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Abstract

Machine-driven analysis of visual data is the hard core of intelligent surveillance

systems. Its main goal is to recognize different objects in the video sequence and their

behaviour. Such operation is very challenging due to the dynamic nature of the scene

and the lack of semantic-comprehension for visual data in machines. The general flow

of the recognition process starts with the object extraction task. For so long, this task

has been performed using image segmentation. However, recent years have seen the

emergence of another contender, image matting. As a well-known process, matting

has a very rich literature, most of which is designated to interactive approaches for

applications like movie editing. Thus, it was conventionally not considered for visual

data analysis operations.

Following the new shift toward matting as a means to object extraction, two meth-

ods have stood out for their foreground-extraction accuracy and, more importantly,

their automation potential. These methods are Closed-Form Matting (CFM) and

Spectral Matting (SM). They pose the matting process as either a constrained opti-

mization problem or a segmentation-like component selection process. This difference

of formulation stems from an interesting difference of perspective on the matting pro-

cess, opening the door for more automation possibilities. Consequently, both of these

methods have been the subject of some automation attempts that produced some
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intriguing results.

For their importance and potential, this thesis will provide detailed discussion and

analysis on two of the most successful techniques proposed to automate the CFM and

SM methods. In the beginning, focus will be on introducing the theoretical grounds

of both matting methods as well as the automatic techniques. Then, it will be shifted

toward a full analysis and assessment of the performance and implementation of these

automation attempts. To conclude the thesis, a brief discussion on possible improve-

ments will be presented, within which a hybrid technique is proposed to combine the

best features of the reviewed two techniques.
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Notation and abbreviations

OD Object Detection

OE Object Extraction

SVM Support Vector Machine

CFM Closed-Form Matting

SM Spectral Matting

RGB Red, Green, Blue

RLLS Regularized Linear Least Squares

OLS Ordinary Least Squares

PSD Positive Semi-Definite

OSVS Object-Shape Vector Space

PCA Principle Component Analysis

MS Mean Shift

HSV Hue, Saturation, Value
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Chapter 1

Introduction

Visual information representation is one of the most informative and widely favorable

forms of information representation throughout humanity’s history. In the modern

age, specifically the digital era, representing visual information has taken a major

leap forward with respect to two fundamental aspects: availability and content. A

quick look through the last century would suffice to show the fast growing develop-

ment of equipment and devices used for “capturing” and “displaying” the two main

forms of representation, images and videos. This, consequently, has made visual in-

formation available almost everywhere to everyone. As for the content of the visual

information, henceforth referred to as the visual content, it has had its share of de-

velopment as well, arguably a larger share of development compared to availability.

To see such improvement in content, one could think of how imagery evolved from

producing grayscale images to color ones or from producing high resolution images

to three-dimensional (3D) ones. This continuing evolvement has made each of the

aforementioned aspects an area of research in itself.

The main theme of this thesis is content analysis of visual information. More
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specifically, the focus is on studying the topic of object detection and extraction for

visual content analysis. Owing to the large number of applications in which this topic

is discussed, studying object detection and extraction is somehow infeasible and may

tend to be very complicated if an application is not specified. Thus, the discussion

of the topic here will be directed toward intelligent surveillance systems as one of

the important and rapidly developing applications. Generally, the visual content of

surveillance video sequences convey a lot of information about the surrounding, yet

the process of automatically extracting this information from the visual data1 without

human intervention is still posing a major challenge. To a large extent, the reason

behind that could be attributed to the lack of semantic-comprehension of visual data

in machines, where only primary information, like light and color intensities, could

be directly extracted from visual data. Hence, much of the research in the area of

visual content analysis has been dedicated to developing tools and techniques with

which more meaningful, albeit obscure, information is obtained and analyzed.

Prior to introducing the main statement of this work, brief overviews on some

essential topics and concepts need to be presented. To do that, this chapter is di-

vided into three sections. In the first section, a quick look at the literature of object

detection and object extraction from images and video sequences will take place. This

literature review helps shape the understanding of both topics and their relation to

the problem statement. Within this section, light will be shed on the definitions of

some basic concepts and popular approaches having been developed to address ma-

jor issues related to these two topics. This kind of discussion justifies the need for

the second section in which the concept of matting and its literature will be briefly

introduced. The relation between matting and object detection and extraction will

1Visual data refers to the digital ”representation” of the visual information captured from a scene.
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also be clarified, paving the way for the main problem statement in the third and last

section of this chapter.

1.1 Object detection and extraction

An obvious goal in visual content analysis is to give machines the ability to recognize

different objects in an image or video sequence; however, recognition is a task that

requires high-level understanding of the visual content, which, in turn, could not be

grasped from primitive (low-level) visual data. This difficulty gives rise to the need for

some sort of intermediate processing stage capable of unearthing more perceptually

relevant data from the primitive one. Tasks like localizing the objects of interest in

the scene and isolating them from their irrelevant surroundings are very appealing

candidates to do the job. These two tasks are widely-known as Object Detection

(OD) and Object Extraction (OE), respectively.

For over three decades, OD and OE have been extensively studied yielding sev-

eral approaches of implementation. On a very basic level, these approaches differ

according to the type of visual content they process, whether it is an image or a video

sequence. Nevertheless, the difference is subtle and manifested in the extra temporal

dimension of videos, i.e., a video is just a time sequences of still images. Based on

such distinction, many early attempts, as well as the new ones, have been focusing

on addressing the issues of detecting and extracting objects of interest in still images,

and once they turn out good results, they get extended to the video case. Hence,

it stands the reason if a brief literature review of OD and OE is first introduced for

images and then for videos.
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1.1.1 Object detection and extraction in images

As stated in [21], the general classical approach for object recognition in computer

vision was based on three main processing stages: 1) low-level feature extraction from

the image (OD stage), 2) segmentation of the image into semantically-related regions

(OE stage), 3) recognition of each of the segmented regions. At the first glance,

the process looks very elegant and consistent. Despite of that, the processing flow

turned out to be a disappointment, for it failed to attain sustainable results making it

practically incompetent. The main reason for such failure was mostly attributed to the

segmentation stage. In order to see why, a quick look at the concept of segmentation

is required. The segmentation process aims to break an image into several regions

based on some primitive features of the visual data, like intensity discontinuity and

pixel similarity. The pixels forming each region, therefore, either share some common

feature or are contained within the same boundary line– [12] makes a good reference

for more details on the subject. This reliance on low-level features is believed to be

the reason why segmentation is unable of capturing visually meaningful structures,

leading to the failure of the classical approach [21].

The major disappointment accompanying the classical approach pushed toward

a segmentation-free object detection framework. Getting rid of the segmentation

stage meant that object extraction would no longer be required. This movement,

revolutionary at its time, resulted in an explosion of techniques with impressive per-

formances, like [8] and [24] among others. Loosely, these techniques are grouped as

a single approach called the sliding window. This name comes as an obvious result

of the way they operate; each of them defines a fixed-size window and runs it across

the whole image looking for some a posteriori features [17]. Moreover, some methods

4



M.A.Sc. Thesis - Muhammad Alrabeiah McMaster - Electrical Engineering

Figure 1.1: The red bounding box cannot only fit the little girl which may cause a
detection error. On the other hand, the blue box shows another situation when it is
possible to contain close-to-rectangular shapes like the dog’s face.

generate a pyramid using different sizes of the same image and, then, run the win-

dow across all of them [8]. Many of the sliding window techniques, if not all, rely

on a well-trained classifier within each window to test the existence of the object of

interest. Commonly this classifier is based on the Support Vector Machine (SVM)

learning algorithm. Despite their recorded success in detection, they have a common

major drawback. Ironically, it is their source of strength, the sliding window concept.

As it is argued in [21], sliding window techniques fail in recognizing objects that do

not have close-to-rectangular shapes. Such failure implicitly points toward the local-

ization method; it produces a bounding box around the object of interest, which may

not completely contain the object or may include other unrelated objects, see Figure

1.1.

Recently, there have been some voices that call for the return of segmentation in
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the object recognition process as a way to tackle the shortcomings of sliding win-

dow approaches. Malisiewicz and Alexei’s voices are among the clearest ones. In

their paper [21], they lay the groundwork for why incorporating segmentation within

OD techniques would provide a great boost to their performances. This new direction

brought the discussion on OE back to life. Many attempts, [11], [20], and [28] to name

a few, have been made to incorporate segmentation in the process of OD and OE.

Generally speaking, the majority of the proposed techniques have succeeded in uti-

lizing segmentation to improve their object localization abilities. The key advantage

that segmentation has provided is the ability to specify a shape-adaptable detection

region instead of the bounding box provided by the sliding window methods. How-

ever, one should not think that this puts an end to the whole OD and OE problem;

while segmentation brings the so-called spatial support to detection techniques, it also

introduces an extra layer of computational load.

1.1.2 Object detection and extraction in videos

A natural extension of the discussion on OD and OE is to the case of video sequences.

As previously stated, many techniques that turned out to be successful in the case of

images are further developed to process videos. However, a main trend with videos

is the focus on human recognition scenarios like in surveillance systems or TV sport

broadcast. Several approaches have been developed for that end [26], but many of

them could be used, with some modifications, to recognize other objects of interest.

Both processes, OD and OE, in videos exploit the additional temporal dimension.

The variation between consecutive frames resulting from the motion of the object

constitutes an important factor for localization and segmentation. As it was in the
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case of images, object recognition in video sequences could be performed without

using the segmentation stage, i.e., without OE; however, some may argue that OE

would provide the spatial support required to improve the performance of current

techniques. Thus segmentation has been recently incorporated in many methods, like

[3] and [35], and the results are promising.

Detection of salient objects, like detecting humans, in videos could be done in

two main stages. First, the variation resulting from motion in the consecutive frames

must be detected. Then, regions where those variations are detected are analyzed

to localize and identify the object [26]. At first, the need for these two stages may

seem confusing, for why would it happen in two stages if the object in motion is the

one of interest? This is true in highly controlled environments, which, unfortunately,

is not the case for real-world scenes; many sequences contain several moving object

that are not of any significance, e.g., the wavy motion of tree leaves or the continuous

sprinkling from a water fountain. For that, the two stages are necessary to obtain

reasonable detection outcomes. There are roughly three main approaches to object

motion detection, some of which incorporate OE by applying segmentation and others

do not. These approaches are: background subtraction, optical flow, and spatio-

temporal filtering. For the object identification stage, three approaches could be

defined as well: shape-based, motion-based, and texture-based. In many of these

approaches, techniques that have been developed for the image case are extended to

work on videos, like [9] and [33].

Due to the extra boost in performance segmentation gives, many video OE tech-

niques incorporate a segmentation stage. However, the way with which segmentation

is implemented differs according to the processing method and the features used to

7
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aid the process. Setting aside the fact that their work took place more than thirteen

years ago, Megret and DeMenthon presented an elegant classification of video seg-

mentation techniques [22], one that still holds to this day. They defined three major

video segmentation approaches: segmentation with spatial priority, segmentation by

trajectory grouping, and joint spatial and temporal segmentation. For the first class

of approaches, the segmentation process is performed on a frame-by-frame basis. The

extracted regions in the sequence of frames are linked to each other using a certain

tracking method, such as motion similarity or motion model fitting. On the other

hand, the second class of approaches relies on the temporal grouping where the trajec-

tory of some defined features is tracked throughout the sequence and, then, grouping

is performed based on some rules. The third and last class is merely a combination

of the previous two. It favors no dimension over the other and operates on the whole

video sequence at once. An important observation should be made; out of those three

approaches, only the first one can be implemented in real-time processing [10]. That

is the case because the other two approaches require the whole video sequence to be

available for the segmentation process to take place. However, this advantage does

not come without a price; temporal consistency for this approach is an issue. An

accurate tracking method must be implemented, or, otherwise, jitters in the motion

of the extracted object will be apparent.

1.2 Image and video matting

A well-known problem in the literature of image and video processing is the separation

of the foreground and background. Salient objects in the scene make the main source

of visual information, and, thus, they are collectively considered the foreground of the

8
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image. The background, obviously, is made up of the other less informative objects.

Such definitions may sound a bit amorphous, but they have the versatility needed

to suite the various applications applying the separation concept. Commonly this

process is referred to as matting, and it was mathematically formulated in 1984 in the

work of Porter and Duff [27]. The matting process generally assumes that the image

is a composite of two layers, a background and a foreground, with a compositing

factor α called the alpha matte or the opacity factor [31]. This factor is defined for

all the pixels in the image, and it takes values in the interval [0,1]. Mathematically,

for each pixel of an image I, the compositing equation is:

Ii = αiFi + (1− αi)Bi, (1.1)

where Ii is the intensity of ith pixel of the image, Fi is the intensity of the ith pixel of

the foreground layer, Bi is the intensity of the ith pixel of the background layer, and

αi is the opacity factor associated with the ith pixel. As Equation (1.1) suggests, a

pixel of an image I is made of the sum of two pixels from two different layers with a

”mixing” factor α that determines the percentage of contribution of each layer. For

pixels that belong solely to one of the two layers, the alpha matte takes the value of

either 0 or 1. The case of α = 0 is for a definite background pixel where α = 1 is the

case for a definite foreground pixel.

Equation (1.1) is inherently under-constrained since there are more unknown vari-

ables than known values, which, in itself, poses the major challenge in the matting

process. For grayscale images, each pixel has one known value, the pixel intensity Ii,

and three unknown variables, Fi, Bi, and α. The situation gets worsened when dealing

with color images; each color channel has its compositing equation, and all of these

9
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equations share the same opacity factor. In this case, and depending on the color

space used, there are at least seven unknowns and three known values. This striking

observation depicts how challenging, if not impossible, it is to tackle the matting prob-

lem knowing only the input image. Therefore, many methods and algorithms have

been proposed in the last four decades most of which focus on humanly-provided

input. This kind of input is provided in the form of three region map, named a

trimap, in which a region defines the absolute background, another defines the abso-

lute foreground, and finally the third one defines the unknown region that needs to be

estimated. The latter region is usually covering the boundary between the foreground

and the background.

Matting methods could be generally classified into four broad categories [31]:

color-sampling-based methods, affinity-based methods, methods using optimization

by combining sampling and affinities, and lastly matting with extra information.

The first category of methods utilizes the fact that pixels in a region may exhibit

some level of color correlation, which could be very high in some parts of the image

[4]. They imply a local smoothness assumption in a neighborhood. Then, they use

samples from nearby foreground and background to estimate the unknown Fi and

Bi pixels. Although such methods sound simple, their implementation is not. In

addition, the results they provide are often not very accurate. An attempt to combat

the problems of color-sampling-based matting is established in the second category,

affinity-based methods. These methods avoid enforcing certain color distributions or

sampling different neighborhoods. Instead, they define various affinities within a very

small neighborhood, as small as a 3x3 neighborhood. Within this window some sort of

assumption may apply to derive the relation between pixels, like in [18]. Despite their
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improved accuracy, they have some issues like error propagating and accumulating.

More robust matting methods could be obtained by leveraging the strengths of the

former two categories, which is exactly what the methods of the third category do.

They formulate an energy function in which sampling and affinities are used. Then,

they plug it in an optimization problem where matting parameters are estimated, e.g.,

the easy matting method [13]. Finally, with a slight deviation in concept, the fourth

category of methods handles the matting problem. These methods require extra

information to be provided about the scene. Such additional information usually

comes from the device capturing the scene or the settings of the scene itself. Green

screen and flash matting, respectively, make famous examples. More details about

matting approaches could be found in the survey presented in [31].

As in OD and OE, Section 1.1, video matting could be viewed as an extension

of the image matting case. Many of the methods developed for image matting could

be altered to handle the video matting problem. However, some different challenges

present themselves in this case. One of the major ones is the ability of the method to

efficiently process the large amount of data in a video sequence. Average quality video-

recording systems usually work with a rate of 30 frames per second, called the frame

rate. Hence, the matting process must be conducted within roughly 33 milliseconds

for real-time matting to be implemented. If not, there is still the challenge of pulling

the alpha matte of each frame in the large stack of images, called the video volume.

Moreover, presuming the speed issue is resolved, video matting faces the obstacle

of producing a consistent sequence of alpha mattes. In frame-by-frame processing,

jittering is a likely problem. Loosely, it could be attributed to the inconsistence of

errors resulting from estimating the alpha matte in each frame. Several solutions have

11
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been proposed, most of which heavily rely on human interaction [31].

Unlike its popularity in film and TV production industries, matting is yet to play

a key role in areas related to visual content analysis. A main reason behind that could

be the lack of automatic efficient image and video matting methods. For matting to be

done, most of the existing methods, in all four categories, require human interaction

(or human guidance). This is usually done by asking the user to provide a trimap

for key frames to alleviate the difficulty and get the matting process started. For a

long time, such a dependence made matting an inconvenient choice. However, this

has recently changed; with the introduction of efficient interactive image matting

methods, like [1], [18], and [19], and the advancement in machine learning, matting

is becoming a key player in the field of visual content analysis.

1.3 Thesis statement

Leveraging the strengths of some matting methods to solve the OE problem has been

proposed in some recently published research [15], [19], [34]. Offering a slightly dif-

ferent view on the problem, matting presents a new approach for extracting salient

objects in surveillance applications. The fundamental advantage distinguishing mat-

ting from segmentation is that it pays attention to the concepts of foreground and

background. While segmentation breaks down the image or video into several pieces

representing different coherent regions of the image, matting incorporates the primary

sense of object classification in the process; regions either make up the foreground or

background objects in the image or video. Hence, matting stands out as a promising

candidate that could overcome some of the shortcomings of segmentation and provide

the sought-after spatial support for OD and OE tasks.

12
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This thesis is aimed to provide a detailed review and analysis on the automation

of two of the most advanced matting methods, closed-form and spectral matting.

These two methods represent a milestone in interactive image matting, and several

attempts have been made to automate them. With implementation and performance

analysis, the main advantages and shortcomings of those automation attempts will

be highlighted, and based on that, the possibility of a hybrid technique combining

their major advantages will be briefly discussed. All that is organized as follows:

Chapter 2 is dedicated to presenting the two techniques and their theoretical foun-

dation. Chapter 3 will present two of the most advanced attempts having been made

to automate these techniques, namely the shape-prior automation and the adaptive

component detection and tracking techniques. Performance evaluation and analysis

of two automatic techniques will be the core of discussion in Chapter 4. Hybridiza-

tion and its key advantage and major shortcomings will be discusses in Chapter 5.

Finally, Chapter 6 will present some conclusions and possible future work.

13



Chapter 2

Closed-form and spectral matting

methods

Recently, matting has been rediscovered as a promising tool for OE in images and

videos. The way in which the matting problem is formulated encodes a primitive

sense of classification, i.e., matting breaks down the image into two layers, namely

foreground and background, and provides a compositing factor. As explained in Sec-

tion 1.2, the mathematical formulation of the matting problem results in an under-

constrained problem. There have been many successful attempts to tackle the prob-

lem, producing a rich literature of techniques. Despite the variety, what most of these

techniques have in common is their reliance on a set of user-provided constraints, usu-

ally given in the form of a trimap, see Figure 2.1. This used to be the main obstacle

for utilizing matting in OE tasks, in which the process must be completely automatic.

However, several new proposals came out recently aiming to automate the matting

process. In many of them, if not all, a machine learning technique is implemented

in an attempt to compensate for the lack of user input. In general, the performance

14
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Figure 2.1: Starting from the left, the first image represents the input image. The
second one is an example of a trimap inputted by the user, in which the red region
is definite foreground with α = 1, blue is definite background with α = 0, and white
is the unknown region where α is being estimated. Finally, the third image is an
example of the possible output matte.

of these newly developed automatic matting techniques depends on how well they

manage the trade off between matte accuracy and computational efficiency.

Among all the proposed matting methods, Closed-Form Matting (CFM) and Spec-

tral Matting (SM) [18], [19] stand out as milestones in the matting research. The

CFM method formulates the matting problem as a quadratic optimization problem

with some linear constraints. Such a formulation is very desirable since it is rela-

tively easy to solve and, when given enough constraints, it often produces a high-

quality alpha matte. As for the second method, SM approaches the matting problem

from a different angle. Instead of formulating an optimization problem, it follows a

segmentation-like process where a set of matting components accounting for different

possible regions in the image are produced. Both methods show interesting perspec-

tives on automating the matting process. For that, several automation techniques

have been proposed for each of them [15],[30],[34]. In preparation to discuss and ana-

lyze the performance of the most successful ones, Chapters 3 and 4, this chapter will
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present each of the two interactive methods as well as their theoretical primes. Sec-

tion 1 will introduce the basic ground upon which the two methods are built. Then,

Section 2 and 3 will provide a detailed discussion on CFM and SM, respectively.

2.1 Spatial constancy and the color line model

Both matting methods, CFM and SM, share the same premise that is constructing

a pixel affinity matrix called the matting Laplacian, but they part ways on how to

utilize this matrix in the matting process. Basically, this matrix describes the relation

between pixels within a very small spatial window, which is placed in all possible

locations across the image. Inside the window, a smoothness model is assumed to

be approximately satisfied in the foreground and background layers, so the relation

between pixels in the image could be derived. Two different smoothness models are

briefly introduced here. They simply account for the difference in the type of image

being processed, grayscale or color image. These models are the spatial constancy

model and the color line model.

Understanding the two models is essential to understand how the two methods

work. For grayscale images, the assumption is fairly simple; the intensities within the

spatial window are assumed to be constant for both layers. This model will hence-

forth be referred to as the spatial constancy model. Since this model reduces the

number of variables within the window, it helps combat the inherent problem of the

matting process, being severely under-constrained. However, the assumption is not

necessarily true for all locations, and this will be shown later to be the main source of

errors in both methods. As for the case of color images, a slightly more sophisticated
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Figure 2.2: An example of an input image and the tendency of its color vectors to
form elongated clusters in the RGB space.

smoothness model is used, called the color line model. Before describing it, an inter-

esting observation, pointed out by Omer and Werman [25], needs to be discussed, for

it forms the ground for the model. In their work, Omer and Werman noticed that

for many images, most of the color vectors tend to align in elongated clusters in the

RGB space, see Figure 2.2. Although not all these clusters are elongated ellipsoids,

their skeleton could be fitted with a straight line. This observation is almost always

true if a small spatial window is considered like in Figure 2.3. Several samples from

the same image show an almost-linear distribution of the color vectors. Inspired by

this observation, Levin et al proposed the color line model [18]. It simply assumes

that within a small spatial window, as small as a 3x3 window, the colors of the pixels

in both the foreground and background are aligned along a line in the RGB space.

In other words, the colors of all pixels in the window could be viewed as a linear mix

of two colors. The validity of this model is not upheld in every window of a natural

image, yet for reasons that will become clear in Chapter 4, the model is very powerful

in describing the relation among the pixels
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Figure 2.3: Three different 16x16 windows are sampled from the input image. For
each window, the distribution of the color vectors is shown. For all three samples,
color vectors are aligned in elongated clusters with a linear skeleton.

18
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2.2 Closed-form matting method

As stated in the previous section, constructing the matting Laplacian matrix is the

core of both matting methods. This matrix is derived from the basic compositing

equation, Equation (1.1), and the smoothness model assumed. Owing to the fact

that color images, especially the ones represented with the RGB color system, are

prevalent, the derivation of the CFM method and its implementation are going to be

discussed for color images in this section. However, for other types of color systems

or grayscale images, the discussion follows along the same lines of this one with some

subtle differences.

The CFM method formulates the interactive matting process as a constrained

quadratic optimization problem [18], in which the cost function is derived from the

compositing equation and the color line model. Given a small spatial window (wk), as

small as 3x3 window, the colors of the foreground and background pixels are assumed

to obey the following two linear equations:

F c
i = βciF

c
1 + (1− βci )F c

2 , (2.1)

Bc
i = γciB

c
1 + (1− γci )Bc

2, (2.2)

where:

• γci and βci are the mixing factors of the ith pixel in the cth color channel within

the spatial window.

• F c
1 is the first foreground color intensity in the cth color channel.

• Bc
1 is the first background color intensity in the cth color channel.
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• F c
2 is the second foreground color intensity in the cth color channel.

• Bc
2 is the second background color intensity in the cth color channel.

• F c
i is the foreground color intensity of the ith pixel in the cth color channel

within the spatial window.

• Bc
i is the background color intensity of the ith pixel in the cth color channel

within the spatial window.

As Equations (2.1) and (2.2) show, two intensities from each color channel are

mixed with different factors to make the color of theith pixel of the foreground and

background.

Now, within the same window wk, each of these two equations is substituted in

Equation (1.1) for each color channel to form the compositing equations of the ith

pixel:

Iri = αiF
r
i + (1− αi)Br

i ,

Igi = αiF
g
i + (1− αi)Bg

i ,

Ibi = αiF
b
i + (1− αi)Bb

i .

(2.3)

Using Equations (2.1) and (2.2) and after some rearranging, for any pixel in wk,

the following system of linear equations is obtained:

y = Hx
Iri −Br

2

Igi −B
g
2

Ibi −Bb
2

 =


F r
2 −Br

2 F r
1 − F r

2 Br
1 −Br

2

F g
2 −B

g
2 F g

1 − F
g
2 Bg

1 −B
g
2

F b
2 −Bb

2 F b
1 − F b

2 Bb
1 −Bb

2




αi

αiβi

(1− αi)γi


. (2.4)

This system of linear equations is assumed to always have a unique solution despite
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where in the image the spatial window is placed. At the moment, such assumption

may seem unreasonable, but it will be justified when the contribution of the fore-

ground and background colors get eliminated later on. Since the target in the process

is finding α, it suffices to invert matrix H and take the result of multiplying its first

row with the vector y. This is given by the following very important equation:

αi = a1I
r
i + a2I

g
i + a3I

b
i − a1Br

2 − a2B
g
2 − a3Bb

2

αi =
∑3

c=1 acI
c
i + b,

(2.5)

where Iri , I
g
i , I

b
i ≡ I1i , I

2
i , I

3
i , b = −(a1B

r
2 + a2B

g
2 + a3B

b
2), and finally, a1, a2, a3 are the

first row elements of H−1.

Equation (2.5) states that the value of the opacity factor α could be locally repre-

sented as a scaled sum of the color intensities and a free variable b. This representation

is very powerful because it decouples the alpha value from the texture complexity in

the window. In many spatial windows across the image, pixels fully belong to either

the foreground or the background. Hence, the opacity factor usually has a constant

value (0 or 1) that could be simply obtained by setting the three scaling factors in

Equation 2.5 to 0 and setting b to 1 or 0. Even with the locations where the window

contains mixed pixels, the linear representation performs well, see Figure 2.4 for an

example.

For all pixels in window wk, the alpha values are found by minimizing a local cost

function given by:

Jk(α, a, b) =
∑
i∈wk

(αi − (
3∑
c=1

ackI
c
i + bk))

2 + ε
3∑
c=1

(ack)
2, (2.6)
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Figure 2.4: The window contains pixels from the foreground and background. By
scaling the blue channel and adding 1, the required alpha matte is found. It is not
very accurate, yet it captures the difference between both layers.

where k here refers to the number of the window and ε is a regularization factor.

This is just another formulation of a Regularized Linear Least Squares (RLLS)

problem. The objective is to minimize the squared error between the alpha values

and the estimated values given by the linear representation in Equation (2.5). The

need for a regularization term in there could be justified with numerical stability; in

some regions in the image, the very small spatial window may include pixels with

the same color, making the minimization problem hard to solve without a bias. This

could be better viewed when Equation (2.6) is rewritten in its fundamental form:

Jk(α, a, b) = ‖Gkx̄k − ᾱ‖22, (2.7)

where:

Gk =



I11 I21 I31 1

...
...

...
...

I19 I29 I39 1

√
ε 0 0 0

0
√
ε 0 0

0 0
√
ε 0


, x̄k =



a1k

a2k

a3k

bk


, ᾱk =



α1

...

α9

0

0

0


,

and the alpha values in ᾱ and the color intensities in Gk are index according to
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their order in the spatial window. In the case of uniform color, matrix Gk would be

noninvertible, which makes the closed-form solution of the Ordinary Least Squares

(OLS) problem unattainable. This regularized problem is minimized with respect to

x using:

x̄k = (GT
kGk)

−1GT ᾱk. (2.8)

Substituting back in Equation (2.7) and following some algebraic manipulations, a

quadratic form in one variable, α, is obtained:

Jk(α) = αTLkα, (2.9)

where: Lk = [Gk(G
T
kGk)

−1Gk]
T [Gk(G

T
kGk)

−1Gk] .

Equation (2.9) is, indeed, the living testimonial for the ingeniousness of the CFM

method. This, in general, could be attributed to two main reasons. First, the equa-

tion provides a closed-form formulation to the local cost function in which several

unknowns, namely a1k, a
2
k, a

3
k, and bk, are analytically eliminated making alpha the

only variable in the equation. In addition, the function is quadratic with a Positive

Semi-Definite (PSD) matrix Lk, making the process of optimizing with respect to

alpha computationally very efficient.

With the derivation above in mind, a global optimization problem could be ob-

tained, the solution of which is the sought-after image alpha matte. Exploiting the

convexity of the cost functions within all windows in an image, the sum of these

local functions produces a good global cost function retaining the two fundamental

advantages mentioned before. After some tedious algebraic simplifications, including

an element-by-element expansion of the sum of all the local cost functions and the
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rearrangement of variables, the global function is found to be:

J(α) = αTLα, (2.10)

where matrix L is the matting Laplacian matrix capturing pixel affinities within all

possible 3x3 spatial windows. Besides its positive semi-definiteness, L is a sparse

symmetric matrix with rows summing to 0. Each element in L represents the relation

between two pixels in the image. This relation is given by the following equation:

(i, j)th element =
∑

(i,j)∈wk&k∈image

{δ(i, j)− 1

n
[1 + (Īi − µ̄k)T (Σk +

ε

n
Σidn)−1(Īj − µ̄k)},

(2.11)

in which δ(i, j) is the Direct delta function, n is the number of pixels in the kth

spatial window wk, Ii and Ij are the color vectors of the ith and jth pixels, Σidn is a

3x3 identity matrix, µk is the 3x1 color mean vector in window wk, and Σk is a 3x3

color covariance matrix of the same window. The last two are given as follows:

µ̄k =


µrk

µgk

µbk

 =


Ir1+...+I

r
9

n

Ig1+...+I
g
9

n

Ib1+...+I
b
9

n

 ,

Σk = 1
n
XXT

X =


Ir1 − µrk Ir2 − µrk . . . Ir9 − µrk

Ig1 − µ
g
k Ig2 − µ

g
k . . . Ig9 − µ

g
k

Ib1 − µbk Ib2 − µbk . . . Ib9 − µbk

 .

(2.12)

One final remark on Equation (2.11): the sum is over all possible windows encom-

passing pixels i and j.
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In order to find the alpha matte of an image using CFM, the global cost func-

tion, Equation 2.10, must be minimized subject to some constraints. The need for

constraints stems from the fact that the null space of L is not empty– an important

characteristic that has led to the development of the SM method. This means there

are many potential minimizers of the cost function. However, almost all these solu-

tions make no sense visually. For instance, the trivial solution of all one vector is

a minimizer and belongs to the null space of L, yet it indicates that all the image

pixels belong to the foreground. This solution is not only visually unacceptable, but

it violates the very basic objective of the matting process, foreground and background

separation. Therefore, some constraints reflecting a visual sense for the two layers are

required to bias the solution toward the actual matte. This is usually accomplished by

user-based input, in which the user provides information on some definite foreground

and background pixels. Incorporating the user input, the final optimization problem

is given by:

min
α

αTLα (2.13a)

subject to (α− bs)TDs(α− bs) = 0, (2.13b)

where:

• bs is a vector containing the alpha values provided by the user.

• Ds is a diagonal matrix with the diagonal elements taking the value 1 for con-

strained pixels and 0 otherwise.

This quadratic function is minimized by differentiating it and setting the derivative

25



M.A.Sc. Thesis - Muhammad Alrabeiah McMaster - Electrical Engineering

to zero. The result is a sparse linear system:

(L+ λDs)α = λBs. (2.14)

When enough constraints are provided by the user, a very good alpha matte could

be pulled. Usually these constraints are given as two sets of pixel-specified alpha

values. For example, one set may define the alpha values of some pixels belonging

completely to the foreground, and the other may define alpha for pixels belonging

to the background. The location and number of these user-constrained pixels highly

influence the quality of the extracted matte. Unfortunately, there is no specific rule

for that. However, [18] provides some tips on where to place the constraints and

how they could be inputted. One final note is that this form of user-provided input

must not be confused with the classical trimap. They may serve a similar purpose,

but they are different; the input of the CFM is very sparse and concerns the alpha

values of some pixels while a trimap breaks down the whole image into three layers,

a background, foreground, and unknown region

2.3 Spectral matting method

The ability of the matting Laplacian matrix to model the relation between pixels is

its source of strength. This is clearly demonstrated with the quality of the matte the

CFM produces. Minimal user-provided input, compared to other matting methods,

is often enough to get that result. A quick look at the cost function in optimization

Problem 2.13 reveals that the matte is the minimizer subject to a set of constraints.

This obvious observation may give rise to the interesting question of whether the
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matte will still be the minimizer without the constraints or not. In other words, is

α in the null space of the matting Laplacian? Such question has been addressed by

Levin et al in [19], leading to the development of the novel matting approach referred

to as Spectral Matting (SM). This method does not only provide a powerful method

for matte extraction, but it also opens a new door for the automation of the matting

process.

SM, in its core, expresses a strong similarity to a segmentation approach known as

spectral segmentation. In fact, the development of this method was highly influenced

by the likes of [23] and [32]. The basic idea of spectral segmentation is to construct

a graph-Laplacian matrix that captures the distinct clustering of pixels in the image.

A very similar idea is adopted by the SM method. However, the two approaches

have their differences, the main of which is rooted in the matting Laplacian ability to

capture fuzzy clustering of pixels instead of hard clustering. In order to understand

how SM works and what gives it the edge over spectral segmentation, the concepts

of spectral analysis and matting components must be briefly reviewed.

2.3.1 Spectral analysis

Spectral analysis represents the foundation of spectral segmentation. The goal is to

decompose the image into several disjoint sets of pixels using a graph-Laplacian matrix

(Lgraph), which tries to capture the affinities among pixels. To see that, consider an

image represented as a collection of several distinct sets of pixels C1, C2, ..., and Ck,

see Figure 2.5. Each of these sets is assigned an indicator vector m̄ck , the ith element
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of which is given by:

mck
i =

 1, i ∈ Ck

0, otherwise
. (2.15)

In ideal cases, when the affinity matrix accurately captures the pixel clustering, this

set of k indicator vectors {m̄c1 ,m̄c2 ,. . . ,m̄ck} makes an orthogonal basis to the null

space of the graph-Laplacian matrix Lgraph [19]. In fact, each vector of these is a

zero-eigenvector of Lgraph (i.e., the eigenvector with eigenvalue = 0). Utilizing such

property, this set could be easly found by applying eigendecomposition to Lgraph and

rotating the zero-eigenvectors.

In practice, this decompose-and-rotate process does not produce the sought-after

set of vectors. The main reason for that could be traced to the failure of the affinity

matrix in recognizing the distinct clustering in an image. Normally, natural images

have a complex structure that cannot be captured with affinity matrices like those

proposed for spectral segmentation [32]. They require a higher-level of affinity mod-

eling, which is something the matting Laplacian L has, to some extent, managed to

do.

2.3.2 Matting components

The basic definition of the matting process states that matting aims to decompose an

image into two layers and provide a compositing factor for each pixel in the image, see

Section 1.2. This definition will be slightly altered to introduce the notion of matting

components; any image I would be decomposed into several layers {F 1, F 2, . . . , F k},

instead of just two, and each pixel in that image would be a linear combination of the

corresponding pixels of those layers scaled with several opacity factors { α1
i , α

2
i ,. . . ,αki
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Figure 2.5: This is an example of hard segments and matting components. Images a-f
are 6 hard segments obtained from the input image while images g-i are examples of
matting components resulting from decomposing the input image with SM method.
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}. For each pixel in I the following two equations hold:

Ii =
∑k

j=1 α
j
iF

j
i ,∑k

j=1 α
j
i = 1 .

(2.16)

The vector ᾱj whose elements are the opacity factors of the jth layer is called a

matting component. Any image has several matting components associated with its

layers, see Figure 2.5.

At first, matting components and indictor vectors may seem to do the same job,

which is not completely true. While they both decompose the image into several lay-

ers, these layers have a very different nature. The indicator vectors serve the purpose

of partitioning an image into several hard segments. That is, each of these vectors is a

binary vector. It basically indicates whether a pixel belongs to a region in the image

or not. On the other hand, matting components produce a set of fuzzy layers. Any

pixel of the image would be the composite of one or several layers. Another difference

between the two is the orthogonality of the set. Matting components do not make an

orthogonal set of vectors like the indicator vectors do since each element may assume

a value in the interval [0,1]. Despite that, the matting components are still obtained

from the null space of the matting Laplacian L.

2.3.3 Extraction of matting components

With the concept of matting components in mind, a natural question that comes to

mind is how these components are extracted. In case of hard segments, the indicator

vectors are in the null space of Lgraph, and they form an orthogonal set of vectors.

Therefore, they could be found with a rotation operation to the zero-eigenvectors of
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Lgraph. However, for matting components, nothing in the previous discussion hints

to how they are extracted from L, so their relation to L needs first to be explored.

Then, an answer to the question could be presented.

The matting components are found to be in the null space of L if they satisfy the

following claim [19]:

• Claim 1: Let {α1,. . . ,αk} be the k matting components of image I. These

components lie in the null space of L if for every small spatial window wk, one

of the following conditions is satisfied:

1. A single matting component αk has an element αki > 0 within the window

(In such case, the component is said to be active in the window wk).

2. Two components αk1 and αk2 are active within wk, and the colors of the

corresponding layers F k1 and F k2 within the same window form two dif-

ferent lines in the color space.

3. Three components αk1, αk2 and αk3 are active within wk, and the colors

of the corresponding layers F k1, F k2 and F k3 within the same window are

uniform and different, making the set of these three color vectors linearly

independent.

The proof of this claim is given in [19]. Note that satisfying this claim yields a set of

matting components that lies in the null space of L, but it does not necessarily mean

that these components are orthogonal.

The process of extracting the matting components relies heavily on the aforemen-

tioned claim. If the components are proved to be in the null space of the matting

Laplacian, the process of extracting them seems straightforward. One thing that
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needs to be accounted for here is the orthogonality issue. The components could be

extracted from the zero-eigenvectors of L with a general linear transformation instead

of a rotation. In contrast, when the components of an image do not satisfy the claim,

which is the situation with most of natural images, the null space of L may not exist

or may not have multiple zero-eigenvectors. Despite that, the extraction operation

would still be possible but under one condition, the image must have a relatively

distinct clustering. That means pixels must form a large set of visually discernible

regions. The less the regions are perceptually recognized, the less efficient the SM

method performs.

Assuming the discernibility requirement is held for a natural image, the matting

components could be recovered from the smallest eigenvectors of L. The SM problem

could be posed as an optimization problem:

min
α

∑
i,k

|αki |γ + |1− αki |γ (2.17a)

subject to ᾱk = Eȳk, (2.17b)∑
k

αki = 1, for all i ∈ I, (2.17c)

where:

• The cost function:
∑

i,k |αki |γ + |1−αki |γ is a sparsity measure function with γ ∈

[0,1]. This exponent controls the shape of the curve around the two main local

minima of each term of the summation, see Figure 2.6.

• E is a NxK matrix containing the K smallest eigenvectors of L, E = [e1, . . . , eK ]

(N is the number of pixels in the image).
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Figure 2.6: These are different plots of the sparsity measure function for several γ
values.
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Problem (2.17) is obviously non-convex, which makes it hard to solve. However,

this difficulty could be alleviated with a model locally approximating the cost function

using a quadratic function, see [19]. Given an initial set of values for all αk, the

problem becomes:

min
α

∑
i,k

uki (α
k
i )

2 + vki (1− αki )2 (2.18a)

subject to ᾱk = Eȳk, (2.18b)∑
k

αki = 1, for all i ∈ I, (2.18c)

where: uki ∝ |αki |γ−2 and v ∝ |1 − αki |γ−2. This problem is convex with some linear

constraints, and solving it iteratively starting from a very good set of initial vectors

amounts to a very good final set of matting components.

An important issue that needs to be addressed before implementing the SM

method is the initialization of the matting components. Apparently, the result of

the optimization problem in (2.18) is highly influenced by the choice of the initial set

of vectors. An elegant way of tackling this problem is also proposed in [19], which

relies on the k-means clustering algorithm. Using the smallest eigenvectors of L a set

of indicator vectors is obtained, in a very similar way to the one introduced in [32].

Then, this set is projected onto the range space of matrix E exploiting the fact that

E is a tall matrix with orthonormal columns. Mathematically, this is given as:

ᾱkint = EETmCk . (2.19)

This projection results in a set of vectors each of which is a linear combination of the
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columns of E. Note that, the initial matting components still sum to one along each

row: ∑
k

ᾱk = EET (
∑
k

mCk) = EET 1̄ = 1̄. (2.20)

One final remark on the extraction process: when the pixels of an image are

distinctly clustered, the optimization problem in (2.17) could be dropped, and the

SM process would be reduced to a two-step process: k-means hard clustering and

projection onto the range space of E.
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Chapter 3

Automation of closed-form and

spectral matting methods

Chapter 2 introduced the theoretical grounds and mathematical models of two state-

of-the-art matting methods, CFM and SM. Both of them are implemented interac-

tively, i.e., the process of extracting the alpha matte is guided with user-provided

constraints. In case of CFM, the user must specify the alpha values in some small

regions within the image. As for SM, constraints are provided in several ways, the

simplest of which would be the manual selection of the foreground layers by the user.

With the interactive nature of the two methods, they fail to meet the basic require-

ment of visual content analysis, automatic OE. However, owing to the interesting

perspectives each of them provides, several automation attempts have recently been

made [15][16][30][34]. In all of them, the accuracy of the pulled matte is generally

acceptable, but it is yet to be equivalent to the one pulled with the interactive meth-

ods. The automation problem gets even harder when the content being processed is a
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video sequence; extraction of an accurate matte sequence is no longer the only prob-

lem; temporal consistency of the matte poses another major challenge. Overall, it is

safe to say that automatic methods face the same obstacle, managing the trade-off

between quality and computational complexity.

Recently, two different, but equally-intriguing techniques have been proposed to

address the automation problem of CFM and SM for video sequences, [15] and [34].

What makes them stand out is their practicality compared to other techniques. Ap-

proaching the problem from two different directions, they manage to produce some

relatively good results. One of them compensate for the absence of user input with

some form of prior knowledge about the shape of the foreground object. The other

utilizes the texture and color information of each frame to produce the matting se-

quence. They both have their advantages and shortcomings that could be traced back

to the fundamental issue of complexity-accuracy trade-off.

For their importance, this chapter is devoted to introducing the two automation

techniques and their implementation. The first technique automates the CFM with a

shape prior, and it will be presented in Section 3.1. The other technique is designed

to automate the SM method with adaptive component detection and matching, and

it will be discussed in Section 3.2.

3.1 Automation of closed-form matting with shape

prior

Since the CFM method completely relies on the user-provided information to create

a bias toward the actual matte vector, the shape-prior automation technique [34]
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compensate for such input with a set of learned basis vectors. This set approximates

the so-called Object-Shape Vector Space (OSVS). The basic idea here is to define a

vector space that encloses all possible shapes taken by the foreground object– shape

here refers to the silhouette of the object. A set of basis vectors are found for this

space and supplied to the optimization problem of CFM, problem (2.13), instead of

the user-inputted constraints. This technique was actually proposed for surveillance

applications, in which the foreground object is a walking person. However, it could

be extended to other applications and objects.

For surveillance applications, this technique requires a human detector, like the

detector in [8], and a relatively large set of training data, called shape database (see

Figure 3.1), and it is implemented in a two-stage fashion (see Figure 3.2). The process

starts with the human detector providing a bounding box in which a pedestrian is

located. This window is fed to the automated CFM method. The window matting

process, the second stage of the whole automatic matting process, is performed using

the shape basis matrix, which is obtained form the shape database. The output

of this last stage is an alpha matte of the frame. One question could arise here:

what happens if the frame contains more than one pedestrian? Although not directly

addressed in [34], the use of a person detector in the first stage indicates that the

second stage can only handle one person per window. This observation means that

for situations with multiple pedestrians, breaking down the frame into several indexed

windows is necessary. Processing these windows could be done either sequentially or

in parallel depending on the hardware capabilities.

In mathematical terms, the automation process is accomplished with an optimiza-

tion problem similar to (2.13) and a Principle Component Analysis (PCA) learning
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Figure 3.1: A sample of the training database. Several mattes of different people are
used to find a basis matrix for the shape space.

Figure 3.2: A block diagram describing the automation of the CFM process using
shape-prior.
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technique. Before starting the matting process, PCA is used to extract the shape

basis matrix V from the database, in which every matte is converted into a large

N -dimensional vector. This is done in a way similar to the one proposed in [29].

Using V , any shape could be modeled as:

S̄(u) = V ū+ ∆̄, (3.1)

where S̄ is the shape vector V is an NxM basis matrix (M represents the number

of basis vectors), ∆̄ is the mean shape obtained from averaging all shapes in the

database, and ū is a vector of the basis coefficients.

With the shape model, the optimization problem in (2.13) becomes:

min
α

αTLα (3.2a)

subject to (α− (V ū+ ∆))T (α− (V ū+ ∆)) = 0. (3.2b)

This problem is convex in both u and α, and strong duality could be also proven

[14]. Hence, the solution is obtained by finding the derivative of the Lagrangian and

setting it to zero. That way, the solution of (3.2) is found by solving the following

sparse linear system:

 (L+ λΣidn) −λV

−λV T λV TV


 ᾱ

ū

 = λ

 ∆

−V T∆

 . (3.3)

The constant λ in (3.3) is the Lagrange multiplier, and it is usually set to around

0.01– more details on the choice of this constant will be given in Chapter 4 when the

performance of this technique is analyzed.
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3.2 Automatic spectral matting with adaptive com-

ponent detection and matching

In spite of the ingeniousness of the original SM method, its performance without user

intervention is very limited. This could be attributed to two fundamental facts: lack

of information on the nature of the foreground object and multiplicity of non-trivial

minimizers in the null space. The former is very obvious and could be understood

from the mathematical derivation of the method, not having prior information on

the foreground. For the latter reason, Levin et al [19] have shown that exhaustive

search might be used to automatically find the right combination of components that

minimizes the cost function in (2.13). However, this techniques is not reliable at all;

it, for one, ignores the fact that the number of matting components in natural images

is relatively high, which makes the exhaustive search unfeasible for implementation.

In addition, the null space of L forms a hyperplane in RN with infinite number of

solutions. The most trivial of them is the constant vector, all ones or zeros.

Bearing in mind the aforementioned obstacles, Hu et al [15] have proposed a

technique that mainly uses hue information to automate the video matting process.

The system comprises multiple stages and requires no prior knowledge, see Figure 3.3.

The process starts in a different way compared to the shape prior technique. There is

no object detector here– a step that would be shown to be problematic in Chapter.4.

Unlike the shape prior automation of the CFM method, SM needs automation on

different levels. The very basic one of them is determining the number of matting

components, which is exactly what the first stage, adaptive component detection, does

using Mean Shift (MS) algorithm [5]. Since it works on color and location information
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of pixels, it could find the clustering of these pixels in the so-called feature space.

Usually, such clustering reflects the number of the perceptually significant regions

in the image. Determining the number of components1, K, paves the way for the

extraction of matting components, and this is one of the two main tasks the second

stage does. The other task is to pull a full alpha matte by combining the foreground

matting components. This is done with the aid of the average hue of each component

and a basic assumption on the background components; they must occupy most of the

boundary of the image. This assumption basically means the pixels on the boundary

of the image most probably belong to the background. Therefore, the component with

the most boundary pixels is assumed to belong to the background. Classifying the

components into three groups, foreground, background, and unknown region, prepares

for the process of final matte extraction. It is accomplished with an exhaustive search

for the minimizer of a cost function incorporating the matting Laplacian. The next

stage in the process is component matching based on hue information. It matches the

foreground components of the previous frame to the ones just found for the new frame.

This step speeds up the classification process and imposes some form of consistency

on the matte sequence.

The second stage, SM with hue information and exhaustive search, is the core

process of the whole technique since it determines the alpha matte of the frame. It is

conducted with the average hue information of each component– a component here

refers to an indicator vector not a matting component. Such average is calculated

after transforming the frame to the HSV color space. Using the hue angle between

all components, two possible classification scenarios could take place:

1These components found by the mean shift algorithm are hard segments given in the form of
indicator vectors. The should not be confused with the matting components extracted from the
smallest eigenvectors of L.
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Figure 3.3: A block diagram illustrating the automation of the SM method using
adaptive component detection and matching.

First scenario

If all angles are smaller than a threshold, π/5, then, a single foreground and a single

background components are found with the following equations:

CB = arg max
i∈k

(C(i) ∩ Iboundary),

CF = arg max
i∈k

(CH
B − CH(i)),

(3.4)

where CB is the background component, C(i) is the ith component, Iboundary is the one-

pixel frame defining the boundary of the image, CH
B is the hue angle of the background

component CB, CH(i) is the hue angle of the ith component, and finally, CF is the

foreground component. The threshold here is given based on empirical testing [15].

Now, matting components are extracted from the smallest eigenvectors of L, and with

the aid of the one foreground and one background components, a foreground matting

component is found and grouped with the unknown matting components. This leaves

out some background matting components, which reduces the total number of matting

components to K̃ ≤ K. With these K̃ matting components, exhaustive search could
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be applied to find the minimizer of the cost function:

J(b) = yT (ẼTLẼ)y, (3.5)

where Ẽ is the matrix containing the K̃ matting components and y is the optimization

variable. It is a binary variable selecting the matting components that make up the

final alpha matte.

Second scenario

The second scenario, obviously, occurs when the angles exceeds the threshold. In this

case, multiple components belonging to either the foreground, the background, or the

unknown region are expected. Thus, a check-then-merge process would be performed

on adjacent components using the technique proposed in [30]. This process checks

every two adjacent components for the possibility of merging. This is done based on

the algorithm given below:

Algorithm 1

if (Cs(i) ≥ TC(i)) & (Cs(j) ≥ TC(j))

C(i) ∪ C(j)

else if |Cv(i)− Cv(j)| ≤ Thv

C(i) ∪ C(j)

else do nothing

where CS(i) and CV (i) are, respectively, the saturation and intensity of the ith com-

ponent. The thresholds TC(i) and Thv are determined empirically. Thv is set to 0.1,
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and TC(i) is calculated by [30]:

TC(i) =
1

1 + βCv(i)
, β ∈ [1, 4]. (3.6)

Following the check-then-merge process, a foreground and a background compo-

nents are identified using Equation (3.4). These foreground and background compo-

nents are checked with the non-adjacent unknown components for any possibility of

merging. The one foreground component that results from the previous process is

grouped with the unknown components– in a similar way to the one used in the first

scenario. To generate the final set of K̃ matting components, the smallest eigenvec-

tors of L are used to extract the K matting components, and with the help of the

grouped components, one foreground matting component is found and grouped with

the unknown ones. Using this reduced set of matting components, the cost function,

given in Equation (3.5), is minimized with exhaustive search to obtain the final alpha

matte.
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Chapter 4

Implementation and performance

analysis

With the conceptual and theoretical discussions on CFM, SM, and their automation

using shape-prior and component detection and matching techniques, one could have

a good grasp on how the two matting methods operate and how they have been

automated. However, a full understanding of the potential and capabilities of the

two automation techniques developed for each matting method requires a deeper

discussion of their implementation and a thorough analysis to their performances.

Chapters 2 and 3 have shown some glimpses of their capabilities and provided a very

general discussion on how they work. Therefore, this chapter is devoted to addressing

the topics of implementation and performance analysis and providing a full assessment

of the automation techniques.

The shape-prior automation and the component detection and matching tech-

niques represent an important step toward developing a practical OE method for the

purposes of visual content analysis. Among other automatic techniques, the outcome
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these two provide is very good, which may hint to their adequacy for applications like

intelligent surveillance. However, it is yet to say that they have managed to fulfill

the requirements of automatic OE. Despite their good results, there are many im-

plementation and performance issues that need to be addressed and overcome before

adapting them for any real-world application. These issues fall in one of the two

main categories of challenges that any OE technique or method faces: computational

complexity and extraction accuracy.

This chapter discusses the computational complexity (implementation) and mat-

ting accuracy (performance) of the two automation techniques in three sections. Sec-

tion 4.1 is dedicated to the first automation technique, shape-prior automation of

CFM. It starts by describing its implementation and presenting some issues related

to that. Then, it moves to analyzing the matting results of the technique and compar-

ing it to the results of the interactive method. Section 4.2 follows a very similar order

of discussion for the second automation technique, automation of SM with component

detection and matching. Finally, for the sake of thoroughness, Section 4.3 provides

a comparative analysis of the two techniques and a third technique that attempts to

combine CFM and SM and automate them with shape-prior knowledge.

4.1 Implementation and performance analysis of

shape-prior automation

In Section 3.1, shape-prior knowledge was introduced as a means of automation for

the CFM method. This knowledge is derived from a large set of binary images of

the object silhouette using PCA, and it is used in the optimization problem given

47



M.A.Sc. Thesis - Muhammad Alrabeiah McMaster - Electrical Engineering

Figure 4.1: An sample of the database used in [34]. Each of the training images is a
spatially-registered binary image.

in (2.13) instead of the user-provided constraints. Here, a detailed discussion on the

implementation of this technique and its issues along with a performance analysis are

presented.

Implementation

Before starting the automatic matting process, the proposed technique requires a

set of shape basis vectors V . This is usually obtained from applying PCA on a

shape database, which is done only once. PCA is used in a way similar to the one

proposed in [29]. The training data are given in the form of a collection of binary

images describing several poses and view-angles of random people, see Figure 4.1. In

[34], the training images were spatially registered to centralize the different shapes.

Despite how good this step may sound, it might become a source of troubles for

real-time implementations. As it is going to be discussed soon, the pedestrian in the

input window may assume different scales, poses, and locations, which may hint to

the need to a more diverse shape database (more random scales, poses and locations,

see Figure 3.1).

The automation technique [34] starts with a first stage that implements a person
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detector to provide the matting stage with an input window in which a pedestrian

is located. This is usually accomplished with a detection algorithm like HOG [8].

The found window is fed to the matting stage in which a learned shape basis matrix

is used to find the alpha matte. The dependence of the second stage on person

detectors makes it susceptible to any problem the detector may incur [34]. Some

common issues with using person detectors are the location of the pedestrian in the

window and its scale; the detector usually can not provide this kind of information.

Consequently, performing the matting process using the basis matrix, learned from a

spatially registered shape database, requires the spatial alignment of the shape basis

and the person within the window.

This person detector problem is tackled in [34] with a spatial-transformation opti-

mization substage. This substage is combined with the original optimization substage

given in (3.2) to make up the matting stage in Figure (3.2). The process starts with

the assumption that the person is in the center of the window, so the original opti-

mization substage is performed resulting in an initial matte αint and a basis coefficient

vector uint. This matte is fed to the spatial optimization substage, given as:

arg min
δt

‖αint − (V (w(x; t+ δt))uint + ∆((w(x; t+ δt)))‖22. (4.1)

Here, w(.; .) is the mapping of a pixel in location x in the window into the location

given by w(x; t+δt) in the shape basis in which t is the transformation parameter and

δt is its increment found by minimizing (4.1). Once the new increment δt is found,

the shape basis is spatially transformed accordingly, and, then, the first optimization

substage is repeated to generate new updates of the matte α and the basis coefficient

vector u. The process continues alternating between the two substages until the
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Figure 4.2 Figure 4.3

Number of training
samples

215 spatially aligned
binary shape images

146 diverse binary
shape images

Number of principle
components used

182 146

Size of all sample im-
ages

80 x 40 160 x 80

λ 0.01 several values

Table 4.1: Parameters

optimal solution is found or the maximum number of iterations is reached.

Regardless of the improved quality of the outcome (see Figure 4.4) the spatial

optimization increases the overall computational cost. The cost function in the op-

timization problem (4.1) may look quadratic at first, but this is not true due to its

relation to the optimization parameter δt. This forms the main source of complexity

here. To tackle that, [34] proposed minimizing it locally using the first order Taylor

expansion around the initial value of t. This step is incorporated with the assump-

tion that spatial transformation is restricted to the simple translation operation to

reduce complexity. Such assumption seems reasonable for surveillance applications,

as stated in [34], and it alleviates the computational burden; however, it ignores the

fact that person detectors cannot guarantee a fixed scale of the person within the

window. Therefore, scale must be included in the spatial alignment optimization,

which amounts to a slight increase in complexity.
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Performance

Figure 4.2 shows the results of the two-substage matting process of a short sequence

(these results are given in [34]). The input windows are cropped manually and fed to

the matting process (see Table 4.1 for details on implementation parameters). Each of

the mattes in Figure 4.2 either contains some pixels from the background with alpha

values greater than zero or misses some pixels from the foreground. This kind of error

does not propagate to the subsequent windows. Thus, the matte sequence becomes

inconsistent. Generally, this problem could be attributed to the simplified spatial

optimization and imperfect shape basis matrix. As stated earlier, the transformation

process in [34] is restricted to the translation operation only, for people usually appear

in upright positions in a surveillance video sequence. Such assumption helps reduce

the complexity of the spatial optimization substage, yet it ignores the fact that person

detectors cannot control the scale of the person within the window. For that, many

matting errors occur. Moreover, the imperfect shape basis matrix used in the first

optimization substage takes a toll on the final outcome [34]. Although the idea of

deriving a shape basis matrix from a set of binary shapes seems elegant, the diversity

of shape poses and scales makes it practically very hard to do so with limited set

of samples. Even if these sample shapes are random and not registered, finding the

perfect shape basis is still challenging and requires a very large database. An example

showing that is presented in Figure 4.3-(b). This is a matte pulled using a diverse

database, consisting of 146 training samples, and without spatial optimization. It is

obvious how the quality significantly decreases without accurate spatial optimization

and with a small database.

Beside the need for a large and diverse database and for spatial optimization,
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Figure 4.2: This is one of the examples given in [34]. The first row shows an input
sequence of windows each of which is a 80x40 pixel of size (very low quality). The
second row is the alpha mattes obtained with two substage optimization process.

Figure 4.3: (a) is the input window. (b)-(d) are the extracted mattes without spatial
optimization and with different values of λ, 0.25 ,0.1, and 0.09, respectively. (e) is
the matte extracted interactively with CFM. (f) is the mean-shape of the database.
(g) is the matte extracted with λ = 1.
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Figure 4.4: This example is given in [34] to illustrate the role of spatial alignment.
The left image is the input, the middle one is the extracted matte without spatial
alignment, and the last on eis with spatial alignment

this automation technique has a parameter that highly influences the quality of the

matte. This parameter is the Lagrange multiplier λ, see Equation (3.3). Figures

4.3-(b)-(d) and (g) show the mattes extracted with different λ values. The more this

value increases, the closer the final matte gets to the shape of the mean of the training

database, Figure 4.3-(f). When restricted to values between 0.001 to 0.5, the shape

gets more recognizable. Owing to the poor quality of the matte, the change with

respect to λ is very limited in Figure 4.3. However, although it is not mentioned in

[34], investigating the role of λ mathematically would help explain this behaviour.

Form Equation (3.3), the following two equations are obtained:

(L+ λΣidn)α− λV u = λ∆, (4.2)

−λV Tα + λV TV u = −λV T∆. (4.3)

Theoretically, matrix V contains the largest M (where M is always � the number
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of pixels N) eigenvectors of the covariance matrix of the database [29]. Hence, it is

an orthonormal tall matrix with size NxM , and V TV and V V T result in identity

and projector matrices, respectively. This makes the second term in Equation(4.3)

equal to λu. In addition, the elements of L, typically, fall in the interval [-1,1], so

as λ gets larger, λΣidn in the first term in Equation (4.2) dominates, leading to:

(L + λΣidn) ∼= λΣidn for very large λ. With these two observations and following

some algebraic manipulations, α is found to be given with this equation:

(Σidn − V V T )α = (Σidn − V V T )∆, (4.4)

where (Σidn− V V T ) is a projector matrix onto a subspace perpendicular to the span

of V . Equation (4.4) suggests that large values of λ drive the solution of α to be

equal to ∆, i.e., α becomes the average shape of the database. This interpretation

makes sense because it is aligned with the fact that the constraint in Problem (3.2)

does not hold tightly, as a result of the imperfection of the shape basis matrix V .

4.2 Implementation and performance analysis of

component detection and matching

Adaptive component detection and matching [15] attempts automating the SM method

by decomposing it into three stages (see Figure 3.3), each of which handles one au-

tomation issue. These issues are: determining the number of components, finding

the ones belonging to the foreground, and matching the extracted mattes through-

out the sequence. The performance of this technique is generally good. However,
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there are some shortcomings that need to be addressed and solved. In the following,

implementation-related issues and performance analysis are presented:

Implementation

The general flow of this automatic matting process is shown in Figure 4.5. The first

stage answers one of the fundamental questions in SM, how many matting components

are there? The proposed way to determine the number is the Mean Shift (MS)

algorithm [5],[7]. It decomposes the frame into several homogeneous regions based on

the dominant color and the location of pixels, see Figure 4.6 for an example of that.

Although that sounds exactly like what the SM does, what gives MS the edge is its

ability to adaptively determine the number of regions. Therefore, using MS results

in a good estimation of the number of matting components. One issue that usually

accompanies the use of MS is the need to determine its bandwidth parameter. This is

a well-addressed issue in the literature [6], yet determining the bandwidth adaptively

from the input data increases the computational load.

The second stage of the process is actually the hard core of the technique. It

classifies the detected regions into three groups: foreground, background, and un-

known regions. To achieve that, the color information and the frame edge pixels are

used. Operating in the HSV color space, the average hue angle of each region is

calculated, as Figure 4.5 shows. Together with the assumption that the region with

the most pixels from the edge of the frame makes a definite background component,

two different components are identified, one for the foreground and the other for the

background. Typically, the number of components in the unknown group is small,

which is a result of the merging process or the fact that the frame contains a few
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Figure 4.5: A block diagram showing the major steps of the automatic matting
process.
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Figure 4.6: One of the windows in Figure 4.2 is decomposed into several regions.

distinct regions. As a result of that, exhaustive search is implemented in the third

stage to recover the final matte, the minimizer of the cost function in Equation (3.5).

For natural images, especially in surveillance applications, there are always several

regions with average hue differences exceeding π/5, refer to Section 3.2, which makes

the merging process the sole reason of reducing the number of distinct regions. A

major drawback associated with that is misclassification since merging is performed

based on low-level cues like hue, saturation, and intensity. Some regions belonging to

the foreground may get merged with others from the background and vice versa, and

this forms one of the main sources of errors in this technique.

Following the extraction of the matte, the third stage enforces consistency on the

sequence by matching the extracted foreground matting components of the current

frame with the previous one using the color information. This step helps produce some

form of consistency in the sequence. However, high consistency is barely achieved in

this stage. This is because it requires matching on the first stage, number of com-

ponents, as well as the second stage, region classification, and not only matching the

final matting components. That means the first stage of the process must produce the
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same regions in every frame and the merged regions must also be the same throughout

the sequence. Such a requirement is almost impossible to satisfy due to the variability

of brightness in the video sequence and the small changes in the object’s poses.

Performance

This automatic matting technique was designed to be a generic video matting tech-

nique. Its performance, as shown in [15], is very impressive. However, since the focus

here is on surveillance applications, it is implemented on a short sequence of the win-

dows given in Figure 4.2 to test its performance. The results are displayed in Figure

4.7. The second row corresponds to the mattes extracted automatically. A striking

observation could be made here, the mattes do not exactly capture the foreground.

That is the case for two reasons. The first is related to the aforementioned errors

produced by the merging process. Some regions in the window are merged with the

background because of average hue proximity, and few others are merged with the

foreground for the same reason. The second factor contributing to this mistake is error

propagation. Motivated by brightness and pose changes, the decomposition of each

frame is different, and sometimes this helps compensate for errors made previously.

Nevertheless, with the matching process operating based on low-level cues, some of

these corrections may get eliminated, resulting in some sort of error consistency.

At this point, the following question might be deemed important: what happens

if these issues are to be avoided? Naturally a substantial improvement in the quality

of the matte would be expected. This is not completely true. In [15], the technique

was implemented on high-quality videos (high resolution), which is not a common

feature for surveillance sequences. To see the effect of resolution reduction on the
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performance, one could look back at Figure 4.7 and notice the third row of mattes.

These mattes are produced with the interactive SM method. It may seem surprising

at first to see how inaccurate these mattes are. Despite the slight improvement,

there are still some obvious errors. The reason behind that is traced back to an

issue in the SM method itself. In its theoretical grounds, SM requires the conditions

of Claim 1 in Section 2.3.3 to be satisfied for perfect decomposition (multiplicity of

zero-eigenvalues). If not, the decomposition could still be performed, but its quality

is subject to the distinctiveness of the regions composing the image. In a few words,

it relies on the quality of the image. The windows in Figure 4.7 are of very low

quality, 80 x 40 resolution. Therefore colors and regions are not easily distinguished.

Once the quality of the image improves and the two previously discussed issues are

overcome, this technique would be able to produce a better matte than the interactive

SM method does, and that is exactly what Figure 4.8 shows.

One final remark about this technique concerns its ability to extract foreground

objects in crowded scenes. Since the focus here is on surveillance applications, a seri-

ous issue arises when there are many pedestrians in the scene; unlike the shape-prior

automation technique, the design of this one does not incorporate a person detec-

tors to single out pedestrians. This compromises its ability in real-life applications.

Fortunately, there are many ways to overcome this. Several detection and tracking

algorithms are developed based on MS, [2] and [36] to name a few. Thus, because

the first stage utilizes MS algorithm for component detection, the process could be

further improved to do the detection operation.
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Figure 4.7: a sample of the sequence in Figure 4.2. The first row shows the input
windows. The second row shows the extracted matte with the automatic technique.
Finally, the third row shows the mattes extracted manually with the SM method.
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Figure 4.8: This is an example of the performance of the automatic matting technique
(the adaptive component detection and matching) when the quality of the image is
good. (a) is the input image. (b) is the matte extracted with the automatic technique.
(c) is the matte pulled with the interactive SM method.

4.3 Comparative analysis

Both techniques have their strengths and shortcomings, and a comparative analysis

of their overall performance in surveillance applications is very helpful to get some

perspective on how to improve them. Computational complexity is the first and

most important issue owing to the target application. Surveillance sequences require

a real-time OE process, which is a challenge for the second technique. Its greatest

computational issue is rooted in its core process, SM. It requires eigendecomposition

to obtain the smallest eigenvectors, which is a costly process considering the size of the

matting Laplacian L. For instance, the input image in Figure 4.8 is of size 160 pixels

x 80 pixels making the size of L 12800x12800. Eigendecomposition for such matrix

using MATLAB© running on a Macintosh computer with a 2.9GHz CPU and 8GB

memory takes around 13 minutes. Unfortunately, reducing the size of the input image

would not be of any help because the quality of the matte is directly proportional to

it. The more details the image contains, the more discernible its structure is.
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The other issue the two techniques need to address is the quality of the pulled

matte. Shape-prior automation performs better than component detection and match-

ing with respect to low quality input sequences, the common case for surveillance

applications. In addition, the prior knowledge about the shape of the foreground

object makes it more reliable compared to the other technique, in which low-level

cues, like color information, are used. As the quality of the input frame increases,

more details form the scene are being captured. Hence, the shape basis matrix starts

to fail in reconstructing these details since the variability in poses, scales, and loca-

tions is very large. In this case, component detection and matching might seem more

capable of handling these additional details. However, its major problem stems from

its dependency on low-level cues and the component matching process. In Figure 4.8,

the extracted matte is very good. In fact, it is better than the one extracted with the

interactive SM method. Such good result is not guaranteed with all input images, for

the merging process in the second stage is highly prone to errors.
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Chapter 5

Hybrid Automation Technique

Chapter 4 have revealed some interesting insights on the performance and complexity

of the shape-prior automation and the adaptive component detection and matching

techniques. It has shown that the former technique is more practical for surveillance

applications since it has lower computational cost than the latter technique. How-

ever, its reliance on a shape basis matrix, which is derived from some training shape

database, makes the quality of the final matte significantly lower than the one ob-

tained with the interactive CFM method [34]. In this small chapter, a simple way to

improve the quality of the extracted matte using shape-prior automation is proposed

and analyzed. It does not completely resolve the quality issue, but it serves as an

illustration of what could be done to improve the automatic matting process.

The proposed technique improves the extracted matte by leveraging the quality

advantage of the SM method. The matting components extracted from the matting

Laplacian L are incorporated in the optimization process of the shape-prior automa-

tion. Thus, this technique has been called the “hybrid automation technique.” The

constraint in problem (3.2) verifies the validity of the extracted matte α using the
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shape model V u + ∆. In this hybrid technique, the shape model is still used as a

validation tool, but the constraint and the cost function of (3.2) are both modified

to restrict the choice of α to the matting components {α1, . . . , αk}. In mathematical

terms, this is given by the following optimization problem:

min
b

yT (ETLE)y (5.1a)

subject to (Ey − (V u+ ∆))T (Ey − (V u+ ∆)) = 0, (5.1b)

yi ∈ {0, 1} for all i = 1, 2, . . . , K, (5.1c)

where y is a binary vector selecting the matting components that make up the fore-

ground, and E is the matrix of all K matting components, K is determined using the

mean shift algorithm. The squared error between the selected components Ey and its

reconstruction using shape basis matrix V u+∆ is a good measure of how compatible

this matte with the shape of the foreground object. This simple hybridization of SM

and shape prior knowledge helps improve the final matte quality and rule out the

need for spatial alignment. Examples of its performance are given in Figures 5.1 and

5.2. Overall, the resulting mattes are fairly good when compared to the other two

techniques.

Aside from the promising outcomes, there are two major implementation obstacles

this technique needs to address in order to be of any practical use. First, y is a binary

variable that makes the optimization problem non-convex and hard to solve. Such

issue requires a form of constraint relaxation or a heuristic algorithm to be overcome.

For example, the results in Figures 5.1 and 5.2 are obtained after relaxing the second

constraint and assuming that y ∈ RK . Although the pulled mattes have fair qualities
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Figure 5.1: A window of the video sequence in Figure 4.2 is fed to the shape-prior
automation technique without spatial alignment and the hybrid shape-prior guided
CFM-plus-SM technique. The results are given for different values of λ. Note the
slight independency of the second technique from the values of λ

compared to the mattes in the first row, they fall to exclude some background matting

components. All the mattes in the second row in Figures 5.2 and 5.1 assign non-zero

values to the opacity factors of some background pixels. This observation places

clear emphasis on the need for a more sophisticated algorithm to solve the non-

convexity problem. The second obstacle for this technique is the high computational

cost accompanying the eigendecomposition process of L. Being the backbone of the

SM method, this process is inevitable, and short of a customized hardware, the process

could not be performed in real-time.
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Figure 5.2: A higher resolution frame is fed to shape-prior automation and shape-
guided CFM-plus-SM. The results are obtained for different values of λ, starting from
the left: 0.1, 0.01, and 0.001, respectively. The quality of the matte is significantly
improved with the latter technique
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Chapter 6

Conclusion and future work

Conclusion

Closed-Form Matting (CFM) and Spectral Matting (SM) have recently revealed some

interesting perspectives on the image foreground and background separation problem.

Posing the matting process as either a constrained quadratic optimization problem

or a component-wise grouping problem, they identified matting as a real contender

for the object extraction task– a task traditionally accomplished with segmentation.

Because they were proposed as interactive matting methods, much of the current re-

search is devoted to develop automation techniques. Exploiting their interesting fea-

tures, shape-prior automation and adaptive component detection and matching have

managed to produce some good results compared to the existing automatic matting

or segmentation techniques. However, getting to the point of practical implemen-

tation still requires some effort. There are some performance and implementation

shortcomings that need to be addressed before taking that step.

Shape-prior automation technique uses a form of prior knowledge to tackle the
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automation problem of the CFM method. Such knowledge is learned from a prede-

fine database of the silhouette of the foreground objects. This technique has been

developed for surveillance applications, and it has achieved a fairly good performance.

It utilizes the famous Principle Component Analysis (PCA) method to learn a ba-

sis matrix for the shape vector space. Then, it finds a minimizer for the constrained

CFM problem that could be constructed with the basis matrix. Despite the promising

results, the technique still has some shortcomings, most of which are related to the

second stage. Since the technique relies on person detection, the second stage must

incorporate a spatial optimization substage. It tries to align the shape bases with the

actual location of the person in the window. This increases the computational load,

and when a relaxation technique is adopted, errors become inevitable. The quality

of the pulled matte is also subject to the imperfection of the basis matrix; learning a

set of global bases of the so-called shape space is very hard, if not impossible, due to

the extreme variability of object shapes, poses, and scales.

The second automation technique, adaptive component detection and matching,

attempts guiding the SM process using some low-level cues, like color information

and pixel locations. Depending on the discernibility principle, it implements the

non-parametric mean shift algorithm to decompose the input frame into distinct re-

gions. Then, it uses the average color information of each region to find a definite

foreground and a definite background regions. These regions help classify the mat-

ting components into three groups: foreground, background, and unknown. The final

matte is a combination of the foreground components and some of the other unknown

ones. Such combination is extracted by minimizing a quadratic cost function using
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exhaustive search algorithm. To guarantee matte consistency, a component match-

ing method is implemented at the end. it matches the foreground components of

the previous frame with the currently extracted ones. In reality, this automation

technique produces some good results. In fact, in some situations it outperforms the

interactive SM method. Like the previous technique, it has its own technical issues.

Not incorporating a person detection stage causes a dramatic failure when it is used

for surveillance applications; this technique assumes the input frame has one specific

foreground object, a situation rarely happening for this kind of applications. In addi-

tion, its reliance on low-level cues makes it susceptible to extraction errors, which, in

turn, makes it unreliable. Color information and pixels locations are not enough to

describe objects in natural scenes, let alone using them to perform the classification

process.

Incorporating sophisticated machine learning methods is the best approach to

take in order to improve these techniques or develop new ones. A closer look to their

major drawbacks indicates that they are the result of the absence of prior knowledge

or the use of a very primitive learning technique. Not to suggest that advance learning

techniques hold the magical solution, but following the analysis of performance and

implementation in Chapter 4, advance learning is strongly needed to combat the

shortcomings and overcome the challenges. After all, the OE process has to be done

by a machine!

Future work

Based on the discussion and analysis presented in Chapters 3 and 4, future work

will focus on utilizing advance learning techniques to automate the CFM and SM

69



M.A.Sc. Thesis - Muhammad Alrabeiah McMaster - Electrical Engineering

methods. A glimpse of that effort is revealed at the end of Chapter 4. In the form of

hybrid automatic technique, the CFM optimization problem is constrained with the

primitive shape-prior knowledge and the set of matting components in an effort to

guide the matting process. The preliminary results are, to some extent, promising,

so more development is needed to refine and enhance the performance. Another

possible method of automation will take advantage of the extensive literature on image

descriptors. They could be utilized to identify regions belonging to the foreground or

the background, and accordingly the matting process is performed.
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