
Design of Energy-Efficient Uniquely Factorable

Constellations for MIMO and Relay Systems



DESIGN OF ENERGY-EFFICIENT UNIQUELY FACTORABLE

CONSTELLATIONS FOR MIMO AND RELAY SYSTEMS

BY

ELEANOR LEUNG, M.Eng., (Electrical Engineering)

McMaster University, Hamilton, Canada

a thesis

submitted to the department of electrical & computer engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

c© Copyright by Eleanor Leung, December 2015

All Rights Reserved



Doctor of Philosophy (2015) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: Design of Energy-Efficient Uniquely Factorable Constel-

lations for MIMO and Relay Systems

AUTHOR: Eleanor Leung

M.Eng., (Electrical Engineering)

McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Jian-Kang Zhang

NUMBER OF PAGES: xiv, 160

ii



To my parents for always pushing me to be the best that I can be.



Abstract

This thesis focuses on the concept of uniquely factorable constellations (UFCs) in the

design of space-time block codes (STBCs) for wireless communication systems using

three different approaches. Based on intelligent constellation collaboration, UFCs

can provide the systematic design of a full diversity code with improved coding gain.

Firstly, motivated by the energy-efficient hexagonal lattice carved from the Eisen-

stein integer domain, hexagonal UFCs and hexagonal uniquely factorable constella-

tion pairs (UFCPs), of various sizes, are constructed for a noncoherent single-input

multiple-output (SIMO) system. It is proved that these designs assure the blind

unique identification of channel coefficients and transmitted signals in a noise-free

case and full diversity for the noncoherent maximum likelihood (ML) receiver in a

noisy case. In addition, an optimal energy scale is found to maximize the coding

gain. Secondly, using a matrix similar to the Alamouti matrix and the UFCP con-

cept based on the quadrature amplitude modulation (QAM) constellation, a novel

energy-efficient unitary STBC is designed for a noncoherent multiple-input single-

output (MISO) system with two transmitter antennas and one receiver antenna by

using the QR decomposition. It is shown that the proposed UFCP-STBC design also

allows for the blind unique identification of both the transmitted signals and channel

coefficients as well as full diversity. In addition, an optimal unitary UFCP-STBC is
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devised to maximize the coding gain subject to a transmission bit rate constraint.

The last approach is to demonstrate how the UFCP concept is applied to the system-

atic design of a coherent relay network coding system. A class of uniquely factorable

Alamouti matrix pairs is proposed for the design of a novel amplify-forward relay

network coding scheme, which allows the relay node to transmit its own information.

By carefully making use of the Alamouti coding structure and strategically encoding

the signals from the two antennas at the relay node, the resulting coding scheme

enables the optimal full diversity gain and better coding gain for the ML detector.

Comprehensive computer simulations show that the three uniquely factorable designs

presented in this thesis have the best error performance compared to the current

designs in literature.
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Notation and abbreviations

()∗ complex conjugate

A matrix

b column vector

aij ij-th entry of a matrix A

IK K ×K identity matrix

AT transpose of A

AH Hermitian transpose of A (i.e., the conjugate and transpose of A)

Z ring of integers

C field of complex numbers

||x|| Euclidean norm of a vector x

det(A) determinant of a matrix A

ML maximum likelihood

QAM quadrature amplitude modulation

SIMO single-input multiple-output

MIMO multiple-input multiple-output

STBC space-time block code

UFC uniquely factorable constellation

UFCP uniquely factorable constellation pair
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Chapter 1

Introduction

1.1 Background information and project motiva-

tions

Over the last several decades, the rapid growth in wireless communication technologies

has revolutionized many industries. This was greatly motivated by advances in digital

signal processing as well as a decrease in the cost of fabrication and integration of the

digital hardware. However, it normally becomes difficult to devise one wireless system

to simultaneously satisfy all the requirements such as data rate, bit rate, delay and

etc. for different applications. Therefore, different applications need different wireless

communication systems.

In the wireless transmission of signals, the communication channel is less reli-

able than the physical wired channel, since it suffers from outside interference and

fading. Multiple-input multiple-output (MIMO) communication is one of commonly

used techniques which makes use of this fading caused by the multipath propagation
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of different radio paths typically occurring in urban environments. This technique is

often a better alternative for wireless systems than consuming extra bandwidth or

increasing the transmitter signal power to achieve comparable results. By using mul-

tiple independent antennas at the transmitter or receiver or both, one can improve the

channel capacity (quality of the wireless link) and error performance (reliability) of

a wireless communication system. Basically, channel capacity and error performance

are the two main performance measures in the study of MIMO communications.

Early work [1–3] demonstrated that MIMO systems have a significant capacity

gain over a single antenna system. Telatar proved for a MIMO coherent channel,

where channel state information is known at the receiver, the capacity is linearly

increasing in terms of the minimum of the transmitter and the receiver antennas [1].

Marettza and Hochwald computed and optimized the lower bound on the capacity of

a noncoherent MIMO channel, where channel coefficients are unknown at both the

transmitter and receiver [3]. Furthermore, Zheng and Tse attained an asymptotic

formula for characterizing the channel capacity in a high signal to noise ratio (SNR)

region in terms of the coherence time and the number of antennas using a geometric

manifold approach [4].

Error performance in a MIMO system is measured by the full diversity and coding

gain derived from space-time block coding. Space-time block codes (STBCs) are

designed for the MIMO systems which introduce spatial and temporal correlation

into the signals transmitted from different antennas. A diversity gain results from

the multiple paths between the transmitter and receiver. To achieve full diversity,

a signal must be sent over all the transmitter antennas [5]. The coding gain is a

function of how efficiently a coding scheme utilizes the available degrees of freedom of

2
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the channel and also how correlated the symbols are at the transmitter antennas [5].

Tarokh proposed the use of rank criterion for diversity gain and determinant criterion

for coding gain for designing a good STBC [6].

Currently, the technique for combining multiple antennas [1,2,7] with space-time

block coding [8–29] to improve the spectral efficiency of a coherent wireless commu-

nication system has been well established. In practice, due to their low complexity

decoding, simple space-time block code designs [6,28–42] have attracted much atten-

tion. Specifically, Alamouti proposed a simple transmitter diversity technique for two

transmitter antennas and one receiver antenna, which provides full diversity and has

fast maximum likelihood (ML) decoding [30] without loss of information [43]. There-

fore, if the exact knowledge of the channel coefficients is available at the receiver, the

orthogonal Alamouti space-time block code [30] is especially appealing in practical

applications.

However, the technology in noncoherent MIMO communication systems is not as

well-developed as that in the coherent case. Hence, in this thesis, we will focus on

error performance analysis of noncoherent MIMO systems. We also consider a block

fading channel where the channel coefficients are constant for the coherence time

period ie., a fixed number of time slots. In practice, perfect channel state information

at the receiver is not easily obtainable. For a slow-fading channel, the receiver may

make use of the training signals sent from the transmitter and estimate the channel

accurately while maintaining a reasonable information data rate [44,45]. However, for

a fast-fading channel, the coherence time may be too short to allow the transmitter

to send sufficient training signals for the receiver to reliably estimate the channel

coefficients while providing a reasonable amount of transmitted data [4, 44, 45]. In

3
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order to ensure communication is as reliable as possible for a fast varying channel with

flat fading and to avoid sending the training signals for the estimation of the channel,

differential space-time block coding [46–56] is one of the possible solutions. However,

this approach results in an approximate loss of 3dB in performance compared to

coherent detection. In addition, blind signal processing techniques based on the

estimation of the second order statistics have been applied to blindly identify the

space-time block coded channel [57–61]. Unfortunately, phase ambiguity prevents

the channel from being able to be uniquely identified, even in the noise-free case.

Therefore, in order to attain a more satisfactory solution, noncoherent space-

time block coding techniques [46, 62–67] have been proposed. It was proven that

either at high SNR or for long coherence time, the unitary code is optimal [3, 4,

46, 68]. Thus, most of the noncoherent space-time block code designs have been

primarily concentrated on unitary designs [46,55,62–66,69]. Recently, the systematic

design of noncoherent unitary space-time block codes with full diversity and a high

transmission rate for an arbitrary number of the transmitter antennas and the receiver

antennas has been established by using a pair of coprime phase-shifted keying (PSK)

constellations and the QR decomposition [70]. However, realizing that PSK signalling

is not as energy-efficient as quadrature amplitude modulation (QAM) signalling, the

researchers in [71] invented a novel concept called uniquely factorable constellation

(UFC) and utilized the well-known Lagrange’s four square theorem in additive number

theory for the efficient and effective design of the full diversity energy-efficient unitary

UFC from the Gaussian integer domain for a wireless communication system with a

single transmitter antenna and multiple receiver antennas. More recently, this idea

has been successfully extended by [72] to introducing another new notion named as

4
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uniquely factorable constellation pair (UFCP) for the design of an energy-efficient

collaborative unitary STBC from the QAM constellations for a system having two

transmitter antennas and one receiver antenna. However, the QAM signalling is

not as energy-efficient as hexagonal signalling [73–76]. The hexagonal constellation

is carved from the Eisenstein integer domain [77, 78] which is the densest lattice in

two dimensions. Its ”honeycomb” structure has been suggested to be optimal in

terms of the minimum error probability [73, 79]. Hence, this also suggests to us

an important theoretical research topic on the systematic study of UFC and UFCP

using the hexagonal constellation for a general MIMO system. This is one of major

motivations for this thesis.

In addition, it is known that Alamouti matrices have played an significant role

in the design of orthogonal STBCs for both coherent and noncoherent wireless com-

munication systems in multi-antennas MIMO and relay networks. In recent years,

a family of Alamouti matrix pairs (in fact, the primitive matrix version of UFCP)

was initially constructed by [80–82] utilizing a pair of coprime PSK constellations.

Again, the PSK signalling except binary and 4PSK is not as energy-efficient as QAM

signalling. In addition, the strategies developed in [80–82] for the code construction

and the theoretic analysis of the unique identification and full diversity cannot be

exploited for the QAM constellation. Even so, this initial design demonstrates the

significance of the unique factorization of the Alamouti matrix signals, and provides

us with the possibility of a new research attempt for the systematic design of a family

of uniquely factorable Alamouti matrix pairs for the noncoherent MIMO system using

the more energy-efficient QAM constellation. This is another major motivation for

this thesis
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A closely related alternative to the MIMO communications is relaying network

communications. Relaying is a wireless communication technique which splits up a

long distance transmission by dividing it into several short distance transmissions.

If there is a limited number of antennas per node (terminal), relaying can improve

performance [83–88]. A simple relay system consists of three nodes: source, relay and

destination, where the signal is sent in over two communication phases. In the first

communication phase, the signal is directly sent from the source to the destination

node. In the second communication phase, the signal is forwarded from the source

to the relay node and then the relay node forwards the signal to destination node.

At the destination node, the receiver decodes the information from the combination

of directly transmitted and relayed signals. Two common relaying strategies are

amplify-and-forward and decode-and-forward. In amplify-forward, the relay node

amplifies the received signal from the source and then forwards the amplified signal

to the destination node. For decode and forward, the relay node decodes the received

signal from source node and then forwards it to the destination node. Cooperative

relaying, which can use STBC to exploit spatial and temporal diversity, combines

MIMO systems and relaying so that mobile terminals cooperate to form a virtual

antenna array to transmit and process the signals. All the currently-available relay

networks with either distributed STBC or network coding [89, 90] only allow the

relay node to passively forward whatever it has received from the source node to the

destination and does not permit it to actively transmit its own information. However,

in a practical communication process, it is often necessary to allow the relay node

to send information to terminal node, e.g., transmitting channel state information

or a control sequence. Traditionally, this task can be accomplished by allocating

6
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orthogonal subchannels, e.g., time slots or frequency bands which operates roughly

at a packet level. However, under certain strictly-constrained delay systems, this

could be problematic. Hence, a couple of initial efforts was attempted for the system

by [91, 92] using a pair of scalar UFCP based on PSK and QAM constellations,

allowing the source and relay to transmit information simultaneously at the symbol

level. In spite of the fact that these two specific designs were only applicable to

the scalar case, the primitive scalar (not matrix) UFCP concept strongly suggests an

important theoretic research topic on the systematic study of the unique factorizations

of Alamouti matrix signals for amplify-forward relay network coding which enables

the relay node transmit its own information to the destination. This is also another

major motivation for this thesis

1.2 Thesis outline

In this thesis, we focus on utilizing the concept of uniquely factorable constellations

in three different approaches for the design of wireless communications systems. In

Chapter 2, a review of the concepts of unitary constellation, UFC and UFCP is first

provided with a specific UFCP design using the QAM constellation and then, two

noncoherent detection methods, one for MIMO systems and one for relay systems,

are also discussed. Although the QAM constellation is commonly used in modern

communication systems, it is less energy-efficient than the hexagonal constellation.

Therefore, in Chapter 3, uniquely factorable hexagonal constellations are designed for

a noncoherent single-input multiple-output (SIMO) wireless communication system.

Using the hexagonal lattice formed from the Eisenstein integers and the recently

proposed concept of UFC, an algorithm is developed to effectively and efficiently

7
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construct unitary hexagonal UFCs of various sizes. In addition, a closed form opti-

mal energy scale is obtained to maximize the coding gain for the unitary hexagonal

UFCs. A similar procedure is also applied to the design of the hexagonal UFCPs

and its corresponding optimal energy scale. Chapter 4 covers the design of a unitary

STBC for a noncoherent MISO (multiple-input single-output) wireless communica-

tion system with two transmitter antennas and one receiver antenna. With the UFCP

concept based on the QAM constellation, we use an Alamouti-like matrix instead of

the Alamouti coding matrix and the QR decomposition to generate the unitary code.

It is proven that such a UFCP-STBC design assures that the blind unique identifica-

tion of both channel coefficients and transmitted signals in a noise-free case and full

diversity in a noisy case. To further improve error performance, an optimal unitary

UFCP-STBC is designed to maximize the coding gain. In Chapter 5, we show how

the UFCP concept can be utilized for the systematic design of distributed STBCs

for a coherent amplify-forward relay network. Using the recently developed scalar

QAM UFCP from [71], a class of uniquely factorable Alamouti matrix pairs is con-

structed and then, is applied to the design of a new network coding for a one-way

relay system consisting of two end nodes with each having a single antenna and one

relay node equipped with two antennas, which allows the relay node to transmit its

own information while forwarding the source information which it has received to the

destination. By making use of the Alamouti coding scheme and strategically encod-

ing the signals from the two antennas at the relay node, such a code design renders

the equivalent channel between source and destination node to be a product of the

two Alamouti matrix channels. The resulting codeword matrix is also the product of

a pair of uniquely factorable Alamouti codeword matrices exactly corresponding to

8
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the source codeword and the relay codeword. Therefore, the coding scheme enables

the optimal full diversity gain and better coding gain for a ML detector. Finally, we

conclude this thesis and present some future work in Chapter 6.

9



Chapter 2

Preliminaries

In this chapter, we first briefly review the concept of unitary constellation, uniquely

factorable constellations and uniquely factorable constellation pairs recently devel-

oped in [71, 72] and then, introduce two detection methods: generalized likelihood

ratio test and least square error, for the noncoherent MIMO and relay communica-

tion systems.

2.1 Unitary Constellation

For a noncoherent SIMO channel model, a unitary constellation can be attained by

simply normalizing the nonunitary constellation.

Definition 1 For a constellation X ⊆ C2, its unitary constellation is denoted as

X = {x̄ = x/||x|| : x ∈ X}, where x is a column vector.

If X is a matrix, where X ∈ X, each element in a unitary constellation is a unitary

matrix.

10
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2.2 Uniquely factorable constellation (UFC)

Definition 2 Let U be a set composed of 2-D complex column vectors. U is said to

form a UFC if there exists (x, y)T , (x̃, ỹ)T ∈ U that satisfies a unique factorization

property such that if xỹ = x̃y then, we have x = x̃ and y = ỹ.

Proposition 1 Let U be a UFC with |U| ≥ 2. Then, the following statements are

true.

1. (0, 0)T /∈ U.

2. If (x, y)T ∈ U, then, −(x, y)T /∈ U.

3. If (0, y1)
T ∈ U, then, for any complex number y2 6= y1, (0, y2)

T /∈ U. Similarly,

if (x1, 0)T ∈ U, then, for any complex number x2 6= x1, (x2, 0)T /∈ U.

4. If (x, x)T ∈ U, then, for any complex number y 6= x, (y, y)T /∈ U.

A more detailed description of the UFC and proof of Proposition 1 can be found

in [71]. In the UFC x and y are jointly designed, so U can be thought of as a

collaborative unitary UFCP. For the UFCP design x and y are designed independently.

2.3 Uniquely factorable constellation pair (UFCP)

Definition 3 A pair of constellations X and Y is said to be a UFCP, which is denoted

by (X ,Y), if there exist x, x̃ ∈ X and y, ỹ ∈ Y such that if xỹ = x̃y, then x = x̃,

y = ỹ.

Proposition 2 Let X and Y be a UFCP. Then, the following statements are true.

11
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1. Let X and Y form a UFCP, if |Y| ≥ 2, then, 0 /∈ X .

2. For a pair of constellations X and Y each having a finite size and 0 /∈ X , if a

new constellation Z is denoted by Z = {z = y
x

: x ∈ X , y ∈ Y} then such a pair

of constellations X and Y constitutes a UFCP if and only if |Z| = |X × Y| =

|X | × |Y|.

3. Let constellation Z be rotation-invariant with respect to ejθ such that if every

element in Z is multiplied by ejθ it still belongs to the constellation.

4. Let Z = Y
X then the following three statements are true.

(a) Non-intersection: For any x1, x2 ∈ X , x1 6= x2, there is no intersection

between Group-x1 and Group-x2, i.e., Zx1 ∩ Zx2 = Φ.

(b) Decomposition: The union of all the groups is equal to the original con-

stellation Z, i.e., ∪x∈XZx = Z.

(c) The number of groups is equal to |X | and |Zx| = |Y| for any x ∈ X .

A more in-depth description and proof of Proposition 2 for the UFCP can be found

in [72]. If Z is chosen to be an energy-efficient QAM constellation a modified cross

QAM constellation is used since it satisfies the rotation invariance property ie., if

s ∈ Q then we have js ∈ Q.

Definition 4 A modified 2K-ary cross QAM constellation Q is defined as follows:

1. If K is even, Q is the standard square 2K-ary QAM constellation, i.e.,

Q =
{

(2m− 1) + (2n− 1)j : −2
K−2

2 + 1 ≤ m,n ≤ 2
K−2

2

}
.

12
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2. If K = 3, Q is a new 8-QAM constellation modified from the conventional 8-ary

QAM constellation, i.e.,

Q =
{

1 + 3j, 1 + j, 3− j, 1− j,−1− 3j,−1− j,−3 + j,−1 + j
}
.

3. If K is an odd number greater than 3, Q is the union of a horizontal rectangular

QAM constellation and a vertical rectangular QAM constellation, i.e.,

Q =
{
(2m− 1) + (2n− 1)j : −3× 2

K−5
2 + 1 ≤ m ≤ 3× 2

K−5
2 ,−2

K−3
2 + 1 ≤ n ≤ 2

K−3
2

}
⋃{

(2m− 1) + (2n− 1)j : −2
K−3

2 + 1 ≤ m ≤ 2
K−3

2 ,−3× 2
K−5

2 + 1 ≤ n ≤ 3× 2
K−5

2

}
.

The UFCP for the cross QAM constellation, which was first developed in [71,72],

is briefly reviewed below.

Proposition 3 Let Z be the energy-efficient modified 2Kcross QAM constellation.

Then subject to X ⊆ {1,−1, j,−j} with a fixed size of X greater than one, one of

the solutions to the optimization problem {Xopt,Yopt} = arg max
X×Y=Z

min
y1 6=y2∈Y

|y1 − y2| is

given as follows:

1. If |X | = 2 then, X (1)
opt = X2 = {1, j}

(a) For K = 2 : Y(1)
opt = Y2 =

{
1 + j,−1− j

}
.

(b) For K = 3 : Y(1)
opt = Y2 =

{
1 + 3j,−1− 3j,−1 + j, 1− j

}
.

(c) For K = 5 :

Y(1)
opt = Y2 =

{
− 1 + 5j, 3 + 5j,−3 + 3j, 1 + 3j, 5 + 3j,−5 + j, 3 + j,−3− j,

5− j,−5− 3j, 3− 3j,−3− 5j, 1− 5j,−1− 3j,−1 + j, 1− j
}
.

(d) For K ≥ 4, the optimal Y(1)
opt is determined as follows:

13
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i. When K is even,

Y(1)
opt = Y2 =

{
(2

K
2 − 1− 4m) + (2

K
2 − 1− 4n)j : 0 ≤ m,n ≤ 2

K−2
2 − 1

}
⋃{

(2
K
2 − 3− 4m) + (2

K
2 − 3− 4n)j : 0 ≤ m,n ≤ 2

K−2
2 − 1

}
.

ii. When K is an odd number exceeding 5,

Y(1)
opt = Y2 =

{
(3× 2

K−3
2 − 1− 4m) + (2

K−1
2 − 1− 4n)j

}m=2
K−3

2 −1, n=3×2
K−5

2 −1

m=0,n=0⋃{
(2

K−1
2 − 1− 4m) + (3× 2

K−3
2 − 1− 4n)j

}m=3×2
K−5

2 −1, n=2
K−3

2 −1

m=0,n=0⋃{
(3× 2

K−3
2 − 3− 4m) + (2

K−1
2 − 3− 4n)j

}m=2
K−3

2 −1, n=3×2
K−5

2 −1

m=0,n=0⋃{
(2

K−1
2 − 3− 4m) + (3× 2

K−3
2 − 3− 4n)j

}m=3×2
K−5

2 −1, n=2
K−3

2 −1

m=0,n=0
.

2. If |X | = 4 and K ≥ 3, then, X (2)
opt = X4 = {1,−1, j,−j}.

(a) For K = 3: Y(2)
opt = Y4 = {1 + 3j, 1− j}.

(b) For K = 5:

Y(2)
opt = Y4 = {−1 + 5j, 3 + 5j,−5 + j,−1 + j, 3 + j,−5− 3j,−1− 3j, 3− 3j}.

(c) For K ≥ 4, the optimal Y(2)
opt can be determined as follows:

i. When K is even,

Y(2)
opt = Y4 =

{
(4m− 2

K
2 + 3) + (2

K
2 − 1− 4n)j : 0 ≤ m,n ≤ 2

K−2
2 − 1

}
.

ii. When K is an odd number exceeding 5,

Y(2)
opt = Y4 =

{
(3× 2

K−3
2 − 1− 4m) + (2

K−1
2 − 1− 4n)j

}m=3×2
K−5

2 −1, n=2
K−3

2 −1

m=0,n=0⋃{
(2

K−1
2 − 1− 4m) + (3× 2

K−3
2 − 1− 4n)j

}m=2
K−3

2 −1, n=3×2
K−5

2 −1

m=0,n=0
.
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A more detailed analysis can be found in [72]. Fig 2.1 displays the factorization

for 8, 16, 32 and 64 QAM constellations when |X | = 2 and |X | = 4.

(a) UFCP using 8-QAM constellation (b) UFCP using 16-QAM constellation

(c) UFCP using 32-QAM constellation (d) UFCP using 64-QAM constellation

Figure 2.1: The optimal Y(1)
opt and Y(2)

opt in Proposition 1: the blue and green circles

are for Y(1)
opt and the green circles are for Y(2)

opt

As we will see in later chapters, both UFC and UFCP provide a useful technique

for the systematic design of good noncoherent STBC which enables the unique blind
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identification of the transmitted signals and channel coefficients in a noise-free case

as well as full diversity in a noisy case.

2.4 Detection methods for noncoherent MIMO

systems

Let us first consider a general space-time block coded noncoherent MIMO system with

M transmitter antennas, N receiver antennas and flat fading channels as follows:

Υ = SH + Ξ, (2.2)

where Υ denotes a T × N received signal matrix, H denotes an M × N channel

matrix, S is a T ×M codeword matrix and Ξ denotes a T ×N noise matrix. A flat

fading channel is where multipath propagation affects all the frequencies across a given

channel equally. We assume that the elements ξtn of Ξ are samples of independent

circularly-symmetric zero-mean complex Gaussian random variables with variance

σ2. Under these assumptions, the probability density function of the received signal

matrix Υ conditioned on the transmitted signal matrix S is the Gaussian distribution,

i.e.,

1

πTN det(SSH + σ2I)
× exp

(
−

Tr
(
ΥH(SSH + σ2I)−1Υ

)
σ2

)
,

and thus, its log-likelihood is given by

−
Tr
(
ΥH(SSH + σ2I)−1Υ

)
σ2

− ln det(SSH + σ2I)− TN lnπ.
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Then, for the noncoherent MIMO system the ML receiver is equivalent to solving

the following optimization problem: Ŝ = arg minS{∆s −Tr
(
ΥHΘsΥ

)
}, where Θs =

1
σ2 S

(
σ2I + SHS

)−1
SH and ∆s = ln det

(
σ2I + SHS

)
.

Consider the conditional probability density function of the received signal matrix

Υ given both the channel matrix H and the transmitted signal matrix S, i.e.,

1

πTNσ2TN
× exp

(
−‖Υ− SH‖2F

σ2

)
,

and thus, its log-likelihood is given by

−‖Υ− SH‖2F
σ2

− TN ln π − 2TN lnσ.

The generalized likelihood ratio test (GLRT) receiver avoids estimating the vari-

ance of noise, so for the joint estimation of H and S to maximize the likelihood, it is

essentially equivalent to solving the following nonlinear least square error optimization

problem [68,93,94]:

{Ĥ, Ŝ} = arg min
H,S
‖Υ− SH‖2F . (2.3)

Its solution can be obtained by first estimating the transmitted signal matrix S as

Ŝ = arg max
S

Tr
(
ΥHS

(
SHS

)−1
SHΥ

)
, (2.4)

and then, estimating the channel matrix H as Ĥ =
(
ŜHŜ

)−1
ŜHΥ. Particularly for

any unitary code, the ML receiver and the GLRT receiver are equivalent for the op-

timal estimation of the transmitted signal matrix, i.e., Ŝ = arg maxS Tr
(
ΥHSSHΥ

)
.
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In addition, Brehler and Varanasi [68] analyzed the asymptotic performance of the

GLRT detector for the noncoherent MIMO system and proved the following lemma.

Lemma 1 Let a 2M × 2M matrix Rsŝ be defined as Rsŝ =
(
S, Ŝ

)H(
S, Ŝ

)
. If each

matrix Rsŝ has full rank for all pairs of distinct codewords S and Ŝ, then, the resulting

space-time block code provides full diversity for the GLRT receiver, and moreover, the

pairwise error probability PGLRT(S → Ŝ) of transmitting S and deciding in favor of

Ŝ 6= S has the following asymptotic formula:

PGLRT(S→ Ŝ) =

 2MN − 1

MN

 detN(ŜHŜ)

detN(Rsŝ)
× SNR−MN + o

(
SNR−MN

)
.

In general, from the perspective of the average symbol error probability minimization,

the GLRT provides a suboptimal outcome compared to the ML criterion. Fortunately,

the GLRT independence on any kind of fading information makes it an appealing

detection candidate for the noncoherent MIMO system when the receiver cannot

obtain the estimate of channel correlation or when the channel has variable statistics.

2.5 Detection method for noncoherent relay

systems

Now consider a general noncoherent amplify-forward (AF) half-duplex cooperative

relay system with a source node, a destination node and M relay nodes. Each node

has a single antenna that cannot transmit and receive simultaneously. The channel
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model is

r =
√
ρSh + η. (2.5)

where r is the received signal at the destination node, S is a T × (M + 1) transmitted

signal matrix, h = (h, f1g1, f2g2, · · · , fMgM)T is a linear and product mixed channel,

ρ is the SNR, and η is the noise vector. The coefficients h, fm, and gm for m =

1, 2, · · · ,M in (2.5) are, respectively, the channel from the source to the destination

(linear channel), the channel from the source to the mth relay, and the channel from

the mth relay to the destination (product channel).

Although the ML receiver is optimal in noncoherent MIMO systems it becomes

very complicated in noncoherent relay systems, which is also the case for the GLRT

receiver. Instead, the recently proposed least square error (LSE) receiver [95] is used

since the statistics of the channel and noise are not needed. The pairwise error

probability (PEP) in the LSE receiver for linear and product mixed channels has the

following asymptotic formula

PLSE(S→ S̃) =

 2M + 1

M + 1

 det(S̃HS̃) lnM ρ

det(PSS̃)ρM+1
+O

(
ρ−M−1 lnM−1 ρ

)
, (2.6)

where PSS̃ = (S, S̃)H(S, S̃). When the LSE receiver from [95] is used at the destina-

tion node the following optimization problem needs to be solved, i.e.,

{S̃, h̃} = arg min
S,h
||r−√ρSh||22. (2.7)
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Differentiating the quadratic function with respect to h and equating it to zero, the

estimated channel is

h̃ =
(SHS)−1SHr

√
ρ

. (2.8)

Substituting (2.8) back into (2.7) the estimated signal matrix becomes

S̃ = arg max
S

rHS(SHS)−1SHr.
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Chapter 3

Design of uniquely factorable

hexagonal constellations for

noncoherent SIMO systems

In this chapter, we focus on a flat fading wireless communication system with one

transmitter and multiple (N) receiver antennas also known as the SIMO system,

where the channel coefficients are completely unknown at both the transmitter and

the receiver and are assumed to be constant for the first two time slots and then

change randomly to new independent values that are fixed for the next two time slots

and so on. It is known that for a coherent SIMO system, full diversity is achieved

with linear receivers using any constellations. However, this fact is no longer true

for the noncoherent SIMO system. In practice, one training symbol is simply used

to estimate the channel channel, but this may not be spectrum-efficient for such a

fast-changing channel. Thus, the signals needs to be carefully designed to assure both

satisfactory error performance and transmission data rate. As mentioned earlier, it
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has been proven that the unitary constellation is optimal when either SNR is high or

coherence time is long. Hence, most of the noncoherent space-time block code designs

have been mainly focused on unitary designs [46,55,62–66,96]. The optimal design of

constellations for an additive white Gaussian noise (AWGN) channel was extensively

studied in [77, 97–101]. For N = 1, i.e, a single-input single-output (SISO) system

with the fast changing flat Rayleigh fading channel, Richters [102] made a hypothesis

that the capacity-achieving input distribution is discrete. In 2001, Abou-Faycal, Trott

and Shamai [103] rigorously proved that it is true.

The QAM constellation is commonly used in modern digital communication sys-

tems, since it can be very easily designed, efficiently modulated and demodulated.

Essentially, the QAM constellation is carved from the Gaussian integer domain. Ex-

ploiting these integers, the authors in [71,72] developed the novel concept of UFC and

UFCP for the systematic design of energy-efficient unitary constellations for the non-

coherent SIMO systems. However, the QAM constellation is not as energy-efficient as

a hexagonal constellation [73–76]. The hexagonal constellation carved from the Eisen-

stein integer domain [77,78] is the densest two dimensional lattice. Its ”honeycomb”

structure has been suggested to be optimal in terms of the minimum error probabil-

ity [73, 79], as previously mentioned. Recently, an efficient demodulation algorithm

for the hexagonal constellation has been formulated [76].

Therefore, our main objective in this chapter is to design a unitary hexagonal

constellation for the noncoherent SIMO system. To aid in this systematic design

process, two approaches will be presented. Firstly, we extend the newly developed

UFC concept for the QAM constellation [71] into the unitary hexagonal UFC scenario

for the noncoherent SIMO and noncoherent cooperative relay systems. The second
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approach is to use the recently proposed technique for UFCP [72] to design a set of

unitary hexagonal UFCP for the noncoherent SIMO system.

3.1 Uniquely factorable constellation for

the single-input multiple-output scheme

3.1.1 Channel model for SIMO scheme

The wireless communication system considered consists of one transmitter antenna

and N receiver antennas, where signal s is the transmitted symbol, which is randomly,

independently and equally likely chosen from a certain constellation. The channel

coefficients hn for n = 1, 2, . . . , N are samples of circularly symmetric, zero mean,

complex white Gaussian random variables with unit variance and remain constant for

the first two time slots after which they randomly change to new independent values

that are fixed for the next two time slots and so on. They are assumed to be unknown

at both the transmitter and receiver. Additive noise ξ is assumed to be independent

circularly symmetric complex Gaussian noise with zero mean and variance σ2. The

discrete received signal r can be represented in the equivalent channel model as

r = hs+ ξ.

For such a system, the transmission scheme is described as follows: In the first time

slot the signal s = x is sent for transmission

r1 = hx+ ξ1.

23



Ph.D Thesis - Eleanor Leung McMaster - Electrical Engineering

In the second time slot the signal s = y is sent for transmission

r2 = hy + ξ2.

The relationship between the transmitted and received signals within the two time

slots can be expressed in a more compact matrix form as

r =

 xIN

yIN

h + ξ = Sh + ξ, (3.1)

where r = (r1
T , r2

T )T , ξ = (ξ1
T , ξ2

T )T and S = (xIN , yIN)T .

Hence, the principal problem which we would like to solve in this section can be

formally stated as follows:

Problem 1 Design the constellation U, where (x, y)T ∈ U, for the space-time block

coded channel (3.1) such that

1. in the noise-free case, for any given nonzero received signal vector, r 6= 0, the

equation from (3.1) reduces to become r = Sh with respect to the transmitted

symbol variables x, and y, and the channel vector h has a unique solution, and

2. in the noisy environment, full diversity and the optimal coding gain are enabled

for the noncoherent ML receiver.
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3.1.2 Unique identification and full diversity

First, let’s consider the condition of unique identification in Problem 1. In a noise

free case, during the first and second time slot, the nth received signal is

un = hnx, (3.2)

vn = hny, (3.3)

respectively. Eliminating hn from (3.2) and (3.3) results in

un
vn

=
x

y
. (3.4)

Hence, for any given nonzero un/vn in (3.4), there exists a unique pair of solutions x

and y if and only if constellation U satisfies the condition that if xỹ = x̃y, then, we

have x = x̃ and y = ỹ, i.e., the unique factorization of constellation U.

In order to analyze the full diversity of the noncoherent SIMO channel, the de-

tection method of a general space-time block coded noncoherent MIMO system in

Section 2.4 must be first considered. Lemma 1 tells us that the full rank of the

matrices Rsŝ for all the distinct codewords S and Ŝ assures full diversity. For the

considered noncoherent SIMO system the full diversity condition is equivalent to

(S, S̃) =

 xIN x̃IN

yIN ỹIN


being invertible for any (x, y)T 6= (x̃, ỹ)T ∈ U. Since det(Rss̃) = |xỹ − x̃y|2, the fact

that Rss̃ is invertible is equivalent to the unique factorization of the constellation U
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ie. if xỹ = x̃y then x = x̃ and y = ỹ. Therefore, reliable wireless communication

for the noncoherent SIMO systems needs the design of a space-time constellation

with a uniquely factorable property. This concept was first proposed for the QAM

constellation in [71]. Hence, the concept of uniquely factorable constellation (UFC),

from Definition 2, will be used to design the constellation U in Problem 1 from

hexagonal constellations.

3.1.3 Unitary UFC and coding gain

As mentioned before, since the unitary constellation is optimal, the main focus will

be on the unitary hexagonal UFC designs. In our noncoherent SIMO channel model,

a unitary constellation can be attained by simply normalizing the nonunitary con-

stellation as in Definition 1. Applying Lemma 1 to this system, the pairwise error

probability becomes

PGLRT(x̄→ ˜̄x) =

 2N − 1

N


detN(Rx̄˜̄x)

× SNR−N + o
(
SNR−N

)
. (3.5)

When SNR is large the error performance is dominated by the worst case of

det(Rx̄˜̄x) known as the coding gain term. Similar to the coherent MIMO communi-

cation case [8], the coding gain for a unitary constellation X is defined as

G(X) = min
x̄ 6=˜̄x∈X

det(Rx̄˜̄x) = min
x̄ 6=˜̄x∈X

| det(x̄, ˜̄x)|2 = min
x̄ 6=˜̄x∈X

| det(x, x̃)|2

||x||2|x̃||2
.

Definition 5 For two vectors x1,x2 ∈ C2, the distance between them, d(x1,x2), is
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defined as,

d(x1,x2) =
| det(X)|
||x1|| ||x2||

where x1 ∈ X, x2 ∈ X and X = (x1,x2), i.e., the matrix formed by these two column

vectors.

Definition 6 Given a UFC X ⊆ C2, quantity D(X) is defined as the minimum dis-

tance of any two distinct vectors in X, which is denoted as D(X) = min
x1 6=x2∈X

d(x1,x2).

Thus, the distance for the normalized constellation X is the square root of the coding

gain ie., D(X) =
√
G(X).

3.1.4 Hexagonal UFC construction

In this section, an algorithm is developed to efficiently design the hexagonal UFCs.

Definition 7 A hexagonal constellation lattice Qk with radius k is defined as

Qk =
{
a+ bw : a2 − ab+ b2 ≤ k2, w = exp

(j2π
3

)
, a, b ∈ Z

}
,

where k ∈ Z.

We propose the following Algorithm 1 for the efficient and effective design of a 2n

hexagonal UFC such that its minimum distance is maximized. The designed UFC

signal set must also satisfy the properties of a UFC listed in Proposition 1 from

Section 2.2 and rules 1 and 2 from [71].

Algorithm 1 This algorithm consists of the following eight progressive steps.

27



Ph.D Thesis - Eleanor Leung McMaster - Electrical Engineering

1. Let 2n be the size of the UFC set Un where n = 2.

2. Given k = 2, generate all possible vector combinations of (x, y)T where x, y ∈

Qk, using Definition 7. Group the vectors into all possible combination sets of

size four.

3. Check the distance, using Definition 6, between every pair of vectors within the

same set to find the smallest distance. Select the vector sets Xk1,Xk2, . . . ,XkM ,

where the smallest distance for each set is larger than the optimal 2n QAM UFC

distance metric in [71].

4. If no set contains vectors which have their smallest distance larger than the

optimal 2n QAM distance metric, then go back to Step 2 and increase k by 1.

5. Among all the choices for Xk1,Xk2, . . . ,XkM , choose the set kM such that XkM

has the largest minimum distance. If more than one set has the largest mini-

mum distance, choose the set that makes the training equivalent UFC of Un as

geometrically symmetric as possible when plotted in the complex plane.

6. Add the chosen set XkM to a UFC set Un.

7. Repeat Steps 2-6 until the size of Un is 2n.

8. Go to Step 1 and increase n by 1.

Using Algorithm 1, the hexagonal UFCs of sizes 2n from n = 2 to n = 6 are listed in

Appendix A.1.
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3.1.5 Energy-efficient unitary training scheme

In this section, a unitary UFC is attained by normalizing the nonunitary designed

hexagonal UFC. Then, a closed-form energy scale is given to maximize the coding

gain (ie. distance) of the constellation.

It is known that training signals are a simple method to estimate the channel

coefficients when channel information is not available at either the transmitter or

receiver. A pilot signal of 1 is sent in the first time slot. The data signal s is sent

during the second time slot, where s is randomly, independently and equally likely

chosen from a particular 2n constellation An. The training scheme can be represented

as

TAn =

s

∣∣∣∣∣∣∣s =

 1

s

 , s ∈ An

 .

In order to obtain a unitary training constellation for the noncoherent SIMO

channel, we normalize the nonunitary training constellation An such that

TAn =

 1√
1 + |s|2

 1

s

 : s ∈ An

 .

Notice that a unitary UFC can be immediately obtained by simply normalizing

the designed nonunitary UFC Un, ie.,

Un =

 1√
|x|2 + |y|2

 x

y

 : (x, y)T ∈ Un

 . (3.6)
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As a result, the unitary training equivalent UFC is

TUn =

 1√
1 + |z|2

 1

z

 : z =
y

x
, (x, y)T ∈ Un

 .

An energy-scaled version of the training constellation An is denoted by

TAn(β) ,

s′

∣∣∣∣∣∣∣s′ =
 1

βs

 : s ∈ An

 ,

for β > 0. The corresponding energy-scaled normalized constellation is given by

TAn(β) =

 1√
1 + β2|s|2

 1

βs

 : s ∈ An

 .

Therefore, the energy-scaled version of the training unitary UFC with energy scale

β is

TUn(β) =

 1√
1 + β2|z|2

 1

βz

 : z =
y

x
, (x, y)T ∈ Un

 .

The pairwise error probability in (3.5) is dominated by the worst case for high

SNR, which is the coding gain term. Therefore, the larger the coding gain, the better

the error performance. Since the coding gain is directly proportional to minimum

distance for our SIMO system, in order to maximize the coding gain of TUn(β) we

must find an optimal energy scale β that maximizesD(TUn(β)). This is solved through
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the following optimization problem

β̃ = arg max
β

D(TUn(β))

= arg max
β

min
z1 6=z2

β|z1 − z2|√
1 + β2|z1|2

√
1 + β2|z2|2

= arg max
β

min
z1 6=z2

d(z1, z2, β). (3.7)

Algorithm 2 The optimal solution to (3.7) is found using the following five steps.

1. Sort all the elements in the constellation Un by descending magnitude order

such that |z1| ≥ |z2| ≥ · · · ≥ |z2n|.

2. Starting with k = 1 for zk, go through zk+1, zk+2, · · · , z2n to find

g(zk, β) = min
k+1≤i≤2n

d(zk, zi, β).

3. Increase k by 1 and repeat Step 2 until k = 2n.

4. Compare all functions of g(zk, β) for k = 1, 2, 3, · · · , 2n to obtain D(TUn(β)),

i.e.,

D(TUn(β)) = min
k
g(zk, β).

5. Maximize D(TUn(β)) over the energy scale variable β.

Theorem 1 The solutions to the optimization problem (3.7) for n = 2, 3, 4, 5, and 6

of UFC Un are given as follows:

(a) If n = 2 : β̃ = 4
√

3, D
(
TUn(β̃)

)
= 6

3+3
√
3
.

(b) If n = 3 : β̃ =
√

56
81
, D

(
TUn(β̃)

)
= 3

√
14

23
.
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(c) If n = 4 : β̃ =
√

27+
√
21261

174
, D

(
TUn(β̃)

)
= 1√

4
√
β̃+β̃+3

.

(d) If n = 5 : β̃ =
√

3
2
, D

(
TUn(β̃)

)
=
√
3

3
√
5
.

(e) If n = 6 : β̃ = 4

√
9
28
, D

(
TUn(β̃)

)
= 1√

4
√
28+19

.

The proof is given in Appendix A.3.

3.1.6 Simulations

In this section, we carry out computer simulations to compare the error performance

of the optimal and unitary hexagonal UFC codes proposed in this section with other

schemes found in current literature that also use the noncoherent SIMO system of

one transmitter and N = 3 receiver antennas. For fair comparison all coding schemes

are decoded using the GLRT detector given in (2.4) and are described as follows.

(a) Unitary UFC code. The hexagonal constellation design is proposed in this

section and the codeword matrix is of the form

Sa =
1√

|x|2 + |y|2
×

 xIN

yIN

 , (x, y)T ∈ Un.

(b) Optimal unitary UFC code. The optimal hexagonal constellation design is

proposed in this section and the codeword matrix is of the form

Sb =
1√

1 + β̃2|sb|2
×

 IN

β̃sbIN

 , sb =
y

x
, (x, y)T ∈ Un.

where the optimal energy scale β̃ is given in Theorem 1. The unitary and optimal
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unitary QAM UFC scheme from [71] will also be simulated using coding schemes (a)

and (b) respectively.

(c) Differential scheme using PSK constellations. The code design from [54,56] is

characterized by

Sc =
1√
2
×

 IN

scIN

 , sc ∈ 2n − PSK.

(d) SNR-efficient nonunitary training scheme using QAM constellations. The

codeword matrix design from [104] is characterized by

Sd =
1√
2Ed
×

 √EdIN
sdIN

 , sd ∈ 2n − cross QAM.

The energy constant Ed is normalized such that E[tr(SH
d Sd)] = N.

(e) Energy-efficient unitary training scheme using QAM constellations. The uni-

tary code design is characterized by

Se =
1√

1 + γ2|se|2
×

 IN

γseIN

 , se ∈ 2n − cross QAM,

where the energy scale γ was designed in [71].

The codeword error rate versus SNR (in decibels) for a variety of transmission bits

are plotted in Fig. 3.1. The coding gains for the optimal and unitary training UFC

schemes of the 2n hexagonal and QAM constellations are listed in Table 3.1. It can be

observed in Fig. 3.1 that among the seven transmission schemes the optimal unitary

33



Ph.D Thesis - Eleanor Leung McMaster - Electrical Engineering

hexagonal UFC designed has the best error performance. A minimum increase of

0.5dB in SNR is seen when comparing the hexagonal and QAM UFC curves with

the error performance gap being larger for lower transmission bit rates. There is very

little difference visually seen between the optimal unitary and unitary hexagonal UFC

curves. However, when comparing the coding gains in Table 3.1 between these two

hexagonal schemes the optimal unitary hexagonal UFC has the larger coding gain so

therefore has a slightly better error performance.

Table 3.1: Coding Gains for Different UFCs in SIMO system

n G(SQAM) G(SoptQAM) G(SHEX) G(SoptHEX)

2 0.5000 0.5000 0.5000 0.5000

3 0.1667 0.1716 0.2130 0.2382

4 0.1000 0.1082 0.1243 0.1253

5 0.0476 0.0543 0.0577 0.0667

6 0.0185 0.0185 0.0200 0.0249
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(b) Rb = 2 bits per channel use (n = 4)

35



Ph.D Thesis - Eleanor Leung McMaster - Electrical Engineering

15 20 25 30 35
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR [dB]

A
ve

ra
ge

 S
ym

bo
l E

rr
or

 R
at

e

 

 

Optimal Hex UFC Code
Hex UFC Code
Optimal QAM UFC Code
QAM UFC Code
SNR Efficient Nonunitary Training QAM Code
Energy Efficient Unitary Training QAM Code
Differential Code

Student Version of MATLAB

(c) Rb = 2.5 bits per channel use (n = 5)

20 25 30 35
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR [dB]

A
ve

ra
ge

 S
ym

bo
l E

rr
or

 R
at

e

 

 

Optimal Hex UFC Code
Hex UFC Code
Optimal QAM UFC Code
QAM UFC Code
SNR Efficient Nonunitary Training QAM Code
Energy Efficient Unitary Training QAM Code
Differential Code

Student Version of MATLAB
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Figure 3.1: Error performance comparison for N = 3 receiver antennas
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3.2 UFC application in noncoherent cooperative

relay systems

In this section, the proposed hexagonal UFC design from the previous section will

also be applied to the noncoherent cooperative relay system proposed in [95] and its

error performance examined.

3.2.1 Channel model

We now consider the use of a noncoherent amplify-forward (AF) half-duplex cooper-

ative relay system with three nodes: source S, destination D and relay R. Each node

has a single antenna that cannot transmit and receive simultaneously. The channel

model is

r =
√
ρSh + η, (3.8)

where r is the received signal at the destination node, S =
√

3/Es × (s1I2, s2I2)
T ,

h = (hsd, hsrhrd)
T , ρ is the SNR, Es is the average energy of S and η = (η1, η2 +

hrdη3, η4, η5 + hrdη6)
T . s1, s2 are randomly, independently and equally likely drawn

from a constellation S. In the first two time slots s1 is transmitted and for the next

two time slots s2 is transmitted. The channel gain from source to destination is

denoted as hsd, source to relay is hsr and relay to destination is hrd. All channel

gains are assumed to be unknown at the destination node and remain constant for

four time slots after which they change to new independent values. The noise ηi, i =

1, 2 . . . 6, are circularly symmetric complex independent Gaussian random variables

with zero mean and unit variance. The covariance matrix Dη of the noise vector
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η is Dη = diag{1, 1 + |hrd|2, 1, 1 + |hrd|2}. Although the noncoherent cooperative

relay system looks similar to the noncoherent MIMO system, the MIMO channel

is linear whereas the cooperative channel is nonlinear. Another major difference is

the probability density function of received signal conditioned on transmitted signal

matrix in the noncoherent relay system is not Gaussian distributed as it is in the

noncoherent MIMO systems.

3.2.2 Full diversity

For this particular noncoherent relay channel model considered we aim to design a

full diversity unitary code using the LSE receiver from Section 2.5. To achieve full

diversity the constellation S needs to be designed such that PSS̃ = (S, S̃)H(S, S̃) is

invertible for all distinct pairs of S and S̃. In this case

PSS̃ =
3

Es
×

 s∗1I2 s∗2I2

s̃∗1I2 s̃∗2I2


 s1I2 s̃1I2

s2I2 s̃2I2

 .

If the matrix PSS̃ is invertible then it is equivalent to s1s̃2 6= s̃1s2 for all (s1, s2)
T 6=

(s̃1, s̃2)
T ∈ S, which is the same as the definition of the UFC. Thus, designing con-

stellation S such that full diversity is achieved with LSE receiver is equivalent to

designing constellation S as a UFC. Therefore, we can apply the hexagonal UFC

designed earlier in this chapter, also explicitly listed in Appendix A.1, to the relay

channel model (3.8) where s1 = x and s2 = y. By normalizing the nonunitary UFC

a unitary UFC coding scheme is obtained as previously done in (3.6).
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3.2.3 Simulations

In this section, computer simulations are carried out to examine the error performance

of the designed hexagonal UFC to current schemes which also use the channel model

(3.8) for the noncoherent AF half-duplex relay system. The schemes compared are

listed as follows.

(a) Unitary UFC code. The hexagonal code designed in this section will be com-

pared to the QAM UFC code from [95] which both use the codeword matrix of the

form

Sa =

√
3√

|x|2 + |y|2
×

 xI2

yI2

 , (x, y)T ∈ Un.

At the destination node the transmitted signal is estimated using the LSE detector

in (2.9).

(b) Differential Code.

Sb =
√
Eb ×

 I2

sbI2

×
 1 0

0 1/
√
Eb + 1

 , sb ∈ 2n − PSK

where Eb = ρ−1+
√
ρ2 + ρ+ 1. The noise vector is η = (η1, η2+hrdη3/

√
Eb + 1, η4, η5+

hrdη6/
√
Eb + 1)T with the covariance matrix as D = diag{1, 1+ |hrd|2/(Eb + 1), 1, 1+

|hrd|2/(Eb + 1)}. The GLRT detector is used at the destination node where the ob-

jective function is given in [95].

The codeword error rate versus SNR, in decibels, for a variety of transmission bits

are shown in Fig. 3.2. The pairwise error probability of the LSE detector is dominated
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by the worst case when SNR is large, which is the coding gain term, denoted as

GLSE = minS 6=S̃ det(PSS̃)/ det(S̃HS̃) for the unitary UFC code. The coding gains

for the 2n QAM and hexagonal unitary UFC schemes are also listed in Table 3.2.

It is observed in Fig. 3.2 that among the three schemes the hexagonal UFC has the

best error performance with a minimum of 0.5dB increase between the hexagonal and

QAM coding scheme. As the transmission bit rate increases, it can be noted the error

performance gap between the QAM and hexagonal curves is seen to decrease. This

is also observed in Table 3.2 because as the size of the constellation, n, increases the

difference in coding gain between the QAM and hexagonal UFC decreases, although

the hexagonal UFC coding gain is still larger.

Table 3.2: Coding Gains Comparison for Different UFCs in Relay System

n GQam GHex

2 2.2500 2.2500

3 0.2500 0.4084

4 0.0900 0.1389

5 0.0204 0.0299

6 0.0031 0.0036
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Figure 3.2: Error performance comparison for various transmission bit rates
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3.3 Uniquely factorable constellation pair for

noncoherent SIMO systems

In this section, similar design techniques from the hexagonal UFC along with the novel

concept of uniquely factorable constellation pair (UFCP) will be used to systemati-

cally design the hexagonal UFCP X and Y for the previously discussed noncoherent

SIMO system (3.1).

From section 2.3, for a given constellation Z, a UFCP (X ,Y) is said to be gen-

erated from Z which is denoted by Z = Y
X if Z = {z = y

x
: x ∈ X , y ∈ Y} and

|Z| = |X | × |Y|. Hence, the principal problem which we would like to solve in this

section of the chapter is stated as follows:

Problem 2 Design the constellations X and Y, where Z = {z = y
x

: x ∈ X , y ∈ Y}

and |Z| = |X | × |Y|, for the space-time block coded channel (3.1) such that

1. in the noise-free case, for any given nonzero received signal vector, r 6= 0, the

equation from (3.1) reduces to become r = Sh, with respect to the transmitted

symbol variables x, and y, and the channel vector h has a unique solution, and

2. in the noisy environment, full diversity and the optimal coding gain are enabled

for the noncoherent ML receiver.

For this noncoherent SIMO system, the unique factorization property of constel-

lations in the UFCP enables the unique identification of the channel and transmitted

signals in a noise-free case and full diversity for the noncoherent ML receiver in a

noisy environment. This is identical to the analysis in section 3.1.2 for the UFC,

hence the details and proof are omitted.
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3.3.1 Hexagonal UFCP construction

In the UFC design, x and y were jointly designed, so although the process is more

tedious the resulting solution is optimal. The UFC U can be thought of as a col-

laborative UFCP. For the UFCP design, x and y are independently designed so it

becomes more efficient to find a solution, but that solution may not be optimal.

To simplify the analysis, X is fixed to be size two and the elements in X are

chosen to be unit norm. The hexagonal constellation pair X ,Y also must satisfy

the UFCP’s conditions listed in Proposition 2 from Section 2.3. In the UFC design,

although x, y ∈ Qk, where Qk is the hexagonal lattice defined in Definition 7, the

equivalent unitary training constellation symbols z = y/x, (x, y)T ∈ Un may not lie

on the hexagonal lattice. For the UFCP, the constellations X and Y are designed

in such as way that so all the constellation signal points in Z lie on the hexagonal

lattice Qk.

Algorithm 3 This algorithm has the following nine steps.

1. The hexagonal constellation, Z, to be designed should be rotation-invariant.

Therefore, if every element in the constellation Y is multiplied by ejθ it still

belongs in that same constellation set Z. The hexagonal constellation is rotation

invariant when θ = {0, π
3
, 2π

3
}. Fix X = {1, xc} where xc is chosen to be either

e
jπ
3 or e

j2π
3 so Z has the largest possible minimum distance for any fixed set of

Y, where y ∈ Qk using Definition 7.

2. Let 2t be the UFCP set size where t = 2.

3. Given k = 2, find all possible vector combinations of (x, y)T , x ∈ X and y ∈ Qk.

Group vectors into all possible set combinations of size four, where every set has
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the form ZkM = {(1, y1)T , (xc, y1)
T , (1, y2)

T , (xc, y2)
T}.

4. Check the distance, using Definition 5, between every pair of vectors within the

same set to find the smallest distance. Select the vector sets Zk1,Zk2, . . . ,ZkM

where the smallest distance for each set is larger than the optimal 2t QAM

UFCP distance metric in [71].

5. If no set contains vectors which have their smallest distance larger than the

optimal QAM distance metric, then go back to Step 3 and increase k by 1.

6. Among all the choices for Zk1,Zk2, . . . ,ZkM , choose the set kM such that ZkM

has the largest minimum distance. If more than one set has the largest minimum

distance choose the set that makes the UFCP, Zt, as geometrically symmetric

as possible when plotted in the complex plane.

7. Add the chosen set ZkM to UFCP set Zt.

8. Repeat Steps 3-7 until size of Zt is 2t.

9. Go to Step 2 and increase t by 1.

The hexagonal UFCPs designed using Algorithm 2 are given in Appendix A.2. A

comparison in symbol energy between the proposed hexagonal UFCP and the QAM

UFCP for n = 2 to n = 6 is displayed in Table 3.3 which shows the hexagonal

constellation has lower energy per symbol. This is consistent with the findings in [74]

as constellations points from the hexagonal lattice were found to be the most energy-

efficient.
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Table 3.3: Energy per symbol for different UFCP sizes

n EsQAM EsHex

2 2.000 1.000

3 6.000 5.000

4 10.000 10.000

5 20.000 18.125

6 42.000 20.438

3.3.2 Optimal unitary UFCP in the training scheme

Due to its simple and practical method of channel estimation, the training scheme for

the noncoherent SIMO channel (3.1) is also used here. A unitary UFCP is obtained

by normalizing the nonunitary UFCP Zn. Therefore, the unitary training UFCP is

given by

TZn =

 1√
1 + |z|2

 1

z

 : z ∈ Zn

 .

The energy-scaled version of the unitary training equivalent UFCP, with energy scale

α, is denoted as

TZn(α) =

 1√
1 + α2|z|2

 1

αz

 : z ∈ Zn

 .

Finding an energy scale α such that the minimum distance in TZn(α) is maximized

is essentially solving optimization problem (3.7) and can be efficiently solved using
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Algorithm 2.

Theorem 2 The solutions to the optimization problem (3.7) for n = 2, 3, 4, 5, and 6

of UFCP Zn are given as follows:

(a) If n = 2 : α̃ = 1, D (TZn(α̃)) = 1
2
.

(b) If n = 3 : α̃ = 1√
3
, D (TZn(α̃)) = 3

4
√
3
.

(c) If n = 4 : α̃ = 4

√
1
27
, D (TZn(α̃)) =

4
√

1
27√

10
9
+ 4√

27

.

(d) If n = 5 : α̃ = 4

√
1

108
, D (TZn(α̃)) =

4
√

1
108√

4
3
+ 13√

108

.

(e) If n = 6 : α̃ =
√

1
20
, D (TZn(α̃)) = 1

9
.

The proof is given in Appendix A.4.

3.3.3 Simulations

In this section, computer simulations are performed to compare the error perfor-

mance of the proposed unitary hexagonal UFCP design to current literature results

which also use the noncoherent SIMO system of one transmitter and N = 3 receiver

antennas.

(a) Unitary training scheme. The hexagonal UFCP design is proposed in this

section and codeword matrices are characterized by

Sa =
1√

1 + |sa|2
×

 IN

saIN

 , sa ∈ Zn.
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(b) Optimal unitary training scheme. The optimally designed hexagonal UFCP

design is proposed in this section and codeword matrices are characterized by

Sb =
1√

1 + α̃2|sb|2
×

 IN

α̃sbIN

 , sb ∈ Zn

where the optimal energy scale α̃ is given in Theorem 2.

The QAM UFCP in [71] and Forney’s hexagonal constellation in [74] are also each

simulated using both of the coding schemes (a) and (b) mentioned above. For fair

comparisons all codes are decoded using the GLRT detector (2.4) which is equivalent

to the ML detector for a unitary code. The codeword error rate versus SNR for a

variety of transmission bits is plotted in Fig. 3.3. The comparison in coding gain of

the different codes are also listed in Table 3.4. In the n = 2 case, the hexagonal UFCP

coding gain is much lower compared to both the Forney and QAM case so the error

performance plot is not included in Fig. 3.3. For n > 2, it can be observed in Fig. 3.3

that the optimal unitary hexagonal UFCP designed in this section outperforms all

other transmission schemes, with a minimum of 0.5dB increase in SNR at a symbol

error rate of 10−5. As the transmission bit rate increases, the size of the constellation

also increases, so the error performance gap between the optimal unitary codes and

unitary codes also becomes larger. For n = 6, it can also be noted that the optimal

hexagonal UFCP is only slightly better than the optimal Forney constellation, which is

seen in the comparison of their coding gains in Table 3.4 and in the error performance

curves of Fig. 3.3(d).

48



Ph.D Thesis - Eleanor Leung McMaster - Electrical Engineering

Table 3.4: Coding Gains for Different UFCPs Training Constellations

n GQAM GForney GHex GoptQAM GoptForney GoptHex

2 0.4445 0.5000 0.2500 0.5000 0.5359 0.2500

3 0.0331 0.0894 0.0900 0.1000 0.1758 0.1875

4 0.0191 0.0198 0.0321 0.0730 0.0756 0.1330

5 0.0042 0.0035 0.0053 0.0335 0.0305 0.0400

6 0.0005 0.0009 0.0015 0.0117 0.0126 0.0123
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Figure 3.3: Error performance comparison for N = 3 receiver antennas
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3.4 Discussions

In this chapter, we have mainly focused on a noncoherent wireless communication

system with a single transmitter antenna and multiple receiver antennas. The channel

coefficients remain constant for the first two time slots after which they randomly

change to new independent values that are fixed for the next two time slots and so

on.

The currently used QAM constellations are less energy-efficient compared to the

hexagonal constellation which motivates the design of the hexagonal UFC and UFCP.

It has been proven that both the UFC and UFCP designs ensure unique identification

of channel coefficients and transmitted signals in a blind noise-free case and full

diversity in a Gaussian noisy case for the ML receiver. Using the hexagonal lattice

formed from the Eisenstein integers an algorithm has been developed to effectively

and efficiently construct various sizes of unitary hexagonal UFCs. A closed form

optimal energy scale has been found to maximize the coding gain for the unitary

UFCs. A similar procedure was then applied to design the hexagonal UFCPs and its

corresponding optimal energy scale..

Computer simulations have shown that the error performance of designed hexago-

nal UFC code outperforms current literature schemes in both the noncoherent SIMO

and noncoherent relay cooperative systems. The optimal unitary hexagonal UFCP

designed in this chapter also has the best error performance in comparison to the

current literature results shown in the completed computer simulations.

52



Chapter 4

Energy-efficient full diversity

unitary space-time block code

designs using QR decomposition

In this chapter, we are interested in a two transmitter antennas and a single receiver

antenna flat fading wireless communication system. The noncoherent communica-

tion scenario is considered, in which the channel gains are completely unknown at

both the transmitter and the receiver, and change quickly. It is known that for a

coherent MISO system, the Alamouti coding [30] is particularly attractive, since it

enables full diversity with linear receivers and for any constellation without loss of

information [43]. Unfortunately this is no longer true for the noncoherent commu-

nications case. Hence, the authors in [80–82] used the PSK constellations to resolve

the phase ambiguity and full diversity issue for the noncoherent Alamouti space-time

block code. Realizing that PSK signalling is not as energy-efficient as QAM signalling

and that the unitary constellation is optimal [3,4,46,68], the authors in [72] invented
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the novel concept of UFCP based on the cross QAM constellation for the system-

atic design of the energy-efficient unitary STBC. Noticing that the Alamouti matrix

may not always generate an energy-efficient noncoherent unitary code, therefore, in

this chapter we propose a Alamouti-like matrix to optimally design a full diversity

unitary space-time block code for the noncoherent MISO system by using the QR

decomposition and the recently developed UFCP concept [72] for the energy-efficient

cross QAM constellations.

4.1 Channel model and noncoherent space-time block

coding

In this section, the channel model is first briefly reviewed. Then, we will propose our

transmission scheme and code structure.

4.1.1 Channel model

The wireless communication system consists of two transmitter antennas and one

receiver antenna. s1 and s2 are the transmitted symbols from the two transmitter an-

tennas which arrive at the receiver through two different channels h1, h2 respectively.

The discrete received signal r can be represented as

r = h1s1 + h2s2 + ξ, (4.1)

where ξ is the circularly symmetric, zero-mean, complex Gaussian noise with zero

mean and variance σ2. The channel coefficients are assumed to be unknown at both

54



Ph.D Thesis - Eleanor Leung McMaster - Electrical Engineering

transmitter and receiver. In addition, it is also assumed hi for i = 1, 2 are samples of

circularly symmetric, zero mean, complex white Gaussian random variables with unit

variance and remain constant for the first four time slots after which they change

to new independent values that are fixed for the next four time slots and so on.

In a general noncoherent MIMO system with M transmitter antennas, it has been

proven [68] that for a space-time block code to enable full diversity for the noncoherent

ML receiver a necessary condition is the coherent time T ≥ 2M . For our case M = 2,

T ≥ 4. We consider the shortest coherent time slots when it is possible for the

UFCP code design to enable unique identification of both the channel coefficients

and transmitted signals as well as full diversity.

Zheng and Tse [4] verified that for a Rayleigh-faded channel, at high SNR, in

a noncoherent MIMO communication system with M transmitter antennas and N

receiver antennas, the average channel capacity is given by

C = M∗
(

1− M∗

T

)
log SNR +O(1),

where M∗ = min{M,N, bT
2
c} and T is the coherent time. Asymptotically, this result

tells us that in the noncoherent MIMO system M∗ (1− M∗

T

)
is the total number

of degrees of freedom of communication. This also suggests that the symbol rate

of a space-time block code for the noncoherent MIMO channel to be M∗ (1− M∗

T

)
.

Specifically, for the noncoherent system with T = 4,M = 2 and N = 1, the symbol

rate should be 3
4
.
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4.1.2 Nonunitary space-time block code

Let X ,Y1 and Y2 be the three constellations to be designed. Then, the proposed

noncoherent STBC for the channel model (4.1) is described as follows. First, three

independent, random and equally likely symbols x ∈ X , y1 ∈ Y1 and y2 ∈ Y2 are

chosen and then transmitted from the two transmitter antennas within four time

slots. During the first two time slots we transmit the first symbol x using a coding

matrix,

X =

 x 0

0 x∗

 ,

which follows the Alamouti coding scheme, with x ∈ X . In the remaining two time

slots, the second and third symbols y1 and y2 are transmitted using a new coding

scheme as follows:

Y =

 y1 jy2
∗

y2 y∗1

 ,

with yi ∈ Yi for i = 1, 2. The relationship between the transmitted and received

signals within the four time slots can be represented in a more compact matrix form

as

r = Ah + ξ, (4.2)

where r = (r1, r2, r3, r4)
T , ξ = (ξ1, ξ2, ξ3, ξ4)

T and

A =

 X

Y

 . (4.3)
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4.1.3 Unitary space-time block code

Using QR decomposition, the non-unitary coding matrix A in (4.3) can be converted

into the unitary coding matrix Q, i.e.,

A = QR, (4.4)

where Q is a column-wise 4 × 2 unitary matrix and R is a 2 × 2 upper triangular

matrix. In general, Q is not a unique solution. For Q to be a unique solution, from

the QR decomposition, R must have positive diagonal entries. Decoding unitary

matrix Q is equivalent to decoding the non-unitary matrix A. Therefore, Q will be

the modified input signal matrix. Using the Gram-Schmidt method, Q is explicitly

related to the entries of A through

Q =



x√
1+|y1|2+|y2|2

−x(y1
∗y2
∗(1+j))

1+|y1|2+|y2|2√
1+|y1|2+|y2|2+ 2|y1|2|y2|2

1+|y1|2+|y2|2

0 x∗√
1+|y1|2+|y2|2+ 2|y1|2|y2|2

1+|y1|2+|y2|2

y1√
1+|y1|2+|y2|2

y2
∗(−|y1|

2+j|y2|
2+j)

1+|y1|2+|y2|2√
1+|y1|2+|y2|2+ 2|y1|2|y2|2

1+|y1|2+|y2|2

y2√
1+|y1|2+|y2|2

y1
∗(|y1|

2−j|y2|
2+1)

1+|y1|2+|y2|2√
1+|y1|2+|y2|2+ 2|y1|2|y2|2

1+|y1|2+|y2|2


.

The new relationship between the transmitted and received signals within the four
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time slots represented in the compact matrix form is

rq = Qh + ξq (4.5)

where rq = (rq1, rq2, rq3, rq4)
T and ξq = (ξq1, ξq2, ξq3, ξq4)

T . Our primary purpose in

this chapter is to solve the following problem.

Problem 3 Design the constellation triple X ,Y1 and Y2 for the space-time block

coded channel (4.5) such that

1. in the noise-free case, for any given nonzero received signal vector r 6= 0, the

equation rq = Qh with respect to the transmitted symbol variables x, y1 and y2,

and the channel vector h has a unique solution, and

2. in the noisy environment, full diversity and the optimal coding gain are enabled

for the noncoherent ML receiver.

4.2 UFCP-STBC design, unique identification and

full diversity

In this section, we take advantage of the recently-developed UFCP concept, estab-

lished in Section 2.3, and apply it to the proposed coding structure. We will prove

the resulting code enables the unique identification of the channel coefficients and the

transmitted signals in the noise-free case and also full diversity in the noisy case.
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4.2.1 Unique identification

In order for code (4.4) to enable the unique identification of the channel and the

transmitted signals as well as full diversity, the three constellations X ,Y1 and Y2 must

cooperatively work together. There exists many different cooperative arangements

that allow these constellations to work together. In this section, we require that

X ,Y1 and Y2 cooperate in such a way that X and Y1, X and Y2 constitute two

pairs of UFCPs. In other words, the same constellation X collaborates with both

constellations Y1 and Y2.

Theorem 3 Let (X ,Y1) and (X ,Y2) be two UFCPs with |Yi| > 1 for i = 1, 2. Then,

for any given nonzero received signal vector without noise in (4.5), i.e., rq = Qh, the

code Q designed by (4.4) enables the unique identification of the channel coefficients

and the transmitted signals.

Proof:

Using Cholesky factorization AHA = RHR, which implies R is unique. Thus, Q =

AR−1 is unique. Using the code structure (4.4), we denote Q = (QT
x ,Q

T
y )T , where

Qx and Qy are 2× 2 matrices, which are defined as

Qx = XR−1,

Qy = YR−1.

The received signals using the code structure (4.4) are

rx = Qxh = XR−1h, (4.6a)

ry = Qyh = YR−1h, (4.6b)
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where X and Y are defined by (4.3). Since |Yi| > 1 for i = 1, 2, by Definition 3 we

have x 6= 0 and as a result, the matrix X is invertible. Eliminating h from (4.6) yields

ry = YX−1rx. (4.7)

Notice that YX−1 =

 y1
x

j(y2
x

)∗

y2
x

(y1
x

)∗

. Therefore, equation (4.7) can be rewritten as

r̃y = Rxu, (4.8)

where r̃y = (ry(1), ry(2))T , u = (y1
x
, y2
x

)T and Rx is given by

Rx =

 rx(1) jr∗x(2)

rx(2) r∗x(1)

 .

It can be verified that Rx is unitary up to a scale. In addition, since r = (rTx , r
T
y )T 6= 0

and X is invertible, so h 6= 0 and thus, rx 6= 0, which is equivalent to the fact that

Rx is invertible. Therefore, from (4.8) we obtain u = R−1x r̃y. Explicitly

y1
x

=
r∗x(1)ry(1)− jr∗x(2)ry(2)

|rx(1)|2 − j|rx(2)|2
, (4.9a)

y2
x

=
−rx(2)ry(1) + rx(1)ry(2)

|rx(1)|2 − j|rx(2)|2
. (4.9b)

Since X and Yi form the two UFCPs and x ∈ X and yi ∈ Yi for i = 1, 2, once

their quotients yi/x have been determined, then x and yi themselves can be uniquely

determined. In other words, there exists a unique triple x, y1 and y2 such that (4.9)

is satisfied. Moreover, after we have determined x and yi, then, the channel vector h
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can be uniquely determined by h = Qx
−1rx = Qy

−1ry. This completes the proof of

Theorem 3. �

In the proof of Theorem 3, we notice that if either (X ,Y1) or (X ,Y2), then, the

channel coefficients and the transmitted signals can be still uniquely identified. In

addition, (4.9a) divided by (4.9b) is

y1
y2

=
r∗x(1)ry(1)− jr∗x(2)ry(2)

−rx(2)ry(1) + rx(1)ry(2)
.

If (Y1,Y2), then, y1, y2 and therefore, x can be uniquely determined. As a result,

the channel coefficients can also be uniquely determined. In summary, the unique

identification of both the channel coefficients and the transmitted signals requires the

collaboration of all three constellations.

4.2.2 Full diversity

In order to analyze the full diversity of the UFCP code we use Lemma 1 from Sec-

tion 2.4, as the full rank of the matrices Rsŝ for all the distinct codewords S and Ŝ

assures full diversity in a noncoherent MIMO system. It is not difficult to prove that

a necessary condition for Rsŝ to have full rank is T ≥ 2M . Hence, in this chapter,

we have considered the shortest coherent time slots when it is possible for the UFCP

code design to enable unique identification of both the channel coefficients and the

transmitted signals as well as full diversity. Now, we are able to state the second

main result in this section by utilizing Lemma 1 with M = 2, N = 1 and S = Q.

Theorem 4 Let (X ,Y1) and (X ,Y2) constitute two UFCPs. Then, the unitary code

61



Ph.D Thesis - Eleanor Leung McMaster - Electrical Engineering

Q designed by (4.4) enables full diversity for the noncoherent ML receiver. Further-

more, the pairwise error probability PML(Q→ Q̂) of transmitting Q and deciding in

favor of Q̂ 6= Q has the following asymptotic formula:

PML(Q→ Q̂) =
3

det(Rqq̂)
× SNR−2 + o

(
SNR−2

)
,

where Rqq̂ =
(
Q, Q̂

)H(
Q, Q̂

)
.

Proof: First, note that after the QR decomposition the UFCP code (4.4) is uni-

tary, so det(QHQ) = det(Q̂HQ̂) = 1. By Lemma 1, we need to prove that Rqq̂

is invertible for any pair of distinct Q and Q̂. Since
(
Q, Q̂

)
is a square matrix and

Rqq̂ =
(
Q, Q̂

)H(
Q, Q̂

)
, proving that the matrix Rqq̂ is invertible is equivalent to prov-

ing matrix
(
Q, Q̂

)
is invertible which is also equivalent to proving det

(
Q, Q̂

)
6= 0.

(Q, Q̂) = (AR−1, ÂR̂−1), which can be rewritten as

(Q, Q̂) = (A, Â)

 R−1 0

0 R̂−1

 .

Applying the determinant

det(Q, Q̂) = det(A, Â) det

 R−1 0

0 R̂−1

 ,

det(Q, Q̂) =
det(A, Â)

det(R) det(R̂)
.
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Since det(R) 6= 0 and det(R̂) 6= 0 proving that det(Q, Q̂) 6= 0 is equivalent to proving

det(A, Â) 6= 0. Expanding the determinant of (A, Â) in terms of X and Y

det(A, Â) = det

 X X̂

Y Ŷ

 ,

= det (X) det
(
X̂
)

det
(
ŶX̂−1 −YX−1

)
,

= det (X) det
(
X̂
)

det

 ŷ1
x̂
− y1

x
j
(
ŷ2
∗

x̂∗
− y2∗

x∗

)
ŷ2
x̂
− y2

x

ŷ∗1
x̂∗
− y1∗

x∗

 ,

= det (X) det
(
X̂
)(∣∣∣∣ ŷ1x̂ − y1

x

∣∣∣∣2 − j ∣∣∣∣ ŷ2x̂ − y2
x

∣∣∣∣2
)
.

We know that det (X) 6= 0 and det
(
X̂
)
6= 0.

(∣∣ ŷ1
x̂
− y1

x

∣∣2 − j ∣∣ ŷ2
x̂
− y2

x

∣∣2) = 0 if

and only if (x, y1, y2) = (x̂, ŷ1, ŷ2). Since X and Yi for i = 1, 2 forms two UFCPs for

any Q 6= Q̂, i.e., (x, y1, y2) 6= (x̂, ŷ1, ŷ2), so det(A, Â) 6= 0. Therefore, det
(
Q, Q̂

)
6= 0.

This completes the proof of Theorem 4. �

From the proof of Theorem 4 the unique factorization of our designed constella-

tions enables the matrix Rqq̂ to have full rank. Therefore, noncoherent full diversity

also requires three constellations collaboration.

4.3 Optimal designs of unitary UFCP-STBC

The main task in this section is to efficiently and effectively optimize the coding gain

for the unitary UFCP space-time block codes generated from the energy-efficient cross

QAM constellations listed in Definition 4.
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4.3.1 Problem formulation

Theorems 3 and 4 tell us that the unitary UFCP code designed by (4.4) enables

the unique identification of the channel coefficients and the transmitted signals as

well as full diversity for the noncoherent ML receiver. Therefore, our code design

give part of the solution to Problem 3. In order to further optimize its error per-

formance, we can see from the asymptotic formula of the pairwise error probability

in Theorem 4 that when SNR is large, the error performance is dominated by the

term det
(
(Q, Q̂)H(Q, Q̂)

)
. Hence, following a similar method to coherent MIMO

communications [8], the coding gain for the unitary code is defined as

G(X ,Y1,Y2) = min
Q6=Q̂,Q,Q̂∈Q

√
det
(
(Q, Q̂)H(Q, Q̂)

)
= min

Q6=Q̂,Q,Q̂∈Q

√
Rqq̂, (4.10)

where Rqq̂ = | det(Q, Q̂)|2. Recall from the full diversity proof

det(Q, Q̂) =
det(A, Â)

det(R) det(R̂)
, (4.11)

where det(A, Â) = det (X) det
(
X̂
)(∣∣∣∣ ŷ1x̂ − y1

x

∣∣∣∣2 − j ∣∣∣∣ ŷ2x̂ − y2
x

∣∣∣∣2
)
. (4.12)

Using the Cholesky factorization property, both RHR and AHA are unitary ma-

trices. Therefore, RHR = AHA. Applying the determinant

det
(
RHR

)
= det

(
AHA

)
,

|det(R)|2 = det
(
AHA

)
. (4.13)
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Substituting (4.12) and (4.13) into (4.11) we get

det(Q, Q̂) =
det (X) det

(
X̂
)(∣∣ ŷ1

x̂
− y1

x

∣∣2 − j ∣∣ ŷ2
x̂
− y2

x

∣∣2)√
det (AHA)

√
det
(
ÂHÂ

) . (4.14)

In the denominator of (4.14), AHA is redefined in terms of X and Y where

AHA =
(
XH YH

) X

Y

 ,

AHA = XHX + YHY.

Now solving for the determinant of (AHA)

det(AHA) = det(I + YHY),

= 1 + tr(YHY) + | det (Y)|2. (4.15)

Combining (4.14) and (4.15) results in

det(Q, Q̂) =
det (X) det

(
X̂
)(∣∣ ŷ1

x̂
− y1

x

∣∣2 − j ∣∣ ŷ2
x̂
− y2

x

∣∣2)
√

1 + tr(YHY) + | det (Y)|2
√

1 + tr
(
ŶHŶ

)
+
∣∣∣det (Ŷ)

∣∣∣2 .

| det(Q, Q̂)|2 =
|det (X)|2

∣∣∣det
(
X̂
)∣∣∣2 (∣∣ ŷ1x̂ − y1

x

∣∣4 +
∣∣ ŷ2
x̂
− y2

x

∣∣4)(
1 + tr(YHY) + | det (Y)|2

)(
1 + tr

(
ŶHŶ

)
+
∣∣∣det (Ŷ)

∣∣∣2) .
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Therefore, the coding gain is explicitly defined as

G(x,y; x̂, ŷ|X ,Y1,Y2)

=

√(∣∣ ŷ1
x̂
− y1

x

∣∣4 +
∣∣ ŷ2
x̂
− y2

x

∣∣4)√
1 + 2(

∣∣y1
x

∣∣2 +
∣∣y2
x

∣∣2) + (
∣∣y1
x

∣∣4 +
∣∣y2
x

∣∣4)√1 + 2(
∣∣ ŷ1
x̂

∣∣2 +
∣∣ ŷ2
x̂

∣∣2) + (
∣∣ ŷ1
x̂

∣∣4 +
∣∣ ŷ2
x̂

∣∣4) .
Normalizing the two Alamouti codes in [72], to produce a unitary code, causes

large energies in the denominator of the coding gain function. Therefore, using the

proposed unique coding scheme we expect to minimize these energies so that a larger

coding gain is achieved. Presumably the next step is to maximize the coding gain

G(X ,Y1,Y2) directly among both UFCPs (X ,Y1) and (X ,Y2). However, in general,

this optimization problem is too difficult to solve, since the optimal constellation

design is extremely challenging to be devised into a manageable optimization prob-

lem [77,97–101,105]. To make the problem more manageable, we restrict the signals

to come from the energy-efficient cross QAM constellations in order to generate the

two UFCPs (X ,Y1) and (X ,Y2) for |X | = 2 with X = {1, j}. Specifically, let Z1

and Z2 be two given 2p-ary and 2q-ary cross QAM constellations, respectively, with

more details in Section 2.3. Then, the three constellations X ,Y1 and Y2 are selected

in such a way that Z1 = Y1
X and Z2 = Y2

X . It is not difficult to verify that if Z1 = Y1
X

and Z2 = Y2
X , then, αZ1 = αY1

X and αZ2 = αY2
X for any positive α. Therefore, a family

of UFCP codes resulting from the cross QAM constellations and an energy scale α is
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characterized by

Aα(X ,Y1,Y2)=


Aα=



x 0

0 x∗

αy1 αjy∗2

αy2 αy∗1


: x ∈ X , y1 ∈ Y1, y2 ∈ Y2


. (4.16)

The resulting unitary code using the QR decomposition is denoted by Qα(X ,Y1,Y2),

i.e.,

Qα(X ,Y1,Y2) = {Q : Aα = QR,Aα ∈ Aα(X ,Y1,Y2)}. (4.17)

By employing the code structure in (4.17) and performing some algebraic simpli-

fications including the QR decomposition, the expression in (4.10) can be denoted

as

Gα(X ,Y1,Y2)= min
(x,y1,y2)6=(x̂,ŷ1,ŷ2),x,x̂∈X ,y1,ŷ1∈Y1,y2,ŷ2∈Y2

Gα(x,y; x̂, ŷ|X ,Y1,Y2), (4.18)

where Gα(x,y; x̂, ŷ|X ,Y1,Y2) is defined as

Gα(x,y; x̂, ŷ|X ,Y1,Y2) = (4.19)

α2

√(∣∣ ŷ1
x̂
− y1
x

∣∣4+∣∣ ŷ2
x̂
− y2
x

∣∣4)√
1+2α2(

∣∣ y1
x

∣∣2+∣∣ y2
x

∣∣2)+α4(

∣∣ y1
x

∣∣4+∣∣ y2
x

∣∣4)√1+2α2(

∣∣ ŷ1
x̂

∣∣2+∣∣ ŷ2
x̂

∣∣2)+α4(

∣∣ ŷ1
x̂

∣∣4+∣∣ ŷ2
x̂

∣∣4)
which is called a coding gain function. Our design problem is now formally stated as

follows:

67



Ph.D Thesis - Eleanor Leung McMaster - Electrical Engineering

Problem 4 Let |Aα(X ,Y1,Y2)| = 2r (r ≥ 4) be fixed. Find an energy scale α

and two nonnegative integers p and q satisfying a total transmission bits constraint:

p+ q = r + 1 using the unique factorizations of a pair of the 2p-ary and 2q-ary cross

QAM constellations Z1 and Z2, (i.e., Z1 = Y1/X and Z2 = Y2/X with X = {1, j}

and |X | = 2), such that the coding gain Gα(X ,Y1,Y2) is maximized, i.e.,

{
α̃, p̃, q̃

}
= arg max

p+q=r+1
max

Z1=Y1/X ,Z2=Y2/X
max
α

Gα(X ,Y1,Y2).

4.3.2 The solution to problem 4

In order to solve each individual optimization problem in Problem 4, we first introduce

some notation. From Definition 4 recall that Q denotes the modified 2K-ary cross

QAM. For given positive integers p, q and r + 1 satisfying p + q = r + 1 with p ≥ q,

let Q1 and Q2 denote the 2p-ary and 2q-ary cross QAM constellations respectively;

Zi denotes one of the corner point in Qi with the largest energy Ei; Its two nearest

neighbors are denoted by Zi1 and Zi2, respectively, with energies being Ei1 and Ei2,

where Ei1 ≥ Ei2. Correspondingly, all notations Q̃i, Ẽi1 and Ẽi2 are defined in the

same way as Qi, Ei1 and Ei2. For our case Qi is to be regarded as Zi. Some properties

regarding these energies are summarized in the following Lemmas.

Lemma 2 For the modified 2K-ary cross QAM Q, the following statements are true:

1. If K = 3, then, each corner point has only one nearest neighbour, E = 10 and

Es = 2.

2. If K is even, then, E = 2(2
K
2 − 1)2 and Es = Et = (2

K
2 − 1)2 + (2

K
2 − 3)2.

3. If K is odd and greater than 3, then, E = (2
K−1

2 − 1)2 + (3× 2
K−3

2 − 1)2,
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Es = (2
K−1

2 − 3)2 + (3× 2
K−3

2 − 1)2 and Et = (2
K−1

2 − 1)2 + (3× 2
K−3

2 − 3)2.

Lemma 2 can be verified directly by the calculation and thus, its proof is omitted.

Lemma 3 Let Q1 and Q2 denote the modified 2p-ary and 2q-ary QAM constellations,

respectively, with p ≥ q ≥ 2. Then,

2E11 > E1 when p 6= 3, (4.20a)

2E11
2 > E1

2 when p 6= 3 and p 6= 4. (4.20b)

The proof of Lemma 3 is postponed to Appendix B.1.

We need to first determineGα(X ,Y1,Y2) = min(x,yT )6=(x̂,ŷT )Gα(x,y; x̂, ŷ|X ,Y1,Y2),

to obtain the optimal solution when δ = 1, where constellations X and Yi are derived

from Proposition 3 with Z = Zi, i.e., X = {1, j} and Yi = Yi,opt. To do this, we

denote Gα(X ,Y1,Y2) as

Gα(X ,Y1,Y2) = min
{

min
(x,yT )6=(x̂,ŷT ),x=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2),

min
(x,yT )6=(x̂,ŷT ),x 6=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2)
}
, (4.21)

which splits the domain into two subdomains as follows:

DA = {(x,yT , x̂, ŷT ) : (x,yT ) 6= (x̂, ŷT ), x = x̂},

DB = {(x,yT , x̂, ŷT ) : (x,yT ) 6= (x̂, ŷT ), x 6= x̂}.

Now we individually consider the following two optimization problems.

(a) (x,yT , x̂, ŷT ) ∈ DA.
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In this case, the objective function in (4.18) is simplified into

Gα(x,y; x̂, ŷ|X ,Y1,Y2) =

α2

√(
|ŷ1 − y1|4 + |ŷ2 − y2|4

)
√
1 + 2α2(|y1|2 + |y2|2) + α4(|y1|4 + |y2|4)

√
1 + 2α2(|ŷ1|2 + |ŷ2|2) + α4(|ŷ1|4 + |ŷ2|4)

,

since |x| = |x̂| = 1. We can obtain

min
(x,yT )6=(x̂,ŷT ),x=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2) (4.22)

as follows:

(1) q = 2 or q = 5. This is a special case since the corner points are also neighbour

points. Therefore

min
(x,yT )6=(x̂,ŷT ),x=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2) =
8α2

1 + 2α2(E1 + E2) + α4(E1
2 + E2

2)
.

(2) q = 3. Assume y1 and ŷ1 are the same corner point, therefore |ŷ1−y1| = 0. Let us

consider the following three cases to find min(x,yT )6=(x̂,ŷT ),x=x̂Gα(x,y; x̂, ŷ|X ,Y1,Y2).

(i) y2 and ŷ2 are both corner points.

min
(x,yT )6=(x̂,ŷT ),x=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2) =

40α2

1 + 2α2(E1 + E2) + α4(E1
2 + E2

2)
. (4.23)

(ii) y2 is a corner point and ŷ2 is not a corner point. Since y2 is a corner point,

ŷ2 is chosen to be the nearest neighbour point to the corner point with the
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second highest energy denoted as E21.

min
(x,yT ) 6=(x̂,ŷT ),x=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2) (4.24)

=
8α2√

1 + 2α2(E1 + E2) + α4(E1
2 + E2

2)
√
1 + 2α2(E1 + E21) + α4(E1

2 + E21
2)
.

(iii) y2 and ŷ2 are both not corner points. y2 and ŷ2 are chosen as the nearest

neighbour points to a corner point both with the second highest energy

again denoted as E21.

min
(x,yT )6=(x̂,ŷT ),x=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2) =

8α2

1 + 2α2(E1 + E21) + α4(E1
2 + E21

2)
. (4.25)

Using Lemma 3, we can prove that the following inequality holds for all cases,

so (4.24) is smaller than (4.23)

25
(
1 + 2α2(E1 + E21) + α4(E1

2 + E21
2)
)
> 1 + 2α2(E1 + E2) + α4(E1

2 + E2
2).

Next, using the following inequality, we can clearly see that (4.24) is also smaller

than (4.25).

1 + 2α2(E1 + E2) + α4(E1
2 + E2

2) > 1 + 2α2(E1 + E21) + α4(E1
2 + E21

2).
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Therefore (4.24) is the smallest overall objective function, so for q = 3

min
(x,yT )6=(x̂,ŷT ),x=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2)

=
8α2√

1 + 2α2(E1 + E2) + α4(E1
2 + E2

2)
√
1 + 2α2(E1 + E21) + α4(E1

2 + E21
2)
.

(3) q is odd and greater than 5. Assume y1 and ŷ1 are the same corner point,

therefore |ŷ1 − y1| = 0. Let us consider the following three cases to find

min(x,yT )6=(x̂,ŷT ),x=x̂Gα(x,y; x̂, ŷ|X ,Y1,Y2).

(i) y2 and ŷ2 are both corner points. Using Lemma 2

min
(x,yT )6=(x̂,ŷT ),x=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2) =

2((3× 2
q−3
2 − 1)− (2

q−1
2 − 1))2α2

1 + 2α2(E1 + E2) + α4(E1
2 + E2

2)
. (4.26)

(ii) y2 is a corner point and ŷ2 is not a corner point. Since y2 is a corner point,

there are two possible choices for ŷ2. The first choice for ŷ2 is the closest

diagonal point to the corner point with the fifth largest energy denoted as

E24 = (3× 2
q−3
2 − 3)2 + (2

q−1
2 − 3)2, where q is odd and greater than 5.

min
(x,yT ) 6=(x̂,ŷT ),x=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2) (4.27)

=
8α2√

1 + 2α2(E1 + E2) + α4(E1
2 + E2

2)
√
1 + 2α2(E1 + E24) + α4(E1

2 + E24
2)
.

The second choice for ŷ2 is the point with the fourth largest energy denoted
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as E23 = (3× 2
q−3
2 − 1)2 + (2

q−1
2 − 5)2, where q is odd and greater than 5.

min
(x,yT ) 6=(x̂,ŷT ),x=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2) (4.28)

=
16α2√

1 + 2α2(E1 + E2) + α4(E1
2 + E2

2)
√
1 + 2α2(E1 + E23) + α4(E1

2 + E23
2)
.

Using Lemma 3 the following inequality is true for all cases.

4
(
1 + 2α2(E1 + E24) + α4(E1

2 + E24
2)
)
< 1 + 2α2(E1 + E23) + α4(E1

2 + E23
2).

Therefore, it is proven that objective function (4.27) is smaller than (4.28).

(iii) y2 and ŷ2 are both not corner points. y2 and ŷ2 are chosen as the nearest

neighbour points to a corner point with the second and third largest energy.

min
(x,yT )6=(x̂,ŷT ),x=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2) (4.29)

=
8α2√

1 + 2α2(E1 + E21) + α4(E1
2 + E21

2)
√
1 + 2α2(E1 + E22) + α4(E1

2 + E22
2)
.

First comparing (4.26) and (4.27) we would like to prove the following inequality

holds in all cases.

4
(

3× 2
q−3
2 − 2

q−1
2 − 2)4(1 + 2α2(E1 + E2) + α4(E1

2 + E2
2)
)

×
(

1 + 2α2(E1 + E24) + α4(E1
2 + E24

2)
)

> 64
(

1 + 2α2(E1 + E2) + α4(E1
2 + E2

2)
)2

Choosing the smallest value of q, when q = 7, the above inequality can be

simplified to

16
(
1 + 2α2(E1 + E24) + α4(E1

2 + E24
2)
)
> 1 + 2α2(E1 + E2) + α4(E1

2 + E2
2). (4.30)
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We can prove inequality (4.30) is true for all cases by using Lemma 3, thus the

objective function (4.27) is proven to be smaller. As a result, depending on α

two possible cases can occur when q is odd and greater than 5:

min(x,yT )6=(x̂,ŷT ),x=x̂Gα(x,y; x̂, ŷ|X ,Y1,Y2) =

min


8α2√

1+2α2(E1+E21)+α4(E1
2+E21

2)
√

1+2α2(E1+E22)+α4(E1
2+E22

2)
,

8α2√
1+2α2(E1+E2)+α4(E1

2+E2
2)
√

1+2α2(E1+E24)+α4(E1
2+E24

2)

 .

(4) q is even and greater than 2. Using a similar method to the previous situation

two possible cases can occur depending on α:

min(x,yT )6=(x̂,ŷT ),x=x̂Gα(x,y; x̂, ŷ|X ,Y1,Y2) =

min


8α2

1+2α2(E1+E21)+α4(E1
2+E21

2)
,

8α2√
1+2α2(E1+E2)+α4(E1

2+E2
2)
√

1+2α2(E1+E24)+α4(E1
2+E24

2)

 ,

where E24 = 2(2
q
2 − 3)2, where q is even and greater than 2.

(b) (x,yT , x̂, ŷT ) ∈ DB.

First, consider the special case when p = q = 2. The numerator of the objective

function is
√

32α2 since
∣∣ ŷ1
x̂
− y1

x

∣∣2 ≥ 4 and
∣∣ ŷ2
x̂
− y2

x

∣∣2 ≥ 4. Since all the points

in the constellation are corner points the resulting objective function becomes

min
(x,yT )6=(x̂,ŷT ),x 6=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2) ≥
√
32α2

1 + 2α2(E1 + E2) + α4(E1
2 + E2

2)
.

When p > 2, the feasible domain of the optimization problem
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min(x,yT )6=(x̂,ŷT ),x 6=x̂Gα(x,y; x̂, ŷ|X ,Y1,Y2), is further split into four disjoint sub-

domains as follows:

D11 = {(x,yT , x̂, ŷT ) : x 6= x̂, (|y1|, |ŷ1|) = (E1, E1), (|y2|, |ŷ2|) = (E2, E2)},

D12 = {(x,yT , x̂, ŷT ) : x 6= x̂, (|y1|, |ŷ1|) = (E1, E1), (|y2|, |ŷ2|) 6= (E2, E2)},

D13 = {(x,yT , x̂, ŷT ) : x 6= x̂, (|y1|, |ŷ1|) 6= (E1, E1), (|y2|, |ŷ2|) = (E2, E2)},

D14 = {(x,yT , x̂, ŷT ) : x 6= x̂, (|y1|, |ŷ1|) 6= (E1, E1), (|y2|, |ŷ2|) 6= (E2, E2)}.

Therefore, we have

min
(x,yT ) 6=(x̂,ŷT ),x 6=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2) =

min
1≤k≤4

min
(x,yT ,x̂,ŷT )∈D1k

Gα(x,y; x̂, ŷ|X ,Y1,Y2). (4.31)

Now, let us consider each inner minimization problem.

(a) When (x,yT , x̂, ŷT ) ∈ D11 and |Z1| ≥ 8, | ŷ1
x̂
− y1

x
| ≥
√

20 as a result, the

numerator of Gα(x,y; x̂, ŷ|X ,Y1,Y2) is lower bounded by

α2

√∣∣∣ ŷ1
x̂
− y1
x

∣∣∣4 +
∣∣∣ ŷ2
x̂
− y2
x

∣∣∣4 ≥ √416α2. (4.32)

Under the same condition, the denominator of Gα(x,y; x̂, ŷ|X ,Y1,Y2) is
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upper bounded by

√
1 + 2α2

(∣∣∣y1
x

∣∣∣2 +
∣∣∣y2
x

∣∣∣2)+ α4
(∣∣∣y1
x

∣∣∣4 +
∣∣∣y2
x

∣∣∣4)
×
√

1 + 2α2
(∣∣∣ ŷ1
x̂

∣∣∣2 +
∣∣∣ ŷ2
x̂

∣∣∣2)+ α4
(∣∣∣ ŷ1
x̂

∣∣∣4 +
∣∣∣ ŷ2
x̂

∣∣∣4)
≤ 1 + 2α2(E1 + E2) + α4(E1

2 + E2
2). (4.33)

Combining (4.32) with (4.33) results in

min
(x,yT ,x̂,ŷT )∈D11

Gα(x,y; x̂, ŷ|X ,Y1,Y2) ≥
√
416α2

1 + 2α2(E1 + E2) + α4(E1
2 + E2

2)
. (4.34)

(b) When (x,yT , x̂, ŷT ) ∈ D12 and |Z1| ≥ 8, | ŷ1
x̂
− y1

x
| ≥
√

20 the result is similar

to the D11 case. Therefore, the numerator of Gα(x,y; x̂, ŷ|X ,Y1,Y2) is

lower bounded by

α2

√∣∣∣ ŷ1
x̂
− y1
x

∣∣∣4 +
∣∣∣ ŷ2
x̂
− y2
x

∣∣∣4 ≥ √416α2.

The denominator of Gα(x,y; x̂, ŷ|X ,Y1,Y2), under the same condition, is

upper bounded by

√
1 + 2α2

(∣∣∣y1
x

∣∣∣2 + ∣∣∣y2
x

∣∣∣2)+ α4
(∣∣∣y1
x

∣∣∣4 + ∣∣∣y2
x

∣∣∣4)
×
√
1 + 2α2

(∣∣∣ ŷ1
x̂

∣∣∣2 + ∣∣∣ ŷ2
x̂

∣∣∣2)+ α4
(∣∣∣ ŷ1
x̂

∣∣∣4 + ∣∣∣ ŷ2
x̂

∣∣∣4)
≤
(
1 + 2α2(E1 + E2) + α4(E1

2 + E2
2)
)(

1 + 2α2(E1 + E21) + α4(E1
2 + E21

2
)
.
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min
(x,yT ,x̂,ŷT )∈D12

Gα(x,y; x̂, ŷ|X ,Y1,Y2) ≥ (4.35)

√
416α2√

1 + 2α2(E1 + E2) + α4(E1
2 + E2

2)
√
1 + 2α2(E1 + E21) + α4(E1

2 + E21
2)
.

Comparing (4.34) and (4.35) we can see that (4.34) is the smaller objective

function, therefore, combining D11 and D12

min
(x,yT ,x̂,ŷT )∈D11∪D12

Gα(x,y; x̂, ŷ|X ,Y1,Y2) ≥
√

416α2

1 + 2α2(E1 + E2) + α4(E1
2 + E2

2)
. (4.36)

(c) When (x,yT , x̂, ŷT ) ∈ D14, notice that the numerator of the objective

function is lower bounded by

α2

√∣∣∣ ŷ1
x̂
− y1
x

∣∣∣4 +
∣∣∣ ŷ2
x̂
− y2
x

∣∣∣4 ≥ √32α2, (4.37)

since
∣∣ ŷ1
x̂
− y1

x

∣∣2 ≥ 4 and
∣∣ ŷ2
x̂
− y2

x

∣∣2 ≥ 4.

In addition, the denominator of the objective is upper bounded by

√
1 + 2α2

(∣∣∣y1
x

∣∣∣2 + ∣∣∣y2
x

∣∣∣2)+ α4
(∣∣∣y1
x

∣∣∣4 + ∣∣∣y2
x

∣∣∣4) (4.38)

×
√
1 + 2α2

(∣∣∣ ŷ1
x̂

∣∣∣2 + ∣∣∣ ŷ2
x̂

∣∣∣2)+ α4
(∣∣∣ ŷ1
x̂

∣∣∣4 + ∣∣∣ ŷ2
x̂

∣∣∣4)
≤
√
1 + 2α2(E1 + E21) + α4(E1

2 + E21
2)

√
1 + 2α2(E11 + E2) + α4(E11

2 + E2
2).

Now, let us show that both equalities (4.37) and (4.38) can be achieved

simultaneously. Since x, x̂ ∈ X = {1, j}, we can always assume that x = 1

and x̂ = j. Recall that Zi denotes one of the corner points in Zi with the

77



Ph.D Thesis - Eleanor Leung McMaster - Electrical Engineering

largest energy Ei. Zi1 and Zi2 denote its two nearest neighbors in Zi, i.e.,

|Zi − Zi1| = |Zi − Zi2| = 2, with the respective energies Ei1 and Ei2, so

dmin(Yi) > 2. If we let yi = Zi and ŷi = jZi1, then, both the equalities

in (4.37) and (4.38) hold at the same time and thus,

min
(x,yT ,x̂,ŷT )∈D14

Gα(x,y; x̂, ŷ|X ,Y1,Y2) = (4.39)

√
32α2√

1 + 2α2(E1 + E21) + α4(E1
2 + E21

2)
√
1 + 2α2(E11 + E2) + α4(E11

2 + E2
2)
.

(d) When (x,yT , x̂, ŷT ) ∈ D13, we need to consider two possibilities: |Z2| = 4

and |Z2| ≥ 8. If |Z2| ≥ 8, then, following the discussion similar to situation

a), we obtain

min
(x,yT ,x̂,ŷT )∈D13

Gα(x,y; x̂, ŷ|X ,Y1,Y2) ≥ (4.40)

√
416α2√

(1 + 2α2(E1 + E2) + α4(E1
2 + E2

2))
√
(1 + 2α2(E11 + E2) + α4(E11

2 + E2
2))

.

If |Z2| = 4, then, |y2| = |ŷ2| = 2 and | ŷ2
x̂
− y2

x
| = 2. Following the same

discussion as situation b) and choosing y1 = Z1, ŷ1 = jZ11, we have

min
(x,yT ,x̂,ŷT )∈D13

Gα(x,y; x̂, ŷ|X ,Y1,Y2) = (4.41)

√
32α2√

(1 + 2α2(E1 + 2) + α4(E1
2 + 4))

√
(1 + 2α2(E11 + 2) + α4(E11

2 + 4))
.

If we make the convention that E2 = E21 = 2 when Z2 is the 4-QAM constel-

lation, then, equation (4.40) includes (4.41) as a special case.

We can prove inequality (4.42) holds for all cases by using Lemma 3 for any
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positive α.

13
(
1 + 2α2(E1 + E21) + α4(E2

1 + E2
21)
)(
1 + 2α2(E11 + E2) + α4(E2

11 + E2
2)
)

≥
(
1 + 2α2(E1 + E2) + α4(E2

1 + E2
2)
)2
. (4.42)

Using (4.42) and now comparing (4.34) with (4.40) leads to

min(x,yT ,x̂,ŷT )∈D11∪D12
Gα(x,y; x̂, ŷ|X ,Y1,Y2)

min(x,yT ,x̂,ŷT )∈D14
Gα(x,y; x̂, ŷ|X ,Y1,Y2)

≥

13
(
1 + 2α2(E1 + E21) + α4(E2

1 + E2
21)
)(
1 + 2α2(E11 + E2) + α4(E2

11 + E2
2)
)(

1 + 2α2(E1 + E2) + α4(E2
1 + E2

2)
)2 ≥ 1.

If |Z2| ≥ 8, this is equivalent to the fact that

min(x,yT ,x̂,ŷT )∈D11∪D12
Gα(x,y; x̂, ŷ|X ,Y1,Y2) ≥

min
(x,yT ,x̂,ŷT )∈D14

Gα(x,y; x̂, ŷ|X ,Y1,Y2). (4.43)

Using the same argument, we can derive

min
(x,yT ,x̂,ŷT )∈D13

Gα(x,y; x̂, ŷ|X ,Y1,Y2) ≥

min
(x,yT ,x̂,ŷT )∈D14

Gα(x,y; x̂, ŷ|X ,Y1,Y2). (4.44)

Combining (4.31) with (4.43) and (4.44) proves that the overall smallest objec-

tive function is

min
(x,yT ,x̂,ŷT ),x 6=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2) = (4.45)

√
32α2√

1 + 2α2(E1 + E21) + α4(E1
2 + E21

2)
√
1 + 2α2(E11 + E2) + α4(E11

2 + E2
2)
.
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Substituting (4.22) and (4.45) into (4.21) the following possibilities are examined,

when δ = 1 and X = {1, j}. In this following cases the arithmetic mean and geometric

mean inequality of a+ b ≥ 2
√
ab is used.

Case 1: p = q = 2.

min
(x,yT ,x̂,ŷT ),x 6=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2)

=
4α2√

1 + 2α2(2 + 2) + α4(22 + 22)
√

1 + 2α2(2 + 2) + α4(22 + 22)

=
4α2

1 + 8α2 + 8α4

≤ 4

8 + 2
√

8

Therefore, the optimal α̃ = 8−1/4 = 0.5946 and the corresponding coding gain

is Gα̃ = 4
8+2
√
8

= 0.2928.

Case 2: p = 3, q = 2.

min
(x,yT ,x̂,ŷT ),x 6=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2)

=
8α2√

1 + 2α2(10 + 2) + α4(102 + 22)
√

1 + 2α2(10 + 2) + α4(102 + 22)

=
4α2

1 + 24α2 + 104α4

≤ 8

24 + 2
√

104

Therefore, the optimal α̃ = 104−1/4 = 0.313 and the corresponding coding gain

is Gα̃ = 8
24+2

√
104

= 0.1802.
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Case 3: p = 3, q = 3.

min
(x,yT ,x̂,ŷT ),x 6=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2)

=

√
32α2√

1 + 2α2(10 + 2) + α4(102 + 22)
√

1 + 2α2(10 + 2) + α4(102 + 22)

=

√
32α2

1 + 24α2 + 104α4

≤
√

32

24 + 2
√

104

Therefore, the optimal α̃ = 104−1/4 = 0.313 and the corresponding coding gain

is Gα̃ =
√
32

24+2
√
104

= 0.1274.

Case 4: p = 4, q = 2.

min
(x,yT ,x̂,ŷT ),x 6=x̂

Gα(x,y; x̂, ŷ|X ,Y1,Y2)

=
8α2√

1 + 2α2(18 + 2) + α4(182 + 22)
√

1 + 2α2(18 + 2) + α4(182 + 22)

=
8α2

1 + 40α2 + 328α4

≤ 8

40 + 2
√

328

Therefore, the optimal α̃ = 328−1/4 = 0.2349 and the corresponding coding

gain is Gα̃ = 8
40+2

√
328

= 0.1049.

For Rb = 1, although there are two options case 1 and case 2, case 1 is chosen since

it has the larger coding gain. Similarly, for Rb = 1.25, case 3 is chosen since it has

a larger coding gain compared to case 4. Our analysis is restricted to the four cases

detailed above because at a higher bit rate the proposed UFCP-STBC design (4.4)
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has a worse optimal coding gain compared to the Alamouti UFCP design in [72].

The comparison between the maximum coding gains of the Alamouti unitary UFCP

design and the proposed unitary UFCP design via QR decomposition for the two

transmission bit rates is listed in Table 4.1.

Table 4.1: Comparison of maximum coding gains for different transmission bit rates

using UFCP code designs

Alamouti UFCP Design Proposed UFCP Design

Bit Rate Z̃1, Z̃2 Gα̃(X̃ , Ỹ1, Ỹ2) α̃ Gα̃(X̃ , Ỹ1, Ỹ2) α̃

1 4-QAM, 4-QAM 0.2500 0.500 0.2928 0.595

1.25 8-QAM, 8-QAM 0.1270 0.254 0.1274 0.313

4.4 Simulations

In this section, we carry out computer simulations to compare the error performance

of the unitary UFCP code design via QR decomposition, proposed in this chapter,

with those of other schemes in literature which also use the small noncoherent MISO

system of two transmitter antennas and a single receiver antenna. All the schemes

that we would like to compare are described as follows:

(a) Differential unitary code based on Alamouti coding scheme and PSK constel-

lations. This design with the fast closed-form ML decoder was proposed in [54, 56]

and the two unitary codeword matrices are U1 = I2 and

U2 =
1√
2
×

 s1 s2

−s∗2 s∗1

 ,
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where s1 and s2 are randomly, independently and equally likely chosen from the 2r1-

ary and 2r2-ary phase shift keying (PSK) constellations, respectively, with the two

integers a and b determined as follows:

{
r1 = r2 = r

2
if r is even,

r1 = r+1
2
, r2 = r−1

2
if r is odd.

(4.46)

For use of the GLRT receiver and performance comparison, these two unitary matrices

are normalized and then, stacked into one codeword matrix, which is denoted by Sa,

Sa =
1√
2
×

 U1

U2

 ,

where the normalization constant assures E
[
tr
(
SHa Sa

)]
= 2.

(b) SNR-efficient training Alamouti code. This SNR-efficient training scheme us-

ing the Alamouti code was presented in [104]. The codeword matrices are character-

ized by

Sb =
1√
Eb
×



√
Eb/2 0

0
√
Eb/2

s1 s2

−s∗2 s∗1


,

where s1 and s2 are randomly and equally likely chosen from either the 2r1-ary and

2r2-ary PSK constellations or cross QAM constellations, respectively, with the deter-

mination of the two integers r1 and r2 being the same as (4.46). The energy constant

Eb is normalized in such a way that E
[
tr
(
SHb Sb

)]
= 2.
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(c) Alamouti Unitary UFCP code. The code design is proposed in [72] and the

codeword matrix is of the form:

Sc =
1√

1 + α̃2|y1|2 + α̃2|y2|2
×



x 0

0 x

α̃y1 α̃y2

−α̃y∗2 α̃y∗1


, x ∈ X̃ , y1 ∈ Ỹ1, y2 ∈ Ỹ2,

where the optimal energy scale α̃ and three constellations X̃ , Ỹ1 and Ỹ2 are determined

according to [72].

(d) Unitary UFCP code via QR decomposition. The code design is proposed in

this chapter and the codeword matrix is of the form:

Sd =



x 0

0 x

α̃y1 α̃jy∗2

α̃y2 α̃y∗1


, x ∈ X̃ , y1 ∈ Ỹ1, y2 ∈ Ỹ2,

where the optimal energy scale α̃ and three constellations X̃ , Ỹ1 and Ỹ2.

To make all error performance comparisons fair, all the codes are decoded using

the GLRT detector, i.e., Ŝ = arg maxS∈S Tr
(
ΥHS

(
SHS

)−1
SHΥ

)
. All the average

codeword error rates against SNR are shown Fig. 4.1. It is observed in Fig. 4.1(a) that

the unitary UFCP code using QR decomposition designed in this section performs

the best in error performance among all the four coding schemes. For R1 = 1, 1 bit

per channel use, we can obtain about 0.25dB gain in SNR at the codeword error level

of 10−5. For Rb = 1.5, the proposed UFCP coding gain is only slightly better than
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the optimal Alamouti UFCP case so the resulting error performance between these

two schemes is almost identical as seen in Fig. 4.1(b).
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(b) Rb = 1.25 bits per channel use, Z̃1=8-QAM, Z̃2=8-QAM

Figure 4.1: Error performance comparison of unitary UFCP code with other nonco-

herent codes
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4.5 Discussions

In this chapter, a noncoherent wireless communication system having two transmitter

antennas and a single receiver antenna is considered. The channel coefficients remain

constant for the first four time slots after which they change to new independent

values that are fixed for the next four time slots and so on. For this system using the

recently-developed UFCP concept and the QR decomposition we systematically de-

signed a novel energy-efficient unitary space-time block code. It was proven that the

proposed UFCP-STBC design assures that the unique identification of both channel

coefficients and transmitted signals in a noise-free case and full diversity in a noisy

case. To further improve the error performance, an optimal unitary UFCP-STBC

was designed to maximize the coding gain subject to a transmission bit rate con-

straint by appropriately and uniquely factorizing a pair of energy-efficient cross QAM

constellations as well as carefully adjusting the energy scale.

A potential aspect for future work is to properly modify the proposed unitary

coding scheme using QR decomposition so that the resulting coding gain is larger

than the Alamouti coding scheme for higher transmission bit rates. Currently, only

Rb = 1, 1.5 yield better coding gain results. One possible solution is to use two

energy scales in the UFCP-STBC design instead of only the one energy scale α. The

construction of the optimal UFCPs for the design of the proposed unitary STBC has

been derived from the cross QAM constellations. Another extension of this research

work is the study of hexagonal constellations. As seen in Chapter 3, the hexagonal

constellations carved from the Eisenstein integer domain is more energy-efficient than

the QAM constellations carved from the Gaussian integer domain.

87



Chapter 5

Uniquely factorable Alamouti

matrix pair and its application to

amplify-forward relay network

coding

The design of orthogonal STBCs using Alamouti matrices has an important role for

both coherent and noncoherent MIMO and relay network wireless communication

systems. These matrices enjoy many interesting and useful properties for various

applications. In this chapter, we explore a novel property called the uniquely fac-

torable property of Alamouti matrices. With the aid of the recently developed scalar

uniquely factorable constellation pair generated from the cross QAM constellation,

the systematic design of a class of uniquely factorable Alamouti matrix pairs is pro-

posed. A new physical layer amplify-forward network coding scheme is also devised
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for a coherent one-way relaying network consisting of two end nodes with each having

a single antenna and one relay node equipped with two antennas, where the relay node

is allowed to transmit its own information while forwarding the source information it

has received to the destination.

5.1 Project motivation

The first motivation of this research is the study of a noncoherent Alamouti STBC. It

has been well understood that the orthogonal Alamouti STBC [30] is particularly use-

ful for a coherent wireless communication system with two transmitter antennas and

a single receiver antenna, since it is able to extract full diversity without information

loss [43]. Unfortunately, in practice, perfect channel state information at the receiver

is not easily attainable. As mentioned earlier, the fading coefficients in mobile wireless

communications may change quickly so that it may not be possible for the channel co-

efficients to be estimated accurately. In such scenario, a more satisfactory solution is

noncoherent (or blind) Alamouti space-time block coding [3,4,46,51,55,62–69]. This

kind of the problem has recently been formulated [80–82] as follows: At least four

time slots are needed for transmission, where the first and second time slots form one

Alamouti matrix and the third and fourth time slots form another Alamouti matrix.

The relationship between the received signals and the transmitted signals without

noise, can be mathematically described by r = Sh, where r = (ru
T , rv

T )T denotes

a 4 × 1 received signal vector, with ru and rv being the first and the second set of

the two received signal vectors, respectively, S = (UT ,VT )T denotes 4× 2 transmit-

ted signal matrix, U and V being two Alamouti matrices formed by the first and

the second set of two transmitted symbols accordingly, and h = (h1, h2)
T denotes
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a 2 × 1 channel vector. Hence, ru = Uh and rv = Vh. Now, if U is invertible,

then rv = VU−1Uh = VU−1ru. This shows that the original noncoherent linear

dispersion coded channel is now transformed into a coherent nonlinear space-time

block coded channel, where VU−1 is the transmitted codeword matrix, ru is a vir-

tual channel vector and rv is a corresponding received signal vector. Therefore, the

principal goal of the original design problem becomes more clear: the noncoherent

full diversity transmission scheme requires that different pairs of U and V must cor-

respond to different products VU−1 for the resulting coherent system. A family of

such matrices was initially constructed by [80–82] utilizing a pair of coprime PSK

constellations. However, the PSK signalling, except for binary and 4PSK signalling,

is not as energy-efficient as the QAM signalling. In addition, the strategies developed

in [80–82] for the theoretical analysis of the unique identification and full diversity

cannot be exploited for the QAM constellation. This initial design demonstrates the

significance of the unique factorization of the Alamouti matrix signals, and provides

us with the possibility of a new research topic for the systematic design of a family of

uniquely factorable Alamouti matrices for the noncoherent MIMO system using the

more energy-efficient QAM constellation.

The second motivation stems from a specific class of amplify-forward relaying

network systems consisting of two end nodes with each having a single antenna and

one relay node equipped with two antennas, whose diagram is shown in Fig 5.1.
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Figure 5.1: One-way relay network

As in MIMO systems, installing multiple antennas is often impractical in mobile

communications. Therefore, cooperative diversity has recently been revived [83–88],

in which the in-cell mobile users share the use of their antennas to create a virtual

array through distributed transmission and signal processing. Since this arrangement

forms a distributed MIMO system, the coherent diversity techniques for the MIMO

systems have been naturally extended to such relaying networks for the design of so-

called distributed STBC [106–108]. In addition, the recently well-developed network

coding has been also applied to some decoding-forward relay systems [89,90,109–112].

To the best of our knowledge, all the currently-available relay networks only allow

the relay node to passively forward whatever it has received from the source node

to the destination and does not allow it to actively transmit its own information.

As mentioned before, in a practical communication scenario, it is often necessary to

allow the relay node to send information to terminal node. A couple of efforts was

initially attempted for the system in Fig. 5.1, by [91,92], using a pair of scalar UFCP

based on PSK and QAM constellations and allowing the source and relay to transmit

information simultaneously at the symbol level. Although these two specific designs
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were only applicable to the scalar (not matrix) network coding, this strongly suggests

an important research topic on the design of the unique factorizations of Alamouti

matrix signals for amplify-forward relay network coding which is the other major

motivation for the chapter.

Therefore, it is the aforementioned two major motivations that encourage us to

develop a novel uniquely factorable property for a certain class of Alamouti matrices

and explore some new applications of such factorization.

5.2 Uniquely factorable Alamouti matrix pair

The primary purpose of this section is to first briefly review the properties of the

Alamouti matrix and then establish a uniquely factorable matrix constellation pair

by carefully using the Alamouti matrix and the QAM constellation.

5.2.1 Alamouti coding scheme

The Alamouti coding scheme is a common orthogonal STBC for MIMO wireless

communications. The core of this coding scheme relies on the specific two-by-two

matrices of the following structure: A =

 a1 a2

−a∗2 a∗1.

 or A =

 a1 a2

a∗2 −a∗1.


where a1, a2 are complex numbers. The Alamouti matrix has many nice properties.

A few of them are summarized here:

1. The sum and the difference of any two Alamouti matrices are also Alamouti

matrices, i.e., The set of all the Alamouti matrices forms an additive group with

respect to the matrix addition operation;
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2. If A1 and A2 are two Alamouti matrices, then, their product A1A2 is still

an Alamouti matrix. In addition, the set of all invertible Alamouti matrices

constitutes a multiplicative group in terms of the matrix product operation;

3. An Alamouti matrix A is invertible if and only if A 6= 0;

4. If all entries of an Alamouti matrix A are unity, then, A is invertible and

A−1 = 1
2
AH .

However communitivity doesn’t hold for Alamouti matrices in general. For ex-

ample, if A =

 0 1

−1 0

 and A =

 1 1

−1 1

 then A1A2 6= A2A1. In addition,

despite the fact that the product of two Alamouti matrices is still an Alamouti matrix,

the product is not unique. If there exist four Alamouti matrices Ai for i = 1, 2, 3, 4

such that A1A2 = A3A4, then, it is not necessary for A1 = A3 and A2 = A4 to hold.

For example, for matrices A1 = A2 =

 0 1

−1 0

, A3 =

 −1 0

0 −1

 and A4 = I

it satisfies A1A2 = A3A4 = −I, but A1 6= A3 and A2 6= A4. We are interested in

such a uniquely factorable property of the Alamouti matrices that the product VU−1

of two Alamouti matrices U and V are unique, where the entries of U are all unity.

5.2.2 Uniquely factorable Alamouti matrix pair

The Alamouti matrix version of the UFCP proposed in this section is based on the

concept of the scalar UFCP given in Definition 3 and the modified cross QAM con-

stellations in Definition 4.

Definition 8 Let U and V denote two Alamouti matrix sets. It is said that a pair of

U and V constitutes a uniquely factorable Alamouti matrix pair (UFAMP) if VU−1 =
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ṼŨ−1, where U, Ũ ∈ U and V, Ṽ ∈ V, then, we have U = Ũ and V = Ṽ.

Example 1 Let S denote an arbitrarily given constellation. If we let U = {I} and V

denote any set consisting of some Alamouti matrices generated from S, i.e,

V =

V =

 v1 v2

−v∗2 v∗1.

 : v1, v2 ∈ S

 ,

then, it can be verified directly by Definition 8 that such a pair of U and V form a

UFAMP.

Example 2 Let p and q be coprime. If we define U and V, respectively, as

U =

U =

 u1 u2

−u∗2 u∗1.

 : u1, u2 ∈ Sp

 ,

V =

V =

 v1 v2

−v∗2 v∗1.

 : v1, v2 ∈ Sq

 ,

where Sp and Sq denote the respective p-ary and q-ary PSK constellations, then, such

a pair of U and V constitutes another UFAMP. See [113] for a proof. As mentioned

earlier, the PSK constellation is not as energy-efficient as the QAM constellation. In

the following lemma we consider how to systematically design a high rate UFAMP

using the QAM cross-constellations in Definition 4.
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Lemma 4 Let three Alamouti matrix sets A2,A4 and A8 be defined as follows:

A2 =

X =

 x1 x2

−x∗2 x∗1.

 : x1x2 = j, x1, x2 ∈ X2

 ,

A4 =

X =

 x1 x2

−x∗2 x∗1.

 : x1x2 = j, x1, x2 ∈ X4

 ,

A8 =

X =

 x1 x2

−x∗2 x∗1.

 : x1x2 = ±j, x1, x2 ∈ X4

 .

Then, the following three statements are true.

1. If X, X̃ ∈ A2, then, we have X̃HX = 2diag(a∗, a), where a ∈ {1, j,−j}.

2. If X, X̃ ∈ A4, then, we have X̃HX = 2diag(b∗, b), where b ∈ X4.

3. If X, X̃ ∈ A8, then, we have either X̃HX = 2diag(c∗, c) with c ∈ X4 or X̃HX = 0 d∗

−d 0

, where d ∈ X4.

Proof : Let X and X̃ be given by

X =

 x1 x2

−x∗2 x1

 , X̃ =

 x̃1 x̃2

−x̃∗2 x̃1

 ,
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where |xi| = |x̃i| = 1. Then, we have

X̃HX =

 x1x̃
∗
1 + x∗2x̃2 x2x̃

∗
1 − x∗1x̃2

x1x̃
∗
2 − x∗2x̃1 x∗1x̃1 + x2x̃

∗
2


=

 x̃∗1(x1 + x̃1x
∗
2x̃2) x̃∗1(x2 − x∗1x̃1x̃2)

x̃1(x1x̃
∗
1x̃
∗
2 − x∗2) x̃1(x

∗
1 + x2x̃

∗
1x̃
∗
2)


=

 x̃∗1x
∗
2(x1x2 + x̃1x̃2) x̃∗1x

∗
1(x1x2 − x̃1x̃2)

x̃1x1(x̃
∗
1x̃
∗
2 − x∗1x∗2) x̃1x2(x

∗
1x
∗
2 + x̃∗1x̃

∗
2)

 (5.1)

Now, if X, X̃ ∈ A2, then, x1x2 = x̃1x̃2 = j and thus, equation (5.1) reduces to

X̃HX =

 2jx̃∗1x
∗
2 0

0 −2jx̃1x2

 = 2

 a∗ 0

0 a

 ,

where a = −jx̃1x2. Since x̃1, x2 ∈ X2, we have a ∈ {1, j,−j}. This completes the

proof of Statement 1.

Similarly, if X, X̃ ∈ A4, then, x1x2 = x̃1x̃2 = j and thus, equation (5.1) becomes

X̃HX =

 2jx̃∗1x
∗
2 0

0 −2jx̃1x2

 = 2

 b∗ 0

0 b

 ,

where b = −jx̃1x2. Since x̃1, x2 ∈ X4, we have b ∈ X4. This completes the proof of

Statement 2.

96



Ph.D Thesis - Eleanor Leung McMaster - Electrical Engineering

Let us now consider the case when X, X̃ ∈ A8. If x1x2 = x̃1x̃2 = ±j, then,

equation (5.1) can be simplified into

X̃HX =

 ∓2jx̃∗1x
∗
2 0

0 ±2jx̃1x2

 = 2

 c∗ 0

0 c

 ,

where c = ±jx̃1x2 ∈ X4. If either x1x2 = j, x̃1x̃2 = −j or x1x2 = −j, x̃1x̃2 = j, then,

we have x1x2 + x̃1x̃2 = 0 and x1x2 − x̃1x̃2 = ±j. As a result, equation (5.1) reduces

to

X̃HX = 2

 0 ∓jx̃∗1x∗1

−± jx̃1x1 0

 = 2

 0 d∗

−d 0

 ,

where d = ±jx̃1x1 ∈ X4, which gives the proof of Statement 3. �

Theorem 5 Let

U2 = A2 and V2 =

V =

 v1 v2

−v∗2 v∗1.

 , v1, v2 ∈ Y2

 ,

U4 = A4 and V2 =

V =

 v1 v2

−v∗2 v∗1.

 , v1 ∈ Y4, v2 ∈ Y2

 ,

U8 = A8 and V2 =

V =

 v1 v2

−v∗2 v∗1.

 , v1, v2 ∈ Y4

 .

Then, Ui and Vi for i = 2, 4, 8 form UFAMPs.

Proof : Suppose that there exist four matrices Uk, Ũk ∈ Uk and Vk, Ṽk ∈ Vk such

that VkU
−1
k = ṼkŨ

−1
k . Then, we have Vk = ṼkŨ

−1
k Uk. Since Ũ−1 = 1

2
ŨH , by
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Lemma 4, we need to consider the following possibilities:

1. k = 2. In this case, Lemma 4 gives us

ŨH
2 U2 = 2

 a∗ 0

0 a

 ,

where a ∈ {1, j,−j}. Hence, we have

V2 = Ṽ2

 a∗ 0

0 a

 ,

which is equivalent to v21 = a∗ṽ21 and v22 = aṽ22. Since X2 and Y2 form a

UFCP, we attain a = 1, v21 = ṽ21 and v22 = ṽ22, i.e., U2 = Ũ2 and V2 = Ṽ2.

2. k = 4. Similar to the above possibility 1), by Lemma 4, we have

V4 = Ṽ4

 b∗ 0

0 b

 ,

where b ∈ X4. Hence, we obtain v41 = a∗ṽ41 and v42 = aṽ42. Since X4 and Y4

form a UFCP, we attain a = 1 and v41 = ṽ41, which, thus, leads to v42 = ṽ42.

Therefore, we have U4 = Ũ4 and V4 = Ṽ4.

3. k = 8. In this case, by Lemma 4, we have either ŨH
8 U8 = 2diag(c∗, c) with

c ∈ X4 or ŨH
8 U8 =

 0 d∗

−d 0

, where d ∈ X4. Accordingly, we can attain

either v81 = c∗ṽ81 and v82 = cṽ82 or v81 = −dṽ82 and v82 = d∗ṽ81. Since X4

and Y4 constitute a UFCP, the latter case is impossible and thus, we have
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v81 = ṽ81, v82 = ṽ82 and c = 1, leading to u81 = ũ81 and u82 = ũ82.

This completes the proof of Theorem 5. �

5.3 Novel physical layer network coding for one-

way relay systems

As mentioned in Section 4.1, one of our main motivations of establishing a UFAMP

is for the systematic design of a new physical layer amplify-forward network coding

for the relay systems, which is the principal target in this section. The main idea

is that the source and the relay nodes carefully and collaboratively transmit their

own signals while the relay node strategically encodes the noisy signals which it has

received from the source so that the destination node receives a uniquely factorable

Alamouti matrix code. Thus, this network coding scheme results not only in full

diversity, but in better coding gain as well for the ML detector.

5.3.1 New amplify-forward network coding scheme

We consider a one-way half-duplex amplify-forward coherent relay network which

consists of one source (S), one relay (R) and one destination (D) node as shown in

Fig 5.1. Each of the source and destination nodes have one antenna while the relay

node has two antennas.

During two communication phases, four independent, random and equally likely

symbols are transmitted from the source and relay within four time slots. In the first

phase, two symbols vk1 and vk2 are randomly and independently selected from the

source node, which are sent over two time slots to the relay. The received signals at
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the relay node are denoted as

r1 = h1vk1 + n1,

r2 = h1vk2 + n2.

where rt = [rt1, rt2]
T , hi = [hi1, hi2]

T the channel coefficients are samples of circularly

symmetric, zero mean, complex white Gaussian random variables with unit variance

and nt = [nt1, nt2]
T is the Gaussian noise vector with zero mean and covariance matrix

σ2I2. The symbols vk1 and vk2 form the Alamouti codeword matrix Vk.

In the second phase the relay combines the received signals from the source node

with its own information symbols uk1, uk2 to obtain two processed signals wk1, wk2 that

represent a uniquely factorable Alamouti code. uk1, uk2 constitute another Alamouti

codeword matrix Uk. The two processed signals wk1, wk2 are defined as

wk1 = u∗k1vk1 + u∗k2vk2, (5.2)

wk2 = uk1vk2 − uk2vk1. (5.3)

The relay node being able to transmit its own information at the symbol level is

one of the main ideas of this research. Due to the property of unique factorization

of the constellation, one advantage is there is no degradation in performance as the

destination node is able to recover information from both the source and relay and
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reliably decode it. Multiplying the received signals with symbols uk1, uk2 yields

a1 = u∗k1r1 + u∗k2r2

= u∗k1(h1vk1 + n1) + u∗k2(h1vk2 + n2)

= h1(u∗k1vk1 + u∗k2vk2) + u∗k1n1 + u∗k2n2

= h1wk1 + u∗k1n1 + u∗k2n2

a2 = uk1r2 − uk2r1

= u1(h1vk2 + n2)− uk2(h1vk1 + n1)

= h1(uk1vk2 − uk2y1) + uk1n2 − vk2n1

= h1wk2 + uk1n2 − uk2n1

Strategically combining the four terms a11, a12, a21, a22 using the Alamouti coding

scheme, a two by one signal vector b is produced for transmission represented by

 b1

b2

 =

 a11 + a∗22

a12 − a∗21


=

 h11 h∗12

h12 −h∗11


 wk1

w∗k2

+

 u∗k1n11 + u∗k2n21 + u∗k1n22 − u∗k2n12

u∗k1n12 + u∗k2n22 − u∗k1n21 + u∗k2n11

 ,

b = HT
1 wk + η,

where H1 =

 h11 h12

h∗12 −h∗11

, wk = [wk1, w
∗
k2]

T and η = [η1, η2]
T . It is worth noting

that the noise η is still white Gaussian, since both uk1 and uk2 are independent and
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unit in value.

The relay node spends an additional two time slots to transmit the coded signals

b1, b2 to the destination node using the Alamouti coding scheme. Therefore, the signal

received at the destination node is given by

zk = βH2b + ζ = βH2H
T
1 wk + ξ, (5.4)

where H2 =

 h21 h22

h∗22 −h∗21

, the scale β is the amplifying gain and is determined

to satisfy the average power constraint between relay and source nodes given by

β2 = 1
4(2+σ2)

and ξ denotes the two by one Gaussian noise vector with zero mean and

covariance matrix σ2(1 + 4β2|h21|2 + 4β2|h22|2)I2.

5.3.2 Full diversity and coding gain

To facilitate performance analysis, the channel model (5.4) is rewritten as

z̄k = βWkgk + ξ̄k, (5.5)

where z̄k = (zk1, z
∗
k2)

T , ξ̄k = (ξk1, ξ
∗
k2)

T , Wk =

 wk1 wk2

−w∗k2 w∗k1

 and g = (g1, g2)
T

with g1 = h21h11 + h22h21 and g2 = h21h
∗
12 − h22h∗11. Following the method similar

to [113], we can prove that an average pairwise error probability for the channel

model (5.5) using the maximum likelihood detector has the following asymptotic
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formula

P
(
Wk → W̃k

)
=

8

β2det(∆WH
k ∆Wk)

× ln SNR

SNR2 +O

(
1

SNR2

)
(5.6)

if ∆Wk = Wk − W̃k is invertible. Therefore, we need to check whether or not

the proposed coding scheme satisfies this full rank condition. In fact, we have the

following stronger result.

Theorem 6 If Wk 6= W̃, then, ∆Wk is invertible. In addition, the coding gain

Gk = minWk 6=W̃

√
det(∆WH

k ∆Wk) is explicitly determined as follows: Gk = 16 for

k = 2, 4 and 8.

Proof : First, notice that the codeword matrix Wk can be represented in terms of Uk

and Vk by Wk = VkU
H
k = 2VkU

−1
k . Hence, we have ∆Wk = 2

(
VkU

−1
k − ṼkŨ

−1
k

)
.

By Theorem 5, ∆Wk = 0 if and only if Uk = Ũk and Vk = Ṽk. On the other hand,

since ∆Wk is an Alamouti matrix, we have ∆Wk 6= 0 if and only if ∆Wk is invertible.

Therefore, (Uk,Vk) 6= (Ũk, Ṽk) if and only if ∆Wk is invertible, which verifies that

our coding scheme enables full diversity. Furthermore, to examine the coding gain, we

note that det
(
∆Wk

)
= 4 det

(
U−1k

)
det
(
Vk− ṼkŨ

−1
k Uk

)
= 2 det

(
Vk− ṼkŨ

−1
k Uk

)
.

Now, in order to apply Theorem 5, let us consider the following three cases:

1. k = 2. In this case, by Theorem 5, we have

ŨH
2 U2 = 2

 a∗ 0

0 a

 ,

where a ∈ {1, j,−j}. Therefore, matrix V2−Ṽ2Ũ
−1
2 U2 can be further simplified
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into

V2 − Ṽ2Ũ
−1
2 U2 =

 v21 v22

−v∗22 v∗21

−
 ṽ21 ṽ22

−ṽ∗22 ṽ∗21


 a 0

0 a∗


=

 v21 − aṽ21 v22 − a∗ṽ22

−(v22 − a∗ṽ22)∗ (v21 − aṽ21)∗


Thus, we have det

(
∆Wk

)
= 2(|v21−aṽ21|2 + |v22−a∗ṽ22|2). If a = 1, i.e., U2 =

Ũ2, then, V2 6= Ṽ2 and thus, either v21 6= ṽ21 or v22 6= ṽ22. Since dmin(Y2) = 2
√

2

and v21, ṽ21, v22, ṽ22 ∈ Y2, in this situation, we have min det
(
∆Wk

)
= 16. If

a 6= 1, then, v21 − aṽ21 6= 0 and v22 − a∗ṽ22 6= 0, since X2 and Y2 form a UFCP.

We attain min det
(
∆Wk

)
≥ 2× (4 + 4) = 16. Hence, this shows G2 = 16.

2. k = 4. Following the above Case 1, we can arrive at the fact that det
(
∆W4

)
=

2(|v41− b∗ṽ41|2 + |v42− bṽ42|2). If b = 1, i.e., U4 = Ũ4, then, V4 6= Ṽ4 and thus,

either v41 6= ṽ41 or v42 6= ṽ42. Since dmin(Y4) = 4, dmin(Y2) = 2
√

2, v41, ṽ41 ∈ Y4,

and v42, ṽ42 ∈ Y2, we have |v41 − ṽ41|2 ≥ 16 for v41 6= ṽ41 and |v42 − ṽ42|2 ≥ 8

for v42 6= ṽ42, which leads to det
(
∆Wk

)
≥ 16 in this situation. If b = −1,

then, v41 + ṽ41 6= 0 and |v41 + ṽ41|2 ≥ 16, thus resulting in det
(
∆W4

)
≥ 32.

If b 6= ±1, then, |v41 − b∗ṽ41|2 ≥ 4 and |v42 − bṽ42|2 ≥ 4. Therefore, we have

min det
(
∆Wk

)
= 16 and G4 = 16.

3. k = 8. By Theorem 5, we obtain either ŨH
8 U8 = diag(c∗, c) with c ∈ X4 or

ŨH
8 U8 =

 0 d∗

−d 0
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where d ∈ X4. If ŨH
8 U8 = diag(c∗, c) with c ∈ X4, then, following the way

similar to the previous two cases, we can obtain det
(
∆W4

)
≥ 16. Otherwise,

we have

V2 − Ṽ2Ũ
−1
2 U2 =

 v21 v22

−v∗22 v∗21

−
 ṽ21 ṽ22

−ṽ∗22 ṽ∗21


 0 d∗

−d 0


=

 v81 + dṽ82 v82 − d∗ṽ81

−(v82 − d∗ṽ81)∗ (v81 − dṽ82)∗



and thus, det
(
∆W4

)
= 2(|v81 + dṽ82|2 + |v82 − d∗ṽ81|2). Notice that |v81 +

dṽ82|2 ≥ 16 for d = 1 and |v82 − d∗ṽ81|2 ≥ 16 for d = −1. Therefore, we

have det
(
∆W4

)
≥ 32 if d = ±1. If d = ±j, then, |v81 + dṽ82|2 ≥ 4 and

|v82 − d∗ṽ81|2) ≥ 4 and thus, we attain det
(
∆W4

)
≥ 16.

This completes the proof of Theorem 6. �

Two observations can be made on Theorem 6:

1. If all possible (wk1, wk2)
T form a setWk = (wk1, wk2)

T , then, Theorem 6 actually

proves that the map defined by wk1 and wk2 in (5.2) and (5.3) respectively, is a

one to one correspondence between Wk and Vk × Uk.

2. We can see a visual depiction of constellation W in Fig. 5.2 and 5.3. It can be

observed that despite the fact that the map determined by equations (5.2) and

(5.3) is one-to-one, it is possible that two pairs of (vk1, vk2, uk1, uk2) correspond

to the same either wk1 or wk2. In fact, in Fig. 5.2 (a) for constellation W21,

the numbers listed besides each ball (point) correspond to the balls (points) in
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Fig. 5.2 (b) for constellation W22 which it is a pair with and similarly in the

Fig. 5.3 diagrams. In addition, both constellations Wk1 and Wk2 have nice and

regularly geometrical shape, which suggests that it would be possible that there

exists a fast decoding algorithm for W .
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Figure 5.2: Constellation W21 and W22 for K = 3
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Figure 5.3: Constellation W21 and W22 for K = 4
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5.4 Simulations

In this section, we carry out computer simulations to compare the error performance of

the newly proposed amplify-forward relay network coding system using the Alamouti

matrix UFCP with those of other schemes found in current literature. The schemes

we would like to compare are described as follows:

a) The Alamouti matrix UFCP design for the cross QAM constellation that is pro-

posed in this chapter;

b) Network code b: The concatenated Alamouti codes using the scalar UFCP from

the QAM constellations presented in [92] ;

c) Network code c: The concatenated Alamouti codes using the scalar UFCP from

the PSK constellations presented in [91].

For a fair comparison in all coding schemes, we assume perfect channel state informa-

tion is available at the destination node (coherent communication) and only first and

second order statistics are known at the relay node. The optimal detector used for

estimation of the transmitted signals is the ML receiver which solves the optimization

problem

w̃ = arg min
w
||z− βH2H

T
1 w||2.

In Fig 5.4-5.8 all three schemes use the same one-way relay network as show in

Fig 5.1 where the relay node transmits two bits, which correspond to our case k = 4.

For Fig 5.9-5.12 the two schemes compared also use the relay network in Fig 5.1 and

allow the relay node to transmit three bits, which correspond to our case k = 8.
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In order to gain a comprehensive understanding of our code design, we plot the

source symbol error rate (constellation Vk), relay symbol error rate (constellation Uk)

and the combined codeword error rate (constellation Wk) individually against SNR.

It is observed in Fig 5.4-5.8 and in Fig 5.9-5.12 that our proposed code has the best

error performance for various transmission bits. It can also be noted that the error

performance gap also becomes larger between the proposed code and the network c)

coding scheme as the transmission bit rate, Rb, increases when the relay sends both

two and three bits. When the relay node transmits two bits, as the transmission bits

vary from one bits per channel use to three bits per channel use, we obtain a 2dB

increase in SNR at both the source and relay symbol error level at 10−4 and a gain of

3dB at the overall codeword error level of 10−4. For the case when the relay transmits

three bits, we obtain a minimum 3dB increase in SNR at both the source and relay

symbol error level at 10−4 and a minimum gain of 4dB at the overall codeword error

level of 10−4, as the transmission bits vary from one and a half bits per channel use

to three bits per channel use. All these computer simulations verify the analysis of

full diversity and coding gain in Theorem 6. It is worth mentioning that in the low

SNR regime the proposed coding scheme has a slightly worse error performance than

the other coding schemes in all the relay symbol error rate plots and the source error

plots when the relay node sends three bits. One possible explanation is the received

signal w in the proposed coding scheme is more complicated due to the strategic

combination of the source and relay information signals compared to the received

signals in network code b and c.
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(c) Overall codeword error for constellation Wk

Figure 5.4: Error performance comparison for Rb = 1
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(c) Overall codeword error for constellation Wk

Figure 5.5: Error performance comparison for Rb = 1.5
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(c) Overall codeword error for constellation Wk

Figure 5.6: Error performance comparison for Rb = 2
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(c) Overall codeword error for constellation Wk

Figure 5.7: Error performance comparison for Rb = 2.5
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(c) Overall codeword error for constellation Wk

Figure 5.8: Error performance comparison for Rb = 3
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(c) Overall codeword error for constellation Wk

Figure 5.9: Error performance comparison for Rb = 1.5
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(c) Overall codeword error for constellation Wk

Figure 5.10: Error performance comparison for Rb = 2
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(c) Overall codeword error for constellation Wk

Figure 5.11: Error performance comparison for Rb = 2.5
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Figure 5.12: Error performance comparison for Rb = 3

5.5 Discussions

In this chapter, we first developed the Alamouti matrix version of UFCP using the

energy-efficient cross QAM constellation, which assures that each Alamouti matrix in

the considered family is able to be uniquely factorized into a product of two Alamouti
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matrices. Then, we have considered its applications to the one-way relaying network

consisting of two end nodes with each having a single antenna and one relay node

equipped with two antennas. By fully taking advantage of this distributed channel

structure as well as the Alamouti coding scheme, strategically collaborating trans-

mission between the source and relay node, and carefully encoding the noisy signals

which the relay has received with the relay own signals to be transmitted, a new

amplify-forward network coding scheme has been designed, enabling the relay node

to transmit its own information while forwarding the source information which it has

received to the destination. In addition, such a design makes the equivalent channel

between the source and the destination be a product of the two Alamouti matrix

channels, and the codeword matrix to be the product of a pair of uniquely factorable

Alamouti matrix codewords, one formed by the source signals and the other by the

relay signals. It is the product of these two Alamouti matrix channels that provides

the possibility for the ML receiver to extract the maximum diversity gain function for

such a system and it is the uniqueness of the product of these two Alamouti matrix

codewords that enables the optimal diversity gain and the better coding gain for the

ML detector.

A drawback to this code design is that an exhaustive search is used to implement

the ML receiver, which is computationally very time consuming compared to the

symbol-symbol ML detection used in [91,92]. Future work can be focused on finding a

fast decoding algorithm ofW . In Chapter 3, the hexagonal constellations carved from

the Eisenstein integer domain are more energy-efficient than the QAM constellations

formed from the Gaussian integer domain. Will a hexagonal Alamouti matrix version

of UFCP yield better coding gain results than using the QAM constellation?
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Chapter 6

Conclusion and future work

In this thesis, three different approaches using uniquely factorable constellations have

been proposed in designing coding schemes for noncoherent MIMO systems and co-

herent relay systems. Based on intelligent constellation collaboration, the concepts of

UFC and UFCP discussed in Chapter 2, can be used to systematically design a full

diversity code with improved coding gains.

In Chapter 3, uniquely factorable hexagonal constellations were designed for a

noncoherent fast fading SIMO wireless communication system. Algorithms were de-

veloped to effectively and efficiently construct unitary hexagonal UFCs and UFCPs

of size 2n, where n = 2, · · · , 6. The coding gain was also maximized after finding an

optimal energy scale for the unitary uniquely factorable hexagonal constellations.

In Chapter 4, a noncoherent MISO wireless communication system was consid-

ered for the design of a UFCP-STBC. Based on a matrix similar to the Alamouti

matrix and the UFCP, a novel energy-efficient unitary STBC was developed by using

QR decomposition. An optimal energy scale for the unitary UFCP-STBC was also

designed to maximize the coding gain by appropriately and uniquely factorizing a
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pair of energy-efficient cross QAM constellations for a fixed transmission bit rate.

In the above two designs, it has been proven in each case that the UFC and UFCP

designs ensure the unique identification of channel coefficients and transmitted signals

in a blind noise-free case and also ensure full diversity in a Gaussian noisy case. Com-

prehensive computer simulations are performed to show that the proposed uniquely

factorable constellation designs have an improved error performance in comparison

to the current literature results.

Chapter 5 shows how to apply the concept of UFCP to the coherent relay net-

works. By expanding the idea of the scalar QAM UFCP to a matrix case, the Alam-

outi matrix version of UFCP was developed using the energy-efficient cross QAM

constellation. Each Alamouti matrix in a considered family is able to be uniquely

factorized into a product of two Alamouti matrices. With this, a new network coding

scheme with full diversity and good coding gain was devised for a coherent one-way

relaying network consisting of two end nodes each having a single antenna and one

relay node equipped with two antennas, where the relay node is able to transmit

its own information while forwarding the source information it has received to the

destination. This design makes the equivalent channel between the source and the

destination a product of the two Alamouti matrix channels, and the codeword matrix

to be the product of a pair of uniquely factorable Alamouti matrix codewords, one

formed by the source signals and the other by the relay signals.

As we have seen, the concept of the uniquely factorable constellations plays an

important role in the systematic design of space-time block codes for the noncoherent

MIMO system as well as for the coherent MIMO relay networks. However, some

significant issues still remain unsolved. In this thesis, only the SIMO, MISO and
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one-way relay systems were considered in the design of UFCs and UFCPs, which

resulted in small error rates, but low data rates. Is it possible to build a wireless

communication system using the concept of UFC and UFCP with both high data

rates and small error rates? Exploiting the spatial multiplexing techniques in MIMO

communications can lead to an increase in data rates. Thus, a promising research

area is to develop a general higher rate MIMO or relay system with better coding

gain using a matrix version of the UFCP.

Chapter 3 demonstrated an improved error performance of the scalar hexagonal

UFC and UFCP compared to the conventional QAM constellation. As previously

mentioned in Chapter 5, a natural question is how to generalize the scalar hexagonal

UFCP to a matrix hexagonal UFCP. In addition, our analysis was limited to low order

constellations. In 2000, Murphy proposed higher order asymmetric hexagonal constel-

lations for use in bandwidth-limited high-rate digital communications systems [79].

More recently, an algorithm was developed for optimizing the codeword assignment

to symbols of the hexagonal constellation and also outlined computationally efficient

hard and soft decoding procedures [114]. Therefore, a possible potential for the de-

sign of noncoherent STBC MIMO systems using hexagonal constellations would be

substantial.
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Appendix A

Design of uniquely factorable

hexagonal constellations for

noncoherent SIMO systems
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− j 3

√
3

2

 ,

 1

3
2

+ j
√
3
2

 ,

 1

3
2
− j

√
3
2

 ,

 1

−3
2

+ j
√
3
2

 ,

 1

−3
2
− j

√
3
2

 ,

 3
2

+ j
√
3
2

3 + j
√

3

 ,

 3
2

+ j
√
3
2

−3− j
√

3

 ,

 3
2

+ j
√
3
2

−2− j
√

3

 ,

3
2

+ j
√
3
2

5
2

+ j
√
3
2

}.

A.2 Hexagonal UFCPs designed by algorithm 3

Xopt =
{

1, e
j2π
3

}
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a) n = 2 :

Yopt(2) = {1,−1} .

b) n = 3 :

Yopt(3) =

{
1,−1,

3

2
+
j3
√

3

2
,−3

2
− j3

√
3

2

}
.

c) n = 4 :

Yopt(4) = Yopt(3)
⋃{

3

2
− j
√

3

2
,−3

2
+
j
√

3

2
,
9

2
− j3

√
3

2
,−9

2
+
j3
√

3

2

}
.

d) n = 5 :

Yopt(5) = Yopt(4)
⋃ {

1 + j
√

3,−1− j
√

3,−3 + j
√

3, 3− j
√

3
}

⋃ {
5

2
+
j5
√

3

2
,−5

2
− j5

√
3

2
, 4 + j4

√
3,−4− j4

√
3

}
.

d) n = 6 :

Yopt(6) = Yopt(5)
⋃ {

−1

2
+
j3
√

3

2
,
1

2
− j3

√
3

2
,
5

2
+
j
√

3

2
,−5

2
− j
√

3

2

}
⋃ {

1 + j2
√

3,−1− j2
√

3,
5

2
+
j3
√

3

2
,−5

2
− j3

√
3

2

}
⋃ {

2 + j2
√

3,−2− j2
√

3, 6− j2
√

3,−6 + j2
√

3
}

⋃ {
−3

2
+
j7
√

3

2
,
3

2
− j7

√
3

2
, 6 + j

√
3,−6− j

√
3

}
.
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A.3 Proof of theorem 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Student Version of MATLAB

Figure A.1: 4 symbol training-equivalent UFC

n = 2 :

The diagram of constellation U2 is plotted on the complex plane in Fig. A.1. Since

d
(

1, j
√
3

3
, β
)

= d
(
−1, j

√
3

3
, β
)

= d
(

1,− j
√
3

3
, β
)

= d
(
−1,− j

√
3

3
, β
)

and

d (1,−1, β) > d
(
j
√
3

3
,− j

√
3

3
, β
)

we can simplify our algorithm by noting that

d
(

1, j
√
3

3
, β
)
< d

(
j
√
3

3
,− j

√
3

3
, β
)

for any positive β. Therefore D(TU2(β)) = g(1, β) =

d
(

1, j
√
3

3
, β
)

=

√
4
3
β√

1+ 4
3
β2+ 1

3
β4

. Notice that D(TU2(β)) =

√
4
3√

β−2+ 1
3
β2+ 4

3

≤
√

4
3√

2
√

1
3
+ 4

3

=

6
3+3
√
3
, where the equality in the inequality is achieved when β−2 = 1

3
β2. Thus β̃ = 4

√
3

and D(TU2(β̃)) = 6
3+3
√
3
.
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Figure A.2: 8 symbol training-equivalent UFC

n = 3 :

The diagram of U3 is shown in Fig. A.2. There are three layers and all the symbols

in each layer contain equal energy. The outer layer contains four symbols and both

of the side and inner layers contain two symbols each. Using Lemma 2 from [71], the

overall minimum distance of the constellation is determined by

D(TU3(β)) = min
{
g (1, β) , g

(
j
√
3

3
, β
)
, g
(

3
4

+ j3
√
3

4
, β
)}

. Since g (1, β) > g
(
j
√
3

3
, β
)

and g (1, β) > g
(

3
4

+ j3
√
3

4
, β
)

, then D(TU3(β)) = min
{
g
(
j
√
3

3
, β
)
, g
(

3
4

+ j3
√
3

4
, β
)}

where g
(
j
√
3

3
, β
)

=

√
3
2
β√

1+ 9
4
β2
√

1+ 9
4
β2

and g
(

3
4

+ j3
√
3

4
, β
)

=

√
13
12
β√

1+ 1
3
β2
√

1+ 9
4
β2

. When β ≤√
56
81
, g
(
j
√
3

3
, β
)
≤ g

(
3
4

+ j3
√
3

4
, β
)

, but when β ≥
√

56
81
, g
(
j
√
3

3
, β
)
≥ g

(
3
4

+ j3
√
3

4
, β
)

.
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Thus

D(TU3(β)) =


g
(
j
√
3

3
, β
)

=

√
3
2
β√

1+ 9
4
β2
√

1+ 9
4
β2
, β >

√
56
81

g
(

3
4

+ j3
√
3

4
, β
)

=

√
13
12
β√

1+ 1
3
β2
√

1+ 9
4
β2
, β ≤

√
56
81
.

The maximum of D(TU3(β)) is obtained at the turning point β =
√

56
81

. Therefore

β̃ =
√

56
81

, D(TU3(β̃)) = 3
√
14

23
.
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Figure A.3: 16 symbol training-equivalent UFC

n = 4 :

The constellation diagram of U4 is plotted in Fig. A.3. Similar to the analysis in

n = 3, there are six layers and all the symbols in each layer contain equal energy.
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Overall the distance of the constellation is determined by

D(TU4(β)) = min

 g (1, β) , g
(
j
√
3

3
, β
)
, g
(

3
4

+ j3
√
3

4
, β
)
,

g
(

1
2

+ j
√
3

6
, β
)
, g (3, β) , g

(
j2
√

3, β
)
 .

Notice that g (1, β) = g
(

1
2

+ j
√
3

6
, β
)

, g
(

3
4

+ j3
√
3

4
, β
)

= g
(
j2
√

3, β
)

and{
g (3, β) , g

(
j
√
3

3

)}
>
{
g (1, β) , g

(
3
4

+ j3
√
3

4
, β
)
, g
(

1
2

+ j
√
3

6
, β
)
, g
(
j2
√

3, β
)}

.

ThereforeD(TU4(β)) = min
{
g (1, β) , g

(
3
4

+ j3
√
3

4
, β
)}

where g (1, β) =

√
1
3
β√

1+β2
√

1+ 1
3
β2

and g
(

3
4

+ j3
√
3

4
, β
)

=

√
21
4
β√

1+12β2
√

1+ 9
4
β2

. If β ≤
√

27+
√
21261

174
, g (1, β) ≤ g

(
3
4

+ j3
√
3

4
, β
)

,

but when β ≥
√

27+
√
21261

174
, g (1, β) ≥ g

(
3
4

+ j3
√
3

4
, β
)

. The maximum of D(TU4(β)) is

obtained at the turning point β =
√

27+
√
21261

174
. Thus

D(TU4(β)) =


g (1, β) =

√
1
3
β√

1+β2
√

1+ 1
3
β2
, β ≤

√
27+
√
21261

174

g
(

3
4

+ j3
√
3

4
, β
)

=

√
21
4
β√

1+12β2
√

1+ 9
4
β2
, β >

√
27+
√
21261

174
.

Therefore β̃ =
√

27+
√
21261

174
, D(TU4(β̃)) = 1√

4
√
β̃+β̃+3

.
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Figure A.4: 32 symbol training-equivalent UFC

n = 5 :

The diagram of U5 is shown in Fig. A.4. Following a similar analysis to n = 3 and

n = 4 the distance of the constellation is determined by

D(TU5(β)) = min


g (1, β) , g

(
j
√
3

3
, β
)
, g
(

3
4

+ j3
√
3

4
, β
)
, g
(

1
2

+ j
√
3

6
, β
)
,

g (3, β) , g
(
j2
√

3, β
)
, g
(

1 + j
√
3

3
, β
)
, g
(

1
6

+ j
√
3

6

)
,

g
(

1
3

+ j
√
3

3

)
, g
(
1
3

)
, g
(
j2
√
3

3

)
 .

Comparing any two of the previous functions results in the maximum of D(TU5(β))
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obtained at the turning point β =
√

3
2
. Thus

D(TU5(β)) =


g
(

1
2

+ j
√
3

6
, β
)

=
1
3
β√

1+ 1
3
β2
√

1+ 4
9
β2
, β ≤

√
3
2

g
(

3
4

+ j3
√
3

4
, β
)

=

√
7
12
β√

1+ 9
4
β2
√

1+ 4
3
β2
, β >

√
3
2
.

Therefore β̃ =
√

3
2
, D(TU5(β̃)) =

√
3

3
√
5
.
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Figure A.5: 64 symbol training-equivalent UFC
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n = 6 :

The diagram of U6 is shown in Fig. A.5. The minimum distance of the constellation

is determined by

D(TU6(β)) = min



g (1, β) , g
(
j
√
3

3
, β
)
, g
(

3
4

+ j3
√
3

4
, β
)
, g
(

1
2

+ j
√
3

6
, β
)
,

g (3, β) , g
(
j2
√

3, β
)
, g
(

1 + j
√
3

3
, β
)
, g
(

1
6

+ j
√
3

6
, β
)
,

g
(

1
3

+ j
√
3

3
, β
)
, g
(
1
3
, β
)
, g
(
j2
√
3

3
, β
)
, g
(
2 + j

√
3, β
)
,

g
(

1
2

+ j3
√
3

2
, β
)
, g
(
j
√

3, β
)
, g
(

3
2

+ j
√
3

6
, β
)
, g
(

2
3

+ j
√
3

3
, β
)
,

g
(

5
6

+ j
√
3

6
, β
)
, g
(

1
6

+ j
√
3

2
, β
)
, g
(

3
2

+ j
√
3

6
, β
)
, g (2, β)


.

Comparing any two of the above functions results in the maximum of D(TU6(β))

obtained at the turning point β = 4

√
9
28

. Thus

D(TU6(β)) =


g
(

1 + j
√
3

3
, β
)

=
1
3
β√

1+ 4
3
β2
√

1+ 7
9
β2
, β ≤ 4

√
9
28

g (2, β) =

√
1
3
β√

1+4β2
√

1+ 7
3
β2
, β > 4

√
9
28
.

Therefore β̃ = 1√
4
√
28+19

, D(TU6(β̃)) = 4

√
9
28

.

This completes the proof of Theorem 1. �

A.4 Proof of theorem 2

In Fig. A.6- A.10 the blue circles are Yopt(n) and the red circles are Yopt(n)/ exp( j2π
3

),

ie., the rotated version of Yopt(n). The blue and red circles together represent Zn.
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Figure A.6: 4 symbol training-equivalent UFCP

n = 2 :

The diagram of constellation Z2 is plotted on the complex plane in Fig. A.6. Since

d (1,−1, α) = d
(

1
2

+ j
√
3

2
,−1

2
− j

√
3

2
, α
)

, d
(

1,−1
2
− j

√
3

2
, α
)

= d
(
−1, 1

2
+ j
√
3

2
, α
)

and

d
(

1, 1
2

+ j
√
3

2
, α
)

= d
(
−1,−1

2
− j

√
3

2
, α
)

we can simplify our algorithm by noting

that d
(

1, 1
2

+ j
√
3

2
, α
)
< d (1,−1, α) and d

(
1, 1

2
+ j
√
3

2
, α
)
< d

(
1,−1

2
− j

√
3

2
, α
)

for

any positive α. Therefore D(TZ2(α)) = d
(

1, 1
2

+ j
√
3

2
, α
)

= α
1+α2 . Notice that

D(TZ2(α)) = 1√
α−1+α1 ≤ 1

2
, where equality in the inequality is achieved when α−1 = α.

Thus α̃ = 1 and D(TZ2(α̃)) = 1
2
.
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Figure A.7: 8 symbol training-equivalent UFCP

n = 3 :

The diagram of Z3 is shown in Fig. A.7. There are two layers and each layer contains

four symbols with equal energy in each symbol. Using Lemma 2 from [71], the overall

minimum distance of the constellation is determined by

D(TZ3(α)) = min
{
g (1, α) , g

(
1
2

+ j
√
3

2
, α
)
, g
(

3
2

+ j3
√
3

2
, α
)}

.

When α ≤ 1√
3
, g (1, α) ≤ g

(
3
2

+ j3
√
3

2
, α
)

, but if α ≥ 1√
3
, g (1, α) ≥ g

(
3
2

+ j3
√
3

2
, α
)

.

Thus

D(TZ3(α)) =

 g (1, α) = α
1+α2 , α ≤ 1√

3

g
(

3
2

+ j3
√
3

2
, α
)

= 3α
1+9α2 , α > 1√

3
.

The maximum of D(TZ3(α)) is obtained at the turning point α = 1√
3
. Therefore

α̃ = 1√
3
, D(TZ3(α̃)) = 3

4
√
3
.
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Figure A.8: 16 symbol training-equivalent UFCP

n = 4 :

The diagram of Z4 is plotted in Fig. A.8. Using a similar strategy to n = 3, the

minimum distance of the constellation is determined by D(TZ4(α)) =

min
{
g (1, α) , g

(
1
2

+ j
√
3

2
, α
)
, g
(

3
2

+ j3
√
3

2
, α
)
, g
(

9
2

+ j3
√
3

2
, α
)
, g
(

3
2

+ j
√
3

2
, α
)}

.

Comparing any two of the above functions results in the maximum of D(TZ4(α))

obtained at the turning point α = 4

√
1
27

. Thus

D(TZ4(α)) =


g (1, α) = α√

(1+α2)(1+3α2)
, α ≤ 4

√
1
27

g
(

3
2

+ j3
√
3

2
, α
)

= 3α√
(1+9α2)(1+27α2)

, α > 4

√
1
27
.
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Therefore α̃ = 4

√
1
27

, D(TZ4(α̃)) =
4
√

1
27√

10
9
+ 4√

27

.
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Figure A.9: 32 symbol training-equivalent UFCP

n = 5 :

The diagram of constellation Z5 is shown in Fig. A.9. Similar to the analysis tech-

niques in n = 3 and n = 4, the minimum distance of the constellation is determined

by

D(TZ5(α)) = min


g (1, α) , g

(
1
2

+ j
√
3

2
, α
)
, g
(

3
2

+ j3
√
3

2
, α
)
,

g
(

9
2

+ j3
√
3

2
, α
)
, g
(

3
2

+ j
√
3

2
, α
)
g
(

5
2

+ j5
√
3

2
, α
)
,

g
(
1 + j

√
3, α
)
, g
(
4 + j4

√
3, α
)
, g
(
3 + j

√
3, α
)
.

 .
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Comparing any two of the above functions results in the maximum of D(TZ5(α))

obtained at α = 4

√
1

108
. Thus

D(TZ5(α)) =


g
(
1 + j

√
3, α
)

= α√
(1+4α2)(1+9α2)

, α ≤ 4

√
1

108

g
(

9
2
− j3

√
3

2
, α
)

=
√
3α√

(1+12α2)(1+27α2)
, α > 4

√
1

108
.

Therefore α̃ = 4

√
1

108
, D(TZ5(α̃)) =

4
√

1
108√

4
3
+ 13√

108

.
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Figure A.10: 64 symbol training-equivalent UFCP
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n = 6 :

The diagram of Z6 is given in Fig. A.10. The minimum distance of the constellation

is determined by

D(TZ6(α)) = min



g (1, α) , g
(
1
2 + j

√
3

2 , α
)
, g
(
3
2 + j3

√
3

2 , α
)
, g
(
9
2 + j3

√
3

2 , α
)
,

g
(
3
2 + j

√
3

2 , α
)
, g
(
5
2 + j5

√
3

2 , α
)
, g
(
1 + j

√
3, α

)
, g
(
4 + j4

√
3, α

)
,

g
(
3 + j

√
3, α

)
, g
(
2 + j

√
3, α

)
, g
(
6 + j

√
3, α

)
, g
(
1
2 + j3

√
3

2 , α
)
,

g
(
5
2 + j

√
3

2 , α
)
, g
(
5
2 + j3

√
3

2 , α
)
, g
(
3
2 + j7

√
3

2 , α
)
,

g
(
2 + j2

√
3, α

)
, g
(
1 + j2

√
3, α

)
, g
(
6 + j2

√
3, α

)


.

The minimum distance of Z6 is achieved among all the above functions whenD(TZ6(α)) =

g(2 + j2
√

3, α) = d
(

2 + j2
√

3, 5
2

+ j5
√
3

2
, α
)

= α√
1+41α2+400α4 for any positive α. No-

tice that D(TZ6(α)) = 1√
β−2+400β2+41

≤ 1√
2
√
400+41

= 1
9
. Therefore α̃ =

√
1
20

,

D(TZ6(α̃)) = 1
9
.

This completes the proof of Theorem 2. �
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Appendix B

Energy-efficient full diversity

unitary space-time block code

designs using QR decomposition

B.1 Proof of lemma 3

We can prove Lemma 3 by considering three different situations of p for each of the

two inequalities.

(1) 2E11 > E1.

(a) p is even. In this case from Lemma 2, E1 = 2(2
p
2 − 1)2 and E11 = (2

p
2 −

1)2 + (2
p
2 − 3)2.

2E11−E1 = 2(2
p
2 − 3)2 > 0. Therefore 2E11 > E1 holds for all cases when

p is even.

(b) p = 3. Using Lemma 2, E1 = 10 and E11 = 2.
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2E11 − E1 = −6 < 0. Hence 2E11 > E1 doesn’t hold when p = 3.

(c) p is odd and greater than 3. In this case from Lemma 2,

2E11 = 2p−1 + 2p−1 − 3× 2× 2
p+1
2 + 18 and E1 = 2p−1 − 2

p+1
2 + 1.

Comparing the p terms only

2p−1 − 3× 2× 2
p+1
2 > −2

p+1
2 ,

2
p−1
2 (2

p−1
2 − 3× 2× 2) > −2× 2

p−1
2 .

First we must find the lowest value of p for which inequality (B.1) will

hold.

2
p−1
2 > 10. (B.1)

When p = 9, 2
9−1
2 = 24 > 10, so inequality (B.1) holds when p is odd and

greater than 7. Now we will check if the original inequality 2E11 > E1 still

holds for p = 5 and p = 7.

For p = 5:

2(2
5−1
2 − 3)2 + (3× 2

5−3
2 − 1)2 > (2

5−1
2 − 1)2,

43 > 1.

For p = 7:

2(2
7−1
2 − 3)2 + (3× 2

7−3
2 − 1)2 > (2

7−1
2 − 1)2,

134 > 25.
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As a result 2E11 > E1 is true for all cases when p is odd and greater than

3.

(2) 2E11
2 > E2

1 .

(a) p is even. Using Lemma 2, 2E11
2 = 2(2

p
2 − 1)4 + 4(2

p
2 − 1)2(2

p
2 − 3)2 +

2(2
p
2 − 3)4 and E1

2 = 4(2
p
2 − 1)4. Since 2(2

p
2 − 3)4 > 0 we can simplify the

inequality to

4(2
p
2 − 1)2(2

p
2 − 3)2 > 2(2

p
2 − 1)4

2(2
p
2 − 3)2 > (2

p
2 − 1)2

2(2p − 3× 2× 2
p
2 + 9) > 2p − 2× 2

p
2 + 1

We must find the lowest value of p for which inequality (B.2) will hold.

2p − 10× 2
p
2 + 17 > 0 (B.2)

If p = 6, inequality (B.2) holds, so we have proven 2E11
2 > E1

2 holds for

all even terms when p is even and greater than 4. Now we will check if the

original inequality, 2E11
2 > E1

2, still holds when p = 2 and p = 4 .

For p = 2:

4(2
2
2 − 1)2(2

2
2 − 3)2 + 2(2

2
2 − 3)4 > 2(2

2
2 − 1)4,

6 > 0.
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For p = 4:

4(2
4
2 − 1)2(2

4
2 − 3)2 + 2(2

4
2 − 3)4 > 2(2

4
2 − 1)4,

18 < 81.

Hence 2E11
2 > E2

1 is proven to be true for all cases when p is even and

p 6= 4.

(b) p = 3. Using Lemma 2, E1 = 10 and E11 = 2.

2E11
2 − E1

2 = −92 < 0. Therefore 2E11
2 > E2

1 doesn’t hold when p = 3.

(c) p is odd and greater than 3. In this case from Lemma 2,

E1
2 = (2

p−1
2 − 1)4 + 2(3× 2

p−3
2 − 1)2(2

p−1
2 − 1)2 + (3× 2

p−3
2 − 1)4,

2E11
2 = 2(2

p−3
2 − 1)4 + 2× 2(3× 2

p−3
2 − 1)2(2

p−1
2 − 3)2 + 2(3× 2

p−3
2 − 1)4.

2(2
p−3
2 − 1)4 + 2× 2(3× 2

p−3
2 − 1)2(2

p−1
2 − 3)2 + (3× 2

p−3
2 − 1)4

> (2
p−1
2 − 1)4 + 2(3× 2

p−3
2 − 1)2(2

p−1
2 − 1)2

We can separate the above inequality into two smaller equalities. Firstly,

2(3 × 2
p−3
2 − 1)2

(
2(2

p−1
2 − 3)2 − (2

p−1
2 − 1)2

)
> 0 is proven to hold using

the previous property of 2E11 > E1, for the case when p is odd and greater

than 3. Now all we need to prove is

2(2
p−3
2 − 1)4 + (3× 2

p−3
2 − 1)4 > (2

p−1
2 − 1)4. (B.3)
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Expanding and rearranging terms in (B.3)

2
(
2

p−3
2 − 1

)4
= (2× 2p−1 × 2p−1)− (12× 2

p+1
2 × 2p−1) + 54× 2p−1 − (72× 2

p+1
2 ) + 162,(

3× 2
p−3
2 − 1

)4
= (81× 2p−3 × 2p−3)− (108× 2

p−3
2 × 2p−3) + 54× 2p−3 − (12× 2

p−3
2 ) + 1,(

2
p−1
2 − 1

)4
= (2p−1 × 2p−1)− (4× 2

p−1
2 × 2p−1) + 2× 2p−1 + 1.

Inequality (B.3) now becomes

2p−1 × 2p−1 + 52× 2p−1 + (4× 2
p−1
2 × 2p−1)

+(81× 2p−3 × 2p−3) + 54× 2p−3 + 162

> 2
p+1
2 (12× 2p−1 + 72) + 2

p−3
2 (108× 2p−3 + 12). (B.4)

The constant term 162 is temporarily removed from the left side of in-

equality (B.4). For the remaining p terms we can pull out the common

factor of 2p−1 so inequality (B.4) becomes

2p−1 + 52 + 4× 2
p−1
2 + 81× 2p−3 × 2−2 + 54× 2−2

> 12× 2
p+1
2 + 72× 2

−p+3
2 + 2

−p−1
2 (108× 2p−3 + 12).

We must now find the lowest value of p for which inequality (B.5) will

hold.

2p−1 + 4× 2
p−1
2 +

81

4
× 2p−3 × 2−2 +

131

2
>

12× 2
p+1
2 + 72× 2

−p+3
2 + 108× 2

p−7
2 + 12× 2

−p−1
2 . (B.5)

If p = 7, (B.5) becomes 485.5 + 162 > 241.75 so we have proven the
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inequality holds when p is odd and greater than 5. Now when p = 5

the original inequality 2E11
2 > E1

2 holds as 727 + 162 > 212. Hence

2E11
2 > E2

1 is true for all cases when p is odd and greater than 3.

This completes the proof of Lemma 3. �
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