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" ABSTRACT

Power law fluids are analysed for entry flow in
straight and converging channels in their pseudoplastic
region (0.0<n<l1.0). The motion and energy equations
simplified by the boundary layer assumptions were solved
by an implicit finite difference scheme with a marching
procedure. To circumvent the difficulties arising from
an infinite viscosity at zero shear rate, a minimum value
of shear rate was used ﬁaking the fluid newtonian at low

shear rates.

Entrance flows between parallel plates of infinite
width (S1lit) for uniform entry profile are discussed in
Part I and converging flows for non-parallel flat plates
is the subject of Part II of this work. Results are
compared with their equivalent in the current literature
for the newtonian case; new results are presented for
non-newtonian fluids. These results include velocity and
temperature profiles, pressure drops, Nusselt number,'and
entry lengths as a function of the flow behavior index (n)

and the taper angle.



RESUME

Des fluides ob€issant a la loi de puissance sont

€tudi€s pour des écoulements d'entrée en conduites droites

et convergentes, dans leur région pseudoplastique (0<n<l.).

Les equations de mouvement d'abord simplifides par 1la théorie
de la couche limite, sont ensuite résolués par une méthode

de différences finies implicites, incluant 1'equation d'énergie.
Une valeur minimum de taux de cisaillement est utilisée de
maniere a ne pas rendre la viscosite infinie a bas taux de

cisaillement.

En partie I, on traite d'écoulements d'entrée entre
plaques planes parallélles pour profil d'entrée plat; ces
€coulements sont étudi€s pour plaques non parallélles en
partie II. Pour les fluides newtoniens, on compare avec
des resultats précédents et quelques nouveaux sont obtenus
pour des fluides non newtoniens. Les résultats présentés
comprennent des profils de vitesse et de température, des
chutes de pression, des nombres de Nusselt et des longueurs
d'entrée en fonction de 1'indice de puissance (n) et des

. . 7’ ’ .
conditions geometriques.
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PART T

CHANNEL ENTRY FLOWS FOR PSEUDOPLASTIC FLUIDS

I- 1 INTRODUCTION

In the first part of this thesis,vthe problem of
entrance flows of pseudoplastic fluids in a channel formed
by two parallel plates is analysed; the two plates are
considered semi-infinite i.e. infinitely wide with negligible
end effects. The fluid to be studied is a power law fluid.
Heat transfer effeéts are also discussed at different

Prandtl numbers.

This problem has drawn a lot of attention in the
current literature although most of it has gone to newtonian
fluids for tube flow. Since that problem deals with partial
differential equations, there are three major methods of
solution: (1) exact analytical methods, (2) approximate
methods, (3) numerical methods. The solution we are
proposing here is a numerical finite difference procedure

of the implicit type.

First, the theoretical background is presented with
a literature sufvey followed by the solution of the problem

itself. The three conservation equations (Continuity,



Momentum and Energy) are derived according to the assumptions
used and transformed through finite difference approximations.
Then, in a third section, the results are described along
with a discussion on their significance. 'Conclusions are
finally drawn from the results, which include the possible

extension of this work.



I- 2. THEORETICAL BACKGROUND AND LITERATURE SURVEY

I- 2. 1 Methods of solution

This problem has been solved by many methods in
the 50 or so papers related to it, nearly all of them about
newtonian fluids either with or without boundary layer
assumptions. Methods using tﬁe boundary layer assumptions
are of the following types: (1) linearization of inertia
terms, (2) integral methods, (3) series expansions, (4)
numerical finite difference of the boundary layer equations.
Methods without boundary layer assumptions: (5) finite

difference solution of the full Navier-Stokes equations.

The first two methods will only be mentioned here
without any explanation because they were notAreally extended
to more general épplication after their original publication;
the method of lineariiatién was originated by Boussinesqg
(1891) and Langhaar (1942); Schiller (1922) did some work
with the integral method (this type of solution was retaken
by McKillop (1964) and McKillop et al, (1970) for the entry
flow in the immediate entry). The last three methods, because
of their wider use, will be explained in more detail, The

method used here, is of the boundary layer finite difference

type.



I- 2. 2 Solution of boundary layer equations by series expansions

The boundary layer concept is based on the fact
that in viscous flow problems e.g. flows of polymers, the
viscous effects have more importance than the inertial effects
in the fluid; naturally this will force us to remain in an
acceptable range for the Reynolds number; we can say that
for most flows with Reynolds number over 50, the above
concept is valid as demonstrated by Christiansen and Kelsey

(1973) for tube flow at a contraction.

Schlichting (1934) applied the boundary layer
concept in solving entry flow problems for straight channels
(uniform flat entry). His method consisted of two different
solutions applied to each of the upstream and downstream
parts of the problem. In Fhe upstream part, the boundary
layer is formed in a small reéiéq near the wall, where viscous
effects and velocity gradients are important, and the central
core is uniformly accelerated as pictured in Figure I-2.1,
for this part, Schlichting obtainéd an expression for the
axial velocity in form of a series expansion with respect
to the two independant variables (2-dimensional flow). This
expansion, if inserted in the axial momentum equation gives
a differential equation with an infinite number of terms,

of which, as a first approximation, we have the Blasius



differential equation for a flat plate‘(depending on how
many terms are taken in the expansion). Now for the
downstream part; Schlichting assumes a velocity profile which
is a perturbation of the true final parabolic one. The final
step of the method is to join the two solutions at a suitable
point where they are compatible to each other. 1In a recent
paper where the upstream solution of Schlichting's method is
questionned, Van Dyke (1970) is presenting a solution using

a slightly different upstream expansion.

N\ NN\ N\

\
N Y N N VA Y Y W VI N A N N N N

v

Figure I-2.1: Channel entry flow

Entry flow for non-newtonian fluids is more recent.
The first calculations (in channels) were done by Collins and
Schowalter (1963); they worked out the solution for channel
entry flow of pseudoplastic fluids represented by the power
law equation. Their method is about the same as Schlichting's
method except that they took more terms in their series in
order to have a better precision. Their results are used

extensively for compariscn purposes with the present work.



I- 2. 3 Numerical solutions

The boundary layer concept is also used with finite
difference methods. Bodoia and Osterle (1961) have initiated
work in this area followed by Hwang and Fan (1963, 1964).
The method consists in starting with the Navier-Stokes
equations whiqh are simplified through the boundary layer
assumptions; this means the y-direction Qf the equation of
momentum (for 2-dimensional problem) is neglected implying
that the pressure gradient is zero in the y-direction and
that the motion in this direction is not important to the
total problem. This evidently is not correct in the first
region of the flow; but it becomes valid as soon as the
thickness of the boundary layer is relatively large. In the
present work this method is followed in solving the channel
entry flow problem and the solution is extended to power-law

fluids.

Three more publications are using the finite
'difference methods for the full Navier-Stokes equations;

Wang and Longwell (1964), Brandt & Gillis (1966), and
McDonald et al. (1972). They are solving those equations

for newtonian fluids by relaxation with a two-dimensional grid
at different Reynolds numbers. Their method, although quite
complex, should be considered as one of the more precise

because of the absence of boundary layer approximations;



we must say that for non-newtonian fluids, this method
becomes extremely complicated particularly the search for

convergence criteria as defined in Brandt and Gillis (1966).



I- 3 SOLUTION OF THE PROBLEM

I- 3. 1 The constitutive equation

The fluid to be used is représented by a power
law constitutive equation (Ostwald-de Waele equation)

from Bird et al. (1960) p. 101.

n-1
T = -K ﬂi& A (1-3.1)
where T : stress tensor
I : second invariant (=A:A) of A
2 - =
K : power law consiétency index
n : flow behavior index
A : rate of deformation tensor (symmetrical)
_|,2u  2u
where A= 28x 2 3y
au ov
i 2
oy 9y

For an incompressible fluid in cartesian coordinates,

we have:
2 2 2

1 _ L, u v du
5 I, = 2(3x) 23y +(25) (I-3.2)



the first two terms are neglected because, although they
are important at the immediate entry, their effect diminishes
very quickly. For more explanations, the reader should

consult Schowalter (1960).

So equation I-3.1 becomes:

n-1
du (I-3.3)

3y

>

1 = K

This constitutive equation can be used directly
in the momentum equation if the usual drawback, namely the
infinite viscosity at low shear rates, is eliminated; this
making the fluid

is done by setting a minimum value for|du

oy

newtonian at lower shear rates. It has been recognized
experimentaly that all non-newtonian fluids are exhibiting
a newtonian behavior at low shear rates so this working

procedure is very much in line with reality.

S

I- 3. 2 The hydrodynamic problem

The physical system as drawn in Figure I-3.1 is made
of two semi-infinite parallel flat plates spaced by a length
of "2a". The velocity profiles are sought along x for a
uniform entry profile with the use of the continuity and

momentum equation in a manner quite similar to the analysis
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of Bodoia and Osterle (1961) for a newtonian fluid; Hwang

and Fan (1961) have solved the same problem for magneto-

hydrodynamic flow of a newtonian fluid.

Figure I-3.1: Straight channel physical system

The following assumptions are made in order to
solve the problem:
- Thé flow is 2-dimensional (Motion in the z-direction
is negligible and no end effect).

- All fluid properties are constant: C, C E: K.

pl
- The effect of gravitational force is negligible.
- The flow is laminar.

1
- Prandtl s boundary layer assumptions apply.

With these assumptions, we obtain:

- Continuity equation:

du oV
B = -3.
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- Momentum equation in the x-direction:

9T .
Ju ou _ 1 dp X
AR L TR AR . J -3.
v d v 3% p dx ay (X=3-3
n-1
where T = g |31 du
Xy oy oy
- Integral form of the continuity equation:
a
J/rudy = ué a | (I-3.6)
(e}

The following variable transformations are used

= X
X o= 5} /B (I-3.7)
2-n n
pu (2a)
where Re =
K
Y = y/a (I-3.8)

U = u/u° (I-3.9)
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n 1-n
(2a) uo p Vv
P'Po
P = > (I1-3.11)
pu,

U 4+ 3V = 9 (I-3.12)

1
//( udy = 1 | (I-3.13)

\

and the momentum equation is -

n-1
g ofE %)
U +V U _ dp +on 3 \|9Y oY

U X 3y &% _ Ay

(I-3.14)

And the boundary conditions are

0 and X>0 (centerline):EH =0 and V =0

t
at Y Y

(I-3.15)

at Y 1 and X>0 (wall) : U=0and V=20
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and the initial ¢ondition is

at X = 0 and 0g5Y<1 ct U=1and V=20

{I=3.16)

‘There are two ways of solving this problem since the
momentum is a nonlinear equation. First we can solve it as a
linear approximation by an appropriate choice of difference
approximations using a normal iﬁplicit scheme similar to the
one of Bodoia & Osterle (1961) and Hwang & Fan (1963); another
way 1is to use an iterative scheme in which the values that
have just been calculated are reintroduced into the equations
to compute again a set of new valués. (A solution with an

iterative scheme is described in Appendix III).

The implicit type method without iteration starts
with the original assumptions for the velocity profile
(initial condition) and proceeds Column by column with
linear equations by solving the coefficient matrix for the
hydrodynamic problem in order to compute the velocities;
with the velocities, we are then able to compute the
temperatures directly. Figure I-3.2 is giving the mesh

configuration:
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WALL
v=1 m&x_ﬁm\;_;_\\\\\\\\;;;;;_
m A\/\
== e
k+2 AN ~7

k+1 »
’ W j,K+1 jp1,k+1 T,
k —
\f jAk FHL,k
k- - —
1 _ \f j, k-1 jk1,k-1
k=2 AN

;? = ian, =
QY

TOl'V\ 33+ ' €
Figure I-3.2: Finite difference mesh

\

Finite difference representations are chosen in
order to get linear equations. So for the continuity equation

I-3.12, the following difference approximations are used.

30 _  95+1,k+1 “95,k+1 *Y541,x U5,k

3% _ 246X

(I-3.17)
v V4+1,k+1 "Vi+41,k
5Y AY




15

In the integral form of the continuity equation, we use the

Simpson integration formula which gives:

U = 3m lg¢ngm/2

g +4X U, +21 U
j+1,1 n Jj+1,2n n Jj+1,2n+l

{I-3.18)

where m = total number of
points .across less 1

For the momentum equation, we have the following finite

difference approximations:

3u _ Y4+1,k Y5,k

5% AX
U _ 1 Dgk+l Uj,k-1 . 1 U341kl U541,k-1
5Y - 2 257 7 TAY
(I-3.19)

P -p
e+l 3J
X = AX
Uu = U and V =V

ik j.k
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For the last term of the momentum equation, a secondary
grid superimposed over the previous one is used along Y

(See Figure I-3.3 below).

| |
| [
pA e =
k+1 | v
k+1/2 — 1 %— ===
k I
k=1/2— + + L L |— — — _ X
k-1 -
..__..__l__4_I__L__._
| |
iFl) 1
-l 2
j J+1

Figure I-3.3: Auxiliary mesh
Now the difference representation for the last term of the

momentum equation is taken at (j+1/2, k) which is the

central point of that grid, so we have:

Ti41,k+1/2 " '4+1,k-1/2

3t _ 1 '§,k+#1/2 ~'5,k-1/2
2

1
W AY t 3

AY

(1-3.20)



where
n-1
" _Y3,k+1 Y4 ,x
j.k+1/2 AY
n-1
U. U.
T . _J.k j,k~-1
j,k—l/2 AY
n-1
T Uj,k+1 Uj,k
j+1,k+1/2 = AY
in-1
U, . -U. s
T - j.k J =1
j+1,k-1/2 AY

17

J. k-1
AY

(I-3.21)

Use1,k+1 “Y5+1,k
Ay

User,x "U4+1,k-1
AY

So the momentum equation after~§implification gives (details

shown in appendix I-A):

+B 4
By Yaig ke-n M Ve e YR

where A_k = -

Yser g1 TP F
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- Y%k, lop|™l+ |em|l

AY
D = 1
S v
B o= 23, Uk2 Vi 4o ooy, Jep?Tt
k X AX YN j,k+1 "5 ,k-1 Ay2

' n-1
- _Jem|?T" 4 -1l
er,n+l Ujﬂb 5 é%,n Uj,n—ﬁ

AY
U. -U.
_ j,k+1 i,k
wbere Gp 2 NG
U. -U.
= j, k j.k-1
Gm 2 NG

By combining the last equation with equation
I-3.18, we obtain a set of "m" linear equations with "m"
velocities plus "1" pressure which permits us to solve for

those values as demonstrated in section I-3.4.
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For the continuity equation, we have an explicit
expression with respect to velocities along y if the axial
velocities are known. Replacing I-3.17 in I-3.12, the-

following equation is obtained:

AY
V. = Vs - iy
j+1,k+1 Vj+l,k 2AX (Uj+1,k+1 +Uj+1,k

Y5, k41 'Uj,k)
(I-3.23)

Since V'+l 1= 0.0 (Centerline boundary condition) then
j+i,

all the "V" can be computed directly.

I- 3. 3 Energy equation

If we make the same assumptions for the energy
equation as we did previously for the hydrodynamic problem,

we have the following energy equation

u——+V——=d.—2— ’ (I-3.24)

k
where o = 55— (thermal diffusivity)
P
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The previous variable transformations (equation

I-3.7 to I-3.1l) ére retained and the fo11owing one is added:

e ' (I-3.25)

where to : Entry temperature (To=1)

tw

Wall temperature (T,,=0)

After simplification the following equation is obtained

3T 3T 2 327
U 3_+V B “.Pr 3 (I-3.26)
oY
1-n
o o)
where Pr = o

k

(Non—Newtonian Prandtl Number)

It should be noted that when n=1 for a newtonian fluid the

Prandtl number takes the usual form.

The boundary and initial conditions are as

follows for the constant wall temperature problem:

B.C.: at Y = 0 and X>0 : %% =0
(I-3.27)
at Y = 1 and X>0 s T =0

I.C.: at X =0 and 0<yl : T =1 (I-3.28)


http:I-:-3.28
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Now the following finite difference approximations are

used :
U +U ¥y o W,
j,k J+1,k - 1,k j+1,k
U=—"— - vV = 5
9T TJ"']—Ak T] 'k
X X
(1-3.29)
T _ 1 T9,k+1 TTy,k-1 , 1 Ty41,k+1 TT541,k-1
3 - 2 207 2 20Y
- . + (. -2T. , 4T,
321 _ (&j+1,k+1 2T541,% +T3+l,k—b ( 5,k+1 4T3 3,k—1)
ay? 24v?

By substitution into equation I-3.26, we obtain a series of
"m" linear equations with "m" temperature points to be solved;
the resulting matrix is found in Appendix I-B. In the next

section, the numerical procedure is described.

Other heat transfer quantities are used in this
part I; they are the Bulk temperature Ty (mixing cup temperature)
and the local Nusselt number. The Bulk temperature is
defined by the fol%?wing equation

5 - /oTj+1.k Oj41,% ¥
® g

where U = average velocity = 1
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The local Nusselt number is defined by the following:

No = AL (I+3.30)
g where: h = heat transfer coefficient
L =.chhracteristic length = 2a

k = thermal conductivity

From the heat flux at the wéll, we have that
= h (t -t ) = [, 2t | .
qw - s (}(ay y=b (I-3.31)

which, if we adopt the previous variable transformations, gives

[3) v-1 -
Y| Y=1 (I-3.32)

N
u Tb

The value of the gradient at the wall is calculated by the
same finite difference approximation as used in Katotakis
(1969), Vlachopoulos and Keung (1972) and Katotakis and

Vlachopoulos (in press) at column "j+1".

9T =_1 [-117 +18T 9T +2
9% = > ) ) - i
(BY) Y=1 6AY ( j+1,m+1 j+1l,m j+1,m-1 j+1,m-J
(I-3.33)

where m+l is the grid point on the wall
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I- 3. 4 Numerical procedure

To solve the hydrodynamic problem, the momentum

(I-3.22). and integral continuity (I-3.18)

equations are used to form a coefficient matrix; the unknows
are the "m" axial velocities and one pressure so we have the

following set of linear equations:

1 4 2 4§ =~ = — —=- 0 Uj+l’l 3m
By (C +Aq) Dy Uj+1'2 Eq
A, B, C, D, Uj+l'3 E,
A, By C, Dy | %3

N\ %o X ' x |! |

Y \ \ | i I

N\ e N\ ! _ )
A B Sk Pk U541,k |7 |

U !

\ \ \ ; | l

L \ ! ' :

A C D . E

m-1 m-1 m-1 m-1l j+1,m m-1

A B D P. E

m m m | L g+l E B

I-3.34
This set of equations was solved by a program using( )

the Gauss elimination metﬁbd written especially for the above
coefficient matrix in order to minimize computing time (See
Gauss subroutine in Appendix IV for details). Once the axial
velocities are obtained, one can find the perpendicular
velocities expiicitly by ﬁsing the normal form of the continuity
egquation (I-3.22); the y-velocity at the centerline is zero

so the remaininé ones can be computed from there on. This

gives a fully implicit set of equations which means that once
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the starting profile is known, that is at column 0 (from
the initial condition), one can compute directly column 1
and keep this "marching procedure" until enough information
is generated (in our case, all calculations were stopped

at X = 1.0).

For the energy equation, a slighty different
coefficient matrix is obtained where there is no additional
unknown apart from the "m" temperatures in a column : so

we have the following system:

- — - -
Gy (F+H;) Tj+1,1 Jy
F, G, H,, T+1,2 Js
g S % | |
~ N | i
\\ \\ N | i
Fx Sk o . P x [Tl = %
N ~ 8 d l \
~ N l
N Y N\ % }
F G H 1 5+1,mp1
“Tmell omel med , m-1
, 3
Fm Gm T]'Fl,m m
e — - — L-.
(I-3.35)

The coefficient matrix is known as a tridiagonal matrix. A
recursion formula, Carnahan et al. (1969) and Hwang & Fan
(196 3), was used to solve this set; this formula which is
based on Gaussian elimination, is also called Thcmas's

method.
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I-3.5 Convergence, stability and step size

Problems with stability and convergence arise from
the substitution in a differential equation of finite
difference approximations; they are bbth discussed very
well in Richtmyer (1957) for linear differential equations.
The finite difference solutions of non-linear equations has
yet to reach the same level bf understanding as the linear
ones so we must still rely on linear equation type of analysis

to appreciate convergence and stability.

Convergence is the problem of getting the same
exact solution from the differential equation and the
difference equation; it arises from the fact that the
difference equation is solved for a mesh with finite grid
spaces. It is normally solved by reducing the mesh size up
to a point where there is convergence of the finite difference
solution; it simply means that the truncation error caused
for example by taking a gradient between two points, will be
less if those two points are closer. Evidently in doing so,
computing time and experimental error must be taken in
consideration in order to get a reasonable mesh size; with
this in mind the network size of Table I-3.1 was used. This
mesh gave solutions which would not vary more than .1l% by

reducing its size for normal calculations ¢(not
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including calculationsat very low flow behavior index);
since between 1 and 2% is the normal accepted value of the

experimental error, this was judged acceptable.

up to X m (AY) AX

0.0004 80 (.0125) 0.00002
.002 80 (.0125) 0.0001
.01 40 (.025) 0.0005
.03 20 (.05) 0.001
gl 20 (.05) 0.005

1.0 20 (.05) 0.01

Table I-3.1l: Mesh sizes of this work

A look at mesh sizes of Hwang and Fan (1965) is showing
that they are slightly rougher than the ones in Table I-3.1;
it was found that for flow-behavior index <.25 a finer

mesh was necessary to stay within the .1% value.

Stability is the second problem, one must face when
dealing with finite difference solutions; instability problems
are coming mainly from round-off errors in the computations
which are giving discrepancies between the exact solution of
the difference equation and its numerical solution. Stability
is normally ensured by checking that an error introduced in
the computation will remain bounded. Katotakis (1969) has
done a stability analysis on the boundary layer momentum

equation using Von Newman s theory (See Richtmeyer 1957).
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However this method of analysis of the growth of a general

error term, must be used with linear equations so the

momentum equations were linearized by assuming that coefficients
6f‘inertia terms are constant; furthermore in our work, the
viscosity should be considered constant to get linear equations;
Katotakis (1969) is doing the stability analysis of the
resulting linear equations; however it must be stated that,
since viscosity can vary by as much as 104, this analysis

should be regarded only as a trend indicator.

The energy equation was analysed by Hwang & Fan
(1965) and by Richtmeyer (1957). It is found to be always
stable when the equation is considered linear. Although
Hwang and Fan are recommending a finer mesh for the heat
transfer part than the one used in table I-3.1, the present
work has demonstrated that using a finer mesh size did not
change the results of the temperature profile noticeably and
the mesh used gave an excellent agreement for the bulk
temperature with their result for newtonian fluid. Furthermore,
it was found that using an auxiliary mesh for the heat
transfer problem by computing, at the intermediate grid points
linear approximations of the velocities, was causing
instabilities in the form of harmonics; this phenomenwan was
detected by an oscillating Nusselt number. So the same
mesh size was used for the hydrodynamic and the heét transfer

set of equations.



I- 4. RESULTS AND DISCUSSION

I-4.1 The hydrodynamic problem

A) Newtonian case

As seen in the literature survey, the parallel
plates entry flow problem for the newtonian case has been
solved by numerous methods. Van Dyke (1970) and McDonald
et al. (1972) in their respective paper are offering
excellent comparisons of the development of the center-
line velocity. Figure I-4.1 is showing the good agreement
between Wang & Lonéwell, Bodoia & Osterle (1961) and the
present work; however the full numerical solutions of
Brandt & Gillis (1964) and McDonald et al. (1972) are showing
discrepancy with the previous three curves. Thié discrepancy
wiﬁh-the full numerical solution of Wang & Longwell seems to
be due to different boundary condition (vorticity is zero
for W. & L. and "v" is zero for B. & G. and M. et al.).
Whereas the agreement of boundary layer numerical solutions
is good at Re = 75 for the no vorticity case, Brandt and
Gillis (1964) are showing that a similar agreement exist
at Re>300 for zero perpendicular velocity case; however since
it is very difficult to say which solution is best corresponding
to. reality, our results should apply whenever the Reynolds .
number is over 200. In figure I-4.2, the velocity development is

shown which is almost undistinguishable from the one of Bodoia&Osterlc
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‘The entry length is defined as the length of the
channel taken by the centerline axial velocity to reach
99% of its fully déveloped value. We can see that the
results of the present work are close to Hwang and Fan

]

results and in the same range as other workers.

Xa99 =(x/% Re Author

.0800 Schlichting (1934)

.0838 Present work

.0844 Hwang and Fan (1963)
.0880 Bodoia and Osterle (1961)
.0884 Brandt and Gillis (1966)
.0908 Roidt and Cess (1962)

Table I-4.1: Entry length for 99% of final
centerline velocity

The excess pressure drop "Ps"is calculated the following

way for a newtonian fluid.

Py = lim [P(0) - P(X) - 6X] (I-4.1)
X0

Pa is due to departure from parabolic flow in the inlet region

of the entrance flow. Table I-4.2 shows results of other

workers
4
il § 3. Kinetic-energy end correction
.300 Schlichting (1934)
« 312 Hwang and Fan (1963)
315 Roidt and Cess (1962)
«331 Brandt and Gillis (1966)
.338 Bodoia and Osterle (1961)
.343 Present work

Table I-4.2: Excess pressure drop
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For Brandt and Gillis, the value is given for Re = « since
the boundary layer assumptions are valid for high Reynolds
number. We can see that the results of the present work

-are pretty well in same range as the ones obtained by other
workers. The final value of the pressure gradient calculated
. from this work is exactly 6.000 which is the wvalue that can

be calculated for the Poiseuille flow analytically.

B) Non-Newtonian Fluids

There are not many solutions on power law fluids
for channels so we will limit the comparison to the work
done by Collins and Schowalter (1963). For n=1 (newtonian
fluid) their entry length is .069 compared .067 for this
work (this entry length is 98% of éhe fully developed center-
line.velocity)‘and the excess pressure lost is .34 compared

to .343 here.

From this, we canAconclude that our results are
compatible with those of Collins and Schowalter, so a
comparison for non-newtonian fluids can be undertaken.
Collins and Schowalter are solving £he problem with an
extension of the Schlichting's analytical method so the
fact that for pseudoplastic fluid (n<1l.0), the viscosity
becomes infinite when the axial velocity gradient is zero,

did not give them any problem. In a numerical solution like


http:bounda.ry
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the one presented here, this limitation arises as we saw
earlier, in the calculations because of the finite difference
form of the constitutive equation. The minimum value of

the gradient, in solving the problem, was taken in

dimensionless form as:
lQE] = ¥ (I-4.2)

This procedure was used by Ozoe and Churchill (1972) for
free convection problems. A range of minimum gradient

from .001 to 0.5 was used in this work. ymn'l is then

the value of the factor by which we must multiply the
viscosity at unity shear rate (the viscosity at unity shear
rate is the consistency index of the power law equation:K)
to get the true viscosity. In the figure I-4.3, we can

see the effect of the value of the minimum gradient on the
entry lengﬁh vs flow behavior index curves as well as a
qomparisbn with Collins and Schowalter results. This
figure shows that as the value of y, increases, the maximum
of the curves are decreasing and leaning a bit toward the
left; values for n>.75 are not changing very much;
these effects are easily explained by the fact that for
flow behavior index the profiles are flatter so the minimum
gradient value is used, in the numerical solution, not only
at the centerline but also in the flat profile region

around the centerline ; as soon as the value of the minimum
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gradient goes below ;01, there is very little change in the‘
entry length values. The discrepancy at low flow behavior
index with Collins and Schowalter results, can partially

be attributed to the fact that only one point (n=.2) was

calculated in-that region. and a full curve from 0.4 to 0.0 was drawn.

The entry pressure drop coefficient was found
relatively insensitive to the value of the minimum gradiént
except when this value was quite high e.g. yp, = 0.5. 1In
figure I-4.4, we can see that a noticeable difference in the
end pressure drop correction can be seen only at low flow
behavior index. In this figure, we are also comparing with
results of Collins and Schowalter (1963) and Tiu et al. (1972)
whose method is based on a previous paper written by Lungren
et al. (1964), using a linearization method of momentum and
machanical energy equations. We cén see that our results
are in very close agreement with Tiu's paper but shows some
differences with Collins and Schowalter. In table I-4.3, we
can see that for minimum gradient of .01 (and less) the
pressure gradient (which is constant after the immediate entry)
is very close to the exact analytical one where as for 0.5
the value begins to differ appreciably. The implication of
this, is that, for pressure calculation, the value of the
minimum gradient at which the fluid becomes newtonian at

low shear stress does not have much effect.
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n
.25 .50 .75 1.0
.5 1.8510 | 2.8216 | 4.1460 | 6.000
.01 1.8620 | 2.8280 | 4.1490 | 6.000
Bxact analytical wvalue 1.8612 2.8284 4.1489 6.000

Table I-4.3: Pressure gradient

In appendix I-C the reader will find some of the
results not discussed in this section. Axial velocity
developments are presented with respect to the axial distance
for various flow behavior index at 5 different distances

0 is the centerline ). Then

Il

from the centerline (Y

pressures are plotted also along the axial variable "X".

I- 4. 2 Heat transfer problem

For heat transfer we need to look at three variables.
The first two are yp and n which are related to the consti-
tutive equation used here and the third is the Prandtl number
(Pr). 1In figure I-4.5, we can see what influence the flow
behavior index has on the bulk temperature. Change of the
minimum gradient has no noticeable effect on bulk temperature
as we can see by comparing figure I-4.5 to I-4.6 (in fact we
have not more than 3% variation in bulk temperature at a

flow behavior index of .25). The same is not true for the
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Nusselt nﬁmber as we can see in Table I-4.4 Qhere we
compare asymptotic local Nusselt number for different
minimum gradients and different flow behavior index with
values given by Vlachopoulos and Keung (1972) whose
calculations are for fully developed velocity profiles.

The different values of the Nusselt number for different

minimum gradient is probably caused by the fact that

Jm } 0.5 0.1 0.01 0.001 | Vlachopoulcs
" and Keung (1972)
.25 | 4.162 | 4.212 | 4.218 | 4.218 4.22
.50 | 3.954 | 3.965 | 3.966 | 3.966 3.97
.75 | 3.839 | 3.841 | 3.841 | 3.841 ——
1.00 | 3.763 | 3.763 | 3.763 | 3.763 3.767

Table I-4.4: Asymptotic local Nusselt number

a more parabeclic like velocity profile is encountered at
high minimum gradient causing lower velocities near the
wall (to maintain a constant flow rate). Those lower
velocities near the wall are in turn affecting the value of
the wall temperature gradient which is part of the Nusselt

number.
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The bulk temperature values are similar to results
of Hwang and Fan (1965); a high Prandtl number has the
éffect of lowering the heat transfer rate; this can be seen
in fiqgure I-4.7 to I-4.9 where the bulk temperature decrease
is slower as the Prandtl number is increased. The Nusselt
.numbers have the same patterns except that they take longer
to attain their asymptotic values at high Prandtl number;
when the Prandtl is low the bulk temperature falls very
fast to zero making the calculation of Nusselt number inexact
because we are dealing with very small temperatures when
we are calculating the temperature gradient at the wall.
Some results plotted in a log-log form can be seen in
figure I-4.10. More results are available in Appendix I-C
concerning bulk temperature and Nusselt Number for various

values<ef the parameters.
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I- 5 CONCLUSIONS AND RECOMMENDATIONS

In this part I pseudoplastic fluids have been
studied for entry flow with a finite difference method; for
Newtonian fluids, good agreement was found to exist with
. previous results in the hydrodynamic and heat transfer problem.
In the non-newtonian case, comparisons with Collins & Schowalter
(1963) and Tiu et al. (1972) gave excellent agreement with
the present work for entry length and excess pressure drops
except in low flow behavior index for the entry length. Heat
transfer was found to decrease by lower flow behavior index

in accordance with other results.

It must be noted that the present method can be
used with practically any type of entry profile. 1In fact a
sixth order polynomial entry profile was tried with satisfactory

results.

Improving the present work could be done by including
viscoelastic fluids; it is suggested that this be done employing
something similar to a deviatoric stress tensor as used in
Balmer and Kauzlarich (1972). Another improvement would be
to extend this work to channel flow where side effects are
important; this case would.probably help the understanding of"
s;ngle screw extruders particularly if heat transfer is
included. Further viscous dissipation effects shauld be

included.
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NOTATION

Half space between plates
Series of constants defined in equation I-3.20

Series of constants defined in equation I-3.20

" Series of constants defined in equation I-3.20

Specific heat

Series of constants defined in equation I-3.20
Series of constants defined in equation I-3.20
Series of constants defined in equation I-B.1l
Series of constants defined in equation I-B.1l
Constant defined in equation I-3.20

Constant defined in equation I-3.20

Heat £ransfer coefficient

Series of constants defined in equation I-B.1l
Second invariant of é

Series of constants defined in equation I-B.1l
Thermal conducfivity

Power law consistency index

Characteristic length

Number of grid points across flow less one
Flow behavior index

Nusselt number

Pressure

Pressure at the entry

Dimensionless pressure (=p-po/pu02)

47



]

g
H

el
(0]

t+

< a a o« c H Hsd'

<

>

~

]

48
Excess pressure drop
Prandtl number
Heat flux at the wall
Reynolds number
Temperature
Temperature at the entry
Temperature at the wall
Dimensionless temperature (=(t—tw)/(to—tw))
Bulk temperature
Axial velocity (in x-&ifection)
Axial velccity at entry (uniform)
Dimensionless axial velocity (=u/uo)
Average axial velocity (dimensionless)

Velocity in y-direction

Dimensionless velocity in y—direction<; #

(2a)" u 1" v'>
Coordinate along the channel

Dimensionless coordinate along the channel (=(y/a/Re))
Entry length at 98% of the fuily developed centerline
velocity

Entry length at 99% of the fully developed centerline
velocity

Coordinate across channel

Dimensionless coordinate across channel (=y/a)

Coordinate along the width of plates
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Greek letters
@ : Thermal diffusibity (=k/pCy)
Yp ¢ Minimum gradient

A : Rate of deformation tensor

X : Increment along x

AY : Increment along y

T : Stress point (in the grid)

I : Stress tensor

o) : Fluid density

w : Vorticity

Subscript

: For mesh point in x-direction

k : For mesh point in y-direction
m : Number of gridypoints across flow less one
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" PART II

CONVERGING FLOWS FOR PSEUDOPLASTIC FLUIDS

II- 1 INTRODUCTION

Converging flows of newtonian fluids have been studied
for a while since the Navier-Stokes equations in this case
can be solved analytically either with, or without the boundary
layer approximations, and because analytical solutions were
the main method of solution before the advent of computers
in the late forties. Since then some numerical solutions were

developed and compared to the exact solutions.

In this second part, converginé flows for pseudo-
plastic (power law fluid) and newtonian fluids are analysed
by a finite difference integration method. Solutions for
newtonian fluids will be presented and compared to the few
available results found in the literature. They are produced
in order to ascertain the attainability of exact fully developed
velocity profile at various flow conditions; this aspect of the

problem seems to have been neglected by preceeding authors.

In the first section of this part, a survey of the
current literature is presented, followed by a second section
where the solution of the problem is presented. Finally the

results of this work are outlined and discussed in a last section.
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II- 2 LITERATURE SURVEY AND METHODS OF SOLUTION

II- 2. 1 Analytical solutions

VOne of the few exact analytical solutions of the
"Navier-Stokes equations is about flow ﬁhrough converging and
diverging channels. The solution was found independently by
two workers, G. Hamel (1916) and G. Jeffery (1915); they
reduced the Navier-Stokes equations to an ordinary differential
equation which in turn was solved through the use of elliptic
functions. Millsaps and Pohlhausen (1953) extended the
calculations of Jeffery and Hamel for the hydrodynamic part

and solved the energy equation transformed into an ordinary

differential equation with a finite difference method.

Another method of solving the problem is to make
the boundary layer assumptions and theréfore simplify the
motion equatioﬁs. Again they are solved exactly; that is
what Pohlhausen (1921) did in an early paper. Reeves and
Kippeﬁhan (1962) in a subsequent paper are presenting a very
good comparison of the two methods; their results show that
the boundary layer velocity distribution is very close to the
exact solution for a Reyn&lds number of 50; so we can conclude
that for Reynoids number higher than that value the boundary layer

assumptions will give solutions very close to the exact value.
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There are a few more approximate solutions to
converging flow problem. Williams (1963) is presenting one
in which, as he points out, "the equations of motion for flow
in slender channels at moderate or high Reynolds number are
identical in form to the boundary layer equations", although
.he goes on to say that those two solutions are not the same
because of different boundary conditions, his results (At
Re = 600, 1384 and 5000) are the same as Jeffery-Hamel's exact
solution. In a more recent paper, Balmer and Kauzlarich (1971)
are presenting results for an elastib fluid sheared in its new-
tonian region; even through they are using a power law consti-
tutive equation, their exponent must be one as a condition
for transforming a partial differential equation describing
the flow, into an ordinary one by similariﬁy analysis; this

of course, limits their results.

All the solutions discussed ﬁp to this point, are
for fully developed flow; the next ones including those in
the next section using numerical methods,zare solved with
eﬁtry profile which means that we are able to check if, at
certaiﬁ flow conditions, we are effectively reaching the
fully developed profiles; furthermore velocity distributions
can be followed as the fluid proéeeds in the converging

channel.

Atabek (1972) linearized the two momentum equations

in order to solve for arbitrary entry profile; the weak
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points of his analytical solution seem to be the assumptions
that the fully developed profile is obtainable at the apex
of the converging plates and that the velocity distribution

is taken as a perturbation of the fully developed profile

throughout.

II- 2. 2 Numerical methods

Sutterby (1965) was one of the first workers to
develop a numerical method for converging flows. He simpli-
fied the Navier-Stokes equations with approximations and then
solved those equations by finite differences; unfortunately
his results are for converging tubes and for initial parabolic
profile making comparisons almost impossible to make with

our results.

Another paper was published by Yang and Price (1972)
on converging plane-walled channels for newtonian fluids.
The numerical solution presented here is similar to their
solution; as a matter of fact our equations for the newtonian
case are identical and the results are almost the same. Since
they seem to have employed a rougher mesh than the one used
here, a comparison is presented with their results to see
the effect of the grid size on the convergence of the

solution.



. IT- 3 = SOLUTION OF THE PROBLEM

The constitutive equation to be used will be the
power law equation. Since we are dealing with polar
coordinates we can expect that this constitutive equation
will be quite complex; approximations will be made in order
to simplify this equation, in a way similar to Sutterby
(1965); first the assumption of purely radial flow is made
(that assumption was made also by Hamel and Jeffery to solve

analytically for newtonian fluid).

So we have that:

and v = 0 (Ir-3.1)

where F(6) is a function of 6 only

The physical system is represented in figure II-3.1l:
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)
YA A YA A A Y YA YA YA A

Figure II-3.1l: Physical system

')

We know that for power law fluids we have the

following stress-shear relation:

n-1
1y

A (II-3.2)
2_ =

-x |

where 1 = stress tensor

12 = second invariant of A

K = power law consistency index
n = flow behavior index
A = rate of deformation tensor (symmetrical)
- » -
_du d(v/r) 1 du
25 *—3r 't 39
where A =
d(v/r) ,1 3u 1 ov u
“Ter 't 39 2r3 t
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If we expand the second invariant we have

T, ol = 2'(3_U)2 . 2(1 v , v|?% (r'a'<v/r> s 1 33)2
= = or r 9

.(II-3.3)

Then with the assumption of radial flow we will have

A2
- F B
12 = 2<—§> (II-3.4)
r
v odE
where F = 35
So
v |n-1 n-1
T =K -F-'-Z— A =k |L23u A (II-3.5)
= r = r 06 =

II- 3. 2 Hydrodynamic problem

The continuity and momentum equations are developed
in order to solve the flow problem; polar coordinates as shown
earlier in figure II-3.1 are used. At the inlet, the entry
prcfile will be either uniform or parabolic to approximate
the change from a reservoir to converging plates or the change
from - parallel plates to converging ones. The following

assumptions will be made to simplify the equations:
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= Only small angles are used{(6-dir. motion is neglected)

~ Incompressible flow

- No end effects (semi-infinite plates i.e. motion
in z-direction is negligible)

= Stegdy flow

- No body forces

- Constant fluid properties

- No exit effects (frdm the sink at the apex)

With these assumptions in polar coordinates, the

equations of motion are from Bird et al. (1960) (p. 83):

- Continuity

3 (ru) v _ _
o t 55 0 (II-3.6)

- Momentum equation in r-direction

wdu yvdu_v2 _~ldap 1t (3¢ Ter)), ¥Tre , .
or r 36 r p dr o \r or 96 66

(I1I-3.7)

- Continuity in the integral form

B .
G;Bro = .//( ur dé (I1-3.8)

o

Note: 66 is the average velocity at the entry which

-

means that for uniform entry, u, represents the

actual flat velocity profile.
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We did not include the mohentum equation in the
8-direction because only small angles of convergence are
used (<15°) so the motion in the 6-direction will be considered
negligible; this approximation is similar to the one used by
Sutterby (1965)rénd Yang & Price (1972). 1In the equation of
-momentum, we are replacing all the stresses by the equivalent
constitutive equations as defined in the previous section.
After several manipulations described in appendix II-A, we

get the following momentum equation:

wdyyvdn w2 1dp L xy"3aw L1 (22 s 22w
or r 9 r p dr p r Jr 2\, .2 2
. Y T
K ou 9 (|y|™1 v v 1 Ju\o( |y n—%
+§(2r'a? 3T +(H_E+ Fae) 36
(I1-3.9)

where y = 1 3u
r 96

2
The term 93U is neglected because it represents
or .
only a smaller part of the axial diffusion of momentum

(% — and 35 are other terms). In the last term, only
o

. ~1n-1
1 %% 3 ge will be retained because it does not contain
r

any 0-direction velocity or derivative with respect to r which
after the initial flow development are rapidly becoming

negligible. So we finally are left with the following equation:

i<

ud 4 Yoy _v2 ~1ldp 4 KI¥[P™L (3 3w 4 1 (232u 4|+ kK 2u 3ly|P-
r 90 r o r 2 2
r

Q
2B
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With the use of the following variable transformation

U= u/uo R = l—r/ro
vV = v/u, . ¢ = 6/8
- 2
P = (p-py)/pug, (TX-3.11)
we obtain
- Continuity equation
9((1-R)U) 13v _
SR T B3¢ - O (II-3.12)
- Momentum equation
w,1 v o, v2 _ a1 |1 au (™t
oR B (1-R) 93¢ (1-R) dR Re B(1-R) 9¢
Il 3U n-1
3w, 1 (1 82U+U) L1 13U 3|B(I-RT 3%
— o = = = 0N 4
I-R) 3R (2|02 02 Re B 3¢ ~ 9¢
(IX-3.13)
= 2-n_ n
where Re = EQ..RFQ__D = Reynolds number

- Integral form of continuity

1 | 1
/U(l'R)-d o " /U(l—R) a4 | ppoar  (T1-3.14)

0 0
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One point to be noted is the fact that in the
physical system as it stands in figure I-3.1, the veloc

M"u" is in the opposite direction of "r" the radial leng

ity

th

so, before transforming with the use of the above variables,

this must be taken into account by replacing "u" by "-u

In termsof dimensionless variables, the bound

conditions and initial condition are as follows

- Boundary conditions

0 and V

at the wall ¢ =1 U

U
36 = 0 and V

Il
o
|

at the centerline ¢

- Initial condition (for uniform entry)

at the entry R = 0 Uu=1 and V = 0

In order to use the finite difference scheme, the grid

figure II-3.2 is employed:

m+1

N VAN \\\WkLg\\\\

Figure II-3.2: Finite difference network

ary

(I1-3.15)
0

(II-3.16)

in
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The finite difference approximations used are:

2U _ Uik U3,k
oR AR

au _ Y541,k41 TY441,%-1
39 204

3V _ V341,k+1 “Vy41,k |
b Ad ' (I11-3.17)

320 _ Ug+1,k+1 “2Y4+41,k U541 ,k-1

2 2
99 A
ar _ Pj+1 Py
dR AR .

The continuity equation becomes:

- Vj+1,k

BAY
v T = +
J+1,k+1 3ar (TR 54 ¢H+1,k Uj+l,k+l)

. =(1-R). (U, +U ., )
J j.k  j,k+1 (I11-3.18)

Similarly the momentum equation becomes:

Be Use1,kx-1 By Ys41,x *Ck Uje1,k+1 Pk Py41 = Ex
(II-3.19)
%5 x4 T8 k1
- Vy,xk T B@A-RY. 256 Gy,
where A, = — J - Jr >
B(l-R)j 2A¢ ((l-R)jBA¢)
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X I Uj,kﬁ{ Gj)k" . .3 G

x AR ((1-R)j B A¢)2 (l-R)j AR
V. . - 23,k+l "Gj k-1
j,k = B(I-R). 24¢ G g
B(1-R), 2A¢ ((1-R) A¢)
L] J
1
Dy = AR
2 2
I S 7 O - s 1 S % - 3
AR (1-R). AR  (1-R). AR (1-R) “.
J j J
' n-1
_1 |1 (Uj.k+1 'Uj,k—l)
where Gj,k =g B(l-R)j 356

and the integral form of the continuity equation is

m

1-R T U. = (1-R).
( )j+1 k=1 j+1,k j

(I1-3.20)
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" II- 3. 3 Energy equation

For the energy equation, viscous dissipation is
considered negligible and all the assumptions made for the

hydrodynamic problem are retained.

The energy equation then becomes:

: " 5
L3t vat_ k (13t 3 : +l5 Ch: (II-3.21)
or r 36 pCp r 9r dr™ r~ 26
Following Yang & 82t 1 9t
Price(1972) the term — will be neglected since ol which
or

is the other term for axial heat diffusion is more important:

To put that equation in dimensionless form, we will use the

variable transformations already mentionned in the previous

section (equations I-3.11l) and
t-ty

T = =
te tw

(II-3.22)

where - and t, are the temperature at the entry

and the wall respectively. So the energy equation becomes

37 1 Vv 3T 1 1 QT 1 92m
U—+=——=—|— =% 5 — %
oR B (1-R) 9¢ Pe (1-R) 3R (B(1-R)) 3¢
(II-3.23)
u.p . X
where Pe = = B2 Peclet number
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It should be noted that here, as in the hydrodynamic

problem, "u" must be replaced by "-u" to account for the

nw..n n

opposite direction of "u" and

r" in the physical system»of
figure II~-3.1.

The same mesh network as for the hydrodynamic
problem is used along with the following temperature finite

difference representations:

T =T
9T _ _j+1,k Y K
oR AR

T _ (II-3.24)
BT _ "j+1,k+1 " §+1,k-1
3% 200

320 _ Ty+1,k-1 "2T541,k *Ti41,k41
3¢° 86>

After substitutions, the energy equation becomes

He Typy,k-1 Pk a1,k Ik Tye1, k41 = Mk
‘ (II-3.25)
- Vi,x - 1
where Hp = BN . -
B (1-R) 2A¢ Pe (B (1-R)A9)

for lgks<m

Vi,x | 1

B(1-R) 24¢ Pe (B (1-R)A¢)>

t
|

... e
. J.k) 1
My “( 2R / Y5,k T Pe(I-R

2 1 ( 1 >+ 2
k — U -
AR Tk Re (1-R) Pe (B (1-R)A9)

2
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The bulk temperature or mixing cup temperature is

defined by the following equation
1

[Ujﬂ,k i1,k 99

U

o T
where U = average velocity

The local Nusselt number is obtained as previously:

1 = e— T ———

o
If "L" is taken as the total length of the arc at the entry

and "AT" as (Tb —TW), we end up with the following expression

9T
(w)w .
Nup, = 1= %

Now the average Nusselt number is calculated using the expression
below where the integration of the local Nusselt number will be

performed using the trapezoidal rule

| R
Nu =_1./Nu dr
R R

0
In order to calculate the temperature gradient at the wall,
the expression below is used as described in Katotakis (1969)
and Vlachopoulos & Keung (1972); this four point formula can

be easily derived from a Taylor series expansion.

3T -1 )
8T "1 fl4q g & " +2 T
APy 64¢ ( = lem+l 18 Tjrm : Tjrm-l ; jm=-2

where m+l1 is the grid point at the wall
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II- 3. 4 Numerical procedure

The numerical procedure to compute the velocities,
pressures and temperatures, is the same as the one used in
Part I so it will not be repeated here and the reader should

'see Section I-3.4 for the details.

II- 3. 5 Stability and convergence

Similarly to what was said in Section I-3.5, when
someone is dealing with highly nonlinear equations like
the motion equations, there are no absolute stability criteria

that one can obtain as in the case of linear equations.

As previously, convergence is ascertained by
decreasing the mesh sizes; one tries to get results that do
not change significantly with the use of finer grid sizes.
Computer time requirements must be taken into account at
this point. To achieve convergence in our case, nine
different mesh sizes which are shown in Table II-3.1 in order
of decreasing roughness, were used to make a graph of the
ratio of maximum velocity over the average velocity along "R".

(These mesh sizes are described in detail in appendix II-B).
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Mesh size symbol Roughness

c-21
Cc-22
C-23
Cc-41
C-42 Decreasing roughness
C-43
C-82
v-83

V-164 \

Table II-3.1: Roughness of mesh size

In the mesh symbols, the first digit is a letter where, C
stands for constant number of grid spaces across the flow

and V means variable number of grid spaces across as the
marching procedure goes on; the first number multiplied by 10
gives the number of grid spaces across (exception: for V-164,
we use 16); the last digit is a number describing the kind of
spacing axially, where a higher number means a finer mesh
-size. In figure II-3.3, we can see that as the mesh size
‘becomes finer the curves are going down with the best one
being C-43 or V-83 or V-164. There can be a difference as
high as 3% for example at R=.1 between the roughest and
finest mesh; however this difference is almost unnoticeable
for R>.35. 1In this graph, the work of Yang & Price (1972)
has been included, of which the present work is an extension;
it was found that C-22 had the closest fit with their
results; as we can see from Table II-3.1, this is in our
estimation, one of the rougher mesh sizes. In a private

communication with one of the authors, Price (1972), it was



c-23

///// c-22 and Yang & Price(1972)

c=-21
C-41
C-43 or V-83

«15 | . R «25 | .é
R

Figure II-3.3: Umax/ﬁ vs R for various grid spacing
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found that at the entry they were using 39 grid spaces
perpendicular to the flow and going down to 19 after a while;
since their physical system included the full taper angle
and not half of it as in the present work, we effectively
should have a similarity between their 39 point analysis and
"our 20 in C-22. So our conclusion is that they should have
used a finer mesh for their work since their results can

be improved. The mesh size V-83 was used throughout the

rest of this work.



II- 4 RESULTS. AND DISCUSSION

II- 4. 1 Comparison for the Newtonian case

The results of the present work for a newtonian fluid
will be compared principally with data of two recent articles
namely Yang & Price (1972) and Atabek (1972) whenever possible
and with Jeffery—Hamells exact analytical solutioq of fully

developed flow as presented by Millsaps and Pohlhausen (1953).

The Jeffery-Hamel solution requires the use of
Jacobian elliptic function making the calculations tedious; so
Millsaps and Pohlhausen are giving results for only three
Reynolds numbers ranging from 684 to 5000. An excellent
agreement is found to exist with the present work; the velocity
profiles were taken here at R=.7 when they were evidently
fully developed, are yndistinguishable from the true profile.
Atabek, for developed velocity profiles, is admittedly reporting
profiles in excess of 7% to the two values at intermediate
Reynolds numbers. Similarly, our profiles were found to be
flatter than Atabek s with differences of up to 9% at R=4400.
The equation of Atabek is also valid for low Reynolds number
but not less than 50 was used in this work as recommended by
Reeves and Kippenhan (1962) for a good agreement between velocity
distributions of exact boundary layer solution and Navier-Stokes

exact solution. 1In figure II-4.1, those results are shown:

70
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This figure also includes céses where the axial velocity is
normalized with the average velocity in order to show that
Atabek s work and the present one are giving similar results
at very high Reynolds numbers. In figure II-4.2 the
development of the axial velocity with respect to R (the
axial dimension) is shown; it is apparent that velocities
are increasing faster according to our calculations than

in the solution of Atabek.

Pressure curves are found in figure II-4.3. Most
of the results are within 10% from the results of other
workers and the curve shapes are the same. Unfortunately,
Atabek is solving at very high Reynolds numbers where the
flow is almost potential. We presume that results would
differ somewhat at lower Reynolds number because of the
differences in velocity profiles. Pressure results of Yang
and Price (1972) are also shown; we can see that they
agree reasonablv well with those of the present work. The
biggest differences are occuring at the entry where, as it
has been pointed out, the grid size has an influence on the

results.
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II- 4. 2  Other results for newtonian case

In this section, results obtained by the present
method, which are very difficult to compare with others, are
discussed. Furthermore the rapidity with which a fluid is

. developing will be studied.

As it was seen above, two parameters are affecting
the hydrodynamic problem, the Reynolds number and the taper
angle. 1In the next three figures, II-4.4 to II-4.6, the center-
line velocity against the axial distance at different Reynolds
numbers (Fig. II-4.4 for B=2.5 and Fig. II-4.5 for B=5.0)
and at different angle values (Fig. II-4.6 for Re=1000) is
shown. It appears that the flow is slower to develop as the
Reynolds number or the taper angle are increased. The following

expression can be thought of as a definition of an entry length:

1i 0. (U ﬁ) = U
RiT 92 \ max/ (Umax/U>R=Rent

where Ron is the entry length

t

Figure II-4.7 is an example of the kind of curves obtained if

R is plotted with respect to the Reynolds number. Curves

ent
are similar to those obtained by Atabek (1972) i.e. they are
reaching a maximum at a certain value of the Reynolds number.
The value of that maximum is less than the one obtained by
Atabek: this confirms what we saw earlier about the slower

development of the velocity profiles.
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The heat transfer problem can be analysed by varying
three parameters (for a newtonian fluid) namely the Reynolds
number, the Peclet number and Q. In figure II-4.8 to II-4.11,
éne can see the effect of different Peclet numbers on the
bulk temperature and on the local Nusselt number. Since
the Peclet number is the product of the Reynolds number and
.the Prandtl number, one can expect tﬁe same effect when we
are lowering the value of the Peclet number as we had in
the first part when lowering the Prandtl number; the bulk
temperature is effectively decreasing much faster at low
Peclet humber. The same is also true for the local Nusselt

number as shown in those figures.

II- 4. 3 Pseudoplastic case

The value of flow behavior index was limited almost
exclusively to values over .5 since, in most cases, potential
flow was obtained throughout for lower values%l)At a flow
behavior index of .6, the fluid was found to exhibit potential
fiow behavior for moderately high Reynolds number as is
shown in figure II-4.12 where the ratio of centerline velocity
over the average velocity is plotfed with respect to R. The
same kind of graph is presented in the next figure (II-4.13)
for n=.75 with a varying Reynolds number. The trends are the

same as reported for newtonian fluids; a new characteristic is

(1): Since we use high value of F.B.I., thes[minimim gradient value
is not important.
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that the curves are reaching a maximum and then decreasing.
This can be explained by the fact that, at lower flow
behavior index, a fluid takes more time to develop as we
saw for parallel plates entry; this fact will mean that at
a certain value of R, the rapidity of development will not
be fast enough to compensate for the'acceleration due to

converging effect of the walls.

From figure II-4.14, we can see that pressure drops
are decreasing as the flow behavior index is lowered. 1In
their first part, the curves are presenting an almost constant
pressure gradient but as soon as the fluid reaches a region
where the flow becomes noticeably accelerated, the gradient
increases sharply. We can see also that pressure curves
have a minimum which is caused by potential flow. In figure
II-4.15, one can see the effect of the flow behavior index
on curves of centerline velocity normalized by the average

velocity plotted with respect to R.

For the heat transfer part, we are producing in
figure II-4.16 curves of the bulk temperature at different
flow behavior indices. The curves are lower as the flow
index is decreased up to a point where potential flow again
is attained;'wé can see that heat transfer is decreasaiby the
non-newtonian characteristic. The next figure II-4.17 is
showing the value of the local Nusselt number along R again,
at different values of the flow behavior index; as a matter

of fact, the lower bulk temperature seems to be the principal
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cause for the higher Nusselt number at low index since
the temperature gradients were quite similar from one

behavior index to the other.

Varying the Peclet number has a similar effect
on the heat transfer as described for newtonian fluids.

This can be seen in figure II-4.18 to II-4.21. In figure

II-4.22, the average Nusselt number is plotted against

R for n=1.00 and n=.75.
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II- 5 CONCLUSIONS AND RECOMMENDATIONS

In this second part, pseudoplastic fluids are
analysed in converging channelé. Excellent agreement was
found to exist between this work and the exact fully
developed solution of Jeffery-Hamel for newtoniaﬂ fluids.
Some discrepancy (Newtonian Fluids) with the analytical
solution of Atabek (1972) was encountered, the result of
the present work giving faster development of profiles, and
agreement was good with the work of Yang and Price (1972)
except in some cases where the finer mesh size used here
gave some differences. New results were obtained for
pseudoplastic fluids in converging flow in which a recession
of the centerliné velocity is predicted after the initial
development. The heat transfer problem is also analysed with
results expressed in terms of the bulk temperature and the
Nusselt number where this last guantity was found to increase
after the initial decrease contrarily to the parallel plates

where the Nusselt number reaches an asymptotic value.

Recommendations for this part are in two directions,
experimental and theoretical. Since the author has found no
experimental work in this field, it is recommended that the
experimental side of this work be done. On the theorical aspect,
we recommend that the extension of this thesis include visco-
elastic fluids again along the line of the devialoric stress

tensor as used in Balmer and Kauzlarich (1972).
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NOTATION

Ayx : Series of constants defined in equation II-3.19
By : Series of constants defined in equation II-3.19
Cy : Series of constants defined in equation II-3.19
. Cp’ : Specific heat
Dy : Series of constants defined in equation II-3.19
Ek : Series of constants defined in equation II-3.19
F : PFunction of 6 defining the axial velocity in
equation II-3.1

Gj,k : Expression definéd in equation II-3.19

h : Heat transfer coefficient

Hk : Series of constants defined in equation II-3.25
12 : Second ipvariant of A

Ik : Series of constants defined in equation II-3.25
k : Thermal conductivity

K : Power law consistency index

L : Characteristié length

Ly : Series of constants defined in equation II-3.25
m : Total number of points less one in radial direction
My : Series of constants defined in equation II-3.25
n : Flow behavior index of power law fluid

Nu : Average Nusselt number

NuR : Nusselt number (local)

P ¢ Pressure
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Po : Pressure at entry
P : Dimensionless pressure (=p:Pg)
pu,
Pe : Peclet number
r : Radial coordinate
Lo : Radial length
R : Dimensionless radi;fonﬁnate (=1-x/ry)
Re : Reynolds number
Ront ¢ Radial entry length
t : Temperature
te : Temperature at the entry
tw : Temperature at the wall
T : Dimensionless temperature (=(t-t,)/(tg-t,))
Tb : Bulk temperature
u : Radial velocity
u : Average radial velocity
ﬁ; : Average radial velocity at the entry
U : Dimensionless radial velocity (=u/ug)
il : Average dimensionless radial velocity
v : Angular velocity
\Y : Dimensionless angular velocity (=v/ug)

Greek letters

=™

Half the taper angle

Y : Variable defined in equation II-3.%
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A : Tenscr of rate of deformation

) : Angular coordinate

T : Stress tensor

P : Density

[ : Dimensionless angular coordinate (=6/8)
Subscript

| : Point number in radial direction

k : Point number in angular direction

m : Total number of points less one in radial direction
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APPENDIX I-A

Derivation of momentum equation (equation I-3.23)

‘from finite difference approximations (equation I-3.19 and

I-3,20) .

'We start from equation I-3.14

U 4y AW _ dP ,.n 3\|3¥ 5Y/
U sx 5Y ax *2 3y

(I-A.1)

by replacing directly the finite difference approximations

of equations I-3.19 and I-3.20

v Yi+,xY K,y 1 99,k017Y k101 Y541 k4179541 k-1 = By
3.k AX j.k 2 2AY ] 2AY AX
n-1 In-1
Uy, k+17Y5,x Y5,k417% ,x  Y5,kx7Y5,k-1 Us,x7Y5,x-1
e AY Ay AY AY
2AY
n-1 n-1
. -u, |" v, U, U,  -U, U, ~U,
Ue a1 ™4, % 3+41,%+1 05+, k [Y5,67% k-1 J+1,k 3+1,k-1
Y AY AY AY
2AY

(I-a.2)
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Rearranging and putting all the known terms on the right

side and all the unknown on the left side

U, [ V4,% _ Jem|?t

(0% , lep|"1 , Jon|n-2
AX AY? AY?

+ Uy ,x

V. n-1
j.k JGPJZ +Pj+l +l_>=
4AY AY AX

+ Uji1,k+1

2
P. U. U. -, U. s -
+_J4+ Jsk '"Vj 5 j, k+1 j,k-l)+]Gp|n—l j.k+1 "j,k _IGmln-lF],k 3 k=1
. ' 2 2
AX  AX ' 4AY AY \ AY

where Gp = 2

Gm = 2




APPENDIX I-B

" Transformation of energy equation

The energy equation is (equation I-3.26)

G0 L g BT S 0%y ¢ (I-B.1)

X oY Pr 3Y2

Using the finite difference equation I-3.29, we get

F +G. ‘T +H -
k T5+1,k-1 Tk Tye1,k Bk Tyer,ker T %

poo_ ik PViH,e 2
K 2 4AY  pr 2av@
¢ _ Y5,k Y41 ,x 2
k = + 2
240X Pr AY
a o ey v
k = 3

2 4AY Pr 2AY

7 295,k795+1,k T3,k V9, xtV541,k Ty, k417 Ty, k-1 4 T9,k+172T5,k+T5 k-1
k : - 2
2 AX 2 4AY _ Pr AY
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APPENDIX I-C

Additional results for straight channel entry flow

I-C.1 : Velocity vs Y for n=.05
I-C.2 : Velocity vs Y for n=.15
I-C.3 : Velocity vs Y for n=.30
I-C.4 : Velocity vs Y for n=.60
I-C.5 : Velocity vs Y for n=1.00
I-C.6 : Velocity vs X for n=.15
I-C.7 : Velocity vs X for n=.15
I-C.8 : Velocity vs X for n=.50

I-C.9 : Velocity vs X for n=1.00
I-C.10: Pressure vs X

~I-C.11l: Bulk temperature vs X
I-C.12: Bulk temperature vs X

I-C.13: Nusselt number vs X
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" APPENDIX TI-A )

" Derivation of momentum equation for converging flow

-%u .vou .v® . 1ldp 1 (3 (rTr‘r) 9T
U —+ - — - — = —— — — — + -1
or r 96 r p dr pr or 90 06
(II-A.1)

If we expand the last term in accordance with the constitutive

equation, we get

3 (G)zég) ( v v, 1 é&)
K % or, 5.\(G) or r + r 96 1 3v u
+ & + ~2(G) [= <L + 1
pr or 5 26 r 96 r
(II-A.2)
1 su|n-1
where (G) = '; gg’

By using the following two identities taken from the

continuity equation

lov_ _13(xuw _ _3du _u
r 96 r 9dr or r
(ITI-A.3)
3 Ga(ru))
v or =—p du _r 2u
= 2
orab 20 or or
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we have with the following last term

v N D e s - Iy } e R .
+ K(G) _3__2+l_2 U+3_§ 39%u K 23(G) '3v _v,l3du

p or 06 r or p 96 or r r 36

(2]

, (II-A.4)
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APPENDIX II-B

" Mesh sizes used for converging flows

Number of grid Value of AR
peints across
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20
20

.40
40
40

-20
20
20
20
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40
40
40

80
80
80
80

40
40
40
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20
20
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80
40
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4 160
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80
40
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20

.001
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+05
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.0001
.001
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.0025
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APPENDIX II-C

Additional results for converging entry flow

II-C.1 : Velocity vs R for n=1.00 atp=.5°
II-C.2 : Velocity vs R for n=1.00 at g=2.5°
II-C.3 : Velocity vs R for n=1.00 at B=5°
II-C.4 : Velocity vs R for n=1.00 at Bg=7.5°
II-C.5 : Vélocity vs R for n=.75 at Re=5000
II-C.6 : Velocity vs R for n=.75 at Re=1000
II-C.7 : Velocity vs R for n=.75 at Re=300
II-C.8 : Velocity vs R for n=.75 at Re=50

II-C.9 : Pressure vs R for different B

II-C.10: Pressure vs R for different Re
II-C.11: Pressure vs R for different Re
ITI-C.12: Bulk temperature vs R for different B
II-C.13: Bulk temperature vs R for different Re
II-C.14: Nusselt number vs R for different Re
IT-C.15: Bulk temperature vs R for different Re
II-C.16: Nusselt number vs R for different Re

ITI-C.17: Bulk temperature vs R for different Re
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VELGCITY VS R FOR N=1x00
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Figure II-C.l: Velocity vs R for n=1.00
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VELOCITY VS R FOR N=1.00
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Figure II-C.2: Velocity vs R for n=1.00
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VELOCITY VS R FOR N=1«00
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Figure II-C.3: Velocity vs R for n=1.00
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VELOCITY VS R FOR N=1x00
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Figure II-C.4: Velocity vs R for n=1.00
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VELOCITY VS R FOR N= 75
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VELOCITY VS R FOR N= «75
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Figure II-C.6: Velocity vs R for n=.75
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VELOCITY VS R FOR N= «75
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Figure II-C.7: Velocity vs R for n=.75
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VELOCITY VS R FOR N= «75
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Figure II-C.8: Velocity vs R for n=.75
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BULK TEMPERATURE VS R
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Figure II-C.l4: Nusselt number vs R
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" APPENDIX IIT

'Finite difference solution of channel

entry flow with an iterative scheme

ITII- 1 Theory

As mentionped in the first part of this work, we
can use an iterative scheme if when introducing finite
difference representations, we still have non-linear
equations. Whereas the fully implicit scheme can proceed
from one column to the other; the iterative one uses
approximations of the values to be calculated. In the
present work, the first approximation used, is the values
of the prececding column ; after the first calculation, the
approximation is taken the sum of 85% of the previously
calculated values and 15% of the old values. (convergence
being generally faster with this ratio). The word "values“
here applies only to the axial velocities and pressure but
not to y-direction velocities since these are obtained
explicitly from the axial velocities. After each iteration,
the new calculated values are compared with the approximations
and the iterations are stopped if convergence is obtained
(less than .5% difference between approximations and

calculated values).
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For the iterative scheme, all the equations and
the difference transformations are the same except for the

following four finite difference approximations:

N AV o U U
V=_J_2L1 U = _L++l

U U n=dl g =

. _ {951, k41 “Ug4n k| Ugt1, k41 “U5+1,k
j+1,k+1/2 Ay =

(ITI-1)
e =1 B

- Y5415 Y441 ,x-1 Ust1,k "95+1,k-1

§+1,k-1/2 AY AY

Since each difference equation 1is similar to the ones
already used with the implicit scheme except for the momentum
equation, only the transformation of this last one will be

retaken here.

Starting from eqﬁation I-3.14

(2 2
U U @p | n C\[%Y Y

Usx*V 59 —&x* 5Y

(ITI-2)
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we replace directly the finite difference approximations

I-3.19, I-3.20 and III-1

+ - + - -
Uj,k Uj+1,k Uj+1,k Uj,k+vj,k Vj+1,k 4 Uj,k+l Uj,k—l+£ Uj+l,k+l Uj+l,k-l
2 AX 2 2 2AY 2 2AY

| |n-1 |

|n-1
. -U. . -U. . -U. U. .-U.
o Us k+1795,k Uy x+1795,x _IUJ,k ],k—ll 5,k Y4, k-1
=_dtl d,.n AY AY AY AY
AX N AY
n=l n-1
Y51, k417 0441,k Y5+1,k+1 0541,k Y541,k 05+1,k-1|  Yj+1,x70541, k-
| AY Y AY AY
* 2 AY
[TTT~3)
Rearranging, we have
A U +B U +C. U +D P = E
k §+1,k-1 'k j+1,k k §+1,k+1  k j+1 X
(III-4)
Via Vi ’G ln—l

m

where 2, = — L R 5

8AY AY

IR [ ’n—l I ln—l
Bk = + Jrk J+lrk + Gmn + Gpn

2AX AY2
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V. -V. -
C - _Jk j+1,k ’Gpn,n 1
k ) 2
8AY AY
1
D e
~k = AX
P. U. +U, U, ' +V. =
iy 3k ek Yk Vi ek Yy k01 Y k1
X 2 AX 2 4AY
+ lep|™ L gp + |em|®L gm
AY AY

Uj+1,k+1 “U5+41,k
AY

where Gpn

5 Uj+1,k “Uj+1,k-1

Gmn = 7
U. -U.
_ j,k+1 j.k
Gp = 2 AY
U -U.
= j.k j, k-1
Gm 2 Ay

+ \Y4 + G d
We can see here that (Uj,k Uj+l,k)' ( i % 'S>' pn and Gmn

v

j+1,
are making this equation nonlinear; so we must set a value for
those variables before computing the j+l1 column.

The solving procedure remains exactly the same as

used for the implicit scheme.



III- 2 Results and discussion for the iterative scheme

This kind of solution was also investigated to obtain
results for dilatant fluids. The overall results from this
method are giving slower developing profile than non-iterative
solutions. In figure III-1l, we are plotting the entry length
(98% of fully developed profile) and comparing with similar non
iterative results of this work and Collins and Schowalter
values. We can see that the entry lengths are longer than
the usual ones; this. is probably due to the fact that the
effect of the wall is somewhat damped by the iterative scheme;
the first reaction (on the first calculation) being more
"explosive" than the following ones which.are lowering this
forward thrust. This should be especially true with the first
few colymns. We can see that for this kind of solution,
results were obtainable for n>1.0 i.e. for dilatant fluids; it
must be stated though that when n is higher than 1.75 there
are some instabilities particularly near the wall: those
instabilities were not strong enough to disturb the flow as
a whole and were taking the form of an oscillating perpendicular
(Y-direction) velocity. This kind of oscillation was also
noted for the values of the temperatures which made calculations
of the Nusselt number difficult because we must have accurate
temperature values near the wall to calculate the proper
temperature gradient. So at n=2.00 our statement that values

do not change appreciably with changes of mesh sizes does not hold

at times.
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The values of the excess pressure drops correction
are lower than the previously reported values; this is shown
in figure III-2 where excess pressure drops are plotted
against the flow behavior index. Varying the minimum gradient
on those curves has not any effect on lower flow behavior
index as in the non-iterative but has some at n=2.0. Figure
III-3 shows a fluid developing along X at five different values
of Y at n=1.0; we can see the differences between the two
schemes as the non.itérative one is developing faster than

the other one.

For the heat transfer, the results of the bulk
temperature are similar in forms with values just a shade

higher than the ones with no iterations. Fig.III-4 shows the Nusselt

number. For dilatant fluids, the values of the asymptotic
local Nusselt numbers are in accordance with the ones given

by Vlachopoulos and Keung (1972) as we can see in table III-1

below:
Y w25 oD 1.0 1.5 2.0
0.5 4.162 3.954 3.767 3.683 3.636
0.1 4,212 3.959 3.767 3.682 3.635

(Pr = 1.0) 0.01 4.212 3.966 3.767 3.682

(Pr = 5.0) 0.01 4,218 3.967 3.768 3.683 3.637

0.005 4.218 3.966 3.767 3.682 3.635

Vlachopaulos & :
Keung (1972) 4.22 3.97 3.767 - 3.64

Table III-1: Asymptotic Nusselt number for iterative system
(at Pr = 1.0)
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Figure III-3: Excess pressure drop vs flow behavior index
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VELOCITY VS X FOR N=1.00
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Those two systems as we saw, are giving different
results for the hydrodynamic problem but are giving similar
ones for the heat transfer part (this was predictable since
we are using exactly the same energy equation for the two
cases). In the present literature, there is no iterative
scheme with integration procedure (solutions of the full
Navier-Stokes equations are solutions of elliptic equations
in which all the grid points in the 2-dimensional mesh
are solved simultaneously). It could be that solutions
of the iterative type should be done without the boundary
layer assumptions because they are too precise for this
kind of problem making it a must to solve the entire
equations. ﬁowever we must say that this method can be
improved sensibly by an appropriate choice of step sizes

and finite difference approximations so it should not be

discarded as an inferior method.



APPENDIX IV

Algorithm and computer programs

Basic algorithm
Main program for straight channel with

non iterative implicit scheme

" Main program for straight channel with

)

iterative scheme

Subroutine " Const" for above programs

Subroutine "Gauss"

Subroutine "Dessin" for straight channel programs
Main program for converging channel

Subroutine "Const" for converging channel program

Subroutine "Dessin" for converging channel program,
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- ALGORITHM

Note:-Apply to all three main programs

-Broken lines apply to iterative
scheme

| .
3 Read mesh sizes

Finish?

S program
terminating

Read other parameters

v

Initiglisation’
Call "Const"

Establish starting profile and output

1
X=X+DX |t

T

. AP
r—- (Iterative scheme) L
L__ lrst approximation UCON=VOLD _J‘

— S— S— S— — Go— — — —

Establish coefficient matrix
Solve it to get UNEW, PNEW (Gauss
Subroutine)

156




o

Compute explicit VNEW

1

— ~—

-

— ~~
<Do we have convergence?~lNO
o —_

r |

[make another
lapproximation l
| 85% of new values
(+15% old values

e

or the present column

Do we do heat transfer calculatign

- Solve it

-~ Establish coefficient matrix (For heat transfer)

3
Calculate TBULK,NUS...

Y

Output results (Listing form)

Y

-Prepare values for plot
-Plot (If all results are in)

s thisfluid analysis finishe

o we change grid
acing in axial in direction

Yes .

Change grid size in axial-direction

check if same needed in cross flow direction

1

Change new values to old values
and prepare for next column
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NON-ITERATIVE IMPLICIT METHOD

PROGRAM TST (INPUTsOUTPUTsTAPES=INPUTsTAPE6=0UTPUT»TAPELOQ)
THIS IS A FINITE DIFFERENCE METHOD TO SOLVE THE MOTION
EQUATICNS FOR THE ENTRANCE REGION OF A CHANNEL
THIS METHOD IS USING A SERIE OF VALUES KNUWN AS THE OLD VALUES TO
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COMPUTE ANOTHER SET OF VALUES KNUWN AS THE NEW VALUES CURKRESPUNDING
TO THE NEXT COLLUMN (AXIALLY! SO THAT FRUM THt ENTRY ScT OF VALUES WE

CAN GO DOWNSTREAM AS FAR AS Wt WANT PROVIDING wk HAVE THE BOUNDARY
CONDITIONS
LIST OF VARIABLES

AN= EXPONENT OF THE POWER LAW FLUILD (FLOW BEHAVIOR INDEX'

UOLD (=) sVOLD(=) sTOLD(=) sPOLD= VECTORS OF VELOCITY (X=-DIRJs VELOCITY
(Y-DIR)y TEMPERATURE AND PRESSURE ALREADY KNUWN

UNEW (=) s VNEW(=) s TNEW(=) sPNEW= VECTURS OF VELOUCITY (X-vIRJs VELOCITY
(Y-DIR/)s TEMPERATURE AND PRESSURE TO Bt COMPUTED (N:tw!

UO(=)sVGO(=)sUN(=)sVN(=)= VECTORS OF VELOCITY ATTACHED TO HEAT TRANS+ER
GRID
UCON(=) sVCON(=)= VECTORS OF VELOCITY USED IN ITERATIVE TYPE MESH

TO CHECK THE CONVERGENCE

UUMAXN (=)= VECTOR OF VELOCITY DIVIVDED BY MAXIMUM VELOCITY (CENTERLINE’
(OUTPUT PURPOSE)

GRA(=) s GRAMIN yGRAMI = GRADIENTS = VECTOR UF GRADIENTS (FOR QUTPUT
MINIMUM GRADIENT AS DEFINEDIN READ STATes MINIMUM GRADIENT AS
DEFINED IN PROGRAM

FACT = (GRAMI) =% (AN-1/

X= VALUE OF X AT WHICH THE PROGRAM IS NOW

XT= NEXT VALUE OF X AT WHICH TEMPERATURE PROFILE wILL BE CALCULATED

TBULK= BULK TEMPERATURE OF FLOW

NUS= NUSSELT NUMBER

PR= PRANDLT NUMBER

LCON= NUMBER OF TIME wkt TRIED TO AChlEVE COMVERGENCE

TOL= TOLERANCE BETWEEN OLD AND NEW VALUES (ITERATIVE TYPE MeSH!

PAR= PORTION OF NEW VELOCITY TO AU TO THt OLVU ONE TO ACHIEVE CONVERGENCE

VARIABLES DESCRIBING THE MESH SIZE (MESH SIZES ARE VARYING AS Wk PROCEED!
INCY(=)= VECTOR CORRESPONDING TO NUMBER OF GRID SPACE ACRUSS FLOW
XINC(=)= VECTOR CORRESPONDING TU GRID SPACE IN X-DIR
ULIX(=)= VECTOR CORRESPONDING TO LIMIT UP TO WHICH THE PRECEDING

X-DIR GRID SPACE IS VALID
NOTE= THE INDICES FROM L TW 10 ARE FOR MUMENTUM mMcSH Sl4b ANV L TO <0
ARE FOR THAT TRANSFER MESH SIZE
NDXsNDXT= VARIABLES CORRESPONDING TU INvICES UOF PREVIOUS VARIABLES
TO KEEP TRACK OF THE NEXT MESH SIZt (FOR MOMENTUM MeSH AND
HEAT TRANSFER MESH)
CONSTANTS RELATED MOMENTUM MESH
A(=9=)= MATRIX OF COEFFICIENTS FOR MUMENTUM MESH
CP sABSCPsCPASABSCPNsCPANEW sCMsABSCM s CLMAS ABSCMN s CMANEW= CONSTANT USE
IN THE SETTING OF THE COEFFICIENT MATRIX (MOMe MESH!

NMAX1= NUMBER OF SPACE (DY) IN Y-DIR

NMAX= NUMBER OF POINT IN Y-DIR (NMAX = NMAX1 + 1!

DY= GRID SIZE IN Y-=DIR

DX= GRID SIZE IN X-DIR

NMAX49DDY2sDY2sDXIsDY2XsD2Y= SERIES OF CONSTANTS DEFINED IN SUBROU.
CONST CALCULATED FROM 4 PREVIOUS
CONSTANTS RELATEDL TO HEAT TRANSFER MESH
Al (=9=)= MATRIX OF COEFFICIENTS FOR HEAT TRANSFER MESH
NMAX1T oDXTsDXTsNMAXT= SIMILAR AS MOMENTUM MESH CUUNTEZPART BUT FOR
HEAT TRANSFER

NMAX4TsPRDY= DEFINED IN CONST FROM 4 PREVIOUS

VOLDO (=) sVOLDO (=) sTOLDO (=7 sUUMAXO(=?sLCONOSPOLDOs TBULKOsXULDL= ALL
THOSE VARIABLES ARE THERE JUST FOR 'OUTPUTING' CONVENIANCE
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/

YD= USED IN THE OUTPUT TO SITUATE A POINT IN Y=DIR (AT CENTERLINE YU=0eU,
AT WALL YD=1.0)
LL= FLAG TO OUTPUT EVERY SECOND TIMte
NMAXO s NMAXTO= O STANDS FOR OLD VALUES OTHERWISE SAME AS BEFOREe
CONSTANTS AND VARIABLES RELATED TO PLOTTING SUBROUTINES
UCL(=)= VELOCITY (X-DIR) AT CENTER LINE ‘
U98= 98 PER CENT OF LAST UCL (FULLY DEVELOPPED)
NPOS= COUNTER FOR INSERTION OF VELUCITY PROFILE
LN= COUNTER FOR DIFFERENT FLUIDS
Lls L2= COUNTER FOR PRESSURE UROPs NUSSELT NUMBER
VX(=)= VALUES OF Y (=10 TO + 1.0)
VY(=s=)= VELOCITY IN X-DIR FOR THOSE PREVIOQUS VX(-=)
XPRESS (=)= VALUES OF X (0eO TO 140)
PRESS(-s-)= PRESSURE DROP AT THOSE X
XNUS (=)= VALUES OF X (0«0 TO 240!
NU(=9=)= NUSSELT NUMBER AT THOSE X
FBI(-)= FLOW BEHAVIOR INDEX (SIMILAR TO AN)
EL(-=)= ENTRY LENGHT FOR THOSE PREVIUUS AN
COMMON NMAX1 sPNEWsA(59165) sUNEW(L165) s VNEW(165) s TNEW(165) sUOLD(165)
1sVOLD(165) sTOLD(165) sUOLDO(165) sVOLDO(165)sTOLDO(165) sUUMAXN(165!
29UUMAXO(165)9UN(165),VN(165),UO(165)9VU(165),Al(3,165),GRA(165)
DIMENSION VY(2193)sVX(21)sPRESS(10095) sXPRESS(100)sUCL(100) sEL(S?
1sFBI(5)sNU(100s5) s XNU(1UU) sTBU(10Us5)sUVEL(T70957 sVECTOR(11)
DIMENSION INCY(20)sULIX(20) 4XINC(20!
REAL NUSsNU
CeeeREALD IN ALL THE GRID SIZE
N 0 :
7 N N +1
READ(541105) INCY(N) sXINC(N)sULIX(N)
WRITE(691105)INCY(N) o XINC(N) sULIX(N)
IF (INCY(N! «NEe 0) GO TO 7
IF (N «GTe 10)GO TO 3
N = 10 :
GO 7O 7
CeeeREAD THE PARAMETERS
3 READ(591109)MAXs (FBI(N)sN=1,4MAX)
1109 FORMAT(IS5+10F542)
4 READ(591100)PRsGRAMINSTOL
LN = 0
IF(PR oEQe 0e0) STOP
5 IF(LN o«GEe MAX)IGO TO 850
LN = LN +1
AN = FBI(LN)
CeeoDEFINE MINIMUM GRADIENT
GRAMI = GRAMIN
FACT = (GRAMI)#*%*(AN-1e
Cee e OUTPUT THE PARAMETERS
- WRITE(6s1110)PRsGRAMI sFACTsTUL
Ceeo INITIALISATION OF COUNTERS AND OTHERS
: TGRAO = 0.0
SUM = 0.0
X = 00
NPOS
Ll =
L2 =
GRA(
LL

aNa¥aNalaNaNaNaNaNaNaNaRaNaRaNaNa XA

1

1) = GRAMI

C ~ 1
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TBULK = 060
NDX = 1
POLD = 00

XT = X +XINC(11)
Cee e COMPUTE ALL THE CONSTANTS NEEDED
NOXT = 11
CALL CONST(INCY(NDX) o XINC(INDX) o INCY(NDXT/ o XINC(NUXT) s NMAXL s NMAX s
1DXsDY s NMAX4 sDDY2 sDYZ sDX1 sDY2XsD2Y s NMAXLIT o NMAXT s NMAX4T sDYTsDXT PRy
2PRDY)
DO 102 N=1sNMAXT
UO(N)
VO(N)
TOLD(N)
TNEW(N)
102 CONTINUE
UO (NMAXT) = 060
TOLD(NMAXT) = 0e0
PO 1 N=1sNMAX

nun o |

o0

e
le
Oe

0

UOLD(N) = 1.0
VOLD(N) = 0.0

1 CONTINUE
UOLD(NMAX) = 0eU

CeeeQUTPUT THE STARTING VALUES
WRITE(691C01)ANsXsXsPOLDsPOLD
DO 2 N=1sNMAX sNMAX4
2 WRITE(691002)NsUOLDI(N? 9 VOLD (N
Cee o INTEGRATION ITERATION BEGINS
11 X = X +DX
CeeoSET THE COEFFICIENT MATRIX
DO 10U N=1sNMAXL
CP = (UOLD(N+1)-UOLDI(N) /DY
ABSCP = ABS(CP)
IF(ABSCP oLTe GRAMI) ABSCP = GRAMI
GRA(N) = ABSCP
CPA = ((2e%*ABSCP)*%(AN=1e) )/ (DY*%2)
IF(N e«NEe 1)GO TO 12
CM = -CP
CMA = CPA '
A(5+1)==(CPA*CP-CMA®CMI*DY —POULD/DX-UULDL (L) *UuLD(L1)/UX
GO TO 13
12 CONTINUE
CM = (UOLD(N)=UOLD(N=-1))/DY
ABSCM = ABS(CM)
IF(ABSCM «LTe GRAMI) ABSCM = GRAMI
CMA = ((2¢*ABSCM)*¥%(AN=1s))/(DYX%2)
A(54N)= = (CPA*¥CP-CMA*CM)*DY -POLD /DX
1 +VOLD(N)*( (UOLD(N+1/)=UOLD(N=171%0e5/L2Y }=(UOLU(NI*UOLU(N)I/LX
13 CONTINUE ‘ :
A(1sN)= +CMA +VOLD(N)/ (4e%DY)
A(24N)==CMA=CPA-(UCLDI(N) /LX)
A(3sN)= +CPA =VOLD(N)/(44%DY)
Al44N) = -DXI
10 CONTINUE
A(341) = A(34s1) +A(1,1)
CeeeSOLVE THE MATRIX (GAUSS ELIMINATIUN ALGOURITHM!?
CALL GAUSS
UNEW(NMAX) = 040
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CeeeCOMPUTE VELOCITIES IN Y-DIR
VNEW(1) = 0.0
DO 30 J=2sNMAX1
30 VNEW(J) = VNEW(J—=1) =DY2X*(UNEW(J)+UNEW(J=1)=yOLD(J)=UOLD(Jy=11)
VNEW(NMAX) = 0.0 .
- CeeeHEAT TRANSFER PART
CeeeSEE HEAT TRANSFER COLLUMN SHOULD BE DONE
IF(X oLTe (04999%XT))GO TO 130
] CeeeSET UP VELOCITY FIELD FOR ENERGY EQUATION
NTN = NMAX1T/NMAX1
NN = O ,
) DO 111 N=1sNMAX1
DO 111 L=1sNTN
) NN = NN+1
N ' VN(NN) = VNEW(N) =(VNEW(N)=VNEW(N+L1))%(FLOAT(L=1)/FLOAT(NTN))
" 111 UNCNN) = UNEW(N) =(UNEW(N)=UNEW(N+1))* (FLOAT(L=1)/FLOAT(NTN))
, UN(NMAXT) = 0.0
i VN(NMAXT) = 0e0
CeeeSET THE COEFFICIENT MATRIX (ENERGY EQUATION)
_ DO 125 N=1sNMAXLT
0 VCO = (VO(N)+VN(N) )/ (8e%0YT)

Al(1sN) = =-PRDY -VvCO
AL(2sN) = (UO(N)I+UN(N?)/UXT +2e*PRUY
} Al(3sN) = =PRDY +VCO

IF(N +FQe 1)GO TO 121
_ TNEW(N)=(UO(N)+UN(N) ) *TOLD(N?) /DXT
i 1-VCO* ( TOLD(N+1)=TOLD(N=1))
2 +{TOLD(N+1) =2¢%*TOLD(N) +TOLD(N=1))%PRDY
GO TO 120
) 121 TNEW(N)=(UO(L)+UN(L1) I *¥TOLL (1) /DXT +2e*(TOLL(Z2)=TOLD(L1))I*PRUY
120 CONTINUE
125 CONTINUE .
) A1(3s1) = Al1(3,1) +Al(1l,1)
CeoeSOLVE MATRIX
CALL DIAG3(AlsTNEWsNMAX1T)
} TNEW(NMAXT)= 040 '
Cee s COMPUTE BULK TEMPERATURE AND NUSSELT NUMBER
TBULK = (TNEW(L)®*UN(1?) +TNEW(NMAXT I FUN(NMAXT I/ 2e
} DO 122 N=2sNMAX1T
122 TBULK = TBULK +(UN(N)*TNEW(N))
TBULK = TBULK/FLOAT(NMAXL1T!
} TGRA = (=11e*TNEW(NMAXT)+18e*TNEW(NMAXT=1)=9«*TNEW(NMAXT=2)
1 +2e*TNEW(NMAXT=3))/(64%DYT)
NUS = (2«*TGRA)/(TBULK)
SUM = SUM+(«25%DXT*(TGRA+TGRAQ/ !
10000 CONTINUE
AVNUS = SUM/X
TGRAO = TGRA °
IF(X eLTe Oe0l «ORe L2 «GTe 100) GO TO 9998
TBU(L2sLN) = TBULK
NU(L2sLN)= NUS
XNU(L2) = X
L2 = L2 +1
9998 CONTINUE
DO 123 N=1sNMAXT
UO(N) UN(N)
VO(N) VN(N)
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TOLD(N) = TNEW(N)

CeeeSET XT FOR NEXT TIME

C

XT = X +XINC(NDXT)
GO TO 39

130 IF(X «GTe 0.001) GO TO 45

131

DO 131 N=1sNMAXT
TNEW(N) = 0.0
TBULK = 0.0

CeeeOUTPUT THE RESULTS (PRINT OUT FORM)
39 LL = LL +1

40

ANTN = FLOAT(NMAX1T)/FLOAT(NMAX1)

NTN = NMAX1T/NMAX1

IF(LL «NEe 2) GO TO 44

LL = 0

WRITE(691001) ANsAVNUS»XOLD 4POLDOs X s PNEW s TBULKsNUS
MM = 1

IF(NMAX eNEe NMAXO) MM = 2

NMAX4D = NMAX4%2

DO 40 N=1,sNMAXsNMAX4D

M = MM*(N-1) +1

NN = IFIX(ANTN*(FLOAT(N)=1le)) +1
NNN= IFIX(ANTN*(FLOAT(MI=1e/)) +1
YD = FLOAT(N-1)/FLOAT(NMAXL)

UUMAXN(N) = UNEW(N)/UNEW(1)
WRITE(691C02)NsYDsUOLDO(M! sUUMAXO(M) sVOLDO (M) s TOLDO(NNN? »
1 UNEW(N) sUUMAXN(N) sVNEW (NI s TNEW (NN’ s NNsGRA(N!

CONT INUE

GO TO 45

CeeePUT RESULT IN RESERVE BECAUSE OF NCN PUBLICATION

c

44

53

DO 53 N=1sNMAXsNMAX4

NN = NTN*(N-1) +1

UOLDO(N) = UNEWI(N)

VOLDO(N) = VNEW(N)

UUMAXO(N) = UOLDO(N)/UOLDO(1)
TOLDO(NN) = TNEW(NN)

XoLD = X

TBULKO = TBULK
POLDO = PNEW

CeeePART TO SET VALUES FOR PLOTTING SUBROUTINE

45

GO TO (801+802+802)4NPOS

803 IF(X eLTe 10)GC TO 701

GO TO 702

802 IF(X oLTe Ue05) GO TO 701

GO 7O 702

801 IF(X «LTe 0e002) GO TO 46

Cee oPREPARE VELOCITY FIELD

702 L = 0
DO 700 N=1sNMAXsNMAX4
L = L+1
LI = 22-L

NN = NMAX+1-N

VY (L sNPOS ) UNEW (NN
VY(LI4sNPOS) = UNEWI(NN)

VX(L) = (FLOAT(L=-1)/10e)=1e0

700 vX(LI) = FLOAT(LI-11)/10.0

162
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" NPOS = NPOS +1
Ce e« PREPARE PRESSURE DROPS.
701 IF(L1 «GTe 100) GO TO 710

PRESS(L1sLN) =-PNEW

XPRESS(L1) = X

UCL(L1) = UNEW(1)

IF(L1 «GTe 70) GO TO 709

J=0
| DO 705 N=1sNMAXsNMAX4
J = J+1
705 VECTOR(J) = UNEW(N)
; UVEL(L1s1) = VECTOR(1!
UVEL(L1s2) = VECTOR(4)
. UVEL(L1s3) = VECTOR(6'
) UVEL(L1s4) = VECTOR(8!
UVEL(L1s5) = VECTOR(10)

709 L1 = L1 +1
710 CONTINUE
IF(NPOS oNEe 4) GO TO 46
NPOS = NPOS -1
DO 900 N=1,21
900 WRITE(69901)VX(N)sVY(Nsl)sVY(Ns2)sVY(Ns3)
901 FORMAT(12F11le5)
" CoeeesCOMPUTING ENTRY LENGHT VS FLOW BEHAVIOR INDEX
U98 = 0e98%¥UNEW(1)
L=0
220 L = L+1 :
IF(UCL(L) oLTe U98) GO TO 220
L = L-1
EL(LN) = XPRESS(L) +((XPRESS(L+1)=XPRESS(L/ )/ (UCL(L+1)=UCL (L))
1 *¥(U98-uCL (L)) : _
CALL DESSIN(1sVXaVY s XPREOSSIPRESSsUVEL sXNUsNUsTBUsFDI sEL LN/
GO 70 5 .
CeeeTO CHANGE GRID SPACING IN X=DIR (IF NECESSARY!
46 NMAXTO = NMAXT
NMAXO = NMAX
IF(XT oLTe (leO1l¥ULIX(NDXT)/) GO TO 49
IF (X oeLTe {(0e99%ULIX(NDX) )) GO TO 48
NDX = NDX +1
48 NDXT = NDXT +1
XT = X +XINC(NULXT)

47 CALL CONST(INCY(NOX) sXINC(NDX? o INCY(NDXT? o XINC(NDXT? oNMAXL 9 NMAX s
1DX DY s NMAX4 sDDY2 sDY2 sDXI sDY2X9D2Y s NMAXLIT s NMAXT s NMAXG4T sUYTsUXT 9PR s
2PRDY)

GO TO 60

49 IF (X oLTe (0e99%ULIX(NDX! )) GO TO 51
NDX = NDX +1
GO TO 47

60 IF(NMAXT «EQe NMAXTO?) GO TO 61

CeoeoTO CHANGE GRID SPACING IN Y-DIK (IF NECESSARY!) / MUMENTUM EQUATION

DO 129 N=14sNMAXT
NN = 2 #*N -1
UO(N) = UO(NN)
VO(N) = VO(NN)
TNEW(N) TNEW (NN)

129 TOLD(N) TOLD (NN)

61 IF(NMAX eEQe NMAXO)IGO TU 51
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CeeeTO CHANGE GRID SPACING IN Y=DIR (IF NECESSARY! / ENERGY EQUATION
DO 22 N=1,sNMAX

NN = 2%N-1
UNEW(N) = UNEW(NN)
VNEW(N) = VNEW(NN)

22 CONTINUE
CeeeONE COLLUMN COMPLETEs PREPARE FOR NEXT COLLUMN
51 POLD = PNEW
DO 52 N=1sNMAX

UOLD(N) = UNEW(N)
52 VOLD(N) = VNEW(N)
GO TO 11

CeeePLOT AND QUTPUT COMPARABLE VALUES (PRESSUREs NUSSELT?) OF ALL FLUIDS
850 CONTINUE '
CALL DESSIN(3sVXsVYsXPRESSsPRESSsUVEL sXNUsNUsTBUSFBI sEL LN
GO TO 4
999 DO 998 N=LNjsMAX
998 FBI(N) = FBI(N+1)
GO TO 10000

LN = LN -1
MAX = MAX-1
GO TO 5

10Ul FORMATI(///916Xe% N =%FLel sB0X¥AVNUS=* FYe4s/3XeXX=%FTeD9lOX¥PRELS=H
1l FBelsB3OX¥X=*F TaD o 4X*¥PRES=# F B el s4X* TBULN=*FO el 9 4X* NUSS=H*F T eG4
2 J/7GXHEN¥ g4 XK Y /D* 96X KU (NI F* g IXFU/UMAXF 9 [XKV (NI FgIXFT (L1%

3 13XFU(N) ¥ 9 OXKU/UMAXF 9 TXHV (NI ¥ g OXHT (L)% TX¥L* )

1002 FORMAT (1Xoel4e3XeFHe394Fl3eb9b4XsbbLl3eb9ltsFbe3)

1100 FORMAT (3F10e4)

1105 FORMAT (I592F10e6)

1110 FORMAT (2X s *¥PRANDTL NUMBER=% Fl2e49/2Xss*MINIMUM ORAUVICNT=%F6e4s 12X
1% (MINe GRADCIEXPIN=-1)1=%F1lOe4s/2Xs*TOLERANCE FUR CONVERGING TYPE wME
2SH=%F845)

END

CD TOT 0377
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PROGRAM TST (INPUTsOQUTPUT sTAPES=INPUTsTAPE6=0UTPUTsTAPE10!

THIS IS A FINITE DIFFERENCE METHOD TO SOLVE THE MOTION
EQUATIONS FORy THE ENTRANCE REGION OF A CHARNNEL

THIS METHOD IS USING A SERIE OF VALUES KNUWN AS THE OLDL VALUES TO
COMPUTE ANOTHER SET OF VALUES KNUWIN AS THE NEW VALUES CURRESPUNUILING
TO THE NEXT COLLUMN (AXIALLY) SO THAT FROM THE eNTRY SET UOF VALUES W

CAN GO DOWNSTREAM AS FAR AS Wt WANT PRUVIVDING wbt HAVE THo bUUNUAKRY
CONDITIONS
LIST OF VARIABLES

AN= EXPONENT OF THE POWER LAW FLUIUV (FLOW BEHAVIOR INLEX)

UOLDI(=) s VOLD(=) s TOLD{=) sPOLD= VECTURS UF VELOCITY (X-DIR’s VELOCITY
(Y-DIR)s TEMPERATURE ANU PRESSURE ALREADLY KNUWN

UNEW (=) s VNEW (=) s TNEW(=) sPinEw= VECTURS OF VELUCITY (X-vlRJ)s VELOCITY
(Y-DIR)s TEMPERATURE ANU PRESSURE TU bt COMPUTEVU (NEW!

UO(=) sVO(=29sUN(=)sVN(=)= VECTORS OF VELOCITY ATTACHEL TO REAT TRANS+CR
GRID

UCON(-)sVCON(=)= VECTORS COF VELOCITY uStb IN ITERATIVE TYPt MESH
TO CHECK THE CONVERGENCE

UUMAXN (=)= VECTOR OF VELOCITY ULIVIvev BY MAXIMUM VELOCITY (CENTERLINE!
(QUTPUT PURPOSE)

GRA(=) yGRAMIN s GRAMI = GRAUIENTS = VeCTUR UF ORAUIENTS (FUR OUTPUT)»
MINIMUM GRADIENT AS DEFINE IN READ STATes MINIMUM GRALIENT AS
DEFINE IN PROGRAM

FACT = (GRAMI) #*(AN=1"/

X= VALUE OF X AT WHICH THE PROGRAM IS NOW

XT= NEXT VALUE OF X AT WHICH TEMPERATURE PRUFILE wliLL e CALCULATED

TBULK= BULK TEMPERATURE OF FLOW

NUS= NUSSELT NUMBER

PR= PRANDLT NUMBER

LCON= NUMBER OF TIME Wb TRIED TO ACrleve COMVERGENCE

TOL= TOLERANCE BETWEEN OLD AND New VALUES (ITERATIVE TYPE MESH!

PAR= PORTION OF NEW VELOCITY Tu ADL TU THE OLD UNE TU ACHIEVE CunveERGENCE

VARIABLES DESCRIBING THE MESH SIZE (MESH SIZES ARE VARYING AS wE PRUCEERU!

INCY(-)= VECTOR CORRESPONDING TO NUMBER OF GRID SPACE ACROSS FLOW
XINC(=)= VECTOR CORRESPONDING TO GRID SPACE IN X-DIR
ULIX(=)= VECTOR CORRESPONDING TO LImlT UP TO WHICH THE PRLCEDING

X=DIR GRID SPACE IS VALID
NOTE= THE INDICES FROM 1 TU L0 ARE FOR MUMENTUM MESH SIZE ANV L TOU <0
ARE FOR THAT TRANSFER MESH SIZt
NDXsNDXT= VARIABLES CORRESPUNDING TO INDICES UF PREVIOUS VARIABLES
TO KEEP TRACK OF THE NEXT MESH SIZE (FOR MOMENTUM MeSH AND
HEAT TRANSFER MESH!
CONSTANTS RELATED MOMENTUM MESH
A(=9—)= MATRIX OF COEFFICIENTS FOR MUMENTUM MESH
CP sABSCP sCPAsABSCPINsCPANEW s CM o ABSCiM s CMA 9 ABSCiMINg CMANEW= CONSTANT USE
IN THE SETTING OF Tht CUEFFICIENT MATRIX (MUMe MCSH!
NMAX1= NUMBER OF SPACE (LY) IN Y-DIR
NMAX= NUMBER OF POINT IN Y-DIR (NMAX = NMAX1 + 1!
DY= GRID SIZE IN Y-DIR
DX= GRID SIZE IN X-DIR
NMAX4 sDDY2sDY2sDX19DY2XsD2Y= SERIES OF CUNSTANTS DEFINED IN SUBROUe
CONST CALCULATED FROWM &4 PREVIGUS
CONSTANTS RELATED TO HEAT TRANSFER mMcSH
Al(=9=)= MATRIX OF COEFFICIENTS FOR HEAT TRANSFER MESH
NMAX1T osDXTsDXToNMAXT= SIMILAR AS MUMcNTUM MESH COUNTEPART BUT FOR
HEAT TRANSFER
NMAX4T «PRDY= DEFINED IN CONST FROM 4 PREVIQUS
VOLDO (=) s VOLDO (=) s TOLDO (=7 sUUMAXO (=7 s LCONOsPOLDOs TBULKO s XULL= ALL
THOSE VARIABLES ARE THERE JUST FOR 'OQUTPUTING' CONVENIANCE
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YD= USED IN THE OUTPUT TO SITUATE A POINT IN Y-DIR (AT CENTERLINE YU=UeUy
AT WALL YD=1le.0)
LL= FLAG TO OUTPUT EVERY SECOND TIMEe
NMAXOsNMAXTO= O STANDS FUR OLD VALUES UTHERWISE SAME AS BEFOREe
CONSTANTS AND VARIABLES RELATED TO PLOTTING SUbROUTINES

UCL(=)= VELOCITY (X-DIR! AT CENTER LINE

U98= 98 PER CENT OF LAST UCL (FULLY DEVELOPPEDL)

NPOS= COUNTER FOR INSERTIUON OF VELUCITY PROFILE

LN= COUNTER FOR DIFFERENT FLULLS

Lls L2= COUNTER FOR PRESSURE DROPs NUSSELT NUMBER

VX(=)= VALUES OF Y (=140 TO + 10!

VY(=9=)= VELOCITY IN X-DIR FOR THOSE PREVIOQUS VX(-)

XPRESS (=)= VALUES OF X (0e0 TO 1le0!
PRESS(—s-)= PRESSURE DROP AT THOSE X
XNUS (=)= VALUES OF X (0e0 TO 240!
NU(=9=)= NUSSELT NUMBER AT THUSE X
FBI(=)= FLOW BEHAVIOR INDEX (SIMILAR TU AN)

EL(=)= ENTRY LENGHT FOR THOSE PREVIUUS AN

COMMON NMAX1sPNEWsA(59165) sUNEW(165) s VNEW(165) o TNEW(165) sUOLD (165)
1sVOLD(165)sTOLD(165) sUOLDO(165) sVOLDLO(165)sTOLDO(L1657 sUUMAXN(L1E65)
2 sUUMAXO(165) sUN(165) sVN(165) sU0(165) 4VO(165)3A1(3+1657) sGRA(165)
34UCON(165)sVCON(165)

DIMENSION VY(2193)sVX(21)sPRESS(10095) sXPRESS(100? sUCL(100EL(5!
1sFBI(5)sNU(100s5) s XNU(L100)sTBU(LI00s5) sUVEL(T7095? sVECTUR(11!
DIMENSION INCY(20)sULIX(20)4XINC(20)

REAL NUSsNU

aNaNaNalaNalaNaNaNalaNalaNaNalaNaka!

" CeeeREAD IN ALL THE GRID SIZE

N =0
7 N = N +1
READ(551105) INCY(N) sXINC(N)sULIX(N)
WRITE(691105) INCY(N) o XINC(NJ gULIX(N)
IF (INCY(N) oNEe 0) GO TO 7
IF (N «GTe 10)GO TO 3
N = 10
GO TO 7
CeeeREAD THE PARAMETERS
3 READ(5+1109/MAXs (FBI(N)sN=1sMAX!
1109 FORMAT(I5410F542)
4 READ(591100)PRsGRAMINSsTOL
LN = 0
IF(PR oeEQe 0e0UJ) STOP
5 IF(LN «GEe MAX)GO TO 850
LN = LN +1
AN = FBI(LN)

} CeeeDEFINE MINIMUM GRADIENT

GRAMI = GRAMIN
FACT = (GRAMI)#**(AN-1le)

" CeeeOUTPUT THE PARAMETERS

WRITE(691110)PRsGRAMIsFACT»TOL
Ceeo INITIALISATION OF COUNTERS AND UTHERS

X = 0.0

NPOS = 1

L1 =1

L2 =1

GRA(1) = GRAMI
LL = 0

TBULK = 0.0
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NDX = 1 5
POLD = 0.0
XT = X +XINC(11)
CeeeCOMPUTE ALL THE CONSTANTS NEEDED
NDXT = 11
CALL CONST(INCY{NDX) s XINC(NDX? s INCY(NDXT? sXINC(NDXT? sNMAXLsNMAX
1DXsDY sNMAX49sDDY29DY2sDXI sDY2X9sD2Y s NMAX1IT s NMAXT s NMAX4T sDYToUXT sPRy
2PRDY)
"} CeeePUT IN THE STARTING VELOCLITIES ANL TEMPERATURE PRUFILE
DO 102 N=1sNMAXT

. UO(N) = 140

& VO(N) = 040
TOLD(N) = 1.
TNEW(N) = 040

) 102 CONTINUE
DO 1 N=1sNMAX

UOLD(N) = 1.0
} VOLD(N) = 0.0
1 CONTINUE

CeesOUTPUT THE STARTING VALUES
¥ WRITE(65s1001)ANsXsXsPOLDsPOLD
DO 2 N=1sNMAX s NMAXG
2 WRITE(691002)NsUOLDIN’ sVOLU (N
' Coese INTEGRATION ITERATION BEGINS
11 X = X +DX
CoeeSET KNOWN VALUES WITH OLD VALUES
k DO 100 N=1sNMAX

UCON(N) = UOLD(N)
» 100 VCON(N) = VOLD(N)
f LCON = O

101 CONTINUE
CeeeSET THE COEFFICIENT MATRIX

! DO 10 N=1sNMAX1
UNEW(N) = (UCON(N)+UOLDI(N?))I/2e
VNEW (N) (VCON(N)+VOLD(NI) /2

) CP = (UOLD(N+1)-UOLD(N)) /DY
ABSCP = ARS(CP)
IF(ABSCP «LTe GRAMI) ABSCPF = GRAMI

) GRA(N) = ABSCP
CPA = ((2+*ABSCP)*%¥(AN=1e ) )/ (DY*¥*2/
ABSCPN = ABS((UCON(N+1)=UCON(NII/VLY)

i IF(ABSCPN oLTe GRAMI) ABSCPN = GRAMI

CPANEW = ((24%ABSCPN)*%(AN=1e0///(LY*%2)
IF(N «NEe 1)GO TO 12
} cM = -CP
CMA = CPA
CMANEW = CPANEW
A(551)=—(CPAX¥CP-CMA*Cim)*DY —-PULD/LX-ULLL (L) *yuLL (L) /DX
GO TO 13

12 CONTINUE
CM = (UOLD(N)=UOLD(N=-1)1)/DY
ABSCM = ABS(CM)
IF(ABSCM oLTe GRAMI) ABSCM = GRAMI
CMA = ((24*ABSCM)**(AN=L1e) )/ (DY*%2)
ABSCMN = ABS((UCUN(N.=UCUN(N=LI /LY
IF(ABSCMMN «LTe GRAMI/ ABSCMN = GRAMI
CMANEW = ((2e*ABSCMN)*¥% (AN=1e0///(UY*¥2)
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O

A(59N)= =(CPA*CPgCMA*CM)*DY -POLL /DX

1 =VNEW(N)*(UOLD(N+1)=UOLD(N=1))/(2%¥D2Y) —UNEW{(N)*(UULD(N?)/DX)
Cf’ 13 CONTINUE

A(1sN) = VNEW(N)/(2e%D2Y) +CMANEW

A(2sN) ==UNEW(N)/DX —CMANEW-CPANEW
( A(3sN) ==VNEW(N)/(2e%D2Y) +CPANEW

A(4sN) =-DXI

10 CONTINUE
Ch A(391) = A(341) +A(1,1)
CeeeSOLVE THE MATRIX (GAUSS ELIMINATION ALGORITHM)
, CALL GAUSS
-} UNEW(NMAX) = 060
Cee e COMPUTE VELOCITIES IN Y-ULIR

VNEW(1) = 0.0

) DO 30 J=2sNMAX1
30 VNEW(J) = VNEW(J=1) =DY2X* (UNEW(J)+UNEW(J=1)=yuLU(J)=-UOLL(J=1))
A VNEW(NMAX) = 00

) LCON = LCON +1
~ CeeesCOMPARE OBTAINED VALUES WITH OLD VALUES

N =0
() IF(LCON «GTe 25)G0 TO 112

110 N = N +1
IF(ABS(UNEW(N)=UCON(N’) «GTe (TUL®¥UNEW(N!?)I) GO TU 105
(") IF(N oLTe NMAX)GO TO 110 ’
CeeeHEAT TRANSFER PART
CeeeSEE HEAT TRANSFER COLLUMN SHOULD BE ULONE
} 112 IF(X oLTe (0e999%XT))GO TO 130
NN = O
CeeeSET UP VELOCITY FIELD FOR ENERGY EQUATION
() NTN = NMAX1/NMAX1T
DO 111 N=14NMAX1sNTN
NN = NN +1
% ) UN(NN)= UNEW(N)
111 VN(NN)= VNEW(N)
UN(NMAXT) = 00
) VN(NMAXT) = 040
. CeeeSET THE COEFFICIENT MATRIX (ENERGY EWUATION)
| DO 125 N=1sNMAXLT

Al(1sN) = =PRDY
Al(2sN) = (UO(N)+UN(N!}/DXT +2e*PRDY
Al1(3sN) = =-PRDY

P IF(N «EQe 1)GO TO 121

TNEW(N)=(UO(N)+UN(N) ) *TOLD(N/ /DXT
1 =(VO(N)+VN(N))*(TOLD(N+1)=TOLD(N=12)/(4e0*DYT)
T} 2 +(TOLD(N+1) =2e%*TOLD(N) +TOLD(N=1/1%PRDY
GO TO 120 ’ :
121 TNEWIN)=(UO(L)+UN(L) I *¥TOLD (L) /UXT +2e*(TULL(Z2)-TULL (1) I*¥PRLY
120 CONTINUE
125 CONTINUE
Al1(3s1) = Al(341) +A1(1s1)
CeeeSOLVE MATRIX
CALL DIAG3 (A1l sTNEWsNMAX1T!
TNEW(NMAXT) = Qa0
CeeoCOMPUTE BULK TEMPERATURE AND NUSSELT NUMBER
TBULK = (TNEW(L)#¥UN(L1? +TNEW(NMAXT I ¥UN(NMAXT I /2
DO 122 N=2sNMAXIT
122 TBULK = TBULK +(UN(N)*TNEW(N)
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- TBULK = TBULK/FLGAT (NMAXLT)

A NUS = (=11e*TNEW(NMAXT)+18e*TNEW(NMAXT=1)=9e*TNEW(NMAXT=2)
& 1 +2*TNEW(NMAXT=3))/(3e*DYT*TBULK)
! IF(X oLTe 0eOl eORe L2 «GTe 100! GO TO 9998
_ TBU(L2sLN) = TBULK
. NU(L2sLN)= NUS
. XNU(L2) = X
L2 = L2 +1

)} 9998 CONTINUE
DO 123 N=1sNMAXT
UO(N) = UN(N)
(@ VO(N) = VN(N)
. 123 TOLD(N) = TNEW(N)
CeesSET XT FOR NEXT TIME
O XT = X +XINC(NDXT)
: GO TO 39
130 IF(X «GTe 0.001) GO TO 45
) DO 131 N=1sNMAXT
‘ 131 TNEW(N) = 040
TBULK = 0.0

sy
LW C
o

: CeeeOUTPUT THE RESULTS (PRINT OUT FORM)
39 LL = LL +1

O ANTN = FLOAT(NMAX1)/FLOAT(NMAX1T)
v NTN = NMAX1T/NMAX1
IF(LL «NEe 2) GO TO 44
L(} LL = 0
WRITE(691001) ANsLCONUSLCUNsXULLIPULDL sTBOULKUIX sPINEWS TDULKSIINUS
| MM = 1
() IF (NMAX «NEe NMAXO) MM = 2
. NMAX4D = NMAXG4%2
- DO 40 N=1sNMAX sNMAX4D
] M = MM*(N=1) +1
NN IFIX(ANTN*(FLOAT(N/)=147) +1

NNN= IFIX(ANTN*(FLOAT(M)I=lel) +1
O) YD FLOAT(N-1)/FLOAT(NMAX1)
b UUMAXN(N) = UNEW(N)/UNEW(1)
WRITE(651002)NsYDsUOLDO (M) sUUMAXO (M s VOLDO (M s TOULDO(NINNI »
3 1 UNEW(N) sUUMAXN(N) o VNEW (N ) o TNEW (NiNJ 9 NN 9 GRA (N
40 CONTINUE
GO TO 45
] CeeePUT RESULT IN RESERVE BECAUSE OF NON PUBLICATION
3 44 CONTINUE
DO 53 N=1sNMAX s NMAX4
3 NN = NTN*(N-1) +1
UOLDO(N) = UNEWI(N)
VOLDO(N) = VNEWI(N)
( UUMAXO(N) = UOLDO(N)/UOLDO(1)
t 53 TOLDO(NN) = TNEW(NN)
XOLD = X
( LCONO = LCON
TBULKO = TBULK
POLDO = PNEW

—

o

C
CeeePART TO SET VALUES FOR PLOTTING SUBROUTINE
45 GO TO (801+80249803)4NP0OS
{ 803 IF(X eLTe 10)GO TO 701
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GO TO 702 \
IF(X «LTe 0e05) GO TO 701
GO TO 702

IF(X oLTe 0002) GO TO 46

CeeosPREPARE VELOCITY FIELD

802
O

801

Wit . 108
C
4 \'_ i

700

L =20
DO 700 N=1sNMAXsNMAX4
L = L+1

LI = 22-L

NN = NMAX+1-N

VY (L sNPOS ) UNEW (NN
VY(LIsNPOS? = UNEW(NN'

VX(L) = (FLOAT(L-1)/10e)-140
VX(LI) = FLOAT(LI-11)/10.0
NPOS = NPOS +1

Ce e o PREPARE PRESSURE DROPS

701

y 705

‘ 709
710

¢ 9Uu0

906
i 901

IF(L1 «GTe 100/ GO TO 710
PRESS(L1sLN? =-PNEW
XPRESS(L1) = X

UCL(L1) = UNEW(1)

IF(L1 «GTe 70) GO TO 709

J =20

DO 705 N=1sNMAXsNMAX4 .
J = J+1

VECTOR(J) = UNEW(N)
UVEL(L1s1) = VECTOR(1!
UVEL(L1s2) = VECTOR(4)
UVEL(L1s3) = VECTOR(6!
UVEL(L1s4) = VECTOR(8!
UVEL(L1s5) = VECTOR(10)
L1 = L1 +1

CONT INUE

IF(NPOS eNEe 4) GO TO 46

NPOS = NPOS -1

DO 900 N=1s21
WRITE(69901)VX(N)sVY(NsL1)sVY(Ns2)sVY(Ns3)
DO 906 N=1,70
WRITE(63901)XPRESS(N) s (UVEL(NsJ? 9J=1,45)
FORMAT(12F11le5)

Ces o COMPUTING ENTRY LENGHT VS FLOW BEHAVIOR INDEX

220

U98 = 0e98%UNEWI(1)

L=0

L = L+1

IF(UCL(L) «LTe U98) GO TO 220
L = L-1

EL(LN) = XPRESS(L) +((XPRESS(L+1)=XPRESS(L)//(UCL(L+1)-uCL(L)))

1 #(U98-UCL (L))

FBI(LN) = AN
GO TO 5

CeosTO CHANGE GRIL SPACING IN X-DIKR (1F NECESSARY!

{ - 46

48

NMAXTO = NMAXT

NMAXO = NMAX

IF(XT eLTe (leOl*¥ULIX(NDXT))) GO TO 49

IF (X oeLTe (0e99%ULIX(NDX) )) GO TO 48
NDX = NDX +1

NDXT = NDXT +1

XT = X +XINC(NDXT)
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47 CALL CONST(INCY(NDX) oXINC(NDX) s INCY(NDXT) sXINC(NUXT) sNMAX1 sNMAX s
1DX sDY sNMAX4 sDDY2 9DY2sDXI sDY2X9sD2Y s NMAX1IT s NMAXT s NMAXL4T sDYT9DXT sPR

"2PRDY)
GO TO 60
) 49 IF (X oLTe (0e99%¥ULIX(NDX) )) GO TO 51
; NDX = NDX +1
GO TO 47

60 IF(NMAXT «EQe NMAXTO) GO TO 61
(.} CeeeTO CHANGE GRID SPACING IN Y-DIR (IF NECESSARY) / MOMENTUM EWUATION
DO 129 N=1,NMAXT
NN = 2 *¥N -1

"o UO(N) = UO(NN)
v VO(N) = VO(NN)
TNEW(N) TNEW (NN)

) 129 TOLDI(N) TOLD (NN)
61 IF(NVYAX «EQe NMAXU)GO TO 51
CeeeTO CHANGE GRID SPACING IN Y-DIR (IF NECESSARY) / ENERGY EQUATION
HC) DO 22 N=1,NMAX

, NN = 2%N-1
i UNEW(N) = UNEW(NN)
) VNEW(N) = VNEW(NN)

22 CONTINUE
CeeoONE COLLUMN COMPLETEs PREPARE FOR NEXT COLLUMN
1

i 51 POLD = PNEW
v DO 52 N=1,NMAX
UOLD(N) = UNEW(N)
52 VOLD(N) = VNEW(N)
GO TO 11

CeoePLOT AND OUTPUT COMPARABLE VALUES (PRESSUREs NUSSELT) OF ALL FLUIDS
() 850 CONTINUE
Y CALL DESSIN(3sVXsVY sXPRESSIPRESSsUVEL sXNUINUsTBUsFBI oL 9oLN)
GO TO 4
") 999 DO 998 N=LNsMAX
998 FBI(N) = FBI(N+1)
WRITE(651500)LCON

() 1500 FORMAT( * NUMBER OF ITERATIONS TOO HIGH =%,14)
B LN = LN -1
MAX = MAX-1
} GO 70 5

CeeePART OF RESET OF ITERATIONS FOR CUNVERGING TYPE MESH
1U5 CONTINUE
(.} PAR = 0485
DO 103 N=1,NMAX
! UCON(N) = PAR*UNEW(N) +(1e-PARJ*UCON(N)
©} 103 VCON(N) = PAR*¥VNEW(N) +(1le=PAR)*VCON(N)
IF(UCON(1) oLTe =0l eORe UCON(1l) «GTe 44)GO TO 999
, GO TO 101
1001 FORMAT (///3s16Xs%* N =%3Fb4el312X*¥CON=%13,50X*¥CON=%*13,
1 /93X s%#X=%F8eb s SX*¥PRES=*FBel s 6X¥TBULK=¥FBat9s20Xs*¥X=%FBebs4X¥PRES=¥
1F8etstX *TBULK=%*FB ek s4X*NUS=%FBal>s
2 J7GXFEN¥ 4L X*Y /D¥ 9 6XHU(N)# 9 GXFU/UMAX* 3 TXHV (NI % g OX*¥T (L)%,
3 13X*¥U(N) %9 OXKU/UMAXK s TXHV (NI ¥ 9 OX¥T (L) ¥, TX*L* )
1002 FORMAT (1XsI1433XsF5e394F13e634Xs4F13e69149F643)
1100 FORMAT( 3F10.5)
11065 FORMAT (1592F1046)
1110 FORMAT(1H192Xs*PRANDTL NUMBER=% FlZe4s/2Xss*MINIMUM GRADIENT=%Foe4
{ 1512X* (MINe GRADe)EXP(N=1)=%F10e4s/2Xs*TULERANCE FUR CUNVERGING TYP
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2E MESH=%F84.5)
END

]

CD TOT

0403

272
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C

Cee e SUBROUTINE COMPUTING CONSTANTS OF Trit MAIN PROGRAWM

C

1

SUBROUTINE CONSTCINCY sXINCoINCYToXINCT oNMAXL oiviviAX sUXsUY siNviAXG sLUY <
sDY2sDXI sDY2X sD2Y s NMAXLIT s NMAXT s NMAXL4T sDYT oUXT s PR 9ePRDY !

5

DX = XINC
NMAX1 = INCY
DY = 1e/FLOAT(NMAXL)
NMAX = NMAX1 +1
NMAX4 = NMAX1/10
DDY2 = 0e5/(DY*DY)
DY2 le/(DY*DY)
DXI le /DX
DY2X = DY/ (2«%DX)
D2Y = 2e%*DY
NMAX1T = INCYT
NMAXT = NMAX1IT +1
NMAX4T = NMAX1T/10
DYT = 140/FLOAT(NMAX1T)
DXT = 2e0%¥XINCT
PRDY = 1leU/(PR¥24U%DYT*DYT)
PRDY = 2+%PRDY
RETURN
END

nn
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SUBROUTINE GAUSS _
G C
CeooSUBROUTINE TO SOLVE THE MOMENTUM EQWUATION COEFFICIENT MATRIX
CeeeTHIS IS DONE USING THE GAUSS tLIMINATION METHOU
) C

)

COMMON NMAX1sPNEWsA(59165) sUNEW(165)
DIMENSION B(59165)
NMAX = NMAX1 + 1
DO 1 I=1s5
DO 1 J=1sNMAX1
£ 1 B(IsJ) = A(IsJ)
J =l
_ 3 DO 2 I=245
(o 2 B(IsJd) = B(IsJ)?*(=A(1lsJ+1)/A(25J))
AllsJd+1) A(lsJ+1)4B(2sJ)
3 A(2sJ+1) A(25J+1)+B(35J)
¢:H AlbeJ+1) AlbsJ+1)+B(4sJ)
A(54sJ+1) A(5eJ+1)+8B(59J)
J = J+1
DO 4 I=245
4 B(IsJd) = A(IsJ)
IF(J oLTe NMAX1)GU TC 3

) J = NMAX1
5 F = =A(3sJ-1)/A(2+J)

B(2eJ) = A(29J)¥*F

B(4sJ) = A(b4sJ)*F ¢
B(5sJ) = A(5sJ)*F

A(3sJ=1) = A(3sJ-1) +B(2sJ)
Al4sd=1) = A(b4sd=1) +o(4+J)
A(5eJ=1) = A(5sJ-1) +B(59J)!
J = J=1 g

IF(J «GTe 1) GO TO 5
A(ls1) = 10

J =20

13 U = J+2
AllsJd) = 40
Al(lsJd+1l) = 26U

IF(NMAX1-J)11512513

12 A(1sJ+1) = 0.0
A(lsJ+2) = FLOAT(3*NMAXL1]!
GO TO 15

11 A(lsJ) = 00
Al(lsJ+1) = FLOAT(3%¥NMAX1)

15 DO 14 J=1sNMAX1
F= =A(1sJ)/A(24sJ)
A(lsJ) = A(lsJ) +A(2sJ)%F
A(LoNMAX) = A(LsNMAX) +A(49J)*F

14 A(LsNMAX+1? = A(1sNMAX+1) +A(5sJ)%F
PNEW = A(1sNMAX+1)/A(1sNMAX)
DO 20 J=1,NMAX1

20 UNEW(J) = (A(5sJ)=A(4sJ)*PNEWI/A(29J)

RETURN
( END
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SUBROUTINE DESSIN(IFLAGsVXsVYsXPRESIPRESsUVEL s XNUsNUs TBUSFBIsEL sivF!

1)
C

CeeeSUBROUTINE USING THE PLOTTING SUBROUTINES OF DOUG BUCHANAN

C

DIMENSION VY(21sNF)sVX(21)sPRES(L100sNF) sXPRES(10GC) sX(707
1EL(NF) sFBI(NF) sXNU(10G) sNU(L1OOsNF ! sUVEL(T7055?9TBU(100sNF

REAL NU
Cee e COMMON bLOCK
COMMON DUMMY (3)sXX( 5000
COMMON /INFOPLT/LINEFX(30U!4LPTS(30!
COMMON /LABL/ LABELSLETS(4)

COMMON /LBL/ YLVERT(7)sYRVERT(7)¢XLHOR(7) sXUHOR(T)
COMMON /TITLES/MNYPLTsTITLEL(2) sTITLEZ(2)sTITLES(2)sTiTLEA(2)

COMMON /SCALES/ ISIZE
COMMON /BORDER/ XMINsXMAXesYMINgYMAX
C ee«eCONSTANTS
NREAD = 0
FMTE = O
NPT =1
NORD = 3
XSIZE
YSIZE
LABEL
MNYPLT = 1 )
LINES = 2
CeeeMAIN TITLES
TITLEL(L)
TITLEL(2)
TITLEZ(1)
TITLEZ2(2)
TITLES (L)
TITLE3(2)
NT = 21
IPOINT = O
IPLOT = 200
DO 10 N=1,10
LINEFX(N) = 3
10 LPTS(N) = N
GO TO (100920093000 sIFLAG
CeeePART FOR THE VELOCITY FIELL PLUT(U VS Y

i n
—
un
.
o

10H HPVL Je
10H LAROCWUE

1OHENTRY FLOW
10H

luH FOR POwER
10H LAW FLUIV

160 LETS(1) = 20
LETS(2) = 5
LETS(3) = 24

YLVERT (1) =10H VELOCITY=
YLVERT(2) =10HU/U(ENT!

XLHOR (1) = 5H Y/A
XUHOR (1) = 1CHVELOCITY V
XUHOR(2) = 1UHS Y FOR N=

ENCODE (105159 XUHOR(3)/FBI(NF)
15 FORMAT(F4e246X)

ISIZE = 2
YMAX = 2.0
YMIN = 040
NF1 = 3

J6 = 1+NT*NF1 +NT

CALL NPLOTSU(NFlonTsIPLUTsIPULINTosnREADIVY sVX

1 FMTEsNPTsNORD¢XSIZESYSIZE!
RETURN

s JOsLINESY



C...P
200

20

e 300
C...P

11

901

C..C

ART FOR THE VELOCITY FIELD PLOT(U VS X!
NF1 = 5

NT = 70

LETS(1) = 20

LETS(2) = 10

LETS(3) = 24

YLVERT (1) = 10OH VELOCITY=
YLVERT(2) = 10HU/U(ENT)

XLHOR (1) = 10H X/A/RE

XUHOR (1) = 1OHVELOCITY V
XUHOR(2) = 1UHS X FOR N=
ENCODE(109s159XUHCR(3)/FBI(NF)
ISIZE = 3

YMAX = 2.0 s

YMIN = 0.0

XMAX = 063

XMIN = 0.0

J6 = L+NT*NF1+NT
DO 20 N=1,70
X(N) = XPRES(N)
CALL NPLOTS(NF1sNTsIPLOTsIPCINT sNREADSUVEL X
1 FMTEsNPT siNORUsXSIZEsYSIZE)
RETURN
CONT INUE '
ART FOR PRESSURE DROPS PLUT (P VS X!
DO 11 N=1,17
LINEFX(N) = N
XSIZE = 2040
NT = 100
IPOINT = U
IPLOT = 20U
J6 = L+NT*NF +NT

ISIZE =1

XMIN = 000

XMAX = 049

LETS(1) = 10

LETS(2) = 10

LETS(3) = 10

YLVERT (1) = 10HPRESSURE

XLHOR(1) = 10H X(X/A/RE)
XUHOR (1) = 10HPRESS VS X

FORMAT(11F11.5)
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s JESLINCSS

CALL NPLOTS(NFsNTsIPLUT,IPUINT’NRLAUsPKtS9XPRCS;J6,L1NES,

1 FMTEsNPT9sNORDsXSIZESYSIZE!
PART FOR NUSSELT NUMbER FLUT(NU VS X!

LETS(1) = 10

LETS(2) = 10

LETS(3) = 20

YLVERT (1) = 10HNU (LOCAL)
XLHOR(1) = 10H X/A/RE
XUHOR(1) = 1UHNUSSELT NuU
XUHOR(2) = 10HMBER VS X

CALL NPLOTS(NFoNTesIPLOTsIFOINT snREAD sivU s ANU
1 FMTEsNPTsNORDsXSIZEsYSIZE)

CeesPART FOR BULK TEMPERATURE PLUT (TBULK VS X!

10
10

LETS(1)
LETS(.2)

s JOSLINESS
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LETS(3) = 25
YLVERT (1) = 10HBULK TEMPae
XLHOR (1) = 10H X/A/RE
XUHOR (1) = 1UHBULK TEMPE
DO 902 N=1sNT

902 WRITE(69901)XPRES(N) s (PRES(NsI? sI=1sNF )y (NU(NsJ) sJ=1sNF)
XUHOR(2) = 10HRATURE VS
XUHOR(3) = 5HX
CALL NPLOTS(NFsNToIPLOTsIPOUINT sNREADsTBUSXNUJESLINESS
1 FMTESNPToNORDsXSIZESYSIZE!

CeeoPART FOR ENTRY LENGTH VS FLUw berAVIUR InbeX PLOT

NT = NF
NF =1
IPOINT = 1 7

IPLOT = 0
J6 = 1+NT#NF +NT
LETS(1) = 26
LETS(2) = 24
LETS(3) = 37
YLVERT (1) = 10H ENTRY LEN
YLVERT(2) = 10HGTH (VALUE
YLVERT(3) = 6H OF X)
XLHOR (1) = 10H FLOw BEHA
XLHOR(2) = 10HVIOR INDEX
XLHOR(3) = 4H N
XUHOR (1) = 10HENTRY LENG
XUHOR(2) = 1UHTH VS FL
XUHOR(3) = 1UHOW BEHAVIO
XUHOR(4) = 7HR INDEX
ISIZE = 3
XMIN = 040
XMAX = 240
YMIN = Qo0
YMAX=04e30

DO 903 N=1sNT
9U3 WRITE(6s901/FBI(N) 9sEL(N
CALL NPLOTS(NF oNTsIPLUTsIPUINT s NREADSEL oFBI  9J6SLINES,
1 FMTESNPT9sNORD$XSIZESYSIZE!
RETURN
END


http:YMAX=0.30
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PROGRAM TST (INPUTsOUTPUT sTAPES=INPUT s TAPE6=VUUTPUTsTAPELOD)
THIS IS A FINITE DIFFERENCE MeTrnUOv TU SULVE Trt MUTION
EQUATIONS FOR THt ENTRANCe ReGIUN OF A CONVERGING CHANNEL
THIS METHOD IS USING A SERIE OUF VALUES KNUWIN AS THE ULL VALUES Tu
COMPUTE ANOTHER SET OF VALUES KNOWN AS THt NeEw VALUES CURRESPONUVING
TO THE NEXT COLLUMN (AXIALLY!? SO THAT FROM THE ENTRY SET OF .VALUES ws
CAN GO DOWNSTREAM AS FAR AS WE WANT PROVIDING wkE HAVE THC
BOUNDARY CONDITIONS

LIST OF VARIAGBLES

AN= EXPONENT OF THE POWER LAW FLUIvV (FLOwW vernAVIOR INveEX!

ANGLE=TOTAL TAPER ANGLE

BETA=HALF THE TOTAL TAPER ANGLE

UOLD (=) sVOLD (=) sTOLD (=) sPOLD= VECTURS OF VELOCITY (X-0UIR’s VELOCITY
(Y=-DIR)s TEMPERATURE AND PRESSURE ALREADY KNOWIN

UNEW (=) s VNEW (=) s TNEW (=) s PNEW= VECTURS UF VELOCITY (X-vIRJ}s VELOCITY
(Y=-DIR)s TEMPERATURE ANU PRESSURE TU obe CumMPUTzv (Ncw!

UAVE=AVERAGE VELOCITY IN X-DIReCTIUN

UMAUAV=CENTERLINE VELUCITY (MAX)/AVERAGE VELUCITY

Us9=99 PERCENT OF UMAUAV

UUMAXN (=)= VECTOR OF VELOCITY DIVIULED 8Y MAXIMUM VELOCITY (CENTERLINE)
(OUTPUT PURPOSE)

UUMAXO (=)= SAME AS PRECEELDING OnE

GRA(=) sGRAMINsGRAMI = GRAUIENTS — VECTUR UF GRADIENTS (FOR GUTPUTI)
MINIMUM GRADIENT AS vefFlinc IN xbEAu STATes MlINIMUM GRAULIENT AS

DEFINEDL IN PROGRAM

FACT = (GRAMI) *¥(AN-1

R= VALUE OF R AT wrlCH THz PRUGRAM IS NOwW (RAUIAL LeNGTA)

RCLD= OLD VALUE OF R

TBULK= BULK TEMPERATURE OF FLOW

NUS= NUSSELT NUMBER

AVNUS= AVERAGE NUSSELT NUFMBER

PE= PECLET NUMBER

PGRAO= PRESSURE GRADIENT

RE= REYNOLDS NUMBER

RC= REYNOLDS NUMBER wHtRE Trnt CeNTeRLINE VELOCITY IS TAKEN AS

CHARACTERISTIC VELGCITY
SUM= RUNNING SUM FOR CALCULATION OF AVHUS
TGRA= TEMPERATURE GRADIENT

VARIABLES DESCRIBING THE mMeoH SIZE (MesH SIZtsS ARE VARYING AS wk PRUCcRuL)
INCY(=)= VECTUR CORRESPUNUING Tu NUmMpbeK ulF uxlu SPACE ACRUSS FLOW
XINC(=)= VECTUR CORRESPUNLDING TU GRIu SPACE In X=ulR
ULIX(=)= VECTOR CORRESPUNDING TO LIMIT UP TO wHICH TAtk PRcCcocuING

X=DIR GRID SPACE IS VALIUD
NDR= VARIABLE CORRESPCONDING TO INDICES OF PREVIOUS VAKIABLES
TO KEEP TRACK OF THE NEXT MESH SIZE (HMOMENTUM MESH AnND
HEAT TRANSFER MESH!

CONSTANTS RELATED MOMENTUM MESH
Al=9=)= MATRIX OF COEFFICIENTS FUR mMmuUMocNTUM meSH
Cl=)9RIJsRIJLsAJIAV2REsAUZRECsBJIREIDIRLC suIToDJTLP s VOAAL (=1
CONSsRUPJ o= CONSTAMNTS USEV IN SETTING OF CUeFFICIenNT MATRIX
NMAX1= NUMBER OF SPACE IN TETA-DIRECTION (ANGULAR ULDIRECTION)
NMAX= NUMBER OF POINT IN Y=-DIR {(NMAX = NMAX1 + 1!
DTETA= GRID-SIZE IN T=ZTA-DIRECTION (ANGULAR DIRECTION!
DR="GRID Size IN R=UVIRzCTION (RaAavlalL wlxelTION!?
DRUTZ2 LRI sbT2R= SERIE OF CUNSTANTS verkiincu i SUbROUT Link
CONST CALCULATEUL FRUM 4 PRoVIvUS
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CONSTANTS AND VARIABLES RELATED TO HEAT TRANSFER MESH
B(=s=)= MATRIX OF COEFFICIENTS FOR HEAT TRANSFER MESH
TBULKOsNUSC= VARIABLE USED FORK OUTPUTING PURPUSES (SAME MEANING
AS WITHOUT #*0%)

YD= 0e0s AT WALL YL=1le0)
LL= FLAG TO OUTPUT EVERY SECOND TIwMEte

CONSTANTS AND VARIABLES RELATEDL TO PLOTTING SUbROUTINES
U98= 98 PER CENT OF LAST UMAUAV (FuLLY UEVELOPED!
NPOS= COUNTER FOR INSERTION OF VELOCITY PROFILE
LN= COUNTER FOR PIFFERENT FLUIDS
Lls L2= COUNTER FUR PRESSUKE ULROPs nNUSSELT NUMBbER

VX(=)= VALUES OF Y (=10 TO + 1.0)

VY(=9=)= VELOCITY IN R-=UIRECTIUN FUR THUSE PREVIOUS VX(=)
XPRESS (=)= VALUES OF R (0e0 TO 1le0!

PRESS(—9s=)= PRESSURE DROP AT THAOSE R

TBU(=s=)= BULK TEMPERATURE AT THOSE K

NU(=9¢=)= NUSSELT NUMBER AT THOUSE R

VECTUR(=?2= USEU 1IN PReEPARLNG UVeL(=s—1

FBI(=)= FLOW BEHAVIOR INUEX (SIMILAK TU AN)

UVEL(=9=)= VELOCITY IN R-UIRECTIUN

NOODOCOIDNDO O OO NN N0 OD OV

COMMON NMAX1sRIJLsPNEWSA(59165) sUNEW (L6571 sUOLD(L165) sVINEW(L65) s
1VOLD(165) s TNEW(165)sTOLD(165) sUUMAXN (1657 sUUMAXO(165)s83(39165)
DIMENSION INCY(20) sXINC(20),ULIX(20)

DIMENSION VY(21393) sVX(21) 9PRESS(11095? 9sXPRESS(110) sUMAUAVI11095)
1 oFBI(5) eNU(L11U95) 9TBU(L11095) sVECTUR(LZ2) sUVEL(7095)

DIMENSIUON C(165)sVGRAU(LOED)

REAL NUSsNUSCsNU

N =0
CeeeREAD IN ALL THE GRID SIZE
7N = N +1

READ(591105) INCY(N) o XINCI(N) sULIX(N)
WRITE(65+s1105) INCY(N) oXINC(N) sULIX(N)
IF (INCY(N! eNte ulGO TO 7
CeeeREAD THE PARAMETERS
6 LN = ¢
LM = 0O
READ(591109)MAXs (FBI(N)gN=14MAX)
IF(EOF(5))1000059
9 IF(MAX «EQe 1)GO TO 200
1109 FORMAT (I5410F542)
4 READ(591106)REsPEsANGLE s GRAMINS TOL
IF(RE «EQe 0e0ISTOP
5 IF(LN «GEe MAX) GO TO 850

LN = LN +1
LM = LN
AN = FBI(LN)

CeeeDEFINE MINIMUM GRADIENT
8 GRAMI = GRAMIN
Ceeo INITIALISATIUN OF COUNTERS AND UTHEKRS
R = 0eU
NUSQO = 0.0
"TGRAO = O
SUM = Q0

0

14

YD= USED IN THE OQUTPUT TO SITUATE A POINT IN TETA=-uIRcCTIUN (AT CoNTERLIN
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ROLD
NPOS
Ll
LiL
L =20
NDR = 1

CeeeCOMPUTE ALL THE CONSTANTS NEEDED

=1 n
—

- O

L]

C

CALL CONST(INCY(NDR) ¢XINC(NDR? s ANGLE ¢BETAsNMAXL1sURSUTETASNMAX s NMAX

14sDRDT2sDRIsBT2R)
CeeeDEFINE THE STARTING PROFILES
DO 1 K=1sNMAX

UOLD(K) = LleU

VOLD(K) = 0%0
1 CONTINUE

POLD = 040

CeeeOUTPUT THE STARTING VALUES
WRITE(691003)ANsRsPOLD
DO 2 N=14sNMAX s NMAX4
2 WRITE(691002)NsUOLD(N) ¢VULD (N)
CeeoOQUTPUT THE PARAMETEKRS
FACT = (GRAMI)*%(AN=1s)
WRITE(69101UIRESPEsANGLE sGRAMI sFACT s TOL
Coeoe INTEGRATION ITERATION BEGINS
11 R = R +4DR
RIJ = 1.-ROLD
RIJlI = le-R
AJ = le/(RIJUXBETAXDTETA!
AJ2RE =((AJ*AJ)/RE)
BJRE =((1le/(RIJ%XDR))/RE)
CoeoeCOMPUTE VARIABLES NECESSARY IN SETTING UP OF COEFFICIENT MATRIX
DO 13 N=1sNMAX1
IF(N eNEe 1)GO TO 12
CIN)=(GRAMI/ (RIJ*BETA! I %% (AN=leU!
GO TO 13
12 GRA =(ABS(0e5% (UOLD(N+1)=UOLD(N=1)1)}/DTETA
IF(GRA oLTe GRAMIJGRA = GRAMI
CIN)= (GRAZ(RIJ¥DETAI I %% (AN=1e0)
13 CONTINUE
GRA =  (ABS(UOLD(NMAX)=UCLD (NMAX=1))/DTcTA)
IF (GRA eLTe GRAMI)IGRA = GRAMI
CI(NMAX) = (GRA/(RIJU%*BETA) ) %*x(AN=L1e/
CONS = RE*BETA*RIJ*¥DTETA
DO 14 N=2sNMAX1
14 VGRAD(N) = (C(N+1)=C(N=12)/CUNS
VGRAD(1) = 0.0
CeeeSET THE COEFFICIENT MATRIX
DO 10 N=1sNMAX1
AJ2REC = AJ2RE*C(N)
BJREC = BJIRE*C(N)
A(39N) +e5¥AJ¥ (VOLD (N!=VGRAD(N? )} —AJZREC
AClsN) — e 5H¥AJF (VOLD (N =VGRAD (W) ) =AJ2REC
A(2sN) = UOLD(N)/DR +3e¥*¥BJREC+2e*nJ2REC
A(4sN) = +DRI
A(5sN) = POLD/DR =VOLD(N)*VOLD(N?/RIJ +UOLD(N!*(UOLD(N? /DR
143 e *BJRECH(({1le/RIJIX%2) /REIXC(N) )

i
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10 CONTINUE
A(3s1) = A(3s1) +A(1s1)
CeeeSOLVE THE MATRIX (GAUSS ELIMINATION ALGURITHM!
CALL GAUSS
UNEW(NMAX) = 06,0
Cee e COMPUTE VELOCITIES IN Y-DIKR
VNEW(1l) = 0eU
DO 30 J=2sNMAX1
30 VNEW(J) = VNEW(J=1) —-BT2R¥(RIJLI*¥(UNEW(J)I+UNEW(JI=11))
1 =RIJ*¥(UULD(J)+uOLL(J=L1 11
VNEW(NMAX) = 00
CeoeCOMPUTE AVERAGE VELOCITY
UAVE UNEW(L1)/2e
DO 47 N=2sN¥AX1
47 UAVE = UAVE +UNEW(N)
UAVE = UAVE/FLOAT(NMAXL)
CeeeHEAT TRANSFER PART
BJT = le/(BETA*RIJ*¥DTETA!
BJT2P = BJT*BJT/PE
CeeeSET UP VELOCITY FIELD FOUR ENERGY EQUATION
CeeeSET THE COEFFICIENT MATRIX (ENERGY EWUATIUN)
DO 60 N=1,NMAXI1
RUPJ = (UOLDI(N) +1e/(PE*RIJI)I/DR

B(lsN) = —=VOLD(N)*¥BJT/240 —-BJT2P
B(2sN) = RUPJ + 2e%BJT2P
B(3sN) = +VOLD(NI*¥BJT/20 —-BJIT2P

TNEW(N) = TOLD(N)*¥RUPJ
60 CONTINUE
R(3s1) = BR(251) +B(141)
CeeeSOLVE MATRIX
CALL DIAG3(BsTNEWsNMAX1!
TNEW(NMAX) = 00 .
CeeeCOMPUTE BULK TEMPERATURE AND NUSSELT NUMBER
ToULK = (TNEW(L)*¥UNEw(Ll) +TNew(NmAX?*uNcw (NMAXT ! /e
DO 122 N=2sNMAX1
122 TBULK = TBULK +(UNEW(NI*TNEW(NI?
TBULK =(TBULK/FLOAT(NMAX1J))/UAVE
TGRA = (=11 eX*THNEWINMAX ) +18e*TINEW (WMAX=1)=9e*TNEW(NMAX—2)+2 e #TINEW (
INMAX=3))/(6e*DTETA)
NUS = (2e%¥TGRA}/((le=RI*¥TBULK!
SUMO = SUM
SUM = («5%DR¥* (NUS+NUSO) ) +SUi
AVNUS = SUM/R

C
CeesOUTPUT THE RESULTS (PRINT OUT FURM)
L = L+1
IF(L «NEe 2)GO TO 45
L = U
LL = LL+1

IF(LL etUWe 31G0 TU 99
98 CONTINUE
RC = RE*(le—R)*UNEW(1/
WRITE(69s1001)ANsAVNUS sROLL sPULD o TBULKU 9NUSUsR 9 RCsPINEW s TBULK9NUS
NMAX4D = NMAX4xZ
DO 40 N=1sNMAXsNMAX4LD
YO = FLOAT(N=-1)/FLUAT(NMAX1!
UUMAXGC(N) = UCLD(N)/zyOLD (1)
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UUMAXN(N) = UNEW(N)/UNEW(1)
40 WRITE (691002)NsYDsUOLD(N) sUUMAXO(N? sVOLD(N) s TOLD(N) »
TUNEW(N) s UUMAXN (N) s YNEW (N? s TNEW(N)
c _
CseePART TO SET VALUES FOR PLOTTING SUBROUTINE
45 GO TO (801+802+803)4NP0OS
U3 IF(R eLTe 0076)60 TO 701

GO TO 702
8U2 IF(R «LTe 0=U5) GO TO 701
GO TO 702
801 IF(R o«LTe 04005) GO TO 701
702 LJ= 0

CeeoPREPARE VELOCITY FIELD
DO 700 N=1,NMAXsNMAX&4

LJ = Lu+1l

LI = 22-LJ

NN = NMAX+1-N

VY(LJsNPOS ) = UNEW(NN)/UAVE

VY(LIsNPOS) = UNEW(NN)/UAVE

VX(LJ) = (FLOAT(LJ-1)/1Ce)=140
700 VX(LI) = FLOAT(LI-11)/1C.0

NPOS = NPOS +1
TULl IF(L]1 «GTe 110 eORe R «LTe 0e0Q05/G0 TO 710G
Ceo e PREPARE PRESSURE URUPSs UIMAX)/UAVEs bBULK TorPeRATURE AND nwudSSELT nuMbe

XPRESS(L1) = R

PRESS(L1sLM) ==PNEW
TBU(LLIsL#) = Tbulk

NU(L1sLM) = NUS
UMAUAV(L1sLM) = UNEW(1)/UAVE

PGRA =(POLD-PNEW) /DK
IF(L oEQe OJWRITE(691007)UAVE sUMAUAV (L1 sLM! 9PGRA
IF(L1eGT«70UIGO TO 709 .

J & @

DO 705 N=1sNMAXsNMAX4

J = Je3

VECTOR(J) = UNEWI(N)/UAVE
705 CONTINUE :

UVEL(L1s1) = VECTOR(1!

UVEL(L1s2) = veCTUR(4!

UVEL(L1s3) = VECTOR(6&!

UVEL(L1s4) = VECTOR(8I

UVEL(L1s5) = VECTOR(10)

709 L1 = L1 +1
710 CONTINUE
IF(NPOS «NEe 4) GO TO 46
NPOS = NPOS -1
U999 = «99%¥UMAUAV(110sLM)
N =0
Cee e COMPUTE ENTRY LENGTH
220 N = N +1
IF(N «GTe 110)GO TO 899
IF (UMAUAV(NsLM) oLTe U99)GO TO 220
N =N -1 ‘
IF(N «LTe 1JGO TO 899
EL = XPRESS(N) +((XPRESS(N+L)I=XPReSS(NI I/ (UMAUAV (N+LsLid)
1 =UMAUAVINsLM) 1) *(U99-UrAUAV (NsL M
WRITE (6+s1104)EL
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899
900

U6
901

C
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FORMAT (2X s *ENTRY LENGTH =% F10e4)

DO 900 N=1,21

WRITE(6s901)VX(N) sVY(Ns1)sVY(Ns2)sVY(Ns3)

DO 906 N=1s70

WRITE(6s9ULIXPRESS(N) s (UVEL(INsJ) sJ=1495

FORMAT (11F11le5)

IF(MAX «EQe 1)GO TO 200

CALL DESSIN(2sVXsVY s XPRESSsPRESSsUVEL sUMAUAV siNUs T3UsFD L sLiM!
GO TO 5

CeeeTO CHANGE GRID SPACING IN X=DIR (IF NECESSARY!

46

IF(R oLTe(Ue99*ULIX(NDR? I GG TO 51

NDR = NDR +1 ' '

CALL CONST(INCY(NDR? sXINC(NDR? s ANOLE sBETASNMAXLsURSUTETASNMAX s NMAX
149DRDT2 DRI SBTZR)

IF(INCY(NDR) «EWe INCY(NDR-1)) GO TC 51

CeeeTO CHANGE GRID SPACING IN Y=DIR (IF NECESSARY!) / MUMENTUM EWUATION

DO 22 N=1sNMAX

NN = 2%N-1
UOLD(N) = UOLDI(NN)
VOLD(N) = VOLU(NN)
UNEW(N) = UNEW(NN)
VNEW(N) = VNEW(NN) !
TNEW(N) = TNEwW(NN)
TOLD(N) = TOLD(NN)
22 CONTINUE :
Cee e CNE COLLUMN COMPLETEs PREPARE FUR NEXT CCOLLUMN
51 POLD = PNEW
ROLD = R
NUSO = NUS

TBULKO = TBULK
TGRAO = TGRA
DO 52 N=1,sNMAX

TOLD(N) = TNEW(N)
UOLD(N) = UNEW(N)
52 VOLD(N) = VNEWI(N)
Ceeo oGO bACK FOR NEXT COLLUMN
GO T0 11
99 CONTINUE
LL = O
GO TO 98
850 CONTINUE
CeeePLOT AND OUTPUT COMPARABLE VALUES (PRESSUREs NUSSELT/) OF ALL FLUIDLS

200

10000
10Ul

CALL DESSIN(33VXsVY s XPRESSsPRESSsUVEL sUMAUAV sNUs ToUsFBI sl

IF(MAX «EQe 1)GO TOU 6

LN = O

GO TO 4

READ(5911C6IREsPE s ANGLE s GRAMINS TOL

IF(RE oEGe 0e0)GO TO 850

AN FBI(1)

LN 1

LM LM +1

GO 1O 8

STCP

FORMAT (/// 916Xes% N =%9F 442 98O0XFAVNUS=XKFBals/2X s ¥R=HFFT a5 3X¥PRES=*
1FB8e b o 3X¥TBULK=%¥F Te4 ¢ 3XKNUS=XFBabglaX 9o R=XFTaD g ¥ (¥FLeF ) *y3XFPRES=H
1F8eb4 s 3X*TBULK=*FT7e4 BXENUS=*FBalt g/ SXENFSLXFY/DF4TX
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2¥U(N)*s 9IXo¥U/UMAX¥*e TXo¥VINIH¥gIX o ¥T (NI ¥ 9 Ll9X o ¥XU(NIH¥IX 9 ¥U/UMAX*TX s
3 #¥V(N)®IXe*¥T(NI* )
1002 FORMAT (1XsI593XsF5e394F13e6910Xs4F1366!
1003 FORMAT (1H1910Xe¥* N =%9Fb4e29//93X9% R =%Fbeby
14Xy % PRESSURE =%sF8eb5y [/ 99X 9 FIN¥®, 4X
2¥U(N) %5 9Xo *V (N *) ,
1007 FORMAT (BOXes*UAVE =% FT7el 98X s *¥UMAX/UAVE =% FT7eb4s6X¥POURA=%FT7e3!
1010 FORMAT(///s5X*REYNOLDS NUMBEK=% FlQe39s15X¥PECLET NUMBER=%F1lQe3

1 15X*¥ANGLE (TOTAL)=%F5el> /22X s ¥MINIMUMY GRADIENT=¥rF6e4912X
1¥(MINe GRADIEXP(N=11=%F1lCeb4s/2Xs*¥TULERANCE FOR COUNVERGING TYPE ME
2SH=%¥F845)

1105 FORMAT(I592F1Ue5)
11C6 FORMAT(lZFlQ.4)
END
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Ce oo SUBROUTINE COMPUTING CONSTANTS OF THE MAIN PROGRAM(FOR CONVERGING FLUW/

C

1006

1

SUBROUTINE CONST(INCYsXINCsANGLE sBETAsNMAXLsUR sUTETA sINMAX s NMAX4

sDRDT

BETA =
NMAX1
bR = X
DTETA
NMAX =
NMAX 4
DRDT2
WRITE(

FORMAT (2Xs* DR/DTETAEXPZ2= *4£1245)

DRI =
BTZ2R =
RETURN
END

2sDRIsBT2R)

(ANGLE/2e)%(3e14159/1804/
= INCY
INC
= le/FLOAT(NMAX1)
NMAX1 +1
NMAX1/10
DR/ (DTETA*DTETA!
6s1006) DRDT2

le«/DR
BETAYDTETA/ (2+%DR)

185
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SUBROUT
1)
C
Cee s SUBROUTIN
C

186
INE DESSIR(IFLAGIVXaVY s XPRESIPRESIUVEL sUMAUAV sNUs ToUsFbBI siNF

E USING THE PLOTTING SUBROUTINES OF De BUCHANAN

DIMENSION VY-(21sNF)sVX(21)sPRES(110sNF) 9XPRES(110) sUMAUAV(L110sNF)

1 ’

FBI(NF) sNU(L1109NF) sUVEL(7G95) s TBU(L10sNF)

DIMENSION X (70)

REAL NU

Ce e e COMMON BLOCK

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
Cee e CONSTANTS
NREAD =
FMTE =
NPT =1
NORD =
XSIZE
YSIZE
LABEL
MNYPLT
LINES =
TITLEL(
TITLEL(
TITLEZ(
TITLEZ2(
TITLE3(
TITLE3(
NT = 21
IPOINT
IPLOT =
DO 10 N
LINEFX(
10 LPTS(N)
GC TO (
CeeoPART FOR
100 LETS(1)
LETS(2)
LETS(3)
YLVERT(

i o n

DUMMY (319 XX ( 5000

/INFOPLT/LINEFX(30)sLPTS(30)

/LABL/ LABELSLETS(4)

/LBL/ YLVERT(7) sYRVERT(7)sXLHOR(7 ) 4XUHOR(T7)
JTITLES/MNYPLTsTITLEL(2)sTITLE2(2) sTITLE3(2)sTITLEA4(2)
/SCALESs ISIZE

/BORDER/ XMIN9sXMAXsYMINsYMAX

0
0

150

15,0

3 !
=1
2
1)
2)
1)
2)
1)
2)

10H HPVL Je
10H LAROCQUE

10HCONVERGING
10H FLOW

10H FOR POWER
10H LAwW FLUID

wounon

= 0
200
=1,10
N) = 3
= N
100+s200+300) 4 IFLAG
THE VELOCITY FIELD PLOUT (U VS Y)!
= 20
5
24
1) =1UH VELOCITY=

inn

YLVERT (2) =10HU/U(ENT'

XLHOR (1
XUHOR (1
XUHOR (2
ENCODE (
15 FORMAT(
ISIZE =
YMAX =
YMIN =
NF1 = 3
J6 = 1+
CALL NP

)
)

SH Y/A
10HVELOCITY V

) 10HS Y FOR N=
109159 XUHOR(3)/FBI (NF!
Fhe2s6X)

2
200
0.0

NTH*NF1 +NT

LOTS(NFlsNTsIPLOT 9 IPCINT sNREADSVY sVX 2 JOSLINESS

1 FMTEsNPT sNORDsXSIZESYSIZE)

RETURN
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CeesPART FOR THE VELOCITY FIELD PLOT (U VS X)
200 NF1 = 5

NT = 70

LETS(1) = 20

LETS(2) = 10

LETS(3) = 24

YLVERT (1) = 10H VELOCITY=
YLVERT(2) = 1Q0HU/U(AVE)
XLHOR (1) = 1UHR(le=R/RO!
XUHOR(1) = 1O0HVELOCITY V
XUHOR(2) = 10HS R FOR N=
ENCODE(109159sXUHOR(3)JFBI(NF)
ISI1ZE = 3

YMAX = 2.0

YMIN = 0e0

XMAX = Qo4

XMIN = 0.0

J6 = 1+NT*NF1+NT
DO 210 N=1sNT
210 X(N) = XPRES(N) )
CALL NPLOTS(NFLlaNTsIPLUTIPUINTsNREADSUVEL X 2 JOSLINESY
1 FMTESNPTsNORDsXSIZESYSIZE!
RETURN !
300 CONTINUE
CeeePART FOR THE PRESSURE DRGOGPS PLOT
DO 11 N=1,10 '
11 LINEFX(N) = N
XSIZE = 2040
C PRESSURE VS X
NT = 110
IPOINT = 0O
IPLOT = 200
J6 = 1+NT*NF +NT

ISIZE =1

XMIN = 0«0

XMAX = 08

LETS(1) = 10

LETS(2) = 10

LETS(3) = 10

YLVERT (1) = 10HPRESSURE
XLHOR (1) = 10HR(le=-R/RO/
XUHOR (1) = 10HPRESS VS R

DO 902 N=1sNT
902 WRITE(6+901) XPRES(N) s (PRES(NsI ) sI=19NF )y (UMAUAV(NsJ) sJ=1sNF)
CALL NPLOTS(NFoNTeIPLOUTsIPOUINT sNREAD sPRES9XPRESsJOsLINESY
1 FMTESNPTosNORDsXSIZEsYSIZE)
CeeePART FOR U(MAX)/U(AVERAGE) PLOT
LETS(3) = 35
YLVERT (1) = 1CH UMA/UAV

XUHOR(1) = 1CHU(MAX=CENT
XUHOR(2) = 10HER LINEJ/U
XUHOR(3) = 10H(AVERAGE)
XUHOR(4) = 5HVS R

ISIZE = 3

YMAX = 240
YMIN = 1leU
CALL NPLOTS(NFoNToIPLUT 9 IPOINT s NKCAU s UMAUAV s XPRES9JOSLINES
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1 FMTEsNPTsNORDsXSIZEsYSIZE)

CeeePART FOR THE NUSSELT NUMBER PLOT

903
901

LETS(1) = 10
LETS(2) = 10O
LETS(3) = 20

YLVERT (1) = 10HNU (LOCAL)

XLHOR (1) = 10HR(le=-R/RO)
XUHOR (1) = 10HNUSSELT NuU
XUHOR(2) = 10HMBER VS R

DO 903 N=1sNT

WRITE(6s901) XPRES(N) s (TBU(NsI? sI=1sNF) o (NU(NsJ? sJ=1snNF!
FORMAT(11F11.5)

YMAX = 25

YMIN = UeU

CALL NPLOTS(NFoNT9sIPLOTsIPOINTsNREAD sNU9sXPRES 9sJ6sLINESS
1 FMTEsNPTsNORDsXSIZEsYSIZE)

CeeePART FOR THE BULK TEMPERATURE PLOT

LETS(1) = 10
LETS(2) = 10

LETS(3) = 25

YLVERT(1) = 1UHBULK TEMPe
XLHOR (1) = 10HR(1le=-R/RO)
XUHOR (1) = 10HBULK TEMPE
XUHOR(2) = 10HRATURE VS
XUHOR (3) = 5HR

YMAX = 140

YMIN = 0e0

CALL NPLOTS(NFoNTsIPLOTsIPUINT s NREAD s TBUSXPRESsJESLINES,
1 FMTESNPTsNORDsXSIZESYSIZE!

RETURN

END
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