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ABSTRACT 

 Acute myeloid leukemia (AML) is a fatal cancer of the human hematopoietic system 

characterized by the rapid accumulation of non-functional, immature hematopoietic cells 

in the bone marrow (BM) and peripheral blood (PB) of affected patients. Limited sources 

of safe hematopoietic stem/progenitor cells (HSPCs) for transplantation and incomplete 

mechanistic understandings of disease initiation, progression and maintenance have 

impeded advances in therapy required for improvement of long-term AML patient 

survival rates. Toward addressing these unmet clinical needs, the ability to generate 

induced pluripotent stem cells (iPSCs) from human somatic cells may provide platforms 

from which to develop patient-specific (autologous) cell-based therapies and disease 

models. However, the ability to generate iPSCs from human AML patient somatic cells 

had not been investigated prior to this dissertation. Accordingly, I hypothesized that 

cellular reprogramming of human AML patient somatic cells to iPSCs is possible and will 

enable derivation of autologous sources of normal and dysfunctional hematopoietic 

progenitor cells (HPCs). 

 I first postulated that reprogramming AML patient fibroblasts (AML Fibs) to 

pluripotency would provide a novel source of normal autologous HPCs. Our findings 

revealed that AML patient-specific iPSCs devoid of leukemia-associated aberrations 

found in the matched bone marrow (BM) could be generated from AML Fibs, and 

demonstrated that this cellular platform allowed for the derivation of healthy HPCs 

capable of normal differentiation to mature myeloid lineages in vitro. During the tenure of 

these experiments we also redefined conventional reprogramming methods by 
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discovering that OCT4 transcription factor delivery combined with culture in pluripotent-

supportive media was minimally sufficient to induce pluripotency in AML and normal 

Fibs. 

 Toward capturing and modeling the molecular heterogeneity observed across human 

AML samples in vitro, we next asked whether reprogramming of AML patient leukemic 

cells would enable generation of iPSCs and derivative HPCs that recapitulated 

dysfunctional differentiation features of primary disease. Our results demonstrated that 

conventional reprogramming conditions were insufficient to induce pluripotency in 

leukemic cells, but that generation of AML iPSCs could be reproducibly achieved in one 

AML sample when reprogramming conditions were modified. These AML iPSCs and 

their derivative HPCs harboured and expressed the leukemia-associated aberration found 

in the BM leukemic cells and similarly possessed dysfunctional differentiation capacities. 

 Together, this body of works provides the proof of principle that cellular 

reprogramming can be applied on a personalized basis to generate normal and 

dysfunctional HPCs from AML patient somatic cells. These foundational findings should 

motivate additional studies aimed at developing iPSC-based cell therapies and disease 

models toward improving AML patient quality of life and long-term survival rates. 
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CHAPTER 1 

INTRODUCTION 

1.0 Preamble 

 The work presented in this thesis was inspired by the poor prognoses and long-term 

survival rates of human patients with acute myeloid leukemia (AML) that are largely 

attributed to a lack of therapeutic options and a poor mechanistic understanding of 

disease. It was also motivated by the seminal findings by Takahashi et al., which detail 

the generation of personalized induced pluripotent stem cells (iPSCs) using cellular 

reprogramming (Takahashi et al., 2007). Accordingly, this dissertation aims to 

demonstrate that cellular reprogramming of human AML patient somatic cells to iPSCs 

allows for the generation of personalized sources of normal and dysfunctional blood cells 

that may form the bases of future cell-based therapies and disease models. As such, this 

introduction is devised into three major sections that provide an overview of the 

pioneering and relevant works in the fields of AML, embryonic stem cell (ESC) and 

pluripotency, and cellular reprogramming and iPSC research that together formed the 

premise of my research problem, hypothesis and objectives that are subsequently 

delineated in my summary of intent. 

1.1 Acute Myeloid Leukemia 

 The normal hematopoietic (blood) system is maintained by hematopoietic 

stem/progenitor cells (HSPCs) capable of self-renewing and differentiating to generate all 

of the mature lymphoid and myeloid blood cell lineages (Bryder et al., 2006). However, 
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cancers of the blood system disrupt this normal homeostatic maintenance and lead to 

dysfunctional hematopoiesis. Rudolf Virchow coined the term “leukemia” in 1856 to 

describe the excess white blood (myeloid) cells he observed in the blood stream of 

patients with fever, weakness and enlarged spleens (Tefferi, 2008). Subsequent 

pathological observations made over the following century began to tease apart the 

various myeloid neoplasms, with the first cases of AML reported in the 1940s (Tefferi, 

2008). We now know AML as a difficult-to-treat and genetically heterogeneous cancer of 

the hematopoietic system characterized by the inability of immature leukemic cells or 

“AML blasts” to differentiate into mature cells of the myeloid lineages. The rapid 

accumulation of these non-functional AML blasts in the bone marrow (BM) and 

peripheral blood (PB) of patients results in hematopoietic system failure within months, 

ultimately leading to death (Perl and Carroll, 2007). Although frontline chemotherapeutic 

treatments achieve high rates of remission, only 20-30% of patients are afforded long-

term disease-free survival due to a high rate of disease relapse (Shipley and Butera, 2009; 

Tallman et al., 2005). Accordingly, increased understanding of underlying mechanisms of 

AML pathogenesis and the development of novel therapeutic approaches and treatments 

are required to improve the dismal prognoses currently associated with AML. Here I 

discuss aspects of AML that are relevant to the purpose of this thesis, including an 

overview of the enormous genetic heterogeneity observed in AML, its disease relevance, 

and methods of detection; introduction to epigenetics and the recent advances in the 

understanding of the AML epigenome; description of the contributions of current in vitro 
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and in vivo model systems of human AML and their limitations; and finally, I discuss the 

current therapeutic management and unmet clinical needs of AML patients. 

1.1.1 Heterogeneity of acute myeloid leukemia: cytogenetic and molecular 

aberrations 

 The extreme genetic heterogeneity of AML has become progressively more evident 

over the past 30 years, with a vast number of recurring aberrations discovered both across 

and within AML patient cases (Dohner et al., 2015; Vardiman et al., 2002; Vardiman et 

al., 2009). These “leukemia-associated aberrations” are subdivided into large-scale 

chromosomal (cytogenetic) and gene-specific (molecular) abnormalities, a number of 

which are summarized in Tables 1 and 2. Building on initial morphological, 

cytochemical, and immunophenotypic diagnostic criteria established in the French-

American-British (FAB) 1976 classification of AML (Bennett et al., 1976), the 

importance of recurring cytogenetic aberrations found in 50-60% of AML patients in 

subsequent years became increasingly apparent (Grimwade et al., 1998). This led to the 

development of a new system for disease classification with the publication of “The 

World Health Organization classification of the myeloid neoplasms” in 2002 (Vardiman 

et al., 2002; Vardiman et al., 2009). These cytogenetic aberrations serve as diagnostic and 

prognostic markers to better instruct therapeutic approaches and predict patient outcomes 

(Table 1)(Grimwade et al., 1998; Vardiman et al., 2002; Vardiman et al., 2009). 

Accordingly, AML patients can be subdivided into favourable [inv(16), t(8;21), t(15;17)], 

intermediate [normal, +8, +21, +22, del(7q), del(9q), 11q23 abnormalities], and 

unfavourable [3q abnormalities, -5, -7, del(5q), complex karyotypes] risk categories based 
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on the cytogenetic abnormalities present at diagnosis (Grimwade et al., 1998). With 

increased awareness of the genetic component of AML and advances in next-generation 

sequencing techniques, a number of molecular aberrations have since been described at 

the resolution of the gene level through sequencing of over 200 AML patient genomes 

(Table 2)(The Cancer Genome Atlas Research Network, 2013; Welch et al., 2012). These 

findings provide an additional layer of genetic complexity to AML, and will likely result 

in future revisions of disease classification (Dohner et al., 2015). For instance, the 

prognostic value of molecular aberrations in genes such as NPM1, FLT3, and CEBPA has 

already begun to direct clinical practice (Dohner et al., 2010); although, the prognostic 

values of many other molecular mutations remain to be established due to their recent 

identification (The Cancer Genome Atlas Research Network, 2013; Welch et al., 2012). 

Together, these research efforts have led to the identification of a remarkable number of 

cytogenetic and molecular aberrations associated with AML toward improving disease 

diagnosis, classification, prognosis and therapeutic approaches. However, with the 

exception of insights into MLL-AF9 (Krivtsov et al., 2006), the origin and functional 

contributions of these aberrations to human AML pathogenesis remain largely unknown 

due to limitations of current model systems of AML and require further investigation. 

1.1.2 Molecular techniques for the detection of AML cells 

 The identification and detection of leukemia-associated aberrations would not have 

been possible without the use of cytogenetic and molecular techniques. G-banding, 

spectral karyotyping, array comparative genomic hybridization and fluorescence in situ 

hybridization (FISH) are routinely employed to detect cytogenetic aberrations, while 
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polymerase chain reaction and DNA sequencing-based approaches are used to identify 

molecular aberrations in AML samples. The ability to probe for and visualize cytogenetic 

aberrations on a per cell basis using G-banding and/or FISH serves as a powerful tool for 

distinguishing AML blasts harbouring distinct leukemia-associated aberrations from 

normal cells devoid of aberration. 

 Early works in the 1950s developed techniques for preparing condensed metaphase 

chromosomes from individual cells on a microscope for visualization toward determining 

the chromosome number (karyotype) in human cells (Hsu, 1952; Hughes, 1952; Tjio and 

Levan, 1956). It was not long before this “chromosomal spread” technique was applied to 

human tumor cells to determine that they possessed abnormal aneuploid or euploid 

karyotypes (Hsu and Moorhead, 1957), thereby providing an initial glimpse into the 

power of analyzing chromosomal spreads to distinguish normal and cancerous cells. The 

subsequent development of G-banding techniques – Giemsa staining of metaphase 

chromosomes producing distinct dark (AT rich) and light (GC rich) “band” patterns 

unique to each chromosome – provided further opportunity to detect abnormal variations 

in seemingly normal diploid (n=46) karyotypes (Bickmore, 2001). For example, G-

banding of human Burkitt Lymphoma cells revealed that although 46 chromosomes were 

present, an extra region or “band” was repeatedly observed in one chromosome 14 per 

cell (Manolov and Manolova, 1972). Further analyses using G-banding would later reveal 

that this was attributed to a translocation between chromosomes 8 and 14 [t(8;14)], a 

characteristic chromosomal aberration common to Burkitt Lymphoma samples (Zech et 

al., 1976). Together, these studies established the utility of G-banding, a technique that 
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remains a frontline clinical diagnostic to identify the presence and frequency of 

cytogenetic aberrations (insertions, deletions, translocations, -ploidy) within AML 

samples (Dr. Mohammed Almakadi, personal communication). However, this approach 

requires an expertly trained eye and is therefore not practical for quick adaptation and use 

in non-clinical settings. 

 If G-banding is the tortoise of cytogenetic techniques, then FISH is considered the 

hare: a practical and robust technique that can be performed in a high-throughput manner 

to detect cytogenetic aberrations (Levsky and Singer, 2003; Speicher and Carter, 2005). 

Based on the concept of using fluorescently-labeled probes to target and visualize regions 

of a chromosome (Bauman et al., 1980; Levsky and Singer, 2003), FISH allows users to 

rapidly identify leukemic cells carrying known leukemia-associated aberrations. For 

instance, FISH performed using commercially available DNA-based probes that bind 

specifically to the centromere region of chromosome 8 would establish whether AML 

blasts harbouring trisomy 8 are present within a BM sample (the presence of three 

fluorescent probe signals versus the normal two)(Chapter 2, Figure 1a). Similarly, 

chromosomal translocations can be detected when probes that bind to two adjacent genes 

surrounding a breakpoint region no longer co-localize upon visualization, as is the case 

with AML-associated translocations involving 11q23 (Chapter 2, Figure 1a). As such, 

FISH holds great utility in the clinical setting where follow-up samples may be probed to 

evaluate whether therapy has reduced the frequency of AML blasts and in the 

experimental setting where it can be used to distinguish normal from leukemic cells in an 

AML BM or PB sample. 



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

7	
  

1.1.3 Epigenetics and the abnormal AML epigenome 

 Epigenetics literally means “over the genetics” and was coined by Conrad 

Waddington in 1942 as a “branch of biology which studies the causal interactions 

between genes and their products, which bring the phenotype into being” (Goldberg et al., 

2007; Waddington, 1942). Through increased understanding of the molecular 

mechanisms responsible for the actualization of phenotype, epigenetics can now be 

summarized as the processes that control gene expression by regulating DNA 

conformation/accessibility and the recruitment of transcriptional machinery without 

affecting the DNA sequence (Goldberg et al., 2007). These processes are largely 

mediated by proteins that affect DNA methylation and histone modifications, and 

microRNA that disrupt mRNA expression (Goldberg et al., 2007). In the context of the 

developing embryo, epigenetic reprogramming is responsible for coordination of normal 

development (Rivera and Ross, 2013), while dysfunctional regulation in somatic cell 

types has been associated with cancerous phenotypes (Dawson and Kouzarides, 2012). 

Here I aim to provide the reader with a high level summary of DNA methylation and 

histone modifications, and the relevance of epigenetics to AML. This summary should 

also provide fundamental insights that place later discussions of pluripotency and cellular 

reprogramming techniques into context. 

 DNA methylation is carried out by enzymes known as DNA methyltransferases 

(DNMT), such as DNMT1, DNMT3A, and DNMT3B, which catalyze the conversion of 

cytosine to 5-methylcytosine. This chemical modification generally occurs in 

cytosine/guanine rich regions of DNA known as CpG islands that are often found in gene 
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promoters (Bird, 2002; Davuluri et al., 2001), and ultimately represses gene expression 

(Li et al., 1993). Conversely, the TET family of enzymes are responsible for DNA 

demethylation required for re-activation of genes (Kohli and Zhang, 2013). Another level 

of transcriptional regulation occurs through the post-translational modification of histones 

– protein scaffolds that package the DNA. Modifications include citrullination, 

phosphorylation, ribosylation, sumoylation and ubiquitylation, but acetylation and 

methylation are the most relevant and best understood. These processes are carried out by 

histone deacetylases (HDACs), histone acetyl transferases (HATs), histone demethylases 

(HDMs) and histone methytransferases (HMTs), and serve to activate or repress gene 

expression based on conformational changes and/or recruitment of transcriptional 

machinery to the histone (Bernstein et al., 2006). 

 It has recently become evident that AML epigenomes no longer resemble those of 

their normal blood cell counterparts. By performing global DNA methylation profiling, 

Figueroa et al. demonstrated that 344 human AML samples could be subdivided into 16 

subclasses based on unique methylation signatures (Figueroa et al., 2010). Interestingly, 

this work demonstrated that distinct epigenetic states were associated with distinct 

cytogenetic and molecular aberrations. Later work using next-generation whole exome 

sequencing and DNA methylation analyses of 200 AML genomes and epigenomes 

corroborated these findings, and further mapped unique epigenetic profiles to underlying 

cytogenetic and molecular aberrations (The Cancer Genome Atlas Research Network, 

2013). Taken together, these results suggest that specific changes in the epigenome during 

AML pathogenesis may occur in response to leukemia-associated aberrations. 
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Accordingly, a number of leukemic mutations affect known regulators of DNA 

methylation and chromatin modification such as DNMT, TET, and MLL (The Cancer 

Genome Atlas Research Network, 2013). However, causal links between leukemia-

associated aberrations and the abnormal AML epigenome remain poorly resolved, and 

therefore, the study of epigenetics in the context of AML has become a fast-growing area 

of research in the field (Oki and Issa, 2010). 

1.1.4 In vitro and in vivo models of human AML: understanding the paradigms, 

contributions and limitations 

 It is currently hypothesized that AML is functionally organized in a manner that 

resembles normal hematopoiesis, whereby disease is initiated and sustained by a rare 

population of leukemia stem cells (LSCs) that gives rise to dysfunctional AML 

progenitors incapable of normal differentiation to mature myeloid cells (Bonnet and Dick, 

1997; Lapidot et al., 1994). In vitro and in vivo model systems and assays have been 

instrumental in developing this current understanding of disease, but they are not without 

their limitations. Here I overview the model systems of human AML that have brought us 

to our current understanding of disease, and discuss how novel complementary model 

systems are required to further progress this understanding. 

Clonogenic Progenitor Assay 

 The clonogenic progenitor or “colony forming unit” (CFU) assay was first developed 

in 1966 when Ray Bradley and Donald Metcalf discovered a small fraction of healthy 

murine BM cells were capable of forming clonal colonies when plated in semi-solid 

growth medium (Bradley and Metcalf, 1966). Over the span of colony formation and 
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growth they were able to observe single-cell morphological changes associated with the 

differentiation of primitive BM cells to mature myeloid cells (Bradley and Metcalf, 

1966). These primitive BM cells are termed hematopoietic progenitor cells (HPCs), and 

are experimentally defined by their ability to generate mature hematopoietic colonies 

when subjected to the CFU assay. Metcalf later adapted this assay to both the human and 

leukemic systems by measuring the capacity of myelomonocytic leukemia progenitors to 

form colonies (AML-CFU)(Metcalf et al., 1969). These experiments revealed that AML 

progenitors were capable of initiating differentiation processes similar to normal HPCs, 

but were unable to achieve full morphological maturation. The formation of these 

immature “blast” colonies provided the first in vitro demonstration of the AML 

differentiation blockade (Metcalf et al., 1969). This assay has since been improved to 

efficiently read out HPCs and AML progenitors through formation of monocytic, 

granulocytic, erythrocytic, megakaryocytic, and blast colonies (Griffin and Lowenberg, 

1986; Wognum et al., 2013), but the principles of the assay remain the same. Together, 

these works not only established a system in which to model the AML differentiation 

blockade (Sachs, 1978), but they also established the value of the CFU assay in detecting 

and quantifying normal and AML progenitors (Moore et al., 1973; Sachs, 1978). The use 

of the CFU assay, in combination with morphological and cytogenetic assessments, as a 

means of distinguishing normal and leukemic cells was further developed in this thesis 

and was invaluable to the conclusions formed. 

 

 



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

11	
  

In vitro stromal co-cultures, suspension cultures and immortalized cell lines 

 While the CFU assay provided a testing ground to quantify the frequency of AML 

progenitors and the severity of their differentiation blockade, it was not informative of 

their functional self-renewal capacity – the ability to maintain their “differentiation” 

capacity while undergoing cell divisions. Accordingly, stromal co-cultures and 

hematopoietic cytokine-supplemented suspension cultures were developed in attempt to 

maintain primitive AML cells in culture (Sutherland et al., 1996). These in vitro 

conditions led to the identification of rare fractions of AML progenitors termed long-term 

culture initiating cells (LTC-IC) and suspension culture-initiating cells (SC-IC) that were 

able to persist in vitro for up to 8 weeks while maintaining CFU capacity. While these 

culture conditions shed light on the contribution of the BM microenvironment and 

extrinsic factors to the maintenance of rare primitive AML cells (Sutherland et al., 1996), 

they remain ineffective at expanding this population (Montesinos et al., 2006; Sutherland 

et al., 1996). Alternative strategies using high-throughput drug screens very recently 

identified small-molecules capable of expanding primitive AML cells in suspension 

cultures in vitro (Pabst et al., 2014), but an incomplete understanding of the global effects 

of these compounds on AML cells has so far limited their use in studies. Other attempts 

to capture primitive AML cells in vitro through immortalization have allowed for further 

observations of AML differentiation blockade, growth factor independence/dependence, 

and immunophenotypic and morphological abnormalities (Koeffler and Golde, 1980). 

However,  the relevance of cell lines has been called into question by findings illustrating 

that extended periods of culture causes them to lose their molecular resemblance to the 
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primary disease state (Gillet et al., 2011). Together, these findings illustrate the current 

landscape of in vitro models of AML and their historical contributions to our 

understanding of disease. 

Humanized Mouse AML Xenotransplant 

 Given the inherent difficulties of maintaining primitive AML cells in vitro, work in 

the lab of John Dick set out to identify and characterize the leukemic cells responsible for 

disease initiation. Based on their hypothesis that leukemia was organized in a similar 

fashion to normal hematopoiesis, they reasoned that primitive AML cells could initiate 

leukemia in a mouse similar to the ability of normal HSPCs to initiate normal 

hematopoiesis (Kamel-Reid and Dick, 1988; Mosier et al., 1988). They proved this 

hypothesis by demonstrating that a distinct population of AML cells (1 in 250,000) was 

able to trigger and recapitulate patient leukemia when transplanted into severe combined 

immunodeficient (SCID) recipient mice (Lapidot et al., 1994). Subsequent work 

identified that CD34+CD38-CD45+ AML cells – same phenotype as normal HSPCs – 

were responsible for disease initiation (Bonnet and Dick, 1997). Together, these 

observations led to the current hypothesis that AML is organized in a functional hierarchy 

with a rare subset of primitive leukemia stem cells (LSCs) generating and maintaining the 

tumor through differentiation and self-renewal in a manner similar to their normal HSPC 

counterparts (Bonnet and Dick, 1997; Hope et al., 2004; Lapidot et al., 1994; Mosier et 

al., 1988). As such, the LSC assay – the ability of a leukemic cell to initiate and maintain 

disease in a mouse recipient – is the current gold-standard in the field for assessing the 

self-renewal and disease initiation capacity of AML cells, and can be used as a pre-
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clinical surrogate in which to test the potential therapeutic effects of novel drugs (Sachlos 

et al., 2012; Wunderlich et al., 2013). However, due to the constraints of in vitro systems, 

the isolation and culture of LSCs for further characterization and studies has remained 

elusive. 

Transgenic mouse models 

 Transgenic mouse models have been employed in attempt to identify the genetic 

causalities of AML, and can be created by deriving mice from genetically engineered 

mouse ESCs (mESCs) carrying an introduced genetic mutation or through transplantation 

of genetically altered BM. Mutated genes can be introduced at non-endogenous loci 

where they are under the control of doxycyclin-inducible or designed promoters, or using 

a “knock-in” approach whereby they are introduced downstream of their endogenous 

regulatory elements (Cook and Pardee, 2013). In the context of AML, transgenic mouse 

systems have been used to gain insights into the contributions of leukemia-associated 

aberrations to disease phenotype and initiation. Mice carrying the t(15;17) PML/RARα 

mutation not only demonstrated impaired neutrophil maturation, but they also responded 

to all-trans retinoic acid (ATRA) differentiation treatment similar to human acute 

promyelocytic leukemia (APL) patients (Brown et al., 1997). Similarly, mice with Mll-

involving fusions or Pten knockout develop an aggressive leukemia, while Flt3-ITD 

knock-ins develop hyper-proliferative disorders, and t(8;21) AML1-ETO mice are 

susceptible to developing leukemia after administration of carcinogens (Forster et al., 

2003; Li et al., 2008; Yu et al., 2010; Yuan et al., 2001). In perhaps the most-relevant 

scenario to the human system, human HPCs were transformed into engraftable LSCs 
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through forced expression of MLL-AF9 using retroviral transduction (Krivtsov et al., 

2006). However, data from transgenic models can be difficult to interpret as transgene 

regulation and expression may not accurately reflect physiological levels observed in 

primary disease, and can lead to inaccurate conclusions about the causal links between 

mutations and disease phenotype (Brown et al., 1997; Chen et al., 2008; Early et al., 

1996; Krivtsov et al., 2006). Although knock-in systems attempt to account for this, the 

relevance of mouse models to the human system remains in question due to inherent 

differences in mouse and human biology (Richmond and Su, 2008).  

Practical cell-based models are required for mechanistic studies and drug discovery in 

the human AML system 

 Although in vitro and in vivo modeling has been instrumental in progressing our 

understanding of the functional hierarchy and abnormal differentiation features of human 

AML, this information has not translated to major improvements in disease treatment 

over the past 40 years (Burnett et al., 2011). This can be attributed to constraints in our 

current model systems that limit our ability to confidently delineate the causal/functional 

contributions of leukemia-associated aberrations and to develop high-throughput drug 

discovery platforms. AML xenografts and transgenic mouse models remain expensive 

and laborious vessels that are not conducive to high-throughput studies. Moreover, only a 

portion of human AML samples contain engraftable LSCs (Ailles et al., 1999), while 

transgenic mouse models take years to establish and may provide results that are not 

applicable to the human system (Cook and Pardee, 2013; Richmond and Su, 2008). 

Therefore, in vitro models theoretically represent more practical systems in which to 
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perform these studies. However, the CFU assay is limited to read-outs of AML 

progenitors (Griffin and Lowenberg, 1986; Wognum et al., 2013), expansion and 

maintenance of primitive AML cells in vitro remains a challenge (Montesinos et al., 

2006), and cell lines vaguely resemble their primary cells of origin  (Gillet et al., 2011). 

Thus, novel complementary model systems that overcome these constraints are required 

to advance our knowledge of AML pathogenesis and to develop novel therapeutics 

toward improving patient survival. 

1.1.5 Current therapeutic management of AML 

 Newly-diagnosed AML patients receive multiple stages of intensive therapy 

designed to sequentially control and eliminate leukemic disease. Despite the functional 

and genetic heterogeneity observed in AML patients, cytarabine (AraC) chemotherapy 

forms the backbone of remission induction treatments in the majority of AML patients 

(Robak and Wierzbowska, 2009). As an anti-metabolite, AraC widely targets 

proliferating cells (both AML and normal hematopoietic cells) achieving remission rates 

of 50-80% (Robak and Wierzbowska, 2009). Due to these promising initial responses, 

AraC has been a mainstay of AML induction therapy for several decades and is unlikely 

to be replaced, however it does not represent a long-term solution as the 5-year survival 

rate is only 20-30% due to disease relapse (Shipley and Butera, 2009; Tallman et al., 

2005). Following remission induction, there are multiple post-remission consolidation 

therapies available as preventative measures against relapse, many of which involve 

additional treatment with high-dose AraC (Roboz, 2012). HSPC transplantation is 

recognized as the most effective method to prevent leukemic recurrence, however this 
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option is limited by the availability of safe transplantation sources (Burnett et al., 1998; 

Ofran and Rowe, 2012; Roboz, 2012). In the absence of successful remission induction, 

further aggressive intervention is thought to provide minimal benefit, and therefore 

palliative care is often the strategy of choice for cases of chemo-refractory AML (Song 

and Lipton, 2005). Taken together, this highlights the urgent clinical need for improved 

disease therapeutics and safe sources of HSPCs for transplantation to increase long-term 

survival rates in AML patients. 

 A more complete mechanistic understanding of the contributions of leukemia-

associated aberrations to disease should help facilitate the development of therapies that 

effectively target disease. This proof of concept is illustrated by a rare success in AML 

treatment whereby ATRA and arsenic trioxide administration eliminates the aberrant 

cellular effects mediated by the PML/RARα fusion protein by facilitating its catabolism 

and inducing differentiation (Ades et al., 2010; Zhou et al., 2007). As such, this 

therapeutic regimen represents the single example in AML treatment where disease can 

effectively be “cured”. Along these lines, clinical trials are underway to explore the use of 

compounds that target other leukemia-associated aberrations such as FLT3 and IDH2, 

with promising results (Wander et al., 2014; Yen et al., 2013). However, earlier trials 

using 1st generation FLT3 inhibitors failed to show sustainable responses in AML patients 

due to poor FLT3 specificity; a perhaps unsurprising result given that these inhibitors 

were developed in other cancers to target FLT3-homologous proteins (Wander et al., 

2014). Accordingly, the development of a cell-based model of AML would likely provide 
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a more relevant and practical platform from which to derive and test selective AML 

therapeutics prior to conducting expensive pre-clinical and clinical trials. 

 Performing CD34+CD45+ HSPC transplantation to provide long-term reconstitution 

of the normal hematopoietic system after consolidation therapy has been shown to 

significantly reduce the rate of disease relapse (Burnett et al., 1998). However, this 

effective, cell-based therapeutic option is limited by the availability of HSPCs for 

transplantation. Currently, clinical transplantation of HSPCs relies on three somatic/adult 

sources: BM, mobilized PB (MPB), and umbilical cord blood (UCB)(Hodby and 

Pamphilon, 2011). Access to these sources of HSPCs is limited by the number of 

willing/compatible donors (allogeneic), risk of leukemic reinfusion (autologous) and/or 

by low numbers of HSPCs that can be obtained from a single harvest (UCB)(Copelan, 

2006; Hagenbeek and Martens, 1985; Hodby and Pamphilon, 2011; Li et al., 2009).  

Efforts over the past two decades to increase the number of purified HSPCs by ex vivo 

expansion have had variable and ultimately limited success (Hodby and Pamphilon, 2011; 

Kelly et al., 2010).  For example, recent clinical trials report conflicting results regarding 

whether expansion of UCB is even beneficial (Kelly et al., 2010). In light of these 

shortcomings, alternative sources of HSPCs are in greater demand than ever. 

 



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

18	
  

1.2 Embryonic Stem Cells and Pluripotency 

 The landmark derivation of human embryonic stem cells (hESCs) by Thomson et al. 

in 1998 ignited the field of human stem cell research. Given their potential for unlimited 

self-renewal capacity and differentiation into all somatic cell types, a feature known as 

“pluripotency”, hESCs represented an exciting but controversial pluripotent stem cell 

(PSC) platform from which to potentially develop cell-based therapies, disease models 

and drug/toxicity screens (Thomson et al., 1998). In this section I briefly overview the 

defining works for PSC research, discuss the extrinsic and intrinsic regulators of the 

pluripotent state, and summarize the assays and hallmark features of pluripotency as they 

pertain to the human system. 

1.2.1 Origins and definitions of pluripotent stem cells 

 Leroy Stevens began his career as a junior researcher at the Jackson Laboratory in 

1953 investigating the incidence of cancers in mice following exposure to cigarette 

ingredients. What he found instead would form the basis of the field of PSC research. 

Using a variety of mice strains in his initial experiments, Stevens discovered that strain 

129 mice had an inheritable susceptibility (~1% of mice) to the spontaneous formation of 

testicular tumours (Stevens and Little, 1954). Histological investigation revealed that 

these tumours were comprised of diverse adult tissues including bone, blood, fat, nervous, 

epithelia, marrow, muscle and glandular, as well as undifferentiated embryonal cells 

(Stevens and Hummel, 1957; Stevens and Little, 1954). These results were consistent 

with the formation of teratocarcinomas – malignant tumours containing disorganized 

compositions of derivatives of the three embryonic germ layers (ectoderm, endoderm, and 
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mesoderm), as well as primitive undifferentiated embryonal cells – which had never been 

identified in mouse, but were previously observed in human and horse (Stevens and 

Hummel, 1957). As such, strain 129 mice represented a tractable model system in which 

to investigate the origins of these tumours. Stevens’ believed that the embryonal cells 

may be “pluripotent”, that is, capable of differentiating to all somatic cell types and 

sustaining unlimited self-renewal, and therefore, responsible for the tumour formation 

(Stevens and Hummel, 1957). Accordingly, tumours subcutaneously re-grafted into 

secondary mice either maintained their size or progressively grew into larger tumours in a 

manner that correlated with the absence or presence of embryonal cells in the parent 

tumour, respectively (Stevens, 1958; Stevens and Hummel, 1957). These findings were in 

line with Stevens’ initial hypothesis, leading him to conclude:  

“Probably most, if not all, of the tissues in these teratomas originate from a 

pluripotent stem cell, and differences between sublines reflect differences in the 

developmental capacities of their stem cells.” (Stevens, 1958) 

I not only include this statement because Stevens was ultimately correct as I briefly detail 

below (with the caveat that these cells were of malignant origin), but because I believe 

that this was the moment at which the field of PSC research was unknowingly born. 

Although he had yet to generate definitive proof, Stevens’ early works loosely established 

that teratocarcinomas were derived from malignant pluripotent embryonal cells with 1) 

multilineage differentiation capacity as observed by formation of all three embryonic 

layers and 2) self-renewal capacity as observed by the ability to maintain progressive 

tumour growth and undifferentiated cell types after transplantation.  
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 Subsequent works in the field identified that malignant embryonal carcinoma cells 

(ECCs), neoplastic counterparts of the embryonal cells responsible for normal 

embryogenesis, were responsible for teratocarcinoma formation (Kleinsmith and Pierce, 

1964; Pierce and Dixon, 1959; Stevens, 1960) and could be isolated and cultured in vitro 

(Evans, 1972; Kahan and Ephrussi, 1970; Rosenthal et al., 1970). Although ECCs 

exhibited features of pluripotency through their ability to contribute to normal mouse 

development when injected into blastocysts (Brinster, 1974), their true pluripotent nature 

was questioned given their neoplastic origins, abnormal karyotypes, and variable/limited 

differentiation potential (Evans, 1972; Kahan and Ephrussi, 1970; Rosenthal et al., 1970; 

Stevens and Hummel, 1957). This prompted Martin Evans and Matthew Kaufman, and 

Gail Martin shortly thereafter, to ask whether normal embryonic cells responsible for the 

development of entire organisms could similarly be isolated during early embryogenesis 

and cultured in vitro toward capturing normal pluripotency in a dish. By plating the inner 

cell mass (ICM) of the mouse blastocyst on a supportive feeder layer of mouse embryonic 

fibroblasts (MEFs) these groups were independently able to derive mouse embryonic 

stem cell (mESC) colonies with normal karyotype and capable of teratoma1 formation in 

vivo and differentiation in vitro (Evans and Kaufman, 1981; Martin, 1981). In the ultimate 

test of pluripotency, cultured mESCs were later shown to give rise to an entire organism 

(Nagy et al., 1993). Together, these works provided the initial derivation method and 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Teratomas are the benign equivalent of teratocarcinomas: teratocarcinomas are derived 
from malignant ECCs, while teratomas are derived from normal ESCs. Damjanov, I., and 
Andrews, P.W. (2007). The terminology of teratocarcinomas and teratomas. Nat 
Biotechnol 25, 1212; discussion 1212. 
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description of ESCs that motivated future studies of pluripotency and development, and 

the derivation of ESCs from other organisms (Evans, 2011). 

 Years later, James Thomson adapted these techniques to the primate system allowing 

for the derivation of ESCs from the ICM of human blastocysts generated through in vitro 

fertilization (Thomson et al., 1998; Thomson et al., 1995). These hESCs grew in colonies 

and possessed normal karyotype, were capable of indefinite self-renewal while 

maintaining differentiation capacity in vitro, and were capable of generation of all three 

embryonic germ layers through teratoma formation when injected into mouse testes. This 

breakthrough in stem cell research provided a platform in which to study pluripotency 

and development in the human system in vitro and carried the promise of generating cells 

for regenerative medicine and drug discovery. However, their derivation and potential 

application to regenerative medicine was surrounded by ethical concerns (Lo and Parham, 

2009), which were later circumvented through the generation of induced pluripotent stem 

cells (iPSCs) using cellular reprogramming techniques that are described in section 1.3 of 

this introduction. 

1.2.2 In vitro conditions required for maintenance of hPSCs 

 Due to their pluripotent nature, hPSCs are capable of indefinite self-renewal and 

growth. However, specific culture conditions are required to maintain pluripotency. 

Culture on irradiated MEFs (iMEFs) was initially required for maintenance of 

undifferentiated hPSC colonies in vitro (Thomson et al., 1998), but was soon replaced by 

feeder-free conditions using Matrigel extracellular matrix and MEF-conditioned media 

(MEF-CM) supplemented with basic fibroblast growth factor (bFGF)(Levenstein et al., 
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2006; Xu et al., 2001). In these latter culture conditions, it was discovered that hPSCs 

were capable of generating an autologous niche of human dermal fibroblasts (HDFs) that 

supported their growth in feeder- and MEF-CM-free conditions (Wang et al., 2005b). 

Together, indicating that self-renewal and maintenance of undifferentiated state is 

regulated in a non-cell-autonomous manner by the stem cell niche and/or its secreted 

extrinsic factors. Accordingly, in 2007 our lab provided critical insights into the extrinsic 

role the niche played in maintenance of pluripotency. Bendall et al. found that bFGF’s 

role in the maintenance of hESCs was not through direct activation of hPSCs, but rather 

its stimulation of the autologous HDFs to secrete insulin-like growth factor II (IGFII) – a 

soluble factor that alone was sufficient to maintain primitive, undifferentiated hPSCs 

(Bendall et al., 2007). A better understanding of the role of the stem cell niche and 

extrinsic factors in regulating the pluripotent state in a non-cell autonomous manner has 

ultimately contributed to the development of chemically-defined, xeno-free culture 

conditions for hPSCs toward enabling their use in clinical applications (Chen et al., 

2011). 

1.2.3 Transcriptional and epigenetic regulation of pluripotency 

 The intrinsic transcriptional regulation of pluripotency is maintained by the core 

pluripotency transcription factors (TFs) OCT4, SOX2, and NANOG (OSN)(Boyer et al., 

2005), with the extrinsic signals described above ultimately contributing to maintenance 

of pluripotency through the modulation of this network (Boiani and Scholer, 2005). 

OCT4, a mammalian pit/oct/unc TF, is required for the formation of the ICM during 

embryogenesis, and its loss of expression is embryonic lethal in mice (Nichols et al., 
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1998). Moreover, knockdown of its expression using RNA interference in hESCs results 

in their differentiation (Matin et al., 2004). Similarly, the expression of the homeoprotein 

NANOG in the ICM is required for normal formation and development of the epiblast 

prior to generation of the three embryonic germ layers, and its loss of expression in ESCs 

in vitro results in their differentiation (Chambers et al., 2003; Mitsui et al., 2003). Finally 

a deficiency for SOX2, a Sry-related HMG box TF, is embryonic lethal and contributes to 

abnormal development of the epiblast from the ICM (Avilion et al., 2003). In hESCs, its 

expression level contributes to maintenance of the pluripotent state as over- and under- 

expression leads to differentiation (Adachi et al., 2010). Together, these studies provided 

definitive evidence for the contribution of OSN to the initiation and/or maintenance of the 

pluripotent state during early embryogenesis and in vitro culture. Toward further 

understanding the regulatory circuitry of pluripotency, Boyer et al. performed chromatin 

immunoprecipitation combined with DNA microarrays to identify OSN target genes in 

hESCs (Boyer et al., 2005). OSN co-occupied many target gene promoters of actively 

expressed self-renewal pathways and TFs including OSN themselves. Interestingly, OSN 

co-occupation was also observed on a number of transcriptionally inactive genes 

important for the specification of the three embryonic germ layers, indicating a repressive 

effect (Boyer et al., 2005). These results delineated that the core regulatory circuitry of 

pluripotency was maintained by the synergistic roles of OSN to activate their own 

expression and that of known-self renewal pathways, and to repress TFs required for 

differentiation from the pluripotent state. 
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 Epigenetic regulation provides an additional layer of control of the pluripotent state 

through balancing self-renewal and differentiation processes (Bibikova et al., 2006; Xie et 

al., 2013). hPSCs possess distinct DNA methylation patterns (Bibikova et al., 2006), 

indicating that patterns of DNA methylation must be carefully regulated and maintained 

during self-renewal and replication in vitro. Accordingly, disruption of DNMT1 in hESCs 

leads to rapid cell death (Liao et al., 2015) and is embryonic lethal in mice (Li et al., 

1992). Moreover, OCT4, NANOG and genes required for cellular function remain highly 

unmethylated in the pluripotent state until differentiation, while genes associated with 

mature lineages are highly methylated (Fouse et al., 2008). Similarly, hPSCs have been 

found to harbour both activating and repressing marks at histones of lineage-specifying 

gene promoters, termed bivalent chromatin domains, which keeps target genes poised for 

expression once proper cues have been received to exit the pluripotent state (Bernstein et 

al., 2006). Together, the essential role of epigenetic regulation in maintenance of 

pluripotency is unsurprising given that resetting of the epigenome to a pluripotent state is 

required for normal development (Rivera and Ross, 2013), a concept further discussed in 

section 1.3. 

1.2.4 Defining hPSCs: molecular and functional hallmarks of pluripotency 

 hPSCs are easily recognizable in in vitro cultures given their distinctive growth 

pattern as flat, rounded colonies consisting of densely-packed cells with large nuclei and 

minimal cytoplasm (Thomson et al., 1998). In addition to these morphological features, 

hPSCs are distinguished and characterized by a unique complement of molecular, 

immunophenotyptic and functional features that have been validated in a multitude of 
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hPSC lines (Adewumi et al., 2007). The transcriptional and protein-level co-expression of 

OSN is a requisite and prominent identifier of pluripotency given their role in controlling 

the pluripotent network (Boyer et al., 2005), while the antigens SSEA3, SSEA4 and 

TRA-1-60 represent cell-surface markers found uniquely on hPSCs (Adewumi et al., 

2007). Although these latter markers do not have essential roles in pluripotency (Brimble 

et al., 2007), their expression enables experimentally invaluable live-cell staining 

techniques for quick detection and immunophenotypic sorting of hPSCs. At the functional 

level, all hPSCs have the capacity to form teratomas consisting of the three embryonic 

germ layers when injected into mouse testes (Thomson et al., 1998). This “teratoma 

assay” represents the gold-standard for assessing human pluripotency, as deriving humans 

to test for pluripotency similar to the mouse system certainly carries heavy ethical 

implications (Nagy et al., 1993). Moreover, it is reminiscent of Stevens’ early work in the 

1960s, with the distinction that normal PSCs should undergo full differentiation in vivo 

and are therefore, not capable of forming transplantable tumours like their malignant 

counterparts (Sachlos et al., 2012; Stevens, 1958). Pluripotent functionality can also be 

assessed in vitro using embryoid body (EB) or co-culture based assays in which PSCs are 

collected into clumps and cultured in lineage-specifying media conditions toward the 

generation of derivatives of the three embryonic germ layers including neural (Zhang et 

al., 2001), lung (McIntyre et al., 2014), and hematopoietic (Chadwick et al., 2003; 

Kaufman et al., 2001) lineages – a feature that holds great potential for regenerative 

medicine if properly harnessed, and one that I will discuss further in section 1.3.4: 

Applications of iPSCs. 
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1.3 Cellular Reprogramming and Induced Pluripotent Stem Cells 

 The Nobel Prize-winning work performed by Takahashi et al. under the supervision 

of Shinya Yamanaka in 2007, in which human fibroblasts were reprogrammed into 

induced pluripotent stem cells (iPSCs) by expression of pluripotent-associated TFs, 

ushered in an era of stem cell research carrying the promise of personalized regenerative 

medicine (Figure 1)(Takahashi et al., 2007). iPSCs possessed hallmark features of 

pluripotency and represented a patient-specific source of pluripotent cells that 

circumvented the ethical and immune incompatibility concerns previously associated with 

hESCs. In this section I briefly review the pioneering studies by John Gurdon, Henry 

Harris and Robert Davis that formed the underlying principles of cell fate alteration, 

describe Yamanaka’s seminal findings and mechanistic insights into the reprogramming 

process, and finally discuss current and potential applications of iPSCs in regenerative 

medicine. 

1.3.1 Foundational concepts of cellular reprogramming: lessons from somatic cell 

nuclear transfer, cell fusion, and transcription factor reprogramming studies 

Somatic Cell Nuclear Transfer 

 In the 1950’s Robert Briggs and Thomas King set out to investigate whether the 

complete nuclei present in the fertilized egg (zygote) was conserved in somatic cell types 

after differentiation. Using a technique termed somatic cell nuclear transfer (SCNT), 

living nuclei were isolated from the differentiated endoderm of Rana pipiens (Northern 

Leopard Frog) during early development and injected into activated, enucleated females’ 
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eggs. Unlike “cloned” embryos derived from nuclei obtained from early undifferentiated 

embryonal cells (blastula), endoderm-derived embryos did not mature into larvae (Briggs 

and King, 1957). They interpreted and attributed this result to a loss of genetic material in 

mature somatic cell types (Briggs and King, 1957). However, a young graduate student at 

Oxford University named John Gurdon was subsequently able to clone sexually mature 

tadpoles and normal adult frogs through nuclear transfer of blastula and differentiated 

endoderm, including terminally differentiated intestinal epithelium cells (Gurdon, 1960, 

1962; Gurdon et al., 1958). In direct contrast to Briggs’ and King’s findings, whose 

technically-sound results but incorrect interpretation were later attributed to limitations of 

the R. pipiens system (Gurdon, 2006), the successful cloning of adult frogs using SCNT 

provided definitive evidence that the entire genome is retained during differentiation 

processes. More importantly, the ability of stochastic factors within the oocyte cytoplasm 

to reprogram mature somatic cells back to the pluripotent state provided the initial 

indications that 1) cell state is not always fixed, that is, seemingly mature somatic cell 

types can be experimentally reprogrammed to adopt an alternative cell fate, and 2) 

cytoplasmic factors exert powerful control of gene transcription responsible for cell 

phenotype and function. These pioneering demonstrations by a determined graduate 

student who was labelled as having “no chance of doing the work of a specialist” 

(Gurdon, 2006) formed the underlying principles for epigenetic regulation and cellular 

reprogramming, and earned John Gurdon a Nobel Prize in Medicine alongside Shinya 

Yamanaka in 2012. 
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Cell Fusion: The heterokaryon experimental system 

 Cell fusion refers to the experimental procedure of combining two or more cells 

through fusion of their cytoplasms to generate either a synkaryon, in which the resulting 

cell contains a single nucleus harbouring all parent cell chromosomes, or a heterokaryon, 

in which the nuclei are maintained in the cytoplasm as individual entities (Ogle et al., 

2005). The latter cell hybrid results when fusing cells of different types or species, and 

was the focus of fusion experiments initiated in the 1960s as a means of investigating 

whether factors from non-oocyte cell cytoplasm could also alter cell phenotype. Founding 

work by Henry Harris and John Watkins established the first example of heterokaryon 

generation through fusing mouse Ehrlich ascites cells and human HeLa cells (Harris and 

Watkins, 1965). Remarkably, these hybrid cells remained viable, with the continued 

contribution of RNA expression from mouse and human nuclei leading to a phenotype 

that was distinct from the contributing parental cells (Harris and Watkins, 1965). The 

subsequent demonstration that cancerous mouse cell phenotypes could be suppressed 

following fusion to normal mouse fibroblasts, but restored after loss of normal 

chromosomes, provided further evidence that cell state is not fixed and can be 

experimentally manipulated (Harris et al., 1969). Moreover, it suggested that normal 

fibroblasts were supplying a factor responsible for the suppression of malignancy (Harris 

et al., 1969). Numerous studies have subsequently utilized this experimental system to 

gain insights into cellular reprogramming (Blau et al., 1983; Cowan et al., 2005; 

McBurney et al., 1978; Piccolo et al., 2011; Tada et al., 2001), providing further evidence 
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that cell fate can be manipulated by cytoplasmic factors that initiate nuclear transcription 

and remodel the epigenome. 

Transcription factor reprogramming 

 In 1987 Robert Davis, Harold Weintraub and Andrew Lassar attempted for the first 

time to alter cell fate using defined factors through the transfection and expression of 

muscle-specific TFs in mouse fibroblasts (Davis et al., 1987). They reasoned that the 

dominant capability of unknown factors found in the myoblast cytoplasm to initiate 

transcription of muscle-specific genes in the heterokaryon system (Blau et al., 1983) 

could be attributed to the presence of proteins that 1) regulate the epigenome allowing for 

downstream demethylation and activation of muscle genes and/or 2) act as direct 

activators of muscle-specific gene programs. Building on their previous finding which 

suggested it was the latter scenario (Lassar et al., 1986), it was therefore not unreasonable 

to hypothesize that ectopic expression of muscle-specific genes could alter fibroblast fate 

toward muscle. By screening and transfecting a cDNA library of muscle-specific TFs, it 

was demonstrated that ectopic expression of the gene MyoD alone was sufficient to 

convert fibroblasts to myoblasts (Davis et al., 1987). Although this work marked the birth 

of TF-mediated reprogramming and provided the first example of using defined factors to 

alter cell fate, this powerful reprogramming method was not widely recognized or 

adopted in the field until the early 2000’s (Graf, 2011). 
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1.3.2 Induced pluripotent stem cells: cellular reprogramming to pluripotency is 

achieved through ectopic transcription factor expression 

 The above studies formed three underlying principles of cellular reprogramming: 1) 

cell fate can be altered, 2) the pluripotent cytoplasm contains dominant, undefined factors 

capable of reverting somatic cells back to a state of epigenetic, transcriptional and 

functional pluripotency, and 3) the ectopic delivery of TFs represents a powerful 

molecular tool in which to alter cell fate. Kazutoshi Takahashi and Shinya Yamanaka not 

only recognized these principles, but they also envisioned the potential utility of hPSCs in 

regenerative medicine if ethical and immune incompatibility concerns associated with 

hESCs could be overcome. As such, the duo set forth to define factors responsible for the 

reprogramming of somatic cells to pluripotency and subsequently use them as tools to 

generate PSCs. Similar to Davis’ previous work, a library of 24 candidate genes 

associated with the pluripotent state were assessed for their ability to generate mPSC 

colonies from MEFs. Although no single factor was capable of inducing pluripotency 

within 16 days, the use of all 24 factors was, indicating that generating “pluripotent stem 

cells induced from MEFs by 24 factors” was possible – cells now referred to as induced 

pluripotent stem cells (iPSCs). Using a subtractive reprogramming factor approach, it was 

discovered that Oct4, Sox2, Klf4 and c-Myc (OSKM) were critical for the generation of 

iPSCs. These iPSCs shared transcriptional, epigenetic, immunophenotypic, and functional 

hallmarks of pluripotency akin to ESCs, and required the same extrinsic culture 

conditions. Remarkably, the same results were achieved in the human system and enabled 

the generation of personalized iPSCs (Takahashi et al., 2007). Together, these seminal 
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findings demonstrated the ability of TFs to revert somatic cells’ epigenetic and 

transcriptional networks back to a pluripotent state similar to previous approaches using 

SCNT and heterokaryons (Cowan et al., 2005; Gurdon, 1962; Tada et al., 2001). 

However, by circumventing technical, ethical and incompatibility issues associated with 

these previous methods, generation of iPSCs provided a tractable and unprecedented 

opportunity for personalized regenerative medicine (Figure 1). As such, Shinya 

Yamanaka was awarded the Nobel Prize in Medicine in 2012 for the impact of these 

works. 

1.3.3 Reprogramming to pluripotency requires resetting of somatic cell 

transcriptomes and epigenomes 

 Although numerous studies have since demonstrated a variety of reprogramming TF 

cocktails and methods are capable of achieving pluripotency from a number of cell types, 

including blood (Lee et al., 2014; Loh et al., 2009; Theunissen and Jaenisch, 2014), much 

of the reprogramming process remains undefined. Within the first 48 hours OSK activate 

accessible genes that promote reprogramming, but are unable to access chromatin 

domains that are inactivated by histone modifications (Soufi et al., 2012). However, 

through subsequent changes in epigenetic regulation the genome becomes progressively 

more accessible due to widespread chromatin remodeling, ultimately allowing for further 

activation of genes required for initiation and maintenance of the pluripotent state 

(Buganim et al., 2012; Hussein et al., 2014; Koche et al., 2011). Paradoxically, this 

suggests that gene expression alters the epigenome, which is responsible for altering gene 

expression and enabling changes in phenotype to manifest. Ultimately, an increased 
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understanding of the reprogramming process and its effects on the transcriptome and 

epigenome should better direct the applications and derivation of iPSCs. For example, our 

group and others have shown that iPSCs can retain an “epigenetic memory” of their 

starting cell type despite widespread changes in chromatin structure. Specifically, iPSCs 

derived from UCB are able to differentiate to the hematopoietic lineage more efficiently 

than fibroblast-derived iPSCs due to incomplete DNA methylation and unique histone 

marks at hematopoietic-specific genes, suggesting that reprogramming in the human 

system does not completely revert back to a naïve pluripotent state (Lee et al., 2014). 

Accordingly, this knowledge may better direct the selection of starting cell types for 

studies aimed at generating cell-based therapies or modeling epigenetic diseases. 

Similarly, identification and elimination of barriers to reprogramming may increase 

reprogramming efficiency toward enabling derivation of difficult to reprogram cell types 

(Rais et al., 2013). 

1.3.4 Applications of induced pluripotent stem cells: autologous therapies and 

disease modeling 

In vitro differentiation of hPSCs 

 Numerous protocols have been developed to harness the differentiation of PSCs 

toward the generation of a host of cell types including cardiac (Mummery et al., 2012), 

hematopoietic (Chadwick et al., 2003), intestinal (Spence et al., 2011), lung (McIntyre et 

al., 2014), neural (Kim et al., 2014; Zhang et al., 2001), and pancreatic lineages (Rezania 

et al., 2012); but the ability of hPSCs to give rise to the hematopoietic lineage is further 

described in this section based on the focus of this thesis. Our group provided first 
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demonstration of the generation of CD34+CD45+ HPCs (Chadwick et al., 2003). This was 

achieved through culture of hESC-derived EBs in media supplemented with bone 

morphogenetic protein 4 (BMP4) and hematopoietic cytokines: FLT3 ligand (FLT3L), 

granulocyte-colony stimulating factor (G-CSF), interleukin-3 (IL-3), interleukin-6 (IL-6), 

and stem cell factor (SCF)(Chadwick et al., 2003). By definition, these HPCs possessed 

progenitor function in vitro through differentiation to myeloid lineages in the CFU assay 

(Chadwick et al., 2003), however, long-term reconstitution capacity characteristic of 

HSPCs was not observed following transplantation in vivo (Wang et al., 2005a). It was 

suggested that these findings were attributed to an inability of PSC-derived blood cells to 

activate molecular programs similar to adult somatic HSPCs (Wang et al., 2005a); a 

challenge the field has faced for years. However, recent works reporting the derivation of 

transplantable HSPCs from hPSCs represent incremental advances being made toward 

achieving robust, long-term hematopoietic reconstitution using hPSC derivatives 

(Amabile et al., 2013; Doulatov et al., 2013; Suzuki et al., 2013). In addition to these 

studies, other groups have established protocols to generate transfusion products such as 

red blood cells (RBCs) and platelets from hPSCs (Feng et al., 2014; Lu et al., 2008; 

McIntyre et al., 2013; Nakamura et al., 2014). Together, these continued advances within 

the area of hematopoietic specification from hPSCs represent a subset of the collective 

efforts of the field to generate clinically-relevant cell types for use in personalized cell-

based therapies and disease modelling. 

Personalized cell-based therapies 

 Given their immense self-renewal and differentiation capacities, iPSCs may provide 
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a renewable and even potentially unlimited source of patient-specific (autologous) human 

cells for use in cell-based therapies. This could address the clinical obstacles associated 

with donor (allogeneic) cell sources, such as immune-incompatibility/transplant rejection 

(Copelan, 2006; Li et al., 2009), and provide cell sources that are not clinically available 

such as neural cells (Kim et al., 2014; Zhang et al., 2001). One of the compelling 

examples for the use of human iPSCs with regard to autologous cellular transplantation 

was shown by Hanna et al., wherein hematopoietic cells derived from iPSCs corrected for 

a hemoglobin mutation reduced the blood cell defect in a humanized mouse model of 

sickle cell anemia (Hanna et al., 2007). Similarly, iPSC-derived stroma-like cells have 

been shown to attenuate limb ischemia in mice (Lian et al., 2010), and contribute to 

functional bone tissue in vivo in non-human primates (Hong et al., 2014). Importantly, 

autologous but not allogeneic sources of iPSC-derived neurons elicited minimal immune 

response following transplantation into non-human primate brains (Morizane et al., 

2013). Although safety concerns have recently been raised with the use of iPSCs due to 

the identification of mutations occurring during reprogramming and culture (Ji et al., 

2012; Ruiz et al., 2013), the functional and biological significance of these findings 

remains unclear as cancer/tumour development was not observed in any of the above 

studies (Hanna et al., 2007; Hong et al., 2014; Lian et al., 2010; Morizane et al., 2013). At 

the very least, these findings illustrate the need for genetic screening prior to clinical 

implementation, as has been performed in the recent and promising clinical trials in 

humans using PSC-derivatives (Kimbrel and Lanza, 2015). Together, these works 

illustrate the potential impacts, utilities and shortcomings of using cellular 
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reprogramming to generate personalized cell sources that avoid immune-rejection, and 

continue to motivate the field toward clinical implementation. 

Disease modelling  

 The advent of patient-specific reprogramming also allows for the generation of 

iPSCs from diseased patients, offering an unprecedented opportunity to generate in vitro 

disease models that can be used for understanding disease and for enabling drug-

screening platforms. Accordingly, disease-specific iPSCs have been generated from a 

variety of somatic cells derived from patients with inherited and acquired diseases, where 

underlying genetic components and affected cell types are known (Carette et al., 2010; 

Ebert et al., 2009; Kim et al., 2013; Kim and Zaret, 2015; Kinnear et al., 2013; Kotini et 

al., 2015; Kumano et al., 2012; Marchetto et al., 2010; Nagai et al., 2010; Stricker et al., 

2013). In most cases, differentiation of iPSCs to relevant cell types exhibited disease 

features, providing examples that disease modeling using iPSC technology is feasible. For 

instance, fibroblast-derived iPSCs generated from human patients with inherited spinal 

muscular atrophy, a fatal neurological disease caused by mutations in the gene SMN1, 

gave rise to degenerative motor neurons consistent with disease phenotype. Subsequent 

experiments using these dysfunctional motor neurons showed early evidence that drug 

intervention may be useful in improving the disease (Ebert et al., 2009). In a similar 

approach, Stricker et al. demonstrated that cancerous neural stem cells derived from 

human glioblastoma tumours, an acquired somatic cancer of the brain characterized by 

multiple genomic aberrations and an aberrant epigenome, could be reprogrammed to 

iPSCs. Notably, a majority of glioblastoma-related aberrant epigenomic marks were reset 
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upon reprogramming to pluripotency. Despite this epigenetic resetting, subsequent 

redifferentiation back to the neural lineage resulted in a disease phenotype. This result 

indicated that reprogramming can still be used to develop model systems in cancers that 

harbour an abnormal epigenetic component, and suggested that the genomic aberrations 

may be responsible for the aberrant epigenome. Interestingly, epigenetic marks were 

slowly restored at some gene loci following redifferentiation, however, it was not 

investigated further whether the aberrant epigenome was re-established over time 

(Stricker et al., 2013). 

 Despite these proof of principle studies, disease modelling using iPSCs may not be 

best-suited for complex/poorly understood diseases and may be difficult to achieve 

because of difficulties in reverting diseased cells back to the pluripotent state. For 

instance, derivation of iPSCs from schizophrenia patient fibroblasts and subsequent 

differentiation to the neural lineage generated defective neurons that exhibited decreased 

connectivity and synaptic proteins (Brennand et al., 2011). Although this may have 

provided initial insights into disease, schizophrenia is a complex neurological disorder 

suggested to affect multiple cell types due to unknown and complex underlying genetic 

component(s) (Javitt et al., 2008; Sullivan et al., 2003; Wong and Van Tol, 2003). As 

such, it is difficult to ascertain which cell types to generate and whether fibroblasts 

harbour the genetic components responsible for disease phenotype, highlighting that a 

basic understanding of disease is required before the relevance of iPSC models can be 

clearly established. Developing efficient iPSC models can be similarly hindered by the 

inability to generate iPSCs directly from diseased cells. A number of studies have 
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recently demonstrated that reprogramming gastrointestinal, chronic myeloid leukemia 

(CML), glioblastoma, myelodysplastic syndrome, and pancreatic ductal adenocarcinoma 

cancer cells to pluripotency is possible and can allow for disease modeling (Carette et al., 

2010; Kim et al., 2013; Kim and Zaret, 2015; Kotini et al., 2015; Kumano et al., 2012; 

Nagai et al., 2010; Stricker et al., 2013). However, reprogramming was highly inefficient, 

with marginal success often observed across primary patient samples. The failure of 

cancer cells to robustly reprogram was neither explicitly discussed or addressed in these 

papers, and represents a potential roadblock that could limit the widespread utility and 

applicability of cellular reprogramming in developing disease models for human cancers. 
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1.4 Summary of Intent 

	
   The past 40 years has seen major advances in the understanding of AML 

heterogeneity leading to improved disease classification and diagnosis (Burnett et al., 

2011; Grimwade et al., 1998; Vardiman et al., 2002; Vardiman et al., 2009). However, 

these findings have not yet translated to improved therapeutic outcomes, as relapse and 

dismal rates of disease-free survival remain predominant prognoses for the majority of 

AML patients (Dohner et al., 2015). Transplantation therapies that have proven effective 

at reducing disease relapse remain limited by the rare availability of safe sources of 

HSPCs (Burnett et al., 1998; Hodby and Pamphilon, 2011). Moreover, elucidation of 

mechanisms underlying human AML pathogenesis and high-throughput discovery of 

novel therapeutics is hindered by the lack of practical human cell-based models of 

disease. Accordingly, the requisite development of novel cell-based therapies and disease 

models should expedite advances in the therapeutic management of AML.  

 The advent of personalized cellular reprogramming techniques through the 

generation of human iPSCs (Takahashi et al., 2007) provides a potential opportunity to 

generate autologous hematopoietic cell sources to address these unmet needs. However, 

whether reprogramming of human AML patient somatic cells to pluripotency and 

subsequently to normal and dysfunctional hematopoietic cells is even possible must first 

be addressed, and forms the basis of this thesis. 

 Therefore, I have posed two key questions with regards to cellular reprogramming of 

human AML patient somatic cells: 
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1) Can AML patient fibroblasts (AML Fibs) be reprogrammed to iPSCs, and would 

this enable generation of a novel source of normal autologous HPCs? 

2) Are AML patient leukemic cells amenable to reprogramming to pluripotency, and 

does this allow for derivation of HPCs that model features of primary disease? 

Investigating these questions will provide key proof of concepts and initial insights 

toward future development of personalized cell-based therapies and in vitro models of 

disease for AML patients. 

Based upon our current knowledge, I hypothesize that cellular reprogramming of human 

AML patient somatic cells to iPSCs is possible and will enable derivation of autologous 

sources of normal and dysfunctional HPCs. 

Accordingly, I defined two objectives to test this hypothesis: 

1) Investigate if reprogramming AML Fibs to pluripotency will provide a novel, 

patient-specific source of autologous HPCs that are capable of normal differentiation 

in vitro and devoid of leukemia-associated aberration (Figure 2) 

2) Evaluate whether generation of iPSCs from AML patient leukemic cells 

harbouring known leukemia-associated aberrations is possible, and if this will allow 

for derivation of HPCs that exhibit differentiation blockade similar to primary 

leukemic cells. (Figure 3) 

 We first investigated whether personalized sources of normal hematopoietic cells 

could be generated for AML patients whose leukemic cells harboured known leukemia-
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associated aberrations (Chapter 2). Through expression of reprogramming TFs in dermal 

AML Fibs we demonstrated that AML patient-specific iPSC generation was possible, and 

allowed for derivation of CD34+CD45+ HPCs. Using the CFU assay, in combination with 

morphological and FISH analyses, we demonstrated that these HPCs were capable of 

normal differentiation to mature myeloid lineages in vitro in contrast to the patients’ 

matched leukemic cells. These findings provided the proof of principle that cellular 

reprogramming allows for the generation of normal autologous hematopoietic progenitors 

from AML patients, suggesting that iPSCs may represent a suitable source of autologous 

cells for future transplantation therapies.  

 During the tenure of the above experiments we also discovered that OCT4 TF 

delivery combined with culture in pluripotent-supportive media was minimally sufficient 

to induce pluripotency in AML and normal Fibs (Chapter 3). OCT4-derived iPSCs 

(iPSCOCT4) possessed morphological, molecular, immunophenotypic and functional 

hallmarks of bona fide iPSCs and were capable of hematopoietic differentiation in vitro. 

These findings redefined conventional pluripotency reprogramming methods (Takahashi 

et al., 2007; Takahashi and Yamanaka, 2006), and in combination with previous findings 

from our lab (Mitchell et al., 2014a; Mitchell et al., 2014b), indicated that OCT4 is a 

powerful tool for cell fate reprogramming. 

 Toward capturing and modeling the diverse dysfunctional features of human AML, 

we next asked whether cellular reprogramming to pluripotency could be applied to AML 

patient leukemic cells (Chapter 4). We first assessed whether conventional 

reprogramming conditions were sufficient to induce pluripotency in leukemic cells from 
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12 independent AML patients. Surprisingly, AML iPSCs could not be generated using 

these conditions despite efficient delivery of reprogramming TFs. However, we found 

that modified reprogramming conditions allowed for the reproducible generation of AML 

iPSCs from one AML sample harbouring the MLL-AF9 leukemia-associated aberration. 

In vitro differentiation assays coupled with molecular, immunophenotypic and 

morphological analyses revealed that these AML iPSCs and their derivative HPCs 

expressed MLL-AF9 and possessed dysfunctional differentiation features similar to 

primary leukemic cells. These results indicated that reprogramming of AML is highly 

inefficient, but possible. Moreover, they demonstrated that AML iPSCs and their 

derivative HPCs exhibited limited differentiation capacity, suggesting that AML iPSCs 

may provide a model system in which to explore disease mechanisms and screen for 

novel therapeutics. 

 By demonstrating that personalized sources of normal and dysfunctional HPCs can 

be generated from AML patient somatic cells this dissertation has advanced our 

understanding of the potential applications of cellular reprogramming technologies in 

human AML research. These initial findings should motivate further studies aimed at 

developing personalized iPSC-based therapies and disease models toward improving 

AML patient quality of life and long-term survival rates. 
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Figure 1. Cellular reprogramming to pluripotency provides an unprecedented 

opportunity for generation of patient-specific tissues. Through expression of four 

defined pluripotent transcription factors (OCT4, SOX2, KLF4, cMYC), Takahashi and 

Yamanaka were able to reprogram human fibroblasts to an epigenetic, transcriptional and 

functional state of pluripotency (Takahashi et al., 2007). The ability to generate patient-

specific induced pluripotent stem cells (iPSCs) provides an opportunity to harness their 

inherent differentiation potential toward generation of autologous cell sources for cell-

based therapies and disease modeling. 
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Figure 2. Objective 1. Conventional reprogramming methods will be used to investigate 

if human AML patient fibroblasts can be reprogrammed to iPSCs and subsequently 

derived into HPCs that are capable of normal differentiation in vitro. FISH probes will be 

used to investigate whether autologous HPCs are devoid of the leukemia-associated 

aberration found in the patients’ matched leukemic cells. 
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Figure 3. Objective 2. Conventional reprogramming methods will be used to investigate 

if human AML patient leukemic cells can be reprogrammed to iPSCs and subsequently 

derived into dysfunctional HPCs that are incapable of normal differentiation in vitro 

similar to primary leukemic cells. FISH will be performed in iPSCs to confirm their 

leukemic cell origin based on presence of the leukemia-associated aberration. 



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

47	
  

!"#$%&'()

!"#$ %!&'
()*$
+,-"

*+,-.$!"#$&-/%0./
#0+10,%2$(033) 45)6+.2/%7.-3

*&()



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

48	
  

Table 1. Common recurring leukemia-associated cytogenetic aberrations 

Gene Names Cytogenetic Aberration 

CBFß/MYH11 Inversion mutation: inv(16)(p13q22), 5’CBFß – 3’MYH11 fusion 
gene 

DEK/NUP214 Translocation mutation: t(6;9)(p23;q34), 5’DEK – 3’NUP214 
fusion gene 

MECOM/RUNX1 Translocation mutation: t(3;21)(q26;q22), 5’MECOM – 3’RUNX1 
fusion gene 

MLL/CREBBP Translocation mutation: t(11;16)(q23,p13), 5’MLL - 3’CREBBP 
fusion gene 

MLL/AF9 Translocation mutation: t(9;11)(p22;q23), 5’MLL – 3’AF9 fusion 
gene 

PML/RARα Translocation mutation: t(15;17)(q24.1;21.1), 5’PML – 3’RARα 
fusion gene 

RBM15/MKL1 Translocation mutation: t(1;22)(p13;q13), 5’RBM15 – 3’MKL1 
fusion gene 

RPN1/EVI1 
Inversion or translocation mutation: inv(3)/t(3;3)(q21;q26.2), 
fusion of RPN1 enhancer upstream of EVI1 leads to EVI1 
overexpression 

RPN1/MEL1 Translocation mutation: t(1;3)(p36;q21), fusion of RPN1 enhancer 
upstream of MEL1 leads to MEL1 overexpression 

RUNX1/RUNX1T1 Translocation mutation: t(8;21)(q22;q22), 5’RUNX1 – 
3’RUNX1T1 fusion gene 

Chromosomal 
Deletions del(5q), del(7q), del(9q), -5, -7 

Chromosomal 
Gains +8, +21, +22 

 

(Grimwade et al., 1998; Hsiao et al., 2005; Krivtsov et al., 2006; Kundu and Liu, 2001; 
Mochizuki et al., 2000; Rubin et al., 1990; Sanden et al., 2013; Vardiman et al., 2009; 
Zhang et al., 2004) 
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Table 2. Common recurring leukemia-associated molecular aberrations 

Gene Name Mutation(s) 

CDC42 Missense mutations (F28L, G12V) 

CEBPA Nonsense mutation (Q87X), insertion mutation (R306-K313 duplication) 

DIS3 Missense mutations (D488N, R514K, M667V) 

DNAH9 Missense mutation, L1016R 

DNMT3A Missense mutation, R882C 

FLT3 Internal tandem duplication (ITD, exon 14), Tyrosine kinase domain 
(TKD) missense mutation (D835Y, D835V) 

IDH1 Missense mutation (R132C) 

IDH2 Missense mutation (R172K) 

JAK2 Missense mutation (V617F) 

KIT Missense mutation (D816Y) 

KRAS Missense mutation (G12D, G13D) 

NPM1 Insertion (956-959), TCTG duplication (exon 12) 

NRAS Missense mutation (G13R, Q61K) 

PHF6 Nonsense mutation (R319X), frameshift insertion (P200), missense 
mutation (H329L) 

PTPN11 Missense mutation (G226A, G1508C) 

RUNX1 Missense mutation (K83E), Nonsense mutation (Y260X), Frameshift 
insertion (R135fsX177) 

SMC1A Missense mutation (A078V, R816S) 

SMC3 Missense mutation (Y136N, R381Q, K795E) 

STAG2 Frameshift insertion (R617), Missense mutation (A733T), nonsense 
mutation (R1033) 

TET2 Missense mutation (N119S, Y592H, I1025L), nonsense mutation 
(E121X) 

WT1 Nonsense mutation (exon 1, 7, 9) 

*indicated gene mutations represent most prevalent variant(s) 

(Abdel-Wahab et al., 2009; Beghini et al., 1998; Bos et al., 1987; Ding et al., 2012; Falini et al., 2005; Gaidzik et al., 
2012; Ho et al., 2009; Hou et al., 2008; Kandoth et al., 2013; Kayser et al., 2009; King-Underwood et al., 1996; Levine 
et al., 2005; Ley et al., 2010; Michaud et al., 2002; Patel et al., 2011; Schnittger et al., 2011; Thol et al., 2014; Van 
Vlierberghe et al., 2011; Vanni et al., 2005; Vardiman et al., 2009; Welch et al., 2012; Yamamoto et al., 2001) 
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CHAPTER 2 

Cellular reprogramming allows generation of autologous hematopoietic progenitors 

from AML patients that are devoid of patient-specific genomic aberrations 

PREAMBLE 

This Chapter is an original published article. It is presented in its published format. 

“This research was originally published in Stem Cells. Salci KR*, Lee JH*, Laronde S, 
Dingwall S, Kushwah R, Fiebig-Comyn A, Leber B, Foley R, Dal Cin A, and Bhatia M. 
Cellular reprogramming allows generation of autologous hematopoietic progenitors from 
AML patients that are devoid of patient-specific genomic aberrations. Stem Cells. 2015 
Jun;33(6):1839-49. doi: 10.1002/stem.1994. © 2015 AlphaMed Press” 

*Co-first authors 
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manuscript with input from Dr. Jong Hee Lee and my supervisor Dr. Mickie Bhatia. I 
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CFU assays, blood morphology analyses, and a subset of reprogramming and EB 

differentiation experiments. Dr. Jong Hee Lee performed reprogramming, iPSC culture 

and EB differentiation experiments. Sarah Laronde provided technical assistance with 

iPSC culture and characterization. Steve Dingwall and Rahul Kushwah provided 

technical assistance with FISH. Aline Fiebig-Comyn performed cell injections for 

teratoma assays and technical assistance with histological preparations. Drs. Leber and 

Foley provided AML patient BM samples and provided intellectual contributions to study 

design. Dr. Arianna Dal Cin provided AML patient skin biopsies. Dr. Mickie Bhatia 

oversaw the entire study, assisted in manuscript preparation and finalized the manuscript. 
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 This body of work was inspired by the fact that transplantation therapies that have 

proven effective at reducing disease relapse remain limited by the rare availability of safe 

sources of HSPCs (Burnett et al., 1998; Hodby and Pamphilon, 2011). Prior to these 

experiments, the precedent for using iPSCs in autologous cell based therapies had been 

set (Hanna et al., 2007; Lian et al., 2010). However, it remained to be evaluated whether 

cellular reprogramming techniques could be used to generate a healthy autologous source 

of blood cells for AML patients toward addressing the clinical shortage. 
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ABSTRACT 

Current treatments that utilize hematopoietic progenitor cell (HPC) transplantation in 

AML patients substantially reduce the risk of relapse, but are limited by the availability of 

immune compatible healthy HPCs. Although cellular reprogramming has the potential to 

provide a novel autologous source of HPCs for transplantation, the applicability of this 

technology toward the derivation of healthy autologous hematopoietic cells devoid of 

patient-specific leukemic aberrations from AML patients must first be evaluated. Here we 

report the generation of human AML patient-specific hematopoietic progenitors that are 

capable of normal in vitro differentiation to myeloid lineages and are devoid of leukemia-

associated aberration found in matched patient bone marrow. Skin fibroblasts were 

obtained from AML patients whose leukemic cells possessed a distinct, leukemia-

associated aberration, and used to create AML patient-specific induced pluripotent stem 

cells (iPSCs). Through hematopoietic differentiation of AML patient iPSCs, coupled with 

cytogenetic interrogation, we reveal that AML patient-specific HPCs possess normal 

progenitor capacity and are devoid of leukemia-associated mutations. Importantly, in rare 

patient skin samples that give rise to mosaic fibroblast cultures that continue to carry 

leukemia-associated mutations; healthy hematopoietic progenitors can also be generated 

via reprogramming selection. Our findings provide the proof of principle that cellular 

reprogramming can be applied on a personalized basis to generate healthy HPCs from 

AML patients, and should further motivate advances toward creating transplantable 

hematopoietic stem cells for autologous AML therapy. 
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INTRODUCTION 

Acute myeloid leukemia (AML) is characterized by the rapid growth of non-functional 

immature myeloid cells (AML blasts) in the bone marrow (BM) and peripheral blood 

(PB) of patients, leading to anemia, bleeding, increased risk of infection and ultimately 

death [1, 2]. Accumulated clinical data has identified recurrent leukemia-associated 

genomic aberrations in 50-60% of AML patients [3-5], and these mutations are utilized as 

informative diagnostic and prognostic markers that are useful in managing patient 

therapy. Current treatments achieve high rates of remission, but subsequent relapse 

contributes to a reduction to 20-30% of patients who attain disease-free survival [6, 7]. 

 Although hematopoietic progenitor cell (HPC) transplantation during consolidation 

therapy significantly reduces relapse [8], safe autologous sources of HPCs required for 

normal hematopoietic recovery are limited, and include concerns of reinfusion of 

leukemic cells with genomic abnormalities. Unfortunately, current graft purging methods 

[9] do not alleviate the risk of leukemic cell reinfusion and relapse in autologous BM 

transplantation settings [10-12]. Alternatively, use of allogeneic blood sources to avoid 

leukemic abnormalities (BM, mobilized PB, and cord blood (CB))[13] for transplantation 

in AML patients is restricted by the availability of matched donors, and the long-term 

complications associated with an inability to separate graft-versus-host disease (GVHD) 

from the beneficial graft-versus-leukemia (GVL) effect [6, 14, 15]. Furthermore, 

alternative efforts over the past decades to increase the low numbers of HPCs that can be 

obtained for the management of a single patient [16] by ex vivo expansion have had 

variable success [13, 17], where recent clinical trials question the benefits of expanded 
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HPCs [17]. As such, the generation of novel autologous sources of HPCs to circumvent 

limited availability and complications associated with current transplant sources could 

benefit patient survival, and thus deserves deeper investigation.  

 The ability to generate induced pluripotent stem cell (iPSCs) that share phenotypic, 

molecular, and functional hallmarks with human embryonic stem cells (hESCs) [18-22], 

provides an opportunity to develop renewable sources of immune-compatible cells. In the 

context of AML, generation of AML patient-specific HPCs that are devoid of the 

leukemic aberration(s) that affect the patient’s hematopoietic tissue would provide a 

transformative approach in establishing a healthy autologous blood source for 

transplantation during AML therapy. Although robust long-term engraftment of PSC-

derived HPCs in murine xenografts has not been fully demonstrated [23, 24], incremental 

advances have been made [25-27]. However, multiple studies have delineated protocols 

to differentiate human PSCs to HPCs that possess in vitro multipotent functionality [28-

31]. Independent of advancements required for the generation of transplantable long-term 

HPCs from hPSCs, the potential of using reprogramming to generate healthy blood cells 

from an AML patient has yet to be explored and it remains unclear whether generation of 

AML patient HPCs is even possible. To this end, we obtained dermal fibroblasts from 

human AML patients whose leukemic cells possessed known leukemia-associated 

genomic aberration, and used reprogramming technology to generate HPCs. By probing 

for the absence of this aberration, in conjunction with immunophenotypical, functional, 

and morphological in vitro assessments as compared to the patients’ AML blasts, we 
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provide evidence that derivation of healthy autologous sources of blood using cellular 

reprogramming is possible.  
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MATERIALS AND METHODS 

Human patient samples 

Individual disease cases were assessed to determine patient eligibility based on the 

following criteria: 1) disease was clinically classified as AML; 2) AML blasts possessed a 

recurrent leukemia-associated genomic aberration; 3) AML blasts were obtained by BM 

aspiration; and 4) patient consented to provide one dermal fibroblast skin biopsy. 

Informed consent was obtained from all sample donors in accordance with Research 

Ethics Board-approved protocols at McMaster University. Bone marrow aspirates were 

obtained from consenting leukemic patients at the Juravinski Cancer Center (Hamilton, 

Canada) as available, and from healthy patients (Lonza, Basel, Switzerland. 

http://www.lonza.com). Primary bone marrow mononuclear cells were prepared using 

density gradient centrifugation (20 min, 1500 rpm) in Ficoll-Paque Premium (GE 

Healthcare Life Sciences, Piscataway, NJ. http://www.gelifesciences.com), and 

ammonium chloride treatment (Sigma-Aldrich, St. Louis, MO. 

http://www.sigmaaldrich.com) for 5 min at 4°C. Samples were assessed by flow 

cytometry for cell surface hematopoietic markers. Dermal skin biopsies (5mm x 5mm) 

were obtained from the forearm of consenting patients at the Juravinski Cancer Center. 

Primary human fibroblast cultures were established as described [32], and assessed by 

flow cytometry. 

Human cell culture 

Human dermal adult forearm fibroblasts were cultured in Fib media [DMEM with 10% 

v/v fetal bovine serum (Neonatal Bovine Serum, HyClone, Logan, UT. 
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http://www.hyclone.com), 1% v/v non-essential amino acid (Gibco, Grand Island, NY. 

http://www.invitrogen.com), and 1 mM L-glutamine (Gibco)]. Patient-specific iPSCs 

were derived and cultured on irradiated mouse embryonic fibroblasts (iMEFs) in F12 

iPSC media [DMEM/F12 (Gibco) with 20% Knockout Serum Replacement (Gibco), 100 

µM β-mercaptoethanol, 100 µM nonessential amino acid (Gibco), 1 mM L-glutamine 

(Gibco)] supplemented with 10 ng/ml basic fibroblast growth factor (bFGF); F12 iPSC 

media was not supplemented with antibiotics. iPSC-derived embryoid bodies (EBs) were 

cultured in hematopoietic differentiation media [KO-DMEM (Gibco) with 20% Knockout 

Serum Replacement (Gibco), 100 µM β-mercaptoethanol, 100 µM nonessential amino 

acid (Gibco), 1 mM L-glutamine (Gibco)] supplemented with 50 ng/ml granulocyte 

colony stimulating factor (Amgen Inc., Thousand Oaks, CA. http://www.amgen.com), 

300 ng/ml stem cell factor (Amgen Inc.), 10 ng/ml interleukin-3 (IL-3; R&D systems), 10 

ng/ml interleukin-6 (IL-6; R&D systems, Minneapolis, MN. 

http://www.rndsystems.com), 25 ng/ml bone morphogenetic protein 4 (BMP4; R&D 

systems), and 300 ng/ml Flt-3 ligand (Flt-3L; R&D systems)]. 

Patient-specific iPSC generation 

Plasmids pSIN4-EF2-O2S and pSIN-EF2-K2M developed by James A. Thomson 

(University of Madison-Wisconsin) were obtained from Addgene (Cambridge, MA. 

http://www.addgene.org). Virus containing plasmid was produced from HEK 293FT 

Cells with 2nd generation pMD2.G and psPAX2 packaging plasmids. Viral supernatants 

were harvested 72h after transfection and concentrated by ultracentrifugation. Human 

adult dermal fibroblasts (105) were incubated with concentrated lentiviral vectors in Fib 
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media supplemented with 8 µg/ml polybrene (Sigma-Aldrich) for 48 h, then washed and 

fed fresh Fib media. 96h after initial lentiviral transduction, Fibs were dissociated and 

seeded on 150,000 iMEFs and maintained in F12 iPSC media conditions. iPSC colonies 

emerged between day 16 and 25 post-transduction, and were individually isolated, 

expanded on iMEFs, and verified for TRA-1-60 expression through live staining using 

TRA-1-60 DyLight 488 (Stemgent, Cambridge, MA. http://www.stemgent.com). For 

immunocytochemistry, iPSCs were fixed in 4% paraformaldehyde, permeabilized using 

BD permeabilization buffer (if required), stained with TRA-1-60, OCT4, SOX2, or 

NANOG antibodies (BD Biosciences, San Jose, CA. http://www.bdbiosciences.com), and 

counterstained with 4',6-diamidino-2-phenylindole (DAPI). 

Teratoma assay 

The developmental potential of human AML Fib iPSCs in vivo was assessed by teratoma 

assay. Briefly, confluent undifferentiated iPSC cultures were treated with 200 U/mL 

collagenase IV (Invitrogen, Carlsbad, CA. http://www.invitrogen.com) for 2 min at 37°C, 

scraped into clumps using a 5 mL pipette, collected and centrifuged at 1000 rpm for 10 s, 

resuspended in 30 uL of media, and injected into the testicle of NOD/SCID mice. One 

well of a 6 well plate (equivalent to 700,000-900,000 cells, as determined by cell count) 

was injected per mouse. Teratomas were harvested after 8-10 weeks, sectioned, and 

stained by hematoxylin and eosin. Images were acquired using ScanScope CS digital 

slide scanner with Aperio Image Scope software. 
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Hematopoietic differentiation of iPSCs 

EBs were generated by suspension culture as previously described [33]. Briefly, confluent 

undifferentiated iPSC cultures were treated with 200 U/mL collagenase IV (Invitrogen) 

for 2 min at 37°C, scraped into clumps using a 5 mL pipette, and transferred to 6- or 12-

well ultralow attachment plates (Corning Inc., Corning, NY. http://www.corning.com) to 

form EBs. EBs were cultured for 15 days in hematopoietic differentiation media with 

medium changes every 4-5 days, and dissociated into single cell suspensions by 0.4 U/mL 

collagenase B (Roche Life Science, Indianapolis, IN. http://www.lifescience.roche.com) 

treatment for 2 h at 37°C. Total single cell suspensions were collected for flow cytometric 

analysis or CFU plating. 

Clonogenic CFU Assay 

Clonogenic colony-forming capacities of healthy BM and mobilized PB (10,000-30,000 

cells), AML BM mononuclear cells (10,000-30,000 cells), and total dissociated EB cell 

suspensions (20,000-30,000 cells) plated in Methocult H4434 medium (Stem Cell 

Technologies, Vancouver, Canada. http://www.stemcell.com) were monitored between 

days 7-16, and colonies were quantified based on morphology between 14-16 days. 

Individual colonies were isolated and assessed for single-cell morphology, and full wells 

were collected for FISH analysis. Depending on number of colonies generated in CFU 

assay, single-cell morphologies of at least three colonies were analyzed to confirm colony 

quantification criteria and evaluate the maturity of colonies. Briefly, colonies were 

isolated and resuspended in 100 uL PBS and spun onto microscope slides using the 

Shandon Cytospin 3 (Block Scientific, Inc., Bellport, NY. 
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http://www.blockscientific.com). Morphological features were visualized by Giemsa-

Wright staining performed using Shandon Kwik-Diff Stain Kit (Thermo Scientific, 

Waltham, MA. http://www.thermoscientific.com). Images were acquired using 

ScanScope CS digital slide scanner with Aperio Image Scope software. 

Fluorescence in situ hybridization 

t(9;11)(p22;q23), del(5)(q13q33), +4, del(16)(q22), and +8 leukemic aberrations were 

investigated using commercially available, validated FISH probes (Abbott Molecular, 

Abbott Park, IL. http://www.abbott.com). Cells incubated in 0.075M KCl (37°C, 15 min) 

were fixed in Carnoy’s Solution. Slide preparations and probes were denatured (73°C, 5 

min), followed by overnight hybridization in humid 37°C [Locus-specific identifier (LSI) 

probes] or 42°C [Chromosome enumeration probes (CEP)] incubators. Post-hybridization 

washes were performed in 0.4x SSC/0.3% NP40, pH 7.0 (73°C, 2 min), followed by 2x 

SSC/0.1% NP40, pH 7.0 (RT, 1 min), and mounted with DAPI II counterstain (Abbott 

Molecular). Visualization and analysis was performed using a fluorescence microscope 

equipped with appropriate filters using MetaMorph software (Molecular Devices, 

Sunnyvale, CA. http://www.moleculardevices.com). To confirm absence of aberration, > 

500 nuclei were analyzed. False positive events, detected below threshold of aberration 

detection established in normal samples, are not depicted in scoring plots. 

Flow cytometry 

Single cell suspensions were stained using combinations of the following antibodies: 

CD13-FITC, CD33-PE, CD34-PE, CD45-APC (Miltenyi Biotech, Bergisch Gladbach, 
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Germany. http://www.miltenyibiotec.com) for hematopoietic phenotoyping; SSEA3-PE 

and TRA1-60-Alexa Fluor 647 (BD Pharmingen) for live extracellular pluripotent 

phenotyping; and OCT4-Alexa Fluor 488, SOX2-Alexa Fluor 647 and NANOG-PE (BD 

Biosciences) for intracellular pluripotent phenotyping of cells fixed and permeabilized 

using the BD Cytofix/Cytoperm kit. Flow cytometry was performed using the LSRII 

Flow Cytometer with FACSDiva software (Becton-Dickinson, Franklin Lakes, NJ. 

http://www.bd.com) and analyzed by FlowJo software (Tree Star, Inc., Ashland, OR. 

http://www.treestar.com). 

Statistical Analysis 

Data are presented as mean ± standard error of mean (SEM). Prism software (version 

5.0a; GraphPad, La Jolla, CA. http://www.graphpad.com) was used for all statistical 

analyses, and the criterion for statistical significance was p < 0.05. 
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RESULTS 

The majority of AML patient-derived fibroblasts do not share leukemia-associated 

aberration(s) detected in patient bone marrow 

Although a number of known leukemia-associated genomic abnormalities are not shared 

in non-hematopoietic bone marrow cells derived from leukemic patients [34], this has not 

been established in dermal skin-derived fibroblasts in culture. To examine this further, 

dermal skin biopsies were obtained from four human leukemic patients diagnosed with 

AML carrying the t(9;11)(p22;q23) [35], del(5)(q13q33) [36], trisomy 4 (+4) [37] and 

del(16)(q22) [38], or trisomy 8 (+8) [39] leukemia-associated aberration(s), respectively 

(Table 1 and supplemental Fig. 1). These detectable genetic markers enabled us to 

investigate whether non-hematopoietic dermal skin cells possessed leukemia-associated 

aberration. Accordingly, AML patient skin fibroblast cultures (AML Fibs) were 

established from patient skin biopsies [32], with the lack of CD45+ cells indicating the 

absence of leukemic skin infiltrates (supplemental Fig. 2A-C)[40]. AML Fibs possessed 

bipolar, elongated morphologies similar to healthy patient-derived Fibs (supplemental 

Fig. 2B,D-E). Next, we utilized diagnostic fluorescence in situ hybridization (FISH) 

probes (Fig. 1A) to assess early passage AML Fibs in comparison to bone marrow 

mononuclear cells isolated from each patient (AML BM, supplemental Fig. 2F-G). 

Analysis of 500 cell nuclei per AML Fib culture revealed that AML Fibs derived from 

Patient #1 to 3 were completely devoid of the aberration(s) that was readily detected in 

matched AML BM (Fig. 1B-D). In contrast, the leukemia-associated aberration detected 

in Patient #4 AML BM (+8) was shared in 8.4% of their AML Fibs (Fig. 1E), indicating 
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that a genetically mosaic AML Fib culture had been established from the skin biopsy. 

Taken together, these data indicate that although the majority of human AML Fibs are 

devoid of AML specific aberration(s), it is possible for them to share aberrations found in 

the AML BM. Our findings here using human AML Fibs provide further evidence that 

leukemia-associated aberration can be harbored in non-hematopoietic cells [34]. 

AML patient-specific iPSCs exhibit functional pluripotency and lack leukemia-

associated aberration 

It has been previously demonstrated that healthy patient skin-derived Fibs can be 

reprogrammed to the pluripotent state [18, 19, 22], but this remained to be demonstrated 

in human AML patients. Toward establishing and characterizing patient-specific iPSC 

platforms for derivation of hematopoietic cells, we generated iPSCs from AML Patient #1 

to 4 Fib cultures using well established reprogramming methods [18, 41]. AML Fib iPSC 

cultures consisted of flat colonies of densely-packed single cells with large nuclei and 

scant cytoplasm (Fig. 2A), and were indistinguishable from healthy Fib iPSCs 

(supplemental Fig. 3A). To assess if AML Fib iPSCs possessed biomolecular hallmarks 

of pluripotency similar to healthy Fib iPSCs, we performed immunocytochemistry and 

flow cytometric analyses. Like healthy Fib iPSCs [18], proteins that regulate the core 

intracellular pluripotency network OCT4, SOX2, and NANOG [42], and extracellular 

pluripotency markers SSEA3 and TRA1-60 [43] were expressed and localized to AML 

Fib iPSC colonies (Fig. 2B and supplemental Fig. 3B-C). Next, we subjected AML Fib 

iPSCs to in vivo teratoma formation assays to assess their functional pluripotency 

capacity. Following intratesticular injection, AML Fib iPSCs demonstrated in vivo 
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pluripotent potential [44] by generating teratomas that possessed early tissue derivatives 

of the three embryonic germ layers (ectoderm, endoderm, and mesoderm), as evaluated 

by morphological assessment of hematoxylin and eosin stained tumor sections (Fig. 2C). 

Together, these results indicate that AML Fibs can be reprogrammed to functional iPSCs 

that are morphologically, molecularly, and functionally indistinguishable from healthy 

Fib iPSCs based on standard criteria of human pluripotency [18, 19, 22]. 

 To probe AML Fib iPSCs for patient-specific, leukemia-associated aberration(s), we 

performed FISH and analyzed 500 nuclei per iPSC line. All patient-specific AML Fib 

iPSCs were devoid of the abnormality (Fig. 2D) that was detected in matched AML BM 

(Fig. 1B-E). Interestingly, the +8 aberration harbored in a subpopulation of AML Patient 

#4 Fibs (Fig. 1E) was not detected in the 500 iPSC nuclei analyzed by FISH (Fig. 2D), 

suggesting that the aberration was lost during reprogramming [45] or that the 

reprogramming process favors iPSC generation from genetically normal cells. Together, 

these data indicate that functional iPSCs devoid of the patient-specific leukemia-

associated aberration(s) can be generated from AML Fibs. Moreover, these results 

demonstrate that the presence of genetic mosaicism in a starting cell population does not 

affect derivation of genomically normal iPSCs, and is consistent with previous results 

where reprogramming selects for normal cells [46]. 

AML Fib iPSC-derived hematopoietic progenitors are devoid of leukemia-associated 

aberration and exhibit normal differentiation capacity 

Since AML Fib iPSCs did not possess leukemia-associated aberration, they represented 

potential cellular platforms from which to derive healthy hematopoietic cells. Towards 
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establishing whether AML patient-specific iPSCs possessed the capacity to give rise to 

normal HPCs, characterized by CD34+CD45+ co-expression and functional in vitro 

colony forming unit capacity, we subjected AML Fib iPSCs to an embryoid body (EB) 

based in vitro hematopoietic differentiation assay [31]. Three-dimensional EBs derived 

from AML Fib iPSC aggregates gave rise to cells co-expressing CD34+CD45+ (Fig. 3A-B 

and supplemental Fig. 4A), similar to healthy Fib iPSC-derived EBs [41]. These results 

suggest that AML Fib iPSCs possess normal differentiation capacity toward the 

hematopoietic lineage and, based on CD34+CD45+ co-expression, are able to generate 

putative HPCs. Next, we performed FISH in EB-derived cells to probe for AML patient-

specific aberration. Positive events were not detected in 500 cell nuclei analyzed per EB-

cell derived population (Fig. 3C), which contrasted that of the patients’ AML BM (Fig. 

1B-E) and indicated that AML patient-specific putative HPCs did not harbour leukemia-

associated aberration. To further evaluate if generation of putative HPCs devoid of 

leukemia-associated aberration was possible from multiple iPSC lines derived from a 

single patient, we performed flow cytometric and FISH analyses on EBs derived from 

additional Patient #4 AML Fib iPSC lines. The use of these iPSC lines, derived from the 

genetically mosaic AML Fib culture (Fig. 1E), also provided further biological replicates 

from which to assess if chromosomal abnormalities are lost during the reprogramming 

process. Consistent with our initial findings, EBs derived from Patient #4 AML Fib iPSC 

lines gave rise to putative HPCs expressing CD34+CD45+ (supplemental Fig. 4B-C), 

indicating that hematopoietic differentiation potential was not limited to a single iPSC 

line. Furthermore, the AML BM-specific +8 aberration was not detected (supplemental 
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Fig. 4D), providing further evidence that genetically normal cells could be derived from a 

genetically mosaic AML Fib culture. Taken together these data demonstrate that putative 

HPCs devoid of leukemia-associated aberration can be generated from AML patient-

specific iPSCs.  

 We next assessed and compared the functional capacity of putative HPCs to that of 

matched AML BM using the in vitro colony forming unit (CFU) assay (Fig. 4A) to 

evaluate if they had normal or leukemic features. First, we characterized the CFU 

capacity of AML BM to establish baseline criteria for identification of leukemic cells. 

Despite the inherent diversity and heterogeneity of AML samples [3], Patient #1 to 4 

AML BM possessed at least one of the following dysfunctional features suggestive of a 

leukemic phenotype: impaired CFU capacity characterized by an inability to generate the 

granulocytic lineage and the presence of persisting single cells [47], presence of cells with 

immature blast morphology as assessed by clinical standard Giemsa-Wright staining, 

and/or presence of leukemia-associated aberration as detected by FISH (Table 2, 

supplemental Fig. 5B,D-F). Importantly, a small population of AML blast progenitors 

(Patient #4, 1.7%, Fig. 1E) could be detected by CFU and FISH assays (supplemental Fig. 

5F), illustrating the sensitivity of leukemic cell detection in the CFU assay. Together 

these results established criteria for detecting leukemic cells in the CFU assay. On this 

basis, AML patient-specific putative HPCs were subjected to CFU assay and evaluated 

for normal versus leukemic capacity. Consistent with healthy Fib iPSC-derived HPCs, all 

AML patient-specific HPCs exhibited functional capacity to generate multiple myeloid 

lineages as evidenced by formation of erythroid, granulocytic, and monocytic colonies 
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(Fig. 4B-C and supplemental Fig. 6A-C). Although frequency of colony types showed 

variability between patient-specific HPCs, this result is similar to that observed in healthy 

BM and mobilized PB samples (supplemental Fig. 5A). Next, we assessed individual 

colonies for normal hematopoietic maturation according to clinically established 

morphological criteria [48]. Accordingly, Giemsa-Wright staining performed on 

individual colonies revealed that AML patient-specific HPCs had the capacity to 

differentiate to mature cells (Fig. 4D and supplemental Fig. 6C), while immature blasts 

were not detected. Together, these results directly contrasted the dysfunctional 

differentiation capacity of AML BM and were consistent with results obtained using 

healthy BM and mobilized PB (Table 2 and supplemental Fig. 5), suggesting that AML 

patient-specific HPCs possessed normal functional capacity. Next, we performed FISH on 

total mature hematopoietic colonies to probe for leukemia-associated aberration. Scoring 

of 500 nuclei per AML patient-specific HPC line revealed that mature hematopoietic 

colonies derived from HPCs did not possess leukemia-associated aberration(s) that was 

detected in AML BM CFU (Fig. 4E, Table 2 and supplemental Fig. 5F and 6D). Based on 

the demonstrated high sensitivity of FISH to detect a small percentage of AML 

progenitors harboring leukemic aberration (supplemental Fig. 5F), coupled with the rigor 

of our scoring analyses that exceeded clinical requirements and excluded a 1% chance of 

genetic mosaicism with a 99% confidence level [49], these results provide substantial 

evidence that functional, AML patient-specific HPCs are completely devoid of leukemia-

associated aberration carried in the patients’ own blood cells. Taken together, our data 

establishes that AML Fib iPSC-derived, functional HPCs (CD34+CD45+ co-expression 
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and the capacity to generate mature cells of multiple myeloid lineages) are devoid of 

leukemia-associated aberration; directly contrasting features of patients’ original 

leukemic cells. 
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DISCUSSION  

Our current study reveals that cellular reprogramming allows for generation of human 

AML patient-specific hematopoietic progenitors that are devoid of leukemia-associated 

aberration and are capable of normal in vitro clonogenic differentiation, in direct contrast 

to matched patient leukemic cells. Given that current sources of healthy blood used for 

hematopoietic recovery during AML therapy are limited [6, 10-12, 14, 15], we provide 

initial proof of principle toward generation of novel iPSC-derived, autologous blood 

sources devoid of leukemia-associated aberration that should enable more AML patients 

to receive safe transplantations during consolidation therapy and thereby increase the rate 

of disease-free survival (Fig. 5). 

 Based on previous work in the human system, the limited capacity of hPSC-derived 

HPCs to have transplantable hematopoietic stem cell (HSC) properties may be attributed 

to an inability to activate [24] or downregulate [23] regulatory somatic HSC molecular 

programs during differentiation [50]. As such, the development of novel differentiation 

strategies that better specify the hematopoietic lineage from PSCs has been the focus of 

recent studies aimed at the generation of clinically transplantable HSCs. For instance, 

temporal inhibition of the early hematopoietic-regulating Hedgehog pathway during in 

vitro differentiation initiates adult hematopoietic gene expression programs [51]. 

Similarly, in vivo differentiation conditions better mimic bone marrow physiology and 

enable the generation of hematopoietic cells with multilineage reconstitution capacity in 

vivo, perhaps by providing cell extrinsic signals that regulate HSC molecular programs 

[25, 26]. Finally, forced exogenous expression of HSC-regulating transcription factors 
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endow PSC-derived CD34+CD45+ hematopoietic cells with in vivo myeloid lineage 

reconstitution capacity [27]. Together these recent efforts illustrate incremental advances 

toward the generation of PSC-derived bonafide HSCs [52]. Our current findings suggest 

that reprogramming approaches could be utilized to generate healthy, transplantable 

sources of AML patient-specific HPCs that are capable of restoring normal, short-term 

myelopoiesis in AML patients to combat anemia, bleeding, and infection due to disease 

[1, 2] and/or treatment related myeloablation [53]. Moreover, our present study 

establishes an approach that motivates further effort for the derivation of clinically 

transplantable HSCs from iPSCs toward circumventing limitations of current 

hematopoietic sources and enabling long-term hematopoietic recovery in AML patients 

following therapy. 

 Given the diversity of AML-associated germline [54, 55] and in utero/adult-acquired 

somatic mutations [3-5, 56], and the rare presence of these mutations in non-

hematopoietic tissues as demonstrated here and previously by Menendez et al. [34], it is 

possible that cases whereby AML Fibs share or independently acquire leukemia-

associated aberration will be encountered when our strategy is applied to larger AML 

patient populations. Recent results indicate that large-scale chromosomal aberrations 

carried by Fib cultures derived from Miller Dieker Syndrome patients are lost and 

replaced by wild type duplication during the reprogramming process [45]. Potentially 

attributed to a similar loss of chromosomal aberration phenomenon during 

reprogramming, our current findings demonstrate that normal iPSCs can be generated 

from genetically mosaic AML Fib cultures. This result may also be due to the genetically 
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normal AML Fib subpopulation preferentially reprogramming to the iPSC state. 

Independent of which hypothesis is true, our findings suggests that the generation of 

normal blood progenitors may still be feasible in cases whereby AML Fibs possess large-

scale aberrations or heterogeneously harbour leukemia-associated aberration. 

Furthermore, cellular reprogramming may be a feasible technique toward purging 

chromosomal abnormalities and generating healthy cell types from cancer or disease 

patients that carry germline mutations, including AML patients. 

 It has been postulated that preleukemic mutations may predispose cells to genomic 

instability and increase their susceptibility to acquiring disease-specific secondary 

mutations [57, 58] due to enhanced cell survival properties [59]. Recent utilization of 

next-generation sequencing technologies has enabled identification of preleukemic 

mutations in HSCs [60, 61], and forms the basis for future delineation of early genetic 

events that contribute to leukemogenesis. Pending further identification and annotation of 

these events, deep sequencing should provide further insight into the genomic integrity of 

patient-specific iPSCs and HPCs. By tracking the absence of leukemia-associated 

aberration in iPSCs and hematopoietic progenitors/mature cell derivatives, we 

demonstrate that the AML specific-aberration did not arise at any stage of hematopoietic 

specification or maturation. This suggests that in addition to being devoid of the AML-

specific aberration, AML Fib iPSCs may also be free of preleukemic mutations that 

predispose them to genetic instability upon in vitro hematopoietic differentiation; 

although, this does not preclude the possibility of long-term genetic instability. We 

envision that advances in genetic screening and PSC differentiation technologies that 
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enable next-generation genetic characterization of AML patient-specific HPCs following 

long-term in vivo engraftment in preclinical mouse xenograft models will facilitate further 

efforts aimed at investigating the long-term safety and genetic stability of these cells prior 

to clinical application. 

 Given the potential of PSCs to generate multiple human tissues, cellular 

reprogramming may also allow for the generation of healthy cell types from other cancer 

or disease patients requiring transplantation. To date, we are unaware of studies that have 

utilized aberrations specific to patients’ cancer or disease as a marker to interrogate cell 

populations throughout the reprogramming process toward deriving and characterizing 

healthy cell types for transplantation purposes, as we have demonstrated here in the 

context of AML. As such, our study provides the proof of principle to formulate strategies 

toward developing healthy autologous cellular sources for AML patients, and also for 

other leukemia or cancer patients whereby distinct aberrations are harbored in the 

cancerous tissue. 
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SUMMARY 

Generation of AML patient-specific Fib iPSCs establishes a cellular platform from which 

to derive healthy HPCs that are devoid of leukemia-associated aberration detected in the 

patients’ bone marrow. These autologous HPCs also possess normal in vitro 

differentiation capacity to multiple myeloid lineages as compared to the patients’ 

dysfunctional AML blasts. Our work provides proof of principle that derivation of 

healthy autologous sources of blood using cellular reprogramming is possible, and should 

enable more AML patients to receive safe transplantations during therapy toward 

increasing the rate of disease-free survival. 
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Figure 1. The majority of AML Fibs are devoid of leukemia-associated aberration. 

(A) Schematics illustrating patient-specific leukemic aberration(s) identified in AML 

blast nuclei. FISH probe hybridization regions are indicated (green/red) on affected 

chromosomes. (B-E) FISH performed in AML patient-derived (i) Fibs and (ii) BM 

mononuclear cells (n = 1 per AML patient). Aberrations were detected in each patient 

AML BM, and a population of Patient #4 AML Fibs. Red arrows denote probe separation 

associated with translocation in Patient #1 AML BM. Adjacent plots depict the frequency 

of detection of patient-specific, leukemia-associated aberration; blue circles represent 

number of nuclei analyzed. Blue circles with either one red dot or three green dots 

represent del(16)(q22) and +4 events in Patient #3 AML BM, respectively; aberrations 

were never detected in the same nuclei. 500 nuclei were analyzed to exclude 1% genetic 

mosaicism in AML Patient #1-3 Fibs with 99% confidence [49]. 
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Figure 2. Characterization of AML patient-specific Fib iPSCs. (A) Representative 

images of iPSC colonies generated from AML patient Fibs. Highlighted areas are 

displayed at higher magnification in the right, adjacent images. Scale bars represent 100 

µm. (B) Representative immunofluorescence staining of pluripotency markers OCT4, 

SOX2, NANOG, and TRA-1-60 expressed in AML Fib iPSCs. All pluripotent markers 

were assessed in 12 total iPSC lines (six iPSC lines from each of Patient #1 and #2), and 

TRA-1-60 expression was confirmed in at least three iPSC lines derived from each of 

AML Patient #3 and #4. Scale bar represents 100 µm. (C) Representative teratoma-

forming capacity of AML Fib iPSCs. Two independent iPSC lines (one from each of 

Patient #1 and #2) were subjected to teratoma assay, each in triplicate. AML Fib iPSC-

derived teratoma 10-weeks post IT injection (top left). Hematoxylin and eosin stained 

sections of teratoma sections displaying early tissue derivatives of ectoderm (skin cells), 

endoderm (gut-like goblet cells) and mesoderm (cartilage). Arrows indicate denoted cell 

types. (D) FISH performed in patient-specific AML Fib iPSCs (n = 1 iPSC line per AML 

patient). Aberration identified in matched patient AML BM was not detected. Adjacent 

plots depict the number of nuclei (blue circle) scored; 500 nuclei were analyzed to 

exclude 1% genetic mosaicism with 99% confidence [49]. 



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

88	
  

)

!"#$

%"%&'

!"#$

(&)*

&+,-

!"#$

,."/0/12

!"#$

*
3

3
3

3
+

,

3

022
*22
422
-22
522

-../

./

3

022
*22
422
-22
522

-../

./

3
022
*22
422
-22
522

-../

./
3

022
*22
422
-22
522

-../

./



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

89	
  

Figure 3. AML patient-specific putative HPCs are devoid of leukemia-associated 

aberration. (A) Representative EBs derived from AML patient Fib iPSCs, in 

hematopoietic differentiation conditions. Scale bar represents 100 µm. (B) Representative 

plots of flow cytometric analyses used to detect the generation and presence of 

CD34+CD45+ putative hematopoietic progenitors. Flow cytometric analysis for 

CD34+CD45+ expression was performed on a minimum of three independent 

hematopoietic differentiation experiments for each indicated iPSC line. Percentages 

represent frequency of total live cells with indicated cell surface phenotype. (C) FISH 

performed in patient-specific, EB-derived cells from one iPSC line per AML patient. 

Aberration identified in matched patient AML BM was not detected. Adjacent plots 

depict the number of nuclei (blue circle) scored; 500 nuclei were analyzed to exclude 1% 

genetic mosaicism with 99% confidence [49]. 
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Figure 4. AML patient-specific HPCs are capable of normal in vitro differentiation 

to mature blood cells and are devoid of leukemia-associated aberration. (A) 

Experimental strategy used to characterize patient-specific, putative HPCs in vitro. 

Methodologies used to assess normal hematopoietic functional capacity are indicated in 

red. (B) Putative HPC functionality assessed by multilineage differentiation capacity in in 

vitro CFU assay. Bars represent mean frequencies of mature hematopoietic colonies 

generated + SEM (n=3 independent experiments per patient-specific HPC line). AML 

patient Fib iPSC-derived HPCs generate all mature lineages, consistent with healthy 

patient Fib iPSC-derived HPCs. (C) Representative mature hematopoietic colonies 

derived from patient-specific HPCs. Scale bars represent 100 µm. (D) Representative 

single-cell morphologies following Giemsa-Wright staining performed on individual 

hematopoietic colonies (n > 3 colonies analyzed per patient-specific HPC line). Scale bars 

represent 10 µm. (E) FISH performed in total mature hematopoietic colonies derived from 

patient-specific HPCs. Aberration identified in matched patient AML BM was not 

detected. Adjacent plots depict the number of nuclei (blue circle) scored; 500 nuclei were 

analyzed to exclude 1% genetic mosaicism with 99% confidence [49]. 
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Figure 5. Utilization of AML-specific genetic markers to interrogate cell populations 

throughout reprogramming towards generation of healthy blood cells for 

transplantation. (A) Experimental strategy developed here to generate and characterize 

AML patient-specific HPCs that are capable of normal in vitro differentiation to the 

myeloid lineage and are devoid of leukemia-associated aberration found in matched 

patient BM. As represented by dashed arrow, technological advances in cellular 

reprogramming may provide novel autologous blood sources for transplantation that 

circumvent limitations associated with current transplantation options used during AML 

therapy (denoted in red font). FISH results associated with presence (+) vs. absence (-) of 

leukemia-associated aberration are indicated above cell populations. 
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Supplemental Figure 1. Clinical diagnosis of patients with AML possessing a distinct 

leukemia-associated aberration. (A) Representative AML patient BM aspirate smears 

performed at clinical diagnosis reveal the presence of immature AML blasts (black 

arrows). (B) Representative AML patient BM biopsies reveal abnormal hypercellularity 

of the bone marrow compartment. (C) Representative flow cytometric analysis of an 

AML patient’s diagnostic BM depicts an abnormally large population of immature blasts 

characterized by low CD45/low SSC (red rectangle), a subset of the CD45+ hematopoietic 

BM population; and a high frequency of CD13+CD33+ myeloid cells. 



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

98	
  

 

! !"#$%&'((")%*+,-('.$%/0$'( 1

233 232 23; 234 238

5644

233

232

23;

234

238

56
24

39><> >8

23972898

233 232 23; 234 238

568=

3

;33

833

:33

733

2333

=39=

<<94

2 !"#$%&'((")%!-",+1



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

99	
  

Supplemental Figure 2. Establishing primary cultures. (A) Establishing fibroblast 

cultures from AML patient skin biopsies. Representative image of two sections of a 5mm 

x 5mm AML patient skin biopsy (denoted by red arrows) in Fib media giving rise to 

adherent fibroblasts. Scale bar represents 100 µm. (B) Representative images of AML Fib 

cultures established from each patient’s skin biopsy. Scale bars represent 100 µm. (C) 

Flow cytometric analyses of AML Fib cultures confirm the absence of CD45+ 

hematopoietic cells. (D) Fibroblast culture established from healthy patient skin biopsy. 

Scale bar represents 100 µm. (E) Flow cytometric analysis of healthy Fib culture 

confirms the absence of CD45+ hematopoietic cells. (F) Mononuclear cells prepared from 

each AML patient BM aspirate. Scale bars represent 100 µm. (G) Flow cytometric 

analyses of AML BM assessing expression of pan-hematopoietic marker CD45. 

Percentages represent frequency of total live cells with indicated cell surface phenotype. 
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Supplemental Figure 3. Additional iPSC characterization. (A) Representative images 

of iPSCs generated from healthy patient-derived fibroblasts. Highlighted areas are 

displayed at a higher magnification in the right adjacent image. Scale bars represent 100 

µm. (B) Representative flow cytometric plots assessing pluripotency marker expression 

on a population of generated AML Fib iPSCs. Percentages represent frequency of total 

live cells with indicated cell surface phenotype. (C) Frequency of pluripotency marker 

expression in AML Patient #1 and #2 iPSC cultures as determined by flow cytometric 

analyses. Flow cytometric analysis was performed in 12 independent iPSC lines (six iPSC 

lines from each of Patient #1 and Patient #2).  Bars represent mean + SEM, n=6. 

Variation between pluripotent markers across all iPSC lines is not significant as analyzed 

by two-way ANOVA. 
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Supplemental Figure 4. Multiple lines of Patient #4 AML Fib iPSCs give rise to 

HPCs devoid of leukemic aberration. (A) Bar graph quantifying frequency of 

CD34+CD45+ derivation from indicated AML patient iPSC lines. Bars represent mean of 

> 3 independent differentiation experiments + SEM. Variance is not significant as 

analyzed by one-way ANOVA. (B) Representative EBs derived from additional AML 

Patient #4 Fib iPSC lines, in hematopoietic differentiation conditions. Scale bar 

represents 100 µm. (C) Representative examples of flow cytometric analyses used to 

detect the generation and presence of CD34+CD45+ hematopoietic cells. Percentages 

represent frequency of total live cells with indicated cell surface phenotype. Flow 

cytometric analysis of CD34+CD45+ expression was performed on EBs derived from the 

indicated iPSC lines in three independent experiments. (D) FISH performed in indicated 

Patient #4-specific, EB-derived cells. Aberration identified in matched patient AML BM 

was not detected. Adjacent plots depict the number of nuclei (blue circle) scored; 500 

nuclei were analyzed to exclude 1% genetic mosaicism in AML Patient #1-3 Fibs with 

99% confidence [49]. 
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Supplemental Figure 5. Identification of dysfunctional features suggestive of 

leukemic phenotypes through evaluation of CFU capacity, single-cell morphology, 

and genetic analysis. Total number of hematopoietic colony types formed from plating 

(A) healthy BM and mobilized PB, and (B) AML BM. Bars represent mean of three 

independent experiments + SEM. (C) Representative images of isolated colonies derived 

from healthy BM, and their associated single-cell morphologies visualized by Giemsa-

Wright. Scale bars for colonies represent 100 µm, scale bars for single cell morphologies 

represent 10 µm. (D) Representative image of persistent single cells observed in Patient 

#1 and #3 BM CFU. (E) Representative images of isolated colonies derived from AML 

BM, and their associated immature single-cell morphologies visualized by Giemsa-

Wright. Scale bars for colonies represent 100 µm, scale bars for single cell morphologies 

represent 10 µm. (F) FISH performed in total CFUs derived from Patient #2-4 AML BM. 

Aberrations were detected in each AML BM CFU. Adjacent plots depict the frequency of 

detection of patient-specific leukemic aberration; blue circles represent number of nuclei 

analyzed. 
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Supplemental Figure 6. Multiple lines of Patient #4 AML Fib iPSC-derived HPCs do 

not possess leukemic features in vitro. (A) Bar graphs depicting total number of 

hematopoietic colonies generated from plating patient-specific HPCs in clonogenic CFU 

assay. Bars represent mean number of total mature hematopoietic colonies generated + 

SEM (n=3 independent experiments per patient-specific HPC line). (B) Evaluation of 

additional Patient #4 putative HPC functionality by quantification of differentiated colony 

types in in vitro CFU assay. Bars represent mean frequencies of mature hematopoietic 

colonies generated + SEM, n=3. AML Patient #4 Fib iPSC-derived progenitors generate 

all mature lineages. (C) Representative mature hematopoietic colonies derived from 

Patient #4-specific HPCs. Colonies possess normal single cell morphologies (inset). 

White scale bars represent 100 µm, black scale bars represent 10 µm. (D) FISH analysis 

performed in total CFUs generated from Patient #4-specific HPCs. FISH analysis reveals 

lack of leukemia-associated aberration, with adjacent plots depicting the number of nuclei 

(blue circle) scored. 
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CHAPTER 3 

Acquisition of pluripotency through continued environmental influence on OCT4- 

induced plastic human fibroblasts 

PREAMBLE 

This Chapter is an original published article. It is presented in its published format. 

“This research was originally published in Stem Cell Research. Salci KR, Lee JB, 
Mitchell RR, Orlando O, Fiebig-Comyn A, Shapovalova Z, and Bhatia M. Acquisition of 
pluripotency through continued environmental influence on OCT4-induced plastic human 
fibroblasts. 2015 Jul;15(1):221-30. doi: 10.1016/j.scr.2015.06.006. ©2015 Elsevier 
B.V.” 

 I performed fibroblast and iPSC culture, lentiviral transduction and reprogramming, 

flow cytometry analyses, EB differentiation, genomic PCR, RT-qPCR and CFU assays. I 

also analyzed and interpreted data, assembled figures and wrote the manuscript. Dr. JB 

Lee assisted with initial cell culture and differentiation experiments and performed 

immunocytochemistry staining. Ryan Mitchell provided intellectual contributions and 

contributed to the writing of the manuscript. Dr. Luca Orlando performed RT-qPCR 

experiments for the OCT4 transgene. Aline Fiebig-Comyn provided technical assistance 

for intra-testicular injections of iPSCs for teratoma assay, harvested tumours and prepared 

tumor sections for morphological analyses. Zoya Shapovalova provided technical 

assistance for analyses of aCGH data. Dr. Mick Bhatia oversaw the entire study, provided 

intellectual contributions and finalized the manuscript. 

 This body of work was performed in parallel to the works described in Chapter 2. 

At that time my fellow graduate student Ryan Mitchell was working to better understand 
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the role of OCT4 in facilitating cell fate reprogramming to the hematopoietic and neural 

lineages without traversing pluripotency (Mitchell et al., 2014b; Szabo et al., 2010). He 

(correctly) hypothesized that OCT4 expression induced a state of cellular plasticity that 

allowed cells to respond to environmental cues toward conversion to specified lineages 

without traversing pluripotency (Mitchell et al., 2014a). Although transcriptional and 

functional hallmarks of pluripotency were never observed during the time frame required 

for direct conversion events to take place, I hypothesized that continued exposure of 

OCT4-plastic fibroblasts to pluripotent-supportive conditions would lead to the 

acquisition of pluripotency; and that this may represent a less convoluted reprogramming 

method in which to generate iPSCs from AML Fibs. Ultimately this hypothesis was 

correct as I observed the emergence of iPSC colonies between 45 and 93 days after initial 

OCT4 transduction throughout my experiments. Looking back I was fortunate that iPSCs 

were generated after 46 days of culture during my first experiments, as I would have 

likely given up on my cultures after two months and concluded that my hypothesis was 

incorrect. Although these findings represent a less convoluted approach for iPSC 

generation from normal and AML Fibs, the prolonged time required to generate iPSCs 

using this method does not currently represent a clinically-feasible approach. However, 

this study complemented previous findings from our lab (Mitchell et al., 2014a; Mitchell 

et al., 2014b; Szabo et al., 2010) to further demonstrate that OCT4 is a powerful tool for 

cell fate reprogramming, and ultimately redefine Yamanaka’s conventional methods for 

pluripotency reprogramming (Takahashi et al., 2007; Takahashi and Yamanaka, 2006).  
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ABSTRACT 

The combination of OCT4 expression and short-term exposure to reprogramming media 

induces a state of transcriptional plasticity in human fibroblasts, capable of responding to 

changes in the extracellular environment that facilitate direct cell fate conversion towards 

lineage specific progenitors. Here we reveal that continued exposure of OCT4-induced 

plastic human fibroblasts to reprogramming media (RM) is sufficient to induce 

pluripotency. OCT4-derived induced pluripotent stem cell (iPSCOCT4) colonies emerged 

after prolonged culture in RM, and formed independently of lineage specific progenitors. 

Human iPSCOCT4 are morphologically indistinguishable from conventionally derived 

iPSCs and express core proteins involved in maintenance of pluripotency. iPSCOCT4 

display in vivo functional pluripotency as measured by teratoma formation consisting of 

the three germ layers, and are capable of targeted in vitro differentiation. Our study 

indicates that acquisition of pluripotency is one of multiple cell fate choices that can be 

facilitated through environmental stimulation of OCT4-induced plasticity, and suggests 

the role of other reprogramming factors to induce pluripotency can be substituted by 

prolonged culture of plastic fibroblasts. 
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HIGHLIGHTS 

• Environmental conditions influence OCT4-induced plastic Fibs toward pluripotency 

• OCT4-derived iPSCs possess biomolecular and functional hallmarks of pluripotency 

• OCT4-derived iPSC colonies form independently of lineage specific progenitors 

• Acquisition of pluripotency is one of multiple cell fate choices from plastic Fibs 

KEYWORDS 

Plasticity, reprogramming, OCT4, induced pluripotent stem cell, pluripotency, teratoma  

ABBREVIATIONS 

CFU: colony forming unit; hFib, human fibroblast; iPSC, induced pluripotent stem cell; 

MEFCM, mouse embryonic fibroblast conditioned medium; OSKM, 

OCT4/SOX2/KLF4/c-MYC; OSNL, OCT4/SOX2/NANOG/LIN28; RM, reprogramming 

media 
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INTRODUCTION 

Foundational cell fate reprogramming studies revealed ectopic expression of 

pluripotency-associated transcription factors (TF) OCT4, SOX2, KLF4, and c-MYC 

(OSKM) or OCT4, SOX2, NANOG, LIN28 (OSNL) in human fibroblasts (hFibs) 

cultured in pluripotent supportive conditions was sufficient for generation of induced 

pluripotent stem cells (iPSCs) possessing phenotypic, molecular, and functional 

characteristics akin to embryonic stem cells (ESCs) (Takahashi et al., 2007; Yu et al., 

2007). A multitude of reprogramming cocktails and methodologies have since been 

demonstrated to yield iPSCs from a range of adult cell types (Theunissen & Jaenisch, 

2014). Early modifications revealed ectopic expression of SKM could be functionally 

replaced by expression of structural homologs (Nakagawa et al., 2008) or chemical 

compounds (Y. Li et al., 2011; Zhu et al., 2010), and altogether bypassed if they were 

endogenously expressed in starting cell types (Eminli, Utikal, Arnold, Jaenisch, & 

Hochedlinger, 2008; Giorgetti et al., 2009; J. B. Kim et al., 2009). More recently, groups 

have identified that Nr5a2 (Heng et al., 2010), E-cadherin (Redmer et al., 2011) and 

Gata3 (Montserrat et al., 2013; Shu et al., 2013) are capable of substituting for Oct4 when 

expressed with SKM; while others have replaced OS with Sall4 and Esrrb in combination 

with NL (Buganim et al., 2014). Furthermore, complete replacement of ectopic 

expression of OSKM has been achieved using miR302/367 expression in combination 

with Hdac2 suppression (Anokye-Danso et al., 2011), and a combination of seven small-

molecule compounds in the mouse system (Hou et al., 2013). However, despite these 

advances, a substitute that definitively replaces Oct4’s functional activity and activates its 
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gene targets in the absence of other reprogramming factors has not been identified. As 

such, OCT4’s activity is indispensible for induction and maintenance of pluripotency 

(Orkin et al., 2008; Sterneckert, Hoing, & Scholer, 2012). Further supporting this 

concept, ectopic expression of high performance Oct4-VP16 transactivation domain 

fusion protein in mouse embryonic fibroblasts (MEF) is the only example of single factor 

reprogramming to achieve germline competent iPSCs without the addition of small 

molecules, miRNA, or ectopic/endogenous support by additional pluripotent factors (Y. 

Wang et al., 2011).  

 Using similar cellular reprogramming principles, two paradigms exist toward 

achieving cell fate conversion. One approach relies on forced expression of lineage-

specific TFs to facilitate lineage conversions (Lujan, Chanda, Ahlenius, Sudhof, & 

Wernig, 2012; Vierbuchen et al., 2010). The alternative focuses on inducing an unstable 

or plastic cell state, demarcated by activation of multiple lineage specific gene expression 

programs, that is capable of responding to environmental cues (R. Mitchell et al., 2014; 

Orkin & Hochedlinger, 2011). Strategies using short-term exposure to OSKM (Efe et al., 

2011; J. Kim et al., 2011), OCT4 with small molecule substitutes of SKM (H. Wang et 

al., 2014; Zhu et al., 2014), and OCT4 alone (R. Mitchell et al., 2014; R. R. Mitchell et 

al., 2014; Szabo et al., 2010) in combination with reprogramming media (RM) have been 

employed towards achieving a cell state that responds to environmental cues. However, 

these approaches are molecularly distinct as the addition of pluripotency factors SKM 

convolutes plasticity induction by up-regulating early development and pluripotency 

genes (Maza et al., 2014; R. Mitchell et al., 2014), indicating that OCT4 alone in 
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combination with short-term exposure to RM is minimally sufficient to induce plasticity 

(R. Mitchell et al., 2014). Accordingly, OCT4-induced plastic cells are capable of 

responding to environmental instruction toward derivation of neural and hematopoietic 

progenitors without traversing pluripotency (R. R. Mitchell et al., 2014; Szabo et al., 

2010). Although molecular/functional evidence indicates that transcriptional hallmarks of 

iPSCs are not observed in OCT4 plastic cells during short-term exposure to RM, whether 

continued culture in conditions known to support pluripotency is sufficient to up-regulate 

these programs remains to be elucidated.	
  

 Given that OCT4 activity and RM is minimally required to induce plasticity, and that 

this combination is also indispensible in the multitude of methodologies described above 

to achieve pluripotency reprogramming, we asked whether OCT4-induced plasticity was 

sufficient for pluripotency acquisition. To this end, we induced plasticity in human 

fibroblasts using OCT4 and short-term exposure to RM. Plastic fibroblasts were subjected 

to continued maintenance in pluripotent-supportive reprogramming media towards further 

influencing pluripotency acquisition. Using a combination of morphological, molecular, 

immunophenotypic, and functional assessments, we provide evidence that our 

deconvoluted OCT4-induced plasticity approach in combination with continued exposure 

to pluripotent supportive conditions is sufficient for inducing bona fide pluripotency in 

adult human fibroblasts. 
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MATERIALS AND METHODS 

Human PSC and primary cell culture 

Human dermal adult forearm biopsies (5x5 mm) were obtained from consenting donors in 

accordance with Research Ethics Board-approved protocols at McMaster University; 

primary cultures were established as described (Villegas & McPhaul, 2005). Primary 

human fibroblasts derived from breast dermal tissue were obtained from ScienCell 

Research Laboratories. All hFibs were cultured in hFib media [DMEM with 10% v/v fetal 

bovine serum (Neonatal Bovine Serum, HyClone), 1% v/v non-essential amino acid 

(NEAA; Gibco), and 1 mM L-glutamine (Gibco)].   

iPSCOCT4 were derived on Matrigel (BD Biosciences) in reprogramming media (RM) 

[DMEM/F12 (Gibco) with 20% Knockout Serum Replacement (Gibco), 100 µM β-

mercaptoethanol, 100 µM nonessential amino acid (Gibco), 1 mM L-glutamine (Gibco) 

supplemented with 16 ng/ml basic fibroblast growth factor (bFGF) and 30 ng/mL insulin-

like growth factor (IGFII)]; and adapted to and cultured in mouse embryonic fibroblast 

conditioned media (MEFCM) supplemented with 10 ng/ml bFGF to stabilize pluripotency 

and enable colony expansion. iPSCOSNL were cultured on Matrigel (BD Biosciences) in 

MEFCM supplemented with 10 ng/ml bFGF. Cells were fed with fresh medium daily and 

confluent cultures were mechanically or enzymatically passaged every 5-7 days using 1 

mg/ml Collagenase IV (Invitrogen). 

Preparation of lentiviral vectors 

pSIN-EF1α-OCT4-Puro plasmid developed by James A. Thomson (University of 

Madison-Wisconsin) and PL-SIN-EF1α-eGFP-Puro developed by James Ellis (University 
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of Toronto) were obtained from Addgene. Virus containing plasmid was produced from 

HEK 293FT Cells with 2nd generation pMD2.G and psPAX2 packaging plasmids.  Viral 

supernatant was harvested 72h after transfection and concentrated by ultracentrifugation. 

Lentiviral transduction of primary human fibroblasts 

Human adult dermal fibroblasts (104 adherent cells per well of a 12-well plate seeded on 

Matrigel the day before transduction) were incubated for 24h with concentrated OCT4 or 

eGFP lentiviral vector in 0.5 mL hFib medium in the presence of 8 µg/ml polybrene 

(Sigma Aldrich). After 24h of incubation, 2 mL of RM was added to the well. Following 

a further 24h of incubation, lentiviral transduction conditions were replaced entirely with 

RM. Cells were maintained in this condition for prolonged culture with media changes 

and removal of areas of overgrown fibroblasts as necessary. iPSC colonies emerged 

between days 45 and 93, and were mechanically isolated and further expanded in 

MEFCM conditions. 

Teratoma Formation 

To assess the development potential of iPSCs in vivo, iPSCs were collected by 

collagenase IV treatment and injected into the left testicle of NOD/SCID mice 

(approximately one well of a 6 well plate of 80% confluence for each mouse). At eight to 

ten weeks, teratomas were harvested, dissected and fixed with 4% paraformaldehyde. 

Samples were embedded in paraffin and processed with hematoxylin and eosin staining. 

hEB formation and hematopoietic differentiation 

Human embryoid bodies (hEBs) were generated by suspension culture as previously 

described (Hong, Werbowetski-Ogilvie, Ramos-Mejia, Lee, & Bhatia, 2010). Medium 



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

119	
  

was changed with the hEB differentiation medium supplemented with hematopoietic 

growth factors (hGFs) as follows: 50 ng/ml granulocyte colony stimulating factor (G-

CSF; Amgen, Inc., Thousand Oaks, CA, USA), 300 ng/ml stem cell factor (SCF; Amgen, 

Inc.), 10 ng/ml interleukin-3 (IL-3; R&D systems, Minneapolis, MN, USA), 10 ng/ml 

interleukin-6 (IL-6; R&D systems), 25 ng/ml BMP4 (R&D systems), and 300 ng/ml Flt-3 

ligand (Flt-3L: R&D systems). hEBs were cultured for 16 days and medium was changed 

every three days. hEBs were enzymatically digested using Collagenase B, and single cells 

were collected. 10,000 cells were plated in Methocult H4434 medium. Colony forming 

units were identified and quantified on day 16. 

Flow cytometry 

Human Fibs and iPSCs were dissociated to single cell suspensions using TrypLE Express.  

Cells were stained using the following antibodies: CD34-PE or -FITC (Miltenyi Biotech, 

Bergisch Gladbach, Germany), CD45-APC (Miltenyi Biotech) for hematopoietic EB 

differentiation experiments. For pluripotent analysis, cells were analyzed for the presence 

of SSEA3-PE and TRA-1-60-Alexa Fluor 647 (BD Pharmingen) for live cell surface 

markers.  For detection of intracellular pluripotent transcription factors cells were fixed 

and permeabilized using the BD Cytofix/Cytoperm kit.  Cells were incubated overnight at 

4°C with conjugated antibodies OCT4-Alexa Fluor 488, SOX2-Alexa Fluor 647 and 

NANOG-PE (BD Pharmingen). Flow cytometric analysis was performed using the BD 

LSRII Flow Cytometer with BD FACSDiva software and analyzed with FlowJo software 

(Tree Star Inc).  Fluorescence activated cell sorting (FACS) was performed using BD 

FACSAria II cell sorter. 
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Real-time quantitative reverse transcription polymerase chain reaction 

Total RNA was extracted from Fib, FibOCT4, whole iPSC cultures and FACS-isolated 

TRA-1-60+ iPSCs using the RNeasy kit (Qiagen), and cDNA was generated using qScript 

cDNA SuperMix (Quanta BioSciences). Oligonucleotides were designed for the detection 

of OCT4 (total, endogenous and exogenous), SOX2, NANOG and GAPDH (Table S1). 

RT-qPCR was performed on the BioRad CFX96 for 40 cycles for all marker genes.  

Relative gene expression was calculated using the ΔΔCt method. Endogenous GAPDH 

housekeeping gene was used for normalization. 

Immunocytochemistry 

Cells were washed once with 1xPBS containing Calcium and Magnesium (Lonza) then 

fixed with 2% paraformaldehyde using the BD Cytofix fixation buffer. Cells were stained 

with SSEA3 or TRA-1-60 antibodies (BD Biosciences), and counterstained with DAPI. 

PCR for provirus integration 

Genomic DNA was extracted from 5x105 hFibs and iPSCOCT4 using the Qiagen DNeasy 

Blood & Tissue Kit. To demonstrate the presence or absence of transgenes in iPSCOCT4 

and parent Fibs, primers specific to each transgene and IRES sequence were used to 

amplify the provirus. Primer sets were designed specifically to amplify OCT4, SOX2, 

LIN28, NANOG, KLF4, and cMYC provirus. pSIN4-EF2-O2S, pSIN4-EF2-N2L, and 

pSIN-EF2-K2M plasmids were used for positive controls. Primer sequences are indicated 

in Table S2. PCR reactions were carried out using Thermo Maxima Hot Start Taq DNA 

Pol. Initial denaturation at 95C (4min) was followed by 35 cycles of denaturation at 95C 
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(30s), annealing at 60C (30s), and elongation at 72C (50s), followed by a final elongation 

at 72C (5 min). 

DNA fingerprinting 

To confirm the dermal and breast fibroblast origins of iPSCOCT4 lines, restriction fragment 

length polymorphism (RFLP) analysis was performed in the Centre for Applied 

Genomics Genetic Analysis Facility at SickKids Hospital (Toronto). 

Array comparative genomic hybridization 

Array comparative genomic hybridization (aCGH) was performed by the Princess 

Margaret Genomic Centre (University Health Network, Toronto) using an Agilent human 

genome CGH 4x44K microarray with CY3/CY5-labelled genomic DNA isolated from 

TRA-1-60+ iPSCOCT4 and sex-matched reference DNA. Data was analyzed on Partek 

Genomics Suite (v6.6) using the genome copy number segmentation algorithm on log2 

ratios converted to copy number, with parameters set to: 15 minimum genomic markers, 

0.001 P-value threshold, 0.5 signal to noise ratio, and diploid copy number range from 1.5 

to 2.5. 
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RESULTS 

Continued exposure of plastic human fibroblasts to pluripotent supportive 

conditions is sufficient for the generation of iPSCs 

Plastic human fibroblasts (hFibs) generated through ectopic expression of OCT4 and 

short-term exposure to reprogramming media (RM) are capable of responding to lineage-

specific culture conditions towards direct conversion to hematopoietic and neural 

progenitor cells without first initiating or establishing pluripotency (R. R. Mitchell et al., 

2014; Szabo et al., 2010). Despite the lack of evidence that OCT4 plastic cells induce 

early transcriptional hallmarks of iPSCs, we asked whether pluripotency could be 

acquired through continued culturing of OCT4 plastic cells in pluripotent supportive 

conditions. Accordingly, hFibs were transduced with OCT4 (hFibOCT4) and cultured in 

RM to induce plasticity (Figs. S1A and B) (R. Mitchell et al., 2014).  Consistent with our 

previous findings, hFibOCT4 morphologies transitioned from bipolar-elongated to compact-

cuboidal, and this transition was dependent on the combination of OCT4 and RM (Fig. 

S1C), suggesting that plasticity had been induced (R. Mitchell et al., 2014). In addition to 

predictive morphological features, total populations of plastic hFibOCT4 have been 

identified by their acquisition of lineage specific gene expression profiles (R. Mitchell et 

al., 2014) and by expression of lineage-specific proteins (R. Mitchell et al., 2014; Szabo 

et al., 2010). For example, expression of the pan-hematopoietic marker CD45 (Woodford-

Thomas & Thomas, 1993) identifies a subset of plastic cells in RM that are capable of 

responding to hematopoietic culture conditions and undergoing direct conversion to the 

hematopoietic lineage (R. Mitchell et al., 2014; Szabo et al., 2010). To further corroborate 
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our morphological assessment that plasticity had been achieved in our current study, we 

performed flow cytometric analyses on total cell cultures at Day 24 (Fig. 1A) using CD45 

expression as a marker of plasticity induction. Flow cytometric analyses revealed CD45 

expression on a subpopulation of cells (Fig. 1B), further indicating that plasticity had 

been achieved. Moreover, we confirmed that plastic hFibOCT4 were devoid of pluripotent 

markers SSEA3 and TRA-1-60 at this time (Fig. 1B) (Takahashi et al., 2007). Having 

confirmed that OCT4 plasticity had been induced, we continued to culture FibOCT4 in RM, 

also known to support pluripotency, and monitored these cultures for the emergence of 

iPSC-like cells. After continued maintenance in RM ranging from 45 to 93 days, flat 

dense colonies of cells with large nuclei and scant cytoplasm resembling iPSCs were 

observed (Figs. 1C, S1D and E). Flow cytometric and immunocytochemistry analyses 

revealed that these colonies expressed pluripotent markers SSEA3 and TRA-1-60 (Figs. 

1D and E). In contrast, we did not detect the emergence of TRA-1-60+ colonies from 

mechanically isolated cultures of CD45+ plastic fibs cultured in RM for the same period 

of time (Figs. S2A and B), suggesting that CD45+ plastic fibs were not a reprogramming 

intermediate on the path to iPSCs (Szabo et al., 2010). Next, we attempted to expand 

SSEA3+TRA-1-60+ colonies through clonal isolation and maintenance in RM. However, 

these conditions were not conducive to expansion, resulting in cultures that did not meet 

our morphological standards for PSC cultures (similar to Fig. 1F) (Bendall et al., 2007; 

Lee et al., 2013). In an effort to assess if pluripotency could be stabilized within these 

cells toward facilitating clonal expansion in the absence of mouse embryonic fibroblasts 

(MEF), we passed FibOCT4-derived SSEA3+TRA-1-60+ colonies evenly into either RM or 
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MEF conditioned medium (MEFCM) supplemented with bFGF (Bendall et al., 2007). 

Culture in MEFCM resulted in stabilization of pluripotency and enabled colony 

expansion within two passages as evidenced by restoration of standard PSC culture 

morphology and a significant increase in frequency of SSEA3+ and TRA-1-60+ cells as 

compared to the culture concurrently maintained in RM (Figs. 1F-J). Given their 

morphological features and robust expression of pluripotency-associated markers, we 

termed these cells iPSCOCT4.  

 In an effort to ensure that iPSCOCT4 colony generation was attributed to ectopic 

expression of OCT4 we generated restriction fragment length polymorphism (RFLP) 

signatures of iPSCOCT4 and compared them to that of the starting hFib populations (Figs. 

1K and S1G) confirming that iPSCOCT4 generation was not a result of culture cross 

contamination with existing PSC lines from our lab. Furthermore, polymerase chain 

reaction (PCR) analysis performed on genomic DNA isolated from iPSCOCT4 colonies 

revealed the exclusive presence of OCT4 provirus integration (Fig. 1L), indicating that 

iPSCOCT4 were derived from hFibOCT4. To confirm that the formation of iPSC colonies 

was directly correlated to ectopic expression of OCT4 alone we used flow cytometric 

analysis to assess pluripotent marker expression in non-transduced, parent hFibs. These 

analyses revealed no expression of endogenous OCT4, SOX2, or NANOG (Fig. 1M), 

indicating that iPSCOCT4 generation was attributed to OCT4-induced plasticity induction, 

and not due to OCT4 expression in combination with endogenous pluripotent TF 

expression as previously demonstrated in neural progenitors (J. B. Kim et al., 2009). 
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Together, these data confirm that iPSCOCT4 are derived from plastic OCT4-expressing 

adult human fibroblasts. 

iPSCOCT4 possess biomolecular, immunophenotypic and functional characteristics 

similar to iPSCOSNL  

We next sought to further validate the pluripotent features of iPSCOCT4 through 

comparison to iPSC generated previously in our lab using a multi-factor approach 

(iPSCOSNL) (Hong, Lee, Lee, Ji, & Bhatia, 2011). To assess the expression of core 

pluripotency factors OCT4, SOX2, and NANOG (Orkin et al., 2008), cultures of 

iPSCOCT4 and iPSCOSNL with comparable confluence and undifferentiated cell content 

(Figs. 2A) were collected for gene expression and flow cytometric analyses. Endogenous 

expression of OCT4, as well as activation of endogenous SOX2 and NANOG transcripts, 

was observed in both iPSC lines (Fig. 2B); demonstrating that exogenous OCT4-

mediated reprogramming is capable of activating pluripotent markers similar to multi-

factor approaches used for pluripotent reprogramming (Chan et al., 2009). Furthermore, 

in three iPSCOCT4 lines derived from three separate human donors, OCT4 transgene 

expression was decreased relative to FibOCT4 and provided minimal contribution to total 

OCT4 expression similar to that observed in iPSCOSNL (Yu et al., 2007) and iPSCOSKM 

(Chan et al., 2009; Takahashi et al., 2007) (Fig. 2C). At the protein level, flow cytometric 

analyses revealed that activated expression of OCT4, SOX2, and NANOG, and 

expression of SSEA3 and TRA-1-60 cell surface pluripotent markers was similar between 

iPSCOCT4 vs iPSCOSNL cultures maintained at comparable undifferentiated colony 

densities (Fig. 2A and D); this protein-level pluripotent marker expression was also 
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observed in lower colony-density cultures of additional iPSCOCT4 lines derived from 

independent hFib sources (Fig. S1F). Together, these molecular and phenotypic 

characteristics possessed by three independent iPSCOCT4 lines are consistent with “type 

III” bona fide iPSCs (Chan et al., 2009). Next, we used array comparative genomic 

hybridization to assess the karyotype of three independent iPSCOCT4 lines, at a genomic 

resolution beyond that obtained using standard cytogenetic procedures (Elliott, Elliott, & 

Kammesheidt, 2010; Martins-Taylor et al., 2011). One iPSCOCT4 line was devoid of copy 

number variation (Fig. 2E), while the others possessed two and five amplifications, the 

majority of which are found in regions/chromosomes that are recurrently altered in 

cultured hPSCs (Fig. S3A)(Baker et al., 2007; Martins-Taylor et al., 2011; Taapken et al., 

2011). While these results indicate that iPSCOCT4 reprogramming is not dependent on the 

presence or acquisition of genetic abnormalities to initiate pluripotency and is similar to 

OSKM and OSNL pluripotent reprogramming (Martins-Taylor et al., 2011; Takahashi et 

al., 2007; Yu et al., 2007), it is possible that the incidence of genetic abnormalities may 

be increased due to prolonged culture required for pluripotency acquisition using OCT4 

alone. Together these results demonstrate that iPSCOCT4 possess the biomolecular 

hallmarks of pluripotency similar to iPSCs generated using a multi-factor reprogramming 

approach. 

 The most stringent test for evaluating pluripotency of human cells is the in vivo 

teratoma formation assay (Thomson et al., 1998). To evaluate whether activation of the 

core pluripotent network conferred functional pluripotent differentiation capacity in 

iPSCOCT4, we assessed their ability to generate teratomas consisting of tissue derivatives 
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from the three germ layers (ectoderm, endoderm, and mesoderm) in immune deficient 

mice. Cultures of iPSCOCT4 and iPSCOSNL, with comparable confluence and 

undifferentiated cell content based on morphological observation and SSEA3 expression 

(Figs. S3B and C), were prepared for intratesticular injection. Consistent with bona fide 

PSC potential, both iPSCOCT4 and iPSCOSNL formed teratomas comprised of all three germ 

layers (Figs. 2F and S3D and E) indicating that iPSCOCT4 are functionally pluripotent in 

vivo. 

 In addition to in vivo differentiation potential, we further investigated if iPSCOCT4 

were capable of responding to targeted in vitro differentiation conditions. Based on our 

established competencies in hematopoietic differentiation of PSCs (Chadwick et al., 

2003; Hong et al., 2010), we vigorously assessed the in vitro hematopoietic capacity of 

iPSCOCT4. Using an embryoid body (EB) based differentiation assay (Fig. 2G)(Chadwick 

et al., 2003), cultures of iPSCOCT4and iPSCOSNL were assessed for their ability to generate 

CD34+CD45+ hematopoietic progenitors. Both iPSCOCT4 and iPSCOSNL underwent 

differentiation towards the hematopoietic lineage, generating similar frequencies of 

CD34+CD45+ putative hematopoietic progenitors (Figs. 2H and I). To further 

characterize the resulting putative hematopoietic progenitors and evaluate whether they 

shared similar functional capacity to differentiate into mature hematopoietic cells we 

subjected them to colony forming unit (CFU) assays. The frequency of CD34+CD45+ 

progenitors with CFU potential was similar between blood progenitors derived from 

iPSCOCT4 and iPSCOSNL (Fig. 2J). Moreover, both iPSCOCT4 and iPSCOSNL derived 

progenitors displayed multilineage differentiation into all of the mature hematopoietic cell 
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types read out by the CFU assay (Fig. 2K), which was further confirmed by Giemsa-

Wright assessment of single cell morphologies (Fig. 2L and M). Taken together these 

results confirm that like iPSCOSNL, iPSCOCT4 are capable of responding to targeted 

differentiation cues resulting in the generation of mature tissue types in vitro, further 

validating this unique source of pluripotent stem cells. 
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DISCUSSION 

Here we show that continued (albeit prolonged) culture of plastic hFibOCT4 in RM media 

is sufficient for induction of pluripotency. Importantly, iPSCOCT4 possess morphological, 

biomolecular, and functional hallmarks of bona fide PSCs. Building on our previous 

works using OCT4 to induce a state of plasticity required for cell fate conversion (R. 

Mitchell et al., 2014; R. R. Mitchell et al., 2014; Szabo et al., 2010), our current findings 

highlight that pluripotency represents another cell fate choice for plastic human 

fibroblasts (Fig. 3) and provides further example that cell fate alteration through plasticity 

induction can be achieved without additional TFs (Efe et al., 2011; J. Kim et al., 2011; J. 

Li et al., 2013) or small molecules (H. Wang et al., 2014; Zhu et al., 2014).  

 Despite the myriad of methodologies to induce pluripotency in human somatic cells 

(Anokye-Danso et al., 2011; Buganim et al., 2014; Eminli et al., 2008; Giorgetti et al., 

2009; Heng et al., 2010; Hou et al., 2013; J. B. Kim et al., 2009; Y. Li et al., 2011; 

Montserrat et al., 2013; Nakagawa et al., 2008; Redmer et al., 2011; Shu et al., 2013; 

Takahashi et al., 2007; Theunissen & Jaenisch, 2014; Yu et al., 2007; Zhu et al., 2010), 

exogenous delivery or endogenous activation of OCT4 is indispensible for 

reprogramming to pluripotency. Furthermore, we are unaware of any report suggesting 

that iPSCs can be generated without the use of pluripotent-supportive reprogramming 

media. As we have demonstrated that pluripotency is another destination of plastic human 

fibroblasts, we suggest that conventional reprogramming to pluripotency (Takahashi et 

al., 2007; Yu et al., 2007) relies on the combination of OCT4-induced plasticity and 

pluripotent media instruction, and is expedited or further specified by the addition of 
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pluripotent-specifying TFs (SKM, SNL). We also propose that this could explain why 

pluripotency is transiently acquired during OSKM-mediated “transdifferentiation” (Maza 

et al., 2014). Given the reduced complexity of our reprogramming system, we feel OCT4-

induced plasticity represents an ideal model to elucidate the governing mechanisms that 

allow for alteration of cell fate upon manipulation of native transcriptional programs 

towards both lineage specific progenitors and pluripotent stem cells alike. 
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Figure 1. Continued exposure of OCT4 plastic human fibroblasts to pluripotent 

supportive conditions is sufficient for the generation of iPSCs 

(A) Representative images of hFibOCT4 culture maintained in RM for 24 days. The 

presence of regions (red dashed circle and image on right) that resemble plastic hFibs 

capable of responding to hematopoietic culture conditions and undergoing direct 

conversion to the hematopoietic lineage suggests that plasticity has been induced. Scale 

bars represent 100µm. (B) Flow cytometric analysis plots of total dissociated hFibOCT4 

cultures reveals the presence of CD45+ cells and the absence of SSEA3+ and TRA-1-60+ 

cells. (C) Representative images of an emerging iPSC-like colony (left image, red dashed 

circle) and its subsequent expansion in its well of origin (center and right image). 

Enlarged region of highlighted area (center image, red dash rectangle) is depicted in the 

image on the right. Scale bars represent 100µm. (D) Flow cytometric analysis of hFibOCT4 

cultures possessing iPSC-like colonies reveals the presence of SSEA3+ and TRA-1-60+ 

cells. (E) SSEA3 and TRA-1-60 staining of iPSC-like colonies. Colony borders are 

indicated with yellow dashed lines. Scale bars represent 100µm. (F-I) Representative 

images and flow cytometric analyses of cultures derived from splitting SSEA3+TRA-1-

60+-containing cultures maintained in RM (Passage 2, P2) into (F,G) RM or (H,I) 

MEFCM for two passages (P2-4). iPSC-like colony is indicated with red dashed oval. 

Scale bars represent 100µm. (J) Comparison of frequencies of SSEA3+ and TRA-1-60+ 

cells in RM versus MEFCM cultures after two passages (P2-4). Bars represent n=3 mean 

+ SEM, **p <0.005. (K) Representative comparison of RFLP signature obtained for 

parent hFib and associated iPSCOCT4. (L) PCR showing exclusive genomic integration of 
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OCT4 in iPSCOCT4. (M) Flow cytometric analysis of non-transduced parent hFibs 

depicting the absence of endogenous expression of OCT4, SOX2, and NANOG. 



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

143	
  

 

8 78? 784 78=

8

78?

784

78= =:DB 4:87

=:77B=:7

/
/
C
,
?

3@,A7A98

E

D

B

8 78? 784 78=
8

68

48

98

B8

788

2
<)
"#

8

Unstained
TRA-1-60

8 786 78? 784 78=
8

68

48

98

B8

788

2
<)
"#

6:8?

Unstained
CD45

8 78? 784 78=
8

68

48

98

B8

788

2
<)
"#

8

Unstained
SSEA3

A
hFibOCT4

C iPSC-like colonies

TRA-1-60

SSEA3

H

F G

I

J

8

78?

784

78= D:86 ?:;4

9:;7B6:7

8 78? 784 78=

8

78?

784

78= B:;= B:96

67:?97:7

/
/
C
,
?

3@,A7A98

KLF4

Plasmid
Control

hFib

iPSCOCT4

OCT4 SOX2 cMYC NANOG LIN28 M

8 786 78? 784 78=

!"#$%&'(()(%$*+,+-.

8

=8>

788>

7=8>

688>

6=8>

/
01
'*
/
&%
##'
$ 8

8 786 78? 784 78=

!"#$%&'(()(%$*-234

8

=8>

788>

7=8>

688>

6=8>

/
01
'*
/
&%
##'
$ 8:87

=
8 786 78? 784 78

!"#$%&'(()(%$*/-56

8

=8>

788>

7=8>

688>

6=8>

/
01
'*
/
&%
##'
$ 8:84

K

L

MEFCM

RM



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

144	
  

Figure 2. iPSCOCT4 possess biomolecular, immunophenotypic and functional 

characteristics similar to iPSCOSNL  

(A) Representative images of established iPSCOCT4 and iPSCOSNL cultures prior to 

molecular and phenotypic characterization. Colony borders are indicated with yellow 

dashed lines. Scale bars represent 100µm. (B) RT-qPCR data examining endogenous 

OCT4, SOX2, and NANOG expression in whole iPSCOCT4 (P10) and iPSCOSNL (P52) 

cultures. Bars represent mean + standard deviation, n=3 technical replicates; gene 

expression is normalized to GAPDH and compared relative to hFibs. (C) RT-qPCR data 

examining total and exogenous OCT4 expression in FibOCT4, Fib, and TRA-1-

60+iPSCOCT4 (P12-19). Bars represent mean + standard deviation, n=3 technical 

replicates; gene expression is normalized to GAPDH and relative to FibOCT4. (D) 

Representative flow cytometric analysis plots of pluripotent marker expression in 

iPSCOCT4 and iPSCOSNL cultures. (E) Karyotype of iPSCOCT4 (P19), generated by aCGH 

analysis, depicting the absence of copy number variation. (F) Hematoxylin and eosin 

staining of teratoma sections depicting cell derivatives of all three embryonic germ layers. 

Tissue type is denoted, and associated area of interest is highlighted by either red circle or 

arrow. (G) Representative images of EBs formed in vitro from iPSCOCT4 and iPSCOSNL, 

scale bars represent 100 µm. (H) Representative flow cytometric analyses of CD34 and 

CD45 cell surface marker expression on dissociated, day 16 EBs derived from iPSCOCT4 

and iPSCOSNL. (I) Frequency of CD34+CD45+ cells at day 16 of hematopoietic 

differentiation, as assessed by flow cytometric analysis. Bars represent n=3 + SEM, 

results are not significantly different. (J) The frequency of CD34+CD45+ cells that give 
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rise to colony forming units when plated in CFU assay. Bars represent n=3 + SEM, 

results are not significantly different. (K) Distribution of hematopoietic colony types 

formed by day 16 of the CFU assay. Bars represent n>4 + SEM. (L,M) Representative 

images of mature hematopoietic colonies (and associated Giemsa-Wright staining) 

generated from iPSCOCT4 and iPSCOSNL-derived EBs subjected to CFU assay. White scale 

bars represent 100 µm, black scale bars represent 10 µm. 
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Figure 3. Acquisition of pluripotency is one of multiple cell fate choices that can be 

facilitated through environmental stimulation of OCT4-induced plasticity 

(A) Schematic placing the derivation of iPSCOCT4 from plastic cells into context with 

previous demonstrations of cell fate conversion using OCT4 plastic cells. Given the 

stochastic nature of cellular fate reprogramming of adult human primary tissues, the range 

in timing of observed OCT4-induced plasticity events is illustrated by dotted bar lines 

along the timeline. 
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Supplementary Figure 1. Emergence of iPSC-like colonies from plastic Fibs 

(A) Representative image of hFibOCT4 cultured in RM four days post-transduction. Scale 

bar represents 100µm. (B) Flow cytometric analysis of hFibOCT4 assessing OCT4 

transduction efficiency. (C) Representative images depicting the transition of bipolar-

elongated, untransduced hFibs to compact-cuboidal plastic hFibs (denoted by red arrows) 

that is dependent on the combination of OCT4 transduction and culture in RM. Scale bars 

represent 100µm. (D) Emerging iPSC-like colonies, indicated by red dashed circles, 

detected between day 45 and 93. Scale bars represent 100µm. (E) Overviews of the 

reprogramming experiments performed, timing of iPSC colony emergence, and the 

number of colonies generated. Source, passage number, and numbers of hFibs transduced 

in each experiment are indicated. (F) Flow cytometric analyses of SSEA3, TRA-1-60, 

OCT4, SOX2, and NANOG expression in iPSCOCT4 lines (P18 and P17) derived from Fib 

sources 2 and 3. Lower frequencies of pluripotent markers are solely attributed to the 

lower density of colonies present in the cultures at the time of analysis; increased colony 

density was achieved after subsequent passages and confirmed by the presence of > 35% 

TRA-1-60+ cells (data not shown). (G) Comparison of RFLP signature obtained for 

parent hFibs and associated iPSCOCT4.  
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Supplementary Figure 2. iPSCOCT4 are not derived from CD45+hFibOCT4 

(A) Isolated CD45FibOCT4 colonies maintained in reprogramming media for up to 45 

days, without appearance of iPSC-like colonies. Highlighted area is enlarged in the image 

on the right, scale bars represent 100µm. (B) Flow cytometric analysis plot assessing 

TRA-1-60 expression in CD45+FibOCT4 cultures maintained in RM for 45 days. 
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Supplementary Figure 2 SALCI et al, 2015
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Supplementary Figure 3. iPSCOCT4 possess in vivo pluripotent capability 

(A) Karyotypes of iPSCOCT4 (P14,18), generated by aCGH analysis, depicting the 

presence of genomic alterations; the majority of which are found in regions/chromosomes 

that are recurrently altered in cultured PSCs (Baker et al., 2007; Martins-Taylor et al., 

2011; Taapken et al., 2011). (B) Representative images of iPSCOCT4 and iPSCOSNL 

cultures prior to intratesticular injection into NOD/SCID mice. Red arrows indicate 

colony borders, scale bars represent 100µm. (C) Flow cytometric analysis plots depicting 

the frequency of SSEA3+ cells in iPSCOCT4 and iPSCOSNL cultures prior to injection. (D) 

Average frequency of SSEA3+ cells collected prior to IT injection, represent n>5 + SEM. 

Teratoma formation frequency represents the number of tumours formed possessing all 

three germ layers over total number of mice injected. (E) Representative images of 

teratomas harvested from mice injected with iPSCOCT4 or iPSCOSNL. 
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Supplementary Figure 3 SALCI et al, 2015
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CHAPTER 4 

Induced pluripotent stem cells and hematopoietic progenitors generated from 

primary human AML cells harbouring the MLL-AF9 leukemic aberration exhibit 

dysfunctional differentiation capacity 

PREAMBLE 

This chapter is an original research manuscript prepared for submission to Blood. 

*JH Lee and KR Salci contributed equally to this work 

 Dr. Jong Hee Lee and I designed experiments with input from my supervisor Dr. 

Mickie Bhatia. I assembled, analyzed and interpreted data and wrote the manuscript. I 

performed culture and enrichment of healthy MPB and AML samples prior to 

reprogramming, culture of iPSCs, flow cytometric analyses, FISH, CFU assays and 

morphological analyses of mature blood cells. Dr. Jong Hee Lee performed lentiviral 

transduction, generation and molecular/immunophenotypic characterization of iPSCs, and 

EB differentiation experiments. Dr. Borko Tanasijevic performed RT-PCR experiments. 

Zoya Shapovalova provided technical assistance with cell culture, flow cytometry and 

hematopoietic differentiation. Aline Fiebig-Comyn performed cell injections for teratoma 

assays and technical assistance with histological preparations. Dr. Mickie Bhatia oversaw 

the entire study, assisted in manuscript preparation and finalized the manuscript. 

	
   Disease modeling proof-of-concepts had been established by reprogramming 

fibroblasts from patients with inherited neurological diseases (Ebert et al., 2009; 

Marchetto et al., 2010). However, reprogramming cancer cells to iPSCs had proven more 
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difficult (Kumano et al., 2012; Stricker et al., 2013) and had not been evaluated using 

human AML cells. Given the lack of practical cell-based models of AML required for 

further elucidation of mechanisms underlying AML pathogenesis and high-throughput 

discovery of novel therapeutics, we were inspired to investigate if we could capture and 

model AML through generation of iPSCs from primary leukemic cells. 
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ABSTRACT 

A lack of human cell models encompassing the diverse molecular heterogeneity observed 

in human acute myeloid leukemia (AML) has contributed to a poor understanding of the 

underlying molecular pathogeneses of disease and has hindered the development of novel 

therapeutics. Although reprogramming primary human cancer cells to pluripotency has 

enabled disease modeling of other neoplastic tissues, it remains to be explored in AML. 

Here we reveal that conventional Yamanaka reprogramming conditions are insufficient to 

induce pluripotency in 12 primary human AML samples, but demonstrate for the first 

time that generation of AML iPSCs is possible when reprogramming conditions are 

modified. Naïve pluripotency-promoting reprogramming conditions [LIF with 

MEK/GSK3 inhibitors (2i)] improved reprogramming efficiency in normal blood samples 

and enabled the generation of iPSCs from an AML sample harbouring the MLL-AF9 

leukemic aberration. These AML iPSCs exhibited hallmark morphological, molecular and 

immunophenotypic features of pluripotency, but maintained MLL-AF9 expression and 

exhibited dysfunctional differentiation features in vitro and in vivo. Moreover, 

CD34+CD45+ hematopoietic progenitor cells (HPCs) derived from AML iPSCs in vitro 

were incapable of terminal differentiation to mature monocytes, granulocytes and 

erythrocytes, similar to matched primary leukemic cells. Our study provides proof of 

principle that disease modeling of AML using iPSCs is possible and foundational insights 

toward the development of unique reprogramming conditions that should enable efficient 

iPSC generation from molecularly diverse primary AML samples. 
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HIGHLIGHTS 

• Conventional Yamanaka reprogramming conditions are insufficient to generate 

iPSCs from primary AML samples 

• Naïve (LIF/2i) reprogramming conditions enable derivation of iPSCs from a MLL-

AF9+ primary AML sample 

• AML iPSCs express MLL-AF9 and exhibit dysfunctional differentiation capacity in 

vitro and in vivo 

• HPCs derived from AML iPSCs are incapable of differentiation into mature myeloid 

lineages in vitro similar to matched primary leukemic sample 

 

KEYWORDS 

Acute myeloid leukemia, disease modeling, leukemic aberration, reprogramming 

 

ABBREVIATIONS 

AML, acute myeloid leukemia; BM, bone marrow; CFU, colony forming unit; FISH, 

fluorescence in situ hybridization; HSPC, hematopoietic stem/progenitor cell; iPSC, 

induced pluripotent stem cell; OSKM, OCT4/SOX2/KLF4/cMYC; PB, peripheral blood; 

TF, transcription factor 
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INTRODUCTION 

Acute myeloid leukemia (AML) is a complex cancer of the human hematopoietic system 

that results in the rapid accumulation of immature white blood cells in bone marrow 

(BM), peripheral blood (PB), and secondary tissues1. Disease heterogeneity is 

characterized by a multitude of epigenetic2, genetic2-5, and transcriptional3 abnormalities 

that have been identified across clinically diverse AMLs. Although these features carry 

prognostic importance1, 6, 7, their functional contributions to the underlying mechanisms 

of disease pathogenesis remain largely unknown, thereby hindering the development of 

novel therapeutics and treatment strategies1. In vivo humanized mouse AML 

xenotransplant models provide a surrogate of human disease8, but sample engraftment is 

not guaranteed9 and this method is not conducive to high-throughput drug and genetic 

screens that should be performed in vitro. However, in vitro primary human AML cell 

models are limited by the ineffectiveness of hematopoietic cytokine suspension cultures 

to maintain primitive AML cells10, the complexities associated with classical long-term 

stromal co-cultures11, and potentially convoluted by unknown molecular effects caused 

by small molecules used for ex vivo maintenance12. Similarly, immortalized cell lines may 

provide mechanistic insights13, but do not faithfully recapitulate disease progression or 

heterogeneity. As such, in vitro cell models for further mechanistic studies of AML and 

drug development are lacking. 

 Conventional Yamanaka reprogramming methods using OCT4, SOX2, KLF4 and 

cMYC (OSKM) pluripotent transcription factor (TF) delivery and pluripotent-supportive 

culture media supplemented with basic fibroblast growth factor (bFGF) allow for the 
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derivation of induced pluripotent stem cells (iPSCs) from mature somatic cells14. 

Subsequent application of reprogramming methods to human cancers has enabled 

modeling of gastrointestinal15 and chronic myeloid leukemia (CML)16 cancers from 

tumour cell lines, and CML17, glioblastoma18, myelodysplastic syndrome19 and pancreatic 

ductal adenocarcinoma20 cancers from primary patient-derived cancer cells. However, 

cancer cell reprogramming is highly inefficient16, 17, 20, 21, with marginal success often 

observed across primary patient samples from multiple cancers17, 18, 20, 21, thereby 

preventing robust adaptation of this technology to disease modeling and drug screening. 

Moreover, studies investigating the technical challenges associated with cancer cell 

reprogramming are lacking. Toward addressing the unmet need for AML cell models and 

the inefficiency of cancer cell reprogramming, we applied conventional and modified 

reprogramming techniques to 12 diverse, primary human AML samples and found that 

MLL-AF9+ iPSCs could be generated that exhibit dysfunctional differentiation features in 

vitro and in vivo that are similar to that of primary leukemic disease. Our findings provide 

proof of principle that modeling of primary AML disease is possible using 

reprogramming technologies, with initial insights into the cancer cell reprogramming 

blockade, that together should motivate further studies aimed at achieving robust 

reprogramming across diverse primary cancer tissues for the purposes of drug discovery 

and identification of disease mechanisms. 
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MATERIALS AND METHODS 

Human patient samples 

BM and PB samples were obtained from consenting human AML patients, and normal 

MPB from healthy donors, at the Juravinski Cancer Center (Hamilton, Ontario) in 

accordance with Research Ethics Board-approved protocols at McMaster University. 

Mononuclear cells were isolated using density gradient centrifugation (20 min, 1500 rpm) 

in Ficoll-Paque Premium (GE Healthcare Life Sciences), followed by ammonium 

chloride treatment (Sigma-Aldrich) for 5 min at 4°C. CD34+ enrichment was performed 

using CD34 magnetic microbead kit with LS columns (Miltenyi Biotec) according to 

provided protocol. 

Human cell culture 

AML BM and PB were cultured in hematopoietic media: IMDM with 15% v/v BIT serum 

substitute (StemCell Technologies), 1% v/v non-essential amino acid (Gibco), and 1% v/v 

sodium pyruvate (Gibco) supplemented with 100 ng/ml Flt-3 ligand (Flt-3L; R&D 

systems), 20 ng/ml interleukin-3 (IL-3; R&D systems), 100 ng/ml stem cell factor (SCF; 

Amgen Inc.), and 100 ng/ml thrombopoieitin (TPO; R&D systems). 

 During reprogramming AML samples were either cultured on irradiated mouse 

embryonic fibroblasts (iMEFs) in conventional iPSC media or naïve iPSC media: 

DMEM/F12 (Gibco) with 20% Knockout Serum Replacement (Gibco), 100 µM β-

mercaptoethanol, 100 µM nonessential amino acid (Gibco), 1 mM L-glutamine (Gibco) 

either supplemented with 10 ng/ml basic human fibroblast growth factor (bFGF) for 

conventional iPSC media or 20 ng/ml human leukemia inhibitory factor (LIF) with the 
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two inhibitors (2i) PD0325901 (1 µM, MEK/ERK inhibitor) and CHIR99021 (3 µM, 

GSK3ß inhibitor) for naïve iPSC media. After derivation, all iPSCs were cultured on 

iMEFs in conventional iPSC media. 

 iPSC-derived embryoid bodies (EBs) were cultured in hematopoietic differentiation 

media: KO-DMEM (Gibco) with 20% Knockout Serum Replacement (Gibco), 100 µM β-

mercaptoethanol, 100 µM nonessential amino acid (Gibco), 1 mM L-glutamine (Gibco) 

supplemented with 25 ng/ml bone morphogenetic protein 4 (BMP4; R&D systems), 300 

ng/ml Flt-3L, 50 ng/ml granulocyte colony stimulating factor (G-CSF; Amgen Inc.,), 10 

ng/ml IL-3, 10 ng/ml interleukin-6 (IL-6; R&D systems), and 300 ng/ml stem cell factor 

(SCF; Amgen Inc.). 

Cellular Reprogramming 

Plasmids pSIN4-EF2-O2S and pSIN-EF2-K2M developed by James A. Thomson 

(University of Madison-Wisconsin) were obtained from Addgene. Lentivirus produced in 

HEK 293FT cells using 2nd generation pMD2.G and psPAX2 packaging plasmids was 

harvested 72h after transfection and concentrated by ultracentrifugation. CD34+ primary 

AML BM and PB, normal MPB and OCI-AML3 cell line (105) cultures were exposed to 

concentrated lentiviral vectors in hematopoietic media supplemented with 8 µg/ml 

polybrene (Sigma-Aldrich), spun in plates at 1300 rpm at room temperature for 90 m, and 

incubated at 37°C for 24 h. This procedure was repeated once more. Media was replaced 

with fresh hematopoietic media 48 h after second incubation (day 4). On day 5, cells were 

seeded on 2 wells of 200,000 iMEFs and maintained in either conventional or naïve iPSC 

media. iPSC colonies emerged > 20 days post-transduction and were individually isolated 
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and expanded on iMEFs. 

Flow cytometry 

AML, normal MPB cells and iPSC-derived HPCs were analyzed with CD34-PE and 

CD45-APC antibodies (BD Biosciences), AML transduction efficiency with OCT4-Alexa 

Fluor 647 and SOX2-Alexa Fluor 647 (BD Pharmingen), iPSCs with OCT4-Alexa Fluor 

488, SOX2-Alexa Fluor 647, NANOG-PE, SSEA3-PE and TRA1-60-Alexa Fluor 647 

(BD Pharmingen), and AML and iPSC-derived CFUs with CD11b-APC, CD14-PE, 

CD15-PE, and CD45-Pacific Blue antibodies (BD Biosciences and BioLegend). Cells 

were fixed and permeabilized for intracellular staining using the BD Cytofix/Cytoperm 

kit. Flow cytometry was performed using the LSRII Flow Cytometer with FACSDiva 

software (BD) and analyzed by FlowJo software (Tree Star, Inc.). Cells were sorted using 

the FACSAria II (BD). 

Fluorescence in situ hybridization 

Fluorescence in situ hybridization (FISH) was performed on AML BM, iPSC and CFU 

samples using commercially available FISH probes (Abbott Molecular). Cells were 

incubated in 0.075M KCl (37°C, 15 min) and fixed in Carnoy’s Solution. Slide 

preparations were denatured in formamide-based solution (73°C, 5 m), mixed with 

denatured probes (73°C, 5 m in heating block), sealed with Elmer’s Rubber Cement, and 

incubated overnight at humid incubators set to 37°C [Locus-specific identifier (LSI) 

probes] or 42°C [Chromosome enumeration probes (CEP)]. Post-hybridization washes 

were performed in 0.4x SSC/0.3% NP40, pH 7.0 (73°C, 2 min), followed by 2x 
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SSC/0.1% NP40, pH 7.0 (RT, 1 min), and mounted with DAPI II counterstain (Abbott 

Molecular). Number of nuclei scored are indicated in figure legends. 

Teratoma assay 

AML iPSCs were collected and injected into NOD/SCID mice testes as previously 

described22. Tumours were harvested after 8-10 weeks, sectioned, and stained by 

hematoxylin and eosin to assess for formation of derivatives of the three embryonic germ 

layers.  

Hematopoietic differentiation of iPSCs 

iPSCs treated with 200 U/mL collagenase IV (Invitrogen) were scraped into clumps and 

transferred into suspension culture to form embryoid bodies (EBs) in hematopoietic 

differentiation media as previously described23. EBs were collected after 15 days and 

dissociated into single cell suspensions by 0.4 U/mL collagenase B (Roche Life Science). 

Total single cell suspensions were analyzed by flow cytometric or CFU analyses. 

Clonogenic CFU Assay 

AML BM and iPSC-derived EB suspensions were plated in Methocult H4434 medium 

(StemCell Technologies) to assess clonogenic colony-forming unit (CFU) capacities as 

previously described22. Individual colonies were isolated, resuspended in 100 uL PBS, 

spun onto microscope slides using the Shandon Cytospin 3 (Block Scientific, Inc.), 

stained with Giemsa-Wright using Shandon Kwik-Diff Stain Kit (Thermo Scientific) and 

assessed for single-cell morphology. Full wells were collected for FISH and flow 

cytometric analyses.  
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Reverse-transcriptase polymerase chain reaction 

Reverse-transcriptase polymerase chain reaction (RT-PCR) was performed on AML BM, 

iPSCs, and iPSC-derived CFUs to assess MLL-AF9 fusion and GAPDH gene transcripts. 

Primer sequences (5’ to 3’) used to detect MLL-AF9 were MLL-exon7-Fwd 

(GGAAGTCAAGCAAGCAGGTC) and AF9-exon7-Rev (TCGGCTGCCTCCTCTATT 

TA), and to detect GAPDH were GAPDH-Fwd (CCACATCGCTCAGACACCAT) and 

GAPDH-Rev (GCGCCCAATACGACCAAAT). 

Imaging and Immunocytochemistry 

BF and fluorescent images were acquired using an Olympus microscope fitted with a 

CoolSNAP HQ2 camera (Photometrics Scientific) or the PerkinElmer Operetta High 

Content Imaging System. Teratoma sections and hematopoietic cytospins were imaged 

using ScanScope CS digital slide scanner with Aperio Image Scope software. 

 TRA-1-60 expression was assessed on live iPSCs using TRA-1-60 DyLight 488 

(Stemgent). TRA-1-60 staining and 4',6-diamidino-2-phenylindole (DAPI) 

counterstaining were together performed on iPSCs fixed in 4% paraformaldehyde. 

Statistical Analysis 

Data are presented as mean ± standard error of mean (SEM) or standard deviation (SD). 

Prism software (version 5.0a; GraphPad) was used for all statistical analyses, and the 

criterion for statistical significance was p < 0.05. 
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RESULTS 

Primary human AML samples are not amenable to iPSC generation using 

conventional reprogramming conditions 

 Conventional reprogramming conditions originally described using human 

fibroblasts14 have enabled iPSC derivation from human CD34+ cord blood (CB)24 and 

mobilized peripheral blood (MPB)25 cells. We therefore asked whether these conditions 

would also allow for the generation of iPSCs when applied to primary human AML 

samples (Fig. 1a). To best reflect the heterogeneity of AML disease observed clinically3, 

we curated a diverse library of genetically abnormal primary PB and BM samples for 

reprogramming experiments (Tables 1 and 2). The use of samples with identifiable 

mutations found uniquely in the leukemic cells would also enable genetic interrogation of 

downstream iPSCs toward establishing their leukemic cell origin. We first attempted to 

reprogram six CD34+-enriched AML PB samples (Table 1 and Supplementary Fig. 1a). 

Given the rare presence of healthy CD34+ hematopoietic stem/progenitor cells (HSPCs) 

in circulation26, CD34+ AML PBs represented highly leukemic samples in which to 

establish whether reprogramming AML was possible. Despite our established 

competency in reprogramming blood samples to pluripotency24, we did not observe iPSC 

colony formation from any of the six PB samples during 60 days of observation post-

transduction. As it has been previously demonstrated that paired CD34+ PB and BM cells 

from AML patients exhibit molecular and functional differences27, we next attempted to 

reprogram six primary, CD34+-enriched AML BM samples (Table 2 and Supplementary 

Fig. 1b) to evaluate whether BM-resident leukemic cells were more amenable to 
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reprogramming. Dissimilar to AML PB, we observed iPSC colony formation in 2 of the 6 

samples attempted (Table 2). However, genetic interrogation of > 6 iPSC lines per 

sample revealed that all colonies were derived from blood cells devoid of leukemic 

aberration (Fig. 1b), demonstrating that BM-residing leukemic cells are equally as 

refractory to reprogramming as circulating leukemic cells. To investigate whether failed 

reprogramming was attributed to inefficient pluripotent factor delivery and/or expression 

in AML cells we assessed OCT4-SOX2 (OS) transduction efficiency and expression in 

AML versus normal MPB. AML and MPB shared similar cell morphologies, exhibited 

clumping, and expressed OS following lentiviral transduction similar to GFP control (Fig. 

1c,d), indicating that AML cells can successfully uptake and express reprogramming 

factors. Although the frequency of OS+ cells was lower than that of GFP+ cells (Fig. 1e), 

this was common and similar between AML and MPB (Fig. 1f) and is likely attributed to 

lower transduction efficiency of OS versus GFP lentivirus. Moreover, leukemic cell 

viability was not greatly reduced in most samples (Fig. 1g), suggesting that cell death 

following lentiviral transduction was not a limiting factor of reprogramming. We next 

assessed whether these results were also observed in an AML cell line exposed to 

reprogramming conditions sufficient for iPSC generation from healthy MPB, and found 

that similar to primary AML samples, immortalized AML cells are refractory to 

reprogramming despite efficient TF delivery (Supplementary Fig. 2a-d). Together, these 

results indicate that human AML samples are refractory to reprogramming using 

conventional conditions despite expression of reprogramming factors, suggesting that a 

barrier to reprogramming occurs downstream of pluripotent factor delivery and 
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expression. These findings are corroborated by past attempts using somatic cell nuclear 

transfer to derive ESCs from acute myeloid leukemia28, and non-robust reprogramming 

observed using other malignant cell types16, 17, 20, 21. 

Naïve reprogramming conditions increase reprogramming efficiency and enable the 

derivation of iPSCs from a primary AML sample harbouring MLL-AF9 

 We recently determined that naïve pluripotency-supporting conditions, whereby 

bFGF is substituted for leukemia inhibitory factor (LIF) in combination with MEK/ERK 

and GSK3 inhibitors (2i), are conducive to iPSC generation from human CB (Lee, JH. et 

al., under review at Cell). Given the increased expression and stability of the pluripotent 

network under naïve conditions (Lee, JH. et al.), we hypothesized that naïve 

reprogramming conditions may increase reprogramming efficiency toward enabling AML 

iPSC generation. We first compared naïve versus conventional reprogramming of normal 

MPB and found that naïve conditions significantly increased the number of TRA-1-60+ 

iPSC colonies generated (Fig. 2a). To assess whether this improved reprogramming 

efficiency and would facilitate the generation of iPSCs from AML, we compared our 

unique naive reprogramming approach (Fig. 2b) to conventional reprogramming (Fig. 1a) 

using three AML BM samples. We selected two samples (AML 14256 and 15331) that 

we had generated normal iPSCs (devoid of leukemic mutation) from previously, as this 

would serve as an inherent control to determine whether reprogramming efficiency 

increased, and a third sample (AML 14384) which was previously unsuccessful (Table 

2). Naïve versus conventional reprogramming conditions significantly improved 

reprogramming efficiency, leading to increases in the number of colonies generated in 
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two samples and enabling generation of an iPSC line from the third (Fig. 2c). Uniquely, 

all TRA-1-60+ iPSC lines derived from AML 15331 BM in naïve, but not conventional, 

reprogramming conditions expressed core pluripotency factors OCT4, SOX2 and 

NANOG, SSEA3 and TRA-1-6029, 30 and harboured the MLL-AF9 aberration found in 

the leukemic cells31 (Fig. 2d,e and 3a-c and Supplementary Fig. 3); demonstrating that 

AML iPSC generation is possible using non-conventional reprogramming conditions. 

However, this effect was not observed in other AML samples, as all iPSCs generated 

from AML 14256 (trisomy 8) and 14384 (PML/RARα) BM were devoid of the aberration 

found in the leukemic cells regardless of the reprogramming condition used (Fig. 2d,e 

and Supplementary Figs. 4,5), while naïve conditions alone were insufficient to generate 

AML iPSCs from two additional AML samples harbouring inv(16) and del5q/monosomy 

7 aberrations (Supplementary Fig. 6). Taken together, these results suggested that 

successful AML iPSC generation using naïve conditions may not be attributed to 

improved reprogramming efficiency alone, but rather a stochastic synergy of culture 

condition effects and epigenetic, genetic or transcriptional programs unique to AML 

15331 leukemic cells. Although further investigation into conditions required to 

overcome cancer cell reprogramming blockade is required before robust generation of 

AML iPSCs can be achieved, we demonstrate for the first time that it is possible and 

proceeded to assess whether these AML iPSCs recapitulated relevant disease features. 



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

173	
  

AML iPSCs express the MLL-AF9 fusion transcript and exhibit dysfunctional in 

vivo differentiation capacity 

 We next evaluated the functional ability of AML iPSCs derived from Patient 15331 

to generate the three embryonic germ layers in vivo using the teratoma assay33. Similar to 

normal hPSCs14, 33, AML iPSCs injected into mouse testes developed into tumours within 

8-10 weeks (Fig. 3d). However, morphological analyses of hematoxylin and eosin-

stained tumour sections revealed that AML iPSC differentiation potential was limited to 

ectoderm and infrequently endoderm, with no detection of the mesoderm lineage (Fig. 

3e). Moreover, each tumour possessed regions of primitive, undifferentiated cell types 

(Fig. 3f). Given that AML iPSCs exhibited morphological, molecular and 

immunophenotypic features of bonafide iPSCs (Fig. 3a-c)32 and that MLL-AF9 over-

expression has a demonstrated driver role in leukemogenesis and differentiation 

blockade34, we hypothesized that dysfunctional teratoma generation from AML iPSCs 

may be attributed to the presence of the leukemic aberration rather than failed acquisition 

of pluripotency. Accordingly, we performed reverse transcriptase polymerase chain 

reaction (RT-PCR) to evaluate if the MLL-AF9 genomic aberration was actively 

expressed in the pluripotent state. Unlike previous work where iPSCs derived from 

transgenic MLL-AF9-induced mouse leukemia did not express MLL-AF935, we found 

that primary human AML iPSCs harbouring the endogenous MLL-AF9 leukemic 

aberration expressed the fusion transcript (Fig. 3g). Together these results demonstrate 

that AML iPSCs possess dysfunctional differentiation potential in vivo, and suggest that 
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MLL-AF9 may play a role in this dysfunctional differentiation similar to the impaired 

differentiation observed in HPCs expressing MLL-AF934. 

HPCs derived from AML iPSCs recapitulate dysfunctional differentiation features 

similar to primary leukemic sample 

 Building on the dysfunctional differentiation features of AML iPSCs in vivo, we next 

asked whether this affected hematopoietic (mesoderm) differentiation capacity in vitro 

using an embryoid-body (EB)-based protocol to generate HPCs36. The unique ability to 

generate isogenic (normal and AML) iPSCs from AML Patient 15331 BM using 

conventional and naïve reprogramming conditions (Fig. 2d,e and Supplementary Figure 

3) also provided a platform in which to directly compare the functional capacities of 

normal versus AML iPSC-derived HPCs pending successful generation (Fig. 4a). Similar 

to our in vivo experiments, AML iPSC lines exhibited a limited ability to differentiate to 

CD34+CD45+ putative HPCs; with an average frequency of 0.15% CD34+CD45+ cells 

detected using eight independent lines in 16 differentiation experiments (Fig. 4b,c). In 

contrast, differentiation experiments performed in parallel using six normal iPSCs derived 

from the same patient led to the efficient generation of CD34+CD45+ putative HPCs 

(average frequency of 7.14%) (Fig. 4b,c). All normal and AML iPSC-derived cells were 

subsequently plated in colony forming unit (CFU) assays to assess for clonogenic HPC 

capacity from CD34+CD45+ cells through the formation of hematopoietic colonies in 

semisolid medium22. Hematopoietic colony formation was observed from all normal iPSC 

derivatives, but was limited to 1 of 8 AML iPSC derivatives (Fig. 4d and Table 3), 

indicating that AML iPSCs have significantly limited capacity to generate HPCs. These 
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findings using isogenic iPSCs provide further evidence that AML iPSCs possess impaired 

differentiation capacity, suggesting that AML iPSCs may provide a platform in which to 

perform high throughput screens for novel chemical compounds or gene editing strategies 

that restore normal differentiation features.  

 To validate whether the impaired differentiation features of AML iPSCs were 

relevant to the primary leukemic disease, we next compared hematopoietic colonies 

generated from AML iPSC-derived HPCs and matched patient BM sample. A 

combination of morphological and flow cytometric analyses revealed that colonies 

generated from AML iPSC-derived HPCs consisted of promonocytes and promyelocytes 

that were incapable of maturation to CD11b+CD14+ monocytes and CD15+CD11b+ 

granulocytes, with no observed erythrocytic colony formation, similar to the matched 

AML BM (Fig. 4d,e). In stark contrast, normal iPSC-derived HPCs exhibited monocytic, 

granulocytic and erythrocytic differentiation capacity (Fig. 4d,e and Supplementary Fig. 

7), with full maturation to morphologically and immunophenotypical mature monocytes 

and granulocytes (Fig. 4e-g). FISH performed on total collected colonies confirmed the 

AML- versus normal- iPSC origins of immature versus mature hematopoietic cells, 

respectively (Fig. 4h). Moreover, AML iPSC-derived colonies maintained MLL-AF9 

expression (Fig. 4i), suggesting that MLL-AF9 may play a role in the disruption of these 

differentiation processes. Together, these results provide the proof of principle that 

primary human AML-derived iPSCs and downstream HPCs recapitulate leukemia-

associated dysfunctional differentiation capacity. 
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DISCUSSION 

Here we’ve shown for the first time that iPSCs that recapitulate dysfunctional 

differentiation features similar to primary leukemic disease can be generated from a 

human AML sample exclusively using naive reprogramming conditions. AML iPSCs 

harbour and actively express the MLL-AF9 leukemic aberration found in the matched 

BM and exhibit limited differentiation capacity from both the pluripotent state and in 

downstream HPCs derived in vitro. We propose that our proof of principle findings 

provide the framework for future studies to further investigate if additional modifications 

to reprogramming conditions enables robust reprogramming across diverse sets of 

primary AML samples, and may form a platform from which to use AML iPSCs as 

surrogates of primary leukemic disease for high-throughput drug screens and mechanistic 

studies of disease (Fig. 5). 

 The low efficiency of cancer cell reprogramming to pluripotency has yet to be 

addressed. Similar to previous cancer cell reprogramming works that only achieved iPSC 

generation from a subset of primary cancer patient samples17, 18, 20, 21 and a recent 

demonstration that only normal iPSCs can be generated from t(8;21)+ AML37, we 

demonstrate that AML cell reprogramming cannot be achieved using conventional 

reprogramming methods. Our findings provide the initial insights that AML cell 

reprogramming blockade occurs downstream of pluripotent TF delivery and we 

hypothesize that this may be attributed to epigenetic and genetic aberrancies inherent to 

AML samples2. Accordingly, the successful generation of iPSCs from MLL-AF9+ AML 

in naive conditions may be a result of an epigenetic state that is more amenable to 
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reprogramming because of the combined contributions of MLL-AF9 and LIF/2i to 

epigenetic regulation. MLL-AF9 contributes to gene activation through forming 

complexes that aberrantly impart activating methylation marks on histone 338, and MLL-

AF9+ AML cells have extensively demethylated genomes2. Similarly, LIF/2i conditions 

have been associated with a reduction in transcriptionally-repressive DNA methylation as 

compared to conventional FGF conditions39, likely due to MEK/ERK and GSK3 

inhibitors causing a decrease in DNA methyltransferase (DNMT) expression40, 41. 

Accordingly, AML and other cancers may become more amenable to reprogramming if a 

“relaxed” epigenetic state that promotes transcriptional activity is induced. This 

hypothesis is further supported by the finding that generation of iPSCs from primary 

CML is only possible when valproic acid, a known histone deacteylase inhibitor that 

leads to decreased DNA methylation40, 42, 43, is added to the reprogramming cocktail (Dr. 

Keiki Kumano, personal communication). Therefore, future studies should investigate 

whether MLL-AF9 expression, LIF/2i and/or epigenetic modifiers improve AML cell 

reprogramming efficiency toward establishing robust reprogramming conditions for AML 

that may also extend to other difficult-to-reprogram cancers. 

 AML iPSCs, but not isogenic normal iPSCs, expressed the leukemia-associated 

aberration in the pluripotent state, and exhibited dysfunctional differentiation capacities in 

vitro and in vivo that mimicked the differentiation blockade observed in primary 

leukemia. Based on our current results, we cannot conclude that MLL-AF9 is causal in 

blocking AML iPSC and derivative HPC differentiation as there may be other factors that 

contribute to differentiation blockade. However, we suggest that AML iPSCs provide a 
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surrogate system in which to assess if/how MLL-AF9 affects differentiation - similar to 

previous work using isogenic MDS iPSCs where it was established which genes on 

chromosome 7 might contribute to disease phenotype19. For example, eliminating the 

expression of MLL-AF9 using short-hairpin RNA44 or mutation correction using CRISPR 

technology45 followed by assessment of iPSC differentiation potential in vitro or in vivo 

would provide the first opportunity to determine whether the endogenous mutation is 

directly responsible for differentiation blockade. This paradigm may also extend to other 

AML iPSCs once more robust reprogramming conditions are established. Independent of 

delineating the functional roles of leukemia-associated aberration(s), the dysfunctional 

differentiation ability of AML iPSCs provides an opportunity to identify small-molecules 

that promote differentiation. This could serve as an initial screening platform to identify 

lead drug candidates which could then be validated in vivo using more precious primary 

AML samples. As such, we suggest that AML iPSCs may provide a surrogate platform of 

leukemic disease from which to investigate the functional contributions of leukemic 

mutations and to develop drug screening platforms. 
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Figure 1: Conventional reprogramming conditions are insufficient to generate 

AML-iPSCs from primary AML patient PB and BM. (a) Schematic illustrating the 

reprogramming strategy employed in attempt to generate iPSCs from primary human 

AML PB and BM samples harbouring identifiable genetic mutations. CD34+ enriched 

primary AML samples were transduced with lentiviral vectors carrying the Yamanaka 

reprogramming factors. Following transduction, cells were transferred to an iMEF 

monolayer and maintained in conventional reprogramming conditions (iPSC media 

supplemented with bFGF). iPSC colony emergence was monitored daily; emerging 

colonies were isolated, expanded and assessed for the presence of the leukemia-specific 

mutation. (b) FISH performed in BM and matched iPSC colonies revealing the absence of 

the patient’s unique leukemic aberration in iPSCs generated using conventional 

reprogramming conditions. Percentages indicate frequency of specified mutations. > 50 

nuclei were scored per BM and iPSC line analyzed; 11 AML 14256 iPSC lines and six 

AML 15331 iPSC lines were analyzed by FISH. (c-d) AML and normal MPB cell 

morphologies and transgene expression 5 days following indicated lentiviral transduction. 

Primary AML samples possessed cell morphologies and gene expression patterns similar 

to normal MPB following lentiviral transduction. Scale bars represent 100 µm. (e) 

Frequency of cells in indicated samples expressing OCT4-SOX2 or GFP protein 

following transduction. (f) OS transduction efficiency (based on SOX2 expression) is 

lower across all samples relative to GFP, but this lower efficiency is common to both 

normal and AML samples. (g) Bar graph depicting normal MPB and AML cell viability 

post-transduction. Viability prior to transduction is indicated. 
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Figure 2: Naïve reprogramming conditions increase reprogramming efficiency and 

selectively enable the derivation of iPSCs from a primary AML sample harbouring 

MLL-AF9. (a) Bar graphs depicting the number of TRA-1-60+ colonies generated from 

normal MPB using conventional (bFGF) or naïve (LIF/2i) reprogramming conditions. 

Bars represent mean + SD of three technical replicates; *p<0.05. (b) Schematic 

illustrating naïve reprogramming conditions used. As compared to conventional 

reprogramming conditions, LIF/2i was used in place of bFGF in the reprogramming 

media. (c) Bar graphs depicting the number of iPSC colonies generated from indicated 

AML samples using conventional or naïve reprogramming conditions. Bars represent 

mean + SD of three technical replicates; *p<0.05. (d) FISH performed in iPSC colonies 

derived from indicated AML samples using conventional or naïve reprogramming 

conditions. AML 15331 iPSCs derived in naïve conditions were the only iPSCs that 

possessed the aberration detected in the patients’ matched BM. > 50 nuclei were scored 

per iPSC line. (e) Diagram detailing the frequency of the leukemic aberration in each 

AML BM and the percentage of derivative iPSC lines which carried the same aberration. 

The number of iPSC lines analyzed is indicated within each pie chart. 
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Figure 3: AML iPSCs express the MLL-AF9 fusion transcript and exhibit 

dysfunctional in vivo differentiation capacity. (a-b) BF and ICC images depicting three 

independent, TRA-1-60+ AML iPSC lines derived from AML 15331 BM using naïve 

reprogramming conditions. Scale bars represent 100 µm. (c) Flow cytometric plots 

demonstrating that AML iPSCs express pluripotent markers TRA-1-60, SSEA3, OCT4, 

SOX2 and NANOG. (d) Representative image of a harvested tumour at 8 weeks post-

injection of AML iPSCs. (e) Hematoxylin and eosin staining demonstrating the 

generation of ectoderm and endoderm lineages in vivo. Endoderm was infrequently 

observed, while mesoderm lineages were not detected. n=4 mice injected. (f) Regions of 

primitive, undifferentiated cell types were observed in tumours derived from AML iPSCs. 

(g) The MLL-AF9 fusion transcript is expressed in AML iPSCs as detected by RT-PCR. 
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Figure 4: AML iPSCs recapitulate dysfunctional differentiation features observed in 

primary leukemic sample. (a) Schematic illustrating how the generation of normal 

blood- and AML-derived isogenic iPSCs generated from AML 15331 BM allows for 

direct comparison of their hematopoietic differentiation capacities. (b) Representative 

flow cytometric plots analyzing CD34+CD45+ expression following hematopoietic 

differentiation of isogenic normal (top) and AML (bottom) iPSCs. (c) Frequency of 

generation of CD34+CD45+ cells from AML iPSCs is significantly lower compared to 

normal iPSCs derived from the same patient. Lines represent mean + SEM; normal iPSC: 

N=6 iPSC lines, n=1 differentiation attempt per line; AML iPSC: N=8 lines, n=2 

differentiation attempts per line. (d) Frequency of hematopoietic colony types generated 

from indicated sources. Bars represent mean + SEM; normal iPSC-EBs, N=6; AML 

iPSC-EBs, N=1. (e) Representative images and single cell morphologies of granulocytic 

and monocytic colonies derived from primary AML BM, AML iPSCs and Normal iPSCs 

from Patient 15331. Stage of maturation based on morphological assessment is indicated 

above single cell morphologies. White scale bars represent 100 µm, black scale bars 

represent 10 µm. (f) Flow cytometric analyses depicting the frequencies of maturing 

granulocytes (CD11b+ subset of CD15+ population) and mature monocytes 

(CD11b+CD14+) in pooled CFUs from indicated sources. (g) Bar graphs depicting the 

frequency of CD15+CD11b+ maturing granulocytes and CD11b+CD14+ mature 

monocytes generated from normal and AML iPSCs. Levels of indicated populations 

generated from matched primary AML BM sample are demarcated by red dotted lines 

through the y-axis. Bars represent the mean + SD from three total CFU wells. (h) FISH 
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performed in total hematopoietic colonies derived from primary AML, AML iPSCs and 

Normal iPSCs depicting presence or absence of t(9;11)(p22q23). Translocation involving 

chromosome 11q23 is denoted by red arrows. 25 nuclei scored per sample. (i) RT-PCR 

using primers specific to the MLL-AF9 fusion mRNA revealing that the cytogenetic 

aberration detected in the AML BM is expressed in AML iPSC- but not normal iPSC-

derived hematopoietic cells. 
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Figure 5: Potential applications and future directions of AML iPSCs. (a) Diagram 

illustrating the proof of principle presented in the current study that AML iPSCs can be 

generated using modified reprogramming conditions, with future investigations into 

developing robust cancer cell reprogramming conditions and applications to drug 

screening indicated. Further understanding how the combination of MLL-AF9 expression 

and naïve reprogramming conditions enabled the generation of AML iPSCs may allow 

for the establishment of reprogramming conditions that enable robust reprogramming 

across primary human AML samples. Moreover, the ability to generate isogenic normal 

and dysfunctional AML iPSCs and HPCs from the same patient should allow for in vitro 

drug screening studies and identification of underlying mechanisms of disease. 
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Supplementary Figure 1: Validation of CD34+ enrichment in primary AML PB and 

BM samples. (a) Representative flow cytometric plots depicting CD34 expression in 

AML samples before and after CD34 enrichment. 
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Supplementary Figure 2: OCI-AML3 cell line is refractory to reprogramming 

despite exposure to conventional reprogramming conditions that are sufficient for 

iPSC generation from normal MPB. (a) Schematic illustrating experimental design in 

which indicated ratios of OCI-AML3GFP+ cells (sorted on GFP+ expression) and normal 

MPB cells were combined, transduced with OSKM, cultured in conventional 

reprogramming conditions and assessed for the acquisition of pluripotency as demarcated 

by TRA-1-60 expression. GFP expression was used to distinguish OCI-AML3 cells from 

normal MPB cells. (b) Flow cytometric plot depicting the efficient transduction and 

expression of OCT4-SOX2 in OCI-AML3. (c) Full well images of 50:50, 25:75, and 

0:100 depicting GFP and TRA-1-60 expression. GFP+TRA-1-60+ (OCI-AML3 derived) 

colonies were not observed in any well format. Image with yellow border is 10x 

magnification of indicated region in 50:50 well. (d) Total number of TRA-1-60+ colonies 

detected per indicated well. Error bars represent n=2 technical replicates. 
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Supplementary Figure 3: Generation of AML and normal iPSCs from AML 15331 

BM. (a) FISH depicting the presence of leukemic aberration in all AML 15331 iPSC 

lines derived in naïve reprogramming conditions suggesting their leukemic origin. (b) 

FISH performed in iPSCs derived from AML 15331 BM in conventional reprogramming 

conditions reveals the absence of leukemic aberration in all lines, suggesting their normal 

blood cell origins. RT-PCR confirms the absence of the leukemic aberration in these 

normal iPSCs. 
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Supplementary Figure 4: AML 14384 BM harbours the PML/RARα  mutation. (a) 

FISH performed in AML 14384 BM confirms the presence of the t(15;17)(q22q21) 

leukemic aberration, indicated by the co-localization of the PML (red) and RARα (green) 

genes, in 97% of the cells. The iPSC line generated from this sample (Fig. 1c-e) was 

devoid of the leukemic aberration. 200 nuclei were scored. 



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

207	
  

!"##$%&%'()*+,-./"*%,0

) AML 14384 BM
t(1

5;
17

)(q
22

q2
1)

97%



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

208	
  

Supplementary Figure 5: Generation of normal iPSCs from AML 14256 BM using 

conventional and naïve reprogramming conditions. (a) FISH performed in iPSC lines 

derived from AML 14256 BM sample do not harbour the trisomy 8 mutation found in the 

leukemic cells (Fig. 1b). > 50 nuclei were scored per iPSC line. 
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Supplementary Figure 6: Naïve reprogramming conditions do not selectively enable 

generation of AML iPSCs from other AML patient BM samples. (a) Reprogramming 

using naïve conditions was attempted in two additional AML BM samples to further 

assess if naïve conditions selectively enabled AML iPSC generation. (b) Representative 

FISH image depicting that only normal iPSCs were generated from AML 16150 BM, as 

they did not possess the leukemic mutation depicted by loss of co-localization of 

chromosome 16q22-specific green and red probes. iPSCs were not generated from AML 

16158.1 BM. 
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Supplementary Figure 7: Normal iPSCs generated from AML 15331 BM 

differentiate to HPCs that are capable of forming the erythrocytic lineage. (a) 

Representative image of a BFU-E colony derived from plating normal iPSC-derived 

HPCs in CFU assay. Scale bar represents 100 µm. 
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CHAPTER 5 

DISCUSSION 

5.0 Preamble 

 This thesis set out to investigate whether cellular reprogramming technology had the 

potential to address unmet needs in the field of human AML research. I hypothesized that 

cellular reprogramming of human AML patient somatic cells to iPSCs is possible and 

will enable derivation of autologous sources of normal and dysfunctional HPCs. I 

believed that investigating this hypothesis would provide initial proof of concepts and 

insights in the human AML system required for future development of novel sources of 

safe HSPCs for transplantation and dysfunctional hematopoietic cells for practical in vitro 

disease modeling and drug development. Ultimately my hypothesis was correct, as we 

were able to generate normal and dysfunctional hematopoietic progenitors through 

reprogramming human AML patient fibroblasts and leukemic cells to iPSCs, respectively 

(Chapter 2 and 4). While testing this hypothesis we also encountered and shared initial 

insights into the current limitations of applying cellular reprogramming to human AML 

somatic cells, which should be addressed in future experiments. Here I discuss the 

significance, limitations and future directions of our findings, and share additional 

insights into other uses cellular reprogramming technologies may have in addressing 

novel questions in AML research. 
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5.1 Addressing the clinical shortage of hematopoietic cells with AML patient-specific 

iPSCs 

 We first demonstrated that generation of AML patient-specific iPSCs from dermal 

fibroblasts was possible, and allowed for derivation of CD34+CD45+ HPCs devoid of 

leukemia-associated aberration(s) and capable of normal differentiation in vitro, unlike 

matched patient leukemic cells (Chapter 2). These findings established the proof of 

principle that cellular reprogramming allows for the generation of normal autologous 

hematopoietic progenitors from AML patients, suggesting that iPSCs may represent a 

suitable source of healthy autologous cells to address the clinical shortage of blood cells 

required for transplantation. 

 The combination of hematopoietic-specifying differentiation conditions and ectopic 

HoxB4 expression enables generation of HSPCs with long-term reconstitution capacity 

from mPSCs (Kyba et al., 2002; Wang et al., 2005c). Although this did not apply to the 

human system (Wang et al., 2005a), it continued to encourage efforts using hPSCs. As 

such, recent differentiation protocols that use extrinsic and intrinsic hematopoietic-

specifying factors provide evidence that generation of transplantable HSPCs from hPSCs 

is possible (Amabile et al., 2013; Doulatov et al., 2013; McIntyre et al., 2013; Suzuki et 

al., 2013). As I briefly discussed in Chapter 2, our findings should continue to motivate 

these efforts toward robust and practical generation of transplantable HSPCs. Conversely, 

these current efforts (Amabile et al., 2013; Doulatov et al., 2013; McIntyre et al., 2013; 

Suzuki et al., 2013), although not practical for clinical implementation, should allow for 

next-step investigations required to further understand the potential clinical utility of 



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

216	
  

AML Fib iPSCs. For instance, in vivo differentiation conditions in the mouse that mimic 

the human BM niche (Amabile et al., 2013; Suzuki et al., 2013) could be used to generate 

transplantable HSPCs from AML Fib iPSCs. This would enable longitudinal studies in 

mice to evaluate the ability of the generated AML patient-specific HSPCs to reconstitute 

and sustain normal hematopoiesis in primary and secondary mouse transplants. 

Combination with next-generation whole genome sequencing technologies would provide 

further insights into the long-term genetic stability of AML Fib iPSC-derived HSPCs. 

Together, these studies would provide further evidence required toward addressing the 

clinical need for HSPCs using cellular reprogramming. 

 Independent of the advances required for the generation and evaluation of safe 

transplantable HSPCs, AML patient-specific iPSCs and derivative HPCs represent cell 

sources that may have a more immediate clinical impact. Repeated blood transfusions are 

an essential component of AML management to combat anemia, bleeding and infection 

(Dawson et al., 2007; Lowenberg et al., 1999; Perl and Carroll, 2007). However, a 

substantial number of donors are required on a per patient basis to meet these demands 

(Dawson et al., 2007), and many patients become refractory to transfusion products due to 

alloimmunization (Schiffer, 2001). We have demonstrated that AML patient-specific 

HPCs are capable of differentiation to mature myeloid lineages devoid of leukemia-

associated aberration (Chapter 2). As such, transplantation of these autologous HPCs 

could serve as a means of providing short-term hematopoietic recovery in AML patients 

throughout therapy. Alternatively, AML Fib iPSCs could be utilized as a platform from 

which to derive platelets and RBCs that could be used as transfusion products. 
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Independent groups have recently demonstrated that megakaryocyte progenitors can be 

established from human iPSCs (Feng et al., 2014; Nakamura et al., 2014). These 

megakaryocytes generate platelets in vitro that are functionally capable of contributing to 

formation of blood clots in vivo following transfusion into mice (Feng et al., 2014; 

Nakamura et al., 2014). Similarly, enucleated RBCs with oxygen-carrying capacity have 

been derived from hESCs (Lu et al., 2008). Although these RBCs predominantly express 

fetal hemoglobins and resemble RBCs found in the early embryo, our group has recently 

demonstrated that temporal inhibition of the Hedgehog pathway during hPSC 

differentiation can enable derivation of RBCs that express adult hemoglobins (McIntyre 

et al., 2013). Accordingly, generation of AML patient-specific transfusion products using 

these methods may have immediate clinical utility for AML patients. 

 Considering the above discussion, I envision that AML patient-specific iPSCs 

(Chapter 2) have the potential to provide a novel source of autologous blood cells that 

circumvent obstacles associated with current transplantation and transfusion sources. 

AML Fib iPSCs are autologous, devoid of leukemia-associated aberrations and 

differentiation features, and are capable of unlimited growth in vitro, thereby eliminating 

the difficult task of finding compatible donors, the risk of immune-responses and 

leukemic reinfusion, and the shortage of HSPCs that limit current transplantation 

therapies. Ultimately, our findings (Chapter 2) and future perspectives discussed above 

should enable more AML patients to receive safe HSPC transplantations and blood 

transfusions during therapy that will increase their rates of disease-free survival and 

quality of life. 
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5.2 Developing unique reprogramming conditions that allow for robust generation 

of iPSCs from diverse primary AML samples 

 During our attempts to generate disease-specific iPSCs, we discovered that cellular 

reprogramming of human AML patient leukemic cells is difficult to achieve (Chapter 4). 

Although other groups have also experienced that cancer cell reprogramming is highly 

inefficient (Carette et al., 2010; Kim et al., 2013; Kim and Zaret, 2015; Kumano et al., 

2012), and that only a minority of primary patient samples are capable of undergoing 

reprogramming to iPSCs (Kim et al., 2013; Kim and Zaret, 2015; Kumano et al., 2012; 

Stricker et al., 2013), the basis for failure was not experimentally explored within these 

papers. To our knowledge, we have provided the first experimental insights on the 

difficulties of reprogramming human cancer cells by demonstrating that reprogramming 

blockade occurs downstream of reprogramming TF delivery and expression, and can be 

overcome in one AML sample when conventional reprogramming conditions are 

modified (Chapter 4). However, this limitation needs to be experimentally addressed 

before reprogramming conditions that facilitate robust reprogramming across diverse 

AML samples can be developed. 

 First, why is AML so difficult to reprogram? Despite stable expression of 

pluripotency TFs required for reprogramming we were unable to generate iPSCs using 

conventional reprogramming conditions. Perhaps abnormal epigenomes associated with 

the majority of AML samples (The Cancer Genome Atlas Research Network, 2013)  

prevent OSK from accessing and activating pluripotency genes during the first 48 hours 

of reprogramming (Soufi et al., 2012) or are unable to undergo extensive chromatin 
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remodelling required for pluripotency acquisition (Buganim et al., 2012; Hussein et al., 

2014; Koche et al., 2011; Rivera and Ross, 2013; Takahashi et al., 2007). Along these 

lines, previous works using heterokaryons indicate that the pluripotent state typically 

reprograms the somatic cell state, causing somatic cells to adopt epigenetic and 

transcriptional programs associated with pluripotency (Cowan et al., 2005; Tada et al., 

2001). However, when Friend erythroleukemia cells were fused with pluripotent ECCs, 

the pluripotent cells adopted hematopoietic features and began to express hemoglobin 

genes (McBurney et al., 1978), suggesting that the leukemic epigenome may be more 

powerful than that of the PSCs and therefore, resistant to change. This is supported by 

further evidence using SCNT, whereby leukemic cells cannot be reprogrammed by the 

oocyte to allow for derivation of ESCs (Hochedlinger et al., 2004), and by our findings 

here that conventional reprogramming conditions are insufficient for iPSC generation. 

Further investigations that use chromatin-immunoprecipitation sequencing (chIP-seq) of 

OSK-bound regions, and that examine chromatin marks and DNA methylation 

throughout reprogramming of AML should help to delineate whether the AML 

epigenome is refractory to reprogramming toward establishing robust reprogramming 

methods. These studies will also yield invaluable insights into mechanisms that contribute 

to aberrant regulation of the AML epigenome. 

 Second, can barriers to AML reprogramming be overcome? Many AML samples 

possess unique epigenomic features that correlate with the cytogenetic and/or molecular 

aberrations they harbour (The Cancer Genome Atlas Research Network, 2013; Figueroa 

et al., 2010). It has also been demonstrated that experimental manipulation of chromatin 
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remodelling complexes can help overcome epigenetic barriers that exist for 

reprogramming normal cells to iPSCs (Rais et al., 2013). As discussed in Chapter 4, 

perhaps the expression of MLL-AF9 AML coupled with LIF/2i treatment provides an 

extensively demethylated/accessible chromatin state in which reprogramming roadblocks 

can be overcome. Attempts to reprogram additional AML samples harbouring MLL-AF9 

in conventional versus naïve reprogramming conditions are required to establish whether 

this is the case. These experiments could be supplemented by mechanistic studies in 

which MLL-AF9 is ectopically expressed in AML samples that were previously 

refractory to reprogramming, to assess if MLL-AF9 mediates epigenetic changes that 

“prime” refractory AML samples for successful reprogramming to iPSCs. Along these 

lines, attempting to reprogram other AML samples such as those harbouring DNMT 

mutations (defective DNA methylation) (The Cancer Genome Atlas Research Network, 

2013), or enforcing DNA and histone demethylation in other AML samples using 

epigenetic drugs such as valproic acid (VPA) and 3-deazaneplanocin A (DZNep) 

(Gottlicher et al., 2001; Milutinovic et al., 2007; Miranda et al., 2009; Sarkar et al., 2011) 

might provide additional insights into whether a “relaxed” AML epigenome is more 

conducive to reprogramming. 

 I believe that our initial experimental insights into the inefficiencies of AML cell 

reprogramming (Chapter 4) will lead to further investigation into these barriers, as 

discussed above, toward the development of more robust reprogramming methods that 

allow efficient iPSC generation from a range of clinically diverse AML samples 

(Chapter 1: Tables 1 and 2). This will not only provide model platforms in which to 
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perform mechanistic and drug screening studies in AML, as discussed in Section 5.3 

below, but may also extend to other difficult-to-reprogram cancers. Moreover, I envision 

that better understanding why AML is difficult to reprogram may also reshape our 

understanding and treatment of AML. For instance, a mechanistic understanding of 

VPA’s dual ability to increase reprogramming efficiency/allow for CML reprogramming 

and to act as a differentiation treatment of transformed cells in vitro (Dr. Keiki Kumano, 

personal communication; Gottlicher et al., 2001; Milutinovic et al., 2007) may identify 

unique molecular features of the leukemic state that could be therapeutically targeted. 

Therefore, I believe that developing robust reprogramming conditions will serve two 

purposes: to allow for establishment of AML modeling platforms and to provide key 

insights into unique molecular features of AML that together, improve our understanding 

and treatment of disease. 

5.3 Using AML iPSCs to model disease 

 Through successful generation of AML iPSCs harbouring leukemia-associated 

aberration we found that their derivative HPCs were dysfunctional in their differentiation 

capacity (Chapter 4). Surprisingly, we discovered that AML iPSCs also exhibited limited 

differentiation abilities in vitro and in vivo, and maintained expression of the leukemia-

associated aberration. Moreover, we were also able to generate isogenic normal iPSCs 

devoid of leukemia-associated aberration from the same AML patient that were capable 

of normal hematopoietic maturation. Together, these findings establish the proof of 

concept that cellular reprogramming allows for development of an in vitro model of 

disease that may allow for further investigation of disease mechanisms and development 



Ph.D. Thesis – KR Salci  McMaster University – Biochemistry 

	
  
	
  

222	
  

of drug discovery platforms. Generation and characterization of additional AML iPSC 

lines as discussed above and in Chapter 4 will be required to make more concrete 

statements about the utilities of AML iPSCs for disease modeling. However, here I 

discuss the potential applications of AML iPSCs as a novel model for the study of human 

AML based on our current findings. 

 The ability to achieve physiologically-relevant gene dosing of leukemia-associated 

aberrations is critical to evaluating their contributions and relevance to disease phenotype, 

as variations in gene expression resulting from retroviral over-expression or non-

endogenous promoter regulation can lead to conflicting conclusions (Brown et al., 1997; 

Chen et al., 2008; Early et al., 1996; Krivtsov et al., 2006). As such, a more powerful 

method in which to understand the contributions of leukemic mutations may be to correct 

endogenous mutations that are under the control of normal regulatory circuitry and assess 

how this affects disease phenotype in the human system. However, these experiments 

would not have been possible prior to our findings here, as current culture methods are 

not sufficient to maintain primitive AML cells for genetic manipulation and subsequent 

analyses of functionality (Montesinos et al., 2006). Therefore, the ability to generate 

AML iPSCs that harbour endogenous leukemia-associated aberrations should provide a 

more suitable and renewable cellular platform in which to perform these studies.  

Accordingly, pairing targeted CRISPR-mediated correction of mutations in AML iPSCs 

with subsequent differentiation to CD34+CD45+ HSPCs for in vitro CFU and in vivo 

transplantation assays (Amabile et al., 2013; Chen et al., 2015; Doulatov et al., 2013; 

Suzuki et al., 2013), would allow for the first experimental opportunity to assess whether 
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AML cells could be reverse engineered back to normal HSPCs. These studies would offer 

novel insights into the contributions of endogenous leukemia-associated aberrations to 

disease phenotype, and may also allow for identification of other genetic contributors to 

disease. Moreover, in genetically complex AML samples, correcting mutations in a 

stepwise manner could help to identify their individual contributions to the disease 

phenotype. Due to the renewable nature of iPSCs, these studies would also be 

accompanied by large-scale analyses of chromatin marks, DNA methylation and global 

gene expression in AML iPSC- and corrected AML iPSC-derived HPCs to tease apart the 

contributions of the aberrations to the epigenome and transcriptome. Finally, by resetting 

the AML epigenome by reprogramming to pluripotency, this may allow for studies that 

elucidate how aberrant epigenetic profiles are established upon redifferentiation to the 

hematopoietic lineage. This may yield mechanistic insights into why unique epigenetic 

profiles are correlated with distinct leukemia-associated aberrations (The Cancer Genome 

Atlas Research Network, 2013; Figueroa et al., 2010). As such, I believe that cellular 

reprogramming of AML cells to iPSCs could hold great utility as a model system in 

which to advance our limited knowledge of the functional contributions of the many 

cytogenetic and molecular aberrations associated with the leukemic state. 

 With minimal changes to frontline disease treatment over the past 40 years, the poor 

therapeutic index of AraC, and a dismal rate of disease-free survival, novel therapeutics 

are required for the treatment of AML patients (Shipley and Butera, 2009; Tallman et al., 

2005). Unfortunately, the lack of practical cell-based models of human AML has 

hindered the development of high-throughput drug screening platforms. The ability to 
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generate isogenic AML iPSCs and normal iPSCs (either from AML Fibs or normal 

HSPCs in the BM) from the same AML patient presents an opportunity to address this. 

We have demonstrated that AML iPSCs derived from a patient with the MLL-AF9 

aberration possess limited differentiation ability, drawing a biological parallel to the 

dysfunctional primary leukemic cells (Chapter 4). Accordingly, this may provide a 

surrogate hPSC-based screening platform in which to identify AML-specific therapeutics 

similar to our previous demonstration that drug screening on transformed hESCs can 

effectively identify cancer stem cell-specific drugs (Sachlos et al., 2012). Therefore, 

performing preliminary screens for compounds that promote normal differentiation of 

AML iPSCs in vitro may identify compounds that also induce differentiation of primary 

leukemic cells. This concept may also apply to cell viability, whereby differential effects 

on AML versus normal iPSCs may allow for the discovery of small-molecules that 

selectively mediate cytotoxic effects in leukemic cells. The effects of candidate 

compounds could be subsequently validated using in vivo humanized mouse 

xenotransplants. We also determined that AML iPSCs actively expressed the MLL-AF9 

fusion transcript. By using CRISPR technology to insert GFP downstream of the MLL-

AF9 aberration, fluorescent-based assays could be developed to identify small-molecules 

that inhibit expression of the leukemic aberration. This would also provide a cellular 

context in which to explore drug mechanisms of action. Given the poor specificity of 

inhibitors of leukemic aberrations that are currently in use (Wander et al., 2014), this 

could also allow for better development of targeted therapies. Although the above assays 

would be more practical using AML iPSCs, they could also be performed using derivative 
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HPCs in the event that disease features are not recapitulated until hematopoietic 

differentiation is enforced. This is suggested based on the observations that CML iPSCs 

do not recapitulate disease features until differentiation to the hematopoietic lineage 

(Kumano et al., 2012). Ultimately, the development of robust reprogramming methods for 

AML samples may allow for the development of iPSC libraries that encompass the 

cytogenetic and molecular diversity of AML. Combined with the screening platforms 

described above, this may allow for the development of AML- and/or mutation-specific 

therapies that greatly advance the management and treatment of human AML similar to 

previous demonstrations with APL (Ades et al., 2010; Zhou et al., 2007). 

 Taken together, I envision that AML iPSCs represent suitable in vitro systems in 

which to begin understanding the functional contributions of the remarkable number of 

cytogenetic and molecular aberrations to disease pathogenesis/maintenance, and to 

develop much-needed therapies that selectively target AML. Considering the current lack 

of practical human cell-based model systems, I believe that our findings (Chapter 4) 

provide the first opportunities to perform these studies in the human system. This should 

ultimately translate to an increased understanding and more targeted treatment of disease 

that will improve our therapeutic management of AML and increase patient survival.  

5.4 Capturing disease heterogeneity and evolution through iPSC generation 

 Little is known about the first hit mutations that predispose cells to become leukemic 

and whether these mutations occur in a common ancestral cell in earlier development or 

later on in the developed adults’ blood compartment. The study of monochorionic twins, 

where only one twin developed leukemia, demonstrated that there exists a common 
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cellular, pre-natal, first hit mutation that bestows the potential for future tumorigenicity, 

but is insufficient for leukemia onset (Hong et al., 2008). This provided the first evidence 

for the existence of pre-leukemic cells harbouring the first hit mutations required for 

leukemogenesis, and suggested that the pre-leukemic compartment may persist and later 

reinitiate leukemia even after overt disease has been eradicated beyond detection. This is 

corroborated by recent work from the lab of John Dick, which identified that the 

DNMT3A mutation was found in “normal” HSPCs isolated from the BM of AML 

patients with NPM1+DNMT3A+ leukemic blasts (Shlush et al., 2014). These HSPCs 

appeared normal based on multilineage reconstitution capacity in vivo, but possessed an 

increased proliferative and repopulation advantage over non-mutated HSPCs. Moreover, 

they were able to survive chemotherapy. Together, these works indicate that pre-leukemic 

HSPCs exist within the AML BM compartment and are capable of acquiring secondary 

mutations that result in the development of overt leukemia. However, it remains unclear 

whether these pre-leukemic cells are predisposed to acquiring secondary mutations, and if 

additional pre-leukemic mutations exist in AML patient BMs. 

 During our attempts to generate AML iPSCs, we observed that reprogramming of 

AML patient BM cells also allows for generation of normal iPSCs, that is, iPSCs that 

were determined to be devoid of the leukemic aberration that we probed for using FISH. 

Moreover, these normal iPSCs demonstrated normal differentiation capacity to the 

hematopoietic lineage. These results suggest that these iPSC lines were derived from 

normal HSPCs residing within the leukemic BM (Chapter 4), and corroborate recent 

findings by Hoffman et al. who generated normal iPSCs from t(8;21)+ AML BM samples 
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(Hoffmann et al., 2015). However, based on the above works by Hong et al. and Shlush et 

al., it remains possible that these “normal” iPSCs may have been derived from pre-

leukemic HSPCs residing within the leukemic BM. The ability to also generate AML 

iPSCs that harbour leukemia-associated aberration (Chapter 4) and to derive AML Fibs 

which are devoid of leukemia-associated aberration (Chapter 2) from the same patient 

may provide an opportunity to better understand disease progression within AML 

patients. Accordingly, by performing whole genome sequencing in AML Fibs, “normal” 

iPSCs (>10 independent clones in attempt to capture genetic heterogeneity) and AML 

iPSCs (>10 independent clones) this may allow for mapping of clonal/genetic evolution 

of disease within a given AML patient to reveal insights into how disease progresses 

(Kern et al., 2002; Raimondi et al., 1993) or to allow for identification of novel pre-

leukemic mutations that may be captured in “normal” iPSCs derived from the leukemic 

BM. If we are able to “capture” these normal, pre-leukemic and leukemic cell states 

through iPSC generation this could allow for functional and molecular studies of disease 

progression and/or screening for novel therapeutics to target pre-leukemic stem cells that 

are able to survive chemotherapy (Shlush et al., 2014). Moreover, we could assess 

whether pre-leukemic iPSCs are predisposed to acquiring secondary mutations toward 

modeling disease initiation events. Together, these studies may provide additional 

insights into pre-leukemia and mechanisms of disease progression. 

 By using cellular reprogramming to better understand leukemic progression, I 

envision that this will ultimately allow for the development of new clinical approaches 

designed to prevent the development of overt leukemia in humans. The identification of 
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novel molecular pre-leukemic mutations could serve as markers for routine diagnostic 

screening in at-risk populations, while an understanding of pre-leukemic progression to 

overt AML could allow for the development of therapies designed to prevent this 

transition by targeting pre-leukemic cells. Together, this may serve to identify and treat 

patients susceptible to developing overt AML before the devastating pathophysiological 

effects are felt, and effectively reduce the number of patients who suffer from AML. 

5.5 Viewing leukemogenesis through a cellular reprogramming lens 

 Cellular reprogramming studies have taught us that cell fate can be altered, and that 

this can be achieved by stochastic cytoplasmic factors or defined TFs that reset the 

epigenome and transcriptome (Gurdon, 1962; Takahashi et al., 2007). If we think about 

leukemogenesis in this light, it is conceivable to think that normal hematopoietic cells are 

similarly being “reprogrammed” to leukemic cells in vivo. This may occur due to 

epigenetic modifications (DNMT, TET, MLL mutations), dysfunctional/over-expression 

of master regulators of hematopoiesis (RUNX1, CBFß) and/or proliferation and survival 

(FLT3, NPM1), with extrinsic support from the BM microenvironment. Here I pose 

questions that originate from viewing leukemogenesis through a cellular reprogramming 

lens toward developing novel experimental strategies to better understand AML 

progression. 

 In Chapter 3, I discovered that OCT4 TF delivery in combination with pluripotent-

supportive culture conditions was minimally sufficient to induce pluripotency, but 

required prolonged culture as compared to conventional reprogramming using OSKM. 

These observations, combined with my experiences in Chapters 2 and 4, and review of 
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the reprogramming literature have indicated to me that 1) epigenetic barriers exist that 

prevent reprogramming from occurring in all somatic cells (Rais et al., 2013; Soufi et al., 

2012); 2) many reprogramming cocktails can be used to induce pluripotency (Theunissen 

and Jaenisch, 2014), but OCT4 activation is a unifying theme required for this process; 

and 3) appropriate culture conditions are required to facilitate reprogramming (Mitchell et 

al., 2014a). 

 I now believe that these similar principles can be applied to leukemogenesis: 1) not 

all normal hematopoietic cells are capable of becoming leukemic following MLL-AF9 

expression (Chen et al., 2008), suggesting that a permissive epigenetic context may be 

required for disease initiation in the leukemic cell of origin; 2) a number of leukemia-

associated aberrations have been identified (Vardiman et al., 2009), suggesting that 

multiple leukemia “reprogramming factor” cocktails exist; and 3) leukemia has been 

associated with aberrant BM niche components (Raaijmakers et al., 2010; Walkley et al., 

2007), suggesting that conducive “culture conditions” are required for leukemic 

“reprogramming.” This latter principle is further illustrated by cases of donor cell 

leukemia where AML patient relapse occurs from leukemic initiation in donor cells, yet 

the donor remains healthy (Hertenstein et al., 2005; Wiseman, 2011). 

 Perhaps by better understanding: 1) why all hematopoietic cells are not amenable to 

becoming leukemic, we can develop therapies to prevent leukemogenesis; 2) what the 

roles of each of the leukemia “reprogramming factors” is, we can target their 

contributions to the initiation and maintenance of the leukemic state; 3) how the BM 

niche contributes to disease, we can therapeutically alter it so that leukemic 
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reprogramming cannot occur even if all of the “reprogramming factors” are expressed. 

Together, these insights may form the bases for future experiments designed to change 

how we view leukemia and to develop novel approaches for disease treatment that 

complement current and theoretical therapies discussed previously. 

5.6 Concluding remarks 

 Since the first reported clinical cases of human AML in the 1940’s the field has 

waged war on this cancerous infiltration of the human hematopoietic system (Tefferi, 

2008). From advances in disease modeling to next-generation technologies, and guidance 

from years of clinical observation, we have come to better identify our enemy (Vardiman 

et al., 2009). However, this has not translated into meaningful clinical tactics, as current 

frontline chemotherapeutic treatments only serve to ward off AML for a short time before 

it re-emerges more aggressively (Shipley and Butera, 2009; Tallman et al., 2005). 

Although effective combat approaches have been exemplified by the success of HSPC 

transplantations (Burnett et al., 1998) and disease-selective therapies in cases of APL 

(Zhou et al., 2007), their large-scale adoption has been limited: safe sources of HSPCs for 

transplantation are rare, while our limited understanding of most AML cases has 

prevented further development of targeted therapies. 

 The recent advent of patient-specific cellular reprogramming technology potentially 

represents a novel source of reinforcements in this ongoing battle (Takahashi et al., 2007). 

In this thesis, we have performed the initial proof of concepts that cellular reprogramming 

of human AML patient somatic cells to pluripotency allows for the generation of normal 

(Chapter 2) and dysfunctional (Chapter 4) HPCs. These early insights should motivate 
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additional research efforts toward the development of much-needed transplantation 

sources and disease models/drug discovery platforms to reinforce and reshape how we 

currently attack AML (Figure 1). It is my belief that continued research into applications 

of cellular reprogramming technologies to human AML patient somatic cells will 

considerably bolster our ever-growing arsenal in the war against AML. 
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Figure 1. Cellular reprogramming of human AML patient somatic cells to 

pluripotency provides an opportunity for the development of cell-based therapies 

and disease models/drug discovery platforms. Limited sources of safe hematopoietic 

stem/progenitor cells (HSPCs) for transplantation and incomplete mechanistic 

understandings of disease initiation, progression and maintenance have impeded advances 

in therapy required for improvement of long-term AML patient survival rates. Toward 

addressing these unmet clinical needs, the ability to generate induced pluripotent stem 

cells (iPSCs) from human somatic cells may provide platforms from which to develop 

patient-specific (autologous) cell-based therapies and disease models. Here we provide 

the proof of principle that cellular reprogramming can be applied on a personalized basis 

to generate normal and dysfunctional HPCs from AML patient somatic cells. These 

foundational findings should motivate further studies aimed at developing iPSC-based 

autologous cell therapies and disease models for drug discovery toward improving AML 

patient quality of life and long-term survival rates. 
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