THE APPLICATION OF DECISION THEORY AND DYNAMIC PROGRAMMING
)

TO ADAPTIVE CONTROL SYSTEMS



THE APPLfCATION OF DECISION THEORY AND DYNAMIC PROGRAMMING

TO ADAPTIVE CONTROL SYSTEMS

LOUIS K KING LEE, B.ENG. (ELEC.)

A thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degreé

Master of Engineering

McMaster University

September 1967



MASTER OF ENGINEERING McMASTER UNIVERSITY
(Electrical Enginecring) Hamilton, Ontario

TITLE: The Application of Decision Theory and Dynamic Programming to
Adaptive Control Systems.

AUTHOR: Louis K King Lee, B.Eng. (McMaster University)
SUPERVISOR: Dr. N. K. Sinha

NUMBER OF PAGES: VI, 61
SCOPE AND CONTENTS:

It is generally assumed that the implementation of adaptive
control requires a precise identification of plant parameters. In the
case of a system withvvaryingvparameters, the identification problem gets
very involved,as speed of identification and accuracy are contradictory
requirements.

In this thesis it has been shown that using a fecdback policy, the
optimal controller is relatively insensitive to changes in plant para-
meters as long as these lie within some specified ranges. It is, therefore,
concluded that, with such an arrangement, adaptive control can be imple-
mented if one has only the knowledge of the rangé§ within which the para-
meters of the plant lie. Thus identification can be carried on more

rapidly, as stringent accuracy is no longer necessary.
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CHAPTER 1

~ INTRODUCTION

Sincé 1956 control engineers have given considerable attention to
the development of the concept of adaptive control -- or a feedback control
in which a system~is.capable‘ of changing its controller parameters in
order to achieve optimal performance in spite of large changes in the
plant parameters. Adaptation to.unpredictable conditioné is in fact one
of the basic rcéuirements for a control system. lowever, the conventional
feedback control system is'only capable of maintaining the performance
with small changes in plant parameters. This is the reason why intensive
rescarch in the field‘of adaptive control has been carried out in the
last few years [1], [2], [3], [4], [s], T6l, [7].

Identification refers to the process of characterizing plant
dynamics. By ‘their very nature, adaptive systems demand frequent and
rapid solutions of the identification problem, with as much precision as
possible. Thus, the identification problem is of special importance in
any approach to the design of adaptive control systems. Moreover, the
requirements of short measuring time and accuracy are in direct conflict
to each other, making the problem very difficult in the case of systems

with rapidly varying parameters.



In this thesis, a new approach has been suggested in order to
overcome the difficulty mentioned above. The plant parameters are
considered to be random and lie within some specified ranges with known
probability distributions. The analysis is designed to search for an

optimal controller (or near-optimal controller) which automatically adapts

the system to the plant parameter variations within the specified ranges. The

.

parameters of the calcdlated optimal controller for each range of plant
parameters will be stored in the memory of the computer and hence will
save time in adaptation.

Of the techniques available in control theory, decision theory and
dynamic progfamming appear to be more appropriate. Decision theory is one
of the most promising mathematical tool to be applied to control systems.
A growing interest is evident from the numerous papers published recenlty
8], [9], [10]. 1In practice, decision theory is difficult to apply to
control systems unless certain simplifying assumptions have been made Dﬂ,
[10]. One of the examples of Reference [10] has been discussed in Chapter
IITin detail to illustrate that fact. Hence, dynamic programming is
considerédtas the preferable alternative approach. In Chapter 4, the
basic concept of dynamic programming and the formulation of dynamic pro-
gramming from decision theory have been introduced by considering a
simple game. The new approach, utilizing dynamic programming, designed tc¢
case ~* the identification problem has been demonstrated through four
examples. All calculations in this thesis have been carried out on an

IBM-7040 computer.




CHAPTER 11

ADAPTIVE CONTROL SYSTEMS

2.1 Introduction:

With the progress being made in space, nuclear, and other indus-
trial technologies, there is a growing need for automatic control systems |
which are capable of changing their own parameters in order to remain
efficient in spite of large changes in their environments. This has led
to intensive research during the past few years on adaptive control.
systens (1], [2], [3], [4], 3], (6], [7)-

A common example of/adaptivé control is a human being steering an
automobile. The driver coﬁtinually injects small variational signals
onto the steering wheel in order to maintain 'the feel of the road and
the car'; i.e. the driver is continually measuring the dynamics of the
process to be controlled in order that he may be prépared to effect near
optimum control when input signals arise (e.g., when the eye detects a
curve in the road or when thé driver is suddenly called upon to swerve
the car to avoid an object on the road),

'In'this Chapter, the general definition and the classification of
adapfive control and the problem of identification are introduced; and
then it is explained why the parameters should be considered within

sepcified ranges.

2.2 Definition of Adaptive Control:

Control systems can be divided into two main classes: adaptive
3



and non-adaptive. Adaptive control systems may be defined as those which
are capable of modifying their own paramcters with changes in environ-
ments in such a manner that their performance is optimized on the basis-
of a prescribed criterion. Non-adaptive control systems do not have this
facility.

All adaptive control systems perform some of the following opera-
tions: measurement, identification, pattern recognition, determination

of optimum control strategy and modification of the controller.

2.3 Classification of Adaptive Control Systems:

Adaptive control sysfems can be classified into three types: the
basic adaptive system, the static adaptive system and the dynamic adaptive
system. The basic adaptive/system is the sihplest type. It does not
have any facility for pattern recognition. The static adaptive system
involves the comparison of the present environmental situation with the
past records of different sets of such situations, and recognizing it as
belonging to a particular set. The system can be compared to the
technician who has memorized the solution to the problems he is most likely
to encounter but yet he is not prepared to learn anything new and has not
the capability of solving a new problem. The dynamic adaptive system works
like the static adaptive system, but when a new or unexpected situation
arises, thus creating a pattern which does not match with any of the stored
patterns, the system would temporarily adjust to the pattern closest to the

actual pattern while determination for .optimum.strategy is being made.



2.4 Problem of Identification:

‘Most control systems consist of two sub-systems: plant and con-
troller. The plant is considered to be the mechanism to be controlled
and has little design frecdom in most cases. The controller is that
part of the system which is designed with a view toward making the entire
system work properly. Evidently the success with which a given plant can
be controlled in a described fashion depends on how accurately its
varying parameters arc known. One of the open problems challenging
design engineers involves the accurate measurement of the parameters of
the control system to be optimized and the computation of the cﬂange in
the performance index in responée to parameter variations.

Identification involves the use of the measured data for the
determination of certain unknown parameters. Practically, identification
should be made in the presence of normal operating signals and noise dis-
turbances. Also, any test performed on the process must not unduly
disturb the normal operation. A typical configuration of an adaptive
control system is as shown in Figure 2-1.

\ It is noted in Figure 2-1 that the measurement of parameter
variations is done in a finite time which should be chosen sufficiently
small so that the effect Qf the variations of the parameters is insigni-
ficant. It is, hawever, impossible to make the measurement time short
without decreasing its accuracy. Conversely, one must take a fairly long
time for the measurement if it is to be done with significant accuracy,
Therefore, the demand for short measurement time and the necessity for

accurate identification are in direct conflict with each other. As a



matter of fact, it is impossible to construct the error-frce identifica-
tion of the paramétcr because of all sorts of errors caused by the short
mecasurement time interval and external noise, incompletcness of equipments
etc.

Now let us consider the unknown parametef to be identified in the
system shown in Figure 2-1 to be cxpressed by 6(t). In the process of
performing the measurement or observation, random disturbances are added
to the input of the measuring device. Therefore, it gives an imperfect

measurement 6*(t) of the value of the parameter so that
8*(t) = 68(t) + n(t)

where n(t) may be considered as the presence of noise contaminating the
incoming signal to the meas;ring device. Thus, the only known quantity:
is the measured value 0*(t), and information concerning the true value of
6(t) must be inferred fromrthis acquired data 6*(t).

The central problem in adaptive control systems is  the deter-
mination of the coptroller parameters on the basis of the above incom-
plete iﬁformation. Due to the handicaps discussed previously, it is
natural and practical to consider that the varying plant parameters lie
in specified ranges. In general, the ranges of plant parameters and
their probability distributions may be determined by statistical
inference from the previous measurements or by the specifications of the
designer. ,Using feedback policy, the analysis of the design is to search
for an optimal controller which is relatively insensitive to variations

in plant parameters-as long as they lie within those ranges. This

approach may overcome the difficulties that arise in the identification

problem,
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FIGURE 2-1: An Adaptive Control System




CHAPTER 1III

DECISION THEORY

3.1 Historical Perspective:

The foundations of decision theory were first laid by
John von Neumann in the late 1920's. von Neumann and Oskar Mogenstern
published their book [11] in 1953, and since then, the theory has been
widely applied to economics, games, and military situations. In 1958,
N. M. Abramson presented an excellent paper [12], which was the first
application of Game Theory to Eiectrical systems. In the field of
adaptive control, J. G. Truxal and J. J. Padalino have suggested an
approach using decision theory [[8]. However, their example is too
simple and artificial. Recently Dorat6 and Kestenbaum have applied
decision theory to the sensitivity pfoblem of control systems ﬁo].
Their approach appears to be quite natural but their examples are limited
to second-oréer systems with only one varying plant parameter. One of
their examples will be discussed later in this Chapter .in order to illus-
trate the possibility of application of decision theory to control

systems.

3.2 The Basic Concept of Decision Theory: [}3] [)4]

In broad termg decision theory is concerned with the problem of
making the optimum decision when one is faced with a choice of several
possibilities. Since it is easier to start with games, let us consider

the game of matching pennies. Players A and B each display
8
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simultaneously a single penny. A takes B's penny if A matches his penny
with B's, i.e. either both pennies are heads or both are tails. Other-

wise, B takes A's penny. The pay-off is represented in matrix form as

following:
B
A H T
H +1 -1
T -1 +1

where (i) +1 means A takes B's penny and
(ii) -1 means A loses hig penny to B.

If either one of the players constantly uses the same pure
strategy, the other can take advantage of this, e.g. if A shows head
constantly, B can show tail each time and win. So a mixed form of
strategy of heads and tails will be used. This is a very simple examplé
of the application of decision theory.

Now let us consider a game with a pay-off table as below:

B Strategy Strategy
A Bl B2
Strategy
Al $§1.00 $6.00
Strategy
A2 $6.00 $4.00

In this game, A first pays B a definite amount which may be con-
sidered as the ''value of the game'" and depends on the pay-off table. And

A then chooses one of his strategy Al or A2. Without knowing A's choice,
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"B chooses his stratégy Bl or B2. They then compare their choices and B
.pays A according to ﬁay-off table. For example, if B chooses his strategy.
Bl and A has his strategy Al, B then pays A one dollar as indicated.on °
the pay-off table; if B chooses his strategy B2 and A chooses his strategy
Al, then B pays A six dollars as indicated.

From the above table, if A chooses his pure strategy Al and B
uses his strategies Bl or B2 in the ratio x:(1-x). In other words, the
probability of B choosing Bl is x and choosing B2 is 1-x, and his pay-offs
for Bl and B2 are one dollar and six dollars respectively as indicated on
the pay-off table. Then B's average pay-off(I) is denoted by

“pyf = 1 x + 6(1;x) = -5 x + 6 dollars

While if A chooses his pure’ strategy A2, then using the same ratio for
his strategies, B's average pay-off (II) is denoted by

pyf = 6 x + 4(1-x) = 2 x + 4 dollars

pyf
x = 2/7
6
The value of the game
= 32/7
2/7 1.0 - x

FIGURE 3-1: Graphical Solution of

a 2 x 2 Matrix Gamc
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The average pay-off (I) and (II) are plotted against xas shown
in the above Figure 3-1. The intersection point is at x = 2/7. This
means that the best strategyvfor B is to choose his strategy Bl two-
sevenths of the time and strategy B2 five-sevenths of the time in a
random manner. The same principle applies to pléycr A. It is noticed
that B intends to minimize his pay-off and A intends to maximize B's pay-
off. This leads to the important minimax theory.

The minimax theory states that a necessary and sufficient condi-

tion for optimal strategies is as follows:

M

max min M(X, Y)
X Y -

min max M(X, Y) .
Y /X '

Where X is the random strategy chosen from a set A to maximize the pay-

off M, Y is the strategy chosen from another set B to minimize the pay-

off M. The order of the operators min and max makes no difference, in
Y X

other words, the operators are commutative. The detailed statement of

the theory is in Appendix I [15].

3.3 Application of Decision Theory to the Minimum Sensitivity

Design of Optimum Systems:

Dorato and Kestenbaum [jo] have suggested that decision iheory‘
may be applied to system design with unknown plant parameters. In their
example, it has been assumed that a controller structure is known and
furthermore that this controller is optimal when the controller parameter
is equal to the plant pérameter.

Consider a linear control system as shown in Figure 3-2.
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FIGURE 3-2: A Lincar Control Problem

"

X(t) = £(X(1), u(t), @y
u(t) = p(X(t), w_, t)
or u(t) =D X(t)
. T :
S = Jt F(X, u) dt

(o)

/

Wher9 X(t) is the state vector

u(t) is the forcing function
S is the performance index

wy is the plant parameter

w. is the controller parameter

The plant parameter wp is known lying somewhere in the range

W SRy W, The ?roblem is to choose a matrix D which is in terms of
. (wc is considered to have the same range as wp) will maintain as low

as possible a value of S. On the other hand, w_ intends to maximize the

P

value of S. Obviously w, and wp are opposite to each other and the per-
formance index S can be considered as the pay-off function in decision

theory.

Technically the statement is:
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S  =min max S(w_ . w )
w w »p
c P
=max min S(w , w )
wy c ¢’ p
0 o
= S(mc , wp')

. o . .
Here, w, 1is so chosen that S is always less than s° no matter

what value Wy may be.

The following numerical example has been considered in their
paper [10]:
A plant with dynamics
X+uw X=u
P
where 0 < wp & 2 with initial value X(0) = 1 and X(0) = 0, and a per-
formance index
© .
S = J (x2 + X2 + uz) dt
0

Dorato and Kestenbaum have obtained the optimal solution by using

the minimax theory mentioned previously,

o

S  =min max S(D,, w)
w 2
o o
= S(D2 , wp ) -

S(-0.64, 2)

where :
- D, = w_ -7V3+w 2

2 c c

The procedure for obtaining the solution is well presented in
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their paper [10] and hence will not be repeated here.

The same problem has been considered in Rohrer and Sobrals'
paper [22]. They have obtained the optimal u(ic.uo) by classical
calculus and also by considering its relative sgnsitivity.

Now let us compare their results:

Xlw

u = - [:D1 D, 1 |y general form
-x=

. " _ Xl

u=- [1.0 1.3] |, by classical calculus
L 2]
N |

u=- [1.0 0.64] |, by decision theory

' L

First of all, this example might be specially chosen by the

authors so that the first controller parameter D, is independent of the

1

plant parameter “p’ i.e. D1 is always equal to 1.0. Hence, the only
variable controller parameter is Dz. Secondly the inaccuracy of Dorato.
and Kestenbaums' calculation of D, is most likely due to the assumption
that the system is optimum when the controller parameter is equal to the
plant parameter. It seems that the authors have made this assumption only
for the sake of simplifying the calculation and have ignored the fact

that the assumption is not practical.

On the whole, the method suggested in their paper. is probably
limited to lower order system and few variables, (i.e., only second order
system with one varying plant parameter and one varying controller para-
meter has been considered in their paper). It is obvious that the joint

probability of many variables and higher order systems will make the com-

putation tedious, especially when the calculation has to be done manually.



To overcome the difficulties mentioned above, dynamic
programming has been utilized as a powerful tool for the optimization

of control systcms.

15



CHAPTER 4

DYNAMIC PROGRAMMING

4.1 Introduction:

In the 1950's, R. Bellman developed dynamic programming;
and since then, it has®been aﬁplied to numerous fields, e.g. theory of
inventory and production, purchasing and investmemt problems, design of
chemical plants, statistical communication theory and control systems.
Bellman has.published some distinguished books on dynamic programming
and adaptive control system {jél, 7], [18], but e;ffé%ely little
of the theory has been converted into practice{igj.

Dynamic programming is related to multi-stage decision processes
in which a decision is required at discrete intervals in time (e.g., the
series of decisions required in card games such as Contract Bridge and
in the management of an industrial production process). Furthermore, all
continuous decision processes can be approximated by multi-stage decision
processes by utilizing a small discrcte intcrval between decisions.

In this Chapter, firstly an example solved by decision theory has
been described in great detail in order to emphasize the essential
concept'of dynamic programming and the basic idea of formulating the
dynamic programming from decision theory. 'Then the characteristics and
the general advantages of dynamic programming are discussed. Finally,

four control systems (from first order to fourth order) have been solved

by dynamic programming and their numerical results tabulated. The second

16
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order system discussed in Chapter III is one of the four examples; the
prupose is to serve the comparison of the application of decision theory

and dynamic programming to the control system.

4.2 Formulation of Dynamic Programming from

Decision Theory - One Example:

In this game, we assume two players A and B; A first pays B a
definite amount (value of the game). Each player initially possesses
three chips; on the first move, each may play one or two chips. A and B

play simultaneously, and after the play B pays A an amount as indicated

by the pay-off table:

AN 1 2
1 $0 $30
2 $10 $0

‘(i.e., if A plays 1 and B piays 2, B pays A $30).

After the first play and pay-off, those chips which were played
are removed and the game continues. A and B each possess either one or
two chips (depending on how many each played in the first play). After
the second play, we again have a pay off described by the above pay-off
table. The game continuous in this fashion until one player has no chips
left. The problem is to determine how each player should play to maxi-
mize his total return from the overall game. This is not a single stage
game but a multi-stage one. Solution of the problem requires that we
determine a comélete strategy for the succession of plays.A will make

during a complete game. There are five possible strategies which A may
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adopt before the game starts:

C?i: plays 2, then plays 1

CZZ: plays 1, then plays 1 if B first played 1, 2 if B first played 2
673: plays 1, then plays 2 if B first played 1, 1 if B first played 2
C?h: plays 1, then plays 1 regardless of B's first play

ag: plays 1, then plays 2 regardless of B;s first play

Actually two of these strategies are obviously undesirable: if B first
“played 2, A knows that B's second play must be 1; if A has a choice for
this second play, he certainly should choose 2 rather than 1 ($10 is
better than zero). Hence strategies qg and Cg can be eliminated, the
possible strategies left are (q, Qz,d?g. Similarly a dual line of
reasoning indicates that B has the possible strategies b, b b4. Then

173
an overall pay-off table has been formed:

o by b b,
« $ 0 $10  $10
a, $40  $30 S0
s $ 40 $0  $10

Solution of this game with the standard techniques yields the optimum

strategies for A and B:

. . . - . = 13,1 . 3
A: - Qi. qzc q:,,. 44. qs = 17 ° TT 0: 0 T7—
. . b . bo . = 1 . 4. 04, 12
Bo - blo bza b3. b4o bs - "1—7‘ . 0- ‘17. "]'.7. O
and the value éf the game = $l;9
1 °

In the above solution, we essentially reduce the multi-stage

process to a single three-by- three game.
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In the dynamic programming formulation of the above problem, we
first define a function f(x, y) as the expected return to A from the over-
all game when A starts with xchips and B with y chips. Further, we
define P, as the probability that A plays 1, P, that A plays 2, and qa,
and q, correspondingly for player B. In terms of these definitions and
the pay off table which is specified, a simple enumeration of all

possibilities leads to a functional equation’ for f(x, y):

2 2
z
fx, y) = 4°

1 J 1 piqi [Qlj + f(x - i’ y - J):l "'"(4-1)

where C?'j is the entry in the pay off matrix for A playing i and B
i : :
playing j. The above expressign stages that the expected return is the

z Z ‘ : .
izl j=1 piqjCZij plus the return which

pay off from the first play
can be expected from all later plays in the same game (the later plays

essentially comprising a new game with the starting resources (x-i) and
(y-j) for players-A and B, respectively). There is still one important
element not included in the above formulation: The requirement that A

and B should play in such a'way as to maximize their individual returns.

The Minimax Theory is then applied, the function equation for f(x, y) is:
2

f(x, y) =max min { &
P q i=1 j

n~M N
—

piquZij + f(x - i, y - )] }--—-(4.2)

(A must select the P in such a way as to maximize his return while B is
selecting the q; to minimize his pay to A).
Equation (4.2) then represents the complete dynamic programming

formulation of the problem with the following constraints:
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0« p; € 1 0 < q; € 1
?; +p, = 1 a, *q, = 1
f(x, y) =0 for x or y ¢ 0

The example which we have described above is simple and its
function equation is:

£(3, 3) = max min  {p,q, [—/(u + f(2f2):] +pa, [4, + £(2, 1]
P q

+pay By *+ £(1, 2]+ pya, &y + £01, DIY ----(4.3)

With p,=1-p q,=1- a4
The value of qgj are given in the payoff table at the beginning

of this problem as

a,. =0 Ay, = $30 A

22

The solution can be determined iteratively by starting with the
final decisions ( or the simplest decision) and working up to more
complex cases. In this example, the game stops whenever either player
has no more chips; hence £f(0, 0) = 0, f(0, 1) = 0, f(1, 0) = 0, f(2, 0)=0
and £(0, 2) = 0. Furthermore we can write f(1, 1) = 0 since if each
player possesses only one chip, he must play 1 and the 561 payoff is zero.
The value f(1, 2) can likewise be determined directly: If A has only one
chip, he must play 1 and B knows that A will play 1; hence, B will always
play 1 also and there will be zero payoff: f(1, 2) = 0. Similarly
f(2, 1) = $10.

Now we have to formulate f(2, 2); an équation similar to equatién

(4.3) has been formed:
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f(2, 2) = max min {plq1 E7i1 + £(1, 1)] + P19, Eﬁiz + f£(1, 0)]
P q

+ pa; [y + £(0, )] + pya, [4, + £(0, 0)]}  ----(4.4)

By standard techniques, a two-by-two game has been formed and the value
of £(2, 2) is found as $%9 .
The above values of Céj and f(x, y) are substituted into
equation (4.3):
€65, 5) = max nin (GO prag + (40) piay + (10) pyay + (0) pyay)
----(4.5)

Now the problem has been reduced to a single stage game with the payoff

table:
B
A\' b b
30
<0 ST 340
g, $10 $ 0

and the solution is the strategies:
4 13

SR A

o 16. 1

B Ly 1
£3,3) = $15°

The two different approaches discussed above give the same result;

in the initial decision A should play 1 and 2 in the ratio %74%%3 while B

should play 1 and 2 in the ratio %%-: %7-, and the value of the game
. 160
153-1—-7—-.

From the above example, one may have the idea how dynamic

programming has been developed and formulated. The general mathematical

‘formulation of dynamic programming and the formulation of dynamic
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programming applied to lincar multivariable digital control systems are

in Appendex II and III respectively.

4.3 Characterisitcs of Dynamic Programming:

(1) ThevPrinciple of Optimality underlies the method of dynamic
programming., This principle was formulated by R. Bellman. It states

that an optimal policywhas the property that, whatever the initial state
and initial decisions aré; the remaining decisions must constitute an
optimal policy with regard to the state resulting from the firstldecision.
In other words, 'do the best you can in terms of where you are'. The
Principle of Optimality reduces the N-stages decision problem into a
sequency of N-single-stage decision problems

(ii) The solution of the/dynamic programming proceeds in the reverse
direciton: We first solve the final or last decision, since this
solution requires no knowledge of the effects of last decisions. From
this solution for the last decision, we turn to the next-to-last decision,
which can now be solved because we know the payoffs to bé expected from
the final play. In this way, we iteratively continue the solution and
finally we reach the initial decision.

(iii) Dynamic Programming is specially designed for use with a digital

computer.

4.4 Advantages of Dynamic Programming:

Dynamic programming has the following advantages:
(a) It is a potentially powerful tool.
(b) It provides an elegant treatment of linear multivariable control

systems.
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(c) The addition of constraints on the control action or decision does

not increase the difficulty of the problem,
(d) The solution of the control problem does not depend upon the
lincarity of the systcm or the nature of the performance index, and

(e) The computers do the tedious numerical calculations

4.5 The First Order System:

(i) The problem;-

X+ u

| ><
]
]

3

u=-D X

Figure 4-1 A Simple First Order Control System

the plant dynamics i_= .- X+u
and the controller u = - g X  where To is the plant parameter varying
in a specified range.

The problem is to determine the forcing function u such that the
performance criterion

s = JT(X2+Au2)dt
)

is minimized with the initial condition X0 = 1.0.

Where T is some specified interval of time and usually should be
the solution time (the time required for the system to damp out all
transient is commonly called the solution time).

A is a weighting factor which compares the relative importance of
minimizing X2 and uz. In the example T and A are randomly taken as 0.3
and 0.0l respectively.

(ii) Plant parameter and their probability of occurrence:

The value of the plant parameter T, is difficult to measure



Probability of

Occurrence

24

accurately. llence To is considered varying within the range 0.6 to 1.4.
It is also assumed to have a uniform probability distribution or

Gaussian distribution as shown in Figure 4-2.

Gaussian
p(T,) Distribution .299
p(TO) ) Unlerm . . =
Distribution 5
=0
1 re
L -9— : z
Q3
[ 7]
S S
- .097
l ; .023
g l L. : 0.003
0.6 1.0 1.4 To 0.6 1.0 1.4 T,

Figure 4-2: Probibility of 'Occurrence of the Plant Parameter To
(NOT TO SCALE)

Each of these values has probability of occurrence 1/9 when it
is uniformlyvdistributed. As for gaussian distribution, the location of
the peak will be T0 = 1.0 and the standard deviation o = Qéi (i.e.

30 = 0.4). It means that the probability of the parameter To existing
outside the range 0.6 to 1.4 is only 0.003. The normalized probability

of occurrence has been calculated and tabulated as follows:

T, p(To) probability of occurrence
0.6 .00320
0.7 .02379
0.8 .09722
0.9 .22605
1.0 .29941
1.1 .22605
1.2 - .09722
1.3 .02377
1.4 .00320

Table 4- 1: The Probability of Occurrence of the Plant Parameter To

with Gaussian Distribution
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(iii) The optimized controller:
Computer program for calculating the optimized controller D by

dynamic programming has been written. Results are as tabulated in the

following Table 4-2:

D
To The Optimal Controller
0.6 8.3243
0.7 8.5181
0.8 8.6739
0.9 8.7921
1.0 . 8.8915
1.1 8.9683
1.2 9.0398
1.3 9.0999
1.4 9.1453

Table 4-2: The Optimal Controller D of the

Sécond Order System

With uniform probability of occurrence of To’ the expected value . .

of the controller D gives

9 9
I P(Ty) D(T) = T

Relo

C

S(Ti) 1 = 8.8377

i=1 i=

While if the probability of occurrence of To is Gaussian, the

expected value of the controller D will give

9
'L P(T.) D(T.) = 8.8941
=1 1 1

A comparison can now be made:

optimized D = 8.8915 .T_=1.0

o

expected D

]

8.8377 uniformly distributed To

expected D = 8.8941 Gaussian distributed To
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As we know, in practice the designer cannot afford the luxury
of time in making accurate measurement or doing tedious calculations.

The above values are very close to cach other. Hence it is better to
choose the value of the optimized D at the middle of the rangeof the vary-
ing parameter as the functional D. The functional D is the one which

will be automatically modified in the controller while the measurement
indicates that the plant parameter lying in the given range. In the
example, the functional D is 8.8915 while To varies between 0.6 to 1.4.
(v) Performance criterion § relative sensitivity:

The performance of_a control system is generally a function of
stability, sensitivity, accuracf and transient response. The exact
specifications are directed, by the required system performance. Certain
characteristics are more important in some systems than in others.
Transient response is by far the most important consideration for all theA
physical systems and designers of such systems are often faced with the
problem of optimizing the transient béhaviour [20].

From the modern optimal control and adaptive control theory view
point [21], the performance criterion S can be considered as the loss
function or cost function, representing a measure of the instantancous
change from ideal per formance.

The performance criterion of the first order systcem as stated

previ ously is:
0.3

S = Jo x% + 0.01 u?) dt

By considering the plant dynamics
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and the controller
u= - DX

With the initial condition Xo = 1.0 we obtain:

1
1 + 0.01 D° -0.6(D + 15 )

S = | =X 220 Y 1 -e e (4.6)
2(D + 1/T ) .

For cach value'of To, the performance criterion S has been calcu-
lated by substituting the value of the optimized D corresponding to each
To (from Table 4-3) into equation (4.65. The results are denoted by the
optimal S* as shown in the second column of the following table.(4-3).
The calculations have been repeafed with the functioml D (8.8915) for

each To; the results are as,}n the third column of the table and denoted

by actual S.
%*

T The Optimal S The Actual S Relative Sensitivity

(o] R * *

S:(s - S )/S

0.6 0.084518 0.084659 0.00167
0.7 0.086523 0.086575 0.00058
0.8 0.088062 0.088068 0.000068
0.9 0.089280 0.089285 0.000056
1.0 0.090272 0.090272 0
1.1 0.091089 0.091096 0.000077
1.2 0.091783 0.091794 0.00012
1.3 0.092371 0.092392 0.00023
1.4 0.092875 0.092918 0.00046

Table 4-3: Relative Sensitivity of the First Order System

The last column of the above table is the relative sensitivity
which was introduced recently by Rohrer and Sobral [22] for optimal
control systems. For a set of plant parameters To the relative sensiti-

vity of the controller D is defined to be the difference between the
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actual value of the performance index and that which would be obtained
if the control werc the optimal for plant paramcters To (divided by the
optimal performance index for normalization).
s[r,0] - s [T,D]

* *.

s [T, D]

One of the advantages of the relative sensitivity is that it is

st [T,.D]=

always a positive numbér. Moreover the relative sensitivity reduces to
zero at the value of plaﬁt parameters To for which the controller D is
the optimal one.

The Table 4-3 shows that the relative sensitivity for controller
D to plant parameter is only up to 0.00167. We may conclude that in a
first order system the controller parameter is not sensitive to the
change of a plant parameter. Similar conclusions have been drawn by
Barnett and Storey [?3] recently. From this example we also can see the
application of dynamic programming to control systems.

The logic of considering the higher order systems is exactly the
same as for the first order system. Hence, in the following examples
most of the explanations mentioned above will not be repeated. For the
same reason, only the second order system flow charts and computer

programmes are given in the appendix.

4.6 The Second Order System:

(i) The problem:
In order to compare the results obtained by Dorato and by Rohrer,

we consider the same problem:
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The plant dynamic

where

€ Byy s 2

With the specified performance criterion:

12 ) 2
= 2
S = IOI(X1 + X2 + u¢) dt

and the given initial condition

X,(0) = 1.0°

X,(0) = 0.0

]

(ii) Results:

_ The Optimal Controller D
B2 L D D, ]
0 0.98283 ' 1.71219
0.2 0.98468 1.52675
0.4 0.98632 1.36322
0.6 0.98774 1.22048
0.8 0.98898 1.09678
1.0 0.99005 0.99003
1.2 0.99097 0.89804
1.4 0.99176 0.81870
1.6 0.99244 0.75011
1.8 0.99302 0.69057
2.0

0.99351 0.63865

Table 4-4: The Optimal Controller D of the

Second Order System
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*

B, The Optimal The Actual sR =S -*S
S S S
0 1.74209 2.02024 0.15966
0.2 1.75358 1.88125 0.07280
0.4 1.78767 1.84044 0.02952
0.6 1.84306 1.86065 0.00954
0.8 1.91783 1.92119 0.00175
1.00 2.00999 2.00999 0.00000
1.2 2.11705 2.11910 0.00097
1.4 2.23714 2.24365 0.00241
1.6 2.36800 2.37978 0.00497
1.8 2.50823 2.52527 0.00679
2.0 2.65397 2.67574 0.00820

Table 4-5: Relative Senstivity of the Second Order System

As Table 4-4 shows, D1 is approximately equal to 1.0. The opti-
mized D2 varies from 0.63865 to 1.712 in Table 4-4 while it varies from

0.65 to 1.73 in Figure 4 of [22]. Now let us make a comparison:

(from Table 4-4) v (from Figure 4 of [22])
The Optimized
B2 Dy | By2 by
0 1.71219 0.0 1.73
0.4 1.36332
: . .3
0.6 1.22048 0.5 1
1.0 0.99003 1.0 1.0
2.0 0.63865 2.0 0.65

The results above agree as expected. The optimal s* and the actual S are
plotted against the plant paramcter 822 as shown in Figure 4-3 which shows
the difference. The relativity sensitivity vs. B22 is in figure 4-4,

which is exactly the same as the curve of D, = - 1.0 in figure 4 of [?2].

2
From the example, it is obvious that dynamic programming is powerful. It

saves time in doing the tedious calculations by computer and gives the

accurate results. It also does not need the assumption (the system is
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optimized when the controller parameter is equal to the plant parameter)

which is very important in cases 'of using decision theory.

4.7 The Third Order System:

(i) The problem:
The plant dynamic,

X = BX+Cu

where u is the forcing function

0 B, B 5 0
B = |-1 -3 -2 C =11
-1 =2 -2 ’ 1

By, = Biz = By and 0.4 < By < 1.6. If we consider the minimizing of u2 to be
as important as the minimizing Xlz, X22 and X32; and the time T is randomly
chosen as 4. Then the performance criterion is:

2

4 .
My 2 2 2
S = L)Lxl + X2 + X3 +u ] dt

The given initial condition is:

X;(0) = 1.0
X,(0) = 1.0
X5(0) = 0.0

(ii) Results:

The Optimal Controller D
By [o D D

1 2 3
0.4 0.31978 0.04342 0.24265
0.6 0.37836 0.06483 ' 0.26167
0.8 0.39712 0.08492 0.27997
1.0 0.40523 0.10396 0.29698
1.2 0.40815 0.12237 0.31309
1.4 0.40918 0.14039 0.32871
1.6 0.40951 0.15811 0.34413

Table 4-6: The Optimal Controller D of the
Third Order System



The Optimal The Actual R .S -8

By s s s*
0.4 3.48933 3.51239 .00661
0.6 2.92574 2.92732 .00054
0.8 2.54893 2.54903 .00004
1.0 2.29459 2.29459 0

1.2 2.11782 2.11794 .00006
1.4 1.99049 1.99082 .00017
1.6 1.89618 1.89686 .00036

Table 4-7: Relative Sensitivity of the Third Order System

4.8 The Fourth Order System:

(1) The problem:
Two forcing functions ui and u, as well as two varying plant

parameters 821 and B22 are fonsidered in the fourth order system with

the plant dynamics:

-
-1 0 0 0
where B = B21 B22 0 2
0 +1 -y 0
0 0 0 0_|
1.4 ¢ By < 2.6 -2.6 & B,y ¢ -1.4
1 0
and
c = 0 o0
0 4
0 0
The performance criterion is:
42 2 2
S = J (X3 + 0.05 u” o+ 0.05 u™) dt
‘o o

and the given initial condition:

33
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X, (0) = 1.0 X,(0) = 1.0

0.0

XS(O) = 0.0 X4(O)

(ii) Results:
The plant parameters 821 and 822 arc assumed to have uniform pro-
bability distribution or Gaussian distribution, and the values of the

expected controller with the plant parameters having different probability

of occurrence were calculated and tabulated as follows:

The Probability The Controller D :
D D D D
Distribution 11 12 13 14
of B and B ’
21 22 Dpp Bz Doz Dy
In the Middle 0.22722 ’ 0.13944 0.45983 0.50933
of the Range 0.23339 0.40916 3.51793 0.30824
821 Uniform 0.24117 . 0.14635 0.45795 0.52307
822 Uniform 0.23247 0.41174 3,51729 0.30710
821 Uniform 0.22941 - 0.14006 0.45683 0.50500
822 Gaussian 0.23188 0.40929 3.51398 0.29363
B21 Gaussian 0.23826 0.14722 0.46058 ' '0.52990
822 Uniform - 0.23330 0.41142 3.51411 ’ 0.30658
821 Gaussian 0.22899 0.14084 0.45846 0.51168
822 Gaussian 0.23270 0.40898 3.51071 0.30744

TABLE 4-8: The Optimal Controller D of the
Fourth Order System

The above matrices are very nearly equal to cach other. Hence,
the optimal controller in the middle of the specified range is considered
as the functional D ignoring the probability of occurrence of the plant

parameter as in the first order system.




. The Optimal The Actual g2 =5
22 S S S
-2.6 0.16643 0.17902 0.07565
-2.4 0.18824 " 0.19847 0.05435
-2.2 0.21384 0.22157 0.03615
-2.0 ©0.24594 0.25099 0.02053
-1.8 0.28466 0.28725 0.00910
-1.6 0.33438 ~ 0.33515 0.00230
-1.4 0.39615 0.39701 0.00217
-2.6 0.18689 0.19626 0.05014
-2.4 0.21121 0.21819 0.03305
-2.2 0.23950 0.24412 0.01929
-2.0 . 0.27481 ©0.27713 0.00844
-1.8 0.31712 0.31774 0.00196
C-1.6 0.37102 0.37134 0.00086
C-1.4 0.43749 0.44063 0.07177
-2.6 0.20746 ‘ 0.21404 0.03172
-2.4 0.23412 0.23845 0.01849
-2.2 0.26487 - 0.26715 0.08608
-2.0 0.30335, 0.30397 0.00204
-1.8 0.34900 0.34906 0.00017
-1.6 0.40688 0.40868 0.00442
-1.4 0.47735 : 0.48536 0.01678
-2.6 0.22916 ' 0.23328 0.01798
-2.4 0.25810 0.26029 0.00848
-2.2 0.29147 0.29216 0.00237
-2.0 0.33285 0.33285 0
-1.8 0.38161 ~0.38261 0.00262
-1.6 0.44294 0.44830 0.01210
-1.4 0.51690 . 0.53259 0.03035
-2.6 0.25068 0.25295 0.00905
-2.4 0.28182 0.28262 0.00284
-2.2 0.31756 0.31762 0.00019
-2.0 0.36165 . 0.36225 0.00166
-1.8 0.41327 0.41678 0.00844
-1.6 0.47791 0.48883 0.02284
-1.4 0.54498 0.58086 0.06583
-2.6 0.27311 0.27406 0.00348
-2.4 0.30649 0.30664 0.00049
-2.2 0.34449 , 0.34489 0.00116
-2.0 0.39112 0.39364 0.00380
-1.8 0.44553 0.45326 0.01735
-1.6 0.51283 0.53152 0.03640
-1.4 0.59261 0.63145 0.06554
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J . . RS -5
B B The Optimal The Actual S=——
21 22 S S S
2.6 -2.6 0.29515 0.29547 0.00108
-2.4 0.33043 . 0.33077 0.00103
-2.2 0.37068 0.37246 0.00480
-2.0 0.41967 0.42537 0.01358
-1.8 0.47651 0.48999 0.02828
-1.6 0.54637 0.57468 0.05181
-1.4 0.62874 0.68284 0.08604
TABLE 4-9: Relative Sensitivity of the

4.9 Discussion:

Fourth Order System

The following table was drawn from the results of the above

examples.

Percentage Variation

of the plant parameter

" The highest per-

centage Relative

(refer to its middle value) Sensitivity
lIst Order System
(onc varying 40% 0.167%
plant parameter)
2nd Order System 100% 15.97 %
(one varying 80% 7.25 %
plant parameter) 60% 2.95 %
: 40% .95 %
3rd Order System
(Two varying both  60% 0.66 %
plant parameters)
4th Order System B21 B22
(Two varying 30% 30% 8.6 %
plant paramcters) 305 205 5.4 o
'30% 10% 3.6 %
30% % 2.0 %
% 10% .26 %
0% - 20% 1.2 %
0% 30% 3.03 %
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From the above, the following points arc noticed:
(1) . In general the controller is not sensitive to the plant para-
meter variations when the percentage variation of the plant paramcters
(refer to its middle valug) is below a certain limit. This limit is a
function of the plant dynamics'of the particular system in question (e.g.,
40% of the plant parametcr.variation for the first order and second order
systems, 60% in the third order system and 20% of onec parameter variation
in the fourtg order system if the requirement for the percentage relative
sensitivity is below 1.2%).
(1i) In case of high relative sensitivity of the controller to the plant
parameters, the relativcvsensitiVity reduces sﬂarply in response to the
decrease of the variation of the plant parameters.
(iii) In the second order systém the percentage relative éensitivity is
15.97% for one hundred'pcfccnt variation of the plant parameter; also in
the fourth ofder system the percentage relative sensitivity is 8.6% while
both plant parameters have - thrity percent variation. The high
sensitivity is not desirable for the system. . In order.té maintain the
optimal performance due to thc large variation of the plant paramcters, we
can, therefore, divide the range of the plant parameter into smaller
ranges as required. More values of the optimal controller corresponding
to the smaller ranges should be calculated beforehaﬁd. This is illustrated

by considering two varying plant parameters as follows:

1
XL

X, i Py | P2 D3
N R
x3 b, D5 | Oy
4 D10 P11] P12
X

5 i 1
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The figures show that the range of onc paramecter (X) has been
divided into four smaller ranges and the other (Y) into threce smaller
ranges. The twélve different valucé of the optimal controller have been
calculated and stored in the memory system of the computer. According to
the measurement of the plant parameters, the corresponding optimal control-
ler will be modified automatically (e.g., Dg will be the optimal controller
when the plant parametér X lies between its values X, and X, and Y lies

3 4

between its values Y2 and Ys).



CHAPTER V

CONCLUSION

In this thesis a new approach has been suggested to circumvent the
difficulty of the identification problem in adaptive control systems.
Four examples of different orders have shown the fﬁct that having a proper
choice of fecdback policy, the optimal controller is relatively insensitive
to variations in the plant parameters as long as they lie within some
specified ranges. In the examples of the first order and the fourth
order systems, the expeéted optiﬁal controller have heen calculated by con-
sidering the plant parameters having uniform or Gaussian distribution éver
the given ranges. It is also found that the expected optimal controller
is nearly equal to the'optimal controller in the middle of the given
ranges. Hence, the probability distribution of the plant parameters can
be ignored and the optimal controller in the middle of the range will be
the one -automatically modified in the system. The limit of the ranges
usually depends on the design specifications and the particular system in
question. If'the ranges werc so large that the optimal controller can
not maintain thc optimal performdnce of the system, then the range of
variations can be divided into smaller ranges as necessary. With tﬂis
approach, the identification can be carried on more rapidly since it
would not bé required to compute the optimal controller during normal
operation, at the sametime a bigger tolerance may be permiffed in making

the measurements. .
39
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An cxamination in the example of some recently published work indi-
cates that dynamic programming is preferrable to decision thcofy. The
most significant advantage is that no simplifying assumptions have to be
made. Whereas, such assumptions arc necessary for the application of
decision theory.

The application of dynamic programming can be easily extended to
‘higher order and multivariables control systems. It is also possible to be
applied to non-linear and linear time-variant systems. The only limitation

appeared to be the requirement of the long computation time and the

large storage of the computer.
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APPENDIX I

General Statement of the Minimax Theorem

(1) There are two players, A and B.

(i1) A has a set (ali«aZ’ -——— am) of m pure strategies.

(iii) B has ‘a set (é sy Byy ===, %Q of n pure strategies.

(iv) Associated to each;pair of strategies (ai, '%) is a pay off sz
unit from player B to A. Hence, the values to A and B of the
strategy pair (aj, %) are<Qaj ?nd - .

ij’

(v) These values sum to zero for every (ai, Bj) pair, hence the game is
/
called zero - sum.

(vi) Player A may adopt a mixed strategy by employing ay with probability
Xl, a, with probability Xpeoes O with Xm,
, m

where b X =1 and X. > O

. m i

i=1
Such a strategy is symbolically represented by
XX = (Xlal, Xzaz, "”'xmam) The set of all mixed strategies for
player A is denoted by X,

(vii) Similarly the mixed strategies for B is denoted by
n
yy = (}'10»1, e o0y )’nan) Where 2 yn = 1 -y, >, O

i=1 1

and the set of all mixed strategies for player B is represented
by Yn'
(viii)For each mixed strategy pair (XX, YY), the pay off M(XX, YY) to A

is defined to be: 44



45

m n
MEXX, YY) = ¢ . ¢ X. A.. vy
i=1 j=1 * M I
n m
= 2 . .Z :
jzl i ( i=1 xlczlj)
m
z n a
= * X, ( z TR
i=1 i j=1 1_‘1 j
The symbol

‘'n
M(“i: YY) = ng qu yj

means the pay off to A when A uses pure strategy H and B uses YY.

Similary when A uses XX and B uses 8., the pay off is

J
m
MOXX, 8,) = ;I C?ij X,

(ix) The player A aims to select a mixed strategy XX from Xm so as to

maximize his return M(XX, YY) and B's aim is to minimize the return

to A M(XX, YY) by choosing a mixed strategy YY.
(x) The rules of the game require that each player chooses his strategy

in complete ignorance of his opponent's selection.
(xi) The minimax theorem states mafhematically:

min Mxx(9 vy
YY

= max min M(XX, YY)
XX YY

= min max M(XX, YY)
YY XX

= max M(XX, YY(O))
XX

i

Mo, vy (0



where XX(O) is the maximum strategy choscn by A

YY(O) is the minimax strategy chosen by B

M is the payoff function.
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APPENDIX 1II

GENERAL FORMULATION OF DYNAMIC PROGRAMMING

An mth order system can be described by m state variables, let

X o= X, X, eeey X ] ----(1)

The system is subject to S forcing functions, let,

e
"

Eﬁ’ Uys eeey U ] ----(2)

where S < m, and the m equations of the system are, in vector notation,

"

X = £ u t) —(3)

/ .
Such equations are, in general, nonlinear and time variant. The

equivalent discrete system is described by a vector transition equation

which can be calcualted from equation (3) in sepcific cases; let it be,

Yoo =Xt P o () ---- )
where .

gim ¢ (X, u) = £ (X, u, nh)

n->0 —_ ‘

The performance criterion or cost funciton is a series of N terms

as following:

When the u, have been chosen, each Xn is calculable from Xn_1 by
equation (4); then the series is only a function of initial state 50'

The performance criterion is (a series N terms is used):

47




N-1
V(X)) = . mmu nfo gn (X, u)
—O...—N-l -
For an n-stage process it can be written:
V(X)) = min [g.(x u) + n-1 g. (X., u.) |
n'-o 0'—0 —0 Lz 1=’ ~i
u_...u i=1
0’ " ‘-1

Since the first stage is only affected by ug» therefore;

: n-1
Vn(Zo) = min [go(zo’ Eo) * min 151 gi(zd Bi) ]
u Uy .ol
-0 —1"""=n-1

However, the second term in brackets is vn-l(xl)’ the performance

48

criterion for a (n-1) stage process starting at Xl' Hence we may write:

V) = omin B (X, m) ¢ Vo ()] em=(8)
u, (n) ,

The Eo(n) has becn so written as a reminder that the calculated u,
depends on the number of stages in the process. The 54 of the equation

can be determined by equation (4) with n = 0. Thus,

X, =

-1 50 +h ¢o Xy uo)

0 -—-=(6)

Equation (5), with equation (6), is the basic equation of dynamic
programming. The desired EO(N) is computed by using (5) and (6) in an

iterative process.



APPENDIX TI11I

FORMULATION OF DYNAMIC PROGRAMMING APPLIED TO

LINEAR MULTIVARIABLE DICITAL CONTROL SYSTEMS

The lincar multivariable control system is described by a set of
m first-order linear differential equations:

X_ = BX + Cu ---=-(1)

X is a column vector of the m state variables.and u of the s
“forcing functions. B is an (m x m) and C an (m x s) matrix. The forcing
functions arc to be held constant throughout each periodic intervals
of time h and changed in a $tep manner at the sampling instants. X(n)
is the state vector at the beginning of the (n+1)th interval and u(n) is
the vector of forcing function during the same interval. Since it is a
linear system, the state vector at the end of the (n+1)th interval is

linearly dependent on X(n) and u(n), thus,

X (n+l1) = F X(m) + Eu(n)  eeee- (2)

where F is an (m x m) matrix and E an (m x s) matrix, F and E can be
obtained by using the solution of equations (1) in matrix form.

Starting at X(0), X(t=h) is given by

h
X(h) = exp(hB) X(0) + J exp [ (h-t)B] Cu(0) dt
o)
where

exp(hB) = I = (nB)"
. n=0 R .

49



50

The performance criterion is

N-1
z [X'(n) A X(n) *+ u'(n) 1 u(n) In
n=0 '

where the prime symbols denote transposed matrices; A is a symmetric
and Il a diagonal matrix. Similar to the logic in Appendix II, the

performance criterion for an n-stage process can be written:

v [X(0] = min {[ﬁg'(O) A X(0) + u'(0) Hu(0)] h+ Vv . [X(1)]}

u(0)

where' n-1

Va-1 EK(I)L = min n§1 [&'(n) A X(n) +u'(n) H Eﬁnij h ----(3)
u(l)..u(n-1) T 7

vV, is expressible as a quadratic form in X(0)
= ' ————
v [X(0] = Xx'(0) G X(0) | (4)
where Gn is a symmetric (mxm) matrix. Substitute (4) and (2) into (3)

X'(0) G X(0) = n(x(l);x {[X'(0) A X(0) +u'(0) Hu(0)] h
u

+ [Fx© +Eu©] 6 | [FX(©0 +Eu(0]} ---(5
u(0) is chosen to minimize the right-hand side of equation (5). 1In
order to minimize ip,'differentiate with respect to the s forcing functions.

hu'(0) li=- [FX(© +Eu@0] 6 | E

Take the transpose of the matrix equation, and solve for u0)

’

- ' ! . - -1 .'
u =-[hH+e 6 E]" E G _,F X0



Put

where

b, = [hH-

by substituting (6]

Equations (6j, (73,
iterative process t
u(0) = -0 X(0) ¢

~set of s forcing fu:

- ---=(6
D, X(0) (6)
-1 1
. E1TE F -—==(7)
into (..
1 -
+ D_ U G (F-Lu_J
n n-1%. n-_‘_(B}
4 with tion define an
rarried out The final result of
.es the cov’ 2 it gives the optimum
s to be '« 0.
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APPENDIX 1V

FLOW CHART FOR CALCULATING THE OPTIMAL CONTROLLER

OF THE SECOND ORDER SYSTEM

<: START j)

”chﬁ A, B, and C are
b * ‘\ 3
N, A, B, fatricces
and C

\

B(2, 2) = 0.0

Subroutine for
Calculating F and EMTX

E = DH (EMTX) C
G =Dl (A)

2
' -1
- ol | N Tt
Dy = [hi1 + E'Gy | E]7" E'Gy_|F _

The Prime Symbols
Denote the Trans-
posed Matrices

= . '

GN (A‘+ DN H DN) I
- E ' -F
+ (F LDN) GN-I(F EDN)

52



YES

WRITE

F, L, and D

\

B(2, 2) = B(2, 2) +0.2

Is\
,2) > 2.0

53



APPENDIX

FLOW CHART FOR CALCULATING THE PERFORMANCE

INDEX OF THE SECOND ORDER SYSTEM

'<: ST?RT j)

L_1cc I; 1|

Y
Read

D, E, F, X;, X,

Sum = 0.0 |

u = - DX

Sum = Sum+u2+X12+X22

[ X ,=FX+Eu |

l |

l |
YES.

WRITE
SUM
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APPENDIX VI

QU3512 LOJIL LEL 100
MNGDECK )

PIBFTC LEUNRNG

C CALCULATION GF AN OPTIMAL CONTROLLILIC BY DYNAZIC PROGIAISAING

C FOR

10

11

12

31
46

200

41

42
43
25

A SECOGNMD ORDER 5Y5Teld

DIMELNOGTON FO292) 9 50292)0b(291)0C 291 9AlZs2) sl L1920

1 GO292)sEP(192)5EPG(192) sPOECLs L) o419 1)sERPGF(192)sLP(291)
RQVHM ULy L) sDPH(25 1) sDPHU(292) oFIILD(292) s FIMEUR(292)9FI4G(292) s
BEMGAT292) sEMTIA(292) s AMMX(292)9EU(292) g

H=160

DH=0e U2

N=600 :
READ (551C) ((A(IsJ)sJd=192)s1=1s2)
FORIMAT (4F5e1)

READ (5911) (C(Isl)s I=192)

FORMAT (2F541)

WRITE (6912) ((A(Isd)sd=192)91=1+2)
WRITE (6912) (ClIsl)sl=192)
FORMAT( 1H 92F1Ce5)

B(1s1)=0a0)

B(192)=140

8(2,1):"\).'0

DOl 1120452092

B(2s2)=11 /

B(2s2) = =B(2+2)/10e0

CALL PHI(FsB22sDHs0s50)
CALLPHI(EMTX 9B3929sDHs1950)

D021 L=1,2

E(Ls1)=0.0"

DO 21 J=1,2 :
E(Lsl) =UH*EMTX(LoJ)*C(Usl)+E(Ls1)
DO 30 J=1,2

DllsJ)=Uatl)

DO 31 I=1,2

DO 31 J=1+2

G(IsJ)=DH*A(IsJ)’

DO 4G I=1,2

EP(lsl)=E(Is]1)

ITCT=0

DO 41 =152

EPG(LlsI)=0e0

DO 41 J=152

EPG (1s1)=EPG(lyI)+EP(1sJ)%G(Js1)
EPGE(151)=040

DO 42 J=1,2

EPGE(1s1) = EPGE(1s1)+EPG(LlsJ)*E(Jsl)
HM(191) = DH*H+EPGE(1s1)

VHM(1s1) = 1eU/HM{1,1)

55


http:FOR~/\TC2F5.ll

L4

46

47

48

49

50

51

52

53

54

100
101

DO 44 1=142 56
ERPGF Ly )=0e0

DO hb J=1,2 :
ERPOF (Lol )=LPOF(Llsl) + £PGlLloJ)#F(Jsl) -,
DO 45 I=1+2

DO1lsl) =0V
DC1s1)=DC15s1)+VHM(1 91 )#EPGF(1s1)

DO 46 JU=1ly2¢ '
DRP{Js1)=D(1sJ)

DO 47 L=1+2

DPH(L»1)=0e0C

DPH(Ls1)=DPH(Ls1)+DP(Ls1) #H

DO 48 L=1s2

DO 48 1=1s2

OPHD (Le1)=0eU

OPHD (LI )=DPHD(Ls1) + DPH(Ls1)¥D(1s1)
DO 49 1=1s2 '

DO 49 J=1s2

AMX{TIod)Y = (AL sJ)+DPHD(IsJ) ) #*DH

DO 50 L=1s2

DO 50 =12

ED(LsI) =040

ED(LsIY = ED(LsI) + E(L91)%#D(1s1)

DO 51 =12

DO 51 J=1s2 o

FMED(IsJ) = F(lsd) =ED(IsJ)
FMEDP(JUs 1 )=FMED(I9J)

DO 52 L=1s2

DO 52 1=1s2

FMG(LsI) =0a0

DO S2d=1y2

FMGILs1) = FMG(LsI) + FMEDP(LsJ)*¥G(JsI)
DO 53 L=1s2 ' .

DO53 1I=1»s2

FMGX(LsI) =060

D053 J=1s2 : :

FMGX{LsI) =FMGX(LsI) + FMGILJ)*¥FMED(JsI)
DO 54 I=1,2

DO54 J=1,42

LGOI ed) = AMX(I9J) +FMGX(I9J)

ITCT =1TCT+ 1

IF (ITCT «LTeN) GO TO 200
WRITE(T75100) ((F(Isd)sd=192)s1=1+2)
WRITE(75101) (E(Is1)9I=1+2)
WRITE(75101) (D(1lsJd)sd=1+2)
CONTINUE

FORMAT(4F1045)

FORMAT (2F155)

STOP

END


http:FORMAT(4Fl0.5l

SIBFTC LLE

C CALCULATION OF MATRICES B ANMD F
SUBROUTINE PHIATIATA s AMTX »id5TZE 2D T 9inUNaLIAT)
DIMENSTON TUTA(MSTIZE sMSTZE ) s AMTX(MSTZE s 15 1ZE ) »

100
501

502

503
101

102

504

505
103

507

104

SENTR
1.0
Oe0

IPMTX (494 ) sFMTA (Lt ) sUMTX (b yt)
FCTR=1.0

KK =K +MON

AK =KK

FCTR=FCTR*DT /AK

DO ULl L=1,MS1ZE

DO 501 I=1sMSIZE
IF(LeEQI)GO TO 100
UMTX(LsI)=UeC

GO TO 501

UMTX(LsI)=1e0

CONTINUE

DO U2 L=1sMSIZE

DO 562 1=1sMSIZE
THMTX(Ly I )=UMTX (L 1) +AMTX(Ly I)*¥FCTR
DO 503 L=1s»MSIZE

DO 503 I=1sMSIZE '
FMTX(Ls1)=AMTX(LsI)
K=K+1 :
KK=K+MON !

AK =KK

FCTR=FCTR*DT /AK

DO 504 L=1sMSIZE

DO 504 I=1sMSIZE
PMTX(LsI)=0e0

DO 504 J=1sMSIZE

57

PMTX(L’I)—FMTX(L,J)*AMTX(J,I)+PMTX(L’I)

DO 505 L=1sMSIZE

DO '505 1=1sMSIZE
FMTX{Ls1)=PMTX(LsI)

DO 507 L=1»MSIZE

DO 507 I=1sMSIZE
PMTXAL»1)=PMTX(Ls I ) *FCTR
TMTX(LsI)=TMTX (L I)+PMTX(Ls1)
[F{KeEQ.LMT)IGO TO 104

GO TO 101

RETURN

END
Y
UGeU CUe0 1a0
1.0

SIBSYS

CD TOT

0165
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APPENDIX VII

UU3512 LOUIS LEE 160 010  G36
NODECK :

SIBFTC LEUNG ‘
C CALCULATION OF THE OPTIMAL PERFORMANCE CRITERION G#
C OF A GSECOMND ORDER SYSTEM '

11

100

SENTRY

DIMEMSTION X(291) s XX{2e1)sL(192)9E(291)eF(2+2)
1CC =1

READ(5510) ((F(led)sd=1s2)9I=192)
FORMAT(4F10e5)

READ (5911) (E(Isl)el=142)

READ(S5911) (D(1lsJ)esd=192)

FORMAT (2F1545),

X(291)=060

SUM=0.0

IC=1

Us=(D(1s1)#X(1sl) + D(1y2)%X(2s1))
SUM=SUM+U*#2 +X(1e]l ) %#24X (21 ) %%2

XX(191)=F (1ol )#X(1ol)4+F(1l92)%X(2s1)+E(191)*%U
XX(291)=F(2s1)%X(1s1) +¥F(2+2)%X(291) +E(291)%U
X{1ls1)=XX(151)

X{291)=XX(2s1)

IC=IC+1 !

IF(ICeLE«6VUO)GO TO100

SUM=5UM/5060

WRITE(6+4) SUM

FORMAT(1H »10XsF1l545)

ICC=1CC+1
IF(ICC.LE«11) GO TO 1
STOP
END
1.00000  0.02000 =0.00000  1.00000
04006620 0.G2000
0.98283 1.71219
100000  0.01996 =0.00000 099601
0s00020 0.01996
098468 1.52675
1.00600  Ul.01992 =0.00000 0499203
Ua00L020 001992
0.98632 1.36322
1.00000  UeG1988 =0.0U000 0498807
0400020 0.01988
Ge98774 1422048

100000 U.U1984 =0.00000 0.98413

0e00020 0.01984
0.98898 l.09678


http:tlUXtfl5.5l
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100000 001980
UsLUO20
0499005

1e0O00OGCU O.(11976
0G«GLUO20
Ue99UY7

1.00000 UeU1972
0600020
Ua99176

100000 16401968
0.00G20
UVe99244

1.00000C 0e01964,
0elUULD20O
0699302

100000 0s01961
000020
0699351

$IBSYS

=-0.000600
DeGlO8BN
0e992063
=-0e0000O0
0e01976
Ge87804
-~0Ue0ULOUO
UeCl972
Ue81870
-0e0UGCHO
0.01968
0e75011
-0« 00CHON
0e01964
06469057
“OOOUOOO
C.01961
0663865

0.98020
(e97629
0.9723;
Ce96851
0.96464

0496079

CD TOT 0080
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$J08 003512 LOUIS LEE 160 010 0
$16J08 NODECK
SIBFTC LEUNG
C CALCULATICHN OF THE ACTUAL PERFORMANCE CRITFERION S
C OF A SECOND ORDER S5YSTEM

DIMAENSTON X(291)9XX{251)s0(192)9E(291)9F(2+2)

ICC =1
READ(5511) (D(1sd)sd=192)
1 READ(5510) ((F(Isd)sd=192)sl=1+2)

READ (95911) (E(I91l)sI=142)
10 FORMAT(4F1045)
11 FORMAT (2F15e51

SUM:OOQ
X(1ls1)=1a0
X{251)=040
IC=1

1100 U==(D(1s1)%X(1s1) + D(1s2)%X(2+1))
SUM=SUM+U*#2 +X (191 ) %%24X (291 ) #%2
XXC1s1)=F(1s1)%#X (1ol )+F(192)%X{2s1)+E(]1s1)%U
KXC291)=F(291)%X(1s1) +F(292)%X(291) +E(291)%U
X(1s1)=XX(1s1) :

X(2s1)=XX(251)
IC=1C+1
IF(IC.LE«600)G
SUM=SUM/5060

WRITE(6s4) SUM

/

O T0100

4 FORMAT(1H s10XsF1545)
1CC=1CC+1
IF(ICCeLEs11) GO TO 1
STOP
END
$ENTRY
0e99005 0499003
1.00000  0.02000 =0.00000  1.00000
0.00020 0.02000
1.00000  C.01996 =0.00000 0499601
0400020 0.01996
1400000  0,01992 =0.00060 0.99203
000020 0401992
1400000  0,01988 =0.00000 0.98807
0.00020 0.01988
1400000 Ul 01984 =0.00000 0.98413
: 0.00020 0.01984
1400000  G.01980 =C.00000 0498020
0.0G020 . 0401980
1400600  G401976 =0.00000 097629
0400020 0.01976


http:tlOX,Fl5.5l
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1.00006U 01972
0e00020
1eUOLOU Je01968
Ve 0UG2U
1600000 0eU1l964
CelLU20
1.00000C 0e0O1l961
000020
$IBSYS

-0 0GOONO
0601972
~UeunuG
0s01l96H
~0eGUOGLY
VelLl9G4
-0+00000
001961

0697239

(le96851
De96464

CeW6079

CO TOT
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