
INTRODUCTION TO PROGRAMMING

ON THE NOVA COMPUTER

by

CLEMENT C.Y. LAM, B.ENG. (McMaster)

PART A: OFF-CAMPUS PROJECT*

A project report submitted in partial fulfillment of the

requirement for the degree of

Master of Engineering

Dept. of Engineering Physics

McMaster University

Hamilton, Ontario

September, 1977

*One of two project reports: The other part is designated

PART B: McMASTER (On-Campus) PROJECT.

MASTER OF ENGINEERING (1977) MCMASTER UNIVERSITY

Department of Engineering Physics Hamilton, Ontario

TITLE: INTRODUCTION TO PROGRAMMING ON THE NOVA COMP~TER

AUTHOR: CLEMENT C.Y. LAM, B. Eng. (McMaster)

SUPERVISOR: Dr. T.J. Kennett

NUMBER OF PAGES: iv, 73

ii

Abstract

A guide to programming the Nova computer i£ presented

in this manual. Programming fundamentals, structure2

programming, testing and debugging and interrupt programming

technique are also included.

iii

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Dr. T.J. Kennett, for

his valuable guidance and suggestions throughout the course

of this project. I also wish to thank Mr. K. Chin for the

helpful discussions I had with him on many occasions.

Finally, a sincere thanks to Dr. A. Robertson and Mr. N.

Barkman for their proofreading of the manual.

iv

TABLE OF CONTENTS

Pacq

ABSTRACT iii

ACKNOWLEDGEMENT iv

INTRODUCTION 1

CHAPTER 1: PROGRAMMING FUNDAMENTALS 2

1.1 	Procedure for writing 2

computer programs

1.1.1 	Problem identification 2

1.1.2 	Formulation of an algorithm 2

for solving the problem

1.1.3 	Implementation into the 4

corresponding computer

language

1.1.4 	Testing and debugging the 4

program

1.2 	Structured prograrruning 5

1.2.1 	Prograrruning structures 5

1.2.2 	Branching 8

1.2.3 Modular prograrruning 8

CHAPTER 2: A SIMPLE PROGRAMMING EXAMPLE 9

USING NOVA COMPUTER

Page

CHAPTER 3: PROGRAMMING WITH THE NOVA 13

3.1 Addressing modes 	 13

3.1.1 Direct addressing 	 16

3.1.2 Indirect addressing 	 18

3.1.3 Jump MRI's in branching 	 20

3.1.4 Modify memory MRI's in looping 21

3.1.5 Block transfer program 	 22

3.2 Input/Output instructions 	 26

3.2.1 Teletype output 	 30

3.2.2 Teletype input 	 33

3.3 Subroutines 	 36

3.4 Arithmetic and logical instructions 39

3.4.1 Conditional 	branching and looping 44

3.4.2 Programming 	tricks 47

3.4.3 More examples 	 48

3.5 	Example 3.21: binary to octal 49

conversion

CHAPTER 4: TESTING AND DEBUGGING 52

4.1 Debugging techniques 	 52

4.2 Prevention of bugs 53

CHAPTER 5: INTERRUPT PROGRAMMING 57

APPENDIX A: PROGRAMMING EXERCISES 65

APPENDIX B: GLOSSARY 66

REFERENCES: 73

To my pa!tent.o

Introduction

This manual is intended to give the studen~ an

introduction to programming of the Nova computer. ~tudents

who are not familiar with number systems, binary arithmetic

and Nova computer architecture will find "Introduction to

2the Data General Nova 11 < > helpful.

A little knowledge of computer architecture in general

will surely augment the understandability of the manual.

Finally, every term being asterisked in the following chapters

is included in the glossary. (Appendix B of the manual) .

2

(1 4 5)
Chapter 1 Programming Fundamentals ' '

Section 1.1 Procedure for writing computer progra~s*

There are four basic steps in writing progrm~s.

1. Problem identification.

2. Formulation of an algorithm for solving the problem.

3. Implementation into the corresponding computer language.*

4. Testing and debugging* the program.

1.1.1 Problem identification

This step is very important. Failure to identify the

problem correctly may result in a working program, yet it may

not yield the solution to the problem. In this case, all the

time used will have been wasted in implementing an "incorrect"

program.

1.1.2 Formulation of an algorithm* for solving the problem

Flowcharting* is one of the most important steps in

the design of a program. In essence, flowcharts are pictorial

representations of algorithms providing the progranuner with an

indication of the flow of the program. They are a combination of

symbols with English and mathematical statements that clearly

defines every step in solving the problem. There are a number

of symbols, each of which indicates the type of operation to

be performed. More detailed explanations of the operation are

contained within the symbol.

The following are some of the symbols most often

used.

3

Terminal Symbol: start, stop, halt, delay or interrupt.

(__)

Input/Output Symbol: Input of information to the computer,

output of information from the computer.

Process Symbol: processing of information.

Decision Symbol: Decision resulting in a number of alternate

paths.

Connector Symbol: A junction connector (exit to, entry from

another part of chart).

0

4

Flow Direction Symbols:

1.1.3 Implementation into the corresponding computer language

After a flowchart has been drawn, the computer program

can be implemented by translating the operation within each

symbol into the corresponding computer language instructions.

1.1.4 Testing and debugging the program

Before the program can be accepted as a valid solution

to the problem, it should be subjected to tests. Failure to

pass the prescribed tests indicates that errors or "bugs"

exist within the program. After "debugging", the program

should be re-tested. The testing and the debugging process

is repeated until the program is essentially free from any

detectable error.

5

Section 1.2 Structured Programming*

1.2.1 	 Programming structures

There are basically three kinds of programm:ng structures.

1. Simple sequence

2. Selection

THEN ELSE

6

3. Repetition

REPEAT

REPEAT

Any kind of processing, combination of decisions and

logic can be accomodated with one of these control structures

or a combination of them. Each control structure is

characterized by a simple and single point of transfer of

control into the structure, and a single point of transfer

of control out of the structure. This is the important concept

of SINGLE ENTRY/SINGLE EXIT. These control structures can be

nested, as shown in Figure 1.1, but they retain their

characteristic of single entry/single exit.

7

Figure 1.1 Nesting of control structures

THEN

Selection

Simple

Sequence

Repetition

ELSE

REPEAT

Out

8

1.2.2 Branching*

In debugging a program, a lot of time is often wasted

in tracing the flow of the program. If the flow i> in one

direction, for example, from top to bottom, then effort

and time will be saved in tracing the program.

The following points are useful when writing programs

which flow in one direction.

1. The three control structures discussed in 2.1 can

be combined to form a program so simple that the control will

flow from top to bottom. There should be a minimum of

back-tracking within the program.

2. Attention should be paid to branching within a

program. A program may become very complex to follow if

it contains too many branches. Whenever it is possible,

branching should be kept to a minimum.

1.2.3 Modular programming*

When one starts to write long programs it becomes

increasingly difficult to check and debug these programs.

It is in this context that modular programming becomes

important.

The concept is very basic. Since small programs are

easy to check and debug, any long programs should be made

up of a number of small sub-programs or modules. The

modules can be completely checked before being linked

together into a complete program.

5

9

Chapter 2 A simple programming example using Nova Computer(2 , >

Problem: Write a program which will add 5 and 7 together
8 8

and store the result in a memory location*. The tw~ octal

numbers are retrieved from two memory locations.

Name of Location Content

A 58

B
 78

c result of addition

The following is a flowchart solution to the problem.

Start

Load accumulator
0 with 5 from A

Add (ACO) and
(ACl). Put result
in ACl

Store result, (ACl),
into location C

Load accumulator
1 with 7 from B

Stop

ACO means

accumulator 0

(ACl) means the

content of ACl

10

The computer interprets commands which must be coded

in binary* notation. A language which is represented by

binary codings is called machine language*. The f~owchart

alogorithm has to be implemented in the corresponding machine

language before the computer can execute it. The following

is a progranuning solution to the problem in machine language.

Content in Octal*
Memory Location {machine codings) Meaning

100 020105 load {105) into ACO

101 024106 load {106) into ACl

102 107000 {ACl) - {ACO) {ACl)

103 044107 store result in
location 107

104 063077 stop execution

105 000005 is in this location58

106 000007 is in this location78

107 000000 	 reserved location which
receives the result of
addition

One should observe that machine instructions do not mean

much to the programmer. In order to understand a program in

machine language, one has to find the corresponding meaning of

each machine instruction. It is in this context that assembly

language* is used instead of machine language. An assembly

language is merely a mnemonic* equivalence of the machine

language. Its purpose is to increase the understandability

of a program by a programmer. The following is the same

program written in assembly language.

11

Location Machine Code Mnemonics Comment
(in octal format)

100 020105

101 024106

102 107000

103 044107

104 063077

105 000005

106 000007

107 000000

.LOC 100

LDA 0, A

LDA 1, B

ADD 0, 1

STA 1, c

HALT

A: 	 5

B: 	 7

c: 	 0

.END

specify where to put
the pro._ram in
memory

load ACO with the
content of A

load ACl with the
content of B

(ACl) = (ACO) + (ACl)

store (ACl) into
location C

stop program execution

5 is stored here. A
label A is given to
this location

(B) 	 = 7

Reserved location for
storing the result.
Its label is C

end 	of program

After execution of this program, C will contain 14 8 .

A few things are worth mentioning here:

1. 	 .LOC n and .END are pseudo-operations*. Pseudo operations

are not instructions to be performed but directives to the

assembler*. .LOC n specifies the starting address of the

program in memory. .END is an indication of the end of

a program.

2. 	 A program must have a HALT instruction to stop execution.

If there is not a HALT instruction after STA 1, C, the

program will continue to run, causing constants and data

to be executed as instructions. Care should be taken to

12

always avoid this situation.

3. 	 The following locations are reserved for special purposes.

a. 	 location 20-27 auto-incrementing* when be ng

indirectly addressed*.

b. 	 location 30-37 auto-decrementing* when being

indirectly addressed.

c. location 0 	 reserved for interrupt programming*.

4. 	 Anything after a semi-colon in a program will be regarded

as a comment by the Nova assembler. A maximum of five

characters can be used for labels which are delimited by

a colon. Within an instruction, either a comma or space

can be used as a delimiter. (Refer to the example above) .

13

21Chapter 3 Programming with the Nova(!, S)

Section 3.1 Addressing modes (Memory Reference Instructions)*

The memory reference instructions (MRI) int~ract with

memory or the program counter (PC) . They are specified by

(placing) a 0 in bit 0 and either 00 (referenced without AC),

01 or 10 (referenced with AC) in bit 1-2.

MRI without AC

000 Function Indirect Index Displacement

0 2 3 4 5 6 7 8 15

Function Field Instruction Meaning

00 JMP JUMP

01 JSR ~ump to SubRoutine

10 ISZ Increment and Skip on Zero

11 DSZ Decrement and Skip on Zero

MRI with AC

0 Function 01 or 10 AC Indirect Index Displacement

0 1 2 3 4 5 6 7 8 15

Function Field Instruction Meaning

01 LDA LoaD Accumulator

10 STA STore Accumulator

AC can be 00, 01, 10 and 11 referring to ACO, ACl,

AC2 and AC3 respectively. Each 16 bit MRI instruction word

is divided into four fields:

14

bits

corrunand field (C} 0 through 4

addressing mode field (I} 5

index field (X) 6 through 7

displacement field (D)* 8 through 15

The corrunand field determines the type of instructions:

more data; modify memory; jump.

Every MRI must contain an effective address (E) which

specifies which memory cell is to be referenced.

The effective address (E) is formed by the index X

and the displacement D. The index X refers to a register or

accumulator to whose content is added the displacement D,

resulting in the address of the desired memory cell.

E = (X) + D

15

Move Data MRI's

LDA AC, D, X loads accumulator AC with the contents

or LDA CA ' NAME t of the memory cell specified by the

effective address E, which is made up

of the displacement D and index X.

STA AC, D, X stores the contents of accumulator

or STA AC, NAME AC into memory location E.

Modify Memory MRI's

ISZ D, X increments (E) by 1 and stores it back

or ISZ NAME into memory location E. If new (E) = 0,

the next instruction is skipped. If

(E) t 0, the nominal program sequence

is followed.

DSZ D, X decrements (E) by 1 and skips if

or DSZ NAME new (E) = 0.

Jump MRI's

JMP D, X loads E into PC, take the next instruction

or JMP NAME from location E, and continues sequential

operation from there, i.e., transfers

control to memory location E.

JSR D, X first computes E and saves (PC) + 1 into

or JSR NAME AC3, then loads E into the PC, transfers

control to memory location E.

tNAME is the label given to the effective address.

16

3.1.1 	 Direct addressing* (I=O)

There are four kinds of direct addressing modes.

(a) 	 Page zero* addressing (X=OO)

E = 0 0 _::_ D _::_ 377 8

E can 	be referenced from anywhere in memory.

Data should be placed in page 0 in order that they

may be accessed by various parts of a program.

e.g., 3.1.

If location 100 contains 001234 arid is labelled A, then

a LDA O, A instruction will load 001234 into ACO no matter

where in memory this instruction resides. It can be done

as long as A is inside page O.

(b) Relative addressing (X=Ol)

E = current (PC) + D

e.g., 3.2.

(PC) Machine code Mnemonic Comments

625 020410

.LOC 625

LDA 0, A load ACO with content of A

635 001234 A: 001234

.END

When LDA 0, A is executed, (PC) = 625 and A is at

location 635. Relative addressing will be assumed if A is

outside page 0 by the assembler and the created instruction

to load (A) = 001234 into ACO will results.

E = (PC) + D = 625 + 10 = 635

17

(c) 	 Base register addressing (X=lO)

E = (AC2) + D

e.g. I 3. 3.

Location Machine codes Mnemonics Comment

.LOC 40

40 010000 A: 010000

.LOC 100

100 0 30 0 40 LDA 2, A page zero addressing.

Load (A)

into AC2

101 021000 LDA 0,0,2 Base register addressing

with

respect to (AC2) .

load ACO with content

of

address pointed by

(AC2) + D.

In this case (10000) =

001234

; will be loaded into ACO.

.LOC 10000

10000 001234 001234

.END

(d) Base register addressing (X=ll)

E = (AC3) + D -200 < D < 177

18

3.1.2 Indirect Addressing (I=l)

I

0 4 5 6 15

This mode of addressing is determined by I=l. It will

be used in conjunction with the four addressing modes

discussed before. By using indirect addressing, each

memory cell in a 32K (77777 8) configuration can be refeyenced.

The meaning of E now differs from the previous examples.

In the direct addressing mode, E corresponds to the effective

address in which the operand is contained. In the indirect

addressing mode, E no longer refers to the address of the

operand, but it will contain an address pointing to the

operand.

address of operand = (E) 0 < (E) < 77777

Many levels of indirect addressing are possible by

the use of a 1 in bit Q(I') of the referenced word.

AI I I I
0 l 15

I' = l means A is an address of the operand.

I' = 0 means A is the operand.

e.g., 3.4

If location 200 contains 000123

and location 123 contains 001234

then LDA O, @ 200 will load 001234 into ACO.

@ is the symbol for indirect addressing.

19

e.g., 3.5.

This example will show how operands outside page zero

may be referenced by using indirect addressing.

If 	location 100 contains 100123

location 123 contains 010000

location 10000 contains 001234

then LDA 0,@ 100 will load 001234 into ACO.

There are two levels of indirect addressing involved.

The first level is indicated by the @ in the instruction.

The second level is specified by a 1 in bit 0 in the

referenced word, that is the content of location 100. Since

the indirect bit is not set in location 123, location 010000

will contain an operand to be fetched.

Question: What would happen if one had in location 100 +

100100 and the instruction LDA 0 @ 100 is executed?8

Answer: The computer would be fetching loc. 100 forever

and never get the number in ACO. The only way to stop the

Nova would be to turn power off. (One would normally think

the computer will stop by pressing STOP, but it does not work

in this case~

20

3.1.3 Jump MRI's in branching

The JSR instruction will be explained in section 3.3.

The JMP - "JUMP" - instruction is used specificall1 to alter

the flow of a program. The program which is stored in memory

is normally executed sequentially, since the program counter

is incremented by 1 following execution of an instruction.

It may be desirable, at some point in a program, to

branch to another group of instructions which resides

somewhere else in memory. To perform this branching, the

memory address where the new block of instructions begins

must be put into the PC.

Location Program

l
m JMP XYZ (PC) = n. Control is transferred

to the instruction labelled XYZ
skipped { •

XYZ:n

n+l

l

JMP instructions are used for unconditional branchings.

21

3. 1. 4 M<=:dify Memory MRI' s in looping

ISZ and DSZ can be used to implement the repetition

programming structure.

e.g. I 3.6.

Write a program to execute the routine "LOOP" ten times •

•LOC iv;"'

START: LIJ {\ 0,CONST ;INITIALIZE COUNTER
STA e,couNT

LOOP: - - - -
- - - - ;EXECUTES THIS 10 TIMES
- - - - -
DSl COUNT ; DEC REM E~lT <COLJNT), SK IP IF ZERO
J(t'JP LOUP
HALT

CONST: 12
COUNT: g

.END

The value of COUNT is initialized to 12 8 each time

the program is executed.

ISZ could have been used instead of DSZ. In this case

CONST should have been assigned the value of -12 8 , in 2's

complement* form, at the start of the program.

22

3.1.5 Block transfer program

Problem: Write a program which will move a block of data

from one place in memory to another. Indirect addr·~ssing

will be used to solve the problem.

The starting address of the block to be moved is stored

in a location labelled FROM and the starting address of the

new block is stored in TO. COUNT contains the number of

words to be moved.

23

The following is a flow chart solution.

Start

Load ACO
with the
content
pointed by
(FROM)

Put (ACO)
in the adds.
pointed by
(TO)

Increment

FROM by 1

Increment
TO by 1

Decrement
COUNT by 1

Stop

No

24

The following is an assembly program of the solution.

; BLOCK TRAN SF ER PROG Ri-\lYJ
; THIS PROGRAM WILL TRANSFER A BLOCK OF INFORMATION
; FROM ONE PLACE TO THE OTHER INSIDE THE CORE

START: 	 ; I NI TI ALI ZE FROM, TO & COUNT

;

LOOP: 	 ; <AC0) =~vORD TO BE MOVED
;CFROM>= ADDS OF THE WORD TO BE MOVED
;THE WORD IS STORED IN THE NEW
;LOCATION SPECIFIED BY CTO>
;GENERATE THE ADDS OF NEXT WORD TU
; BE l'10VED
;GENERATE THE ADDS OF NEXT AVAILABLE
;LOCATION IN THE NEW BLOCK
;TEST IF ALL WORDS HAVE BEEN MOVED.
;SKIP NEXT INSTRUCTION IF COLJNT=0.
J NOT YET, GO BACK TO LOOP
; END OF JOB.

;

DATA & CONSTANTS
;

.FRCXYJ: 200 J200 OCTAL IS THE ADDS OF THE FIRST
;WORD TO BE MOVED

FROM: 0
.To: rn0e Jl000 OCTAL IS THE STARTING ADDS OF
TU: liJ ; THE tJE':J BLOCK
CUN ST: 10 ; THE BL UCK TO 8 E \YJ OV ED CONT AI NS iv; OCTALCOUNT: 0 J ~\iORDS
;
,. 8 L 0 CK OF I NF 0 • TCJ B E \tJ o V t:D
;

.Loe 2~0
1
2

3

4

5

l
7
1e
• E:i'JD

25

After the execution of the program, locations 1000

through 1010 will contain 1, 2, 3, 4, 5, 6, 7 and 10.

Suggested exercises

Appendix A, No. 182.

26

Section 3.2 Input/Output Instructions (I/O)

The I/O instructions control all the operations

between the processing unit and peripheral equipmen~*.

Each Nova I/O instruction has the following format:

0 1 i I AC lTransfer { Control Device Code

0 2 3 4 5 7 8 9 10 15

Data Transfer

Any transferring of data is done between a selected

device and a selected accumulator. The accumulator involved

is specified by bits 3 and 4 (0, 1, 2, 3). The device involved

is specified by the device code in bits 10 through 15. Bits

10 through 15 decode to 64 unique possibilities; however, only

62 devices may be addressed (01 through 76 8). Device code 00

is not used, and 77 is a special function code denoting the

CPU*. Within a device, there may exist up to 3 data buffers*

(A, Band C). Bits 5 through 7, the transfer field, specify

the buffer involved and the direction of the data transfer,

whether IN or OUT. An IN transfer implies a data transfer

from the device buffer to the processor. An OUT transfer

implies a data transfer from the processor to the device

buffer.

27

If the transfer field is The transfer is The mnemonic is

0 No I/O transfer NIO

1 Data IN from DI.""

buffer A

2 Data OUT to DOA

buffer A

3 Data IN from DIB

buffer B

4 Data OUT to DOB

buffer B

5 Data IN from

buffer C DIC

6 Data OUT to

buffer C DOC

7 (reserved for

slap tests

described later)

Control field

Once the device, buffer and accumulator have been

selected, it is necessary to specify control information

to the device via the control field, bits 8 and 9.

Associated with every device are two flip-flops*

or flags. Busy and Done. If both flags are clear (reset),

the device is in the idle mode. To palce the device into

operation, the Busy flag must be set. After the device has

processed the unit of data on a Data Out instruction, or

when a device has information available in a buffer register

28

on a Data In instruction, the Busy flag is cleared and the

Done flag is set.

The combination of these two flags produces four

possibilities, each representing a state of the device.

Busy Done Device is

0 (clear} 0 (clear} idle - not in use

1 (set} 0 (clear} busy - it is in the process of

performing some operation

it is not available for

service at this time

0 (clear} 1 (set} done - it has completed a specific

operation

1 (set} 1 (set} (not normally a valid condition)

Using the control field of the I/O instruction, the

following control functions can be specified by appending

the appropriate mnemonic to the instruction.

If the mnemonic is The control function is

- (nothing) no control

s set the Busy flag and clear the

Done flag. Thus starting the device.

c Clear both the Busy and Done flags,

thus idling the device.

p special purpose output for customer

applications.

29
The general format of an I/O instruction is

Transfer (Control) AC, Device code.

Example 3.7

To type the character contained in ACO on th ' teletype

DOA S 0, TTO

t t t.____l ~-~~~~~~- ~~vice in mnemonic form

1----~~~~~~~~~- control
--~~~~~~~~~~~~transfer

This instruction causes the contents of ACO to be transferred

to Buffer A of the teletype* output (TTO) , the TTO is then

started by the S in the control field, and the character

is typed. The S pulse will set the Busy flag for the length

of time necessary to type a character.

Special functions

Using the special function transfer code 7, it is

possible to test the status of the Busy and Done flags and

to conditionally skip the next instruction as a result of

the test.

Mnemonic Transfer code Control code Function

SKPBN 7 0 	 skip the next instruction

if the Busy flip-flop

is zero.

SKPBZ 7 1 	 skip the next instruction

if the Busy flip-flop

is zero.

SKPDN 7 2 skip if the Done flip-flop

is non-zero.

SKPDZ 7 3 	 skip if the Done flip-flop

is zero.
Each skiP-on-flao instruction must specifv a soecific device.

30

3.2.1 Teletype Output (TTO)

For the Nova, the teletype (TTY) is an important I/O

device. While the TTO can only handle 10 character;·:/sec,

the computer is capable of executing an instruction in

2 µsec. Because of the mismatch of speed between the

computer and the TTO, proper synchronization has to be

maintained when using the TTO. The most common procedure

is to test the status of the associated Busy and Done flags

in the TTO.

Caused by Busy Done TTO is

IORST (I/O reset) 0 0 idle

or a C in the

control field

or manual reset

an S in the 1 0 typing a character

control field

completion 0 1 ready to type another

character

From the table above, in order to check if the TTO

is ready for service, it is sufficient to test the status

of the Busy flag. Busy = 1 indicates that the TTO is not

yet ready while Busy = 0 means the TTO is ready.

P...scii code*

In computer I/O, information is frequently encoded

in a seven-bit format known as the American Standard Code

for Information Interchange (Ascii). When set into operation,

the TTY printer will decode the incoming Ascii coded character

3l

and type it out in the normal form. When the TTY is used

as an input device, all information will be encoded before

transmission to the computer.

e.g., 3.8

Character Ascii code

1 0608

A 1018

CR (carriage return) 0158

e.g., 3.9

Write a program which will read the Ascii codings from

switches and output the corresponding character to the TTO.

Stop. Set
switches

Read switches
into ACO

Yes

Output and set
Busy flag

32

; THIS PROGRAM l•JILL READ THE E-\SCII CODINGS FH~:YJ THE
; S~vI TCHES AND OUTPUT THE CORRESPONDING CHARACTER TO ·r; 1 ~
;TTO

.LUC rn~

START: HALT ;SET SWITCHES. PRESS CONTINUE TO
; CONTINUE

READS 0 ;READ SWITCHES INTO Ace
SKPBZ TTO ; TEST TO SEE 1:-IHETHER TTO IS BlJSY
JMP • - 1 JYES, KEEP TESTING
DOAS 0, TTO ;NO, OUTPUT CHARACTER AND SET BUSY:::t
JMP START ;GET ANOTHER CHARACTER
.END

Notes: (1) READS AC is an input instruction which uses a

device code of 77 (77 =cPU).

READS AC = DIA AC, CPU

(2) .-1 means current location minus one.

There are basically two procedures for using the skip

instructions in a loop to process a series of characters.

33

Consider the following two cases:

No
Output

No
Output

(a)

Case (a) is the more efficient, since all of the

waiting time can be utilized by the program for other

processes. Any useful time for computation will be wasted

in the waiting loop in case (b).

3.2.2 Teletype Input (TTI)

The TTO and TTI are two separate devices, each having

its own interface and device code. The TTI also has two

flags. Busy and Done. One can determine the status of the

TTI by checking these two flags.

34

Caused by Done TTI action

IORST 0 0 idle

or a C in the

control field

or manual reset

a S in the 1 0 A character is requested

control field by the paper tape reader

completion 0 1 	 A character has been

received by the paper

tape reader or from the

keyboard

A key has to be struck before Done will go to 1.

By testing the Done flag, one will know if there is a

character ready to be accepted.

Parity* bit for error-checking

On TTI input, besides the 7 bits ascii coding of the

character, an extra bit called the parity bit will come

together with the ascii code to make up a 8-bit character.

The character is then put into bit 8 through 15 of the

specified AC.

(Parity Ascii code

0 7 8 9 15

parity bit (bit 8) = 1 if odd number of l's occur in bit

9 through 15.

= 0 if even number of l's occur in bit

9 through 15.

35

e.g., 3.10

Write a program which will read in ascii characters

from the TTI keyboard.

THIS PROGRAM WILL READ IN ASCII CHARACTERS FR0'1
;THE TTI KEYBOARD
;

.LOC 100

START: SKPD['J TTI _;tvAIT UNTIL A KEY IS STRUCK
JMP • - 1
DI AC 0_, TTI ;BRING THE CHARACTER IN AND CLFAR DONE FLAG
L DA 1 _, Mf\ SK ;c<JASK OUT THE 7-BI T ASCII CODE INTO
f\NlJ 1 _, 0 _;AC~

_;

_; C O\Y: PUT/.\TI 0 N
J

Jt'1P START ;GET ANOTHER CHARACTER
177
.END

In this example, the parity bit of the ascii code

is set to zero by ANDing the entire word with a mask 177 8 .

Masking is a technique of information extraction.

If one wants to retain certain bits of an accumulator while

zeroing the rest, one can perform a masking operation by

ANDing the number with a second number which contains l's

in the bits of the original number that are to be preserved.

e.g. , 3. 11

if [ACO] = 303 ascii of C

[ACl] = 177 mask

then And 1, 0 will put 103 into ACO.

3038 - 110000112

1778 - 011111112And
1 (} ~ - 01000011_=

36

Suggested exercises

Appendix A, Nos. 3, 4 and 5.

Section 3.3 Subroutines*

The JSR NAME - "Jump to subroutine labelled NAME 11

provides branching similar to that of the JMP instruction;

the main difference between the JMP and MSR instruction is

that the JSR instruction not only branches to some other group

of instructions, but it also retains the memory address where

it jumped from. This feature is extremely useful when writing

groups of instructions which will be performed many times in

a program and implementing structured programs.

When a JSR NAME instruction is encountered during

the course of program execution, the program counter is

incremented and loaded into AC3, the address of NAME will

then be placed into the PC, thus effecting transfer of

control to the subroutine. A JMP 0,3 will return control

back to the calling program when this is desired.

Program

l Direction

PC~ JSR NAME __o_f___f_l_o_w____~)

1

NAME:

1
Enter subroutine

ExitJMP 0,3

Before entering After exiting

(AC3) := current(PC)+l

(PC) . adds. of NAME (PC) . {AC3)

37

When executing a subroutine, AC3 is occupied by the

return address. It is good practice to save the return

address in a memory location so that AC3 is availab~~ for

other purposes.

Subroutine calls within a subroutine are made possible

by saving each of the return addresses. An indirect jump to

the saved address will return control to the calling program.

e.g., 3.12

Subroutine GET will bring an ascii character from

TTI into ACO .

START:

LOOP:

. LOC E_

l
JSR GET

l
JMP LOOP

t
.END

}

get an ascii charac

process and compute

ter in

GET: STA 3,GETl same return address

SKPDN TTI

JMP . -1

DIAC O,TTI

JMP @ GETl return

GETl: 0 storage location to save

; return address

38

e.g., 3.13 Subroutines within subroutine

Main program

START:

l

JSR SUBl

.END

Subroutine #1

SUBl: STA 3,SAVEl

1

JSR SUB2

l

JMP @SAVEl

SAVEl: 0

--+

Subroutine #2

SUB2: STA 3, SAVE2

JMP @SAVE2

SAVE2: 0

Direction of flow

39

Section 3.4 Arithmetic and Logical Instructions (ALI)

The ALI's are used for performing specific arithmetic or

logical operations between accumulators.

Instruction format

l 1 Isource AC l destination AC function I
0 1 2 3 4 5 7 8 15

A 1 in bit 0 indicates an ALI.

In the following text, the source AC is called ACS, and the

destination AC is called ACD.

3The arithmetic function is specified by 2 = 8 possible

operations:

ALI

COM ACS, ACD

NEG ACS, ACD

MOV ACS, ACD

INC ACS, ACD

ADD ACS, ACD

SUB ACS, ACD

ADC ACS, ACD

AND ACS, ACD

Function

the l's complement of ACS is deposited into

ACD (l's complement= all l's changed to O's

and vice versa)

the 2's complement of ACS is deposited into

ACD (then (ACD) =-(ACS))

copy (ACS) into ACD

deposit (ACS) + 1 into ACD

deposit (ACS) + (ACD) into (ACD)

deposit (ACD) - (ACS) into (ACD)

deposit (ACD) + l's complement of (ACS) into ACD

deposit (ACD) logical and (ACS) into ACD.

ACD= ACS is allowed. If ACS is not also ACD, then

the original (ACS) is preserved.

--

40

Once the function has been performed, the result can

be operated upon before it is loaded into ACD. These

additional operations make up bits 8 through 15.

I i(ACS (ACD I Fn. l Shift (Carry I.No load ISkip J

0 1 2 3 4 5 7 8 9 10 11 12 13 15

Diagrammatic representation of the arithmetic and logical unit

L 17 bits

~~•fo. 'I'

v 17 bi ts1 bit)
1 16)iv16 bits

Ibits

~Ir

Skip SensorCarry

~ it.

r
,

Function Generator Shifter

Accumulator

v
l bit l16 bits I 17 bits

....

Load/NO load

Signed and Unsigned operation*

Instructions in the Arithmetic and Logical class

assume unsigned arithmetic and the prevalence of signed

numbers must be taken into account by the programmer.

41

Carry Field

The value of the carry supplied to the function

generator prior to performing the function is calle~ the

base value of the carry bit. This base value may be aifected

by the results of the function performed. If the function

performed in the function generator results in an overflow,

then the base value of the carry bit is complemented.

The following conditions will cause overflow:

Function Unsigned Conditions Causing Overflow

> 216
ADD ACS, ACD (ACS) + (ACD) - 1

SUB ACS, ACD (ACS) < (ACD)

NEG ACS, ACD (ACS) = 0

216INC ACS, ACD (ACS) = 1

ADC ACS, ACD (ACS) < (ACD)

The initial or base value of the carry bit is specified in

the instruction by bits 10 and 11. (The mnemonic is appended

to the 3-letter function mnemonic) .

Carri field If the function is Base value of Carry is
appended with

00 - (nothing) the current state of carry

01 z 0

10 0 1

11 c the complement of the

current state of Carry

Examples 3.14

SUB O,O clears ACO and complement carry

SUBO 0,0 clears ACO and carry

42

Shift Field

After a function has been performed, the res~lt may

be rotated left or right as specified by bit 8 and ~ of

the instruction. (The mnemonic is appended to the 3 or

4 letter function and carry mnemonic, after the carry

mnemonic, of one occurs).

Shift field Mnemonic The result is

00 	 unchanged.

01 L 	 rotated left by 1 bit: bit 15 +

bit 14, 14 + 13, ... , 1 + 0, 0 +

Carry, Carry + 15.

10 R 	 rotated right by 1 bit: bit 1 + 2,

2 + 3, ... , 15 +Carry, Carry~ 0.

11 s 	 bytes* are swapped: bit 0 through 7

are swapped with bit 8 through 15.

Carry is unchanged.

It can be seen that shifting to the left or right is essentially

a circular rotation with the carry bit.

Example 3.15

Write an instruction which multiplies the contents of

ACO by 2 and puts the result into AC2.

MOVZL 2 z sets carry = 0.0'

Then L rotates everything left

1 bit and puts the 0 carry

into bit 15. The answer is

then put into AC2.

43

Skip Field

After the function has been performed and the results

shifted, the results may be tested to see whether o~ not

the next instruction may be skipped. The conditions are

based on the specifications of bits 13, 14 and 15 in the

instruction. (The following mnemonics can be used after

ACD).
The shifted result will be

bits 13, 14 & 15 The mnemonic is tested and the program will

000 never skip

001 SKP always skip

010 szc skip if carry bit is zero

011 SNC skip if carry bit is

nonzero

100 SZR skip if the result (bits 0

through 15) is zero

101 SNR skip if the result is

nonzero

110 SEZ skip if either the carry

or the result or both

are zero

111 SBN skip if both the carry and

the result are nonzero

Load/No Load Field

Once the function has been performed, the shifting

completed, and the decision for skip made, the result may

or may not be loaded into ACD depending on bit 12 of the

instruction.

44

Mnemonic bit 12 Result .3

0 loaded into ACD

1 not loaded into ACD, leaving ~cs and

ACD unchanged

The mnemonic is appended to the end of the complete

function mnemonic.

Example 3.16

Write a routine to test the sign of a signed number

in ACl without destroying it.

MOVL# 1, 1, SNC sign bit moved to Carry bit

The Carry bit is tested

JMP POS 	 Carry = 0, go to routine

labelled POS

Carry = 1, implies the number

is negative

POS:

3.4.1 Conditional Branching and Looping

The ALI's can be used to implement the IF-THEN-ELSE

and REPEAT UNTIL structures.

IF-THEN-ELSE

Example 3.16 is an illustration of using ALI's in

implementing the IF-THEN-ELSE structure.

Example 3.17

Write a routine to test whether ACO is zero.

45

TEST: MOV# 0, 0, SNR skip on nonzero

result

JMP ZERO if [ACO] = 0, go to routine

ZERO

if [ACO] ~ 0, proceed f~om ~ere

ZERO:

REPEAT UNTIL

Example 3.18

Write a program to output a character string to the

TTO. Termination of the program is made upon detecting a

null character.

46

; THI S PROG RAlYl V.JI LL OUTPUT A CH l~Rf\CTER ST RI NG ,- J THE TT 0.
; TERM I NATI ON IS DONE UPON DETECTING A NULL CHARACTER

.L OC A0

; SUB. TYPE vJl LL OUTPUT A CHAR TO THE TTO

TYPE: 	 STA 3_,SAVE JSAVE RETURN ADDS
SKPBZ TTO ;TEST IF BUSY=e
JfYJP • - 1
DOAS e_,TTO ;OUTPUT THE CHARACTER
JlYJP lal SAVE ;RETURN TO THE CALLING

; PROGRAM

.LOC 1ee0
START: LUA e _,POI t'JT ;INITIALIZE WORD

STI'--\ ~ _, r,,JORD
LOCP: 	 LDA 0 _, ~V.JURD ; GET A CHl\R.

MOV (C_,~_,SNR ; TEST FOR NI JLL CH P.R.
HALT ; YES_, STOP
JSR TYPE ; G 0 TO SUB ROUT I ~JE TY PE
I SZ \tJORD JGET ANOTHER CHAR
JMP LOOP

J

POINT: .+2 ;POINT POINTS TO THE STARTING
; ADDS UF ST RI ~JG

wmm: 0 ;RES~RVED FOR CHAR POINTER
11 7 ; A.SCI I OF 0

125 u

; 'T'124 I

12~ J p

125 ; lJ

-r124 	 J l

0000e0 	 ; NULL CHAR
.DJD

47

Notes: (i) .+2 means current location plus two.

(ii) 	Subroutine TYPE is located in page zero so

that it can be reached by any call anywhe~0

in core.

3.4.2 	 Programming Tricks

1. 	 Generate the indicated constants.

SUBZL AC, AC generate +l

ADC AC, AC generate -1

ADCZL AC, AC generate -2

2. 	 Subtracting 1 from an accumulator without using a constant

from 	memory.

NEG AC, AC

COM AC, AC

3. 	 Test an accumulator for -1

COM# AC, AC, SZR

JMP not -1

-1

4. 	 Test if two accumulators are equal

SUB# ACS, ACD, SNR

JMP equal

not equal

5. 	 Unsigned magnitude compare

SUBZ# ACS, ACD, SNC skip if [ACD] > [ACS]

ADCZ# ACS, ACD, SNC skip if [ACD] > [ACS]

48

3.4.3 More Examples

Example 3.19

Write a routine to perform exclusive -OR.

[ACl] = operand A

[ACO] = operand B

[ACl] = result of AV B

Algorithm used is

AVB =A+ B - 2(AAB)

EXOR: MOV 1,2 ; put [ACl] into AC2

ANDZL 0,2 2(AAB) into AC2

ADD 0,1 [ACl] = A + B

SUB 2,1 AVB =A+ B - 2(AAB)

Example 3.20

Write a routine to perform double precision addition.

[ACl] = high order word of operand A

[ACO] = low order word of operand A.

[AC3] = high order word of operand B.

[AC2] = low order word of operand B.

DADD: ADDZ 0, 2 SZC to check for overflow when

adding 2 low order words

INC 3, 3 	 Carry = 1, add it to

one of the higher order

words

ADD 1, 3 	 add the higher order

words

[AC3] = high order word of the result A + B.

[AC2] = low order word of the result A + B.

49

Suggested exercise

Appendixf\r No. 6, 7 & 8.

Section 3.5 Example 3.21

Write a program to convert a binary number in the

accumulator into its octal equivalent and output the result

to the TTO. The binary number should be read in from the

switches.

Start

Read
switche
into
ACl

Create
100000 in8
AC2

Load ACO
with Ascii
zero

(ACl) =
(ACl) - (AC2)

so

Yes

No

Add (AC2)
back to
ACl

Output
Ascii char
in ACO

Increment

(ACO)

Shift (AC2
three bits
to the
right

No

Yes

Finish

51

; THIS PROGRAM vJI LL CONVERT A BI ~!ARY ~J!JMB;:~q IN THE AC
;INTO ITS OCTAL EC~UIVf~LENT AND THE PESlJLT IS 01.JTP'IT
; ON THE TTO. THE BI ~JA RY NO. I S READ FROM 5 11,iJ TCH ES •

•LOC 40
; OUTPUT SUBROlJTI NE
ouT: STA 3,SAVE

SKPBZ TTO

JMP • - 1

DOAS 0, TTO

J(Yjp (ul SAVE

SEW E: e

.LOC 100
STHRT: 	 HALT ; SET SvJ ITCH ES

RI:::ADS 1
SUBL:R 2,2 ;CREATE 100000 OCTAL IN AC2

LOOP: 	 LOA 0,C6~ ;(AC0)=1-\SCII ZERO
SUBO 2, 1 _, SNC ;STILL POSITIVE IF CARRY=0
I NC 0, 0_, SKP ; I NCR EN DH AS CI I CH AR
ADD 2, 1, SKP ;CArrnY=l. RESlJLT IS NEGATIVE.

;ADD <AC2) BACK TO <ACl)
JMP .-3
JSR OUT ;OUTPUT CHAR
!Y} 0 V ZR 2 _, 2 ;SHIFT <AC2) 1 BIT RIGHT

MOVZR 2,2
\YJOVZR 2,2_,SZR ;TEST FOR LAST DIGIT

JMP LOOP ; ~JO_, CONTINUE

JMP ST?~RT ;YES, GET ANOTHER CHAR

; ASCII ZEROC60:

Suggested Exercise

Appendix A, No. 9.

52

4Chapter 4 Testing and Debugging< 3 , >

Errors will usually fall into three categories:

1. Syntax Error -	 the language was used improperly.

2. 	 Logical Error - the program has been assembled, but it

is not running.

3. 	 Algorithmic Error - the program is running, yet the result

is incorrect.

4.1 	 Debugging techniques

1. 	 Syntax Error - The assembler will usually give some

indications during assembly as to where

the errors occur and what types they are.

The programmer has to correct those

mistakes indicated by the assembler.

2. 	 Logical Error The following techniques are helpful in

detecting and correcting logical errors.

(a) 	 By using the switches on the front panel of· the NOVA

computer the program can be checked step by step.

(b) 	 By using HALT instructions, a running program can

be stopped at appropriate places to allow

examination of intermediate results.

(c) 	 To trace the flow of a program, extra output

statements can be included in different places of

the program. From the characteristic indications

given by these output statements, one should be

able to locate approximately where the error occurs.

53

3. 	 Algorithmic error - After all the bugs have been removed,

and if the program still does not give any valid answers

to the problem, then there must be something wrong with

the logic used. The programmer then has to re-evaluate

the algorithms utilized in the formulation of the

program and sub-programs.

4.2 Prevention of Bugs

1. 	 Structured Programming

A structured program is less prone to errors.

Debugging is made less difficult because of the simplicity

in control structures associated with structured programs.

Modular programming is an important technique when

one starts to write long assembly language programs. Very

often "bugs" can be singled out in a particular module, and,

therefore, debugging is confined to that module only. In

assembly language, subroutines can be used to implement

modular programming.

Example 4.1

Write a program which will add two numbers together.

Input is from the TTI keyboard and the result is output to

the TTO.

54

Start

Input
routine
for 1st
number

Decimal
to binary
conversio

Input
routine
for 2nd
number

Decimal
to binary
conversio

Add the
two
numbers

Binary to
decimal
conversio

Output
to TTO

Flowchart solution

to add two decimal
Finish

numbers

55

When the solution is implemented into a program, it

will look somewhat like the following .

• LUC 4~ .
, STORAGE LOCATIONS AND CONSTANTS

.Loe 100
; PROGRAM TO ADD TvJO NUMBERS
_;I ~iPlJT: F RQ;YJ TTI KEYBOE\RD. OUTPUT: TTO

START: JSR I ~lPUT _; I NP UT A ~Jl JM B ER
JSR DTOB ; DECI Ml~L TO BI Nt-\RY COMV ER.SI UN
JSR I ~lP UT _;GET SECCH'JD Nl l[tJBU~
JSR DTOB
JSR AUDIT ; ADD TWO NLJlt1BERS
JSR STOD ;BI NARY TO DECI1YJHL CUt,J\JERSI ON
JSR OUT PT ;OUTPUT R~SULT
JiYJP STf-HH _; HEf-~DY FOR ANOTHER CAL CUL ATI ml

; SUBROlJTI t'-lES

I NP UT : - - - - - _; I NP UT fW UT I NE F R O.YJ T TI

UUTPT: ----- ;OlJTPlJT HUUTINE TU TTO

DTCJB: ; DECI\Yl AL TO BI NARY ROlJTI NE

BTOD: ; BI ~rnRY TO))ECI fY1 ~"1L nm IT I NE

ADD I T : - - - - - _;ADDI TI m1 ROUTI NE

.END

56

There are five modules in the program, each of which

can be fully tested and debugged before linking together.

Attention has to be paid when interfacing one module to

another.

2. Liberal use of comment

A well-commented program will ease the effort of

understanding that program at a later date. However, comment

statements should be placed neatly in the program to minimize

confusion with the main program.

Example 4.2

The following is form is desirable.

a description of what is being done in the routine

input and output conditions

.LOC n

START: It is good to have

all comments aligned

While this arrangement should be avoided.

(comment) -- not enough space

continue this will make the
}

continue instruction statements less prominent.

Note: 	 Comments that add no information or that are redundant

should be avoided.

E.g., ADD 0, 1 Add accumulator 0 and 1.

57

Chapter 5 Interrupt Programming

When a program has gained control of the CPU, usually

there is no way of interrupting the execution of the program

by other resources (e.g., peripherals, other programs) within

the system. Until the current program terminates itself, no

other resources are allowed to use the CPU. This is not

desirable since situations often arise where some more urgent

jobs are waiting to be serviced or the operater wishes ~o

conununicate with the processor. Moreover, slow devices

similar to the teletype and line printer can waste a lot of

valuable execution time since the CPU has to wait on these

devices.

The introduction of the interrupt progranuning is

aimed at solving these problems. Namely,

1. 	 It allows an external device to temporarily suspend the

main program in execution. Several external devices can

interrupt the system at the same time. In this case,

access to the system will be given to the device which

has the highest priority*.

2. 	 It improves overall system efficiency by utilizing time

normally wasted in waiting loops encountered while

servicing slow devices.

Example 5.1

Consider the situation where a number of external

parameters are sampled by the computer once every second

and some mathematical computation is to be performed. Also

present is an On/OFF sensor which monitors an extremely

58

critical condition of the system.

Using non-interrupt prograrruning, the program flow may

appear as follow.

No

Sample data,
compute &
update dis
play

Take
corrective
action

On going
process

No

It is assumed that on

going process is done

before next timing

signal comes in.

59

In this program, checking the state of the sensor

is part of the program which may be time consuming. In

addition to this, there will be no way to detect the system

status outside the checking procedure. A situation may

appear where the alarm is turned on just after a check and

because of the rigidity of the program flow, the corrective

action will not be in effect until the next check. The price

for slow reaction may be disastrous.

A way to solve this problem is to give the sensor

the capability to interrupt the normal flow of the program.

The computer must respond to the interruption by initiating

the corrective action immediately. The main flow of the

program will resume after the corrective action has been

performed.

60

With the interrupt facility implemented, the program

may appear as follow:

Compute
&

Display

No

On going
process

Interrupt

Yes

Yes

Yes

Corrective
Action .___...,~

Set
Flag

Set
Flag

61

In this interrupt system, priorities have been assigned

to the three devices in this order: sensor, timer and display.

This is done by checking the sensor first, the timer next and

the display unit last in the interrupt routine. Basically

all peripheral devices are sharing one interrupt line.

Priority assignment is usually done by softward, although

hardware priority schemes can also be implemented.

62

The second problem dealing with slow devices (and also

fast mass storage devices) is generally solved using buffered

I/O techniques whereby a block of information is assembled

before transferring between the device and the main program.

No

Transfer,
initiate
output

On going
process

Compute

No

Main Program

63

Interrupt routine

Interrupt

Yes Corrective

Yes

Yes

Action

Set

Flag

CRT

Service

Return

YesNo

Output

Return

Set buffer
available

CRT Service Routine

64

Remarks

A very general approach has been taken to introduce

the concept of interrupt prograrmning. Interrupt programming

techniques associated with the Nova is depicted in Ref. 2 & 5.

Basically the two most widely used methods in process

synchronization have been explored. Namely, they are

1. Flag checking system.

2. Interrupt system.

There are advantages and disadvantages associated

with each method. In most systems, both the two methods are

implemented to make the system more efficient.

65

Appendix A

1. 	 Write a program to move a block of information from

one place of core to another using base regist2r

addressing.

2. 	 Write the same program using autoincrementing locations.

3. 	 Write a program which will accept characters from the

TTI and echo them back to the TTO immediately at the

same time.

4. 	 Write a program which will store a string of characters

entered via the TTI and output the string to TTO when

a special key is struck.

5. 	 Write a program which will convert

digits from the TTI into their true

6. 	 Write routines for the following:

(a) 	 Inclusive OR

(b) 	 Double precision subtraction.

(c) 	 Test for odd and even numbers.

(d) 	 Absolute value.

the incoming ascii

binary values.

7. 	 Write a program to accept a series of octal Ascii

digits terminated by a non-digit characters, transform

the series into a positive binary integer and store

this number in memory. The number should be echoed back

to the TTO.

8. 	 Write a program to zero all memory locations.

9. 	 Solve the binary to octal conversion problem with another

method.

66

Appendix B Glossary< 4 >

The terms to be explained in this glossary are in the

order of their appearance in the manual.

Chapter 1

Computer program - In order to solve a computation proble~,
Computer language

its solution must be specified in terms of

a sequence of computational steps, each of

which may be effectively performed by a

human agent or by a digital computer.

Systematic notations for the specification

of such sequences of computational steps are

referred as computer (programming) languages.

A specification of the sequence of

computational steps in a particular

programming language is referred to as

a computer program.

Debugging - Errors within a program are usually referred as

"bugs". The process of removing bugs from a

program is called "debugging".

Algorithm - An algorithm is a clerical procedure which can

be applied to any of a certain class of symbolic

inputs and which will eventually yield, for each

such input, a corresponding symbolic output.

Flowchart - Flowcharts are pictorial representations of

algorithmsproviding the programmer with an

indication of the flow of the program. It is a

combination of symbols with English and

67

mathematical statements that clearly defines every step in

solving the problem. There are a number of symbols, each

of which indicates the type of operation to be perf ·,rmed.

More detailed explanations of the operation are contai ...1ed

within the symbol.

Structured Programming - It is concerned with improving the

programming process through better organization of programs

and better programming notation to facilitate correct and

clear descriptions of data and control structures. Usually

a structured program is easier to understand, modify and

debug.

Branching - A transfer of control from one place to another

within a program.

Modular programming - A program module can be defined as a

logically self-contained and discrete part of a larger

program and which performs a specific function. A properly

constructed module has only one entry point and only one

exit point. The purpose of it is to break a complex task

into smaller and simpler subtasks which facilitates writing

correct programs.

Chapter 2

Memory - Memory is one of the more important parts
Memory location

of a computer system. It is used to store

information which includes programming

instructions and data. In Nova, programming

instructions and data are in a 16-bit word

format, the memory space capable of storing

68

one piece of 16-bit information (word) is

called a memory location.

memory

0
1
2

n
n+l

.
.
.

16 bits
.
.
.

-t-- one memory
location

Accumulator - For the Nova, an accumulator is a 16-bit

register used for temporary storage during

data processing.

Binary Codes - Codes that use only two symbols 0 and 1 are

called binary codes.

Machine language - Machine language is a primitive programming

language which is immediately executable

by the machine concerned. It is usually

coded with binary.

Octal number system - a number system that uses 8 as its base.

Assembly language - it is a language in which all operators

and all operands are normally represented

by names chosen for their explanatory and

mnemonic power. It can be viewed as a

mnemonic equivalence of the machine

language.

Mnemonic - It refers to the name given to a machine language

coding to facilitate memorizing the code and its

function.

69

Pseudo-operation - pseudo-operation is not an instruction to be

performed, but directive to the assembler.

Assembler - An assembler is a program that facilitates the

preparation of programs at the assembly language

level by taking mnemonics of individual

instruction or data and converting them into the

corresponding binary coding. It is usually

provided by the manufacturer of the computeY.

Auto-incrementing - An auto-incrementing (decrementing)
Auto-decrementing

location has the characteristic that its

content will be incremented (decremented)

by 1 when being addressed in a specific

way. (Indirect addressing in case of

Nova) .

Indirect Addressing - If an instruction references data

indirectly by pointing to the ·address

of the data rather than the data itself,

then the technique used is called

indirect addressing.

Interrupt programming - Interrupt programming allows an

external device or a more urgent job

to interrupt the current activity of

the CPU and take over it. The

execution of the current program will

be resumed after the interrupting

program has finished, providing there

is no other higher priority request

70

waiting to be serviced.

delimiter - A delimiter is an item of lexical information

whose form and/or position in a source program

denotes the boundary between adjacent synLactic

components of that program.

Chapter 3

Memory Reference Instructions - Instructions that reference,
(MRI)

modify the content of or

transfer control to, a memory

location are called memory

reference instructions.

Program counter (PC) - A PC is a counter which keeps track

of the flow of the program by pointing

each time to the instruction to be

executed. After the current instruction

has been finished, PC will point to the

next instruction.

Displacement (D) - In Nova, displacement refers to the value

of bits 8 through 15 of an MRI. For page

zero addressing, 0 2 D 2 3778

and for the other modes of direct addressing

Direct addressing - If an instruction references data directly

by pointing to the data, then the

technique is called direct addressing.

Page Zero - In Nova terminology, location 0 through

location 377 8 is called page zero.

71

2's complement of a number - the 2's complement of a number X

is equal to the largest possible

number (for the Nova, largest

possible number is 1777i7) plus8

1 minus X.

Peripheral equipment - all the devices that are attached to

the computer and serve either as the

means of feeding raw data or file data

into the system or receiving results

or updated files from the system are

referred as peripheral equipments.

Central Processing Unit (CPU) - It is used to describe elements

that carry out a variety of

essential data manipulations

and controlling tasks at the

heart of the computer.

Flip-flop - It is a bistable logic unit generally used as a

basic storage element in various registers inside

the computer.

Buffer - A buffer is an area of storage which temporarily

holds data that will be subsequently delivered to a

processor or input/output transducer.

Teletype - It is a peripheral equipment which works like a

typewriter.

The American Standard Code for !nformation !nterchange (ASCII)

It is a seven-bit code used to denote different

characters.

72

Paper tape - It is a peripheral equipment used as a storage

medium for the preparation, storage a.nd

transmission of data in various appli ·ations.

Parity check - It is an extensively used error-checkiHg

facility provided to ensure correct recording

of data, its input into the computer system,

and its transfer within the system.

Subroutine - A subroutine is a portion of a program which is

logically independent and performs a specific

task necessary for the execution of the program.

Signed and Unsigned number - For the Nova, a number can be

regarded as signed by the

progranuner. Bit 0 = 0 denotes

positive while bit 0 = 1 represents

negative. The Nova will always

presume unsigned operations.

Carry - it is an extra bit attached to the left of bit 0

during arithmetic and logical operations and is used

to test for sign and overflow condition.

Chapter 5

Priority - It is a method of scheduling to determine which

resource in the system can have privileged access

of the CPU than the other resources.

73

REFERENCES

1. 	 Data General Corporation, "Fundamentals of Mini-Computer

Programming", 1973.

2. 	 Physics Department, McMaster University, "Introduction

to the Data General Nova", Physics 4D6 course manual.

3. 	 W.W. Peterson, "Introduction to Programming Languages".

Prentice Hill, 1974.

4. 	 A Ralston & C.L. Meals, "Encyclopedia of Computer Science",

Petrocelli/Charter, 1976.

5. 	 Data General Corporation, "Introduction to Programming the

Nova Computers", 1972.

	Structure Bookmarks

