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NOMENCLATURE

a bubble dimension (Appendix F)
2182023
coefficients in finite-difference equation (Appendix A)
a,,a.,a
4’7576
A lattice spacing in z-direction (Appendix J)
Ab surface area of bubble, cm2

Al’AZ’AS’A4 velocity profile coefficients (Equations 3.6, 3.7)

A, . concentration of material A at mesh point location
(i,j), dimensionless

b bubble dimension (Appendix F)
bl’b2’b3’b4 coefficients in finite-difference equation (Appendix A)
Bv Jattice spacing in O-direction (Appendix J)

1’72°73

B,,B,,B ,B4 velocity profile coefficients (Equations 3.6, 3.7)

Bi . concentration of material B at mesh point location
1sJ (i,j), dimensionless

c bubble dimension (Appendix F)
c concentration of diffusing material (Equation 1.1), moles/liter
¢’ concentration at gas-liquid interface (Equation 1.1), moles/liter
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concentration
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concentration

concentration

concentration
moles/liter

concentration

of
or
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of
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at

material being transferred from sphere,
moles/liter

material A at interface, moles/liter

reactant in liquid phase, dimensionless

reactant in bulk of liquid phase,

mesh point location (i,j)

concentration of diffusing material at some distance from
gas-liquid interface, moles/liter

equivalent diameter of gas bubble, cm

diffusivity of material A in liquid phase, cmz/sec.

diffusivity of material B in liquid phase, cmz/sec.

diffusivity of carbon dioxide in water, cmz/sec.

differential operator (Appendix J)

quantity in finite-difference equation (Appendix J)

acceleration due to gravity

quantity in finite-difference equation (Appendix J)

I
\

pgdSAp/u2 , Grashof number
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o Mo

Cco

Nu

Pe

Pe

Pr

constant greater than unity (Equation 3.16)

klRZ/DA, dimensionless rate constant for first order reaction
szzcg/DA, dimensionless rate constant for second order reaction
RZRZCZ/DB’ dimensionless rate constant for second order reaction
liquid phase mass transfer coefficient, cm/sec.

rate constant for first order reaction, sec..1

rate constant for second order reaction, liter/mole-sec.

coefficients in finite-difference equation (Equation 3.23)

2/k /Sh* for first order reaction,

2/?A/§E4 for second order reaction

-absorption rate of carbon dioxide, gm.-moles/sec.

Nusselt number

2RU/D,, Peclet number, material A
2RU/DB, Peclet number, material B

Prandtl number
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S¢,Sc

W,WW

radial distance, dimensionless or cm.
radius of sphere, cm.

2RUp/u, Reynolds number

u/pD,, Schmidt number of material being transferred from

the sphere
u/pDB, Schmidt number of liquid phase reactant

2RkL/D Sherwood number, local or average value

A,

Sherwood number for chemical reaction, averaged over
sphere surface

Sherwood number for physical mass transfer, averaged
over sphere surface

time (Equation 1.1)

main stream or centerline velocity, cm/sec.

radial velocity component, dimensionless or cm/sec,

angular velocity component, dimensionless or cm/sec.
relaxation factors (Appendix J)
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Ar

o(c)

penetration depth (Equation 1.1)
viscosity ratio, disperse to continuous phase

mean values (Appendix I)
dummy integration variable (Appendix F)
radial distance variable (Appendix J)

angular increment, radians

size of first radial step, dimensionless
vorticity (Appendix J)

angle, radians

viscosity, poise

u/p,; kinematic viscosity

3.1416 radians

density, gm./cc

Sh/Sh*, enhancement factor

limiting enhancement factor (Equation 3.46)

source term (Equation 1.1)
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INTRODUCTION

1.1  General

Operations involving mass transfer from gas bubbies, liquid
drops or solid spheres have been of considerable interest for some
time, Of particular importance industrially are processes which involve
a chemical reaction between an absorbed gas and a reactant in the liquid
phase. Such industrial applications include chlorinations, oxidations
and removal of products‘such as hydrogen-sulphide and carbon-dioxide
from gas streams. This work was initiated by an examination of the
chlorohydrin process for the manufacture of ethylene glycol. This
process involves the reaction of ethylene bubbles in aquecous chlorine
solutions (A2). Of particular interest was the investigation of the
effect on the gas absorption rate of a chemical reaction between the
absorbed gas and a liquid phase reactant. Since the concentration
of the gas molecules in the liquid will be deécreased duc to the
reaction,iit would be expected that the concentration gradients near
the bubble surface would be increased. This results in increased
mass transfer rates ("enchancement'" effect) over the rate which would
be expected for physieal mass transfer. The hydrodynamic effect was
also of interest since an increase in liquid flow rate should enable
the removal of absorbed gas from near the surface more quickly and
cause an additional increasc in absorption rates.

Previous work in this area of mass or heat transfer from

spheres has been confined to studies of physical transfer alone.



Investigations which have involved reacting systems have been confined
to geometries other than the spherical, mainly in order to precvent
the accompanying theoretical analyses from becoming too complex.

The study of transfer, where the resistance in the dispersed
phase is significant, {nfo single spheres involves fundamental
differences in both the theoretical and experimental approach to the
problem. No attempt will be made to review the literature in this
area, For surveys of this field the interested reader is referred to
publicationsby Harriot (H6) and Wellek (W3).

1.2  Flow Around Spheres

Any theoretical study of forced convection transfer from
spheres would be simplified appreciablylif accurate descriptions of
the flow field were available from previous studies.

The Stokes (S9) velocity profiles provide a description of
the hydroynamics for flow around solid spheres at Re <1. The
Hadamard-Rybczynski (Hl, R8) velocity profiles apply for flow around
fluid spheres which may have internal circulation due to the
transmission of viscous forces across thg interface. These also
apply only for Re <l. The "potential flow" solutions of the Navier-
Stokes equation, obtained after assuming irrotational fluid behaviour,
provide a reasonable description of the flow around circulating gas
bubbles at high Reynolds numbers, say Re 2200. This solution is an
exact one of the complete Navier-Stokes equation. ' Fortunately it
satisfies the boundary conditions which closely approximate those for

a fully circulating sphere.



The solution of the Navier-Stokes equation by analytical
techniques for other flow situations is not possiblc at present, duc
to the extreme non-lincarity of the equation. Approximate solutions,
using the '"boundary layer'" approach, have been obtained by several
workers. This technique involves an order of magnitude analysis on
the momentum and continuity equations, assuming that inertial and
viscous effects are concentrated within a thin boundary layer near the
surface. An example of this approach, as applied to flow around solid
spheres, is contained in the work of Frossling (FS5). Unfortunately
any boundary layer technique does not allow for the description of
the flow beyond the point at which flow separation occurs. The vortex
region which forms beyond the ''separation point" begins to appear near
Reynolds number of 20 (T1).

Alternative methods involving error-distribution techniques
such as the Galerkin method (C7) have been used to obtain approximate
solutions to the Navier-Stokes equation. The method involves the

assumption of trial stream functions. These are made to satisfy

approximately the Navier-Stokes equation using an orthogonality principle

and to satisfy the boundary conditions exactly. Initial work in this
area was carried out by Kawaguti (K1) for solid spheres. This was
extended by Hamielec and co-workers (H2, H3) to higher Reynolds numbers
and flow around circulating drops and bubbles as well as solid spheres.
Solutions of this nature are available in convenient polynomial form.
They are a significant improvement on boundary layer solutions in that

they allow for a complete description of the flow field, including



the vortex region. Solutions have been obtained covering a wide
range of Reynolds numbers. However, in the solid sphere casc these
are applicable only up to Reynolds numbers of about 500, since the
wake becomes unstable (T1) at higher values. |

Recently more accurate solutions of the Navier-Stokes
equation have been obtained using numerical techniques. Jenson (J2),
employing a "relaxation"method,has obtained solutions for flow around
solid spheres for Reynolds numbers up to 40. This work has been
extended by Hamielec and co-workers (H4, H5) to higher Reynolds
numbers and includes flow around circulating gas bubbles as well as
solid spheres. An outline of this work is given in Appendix J. The
study by Hamielec has included an investigation of the effect on the
velocity profiles of a non-zero surface flux (H5). These finite-
difference solutions indicate the Kawaguti-type velocity profiles
are accurate up to the separation point, but are less satisfactory
in the vortex region, especially at Re >200.

Since velecity profiles are.available which adequately
describe the flow field at Re <500, it would seem reasonable to confine
any theoretical study of transfer from spheres to this region, at
least initially. A study at higher Reynolds numbers would necessarily
consider the transient behaviour of the wake and the effect of main
stream turbulence. In this study the complex problem of turbulence
effects will not be considered theoretically. Any experimental study
will be carried out under laminar conditions. A review of turbulence

effects has been given by Torobin and Gauvin (T1).



1,3 Experimental Studies of Heat and Mass Transfer from Spheres.

Heat or mass transfer from single spheres has been the
subject of many investigations. Recent publications by Rowe et al
(R4) and by Ross (R3) contain detailed reviews of previous studies.
Some of the more important ones which contain a substantial portion
of their results in the region Re <1000 will be discussed here,
Correlations obtained by the various workers are listed in Tab;e 1.1,
1.3.1 Mass Transfer

One of the earliest mass transfer studies was carried out by
Frossling (F4) who investigated transfer rates from spheres of
naphthalene, aniline, water and nitrobenzene into an air stream. The
work has been criticized (R4) because diffusivities were not measured
but were calculated from the observed mass transfer rates at zero air
velocity. Use was then made of the theorctical relationship that
the Sherwood number is 2 under these conditions. Ross (R3), however,
states that, for the sphere sizes used in Frossling's study, natural
convection effects should have been negligible. Thus the use of the
theoretical relationship was justified.

Akéel'rud (A3) measured transfer rates from spheres of sodium
chloride and potassium nitrate into water over the range 200 <Re <4000.

Garner and co-workers {G4, G5, G6) as well as Linton and
Sutherland (L7) have investigated forced convection transfer from
benzoic acid spheres into water. There is a consideréble discrepancy
in the results reported by the two groups. In general it may be said

that the results of Garner and co-workers are higher than the majority



of other workers in this field (see Table 1.1). Linton and Sutherland
(L7) havé noted that the screens used to obtain a uniform velocity
profile in (G4) and (GS) were placed too close to the test sphere.
They suggest that gross turbulence may have resulted causing abnormally
high mass transfer rates. In the study by Garner and Keey (G6), a
parabolic velocity profile was used. The results were correlated
using tﬁe average rather than the centerline veiocity. As stated by
Keey and Glen (K2), "It is thus tempting to suggest a factor of maximum
value vZ arises between these workers and those who... set out to
maintain a parabolic velocity distribution'. If the experimental set-up
were such that the sphere diameter was only a small percentage of
the pipe diameter (it was <15% of the pipe diameter in (G6)) then
the centerline velocity, rather than the average velocity, of the
parabolic velocity profile would be a more realistic quantity to use
for correlation purposes. In fact, if the centerline velocity had
been used the results of Garner and Keey (G6) would be in reasonable
agreement with the results of Linton and Sutherland (L7). Incidentally,
in the latter study a flat velocity profile was obtained in the test.
sphere region using a specially designed inlet section. Thus there
was no question regarding the choice of velocity to be employed for
correlation purposes.

Studies of mass transfer from stationary and falling liquid
drops at Re <20 have been carried out by Ward et al (W1). Appreciable
natural convection effects were noted as might be eﬁpected in this

low Reynolds number region. Griffith (G9) carried out a study of



TABLE 1.1 SUMMARY OF EXPERIMENTAL CORRELATIONS

Reynolds Sphere
Author ref, System : Number Diameter (cm.) Correlation
. ‘g b 1/3
Frossling R4 napthalene, aniline, water 2 - 1300 0.01 - 0.20 Sh = 2 + 0.552 Re"Sc
1
Aksel'rud A3 sodium chloride, potassium 200 - 4000 Sh = 0.82 ReZscl/>
nitrate into water '
1
Garner and G4 benzoic acid into water 20 - 1000 1.3 - 1.9 Sh = 0.94 Re/EScl/3
co-workers " G5
G6
R . . . k. 1/3
Linton and L7 benzoic acid into water 500 - 8000 1.0 Sh = 2 + 0.65 Re “S¢c
Sutherland
1
Steinberger 57 benzoic acid into water 27 - 16,900 1.3 - 2.5 Sh =2+ 1,00 Rezscl/3
and Treybal
1 z
Rowe et al R4 benzoic¢ acid into water 226 - 1150 1.3 - 3.8 Sh =24+ 0.73 ReQScl/q
1
napthalene into air 96 - 1050 1.6 - 3.8 Sh =2 + 0.068 Re/ZScl/3
Griffith G9 organic liquid drops into ' 5. 1/3
water; gas bubbles into Sh = 2 + 0.63 Re“Sc
water
‘ L
Ranz and R1 water and benzene into air 2 - 200 0.1 Sh = 2 + 0.60 Re‘Scl/3
Marshall
. . 0.15 . 1/3
Kramers K3 heat to air, water, oil 0.4 - 2000 0.7 - 1.3 Nu=24+ 1,3 Pr +0.66 Re “Sc
. , %..1/3
Yuge Y3 heat to air 10 - 1800 0.1 - 6,0 Nu =2+ 0.49 Re“Pr
1
Tsubouchi T3 heat to air, oil 1 - 2400 0.06 - 0.24 Nu= 2+ 0.57 Rezprl/3
& Masuda : : u
. %, 1/3 '
Rowe et al R4 heat to water 40 - 1000 1.3 - 3.8 Nu =2+ 0.79 Re“Pr

: L 1/3
heat to air 65 - 1750 1.3 - 3.8 Nu = 2 + 0.69 Re™Pr /



transfer from drops of ethyl acetate, iso-butanol and cyclohexanol,
as well as from gas bubbles, including oxygen, nitrogen, and carbon
dioxide, into water at Re <150. The effect of the presence of
surfactants on the mass transfer rate was alsc included in Criffith's
work. As sufficient surfactant was usually added to prevent internal
circulation, the liquid drop or gas bubble then behaved as a rigid
sphere.

The work of Steinberger and Treybal (S7) has been criticized
(R3) since‘their study was undoubtédly influenced by a "blockage
effect' due to sphere-to-tube diameter ratio being as high as 0.5,
Richardson, among others, has noted (V2) that a large blockage causes
an increase in mass transfer in the region beyond the separation point,
The choice of suitable correlation velocities, under high blockage
conditions, is also rendered more difficult (G6).

A recent study by Rowe et al (R4) has included results for
mass transfer from benzoic acid spheres into water, and from
naphthalene spheres into air over the range 30< Re <1750. At the
same time an analogous heat transfer study was carried out using both
water and air streams. Their results are slightly higher than those
of other workers. Ross (R3) has suggested that, at least for the
results in air, turbulence may have been a factor since wind tunnel
Reynolds numbers used were as high as 13,000. This does not offer
a complete explanation for the results of Rowe et al as their values
for transfer to water, obtained under laminar conditions, were also

high.
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1.3.2. Heat Transfer

Extensive reviews of the available literature on heat transfer
from spheres have been written by Rowe et al (R4) and by Ross (R3).
These reviewers have noted that the accuracy of experimental
correlations is not sufficient to draw definite conclusiﬁns regarding
the analogy of heat and mass transfer, but that the results 'tend" to
confirm thé analogy.

The work of Kramers (K3) considers heat transfer from metal
spheres to air, water and oil. His results have been questioned (R4)
because of the large blockage effect, the tube diameter being only
2.7 times the sphere diameter. Further, an additional term was
required in his correlation (see Table 1.1) in order to bring all the
data for oil, water, and air into line. Rowe et al (R4) have
suggested that the results may have been affected by the method of
heating the sphere. An induction technique was used which may have
caused disturbances in the oil flow field. In addition, these
workers noted that natural convection effects may have been appreciable
for part of the study as the properties of the oil employed were very
temperature dependent,

Experiments concerned with heat transfer from spheres into
alr streams have been carried out by Yuge and co-workers (Y3) and
Tsubouchi and Masuda (TS); In the latter study thermistor beads were
used as the test spheres and both air and oils of various viscosities
were used as the transfer medium. In the opinion of the authﬁr the

correlations of these workers are among the most reliable in the



literature.

The study of Ranz and Marshall (R1), dealing with the
evaporation of liquid drops into air, involved both heat and mass
transfer. The investigation was carried out over the rénge
2< Re <200. This work is generally considered as one of the more
reliable correlations. It has, however, been criticized recently by
Ross oﬁ the grounds that turbulence may not have been negligible, and
internal droplet circulation may have been induced by the droplet
feeding method.

Evaporation of water droplets into a steam medium was the
subject of a recent study by Ross (R3). The droplet was subjected
to a high radiant heat load and the main object of the work was the
investigation of the surface flux - forced convection interaction.

1.4 Experimental Studies of Mass Transfer
with Chemical Reaction

Up to the present time apparently no experimental studies of
mass transfer with chemical reaction from single spheres have been
reported. Investigations which have been concerned with reactihg
systems have generally‘been confined to the simple geometries found
in laminar liquid jets, falling films, films formed on a rotatiné
c¢ylinder, and plane interfaces.

The advantages offered by apparatus such as those mentioned
above are that the gas-liquid contact time can be obt;ined with good
accuracy, and that the mass transfer area can be easily determined.

The experimental results are usually interpreted in terms of the

10.



“"penetration theory'. The essential assumption of this theory is that
the diffusion time of the absorbed material is short enough to prevent
the material from reaching the other boundary of the fluid. The
absorption process can then be described in terms of the equations for
unsteady diffusion, with or without chemical reaction, into a semi-
infinite medium. These equations can be handled readily and some of the
available solutions will be discusséd later.

Nijsing et al (N1) carried out studies on the absorption of
carbon dioxide into laminar jets and laminar falling films of
aqueous solutions of sodium, potassium and lithium hydroxides.
Conditions were varied so the absorption could be carried out
accompanied by either pseudo first order or second order reaction.

Danckwerts and co-workers (D3, R2, S2) have carried out a
series of studies on the absorption of carbon dioxide into alkaline
solution with a variety of interfacial geometries. Danckwerts and
Kennedy (D3) utilized a rotating drum on which a thin film of the
absorbing medium could be formed continuously. The contact time
between the gas and the liquid was controlled by varying the speed
of rotation. They studied absorption into sodium hydroxide solutions
and buffer solutions of sodium carbonate-sodium bicarbonate, The
buffer solution results could be interpreted by a first order reaction
mechanism, The reaction between the carbon dioxide and caustic solutions
was found to be second order for the gas-liquid contact times employed.
Roberts and Danckwerts (R2) utilized a wetted wall column to study

absorption of carbon dioxide into the same solutions as in (D3) but

11.



12.

also included a study of the effect of arsenite catalyst on the reaction
rate. Sharma and Danckwerts (S2) expanded the catalyst study by
evaluating the effect of formaldehyde and hypochlorite as well as
arsenite, this time with a laminar jet apparatus. They also studied
absorption of carbon dioxide into monoisopropanoiaminc solutions and
found that these results could be interpreted according to second order
kinetics.

The carbon dioxide - monoethanolamine system has been the
subject of many investigations, notably those by Emmert and Pigford (El),
Astarita (A5, A6) and Clarke (C6). The wprk of Emmert and Pigford
utilized a laminar liquid jet apparatus. Contact times were of
sufficient duration to allow the interpretation of the data in terms of
penetration theory for a very fast second order reaction. Clarke, on
the other hand, used very short contact times (also with a laminar jet
apparatus) and could show that under these conditions the reaction was
pseudo first order. When the shorter contact times are utilized there
is no depletion of monoethanolamine in the liquid phase near the gas
liquid interface. Whereas, for the longer contact times; depletion
does take place. Astarita has conducted investigations with many
different types of apparatus including laminar jets, packed beds, and
wetted wall columns., In the laminar jet study (A5) the data were found
to be between those predicted from penetration theory for first order and
infinitely fast second order reaction kinetics. The main/objective of
the second study (A6) was to investigate the effect on absorption rates

of the monoethanolamine concentration level and of the "carbonation ratio"



(moles of‘Coz/holes of MEA in liquid). It waé possible to confirm from
the expcfimental results that the reaction was psuedo first order if the
carbonation ratio was >0.5 and second order if the ratio was <0.5.

Many studies of mass transfer with chemical reaction in stirred
vessels have been reported (A2, M1, P1, V1). These have been concerned
with a variety of reacting systems. Both film and penetration theories

have been employed to interpret the experimental results,

1.5 'Solution of Penetration Theory Equations

The absorption of a material at a planeinterface and its

unsteady diffusion into a semi-infinite medium can be described by

ac azc
=t - D I $(c) (1.1)

with initial and boundary conditions of

t = o, ¢ = © at X>0
S

t > o, c = ¢ at X =0

t > o, c — 0 as X =

These conditions déscribe the situation where equilibrium exists at
the interface, where there is no absorbed material in the fluid
medium initially and where the concentration decreases to zero as X,

the distance from the interface, increases. The ¢(¢) would be k.c

1
for first order reaction and zero for simple diffusion with no reaction.
Similar equations may be written for the case of diffusion with second
order reaction or for a bi-molecular reaction of general order.

An analytic solution for the first order reaction situation

(equation 1.1 with ¢(c) = klc) was first obtained by Danckwerts (D1)

13.



and has been used extensively in the interpretation of experimental
data. For the case of an infinitely fast second order reaction,
solutions have been obtained by Danckwerts (D2) and by Sherwood and
Pigford (S83).

Initial studies on the solution of the équations describing a
second order reaction for any reaction rate level were carried out by
Perry and Pigford (P3). They were able to obtéin solutions over a
fairly narrow range of parameter values using numerical techniques.
More recently, with the aid of the much faster digital computers now
available, this work was greatly extended by Brian and co-workers to
cover a wider range of values for the second order case (B9), to
solve the equations for a bi-molecular reaction of general order (B10),
and to treat the case of a two-step second order recaction involving
a transient intermediate product (B12). Most of the results\of these
studies are available in graphical form. They should be of considerable
use in the interpretation of experimental data obtained under conditions
where the penetration theory would be expected to apply.

| Approximate analytic solutions for a general order bi-molecular
reaction have been obtained by Hikita and Asai (H8) who used a
linearizing technique similar to that employed by Brian and co-workers.
The results of the two approaches are in reasonable agreement.

Pearson (P2) has shown how analytic solutions may be obtained
for the second order reaction case under some extreme conditions such
as very short contact times, pseudo first order behaviour, and

infinitely fast second order reaction. Some numerical results in

14.
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the intermediate regions were also presented and were in agreement with
~the work of Brian et al (B9).

Recent studies have extended penetration theory solutions to
account for some non-ideal behaviour. Brian et al (B11) have studied
the effect of the presence of ionic species in é system with mass
transfer and simultaneous second order chemical reaction. Since ions,
because of their electrical charge, obey a different law of diffusion
than molecular species, it was found that in many cases the predicted
mass transfer rates were markedly different from those expected in
molecular systems. Duda and Vrentas (D7) have considered the case of
unsteady diffusion (no chemical reaction) into an infinite medium with
both volume change on mixing and a concentration dependent diffusivity.
Their approach is somewhat unique since it involves the transformation
of the equations to obtain an ordinary differential equation. The
equation is then solved using asymptotic solutions and standard forward

integration techniques.

1.6 Theoretical Studies of Mass Transfer
from Single Spheres

1.6.1 Low Reynolds Number Region (Re <1)

In this region of creeping flow around a sphere it is possible
to obtain analytic solutions describing physical mass (or heat) transfer.
A review of the available sdlutions has been given by Acrivos and Taylor
(Al). These authors note that the earlier solutions obtained by
Kronig and Bruijsten (K4) and by Breiman (B8) for the low Peclet

number region are not in agreement despite the use of identical



mathematical models. The methods of solution differed in the two
cases, and perhaps this is the source of the discrcpancy.  Acrivos
and Taylor (Al) have developed perhaps the most accurate solution
available for the low Peclet number region using a perturbation
technique.

Solutions covering the entire Peclet number range have been
obtained by Friedlander (F2) and Yuge (Y2). Friedlander's method
involved the assumption of a concentration profile and the conversion
of the mass transfer equation into integral form. Yuge on the other
hand, has developed a method utilizing successive power series
approximations for the concentrations. This makes it possible to
reduce the partial differential equation to a small number of ordinary
differential equations. Yuge's method was extended by Johnson and
Akechata (J3) to include mass transfer with a first order chemical
reaction from both solid spheres and gas bubbles. These authors
investigated other methods of solution including finite-differcnce
techniques and published the only work to date which has considered
mass transfer from a sphere with simultaneous chemical reaction.

Analytic solutions have been obtained for the case of very
high Peclet numbers. Levich (L5) and Friedlander (F3) have obtained
identical relationships after assuming that concentration changes
could be confined within a thin boundary layer.

The integral method (e.g. F2), assuming 'a polynomial form

for the concentration profile, has been extended by Bowman et al (BS)
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to include transfer from both circulating and non-circulating spheres.
These workers were able to predict mass transfer rates which agreed with
their experimental reéults (W1) up to Reynolds numbers of around 10,
despite the fact that the Stokes and Hadamard velocity profiles (strictly

applicable only for Re <1) were used to describe the hydrodynamics.
1.6.2 Intermediate Reynolds Number Region (1< Re <200)

As mentioned earlier in this review different methods are used
to obtain descriptions of the flow field at Re >1. These include the
boundary layer approach'(FS, L7), variational techniques (K1, H2, H3),
and finite~difference methods (J2, H4, HS). Such d65cription$ of the
hydrodynamics are essential to any theoretical study of mass transfer
from spheres.

The thin concentration boundary layer approach (L5, F3) has
been employed by Baird and Hamielec (B1) to obtain analytic solutions
for transfer from both'circulating and non-circulating spheres. Even
with the use of Kawaguti-type velocity profiles (K1, H2, H3), which
adequately describe the flow field, it was not possible, in the case
of solid spheres, to obtain transfer rates in the vortex region without
making one further assumption. These authors assumed that "fresh
fluid" entered the vortex region continuously along a line through the
rear stagnation point. As a result they were able to obtain local
transfer rates in this region. The values obtained are undoubtedly
high as the vortex region will in fact contain little '"fresh fluid",
but rather may be almost saturated with the material being transferred.

The same disadvantage, the inability to predict mass transfer
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rates in the vortex region, also exists with the integral boundary layer
techniques as used by Frossling (F5), Aksel'rud (A3), Linton and
Sutherland (L7) and more recently by Ruckenstein (R5).

The investigation into wake transfer by Lee and Barrow (L3)
was mainly experimental,but a preliminary thcoretical analysis was
also presented, The agreement with experimental values is not very
satisféctory. It is actually best in the region Re >500 where the
vortex ring beccomes unstable and is subject to periodic shedding and
reforming. |

An integral method utilizing an assumed polynomial for the
concentration profile, coupled with the use of Kawaguti-type velocity
profiles, has been used by Ross (3). The solutions predict reasonable
average mass transfer rates, but it is doubtful whether local mass
transfer rates obtained beyond the separation point are meaningful.

Theoretical studies by Garner and Keey (G6) and by Grafton (G8)
cléim the ability to predict physical mass transfer rates in the vortex
region. The methods involve the assumption of suitable polynomials
for Eoth the velocity and concentration profiles along with a relation-
ship, due to Levich (L5), between the hydrodynamic and boundary layer
thicknesses. Finally, in the method of Grafton (G8), a knowledge of
the shape of the vortex region is required. The theoretically predicted
mass transfer rates of these workers are in reasonable agreement with
the experimental results of Garner and co-workers (G4, G5, G6). However,
it has been previously pointed out in this review that the results of
(G4) and (G5) were most likely affected by the presence of turbulence

in the transfer medium. In the work of (G6), the unrealistic choice



of the average, rather than the centerline velocity, was used for
correlating purposes. In view of the fact that the theoretical results
are in agreement only with doubtful experimental data, the confirmation
of the applicability of these methods must awai; further careful
evaluation by workers in the field.

The inability of all the above theories to deal satisfactorily
with tﬁe problem of .transfer in the vortex region is a severe limitation
when considering transfer from solid spheres. The area covered by the
wake may reach as high as 40% of the total surface area at Reynolds
numbers of the orderlof 400. Therefore, accurate prediction of overall
mass transfer rates is very difficult without a knowledge of wake
transfer rates. There is no flow separation, and thus no vortex region,
when the flow is around fully circulating drops or bubbles. Thus, some
of the theories discussed should allow for the prediction of overall

physical mass transfer ratio under these conditions.
1.6.3 High Reynolds Number Region (Re >200)

Attempts to predict flow behaviour and mass transfer rates
theoretically in this region have proven difficult and unsatisfactory.
The velocity profiles developed by Hamielec (H2, H3) are available in
this region for flow around solid spheres. However it has been shown
by comparison with experimental studies (G8) and with recent numerical
solutions (H4, H5), that the predicted shape of the veortex ring ié
unrealistic. Also, it has been noted that the vortex ring becomes
unstable beyond Reynolds numbers of 500. Theoretical profiles cannot

account for the transient nature of the wake and therefore are of
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questionable value in this region.

For flow around circulating gas bubbles at high Reynolds
numbers the potential flow velocity profiles provide a recasonable
description of the flow field. The use of these profiles and
penetration theory leads to a theoretical relationship (B3, H7, S6)
which has found wide application in predicting absorption rates from
gas buﬁbles. Typical of this use is the work éf Bowman (B4) and
Calderbank and Lochiel (C5). These workers found reasonable agreement
between the predicted transfer rates and those observed with carbon
dioxide bubbles rising through distilled water. A more recent
study by Yau (Y1), with a single orifice bubble column, has shown
that accurate prediction of mass transfer rates is possible up to the
point where bubble deformation becomes significant, Although this
work was with a reacting system, the oxidation of acetaldehyde, the
reaction rate was slow and consequently did not cause a significant
enhancement of mass transfer.

Any theoretical studies which would attempt to account for
oscillation and deformation of drops and bubbles, and for the presence
of turbulence in the boundary layer, would involve mathematical
complexities of ancther order of magnitude and are beyond the scope

of the present study.

1.7 Mass Transfer in Disperse Systems

Hopefully, the results of any theoretical study of mass transfer
from a single sphere would be applicable to disperse systems, providing

the interaction between particles was small. Yau (Y1), in a recent
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study using the ideal situation of a single orifice bubble column, has
indicated that it is possible to extend the theoretical results for a
single bubble to the prediction of average transfer rates for a number
of bubbles formed consecutively. In the particular column used by

Yau interaction between bubbles was probably negligible.

Typical of the extensive experimental studies which have been
carrieé out in disperse systems is the work of Calderbank and co-workers
(C1 -C4). The studies include investigations of interfacial areas
generated in sieve trays and bubble cap plates, and measurcments of
mass transfer coefficients and interfacial areas with and without
mechanical agitation. Some recent experimental studies by Westerterp
et al (W4) and by Gal-Or and Resnick (G1) have been concerned with mass
transfer in agitated vessels where thc transfer was accompanied by a
first order chemieal reaction.

A fundamental theoretical study of mass transfer from bubble
swarms has recently been developed by Gal-Or and co-workers (Gl, G2, G3).
The model deals with bubble swarms in agitated vessels where the bubble
velocity relative to the fluid cannot be readily obtained. In view
of this difficulty, an average residence time approach was developed
where a gas bubble is assumed to be in contact with a certain volume
of liquid for a suitaﬁle contact time. Penetration theory equations
are then used to describe the mass transfer during the contact
period. The model allows for a distribution of contact times to be
considered as wéll as a certain amount of interaction between bubbles.

It is also possible to predict the effect of a first order
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chemical reaction. 1Initial comparisons between predicted and
experimentally observed values have been encouraging.

1.8 Effect of Surfactants and Interfacial
Instability on Mass Transfer

The effect of the presence of surface active impurities on
mass transfer has been the subject of investigations for some time.
Many of these studies have attempted to determine whether a resistance
to mass transfer was added when surfactant material was present at
the trénsfer interface. Most investigators have concluded that
interfacial resistance is very small (W2, W5), and often could not
be easily detected because of the accompahying hydrodynamic effect
(e.g. G7). In the case of drops or bubbles, for example, several
authors (B6, B7, W5) have shown that surfactants may slow down or
completely prevent internal circulation. This effect, solely
hydrodynamic, would cause a marked decrease in absorption rates. It
therefore was difficult to detect any interfacial resistance which
may have been added by the surfactant film. The reduction of internal
circulation is the result of the accumulation of surfactant which
establishes surface tension gradients opposing the external shear forces.
A recent experimental study by Plevan and Quinn (P4) investigated
the effect of a mono-molecular film on the rate of absorption into a
quiescent liquid. They were able to detect interfacial resistance effects
only for very soluble gases, such as sulfur dioxide.
In the absence of surfactants, interfacial instability effects

have been observed in many mass transfer studies (L6, O1, S1, S4). This
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interfacial activity, the Marangoni effect, is set up as a result of
changes in interfacial tension caused by local concentration variations,
The effect can therefore be expected to be iarger when the interfacial
tension is very concentration dependent. Sherwood and Wei (S4)

observed that interfacial activity did not occuf in pure systems, i.e.,
when no solute was present in either phase.

Sternling and Scriven (S8) were apparently the first to
formulate a theoretical model describing interfacial activity at plane
interfaces. Ruckenstein and Berbente (R7) have extended this to
include the effect of a first order chemical reaction. The latter
workers conclude that even a slbw first order reaction may cause
instabilities in an otherwise stable system.

The Sternling and Scriven approach for plane interfaces has
been extended by Ruckenstein (R6) to mass transfer from a single drop
or bubble with accompanying interfacial turbulence effects. The
theory, which is confined to Re <1, allows the conclusion that
Marangoni effects should be a factor only in transfer from small

drops or bubbles.



2. SCOPE

A review of the available literature has indicated that no
suitable theoretical treatment of mass transfer from single spheres
with simultaneous first or second order reaction has been developed.
It would be advantageous to carry out any such theoretical development
in the intermediate Reynolds number region where relationships
adequately describing the flow field are available.

The development of a theory which could successfully describe
the behaviour of single spheres, either circulating or rigid, in the
intermediate Reynolds number region, and, at the same time, predict
the effect of a first or second order reaction, would be a valuable
addition to bubble reactor design fundamentals. Present design
procedures are based on empirical techniques and, as a result,
scale-up difficulties are unavoidable. The successful description
of single bubble mass transfer behaviour would bring design based on
sound fundamental principles one step closer. Further theoretical
developments could then consider the problems of bubble oscillation
and interaction.

Experimental studies of mass transfer from Single spheres
have not considered reacting systems. Because of its industrial
significance, data on mass transfer accompanied by a chemical
reaction would be c¢f considerable interest.

Workers dealing with transfer from single spheres have

invariably carried out such studies in a wind-tunnel (or water-tunnel)

24,
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where the flow of the transfer medium past the test sphere could be
easily controlled. VWhether or not special precautions are taken to
obtain a flat or a parabolic velocity profile, in the region of the
test sphere, is of no great importance, provided care is taken in the
choice of the correlating velocity. |

Reacting systems suitable for experimental study include many
gas~liduid systems. Systems consisting of carbon dioxide as the gas
and either caustic, buffer, or monoethanolamine solutions, have been
studied extensively. There is reasonable agreement among the authors
with regard to the reaction mechanisms. The carbon dioxide-buffer system
can be described according to first order kinetics. The remaining two
systems exhibit second order behaviour except under some extreme conditions
such as very short gas-liquid contact times, where they may behave
according to pseude first order Kinetics. The latter two systems are
especially attractive as they show markedly increased transfer rates
for relatively modest additions of reactant to the liquid phase. This
would facilitate experimental measurements of the increased mass transfer
while, at the same time, allowing the use of fairly dilute solutions.

In view of the above it was decided that the scope of this
study would include:
(1) the attempted development and solution, by whatever method is
most suitable, of a mathematical model describing mass transfef, with
simultaneous first or second order reaction, from sinéle circulating or
non-circulating spheres. The study was to be confined to the intermediate

Reynolds number region where the flow field may be adequately described
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by existing relationships.

(ii) the measurement of mass transfer rates from single gas bubbles
in a water-tunnel apparatus. After a consideration of the water-tunnel
construction materials, it was apparent that the carbon dioxide -
monoethanolamine system would be suitable for this study.

(iii) ‘the evaluation of the model solutions through comparisons with
previous theoretical and experimental results, as well as with the

experimental data of this study.



3. THEORETfCAL TREATMENT

3.1 Formulation of Model

In deriving the equations whicﬂ describe mass transfer from a
single sphere, with or without accompanying chemical reaction, it was
first necessary to nake several assumptions. These assumptions permii
the mathematical analysis to be discusSed, and do not invalidate the
application of the analysis results to physical situations. -

The following conditions were assumed:

(i) Steady state conditions exist. Essentially steady state
conditions were obtained in the experimental work to be discussed.

In commercial reactors, however, a bubble may be in transient
behaviour. The implications of this assumption in considering bubble
reactors will be discussed later, but transienticonditions_arc beyond
the scoﬁe of the present study.

(i1) The system is isothermal and the heat of reaction is negligible.
In the absence of this assumption it would be necessary to solve the
energy equation as well as the mass transfer equation.

(iii) Density, viscosity and diffusivities are constant.

(iv) The fluid is Newtonian and the flow is axisymmetric.

(v) The particles are spherical and behave as either fully
circulating gas bubbles or.drops, or as non-circulating, rigid spheres.
The latter situation can occur in gas-liquid systems as a result of the
accumulation of surfactant material at the interface (B6, B7).

{vi) The liquid phase is non-volatile, i.e., there is no transfer

27,
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from the continuous phase into the sphere.

{vii) All resistance to mass transfer is in the continuous phase.

This not only allowed for the assumption of equilibrium at the
interface, but also eliminated the necessity of solving, simultaneously,
a second equation desciibing concentration changes udthin the sphere.
(viii) Mass transfer rates are small so that the radial velocity
componént at the interface can be assumed to be zero. Hamielec et al
(H5) have shown that for radial velocities at_the interface of less than
% of the main stream velocity the hydrodynamics are not significantly
changed from the zero surface flux case.

(ix) Chemical reactions considered are either first or secdnd order;
although the method used for the second order §ase should be applicable

to higher orders.

(x) Natural convection effects are negligible.
3.1.1  First Order Chemical Reaction

A mass balance was carried out on a spherical volume element
(Figure 1) as in the work of Johnson and Akehata (J3, see also B2).
~ The following equation was obtained (quantities are defined in

Nomenclature):

2
aca Vo 3¢, _ BZCA 2 3cp 1 d CA
Ve e YT osen s DAl Y T oar Y TRE %82
+ CTO _aa_gA - ke, (3.1)

with boundary conditions
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SPHERICAL -VOLUME ELEMENT
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o = 0O as T > L

and as a result of the assumption of axisymmetric flow conditions

3C _
SEA = 0 at e = o,

Equation'(S.l) could be converted into dimensionless form by making

the following definitions:

s
Vr = Vr/U ; VO VQ/U ; €y = CA/CA

] 2 kl 2
T = r/R ; PeA = RU/DA ; = klR /DA

Using these definitions and dropping the primes equation (3.1) becomes

2 2

9¢c \Y Jc 2 9 ¢ 2 2dc 1 3¢
= 29 LA = £ —~2A £ ZEA —-—-2A
Vr 37 Y 30 Pe, 3T Y7 3w "2 36
COTo 9CA -
* 37 s K CA] (3.2)

The case of purely physical mass transfer can be obtained simply by
setting k - o in thé above equation.

Equation (3.2) as it now stands is of elliptic form. In the
examination by Johnson and Akehata (J3) of transfer at Re <1 it was
found that solutions of this equation via finite-difference techniques
became unstable for any Pe >102. Further study of this work confirmed
that these instabilities were also present for Re >1, Since the

Peclet numbers associated with transfer at intermediate Reynolds
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numbers are much greater than 102 {especially true of transfer into a
liquid), no useful results could be obtained from the elliptic equation,
The details of the solution methods attempted and an examination of the
causes of the instabilities are given in Appendix A. This examination
has revealed that the instabilities could have been supnpressed only by
employing impractically small angular and radial step sizes (finite-
difference approximations were used). Storage capacities much larger
than available in prescnt-day digital computers would have been
required,

In order to circumvent thé difficulties associated with the
elliptic equation, it was necessary to assume that molecular diffusion
in the angular direction was negligible. This assumption made it
possible to drop the terms wl;z %;gA QQ%Q EEA, from equation (3.2).

> T 20

The remaining terms formed a parabolic equation:

2
.8._(—:_A }[..e ggil\ = -..2.. a C t\ _2_ .B_—C-A -
Vr T * r 930 PeA arZ * r JF k €a (3.3)

where the boundary conditions remained unchanged, no difficulties of a
stability nature Qere encountered by Johnson and Akehata (J3) in dealing
with this equation at Re <l. Further discussion of the mathematical
model will deal only with equation (3.3). The disadvantages of using
this equation to describe the mass transfer will be dealt with in detail
in subsequent sections.
3.1.2 Second Order Chemical Reaction

A mass balance was carried out as before on a spherical volume

element. Neglecting molecular diffusion in the angular direction, the



following two dimensionless equations of parabolic form were obtained:

7 -

,dea Ve dea . 2| 2 23 oy ,
Vr 37 YT 90 Pe, 572 'Y a7 KACACH j (3.4)
v 2, Vo 3¢y _ 2 §_ch +2 3% |y . (3.5)
r ar r 36 ~ Pey ar? T or B“A"B :
with boundary conditions (see Figure 2)
c = 1 deg . o at T = 1
A ? T

€y = o, CB = 1 as r —

9Cc aC

—_—A = — = =

5 5 0 at 6 o,mn

Since these equations contain a nonlinear source term, k or

ASACB
chACB’ it was anticipated that the solution technique would differ

somewhat from that required for equation (3.3).

3.1.3 Velocity Profiles

Before any consideration can be given to the solutions of
the mass transfer equations (3.3, 3.4, 3.5), values of both velocity
components, Vr and Ve, must be available as a function of radial
and angular position. Johnson and Akehata (J3) in their study at
Re <1 used the Stokes (S9) or Hadamard-Rybczynski (lil, R8) velocity
profiles. 1In the intermediate Reynolds number regionf of interest
here, the results of Kawaguti (K1) and Hamielec et al (l12, H3) were
available in polynomial form. The recent results of Jenson (J2) and

Hamielec and co-workers (H4, H5) consist of tabulations of values of
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the vorticity and stream funcfion. A recent comparison of vorticity and
stream function values obtained by the two procedures, error-distribution
and finite-difference techniques, has indicated that the polynomial
representations are in good agreement with theqmore accurate numerical
solutions, In the case of flow around a rigid éphere this agreement is

good up to the point of flow separation. However, the polynomial
relationships give a less accurate description of flow in the vortex

region, The polynomial forms devecloped by lamielec et al (H2, H3) were used
to describe the flow field in this study. These relationships were much
more convenient for computer usage than the numerical results of (Il4, HS)
which had become available only during the latter stages of this investigation.

The velocity profiles from (H2, H3) may be written:

Al 2A 3A aA
V. o= 1 - . &2 o230 2 sin ©
0 [ r3 4 rs 6
B ,
+ { - __é - 2%2 - égﬁ - 524 sin® cos6 (3.6)
T T T T
Vv = -1 + _2..4.1 + -2;52 + Z:A-S + —2—&4 cos ©
T r3 4 5 6
By B B3 By ] 2 . 2
1B o, + =23 4+ 2 (2cos“0 - sin“0) (3.7)
ERE- IR R
where
A = -125 - 120X -140 - 75X
2 ~ 0 729X v (Ferrmn) M (3.8)
A 135 + 153X 108 + 63X
5 7 v aox * e aox) M (3.9)
_ -40 - 47.5X -28 - 17X
Ay = 60 + 29X ¥ 60 + —§§Y) A ; (3.10)



-140 - 69X
B, (“s—+=7x) By (3.11)
108 + 57X\ .
B T 7% ) By (3.12)
28 - 15X :
B, = (%) B (3.13)

X 1is the ratio of the viscosity of the disperse phase to that of the
continuous phase. Values of Ay and By have been tabulated at
several Reynolds numbers (12, H3).

Typical flow patterns are shown in Figure 3 for a fully

circulating sphere.

3.2 Solution of Mathematical Model

Solutions to the first and second order reaction models were

required in the form Cp = f (r,0). Local Sherwood numbers could be
calculated from the relationship
2Rk ac :
Sh = === = - 2| =A ]
DA [ ar r=1 (3.14)

The average Sherwood number over the entire sphere surface could
be obtained from

T .

q/(Sh 51ned9

S = . - (3.15)
O/smede

The mathematical models developed (equations (3.3, 3.4 and 3.5))
are second order parabolic partial differential equations, and in the
case of equations(3.4) and (3.5) are nonlinear. These relationships

are somewhat complex and are not amenable to solution by normal
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exact analytical methods. The most obvious alternative method for
equations of this type are finite-difference techniques. In this
procedure finite-difference approximations are substitutcd.for the
partial derivaties, with the result that the partial differential
equations are replaced by a set of algebraic equations. These

can usually be handled with ease by present-day digital computers.

The finite-difference mesh system used in this work is
shown in Figure 4 where the mesh point locations are labelled.

A variable step size in the radial direction, identical with that
employed in the earlier study (J3), was used throughout. With
this particular formula the distance to the ith step position is
given by )

i-

r, = 1+ Ar [ hﬁj%l ] (3.16)
where Ar is the value of the first radial step and h is a constant
greater than unity. The larger the value of h the more rapid the
increase in step size as i increases.  Although other forms were
tried, equation (5.16) was the most flexible and convenient from a
computation standpoint. As an example, transfer into a liquid at
high Reynolds numbers, with accompanying chemical reaction, required
a large number of mesh points very near the sphere surface where the
concentration gradient was large. On the other hand, a relatively
small number of mesh points was required at some distance from
the surface. This sort of variation was readily handled by
equation (3.,16) simply by choosing a small value for Ar, with a large

h value. A constant step size was used in the angular direction
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except for the first angular increment at © = 0°.  This increment

was usually further subdivided into a number of equal steps for reasons
to be discussed later.

After deciding to solve the model equations using finite-
difference techniques, the choice between expiicit and implicit
procedures remained. The explicit methods allow the solution to
proceed directly, solving explicitly for one unknown value at a time.
In the implicit technique, a set of simultancous algebraic equations
mﬁst be solved at each step (L1). The difficulty with the explicit
procedures is that usually very small steps must be taken in the
"marching" direction (the angular direction in this problem).

Otherwise instability problems arise. Implicit methods, on the other
hand, are stable even witﬁ relatively large steps.  Since the

handling of large sets of simultaneous equations by matrix techniques is
not a problem with modern computers, implicit methods are usually

employed. They were the only ones considered for this study.
3.2.1 First Order Chemical Reaction

(i) General Method: The Crank-Nicholson implicit méthod (L1)
was utilized to solve equation (3.3). This part of the study was
simply an extension to the region Ré >1 of the earlier examination
of the problem for Re <1 by Johnson and Akehata (J3). For this
problem, the procedure consisted of replacing the derivative in fhe
angular direction by a forward difference approximation. The radial

s .th . 44St X
derivations were averaged over the j  and (j+1) angular increments.
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" The derivatives required can be written in general form, replacing

Ch by A in the finite difference approximations, as
scy Ai g+1 ~ Aig (3.17)
30 i6
scp o 1} 3 LT
AT 50 3 .. Y A .. (3.18)
i,j i,j+l
R Y B U V5 T £ V5 IO U5 U5 5 U U5 U5 L3 PN
- 2 T. . - T, r. . - T (3.19)
i+] i-1 i+l i-1
2 .2 2
3 c 1 3 CA 9 C
ar2 - 7 ars . . * are . . (3.20)
1,] 1,j+l
.1 a1, 3 ) A3 R B
2 (rj1 T3 (77 T50) (mmry PdOrygmmy) (oo (0T y)
+ ZAi+1,j+1 2Ai,j+1

(r341773) (T307T5

2A5 1,541 ]

- +
Py )y Oogery (Eg-15 )

(3.21)

These approximations were developed from the usual Taylor series approach

and are written here in terms of radial positions.

This was done simply

for programming convenience, since any variable radial step size, in

addition to the form shown by equation (3.16), could be evaluated with a

minimum number of program changes.

The details of the development of

the relationship for aZCA/BrZ are given in Appendix B.  The use of a

uniform radial step size would result in the more familiar form for

the second derivative, i.e., if (ri+1—ri) = (ri—r

i—l) = Ar then


http:Ai-1,j+l](3.19
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2A + A

2 Ao . . -2A, . +A. . .
3 _ch - i+l,] 1, 1-1,] (3.22)
ar i Ar? v

When the finite-difference approximations were substituted for the partial
derivatives in equation (3.3), and the T replaced by equation (3.16),

the following finite-difference equation was obtained.

* *

Aiel, [ -t t | v Ao [ -4y - b *33]

Ai+1,j+1[ L -4 - Zsj * Ai—l,j+1[ - - hey s Zs}
Ai L5 [ Ly dg v g | v AL '[ Ly g+ 26] =0  (3.23)
where

2, = Vr/(2h1_1Aro(1+1/h)) ' (3.24)
L. = 27 ;i lar y2Q+1/mype (3.25)
2 - o A :
£, = 2/} ar ) (141/h)x, Pe, (3.26)
£4 = Ve/riAO (3.27)
e, = 20+h) /(0 lar) P (1e1/h)Pe, (3.28)
&, = k/Pe, , (3.29)

and the starred quantities are known values.
Initially the unknown values along the radial vector through

oj+1 were obtained using a relaxation factor and an iterative procedure
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as illustrated in (J3). Later solutions, however, were obtained more
lrapidly by inverting the matrix, which was of tridiagonal form, at
each angular increment. The latter method was far superior to the

iterative procedure and resulted in a great saving in computer tinme.

(ii) Boundary Condition at 0=0°:  The boundary condition along the
radial vector through the frontal stagnation point specifies only that
the angular gradient in concentration is zero, but does not specify

the concentrations along this line. In the early stages of this study,
estimates of the concentration were inserted at ©0=0° and no attempt was
made to satisfy the zero slope criterion. The solution was allowed to
proceed, step by step, without regard for this fact, This resulted in
oscillating values of the local Sherwood nunbers over the first 10 to 15
degrecs. At angles beyond this region the solutions obtained behaved
in the expected manner, i.e., the local Sherwood numbers decreased in a
regular fashion as O increased. In an attempt to reduce these
fluctuations more quickly, the first angular increment was further
subdivided into 10 to 20 equal increments. This did in fact dampen out
the oscillating values more quickly, but fluctuations in local Sherwood
numbers still occurred over the first 5 to 10 degrees. Since this was
unsatisfactory, a method was developed which allowed the zero slope
condition to be satisfied. The procedure consisted of inserting
initial estimates along the zero angle line, and then utilizing an
iterative procedure until the zero slope criterion was satisfied. The
initial estimates were taken from the solution of the equation describing

diffusion from a sphere into a stagnant medium. The equation may be
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written as

2c 2 dc
L Z=A - =
A e kcA o (3.30)

[=R =N
L]

This has an analytic solution given by

/K (1-1)
¢ = S (3.31)

T
In the earlier stages, where the boundary condition had been avoided,
the values given by (3.31) were inserted along the zero anglc line and
assumed to be correct values. The iterative procedure developed to
satisfy the boundary condition used the concentration of (3.31) as
initial estimates only. From these, new concentration values at 0=A0
were calculated. These new values were then compared with the initial
estimates to see whether acA/BO equaled zero. If not, the new values
at 0=A0 were assumed to be better cstimates of the values at G=0°,
and replaced the initial estimates of (3.31). This procedure was

repeated as many times as was necessary to satisfy ac =0 within

A/ae
a specified tolerance. The practice of subdividing the first angular
increment, employed initially to dampen out fluctuating values, was
continued when employing the iterative procedure. The use of a
small initial A® reduced the number of iterations required to satisfy
the zero slope condition.

Once the boundary condition had been fulfilled, the solution
proceeded in the normal manner through one angular increment after
another. ’The local Sherwood numbers obtained in this case were well

behaved and showed none of the fluctuating characteristics of the

earlier results. A comparison of the local Sherwood number values.
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obtained in the two cases is shown in Figure 5. It is ihteresting to
note that beyond the first 15° there is very little difference in the
local values. Since the area associated with the first 15° was a very
small percentage of the total ;urface area, the average Sherwood nunbers
differed by less than 3%. In the cases reported here this boundary
condition was always satisfied. The values obtained for transfer at
the frontal stagnation point should therefore be suitable for comparison
with thcoreticglly predicted values (F5, L7, S5).
(iii) Mesh Details: Angular step sizes were usually 30, with the
first increment subdivided into ten steps of 0.3°. Thirty radial mesh
points wexrc employed. The position of the outer boundary was normally
1.44 dimensionless radii from the sphere center. The effect of choice
of step sizes and position of the outer boundary will be discussed in
a later section.

Computation times on an IBM-7040 were about 2 minutes for a typical
case involving 70 angular, and 30 radial mesh locations.
(iv) Disadvantages of Parabolic Equation: As discussed previously, it
was necessary to simplify equation (3.2) by neglecting the angular diffusion
terms in order to obtain the equation in a form which could be solved by
standard numerical techniques. The parabolic equation (equationkS.S))
which resulted, although readily solved with no stability difficulties,
has the disadvantage that it does not everywhere describe the physical
situation accurately. For transfer from circulating.gas bubbles or
liquid drops (Figure 3a), the neglected diffusion terms are important

only in a very small region near the frontal and rear stagnation points.
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This presented no computation difficulties. It was always possible

to obtain solutions over the entire surface of the circulating spherc.
For transfer from rigid spheres the neglected angular diffusion terms
become cxtremely important at the point of flow separation and beyond
(sce Figure 3b). 1In this region the parabolic cquation no longer
adequately describes the physical situation and the numerical procedureé,
as should be expected, break down. Therefore, the present numecrical
method suffers from the same disadvantage as the previous theorctical
treatments discussed in Section 1.6.2, i.e, it does not allow for the
prediction of local mass transfer rates in the vortex region. The
description of transfer in the vortex region would require the solution
of the elliptic equation (equation 3.2) for which standard numerical
techniques have proven unsuccessful. However, it has been possible to
obtain transfer rates in the vortex region for one extreme case, that
of a very fast first order reaction. Under these conditions it was
found that the mass transfer rate was independent of angle, and the
results obtained were in good agreement with the stagnant fluid
solutions (See Table 3.1). It is doubtful, however, whether these
local values are meaningful. The existence, at steady state, of a
bi-molecular first order reaction would be unlikély under conditions
present in the vortex region. The extremely fast reaction would be
expected to consume quickly most of the liquid phase reactant, thus
resulting in depletion near the reaction zone and a second order, not
first order, reaction situation. These high reaction rate results,
although useful for comparing with the stagnant fluid solutions, arec

not considered to be the descriptions of transfer in the vortex region.
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for any real situation.
3.2.2 Second Order Chemical Reaction

Since the two parabolic equations (equations (3.4) and (3.5))
developed for the second oxrder case are nonlinear, a straightforward
Crank-Nicholson method is not applicable. It would seem desirable
that the procedure used should involve only linear algebraic equations,
since nonlinear equations would require normally less efficient iterative
methods. A linearizing technique, involving only linear finite-difference
equations, has been developed by Douglas (D5) for parabolic equations
of this type. The method has been used by Brian and co-workers (B9, B10)
in solving the penetration theory equations which describe unsteady
diffusion, with a simultaneous bi-molecular recaction of general order,
into a stagnant fluid. The procedure, as outlined in (BY9), has been
followed here with only slight variations dictated by numerical stability

requirements.

(i) Outline of Solution Procedure
1. Equation (3.5) was approximated by the explicit finite-difference
eQuation(where the cp were replaced by B) written as
By [ fl ) 232-223] « By [f‘l ) _’;s_ +_2kBAi,5 \
S ) ) L7 Z Pe
B
By | 2h£2+2£3] . By [’zet i fi]
’J L 2 . ’J 2 2
C B [t - zs] = o (3.32)
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A forward difference was used for the angular derivative; a
central difference for the first derivative in the radial direction;
and a DuFort-Frankel approximation (F1), rather than the normal central
difference, for the second derivative in r. The DuFort-Frankel form

for a variable radial step size may be written as

al N T .
ey . Pi1,j Pig-1"% 541

P4 - _ ° — - -
or (r54 T Ty ) (g PO

ZBl-l;j

(ri—ri_l)(r.

+
141773

Whereas the "standard" form is given by équation (3.21).

The same variable radial step size, equation (3.16), was used
for both first and second order reaction studies.

It was found that if the DuFort-Frankel form was not used in
the explicit step, errors were introduced which quickly swamped the
true solution. The difficulty was traced to a point in the
calculations where it became necessary to subtract two very large
numbers of the same order of magnitude. In some cases the first non-
zero residual occurred in the eighth column, and since the IBM-7040
carried only 8 figures in normal bperation, the results quickly became
meaningless. The use of the DuFort-Frankel form for the second derivative
in r enabled the solution to proceed without encountering such an error-
introducing calculation. This made it unnecessary to resort to "Double-
Precision' computation procedures.

Equation (3.22) was solved directly for B, since all the

i,j¥
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Bi values were known at angular position j.

2. Equation (3.4) was approximated using the normal Crank-Nicholson
implicit procedure. The finite-difference equation which results is

written (replacing €A by A) as

Aje1, [ b -ty 33] YA [ "4y - b, - by ]

A1, [ -4t ] YA ['ﬂl “ht, +L; ]

kABi j+>
i e 2
Ai,j+1 [ £4 * L5 * PeA }

k. B

7. . 1/
_Apzygf;a ] = o (3.35)
A

+ Ai,j [ -£4 + £5 +

Since all the B; j1; were known from the previous step, the set of linear
] 72

*
algebraic equations was readily solved,

3. Values for A, 541 were calculated from the following relationship:
= ALiatM
1,j+% B (3.36)
4. Equation (3.5) was then written in finite-difference form USing

the Crank-Nicholson approximations.

- - [ _p .
Biap s [ £ -4, - L, ] $hay |l M ]

B. .
i-1,j+1 | -2 -he, + £, ]

-

+

Bi+1,j+1 [ L- 2, - L ]

* A Gaussian elimination technique was employed to handle the

tridiagonal matrix which resulted.
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£ E ’BAi,J*"/,, ]
i,j+1 [ 4% s T TP,
KAi 5o |
+ B, . A SR TP hic ) =0 : (3.37)
i,j 4 5 Pey ]

Since the Ai i3 were known from (3.36), the set of algebraic equations
sJT2 ’

were linear and could be solved for the B.1 1 by handling the tridiagonal

b 4

matrix as before.

5. Over the next angular increment the procedure was reversed, with

the explicit finite-difference approximation written for equation (3.4)

instead of (3.5), and the Ai j+% solved for directly.
6. The Ai 545 were substituted into equation (3.37) and the
B. .., obtained by matrix inversion.
1,j+1
7. Values for Bi j4% were obtained from the relationship
Bi 3+1+Bi j
= Aok 2
Bi,j+% = 5 (3.38)
8. These Bi j41 values were then substituted into equation (3.35)
. P e
and the matrix inversion step applied to give the Ai j+1 values.

-

The procedure was followed through one angular increment‘to
another. Brian et al (B9) have pointed out that the use of this
implicit procedure, instead of an explicit method, results in a great
saving in computer time, and avoids any stability limitations usually
encountered with the latter.

(ii) Boundary Conditions: The same iterative procedure, as in the

first order reaction case, was used to satisfy the zero slope condition
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along the radial vector through 0=0°. In this case initial concentration
estimates were obtained from the solutions of the equations describing
diffusion from a sphere into a stagnant fluid with second order reaction.

These equations may be written as

d2c 2 dc
_._2A ot A o =
dr * T dr kACACB ° (3.39)
dzc 2 dc
B 2 dey oy .
e St kgeacy ° (3.40)

Since analytic solutions to these equations were not available, numerical
methods had to be used to obtain the required initial estimates. No
difficulties were cricountered in obtaining solutions when using the
technique described in Appendix C.

The boundary condition acB/ar=° at r=1 was handled by writing
the first derivative in terms of the first three radial locations,
equating the derivative to zero, and solving for the concentration of
Bl,j at the interface. The relationship obtained may be written
(details of derivation are given in Appendix D) as

(ryor )’ (r,-r )’
S RS PR R s, N
s (r3 rl)Z-(rz-rl) 2,3 (r3-r1) -(rz—rl) | 3,3

(3.41)

The use of this relationship caused no difficulties. The concentration
of B at the interface never appeared explicitly in the matrix but only -

as a function of B, . and B, ..
, 2,3 3,3

(iii) Stability of Numerical Proccdures: Stability difficulties, in

addition to the one already noted in Step 1 of the solution procedure,
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had to be resolved before results could be obtained for all conditions.
One of these stability problems arose when an attempt was made
to use a finite-difference form for the first derivative in r which

had a smaller truncation error than the standard form given by

A. ."A« .
- i+l,j 1-1,j (3.42)

(ri+1—ri-1)

3cA
or

2
. X . - a2 2, 3 CcA
where the truncation error is of order [(ri+1 ri) (ri_l-ri) 1 532

A form having a smaller truncation error can be developed and results

in the following relationship (see Appendix B for details):

ac = [ 3177 A
Frh | (Tiapm T (T 7 T50) i+1,3
S S ] (F341775) A s
| (e Oy T () (707 yy)
]
- (ri+1-ri) A
EONEAIGREI B (3.43)

3
. . 3 3¢
This form has trungatlon error of the order (ri+1-ri‘1) 3;3A . The

latter two equations are equivalent only if the radial step size is constant.
In this case a variable step size was used and the two relationships were
not equivalent. It had been hoped that equation (3.43), because of its
smaller truncation error, would prove more reliable. The use of

equation (3.43), however, always resulted in unstable solutions. Thus

it was necessary to use the form given by equation (3.42) which proved

to be stable under all conditions. This instability is similar to another

well known effect in parabolic systems where a central difference
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representation for the marching dircction derivation, in this case the
O-direction, always results in unstable solutions. Whereas the forward
difference, with a larger truncation error, is stable (L2).

A further stability difficulty was encountered only when dealing
with transfer from iig4id spheres and reaction rates of kA >10%.
Instabilities occurred which could be traced to the implicit step
calculations. The source of error was identical with the expficit
step error previously discussed. The difficulty was circumvented oncc
more by using the DuFort-Frankel form for the second derivative in r.

Normally this derivative was replaced in the implicit step by equation

(3.20), repeated here for convenience:

ach 1 azc ach
ar = 2 are . . + ar .. (3.20)
i,j i,j+1

where the derivatives at (i,j) and (i,j+1) were replaced by the "standard"
difference formula (equation 3.21). In this case only the second
derivative at (i,j+1) was replaced by the 'standard" form, whereas the

derivative at (i,j) was replaced by the DuFort-Frankel form written as

ey PPy Bsath )
or [CANEENICIE Y (ry-1; P riqTy)
ZAi"l’J
(ry-r5 (5,0 75.) (3.44)

The use of this modified form for the second derivative in r does not

introduce any additional unknown quantities, but simply replaces Ai
b4

by the known value A,

. .and the unknown value A, . The latter
1,j-1 1

»itl’
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unknown was already present as a result of the approximation for
ach/arz at (j+1j.

For reaction rate values of ka 5}04 the results obtained
using the standard form, equation (3.21), were identical with those
using the modified form above.

It should be emphasized that no difficulties of this nature
were encountered when dealing with transfer from cincufating spheres
at any reaction rate level. The difficulties were present only when

4

considering transfer from n{g{d spheres for kA >10".

{iv) Disadvantages of Parabolic Equatiéns: The disadvantages
discussed for the casc of first order rcaction apply to the secoﬁd
order case as well. Once again it was not possible to obtain value§
of local transfer rates within the vortex region, whereas values

could be obtained over the whole surface for transfer from circulating

spheres.

(v) Mesh Details: As in the first order case the angular increment
was normally 3% with the first increment divided into ten smaller steps.
Thirty radial mesh locations were employed with the same step size
variation as before (equation (3.16)). The outer boundary was usually
placed 1.44 radii from the sphere center.

Computation times for a typical set of parameter values were

of the order of 3 wminutes on the IBM-7040.

3.3 Results and Discussion

54,

The question of whether a numerical solution is a good approximation



of the exact analytic solution is normally a very difficult one, except
in the trivial case where the analytic soiution is available, In cases
vhere general analytic solutions are not known, some indication of the
"accuracy'" of the numerical results may be obtained by comparinévthem
with any available asymptotic solutions, and with experimental results
obtained where the physical situation corresponds to the equation and
its boundary conditions. An additional criterion very often used is
the application of a convergence test, i.e., to decrease the finite-
difference mesh size in order to check whether any further change of
calculated values occurs. These three topics will be covered in the
ensuing discussion.

3.3.1. Convergence Tests and Asymptotic Solutions

One of the tests applied in the earlier study of Johnson and
Akehata (J3) was a comparison with the theoretical value for transfer
into a stagnant fluid (Sh=2)}., They found that as the Peclet number
approaches zero, the calculated Shexrwood numbers did in fact approach
the theoretical value, and were in reasonable agreement with the
theoretical results of other workers.

The computer programs developed in the present study were
checked initially by re—running.some of the cases from (J3). Identical
results were obtained as expected.

The solution available from the equation describing transfer
into a stagnant fluid, equation (3.30), might be expected to supply
an asymptotic solution for very high first order reaction rates. Under

these conditions the concentration boundary layer will become extremely
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thin, and a point should be reached where the transfer rates become
independent of tHe hydrodynamics. Table 3.1 lists results obtained
for transfer from a solid sphere with first order reaction at several
Reynolds number levels. The solutions at k=104'show that there is

a small effect of hydrodynamics as indicated by a slight increase in
Sherwood number with increasing Reynolds number. The results
obtained for k=106 are unaffected by the hydrodynamics. In both cases,
the value at the lowest Reynolds number is a very reasonable
approximation, within 2%, of the exact solution of equation (3.30).

Extensive convergence tests were carried out varying step size
in both the radial and angular directions. Results, along with pertinent
details of mesh size, are given in Table 3.2 for tests of the first
order reaction equation, Results for the second order reaction
equations are given in Table 3.3.

A conclusion readily drawn is that the placing of the outer
boundary at a distance greater than 1.44 radii does not affect the
solutions. Figures_6a and 6b indicate for one particular choice of
conditions that the location of the outer boundary is a realistic
approximation of the conditions c =0 and CB=1 as r— o, Care was
always taken to ensure that the outer boundary was realistically
located and, except in a very few cascs, a distance of 1.44 was
adequate.

Decreasing the angular and radial step sizes also had little
effect on calculated values. In all cases, variations in Sherwood

numbers were less than 2%, indicating that convergence was obtained
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TABLE 3.1

Comparison of Numerical Solutions with
Analytical Solutions for a Stagnant Fluid Transfer
from Solid Spheres

Sc = 500

\ Type of =
Solution Re k Sh
Analytical - 104 202
Numeri cal 20 10* 202.7
Numerical 50 104 202.4
Numerical 100 10 | 205.7
Numerical 200 104 208.8

. 6
Analytical - 10 2002
Numerical 20 106 1964
Numerical 50 106 1964
Numerical 100 10° 1965

6

Numerical 200 10 1965
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TABLE -3.2

Convergence Tests - Transfer from
a Solid Sphere with First Order Reaction

Position Sherwood Number
No. of of AVG.over
Radial AG Quter AT AT AT Entire
Re  Sc, k At Steps  (deg.) Boundary ' 0° 459 900 Surface
200 500 O 5x10"° 30 3 1.44 167.6 143.3  73.6 72.8
5x107° 30 3 1.59 167.9 143.4 73.6  72.8
5x107° 30 1.5 1.44  168.7 143.3  73.6 *
2.3x10"° 60 3 1.44 168.6 143.2  73.1 72.5
2.3x10"° 60 1.5 1.44 168.9 143.2  73.6 *
50 500 10 s5x107° 30 3 1.44 ' 206.9 206.0 202.1 202.4
2.3x10“5 60 3 1.44 208.8 204.6 200.1 202.0
4 -5
200 500 10 5x10 30 3 1.44 248.0 232.7 195.9  208.8
2.3x10”% 60 3 31.3 245.9 228.8 191.9 210.3
2.3x10“5 60 3 1.44 249.6 230.9 193.8 209.9

* Solutions obtained only up to 6=90°



TABLE 3.3

Convergence Tests -
Transfer from Circulating Bubbles and Solid Sphcres
with Second Order Reaction

Position
No. of of
S Sy Wy My tn el gp, e AT
u\.\.«}lo uuuuucu.y J
(i} Circulating Gas Bubbles - Kawaguti-type Profiles
6 6 -5
80 100 100 10 10 5x10 30 3 1.44 466.
2.3x10™° 60 3 1.44 466.
(ii) Circulating Gas Bubbles - Potential Flow Profiles
6 6 -5
200 100 100 10 10 5x10 30 3 1.44 546.
2.3x107° 60 3 1.44 547.
5x107° 60 3 7.02 546.
2.3x10™° 60 1.5 1.44 548.
(iii) Solid Sphere - Kawaguti-type Profiles
4 3 -5
200_ 500 800 10 10 5x10 30 3 1.44 245,
2.3x10° 60 3 1.44 244,

* Solutions obtained only up to 0=00°

Sherwood Number

AVG.over
AT AT Entire
20 an®© o
49 JuU surrace

400.9 238.5 237.4

401.9 238.1 237.3

494.6 341.9  320.1

495.6 341.6 *

491.8 338.4 317.8

228.0 -187.4 143.6

227.8 186.9  143.3

69
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for all practical purposes. This in itself does not prove that the
numerical results obtained are accurate approximations of the exact
solutions of the differential equation; convergence is a 'necessary”
but not a "sufficient'" condition. Firm conclusions, regarding the
applicability of the model, should await comparisons with previous
theoretical and experimental studies.

The comparisons with previous studies is most conveniently
done by dividing further discussion into sections concerned with

transfer from circulating bubbles and transfer from solid spheres.

3.3.2 Transfer from Circulating Gas Dubbles and Penetration
Theory

A recent article by Sideman (S6) has pointed out the
equivalence of penetration and potential flow theory for physical
maés transfer at high Peclet nﬁmbers. He demonstrated how the
equations for transfer from circulating bubbles could be transformed
into the penetration theory equation. Solutions of either equation
resulted in the familiar solution (B3) for physical transfer from a

sphere in a potential flow field given by

1.13 (Pe) ' (3.45)

N

Sh*

f

Solutions of equation (3.3}, with k=o, using potential flow profiles
are compared with (3.45) in Table 3.4. The agreement between equation
(3.45) and the finite-difference solutions is excellent, as it should

be.

Beaverstock suggested* that the results for transfer from

* Reviewer's comment on reference'(J4) when submitted for publication
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Re ScA
200 100
500
1000
500 100
500

1000

TABLE 3.4

Comparison of Finite Difference and

Boussinesq Solutions

PeA=RexScA

2x10
10

2x10

5x10
25x10

5x10°

Sh*

Numerical

160.6

358

506

253

566

800

62.

Sh+
Boussinesq

159.8
357

506

253
565

799
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circulating bubbles could be compared with penetration theory, even when
the transfer was accompanied by a first or second order rcaction. This
reviewer pointed out that the comparison could be made most conveniently

if the results of this study were expressed as a plot of "enhancement
factor'" versus /M. The enhancement factor is defined as the Sherwood
number for transfer with chemical reaction divided by the Sherwood number
for physical mass tranéfer. . The quantity /M has been widely used (B9,

B10, B12), and is a measure of the reaction rate level. Such a plot made
it possible to compare the results for transfer from circulating bubbles
with Danckwert's analytic solution for first order reaction (D1), as well
as with the numerical solutions obtained By Brian et al for fhe second order
case (B9). This comparison is shown in Figure 7, and the calculated values
from which the curves were drawn are listed in Tables 3.5 and 3.6. The
agreement between the values for transfer from circulating bubbles and
peﬁetration theory is exccllent for both first and second order reaction.
The second order results approach asymptotically the limiting enhancement

factor for an infinitely fast second order reaction (B9) given by

cp (3.46)
A

It can be concluded that mass transfer with or without chemical
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reaction from circulating gas bubbles can be described very well by the
penetration theory. With the exception of physical transfer under potential
flow conditions (S6) this equivalence had not been demonstrated previously.

As a result, the penetration theory equations can be used with some confidence
in future to describe transfer from circulating bubbles, making it

unnecessary to deal withbthe more complex equations (3.3, 3.4 and 3.5) of

this study.
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TABLE 3.5

Mass Transfer from Circulating
Gas Bubbles - First Order Reaction

| _ _ ooSh
Re k Sc Sh* Sh M “Sh*
CALC
20" 102 500 91.0 92.1 0.22 - 1.01
104 100 41,9 203 4.8 4.8
500 91.0 209 2.2 2.3
1000 125 222 1.6 1.8
10° 100 41.9 1963 47.7 47
500 91.0 1963 22.0 22
1000 125 1963 16.0 16
+ 2
50 10 500 148 149 0.14 1.01
10% 500 148 235 1.4 1.6
10° 500 148 1970 13.5 13
. 2
80 10 500 270 271 0.07 1.00
104 100 119 219 1.7 1.8
500 270 316 0.74 1.2
1000 372 410 0.54 1.1
108 100 119 1964 16.8 17
500 270 1964 7.4 7.3
1000 372 1966 5.4 5.3
200** 104 100 161 21 1.2 1.5
500 358 397 0.56 1.1
1000 506 534 0.40 1.05
10° 100 161 1963 12.4 12
500 358 5.6
1000 506 4.0
soo*t 104 100 253 307 0.79 1.2
500 566 590 0.35 1.04
1000 800 817 0.25 1.02
100 100 253 1977 7.9 7.8
500 566 3.5
1000 800 2.5
+ Velocity profiles from Hamielec et al (H2, H3).
+4 ‘

Potential flow velocity profiles
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Mass Transfer from Circulating
Gas Bubbles - Second Order Reaction

— S Sh

* -

Sc, Scy Sh Sh M O=gw
100 100 41.9 83.3 47.8 1.99
500 500 91.0 180 22.5 1.98
1000 1000 125 250 16.0 2.00
100 100 119 237 16.8 1.99
500 500 270 520 7.6 1.93
1000 1000 372 717 5.4 1.93
100 100 161 321 12.4 1.99
500 500 358 702 5.6 1.96
1000 1000 506 955 4.0 1.89
100 100 253 502 7.9 1.99
500 500 566 1043 3.5 1.85
1000 1000 800 1370 2.5 1.72
500 800 - 91.0 92.1 0.22 1.01
91.0 203 2.2 2.2

91.0 1011 21.9 11.1

500 800 148 150 0.14 1.01
148 232 1.4 1.6

148 1314 13.5 8.9

500 800 270 271 0.07 1.00
270 321 0.74 1.2

270 1616 7.4 6.0

Velocity profiles from llamielec et al (H2, H3).

Potential flow velocity profiles



3.3.3 Transfer from Rigid Spheres

(1) Work of Baird and Hamielec: Several theorctical studics of
physical mass transfer from sphereé, as discussed in Section 1.6, allow
for the prediction of local mass transfer rates up to the separation
point. In the opinion of the author, the analytic solution obtained

by Baird and Hamielec (B1), via the thin concentration boundary layer
assumption, is one of the most reliable. In addition, these authors
employed the same velocity profiles as this study and, thercfore, there
should be agreement between their analytic values and those obtained

by finite-difference techniques. A typical comparison is shown in
Figure 8 where local Sherwood numbers are plotted against angle. The
excellent agreement should serve as an additional check on the numerical
procedures.

(ii) Disadvantages of Parabolic Equation: It has been previously
noted that the use of the parabolic equations (3.3, 3.4 and 3.5) has
limited solutions to local mass transfer rates up to the scparation
point. In some previous theoretical treatments assumptions were made
which allowed local rates to be calculated in the vortex region. These

have becn reviewed in Section 1.6.2 where it was concluded that no onc
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of these theories is exact in the vortex region. Baird and Hamielec's (Bl)

"fresh fluid" assumption undoubtedly leads to high values; the efforts of

Lee and Barrow (L3) do not agrece with experimental values; while the
theories of Garner and Keey (G6) and Grafton (G8) agree only with the

questionable correlations of Garner and co-workers (G4, G5, G6).

When considering purely physical mass transfer from solid spheres
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the numerical methods of this study are not an improvement on previous
theoretical work, since the equations used do not describe transfer in

the voftex region. The methods developed, however, do serve as a

useful check on previous investigations and allow for the prediction of
mass transfer with simultaneous chemical reaction, apparently for the
first time. Although only solutions for the first and second order
reactién cases have been obtained, the technique for second order reaction
is equally applicable to higher order cases (B10).

In this work, average Sherwood numbers based on the entire
surface area were calculated by assuming no transfer beyond the
sépaiation point. In calculating overall mass transfer rates zeros
were inserted for any local value ejz~the separation angle. This
assumption, although somewhat arbitrary, may not be too far from
reality under conditions when there is no vortex shedding. For physical
mass transfer it is quite possible that the fluid circulating in the
vortex will become almost saturated with transferred material, thus
feducing the driving force markedly. In the reaction situation the
main stream reactant would probably be rapidly depleted in the vortex,
particularly for high reaction rates, and the region may once again be
almost saturated with transferred material. At the lower Reynolds
numbers, where there is only a small percentage of the surface area in
the vortex region, the assumption of zero mass transfer will be less
critical. This study has been confined to Re <200, thus avoiding the
problem of transient wake behaviour and at the same time keeping the effect

of the zero transfer assumption to a minimum. The fact that the velocity
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profiles employed here become inaccurate at Re >200 is an additional

factor, as previously discussed.

(iii) Comparison with Experimental Correlations: Data dealing with

mass transfer and simultaneous reéction from spheres have not been reported.
However, physical mass and heat transfer data are in abundance. Making

the assumption of no mass transfer beyond the separation point it was
possible to obtain average Sherwood numbers from the numerical solutions
and to compare them with the available correlations. Results for transfer
into liquids, where the Schmidt number values can be expected in the range

102 to 104, are presented in Figure 9. The correlations for the benzoic

acid-water system are taken from the paper by Rowe et al (R4) who
recalculated the results of other workers using a benzoic acid diffusivity
of 7.9 x 10-6 cmZ/sec at 20°cC. This results, in some cases, in correlations
which differ slightly from those contained in the original publications.
The curve from the numerical procedures of this study was obtained using a
Schmidt number of 456.  Data obtained from transfer to air experiments
are compared in Figure 10 with a numerically obtained curve for a
Schmidt number of unity. Also included on this graph are the theoretical
results of Ross (R3).

In view of the scatter of the various experimental correlations,
a rigorous check on the correctness of the numerical values for transfer
from rigid spheres is hampered. It can be concluded from a study of
Figures 9 and 10 only that there is general agreement between the finite-

difference solutions and the more reliable experimental correlations. The

data of Garner and co-workers and of Rowe, at Scnl, are not included in
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the latter category. The agreement with the theoretical results of
Ross is good. Since the latter worker used the same velocity profiles
as utilized here, but employed an intecgral method, this comparison serves
as another useful check on the numerical procedures. In fact, it would
be expected that the finite-difference technique would give more accurate
predictions of mass transfer up to the separation point than an integral
method, which requires the assumption of a polynomial form for the
concentration profile.

It is interesting to speculate on the effect of Schmidt number
on the correlation constant (e.g. constant = 0.60 for the Ranz and
Marshall correlation). Correlations obtained from data for transfer into
air have, on the average, lower coefficients than those for transfer
into liquids. The numerical solutions obtained predict the same effect;
a straight line through these solutions would have a slope of approximately
0.55 frqm Scnvl, and a value of about 0.65 for Scn500. These observations
lend support to the many discussions (K2, R4) regarding the adequacy of

the simple relationship usually used for correlation purposes, i.e.

1
1
Sh= 2+ ARe’se /3

(3.47)
It is usually concluded that equation (3.47) is not always suitable and
some theories suggest that the Schmidt number exponent should depend on
the Schmidt number value (K2). This work confirms that equation (3.47)
is somewhat inadequate but does not allow the question to be resolved
completely.

iv) Rate of Transfer at Frontal Stagnation Point:  Several boundary

layer developments have considered transfer from the frontal stagnation
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point of a solid sphere. Frossling (FS)'has obtained the following
relationship:

1 1

Yoo /3 /3
[Sh/Re“ Sc ]G=OO

= 1,53 - 0,190/Sc : (3.48)

for 0.1 <Scew
Linton and Sutherland (L7) used the same approach to obtain

1 1
3
/3]e=00 = 1,478 - 0.158/Sc / (3.49)

5

[Sh/Re * Sc

for 0.5 <Sc<=
Values obtained from the above equations along with the theoretical
results of Ross {(R3) and this worker are listed in Table 3.7. At
values of Scnl the agreement at the higher Reynolds numbers is excellent.
That the agreement is somewhat less at the lower Reynolds number is not
surprising since thin boundary layer assumptions would not be expected
to hold at Reynolds numbers much below 200. The agreement among values
at a Schmidt number of 500 is better overall. The improved agreement
between predicted values at a Reynolds number of 100 is probably due
to the thinner concentration boundary layer present under high Schmidt
number conditions. At lower Schmidt numbers, the relatively thick
concentration boundary layer no doubt aggravates any inaccuracy

introduced by the assumption of a thin hydrodynamic boundary layer.

3.3.4 Conclusions

The proposed mathematical medel has been solved via finite-
difference techniques, and the results obtained have been compared with
previous theoretical ahd experimental values,.

Results for mass transfer from circulating gas bubbles with



Re Sc
100 1.0
100 1.0
200 1.0
200 1.0

.
B.L. 1.0
B.L. 1.0
100 500
200 500
B.L. 500
B.L. 500

*

TABLE 3.7

Mass Transfer from Frontal

Stagnation Point

[(Sh —_ 2)/Re%Sc1/3]
e

1.13

1.04

1.37
1.34

1.32

1.37
1.49
1.51

1.45

Boundary Layer theory

0

(o)
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Source

Ross (R3)
This work
Ross (R3)
This work
Frossling (F5)

Linton §
Sutherland(L7)

This work
This work
Frossling (F5)

Linton §
Sutherland(L7)
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first or second order chemical reaction are in excellent agreement with
penetration theory, when compared on an '®nhancement factor' basis.
Predicted rates of forced convection transfer from rigid spheres
are in reasonable agreementlwith correlations obtained from heat or
mass transfer experiments.
Experimental data for mass transfer with first or second order
reaction from rigid spheres must be obtained in order to complete the

evaluation of the model.



4. EXPERIMENTAL

4.1 Intreduction

(1) Apparatus: No experimental work has been reported on mass transfer
with chemical reaction from single spheres. In order to further evaluate
the model developed in the previous section, it was necessary to obtain
such data under forced convection conditions at intermediate Reynolds
numbers. Previous studies dealing with physical transfer from single
spheres have usually consisted of fixing the test sphere in a flowing
liquid (G4, G5, G6, L7, R1, R3, R4, T3, Y3). A "water tunnel' apparatus
suitable for the study of transfer into water was available in the
Chemical Engineering Department of McMaster University. The apparatus
contained copper tubing, brass flanges, and cast iron in the form of

a Venturi meter. The presence of these materials limited the choice

of a suitable gas-liquid reacting system.

(ii) Chemical System: The requirements of a reacting system were

threefold:

1. The chemicals should not attack the water tunnel matefial, at
least not to such an extent that the apparatus would be damaged,
or the absorption or chemical reaction rates affected.

2. The gas-liquid system should have a high rate of reaction, i.e.,
there should be a large increase in absorption rate with increasing
reactant concentration in the liquid. This was desirable since
it would result in easily detectable increases in absorption rates,

in spite of normal experimental scatter, while utilizing relatively

77
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dilute solutions.
3. The kinetics of the reacting system should be readily available,
thus eliminating the necessity for auxiliary kinetic studies.

The first requirement made it impossible to consider the sodium
and potassium hydroxide solutions used by other workers (D3, N1, R2) in
studies with laminar liquid jets. The second requirement eliminated
the buffer solutions which have been the subject of several investigations
by Danckwerts and co-workers (D3, R2, S2). ‘After a careful study of the
literature and a few preliminary experiments, it was decided that the
system carbon dioxide-monocthanolamine was most suitable for this study.
Other carbon dioxide-amine systems have been investigated (e.g.
monoisopropanolamine(S2), diethanolamine (N2)), but none so extensively
as monoethanolamine (AS, A6, C6, El).

4.2 System and Reaction Mechanism

The carbon dioxide-monoethanolamine system has been the subject
of investigations by Emmert and Pigford (El), Astarita (A5, A6), and
Clarke (C6) using mainly the laminar liquid jet apparatus. The reaction
mechanism has been explained by these authors in terms of the two main
reactions:

+

CO2 + HOCH CH2NH -+  HOCH,CH_NHCOO  + H

2 2 2772

. + ' . ) +
hOCHZCHzNH2 + H = hOCHZCHzNH3 (4.1)

Yielding the overall reaction:

: 1 N 1 o Y i H -
C02+2hOCH2CH2!\H2 -+ ILOCHZCHZx\hS + HOCHZCHZNMCOO

The second reaction occurs instantaneously, while the first reaction,
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although fast, is the limiting step (A6). The reaction rate constant
for the rate controlling step has been determined by Faurholt et al (J1)
as 3190 liters/mole-sec. at 18%C (Cl, E2). Using an activation energy
of the order of 12-13 kcal (C6é), the reaction rate constant at 25°¢
can be estimated as 5400 liters/mole-scc as reported by Emmert and
Pigford (E1). Astarita (A5), on the other hand, reports this same
value but at 21.5°C. Clarke (C6) reported values around 7000 liters/mole-
sec at‘ZSOC which he states were calculated from the data of Faurholt et
al (J1). Since the value used by Emmert and Pigford was obtained directly
from Faurholt via a 'private communication', the quantity reported by
these authors was taken as the most reliable and used throughtout this
work. The sensitivity of the theoretical calculations to the rate constant
chosen will be discussed in a subsequent section.
4.3  Apparatus

The water-tunnel used to carry out the absorption rate measurements
is shown schematically in Figure 11. The constant head tank on the top
level is approximately 24.5 feet above the bottom circulation tank. The
connecting lines were of two inch c;pper tubing with streamlined fittings
to reduce turbulence at the connections. The test section was constructed
of lucite. The capacity of the system is approximately 55 Imperial gallons.
Coarse temperature control was effected in the bottom tank where cooling
water was passed through a copper coil and steam could be admitted within
the vessel jacket. This coarse control coupled with the use of an ordinary

laboratory Haake thermostat unit in the top tank allowed the temperature

to be controlled within £0.1°C.  The pump was a centrifugal type driven by
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a 3 h.p. motor. Liquid flow rates were determined by means of Fisher-
Porter glass rotameters equipped with stainless steel floats. Calibration
curves for these rotameters are shown in Appendix E.

Details of the test section and gas feeding apparétus are given
in Figure 12. The gas was fed from a gas cylinder, through a copper
coil, and then bubbled through a Fisher-Milligan gaé washer where it
became saturated with water vapor. The constant temperature bath was
maintained at the same temperature (25°C) as the liguid in the water
tunnel, The syringé used to feed the gas bubble was a Manostat
micropipet syringe with a 10 c.c. capacity. It was modified slightly
to reduce the amount of gas leakage. Details of the gasket arrangement
are shown in Figure 13.

The gas bubble was formed on a tapered Teflon tip which had
been fitted over stainless steel tubing. Dimensions and particulars
of the bubble support employed in this study are shown in Figure 14.

The carbon dioxide employed was Coleman grade (content of CO2
99.99*%) obtained from the Matheson Gas Company. Technical grade
monoethanolamine was supplied by the Dow Chemical Company of Canada
Limited. Distilled water was used for all runms.

4.4 Operating Procedure

The apparatus was flushed out for 3-4 hours before each
experiment with a flow of water from the regular city main. After
draining, the water-tunnel was filled with distillcd w;ter. At this
point a small flow of gas had to be maintained through the gas feeding

apparatus sufficient to prevent the back flow of water into the syringe.
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Once the temperature had been brought to the 25.0°C level used
throughout the study, it was possible to begin absorption rate
measurements.

The valve between the syringe and the gas washer was closed
and a fresh bubble formed on the Teflon tip. The size was fixed by
observing the bubble through a cathetometer (Griffin § George Limited,
No.P.369). The top of the bubble was maintained level with the
cathetometer cross-hair, a measured distance from the Teflon tip. Only
one bubble size was employed in this work, measuring 2.5 mm from the
bubble support to bubble top. Gas was fed manually from the syringe as
required. The volume absorbed was obtained by recording syringe volume
counter readings over seyeral consecutive timed intervals. Normally the
volume readings were taken every 30 seconls over a total period of from
four to six minutes. Measurements were begun from the time a bubble of
the proper size was formed. This formation step usually required five
to ten seconds. Two persoﬁs were needed to carry out the experiments;
one to maintain a bubble of fixed size, and the other to record volumes

at each time interval.
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5. RESULTS AND DISCUSSION

Absorption rates were determined at each of four monoethanolamine
concentrations: 0.0, 0.33, 0.66 and 0.99 mole %. At higher concentrations,
it proved difficult to maintain a bubble of constant size over any
reasonable interval. Four liquid flow rates were studied. The centerline
velocities were 1.12, 1.82, 3;68 and 5.8 cm./sec. Attempts at operation
with higher centerline velocities were not successful as the bubble
behaviour and observedvabsorption rates became quite erratic. All
studies, therefore, were carried out with relatively low velocities.

The corresponding pipe Reynolds numbers were always <1700. Visual
observations of dye flowing through the test section offered supporting
evidence that the flow was always laminar.

Duplicate runs of each of the non-zero monocthanolamine
concentrations were carried out. Absorption rates for carbon dioxide
into distilled water were determined a total of six times at each of the
four flow rates.

Bubble size and bubble support dimensions were not varied in
this study.

5.1 Absorption Rates from Single Gas Bubbles

Typical results of absorption rate versus time mecasurements are
shown in Figure 15. The lower curve is for the absorption of carbon
dioxide into distilled water, while the upper curve is for absorption

into an aqueous monocthanolamine solution
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(i) Initial Falling Rate Period: The rapid initial decrease in réte
for the reaction case was never obscrved for the carbon dioxide-water
system. It is quite likely that such an initial period exists for this
system also; however, it may be too short in duration to be detected by
readings at 30 second intervals. The initial decrease is probably due
to the accumulation of surfactant on the bubble surface which tends to
inhibit, and finally prevent complectely, any interfacial movement.
Additions of surfactants, in amounts over and above that already present
through normal contamination, did not appear to speed up the accumulation
process. However, interpretation of the results was difficult because
of changes in bubble shape caused by these additions. A study of
this decay effect was not considered desirable, since long periods were
required to wash out any surfactant matérialé added to the water-tunnel.
In this study the bubble, when formed, is probably fully circulating.
The rapid accumulation of surfactant quickly chahgcs the bubble behaviour
to that of a noncirculating bubﬁie, which, for theoretical studies, can
be considered as a rigid sphere. The mass transfer rates recorded during
the initial period for the carbon dioxide-monoethanolamine system are
very high. The resulting surface flux is appreciable, and probably
hinders the accumulation of surfactant to a much larger extent than for
the no reaction case. Thus it would be expected that the decay period
would be of longer duration in the carbon dioxide-monoethanolamine
experiments. The erratic absorption rate measurements obtained at higher
velocities (>5.8 cm) were probably the result of surfactant being swept

from the interface periodically. Measurements under these high velocity
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conditions usually exhibited several periods of rapidly decreasing
absorption rates identical to the initial behaviour shown in Figure 15,
(ii) Linear Portion of Curve, Absorption Rate vs. Time: Peyond

the initial period the absorption rate was almost constant with time.

In about one-half the experiments reported, there was no significant*
decrease in absorption rate over the linear part of the curve. Any
decreasé in absorption rate was probably a result of the accumulation

of oxygen and nitrogen in the bubble. A de-gassing effect was confirmed
by a simple experiment outlined in Appendix I. 'It was not possible to
deaerate the distilled water used in this study, but the effect of inert
gas accumulation which results is not considered to be critical. If

the amount of oxygen and nitrogen transferred into the bubble were
large, the apparent rate of carbon dioxide absorbed would be lowered,

as the amount absorbed would have been partially replaced by the

inert gases. In addition, the solubility and, consequently, the
concentration driving force of the carbon dioxide in the liquid would
be markedly reduced. A significant transfer of inerts into the bubble
would then cause a large decrease in apparent absorption rate with an
eventual approach to zero. The decreases in absorption rate in this
study were, when significant, very small. It can, therefore, be
concluded that only a small quantity of inert gas could have

accumulated in the bubble during the absorption period.

(iii)  Analysis of Data: Only the data points which appeared to be in
the linear region were considered for each run. The small effect of the

gradual accumulation of inerts was eliminated by putting the best least

* All statistical tests were carried out at the 95% confidence level.
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squares straight line through the data, in the linear region, and
extrapolating to zero time, as shown in Figure 15. The intercept

then gives the absorption rate for a single, noncirculating gas bubble
before the accumulation of inerts. Absorption rate measurements for

2 to 4 bubbles were combined in calculating the transfer rate for any
one condition of flow rate and concentration level,

5.2 Célculation Procedure

The following expression may be written by way of definition of
the liquid phase mass transfer coefficient:

¥ - . S
i‘coz = kA (C7-c) , (5.1)

Where NCQZ is the absorption rate and A  is the bubble surface area.
Equilibrium at the gas-liquid interface has been assumed, and ¢S is
therefore the solubility of carbon dioxide in the solutions. Clarke (C6)
has shown that any change in carbon dioxide solubility due to the presence
of monoethanolamine is unlikely. The concentration of carbon dioxide in
the bulk was always negligible during the experiments and, therefore c_
was zero. Bubble surface areas were dectermined from photographs. The
details are giyen in Appendix F.

The value of NC was calculated from the least squares analysis

0,

outlined in the previous section. Corrections were applied for the pressure
at the test section location (5.2 p.s.i.g.) and "leakage rate'. The latter,
a measure of the rate at which carbon dioxide escaped from the gas syringe
into the atmosphere, was determined with the aid of a sensitive differential

pressure gauge (see Appendix G). This leakage correction, normally

0.016 c.c./min., when applied to the high absorption rate values obtained



91.

for the COz—MEA.system, amounted to only a small percentage of the
observed rates. For the C02—waterbsystem, with its much lower transfer
rates, the correction amounted to as much as 30% of the 6bserved values.

From the corrected absorption rates the value of kL could be
calculated from equation (5.1), and the Sherwood number could be
obtained from equation (3.14):

Sh = 2RkL/DC02 (5.2)

where R was the radius of the gas bubble, and D the diffusivity of

CO2

carbon dioxide in water at 25°C. The radius was obtained by
approximating the gas bubble by a sphere having the same surface area
(Appendix F). The value for the carbon dioxide diffusivity was taken
from the work of Davidson and Cullen (D4). Clarke (C6) has indicated
that the presence of monoethanolamine in solution is unlikely to
affect the diffusivity.

In order to correlate the data in terms of Reynolds and Schmidt
numbers, additional information such as liquid velocities, viscosities,
monoethanolamine concentrations and diffusivity was required.

The pipe Réynolds numbers based on the measured volume flow
ranged from 300 to 1600. Since the flow was, thercfore, always in
the laminar region, and the test section is preceded by more than-

20 feet of pipe containing no sharp elbows or other obstructions, a

well developed parabolic velocity profile was obtained in the test
section (K5). A knowledge of the total flow rates thén readily permitted
calculation of the centerline velocifics. As the bubble_diameter was

only 6% of the test section diameter the center line velocity, rather
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than the average velocity, was uscd.

A Cannon-Fenske calibrated viscometer was uscd to determine the
viscosities of the monoethanolamine solutions.

Concentrations were determined by measuring the solution
refractive index. Calibration curves are presented in Appendix E.

A wide range of values for the diffusivity of monoethanolamine
in water has been reported in the literature (I1, T2). The interferometric
technique used by Thomas and Furzer (T2) is quite accurate, and their
experimentally determined diffusivity values are in reasonable agreement
with theoretical predictions (Il). The results of Thomas and Furzer
were used in this study. The effect of a different choice of diffusivity
value on the theoretical results of this investigation will be discussed.

Values of the various parameters are listed in Table 5.1. It
should be noted that a viscosity correction has not been applied to the
diffusivity of carbon dioxide, since this correction would be smaller
than the scatter in reported values (D4). Similarly,,no viscosity
correction was applied to the monoethanolamine diffusivity.
5.3 Results
(i) Experimental Correlations: The experimental results are shown

/3 plot in Figure 16. The

in Table 5.2 and presented as a Sh vs. Re%Sc1
latter representation was used to facilitate comparison with previous
mass transfer results and with the theoretical work of the previous
section. In all cases the data were fitted with best least squares

straight lines. The following relationships were obtained

1,
for O mole % MEA  Sh = 23 + 0.52 Re’sct/3 (5.3)



0.33

0.66

0.99

Viscosity
c.p.

0.889

TABLE 5.1

Physical Properties at 25.0°C

Refractive
Index

1.3339

1.3352

1.3366

1.3379

Diffusivity

CO2 MEA

2
cm /sec c¢m /sec

1.95%107° 1.07x10"

1.95x1o'5 1.07x10°

5

1.95x107° 1.07x10"

o

5

5

1.95x107° 1.07x107°

93.

Solubility of
Carbon dioxide

gm. moles/liter

0.0338
0.0338
0.0338

0.0338



TABLE 5.2

Experimental Results -
Absorption from Carbon dioxide Bubbles
into Monoethanolamine Solutions

CONC, L L
MEAO . Re SCA Shobserved Shcorrectcd*
mole %

0.0 39.8 456 73.6 53.8

60.8 41.0

68.4 . 48.6

66.8 47.0

66.3 ‘ ‘ 46.5

60.3 . 40.5

64.8 456 83.3 63.5

69.0 49,2

86.7 66.9

86.6 66.8

73.5 53.7

70.8 51.0

131 456 83.3 : 63.5

150 456 80.6 60.8

96.7 76.9

101 81.0

81.3 61.5

87.3 67.5

207 456 106 86.0

98.3 78.5

92.3 72.5

98.8 79.0

108 88.0

221 ' 456 107 87.

[en]



CONC.
MEA Re
mole

0.33 38.5

62.5

126
144
213

0.66 37.2

60.4

140

193

0.99 36.3

59.2

137

189

Sc

472

472

472
472
472

488

488

488

488

503

503

503

503

TABLE 5.2 (Continued)

<

Sh
observed

121
114

110
142

156

173 -

21¢C

161
173

189
183

231
242

269
307

174
178

197
239

319
312

367
357

* corrected for leakage rate of 0 0156 cc/min

|

S

—

1

corrected¥®

101
94.0

95C.0
122

136

153

190

141
153

169
163

211
222

249
287

158
154

177
219

299
292

347
337

95.
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L
for 0.33 mole % MEA Sh = 26 + 1,37 Re* Scl/3 (5.4)
o W . 1/3
for 0.66 mole % MEA Sh = 52 + 1,90 Re "~ Sc (5.5)
° L. 1/3
for 0.99 mole % MEA Sh = 12 + 3.04 Re” Sc (5.6)

Figure 16 also includes the data obtained by Griffith (G9) for the carbon
dioxide-water system. These data were fitted with the least squares
straight line to obtain

1
Sh = 11 + 0.50 Re? sc /3 (5.7)

Griffith, on the other hand, correlated his data By forcing the straight
L 1

line fit through the theoretical limit of Sh=2 at Re Sc '= 0, and

found

1
Sh =2+ 0,72 Re"Scl/3

(5.8)
If the data of this work are fitted by a straight line through the same
limiting value (mot necessarily a reasonable step since neither Griffith's
data, nor the data obtained in this investigation, show any inclination
to approach this value despite its theoretical significance) the
correlation becomes:
Sh =2+ 0.78 Rel/2 Sc1/3 (5.9)
The results of this study are somewhat higher than those obtained
by Griffith. A statistical evaluation showed that the slopes, as expressed
by the coefficients 0.52 and 0.50 in equations (5.3) and (5.7), are not
significantly different. This discrepancy is most likely due to some

systematic error.

It should be emphasized that neither the discrepancy between
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correlations, nor the scatter of the experimental data, was excessive or
unusual. For cxample compare the several correlations for benzoic acid
-water in Figure 9 and the variation in the heat transfer results of Ross (R3).
(ii) Sources of Error: The measurement of rates of gas leakage from

the syringe is the most obvious source of error. The apparatus could not

bé tested for leakage rate without being partially dismantled and

connected to a differential pressure gauge as détailed in Appendix G.

Although test conditions were as close as possible to the conditions

under which absorption measurements were taken, the possibility of a
systematic error in this step cannot be dismissed.

A second possible reason for the observed discrepancy may have
been the result of bubble support differences. Griffith used a support
which covered less than 5% of the surface aréa of the equivalent sphere.
In this investigation the support was somewhat larger and covered
approximately 13% of the area. The presence of the bubble support, in
effect, reduces the area available for mass transfer in the vortex region.
Since local transfer rates in this region are expected to be lower than
elsewhere on the surface, by removing a larger portion of this area, the
resulting observed average transfer rates might be expected to be higher
than in Griffith's case. An experimental study of the effect of bubble
support size on observed mass transfer rates was not included as part
of this study.

A third related factor to be considered is the hydrodynamic
effect of the bubble support., It is conceivable that changes in the

location of the separation point could result from the presence of
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the bubble holder. Any effect of this nature would probably be more
pronounced in this study since the support was larger than used by
Griffith (G9). Velocity profiles would be affected over only a small
area of the bubble, and the effect on overall absorption rates would

be expected to be small. A theoretical investigation of the effect of

an obstruction behind a spherc may now be possible utilizing the numerical
procedures developed recently by Hamielec et al (14, H5). It is likely
that by a suitable alteration of the boundary conditions, which these
equations are made to satisfy, it would be possible to obtain a reasonable
representation of flow around a sphere attached to a support of arbitrary
size and shape.

In general, it can be concluded that the discrepancy between the
results of this work and Griffith's data can be explained in a qualitative
manner. In view of the scattef in mass or heat transfer correlations
reported in the literature, it is not possible to draw any firm conclusions
regarding the accuracy of the physical mass transfer data of this
investigation. If, as has been argued, the main source of error can be
attributed to the gas leakage measurement, then the results obtained for
the carbon-dioxide-monoethanolamine svstem should be more reliable,
since the leakage corrections in this case were a much smaller percentage
of the observed absorption rates.

(iii)  Natural Convection: In the development of the mathematical model
it had been assumed that natural convection effects were negligible. A
check was made to determine whether natural convection could be expected

under the experimental conditions of this work. The relationship developed
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by Garner and Keey (G6) was employed. These authors stated that forced

convection alone would be significant if

Re >0.4 Gr’/z/Scl/6 (5.10)
The right hand side of equation (5.10) was evaluated using the most
extreme case, that of the highest monoethanolamine concentration in the
bulk and pure water at the interface. It was found that forced convection
alone should be significant for Re >10. Since the Reynolds number of
this study were greater than 35 no natural convection effects would be
expected, This is reasonable when it is noted that the density of
monoethanolamine solutions are not markedly different from the density of
water over the range studied (T2). Thus the buoyancy forces would not
be large.

Observations of refractive index patterns around the gas bubble,
visible when absorption into monoethanolamine solutions was taking place,
confirmed that natural convection could not be a major factor in this
study. The straight line fitted through the physical mass transfer data

A
did not pass through the limiting value of Sh = 2 at Re*scl/3

= 0 (see
equation 4.3). This does not mean that natural convection was a factor
as this can be explained away on theoretical grounds. For creeping flow
and high Schmidt numbers Sth-ReI/SScl/3 and the slope is a function

of Reynolds number on the type of plot employed here (Figure 16). Thus
a linear extrapolation is not valid and should not be expected to give
an intercept value of 2.

(iv) Interfacial Phenomena: Interfacial activity, if present, would

be expected to result in higher mass transfer rates over the whole flow

MILLS MEMORIAL LIBRARY
McMASTER UNIVERSITY
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rate range. Such activity could be caused by surface tcnsion gradients
resulting from the concentration changes around the bubble. Ilowever,
fluctuations of the gas-liquid interfacc werc not visually apparent
except during a short period following bubble formation. Apparently,
the surfactant film which forms on the bubble surface, reducing
interfacial movement, also proves very effective in suppressing interfacial
activity. In the author's opinion the absorption rates on the linear
portion of the curve (Figure 15) were unaffected by interfacial activity.
(v) Conclusions: It has been concluded thét the experimental results
obtained in this study are suitable for comparison with solutions to the
model equations developed in Section 3.1.

It has not been possible to explain completely the deviation
of the physical mass transfer correlation intercept from the theoretical

value, although the gas leakage measurement may have been a contributing

factor.
5.4 Auxiliary Studies
(1) Bubble Shape: All results reported herein were obtained with the

bubble support facing down, as shown in Figure 12. Initially, experiments
were carried out with the bubble facing upward, but results obtained were
contrary'to all previous mass transfer corrclations. For the configuration
of Figure 12 the bubble was ellipsoidal, whereas in the initial studies it
was elongated in the vertical direction. An explanation for the diffcrences
in behaviour is given in Appendix I, where it has been concluded that

bubble shape was the key factor. Indications are that a theoretical and

experimental study of flow around, and transfer from, bubbles of different
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shapes would be of considerable interest.

(ii) Shape of Bubble Support : Altihough the effect of bubble support
size was not investigated, a preliminary look was taken at the e¢ffect of
support shape. In order to do this the tapered Teflon tip was altered
to cylindrical form without changing the dimensions in the vicinity of
the nozzle. A series of experiments showed that, at least for this
small change, therec was no effect of tip shape on mass transfer. Results
of this test are given in Appendix I.

(iii) Presence of Metals in Solution: As previously indicated the
copper and brass material of the water tunnel restricted the choice of
suitable gas-liquid reacting systems. There was a corrosion effect cven
for the monoethanolamine system chosen. This was evidenced by a solution
color change, to a definite blue, after prolonged contact with copper
and brass. Two separate tests, detailed in Appendix I, were carried out
determining that the presence of these dissolved metals did not affect
absorption rates, even up to copper concentrations of 0.3 gm./liter.

5.5 Comparison of Theoretical and
Experimental Results

5.5.1 Preliminary Comparisons

The solution of the mathematical model, developed in Section 3.1,
made it possible to compare the numerical results with previous
experimental work on heat or physical mass transfer. For transfer from
circulating gas bubbles, with first or second order reaction, the model
results were compared with penetration theory. In both cases the agrecement

was very good and provided convincing evidence of the uscfulness of the
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model.

Clarke (C6) has shown for the carbon dioxide-moncethanolamine
system that if the gas-liquid contact times exceed 10—Sseconds, second
order reaction kinetics are applicable. The shortest possible contact
time defined for this calculation as 2R/U, was 50 x 10_3 seconds;
thus for this study, second order behaviour was assured. Experimental
conditions resulted in the gas bubble behaving like a rigid sphere, as
the accumulation of surfactant on the surface prevented interfacial
movement.

With the knowledge of the recaction rate constant and the diffusivities
of both carbon dioxide and monoethanolamine; it is possible to calculate
the concentration profiles arocund the sphere for any given reactant
concentration and Reynolds number. It should be emphasized that the
rigid sphere behaviour of the gas bubble required the use of velocity
profiles for flow around solid spheres. This led once again, to the
difficulties associated with the prediction of mass transfer rates in
the vortex region. In purely physical mass transfer it was assumed that
no transfer occurred in the vortex region, and the same assumption
was made for the chemical reaction case. This may be quite reasonable
under steady state conditions, as after the monoethanolamine initially
present in the vortex region has been consumed further reaction will
depend on the rather slow transfer of reactant from the main stream.

Solutions of the model ¢quations for second order reaction
conditions covering the range of the experimental study are shown in

Table 5.3. Thesc numerical values are compared in Figure 17 with
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NON-CIRCULATING GAS BUBBLE WITH SECOND ORDER REACTION
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456
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Sc

832
862
890
920

832
862
890

920 .

832
862
890
920

832
862
890
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TABLE

5.3

x10~

x10°~

1.16
1.16
1.16

1.16
1.16
1.16

1.16
1.16
1.16

1.16
1.16
1.16

27.7

71.5
110
150

37.2

95.9
149
202

50.4
125
194
262

72.8
176
277
378

104.
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the experimental correlations obtained. Griffith's data for equation
(5.7) has been included as well.

In general, the agreement between the predicted and experimental
values is excellent. For physical mass transfer, the numerical results
agree more closely with Griffith's data than with the data of this study.
Possible reasons for the discrepancy between the experimental correlations
have been discussed previously.

The agreement between thcoretical and experimental values is
quitec satisfactory for the reacting system. The greatest difference
occurs at the highest monoethanolamine concentration. This is probably
a reflection of the experimental difficulties at this concentration
level where, due to the high absorption rates, it was more difficult
to maintain a bubble of fixed size over the 4 to 6 minute time interval.
In all cases, however, the numerically predicted results are within the
confidence limits (at 95% level) of the experimecntal correlations.

The assumption of zero transfer in the vortex region, coupled
with the experimental set-up where a considerable portion of this
region was occupied by the bubble support, no doubt promoted the
agreement between theory and experiment. |
5.5.2 Convergence Tests

Extensive checks for convergence were carried out as discussed
in Section 3.3.1. The results are shown in Table 5.4. It is obvious,
once again, that the numerical solutions obtained are not affected
appreciably by a halving of the mesh size; There was, however, ane

notable difference. A change in radial step size, while maintaining



TABLE 5.4

Convergence Tests -
Transfer from a Solid Sphere
with Second Order Reaction

No. of Position Sherwood Number
Radial AB of

Re Se Se kA ; kB_6 ' Args Steps (deg.) Outer Ag ATO AT ,
, YA B x107°  x10 x10 Boundary 0 45 00° AVG.
59 472 862 1.27 1.16 5.0 30 3 1.44 174.3 160.9 100.0 © 96.3
2.3 60 ' 1.5 1.44 174.6 160.5 100.4 *
5.0 40 3 7.02 174.4 160.9 100.0 97.0
5.0 40 2 1.37 174.6 171.5 83.6 85.9
488 890 2.54 1.16 5.0 3¢ 3 1.44 273.5 252.5 155.0 149.1
2.3 60 1.5 1.44 273.8 252.1 155.3 *
5.0 40 3 1.44 273.8 268.7 145.9 149.3
503 920 3.81 1.16 5.0 30 3 1.44 373.1 345.9 208.2 201.3
2.3 60 ’ 1.5 1.44 373.6 345.6 207.6 *
5.0 40 3 1.44 373.4 366.7 199:.2 202.4
100 488 890 2.54 1.16 5.0 30 3 1.44 415.1 375.6 204.1 194.3
2.3 60 1.5 1.44 415.6 374.5 203.0 *
503 920 3.81 1.16 5.0 30 3 1.44 564.3 517.9 268.2 262.5
2.3 60 1.5 o 1.44 » 565.4 517.1 266.5 *
200 472 862 1.27' 1.16 5.0 30 3 : 1.44 406.0 361.0 186.4 176.5
2.3 60 1.5 1.44 406.7 358.1 184.2 *
5.0 40 3 7.02 405.9 360.9 186.3 176.4

* 'Solutions obtained only up to 0=90°

A



A® constant, resulted in a significant change in the local Sherwood
numbers. Previous convergence tests had indicated that a change in
radial, or both radial and angular step sizes, had little effect on the
resulting local and average Sherwood numbers. A possible reason for
this behaviour may lie in the finite-difference approximations employed.
In this.case, since kA>104, it was necessary to usec the DuFort-Frankel
approximation for the second derivative in r (equation (3.44)). The
standard form, equation (3.21), could not be used for reasons of
stability as discussed in Section 3.2.2. The Du Fort-Frankel
approximation contains concentrations from three different angular
locations. Therefore it might be expected to be more susceptible

to angular step size changes than the standard form which contains

only concentrations at one angular location.

It has been concluded that convergence of the numerical
solutions has been obtained. However, this does not allow‘the
conclusion that the valucs obtained are accurate approximations of
the exact analytic solution. This is simply a necessary condition
which must be satisfied. Sufficient conditions are extremely
difficult to obtain except in the trivial case where an analytic
solution is available.

5.5.3 Effect of Diffusivity and Reaction Rate.
The uncertainty in the values reported for the diffusivity

of monoethanolamine and in the value of the rate constant for the
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carbon dioxide-monoethanolamine reaction has been pointed out previously.

The value for the diffusivity of monoethanolamine used in this
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work was taken from the results of Thomas and Furzer (T2). 1If, however,
a different valuc had been chosen the numerical solutions would have been
affected to some degree., 1In Table 5.5 results are presented for two
different diffusivity values differing by about 12%. It can be concluded
from a comparison of the two sets of results that a change of this order
will introduce an uncertainty'of only 5-6% in the calculated Sherwood
nunmbers.

A similar variation in reported values exists for the reaction
rate constant. In this work the value reported by Emmert and Pigford (E1)
was used. Whereas, Astarita (A5) and Clarke (C6) reported a value about
30% higher at 25°C. 1In Table 5.6 results.are reported using both these
values. It can be safely concluded that’thc mass transfer rate is
almost independent of thc reaction rate at this high level. In other
words, the kinetics are approaching those of an infinitely fast second
order reaction where the transfer rate becomes cntirely dependent on
the diffusivities and hydrodynaﬁic conditions (See Figure 18 for typical
concentration profiles). Therefore, the accurate determination of
reaction rate constants utilizing the experimental procedure of this
study would not be possible for fast sccond order reactions. If{
however, this reaction were slower there might be some merit in using
this experimental method to obtain reaction rate values.

5.5.4 General Conclusions

The numerical solutions of the model equations are in agreement

with all available results for mass transfer, with and without chemical

reaction, from both circulating and noncirculating spheres. It would
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TABLE 5.6

Effect of Reaction
Rate Constant on Calculated
Sherwood Numbers

Sc k k k

B 2 A6 86
liters x10~ x10~
mole sec.
800 5400 2.54 1.16

890 7000 3.33 1.50

Re

50

100

200

50

100

200
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149
194

277

152

197

280
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be expected that the model would be applicable to all gas-liquid or
fluid-solid systems. Further confirmation of this applicability could
be obtained from a study of several other gas-liquid systenms.

This author believes that the model is applicable for spherical
fluid bodies for all Reynolds numbers up to the point when vortex
shedding begins. The velocity profiles used for the rigid sphere case,
however, are known to be inaccurate below Reynolds numbers of 10, and
also do not predict the proper shape for the vortex region at
Reynolds numbers beyond 200. Thus the extrapolation of the numerical
results beyond the range ocovered is not recommended. However, the
numerical techniques, if supplied with the correct velocity profiles,
should be applicable from Re <1 up to the point where transient vortex
behaviour begins.

The model developed in this work was used by Yau (Y1) to predict
rates of transfer from a series of bubﬁles formed at a single orifice.
The predicted and experimental values were in good agreement except
where severe bubbie deformation had occurred. Potential flow velocity
profiles were used to describe the flow field. Bubble interaction was
not significant in the study by Yau and the model in its present form
would not be expected to handle oscillating or interacting bubbles.

In a commercial reactor a gas bubble would be circuiating for
a short period after formation, but would almost immediately become
contaminated by surfactant material, thus preventing fﬁrthbr interfacial
movement. A suitable description of this transient behaviour might be

obtained by employing the models developed using circulating sphere
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hydrodynamics for the initial absorption period and rigid sphere hydrodynamics
for the second absorption interval.
Bubble swarms dispersed in a stirred vessel have been considered
by Gal-Or and co-workers {Gl, G2, G3). The definition of a suitable
bubble Reynolds number would be most difficult under these conditions.
Since such a Reynolds number is required for the model developed here,
it is suggested that the model developed by Gal;Or would be more
suitable for dispersions in stirred vessels. The latter model, at
present, will handle only the case of first order reaction. However,
there should be no reason why it could not be extended to second and

higher orders by resorting to numerical techniques.



6. CONCLUSIONS AND RECOMMENDATIONS

6.1  Conclusions

Numerical techniques have been extended to obtain solutioms of
the equations describing forced convection mass transfer from single
circulating and non-circulating spheres with simultaneous first or
second order reaction.

The numerical results for transfer from circulating gas bubbles
are in excellent agreement with penetration theory.

Predicted physical transfer rates from rigid spheres compare
favourably with the experimental correlations of other workers.

Mass transfer data, for the reacting systems carbon dioxide-
monoethanolamine, have been obtained over the range 30 <Re <200. The
rates of mass transfer predicted by the model for the case of second
order reaction are in excellent agrecment with these experimental
results.

Indications are that the model would be useful in predicting
rates of transfer in multiple bubtble situations, providing that bubble
distortion and interaction effects were small. The model would not be
expected to be useful when considering oscillating bubbles.

6.2 Recommendations

An investigation into alternate mcans of solving the complete
elliptic equation would be most useful since the successful solution
of this equation would allow for the calculation of local mass transfer

rates in the vortex region. The assumption of no mass transfer beyond

115.
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the separation point, made when‘dealing with rigid spheres, could then
be evaluated.

A theoretical study of the effect of sphere support size and
shape on the hydrodynamics and mass transfer would be desirable. The
present water-tunnel would be suitable for a parallel experimental study
of thesc factors. |

Preliminary studies have shown the need for a‘theoretical and
experimental study of the effect of sphere shape on transfer rates.

Further studics of mass transfer from gas bubbles should be
preceded by the development of an improved, leak free, method of feeding
gas to the bubble.

The general applicability of the models developed could be
tested further by a study of other gas-liquid reacting systems. The
present apparatus, because of the materials of construction, would not
be suitable for most reacting systems. An alternate water tunnel,

preferably of glass, would be desired.
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A, SOLUTION OF ELLIPTIC EQUATION FOR FIRST ORDER REACTION

Equation (3.2) can be written in finite-difference form using
central differences for all derivatives. The resulting finite-difference

equation may be written (replacing A by A) as

Aj,j-1 (g 3y -ag) Aj g+ (81 78 ~3g)
Aio1,y (F3g “hag ragd + Apy (34 -a5 -3g)
+ A (ag (14h) + 224 2k/Pe,) = 0 (A-1)
where
2, = Ve/2riAO
a = coth /rzAGPe
2 ° §/ T %A
2 2
a; = 2/riA® PeA
a, = V_/(+1/m) i lar)
4 T o
i-1 2
a; = 4/(1+1/R)(h"7" ar ) Pe,
ag, = 4/(1+1/h)(h1’1Aro)ripeA
’ (A-2)
Equation (A-1) was rearranged to facilitate solution by a
relaxation technique.
(n+1) _ (n) (n) (n)
A S W BRI LSS W S R I
' (n) (m) _ ,(n)
*ob3 ALY T P Ay AL (A-3)

= (- -3 - - -2 ini
Where b1 ( a] *a, as)/( a5(1+h) 2a3 “k/PeA) and the remaining bi
are similar combinations of the a, - The superscripts (n) and (n+l)

represent the A values after the nth and (n+1)St iterations. The
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optimum value of the relaxation factor w could only be determined by

trial and error.

New values (Agngl)) were calculated at all mesh points using
k)
equation (A-3), and then compared with the previous values at these

(

locations (Ain§). The new values replaced the old values as soon as

they became available. This was continued until the concentrations at

all mesh points became constant within a specified tolerance. This

2

solution procedure was successful only for Pe, <107, At the high Peclet

A

numbers of interest in this study (Pe >104) the solution became

A
unstable and made it impossible to obtain useful results.

Some insight into the reasons for this instability may be obtained
by studying equations (A-1) and (A-2). As the value of PeA is increased

the coefficients a5, @ 59 and a, approach zero, except very near the

3 2 6
sphere surface. At a short distance away from the surface equation (A-1)
approaches the form

(A )

21 (A a8, 5-0) 2 57Ml

+ (ag(1+h) +§as + 2k/Pe,) Ai’j =0 (A-4)
Since the concentration values do not change rapidly from one mesh point
to the next, it is obvious that errors could be introduced when subtracting
two values of the same order of magnitude resulting in an unavoidable
loss of accuracy. A similar problem was encountered when dealing with
the parabolic equations and has been discussed in Section 3.2.2. In
the latter case it was poSsible to circumvent the source of inaccuracy by
using alternate finite-difference approximafions for some of the

derivatives, A full investigation of the possibility of a



similar step has not been carried out for the elliptic equation case.
However, the use of hoth a forward and a backward difference for the
first derivative in 0, rather than the central difference employed here,
did not-offer any improvement.

One criterion for numerical stabhility i§ what Ames (A4) calls
a "positive test'". If the coefficients (i.ei the a; above) are all
positiQe, stability is assured; whereas the presence of some negative
coefficients may lead to instability. In equation (A-4) both positive
and negative values of aj; and a, are present and instabilities did

occur. On the other hand, the coefficients for the case of Pe, <10 were

A
found to be always positive and, not surprisingly, stable solutions
were obtained.

The usual procedure for eliminating negative coefficients is
to make the mesh size smaller. A rough calculation, carried out with

Pe = 105, indicated that all coefficients could be made positive only if

the step sizes in both radial and angular directions were less than 10"4

120,

dimensionless units. Since the mesh system must extend a distance as great

as 3 or 4 dimensionless radii in order to include the vortex region, it
is obvious that the number of mesh points required would be prohibitive.

The method described for obtaining solutions of equation‘(A-l) is

. . 2 . . .
impractical for Pe >10" since excessive computer storage would be required.

Alternate methods which would remove the source of instability and, at
the same time, require only a reasonable number of mesh points must be

developed.
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B. FINITE DIFFERENCE APPROXIMATIONS

The approximdtion for the first derivative in r was developed
from the Taylor series for a variable radial step size. It was not
nccessary to specify the fypc of variation beforehand. This general
form was especially convenient for computation purposes, as alternate
mesh systems could be tried with a minimum of program changes. The

general form was developed from

2
(r., ,-7.) 2
_ ac i+l "17 3¢ _
Sie1,j © Ci,5 ¢ (i) oy ) 32 * (B-1)
2
, (r. ,-r.)" .2
_ - ac i-1 "1’ 37¢ _
 i-1,5 % Ci,5 ¢ i) wr 2 et (8-2)

In general (ri+ -ri) does not equal (ri_l-ri).

1
Equation (B-1) was multiplied by (ri_l-ri)2 and equation (B-2)
by {-(ri+1-ri)2}, and the two equations added together. After rcarranging,

the following relationship was obtained:

ac (rj_173)
ET 2P C S B I A N R T
i,j i+l "17Mi-1 Tisl ’
i 1 ) ) |
(ri17Tie)) Oy m) 0 (Fyperd | 1]
i (ri41°73) .
(ri-l-ri+1) (ri'l-ri) 1'1’3 ’ (B's)

In the event that a uniform radial step size was employed, the above

equation would reduce to the more familiar form

C. . = C. .
3c < i+l,j i-1,j (B-4)
T 53 (ri41°Ti-1)

The same procedure was followed in developing a form for the second



derivative with the following result:

2 2c, . 2c. .
C - 1+1?3 _ i,j
W (a7 (7T p) (=75 ) (F4p773)
21,3
+ 2 (B-5)
(3775 (g =T00)

This equation also reverted to the more familiar form when the radial

step size was uniform, i.e.

2 . 2c¢ + C, R
¢ = 1+1:J 1,] 1'1:3 (3-6)
or2 (r. ,-r.)4

i,j i+l "1

The difficulties with the use of equation (B-3) have been
discussed in Section 3.2.2.
It was not necessary to develop a special form for the angular

derivative as a uniform angular step size was employed throughout this

'study.

122,
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C. DIFFUSION FROM A SPHERE WITH SECOND ORDER REACTION

The boundary conditions of equation (3.4) and (3.5) required
initial concentration estimates along the radial vector through the frontal
stagnation point, These concentration estimates were obtained from
solutions of the equations describing‘transfer from a sphere into a

stagnant fluid: The equations may be written as

d’c 2 dc . _ ' ,

3;2A - | o | (C'l)'

dzc 2 dep

Al R OGS (€-2)
With boundary conditions:

Cp = 1, ch/dr = o at r =1

Cp = O, Cy = 1 as v

These equations could be readily solved by Runge-Kutta methods, however,
finite-difference techniques are similarly convenient and were used in
this study. No difficulties were encountered in obtaining solutions.

If the initial concentration estimates were noﬁ sufficiently
close to the correct values, convergence could not be obtained and a
certain amount of trial and error became necessary. For example, if a
solution for a Reynolds number of 200 and reaction rates of kA = 106 and
kB = 105 were required, the estimates obtained by ;olving the stagnant
fluid equations with these reaction rate values were unsuitable. Instead
it was necessary to use the solu;ions of equations (C-1) and (C-2) with

kA= 106 and kB = 104. These concentration values were reasonably close
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to the correct values along the zero-angle line. Thus convergence

was readily obtained, satisfying the zero slope criterion at 0=0°.
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D. POLYNOMIAL REPRESENTATION OF BOUNDARY CONDITION BCB/GT =0 at r =

i
[

Using the Taylor series a representation of this boundary

condition may be developed by writing

2
(r.. ,-r.) 2
oB i+l 1 9°B
Bier,5 = Bi,5 * (i) 37 ¢ 2 wZ * (0-1)
2
(r. ,-1.) 2 _
oB i+2 i 3B
Bie2,3 " P 5 * i ™) 3¢ ¥ 73 572t (D-2)

Equation (D-1) was multiplied by (ri+2-ri)2, equation (D-2) by

{-(ri+1—ri)2}, and the two equations added. After some rearrangement

the following relationship was obtained:

3B ) (F340773) 5
T ;.3 (ry41773) (T5497T549) 4L
) (Tj427T;) (riy1773) ;
Ty ) (7500775 4) (ri427T3) (T3,57T5,9) | 1]
(ri41°73)

B, . . D-3
(rya2 ) (T,07T54) 14247 (0-3)

At v = 1, i may be set equal to unity, and 38/3r set equal to

zero. The following relationship for the concentration at the interface

could then be obtained’:

(rs-rl)z

(rs'rl)z’(rz'rlj?

(TZ-TI)Z

B B
Y2 T 732 :
(r3 rl) (ry-17)¢ 73,5

(D-4)

4,5 ° P2,

Therefore the quantity B never appeared explicitly as an unknown but only

1,j

as a function of B and B, ..
3,3

2,3

no difficulties in the matrix inversion step.

This polynomial representation caused
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E. PHYSICAL DATA
(1) Viscosity of Monoethanolamine Solutions

Se&eral solutions of known monoethanolamine concentration were
prepared and their viscosities determined at 25 % .1%, by means of a
calibrated Cannon-Fenske viscometer (model 50, nﬁmber B289). The results
obtained, which are plotted in Figure 19, are in agreement with values
reportea by Thomas and Furzer (T2).
(ii) Rotameter Calibrations

Three Fisher-Porter glass rotameters were available for the
measurement of the water-tunnel flow rates. These rotameters were:

FP % - 17 - G - 10 with float % GUSVT - 40

FP /4 - 27 - G - 10 with float >/4 GSVT - 54

FP. 1 - 35-G - 10 with float 1 GNSVT - 64
Calibrations were carried out by weighing the quantity of water passed
through for a given float reading over a timed interval. The calibration
curves are shown in Figure 20.
(iii) Monoethanolamine Concentration

The concentration of monoethanolamine in aqueous solution was
conveniently determined from a measure of the solution refraction index.
A series of solutions of known concentrations were prepared and the
refractive indices determined, at 25 % .IOC, using a Officine Galileo
refractometer, The calibration curve obtained is shown in Figure 21.

During actual experiments the solution samp1e§ were normally
taken about 20 minutes after the monoethanolamine had been added to the

system. Repeated samples indicated that there was no refractive index
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change over a two hour pericd, despite a marked color change in the
éolution.
(iv)  Carbon Dioxide Solubility

The solubility of carbon dioxide in water at 1 atmosphere and
25°C has been reported as 0.0338 gm-moles/liter (D6). This value,
adjusted linearly for the pressure in the test bubble (5.2 p.s.i.g.),
was used throughout this study as the solubility in‘both water and
monoethanolamine solutions. The latter solubility is impossible to
measure because of the very fast reaction. Clarke (C6) however has
shown that any solubility change due to the presence of the amine is
unlikely. This conclusion was based on the results of tests with
nitrous oxide which is similar to carbon dioxide in many of its mass
and molecular properties. It was found that the solubility of nitrous
oxide was unaffected by monoethanolamine concentration and Clarke
concluded that the same should be true of the carbon dioxide solubility.
v) Diffusivities

The diffusivity of carbon dioxide in water at ZSOC was taken as
1.95 x 10-5 cmz/sec from the work of Davidson and Cullen (D4). Other
reported values are withihiiS% of this value. In view of the scatter
in the reported values, corrections for viscosity, which would have
been of the same order as the experimental scatter, were not applied.{

The effect of the presence of monoethanolamine on the carbon
dioxide diffusivity cannot be determined, but again, Clarke (C6) has shown
from studies with nitrbus oxide that little change would be expected.

A wide range of values for the diffusivity of monoethanolamine
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in water has been reported (I1, T2). The agreement between the
experimental results of different workers is poor. Values predicted

from semi-theoretical equations also scatter significantly. 1In the
opinion of this author the values oﬁtainéd in the recent experimental

work of Thomas and Furzer (T2} are the most reliable. These authors
found that the diffusivity was a function of monoethanolamine
concentration. However, over the concentration.range covered in this study
the variation was slight and an average value of 1.07)(10's cmz/sec was
used throughout., The effect of the uncertainty of the amine diffusivity
on the theoretical results of this investigation has been discussed in

Section 5.5.3.



F. MEASUREMENT OF BUBBLE SURFACE AREA

The surface area of the bubble available for mass transfecr was
determined via measurements taken from bubble photographs.  These
photographs (Figure 22) were taken with an Asahi Pentax camcra at
f/22 and 1/500 seconds exposure time, using a photoflood lamp and Kodak
Panatomic-X film, Two levels of flow rates and monoethanolamine
concentration werc used, There was no significant effect of these
variaﬁlcs on bubble shape.

The top of the bubble was maintained at a distance of 0.25 cm
from the top of tﬁe bubble support as was the case when absorption rate
measurements were being taken. The various distances measured on the
negatives are shown schematically in Figure 23. A measuring scale on
the photographs was established by setting (b+c) equal to 0.25 cm and the
remaining distances obtained on this basis. The results of thesc
measurements are listed in Table F-1.

The bubble shape was, for all practical purposes, ellipsoidal.
The surface area exposed could be obtained by integrating the formula
for the surface area of an ellipsoid between the appropriate limits.

The equation for the surface area may be written
a a® 2.4
Ay = 2T [[a+—2 (5 -0 1y (F-1)

The total area available for mass transfer was calculated as 0.257 cm2.

This was the figure used when calculating the liquid phase mass transfer
coefficicnts,

The equivalent sphere diameter used in calculating Reynolds and

132.



ABSORPTION OF CARBON DIOXIDE
INTO WATER

FIGURE 22

ABSORPTION OF CARBON DIOXTDE
INTO 0.66 mole % MONOETHANOLAMINE

PHOTOGRAPHS OF GAS BUBBLE

"eel



134,

0.250 cm

FIGURE 23. - DISTANCES MEASURED ON BUBBLE
' PHOTOGRAPLIS
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TABLE F.1

Measurements from Bubble Photographs

Bubble Height Half Height Bubble Width
Frame (a+c) (a). . (2h)
Number cm. cm. cm,
1. | 0.250 0.153 0.323
2, 0.250 0.150 0.317
3. 0.250 O.ISi 0.319
4. 0.250 0.153 0.326
5. 0.250 0.150 0.320
6. 0.250 0.154 0.325
7. 0.250 0.151 0.327
8. 0.250 0.153 . 0.325
9. 0.250 0.157 0.329
10. 0.250 0.154 0.324
fverage 0.250 0.153  0.323

Values
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Sherwood numbers was based on the diameter of a sphere having the same
surface areca as the ellipsoid. In this case the total area, including
that covered by the bubble support, was employed. The total area was

calculated as 0,316 cm2 resulting in an equivalent diameter of 0.317 cm.
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G. MEASUREMENT OF GAS LEAKAGE

The leakage rate from the syringe was determined with the aid
of a sensitive differential pressure gauge (Industrial Instrument
Corporation) having a range of *1.08 p.s.i., graduatedin steps of
0.05. The gas syringe was connected as shown in Figure 24. The end
of the stainless steel tubing, the normal location of the bubble support,
was seaied off for the tests.

Carbon dioxide was admitted into the system from the gas
cylinder until the pressure reached 5.2 p.s.i.g,.,the normal operating
pressure during absorption rate determinations. The pressure was then
equalized on both sides of the differential gauge; the valve between
the two sides closed; and the system allowed to stand at 25°C for a
measured period of time, At the end of this time interval the pressure
on the syringe side of the system would have dropped as a result of gas
escaping from the syringe into the atmosphere. The volume escaped was
determined by moving the syringe plunger until the pressure returned
to its initial value, and recording the decrease in system volume
from the syringe counter.

The results of the several tests carried out are listed in
Table G-1. The leakage rate was found to be independent of plunger
position, as indicated by volume counter readings, and thus the same
leakage correction was applied to all observed absorption rates.

The leakage tests were not carried out for each absorption rate
experiment but only in the middle and at the end of the series of

experiments. There was no significant difference between the results
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11.

12.

AVG RATE

TABLE G:1

Measurement of Carbon Dioxide
Leakage Rate

Volume Change

Time min. : c.c.
125 1.866
630 9.330

60 0.902
30 0.458
30 0.715
30 0.420
35 0.452
30 0.338
34 0.696
39 0.604
30 0.440
50 0.756

0.0156 % 0.0065 cc/min

at 95% confidence level -

Leakage
cc/min.

0.0149
0.0148
0.0148
0.0153
0.0238
0.0140
0.0129>
0.0113
0.0204
0.0155
0.0147

0.0151

139,
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of the two sets of data.

Later in this study, when a series of absorption rate experiments
was - carried out with a cylindrical rather than a tapered bubble support,
another set of leakage determinations were made. These results did show
a variation with plunger position. The leakage rates are plotted in
Figure 25. It is obvious, in this case, that it was necessary to use

a correction which depended on the counter reading.
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LEAKAGE RATE - cc/min.

0.03
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VOLUME COUNTER READING

FIGURE 25. - LEAKAGE RATES - APPLIED TO EXPERIMENTS
: WITH CYLINDRICAL BUBBLE SUPPORT
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H. SAMPLE CALCULATION
The relationship defining the liquid phase mass transfer coefficient

Y
may be written as

s . 1-
NC02 = kLAb(c - cm) (H-1)

vhere ¢° is the solubility of carbon dioxide at 1 atmosphere and ¢_

is the concentration of carbon dioxide in the bulk of the liquid, taken

as zero. If the value of NCO is not corrected to atmospheric conditions
2

the value of ¢® need not be adjusted for the pressure in the bubble as the
two corrections would cancel one another., The Sherwood number is defined

as

N
Deo A cSDq ’ (H-2)
2 2
Values used in this study were

d = 0.317 cm
Ab = 0.257 cm2
¢ = 0.0338 gm-moles/liter
Pco,=  1.95 x 107> cm?/sec.

After using suitable unit conversion factors the following final
relationship was obtained:

Sh = 1270 [corrected Absorption Rate] (H-3)
Where the units of the absorption rate are cc./min. This "corrected
absorption rate'" is the value of the intercept of a plot of absorption
réte versus time (Figure 15) corrected for leakage rate. The method

of analysis used to obtain the intercept value has been discussed in
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Section 5.1,

Calculations are outlined for the experiment carried out with a
centerline velocity of 4.2 cm/sec and a monocthanolamine concentration
of 0.33 mole %.

Intercept Value - Leakage Correction

Corrected Absorption Rate

0.1366 - 0.0156 = 0.121°min

Sh = 1270 (0.121) = 153
re = Uo _ 0.317(4.2)(0.998)
= W% T (0.922x10-9
Re = 144
-2
Sc . _P_ _ _0.922x10
AS B0 T T0.998) (1.95x10-5)
co,
ScA= 472
i 1 .
Re ? sc,/% = (1aay ™ (a72)!/®
1
Re ¢ Sc 173 92.3
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I. AUXILIARY EXPERIMENTAL STUDIES
(1) Shape of Bubble Support
The tapered Teflon tip used throughout the study was later altered
to cylindrical form, as illustrated in Figure 26. Using the cylindrical
tip a series of experiments was carried out covering the same flow rate
range as previously, but only three instead of four concentration levels,
The results obtained using the cylindrical bubble support are
shown in Table I-1. A statistical test to determine whether this
new data differed from that obtained with the tapered tip (Table 5.2) was
carried out following the procedure outlined in (V3). At all
concentration levels the tests showed that there was no significant
difference between the two data sets. It could be concluded therefore that
this change in bubble support shape had no effect on the absorption
rate.
(ii) Bubble Shape
The diagram illustrating the water-tunnel details (Figure 12)
shows the test bubble facing downward with the liquid flow in the
upward direction. All results reported herein were obtained with this
configuration. Initially, however, a series of experiments was carried
out with.the test section located on the right hand side of the
apparatus (See Figure 11) so that the bubble could be faced upward with
the flow in the opposite direction. The results obtained with this
arrangement were contrary to all previous mass transfér correlations,
;s the absorption rates were only slightly affected by changes in liquid

flow rate. Photographs of the bubbles taken under both conditions showed
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— -
TAPERED o CYLINDRICAL
FIGURE 26. -~ SCHEMATIC‘OF TAPERED AND CYLINDRICAL

BUBBLE SUPPORT



0.33

0.66

Re

39.8
64.8

131
150

207

38.5
62.5
126
199
37.2
60.4
140

193

Sc

456

456

456

456

456

472

472

472

472

488

488

488

488

TABLE 1.1

Absorption Rate Results -
Cylindrically Shaped Bubble Support

ABS
RATE
cc/min

0.0590
0.0521

0.0725
0.0630

0.0891
0.0853

0.0873
0.0872

0.103
0.122
0.152

0.184

0.134
0.145
0.202

0.286

Corrected
ABS. RATE
cc/min

0.0385
0.0319

0.0382
0.0403

0.0606
0.0598

.0641
. 0662

[

0.079

0.089

0.127

0.155

0.111

0.121

0.177

0.260

146..

hcorrected

113

162

196

142

153

224

330
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that there was a marked difference in bubble shape. Figure 27 illustrates
a bubble facing upward with opposing liquid flow. There is a pronounced
elongatidn in the vertical direction. As a result the surface area below
the horizontal line (shaded in diagram) was almost twice the surface

area of the front portion of the bubble. A spherical bubble would have
identical areas in {he front and rear portions.. This excessively large
percentage of the surface was in a region where the liquid velocities near
the gas-liquid interface, and consequently the mass transfer rates in

the region, would be little affected by changes in the main stream
velocity.

This method of obtaining a single gas bubble was discontinued,
since it was obvious that the shape obtained was not a reasonable
approximation of the spherical shape dealt with theoretically.

With the bubble formation equipment as shown in Figure 12, an
ellipsoidally shaped bubble was'obtained (Figures 22 and 23). The
ellipsoidal form was a very reasonablé approximation of a spherical
bubble and had the proper percentage of surface and in the front and
rear portions.

(iii) Contact Between Copper Metal and
Monoethanolamine Solutions

It has been noted that the monoethénolémine solutions turned
blue>on prolonged contact with the copper and brass materials of the
water-tunnel. Tests were performed during the initial part of this work
to determine whether the presence of these dissolved metals affected

the carbon dioxide absorption rates.
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FIGURE 27. -- VERTICALLY ELONGATED GAS BUBBLE



149,

The firs£ test utilized a small glass apparatus, illustrated
in Figurév28, which served as a rather crude water-tunnel. Several
solutions of equal monoethanolamine concentration were prepared. One-
half of these were placed in contact with copper and brass for an
extended period. Absorption rates were then defermined with solutions
containing no dissolved metals and with those which had been exposed to
copper\and brass. The results obtained are in Table I-2. The
application of a Student t test (V4) indicated that there was no
significant difference between the two sets of data at the 95%
confidence level. The presence of dissolved metals had therefqre not
affected the absorption rate of carbon dioxide into monoethanolamine
solutions.-

A second test was carrigd out in the regular water-tunnel with
its copper pipes and brass flanges.

Absorption rates were determined shortly after a quantity of
monoethanolamine had been added to the system, i.e., after the system was
well mixed. Another sefies of absorption rate measurements were performed
after about 1) hours had elapsed. The results obtained are given in
Table I-3. Once again a Student t test was applied and showed that there
was no significant difference between the two sets of data.

As a result of the two separate tests, it was concluded that the
presence of dissolved copper and brass in monoethanolamine solutions did
not have a significant effect on the absorption rate of carbon dioxide.
(iv) Transfer of Inerts into the Gas Bubble

To confirm that oxygen and nitrogen dissolved in the distilled
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TABLE 1I.

2

Effect of Dissolved Metals on Rate
of Absorption of Carbon Dioxide
into Monoethanolamine Solutions

ABSORPTION RATES

. MEA SOLE
- CONTAINING
NO DISSOLVED
METAL

cc/min.

0.0893
0.0891
0.0914
0.0963
0.115
0.101
0.0974
0.0983
0.119

0.0995

Cannot reject X, =

|

MEA S()L-r\i
EXPOSED TO
COPPER AND

BRASS

cc/min.

0.0903
0.0882
0.0868
0.0938
0.114

0.123

0.0988
0.0970
0.100

0.0948
0.0930
0.0946

0.0979

151.
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TABLE I.3

Effect of Contact Time between
Monoethanolamine and Water-tunnecl
Materials - Absorption of Carbon Dioxide

TIME AFTER : ABS. RATE
MEA ADDED ce/min
min

15 - 60 0.340

0.362
0.346
0.335
0.360
0.349

90 - 120 , 0.321
0.338
0.334
0.338
0.348
0.337

0.349 x., = 0.336

*|

t = 1.17
calc.

(ad
"

0.95 2.228

.. Cannot reject X, = X



water would transfer into the carbon dioxide bubble, the following
experiment was carried out. A beaker was filled with monoethanolamine
solution and inverted in a bath containing the same solution. Carbon
dioxide was bubbled into the inverted beaker for a short period. The
absorption proceeded very rapidly, up to a point where a small volume
of gas remained. This residual volume did not become absorbed, even

on prolonged standing. A typical chromatographic analysis showed that

153.

the gas contained 31% oxygen, and 69% nitrogen. Since the carbon dioxide

used contained less than 0.01% inerts, the oxygen and nitrogen must
have been desorbed from the distilled water. The observed composition

reflects the fact that oxygen is more soluble in water than nitrogen.
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J.  SOLUTION OF NAVIER-STOKES EQUATION

A finite-difference technique was used by Jenson (J2) to solve
the Navier-Stokes equation for flow around a solid sphere for Reynolds
numbers of 5, 10, 20 and 40. Jenson used a relaxation technique and
a desk calculator. In the present study the wofk of Jenson was closely
followed, except that solutions were obtained using an iterative procedure
on an iBM—7040 computer. |
(i) Equations and Finite bifference Approximations

The Navier-Stokes equation for viscous, incompressible, axisymmetric
flow in terms of the stream function (¥) in spherical co-ordinates may be

written as

2 2
Re Y 9 LE7¥ : ¥y 3 E"v . 4
T [ -5-1-: .310-(-—2—-—-.—-—2——) - T .-a-i‘— (*—2—-—:-—2") sinG=E ¥ (J“l)
r sin © T sin ©
where
2 = 33 . Sine 3 ( 1 E—J
B 3 2 2 a3 sin® 230
T T

Equation (J-1) may be split into two simultaneous second-order equations
by introducing the vorticity (§) as follows:

2

E'Y = fr sinod (J-2)

Re | 3% 2 ¢ 3y 3 < 12 .

7| 37 * 36 Gsine ~ 30 3r Crsino) | S0 = E (50r51n9)
(J-3)

The co-ordinate system employed is shown in Figure 29. Note that the

locations are identified in a manner consistent with (H4, H5) and are

r
not, consistent with Figure 4. The velocity components are related to
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FIGURE 29.

FINITE-DIFFERENCE MESH SYSTEM
- SOLUTION OF NAVIER-STOKES EQUATION
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the stream function as follows:

V = 1 ar, vV = -1 (Al
® rsind® 9r ’ r T12sin® 230

All quantities have been made dimensionless by putting

<

V' 1
_r' S A . $'A _ T _ 0 _ 2UA
TR “"a;z’g” v Ve o RS

The present investigation was aimed at repeating and extending
Jenson's work to higher Reynolds numbers. The finite-difference
equations accurate to second order derived by Jenson were used with an
exponential step size in the radial direction and a constant angular
step size. The stream function and vorticity vary most rapidly near
the sphere surface, thus requiringa small step size there, while a
larger step size far from the surface is adequate. This was achieved
by using the substitution r;eZ and taking equal intervals in Z, viz.

equations (J-2) and (J-3) became

e?’E%y - fe3’sino = 0 | (3-4)
%S. [ %;. %g - %E_ %E-J e sino- e?%E%G = 0 (J-5)
where )
p=_z_§__ , G= fEZsine
e sind

Considering lattice spacing A in the Z - direction and B in the

©- direction, equations (J-4) and (J-5) were written in finite-

difference form as

156,
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e IR IS DY o N 76 U0 IS DY Cacl MRS 8 W Y e biscl O R
24 24 28
+ y(1-1,0) (2Eeot8ll)y ‘J’(I,J)(}Z\Qﬂ» 20 - G(L9)ete0 (J-6)
- 2B
G(I,J+1)(—2‘1;—) TN TE PR pYCadi G(1+1,J)(3f39-9.§-9@-)
24 24 28
+ 61-1,0) 2Ry e, + 2
28 A B
3%2(3) sin0(T) [ RACIRLSY) 5Axv(I,J-l))(F(I+1,J) . F(I-1,0)
AL gL;!(I-l,J)) (FLI+) —AF(I,J—I))] - -7

(ii) Boundary Conditions

Both the stream function and vorticity (or their derivatives)
rnust be specified on a boundary completcly enclosing the region of flow.
For flow around a solid sphere these conditions are:

Along the axis of symmetry

w:o;i’-»“i:o;f:o at  ©=0,m
ar

Far from the sphere where there is undisturbed parallel flow
Y = %-rzsinze ; }, =0 as T =+ @
(ii1) Method of Solution
| Initial estimates of the stream function and vorticity values,
obtained from the work of Hamielec (li2, H3), were inserted at all
. mesh locations. The calculations were started by using these initial

values of ¥ and G to calculate an improved ¥ from equation (J-6). The



new ¥ found were substituted into equation (J-7) to find improved G
values. The new G found were then substituted into ecquation (J-6) and
this procedure was rcpeated until ¥ and G changed by less than a specified
tolerance per iteration. The tolerance chosen for all calculations was
0.0001 for both Y and G.

In the iterative procedure to solve equation (J-6) and (J-7)
relaxation factors were used to stabilize the computations. They were

introduced as follows’

v (1,9) = v (1-3) , WW(Y (1,3) _ ¥ (1,0) (J-8)

Gn(I’J) = Gn-l(InJ) + W(Gn(IsJ) - Gn_-_l(I:J)) (J-Q)

where subscript 'n" denotes the nth value calculated. The relaxation
factors, WW and W, had to be found by trial and error.

This solution procedure was stable as long as a suitable choice
of relaxation factors and position of the outer boundary had been made.

Computation times were lengthy, requiring as long as two hours on an
IBM-7040. '
(iv) Summary

Since this author was instrumental only in the devclopment of
suitable computer programs to provide solutions of equations (J-6)} and
(J-7), the voluminous results obtained, and their interpretation, are not
included as part of this study. The interested reader is referred to
publications (H4) and (H5).

One conclusion reached as a result of this extension of Jenson's

work was pertinent to this theoretical study; it was found that the
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velocity profiles uéed here (H2, H3) allowed reasonable descriptions
of the flow field. This indicates that the use of the presumably more
accurate finite-difference solutions to describe the flow, rather

than the Kawaguti-type profiles, would not alter the mass transfer

solutions of this work.
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K. PROGRAM LISTINGS AND PROCEDURE OUTLINES

(1) Diffusion from a Sphere into a
Stagnant Fluid with Second Order Reaction

The solution of equations (C-1) and (C-2) was obtained using
finite-difference techniques. The solution proceeded as follows:
1. Initial estimates of ¢, and c, were inserted at all

A B

radial mesh points.

2. New values of C, Were obtained by solving equation '
(c-1)

3. These A values were introduced into equation (sz)
which was then solved for new Cy values.,

4. If the new Ca and Cx values differed from the previous

ones the procedure was repeated. This iteration continued until the

concentration values no longer changed.within a specified tolerance.
The solution was usually punched on cards in binary form so

that it could be included as input for the forced convection transfer

problem.
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DIFFUSION FROM A SPHERE INTO A STAGNANT FLUID ACCOMPANIED By

SECOND ORDER CHEMICAL REACTION

REQUIRES THE SCLUTICN OF TWO SECOND ORDER NONLINEAR CRDINARY

DIFFERENTIAL EQUATIONS *% USED FINIIE DIFFERENCE MEIHODS

RKAsRKB *% REACTION RATE CONSTANIS

HsDRAD #*% RADIAL MESH PARAMETERS

EPS %% TOLERANCE TO DETERMINE CONVERGENCE
Mo%% NUMBER OF RADIAL STEPS

DIMENSTION TRI(3,370)4RHS{70)YsCOA(T0)sCOBR(T70)sCOE(TO)
DIMENSICN A(70),B(70)sRAD(T70)

READ (551000) RKASRKEB

READ(5+1000) HsDRAD

READ(5+1002) EPS

READ(541003)M

READ(5+1003) JPUNCH

WRITE (651004) RKAsRKB

WRITE (6+1005) HsDRAD

WRITE (6+1006) EPSsM

RADIAL MESH SYSTEM

M=+ 1

DO 555 J=1yil4

MJ=J~1

RAD(J) =14 +DRAD¥ (H¥xMJ=14)/(H=14)

DDR1=RAD(2)~-RAD(1)
DCR2=RADI(3)-RAD(1)
DOR3=RAD(31-RAD(2)
RATIO1=DCR2%DDR2/(DDR2%¥DDRZ2~DDR1*DDR1)
RATIC2=DDR1*¥DDR1/(UDR2*DDRZ-DORI*DDR1)

INITIAL CONCENTRATION DISTRIBUTION

DO 1C J=1.M

AlJ)Y=Ue50

B(J)=Ua10

Al1)=1.0

A(MM) =040

B(MMI=1a0

WRITE (651UU7) (RAD(JY oA} s J) sd=1sMM)

EVALUATION OF CCEFFICIENTS

DO 20 J=29M
DR1=RAC(UI-RAD(J-1)
DR2=RAD{J+1)-RAD(I)
DR3=RAD(J+1)-RAD(J-1)
Fl=1e/DR3
F4=2+./(DR2%DR3)
F5=2«/(DR1%DR2)

161
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http:B(J)=v.10
http:A(J)=0.50

20

300

510
52¢

50

60

F6=24/(0OR1*¥DR3)
ODD=2«%¥F1/RAD(J)
COAlJ)=F4+CDD
CoOBlJ)=F6&-0DD
COE(J)=—-F5

SCLUTION BY MATRIX INVERSION AMD ITERATION

JN=0

DO 3L J=2sM
CE=COE(J)Y~-RKA*XB(J])
CA=COALUY/CE
CB=COB(J)/CL
TRI(25J-1)=1.0

IF (JsEQe2) GO TO 310
TRI(1sJ-1)=C8

IF (JeEQsM) GO TC 320
TRI(3sJ-1)1=CA
RHS(J-1)=0.0

IF (JsEQe2) RHS(J-1)=-CB*A(])
CONTINUE

MMINUS=M~-1

CALL BNDSOL (TRIsRHSs2s1sMMINUS)

DO 40 J=24M
DIFF=ABS{A{J))=ABS(RHS(J~1))
IF (ABSIDIFF)«GTLEPS) JN=1
ALJI=RHS(J-1)

DO 50 J=2,M

CE=COF (J)=RKR*A(J)

CA=COA(J)/CE

CB=C0B (J) /CE

TRI(25J-1)=140

IF (JeEQ.2) TRI(251)=140+RATIOI*CB
IF (JeEQe2) GO TC 510
TRI(1sJ-1)=CB

IF (J+EQeM) GO TC 520
TRI(3>J-1)=CA ~
IF (JeEQe2) TRI(351)=(CA-RATIO2%CB)
RHS(J=1)=040

IF (JeEQeM) RHSU{J=1)==CAXB(J+1)
CONTINUE

CALL BNDSCL (TRISRHS»351sMMINUS)

DO 60 J=2+M
DIFF=ABS(3(J}1)1-ABS(RHS(J~-1))
IF (ABS(DIFF1eGTWEPS) JUR=1
B{J)=RHS(J=-1) :
B{1)=RATICL1*B(2)~-RATIO2#B(3)

162.
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70

&0
1000
1002
1003
1004
10GH
1006
1007
1008

SENTRY
1000
1430
0.000
30
1
$IBSYS

JJ=JdJd+1

163,

JMAX=3000

IF (JJde
IF (JUN.

EQe.JMAX) GO TO 70
EQe.l) GO TO 3060

SOLUTION CN CARDS IN BINARY FORM IF JPUNCH =1

IF (JPUNCHeEQel) WRITE (7) (RAD(J)sA(J)sB(J)sJ=1sMM)
GC 70 80

WRITE

{(6,1C08) JUMAX

WRITE (6+1007) (RAD(JIA(J)B(J)sd=1sMM)

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
END

0.0

01

(2F1246)

(F12.6)

(15) .

(1H-s6HRKA = F1544910Xs6HRKE = Fl54¢4)

(1H=-94HH = F154433XsTHDRAD = F1l0e6)

{1H=s6HEPS = F1546910Xs25HNO CF RADIAL INCREMENTS = 1I5)
(3Xs3F15464//)

(1H-9s24HHAS NOT CONVERGED AFTER I592Xs10HITERATIONS)

100C .0
0400005

cD 107 0147
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(ii) Mass Transfer from a Circulating or

Non-circulating Sphere with First

Order Chemical Reaction.

The Reynolds number, Schmidt numbers, reaction rate constant,
and mesh size details must be specified as program input.

The program has been written to allow convergence tests by
doubling the number of radial steps while leaving the position of the
outer boundary unchanged. This is accomplished by setting ICHEK = 1.
Initial concentration estimates are either taken from the analytic
solution for diffusion into a stagnant fluid (if IBNRY = 0), or from
previous results available on punched cards in binary form (if IBNRY = 1).

Velocity profiles for flow around solid spheres or circulating
gas bubbles may be utilized. For the latter case profiles are
available from Hamielec (H2, 1i3) only up to Re = 80. At higher values
the potential flow profiles may be used.

Output is in printed form and includes local and average Sherwood

numbers, as well as concentration values at each angular and radial

position.
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CALCULATION OF LOCAL AND AVERAGE MASS TRANSFER RATES AROUND SPHERES
DIFFUSION AND FIRST ORDER CHEMICAL REACTION
CRANK NICHCLSON METHOD

RE #% REYNOLDS NUMBER

AlsB1l %% VALUE OF CONSTANTS IN HAMIELEC VELOCITY PROFILES
SC %% SCHMIDT NUMBER

RK %% REACTIGCN RATE CCMSTANT

HsDRAD %% RADIAL MESH PARAMETERS

EPS %% TOLERANCE OMN ZERO SLCPE CRITERION

N %% NUMBER OF ANGULAR STEPS

NNN %3¢ NUMBER OF EXTRA ANGULAR STEPS AT THETA = O

M *%x NUMBER OF RADIAL STEPS

DIMENSION C(75+62)sTHETA(T75)sRAD(62)sCGRAD(ITS) sRATIO(T7S)
DIMENSICN A(62)sB(62)sD(62)sE(62)

DIMENSION DTHT(5)

DIMENSION VT{75462)sVR(75+62)

DIMENSTION TRI(3s62)sRHS(62)

READ (5s100C) REsAl,.81
READ (5,510C1) SC

READ (5s1001) RK

READ (5510C0) DRADsHSEPS
READ (510023 NsNMNsM

READ (5s1003) IBNRYsIBNOUT
READ (5+1004) ICHEK

PROCEDURE FOR CONVERGENCE TEST % TAKE 1/2 RADIAL STEP SIZE
THETA INCREMENT UNCHANGED %% PROCEDURE FOLLOWED IF ICHEK=1

IF (ICHEK.EQ.0) GO TO 155
M=2%M * ‘
R3=1.00005

R5=1.,000115
H=SQRT((R5-1e¢}/(R3=1e)~14)
DRAD:(R3“10)/(H+1b)

PRELIMINARY CALCULATIONS
DTHET =341416/(FLOAT(N))

N=N+NNN
NN=N+1

- MM=M+1

PE=RE*SC
DENOM=5C*%0e333%REXX0U 5

IF (HeEQele) WRITE (64333)
IF (HeGTele) WRITE (64222)
DTHT(1)=DTHET/(FLOAT (NNN))
DTHT(2)=DTHET

RAC(1)=1.0

THETA{1)=341416

IF (HeEQele) GO TO 21
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21
14

13

17

175

114
111

22

11

33

18y

166.

GO TO 13

DO 14 J=2sMM
RAD(J)I=RAD(J-1)+DRAD

GO TO 114

DO 17 J=2sMM

MN=J-1

RAD(J)=14C+DRAD* (H¥#MN~14 )/ (H-14)

INITIAL CONC DISTRIBUTION OBTAINED FROM PREVICUS PROGRAL
USING COARSER MESH 3 USE THESE VALUES IF IBNRY =1

IF (IBNRY.EQ.U) GO TO 114

READ (5) NJN

READ (5) ({C(TeJ)sI=1aNIN)sJ=1sMMs2)

PO 175 I=1sNJUN

DO 175 J=2sMs2
ClIed)=ClIsJ-1)1-(ClIsJ-1)-CUTIsJ+1) V¥ (RAD(J)-RAD(I=1))/
1(RAD{J+1)-RAD{(JU-1))

WRITE (694) ((RAD(J}sCl1aJ))sJd=1sMM)

GO TO 180

INITIAL CONCENTRATIONS FROM ANALYTIC SCLUTION OF EQUATION
DESCRIBING DIFFUSION FROM A SPHERE WITH FIRST ORDIR REACTION
USE THESE VALUES IF IBNRY = 0

DUM=SQRT (RK)

DO 11 J=1si4
CllsJ)=EXP(DUM*(1+=RAD(J)))/RADI D)
DO 22 1=1sNN

C(lsdY=C(1sJ)

WRITE (694) RAD(J)sC (1))

DO 33 1=2sNN . '
ClIetiM)=040

WRITE (6s4) RAD(MM) sC(1 M)
CONTINUE

CALC OF VELOCITY PROFILES

DO 23 I=1sN

DTHET=DTHT(2)

D0=3.1416-DTHET

IF (THETA(I).GT4LD) DTHET=DTHT(1)
THETA(I+1)=THETA(I)=DTHET
DUM1=COS(THETA(I))
DUM2=COS(THETA(I+1))
DUM3=SIN(THETA(1))
DUM&4=SIN(THETA(I+1))

DO 23 J=2,M

VELOCITY PROFILES %% S50LID SPHERE

A2==(1204+T754%A1) /29
A3=(153e+63e%A1) /29,
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Ab==(4T7e5+1T7e%A1) /2G4

B2=-69+%B1/27.

B3=57.%81/27.

B4=-15.%B1/27.

R1=RAD(J)

R2=RAD (J)#R1

R3=RAD(J)*R2

DMM1I=(R3-A1=-2e%A2/R1I-34%A3/R2~4 s *AL/R3)/R3

DMM2={(-Bl~2«*R2/R1-3%¥B3/R2-4¥B4L/R3)/R3

DMM3=(R34+2e %A1 +2 4% A2/R1+2 ¢ ¥AB/R2+2.%A4/R3}/R3

ODMM4={(B1+B2/R1+B2/R2+B4/R3)/R3

VT{IsJ)=DMMI*{DUM34DUMAL )/ Z o +DMMZ2F (DUNMIHDUMB+DUM2ZEDUME) /2 W

DMME=( (243 (DUML ) #*%2—(DUMR) #%2 )+ (2 ¥ (DUM2 ) ¥ *2-(DUM4L& ) *342) ) /2
23 VRA{TsJ)=DFME3* (DUMI+DUMZ )/ 2 ¢ +DMM4HDMMD

PRELIMINARY CALCULATIONS

NI=NNM-1

43 CONTINUE
DO 44 I=1sN
NJIN=I+1
DTHET=DTHT(2)
DD=3.1416-DTHET
IF (THETA(I) «GT4l0) DTHET=DTHT(1)
THETA(I+1)=THETA(I)-DTHET
DC 55 J=2sM
IF {(HeEQele) GO TO 51
MN=J-1
ODD=H**MN*DRAD* (1e+1e/H)
ODDSQ= (H¥*VN*DRAD ) *¥%2%(1le+1e/H) /24
GO TO 52

51 0ODD=RAD(J+1)-RAD{J-1)
0DDSQ=00D*000/4 .

52 ODD1=DTHET/(PE*ODDSQ)
CCD2=DTHET/ {PE*ODD)
ODD3=DTHET/(4+%00DD)
ODD4=((1.+H)+RK*¥0DDSQ)
AlJ)=CDD1I*RAC(I)/VT (I sJ)
B(J)=2.%(0DD2/VT(I+J)-0DD3%VR({I s+ J)®RAL(J)/VT(IsJ})
DUU)=14+A(J)Y*0DD4

55 E(J1=ALN*0DC4-1.

CALC CF CONCENTRATION PROFILES

DC 5000 J=2sM

DM1 = (A(J)Y + B(UI))1/D(J)

DM2 = (H % A(J) = B(J))/D(J)
DM3 = E(J)/D(J)

TRI(2s J=-1) = TaC
IF (JeEQe2) GO TO 501
TRI (1s J-1) = -DNM2

IF (JeEQeM) GO TO 502
531 TRI(3s J-1) = -DM1

167
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502

5000

24

45

44
70

515

500

88

150

RHS (J-1) = DMl * C(IsJ+1l) + DM2 * C{Isy-1) -DM3 % C(IsJ)
IF (JsEQe2) RHS(J=1)= RHS (J-1)4+ DM2Z2 % C(I+1sJ-1)

IF (JsEQWsM) RHS (J-1) = RHS(J-1) + DM1 * C(I+1sJ+1)
CONTINUE

MMINUS = M~1

CALL BNDSOL (TRTs RHSs 3s 1s MMINUS)

DC 503 J=2sM
ClI+1lsJ) = RHS(J-1)

CHECK ON CONDITION THAT DC/DTHETA =0 AT THETA = 3.1416

IF (IeGEWs2) GO TO 45
DIFF=C(1s2)~C(2+2)

1F (ABS(DIFF)«LTLEPS)Y GO TO 45
WRITE (6+10C6) C{1:2),C(222)

DO 24 1I=1sN

DC 24 J=2+M

IF (C{2aJ)eLTeala0) C(2+J)=Ca0
ClITsu=Cl24+U}

GO TO 43
GRAD(IN=2¢%(C(141)-C({I+2))Y/DRAD
RATIO(I)=GRAD(I)/CENCH

IF ([eEQel) GO TO 44
DUM=1420%GRAD(1I~1)

IF (GRAD(I) «GTaDUMsOR«GRAD(I)eLTe042) GO TO 70
WRITE (6s2) 1sC(1410)

WRITE (6+9) SCsREIPEIRK

WRITE (6+7) DRADSDTHET

CALC CF OVERALL SHERWOOD NO
SUM=U,. a

NNJ=NJIN-1
DO 6uu I=2sNNJ

SUM=SUM—(THETA(L)-THETA(I-1) ) *(GRAD(I)*SIN(THETA(I) }+CRAD(I-1)

1I#*SINCTHETA(I=1)))/2

CONTINUE
SUM=SUM/{1e+COSITHETA(NNU) )
DC 88 I=1sNJIN
ANGLE=THETA(I)}*180s/341416
WRITE (6s56) ANGLE »
WRITE (65555) CRAUL(I)SRATIO(I)
WRITE (695) (C(IeJd)sd=1sii)
WRITE (694443 SUM

PUNCH OUT BINARY DECK *x IF IBNOUT = 1

IF (IBNOUT.EQ.U) GO TO 150

WRITE (7) NJN

WRITE (7) ((CUIsJ)sI=1sNIN)aJ=1sivM)
CCONTINUE



1007 FCRMAT
1006 FORMAT
1005 FCRMAT
1004 FORMAT
1003 FORMAT
1002 FORMAT
1001 FORMAT
1000 FORMAT
999 FORMAT
995 FORMAT
9 FORMAT
8§88 FORMAT
8 FORMAT
777 FORMAT
7 FORMAT
6 FORMAT
555 FORMAT
5> FORMAT
444 FORMAT
4 FORMAT
333 FORMAT
3 FORMAT
222 FORMAT
2 FCRMAT
END
SENTRY
2C00.0
50040
10000.C
C.00605
60 1C
0 V]
0
$IBSYS

169.

(3Xs10F1U4)

(2F1546)

(6F10a44)

(13)

(215)

(315}

(F15¢4)

(3F12e4)

(1H—s THRADIUS=F1U46)

{3Xs5F10.56)
{1H-93HSC=F10a3+3Xs3HRE=F104393X93HPE=F204333Xs3HRK=F15.4)
(1H=-9s26H THETA VTHETA VRAD)
(1H- 2 2HW=F10e6 43X s 4HEPS=F12,.8)
(1X93F1Ce6)

(1H-9 SHDRAD=F10ab+3Xs6HDTHET=F10.6)
(1H-s OHANGLE IS F10.4)
(1HO s 15HLOCAL SH NO IS F104493Xs15HLOCAL RATIO 1S F1l044)
(1HUs10F10.6)

(1H=-9 17THAVERAGE SH NO IS Fl5e4)
(3Xs2F1Us6)

{1H-9 15HMESH IS UNIFCRM)

(6F1246)

(1H-9+18HMESH IS NONUNIFCRM)
{(3XsI14+sF1Ce6)

041829 ~20.6800
1.30 0.00005
30 '

ch 70T 0270
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VELOCITY PROFILES #% POTENTIAL FLOW

VRIIsJ)==(-1e+14/R3I*¥(DUMLI+DUM2) /2.
VTI(IsJ)=(1e+1le/{2%R3))IX{DUMB+DUME)/ 20

VELOCITY PROFILES ##% CIRCULATING GAS BUBBRLES

DO 23 J=2M

A2==1425-1e75%A1

A3=0475+0.75%A1

B2=-1.75%81

B3=0.75%B1

R1=RAD(J)

R2=RAD(J)*R1

R3=RAD(J)*R2

DMM1=(R3-A1~24%A2/R1~-3.%A3/R2)/R3

DMM2=(-B1=~2%B2/R1-3.%¥B3/R2)/R3

DMM3=(R342¢¥A1+24%A2/R1+2s%A3/R2)/R3

DMM4=(B1+82/R1+B3/R21/R3

VI(T s J)=DMM1I*(DUM3+DUME ) /2 o +DMM2¥ (DUMLI#DUMB+DUM2%¥DUMAL )/ 2

DMMS5=( (2 ¥ {DUML ) ¥ %2~ (DUMB 1 #¥2)+ (2% (DUM2) *¥%2-(DUM4)%%2) ) /2,
23 VR({IsJ)=DMM3#(DUMI+DUM2) /2« +DMMAXDMMS
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- (iii) Mass Transfef from a Circulating

or Non-circulating Sphere with Second

Order Chemical Reaction,

The Reynolds number, Schmidt numbers, reaction rate constants,
and mesh size details must be specified as program input.

Arbitrary initial concentration estimates may be put in directly
or read in on cards from solutions obtained in part (i) of this Appendix.
The latier values are read in by setting JREAD = 1.

Convergence tests are performed by setting JCHECK = 1. This
doubles the number of radial steps, while leaving the position of the
outer boundary unchanged. Angular step size must be handled separately
through the definition of DTHET.

The quantity JMOD must be set equal to 1 when dealing with
transfer from solid spheres at kA >104. By setting JMOD = 1 the
DuFort-Frankel modifications discussed in Section 3.2.2 are utlized.

Velocity profiles are as in the first order reaction case, with
only the storage of these values handled in a different manner.

Output is in printed form. It includes local and average

Sherwood numbers, along with concentration values of both materials

A and B at each angular and radial position.
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MASS TRANSFER FROM A SINGLE SPHERE AT INTERMEDIATE RE NUMBERS
FOR THE CASE OF SECOND ORDER CHEMICAL REACTION

CRANK NICHOLSON METHOD

A #x% CONC OF MATERIAL DIFFUSING FROM SPHERE SURFACE

B *#%% CONC OF MATERIAL DIFFUSING FROM MAIN STREAM

VR %#% RADIAL VELOCITY COMPONENT

VT #3%x TANGENTIAL VELOCITY COMPONENT

THETA 3% ANGLE IN RADIANS

RAD ##*x DIMENSIONLESS RADIUS

SH #%¥% SHERWOOD NUMBER

AAsBASDASEASABsBEsUBEBARE COEFFICIENTS IN FINITE DIFF EQN

RE #*%% REYNOLDS NUMBER

SCAsSCB x#3% SCHMIDT NUMBERS

PEA+PEB *%% PECLET NUMBERS .

RKAsRKB %% REACTICON RATE CONSTANTS FOR SECOND ORDER REACTION
EPS ¥x3%x TOLERANCE ON CALCULATED VALUES

N #x% NUMBER OF ANGULAR INCREMENTS

NEXTRA %% NO OF SMALLER AMGULAR STEPS NEAR FRONTAL STAG POINT

JMOD MUST EQUAL 1 FOR TRANSFER FROM SOLID SPHERES AND RKA«GT10000

DIMENSION A(75s70)sB(75570)

DIMENSION THETA({8U)sRAD(70) +SH(80C)

DIMENSION VT (70)sVR{TCIsVTEXP(T70) »VREXP(T70)

DIMENSION AAA(TO) +ABB{T0)sBAALTO) sBRB(70)

DIMENSION DAA(TU)+DABL(TO)

DIMENSION DUMAB(7C)+DUMBBI(70) sDUMDBI(70)sDUMAA(TO) sDUMBA(TO) »
1 DUMDA(T0)sE(T0)

DIMENSION DTHT(2U)

DIMENSION AHALF(70)+BHALF(70)

DIMENSION TRI(3+70)sRHS(70)

DIMENSION AA(T70)sBA(TO)sDA(TO)sEA(TOYsAB(T70)sBB(T70)sDB(70)5EB(70)
DIMENSION AAX(T70)sBAX(T7C)sDAX(TO)sEAX(T70)sABX(7G)+BBX(70) "
1+DBX(T7U)sEBX(TU)sRAX(70)sRBX(70)

READ (54+10C0) REsAl,.B1

READ (54100L1) SCAsSCB

READ (541001) RKAsRKB

READ(54+10C1) HsDRAD

READ (551002} EPS

READ (551003) NsNEXTRAsMsJREAD s JCHECK
READ (551016) JMOD

WRITE (6,10C5) REsAls81

WRITE (651006) SCAsSCBsRKASRKDB
WRITE (651007) EPSsH

WRITE (6+1008) NsM
RESCA=SQRT(RE)I*SCA*%#04333
WRITE (651002) RESCA

RADIAL MESH SYSTEM

MM=M+1
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555

15

20

22

800

801

222
802

24
23

21
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DO 555 J=2sMM
MJ=J-1
RAD(J)=1¢+DRAD* (H*¥%MJ~1e)/ (H=-1.)

INITIAL CONC DISTRIBUTIONS AND BOUNDARY CONDITIONS

IF (JREAD.EQ.1) GO TO 22

DSQRT=SQRT(RKA)

DO 15 J=1sMM

AC1sJ)=EXP(DSQRT*(1—RAD(J)})/RADI(J)

DO 15 I=2,N

AlIsJ)=Al15)

DO 20 J=1 MM

B(1sJ)=0450

DO 20 [=2,N

BllsJd)=B(1sJ)

GO TO 23

IF (JCHECK.EQsU) GO TO 222

M=2 %M

MM=M+1

R3=1,00005

R5=140U00115

H=SQRT((R5=1e)/{R3~1e)=1s)

DRAD=(R3-1.)/{H+1ls)

READ(S)(RAD(JYsALL1sJ)eB(1sJ)sJ=T1sMMs2)

DO 800 J=1sMM

MN=J~-1

RAD(J) =1+ 0+DRAD* (H¥*%MN=1e )/ (H~14)

DO 801 J=2sMy2
ACLsJ)=A({1sJ=1)—(A(1sJ-1)1-A(1sJ+1 1) *(RAD(JI=RAD(J-1))/(RAD(JI+1)~
1RAD(J-1))
B{1lsJ)=B(1lsJ-11~(B(1sJ=1)}=B(1lsJ+1))¥(RAD(JY-RAD(J-1))/(RAD(JI+1)—
1RAD(J-11) :
GO TO 802

INITIAL CONCENTRATION ESTIMATES FROM EQUATIONS DESCRIBING
DIFFUSICN FROM A SPHERE WITH SECOND ORDER REACIION
THESE VALUEZS READ IN IN BINARY FORM x*xx [F JREAD = 1

READ(S5) (RAD(J)Y sA(1sJ)s83(1sd)sd=1sMM)

DO 24 I=1sN

DO 24 J=1+MM

All+J)=A(1sU)

B(leJ)=B{1sJ)

DO 21 I=1sN

Allsl)=1.0

A(IsMM)=04,0

BIsMMi=1,0U

WRITE (6+1000) (RAD(J)YsA(L1ad)sBl1oJ)sd=1sMM)

PRELIMINARY CALCULATIONS

DDR1=RAD(2)-RAD(1)
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DDR2=RAD(3)-RAD(1)

DDR3=RAD(3)~-RAD(2)

RATIO1=DDR2/ (DDRL1I*¥DDR3)

RATIO2=DDR1/ (DDR2%DDR3)
RATIO3=DOR2Z2*DDR2/(LDOR2*%¥DDR2-DDR1*¥DDR1)
RATIO4=DDR1*DDR1/(DDR2*%¥DDRK2~-DDR1%#DDR1)
DTHET=32.1415/(FLOAT(N))

WRITE (641009) DRADSDTHET

N=N+NEXTRA

PEA=RE*SCA

PEB=RE*S5CB

WRITE (6+1010) PEALPER
DTHT(L)=DTHET/(FLOAT{NEXTRA)}
DTHT(2)=DTHET

THETA(1)=341416

JCONV=0

CMAX=240

JTURN=C

DO 45 1=1sN

ICOUNT=I~-1

DTHET=DTHT(2)
DD=341416-DTHET

IF (THETA(I)«GT«DD) DTHET=DTHT(1)
THETA(I+1)=THETA(I)-DTHET
DUM1=COS(THETALL))
DUM2=COS(THETA(I+1))
DUM3=SIN(THETA(I))
DUMG=SIN(THETA(I+1))

DO 35 J=2sM

CALCULATION OF VELOCITY PROFILES %% SQLID SPHERES

A2==(1204+754%A1)/29.

A3=(153e+63s%A1) /2%

ALG==(64T7s5+1T7e¥%A1)/2%,

B2=~69«%¥B1/27¢

B3=57.%B1/27.

B4=—15.%B1/27.

R1=RAD(J)

R2=RAD(J)*R1

R3=RAD(J)*R2

DMM1={R3-A1-2%A2/R1-3e*A3/R2-4s*AL/R3)/R3
DMM2={-B1-2+%#82/R1-3.%B3/R2-4+%B4/R3})/R3
DMM3=(R3+2e¥A1+2%A2/R1+2e*¥A3/R2+2%A4/R3)/R3
DMM4=(R1+B2/R1+83/R2+54/R3)/R3
VTEJ)=DMMLI*(DUM3+DUM4L ) /2« +DMM2¥ (DUMI ¥ DUM3+DUMR2¥DUML) 7 2
VTEXP (J)=DMM1%DUM3+DMM2*DUMI*DUM3 .
DMME=( (24 % (DUML ) #X¥2-(DUMB ) ¥ %2 )+ (2 e % { DUM2 ) XX 2= DUML ) #%2) ), 2,
VRJ)=DMM3*{(DUMI+DUMZ) /2 « +DMMLHDIAMS '

VREXP (J) =DMM3#DUML+DIMG* (2 4 ¥DUM 1% % 2-DUM3% %2 )
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364

34

345

346

CALCULATION OF COEFFICIENTS FOR FINIIE DIFFERENCE EQuAION

DR1=RAD(J)-RAD(J-1)
DR2=RAD(J+1)=-RAD(U)
DR3=RAD(J+1)-RAD(J-1)
Fl1=14/DR3
F4=2+/(DR2¥DR3)
F5=24/(DR1*DR2)
F6=24¢/(DR1%DR3)
ODD1=VR(J)I)*F1/2.
OLD2A=F4/PEA
0DD2B=F4&/PEB
ODD3A=24%F1/(RAD(J)*PEA}
CDD3B=2e%F 1/ (RAD(J)*PED)
ODD4=VT(J)/{RADIJI*DTHET)
ODD2AA=F6&6/PEA
0DD2BB=F6&6/PEB
AA(J)=0DD1-0DD2A-CDD3A
AB(J)=0D0D1-0DD26~0DD38E
BA(J)=-00D1-CDD2AA+0ODD3A
BB8(J)=-0DD1-0DD2BE+0ODD3B

IF JMOD = 1 %% USE DUFORT FRANKEL

WELL AS EXPLICIT STEP

IF (IeEQeleOReJMODSEGSQ)

DUFORT FRARKEL MODIFICATION

DA(JY= -0DD4

DB(J) = -0DD4

DAALJ) = F5/7(2«%PEA)

DAB(J) = F5/(2.%PEB)

EA(J) = 0DB4  +. le5%F5/PEA
EB(J)= ODD4& + 1e5%F5/PEB
GO TO 346

USING STANDARD FORM FOR SECOND DERIVATIVE

DA{J)=-CDD4+F5/PEA
OB(J)=-0DD&+F5/PEB
EAC(J)Y=0DD4+F5/PEA
EB(J)=0DD4+F5/PEB

ODDX=VREXP(JI*F1/2

ODDXX=VTEXP(J)/(RAD(J}*DTHET)

AAX(J)=0DDX-0ODD2A-0DD3A

T ABX(J)=0DDX-CDD2B-0DD3B

BAX(J)=-00DX-CDD2AA+0DD3A
BBX({J)=-0DDX-0DD2BB+0DD33
DAX(J)=~0DDXX+F5/PEA
DBX(J)=-0DDXX+F5/PEB
EAX{J)=CDCXX+F5/PEA

MODIFICATION IN IMPLICI:

GO TO 345

IN RADIAL DIRECTION

175

A>
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EBX{J)=0DDXX+F5/PEB
RAX{J)=~0DDXX/2s+F5/(2«%PEA)
35 RBX(J)=—0DDXX/2«+F5/(2%PED)

EXPLICIT PORTION OF FINITE DIFFERENCE SOLUTION

40U IF (JTURNWEQ.1) GO TO 405
DO 41U J=2sM
JMIN=J
IF (1.EQ.1) GO TO 4C4
RBJAY=RBX(J)+24%RKB*A(IsJ) /PEE
BHALF (J) = (=2 o %ABX(JI¥B (19 J+1) =2 ¥BBX(J)¥R(1sJ=1)=RBA(JI*BLI=15J)
1~RBJAY*B(IsJ))/EBX(J)
IF (BHALF(J)eGTelae0) GO TO 411
GO TO 410
404 BHALF (J)=B(1+1sJ)
410 CONTINUE
GO TO 420
411 DO 412 J=JMINsM
412 BHALF(J)=140
GO TO 420
405 DO 415 J=2eM
JMIN=J
IF (1.EQe1) GO TO 406
RAJAY=RAX(J)+2 4 ¥RKA*B (I sJ) /PEA
AHALF ()= (=24 ¥AAX (I A (T s J+1) =24 ¥BAX(J)FA( T2 J=1) =RAX(JI¥A(T=1sJ)
1-RAJAY*A(IsJ) ) /EAXCD)
IF (AHALF(J).LTeCe0) GO TO 416
GO TO 415
406 AHALF(J)=A(I+15J)
415 CONTINUE
GO TO 440
416 DO 417 J=JMINsM
417 AHALF(J)=040
GO TO 440

SOLUTION OF SIMULTANEOUS EQUATIONS BY INVERSION OF
TRIDITAGONAL MATRIX

420 DO 430 J=2sM
IF (JTURNCEQe1l} BHALF{JI=(B(1sJ)+B(I+1sJ)}/2
ODDSA=RKA*BHALF (J)/PEA
DAJAY=DA(J}+0ODDBA
EAJAY=EA(JI+0ODD5A
TRI(2sJ-1)=1.0
IF (JeEQe2) GO TO 421
TRI(1sJ=-1)=BA(J)/EAJAY
IF (JeEQeM) GO TO 422

421 TRI(3.U-11=AA(U)/EAJAY

‘:&22 IF (IOEOQIQOR.JMODQECQO) GO TO 424

DUFORT FRANKEL MODIFICATIOCN
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424
423

430

433
434
436
437
440

55

441

442

444

443

445

RHS(J—1)=(~AA(J)*A(IsJ+l)—BA(J)%A(IaJ’l)“DAJAY*A(IsJ)*DAA\J)
1#A(I=-1sJ))Y/EAJAY
GO TO 423

USING STANDARD FORM FOR SECOND DERIVAIIVE IN RADIAL DIREC:ION
RHS(J=1)=(-AALUI*A(T s J+1)-BA(II¥A(] s J~1)=DAJAY*A(TsJ) ) /EAJAY

IF (JeEQe2) RHS(J-1)=RHS(I=-1)1-BA(JI)Y*A(T+19JI-1)/EAJAY
IF (JeEGaM)} RHS(J=1)=RHS{J=1)=AALIIFACTI+1sJ+1) /EAJAY
CONTINUE

MMINUS=M-1

CALL BNDSOL (TRIsRHS»3s1sHMINUS)

DO 433 J=2.M

JMIN=J

AlI+1sJ)=RHS(J-1)

IF (A(I+1sJ)eLTe0e0) GO TO 434

CONTINUE '

GO TO 437

DO 436 J=JMINsM

AlI+15J)=040

IF (JTURNGEQ.1l) GO TO 435

DO 445 J=2sM

IF (JeEQe2) GO TO 50

GO TO 55

B(Is1)=RATIO3%¥B(I+2)1—RATIO4*B(I+3)
B(I+1s1)=RATIO3*RB(I+1+2)-RATIO4*B(1+1s2)

IF (JTURNeEQsO) AHALF({J)=(A(I sV +A(I+1sJ) )72
ODDSB=RKB*AHALF (J) /PEB

DBJAY=DB(J)+0DD58B

EBJAY=EB{J)+0DLSE

TRI(2+J-11=1.0

IF (JeEQe2) TRI(291)=1.04+{(BB{2)%RAIIO3)/EBJAY
IF (JeEQe2) GO TO 441

TRI(14J-11=BR(J)/EFBJAY

IF (JeEQeM) GO TO 442

TRI(3sJ-1)=AB(J)/EBJAY

IF (JeEQe2) TRI(391)=(AB(2)-RAITO4%BB(2))/EBJA
IF (leEQeleOReJMODEQD) GO TO 444

DUFORT FRANKEL MODIFICATION
RHS{J=1)=(=Ap(U)*B(IsJ+1)-EB(II*¥B(IsJ-1)=-DBIAY*S(IsJ)~DAB(J)*
1IB(I=-1+0))/EBJAY

GO TO 443

USING STANDARD FORM FOR SECOND DERIVATIVE IN RADIAL CIRECIION
RHS(J=1)=(-AB(JIXB(IsJ+1)-BB(JI*¥B(IsJ-1)1-DBIAY*B(1sJ) ) ZEBJIAY

IF (JaEQeM) RHS(J-1)=RHS(J~11=-AR(J)#B(1+1sJ+1)/EBIAY
CONTINUE :

177
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446

447
4438
449

435

65

70

80

41

42

CALL BNDSOL (TRIsRHS$3+s1MMINUS)

DO 446 J=2sM

JMIN=J

BlI+1sJ)=RHS(J=-1)

IF (BUI+19J)eGTele0) GO TO 447
CONTIMNUE

GO TO 449

DO 448 J=JMINsM

B(I+lseJ)=1a0
BOI+1s1)=RATIO3*B(I+1s2)-RATIOL*E([+1s3)
IF (JTURNEG.0) GG TO 435

GO TO 420

CHECK ON BOUNDARY CONDITION DC/DTHETA=0 AT IHEIA=3.14156

IF (1.GE«2) GO TO 80
DIFFA=ABS(A(1+2)1-AB8S(A(2:2))
DIFFE=AZS(B(YLs2))-ABS{B(2+2))

WRITE (6+1025) A(142)3A(2:2)sB(1+2)sB12s2)
JJdJd=JJdJ+1 ~

IF (DIFFASLT«EPSeANDeDIFFE«LTeEPSeANDeJIIeGle3) GO 10 8y
IF {JJJeGT150) GO TO 349

DC 65 JI=1sM

IF (Al29JI)1elTe0e0) A(29J1)=0.0

IF (B{2sJIl)elLTaUa0) B(2sJ[)=0.0

IF (B(2sJ1)aGTel1sC) B(2sJI)=1C

CONTINUE

DO 70 II=1sN

DO 7C JL=1sM

ACIT«JLI=(A(LsJLI+A(Z2eJL) )} /20
BOTIoJL)=(Bl1sJLI+B(2sJL)) /2

GO TO 4060

CALCULATION OF LOCAL SHERWOOD NUMBERS

GRAD=(A(Is11=-A(12))/(RAD(1)-RAD(2})
JCONV=1

SH{I)=-2+%GRAD
ANGLE=THETA(I)*180./3.1416

WRITE (691U12) ANGLEsSHI(I)
WRITE(651013)

WRITE(691014) (A{IsJ)sJd=1sMM)
WRITE(641015)

WRITE (651014) (B({IsJ)sd=1sMM)

IF (T«EQel) GO TO 42

DO 41 J=1sMM

IF (B(IsJ)elTa(-0.05)) GO TO 200
CONTINUE

DUMS=142%5H(I-1)

IF (SH(I)eGTeDUMSeOReSH{I)eLTeds0) GO TO 200
Jd=JJ+1

IF (JTURNSEC1) GO TO 43

178
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JTURN=1
GO TO 45

43 JTURMN=0
45 CONTINUE

C
C
C

CALCULATION OF AVERAGE SHERWOOD NUMBER

200 SUM=0.C

SH{1)=SH(2)

DC 300 I=2sICOUNT
SUM=SUM~(THETACL ) =THETA(I=1))*(SH(T)*STN(THETACTI ) )I+SH(TI~1)
I*SIN(THETA(TI=1)))/2.

300 CONTINUE

349
350 CONTINUE
100U
1001
1002
10C3
1004
1065
1006

SUMX=5UM/2
SUM=SUM/{1«+COSITHETA(ICOUNT) })
WRITE(651017) SUM

WRITE (6,1020) SUMX

GO TO 250

WRITE (641019)

FORMAT {(3F1246)

FORMAT (2F1244)

FORMAT (FlZeé&)

FORMAT (515)

FORMAT (5F1244)

FORMAT (1H-s9HRE NO IS F10.251C0Xs5HAL
FORMAT (1H=-s6HSCA = F1042+1CX»56H5CB =
16HRKEB = 4F15.2)

= FlOe&dslUXsBHBI = FlUe4)
Fl0e2310Xs6HRKA = F1542+10Xs

1C07 FORMAT (1H-s6HEPS = F1l0e6s10Xe4HH = F1043)
1008 FORMAT (1H—-925HNO OF THETA INCRIMENIS = I5s1luxs26HNO OF RADIAL INC

1009

1010

101

2012

1

1013
1014
1015

1616

1C17
1019

1020

1G2

159
-

IREMENTS = 15)

FORMAT (1H-3s7HDRAD = F10e6351CXs9HDIHEIA =
FORMAT (1H—=s12HPECLET(A) = F1042510Xs12HPE
FORMAT (5X32F1046)

FORMAT (1H=»SHANGLE IS F10.3310Xs18HSHERWOOD NUMBER = Flébe4)
FORMAT (1H—-s323HCOMCENTRATIONS OF SU3SIANCE A ARE)

FORMAT (5XsTCF1046)

FORMAT (1H-s33HCONCENTRATIONS OF SUBSIANCE B ARED)

FORI“AT (15) ‘

FORMAT (1H-»26HAVERAGE SHERWOOD NUMSER = Flhe4) _
FORMAT (1H=s54HUNABLE TO OBTAIN ZERO SLOPE AT THETA EQUAL 180 DEGR
1EES)

FORMAT (1H=-s42HAVG SH NO BASED ON TOTAL AREA OF SPHERE = Flé4e4)
FORMAT (3Xs4F1547)

END

Flueb)
CLET(B) = Floe2)

SENTRY
20040 0.1829 ~20.680C0
50040 8000
100038C0.,0  10CC0040
13
0«0CCT1
60

$IBS

1

0,00005

1C 30 1 C

YS
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VELOCITY PROFILES #% POTEMTIAL FLOW

R3=RAD(JI*RADCI)FRAD(D)
VTI(JI=(1letle/ (2%R3INIX(DUMSHOUMEG) /2
VTEXP (J)=(1le+1le/{2.%R3))*{DUM3)
VRIJY=~{~1e+1a/R3)HF(DUMIHDUMZ)I/ 2
VREXP(J)=~(~=1e+1a/R313%¥(DUV])

VELOCITY PROFILES %% CIRCULATING GAS BuBBLES

A2=—1s25-1e75%A1

A3=0eT75+0s 75%A1

Be=-1le75%B1

B3=0Ce.75%B1

R1=RAD(J)

RZ2=RAD(J)y*R1

R3=RAD{J)*R2

DMM1I=(R3=A1-2e%A2/R1-3¢%*AZ/R2)/R3
DMM2=(~-B1-24%B2/R1-3.%¥B3/R2)/R3
DMM3=(R342e ¥AL424 ¥AZ/R1+2e¥A3/R2)/R3
DMMa=(B1+22/R1+B2/R2)/R3

VTJY  =DMMIX{CUMI+DUMA )} /2 +DMM2%¥ (DUMLI#DUMB+DUMZ2¥*¥DUMEA ) /7 2
VTEXP )Y =DMMI*DUMZ+DMMZ*DUMI*DUMS

DMME= ({24 ¥ {(DUML)*X2-(DUM3) #%2 )+ (2% (DUM2 ) ¥%X2-(DUML)*%2) )1 20
VR (J) SOMMBH(DUMT+DUM2 ) / £ o +DMii 4% DA

VREXP (J)=DME3*DUNMLI+DMMA4¥ (2 ¢ ¥ DUALH#2-DUMB¥*3%2)

18U
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L. EXPERIMENTAL DATA AND CORRELATIONS

The new data are presented in Table L.1 along with confidence
limits on the absorption rates. The latter were determined from the
statistical analysis procedure discussed in Section 5.1

Experimental correlations, along with pertinent statistical

parameters, are presented in Table L.2Z.
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TABLE L.1

Experimental Data - Absorption of Carbon Dioxide into
Monoethanolamine Solutions
(Leakage Correction was 0.0156 cc/min in all cases)

_ Corrected
Conc. of v Absorption Absorption Corrected
MEA Rgézg?zer Rate Rate Sherwood
mole % 1ng cc/min cc/min Number

0 12* 0.0579 + 0.0039* 0.0423 53.8
0.0479 + 0.0046 0.0323 41.0

0.0539 * 0.0034 0.0383 48.6

0.0526 + 0.0039 0.0370 47.0

0.0522 + 0.0057 0.0366 46.5

0.0476 * 0.0031 0.0320 40.5

11 0.0656 * 0.0058 0.0500 63.5

0.0543 * 0.0052 0.0387 49,2

0.0683 + 0.0060 0.0527 66.9

0.0682 * 0.0035 0.0526 66.8

0.0579 * 0.0069 0.0423 53.7

0.0558 + 0.0041 0.0402 51.0

22 0.0656 * 0.0039 0.0500 63.5

25 0.0634 * 0.0057 0.0478 60.8

0.0761 + 0.0049 0.0605 76.9

0.0797 % 0.0031 0.0641 81.0

0.0641 * 0.0037 0.0485 61.5

0.0687 # 0.0052 0.0531 67.5

35 0.0837 * 0.0067 0.0681 86.0

0.0774 + 0.0047 0.0618 78.5

0.0727 + 0.0034 0.0571 72.5

0.0779 + 0.0045 0.0623 79.0

0.0854 * 0.0067 0.0698 88.0

37 0.0841 * 0.0064 0.0685 87.0

* Confidence limits at 95% level

+ X% inch rotameter, all others refer to 3/4 inch rotameter
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TABLE L.1 (Continued)

Corrected

Conc. of Absorption Absorption - éorrected
MEA Rg;zg;ﬁer Rate Rate Sherwood
mole % g cc/min. cc/min. Number
0.33 12* 0.0954 + 0.0072 0.0798 101
0.0900 + 0.0030 0.0744 94.0
11 0.0867 *+ 0.0063 0.0711 1 90.0
0.1118 * 0.0055 0.0962 122
22 0.1223 + 0.0067 0.1067 136
25 0.1366 + 0.0053 0.1210 153
37 0.1655 + 0,0083 0.1499 190
0.66 12t 0.1267 * 0.0031 0.1111 141
0.1360 * 0.0074 0.1204 153
11 0.1494 * 0.0045 0.1338 169
0.1443 *+ 0.0064 0.1287 163
25 0.1824 + 0.0084 0.1668 211
0.1909 * 0.0054 0.1753 222
35 0.2117 + 0.0062 0.1961 249
0.2419 + 0.0117 0.2263 287
0.99 12* 0.1376 * 0.0096 0.1220 158
0.1403 + 0.0093 0.1247 154
11 0.1552 + 0.0071 0.1396 177
0.1881 * 0.0119 0.1725 219
25 0.2513 + 0.0077 0.2357 299
0.2457 + 0.0157 0.2301 292
35 0.2886 *+ 0.0122 0.2730 347
0.2807 + 0.0233 0.2651 337

* Confidence limits at 95% level

+ % inch rotameter, all others refer to 3/4 inch rotameter
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TABLE L.2

Experimental Correlations

1
Sh = A+ B Re’sc/3
Concentration

MEA A B
mole %

0 23,1 £ 3.3% 0.518 + 0.12
0.33 25,9 + 15.2 1.37 * 0.53
0.66 51.5 * 15.8 1.90 % 0.53
0.99 11.7 ¢+ 13.3 3.04 % 0.45

* Confidence Limits at 95% level
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