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It is generally assumed that the implementation of adaptive 

control requires a precise Identification of plant parameters. In the 

case of a system with varying parameters, the identification problem gets 

very involved,as speed of identification and accuracy are contradictory 

requirements. 

In this thesis it has been shown that using a feedback policy, the 

optimal controller is relatively· insensitive to changes in plant para

meters as long as these lie within some specified ranges. It is, therefore, 

concluded that, with such an arrangement, adaptive control can be imple
•" 

rnente.d if one has only the knowledge of the ranges within which the para

meters of the plant lie. Thus identification can be carried on more 

rapidly, as stringent accuracy is no longer necessary. 
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CHAPTER 1 

INTRODUCTION 

" Since 1956 control engineers have given considerable attention to 

the development of the concept of adaptive control -- or a feedback control 

in which a system is capable of changing its controller parameters in 

order to achieve optimal performanc.e in spite of large changes in the 

plant parameters. Adaptation to unpredictable conditions is in fact one 

of the basic requirements for a control system. However, the conventional 

feedback control system is only capable of maintaining the performance 

with small changes in plant parameters. This is the reason why intensive 

research in the field of adaptive control has been carried out in the 

last few years [1}, [2], [3], [4], [s], [6], [7] . 

Identification refers to the process of characterizing plant 

dynamics. By ~heir very nature, adaptive systems demand frequent and 

rapid solutions of the identification problem, with as much precision as 

possible. Thus, the identification problem is of special importance in 

any approach to the design of adaptive control systems. Moreover, the 

requirements of short measuring time and accuracy are in direct conflict 

to each other, making the prob~em very difficult in the case' of systems 

with rapidly varying parameters. 

1 
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In this thesis, aillcw approach has been suggested in order to 

overcome the difficulty mentioned above. The plant parameters are 

considered to be random and lie within some specified ranges with known 

probability distributions. The analysis is designed to search for an 

optimal controller (or near-optimal controller) which automatically adapts 

the system to the plant parameter variations within the specified ranges. The 

parameters of the calculated optimal controller for each range of plant 

parameters will be stored in the memory of the computer and hence will 

save time in adaptation. 

Of the techniques available in control theory, decision theory and 

dynamic programming appear to be more appropriate. Decision theory is one 

of the most promising mathe~atical tool to be applied to control systems. 

A growing interest is evident from the numerous papers published recenlty 

[sJ, [9J, [10]. In practice, decision theory is difficult to apply to 

control systems unless certain simplifying assumptions have been made [8], 

[10]. One of the examples of Reference [10] has been discussed in Chapter 

III in detail to illustrate that fact. Hence, dynamic programming is 

considered· as the preferable alternative approach. In Chapter 4, the 

basic concept of dynamic programming and the formulation of dynamic pro

gramming from decision theory have been introduced by considering a 

simple game. The new approach, utilizing dynamic programming, designed t~ 

case "" the identification problem has been demonstrated through four 

examples. All calculations in this thesis have been carried out .on an 

IBM-7040 computer. 



CHAPTER II 


ADAPTIVE CONTROL SYSTEMS 

2.1 Introduction: 

With the progress being made in space, nuclear, and other indus

trial technologies, there is a growing need for automatic control systems 

which are capable of changing their own parameters in order to remain 

efficient in spite of large changes in their environments. This has led 

to intensive research during the past few years on adaptive control 

systems (1], [2], [3], [4], [s] ,· [6], [7]. 

A common example of adaptive control is a human being steering an 
.1 

automobile. The driver continually injects small variational signals 

onto th~ steering wheel in order to maintain "the feel of the road and 

the car"; i.e. the driver is continually measuring the dynamics of the 

process to be controlled in order that he may be prepared to effect near· . . 
optimum control when input signals arise (e.g., when the eye detects a 

curve in the road or when the driver is suddenly called upon to swerve 

the car to avoid an object on the road), 

In this Chapter, the general definition and the classification of 

adaptive control and the problem of identification are introduced; and 

then it is explained why the parameters should be considered within 

sepcified ranges. 

2.2 Definition of Adaptive Control: 

Control systems can be divided into two main classes: adaptive 
3 
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and non-adaptive. Adaptive control systems may be defined as those which 

are capable of modifying their own parameters with changes in environ

rnents in such a manner that their performance .is optimized on the basis· 

of a prescribed criterion. Non-adaptive control systems do not have this 

facility. 

All adaptive control systems perform some of the following opera

tions: measurement, identification, pattern recognition, determination 

of optimum control strategy and modification of the controller. 

2.3 Classification of Adaptive Control Systems: 

Adaptive control systems can be classified into three types: the 

basic adaptive system, the static adaptive system and the dynamic adaptive 
I 

system. The basic adaptive system is the simplest type. It does not 

have any facility for pattern recognition. The static adaptive system 

involves the comparison of the present environmental situation with the 

past records of different sets of such situations, and recognizing it as 

belonging to a particula·r set. The system can be compared to the 

technician who has memorized the solution to the problems he is most likely 

to ·encounter but yet he is not prepared to learn anything new and has not 

the capability of solving a new problem. The dynamic adaptive system works 

like the static adaptive system, but when a new or unexpected situation 

arises, thus creating a pattern which does not match with any of the stored 

patterns, the system would temporarily adjust to the pattern closest to the 

actual pattern while determination for .optimum.strategy is being made. 
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2.4 Problem of Identification: 

Most control systems consist of two sub-systems: plant and con• 

troller. The plant is considered to be the mechanism to be controlled 

and has little design freedom in most cases. The controller is that 

part of the system which is designed with a view toward making the entire 

system work properly. Evidently the success with which a given plant can 

be controlled in a dcs~ribed fashion depends on how accurately its 

varying parameters arc known. One· of the open problems challenging 

design engineers involves the accurate measurement of the parameters of 

the control system to be. optimized and the computation of the change in 

the performance index in response to parameter variations. 

Identification involves the use of the measured data for the 

determination of certain unknown parameters. Practically, identification 

should be made in the presence of normal operating signals and noise dis

turbances. Also, any test performed on the process must not unduly 

disturb the normal operation. A typical configuration of an adaptive 

control system is as shown in Figure 2-1. 

It is noted in Figure 2-1 that the measurement of parameter 

variations is done in a finite time which should be chosen sufficiently 

small so that the effect of the variations of the parameters is insigni

' ficant. It is, however, impossible to make the measurement time short 

without decreasing its accuracy. Conversely, one must take a fairly long 

time for the measurement if it is to be done with significant accuracy\ 

Therefore, the demand for short measurement time and the necessity for 

accurate identification are in direct conflict with each other. As a 
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matter of fact, it is impossible to construct the error-free identifica

tion of the parameter because of all sorts of errors caused by the short 

measurement time interval and external noise, incompleteness of equipments 

etc. 

Now let us consider the unknown parameter to be identified in the 

system shown in Figure 2-1 to be expressed by G(t). In the process of 

performing the measurdnent or observation, random disturbances are added 

to the input of the measuring device. Therefore, it gives an imperfect 

measurement 0*(t) of the value of the parameter so that 

9*(t) = 0(t) + n(t) 

where n(t) may be considered as the presence of noise contaminating the 

incoming signal to the measuring device. Thus, the only known quantity 

is the measured value 8*(t), and information concerning the true value of 

0(t) must be inferred from this acquired data 9*(t). 

The central problem in adaptive control systems is the deter

mination of the controller parameters on the basis of the above incom

plete information. Due to the handicaps discussed previously, it is 

natur~l and practical to consider that the varying plant parameters lie 

in specified ranges. In general, the ranges of plant parameters and 

their probability distributions may be determined by statistical 

infercnce from the previous measurements or by the specifications of the 

designer. Using feedback policy, the analysis of the design is to search 

for an optimal controller which is relatively insensitive to variations 

in plant parameters· as long as they lie within those ranges. This 

approach may overcome the difficulties that arise in the ident1fication 

problem.· 
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CHAPTER III 


DECISION THEORY 

3.1 Historical Perspective: 

The foundations of decision theory were first laid by 

John "von Neumann in th'e late 1920 's. v on Neumann and Oskar Mogenstcrn 

published their book Q.l] in 19 53, and since then, the theory has been 

widely applied to economics, games, and military situations. In 1958, 

N. M. Abramson presented an excellent paper G2J, which was the first 

application of Game Theory to Electrical systems. In the field of 

adaptive control, J. G. Tru;ial and J. J. Padalino have suggested an 

approach using decision theory [ 8 J . However, their example is too 

simple and artificial. Recently Dorato and Kestenbaum have applied 

decision theory to the sensitivity problem of control systems fi'o]. 

Their approach appears to be quite natural but their examples are limited 

to second-order systems with only one varying plant parameter. One of 

their examples will be discussed later in this Chapter.in order to illus-. 

trate the possibility of application of decision theory to control 

systems. 

3. 2 The Basic Concept of Decision Theory: [13] [14] 

In broad ter~ decision theory is concerned with the problem of 

making the optimum decision when one is faced with a choice of several 

possibilities. Since it is easier to start with games, let us consider 

the game of matching pennies. ·Players A and B each display 
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simultaneously a_single penny. A takes B's penny if A matches his penny 

with B's, i.e. either both pennies are heads or both are tails. Other

wise, B takes A's penny. The pay-off is represented in matrix form as 

following: 

H T 

+l -1H 

T -1 +l 

where (i) +l means A takes B's penny and 

(ii) -1 means A loses his penny to B. 

If either one of the players constantly uses the same pure 

strategy, the other can take advantage of this, e.g. if A shows head 

constantly, B can show tail each time and win. So a mixed form of 

strategy of heads and tails will be used. This is a very simple example 

of the application of decision theory. 

Now let us consider a game with a pay-off table as below: 

Strategy Strategy 
Bl B2 

Strategy 
Al $1.00 $6.00 

Strategy 
A2 $6.00 $4.00 

In this game, A first pays B a definite amount which may be con

sidered as the "value of the game" and depends on the pay-off table. And 

A then chooses one of his strategy Al or A2. Without knowing A's choice, 
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-B chooses his strategy Bl or B2. They then compare their choices and B 

pays A according to pay-off table. For example, if B chooses his strategy 

Bl and A has his strategy Al, B then pays A one dollar as indicated.on · 

the pay-off table; if B chooses his strategy B2 and A chooses his strategy 

Al, then B pays A six dollars as indicated. 

From the above table, if A chooses his pure strategy Al and B 

uses his strategies Bf or B2 in the ratio x: (1-x). In other words, the 

probability of B choosing Bl is x and choosing B2 h 1-x, and his pay-offs 

for Bl and B2 are one dollar and six dollars respectively as indicated on 

the pay-off table. Then B's average pay-off(I) is denoted by 

pyf = 1 ~ + 6(1-x) = -5 x + 6 dollars 

While if A chooses his pure1 strategy A2, then using the same ratio for 


his strategies, B's average pay-off (II) is denoted by 


pyf = 6 x + 4 ( 1-x) = 2 x + 4 do11ars 


pyf 

x = 2/7 
6 (II) 6 

The value of the game 
32/7 

= 32/74 

1.0 	 x 

FIGURE 	 3-1: Graphical Solution of 

a 2 x 2 Matrix Game 

2/7 
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The average pay-off (I) and (II) are plotted against x as shown 

in the above Figure 3-1. The intersection point is at x = 2/7. This 

means that the best strategy for B is to choose his strategy Bl two-

sevenths of the.time and strategy B2 five-sevenths of the time in a 

random manner. The same principle applies to player A. It is noticed 

that B intends to minimize his pay-off and A intends to maximize B's pay

off. This leads to the important minimax theory. 

The minimax theory states that a necessary and sufficient condi

tion for optimal strategies is as follows: 

·M = max min M(X, Y) 

x 
 y 

=min max M(X, Y) 
y .1 x 

Where X is the random strategy chosen from a set A to maximize the pay

off M, Y is the strategy chosen from another set B to minimize the pay

off M. The order of the operators min and max makes no difference, in 
y x 

other 	words, the operators are commutative. The detailed statement of 

the theory is in Appendix I [1 s]. 

3.3 	 Application of Decision Theorr to the Minimum Sensitivity 

Design of Optimum Systems: 

Dorato and Kestenbaum [10] have suggested that decision theory· 

may be applied to system design with unknown plant parameters. In their 

example, it has been assumed that a controller structure is known and 

furthermore that this controller is optimal when the controller parameter 

is equal to the plant parameter. 

Consider· a linear control system as shown in Figure 3-2. 
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(Wp) 

CONTR3LLER . (<il 

FIGURE 3-2: A Linear Control Problem 

x(t) = f.C!Ct), ~(t), w ·)p 

~(t) = iC!CtL w • c 
t) . 

or ~(t) = D !Ct) 

s =J: F(!, ~) dt 
0 

where I 

!_(t) is the state vector 

_!!(t) is the forcing function 

S is the performance index 

w· is the plant parameterp 

we is the controller parameter 

The plant parameter wp is known lying somewhere in the range 

w1 ~ wp ~w2 • The problem is to choose a matrix D which is in terms of 

.we (we is considered to have the same range as wp) will maintain as low 

as possible a value of S. On the other hand, wp intends to maximize the 

value of S. Obviously wc and wp are opposite to each other and the per

formance 'index S can be considered as the pay-off function in decision 

theory. 

Technically the statement is: 
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s 
0 = min max s (tu w )

w w c' pc p 


= max min S(w , w )

w c pWCp 


= S(wc
0 0 
w . ) p 

The pair (wc 
0 , w' p 

0 
) is referred to as the optimum strategy and 

Herc, we 0 is so chosen that Sis.always less than S0 no matter 

what value w may be. 
p 

The·following numerical example has·been considered in their 

pci.per [ioJ: 

A plant with dynamics 
. 
X+w X=u 

p . 
where 0 ~ w ~ 2 with initial value X(O) = 1 and X(O) = O, and a per

p 

formance index 

Dorato and Kestenbaum have obtained the optimal solution by using 

the minimax theory mentioned previously; 

so = min 
02 

max 
w 
p 

S(D2•' wp) 

0 = S(D2 , 0 
wp ) 

• S(-0.64, 2) 

where 
D2 = -w c - I 3 

2 
+ w c 

The procedure for obtaining the solution is well presented in 
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their paper [Jo] and hence will not be repeated here. 

The same problem has been considered in Rohrer and Sobrals' 

paper [z4l. They have obtained the optimal u (Le. u0 ) by classical 

calculus and also by considering its relative sensitivity. 

Now let us compare their results: 

u = - general formi}>l Dz J [~~ 
u = - 0. .o 1.3] by classical calculus[:~] 

by decision theoryu • - [1.0 0.64] ~~] 

First of all, this example might be specially chosen by the 

authors so that the first controller parameter D1 is independent of the 

plant parameter wp, i.e. D1 is always equal to 1.0. Hence, the only 

variable controller parameter is Dz. Secondly the inaccuracy of Dorato 

and Kestenbaums' calculation of D2 is most likely due to the assumption 

that the system is optimum when the controller parameter is equal to the 

plant parameter. It seems that the authors have made this assumption only 

for the sake of simplifying the calculation and have ignored the fact 

that the assumption is not practical. 

On the whole, the method suggested in their paper. is probably 

limited to lower order system and few variables, (i.e., only second order 

system with one varying plant parameter and one varying controller para

meter has been considered in their paper). It is obvious that the joint 

probability of many variables and higher order systems will make the com

putation tedious, especially when the calculation has to be done manually. 
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To overcome the difficulties mentioned above, dynamic 

programming has been utilized as a powerful tool for the optimization 

of control systems. 



CHAPTER 4 


DYNAMIC PROGRAMMING 

4.1 Introduction: 

In the 1950's, R. Bellman developed dynamic programming; 

and since then, it has"been applied to numerous fields, e.g. theory of 

inventory and production, purchasing and investmemt problems, design of 

chemical plants, statistical communication theory and control systems. 

Bellman has published some disting~ished books on dynamic programming 

and adaptive control system [16l, [11], [ls], but extremely little 

of the theory has been conv~rted into practice[l9]. 

Dynamic programming is related to multi-stage decision processes 

in which a decision is required at discrete intervals in time (e.g., the 

series of decisions required in card games such as Contract Bridge and 

in the management of an industrial production process). Furthermore, all 

continuous decision processes can be approximated by multi-stage decision 

processes by utilizing a small discrete interval between decisions. 

In this Chapter, firstly an example solved by decision theory has 

been described in great detail in order to emphasize the essential 

concept of dynamic programming and the basic idea of formulating the 

dynamic programming from decision theory. ·Then the characteristics and 

the general advantages of dynamic programming are discussed. Finally, 

four control systems (from first order to fourth order) have been solved 

by dynamic programming and their numerical results tabulated. The second 

16 
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order system discussed in Chapter III is one of the four examples; the 

prupose is to serve the comparison of the application of decision theory 

and dynamic programming to the control system. 

4.2 	 Formulation of ~ynamic Programming from 

Decision Theory - One Example: 

In this game, ~e assume two players A and B; A first pays B a 

definite amount (value of the game). Each player initially possesses 

three chips; on the first move, each may play one or two chips. A and B 

play simultaneously, and after the play B pays A an amount as indicated 

by the pay-off table: 

1 2 

1 So $30 

2 $10 So 

(i.e., if A plays 1 and B plays 2, B pays A $30). 

After the first play and pay-off, those chips which were played 

are removed and the game continues. A and B each possess either one or 

two chips (depending on how many each played in the first play). After 

the second play, we again have ~~ay off described by the above pay-off 

table. The game continuous in this fashion until one player has no chips 

left. The problem is to determine how each player should play to maxi

mize his total return from the overall game. This is not a single stage 

game but a multi-stage one. Solution of the problem requires that we 

determine a complete strategy for the succession of plays.A will make 

during a complete· game. There are five possible strategies which A may 
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adopt before the game starts: 

C?l: plays 2, then plays 1 

C(2: plays 1, then plays 1 if B first played 1' 2 if B first played 2 

q3: plays 1, then plays 2 if B first played 1, 1 if B first played 2 

q4: plays 1, then plays 1 regardless of D's first play 

45: plays 1, then plays 2 regardless of B;s first play 

Actually two of these strategies are obviously undesirable: if B first 

played 2, A knows that B's second play must be l; if A has a choice for 

this second play, he certainly should choose 2 rather than 1 ($10 is 

better than zero). Hence strat~gies ~and~ can be eliminated, the 

possible strategies left are L?i• ~, CfS· Similarly a dual line of 
I 

reasoning indicates that B has the possible strategies b1 b3 b4 • Then 

an overall pay-off table has been formed: 

bl b3 b4 

$ 0 $10 $10 

$ 40 $30 $' 0 

ql 

Cl2 

$ 40 $ 0 $10qs 

Solution of this game with the standard techniques yields the optimum 

strategies for A and B: 

13 1 3A: .. ~: q2: q3: ~: qs = O: O:IT rr= Ii 
1 4 . 12.B: - bl: b2: b3: b4: bs = 0: 0Ii rr· rr· 

$160and the value of the game = T'I 
In the above solution, we essentially reduce the multi-stage 

process to a single three-by- three game. 
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In the dynamic programming formulation of the above problem, we 

first define a function f (x, y) as the expected return to A from the over

all game when A starts with x chips and B with y chips. Further, we 

define p1 as the probability that A plays 1, p2 that A plays 2, and q1 

and q2 correspondingly for player B. In terms of these definitions and 

the pay off table which is specified, a simple enumeration of all 

"possibilities 	leads to a functional equation for f(x, y): 

2 2 
E Ef (x, y) = 	 ----(4.1)i=l j=l 

where C(ij is the entry in the pay off matrix for A playing i and B 

playing j. The above expression states that the expected return is the 
2 2 

pay off from the first play1 i:l E p. q. C('.. plus the return whichj=l l J lJ 

can be expected from all later plays in the same game (the later plays 

essentially comprising a new game with the starting resources (x-i) and 

(y-j) for players-A and B, respectively). There is still one important 

element not included in the above formulation: The requirement that A 

and B should play in such a way as to maximize their individual returns. 

The Minimax Theory is then applied, the function equation for f(x, y) is: 

2 2 

f (x, y) = max min { E E p. q . ~-. . + f ( x - i, y - j)J } ----( 4 • 2)
l J lJp q i=l 	 j =l 

(A must select 	the p. in such a way as to maximize his return while B is 
l 

selecting the qi to minimize his pay to A). 

Equation (4.2) then represents the complete dynamic programming 

formulation of the problem with the following constraints: 
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0 ~ p. ~ 1 0 .$ q. ~ 1 
l l 

= 1 

f (x, y) = 0 for x or y ~ 0 

The example which we have described above is simple and its 

function equation is: 

f (3, 3) = max min 
p q 

----(4.3) 

With Pz = 1 - P1 q2 = r - ql 

The value of 17. . are given in the payoff table at the beginning-liJ 

of this problem as 

ql2 = $30 q21 = $10 

The solution can be determined iteratively by starting with the 

final decisions ( or the simplest decision) and working up to more 

complex cases. In this example, the game stops whenever either player 

has no more chips; hence f(O, O) = O, f(O, 1) = 0, f(l, 0) = 0, f(2, 0)=0 

and f(O, 2) = 0. Furthermore we can write f(l, 1) = 0 since if each 

player possesses only one chip, he must play 1 and the Cfi 1 payoff is zero. 

The value f(l, 2) can likewise be determined directly: If A has only one 

chip, he must play 1 and B knows that A will play l; hence, B will always 

play 1 alsQ and there will be zero payoff: f(l, 2) = O. Similarly 

f (2, 1) = $10. 

Now we have to formulate f(2, 2); an equation similar to equation 

(4.3) has been formed: 
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p q 

+ p2ql ~21 + f (O • l)} + p2q2 [Cf22 + f (O • O)]} ----(4.4) 

By standard techniques, a two-by-two game has been formed and the value 

of f (2, 2) is found as s!0 • 

The above values of ~. and f(x, y) are substituted into
lJ 

equation (4.3): 

Now the problem has been reduced to a single stage game with the payoff 

table: 

bl b2 

$~ 
4 

$40 

$10 $ 0 

and the solution is the strategies: 

4 .13A: [ JIT. ·IT 
16. 1B: [ IT IT J 

$160f (3, 3) = 17 

The two different approaches discussed above give the same result; 

in the initial decision A should play 1 and 2 in the ratio i7 :i~. while B 

should play 1 and 2 in the ratio i~ : fr , and the value of the game 

is $ i~o . 
From the above example, one may have the idea how qynamic 

programming has been developed and formulated. The general mathematical 

·formulation of dynamic programming and the formulation of dynamic 
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programming applied to linear multivariable digital control systems are 

in Appcndex II and III respectively. 

4.3 	 Charactcrisitcs of Dynamic Programming: 

(i) The Principle of Optimality underlies the method of dynamic 

programming. This principle was formulated by R. Bellman. It states 

that an optimal policy has the property that, whatever the initial state 

and initial ·decisions are, the remaining decisions must constitute an 

optimal policy with regard to the state resulting from the first decision. 

In other words, "do the best you can in terms of where you are". The 

Principle of Optimality reduces .the N-stages decision problem into a 

sequency of N-single-stage decision problems 

(ii) The solution of the dynamic programming proceeds in the reverse 

direciton: We first solve the final or last decision, since this 

solution requires no knowledge of the effects of last decisions. From 

this solution for the last decision, we turn to the next-to-last decision, 

which can now be solved because we know the payoffs to be expected from 

the final play. In this way, we iteratively continue the solution and 

finally we reach the initial decision. 

(iii) Dynamic Programming is specially designed for use with a digital 

computer. 

4.4 	 Advantages of Dynamic Programming: 

Dynamic programming has the following advantages: 

(a) It 	is a potentially powerful tool. 

(b) 	 It provides an elegant treatment of linear multivariable control 


systems. 




23 
(c) The addition of constraints on the control action or decision docs 

not increase tho difficulty of the problem, 

(d) The solution of the control problem does not depend upon the 

linearity of the system or the nature of the performance index, and 

(c) The computers do the tedious numerical calculations 

4.5 The First Order System: 

(i) The problem:· 

Figure 4-1 A Simple First Order Control System 
. 

the plant dynamics_ X = -r 1 x + u 
0 

and the controller u = D X where T is the plant parameter varying
0 

in a specified range. 

The problem is to determine the forcing function u such that the 

performance criterion 

T 
S = J (X2 + A u2) dt 

0 

is minimized with the initial condition X = 1.0. 
0 

Where T is some specified interval of time and usually should be 

the solution time (the time required for the system to damp out all 

transient is commonly called the solution time). 

A is a weighting factor which compares the relative importance of 

minimizing x2 and u 
2

• In the example T and X are randomly taken as 0.3 

and 0.01 respectively. 

(ii) Plant parametcis and their probability of occurrence: 

The value of the plant parameter T0 is difficult to measure 
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accurately. llcnce T 0 is considered varying within the range 0. 6 to 1.4. 

It is also assumed to have a uniform probability distribution or 

Gaussian distribution as shown in Figure 4-2. 
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Figure 4- 2: Probibility of •Occurrence of the 
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Each of these values has probability·of occurrence 1/9 when it 

is uniformly distributed. As for gaussian distribution, the location of 

4the peak will be T0 = 1.0 and the standard deviation a= 03 (i.e. 

3a = 0.4). It means that the probability of the parameter T existing
0 

outside the range 0.6 to 1.4 is only 0.003. The normalized probability 

of occurrence has been calculated and tabulated as follows: 

T p(T ) probability of occurrence 
0 0 

T0 

Plant Parameter T 
0 

0.6 .00320 
0.7 .02379 
0.8 .09722 
0.9 .22605 
1.0 .29941 
1.1 .22605 
1.2 .09722 
1.3 .02377 
1.4 .00320 

Table 4- 1: The Probability of Occurrence of the Plant Parameter T 
0 

with Gaussian Distribution 
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(~ii) The optimized controller: 

Computer program for calculating the optimized controller D by 

dynamic programming has been written. Results arc as tabulated in the 

following Table 4-2: 

T 
0 

0.6 
0.7 
0.8 
0.9 
LO 
1.1 
1.2 
1.3 
1.4 

D 
The Optimal Controller 

8.3243 

8.5181 

8.6739 

8.7921 

8.8915 

8.9683 

9.0398 

9.0999 

9.1453 


Table 4-2: The Optimal Controller D of the 


Second Order System 


With uniform probability of occurrence of T , the expected value 
0 

of the controller D gives 

9 
1

E P(T.) D(T.) = 8.8377
l . l = 9 

i=l 

While if the probability of occurrence of T is Gaussian, the 
0 

expected value of the controller D will give 

9 
E P(T . ) D(T . ) = 8 • 8 941 

i=l l l 

A comparison can now be made: 


optimized D = 8.8915 .T = 1.0 

0 

expected D = 8. 8377 uniformly distributed T 
0 . '· 


expected D = 8 .8941 Gaussian distributed T 

0 
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As we know, in practice the designer cannot afford the luxury 

of time in making accurate measurement or doing tedious calculations. 

The ahovc values are very close to each other. l!ence it is better to 

choose the value of the optimized D at the middle of the rangcof the vary

ing parameter as the functional D. The functional D is the one which 

will be automatically modified in the controller while the measurement 

indicates that the plaht parameter lying in the given range. In the 

example, the functional Dis 8.8915 while T varies between 0.6 to 1.4. 
0 

(v) Performance criterion &relative sensitivity: 

The performance of a control system is generally a function of 

stability, sensitivity, accuracy and transient response. The exact 

specifications are directediby the required system performance. Certain 

characteristics are more important in some systems than in others. 

Transient response is by far the most important consideration for all the 

physical systems and designers of such systems are often faced with the 

problem of optimizing the transient behaviour [20]. 

From the modern optimal control and adaptive control theory view 

point [21J, the performance criterion S can be considered as the loss 

function or cost function, representing a measure of the instantaneous 

change from ideal performance. 

The performance criterion of the first order system as stated 

previ ously is: 

fo 
0.3 

S = (X2 + 0.01 u 2) dt 

By considering the plant dynamics 

. l 
x = -r x+u 

0 
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and the controller 

u = - DX 

With the initial condition X0 = 1.0 we obtain: 

2 J ~- 0-o.6(o•iol]s = [ 1 + 0. 01 o
----(4.6)2(D + l/T0 ) 

For each value'of T , the performance criterion S has been calcu
o 

lated by substituting the value of the optimized D corresponding to each 

T (from Table 4-3) into equation (4.6). The results are denoted by the 
0 

* optimal S as shown in the second column of the following table.(4-3). 

The calculations have been repeated with the functioral D (8.8915) for 

each T ; the results are as,in the third column of the table and denoted 
0 ' 

by actual S. 

T 
0 

*The Optimal s The Actual S Relative Sensitivity 
R * *S :(S - S )/S 

0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1. 2 
1.3 
1.4 

0.084518 
0.086523 
0.088062 
0.089280 
0.090272 
0.091089 
0.091783 
0.092371 
0.092875 

0.084659 
0.086575 
0.088068 
0.089285 
0.090272 
0.091096 
0.091794 
0.092392 
0.092918 

0.00167 
0.00058 
0.000068 
0.000056 
0 
0.000077 
0.00012 
0.00023 
0.00046 

Table 4-3: Relative Sensitivity of the First Order System 

The last column of the above table is the relative sensitivity 

which was introduced recently by Rohrer and Sobral [22] for optimal 

control systems. For a set of plant parameters T the relative sensitio 

vity of the controller D is defined to be the difference between the 
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actual value of the performance index and that which would be obtained 

if the control were the optimal for plant parameters T0 (divided by the 

optimal performance index for normalization). 

S 
R 

[ T • D ]= 
* *0 S [T0 , D] 

One of the advantages of the relative sensitivity is that it is 

always a positive number. Moreover the relative sensitivity reduces to 

zero at the value of plant parameters T for which the controller D is 
0 

the optimal one. 

The Table 4-3 shows that. the relative sensitivity for controller 

D to plant parameter is only up to 0.00167. We may conclude that in a 

Ifirst order system the controller parameter is not sensitive to the 

change of a plant parameter. Similar conclusions have been drawn by 

Barnett and Storey [23] recently. From this example we also can see the 

application of dynamic programming to control systems. 

The logic of considering the higher order systems is exactly the 

same as for the first order system. Hence, in the following examples 

most of the explanations mentioned above will not be repeated. For the 

same reason, only the second order system flow charts and computer 

programmes are given in the appendix. 

4.6 The Second Order System: 

(i) The problem: 

In order to compare the results obtained by Dorato and by Rohrer, 

we consider the same problem: 



29 

The plant dynamic 

x = B X + c u 

where 

B ... c = [~][: B:J 
0 .$- ~ 2B22 

With the specified performance criterion: 
12 . 

s = Jo cxl2 + x22+ u2) dt 

and the given initial condition 

(ii) Results: 

822 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

X1(0) = 1.0· 

x2(0) = 0.0 

The Optimal Controller D 

[ 01 D2 J 
0.98283 1. 71219 
0.98468 1. 52675 
0.98632 1.36322 
0. 98774 1. 22048 
0.98898 1. 09678 
0.99005 0.99003 
0.99097 0.89804 
0.99176 0.81870 
0.99244 0. 75011 
0.99302 0.69057 
0.99351 0.63865 

Table 4-4: The Optimal Controller D of the 

Second Order System 
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* 
13 22 The Optimal 

*s 
The Actual 

s 
SR = 

s - s 
* s 

0 1.74209 2.02024 0.15966 
0.2 1. 75358 1.88125 0.07280 
0.4 1.787<>7 1.84044 0.02952 
0.6 1.84306 1 . 860(>5 0.00954 
0.8 1. 91783 1.92119 0.00175 
1.00 2.00999 2.00999 0.00000 
1. 2 2.11705 2.11910 0.00097 
1.4 2.23714 2.24365 0.00241 
1.6 2.3680() 2.37978 0.00497 
1.8 2.50823 2.52527 0.00679 
2.0 2.65397 2.67574 0.00820 

Table 4-5: Relative Senstivity of the Second Order System 

As Table 4-4 shows, /o1 is approximately equal to 1.0. The opti

mized D2 varies from 0.63865 to 1.712 in Table 4-4 while it varies from 

0.65 	to 1. 73 in Figure 4 of [22]. Now let us make a comparison: 

(from Table 4-4) (from Figure 4 of [22]) 

822 


0 
0.4 
0.6 
1. 0 
2.0 

The Optimized 
D2 

1.71219 
1.36332 
1. 22048 
0.99003 
0.63865 

B22 

o.o 
0.5 

1.0 
2.0 

D2 


1. 73 

1.3 

1.0 
0,65 

*The results above agree as expected. The optimal S and the actual S are 

plotted against the plant parameter B22 as shown in Figure 4-3 which shows 

the difference. The relativity sensitivity vs. is in figure 4-4,e22 

which is exactly the same as the curve of o2 = - 1.0 in figure 4 of [22]. 

From the example, it is obvious that dynamic programming is powerful. It 

saves time in doing the tedious calculations by computer and gives the 

accurate results. It also does not need the assumption (the system is 
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optimized when the controller parameter is equal to the plant parameter) 

which is very important in ~ases ·of using decision theory. 

4.7 The Third Order System: 

(i) The problem: 

The plant dynamic, 

X = B X + C u 

where u is the forcing function 

B = l~l 
~l 

~; 2 
-2 

8131-2 

-2 
c = [~ J 

B12 = B13 = Bv and 0.4 ~ By~ 1.6. If we consider th~ minimizing of u2 to be 

2as important as the minimizing x1 , x2 
2 and x3 

2
; and the tim~ T is randomly 

chosen as 4. Then the performance criterion is: 

4  ·2 2 2 2 Js = J Lx 1 + x2 + x3 + u__ dt0 

The given initial condition is: 


x1(0) = 1.0 


x2 CO) = 1.0 


x3 (0) = o.o 


(ii) Results: 

B v 

0.4 
0.6 
0.8 
1.0 
1. 2 
1.4 
1.6 

The Optimal Controller D[ 
D 3 JDl D 2 

0.31978 0.04342 0.24265 
0.37836 0.06483 0.26167 
0.39712 0.08492 0.27997 
0.40523 0.10396 0.29698 
0.40815 0.12237 0.31309 
0.40918 0.14039 0.32871 
0.40951 0 .15811 0.34413 

Table 4-6: The Optimal Controller D of the 

Third Order System 
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The Optimal The Actual s - s* 
B v s * s s* 

0.4 3.48933 3.51239 .00661 
0.6 2.92574 2.92732 .00054 
0.8 2.54893 2.54903 .00004 
1.0 2. 29459 2.29459 0 
1.2 2.11782 2.11794 .00006 
1.4 1.99049 1.99082 .00017 
1.6 1.89618 1.89686 .00036 

Table 4-7: Relative Sensitivity of the Third Order System 

4.8 The Fourth Order System: 

(i) 	 The problem: 
Two forcing functions ul and u2 as well as two varying plant 

parameters B21 and s22 are 7onsidered in the fourth order system with 

the plant dynamics: 
. 

X = B X + C u 

-1 0 0 0 

where B = 821 822 0 2 

0 +~ -~ 0 

0 0 0 0 

1.4 ~ 2.6 	 -2.6 ~ ~ -1.4821 ~ 822 

1 0 
and 0 0c = 

0 ~ 

0 0 

The performance criterion is: 

2 2 2(X3 + 0.05 u1 + 0.05 u ) dts =I: 
and the given initial condition: 
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X1 (0) = 1.0 


(ii) 	 Rosul ts: 

The plant parameters B21 and arc assumed to have uniform proB22 

bability distribution or Gaussian distribution, and the values of the 

expected controller wi t.h the plant parameters. having different probability 

of occurrence were calculated and tabulated as follows: 

The Probability 

Distribution 

of s21 and s22 

The Controller D 
012 °13 

In the 	Middle 0.22722 
of the Range 0.23339 

Uniform 0. 24117821 Uniform 0.23247822 

Uniform 0.22941B21 
Gaussian 0.23188822 

Gaussian 0.23826821 Uniform 0.23330822 

Gaussian 0.22899821 Gaussian 0.23270822 

TABLE 4-8: 

0.13944 
0.40916 

0 .14635 
0.41174 

0 .14006 
0.40929 

0.14722 
0 .41142 

0.14084 
0.40898 

0.45983 0.50933 
3.51793 0.30824 

0.45795 0.52307 
3.51729 0 .30710 

0.45683 0.50500 
3.51398 0.29363 

0.46058 0.52990 
3.51411 0.30658 

0.45846 0.51168 
3.51071 0.30744 

The Optimal Controller D of the 

Fourth Order System 

The above matrices are very nearly equal to each other. Hence, 

the optimal controller in the middle of the specified range is considered 

as the functional D ignoring the probabi~ity of occurrence of the plant 

parameter as in the first order system. 
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I 
B21 13 22 


-2.6
11.4 
 -2.4 

-2.2 

-2.0 

-1.8 

-1.6 


I -1.4 


1.6 	 -2.6 

-2.4 

-2.2· 

-2.0 

-1.8 

-1.6 

-1.4 


1.8 	 -2.6 

-2.4 

-2.2 

-2·. 0 

-1.8 

-1.6 

-1.4 


2.0 	 -2.6 

-2.4 

-2.2 

-2.0 

-1.8 

-1.6 

-1.4 


2.2 	 -2.6 

-2.4 

-2.2 

-2.0 

-1.8 

-1.6 

-1.4 


2.4 	 -2.6 

-2.4 

-2.2 

-2.0 

-1.8 

-1.6 

-1.4 


The Ontimal 
s'lt 

0.16<>43 

0 .18824 

0.21384 

0.24594 

0.28466 

0.33438 

0.39615 


0.18689 

0.21121 

0.23950 

0.27481 

0.31712 

0.37102 

0.43749 


0.20746 

0.23412 

0.26487 

0,30335; 

0.34900 

0.40688 

0.47735 


0.22916 

0.25810 

0.29147 

0.33285 

0.38161 

0.44294 

0.51690 


0.25068 

0.28182 

0.31756 

0.36165 

0.41327 

0.47791 

0.54498 


0.27311 

0.30649 

0.34449 

0.39112 

0.44553 

0.51283 

0.59261 


The Actual 
s 

0.17902 

0 .19847 

0.22157 

0.25099 

0. 28725 

0.33515 

0.39701 


0.19626 

0.21819 

0.24412 

0.27713 

0.31774 

0.37134 

0.44063 


0.21404 

0.23845 

0.26715 

0.30397 

0.34906 

0.40868 

0.48536 


0.23328 

0.26029 

0.29216 

0.33285 

0.38261 

0.44830 

0.53259 


0.25295 

0.28262 

0.31762 

0.36225 

0.41678 

0.48883 

0.58086 


0.27406 

0.30664 

0.34489 

0.39364 

0.45326 

0.53152 

0.63145 


sTLS -.s=-[ 

s 

(). 07 5(J5 

0.05435 

0.03615 

0.02053 

0.00910 

0.00230 

0.00217 


0.05014 

0.03305 

0.01929 

0.00844 

0.00196 

0.00086 

0.07177 


0.03172 

0.01849 

0.08608 

0.00204 

0.00017 

0.00442 

0.01678 


0.01798 

0.00848 

0.00237 

0 

0.00262 

0.01210 

0.03035 


0.00905 

0.00284 
 I 

0.00019 
 l 
0.00166 
 I 
0. 00844 ' 
0.02284 

0.06583 


0.00348 

0.00049 

0.00116 

0.00380 

0.01735 

0.03640 

0.06554 


I 
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I 

(Continued)........ 


*1 - ss~ sThe ActualThe Op}imal 
s*I821 822 s s

I 

2.6 -2.6 0.29515 0.29547 0. 00108 
-2.4 0. 33043 0.33077 0. 00103 
-2.2 0.37068 0.37246 0.00480 
-2.0 0.41967 0.42537 0.01358 

0.47651 0.48999 0.02828-1.8 
0.54637 0.57468-1.6 0.05181 
0.62874 0.68284 0.08604-1.4 

TABLE 4~9: Relative Sensitivity of the 

Fourth Order System 

4.9 Discussion: 

The following table was drawn from the results of the above 

examJ.2.l es. 

Percentage Variation The highest per-
of the plant parameter centage Relative 

(refer to its middle value) Scnsitivit.x_ 
1st Order System 
(one varying 40% 0 .167% 

plant parameter) 

2nd Order System 100% 15.97 % 
(one varying 80% 7.25 % 
plant parameter) 609;; 2.95 % 

40% .95 % 

3rd Order System 
(Two varying both 60% 0.66 % 
plant parameters) 

4th Order System 821 822 
(Two varying 

30% 30% 8.6 %plant parameters) 30% 20% 5.4 O; 
0 

'30% 10% 3.6 % 
30% 0% 2.0 % 

0% 10% .26 % 
0% 20% 1.2 % 
0% 30% 3.03 % 
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Prom the above, the following points arc noticed: 

(i) In general the controller is not sensitive to the plant para

meter variations when the percentage variation of the plant parameters 

(refer to its middle value) is below a certain limit. This limit is a 

function of the plant dynamics 
' 

of the 
. 
particular system in question (e.g., 

40% of the plant parameter variation for the first order and second order 

systems, 60% in the th±rd order system and 20% of one parameter variation 

in the fourth order system if the requirement for the percentage relative 

sensitivity is below 1.2%). 

(ii) In case of high relative sensitivity of the controller to the plant 

parameters, the relative sensitivity ~educes sharply in response to the 

decrease of the variation o~ the plant parameters. 

(iii) In the second order system the percentage relative sensitivity is 

15.97% for one hundred percent variation of the plant parameter; also in 

the fourth order system the percentage relative sensitivity is 8.6% while 

both plant parameters have thrity percent variation. The high 

sensitivity is not desirable for the systew. In order to maintain the 

optimal performance due to the large variation of the plant parameters, we 

can, therefore, divide the range of the plant parameter into smaller 

ranges as required. More values of the optimal controller corresponding 

to the smaller ranges should be calculated beforehand. This is illustrated 

by considering two varying plant parameters as follows: 

x1x1 t' 

x2 
I 

X3 

~: l...._.....,._-+--+-,---+-1 

Dl 02 03 

D4 OS 06 

07 08 09 

010 Dll 0 12 

1v1 1 v2 'v3 Y4-t-Y 



38 

The figures show that the range of one parameter (X) has been 

divided into four smaller ranges and the other (Y) into three smaller 

ranges. The twelve different values of the optimal controller have been 

calculated and stored in the memory system of the computer. According to 

the measurement of the plant parameters, the corresponding optimal control

ler will be modified automatically (e.g., 08 will he the optimal controller 

when the plant parameter X lies between its values x3 and x4 and Y lies 

between its values Y2 and Y3). 



CllJ\PTER V 

CONCLUSION 

In this thesis a new approach has been suggested to circumvent the 

difficulty of the identification problem in adaptive control systems. 

Four example~ of diffe~ent orders have shown the fact that having a proper 

choice of feedback policy, the optimal controller is relatively insensitive 

to variations in the plant parameters as long as they lie within some 

specified ranges. In the examples of the first order and the fourth 

order systems, the expected optimal controller have been calculated by con

sidering the plant parameters having uniform or Gaussian distribution over 

the given ranges. It is also found that the expected optimal controller 

is nearly equal to the optimal controller in the middle of the given 

ranges. Bence, the probability distribution of the plant parameters can 

be ignored and the optimal controller in the middle of the range will be 

the one automatically modified in the system. The limit of the ranges 

usually depends on the design specifications and the particular system in 

question. If the ranges were so large that the optimal controller can 

not maintain the optimal performance of the system, then the range of 

variations can be divided into smaller ranges as necessary. With this 

approach, the identification can be carried on more rapidly since it 

would not be required to compute the optimal controller during normal 

operation, at the sametirne a bigger tolerance may be permitted in making 

the measurements. 
39 
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An examination in the example of some recently published work indi

cat cs .that dynamic programming is prcfcrrahle to decision theory. The 

most significant advantage is that no simplifying assumptions have to be 

made. Whereas, such assumptions arc necessary for the application of 

decision theory. 

The application of dynamic programming can be easily extended to 

' ·higher order.and multivariables control systems. It is also possible to be 

applied to non-linear and linear time-variant systems. The only limitation 

appeared to be the requirement of the long computation time and the 

large s~orage of the computer. 
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APPENDIX I 

General Statement of the Minimax Theorem 

(i) 	 There arc two players, A and B. 

(ii) 	 A has a set (a1,, a 2, am) of m pure strategies. 
' 

(iii) B has ·a set ( f1 , e2, ' en) of n pure strategies. 

(iv) 	 Associated to each~·,pair of strategies (ai, ej) is a pay off qij 

unit from player B to A. Hence, the values to A and B of the 

strategy pair (a., e.) are C( . and - D.J.. 
1 J lJ . 	 -~ 

(v) 	 These values sum to zero for every (a., e.) pair, hence the game is 
1 J 

called zero - sum. 

(vi) 	 Player A may adopt a mixed strategy by employing a 1 with probability 

x1, a 2 with probability x2... , am with Xm' 


m 

where I: x = 1 and X. ~ 0 


m 	 1i=l 

Such a strategy is symbolically represented by 

XX= (X1a 1, x2a2, .•• , Xmarn) The set of all mixed strategies for 

player A is denoted by X • 
m 

(vii) Similarly the mixed strategies for B is denoted by 
n 

where I: y = l y. >... 0 
i=l n 1 

and the set of all mixed strategies for player B is represented 

by y • 
n 

(viii)For each mixed strategy pair (XX, YY), the pay off M(XX, YY) to A 

is defined to be: 44 
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m n 
M(XX, YY) = r r x. q .. Y.

l. lJi=l 	 j=l J 

n m 
= .rl Yi ( .rl x. qi•)

J= l= l J 

m n r = x. 	 ( r a. .. y .)i=l l. l.J Jj=l 

The symbol 
n 

M(ai, 	YY) = jh C( ij y.
J 

means 	 the pay off to A when A uses pure strategy a. and Buses YY. 
l 

Similary when A uses XX and Buses a.• the pay off is 
J 

m 
M(XX, 	 Sj) I= i~l q ij x. 

1 

(ix) 	 The player A aims to select a mixed strategy XX from X so as to 
m 

maximize his return M(XX, YY) and B's aim is to minimize the return 

to A M(XX, YY) by choosing a mixed strategy YY. 

(x) 	 The rules of the game require that each player chooses his strategy 

in complete ignorance of his opponent's selection. 

(xi) 	 The minimax theorem states ma thematically: 

min M(XX(O)• YY) 
yy 

= max min M(XX, YY) 

xx yy 


= min max M(XX, YY) 

yy xx 


= max M(XX, yyCO)) 

xx 


= M(XX(O) • 	yyCO)) 
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where xx (O) is the maximum strategy chosen by /\ 

yy(O) is the minimax strategy chosen by B 

M is the payoff function. 



J\PPE'.';DIX II 

GENEHAL FORMULATION OF DYNAMIC PROGRJ\t,fMING 

thAn m order system can be described by m state variables, let 

x = [ x1, x2, ... , xm J ----(1) 

The system i's subject to S forcing functions, let, 

u = 1}11' u2, ••• J u s J ---- (2)-

where S ~m, and them equations of the system are, in vector notation, 
. 
x = f (~. ~· t) ---- (3) 

Such equations are, in general, nonlinear and time variant. The 

equivalent discrete system is described by a vector transition equation 

which can be calcualtcd from equation (3) in sepcific cases; let it be, 

x = ~ + h c/>n (~, ~1 ----(4)-n+l 

where Hm "' (X , u ) = _f (_X, _u, nh)'l'n -n n
n-i-0 

The performance criterion or cost funciton is a series of N terms 

as following: 

N-1 

n~O 


When the u have been chosen, each X is calculable from X 1 by
-n n n-

equation (4); then the series is ·only ~ function of initial state ~. 

The performance criterion is (a series N terms is used): 

47 
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N-1 
= min E 

n=O~·. ·~-1 

For an n-stage process it can be written: 

n-1
V (X ) = min + g. (X., u.) ]n -o .E l -l. -l. 

u ••• u 1 l=l 
-0 -n-

Since the first stage .is only affected by u , therefore;
0 

V (X ) = min [g0 (~, ~) + min g. (X. n.) ]
n -o l -l -l 

u ul. • .u 1-0 - -n-

However, the second term in brac.kets is Vn-l (x1) , the performance 

criterion for a (n-1) stage process starting at x1• Hence we may write: 

I 

min + ----(5)Vn(~) = 1$0(~, ~) vn-1 C!1)] 

~(n) 


The ~(n) has been so written as a reminder that the calculated~ 

depends on the number of stages in the process. The x1 of the equation 

can be determined by equation (4) with n = O. Thus, 

= ·x + h q, (X , u )
-0 0 0 0 ----(6) 

Equation (5), with equation (6), is the basic equation of dynamic 

programming. The desired ~(N) is computed by using (5) and (6) in an 

iterative process. 



APPENDIX III 

FORtvITJLATION OF DYNAMIC PPOGRA'-lMINli APPLIED TO 

LINEAR MULTIVARIABLE DIGITAL CONTROL SYSTEMS 

The linear multivariablc control system is described by a set of 

m first-ord~r linear differential equations: 

X = BX + Cu ----(1) 

X is a column vector of the m state variables and u of the s 

forcing functions. B is an (m x m) and C an (m x s) matrix. The forcing 

functions are to be held constant throughout each periodic intervals 

of time hand changed in a step manner at the sampling instants. X(n) 

is the state vector at the beginning of the (n+l)th interval and ~(n) is 

the vector of forcing function during the same interval. Since it is a 

linear system, the state vector at the end of the (n+l)th interval is 

linearly dependent on ~(n) and ~(n), thus, 

~ (n+l) = F ~(n) + E ~(n) -----(2) 

where F is an (m x m) matrix and E an (m x s) matrix. F and E can be 

obtained by using the solution of equations (1) in matrix form. 

Starting at X(O), X(t=h) is given by 

X(h) = exp(hB) X(O) + f h exp [ (h-t) B] Cu(O) dt 
0 

where 
co 

1exp(hB) = E nrn=O 

49 
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The performance criterion is 

N-1 
E Jl' (n) A !(n) • !::._' (n) II ~(n) J h 

n=O 

where the prime symbols denote transposed matrices; A is a symmetric 

and ll a diagonal matrix. Similar to the logic in Appendix II, the 

performance criterion for an n-stuge process can be written: 
., 

vn ~con = min { ~' (O) A ~(O) + ~· (0) H !::(O)] h + vn-l ~(l)]} 
~(O) 

where 
n-1 

Vn- l [x (1) l = min n~l [!' (n) A ~(n) + ~· (n) H ~(n)] h ----(3) 
- u(l) ..u(n-1) 

Vn is expressible as a quadratic form in ~(O) 

V n ~(O) J = ~· (0) Gn !_(0) ,;,---(4) 

where Gn is a symmetric (mxrn) matrix. Substitute (4) and (2) into (3) 

= min { [x' (0) A ~(O) + ~· (O) H ~(O)] h 
~(O) 

+ [F !_(0) + E !:.(O) ] '· Gn-l lJ ~(O) + E ~(O)]} --- (5) 

u(O) is chosen to minimize the right-hand side of equation (5). In 

order to minimize it, ·differentiate with respect to the s forcing functions. 

h !:.' (0) II = - [p ~(O) + E ~(O) ] 1 Gn-l E 

Take the transpose of the matrix equation, and solve for2{0) 

· fi J-1 G _X(O)~(O) = - ~ H + E 
I Gn-l E E 1 Fn-1 
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Put 
----(6)~(C - D ~(O)n 

whoro 


E J-1 E' F ----(7)

n-1 

'by substituting (6) into I. •.·; 


o' I! G 1 (F-EiJ )
+ n n- . n (';;,·
---- o) 

.1 tion define anEquations (6), (7), ..... with '" 

iterative process t. .arried out The final result of 

~(O) = - D X (O) ~· .. es the co ~ it gives the optimum 
n

. set of s forcing fu1 s to be·._, o. 



APPENDIX IV 


FLOW Cl!ART FOR CALCULATING Tl!E OPTHlAL CONTROLLER 


OF Tl!E SECOND O!WER. SYSTnl 


START 

Read 
ll, Di!, 

N, A, B, 
and C 

B(2, 2) = O. 

Subroutine for 
Calculating F and E~!TX 

A, B, and C arc 

Matrices 


E = Dll (EMTX) C 
G = DI! ( A ) 

N = 0 

GN = (A + DN I ll DN) II 

-+: (F - H\ 1) 'GN l (F-EDx1) 
l\ ' - ·' 

52 

The Prime Symbols 
Denote the Trans
posed Matrices 
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N = N + l 

\\'RITE 


YES 


F, E, and D 

B(2, 2) = B(2, 2) +0.2 


NO 


STOP 




/\PPf:\DTX V 

11'\DFX OF Tl !E S!:\.ONO ORIJLR SYSTE: 1 

START 


ICC = 1 
 .. 
Read 

E, F, x1 , x2 
r 
I 

I
Sum = 0.0 I 

IC = 1 I 
I 

u = - DX 

2 2 2
Sum = Sum+u +Xl +X2 

x = F x + E u 

x cw 

IC = IC + 1 

WRITE 

YES. 

SW-1 

ICC = ICC+l 

STOP 

54 

YES 



/\PPH~fll~. 

·~JOl'. UUJ::d2 LUul'~ L[L lQ(J ClG r,:,r; 
'.Ji I U J 0 H l•H..i () L C K 
1, f fl F TC L F. Ui ~ (i 
c C/\LUiU\TJON rn: Ai'l OPT Ii·~AL (r)!·lfl<GLLLi< HY i)Yi·l/1:1rc i-'i~()(J;u,:c1,r:;G 
c FOf\ /\ ;)r_cum; Ol<ULI~ :,Y:.JTrJ; 

D I i;, LI~ :·, 1Uh F ( ? ' ~ ) , i\ { 2 , 7- ) ' t; ( 2 , 1 l ' C C ?. , l l , /\ ( ?. ' 2 l , L; ( l ' 2 i , 
1 G ( 2 ' "/. l ' [ P ( 1 , 2 ) , l PG C l , 2 l , t. PG E ( 1 , 1 l , H :1, C 1 , 1 l ' [:: P (; F C 1 , 2 l , f_, P C 2 ' 1 } ' 
2 V Hl;1 { l ' l ) 'lJ F->H ( 2 , 1 ) , l.> P Hu C2 , L l , frl,i_iJ { 2 , 2 l , F Iii [ 0 P ( 2 , 2 l ' F fl, G ( 2 t 2 l t 
3 F i·'1 G X ( 2 t 2 ) 'EM 1 X ( 2 ' 2 ) , A;/, X ( 2 ' 2 ) , Eu ( 2 ' 2 ) 

H=l.i.J 
DH=O.u2 

N=60U 

f-< E/\ D ( 5 ' 1 C l ( ( A ( I , J l , J =1 , 2 ) , I =l , 2 l 
' 	 .

l u 	F 0 f-< i 1i I\ T ( 4 F 5 • 1 l 

I~ E A U ( 5· ' 1 1 l ( C ( I , l ) ' I = 1 ' 2 l 


11 	 FOR~/\TC2F5.ll 


'w1RITE (6,12) ((A(l,J),J=l,2ltl=l•2) 

WRITL (6,12) (C(I,lltI=lt2l 


12 	 FORMAT( lH ,zFIC.5) 
BCltll=O.O 

8(lt2l=l.O 

BCZtll=v.u 

DOl Il=O,zo,z 

BC2t2l=Il 

ec2,2i = -u(z,21110.0 

CALL PHI C Ftt.:h2 tDHtOt50) 

CALLPHIIEMTXt8t2tDHtlt50) 

0021 L=lt2 

ECLtl)=O.O· 

DO 21 J=lt2 


21 tlltll =UH*EMTX(L,Jl*C(J,ll+E(L,l) 

uo j() J=lt2 


3 0 	 D ( l , J l =~; •U 

DO :n I= 1, 2 

DO 31 J= 1, 2 


31 G(ItJl=DH*A(I,J>' 

DO 40 I=lt2 


4U EPCltll=Elltll 

ITCT=u 


200 	 DO 41 I=lt2 

EPG( lt r l=U.o 

DO 41 J=l,~ 


41 	 EPG lltil=EPGCl,Il+EP(l,Ji*G(JdJ 

EPGE(l,ll=O.O 

DO 42 J=l,2 


42 ~PGElltll = EPGECltll+EPGCl,Jl*E<J,ll 

43 HM(l,ll = OH*H+EPGlll,ll 

25 VHM(l~ll = leO/HM(l,ll 


SS 


http:FOR~/\TC2F5.ll


56D 0 11 '• I ::: J , 2 

l P C> F ( l , I ) = U • U 

f) 0 /1 l1 J = 1 ' 2 


l+ t, 	 L PG r ( l ' I l :..: L P G F ( l , I ) + LPG ( 1 , J ) '-l- F ( J , l ) · . 

DO It 5 I= 1 , 2 

U(ldl =U.U 


45 D ( 1, I l =D ( 1, I l +VHM ( l t l) *EPGF ( l t I) 

00 46 J=lt2 


46 [)P(Jdl=D(l,J) 


Dn '+ 1 L=1 , ?. 

DfJH(Ld l=U.O 


47 DPH(L,ll=D~H(L,ll+DP(L,ll *H 

DO 1+8 l =1, 2 

DO '1B I=l,2 

DPHU (L,l)=O.U\ 


4 8 	 Df) HD ( L ' I l =() P H D ( L , I l + [) PH C L , 1 l *D ( 1 , I ) 

DO 49 I=lt2 

DO 49 J=l,2 


49 	 AMX(I,Jl = (ACI,J)+DPHDIItJ)l*DH 

DO 50 L=l,2 

DO 50 I=l t2 

ED(Ld l =O.O 


50 	 ED(L,Il = ED(L,Il + ECL,ll*D(l,Il 

DO 51 I=l,2 

DO 51 J=lt2 

FMED(l,Jl = FCI,Jl .i-EDII,J) 


51 	 FMEDP(Jtll=FMED(ItJ) 

DO 52 L=lt2 

DO 52 I=lt2 

FMG(Ld) =O.O 

DO 52J=lt2 


52 	 FMG(L,Il = FMG(L,Il + FMEDP(L,Jl*G(J,I) 

DO 53 L=lt2 

D053 I=lt2 

FMGX<Ltl) =o.o 

0053 J=lt2 


53 	 FMGX(L,Il =FMGXCLtil + FMG(L,Jl*FMEDCJ,I) 

DO 54 I=l,2 

0054 J=lt2 


54 	 G ( I , J) = AMX ( I , J) +FMGX ( I , J) 

I TCT = ITCT+ l 

IF (ITCT .LT.NI GO TO 200 

WRITE!7tl00) < (f(l,J),J=l,2ltl=lt2) 

WRITEC7,10ll (E(ltll,I=lt2) 

WRITE(7tl01) CDlltJ),J=lt2) 


1 CONTINUE 
100 FORMAT(4Fl0.5l 
101 FORMAT (2fl5.5l 

STOP 

END 


http:FORMAT(4Fl0.5l


57 
'.i> I Lff TC L Ll: 
C CALCuLAT!UN OF t:.rdl<IU:.:, l:. MW F 

~, Lm i\Od I I IH.: PII I ( T iH X ,r.y, TX , i·i~) l l t. , U 1 , ;.;0:.1, Li1• T l 
[) I iii!: N~ l 0 N Ti /1 1x ( /.1 s I l E ' j I\~; I zL ) ' Ml\ r x ( i"1 ~) I zL ' r:.::. I l f.:. ) ' 

1 P 11, r x ' '1 , 4 ) , F 11: r x ( 4 , l; ) , u11i T x c '• , 4 > 


K=l 

FCT I~= 1. 0 

KK=K.+MON 

AK=KK 

F C T I-< ::: F C Tr~ * [) T I AK 

00 ~Ul L=l,MSIZE 

00 5Ul I=l,f'1SIZE 

I F ( L. EC.l. I l GO T 0 l 0 0 

UMTX(ld )=U.C '· 

GO TO 501 


100 	 UMTX(L,I)=l.O 
501 	 CONTINUE 


00 ~02 L=l,MSIZE 

DO 502 I=l,1"'1SIZE 


502 	 TMTX(L,l)=~MTX(L,Il+AMTX(L,Il*FCTR 


DO 503 L=l,MSIZE 

DO 503 I=l,MSIZE 


503 	 FMTX(L,Il=AMTX(L,Il 
101 	 K=K+l 


KK=K+MON ! 

AK=KK 

FCTR=FCTR~~DT /AK 


102 	 DO 504 L=l,MSIZE 

DO 5U4 I=l,MSIZE 

PMTX(Ld )=0.0 

DO 504 J=l,MSIZE 


504 	PMTXIL,Il=FMTXCLtJ)*AMTX(J,Il+PMTXCL,I) 

DO 505 L=l,MSIZE 

00'505 I=l,MSIZE 


505 	 FMTX(L,I)=PMTX(L,Il 
103 	DO 507 L=l,MSIZE 


DO 507 I=l,tl.SIZE 

PMTXILtll=PMTXILtll*FCTR 


5 0 7 	 TM TX ( L, I ) =TM TX IL, I ) +PM TX ( L, I ) 

IF(K.EO.LMT>GO TO 104 

GO TO 101 


104 	 RETURN 
END 

$ENTHY 
l.O o.o o.o i.o 
o.o i.o 
SIBSYS 

CD TOT 0165 



58 

APPENDIX VII 


iJOLl Ou3512 LOJIS LEE lOU 010 030 
iIBJOG NODECK 
l> ! fl FTC L UJ NCj 

c CALCULATION or THE: OPTiil1AL PEl-\FOR/l.flflCE cr·<ITEfno:~ S* 
c OF A sccor-m Ol<Dlf\ SYSTEM 

D I ~!,EN.:, I 0 N X ( 2 ' 1 l , XX ( 2 , l > , Li ( 1 , 2 l , E ( 2 ' 1 l 'F C?. ' 2 > 

ICC = l 

1 !~EAO(:nlO) ((F(ItJJ,J=l,z),I=lt2) 

10 FORMATl4Fl0.5l 


RtAO (5,11) CECitl),I=l,2) 

r~ E A D ( 5 , 1 1 l ( D C 1 , J l t J = l , 2 l 


11 FOf~Mf\T C?Fl5.5~. 


X(ld)=l.O 

X(2dl=O.O 

SW'.=0. 0 

IC= 1 


100 U=-(D(l,ll*XCl,ll + DC1,2l*XC2tll) 
SUM=SUM+U**2 +XCltll**2+XC2tll**2 
XXCltll=F<l,ll*X(l,ll+F<l•2l*XC2tll+ECltll*U 
xx12,11=F(2,ll*X(ltl) +F(2t2)*X(2,ll +EC2tll*U 
Xlldl=XX(l,ll 
XC2tll=XX(2,ll 
IC=IC+l ! 
IFCIC.LE.6UOlGO TOlOO 
SUM=SUM/50.0 
WRITEl6t4) SUM 

4 	 FORMATClH tlUXtfl5.5l 

ICC=ICC+l 

I F ( ICC• LE• 11 ) GO T 0 1 

STOP 

END 

$ENTRY 
1.00000 0.02000 -0.00000 1.00000 


o.uu020 0.02000 

0.98283 1.71219 


1.00000 0.01996 -0.0UOCJO 0.99601 

u.00020 0.01996 

0.98468 1.52675 


l.oouoo u.01992 -u.OuO()O 0.99203 

0.00020 0.01992 

0.98632 l.363L2 


1.00000 o.~1988 -o.ouooo o.98807 

o.uuo20 o.Ol988 

0.98774 1.22048 


1.00000 O.Ul984 -o.ouooo 0.98413 

o.uoozo 0.01984 

0.98898 1.09678 


http:tlUXtfl5.5l
http:FORMATl4Fl0.5l


1. ()Q()(J(J 0.0198() 
U.UUD2(J 

0.9900? 

i.ouooo 0. (, 19 76 


o.c0020 

CJ.9')U9"1

i.oouuu U.Ul972 
o.uuu20 
U.99176 

1. 000()(; 0.01968 
o.occ20 
G.99244 


l.ooooc u.01964, 

.0.uuo20 

., 

0.993CJ2 

1.00000 0.01961 


0.00020 

0.99351 


$IBSYS 

-o. (J(J(i()() 0.98020 
() • (; 1 ')fJ() 

(). 9 ') () 0 3 
-0.()()()()() 0.97629 

o.01r;76 
(). 0') 80 4 

-0. 00000 0.97239 
u.Gl972 
o.euno 

-CJ. O:JC\J() C.96851 
0.01968, 
U.75011 

-0.0000() o.96464 
0.01964 
0.690'.;7 

-0.00000 0.96079 
0.01961 
0.63865 

CD TOT 0080 

.'l 
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'.tJOf3 003512 LOUIS LEE lliO 010 030 
tlllJOB NOlJt:CK 
:iiIGFTC LEUNG 
C CALCULATION OF THE /\CTUAL PfF<FOl~MANCE CRITF:l~IOil S 
C OF A SECOND ORD[R SYSTEM 

DIMLN~ION xc2,1i,xxc2,1i,~(l,2l,E<2tlltFC2t2) 
ICC :: 1 

RF. ADC 5 '11 l ( D ( 1 , j l 'J:: 1'' 2 l 


1 READ(5,10l ( (F(I,Jl,J=l,2l,I=l,2l 

REAU 15tlll (ECitlltI=lt2l 


10 FORMAT(4Fl0.5l 

11 FORMAT <2Fl5.5l 


SUM==O.O 
XCldl=l.u 
XC2dl==O.O 
IC=l 

100 	U=-(0(1,ll*X(l,ll + D(l,2l*XC2tlll 
SUM=SU~+U**2 +XCltll**2+XC2tll**2 
XX Cl' 1 l =F Cl t l l *X ( l t 1 l +F ( l t 2) *X ( 2' l l +E < l t 1 l *U 
'XXC2tll=F(2,ll*XCltll +FC2t2l*XC2tll +EC2tll*U 
X(ld)=XX(l,l) 
X(2,ll=XXC2tll 
IC=IC+l 
IFC!C.LE.600lGO TOlOO 

SUM=SUM/50.0 

wr~ITE<6,4) SUM 


4 	 FORMAT(lH tlOX,Fl5.5l 

ICC=ICC+l 

IF(ICC.LE.lll GO TO 1 

STOP 

END 


$ENTRY 
0.99005 0.99003 

1'.00000 0.02000 -0.00000 i.onooo 
0.00020 0.02000 

l.OOOCJO 0.01996 -0.00000 0.99601 
0.00020 o.01996 

1.00000 0.01992 -().0()()(.;() 0.99203 
0.00020 0.01992 

1.00000 o.01988 -0.00000 0.98807 
0.00020 0.01988 

i.00000 0.01984 -0.00000 0.98413 
0.00020 o.019s4 

1.00000 U.01980 -0.00000 0.98020 
0.00020 0.01980 

. 1.00000 0.01976 -0.00000 0.97629 
0.00020 0.01976 

http:tlOX,Fl5.5l
http:FORMAT(4Fl0.5l


61 i.odoou u.01912 

0.00020 


i.~uuuu v.ul968 

0.00020 


i.ouoou o.ul964 

0.uuu20 

1.00000 0.01961 
0.00020 

$IBSYS 

-(J. 0000(} 

o. o irn?. 
-o. (jtJ()lJ(J 

(J.Ql<J68 
-o. 0 (J 0 (J 0 

(J.(;1964 
-0.00000 

0.01961 

0.96851 

0.96464 

CD TOT 0068 
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