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Until now, +the nuclear meny body problem has been restricted
almost entirely to considerations of the two-body force. However the meson
thedry of nuclear forces predicts that the exchange of magons between three
or more particles will give rise to & three-body or many-body force, The
meson theory which has succesfully explained the main features of the phe-
nomenological nucleon-nucleon potential, 1s expected to provide & good
basis for the study of three~body nuclear forces. Taree-boedy nuclear
forces can occur among baryons such es N, A, 2 andfg. So far, hovever
only bound states of nucleons{nuclei) and of nucleons and A (Lypernuclei)
have been observed experimentally. Hence only the thxee~nucleon foree
and the AT force are considered. It will be secen thab the AT force
plays a more important role then the three-nucleon force. fiwus in the
present work the AN force will be étudied in'greater detail then the
three-nucleon force. First the long and intermediate range parts of
the N force are derived from mescn theowxy. Their effects on the

P

binding encrgies of L H,  He and nuclenr matter are then estimated.
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Since the short range part of the force is not known, no definite
conclusion can be drewm. However it is found that the three-body ANNH
force can play an important role in the nuclear structure problem.
The effects of the three-nucleon force in.iH and in nuclear matter are

also briefly discussed.
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CHAPTER 1

INTRODUCTION ~ THREE-BODY NUCLEAR FORCES

One of the major trends in nﬁclear Physics is an attempt to
explain nuclear structure in terms of the two-body nuclear forces vhich
are determined from nucleon-nucleon scattering data. This program relies
on the hope that three-body'aﬁd many-body forces are unimportant. On the
other hand, from the meson theory of nuclear forces, where 1t is helieved
that forces are due to the exchange of mesons, 1t is expected that the
exchange of mesons between three particles oxr more will give rise t¢ a
three-body or meny-body force.

The meson theory of the two-body nucleon-nucleon (N-IN) force has
been extensively studied by meny authors. The one-plon-exchange potential,
OPEP, well established theoreticslly, gives a good description of the KN-N
interaction at large distances, distances greater than about 2 fm (Ivadare’
et g&,l956;0ziffra et al, 1959). For interaction distances less than
. about 2 Im, the potential due to the exchange of more mesons or heavier
mesons has to be considered. Thus the two-pion-exchange potential,'TPEP,
has been calculated and is fairly well understood theoreticelly
(fonuma et al, 1957; Cotﬁingham,and Yinh nau,l963). The potential due to
the exchange of heavier mesons then s has also been consldered, glving
rise to the one-boson-exchange potentials, OBEP, (Arndt ct 8l , 1986;
Bryan end Scott, 1967). The OBEP, TPEP together with the OPEP reproduce
the main features of the long and intermadiate range part of the

1



'phenomenological N-N petential. The mesoﬁ theory of nuclear forces has
been exténded to the interaction between various baryons N-A, N-E, A-A
ete,.. Howvever experimental data are as yet too mesger to provide a
proper comparison with theoretical predictions. Sincé meson theory gives
a8 good account for the two-body nucléar interaction, in particular for the
N-N force, it is expected that meson theory will provide & good bhasis for
the study of the three-~body nuclear forces. Accordingly the exch&née of
mesons can teke place between three particles and cen give rise to a
' 'meson theoretical '' three-body force.

Three~body nuclear forces can occur among baryons such as N, A,
Z and'= . So far, however, only bound states of nucleons (nuclei) and
of nucleons and A (hypernuclei) have bcen observed experimentaliy. Thus
the thﬁee-boﬁy nuclear_fdrces which are expected to play & role in nuclear
structure, are the three-nucleon force and the ANN force. As will be
seen the three-body AN force is stronger than the three-nucleon force. On
the other hand the charge symmetry of the strong interaction forbids the
exchange of one pion in the A-N interaction, thus the longest rangea
two~-body A;N force arises dvue to TPE and has a shorter range than the
“N-N force. Therefore the ANN force will be relatively more important
than the three-nucleon force and then it will be studied in greater detail.

In priuciple, 1f tvo~body forces are completely known and if
many—body problemns can be solved exacfly with the two-body intersction,
then any discrepsncy between the theoretical predictions and experimental
data, can be c¢laimed to be due to many-body forces. In practice, the
twvo-body interxaction is not very well known end even if it is well knowm,

it is practically iupossible o solve the many-body problems exactly.



Nevertheless there seems to be some evidence for such discrepancy, in
particular in the case of the A-N interaction.
The best source of information about the A-N interaction has
come so far fronm the phenomenological analyses of the binding encrgies
for light hypernuclel, mainly s-shell hypernuclei. Recently A-N
scattering experiments have provided ﬁore direct information. If there
is no many-body force, these two approaches should lead to the same
results. Extensive analyses, in terms of the binding energies of s-shell
hypernuclei, lead to an s-state A-N potential with strong spin dependence:
‘it is much more attractive in the spin singlet state than in the spin
triplet state. These results have been well described by Dalitz (1966).
The most direct information, derived from A-p scattering experiments, is
nov becoming available (Alexender et al,1966, 1968). The s-wvave scattering
lengths apnd effective ronges, determined from Alexender et al's experi-
ments, sre not very different for the singlet and triplet stetes, if the
intrinsic rénge of the force is chosen to be arownd 2 fm or slightly
greater (Alexsnder et al, 19665 Ali et al, 1967). This is contrary to
the results of the previous enalyses which utilised the binding energy csl-
" culations for light hypernuclei. This suggests a possible‘importagce of
the three-body AN force and that the A-N force determined from the
A-p scattering will not give the right binding energles.
It has been shown that a A1 potential, reproducing the date
5He

N
Gh&du&i_gE al, 1967; Herdon end Tang, 1967). Thus there is the possibi-

of Alexander et al, ''overbinds'' light hypernuclei, in particular

lity that a three-body repulsive AN force could play en important role

in these hyveimucled. It was first pointed out by Weltzner(1959)



that for strong repulsive ANN forces, thé binding energies of light
hypernuclei could be accounted for with a two-body A-~N force withdut
strong spin dependence. Recently, the effects of ANN forxces in s-chell
hypernuclel, in comnectlon with the unew scattering data, have baen
discussed by Gal (1966). If such ANN forces exist, then the low-energy
scattering paronmeters previously extracted from the binding energy data

of s~ghell hyperauclel, assuming only a two-body A-N force, are the

result of some ''effective A-N interaction''. ''This effective A-N force'?

cennot be directly compared with the free two-body A-N force.
On the other hand it is interesting to have an eccurate estimate
of the binding energy of a A in nuclear matter, since it is the same as

the depth of the average one-body potential, U, , in waich it noves and

A
this depth gives a measure of the strength of the '‘effective A-N inter-
action''. It was shown by Ali et al (1967) that the A~N potential that
fits the A~p scattering date overbinds the A in nuclear matlter. Here
egain, one of the effects which mzy reduce the depth,lJA »in nuclear
matter, may arise from the presence of & strong three-body ANN force.
At the present time, the three-body ANN force cen only be cal-
“culated using a meegon fieldtheoretical approach. This method has |
elready been epplied to the determination of a '!t{heovetlcal'' A-N force
by several suthors (Nogaml et al, 1964 Deloff end Wrezecinko, 190k%;
Rimpealt end Vinh lau, 1965). In suéh a calculation, the longest range
part of the three<body ANN force, erising from T?E, has the same renge
as that of the TPE A~ force which has been shown to be important. The
definition ox the interpretation of the three~body fofce is not free from

anbiguity. In fact it is still a maeltter of serious contreversy (Bwown‘gg
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Mc Kellay and Rajaraman,l968). However in the present work the static
meson theory is taken throughout.

The TPE AllN force is derived in the -static approximetion in
chepter 2 and is compared with the previously obilained ANN forces. Only
the p-vave and s-vave - A interaction are considered here, higher pariial
weves being ignored. Then the ANN fofce, W, consists of two parts, arising
from the p- and s~wave wx~-A interaction:

W=l +Ws ...(1'.1)‘
For Wg, & ‘''suppression factor'' of the s-wave n-A iInteraction is |
introduced in analogy to the corresponding situation of the s-~vave -y
interaction. It will be shown that for a reasonable suppression factor,
Wg is unimportant. W? consists of a central and & tensor teim. Tae
tensor texm appears as & product of two tensor operators end depends on the
angle between the two AN vectors. This temn contributes significantly to
the potential. ensirgy of the system.

Unfortunately, the ANN force, that is derived , is of a very
singular nature at short distances and cannot be taken literally. In
any case, in the ghort range reglon (r An < 0.7 fn) pfocesses other
then TPE will become important so that the contribution of TPE should not
be teken alone. Therefore oaly the taill of the TPE potentiazl is considered
here and this potentlal is set equal to zero when the A-N distance is less
then & cut-off distance, d Ay For 4 Ay greater than 1 fm only the TPE
potential is expected to conbtribute significantly to the ANN force.

The contribution of this TFR AN force to the binding encrgy of &

A, in 32{, 2

A A

effect in iﬁ ig found to be relatively suall and cen be compansated by

He end in muclecr matter, 1s exsmined in chapter 3. The
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slightly chaﬂging the two-body AN force. The A- a potentisl in iﬁe
due to Wp is repulsive but itsrsrength is sensitive to d poy. The contri-
bution from the tensor part of wp is large but finite in the limit of
d/\ﬁ~£>0. For a rxeagouzble d py, the contribution of W, is still quite.
substantizl end used in conjunction with & A-N force that fits the
scattering data of Alexander et gz,giﬁes a BA- for iﬁe much closer to the
experimental value then that obteined by FBhaduri et ol (1967). dhe effect
on B

A

found that the contribution from Wb, mainly repulslve, is dominent end is

in nuclesr matter is considered uvsing perturbation theory. It is

extremely sensitive to - correlation. However, ag pointed out ebove,
processes other than TPE; contributing to the intennediate range part of the
ANN force, may modify these reéults appreciably.

The three-plon-exchange three-body ANN force may be important in
the intermediate renge part since it is the next lovest order contribution
efter TPE ond since it has been shown that the TPE A-N force is important
(Nogaml et 1, 19CL; Deloff end Wrezecinko, 196l; Rimpault and Vinh Mau,
1965). In the caserof the meson theory of the N-N interaction, it has been
shown that the OPEP gives a good description of the N-H interaction at
distances greater than 2 fm (Cziffra et al, 1959; Breit and Hull, 1960).
Fox distances smsller than this, the OPEP is dominated by the TPEP. It is
of interest therelore to investigate ét vhatl distance the TPE ANN force
becones doninsted by the three-plon-exchange ANN force. It will be also
possiblé to say to what extent the previous resulits, on the elfect of the
TPE three-hody AN force in light hypernucled end in nuclear matler, ave
reliable.

The three-plon~crchonge ANK force, P, is derived in the slatic



approximation in chapter 4. In chapbter 5 the effects of Pon B, in H,

A A
in iHe end in nuclear matter are examined. In AH it is found that P
depends strongly on the A-N distance and that the contribution of P %o B
in iH is attractive and larger. than that of the TPE ANN force, wp.

For & an®s 1 fm, the overall effect (P and wp) is found to be attractive

and relatively small.. The A- @ potential in iﬁe due to P, P(r, ), is

A
eveluated. The potential P(rA ) is found to be repulsive (except for
d Aygy = 1 fm and rAC§; 0 fm) and its nugnitude is sensitive to @ AN’

It further reduces the binding energy of iﬁe and fof a Arch 1 fm the
effect of P is smaller than that of wﬁ' A first order perturbation
calculation is done to estimate the éontributionvof P to BA‘in nuclear
matter. This contribution is found to be :epulsive end its magnitude
depends stronglyvon a Al end is larger than thét'of W?. Even for d Al
1 fm, the overall effect (P and Wb) is found to be large and repulsive.
In the case of the N-N interaction,  there are also discrepancies
betveen theoreticzl predictions and experimental dGata vhen many-body
problems are solved with the two-body interaction. Such a dlspority occurs
in triton, 3H, vhere many authors have evaluated the binding energy due to
a two-body N-N potential that fits R~ scattering data. So far the value
obtained is always smaller than the experimental value by an amount of the
order of 1 Mev ox nore (Delves end Blatt, 1967; Dovies, 1967). There is
& similer situation in nuclear metter vhere the binding energy obtalned
using & two-body N-N force is smaller than the !''expeiimental value'!
extrapolated from heavy nuclel by sn amount of the order of 3 Mev

(Brueckner and Masterson 1062; Bhargava and Sprung, 1967). So it is

poggible that the three nucleon force may also play an important role in



the study of nuclear structurec.

The long range part of the three nucleon force, arising from
two-plon~exchange, is derived in chepter 6 and its effects on the binding
energies of triton and nucleur natter are examined. The effect of the
(controversiel) I = J=0 dipion resonance (the o -meson) is considered.

The three~body potential consists of three parts

F=T,+Fg + & .o (1.2)
vhere F; 1s due to the (virtual) x-N scattering vie the o -meson, vhile
Fp end Fg are due respectively to the p-wave and s-wave n-ll scattering
via ''direct interactions''. The direct s-vave #-N interaction is set up
so that, together with the n-l intevaction via the o -meson, it reproduces
the cbsexrved s-wave n-N scattering length. Since the short rangé part of
the three-nuecleon force ig not knowm, the three-body potentlel is token
to be zero for NaN‘distanccs less than a cut-off distance 4. The triton
wave function is token from & variational calculation for o hard-core
two-nucleon potential (hard-core radius D). Tae result ic sensitive to 4
and elso to the hard-core radius D. ¥For instance, &t D = 0.h fm, the
contribution to the binding energy can be as big as about 1 Mev (atitractive).
“The effect in nuclear matter is evaluated by a first order periturbation
theory. Tae contribution is found to be crder of a few lMev, between  -0.7
and 4.0 Mev, depending on the velue of the cut-off d end on the N-IN corre-
lation fuaction.

A discussion of the resulis 1s given in chapter 7.

Tarouzghiout the waole calculetion, the units Y = ¢ = 1 are used.
o 2
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CHAPTER 2

. DERIVATION OF THE LOHG-RANGE TWO-PION-EXCHAKGE (TPR) ANN FORCE

2.1 Ivaluation in the statlc epproximation using Miyezowa formaliem
2 Y

Thefe is en arbitrariness in the definition of the A-1 and ANN
potentials which is connected with the mumber of channels considered in
the solution of the Shrddinger equation. For the two-body interaction if
two channels are token, A-N and 2X-lI, then correspondingly the wave function
has two components. The potentisl is then a 2 X2 matrix :

V( AN—DAN) V(EN —DAN)

v = ‘..(201)

v( /\N-—{>>mj V(N —DIN)
As shown by Uehara (1950), the Z-ﬁ couponent of tﬁe wave functlon can be
eliminsted and the one-~channel formalism can be used. Then the A-IT potential
in the one~chammel formelisu vhich is of course different from U( AN —>AN)
in (2.1),is energy-dependent, but this energy-dependence is negligible if
the energy of the system is well below the £-N threshold. The AN and ANF

s potentiels, in the two-chonnel formelism, have been discussed by Uehara
(1L960). Since only the bound state is considexed it is sufficientl&
accurate to use the ocae-chamnel formalism. The two«pionwexchange AW
force, arising from the disgram shown in Fig. 2.1, is derived in the static

epprozimation vhere the nucleons and A are considered to be at rest.

Heve the effect of the plon-pion intrection (x~A interaction via
the o -meson) bas not been conslderad. It vill be done for the three-nucleon

force (chopler 6).


http:formaJ.if>.tn

10

N A N
Fig.2.l

Following Miyazawe (1956, 1957), the S matrix element correspon-

ding to the diagrem 2.1 con be written (¢ = 1;( = 1)

2 1 2 1 2
bety (%) [ 3 3 g-pg-a<plSa> -ilpy - ¢x)
S'= = ap dq e
6 2 2 2 2 2
(en) p (e, + 1) (g +1)

2
Here £, is the pseudo-vector wii coupling constant (f = 0.08 ), p end ¢
N N M I

ere the moments of the eichanged plons, r, and Ao &Te the coordinates of

1
the two nucleons and p is the pioa mass. The scatbering matelx,

<pl S /\I q> , for the zero coexrgy plon scattering by A, is given by
A A

A A '
<pIsl g> = am 3(0) (A (0) oo.p 0. g +C_ (0)
o in A v Am oA A ‘
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+2DA (O) ) _lg?v* Ig“i\).daj\A a.'(2.3)

EWY A A
ned by setting pgy equal to zero in the dispersion wrelations for the p-

wiere r, 1is the coordinate of A . The functions A A’ ¢, and D, are obtal-

wave and s-wave s~ A scattering. Fron Nogewi and Bloore (1964), thsy

ere given by :

o0
2
b (/0 ) 1 [ @ o 3 (k)
A (3) =C (2 ) = v o
A A 7o L+p - 1€ o5t w (0w =-p = i)
0 0 k k 0 .
_ .
1 dk 20. (k) + o3 (k)
o eosemvaicn l 3‘ K} Gt.(goll‘)
6x w w +p = ie
0 k k o
2 2 o0
Py = M dx > !
D(p) ar &, + 0 o (k) +
Oy W w =p = le w +p =1le
0 k k 0 k0

...(2 5)
/2

Here f A is the n A £ pseudo-vector coupling constont, Wy = (k + M )

AN mg = 1 snd o 1 and o are the p-wave = A scabtering crossc sections

A 3
in the states with J = 1/2 and 3/2 respectively. In the following, the

p-veve m- Ascattering is assumed to be dominated by +the Y'ij (1.385)y -

resonance ln o 3 ,end o 1 is igrored. In (2.5), a A is the scattering
length end o o the cross section of the s-wave n- A scattering. IT

expression (2.3) is substituted in eg. (2.2) S is obteined in the form
§ =« 21l O (O) V. fThe quentity W, which 1s interpreved as the ANN
potential arising from dlagram 2.1, is given by :

W=V, +VW «es(2.6)

P 5’
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1 2 { 1 A

‘\Ip [~ 1/6 CPA’}:\ . IM g: -M(I‘- B Sl/\ (X) 'I‘ (X) 3
2 A
g-g +5 T} ), ee(27)
2A . + .
1 2 1 2 2
Wo=Cop LT T -x % x4 (L= + l? (r vy +1) ¥(x) Y(y)/(uxy).
«eo(2.8)

Here, {A, }3} = AB + BA, @guﬁl -“1;’\ ,£=£2 -Nz'c;/\ (see Fig. 2.2) and

.'.
2 2 o o
=T f : o =z (k) :
C = "’fi"ﬂﬁm ""'!’\ < /-'l"""“”' dk 3 2 001(209)
PA 3 A 2 2
. 61( W
0 k
: ( o
C =- (£ ) p (0 o eeo(2.10
oA . A( ) / ( ), (2.10)
1 A
"g . 35\ Q"Mo 35.“ 1 /\
SlA (X) = 3 2 "g" ‘/vg\-»\ 3 000(2011)
X
"iLX
3 3 e
T(X) = 1 4 arcrnm 4 biinibic el Y(x) = Soemrr e . 111(2.12)
;LJ&.
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N, X A
fic P

In the following chapter, the potentials wp ond WS will be

considercd in the cape where the nucleons end N\ are in the s~ghell. Tae

expectation values of the v 's end o 's are denoted by brackets< > .
1l 2 '
The expectation value <, g .X a .3;> should be proportional to ZoX

v

for any two vectors ¥ and PR Tae constant of proportionality cen be found
WA,

by putting x = y and doing the anguler integration. Therefore @

1l 2 1 2 1 ' 1 2 1 2
LT G xG 3> == X y<T .T o .0> eeo(2.13)
3

AR A AW AVA MEA MM A M Ay

and using (2.13)



1 2 2 A
< ;FM o;‘l/';‘ {S (X), Ag; -g; } > = O nov(?.ol’dl)
1A + .
and
1 2 . 2
<T .T {S (%), s (y)} '>=2(3cose - 1)
wao 1A - 2 A + Xy
1 2 1 2 .
Xx<zIT .T G 0> ,. ess(2.15)
vhere cos exy = Xey / (xy). Thus, for the nuclcons end A in the s-shell,
W end W , are reduced to 3
P ]
' CP/\ 2 ' i 2 1 2
Wy = - =21+ (3c0s & =~1)nx)Ty)T ¥ Wy)<z I, O 9>
3 xy
000(2016)
1 2 1 2 1 @2
W o=eC cos & (pwx+1) (u+1) ¥(x)¥(y)/ (1xy) <T, 2T T T> e
s 3 sA xy , _
o'u'(2017>

Vhen A is fex from the nucleons, the angle exy is smplld, hence WP” is”
repulsive and W, is attractlve (it will be seen that< >= - 3).

The coefficient C_‘p A end ¢ s are novw evalusted. For the first

A
2
tern in Cp A (2.9) various estimates of f A have been done indicating that

. o . .
f’;’\ is slightly swaller thea £  (Mawtin emd Voli, 1963; Raman, 2966,

2
Kvon Kim, 1967; Chem and leire, 1968). It is egcumed here that § A= Ty =
by & faclor < 2.

2]
0.08, elthough this may be on overestlmate of £
3 i 3 A
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Ag in Nogami ernd Bloore (196%), the second term in cp hes been evalusted
assunlng a Breilt Vigner resonance forxrmula for Y; (1385). Tnus it is found
that :

¢ = 1.k3 Mev eeo(2.18)
DA

The first texm in (2.9) constitutes 73% of CPI\ s walle the rest comes from

2
Y;. If the value fl\ = 0.0k is taken, Cp A is found to be equal to 0.89 Mav.
The true value of C vill be between 1.43 and 0.89 Mev.

PA
If the two-channel formalisen is used, the first tem in (2.9)

should be dropped, because 1t is Interpreted as & repetition of the OPE
two-body potential (Nogewi end .Bloor_e, 1864). In other words, the ANN
force in the one-chamnel. formallsm contains effects of two~body forces in
the twoéchannei formalism. The potential ‘WI‘) is much stronger than the TIE
three-nucleon force, derived, for instance, by Pujita and Miyazews (1957),
vhich corresponds to the ANN force in the 'bxm-charmél rather than the
one chennal formolism.

For Cgp,since a, and o, are not known experimentsally, theoretical

A

estimates are necesssry. The lowest oxdexr perturbation theory gives

: o
DA (0) a2 2 2p B, = =2 (fA /i) x (my +my ), which results in

2
Cq A’Av’ - (/1. fN) a A = 20.5 Mev. However, such a simple pexrturbation cal~

culation of a A ie very poor spproximation. There is 2 corresponciing
problea in the three~nucleon forece (Fujita and Miyazava, 1957 Queng-lo-Kim,
1966). There , a A I8 replace by (8.1 + 23.3) /3,vhere ey and ag ave the
s-vave n-l scatbtering leagths in the I = 1/2 end 3/2 states, respectively.

According to Homilton and Vooleock (1963) expevimental velues eve o1 =

(0.171 +0.005) /. and a3 = ( ~ 0.088 T 0.004) /. Hence
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0 g - (al + 2a3) /3 £ 0.0 L/p.

On the other hand, it has been shown that for the soft plon (pion of

zero four momentum) & + 2a = O (Weinberg 1966). Hovever, the lowest-
order perturbation caiculation gives - (& +22 ) /3=kn (£ /y,)2=
2.124L . This is an overestimate by & fatﬁor of3200 or mor§° garious
mechenicms have been consldered for this ''pair suppression'! (Amati and
Fubini, 1962). These mechanisms all seem to be appliéable also +to the
g~vgve n-A interaction. Thus & suppression factor of.the sare order of
negnitude 1s expected there. This Pactor is tentatively assumed to be
100, namely o, = 2 (:E‘A /1 )2 (mz + mA) /100. It hes becn also
shovn that for the soft pion aA = 0 {Veinberz, 1955; Tomozove, 1966).

In enalogy with the n=N case the integrel conteining o in (2.5) is
assumed to be negligible., Taen, it is found thet :

Cgp = 0.30 Mev eeo(2.19)

As will be seen in the following chapter, results will not be altered even
vhen C

SA?s as large ags 3 bav.

2.2 Comparison vwith the previously obtained ANY forces.

The AN potential, obtained in the previous section, will bé’
compared with those o far derived. The TPE ANN force has been
evaluated, in verious sporozimation, by Weitzner (1958), Spitzer (1958),
Bach (1952),Uehara {2980), Chalk and Dowme (1963). Veltzner! ¢ end
Spitzer's vesults differ Trom sll the later works and it is not easy to
retrace their caleulation.

In Bach's work, the AUY force ig calculated in the statlc approximation
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by perturbation theory using time-ordered diasgrams. There are -three types

of dilagrams, as shovm in Pig. 2.3, which are called IiB, B and SB.

p -
X ," R
A 7 ’/ \\\
\\ r./ E // S
N\ . L
\\ E -
\ -
N A N N A N N A N
(NB) ) (SB)
Fig.2.3

The dlagrams NB end B are due to the p-wave and SB is due to the s-vave
= A -interaction. The ANN potentials,arising from these diagrams; are
denoted by VNB’ VB end VSB’ regpectively. The rass girferepce, A= mx -
mA s is neglected in the energy dencminstors except in the second inter-
mediate state of B. However, if A is not neglected end if the sum of the
contributions from all the 16 NB diagrems end 8 B - diagroms is done, the
potentlal that results is the sawe & Wb but without the contribution from
Y;. This result was not obtained in Bach's work, perhops because VNB end
VB vere calculated separately. The dlegrem of Fig. 2.1 is not time-
ordered and contains both KB and B. The sume caleulation vas repeated by
Chalk and Dowas end Bach's V. and VB vere confirmed. The value qf the

HB
2 2
covpling constant fA , taken by Pach, is slightly smaller than that of fA
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used here. Incidentally Bach's resullts hove been misquoted by Dalitz
(1965) &nd by Gal (1966). The central part of Bach's Vg is quoted as
2 Mev X Y(x) Y(y), which is actuelly 2 times Bach's original Ve
Gal's strength poremeter CG’ corresponding to qu » is taken equal

tolT Mev which is much stronger than the estimate of QPAK done heve. It 1s

2
argued that the contribution from the Yl - Intermediate process may

considerebly modify the value of CG. However, Cp/\incluaes contribution
) .
from Yl. Also in Gal's worxk only the centrsl part of W is congidered and
P

it wlll be shown, in the next chapter, thet the effect of the tensor pard
of Wp doninates over that of the central part. Uchura's  ANN potential
is foxr the two-chamnel foumalism gnd is obtoined from W§ by dropping the
first term in C (2.¢2).
BA

For the s-~wave disgram SB, as s noted by Chalk end Dowms, Bach's
Vop has & wrong factoxr. The diagram SB was caleuvlated by Chalk and Dowas
by pérturbation theory, firstly in static approximation and then in a
relativistic vay. Thelr result in the static approximation agreeg with WS,
without the suppression factor. Thelir relativistic éalculation shove that
the recoil effect isg unluportsnt for the long range part of the ALN
potential. Since the suppression foctor was not intreduced thelr potential

is much stronzer than Wy
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CHAFTER 3

EFFECTS OF THE TPE AW FORCE

3.). Effect in iH

The effects of the potentials Wp (2.16) snd Wy (2.17) on B A in

3 ) o
/\H are estimated by perturbation theory. The wperturbed vwave function

is teaken to be the wave function obitained by Downs, Smith and Truong (1963)
from & variational calculation of the binding energy of iH.
It has the form : ’
-1/2
Y =N £(x) £(y) a(z){x eve(301)
vhere X=r =x ,yAa:r-r s Z = - r end

iy
A e~ Sy W T~

f(r)

=0 , for » < D
=eXP["04(1‘”D)] '“GX-P[:"B(ZL‘-D)] :f'or:c">D,

o ees(3.2)

g(r) =0 ' , for ¥ < D,
=exp [~7(r-D)] =-exp [~3(r-D)] forr > D‘.

‘ ee(3.3)

Here D is the hard-core radiuz of the A-N and H-N forces and the factor

N-,1/2

normelizes ¥ to uwnity. The functionf is the isospin singlet
”

wave function for the two nucleons and X is the spin vavefunction of 7\H.
The optimum variational parameters, obteined by Dowmas et ol (1963),

ave listed in table 3.1 for the hard-core vedii D = 0.2, 0.h end 0.6 Im

19
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.t‘
together with the correpponding normalization factors .
TARLE 3.1
Parameters for the wavefunction, with the corresponding normalization

factors N, for three different hard-core radii D. (Dowas et al, 1963)

e I ] P
0.2 0.297 7436 0.5h7 6.52 3.825
0.4 0.327 6.9% 0.578 k.55 3.658
0.6 0.389 11.28 0.606 4.79 2,925

The expectsation values of W, (2.16) end Wy (2.17) with respect to
¥ (3.1) ave denoted by < wp > end < W > respectively. The expectatlion

value of the T 's and o 's is :
1

2
<£' - T ...(3.14-)

.f
The noxmalization factor N listed in table 3.1 differs froa Chalk

and Downs'l (1isted in toble 1 in Chalk and Downs (1963) ) by & factor

2
8 % . Their vavefunction is noymelized as
2 2
Bt dx dy dz xyz ¥ (%,¥,%,) =1
2

vaereas here the factor 8 n of the voluwe clement is dropped throuzhout.
¥
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Then < Wp> and< W > can be written :
8 .

<KW > =<w(I)> +<v (1) ve.(3.5)
P bl p
with o i
< (I)> =¢ I [Y(X) Y(v)], «+.(3.6)
P PA : _ :

2
<W(r)> =¢ I[ (Beos & -1)7x) Ty) ¥(x) Y(y)] eeo{3.7)

P PA Xy
and . 2
<KW> =-C I[lcose (px+1)(py+1)¥(x)¥(y)/(Lxy)]...(3.8)
8 s Xy
vhere

-1 2 |
IE e ]=N dx 8y Az Xyz {i"(x) £(y) g(z)} [ - ] «..(3.9)

Tne integration domain of eq.(3.9) ig such that x, y vary from d I\ﬁ
(cutoff of the ANN potentisl) to infinity end z tekes values from D to
D), subject to the trienguler inequalities :

infinity (assuning 4 >

AN =
X+y2 7% Y +22%, end z ﬁnx;y.

The integrel (3.6) has been done enalytically and for the integrals (3.7)

and (3.8) first the z integration was done analytica]..ly and then the xy-

integration numerically.

The results are shown in teble 3.2 for five different values of the
cutoff 4 AN and three different velues of the hard-core radius D. It is |
found thatl{ Vg > is elwoys negative (attractive) and sunller than
< wp (£)> &na < Wp (1T)> . The ''‘central part't < WP (1)> 1is
alvays positive (repulsive). The tensor part < Wp (IT)> 1is pre-

dominant and chenges sign depending on d ATl and D.
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TABLE 3.2
EXPECTATION VALUES OF THE DIFFERENT PARTS OF THE ANN POTENTIAL IN MEV FOR

DIFFERENT CUTOFT 4 AND HARD-CORE RADIUS D
: AN

d (fm) 0.2 0. 0.6 1. 1.h
AN
< W >in Mov D e 0.2 fm - 0.023 = 0.022 - 0.018 - 0.009 =~ 0.00%
D= 0.k fn - 0.015 - 0.0L4 -~ 0.009 =~ 0.00%
D= 0.6 fm , -~ 0.0t - 0.000 =~ 0.00h

<W_>in Mev
P <, (1)> 0.091 0.08% 0.05F 0.030 0.0l

<wp(3".z)> - 0.7256 - 0.231  0.35% 0.297  0.118

<w (1)> 0.07%  0.068 0.03%F  0.012
Deodi fm P

<wp(J:I)> - 0.700 - 0.k32  0.130 0.090

<UR(1)> 0.08: o.0hk  0.015
D= 0.6 Tm

<wp(m)> - = 1.010 - 0.075 0.074

According to Chalk end Downs (1963) the contribution of the two-body A=Y

3

force to the binding energy of /\H is given 1}:{ :
24,2 Mev 0.4 fm
70.8 Mev 0.6 fu

The relative inmportance of the ANN force will be glven by the ratio :

<WH, +Wg> 2.6 Ot fm
R = 2 for D=4 = .+.(3.11)
oV Ap> 1.3% AN L0.6
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This small ratio Justifies the use of a perturbation caleulation to esti-

nate the elffect of the ANN force.

In view of the swall binding energy of A in 3H (B =0.21 f 0.20

A
Mev) (Gajeroski et &l,1967) the absolute value of (wp + W) can be guite

substantial depending on @ A and D. " As was discussed in the introduction P

N

hovever, a reasonable value of the cutoff radins a may be taken as 1 fm.

AR
This follows from the fact that the TPE AW potential, W, is not very
meaningful at short distances where processes other than TPE are likely to
be important. On the other hand, if the séme core radli for A-N and N =N
are sssuned, 1t will be reasonable to teke D a2 0.4 fm. fThen it is found
that <H +Wg> = 0.155 ¥ev for 4 ppp =1 fm ond D = 0.k fo. Thus the
effect is small, and cen probsbly be compensated for by a slight change
in the A-N force.

Finally, the resgults are compared with those of previous works.
The expectation value of VB( § 2.2) which approximately corresponds to W,

p
has been eveluated by Bach (1959) who found that the ratio < Vp>/(2<v, >)

AN
=2 % for a cutofi radius of 0.55 fm. However the ‘wavefunc‘oion which was
used in Bach's woxrk does not satisfy proper boundary conditions. Bach's
calculation has been refined in the work of Abou-Hadid (1962) where a
proper havd-core wavefunction was used. Abou-Hadid's concluéion essentiai—
ly agrees with Bsch's. it wvae concluded, as in the present work, that the
?\H is emall., The expectation value <WS>> hag
been evaluated by Chalk end Dowms (1963). Since no suppression factor vas

effect of the ANY force In

introduced, their < Wgy> is gbout 100 tiues as large as the <V 6>
obtailned here. Still their < W >is at most 5 % of the expectation value

of the two-body A-N force. The expecistion value < wp> hes not besn
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evaluated.
3.2 Effect in ZH@
Theica.lculation of BI\ in iHe susing only & two-body s-state
A-N potentisl that fits the low-energy data of Alexender et al (1966,
1968), is first briefly described. Tae defails of the calculatlion can be
found in the vork of Bheduri et sl (1967). The low-energy parameters of
the A-N potential from A-p scattering‘data of Alexander et al ere :

6 = - 2.46 tn, &, = - 2.07 £, 1, = 3.87 fm, v = 4.50 fm. ...(3.12)
These are the most probabie values. In order to bypsass the cons'tructibn
of a complete hard-core (or soft-core) potential which mokes binding-
energy calculations rathfgr cumberscme, the following form of the A-N poten-
tial is chosen : |

Vs, Gfr) =0 . ~ forr<a_ . .

- VT )t

=-Ag ge [vr for r> ds,’c . ...(‘3.13a-)

Here the. subscripts s,t stand for singlet and triplel spin states respec-
tively. The range parancter I1s token as v = 1,3992 £ l, corresponding
to TPE, while

ds = 1.0L7 fm, A_ = 20k .1 Mev, dy = 1.180 fm, A, = 223.3 Mev «eo(3.23b)
are deternmined by fitting parameters (3.12); Justification for chooslng
such a form for the A-N potential is given in the work of Bhaduri et .a__l_':.
(1967). since this A-N potential consists of a fairly weak atbractive
tail, the one-body average field that the A experiences can be obtained

by folding in the nucleon density distribution with this potential :

(2) \ 3
U (r/\)::p(ri) V(‘ii"MI;A!)d:“i eee(3.20)

voere V.= Vg + 3 Uy, P (r;) is the density distributicn of the nucleons in
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o end all the vecvors are messured from the center of . The superscript
(2) on U refers to the fact that this part of the everage field originates
from a two»ﬁody A-I force. The complete U should also contain contribu-
tions from three-body AN forces. The normellzed density distridbution
for the nucleons is teken as :
| plry) = (s/ﬂl/e)3 exp .( - szrf) o o(3.15)
vhere g = 0.85056 fm~ 1. In this calculation the ¢ is essumed to be
, Gue to Ue(r )

A A
was found to be 6.5 Mev (see Table 3.3), vhereos the experimental value

undistorted in the presence of the A . fThe binding, B

is 3.08 Mev (Gajeroski et 81, 1967).
In the presence of ANN forces wp(2.16) and Wé(2.17), the average .
field U(r ) will be modified. Tae average fields generaled by wp end ws
. 32 (
. 3)
£ 'tv‘ T . N » XG5 e A . Mot
are denoted by Uy rl\) and US (zA ). respectively. Then
(3) 33
U (r )=6¢C dr dr p(r ) p(r )W(};»E s I =r ), +.e(3.16)
r oA PA 1 2" 1 2. p™1 "N T2"A
where the factor 6 comes from the six possible ANN bonds end ell the
other quantities have been defined in chapter 2. The expectation value
of the expression in T 's and o 's in W§(3.16) can be shown to be identical
> 3
for  He and AF. fhus the value given in (3.%4) is used in wp(3.16).

A

Putting X = x; - -E (see Fig. 2.2), eq. (3.16) can be

AE‘A ’,&::::322 ak

written :

(3) 3 3 )
Up (rA )=6cCp,faxa yp(l,g/\-rggl)p\lgﬁxl) Wp(:{,— y} -.-(3.17)

It is shown, in Appendlx 1, that theﬁg‘&nd‘x‘inﬁegration can be separated

to yield :
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n
(€)

(3) (3)  (3)
U =U (1) +U (II) «e+(3.18)
p b b
where :
(3) 3 | 2 -
U (1) =6¢C - de(l£/\ +x1) Y(x)y , ees(3.19)

(32 3 2 o
U (1) =3¢ a xp(lg‘ +x1) (3cos & ~-1)Y (x) 7(x) «++(3.20)
P PA A X .

(3)
with cog @ = (x.r )/(xr ). Only U (1) has been considered previously

x (3)
by other authors (DaTltz, 1965; Gel, 1900) Hovever U, (11) is the doui-
nant term in eq. (3.18), as can be seen from Fig 3.1. It is also seen
from (3.19) and (3.20) that U(3)is alweys repulsive in character. A

glmilar analysis for Wes the AN force arising from the s-wave u-

interaction, ylelds

(3) 3 | 2
U {r,)=-6cC dxp(u;/\ +x]) cos & (1 + g x) Y(x)/(px)
, X

8 - s\

oo o{3.2L)
vhlch 1s alwvays attractive. In the Appendix 1, it is showvn that the
angular interactions in x can easily be done in (3.20) and (3.21) and the
problem reduces to the numerical inﬁegratio? §f onendimensionai integrals

3) A3

to give U;3%nd U(j. With C AT 0.30 Mev, Ug turns out to be completely

&

negligible compared to Uf . The situation would not change eppreciably

. (3) (32 (3)
even if C«A were ten times lerger. In Fig. 3.1, U (1), IT) and U’
o (2\ p (ﬁ\
are plotted for e cutofi 4 = ) fm. In Fig. 3.2, U - and U o= U *

Al
are plotted for the some scale to show how the average ficld

U(g) +ul3)
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is modified by ARN forces.
TABLE 3.3

ls\HeFOR VARICUS CUTOFI® DISTANCES d/\ N OF THE

CALCULATED VALUES OF P?\ Im
ANN POTENTIAL. THE NOTATION IS EXPIAINED IN SECTION 3.2. THE

EXPERTMENTAL, VALUE OF B, IS 3.08 MEV. (GAJEROSKT ET AL, 1967)

B in 5He with U(Q)

A A ‘only = 6.45 'Mev

B/\ (in Mev) vhen three-body forces are included

Cutof? <}\(fm) . 0.6 1.0 1.k
i
(2) (3)
U +U (X) 6.0L 6.23 6.36
p R
(2)  (3) (3)
U w—UJ-(I)ﬂ:-U (11) 2.99 4.35 5.46
D P
(2) (20 (3)
U +U +U 3.09 .o 5.50
P s

In table 3.3, the binding energy BA in Zﬂfzi)s tabulated with end
without AN forces for various cutoffs. U is caleculated with the
parameters given in (3.13 b) end shovs considerable overbinding. It is
seen that this overbinding is drastically reduced when UI(J38II) is included

in the calculation. This repulsive effect is problably overestimai;ed since

N-N correlations in the o-particle are neglected. It 1s qulte clear from
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table 3.3 that three-body forces cannot be igoored in the caleuletion of

B/\ in 5He, An effective A-N force that is extracted purely from an
enalysis of iH end IS\He bindings, would therefore be nuch less attracs

tive in the triplet s-stote than the free A -N iatevaction .

3.3 Effect in nuclear matter

The binding energy U(A?’) of & A in nuclear maetter due to the ANN
force W is calculated by first-order pertﬁrbétion 'theo:ry in & way similar
to that formulated by Bodmer and Sampanthar (1952). The wavefunction of
_nuclear matter in the Ferni-~gas nmodel is : A | ‘

kA.- v (A) <p (L,2,444,50) eee(3.22)

vhere A is the number of nunleons (A——{>oo fox nuclear nntter) and

) 1 i}i:}“/\
vy (A e X eesl3:23
( ) = ol A (3.23)
1
4) = wtwesem- DC’-'b E ¢ (i) :] ) ou't(3o?}-")
A VA P
: 1 ip.erx s
$ (1) = e X spin fvnctmnx isospin function  ...(3.25)°

v
The function X A represents the spin state of A and ¢p(i) is the ﬁave
function of the i-th nucleon jn the state p er;re P représen’cs the momentum,
the spin and isospin state of the nucleon. Thae quantity {) is the

volume of nuclear mat-’cer,ﬂ—"waith A end A/Q: P vaere p is the density

of nuclear matter. The expectation velue of the potential, 12 w(i,3, A) is



(3) 1 A
U = e T v(AY ¢ (L) d (2)w(i, 2, A)
A 2 3,0 |k P, P, :
i J
3 3 3 -
x(6 (b (& -¢ (2)0 (1)) ar dr ar . eeo(3.25)
b, pJApi,p'j._la/\

(3)
A

en exchenge term. The dl ect term venishes identically because of the

The binding encrgy U consists of two contributions s o divect term and

spin~isospin saturation. fThe expectation value of the T's end o 's,

for the exchaange temm, is :

l1 2 1 2
<I tg-g>=3% -vo(3-27)
(3)
The evalvation of the spstiel part of U A will now be considered. It

can be shown that the function K(z) defined by :

1 A - ip .r -1pr i_'p .I'le

A ;A l

K(z)=K(|*'-r|) —3 L e i*le "2~ AL
: 2 i,4
.IO(3.28)

gives vhen A P oo

2 .

K(Z) = _.‘_P__ D (lrf.“')' e--(3¢29)
32
. _ -3

Hexe p = 0.170 fm (equilibrium density of nucleon matier) ) s k - is the

fernl momentwn and
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33 (k z)
17 sin r cos
D(k 2) & mmmeem, § (1) = - .
k z 1 r
T r
Then U/(\3) can be written
(3) (1
= [§) S
U, LA )+ A(II) +UA( )

waere U (1) is the contribution from W (I)‘,t;\(rl) originates from W (II)

and UA(s) from W_. From egs. (3.26) to (3.29) it cen be seen that :

3 2(2 3 3 '
U(I)==C pP(kiIx-y1)¥x)Y¥(y)dxay, ...(3.30)
A 8 ppA t™ ™ _

3 o 2 ‘ 2 3 3
U(r)=~¢ p [D(klx~y)(3cose -1)¥(x)¥(y) (x) Ny)axay
A 8 »a £ Xy

'10(3.31.)
: 3 2 2 1 1 3 3
U(s)==-=C p [D{(kIx-yl)cose (L+-)(L+-)¥x)¥(y)axay.
A 8 A f Xy Hx . MY
100(3o32)
Here cos exy mz.'x/(xy) vhich is shown in Fig. 2.2, the variables x and y

are the AN distances, end | X - Qﬁl 15 the NN distence. All the integran.ds,
including that in (3.31), are well-bechaved even for the limlt x, y&0. An
inspectlon of UA(II) in eq. (3.31) now reveals vhy it 1s so sensitive to the
N-N correlation. The function (3 cosa exy - 1) is positive for exy = 0 to |
55° snd then turns negative. Small values of © y correspond to ‘the case

when the two nucleons sre relatively close to each other, and this is the

paxt most effected by the N-N correlstion function. The potential UA( iT)
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is not positive definite, unlike UA (I), and tends to turn negative if the
N-N correlation is strongly repulsive, thereby excluding smaller values

of O, In order to study the effect of N-N correletion, a step~function

y.

has been used :

o(lx -yl ~a )=0 for|x -yl<a
NN | | NN

«..{3.33)

1 for |x - yI>a
NN

Here it is not worthvhile t0 use a more sophisticated correlation function
because : |

(&) It is not known sufficiently well. In porticular, it depends
gensitively on the foxrm of the N-N potential chosen, whether it contains
&8 hard-core or & soft-core, end if it is state-dependent.

(b) There is already considerable uncertainty in W due to the A~N cutoff
A |

The integrals (3.30), (3.31) and (3.32) are evaluated numerically

sfter putting the N-N correlation function & (lx ~ yl - dNN) in the
integrand. The results are shoim in table 3.t and graphically in Fig 3.3.

Roughly speaking, 4. . should be chosen halfway betuwcen the N-N hard-core

U
radius (assuming hard-core N-il potential) end the healing distance, which

is state~dependent. A reasonable value of dNN’ cn this basls, 1s about

0.7 fi. From Fig. 3.3 it cen be seen that corresponding to this value of

a , U(3l:1.8hmm‘for dpyg = 0.6 fm and is about 8.7 Mev for 4 5 = 1.0 fm.

NN A b
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EFFECT OF THE TPE THREE-BODY ANN POTENTIALS IN NUCLEAR MATTER.

TABLE 3.k

NOTATIONS ARE EXPIATNED IN THE TEXT.

POTENTTAL, WHILE 0

THE

d/\N IS THE CUTOFF FOR THE ANN

IS THE CUTOFF FOR A STEP-FUNCTION TYPE N-N CORRELATION.

d 0.6 fn 1. fm
AN
a Obfm 0.6fm L fm [Obfm O0.6fm 1 m 1.k fm
NN
U (s) |~ 0.53% - 0.7k - 0.200)~ 0.358 = 0.333 ~ 0.242 « 0.131
A (rev) ‘
U/\il) 1.362 1.299 1.0571 0.843 0.807 0.668 0.465
Mev )
U'sII) |
A(Mev )] 13.950 Lh.687 - 6.849)12.533 9.948 3.109 - 1.35L4
3 _ ,
U
Asev)| 14777 5.512 - 6.082{ 13.007 10.k22  3.535 - 1.076

However, with a slightly larger value of dnﬁ’ U

(3)
A

may well turn negative

for the case vhere d 5. 18 0.6 fi. A[repulsiop of 3.535 Mev is obtained

for &

as well as the N-N correlation function.
the ANN potential (for

is dcfinitely wepulsive

A = A

mein point to emerge, however, is that U

4y >

= 1 fm, which is close to what Nymen (1967) obtained.

(3)
A

and can be as large as 10 Mev.

is extremely seansitive to ¢

The

AR

If the very long-range part of

. fm) were being considered then its effect

However, it would
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be misleading to quote eny definite number end therefore, the point of view
sdopted here, disagrees in spirit to Nyman's work.

Recently Gal (1966, 1967) introduced in_his phenomenological
enslysis of light hypernuclei, a ANN force of the type Wé(I), which is
completely central., Only Gel's CpA va.s muchhlarger than the CPAPsed here
and was taken to be 17 Mev as compared to 1.43 Mev used here. Tne contri-
bution to Uﬁ of such ancenﬁral potential is rather insensitive to N-=N
correlation, as was elready cleaxr from the work of Bodmer and Sampanthar
(1962). It behaves very differently from the dominant non-central term
W (II). For ecxample, with d A .

b N
3 y ) E
to USA) is 16 Mev, comparcd to a value of 2 Mev from W (II)bubt for dp.=1 fm
b

= 0.6 fm and dyy = 0.7 fm, its contribution

end 4y = 0.7 fm it is about 10 Mev, neorly the same es the value found
here. By toking a completely central phenomenological AN force like Gel's,
there is the denger that the repulsive effect may be overestimated in
calculating ?A .
Before concluding this chapter; it would be in orxrder to mention

that an extensive analysis of the effects of the TPE AINN forece, W, in

i?c, i?o, i?Si and %% Ca has been done by Friesen and Tomusiak (1968).
Thelr conclusion is very similar to that of the present work in AHe.

Nemely, in all cases considered, they found that the ANN force results in
an spprecichle repulsion betveen the A and the core nucleus. Of course their

conclusion is subject to the ambigultuies which have been discussed in the

case of SHe .

A
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CHAPTER 4

EVALUATION OF THE INTERMEDIATE RANGE THREE~PION EXCHANGE ANN FORCE

As previously expleined in chépterAE the AN and AWN potentlals
can be worked out in the one~or two~chamnel formalism. Since only the
bound state is considered it is sufficientiy'accurate to use the one-
chemmel formalism. The diagrams which contribute to fhe three-pion
exchenge ANN force are shown in Fig. Y.lc end W.1é. Disgrems 4.lc and
k.13, equally important, are as yet too complicated to be evaluated exactly.
Therefore the contribution of diagram h.1a is approximated by the sum of
the contributions of diegrams 4.la and k.lb. The force arising from
 alagrems k.la &ndih.lb is derived in the etatic spproximation. It was
stated by Uchara (1960) that the potential due to Fig. k.lc has the
asymptotic tall of the OPEP. This statement was incorrect and therefore
this potentiel is written down and the correct estimate of the range in the
esymptotic region is given. ‘

First the contridbutions arlsing from diagrams 4.la and 4.1b arxe
considered. The contribution fxom the diagramrof Fig. 4.2 has to be
subtracted once since it is included in both L4.la end L.1b. fThe S matrix
elenent s given by :

S =5 +8 -5 +8 +8 -8 eos(b1)
la b 2 la 1 2
vhere the suffix refers to the diagfam number end the tilda indicates that
nucleons 1 and 2 have been interchanged. Folloving Miyazowa (1955,1957)
the S matrix elemenf corresponding to the dizgram b.ls can be written

38
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((:::))f:l)'
2
& L 4 4 vl
N <B,als pr>'t’ g9
S = - — ' dpdqdkd(x) b B =
la 10 2 o p, 7 o 2 2 2 2 2 2
(en) p , : (p-w)lag-w)(k~-wv)
. o p o g o Kk
2 2
<7, ~kls|o, -p>7 g:'}f,\
1 Y
exp [1 (q. r - k. r )] eoo(be2)
k -p+1ie R R~
o 0

The subscrlpts o,8 and 7 refer 4o the index of the third component

of the isofopic spin, fN is the psevdo-vector sl coupling constant
2
f
( N
the four momenta of the exchenged plongs whose energles have been labelled

= 0.08), p, q and k (vhich have fourth components Po’ qo snd ko) are

w , w_ and w respectively. The vectors r and r,  arce the coordinates of
q k L -2 ~

the two nucleons and p is the pion mass. The matrix-elements for the sn-N

end 7= A scatiering parts are given by (Wogemi and Bloore, 1964) :

: 11 1
<7 -kls|o ~p>= 2:dd(p~k) [A( p)'r Tapg.k +By(-p )
1 o © o a 7 o
11 1 1 11 1 1 i 11 1 1
*] . - ok . - C - T a nk .
(T7;g:.»~\$}§\ TaT7 MMEA&?\) F N( PO) Ty aM.w. MMP.]
Ll - 3 s e l}‘
x exp [ ~4(p-k) 51] Vp v (4.3)
/\ A A
¢ ) ~ o B i o . o o.q 5) & v
<es alfl o > 38‘(5)0 qo) “ (po) h o c/\(Po)/M M/‘-w‘fw) a3 .
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x expl i (3 - q). rA] v v o, eoo(lli)
moMAN o p g

where X A is the coordinate of A . The function vp is a cutoff factor
vhich is chosen ©o be exp (- pe/gpﬁ ) vhere pm is the nomentun corresponding
to the nucleon massy it is introduced for the convenience of computation
(Chew end Low, 1956; Hogami end Bloove 1964). The functions Ay, By, Cpp Ap

and CA are given in terxms of the n-N and n- A scattering cross sections

by the dispersion relations in the statlc approximation :

ho (£ /p) 1 dk 33
N >
Ay (P ) =C (=D ) = oo e +
o N o p ~ i€ by W w=-p - L

ho (k) +bo (k) +o (k)

1 Jax 11 .13 33
— | - s eed(li5a)
36 | w w+p - i€
; k kK o
o (k) + 20 (k)
1 dk 33 13
B(p)=B(-D )= wmmme [ —— +
N o N o] 12x w - p - le
k k o
0 - .
o (k) +20 (k)
1 ax 33 13
Sma— i ? ...()P.Sb)
127 Jw w+p - i€
k k o
0
2 ~ o (x)
bx (g /n) 1 [ax 3
A (D) =G (- p )= i e | _—
A o o A+p - iE o | w W=D . ie
o k k o

0



L1

2o (k) +0 (k)

1 dk 1 3 '
+ orwarn | gimmad ... 00‘()“06)
6 » w +p - i€
k k o}
0
Here f/\ is the renormalized A ~% coﬁpling constant, A 1is the mass
difference between ¥ endA , o is the total cross section of the p-

eI, 2J
wave i-N scattering in the state (x, J) and 0'2 7 is the total cross section

l .
of the p wave n~A scattering in the state with angular momentum J (5 or g e
If expressions (4.3) and (h.h) are substituted in eq. (k.2) 5 is obtained
in the foim 8, = 2xi 8(2) Va' . Tae quentity V_ which is interpreted as the

AN potenticl arising from diagrom W.la is given by :

te0
2 .
ibgt 3 3 3 ¢ P exp[i(q ~p)x +k.z |
V = N_ ap dpdgdkV v v 2 A e D0
& 10 2 o P ak 2 2 2 2 2
(en) p (p-vw)@-vw)owlp-1ie)
- oD o p o q k o
0.0(”!"7)
vhere
{ . 1 1 ( 2 2k
P = /\} = ' P T 0.q<7 -klIT({p )la, ~-p>T g.Kk-,
& o B, 7 O’rff’ ﬁ AA ARA 1 o 7M\A~\
00'(1".8)
with eg. (4.3)
<7, ~kl18l o ~p> =208 {p -k Jewp[~ilp ~k)x ] vy
1 _ o o Mmoo 1 pk
X <7, -k lTl(p Wy, =~ p> s | voo(4.9)
(e}
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and from eq. (h.ht)

A A A

. A )

"A. ag . o-. o . g . » o-o,‘c
{A}= LR S E«+C/\(po)m,~%w 2 (%.20)
Then,

P=P'+ P" H ooo(h‘oll)
& &a & '
with
1 @2 1 1l -1 2
PP= T .,T } T o, . . .
a T {/\ .PNMA ,&1,‘ 3—4 M’i\ ,8; /35\2;\ ‘3;’
Pr=A ~hB +3¢ ,
N N N N , eoo(bre)
1L 2 1 2
ptt =0T ., T %k P**o .qg0.kp,k,
) - N A S
P" =—A+3B L4 .oo()l"l:j)

Similer expregsions are obtained for the potentlal V ariging from dlagram
b

4.1b. The potentinl V (S = = 2x1 8(0) V,) could be obtained by replecing
2 - = - -_—

2 1 1 1

2
- m - Z'J 2 . k lo i
<7, =kl (p ) @ ~p>by (b/p") fN T, g ig R the

AAA AN

-1 €
PO i
expression for Va(h.7). However, it is simpler Yo notice that diagram k.2
results only in terms proportlonal to'fN. Therefore Va+»Vb~ V2 can be
replaced by V o= Va+Vb with temas proporxtional to fN divided by two.

The part of Va,corre3ponding to P'; Vi, can be wriltten using cas.
e a

(3.7) and (%.12),
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Vi =U (x) V(z), eoef(lo1l)
a . v
with
1 2 3 1 2 |
b Lo« LT dk Gk .k explik.2)
V(z) =
2
(en) p 0
k
1 2 2 3 4‘
b T . 5 £y 1 2 a k exp(ik.z)
= .9 T % L.
3 2 z Z 2
(2n) M W
‘ k

1 2
T.I, 2 1 2
v(z) » Lo f (0 .7 12(2)8 (2z)) ¥(z) ...(k.15)
3 N 12

wherve Sy, (z), T(z) and Y(z) have been defined in chepter 2 (egs. (2.11)

and (2.12)).

Then, . L — -
+ b 1
P' o .qo . exp [i(g = p)ex ]

i 3 3 | IR e

U(X) TR emsteand (}P d P d Q{A} o 000(15‘01.6)
A 0 2 2 e 2
(2x) (p-~w)@P=-w)(p-ie)
N o P o q o

That is,
U) = (g ot Qo e Do S B o ¥ TR PD) 4000 209 0% T e Vo



i

XI(C P')) eoo(ka17)
= r' = x . . 4
vith
+ o0
£(p ) exp { i{q. ¥ = p. T")
i 3 3 0 Ll 5 - 2
I(f(p )5 1y ') = e dp |d p G q s
o T o) e @2 e 2
(2x) (p~w)(-w)(p-i€)
- o0 : ' o D o . q o ,

L N .("{"1-8)
After reduction of the differentisl operators, the potential (4.17) can be
expressed &s a sum of central'(spinF independent and spin-dependent terms)

and tensor parts :

1
U(x) =V (%) +V (%) gl\.g +vV (x)s (%) eoo(l.19)
o & t Al '
where
_32 2
2 _ :5
VA x) = - . I ((A C P! )
o(}) ( 2+ or Br‘ Br Br' (K A ¥ A ) N:I Y=y =x

x .
oo s (ka205)

2
e (v .3} 28 .
Y ;( 5 ar.) Soam P e ] ’

r=2x' =X

eoo(lt,20h)
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and

eso(k.20c)

U(x) is the anslytical expression of the TPE potential for A-N (Hogemi

and 'Bloore , 1064) and therefore it can be seen that the Vé pexrt of the

potential correszéonding to diagram h4.la, is the product of the OPEP (N—I\f)

and the dimenslonless analytical expression for the TFEP (A -N). |
Similerly the pard cor_responding to P{) can be written

V' = V(z) U(x)
b

) . . ...(ll'ogl.)
Thus V' = V' + V' = {U(x), V(z)} B wherre{ » } indicates the
a b + +
snticommitator and
2
T
I () eV (0 g g +v s (k)
V' T o T e V(x)+V(x)0 .0 +V(x)S8 x)
o 3 o - s e T Al
1 2
( ,?;'g,\ +T(Z) S (Z)) Y(Z)o -.-(11"022)
12 (s .
That is,
2 1 2 2 1 2 A 2
Vise- T.T pft v (x)o .0 +Vv(x)a.q +v(x)(1-~2z))s (x)
3 . N e} S T A2

+(V () +V (x) ~V(x))™(z)s (=) +V {x)2z)z (x2z)]1(z),
o S T A2 T A2 0
seo(B22)
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where
A 2
T X O« 2 2
A mMA
L (%, 2) = 9x.2 M‘e”“ : - FeT .ol (lhooh)
X Z

The part of Ve. corresponding to P'', V!, cen be written using egs. (4.7)

a a
and (%.13)
. 2
g
1 2 N A A o1 2
Vit=2t.7 — (g.¥Y g.V ¢.Vg.YV Y .% Ia P
a 7l rt MY M e Yy T Yy AN
A 1 2 -
+ o.v o« V e V .V VvV , ¥V (¢ p" Y .
e '9.‘-" My - Mg Mt Mg (A N ) ¥(=)
s r' =x
--.(’4.253.)
Similaxiy 2
T
1 2 N A A 1 2
v";ue‘r.r oo a“.v O'QV .\7 O‘.v vov IA P"
b R 2 ’“"r“"“‘“r'?’:"’wr'w'”“z”r”‘z(/\N)
A A 1 2
+ T.V o. V . v sV V.V I(C PV Y .
A MM G e o "% " M (/\ N)) (=)
r=1xr"=x

eoe(ho250)

Because I(f(p ), ¥, r') is & symmetric function of r and r' eq.{:.18), r

o .
end r' can be exchanged in eq. (4.25a) and then adding eq. (4.25b) gives
2 .

T
1 2 N 1 2
vnxvu,x_vuf_‘l-,;r“.z;\ ._....(’\/7“,3 A AR AR g/\',\?v\
g -~ b I Tt b o z rs A
h A '

A e pri v(%
I ! ( A + A )<N ]) ( ):
1‘ = r' b x .0'()2'. '\))
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that is
2
Ly 1 2 @2 (1 d 1 2
Vi'=- T.T f 2 (o= 4 s )T 9 = z)s (z
g ™ 'LLN 2 20 dr 2 12)
X X
o 2
1 1 1 > 1 d
+ 3 (e o ) | )S(X)~T(Z)(~-—-m-)2(x,
Hz 2 2 31* det 2 Jdr dr' 12

(ez) X p 3

I [(A +C, P"] ¥(z) .
or dr!
r o= I" = X 000(14'027)
In the following sections these potentizls will be considered in the cases
vhere the nucleons and A are in the s-shell.,

Therefore, with i, j = 1, 2,A

1 2 1 3 1 I 2 i 3
< IN\.E'\ %‘/‘}ff\?’:‘-”bz\> “—‘:; x’f«<}:"‘"€”‘ %og4>,
ooa(h‘ogb&)
1 2 2 1 2 i 3
<T.T L (x,z)> ==(3cos 6 -1) <T .T o O >,
m iJ xz o
C..(lb".28b)
1 2 .
<X T8 (x)> =0, eoo(l.28c)
id
where cos © =- ﬁrg/ky as shown in Fig. 4.3, Now V = V' + V' can be

X2

weitten as ¢
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2
V(x,z) = [ 8(x) + (3cos & =-1) 7(z) W(x)] ¥(z) ...(h.29)
X .

Z
with
2 2
y 2 1 2 1 2 -(1 h) 3
S(x) = = =p T KT +T O 0 + ) Z(r, r')
, 3#1\1 - AR 2 29r ' Jdr O ’
X
2
A 21 2 (1 2y é :
+< g . . T - 4+ = =) e D(r,r')
_ S 2 x Or Or o' ’ ,
X T o=yl o=
oo o(h.30)
2 2
( L 2 1 21 2(1 ) b (
W)= ««pnf |[<T .7 o> (-~ + ) X(r, xr)
3 # N S 2 Or Or' dr O ’
X
2
A 21 2 1 1y )
- ey e D 1
+<0-0-41-4A}:\> (2 xar arar, (I')T) '
X Y= =X
eoo{k.31)

. ¥Where

Z(r,x') =1 [ (Ao +C ) (3P +2P")] =1I[(a +CA)(A-6B +9C )] »
AA N N A N N N

eoo(le32a)

| D(x,x*) =1 [ _(AA- C/\ )P;I ] o= il (AA- C/\ ) ( AN- 4BN+3CN)J

«..(.32b)
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and

x(r, I-r) = I [(AA +Cy ) P;\r'] = I [(AA + Gy ) (- AN+ 3BN)] .

eeo(Be32e)
In order to evaluate these expressions from egs. (4.5), (4.6) ana (4.18),
it was assumed that the n-N end =~ A scattering were dominated by the n*
(1238) and the Y$(1385) reconences respectively, that is o , &  and
o, were set equ;l to zero in expressions (4.5) and (4.6). %ilso %ﬁe
‘integrals in (4.5) and (4.6) were evalusted replacing o (k) by

22
1on g

kr 3 (wk- wy) with ge = T(x, )/21:3, r (kr) being the width at the
reconance energy (Fubini 1956). The values g§ = 0.057, wN = 1L.27 fm
for (T33(k) and gi = 0,017 with Wy = 1.2% fm~ . for o-S(k) were used.
The diagrem shown in Fig. L.k, which is included in diagrams 4.la and h.1b
doeg not contribute to the three-body force. Thevefore its contribution,
wiaich 1s proportional to 1/(po+ ie¢ ) is subtracted by suppressing the term
- hﬂfﬁ/(po+ i€ ) in CN(po) (k.5a). Now the expressions (4.32) can be |
calculated, end thelr explicit foims are given in the appendix 2.

Then the three-plon exchange potential corresponding to the S

¢

medbrix (h.1) is

~S
P(x, ¥y 2) = V(% 2) +V(y,2) .

It con be geen that

P(ff\) ,:.‘5:\: NZ“) = Pc(x: Vs @)k PT(EE\’ A N%\) -'-(1*033)
with

] ~ ) )

P, (x, ¥, z) = (8(z) + 8(y)) ¥(z) NGy

and o o _
PT(ff.i\’ Y 2) = [(3cos 6., 1) w(x) + (3cos eyz“ 1) W(y)l o(z) v(z)

eeo{B.35)
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In the above equations the tilda indicates that supersceript 1 and 2 in
equations (I.31) are interchanged.
The contribution arising from diagrem 4.lc is now considered.
Folloviing Miyazawe (1956, 1957) the S matrix corresponding to this

diagram can be wrltten

i1 3 bbb boo<p, qlgfa, p> <opl Silyk>
§ = (= ) 2 dp ¢q dk
c Yoo,y 2 2 2 2

(2x) | (p-w) (¢ ~v)

6 p o q

<B, - ql 32, 7y = k>
X eoo(h,36)
2 2 :
(k- )
0 k

The notation is the scme as that used in eq. (%.2). S is obtained in
¢
the foim sc = - 2 g i 8(0) Vc' vhich is interpreted as the potentisl

arisging from diegram L.le, can be written

V s e [ }pdqd k<p, qf T, (p )l oc,p><a,plT (p ) 7k>
. ¢ 10 oz,g 7
(2r) '

<ps =~ alTloy)] 75> ~ k> exp(- ig.y + ip.x = ik.z)

x o ol ashates . ono(h‘-37)
2 2 2 2 2 2
(p-w)@-0) (p ~ov)
o P o q o k

As in Uehara (1960), only the Born terms are ccnsidered; that 1s

1l [ 1 eja 2 2 [ A A 1 1 EW 0‘2,52\
Ve e (6 -(X.T ) £ 7 (o7 oV JARNA O L e S
e 6 "o N A Wy x y z
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1 1 2 2
+g.V g.¥ a .V o .V o vV o.V)I (xyz)
MMy My ey ey My M‘“ym,o,o”
1 1 2 2
(g% g N %l LWLt 2% L
y X z % z X y
1 1l 2 2 '
TN SN T Y& (I (x, v, z) - Y (%,¥,2)}]
% 2 z Y ~5,0,0 A, 0, O
...(h':‘;S)
with
=4
3 1 sin [p(x +y + 2]
I (x,y)z) 22w S pdp . 9 ‘.'()4'.398;)
58,7 T XY2 w (o +a) (0 +p) (0+7)
b D p b
0
and
2 2 1/2
) expl:‘—-(lu,-a) (x +y +2)]
Y (x;5,2) = oo o(k.390)
a,B,7 (x+p){a+7) xya=z :

‘

If the mass difference A 1s neglected in (4.38) and if the vrepetition

term corresponding to Y (X,Y,Z) is subtracted, V can be written:
A+0,0,0 ¢
L 1 22 2 2 A 2
ve-- [B-(Z.E0 £ 1 (% Z9AL S YAL
c 6 N A T2y y X X gz

=
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1
A
+V.V S.YAY .V AY)I (x, ¥, 2) oo (k.10)
X z Yy X 4 y 0,0,0
with
3 X +y +32 ' o
I = - exp [~p(x+y+2z)) eoof{li i)
0,0,0 kp xyz= : '
Therefore the agymptotic form of Vc is proportional to Io o.o" IT the
22

‘equilateral triengle x =y = z = r is considered, the asymptotic form

is proportional to exp (- 3ur)/ ,LL1'2 which haes the range expected for the
exchange of three-~pions. There is no term with the asymptotic tail of the
OFEP. In Uchara {1960) the function Ioz (x,y,2z) wos miscalculated, The
poles of the eguation '(l&.37) have to be)in,:zated carefully. After the p’

o]
integration, v, (4.37) is proportionel to J, where

J 3[[[ dp dq @k p sinpx ¢ singy ksinkz (
: 2
O W (m el
P aq

2 2 2
w ) (v-w)
P k p

’

1

+ cyclic permutsetion of p,q and k).
(v +a) (0w +8) (v +7)
p P Y
The integral J vas evaluated by assigning smell, unequal imaginary masses
. 2 2 1/2 .
to the mesons) that is w = {(p + po o+ le ) /? etce This leads to eq.
(k.392). If poles are

eft on the real axis incorrect asymptotic

behavior results.

1+ This result aorees with that of & similer Integral celculated by S.D. Drell
end K. Hueng, Puyse Rev. 91 (1953), 1527. -
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CHAPTER 5

EFFECTS OF THE THREE-PION-EXCHANGE  ANN FORCE

5.1 Effect in 3H

A
In a calculation similar to that of the TPE ANN force which has

been done in § 3.1, the effects of the potentials Pc(h.3h) and PT(h.35)
on E% in AH are estimated by perturbation theoxry.
First the dependence of the three-pion exchange potential P(4.33)
on the A-~N distance, %, is compared with the x~-dependence of the TPE
ANN force, wi' For 2H it has been shown‘that'gp has the form (2.16
end 3.h) : |
2
W, = Cy [ 1+ (3 cos 8,y - 1) o(x) {y)] ¥(x) ¥(¥) eeo(5.1)
vith C, = L.43 Mev and cos9, . = (zrzg/xy as shown on Fig. 2.1 . The
functions Y and T have been defined in chapter 2,egs. (2.12). T@e X~
dependences of the centrsl part and of the tensor part of W§ are denoted
by Cp and T, respectively,vhere from eq. (5.1) :
Co = Cp ¥(x) | e o(5.2)
T, = Co ¥(x) T(x). e1a(5.3)
Similarly the x-dependences of P (%.34) and Pp(%.35) respectively can be
written :
8(x), e (5.)

W(x) Ceee(5.5)

C3

T3

it

vhere S(x) end W(x) are given by the expressions (4.30) and (4.31) with
the corresponding expectation values of the T's ando 's replaced by their

55
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3

values for H :
A 1 21 8
<9:A .O';A ;{;,}‘M>:.: "3, 010(506)
i 1 2
<$ ogw},:/\o,\-f/\ >$=6 i '-21,20 ,‘ 000(507)

The x-dependences of the central parts and tensor parts are plotted in
Fig. 5.1 and Fig.5.2 respectively.

It can be geen that C3 depends strongly on x and is largc;r than
Cp for x£1.2 fm.  The cuxve Ty is also sensitive to x, but is of compa-
rable strength to TQ, vhich becomes larger than T3 only for x%,.'? fm.
Therefore for d/\I\I’\<' l. fm the central part P, 1s expected to give a nega-
tive contribution to I.t/\(:repulsive) larger than that of ‘c&m’l?l‘ﬁ AT foxce.
Toe contribution of the tensor pert, Pp , will depend on the average of
the angulor dependence '' 3 cos:-ee)XZ -1, |

The effect of the three-pion exechrnge potentiel };’(’-.'-‘.35) en B oin

A

I\H ¥lll now be considered. The notation is the same as "tha’b used in§ 3.1.
The expectation values of P (x,y,z) (%.3%4) end PT(,’,E’.X’A%) (k.35) with
respeet to Y(3.1) ere denoted by < Pc> and< PT> respectively.  Becsuse of.
the complete symmetiy of all the expressions in x and y, <P,>and< P1>can_
be written : .
<P, >=21 [es(x) ¥(z), e e(5.8)

<pp>=21 [(3 008 e, - 1) W(x) Mz) ¥(z)], ...(5.9)
vhere I E.] has been defined by eq. (3.9). The integration domain
has also been expleined in § 3.1.
The results are shovm in table 5.1 for five different values of the cubtoff

ped

dI\“I end three different valuzs of +the herd core wvadius D together with the

resulis obtained for the central partl WP(I)> end tensor part < WP(II )> of
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the TPE AUl force(§3.1). It can be seen that for dmg 1 fm the central
pert <Pc> is alvays positi‘veA (repulsive) and largexr than<wp( 1y>, that
the tensor par'i;<PT> is always negative (atiractive) and larger thea

<WP(II P> end that <PT> is predominent.  For d/\N'\<f ifm the totel effect

<P, + Pp + Wp>»is alvays negative (abtractive), for instance for dpy = 1 fm
and D = 0.4 fm, <wI')> = 0.16h tev and<W +P_ +F > ~0.132 Mev.  As in
§ 3.1>(eqs. 3.10 end 3.11 ), the relative lmportence of the AN force

P will be glven by the ratio :

<P, +Pp> (8.5% 0.4
R = ~moecccmcomees o for D = dm = . voo(SclO)
<> \1.5% T\ 0.6 fu

This small ratio justifies the use of the perturbation calculation of the
effect of the AN force. TFor the case of the TPE ANY force the corres-
ponding rotics e Dowd o be 2.6’,3 £l Lo35% wespectively.  Thus although
the provious TPE results are modified, the overall effect is still emall
and can probably be tsken into account by a sultable modification of the

A-I force.
a 2 5
5.2 Eifect in AH(-:

The A~ potential in _He due to three-plon-exchange potential

A
P, P(:c‘A) is estimated in a way simalar to that used for the TFE AUN force
(§ 3.2). First as in the previous section, the x-dependence of P(4,33)
in IS\He is compared vith that of the TPR AN fowrce « The x-dependence of
P (k.3k) and PT<’J’°35> respectively com be written :

6y = 5'(x), .o (5.11)
Té = W (X), 0»0(5012)

where 8'(x) end W' (x) are given by the expressions (4.30) end (h.31) with
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the expectation values of the T'6 ond o's replaced by their velues for

,S\He :
1212 '
<. & LL>= -3, ese(5.133)
i Al A ‘
<g . L. L>=0 i=1,2, eee(5.13Db)

Eq.(5.13b) follows from the spin saturation of the nucleons. Because of
3 0

h /\H and AHe,

c! and ™ giffer from C3 aad T3, ‘respectively. The curves C! and T' are

3 '3 3
plotted in Fig. 5.1 eand Fig. 5.2 . It can be seen that Cé depends strongly

the difference in the expectations values of the T's and o's for

on x, is larger than 02

The tensoxr part TL is not vexry sensi'bive to0 x, becomes negative for

for xg£1.2 fu but smaller than C, for x 1.6 Dm.

x > 0.k fm and is alvays sm a,lleL in ebsolute velue than T2 and C .
Therefore the A potential dve ‘o Ci,‘ will be positive (as for 02) and larger

o that due w &3 .
5
The average one-body field ,}?(r },that the A experiences in AHe
will now be estimated. As in (§ 3.2) P(r Jean be written

3 3
P(rA) =6 |d ry d'rg (1l)p(r P(rl T ees{5.1h)

M\/\ 0 m/\’ Ml 52)’
vhere the factor 6 comes from the six poszible ANN bonds and p(:ci) is the
normali.zed dengity distribution for the nucleons which has been defined

by eg. (3.15). The vectors (ﬁ,&r,‘z“) have been repl&ced by

(Ti- 2> Xom X» Xy- o) (see Fig. 4.3). The potentisal P(A:El "‘J'E'f’ x, “*f & ‘”‘2)
is obtsined from eq. (%4.32) using egs. (5.13a)and (5.13b). In %his

calculation the « was essumed to be undistorted by the presence of the A,

The potential P(:v:/\) can be written :

Plr,) = I’_(r ) + P (r ) ee.(5.15)
where 3 A A
Pc(x)\) =12 | a%x a3z pllx + l)p(l -:,gf\»ﬂ%p S'(;{.) Y(z) veo(5.16)
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and
2

PT(%A) = 12 p(lx + T l) plix + ﬁA— zl) (3 cos &, ~ 1) w‘(x) T(z) Y(z)

...( 5.17)
where cos@, = ﬁ&i/xz‘ The edditionsl factor of two is due to the sym~
metry of the expressions (4.34) and (k.35) in x and y.

Eguation (5.17) can be reducedkto & four-dimensional integration which is
done numericaliy. Siﬁﬁlarly the integrel (5.18) can be split into four-
dimensional gnd five-~dimensionsl integral, both of which sre done nume-.
rically. Details about the reduction of the 1ntegrais are given In
eppendix 3. Since the short range part is not knowm, the gpatisl inte-
gration on the N-N distance z is done vith z varying from a cutoff distance
dNN to infinity. As it will be seen,results are quite insensitive to dNN'
Tn foet the integrols (5. Tu) cud (5.07) cae wven cnguIacnt Tor z gslarting
from zero.

The results for Tive different values of r stwo different velues

A
of the cutoff dAN.aud tvo different values of d,, are shown in table 5.2.
It can be seen that the results are sensitive to dAN,but not ‘o dNN,and

thot the poteatial due to the central part is repulsive sad larger than
that due to the tensor paru vhich is mostly atirsctive and small ( for

- - 3 gy ' ™~ ° " K X '.c-: 5 N : N - T
X 2 fn PT(ﬁ\) is repulsive).  The potentials Pc<ﬁm) end RT(%A) aré

plotted on Fig. 5.3 for dA = 1 fm and dYN = 0.6 fm and compared with the

N potential , U3(I) (central) and U3(I£) (tenuor), of the TPE AN force,
It cen be seen that P(r is smaller than U (r ) (=10 (I) + U (II)) and

then reduces +the overbinding of the A in [ He by an c”OHﬁt saneller than

A

s . ; T ; 5,
the reduction obtained using U (x ). Thevefore in the caese of Jie, for
. o

A . A

dAN AL 1 fn, the three-plon-exchange ANN Torce only slightly modifies the
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regults obtained using the YFE  ANN force.

5.3 Effect in Nucleor Fatter

R

As in (8§ 3+3) the binding energy P/\ of & A particle in nuclear
matter due to PAis calculated by first order perturbation theory in a way
gimilar to that formvleted by Bodmer and Sempanthar (1962). Because two
nucleons are involved there is & direct term and an exchange term, 1e
direct term vanishes identicelly beceuse of the spin isospin saturation.

5
Asg in the casge of He
A i A i A
<g..¢. T,.I,> =0.
Therefore the comparison betuecen the x-dependence of the three-pion-
exchange potential and the two~plodl one is essentially the same as that
discussed in the previous section. The only differcnce is & common
miltinlicative fecolor exieing from the feot thot

1 2 1 2
<a. Og\ IA'E\ > = 36 . 000(5.18)

AN
Therefore the contribution of the central pert P (4.3%) to the binding

energy, P , is apgain expected to be predominant.

AcC
PA can be writlten
P - -+ P '-Q(S¢l9)
I\ Ae AT .
where P A is the contribution from the tensor part P (k.35).
S l ]

A straight forward cslculation ylelds

3 2 2 N ' 3 3
P/\c:!: P D(liflj,\"y)o(X)Y(I;;ng\l)dxdy;

eeo(5.20)



61

3 2 2 2

' 3 3
P = - P D (k lz-x1)v (z)(3cos & - 1)¥(|x ~ y NT{Ix - y1)d x ay
AT l«l— ) i., . X7 AN AM ) AM AAA

ce(5.21)

ps D kf have been defined in § 3.3«and cos exz = %.2/%7 o« As in the
case of the TPE ANN force a step funétion,( eg. 3.3), is used as a nucleon~
nucleon correlation function. '

The integrels (5.20) end (5.21) are then evaluated numericelly.
The results are shown in table 5.3 for two different values of 4a AX
and four different velues of dyy, together with the results obtained for

the centrel part U , (1) and tensor part U A (IT) of the TPE ANN force

( § 3.3). It can be seen that the effect is repulsive and large, that %\c

AT

is larger than P UA(I) end Un (I1) and thet for a AN"n'Sl fm P

T,

is smaller than U A (11). The main qualitative feature of the effect is
that 1t is found to be repulsive, for lnstonce wilith & reasonable value for

d,__ of about 1 fn and that for 4 = 1 fm, P gives & repulsive contribution

NN AN .
of 7.k3 Mev. For the same values of dNN end d 3 the TPE ANN force wos
AR
found to give & repulsive contribution of 3.78 Mev. For a , #°1 fm, the

Al

three-pion-exchange three~body ANN force reduceg therefore the binding
energy of & A in nuclear matter by an emount greater than that obtasined
with the TPR ANV force. However the large values of the results obteined
in table 5.3 mey indicate that the use of s first order perturbation theory
is not sufficient, and then thelr megnitude should not be taken too serlous-
ly. Nevertheless the celculation shows that the cffect of the three-pion-

exchange ANH force in nucleor matter can be very impoitant.
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TABLE 5.1

6

EXPECTATION VALUES IN iﬁ OF THE THREE~-PION-IXCHANGE ANN POTBENTIAL IN MEV

FOR DIFFERENT VALUES OF CUTOFF DISTANCE dAN"AND HARD-CORE RADIUS D. THE

RESULTS OBTAINED WITH THE TPR AWl FORCE (§ 3.1) ARE SHOWN IN PARENTHESIS.

D(fm) dpg{fm) 0.2 0.k 0.6 1. 1.4
0.2 <P > 2.297 1.hk32 0.h5h ' 0.096 0.019
(<wp(1)>) (0.091) (0.08%) (0.06k4) “(0.030) (0.011)

0.k <p,> 0.603  0.38%  0.093  0.018
(<wp(1)>) (0.07%) (0.068) (0.03%) (0.012)

0.6 <Pe> 0.368 0.12.2 0.019
(<wp(."c)>) (0.08%) (0.0%%) (0.015)

0.2 < P> -8.438 ~8.416 -4.839 -0.569 -0.078
(<wp(11)>) (-0.706) (0.231) ( 0.35%) ( 0.297) (0.118 )

" 0.k <Pp> 2,659  ~2.086  -0.390  =0.057
Kup(11)>) (~0.700) (~0.432) ( 0.130) ( 0.090)

0.6 <Ep> ~1.h35 ~0.389 -'-’0.056
(<x=zp(1:1)>)‘ (-1.010) (~0.075) ( 0.074)
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TABLE 5.2
THE A- @ POTENTIAL IN 'iﬁe DUE TO THE THREE-PION-EXCHANGE POTENTIAL FOR DIFFERENT VALUES OF rA.
THE NOTATION IS EXPLIAINED IN THE TEXT.
s, Afm) 0.6 1.
AN( ¢
x (fm) 0. 1. 2. 3. L, 0. 1. 2. 3. L,
doy = ok fm{ 35.k8} 19.71 3.05 | ©.115 | 0.066 4,36 3.30 1.07 | 0.0931 0.007
P.(r ) o i
CUA dm = 0.6 fm | 33.10{ 19.01 3.33 § 0.131] 0.069 k.52 3.21 1.10 | 0.10L | 0.007
Qe = Ot fm | -22.57 | ~ 0.395} 0.279} -0.061 | -0.005§ -6.19 | -0.809| 0.274%]-0.0%1 | -0.005
P (r ) ) | |
T A la =06fm{-2210}~0.436] 0.285-0.061 |-0.005 | =-6.11| -0.807| 0.274|-0.Ck1 | -0.005
TR
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EFFECT OF THE THREE-PION-EXCHANGCE ANN POTENTIALS IN NUCLEAR MATTER. THE RESULTS

OBTAINED WITH THE TPE ANN FORCE (§ 3.3) ARE SHOWN IN PARENTHESIS.

TABLE 5.3

THE NOTATION IS EXPIAINED IN THE TEXT.

dAN(ﬁn) 0.6 1.»

a_ (fm) 0.4 0.6 1. 0.k 0.6 1. 1.4

NN N .
PAC(Mev)_" 41.11 35.81 23,66 9.71 8.40 5.5 3.02

(UA(I)) ( 1.36) ( 1.30) ( 1.06) |( 0.8%) |( o0.81) (0.67) {0.47)
PAT(Mev) 13.75 8.52 2.06 6.38 L. Ly 1.91 0.60
cUA(II)) 13.95) (4.69) (-6.85) (12.53) ( 9.95) (3.11) (=1.35)
P +P 54 .86 | 4l .33 25.72 16.09 12.87 7.43 3.62

AC AT ‘

(15.31) | (5.99) | (-5.79) | (33.37) | (20.76) (3.78) | (-0.88)

(UA(I} + UA(II))




CHAPTER 6

DERIVATLON AND EFFECTS OF THE LONG RANGE TPE THREE-NUCLEON FORCE.

6.1 Derivation of the three~nucleon (34) force

The long-range part of the three-body force erises maihly due to
the TPE among three nucleons. The TPR 3N potential haes been derived by
Fujita and liyazawe (1957) (FM) in the static approximetion using a techni-
que from dispersion theory (See also : Smith and Sharp, 1960; Fujite et al,
1962; Coury and Frank, 1963; Queng Ho~Kim, 1966). The TPE 3N potential
consistes of three tewynms, |

F=r1) +7(2) +F(3) eeu(6.1)

vhere F(3) is due to the process deplcted in Fig. 6.1.

N N I

————— — e Wvs e e

Flg.6.l
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The other two terms are obltained by cyclic permutations of 1, 2 and 3.
FM's exprescion for F(i) is further divided into two parts :

Fli) =F (1) + F (i)
P s

vhere F (1) and F (i) are due respectively {:o the p- and s-wave scatberings
8

of the girtual pion from the i-th nucleon. In order to obtain & rough

idea of the effect of.the TPE 3N force, ¥, in triton, it was assunmed by

FM that triton consists of an equilatercl trisngle with side 1.3 fm. The

3N potential energy, ¥, for this configuration was found to be~0.22 Hev

(attroctive). The contribution of W S(i) was found to be negligible.

The piénapion interection was not considered by Fid.However,in addition %o
the well estoblished I = J = 1 resonance, or the p -meson, there has
accumulated in the last Tew years considerable , although not quite conclu-
sive, evidence for an I = J = 0 resonzuce. This is the so-cslled o -meson,
with mass of about 410 Mev (Rosenfeld et al, 1967). The 3N forece, vhich
arises from the pion-nucleon interaction vie the o -meson as showa in Fig.

6.2, was exanined by Hurrington (1966).



http:interact:i.on
http:conflgu1--atj.on
http:vi:rtu.al

TO

The effects of this 3N force in triton and in nuclear motter vere then
estimated. The effects turned out to be repulsive and quite substontial,
especlally in nuclear matier. As Harrington himself was aware of, however,
it is dangeroﬁs to consider the diegrem of Fig.6.2 slone. This is clesr
if the s-~wave n- scattering et low encrgy is considered. If only the
diagrem (&) of Fig. 6.3 is considered, vhere the pion interscts vith the
nucleon‘via the 0‘»me$on, it would yield & very large scattering length
in drastic dissgrecment with experiment. There must be other ''direct
intersctions'', here represented by the diagram (b) in Fig 6.3, vhich
cencel the contribution from (&) so thaet the experimentally observed

extremely small scattering length is reproduced.

/ ,/
I, ¢
rd ,I
4 ’
/ ’
/ /
4 /
/ ’/
/
(i g ¢ 4
\ \\
\ ~
\ AN
\ s R is '
\ 7 {
\ A Y
\ \
AN
3] AN I \

Fig.6.3
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Including the effect of the O -meson, F{i) can be written :

Fi)=F (1) +F (1) +F (1) v o(6.3)
Lo

P 5
in place of (6.2). Here €T (1) ana Fs(i) arlses through the diagrem (a)
and (b) of Fig. 6.3 respectively. The potenﬁial 37 (i) i the one discussed
by Herrington. The poﬁéntial Fs(i) has the same form as, but stronger than,
thet in (6.2). The potentials QT (i) and Fs(i) have opposite signs and,
in fact, it will bé seen that they almost gompleﬁely cancel each other in
the Fermi-gos medel of nuclear matfey. Strictly speaking, the diagram (a)
in Fig. 6.3 contributes also to the p-wave =~ scattering, hence Fp(i) has
to be reajusted too. Hovever, this is & very small effect, and the seme

Fp(i), as was given by FM, is used here. According to Fif, F (i) and Fs(i)
b

are given by

13 1 3 3 2 2 3 3 1
F(3)=-(c /8p) [S(zex Nz . x)+3(T -2z x]]
P PN
1 3 o
X(o W Ng.v g .g)ux)xy)+ (1EF 2 xZy), ...(64)
% “y y |
-2 1 2 1 2
F(3)=Cc p (z .7 0g %)@ .2)ix)xy) .++(6.5)
s sN X y - -
vith x=r-x ,y=Tr-T, .+.(6.6)
2 3 1%
Y(x) = exp (- pux ) /{ px). e o{6.7)

Here » is the coordinate of the i-th nucleon, end J is the pilon mass
Ang,

(c::}?(*-:l).v



T2

The coefTicient CpN is given by1t

20

‘ (r)

f D)

N 33 " £, ’
CPN. = "‘2 "“““‘-'?a"" d_p = Ocl"6 I\IGV 011(698)

9 w

o P

where fN =0.08 is the = - N coupling constant end 033 1s the total cross
section for p~wave x ~ N scattering in the [ = J = 3/2 state. If the
o-meson is not consldered , CSN is related to the s-wave = - N scatte-

ring lengths ,al snd & by

3)

C == ( fN)2 (o, +22,)/3 . v (6.9)

This relation has to be modified if the contribution of theo -meson is
included.
For the O-megon an effective interaction density for the o~ and

OG- 1s aseumed to be

1/2
= (M) (gy&¢ + = h @.)ﬁy) voo{6.10)

vhere Y,¢, and ¢o_are the nucleon , pilon and o -meson fields, wespecti.-
A

vely, and g snd h ave dimensionless coupling constsnts . Then as vas

For the TPE A force , the corresponding strength factor is

CpA?t'l‘u3 Mev (8§ 2.1). Por the TP ANN force contributions come from

% . : . 7

the ¥ and Yl intermediete state, whereas for the 3 force only the N
intermediete state contridbutes. The difference is thus mainly due to the
S-contribution . Houevex,there is only one AN-bond in AH 5 compared

vith 3HN-bonds in 3H. " Moreover ,the average distanaé between partlicles in

3 3 LWl o —~

H is shorter than in ;F Thus it is expected that the elfect of the 3N
3

force in 3H is rore thea that of the TPE APN‘;orce in AH.
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shown by Harrington, . (3) may be written as

(o8
2
"N\ 1 2 1 2
F (3) =~ T.T oy  T.Y
o ) l{. ll- ~A M.“v AMAMl AMMAE
LE A ~
3 exp(~ pws, =-p s - mus,)
X [a o L g .3 .o u(6.11)
5 8 8
1 2 3
vhere s = |‘£ ~‘£I > 1 =1, 2, 3, m is the mass of the O -~ meson, aﬁd
i i
2 3 2
A= reh L /n «eo(6.12)

The choice of Cs and A w11l be discussed in the next section.

N
6.2 Effects of the TEE 3N force in triton

Here it is assumed that the triton is in the s-state of complete
spatial symuetry. Then the spin-isospin averages of F (1) (6.4) and F (1)
P

(6.5) becone :

2
F(3)=C (3cos & =-1)Mx)My), e o(6.13)
P 2 U xy o
P(3)=-C cos06 6(x)0y) (6
he] sN Xy
with |
. 3 3 1
M(x) = (1 4 o= + wmemee) ¥(x), G(x) = (2 + =) ¥(x), .. (6.15)
HX 2 . R
(LX) |

cos 6, = (ﬁ.ﬂ)/(xy) | e o(6.16)



v

Other terms with 1 = 1 or 2 can be obtained from the above Cformilee by
. eyclic permutations of 1, 2 and 3.

As was shown by Harvington, E} (3) (6.11) for the triton may be written

as

2 (T3 3
A n d 93'1(1 QQ Qe Qo exp [1(31'23 + 4%2'}{)]
Eg- (3) - . [ Vs .
i 2 2

2 2 2 2 2
ha p (@+p Mo+ p) [a+rg)+n]
1 2 1 %2

oo (6.17)
Now, for the s-wave nwﬁ scattering, the sumlof the contributions
of the diagrems (a) and (b) of Fig. 6.3 showld glve the observed (isospin-
even part of ) scattering length. This is achieved if Cy in (6.9) is
replaced by CSN— A » nemely
1 2 618
-l - 2 ¢ A (e
X ; (#fN)A(al+ca3) (6.18)
This can be seen in the following way. First, it is noted that the s~
wave w-N scattering length does not depend on the shape of the source of
the interection, hence it is independent of m, provided that A is kept
constant. Therefore the linmit m-p cocan be taken without effecting the
scattering length. In this linit Fo_ (3) becomes
"E < " % (6.1.9)
B, G)e Ap xx-j% v(x) ¥(y) = cos - G(=) (y) +++(0.19)
which is the same form es (6.11t), In fact the o - line in Fig. 6.2 or in
dilagram (&) of Fig. 6.3 shrinks to & point in thls limit, and becomes _

indistinguishable from the ''divect interaction'! disgrem (b) of Fig. 6.3.
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Thus (6.18) replaces {6.9) in the limit n» 00. However, since the two
sides of (6.18) are independent of m, this relation should hold for any

kvalue of m. Experimental values for the scé,ttering 1engths are (a, + 23 ) =

1 3

(- 0.035 = 0.012)/p (Semereyenake and Woolecock 1965). Substituting
8y + 23,3 = - 0.035/1 into (6.18) it cen be seen that :
c - X = 0013 Mev ) -o'(6-20)
sl .

In (6.1’{) the long-range part of the potential is determined
mainly by the part of the integrand with smgll momenta ql and qe. Since
m (A Llo Mev) is much laxger thaa g , the propagator of the o -meson
may be spproximated by

2 -1 2 2 2 -1 2 2 -1
{(q Cl)+m } “& 1 (qi+’m) _(q2+m) .

eos(6.21)

Then
E. (3) = M co8 {a(x) - ot (x)b {G(y) - G‘(y)} s eee(6.22)

Xy
whexe
L 2 22
N o= An /(n - ®) o e+ o(6.23)
and .m 41 -[«LX )
G'(X) ( + .,..) —— -..(6-22!-)
B px

For the parameters g, h snd m, Horrington assumed

2 2
g 210, h '-‘-7-6)_ gh> O, m '-"323'/‘!, ) .--(6.258.)
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which give

C = 5.48 Mev, X\ =5.35 Mev e .(6.250)

S

Here g and m were teken from sn analysis of the N-N scattering in terms of
the one-boson~exchenge model (Bryanvand Scbtt 1964 )., The m-o- coupling
congtent h wés determined assuming the width of the ¢ -meson to be [ = %/L.
The sign g h > 0 vas suggested from the analysis of thé two=pion contx1n2
bution to the n-N-scaﬁtering. A nmore regent analysis of the N~ scattering

2 .
gives much smaller g (2.3 to 2.8) and slightly smaller m (%20 to 470 Mev)

(Arndt et al, 1966). Therefore the followlng set is also considered here :

g =25 h =6, gh> 0, m=3u . eeo(6.262)

In this case, it can be seen that :

¢ = L.88 v, A= bh.75 Mev oo (6.26b)
sN

Now the expectation values of FP(B), F.(3) end Fy (3) in the
triton are estimated by perturbation theory. Since the short renge part
o: the three nucléon force is not known, the three~body potentials Fb(3),
Fs(s) and T (3) are teken to be zero for N-N distences less then a cuboff
distance d. The UnNperturbed wavefunction is taken to be the wavefuneiion
given by Ohmura (1959). Its spatial part is given by

1

¥(x,y,2) =N 2 f(x) f{Y) £(z) .eo(6.27)

vhere x,y end z are dlstonces betwsen the three nucleons and

0 : : for x< D

i

£(x)

]

exp [ - a(x - D)] - exp [~ plx - D)] for x >D.
‘ ees(6.28)
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Here D is the hard - core radius of the N-N force . The factor N nor-
malizes ¥ 1;0 |
2 )

¥(x,¥,2) %yz dx dy dz = 1 T e (6.29)
vhere it is understood thst x, y, z-'sa,tisfy {the triemgulér relgtions
X +y2z elcee. The values of the vaz‘ia'ti'gnal perameters «,s3 and the
normalizstion fector N sre listed in tablé 6.1 for the hard-core rodii
D=0.2, 0.k and 0.6 fm. The expectation values of various paris of
the 3N potentiel ere listed in table 6.2 , where the notation is :

2
/—\EP = 3KP (3)> = [F (3) Yx,y,2) xyz dx dy dz
b D

.++(6.30)
AE =3<TF(3)>, B =3 <F(3)>, AE=AE + AL + AB
8 8 ) P g
-1 -1 6
D (fm) o (fm ) g (fm ) ¥ (fm )
0.2 0.462 5.03 1.084
0.k 0.hk57 4.09 1.676
0.6 0.150 N 29 2.718

TABLE 6.1

. t
THE PARAMATERS OF THE TRITON WAVE FUNCTIOHN

Tais is taken from table 2 of the work of Owmwa (1959), for the

case of exponential N-N potentials and ros = 2.7 fm.
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TABLE 6.2
THE EXPRECTATION VALUR IN MEV OF TUE 30 POTENTIAL IN THE TRITON AS DEPINED
BY EQ.(6.30), FOR DIFFERENT HARD-CORE RADIUS D, CUTOFF DISTANCE & AND

O -MESCON MASS m .

D(£m) 0.2 ) 0k 0.6

d{fm) | 0.2 0.6 1.0 0.k 0.6 1. 0.6 1.0

OF -1.87  -0.1k4 0.27 | -0.76 ~0.60 0.0L | ~0.41 -0.1k

m = lps
8, ~3.28 2,85 -1.37 | ~1.53 1.5 -1.06 | -0.91. -0.80

2 2.01 2.03 1.18 | 1.97 L.26 0.9% 0.63 0.7h
A ~2.9%  =0.96  0.08 | -1.02  -0.86 -0.11| -0.29 -0.20
m o= 3JL .

o8 -2.92 «2.5h -1.22 | ~1.30 ~1.35 ~0.9% | -0.8L -0.71
LB 1 134 0.8% | 0.90 0.89 0.69 | 0.7  0.56
AR ~3.35  ~1.3%  «0.11 | -l.22  -1.06 0.2k | -0.51 -0.29

LB does not involve m. For AE and 2K ,two cases are consldered ,

P 8 o :

namely I == 1;;1. and m = 3 M. LB end AR are both quite large but they tend
5

o

to cancel. each other . LR+ AEO_ is negative (attrective ) and is more
s

apprecliable for smaller mass m . In the 1imit m-»0x, as 1t has becn

diegcuszed before ; F  and Fcr becones indistinguisghable «  The value of
5

B+ A _In this 1imit is ebtained by moltiplying AR forn = by, b
s T 4 o

I=



9

0.13/5.48 = 0.02 : For exemple if D = @ = 0.4 fm, LB, + LB . becomes
- 0.0k Mev, which is much smaller than QEP. Results are all sensitive
to 4 as well &s to D. Presumably the most reasonsble hard-core radius_
will be D = O+ . AEP is most sensitive to d and can be nmuch more
appreeiable than Fli's simple estimate =~ 0.22 Mev. The totai contribution
to the binding energy can easlly be as large as or even larger than 1 Mev
(attractive).

The expectation value of ?p in triton wes csleulated by Pask (1967)
vho used a wave function for 3H obtained from detailed varistional
calculations done by Davies (1967). The result is of the same sign and

same oxder of magnitude as the one obtained here (~ 1.38 Mev, attractive).

6.3 Effect in auclear matter

Tac effect of ﬁb. end Py, in nuclcar matter is first consldered.
The contribution of Fy has been estimated by Harrington(1966) who calcu-
lated the effective two-body potentisl obtained by averaging the 3H
potential RT over the coordinate of the third particle. This potential was found
to be repulsive and strong enough to dominate the d?EP at distances less
than 2 fm. However, it will be shown here, that Fs yields a similar
effective two-body potential which largely cancels the effect of QT 3
' 1eavi£g a weakly ettrective potential.
The effective two-body potential due %o F_ (3) (6.11) is given by

3
v, (12)=p [ a r3Fo. (3)

-2 1
=-ph p (.7 )(g-y,l)g-v X
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3
adry(s )Y(s ), e..(6.31)
1 2

where p is the density of nucleons in nuclear matter. On the other hand,

the effective tvo-body forece due to Fs(3) (6.5) is :

-2

1 2 L 2 3
0w - T 'v ° -
VS(IQ) p CsN I T T A qm;\?wg d r3 ¥(x) Y(y)

.+ +{6.32)

The integrals in (6.31) and (6.32) are identical. Since AarG_ (6.20),

sN
Vg (12) and v (12) almost completely cancel each other.

The expectation value of F in nuclear matter,using the Fermi gas
p !

model will now be estimated.Tae calculation is similar o that of§3.3.There is a
direct texin which vanishes identically because of spin isospin saturation.
There asre two exchenge terms and the binding energy due to Fp in nuclear

mattexr can be written

U=U+U e e (6.33)
1 2
The single exchange term Ul is
A 2 2 2 ~
U =~ C P D (k =z) E +(3co8 & -1) B(x) T{y]]
1 4 pm T Xy
3 3
x ¥(x) Y(y) & xavy, eoo(6.30)

end the double exchange tera U 1is
2
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A 2
U =~~~ C P D{(k x) D(k y) D{k z)
2 L pn f f f
T 2 303
[L ; (3cos & - 1) T(x)Ty) ¥(x)¥(y)dxay.
Xy

eee(6.35)

The function D{r) hes been defined in § 3.3. The binding energies U, and

U2 consist of a ceuntral end a tensor term. The central texms Ui(I) end

UE(I) ere given by the first terms of the integrals (6.34) and (6.35)
respectively . and the tensor terns Ul(II) end U,(II) by the second tewms of

the same integrals. The integral in Ul is the sazre as the integral in

U I) +U TT .30 and 3,31) and
A (1) A (r1) (3.3 3‘3 )

U (r) U CpN

= XA =0.245%x A ...(6.36)
UA (1) UA (11)

=

C
DA

e
3

As in the case of the TFE ANN force a step function is used as a N-N

correlation function

ofx - y! =-¢)=0 ' for Ix -yl < ¢,
=1 for Ix - yl > c-
oo o(6.37)

The energles Ul(I) sad Ul(II) gre then obteined by multiplying UA (1) and
Ua (IT) by the factor defined in (6.36). The integral (6.35) is evaluvated
numerically after putting in the - correlation function &( lg;—i&l - c)

in the integrand. fThe results arve shown in teble 6.3 for two different
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values of @ and three different values of c.

TABLE 6.3
EFFECT OF THE TPE 3N POTENTIALS IN NﬁCLEAR MATTER. THE NOTATION IS
EXPIAINED IN THE TEXT. 4 IS THE CUTOFF FOR THE‘3H FORCE, WHILE C IS THE

CUTOFF FOR A STEP-FUNCTION TYPE M-I CORRELATION.

a 0.6 o 1.0
¢ 0.k 0.6 1.0 0.6 1.0 1.4
U'l(I )/A 0.292 0.278 0.227 0.173 01h3 0.099
Ul( I1) /A £.930 1.060 -1.:69 2.130 0.667  ~0.290
-Ua( 1)/a ~0.16k4 -0.164 ~0.137 ~0,060 -0.060 -0.0k5
U2(II )/A 0.437 0.437 0.71.8 o.1§9 0.159 0.215
u/A 3.558 1.552 -0.660 | 2.ho5 0.910 -0.119

For the values of d and ¢ considered here, Ul(I)/A and UQ(II)/A are small
and positive (repulsive), UE(I)/A 1s small and negative (etiractive) and
Ul(I)/A is dominant end either positive (wepulsive) or negative(attractive).
For & = 0.6 fm, ¢ = 0.4 fin the overall effect U/A is 3.558 Mev (vepulsive)
pnd for d = 0.6 fm, and ¢ = 1 fm U/A = - 0.660 Mev (attractive). In cun-

mayy the effect is small and sensitive to the N-N correlation fuaction.
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The contribution of the three-nucleon force, in nuclear matter,
has been estimated by several suthors (FM; Smith and Sharp, 1960). The
results obtained by Fi are

U =~ 0.3 Mv XA (attractive)
1 .

U =+ 0.1 Mev XA (repulsive)
2 .

No details of the calculation are given.‘ In the calculation of Smith and
Sharp &en angular average of the tensgor part is taken end it is found that:
1My XA U+U £ 3MevxA (repulsive)
1 2
These results cannot be directly compared to those of the present work
since they are obltained with a different N-N correlation‘function.

As was mentioaed in chapter 2, the contribution of the plon-pion
interaction via‘the o-neson has not been considered in the calculation of
the TPE ANN force.  However from the results of the present chapter it
can be expected that this force will give an eppreciable effect in -
hypertriton as Er does in triton. In the case of‘iHe and‘nuclear matter,
since the contribution of the p-~wave part (u-/\interaction) of the TPE ANN
force is dominant over that of the s-wave part, the effect of theO'ﬂneson‘

is expected'to be small.



CHAPTER 7

DISCUSSION AND CONCLUSION

Three-body and many-body forces ére predicted from the mesgon
theory of nuclear forces. In the present work the long and inte?mediate
range parts of the ANN force due to the two-end three-pion-exchange have
been derived using the static aﬁproximation. Thelr effects on the binding

energies of 3H, 5He and nuclesr matter have been estimated. Only the

A A
teil of these potentials was considered, since at short distances hesviexr
meson exchanges may become important. The ANN force was arbltrarly taken
to be zero for A-N distances less then a cutoff distence d e The
contributions of the two-plon-cuzchonge part of the three-nucleon (3N ) foree
to the binding energy bf the triton and nuclear matter have also been
consldered. Here sgain the force was taken to be zero for N-N distonces
less than a cutoff distance d. It was found that the effects of the ANN
force can be importent and aelso that the contributiﬁn of the 3N force is
eppreciable, although these resulis depend on the cutoff distances quite
sensitively.

In deriving the TPE AWN forece, W, the n=A interaction was
considered to be dominated by the p~ end s-wave. Then W can be written :
W=V Vg, vhere Y end ¥ erise from the p- end s-vave x-A interaction,
respectively. As in the case of the s-wave x~N interaction, &

't suppresslon factor!'! of the s-wave n-A interaction was here introduced
for Wge For & reasonable '?suppression factortt, WS wag found tp be
unimportant. W consist ¢f central end tensor terms. The tensor tewm

P
84
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depends on the angle exy as showm in Fig. 2.2. Thisg term was found to be
dominent.
3
In AH, the contribution of W to the binding enexrgy of al , BA ’

can be repulsive or atiractive, depending on the cutoff d and -the

AN
wavefunction used. A reasonablervalue foi the A-N hard-core radius D
may be taken %o be 0.t fin, end the cutoff radius for the ANN force
about 1 fm. In this case W givg‘a repuléive contribution of about 0.16
Mev. Although this is substantiel in view of the small value of BA in

iH, this could easily be accommodated for, by slightly chapging the
two~body  A-N force.

>
In He, the overall effect is much larger, because there are

A
six ANN bonds end also the average A-N distance 1s smaller then that
of iﬂ « Here the contwilulicn to ?A from the ANN forces is always

repulsive, and is aboul 2 Mev for a cutoff of 1 fm. However, this re-
pulsive effect is problably overestimated since no N-N corvelation in the

a-particle has been considered. This repulsive contribution of the ANN

force substantially rcduces the overvinding of the A in 2He as vas
obtained by using the two-body forces alone ( Bhadurl et al, 1967).
3
In nuclear matter, the contribution, U(A), of VW to BA was esti-

mated by using perturbatlion theory. The effect is extremely sensitive

to d es well as the N-N correlation function. For instence, with a

Ay
cutoff vealue dHN = 0.7 fm, for a sbtep function type N-N correlation,
(3)
U, = 1.8 Nev for & . = 0.6 fm end is sbout 8.7 Mev for d AN(a)l.o m
3

see (Fig. 3.3). However, with a slightly larger value of dNN’ U A
may well turn negative for the case where d Al is 0.6 fm. TFor d AN =

Gy = 1 I, & repulsion of 3.535 lMev is obtained. IT only the very
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long-range pert of W (a /\N> 1) is considered, the effect is definitely
repulsive and cen be as large as 10 Mev.

In the short-range region, processes other than TPE will become
impor’ce.nt, s0 that the above resultis will be modified. The next lowest
order contribution to the ANN force, afteAr TPE, arises from three-pion-
exchonge. The three-~plon-exchange ANH force has been derived. Its
effects on light hypernuclel and nuclesr matter have been compared with
those of W, in order to see for vhat value of the cutoff a Ay the TPE

AN force, wp ; is dominsted by the three-plon-exchange AWN force., _

The three~plon-exchange AWN force arises from diagrems k.lc and k.
1d vhich are as yet loo complicated to be evaluated exectly. The force
arising from diagram L.ld ves spproximated by the sum of the forces arising
from disgroms h.lo end h.lb. This ANN force, P, derived in the stotic
epproximation, consists of a central and & tensor term, P = Pc+ P‘l‘ s Where
the tensor term, PT, depends on the angle exz as showvn in Fig. h4.3.The effect of
the potential due to dilagram 4.1l(c) was not examined,because of its complexity.

In iH, P depends strongly on the AN c"iist&nce and the contri-

bution to By of Pq is larger than that of P_. TFor 4 < 1 fm, Pc

AN
alvays glves a positive contribution (repulsive), which is larger than that
of the central part of wp. P‘I‘ 2lvays gives a negative contribution

(attractive) which is larger in ebsolute velue then that of the tensor temm

of WP. For d AX £ 1 fm the contribution to B A of P is larger then that

of Wp. For & vezsonable value of 0. fm for the A-N hard-core radius, end
a Al = 1 T, P gives an sttractive contribution of 0.3 Mev. The contri-
bution of Wp vags previously shown to be repulsive (0.16 Mev), therefore

the totel contribution is attractive (0.14 Mev). In fact for d A’@'g’ 1 fnm,
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the overall effect is found to be alvaysbattracﬁive.

The. A - o potential in iﬂe due to P, vhich is éenoted by P(s\),
vas evalvated. The contribution ?C(?A ) (centrel part) is always repulgive
and larger in absolute velue than the contribution PT(IA ) (tensor part)
which i1s ativactive (except for %A x~ 2 fﬁ). The overall contribution

of P is thus vepulsive (except for d AN =1 fmeand r, o~ O fm) and it

A
further reduces the overbinding of i?e. Results are sensitive to &

, N
but mot to . For 4 A P 1 fm, P(%ﬂ ) is smaller then Ubs(rh ),Athe
A= ¢ potential of wp, and therefore only slightly modifies the contri-

bution of that force.

The contribution of P to the binding energy of A in nuclear matter
depends strongly on the distance d AN’ but its dependence on dNN is not
&8 pronouced. The resulis in puclenr motter are more sensitive to dNN
than those of 2He (see table 5.3 and 5.2, respectively). This cen be
explained by the fact that the nuclear matter expressions (5.20) and (5.21)
heve a stronger dependence on NN distance than the corresponding ZHe
expressions (5.16) and (5.17). It can be also seen-that in nuclear matter

the tensor part contribution P depends less strongly on dNN than the

AT
corresponding contribution U,\(II) of the TPE ANN force (teble 5.3).
This is due to the difference in aﬁgular dependence of the two forces : PT
depends on the angle exz (sensitive to the A-N distance) vhereas the

tensor part of w? depends on the angle e#y (sensitive to the NN distance)
(see Flg. L.3) . The contribution of the central part P, is found to be
repulsive end larger then that of the tensor part Py which is.also repulsive.

This totel repulsive contribution is larger than that of Wb. For iunstance,

with a cutoff for & step fwuction type N correlation of 1 fm and for
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d =1 fm, B, due to P is ~ T7.U3 Mev and d was found
AN 1, A T 3 BA ue to Wé s found to be

- 3.78 Mev. As in the case of W§, P may have been overestimated becsuse

' 2
the coupling constant ?A wo.s chosen equal to fﬁ(?i = fg

estinmates of fi have been done which indicated that fi

smaller than f§ (§ 2.1) . However, P does indicate the order of magnitude

= 0.08). Various

is slightly

of the intermediate range part of the ANN force.
In surmary, the contribution of the long~range AWNN force, W, and

the intermediate renge  ANN force, P, to the binding energy of a A-

particle in s=-shell hypernuclei, has been shown to be importent. In ‘2H,
P was found to be attractive; for & ~ 1 fm the contribution of P is

AN
greater then that of Wﬁ, although the overall effect (P + Wp) is still

relatively snall and is attractive. The force P further reduces the

>
A

results obtained using Wb alone. In nucleasr matter the contribution of P

binding energy of 7He; for d AN4§ 1l fm P only slightly modifies the

is repulsive and greater then that 6f Wb; even for d Arlﬁs 1 I the
overall effect (P -+ Wp) is quite large and is repulsive. Although there
are awbipuities due to the unknown short-range part of tﬁe AN force,
it can be seen that the effects of the three-~body ANN force cannot be
ignored . Also, the '! effective'! A-N force extracted from binding
energy data, assuming only a two-body force, cen be significantly different
from the ''free't A-N force observed in two-body scablering.

The contributions of the long range part of the 3N force arising
from tvo-plon-excheange to the binding energles of the triton end nuclear
matter have been estimated. The effect of the plon-pion interaction was

taken into account by the consideration of the contribution, E,. , of the

(virtusl) =-l scattering via the ¢ -meson (the o -meson is a controversisl



I =J =0 dipion resonance ). Then the 3N potential can be written,
F =‘F p% FS+ Fo_ s Where Fp ond FS are due respectively to the p~ end
s~ﬁave x-ll scattering. The s~wave !tdirect!!x-N interaction was formulated
so that, together with the n-N interaction via the o -meson it reprodﬁces
the observed n-N scatterling length. .It was found that the potentials Fs
and EU have opposite signs end that they tend to cancel each othe:._

The contribution of F to the binding energy of the triton has been
estimated by perturbation theory. The triton wavefunction is tsken from a
variationsl calculation for a hard-core two-nucleon potential (hard-core
radius D). The results were found to be sensitive to the cutoff of the 3N
force, d, as well as to D. The contribution of F,. end FS are large but
theif sum is relatively small end negative(attractive). The effect due %o
Fp is found to be mainly attractive. At D = 0.4 fm end @ A 0.4 fm, the
binding due to F is around 1 Mev (attractive). A pérturbatioh celculation
was done to estimate the effect of Fpin nuclear matter. This contribution
is of the order of & few Mev, between - 0.7 Mev (attractive) end 4.0 Mev
(repulsive), depending on the value of d and on the nucleonénucleon
_correlation function. As in the case of the ANN force, the three-plon-
exchange 3N force will probably modify the above results.

Since, in both cases ( AWN and 3N forces),the short range part of the
force is unknown it is not possible to draw eny definite conclusion. Never-

theless the results of the present work clearly show that the three-body

force can ploy an important role in nuclear structure problems.



APPENDIX 1

p
DETAILS OF THE CALCUIATION OF THE EFFECT OF THE TPE ANN FORCE ON AHe

5
AHe (g 3.2) are

given, in particuler the angular integration in (3.20) and (3.21). The

In this appendix some calculational details on

z-axis 1s teken along X and polar coordinates for x and y are introduced
PN

A

as follows

?5;'—': (X, e 2 (P ), X= (y, 6 2 \P ) .c.(Alol)
x ox y v

Then the p-integration of c:os.2 6 -becomes

2T )

2n ’ _
d P adP cos 6
o X A Yy Xy
eI e o
= ay dy cos ® cos & + sin e sin 6 cos(\P - ‘P)}
X y X Y x y X y
0 0
2T 2
2 2 1 2 2
= aep dp (cos 6 cos© +~-sin 6 sin o ). eoe(p1.2)
bid y pe y 2 X y

0 0
Thus the angular integral of the tensor part of V¥ (2.16) becomes
D ,

3 3 ' 2 T
dax [adayMx)My) (3cos &8 - 1)
. xy

3 3 2 2 3 2 2
= [dx {dyux)My) {3 cos & cos @ +=-8in 6 sin O - l}
x y 2 x y

3 3 2 o
ax fayMx)My)(3cos 6-1)(3cos 8 =~1)

90

[Av IR B o
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3 2 2 .
ax Fx)(3cos 8 -1) s .. .(AL.3)
X

c
-

vhich explains (3.20).

The anguler integral of W is simpler. Since the second term in
_ 8

cos € =c¢cos € cos O +sin® sin o sin‘e cos ('~P "“P)

xy X g x x y X oy

venishes after P -integration, it can be see that

(3 [3 3 2
dx Jdy Mx)My)coss = d x M(x) cos © eeo{AL.l)
Xy X

which gives (3.21).
The radial integrations in (3.19) - (3.21) can be done as follows.

For (3.19) it can be seen that :

© 22
3 n p(r) -B X - ux 2
ax pf I};A +x | ) ¥(x) = dx e cosh(2p rx)
2 .
B our d
2
~( n/28)
e - I
= e ;L EL'-
2ur .

+our
ext (8 -1)+4=)] <o ' [1-err(pla +x) -’-f-)]} ,
AN 2p AN 2p ,

e (A1.5)
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where
X
1/2 2 ‘
erf(x) = (2/x ) exp(- t ) at e o(AL.6)
. 0 :
The integral (A1.5) is not very sensitive to the cutoff d .
. AN
For (3.20) 1t can be seen that
3 ' 2.
ax p( g, +&l ) (3 cos ex- 1) ™(x) ¥(x)
" ' 22
x p(r) -BXx =~ X 3 3 cosh z
B em——————— dx e # ™(x) (1 + —) sinh 2 = —~———ema
2 , 2 z
B ur z
weo(ALLT7)
2

vwhere Z=2p 1x : eso(A1.8)

-

3
For small v, { ‘% in (Al.7) may be expanded as { l =2 f15 + ceu

~ Therefore, the integrel (Al.7) venishes at r = 0, as it should be.

Finally, for (3.21) it can be seen that

3 ' . .
d x p(.l;gA +xl ) cos o (1+ px) Y(x)/( px)
X

ex p(r) - B X " sinh 2z
R ax e (1 4+ px) ¥(x) COSh Z = e
2 ~ Z

B ur d L .o .(A1.9)
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where z is defined by (AL.8). For smwall v, { k in (A1.9) may be
expanded as -{' } = z2/3 4+ «o» .« Therefore (Al.9) vanishes at r = O.

The integrals (A1.7) and (AL.9) have been evaluated numerically.



APPENDIX 2

EXPRESSIONS NEEDED IN THE CA'LCULATION OF THE THREE~PION-EXCHANGE ANN FORCE
The explicit form of the expressions (4.32) are given by-f

(bx)2 2 2 1

Z(r,x') = = - [3 f £(F (r,»") 4 =G (x,2")) +
NA AO A DO
2 2 1 2 2 1
6f g (F (r,r') + - G (r,x*)) +32¢g £ (F (r,x*) +-¢ (r,r')) +
N A (A)AO CJA (A)AO N A o A A w A .
N N
o 2 1 ’ |
6h g g (F (r,r*) + — G (r,>)]] oee(p2.1),
N A we ~ W © W : A , .
N A A xA
G (rﬁr')
) ( ’ ; wAO
(4my2 2 2 Gpg (r,x") 2 2
D(r,r')=-—-) LCsr £ 8 ~-3f g +
3 N A A ¥ A %)
¢ (xx') 6 (vr)
w D W W
2 2 XN 2 2 N S
8g f -8¢g g ] Ve (82.2)
y A A N A © |
and
(erty 2 - 1 2 2
X(r) = et [3f £ (¢ (0) +-C (2a0)) 462 g (R (ret) 4
: N A HO N AO N A w O
ol
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1 2 2 1

+e=—=C (rx'))-bg £ (F (ex')+-0 (r,r')) -
O U 0 : NA wA A wu A
N N
2 2 s ‘ ’
8 g g (F (I‘,I') + —— G‘ (I‘,.’l" )):] ooc(A243)
N A ww W W : _
N A A nwA
with
oo
1 1 k sin k(r + ') o
P (r,rf) T3 e S— dk oso(AQ-h)
ap 3 rx 2
2(2n) . w (0 +a)ew +p)
, 0 ,
end
cO
1 1 1 k sin k(r + »!) o+ p
G (r:r') = ak (1 o+
ap 3 {(@+8) rx (v +a) (w +8) ' w
2(2xn) . ,
0 .
.. .{A2.5)
. 2
As pointed out previously terms proportional to £ are
. I

divided by & factor of two.



APPENDIX 3
CALCULATIONAI, DETAILS ON TilE EFFECT OF THE THREE-PION-EXCHANGE ANN FORCE
o)
0 He
N A
The reduction of the integrals (5.16) and (5.17) can be done as
follows. The Z integration is first considered. Take X, as the Z-axis and

the plane defined by ¥, I gs the Z-X plane. In this freme, polar

A
‘coordinates for z are defined by

‘ '%“2-'- (Z, e ) \P ) ) ooo(AScl)

: X%z 7 _
Next the X integration is considered. 3;/\ is chosen as nev Z-axis. Polar
coordinstes for x are : N
3&:’ (X, © 3 ‘P ) o-o(A302)
| AX X ' '

Consequently the product p(r ) p(r ) cen he written
1 2

2 2 2 2

B 3 -2 (x, +x )
plz, +x1) pUlg, *x-2D=(—) e AT x
2 | g2 2 |
—hﬁxrAcose - B z -28 ‘bz o
e Ax e e «..(23.3)
where
b=-r, (sineée sine cos P +cos ® cos® ) ~-xNcosO .
A X7 Ax z Xz Ax X2
eos{A3.1)
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Then the integrals (5,16) and (8.17) beconme

| 2 2 2 S
. p 3 -2 r 2 ~4pxT W
P((r )=Du8x () e A ax x 8'(x) av e A
¢ N T - . '
d -1
| T A AN .
%xp fiv I .o o(83.5)
A cz ' :
0 )
o0 A1
2 2 , 2
B 3 -2 1 2 - hBxT W
P(rA).—zlLByp (—) e A dx x  W'{x) aw e A
T T
-1
r + d/\N
2 )
aPp av (3 v -1)1I . el (A3.6)
7 - Tz
c ~ |
Here v = cos © , W =cos 6 end (with wit po=1 )
X% A
2 2
N 22 2 -p 4 2 ,
-pz +(Bb-1)z e M epb-1)a
I = |(dz 2z e 2 e . NN
CCZ 2
. b g
Iy
1
x[2+ vi(zgv--)] , v oo (A3.7)
‘ B
I =¥ + I 3 . ...(AB.B)

Tz 1 2
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=0 22 2 '
~gz +(2pb~-1)uz
T = dz (z +3) e ’
1l
Ay
22
-pd 2 |
e MW (2gb-1)a 1
= e e W o[2+ V?:(’Bab-—-+63)], «..(A3.9)
2 P
L g ‘
O o
22 2
dz ~pz+(2pb ~1)z «+.{A3.10)
I =3 -— e :
2 Z
- d
NN

Thus the integral (5.16) is reduced to a four-dimensional integration
(A3.5 with A3.7) vhich is done numerically. Similarly the integral (5.17)
is split into a four-dimensional (A3.6 with A3.9) end Tive-dimensional

(A3.6 with A3.10) integral, both of which are done numerically.



APPENDIX U
THE VALUES OF NUMERICAL CONSTANTS USED THROUGHOUT THE COMPUTATION ARE

GATHERED HERE

The mass of the pion is teken to be
. . -1
fe= 137.28 Mev = 0.6939 fn

The wnits § = ¢ = 1 are used.’

Values of other constants axe

.
f = 0.08 Preanf coupling constant
N .
2 ' ) N
:E‘A = 0.08 oA coupling constent
-
A = 0.389 fm Z-A mass difference
2
g, = 0.047 x YA coupling constant
' 1
-1 v
w = 1.24 fm ooyt resonance energy
2 ¥,
g = 0.057 NN ~ coupling constant
N
-1 .
w = 1.27 Tm N resonance energy
N _‘
-1
p =6p = 4.206 fn : cutoff momentun
n
, -1 |
g = 0.85056 fm cce fficient used for the
normalized density distribution
for the nucleons in ize
X -1 '
e 1.36 m Fermi momentum

p = 0.170 el 3 99 density of muclear matter




REFERENCES

Abou-Hadid L. F. 1962 Nuovo Cimento 28,  1169.

Alexander G. et al 1966 Phys. Lettefs 19, - T15.

Alexander G. et 8l Phys. Rev. 173, 1h52.

Ali S., Grypcos M. E. and Kok L. P. Phys; Letters 1967 24 B,  1671L.

Amati D. end Pubin S., Ann. Rev. Nucl. Sci. 1967 E, 359, see Section 10.

Arndt R. A., Bryan R. A. and Macgregor M. H. 1966 Phys. Letters 21,  31L.

Bach G.G 1959 Nuovo Cimento 11,  7T3.

Bhaduri R. K., Nogami Y. and Ven Dijk W. 1967 Phys. Rev. 155, 1671,

Bhargeve P. C. and Sprung D. W. L. 1967 Ann, Phys. (N.Y) k2, 222,

Bodmer A. R. and Sampanthax s 1962 Wucl. Phys. 31, 251.

Breit G. and Hull M. H., 1960 Nucl. Phys. 15, 216.

Brown G. E., Green A.M. and Gerace W. J., 1968 Nucl. Phys. All5, L35,

‘Brueckner K. A. and Masterson K. S. 1962 Phys. Rev. l§§’ 2267, '

Bryen R. A. and Scott B. L. 1964 Phys. Rev. 135, B 343; 1967 Phys. Rev.
16k, 1215. |

Chalk 111 J. D. and Dovns B. W. 1963 Phys. Rev. 132, 2727.

Chem C. H. and Meire F. T. 1968 Phys.‘Rev; Letters 20, 568.

Chev G. F. and Low F.E. 1956 Phys. Rev. 101, 1570.

Cottingham W. N. and Vinh Mau R. 1963 Ph;fs. Rev. 130, T735.

Coury F. M. Frenk W. M. 1963 Nucl. Fhys. 46,  257.

Cziffra P., Macgregor M. H.,‘Mosavcsik M. J. end Stepp H. P. 1959 Phys.
Rev. 114,  880.

Dalitz R. H. 1965 'THuclear interactions of the Hyperons'! {Oxford
/ MCMASTER UNIVERSITY, LIBRARY,



10l

University Press); July 1966 ''Hypernuclear Physics'! Lectures
given at the international scool of Physics ''Enrico Fermit'.,

Davies B. 1967 Nucl. Phys. A 103, 165.

Deloff A. and L-Irezecinko J. 196k nNuovo Cimento 34, 1193.

Delves L. M. and Blatt J. M 1967 Nucl. Phys. A 98,  503.

Dovns B. W., Smith D. R. and Truong T. N. 1963 Fhys. Rev. 129,  2730.

Friesen P. H. 1968 M. A. Thesis University of Saskatchwon.

Friesen P. H. and Tomusiak E. L. 1968 %o bé published.

Fubini 8. 1956 Nuovo Cimento 1956 3,  1Lko5.

Fujita J. and Miyazawa H. 1957 Progr. Theoret. Physics (Kyoto) 17, 360.

Gajeroski W. et 8l 1967 Nucl. Phys. BI,  105.

Gel A. 1966 Phys. Rev. 152, 975, 1967 Phys. Rev. Letters 18,  568.

Hamilton J. and Woolcock W. S. 1963 Rev. Mod. Phys. 35, T37.

Harringtoﬁ D. R. 1966 Phys. Rev. 141,  1hgh,

Herdon R. C. end Tang Y. C. 1967 Phys. Rev. 133, B 5lk.

Iwadare J., Obsuki S. and Tawski R. 1956, Suppl. Progr. Theoret. Phys.
(Kyoto) No 3 . | ‘

konuma M., Miyazawa H. and Otsuki 1958 Prog. Theoret. Phys. 19, 17.

Kvan Kim J. 1967 Pays. Rev. Letters 20, 568,

Mertin A. W. and Wali K. C. 1963 Phys. Rev. 130, 2455.

‘Mc Keller Bruce H. J. end R. Rajaraman 1968° Ph&s. Rev. Letters 21, ks0.

Miyazewa H. 1956 Phys. Rev. 104, l7hl;‘l957(Fujita J. and Miyazawa H.)
Progr. Theoret. Phys. (Kyoto) 17, 360.

Nogami Y. and ﬁloore F. J. 1964 Phys. Rev. 122; 853.

Nogemi Y., Rem B. and Zucker I. J. 1964 Nucl. Phys. 60, L5L..

Nymsn E. M. 1967 Phys. Rev. 159,  782.

-


http:Miyaze.wa

102

Ohmura T., Morita M. and Ysmada M. 1956 Iﬁ"ogr. Theoret. Fhys. (Kyoto)
15, 222; 1957 Progr. Theoret. Phys. (Kyoto) 17, 326.

Pask G. 1967 Physics Letters 25 B, 78.

Quang Ho-Kim 1966 Nuovo Cimento 4k, 1148,

Remen K. 1966 Phys. Rev. 149, 1122; Errata Phys. Rev. 152, 1517.

Rimpault M. end Vinh Mau R. 1965 Huovo Cimento _3_5_; 8s5.

Rosenfeld A. H. et al, 1967 Rev. Mod. Fhys. 39, 1.

Samersyanske V. K. and Woolcock W. S. 1965 Phys. Rev. Letters 15, 936.

Smith R. C. and Sharp R. T. 1960 Can>J. Phys. 38, 115k, |

Spitzer R. 1958 Phys. Rev. 110, = 1190.

Tomozewa Y. 1966 Huovo Cimento 46 A, 707.

Uchara M. 1960 Progr. Theoret. Phys. (Kyoto) 2k,  629.

Weinberg §. 1966 fhys, Rev. Letters 17, 616.

Weitzner H. 1958 Phys. Rev. 110, 593.



	Structure Bookmarks



