STUDY OF THE THRER-BODY NUCTRAR FORCL

by

Benoit Athelstan Gaston Fobert LOISRAU,Licencié és Sciences

A Thesis
Submitted to the Faculty of Graduate Studies in Partial Fulfilenent of the Requirements
for the Degree
Doctor of Fhilosophy

Monaster Universlty
November 1968

```
DOCTIOR OF PRILCOSOPAY (1968)
```

MCMASTER UNIVHRSTTY
(Physies)

TITTE: Study of the three-body nucleax force
AUTHOR: Beroit Ahelstan Gaston Robert Loiseau, Licencié és Sciences (Université de Bordeavi)

SUPervison: Dy. y. Nogemi.
NUMBER OF PAGES: $i x, 102$
SCOPT AND COMETR:
Until now, the nuclear meny body problem has been restricted almost entirely to considerations of the two body force. However the meson theory of nuclear forces predicts that the exchange of mesons between three or moxe particles will give rise to a three-body or many-body force. The meson theoxy which has succesfully explained the main features of the phe. nomenologicel nucleonmucleon potential, is expected to provide a good besis for the study of three-body nuclear forces. Three-body nuclear forces can occur emong baryons such on N, Λ, Σ and \boldsymbol{H}. So far, hovever only bound states of nucleons(nuclei) and of nucleons and Λ (hypornuclei) have been obsexved experimentally. Hence only the threenucleon ioree and the ATH foxce are considered. It will be seen thet the Amf ronce plays a more important role than the three-nucleon foxce. frus in the present work the MN force will be studied in greater detail than the threemucleon force. First the long and intermediate range parts of the NW force are derived from meson theory. Their effects on the bindine energes of $\stackrel{3}{4}^{\mathrm{H},} \Lambda^{\text {He and muclen matter are then estimeted. }}$

Since the short range part of the force is not know, no definite conclusion can be dram. However it is found that the three-body A N force can play on important role in the nucleax structure problem. The effects of the threenuclcon force in ${\underset{\Lambda}{H}}^{H}$ and in nuclear matter are also brierly discussed.

REMECTEMEMS

L'auteur tient à exprinex toute sa gratitude à son professeur y. Nogami qui a rendu possible la réalisation de ce travall grace à son oide efficece, ses encouragements et sa grande patience. II remercie en particulier Dr. R. K.Bhoduri poux ses nombreuses suggestions trés utiles au cours de ses travoux, ainsi que tous ses collégues de physique thérique pour leux discussions fructueuses.

L'auteur est trés reconnaissent ò. J. Goodrellow pour avoix bien voulu lixe et critiquer le manuscript et à Nademoiselle M. E. Shalom pour son aimable collaboration a la mise du point de ce manuscript.

L'auteur dient aussi à renercier Le Conscil des Arts du Canada et Ie Département de Physique de l'Université Mcraster qui ont pemis gràce à leur support financier, la poursuite de cette étude.

CONTENTS

Chepter Page

1. INTRODUCTION - TMREE - BODY NUCJEAR FORCE 1
2. DERTVATTION OF THE LONG - RANGE TWO - PION - EXCHANGE (TPE)
NWN FORCE 9
2.1 Evaluation in the static appromimation usiag Miyazewa formalisin 9
2.2 Comparison with the previously obtained ANf forces 3.6
3. EFFECIS OF THE TPE ANN FORCE 19
3.1 Effect in 3^{3} 19
3.2 Effect in ${ }^{5}{ }^{\mathrm{He}}$ 24
3.3 Effect in muclear matter 28
4. EvALUATION OF THE INTERGDIATE RANGE MHPBe - PION - EXXCHANGE NUN FORCE 38
5. EFFECTS OF TIE THREE - PION -EXCIABGE ANN FORCE 55
5.2 Eefect in 3^{3} 55
5.2 Effect in Λ^{He} 57
5.3 Effect in nuclear matter 60
6. DERTVATMON AND EFPRCSS OF THE LONG RANGE TPE TMDEE - NUCTEON FORCE 68
6.1 Derivation of the threemucleon (3N) foree 68
6.2 Effects of the PPD 3 N force in triton 73
6.3 Effect in nuciear matter 79
7. DTSCUSSION AMD COMCTUSION 84

CONTENTS (Continued)
Page
APPENDX 1 DELATLS OF THE CALCULATLON OF TIIE EPFECT OF THE TPE ANN FORCE ON ${ }^{5}{ }^{\mathrm{He}}$ 90

APPENDIX 3 CAMGULATTONAL DETAILS ON THE EMTECT OF THE THRBE -PION - EXCHANGE ANN FORCE ON Λ^{5} 96
APFENDIX 4 NUMERICAL CONSTANTS 99

IIST OF FIGURES

Fizgure

Poge
2.1 The twomion-exchenge diagram for NiN foxce. The blob on the Λ-line contains ail the possible processes.
2.2 The configuadion of the three particles, Nof
2.3 Typical timemordexed diagrans for the trompionexchenge MN force. The diagran of Fig.2.1 contains all of these.17
3.1 The 1 (3) α potentials due to the TPE NTI force. $U_{p}^{(3)}(I)$, $U_{p}^{(3)}(\operatorname{II})$, and $U_{s}^{(3)}$ ere defined by eqs.(3.19),(3.20) and (3.21), respectively. The cutofi radius is taken to be $d_{\Lambda T H}=1$ fin.
3.2 The Λ - a potential $U=U^{(2)} \div U^{(3)}$, where $U^{(2)} \operatorname{cad} U(3)$ are the contributions from the two-body Λ-IV force and the three-body IPe NNH force, respectively. U is defined by eq. (3.14), and $U^{(3)}=U_{p}^{(3)}+U_{s}^{(3)}$. Here U and $U^{(2)}$ are shom . For $U^{(3)}$, the cutoff xadius is taken to be $d_{\mathrm{A}}=1 \mathrm{fm}$.
3.3(a) Erfect of the MPH MN potentials in nuclear matter for a A-N cutoff of 0.6 fm . The effect is plotied agatnst $\mathrm{d}_{\text {H }}$ ' the cutorf for a step function type 1 -N corcelation. The full line gives the total contribution exising fron $U_{\Lambda}(S), U_{\Lambda}(I)$ and $U_{\Lambda}(I I)$. Ine notetion is exploined in the text.
3.3(b) Same as in Fig.3.3(0), but for N-N cutore of 3.0 th. 37

LIST OF Froums (conbinued)

Figures

Page

5.2 The 1 - IN distance dependence of the tensor part of the three-pion exchenge Aint potential fox ${ }^{3} \Lambda^{H}\left(T_{3}\right)$ and for $\mathrm{A}^{\text {He end molear matter }}\left(\mathrm{T}_{3}^{\prime}\right)$, is compared vith that of the tensor part of the TER ATA potentida (curve T_{2}).
5.3 The 1 - α potentials axjsing from the three-pionexchange Min force (central part $P_{c}\left(r_{\Lambda}\right)$ and tencon part $\mathcal{P}_{\mathrm{T}}\left(\mathrm{r}_{\Lambda}\right)$ are compared with those arising from the TRE NTS force (cemal p-mave part $v_{p}^{3}(x)$ wad tensor pormeve part (viii)

LIST OF FIGURES (Continued)

Figures Page$U_{p}^{3}(I I)$, for the cutorf distances $d \Lambda N=1 \mathrm{fm}$ and$d_{\text {NN }}=0.6 \mathrm{Tm}$.66
6.1 The tro-pion-exchange diagrem for the three-body 3-nucleon foxce.68
6.2 Diagran for the three-body foxce due to the $\pi-N$scattering via the σ - meson.69
6.3 The diagrans for the s-wave $\pi-N$ scattering. The diagram(a) represents the 'indirect intexaction' via theσ. meson, and the diagram (b) stands for all other
"direct intexaction'. 70

CHAPTER 1
INTRODUCTION - THREE-BODY NUCLDAR FORCES

One of the major trends in nuclear physics is an atternpt to explain nucleax structure in terms of the two-bony nuclear forces which are determined from nucleon-nucleon scattering data. This program relies on the hope that three-body and many-body forces are unimportant. On the other hand, from the meson theory of nuclear forces, where it is believed that forces are due to the exchange of mesons, it is expected that the exchange of mesons between three particles or more will give rise to a three-body or nany-body force.

The meson theory of the two-body nucleon-nucleon ($\mathbb{N}-\mathbb{N}$) force has been extensively studied by many authors. The onempion-exchange potential, OPEP, well established theoreticsily, gives a good description of the N-N interaction at large distances, distances greater than about 2 fm (Ivadare et al, 1956;Ciffira et al, 1959). For interaction distances less than about 2 sm , the potential due to the exchange of mose mesons or heavier mesons has to be considered. Thus the two-pion-exchange potential,' TPEP, has been calculated and is fairly vell understood theoretically (Fonuma et as, 1957; Cottinghem and Vinh 1av, 1963). The potential due to the exchonge of heevier mesons then π has also been considered, giving rise to the one-boson-exchange potentials, OBEP, (Arndt et al, 1966; Bryan and gcott, 1967). The OBPP, TPEP together with the OPBP xeproduce the main features of the long and intemediate renge part of the
phenomenological N-N potential. The meson theory of nuclear forces has been extended to the interaction between various baryons $N-\Lambda: N-\Sigma, \Lambda-\Lambda$ etc... However experimental data are as yet too meager to provide a proper comparison with theoweticel predictions. Since meson theory gives a good account for the two-body nuclear interaction, in particular for the N-N force, it is expected that meson theory will provide a good basis for the study of the three body nuclear forces. Accordingly the exchonge of mesons can take place between three particles and can give rise to a 'meson theoretical' three-body force.

Three-body nuclear forces can occur among baryons such as $N \mathrm{~N}, \Lambda$, Σ and . So far, however, only bound states of nucleons (nuclei) and of nucleons and Λ (hypermuclei) have been observed experinentally. Thus the three-body nuclear forces which are expected to play a role in ruclear structure, are the three-nucleon force and the Anir force. As will be seen the three-body NNi force is stronger than the three-mucleon force. on the other hand the charge symmetry of the strong interaction forbids the exchange of one pion in the $\Lambda-N$ interaction, thus the longest ranged two-body $\Lambda-N$ force arises due to TPE and has a shorter range then the $\mathrm{N}-\mathrm{N}$ force. Therefore the NNI force will be relatively more important than the three-nucleon force and then it will be studied in greater detail.

In principle, if two-body forces are completely known and if many-body problems can be solved exactly with the two-body interaction, then any discreponcy between the theoretices predictions and experimental data, can be claimed to be due to many-body forces. In practice, the two-body interaction is not very well known end even if it is well know, it is practically impossible to solve the meay-body problems exactly.

Nevertheless there seems to be some evidence for such discrepancy, in particular in the case of the $N-N$ interaction.

The best souxce of information about the $\Lambda-N$ interaction has come so far from the phenonenological analyses of the binding energies for light hypernuclei, mainly s-shell hypermuclei. Recently $\wedge-\mathbb{N}$ scattering experiments have provided more direct information. If there is no many-body force, these two approaches should lead to the sane results. Extensive analyses, in terms of the binding energies of s-shell hypernuclei, lead to an s-state Λ-N potential with strong spin dependence: it is much more attractive in the spin singlet state than in the spin triplet state. These results have been well described by Dalitz (1966). The most direct information, derived from Λ-p scattering experinents, is now becoming available (Alexander et al, 1966, 1968). The s-wave scattering lengths and effective ranges, detemined from Alexander et al's experiments, are not very different for the singlet and triplet states, if the Intrinsic range of the force is chosen to be axound 2 fm or slightly greater (Alexander et al, 1966; Ali et al, 1967). This is contrary to the results of the previous enalyses which utilised the binding energy calculations for light hypernuclei. This suggests a possible importance of the three-body NIN force and that the $\Lambda-N$ force detemined from the Arp scattering will not give the right binding energles.

It has been shown that a Niv potential, reproducing the data of Alexancer et al, 'overbinds' ' light hypermuclei, in particular ${ }^{5}$ He (Bhadur et al, 1967; Herdon and Tang, 1967). Thus there is the possibility that a three-bony repulsive nuw fonce could play an imporicnt role in those kypemuclei. It vas rixst pointed out by Wettzner(1958)
that fox strong repulsive ANN forces, the binding energies of light hypernuclei could be accounted for with a two-body Λ-N force without stroug spin dependence. Recently, the effects of NNW forces in s-ghell hypermuclei, in connection with the new scattering data, have been discussed by Gal (1966). If such NHN forces exist, then the low-energy scattering parometers previonsly cxtracted from the binding enexgy data of s-chell hypernuclel, assuming only a two-body 1 -N force, are the result of sone 'refective Λ in interaction'. "This effective $\Lambda-N$ foxce" connot be directly compared with the free two-body $\Lambda \sim N$ xorce.

On the other hand it is interesting to have an accurate estimate of the binding chergy of a Λ in nuclear mattex, since it is the same as the depth of the average one-body potential, U_{Λ}, in winch it moves and this depth gives a messure of the strength of the "efective $A \cdot N$ intoraction' . It was shown by Ali et al (1957) that the N-iv potential that fits the Λ-p scattexing dats overoinds the Λ in nuclear mater. Here again, one of the exfects which may reduce the depth, $U \lambda$, in nuclear matter, may axise from the presence of a strong three-body NNN force. At the present time, the three-body AN force con only be calculated using a meson iteldtheoretion approech. This method hes, alxeady been applied to the detemination of a '1 theoneticel' A - N force by several authoxs (Nocami et al, 1964;Delone and Wrezecinko, 1904; Rimpoult and Vinh lau, 1965). In such a calculation, the longest range part of the three body ANH force, arising from TFE, has the suac renge as that of the IPE ANI foree which has been shown to be impontart. The deftrition or the interprection of the three-body force is not free from arbiguity. In fact it is still a mattex of sexious concraversy (Brom et al, 1963 ;

Mo Kellax and Rajareman, 1968). However in the present work the static meson theory is taken throughout.

The TPI ANN force is dexived in the otatic approximation in chepter 2 and j.s compared with the previously obtained ANN forces. Only the p-wave and s-wave $\pi-\wedge$ intexaction are considexed here, higher partial. waves being ignored. Then the ANN foree, W, conststs of two parts, arising from the pa and swave r- Λ interaction:

$$
\begin{equation*}
W=W_{p}+W_{S} \tag{1.1}
\end{equation*}
$$

For W_{S}, $\&$ "suppression factor"' of the s-wave $\pi-\wedge$ interaction is introduced in analogy to the corxesponding situation of the s-wave $\pi-$ in interaction. It will be shown that for a reasonable suppression factor, W_{s} is unimportent. W_{p} consists of a central and a tensor term. The tensor tem eppears as a product of two tensor operators and depends on the angle between the two AN vectors. This tem contributes significantly to the potential eneagy of the system.

Uniortunately, the ANN force, that is derived, is of a very singular nature at short distances and camot be taken literally. In any case, in the short range region (r AN $\leqslant 0.7 \mathrm{~m}$) processes other than TPE will becone important so that the contribution of TPE should not be taken alone. Therefore only the tail of the TPR potential is consideted here and this potential. is set equal to zero wen the $\Lambda-N$ diatance is less
 potential is expectea to contribute significantly to the NNN force. The contribution of this THE NHT force to the binding enesgy of a Λ, in $\hat{3}^{3}$, $\quad{ }_{\Lambda}$ He and in muclear matter, is exomined in chapter 3 . The effect in 3^{H} is found to be reletively small and can be compensated by
slightly changing the tro-body $\Lambda-N$ force. The Λ - α potential in Λ^{5} due to $W p$ is repulsive but its srength is sensitive to d NTV The contiribution from the tensor part of W_{p} is large but findte in the limit of ${ }^{d} \Lambda_{N}-\perp 0$. For a reasoneble $d \wedge N$, the contribution of W_{p} is still quite substantiel and used in conjunction with a $\Lambda-N$ force that fits the scattering date of Alexander et al, gives a ${ }^{B} \wedge$ for ${ }^{5}{ }^{5}$ He much closer to the experimental value then that obtained by bhaurs et el (1967). The exfect on B_{Λ} in nuclear matter is considered using perturbation theory. It is found that the contribution from W_{p}, mainly repulstve, is dominant and is extremely sensitive to Nm correlation. However, as pointed out above, processes other then TPE, contributing to the inteamediate range part of the

ANN force, may modify these results appreciably.
The three-pion-exchange three-body ANN force may be important in the intemediate range part since it is the next lovest order contribution after TPE and since it has been shom that the rPE $\Lambda-N$ force is important (Nogani et al, 1964; Deloff and Wrezecinko, 1964; Rimpsult and Vinh Mau, 1965). In the case of the meson theory of the $N-N$ intexaction, it has been shom that the OPEP gives a good description of the $N-N$ interaction at distances greater than 2 fr (Cziffra et al, 1959; Breit and Hu1., 1960). For distances smaller than this, the OPEP is dominated by the IPEP. It is of interest therefore to investicate at what distance the TPE ANN force becomes domineted by the three-pion-exchance AN force. It will be also possible to say to wat extent the previous results, on the effect of the TPR threemody NIN force in light hypernucled axd in nuclear notter, are reliable.

The threemionexchonge Nru foroe, p, is derived in the static
approximation in chapter 4. In chapter 5 the effects of P on $B \wedge$ in $\Lambda^{\frac{3}{H}}$, in ${ }_{5}{ }^{\text {He and }}$ in nuclear matter axe exmined. In \int_{Λ}^{3} it is found that p depends strongly on the Λ-N distance and that the contribution of P to $B \Lambda$ in ${ }^{3} H$ is attractive and larger than that of the TPE ANN force, W_{p}. For a $\Lambda_{\mathrm{N}} \approx 1 \mathrm{fm}$, the overall effect $\left(F\right.$ and W_{p}) is found to be attractive and relatively small. The Λ - α potential in ${ }_{\Lambda}^{5}$ He due to $P, P(x \wedge)$, is evaluated. The potential $P\left(r_{\wedge}\right)$ is found to be repulsive (except for d $\Lambda N=1$ fon and $r \wedge \approx 0 f m$ and its magnitude is sensitive to $d N_{N}$ It further reduces the bindinc energy of Λ^{5} He and for $a, ~ \Lambda N \approx 1$ fm the effect of P is smaller than that of W_{p}. A first order perturbation calculation is done to estimate the contribution of P to B_{Λ} in nuclear matter. This contribution is foud to be repulsive and its magnitude depends strongly on $d \quad \Lambda N$ end is larger then that of W_{p}. Even for $d \mathrm{NH}$ $\approx 1 \mathrm{fm}$, the overall effect (P and W_{p}) is found to be large and repulsive. In the case of the $N-N$ interaction, there are also discreponcies between theoretical predictions and experimental data when nany-body problems are solved with the two-body interaction. Such a disparity occurs in triton, ${ }^{3} H$, where many authors have evaluated the binding energy due to a two-body $N-\mathbb{N}$ potential that fits F - N scattering data. So far the value obtained is always maller than the experinental value by an amount of the order of 1 Nev or nore (Delves and Blatt, 1967; Davies, 1967). There is a similes situation in nuclear motter where the binding energy obtalned using a two-body N-N force is smaller thon the 'experimental value" extrapolated fron heavy nuclei by an amount of the order of 3 Mev (Brueciner and Nastcrson 1962; Bhargava and Spruag, 1967). So it is possible that the three nucleon force may also play an inportant role in
the stuady of nuclear structure.
The long range pari of the three mucleon force, artsing from two-pion-exchange, is dexived in chopter 6 and its effects on the binding energies of triton and nuclear matter are examned. The effect of the (controversiel) I $=J=0$ dipion resonance (the σ meson) is considered. The threembody potentisil consists of three parts :

$$
F=F_{p}+F_{s}+F_{\sigma} \quad \ldots(1.2)
$$

where F_{σ} is due to the (virtual) ron scattering via the σ meson, while F_{p} and F_{s} are due respectively to the pawe and s-wave $\pi-N$ scattering via ''direct interactions''. The direct s-vave $\pi-1 /$ interaction is set up so that, bogether with the $\pi-\mathbb{N}$ interaction via the σ-meson, it reproduces the observed s-wave $\pi-\cdots$ scattering length. Since the short range part of the threemunteon force is not knom, the threembody potantial is taken to be zero for $17 . \mathbb{N}$ distances less than a cut-off distance d. The triton Weve function is taken from a variational calculation for a herd-core twomalcon potential (hard-core radius D). The result is sensitive to d. and also to the hard-core radius D. For instance, ε. $D=0.4 \mathrm{fm}$, the contribution to the binding energy can be os big as about 1 Mev (attractive). The effect in nuclear matter is evaluated by a first onder perturbation theory. The contribution is found to be order of a fev Mev, between -0.7 and 4.0 Kev , depending on the velue of the cut-off d and on the $\mathrm{H}-\mathrm{N}$ correlation function.

A discussion of the results is given in chopter 7 . Throughout the whole calculation, the units $1=c=1$ are used.

CHAPTER 2
DERIVATION OF THE LOMG-HANGE TWO--PLON-mXCHANGE (TPE) ANN FORCE

2.1 Evaluation in the static epproxtmetion using Myozowa fomalism

There is an arbitrariness in the definition of the $\Lambda-N$ and $N W$ potentials which is connected with the number of chemels considered in the solution of the Shrödingex equation. For the twomody interaction if two channels are token, $\Lambda-N$ and $\Sigma-N$, then correspondingly the wave function has two components. The potential is then a 2×2 matrix :

$$
V=\left[\begin{array}{ll}
V(\Lambda N-D \Lambda N) & V(\Sigma N-D \Lambda N) \tag{2.1}\\
V(\Lambda N-D \Sigma N) & V(\Sigma N-D \Sigma N)
\end{array}\right]
$$

As shom by Uehora (1960), the Σ-in conponent of the wave function can be eliminated and the one chamel formalisan can be used. Then the 1 - M potential in the one-channel formalisn which is of course different from $U(M N-D N)$ in (2.1), is energy-dependent, but this energy-dependence is necligible if the energy of the system is well below the $\Sigma-N$ threshold. The $1-N$ end $N W$ potentiels, in the tro-chamel fomalism, have been discussed by Uehera (1960). Since only the bound state is considexed it is sufficiently accurate to use the one-chamel fomalion. The two-pion-exchange NiN force, arising from the diagram shown in Fig. 2.1, is derived in the static approxination were the nucleons and A are considered to be at rest.
 the σ-meson has not been constdered. It will be done for the threemucleon force (chapter 6).

Fig. 2.1

Following Miyazam (1956, 1957), the S matrix element comesponding to the diagram 2.1 com be written ($\mathrm{c}=1=1$) :

$$
\ldots(2.2)
$$

Here f_{N} is the pseudownector rill coupling constant ($f_{N}^{2}=0.08$), p and q are the momenta of the exchanged pions, y_{1} and $x_{\text {an }}$ are the coordinates of the two nucleons and μ is the pion mass. The scattering matrix,

$$
\begin{equation*}
+2 D \Lambda(0)) e^{i(p-q) \cdot x} n \tag{2.3}
\end{equation*}
$$

where $x_{n} \Lambda$ is the coordinate of Λ. The functions $\Lambda \Lambda, C \Lambda$ and D_{Λ} are obtained by setting p_{0} equal to zero in the dispersion relations for the pwave and s-vave $\pi=\Lambda$ scattering. From Nogemi and Bloore (1964), they are given by :
$A_{\Lambda}\left(p_{0}\right)=C_{\Lambda}\left(-p_{0}\right)=\frac{4 \pi\left(f_{\Lambda} / \mu\right)^{2}}{\Delta+p_{0}-i \epsilon}+\frac{2}{2 \pi} \int_{0}^{\infty} \frac{d k \sigma_{k}(k)}{\omega_{k}\left(\omega_{k}-p_{0}-i \epsilon\right)}$

$$
\begin{equation*}
+\frac{1}{\sigma_{\pi}} \int_{0}^{\infty} \frac{d k}{\omega_{k}} \frac{2 \sigma_{1}(k)+\sigma_{3}(k)}{\omega_{k}+p_{0}-i \epsilon}, \tag{2.4}
\end{equation*}
$$

$D_{\Lambda}\left(p_{0}\right)=2 \pi a_{\Lambda}+\frac{p_{0}^{2}-\mu^{2}}{2 \pi} \int_{0}^{\infty} \frac{d k}{\omega} \sigma_{s}(k)\left(\frac{1}{\omega_{k}-p_{0}-1 \epsilon}+\frac{1}{\omega_{k}+p_{0}-1 \epsilon}\right)$

Here f_{Λ} is the $\pi \wedge \Sigma$ pseudo-vector coupling constant, $\omega_{k}=\left(k^{2}+\mu^{2}\right)^{1 / 2}$, $\Delta=m_{\Sigma}{ }^{-} m_{\Lambda}$ and σ_{1} and σ_{3} are the pavane $\pi-\Lambda$ scattering cross sections in the states with $J=1 / 2$ and $3 / 2$ respectively. In the following, the p-teve $\pi-\wedge$ scattering is assumed to be dominated by the $\mathrm{Y}_{\mathrm{I}}^{7}$ (1.385) resonance in σ_{3}, and σ_{1} is ignored. In (2.5), a_{Λ} is the scattering length end σ_{s} the cross section of the serve $\pi-\Lambda$ scattering. If expression (2.3) is substituted in eq. (2.2) s is obtained in the form $s=-2 \pi L \delta(0) \mathrm{V}$. The quantity V , which is interpreted as the N NT potential arising from diagram 2.1, is given by :

$$
\begin{equation*}
W=W_{p}+W_{\mathrm{E}}, \tag{2.6}
\end{equation*}
$$

$$
\begin{gathered}
C_{p \Lambda}=\frac{2\left(\mu f_{N}\right)^{2}}{3}\left(\frac{f^{2} \Lambda}{\Delta}+\frac{\mu^{2}}{\sigma_{\pi}^{2}} \int_{0}^{\infty} \int_{\omega}^{\infty} \frac{\sigma_{3}(k)}{2}\right), \cdots(2.9) \\
C_{s \Lambda}=-\left(\mu f_{N}\right)^{2} D_{\Lambda}(0) /(2 \pi),
\end{gathered}
$$

$$
T(x)=1+\frac{3}{\mu x}+\frac{3}{(\mu x)^{2}}, Y(x)=\frac{e^{-\mu x}}{\mu x} \quad \cdots(2.12)
$$

$$
\begin{aligned}
& \text {...(2.8) }
\end{aligned}
$$

Fig. 2.2

In the following chapter, the potentials H_{p} ond W_{s} will be considered in the case where the nucleons and Λ ate in the soshell. The expectation values of the $\tau{ }_{1}{ }^{\prime}$ and σ^{\prime} 's are denoted by brackets $<\gg$. The expectation value $<\sigma$. $\quad x_{n} \sigma_{m n} \cdot y_{m}>$ should be proportional to $x \cdot y_{m}$ for any two vectors x and y. The constant of propoxtionality can be found by putting $x=y$ and doing the angular integration. Therefore :
and using (2.13)
and

$$
<\tau_{\min }^{1} \cdot \tau_{i n}^{2}\left\{S_{1 \Lambda}^{(x),} S_{2 \Lambda}^{(y)}\right\}_{+}>=2\left(3 \cos ^{2} \theta-1\right)
$$

$$
\begin{equation*}
x<{\underset{\sim}{m}}_{\tau}^{1} \cdot{ }^{\tau} \sigma_{\sin }^{1} \cdot \sigma_{m}^{2}> \tag{2.15}
\end{equation*}
$$

where $\cos \theta_{x y}=x \cdot y_{m} /(x y)$. Thus, for tine nucleons end Λ in the s-shell, W_{p} and W_{s}, are reduced to:

Wen \wedge is fax from the nucleons, the angle $\theta_{x y}$ is mall, hence V_{p} is repulsive and W_{S} is attractive (it will be seen that< $>=-3$). The coefficient $C_{p A}$ and $C_{d A}$ are now evaluated. For the first term in $C_{p \Lambda}(2.9)$ various estimates of f_{Λ}^{2} have been done indicating that f_{\wedge}^{2} is slightly smaller then r_{1}^{2} (Martin and Wait, 1963; Roman, $\frac{1966 ;}{2}{ }_{2}$ Kwan Kim, 1967; Chem and Metre, 1968). It is assumed here that $f_{\Lambda}^{2}=f_{N}^{2}=$ 0.08 , si though this may be an overestimate of f_{Λ}^{2} by a factor $\leqslant 2$.

As in Hogeni and Bloore (1964), the second tem in $C_{p A}$ hes been evaluated assuming a Breit Wiener resonance fownta for Y_{I}^{*} (1385). Thus it is found that :

$$
\begin{equation*}
\mathrm{C}_{\mathrm{p} \Lambda}=2.43 \mathrm{Mev} \tag{2.18}
\end{equation*}
$$

The first term in (2.9) constitutes 73% of $C_{p \Lambda}$, while the rest cones from Y_{1}^{*}. If the value $f_{\Lambda}^{2}=0.04$ is taken, $c_{p_{\Lambda}}$ is found to be equal to 0.89 Mev . The true value of $C_{p \Lambda}$ will be between I. 4.3 and 0.89 Mev.

If the two chennel fomalisn is used, the first tem in (2.9) should be dropped, becouse it is interpreted as a repetition of the OPR two-body potential (Nogemi and Bloore, 1964). In other words, the MiN force in the one-channel formalism contains cifects of two-body forces in the tro-chenael fomalism. The potenticl H_{p} is much stronger than the TPR threemucieon force, derived, for instance, by Fujita and lifyazwo (1957), which corresponds to the ArN force in the two-chamel rather than the one chanel fomalism.

For $C_{s \Lambda}$, since a_{Λ} and σ_{s} are not known experimentally, theoretical estimates are necessory. The lowest ondex perturbation theory gives $D_{\Lambda}(0) \approx 2 \pi a_{\lambda}, a_{\Lambda}=-2\left(n_{\Lambda} / \mu\right) \times\left(m_{\Sigma}+m_{\Lambda}\right)$, which results in $C_{S \Lambda} \approx=\left(\mu x_{\mathrm{N}}\right)^{2}$ a $_{\Lambda}=29.5 \mathrm{MeV}$. However, such a staple perturbation calm culation of a Λ is very poor epproximation. There is a corresponding problen in the threemucleon force (Fujite and Miyazewa, 1957; Quang-HowKim, 1966). There, a_{Λ} is replace by $\left(a_{2}+2 a_{3}\right) / 3$, where a_{1} and a_{3} are the s wave $\pi-\mathbb{N}$ scattering lengths in the $I=1 / 2$ and $3 / 2$ states, respectively. According to Eonilton and Voolcock (1963) expeximental values are al $=$ $(0.171+0.005) / \mu$ and $a_{3}=(-0.003 \pm 0.004) / \mu$. Hence

$$
0 \leqslant-\left(a_{1}+{\underset{3}{2}}^{(2)} / 3 \leqslant 0.01 / \mu\right.
$$

On the othex hand, it has been show that for the soft pion (pion of zero four monentuin) a $+2 a=0$ (Veinberg 1966). Hovever, the lowest$1 \frac{1}{3}$ order perturbation calculation gives $-\left(\varepsilon_{1}+22_{3}\right) / 3=4 \mathrm{~m}_{\mathrm{N}}(\mathrm{f} / \mu)=$ $2.12 / \mu$. This is an overestingte by a factor of 200 or more. Various mechanisns have been consfdexed for this 'pair suppression'' (Anati and Fubini, 1962). These mechanisms ail seem to be apmicable aiso to the s-wave $\pi-\Lambda$ interaction. quus a suppression fector of the same order of magnituade is expected there. This factor is tentatively assuxaed to be 100, nemely $a_{\Lambda}=-2\left(r_{\Lambda} / \mu\right)^{2}\left(n_{\Sigma}+n_{\Lambda}\right) / 100$. It has been also shown that for the soft pion $\varepsilon_{\Lambda}=0$ (Heinocrs, 1966; towozava, 1966). In enalogy with the $\pi \sim N$ case the integral conteining σ_{s} in (2.5) is essumed to be negligible. Then, it is found that :

$$
\begin{equation*}
\mathrm{c}_{\mathrm{s} \Lambda}=0.30 \mathrm{Mev} \tag{2.19}
\end{equation*}
$$

As will be seen in the following chaptex, results will not be altered even when $\mathrm{C}_{\mathrm{s}} \Lambda^{i s}$ as large as 3 Nev.

2.2 Comprison with the previousily obtained Nivi forces.

The AIN potential, obtained in the previous section, will be conpared with those so far derived. The TPD NiN force has been evaluated, in various aprocimation, by Wetitner (1058), spitzex (1958), Bech (1959), Wehora (1960), Cheik and Doms (1963). Vestzner' s and Spitzer's results differ from all the later works and it is not easy to retrace their calculation.

In pach's work, the Aus force is calculated in the static approxination
by perturbation theory using timeondexed diagrams. There are three types of diagrams, as show in Fig. 2.3, which are called NB, B and $S B$.

Fig. 2.3

The diagrams $N B$ end B are due to the p-wave and $S B$ is due to the s-vave $\pi-\Lambda$ interaction. The $A N F$ potentials,arising from these diagrams, axe denoted by $V_{N B}, V_{B}$ and $V_{S B}$, respectively. The mass difference, $\Delta=\sum_{\Sigma}$ ${ }^{m} \wedge$, is neglected in the energy denoninators except in the second intermediste state of B. However, if Δ is not neglected end if the swa of the contributions from all the 16 NB diagrams and 8 B . diagrams is done, the potential that results is the same es W_{p} but without the contribution from Y_{1}^{*}. This result was not outatned in Each's woxt, pernops because $V_{\text {NB }}$ and V_{B} were calculated separately. The diagram of Fig. 2.1 is not time. ordered and contains both NB and B. The esme calculation nas repeated by Chalk and Dowas end Bach's $V_{H B}$ and V_{B} were confinued. The value of the coupling constant $f^{2} A^{2}$, taken by Bach, is sightly analler than that of f_{Λ}^{2}
used here. Incidentally Each's results hove been misquoted by Dalitz (1965) end by Gel (1066). The central part of Bach's V_{B} is quoted as $\sim 2 \mathrm{Mev} X \mathrm{Y}(\mathrm{x}) \mathrm{Y}(\mathrm{y})$, which is ectually 2 tines Bech's onigjnal V_{B}.

Gal's strensth poxemeter C_{G}, correaponding to $C_{p \Lambda}$, is tolsen equal to 1.7 Hev wich is mich stronger then the estimate of $C_{p \Lambda}$ done here. It is argued that the contribution from the Y_{1}. Intermediate process may considerably modify the velue of C_{G}. Hovever, $C_{p A}$ includes contribution from X_{1}. Also in Gel's roxh only the central part or w is considered and It will be show, in the noxt chapter, that the effect of the tensor part of W_{p} dominetes ovex that of the central part. Vebera's Now potential is for the tro-channel fomelism and is obtained from W_{p} by dropping the first term in $C_{p \Lambda}$ (2.9).

For the s-beve diagram $S B$, as wes noted by Chelk and Doms, Bach's VSB has a wrong factox. The diagran $S B$ vas celculeted by Chaik and Doms by perturbation theory, firstiy in static approxinstion and then in a relativistic woy. Their result in the static epproximetion agrees with W_{G}, without the suppression fector. Their relstivistic calculation shove that the recojl effect is undmortant for the long range part of the Null potential. Since the suppression foctor was not introduced their potential is much stronger than W_{S}.

CHAFIER

EFFECTS OF THE TPE NOH FORCE
3.3. Efect in ${ }^{3}{ }_{\Lambda}$

The effects of the potentiels $W_{p}(2.16)$ and $W_{s}(2.17)$ on B_{Λ} in ${ }^{3} \mathrm{H}$ are estinated by perturbation theory. The unperturbed wave function is taken to be the wove function obtained by Down, Snith and Truong (1963) from a variational calculation of the binding energy of A^{3}.

It has the form :
where

$$
\begin{equation*}
\Psi=N^{-1 / 2} f(x) r(y) g(z) \xi \chi \tag{3.1}
\end{equation*}
$$

$f(x)=0 \quad$ for $x<D$
$=\exp [-\alpha(r-D)]-\exp [-\beta(x-D)] \quad$ for $r>D$, ...(3.2)

$$
\begin{align*}
g(x) & =0 & & \text { for } x<D \\
& =\exp [-\gamma(x-D)]-\exp [-\delta(x-D)] & & \text { for } x>D
\end{align*}
$$

Here D is the hard-cose radius of the $1 \sim \mathrm{~N}$ and $\mathrm{N}-\mathrm{N}$ forces and the factor $N^{-1 / 2}$ nomelizes to unity, ine function ξ is the isospin singled vave function for the two mulcons ond χ is the spin waverunction of 3_{H}. The optimm vamationd parasetexs, obtainca by boms et el (1063), are listed in table 3.1 for the hard-core redit $D=0.2,0.4$ end 0.6 fm
together with the corremponding nomelizetion factows.

TABTE 3.1.
Paraneters for the revefunction, with the corresponding normalizetion factors IN , for three different hard-core radii D. (boms et al, 1963)

D (fm)	$\alpha(\mathrm{mm})^{-1}$	$\beta\left(\operatorname{trn}{ }^{-1}\right.$	$\gamma(f m)$	$\delta\left(\operatorname{fin}^{-1}\right)$	$N\left(\mathrm{~m}^{6}\right)$
0.2	0.297	$7 \cdot 36$	0.547	6.52	3.825
0.4	0.327	6.94	0.578	4.55	3.658
0.6	0.389	11.28	0.606	4.79	2.928

The expectetion values of $W_{p}(2.16)$ and $W_{s}(2.17)$ with respect to $\Psi(3.1)$ are denoted by $\left\langle W_{p}>\right.$ end $<V_{s}>$ respectively. The expectstion value of the τ 's and $\sigma^{\prime} \mathrm{s}$ is :

$$
\left\langle\tau_{N}^{1} \cdot{ }_{N}^{2}{ }_{N}^{1} \sigma_{N}^{2}\right\rangle_{N}=-3
$$

t
The nomalizetion factor N listed in table 3.1 differs from Chalk and Dows ${ }^{1} N$ (1isted in teble 1 in Chens and Doms (1963)) by a factor 2 8π. Their vaverunction is nommized as :

$$
8 x^{2} \int \frac{d x d y d z x y z \Psi(x, y, z,)^{2}=11120}{2}=1
$$

whereas hexe the factor 8 of the volume clenent is droped throughout.

Then $\left\langle W_{p}\right\rangle$ and $\left\langle W_{g}\right\rangle$ cen be written :

$$
\begin{equation*}
\left\langle W_{p}\right\rangle=\left\langle W_{p}(I)\right\rangle+\left\langle W_{p}(I I)\right\rangle \tag{3.5}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\langle\mathrm{W}_{\mathrm{p}}(\mathrm{I})\right\rangle=\underset{\mathrm{p} \Lambda}{\mathrm{C}} \mathrm{I}[Y(x) Y(y)], \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle\mathrm{W}_{\mathrm{p}}(I I)\right\rangle=\underset{\mathrm{P} \Lambda}{\mathrm{C}} \mathrm{I}\left[\left(3 \cos ^{2} \theta_{x y}-1\right) T(x) T(y) Y(x) Y(y)\right] \tag{3.7}
\end{equation*}
$$

${ }^{\text {where }} I[\cdot \cdot]=N^{-1} \int d x d y d z x y z \quad\{f(x) f(y) g(z)\}^{2}[\cdot \cdot]$
The integration domain of ec.(3.9) is such thet x, y vexy from d $\wedge N$ (cutoff of the $A N H$ potential) to infinjty and z takes values from D to infinity (asswing ${ }_{\wedge N} \geqslant D$), subject to the trianguler inecualities :

$$
x+y \geqslant z, y+z \geqslant x, \text { and } z+x \geqslant y
$$

The integral (3.6) has been done enalytjcally and for the integrals (3.7) and (3.8) first the z intogration was done snalyticelly and then the xyintegration numericelly.

The results are shom in teble 3.2 for five different velues of the cutoff d AN and three different values or the hard-core radius D. It is found that $<W_{S}>$ is always negative (attractive) and smaller than $\left.<W_{p}(I)\right\rangle$ and $\left\langle W_{p}(I I)\right\rangle$. The 'central part'' $\left\langle W_{p}(I)\right\rangle$ is alvays positive (repulsive). The tensor part $<W_{p}$ (II) $>$ is predominent and changes sign depending on $d A N$ and D.

TABLE 3.2
EXPECLATION VALUES OF THE DTPPERBNT PARIS OF THE ANM POTENDAL IN MEV FOR DIFFERDM CUIOR a AND HARD-CORE RADIUS D $\wedge N$

	$\mathrm{d}_{\mathrm{N}}(\mathrm{~m})$	0.20 .4	0.6	1.	1.4
$<\mathrm{W}_{5}>$ in Mov	$\begin{aligned} & D=0.2 \mathrm{fm} \\ & D=0.4 \mathrm{fm} \\ & D=0.6 \mathrm{fm} \end{aligned}$	$\begin{array}{r} -0.023-0.022 \\ -0.015 \end{array}$	$\begin{aligned} & -0.018 \\ & -0.014 \\ & -0.014 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.009 \\ & 0.010 \end{aligned}$	$\begin{aligned} & -0.004 \\ & -0.004 \\ & -0.004 \end{aligned}$
$\left\langle\mathrm{W}_{\mathrm{p}}>\text { in } \mathrm{Mev}\right.$	$D=0.2 \mathrm{fm}\left\langle W_{p}(I)\right\rangle$	$\begin{gathered} 0.091,0.084 \\ -0.726-0.231 \end{gathered}$	0.064 0.354	$\begin{aligned} & 0.030 \\ & 0.297 \end{aligned}$	$\begin{aligned} & 0.011 \\ & 0.118 \end{aligned}$
	$D=0.4 \quad\left\langle\begin{array}{c} \left\langle W_{p}(I)\right\rangle \\ \left\langle W_{p}(I I)\right\rangle \end{array}\right.$	$\begin{array}{r} 0.07^{4} \\ -0.700 \end{array}$	$\begin{array}{r} 0.068 \\ -0.4 .32 \end{array}$	$\begin{aligned} & 0.034 \\ & 0.130 \end{aligned}$	$\begin{aligned} & 0.012 \\ & 0.090 \end{aligned}$
	$D=0.6 \underset{\mathrm{Im}_{\mathrm{p}}}{\left\langle\mathrm{~N}_{\mathrm{p}}(I)\right\rangle}$		$\begin{array}{r} .0 .084 \\ -1.010 \end{array}$	$\begin{aligned} & 0.044 \\ & 0.075 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.074 \end{aligned}$

According to Chat and Downs (1963) the contribution of the two-body $1-\mathbb{N}$ force to the binding energy of $\quad \hat{\Lambda}^{\mathrm{H}}$ is given by :

$$
2<V_{A N}>=\left\{\begin{array}{l}
24.2 \mathrm{Mev} \\
70.8 \mathrm{Mev}
\end{array} \text { for } \mathrm{D}=\left\{\begin{array}{l}
0.4 \mathrm{fm} \\
0.6 \mathrm{fru}
\end{array} \quad \ldots(3.10)\right.\right.
$$

The relative importance of the AN force will be given by the ratio :

$$
R=\frac{\left\langle W_{p}+W_{s}\right\rangle}{2\langle V \Lambda N\rangle}=\left\{\begin{array}{l}
2.6 \% \tag{3.11}\\
1.3 \%
\end{array} \text { for } D=d=\left\{\begin{array}{l}
0.4 \mathrm{fm} \\
0.6 \mathrm{~mm}
\end{array}\right.\right.
$$

This small ratio justifies the use of a perturbation calculation to estimate the eriect of the ANN force.

In vier of the swall binding energy on Λ in $\Lambda^{3}(B=0.21 \pm 0.20$. Mev) (Gajeroski et al, 1967) the absolute value of $\left(W_{p}+W_{S}\right)$ can be quite substantial depending on $d \Lambda N$ and D. As was discussed in the introduction, hovever, a reasonable value of the cutofs radius $a_{\text {a }}$ may be taken as 1 fm. This follows from the fact thet the PPE ANI potential, W, is not very meaningful at short distonces where processes other then TPE are likely to be important. On the other hand, if the same core radil for $\Lambda-N$ and $N-N$ are assumed, it will be reasonable to take $D \approx 0.4 \mathrm{fm}$. Then it is found that $\left\langle W_{p}+W_{s}\right\rangle=0.155 \mathrm{Mev}$ for $d \Lambda N=I$ frm and $D=0.4 \mathrm{fm}$. Thus the effect is mall, and cen probably be compensated for by a slight chenge in the Λ - Norce.

Finally, the recults are compared with those of previous works. The expectation value of $V_{B}(\S 2.2)$ which approxinately corresponds to W_{D}, has been evaluated by Bach (1959) who Lound that the ratio $<V_{B}>/\left(2<V_{A N}>\right)$ $=2 \%$ for a cutorf radius of 0.55 fm . However the vavefunction which wos used in Bach's worl does not satisfy proper boundary conditions. Bach's calculation has been refined in the worl of Abou-Hadid (1962) where a proper hard-core wavefunction was used. Abou-Hadid's conclusion essential. Iy agrees with Bech's. It was concluded, as in the present work, that the effect of the $A N$ force in \widehat{N}^{H} is mall. The expectation value $<V_{S}>$ has been evaluated by Challs and Doms (1963). SInce no suppression factor was introduced, their $\left\langle W_{S}\right\rangle$ is ebont 100 times as large as the $\left\langle W_{S}\right\rangle$ obtained hexe. Still their $<W_{s}>i s$ et most 5% of the expectation value of the two body A-IM force. The expectation value $\left\langle W_{p}\right\rangle$ has not been
evaluated.
3.2 Effect in ${ }^{5} \mathrm{He}$

The calculation of $B \quad$ in ${ }_{\Lambda}^{5}$ He,using only a tro-body s-state
$1-N$ potentisil that Pits the low-energy data of Alexander et 01 (1066, 1968), is first briefly described. The detolls of the calculation can be found in the work of Bhenuri et 81. (1967). The low-energy parameters of the $\Lambda \cdot N$ potential from $\Lambda-p$ scattering data of Alerander et al are :

$$
a_{s}=-2.46 \mathrm{fm}, a_{t}=-2.07 \mathrm{fm}, r_{\mathrm{t}}=3.87 \mathrm{fm}, r_{t}=4.50 \mathrm{fm}, \ldots(3.12)
$$

These are the most probable values. In order to bypass the construction of a complete hard-core (or soft-core) potential which mokes bindingenergy celculations rather cumbersome, the following form of the Λ-N potential is chosen :

$$
\begin{array}{rlrl}
V_{s, t}(x) & =0 & & \text { for } x<d_{s, t} \\
& =-A_{s, t} e^{-v x} / v r \quad \text { for } r>d_{s, t} \quad \ldots(3.13 a)
\end{array}
$$

Here the subscripts s,t stand for singlet and triplet spin states respectively. The range paraneter is taken as $v=1,3992 \cdot \mathrm{fm}^{-1}$, corresponding to TPE, waile

$$
a_{s}=1.017 \mathrm{fm}, A_{s}=204.1 \mathrm{Mev}, d_{t}=1.180 \mathrm{fm}, A_{t}=223.3 \mathrm{Mev} \ldots(3.13 \mathrm{~b})
$$ are detemaned by fitting parameters (3.12). Justification for choosing such a fom for the Λ-N potential is given in the work of Bhoduri et al (1967). Since this 1 -N potential concists of a fatrly weak attractive tail, the one-body avexage field that the Λ experiences can be obtained by folding in the nueleon denst.ty distribution with this potentigl :

$$
\begin{equation*}
U^{(2)}\left(x_{\Lambda}\right)=\int \rho\left(x_{i}\right) \quad V\left(\left|x_{i}-x_{n} \Lambda\right|\right) d^{3} x_{i} \tag{3.34}
\end{equation*}
$$

where $V=V_{s}+3 V_{t}, P\left(r_{i}\right)$ is the density distabution of the nucleons in
α and all the vectors are measured from the center of α. The superscript (2) on U refers to the fact that this part of the average field originates from a two -body $A-N$ force. The complete U should also contain contributions from three -body ANH forces. The nomellzed density distribution for the nucleons is taken as :

$$
\begin{equation*}
\rho\left(r_{i}\right)=\left(\beta / \pi^{1 / 2}\right)^{3} \exp \left(-\beta^{2} r_{i}^{2}\right) \tag{3.15}
\end{equation*}
$$

where $\beta=0.85056 \mathrm{fm}^{-1}$. In this calculation the α is assumed to be undistorted in the presence of the Λ. The binding, B_{Λ}, due to $U^{2}\left(r_{\Lambda}\right)$ was found to be 6.45 Mev (see Table 3.3); whereas the experimental value is 3.08 Mev (Gajeroski et $0.1,1967$).

In the presence of NH f forces $W_{p}(2.16)$ and $W_{s}(2.17)$, the average field $U\left(r_{\Lambda}\right)$ will be modified. The average fields generated by W_{p} end W_{s} are denoted by $U_{p}^{(3)}\left(r_{\Lambda}\right)$ and $U_{S}^{(3)}\left(I_{\Lambda}\right)$, respectively. Then
where the factor 6 comes from the six possible NNW bonds and all the other quantities have been defined in chapter 2. The expectation value of the expression in τ 's and σ^{\prime} 's in $W_{p}(3.16)$ cen be show to be identical for ${ }^{5} \Lambda^{\text {He and }}{ }_{\Lambda}^{3}$. Thus the value given in (3.4) is used in $H_{p}(3.16)$.
 written :

$$
\begin{equation*}
U_{p}^{(3)}\left(x_{\Lambda}\right)=6 c_{p \Lambda} \int d^{3} x d^{3} y p\left(\left|\frac{x}{n} \Lambda x\right|\right) p(|r+y|) \quad W_{p}(x ; y) \tag{3.17}
\end{equation*}
$$

It is show, in Appendix I, that the x and y integration can be separated to yield :

$$
U_{p}^{(3)}=U_{p}^{(3)}(x)+U_{p}^{(3)}(X X)
$$

where :

$$
\begin{align*}
& U_{p}^{(3)}(I I)=3 c_{p \Lambda}\left\{\int d^{3} x p\left(\left|x_{m} \wedge+x\right|\right)\left(3 \cos ^{2} \theta-1\right) x(x) T(x)\right\}^{2} \ldots(3 \cdot 20)
\end{align*}
$$

 by other authors (Dalitz, 1965; Gel, 1965). However $U_{p}^{(3)}$ (II) is the dominant tem in eq. (3.18), as can be seen from Fig 3.1. It is also seen from (3.19) and (3.20) that $U_{p}^{(3)}$ is alweys repulsive in character. A sinilar analysis for W_{s}, the NW force arising from the sweve π interaction, yields

$$
U_{\mathrm{B}}^{(3)}\left(x_{\Lambda}\right)=-6 C_{s \Lambda}\left\{\iint^{3} x \rho\left(\left.\right|_{m i x}+x \mid\right) \cos \theta_{x}(1+\mu x) x(x) /(\mu x)\right\} 2
$$

which is alvays attractive. In the Appendix 1 , it is shown theit the angular interactions in x can easily be done in (3.20) and (3.21) and the problem reduces to the numerical integration of one-dimensional integrals to give $U_{p}^{(3)}{ }^{(3)} U_{s}^{(3)}$ with $C_{S} \Lambda=0.30 \mathrm{Mev}, U_{S}^{(3)}$ turns out to be completely negligible compared to $U_{p}^{(3)}$. The situetion would not change appreciably even if. $C_{S \Lambda}$ were ten times larger. In Fig. 3.1, $U_{p}^{(3)}(I), U_{p}^{(3)}(I T)$ and $U_{S}^{(3)}$
 $U_{p}^{(3)}+U_{S}^{(3)}$ are plotted for the some scale to show hon the average ficlu
is modili.ed by Ninn forces.
TABLE 3.3
 ANY POTEMTLAL. THE NOMATION IS EXPIATMED IH SECTTON 3.2. THE EXPERTIEMPAL VAIUE OF ${ }_{\wedge}{ }_{\wedge}$ IS 3.08 MEV . (GAJEROSKI EI AL, 1967)

${ }^{B} \Lambda \text { in }{ }_{\Lambda}^{5} \mathrm{He} \text { vith } U^{(2)} \text { only }=6.45 \mathrm{Mev}$			
${ }^{B} \wedge$ (in Mev) when three-body forces are included			
Cutofic $\mathrm{d}_{\text {(fin }}(\mathrm{m})$	0.6	1.0	1.4
$U^{(I)}+U(I)$$\begin{gathered} U^{(2)}+U^{(3)}(I)+U^{(3)}(I I) \\ U^{(2)}+U_{p}^{(2)}+U_{s}^{(3)} \end{gathered}$	6.01	6.23	6.36
	2.99	4.35	5.146
	3.09	4.42	5.50

In table $3 \cdot 3$, the binding energy $B \wedge$ in ${ }_{\wedge}$ He is tabulated with and without N firifecs for various cutofis. $U(2)$ is calculated with the parameters given in (3.13 b) and shows considerable overbinding. It is seen thet this overbinding is arastically reduced when $U_{p}^{(3)}(I I)$ is included in the calculation. This repulstve effect is problably overestimated aince
$\mathrm{N}-\mathrm{N}$ correlations in the d-particle are neglected. It is quite elear from
table 3.3 that three-boay rorces cannot be ignored in the calculation of ${ }^{B} \Lambda$ in 5_{Λ}. An effective $\Lambda-N$ force that is extracted purely from an analysis of 3_{H} end 5^{5} He bindings, would therefore be much less attractive in the triplet s-stote than the free $\Lambda-N$ interaction .

3.3 Effect in nuclear matter

The binding energy $U(3)$ of a Λ in nuclear matter due to the Λ nrs force V is calculated by first-order perturbation theory in a way similar to that formulated by Bodmer and Sampanthax (1962). The wavefuaction of nuclear matter in the Ferni-gas model is :

$$
\begin{equation*}
\Psi=\Psi(A) \phi_{A}(1,2, \ldots, A) \tag{3.22}
\end{equation*}
$$

where A is the number of nucleons ($A \rightarrow \infty$ for nuclear matter) and

$$
\begin{align*}
& \Psi_{k}(\Lambda)=\frac{I}{\sqrt{\Omega}} e^{i \cdot \frac{k}{k} r_{n}} \chi_{\Lambda} \tag{3.23}\\
& \phi_{A}=\frac{I}{\sqrt{A!}} \operatorname{Det}\left[\phi_{p}(i)\right], \tag{4}
\end{align*}
$$

$\phi_{p}(i)=\frac{1}{\sqrt{\Omega}} e^{i \underline{p} \cdot m i} \times \operatorname{spin}$ function $\times i \operatorname{sowin}$ function $\quad \ldots(3.25)$
The function χ_{Λ} represents the spin state of Λ and $\phi_{p}(1)$ is the wave function of the 1 -th nuclicon in the state p where p represents the momentum, the spin and isospin state of the nucleon. The quantity Ω is the volune of nuclear matter, $\Omega \rightarrow \infty$ with A and $A / \Omega=\rho$ were ρ is the densty of nuclear matter. The expectation value of the potential $\sum_{i<j} W(i, j, \Lambda)$ is

$$
\begin{aligned}
& U \wedge=\frac{1}{2} \sum_{i, j}^{(3)} \int_{i}^{Y}(\Lambda) \phi_{p_{i}}(1) \phi_{p_{j}}(2) W(1,2, \Lambda)
\end{aligned}
$$

The binding energy $U_{\Lambda}^{(3)}$ consists of two contributions : a direct term and an exchange term. The direct term vanishes identically because of the spin-isospin saturation. The expectation value of the τ 's and σ 's, for the exchange temp, is :

$$
\left.\begin{array}{cc}
1 & 2 \\
\left\langle\underset{m}{T} \cdot{ }_{m}^{T} \underset{M}{I} \cdot{ }_{M}^{2}\right\rangle \tag{3.27}
\end{array}\right\rangle=36
$$

The evaluation of the spotisil part of $U_{\Lambda}^{(3)}$ will now be considered. It can be show that the function $K(z)$ defined by :

$$
\begin{equation*}
K(z)=K\left(\mid x_{m}-\underset{m_{2}}{r_{2}}\right)=\frac{1}{2 \Omega^{2}} \sum_{i, j}^{A} e^{-i p_{i} \cdot r_{1}} e^{-i p \cdot x_{m}^{m}} e^{i p_{i} \cdot r_{m} e^{i p} \cdot x_{2}} \tag{3.28}
\end{equation*}
$$

gives when $A \rightarrow \infty$

$$
\begin{equation*}
K(z)=\frac{\rho^{2}}{32} D^{2}\left(k_{f} z\right) \tag{3.29}
\end{equation*}
$$

-3
Here $\rho=0.170$ for (equilibrium density of nucleon meter), k_{f} is the fermi momentum and

$$
D\left(k_{f} z\right)=\frac{3 j_{f}\left(k_{f} z\right)}{k_{f}}, j_{1}(x)=\frac{\sin x}{2}-\frac{\cos x}{r}
$$

Then $U_{\Lambda}^{(3)}$ can be written

$$
U_{\Lambda}^{(3)}=U_{\Lambda}(I)+U_{\Lambda}(I I)+U_{\Lambda}(s)
$$

where $U_{\Lambda}(I)$ is the contribution from $V_{p}(I), U(I I)$ originates from $W_{p}(I I)$ and $U_{\Lambda}(s)$ from W_{s}. From eqs. (3.26) to (3.29) it cen be seen that :

$$
\begin{align*}
& U_{\Lambda}(I)=\frac{3}{8} c_{p} \rho^{2} \int^{2} D^{2}\left(k_{f}|x-y|\right) Y(x) Y(y) d^{3} x d^{3} y, \tag{3.30}\\
& U_{\Lambda}(I I)=\frac{3}{8} C_{p_{\Lambda}} \rho^{2} \int^{2} D^{2}\left(k_{f}^{\mid x}-\underset{m}{y}\right)\left(3 \cos ^{2} \theta_{x y}-1\right) Y(x) Y(y) T(x) T(y) d^{3} x d^{3} y \tag{3.31}
\end{align*}
$$

Here $\cos \theta_{x y}=\frac{x}{m} \cdot y /(x y)$ which is shom in Fig. 2.2, the variables x and y are the $A N$ distances, ond $\mid x$ - $y \mid$ is the $N W$ distence. All the integrands, including that in (3.32), are vell-behsved even for the limit $x, y \rightarrow 0$. An inspection of U (II) in eq. (3.3I) now reveals why it is so sensitive to the $\mathrm{N}-\mathrm{N}$ correlation. The fuaction $\left(3 \cos ^{2} \theta_{\mathrm{xy}}-1\right)$ is positive for $\theta_{\mathrm{xy}}=0$ to 55° and then tums negative. Small values of $\theta_{x y}$ correspond to the case when the two nucleons are relatively close to each other, and this is the part most affected by the N-N corcelation function. The potentiel U (II)
is not positive definite, unlike $U \wedge(I)$, and tends to turn negative if the $N-N$ correlation is strongly repulsive, thereby excluding smaller values of $\theta_{x y}$. In order to study the effect of $N-N$ correletion, a step-function has been used :

$$
\theta(|\underset{m}{x}-y|-d \underset{N N}{ })=0 \text { for }|x-\underset{m}{x}|<d
$$

$$
\begin{equation*}
=1 \text { for }|x-y|>d \tag{3.33}
\end{equation*}
$$

NH

Here it is not worthwhile to use a more sophisticated correlation function because :
(a) It is not knom suffictently vell. In particular, it depends sensitively on the form of the $N-\mathbb{N}$ potential chosen, whether it contains a hard-core or a soft-core, and if it is state-dependent.
(b) There is olready considerable uncertainty in W due to the $A \sim N$ cutorf ${ }^{\mathrm{a}} \wedge \mathrm{A}^{\circ}$

The integrals (3.30), (3.31) and (3.32) are evaluated numerically after putting the $N-N$ correlation function $\theta\left(\left|x_{m}-y_{m}\right|-d_{N N}\right)$ in the integrand. The results are shom in table 3.4 and graphically in Fig 3.3. Roughly speoking, $d_{\text {FN }}$ should be chosen halrway between the N-N hard-core radius (assuning hard-core N-N potential) and the healing distance, which is statemdependent. A reasoneble value of $d_{\text {NN }}$, on this basis, is about 0.7 fm. From Fig. 3.3 it can be seen that corresponding to this value of $d_{N N}, U_{\Lambda}^{(3)}=1.8 \mathrm{Mev}$ for $d_{\Lambda W}=0.6$ fman ans about 8.7 Nev for $a_{\Lambda N}=1.0$ fm.

TABIE 3.4
EFFECS OF THE TPR THREE-BODY MNN POTEMILALS TI NUCTEAR NATTER. THE NOTATIONS ARE EMPINTNED IN THE MEXT, d $\triangle N$ IS THE CUTOFF FOR THE \wedge IN

d	0.6 fm	1. fm
a NN	$0.4 \mathrm{fm} \quad 0.6 \mathrm{fm} \quad 1 \mathrm{fm}$	0.4 fm 0.6 fm 1 fm 1.4 fm
$\begin{aligned} & U(s) \\ & \wedge(\text { INev }) \end{aligned}$	$-0.534-0.474-0.290$	-0.358-0.333-0.242-0.233
$\mathrm{U}(\mathrm{I})$	1.3621 .2991 .057	$\begin{array}{llll}0.843 & 0.807 & 0.668 & 0.465\end{array}$
$\mathrm{U}\left(\begin{array}{l} \mathrm{II}) \\ \mathrm{MeV}) \end{array}\right.$	$13.950 \quad 4.687-6.849$	12.533 9.948 3.109-1.354
U^{3}	14.777 5.512-6.082	13.017 10.422 3.535-1.076

However, with a slightiy larger value of $a_{\text {MN }}, U_{\Lambda}^{(3)}$ may well turn negative for the case where $d{ }_{\Lambda_{N}}$ is 0.6 fm . A repulsion of 3.535 Mev is obtained for $d_{\Lambda N}=d_{N N}=1 \mathrm{fm}$, which is close to what Nyman (1967) obtained. The main point to emerge, however, is that $U_{\Lambda}^{(3)}$ is extremely sensitive to a $\wedge N$ as vell as the $N-H$ corcelation function. If the vexy long-range part of the $A N N$ potential (for $d_{\Lambda N}>1 \mathrm{fm}$) were being considered then its effect is definitel.y repulsive and can be as large as 10 Mev . Hovever, it would
be misleading to quote any definite number and therefore, the point of viev adopted here, disagrees in spixit to Myman's work.

Recently Gal (1966, 1967) introduced in his phenonenological anslysis of licht hypernucled, a MNN force of the type $W_{p}(I)$, which is completely central. Only Gelt's $C_{p \Lambda}$ was much larger than the $C_{p \Lambda}$ used here and was taken to be 17 Mev as compared to 1.43 Mev used here. The contrim bution to U_{Λ}^{3} of such a central potential is rather insensitive to $N=\mathbb{N}$ correlation, as was already cleax from the work of Bodmer and Sampanthar (1962). It behaves vexy differently from the dominant non-central term $W_{p}(I I)$. For example, with $d_{\Lambda N}=0.6 \mathrm{fm}$ and $d_{M N}=0.7 \mathrm{fm}$, its contribution to $U_{\Lambda}^{(3)}$ is 16 Mev , compared to a value of 2 Nev from V_{p} (II) but for $\mathrm{a}_{\mathrm{N}}=1 \mathrm{fm}$ and $d_{\mathrm{NN}}=0.7 \mathrm{fm}$ it is about 10 Mev , nearly the sane as the value found here. By toking a completely central phenomenological NNN force litre Gel's, there is the danger that the repulsive effect may be overestimated in calculating B_{Λ}.

Before concluding this chapter, it would be in ordex to mention that an extensive analysis of the effects of the TPE NNW force, W, in
 Their conclusjon is very similar to that of the present work in Λ^{5} He. Namely, in all cases considered, they found that the NNN force results in an opprecieble repulsion between the A and the core nucleus. of course their conclusjon is subject to the anbient tuies which heve been discussed in the case of ${ }^{5} \mathrm{He}$.

Flg. 3.3 (0)

CHAPIET 4

EVALUATION OF THE INTERMEDTATH RANGE THRBE-PION ESCHANGE ANN FORCE

As previously explained in chapter 2 the $\Lambda \mathbb{N}$ and $A N W$ potentials can be worked out in the onemor tromenamel formalism. Since only the bound state is considered it is sufficiently accurate to use the onechannel fomalism. The diagrams which contribute to the three-pion exchange NNJ force are shown in Fig. 4.1c and 4.1d. Diagroms 4.1c and 4.1d, equally important, are as yet too complicated to be evaluated exactly. Therefore the contribution of diagrom 4.10 is approximated by the sum of the contributions of diegrams 4.1a and 4.1b. The force arising from diagrams 4.1 and 4.1 b is derived in the static approxination. It was stated by Uehara (1960) that the potential due to Fig. 4.Ic has the asymptotic tail of the OPIP. This statement was inconrect and therefore this potential is written dom and the correct estimate of the range in the asymptotic region is given.

First the contributions arising from diagrams 4.1 and $4.1 b$ are considered. The contribution from the diagran of Fig. 4.2 has to be subtracted once since it is included in both 4.1a and 4.1b. The 5 matrix element is given by :

$$
\begin{equation*}
S=S_{1 a}+S_{1 b}-S_{2}+\tilde{S}_{2 a}+\tilde{S}_{2 b}-\tilde{S}_{2} \tag{4.1}
\end{equation*}
$$

Where the suffix refers to the diegran number and the tilda indicates that nucleons 1 and 2 heve been interchanged. Following Miyazowa (1956,1957) the S matrix elenent corxesponding to the diggran 4.1 s can be witten
$(c=\mathfrak{N}=1):$

The subscripts α, β and γ refer to the index of the third component of the isotopic spin, f_{N} is the pseudo-vector roN coupling constant $\left(f_{N}^{2}=0.08\right), p, q$ and k (which have fourth components p_{o}, q_{0} and k_{o}) are the four momenta of the exchanged pions whose energies have been labelled ω_{p}, ω_{q} and ω_{k} respectively. The vectors ${\underset{m}{M}}^{m_{1}}$ and ${\underset{m}{2}}$ are the coordinates of the two nucleons and μ is the pion mass. The matrix- elements for the $\pi-N$ and $\pi \sim \Lambda$ scattering parts are given by (rogami and Bloore, 1964):

$$
\begin{align*}
& x \exp [-i(\underset{m}{p}-k) \cdot \underset{m}{m}] \quad \underset{p}{v} v_{k}, \tag{t}
\end{align*}
$$

$$
\begin{equation*}
x \exp \left[i(\underset{m}{(p}-\underset{m}{q}) \cdot{\underset{m}{m}}_{r}^{r}\right]_{\mathrm{p}} \mathrm{v}_{\mathrm{q}} \text {. } \tag{4.4}
\end{equation*}
$$

where $\underset{m}{x} \Lambda$ is the coordinate of Λ. The function v_{p} is a cutoff factor which is chosen to be $\exp \left(-p^{2} / 2 p_{m}^{2}\right)$ where p_{m} is the nomentum corresponding to the nucleon mass; it is introduced for the convenience of computation (Chev and Low, 1956; Nogemi and Bloore 1964). The functions $A_{\mathrm{NV}}, B_{\mathrm{N}}, C_{\mathrm{NV}}, A_{\Lambda}$ and C_{Λ} are given in terms of the $\pi-\mathbb{N}$ and $\pi-\Lambda$ scattering cross sections by the dispersion relations in the static approximation :

$$
\begin{aligned}
& A_{N}\left(p_{0}\right)=C_{N}\left(-p_{0}\right)=\frac{4 \pi\left(f_{N} / \mu\right)^{2}}{p_{0}-i \epsilon}+\frac{1}{4 \pi} \int_{0}^{\infty} \frac{d k}{\omega} \frac{\sigma_{k}(k)}{\underset{k}{\omega}-p_{0}-i \epsilon}+
\end{aligned}
$$

$$
\begin{align*}
& \underset{N}{B}\left(p_{0}\right)=\underset{N}{B}\left(-p_{0}\right)=\frac{1}{12 \pi} \int_{0}^{\infty} \frac{d k}{\omega} \frac{\sigma_{k}(k)+2 \sigma(k)}{\substack{\omega \\
k}}+\underset{0}{p-i \epsilon}+ \\
& \frac{1}{12 \pi} \int_{0}^{\infty} \frac{d k}{\omega_{k}} \frac{\sigma_{33}(k)+2 \sigma(k)}{\omega_{k}+i p_{0}}, \tag{4.5b}\\
& A_{\Lambda}\left(p_{0}\right)=C_{\Lambda}\left(-p_{0}\right)=\frac{4 \pi\left(i_{\Lambda} / \mu\right)^{2}}{\Delta+p_{0}-i \epsilon}+\frac{1}{2 \pi} \int_{0}^{\infty} \frac{d k}{\omega_{k}} \frac{\sigma_{3}(k)}{\omega_{k}-p_{0} \ldots i \epsilon}
\end{align*}
$$

$$
\begin{equation*}
+\frac{1}{6 \pi} \int_{0}^{\infty} \frac{d k}{\omega_{k}} \frac{2 \sigma_{k}(k)+\sigma_{3}(k)}{\omega_{k}+p-i \epsilon} . \tag{4.6}
\end{equation*}
$$

Here $f^{\prime} \Lambda$ is the renormalized $\pi-\wedge-\Sigma$ coupling constant, Δ is the mass difference between Σ and $\Lambda, \sigma_{2 I, ~ 2 J}$ is the total cross section of the pwave $\pi-\mathbb{N}$ scattering in the state (I, J) and $\sigma_{2 J}$ is the total cross section of the p wave $\pi-\Lambda$ scattering in the state with angular momentum $J\left(\frac{1}{2}\right.$ or $\left.\frac{3}{2}\right)$. If expressions (4.3) and (4.4) are substituted in eq. (4.2) $S_{\text {la }}$ is obtained in the form $S_{l a}=2 \pi i \delta(0) V_{a}$. The quantity V_{a} which is interpreted as the ANI potential arising from diagram 4.1a is given by :

$$
v_{a}=\frac{14 \pi f_{N}^{2}}{(2 \pi)^{10}{ }^{2}} \int_{0}^{+\infty} d p \int_{0}^{+\infty} a^{3} p d^{3} q d^{3} k v_{p}^{2} v_{q} v_{k} \frac{p_{a} \exp [i(q \cdots p) \cdot x+k \cdot z]}{\left(p^{2}-\omega^{2}\right)\left(p^{2}-\omega^{2}\right) \omega^{2}(p-i \in)},
$$

where
with eq. (4.3)

$$
\begin{align*}
& \langle\gamma,-k| S_{1}|\alpha,-p\rangle=2 \pi 3 \delta(p-k) \exp \left[-i\left(p-\frac{k}{m}\right) \cdot x\right] v_{p} v_{k} \\
& x\langle\gamma,-k| T_{1}(p)|\alpha,-p\rangle \tag{4.9}
\end{align*}
$$

and from eq. (4.4)

$$
\begin{equation*}
\{\Lambda\}=A_{\Lambda}(p) \cdot{ }_{0}^{\wedge} \cdot p_{m} \quad \sigma_{m}^{\wedge} \cdot \frac{q}{m}+C_{\Lambda}\left(p_{0}\right) \underset{m}{\sigma} \cdot \frac{q}{m} \sigma_{n}^{\wedge} \cdot \frac{p}{m} . \tag{4.10}
\end{equation*}
$$

Then,

$$
\begin{equation*}
P_{Q}=P^{\prime}+P^{\prime \prime}, \tag{4.2}
\end{equation*}
$$

with

$$
\begin{align*}
& \underset{N}{P^{\prime}}=A_{N}-4 B_{N}+3 C_{N}, \tag{4.12}
\end{align*}
$$

$$
\begin{equation*}
\underset{N}{P^{\prime}}=-A_{N}+\underset{N}{3 B} \tag{4.13}
\end{equation*}
$$

Similar expressions are obtained for the potential V_{b} arising from diagram 4.1b. The potential $v\left(S=-2 x S(0) V_{2}\right)$ could be obtained by replacing

$$
\langle\gamma,-k| T_{1}\left(p_{0}\right)\left|\alpha,^{2}-p\right\rangle \text { by }\left(4 \pi / \mu^{2}\right) f_{N}^{2} \tau_{\gamma}^{1} \tau_{\alpha}^{1} \frac{\sigma_{m}^{1} \cdot \alpha_{m}^{1} \cdot p}{p_{0}-i \epsilon} \text { in the }
$$

expression for $V_{a}(4.7)$. However, it is simplex to notice that diagram 4.2 results only in temas proportions l to $f_{N V}^{4}$. Therefore $V_{a}+V_{b}-V_{2}$ can be replaced by $V=V_{e_{0}}+V_{b}$ with texas proportional to f_{N}^{4} divided by two.
 (4.7) and (4.12),

$$
\begin{equation*}
V_{a}^{2}=U(x) V(z) \tag{4.14}
\end{equation*}
$$

with
$V(z)$ is simply the org for the NoN potential :

$$
V(z)=\frac{\tau_{\mu}^{\tau} \cdot \overbrace{\mu}^{2}}{3} f_{N}^{2}\left(\sigma_{m}^{1} \cdot \sigma_{\mu}^{2}+\mathbb{\sigma ^ { 2 }}(z) S_{12}(z)\right) Y(z) \ldots(4.15)
$$

where $S_{12}(z), T(z)$ and $Y(z)$ have been defined in chapter 2 (eqs. (2.21) and (2.12)).

Then,

That is,

$$
\begin{equation*}
\left.X I\left(C_{\wedge} P_{N}^{\prime}\right)\right) r^{\prime}=x \tag{4.17}
\end{equation*}
$$

with

$$
\begin{aligned}
& \text {...(4.18) }
\end{aligned}
$$

After reduction of the differential operators, the potential (4.17) can be expressed as a sum of central (spin-independent and spin-dependent terms) and tensor parts :

$$
U(x)=V \underset{o}{V}(x)+V(x) \hat{s}_{\sigma_{m}^{\sigma} \cdot \sigma_{m}^{\prime}}^{l}+\underset{t}{V}(x) S_{\wedge 1}(x) \quad \cdots(4.19)
$$

where

$$
\begin{aligned}
& \ldots(4.200)
\end{aligned}
$$

$$
\ldots(4.20 \mathrm{~b})
$$

and

$$
\begin{aligned}
& V_{T}(x)=\left[\frac{1}{3 x}\left(\frac{2}{x}-\frac{\partial}{\partial r}-\frac{\partial}{\partial r^{\prime}}\right) \frac{\partial^{2}}{\partial x^{x}} \partial_{r^{\prime}} I\left[\left(A_{\Lambda}-C_{\Lambda}\right) P P_{N}^{V}\right]_{r=x^{\prime}=x} .\right. \\
& \text {...(4.200) }
\end{aligned}
$$

$U(x)$ is the anglytical expression of the TPE potential for $\Lambda-\mathbb{N}$ (Ifogami and Bloore, 1964) and therefore it can be seen that the V_{a}^{\prime} part or the potential corresponding to diagram $4.1 a$, is the product of the OPRP ($N-\mathbb{N}$) and the dimenstonless analytical expression for the rPEP ($\wedge \mathrm{N}$). Similarly the part corresponding to P_{b}^{\prime} can be written

$$
\begin{equation*}
V_{b}^{\prime}=V(z) U(x) \tag{4.21}
\end{equation*}
$$

Thus $V^{\prime}=V_{a}^{\prime}+V_{b}^{\prime}=\{U(x), V(z)\}_{+}$, where $\{,\}_{+}$indicates the anticomutator and

$$
\begin{align*}
& \left.\left(\sigma_{m}^{1} \cdot \sigma_{m}^{2}+T(z) S_{12}(z)\right)\right\}+Y(z) \text {. } \tag{4.22}
\end{align*}
$$

That is,

$$
\begin{equation*}
\left.+\left(V_{0}(x)+V_{S}(x) \cdots V_{T}(x)\right) T(z) S_{\wedge}(z)+V_{T}(x) \mathbb{T}(z) \Sigma_{\Lambda e^{2}}(x, z)\right] Y(z), \tag{4,23}
\end{equation*}
$$

where

$$
\Sigma \Lambda 2^{(x, z)}=9 x \cdot z \frac{\sigma_{m} \cdot x \sigma_{m}^{2} \cdot z}{\sigma_{m}^{2}}-\wedge_{x^{2} z^{2}}^{\sigma_{m} \cdot \sigma_{m}^{2}} \ldots\left(4 \cdot 2^{2}\right)
$$

The part of V_{a} corresponding to $\mathrm{p}^{\prime \prime}, \mathrm{V}_{\mathrm{a}}{ }_{\mathrm{a}}$, can be written using eggs. (4.7) and (4.13)

$$
\begin{aligned}
& f^{2}
\end{aligned}
$$

$$
\begin{aligned}
& r=r^{\prime}=x \\
& \text {...(4.25a) }
\end{aligned}
$$

Similarity f^{2}

$$
\begin{align*}
& r=r^{\prime}=x \tag{4.25b}
\end{align*}
$$

Because $I\left(f\left(p_{0}\right), r, r^{\prime}\right)$ is a symmetric function of r and r^{\prime} eq. $(4.18) ; r$ and r^{\prime} can be exchanged in eq. (4.25a) and then adding eq. (4.25b) gives

$$
\begin{aligned}
& I\left[\left(A_{\Lambda}+C, P_{\Lambda}^{\prime}\right]\right) Y(z), \\
& y=r^{\prime}=x \ldots(4.26)
\end{aligned}
$$

that is

In the following sections these potentials will be considered in the cases where the nucleons and Λ are in the swshell.

Therefore, with i, $j:=1,2, \wedge$

$$
\ldots(4.28 b)
$$

$$
\begin{equation*}
\left\langle\tau_{i m}^{1} \cdot \tau_{m}^{2} S(x)\right\rangle=0 \tag{4.28c}
\end{equation*}
$$

where $\cos \theta_{x z}=x_{m} \cdot z_{m} / x y$ as chow in Fig. 4.3. now $V: V^{\prime}+V^{\prime \prime}$ can be wijuten as :

$$
\begin{align*}
& \left.\frac{\partial^{2}}{\partial r \partial I^{\prime}} I\left[\left(A_{\Lambda}+C_{\Lambda}\right) P_{N}^{\prime}\right]\right]_{Y=r^{\prime}=x} X(z) . \tag{4.27}
\end{align*}
$$

$$
\mathrm{V}(x, z)=\left[\mathrm{s}(\mathrm{x})+\left(3 \cos ^{2} \theta_{x z}-1\right) \mathrm{T}(z) \mathrm{W}(x)\right] \quad Y(z) \quad \ldots(4 \cdot 2)
$$

with

$$
\begin{align*}
& \text {...(4.30) } \tag{4.30}
\end{align*}
$$

Where

$$
\begin{array}{r}
Z\left(x, x^{\prime}\right)=I\left[\left(A_{\Lambda}+C_{\Lambda}\right)\left(3 P_{N}^{\prime}+2 P_{N}^{\prime}\right)\right]=I\left[\left(A_{\Lambda}+C_{\Lambda}\right)\left(A_{N}-6 B{ }_{N}+9 C_{N}\right)\right], \\
\ldots(4 \cdot 32 a) \\
D\left(x, x^{\prime}\right)=I\left[\left(A_{\Lambda}-C_{\Lambda}\right) P_{N}^{\prime}\right]=I\left[\left(\Lambda_{\Lambda}-C_{\Lambda}\right)\left(A_{N}-4 B_{N}+3 C_{N}\right)\right] \\
\ldots(4.32 b)
\end{array}
$$

and
$X\left(r, I^{\prime}\right)=I \quad\left[\left(A_{\Lambda}+C_{\Lambda}\right) P_{N}^{\prime י}\right]=I\left[\left(A_{\Lambda}+C_{\Lambda}\right)\left(-A_{N}+\underset{N}{3 B}\right)\right] \quad$.

$$
\ldots(4 \cdot 32 c)
$$

In order to evaluate these expressions from eggs. (4.5), (4.6) and (4.18), it was assumed that the $\pi-N$ and $\pi-\Lambda$ scattering were dominated by the $N *$ (1238) and the $Y_{1}^{*}(1385)$ resonances respectively, that is σ_{11}, σ_{13} and σ_{1} were set equal to zero in expressions (4.5) and (4.6). Also the integrals in (4.5) and (4.6) were evaluated replacing $\sigma(k)$ by $12 \pi^{2} g^{2} k_{r} \delta\left(\omega_{k}-\omega_{r}\right)$ with $g^{2}=\Gamma\left(k_{r}\right) / 2 r_{r}^{3}, \Gamma\left(k_{r}\right)$ being the width at the resonance energy (Fubini 1.956). The values $\mathrm{g}_{\mathrm{N}}^{2}=0.057, \omega_{\mathrm{N}}=1.27 \mathrm{fm}^{-1}$ for $\sigma_{33}(k)$ and $g_{\Lambda}^{2}=0.047$ with $\omega_{\Lambda}=1.2 \mathrm{fm}^{-1}$ for $\sigma_{3}(\mathrm{k})$ were used. The diagram show in Fig. 4.4, which is included in diagrams $4.1 a$ and 4.16 does not contribute to the three-body force. Therefore its contribution, wish is proportional to $I /\left(p_{0}+i \epsilon\right)$ is subtracted by suppressing the term $-4 \pi f_{N}^{2} /\left(p_{0}+i \epsilon\right)$ in $C_{N}\left(p_{0}\right)(4.5 \mathrm{a})$. Now the expressions (4.32) can be calculated, end their explicit forms are given in the appendix 2. Then the three-pion exchange potential corresponding to the S matrix (4.1) is :

$$
P(\underset{m}{x}, \underset{m}{y}, z)=V(x, \underset{m}{z})+\widetilde{V}(\underset{m}{z}, z)
$$

It con be seen that

$$
\begin{equation*}
\mathrm{P}(\mathrm{x}, \underset{M}{\mathrm{y}}, \underset{m}{z})=\mathrm{P}_{\mathrm{c}}(\mathrm{x}, \mathrm{y}, \mathrm{z})+\mathrm{P}_{\mathrm{T}}(\mathrm{x}, \underset{m}{y}, \underset{m}{z}) \tag{4.33}
\end{equation*}
$$

with

$$
\begin{equation*}
P_{c}(x, y, z)=(S(x)+\tilde{S}(y)) Y(z) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{T}(x, y, z)=\left[\left(3 \cos ^{2} e_{x z}-1\right) w(x)+\left(3 \cos ^{2} e_{y z}-1\right) w(y] x(z) y(z)\right. \tag{4.35}
\end{equation*}
$$

In the above equations the tilde indicates that superscript 1 and 2 in equations (4.33) are interchanged.

The contribution arising from diagram 4.1c is now considered.
Following Myazawa (1956, 1957) the S matrix corresponding to this diagram can be written

$$
\begin{align*}
& x \frac{\langle\beta,-q| s_{2}|\gamma-k\rangle}{\left(k^{2}-\omega^{2}\right)}
\end{align*}
$$

The notation is the same as that used in eq. (4.2), S_{c} is obtained in the form $S_{c}=-2 \pi i \delta(0) V_{c}$, which is interpreted as the potential arising from diagram 4.1c, can be written

As in Uehara (1960), only the Born terms are considered; that is

with
$I_{\alpha, \beta, \gamma}(x, y, z)=\frac{3}{} \begin{array}{cc}1 \\ \pi & x y z\end{array} \int_{0}^{\infty} \frac{\sin [p(x+y+z)]}{\omega(\omega+\alpha)(\omega+\beta)(\omega+\gamma)}$
and

$$
\begin{equation*}
Y_{\alpha, \beta, \gamma}(x, y, z)=\frac{\exp \left[-\left(\mu^{2}-\alpha^{2}\right)^{1 / 2}(x+y+z]\right.}{(\alpha+\beta)(\alpha+\gamma) x y z} \tag{4.39o}
\end{equation*}
$$

If the mass difference Δ is neglected in (4.38) and if the repetition term corresponding to $Y \underset{\Delta \rightarrow 0,0,0}{ }\left(X, y, Z_{i}\right)$ is subtracted, v_{c} can be written:
with

$$
\begin{equation*}
I_{0,0,0}=\frac{3}{4 \mu} \frac{x+y+z}{x y z} \exp [-\mu(x+y+z)] \tag{4.41}
\end{equation*}
$$

Therefore the asymptotic form of V_{c} is proportional to $\mathrm{I}_{0,0,0^{\circ}}$ If the equilateral triangle $x=y=z=r$ is considered, the esymptotic form is proportional to $\exp (-3 \mu x) / \mu_{1}{ }^{2}$ which has the range expected for the exchange of three-pions. There is no term with the osymptotic tail of the OPEP. In Uehara (1960) the function $I_{\alpha, \beta, \gamma}(x, y, z)$ was miscalculated. The poles of the equation (4.37) have to be treated carefully. After the p_{o} integration, $V_{c}(4.37)$ is proportionel to J, where

+ cyclic permatation of p, q and k.

The integral J was evaluated by assisninic smoll, unequal imaginary masses to the mesons; that is $\omega_{p} \rightarrow\left(p^{2}+\mu^{2}+i \epsilon\right)^{1 / 2}$ etc. Inis leads to eq. \dagger (4.39a). If poles are left on the real axis incorrect asymptotic behevior recults.
t This resuit agrees mith that of a similer integral calculatea by S.D. Drell and K. Haeng, Pays. Rev. 92 (1953), 1527.

Flg. A. (fe)

Fig. $8.1(b)$

Fig. 4. (0)

Fig. 8.3

Fig. C. 2

Fig. 8.4

CHAPMER 5

EFFECTS OF THE THEBE-PION-EXCHANGE ANN FORCE
5.1 Effect in 3_{H}

In a calculation similar to that of the TPE ANV force which has been done in $\S 3.1$, the effects of the potentials $P_{c}(4.34)$ and $P_{T}(4.35)$ on ${ }^{B} \Lambda$ in Λ^{H} are estimated by pertuabation theory.

First the dependence of the three pion exchage potential. $P(4.33)$
on the $\Lambda \sim \mathbb{N}$ distance, x, is compared with the x-dependence of the TPE
ANN force, W_{p}. For ${\underset{\Lambda}{H}}^{H}$ it has been shown that W_{p} has the form (2.16 and 3.4):

$$
\begin{equation*}
W_{p}=C_{p}\left[1+\left(3 \cos ^{2} \theta_{x y}-1\right) T(x) T(y)\right] Y(x) Y(y) \tag{5.}
\end{equation*}
$$

With $C_{p}=1.43 \mathrm{Nev}$ and $\cos _{x y}=\left(\mathrm{x}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{m}}\right) / \mathrm{xy}$ as shom on Fig. 2.1. The functions Y and T have been defined in chapter 2, eqs. (2.12). The $X-$ dependences of the central part and of the tensor part of W_{p} are denoted by C_{2} and T_{2} respectively, where from eq. (5.l) :

$$
\begin{array}{cc}
C_{2}=C_{p} Y(x), & \cdots(5 \cdot 2) \\
\mathrm{T}_{2}=\mathrm{C}_{\mathrm{p}} \mathrm{Y}(\mathrm{x}) \mathrm{T}(\mathrm{x}) & \ldots(5 \cdot 3)
\end{array}
$$

Similarly the x-dependences of $P_{c}(4.34)$ and $P_{T}(4.35)$ respectively can be written :

$$
\begin{align*}
& C_{3}=S(x), \tag{5.4}\\
& T_{3}=W(x) \tag{5.5}
\end{align*}
$$

where $S(x)$ and $V(x)$ are given by the expressions (4.30) and (4.31) with the coxresponding expectation values of the τ^{\prime} s and σ^{\prime} s replaced by thejr
values fox \wedge^{H} :

$$
\begin{align*}
& \left.<_{M}^{\sigma} \cdot \sigma{ }_{M}^{T} \cdot{ }_{M}^{T}\right\rangle=6 \quad i=1,2 . \tag{5.6}
\end{align*}
$$

The x-dependences of the central parts and tensor parts are plotted in Fig. 5.1 and Fie.5.2 respectively.

It can be seen that C_{3} depends strongly on x and is larger than C_{2} for $x \leq 1.2$ fm. The curve T_{3} is also sensitive to x, but is of comparable strength to T_{2}, which becones larger then T_{3} only for $x \geqslant .7 \mathrm{fm}$. Therefore for $d_{n N} \leqslant 1$. fm the central part P_{c} is expected to give a negetive contribution to B_{Λ} (repulsive) larger than thet of the mer An force. The contribution of the tensor pert, P_{T}, will depend on the average of the angular dependence " $3 \cos \theta_{x z}-1$ '".

The effect of the threerrion exchones potentict $p(4.35)$ on B in $\Lambda^{\text {H will }}$ nov be considered. The notation is the same as that used in $\S 3.1$. The expectation values of $P_{c}(x, y, z)(4.34)$ and $P_{T}(x, y, z)(4.35)$ with respect to $Y(3.1)$ are denoted by $<P_{c}>$ and $<P_{T}>$ reonectively. Because of the complete symmetry of all the expressions in x and $y,\left\langle P_{c}\right\rangle$ and $\left\langle P_{p}\right\rangle$ ean be wiitten :

$$
\begin{gather*}
\left\langle P_{c}\right\rangle=2 I[S(x) Y(z], \tag{5.8}\\
\left\langle F_{T}\right\rangle=2 I \quad\left[\left(3 \cos \theta_{X Z}-1\right) W(x) T(z) Y(z)\right], \tag{5.9}
\end{gather*}
$$

where $I[\ldots]$ hos been defined by eq. (3.9). The integration donain has elso been expleined in $\S 3.1$.

The results ere shom in table 5.1 for five different values of the cutoff $d_{\text {AN }}$ and three dinferent values of the herd cone redus D together with the results obtained for the centril part $<W_{p}(I)>$ and tensor part $<W_{p}$ (II) $>$ of
the TPE NNI Torce (83.1). It can be seen that for $a_{\text {AN }} \leq 1$ fr the central $\mathrm{part}\left\langle\mathrm{P}_{\mathrm{c}}\right\rangle$ is alvays positive (repulsive) and larger than $\left\langle W_{p}(I)\right\rangle$, that the tensor part $\left\langle P_{T}>\right.$ is always negative (attractive) ond laxger than $\left\langle H_{p}\left(I I P\right.\right.$ end theit $\left\langle P_{T T}\right\rangle$ is predominent. For $d_{\text {NTI }} \leqslant 1$ fm the total effect $\left\langle P_{c}+P_{T I}+V_{p}>\right.$ is always negative (attractive), for instance for $d_{N J}=1 \mathrm{fm}$ and $D=0.4 \mathrm{fm},\left\langle\mathrm{H}_{\mathrm{p}}\right\rangle=0.164 \mathrm{Mev}$ and $\left\langle W_{p}+P_{c}+P_{\mathrm{q}}\right\rangle=-0.132 \mathrm{Mev}$. As in § 3.1 (eqs. 3.10 and 3.11), the relative importence of the 1 Nin foxce Pwill be given by the retio :

$$
R=\frac{\left\langle P_{c}+P_{\mathrm{R}}\right\rangle}{2\left\langle V_{A N}\right\rangle}=\left\{\begin{array}{l}
8.5 \% \tag{5.10}\\
1.5 \%
\end{array} \text { for } D=a_{N N}=\left\{\begin{array}{l}
0.4 \mathrm{xam} \\
0.6 \mathrm{fm}
\end{array}\right.\right.
$$

This small ratio justifies the use of the perturbation calculation of the effect of the AN force. For the case of the TPE MN force the corres-
 the provious trp results are modified, the overall effect is still small and can probably be taken tato account by a suitable modification of the $\Lambda-\mathbb{N}$ force.
5.2 Erfect in Λ^{5}

The 1 -c potential in Λ^{5} He due to three-pioneexchange potential $\mathrm{P}, \mathrm{P}\left(\mathrm{r}_{\Lambda}\right)$ is estinated in a way simeler to that used for the mes $A \mathbb{N}$ force ($\S 3.2$). First as in the previous section, the x -dependence of $\mathrm{P}(4.33)$ in ${ }^{5} \Lambda^{\text {He }}$ is compared with chat of the TPE AHN force . The x-dependence of $P_{c}(4.34)$ and $P_{T}(4.35)$ respectively con be written :

$$
\begin{align*}
& \mathrm{C}_{3}^{\prime}=\mathrm{S}^{\prime}(x) \tag{5.1i}\\
& \mathrm{q}_{3}^{2}=W^{\prime}(x) \tag{5.12}
\end{align*}
$$

where $S^{\prime}(x)$ and $W^{\prime}(x)$ are given by the expressions (4.30) and (4.31) with
the expectation values of the τ^{\prime} s and σ^{\prime} s replaced by their values for $\Lambda^{5} \mathrm{He}$:

$$
\begin{align*}
& 1212 \tag{5.13a}
\end{align*}
$$

Eq. (5.13b) follows from the spin saturation of the mucleons. Because of the difference in the expectations values of the τ^{\prime} s and σ^{\prime} s for Λ^{3} and Λ^{He}, C_{3}^{\prime} and T_{3}^{\prime} difiec from C_{3} and T_{3}, reapectively. The curves C_{3}^{1} and T_{3} are plotted in Fig. 5.7 and Fig. 5.2. It can be seen that C_{3} depends strongly on x, is larger than C_{2} for $x \leqslant I .2$ fm but smaller than C_{2} for $x \geqslant 1.6$ fm. The tensor part T_{3} is not very sensitive to x , becomes negative for $x>0.4 \mathrm{fm}$ and is always smallea in absolute value then T_{2} and C_{3}. Therefore the $\wedge \cdot \alpha$ potential due to C_{3} will be positive (as for C_{2}) and lamger Wha that due to 5 .

The averase one-body field, $p\left(r_{\Lambda}\right)$, that the Λ experiences in Λ_{Λ}^{5} will now be estimated. As in (§3.2) $P\left(r_{\Lambda}\right)$ con be written : where the factor 6 comes from the six possible NUN bonds and $\rho\left(x_{i}\right)$ is the nomalized density distribution for the nucleons which has been defined by eq. (3.15). The vectors (x, y, z) have been replacen by
 is obtained from eq. (4.32) using egs. (5.13a) and (5.23b). In this calculation the α was ascmed to be undistonted by the presence of the Λ. The potential $P\left(r_{\Lambda}\right)$ cen be written :

$$
\begin{gather*}
P\left(r_{\Lambda}\right)=P_{c}\left(x_{\Lambda}\right)+P_{T}\left(x_{\Lambda}\right) \tag{5.15}\\
P_{c}\left(x_{\Lambda}\right)=12
\end{gathered} \int \begin{gathered}
a^{3} x d^{3} z \rho\left(\left|x+x_{m}\right|\right) \rho\left(\left|x_{m}+x_{n}-z\right|\right) S^{\prime}(x) X(z) \tag{5.16}
\end{gather*}
$$

and

there $\cos \theta_{x z}=\frac{x}{m} \cdot z / x z$. The additional factor of two is due to the symmetry of the expressions (4.34) and (4.35) in x and y.

Equation (5.17) cen be reduced to a four-dinensionen integration which is done momericolly, Similarly the integrel (5.18) cen be split into fourdimensional and five-dimensionsl interrat; both of wich ore done mue.. rically. Details about the reduction of the integrels are civen in appendix 3. Since the short range pert is not know, the spatial inte. Gration on the $\mathbb{N}-{ }^{M}$ distance z is done with z verying from a cutoff distance d_{NNF} to infinity. As it will be seen, results are quite insensitive to d_{NV}. In fect the integate (5.76) and (5.77) aso cues convergan ros a siancing from zero.

The results for five different values of x, two different values of the cutof: $a_{A N}$ and two different values of $d_{N N}$ are shom in table 5.2 . It can be seen that the results are sencitive to $d_{N N}$, but not to $d_{N N}$, and that the potential due to the central part is repulsive and larger than that due to the tensor part which is mostly attractive and small (for $r_{\Lambda} \approx 2 \operatorname{fm} P_{T}\left(r_{\Lambda}\right)$ is repulsive $)$. The potentiols $P_{c}\left(r_{\Lambda}\right)$ and $P_{T}\left(r_{\Lambda}\right)$ are plotted on Fic. 5.3 for $d_{A N}=1 \mathrm{mend} d_{N N}=0.6 \mathrm{fm}$ and compered with the AN potential, $U_{p}^{3}(I)$ (central) and $U_{p}^{3}(I L)$ (teasor), of the TPL NM fonce. It can be seen that $P\left(x_{\Lambda}\right)$ is smaller than $U_{p}^{3}\left(x_{\Lambda}\right)\left(=U_{p}^{3}(I)+U_{p}^{3}(I I)\right)$ and then reduces the overbinding of the Λ in 5^{H} by an anount mollew thon the reduction obtained using $U^{3}(r)$. Therefore in the cese of ${ }^{5}$ He, for $d_{A N} \approx 1$ fin, the threemion-exchemge MM force only slightly modifies the
recults obtained using the MPE NW force.
5.3 Effeet in Fucleor vatter
 matter due to P_{f} is calculated by first order perturition theory in a way similar to that fomnlated by Bodmer and Sampenthar (1962). Beceuse two nucleons are involved there is a direct tera and on exchange term. The direct tem venishes identically beceuse of the spin isospin saturation. As in the case of $\quad \Lambda^{5} \mathrm{He}$

$$
\left\langle\begin{array}{c}
i \\
\sigma_{M}^{i} \cdot \hat{M}
\end{array} \quad \stackrel{i}{i} \cdot \hat{M} \cdot \hat{M}\right\rangle \quad=0 .
$$

Therefore the comprison betreen the x-dependence of the three-pionexchance potential and the two-pion one is essentially the same ass that discussed in the previous section. The only difference is a comon multinticotive fector oricing from the fect thot

$$
\begin{equation*}
\left\langle\sigma_{m}^{1} \cdot \sigma_{m}^{2}{ }_{m}^{T} \cdot m_{m}^{T}{ }^{2}=36\right. \tag{5.18}
\end{equation*}
$$

Thererore the contribution of the central pert $P_{c}(4.34)$ to the binding energy, $P \wedge c^{\text {, is again expected to be predominant. }}$ ${ }^{p} \wedge$ can be written

$$
\begin{equation*}
P_{\Lambda}=P{ }^{P}{ }^{+P} \wedge T \tag{5.19}
\end{equation*}
$$

where $P \wedge T$ is the contribution from the tensor pert $P_{T}(4.35)$.
A straight formard colculation yields

$$
P_{\Lambda c}=\frac{3}{4} \rho^{2} \int_{\mathrm{D}}^{2}\left(\mathrm{~L}_{\mathrm{f}}\left|\underset{m}{x} \cdots y_{m}\right|\right) S^{\prime}(x) Y\left(\left|x_{m} \cdots y_{m}\right|\right) d^{3} x^{3} d^{3} y,
$$

ρ, D, k_{f} have been defined in $\$ 3.3$ and $\cos \theta=x .2 / x z$. As in the case of the IPR AN force a step function, (eq. 3.3), is used as a nucleon nucleon correlation function.

The integrals (5.20) and (5.02) are then evaluated numerically. The results are shown in table 5.3 for two different values of a AN and four different values of $\alpha_{\text {RN }}$, together with the results obtained for the central part $U_{\Lambda}(I)$ and tensor part $U_{\Lambda}(I I)$ of the TPE $\Lambda N W$ force ($\S 3.3$). It can be seen that the effect is repulsive and large, that P_{Nc} is larger than $P \wedge T, U_{\Lambda}(X)$ and U_{Λ} (II) and that for $d_{\Lambda N} \approx I \operatorname{fm}_{\wedge T} P_{\wedge T}$ is smaller than $U \wedge$ (II). The main qualitative feature of the effect is that it is found to be repulsive, for instance with a reasonable value for $d_{N N}$ of about I fr and that for $d_{\Lambda N}=1$ fr, P gives a repulsive contribution of 7.43 Nev . For the same values of $\mathrm{a}_{\mathrm{NiN}}$ and $\mathrm{a}_{\text {AN }}$, the TPR MNV force was found to give a repulsive contribution of 3.78 Mev . For $\mathrm{d} \mathrm{NAI}^{\approx 1 \mathrm{fm} \text {, the }}$ three-pion-exchange three-body $\Lambda \mathbb{N}$ force reduces therefore the binding energy of a Λ in nuclear matter by an enownt greater than that obtained with the $\mathrm{PPR} A \mathrm{~N}$ force. However the large values of the results obtained in table 5.3 may indicate that the use of a first order perturbation theory is not sufficient, and then their magnitude should not be taken too serious.ty. Nevertheless the calculation shows that the effect of the three -pionexchange Now force in nuclear mater can be very important.

TABLE 5.1
 FOR DIFFERENT VALUES OF CUTOPF DISTANCE d AN AND HAND-CORE RADIUS D. THE RESULTS OBTAINED WITA THE TPE NN FORCE (§3.1) ARE SHOW IN PARENTHESTS.

 the iootation is explained in the text.

${ }^{2} \mathrm{~N}_{\mathrm{N}}(\mathrm{m})$	0.6					1.				
$r_{\wedge}(\underline{m})$	0.	1.	2.	3.	4.	0.	1.	2.	3.	4.
$P_{C}(r)\left\{\begin{array}{l}a_{\text {N }}\end{array}\right.$	$\begin{aligned} & 35.48 \\ & 33.10 \end{aligned}$	$\begin{aligned} & 19.71 \\ & 19.01 \end{aligned}$	$\begin{aligned} & 3.05 \\ & 3.33 \end{aligned}$	$\begin{aligned} & 0.115 \\ & 0.131 \end{aligned}$	$\begin{aligned} & 0.066 \\ & 0.069 \end{aligned}$	$\begin{aligned} & 4.36 \\ & 4.52 \end{aligned}$	$\begin{aligned} & 3.30 \\ & 3.21 \end{aligned}$	$\begin{aligned} & 1.07 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 0.093 \\ & 0.101 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.007 \end{aligned}$
	$\begin{aligned} & -22.57 \\ & -22.10 \end{aligned}$	$\begin{aligned} & -0.395 \\ & -0.436 \end{aligned}$	$\begin{aligned} & 0.279 \\ & 0.285 \end{aligned}$	$\begin{aligned} & -0.061 \\ & -0.061 \end{aligned}$	$\begin{aligned} & -0.005 \\ & -0.005 \end{aligned}$	$\begin{aligned} & -6.19 \\ & -6.11 \end{aligned}$	$\begin{aligned} & -0.809 \\ & -0.807 \end{aligned}$	$\begin{aligned} & 0.27^{4} \\ & 0.27^{4} \end{aligned}$	$\begin{aligned} & -0.0411 \\ & -0.041 \end{aligned}$	$\begin{aligned} & -0.005 \\ & -0.005 \end{aligned}$

EFFECT OF ITE THRE-PION-EXCHANGE ANN POTENTIALS IN NUCLEAR MATMER. THE RESULIS OBTAINED WITH THE TPE NNO FORCE ($\$ 3.3$) ARE SHOWN IN PARENTHESTS.
the notation is Explained in the text.

${ }^{\lambda_{A N}}(\mathrm{fm})$	0.6			1.			
$a_{\text {NXI }}(\mathrm{fm})$	0.4	0.6	1.	0.4	0.6	1.	2.4
$\begin{aligned} & P_{\Lambda c^{(\mathrm{MeV})}} \\ & \left(U_{\Lambda}^{(I))}\right. \end{aligned}$	$\begin{aligned} & 4.1 .11 \\ & (1.36) \end{aligned}$	$\begin{aligned} & 35.81 \\ & (1.30) \end{aligned}$	$\begin{gathered} 23.66 \\ (1.06) \end{gathered}$	$\begin{gathered} 9.71 \\ (0.84) \end{gathered}$	$\begin{gathered} 8.40 \\ (0.81) \end{gathered}$	$\begin{gathered} 5.52 \\ (0.67) \end{gathered}$	$\begin{gathered} 3.02 \\ (0.47) \end{gathered}$
$\begin{aligned} & P_{\Lambda T}(\mathrm{Mev}) \\ & \left.U_{\Lambda}(I I)\right) \end{aligned}$	$\begin{aligned} & 13.75 \\ & (13.95) \end{aligned}$	$\begin{gathered} 8.52 \\ (4.69) \end{gathered}$	$\begin{gathered} 2.06 \\ (-6.85) \end{gathered}$	$\begin{gathered} 6.38 \\ (12.53) \end{gathered}$	$\begin{gathered} 4.47 \\ (9.95) \end{gathered}$	$\begin{gathered} 1.91 \\ (3.11) \end{gathered}$	$\begin{gathered} 0.60 \\ (-1.35) \end{gathered}$
$\begin{gathered} P_{\Lambda}{ }^{c}+P_{\Lambda T} \\ \left(U_{\Lambda}(I)+U_{\Lambda}(I I)\right) \end{gathered}$	$\begin{gathered} 54.86 \\ (15.31) \end{gathered}$	$\begin{gathered} 44.33 \\ (5.99) \end{gathered}$	$\begin{gathered} 25.72 \\ (-5.79) \end{gathered}$	$\begin{gathered} 16.09 \\ (13.37) \end{gathered}$	$\begin{gathered} 12.87 \\ (10.76) \end{gathered}$	$\begin{gathered} 7.43 \\ (3.78) \end{gathered}$	$\begin{gathered} 3.62 \\ (-0.88) \end{gathered}$

CHAPMER 6

DERIVATION AND ERFECSS OF THE MONG IANGE TPE THREE-NUCLEON FORCE.

6.1 Dexivation of the threemucleon (3iN) force

The long-range part of the three-body force arises mainly due to the TPE among three nucleons. The TPE 30 potential hos been derived by Fujita and liyazawe (1957) (FM) in the static approximation using a technique from dispersion theory (See also : Sinith and Sharp, 1960; Fujita et al, 1962; Coury and Frani, 1963; quang Ho-Kim, 1966). The TPE 3f potential consists of three terms,

$$
\begin{equation*}
F=F(1)+F(2)+F(3) \tag{6.1}
\end{equation*}
$$

where $\mathrm{F}(3)$ is due to the process depicted in Fig. 6.1.

Fig. 6.1

The other two terns are obtained by cyclic permutations of 1,2 and 3 . $\mathrm{FM}^{\prime} \mathrm{s}$ expression foc $\mathrm{F}(\mathrm{i})$ is further divided into two parts :

$$
F(i)=\underset{p}{F}(i)+F(i)
$$

whex $F(i)$ and $F(i)$ are due respectively to the p - and s-wave scatterings
 of the virtual pion from the imth nucleon. In order to obtain a rough idea of the effect of the TPE $3 N$ foxce, F, in triton, it was asswed by FM that triton consists of an equiateral triangle with side 1.3 fro The 3N potential energy, F, for this configuration wes found to be-0.22 Mev (attractive). The contributlon of $W_{s}(i)$ was found to be negrigible.

The pion-pion interection was not considered by Fi.However, in addition to the well estoblished $I=J=I$ resononce, or the p-reson, there has accuntated in the last fev years considerable, although not quite conclu. sive, evidence for an $I=J=0$ resonence. This is the so-ailed σ meson, with mass of about 410 Mev (Rosenfela et al, 1967). The 3 N force, which arises from the pion-nucleon interaction via the σ meson as shown in Fig. 6.2, was exemined by Harrington (1966).

Fig.G. 2

The effects of this 3if force in triton and in nuclear matter vere then estinated. The effects tumed out to be repulsive and quite substontiol, especially in nuclear matter. As Harrington himself was aware of, however, it is dangerous to consider the diagram of Fig. 6.2 alone. This is clear If the s-wave $\pi-N$ scattering eit lov encrgy is considered. If only the diagram (a) of Fig. 6.3 is considered, where the pion interacts with the nucleon via the σ meson, it would yield a vexy large scattering length in drastic disegrement with experiment. There must be other ''direct interactions", here represented by the diagram (b) in Fig 6.3, which cancel the contidibution from (a) so that the experimeatally obsexved extremely snall scettering length is reproduced.

(a)

(b)

Fig. 6.3

Incluaing the effect of the σ meson, $F(i)$ can be written :

$$
\begin{equation*}
F(i)=\underset{p}{F}(i)+F(i)+F(i) \tag{6.3}
\end{equation*}
$$

in place of (6.2). Here $F_{\sigma}(i)$ and $F_{s}(i)$ arises through the diagram (a) and (b) of $\mathrm{Flg} \cdot 6.3$ respectively. The potentisi F_{σ} (i) is the one discussed by Harrington. The potential $\mathrm{F}_{\mathrm{s}}(i)$ has the same form as, but stronger than, thet in (6.2). The potentials $F_{\sigma}(i)$ and $F_{S}(i)$ heve opposite signs and, in fact, itt will be seen that they almost completely cancel each other in the fermi-gas model of muclear matter. Strictly speaking, the diagrom (a) in Fig. 6.3 contributes also to the p-wave $\pi-N$ scattering, hence $F_{p}(i)$ has to be reajusted too. However, this is a vexy small effect, and the sme $F_{p}(i)$, as was given by $F M$, is used here. According to $F M, F_{p}(i)$ and $F_{s}(i)$ are given by

$$
\begin{align*}
& \text { with } \tag{6.6}
\end{align*}
$$

$$
\begin{align*}
& Y(x)=\exp (-\mu x) /(\mu x) . \tag{6.7}
\end{align*}
$$

Here x is the cooxdinate of the i-th nucleon, and μ is the pion mass $(c=y=1)$.

The coefficient $C_{p N}$ is given by ${ }^{\dagger}$

$$
C_{p N}=\frac{f_{N}^{2}}{9 \pi^{2}} \int_{0}^{\sigma_{0}^{\infty}} \frac{\sigma_{33}(p)}{\omega_{p}^{2}} d p=0.46 \mathrm{Mev} \quad \quad \ldots(6.8)
$$

where $f_{N}^{2}=0.08$ is the $\pi-N$ couping constant and σ_{33} is the total cross section for powave $\pi-N$ scattering in the $I=J=3 / 2$ state. If the Owmeson is not considered, $C_{\text {SN }}$ is related to the s-wave $\pi-N$ scattering lengths, a and a_{3}, by

$$
\begin{equation*}
c_{\mathrm{sN}}=-\left(f_{\mathrm{N}}\right)^{2}\left(\mathrm{a}_{\mathrm{J}}+2 \mathrm{a}_{3}\right) / 3 \tag{6.9}
\end{equation*}
$$

This relation has to be modified if the contribution of the σ-meson is included.

For the σ-meson an effective interaction density for the σ-N and $\sigma \pi$ is assuned to be :

$$
\begin{equation*}
H=(4 \pi)^{1 / 2}\left(E Y X \phi_{\sigma}+\frac{1}{2} n \phi_{M} \cdot \phi_{\sigma}\right) \tag{6.10}
\end{equation*}
$$

where Ψ, ϕ, ond ϕ_{σ} are the nucleon, pion and σ-meson fields, respecti. vely, and E and h are dimenstionless coupling constents. Then as was
${ }^{\dagger}$ For the TRE NiN force, the corresponding strength factor is $\mathrm{C}_{\mathrm{p} \Lambda} \approx 3.43 \mathrm{Mev}(\$ 2.1)$. For the TRE ANN force contributions come from the Σ and Y_{1}^{*} intermediate state, whereas for the $3 N$ force only the N intermediate state contributes. The difference is thus mainly due to the Σ-contribution . Hovever, there is only one Mov-bond in ${ }^{3} \Lambda^{H}$, comparea with 3N-bonds in ${ }^{3}$ H. Moxeover, the average distonce between particles in 3_{H} is chorter than in 3_{H} Thus it is expected that the effect of the $3 N$

shown by Harrington, F_{σ} (3) may be written as

where $\underset{i}{s}=\left|\underset{m_{i}}{r}-\underset{m}{r}\right|, 1=1,2,3, m$ is the mass of the σ-meson, and

$$
\begin{equation*}
\lambda=f_{n}^{2} g h \quad \mu^{3} / \mathrm{m}^{2} \tag{6.12}
\end{equation*}
$$

The choice of C_{sN} and λ will be discussed in the next section. 6.2 Effects or the TPE 3 force in triton

Here it is assumed that the triton is in the s-state of complete spatial symmetry. Then the spin-isospin averages of $F_{p}(i)(6.4)$ and $F_{s}(i)$ (6.5) become :

$$
\begin{align*}
& \underset{p}{F}(3)=C_{p N}\left(3 \cos ^{2} \theta_{x y}-1\right) M(x) M(y), \tag{6.13}\\
& \underset{p}{F}(3)=-C_{S N} \cos \theta_{x y} C(x) G(y) \tag{6.14}
\end{align*}
$$

with

$$
\begin{gather*}
M(x)=\left(1+\frac{3}{\mu x}+\frac{3}{2}\right) Y(x), G(x)=\left(1+\frac{1}{\mu x}\right) Y(x), \tag{6.1.5}\\
(\mu x)^{2} \tag{6.16}\\
\cos \theta_{x y}=(\underset{\mu}{m} \cdot y) /(x y)
\end{gather*}
$$

Other terms with $i=1$ or 2 can be obtained from the above fommlae by cyclic pemutations of 1,2 and 3 .

As was show by Hacrington, F_{σ} (3) (6.11) for the triton may be written as

$$
F_{\sigma}(3)=-\frac{\lambda m^{2}}{4 \mu^{4}} \int \frac{d^{3} q_{1} d^{3} q_{2} q_{1} \cdot q_{1} 2 \exp \left[i\left(q_{1} \cdot x_{m}+q_{2} q^{2} q_{1}\right)\right]}{\left(q_{1}^{2}+\mu^{2}\right)\left(q_{2}^{2}+\mu^{2}\right)}\left[\left(q_{1}+q_{1}\right)^{2}+m\right]
$$

Now, for the s-vave $\pi-\mathbb{N}$ scattering, the sum of the contributions of the diegroms (a) and (b) of Fig. 6.3 should glve the observed (isospineven part of) scattering length. This is achieved if c_{s} in (6.9) is replaced by $\mathrm{C}_{\mathrm{SN}}-\lambda$, nemely

$$
\begin{equation*}
c_{S N}-\lambda=-\frac{1}{3}\left(\mu f_{N}\right)^{2}\left(a_{1}+2 a_{3}\right) \tag{6.18}
\end{equation*}
$$

This cau be seen in the following way. First, it is noted that the sm wave $\pi-N$ scattering length does not depend on the shepe of the source of the interaction, hence it is independent of m, provided that λ is kept constant. Therefore the linit $m-\infty$ can be teken without affecting the scattering Iength. In this Iimit $F_{\sigma}(3)$ becomes

$$
\begin{equation*}
F_{\sigma}(3)-\lambda \mu \mu^{-2} \nabla_{x}^{\nabla} \cdot \nabla_{y} Y(x) Y(y)=\cos \theta \quad G(x) G(y) \tag{6.1.9}
\end{equation*}
$$

which is the same form as (6.14). In fact the σ - line in Fig. 6.2 or in diagram (o) of Fig. 6.3 shrinks to a point in this limit, and becomes indistinguishable from the "direct intecection" diagran (b) of Fig. 6.3.

Thus (6.18) replaces (6.9) in the limit $m \rightarrow \infty$. However, since the two sides of (6.18) axe independent of m, this relation should hold for any value of m. Experimental values for the scattering lengths are $(a+2 a)=$ $(-0.035 \pm 0.012) / \mu \quad$ (Samarayanake and Woolcock 1965). Substituting $a_{3}+\frac{2 a}{3}=-0.035 / \mu$ into (6.18) it can be seen that :

$$
\begin{equation*}
\mathrm{C}_{\mathrm{sN}}-\lambda=0.13 \mathrm{Mev} \tag{6.20}
\end{equation*}
$$

In (6.17) the long-range part of the potential is determined mainly by the part of the integrand with small momenta q_{1} and q_{2}. Since m ($\sim 410 \mathrm{Nev}$) is much larger than μ, the progageton of the σ-meson may be approximated by

$$
\begin{equation*}
\left\{(q+q)^{2}+n^{2}\right\}^{-1} \rightarrow n^{2}\left(q^{2}+m^{2}\right)-1\left(q^{2}+m^{2}\right)^{-1} \tag{6.21}
\end{equation*}
$$

Then

$$
F_{\sigma}(3)=\lambda^{\prime} \operatorname{co\theta } \theta_{x y}\left\{G(x)-G^{r}(x)\right\} \quad\left\{G(y)-G^{\prime}(y)\right\} \quad, \ldots(6.22)
$$

where
and

$$
\begin{align*}
\lambda^{\prime} & =\lambda_{\mathrm{m}}^{4} /\left(m^{2}-\mu^{2}\right)^{2}, \\
G^{\prime}(x) & =\left(\frac{m}{\mu}+\frac{1}{\mu x}\right) \frac{e^{-\mu X}}{\mu x} \tag{6.23}
\end{align*}
$$

For the parameters g, h and m, Harrington assumed

$$
\begin{equation*}
g^{2}=10, h^{2}=6, g h>0, r=4 \mu, \tag{6.25a}
\end{equation*}
$$

Which give

$$
\begin{equation*}
\mathrm{C}_{\mathrm{s}}=5.48 \mathrm{Mev}, \quad \lambda=5.35 \mathrm{Mev} \tag{6.25b}
\end{equation*}
$$

Here g and m were taken from an analysis of the $N-N$ sattering in tems of the one-boson-mexchange model (Bryan and Scott 1964). The $\pi-\sigma$ coupling constant h was detemined assuming the width of the σ meson to be $\Gamma=-\mu$. The sign g h >0 was suggested from the analysis of the twomion contribution to the $x-1 \mathbb{L}$ scattering. A more recent analysis of the N-N scatterting gives much smaller $g^{2}(2.3$ to 2.8) and slightly smaller m (420 to 470 Mev) (Arndt et al, 1966). Therefore the following set is also considered hexe :

$$
\begin{equation*}
g^{2}=2.5, h^{2}=6, g h>0, m=3 \mu \tag{6.26a}
\end{equation*}
$$

In this case, it can be seen that :

$$
\begin{equation*}
\mathrm{C}_{\mathrm{SN}}=4.88 \mathrm{Mev}, \quad \lambda=4.75 \mathrm{Mev} \tag{6.26b}
\end{equation*}
$$

Now the expectation values of $F_{p}(3), F_{s}(3)$ and $F_{\sigma}(3)$ in the triton are estimated by perturbotion theory. Since the short range part of the three mucleon rorce is not know, the three-body potentiols $F_{p}(3)$, $F_{s}(3)$ and $F_{\sigma}(3)$ are taken to be zero for $N-N$ distences less then a cutoff distance d. The unperturbed wavefunction is taken to be the wavefunction given by Ohmura (1959). Its spatial part is given by

$$
Y(x, y, z)=N^{-\frac{1}{2}} \quad f(x) f(y) f(z)
$$

where x, y cud z are distances berween the three nucleons and

$$
\begin{array}{rlrl}
f(x) & =0 & & \text { for } x<D \\
& =\exp [-\alpha(x-D)]-\exp [-\beta(x-D)] & & \text { for } x>D \\
& \ldots(6.28)
\end{array}
$$

Here D jis the hard - core radius of the N-N force . The foctor N normalizes Ψ to

$$
\begin{equation*}
\int y(x, y, z)^{2} x y z d x d y d z=1 \tag{6.29}
\end{equation*}
$$

where it is understood thet x, y, z satisfy the triongular relations $x+y \geqslant z$ etc... The values of the variational parameters α, β and the nomalization factor N are listed in table 6.1 for the hard-core radit $D=0.2,0.4$ and 0.6 fm . The expectation velues of various parts of the 3 N potential are 1 isted in table 6.2 , where the notation is $:$

$$
\Delta E_{p}=3<F_{p}(3)>\equiv \int_{p}(3) Y(x, y, z)^{2} x y z d x \text { dy } d z
$$

$$
\left.\left.\Delta E_{s}=3<F_{s}(3)\right\rangle, \quad \Delta E=3<F(3)\right\rangle, \quad \Delta E=\Delta E+\Delta E+\Delta E
$$

$D(f m)$	$\alpha\left(\mathrm{im}^{-1}\right)$	$\beta\left(\mathrm{fm}^{-1}\right)$	$N\left(f m^{6}\right)$
0.2	0.462	5.03	1.084
0.4	0.457	4.09	1.676
0.6	0.450	4.20	2.718

TABLE 6.1
THE PARAMETERS OE THE TRTMON WAVE FUMCITON
\dagger
This is taken from table 2 of the wook of Onnuxa (1959), for the case of exponential $N-M$ potentials and $r_{o S}=2.7 \mathrm{im}$.

TADIE 6.2

THE EXPECTATION VAIUE TN WEV OF THE $3 N$ POTENTIAE IN MHE TRTTON AS DEPINED BY EQ. (6.30), FOR DIFTERENT MARD-CORE RADIUS D, CUTOFF DISTANCE $\begin{gathered}\text { a } \\ \text {, AND }\end{gathered}$ σ-MESON MASS m.

$\triangle E{ }_{p}$ does not involve m. For $\triangle T_{s}$ and ΔE_{σ}, two cases are considered, namely $m=4 \mu$ and $n=3 \mu, \quad \Delta E \quad$ and ΔE axe both quite large but they tend to cancel each other . $\Delta_{s}+\Delta E_{\sigma}$ is negative (atractive) and is more apprectenle fon smollex mass n. In the linit moto, as it has been discussed berore, F_{S} and F_{σ} becomes indistinguichoble. The value of $\mathrm{AE}_{\mathrm{s}}+\Delta \mathrm{B}_{\sigma}$ in this limit, is obteined by mutiplying $\Delta \mathrm{E}_{\mathrm{S}}$ for $\mathrm{n}=4 \mu$ by
$0.13 / 5.43=0.02^{4}:$ Fox example if $D=\mathrm{d}=0.4 \mathrm{fm}, \Delta E_{\mathrm{s}}+\Delta E_{\sigma}$ becomes - 0.04 Mey , which is much smaller than $\Delta \mathrm{p}$ 。 Results are all sensitive to d as well as to D. Presumably the most reasonable hard-core radius will be $D=0.4 \mathrm{fm} . \triangle B$ is most sensitive to d and can be much more p appreciable than FM's simple estimate -0.22 Mev . The total contribution to the binding energy can easily be as large as or even larger than 1 Mev (attractive).

The expectation value of F_{p} in triton was calculated by ask (1967) who used ai wave function for H_{H} obtained from detailed variational calculations done by Davies (1967). The result is of the some sign and same order of magnitude as the one obtained here (-1.38 Mev, attractive). 6.3 Effect in nuclear matter

The effect of F_{σ} end F_{s}, in nuclear mater is first considered. The contribution of F_{σ} has been estimated by farrington(1966) who calculated the effective two -body potential obtained by averaging the 3 N potential F_{σ} over the coordinate of the third particle. Tais potential was found to be repulsive ana strong enough to dominate the OPEP at distances less then 2 fra. However, it will be shown here, that F_{g} yields a similar effective two -body potential which largely cancels the effect of F_{σ}, leaving a weekly attractive potential.

The effective two body potential due to $F_{\sigma}(3)$ (6.11) is given by

$$
\begin{aligned}
V_{\sigma}(12) & =\rho \iint_{3}^{3} r_{\sigma}(3) \\
& =-\rho \lambda \mu^{-2}\left(\underset{m}{T} \cdot \tau_{m}^{\tau}\right)\left(\sigma_{m}^{\top} \cdot \nabla_{1}\right){\underset{m}{m}}_{\sigma}^{2} \cdot \nabla_{2} x
\end{aligned}
$$

$$
\begin{equation*}
\int a^{3} x Y\left(s_{1}\right) Y\left(s_{2}\right) \tag{6.31}
\end{equation*}
$$

Where ρ is the density of nucleons in nuclear matter. On the other hand, the erfective tro-body force due to $F_{s}(3)(6.5)$ is :

$$
\ldots(6.32)
$$

The interrals in (6.31) and (6.32) are identical. since $\lambda \approx C_{\text {sN }}(6.20)$, $V_{\sigma}(12)$ and $V_{s}(12)$ almost coinpletely cancel each other.

The expectation value of F_{p} in nuclear matter, using the Fermi gas model will now be estinated. The calculation is similar to that of 83.3 . There is a direct texa witich vanishes identically because of spin isospin saturation. There axe two exchenge texns and the binding energy due to F_{p} in nuclear matter can be written :

$$
\begin{equation*}
U=U_{1}+U_{2} \tag{6.33}
\end{equation*}
$$

The single exchange term U_{1} is

$$
\begin{align*}
& X Y(x) Y(y) \quad a^{3} x a^{3} y, \tag{6.34}
\end{align*}
$$

end the double exchange tema U_{2} is :

$$
\begin{align*}
& {\left[1+\frac{1}{4}\left(3 \cos ^{2} \theta_{x y} \div 1\right) T(x) T(y)\right] \quad Y(x) Y(y) d^{3} x d^{3} y .} \tag{6.35}
\end{align*}
$$

The function $D(x)$ hes been defined in $\S .3 \cdot 3$. The binding energies U_{1} and U_{2} consist of a central end a tensor tem. The central terms $U_{1}(I)$ end $\mathrm{U}_{2}(\mathrm{I})$ are given by the first terms of the integrals (6.34) and (6.35) respectively and the tensor tems $U_{1}(I I)$ and $U_{2}(I I)$ by the second terms of the same integrals. The integral. in U_{1} is the same as the interral in $U_{\Lambda}(I)+U U_{\Lambda}(T T)(3.30$ and 3.37$)$ and

$$
\begin{equation*}
\frac{U_{1}(I)}{U_{\Lambda}(I)}=\frac{U_{1}(I I)}{U_{\Lambda}(I I)}=\frac{2}{3} \frac{C_{p N}}{C_{\Lambda}} \times A=0.2145 \times A \tag{6.36}
\end{equation*}
$$

As in the case of the TFB NNF force a step function is used as a N-N correlation function

$$
\begin{align*}
\theta(|x-y|-c) & =0 & & \text { for }|x-y|<c \\
& =1 & & \text { for }|x-y|>c \tag{6.37}
\end{align*}
$$

The energies $U_{1}(I)$ and $U_{1}(I I)$ are then obtained by multiplying $U_{\Lambda}(I)$ and $U_{\Lambda}(I T)$ by the factor deflined in (6.36). The integrel (6.35) is evaluated numericelly after putting in the N-iv correlation function $\theta(|x-y|-c)$ in the integrand. The results are shom in toble 6.3 for two different
values of d and three different values of c.
TABLE 6.3
EFFECT OF THE TPE $3 N$ POTRTIALS IN WUCLEAR MATTER. THE NODATION IS EXPIAINED IN THE CEXT, d IS THE CUMOFP FOR qME 3 H FORCE, WHILE C IS MHE CUTOFE FOR A STEP-FUNCTIOS IHPE IT-N CORRELATION.

d	0.6			1.0		
c	0.4	0.6	1.0	0.6	1.0	1.4
$U_{1}(I) / A$	0.292	0.278	0.227	0.173	0143	0.099
$\mathrm{U}_{1}(\mathrm{IJ}) / \Lambda$	2.930	1.060	-1. $1: 69$	2.130	0.667	-0.290
$U_{2}(I) / A$	-0.164	-0.164	-0.137	-0.060	-0.060	-0.045
$\mathrm{U}_{2}^{(\mathrm{II}) / \mathrm{A}}$	0.437	0.437	0.718	0.159	0.159	0.215
U / A.	3.558	1.559	-0.660	2.405	0.910	-0.119

For the values of d and c considered here, $U_{1}(I) / A$ and $U_{2}(I I) / A$ are minly and positive (repulsive), $U_{2}(I) / A$ is mali and necative (attractive) and $U_{1}(I) / A$ is doninant and either positive (repulsive) or negative(athactive). For $\alpha=0.6 \mathrm{~mm}, c=0.4$ fra the overall effect U / A is 3.558 Nev (repulsive) and for $d=0.6 \mathrm{fm}$, and $\mathrm{c}=1 \mathrm{fmu} \mathrm{U}=-0.660 \mathrm{Aev}$ (attractive). In sumnary the effect is small and sensitive to the N-N comrelation runction.

The contribution of the three-nucleon force, in nuclear matter, has been estimated by several authors (FM; Smith and Sharp, 1960). The results obtained by Fil are :

$$
\begin{aligned}
& U_{1}=-0.3 \text { Mev } \times \mathrm{A} \quad \text { (attractive) } \\
& U_{2}=+0.1 \text { Hev } \times \mathrm{A} \quad \text { (repulsive) }
\end{aligned}
$$

No detajls of the calculation are given. In the calculation of smith and Sharp on angular average of the tensor part is taken ond it is found that:

$$
1 \text { Mev } \times A \leqslant U_{1}+U_{2} \leqslant 3 \text { Mev } \times A \quad \text { (repulsive) }
$$

These resulis cannot be directly compared to those of the present work since they are obtained with a different $N-N$ correlation function.

As was mentioned in choptor 2, the contributton of the pion-pion interaction via the σ meson has not been considered in the calculation of the TPE MNN force. However from the results of the present chapter it can be expected that this force will give an appreciable effect in hypertriton as F_{σ} does in triton. In the case of $A^{\text {He end nuclear matcer, }}$ since the contribution of the p-wave part ($\pi-\Lambda$ interaction) of the TPE ANM force is dominant over that of the s-vave part, the effect of the σ-meson is expected to be small.

CHAPTER 7

DISCUSSION AND CONCLUSION

Three-body and mony-body forces are predicted from the meson theory of nuclear forces. In the present work the long and intemediate range parts of the ANN force due to the two-and three-pion-exchange have been derived using the static approximation. Their effects on the binding energies of $\Lambda^{3}, \quad \Lambda^{5}$ He and nuclear matter have been estimated. Only the tail of these potentials was considered, since at short distances heavier meson exchanges may become important. The NNN force was arbitrarly taken to be zero for Λ-N distances less than a cutorf distance $d \wedge{ }^{2}$. The contributions of the two pion-cechange pret of the threcuncleon (3 N) force to the binding energy of the triton and nuclear matter have also been considered. Here again the force was teken to be zero for Nm distences less than a cutoff distance d. It vas found that the effects of the MNN force can be important and 2lso that the contribution of the $3 N$ force is appreciable, although these results depend on the cutori distances quite sensitively.

In dexiving the TPE NNN force, W, the $\pi-\Lambda$ interaction was considered to be dominated by the p and s-wave. Then W can be written : $W=W_{p}+W_{s}$, where W_{p} and W_{s} arise from the p - and s-wave $\pi-\Lambda$ interaction, respectively. As in the case of the swave $\pi-N$ interaction, a "suppression fector'' of the s-vave $\pi-\Lambda$ interaction was hexe introduced for W_{S}. For a reesonable ${ }^{1 ?}$ guppression fector' ${ }^{\prime}$, W_{s} was found to be unimportant. W consist of central end tonsor terms. The tensor tem
depends on the angle $\theta_{x y}$ as shom in Fig. 2.2. This texm vas found to be dominent.

In Λ^{3}, the contribution of W to the binding energy of a $\Lambda, B \Lambda^{B}$, can be repulsive or attractive, depending on the cutoff d and the wavefunction used. A reasonable value for the $\Lambda-N$ hard-core radus D may be taken to be 0.4 fm , and the cutorif radius for the ANN force about 1 Im . In this case W give a repulsive contribution of about 0.16 Mev. Although this is substantial in viev of the small value of ${ }^{B} \Lambda$ in $\mathbf{3}^{H}$, this could easily be accomnodated for, by slightly changing the two-body $\quad \Lambda-\mathbb{N}$ force.

In Λ^{He}, the overoll effect is much larger, because there are six $\Lambda N N$ bonds and also the average $\Lambda-N$ distance is smaller than that of 3_{H}. Hexe the contribution to E_{Λ} from the nN forces is alvays repulsive, and is about 2 Mev for a cutoff of 1 fm . However, this repulsive effect is problably overestimated since no $N-N$ correlation in the α-particle has been considered. This repulsive contribution of the ANN force substantially roduces the overoinding of the Λ in ${ }^{5}$ He as was obtained by using the two-body porces alone (Bhaduri et al, 1967). In nuclear matter, the contribution, $U_{\Lambda}^{(3)}$, of W to B_{Λ} wes estimated by using perturbation theory. The effect is extremely sensitive to $d N_{N}$ e.s well as the $N-\mathbb{N}$ correlation function. For instonce, with a cutore value $d_{N N}=0.7 \mathrm{fm}$, for a step function type $N-N$ correlation, $U_{\Lambda}^{(3)}=1.8 \mathrm{Mev}$ for $\mathrm{a} \Lambda N=0.6 \mathrm{fm}$ and is about 8.7 Mev for $\mathrm{d} \quad \Lambda N=1.0 \mathrm{fm}$ see (Fig. 3.3). However, with a slighty laxcer value of $\mathrm{d}_{\mathrm{NN}}, \mathrm{U}^{(3)}{ }_{\Lambda}^{(3)}$ may well turn negative for the case where $d \quad A N$ is 0.6 fm. For $d A N=$ $d_{\mathrm{NN}}=1 \mathrm{fm}$, a repuision of 3.535 Mev is obtained. If only the very
long-range part of $W\left(d_{\Lambda N}>1\right)$ is considered, the effect is definitely repulsive and can be as large as 10 Mev .

In the short-range region, processes other than TPE will become impoxtant, so that the above results will be modified. The next lowest order contribution to the NN force, after TPE, arises from three-pionexchange. The three-plon-exchange ANN force has been derived. Its effects on light hypermuclef and nuclear natter hove been compared with those of W_{p}, in order to see for that value of the cutorf $d \quad \Lambda N$, the $T P E$

NNH force, W_{p}, is dominated by the threemionmexchange NIN force.
The three-pion-exchange NW force arises from diagrans 4.1c and 4. ld which are as yet too complicated to be evaluated exactly. The force arising from diagran $4.1 d$ was approximated by the sum of the forces arising from diagroms 4.10 and $4.1 b$. This $A N N$ force, p, derived in the static approximation, consists of a central and a tensor term, $P=P_{c}+P_{T}$, where the tensor term, P_{T}, depends on the angle $\theta_{x Z}$ as shown in Fig. 4.3.The effect of the potential due to diagrem $4.1(\mathrm{c})$ was not examined, because of its complexity.

In Λ^{3}, P depends strongly on the $\Lambda-N$ distance and the contri. bution to B_{Λ} of P_{T} is larger than that of P_{c}. For $d \quad \Lambda N \leqslant I f m, P_{c}$ alvays gives a positive contribution (repulgive), which is lerger than that of the central part of $W_{p} \cdot P_{T}$ alvays gives a negative contribution (attractive) which is largex in absolute value than that of the tensor term of W_{p}. For d Aw $\leqslant 1$ fm the contaibution to B_{Λ} of p is largex then that of W_{p}. For a recsoneble value of 0.4 frm for the $A-\mathbb{N}$ hard-core radius, end $\mathrm{a}_{\mathrm{AN}}=1$ fing P gives an attrective contribution of 0.3 Mev . The contribution of H_{p} was previously shoma to be repulsive (0.16 Nev), therefore the total contribution is attractive (0.14 Mev). In fact for d $\Lambda N^{\leq} \mathrm{Im}$,
the overall effeci is found to be always attractive.
The Λ - α potential in Λ^{5} He due to P, which is denoted by $P\left(r_{\Lambda}\right)$, was evaluated. The contribution $p_{c}(r \wedge)$ (centrel part) is always repulsive and largex in absolute value than the contribution $p_{\mathrm{r}}\left(x_{\Lambda}\right)$ (tensox part) which is attractive (except for $r_{\Lambda} \approx 2$ fn). The overall contribution of P is thus repulsive (except for ${ }^{d}{ }_{\Lambda N}=I f m$ and $r_{\Lambda} \approx 0 \mathrm{fm}$) and it further reduces the overbinding of ${ }^{5}$ He. Rosults are sensitive to d but not to $d_{N N}$. For $d_{\Lambda N} \approx 1 . f m, P\left(r_{\Lambda}\right)$ is smalier then $U_{p}^{3}\left(r_{\Lambda}\right)$, the

A- α potential of W_{p}, and therefore only slighty modifies the contribution of that force.

The contribution of p to the bindine energy of Λ in nuelear matter depends strongly on the distance d, , but its dependence on $d_{N N}$ is not as pronouced. The resulta in nuclons matter are more sensitive to $d_{N N}$ than those of ${ }^{5} \mathrm{He}$ (see table 5.3 and 5.2 , respectively). This cen be explained by the fact that the nuclear matter expressions (5.20) and (5.21) have a stronger dependence on NN distance than the corresponding $\wedge^{5} \mathrm{He}$ expressions (5.16) and (5.17). It can be also seen that in nuclear matter the tensor paxt contribution $P \wedge T$ depends less strongly on $d_{\text {NN }}$ than the corresponding contribution $U_{\Lambda}(I I)$ of the TPE ANW force (toble 5.3). This is due to the difference in angular dependence of the two forces : P_{T} depends on the angle $\theta_{X Z}$ (sensitive to the $\Lambda-N$ distance) whereas the tensor part of N p depends on the angle $\dot{\theta}_{x y}$ (sensitive to the NN distance) (see Flg. 4.3) . The contribution of the central part P_{c} is found to be repulsive and larger than that of the tensor patt P_{T} which is also repulsive. This totel repulsive contxibution is larger than that of W_{p}. For instance, with a cutorf for a step function type in correlation of 1 fm and for
$d_{\Lambda N}=1$ frn, B_{Λ} due to P is - 7.43 Mev and B_{Λ} due to W_{p} was found to be - 3.78 Mev . As in the case of H_{p}, P may have been overestimated because the coupling constant f_{Λ}^{2} va.s chosen equal to $f_{N}^{2}\left(f_{\Lambda}^{2}=f_{N}^{2}=0.08\right)$. Various estinates of f_{Λ}^{2} have been done which indicated that f_{Λ}^{2} is slightly smaller than $r_{N}^{2}(\S 2.1)$. However, P does indicate the order of magnitude of the intermediate range part of the Nin force.

In summary, the contribution of the long-range Now force, w, and the intermediate range NNN force, P, to the binding energy of a Λ particle in swshell hypernuclei, has been shown to be important. In Λ_{H}, P was found to be attractive; for $a N_{N} \approx I \mathrm{fm}$ the contribution of P is Ereater than that of H_{p}, although the overall effect $\left(P+H_{p}\right)$ is atill relatively snaill and is attractive. The force P further reduces the binding energy of $\Lambda^{5 \mathrm{He}}$; for $\mathrm{d} \Lambda \mathbb{N} \quad 1 \mathrm{fm} \mathrm{P}$ only slightly modifies the results obtained using N_{p} alone. In nucleer matter the contribution of P is repulsive and greater then that of N_{p}; even for $d \wedge N \approx I$ in the overall effect $\left(P+W_{p}\right)$ is quite large and is repulsive. Although there are ambiguities due to the unknow short-range part of the ANN force, It can be seen that the effects of the three-body MNN force cannot be ignored . Also, the ' effective' $\mathrm{A}-\mathrm{N}$ force extracted from binding energy data, assuming only a two-body force, can be sicnificantly different from the "free" 1 -N force observed in two -body scattering.

Ihe contributions of the long range part of the 3 N force arising from tro-pionwexchange to the binding energies of the triton and nuclear matter have been estinated. The effect of the pion-pion interaction was taken into account by the considecation of the contribution, F_{σ}, of the (virtual) $\pi-N$ scatiering via the σ-mesou (the σ-meson is a controverstel.
$I=J=0$ dipion resonance). Then the $3 N$ potential can be written, $F=F{ }_{p}+F_{s}+F_{\sigma}$, where F_{p} and F_{s} are due respectively to the p - and s-wave $\pi-\mathbb{N}$ scattering. The $s-w a v e$ " ${ }^{\text {direct' } \pi-N \text { interaction vas formulated }}$ so that, together with the $\pi-\mathbb{N}$ intersction via the σ-meson it reproduces the observed $\pi-11$ scattering length. It was found that the potentials F_{s} and F_{σ} have opposite signs and that they tend to cancel each othex.

The contribution of F to the binding energy of the triton has been estimated by perturbation theory. The triton wavefunction is taken from a variational calculation for a hard-core two-nucleon potential (hard-core radius D). The results were found to be sensitive to the cutoff of the $3 N$ force, d, as well as to D. The contribution of F_{σ} and F_{s} are large but their sum is relatively small and negative(attractive). The effect due to F is found to be mainiy attractive. At $D=0.4$ Rn and $a \approx 0.4 \mathrm{fm}$, the binding due to F is around 1 Kev (attractive). A perturbation calculation was done to estimate the effect of F_{p} in nuclear matter. This contribution is of the order of a few Mev, between -0.7 Mev (attractive) and 4.0 Mev (repulsive), depending on the value of d and on the nucleonmucleon correlation function. As in the case of the $\Lambda \mathbb{N N}$ force, the three-pionexchange $3 N$ force trill probably modify the above results.

Since, in both cases (MNN and $3 N$ forces), the short range part of the force is unknow it is not posslble to draw eny definite conclusion. Nevertheless the results of the present work clearly show that the three-body force can ploy an important role in nuclear structure problems.

APPENDIX 1

 In this appendix some calculational details on $\Lambda^{5} \mathrm{He}(\S 3.2)$ are given, in particular the angular integration in (3.20) and (3.21). The z-axis is taken along $\underset{m}{x} \Lambda$ and polar coordinates for $\underset{m}{x}$ and y_{m} are introduced as follows

$$
\begin{equation*}
\underset{\mathrm{m}}{\mathrm{x}}=\left(\mathrm{x}, \theta_{\mathrm{x}}, \varphi_{\mathrm{x}}\right), \quad \underset{\mathrm{m}}{\mathrm{y}}=\left(\mathrm{y}, \theta_{\mathrm{y}}, \varphi_{\mathrm{y}}\right) \tag{A1.1}
\end{equation*}
$$

Then the φ-integration of $\cos ^{2} \theta_{x y}$ becomes

$$
\begin{align*}
& \begin{array}{l}
=\int_{0}^{2 \pi} d \varphi_{x} \int_{0}^{2 \pi} d \varphi_{y} \cos ^{2} \theta_{x y}^{2} \int_{0}^{2 \pi} \int_{0}^{d \varphi}\left\{\cos \theta_{x} \cos \theta+\sin \theta_{x} \sin \theta_{y} \cos \left(\varphi-\varphi_{y}\right)\right\}^{2}
\end{array} \\
& =\int_{0}^{2 \pi} \int_{x}^{\varphi} \int_{0}^{2 \pi} \int_{y}^{2}\left(\cos ^{2} \theta \cos ^{2} \theta+\frac{1}{2} \sin ^{2} \theta \sin ^{2} \theta\right) \text {, }
\end{align*}
$$

Thus the angular integral of the tensor part of W (2.16) becomes

$$
\begin{aligned}
& \text { p }
\end{aligned}
$$

$$
\begin{equation*}
=\frac{1}{2}\left\{\int d^{3} \times F(x)\left(3 \cos ^{2} \theta-1\right)\right\} \tag{A1.3}
\end{equation*}
$$

which explains (3.20).
The angular integral of W is simpler. Since the second term in

$$
\cos \theta_{x y}=\cos \theta_{x} \cos \theta_{y}+\sin \theta_{x} \sin \theta_{x} \sin \theta_{y} \cos \left(\varphi_{x}-\varphi_{y}\right)
$$

vanishes after φ-integration, it can be see that

$$
\begin{aligned}
& \int_{d x}^{3} x d^{3} y M(x) M(y) \cos \theta \\
& \text { gives }(3.21) \text {. }
\end{aligned}
$$

which gives (3.21).
The radial integrations in (3.19) - (3.21) can be done as follows.
For (3.19) it can be seen that :

$$
\int d^{3} x \rho\left(\left.I_{m} x_{n}+\frac{x}{m} \right\rvert\,\right) Y(x)=\frac{2 \pi \rho(x)}{\beta^{2} \mu x} \int_{d_{N N}}^{\infty} d x e^{-\beta x^{2}-\mu x} \operatorname{cosh(\beta ^{2}rx)}
$$

$$
=\frac{e^{-(\mu / 2 \beta)}}{2 \mu r}\left\{e^{-\mu r}[1-\right.
$$

$\left.\left.\operatorname{erf}\left(\beta(d-r)+\frac{\mu}{2 \beta}\right)\right]-e^{+\mu x}\left[1-\operatorname{erf}\left(\beta\left(\alpha_{\Lambda N}+r\right)+\frac{\mu}{2 \beta}\right)\right]\right\}$,
where

$$
\begin{equation*}
\operatorname{erf}(x)=\left(2 / \pi^{1 / 2}\right) \int_{0}^{x} \exp \left(-t^{2}\right) d t \tag{Al.6}
\end{equation*}
$$

The integral (Al.5) is not very sensitive to the cutoff a NN

For (3.20) it can be seen that :

$$
\int a^{3} x p\left(\left|x \frac{x}{m}+x\right|\right)\left(3 \cos ^{2} \theta-1\right) T(x) Y(x)
$$

$=\frac{4 \pi \rho(x)}{\beta^{2} \mu^{r}} \int d x e^{-\beta^{22}-\mu x} T(x) \quad\left\{\left(1+\frac{3}{2}\right) \sinh z-\frac{3 \cosh z}{z}\right\}$,
where

$$
z=2 \beta r x
$$

For small $x,\{ \}$ in (Al.7) may be expanded as $\left\}=z^{3} / 15+\ldots\right.$. Therefore, the integral (Al.7) vanishes at $r=0$, as it should be. Finally, for (3.21) it con be seen that

$$
\begin{align*}
& \int d^{3} x \rho\left(\left.. x_{n}+\frac{x}{m} \right\rvert\,\right) \cos \theta(1+\mu x) y(x) /(\mu x) \\
& =\frac{2 \pi \rho(r)}{\beta^{2} \mu r} \int_{d N}^{\infty} \int_{N}^{\infty-\beta^{2 x}(1+\mu x) Y(x)}\left\{\cosh z-\frac{\sinh z}{z}\right\} \tag{AI.9}
\end{align*}
$$

where z is defined by (A1.8). For small r, $\}$ in (A1.9) may be expanded as $\left\}=z^{2} / 3+\ldots\right.$. Therefore (A1.9) vanishes at $r=0$. The integrals (A1.7) and (AI.9) have been evaluated numerically.

APPENDIX 2

EXPRESSIONS NEEDED IN TIE CALCULATION OF THE THREE-PION-EXCHANGE AN FORCE

The explicit form of the expressions (4.32) are given by ${ }^{\dagger}$

$$
\ldots(\text { A2.1) }
$$

$$
D\left(x, x^{\prime}\right)=\frac{(4 \pi)^{2}}{3}\left[3 f_{N}^{2} f_{\Lambda}^{2} \frac{{ }^{G} \Delta O\left(x, x^{\prime}\right)}{\Delta}-3 f_{N}^{2} E_{\Lambda}^{2} \frac{{ }_{N}^{\omega} 0^{\left(r, x^{\prime}\right)}}{\omega}+\right.
$$

and

$$
\begin{aligned}
& Z\left(x, x^{\prime}\right)=-\frac{(4 \pi)^{2}}{3} \quad\left[3 f_{N}^{2} f_{\Lambda}^{2}\left(F_{\Delta 0}\left(x, x^{\prime}\right)+\frac{I}{\Delta} G \Delta 0\left(x, x^{\prime}\right)\right)+\right.
\end{aligned}
$$

with

$$
F_{\alpha \beta}\left(r, r^{*}\right)=\frac{1}{2(2 \pi)^{3}} \frac{1}{r r^{4}} \int_{0}^{\infty} d k \frac{k \sin k\left(r+r^{r}\right)}{\omega^{2}(\omega+\alpha)(\omega+\beta)} \ldots(\mathrm{A} .4)
$$

and
$G_{\alpha \beta}\left(r, r^{\prime}\right)=\frac{1}{2(2 \pi)^{3}} \frac{1}{(\alpha+\beta)} \frac{1}{r r^{\prime}} \int_{0}^{\infty} \alpha k \frac{k \sin k\left(r+r^{\prime}\right)}{(\omega+\alpha)(\omega+\beta)}\left(1+\frac{\alpha+\beta}{\omega}\right)$

$$
\ldots(A 2.5)
$$

APPENDIX

CALCULATION DETAILS ON TIE EFFECT OF THE THRDE-PION-EXCHANGE ANT FORCE ON Λ^{He}

The reduction of the integrals (5.16) and (5.17) can be done as follows. The z_{k} integration is first considered. Take x_{m} as the z-axis and the plane defined by $x, \underset{m}{x} \wedge$ as the $Z-X$ plane. In this frame, polar coordinates for z are defined by

Next the $\underset{m}{ }$ integration is considered. ${\underset{m}{n}}^{\sim}$ is chosen as new Z-axis. Polar coordinates for $\underset{m}{ }$ are :

$$
\begin{equation*}
{ }_{\mathrm{m}}^{\mathrm{x}}=\left(\mathrm{x}, \theta_{\wedge \mathrm{x}^{\prime}}{ }_{\mathrm{x}}\right) \tag{A3.2}
\end{equation*}
$$

Consequently the product $\rho\left(r_{1}\right) \rho\left(r_{2}\right)$ can be written:

$$
\rho(|r n+x|) \rho\left(\left|x_{m}^{r} \Lambda+\frac{x}{m}-z_{m}\right|\right)=\left(\frac{\beta^{2}}{\pi}\right)^{3} e^{-2 \beta^{2}\left(r_{\Lambda}^{2}+x^{2}\right)} x
$$

$$
\begin{equation*}
e^{-4 \beta x x_{\Lambda} \cos \theta} \Lambda x \quad e^{-\beta^{22}} \cdot e^{-2 \beta^{2} b z} \tag{A3.3}
\end{equation*}
$$

where

Then the integrals (5.16) and (5.17) become

$$
\begin{align*}
& P\left(r_{\Lambda}\right)=48 \pi\left(\frac{\beta^{2}}{\pi}\right)^{3} e^{-2 \beta^{2} \Lambda^{2}} \int_{d}^{\pi} d x x^{2} S^{\prime}(x) \int_{-1}^{+1} d v e^{-4 \beta^{2} x \Lambda^{r} w} \\
& \int_{0}^{\pi} d \varphi_{n_{4}}^{+1} d v i d, \tag{A3.5}
\end{align*}
$$

$$
\begin{aligned}
& \underset{T}{P}\left(r_{\Lambda}\right)=48 \pi\left(\frac{\beta}{\pi}\right)^{3} e^{-2 \beta^{2} r_{\Lambda}^{2}} \int_{d}^{\pi} d x x^{2} W_{N}^{\infty}(x) \int_{-1}^{\infty} d w e^{-4 \beta \cdot x r^{2} w} \\
& \int_{0}^{\pi} d \varphi \int_{-1}^{+1} d v\left(3 v^{2}-1\right) I_{T z} \wedge N \quad \ldots(A 3.6)
\end{aligned}
$$

Here $v=\cos \theta, v=\cos \theta$ and (with unit $\mu=1$)

$$
\begin{equation*}
x\left[2+\sqrt{\pi}\left(2 \beta b-\frac{1}{\beta}\right)\right] \tag{A3.7}
\end{equation*}
$$

$$
\begin{equation*}
I_{T z}=I_{I}+I_{2} \tag{A3.8}
\end{equation*}
$$

$$
\begin{align*}
& I=\int_{d_{N N}}^{\infty} d \hbar(z+3) e^{-\beta^{2 z}+\left(2 \beta^{2} b-I\right) z} \\
& =\frac{e^{-\beta \alpha^{2}}}{4 \beta^{2}}{ }^{\operatorname{NN}} e^{\left(2 \beta \beta^{2}-1\right) d} \operatorname{NN}\left[2+\sqrt{2}\left(2 \beta b-\frac{1}{\beta}+6 \beta\right)\right], \ldots(A 3.9) \\
& I_{2}=3 \int_{d N N}^{\infty} \frac{d z}{z} e^{-\beta^{2 z} z^{2}+(2 \beta b-1) z} \tag{A3.10}
\end{align*}
$$

Thus the integral (5.26) is reduced to a four-dimensional integration (A3.5 with A3.7) which is done numerically. Similarly the integral (5.17) is split into a four-dinensional (A3.6 with A3.9) and five-dimensional (A3.6 with A3.10) integral, both of which are done numerically.

APPEIDIX 4

THE VALUES OF NUMERTCAL CONSTANTS USED IFRROUGHOUT THE COMPUMATION ARE GATHERED HERE

The mass of the pion is token to be

$$
\mu=137.28 \mathrm{Mev}=0.6939 \mathrm{fm}^{-1}
$$

The units $\nmid=c=1$ are used.
Velues of other constants are :

2		
$\mathbf{f}=0.08$	π TNT	coupling constant
N		
2		
$f_{\wedge}=0.08$	$\pi \Sigma \Lambda$	coupling constent
-1		
$\Delta=0.389 \mathrm{fm}$	$\Sigma-\Lambda$	mass difference
2		
$g g_{\Lambda}=0.047$	$\begin{gathered} \pi X^{*} \Lambda \\ 1 \end{gathered}$	coupling constent
-1		
${ }^{\omega}{ }_{\text {n }}=1.24 \mathrm{fm}$	$\begin{gathered} Y^{*} \\ \hline \end{gathered}$	resonance energy
2		
$g=0.057$	$\pi N^{*} \mathrm{~N}$	coupling constant
N - -		
$\omega=1.27 \mathrm{fm}^{-1}$	N^{*}	resonance energy
N		
$\mathrm{p}_{\mathrm{m}}=6 \mu=4.286 \mathrm{fm} \quad \text { cutofi monentua }$		
$\beta=0.85056 \mathrm{fm}$		cofficient used for the
		normalized density distribution
		for the nucleons in ${ }^{5} \mathrm{He}$
$\mathrm{k}=1.36 \mathrm{fm}^{-1} \quad$ Fermi momentum		
$\mathrm{I}^{=}=1.36 \mathrm{~mm}$		Fermi momenta
$\rho=0.170 \mathrm{fm}^{-3}$	99	density of nuckear nattex

Abou-Hadid L. F. 1962 Nuovo Cimento 28, 1169.
Alexander G. et al 1966 Phys. Letters 19, 715.
Alexander G. et al Phys. Rev. 173, 1452.
Ali S., Grypcos M. E. and Kok L. P. Phys. Letters 1967 24 B, 1671.
Amati D, and Fubini S., Ann. Rev. Nucl. Sci. 1967 l2, 359 , see Section 10. Arndt R. A., Bryan R. A. and Macgregor M. H. 1966 Fhys. Letters 21, 314. Bach G.G 1959 Nuovo Cimento 11, 73.

Bhaduri R. K., Nogami Y. and Van Dijk W. 1967 Phys. Rev. 155, 1671.
Bhargava P. C. and Sprung D. W. L. 1967 Ann. Phys. (N.Y) 42, 222.
Bodmer A. R. and Sampanthar S. 1962 Hucl. Phys. 31, 251.
Breit G. and Hull M. H., 1960 Nucl. Phys. 15, 216.
Brown G. E., Green A.M. and Gerace W. J., 1968 Nucl. Phys. Al15, 435.
Brueckner K. A. and Masterson K. S. 1962 Phys. Rev. 128, 2267.
Bryan R. A. and Scott B. L. 1964 Phys. Rev. 135, B 343; 1967 Phys. Rev. 164, 1215.

Chalk 111 J. D. and Downs B. W. 1963 Phys. Rev. 132, 2727.
Cham C. H. and Meire F. T. 1968 Phys. Rev. Letters E0, 568.
Chew G. F. and Iow F.E. 1956 Phys. Rev. 101, 1570.
Cottingham W. N. and Vinh Vau R. 1963 Phys. Rev. 130, 735 .
Coury F. M. Frank W. M. 1963 Nucl. Phys. 46, 257.
Cziffra P., Macgregor M. H., Mosavcsik M. J. and Stapp H. P. 1959 Phys. Rev. 114, 880.

Dalitz R. H. 1.965 "INuclear interactions of the Hyperons" (oxford

University Press); July 1966 'Hypernuclear Physics'! Lectures given at the international scool of Physies 'Enrico Ferni''. Davies B. 1967 Nucl. Fhys. A 103, 165.

Deloff A. and Wrezecinko J. 1964 Nuovo Cimento $34,1193$.
Delves L. M. and Blatt J. M 1967 Nucl. Phys. A 98, 503.
Downs B. W., Smith D. R. and Truong T. N. 1963 Phys. Rev. 129, 2730.
Friesen P. H. 1968 M. A. Thesis University of Saskatchwan.
Friesen P. H. and Tomusiak E. L. 1968 to be published.
Fubini s. 1956 Iuovo Cimento 1956 3, 1425.
Fujita J. and Miyazawa H. 1957 Progr. Theoret. Physics (Kyoto) 17, 360.
Gajeroski W. et al 1967 Nucl . Phys. BI, 105.
Gal A. 1966 Phys. Rev. 152, 975; 1967 Phys. Rev. Lécters 18, 568.
Hamilton J. and Woolcock W. S. 1963 Rev. Mod. Phys. 35, 737.
Harrington D. R. 1966 Phys. Rev. 141, 2494.
Herdon R. C. and Tang Y. C. 1967 Phys. Rev. 133, B 5.24.
Iwadare J., Otsuki S. and Tamaki R. 1956, Suppl. Progr. Theoret. Phys. (Kyoto) Ho 3 .

Konuma M., Miyazawa H. and Otsuki 1958 Prog. Theoret. Phys. 19, 17.
Kwan Kim J. 1967 Phys. Rev. Letters 20, 568.
Martin A. W. and Wali K. C. 1963 Phys. Rev. 130, 24.55.
Mc Kellar Bruce H. J. and R. Rajaraman 1968° Phys. Rev. Letters 2l, 450.
Miyazawa F. 1956 Phys. Rev. 104, 1741; 1957(Fujita J. and Miyazawa H.) Progr. Theoret. Phys. (Kyoto) 17, 360.

Nogami Y. and Bloore F. J. 1964 Phys. Rev. 159, 853.
Nogemi Y., Ram B. and Zucker I. J. 1964 Nucl. Phys. 60, 451. Nyman E. M. 1967 Phys. Rev. 159, 782.

Ohmura T., Morita M. and Yamada M. 1956 Progr. Theoret. Phys. (Kyoto)

$$
\text { 15, 222; } 1957 \text { Progr. Theoret. Phys. (Kyoto) 17, } 326 .
$$

Pask G. 1967 Physics Letters 25 B, 78. Quang Ho-Kin 1966 Nuovo Cimento 4, 1148. Raman K. 1966 Phys. Rev. 149, 1122; Frrata Phys. Rev. 152, 1517. Rimpault M. and Vinh Mau R. 1965 Huovo Cimento 35, 85. Rosenfeld A. H. et al, 1967 Rev. Mod. Phys. 39, 1. Samarayanare V. K. and Woolcock W. S. 1965 Phys. Rev. Letters 15, 936. Smith R. C. and Sharp R. T. 1960 Can J. Phys. 38, 1154. Spitzer R. 1958 Phys. Rev. 110, 1190. Tomozawa y. 1966 Nuovo Cinento 46A, 707. Uehara M. 1960 Progi. Theoret. Phys. (Kyoto) 24, 629. Weinberg s. 1966 Phys. Rev. Letters 17, 616. Weitzner H. 1958 phys. Rev. 110, 593.

