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Abstract 

In this thesis, an analytical platform was designed and applied to various in vitro bacterial 

and eukaryotic cell cultures. An extraction and an analytical protocol were developed for 

comprehensive and simultaneous analysis of both lipid and polar metabolites for intra- 

and extracellular metabolomics using HILIC-LC-TOF-MS. This analytical platform was 

applied to four diverse research questions such as the effect of oxygen environment on 

growth, the interplay between gene expression and metabolism, metabolic changes that 

occur with age, and PAH toxicity. Specifically: (i) the effect of oxygen on the growth, 

physiology and metabolism of the Gram positive Streptococcus intermedius were 

investigated by comprehensive intra- and extracellular metabolomes and transcriptome. 

(ii) Metabolic insights into the role of the multipartite genome of the Gram negative 

bacteria Sinorhizobium meliloti and its metabolic preferences in a nutritionally complex 

environment. (iii) Age-associated metabolic dysregulation in murine bone marrow-

derived macrophages during bacterial lipopolysaccharide-induced inflammation. (iv) 

Comprehensive intracellular metabolomic profiles of Sinorhizobium meliloti to sub-lethal 

exposure of individual or mixtures of polycyclic aromatic hydrocarbon revealed additive 

and dose-dependent effects.  This thesis has demonstrated the versatility of the designed 

analytical platform and its use for diverse research in cell biology.  
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Chapter 1: Introduction to metabolomics, and its application on cell 

biology 

1.1 Metabolomics 

1.1.1 Introduction to metabolomics 

Biological systems such as cells, tissues, organisms and humans are composed of 

genes, transcripts, proteins, and metabolites in highly complex and interactive networks. 

Very little is known regarding the molecular engineering of a biological system. How 

does it adapt to extrinsic environmental fluctuations such as changes in oxygen levels, 

nutrient levels and exposure to toxins?  How do intrinsic changes such as genetic or 

enzymatic deletions and mutations, or aging affect the basic functions of a biological 

system? Systems biology including genomics, transcriptomics, proteomics and 

metabolomics, has been developed to provide insights into how a biological system works 

(Fig. 1).  Metabolomic analysis of primary and secondary metabolites, the downstream 

product of the “omics cascade”, has been a new field of study in the last decade (Fig. 2). 

As the endpoint of gene and enzymatic expression and cellular activity, metabolomics 

provides a holistic phenotypic representation of an organism and provides insightful 

understanding in the fields of  functional genomics
1
, metabolic engineering, bio-marker 

discovery for diseases
2
, environmental stresses

3–5
, cell communication mechanisms or 

quorum sensing
6
, and industrial biotechnological processes

7
.  

Interest in analyzing metabolites in a biological system can be traced back to the 

1940s when mass spectrometry (MS) based methods were used in the fields of medicine, 

clinical chemistry and plant biology
8,9

. The development of chromatographic separation 

techniques in the 1960s also made studying individual metabolites possible. In 1971, 

Linus Pauling et al. conducted the first comprehensive metabolic profiling of human 

urine and breath vapor using gas-liquid partition chromatography, in which over 250 

biological compounds were detected
10

. This marked the beginning of metabolomic 

research.   

Metabolomics is the study of metabolites, small molecules with molecular weight 

often below 1500 Da, in a biological system
11

. Metabolites are intermediates or products 

of metabolic processes in a biological system. The change in metabolites levels in a 

biological system can be regarded as the ultimate response to genetic or environmental 

changes
12

. The term “metabolomics” was coined in 1998 by Steve Oliver and Douglas 

Kell
13

. Soon after, in 1999, Jeremey Nicholson, John Lindon and Elaine Holmes coined 

the term “metabonomics”
14

. In 2001, Oliver Fiehn defined “metabolomics” as “a 

comprehensive and quantitative analysis of all metabolites…of a biological system”
15

. 
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The term “metabolic profiling” was suggested by Christopher Clarke and John Haselden 

in 2008
16

. “Metabolomics”, “metabonomics” and “metabolic profiling” are used 

interchangeably; however, “metabolomics” is more commonly used in the current 

literature and will be used throughout this thesis.  

1.1.2 Comprehensive and targeted metabolomics 

The field of metabolomics can be broadly divided into targeted and comprehensive 

metabolomics. The term “metabolomics” is often referred to as comprehensive 

metabolomics, where qualitative and semi-quantitative analysis of all low molecular 

weight metabolite in a biological sample at a given time is performed. The number of 

metabolites in the plant species Arabidopsis has been estimated to be over 5000, and the 

number of metabolites in bacteria is expected to be an order of magnitude less than in 

plants
17

. Comprehensive metabolomics involves analyzing various chemical classes with 

wide ranges of polarity, solubility, and volatility. Comprehensive metabolomic includes 

and is not limited to the analyses of amino acids, organic acids, sugars, sugar alcohols, 

lipids, fatty acids and those metabolites undergo post-modifications like phosphorylation 

or methylation. The concentration range of metabolites can be over 9 orders of magnitude. 

Often, multiple orthogonal analytical techniques are required in order to expand 

metabolites coverage in a biological system, and many of the detected metabolic features 

will remain unidentified.  

Comprehensive metabolomics are often used to provide a real-time, global survey of 

the biological state of an organism as a result of intrinsic or extrinsic perturbation. For 

example, Sinorhizobium meliloti cells grown on different carbon sources can be 

distinguished based on their metabolic profile
18

; yeast mutants can be differentiated and 

classified based on their metabolic profiles in the spent media 
1
; silent mutations in 

Saccharomyces cerevisiae that do not result in any overt phenotypical changes can be 

distinguished from changes in their intracellular metabolic profiles
19

. More important, one 

of the greatest implications of comprehensive metabolomics has been the discovery of 

biomarkers that aid in clinical diagnosis or provide insight in the homeostasis of a 

biological system by identifying perturbed metabolites and metabolic pathway(s). The 

term “biomarker” will be used loosely in this thesis to refer to those metabolites that are 

significantly changed as a result of experimental conditions. Diagnostic markers for liver 

injury
20

, Alzheimer’s disease
21

, anaphylaxis
22

, cancer
23

, cardiovascular diseases
24

, inborn 

errors of metabolism
25

 and exposures to environmental toxins
26

 have been found using 

comprehensive metabolomics. Metabolon
®
, a life sciences company focussing on 

metabolomics research, has successfully implemented two diagnostic pipelines for 

prediabetes and diabetes using metabolic biomarkers. In addition to other “omics” 
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techniques, metabolomics has enhanced our understanding of the pathology and 

physiology of many biological systems.   

It is challenging to perform comprehensive metabolomics due to the vast chemical 

diversity of metabolites and their wide range of concentrations. Conversely, a common 

approach is to analyze dozens to hundreds of specific metabolites that have shared 

functionalities or properties or present in common metabolic pathways. This is referred to 

as targeted metabolomics. The analysis of targeted metabolomics often requires the 

quantification of target metabolites and uses a single analytical method. Because only a 

small group of metabolites is analyzed, sample preparations and extracts can be tailored 

towards those metabolites, thus avoiding common drawbacks such as matrix effects. 

Unlike comprehensive metabolomics, which is hypothesis-generating, specific hypothesis 

and research aims and previous knowledge of the system are required for targeted 

metabolomics. Gordon et al. analyzed short-chain fatty acids from gut microbiota to 

understand the microbial contribution to host obesity
27

. Li et al. targeted amine- and 

phenol-containing metabolites in bronchoalevolar lavage fluids to understand the 

pathophysiology of asthma
28

. Moreover, targeted metabolomics is used for fluxomics 

using isotopically labelled substrate
29

, which has been used to trace glucose and 

glutamine metabolism in pro-inflammatory macrophages
30

. Targeted metabolomics is 

commonly practiced in clinical diagnosis, especially for metabolic diseases such as inborn 

errors of metabolism. Profiling of acylcarnitine or amino acids from blood spots is used to 

diagnose fatty acid oxidation disorder and diseases due to defective amino acid 

metabolism
31

. Targeted metabolomics is widely used not only in research labs but also in 

clinical and industrial sectors.  

1.1.3 Implication of metabolomics to cell research 

Metabolomic studies of animal models and human subjects can be influenced by 

experimental confounders such as diet, gut microbiota, age, gender, genetic background, 

and environmental factors
32

.  Metabolomic studies of cellular organisms (i.e. bacteria, 

fungi, eukaryotic cell-lines) can provide insights into metabolic regulation as a result of 

intrinsic and extrinsic stressors, and yet maintain consistent experimental conditions 

across samples. Moreover, cell culture studies are easier to control and manipulate, less 

expensive, easier to interpret and require less turn-over time than animal studies. The 

interest in cellular metabolomics research started in the late 1960s
33,34

. Since the 1990s, 

the complete genome of many microbes has been sequenced
35,36

, and the biology of these 

model microorganisms is much better understood. Since then, cells have been used 

extensively in molecular mechanistic studies such as gene functions, diseases, 

pharmacokinetics, and toxicity researches. The continuing development in the field of 

metabolomics allows the characterization of both intracellular and extracellular 
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metabolites that are part of biochemical reactions of a whole organism, thus revealing 

connections between metabolic pathways in a living cell. Cell metabolomics has led to 

the identification of metabolic bottleneck in glycolysis
37

 and in the citric acid (TCA) 

cycle of pro-inflammatory macrophages
30

; It has also led to the discovery of bioactive 

new and novel microbial natural products
38

. The development and potential of cell and 

microbial metabolomics has been reviewed by Zhang et al. and Mashego et al.
39,40

.  

1.1.4 Metabolomic workflow 

The fundamental work-flow for either comprehensive or targeted metabolomics for 

cellular organism is essentially the same. Cell metabolomics consists of five sequential 

steps: (i) cell culture growth or stimulation, (ii) quenching metabolic activity and 

metabolite extraction, (iii) data acquisition using MS-based or nuclear magnetic 

resonance (NMR) spectroscopy techniques, (iv) statistical and chemometric analysis, (v) 

data interpretation linking metabolomics to biological process or identify biomarkers (Fig. 

3).   

1.2 Sample preparation and extraction 

A comprehensive understanding of in vivo cellular regulation and metabolic 

networks in different environments, growth conditions or genetic perturbations requires 

the analyses of both intracellular and extracellular metabolites. The intracellular 

metabolome includes all the metabolites that make up the cell such as metabolites found 

inside a cell and subcellular compartments. Metabolites that are bound to the cell surface 

are often quantified as part of the intracellular metabolome. Extracellular metabolites are 

those metabolites that are found outside of a cell in cell-free supernatant, including 

metabolic end-products expelled from the cell and substrates used by the cell as nutrients. 

For microorganisms under exponential growth, intracellular metabolomes are often 

acquired in the log growth phase and extracellular metabolomes are taken at the 

stationary phase. The concentration of metabolites very rapidly reflects the changes of 

extracellular environment, and half-life of intracellular metabolites is on the order of a 

second or less
41

. Therefore, a combination of fast sampling, quenching and extraction 

processes is required to ensure accurate representation of both the intra- and extracellular 

metabolomes of a cellular organism.  

1.2.2 Metabolism quenching 

Sample preparation for cell metabolomic analysis can be performed by two 

approaches, sequential or simultaneous quenching and extraction processes
40,42

. When 

performed simultaneously, the quenching solution also serves as the extraction solution, 

for which intracellular and extracellular metabolites are measured together. In most cases, 

sequential quenching and extraction were used to prepare cell extracts, for which 
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quenching is followed by separating a cell pellet from supernatant by centrifugation or 

filtration, after which intracellular and extracellular metabolites are extracted and 

measured separately. The advantage and disadvantage of sequential and simultaneous 

sample processing was reviewed by Mashego et al.
40

. In this thesis, we will focus on 

reviewing techniques involved in sequential quenching and extraction processes for cell 

metabolomics. 

The first step for cell metabolomics is to rapidly quench the enzymatic and cellular 

activity, thus avoiding changes in the metabolites levels that are not part of the 

experimental setup. Rapid quenching of cellular metabolic activity is commonly achieved 

by addition of organic solvents (i.e. methanol, ethanol), instant change of sample 

temperature to low (< -20ºC) or high (>80ºC) temperature, or by applying extreme pH 

with the addition of alkali (KOH, NaOH) or acidic solution (HClO4, HCl, trichloroacetic 

acid)
40,42,43

. Quenching buffer (i.e. HEPES, ammonium carbonate) is included in some of 

the above quenching processes to maintain ionic strength. Freezing (usually below -20ºC) 

is the most common and easiest quenching method. It is important that the quenching 

procedure should instantly stop any cellular metabolic activity while imposing no cell 

membrane damage and loss of intracellular metabolites due to leakage
40,42

. The sample 

integrity should be preserved during the quenching process and not result changes in the 

chemical and physical properties of metabolites and their levels
40,42

. Metabolic quenching 

with cold methanol prior to extraction is one of the most frequently used methods for 

microorganisms, but can result greater than 60% intracellular metabolite loss for 

bacteria
44

. Quenching with cold isotonic phosphate buffer saline (PBS) was shown to be 

sufficient to halt cellular activity and ATP metabolism
44

. Similar metabolic results can be 

obtained by quenching with liquid nitrogen (-196ºC), which is commonly applied to plant 

and animal cells, though damages to the cellular envelops are reported
42

. The sample 

preparation and storage should be maintained at low temperature to avoid uncontrolled 

cell metabolism. The impact of quenching on the cellular metabolome has been widely 

studied
44–48

 and reviewed
40,42,43

. 

1.2.3 Metabolite extraction  

Metabolite extraction is a key step in cell metabolomics. Prior to extracting 

intracellular metabolites from cells, the cells are washed with saline or PBS buffer with 

matching ionic strength. A washing step is needed to remove the extracellular matrix 

which adheres to the cell surface to reduce ionization, improve analytical sensitivity, and 

remove contamination from extracellular metabolites
49,50

. The method used for extraction 

can directly influence the metabolome coverage and influence the choice of the analytical 

technique for data acquisition. The extraction technique aims to (i) efficiently recover 

metabolites from sample while maintaining sample integrity, (ii) remove interferences 
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and matrix such as salts and proteins, (iii) make extracts compatible with analytical 

instrumentation, and (iv) if necessary, concentrate trace metabolites
42

.  Liquid extractions 

with organic solvents are commonly used for protein precipitation and extracting 

intracellular metabolites. A large scope of polar and lipid metabolites can be extracted 

from polar solvents such as methanol, ethanol, and methanol/ethanol-water mixtures
51

. 

Lipophilic metabolites (i.e. lipids) can be extracted using non-polar solvents such as 

chloroform, hexane, diethyl ether, and ethyl acetate. Biphasic separation of polar and 

lipophilic metabolites can be obtained using the Bligh and Dyer extraction with various 

ratios of methanol, chloroform and water
52

. The choice of extraction solvent can largely 

bias the classes of metabolites extracted and also the levels of those metabolites. Usually 

cold solvents (< 0ºC) are used for the extraction to maintain sample integrity. Though 

boiling hot extraction solvent is also used, poor recovery was noted for thermally labile 

metabolites
48

. The extraction processes are usually carried out with vortex mixing, but 

other extraction process such as pressurized liquid extraction, sonication, bead beating, or 

microwaving can enhance extraction efficiency
53,54

. After completing the extraction 

process, when needed, the organic solvent can be evaporated under vacuum or a gentle 

stream of nitrogen, and the remaining residue can be concentrated and reconstituted in 

solvents compatible with the analytical technique. Solid phase extraction (SPE) and solid-

phase micro-extraction (SPME) can also be used for sample concentration, but it is more 

commonly used for targeted metabolomic analysis for select class(es) of metabolites. The 

common extraction protocols for targeted and comprehensive metabolomics have been 

summarized and reviewed
40,43,50,55

. 

For adherent mammalian cells, trypsinization is often used to detach the cells from 

the growth surface prior to extraction
56

. However, trypsinization alters cellular integrity, 

and changes intracellular metabolic profiles
47,57

. Teng et al. have suggested a rapid and 

simultaneous cell quenching and extraction process with cold methanol on PBS washed 

cells, and the cells are detached from the growth surface with the help of scraping
47

. 

Modification of this technique has been applied to endothelial-like colon adenocarcinoma 

cell (SW480), epithelial cell (RPTE/TERT1), and macrophages
51,58,59

.  

Cell growth media, especially rich media, consists of complex mixtures of amino 

acids, vitamins, salts, and biological mixtures such as fetal bovine serum or yeast extracts. 

The high salt content (i.e. 75 mM in M9, 139 mM in RPMI-1640) can cause severe 

ionization suppression, especially for liquid chromatography (LC)-MS, and thus affect 

detection and quantification of extracellular metabolites. Therefore, extracellular 

metabolites from supernatants were extracted with the “dilute-and-shoot” strategy
1
. 

Typical dilution factor between 1:1 and 1:10 were made with the supernatant and organic 

solvent (i.e. methanol, ethanol) mixture. In other cases, supernatants were dried and 
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reconstituted in MS-compatible solvent or derivatized directly for gas chromatography 

(GC)-MS analysis
60

, which is an analytical technique less susceptible to ion-suppression.  

1.3 Analytical instrumentation 

Traditionally, cellular metabolites were quantified using enzyme-based assays and 

thin layer chromatography
61

. The maturation of MS techniques since the 1990s
62

, 

development of soft ionization techniques such as electrospray ionization (ESI) and 

atmospheric pressure chemical ionization (APCI) in the 1980s
63,64

, and the production of 

ever more sensitive MS instruments since the 2000s, have influcenced the establishment 

and growth in the field of metabolomics. Though many metabolomic studies were 

conducted by NMR and direct MS analysis, i.e. direct infusion, matrix assisted laser 

desorption ionization (MALDI) MS, and desorption electrospray ionization (DESI) 

MS
65,66

, this thesis will be focused on reviewing chromatography coupled MS techniques 

for cell metabolomics.  

No single analytical platform is able to fully analyze the entire intracellular or 

extracellular metabolome. MS cannot discriminate between isobaric metabolites with 

identical monoisotopic mass values.  Chromatographic separation prior to MS enhances 

the data quality for metabolomic research by reducing number of metabolites 

simultaneously entering the MS, thus reducing matrix effects and ionization suppression. 

Coupling chromatographic separation with MS can increase metabolome coverage and 

also provide a secondary dimension for metabolite identification. Currently, three 

chromatographic techniques are predominant in the MS-based metabolomics, i.e. GC, LC 

and capillary electrophoresis (CE) (Fig. 2). Multidimensional separations such as two-

dimensional GC⨯GC and LC⨯LC have been used to achieve greater peak capacity and 

separation of complex biological mixtures. Because of the enormous diversities and 

concentrations of metabolites inside and outside of as cell, it is impossible to cover all 

metabolites with a single platform (Fig. 4). Applications and advantages of each 

chromatography MS coupled techniques for metabolomics are reviewed here.  

1.3.2 GC-MS 

GC-MS is suited for the analyses of volatile and derivatized non-volatile metabolites 

with high separation efficiency and resolution via the use of capillary GC. Metabolite 

analyzed with GC-MS needs to be thermally stable and volatile
67

. Esters and short-chain 

alcohols, hydrocarbons and lipids can be analyzed directly with GC-MS
68

. Non-volatile 

metabolites such as sugar organic acids, amino acids, nucleic acid must be derivatized 

before GC-MS analysis
69

. Silylation with N-methyl-N-trimethylsilytrifluoroacetamide 

(MSTFA), N-methyl-N-t-butyldimethylsilyltrifluoroacetamide (MTBSTFA), 

bistrimethylsilyltrifluoroacetamide (BSTFA) etc. are the most common derivatization for 
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GC-MS, where hydrogens from polar groups (i.e. alcohol, phenol, carboxyl, amine, amide, 

and hydroxyl) are replaced with the less polar trimethylsilyl group (TMS). Amines and 

tertiary hydroxyl groups in amino acids and nucleic acids are less reactive, thus 

trimethylchlorosilane (TMCS) is needed as a catalyst during the derivation reaction. 

Schummer et al. has compared effectiveness of various silylation methods (i.e. 

MTBSTFA, BSTFA) for derivatizing different classes of polar metabolites
70

. Silylation 

can be applied to a wide diversity of metabolites and there is a large number of silylation 

reagents to choose from. The reaction is moisture sensitive and cannot be performed in 

protic solvents (i.e. methanol, ethanol, water). Other derivatization methods for polar 

metabolites for GC-MS analysis include alkylation (methylation), esterification and 

acylation, but they are used less extensively than silylation
71

. 

Compared to LC, the stationary phase of GC has significantly less contribution in 

influencing metabolite separation. Metabolites are predominately separated on a GC 

column based on their boiling points. However, the choice of stationary phases, film 

thickness and the length of capillary GC column depends on the polarity and the volatility 

of metabolites of interest 
43

. Metabolites can be ionized by electron ionization (EI) or 

chemical ionization (CI) when analyzed with a GC-MS platform, with EI being the more 

frequently used technique. The reproducible mass spectra generated by EI allowed 

compound identification by matching to public mass spectra libraries such as the National 

Institute of Standards and Technologies
72

 and Metabolomics FiehnLib
73

. Both of these 

spectral libraries incorporate retention indices, which take advantage of the highly 

reproducible retention time of GC, to allow identification of structural isomers with 

similar mass spectra. Freeware like the automated mass spectrometry deconvolution and 

identification system (AMDIS)
74

 and Metab (a R package)
75

 has automated the pipeline 

for metabolomic analysis using GC-MS. Over 100 metabolites can be separated and 

identified in a single GC-MS run
69

. GC-MS has been used to profile microorganisms and 

mammalian cells in food science, toxicology studies, disease research and functional 

genomics studies for characterizing mutations
60,68,76–80

. GC⨯GC-MS has been used for 

comprehensive metabolomic analysis of yeast cells
81

. With the development of automated, 

high-throughput data processing software including commercial software such as 

ChromaTOF (LECO), HyperChrom (Thermo Fisher Scientific) and open source software 

such as parallel factor analysis (PARAFAC)
82

, GC⨯GC-MS with enhanced separation 

capacity is expected to be a prominent metabolomics platform for the analysis of complex 

biological samples.  

1.3.3 LC-MS  

LC-MS has been the most frequently used technique for both targeted and 

comprehensive metabolomics.  It is used for identification and quantification of polar, 
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non-polar, ionic and neutral metabolites and requires little to no derivatization. The 

choice of chromatographic column in LC separation strongly determines on metabolic 

coverage (Fig. 4). Both normal-phase (NP) and reverse-phase (RP) columns have been 

used in metabolomics. RP columns such as C18 and C8 are the most utilized in 

metabolomics for analyzing less-polar metabolites such as lipids and peptides. NP 

columns, especially hydrophilic interaction liquid chromatography (HILIC) column is 

ideal for the analysis of polar ionic compounds such as amino acids and nucleic acids 

which cannot be retained on RP column
83

. Bare silica-HILIC is also able to retain 

phospholipids or polar lipids via an adsorption mechanism
51,84

. Phospholipids can be 

separated on a silica-HILIC column based on their polar head group. Zwitterionic HILIC 

columns such as ZIC
®
-HILIC and ZIC

®
-cHILIC have enhancing resolving power and 

sensitivity towards nucleic acid and peptide metabolites compared to regular silica 

HILIC
85

. LC columns packed with sub-3-μm core-shell particles are the primary choice 

for metabolomic analysis with enhanced chromatographic resolution and efficiency
86

. 

Similarly, enhanced separation can also be achieved with ultra-high pressure liquid 

chromatography (UHPLC) operating at high pressures (400-1000 bar) with sub-2-μm 

particle columns
87

.  

Many comprehensive metabolomics studies using LC-MS are biased to either polar 

or non-polar metabolites by limiting the analyses to only RP or NP (HILIC) column. A 

few studies that reflect true a comprehensive metabolome have analyzed the polar 

fraction using NP(HILIC) and the nonpolar fraction using RP columns
88–92

. More than 

100 metabolites in Escherichia coli have been quantified by using both RP and HILIC 

LC-MS platforms
92

; thousands of metabolic features (peaks with unique retention time 

and m/z value) were measured in Plasmodium falciparum using RP and aqueous NP LC-

MS techniques
90

. Two-dimensional-LC-MS or LC⨯LC-MS has also been adapted to the 

metabolomic analysis of E. coli and Saccharomyces cerevisae
93

.  Moreover, a tandem 

LC-MS approach by coupling orthogonal RP and NP in one run has been applied to 

metabolomic studies of serum and S. cerevisae
94,95

. The LC separation of metabolites 

prior to MS ionization significantly decreases ionization suppression and thus enhances 

sensitivity.   

Electrospray ionization (ESI) is the predominant ionization technique for LC-MS, 

although atmospheric pressure chemical ionization (APCI) is occasionally used for LC-

MS metabolomic studies. Metabolomics often require that data be acquired in both 

positive and negative ESI modes. Ion suppression has been a major challenge for LC- 

ESI-MS metabolomic analysis as a result of high salt content
96

. APCI also experiences 

ion suppression but to a lesser extent. Separation of metabolites using various LC 

technique, sample dilution and sample clean-up is critical in minimizing ion suppression. 
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Identification of metabolites in LC-MS is based on matching accurate mass or tandem 

MS/MS spectra with public databases such as the human metabolome database 

(HMDB)
97

 and METLIN
98

. However, unlike GC-MS, the LC-MS and LC-MS/MS 

spectra are less reproducible between LC-MS systems
99

, thus in house spectra libraries 

have been constructed by several research groups.  

1.3.4 CE-MS 

CE-MS is used for the analysis of charged metabolites. CE has better separation 

efficiency than LC due to the flat profile of electroosmotic flow (EOF) as compared to the 

rounded laminar flow in LC. Capillary zone electrophoresis (CZE) is the dominant CE-

MS technique for metabolomic analysis
100

. Charged metabolites such as amino acids, 

organic acids and nucleic acid are separated based on charge and size, and neutral 

metabolites eluted with EOF without separation. Other CE methods such as micellar 

electrokinetic chromatography (MEKC)
101

 require the use of surfactant, but are able to 

separate both charged and neutral metabolites. The metabolite separation in CE occurs in 

electrolyte solution, and non-polar metabolites are insoluble in these solutions. CE is 

usually coupled to ESI-MS with the addition of a sheath-flow interface to enhance 

ionization, though dilution from sheath liquid can reduce sensitivity. Sheathless CE-ESI 

interface can also be found with micro- or nano-ESI. On-line sample pre-concentration 

via dynamic pH junction
102

 and multisegment injection
103

 capability of CE-MS allows 

better sensitivity and high throughput for metabolomic analysis.  

1.3.5 Mass analyzers for mass spectrometry 

The mass analyzer is a major component of the mass spectrometer where gas phase 

ions generated at the ionization source are separated based on their m/z values. Modern 

mass analyzers including triple quadrupole, single quadrupole, ion trap, orbitrap, time-of-

flight (TOF), and Fourier transform ion cyclotron resonance (FT-ICR) are routinely used 

for metabolomic studies (Table 1). Triple quadrupole and single quadrupole are nominal 

mass analyzers commonly used for targeted metabolomics. Multiple reaction monitoring 

(MRM) and single ion monitoring (SIM), respectively, can enhance sensitivity and 

specificity of target metabolites in a complex biological matrix. Orbitrap, TOF, and FT-

ICR are predominant in comprehensive metabolomic studies due to their ability to scan 

through a large range of m/z values with high mass accuracy and fast acquisition rate. 

Coupling a quadrupole with orbitrap and TOF allows acquisition of MS/MS spectra for 

metabolite identification. All of the above mass analyzers coupled to GC, LC and even 

CE platforms have been commercialized and utilized widely for metabolomic studies.  

Ion-mobility MS (IMS-MS) separates gas-phase ions based on their differential 

mobility in a buffer gas under the influence of a weak electric field
104

. The separation is 
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generally based on the shape and size of the metabolite as opposed to the charge-to-mass 

ratio separation in MS. Since its commercialization in 2006, it has been applied to the 

separation of peptides
105

, lipids
106

, nucleotides
107

 and enantiomers
108

. It allows an 

additional dimension of separation to the traditional chromatography and MS system 

(more commonly with LC-TOF system), and therefore, increases the peak capacity and 

improves the separation of metabolites that cannot otherwise be separated with traditional 

methods. 

Table 1 Characterizations of common mass analyzers used for metabolomic studies 

 (adapted from Dass et al. and CHROMacademy
109,110

) 

 Mass analyzers 

characteristic 
Single/triple 

quadrupole 
Ion trap Orbitrap TOF FT-ICR 

Mass range 

(m/z) 
Up to 4000 

Up to 

4000 

Up to 

4000 

Over 

100,000 
4000 

Mass resolution 

(FWMH) 
a
 

Nominal 

mass 
10,000 150,000 60,000 

Up to 

millions 

Dynamic range 10
7
 10

2
-10

6
 10

2
-10

4
 10

2
-10

4
 10

4
 

Acquisition rate 

(Hz) 
1-20 1-30 10 10-500 1 

a 
FWMH, full width at half maximum 

1.4 Data processing, statistical and chemometric analyses 

1.4.2 Software for metabolomic analysis 

The automation of the data processing procedure is important for metabolomic 

studies. There are numerous commercialized (i.e. MakerLynx, ChromAlign, MarkerView) 

and freeware (i.e. XCMS
111,112

, MZmine
113,114

, MetaboAnalyst
115,116

) packages dedicated 

to comprehensive metabolomic analyses. All of these software packages use open 

exchange data formats such as netCDF and mzXML for automated guided data filtering, 

peak picking, peak integration and peak alignment. XCMS online
117

 and 

MetaboAnalyst
115

 are online based packages that offer built-in statistical tools including 

univariate and multivariate statistics as well as data visualization tools such as heat maps 

and hierarchical cluster analysis (HCA). XCMS2 also is integrated with METLIN and 

offers automated metabolite identification with accurate mass and MS/MS spectral 

matching
112

. XCMS can be used for data acquired in either low or high mass resolution. 

Chromatographic peaks are detected with a second-derivative Gaussian filter, thus 

removing dubious peaks with poor peak shape. XCMS also offers the flexibility of 

removing metabolic features that appear less frequently in samples which have undergone 
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the same treatment for additional quality assurance. XCMS, MZmine and metaboAnalyst 

have been adapted to data acquired using either LC-MS or GC-MS.  

1.4.3 Quality Assurance 

Without analytical standards, quality control and data validation, interpretation of 

metabolomic studies will be superficial and unreliable. The experimental setup needs to 

include method controls (i.e. cells which undergo no treatment), and where possible, 

positive and negative controls. Inadequate sample size can also bias the experimental 

outcome. For cell metabolomics, a biological sample size of 6-10 is recommended for 

better statistical reliability. Isotopically labelled standards (i.e. recovery standards) need 

to be spiked into the sample prior to extraction to monitor recovery efficiency. Similarly, 

different isotopically labelled standards (i.e. internal standards) need to be spiked into the 

extracted samples prior to data acquisition to correct for injection error and 

instrumentation variability via peak intensity normalization. The analysis of solvent 

blanks during data acquisition is also important to ensure that there is no sample carry-

over. Moreover, post-column addition or serial dilutions of a pooled quality control 

sample provide information on the chromatographic region or metabolites that suffer 

suppression. Periodic analysis of pooled biological quality control (QC) samples that are 

composed of all samples need to be performed during long-term data acquisition to 

ensure the reproducibility of analytical instrumentation. The variability of the QC sample 

must be significantly below that of the actual samples. Dunn et al. have suggested 

excluding those metabolic features with more than 20-30% variance in the QC samples 

due to poor and unreliable instrumentational reproducibility
88

. For targeted metabolomics, 

calibration curves of targeted metabolites are often required. Moreover, during data 

analysis, low quality data such as those metabolic features with missing data, low 

intensity or high variance across experimental conditions can be removed. Mass 

calibration with internal standards (e.g. sodium formate) prior to data conversion and 

processing can improve the accuracy in the automated metabolic feature alignment in 

open source software (i.e. XCMS, MZmine).   

1.4.4 Univariate and multivariate analyses 

The aim of metabolomics is to identify metabolites whose concentrations are 

significantly different as a result of various experimental conditions. Statistical analysis 

(i.e. univariate and multivariate) is needed in order to discover and validate those 

metabolites that were significantly altered by treatments.  

Univariate analysis is applied in parallel on all detected features. A priori or post-hoc 

power analysis can be conducted prior or after the research study, respectively, for sample 

size determination. Power analysis has been extended to multivariate datasets seen in 
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metabolomic analysis
118

. Univariate statistical significant test (or hypothesis testing) can 

be divided into two groups, parametric and non-parametric, based on the variable 

distribution (Table 2)
119

. Normality, homogeneity and independence of variables are 

assumed in parametric statistical tests such as Student’s t test and ANOVA. For sample 

sizes greater than 50, the Kolmogorov-Smirnov test is used to statistically evaluate 

normality
119

. Levene’s and Bartlett tests can be used to statistically evaluate 

homoscedasticity, where p<0.05 indicates heteroscedasticity in sample variance
119

. 

Finally, samples in metabolomic studies are considered independent. Parametric tests are 

more powerful than non-parametric tests; with non-parametric tests results show more 

type II error (false negative).  Metabolomic datasets are not entirely normal or 

homogenously distributed
119

. Vinaixa et al. have shown a minor discrepancy (<4%) 

between parametric and non-parametric tests on four comprehensive LC-MS 

metabolomic datasets
119

.  Though non-normally distributed data can be transformed to 

normal via logarithmic transformation, data transformation should be handled carefully as 

it may alter data integrity and hinder data interpretation.   

The greatest limitation of univariate statistical tests for metabolomic studies and 

biomarker discoveries is type I error (false positive)
119,120

. Data reduction can reduce the 

probably of type I error. Bonferroni 
120

 and Benjamini-Hochberg 
121

 corrections can also 

reduce the probably of getting type I error, though, Bonferroni correction is often thought 

to be too conserved for metabolomic studies. However, the ultimate strategies for 

eliminating type I error in metabolomic research are to integrate the significantly changed 

metabolites in metabolic pathways or to other omic studies, or validate those metabolites 

with further biological studies. 

Table 2 Parametric and non-parametric univariate statistical tests for datasets following 

normal distribution or far from normal-curve 

 (modified from Vinaixa et al.
119

) 

 

Normal distribution 

(Parametric) 

Far from normal-curve (non-

parametric) 

Compare Means 
a
 Compare Medians 

b
 

Compare two unpaired groups Unpaired Student’s t test Mann-Whitney 

Compare two paired groups Paired Student’s t test Wilcoxon signed-rank 

Compared more than two 

unmatched group 
One-way ANOVA Kruskal-Wallis 

Compared more than two 

matched group 
Two-way ANOVA Friedman 

a
Mean is the average as defined by �̅� =

1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 ;  

b
Median is the middle value that separate the higher from the lower half of a data sample 
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Multivariate analyses (MVA) correlate the experimental conditions to the changes 

of hundreds or even thousands metabolic features simultaneously. MVA can be divided 

into supervised and unsupervised approaches. Principal component analysis (PCA) is an 

unsupervised statistical approach where samples are not classified based on treatment 

groups. Partial-least square-discriminative analysis (PLS-DA) and orthogonal partial-least 

square-discriminative analysis (OPLS-DA) are unsupervised statistical approaches where 

samples are categorized and annotated with corresponding experimental treatments. 

Supervised PLS-DA and OPLS-DA provide better discrimination between treatments 

than the unsupervised PCA approach, and changes in metabolic features that do not 

correlate to changes in experimental setup are excluded in the supervised MVA 

approach
122

. PCA, PLS-DA and OPLS-DA projects the original dataset on a lower 

dimensional space, where the variability of a large metabolomic dataset can be explained 

by few components (or factors). OPLS-DA is largely equivalent to PLS-DA, except the 

components are explained in the axial directions (for PLS-DA, the components are 

described by a combination of x and y axes).  

All PCA, PLS-DA and OPLS-DA are susceptible to large dynamic range of 

metabolic features and biased to those with greater abundancies. Pretreating metabolomic 

dataset with various scaling methods such as centering, autoscaling, pareto scaling, log 

transformation etc. can reduce the bias of significant metabolites to those meatabolites 

with high abundances
123

. Of these, autoscaling and pareto scaling are the two most 

common scaling methods used for metabolomics studies. Moreover, the tendency of 

overfitting could also be a major problem for supervised MVA. Therefore, internal 

validation or permutation testing, where the metabolomic dataset is artificially split into 

training and validation sets, is much needed. The validation dataset is projected through a 

model build previously with the training set, where the fitness of model build with 

training set is evaluated with R
2
X and R

2
Y, and the internal validation is evaluated by the 

prediction statistic (Q
2
)
120

. Both R
2
 and Q

2
 followed an upward trend from 0 to 1. For an 

over fit model, R
2
 approaches 1, and Q

2
 falls toward 0

120
. A prediction statistic (Q

2
) of 

0.4-0.7 is indicative of a robust model, i.e. true differences exist between the compared 

groups, and Q
2 

above 0.7 indicates that the model is highly robust
120,124

. SIMCA-P, 

software for MVA, has built-in internal validation for PLS-DA and OPLS-DA.  

Both univariate and multivariate statistical approaches are equally important in 

metabolomic research, and provide complimentary information for discovering 

significantly changed metabolites
125,126

. The results from univariate and multivariate 

analyses do not necessarily coincide, and the data should be interpreted within each 

approach.  
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1.5 Challenges in cell metabolomics 

The vast diversity and concentration of metabolites inside and outside of the cell 

makes cell metabolomics very challenging. Growth conditions, sample preparation (i.e. 

quenching and extraction), separation and detection can all concurrently affect the true 

representation of cell metabolome and thus the biological interpretation. Subtle 

differences between cell culture and growth conditions have made the cross comparison 

between studies difficult. Addition of serum of animal origin or yeast extract in the rich 

media has severely complicated the biological matrix. Moreover, the high salt levels in 

the media also lead to severe ion suppression during sample analysis, especially for LC-

MS systems. Very few metabolomic studies have addressed the challenges of matrix 

effect and ion suppression.  

The sample preparation (i.e. quenching, extraction) required for cell metabolomics 

must be standardized. Comparative studies on the sample preparation protocol for 

mammalian inherent cells are extremely limited. Issues regarding cell leakage and 

metabolites alteration during cell quenching need to be addressed. A quick and easy 

sample preparation that recovers the majority of metabolites and yet minimizes matrix 

effects with minimal sample manipulation is always in demand for high throughput and 

reproducible metabolomic analysis. Automatization using robotic sample preparation is 

gaining popularity, especially for the on-line derivitization step required for GC-MS 

analyses. Metabolite integrity needs to be preserved during sample preparation in order to 

ensure a true correlation between metabolic profiles and experimental setups.   

Analytical instrumentation for sample acquisition is improving continuously with 

better separation efficiency, better sensitivity, and faster acquisition. However, there is no 

universal analytical platform that is suitable for analyzing all metabolites. Comprehensive 

metabolomic will continue to rely on a combination of multiple analytical platforms in 

order to cover the majority of the metabolites.  

Identification of unknown metabolites has always been the bottleneck for 

metabolomic studies. This process relies heavily on matching tandem MS/MS spectra of 

the unknown to standards. Moreover, the ion intensity of the unknown metabolites will 

ultimately affect the quality of the MS/MS spectrum, and making identification of minor 

metabolites even more difficult. Current publicly available spectra libraries (i.e HMDB, 

METLIN) are focused on human or mouse metabolites, and the reference library is still 

incomplete. Metabolite identification is essential to integrate metabolomics with other “-

omics” studies. However, metabolic pathways for many cell organisms still remain 

unknown or at the putative level.  
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Misuse of statistical tools can lead to completely erroneous results and biomarkers. 

Bias and inadequate sample size, excessive false discovery rate, and overfitting with lack 

of cross validation can all lead to apparently persuasive and yet dubious biomarkers or 

significantly changed metabolites. Such issues have been addressed by Broadhurst and 

Kell
120

. Ultimately, biological models need to be built according to metabolomic findings 

and validated.  

Metabolomics needs to be integrated with other omics approaches i.e. genomics, 

transcriptomics and proteomics, to provide a comprehensive, cross-validated overview of 

biological systems. Databases like MetaCyc and BioCyc have integrated metabolic 

pathways with proteomic and genomics, respectively, for over 3000 organisms
127

. 

Standard reporting for metabolomics has been implemented through the metabolomics 

standards initiative (MSI) to facilitate experimental replication and data exchange
128–131

. 

The initiatives standardized the metabolomic practices and greatly assist the integration of 

metabolomics to system biology study.   

1.6 Thesis objectives 

The overall goal of this thesis includes (i) developing an extraction and analytical 

protocol that is suitable for the comprehensive analysis of both polar and non-polar 

metabolites in either intra- and extra-cellular media; and (ii) applying this methodology to 

the study of various in vitro cell organisms in areas of growth environment, gene 

functions, gerontology, and toxicology research. During the course of this research, a 

workflow for treating complex metabolomic data set was developed.  

Chapter 2 summarizes a small scale cell extracting protocol using MeOH/EtOH/H2O 

(2:2:1) with bead beating for simultaneous extraction of both polar and lipid cellular 

metabolites. A complimentary LC-MS protocol using silica-HILIC was developed that 

enables separation and analysis of both polar and lipid metabolites in a single run. This 

methodology was subsequently applied to the following four projects in Chapters 3-6. 

Chapter 3 provides an integrated overview of Streptococcus intermedius in anaerobic 

and anaerobic environments using a comprehensive metabolomic and transcriptomic 

approach. The effect of oxygen on the growth, physiology and metabolism of S. 

intermedius provides insight into understanding its pathogenic association with anaerobes 

in polymicrobial infections.   

Chapter 4 analyzes the differential metabolomic behaviour between three mutant 

strains of S. meliloti, each with either pSymA, pSymB or both pSymA and pSymB 

megaplasmid(s) removed, and compared to the wildtype strain. pSymA and pSymB are 

essential in establishing symbiosis with the legume host and important for bacterial 
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fitness in the rhizosphere. However, their involvement in cellular function in the absence 

of the legume environment was poorly characterized, and this study allowed further 

understanding of the metabolic functions of these megaplasmids. 

Chapter 5 characterizes the age-associated metabolic dysregulation in murine bone 

marrow-derived macrophages during inflammation. By comprehensively analyzing the 

intracellular metabolome and also targeting at the core metabolites of bone marrow-

derived macrophages from young (6-8 wk) and old (18-22 mo) mice following bacterial 

lipopolysaccharide (LPS) stimulation and tolerance, we were able to provide more insight 

into metabolic regulation and bottlenecks that may hinder macrophage function with age.  

Chapter 6 surveyed the metabolic changes in Sinorhizobium meliloti as a result of 

sub-lethal polycyclic aromatic hydrocarbon (PAH) mixture or fluorene (a PAH) exposure. 

From the metabolic profiles, we can conclude the effect of PAHs are additive and induce 

dose dependent responses in S. meliloti.  

A general discussion is presented in Chapter 7, focusing on the implication of 

comprehensive and targeted metabolomic research in advancing cellular biology.  

  



Ph.D. Thesis – F. Fei; McMaster University – Dept. of Chemistry and Chemical Biology 

18 
 

 

Figure 1 The central dogma of biology and the “omic cascade”. Metabolites are 

downstream biochemical end products of epigenetic process and post-translational 

modifications of genes and proteins. There is a stronger correlation between metabolic 

profiles and phenotypes compared to genomics, transcriptomics and proteomics. 

 (figure is adapted from Patti et al.
132

) 
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Figure 2 The growth of metabolomics since 1998. a) The number of publications 

containing “metabolo*” in 1998-2014 as per Web of Science. b) The number of 

metabolomic publications in 1998-2014 was classified according to the analytical 

platform used. “Metabolo* LC”, “metabolo* GC”, “metabolo* CE” and “metabolo* 

NMR” were used as key words in Web of Science. “Metabolo*” was used as the key 

words to include terms such as metabolomics, metabolomic, and metabolome.  
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Figure 3 Metabolomic workflow. Cell metabolomics consists of five sequential steps: (i) cell culture growth or stimulation, (ii) 

quenching metabolic activity and metabolite extraction, (iii) data acquisition using MS-based spectroscopy techniques to 

generate chromatograms and MS spectra, (iv) statistical and chemometric analysis including univariate and multivariate 

analyses, (v) data interpretation linking metabolomics to biological process using metabolic network or identify biomarkers 
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Figure 4 Conceptual coverage of metabolites using chromatography-MS coupled 

techniques  

(figure adapted from Kusano et al. 
133

) 
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Abstract  

The comprehensive metabolomic analyses using eukaryotic and prokaryotic cells 

are an effective way to identify biomarkers or biochemical pathways which can then be 

used to characterize disease states, differences between cell lines, or inducers of cellular 

stress responses. One of the most commonly used extraction methods for comprehensive 

metabolomics is the Bligh and Dyer method (BD) which separates the metabolome into 

polar and nonpolar fractions. These fractions are then typically analyzed separately using 

hydrophilic interaction liquid chromatography (HILIC) and reversed-phase (RP) LC 

respectively. However, this method has low sample throughput and can also be biased to 

either polar or nonpolar metabolites. Here we introduce a MeOH/EtOH/H2O extraction 

paired with HILIC-TOF-MS for comprehensive and simultaneous detection of both polar 

and nonpolar metabolites that is compatible for wide array of cellular species cultured in 

different growth medium. This method has been shown to be capable of separating polar 

metabolites by a HILIC mechanism and classes of lipids by an adsorption-like mechanism. 

Furthermore, this method is scalable and offers a substantial increase in sample 

throughput compared to BD with comparable extraction efficiency. This method was able 

to cover 92.2% of the detectable metabolome of Gram-negative bacterium S. meliloti, as 

compared to 91.6% of the metabolome by a combination of BD polar (59.4%) and BD 

nonpolar (53.9%) fractions. This single extraction-HILIC approach was successfully used 

to characterize the endometabolism of Gram-negative and Gram-positive bacteria as well 

as mammalian macrophages. 
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Introduction 

Cellular metabolomics is an important part of systems biology as it reflects the 

phenotype of cells and monitors cellular activities in a perturbed system [1, 2]. The 

metabolomic profile of any organism represents a snapshot of its physiological state and 

reflects the overall contributions from genomic, transcriptomic, proteomic, and other 

environmental factors [3]. In vitro studies with cell cultures are convenient, fast, cost 

effective and more controllable compared to animal studies using sera, tissues or body 

fluids, yet are still able to provide insight into biological functions [4]. Therefore, cellular 

metabolomics is capable of providing an understanding of the global biochemical 

behaviour of a biological system. 

Comprehensive cellular metabolomics facilitates observation-driven, hypothesis 

generation experiments by examining the entire detectable metabolome of a cellular 

system in order to discover new biochemical phenomena [5]. Comprehensive 

metabolomics involves the analyses of diverse chemical classes including but not limited 

to sugars, nucleotides, and organic acids with varying polarity, solubility and volatility. 

The endogenous cellular concentration of many metabolites can span over 12 orders of 

magnitude (from mM to fM)
 
[6, 7]. Expanding the diverse detectable metabolome over a 

broad range of concentration, physical and chemical properties is challenging yet crucial 

since multiple pathways can often be influenced by a single external variable. In 

particular, central carbon metabolism and lipid metabolism are both involved in the 

inflammatory response of murine macrophages undergoing lipopolysaccharide 

stimulation [8–11].
 
The quality of the results often relies on the extent of metabolome 

coverage in order to unveil the biochemical changes entirely.  

Liquid chromatography combined with mass spectrometry equipped with an 

electrospray ionization source (LC-ESI-MS) is the predominant analytical methodology 

used for comprehensive metabolomics [12–14]. The dynamic range of time-of-flight 

(TOF) MS is often greater than three orders of magnitude [15] and affords untargeted 

detection of relatively abundant metabolites with little sample pre-treatment. The detected 

metabolite features, including ion source fragments, adducts and isotopic ions, are defined 

by a unique combination of m/z and retention time value. The relative abundances of the 

collective list of metabolite features are used to evaluate and compare different treatments 

[16].  Many comprehensive metabolomics reports to date are focused on either the polar 

or lipid fractions of the metabolome. The few studies that reflect true comprehensive 

metabolome have analyzed the polar fraction using hydrophilic interaction liquid 

chromatography (HILIC) and the lipid nonpolar fraction using reversed-phase (RP) LC 

with C18 or C8 columns [17–20]. The polar and lipid fractions are conventionally 

extracted from a biological sample using the Bligh and Dyer (BD) method [21]. There is 

also single extraction-dual separation LC-MS for the analysis of a single extract 

containing both polar and nonpolar metabolites separately on HILIC and RPLC [16]. 

Both methods are able to ensure global coverage of the metabolome; however, these 

methodologies are time consuming in sample preparation and analysis. 
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Here, we present a reproducible, high throughput, single extraction-HILIC 

approach for comprehensive cellular metabolomic analysis. This approach is able to 

simultaneously analyse a broad range of polar and nonpolar metabolites, which is ideal 

for a large-scale hypothesis generation study with two-fold faster data acquisition and 

analysis time when compared to the conventional methods. The metabolome coverage of 

the scalable extraction was compared to both the polar and the nonpolar fractions of BD 

method.  This approach has been successfully applied to three different cell types: the 

Gram-positive bacterium Streptococcus intermedius, the Gram-negative bacterium 

Sinorhizobium meliloti, and mammalian macrophages. The overall metabolome coverage 

observed with this single extraction-HILIC approach is equivalent to the BD method with 

separate analyses of polar and nonpolar fractions.  

Experimental 

Chemicals 

HPLC grade methanol (MeOH), ethanol (EtOH), acetonitrile (ACN), chloroform 

(CHCl3), and water (H2O) were purchased from Caledon laboratories (Georgetown, ON, 

Canada).  Ammonium acetate and formic acid were purchased from Fisher Scientific 

Company (Ottawa, ON, Canada). The 2.0 mm steel chrome ball bearings were purchased 

from Bearing & Oil Seals Specialists Inc. (Hamilton, ON, Canada). The isotopically 

labelled standards for recovery determination (RS) and for peak intensity normalization 

(IS) were purchased from Cambridge Isotope Laboratories (Andover, MA, USA). Lipid 

standards were purchased from Avanti® Polar Lipids, Inc. (Alabaster, AL, USA), and 

other chemical standards for LC-MS were purchased from Sigma Aldrich (St. Louis, MO, 

USA) and Biolog Inc. (Hayward, CA, USA). The full list of metabolite standards can be 

found in the Supporting Information. 

Cell Culture and Collection 

Detailed growth conditions for the Gram-negative bacterium, Sinorhizobium 

meliloti, the Gram-positive bacterium, Streptococcus intermedius, and murine 

macrophages are included in the Supporting Information S1. Detailed discussion 

regarding quenching methods for cellular metabolism and detachment protocol for 

adherent cells can be found in the Supplementary information and Fig. S2. The entire 

harvesting and extraction process was performed on ice or in a 4ºC cold room.  

Suspension bacterial cell culture 

Cells were cultured in either 5 mL autoclaved test tubes or in sterile 96-well plates 

(Corning® Costar®, NY, USA). The suspension cell cultures were centrifuged at 9500 x 

g (13000 rpm) at 4ºC in a Beckman Coulter Allegra X-22R centrifuge for 3 minutes and 

the supernatants were carefully aspirated with micropipette and discarded. The cell pellet 

was re-suspended in 1 mL cold saline solution (0.85% NaCl) or phosphate buffered saline 

(PBS). The mixture was centrifuged at 9500 x g for 3 minutes, and the wash solvent was 

aspirated and discarded.  Extraction solvent of 100 μL (1:2:1 MeOH/CHCl3/H2O, 1:1 
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MeOH/EtOH or 2:2:1 MeOH/EtOH/H2O) containing RS was added to the washed cell 

pellet which was then extracted immediately. 

Adherent macrophage cell culture 

For adherent macrophage cultures in 6-well tissue culture plates (Falcon
®
, NY, 

USA), the growth medium was aspirated carefully with a micropipette. The cells were 

quickly washed with 1 mL cold saline or PBS. After removing the wash solvent via 

aspiration, 200 μL of extract solvent (1:1 MeOH/H2O for BD, 1:1 MeOH/EtOH or 2:2:1 

MeOH/EtOH/H2O) containing RS were added to each well. Cells were detached from the 

culture plate using a cell lifter in the presence of the extraction solvent, and the cell 

mixture was transferred into a 1.5 mL microtube (Diamed, Mississauga, ON, Canada). 

Only for Bligh and Dyer extraction, 200 μL volume of CHCl3 was also added to the 

microtube and the mixture was extracted immediately. The volume of the extraction 

solvent should be adjusted to the size of the well if other types of microtiter plates were 

used. 

Intracellular Metabolite Extraction 

The extraction protocol was optimized using Sinorhizobium meliloti (2×10
9
 cells), 

and applied to Streptococcus intermedius (1×10
9
 cells) as well as murine macrophages 

(3×10
5
 cells). RS were prepared such that the final concentrations of L-methionine-d3, L-

tryptophan-d5, and L-lysine-
13

C6-
15

N2 were 27 µM, 24 µM and 20 µM, respectively, in the 

final reconstituted cell extracts. The final extracts were blown down to dryness under a 

gentle stream of nitrogen gas and reconstituted in 50 μL of 60%v/v ACN/H2O containing 

L-phenylalanine-d8 (25 μM), gly-phe (16 μM), phe-phe (6 μM) as well as cytidine-

ribose
13

C5 (20μM) as IS. To minimize variability, sample extractions, addition of IS, and 

preparation of quality control (QC) samples were prepared in the same day using the 

same batch of solvents, IS and RS. The final endogenous cellular extracts were stored at -

80ºC freezer until HILIC-ESI-TOF-MS analyses.  

Bligh and Dyer Extraction 

The extraction process was based on the method of Bligh and Dyer [21] to achieve 

a biphasic separation using 1:2:1 MeOH/CHCl3/H2O as extraction solvent. The top 

MeOH/H2O fraction contained polar metabolites and the bottom CHCl3 fraction 

contained nonpolar metabolites (i.e. lipids). The denatured proteins and other 

macromolecules, such as DNA and RNA, were precipitated and suspended at the 

interface between polar and nonpolar fractions. The cell mixture was vigorously mixed by 

vortex for 2 minutes in the presence of two 2.0 mm ball bearings. After removal of the 

bearings, the cell mixture was centrifuged at 9500 x g for 3 minutes. The polar fraction 

was collected and the protein film and the lipid fraction were re-extracted twice with 50 

μL of cold MeOH/H2O (1:1) with the same ball bearings. The combined polar fraction 

was back-extracted twice with 50 μL of cold CHCl3, and the non-polar CHCl3 fractions 

were collected and combined with remaining CHCl3 fraction from the previous polar 
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extraction. In total, 150 μL of polar and nonpolar fractions of bacterial extracts or 300 µL 

from adherent cell cultures were collected. 

MeOH/EtOH/H2O Extraction 

This extraction protocol was based on a plasma extraction procedure adopted from 

Bruce [22]. An extraction solvent of 2:2:1 MeOH/EtOH/H2O or 1:1 MeOH/EtOH was 

used to generate a single fraction which contained a mixture of polar and non-polar lipid 

metabolites. Proteins and other macromolecules were precipitated. Prior to extraction, 10 

µL of RS were added to the cell mix. The cell mixture was mixed rigorously by vortex for 

2 minutes in the presence of two 2.0 mm ball bearings. After removal of the bearings, the 

mixture was centrifuged at 9500 x g for 3 minutes. The supernatant was collected and the 

precipitated pellet (containing DNA, RNA, and proteins) was re-extracted twice with 50 

μL of the cold corresponding extraction solvent with beadbeating. A total of 150 µL cell 

extracts were collected for suspended cell cultures or 300 µL were collected for adherent 

cell culture. 

LC-MS Analysis 

The endogenous cellular extracts were analyzed using an Agilent Technologies 

1200 RR Series II liquid chromatograph (LC) coupled to a Bruker MicrOTOF II Mass 

Spectrometer. An injection of 2 μL was separated on a 50 mm × 2.1 mm Kinetex 2.6 μm 

HILIC column of pore size of 100 Å (Phenomenex, CA, USA). The mobile phases were 

HPLC grade acetonitrile (A) and 10 mM ammonium acetate in HPLC grade water 

adjusted to pH 3 with formic acid (B) at a flow rate of 200 μL/min. The column 

temperature was maintained at 40 ºC, and the auto sampler storage tray was set at 4ºC. 

The mobile phase gradient eluted isocratically with 95% ACN for 0.5 min followed by a 

gradient to 35% ACN over 12 min. The gradient was maintained at 35% ACN for 0.5 min 

and increased to 95% ACN over 1 min. The gradient was then followed by a 10 min re-

equilibration prior to the next injection. The total time for the HILIC gradient was 24 min. 

Positive ionization mode (ESI+) and negative ionization mode (ESI-) were performed in 

separate runs. Details of the optimization of the HILIC gradient method using 2
3
 full 

factorial design can be found in Supplementary information and Fig. S3. 

The parameters chosen for ESI conditions were as follows: 4.0 bar nebulizer 

pressure; -500 V endplate offset; -3800 V or 4500 V capillary voltage; 8.0 L/min drying 

gas flow rate; 250ºC dry gas temperature. The data were acquired in profile mode from 50 

to 1000 m/z at a scan rate of 1.0 Hz (computed using a rolling average value of 2). The 

mass accuracy was adjusted by internal calibration using endogenous sodium formate 

clusters in both ESI+ and ESI- with Bruker’s data analysis software.  

Each of the extraction methods was repeated in sextuplicate and all of the samples 

were analyzed in random order. A QC pooled sample was prepared by combining equal 

volumes of all samples, and divided into individual aliquots after thorough mixing. A 

fresh QC sample and a day’s worth of samples (ca. 20 samples) were thawed and run 

each day for a multiday experiment. The pooled sample was injected five times at the 
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beginning of the analysis to condition the column, and also injected after every five 

samples. Methanol blank and a standard mixture containing all recovery and internal 

standards were also run after every ten samples. Post-column addition with gly-phe was 

performed on all different matrices for different cell types in both ESI+ and ESI- modes 

for ion suppression studies.  

Data Analysis 

Raw data obtained from LC-ESI-mircOTOF-MS were converted to the .mzXML 

file format using BrukerCompassxport (http://www.bdal.com/navi/meta/home.html) after 

internal calibration. The .mzXML files were then processed with XCMS [23, 24] and 

CAMERA [25] in R Project (version 2.12.2). A tabulated metabolite feature list with 

aligned retention time and m/z values was exported in .csv format. For XCMS, the 

centWave algorithm [24] was used for peak picking with a resolution of 30 ppm, and a 

signal-to-noise threshold (snthr) set to 10. Features that appeared in less than 80% of the 

samples which underwent the same extraction method were removed (minfrac = 0.8). The 

isotopic ions, in source fragments, and adducts were identified using CAMERA. 

Features with apparent retention factors kapp’ lower than 0.7 were removed 

because these were not retained and experienced great ion suppression. The isotopic ions, 

ions associated with IS, RS and sodium formate clusters were removed. Metabolite 

features detected in the biological samples were compared to those in the IS and RS 

solution in 60%v/v ACN/H2O, and the duplicated ions that were associated with the 

background noise were removed. The peak areas of all metabolite features were 

normalized using the peak area of IS according to their retention time (Fig. S1). In source 

fragments and adducts were treated as separate metabolite features. Metabolite features 

with peak areas under 2000 were excluded. Features with greater than 30% variance in 

QC samples were removed. Integration of non-Gaussian or coeluting peaks using XCMS 

may generate inconsistent results. IS and RS  with greater than 10% variance, and 

significantly differentiated metabolite features with greater than 20% variance were re-

evaluated with manual integration using Bruker DataAnalysis 4.0. 

The processed data sets were used as an input for SIMCA-P+ 11 software 

(Umetrics, Kinnelon, NJ). Pareto scaling was applied prior to principal component 

analysis (PCA) and orthogonal partial least-squares discriminative analysis (OPLS-DA). 

OPLS-DA was used to differentiate metabolite profiles between different extraction 

methods. The model validation parameter Q
2
 (the fraction of variations of X and Y matrix 

explained by the model, X matrix was metabolite features, Y matrix was the treatment 

groups) values above 0.4 were indicative of a robust model, i.e. true differences between 

the comparing groups, and  Q
2 

between 0.7-1.0 indicated the model was highly robust 

[26]. R
2
X (R

2
Y) indicated the fraction in which X (Y) matrix was explained by the model. 

Two-tailed, unpaired heteroscedastic Student’s t tests with p<0.05 were computed in 

Microsoft Excel 2010 and used to identify metabolite features that were significantly 

differentially expressed in each extraction method. Metabolite features were identified by 

http://www.bdal.com/navi/meta/home.html
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matching the m/z and retention value to the available authentic standards.  Figures were 

created in Adobe Illustrator CS5. 

Results and Discussion 

Comparison of Extraction Solvents 

There have been extensive reviews that compare various different extraction 

strategies for cellular metabolic analyses [27–29]. Here, we have focused on comparing 

the extraction efficiency of both polar and non-polar metabolites with bi-phasic solvent 

MeOH/H2O/CHCl3 (1:1:2) in the BD method [21] to two other extraction solvents, 

MeOH/EtOH (1:1) and MeOH/EtOH/H2O (2:2:1). BD extraction is commonly used for 

comprehensive metabolomics to ensure full coverage of both polar and nonpolar 

metabolites by running both polar and nonpolar phases separately on HILIC and RPLC.  

Similar to the BD method, MeOH/EtOH and MeOH/EtOH/H2O were able to extract both 

polar and nonpolar metabolites but with all metabolites present in one single phase. 

Therefore, the latter two extraction strategies, when compared to BD, were able to 

minimize sample handling and also shorten the analysis time by a factor of two while still 

maintaining comprehensive coverage of both polar and nonpolar metabolites. 

The scalable extraction method was tested on a 100 μL Sinorhizobium meliloti 

(2×10
9
) cell culture grown in M9 growth medium in a 96 microtiter plate. A beadbeating 

technique was adopted instead of vortex mixing to ensure full cell disruption. Sonication, 

though allowing complete cell disruption, was not used in order to avoid overheating 

which may degrade thermally labile metabolites. All three extraction solvents were able 

to precipitate protein, DNA and RNA as well as providing good recovery for a wide range 

of both hydrophilic and hydrophobic metabolites.  

Based on the methionine-d3, the recoveries for the polar fraction of BD (BD polar), 

MeOH/EtOH, and MeOH/EtOH/H2O after three extraction procedures were 77%±2%, 

59%±5% and 79%±2%, respectively, for a sextuplicate experiment. A much lower 

recovery was obtained for MeOH/EtOH when compared to the two other extraction 

methods. MeOH/EtOH failed to maintain a compact protein pellet during the extraction 

process; therefore, an extra centrifugation was required for MeOH/EtOH extraction to 

remove particulates in the sample extract. Moreover, based on the selected 24 endogenous 

metabolites in S. meliloti, the extra centrifugation step in MeOH/EtOH could also have 

caused lower extraction efficiencies when compared to MeOH/EtOH/H2O solvent (Fig. 

S4). Minimal sample handling and short-time extraction procedures are critical for large-

scale metabolomic studies in order to achieve greater reproducibility, sensitivity and to 

prevent metabolite modification and degradation with time [14, 30]. In terms of ease of 

performance, the MeOH/EtOH/H2O extraction procedure outperformed MeOH/EtOH and 

the two-staged extraction procedure of BD for comprehensive polar and nonpolar 

metabolite analyses. Hence, the MeOH/EtOH/H2O was further optimized to achieve 

better extraction efficiencies and robustness. 
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The optimal numbers of extraction processes required in order to reach a minimal 

of 95% extraction efficiency of the selected endogenous metabolites was determined by 

extracting a 100 μL S. meliloti cell culture using MeOH/EtOH/H2O seven times. Each 

extraction was performed in sextuplicate. The percentages of recoveries of 20 endogenous 

metabolites from S. meliloti at each extraction step were calculated by dividing the 

relative abundance of each individual metabolite at each step with its sum in all seven 

extractions (Fig. 1). Most metabolites showed greater than 80% recovery upon the first 

extraction. Among them, N-acetyl-aspartic acid, adenosine monophosphate (AMP), 

methylhistidine and acetylcarnitine were entirely (100%) recovered in the first extraction. 

The second extraction was able to recover the remaining 10-15% for most of the 

metabolites. Metabolites such as γ-aminobutyric acid, adenine, adenosine, and proline 

were persistent and were still detected after the seventh extraction. Therefore, a minimum 

of two MeOH/EtOH/H2O extraction steps were required to ensure at least 95% extraction 

efficiency for the major endogenous metabolites. We recommend extracting cells three 

times to ensure great extraction efficiency and reproducibility.   

The dissolution solvent has significant impact on peak shapes in HILIC 

chromatography [31].
 
The samples were concentrated in order to improve the detection 

limit. Sample volume was reduced to 50 μL by drying with gentle stream of nitrogen, and 

the remaining solvent was primarily composed of water as it was the least volatile solvent 

in the MeOH/EtOH/H2O extracts. Water is not an appropriate dissolution solvent for 

HILIC gradients with a high percentage of ACN because it causes peak broadening and, 

consequently, reduces sensitivity [31]. Therefore, samples were dried completely to 

remove all residual water and reconstituted in a solvent mix low in water to also minimize 

irreproducibility due to inconsistent sample volumes. We have adopted the use of 60%v/v 

ACN/H2O to ensure adequate peak shape and sensitivity while still allowing full 

dissolution of the highly polar metabolites.  

 

HILIC/MS for Simultaneous Detection of Both Polar and Lipid Metabolites 

HILIC is typically used to separate polar compounds via hydrophilic partitioning 

mechanism. In 2010, HILIC was reported to be able to retain lipids, especially 

phospholipids, according to the polarity of the lipid heads [32, 33]. Therefore, since 

HILIC can simultaneously separate polar and lipid metabolites, it was selected as the 

chromatographic method for high throughput comprehensive metabolomic analyses. 

RPLC is often used to retain and separate nonpolar analytes [34]. Separation of polar 

compounds can also be achieved with RPLC with an ion-pairing agent in the mobile 

phase [35]; however, the ion-pairing reagents often lead to contamination in the MS 

instrument [36], and therefore was not preferred.  

Unlike RPLC, small changes in pH and buffer ionic strength can often cause large 

retention deviations in HILIC [37]. To improve reproducibility and minimize retention 

deviation for better retention time alignment using XCMS, consistent preparation of the 
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mobile phase was critical. For large-scale comprehensive metabolomic analyses, all 

samples should be run using the same batch of mobile phases. The IS and RS spiked in 

each biological samples should also be used to correct retention time drift of metabolites 

when assigning metabolite identification based on the retention time of authentic 

standards. HILIC separations are less tolerant of fast gradients and require a longer 

equilibrium time compared to RPLC. Though the starting gradient at 98% ACN was able 

to retain a greater amount of metabolite features, it required much longer equilibration 

time (more than 10 min) than starting at 95% ACN (8-10 min). Running blanks and 

pooled samples at the beginning of the HILIC sequence is critical in order to condition 

the column to minimize variation in peak shape, retention time and ionization response.  

HILIC is able to retain phospholipids or other polar lipids via an adsorption 

mechanism [32]. Silica-HILIC was chosen specifically for optimized phospholipid 

separation at low buffer strength instead of other commonly used zwitterionic or diol 

HILIC [32, 38].
 
The low buffer ionic strength of 10 mM ammonium acetate in mobile 

phase B allowed secondary interactions between the HILIC stationary phase and the polar 

lipid head groups via hydrogen bonding and electrostatic interaction. Therefore, our 

optimized HILIC gradient was able to separate phospholipids by classes based on their 

polar head group. Though each lipid class eluted within a very narrow time window 

(often within 1 min), there were still separations within each lipid class based on 

hydrophobicity (carbon chain length) and unsaturation (number of C=C bonds) (Fig. 2). 

The lipid class separation achieved with HILIC in combination with the sub 5 ppm mass 

accuracy attained with internal calibration was able to accurately identify lipid 

metabolites without running copious authentic standards. Isomers between 

phosphatidylcholine (PC) and phosphatidylethanolamine (PE) could be accurately 

identified because PCs and PEs were chromatographically separated. Fig. 3 summarizes 

2125 metabolite features (after data reduction) detected in the intracellular extracts of 

murine macrophage. Different classes of phospholipids including phosphatidylglycerol, 

PCs, PEs and lyso-PCs were detected along with small polar metabolites such as 

nucleosides, amino acids, and organic acids. The ability of HILIC to separate both polar 

and lipid compounds combined with our extraction methodology allowed simultaneous 

analyses of both polar and lipid metabolites for enhanced sample throughput. 

Mass accuracy can be significantly improved by the usage of sodium formate as 

an internal calibrant which was formed by the endogenous sodium ions in the cell and the 

formic acid in mobile phase B. The presence of sodium formate adducts with retention 

times at 7.2 min was used for internal mass calibration in both ESI+ and ESI- modes 

which dramatically improved mass accuracies for all three cell types grown in different 

biological media (Table S1). The confidence of metabolite identification was improved 

significantly with the sub-5 ppm mass accuracy attained after internal calibration with 

sodium formate. 

The endogenous sodium formate also caused minor ion suppression regardless of 

the biological matrix of interest (Fig. S5). The IS, phenylalanine-d8, eluted in the ion 
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suppression region and was used to normalize peak areas of metabolite features eluting in 

the region to correct for varying degree of ion suppression in different samples.  

The current method was applied to the comprehensive metabolomic analyses of S. 

meliloti, S. intermedius and murine macrophages. Over a continuous seven-day injection 

series of S. meliloti extracts, the retention time deviation was less than 7 seconds in a 24-

min LC run with approximately 260,000 metabolite features in 137 samples (1900 

features per sample over 137 samples in ESI+) analyzed by XCMS using the centWave 

method (Fig. S6). The peak area deviations of IS were all below 10%. The QC and sample 

data were analyzed with PCA with QC samples clustered tightly in the center of the score plot 

indicating that instrumental variability was minimal. The optimized HILIC-TOF-MS method was 

highly robust and reproducible.  

Metabolome Coverage from the MeOH/EtOH/H2O Extraction Compared to the two 

fractions of Bligh and Dyer Method 

 Untargeted comprehensive large-scale metabolomics demands that the 

experimental method have high sample throughput, high robustness to sustain long LC 

sequence, and excellent metabolome coverage. We propose using a MeOH/EtOH/H2O 

extraction in combination with HILIC-TOF-MS to encompass both polar and nonpolar 

metabolites in a single analysis. Compared to the conventionally used BD method in 

which polar and nonpolar fractions are analyzed separately, the proposed method doubles 

the throughput and minimizes the sample handling time with comparable reproducibility. 

The metabolome coverage of the proposed method was compared to both of the polar and 

nonpolar fractions obtained using BD methods.  

 Traditionally, the BD polar fraction was run using HILIC, and the BD nonpolar 

fraction was run using RPLC [18, 19, 39]. However, in order to directly comparing the 

extraction efficiency of nonpolar metabolites, the BD nonpolar fraction was also run 

using the same optimized HILIC method as used for the MeOH/EtOH/H2O extracted 

samples and BD polar extracts. Evaluating all three extract samples using the same LC 

method has also allowed us to compare metabolite features that were found in common 

between all three extracts. However, more features were expected when analyzing the BD 

nonpolar fraction with RPLC in comparison to HILIC. Triacylglycerols, diacylglycerols 

and fatty acids, which were commonly analyzed with RPLC, cannot be retained using 

HILIC, and were eluting in the unquantifiable dead volume with retention time below kapp’ 

0.7. Gram-negative bacteria S. meliloti was used to compare the metabolome coverage 

and extraction efficiency of MeOH/EtOH/H2O to BD polar and BD nonpolar extracts. 

The XCMS centWave algorithm in combination with CAMERA has deconvoluted 

a total of 3378 metabolite features. All those features were present in at least one of the 

MeOH/EtOH/H2O, BD polar and BD nonpolar extracts. There were more features 

detected in the ESI- mode (1900) compared to ESI+ mode (1478). Metabolite features 

from solvent contamination, instrumentation noise and spiked IS and RS that were shared 

in the extracted samples and the standard mixture containing IS and RS were removed 
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(unpaired heteroscedastic t test, p > 0.05 between all extracts and standard mixtures). Any 

features that were eluted in the dead volume with k’app <0.7 were removed because they 

were unquantifiable due to severe ion suppression. The isotopic ions annotated by 

CAMERA were also removed along with ions associated with sodium formate clusters. 

After data reduction, a final list of 1059 metabolite features was attained. The data 

reduction process was important to reduce the quantity of redundant data and false 

positives during statistical analyses. 

Multivariate analysis using OPLS-DA revealed that all three types of extracts had 

unique metabolome profiles (Fig. 4a). The model was robust with Q
2
(cum)=0.936 and 

describes nearly all variables with R
2
X(cum) =0.926 and R

2
Y(cum)=0.986. All extracts 

from the MeOH/EtOH/H2O extraction were clustered in between the BD polar and BD 

nonpolar extracts, indicating shared metabolome profiles between MeOH/EtOH/H2O 

extracts and BD polar extracts as well as nonpolar extracts. Since MeOH/EtOH/H2O 

extracts were not centered in the OPLS-DA score plot, these extracts contained some 

unique metabolite features that were absent in the BD polar and BD nonpolar extracts. 

Among 1059 detectable endogenous metabolite features of S. meliloti, 59.4%, 

53.9% and 92.2% were detected in BD polar, BD nonpolar and MeOH/EtOH/H2O 

extracts, respectively (Fig. 4b). Of the metabolites we are able to detect using this method, 

7.8% were not detected by the MeOH/EtOH/H2O method, 2.9% were only detected in BD 

polar fraction, 4.5% were only detected in BD nonpolar fraction, and 0.3% were detected 

in both BD polar and nonpolar fractions. There were 34.7% of the features shared 

between MeOH/EtOH/H2O and BD polar that were undetected in BD nonpolar, among 

them polar metabolites such as amino acids, organic acids, sugar phosphates, nucleotides 

and nucleosides were detected. There were 27.6% of the features shared between 

MeOH/EtOH/H2O and BD nonpolar that were not detected in BD polar, lipids such as 

phosphatidylglycerols (PGs), PEs, PCs and phosphatidylserines (PS) were among those 

that were identified. There were 8.4% of the metabolite features that could only be 

detected in MeOH/EtOH/H2O extracts, and they ranged in polarity and m/z values. A few 

of the identified metabolites and their relative responses are shown in Fig. 4c, and the 

ionization responses of all metabolites in MeOH/EtOH/H2O were normalized to one as a 

reference. The MeOH/EtOH/H2O method had equivalent recoveries for vast majority of 

those endogenous polar and lipid metabolites as compared to the separately analyzed BD 

polar or BD nonpolar extracts.  

There were also 21.5% of the features shared between MeOH/EtOH/H2O, BD 

polar and BD nonpolar extracts. Among those shared features, 59.6% of the shared 

metabolite features were equally extracted using MeOH/EtOH/H2O in comparison to the 

most pronounced BD fractions based on unpaired heteroscedastic Student’s t test of 

p<0.05 (Table 1). In Fig. 5, the ionization responses of some selected shared metabolite 

features were normalized against IS and the sum of ionization response of BD polar and 

BD nonpolar which was normalized to one. The normalization was done under the 

assumption that BD polar and BD nonpolar in combination have a net 100% recovery of 

all metabolites. MeOH/EtOH/H2O had lower extraction efficiency in 14.6% of the shared 
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features than at least one of the BD fractions (Fig. 5a). However, 15.8% of the shared 

features had a greater recovery in MeOH/EtOH/H2O than both of the BD fractions (Fig. 

5b). Many of those metabolite features were partially recovered in both BD polar and BD 

nonpolar, but were more efficiently recovered using MeOH/EtOH/H2O. If a conventional 

comprehensive metabolomic method was used with each of the BD polar and nonpolar 

fractions run on either HILIC or RP, then features that were partially extracted and 

present in both fractions would be considered as different metabolites, and would be 

quantified separately and result in bias during multivariate analyses. Moreover, 

recovering these metabolites in full using MeOH/EtOH/H2O, results in higher injected 

concentrations, and facilitates their detection. Therefore, the 8.4% of the metabolite 

features detected exclusively in the MeOH/EtOH/H2O method would likely be low 

abundant metabolites in the cells which were under detection limit when partially 

recovered in either of the BD fractions, but detectable when more efficiently recovered in 

the MeOH/EtOH/H2O extraction. 

 Based on all these results, MeOH/EtOH/H2O in combination with HILIC-TOF-

MS provides a very robust, high throughput and comprehensive approach for cellular 

metabolomic analyses. The metabolomic coverage of MeOH/EtOH/H2O was comparable 

to the combined coverage of BD polar and BD nonpolar yet was twice as efficient in 

terms of data acquisition speed. The method was not biased towards neither of the polar 

or nonpolar metabolites.  

Conclusion 

The complex biological matrices and different culturing techniques required for 

the growth of many cellular organisms present a great challenge for comprehensive 

analyses. Large-scale comprehensive metabolomic analyses involving hundreds of 

samples often lead to time consuming, labour intensive sample preparation, extraction, 

and data acquisition. The proposed comprehensive metabolomic protocol using 

MeOH/EtOH/H2O extraction paired with hydrophilic interaction liquid chromatography 

(HILIC)-TOF-MS analysis was able to expand metabolome coverage to both polar and 

lipid metabolites with high reproducibility and robustness with two-fold faster data 

acquisition throughput than the conventional Bligh and Dyer method coupled to reversed-

phase (RP) and HILIC-MS. This scalable extraction method was applicable to Gram-

positive and -negative bacteria with rigid cell walls as well as mammalian cells; it was 

applicable to both suspension and adherent cell cultures that were grown in either rich or 

minimal media and had minimal ion suppression despite the complex biological matrix. 

This comprehensive metabolomic method was developed as a qualitative initial screening 

tool for finding biomarker or pathway differences between treatments for a hypothesis 

generating study. However, extension to quantitative targeted metabolomic analyses 

should be followed for high impact study.  

Acknowledgement 



Ph.D. Thesis – F. Fei; McMaster University – Dept. of Chemistry and Chemical Biology 

47 
 

This work was dedicated to late Prof. Brian McCarry (1946-2013). Funding for this work 

was provided by NSERC and CIHR. Work in the Bowdish laboratory is supported in part 

by the Institute of Infectious Disease Research and the McMaster Immunology Research 

Centre. The authors would like to thank Dr. Mark McDermott, Dr. Kenneth Chalcraft, Dr. 

M. Kirk Green, and Roger Luckham for critical reading of the manuscript. The authors 

would like to thank the Center for Microbial Chemical Biology at McMaster for access to 

the LC-MS. Streptococcus intermedius and murine macrophages used in this paper were 

kindly cultured and provided by Michelle Pinto and Keith Lee. 

  



Ph.D. Thesis – F. Fei; McMaster University – Dept. of Chemistry and Chemical Biology 

48 
 

 

Figure 1 The extraction efficiencies of endogenous metabolites in 2×10
9
 S. meliloti cells 

in the first extraction (a), and 2nd to the 7th extraction (b) (only 2nd, 3rd, and 7th 

extractions are shown). The extraction efficiencies at each extraction step 
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Figure 2  (a) Base peak chromatogram of the HILIC separation on ten lipid classes 

including PGs, lyso-PG, phosphatidic acids (PAs), PSs, triacylglycerols (TAG), PEs, 

ceramides (CEs), PCs, sphingomyelins (SMs) and lyso-PCs. (b) Base peak chromatogram 

of [M+H]
+ 

ions of PEs   



Ph.D. Thesis – F. Fei; McMaster University – Dept. of Chemistry and Chemical Biology 

50 
 

 

 

Figure 3 The 2125 endogenous metabolite features detected in 3×10
5
 murine macrophage 

extracts after data reduction. The radius of the data markers (filled circle) reflected the 

relative abundances of the metabolite features over a dynamic range of 5×10
4
. Small 

metabolites (90-400 m/z) in yellow, PGs in green, PEs in red, PCs in purple and lyso-PCs 

in blue were highlighted. The HILIC gradient was labelled with a black line with 

reference to percentage acetonitrile  
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Figure 4 The metabolome coverage of S. meliloti of 1059 endogenous metabolite features 

found in at least one set of BD polar, BD nonpolar or MeOH/EtOH/H2O extracted 

samples. Extracts were performed in sextuplicate and analyzed independently by HILIC-

TOF-MS in both ESI+ and ESI- modes. The ionization responses of the metabolite 

features were normalized using internal standards. (a) OPLS-DA score plot comparing the 

endogenous metabolome coverage of S. meliloti extracts attained from three different 

extraction methods with R
2
X(cum)=0.926, R

2
Y(cum)=0.986, and Q

2
(cum)=0.936. (b) 

The quantity of metabolite features that were uniquely identified and shared between BD 

polar, BD nonpolar and MeOH/EtOH/H2O extracted samples were listed in the Venn 

diagram with their estimated percentage share of the total detectable metabolome. (c) The 

normalized ionization responses of identified metabolites with varying polarity. The 

ionization responses from MeOH/EtOH/H2O extracts was set to one as references. Polar 

metabolites were mostly extracted in BD polar, and lipids were seen exclusively in BD 

nonpolar; however, all metabolites were detected in MeOH/EtOH/H2O. Error bars 

corresponded to two standard deviations. UDP, uridine diphosphate; GlcNac, N-

acetylglucosamine  
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Figure 5 Among 228 shared metabolite features in BD polar, BD nonpolar and 

MeOH/EtOH/H2O extracts, (a) 14.6% features had lower extraction efficiencies in 

MeOH/EtOH/H2O extracts than at least one of the BD extracts, and (b) 15.8% features 

had increased extraction efficiencies in MeOH/EtOH/H2O extracts than all BD extracts. 

Each error bar corresponds to two standard deviations calculated from six independent 

extractions. The ionization responses were normalized to the IS and also the total summed 

ionization response for both BD polar and BD nonpolar. Each metabolite feature is 

represented by the ESI mode used for its detection (in brackets), its m/z value and 

retention time  



Ph.D. Thesis – F. Fei; McMaster University – Dept. of Chemistry and Chemical Biology 

53 
 

Table 1 The shared 228 metabolite features in BD polar, BD nonpolar and 

MeOH/EtOH/H2O extracts were compared between different extraction methods using 

unpaired heteroscedastic Student’s t test with p < 0.05. Among the shared features, 15.8% 

showed greater extraction efficiency (↑), 14.6% showed lower extraction efficiency (↓) 

and 59.6% showed no difference (≈) between MeOH/EtOH/H2O and BD fractions. “>”, 

greater extraction efficiency; “<”, less extraction efficiency; “=”, equal extraction 

efficiency. 

  
Features 

detected 

Percentage 

features 

of 228 shared 

 

E
x

tr
a

ct
io

n
 e

ff
ic

ie
n

cy
 

o
f 

M
eO

H
/E

tO
H

/H
2
O

 

co
m

p
a

re
d

 t
o

 B
D

 

↑ 36 15.8% MeOH/EtOH/H2O > BD polar, BD nonpolar 

↓ 

5 2.2% BD polar > MeOH/EtOH/H2O > BD nonpolar 

6 2.6% BD polar < MeOH/EtOH/H2O < BD nonpolar 

2 0.9% MeOH/EtOH/H2O < BD polar, BD nonpolar 

7 3.1% MeOH/EtOH/H2O =BD nonpolar <BD polar 

36 15.8% MeOH/EtOH/H2O = BD polar < BD nonpolar 

≈ 

29 12.7% MeOH/EtOH/H2O = BD polar = BD nonpolar 

39 17.1% MeOH/EtOH/H2O = BD nonpolar > BD polar 

68 29.8% MeOH/EtOH/H2O = BD polar > BD nonpolar 
a
 Metabolite features seen with greater ionization responses in either BD polar and BD 

nonpolar fractions in comparison to those from MeOH/EtOH/H2O extracts were 

considered to have lower extraction efficiencies in MeOH/EtOH/H2O, and vice versa. 
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Supplementary Information 

 

Cell culture conditions 

Cell Culture for Sinorhizobium meliloti 

S. meliloti RmP100 (wild type strain) were streaked onto LB agar plates and 

incubated at 30ºC for four days. A single colony from the agar plate (less than 2 weeks 

old) was inoculated into 5 mL LBmc rich medium at 30ºC for 24 hours. The culture was 

centrifuged, then washed with 1 mL of sterile saline solution (0.85% NaCl), and re-

suspended in M9 culture. The re-suspended S. meliloti culture was inoculated to M9 at 

initial OD600 of 0.05 and incubated at 30ºC for 24 hours till reaching mid-log phase 

(OD600 = 1.0).  

The LB broth (10 g/L DifcoBactoTryptone, 5 g/L Difco Yeast Extract, and 5 g/L 

NaCl) was adjusted with 1M NaOH to pH 7.0, and autoclaved. The LBmc broth was 

prepared by adding 250 μL of sterile 1 M MgSO4 and 500 μL of sterile 0.5 M CaCl2 to 

100 mL of sterilized LB broth to reach a the final concentration of 2.5 mM of both 

MgSO4 and CaCl2. 

The M9 medium was prepared by adding 100 mL 5x Difco M9-salts, 0.5 mL 

MgSO4 (1 M), 0.25 mL CaCl2 (0.5 M), 5 μL CoCl2 (1 mg/mL), 50 μL biotin (1 mg/mL), 

5 mL glucose (1.5 M) and 394.2 mL autoclaved distilled water to reach a final volume of 

500 mL. The 5x Difco M9-salts were composed of 33.9 g/L NaHPO4, 15 g/L NaH2PO4, 

2.5 g/L NaCl, and 5 g/L NH4Cl. All solutions used were autoclaved separately prior to 

use. The glucose solution was sterilized by filtration through a 0.45 μmSupor membrane 

filter (Acrodisc). The final M9 medium was composed of 20% v/v 5x Difco M9-salts, 1 

mM MgSO4, 0.25 mM CaCl2, 0.01 μg/mL CoCl2, 1 μg/mL biotin, and 15 mM glucose. 

Cell Culture for Streptococcus intermedius 

S. intermedius B196 was streaked on Todd Hewitt agar supplemented with yeast 

extract and incubated for 3 days at 37ºC at 5% CO2. A single Colony was used to 

inoculate Todd Hewitt broth supplemented with yeast extract (THY). Seven replicates 

were incubated at 37ºC. Overnight cultures were diluted tenfold in THY and grown to 0.8 

OD600. 

Cell Culture for Murine Macrophages 

Bone marrow progenitors were isolated from the leg bones of young (6-8 weeks) 

C57BL/6 female mice. The progenitor cells were cultured and differentiated for 7 days at 

37ºC in 150 mm Petri dishes (Fisherbrand) in 25 mL Roswell Park Memorial Institute 

1640 medium (RPMI-1640) supplemented with 1% penicillin-streptomycin (P/S), 1% L-

glutamine, 10% fetal bovine serum (FBS), and 15% L929-cell conditioned medium 



Ph.D. Thesis – F. Fei; McMaster University – Dept. of Chemistry and Chemical Biology 

58 
 

(LCM).  The cell culture was changed every 2-3 days. At day 8, 3×10
5
 fully differentiated 

macrophages were extracted for metabolomic analyses.  
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Figure S1 The schematic for normalizing the ionization efficiency of endogenous 

metabolite features using L-lysine-
13

C6-
15

N2, phe-phe, L-phenylalanine-d8 and gly-phe as 

internal standards. The metabolite features were normalized with internal standard that 

eluted closest to their retention time  
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Extraction of extracellular medium 

Directly from the culture plate, 20 μL of the extracellular medium was extracted 

with 80 μL of MeOH/EtOH (1:1) containing RS. The solution mixtures were mixed by 

vortex for 2 min and centrifuged at 9500x g for 3 min. The clear supernatants were 

collected and diluted 2-fold in 60%v/v ACN/H2O for MS analyses. The extracellular 

extracts were analyzed with the same LC-MS method as the endogenous cellular extracts. 

Cell Washing Removes Interferences from Extracellular Medium 

The sample preparation protocol was developed to quench, harvest and extract 

suspension and adherent cell cultures. Most prokaryotic and eukaryotic cell lines require 

rich growth medium to facilitate growth. However, after aspirating the cellular medium 

from the cell pellet, the extracellular medium that still remained at the cell surfaces can 

cause significant matrix effects. This extracellular fluid contained nutrients from the 

growth medium as well as the exogenous metabolites released from the cell. Those 

metabolites, if included in the endogenous cellular extracts, can suppress MS signals and 

also cause bias to the true endogenous metabolite concentrations [1]. In Fig. S2A, the 

total ion chromatogram (TIC) of the extracellular medium of murine macrophages 

cultured in RPMI-1460 medium qualitatively resembled the TIC of the respective 

endogenous cellular extracts when the cells were not washed with PBS or saline. The 

largely abundant nutrients and exogenous metabolites in the growth medium masked the 

lesser abundant endogenous cellular metabolites. With one PBS or saline wash, the TICs 

of endogenous cellular extracts were completely different than those from the 

extracellular medium (Fig. S2B), which indicated the removal of most extracellular 

metabolites traces in the endogenous cellular extracts. PBS or saline was selected for cell 

washing in order to maintain the ionic strength balance inside and outside the cells to 

avoid leakage [2]. A one-time wash of the cells with PBS or saline solution was able to 

remove metabolite traces from extracellular medium on the cell surface. 
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Figure S2 The total ion chromatograms of endogenous (black) and exogenous (grey) 

metabolomic profiles from murine macrophages cultured in RPMI-1460. 

MeOH/EtOH/H2O (2:2:1) was used to extract the endogenous metabolites. For exogenous 

metabolome, 20 μL of cell supernatant were extracted with 80 μL of MeOH/EtOH once 

and then diluted 2 fold for LC analysis. (A) The murine macrophage cells were not 

washed with phosphate buffered saline (PBS) prior to extraction. (B) The murine 

macrophage was washed once with PBS after harvest and then extracted  
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Metabolism Quenching 

Ice-cold PBS or saline was used to halt cellular metabolism. Typical quenching 

solutions such as methanol were not used to avoid cell leakage [2]. Liquid nitrogen flash 

freezing was not used to avoid the impact of cold shock on cellular metabolism [3]. 

Incubating cells at 5ºC has shown greater reduction in cellular activity when compared to 

incubating in its physiological temperature [4]. Cold isotonic saline (0.9 w/v NaCl, 0.5ºC) 

was reported to halt ATP to ADP and AMP conversion without damaging cells [5]. In 

addition, the cells were extracted with cold extraction solvent immediately following 

PBS/saline washes to minimize further metabolic disturbances. The entire sample 

preparation procedure was performed on ice or in a cold room to avoid metabolite 

modifications and degradation. 

Cell Detachment for Adherent Cell Culture 

Harvesting cells from suspension cultures for extraction was straightforward. The 

cells were centrifuged, the extracellular medium was aspirated, and the cell pellet was re-

suspended and washed with PBS or saline, and then extracted using an extraction solvent. 

For adherent cell cultures, the cell harvest was more challenging. Typically, 

adherent cells were detached from their growth surface via trypsinization and then 

centrifuged to form a cell pellet [6]. However, trypsinization altered the integrity of the 

cells and their extracellular environment [7,8] which consequently led to the metabolic 

alternations that were not specific. Furthermore, the salts in trypsin buffer and 

ethylenediaminetetraacetic acid (EDTA) was not ESI-MS compatible due to its high salt 

concentration. To address this issue, the adherent cells were washed and quenched with 

cold PBS/saline, and detached by physical scraping in the presence of an extraction 

solvent. The organic component of the extraction solvent was able to induce cell leakage 

and cell death, and the cell mixture was collected and extracted. The cell detachment 

procedure required less than 30 seconds per sample to lift the cells compared to the much 

more time consuming trypsinization procedure which typically requires several minutes 

of incubation. Also, Bi et al. have shown the scraping method results in a greater 

metabolite recovery compared to the trypsinization method due to unrecoverable 

metabolite leakage experienced by the latter method [8].  

Further Optimization of HILIC Method 

The HILIC gradient was optimized using a DoE orthogonal factorial design 

approach to maximize metabolome coverage (Fig. S3). The DoE approach was able to 

simultaneously optimize many experimental parameters with a significantly reduced 

number of required experiments [9]. A HILIC gradient with acetonitrile (solvent A) and 

10 mM ammonium acetate in water adjusted to pH3 with formic acid (solvent B) was 

used. The optimization was based on a generic HILIC gradient starting with an initial 

hold at a high percentage of A, then decreased linearly to 35% A, held isocratically at 35% 

A, and then followed with equilibrium back to the initial percentage of A. Three 
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experimental factors were selected and optimized with the following experimental ranges: 

initial hold time at 95% A was adjusted between 0.5 to 2.0 min, the initial percentage of 

A was adjusted from 80% to 98%, and the gradient from initial high percentage of A to 

35% A was set to decrease with a rate from 4% to 12% of A per min. The goal of this 

optimization was to minimize the number of un-retained metabolite features with kapp’ < 

0.7 and also to minimize the time required for all features to elute within the gradient. The 

LC method was designed to ensure the elution of all features during the gradient prior to 

the isocratic hold at 35% A in order to minimize band broadening effects.  

The hold time (X1) did not reduce the number of un-retrained features (Y1), but 

significantly reduced the time required to complete metabolite elution (Y2). It was clear 

at 98% initial ACN with a 0.5 min hold followed by a drop in gradient to 35% ACN at 4% 

ACN per min provided that most optimum separation, for which we observed the least 

amount of un-retained features (y1) and required the least amount of time (y2) to 

completely elute all metabolites. However, the 4% gradient slope did not take advantage 

the separation capacity of the entire chromatography, and the features eluted ca. 3 min 

prior to the end of the gradient. Moreover, 98% initial ACN required longer than 10 min 

equilibration time. Lastly, the optimized gradient was set to be 95% ACN with 0.5 min 

hold, followed by a drop in gradient to 35%ACN at a rate of 5% ACN per min. The 

finalized HILIC-LC gradient is shown in Fig. 3. 
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Figure S3 2
3
 full factorial design of experiment for HILIC chromatography optimization. 

A HILIC gradient with acetonitrile (solvent A) and 10 mM ammonium acetate in water 

adjusted to pH3 with formic acid (solvent B) was used. S. meliloti extracts (2×10
9
 cells) 

were separated on 50 mm × 2.1 mm Kinetex 2.6 μm HILIC column and detected using a 

Bruker MicrOTOF II. (A) The HILIC gradient was optimized with initial hold time (X1), 

starting acetonitrile percentage (X2), and the rate of change of acetonitrile percentage (X3) 

in order to maximize the number of metabolite features with k’ < 0.7 (Y1) and minimize 

the time required for all features to elute during the gradient (Y2). (B) Two 2
3
 factorial 

design was used. The axial points were repeated in triplicates, and the center point was 

repeated in sextuplicate. Mathematical modelled regressions based on the 2
3
 full factorial 

designs are shown in (C) and (D) as 3D surface plots for Y1 and Y2 respectively 
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Figure S4 The normalized ionization responses of S. meliloti endogenous metabolites 

found in BD polar, MeOH/EtOH and MeOH/EtOH/H2O extracts. Error bars correspond 

to two standard deviations based on a triplicate independent extractions normalized to the 

IS  
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Figure S5 The extracted ion chromatogram (EIC) of (a) [M+H]+ or (b) [M-H]- ion of gly-

phe added post-column following HILIC separation of endogenous murine macrophage 

MeOH/EtOH/H2O extract (grey) or a 60%v/v ACN blank (black). Ion suppressions (black 

bold lines) were found at 0.5-1.2 min (kapp’: -0.3-0.7) and 6.9-8.0 min (kapp’: 8.9-10.4) in 

ESI+ mode; 0-1.2 min (kapp’: -0.3-0.7), 2.9-3.5 min (kapp’: 3.2-4.0), and 6.9-8.0 min (kapp’: 

8.9-10.4) in ESI- mode. The gly-phe was prepared to examine whether the matrix is able 

to suppress ionization signals, not for quantification or quality control purposes  
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Figure S6 The retention deviation of ca. 260,000 metabolite features detected in 137 S. 

meliloti MeOH/EtOH/H2O extracts and pooled samples in ESI+ mode was between ±6 

seconds.  

(Figure exported directly from XCMS)  
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Table S1. The mass accuracies (ppm) of selected metabolites in different biological 

matrix ranging from Gram-positive Streptococcus intermedius, Gram-negative 

Sinorhizobium meliloti, to murine macrophages before and after internal calibration using 

endogenous sodium formate. The mass accuracies after the internal calibration with 

sodium formate were in bold. 

 

 

  Mass Accuracy (ppm) (before/after internal 

calibration) 

 RT 

(min) 

M+H/ 

M+NH4* 

murine 

macrophages 

Streptococcus 

intermedius 

(Gram-neg.) 

Sinorhizobium 

meliloti  

(Gram-pos.) 

adenine 2.0 136.0623 75.6/10.5 65.1/10.5 48.4/10.1 

glutamic acid 8.8 148.0610 82.5/16.8 42.0/1.6 56.8/2.1 

methionine-d3 7.9 153.0777 67.1/1.8 56.3/0.9 42.9/2.4 

phenylalanine-

d8 

7.5 174.1370 65.6/1.0 60.3/4.2 44.7/2.2 

tryptophan-d5 7.4 210.1291 45.9/17.8 52.3/5.4 42.3/1.5 

glycyl-

phenylalanine 

8.2 223.1083 64.8/2.2 59.4/2.8 46.7/3.3 

phenylalanine-

phenylanaline 

6.4 313.1552 53.9/5.3 51.4/2.1 40.2/2.9 

PC(34:2) 7.6 758.5694 44.1/1.1 37.6/4.1 31.6/0.8 

PG(36:2) 1.8 792.5749* 51.0/6.2 48.7/8.4 38.5/8.6 
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Table S2. Metabolite features identified based on the accurate m/z values and retention 

time attained from authentic standards. 

 
ESI modes m/z retention time (min) 

2'-deoxyguanosine neg 266.088 1.93 

acetylcarnitine pos 204.104 8.39 

adenine pos 136.076 2.05 

adenosine pos 268.127 1.75 

ala-glu neg 217.083 8.97 

allantoin pos 159.090 9.14 

AMP pos 348.068 10.04 

arginine pos 175.132 10.70 

cytosine pos 112.052 2.84 

deoxyadenosine pos 252.110 1.74 

glucose-1-phosphate pos 261.039 9.75 

glutamic acid pos 148.074 8.68 

glutamine neg 145.079 8.73 

glutathione neg 306.076 8.22 

hexose neg 179.056 1.56 

histidine pos 156.090 11.10 

methylhistidine pos 170.073 9.09 

methylsuccinic acid neg 131.031 1.57 

N-acetyl-aspartic acid neg 174.094 4.28 

O-phosphoserine pos 186.016 8.86 

proline pos 116.083 8.24 

quinic acid pos 193.119 7.21 

thymine pos 127.053 1.47 

UDP-GlcNAc neg 606.075 8.61 

UDP-glucose neg 565.048 8.47 

uridine-2'-monophosphate pos 325.044 9.38 

γ-aminobutyric acid pos 104.071 8.46 

PC34:1 pos 760.581 7.54 

PC34:2 pos 758.565 7.53 

PC35:1 pos 774.634 6.12 

PC35:2 pos 772.581 7.52 

PC36:0 pos 790.612 7.50 

PC36:2 pos 786.598 7.50 

PC38:1 pos 800.600 7.40 

PE34:1 pos 718.579 5.73 

PE34:2 pos 716.557 5.69 
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PE35:1 pos 732.553 6.01 

PE35:2 pos 730.535 5.97 

PE36:2 pos 744.553 5.77 

PE37:2 pos 758.567 5.95 

PE37:5 pos 752.521 5.98 

PE38:2 pos 770.526 6.01 

PE39:4 pos 782.532 5.77 

PG34:1 neg 747.547 1.67 

PS40:8 neg 830.492 5.98 
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Abstract 

 Streptococcus intermedius, S. constellatus, and S. anginosus comprise the 

Streptococcus Anginosus/Milleri Group (SMG). They are facultative anaerobic bacteria 

that asymptomatically colonize the upper respiratory, gastrointestinal and urogenital tracts. 

They are also common pathogens in pyogenic invasive infections, as well as pulmonary 

and urinary tract infections. Most SMG infections are polymicrobial and associated with 

co-infecting obligate anaerobic bacteria.  To better understand the effect of oxygen on the 

growth and physiology of these organisms, we compared the global metabolomic and 

transcriptomic profiles of S. intermedius strain B196 under aerobic and anaerobic 

conditions. The largest transcriptional changes were associated with induction of 

oxidative stress response genes under aerobic conditions. Modest changes in expression 

of genes associated with primary metabolism were observed under the two conditions. 

Intracellular and extracellular metabolites were measured using HILIC-LCMS.  

Differences in the abundance of specific metabolites were correlated with observed 

transcription changes in genes associated with their metabolism, implying that 

metabolism is primarily regulated at the transcriptional level.  Rather than a large shift in 

primary metabolism under anaerobic conditions our results suggest a modest tuning of 

metabolism to support the accelerated growth rate of S. intermedius strain B196 in the 

absence of oxygen.  For example, under anaerobic conditions, purine metabolism, 

pyrimidine de novo synthesis and pyrimidine salvage pathways were up-regulated at 

metabolic and transcriptional levels. This study provides a better understanding of 

differences between S. intermedius anaerobic and aerobic metabolism. The results reflect 

the organism’s predilection for anaerobic growth consistent with its pathogenic 

association with anaerobes in polymicrobial infections.   

  



Ph.D. Thesis – F. Fei; McMaster University – Dept. of Chemistry and Chemical Biology 

74 
 

Introduction 

The Streptococcus Milleri/Anginosus Group (SMG) is comprised of three distinct 

but closely related species of facultative anaerobic Gram-positive bacteria (S. anginosus, 

S. constellatus, and S. intermedius) (Gossling 1988). The SMG are often considered as 

commensal human microbiota and can be found asymptomatically colonizing the oral 

cavity, upper respiratory tract, urogenital tract and gastrointestinal tract in healthy 

individuals (Gossling 1988; Whiley et al. 1992). However, the SMG are also  recognized 

pathogens in pyogenic infections including soft tissue abscesses, pleural empyema, brain 

and liver abscesses, and respiratory infections (Ruoff 1988; Whiley et al. 1992; Coman et 

al. 1995; Shinzato and Saito 1995; Laupland et al. 2006; Ripley et al. 2006; Parkins et al. 

2008; Sibley et al. 2008; Siegman-Igra et al. 2012; Asam and Spellerberg 2014). 

Phenotypic heterogeneity in this group can make their identification challenging and 

recent studies suggest that the SMG are under appreciated pathogens with incidence rates 

for pyogenic infections comparable to Group A and Group B Streptococcus combined 

(Laupland et al. 2006; Siegman-Igra et al. 2012).  The SMG have been primarily 

associated with adults with respect to both carriage and infection, however they may be 

underestimated in pediatric disease (Lee et al. 2010).  

Most infections associated with the SMG are polymicrobial with a significant 

burden of obligate anaerobic bacteria present in the infection site.  This has been observed 

in lower airway infections (Shinzato and Saito 1995; Parkins et al. 2008; Sibley et al. 

2008; Filkins et al. 2012),  pleural empyema (Hocken and Dussek 1985; Van der Auwera 

1985; Wong et al. 1995; Sibley et al. 2012) and abscesses (Gossling 1988; Shinzato and 

Saito 1994; Hirai et al. 2005; Sibley et al. 2012).  Understanding how SMG adapts to 

aerobic and anaerobic environments may provide insight into the mechanisms used by S. 

intermedius for survival and persistence in the host during colonization and disease 

progression.  

 In this study we examined the in vitro growth of S. intermedius strain B196 in 

aerobic (5% CO2) and anaerobic (90%N2, 5% CO2, 5% H2) conditions using growth 

kinetics, transcriptomics (RNA-seq), and both intracellular and extracellular 

metabolomics. S. intermedius B196 exhibited an increased growth rate under anaerobic 

conditions (doubling time of 41 min vs. 54 min).  We observed increased metabolite 

pools expected to support the more rapid growth anaerobically.  These include pathways 

involved in DNA synthesis such as purine metabolism, pyrimidine de novo synthesis and 

pyrimidine salvage pathways. The changes in metabolism were accompanied by modest 

changes in gene expression for the corresponding pathways. There was also a marked 

increase in expression of genes associated with defense against oxidative stress under 
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aerobic growth conditions. These data reveal that S. intermedius shows shifts in 

metabolism consistent with increased growth kinetics under anaerobic conditions in vitro. 

This preference for an oxygen-depleted environment could contribute to growth with 

obligate anaerobes and disease progression in the host.  

Materials and Methods 

Chemicals 

HPLC grade methanol (MeOH), ethanol (EtOH), acetonitrile (ACN), and water 

(H2O) were purchased from Caledon laboratories (Georgetown, ON, Canada).  

Ammonium acetate and formic acid were purchased from Fisher Scientific Company 

(Ottawa, ON, Canada).  2.0mm steel chrome ball bearings were purchased from Bearing 

& Oil Seals Specialists Inc. (Hamilton, ON, Canada). The isotopically labelled standards 

for recovery determination (RS) and for peak intensity normalization (IS) were purchased 

from Cambridge Isotope Laboratories (Andover, MA, USA). Lipid standards were 

purchased from Avanti® Polar Lipids, Inc. (Alabaster, AL, USA), and other chemical 

standards for LC-MS were purchased from Sigma-Aldrich (St. Louis, MO, USA) and 

Biolog Inc. (Hayward, CA, USA).  

Bacterial Strain, Media and Growth Conditions 

S. intermedius B196 is an invasive isolate from the hip abscess of a cystic fibrosis 

patient. A complete genome sequence is available for this strain (Olson et al. 2013). S. 

intermedius was grown on Todd Hewitt agar supplemented with 0.5% yeast extract (THY) 

at 37ºC in a 5% CO2 incubator for 3 days. A single colony was inoculated into 5 mL THY 

broth for overnight static growth under the above conditions. For growth kinetics, 

overnight cultures were inoculated into 5 mL THY broth at an initial OD600nm of 0.05 and 

cultured aerobically (5% CO2) and anaerobically (90% N2, 5% CO2, 5% H2) with optical 

density as well as colony forming units (CFU) recorded every hour (Supplementary 

information). For RNA-seq and metabolomics, the same overnight cultures were 

inoculated into THY broth at an initial OD600nm of 0.1 and grown under either aerobic and 

anaerobic conditions with samples collected at mid-exponential phase (OD600nm= 0.7) .  

Strand-specific RNA-seq  

Three biological replicates were prepared for S. intermedius under aerobic and 

anaerobic conditions. A 2 mL culture from each replicate at OD600nm= 0.7 was centrifuged. 

The cell pellets were collected and stored in RNAprotect bacteria reagent (Qiagen, Venlo, 

Netherlands) for later use at -80ºC. Total cellular RNA was isolated and purified using 

TRIzol (Invitrogen, Carlsbad, CA, USA) and RNeasy Mini Kit (Qiagen, Venlo, 
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Netherlands). Ribosomal RNA (rRNA) was depleted using Ribo-Zero rRNA removal Kit 

for bacteria (Epicentre, Madison, WI, USA). cDNA was prepared using the Superscript 

III first strand cDNA synthesis kit (Invitrogen, Carlsbad, CA, USA). Strand specific RNA 

sequencing libraries were prepared using the dUTP approach (Parkhomchuk et al. 2009). 

The NEB-Next library preparation modules for Illumina were used for library preparation 

with a separate index used per biological replicate. The libraries were submitted to the 

McMaster Genomics Facility (McMaster University, Hamilton, Canada) for quality 

control (QC) and sequencing using standard Illumina protocol (Illumina HiSeq1000, San 

Diego). QC included assessment of fragment size using BioAnalyzer and routine qPCR 

quantification to quantify the amount of cDNA. The libraries were converted to FastQ 

format using Illumina's Casava software (version 1.8.2) with no index mismatches during 

demultiplexing.  Approximately 20 million reads were obtained per sample with 16-17 

million reads per biological replicate mapping back to the genome of S. intermedius B196 

with high stringency. A detailed procedure can be found in Supplementary information.  

RNA-seq Data Analysis 

The transcriptomic data were aligned, assembled, analyzed and graphed using the 

Bowtie2: Tophat2: Cufflinks: Cuffdiff: CummeRbund pipeline (Trapnell et al. 2012). A 

total of 1815 genes were analyzed. Differential gene expression analysis was done using 

Fragments per kb per million (FPKM) values generated using the pipeline. This value 

takes into consideration the number of reads mapping back to each gene and normalizes 

that to the total number of reads generated from the sequencing run. Statistical analysis 

was included in the Cuffdiff analysis.  Genes were classified into pathways based on 

BioCyc database (Caspi et al. 2014).  The transcriptomic (RNA-seq) data are summarized 

in Table S1 and the dataset is included in electronic supplementary material ESM 1. 

Extraction Protocol for Intracellular and Extracellular Metabolites 

The extraction procedures for intracellular and extracellular metabolomics were 

based upon previously published work (Fei et al. 2014). Cells from a 2 mL cell culture at 

0.7 OD600nm were pelleted by centrifugation at 4ºC, washed once with 1mL PBS for 

intracellular metabolomic analysis; from the same culture, 20 μL of the culture 

supernatant after centrifugation was collected for extracellular metabolomic analysis. 

Prior to extraction, 10 μL RS consisting of 770 µM L-methionine-d3 and 378 µM L-

tryptophan-d5 were added to the cell pellet and THY supernatant. For intracellular 

metabolomics, the cell pellet was extracted with 100 μL cold methanol/ethanol/water 

(MeOH/EtOH/H2O, 2:2:1) and two 2.0 mm chrome steel beads using the Powerlyzer24 

(MO BIO Laboratories Inc., Carlsbad) for 2 min. The cell extract supernatant was 

collected after centrifugation at 9500 x g for 3 min. The cell debris (consisting of 
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precipitated protein and particulates) was extracted with 50 μL MeOH/EtOH/H2O two 

more times, under the same condition. For extracellular metabolomics, 20 μL THY 

supernatant was extracted with 80 μL MeOH/EtOH (1:1). The solution mixtures were 

vortex mixed for 2 min and centrifuged at 9500x g for 3 min. The clear supernatants were 

collected and diluted with 100 μL 60%v/v ACN/H2O. IS with 252 μM L-phenylalanine-d8, 

151 μM glycine-phenylalanine, and 88 μM diphenylalanine were added to the total 150 

μL cell extracts and 200 μL supernatant extracts. Five separate controls for THY medium 

were also extracted as above. Both intra- and extracellular extracts were stored in -80ºC 

during extraction processes and before LC-MS analyses. Five biological replicates were 

collected for aerobic and anaerobic growth conditions and LC-MS was performed in 

sextuplicate for each sample.   

HILIC-TOF-MS Analysis for Intracellular and Extracellular Metabolites 

The HILIC-TOF-MS method and parameters were based upon previously 

published work (Fei et al. 2014). The intracellular and extracellular extracts were 

analyzed in two separate batches using an Agilent Technologies 1200 RR Series II liquid 

chromatograph (LC) coupled to a Bruker MicrOTOF II Mass Spectrometer.  A 2 μL 

injection was separated on a 50 mm × 2.1 mm Kinetex 2.6 μm HILIC column of pore size 

of 100 Å (Phenomenex, CA, USA).  The column temperature was maintained at 40 ºC, 

and the auto sampler storage tray was set at 4ºC. The mobile phases were acetonitrile (A) 

and 10 mM ammonium acetate in HPLC grade water adjusted to pH 3 with formic acid 

(B). The flow rate was kept at 0.2 mL/min during a 24-min run with the following 

gradient: 95 % A for 0.5 min to 35 % A at 12.5 min with an extra 0.5 min hold, then to 95% 

A at 14 min. The column was equilibrated at 95% A for 10 min before the next injection.  

The extracts were analyzed in both ESI+ and ESI- modes. The samples were 

acquired in random order. A quality control pooled sample was prepared by combining 5 

μL extracts from all samples in either the intracellular or extracellular extract batches. 

The pooled samples were injected seven times at the beginning of each analysis and also 

after every 5 samples. MeOH/EtOH/H2O blank and a standard mixture containing IS and 

RS were also run after every 10 samples. 

LCMS Data Analysis and Metabolite Identification 

The data processing and analysis were modified from a previously published 

protocol (Fei et al. 2014). Post-acquisition internal calibration using intracellular sodium 

formate clusters in both ESI+ and ESI- were performed with Bruker’s DataAnalysis 4.0 

SP4. The LC-MS data files were converted to .mzXML format using Bruker 

CompassXport. The metabolic features were extracted and aligned using open source 
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XCMS with centWave algorithm (Smith et al. 2006); adducts, isotopic ions, and in-

source fragments were identified using CAMERA (Kuhl et al. 2010).  

To get the final metabolite feature list, metabolite features with apparent retention 

factor (kapp’) lower than 0.7 were removed. Isotopic ions, features resulting from IS, RS, 

and sodium formate clusters were also removed. The peak area of all metabolite features 

were normalized to IS. Features with greater than 20% variance in the pooled sample 

were removed to get the final metabolite feature list.  

Metabolite features were identified based on accurate mass and retention time of  

authentic standards or compound analogs (for lipid identification only) with two 

identification points (Creek et al. 2014). There were 105 metabolites identified from 1885 

intracellular metabolic features, 66 metabolites  were identified with level 1 

metabolomics standard initiative (MSI)(Sumner et al. 2007), 10 metabolites were 

putatively annotated with level 2 MSI, and 29 metabolites were assigned to compound 

classes with level 3 MSI. There were 26 phospholipids (PLs) identified to two 

phosphatidylcholines (PCs), one phosphatidylethanolamine (PEs), 20 

phosphatidylglycerols (PGs), and three lyso-PGs in the intracellular metabolome based on 

the accurate mass and retention time of lipid analogs (Zheng et al. 2010; Fei et al. 2014). 

Similarly, there were 116 metabolites identified from 3382 extracellular metabolite 

features, with 82, 8 and 2 metabolites identified with level 1, 2, and 3 MSI, respectively. 

Both intra- and extracellular metabolomic data were summarized in Table S1 and the 

datasets are included in electronic supplementary material ESM 2 and 3, respectively. 

Multivariate Statistical Analyses  

Both transcriptomic and metabolomic data were subjected to principal component 

analysis (PCA) and orthogonal partial least-squares discriminative analysis (OPLS-DA) 

after pareto scaling using SIMCA-P+ 12.0.1 (Umetrics, Kinnelon, NJ). The metabolomic 

data were also analyzed using MetaboAnalyst 3.0 for pathway analysis based on the 

Staphylococcus aureus metabolic pathway (Xia et al. 2015) (electronic supplementary 

material ESM 4) . Intracellular and extracellular metabolite features and genes were 

assessed by univariate analyses such as Student’s t test (two-tailed, unpaired 

heteroscedastic) and one-way ANOVA using Microsoft Excel 2010 and MetaboAnalyst 

2.0, respectively. Metabolic features and genes with p value less than 0.05 (from 

Student`s t test or one-way ANOVA) and fold change greater than 1.5 between conditions 

were considered significantly differentiated. The pathway maps were constructed based 

on BioCyc data for Streptococcus intermedius strains B196 and JTH08. 

Results and Discussion 
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S. intermedius metabolism is affected by aerobic or anaerobic growth conditions  

The intracellular and extracellular metabolomes and the transcriptome were used 

to characterize and differentiate the responses of S. intermedius to anaerobic and aerobic 

growth conditions. Comprehensive multivariate OPLS-DA analyses were conducted on 

the 1885 intracellular and 3382 extracellular metabolites of S. intermedius. There were 

robust metabolomic differences between aerobic and anaerobic growth environments (Fig. 

1b-c) with prediction statistic (Q
2
) above 0.85 (Broadhurst and Kell 2006). The 

extracellular metabolomic profiles of S. intermedius grown in aerobic or anaerobic 

conditions were distinctly different from each other, and the THY medium control, 

implying distinct nutrient consumption and metabolite release under these growth 

conditions. Twenty-eight major metabolic pathways were found using MetaboAnalyst 

based on identified metabolites (Fig. 2).  

The presence of oxygen affected both the intracellular and extracellular 

metabolome of S. intermedius. Over 37.7% of the intracellular metabolite features 

(710/1885 metabolite features) were differentially produced when comparing aerobic and 

anaerobic growth environments. Among these, 327 features were more abundant under 

anaerobic condition, and 383 features were less abundant (Fig. S1a). Similarly, 38.6% 

(1307/3382 features) of the extracellular metabolite features were significantly different 

among aerobic, anaerobic supernatants and THY medium controls. Although the majority 

of changes occurred between THY and growth conditions, 3.4% (114/3382) of the 

features were differentially expressed between aerobic and anaerobic supernatants (28 

increased and 86 decreased under anaerobic growth conditions (Fig. S1b-d).  

The RNA-seq dataset of S. intermedius B196 captured the transcription of 1815 

genes based on the current annotation (Olson et al. 2013). These genes were classified to 

58 gene pathways. The transcription profiles under aerobic and anaerobic growth were 

distinct as shown in OPLS-DA score plot (Fig. 1d). There were 625 genes that 

significantly affected with p values ≤ 10
-4.5

 (the Cuffdiff threshold cut-off) (Trapnell et al. 

2012). Of these, 297 genes had greater than 2-fold changes in gene expression (Fig. S2).  

Figure 3 illustrates the percentage of genes in each pathway that were up-regulated or 

down-regulated with a change greater than 2-fold. The pathways can be divided into four 

groups based on the responses seen: (1) Aerobic Response only, where genes in pathway 

were up-regulated only in the presence of oxygen (2) Anaerobic Response only, where 

genes were up-regulated in the absence of oxygen, (3) Mixed Response, which includes a 

subset of genes up-regulated and a subset down-regulated under each condition, and (4) 

An unaffected group, where there was no oxygen dependent response. The data confirms 

that aerobic and anaerobic growth conditions can lead to global metabolic and 

transcriptional changes in S. intermedius. 
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Adaptations affecting growth 

S. intermedius exhibited differential growth kinetics in the presence and absence 

of oxygen. Under aerobic conditions, S. intermedius exhibited an extended lag phase and 

slower overall growth rate compared to anaerobic growth conditions (Fig. 1a, S3). The 

doubling time during the logarithmic phase was 41 minutes under anaerobic conditions 

and 54 minutes under aerobic conditions based on CFUs (Fig. S3). Consistent with the 

increased growth rate under anaerobic conditions, pathways associated with central 

carbon metabolism, the arginine deaminase pathway, pyrimidine and purine metabolism 

were found to be increased under anaerobic conditions using both transcriptomics and 

metabolomics.   

Central carbon metabolism of S. intermedius was up-regulated during anaerobic growth 

Many facultative anaerobes such as E. coli, can adapt to different oxygen 

environments by switching from aerobic to anaerobic respiration or fermentative 

metabolism under oxygen-deficient conditions (Trotter et al. 2011).  In aerobic 

respiration, oxygen is used as the terminal electron acceptor in the electron transport 

chain, which generates the proton gradient across the cell membrane and allows ATP to 

be generated by the cell. Lactic acid bacteria, including SMG, lack heme, the main 

component of the cytochromes in the electron transport chain. To compensate, lactic acid 

bacteria generate NAD
+
 and acidic byproducts (lactate, acetate and formate) via mixed 

acid fermentation (Crow and Pritchard 1977). This occurs under both aerobic and 

anaerobic conditions. The acidic byproducts are exported and generate a proton gradient 

across the cell membrane, allowing ATP synthesis. Here, the effect of oxygen on 

glycolysis and mixed acid fermentation in S. intermedius were analyzed by 

transcriptomics and metabolomics (Fig. 4). 

Genes associated with glycolysis including glucokinase (glcK, 2.87-fold) and 

fructose 1,6-bisphosphate aldolase (fba, 2.71-fold), were up-regulated under anaerobic 

conditions (Fig. 4a). Additionally, expression of the glycogen biosynthesis operon 

(glgABCD) was also increased by more than 2-fold under anaerobic growth, implying that 

glucose utilization exceeds energy requirements and is therefore stored in the form of 

glycogen. There was also a decreased expression of genes involved in the synthesis of  

acetoin, namely acetolactate synthase (SIR_RS12085, 5.32-fold) and aldehyde 

dehydrogenase (aldB, 6.13-fold) as has been found in other lactic acid bacteria such as 

Lactococcus lactis (Bassit et al. 1993).  

The presence of oxygen in the growth environment is known to affect genes 

associated with carbohydrate uptake in non-SMG streptococci (Ahn et al. 2007; Ahn et al. 
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2009). The utilization of C5 and C6 sugars (e.g. ribose, glucose, trehalose) from the 

extracellular medium was equivalent between growth conditions.  However, eight genes 

involved in fructose, ascorbate, glucose, mannose and N-acetylgalactosamine transport 

were up-regulated under anaerobic conditions (Fig. S4). Conversely, the expression of 

seven genes involved in the uptake of trehalose, lactose, starch and glycerol as well as six 

putative carbohydrate uptake genes were down-regulated during anaerobic growth. These 

data suggest that regulation of carbohydrate uptake is also a feature of S. intermedius 

metabolism when grown under different oxygen levels. 

The NAD
+
/NADH cycling pathway and carbohydrate metabolism are inextricably 

linked in S. intermedius (Fig. 4b). Under anaerobic conditions, lactate dehydrogenase (ldh, 

3.30-fold) and malate dehydrogenase (mleS, 2.31-fold) were up-regulated with glycolysis 

genes to allow regeneration of NAD
+
 (Fig. 4b, S4). However, under aerobic conditions, 

nox and ahpCF are up-regulated while ldh and mleS are down-regulated, implying a 

change in the mechanism of NAD
+
/NADH cycling. Along with a lower expression of 

glycolysis genes under aerobic conditions, these two features may contribute to slower 

growth.  

Up-regulation of arginine deiminase pathway in an anaerobic growth environment could 

lead to increase in de novo synthesis of pyrimidine 

In host-pathogen interactions, the ability of bacteria to compete for nutrients with 

host cells is essential for bacterial colonization and pathogenesis. Amino acids have been 

used as the primary carbon source by bacteria in rich media (Prüb et al. 1994; Sezonov et 

al. 2007). However, we observed minimal net change in amino acid concentrations while 

comparing the growth conditions to the original THY medium aside from arginine (Fig. 

S5). Thus oxygen had little impact on the metabolism of other amino acids.  

Arginine is known to be required for optimal SMG growth (Rogers et al. 1987) 

and was consumed during S. intermedius growth in our experiments. The arginine 

deiminase (ADI) pathway is used for energy production  and also feeds into de novo 

synthesis of pyrimidine via carbamoyl phosphate (Zúñiga et al. 2002; Gruening et al. 

2006; Cusumano and Caparon 2015). There are four enzymes involved in the arginine 

deiminase (ADI) pathway: arginine deiminase (arcA), ornithine carbamoyltransferase 

(arcB), carbamate kinase (arcC) and arginine/ornithine antiporter (arcD) (Gupta et al. 

2013) (Fig. 5). The production of ammonia and ATP from carbamoyl phosphate via ArcC 

provides energy and protection against acid stress (Marquis et al. 1987; Cotter and Hill 

2003).The gene expression of arcC was similar under both growth conditions Therefore, 

the energy generation or acid stress resistance provided by carbamoyl phosphate and ADI 

is comparable under both conditions. On the other hand, the expression of arcA, arcB and 
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arcD, which lead to the synthesis of carbamoyl phosphate, were all increased 

significantly under anaerobic growth conditions. Additionally, the intracellular 

concentrations of arginine and ornithine (the carbamoyl phosphate by-product) were also 

elevated in the anaerobic conditions. Overall, this implies that under anaerobic condition, 

there is a greater conversion of arginine to carbamoyl phosphate for de novo synthesis of 

pyrimidine via the ADI pathway. Though the overall consumption of arginine was 

slightly greater in aerobic conditions, the arginine was preferentially metabolized to 

citrulline and exported, which resulted a three-fold greater extracellular citrulline 

concentration. Thus, up-regulation of the ADI pathway under anaerobic conditions 

contributed to the increased production of carbamoyl phosphate and consequently, the up-

regulation of pyrimidine de novo synthesis. Many pathogens use the consumption of 

arginine as a means to impair the host’s ability to produce nitric oxide (Stadelmann et al. 

2013; Cusumano et al. 2014)  and this may be a strategy used by S. intermedius in 

infections. 

Anaerobic growth conditions enhance pyrimidine and purine metabolism in S. 

intermedius 

The intracellular concentrations of cytosine, cytidine, adenosine, adenine, 

guanosine, and uridine were all higher during anaerobic growth, while their extracellular 

abundances were much lower implying greater cellular uptake in comparison to the 

aerobic culture (Fig. S6, S7). In agreement with the metabolic data, the salvage and de 

novo nucleotide synthesis pathways were also both up-regulated anaerobically at the 

transcription level  

The pyrimidine de novo synthesis pathway was elevated during anaerobic growth. 

This was indicated by the increase of intracellular levels of orotate, a pathway 

intermediate, and the increased expression of pyrimidine synthesis genes (pyrBCDEF) 

(Fig. 5, S8). Pathways for production of carbamoyl phosphate (ADI pathway), aspartate 

(aspartate aminotransferase), and bicarbonate (carAB), precursors for pyrimidine de novo 

synthesis, were all up-regulated anaerobically. Moreover, the purine metabolism 

pathways were also elevated anaerobically. Intracellular adenine level had shown great 

disparity according to the aerobic and anaerobic growth condition. Compared to aerobic 

condition, more than three-fold increase had been observed for intracellular adenine when 

S. intermedius was anaerobically cultured. Though the adenine level in the spend media 

was reduced in both growth conditions, but a greater reduction was noted in the anaerobic 

growth. It may suggest greater influx of adenine under anaerobic growth. The genes 

involved in the inter-conversion between nucleosides and nucleotides were also up-

regulated anaerobically to adjust to the high demand of intracellular metabolites (Fig. S6, 
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S7). The enhanced expression of nucleoside and nucleotide metabolism genes may 

contribute to the increased growth rate of S. intermedius under anaerobic conditions.  

Adaptation to oxidative stress 

Protection against oxidative stress from both internally produced and exogenous 

reactive oxygen species is important for the streptococci (Higuchi et al. 2000; Jakubovics 

et al. 2002). Oxidative stress can cause damage to iron-sulfur cluster containing proteins 

as well as DNA (Imlay 2013). Genes involved in oxidative stress response were the most 

differentially expressed genes in our study.  Under aerobic conditions, NADH oxidase 

(nox, 7.38-fold) was up-regulated in comparison to anaerobic conditions, as was the the 

alkyl-hydroperoxidase system (ahpCF, 25.52- and 28.35-fold), the peroxide resistance 

protein (dps; 5.74-fold) and superoxide dismutase (sodA; 4.96-fold). Dps removes free 

iron from the cell, preventing the generation of peroxides and SodA degrades superoxides 

while generating hydrogen peroxide which can then be reduced to water by ahpCF via 

NAD
+
/NADH cycling pathway. These adaptations to oxidative stress have been observed 

in S. mutans (Higuchi 1984; Higuchi et al. 2000; Ahn et al. 2007).  

Redox balance is also integral to in the cell is in part maintained through 

NAD
+
/NADH cycling pathways oxidizing NADH to NAD

+
 for glycolysis (Fig. 4b). We 

also observed that under aerobic conditions, genes involved in iron-sulfur cluster and iron 

metabolism were up-regulated in S. intermedius (Fig. S9) as well as genes in several 

DNA-repair pathways including competence (uptake of extracellular DNA), RNA 

metabolism, and DNA modification and DNA repair enzymes.  

Other 

Oxygen had minor effects on expression of virulence genes 

Despite the fact that the SMG is associated with anaerobic infections (e.g. 

abscesses), only a minority of genes associated with virulence are differentially regulated 

under oxygen varying growth conditions. Under anaerobic conditions, genes in oxidative 

stress pathway such as sialidase (nanA, 2.00-fold), pullulanase (pulA2, 2.17-fold), and a 

putative membrane toxin regulator (2.57-fold) were up-regulated (Fig. 3). nanA and 

pulA2 are associated with binding to host surfaces in streptococci (Hytönen et al. 2006; 

Brittan et al. 2012). On the other hand, some potential virulence genes such as proteases 

(Fig. 3), the bacteriocin accessory protein (bta, 4.00-fold) and a metallobetalactamase 

family protein (SIR_RS10820, 2.11-fold) were down-regulated anaerobically. The 

expression of CRISPR system (cas1, 2.53-fold; cas2, 2.01-fold; csn2, 2.70-fold) and 

nucleases (rnc, 2.01 fold; SIR_RS13205, 2.33 fold; hsdR, 2.93 fold) were increased 

anaerobically. These are involved in resistance to uptake of foreign genetic elements and 
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phage infection (Marraffini and Sontheimer 2010; Midon et al. 2011; Sapranauskas et al. 

2011; Derré-Bobillot et al. 2013).   Overall, the expression of virulence associated genes 

was not strongly regulated by presence or absence of oxygen and these genes may be 

regulated by additional host specific signals.  

Cellular membrane composition re-modelled to adapt to different environmental 

conditions 

The major phospholipid (PL) class detected in S. intermedius was phosphatidyl 

glycerol (PG) and lyso-PG. There were 13 PGs and 2 lyso-PGs that varied significantly 

between aerobic and anaerobic growth conditions (Fig. 6). The cellular membrane of S. 

intermedius was largely composed of saturated short-chain PLs during aerobic growth. 

Consistent with the observed lipid profiles, the transcriptomic analysis found enoyl-CoA 

hydratase protein fabM (also referred to as phaB, 2.85-fold) and beta-ketoacyl-acyl carrier 

protein synthase III (fabH, 2.50-fold), associated with the synthesis of unsaturated and 

branched chain lipids respectively, were down-regulated under anaerobic conditions 

(Choi et al. 2000; Marrakchi et al. 2002; Fozo and Quivey 2004). It is unknown whether 

these metabolic and transcriptomic changes could affect the cellular membrane rigidity 

and permeability in S. intermedius. Increased levels of unsaturated fatty acids have been 

reported in E. faecalis during aerobic growth (Portela et al. 2014).  

Concluding Remarks 

This study examined the global physiologic, metabolic and transcriptomic 

adaptations of S. intermedius grown in aerobic and anaerobic environments.  Our study 

demonstrates that while S. intermedius is able to adapt to either condition, the anaerobic 

growth condition is favored with a 24% faster growth rate which also correlated with the 

up-regulation of the central carbon metabolism, the arginine deaminase pathway and the 

nucleotide de novo synthesis/salvage pathways. The largest transcriptional responses we 

observed were related to oxidative stress response under aerobic conditions.  Overall, as a 

facultative anaerobe, S. intermedius is able to grow under varying oxygen tensions and 

may facilitate its colonization of distinct mucosal surfaces within the human host (upper 

respiratory, gastrointestinal and urogenital tracts).  Moreover, its accelerated growth and 

adaption to anaerobic conditions may reflect its propensity for polymicrobial pyogenic 

infections with anaerobic bacteria.  This adaptability allows S. intermedius to coexist in 

complex polymicrobial environments, both as a commensal and a pathogen.   

Electronic Supplementary Materials: 

Electronic Supplementary datasets of RNAseq, intracellular and extracellular metabolome 

for this chapter, ESM 1-4, can be found online (doi:). 
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Figure 1 (a) The growth curves of S. intermedius cultured in either aerobic (in orange) or 

anaerobic (in blue) environment. The doubling time in aerobic condition was 54 min and 

the doubling time in anaerobic condition was 41 min. The optical density of the cells was 

measured every hour in triplicate. OPLS-DA score plots summarizing (b) 1885 metabolite 

features found in the intracellular extracts between aerobically and anaerobically cultured 

S. intermedius, (c) 3382 metabolite features found in extracellular medium of aerobically 

and anaerobically cultured S. intermedius and Todd Hewitt growth media, and (d) gene 

expression differences including 1815 transcripts obtained from RNA-seq of S. 

intermedius grown in either aerobic or anaerobic conditions. The samples belonging to 

the same treatment were highlighted with circles  
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Figure 2 A heatmap of 28 pathways affected by aerobic or anaerobic growth conditions, 

based on identified metabolites in the intracellular and extracellular metabolomes of S. 

intermedius. The p value of each pathway was computed by pathway analysis using 

MetaboAnalyst 2.0 using Gram-positive Staphylococcus aureus as the model organism.  

Rows were metabolite pathways; columns were comparisons between treatments 

including aerobic and anaerobic growth conditions and the Todd Hewitt media blank. 

Comparisons were based on either intracellular S. intermedius cell extracts of 79 

identified metabolites (exclude phospholipids) or extracellular supernatant of 92 

identified metabolites. The color key indicates the –log10 of p values for pathway 

significance (refer to the color scale). The energy production pathways were calculated 

mostly based on C5, C6 monosaccharide and disaccharide abundances. A list of identified 

metabolites used for the analyses was included in the electronic supplementary material 

ESM 2. The citrate cycle (tricarboxylic acid (TCA) cycle) in S. intermedius is incomplete: 

however intermediates from the partial pathway are differentially produced.  
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Figure 3 The effect of the presence of oxygen on gene expression of S. intermedius. 

Anaerobic gene expression was compared to aerobic and visualized with down-regulated, 

upregulated and unaffected genes coloured in orange, yellow and green respectively.  

Genes were classified into pathways and assembled into 4 groups based on response, 

namely, anaerobic response, mixed response, aerobic response and unaffected pathways. 

CRISPR: clustered regularly interspaced short palindromic repeats; SAM: S-adenosyl 

methionine; PPP: pentose phosphate pathway; CHP: conserved hypothetical protein; 

GlcNAc: N-acetylglucosamine; FMN: flavin mononucleotide; UDP: uridine diphosphate; 

NAD: nicotinamide adenine dinucleotide   
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Figure 4 Overview of (a) glycolysis and mixed acid fermentation pathways and (b) 

NAD+/NADH cycling pathway of S. intermedius, which were affected by aerobic and 

anaerobic growth conditions. Genes that were up-regulated in anaerobic conditions were 
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indicated in blue; genes that were down-regulated in anaerobic condition were indicated 

in red; genes which expression was not statistically significant were indicated in black 

(Student’s t test, p>0.05). PTS, phosphotransferase system; manL, putative 

phosphotransferase system, mannose-specific EIIAB; manM, PTS system, mannose-

specific IIC component; manN, PTS system, mannose-specific IID component; glcK, 

glucokinase putative; fba, fructose biphosphatealdolase; pyK, pyruvate kinase; pgm, 

putative phosphoglucomutase/phosphomannomutase; glgA, glycogen synthase, ADP-

glucose type; glgB, glycogen branching enzyme; glgC, glucose-1-phosphate 

adenylyltransferase; glgD, glucose-1-phosphate adenylyltransferase, GlgD subunit; ldh, 

L-lactate dehydrogenase; pfl, formate C-acetyltransferase; pta, phosphate 

acetyl/butaryltransferase; ackA, acetate kinase; adhE, bifunctional acetaldehyde-

CoA/alcohol dehydrogenase; adhP, alcohol dehydrogenase; aldB, alpha-acetolactate 

decarboxylase; ppc, phosphoenolpyruvate carboxylase; mleS, malate dehydrogenase; nox, 

NADH oxidase; ahpC, alkyl hydroperoxide reductase subunit C; ahpF, alkyl 

hydroperoxide reductase subunit F 
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Figure 5 The arginine deiminase and pyrimidine de novo synthesis pathways. Pathway 

was constructed based on the BioCyc database for S. intermedius B196 and JTH08. The 

metabolite names were written in black and the gene names were written in green. The 

fold changes of metabolite expression were indicated in color scaled boxes for S. 

intermedius grown in aerobic (A) and anaerobic (AN) conditions and the Todd Hewitt 

media blank (TH). The endo-metabolome was colored in grey and the exo-metabolome 

was light green, fold changes in gene expressions were indicated by numerical values. 

The undetected metabolites were indicated with a black filled box.  The fold changes in 

metabolite or gene levels were calculated respective to aerobic growth conditions for 

either endo- or exo-extracts, where an increase was shown in blue and a decrease was 

shown in red. n=7 except for intracellular cell extract in aerobic conditions and Todd 

Hewitt media. *p<0.05, **p<0.005, ***p<0.0001 
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Figure 6 The heatmap of 15 statistically significantly affected phospholipids (p<0.05) 

found in the intracellular metabolome of S. intermedius cultured in either aerobic or 

anaerobic conditions. The phospholipids were listed according to their alkyl chain length 

and saturation. The relative abundances of phospholipids were illustrated using a color 

scale, with blue indicating high abundances and red indicating low abundances. Note the 

chain length and saturation reported is cumulative for both fatty acid side chains. 
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Supplementary Information 

Growth Curve Measurement for S. intermedius 

Optical density measurements 

Samples were taken from the culture and used to measure the absorbance at 600 nm using 

cuvettes and blanking against the media. The Nanodrop 2000 (ThermoFisher Scientific, 

Waltham, USA) was used to measure the absorbance.  

Colony forming units (CFU) measurements 

Colony forming units were measured by taking a sample of the culture and serially 

diluting it before plating for colonies. A 1:10 serial dilution was used in volumes of 100 

uL. A 5 uL volume of each dilution was plated and colonies counted to quantify the 

amount of bacteria.  

 

RNA-seq Transcriptomics 

RNA Purification 

Three biological replicates were analyzed per condition tested (aerobic vs. 

anaerobic). The S. intermedius cell pellet was collected from samples with OD600 0.7. 

Broth cultures were centrifuged and pellets were resuspended in 700 μL RNAprotect 

bacteria reagent (Qiagen, Venlo, Netherlands) with 100 μg/mL rifampicin and incubated 

for 10 minutes at room temperature before freezing at -80ºC.  Frozen samples were 

defrosted at room temperature and centrifuged for 20 minutes at 4ºC.  The cell pellet were 

resuspended in 700 μL RNase free water with lysozyme (10 μL of 100 mg/mL) and 

mutanolysin (5μL of 10 U/μL).  The suspension was incubated at 37ºC for 45 minutes. 

Cells were then centrifuged and treated with 1 ml TRIzol (Invitrogen, Carlsbad, CA, 

USA). The aqueous phase was collected and an equal volume of 70%v/v ethanol was 

added, and the RNeasy Mini Kit (Qiagen, Venlo, Netherlands) to isolate DNA-free total 

cellular RNA.  Ribosomal RNA (rRNA) was depleted using Ribo-Zero rRNA removal 

Kit for Bacteria (Epicentre, Madison, WI, USA) according to the manufacture’s protocol.  

Briefly, resuspended magnetic beads were washed and prepared. A 15 μL volume of 

purified RNA was treated with 4 μL RiboZero reaction buffer, 10 μL of RiboZero RNA 

removal solution and 11 μL of RNase free water and incubated at 68ºC for ten minutes. 

The treated RNA was added to the magnetic beads and vortexed. It was then incubated at 

50ºC for 7 minutes before placing on the magnetic stand to separate the beads from the 

rRNA free supernatant.  The RNA from the supernatant was purified using the Agencourt 

RNAClean XP Beads (Beckman Coulter, Brea, USA) as per directions. Agencourt 

RNAClean beads (180 μL) were added to the supernatant (85 μL). RNA was eluted from 

the beads with 32 μL of RNase free water. An Experion RNA StdSens chip was used to 

confirm depletion of rRNA.   This was followed with a DNase digestion using TURBO 
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DNase (Life Technologies, Carlsbad, USA).  The reaction consisted of 30 μL of RNA, 

1.5 μL of DNase and 3.5 μL of 10x Buffer. The reaction was incubated for 30 minutes at 

37ºC.  The RNA was purified again using the Agencourt RNAClean XP beads. To the 

DNase reaction (35 μL), 70 μL of magnetic beads were added and the final elution of 

RNA was done with 12 μL of RNase free water.   

cDNA Synthesis from RNA 

The RNA was then converted to cDNA using the Superscript III first strand 

cDNA synthesis kit (Life Technologies, Carlsbad, CA, USA). Random hexamers were 

used as primers for cDNA synthesis. Single strand cDNA was purified using the 

Agencourt RNAClean XP beads (2x) and eluted with 22 μL RNAse free water.  Strand 

specific RNA sequencing was carried  out (Parkhomchuk et al. 2009).  Complementary 

second strand of cDNA incorporated uridine instead of thymidine. To synthesize this, the 

purified single stranded cDNA (22 μL) and 7.5 mM of each dNTP (dATP, dCTP, dGTP 

and dUTP) was treated with RnaseH and Klenow Fragment DNA polymerase (Invitrogen, 

Carlsbad, CA, USA) in a final volume of 40 μL at 16ºC for 2 hours. The double stranded 

cDNA was purified using the Agencourt AMPure XP beads (Beckman Coulter, Brea, 

USA) with 2x volume of beads added to the DNA.  

cDNA  Library Preparation 

The cDNA was fragmented into ~ 300 bp lengths using the covaris S220 

ultrasonicator with 175 W peak power, 10% duty factor, 200 cycles/burst for 430 seconds 

(Covaris, Woburn, Massachusetts, USA). Fragmented cDNA ends were repaired using 

the NEBNext End Repair Module (New England Biolabs, Ipswich, Massachusetts, USA) 

as per directions.  The AMPure XP beads were used to purify cDNA by adding 1x 

volume of beads and eluting with 32 μL of RNAse free water. To facilitate ligation of 

adaptors, dA-tailing of the cDNA fragments was conducted using the NEBNext dA-

tailing Module (New England Biolabs, Ipswich, Massachusetts, USA).  AMPure DNA 

XP bead purification was again conducted with 1x beads and cDNA eluted with 25 μL 

RNAse free water.  The NEBNext Adaptor Ligation Module (New England Biolabs, 

Ipswich, Massachusetts, USA) was next used as per directions and followed with adding 

USER enzyme to the reaction. The USER enzyme (New England Biolabs, Ipswich, 

Massachusetts, USA) generates gaps where uracil is found in the cDNA. This was done 

for the adaptor as well as the second strand of cDNA, which consisted of uracils, in order 

for the second strand of cDNA to be degraded. Agencourt AMPure bead purification was 

then conducted with 1x beads and cDNA eluted with 20 μL RNAse free water.  The final 

preparation step consisted of a Phusion High fidelity PCR (Life Technologies, Carlsbad, 

USA) with the primer index (specific for each biological replicate and condition) and the 

universal primer for 8 cycles using the directions for the NEBNext Kit.  

DNA Sequencing 
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The libraries were submitted to the McMaster Genomics Facility (McMaster University) 

for quality control and sequencing. QC included assessment of fragment size on the 

BioAnalyzer and qPCR quantification. The libraries were then pooled in equimolar 

amounts, denatured, and diluted to 12 pM; sequencing was performed using 40% of one 

lane on the HiSeq 1000 with 101 bp paired end reads according to standard Illumina 

protocols. Following sequencing, the libraries were converted to FastQ format using 

Illumina's Casava software (version 1.8.2, San Diego, California, USA). No index 

mismatches were allowed during demultiplexing.  Approximately 20 million reads were 

obtained per condition for each biological replicate, of which between 16 to 17 million 

reads mapped back to the genome.  
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Figure S1 Global metabolomic differences between aerobically and anaerobically 

cultured S. intermedius shown by volcano plots, comparing (a) intracellular metabolome 

profiles of aerobic and anaerobic conditions, (b) extracellular metabolome profiles of 

aerobic and anaerobic conditions, (c) extracellular metabolome profiles of aerobic 

condition and Todd Hewitt media blank, and (d) extracellular metabolome profiles of 

anaerobic condition and Todd Hewitt media blank. Significant metabolite features with 

p<0.05, and greater than 1.5 fold changes were indicated with solid circles, others were 

labelled with open circles. Identified metabolite features were colored in red, putative 

lipids were indicated in blue, and the unknowns were colored in grey. Some known 

significant metabolite features were labelled with their chemical names. Some 

metabolites appear multiple times in one volcano plot due to detection in both ESI- and 

ESI+ modes or as adduct ions 
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Figure S2 Overview of transcriptomic results for S. intermedius growth under aerobic and 

anaerobic conditions using CummeRbund. The scatter plot in (a) depicts the expression of 

all genes (1815 genes) under aerobic and anaerobic conditions. The theoretical correlation 

for equivalent expression under the two conditions (Blue) overlaps with the actual 

correlation. Scatter plot analysis of significant genes (625 genes) with p-value of 10-4.5 is 

shown in (b). The lines correlating to 2 fold and 4 fold changes in gene expression are 

shown. There are few genes upregulated above 4 fold, with the majority of genes being 

upregulated under aerobic conditions. The volcano plot in (c) highlights statistically 

significant genes in red. Figures were generated using CummeRbund (Trapnell et al. 2012) 
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Figure S3 The growth curves (CFU/mL over time) of S. intermedius cultured in either 

aerobic (black) or anaerobic (blue) environment 
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Figure S4 Variation in expression of genes involved in carbohydrate metabolism in the 

presence/absence of oxygen. Genes with statistically significant fold changes above 2 

were classified either as an “Anaerobic response” or an “Aerobic response”, based on the 

condition wherein they are upregulated. Data was  FPKM values generated from 

Cufflinks  (Trapnell et al. 2012) 
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Figure S5 Amino acid metabolism of strain S. intermedius B196, constructed based on the 

BioCyc database for S. intermedius B196 and JTH08. The metabolite names were written 

in black and the gene names were written in green. The fold changes in metabolite 

expression were indicated in color scaled boxes for S. intermedius grown in aerobic (A) 

and anaerobic (AN) conditions and the Todd Hewitt medium control (THY). The 

intracellular metabolome was colored in grey and the extracellular metabolome was in 

light green; fold changes in gene expressions were indicated by numerical values. The 

undetected metabolites were indicated with a black filled box.  The fold changes in 

metabolite or gene levels were calculated respective to aerobic growth conditions for 

either intra- or extra-cellular extracts, an increase was shown in blue and a decrease was 

shown in red. n=7 except for intracellular cell extract in aerobic conditions and Todd 

Hewitt media. *p<0.05, **p<0.005, ***p<0.0001 
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Figure S6 The purine metabolism pathway, constructed based on the BioCyc database for 

S. intermedius B196 and JTH08, as discussed in Fig. S5 
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Figure S7 The pyrimidine salvage pathway, constructed based on the BioCyc database for 

S. intermedius B196 and JTH08, as discussed in Fig. S5 
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Figure S8 Genes involved in pyrimidine metabolism were affected by the 

presence/absence of oxygen. The response can be divided into “Anaerobic” or “Aerobic” 

based on the condition wherein they are up-regulated. Data was obtained using Cufflinks 

for RNAseq analysis (Trapnell et al. 2012).  
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Figure S9 Induction of genes involved in oxidative stress under aerobic conditions. The 

heatmap includes genes that were induced aerobically above 2 fold. The up-regulated 

genes are involved in pathways including oxidative stress, iron metabolism and iron 

sulfur cluster assembly. The data is based on FPKM values generated from Cufflinks 

(Trapnell et al. 2012)  
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Table S1 Summary of metabolomic and transcriptomic data  

 
Intracellular 

metabolome 
Extracellular metabolome Transcriptome 

 aerobic anaerobic aerobic anaerobic THY aerobic anaerobic 

Biological 

replicates 
5 7 7 7 5 3 3 

Percentage 

variance 
22% 22% 14% 13% 14% 10.5% 13.7% 

Number of 

metabolite/ 

gene features 

1885 3382 1815 

Percentage of 

recovery 
a
 

81-105% 104-105% ---- 

Identified 

features 
124 116 ---- 

Identified 

metabolites 
105 93 ---- 

a 
determined based on tryptophan-d5 in ESI positive mode 
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Abstract 

Sinorhizobium meliloti is a ubiquitous nitrogen-fixing Gram negative soil bacterium that 

contributes to a symbiotic relationship with legume plants. The tripartite 6.7 Mb genome 

of S. meliloti consists of a 3.65 Mb chromosome, a 1.35 Mb pSymA megaplasmid and a 

1.68 Mb chromosome-like pSymB chromid. Recent construction of mutant strains of S. 

meliloti lacking pSymA and/or pSymB provided the opportunity to study the global 

metabolic impact resulting from the loss of these replicons. Herein, the intra- and 

extracellular metabolomes of wild type, ΔpSymA, ΔpSymB and ΔpSymAB at various 

growth phases in multiple growth medium were measured using LC-HILIC-TOF-MS. 

There were 2008 extracellular metabolic features detected in cells cultured in rich LBmc 

media containing yeast extracts and protein hydrolysate. In contrast, 1474 intracellular 

metabolic features were detected in cells cultured in M9-sucrose minimal media. 

Metabolic differences were observed both across strains and across different growth 

phases. pSymA carries non-essential genes for cell survival, thus, relatively few 

metabolic deviations were observed between wild type and the ΔpSymA mutant. pSymB 

carries many transporter genes and the greatest metabolic differences were observed 

between wild type and strains lacking pSymB. However, ΔpSymB and ΔpSymAB had 

similar metabolic profiles. The inability to import, export, and utilize many essential 

metabolites due to lack of pSymB was the main contributor to the metabolic differences. 

Compared to wild type S. meliloti, increased intracellular sugars, amino acids, and 

nucleosides levels were observed in ΔpSymB and ΔpSymAB, and a loss of pSymB also 

impaired S. meliloti’s ability to catabolize exogenous amino acids. Although S. meliloti 

wild type, ΔpSymA, ΔpSymB, and ΔpSymAB were able to grow in LBmc and M9-

surcose media, metabolomics provides insights into the metabolic roles of the pSymA and 

pSymB replicons. Compared to pSymA, the pSymB replicon had a vital role in regulating 

S. meliloti metabolism, and this is consistent with the greater integration of this replicon 

within the S. meliloti genome.  
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Introduction 

 Historically, bacteria were thought to have their genome present in one circular 

chromosome. Nevertheless, some proteobacteria contain a multipartite genome where the 

genome is divided between multiple circular chromosomes known as replicons (Jumas-

bilak, Michaux-charachon, Bourg, Ramuz, & Allardet-servent 1998). These 

proteobacteria include many pathogens and symbionts including Agrobacterium, Vibrio, 

Burkholderia, Brucella, Rhizobium and Sinorhizobium (Jumas-bilak et al. 1998). The 

metabolic and functional significance of these replicons and their contribution to the 

overall growth of the bacteria are almost unknown.  

 The multipartite genome of the Gram-negative α-proteobacterium Sinorhizobium 

meliloti was sequenced in 2001 (Galibert et al. 2001). S. meliloti serves as a N2-fixing 

bacterium with leguminous plants and is used as a model organism for studying N2-fixing 

symbiosis, carbon metabolism and the evolution and function of the multipartite genome 

(DiCenzo & Finan 2015; DiCenzo, MacLean, Milunovic, Golding, & Finan 2014; 

Galardini, Pini, Bazzicalupo, Biondi, & Mengoni 2013; Geddes & Oresnik 2012). Its 6.7 

megabase (Mb) genome is divided into a 3.65 Mb chromosome, a 1.35 Mb pSymA 

megaplasmid and a 1.68 pSymB chromid (Barnett et al. 2001; Capela et al. 2001; Finan 

et al. 2001; Galibert et al. 2001). The sequence of pSymA is highly variable between 

wild-type S. meliloti isolates (Guo, Sun, Eardly, Finan, & Xu 2009) and is thought to be 

an accessary replicon mainly involved in symbiosis and adaptation (Barnett et al. 2001; 

DiCenzo et al. 2014; Galardini et al. 2013). pSymA is largely silent in free-living 

wildtype S. meliloti (Chen et al. 2000). Conversely, pSymB is much more ancient and 

conserved compared to pSymA (Galardini et al. 2013; Guo et al. 2009). pSymB is 

thought to have co-evolved with the chromosome (DiCenzo et al. 2014) and contains only 

copies of essential tRNA
arg

 and minCDE genes (Finan et al. 2001). It is also predicted to 

be involved in polysaccharide biosynthesis and metabolite/substrate transport via the 

ABC transporter system. Recently, a S. meliloti Rm2011 derivative lacking pSymB 

and/or pSymB replicons was constructed. These cured-strains provided a unique 

opportunity to study the role of pSymA and pSymB in S. meliloti metabolism. 

 The metabolic capacity of free-living S. meliloti has been studied using 

metabolomic approaches to examine the metabolic changes in respect to various carbon 

sources, growth rate and amino acid auxotrophy (Barsch, Patschkowski, & Niehaus 2004; 

Keum, Seo, Li, & Kim 2008; Ong & Lin 2003).  Moreover, a metabolomic approach has 

also been used to examine the symbiosis between S. meliloti and legume plants both in 

vitro and in silico (Barsch, Tellström, Patschkowski, Küster, & Niehaus 2006; 

Gemperline, Jayaraman, Maeda, Ané, & Li 2015; Ye et al. 2013; Zhao, Li, Fang, Chen, & 

Wang 2012). However, the metabolic contributions of pSymA and pSymB replicons are 

unknown.  

 Here, we examined the intracellular and extracellular metabolic profiles of S. 

meliloti using HILIC-TOF-MS. This metabolomic strategy was successfully used to 

compare the metabolic capacity of wildtype, ΔpSymA, ΔpSymB and ΔpSymAB S. 
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meliloti and their substrate preference when cultured in a nutritionally complex 

environment. This study provided insights in understanding the metabolic contribution of 

the pSymA and pSymB replicons in S. meliloti metabolism.  

Materials and Methods 

Chemicals  

HPLC-grade methanol, acetonitrile, chloroform, water and formic acid used for bacterial 

extraction and LCMS analysis were purchased from Caledon Laboratories (Georgetown, 

ON, Canada). Ammonium acetate was purchased from Fisher Scientific Company 

(Fairlawn, NJ, USA). L-methionine-d3(98%), L-tryptophan-d5 (98%) as well as L-

phenylalanine-d8(98%), diphenylalanine (phe-phe), glycine-phenylalanine (gly-phe) were 

purchased from Cambridge Isotope Laboratories (Andover, MA, USA) for recovery 

determination (RS) and peak intensity normalization (IS), respectively. 

Strains, media and growth conditions 

The four strains of S. meliloti used in this study were previous described (DiCenzo 

et al. 2014; Oresnik, Liu, Yost, & Hynes 2000), which included wild type Rm2011 (SU47 

str-3), SmA818 (ΔpSymA), RmP3009 (ΔpSymB) and RmP2917 (ΔpSymAB). ΔpSymA, 

ΔpSymB and ΔpSymAB were derived from Rm2011by the removal of pSymA, pSymB 

or both megaplasmids, respectively. Essential genes, tRNA
arg

 and engA, in pSymB were 

integrated into the chromosome.  

LBmc (per liter: 10 g Bacto tryptone, 5 g Bacto yeast extract, 5 g NaCl, 2.5 mM 

MgSO4, 2.5 mM CaCl2, 2 μM CoCl2) was used as the complex medium, and M9-sucrose 

medium (41 mM Na2HPO4, 22 mM KH2PO4, 18.7 mM NH4Cl, 10 mM sucrose, 8.6 mM 

NaCl, 1 mM MgSO4, 0.25 mM CaCl2, 38 μM FeCl3, 5 μM thiamine-HCl, 4.1 μM biotin 

and 42 nM CoCl2) was used as a minimal medium.  

All four strains of S. meliloti were cultured to early stationary phase in 5 mL 

M9/LBmc at 30ºC. At 3.0 OD600, the bacterial culture was washed once by centrifugation 

with fresh media (M9 or LBmc as appropriate) and re-suspended in fresh media to a final 

OD600 of 0.05.  These cultures were aliquoted into seven test tubes with 5 mL each and 

incubated at 30ºC. Cells and supernatants from six of the test tube were collected for 

metabolomic analyses and the growth curve was measured using the seventh test tube. 

Sample collection and extraction 

For intracellular metabolic analysis, cells from M9-sucrose culture were collected 

in sextuplicate at approximately 0.3, 0.5, 0.9, 1.6 and 3.5 (except for Rm2011 at 4.8) 

OD600. These samples were referred to as M1-5 with M1-4 referring to different stages of 

exponential growth phases and M5 representing the stationary phase (Fig. 1). Aliquots of 

1000, 600, 300, 176, 100 μL were taken at each time point, respectively, from the same 5 

mL culture, so that a constant of 6×10
8
 cells were collected in each sample. The cells 
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were centrifugated at 4ºC, and washed once with saline (0.85% NaCl). The pellet was re-

suspended and extracted using 2:2:1 MeOH/EtOH/H2O as per a previously published 

protocol (Fei, Bowdish, & McCarry 2014) and stored at -80ºC until LCMS analyses were 

conducted.  

For extracellular metabolic analysis, 200 μL of the LBmc culture were collected in 

sextuplicate at mid-exponential phase (L1), early stationary phase (L2), and late 

stationary phase (L3) from the sample 5 mL culture (Fig. 1). L3 was taken 10 hours after 

L2. Cells were centrifuged at 4ºC and 20 μL of the media supernatant were collected and 

extracted with 80 μL MeOH/EtOH (1:1) containing RS to remove precipitated protein. 

These extraction mixtures were vortexed for 2 min and centrifuged at 9500 x g for 3 min. 

The extracted supernatants were collected, diluted 2-fold with 100 μL MeOH and stored 

in -80ºC until LCMS analyses were conducted.  

Two sets of pooled samples were prepared for both the intracellular and 

extracellular metabolomic studies by combining 5 μL of all corresponding samples. 

HILIC-TOF-MS analyses 

 The intracellular and extracellular extracts were analyzed in two separate batches 

using an Agilent Technologies 1200 RR Series II liquid chromatograph (LC) coupled to a 

Bruker MicrOTOF II Mass Spectrometer (MS) (Fei et al. 2014). An injection of 2 μL was 

separated on a 50 mm × 2.1 mm Kinetic 2.6 μm HILIC column of pore size of 100 Å 

(Phenomenex, CA, USA).   The mobile phases were HPLC-grade acetonitile (A) and 10 

mM ammonium acetate in HPLC-grade water adjusted to pH 3 with formic acid (B) at a 

flow rate of 200 μL/min. The column temperature was maintained at 40 ºC, and the 

autosampler storage tray was at 4ºC. The mobile phase gradient eluted isocratically with 

95% ACN for 0.5 min followed by a gradient to 35% ACN over 12 min. The gradient 

system maintained at 35% ACN for 0.5 min and returned to 95% ACN over 1 min. The 

gradient was then followed by a 10 min re-equilibration phase prior to the next injection. 

The total time for the HILIC gradient was 24 min for both ESI+ and ESI- modes. The 

positive ionization mode and the negative ionization mode were acquired separately. The 

MS setting was identical to those previous reported in Fei et al. (Fei et al. 2014). 

 A pooled sample was injected 7 times at the beginning of the analyses to condition 

the column and it was also injected after every five samples. A methanol blank and a 

standard mixture containing all IS and RS were also injected after every 10 samples. A 

total of 82 extracellular extracts and 115 intracellular extracts were analyzed in random 

order in both ESI- and ESI+ modes. 

Data processing and metabolite identification 

The data processing and analysis were modified from a previously published 

protocol (Fei et al. 2014). The LC-MS data files were converted to .mzXML format using 

Bruker CompassXport after internal calibration using intracellular sodium formate cluster 

ions by Bruker’s DataAnalysis 4.0 SP4. The metabolic features were extracted and 
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aligned using open source XCMS with centWave algorithm (Smith, Want, O’Maille, 

Abagyan, & Siuzdak 2006). Adducts, isotopic ions, and in-source fragments were 

identified using CAMERA (Kuhl, Tautenhahn, & Neumann 2010).  

Metabolite features with apparent retention factors kapp’ lower than 0.7 were 

removed as well as isotopic ions, features corresponding to IS, RS and sodium formate 

clusters. For the extracellular metabolome, regions of retention 7.0-7.8 min were 

excluded from the data matrix due to ion suppression. The peak areas of all metabolite 

features were normalized to IS and OD600 for intracellular metabolic analysis; the peak 

areas of all metabolic features were only normalized to IS for extracellular metabolic 

analysis. Features with greater than 20% variance in the pooled sample were removed to 

obtain the final metabolite feature list (Dunn et al. 2011).  

Metabolite features were identified by matching the m/z and retention values to 

those of the available authentic standards or matches to the tandem MS (MS/MS) 

fragment pattern on the METLIN database. MS/MS was performed on a Thermo 

Scientific Dionex Ultimate 3000 rapid separation LC coupled to a Bruker maXis 4G 

QTOF MS using a modified LC-HILIC-MS method, and detailed procedures can be 

found in supplementary information. Lists of identified intracellular and extracellular 

metabolites and their relative abundances between strains and across growth periods can 

be found in the Supplementary material ESM 1 and 2.  

Statistical analyses 

Both intracellular and extracellular metabolic data were analyzed using SIMCA-

P+ 11 software (Umetrics, Kinnelon, NJ). Pareto scaling was applied prior to principal 

component analysis (PCA) and to orthogonal partial least-squares discriminative analysis 

(OPLS-DA). OPLS-DA was used to differentiate metabolite profiles between different 

strains and growth phases. The model validation parameters R
2
X, R

2
Y, and Q

2
 were used 

to assess the fitness of the model. R
2
X (R

2
Y) indicated the fraction in which metabolite 

features (X) and treatment (Y) matrix was explained by the model. Briefly, a prediction 

statistic (Q
2
) above 0.4 were indicative of a robust model, and  Q

2 
between 0.7-1.0 

indicated the model was highly robust (Jones, Spurgeon, Svendsen, & Griffin 2008). Both 

R
2
 and Q

2
 followed an upward trend from 0 to 1. For an over fit model, R

2
 approach 1, 

and Q
2
 fell toward 0. Therefore, a valid and robust OPLS-DA model should have R

2
X 

and R
2
Y approaching 1 and Q

2
 greater than 0.4.  

Between subjects, two-way ANOVA and hierarchical cluster analysis (HCA) were 

computed and plotted using MetaboAnalyst 3.0 (Xia, Sinelnikov, Han, & Wishart 2015). 

Heat maps were plotted using R 2.12.2 and RStudio 0.98.501. HCA and heatmap were 

plotted based on Euclidean distances and complete clustering. Univariate analyses 

including two-tailed, unpaired heteroscedastic Student’s t tests and non-parametric 

ANOVA with p<0.01 with a Bonferroni correction were used to identify metabolite 

features that were significantly different between strains and growth phases.  
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Results 

Growth profiles  

In order to understand the contributions of pSymA and pSymB megaplasmid to S. 

meliloti metabolism throughout growth, we sampled wild type, ΔpSymA, ΔSymB and 

ΔpSymAB strains at five time points in M9-sucrose medium and three time points in 

LBmc medium (Fig. 1). The growth profiles of four strains cultured in M9-sucrose and 

LBmc media were consistent with previous work (DiCenzo et al. 2014). The growth 

kinetics of wild type and ΔpSymA strains were comparable in both M9-sucrose and 

LBmc media. ΔSymB had slower growth kinetics as compared to the wild type strain in 

both culture conditions, and ΔSymAB was even slower compared to ΔSymB. All four 

strains were able to reach 3.0-4.0 OD600 at stationary phase when cultured in minimal M9-

sucrose medium. However, when cultured in rich LBmc, the OD600 at stationary phase 

was much different between strains. The final OD600 was 6.6 for both wild type and 

ΔpSymA compared to 1.0-1.5 for ΔSymB and ΔpSymAB. Loss of pSymA has no 

apparent changes to S. meliloti growth. The loss pSymB led to slower growth and an 

approximately 6-fold drop in maximum cell concentration at stationary phase in LBmc. 

Overall, the pSymB chromid contributes to the growth of S. meliloti in either LBmc or 

M9 medium.  

Metabolite analyses, features detection and quality control 

 The intracellular and extracellular metabolic profiles of all four strains at various 

growth phases were acquired using LC-HILIC-TOF-MS. A total of 3594 intracellular and 

4081 extracellular metabolite features were identified using XCMS and CAMERA. Each 

feature had a unique retention time and m/z value. After data processing and reduction, 

there were 1474 intracellular and 2008 extracellular metabolite features in the final data 

set (Table S1), among which, 1237 and 820, respectively, were statistically significant 

between samples. Using authentic standards and MS/MS, 142 intracellular features were 

identified of which 49 were phospholipids and 73 were polar metabolites; 77 extracellular 

features were identified of which 2 were phospholipids and 66 were polar metabolites. 

These metabolic features were listed in the supplementary material 1 and 2.  

 The extraction efficiency was 73-85% and the biological variance of the 

sextuplicate samples was 18-29% for the intracellular metabolome and 12-26% for the 

extracellular metabolome (Table S2). OPLS-DA was performed to assess the variation of 

the pooled samples and instrumentation reproducibility. The pooled samples from 

intracellular or extracellular samples were tightly clustered on the score plots, thus 

indicating that the technical variability was minimal in comparison to the biological 

variance of experimental condition (Fig.S1, S2). 

Intracellular metabolic profiles of S. meliloti strains cultured in minimal M9-sucrose 

medium 
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 To understand the contribution of pSymA and pSymB to S. meliloti metabolism, 

the intracellular metabolomes of wild type, ΔpSymA, ΔpSymB and ΔpSymAB mutants, 

which were cultured in minimal M9-sucrose medium were measured at five different time 

points during growth. The global relationship between the four strains was investigated 

using multivariate OPLS-DA and HCA. This revealed significant metabolic differences 

between strains and across growth (Fig. 2, Table S3). The pSymA megaplasmid had little 

influence on in vitro S. meliloti metabolism. Similar metabolic profiles were observed for 

wild type and ΔpSymA during growth. Conversely, the pSymB chromid had a significant 

impact on S. meliloti metabolism. Compared to wild type, large metabolic disparities 

compared to wild type were observed in strains lacking pSymB (ΔpSymB and ΔpSymAB) 

(Fig. 2a). A progressive metabolic change was observed for each strain across each stages 

of growth (M1 to M5). Consistent with previous metabolic studies of yeast growth (Allen 

et al. 2003), the largest metabolic disparities were observed between M4 and M5 as wild 

type, ΔpSymA and ΔpSymB strains entered the stationary phase. However, the greatest 

metabolic difference for ΔpSymAB was observed between M1 and M2 at early 

exponential phase. Overall, the metabolic alteration resulting from growth was minor 

compared to the metabolic alteration resulting from the loss of pSymA or pSymB 

megaplasmids. 

Metabolites contributing to the changes in intracellular metabolic profiles of S. 

meliloti strains 

Student’s t test and between subjects two-way ANOVA were performed to 

identify metabolic features or metabolites that differed between strains and between 

growth phases. The heat map consisting of the top 100 significantly changed metabolic 

features as ranked by ANOVA p values are illustrated in Figure S5. Although the 

majority of the features remaining unidentified, galactose, sucrose, glutamic acid, 

glutamyl-hydroxyproline and PG35:2 were among the top 100 significantly changed 

metabolites. 

HCA and the heat map of 1237 significant metabolic features with a p value less 

than 0.01 (two-way ANOVA) are illustrated in Figure 2b-d. Three notable groups of 

metabolites were found to be significantly altered between strains and growth. Sugars 

such as sucrose, galactose, maltose, glucose and trehalose were higher levels in the 

ΔpSymB and ΔpSymAB strains during growth as compared to wild type and ΔpSymA. 

Except for trehalose, the levels of these sugar metabolites progressively decreased as 

growth progressed. Increasing cellular abundances of nucleosides including adenine, 

adenosine, inosine, 2-deoxyadenosine, guanine and deoxyinosine were also observed in 

ΔpSymB and ΔpSymAB strains. The purine degradation product, hypoxanthine, was 

progressively increased throughout growth in all four strains, however, its cellular level 

was much higher in strains lacking pSymB during growth phase M1-4 as compared to 

wild type and ΔpSymA at similar stages of growth. Thirdly, amino acids including 

tyrosine, arginine, lysine, leucine and glutamine were elevated in pSymB deficient strains, 

with the exception of serine and glutamine, which were increased in pSymA deficient 
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strains. Greater changes in the intracellular levels of polar metabolites were observed with 

the absence of pSymB chromid.  

There were 49 phospholipids identified in the intracellular metabolome, among 

which were 12 phosphatidylcholines (PC), 13 phosphatidylglycerols (PG), 21 

phosphatidylethanolamines (PE) and 2 phosphatidic acids (PA). From the list of lipids, 

there were 17 odd-chain phospholipids (cyclopropane-containing lipids) and 31 even-

chain phospholipids. ΔpSymB and ΔpSymAB had greater levels of odd-chain PCs, PGs, 

PE33:0 and PE33:1 and even-short chain PCs including PC32:1 and PC34:1 compared to 

wildtype and ΔpSymA (Fig. 2d). PG34:0, PG34:1, PG36:0 and PG36:2 were more 

abundant in pSymA-cured strains. Levels of other phospholipids were not significantly 

different between strains and during growth. The relative abundances of the above 

mentioned metabolites can be found in electronic supplementary material ESM1. 

Extracellular metabolic profiles of S. meliloti strains cultured in complex LBmc 

medium 

The contribution of pSymA and pSymB megaplasmids towards the utilization of 

substrates in a nutrient rich environment was examined by analyzing the metabolic 

composition of LBmc medium in the present of each of the four S. meliloti strains at 

different growth phases. The blank LBmc, spent LBmc at mid-exponential phase, early 

and late stationary phase were analyzed, and the differences in LBmc substrate profiles 

after the growth of each strain were visualized using OPLS-DA, HCA and heat mapping 

(Fig. 4a-c). Incubating LBmc at 30ºC for 45 hrs did not degrade or modify the substrate 

profiles of the LBmc medium, therefore, any changes in LBmc substrate level were result 

from the growth of S. meliloti (Figure 4c). 

The substrate profiles of spent LBmc medium at mid-exponential phase for all 

four strains resemble that of the un-inoculated medium and major changes in the substrate 

profiles were observed as cells entered into stationary phase. The overall changes in the 

substrate profiles between wild type and ΔpSymA were similar during growth and this 

trend was distinctly different from the substrate profiles of ΔpSymB and ΔpSymAB. The 

changes in the LBmc substrate profiles during growth were less extensive in the pSymB-

cured strains. Consistent with the differences in the intracellular metabolome between 

strains, pSymB had a greater role in modifying the LBmc substrate profiles as opposed to 

the pSymA.  

Metabolites contributing to the changes in extracellular metabolic profiles of S. 

meliloti strains 

 Close to one half of the detected extracellular metabolic features (41%) were 

significantly different between the four S. meliloti strains and the un-inoculated LBmc 

blank (Fig. 4c). The top 100 significantly changed metabolic features were visualized in a 

heat map (Fig. S7). Amino acids and derivatives (ala-leu, met-ala, arginine, lysine and 

ornithine), nucleosides (adenine, adenosine, guanine and guanosine), maltose and 2-

phenylglycine were among these top 100 features. The majority of the significantly 
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differentiated metabolic features were progressively depleted from the LBmc medium 

during the growth of wild type and ΔpSymA strains (Fig. 5). To a lesser extent, a similar 

trend was observed for strains lacking pSymB. Dipeptides such as met-ala, ala-his, ala-leu 

and nucleosides including guanosine, inosine, adenosine, adenine were found to decrease 

progressively from LBmc at different rates for wild type, ΔpSymA, ΔpSymB and 

ΔpSymAB strains. However, a gradual depletion of amino acids including arginine, 

ornithine, proline, glutamic acid, histidine and serine from LBmc during growth was only 

observed for wild type and ΔpSymA strains.  No metabolic features were reduced during 

growth only in pSymA- and/or pSymB-cured strains. Conversely, increasing levels of 

some metabolic features in LBmc was noted during the growth of S. meliloti strains and 

the extent of these changes were significantly reduced with the removal of pSymA and/or 

pSymB from the genome. N-acetyl-glutamic acid, pantothenic acid and nicotinic acid 

were found elevated for all four strains.  However, N-acetyl-phenylalanine, 

sedoheptulosan, N-acetyl-glucosamine (GlcNAc), and citrulline were only found to 

increase extracellularly for wild type and ΔpSymA strains. Guanine, allantoin, arabitol 

and malic acid accumulated in the spent media of ΔpSymB and ΔpSymAB strains, but 

were gradually depleted from spent media of the wild type and ΔpSymA. The relative 

abundances of above mentioned metabolites can be found in electronic supplementary 

material ESM2. 

Discussion 

 Sinorhizobium meliloti is a Gram positive α-proteobacterium. It is ubiquitously 

found in soil environment as a free-living microorganism or a nitrogen-fixing symbiont 

within legume (e.g. alfalfa) root nodules. Its 6.7 Mb genome is one of the largest bacterial 

genomes consisting of a 3.65 Mb chromosome, a 1.35 Mb pSymA megaplasmid and a 

1.68 pSymB chromid (Galibert et al. 2001). Over half of the protein-coding genes 

(3341/6204) in S. meliloti are located on the chromosome; pSymA and pSymB contains 

1293 (20.8%) and 1570 (25.3%) protein-coding genes, respectively. Large fractions of 

genes on pSymA are involved in nitrogen fixation and nodulation (Barnett et al. 2001; 

Galibert et al. 2001). Seventeen percent of the genes on pSymB are ABC transport system 

and almost all are predicted to be involved in small molecule import while 12% of the 

pSymB genes are involved in polysaccharide biosynthesis (Capela et al. 2001; Finan et al. 

2001). Both pSymA and pSymB included a significant number of functionally redundant 

genes, and 10-15% of the constructed chromosomal mutants were found to have 

duplicated genes located on megaplasmids (DiCenzo & Finan 2015). Despite the loss of 

large bulk of its genome, S. meliloti strains lacking pSymA and/or pSymB can be cultured 

in both rich and minimal media. This study examined the metabolic contributions of 

pSymA and pSymB and how the lack of these replicons influenced the intracellular and 

extracellular metabolome of S. meliloti. 

In order to study the metabolic capacities of pSymA and pSymB, S. meliloti 

strains lacking pSymA and/or pSymB were grown in M9 or LBmc media. M9 medium 

consisted of only essential nutrients required to support the growth of S. meliloti, and 10 

mM sucrose, which was the only carbon source in the medium. The minimal medium had 
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closer resemblance to the nutritional condition of bulk soil compared to LBmc (DiCenzo 

et al. 2014), and is thought to be better mimic of S. meliloti growth in its natural 

environment. By ensuring all strains used the same compounds to support growth, the 

contributions of pSymA and pSymB to cellular metabolism can be deduced via the study 

of the intracellular metabolome. Conversely, LBmc is a complex medium containing 

carbohydrates, amino acids, peptides, nucleotides, vitamins, casein hydrolysate and yeast 

extract. By comparing the extracellular metabolome of S. meliloti strains, we can examine 

the kinetics of substrate utilization in the LBmc medium as well as the metabolites 

excreted from S. meliloti. The differences of intracellular and extracellular metabolome 

among S. meliloti strains provide insights in metabolic roles of pSymA and pSymB.  

 Between pSymA and pSymA, the removal of pSymB from the S. meliloti genome 

had a much greater impact on S. meliloti growth and metabolism. Both ΔpSymB and 

ΔpSymAB showed significantly reduced growth and a 6-fold decreased in cell 

concentration at stationary phase compared to wild type and ΔpSymA when cultured in 

rich LBmc medium. The reduced growth capacity of strains pSymB-cured strains in 

LBmc was due to nutritional starvation. The principle carbon sources in LBmc medium 

were catabolizable amino acids from oligopeptides of tryptone, and the total 

concentration of sugar was less than 0.1 mM (Sezonov, Joseleau-Petit, & D’Ari 2007). 

Thus the growth of S. meliloti in LBmc depended on the utilization of those amino acids 

and oligopeptides. Over one half of the ABC transport system genes are located on the 

pSymB megaplasmid, and almost one half of the ABC transporter systems were involved 

in transporting sugar, amino acids, peptides, oligopeptides, choline and taurine (Finan et 

al. 2001). A microarray study had shown pSymB-cured strains were unable to use over 

one half of the 73 substrates as carbon source (DiCenzo et al. 2014). By profiling the 

spent LBmc media, the rate of utilization of many major metabolites including dipeptides, 

amino acids, nucleosides and taurine were significantly reduced as compared to the wild 

type. Presumably this is a result of loss or the reduction of the ABC transporter systems 

that occurs due to the loss of pSymB. Serine, aspartate, tryptophan, glutamate, glycine, 

proline, threonine and alanine were preferentially used by wild type E. coli K12 growing 

in tryptone broth medium (Sezonov et al. 2007). Unlike wild type and ΔpSymA, the 

inability to utilize proline, glutamate, threonine/homoserine and serine in pSymB-cured 

strains might contribute to their impaired growth capacity. Moreover, since one of three 

dipeptidase and three of five dipeptide transport were encoded on pSymB, the depletion 

of dipeptide from LBmc was also impaired in pSymB-cured strains, which might limit the 

availability of catabolizable amino acids for ΔpSymB and ΔpSymAB, thus hindering their 

growth. Overall, the inability to import peptides, amino acids and nucleosides limited the 

growth capacity of pSymB cured strains in LBmc.  

  The inability to utilize fermentable sugar efficiently from the growth media could 

also limit the growth of pSymB-cured strains as was observed in both LBmc and M9 

media. Almost all ABC transporter system for sugars (102/106) were encoded by pSymB 

megaplasmid according to NCBI genome database. Close to one half of the predicted 

sugar kinases (10/22) are encoded by pSymB (Finan et al. 2001). Therefore, it was not 

surprising to observe that sugars such as sorbitol, glucose and maltose were not utilized 
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by ΔpSymB until the late stationary phase. However, in wild type strains, these sugars 

were utilized from the LBmc medium at a much faster rate and almost all depleted at 

early stationary phase. Since the growth capacity of S. meliloti in M9 was dependent on 

the use of sucrose and other essential nutrients, we did not observed a dramatic decrease 

in cell concentration in strains lacking pSymB. The build-up of intracellular sugar 

metabolites such as glucose, galactose, sucrose, trehalose and maltose were observed in 

pSymB-cured strains in M9 which was consistent with the slower growth rate observed 

for those strains. Since pSymB also carries duplicated copies of genes in glycolysis 

(DiCenzo & Finan 2015), loss of pSymB might also lead to decreased sugar catabolism 

and eventually slower growth.  

From the metabolic profiles of depleted LBmc media of wild type strain, we 

observed a preferential usage of many substrates. Although none of the substrates was 

depleted completely from LBmc at mid-exponential phase, a significant amount of the 

substrates were completely utilized at early or late stationary phase, and some substrates 

were progressively used during growth but was not depleted  at late stationary phase. The 

depletion of those substrates at L2 limited the growth of S. meliloti, inducing a switch to 

stationary phase from active proliferation. The ability of microorganisms to metabolize 

substrates in nutritional complex environment is commonly examined using phenotype 

microarray, such as those offered by Biolog Inc.(Bochner, Gadzinski, & Panomitros 

2001). Such technology was used to examine ability of various microorganisms to use 

various substrates as carbon, nitrogen, phosphorus or sulfur source in cellular metabolism. 

Here, metabolomic studies using LC-HILIC-TOF-MS offered insights into utilization 

kinetics of substrates from a nutritionally complex environment to compliment the current 

approach.  

 The loss of pSymB chromid also had a great impact on cellular metabolism of S. 

meliloti according to the large changes observed in intracellular metabolic profiles of 

pSymB-cured strains cross growth. In addition to the accumulation of intracellular sugar 

metabolites as discussed earlier, nucleosides and hypoxanthine in pSymB-cured strains 

were also elevated in the cell. Hypoxanthine is an intermediate in purine degradation and 

the salvage pathway (Caspi et al. 2014), and intracellular accumulation of hypoxanthine 

was reported as E. coli entered into stationary phase as a result of rRNA degradation 

(Rinas, Hellmuth, Kang, Seeger, & Schlieker 1995). In the wild type strain, accumulation 

of intracellular hypoxanthine was observed close to stationary phase. However, elevated 

levels of intracellular hypoxanthine were measured in the pSymB-cured strain throughout 

M1 to M5.  Seventeen genes involved in purine/pyrimidine salvage/catabolic pathway 

were encoded on the 17 kb region of pSymB, and those included xanthine 

dehydrogenases and uracil/xanthine permeases (Finan et al. 2001). Xanthine 

dehydrogenases are involved in hypoxanthine degradation to xanthine and urate, deletion 

of these genes in pSymB-cured strains led to a buildup of the intracellular hypoxanthine 

level observed in our study. Guanine deaminases are encoded by pSymB (Caspi et al. 

2014) and are involved in converting guanine to xanthine. In strains lacking pSymB, an 

intracellular accumulation of guanine was observed instead of the gradual decrease of 

guanine in the wild type strain. The utilization of purines from LBmc medium was also 
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limited and slowed over growth in pSymB-cured strains. The disruption of the purine 

degradation/salvage pathway in pSymB-cured strains might result in purine (adenosine, 

guanosine, adenine, guanine, and inosine) buildup through growth, and could also 

contribute to the reduced growth kinetics of pSymB-cured strains in M9 and LBmc media.  

 The loss of pSymB also influenced the cellular membrane composition in pSymB-

cured strains. The lipid composition in the wild type strain was consistent with previous 

gas chromatography MS studies (Basconcillo, Zaheer, Finan, & McCarry 2009a). At lag 

phase (M1), PE36:2 was the most abundant phospholipid, which accounted for 62% of 

PC and 34% of the total detectable PLs. PC37:2 was the most abundant cyclopropanated-

PL and accounted for 22% of PC and 12% of total PLs.  The cyclopropanated-PL 

consisted 12-27% of the total detectable PLs. Since cyclopropane bond is more stable 

than a double bond, increases in cyclopropanated-PL are often noted when 

microorganisms are under stress. Increased cyclopropanated-PL in S. meliloti has been 

correlated with acid stress and nutrient limitations (Basconcillo, Zaheer, Finan, & 

McCarry 2009b); this was also observed in E. coli during acid stress and temperature 

shock (Zhang & Rock 2008). Genes involved in the synthesis of S. meliloti surface 

polysaccharides such as exopolysaccharides (EPSs), succinoglycan (EPS I), 

galactoglucan (EPS II), lipopolysaccharides (LPSs) and capsular polysaccharides (CPSs)  

were mapped to the pSymB chromid (Finan et al. 2001). The EPSs are thought to be 

crucial in protecting S. meliloti against plant defense during nodulation (K. M. Jones, 

Kobayashi, Davies, Taga, & Walker 2007). The absence of EPSs in pSymB-cured strains 

may result in increased cellular stress. As expected, cyclopropanated phospholipids (i.e. 

PCs except PC33:2, PGs, PE33:1 and PE33:2) were elevated in pSymB-cured strains. S. 

meliloti modifies membrane construct to adept to cellular defects as a result of pSymB 

deletion. 

 Unlike pSymB, the pSymA megaplasmid contributed very little to the metabolism 

of S. meliloti when cultured in in vitro. The function of pSymA in S. meliloti is specific to 

symbiosis and involved in adaptation to unique environment (DiCenzo et al. 2014; 

Galardini et al. 2013). Only a few proteins were identified to be uniquely associated to 

the pSymA, and pSymA is largely silent in the free-living cell (Chen et al. 2000). The 

removal of 1.35 Mb pSymA appeared to offset the metabolic burden on S. meliloti, and 

the growth kinetics of ΔpSymA in both LBmc and M9 were slightly faster compared to 

wild type strains. Similar intracellular and extracellular metabolic changes occurred in for 

both ΔpSymA and wild type strains during growth in M9 and LBmc media. The rate of 

substrate utilization from LBmc was comparable between ΔpSymA and wild type. 

 The S. meliloti genome in ΔpSymAB was reduced by 45% through the removal of 

both the pSymA megaplasmid and the pSymB chromid. The growth and metabolism of 

ΔpSymAB resembled those of ΔpSymB. In free-living S. meliloti, the more evolutionarily 

conserved pSymB chromid had a greater influence on the overall growth and metabolism, 

and pSymA megaplasmid was mostly silent. This metabolomic study was consistent with 

gene sequencing data (Barnett et al. 2001; Finan et al. 2001; Galibert et al. 2001), and 
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provided greater insights into the metabolic capacity of pSymA megaplasmid and pSymB 

chromid. 

Electronic Supplementary Materials: 

Electronic Supplementary datasets of intracellular and extracellular metabolomes for this 

chapter, ESM 1-2, can be found online (doi:). The raw LC-MS data was uploaded on 

Metabolomic Workbench. 
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Figure 1 The growth curves of wild-type, ΔpSymA, ΔpSymB and ΔpSymAB S. meliloti 

strains. a, the growth of S. meliloti and its mutants were examined in M9 minimal 

medium and b, LBmc medium. The small solid circles represent OD600 readings from a 

fixed sample of each strain throughout the entire growth curve. Samples were removed 

from culture tubes throughout growth and prepared for metabolomic analysis. The large 

solid circles with a black border indicate the average OD600 readings of the quintuplicate 

or sextuplicate samples collected for intracellular and extracellular metabolomic analyses. 

Black—wild type; blue—ΔpSymA; green—ΔpSymB; orange—ΔpSymAB. 
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Figure 2 Statistical analyses of the intracellular metabolome of wild-type, ΔpSymA, 

ΔpSymB, and ΔpSymAB S. meliloti at various growth phases including exponential 

phase (M1-4) and stationary phase (M5). a, the OPLS-DA score plot (eight aligned and 

zero orthogonal components) showing the global relationship between the four S. meliloti 
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strains at various growth phases based on 1474 detected metabolite features. The 

progression of growth is indicated by the arrow direction. The predictive statistic for the 

model fell below 0.4 (Q
2
=0.256) due to similar metabolic profiles between strains and 

growth phases. b, heatmap of 1237 significant metabolite features (between subject two-

way ANOVA with Bonferroni correction, p<0.01) plotted based on log2(fold change) 

with respect to the average metabolite levels in M1WT. c, heatmap of 41 significant 

phospholipids (between subject two-way ANOVA with Bonferroni correction, p<0.01) 

based on log2(fold change) with respect to the average metabolite levels in M1WT. M1A 

sample c (M1A-c) was removed as an outlier. d, hierarchical clustering analysis of the 

total detectable features (1474 features) for all four strains at each growth stage. 

ΔpSymAB. Black—wildtype; blue—ΔpSymA; green—ΔpSymB; orange—ΔpSymAB. 

M1—circle; M2—diamond; M3—triangle; M4—square; M5—cross. WT—wild type; 

A—ΔpSymA; B—ΔpSymB; AB—ΔpSymAB 
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Figure 3 Intracellular levels of selected metabolites (a-t). Intracellular data were obtained 

from wild-type, ΔpSymA, ΔpSymB, and ΔpSymAB S. meliloti strains cultured in 

minimal M9 medium at 5 time points. n=5-6. Error bar represents one standard deviation 

from the average. black—wild type; blue—ΔpSymA; green—ΔpSymB; orange—

ΔpSymAB. M1-4—exponential phase; M5—stationary phase 
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Figure 4 Statistical analyses of extracellular metabolome of wild-type, ΔpSymA, 

ΔpSymB, and ΔpSymAB S. meliloti at various growth phases including mid-exponential 

phase (L1), early stationary phase (L2) and late stationary phase (L3) cultured in LBmc. a, 

the OPLS-DA score plot (six aligned and eight orthogonal components) showing the 

global relationship between the four strains of S. meliloti at various growth phases based 

on 2008 detected metabolite features. The progression of growth is indicated by the arrow 

direction. b, heatmap of the 820 significant metabolite features (between subject two-way 

ANOVA with Bonferroni correction, p<0.01) plotted based on log2(fold change) with 

respect to the average metabolite levels in LBmc. c, hierarchical clustering analysis of the 

total detectable features (2008 features) for all four strains at each growth stage. LBmc—

red; black—wild type; blue—ΔpSymA; green—ΔpSymB; orange—ΔpSymAB. L1—

circle; L2—diamond; L3—square. WT—wild type; A—ΔpSymA; B—ΔpSymB; AB—

ΔpSymAB; LBmc—LBmc blank following 0 hr and 45 hr incubation at 30ºC 
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Figure 5 Extracellular data were obtained from various growth phases of wild-type, 

ΔpSymA, ΔpSymB, and ΔpSymAB S. meliloti strains cultured in LBmc medium (a-z). 

Error bar represents one standard deviation from the average. black—wildtype; blue—

ΔpSymA; green—ΔpSymB; orange—ΔpSymAB. L1—mid-exponential phase; L2—early 

stationary phase; L3—late stationary phase, LBmc—average of the readouts of 0 hr and 

45 hr LBmc blank at 30ºC.  
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Supplementary information 

 

HILIC-LC-MS/MS method 

The HILIC-LC-MS/MS for unknown identification was a modified version of 

previously published method from HILIC-LC-MS used for metabolomic analyses in this 

study (Fei et al. 2014). The MS/MS spectra were acquired by analyzing extracts using an 

ThermoScientific Dionex Ultimate 3000 rapid separation LC coupled to Bruker maXis 

4G QTOF MS. An injection of 2 μL was separated using the same 50 mm × 2.1 mm 

Kinetex 2.6 μm HILIC column of pore size of 100 Å (Phenomenex, CA, USA). Same 

mobile phases including HPLC grade acetonitrile (A) and 10 mM ammonium acetate in 

HPLC grade water adjusted to pH 3 with formic acid (B) were used at a flow rate of 250 

μL/min. The column temperature was maintained at 40 ºC, and the auto sampler storage 

tray was set at 4ºC. A linear LC gradient: 0-0.5 min, 95% A; 0.5-13.0 min, 40% A;  13.0-

13.5 min, 40% A; 13.5-14.0 min, 95% A; 14.0-20.0 min, 95% A.  

An identical ESI condition was used for both metabolomic and MS/MS methods: 

3.0 bar nebulizer pressure; -150 V endplate offset; -3800 V or 4500 V capillary voltage; 

6.0 L/min drying gas flow rate; 250ºC dry gas temperature. The data were acquired in 

profile mode from 50 to 500 m/z at a scan rate of 1.0 Hz (computed using a rolling 

average value of 2). Auto MS/MS was set with target m/z (± 0.20 m/z) and intensity 

threshold was set at 400 counts. The collision-induced dissociation (CID) energy was set 

to 20 or 30 V for optimum MS/MS spectra.  
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Table S1 Intracellular and extracellular metabolome data summary 

No. features Intracellular 

metabolome 

Extracellular 

metabolome 

ESI+ ESI- ESI+ ESI- 

Total (from XCMS) 1718 1876 2077 2004 

Total 3594 4081 

kapp’<0.7 353 234 100 75 

Isotopes 301 388 345 330 

IS/RS, sodium formate 8 8 6 7 

Ion suppression (7.0-7.8 min) --- --- 69 102 

%CV>20% in pooled 

samples 

828
a
 1040 

Final data matrix 1474 2008 

Significant features
b
 1237 820 

a
45 metabolic features that were identified as phospholipids had greater than 20% CV in 

pooled samples; however, they were not eliminated.  
b
computed with between subjects two-way ANOVA with Bonferroni correction, p<0.01 

 

Table S2 Biological variation of intracellular and extracellular metabolic profiles of the 

wild type, ΔpSymA, ΔpSymB, ΔpSymAB at various growth phases 

 Intracellular metabolome 
Extracellular 

metabolome 

 M1 M2 M3 M4 M5 L1 L2 L3 

Wildtype 23% 20% 19% 20% 25% 15% 18% 22% 

ΔpSymA 26% 20% 19% 18% 23% 15% 18% 26% 

ΔpSymB 22% 26% 21% 19% 19% 17% 12% 13% 

ΔpSymAB 26% 21% 23% 24% 29% 12% 14% 13% 

LBmc --- --- --- --- --- 14% --- 12% 
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Table S3 Summary table of validation parameters (R
2
X, R

2
Y, Q

2
) of the OPLS-DA model 

for the intracellular metabolome in Figures S3, S4. Model 1-4 corresponds to Figure S3 a-

d, and model 5-9 corresponds to Figure S4 a-e 

model R2X(cum) R2Y(cum) Q2(cum) Conditions 

1 0.886 0.922 0.617 ΔpSymA (M1-5) 
2 0.875 0.881 0.645 WT (M1-5) 
3 0.808 0.831 0.677 ΔpSymB (M1-5) 

4 0.798 0.842 0.631 
ΔpSymAB (M1-5) 

M3 and M4 were considered as one 
group 

5 0.915 0.982 0.925 
WT, ΔpSymA, ΔpSymB, ΔpSymAB 

(M1) 

6 0.879 0.962 0.857 
WT, ΔpSymA, ΔpSymB, ΔpSymAB 

(M2) 

7 0.888 0.985 0.882 
WT, ΔpSymA, ΔpSymB, ΔpSymAB 

(M3) 

8 0.856 0.976 0.872 
WT, ΔpSymA, ΔpSymB, ΔpSymAB 

(M4) 

9 0.889 0.98 0.956 
WT, ΔpSymA, ΔpSymB, ΔpSymAB 

(M5) 

 

Table S4 Summary table of validation parameters (R2X, R2Y, Q2) of the OPLS-DA 

model for the extracellular metabolome in Figure S6. Model 1-7 corresponds to Figure S6 

a-g 

Model R2X(cum) R2Y(cum) Q2(cum) Conditions 

1 0.903 0.987 0.981 ΔpSymA (L1-3) 
2 0.917 0.99 0.979 WT (L1-3) 
3 0.912 0.998 0.95 ΔpSymB (L1-3) 
4 0.892 0.995 0.954 ΔpSymAB (L1-3) 
5 0.885 0.835 0.657 WT, ΔpSymA, ΔpSymB, ΔpSymAB, 

LBmc (L1) 
6 0.925 0.988 0.947 WT, ΔpSymA, ΔpSymB, ΔpSymAB, 

LBmc (L2) 
7 0.938 0.98 0.914 WT, ΔpSymA, ΔpSymB, ΔpSymAB, 

LBmc (L3) 
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Figure S1 The OPLS-DA plot (eight aligned and one orthogonal components) of the 

intracellular metabolome of wild-type, ΔpSymA, ΔpSymB, and ΔpSymAB S. meliloti 

strains cultured in M9-sucrose medium at multiple times points on the growth curve, as 

well as pooled samples. Metabolome variance between strains and during growth was 

summarized by x- and y-axes. Black—wild type; blue—ΔpSymA; green—ΔpSymB; 

orange—ΔpSymAB, pooled samples—purple. M1—circle; M2—diamond; M3—triangle; 

M4—square; M5—cross. WT—wild type; A—ΔpSymA; B—ΔpSymB; AB—ΔpSymAB 
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Figure S2 The OPLS-DA plot (six aligned and three orthogonal components) of the 

extracellular metabolome of wild-type, ΔpSymA, ΔpSymB, and ΔpSymAB S. meliloti 

strains cultured in LBmc at multiple times points on the growth curve, as well as pooled 

samples. Metabolome variance between strains and during growth was summarized by x- 

and y-axes. Black—wild type; blue—ΔpSymA; green—ΔpSymB; orange—ΔpSymAB. 

L1—circle; L2—diamond; L3—square. L1LBmc—fresh LBmc medium; L3LBmc—

LBmc medium incubated at 30ºC for 45hr; WT—wild type; A—ΔpSymA; B—ΔpSymB; 

AB—ΔpSymAB 
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Figure S3 The OPLS-DA score plots of the intracellular metabolome of a wild-type, b 

ΔpSymA, c ΔpSymB, and d ΔpSymAB S. meliloti at various growth phases including 

exponential phase (M1-4) and stationary phase (M5). The progression of growth is 

indicated by the arrow direction. The metabolome variance for each strain during growth 

was summarized by x- and y-axes. The OPLS-DA models for wild-type, ΔpSymA, 

ΔpSymB, and ΔpSymAB consist of four, four, four, three aligned and three, five, one, 

two orthogonal components, respectively. ΔpSymAB. Black—wild type; blue—ΔpSymA; 

green—ΔpSymB; orange—ΔpSymAB. M1—circle; M2—diamond; M3—triangle; M4—

square; M5—cross. WT—wild type; A—ΔpSymA; B—ΔpSymB; AB—ΔpSymAB 
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Figure S4 The intracellular metabolic phenotypes of ΔpSymA, wild type, ΔpSymB and 

ΔpSymAB strains at exponential phase (a M1, b M2, c M3, d M4), and e stationary phase 

(M5) were summarized using OPLS-DA plots. Metabolome variance for each strain 

during growth was summarized by x- and y-axes. The OPLS-DA models for M1, M2, M3, 

M4, and M5 growth phases consist of three, three, three, three, three aligned and four, 

four, four, three, one orthogonal components, respectively. Black—wild type; blue—

ΔpSymA; green—ΔpSymB; orange—ΔpSymAB, pooled samples—purple. M1—circle; 

M2—diamond; M3—triangle; M4—square; M5—star. WT—wild type; A—ΔpSymA; 

B—ΔpSymB; AB—ΔpSymAB 
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Figure S5 The top 100 intracellular metabolites with the most significant poverall computed 

using between subjects two-way ANOVA (poverall = min(ptime, pstrain, pinteraction)). The 

metabolites were labelled in the order of m/z, retention time (min), and electrospray 

ionization mode. M1-4—exponential phase; M5—stationary phase  
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Figure S6 The OPLS-DA plots of the extracellular metabolome of wild-type, ΔpSymA, 

ΔpSymB, and ΔpSymAB S. meliloti cultured in LBmc at various growth phases. The 

extracellular metabolic phenotypes of a wild type, b ΔpSymA, c ΔpSymB and d 

ΔpSymAB at mid-exponential phase (L1), early stationary phase (L2) and late stationary 

phase (L3) were summarized using OPLS-DA plots. The OPLS-DA score plots of the 

extracellular metabolome of wildtype, ΔpSymA, ΔpSymB, ΔpSymAB and LBmc 

medium were compared at e L1, f L2, and g L3. For a-d, metabolome variance for each 

strain during growth was summarized by x- and y-axes. For e-g, metabolome variance 

between strains at each growth phase was summarized by x- and y-axes. The OPLS-DA 

models for wild-type, ΔpSymA, ΔpSymB, and ΔpSymAB consist of two, two, two, two 

aligned and one, one, three, two orthogonal components, respectively. The OPLS-DA 

models for L1, L2, and L3 growth phases consist of two, three, three aligned and two, 
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three, two orthogonal components, respectively.Black—wild type; blue—ΔpSymA; 

green—ΔpSymB; orange—ΔpSymAB. L1—circle; L2—diamond; L3—square. WT—

wild type; A—ΔpSymA; B—ΔpSymB; AB—ΔpSymAB; LBmc—LBmc blank medium 

incubated for 0 or 45 hrs at 30ºC 

 

Figure S7 The top 100 extracellular metabolites with the most significant poverall computed 

using between subjects two-way ANOVA (poverall = min(ptime, pstrain, pinteraction)). The 

metabolites were labelled in the order of m/z, retention time (min), and electrospray 
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ionization mode. L1—mid exponential phase; L2—early stationary phase; L3—late 

stationary phase 
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Abstract  

Macrophages are major contributors to age-associated inflammation. Inflammatory 

responses in macrophages are generally regulated by metabolic processes such as 

oxidative phosphorylation, glycolysis and the urea cycle.  It is known that metabolic 

profiles changes with age; therefore, we hypothesized that dysregulation of metabolic 

processes could contribute to age-associated macrophage dysfunction. We examined the 

intracellular metabolome of bone marrow-derived macrophages from young (6-8 wk) and 

old (18-22 mo) mice following lipopolysaccharide (LPS) stimulation and tolerance. We 

discovered known and novel metabolites that were associated with the LPS response of 

macrophages from young mice, which were not inducible in macrophages from old mice. 

Macrophages from old mice were largely non-responsive towards LPS stimulation, and 

we did not observe a shift from oxidative phosphorylation to glycolysis. The critical 

regulatory metabolites succinate, γ-aminobutyric acid, arginine, ornithine and adenosine 

were increased in LPS-stimulated macrophages from young mice, but not macrophages 

from old mice. A shift between glycolysis and oxidative phosphorylation was not 

observed during LPS tolerance in macrophages from either young or old mice. Metabolic 

bottlenecks may be one of the mechanisms that contribute to the dysregulation of 

inflammatory responses with age.  
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Introduction 

Inflammation is an evolutionarily conserved response to infection and tissue injury, 

which triggers a complex cascade of metabolic and genomic responses (Nathan 2002). 

Both innate and adaptive immune function declines with age (Solana et al. 2006; Weng 

2006; Gomez et al. 2005), and this contributes to decreased vaccine response (Weiskopf 

et al. 2009) and increased susceptibility to sepsis and inflammatory diseases (Ginaldi et al. 

2001). Franceschi et al. proposed that macrophages play a central role in producing age-

associated inflammation, which ultimately impairs the immune response (Franceschi et al. 

2000). Macrophages are heterogeneous tissue-resident sentinel cells that are derived from 

hematopoietic progenitors (Gordon & Taylor 2005). They initiate inflammatory responses 

towards microbial pathogens and repair damaged tissues (Franceschi et al. 2000) by 

responding to their local cytokine environment and adapting to either pro-inflammatory 

(M1) or anti-inflammatory (M2) phenotypes (Murray et al. 2014).  With age, macrophage 

functions, including phagocytosis, wound healing and polarization, are impaired 

(Plowden et al. 2004; Mahbub et al. 2012). 

Bacterial lipopolysaccharide (LPS) is a potent inflammatory stimulant that is often 

used to study macrophage function. Upon repeated challenge with LPS, macrophages 

reduce inflammatory responsiveness and it can persist for 24-48 hrs after initial 

stimulation (Foster et al. 2007). Tolerance towards LPS is an essential immune-

homeostatic response that protects against persistent infection (Cavaillon & Adib-Conquy 

2006).  Defects in LPS tolerance might contribute to septic and non-infectious systemic 

inflammatory response syndrome (SIRS) in humans (Cavaillon & Adib-Conquy 2006). 

Peritoneal macrophages of young mice develop LPS tolerance more effectively than 

macrophages from old mice at the transcriptional level (Sun et al. 2012). Whether failure 

to control inflammation resulting from chronic LPS exposure in old age contributes to 

increased susceptibility to inflammatory diseases is not known.  

 Inflammatory responses of macrophages can be regulated by intracellular and 

extracellular levels of metabolites. It is known that upon LPS stimulation, macrophages 

switch from oxidative phosphorylation to glycolysis as their primary energy source to 

sustain the increased energy demand during inflammation (Rodríguez-Prados et al. 2010; 

Sugimoto et al. 2011). Enhanced glycolytic function is measured by higher levels of 

intra- and extra-cellular lactate. Specific transcriptional responses promoting 

inflammation have been shown to be regulated by metabolites such as succinate and γ-

aminobutyric acid (Tannahill et al. 2013).  Additionally, M1/M2 polarization is regulated 

by increasing levels of urea cycle intermediates such as arginine, ornithine, citrulline 

(Mills et al. 2000). Moreover, increasing levels of adenosine as a result of inflammation 
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can regulate inflammatory responses and are protective against tissue damage (Haskó & 

Cronstein 2004). Metabolic changes have been noted in mice and humans as a result of 

aging (Houtkooper et al. 2011; Yu et al. 2012). Whether metabolic dysregulation can 

contribute to macrophage dysfunction with age is not known.  

Here, for the first time, we identified age-specific metabolic dysregulation of LPS 

responses in bone marrow-derived macrophages. Additionally, we quantified the 

metabolic changes during LPS tolerance in both young and old macrophages. We 

discovered novel metabolites that are associated with LPS stimulation. We have found 

metabolic reprogramming of oxidative phosphorylation to glycolysis was suppressed in 

LPS stimulated macrophages from old mice. In addition, arginine metabolism, which is 

vital for macrophage polarization (Hibbs Jr et al. 1987; Mills et al. 2000), was also 

impaired in old macrophages. Our data indicate a possible metabolic bottleneck that 

prevents energy intensive inflammatory responses in old macrophages. 

Results 

In order to quantitate differences in macrophage metabolism during LPS 

stimulation and LPS tolerance, bone marrow derived macrophages from young and old 

mice were analyzed using both comprehensive and targeted metabolomic strategies (Fig. 

1). Liquid chromatography-mass spectrometry (LC-MS) was used to create a 

comprehensive metabolomic profile, which was composed of 2125 metabolite features, of 

which 57 polar metabolites and 64 phospholipids were identified. Gas chromatography 

(GC)-MS was used for targeted metabolomic analysis, which included 25 intermediates in 

glycolysis, the citric acid cycle (TCA), the aspartate-argininosuccinate shunt, the γ-

aminobutyric acid (GABA) shunt and the urea cycle pathways (Table S1).  

Comprehensive analysis reveals novel metabolites associated with LPS responses 

 The metabolome of bone marrow derived macrophages from young mice were 

analyzed and compared at 0, 4 and 16 hr of LPS stimulation. To ensure any metabolic 

changes only resulted from LPS stimulation and were not a result of the 22 hr incubation, 

we examined the metabolic profiles of unstimulated macrophages at t=0 hr and t=22 hrs. 

Less than 1.3% of the metabolic features showed any significant change over the 22 hr 

period. Significant metabolic changes were observed for LPS stimulated macrophages 

after 4 hrs of stimulation, and a more dramatic change was noted after 16 hrs of LPS 

stimulation (Fig 2A). From the heatmap (Fig 2B), 4.5% (96/2125) of the metabolite 

features from young macrophages were differentially expressed after 4 hrs of LPS 

stimulation compared to the unstimulated control. After 16 hrs of LPS stimulation, over 

half of the metabolic features (1081/2125) were significantly altered in the young 
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macrophages. Of the differentially expressed features, 27.2% (579/2125) showed 

increased expression and 23.6% (502/2125) features were reduced compared to the 

unstimulated control. Metabolites that were found to increase in macrophages of young 

mice after 16 hrs of LPS stimulation included adenine, adenosine, ornithine, arginine (Fig. 

3A-D), pantothenic acid, uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), N-

acetyl-phenylalanine, taurine, hypotaurine, UDP-glucose (UDP-G), glucosamine-6-

phosphate (GlcN6P), methyl-malonic acid, lysine, proline, glutamine, 

phosphatidylglycerols (PGs), phosphatidylethanolamine (PEs) and phosphatidylcholines 

(PCs). N-acetyl glutamic acid and N-acetyl-aspartic acid were reduced after 16 hrs of LPS 

exposure. Most metabolic features remained unidentified. The comprehensive 

metabolomic approach allows the discovery of novel metabolites associated to 

macrophage LPS responses (normalized levels of metabolites were the electronic 

supplementary material ESM 1). 

Macrophage metabolism in response to LPS decreases with age 

 The metabolomes of bone marrow derived macrophages from both young and old 

mice were analyzed and compared prior to LPS stimulation (t=0 hr), and after 4 and 16 

hrs of LPS stimulation. Only 0.4% of the metabolites were significantly different between 

macrophages derived from young and old mice in the absence of LPS indicating that there 

were virtually no detectable age-associated metabolic differences in unstimulated 

macrophages. The age-associated differences in metabolism after LPS stimulation were 

visualized using an OPLS-DA score plot (Fig. 2A). Old macrophages appeared to be non-

responsive towards LPS stimulation as compared to the young. Age-associated metabolic 

changes after 4 hrs of LPS stimulation were apparent between young and old 

macrophages, and became more distinct after 16 hrs of LPS stimulation. Unlike LPS 

stimulated young macrophages where half of the metabolome was altered, only 2.2% 

(46/2125) and 13.3% (282/2125) of the features were altered in the old macrophages after 

4 hrs and 16 hrs of LPS stimulation, respectively. 10.0% (211/2125) of the metabolic 

features that were significantly changed with similar magnitude in both young and old 

macrophages after 16 hrs of LPS stimulation. Metabolites that were found to be increased 

in both young and old macrophages after 16 hrs of LPS stimulation included pantothenic 

acid, UDP-GlcNAc, N-acetyl-phenylalanine, PEs and almost half of detectable PCs. 

Metabolic responses to LPS stimulation appears to decrease with age.  

Macrophages from old mice have defects in core metabolism during LPS stimulation 

 Macrophages switch their core metabolism from oxidative phosphorylation to 

glycolysis when stimulated with LPS (Rodríguez-Prados et al. 2010; Sugimoto et al. 

2011). To examine whether the core metabolism of activated macrophages was affected 
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by age, we designed a targeted metabolomics approach including in intermediates in 

glycolysis, the TCA cycle, the GABA shunt, the aspartate-argininosuccinate shunt and the 

urea cycle.  

 After 4 hrs of LPS stimulation, metabolites associated with the TCA cycle 

including oxaloacetate, malate, fumarate, succinate, α-ketoglutarate, citrate and glutamate 

were increased in macrophages from young mice (Fig. S2A, S3A). After 16 hrs of LPS 

stimulation, the above-named metabolites remained elevated, and in addition, fructose-6-

phosphate, lactate, GABA, arginine and ornithine were also increased compared to the 

unstimulated control (Fig. 4A). In contrast, very few changes in this core metabolic 

pathway were noted in macrophages from old mice after LPS stimulation. Isocitrate, 2-

phosphoglycerate (2PG) and 3PG were only decreased in the old macrophages after 4 hrs 

of LPS stimulation, and after 16 hrs of LPS stimulation, only arginine, malate, aspartate 

and GABA were increased (Fig. 5A, S2B, S3B). Decreased glucose-1-phosphate was 

observed in macrophages from both young and old mice after 4 and 16 hrs of LPS 

stimulation. 

Metabolic changes during LPS tolerance 

 To examine the metabolic response associated with LPS tolerance in macrophages, 

we analyzed the metabolome of macrophages stimulated with secondary dose of LPS for 

4 hrs (“tolerance”). As a control, after 16 hrs of LPS stimulation, the cells were washed 

and cultured in LPS-free medium for 6 hrs (“recovery”). As visualized by the OPLS-DA 

score plot, the “recovery” and “tolerance” metabolic profiles from young mice resembled 

the early stage of LPS stimulation (Fig. 1C). In contrast, these profiles from old 

macrophages were distinct from early and late stage LPS stimulation (Fig. 1D).  

 We confirmed the LPS tolerance by quantifying transcripts that were known to be 

associated with the LPS tolerance (Fig. S4). Some metabolic changes appeared to be 

reversible when LPS was removed, whereas others remained irreversible. Reversible 

metabolites were induced in LPS stimulation but were reversed when LPS were removed 

and were not inducible upon LPS re-stimulation; irreversible metabolites were induced in 

LPS stimulation and remained elevated in the LPS re-stimulation. There are also a unique 

set of metabolites that were only induced in the tolerant macrophages. For macrophages 

from young mice, 20.0% (424/2125) of the metabolic features were irreversible, 30.9% 

(657/2125) were reversible, and 9.4% (200/2125) of the features became differently 

expressed after secondary LPS stimulation. Metabolites that were increased in primary 

LPS stimulation and remained elevated in both the “recovery” and “tolerance” group 

included taurine, hypotaurine, UDP-G, GlcN6P, lysine, proline, ornithine, arginine, 

glutamine, PEs and PCs. PGs showed no evidence of tolerance, although the magnitude 
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of induction in the “tolerance” experiment was much lower compared to  those after 16 

hrs of LPS stimulation. Conversely, for macrophages from old mice, 6% (128/2125) of 

the metabolic features were irreversible, 7.2% (154/2125) were reversible, and 6.8% 

(145/2125) of the features were only significant in “tolerance” group as compared to the 

unstimulated macrophages from old mice. Interestingly, arginine, ornithine, UDP-

GlcNAc, UDP-G, ornithine, glutamine and hypotaurine, which were only elevated in the 

young macrophages after 4 and 16 hrs of LPS stimulation, were found elevated in the 

“recovery” and “tolerance” groups of the old macrophages. It might suggest metabolic 

responses to LPS stimulation are delayed in old macrophages. 

 Similar trends were also observed for metabolites in macrophage core metabolism. 

In young macrophages, almost all of the metabolites that were elevated after 16 hrs of 

LPS stimulation were still elevated in the “recovery” and “tolerance” groups. These 

included citrate, oxaloacetate, malate, fumarate, succinate, α-ketoglutarate, arginine, 

ornithine, glutamate and glutamine. Only GABA and lactate decreased back to the levels 

observed in unstimulated macrophages. Interestingly, proline levels did not increase 

during LPS stimulation, but increased in the “recovery” group. Intermediates of the 

glycolysis pathway were induced only after secondary LPS exposure in the young 

macrophages, and those included isocitrate and glycolysis intermediates such as glucose-

6-phosphate (G6P), fructose-6-phosphate (F6P), 3PG and 2PG. Metabolic response to 

LPS was delayed in the old macrophages. Metabolites such as oxaloacetate, fumarate, 

glutamine, arginine and ornithine were only increased in old macrophages after 16 hrs of 

LPS stimulation and in both the “recovery” and “tolerance” macrophages. 

Age-associated changes in arginine metabolism 

Arginine metabolism via the urea cycle influences macrophage polarization (Mills 

et al. 2000). The urea cycle intermediates, arginine and ornithine, were increased in the 

young macrophages after 16 hrs of LPS stimulation (Fig. 4). The levels of arginine and 

ornithine remained elevated in the young macrophages when LPS was removed and also 

during LPS tolerance. In the old macrophages, LPS stimulation did not result in elevated 

levels of arginine and ornithine. Similar to changes in the core metabolism, there was a 

delay in arginine metabolism. Increasing levels of arginine and ornithine were only 

observed during the “recovery” and “tolerance” samples (Fig. 5).  

The gene expression of Arg1, iNOS (Nos2) and cationic amino acid transport 

(Slc7a2) were measured to provide insights into arginine metabolism. The expression of 

Arg1 and iNOS were elevated but not statistically different between LPS stimulated 

macrophages from young and old mice. Only Slc7a2 was differentially expressed 

between young and old macrophages after 16 hrs of LPS exposure, for which the 



Ph.D. Thesis – F. Fei; McMaster University – Dept. of Chemistry and Chemical Biology 

154 
 

expression of Slc7a2 in young macrophages was 1.43-fold greater than the old (Fig. 3 E-

H).  

Discussion 

LPS stimulation triggers a shift in macrophage core metabolism from oxidative 

phosphorylation to glycolysis (Rodríguez-Prados et al. 2010; Sugimoto et al. 2011).  

Glycolysis occurs in the cytoplasm and produces two ATPs per glucose. The end product 

of glycolysis, pyruvate, enters the mitochondria and initiates the TCA cycle and oxidative 

phosphorylation and results in the production of an additional 36 ATPs under aerobic 

conditions. Under anaerobic conditions, pyruvate is reduced to lactate in the cytoplasm 

and secreted (Zheng 2012). Although only 5% of the glucose’s energy potential is taken 

advantage of during glycolysis, it can produce ATP at a much faster rate than oxidative 

phosphorylation. In addition to glucose metabolism, glutamine contributes to a third of 

the energy requirement of unstimulated macrophages via glutamine anaplerosis 

(Newsholme et al. 1999). The metabolic switch to glycolysis during LPS stimulation is a 

rapid way to accommodate the increased energy demand during inflammation. As 

macrophages shift from using oxidative phosphorylation to glycolysis, lactate and TCA 

intermediates such as malate, citrate and fumarate are increased intracellularly 

(Rodríguez-Prados et al. 2010; Sugimoto et al. 2011). Consistent with this, we have 

observed increasing levels of those metabolites in young macrophages after 16 hrs of LPS 

stimulation.  

Macrophage specific adaptation to the TCA cycle is reported. Jha et al. have 

reported a M1 macrophage specific metabolic break-point in the TCA cycle (Jha et al. 

2015). The metabolic flow between isocitrate and α-ketoglutarate is disrupted. Consistent 

with this result, in the young macrophages, we have observed a metabolic break in the 

TCA cycle between citrate and α-ketoglutarate where, despite a global increase of almost 

all the TCA cycle intermediates, isocitrate remained unchanged after 16 hrs by LPS 

stimulation. Since we also observed this in our model of inflammation, this break-point in 

the TCA cycle may not be specific to M1 phenotypes but rather an indication of energy 

metabolism during inflammation. Conversely, since the core metabolism of old 

macrophages did not change with LPS stimulation, we did not observe the citrate/α-

ketoglutarate metabolic break.  

In the macrophages from old mice, the core metabolism was mostly unchanged to 

LPS stimulation, and this may suggest impaired mitochondrial function. Mitochondrial 

dysfunction during aging is well documented (Green et al. 2011). Although mitochondrial 

metabolic dysfunction has not been thoroughly studied in macrophages, several studies of 

mitochondria from muscle tissues have shown reduced rates of glycolysis and the TCA 
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cycle with age (Kaczor et al. 2006; Lee et al. 1994). We did not detect increasing levels 

of lactate, malate, fumarate and citrate, and this is consistent with mitochondrial 

dysfunction with age and an inability to shift from oxidative phosphorylation to 

glycolysis. 

Interestingly, succinate was the only TCA cycle intermediate that was elevated in 

macrophages from both young and old mice in response to LPS stimulation (3.58- and 

2.73- fold change at 16 hrs LPS respectively). Elevated succinate in macrophages in 

response to LPS stimulation has been shown to stabilize hypoxia-inducible factor-1α 

(HIF-1α), a transcription factor that is required for  interleukin-1β (IL-1β) production 

(Tannahill et al. 2013). IL-1β is a key inflammatory cytokine for macrophage activation 

during an immune response. The induction of glutamine anaplerosis and GABA shunt 

pathways were reported as principle source of succinate (Tannahill et al. 2013). In young 

macrophages, we have observed consistently elevated levels of GABA (2.37-fold), 

glutamate (2.38-fold) and glutamine (2.66-fold) that fed into succinate production. In 

contrast, only GABA (2.70-fold) was increased in old macrophages after LPS stimulation. 

Although there are conflicting reports as to whether old macrophages produce more or 

less inflammatory cytokines in response to LPS (Kohut et al. 2004; Mahbub et al. 2012), 

our data imply succinate and its biosynthetic pathway would not be a rate limiting factor 

in generating an inflammatory response.  

Arginine is required for macrophage activation (Hibbs Jr et al. 1987). Elevated 

levels of arginine and ornithine were only observed in young macrophages following 16 

hrs of LPS stimulation. Intracellular arginine is mostly imported from the extracellular 

environment via cationic amino acid transport (CAT) in both humans and mice (Bogle et 

al. 1992; Kurko et al. 2015). Of all the genes encoding the CAT, Slc7a2 is the only gene 

whose expression is inducible and is required during both M1 and M2 macrophage 

polarization (Yeramian et al. 2006; Kurko et al. 2015). We have observed a 30% 

reduction in Slc7a2 expression in the old macrophages compared to the young after 16 hrs 

of LPS stimulation, which likely contributes to the lower intracellular arginine level in the 

old macrophages. Arginine may also be synthesized via the aspartate-argininosuccinate 

shunt, which  joins the TCA cycle with the urea cycle (Jha et al. 2015). Inhibition of the 

aspartate-argininosuccinate shunt inhibits M1 polarization with low iNOS expression and 

nitric oxide production (Jha et al. 2015). However, in our study, 16 hrs of LPS 

stimulation did not affect the aspartate-argininosuccinate shunt (i.e. aspartate, 

argininosuccinate) in macrophages from both young and old mice. Therefore, the 

aspartate-argininosuccinate shunt is unlikely to contribute to the increase of intracellular 

arginine in activated macrophages.  
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To further understand the role of the urea cycle in affecting macrophage 

dysfunction in old age, gene expression of Arg1 and iNOS were measured. Metabolism of 

arginine via Arg1 or iNOS in the urea cycle regulates macrophage polarization (Mills et al. 

2000) (Fig. 3H). M1 macrophages express iNOS which metabolizes arginine to nitric 

oxide to prevent pathogen infection by limiting free arginine and producing nitric oxide, a 

powerful antimicrobial agent. M2 macrophages express Arg1 which hydrolyzes arginine 

to ornithine to stimulate cell division and tissue repair through the production of 

polyamines and proline. LPS is known to induce both Arg1 and iNOS (Murray et al. 

2014), which we have also observed in LPS stimulated macrophages from young and old 

mice. Consistent with our data, there were no age-associated changes in iNOS or Arg1 

expression in bone marrow-derived macrophages; however, others have reported 

decreased expression in LPS stimulated splenic and peritoneal murine macrophages 

(Mahbub et al. 2012).Therefore, arginine metabolism is unlikely to be the rate limiting 

factor in the LPS response of old macrophages.  

 Dysregulation of LPS tolerance has been proposed as a possible explanation for 

the increased susceptibility of the elderly to sepsis and inflammatory disorders (Cavaillon 

& Adib-Conquy 2006). To test whether macrophages from old mice have defects in LPS 

tolerance, we measured a well-defined set of pro-inflammatory and anti-microbial genes 

associated with this phenomenon (Foster et al. 2007). Both the young and old 

macrophages experienced LPS tolerance equally at the transcriptional level. However, our 

data demonstrated that there were metabolic changes specific to LPS tolerance. In the 

young macrophages, lactate levels were increased after the initial LPS stimulation, but 

returned to baseline levels when LPS was removed and did not increase during the second 

LPS stimulation. This indicated that the core metabolism of young macrophages did not 

shift from oxidative phosphorylation to glycolysis during LPS tolerance. This inability to 

adjust macrophage core metabolism to during LPS tolerance may be compensated for by 

the up-regulation of glycolysis as indicated by the elevated levels of glycolysis 

intermediates. The inability to switch from glycolysis to oxidative phosphorylation may 

be a key metabolic break in LPS tolerance. In contrast to young macrophages, old 

macrophages did not shift from oxidative phosphorylation to glycolysis in either the first 

or second LPS stimulation. Moreover, elevated levels of arginine and TCA cycle 

intermediates were detected in both the first and second LPS stimulation in the young 

macrophages; however, those metabolites were only induced much later in the old 

macrophages. It appears as though the old macrophages had a delayed metabolic response 

to LPS stimulation. Whether this delay is because of age-associated deterioration in 

mitochondria function, and specifically ATP production from glucose, is worth future 

investigation.   
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Adenosine is a “retaliatory metabolite” whose intracellular level is amplified at 

sites of injury and inflammation, and also mediates the resolution of inflammation by 

limiting tissue destruction (Haskó & Cronstein 2004). Utilization of ATP during 

macrophage activation as a result of high metabolic activity leads to increased levels of 

intracellular adenosine (Ruiz-García et al. 2011). Moreover, elevated levels of adenosine 

are known to enhance glycolysis and ATP production that supports metabolism in 

activated macrophages (Ruiz-García et al. 2011). When adenosine is expressed in excess, 

it binds to adenosine receptors as an immune suppressor to preserve tissue homeostasis 

and prevent tissue damage (Haskó & Cronstein 2004). Preventing adenosine breakdown 

by inhibiting adenosine deaminase reduces systemic inflammation such as sepsis (Adanin 

et al. 2002). We observed increasing intracellular levels of adenosine and its precursor, 

adenine, after LPS stimulation in young macrophages. Young macrophages reduced the 

expression of adenosine and adenine to the baseline level of unstimulated macrophages 

during LPS tolerance. In contrast, levels of adenosine and adenine were not changed in 

condition in old macrophages. This might be a result of the decreased metabolic activity 

and reduced rate of glycolysis in old macrophages.  

 Overall, intricate age-associated metabolic dysfunction was observed in bone 

marrow-derived macrophages after LPS stimulation and during LPS tolerance. 

Inflammatory responses are energetically costly and result in high metabolic activity 

(Hotamisligil & Erbay 2008). For example, a 1ºC to 4ºC rise in core body temperature 

during fever helps to resolve bacterial and viral infections, and a  1ºC increase in 

temperature demands a 10-12.5% increase in metabolic rate (Evans et al. 2015). However, 

fever responses are often absent or blunted in the elderly (Norman 1996), and rapid 

muscle wasting to sustain the high energy demand is common (Lochmiller & Deerenberg 

2000). We have observed metabolic bottlenecks between the switch from oxidative 

phosphorylation to glycolysis, which might contribute to impaired inflammation in the 

elderly. Moreover, the elderly are more vulnerable to nutrient deficiencies, such as 

arginine (Brownie 2006). Low arginine can attribute to the retarded immune function 

(Hibbs Jr et al. 1987) and is associated to poor health outcomes in the elderly (Hurson et 

al. 1995). We found old macrophages are unable to adjust intracellular arginine level in 

response to LPS stimulation, but whether this is associated with arginine-related immune 

deficiencies is not known. In this study, metabolic bottlenecks were observed for 

macrophages from old mice during LPS stimulated inflammatory events, and metabolic 

dysregulation should be considered as a possible mechanism for declining immune 

function with age. 

Experimental procedure 
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Bone marrow-derived macrophage culture 

Bone marrow progenitors were collected from the femurs and tibia of young (6-8 

wk) and old (18-22 mo) C57BL/6 mice (The Jackson Laboratory, Maine, USA).  

Progenitor cells were cultured for seven days in RPMI-1640 supplemented with 10% fetal 

bovine serum (FBS), 1% L-glutamine, 1% penicillin/streptomycin and 15% L929 

fibroblast cell conditioned medium on 150 mm Petri dish (Fisherbrand). On day 8, bone 

marrow-derived macrophages were sub-cultured and incubated overnight in 24-well 

tissue-culture-treated plates (Falcon). For metabolomic studies, three biological replicates 

were performed. For each biological replicate, 3×10
5
 macrophages were seeded per well 

in 1 mL RPMI-1640 with two culture replicates per mouse (n=6 per treatment). For gene 

expression study, three biological replicates were performed. For each biological replicate, 

1×10
6
 macrophages were seeded per well in 3 mL RPMI-1640 (n=3 per treatment). All 

animal studies were approved by McMaster’s Animal Research Ethics Board. 

 

Macrophage LPS stimulation 

Macrophages from both young and old mice were divided into six treatment 

groups. Groups 1 and 2 were stimulated with 100 ng/mL of bacterial lipopolysaccharide 

(LPS) in RPMI-1640 for 4 and 16 hrs respectively. Group 3 (“tolerance”) was incubated 

for 16 hrs with an initial LPS challenge (100 ng/mL), washed in PBS, incubated in 

regular RPMI-1640 for 2 hrs, and then re-stimulated with 100 ng/mL of LPS for 4 hrs. 

Group 4 (“recovery”) was incubated for 16 hrs with LPS (100 ng/mL), washed in PBS, 

incubated in regular RPMI-1640 for 6 hrs. Group 5 and 6 were controls that were cultured 

in regular RPMI-1640 for 0 and 22 hrs. The experimental protocol for LPS tolerance 

study was based on Foster et al. (Foster et al. 2007). All cells were washed once with cold 

phosphate-buffered saline (PBS) and collected for metabolomic and gene expression 

studies. 

Macrophage extraction for metabolomic analyses 

 

After macrophages were washed with 1 mL of cold PBS, the cells were detached 

from the 24-well plate using a cell lifter in the presence of 200 μL cold extraction solvent 

mixture methanol/ethanol/H2O (2:2:1) containing standards for recovery determination 

(98% L-methionine-d3, 98% L-tryptophan-d5) (Fei et al. 2014). The cell suspension was 

transferred into a 1.5 mL microtube (Diamed, ON, Canada) and vortex mixed for 2 min in 

the presence of two 2 mm ball bearings.  After removal of the bearings, the mixture was 

centrifuged at 9500 x g for 3 min at 4ºC. The supernatant was collected and the 

precipitated pellet (containing DNA, RNA, and proteins) was re-extracted twice with 50 

μL cold methanol/ethanol/H2O as with above. A total of 150 µL cell extract was dried 

under nitrogen gas and re-solubilized in 50 μL 60%v/v ACN/H2O containing standards 
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(98% L-phenylalanine-d8, diphenylalanine, glycine-phenylalanine) for peak area 

normalization (IS) for LC-MS analysis. A quality control pooled sample was prepared by 

combining 5 μL ACN/H2O macrophage extracts from a total of 72 samples of all 

treatment groups.  

For GC-MS analysis, 20 μL of the ACN/H2O macrophage extract or pooled 

samples was dried under nitrogen gas, and reconstituted in 25 μL of 1%v/v 

chlorotrimethylsilane (TMCS) in N-methyl-N-(trimethylsily)trifluoroacetamide (MSTFA) 

and 5 μL anthracenemethanol (IS for GC-MS) in toluene (1.2 ng/μL). The samples were 

incubated at 60ºC for 1 hr and analyzed by GC-MS immediately.  

The entire sample preparation procedure was performed on ice or in a cold room. 

The sample extracts were stored in a -80ºC freezer prior to analyses.  

 

LC-HILIC-TOF-MS comprehensive analysis 

Macrophage extracts were analyzed using a Agilent Technologies Model 1200RR 

series II liquid chromatograph coupled to a Bruker micrOTOF II Mass Analyzer as 

previously described (Fei et al. 2014). A Phenomenex Kinetix 2.6 μm core shell HILIC 

column (2.1 x 50 mm, pore size 100 Å) was operated at 200 μL/min using a linear 

gradient of acetonitrile (A) and 10 mM ammonium acetate, adjusted to pH 3 (B).  The 

column temperature was maintained at 40 ºC, and the auto sampler storage tray was set at 

4ºC. LC gradient: 0-0.5 min, 95% A; 0.5-12.5 min, 95% A to 35% A; hold at 35% A for 

0.5 min; 35% A to 95% A over 1 min; re-equilibration at 95% A for 10 min prior to the 

next injection. A 2 μL sample was injected to a total run time of 24 min for both positive 

and negative electrospray ionization (ESI) modes. The mass spectrometer setting was 

identical to those previously reported in Fei et al. (Fei et al. 2014). 

GC-MS targeted analysis 

GC-MS analyses were performed using an Agilent 6890N gas chromatograph 

(Santa Clara, CA, USA), equipped with a DB-17ht column (30 m × 0.25 mm i.d. x 0.15 

μm film, J & W Scientific) and a retention gap (deactivated fused silica, 5 m x 0.53 mm 

i.d.), and coupled to an Agilent 5973 MSD single quadrupole mass spectrometer. The 

autosampler storage tray was maintained below 5ºC with a cooler system. The derivatized 

macrophage extract (1 μL) was injected using Agilent 7683 autosampler in splitless mode. 

The injector temperature was 230 ºC and carrier gas (helium) flow was 0.8 mL/min. The 

transfer line was 280ºC and the MS source temperature was 230ºC. The column 

temperature was set at 70ºC for 0.1 min, raised to 225ºC at 5ºC/min, and then 310ºC at 

55ºC/min and held there for 4 min. After a five minute solvent delay, mass spectra were 

acquired using electron ionization (EI) with a selected-ion-monitor (SIM) mode as in 
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Table S2. Metabolic intermediates of glycolysis, TCA, aspartate-argininosuccinate shunt, 

GABA shunt and urea cycle were included in this study (Table S1).  

Quality Control 

For both LC-MS and GC-MS metabolomic analyses, pooled samples were run 7 

times to condition the column prior to sample analysis and also run after every 5
th

 sample. 

MeOH/EtOH/H2O blank and a standard mixture containing IS and RS were also run after 

every 10 samples. All samples were run in a randomized sequence.  

Gene expression analysis 

 Modified from previously published protocol (Trapnell et al. 2012), the total RNA 

of macrophages was extracted and purified using TRIzol (Invitrogen, Carlsbad, CA, USA) 

and RNeasy Mini Kit (Qiagen, Venlo, Netherlands). Ribosomal RNA was depleted using 

the Human/mouse/Rat RiboZero Magnetic Kit (Epicentre, Madison, WI, USA), and 

verified using the Agilent RNA 6000 Nano Kit. DNases were removed using Turbo 

DNase (Invitrogen), and the sample was purified using RNAClean XP beads. The first 

strand of cDNA was synthesized using Superscript III (Invitrogen). Complimentary 

second strand cDNA was synthesized with RNase H and Klenow fragment of DNA 

polymerase I (Invitrogen). The cDNA was sonicated into 150 base pair fragments using a 

Covaris S220 Focused-ultrasonicator and deoxyadenosine monophosphate was 

incorporated to the cDNA fragment using NEBNext dA-Tailing Module (New England 

Biolabs). The cDNA library was sequenced using the Illumina HiSeq system.  

Data Analyses and metabolite identification 

The comprehensive LC-MS data were processed as in Fei et al.(Fei et al. 2014). 

The LC-MS spectra were converted to .mzXML format using Bruker CompassXport 

followed by intermal mass calibration using sodium formate cluster in both ESI+ and 

ESI- modes by Bruker’s DataAnalysis 4.0 SP4. The metabolite features were extracted 

and aligned using open source XCMS with centWave algorithm (minfrac = 0.8) (Smith et 

al. 2006); adducts, isotopic ions, and in-source fragments were identified using 

CAMERA (Kuhl et al. 2010). The metabolite features were normalized with IS eluted 

closest to their retention time (i.e. features eluted before 6.50 min were normalized by 

phe-phe; features eluted between 6.50 and 7.80 min were normalized by L-phenylalanine-

d8; features eluted after 7.80 min were normalized by gly-phe). After data reduction, the 

final data set was composed of 2125 metabolic features (Table S4).  

The metabolite features were identified by matching the mass-to-charge (m/z) and 

the retention time of authentic standards or compound analogs (for phospholipid 
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identification only). There were 150 features identified to 121 metabolites in the final data 

set, 57 were polar metabolites and 64 were phospholipids. One metabolite could have 

multiple metabolic features resulting from adducts or in-source fragments.  

For the GC-MS dataset, peak detection and spectrum deconvolution were 

processed using Agilent’s Enhanced ChemStation.  Multiple peaks generated from direct 

derivitization of a single metabolite were combined. The peak area of metabolites was 

normalized to anthracenemethanol. The final data sets for comprehensive LC-MS and 

targeted GC-MS analyses are included in electronic supplementary material ESM 1. 

Statistical Analyses 

The final data set of comprehensive LC-MS analysis was analyzed using 

multivariate analysis including principal component analysis (PCA) and OPLS-DA after 

pareto scaling by SIMCA-P+ 12.0.1 (Umetrics, Umeå, Sweden). The normality of both 

LC-MS and GC-MS data were analyzed using Kolmogorov-Smirnov test by SPSS 20 

(SPSS, Chicago, IL, USA). Both LC-MS and GC-MS data were analyzed with univariate 

statistical tool including Student’s t test (two-tailed, unpaired heteroscedastic) and one-

way ANOVA by Microsoft Excel 2010 and MetaboAnalyst 3.0, respectively. Metabolic 

features or metabolites with p value less than 0.05 and fold change greater than 1.5 

between treatment groups were considered significantly differentiated. Heatmap was 

generated with R Project 2.12.2 using gplots. 

Electronic Supplementary Materials: 

Electronic Supplementary datasets of intracellular metabolome and targeted metabolites 

for this chapter, ESM 1, can be found online (doi:). 
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Figure 1 A) The experimental outline. B) The experimental workflow for analyzing 

macrophage extracts. From one macrophage culture, the sample extract was analyzed 
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separately with HILIC-TOF-MS and GC-qMS with distinct sample preparation, data 

acquisition, data processing, data analysis, and quality assurance.   
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Figure 2 The comprehensive analyses of bone marrow-derived macrophage extracts 

acquired using HILIC-TOF-MS. The ionization responses of 2125 intracellular metabolite 

features were normalized using IS. Extracts were performed in sextuplicate with three 

biological replicates and two culture replicates. (A) OPLS-DA score plot comparing the 

metabolic profiles of control (0 hr), 4 hr and 16 hr LPS stimulated macrophage extracts 

from both young and old mice. (B) Heat map visualization of the intracellular metabolite 

changes of macrophages of young and old mice in response to LPS stimulation. The 920 

significant metabolite features (p<0.05 one-way ANOVA, fold change greater than 1.5 

compared to control) are represented in rows, and the experimental conditions were listed 

in columns. The heat map is plotted based on log2(fold change) with respect to the 

average levels of each metabolite feature in the control of macrophages from young mice 

using Euclidean distance and complete-linkage clustering. OPLS-DA score plot 

comparing the metabolic profiles of control (0 hr), 4 hr, and 16 hr LPS stimulated 

macrophage extracts as well as “recovery” and “tolerance” treated macrophage extracts 

from (C) young or (D) old mice. Controls 1 and 2 obtained at the beginning (t = 0 hr) and 

the end of the experiments (t = 22 hrs) were considered as a single group. Samples 

belonging to the same treatment group were highlighted by open circles.  
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Figure 3 The relative intercellular levels and gene expression of selected metabolites and 

genes. The intracellular levels of adenine (A), adenosine (B), arginine (C), and ornithine 

(D) were acquired at control (0hr), 4 hr and 16 hr of LPS stimulation as well as at the 

“recovery” and “tolerance” conditions for macrophages of both young and old mice. The 

gene expressions of Arg1 (E), iNOS (F), and Slc7a2 (G) were acquired at control (0hr), 4 

hr and 16 hr of LPS stimulation for macrophages of young and old mice. The urea 

pathway was illustrated in (H). Metabolomics and gene expression data of macrophages 

from young mice were labelled in shades of blue; those from old mice were labelled in 

shades of red. * p<0.05; ** p<0.01; *** p<0.001 
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Figure 4 The enrichment map of glycolysis, the TCA cycle, the GABA shunt, and the 

urea cycle intermediates in bone marrow-derived macrophages from young mice in 

response to (A) 16 hr LPS stimulation, (B) “recovery”, and (C) “tolerance” as compared 

to unstimulated macrophages. The network of metabolite interactions was built based on 

the BioCyc database and pathway published from Jha et al (1). The node size is 

proportional to the significance of metabolite changes compared to the control. The colors 

of the nodes indicate the log2(fold changes) of metabolite levels of each experimental 

condition compared to the control with a decrease colored in red and an increase colored 

in blue. Acetyl-CoA, succinyl-CoA and succinic semialdehyde are not detected and 

therefore are labelled in grey. The glycolysis pathway is labelled in orange; the TCA 

cycle is labelled in blue; the GABA shunt is labelled in green; the glutamate-

argininosuccinate shunt is labelled in red; the urea cycle is labelled in purple.  
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Figure 5 The enrichment map of glycolysis, the TCA cycle, the GABA shunt, and the 

urea cycle intermediates in bone marrow-derived macrophages from old mice in response 

to (A) 16 hr LPS stimulation, (B) “recovery”, and (C) “tolerance” as compared to 

unstimulated macrophages. The network of metabolite interactions was built based on the 

BioCyc database and pathway published from Jha et al. (1). The node size is proportional 

to the significance of metabolite changes compared to the control. The colors of the nodes 

indicate the log2(fold changes) of metabolite levels of each experimental condition 

compared to the control with a decrease colored in red and an increase colored in blue. 

Acetyl-CoA, succinyl-CoA and succinic semialdehyde are not detected and therefore are 

labelled in grey. The glycolysis pathway is labelled in orange; the TCA cycle is labelled 

in blue; the GABA shunt is labelled in green; the glutamate-argininosuccinate shunt is 

labelled in red; the urea cycle is labelled in purple. 
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Supplementary information 

 

GC-MS 

For the targeted GC-MS analysis, metabolic intermediates of glycolysis, the citric 

acid cycle (TCA), the γ-aminobutyric acid (GABA) shunt and the urea cycle were 

included except acetyl-CoA, succinyl-CoA, succinyl-semialdehyde, ornithine and 

arginine (Table S1). The former three metabolites were excluded from the list due to 

limitations of GC-MS or lack of authentic standards. Ornithine and arginine were 

measured using LC-MS instead of GC-MS because arginine is partially converted to 

ornithine during trimethylsilylation step with MSTFA and 1% TMCS (Halket et al. 2005) 

(Fig. S1). The percentage of conversion is not linearly proportional to the arginine 

concentration. Therefore, it is important to analyze arginine and ornithine with LC-MS 

instead of GC-MS technique for better and reliable data quality. 

TMCS is a silylation catalyst that increases the reactivity of other silylation reagents. 

1% TMCS is important for trimethylsilylation derivation for GC-MS analysis for analyte 

with functional groups of low reactivity such as hydroxyl and amide groups. The 

reactivity of trimethylsilylatioin between functional groups and MSTFA follows the 

alcohol>phenol>carboxyl>amine>amide/hydroxyl order with primary amine/alcohol 

being more reactive than tertiary. Multiple adducts with different number of trimethylsilyl 

ester derivatives can be observed in the study for one metabolite (e.g. GABA). Multiple 

peaks can also be noted for glucose from direct derivitization due to varying structural 

forms such as cyclic or open-chain structure (Fiehn et al. 2000).  

All targeted metabolites were found to undergo continuous derivitization while 

queued on the autosampler at ambient temperature. Cooling the autosampler to below 5ºC 

quenched the ongoing derivitization for most targeted metabolites. Therefore, it is critical 

to analyze the macrophage extract by GC-MS immediately after derivitization. When not 

possible, the derivatized sample was stored in -20 or -80ºC until GC-MS analysis, for 

which no further derivation was noted. 

 Anthracenemethanol was selected as internal standard for GC-qMS study because 

it can be detected in derivatized and non-derivatized form. In addition to be used for peak 

area normalization, it is used to monitor the completeness of the derivation procedure by 

monitoring the ratio between m/z 208 and m/z 280. 
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Table S1 Target Metabolites for GC-qMS analysis 

No. Metabolites Retention time 

(min) 

Quantifying ion 

(m/z) 

Qualifying ion 

(m/z) 

1 lactate 5.39 147 73, 117, 219 

2 alanine 5.68 116 73, 147 

3 pyruvate 5.80 217 73, 147 

4 γ-aminobutyric acid  

(GABA-diTMS) 

9.36 102 73, 147, 232 

5 proline 9.36 142 73, 216 

6 fumarate 10.21 245 73, 147 

7 succinate 10.53 147 73, 247 

8 GABA-triTMS 13.63 174 73, 147, 304 

9 malate 13.69 233 73, 147, 335 

10 methionine-d3-

monoTMS 

14.09 107 73, 224 

11 aspartate 14.31 232 73, 100, 147 

12 Oxaloacetate-1 15.38 333 73, 147 

13 Oxaloacetate-2 15.72 333 73 147 

14 ornithine-triTMS 15.46 142 70, 73, 348 

15 glutamate 16.53 246 73, 128, 147, 156 

16 α-ketoglutarate 16.78 347 73, 147, 318 

17 phenylalanine-d8 17.39 219 73, 147 

18 ornithine-tetraTMS 19.06 142 73, 174, 420 

19 glutamine 20.69 156 73, 147, 245 

20 citrate 20.74 273 73, 147, 465 

21 Arginine 
a
 20.86 256 73, 147, 157 

22 glucose-1 20.96 204 73, 147, 191, 217 

23 glucose-2 22.42 204 73, 147, 191, 217 

24 2-Phosphoglyceric 

acid  

(2-PG) 

21.14 299 73, 147, 387, 459 

25 isocitrate 21.16 273 73, 147, 245, 465 

26 3-Phosphoglyceric 

acid 

(3-PG) 

21.61 299 73, 357, 387, 459 

27 citrulline-tetraTMS 24.36 188 73, 100, 346 

28 fructose-6-phosphate 

(F6P) 

28.30 315 73, 387, 589 

29 tryptophan-d5 29.70 207 73, 291 

30 glucose-1-phosphate 

(G1P) 

30.94 387 73, 204 

31 Glucose-6-phosphate 31.14 387 73, 315, 589 

32 anthracenemethanol 31.38 280  

33 argininosuccinate 35.94 149 73, 563, 578 
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Table S2 Single-ion-monitoring (SIM) method for GC-qMS 

SIM 

region 

Time 

(min) 

Ions (m/z) 

1 5.0-7.0 73, 116, 117, 147,217, 219 

2 7.0-10.0 73, 102, 142, 147, 216, 232 

3 10.0-11.5 73, 147, 245, 247 

4 11.5-14.9 73, 100, 107, 147, 174, 224, 232, 233, 304, 335 

5 14.9-16.0 70, 73, 142, 147, 157, 173, 179, 218, 296, 333, 348 

6 16.0-18.0 73, 128, 147, 156, 200, 219, 246, 318, 347 

7 18.0-20.0 73, 142, 174, 420 

8 20.0-23.5 73, 147, 156, 157, 191, 204, 217, 245, 256, 273, 299, 357, 387, 

459, 465 

9 23.5-26.0 70, 73, 100, 188, 346 

10 26.0-30.5 70, 73, 100, 204, 207, 291, 315, 387, 589 

11 30.5-33.0 73, 204, 208, 280, 387 

12 33.0-40.0 73, 149, 563, 578 

 

 

Figure S1 The GC-EI-MS chromatogram of arginine standard 

Data quality control 

The final comprehensive murine macrophage metabolic profile data set acquired by 

LC-MS consisted of 2125 metabolite features, of which 121 metabolites were identified. 

The extraction efficiency was 76-83% based on L-methinione-d3, a standard for recovery 

determination (RS). The biological variance was 20-35% and 29-40% for macrophages 

derived from young or old mice, respectively (Table S3). The biological variance was 

consistently greater for macrophages derived from old mice for all treatment conditions. 

Post column addition using gly-phe had shown that there was no ion suppression noted in 

both ESI+ and ESI- modes except between 0.6-1.3 min and 7.1-7.8 min of the 

chromatogram. Features eluted between 0.6-1.3 were removed during data reduction 

process. Features eluted between 7.1-7.8 were normalized to L-phenylalanine-d8, which 
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also eluted in the same region, to correct for ion suppression. The comprehensive data set 

was visualized by principle component analysis (PCA) to assess the LC-MS 

instrumentation reproducibility. The pooled samples were tightly clustered in the centre 

of the score plot, which indicating the technical variability was minimal in comparison to 

the biological variance and the pooled sample resembled the average of all samples from 

various treatment conditions. Of the comprehensive data set, 69.9% of the features were 

normally distributed; the metabolites included in the targeted data set were all normally 

distributed.  

 

Table S3 Coefficient of variance of macrophage metabolites from young or old mice. 

 macrophages 

Treatment groups Treatments Young mice Old mice 

Group 1 4 hr LPS 35% 40% 

Group 2 16 hr LPS 35% 40% 

Group 3 Tolerance 23% 43% 

Group 4 Recovery 20% 29% 

Group 5 Control 1 30% 40% 

Group 6 Control 2 32% 43% 

 

Table S4 Summary of total number of metabolite features extracted from LC-MS data 

after XCMS, CAMERA and data reduction 

Total No. features ESI + ESI - 

XCMS 2060 2224 

Total 4284 

k’ < 0.7 
a
 198 125 

IS/RS 5 5 

Salts (sodium formate) 14 14 

Percentage variance >30% in pooled samples 596 

Finalized feature list 2125 
a
 Retention factor 𝑘′ =

𝑡𝑅−𝑡0

𝑡0
 , tR is the retention time of metabolic feature and t0 is the 

time required for mobile phase to pass through the column 
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Figure S2 The enrichment map of glycolysis, the TCA cycle, the GABA shunt, and the 

urea cycle intermediates during 4 hrs of LPS stimulation in bone marrow-derived 

macrophages from (A) young mice or (B) old mice as compared to corresponding 

unstimulated macrophages. The network of metabolite interactions was built based on the 

BioCyc database and pathway published from Jha et al. (Jha et al. 2015). The node size is 

proportional to the significance of metabolite changes compared to the control. The colors 

of the nodes indicate the log2(fold changes) of metabolite levels of each experimental 

condition compared to the control with a decrease colored in red and an increase colored 

in blue. Acetyl-CoA, succinyl-CoA and succinic semialdehyde are not detected and 
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therefore are labelled in grey. The glycolysis pathway is labelled in orange; the TCA 

cycle is labelled in blue; the GABA shunt is labelled in green; the glutamate-

argininosuccinate shunt is labelled in red; the urea cycle is labelled in purple.  
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Figure S3 The relative abundances of the 25 targeted intracellular metabolites from 

macrophages of (A) young and (B) old mice from five different experimental conditions 

as acquired by GC-MS. The samples were performed in sextuplicate with three biological 

replicates and two culture replicates. The error bar represents one standard deviation. The 

relative abundances of some metabolites were amplified by 5, 10, 50, 100, or 1000 fold to 

scale to the figure. G1P, glucose-1-phosphate; 3PG, 3-phosphoglycerate; 2PG, 2-

phosphoglycerate; G6P, glucose-6-phosphate; GABA, γ-aminobutyric acid 
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Figure S4 The gene expression of tolerance and non-tolerance associated genes identified 

by Foster et al. (Foster et al. 2007). The expressions of these genes were acquired from 

unstimulated (0 hr), 4 hrs and 16 hrs of LPS stimulation, and LPS tolerant macrophages 

from either young or old mice.  
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Abstracts 

Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that can 

lead to carcinogenic, mutagenic or dioxin-/furan-like effects in many animal species. The 

toxicities of single and binary mixtures of PAH have been studied at concentrations close 

to lethal levels and evaluated based on physiological changes in animal models. However, 

few studies have looked at the biological effects of PAH exposure at sub-lethal doses (i.e. 

at levels 10 to 100-fold less than lethal doses).  In this study, we have exposed cultures of 

the soil bacterium, Sinorhizobium meliloti, to a single PAH and to a mixture of PAH 

derived from coal tar at sub-lethal concentrations in order to determine the metabolomic 

impacts of these exposures. This is the first comprehensive metabolomic analysis of the 

impacts of sub-lethal exposures of PAH in a bacterial model. 

The ubiquitous Gram negative soil bacteria, Sinorhizobium meliloti, was exposed 

to fluorene and a low molecular weight PAH fraction (MW 128-202) derived from coal 

tar sample at two concentrations, 0.14 and 1.4 mg/L. The polar metabolome was extracted 

using the Bligh and Dyer method and analyzed by ZIC-HILIC-LC-MS. Although only the 

1.4 mg/L PAH mixture impaired S. meliloti proliferation in vitro, changes in metabolic 

profiles were observed after exposure to 1.4 mg/L fluorene, and 0.14 mg/L and 1.4 mg/L 

PAH mixture exposures. Dose dependent changes in cellular metabolism were observed 

for both sub-lethal fluorene and PAH mixture exposure. Amplified metabolic responses 

were observed in PAH mixtures compared to exposures to an equivalent concentration of 

fluorene.  
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Introduction 

Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental 

contaminants formed by incomplete combustion of organic compounds from both natural 

and anthropogenic sources
1
. Soil is a great reservior for organic pollutant, and serves as a 

major reservoir for PAH
2
. It is estimated that 90% of the 53,000 tons of total PAH were 

deposited in the soil in United Kingdom in 1995
3
. The accumulation of PAH in soil has a 

negative effect on the soil eco-system. 

Coal tar is the by-product condensate from coke production, where coal is 

carbonized at high temperatures in a reductive environment
1
. Coal tar contains PAHs, 

nitrogen containing polycyclic aromatic hydrocarbons (NPAHs) and polycyclic aromatic 

sulfur heterocycles (PASHs), many of which are known human carcinogens and bacterial 

mutagens
4
. The current US Environmental Protection Agency (EPA) approved method to 

evaluate PAH toxicity uses Daphnia magna based on mortality
5
. The sub-lethal effects of 

PAH and PAH mixtures on organisms are not well understood. 

Much of the PAH toxicity work to date has been focused on the effect of a single 

compound or binary mixtures of compounds
6
. The biological effects of mixture exposures 

have been a long-standing research interest. The total effects of mixture depends on the 

mixture constituents, their concentrations and their composition ratio
7
. To date, the 

mixture effects of PAH have been studied in rats
8
, mice

9
,  and Daphnia

7
 based primarily 

on transcriptomic, and physiological changes. Overall mixture effects included 

antagonistic, additive and synergistic effects (joint independent action) at lethal and sub-

lethal concentrations.  

Sinorhizobium meliloti is a Gram-negative, nitrogen-fixing bacterium that is found 

in soils. S. meliloti has been the subject of extensive genetic, biochemical, and targeted 

metabolic research. As a model organism, its genome has been sequenced in 2001
10

 and a 

novel reporter gene fusion library of about 2200 of the 6500 genes was constructed in 

2006
11

.  Comprehensive metabolomic profiling has shown that S. meliloti undergoes 

oxidative stresses as a result of exposure to phenanthrene
12

.  The impacts of exposure to 

complex environmental mixtures using wild-type S. meliloti (RmP110) has not been 

explored. 

As a ubiquitous soil organism, S. meliloti is exposed to PAH contamination in the 

soil. Here, we use S. meliloti to measure the toxicity between a single PAH compound 

and a low molecular weight PAH mixture derived from coal tar. With this study, we 

optimized an alumina chromatography method for obtaining NPAH free PAH fractions 

containing PAHs with MW 128-202. This coal tar derived PAH mixture had the same 

mode-of-action as a single PAH compound, fluorene, however, the PAH mixture 

demonstrated greater metabolomic disturbances compared to fluorene at equal 

concentrations. 

Materials and Methods 
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Chemicals and growth media 

GC-Resolv
TM

 hexanes was purchased from Fisher Scientific (Fairlawn, New 

Jersey). HPLC grade methanol, toluene, acetonitrile, water, formic acid and distilled in 

glass dichloromethane were purchased from Caledon Laboratories (Georgetown, ON). 

PAH standards were received from various commercial sources. Pyrene-d10 (98%) was 

purchased from Cambridge Isotope Laboratories (Andover, MA), which was used as 

internal standard for GC-MS analyses. The coal tar sample was kindly provided by a local 

steel company and was used as is. Ammonium acetate was purchased from Fisher 

Scientific Company (Fairlawn, NJ, USA). L-methionine-d3 (98%), L-tryptophan-d5 (98%) 

and L-phenylalanine-d8(98%), diphenylalanine (phe-phe), glycine-phenylalanine (gly-phe) 

were purchased from Cambridge Isotope Laboratories (Andover, MA, USA) for recovery 

determination (RS) and peak intensity normalization (IS), respectively. LBmc (per liter: 

10 g Bacto tryptone, 5 g Bacto yeast extract, 5 g NaCl, 2.5 mM MgSO4, 2.5 mM CaCl2, 2 

μM CoCl2) was used as the complex medium, and M9-sucrose (41 mM Na2HPO4, 22 mM 

KH2PO4, 18.7 mM NH4Cl, 10 mM sucrose, 8.6 mM NaCl, 1 mM MgSO4, 0.25 mM 

CaCl2, 38 μM FeCl3, 5 μM thiamine-HCl, 4.1 μM biotin, 42 nM CoCl2) was used as 

minimal medium.  

Coal tar fractionation using alumina chromatography 

The alumina chromatography procedure was a modification of the procedure 

described by Later et al.
13

 which had been subsequently modified by Li
14

.  The standard 

protocol used neutral alumina which had been activated at 170°C for at least 48 hours 

(Activity I).  In order to obtain a fraction containing only low molecular weight PAH for 

this toxicity study, the alumina chromatography for coal tar clean-up was further 

optimized according to the experimental setup in Table 1.  

Table 1 Alumina chromatographic optimization conditions for coal tar separation 

Experiment number Load
a
 Bed 

C1 neutral, activity I (170ºC) neutral, activity I (170ºC) 

C2 neutral, activity IV neutral, activity I (170ºC) 

C3 neutral, activity I (170ºC) pH4.5, activity I (170ºC) 

C4 neutral, activity IV pH4.5, activity I (170ºC) 

C5 neutral, activity IV pH3.0, activity I (185ºC) 
a 
activity I alumina is made by incubating neutral or acidic alumina in 170 or 185ºC oven for 48 hrs; activity 

IV alumina is made by adding 10%v/w HPLC grade H2O to activity I alumina 

 Acidic alumina (pH 4.5) was prepared from neutral alumina by adding 19 drops 

(ca. 0.88 mL) of concentrated HCl dropwise to a slurry composed of 20 g of alumina and 

200 mL of water. The slurry was stirred until reaching pH 4.5, and then evaporated to 

dryness using a rotary evaporator. Similarly, acidic alumina of pH 3.0 was made by 

adding 41 drops (ca. 1.9 mL) of concentrated HCl to the alumina slurry.  
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 Activity I alumina was made by incubating neutral or acidic alumina (80-200 

mesh, activity I, Anachemia) in a 170 or 185 ºC oven for 48 hours. Activity IV alumina is 

made by adding 10%v/w water to the activity I alumina, the mixture was shaken until 

alumina was free flowing, and allowed to equilibrate in sealed containers for 30 min prior 

to use. 

 The crude coal tar was separated on alumina chromatography into four major 

factions: A1, aliphatic hydrocarbons; A2, PAHs and PASHs; A3 and A4, NPAHs. To 

prepare the “sample load”, 1 g of crude coal tar was dissolved in ca. 10 mL 

dichloromethane and adsorbed onto 4 g of neutral activity I/IV alumina. The solvent was 

removed using rotary evaporator.  The “sample load” was then packed on top of a 2 cm 

i.d. column with 20 g of neutral or acidic activity I alumina. The column was packed 

under hexanes flow, and a 1-1.5 cm sand layer was placed between the “sample load” and 

“column bed”. This procedure resulted in a ca. 12 cm long section of white alumina and a 

3 cm long section of blackish, coal tar-coated alumina. 

 The coal tar sample was eluted with four solvents sequentially at a flow rate of ca. 

5-8 mL/min: fraction A1, 80 mL hexanes; fraction A2, 250 mL toluene; fraction A3, 230 

mL dichloromethane; fraction A4, 150 mL methanol. Sub-fractions of A2 was collected 

every 25 mL for the first 100 mL of toluene eluent and every 50 mL for 100-250 mL 

toluene eluent. Only for C5, the sub-fractions of A2 were collected according to Table 2. 

A1 fraction and A2 sub-fractions were diluted and analyzed by gas chromatography mass 

spectrometry (GC-MS). A3 and A4 fractions were evaporated to dryness under nitrogen 

gas, reconstituted in toluene and then analyzed with GC-MS. Pyrene-d10 was added as an 

internal standard to each sample for a total concentration of 1 ng/μL. 

Table 2 A2 toluene sub-fractions collected in optimized experiment C5 

Sub-fractions Volumes of eluent collected (mL) 

A2-1 0-10 

A2-2 11-15 

A2-3 16-20 

A2-4 21-25 

A2-5 26-35 

A2-6 36-50 

A2-7 51-65 

A2-8 66-80 

A2-9 81-95 

A2-10 96-120 

A2-11 121-250 

 

PAH profiling using GC-MS 
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PACs (polycyclic aromatic compounds i.e. PAHs, PASHs, NPAHs and 

corresponding methyl derivatives) in each of the coal tar fractions were analyzed on 

Agilent 6890N gas chromatograph (Agilent Technologies, Santa Clara, CA, USA), 

equipped with a DB-17ht column (30 m × 0.25 mm i.d. x 0.15 μm film, J & W Scientific) 

and a retention gap (deactivated fused silica, 5 m x 0.53 mm i.d.), coupled to an Agilent 

5973 MSD single quadrupole mass spectrometer. The GC injector was a split-splitless 

injector operated at 230 ºC in the splitless mode; one microliter volumes were injected 

using an Agilent 7683 autosampler.  The carrier gas was helium with a flow velocity of 

29 cm/s; the flow velocity was kept constant using electric pressure control. The 

temperature in the GC oven started at 90º C and increased linearly to 300ºC at 2.5ºC/min, 

followed by a hold at 300ºC for 20 min; the total run time was 104 min. The same 

temperature program was used for the analysis of fraction A1 except that the initial oven 

temperature was 40ºC. Full scan mass spectra were collected over with mass-to-charge 

(m/z) range from 100 to 350.  

PAHs, PASHs, and NPAHs and their methyl-derivatives were identified based on 

comparison of their mass spectra to the mass spectra of reference standards.  Table 3 

provides a list of the generic ions used to identify and quantify PACs.  In general, 

molecular ions were used as quantifying ions while major fragment ions were used as 

qualifying ions. Many PAH and PASH were identified based on the retention indexes of 

authentic standards. 

Table 3 Qualifying and quantifying ions for PAH, PASH and NPAH, and their 

methylated derivatives using GC-MS. The molecular ions were used to quantify their 

levels.  

Ions PAH Me-PAH PASH Me-PASH NPAH Me-NPAH
 
 

M +++ +++ +++ +++ +++ +++ 

M-1 

 

++ 

 

++ 

 

++ 

M-26 
a
 + 

     M-27 
b
 

 

+ 

 

+ + 

 M-28 

    

+ + 

M-32 
c
 

  

+ 

   M-33 

   

+ 

  M-45 
d
 

  

+ 

   M/2 ++ + + + 

  (M-1)/2 

    

+ + 
a
 M-26 corresponds to loss of C2H2 or HCN 

b 
M-27 corresponds to loss of C2H2 and H

·
 or HCN and H

·
 

c 
M-32 corresponds to loss of S 

d 
M-45 corresponds to loss of CHS

·
 

The +, ++, +++ signs were referring to the relative ion intensities, with +++ being the greatest and + being 

the least intensive 

 

S. meliloti culture and exposure to PAH 
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 Sinorhizobium meliloti RmP100 (wildtype strain) were used to examine the sub-

lethal metabolomic impacts of single or complex mixture of PAH. S. meliloti were 

cultured to early stationary phase in 5 mL LBmc at 30ºC overnight. The culture was 

pelleted, washed once with fresh saline (0.85% NaCl), and resuspended in 5 mL fresh M9 

medium of 0.05 OD600. 50 μL of fluorene and low molecular weight PAH mixture in 

methanol (1% v/v) were spiked in the S. meliloti culture so that the total PAH 

concentration was 0.14 or 1.4 mg/L. The PAH exposed cultures along with un-exposed 

controls were incubated for 24 hrs at 30ºC. The final OD600 were measured before 

cultures were harvested for metabolomic analysis (Table 4). Each treatment was repeated 

in six culture replicates. The low molecular weight PAH mixture was obtained from A2-2 

sub-fraction of optimized C5 experiment, and the concentration of each PAH and PASH 

in this mixture were listed in Table 5. 

Table 4 The OD600 of control, 0.14 mg/L fluorene, 1.4 mg/L fluorene, 0.14 mg/L PAH 

mixture, and 1.4 mg/L PAH mixtures exposed S. meliloti culture at the time of the harvest 

 
PAH 

Exposure
a
 

Replicates OD600 

Student’s t test p 

value  (treated 

compared to control) 

Control --- 6 0.63 ± 0.06 --- 

0.14Flu 
0.14 mg/L 

fluorene 
6 0.64 ± 0.06 0.68 

1.4Flu 
1.4 mg/L 

fluorene 
6 0.61 ± 0.10 0.76 

0.14PAH 
0.14 mg/L 

PAH mix 
6 0.64 ± 0.04 0.63 

1.4PAH 
1.4 mg/L 

PAH mix 
5 0.41 ± 0.04 0.0001 

a
1% v/v methanol in all treatments 

b
see Table 5 for the concentration and composition of the PAH mix 

Table 5 The concentrations of low molecular weight PAH mixtures used for S. meliloti 

metabolomics study. The sample was collected and diluted from C5 A2-2 fraction 

 Sample 1(mg/L) Sample 2 (mg/L) 
Percentage 

weight 

Total PAH 1.40 0.14  

napthalene 0.0374 0.00374 2.4% 

acenaphthylene 0.131 0.0131 8.5% 

biphenyl 0.260 0.0260 17.0% 

acenaphthene 0.0418 0.00418 2.7% 

fluorene 0.226 0.0226 14.8% 

phenanthrene 0.605 0.0605 39.6% 

anthracene 0.0307 0.00307 2.0% 

fluoranthene 0.0134 0.00134 0.9% 
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pyrene 0.0547 0.00547 3.6% 

  

Me-PAH 0.0884 0.00884 5.8% 

NPAH 0.00522 0.000522 0.3% 

Me-NPAH 0 0 0 

PASH 0.0357 0.00357 2.3% 

 

S. meliloti extraction 

The polar metabolites of S. meliloti were extracted using the Bligh and Dyer 

method as outlined in Fei et al.
15

. Briefly, the bacterial cultures were pelleted and washed 

once in cold saline solution. The bacterial pellet was resuspended in 250 μL of 1:1 

methanol to water (v/v) and 250 μL of chloroform in a 1 mL eppendorf tube. 10 μL of RS 

was added into the extracts with a 10 μL syringe. The bacterial extract was vortex mixed 

for 2 minutes and centrifuged at 4ºC at 13000 rpm for 1 minute using an Eppendorf 

Refrigerated Microcentrifuge (Model 5415R). The methanol/water layer was collected; 

the protein film and chloroform layer was extracted twice with 250 μL of 1:1 methanol-

water each time to make up a total of 750 μL of combined polar fraction. The combined 

polar fraction was back-extracted with 250 μL of chloroform twice to create a combined 

non-polar fraction of 750 μL. The non-polar fractions were blown down and stored in the 

-20ºC freezer, and not analyzed in this experiment. A 10 μL IS was added to the 

combined polar fraction of 750 μL using a 10 μL syringe, which was stored in -80ºC until 

metabolomic analysis using liquid chromatography mass spectrometry (LC-MS).  

ZIC-HILIC-TOF-MS analysis 

 The polar metabolome of PAH exposed S. meliloti  were analyzed using an 

Aglient Technologies 1200 RR Series II LC coupled to a BrukerMicroTOF II Mass 

Detector operated in the both positive (ESI+) and negative (ESI-) electrospray ionization 

modes. A 2 μL injection was separated on a 50 mm × 2.1 mm ZIC®3.5 μm HILIC 

Sulfonylbetaine column with pore size of 100 Å (SeQuant, Umeå, Sweden). The mobile 

phases consisted of acetonitrile (A) and 10 mM ammonium acetate in water and titrated to 

pH 3 using formic acid (B) at a flow rate of 400 μL/min. The column temperature was 

maintained at 25 ºC, and the auto sampler storage tray was set at 4ºC. LC gradient: 0-3 

min, 95% A to 90% A; 3-13 min, 90% A to 25% A; 13-16 min, hold at 25% A; 16-17 

min, 25% A to 95% A; 17-22 min, equilibrate at 95% A. A pooled sample was prepared 

by combining equal aliquots of five samples, with one from each treatment group.  Pooled 

samples were injected four times prior to the sample analysis, and also run after every 7-8 

samples. The samples were run in a randomized sequence. The MS settings were identical 

to those previously reported in Fei et al.
15

. 

Metabolomic data processing  
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 The LC-MS data were processed as in Fei et al.
15

. The LC-MS spectra were 

converted to .mzXML format using Bruker CompassXport. The metabolic features were 

extracted and aligned using XCMS with centWave algorithm
16

; adducts, isotopic ions, 

and in-source fragments were identified using CAMERA
17

. The peak area of metabolic 

features was normalized with OD600 and IS (features eluted before 6.40 min were 

normalized by phe-phe; features eluted between 6.40 and 7.40 min were normalized by L-

phenylalanine-d8; features eluted after 7.40 min were normalized by gly-phe). The data 

was reduced by removing metabolic features that eluted prior to 1.0 min (ion suppression 

region) and after 16 min and also isotopic ions, IS, RS and sodium formate ions. 

Metabolic features with greater than 30% variance in the pooled samples were also 

removed
18

. The final data set consisted of 2005 metabolic features. 

Statistical analysis 

 The polar metabolome of PAH exposed S. meliloti was analyzed using both 

univariate and multivariate statistical analyses. The final data set was analyzed using 

principle component analysis (PCA) and orthogonal partial least-squares discriminative 

analysis (OPLS-DA) after pareto scaling using SIMCA-P+11 (Umetircs, Kinnelon, NJ). 

Heat maps were generated with R Project 2.12.2 using gplots. Metabolic features with 

two-tailed, unpaired heteroscedastic Student’s t tests of p<0.05 and a fold change greater 

than 1.5 compared to control were considered significantly expressed. 

Results 

Optimizing crude coal tar separation using alumina chromatography 

 The alumina chromatography for separation of crude coal tar was optimized in 

C1-4 experiments by adjusting activity and pH of the alumina (Fig 1, 2). The crude coal 

tar clean-up aimed to have a complete separation between PAHs and NPAHs, and also 

acquire a low molecular weight PAH fraction to study toxicity on the soil bacteria S. 

meliloti. 

The alumina chromatography protocol for crude coal tar clean-up ascribed by 

Later et al.
13

 and Li
14

 was modified and repeated as in experiment C1. C1-A1 consisted of 

aliphatic hydrocarbons and 4.9% of the total detectable PAH with molecular weight of 

128-202 Da. PASHs were completed eluted in C1-A2 fractions. Coeluting of the high 

molecular weight PAHs and low molecular weight NPAHs was noted in the C1-A2 

fraction after 50 mL of toluene eluent (ca. 7 column volumes). The elution of residual 

PAHs was also observed in C1-A3 and C1-A4 fractions. However, C1-A3 and C1-A4 

was dominated by NPAHs and methyl-NPAHs. In the C1 experiment, PAHs and NPAHs 

were not clearly separated between fractions. 

In the C2 experiment, the activity of coal tar adsorbed alumina was reduced from 

activity I to activity IV. Almost all PAHs, methyl-PAHs and PASH were eluted in the 

C2-A2 fraction, with majority of the PAHs and PASHs eluted in the first 50 mL of 

toluene. NPAH and methyl-NPAH eluted 3.5 column volumes earlier in the C2-A2 
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fraction compared to the C1 experiment, which eluted after the first 25 mL of toluene. 

The use of activity IV alumina instead of activity I alumina in the “sample load” has sped 

up the eluting process of both PAHs and NPAHs.  

Acidic alumina of pH 4.5 was used as the packed bed in experiment C3 and C4. A 

clear separation between PAHs and NPAHs were achieved. PAHs, methyl-PAHs and 

PASH were eluted in the A2 fractions; NPAHs and methyl-NPAHs were almost 

exclusively eluted in A3 and A4 fractions. Lowering the pH of alumina in the packed 

column bed retained NPAH until more polar eluents such as dichloromethane or methanol 

were used. Similar to the changes between the C1 and C2 experiments, reducing the 

activity of coal tar adsorbed alumina in C4, the majority of the PAHs, methyl-PAHs and 

PASHs were eluted in the first 50 mL of the toluene eluent. PAHs with molecular weight 

equal or less than 228 Da were mostly eluted in the C4-A2-1 sub-fraction within the first 

25 mL of toluene, and those with molecular weight equal or greater than 252 were eluted 

in the C4-A2-2 fraction. Less bleeding of PAH was noted in the C4 experiment in the C4-

A2 sub-fractions. 

Optimized alumina chromatography for crude coal tar separation was conducted 

in experiment C5 (Fig 3a, b). Combining the usage of activity IV alumina in the “sample 

load” and acidic activity I alumina (pH 3.0), 99.7% of the PAH, 99.9% of methyl-PAH 

and 100% of PASHs were eluted in the C5-A2 fraction. No PAHs were eluted in the C5-

A1 fraction. The C5-A2-3 sub-fraction (16-20 mL toluene) had the most PAHs and 

contributed 48.7% of the total detectable PAH mass in crude coal tar. Only 0.9% of the 

NPAH and 5.9% methyl-NPAH were eluted in the first nine column volume (65 mL 

toluene, sub-fraction A2-1 to A2-7) of C5-A2 fraction. 98.8% of the NPAHs eluted in the 

combined C5-A2-11 (121-250 mL toluene) and the more polar C5-A3 and C5-A4 

fractions. The C5-A2-2 fraction contained 85.2% of total detectable low molecular weight 

PAHs (128-202 Da), 10.8% of methyl-PAHs, 3.41% of PASH, and 0.5% NPAH (Fig 3c). 

Additionally, phenanthrene was the most abundant PAHs followed by acenaphthene and 

fluorene, which contributed 40.6%, 13.9% and 9.1% of the mass in C5-A2-2, respectively. 

The C5-A2-2 sub-fraction was later used for the S. meliloti toxicity study. 

Metabolomic analyses, features detection and quality control  

 The polar metabolome of PAH exposed S. meliloti were acquired using ZIC-

HILIC-LC-MS. A total of 3861 features were identified using XCMS and CAMERA. 

Each metabolic feature was defined with unique combination of retention time and m/z 

values. With data reduction, 2005 metabolic features were included in the final data set. 

The extraction efficiency was 84-103% based on L-tryptophan-d5 as recovery standard, 

and the biological variance of the sextuplicate samples were between 24-32%. The 

coefficient of variance for pooled samples was 15%. The pooled samples were tightly 

clustered in the center of the PCA score plot, indicating minimal technical variance as 

compared to the biological variance experienced with treated S. meliloti samples (Fig 4). 

S. meliloti metabolic disturbance due to PAH exposure 
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 To compare the potency and the toxic mechanisms between the single PAH 

compound (fluorene) and a mixture of low molecular weight PAH fractionated from 

crude coal tar, we examined the growth and the polar metabolome of exposed S. meliloti. 

Fluorene and the PAH mixture were spiked into the growth medium of S. meliloti at 0.14 

and 1.4 mg/L. A decrease in growth rate was only observed in the S. meliloti culture 

exposed to 1.4 mg/L PAH mixture (Table 4). As visualized by OPLS-DA score plot, no 

metabolic differences were observed between the un-exposed controls and S. meliloti 

exposed to 0.14 mg/L fluorene (R
2
X=0.61, R

2
Y=0.27, Q

2
=0.11; data not shown). Only 

four metabolic features were significantly different between the 0.14 mg/L fluorene 

exposure samples to control. However, changes in metabolic profiles were observed in all 

other treatments, where S. meliloti were exposed to either 1.4 mg/L fluorene or the PAH 

mixture at both doses (Fig 5). 

 Both 0.14 mg/L of the PAH mixture and the 1.4 mg/L fluorene caused similar 

metabolic shifts in S. meliloti, and the metabolic profiles of these samples were different 

than that of the un-exposed controls. From the heatmap (Fig 5b), almost all of the 

biological samples with 1.4 mg/L fluorene were affected, however, only a few of the 

samples exposed to 0.14 mg/L PAH showed a metabolic shift. Subsequently, 464 

metabolic features were significantly expressed between 1.4 mg/L fluorene exposed S. 

meliloti and the un-exposed controls, but only 77 metabolic features were differentially 

expressed between 0.14 mg/L PAH samples and the un-exposed controls. The 

intracellular levels of most of these significant features were elevated with the PAH 

exposure compared to the un-exposed control samples. The greatest metabolic shift was 

observed for S. meliloti exposed to 1.4 mg/L of the PAH mixture. Over 37% of the polar 

metabolome (750 metabolic features) were significantly different, and 84.8% of those 

significant features were increased due to PAH exposure, while only 15.5% of those 

features were decreased in response to exposure of 1.4 mg/L of the PAH mixture. 

Fluorene and PAH mixture resulted in similar changes in the S. meliloti polar metabolome.  

Discussion 

 Various government agencies or health organizations have devoted their time in 

measuring the carcinogenicity and mutagenicity of many PACs
19–23

. The mutagenicity 

and carcinogenicity of PAH increases with increasing molecular weight. Over 25% of the 

carcinogenic properties of coal tar arise from PAH with six or more rings (or MW above 

300) (21). Studies of PAH modes-of-action are primarily focused on higher organisms 

including mammals and plants. Oxidative enzyme cytochrome P450 oxidizes PAH to 

hydroxyl-PAH, which forms adducts with DNA, and subsequently disrupts DNA 

function
25,26

. PAH can also induce non-carcinogenic effects by binding to the aryl 

hydrocarbon (Ah) receptor, and altering gene expression
27

. For microorganisms that 

lacking cyctochrome P450 and an Ah receptor, PAH can result in swelling of the 

membrane bilayer, increasing membrane fluidity and causing dysregulation of the proton 

motive force, pH gradient and electrical potential across the membrane
28

. In contrast to 

the carcinogenic and mutagenic properties of PAH measured in mammals, the inherent 
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toxicity of PAH towards microorganisms decreases with increasing molecular weight and 

greater solubility
29

. 

 Heterocyclic PACs containing N, S, or O atoms in their ring structures (i.e. PASH, 

NPAH) contribute to 1-10% of the total PAC concentration in coal tar
30

. The structures of 

NPAH and PASH were modified from PAH by replacing a six-membered aromatic ring 

in PAH with a five-membered pyrrole or thiophene ring. The electronegativity of nitrogen 

(χ = 3.04) is much higher compared to carbon (χ = 2.55) and sulfur (χ = 2.58), which 

makes NPAH more polar than PAH and PASH. The bioavailability of NPAH to 

organisms is higher than both PAH and PASH because of their high water solubility. 

NPAH could also have a completely different mechanism in bacterial species due to its 

high polarity. For example, instead of being trapped inside the biological membrane of 

the bacteria and distorting its function, NPAH might be able to travel to the cytoplasm of 

the cell and cause damage. Carbon and sulfur shares similar electronegative properties, 

and are thought to have similar toxicity and modes-of-action on microorganisms.  

 Considering the varying toxicity and potentially different modes-of-action 

between PACs, a PAH fraction containing only low molecular weight PAHs and PASHs 

was obtained in the optimized coal tar clean-up experiment, C5. Alumina 

chromatography was chosen as the separation method for coal tar clean-up because it can 

be readily scaled up if toxicity tests on   higher organisms (i.e. mice) is required. The 

PACs were separated on an open tubular normal phase alumina column by varying the 

eluent polarity. Using a small quantity of adsorbent with less adsorption activity IV 

alumina reduces the interaction between PACs with the stationary phase. It then 

subsequently reduces the elution time of analytes (in particularly PAHs), sample loss, and 

volume of hazardous eluents required for the coal tar clean-up. A partial overlap between 

mid to high molecular weight PAHs and low molecular NPAHs were observed in early 

optimization experiments (C1, C2). The electronegativity of nitrogen (χ = 3.04) was much 

higher compared to carbon (χ = 2.55), therefore, NPAHs were retained longer than PAHs. 

The separation between NPAHs and PAHs can be optimized by increasing the 

adsorbability of the stationary phase alumina. Lowering the pH of the alumina column 

and also increasing the alumina activity by incubating at higher temperature allowed a 

stronger interaction between basic NPAHs and the acidic stationary phase. In experiments 

C3-5, only more polar eluents such as dichloromethane and methanol were able to elute 

NPAHs. The electronegativity of carbon and sulfur (χ = 2.58) were similar, therefore, 

simply using an open tubular normal phase alumina column was insufficient to separate 

PAH and PASH. Therefore, PAH and PASH were found to coelute despite optimization. 

With optimization, a single low molecular weight PAH mixture fraction containing only 

PAHs (MW 128-202) and PASHs were collected from crude coal tar using alumina 

chromatography. 

 Here, we evaluate the toxic metabolic impacts of a single PAH compound, 

fluorene, and a low molecular weight PAH mixture derived from coal tar on a sentinel 

microorganism, S. meliloti. The metabolic impacts of single PAH or mixtures of two to 

four PAHs have been reported
6,31–35

, however, there has been few reports on the 
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metabolomic outcomes due to exposure to complex contaminant mixtures or mixture 

fractions. Although PAHs exhibit similar modes-of-action, the interactive carcinogenic 

effects of PAH in mixtures often result in either less than or more than the expected 

additive effects in tumor studies in mice or humans
6,31,32

. The same might be expected 

regarding the metabolic changes induced by PAH mixture as compared to an individual 

PAH. In real life, microorganisms, plants, wildlife and humans are never exposed to a 

single chemical or well-defined mixture of compounds. Rather than predict metabolic 

outcomes based on data from individual PAHs, we decided to compare the metabolic 

changes of S. meliloti as a result of single PAH or PAH mixture exposure. 

 From the metabolomic study of fluorene or PAH mixture exposed S. meliloti, 

similar modes-of-action were observed for both fluorene and the PAH mixture at both 

doses. Although no S. meliloti growth defects resulted from exposure to 0.14 mg/L and 

1.4 mg/L of fluorene, and 0.14 mg/L PAH mixture, metabolic disturbance was observed. 

Even though few metabolic features were significantly different as a result of fluorene 

exposure as compared to PAH mixture at equivalent doses, the overall trend was similar 

(Fig 5). In fact, the changes in the metabolic profile as a result of 1.4 mg/L fluorene 

exposure resembled the S. meliloti profiles change caused by exposure to the 0.14 mg/L 

PAH mixture. The metabolic changes due to both the fluorene and PAH mixture were 

dose dependent. At equal concentration, mixture of PAHs can cause greater metabolic 

toxicity in S. meliloti as compared to a single PAH. 

 Our study demonstrates that LC-MS metabolomics can discriminate responses of 

S. meliloti exposed to sub-lethal concentration of fluorene or coal tar derived PAH 

mixture.  Current technique for assessing and comparing potencies of toxic compounds 

rely on the measure of LD50 or LC50. Metabolomics studies of toxin exposed 

microorganisms can be an asset in measuring potency of toxic compounds at sub-lethal 

dosages that might or might not cause any growth defects. Moreover, by examining the 

changes in metabolic profiles, we can assess and compare modes-of-action between 

toxins. With additional research in identifying significantly expressed metabolites, the 

modes-of-action of toxins can be deduced. Overall, metabolomics holds great promise for 

measuring potency and modes-of-action associated with toxins at sub-lethal 

concentrations.   
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Figure 1 Optimization for coal tar clean-up using alumina chromatography. The heat map 

illustrated the extraction efficiency of individual PAHs, Me-PAHs, NPAHs, Me-NPAHs 

and PASHs in A2 sub-fractions, A2, A3, and A4 fractions of experiment (a) C1, (b) C2, 

(c) C3 and (d) C4. The extraction efficiencies of PAHs and their derivatives in each 

fraction and sub-fraction were calculated by first normalizing the peak area of each 

metabolite with internal standards and then dividing the relative abundance of each 

individual PAHs at (sub-)fractions with its total recoverable sum in all A1-A4 fractions. 

Analytes in the PAHs, Me-PAHs, NPAHs, Me-NPAHs and PASHs classes were ordered 

based on molecular weight.  
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Figure 2 Optimization for coal tar clean-up using alumina chromatography. The 

chromatographic distributions of PAHs, Me-PAHs, NPAHs, Me-NPAHs and PASHs in 

A2 subtractions, A2, A3, and A4 fractions for  experiment (a) C1, (b) C2, (c) C3 and (d) 

C4 
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Figure 3 Elution profiles of PAH, Me-PAH, NPAH, Me-NPAH, PASH in A2 sub-

fractions, A3 and A4 fractions in the optimized coal tar clean-up using alumina 

chromatography (experiment C5). (a) The heat map illustrate the elution pattern and 

extraction efficiencies of individual PAH or PAH derivatives in each fraction. Analytes in 

the PAHs, Me-PAHs, NPAHs, Me-NPAHs and PASHs classes were ordered based on 
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molecular weight. (b) The extractable concentration of each PAH groups at each fraction 

were illustrated. (c) The PAH concentration of A2-2 sub-fraction used for S. meliloti 

metabolomic study to investigate metabolic effects of sub-lethal PAH exposure  
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Figure 4 PCA score plot of S. meliloti polar metabolome to illustrate the reproducibility 

of the experiment. The pooled samples, colored in purple, were clustered in the center of 

the score plot indicating minimal technical variance. The polar metabolome consisted of 

2005 metabolic features after data reduction 
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Figure 5 Comprehensive metabolomics of S. meliloti exposed to 0.14 mg/L and 1.4 mg/L 

fluorene or low molecular weight PAHs mixture. Exposure and metabolomic experiments 

were performed in sextuplicate. (a) Changes of metabolic profiles with regard to different 

PAH exposures were visualized in the OPLS-DA score plot (R
2
X=0.93, R

2
Y=0.827, 

Q
2
=0.409). 2005 metabolic features were included in the analysis. No metabolic 

differences were observed between control samples and S. meliloti exposed to 0.14 mg/L 

fluorene. (b) Heat map illustrating individual metabolic feature changes with regards to 

the various PAH exposure. The 926 significantly expressed metabolic features (fold 

change >1.5 and p<0.05 with Student’s t test between PAH exposed samples and control) 

were represented in rows, and various experimental conditions were listed in columns. 

The heat map was plotted based on the log2(fold change) with respect to the average 
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levels of each metabolic features in the control sample using Euclidean distance and 

complete-linkage clustering.  
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Chapter 7: General discussion, future directions and conclusion 

7.1 General discussion 

In this final chapter, the advantage of the HILIC-LC-TOF-MS methods in Chapter 2 will 

be summarized. The versatility of this method and its use for advancing cell biology 

research will be discussed. Finally, future directions and general conclusions for 

metabolomic research in the field of cell biology are presented.  

7.2 Implications of metabolomics 

In this thesis, a comprehensive and simultaneous detection of intra- and extra-

cellular phospholipids and polar metabolites using the HILIC-TOF-MS platform was 

presented. Additionally, a complimentary extraction method specifically designed for 

unicellular organisms with strong exterior cell walls was presented. Unlike the traditional 

approach, where polar and non-polar metabolites are extracted separately and analyzed 

separated using reverse phase (RP) and normal phase (NP) HPLC-MS. This approach is 

able to simultaneously analyse a broad range of polar and nonpolar metabolites in a single 

run. Moreover, the ability of the silica-HILIC column to retain lipids and to separate 

phospholipids by classes based on their polar head group is extremely helpful with regard 

to metabolite identification. Since each lipid class is eluted within a narrow time window 

on silica-HILIC, we could accurately identify the type of phospholipids and their chain 

length based on their retention time and m/z value without the use of authentic standards. 

This platform fills the demand for comprehensive metabolomics, which requires high 

throughput, high reproducibility and large metabolite coverage. 

The versatility of the HILIC-TOF-MS platform has been successfully demonstrated 

with three different cell types: the Gram-positive bacterium Streptococcus intermedius, 

the Gram-negative bacterium Sinorhizobium meliloti, and eukaryotic macrophages. 

Additionally, the value of comprehensive metabolomics for in vitro cell metabolic 

research has been shown in various areas of application.  

Chapter 3 provides insight on how S. intermedius metabolism adapts to various 

oxygen levels in the growth environment. Under anaerobic conditions, purine metabolism, 

pyrimidine de novo synthesis and pyrimidine salvage pathways were up-regulated at both 

metabolic and transcriptional levels to support the accelerated growth of S. intermedius in 

the absence of oxygen. As a facultative anaerobe, S. intermedius can colonize in both 

aerobic and anaerobic niches within human host, and infectious strains are found 

associated with obligate anaerobes. S. intermedius grows faster in anaerobic conditions in 

conjunction with upregulated metabolic activity, and this might be linked to its 

pathogenic associated with anaerobes in polymicrobial infection and disease progression 
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in the host. Moreover, understanding the metabolic regulation of S. intermedius under 

various oxygenated environment through comprehensive metabolomic studies may 

provide insights into adapting to various microenvironment within the human host.  

Chapter 4 examines the metabolic contribution of pSymA megaplasmid and pSymB 

chromid in the multipartite S. meliloti genome through comprehensive intra- and 

extracellular metabolomic studies. The pSymA megaplasmid has a minor contribution to 

the cellular metabolism of free-living S. meliloti. In contrast, the pSymB chromid is 

highly integrated with the primary metabolic activity of S. meliloti. A lack of the pSymB 

chromid not only reduces the growth of S. meliloti in both rich LBmc and minimal M9-

sucrose media, but also limits S. meliloti accessibility to extracellular nutrients, sugar 

metabolism, and the purine degradation/salvage pathway. The loss of pSymB also led to 

changes in various phospholipid levels in the cell membrane. The knowledge of the 

metabolic functions of pSymA and pSymB provides insight into the biology of S. meliloti 

and also the functional significance of secondary replicons in multipartite bacterial 

genomes. Moreover, Chapter 4 also demonstrated the potential of using comprehensive 

metabolomics to examine the metabolic capacity and preferences of a bacterial population 

grown in a nutritionally complex environment. The hierarchical substrate usage 

determined by examining the depletion rate of the substrate can be correlated with the 

preferred carbon, nitrogen, or phosphorus sources.  

Chapter 5 reported the potential metabolic bottlenecks that can contribute to the 

dysregulation of inflammatory response with age. A lack of immediate energy output 

through the metabolic switch from oxidative phosphorylation to glycolysis was observed 

in the lipopolysaccharide (LPS) stimulated macrophages from old mice. This was 

correlated to the decreased expression of arginine and adenosine and urea cycle activity, 

which is also decreased in the LPS stimulated macrophages from old mice. The 

dysregulated immune response observed in the elderly could be linked to the age-

associated deterioration in mitochondria function.  In additional to the more popular 

proteomic (i.e. cytokines, NF-κB, toll-like receptor), biochemical or physiological 

approach in studying age-associated decline in immune function and macrophage 

function, comprehensive and targeted metabolomics suggests that metabolic 

dysregulation as a possibly unexplored mechanism of immunosenescence.  

Lastly, Chapter 6 uses a comprehensive metabolomic approach to examine the toxic 

effects of sub-lethal polycyclic aromatic hydrocarbons (PAHs). Sub-lethal concentrations 

of toxic chemicals that do not induce any physiological changes can be measured through 

metabolomic studies. Additionally, (dis)similar modes-of-action between different or 
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mixtures of different toxicants can also be determined through comprehensive 

metabolomics.  

7.3 Future directions of research 

Comprehensive metabolomics is a hypothesis generating research technique. 

Within the applications in this thesis, various biomarkers or significantly changed 

metabolites or key disturbed pathways has been discovered. Follow up studies have to be 

carried out in order to verify the causation between the metabolic response and the 

observed phenotype or function. For example: 

 Whether the reduced metabolic activity results in the reduced growth rate for S. 

intermedius in aerobic growth or vice versa still requires investigation. 

 The biosynthetic pathways associated to pSymA megaplasmid and pSymB 

chromid still need to be mapped. The metabolic models of S. meliloti could be 

developed and linked to its multipartite genome. 

 There is an apparent lack of energy for LPS stimulated macrophages from old 

mice. How a lack of energy can interfere with macrophage function during 

inflammation needs to be addressed. The link between mitochondrial and 

macrophage dysfunction as a result of old age needs to be investigated.  

 Specific modes-of-action of PAHs and also their effect on metabolic activity in S. 

meliloti, and whether such toxic effect of PAHs observed in S. meliloti can be 

generalized to all bacterial species still remained to be answered. 

For the future of cell metabolomics, there is always demand for a faster and better 

quenching and extraction methodology that preserves the cellular integrity. An analytical 

platform that is able to cover more diverse metabolites with greater dynamic range is 

always desirable. The large number of unknown metabolites in the biological samples has 

been a key challenge for comprehensive metabolomics. The rapid development of 

MS/MS spectra database (i.e. HMDB, METLIN) allows identification of unknown 

metabolites. Ultimately, metabolic profiling extending to subcellular compartments (i.e. 

mitochondria, cytosol) could provide unique insights in organelle interactions and origins 

of metabolic activities in a single cell organism. Farré et al. could be the first group to 

venture into the cellular compartmentalization metabolomic study, where the metabolites 

in potato tubers were profiled using GC-MS method
1
. Few other metabolomic studies 

have also focused on analyzing organelle fractions
2,3

.  Moreover, the progress made in the 

development of MS, microfluidics and capillary separation has made single cell analysis 

possible
4
. The ability to analyze metabolites in a single cell allows studies of biological 

variation, functional heterogeneity in a seemingly homogenous cell population. 
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7.4 General conclusion 

In this thesis, the potentials of metabolomics in the field of in vitro cell biology have been 

illustrated in different studies with various cell types. The ability of analyzing 

phospholipids and polar metabolites makes the HILIC-TOF-MS desirable in the field of 

metabolomics. Pathways, significant features have been identified associated to various 

biological conditions using comprehensive metabolomics. Targeted metabolomics has led 

to the discovery of metabolic bottlenecks and a possible new mechanism for age-

associated macrophage deterioration. However, it should be noted that, although 

metabolomics is a powerful tool for biomarker discovery or pathway analyses, relevant 

biological studies have to be performed to validate the findings.  
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