounded case for continuous logic, the compact-
ness theorem can be applied to sets of formulas as well by adding constants
to the language and working with the corresponding sentences in the larger
language. In our setting, the addition of a constant is achieved by adding a
0-ary function symbol c. This requires specifying controllers, and notably the
controller λ e�ectively acts as a bound on ||c||. Consequently, the �formula
version� of the compactness theorem in this setting only holds ball-wise. This
becomes relevant later when we discuss the topology on type spaces.
As expected, structures embed elementarily into their ultrapowers.

Corollary 3.7.6. Let U be an ultra�lter on I. For any ultrapower MU , the
map M →MU de�ned by a 7→ (a : i ∈ I)/ ∼ is an elementary embedding.

Proof. For all a ∈M we have the following.

φM(a) = lim
U
φM(a)

= φM
U
((a : i ∈ I)/ ∼)

The �rst equality is by de�nition of ultralimits. The second is by the funda-
mental theorem of ultraproducts. �

The following proposition indicates that proper structures are the analog
in this setting of �nite structures in discrete model theory, or compact struc-
tures in bounded continuous logic. Recall that bounded, proper structures are
compact.

Proposition 3.7.7. Let M be an L-structure in which each sort is proper.
Then MU and M are L-isomorphic for any ultra�lter U .

Proof. We will consider the single-sorted case, the more general case being
clear from the argument.
Let a ∈MU , and let (ai : i ∈ I) represent a. SinceM is proper, limU ai exists

when considered as a sequence in M . We will denote this ultralimit in M by
ā. This ultralimit is independent of the choice of representative sequence for
a, since any pair of such sequences have ultralimit distances going to 0. Thus,
there is a function mapping every point a ∈MU to a corresponding point ā in
M .
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This function is injective since if ā = b̄, then d(a, b) must be 0 in MU .
Now, since (ā, ā, . . . ) represents a, the fundamental theorem of ultraproducts

tells us that φM
U
(a) = φM(ā) for any a ∈ MU and formula φ. The function

is also clearly onto since we can obtain any element b ∈ M as the image of
(b, b, . . . )/ ∼. So, we have an isomorphism. �

3.8. Elementary Classes. Model theory is often concerned with the collec-
tion of models of some given theory T and the relations and maps between
these models.

De�nition 3.8.1. A class C of L-structures is called L-axiomatizable and
also an L-elementary class if there is a theory T such that M |= T if and
only if M ∈ C. In this case, the sentences in T are called axioms for C.

One way to prove that we have an elementary class is to explicitly write
down axioms and check the condition above. There is also a characterization
of elementary classes in terms of ultraproducts.

Proposition 3.8.2. Let C be a class of L-structures. The following are equiv-
alent.

(1) C is an elementary class.
(2) C is closed under isomorphisms, ultraproducts, and elementary sub-

structures.

Proof. (1 → 2) follows from the de�nition of isomorphisms and elementary
substructures, and the fundamental theorem of ultraproducts, which in par-
ticular tells us that values of sentences are preserved by ultraproducts.
We will now comment on (2 → 1). Let T be the set of sentences φ such

that φM = 0 for all M ∈ C. This is our candidate set of axioms for the
class. Clearly every M ∈ C satis�es T , so we just need to check the converse.
Suppose M |= T .
Suppose (in order to obtain a contradiction) that some �nite subset F of

Th(M) were not satis�able by a structure in C. That is, there are sentences
φ1, . . . , φn such that φ

M
i = 0 for i = 1, . . . , n, but no N ∈ C has φNi = 0 for all i.

There must be some ε > 0 such that all N ∈ C have |φNi | ≥ ε for at least one i,
since otherwise we could take ultraproducts inside C to get an N with φNi = 0
for all i. By de�nition, T must contain the sentence max(φ1, . . . , φn) & ε. But
this contradicts M |= T . So, we conclude that Th(M) is �nitely satis�able
within C.
Now, again using closure of C under ultraproducts, we construct N |=

Th(M) with N ∈ C by taking an ultraproduct along structures in C realiz-
ing an increasing chain of �nite subsets of Th(M). So we have an N ∈ C with
N ≡M . By taking a large ultrapower of N , we obtain a model NU |= Th(M)
which M elementarily embeds into. The closure properties of C then imply
that M ∈ C. �
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3.9. De�nable sets. In any given L-structure, the zero sets of L-formulas
determine subsets of the structure. Some of these zero sets are special in the
sense that they behave like sorts. For example, we can sometimes quantify
over a subset. These special zero sets are called de�nable sets, and are an
important aspect of the structure.
De�nability in continuous logic is less straightforward than in discrete logic.

In general, it is not su�cient to consider level sets of formulas. For example,
a set of the form

{x ∈M : φM(x) = 0}
will not generally be a de�nable set. We have seen this problem already when
we discussed quanti�cation over balls. The following example illustrates this
problem a bit more abstractly. We can think of this as a quanti�cation issue
or as an issue with preserving zero sets under ultraproducts.

Example 3.9.1. Let L be a single-sorted language with relation symbols P
and Q each controlled by (λ,N, δ) given by

(r 7→ 1, (r, ε) 7→ ∅, (r, ε) 7→ ε).

Let M be the L-structure with sort N with the discrete metric. De�ne the
relation PM by

PM(n) =

{
0 when n = 0
1
n

otherwise
.

De�ne QM by

QM(n) =

{
0 when n = 0

1 otherwise
.

Both are controlled as required since the metric is discrete.
We will see that there is no formula in L which interprets in models of

Th(M) as the supremum of Q over elements of the zero set of P . Notice that

{x ∈M : PM(x) = 0}
is just {0}, and that QM(0) = 0. However, in the ultrapower MU , the set

{x ∈MU : PMU (x) = 0}
contains not just

0̄ = (0, 0, 0, . . . )/ ∼
which has QMU (0̄) = 0, but also more points. For example, it also contains

the point a = (n)n∈N/ ∼ which has QMU (a) = 1. This shows that M and MU

realize di�erent supremums for values of Q over the zero set of P . So, the
existence of a formula for this supremum would contradict �o±'s Theorem.
We know that M and MU are elementarily equivalent, so this shows there

cannot be a �xed sentence in L which interprets as the supremum of Q over
the zero set of P . This phenomenon happens because PM(n) can tend to 0
without n approaching {x ∈M : PM(x) = 0} in the metric.

51



McMaster University - Mathematics Ph.D. Thesis - M. Luther

Another notable departure from discrete logic is that in our setting we will
have a notion of de�nable sets including not just �nite tuples, but also se-
quences.
We will base our de�nition of de�nable sets on being able to approximate

distance functions. This is useful for some of the upcoming proofs. However,
we will give equivalent characterizations later which are more practical for
checking that a given set is de�nable.

De�nition 3.9.2. Let M be an L-structure, and let C be a set of elements
from sorts of M .
If A is a subset of a �nite product

∏N
n=1 Mn of sorts, we say A is L-de�nable

in M over C if for all positive real tuples

R = (Rn : n ∈ {1, . . . , N}),
r = (rn : n ∈ {1, . . . , N}),
r′ = (r′n : n ∈ {1, . . . , N})

with each r′n > rn, there is a sequence c over C and an L-formula φR,r,r′(x, z)
such that φMR,r,r′(x, c) is equivalent to the function(

N∏
n=1

1

|r′n − rn|

)ˆ r′N

rN

· · ·
ˆ r′1

r1

dN(x, B̄(ρ1,...,ρN )(A))dρ1 · · · dρN

when restricted to x ∈ B̄(R1,...,RN )(M), where dN is the max of the distances
over the �nitely many coordinates.
If A is a subset of an in�nite product

∏
n∈αMn of sorts, we say A is L-

de�nable in M over C if for all �nite subsets F ⊆ α, the set πF (A) is
L-de�nable in M over C.

We immediately have that any product of sorts is de�nable according to this
de�nition. The formulas

inf
y

]r
′

r max (d(x1, y1), . . . , d(xN , yN))

for N -tuples y interpret as the required functions by de�nition of the inf]
quanti�er.
Readers familiar with bounded continuous logic will wonder how this de�ni-

tion relates to having formulas for d(x,A). The following proposition clari�es
this for the case where A is a subset of a �nite product. We will continue
writing dN to mean the maximum of the distances in the coordinates.

Proposition 3.9.3. Let A be a subset of a �nite product M =
∏N

n=1Mn of
sorts. Then we have the following.

(1) If A is bounded, i.e. A ⊆ B̄(R1,...,RN )(M) for some R1, . . . , RN , then
(a) for any r, r′ with r′n > rn ≥ Rn for each n ≤ N , the function(

N∏
n=1

1

|r′n − rn|

)ˆ r′N

rN

· · ·
ˆ r′1

r1

dN(x, B̄(ρ1,...,ρN )(A))dρ1 · · · dρN
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is the distance function dN(x,A)
(b) A is de�nable if and only if there is an L-formula which interprets

as the function dN(x,A).
(2) If A is unbounded and has a point a ∈ B̄(R1,...,RN )(A), then

(a) for each real tuple (r1, . . . , rN), the functionˆ 2rN+RN+1

2rN+RN

· · ·
ˆ 2r1+R1+1

2r1+R1

d(x, B̄(ρ1,...,ρN )(A))dρ

is equivalent to dN(x,A) when restricted to x ∈ B̄(r1,...,rN )(M),
(b) A is de�nable if and only if for each real tuple (r1, . . . , rN), there is

an L-formula which interprets as a function equivalent to dN(x,A)
when restricted to x ∈ B̄(r1,...,rN )(M).

Proof. (1a) Whenever ρn ≥ Rn for n ≤ N , we have

dN(x, B̄(ρ1,...,ρN )(A)) = dN(x,A).

So the averages are over constant values equal to dN(x,A).
(1b,→) If A is de�nable, each(

N∏
n=1

1

|r′n − rn|

)ˆ r′N

rN

· · ·
ˆ r′1

r1

dN(x, B̄(ρ1,...,ρN )(A))dρ1 · · · dρN

is a formula by assumption. Applying (1a) tells us these give us a formula for
dN(x,A).

(2a) We will discuss the single-variable case. Let a ∈ A, and let R be d(a, ?).
Then for any x and r ∈ R, if we have ||x|| ≤ r, then we have

d(x,A) ≤ r +R

by the triangle inequality, and hence

d(x,A) = d(x, B̄r+(r+R)+ε(A))

for any ε > 0. So for ||x|| ≤ r, we must have

d(x,A) =

ˆ 2r+R+1

2r+R

d(x, B̄ρ(A))dρ

since this integral is just the average over the constant d(x,A).
(2b,→) If A is de�nable, we have formulas equivalent to the integrals in

(2a) for x ∈ B̄(r1,...,rN )(M) by assumption. So we can apply (2a) to get the the
claimed L-formulas.

(1b, 2b,←) Suppose we want to obtain
ˆ r′

r

d(x, B̄ρ(A))dρ

as a formula. We will assume r < r′. The hypotheses let us assume d(y, A) is a
formula, at least for ||y|| ≤ Ry with Ry chosen larger than r′, say Ry > r′ + 1.
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For any ρ ∈ [r, r′] and any ε > 0 less than 1, let φρ,ρ+ε be a formula

inf
y

]ρ+ε
ρ d(x, y) + (K/ε) · d(y, A)

where K is an upper bound for d(y, Aρ). This is a formula since we only range
over ||y|| ≤ ρ+ ε ≤ Ry.
For any y ∈ B̄ρ(A), we have

φρ,ρ+ε(x) ≤ d(x, y) + 0.

So we can say
φρ,ρ+ε(x) ≤ d(x, B̄ρ(A)).

We would like to build the required integral using Riemann sums involving
φρ,ρ+ε. The bound just established is part of this, but we need to know φρ,ρ+ε

is not too small either. Suppose φρ,ρ+ε(x) < d(x, B̄ρ(A)). Then we can pick a
witness y ∈ B̄ρ+ε(M) such that

d(x, y) + (K/ε) · d(y, A) < d(x, B̄ρ(A)).

By de�nition of d(y, A), for any ε′ > 0, there is some zε′ ∈ A with

|d(y, zε′)− d(y, A)| ≤ ε′.

For any such zε′ , we have

d(x, y) + (K/ε) · (d(y, zε′)− ε′) < K.

This implies
d(y, zε′) < ε+ ε′.

Since y ∈ B̄ρ+ε(M), we must have zε′ ∈ B̄ρ+2ε+ε′(M) and hence

zε′ ∈ B̄ρ+2ε+ε′(A).

So, for any ε′ > 0, we have zε′ ∈ B̄ρ+2ε+ε′(A) satisfying the following.

d(x, zε′) ≤ d(x, y) + d(y, zε′)

≤ d(x, y) + (d(y, A) + ε′)

≤ d(x, y) + (K/ε) · d(y, A) + ε′ · (K/ε)
This gives the following bound for infz∈B̄ρ+2ε+ε′ (A) d(x, z), which is just the

distance of x to the closed ball.

d(x, B̄ρ+2ε+ε′(A)) ≤ d(x, y) + (K/ε) · d(y, A) + ε′ · (K/ε)
Note that for any ε∗ ≥ ε′, we can replace the left side like so:

d(x, B̄ρ+2ε+ε∗(A)) ≤ d(x, y) + (K/ε) · d(y, A) + ε′ · (K/ε).
Since this holds whenever ε∗ ≥ ε′ > 0, we can �x ε∗ and let ε′ → 0, then let
ε∗ → 0 to get

d(x, B̄ρ+2ε(A)) ≤ d(x, y) + (K/ε) · d(y, A).

This holds for any y ∈ B̄ρ+ε(M) witnessing the inf involved in

φρ,ρ+ε(x) < d(x, B̄ρ(A)).
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So, if φρ,ρ+ε(x) 6= d(x, B̄ρ(A)), we have

d(x, B̄ρ+2ε(A)) ≤ φρ,ρ+ε(x) < d(x, B̄ρ(A)).

We have shown that for all ρ ∈ [r, r′] and ε > 0, we have

d(x, B̄ρ+2ε(A)) ≤ φρ,ρ+ε(x) ≤ d(x, B̄ρ(A)).

If we �x a bound ||x|| ≤ Rx, then this is su�cient to construct a formula
equivalent to ˆ r′

r

d(x, B̄ρ(A))dρ

when restricted to ||x|| ≤ Rx. For these bounded x, the function d(x, B̄ρ(A))
is bounded and monotonic in ρ, and we can view it as a limit of Riemann sums
using the formulas φρ,ρ+ε(x) and a controlled u. �

Corollary 3.9.4. If A is a subset of product
∏
Mn of sorts, then A is de-

�nable if and only if for every �nite projection πN(A) and every real N-
tuple r, there is an L-formula which interprets as a function equivalent to
dN((x1, . . . , xN), πN(A)) when restricted to N-tuples x ∈ B̄r(M).

The last couple of propositions suggest the following de�nition.

De�nition 3.9.5. Let φ be an L-formula and let M be an L-structure. If the
zero set A of the function φM is de�nable in M , and we have a collection of
formulas φr,N , each equivalent to dN((x1, . . . , xN), πN(A)) when restricted to
x ∈ B̄r(M), we say that the zero set of φM is de�ned by the formulas φr,N .
Let K be a class of L-structures. We say that the zero set of φ is de�nable

in the class K if there are formulas φr,N such that for every M ∈ K, the zero
set AM of the function φM is de�ned by the formulas φr,N .

This next lemma is useful for showing the existence of formulas equivalent
to distance functions. In practice, it is often easier to guess a formula with the
correct zero set and then use this lemma to obtain the distance function than
to explicitly write the distance function at �rst. We have adapted this lemma
from Proposition 9.19 of [3], adjusting its statement and proof for this setting.

Lemma 3.9.6. Let A be a subset of a �nite product M =
∏N

n=1Mn of sorts.
Suppose that for a pair of real N-tuples r and r′ there is a formula Pr,r′ such
that

• Pr,r′(y) = 0 for all y ∈ Br′(A), and
• for all ε > 0, there is δ > 0 such that for all y ∈ Br′(M) we have that

Pr,r′(y) ≤ δ implies dN(y,Br(A)) ≤ ε.

Then there is an L-formula equivalent to
´ r′
r
dN(x,Bρ(A))dρ in M .
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Proof. Let r and r′ be a pair of real N -tuples. By 2.3.12, there is a continuous,
increasing function α : R≥0 → R≥0 such that α(0) = 0 and for all y ∈ Br′(M)
we have dN(y,Br(A)) ≤ α(Pr,r′(y)). Consider the L-formula F given by

F (x) = inf
y

]r
′

r (α(Pr,r′(y)) + d(x, y)) .

By de�nition of α and the triangle inequality, we have the following.

FM(x) =

ˆ r′

r

inf
y∈Bρ(M)

(α(Pr,r′(y)) + d(x, y)) dρ

≥
ˆ r′

r

inf
y∈Bρ(M)

(d(y,Br(A)) + d(x, y)) dρ

≥
ˆ r′

r

d(x,Bρ(A))dρ

Additionally, since y ∈ Br′(A) implies Pr,r′(y) = 0 and hence α(Pr,r′(y)) = 0,
we conclude as follows.

FM(x) =

ˆ r′

r

inf
y∈Bρ(M)

(α(Pr′(y)) + d(x, y)) dρ

≤
ˆ r′

r

inf
y∈Bρ(A)

(α(Pr′(y)) + d(x, y)) dρ

=

ˆ r′

r

inf
y∈Bρ(A)

d(x, y)dρ

=

ˆ r′

r

d(x,Bρ(A))dρ

�

Corollary 3.9.7. If for all N-tuples r, r′ there is Pr,r′ as above, then A is
de�nable in M .

When A is bounded, the previous lemma can be applied in the case where
r and r′ are radii containing the entirety of A. Then the lemma shows the
existence of a formula equivalent to d(x,A).
If A is a subset of a countable product of balls, we can extend this.

Corollary 3.9.8. Suppose A is a subset of a countable product
∏

n∈NBRn(Mn)
of balls in sorts from M . Let

d′(x, y) =
∑
n∈N

d(xn, yn)

1 + d(xn, yn)
· 2−n.

Suppose there is a formula P (y) such that

• P (y) = 0 for all y ∈ A
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• For all ε > 0, there is δ > 0 such that for all y ∈M we have that

P (y) ≤ δ implies d′(y, A) ≤ ε

where
d′(y, A) = inf

a∈A
d′(y, a).

Then A is de�nable.

Proof. Notice that bounds on d′(x, y) imply bounds on the distance in each
coordinate. So, we can bound the distance of any �nite N -tuple y to πN(A)
by knowing P (y, a) ≤ δ for some a ∈ πN\N(A). This means we can obtain the
required formulas using forced limits of infx]P (y, x) formulas. �

The next proposition quickly checks that any �nite or countable product
de�nable set is the zero set of some formula. This is a simple consequence of
having formulas equivalent to d(x,A) for the �nite product case.

Proposition 3.9.9. Let A be a de�nable set in M . If A is a subset of a �nite
product, then A is the zero set of the formula equivalent to dN(x,A). If A is a
subset of a countable product, then each A is the zero set of the formula

∞∑
n=1

min(1, dn(x, πn(A)))

2n

where dn is the max of the distances in the �rst n coordinates.

Proof. This formula is 0 exactly when every term is 0. This happens exactly
when every projection of the sequence x is the projection of an element of A,
i.e. x ∈ A. �

The next few propositions will give further useful equivalent characteriza-
tions of de�nable sets. First, we will see that de�nable sets are the sets we can
quantify over as though they were a sort.

Proposition 3.9.10. Let A be a subset of a �nite product
∏N

n=1Mn of sorts.
The following are equivalent.

(1) A is de�nable in M over C.
(2) There is a sequence c over C such that for any formula φ(x, y) over

variable sequences x = (xn)1≤n≤N and y = (yn : n ∈ β), and for any
real sequences

R = (Rn : n ∈ β),

r = (rn)1≤n≤N ,

r′ = (r′n)1≤n≤N

satisfying rn < r′n for all 1 ≤ n ≤ N , there is a �nite subset F ⊆ β
and a formula ψ(yn, zn : n ∈ N) such that ψM(yn, cn : n ∈ N) is the
function(
N∏
n=1

1

r′n − rn

) ˆ r′N

rN

· · ·
ˆ r′1

r1

inf
(x1,...,xN )∈B̄(ρ1,...,ρN )(A)

φM(x, y)dρ1 · · · dρN
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when restricted to y satisfying ||yn|| ≤ Rn for n ∈ F .
A similar statement holds with sup in place of inf.

Proof. (2→ 1) Applying (2) to formulas dN(x, y) gives the formulas needed in
the de�nition of de�nability.

(1→ 2) We will discuss the single variable x,
´

inf case. The �nite variable
case is an easy adjustment using multivariable inf and

´
. The

´
sup cases are

similar.
Let φ(x, y) be any formula, and let r < r′. We are supposing that for all

t < t′ with t, t′ ∈ [r, r′], the function
´ t′
t
d(x, B̄ρ(A))dρ is given by a formula

(at least equivalent due to the bounds imposed on x). By uniform continuity
of φ when restricted to x ∈ B̄r′(M) and y ≤ R, Lemma 2.3.12 gives us an α
such that for any y ≤ R,

φ(x, y) ≤ φ(z, y) + α(d(x, z)).

Taking infx∈B̄ρ(A) for any ρ ∈ [r, r′], we get

inf
x∈B̄ρ(A)

φ(x, y) ≤ φ(z, y) + α(d(z, B̄ρ(A)))

where we have used that α is increasing so that we can pass the inf through.
Taking infz∈B̄ρ(M) and comparing it to the larger infz∈B̄ρ(A), we get

inf
x∈B̄ρ(A)

φ(x, y) ≤ inf
z∈B̄ρ(M)

(
φ(z, y) + α(d(z, B̄ρ(A)))

)
≤ inf

z∈B̄ρ(A)
φ(z, y)

where in the right-most term, we have used that α(0) = 0. Note that the
left-most and right-most terms are equal, so this is an equality. Now, we can
integrate over ρ ∈ [r, r′] to get

ˆ r′

r

inf
x∈B̄ρ(A)

φ(x, y)dρ =

ˆ r′

r

inf
z∈B̄ρ(M)

(
φ(z, y) + α(d(z, B̄ρ(A)))

)
dρ.

The left term is the desired function, so it remains to show that the right term
is actually a formula.
The issue to address is that d(z, B̄ρ(A)) depends on ρ and moreover when ρ

is �xed might not be a formula since it is not the formula guaranteed by (1).
But, (1) does give us that

ˆ t′

t

d(z, B̄ρ(A))dρ

is a formula for all t < t′.
We will reconstruct the integral on the right side of the above equality by

using these
´ t′
t
d(z, B̄ρ(A)) for values of t, t′ in [r, r′]. To do so, we need to show

that we can express the
´ r′
r

integral in terms of Riemann sums over partitions

ρ1 < · · · < ρK where the averages 1
t′−t

´ t′
t
d(z, B̄ρ(A)) can be used in place of

the d(z, B̄ρk(A)) appearing in terms of the sum.
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The main point in this argument is the following. For any ρ < ρ′ in [r, r′],
we can show the following for all t ∈ [ρ, ρ′].

inf
z∈B̄ρ′ (M)

(
φ(z, y) + α(d(z, B̄ρ′(A)))

)
≤ inf

z∈B̄t(M)

(
φ(z, y) + α(

1

ρ′ − ρ

ˆ ρ′

ρ

d(z, B̄τ (A)))dτ

)
≤ inf

z∈B̄ρ(M)

(
φ(z, y) + α(d(z, B̄ρ(A)))

)
To see this, note that since d(z, B̄τ (A)) is monotonic in the radius of the ball,
the average satis�es

d(z, B̄ρ′(A)) ≤ 1

ρ′ − ρ

ˆ ρ′

ρ

d(z, B̄τ (A))dτ ≤ d(z, B̄ρ(A)).

Also note that α is increasing, that addition of φ(z, y) preserves the inequalities
for �xed z, y, and �nally that taking infs also preserves the inequalities.
Now, for every ε, we can �nd (L,R, ε)-good partitions of [r, r′] for

ˆ r′

r

inf
z∈Bρ(M)

(φ(z, y) + α(d(z,Bρ(A))))

as in 2.7.6, depending on the control functions for φ, α, the bounds r, r′, and
bounds for y. We can write the Riemann sums over these partitions and use
the above inequalities to replace the d(z, B̄ρ(A)) terms with averages, which
are guaranteed to be formulas by (1). This lets us express the integral as a
composition of a controlled function with Riemann sums using only formulas,
provided we restrict to y with ||yn|| ≤ Rn for n ∈ F . Hence,

ˆ r′

r

inf
x∈B̄ρ(A)

φ(x, y)dρ

is given by a formula for bounded y as in the claim. �

An immediate corollary is that when A is bounded, we can take an exact
sup and inf over the entirety of A. This is the same trick as for bounded sorts.

Corollary 3.9.11. If A is a bounded de�nable subset of a �nite product of
sorts from M , then for any φ(x, y), provided bounds on the variables in y,
there are formulas equivalent to supx∈A φ

M(x, y) and infx∈A φ
M(x, y).

Proof. Use the quanti�ers from the proposition, with r, r′ chosen larger than
the magnitudes of coordinates in A. �

The above results justify the introduction of some notation for quanti�cation
over de�nable sets.
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De�nition 3.9.12. When A is a de�nable subset of a �nite product of sorts
in M over C, and φ, x, y, R, r, r′ are as above, we may denote the formulas
ψ(yn, zn : n ∈ N) obtained in the previous proposition by

inf
x∈A

R]r
′

r φ(x, y)

and

sup
x∈A

R]r
′

r φ(x, y).

If A is a bounded subset of a �nite product, we write supx∈A φ and infx∈A φ
for the formulas from the previous corollary.

This is consistent with the usual quanti�er notation with x ranging over
sorts. That is, if A is just a product of sorts, then these are equivalent to the
usual quanti�ers given by the language.
We will �nish this section by giving a characterization of de�nability via

preservation of zero sets under ultraproducts. To help state the characteriza-
tion, we will de�ne ultraproducts of subsets.

De�nition 3.9.13. Let M =
∏
UMi, and let Ai ⊆ Mi for all i. We write∏

U Ai to mean the subset of M consisting of those classes a ∈ M for which
there is some F ∈ U and representative (ai : i ∈ I) for a having ai ∈ Ai for all
i ∈ F .

Proposition 3.9.14. Let φ be an L-formula with free variable sequence x =
(xn : n ∈ α). Let K be a class of L-structures which is closed under ultraprod-
ucts.
Then the zero set of φ is de�nable in K if and only if whenever M =

∏
UMi

is an ultraproduct over structures in K we have

Zero(φM) =
∏
U

Zero(φMi)

where Zero(φN) means the zero set of the interpretation of φ in the structure
N .

Proof. Notice that by the fundamental theorem of ultraproducts,
∏
U Zero(φMi)

is always a subset of Zero(φM), so the statement is only really about the other
inclusion.
Suppose the zero set of φ is de�nable in K, let M =

∏
UMi, and suppose

φM(a) = 0. We assume without loss of generality that φ is �nitary. Write
a = (a0, . . . , aN−1) and let (r0, . . . , rN−1) be reals such that ||an|| < rn for
n < N . Let (ai : i ∈ I) be a representative sequence for a.
By de�nability, there is an L-formula d(x,Zero(φ)) giving the distance from

x to the zero set, independently of which structure in K we use, provided we
restrict to x with ||xn|| < rn for n < N . We have

d(a,Zero(φM)) = 0

60



McMaster University - Mathematics Ph.D. Thesis - M. Luther

by assumption. So, for any ε > 0 there is F1,ε ∈ U where

d(ai,Zero(φMi)) < ε for i ∈ F1,ε.

There is also an F2 ∈ U such that

||ai,n|| < rn

for all i ∈ F2 and n < N . Thus, for each ε > 0, for i ∈ F1,ε ∩ F2, the distance
from ai to Zero(φMi) is < ε. This is equivalent to saying that for all ε > 0, for
all i ∈ F1,ε ∩ F2, there is some

b
(ε)
i ∈ Zero(φMi)

with

d(ai, bi) < ε.

This shows that we can inductively construct another representative sequence
(bi : i ∈ I) for the class a, with bi ∈ Zero(φMi) holding on some F ∈ U . This
demonstrates the needed inclusion when the zero set is de�nable.
Suppose the zero set of φ is not de�nable in K. If φ itself satis�ed the ε, δ

property in Lemma 3.9.6 independently of the structure M ∈ K, then Zero(φ)
would be de�nable in K, so this must not be the case.
Instead, it must be possible to �nd some positive real tuple r = (r1, . . . , rN)

and some ε > 0 such that for all δ > 0, there isMδ ∈ K with bδ ∈ B̄(r1,...,rN )(Mδ)
having

φ(b) ≤ δ

but

d(b,Zero(φMδ)) > ε.

Consider a nonprincipal ultraproduct M =
∏
UM1/n with U over N formed

using such Mδ. This yields a structure in K containing a point b = (b 1
n

: n ∈
N)/ ∼. By the fundamental theorem of ultraproducts, this b satis�es

b ∈ B̄(r1,...,rN )(M)

and

φM(b) = 0

but also

b /∈
∏
U

Zero(φM1/n).

This shows that the inclusion fails when the zero set is not de�nable. �
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3.10. Extension by constants. We often want to have constant symbols in
our language, or are interested in the behavior of formulas φ(x, y) where we
allow x to vary but keep y �xed. We discuss these situations in this section.
To add a constant to a language, it su�ces to add a 0-ary function symbol

c. It is important to remember that function symbols must have controllers
known to the language. The controllers N and δ are trivial since c is 0-ary,
but notably, the scaling modulus λ amounts to a bound for the magnitude of
the intended constant c.
The following de�nition helps when we discuss formulas with �xed parame-

ters.

De�nition 3.10.1. Let L be a language, and let C be a set with a correspond-
ing sort of L and bound in R≥0 for ||c|| assigned to each c ∈ C. We de�ne
L(C) to be the language obtained by extending L so that it has a constant
symbol for each c ∈ C. We call L(C) the extension of L by constants C.
If M is an L-structure and C ⊆ M , we write M(C) to denote an L(C)-

structure obtained by extending M to interpret each symbol c as the corre-
sponding constant element c in M . In this case, we de�ne the controller λ to
be the function with constant value ||c||.
We write Th(M(C)) to denote the L(C)-theory of M(C).

Note that since the theory has been taken from a speci�c model, Th(M(C))
will contain the sentence d(c, ?) ≈ r where r is the real number dM(cM , ?M).
So, in any other model of this theory, c must have the same distance from the
basepoint.

3.11. Types and saturation. If a is in an L-structure M , then L can �talk
about� a and how it relates to the rest of M using formulas and possibly
parameters from M . That is, L(C) provides some kind of description for a
given by the values of φM(a) for each L(C)-formula φ.
Conversely, we might have a collection p of L(C)-formulas and corresponding

values, and wonder whether there is any a which is described by p in this sense.
Treating these collections p as objects themselves is a useful possibility because
of our use of languages.
Readers unfamiliar with logic are likely familiar with the Dedekind cut con-

struction of the reals from the rationals and might appreciate this analogy. A
cut can be thought of as a description of some kind of ideal point using < and
rational parameters. Every rational q has a corresponding cut, but not all cuts
correspond to a rational.
Below, we will use notation as though the language has only one sort, but

remember that the language could be multi-sorted, and variables can have
di�erent sorts.

De�nition 3.11.1. Let L be a language, and let L(C) be some extension of
L by constants. For any L(C)-structure M and (�nite or in�nite) tuple a over
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M , we de�ne

tpM(a/C)

to be the set of L(C)-formulas φ(x) such that M |= φ(a).
We say p is a type over C if there is some L(C)-structure M and tuple a

over M such that p ⊆ tpM(a/C). If p = tpM(a/C), we say p is a complete
type. In either case, we say a realizes p in M .
If a is an n-tuple for some n ∈ N, or equivalently if p consists of formulas

involving only n-many free variables x1, x2, . . . , xn, then we call p an n-type.
More generally, if we use a collection of variables indexed by a set I, we call p
an I-type.

We are usually interested in types which are realized in structures restricted
to a certain class. For example, if we are discussing Hilbert spaces, we might
only care about types that can be realized in a Hilbert space.

De�nition 3.11.2. If we have a class T of L(C)-structures, we say p is
a type in T over C if there is an L(C)-structure M ∈ T such that p ⊆
tpM(a1, a2, . . . /C).
We denote the set of complete n-types in T over C by Sn(T ). Similarly for

I-types.
Often, T is the set of models of some theory Th(M(C)). In this case, we

just write Sn(C) when the model and language are clear.

To try to summarize things in an intuitive way, types in Sn(C) are the
possible, complete descriptions of n-tuples that exist in at least one structure
elementarily equivalent to M(C).
Next, we de�ne saturation. Informally, saturated structures have a kind of

logical completeness property. We will see after this de�nition that it su�ces
to only consider 1-types; we get I-types for free.

De�nition 3.11.3. LetM be an L-structure, and let κ be an in�nite cardinal.
We say M is κ-saturated if for any index set I having cardinality ≤ κ and
subset C ⊆ M having density < κ, every type in SI(Th(M(C)) is realized in
M .

Proposition 3.11.4. M is κ-saturated i� for any C ⊆ M with density < κ,
all types in S1(C) are realized in M .

Proof. The (→) direction is trivial, so we just check (←). The proof is by
trans�nite induction on I. The idea is to realize the tuple one variable at a
time, pushing the partial realizations into the constants of the language.
The base case is given by the assumption. Suppose we know all types in

Sα(C) are realized for some α < κ. Let p ∈ Sα+1(C), and we will show that it
is also realized. Notice that p ranges over variables xβ with β < α + 1. Take
q ∈ Sα(C) to be the subset of p given by

q = {φ ∈ p : φ uses only variables xβ with β < α}.
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That is, q refers to all variables except xα, and q is clearly a type since it is
realized by the truncation of whatever realizes p. By the inductive hypothesis,
we have some (aβ : β < α) realizing q in M . Now, consider the set r given by

r = {φ(xα, aβ : β < α) : φ ∈ p}.

That is, r is the set of formulas from p with aβ substituted for xβ when β < α.
Since p consisted of L(C)-formuals, r consists of L(C∪{aβ : β < α})-formulas.
But C ∪{aβ : β < α} is still of cardinality < κ. We will check that r is a type,
so that r ∈ S1(C ∪ {aβ : β < α}) and hence must be realized by M . To see
this, just notice that since p ∈ Sα+1(C), there is some N |= Th(M(C)) with
(bβ : β < α + 1) realizing p in N . Since we have

q = tpM(aβ : β < α)

⊆ tpN(bβ : β < α + 1)

= p

we can extend N to an L(C ∪ {aβ : β < α})-structure modeling

Th(M(C ∪ {aβ : β < α}))

by interpreting the symbol for aβ as the element bβ. Then r is realized in this
extension of N by the element bα from our original tuple (bβ : β < α + 1).
So, we have that r is realized by some aα in M . Finally, just observe that
(aβ : β < α + 1) realizes p in M due to the construction of r and q from p.
Say p ∈ Sα(C) for some limit ordinal α ≤ κ. Then

p = tpN(bβ : β < α)

for some N |= Th(M(C)). A similar argument to the above shows we can
construct the required tuple in M by starting with a partial realization and
then extending it. For example, if p ∈ Sω(C), we can take a �nite tuple in M
realizing the restriction of p to the �rst n-variables for some n, then inductively
realizing extensions to more variables by putting the partial realization into the
constants of our language. This generates an sequence realizing p in M . �

3.12. Homogeneity. Say MC is an L(C)-structure, with M the structure
obtained by ignoring the constants in C, and suppose a, b ∈ M . If σ is an
L(C)-automorphism of MC with

σ(a) = b

then we will have

tpMC
(a) = tpMC

(b)

because L(C)-isomorphisms must preserve all L(C)-formulas. Phrased di�er-
ently but equivalently, we are observing that if an L-automorphism σ �xes
some subset C ⊆M pointwise but sends a to b, then

tpM(a/C) = tpM(b/C).
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This section addresses some de�nitions and propositions regarding the con-
verse of this situation. That is, if tpM(a/C) = tpM(b/C), is there a C-�xing
L-automorphism ofM which sends a to b? The question is essentially whether
the partial map a 7→ b extends to an automorphism.

De�nition 3.12.1. LetM be an L-structure and let κ be an in�nite cardinal.
We call M strongly κ-homogeneous if whenever L(C) is an extension of
L by constants with card(C) < κ and whenever MC1 , MC2 are two L(C)-
structures obtained by adding interpretations to M for the constants in C, we
have that

elementary equivalence isomorphism

MC1 ≡MC2 implies MC1
∼= MC2 .

BecauseMC1 andMC2 are both extensions by constants of the same structure
M , this de�nition can also be read as a statement about elements a, b in M
sharing the same type over some parameters C ⊆ M . If we consider the
L(C ∪ {c∗})-structures MC,a and MC,b obtained by interpreting each constant
in C as the corresponding element of M , but intepreting c∗ as a in MC,a and
as b in MC,b, then we have MC,a ≡MC,b whenever tpM(a/C) = tpM(b/C).
The following proposition guarantees that every L-structure has elementary

extensions which are κ-saturated and strongly κ-homogeneous. This should
be seen as the analog in model theory of the closure or completeness results
in other areas of mathematics. This result actually subsumes many of those
when the language and structures are appropriately chosen.

Proposition 3.12.2. LetM be an L-structure and let κ be an in�nite cardinal.
Then M has a κ-saturated, strongly κ-homogeneous elementary extension N .

Proof. See Proposition 7.12 of [3]. The proof is the same in this setting. �

3.13. Type spaces. Remember that Sn(T ) is the set of complete n-types
which can be realized in some structure from T . Here we will look at the logic
topology and d-metric on Sn(T ).

De�nition 3.13.1. Let T be a class of L(C)-structures, and �x some n ∈ N+.
For each nonnegative L(C)-formula φ and ε > 0, we de�ne

[φ < ε]

to be the set
{p ∈ Sn(T ) : (φ . δ) ∈ p for some δ < ε}.

That is, p is in [φ < ε] exactly when all realizations a ∈ M of p must have
φ(a)M < ε. The logic topology on Sn(T ) is the topology with open sets
generated by the [φ < ε].

Remark 3.13.2. Note that we are only using nonnegative φ in the above def-
inition. We could obtain the same topology by instead allowing all formulas
but only considering the sets

[|φ| < ε].
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Convergence of a sequence of types p1, p2, . . . to a type q in the logic topology
requires that for any φ ∈ q and δ > 0, eventually (φ . δ) ∈ pn. That is, (pn)
must eventually agree arbitrarily well with q on any formula.
Now we will discuss the d-metric for type spaces. This is a metric on types

determined by the �ideal� distance between their realizations.

De�nition 3.13.3. Let T be an L(C) theory. The d-metric on Sn(T ) is
de�ned by setting

d(p, q) = min

dM(a, b) such that

 M |= T
a realizes p in M
b realizes q in M


where as usual dM is taken to be the max metric on coordinates for n-tuples.
The basepoint of Sn(T ) is de�ned to be the type of the basepoint sequence,
i.e.

tp((?, ?, . . . , ?)/C).

Equivalently, d(p, q) is the minimal r such that the formula

max{d(x1, y1), . . . , d(xn, yn)} ≈ r

appears in a common extension of p, q to a 2n-type. We can say �minimal�
rather than �in�mal� in the de�nition because an in�mal r could be witnessed
exactly, say by taking ultraproducts.

Proposition 3.13.4. Let T be an L(C)-theory. The d-metric is complete on
Sn(T ) and induces a �ner topology than the logic topology.

Proof. Suppose pk is a cauchy sequence of types over C in Sn(T ), and without
loss of generality, we suppose further that d(pk, pk+1) ≤ 2−k for all k. Let M
be an ω-saturated and strongly ω-homogeneous model of T . Note that M is
already an L(C)-structure, i.e. C is part of the language, so ω is large enough
to realize each pk. Then for each k, by saturation there are realizations ak, ak+1

in M of pk, pk+1 respectively with d(ak, ak+1) ≤ 2−k.
Now, M is complete, so if ak were a cauchy sequence, we could take the

type of its limit to �nish the proof. However, in realizing these pairs we might
have chosen ak, ak+1 and a

′
k+1, ak+2 with ak+1 6= a′k+1 and, for example, we are

not immediately able to bound d(ak, ak+2). We will inductively construct a
sequence ak applying homogeneity along the way to remedy this problem.
Start with a0, a1 ∈M realizing p0, p1 with d(a0, a1) ≤ 2−0. Given a0, . . . , ak,

choose a′k, a
′
k+1 realizing pk, pk+1 with d(a′k, a

′
k+1) ≤ 2−k. By homogeneity, there

is an automorphism �xing a0, . . . , ak−1, sending a
′
k to ak, and sending a′k+1 to

some element ak+1 which must still realize pk+1 and have d(ak, ak+1) ≤ 2−k.
This inductively constructed sequence ak is thus a cauchy sequence inM , which
converges to some limit a whose type is the limit in Sn(T ) of the sequence pk.
Now we will check that the d-metric has a �ner topology than the logic

topology. Let [φ < ε] be a basic open set in the logic topology, and let p ∈
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[φ < ε]. In particular, this tells us that p contains some φ . δ with δ < ε.
Since φ is controlled and p contains some d(x, ?) ≤ R, we can use the uniform
continuity of φ in balls of radius R to determine some positive δ′ < 1 such that
||x||, ||y|| < R + 1 and d(x, y) ≤ δ′ implies |φ(x) − φ(y)| ≤ ε−δ

2
. For this δ′,

we thus have that d(p, q) ≤ δ′ implies that q contains φ . δ + ε−δ
2
, and hence

q ∈ [φ < ε]. We have shown that each basic open set in the logic topology
contains an open d-metric ball around every point and so must be an open set
in the d-metric topology. �

As we are about to see, for theories with a bound on the diameter of the
structure, the type spaces are compact in the logic topology. In general, when
our theory includes unbounded structures, we only obtain compactness of the
type spaces when restricted to closed d-metric balls around tp(?/C). For
example, consider the theory of unbounded structures and the open cover

{[d(x, ?) < r] : r > 0}

of the type space S1. Any �nite subset of this cover clearly misses types of
points with large d(x, ?). This makes the following proposition a bit awkward
to state, since the balls referenced are determined by the d-metric, but the
compactness is with respect to the logic topology. However, the reader should
keep in mind that complete types always determine their magnitude since they
must contain a formula of the form

d(x, ?) ≈ r.

So it is natural to consider types which are bounded in the d-metric.

Proposition 3.13.5. (Compactness in the type spaces) Let T be an L(C)
theory, let n ≥ 1, and let B̄ be a closed d-metric ball around the basepoint in
Sn(T ).
Then B̄ is compact and hausdor� in the logic topology on Sn(T ).
In particular, if there is some D ∈ R such that all models of T have diameter
≤ D, then Sn(T ) is compact and hausdor� in the logic topology.

Proof. This will follow from the ultraproduct theorem or compactness theorem
from earlier. For expositional purposes, we will explain both approaches. We
will write B̄(M) for the points in a model M realizing at least one type in B̄.
If we have a cover of B̄ by base open sets [φi < εi] for i ∈ I, then every type
p ∈ B̄ is in some [φi < εi]. It follows that no p ∈ B̄ contains φi & εi for all i.
This means that

P = {φi & εi : i ∈ I}
is not satis�able in any model M by an element in B̄(M).
First, the ultraproduct approach. If for every �nite subset F of P there were

a model MF with aF ∈ B̄(M) realizing F , we could construct an ultraproduct
and obtain a point

((aF )/ ∼) in the ball B̄(MU)
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which would realize P by the fundamental theorem of ultraproducts. The type

tpMU ((aF )/ ∼)

is then a type in B̄ containing P , which is a contradiction. So, there must be
a �nite subset of P which is not realizable in any model M by an element in
B̄(M). Equivalently, there is a �nite subset

{φj & εj : j = 1, . . . , k}
of P such that no p ∈ B̄ contains φj & εj for j = 1, . . . , k. Thus, every p ∈ B̄
satis�es

p ∈
k⋃
j=1

[φj < εj].

This veri�es the compactness of B̄.
Now, the alternative approach using the compactness theorem. Let L(Ca)

be the language obtained by adding a constant a which is bounded by the
radius of B̄. Let Ta be T but viewed as a set of L(Ca) sentences. Since P
is not satis�able in any M by an element in B̄(M), it follows that P is not
satis�able among models of Ta when viewed as a collection of sentences in the
language L(Ca). By the compactness theorem, P is not �nitely satis�able in
Ta. One can now check that P is not �nitely satis�able in models of T and
�nish as in the ultraproduct case.
The type space being hausdor� can be seen by noticing that distinct types

must have at least one φ on which they disagree by a positive amount. That
is, φ ∈ p and φ /∈ q means the there is an r ∈ R such that the formula φ ≈ 0
is in p but the formula φ ≈ r is in q for some r ∈ R. Then the open sets

[(φ ≈ 0) <
r

2
]

and
[(φ ≈ r) <

r

2
]

separate p and q. �

Note that in general, closed d-metric balls in Sn(T ) are not compact with
respect to the d-metric. This can be seen by considering an in�nite structure
with the discrete metric. A sequence of types, even when con�ned to a closed
ball, does not necessarily accumulate in the d-metric.

3.14. Conservative Extensions. The purpose of viewing mathematical ob-
jects as a class of L-structures or models of some L-theory T is to focus on
some particular behavior of those objects captured by L, use model theory to
�nd other nicer structures to work with, then use the language and theory as
a pivot to transfer our argument to the original object.
The choice of L and T is a trade o�: we need to know we have captured the

right objects, but we want to keep L and T somewhat low in complexity. This
typically means we add just enough symbols to L to get what we need. This
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makes L easier to understand, and so for example, L-isomorphisms are easier to
understand. But it may mean that the interesting behavior of our structures is
captured in a complicated way, buried in deeply quanti�ed, complex formulas.
This can result in devoting the initial discussion of models of T to under-

standing special subsets, relations, and functions that are implicitly captured
by L, even though L did not explicitly have sorts or symbols for them. In
practice, we end up justifying acting like L has these extra sorts and symbols
so that we do not have to keep writing long formulas. The justi�cation for this
is nontrivial. In general, if one arbitrarily extends L or T , then the resulting
structures and models are more restrictive.
In this section, we discuss a formalization of this extension phenomenon.

This is a more category theoretic view of models of T , so we will start with
some category theory de�nitions. This material can be found starting around
section 3.8 in Jean-Martin Albert's PhD thesis [1] or Bradd Hart's lecture
slides for his class Math 712, which will hopefully remain available online for
the duration of the internet.

De�nition 3.14.1. Let C and D be categories, and let F : C → D be a
functor.

(1) F is full if for all c1, c2 ∈ C, the map induced by F between hom sets

F : Hom(c1, c2)→ Hom(F (c1), F (c2))

is onto.
(2) F is faithful if for all c1, c2 ∈ C, the map

F : Hom(c1, c2)→ Hom(F (c1), F (c2))

is one-to-one.
(3) F is dense if for all d ∈ D, there is c ∈ C such that F (c) ∼= d.
(4) F is an equivalence of categories if F is full, faithful, and dense. In

this case, we say that C and D are equivalent categories.

We will be interested in functors going from the category of models of T ′

to the category of models of T , where T ′ is some extension of T to a larger
language.

De�nition 3.14.2. Let L′ be a language extending L, let T ′ be an L′-theory,
let T be an L-theory, and suppose T ′ contains T . De�ne Mod(T ′) to be the
category of models of T ′ with morphisms given by elementary maps. Similarly,
de�ne Mod(T ) to be the category of models of T with morphisms given by
elementary maps. The forgetful functor F : Mod(T ′) → Mod(T ) is the
functor which

• takes any model M ′ of T ′ and sends it to the model M of T obtained
by ignoring the interpretations of any new symbols in L′ over L, and
• takes any elementary map E ′ : M ′ → N ′ and sends it to the map
E : F (M ′)→ F (N ′) obtained by restricting E ′ to the L-sorts of F (M ′).
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That the obtained M actually models T and that F is actually a functor
are easy to see from the containments L ⊆ L′ and T ⊆ T ′. In this context,
because categories of models have elementary maps as the morphisms and are
closed under isomorphism, F is an equivalence of categories if the following
things are true.

• (F is full) For any M,N |= T and choice of extensions M ′, N ′ |= T ′

with F (M ′) = M and F (N ′) = N , any elementary map

E : M → N

lifts to an elementary map

E ′ : M ′ → N ′

with F (E ′) = E .
• (F is faithful) Such liftings of elementary maps are unique.
• (F is dense) Every M |= T lifts to some M ′ |= T ′ with F (M ′) = M .

Note that it is possible for there to be distinct extensions of M |= T to models
M ′, N ′ |= T ′, but these extensions must be isomorphic if F is an equivalence of
categories. This is because the identity map idM must lift to maps f : M ′ → N ′

and g : N ′ →M ′, and if g ◦ f 6= idM ′ , then there are nonunique liftings of idM
to maps M ′ →M ′.
The topic of this section is when the extension of L to L′ and of T to T ′

does not change the category of models in a meaningful way. That is, we are
interested in when Mod(T ′) and Mod(T ) are equivalent categories, despite L′

possibly having additional sorts, functions, and relations.
For the de�nition below, recall that L′(M ′) and L(M) denote extension of

a language by constants, in this case extension of L′ by constants for each
element of M ′, and extension of L by constants for each element of M .

De�nition 3.14.3. If M |= T is the reduct of M ′ |= T ′ from L′ to L, then
we say M is stably embedded in M ′ if for every L′(M ′)-formula φ(x) with
variable tuple x ranging over L-sorts, and for every ε > 0, there is an L(M)-
formula ψ(x) with the same variables, such that φM

′
(x) = ψM

′
(x).

Being stably embedded means that any formula in the extended setting is
�already there� in the restricted setting. For example, if L′ has an extra relation
symbol R, stable embeddedness implies that there is an L-formula ψ which is
equivalent to R. Moreover, even if φ references elements in M ′ from L′-sorts,
stable embeddedness implies that there are elements from L-sorts of M which
su�ce. The following proposition tells us that we get stable embeddedness of
all reducts if the forgetful functor is full and faithful.

Proposition 3.14.4. Let L ⊆ L′ be languages, T ⊆ T ′ be theories, and let
F be the forgetful functor from models of T ′ to models of T . If F is full and
faithful, then for all M ′ |= T ′, the reduct F (M ′) is stably embedded in M ′.

Proof. Lemma 3.8.2 of [1]. �
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Finally, we have the theorem which tells us that if F is an equivalence of
categories, then all of the extra structure in M ′ |= T ′ is in some sense �already
there�. For a fuller discussion of interpretability and T eq in the continuous
setting, see [1].

Proposition 3.14.5. (Conceptual completeness) Let L ⊆ L′ be languages
and T ⊆ T ′ be L- and L′− theories, respectively. Suppose the forgetful functor
F : Mod(T ′) → Mod(T ) is an equivalence of categories. Then T ′ is inter-
pretable in T eq.

Proof. Theorem 3.8.3 of [1]. �

3.15. sup in a theory. This section collects some results that make writing
axioms for a theory more convenient. Some ∀-style quanti�cation is possible
using sup] quanti�ers. The main idea is that if the average sup of a nonnegative
formula φ(x) is 0 on any bounded part of the space, then it must be that φ(x)
is exactly 0 everywhere.

Proposition 3.15.1. Fix some L-formula ψ(x), and for each n, let φn be the
L-sentence

sup
x

]n+1
n ψ(x).

Then for any C ∈ R and any L-structure M , we have

φMn ≤ C for all n

if and only if

sup
x∈M

ψ(x)M ≤ C.

Proof. If any φMn were > C, then considering the integral we must have some
x ∈ M with ψM(x) > C. Conversely, if supx∈M ψM > C, then because
supx∈Br(M) ψ

M is a nondecreasing function of r, any integral over [n, n + 1]
with x ∈ Bn(M) will be > C. �

Corollary 3.15.2. With the above notation, if ψM(x) ≥ 0 for all x ∈M , then
the following are equivalent.

• φMn = 0 for all n.
• supx∈M ψM(x) = 0.
• φn ∈ Th(M) for all n.
• for all x ∈M , ψM(x) = 0.

The above method lets us mimick a ∀ quanti�er over the entirety of our
space. We might want to try mimicking ∀ over a bounded part of the space.
As usual, there are issues with quantifying over balls. However, we can always
�nd axioms giving the following version of universal quanti�cation over open
balls.
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Proposition 3.15.3. Let R > 0, and for each n ∈ N+, let φn be the L-sentence

sup
x

]R
R− 1

n
ψ(x)

for some �xed ψ(x).
Then for any C ∈ R and any L-structure M , we have

φMn ≤ C for all n

if and only if

sup
x∈BR(M)

ψ(x)M ≤ C.

Proof. Suppose φMn > C for some n. Considering the integral, there must
be some t ∈ [R − 1

n
, R] where supx∈Bt(S) ψ(x) > C. Conversely, suppose

supx∈BR(M) ψ(x)M > C. Let a ∈ BR(M) witness this sup, so that ψ(a)M > C.
Since the sup is nondecreasing as a function of the radius, it follows that
whenever R− 1

n
> |a|, we have

n ·
ˆ R

R− 1
n

sup
x∈Bρ(M)

ψ(x)Mdρ

bounded below by

n ·
ˆ R

R− 1
n

ψ(a)M

which is > C. �

Corollary 3.15.4. With the above notation, if ψM(x) ≥ 0 for all x ∈M , then
the following are equivalent.

• φMn = 0 for all n.
• supx∈B(M) ψ(x)M = 0.
• φn ∈ Th(M) for all n.
• For all x ∈ BR(M), we have ψM(x) = 0.

3.16. inf in a theory. This section is like the last but handles inf and exis-
tence. We only provide an approximate version of existential quanti�cation on
a given bounded part of the space. Recall again that an ultraproduct exam-
ple can be used to demonstrate problems inherent in existential quanti�cation
over the entire space.

Proposition 3.16.1. Let R > 0, and for n ∈ N+ let φn be the L-sentence

inf
x

]
R+ 1

n
R ψ(x)

for some �xed ψ(x).
Then for any C ∈ R and any L-structure M , we have

φMn ≤ C for all n
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if and only if
inf

x∈BR+ε(M)
ψM ≤ C for all ε > 0.

Proof. Suppose φMn > C for some n. Then considering the integral there must
be some t ∈ [R,R + 1

n
] with infx∈Bt(M) ψ

M > C. Rewriting this, we see that
infx∈BR+(t−R)(M) ψ

M > C, so taking ε = t − R establishes this direction of the

proof. Conversely, suppose infx∈BR+ε(M) ψ
M > C for some ε > 0. Since the inf

is nonincreasing as a function of the radius, it follows that whenever r < ε, we
have infx∈BR+r(M) ψ

M > C. So, provided 1
n
< ε, we have infx∈Br(M) ψ

M > C

for all r ∈ [R,R + 1
n
]. This implies φMn > C. �

Corollary 3.16.2. With the above notation, if ψM(x) ≥ 0 for all x ∈M , then
the following are equivalent.

• φMn = 0 for all n.
• infx∈BR+ε(M) ψ

M = 0 for all ε > 0.
• φn ∈ Th(M) for all n.
• For all ε, ε′ > 0, there exists x ∈ BR+ε(M) with ψM(x) ≤ ε′.

To rephrase the last statement informally: there are arbitrarily good points
arbitrarily close to B̄R(M).
As usual, if the structure is bounded, things are a bit simpler.

Corollary 3.16.3. Let M be an L-structure whose underlying metric space is
bounded with diameter ≤ D. Let φ be an L-sentence of the form

inf
x∈Br(S)

]D+1
D ψ

where ψ is an L-formula with ψM(x) ≥ 0 for all x ∈M .
Then the following are equivalent.

• φ is in Th(M).
• infx∈M ψ = 0.
• For all ε > 0, there exists x ∈M with ψM ≤ ε.

Proof. Just note that infx∈Br(M) ψ
M is equivalent to infx∈M ψM for r ≥ D and

apply the above corollary. �

4. Stability

Stability is a way of quantifying the complexity of a theory, and it does so
by considering the size of type spaces over parameter sets of various sizes. A
standard example in the discrete case is that (Q, <) is unstable, because there
is a set of ℵ0 many parameters (the rationals) over which we can �nd a type
space of size 2ℵ0 (one for each cut).
In the continuous setting the important notion is not the cardinality of the

type space but rather the density of the type space. The notion of density
requires a choice of topology, but we have given two di�erent natural choices
for the topology of type spaces. We will use the d-metric topology, because as
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observed in [3], this leads to the results one would expect when generalizing
from the discrete setting.

De�nition 4.0.1. Let T be an L-theory, and let λ be an in�nite cardinal. We
say T is λ-stable if for any model M |= T and subset A ⊆M with cardinality
≤ λ, the density of S1(T (A)) with respect to the d-metric is ≤ λ.
We say T is stable if it is λ-stable for some λ. If T is not stable we say it

is unstable.

Stability theory is a rich area of model theory, and there are many ways to
approach the subject. We will be primarily interested in a characterization of
stability via the order property.

De�nition 4.0.2. Let T be an L-theory. We say T has the order property
if there is

• an L-formula φ(x, y) with �nite variable tuples x, y of the same length,
• a model M |= T , and
• a bounded sequence (an)n∈N of tuples, with each an of the same length
as x and y

such that

φ(ai, aj) =

{
0 whenever i < j

1 whenever i ≥ j
.

By a bounded sequence of tuples, we mean there is some real tuple R such
that the coordinates of each tuple an are always bounded by the corresponding
real in R.

Since formulas are controlled, for any such sequence above there must be a
minimal distance ε > 0 between each pair ai, aj, that is, d(ai, aj) ≥ ε whenever
i 6= j.

De�nition 4.0.3. We will say a sequence (an)n∈N is ε-separated if

d(ai, aj) ≥ ε

for all i 6= j.

Also, the choice of 0 and 1 in the de�nition of the order property is not
particularly important. This is just a convention. What is important is that
φ separates the values by some positive amount. Say there are r1 < r2 such
that

φ(ai, aj) ≤ r1 when i < j

and
φ(ai, aj) ≥ r2 when i ≥ j.

A de�nition based on this more general situation would be equivalent to the
above de�nition, since we could compose this φ with a continuous function
u : R→ R which sends (−∞, r1] to 0 and [r2,∞) to 1.
We will check that being unstable is the same as having the order property.

The following de�nition will make it easier to discuss the proof of this claim.
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De�nition 4.0.4. We say a type p in M is �nitely determined if for every
formula φ(x, y) and every ε > 0, there is a �nite B ⊆M and some δ > 0 such
that for all c, c′ ∈M , if

max
b∈B
|φ(b, c)− φ(b, c′)| < δ

then
|φ(p, c)− φ(p, c′)| ≤ ε.

Proposition 4.0.5. T is unstable if and only if it has the order property.

Proof. (←) Suppose T has the order property, witnessed by the formula φ and
sequence (an)n∈N in some M . Let λ be any in�nite cardinal. Let µ be the
smallest cardinal such that

2µ > λ.

Let 2<µ denote sequences over {0, 1} of length strictly less than µ, ordered
lexicographically. Note that 2<µ ≤ λ by choice of µ.
Recalling that the an are ε-separated for some ε > 0, we can take ultrapowers

of M to �nd arbitrarily long sequences witnessing the order property with φ.
In particular, we can �nd a bounded sequence (bi)i∈2<µ in some ultrapower
MU such that

φ(bi, bj) =

{
0 when i < j

1 when i ≥ j
.

This implies the existence of a type for each cut in

B = {bi : i ∈ 2<µ}.
Any pair of such types has distance at least ε. So, we have a model MU of T
with a set B of cardinality ≤ λ over which the type space has density > λ.

(→) Suppose T is unstable. Let λ be a cardinal with

λdensity(L) = λ.

If for all M |= T , all types over parameter sets of cardinality ≤ λ in M were
�nitely determined, then there would be at most λdensity(L) = λ many types
over any such parameter set and T would be λ-stable. So, there is someM |= T
with a type p which is not �nitely determined, witnessed by a formula φ(x, y)
and some ε > 0. We have that for all �nite B ⊆ M and all δ > 0, there are
c, c′ ∈M such that

max
b∈B
|φ(b, c)− φ(b, c′)| < δ

and yet
|φ(p, c)− φ(p, c′)| > ε.

We inductively de�ne sequences an, bn, and cn, as well as sets Bn as follows.
Let B0 = ∅. Given Bn, choose bn and cn so that

max
b∈Bn
|φ(b, bn)− φ(b, cn)| < 1

2
ε
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but also

|φ(p, bn)− φ(p, cn)| > ε.

Choose an realizing the formulas

φ(x, bi) ≈ φ(p, bi)

φ(x, ci) ≈ φ(p, ci)

for all i ≤ n, which is possible since p is a type in M . De�ne Bn+1 by

Bn+1 = Bn ∪ {an, bn, cn}.

This construction is such that whenever i < j we get

|φ(ai, bj)− φ(ai, cj)| <
1

2
ε

since ai ∈ Bj (and hence is considered in maxb∈Bn), and whenever i ≥ j, we
get

|φ(ai, bj)− φ(ai, cj)| > ε

by choice of ai. This means that the formula ψ(x1, y1, z1, x2, y2, z2) given by

|φ(x1, y2)− φ(x1, z2)|

witnesses the order property, using the sequence (an, bn, cn)n∈N. �

The following examples discuss two simple cases. The application section of
this thesis involves proving the instability of some more interesting structures.

Example 4.0.6. If the sorts of M are proper, then Th(M) is stable. This is
because bounded subsets of proper spaces are compact, and it is impossible
to �nd an in�nite, ε-separated sequence in a compact space. The theory has
sentences which ensure that any model has a �nite bound on the length of
ε-separated sequences in any given radius ball. In particular, the theory of the
real �eld with its usual metric (R, d, 0, 1,+, ·) is stable in this setting.

Example 4.0.7. Let M be (N, d, R) where d is the discrete metric and R is a
binary relation de�ned by R(a, b) = 0 if a ≤ b and R(a, b) = 1 otherwise. The
relation R is controlled since it is bounded and uniformly continuous. The
theory of M is unstable, as witnessed by R(x, y) and the in�nite sequence
(0, 1, 2, . . . ).

Later we will be interested in showing that certain structures arising as
ultraproducts are unstable. We will need the following generalization of the
order property. The idea is to capture how a sequence of structures may build
up to the order property as we go along.

De�nition 4.0.8. We say a sequence Mn of L-structures approaches the
order property if there is an L-formula φ(x, y) with �nite variable tuples
x, y of the same length and there is a real tuple r of the same length as x and
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y, such that for all ε > 0 and k ∈ N, for all but possibly �nitely many of the
Mn, there are a1, . . . , ak in Br(Mn) such that

φ(ai, aj) ≤ ε when i < j ≤ k

and
φ(ai, aj) ≥ 1− ε when k ≥ i ≥ j.

Similarly to the earlier order property, this de�nition would be equivalent if
we require instead that φ(ai, aj) = 0 when i < j ≤ k and φ(ai, aj) = 1 when
k ≥ i ≥ j, because we can compose with a connective to accomplish this.
An easy example of approaching the order property is the sequence of spaces

Mn = {1, . . . , n} with the discrete metric and a relation R with R(a, b) = 0
when a < b in the usual sense and R(a, b) = 1 otherwise. An interesting
observation about this sequence of spaces is that any nonprincipal ultraproduct
will be unstable, which can be seen by using R to demonstrate the order
property in the ultraproduct. Similarly, if we �nd an ultraproduct which has
the order property, we can infer the existence of a subsequence of its factors
which approaches the order property.
The following theorem appears as Theorem 6.1 of [11], but we have changed

the wording here.

Proposition 4.0.9. Assume the continuum hypothesis fails. Let (Mn)n∈N be
a sequence of L-structures which approaches the order property and such that
each model has cardinality ≤ 2ℵ0. Then there are 22ℵ0 many mutually non-
isometric structures of the form

∏
UMn where U ranges over nonprincipal

ultra�lters over N.

Proof. We will brie�y summarize the argument here, but refer to [11] for the
full proof. Say φ orders a sequence when that sequence behaves as in the
de�nition of the order property or approaching the order property. This ter-
minology is just to account for the fact that our φ is real-valued rather than a
true-false relation in the usual sense of an ordering.
Let φ be the formula witnessing that (Mn)n∈N approaches the order property.

Without loss of generality, we can assume that for each n, Mn contains a
sequence a1, . . . , an as in the de�nition of approaching the order property.
Note that any ultraproduct over the Mn which uses a nonprincipal ultra�lter
over N will have density 2ℵ0 , due to the ε-separation of witnessing sequences
in Mn.
The proof is a pigeonhole argument that there must be many isometry types

among the ultraproducts. This is because there are 22ℵ0 invariants associated
to linear orders which will be represented within the ultraproducts using φ as
the ultra�lter is varied, but for any given ultraproduct, its density bounds how
many can be associated to that ultraproduct. The proof requires establishing
the existence of these linear orders, showing that by varying the ultra�lter they
can be found among the ultraproducts, and proving the required bound. �
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Part 2: Application to Metric Geometry

5. Geodesics and CAT(κ) Spaces

In this section, we start applying continuous model theory to metric ge-
ometry. The spaces we are interested in have a notion of bounded curvature
de�ned in terms of the behavior of geodesic triangles. We will show that
CAT(κ) spaces form an elementary class, and we will show that geodesics are
de�nable in this class.
A standard reference for the geometry material here is Bridson and Hae-

�iger's book [8].

5.1. Geodesics. Lines are fundamental in euclidean geometry. Geodesics are
one way of extended the notion of lines to more general metric spaces, and
we will see that they continue to have an important role. Here we are using
a de�nition which emphasizes a more global, metric approach, rather than
appealing to some local, di�erential structure.

De�nition 5.1.1. Let (X, d) be a metric space. A geodesic in X is an
isometric embedding γ : I → X where I is an interval of R. We call attention
to three kinds of geodesics.

(1) If I is a closed interval [0, `] we call γ a (geodesic) segment from
γ(0) to γ(`). We call γ(0) and γ(`) the endpoints of γ and say γ has
length `.

(2) If I is of the form [0,∞) we call γ a (geodesic) ray starting at γ(0).
(3) If I is R we call γ a (geodesic) line.

In this document we will usually just say segment, ray, and line.
If a geodesic has p = γ(r) for some r, we say p is on γ, or that γ passes

through p, or write p ∈ γ.

As was suggested, in a space like R2, the geodesics correspond to the lines we
are used to. A simple case illustrating the more general notion is the 2-sphere
with a metric given by angular di�erence measured from the center. There,
the geodesic segments correspond to the segments of a great arcs between two
points on the surface. There are no rays or lines in this example.

De�nition 5.1.2. A geodesic triangle in (X, d) is a triple of geodesic seg-
ments γ1, γ2, γ3 with endpoints a, b, and b, c, and c, a respectively.
We call γ1, γ2, γ3 the edges or sides of the triangle, and call a, b, c the

vertices of the triangle.
If p ∈ γ for one of the edges γ of a triangle ∆, we will say p is on 4, or

write p ∈ 4.

We will see that a metric-based approach to curvature can be carried out us-
ing geodesic segments. This is done by examining the behavior of closed loops
of geodesic segments. Continuing the sphere example, the geodesic triangles
traced on the surface of a 2-sphere have di�erent behavior than those found
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in the euclidean plane. For example, the angles, areas, and lengths between
points on di�erent sides all behave di�erently.
Not all metric spaces have nontrivial geodesics. There are obvious degener-

ate cases like a single point or discrete metric spaces which clearly contain no
embedded real intervals. But connected spaces can also fail to have geodesics.
For example, suppose we give R the metric

d(x, y) =
√
|x− y|

and consider the points 0 and 1. The distance between them is 1, so a geodesic
segment between them would be an isometry γ from the usual euclidean [0, 1]
to this space. But then z = γ(1

2
) would be a point with

d(0, z) = d(z, 1) =
1

2
.

This is impossible with this d, since it means√
|z| =

√
|1− z| = 1

2
,

i.e. both |z| = 1
4
and |1− z| = 1

4
.

It is also easy to construct examples where geodesics exist, but only between
points that are su�ciently close. For example, this happens in bounded spaces,
but also in spaces like euclidean R with the integers removed.

De�nition 5.1.3. Let D ∈ R ∪ {∞}. We say (X, d) is a D-geodesic space
if for every x1, x2 ∈ X with d(x1, x2) < D, there is a geodesic segment with
endpoints x1, x2.
We say (X, d) is a geodesic space if every x1, x2 ∈ X are the endpoints of

some geodesic segment.

Also note that in general, there could be multiple geodesics between a given
pair of points. That is, the endpoints might not determine the segment. For
example, opposite poles of a 2-sphere have in�nitely many geodesics between
them.

5.2. Model spaces. We will quantify curvature of geodesic spaces by com-
paring the behavior of geodesic triangles to those in some special, �xed spaces.
These are the classical spaces of constant curvature from di�erential geome-
try: hyperbolic spaces, euclidean spaces, and spheres. We will only discuss the
2-dimensional spaces, since we will only need those for our purposes.

De�nition 5.2.1. We de�ne the model spaceM2
κ for κ ∈ R as follows.

The spaceM2
0 is R2 with the usual euclidean metric.

The spaceM2
1 is the unit sphere in R3 with metric given by

d(x, y) = cos−1(x · y)

where · is the usual scalar product on R3. The images of geodesics in this
space are given by intersecting (euclidean) planes through the origin of R3
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with the unit sphere, and the angle between such planes is taken to be the
angle between corresponding geodesic segments.
For any κ > 0, the spaceM2

κ is the space obtained fromM2
1 by multiplying

distances by 1/
√
κ.

The spaceM2
−1 is the upper sheet of the hyperboloid

{x ∈ R3 : 〈x, x〉 = −1}
with metric given by

d(x, y) = cosh−1(〈x, y〉)
where 〈, 〉 denotes the scalar product given by

〈x, y〉 = x1y1 + x2y2 − x3y3.

Again, the geodesics in this space are given by intersecting (euclidean) planes
through the origin of R3 with the sheet, and this can be used to de�ne an angle
between geodesic segments.
For any κ < 0, the spaceM2

κ is the space obtained fromM2
−1 by multiplying

distances by 1/
√
−κ.

We summarize some properties of these spaces, which can be found through-
out section I.2 of [8].

Proposition 5.2.2. Let κ ∈ R. LetM =M2
κ.

(1) The diameter ofM is denoted Dκ and is equal to π/
√
κ for κ > 0 and

∞ otherwise.
(2) M is a geodesic space. If x, y ∈ M have d(x, y) ≤ Dκ, then there is

a unique geodesic with endpoints x, y, and if B is a closed ball in M
with radius ≤ 1

2
Dκ, then B is convex.

(3) M has a law of cosines. Given a geodesic triangle with lengths a, b, c
and angle θ opposite the side with length c, we have the following.
(a) When k = 0,

c2 = a2 + b2 − 2ab cos(θ).

(b) When k < 0,

cosh(
√
−κc) = C − S

where

C = cosh(
√
−κa) cosh(

√
−κb)

S = sinh(
√
−κa) sinh(

√
−κb) cos(θ).

(c) When k > 0,
cos(
√
κc) = C + S

where

C = cos(
√
κa) cos(

√
κb)

S = sin(
√
κa) sin(

√
κb) cos(θ).
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(4) M embeds certain triples. Let x1, x2, x3 be three points in an arbitrary
metric space (X, dX) with∑

i<j

dX(xi, xj) < 2Dκ.

Then there are three points x̄1, x̄2, x̄3 inM such that

d(x̄i, x̄j) = dX(xi, xj)

for i < j.

These properties are what let us compare geodesic triangles in other spaces to
those in the model space.

De�nition 5.2.3. A geodesic triangle formed by the corresponding points x̄i
in (4) above, when it exists, is called a comparison triangle for the points xi.

One might wonder why we have de�ned this as a comparison triangle rather
than a comparison triple. Up to isometry, the geodesic triangles in model
spaces are determined by the distances between their vertices.

Proposition 5.2.4. Comparison triangles inM2
κ for the same triple xi from

(X, d) are unique up to an isometry ofM2
κ.

Proof. This is the second part of Lemma I.2.14 in [8]. �

The map xi 7→ x̄i between the vertices of a triangle and its comparison
triangle induces a bijection between points in the segments. This lets us de-
�ne comparison points for the entire triangle, not just the vertices. Roughly,
this is done by matching up points which are the same distance along the
corresponding segments.

De�nition 5.2.5. Let 4 be a geodesic triangle in (X, d) with vertices a, b, c.
Let 4̄ be the comparison triangle inM2

κ. Let γ be the side of 4 from a to b.
Let j be the isometry taking γ to the side γ̄ of 4̄ from ā to b̄. For p ∈ γ, we
call p̄ = j(p) the comparison point for p.

Critically, while the correspondence between points and comparison points is
a bijection, and even an isometry when restricted to each side independently, it
is not generally an isometry between the geodesic triangle and the comparison
triangle. This is because points on di�erent edges may fail to map isometrically.
This deviation from an isometry is the fundamental measurement we make
when looking at comparison triangles. The way that this deviation varies
across theM2

κ is what lets us quantify the curvature.

5.3. CAT(κ) spaces. These are the spaces with a notion of bounded curva-
ture, understood via comparison triangles. De�nitions and basic properties of
these spaces can be found in the �rst few sections of part II of [8].
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De�nition 5.3.1. Let 4 be a geodesic triangle in a metric space (X, dX).
Let 4̄κ be its comparison triangle in M2

κ. We say 4 satis�es the CAT(κ)
inequality if whenever p, q ∈ 4, we have dX(p, q) ≤ dM2

κ
(p̄, q̄) where p̄, q̄ are

the comparison points in 4̄κ.

For example, triangles on a standard sphere do not satisfy the CAT(0) in-
equality, because the distances from one side to another are larger than corre-
sponding lengths in R2. On the other hand, triangles in the hyperbolic plane
do satisfy the CAT(0) inequality, because the relevant distances are shorter
than in R2. This is a formalization of the idea that triangles in spheres are
�fatter� than euclidean triangles, and hypebolic triangles are �thinner� than
euclidean triangles.

De�nition 5.3.2. (X, d) is a CAT(κ) space if it is a Dκ-geodesic space
where every geodesic triangle whose segment lengths sum to < Dκ satis�es the
CAT(κ) inequality

Immediate examples are given by the model spaces, and subspaces of them
which are closed under geodesics. All triangles in M2

κ trivially satisfy the
CAT(κ) inequality, and moreover can be seen to satisfy the CAT(κ′) inequality
for κ′ ≥ κ by considering the law of cosines in the di�erent model spaces. In
more interesting cases, (X, d) will have triangles which vary in what CAT(κ)
inequalities they satisfy. As such, knowing that (X, d) is a CAT(κ) space is
valuable as a bound rather than complete description of the curvature. It tells
us that the triangles in X are �thin enough� for certain arguments.
The existence of comparison triangles lets us de�ne a notion of angle.

De�nition 5.3.3. Given three points x, y, z in a CAT(κ) space, we de�ne

∠̃x(y, z) to be the (unsigned) angle in the comparison triangle (inM2
κ) at x̄.

We call this the comparison angle.

Note that the comparison angle is not a local property of the sides meeting
at x. That is, it depends on the lengths of the segments, and considering other
triangles which share initial segments at x may lead to di�erent comparison
angles.
This leads to another notion of angle. In any particular CAT(κ) space, given

y′ and z′ on the segments from x to y and from x to z respectively, we have

∠̃x(y
′, z′) ≤ ∠̃x(y, z)

as a consequence of the cosine law. This means the limit as y′ and z′ both
approach x is de�ned.

De�nition 5.3.4. Given three points x, y, z in a CAT(κ) space with

d(x, y) + d(y, z) + d(z, x) < 2Dκ

we de�ne ∠x(y, z) to be limy′,z′→x ∠̃x(y′, z′). We call this the initial angle.

Furthermore, we clearly always have the following.
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Proposition 5.3.5. Given three points x, y, z in a CAT(κ) space, we have

∠x(y, z) ≤ ∠̃x(y, z).

We will need the following result later when we work with euclidean build-
ings.

Proposition 5.3.6. (Convexity in CAT(0) spaces) Let X be CAT(0). For
any pair of segments c : [0, `] → X and c′ : [0, `′] → X, and for all t ∈ [0, 1],
we have

d (c(t`), c′(t`′)) ≤ (1− t) d (c(0), c′(0)) + td (c(`), c′(`′)) .

Proof. This is Proposition II.2.2 of [8]. The proof is a straightforward conse-
quence of euclidean geometry and the CAT(0) inequality. �

5.4. Approximate midpoints. In this section we will see how being a geo-
desic space is equivalent to always being able to �nd points arbitrarily close
to half-way between pairs of points, at least for complete metric spaces. This
lets us see another characterization of CAT(κ) spaces which is more amenable
to axiomatization in our logic.

De�nition 5.4.1. We say m is a midpoint of a, b ∈ X if

d(a,m) = d(m, b) =
1

2
d(a, b).

For any ε > 0, we say mε is an ε-approximate midpoint of a, b ∈ X if

max(d(a,mε), d(mε, b)) ≤
1

2
d(a, b) + ε.

Proposition 5.4.2. Let (X, d) be a complete metric space. The following are
equivalent.

(1) Every pair of points in X has a midpoint.
(2) X is a geodesic space.

Proof. For (2→ 1), take the point halfway along the geodesic. Now we check
(1→ 2).
Let a, b ∈ X. Let ` = d(a, b). De�ne f on [0, `] inductively as follows. Let

f(0) = a and f(`) = b. Suppose f is de�ned at q0, q1, . . . , qn and already
isometric on its de�ned points. Then de�ne f(qi+1/2) to be the midpoint of
f(qi), f(qi+1) for each i = 0, . . . , n− 1.
We check that f has remained an isometry. It clearly is isometric on

{qi, qi+ 1
2
, qi+1}.

For each i = 0, . . . , n− 1 and j = 0, . . . , n we can see that

d(f(qj), f(qi+1/2)) ≤
∣∣∣qj − qi+ 1

2

∣∣∣
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by considering the triangle inequality with third point f(qi) if qj ≤ qi, or third
point f(qi+1) if qj ≥ qi+1. We want to show that this is actually equality. If
we were to have strict inequality

d(f(qj), f(qi+1/2)) <
∣∣∣qj − qi+ 1

2

∣∣∣
we would reach a contradiction by showing d(a, b) < ` using repeated applica-
tions of the triangle inequality on images of

0, qj, qi+ 1
2
, qi+1, `

if qj < qi+1/2, or images of
0, qi, qi+ 1

2
, qj, `

if qj > qi+1/2.
The completeness of X lets us extend f to a function on I = [0, d(a, b)]

which remains an isometry, yielding our geodesic. �

Proposition 5.4.3. Let (X, d) be a geodesic space and x, y, z ∈ X. Then

d(x, y) + d(y, z) = d(x, z)

if and only if y is on a geodesic with endpoints x, z.

Proof. If y is on a geodesic γ from x to z, then the equation holds due to γ
being an isometry. For the other direction, observe that the construction in
the proof above can start with a function f de�ned on the points

0, d(x, y), d(x, z)

and iterate from there. �

The following notion is something like a quadrilateral version of comparison
triangles. These objects may not always exist, but when they do, they help
to simultaneously capture information both about comparison triangles and
about sequences of approximate midpoints.

De�nition 5.4.4. Let x1, y1, x2, y2 be four points in a metric space (X, dX).
A subembedding inM2

κ of these points is a four-tuple

(x̄1, ȳ1, x̄2, ȳ2) ∈M2
κ

such that
dX(xi, yj) = d(x̄i, ȳj) for i, j ∈ {1, 2},

dX(x1, x2) ≤ d(x̄1, x̄2),

dX(y1, y2) ≤ d(ȳ1, ȳ2).

Subembeddings and approximate midpoints can be used to give an alterna-
tive characterization of CAT(κ) spaces. This is useful for us, because these
notions are easier to work with in continuous logic.

Proposition 5.4.5. Let (X, d) be a complete metric space. Then the following
are equivalent.
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(1) X is a CAT(κ) space.
(2) Every 4 points x1, x2, y1, y2 in X with

d(x1, y1) + d(y1, x2) + d(x2, y2) + d(y2, x1) < 2Dκ

has a subembedding in M2
κ, and for every ε > 0 and x, y ∈ X with

d(x, y) < Dκ, there is an ε-approximate midpoint of x, y.

Proof. For the full proof, see Proposition II.1.11 of [8]. We will only comment
on the rough idea.
For (1→ 2), we construct a subembedding by patching together comparison

triangles.
For (2→ 1), we use the subembeddings to show that a sequence of approx-

imate midpoints is cauchy, hence X has midpoints and is a geodesic space.
Then the existence of subembeddings can be used again to check the CAT(κ)
inequality on geodesic triangles. �

6. Axioms and Quantifiers for CAT(κ) Spaces

6.1. CAT(κ) spaces form an elementary class. We can check the ele-
mentarity of the class of CAT(κ) spaces for a given κ. The language we will
use throughout is just a single sorted language with no additional function or
relation symbols.
In the next section, we will produce a set of axioms. For now, we provide

a proof using the characterization of elementary classes in Proposition 3.8.2.
Interestingly, people working in large-scale geometry seem to be acquainted
with both CAT(κ) spaces and ultralimit constructions (what they would call
ultraproducts of metric spaces), and make use of the fact that this class is
closed under ultraproducts.

Proposition 6.1.1. Let κ ∈ R. The class of CAT(κ) spaces is elementary.

Proof. The class is clearly closed under isomorphisms, since these are isome-
tries and must preserve the metric properties involved in the de�nition of
CAT(κ) spaces.
Suppose M is an elementary substructure of a CAT(κ) space N . We will

check that M is CAT(κ) by checking that it has approximate midpoints and
satis�es the 4-point condition. Existence of approximate midpoints is easily
seen by noting that for all r < r′, the sentence

sup
x,y

]r
′

r inf
z

]r
′+1
r′

(
(d(x, y) & Dκ) ·

(
max(d(x, z), d(z, y)) .

1

2
d(x, y)

))
is in the theory of N , hence in the theory of M . The d(x, y) & Dκ term
should be dropped if Dκ = ∞. These imply that all x, y with d(x, y) < Dκ

in the space have arbitrarily good approximate midpoints. The existence of
subembeddings follows trivially from the containment of M in the CAT(κ)
space.
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Let M be an ultraproduct over CAT(κ) structures Mi. Suppose a, b ∈ M
are such that d(a, b) < Dκ and both d(a, ?) and d(b, ?) are ≤ R. Let (ai)i∈I and
(bi)i∈I be representatives for a, b respectively. For some large set F in the ul-
tra�lter, eachMi for i ∈ F satis�es φ(a, b) with φ as in the previous paragraph,
since d(a, b) < Dκ means d(ai, bi) < Dκ for these i. The fundamental theorem
of ultraproducts gives us M |= φ(a, b), and so M has approximate midpoints.
Let a, b, c, d be 4 points in M relevant for checking the subembedding require-
ment. A similar argument shows that representatives are such that ai, bi, ci, di
have a subembedding āi, b̄i, c̄i, d̄i for i in some �lter-large set. By homogene-
ity of the model space, we can assume these subembeddings have one point
at the origin and are contained in a closed ball whose radius is at most the
largest of d(a, ?), d(b, ?), d(c, ?), and d(d, ?). Since the model space is proper,
its ultrapower is itself. So we can compute the ultrapower of the model space
M2

κ alongside our ultraproduct and consider the ultralimits ā, b̄, c̄, d̄ still inside
the model space for each sequence āi, b̄i, c̄i, d̄i respectively. By the fundamental
theorem of ultraproducts, these resulting limit points serve as a subembedding
for a, b, c, d. �

6.2. Axioms for CAT(κ) spaces. We will use the characterization of CAT(κ)
spaces via the subembedding and approximate midpoint condition to get ax-
ioms using only the distance predicate. The idea here is simple, though the
axioms themselves may look complicated.
We have two axiom schemas, the �rst asserts that approximate midpoints

exist. This is complicated by the fact that we can only quantify over bounded
parts of the space at a time, so we need a sequence of axioms over increasingly
large parts of the space.
The second schema asserts that subembeddings exist. This is complicated

again by needing to quantify over larger and larger parts of the space. But it is
further complicated by the fact that we need to somehow capture quanti�cation
overM2

κ to say that subembeddings exist. SinceM2
κ is proper, its closed balls

are compact, and this allows us to �nitely describe the distances involved in
any ε-net over any ball. We leverage this by asserting that for each ε > 0,
any 4-tuple in our space can be matched with a 4-tuple in one of these nets
such that the corresponding tuples satisfy the 4-point inequalities to within ε.
This is done through a product and sum over permutations of nets, roughly
corresponding to what one might expect to be a discrete existential-conjunctive
statement. With all of these axioms taken together, the compactness of balls
inM2

κ will ensure that a sequence of these �approximate subembeddings� will
converge to a true subembedding.
Note that in these axioms, we will reference distances between points inM2

κ,
and the expressions such as d̄(σ(ȳ1), σ(ȳ2)) that appear are actual real numbers,
not formulas built from distance and function symbols in our language.
To help prevent some distraction, note that in the quanti�ers below we must

select bounds, but the particular choice of bounds is not critical. For example,
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in the supy]
n+2
n+1 appearing in the �rst axiom schema, the use of n+ 1 and n+ 2

is not special. The bounds are chosen so that we are speaking about a large
enough part of the space, possibly relative to earlier quanti�cation. The upper
bound is just chosen to be larger than the lower bound for the statement to
be saying anything.
We will now de�ne some theories. Immediately after the de�nition, we show

that these theories axiomatize the CAT(κ) spaces. The theories are divided
into those with κ ≤ 0 and those with κ > 0. This is because in the κ > 0 case,
CAT(κ) spaces are only Dκ-geodesic.

De�nition 6.2.1. Let L be a language with a single sort. We de�ne L-theories
Tκ as follows. First, for κ ≤ 0, Tκ is the theory consisting of the following.

(1) For each n ∈ Z+, the sentence

sup
x,z

]n+1
n inf

y
]n+2
n+1

(
max (d(x, y), d(y, z)) .

1

2
d(x, z)

)
.

(2) For each m,n ∈ Z+ with m > n, let Nm be a 1
2m

-net of the closed ball
of radius n in M2

κ, let x̄1,m, ȳ1,m, x̄2,m, ȳ2,m be four distinct points in
Nm, let d̄ denote the metric inM2

κ, and include the sentence

sup
x1,y1,x2,y2

]n+1
n

∏
σ∈S(Nm)

( ∑
i,j∈{1,2}

φσ,i,j + ψσ,x + ψσ,y

)
where S(Nm) is the permutation group of Nm, the subformula φσ,i,j is
given by

d(xi, yj) ≈ 1
m
d̄(σ(x̄i), σ(ȳj))

the subformula ψσ,x is given by

d(x1, x2) .

(
d̄(σ(x̄1), σ(x̄2)) +

1

m

)
and the subformula ψσ,y is given by

d(y1, y2) .

(
d̄(σ(ȳ1), σ(ȳ2)) +

1

m

)
.

If κ > 0, we need to alter the axioms to account for the role of Dκ. So Tκ
consists of the following.

(1) In place of (1) above, we use the sentences

sup
x,z

]n+1
n inf

y
]n+2
n+1

(
d(x, z) & (Dκ −

1

n
)
)
·
(

max(d(x, y), d(y, z)) .
1

2
d(x, z)

)
.

(2) We use the sentences

sup
x1,y1,x2,y2

]n+1
n

(
ψκ,n

)
·
( ∏
σ∈S(Nm)

( ∑
i,j∈{1,2}

φσ,i,j + ψσ,x + ψσ,y

))
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where ψκ,n is given by

(d(x1, y1) + d(y1, x2) + d(x2, y2) + d(y2, x1)) & (2Dκ −
1

n
)

and the other subformulas are as de�ned in (2) above.

Theorem 6.2.2. Let κ ∈ R and let (M,d, ?) be any space. Then M |= Tκ if
and only if M is a CAT(κ) space.

Proof. Satisfying the �rst axiom schema, i.e. having each axiom interpret as 0
in the structure, is equivalent to every pair with distance less than Dκ having
ε-approximate midpoints for all ε. To see this in the κ > 0 case, notice that
d(x, y) < Dκ i� there is some N such that d(x, y) < Dκ − 1

N
, hence the �rst

term in the product is bounded away from 0 when n > N .
Satisfying the second schema is equivalent to every four points with perime-

ter < 2Dκ having a subembedding inM2
κ. We will just indicate how to parse

the axiom to see this. Fix an n and consider the sentences

sup
x1,y1,x2,y2

]n+1
n

∏
σ∈S(Nm)

( ∑
i,j∈{1,2}

φσ,i,j + ψσ,x + ψσ,y

)
with m > n. Assume the value of each such sentence is 0 when evaluated
in (M,d). Then, since each is a statement about the average supremum of
nonnegative formulas over the balls of radius Bn through Bn+1, we have that
the supremum in Bn(M) is exactly 0. For each m, the product is taken over
all permutations of a given 1

2m
-net of Bn(M2

κ). The sentence evaluating to 0
is equivalent to its product subformula evaluating to 0 for at least one per-
mutation σ. So, at least one 1

2m
-net of Bn(M2

κ) named by a permutation σ
corresponds to a subformula evaluating to 0. Considering the interpretations
of φσ,i,j, ψσ,x, ψσ,y, this means that σ provides four points

σ(x̄1), σ(ȳ1), σ(x̄2), σ(ȳ2)

in Bn(M2
κ) which approximately satisfy the subembedding condition, except

for an error of 1
m
in each equality and inequality. However, since this holds for

all m > n, we obtain four sequences of such points

x̄1,m, ȳ1,m, x̄2,m, ȳ2,m.

Since Bn(M2
κ) is compact, we can choose convergent subsequences to obtain

limit points x̄′1, ȳ
′
1, x̄
′
2, ȳ
′
2 which satisfy the subembedding inequalities exactly.

Conversely, if (M,d, ?) has subembeddings for any four points, we can select
approximate witnesses in any 1

2m
-net of the relevant ball by moving x̄1, ȳ1, x̄2, ȳ2

to the closest point in the net. This possibly changes distances, but only by
at most 1

m
either positively or negatively. So, the equalities and inequalities

for the representatives in the net have an error of at most 1
m
. �
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6.3. An alternative approach. The approach we took above is to charac-
terize CAT(κ) spaces as single-sorted structures, and axiomatize the existence
of approximate midpoints and the subembedding condition. The constraints
in the subembedding condition come from the possible con�gurations existing
inM2

κ.
Another approach would be to view CAT(κ) spaces as a multi-sorted struc-

ture, with one sort being the main space of interest, and an additional sort
for the model spaceM2

κ. Axiomatizing that this additional sort is the model
space is straightforward, sinceM2

κ is proper.
To axiomatize that the main sort is a CAT(κ) space in this setup, a sup] inf]

schema could be used in place of the nets-and-permutations trick we used
above. Here the sup would be over 4-tuples of the main sort and the inf over
4-tuples of theM2

κ sort. This would be a trade-o� where we introduce extra
sorts to provide a more direct way to talk about subembeddings. This is not
a bad trade because of the simplistic behavior of proper spaces. For example,
the proper sort (i.e. M2

κ) will be preserved under ultraproducts, elementary
substructures, elementary maps, etc.
This alternative approach replaces our original sup] schema with a sup] inf]

schema, but in some sense this is irrelevant, because we need a sup] inf] schema
for the approximate midpoint axiom in both cases. But it is worth calling
attention to these di�erent approaches, since they illustrate a general theme.
We are able to take the single-sorted approach because the other space we are
�referencing� is proper. Roughly, since sup and inf are inherently approximate
notions, we only ever talk about things up to ε > 0, so behavior of compact
spaces can be �nitely enumerated and described in our theory anyway.
This idea that proper spaces are somehow implicitly accessible can be for-

mally understood by checking that attaching them to structures amounts to
an equivalence of categories as in section 3.14.

6.4. Quanti�cation in geodesic spaces. This section addresses de�nability
of closed balls at the basepoint when we are dealing with the class of geodesic
spaces (which is not an elementary class). This allows us to treat supremums
and in�mums over such closed balls as part of the language without needing
to use integrals in our quanti�ers. That is, we e�ectively have supx∈B̄r and
infx∈B̄r quanti�ers in our language when working with theories whose models
are (at least) geodesic spaces.
The basic observation is that in any geodesic space, we can de�ne the dis-

tance to the closed ball of a given radius r simply by taking the distance to
the basepoint and subtracting r. That is, we use the formula d(x, ?) . r. As
we have seen, the ability to de�ne the distance function is equivalent to having
exact quanti�cation over the set.
The important thing to note for us is that this same L-formula interprets

as the distance function for every geodesic space. That is, the ball is de�nable
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in the class of geodesic spaces. This is important because when we take ultra-
products across such structures, in order to apply �o±'s Theorem, we need a
common formula.
These results partially generalize to D-geodesic spaces if we restrict our

attention to balls whose radius is strictly smaller than D. The arguments have
the same essence as the paragraph above, but the distance function is harder
to describe explicitly. That is, one still focuses on the formulas d(x, ?) . r, but
generally this is only guaranteed to be the distance function when ||x|| < D or
equivalently when (d(x, ?) . r) is less than D − r, so we would need to argue
further. We are primarily interested in CAT(0) spaces in this thesis, so we will
focus on geodesic spaces.
Geodesic spaces are a very convenient case where an obvious formula with

the right zero set is also the right formula for measuring distances. Note
that the formula we use below will have the right zero set in any structure,
whether that structure is a geodesic space or not, but the geometry is critical
to understanding the values away from 0 and obtaining de�nability.

Proposition 6.4.1. Let L be a language with a single sort. Then the closed
balls of any given radius around ? are de�nable in the class of L-structures
which are geodesic spaces(M,d, ?).
These sets are de�ned by the formulas φr(x) given by d(x, ?) . r. That is,

φMr (x) is the function dM(x, B̄r(M)) when interpreted in this class.

Proof. Let a ∈M and suppose φMr (a) = q. Notice that q ∈ R≥0. We will check
that d(a, B̄r(M)) = q as well.
If q = 0, then d(a, ?) ≤ r and hence the following.

d(a, B̄r(M)) = 0

= q

If q > 0, then d(a, ?) = r + q. Since M is geodesic, there is a geodesic from
? to a, and on this geodesic there is a point ar satisfying both of the following.

d(?, ar) = r

d(ar, a) = q

If ar were not the closest point to a among those in B̄r(M), then the triangle
inequality would be violated. Thus,

d(a, B̄r(M)) = q.

�

Corollary 6.4.2. Let φ(x, y) be an L-formula, and let r > 0. Then there are
L-formulas equivalent to

sup
x∈B̄r(M)

φ(x, y)

and
inf

x∈B̄r(M)
φ(x, y)
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for all M in the class of geodesic L-structures.

Proof. The balls are de�nable in the class and bounded. �

7. Definability of Segments, Rays, and Lines

The purpose of the following sections is to show that geodesic segments,
rays, and lines are de�nable in CAT(κ) spaces using just the distance predi-
cate. Moreover, the de�nability is across the class of CAT(κ) spaces for �xed,
bounded κ. As in the previous section, this lets us quantify over these ob-
jects, and having the de�nability at the class level is critical for maintaining
semantics when taking ultraproducts.
There are two di�erent interpretations that could reasonably be called �quan-

tifying over� segments, rays, or lines. One might want to quantify over the
points making up a given geodesic segment viewed as a subset of the space.
This has a straightforward meaning, but requires either a formula for each
geodesic, or a way to parametrize the geodesics within the space.
Alternatively, one might want to quantify over the set of all geodesic seg-

ments occuring in the space. If we would like to say the set of segments
is a de�nable subset, we need a superset in mind which is built from sorts.
Geodesics are most naturally viewed as isometries from real intervals into the
space, or as the images of these functions. But we do not want to include the
space of such functions as sorts in our structures.
We can accomplish this by identifying the set of geodesics with a certain

de�nable subset of sequences in the space. Essentially, we can note that any
function R→M can be thought of as an R-indexed sequence, and then estab-
lish the de�nability of those sequences which represent an isometry. Because
de�nability of a set A of sequences means de�nability of each set of �nite
projections πF (A) where F is a �nite subset of R, this ultimately reduces the
problem to studying the distance of an arbitrary F -tuple to the set of F -tuples
which can be sampled from a geodesic. The CAT(κ) inequalities will make it
possible to understand this distance function.
The following lemma will be key. Roughly, it generalizes the idea that in

CAT(κ) spaces, approximate midpoints are close to actual midpoints, with
bounds determined from κ. We obtain the existence of bounds as a conse-
quence of the CAT(κ) inequalities andM2

κ being proper, but explicit bounds
could be obtained using the law of cosines in M2

κ. For example, in CAT(0)
spaces, triangles inherit bounds from R2, where we can appeal to basic eu-
clidean geometry (in particular, Stewart's Theorem or Apollonius's Theorem,
or just the cosine law), to compute the required distances between a vertex of
a triangle and the opposite side.
The approximate midpoint case is recovered from this lemma when q = 1

2
.

The q plays the role of a proportion of the distance along the segment from x
to y.
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Lemma 7.0.1. (Approximate q-point lemma) Let κ ∈ R and R > 0, let
(X, d, ?) be a pointed CAT(κ) space.
Then for all ε > 0, there is δ > 0 such that for all

x, y ∈ B̄R(X)

satisfying

d(x, y) < Dκ,

and for all q ∈ [0, 1] and all z ∈ X, if z satis�es

d(x, z) ≤ q · d(x, y) + δ

and

d(z, y) ≤ (1− q) · d(x, y) + δ,

then

d(z, γq) ≤ ε

where γq is the point on the geodesic from x to y at distance q · d(x, y) from x.

Proof. First we show that the claim holds in M2
κ by contradiction. Suppose

there is some ε > 0 where for all δ > 0, there are some x, y ∈ X, q ∈ [0, 1] and
z ∈ M2

κ satisfying the hypotheses, but d(z, γq) > ε. By compactness of [0, 1]
and of closed balls inM2

κ, we can select convergent sequences

(xn), (yn), (qn), (zn), (γqn)

where for each n these points satisfy the the hypotheses with δ = 1
n
. Let the

limits respectively be

x′, y′, q′, z′, γq′ .

Now, note that γq′ is actually the point at distance q′ · d(x′, y′) from x′ on the
geodesic from x′ to y′. This is because

d(x′, γq′) = lim d(xn, γqn)

= lim qn · d(xn, yn)

= q′ · d(x′, y′)

and similarly

d(γq′ , y
′) = (1− q′) · d(x′, y′).

We can also see that

d(x′, z′) ≤ q′ · d(x′, y′),

d(z′, y′) ≤ (1− q′) · d(x′, y′),

d(z′, γq′) ≥ ε.

The �rst two of these inequalities together with the triangle inequality applied
to x′, y′ with third point z′ imply that they are actually equalities. So, by
uniqueness of the segment from x′ to y′, we must have z′ = γq′ , contradicting
d(z′, γq′) ≥ ε. This establishes the claim forM2

κ.
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Let (X, d, ?) be CAT(κ), and let ε > 0. Let x, y, q, z ∈ X be as in the
hypotheses, and let δ be given by applying the lemma forM2

κ. Let ∆ be the
comparison triangle inM2

κ for x, y, z, and recall that this means we have

d(x̄, ȳ) = d(x, y),

d(ȳ, z̄) = d(y, z),

d(x̄, z̄) = d(x, z).

Consequently, the above argument tells us that

d(z̄, γ̄q) ≤ ε

where γ̄q is the point q ·d(x̄, ȳ) along the side of ∆ from x̄ to ȳ. By the CAT(κ)
inequality, this means

d(z, γq) ≤ ε.

�

In the next few sections, we will apply this lemma to get de�nability results.

7.1. Segments. The �rst theorem gives us formulas for the the distance of a
point to a given geodesic segment, determined by the endpoints of the geodesic
as parameters. In other words, this is de�nability of the segment from a to b
given a, b as parameters.
We will take advantage of the fact that segments are uniquely determined

by their (su�ciently close) endpoints in CAT(κ) spaces. Of course, for κ > 0,
we have to account for the role of Dκ. Furthermore, for general continuous
logic reasons the formulas depend on how much of the space we expect to talk
about at once.

Theorem 7.1.1. (De�nability of a segment) Let L be any language. For
each κ ∈ R and R > 0, there is an L-formula

φκ,R(x, y, z)

such that for any CAT(κ) L-structure M and for all a, b ∈ B̄R(M) with
d(a, b) < Dκ, the interpretation

φMκ,R(a, b, z)

is the distance function
d(z, γ)

where γ is the geodesic segment with endpoints a, b.

Proof. Let R > 0. Consider the formula ψ(x, y, z) given by

d(x, z) + d(z, y) ≈ d(x, y).

We checked in the section on geodesics that for any such a, b the zero set
of ψ(a, b, z) is the segment γ. Unfortunately, ψ does not generally give the
distance from z to the segment between a and b (for example, consider triples
in R2), so we instead check that the distance function can be constructed from
ψ using Lemma 3.9.6.
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Let ε > 0. We will show, independently of M , that there is some δ > 0 such
that for all z ∈M , if ψ(z) ≤ δ, then d(z, γ) ≤ ε. To do this, we will apply our
q-point lemma, Lemma 7.0.1.
First, observe that we have the following for any δ > 0. Suppose

ψ(a, b, z) ≤ δ

with

a, b ∈ B̄R(M),

d(a, b) < Dκ.

By interpreting ψ, we have that

d(a, b)− δ ≤ d(a, z) + d(z, b) ≤ d(a, b) + δ.

It follows that if d(a, b) 6= 0, then

d(a, z) ≤ d(a, b)− d(z, b) + δ

≤ (1− d(z, b)

d(a, b)
) · d(a, b) + δ

≤ (1−min(1,
d(z, b)

d(a, b)
)) · d(a, b) + δ

and

d(z, b) ≤ min(1,
d(z, b)

d(a, b)
) · d(a, b) + δ.

If d(a, b) = 0, we can say min(1, d(z,b)
d(a,b)

) = 1 and still take these inequalities to

hold. In any case, we get both

d(a, z) ≤ q · d(a, b) + δ,

d(z, b) ≤ (1− q) · d(a, b) + δ

where

q =

(
1−min

(
1,
d(z, b)

d(a, b)

))
∈ [0, 1].

So by 7.0.1, there is some δ > 0 such that ψ(z) ≤ δ implies d(z, γq) ≤ ε, and
hence d(z, γ) ≤ ε.
Now, we can apply the argument in Lemma 3.9.6 independently of the choice

of a, b subject to the assumed constraints, since our ε, δ relation does not
depend on these choices. This provides a formula φR(x, y, z) which satis�es
the conclusion of the theorem. �

Remark 7.1.2. We could obtain explicit bounds in the above proof by consid-
ering the geometry of ellipses inM2

κ, since the point z̄ must be contained in
the ellipse de�ned by d(p, ā) + d(p, b̄) = d(ā, b̄) + δ. For example inM2

κ = R2,

the semi-major axis of such an ellipse has length 1
2

√
2d(ā, b̄)δ + δ2.
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The next theorem is another, more direct consequence of Lemma 7.0.1. It
says that for any q ∈ [0, 1] and segment, we can de�nably pick out the point q
far along the segment.

Theorem 7.1.3. (De�nability of the q-point of a segment) Let L be
any language. For each κ ∈ R, each R > 0 and each q ∈ [0, 1], there is an
L-formula

φκ,R,q(x, y, z)

such that for any CAT(κ) L-structure M and any a, b ∈ B̄R(M) with d(a, b) <
Dκ, the interpretation

φMκ,R,q(a, b, z)

is the function

d(z, γq)

where γq is the point at distance q · d(a, b) from a on the geodesic from a to b.

Proof. Consider the formula φ(x, y, z) given by(
d(x, z) ≈ q · d(x, y)

)
+
(
d(z, y) ≈ (1− q) · d(x, y)

)
.

When φ(x, y, z) ≤ δ, the hypothesis of the q-point lemma 7.0.1 is satis�ed. So
the same argument as the last theorem goes through. �

Since there are unique geodesics between points with d(a, b) < Dκ, we can
interpret any pair of such points as endpoints of a geodesic. In other words,
the distance of any pair to a pair of end points of a geodesic is given by the 0
function.
This provides a trivial way to quantify over geodesic segments in CAT(κ)

spaces by just quantifying over pairs of points. The de�nability of q-points
means that the coordinates of a segment can be referenced, which is what one
would expect when quantifying over the set of segments. We will see that
things are more interesting in the ray and line case.

7.2. Rays. Next we will see how we can work with geodesic rays in CAT(0)
spaces if we assume an additional extension property for segments.

De�nition 7.2.1. We will say a CAT(0) space has extensions of segments
to rays if for all segments γ with end points a and b, there is a ray γ′ with

γ′(r) = γ(r) for all r ∈ [0, d(a, b)].

This is a stronger property than is required in order to get de�nability of
rays. We will comment on weaker su�cient conditions later, but essentially,
one can read such conditions o� from the requirements for de�nability. For the
spaces we are interested in, the above property will be satis�ed and is easier
to understand. We will at least provide an example now to suggest why we
need some kind of ray-existence assumption.
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Example 7.2.2. For each n ∈ {1, 2, . . . } let An be a copy of the subspace
[0, n] of R, with its usual metric and basepoint ? = 0. Consider the sets An as
being disjoint, and letM ′ be the disjoint union

⋃
An. To de�ne a pseudometric

on M ′, it su�ces to de�ne d(p, q) where p ∈ An and q ∈ Am. In this case,
let d(p, q) be d(p, ?) + d(?, q). Finally, let M be the quotient of M ′ by this
pseudometric. The idea is that M is a collection of segments joined at ?, and
the distances between di�erent segments is de�ned by the shortest path, which
goes through ?. Now, notice that there are no rays in M , and in particular,
no rays starting at ?. However, nonprincipal ultrapowers of M have rays at
?. For example, the sequence (A1, A2, . . . ) yields one. This shows that rays
cannot be de�nable in M .

Handling rays is a more complicated task than dealing with segments. In
arbitrary CAT(0) spaces, even with extensions of segments to rays, rays are
not necessarily determined by a �nite number of points like segments are. Two
rays might coincide for some initial length and then branch away from each
other. For example, this happens in spaces which are tree-like or derived from
path lengths in in�nite acyclic graphs.
So, we must view rays as sequences. The most natural choice is as R≥0-

indexed sequences. We should note that Kleiner and Leeb prove in Lemma
2.4.4 of [14] that in countable ultralimits of CAT(0) spaces, rays (and seg-
ments and lines) arise as ultralimits of those objects from the factors. This is
nearly the hypothesis of the ultraproduct characterization of de�nability (prop
3.9.14). But we would need to �nd a formula whose zero set is the collection
of relevant sequences.
Instead, we can adapt the argument for the �nite projections, which are

easier to handle.

De�nition 7.2.3. We will denote the set of rays in M viewed as R≥0-indexed
sequences by ΓM .

Proposition 7.2.4. Let L be any language and let κ ≤ 0. For each �nite
subset F ⊆ R≥0, let φΓ,F (xr : r ∈ F ) be the L-formula given by∑

(r,s)∈F 2

min (1, d(xr, xs) ≈ |r − s|) .

Then in every CAT(0) L-structure with extension of rays to geodesics, the zero
set of φMΓ,F is the set πF (ΓM).

Proof. Notice that φΓ,F (x) being 0 is equivalent to (xr : r ∈ F ) corresponding
to a partial isometry

F →M

where we view F as a subspace of R≥0. Since F →M is an isometry, it is part
of a segment γ. We are assuming segments can be extended to rays, so there
is a γ′ which restricts to γ and hence to F →M . This veri�es the claim. �
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We know CAT(0) spaces are an elementary class and in particular this class
is closed under ultraproducts. Having extensions of segments to rays is easily
seen to be preserved in ultraproducts since segments are de�nable. So, we
can get de�nability of the set of rays by checking that the zero set of φΓ,F is
preserved under ultraproducts.

Theorem 7.2.5. (De�nability of the set of real-indexed rays) Let L be
any language. The set of R≥0-indexed rays is de�nable in the class of CAT(0)
L-structures with extension of segments to rays.

Proof. Let F be a �nite subset of R≥0, and let M =
∏
UMi where each Mi

for i ∈ I is in the class. We need to check that anything in the zero set of
φMΓ,F arises as an ultralimit of things in φMi

Γ,F . That is, we need to check that
any F -projection of a ray in M is the ultralimit of F -projections of rays in the
factors Mi.
Write F as {r1, r2, . . . , rN}, with ri < rj when i < j. Let γ ∈ πF (ΓM). That

is,

γ = (γr1 , γr2 , . . . , γrN )

is the F -projection of a ray in M . The points γr1 and γrN are the endpoints
of a unique segment in M , and the other points can be viewed as points some
proportion of the way along this segment. That is, for each k ∈ {1, . . . , N} we
have the following.

d(γr1 , γrk) =
rk

rN − r1

d(γrk , γrN ) = 1− rk
rN − r1

For each k ∈ {1, . . . , N}, de�ne qk by

qk =
rk

rN − r1

.

Since γr1 and γr2 are points in the ultraproduct, we can choose represen-
tatives (ai) and (bi) for their respective classes. In each Mi, the points ai
and bi determine a segment. We would like to build an element of πF (ΓMi

)
from this segment. However, d(ai, bi) might be wrong. That is, we might
have d(ai, bi) 6= rN − r1. By possibly extending the segment from ai to bi,
we can always select a point b′i on the segment or its extension such that
d(ai, b

′
i) = rN − r1. Notice though that by �o±'s Theorem, for all ε > 0,

there is a U -large set G where d(ai, bi) is within ε of d(a, b). So we will have
limU d(bi, b

′
i) = 0.

Now, the segment from ai to b
′
i has points qk · d(a, b) along this segment for

each k. For each k ∈ {1, . . . , N}, let pk,i be that point qk · d(a, b) far along the
segment from ai to bi. Notice that because we can extend this segment to a
ray, and because we have selected points with appropriate distances,

{pk,i : k ∈ {1, . . . , N}}
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is in πF (ΓMi
). We will see that the ultralimit of these tuples gives our original

segment in the ultraproduct M .
Consider the classes (pk,i : i ∈ I)/ ∼ in the ultraproduct M . We already

have

(p1,i : i ∈ I)/ ∼ = (ai : i ∈ I)/ ∼
= γr1

by de�nition of (ai). We get

(pN,i : i ∈ I)/ ∼ = (b′i)/ ∼
= (bi)/ ∼
= γrN

from our earlier note that limU d(bi, b
′
i) = 0, and the de�nition of (bi). By �o±'s

Theorem, the rest of the points are qk · d(a, b) far along the unique segment
from a to b, so we must have

(pk,i : i ∈ I)/ ∼= γrk .

We can now conclude the theorem by applying Proposition 3.9.14. �

As a matter of practicality, it can be easier to use N-indexed sequences, be-
cause countable index sets seem easier to write controlled functions for. There
are a few simple observations that make representing rays with N-indexed
sequences possible.
In any CAT(0) space M , there is a map sending each ray

γ : R≥0 →M

to its restriction to N,
γ �N: N→M

which remains an isometry if we view N as a subspace of R. We can then send
this to the sequence

(γ �N (n) : n ∈ N).

The important thing to observe is that the map

γ 7→ (γ �N (n) : n ∈ N)

is bijective. This follows from uniqueness of segments given the endpoints in
a CAT(0) space.
In short, we can clearly sample the N-indexed sequence from any ray, and

if we have an N-indexed sequence which represents an isometry N→M , then
there is a unique way to ��ll� this sequence out to a ray R≥0 → M . We will
record this as a lemma for reference.

Lemma 7.2.6. In any CAT(0) space M , the map pairing each ray

γ : R≥0 →M
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with its corresponding N-indexed sequence

(γ(n) : n ∈ N)

is a bijection between the set of rays in M and the set of N-indexed sequences
representing isometries N→M .

We can then immediately see the de�nability of N-indexed rays as a corollary
of the R≥0-indexed case.

Corollary 7.2.7. (De�nability of naturals-indexed rays) Let L be any
language. The set of N-indexed rays is de�nable in the class of CAT(0) L-
structures with extension of segments to rays.

Proof. Finite subsets of N are also �nite subsets of R≥0. �

We can also explicitly write a formula with the N-indexed rays as the zero
set.

Proposition 7.2.8. Let L be any language. Let φΓ(xn : n ∈ N) be the L-
formula

∞∑
n=0

(
n−1∑
m=0

max (1, d(xn, xm) ≈ |n−m|)

)
· 1

n
· 2−n.

Then in any CAT(0) L-structure M , the zero set of φMΓ is always the set of
N≥0-indexed rays in M .

Proof. Notice that φΓ(x) = 0 i� d(xn, xm) = |n − m| for all n,m ∈ N. This
is essentially the de�nition of an isometry N → M , so x corresponds to an
N-indexed ray. �

Later, we will want to quantify over rays which start at the basepoint of a
pointed metric space. This is a special case of the following.

Theorem 7.2.9. (De�nability of rays starting in de�nable sets) Let L
be any language. Let φ be any L-formula such that the zero set of φ is de�nable
in the class C of CAT(0) L-structures with extension of segments to rays.
Then the set of R≥0-indexed rays which start in the zero set of φ is de�nable

in C. Similarly for N-indexed rays.

Proof. We will use the ultraproduct characterization of de�nability again, and
see that this is an easy adaptation of the earlier argument. Let M =

∏
UMi.

Write ΓMφ or ΓMi
φ for the set of rays which start in the zero set of φ in M or

one of the Mi. Let F be any �nite subset of R≥0.
If γ ∈ πF (ΓMφ ), then γ is the F -projection of a ray which starts in the zero

set of φM . Thus, γ extends to an {0} ∪ F -projection
γ′ = (γ0, γf : f ∈ F )

of a ray where
γ0 ∈ ZeroSet(φM).
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Our proof of Theorem 7.2.5 shows that γ′ must be the ultralimit of {0}∪F -
projections of rays in the factors Mi. The only additional thing to note is
that because the zero set of φ is de�nable, we can carry out that proof using
a representative for γ0 chosen from among the zero sets φMi . Note, rather
importantly, that we did not need to move the starting points of the segments
in that construction. �

Corollary 7.2.10. We can quantify over rays starting at the basepoint. We
will denote this set by Γ?, or by Γ?M when we have a space M in mind.

By quanti�cation over the rays or the rays starting in some de�nable set,
we will mean the N-indexed rays and quanti�cation over countable sequences
as in 2.10.1.
In particular, if we are only concerned with rays starting at the basepoint

? ∈M , then each �nite projection is bounded, so we can use exact quanti�ers.
That is, we can just write

inf
(xn:n∈N)∈Γ?

.

We will close this section with comments on the de�nability of points along
a ray. In the last section, we saw the de�nability of segments (thm 7.1.1) and
of q-points (thm 7.1.3) which showed how to quantify over the points in a
segment given its end points. If we are given an N-indexed ray (an : n ∈ N),
then each pair an, am is the pair of end points of a segment. So, those results
continue to apply for subsegments of rays. In particular, this shows that we
do not lose the ability to reference the R≥0-coordinates of a ray, even if we
only work with N-indexed rays. If we want to talk about γ(r), we can pick
n,m ∈ N such that r ∈ [n,m], and then use the de�nability results to talk
about γ(r) as the point (r − n)/m far along the segment from γ(n) to γ(m).

7.3. Lines. We will start this section with an example showing a limitation
with lines that did not happen with rays. The point here is that assuming
extensions of segments to lines is not su�cient to get de�nability of lines
through the basepoint.

Example 7.3.1. We will take a subset of R2 and give it a di�erent metric.
Let M be the subset

{(x, 0) : x ∈ R} ∪ {(x, y) : x ∈ (0, 1], y ∈ R}
with basepoint ? = (0, 0), and de�ne the metric on M as follows. Let p =
(xp, yp) and q = (xq, yq). If xp = xq, then d(p, q) = |yp− yq|. Otherwise, d(p, q)
is

|yp|+ |xp − xq|+ |yq|.
This makes M a CAT(0) space, since all triangles are degenerate. Now, con-
sider lines λk corresponding to { 1

k
} × R, say with λk(0) = ( 1

k
, 0). For large k,

λk becomes an arbitrarily good approximation of a line with λ(0) = ?, and if
we take a nonprincipal ultrapower of M , then these lines will in fact yield a
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line with λ(0) = ?. However, each λk is bounded away from the lines in M
which pass through ?. So, lines through ? must not be de�nable in M .
To see where the argument for rays breaks down in this example, notice

that if we take a line that is nearly through ?, there is no way to guarantee
that a nearby segment passes through ?. What typically happens is that there
are segments from ? to λ(n) and from ? to λ(−n), but these two segments
might not be able to be put together form a line. More elaborate variations
of this example could be constructed by moving the basepoint around and
taking unions of copies of this example to show lines through any B̄r(?) are
not de�nable.

Nevertheless, if we work with CAT(0) spaces with extensions of segments
to lines, then we can argue exactly as in the previous section, using the line
extensions in place of ray extensions. We will simply record the results for this
section.

Theorem 7.3.2. (De�nability of the set of lines) Let L be any language.
The set of R-indexed lines is de�nable in the class of CAT(0) L-structures with
extension of segments to lines. Similarly for Z-indexed lines.

Also, like our comments at the end of the ray section, the segment de�n-
ability results let us quantify over subsegments of lines.

7.4. Comments on the relation between segments, rays, and lines.
It is worth mentioning some alternative approaches to the de�nability of rays
and lines. Above, we viewed rays and lines as sequences of points which are
somehow coherent. We could just as well view them as sequences of segments
which cohere. This is not substantially di�erent, but calls attention to what
rays and lines are from the perspective of the logic.
Another approach to lines would be to think of them as a pair of rays γ+

and γ− which share a starting point

γ+(0) = γ−(0)

and diverge such that
d(γ+(r), γ−(r)) = 2r.

This view is worth noting because it naturally leads to the question of whether
we could de�ne other con�gurations of rays, for example those sharing a start-
ing point but diverging at some other rate, say

d(γ+(r), γ−(r)) = r
√

2.

However, while this approach would work for lines in CAT(0) spaces with ex-
tension of segments to lines, we cannot generally get these other con�gurations
of rays. The following example demonstrates the problem.

Example 7.4.1. Construct a metric space M as follows. The idea to have in
mind is that M will be an amalgamation of planar sections of various angles,
all joined at a single basepoint ?. The distances between points on di�erent
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sheets will �go through� the basepoint. For each n ∈ N+, de�ne An to be
the subspace of R2 with its usual metric consisting of the points whose polar
angles θ satisfy θ ∈ [0, π

2
− 1

n
] and keep the basepoint ? = (0, 0). Now consider

the sets An as being disjoint. Given p ∈ An and q ∈ An+1, let their distance
be d(p, ?) + d(?, q). Then let M be the union of these An, and quotient by the
pseudometric we have just formed in order to identify all of the basepoints at
?.
This M is a CAT(0) space, and for every ε > 0 and N ∈ N, it has pairs of

rays γ1, γ2 such that d(γ1(n), γ2(n)) is within ε of n
√

2 for all n ≤ N . However,
M does not have any pairs of rays such that d(γ1(n), γ2(n)) = n

√
2 for all n.

Considering ultrapowers of M shows that such pairs of rays are not de�nable
in any sense in M . As usual, the issue is that pairs of rays can be arbitrarily
close to satisfying some formulas, while not needing to be close in the metric
to any actual pair satisfying the formulas exactly. More speci�cally in this
example, rays can diverge at approximately the right rate, there are no rays
which diverge at the correct rate, let alone nearby rays which do so.

One way to avoid this problem would be to require some sort of �widen-
ing� property, or if we knew we were working in spaces where planar sections
extended into full planes. We will see later that in some important theories
with additional structure like this, pairs of rays with certain growth rates of
d(γ1(n), γ2(n)) become important features of a space and are de�nable.

7.5. Requirements for de�nability. In this section we comment on the
remark from the ray de�nability section that extension of segments to rays is
a stronger requirement than is needed.
Suppose we are in a CAT(0) space M where N-indexed rays starting at ?

are de�nable. Then we have a formula ψ(xn : n ∈ N) for d′(x,Γ?) in M , where

d′(x,Γ?) = inf
γ∈Γ?

(∑ d(xn, γn)

1 + d(xn, γn)
· 2−n

)
.

Note that this term ∑ d(xn, γn)

1 + d(xn, γn)
· 2−n

de�nes a metric d′ on countable sequences.
Moreover, the de�nability implies that for all ε > 0, there is δ > 0 such that

M satis�es the following sentence

sup
x∈

∏
Bn

inf
y∈

∏
Bn

(ψ(x) & δ) · ((ψ(y) ≈ 0) + (d′(x, y) . ε)) .

Roughly, the meaning of this sentence is that every δ-approximate Γ∗-like
sequence x (as measured by ψ) has arbitrarily good approximate Γ∗-like se-
quences y within distance ε (in the weighted sum metric d′ above).
Now, suppose we are in some other CAT(0) space which satis�es this last

sentence. Then, for all ε > 0, there is δ > 0 given above such that if x has
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ψ(x) < δ we can construct a cauchy sequence as follows. Pick a sequence εn
such that

D =
∞∑
n=0

εn <∞

and inductively select witnesses yn which have ψ(y) smaller than the corre-
sponding δn. This results in a sequence converging to some y with ψ(y) = 0
and d(x, y) ≤ ε+D. We can then make D as small as we want and carry out
this argument to show that there is some y with ψ(y) = 0 and d(x, y) ≤ ε.
This shows that satisfying the above sentence is enough to be able to get

de�nability using 3.9.6.
There are two things to keep in mind. One is that the zero set of ψ might

not interpret as expected in an arbitrary model. Here, if we work over CAT(0)
spaces, we know the zero set of ψ corresponds exactly as we intend to the rays
starting at ?. The second thing is that this axiom encodes the information for
a particular ε-δ argument. In general, there may be spaces where the zero set
is de�nable, but according to a di�erent argument using di�erent ε-δ pairs.

7.6. Comments on the relation between de�nability and existence.
The existence of certain objects can be axiomatized, but with a caveat. This is
interesting because the super�cial problem with inf statements is that we only
guarantee approximations, not necessarily actual realizations. However, as we
have just seen, if we axiomatize ε-δ information, we can use inf statements to
ensure cauchy sequences exist and obtain actual realizations of a zero set. The
catch is that this ε-δ information is part of the axioms and so must hold for
all of the models being axiomatized.
Let us expand on this relation between such axioms and the extension of

segments to rays. We will continue with the same notation. Notice that the
sentences above do not quite guarantee that segments extend. What they do
guarantee is that su�ciently long segments starting at ?, which have small ψ
values by virtue of being long segments, must have nearby rays. How near the
rays must be is controlled by how long the segment is. But, even in a saturated
extension, long segments do not necessarily need to extend. Moreover, such
long segments might not even exist, and there might not be any rays in the
space at all, yet these axioms may be satis�ed.
However, we can �nd axioms which do guarantee that segments extend. For

example, we could use axioms which say any segment has arbitrarily good
approximate rays extensions, and then encode ε-δ information saying that any
two δ-approximations of extensions of a given segment must be within ε of
each other. This would force unique extensions to exist.

7.7. Another way to skin the CAT(κ) axioms. We will reconsider the
CAT(κ) axioms in light of the previous two sections. Recall that we have
axiomatized CAT(κ) spaces based on two primary behaviors:

• certain pairs of points have approximate midpoints, and
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• certain 4-tuples have subembeddings inM2
κ.

The �rst of these was unsurprisingly axiomatized using a
´

sup
´

inf schema,
because it is just an approximate existence claim. The second required some
�nesse, because it needs to guarantee the actual existence of something. We
ensured this by exploiting the fact thatM2

κ is proper.
However, the previous discussions hint at an alternative view of the axiom-

atization. The role of the second schema about subembeddings is that it can
be used to ensure the following two things.

• For any ε > 0, there is δ > 0 such that δ-good approximate midpoints
are ε-close to each other, where the ε − δ pairs come from M2

κ. This
ensures the existence of unique midpoints and hence the existence of
unique geodesic segments.
• By selecting one of the points in the 4-tuple to be on the segment be-
tween two others, the subembedding condition degenerates to a CAT(κ)
triangle inequality, showing that this inequality is satis�ed.

Notice that the ε-δ information for approximate midpoints can be axiomatized
as in the discussions from previous sections. This axiomatizes spaces with geo-
desic segments existing according to the behavior inM2

κ. We could also obtain
this by more directly axiomatizing the geodesic segment existence and de�n-
ability. In any case, this is enough to get de�nability results like picking out
points dyadic distances along segments. Then, in such spaces, the CAT(κ) in-
equalities for geodesic triangles can be axiomatized by quantifying over triples
of points (implicitly corresponding to geodesic triangles), and bounding dis-
tances between (dyadic) points on the segments according toM2

κ, say by using
the appropriate cosine law.
The end result is the same, but the approach avoids the messy, direct manip-

ulation of �nite nets inM2
κ, and suggests a formal characterization of CAT(κ)

spaces as those spaces which have geodesics �like in�M2
κ and triangles �like in�

M2
κ. This agrees nicely with the more typical presentation of CAT(κ) spaces in

geometry literature as Dκ-geodesic spaces satisfying the CAT(κ) inequalities.

8. Flats and Atlases

So far the discussion has been focused on embeddings of subspaces of R into
a space. In the upcoming sections, we will look at embeddings from Rk for
higher k as well. We will see that the way these embeddings interact with each
other can be used to de�ne a class of spaces with richer de�nable structure,
particularly on rays.

8.1. Flats.

De�nition 8.1.1. A k-�at in (X, d) is a subspace isometric to Rk. In partic-
ular, 1-�ats are the images of geodesic lines. A k-�at is maximal if it is not
contained in any k′-�at with k′ > k.
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Notice that the de�nition is of a special kind of subspace, not the isometries
themselves. For example, any 2-�at has in�nitely many isometries with R2

witnessing that it is a 2-�at. In particular, we say that the euclidean plane
R2 itself has only one 2-�at. This is in contrast to our de�nition of geodesics,
which kept track of the isometry, though we often speak as though the geodesic
is its image for convenience.
More generally, the adjective ��at� is used as a modi�er to describe subspaces

A of a space X which are the isometric image of some subspace of some Rk.
For example, it is common to come across discussion of �at triangles, �at
quadrilaterals, �at strips, and so on.

De�nition 8.1.2. A �at in (X, d) is regular if it is contained in exactly one
maximal �at. Otherwise, if the �at is contained in more than one maximal
�at, it is called singular.
Similarly, we will say that a geodesic γ : I → X is regular when its image is

contained in exactly one maximal �at, and otherwise we say it is singular.

Regular and singular �ats are in separate orbits under isometries. This is a
consequence of the following easy observation.

Proposition 8.1.3. Let A be a subspace of X, and let j : X → Y be an
isometry. Then for each k, the map j induces a bijection between the k-�ats
F containing A and the k-�ats j(F ) containing j(A).

Even if a pair of k-�ats are both regular or both singular, there is not
necessarily an isometry carrying one to the other. This means there is some
opportunity to further di�erentiate within regular and singular �ats. We will
return to this point later, but for now we merely call attention to it.
In later sections, we will look at spaces which are a union of many k-

�ats, with these k-�ats intersecting as smaller k′-�ats. The following example
demonstrates one of the simplest interesting ways this can happen.

Example 8.1.4. Let X be the subspace of R3 consisting of the union of the
xy-plane P and the z-upper-half of the xz-plane, H. That is, X is

P H
{(x, y, 0) : x, y ∈ R} ∪ {(x, 0, z) : x ∈ R, z ∈ (0,∞)} .

Use the usual distance within P and H, but for (p, h) ∈ P ×H, let d(p, h) be

min
y∈{(0,y,0):y∈R}

d(p, y) + d(y, h)

which can be thought of as the path length from p to h when con�ned to paths
in X.
We have de�ned X as the union of a 2-�at with a half-plane, but we can

also view it as the union of two 2-�ats. One of these is the plane P . For the
other, we can select the union of the y-nonnegative-half of P together with H.
That is,

Py≥0 = {(x, y, 0) : x ∈ R, y ≥ 0}
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together with H.
This pair of 2-�ats we have just discussed have the half-plane Py≥0 as their

intersection. The x-axis

{(x, 0, 0 : x ∈ R}
is singular, as is any line or ray con�ned solely to Py≥0. However, there are
regular geodesics as well. For example, the (geodesic) line given by the y-axis

{(0, y, 0) : z ∈ R}
exists in only one 2-�at in X, namely the 2-�at P .
There are, of course, other ways to write X as a union of planes or half-

planes.

8.2. Rays in CAT(0) spaces. Given a CAT(0) space, we can consider the
set of rays from the origin and equip it with a metric. One possible metric is
determined by the limiting behavior of comparison angles as we lengthen the
initial segments of the rays.

De�nition 8.2.1. Let (M,d, ?) be a CAT(0) space with basepoint ?. We
write Γ?M for the set of geodesic rays starting at ?. We de�ne the metric ∠∞
called the angle at in�nity on Γ?M by

∠∞(γ1, γ2) = lim
n→∞

∠̃?(γ1(n), γ2(n)).

This metric is natural and useful in the metric geometry setting, and we will
use it to help de�ne some objects as we go along. However, it does not play
well with continuous logic, and we will need to address this later.

Example 8.2.2. Let M be the union of three copies of [0,∞), identi�ed at
their 0 points, and equipped with the path length metric. For convenience, call
the three copies X, Y , and Z, and refer to their points as X(t) with t ∈ [0,∞),
etc. Let the basepoint ? for M be X(1).
Consider the rays γY and γZ which start at ? and go along the Y branch

and Z branch of the space, respectively. That is,

γY (t) =


? when t = 0

X(1− t) when 0 < t < 1

Y (t− 1) when t ≥ 1

and similarly for γZ but with Z(t− 1) instead. Then

∠∞(γY , γZ) = π

even though γY and γZ share an initial segment.

If we continue with this example, we can get a sense of why this metric
is problematic in continuous logic. The issue is that pointwise convergence
of rays does not imply convergence of the angle at in�nity. Knowing about
bounded parts of the space does not provide any information.
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Example 8.2.3. For each n, de�ne the pointed space Mn obtained by giving
M the new basepoint X(n) instead. Informally, we are pushing the branch
point 0 farther from the basepoint ?. We can �nd a sequence of pairs of rays
γY,n and γZ,n in Mn such that for each t ∈ [0,∞) we have

lim
n→∞

γY,n(t) = lim
n→∞

γZ,n(t)

but

lim
n→∞

∠∞(γY,n, γZ,n) = lim
n→∞

π

= π.

This shows that we cannot generally have ∠∞ as a relation on the de�nable
set Γ? in a CAT(0) metric structure, for example.
The reader might wonder whether focusing on the rays starting from the

basepoint neglects much of the structure of the space of all rays (say, with
∠∞ as a pseudometric). In general spaces, this is the case, but CAT(0) spaces
have a nice property which makes Γ? in a sense representative of the space of
all rays. Consider the equivalence relation de�ned by the following notion.

De�nition 8.2.4. Two rays γ1, γ2 are asymptotic if there exists K > 0 such
that

d(γ1(t), γ2(t)) ≤ K

for all t.
We denote the set of equivalence classes of rays in M modulo the relation

of being asymptotic by M(∞).

The next proposition shows how rays at ? serve as representatives for the
classes in M(∞).

Proposition 8.2.5. Let (M,d, ?) be a complete CAT(0) space. For any ray
γ, there is a unique ray γ? starting at ? which is asymptotic to γ.

Proof. A proof can be found in Proposition II.8.2 of [8]. Brie�y, one can
show uniqueness by noting that for two rays γ1, γ2 starting at ?, the function
d(γ1(t), γ2(t)) is 0 at t = 0, bounded, and de�ned for all t ≥ 0, but can also
shown to be convex in CAT(0) spaces and hence constantly 0. Then one can
show that at least one ray at ? asymptotic to γ exists by showing that the
sequence of segments γn from ? to γ(n) converges to a ray. �

The set M(∞) is usually called the Gromov boundary or Tits boundary,
and ∠∞ is usually de�ned on it. Often the length metric derived from ∠∞ is
used instead and called the Tits metric.
The intuition is that M(∞) represents a �boundary at in�nity� of M . This

view comes from thinking of rays as paths out to in�nity determining ideal end
points. This construction can be used to form an important compacti�cation
of M . We will not discuss that compacti�cation, but this boundary will play
an interesting role going forward.
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The following proposition becomes relevant later when we discuss spherical
buildings.

Proposition 8.2.6. Let (M,d, ?) be a CAT(0) structure. Then Γ?M with
metric ∠∞ is a CAT(1) space.

Proof. See Theorem II.9.13 of [8]. �

A very basic example of this last proposition is the case where M is just a
euclidean space.

Proposition 8.2.7. Let E be a euclidean space Rk with k > 0. Then Γ?E with
metric ∠∞ is isometric to the sphere Sk−1 with the angular metric.

Proof. Notice that the ∠∞ distance between rays from the origin in a euclidean
space is just their initial angle. The map sending γ ∈ Γ?E to γ(1) gives the
required isometry. �

8.3. Projective Geometry. In the remaining sections, we will look at ob-
jects which generalize projective planes, and will be interested in interpreting
these structures in certain CAT(0) spaces. This section is intended to orient
intuition.
We will sketch an argument that (R3, d, 0) interprets the projective plane

and the incidence geometry on it. From this, given some parameters, we can
interpret the real �eld using classical constructions. There are more direct ways
to get the real �eld in this setting than the constructions we are about to use.
Consequently, this exercise will seem strange to readers who have absorbed
the impact of knowing that both (R3, d) and the real �eld are proper spaces.
Nevertheless, the sketch helps provide a frame of reference for the arguments
we will make later in more general settings and with di�erent objects. The
important thing to take away is that we use de�nable sequences to obtain an
incidence structure and interpret a �eld.
Let V1 be the set of lines through the origin of R3, and let V2 be the set of

planes through the origin. The real projective plane can be constructed as V1,
with the projective points being the elements of V1, and the projective lines
being the sets

{` ∈ V1 : ` ⊆ P}
as P varies members of V2. The incidence relation is de�ned by saying that a
projective point ` is on a projective line P i� ` ⊆ P .
It is easy to check that for any two distinct projective points, there is exactly

one projective line which they both lie on, and for any two distinct projective
lines, there is exactly one projective point which lies on both. This statement
corresponds to the fact in R3 that any two distinct lines through the origin
determine a unique plane through the origin, and any two planes through the
origin determine a unique line through the origin. This projective plane enjoys
some additional properties, e.g. Desargues's Theorem.
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Now we will focus on de�nability in (R3, d, 0). We can de�ne the set of lines
through the origin as a subset of

{?} × B̄2
1 × B̄2

2 × B̄2
3 × · · ·

We can view this set of lines as a copy of the real projective plane.
To get the incidence geometry, we still need a copy of the set of projective

lines, i.e. planes through the origin. One option is to generalize the approach
we took for lines by viewing planes �rst as embeddings j of Z2. We would
then select an appropriate indexing and choose a formula to measure the error
of countably many variables from being an isometry from the relevant space
and having j(0) = 0. This approach works easily in R3 where the fact that
the space is proper can be used.
As an alternative approach, we could capture the planes by viewing them

as pairs of lines at some pre-speci�ed angle. This requires choosing a formula
that measures the error of the distance of two lines through the origin from
being lines with such an angle. Again, this approach works easily in R3 because
of properness and the continuity of angles with respect to the weighted sum
metric we have on lines.
In any case, we can de�ne a set and view it as a copy of the set of planes

in R3 through the origin, i.e. the projective lines. Also note that in either
case, we have access to �axes� for each plane. These are either pre-speci�ed
coordinates of the countable sequence, or the coordinates of the pair of lines
(which are really countable sequences).
Now, we need the incidence relation. We will see that there is a formula

φ(x, y) with x ranging over projective points (the de�nable set corresponding
to lines in R3 through the origin) and y over the projective lines (the de�nable
set corresponding to planes in R3 through the origin), such that φ(x, y) is 0
exactly when x lies on y. This zero set is de�nable due to compactness of balls
in R3.
Thus, given a projective point a, we can quantify over those y with φ(a, y) =

0. Similarly, given a projective line b, we can quantify over those x with
φ(x, b) = 0. We can quantify over incident pairs, as well as �the projective
points on this given line� and �the projective lines which pass through this
given point�.
The formula φ(x, y) can be constructed as follows. Let `1, `2, `3 be lines

through the origin in R3 with `2 6= `3, and consider them as maps from Z→ R3

with 0 7→ 0. We can �rst de�ne the points p2 and p3 on `2 and `3 respectively
which are closest to `1(1). Then `1 is on the plane determined by `2 and `3

exactly when

d(p2, 0)2 + d(p3, 0)2 = 1.

This condition can be written as a formula with the correct zero set, and then
the claimed de�nability follows from properness of R3.
Together, this all demonstrates the existence of de�nable sets in correspon-

dence with V1 and V2, the projective points and lines respectively, and the
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de�nability of the set of incident point-line pairs. To summarize, we can pass
to a conservative extension of (R3, d, 0) in which we have sorts for V1, V2, and
the incident pairs in V1 × V2, albeit with strange metrics inherited from the
weighted sums on coordinate-wise distances. The theory can be extended to
ensure that these sorts are interpreted correctly.
From just the incidence structure, we can obtain the real �eld using classic

constructions, for example the following described in chapter VI of [20]. For
this result, Veblen and Young require the space satisfy some axioms A (align-
ment), E (extension), and P (projectivity). The A and E axioms are what
one would generally require to call something a projective space, e.g. having
unique lines between points, having unique points on pairs of lines, and su�-
ciently many points and lines so as not to be degenerate. The P axiom is what
enables them to verify the �eld axioms for the multiplication operation con-
structed below. The spaces we will be interested in are known to be projective
spaces over a �eld and satisfy these axioms, so we will not discuss them in any
more detail.

Proposition 8.3.1. Let P be a projective space satisfying AEP. Let ` be a
projective line and let 0, 1, and ∞ be distinct points on `. Then ` − {∞}
forms a �eld with respect to addition and multiplication operations de�ned in
terms of the incidence relation.

Proof. This appears as Theorem 10 in that chapter VI of [20] where they do the
constructions of the operations and check that they satisfy �eld axioms. That
chapter can be seen for a full proof and discussion. We will just describe the
constructions of the operations here, since we will make use of the constructions
later.
The main concern for us is to emphasize that the construction just consists of

repeatedly selecting the point determined by two lines, or the line determined
by two points.
We have �xed a line `, and three distinct points 0, 1, and ∞ on `. We can

obtain a plane by picking any point p not on `, and taking the union of all
points which occur on a line through both p and a point on `. That is, our
plane is ⋃

p′∈`

{q ∈ P : q is on the line through both p and p′}.

We will now assume we are working only in this plane. That is, all points and
lines are in this plane.
First we will describe addition. Let `∞ and `′∞ be two distinct lines through
∞. Let `0 be any line through 0. This determines two points:

A, the point where `0 meets `∞,

A′, the point where `0 meets `′∞.
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For any points x, y on `, we now construct x+ y as follows. We obtain two
lines:

`x, the line between x and A ∈ `∞,
`y, the line between y and B ∈ `′∞.

From this we obtain two more points and then a line:

X, the point where `x meets `′∞,

Y , the point where `y meets `∞,

`X+Y , the line between X and Y.

Finally, we get the point representing the sum on our original line:

x+ y, the point where `X+Y meets `.

Next we describe multiplication. Let `0, `1, and `∞ be any three lines
through 0, 1, and ∞ respectively, so that the following points A and B are
distinct:

A, the point where `1 meets `0,

B, the point where `1 meets `∞.

For any points x, y on ` we construct x · y as follows. We obtain two lines:

`x, the line between x and A,

`y, the line between y and B.

From this we get two points and then a line:

X, the point where `x meets `∞,

Y , the point where `y meets `0,

`X·Y , the line between X and Y.

Finally, we get the point representing the product on our original line:

x · y, the point where `X·Y meets `.

One can then check that the operations depend on 0, 1, and∞, but not the
other choices, and that the operations satisfy the �eld axioms. �

Now, to help realign our intuition, we note the following di�erences in what
follows. We will ultimately work in a class of spaces which are not necessarily
proper and which have less well-behaved geodesics and �ats (e.g. they may
branch). We will be focused on special rays starting at the origin rather than
the collection of all lines through the origin. Moreover, the incidence structure
will not come from these rays relating to 2-�ats, but rather from di�erent types
of rays and how they relate to each other. For example, there will be type 1
rays representing points, and type 2 rays representing lines. Building theory
will let us obtain a projective plane from these con�gurations of rays.

111



McMaster University - Mathematics Ph.D. Thesis - M. Luther

8.4. (E,W ) spaces. In this section we will discuss spaces that admit a spe-
cial kind of covering by �ats. The de�nition here is based on the axioms in
section 4.1.2 of [14] for euclidean buildings, but we have only taken the prop-
erties which are also satis�ed by symmetric spaces to emphasize this common
structure.
The coverings we are interested in will need to be compatible with a special

kind of group. We will start by de�ning these groups and an associated poly-
hedron. Later, in symmetric spaces and euclidean buildings, this polyhedron
will help us quantify how singular or regular a geodesic ray is. This connection
will not be clear until then, since it depends on choosing an appropriate E and
W below for the space.
We are di�ering a bit from the de�nitions in [14] because of our emphasis on

rays at the origin. We focus on these rays because they serve as representatives
for M(∞), the set of all rays modulo being asymptotic, and we cannot easily
discuss the relation of being asymptotic in our logic.
For the next few de�nitions, note that any isometry j of a euclidean space E

induces an isometry j? of Γ?(E) as follows. The idea is essentially to quotient
out translations. Let j ∈ Isom(E) and let γ ∈ Γ?(E). Then j(γ) is a ray in
Γ(E) starting at j(?), which might not be the origin ?. However, there is a
unique ray in Γ?(E) which is parallel to j(γ), which we can denote j?(γ). The
map j? de�ned by γ 7→ j?(γ) is an isometry, since angles ∠∞(γ, γ′) must be
preserved by j and by translation to the parallel rays j?(γ) and j?(γ

′).

De�nition 8.4.1. Let E be a euclidean space Rk for some k > 0, and let W
be a subgroup of the isometry group Isom(E). We de�ne the spherical part
of W to be the group W? of isometries of Γ?(E) de�ned by

W? = {j? : j ∈ W}

where j? is de�ned as in the preceding paragraph.

De�nition 8.4.2. Let E be a euclidean space, and let W be a subgroup of
the isometry group Isom(E) of E. We say W is an a�ne Weyl group if it
is generated by re�ections over a hyperplane of codimension 1 and has �nite
spherical part.

A�ne Weyl groups induce a notion of directions in E modulo W . We for-
malize this next. Notice that in euclidean spaces, ∠∞ is just the usual angle
between rays. The map given by γ 7→ γ(1) between Γ?Rk with metric ∠∞
and the euclidean (k − 1)-sphere with the angular metric is thus an isometry.
Also note that this means the spherical part of an a�ne Weyl group is always
generated by re�ections over subspheres of codimension 1.

De�nition 8.4.3. Let W be an a�ne Weyl group on E, and let W? be its
spherical part. The anisotropy polyhedron ∆(E,W ) is the space obtained by
taking the quotient of Γ?E with metric ∠∞ modulo the group W?. We will
denote the resulting metric on ∆(E,W ) by d∆.
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We de�ne a map θ from distinct pairs in E to ∆(E,W ) as follows. For p 6= q
in E, let γp,q? be the unique ray starting at ? which is parallel to the unique ray
from p through q. We de�ne θ(p, q) to be the image γp,q? /W∗ under quotienting
by W?. We call θ(p, q) the ∆(E,W )-direction of (p, q).

It may help to keep in mind that we intend to use the behavior of rays as
a proxy for �behavior at in�nity�. In other words, W? is intuitively meant to
capture the action induced by W on the �boundary sphere� of E.

Example 8.4.4. Let E be the euclidean plane R2, and let W be the group
generated by all translations and the re�ections through the usual x and y
axes. Then W contains re�ections through any vertical or horizontal line, but
only two of its re�ections �x the origin. So, W is an a�ne Weyl group.
The space Γ?E is the set of rays in the plane starting at the origin, and ∠∞

is just the usual angle between such rays. The group W? has order four. One
generator of W? corresponds to the re�ection in W which �xes the origin and
re�ects through the y-axis. This �xes the two rays pointing along the positive
and negative y-axis, and otherwise exchanges rays γ1 and γ2 if they are on
opposite sides of the y-axis and have the same angle with the positive y-axis.
The second generator of W? corresponds to the re�ection in W which �xes the
origin and re�ects through the x-axis.
The anisotropy polyhedron in this example can be represented by the quarter

plane between and including the positive x and y axes.
A nontrivial example of the ∆(E,W )-direction is the following. Let p be

(−1, 0) in the standard (x, y) coordinates on the plane, and let q be (−2,
√

3).
Then the (unique) ray γp,q? starting at ? and parallel to the (unique) ray from p
through q is the ray with usual angle 5π/6 counter-clockwise from the positive
x-axis. We have that θ(p, q) = γp,q? /W?, but we will continue and �nd another
representative for this class. We can obtain a representative in the positive
quarter-plane by re�ecting γp,q? over the y-axis (using an element ofW?), to get
the ray γπ/6 with usual angle π/6 counter-clockwise from the positive x-axis.
This makes θ(p, q) the class γπ/6/W? in the anisotropy polyhedron.

The group W? does not need to consist of only re�ections as in this last ex-
ample. For example, it may be generated by re�ections through the diagonals
of a hexagon centered at the origin. In this case W? contains some rotations
as well.
The re�ections in W and W? determine certain subsets of E and Γ?(E). We

will call more attention to these in the section on spherical buildings, but for
now we call attention to a few for the a�ne case.

De�nition 8.4.5. Let E be a euclidean space, and let W be an a�ne Weyl
group on E. A subset of Γ?(E) is called a wall if it is the �xed set of a
re�ection in W?. The �nitely many connected components of Γ?(E) with its
walls removed are called chambers. These walls and chambers determine
subsets of E by taking the union of rays in the wall or chamber, respectively.
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Now we will de�ne the class of (E,W ) spaces. As mentioned above, this
de�nition is abstracted from axioms related to building theory, so we will
use some of the terminology from that setting. The main idea is that if our
space is covered by �ats in a way that respects W , then the covering lets us
unambiguously extend the map θ to pairs in our space.

De�nition 8.4.6. Let M be a CAT(0) space. Let E be Rk for some k > 0,
and let W ⊂ Isom(E) be an a�ne Weyl group.
We say M is an (E,W ) space if there is a collection A of isometric embed-

dings E→M with the properties below. We call A the atlas, the embeddings
in A are called charts, the images of these charts are called apartments. The
image of a wall or chamber of E under a chart is called a wall or chamber of
M , respectively.

• (Enough apartments) Each segment, ray, and line inM is contained
in at least one apartment.
• (W-closed) A is closed under precomposition with isometries from
W . That is, for all w ∈ W and i ∈ A, we have i ◦ w ∈ A.
• (W-compatible) Charts in A are W -compatible in the sense that for
any two i1, i2 ∈ A, the partial map i−1

1 ◦ i2 from part of E to E is
the restriction of an isometry in W . Phrased di�erently, if i1, i2 have
overlapping apartments A1, A2 as their images, then there must be w ∈
W such that i2 and i1◦w agree on the relevant set {p ∈ E : i2(p) ∈ A1}.

These charts and the map θ on distinct pairs in E induce a corresponding
map we continue to call θ from distinct pairs in M to ∆(E,W ) given by sending
p, q ∈ M to θ(i−1(p), i−1(q)) for any choice of chart i ∈ A. This is possible
because p and q are endpoints of a segment and hence contained in at least
one common apartment, and this is well-de�ned because of W -compatibility.
This extended map θ is required to have the following property.

• (Locally bounded θ) For any three distinct points p, q1, q2 ∈ M , we
have

d∆(θ(p, q1), θ(p, q2)) ≤ ∠̃p(q1, q2).

That is, the di�erence between ∆(E,W )-directions for segments starting
at the same point p must be bounded by the comparison angle at p.

The following are immediate consequences of the local bound on θ.

Proposition 8.4.7. Let x, y, z ∈M where M is an (E,W ) space.

(1) If y is on the segment from x to z, then

θ(x, y) = θ(x, z) = θ(y, z).

(2) If ∠̃x(y, z) = 0, then

θ(x, y) = θ(x, z).
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Moreover, these a�rm that any segment, ray, or line γ : I → M can be
assigned a ∆(E,W ) direction in a consistent way by choosing any t1 < t2 ∈ I
and taking θ(γ) to be θ(γ(t1), γ(t2)).

De�nition 8.4.8. If M is an (E,W ) space, then for all geodesics γ : I → M
we de�ne θ(γ) to be θ(γ(t1), γ(t2)) where t1 < t2 are reals in I. We call θ(γ)
the ∆(E,W )-direction of γ.

One can also check the following by using the local bound and continuity,
and considering the construction of the unique asymptotic ray starting at some
p for any ray γ.

Proposition 8.4.9. Asymptotic rays in M have the same ∆(E,W )-direction.

8.5. Symmetric spaces of noncompact type. We will now discuss sym-
metric spaces of noncompact type. We will see that they are (E,W ) spaces
for a W determined in a natural way from the isometry group. In this case,
points in the anisotropy polyhedron correspond to orbits of rays. This is how
∆(E,W ) and the map θ provide a more granular measurement of how singular
or regular a ray is. From our perspective this is the key feature of symmetric
spaces of noncompact type: the behavior of singular geodesics is accessible and
highly structured.
Some good references for this section are chapter II.10 of Bridson and Hae-

�iger's [8], chapter 2.1 of Eberlein's [10], or section 4 of Eberlein's notes [9].
Symmetric spaces provide an important connection between di�erential ge-

ometry and semi-simple Lie groups, and as such they can be approached from
several directions. We will use a more restrictive geometric de�nition below
and then discuss the relation to Lie groups. Geometry literature tends to make
use of a Riemannian manifold based de�nition, while the building theory lit-
erature tends to use the other approach. First, since symmetric spaces are a
special kind of Riemannian manifold, we recall their de�nition.

De�nition 8.5.1. A Riemannian manifold is a di�erentiable manifold M
with a collection of scalar products, 〈·, ·〉p on the tangent space TpM for each
p ∈M , such that the scalar products vary continuously with p.

The manifold structure above allows us to de�ne a length for piecewise
di�erentiable paths in M . When M is connected, this can be used to de�ne a
distance.

De�nition 8.5.2. Let M be a Riemannian manifold and let c : [a, b]→M be
a piecewise di�erentiable path. The Riemannian length of c is given byˆ b

a

|c′(t)|dt.

When M is connected, we de�ne a metric on M by letting d(x, y) be the
in�mal Riemannian length among piecewise continuously di�erentiable paths
c : [0, 1]→M with c(0) = x and c(1) = y.
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To get a symmetric space, we require our Riemannian manifold to have
a special symmetry at every point which is usually thought of as reversing
geodesics through that point.

De�nition 8.5.3. A (Riemannian) symmetric space is a connected Rie-
mannian manifold M such that at each p ∈ M , there is an isometry σp of M
such that

• σp(p) = p, and
• the di�erential of σp is multiplication by −1 on the tangent space.

The model spacesMκ, which arise as rescaled euclidean spaces, spheres, and
hyperbolic spaces are the most familiar examples of symmetric spaces. The
symmetries σp are indeed given by reversing geodesics: consider the geodesic
segment from p to x with initial velocity v, and send x to the point σp(x) which
is d(p, x) far along the segment obtained by leaving p with initial velocity −v.
As can be seen from just these examples, symmetric spaces come in a wide

variety. We will only be interested in a subclass.

De�nition 8.5.4. A symmetric space M is of noncompact type if the fol-
lowing hold.

• M is simply connected.
• M is non-positively curved (in the di�erential geometry sense and hence
also CAT(0)).
• M cannot be factored as a Riemannian product N × E where E is a
nontrivial euclidean space.

The following two propositions outline the relation between such spaces and
semi-simple Lie groups. For proofs or a more in depth discussion, see the �rst
few sections of chapter 2 of [10].

Proposition 8.5.5. Let M be a symmetric space of noncompact type, and let
Isom(M) be the group of isometries on M . The connected component of the
identity in Isom(M) is a semi-simple Lie group G with trivial center and no
compact factors, and G acts transitively on M .

Proof. This is 2.1.1 of [10]. The meaning of no compact factors here is based
on a decomposition of G into a certain direct product of connected, normal
Lie subgroups. �

If we �x a point p ∈ M then its stabilizer Gp in G is a maximal compact
subgroup. One can check that G acts transitively on M (by composing sym-
metries σp). This gives an identi�cation of M with G/Gp. This is how these
symmetric spaces arise in general.

Proposition 8.5.6. Let G be a semi-simple Lie group with trivial center and
no compact factors, and let K be a maximal compact subgroup of G. Then
M = G/K can be given a G-invariant Riemannian metric, and in this case
M is a symmetric space of noncompact type such that the identity component
of Isom(M) is G.
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The standard examples for symmetric spaces of noncompact type are the
spaces obtained as SLn(R)/SOn(R) for n ≥ 2, and more interestingly n ≥ 3.
These examples are standard both because the structure is fairly approachable
using just concepts from linear algebra, and because all irreducible symmetric
spaces of noncompact type embed nicely into some SLn(R)/SOn(R). A proof
of this can be found in part 2 of the appendix of [9] under the section �The
imbedding theorem�.
An important feature of a symmetric space is what kinds of �ats can be

found within it. As a manifold, there is a bound on the dimension of a �at
subspace. We give a special name to the maximal dimension that occurs.

De�nition 8.5.7. The rank of a symmetric space M is the the maximal k
for which there are k-�ats in M .

Proposition 8.5.8. Let M be a symmetric space of noncompact type and rank
k, and let G be the identity component of Isom(M).

(1) If F1 and F2 are k-�ats in M , and if p1 ∈ F1 and p2 ∈ F2, then there
is g ∈ G such that g(p1) = p2 and g(F1) = F2.

(2) If γ is a geodesic line in M , then there is a maximal �at containing γ.

Proof. See appendix part 2, Proposition 26 of [9], or section 2.10 of [10]. �

The transitivity of G on the k-�ats lets us de�ne an atlas and view M as
an (E,W ) space. This construction is outlined in section 5.2 of Kleiner and
Leeb's [14], and we summarize it now.

De�nition 8.5.9. Let M be a symmetric space of noncompact type and rank
k. Let G be the identity component of Isom(M). We de�ne the maximal
(E,W ) atlas A on M as follows.

(1) Let E be Rk.
(2) Choose any k-�at F in M . Let SG(F ) be the setwise stabilizer of F in

G, and let PG(F ) be the pointwise stabilizer of F in G. De�ne

W ′ = SG(F )/PG(F ).

Note that W ′ can be viewed as a subgroup of Isom(F ).
(3) W ⊂ Isom(E) is de�ned using W ′ and an isometry i : E→ F . That is,

W = {i−1 ◦ w′ ◦ i : w′ ∈ W ′}.
(4) Let A consist of all isometric embeddings E → M such that W is

preserved, in the sense that if i ∈ A, then
i ◦W ◦ i−1

is exactly the group

SG(i(E))/PG(i(E)).

Kleiner and Leeb note that thisW is generated by re�ections and is an a�ne
Weyl group on E, and the transitivity of G on k-�ats gives the following.
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Proposition 8.5.10. M is an (E,W ) space with the maximal (E,W ) atlas
described above. Every maximal �at in M is the image of some chart in this
atlas.

Discussions of these spaces often work out the example SLn(R)/SOn(R) in
extensive detail, as can be seen in the sources we have mentioned. They show
that this space is isometric to P = P1(n,R), the space of positive de�nite
symmetric matrices with determinant 1, carrying a certain Riemannian met-
ric. The maximal �ats in P are dimension n − 1 and are conjugates of a
canonical �at given by the diagonal matrices in P . The group W? in this case
corresponds to permutations of the coordinates in these diagonal matrices. In
particular, when n = 3, the group W? is isomorphic to the permutation group
on 3 elements, and 3 of the isometries in W? are re�ections of E = R2. The
anisotropy polyhedron is isometric to a circular arc of length 2π/6, including
the endpoints. The endpoints of this arc correspond to two distinct orbits of
singular rays, and the interior points correspond to distinct orbits of regular
rays.

8.6. Euclidean buildings. In this section we discuss euclidean buildings,
which are (E,W ) spaces with an additional rigidity property relating initial an-
gles ∠p to angles at in�nity ∠∞. The terminology in the literature is somewhat
confusing when it comes to the names of these buildings. There are various
de�nitions of discrete and non-discrete euclidean buildings, a�ne buildings,
R-buildings, and more general Λ-buildings depending on the generality and
purpose of the discussion.
We are essentially following the de�nition of euclidean buildings given in

Kleiner and Leeb's [14]. But, since we will need to work primarily with rays at
the origin in our setting, we have changed all of the de�nitions to re�ect this
and also to �t our notation. Again, there is no substantial di�erence since Γ?E
is a set of representatives for those classes in E(∞), the set of rays modulo
being asymptotic. For proofs of the equivalence of Kleiner and Leeb's de�nition
with other de�nitions, readers are usually referred to II.2.7 of Parreau's thesis
[17], but [6] would also be useful.
First, we will name the set of possible angles at in�nity which can occur

between rays with given ∆(E,W )-directions. Note that this set is �nite, since
W? is �nite by de�nition.

De�nition 8.6.1. Let W be an a�ne Weyl group on E. For α1, α2 ∈ ∆(E,W ),
we de�neD(α1, α2) to be the �nite set of possible distances ∠∞(γ1, γ2) between
elements γ1, γ2 ∈ Γ?E such that α1 = γ1/W? and α2 = γ2/W?.

Example 8.6.2. Let E = R2 and let W be such that W? is generated by
re�ecting rays over the x-axis and y-axis. In the earlier example 8.4.4, we
saw that ∆(E,W ) can be matched with the rays in the positive quarter-plane.
Consider the classes α0, απ/6 ∈ ∆(E,W ) represented by the ray pointing along
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the positive x-axis and the ray with angle π/6 from the positive x-axis, respec-
tively. The only other member of α0 is the ray with angle π from the positive
x-axis. The other members of απ/6 are the rays with angles −π/6, π − (π/6),
and π+(π/6) from the positive x-axis. The way that these contribute members
to D = D(α0, απ/6) is described in the following table, which matches pairs of
rays in α0×απ/6 with their distance. Remember that the metric ∠∞ on Γ?E is
the unsigned angle between rays. The angles which occur are redundant, but
we obtain two distinct elements of D, not just the original π/6 we start with.

angle of ray in α0 angle of ray in απ/6 element of D
0 π/6 π/6
0 −π/6 π/6
0 π + (π/6) π − (π/6)
0 π − (π/6) π − (π/6)
π π/6 π − (π/6)
π −π/6 π − (π/6)
π π + (π/6) π/6
π π − (π/6) π/6

So in this case, D = {π/6, π − (π/6)}. Choosing α away from the boundar of
∆(E,W ) would yield a 4-element setD(α, απ/6). For example, evenD(απ/6, απ/6)
would consist of 4 distinct elements.

De�nition 8.6.3. A euclidean building is an (E,W ) space whose map θ
has the following additional property.

• (Angle rigidity) For any three distinct p, q1, q2 ∈M , the initial angle
∠p(q1, q2) is in the �nite set D(θ(p, q1), θ(p, q2)).

This additional property of euclidean buildings lets us prove the following
result about the behavior of rays starting at the same point. We will make use
of this next proposition when proving de�nability results later.

Proposition 8.6.4. (Rays diverge piecewise linearly) Let M be a eu-
clidean building where the a�ne Weyl group W is transitive on points in
E. Let γ1, γ2 be two rays starting at the same point p ∈ M . The function
F : R≥0 → R≥0 given by

F (t) = d(γ1(t), γ2(t))

is nondecreasing, piecewise linear, and each linear part has slope 2 · sin(α/2)
for some α ∈ D(θ(γ1), θ(γ2)).

Proof. Before we begin, we make the following note. In Lemma 4.1.2 of [14],
they use angle rigidity directly to show that γ1 and γ2 must either initially
coincide or else initially span a �at triangle and have an initial angle in
D(θ(γ1), θ(γ2)). Consequently, in a neighborhood of 0, the function F (t) and
the claimed property of its slope are just consequences of the geometry of tri-
angles in the euclidean plane. The proposition we are currently considering
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can be thought of as a generalization saying that this initial nice behavior of
F is just the �rst piece of a piecewise property.
Also, note that knowing this initial behavior of F means in particular that it

is initially nondecreasing. The argument makes use of the fact that in CAT(0)
spaces, this function F is convex (prop 5.3.6). Knowing that F is initially
nondecreasing then implies that F must be nondecreasing everywhere.
In Theorem 3.3 of [6], among many other equivalences it is shown that these

buildings satisfy a �large atlas� condition they abbreviate as (LA). Informally,
this says that any two chambers are initially contained in a common apartment.
More precisely, for any pair of a�ne Weyl chambers C1 and C2, there are
neighborhoods C ′1 ⊆ C1 and C ′2 ⊆ C2 of the tips in C1 and C2 respectively for
which there is a common apartment containing both C ′1 and C ′2.
Consider any t0 ∈ [0,∞). BecauseM is an (E,W ) space, the ray γ1([t0,∞))

is contained in some apartment A1,t0 , and the ray γ2([t0,∞)) is contained in
some apartment A2,t0 . Since we have assumed W is transitive on points, we
can take A1,t0 and A2,t0 so that these rays are in chambers C1 ⊆ A1,t0 and
C2 ⊆ A2,t0 with tips γ1(t0) and γ2(t0) respectively. By the above paragraph,
there are C ′1, C

′
2, and A such that

• C ′1 contains an initial segment of γ1([t0,∞)),
• C ′2 contains an initial segment of γ2([t0,∞)),
• A is an apartment containing both C ′1 and C ′2.

So, there must be some t1 > t0 such that the segments γ1([t0, t1]) and γ2([t0, t1])
are both contained in A. Thus, for t ∈ [t0, t1], the function F is a function of
distances between segments in a euclidean plane. This reduces the claim to
euclidean geometry of line segments. The monotonicity of F justi�es comput-
ing the slope of F ([t0, t1]) by translating the segment γ1([t0, t1]) to a parallel
segment γ′1 also having θ(γ′1) = θ(γ1) but with γ′1(t0) = γ2(t0). It follows from
angle rigidity and the geometry of triangles in the euclidean plane that the
slope is as claimed. �

Corollary 8.6.5. Let M , W , γ1, γ2, and F be as above. There is a �nite
N ∈ N which depends on W but not on γ1 or γ2 such that F consists of at
most N many linear segments.

Proof. There is a uniform bound N on the cardinality of D(θ(γ1), θ(γ2)) inde-
pendent of γ1, γ2 because the number of re�ections through the origin in W is
�nite. The claim then follows from the properties of F given in the previous
proposition. �

These preceding claims are useful in our logic because they show that we can
know something about the asymptotic behavior of γ1 and γ2 by considering
�nitely many pairs γ1(t), γ2(t).

Example 8.6.6. One of the simplest nontrivial examples of a euclidean build-
ing is an R-tree. Such a space M can be constructed by starting with a copy
of R, inductively adjoining a new copy of (R, 0) at every point, and repeating

120



McMaster University - Mathematics Ph.D. Thesis - M. Luther

this process. The shortest path is used to determine the metric when new
copies of R are added. That is, whenever a new copy (R, 0′) of (R, 0) is added
to M at a point p, so that 0′ and p are identi�ed, the metric is extended so
that for old points x ∈M and new points y ∈ R, we have

d(x, y) = d(x, p) + d(p, y).

This yields a CAT(0) space which is a tree-like object that �branches every-
where� in the sense that at every point p, there are 2ℵ0 many distinct segments
leaving p. The construction ensures that there is a unique geodesic segment
between each pair of points, and that every segment extends to a full geodesic
line in in�nitely many ways.
For an (E,W ) space structure on M , we take E = R and let W be the full

isometry group of R, including all translations and re�ections. The space Γ?E
consists of only two rays: one leaving 0 ∈ R in each direction. The group
W? has one nontrivial element exchanging these two rays, and ∆(E,W ) is just a
singleton since the two rays collapse.
For our atlas, we can take all isometries R → M . Note that this includes

more copies of R than just those used in the construction of M . Lines are
trivially contained in apartments, since in this case the apartments are exactly
the lines. Segments and rays extend to lines and hence are contained in apart-
ments. The angle rigidity property is satis�ed because all rays have the same
∆(E,W )-direction by virtue of ∆(E,W ) being a singleton and any pair of rays
leaving the same point in M either have initial angle 0 or π. Any pair which
does not coincide forever must have a point where they begin diverging with
angle π, demonstrating the claims about d(γ1(t), γ2(t)).

Trees are rather degenerate cases of euclidean buildings because the maximal
�ats are dimension 1. More interesting cases involve higher dimension �ats.
For example, we could construct an analog of the above example by starting
with a plane and inductively attaching new planes by gluing along lines. De-
pending on which lines are chosen for gluing or what atlas is intended, this
can lead to (E,W ) space structures where E = R2 but W does not contain all
re�ections. In such cases, ∆(E,W ) is a nondegenerate polytope.

8.7. Spherical buildings. In this section, we de�ne a CAT(1) analog of the
buildings we just discussed. Jacques Tits developed these spherical buildings
before developing a�ne buildings and the later generalizations that would lead
to the euclidean buildings de�ned above. The original purpose of these objects
was to build a combinatorial, geometric object to help classify algebraic groups.
The order in which we have de�ned things and the approach di�ers because

we will work with spherical buildings as structures found on Γ?M for both
symmetric spaces and euclidean buildings. That connection will be discussed
in the next section. For now, we just de�ne spherical buildings as objects on
their own. We will again follow the development in chapter 3 of Kleiner and
Leeb's [14] but with minor adaptations for our setting.
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The �rst de�nition below is analogous to the de�nitions of Γ?E and W? in
the euclidean building sections. Spherical buildings will require de�ning an
atlas of isometries from a euclidean k-sphere, rather than from some Rk.

De�nition 8.7.1. Let S be the unit sphere of some euclidean space, equipped
with the angular metric ∠. Let W be a subgroup of the isometry group
Isom(S). We sayW is aWeyl group if it is �nite and generated by re�ections
over a subsphere of codimension 1.

In this setting we also get an anisotropy polyhedron and quotient map.

De�nition 8.7.2. The anisotropy polyhedron ∆(S,W ) is the space obtained
by taking the quotient of S by the groupW . We will denote the resulting metric
by d∆. We de�ne θ to be the quotient map from S to ∆(S,W ). We call θ(p) the
∆(S,W )-direction of p.

Moreover, since W is �nite, we again have a �nite set of possible distances
between preimages of ∆(S,W )-directions.

De�nition 8.7.3. For α1, α2 ∈ ∆(S,W ), we write D(α1, α2) to denote the �nite
set of possible distances ∠(p, q) which occur between elements p, q ∈ S such
that α1 = p/W and α2 = q/W .

We now de�ne spherical buildings as CAT(1) spaces together with a W -
respecting atlas of embeddings of S. Again, the key observation is that such
an atlas lets us unambiguously extend the map θ to the space M .

De�nition 8.7.4. Let M be a CAT(1) space. Let S be a euclidean k-sphere,
and let W ⊂ Isom(S) be a Weyl group. We say M is a spherical building
if there is a collection A of isometric embeddings S→ M with the properties
below. We call A the atlas, the embeddings in A are called charts, the images
of these charts are called apartments.

• (Enough apartments) For any pair of points p, q ∈ M there is at
least one apartment containing both p and q.
• (W-closed) A is closed under precomposition with isometries from
W . That is, for all w ∈ W and i ∈ A, we have i ◦ w ∈ A.
• (W-compatible) Charts in A are W -compatible in the sense that for
any two i1, i2 ∈ A, the partial map i−1

1 ◦ i2 from part of S to S is
the restriction of an isometry in W . Phrased di�erently, if i1, i2 have
overlapping apartments A1, A2, then there must be w ∈ W such that
i2 and i1 ◦ w agree on the relevant set {p ∈ S : i2(p) ∈ A1}.

These charts and the map θ on points in S induce a corresponding map we
continue to call θ from points in M to ∆(S,W ) given by sending p ∈ M to
θ(i−1(p)) for any choice of chart i ∈ A. This is well-de�ned because of W -
compatibility.

The axioms easily imply that the map θ induced on M above satis�es a
discreteness condition which is the analog of the angle rigidity in euclidean
buildings.
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Proposition 8.7.5. For points p, q in a spherical building M , we always have
that d(p, q) is in the �nite set D(θ(p), θ(q)).

The atlas on a spherical building determines a simplicial complex. We sum-
marize some of the terminology and simple observations.

De�nition 8.7.6. The set of �xed points (in S) of a given re�ection from W
is called the wall of that isometry.
The images of walls under charts are called the walls of the building.

Proposition 8.7.7. Each wall is a subsphere whose dimension is one lower
than that of S.

Proof. Re�ections of a sphere have codimension 1 subspheres as their �xed
point sets. �

The collection of walls in S is �nite because W is �nite. We use the walls to
identify other important subsets of S. The points in S not lying in a wall are
divided into pairwise isometric, open, convex sets.

De�nition 8.7.8. Let S′ denote the set of points p ∈ S which are not in any
wall. The closures of the convex components of S′ are called chambers.
The images of chambers under charts are called the chambers of the build-

ing.

Proposition 8.7.9. Any chamber in S is a fundamental domain for W and
can also be viewed as a �nite intersection of closed hemispheres in S.

Proof. The chambers arise as connected components separated by walls. So
re�ections in W exchange adjacent chambers, and any one can be sent to
another by a �nite sequence of such re�ections. To see the hemisphere part
of the claim, notice that each chamber C intersects only �nitely many walls.
Since each such wall is a re�ection, it determines a subsphere of codimension
1 which divides S into two hemispheres, one of which contains C. �

Corollary 8.7.10. Any chamber in the spherical building is a fundamental
domain for the building under isometries given by composing charts and can
also be viewed as a �nite intersection of images of closed hemispheres under
charts (half-apartments).

Proof. This follows from the de�nition of charts and the W -closure and com-
patibility of the atlas. �

We get lower dimensional simplices by intersecting chambers with walls.

De�nition 8.7.11. In a spherical building, the intersection of a chamber with
one or more walls is called a face of that chamber. We also call a face a vertex
if it is a single point.

So we have described the simplicial structure of a building. The top level
simplices are given by the chambers, and the faces give the lower simplices.
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The chambers determine an incidence relation on the points in the building.
In particular, this restricts to an incidence relation on the collection of vertices.

De�nition 8.7.12. Let M be a spherical building, and let p1, p2 ∈ M . We
say p1 and p2 are incident if there is a chamber containing both.

For example, if S is a circle and its chambers are arcs, then the vertices of a
(S,W ) spherical building will be the images under charts of endpoints of those
arcs. Two such vertices are incident when they are joined by the image of an
arc under some chart.
The picture to have in mind for spherical buildings is that they look like a

collection of copies of S (the apartments) joined together along walls.

Example 8.7.13. Let M be the space formed by taking two copies of the
1-sphere (i.e. a circle) and joining them north pole to north pole and south
pole to south pole. Use the usual angular metric within each circle, and use
the length of the shortest path for distances between points in opposite circles.
Let S be the 1-sphere, and letW be the group generated by the two following

re�ections of S:
• the re�ection exchanging the north and south poles,
• the re�ection �xing these poles and exchanging the midpoints between
them.

For the atlas on M , take the four embeddings of S which send the north pole
of S to one of the two intersection points in M . This makes M a spherical
building. The anisotropy polyhedron ∆(S,W ) is a closed quarter-circle of S.

Proposition 8.7.14. Let M be a spherical building. Any geodesic in M is
contained in some apartment. Any isometrically embedded unit sphere in M
is contained in an apartment.

Proof. This is Corollary 3.9.2 in [14]. It is a consequence of a more general
result showing that convex subsets of M which are isometric to parts of a
euclidean sphere must be contained in an apartment. �

8.8. Spherical buildings at in�nity. We have seen that both symmetric
spaces and euclidean buildings M are (E,W ) spaces, that CAT(0) spaces
always have a CAT(1) metric ∠∞ on Γ?M , and that Γ?E is isometric to a
euclidean sphere. This yields a natural candidate atlas for Γ?M , as in the
de�nition of a spherical building using the sphere Γ?E and the group W?. The
gist of the process is to note that each copy of Γ?E in Γ?M is a sphere S, and
induce a spherical atlas from the euclidean atlas on M .
Checking that the atlas obtained on Γ?M is actually a spherical building

mostly comes down to checking the �enough apartments� axiom. In general,
the spherical atlas obtained from an (E,W ) space fails to have this property, as
in the next example. This shows how the angle rigidity of euclidean buildings
and the asymptotic behavior of angles in symmetric spaces plays an important
role.
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Example 8.8.1. Let M = R2. We will view M as an (E,W ) space where
E = R and W is the full isometry group on R. Let the atlas be the set of
all embeddings R → M . We have that Γ?E is the unit sphere S0 in R, and
W? contains the isometry exchanging the two points of S0. Thus ∆(E,W ) can
be identi�ed with a single point. Note that M with this atlas fails the angle
rigidity property of euclidean buildings; almost all rays starting at the same
point have an initial angle which is neither 0 nor π.
Consider the collection of embeddings S0 → Γ?M induced by the embed-

dings R → M . Let γ1, γ2 ∈ Γ?M be such that ∠∞(γ1, γ2) = π/2. There is no
embedding S0 → Γ?M which contains both γ1 and γ2 in its image.

We should make sure our intuition is accurate and clarify some of the over-
loaded notation. The ? in Γ?E refers to the basepoint of some Rk, while the ?
in Γ?M refers to the basepoint of M . Because the relevant metric is ∠∞, an
isometric copy of Γ?E in Γ?M is not necessarily of the form Γ?F for a �at F
through the basepoint ? in M . That is, there are euclidean spheres appearing
in Γ?M which do not arise as the set of rays in a �at through ? in M . This is
perhaps best explained by an example.

Example 8.8.2. Recall the R-tree that we saw in example 8.6.6. Consider
the basepoint ? and a point p distinct from ?.
Let γ1 and γ2 be two rays starting at ? which pass through p but then diverge

from each other (i.e. take di�erent branches at p). Then ∠∞(γ1, γ2) = π, so
{γ1, γ2} is isometric to the unit 0-sphere in R1. But γ1 ∪ γ2 is not a �at in
M , it is the union of a �at through p and an additional segment from p to ?.
There is no �at through ? ∈ M which contains the entire lengths of both γ1

and γ2.
This situation has to do with our insistence on primacy of rays at the

origin as the representatives of M(∞). Of course, the rays from p on, i.e.
γ1([d(?, p),∞)) and γ2([d(?, p),∞)), are also rays and their union is a �at.
These tail rays are asymptotic to the original γ1 and γ2 respectively, and so
remain in the same classes in M(∞).
For contrast, consider two rays γ3 and γ4 which start at ? and diverge

immediately. Then {γ3, γ4} is also a unit 0-sphere. But in this case, we can
view {γ3, γ4} as the rays in a �at through ?, namely their union.

In any case, our main interest is that Γ?M has a spherical building structure
strongly related to the (E,W ) space structure on M .

Proposition 8.8.3. Let (M,d, ?) be a symmetric space of noncompact type or
a euclidean building, and let AM be the maximal (E,W ) atlas on M . Then
Γ?M with metric ∠∞ is a spherical building based on (Γ?E,W?) whose atlas
consists of the embeddings Γ?E→ Γ?M induced by charts E→M in AM .

Proof. A proof for the symmetric space makes up section I.2 of [7] or can be
found as appendix 5 (culminating in section 7 thereof) in [2]. The example
SLn(R)/SOn(R) is also in II.10 of [8].
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A proof for the euclidean building case is more straightforward because of
the similarity in de�nitions, and can be found as Proposition 4.2.1 in [14].
We will brie�y comment on the proofs. Because of the way we have de�ned

things, this is almost purely de�nition chasing. The questionable aspect is the
�enough apartments� property for the spherical building. For this, one needs
to know that any pair of elements from Γ?M are both contained in at least one
subset of Γ?M isometric to the sphere Γ?E. Our comment and example above
demonstrate that this is not the same as checking that every pair of rays at ?
in M is contained in a �at.
For the euclidean building case, Kleiner & Leeb prove some helping lemmas

and use the angle rigidity property to complete the task. Roughly, they �rst
show that if ∠∞(γ1, γ2) = π, then the angle rigidity and monotonicity of initial
angles as we move out along a rays lets us �nd a geodesic line whose positive
direction coincides with a tail of γ1 and whose negative direction coincides with
a tail of γ2. By the �enough apartments� axiom for euclidean buildings, this
geodesic line is contained in a �at (which necessarily corresponds to a copy of
Γ?E), and so the claim is veri�ed for the case of two rays with π as their angle
at in�nity. They then handle the cases where ∠∞(γ1, γ2) < π using that case
and some convexity properties of spheres in Γ?M .
For the symmetric space case, things are less direct. The intuition suggested

by Kleiner and Leeb here is that while symmetric spaces do not satisfy the angle
rigidity property enjoyed by euclidean buildings, pairs of rays in symmetric
spaces tend toward the rigid angles as we travel along them toward in�nity.
While two rays might not occupy a common �at, there is always at least one
�at which they will both be asymptotic to. Typically, one would need to pass
to other representatives of the classes of γ1 and γ2 inM(∞) in order to get rays
that actually intersect that �at. We will look at an example in the hyperbolic
plane below to demonstrate this. Verifying the �enough apartments� axiom for
spherical buildings requires checking that this behavior is actually happening in
symmetric spaces. To do this, one has to understand the asymptotic behavior
of rays well. In the sources mentioned, this is accomplished by studying the
Iwasawa decomposition of the Lie group corresponding to the symmetric space,
and understanding the action of certain group elements on the classes of rays
making up M(∞). �

Example 8.8.4. Consider the open disk model of the hyperbolic plane M ,
which is a symmetric space of noncompact type. Here, lines of M are given
by diameters of the disk as well as circular arcs which meet the boundary of
the disk at right angles. Consider two rays γ1 and γ2 starting at the origin
with initial angle π/2. This pair has ∠∞(γ1, γ2) = π, and {γ1, γ2} is isometric
(using ∠∞) to a unit 0-sphere.
We will now locate the corresponding 1-�at. Let b1 and b2 denote the bound-

ary points of the disk toward which γ1 and γ2 tend, respectively. Let F be the
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circular arc in the disk meeting b1 and b2 at right angles. Then F is the 1-�at
we are looking for. Note that F does not intersect the rays γ1, γ2 at all in M .
Consider the pairs of rays that can be obtained by selecting t very large and

looking at rays from γ1(t) toward b1 and from γ1(t) toward b2. For large values
of t, the unions of such rays approach F in the sense that points on these rays
can be made arbitrarily, uniformly close to F in the distance d on M .
Finally, we will identify a pair of rays in F which are asymptotic to γ1 and

γ2. Let p be any point in F , and let γ′1, γ
′
2 be rays in F starting at p and

heading toward b1 and b2 respectively. The rays γ
′
1 and γ

′
2 are then asymptotic

to γ1 and γ2 respectively.

In the remainder of this section, we note the relation between the spherical
building just obtained for a symmetric space and the building classically asso-
ciated to symmetric spaces via the more Lie theoretic approach. The groupW?

above is isomorphic to the Weyl group of the symmetric space usually de�ned
algebraically. The relevant connection between rays Γ?M , the equivalence
classes of rays M(∞), and certain subgroups of the Lie group G associated to
M is explained in [7] for example. We will just include one relevant proposition
below.
Recall that the isometries in G induce isometries on the set of rays and

hence on M(∞) with the metric ∠∞.

De�nition 8.8.5. A Borel subgroup of G is a maximal connected solvable
algebraic subgroup of G. A parabolic subgroup of G is a subgroup P ≤ G
which contains a Borel subgroup.

Proposition 8.8.6. Let M = G/K be a symmetric space of noncompact type.

(1) For each point γ̄ ∈ M(∞) , the stabilizer of γ̄ in G is a parabolic
subgroup.

(2) Every proper parabolic subgroup of G is the stabilizer of some point in
M(∞).

Proof. See I.2.6 of [7] or the example SLn(R)/SOn(R) explained in II.10 of
[8]. �

Thus, Γ?M can be thought of as parametrizing the parabolic subgroups
of G. The algebraic de�nition of the spherical building ∆(G) associated to
G is typically given as a simplicial complex built from the proper parabolic
subgroups of G. The simplices are ∆P for each such P ⊂ G. These ∆P

are vertices when P is maximal, and we also have that ∆P contains ∆Q as
a face exactly when P ⊂ Q in G. The chambers correspond to minimal
P (i.e. the Borel subgroups). Because of the correspondence between rays
and parabolic subgroups above, the algebraic de�nition is consistent with the
geometric de�nition of the spherical building we are using.

127



McMaster University - Mathematics Ph.D. Thesis - M. Luther

8.9. Projective planes in spherical buildings. In general, a spherical
building might not have a projective plane associated to it. For a trivial exam-
ple, if the building is based on S being the 0-sphere, then the incidence relation
is uninteresting because the chambers are degenerate. For higher rank build-
ings we can extract a meaningful incidence geometry, but in general it may
still fail to satisfy strong enough axioms to construct a �eld. The geometric
axioms required to get associativity or commutativity may fail, for example.
We will only be concerned with the buildings arising from symmetric spaces

of noncompact type, with rank k ≥ 2 and corresponding to G/K where G is
absolutely simple and de�ned over R. In this case, our spherical building at
in�nity is a geometric realization of the building constructed from parabolic
subgroups of G(R) and determines the �eld R, and the spherical building
of the U asymptotic cone is a geometric realization of the spherical building
constructed from parabolic subgroups of G(ρRU), which we discuss near the
end of the thesis.
The key to extracting the projective plane, when it is possible, is to look

at the incidence relation between certain subsets of vertices in the spherical
building. We �rst impose a labeling of the vertices in the anisotropy polyhe-
dron, which then extends to a labeling of vertices in the entire building by
looking at preimages under θ. In other words, we label the vertices of chamber
and then extend the labeling using orbits underW . These labelings come from
the Dynkin or Coxeter diagram of our group W , which are tools used in the
classi�cation of semisimple Lie algebras. We will de�ne the Dynkin diagram
here.

De�nition 8.9.1. Let W be a Weyl group for a sphere S, and let R be a
minimal generating set of re�ections for W . The Dynkin diagram D for W
is a graph with weighted edges de�ned as follows. The nodes of D are the
generating re�ections R. Each pair of nodes w and w′ are connected by an
edge with weight |w · w′| − 2, where |w · w′| is the order of w · w′ in W . We
will consider two nodes to be adjacent if they are connected by an edge with
a positive weight.

Because the vertices of a chamber each correspond to an intersection of k−1
walls (i.e. �xed sets of re�ections), each vertex in a chamber can be associated
with exactly one re�ection and hence one of the nodes in the Dynkin diagram.
The �nite Dynkin diagrams have been classi�ed, and the buildings in our cases
have diagrams containing the following type of Dynkin diagram.

De�nition 8.9.2. A Dynkin diagram is of type An if it consists of n nodes
v1, . . . , vn, where there is an edge of weight 1 between each pair vi, vi+1, and
an edge of weight 0 between all other pairs.

Such diagrams look like a line of nodes joined by single edges. For our rank
k symmetric spaces with the maximal atlas, our spherical buildings at in�nity
have chambers with k many vertices each, corresponding to the k distinct
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orbits of maximally singular rays. The Dynkin diagram similarly has k many
nodes. We label the vertices of the anisotropy polyhedron 1, . . . , k using the
correspondence with nodes in the Dynkin diagram. We extend this labeling to
the spherical building using θ−1 and then to Γ?(M) using the atlas. The set
of label 1 and 2 vertices, together with the incidence relation de�ned by being
contained in a common chamber, is then isomorphic to a projective plane over
R. So, we can use the constructions we described in Proposition 8.3.1. This is
how we will build a projective plane from our rays.
From here on, we will assume such a labeling is �xed for each of our buildings.

An exposition can be found in II.10 of [8] or 2.13.8 of [10] of the isomorphism
between the building at in�nity for SLn(R)/SOn(R) and the usual projective
space constructed from linear subspaces of Rn. A more general discussion
of buildings and the relationship with the fundamental theorem of projective
geometry can be found in the survey paper [18].

9. Asymptotic Cones

9.1. Asymptotic cones and quasi-isometries. Asymptotic cones are a for-
malization of the idea of �zooming out to in�nity� on a metric space. That is,
we shrink the metric to get a sense of the large-scale behavior. This is a rever-
sal of the idea of expanding the metric at a point to get the local behavior, as
in a tangent space. The idea was developed by Gromov in [13], later expanded
by van den Dries and Wilkie in [19], and has ongoing importance in geometric
group theory. In this thesis we give a result about the model theoretic stability
of asymptotic cones of symmetric spaces and euclidean buildings.
In this section, we de�ne asymptotic cones as ultraproducts in our logic.

We also discuss maps called quasi-isometries and see a few properties of these
maps. In the next section, we will see that asymptotic cones built from sym-
metric spaces or euclidean buildings both yield euclidean buildings.
Of course, the original de�nition of asymptotic cones is not phrased in terms

of L-structures and ultraproducts. The de�nition we give below uses the frame-
work of our logic, but is fundamentally the same. That is, if one chases out
the de�nition of the ultraproduct, the same construction is used as in typical
presentations in modern geometric group theory texts, including the use of
ultra�lters.

De�nition 9.1.1. Let L be a single-sorted language, and let (M,d, ?) be any
L-structure. Let U be a nonprincipal ultra�lter on N+. The asymptotic cone
(with respect to U) of (M,d, ?) is the ultraproduct∏

U

(M,
d

n
, ?)

where d
n
denotes the metric de�ned by

d

n
(x, y) =

1

n
d(x, y)
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for each n ∈ N+.

We have limited the de�nition to a single-sorted structure to conform more to
the usual terminology, but there are straightforward generalizations of this def-
inition. One of the advantages of our framework is that it provides a straight-
forward way to discuss asymptotic cones with additional structures, named
subsets, functions, etc. attached. It is more appropriate in our framework to
think of any ultraproduct which scales down a metric in a sort as �taking the
asymptotic cone� of that sort.
There are more general de�nitions of asymptotic cones which allow the base-

point ? to vary over the factors, but we will not discuss these. We will, however,
note that if the basepoint is �xed across the factors, then it does not matter
which basepoint is selected.

Proposition 9.1.2. With L, M , d, and U as above, for any ?1, ?2 ∈ M , the
asymptotic cones

∏
U(M, d

n
, ?1) and

∏
U(M, d

n
, ?2) are isomorphic.

Proof. For convenience, write

C1 =
∏
U

(M,
d

n
, ?1)

and

C2 =
∏
U

(M,
d

n
, ?2).

The isomorphism C1 → C2 can be de�ned by, for any x ∈ C1, choosing a
representative (xn : n ∈ N+) and sending x to (xn : n ∈ N+)/ ∼ in C2. We
have ?C1

1 7→ ?C2
2 because d(?1, ?2) is �nite and hence the ultralimit of d

n
(?1, ?2)

is 0. In other words, (?1 : n ∈ N+)/ ∼ and (?2 : n ∈ N+)/ ∼ are the same class
in C2. Bijectivity and the well-de�nedness of this map are checked by noting
that since d(?1, ?2) is �nite, for any sequence (xn : n ∈ N+) the ultralimit of
d
n
(?1, xn) is �nite if and only if that of d

n
(?2, xn) is.

Hence, both ultraproducts have the same underlying set and metric. If
there are any functions or relations on the sort, the relevant properties of the
isomorphism follow trivially from the map's de�nition. �

Here are a few basic examples of asymptotic cones.

Example 9.1.3. If (M,d, ?) is bounded, then all of its asymptotic cone are
isomorphic to a single point space. This is because the sequence d

n
(x, y) will

have ultralimit 0 for any pair of points x, y ∈M , hence all points are identi�ed
in the ultraproduct.

Example 9.1.4. Consider (Z, d, 0) where d is the usual metric d(x, y) = |x−y|.
Then any asymptotic cone is isomorphic to (R, d, 0), the real line with its usual
metric. An isomorphism can be given by, for any x ∈

∏
U(Z, d

n
, 0), choosing a

representative (xn : n ∈ N+), and sending x to limU
1
n
xn.
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Example 9.1.5. Similarly to the last example, the asymptotic cones of (Z2, d, 0)
are isomorphic to (R2, d, 0) where both d are taken to be the usual euclidean
metric. This statement is also true for some other common metrics, for exam-
ple if both d are taken to be the taxi-cab metric

((x1, y1), (x2, y2)) 7→ |x1 − x2|+ |y1 − y2|.

Example 9.1.6. For any euclidean space (Rn, d, 0), the asymptotic cones are
all isomorphic to (Rn, d, 0). The isomorphism is similar to the above example,
sending x to limU

1
n
xn.

Example 9.1.7. Let (M,d, ?) be the subspace [−1, 1] × R of the euclidean
plane R2 with ? = (0, 0). Its asymptotic cones are isomorphic to {0}×R with
the euclidean metric.

These last few examples suggest things like that the �large-scale geometry�
of Zn and Rn are similar, and �from a large-scale perspective� bounded spaces
might as well be points. Quasi-isometries are another notion that help discuss
this idea.

De�nition 9.1.8. Let (M1, d1) and (M2, d2) be metric spaces, and let

A ∈ [1,∞),

B ∈ [0,∞),

C ∈ [0,∞).

We call f : M1 →M2 an (A,B,C)-quasi-isometry if it has the following two
properties:

• f satis�es the following inequality for all x, y ∈M1

A−1d1(x, y)−B ≤ d2(f(x), f(y)) ≤ Ad1(x, y) +B.

• f(M1) is C-dense in M2. That is, for every y ∈ M2, there is x ∈ M1

such that d(f(x), y) ≤ C.

Quasi-isometries can be thought of as a modi�cation of isometries which
allows for some stretching, gaps, and discontinuity, within limits. For example,
Z2 and R2 with the euclidean metrics are (1, 0, 1)-quasi-isometric, as witnessed
by the identity embedding. The map R2 → Z2 de�ned by �rounding� points
to their nearest integer lattice point (say, downward in each coordinate) is a
(1,
√

2, 0)-quasi-isometry.
A particularly nice special case of quasi-isometries is when B and C in the

de�nition are 0. Such an f is a uniformly continuous, bijective homeomor-
phism.

De�nition 9.1.9. Let (M1, d1) and (M2, d2) be metric spaces, and let A ∈
[1,∞). We say f : M1 → M2 is an (A)-bi-Lipschitz homeomorphism if f
is surjective and for all x, y ∈M1 we have

A−1d1(x, y) ≤ d2(f(x), f(y)) ≤ Ad1(x, y).
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We can check the following standard result that quasi-isometries become
bi-Lipschitz homeomorphisms when we take asymptotic cones with respect to
the same ultra�lter. In particular, notice that if A = 1, the (A)-bi-Lipschitz
homeomorphism in the next proposition is simply an isometry.

Proposition 9.1.10. Let f : M1 → M2 be an (A,B,C)-quasi-isometry be-
tween L-structures (M1, d1, ?1) and (M2, d2, ?2), and let U be a nonprincipal
ultra�lter on N+. Then the asymptotic cones with respect to U of these two
structures are (A)-bi-Lipschitz homeomorphic.

Proof. Consider the following inequalities obtained by scaling the inequalities
in the de�nition of being a quasi-isometry

A−1 1

n
d1(x, y)− 1

n
B ≤ 1

n
d2(f(x), f(y)) ≤ A

1

n
d1(x, y) +

1

n
B

and
1

n
d2(f(x), y) ≤ 1

n
C.

We can use f to de�ne a map f̂ between the asymptotic cones by sending
x = (xn : n ∈ N+)/ ∼ to (f(xn : n ∈ N+))/ ∼. This is possible because
f is bounded in magnitude by AR + B on the d1-ball of radius R, and if
limU

1
n
d(xn, yn) = 0, then limU

(
A 1
n
d1(x, y) + 1

n
B
)

= 0, so f is well-de�ned.
By taking ultralimits in the above inequalities, we get the (A)-bi-Lipschitz

condition for f̂ and that f̂ is onto. �

In each of the previous examples, there was only one asymptotic cone up
to isomorphism. This is not generally the case. The following is one of the
simplest counterexamples.

Example 9.1.11. Let (M,d, ?) be the subspace {0}∪{2n : n ∈ N} of euclidean
R with basepoint 0. The gist of the following is that, since the gaps between
the points grow exponentially, but the asymptotic cone scales the metric down
linearly, we can select ultra�lters to decide whether or not we want a point to
appear with a given magnitude in the asymptotic cone.
Let U be an ultra�lter on N+ containing the set {2n : n ∈ N+}. For each

k ∈ {2n : n ∈ N+}, there is a point x ∈ M with d
k
(0, x) = 1, namely we can

take x = k = 2n. Thus the asymptotic cone (with respect to U) has a point x
with d(0, x) = 1.
Let V be an ultra�lter on N+ containing the set

P = {2n+1 + 2n : n ∈ N+}.
If the asymptotic cone (with respect to V) contained a point x with d(0, x) = 1,
then the cone would satisfy the sentence inf]21 (d(x, 0) ≈ 1). By the fundamen-
tal theorem of ultraproducts, this means that for some F ∈ U , we have for all
k ∈ F that (

inf
x

]21 (d(x, 0) ≈ 1)
)(M, d

k
,?)

≤ 1

4
.

132



McMaster University - Mathematics Ph.D. Thesis - M. Luther

The rest of this discussion involves untangling what this sentence means about
points in (M,d) if we select any large k, and deriving a contradiction. Since V
is an ultra�lter and hence F ∩P 6= ∅, the above inequality holds for arbitrarily
large k of the form 2n+1 + 2n. So there is some n ≥ 1 such that(

inf
x

]21 (d(x, 0) ≈ 1)
)(M, 1

2n+1+2n
d,?)

≤ 1

4
.

Evaluating this and adjusting for the scaling on the metric so that we can refer
to distances in the base space (M,d, ?) yieldsˆ 2n+2+2n+1

2n+1+2n
inf

x∈Bρ(M,d)

(
||x||

2n+1 + 2n
≈ 1

)
dρ ≤ 1

4
.

This implies that there is a point x ∈ B2n+2+2n+1(M,d) with
∣∣∣ ||x||

2n+1+2n
− 1
∣∣∣ ≤ 1

4
,

but this last inequality implies 2n+1 < ||x|| < 2n+2 which is impossible due to
the de�nition of M . So this asymptotic cone must not contain a point x such
that d(x, 0) = 1.
We have shown that the asymptotic cones with respect to U and V are not

isometric, hence not isomorphic.

9.2. Spaces that arise as asymptotic cones. The previous example sug-
gests a way to construct nearly arbitrary spaces as asymptotic cones, and
moreover to impose heavy dependence on the ultra�lter. A brief summary of
the last example is to construct the space as a union of

• repeated (and scaled up) copies of what one wants to appear under U ,
• interspersed with repeated (and scaled up) copies of what one wants
to appear under V .

In the above example, what we wanted to appear in one case was a single
point, and what we wanted in the other case was nothing. We can generalize
this to more than just a scattering of points. A consequence of the next result
is that for any structure (M,d, ?), the theory of (M,d, ?) appears as the theory
of some asymptotic cone.
An intuitively straightforward but technically annoying to discuss gener-

alization of the following argument could also show that for any countable
collection of structures (Mn, dn, ?n), there is a �xed space N such that for each
n, there is an ultra�lter Vn such that the Vn asymptotic cone of N is isometric
to MU

n . For this, one just has to �interleave� the annuli in the following con-
struction, for example by always having the pnn-th annulus correspond to Mn,
where pn is the n-th prime.

Proposition 9.2.1. Let L be a single-sorted language with no additional sym-
bols, let (M,dM , ?M) be an L-structure, and let U be a nonprincipal ultra�lter
on N+.
Then there exists an L-structure (N, dN , ?N) and a nonprincipal ultra�lter
V on N+ such that the ultrapower MU is isometric to the asymptotic cone∏
V(N, 1

n
dN , ?N).
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Proof. First we illustrate an idea in the construction that follows. Given any
annulus A = Br2(M) − Br1(M), which has inner radius r1 and outer radius
r2, we can think of it as a subspace which has empty Br1(A) and is entirely
contained in Br2(A). if we multiply the metric on this subspace by k, we obtain
a space A′ which has an empty Bk·r1(A′) and is entirely contained in Bk·r2(A′).
The rest of this proof consists of repeating the above idea to build N as

a union of copies of annular subspaces of M , so that for arbitrarily large n,
the space (N, 1

n
d, ?) �looks like� Bn(M) − B 1

n
(M). Then we just choose an

ultra�lter containing a sequence of such arbitrarily large n.
Let N1 be just {?}, and de�ne k1 = 1. Let N2 be B2(M) − B 1

2
(M) and

de�ne k2 = 2. We rescale the metric on N2 by multiply by k2. That is, the
metric on N2 is k2 ·d(x, y) where we view x, y as elements ofM . Notice that N2

has empty Bk2· 12
(N) = Bk1·1(N) and is contained within Bk2·2(N). In general,

de�ne Nn to be Bn(M)−B 1
n
(M), and de�ne kn so that kn · 1

n
= kn−1 · (n− 1).

We scale the metric on Nn by multiplying by kn. Observe that Nn has empty
B2n· 1

n
(N) and is contained within B2n·n(N). This explains the selection of kn.

At each step, we are ensuring that the annulus has an inner radius at least as
large as the outer radius of the previous annulus. We sumarize the �rst few
steps below in a table.

n kn Nn has empty radius... Nn is contained in radius...
1 1 − −
2 2 1 4
3 12 4 36
4 144 36 576
n kn kn · 1

n
kn · n

n+ 1 kn+1 kn+1 · 1
n+1

= kn · n kn+1 · n
Now, to construct N , we take the disjoint union

⊔
Nn. To de�ne the metric

on N , use the metrics above for pairs of points within a common Nn, and for
pairs in di�erent annuli, say x ∈ Nn and y ∈ Nm, de�ne

dN(x, y) = knd(x, ?) + kmd(y, ?)

where we view x, y as points in M to apply d.
Consider (N, 1

kn
dN , ?) for any of the kn appearing above. Since

Bkn·n(N, dN)−Bkn· 1n
(N, dN)

is an up-scaled copy of Bn(M)−B 1
n
(M), the subspace

Bn(N,
1

kn
dN)−B 1

n
(N,

1

kn
dN)

is isometric to Bn(M)−B 1
n
(M).

This suggests an isometry f betweenMU and the ultraproduct
∏
U(N, 1

kn
dN , ?).

Any sequence (xn : n ∈ N+) representing a class in MU should be sent to
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(x′n : n ∈ N)/ ∼ in this ultraproduct, where x′n ∈ Nn ⊆ N is the point
corresponding to xn if xn ∈ Bn(M)−B 1

n
(M), and is ? otherwise.

We will check �rst that if we have two elements of MU ,

x = (xn : n ∈ N+)/ ∼
y = (yn : n ∈ N+)/ ∼,

then their distance is preserved by this map. Since limU d(xn, ?) = ||x|| and
limU d(yn, ?) = ||y|| are both �nite, either their representative sequences satisfy
xn = x′n and yn = y′n for all n in some F ∈ U , or at least one of the represen-
tative sequences satis�es xn = ? or yn = ? for all n in some F ∈ U . In the
�rst case, the distance is preserved because the isometry between the annuli
ensures d(xn, yn) = 1

kn
dN(x′n, y

′
n) for all n in this F ∈ U . In the second case,

the distance is preserved because either both x, y are mapped to the basepoint
of the ultraproduct, or else just one is (say y) while the other satis�es xn = x′n
for all n ∈ F ∈ U . In that remaining case, we use that the construction of N
shows 1

kn
dN(x′n, ?) = d(xn, ?).

Similar considerations show the well-de�nedness of f . To see that f is
surjective, note that if z = (zn : n ∈ N+)/ ∼ is an element of the ultraproduct∏
U(N, 1

kn
dN , ?) other than the basepoint (which is a trivial case), then we

have

||z|| = lim
U

1

kn
dN(zn, ?) > 0.

So there is some F ∈ U such that for all n ∈ F we have 1
kn
dN(zn, ?) between

1
n
and n. Let x ∈ MU be the class of the sequence (ẑn : n ∈ N), where ẑn

denotes the element in M corresponding to the point zn ∈ N . The map f
sends x to x′ = (ẑn

′ : n ∈ N)/ ∼ in the ultraproduct. But we have just shown
that ẑn

′ = zn for n ∈ F . So x′ = z in
∏
U(N, 1

kn
dN , ?).

To complete the proof, we just need to note that
∏
U(N, 1

kn
dN , ?) can be

realized as an asymptotic cone
∏
V(N, 1

n
dN , ?) by using an ultra�lter V de�ned

to include {kn : n ∈ F} for each F ∈ U . �

9.3. An intermediate value theorem. In this section we prove that for
many natural spaces M , if M has two asymptotic cones which have distinct
values r1 < r2 for some sentence, then we can �nd cones that obtain every
intermediate value for that sentence. The assumption we need on M is that
each ball B̄n(M) is su�ciently dense in B̄n+1(M). This will be satis�ed in any
geodesic space, for example.
First we prove a lemma which says the values of formulas have to change

very slowly when interpreted in su�ciently scaled down copies of M .

Lemma 9.3.1. Let L be the language with no additional functions or relations,
and let (M,d, ?) be an L-structure such that for some D ≥ 0, for all n ∈ N+,
the ball B̄n(M,d) is D-dense in B̄n+1(M,d). That is, every point in B̄n+1(M,d)
is at most distance D from a point in B̄n(M,d).
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For every r, ε > 0 and formula φ(x), there is N ∈ N such that whenever
n ≥ N and a is a tuple in Br·n(M,d), we have∣∣∣φ(M, d

n
,?)(a)− φ(M, d

n+1
,?)(a)

∣∣∣ ≤ ε.

Proof. We prove this by induction on formulas. The atomic formulas are just
of the form d(p, p′) with p, p′ ∈ Br·n(M,d). Here we have∣∣∣∣d(p, p′)

n
− d(p, p′)

n+ 1

∣∣∣∣ =
d(p, p′)

n(n+ 1)

≤ 2rn

n(n+ 1)

=
2r

n+ 1

which is ≤ ε for su�ciently large n.
Suppose ψ(x) is of the form u(φ1(x), . . . , φk(x)) where each φi has already

been checked. Whenever x ∈ Br·n(M,d), we have x ∈ Br(M, d
n
). Each φi is

controlled since it is a formula, so we obtain a uniform bound b such that

|φ(M, d
n
,?)

i (x)| ≤ b

and

|φ(M, d
n+1

,?)

i (x)| ≤ b

for all x ∈ Br·n(M,d). By uniform continuity of u on [0, b]k, there is some
δ such that inputs within δ of each other are mapped by u to within ε of
each other. By hypothesis, there are Ni after which each corresponding φi
have interpretations in (M, d

n
, ?) and (M, d

n+1
, ?) di�ering by at most δ. So the

claim for ψ holds using

N = max{Ni : i = 1, . . . , k}.
Suppose ψ(x) is of the form supy]

r
r′φ(x, y) with r′ < r and where φ(p, p′)

has already been checked for each pair p, p′ in Br·n(M,d). By approximat-
ing supy]

r
r′φ(x, y) with Riemann sums as in Lemma 2.7.6, there are �nitely

many ρ ∈ [r′, r] such that it su�ces to know that supy∈Bρ(M, d
n

) φ(p, y) and

supy∈Bρ(M, d
n+1

) φ(p, y) can be made as close as desired for su�ciently large n.

But for any given ρ ∈ [r′, r], this follows from the inductive hypothesis and
the D-density assumption. �

Proposition 9.3.2. Let L be the language with no additional functions or
relations, and let (M,d, ?) be an L-structure such that for some D ≥ 0, for all
n ∈ N+, the ball B̄n(M,d) is D-dense in B̄n+1(M,d).
Let C1 and C2 be two asymptotic cones of M . Let σ be an L-sentence, let

r1 < r2 be reals, and suppose that

σC1 = r1,

σC2 = r2.
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Then for any r with r1 < r < r2, there is an asymptotic cone C of M where

σC = r.

Proof. By applying �o±'s Theorem to both of C1 and C2, σ must be arbitrarily
close to each r1 and r2 in�nitely often. But by the previous proposition, for

any ε > 0, we have that eventually σ(M, d
n+1

,?) is within ε of σ(M, d
n
,?). So σ(M, d

n
,?)

must be arbitrarily close to r in�nitely often.
This means there is a sequence (ak)k∈N such that∣∣∣σ(M, d

ak
,?) − r

∣∣∣ ≤ 1

k
.

By choosing an ultra�lter U containing {ak : k ∈ N} and applying �o±'s
Theorem to the asymptotic cone of M with respect to U , we obtain the result.

�

Corollary 9.3.3. Let M be as in the previous proposition. Then M either has
1 or ≥ 2ℵ0 asymptotic cones up to elementary equivalence.

Proof. If there are two cones which are not elementary equivalent, then there
is a sentence σ which has a value r1 in one cone and r2 in the other cone.
By the above proposition, we obtain a cone with a distinct theory for each
r ∈ [r1, r2]. �

9.4. Ultraproducts of symmetric spaces and euclidean buildings. In
this section, we discuss the theorems from [14] showing that, provided we
restrict ourselves to (E,W ) spaces,

• the asymptotic cones of symmetric spaces of noncompact type are eu-
clidean buildings, and
• arbitrary ultraproducts of euclidean buildings are euclidean buildings.

In both cases, the atlas on the asymptotic cone is induced in a straightforward
way from the (E,W ) space atlas on the base space or spaces. The reason we
chose to use the (E,W ) atlas approach based on Kleiner and Leeb's presenta-
tion of euclidean buildings is that, as they mention, this makes the euclidean
building de�nition very easy to check in the asymptotic cones.
Earlier, we mentioned the intuition suggested by Kleiner and Leeb that,

while symmetric spaces fail to have the angle rigidity property that euclidean
buildings have, symmetric spaces do have this angle rigidity �at in�nity�. This
is a reference to the nice asymptotic behavior of geodesics in symmetric spaces,
which was needed obtain the spherical building at in�nity. The intuition for the
symmetric space case is that since the metric is scaled down in the asymptotic
cone construction, this asymptotic behavior of rays is pulled to the origin, so
that the nice asymptotic behavior of pairs of rays in M becomes a nice initial
behavior between the corresponding rays in the asymptotic cone of M .
It may be helpful to recall that asymptotic cones of Rk are all isometric to

Rk. When we talk about the ray γ′ in (M, d
n
, ?) corresponding to a ray γ in

(M,d, ?), we mean the same subspace of M , but the map γ : I →M must be
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reparametrized to get an isometry γ′ : I → M . The rays that appear in an
asymptotic cone over symmetric spaces of noncompact type or over euclidean
buildings will arise as ultraproducts of rays (viewed as subspaces) in the base
space. This is a consequence of the de�nability of rays in the class of CAT(0)
spaces.
Because Rk stays essentially the same under ultrapowers and asymptotic

cones, and ∆(E,W ) is compact and stays the same under ultrapowers, the proofs
are almost immediate and just require noting that the natural choices satisfy
the expected properties. For example, the ultralimits of charts yield charts, and
d4 distances are bounded by initial angles because the inequality is preserved
under ultralimits.
In both cases, the interesting and substantial property to check is the angle

rigidity property, much like when we wanted to see the spherical buildings at
in�nity. We are able to take arbitrary ultraproducts of euclidean buildings in
this result because each already satis�es the property. For symmetric spaces,
we have to take the asymptotic cone to get the property.

Proposition 9.4.1. For n ∈ N, let Mn be an (E,W ) euclidean building. Then
every ultraproduct

∏
UMn is also an (E,W ) euclidean building.

Proof. This is Theorem 5.1.1 of [14], translated to our notation. �

Proposition 9.4.2. Let (M,d, ?) be a symmetric space of noncompact type
with an (E,W ) atlas. Then every asymptotic cone

∏
U(Mn,

1
n
d, ?) is an (E,W )

euclidean building.

Proof. Similarly, this is Theorem 5.2.1 of [14]. �

10. Definability of Building Structure

To summarize our current position, consider the following.

• Each symmetric space of noncompact type (M,d, ?) has an associated
maximal (E,W ) atlas determined by the geometry of �ats in (M,d).
• This maximal (E,W ) atlas induces a euclidean building structure on
every asymptotic cone of (M,d, ?).
• All of these spaces have an associated spherical building at in�nity,
which we view as a structure on Γ?, the rays at the origin.
• We have already seen that Γ? is de�nable.
• In these spherical buildings, we can construct a projective plane and a
�eld by working with the incidence structure on vertices.

In the upcoming sections, we show how continuous logic captures this incidence
structure of the spherical building, and lets us construct the projective plane
and �eld just mentioned. We work across the class of asymptotic cones of a
given symmetric space of noncompact type (M,d, ?). Our language will only
use the metric symbol, basepoint, and a �nite number of constants used to
label some vertices.
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Recall that since we are dealing with CAT(0) spaces with extension of seg-
ments to rays, we already have de�nability of Γ?N in the class of spaces we are
working in. So we can quantify over Γ?N . Moreover, since Γ?N is bounded,
this quanti�cation is exact. Our focus is on subsets of Γ?N which have special
meaning in the spherical building at in�nity.

10.1. De�nability of orbits. The (E,W ) atlas in a euclidean building N
provides a map θ that takes any γ ∈ Γ?N and assigns an element of the
anisotropy polyhedron ∆(E,W ). In this section, we show the de�nability of the
set of rays sharing a given image under θ. In particular, this means we get
de�nability of the set of vertices of a given label (as in section 8.9) in the
spherical building at in�nity.
The next de�nition introduces notation for preimages under θ in order to

make our discussion easier.

De�nition 10.1.1. Let N be an (E,W ) space, so that we have a map θ and
an anisotropy polyhedron. Let Θ ∈ ∆(E,W ). We will write ΓΘ

? (N) to mean the
set

{γ ∈ Γ?(N) : θ(γ) = Θ}
of rays starting at ? and with ∆(E,W )-direction Θ.

Recall that we �x an ordered set of labels 1, . . . , k on the vertices of ∆(E,W )

when E = Rk, as in 8.9, and that this labeling induces a labeling on the vertices
of the spherical building by taking preimages under θ.
In this and the next few sections, we will be talking about symmetric spaces

with a selection of constant rays. To help state the results more succinctly, we
make the following de�nition.

De�nition 10.1.2. By a labeled symmetric space, we will mean a sym-
metric space of noncompact type (M,d, ?) with rank K ≥ 2, equipped with
its maximal (E,W ) atlas, and with Θ1, . . . ,ΘK the ordered vertices of ∆(E,W ).
We associate to each Θk a ray γk ∈ ΓΘk

? (M), which we will think of as an
N-indexed sequence.

Thus, a labeled symmetric space is a metric structure (M,d, ?, γ1, . . . , γK).
We will be looking at structures arising from asymptotic cones of these, and
extensions of them by a few more constants. In every case, we will work in an
appropriate language L with at least K many constant symbols for the rays
γ1, . . . , γK , and possibly more constants for rays, so that our labeled symmetric
space is an L-structure. The controllers, in particular the bounds for λ, can
be found by noting that an N-indexed ray in Γ? is contained in

∏
n∈N B̄n(M).

Finally, recall that asymptotic cones of these spaces will be euclidean build-
ings. We can extend the asymptotic cone construction to the labeled symmetric
space structure, but this requires a note about the rays. Namely, if we just
took ∏

U

(M,
d

n
, ?, γ1, . . . , γK)
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then the rays γk would degenerate to (? : i ∈ I)/ ∼. But, there is a clear
correspondence between rays in (M,d) and rays in (M, d

n
) given by rescaling

the rays.

De�nition 10.1.3. Given a ray γ in (M,d), we de�ne the n-th rescaling of
γ to be the ray nγ in (M, d

n
) de�ned by

nγ(r) = γ(rn)

for all r ∈ R≥0.

Now we can extend the de�nition of asymptotic cones.

De�nition 10.1.4. If M is a labeled symmetric space (M,d, ?, γ1, . . . , γK)
and U is a nonprincipal ultra�lter over N, then the asymptotic cone ofM with
respect to U is the structure∏

U

(M,
d

n
, ?, nγ1, . . . , nγK).

Of course, this asymptotic cone is then a �labeled euclidean building�, in the
sense that the resulting rays still satisfy

γk ∈ ΓΘk
? .

Again, note that we work in a language L having nothing but constant
symbols for the rays γ1, . . . , γK .

Theorem 10.1.5. Let M be a labeled symmetric space, and let Θ ∈ ∆(E,W ).
Let C be the class of asymptotic cones (N, d, ?, γ1, . . . , γK) of M .
Then ΓΘ

? is L-de�nable in the class C. That is, there are L-formulas depend-
ing only on C which de�ne ΓΘ

? (N) for each N ∈ C.

Proof. Since we are checking de�nability of a set of sequences, we need to show
that every �nite projection πI(Γ

Θ
? ) is de�nable in the class.

Pick any N in C. Let I ⊆ N be �nite, and write P for the projection πI(Γ
Θ
? )

of ΓΘ
? onto its coordinates in I. That is, P consists of the I-tuples (ai : i ∈ I)

which are projections of rays γ ∈ Γ?(N) satisfying θ(γ) = Θ.
First we �nd a formula φ(xi : i ∈ I) with P as its zero set. To do this,

we use our knowledge of the �nite sets D(Θ,Θk). The key insights are the
following.

• θ(γ) = Θ i� for each k ∈ {1, . . . , K}, the angle between γ and γk is one
of the �nitely many angles in D(Θ,Θk). That is, we can triangulate
the position of θ(γ) in the polytope ∆(E,W ) by considering the angles
θ(γ) makes with the vertices Θ1, . . . ,ΘK .
• We can test if the angle between γ and γk is in D(Θ,Θk) by �nding sub-
segments γ([t0, t1]) and γk([t0, t1]) which occopy a common apartment
and diverge according to an angle in D(Θ,Θk).
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• We can �nd such subsegments using �nitely many �xed t by exploiting
what we know about d(γ(t), γk(t)) from the piecewise linearity Propo-
sition 8.6.4 and its corollary.

To help standardize our approach, let J ⊆ N be the �nite set I∪{0, 1, . . . , 2n+
1} where n is the number of re�ections in W?. Note that n is an upper bound
for D(θ(γ),Θk) over all γ and k ∈ {1, . . . , K}. Consequently, each function
d(γ(t), γk(t)) consists of at most n many linear pieces. We will sample the rays
at t = 0, 1, . . . , 2n + 1 and use a pigeon-hole argument to estimate the slope
of at least one of these linear pieces. Recall that we can quantify exactly over
πJ(Γ?N).
Let φ be given by

inf
(yj :j∈J)∈πJ (Γ?N)

∑
i∈I

d(xi, yi) +
∑

k∈{1,...,K}

∏
j∈{0,...,n}

(ψk,j + ψ′k,j)


where ψk,j and ψ

′
k,j are the formulas de�ned below. Because of the quanti�-

cation, the variables yj range over points on rays γ ∈ Γ?N . For convenience
below, we will refer to such rays γ, though we will only be discussing the points
y0, . . . , y2n+1. Recall that each γk is a constant sequence and we are given its
coordinates, which we write below in the form γk(j).
The

∑
i∈I d(xi, yi) term just measures the distance of a tuple (xi) to the

relevant projection (yi) of a ray γ.
The formula ψk,j measures the �atness of the segments γ([2j, 2j + 2]) and

γk([2j, 2j + 2]) by comparing two secant lines of the function d(γ(t), γk(t)) on
[2j, 2j + 2]. It compares the slope of the secant of the �rst half to that of the
whole length.

ψk,j is de�ned to be

|d(y2j, y2j+1)− d(γk(2j), γk(2j + 1))|
1

≈ |d(y2j, y2j+2)− d(γk(2j), γk(2j + 2))|
2

Notice that ψk,j is 0 exactly when d(γ(t), γk(t)) is linear, since we already know
this function is convex.
The formula ψ′k,j measures the divergence of γ and γk by comparing the slope

of the secant of the function d(γ(t), γk(t)) to the possible slopes corresponding
to the angles α ∈ D(Θ,Θk).

ψ′k,j is de�ned to be∏
α∈D(Θ,Θk)

(
|d(y2j, y2j+1)− d(γk(2j), γk(2j + 1))|

1
≈ 2 sin(α/2)

)
Notice that ψ′k,j is 0 exactly when this slope of the secant over [2j, 2j + 1]
corresponds to one of the α ∈ D(Θ,Θk). When we additionally have ψk,j = 0,
this slope of the secant is actually the slope of a linear piece of d(γ(t), γk(t)).
We will now verify that P is the zero set of φ.
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First we show that P is a subset of the zero set of φ. Suppose (xi : i ∈ I) ∈ P .
That is, (xi) is the I-projection of some ray γ with θ(γ) = Θ. Let (yj : j ∈ J)
be the J-projection of this same γ. We will check that the inf in φ is 0 and
this is witnessed by the y we have just identi�ed. The

∑
d term of φ is 0

because xi = yi for i ∈ I. For the
∑

k

∏
j term, we will argue that for each

k ∈ {1, . . . , K} there is at least one j where ψk,j and ψ′k,j are both 0.
Let k ∈ {1, . . . K}. The function d(γ(t), γk(t)) consists of at most n many

linear pieces. Our product is over (n+1) many values of j and involves (n+1)
many intervals [2j, 2j + 2] with pairwise disjoint interiors. So d(γ(t), γΘ(t))
must be linear on at least one of these intervals. For such an interval [2j, 2j+2],
the slope of the secant line over [2j, 2j+1] is exactly the slope of the secant line
over [2j, 2j + 2]. This implies ψk,j = 0. Since this is the slope of a linear part
of the function and we have assumed θ(γ) = Θ, this slope must be 2 sin(α/2)
for some α ∈ D(Θ,Θk). This implies ψ′k,j = 0.
We have shown that P is contained in the zero set of φ. We now handle the

reverse containment. Suppose φ(xi : i ∈ I) = 0. Since asymptotic cones are
countable ultraproducts and hence ℵ1-saturated, the inf is realized by some
(yj) ∈ πJ(Γ?N). This (yj) is the J-projection of a ray γ such that for all
k ∈ {1, . . . , K}, there is some j with ψk,j = ψ′k,j = 0.
Since ψk,j = 0, the function d(γ(t), γk(t)) is linear on [2j, 2j + 2]. Since

ψ′k,j = 0, the slope of d(γ(t), γk(t)) in this interval is 2 sin(α/2) for some

α ∈ D(Θ,Θk). So, γ ∈ ΓΘ
? . Since the

∑
d term in φ is 0, we conclude that

(xi : i ∈ I) is equal to πI(γ) ∈ P .
To complete the proof we will show that we can obtain the distance to P

using φ and the ε-δ lemma 3.9.6.
Suppose φ(xi : i ∈ I) ≤ δ for some δ > 0. The inf in φ is witnessed by some

(yj : j ∈ J) which is the projection πJ(γ) of some γ ∈ Γ?N and satis�es(∑
i∈I

d(xi, yi)

)
+

∑
k∈{1,...,K}

∏
j∈{0,...,n}

(ψk,j + ψ′k,j) ≤ δ.

Since both terms are nonnegative, we get∑
i∈I

(d(xi, yi)) ≤ δ,

and we get for all k ∈ {1, . . . , K} that∏
j∈{0,...,n}

(ψk,j + ψ′k,j) ≤ δ.

This last inequality implies that (ψk,j + ψ′k,j) ≤ δ1/(n+1) for at least one j, and

hence ψk,j, ψ
′
k,j ≤ δ1/(n+1) for at least one j ∈ {0, . . . , n}. Fix such a j for each

k.
For each k ∈ {1, . . . , K}, we argue as follows. Since each d(γ(t), γk(t)) is a

piecewise linear, nondecreasing function of t, there must be a subinterval S of
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[2j, 2j + 2] where d(γ(t), γ′(t)) has a slope between the slopes m1 and m2 of
the secant lines.

m1 =
|d(y2j, y2j+1)− d(γ2j, γ2j+1)|

1

m2 =
|d(y2j, y2j+2)− d(γ2j, γ2j+2)|

2

The bound on ψj implies that

|m1 −m2| ≤ δ1/(n+1),

and so the slope on S is within δ1/(n+1) of m1. The bound on ψ′j means that

m1 is within δ1/(n+1) of one of the slopes 2 sin(α/2) correspondng to an angle
α ∈ D(Θ,Θk). Thus, the slope on S is within 2δ1/(n+1) of one of the values
2 sin(α/2).
Since γ exists in some apartment, this shows that by selecting δ small

enough, we can ensure γ is as close as we want to another ray γ′ which has
a segment where d(γ′(t), γk(t)) is linear and has slope 2 sin(α/2) for some
α ∈ D(Θ,Θk). That is, for su�ciently small δ, we have γ arbitrarily close to
ΓΘ
? . Since (xi : i ∈ I) is at most δ away from πI(γ), this shows we can make
d((xi), πI(Γ

Θ
? )) arbitrarily small by selecting δ small enough. �

As a corollary, we note that because any γ ∈ Γ? which lies in the interior of
a chamber or face determines that chamber or face uniquely, we can essentially
use the above result to quantify over chambers and faces of the spherical build-
ing at in�nity by quantifying over ΓΘ

? for some �xed Θ in the corresponding
simplex of ∆(E,W ). We will not need to do this for our application, but we note
it because it indicates that we are interpreting the simplicial spherical building
structure. In the end of the next section, we will note that we can obtain the
containment relation on these simplices.
For our application, our focus is on the vertices and the incidence relation

given by containment in a common chamber.

10.2. De�nability of the incidence relation. Spherical buildings have an
incidence relation on their vertices. Two vertices are called incident when
they occupy a common face or chamber. Equivalently, since any two vertices
are contained in some apartment, we can say two distinct vertices v1, v2 are
incident when their distance is minimal among D(θ(v1), θ(v2)).
When discussing the spherical building at in�nity of a euclidean building,

that can be written as follows. Taking Θ and Θ′ to be distinct points in ∆(E,W ),

two rays γ ∈ ΓΘ
? and γ′ ∈ ΓΘ′

? are incident if there is a euclidean apartment
containing both rays and the angle ∠?(γ1, γ2) is minimal among D(Θ,Θ′).
Yet another equivalent characterization is that γ ∈ ΓΘ

? and γ′ ∈ ΓΘ′
? are

incident if the function d(γ1(t), γ2(t)) is just the line with slope 2 sin(α/2)
where α is the minimal value in D(Θ,Θ′). This characterizes the incidence
relation purely in terms of the distances between the rays.
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Theorem 10.2.1. Let M be a labeled symmetric space, and let Θ,Θ′ be a
distinct pair in ∆(E,W ).
Let C be the class of asymptotic cones (N, d, ?, γ1, . . . , γK) of M .
Then the set of vertices γ′ ∈ ΓΘ′

? which are incident with a given γΘ ∈ ΓΘ
? is

L-de�nable over γΘ in the class C.

Proof. We show that the �nite projections are de�nable. Let I ⊆ N be �nite.
Recall that we can quantify exactly over ΓΘ

? and ΓΘ′
? by de�nability result of

the previous section and the fact that each �nite projection of these sets is
bounded.
Consider the formula φ given by

inf
(yi:i∈I)∈πI(ΓΘ′

? )

((∑
i∈I

d(xi, yi)

)
+
∑
i∈I

(d(yi, γΘ(i)) ≈ i · 2 sin(α/2))

)
where α is the minimal value of D(Θ,Θ′).
First, we check that φ has the right zero set. Suppose (xi : i ∈ I) is the

I-projection of a ray γ′ ∈ ΓΘ′
? incident with γΘ. As discussed in the paragraph

introducing this section, this means d(γ′(t), γΘ(t)) is a linear function with
slope 2 sin(α/2). Hence (xi) itself witnesses that the inf in φ is 0.
For the converse, suppose φ(xi : i ∈ I) = 0. Then since asymptotic cones are
ℵ1-saturated, there is some (yi) realizing the inf. This (yi) is the I-projection
of a ray γ ∈ ΓΘ′

? , and because the
∑

i∈I term in φ is 0, we know the function
d(γ(t), γΘ(t)) is linear and has slope 2 sin(α/2) on at least the interval

S = [0,max(i ∈ I)].

Since the segment γ(S) is in an apartment and can be extended to a ray which
maintains this slope, we can assume without loss of generality that (yi) and
hence γ is chosen incident to γΘ. Since the

∑
d term in φ is 0, we have that

(xi) = (yi). Thus (xi) is the I-projection of a ray in ΓΘ′
? incident with γΘ, as

required.
Finally, we check that we can apply the ε-δ lemma 3.9.6 to complete the

proof. Let δ > 0 and suppose φ(xi : i ∈ I) ≤ δ. Witness the inf by some
(yi) ∈ πI(Γ

Θ′
? ). We have that (yi) is the I-projection of a ray γ′ ∈ ΓΘ′ and

satis�es (∑
i∈I

d(xi, yi)

)
+
∑
i∈I

(d(yi, γΘ(i)) ≈ i · 2 sin(α/2)) ≤ δ.

This implies ∑
i∈I

d(xi, yi) ≤ δ,

and for all i ∈ I we also get

(d(yi, γΘ(i)) ≈ i · 2 sin(α/2)) ≤ δ.
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Since γ′ ∈ ΓΘ′
? , we know that the linear pieces of d(γ′(t), γΘ(t)) must have

slopes in D(Θ,Θ′). But D(Θ,Θ′) is �nite, so for su�ciently small δ, the last
inequality above implies that d(yi, γΘ(i)) ≈ i · 2 sin(α/2) is exactly 0, i.e.

d(yi, γΘ(i)) = i · 2 sin(α/2).

As we argued earlier, this means that the subsegment γ′([0,max(i ∈ I)]) can
be extended to a ray adjacent to γΘ, and without loss of generality we can
take γ′ to be this ray.
So, for su�ciently small δ, we have that (xi) is within δ of some I-projection

of a ray γ′ ∈ ΓΘ′ adjacent to γΘ. �

As noted at the end of the previous section, an immediate corollary of this
result is that we can get the containment relation between faces and cham-
bers by selecting a representative Θ ∈ ∆(E,W ) in the interior of each face and
chamber.

10.3. De�nability of a projective plane. We now comment on extracting
the set of rays corresponding to the projective plane using the de�nability
results from the previous two sections.
Recall that we obtain the projective plane as follows. In the spherical build-

ing, we consider vertices labeled 1 to be projective points, and vertices labeled
2 to be projective lines. We use the incidence relation of being contained in a
common chamber. Because we are working with a nice class of spaces, the the-
ory of buildings tells us that we have a projective space over some �eld. So we
can obtain a projective plane using the construction at the start of Proposition
8.3.1.
In the current setting, recall that each vertex of the spherical building cor-

responds to a singular ray γ. We will start with a vertex p0 labeled 1, and
select a vertex `0 labeled 2 which is not incident with p0. This gives us a point
p0 and a line `0 not containing that point. Let P (`0) be the set of label 1
vertices which are incident with `0. These are the points on the line `0. For
each such p ∈ P (`0), there is a label 2 vertex `p,p0 which is incident with both
p and p0. These are the lines which contain both points p and p0. For each
such `p,p0 , there is a set P (`p,p0) of label 1 vertices incident with `p,p0 . These
are the points on the line `p,p0 . The projective plane is the collection of all
points obtained this way. That is, it is the union⋃

p∈`0

P (`p,p0).

In our structures, this will be realized as a de�nable subset of rays in Γ?
corresponding to some type 1 vertices in the spherical building at in�nity.
The previous sections showed that we can quantify over the set ΓΘk

? of ver-
tices of a given label Θk, and that given some γ ∈ ΓΘ

? corresponding to a
known vertex with label Θ, we can quantify over rays corresponding to inci-
dent vertices of another given label Θ′.
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We now use this to show de�nability of a projective plane across the as-
ymptotic cones of a labeled symmetric space. We will also need to quantify
over vertices of a given type which are simultaneously incident to two other
vertices. This is not always possible, so we will select our constants carefully
to enable us to do so in a special case.

Theorem 10.3.1. Let M be a labeled symmetric space, where we have selected
γ1 and γ2 to have the maximal possible distance in D(Θ1,Θ2).
Let C be the class of asymptotic cones (N, d, ?, γ1, . . . , γK) of M .
Then the projective plane built from γ1 and γ2 is L-de�nable in the class C.

Proof. Note that γ1 and γ2 in N continue to have the maximal possible dis-
tance.
We think of ΓΘ1

? as a set of projective points and ΓΘ2
? as a set of projective

lines. So we are given a projective point γ1 and a projective line γ2 which is
not incident with γ1. The general construction of the projective plane and the
de�nability results above provide the proof, once we have established that we
can quantify over the set consisting of the projective lines γ′2 ∈ ΓΘ2

? which are
simultaneously incident with both the point γ1 and some γ′1 ∈ ΓΘ1

? which is
incident with γ2.
We will use the ultraproduct characterization of de�nability. We can work

in the closure C ′ of C under ultraproducts, recalling that ultraproducts of
euclidean buildings are still euclidean buildings with the induced atlas.
Denote the incidence relation of being contained in a common chamber by
∼. The set

P = {γ′1 ∈ ΓΘ1
? : γ′1 ∼ γ2}

of label 1 rays incident with γ2 is de�nable by our earlier result. Our goal is to
show the de�nability of the set A of rays γ′2 ∈ ΓΘ2 which are simultaneously
incident with γ1 and some γ′1 ∈ P , that is

A = {γ′2 ∈ ΓΘ2
? : there is γ′1 ∈ P such that γ′2 ∼ γ1 and γ′2 ∼ γ′1}.

As usual, because A is a set of sequences, we check the de�nability of its �nite
projections.
We consider the zero set of a formula similar to the one we used for the

proof of Theorem 10.2.1. Let φ be the formula given by

inf
γ′1∈P

inf
(yi)∈πI(Γ

Θ2
? )

((∑
i∈I

d(xi, yi)

)
+ σγ1 + σγ′1

)
where σγ1 is the formula∑

i∈I

(d(yi, γ1(i)) ≈ i · 2 sin(α/2)) ,

and similarly for σγ′1 but with γ
′
1 in place of γ1. Here, α is the minimal distance

between elements of ΓΘ1 and ΓΘ2 .
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Notice that πI(A) is the zero set of φ, for reasons similar to those in our
proof of 10.2.1.
Now, suppose (xi) is in the zero set of φ in an ultraproduct. Then (xi) is the

I-projection of some γ′2 which is incident with both γ1 and some γ′1. Because
γ′1 is incident with γ2, and because γ2 is at the maximal possible distance from
γ1, we must have that γ1 and γ

′
1 are distinct. So, there is a unique label 2 ray

incident with both γ1 and γ′1.
Moreover, for similar reasons γ1 and γ′1 are the ultralimits of a sequence of

distinct pairs γ1,j and γ′1,j from each factor, each such pair having a unique
shared label 2 incident ray γ2,j. Thus γ

′
2 must be the unique ray arising as the

ultralimit of the γ2,j. So, (xi) is in the ultraproduct of the zero sets. �

The problem with generalizing the de�nability used in the argument above
is that being not incident is not de�nable. In general, there are sequences of
pairs from ΓΘ1

? × ΓΘ2
? which are always non-incident, but which tend toward

an incident pair. Requiring that γ1 and γ2 are at the maximal distance avoids
this and makes things easy to discuss in the ultraproduct.

10.4. Field operations. In this section, we show the existence of formulas
whose zero sets are the graphs of the �eld operations constructed on a line
in the projective plane, once we select some constants to set the scale of the
�eld. Note that because we are working in a projective line, there is an in�nity
element ∞. We do not actually need the de�nability of the projective plane
for this, since we will provide ourselves enough constants to carry out the con-
struction. The constant ray γ2 will serve as the projective line corresponding
to the �eld.
The language L used below is taken to have constant symbols for γ1, . . . γk

and also the new constants we describe.

Theorem 10.4.1. Let M be a labeled symmetric space with an additional 7
constant rays

0, 1,∞ ∈ ΓΘ1
? (M)

`0, `1, `∞, `
′
∞ ∈ ΓΘ2

? (M)

such that

• 0, 1,∞ are distinct and are all incident with γ2,
• `0, `1, `∞, `

′
∞ are distinct, not equal to γ2, and satisfy

� `0 is incident with 0,
� `1 is incident with 1,
� `∞, `

′
∞ are both incident with ∞,

� there is no γ ∈ ΓΘ1(M) which is incident with all three of `0, `1, `∞.

Let C be the class of asymptotic cones

(N, d, ?, γ1, . . . , γK , 0, 1,∞, `0, `1, `∞, `
′
∞)

of M .
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Then the set F∞ of rays γ ∈ ΓΘ1
? incident with γ2 is de�nable in C, and there

are L-formulas φ+ and φ× such that for every N ∈ C, the zero sets of φ+ and
φ× restricted to F∞ are the graphs of the (extended) addition and multiplication
operations of a �eld structure (with an in�nite point) on F∞.
That is, for γa, γb, γc incident with γ2, we have the following:

• φ+(γa, γb, γc) = 0 i� γa + γb = γc or (γa, γb) = (∞,∞),
• φ×(γa, γb, γc) = 0 i� γa · γb = γc or (γa, γb) ∈ {(0,∞), (∞, 0)}.

Proof. The de�nability of the set of projective points incident with γ2 was
established in 10.2.1. This gets us the underlying set which we know can be
identi�ed with a projective line over a �eld F.
For the formulas φ+ and φ×, consider the classic construction we discussed

in Proposition 8.3.1 and note that triples on the graph can be described by a
�nite number of incidence relations and the constants we have given ourselves.
For example, a triple (a, b, c) on the graph of addition (that is, satisfying
a+ b = c) can be characterized by the existence of several projective lines and
points with a particular con�guration of incidences.
So, we can construct the needed φ+(x, y, z) or φ×(x, y, z) by writing a for-

mula using infs over ΓΘ1 , ΓΘ2 , rays in ΓΘ1 incident with a given ray in ΓΘ2 ,
and rays in ΓΘ2 incident with a given ray in ΓΘ1 , and asserting that the rays
have the required incidences by summing the formulas used in the incidence
de�nability Theorem 10.2.1 which have the appropriate zero sets.
Such a formula will be zero exactly when a con�guration of points and lines

exists showing that (a, b, c) is on the graph. This completes the proof. �

11. Instability of the Asymptotic Cones

In these sections, we use the results we have obtained to demonstrate that
the order property holds in a uniform way in the class of asymptotic cones of
labeled symmetric spaces de�ned over the reals. We will conclude that in this
case, the spaces (M, d

n
, ?) approach the order property, and so by Proposition

4.0.9, there are many nonisomorphic asymptotic cones.

11.1. ρRU as a metric ultraproduct. For the spaces we are interested in,
the �eld in the asymptotic cone is the �eld ρRU below, originally de�ned by
Abraham Robinson. A detailed discussion of this �eld can be found in chapters
3 and 4 of [16]. It is a nonarchimedean, real closed, valued �eld.
In this section we give the original de�nition of the �eld via discrete ul-

traproducts and valuations, and show how it can be constructed directly as
a metric ultraproduct. We then easily observe that this structure is always
unstable by exploiting the usual order for real closed �elds in a bounded, non-
compact subset. As a corollary, we reproduce the known result that when the
continuum hypothesis fails, there are 22ℵ0 many nonisomorphic such �elds.

De�nition 11.1.1. For U a nonprincipal ultra�lter on N, we de�ne ρRU to be
the real closed valued �eld constructed as follows.
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First denote the discrete ultraproduct of R with respect to U by

∗RU =
∏
U

(R, <,+, ·, 0, 1).

Let ρ be the equivalence class of (e−n)n∈N, which is a positive in�nitesimal in
∗RU . De�ne the subring

M0 = {t ∈ ∗RU : |t| < ρ−k for some k ∈ N}
which can be informally thought of as the subset of ��nite with respect to ρ�
elements of ∗RU . De�ne

M1 = {t ∈M0 : |t| < ρk for all k ∈ N}
which is the maximal ideal of non-units in M0 and informally can be thought
of as the set of �in�nitesimal with respect to ρ� elements.
We de�ne ρRU to be the �eld M0/M1.
The valuation v on ρRU is de�ned by v(x) = st(logρ |x|). The associated

norm ||x||v is given by e−v(x), and the associated metric dv is given by dv(x, y) =
||x− y||v.

Proposition 11.1.2. The metric ultraproduct∏
U

(R, n
√
d,+, ·, 0, 1)n∈N

is isomorphic to
(ρRU , dv,+, ·, 0, 1)

where n
√
d is the metric given by

n
√
d(x, y) = n

√
d(x, y)

for d the usual metric on R.

Proof. We �rst need to establish that each (R, n
√
d,+, ·, 0, 1) is a metric struc-

ture in the same language. This requires checking that the suggested metric
is in fact a metric, and that the functions +, · are controlled in a uniform way.
That n

√
d is symmetric and positive de�nite is clear. The triangle inequality

follows from subadditivity and monotonicity of n
√
x. So each n

√
d is a metric.

Uniform continuity of + with respect to n
√
d does not depend on n nor on

the magnitude of its inputs.

n
√
d((x1, y1), (x2, y2)) ≤ δ ⇐⇒ max

(
n
√
d(x1, x2),

n
√
d(y1, y2)

)
≤ δ

⇐⇒ max
(

n
√
d(x1, x2), n

√
d(y1, y2)

)
≤ δ

⇐⇒ max (d(x1, x2), d(y1, y2)) ≤ δn

=⇒ d(x1 + y1, x2 + y2) ≤ 2δn

⇐⇒ n
√
d(x1 + y1, x2 + y2) ≤ n

√
2δ

=⇒ n
√
d(x1 + y1, x2 + y2) ≤ 2δ
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Uniform continuity of · with respect to n
√
d does not depend on n but

does require restriction to bounded balls. The function ∆ given by ∆(ε) =
min{1, ε

2R+1
} can be used for the ball of radius R.

n
√
d((x1, y1), (x2, y2)) ≤ δ ⇐⇒ max (d(x1, x2), d(y1, y2)) ≤ δn

=⇒ d(x1y1, x2y2) ≤ δn||x1 + y1||+ δ2n

=⇒ d(x1y1, x2y2) ≤ δn2R + δn

=⇒ d(x1y1, x2y2) ≤ δn(2R + 1)

⇐⇒ n
√
d(x1y1, x2y2) ≤ δ(2R + 1)1/n

=⇒ n
√
d(x1y1, x2y2) ≤ δ(2R + 1)

This veri�es that each (R, n
√
d,+, ·, 0, 1) can be viewed as a metric structure

in the same language L = (+, ·, 0, 1).
We now describe the claimed isomorphism with (ρRU , dv,+, ·, 0, 1). Notice

that we have the equality n
√
x = elog(x)/n for nonzero x. Moreover, the ultralimit

of the function elog(x)/n is the function e− logρ(x) by de�nition of ρ. We can take
this to hold for 0 as well by the convention that e−∞ is 0 when de�ning the
valuation norm. Thus, the sequences (an)n∈N with n

√
d(0, an) having bounded

ultralimit are exactly those sequences t of ∗RU with ρk < t < ρ−k for some
k ∈ N, i.e. the elements t ∈ρ RU . This establishes that the underlying set of
sequences for both structures is the same. It is also clear that the distance
between two sequences (an) and (bn) is the same in either metric, and so the
identity function is an isometry between the structures which �xes 0 and 1.
Since the operations in both structures are de�ned in the same way, this is an
isomorphism. �

Proposition 11.1.3. (ρRU , dv,+, ·, 0, 1) is unstable.

Proof. Let φ(x, y) be the formula

inf
z

]21d(x+ (z · z), y).

The �eld contains a copy of the naturals, so for each n ∈ N, let an = n ∈ρ RU .
Note that the distance between any distinct m,n ∈ N is

lim
U

n
√
|m− n| = 1.

So the sequence (an) is 1-separated and contained in the closed ball of radius
1 at the origin 0.
Whenever m ≤ n, we have

inf
z

]21d(m+ z2, n) = 0

since there is some z ∈ B̄1 with m+ z2 = n.
Whenever m > n, we have

inf
z

]21d(m+ z2, n) = 1
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which is witnessed by z = 0.
So φ and (an) demonstrate the order property. �

Corollary 11.1.4. The sequence of structures (R, n
√
d,+, ·, 0, 1) approaches

the order property.

Proof. This is clear by using the formula φ above and the copy of the naturals
in each factor. �

Notice that each (R, n
√
d,+, ·, 0, 1) is stable because it is proper. The insta-

bility arises because of the distortion of the metric. Compare this to our earlier
observation that asymptotic cones of (R, d) are just isomorphic to (R, d) again.
We can easily conclude the following known result (for example, see the

discussion after Theorem 1.8 of [15]).

Corollary 11.1.5. If the continuum hypothesis holds, then ρRU is always sat-
urated. If the continuum hypothesis fails, there are 22ℵ0 many nonisomorphic
ρRU as we vary U .

Proof. The saturation claim follows from the construction of ρRU as a countable
ultraproduct. The many models claim follows from applying 4.0.9 and the
previous corollary. �

11.2. Approaching the order property in the projective line. When our
symmetric spaceM is given by a connected, absolutely simple (i.e. simple over
C) real Lie group G, the �eld associated to the spherical building at in�nity
for M is just the real �eld R. But, in this case, the �eld associated to the
spherical building of the U asymptotic cone is known to be ρRU (see Theorem
2.6 and the surrounding discussion of [15]). Each of these is a real closed �eld,
and so we can use an analog of the usual construction of the ordering for real
closed �elds to �nd ordered sequences.
Note that these �elds are appearing as subsets of rays in our structures.

Thus, their metrics are not the standard ones, since when viewed as subsets
of rays we have only given them the (bounded) metric induced from ∠∞. A
di�erent way to carry out our argument would be to focus on the spherical
building structure, noting that the our earlier de�nability results are inde-
pendent of the choice of ultra�lter, and so imply de�nability of the spherical
building and �eld in the symmetric spaces involved in the asymptotic cone. In
that view, one could see the spherical building of the asymptotic cone as the
ultraproduct of spherical buildings of the symmetric spaces, and connect this
observation to the instability shown in the previous section. Here, we will just
directly check that our structures approach the order property.
We are restricting ourselves to the case where G is de�ned over R, but

suspect that the methods developed in this thesis might help in understanding
the complex case where one would obtain a copy of the analogous �eld ρCU
with metric given by ∠∞. The appearance of this �eld and metric in the
structure may help in understanding such asymptotic cones.
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We work in the language L with K + 7 many constants for rays γ1, . . . , γK
and 0, 1,∞, `0, `1, `∞, `

′
∞. Write Consts for the set of these constants.

Theorem 11.2.1. Let M be as in Theorem 10.4.1, and moreover assume its
underlying metric space is given by G/K for G some connected, absolutely
simple Lie group de�ned over R.
For each n ∈ N+, let Mn be the n-th factor

Mn = (M,
d

n
, ?, nγ : γ ∈ Consts)

in the construction of asymptotic cones of M .
Then the sequence of L-structures (Mn : n ∈ N+) approaches the order

property.

Proof. EachMn is a symmetric space, so there is a spherical building at in�nity
where we can (externally to the logic) construct the real �eld on the projective
line corresponding to γ2. Consider the sequence (νk : k ∈ N) of rays νk
corresponding to the natural numbers k constructed in (M,d). We will use
this sequence to demonstrate that we approach the order property.
Because the incidence relation is de�ned via chambers in the building at

in�nity, scaling the metric on M does not a�ect the incidence. So each of
these rays

νk ∈ ΓΘ1
? (M)

has an n-th scaling
nνk ∈ ΓΘ1

? (Mn)

which represents the natural k in the �eld constructed in Mn. Moreover, in
any asymptotic cone, we obtain the elements (nνk : n ∈ N+)/ ∼, which for
k ∈ N represent the natural k in the �eld constructed in the asymptotic cone.
We will just write these as the corresponding natural for convenience. That
is, we write k = (nνk : n ∈ N+)/ ∼ for each k ∈ N.
Now, because the original naturals and∞ inM were all distinct rays and we

are just using rescalings, their ultralimits in the asymptotic cone must pairwise
span �at sectors (i.e. diverge linearly, not piecewise linearly). That is, in any
asymptotic cone, the naturals form a discrete set with a lower bound δ on the
pairwise distances, independently of the choice of ultra�lter. The bound δ is
distance corresponding to the minimal nonzero element of D(Θ1,Θ1).
Let C be the class of asymptotic cones

(N, d, ?, γ1, . . . , γK , 0, 1,∞, `0, `1, `∞, `
′
∞)

of M .
Recall that we can quantify over the set F of rays incident with γ2, and that

this set of points corresponds to the underlying set of the �eld we know to be
ρRU . Note that we are only saying this is a copy of ρRU as a �eld. The metric
in this case is inherited from rays and is bounded, not the standard metric
constructed in the previous section.
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Consider the formula ψ≤(x, y) given by

inf
t∈F

inf
s∈F

(φ+(x, s, y) + φ×(t, t, s)) .

By ℵ1-saturation of the ultraproduct, we have that ψ≤(x, y) = 0 exactly when
there are t, s such that t2 = s and x+ s = y; i.e. exactly when x plus a square
is y. So with the sequence (ak)k∈N = (0, 1, 2, . . . ) we have that ψ≤(ai, aj) = 0
i� i ≤ j.
We now check that (Mn : n ∈ N+) approaches the order property using this

last paragraph. This mostly comes down to using that the above paragraph
applies independently of the choice of ultra�lter. Our candidate sequence to
order in each Mn will be the sequence (nνk : k ∈ N) of naturals in that space.
First, if there were an ε > 0 and k ∈ N with in�nitely many n where in Mn,

there were ai and aj in

(a0, . . . , ak) = (nν0, . . . , nνk)

with i ≤ j but with ψ≤(ai, aj) > ε, then in some ultraproduct we would
get a pair a, b on the �eld line representing naturals with a ≤ b but with
ψ≤(a, b) ≥ ε > 0. This is impossible. So it must be that for all ε > 0
and k ∈ N, there are co�nitely many n where in Mn we have ψ≤(ai, aj) ≤ ε
whenever i ≤ j < k.
Next, suppose it were possible to �nd for every ε > 0 in�nitely many n

where in Mn there were ai and aj in

(a0, . . . , ak) = (nν0, . . . , nνk)

with j < i but with ψ≤(ai, aj) ≤ ε. Then in some ultraproduct we would
get a pair a, b on the �eld line satisfying representing naturals with a > b but
with ψ≤(a, b) = 0. Again, this is impossible. So there must be some �xed
ε∗ = ε > 0 for which all but possibly �nitely many Mn have ψ≤(ai, aj) > ε
whenever k ≥ i > j.
Combining the two previous paragraphs shows thatMn approaches the order

property, witnessed by the formula ψ≤ and the tuples (nν0, . . . nνk) for each
k ∈ N. �

We immediately have the following. The second part reproduces the result
in [15].

Corollary 11.2.2. All asymptotic cones of M are unstable in the language
with no symbols other than d and ?. Moreover, if the continuum hypothesis
fails, there are 22ℵ0 many asymptotic cones of M .

Proof. The constants we used above can be used as parameters instead to get
an empty language. The naturals are 1-separated and ordered by φ≤ in any
of the asymptotic cones. The other part of the claim follows by applying 4.0.9
to the sequence (Mn : n ∈ N+). �
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