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ABSTRACT

An implicit finite difference technique has been
developed for tre solution of thke steady two dimensional
boundary lsyer equetions.

The numerical methoﬁ is free of stebility limitations
and similarity assumptions. Use has been made of Wu-type
starting profiles which enable one to start the calculation
from the leading edge.

Attrzctive features of the technique are its
simplicity, flexibility and applicability to a wide range of
boundary layer problems. In addition, results obtained from

several case studles indicate that the numerical procedure

1s both accurate and fast.
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1. INTBRODUCTICN

The Navler-Stokes equationé of motion constitute
the corner stone of the science of fluid mechanics. Much
research work has been devoted to the solution of these
equations in two limiting cases of considgrable practical
importance: the flow of fluids at small Reynolds numbers
and the flow of fluids of small viscosity 2t high Reynolds
numbers, |

The boundary leyer theory has proVed guite useful
in investigating flow types of thé latter case., Much time
and effort has been spent over the.past decades to obtain
solutions of the boundary layer equations. Vearious methods
of solution have been examined: amalytical, approximate and
nunerical,

The purpbse of this report 1s to describe a.
numerical technique for the solution of the steady two
dimensional boundary layer equations snd eveluate the
coﬁvergence, aocﬁracy and speed of the finite—difference'
method.,

This report is divided into three main secticns,

In the first section the underlying principles of the
boundary layer theory are outlined, and methods of solution
proposed earlier are discussed., In the second section, the
implicit finite-difference method is described, and in the
third sectibn, geveral boundary layer problens afe exanined.

1



2. THEORETICAL BACKGRQOUIND

2.1 TEE BOUNDARY LAYER CONCEPT

: In the beginning of this century, L. Prandtl (R1)
showed how it was possible to gnalyze viscous flow problems,
precisely in cases where viscous effects are important. He
suggested that the flow about a solid body could bhe divided
into two regions: a very thin layer in the neighbourhood of
the body where friction plays an important paft and the -
rémaining region outside this layer where friction effects may
be neglected. ©Several simple experiments performed by him
confirmed the predictions based on this hypothesis.

The boundary layer concevt as set forth by Prandtl

.proved quite effective a tool in the investigation of viscous
flows. One can jﬁstifiably.say tﬁat the rapid developnents
in aerodynamics during the past decades are largely:due to

the better understanding of boundery layer type flows.

2.1.2 The Velocity Boundary Layer

Consider the motion of water along = thin flat

plate (Figure 1):
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Figure 1

Il1lustration of Boundary Layer Development

Experiments {(for example, sprinkling of particles on tﬁe
surface of the water, to make the streamlines visible) show
that tﬁere is a very thin layer around the plate, in which
the velocity is considerably smaller than the free strean
velocity. The thickness of this lsyer increases in the
downstreamrdirection‘along the plate.

This layer where the fluid moves with a smaller
velocity than that of the main portion of the fluid away
from the plate, is called the (velocity) boundaryllayer.’

The thickness of this boundary leyer decreases with
decreasing viscosit&. HoweVer,‘even'with very small vig-
cosities, the frictional shearing stresses in the boundary
layer sre consliderable, because of the large velocity
gradients across the flow, whereas outside the boundary layer

these stresses are very small, This picture of the flow

field suggests that for purposes of nathematicsl analysils,
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the flow of fluids of small viscosities around solid bodies
can be divided into two reglons as outlined in the beginning.
Frqm_the mathematical viewpoint, such a division enables one
to sipplify considerably the equations describing flbw
situations of the type discussed. Solutions of the simpli-
fied equations have been found to describe with adequate
accuracy the motion of fluids of small viscoslity around -
solid bodies, and in a variety of cases the results have

been verified experimentally.

2.1.p The Temverature Boundary Layer

Whenever the me2in stresm temperature differs fron
the temperature of thé rigid boundary, one can talk of a

temperature (thermal) boundary layer. This means that in

‘such a case the temperature field is considered to be of the

boundary layer tyﬁe, il.e., %here exists a narrow zone in the
neighbourhood of the body where temperature effects are of
importance, whereas the regions beyond thils zone are essen-
tially unaffected by the different body temﬁerature. In-
particulsr, this is the case when the thermal conductivity
of the fluid is small (gases, 11qﬁids). In such cases there
1s a steep temperature gradient at the wall, end the heat
flux due to conduction is df the same order of magnitude as

that due to convection, only in a thin layer adjacent to the

wall,



A temperature boundary layer develops also in the
case where a body is immersed in a fluid of equal tempera-
turé, flowing at a high RBeynolds number. The high velocity
gradients across the boundary layer lead to degradation of
energy through dissipation énd, consequently, to large
temperature gradients. In this case 1t 1s to be expected
that temperature gradients will be important only within the
velocity boundary layer, because the quantity of mechanical
energsy that is transformed into heat throuzgh friction is
importent only there. |

The concept of a thermal 5oundary layer that is
formed in conjunction with the velocity boundary layer,
facilitates the analysis of the flow situation, in that 1%
makes possible a simplification of the energy eaquation,
sinilar to that of the equetions describing the motion of

the fluid.

2.2 RECENT DEVELCPMENTS

For clarity, the underlying concepts of the boundary
layer theory, which enable one to simplify the equatiohs
describing the flow field of a fluid of small viscosity past
a so0lid body, are sumnmarized below (similsr remarks apply
to the temperature field):

There are two regions to be considered:
a) A very thin layér in the immediate vicinity of

- the body in which the velocity gradient normal



to the wall is very lasrge (boundaery layer).
In this region the very small viscosity of.
the fluld exerts an essentlsl influence in so

[ far as the shearing stresses T = ( Ou/ Qy)
{may assune large values.

b) In the remaining region, no such larse
vel&city gradients occur and the influence
of viscous forces is unimportant. In this
region, the flow is frictionless and the .
flow field is the same as that of the un-
disturbed flow,

The divisicn between the above fwo regions is not
very sharp, snd indeed, there is no exact defirition of the
_thickness O of the boundary lsyer. It (the thickness) is’
conceived as the distance f?om the body, measured in the
direction normal fo it, beyoﬁd which viscous effects can be
neglected. A defiﬁition of 5, suitable for mathematical
purposes is: 5 is the distance from the quy where the‘
velocity is equal to 99% of its free stresm value., As a’

first approximation it can be shown (R2) that
504\[_7

The curve u(x) =U, defines what is known as the outer edge
of the boundary layer.
The fluid is considered to adhere to the wall, i.,e.,

there is.no slip at the wall, The transition from zero



lonéitudinal velocity at the wall té the full magnitude at
some dlstance from it takes place smoothly in the boundary
layer.
| It is worth noting that Prandtl's boundary layer

assunptions, as outlined before, have been subjected to
‘re-examination lately (R3). It was found that with increas-
ing speed of flow, one had to consider thé influence of the
curvature of the wall (longitudinal and transversal curvature
of the wall are neglected in the original formulation),
of vorticity of the outer flow, re-examine the condition of
no slip at the wall, and also consider the possibility of a
temperature Jjunp at the wall,

An attenmpt to put Prandtl's original suggestions in
a more rigorous mathemstical formulation was made by
Langestron and Van Dyke (B4, R5). The basic jdea remains that
of stronger viscous forces in the neizhbourhoed of the wall.
It is assumed that the solution of the boundary layer
equations can be achieved by use of two expanslions in a
vparameter £=:1/V§;‘. One of the expansions 1s based on the
wall situation and one on the conditions far from fhe body.
Both expansions should be convergeht and have a region‘of
overlap, where the results obtained from both expsnsions have
to be matched, There are still no proofs that the matching
of such.two series can always be achieved (R5, R6). Inter-
esting results concerning the influence of curvature, of

outer vorticity, of slip veloclty and temverature juap at the



wall have been obtained. Clearly, however, the formulation
of such a "second order” boundary layer theory has not.been
completed as yet, although Goldsteln (R7, R8) has already
applied successfully a "third order" theory for the solution
of the boundary layer flow over a seni-infinite flat plate.

Prandtl's theory is viewed upon as a "first order"
theory, in the respect that the equations.derived represent
the first term in a.series‘expansion in ¢ . Terms of
order €& or higher are nezlected, while in the second order
theory, terms of 0(¢ ) are retained. It is then expected
that solutions based on the second order theory will be
valid for lower Reynolds numbers (R9).

The numerical solution of the boundary layer
equations presented in this report is based on the boundary
layer concept as fornulated by Prandtl. Furthermore, the

discussion_will be limited to Newtonian fluids.

2.3 THE BOUVDARY LAYER EQUATIONS

The equations describing the steady two dimensional

flow of a compressible Newtonlan fluid are:

Equation of motion

x-direction

ou 2 ev%—%:-%ﬁ--—l— a’i (y%iﬂfy ( %‘;) (1)



y-direction

Dv Dv_ oo ‘ '
e TR AT Qy'FOX (‘L (Y“._ (2)

Energy equation

v

T T a %T 9,97y, Dp ., 9Dp
Cplu +.v + X +uEEs + Ve +
e‘p( X y) DX QX) ( Dy) ox Dy 7 (3)
where § 1s the dissipation function defined as
2 2
g=2 93.) +(?.X.) + 4 91,2 —?( 4+ 9% (4)
ox Oy TSy 3 T3y
Continulty equation ”
I(eu), Aev) 4 (5)
Idx - Oy
Equation of state. TFor an idesal gas
p = PRI | (6)

The derivation of the boundaiy layer equations from the set

L

of eguations (1-6) will not be shown here. Schlicﬁting (r2)
derives them by estimeting the order of magnitude of the
individuval terms. The possibility exists to arrive at the
same simplified eguations directly, in a purely mathematical
way without the adoption of physically plausible concepts
(R9, R10, R11).

1 The basic assumptions involved are:

1. The thickness 5 of the boundary layer is very
small compared to a characteristic length L of

the body.
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2. The Reynolds nunber based on the main flow
conditions Re=U,L/p, is very large and of the
order ’

Be:O(l/gz)
This assumption is necessary in order that the
viscous forces in the boundary 1éyer can he-

cone of the same order of magnitude as the

inertial forces.

The following conclusions can be drawn (flow

x-direction):
a) Equation of motion (Equations 1, 2)

1. E)Zu/ Dy? isl of the order 0(1/ 2"2) Whereas

02u/ Dx2 1s 0(1). Therefore ‘azu/ Ox2 1in
(1) is neélected_ against 9%u/ Dy?.

2. .Inf‘erring that Op/ dy is. 0( &), the
pressure gradlent across the boundary
layer which would be ébtained by integra-
ting (2), 211 of the terms of which are
O(g) or less, would be o(§2), l.e.,
very small, Therefbre, the pressure
across the boundary layer is considered
constant and hence egual to its value
for the frictionless main flow,

- 3. Since all terms of the equation of

in

10

(7)

the
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motion in the y-direction (2) are o(%)
or less, the whole egquation is discarded.

b); EQuatidn of energy (Equation 3) _

- - 1. The term D21/ 9x%x2 can be neglected

' against D27/ 3;{2.

2. In order that the remaining conduction
‘term can become of the sane ordér of
nmagnitule as the convection term, the
group RePr (where Pr is the Prandtl
number based on the free strean COnditions,
Pr:Ke/CpeYLe) must be O(l/%%), where ST
is the dimensionless thickness of the
thernal bouﬁdary layer, §2P= 5T/L.

3. In the expression for the dissipation
function (4) only the term (Eﬁu’ay)z is
signifibant.

{L. The frictionsl term u dp/ Jdx is importent.
only if the Eckert number E::Ug/ Cpe(Ty - Te)
is 0(1) whereas the other frictional ternm
vIdp/ Ix is neglected.

The. simplified equations, known as the boundary
layer eguations are:

Continuity
a(eu)+_9(pV)
DX Qy

=0 (8)
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Motion, x-d4irection

du Qu__dp, O (,9du o
pus—+ PVay dx+,’3y(\"ay) (9)
Energy
. AT 9T, _  dp . Z)u
Cpr(uES;+-vEGF)»~§?E; 3 (I—nu) Y (10)
State
© =p/RT (11)

These equations are supplemented by expressions
for the viscosity and the thermal conductivity as functions

of temperature of the form

YL:fl(Tf | (12)
K =fy(T) | (13)

Equations (8) through (10) form a system of partial
differential equations of the parabolic type (R12, R13) in
three unknowns u, v, T. (The pressure is considered knowﬁ
and E); v,, K can be replaced by their correspondlng functions
of T.) Theoretically, the above system of three differential
equations in three unknowns, along with appropriate boundary
conditions can be solved to yileld ekpressions for u, T, and wv.
However, the exact analytical‘solution of this set of eguations
without any éssumptions as to the nature of the solution is
In practice a formidable task, Only in o limited nunber of
speclal cases has an analytical solwuticon become available

(R2, R1L).
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Before proceeding further, the boundary layer
equations for incompressible flow will be given here, in
order to avoid ambigulty, since many a time reference will

be made to these eguations.

Continuity |
%g%*'%g§==0 | | (8a)
Momeﬁtum |
A A U
Boundary conditions -
y=0 u=0 v=0
y—= b » u::Ue

2.b BOUNDARY CCNDITICNS

The usual boundary conditions imposéd on the equations
(8) to (10) are: .
a) y-» o6, all x:
u-—->Ue and

T-—»Te

i.e., 2t a sufficiently large disgtance from the
solid boundary the flow and temperature fields
are unaffected by the.presenoe of the body.
b) y=0 (wall)
1. Assuming nb slip: u=0
2. Assuning no. temverature junp: T::Tw(x), specified.

) =0

IfAthe wall is adiabatic: ( 0
y::

a3 \u
< i3
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3. If the wall is impermeable v=0, Otherwise,
the normal velocity component may vary in
any specified way as a fﬁnction of x of the
form v=v,(x).

The condition of no slip at the wall needs some nore
attention (R15). This condition has been veriiied experiment-
ally, and 1t is a generally acceptable oné for most cases as
the fdllowing argument shows: However smooth a solid surface
may sppear it will always contain minute »rojections and
cavities, where some fluld 1s trapped. S3Still, as far as
fluid flow is concerned, such trapped fluid can be regarded
as forming part of the surface and.it does not move in the
direction of the flow, If this fluid were moving,'then one
would expect extremely large values for the shear stress at
the wall, but such values have never been observed,

There exist situations where the no-slip condition ié
violated, for example when a fluid flows over another with
which it does not mix (because the "wall" is able to move
when stresses are applled to itL and also when a gas is at a
very 1ow{pressure. In the latter Qasé however, the gas can
no 1ongef be treated as a continuum. Besides, the Navier-:
Stokes equations of motion are valid only if the character-
istic length scale 1 of the flow is nuch larger than the nean
free path z of the molecules, i.e., z/l<K 1 (R10). For
boundary layer flows the significant length scale is the

thickness é; of the boundary layer, and to a first approximation
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1
SoCBez,whereas

P (0¥ B
z Cs ( 2 )

Cs = speed of sound

LR (specific heat ratio)
Cv

oK
n

Hence, one gets

M/R§<§1

where 1 =U,/Cs is the Mach number.

It can be shown (R10) that this condition is equivalent to

the condition that the boundary layer assumptions hold.

2.5 DBOUNDARY LAYER PARAMETERS

Important parameters in the calculation of the

boundary layer are:

-~ a)

b)

Displacenent thickness, 51. It is defined by the

relation
é .
d1 = ( (1--2)4ay | (14)
y:o Ue

The displécement thickness indicates the distance ﬁy
which the external stresmlines are éhifted, owing to
the formation of the boundary layer., It provides a
more accurate measure of the boundary layer than the
boundary layer thickness, whose definition is
arblitrary.

Shear stress at the wall. It is defined as


http:accura.te

16

T= Pl 22, | (15)

where \1 Is the wviscosity of the fluid and-the
'}~sub30r1pt w denotes wall values. The shear stress

\at the.wall is an important design characteristic
for most applications. It is for this reason that
ﬁost results of calculation of boundary layers are
réportéd in the literature in terms of the wall
shear, -

¢) EHeat flux at the wall., At the boundary between
the fluid and the body, the transfer of heat takes
place by conduction only (radiation effects are

ignored). The heat flux is then

The heat flux at the wall it of snalogous impor-

tance to design, as the shear stress.

2.6 PRESSURE GRADIENT AND SEPARATION

The prescsure in the boundary layer has been assumed
constant for all y. It is a function of the external
Velocity field ohly. The precise form of thié relationship
can be derived by replacing .the velocity u by the main strean
Velociﬁy Ug in the Navier-Stokes eguation of motion in the

x-direction. For ponstant properties, Equation (1) then reads

"aﬁe AVe _ 1 dp aZUe bZUe
Vegw ey =T pax TV Gt o (17)
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Since we are concerned with the flow outside the
boundary layer the derivatives of Ue with respect to y are
negligible according to the fundamental boundary layer

concept. Then (17) reduces to

aUe _ 1 dp 'ate
Vepx =~ p dx T (18)

2
. U
For most boundary layer flows the term %%;éi nay

be neglected azainst the other terms in (18), so one
finally obtalins

au
L (19)

i

which is the required expression for the pressure gradient.
If the externzl flow 1s one of constant velocity, 1l.e.,
Ug = const., then obviously, there is no pressure gradient.

he phenomenon of separation of theAboundary layer
l1s connected with the existence of an adverse pressure
gradient. It occurs primarily neaf blunt bodies such as
cylinders and spheres. Behind such a body there exists a
region of strongly deceleréted flow. In this rezion the
retarded fluld vnerticles cannot penetrate far into the fegion
of increased pressure owing to their small kinetic energy.
The thickness of the boundary'layer increases considerablyvin
the downstrean direction and the flow in the layer is
reversed. This causes the decelerated particles to be forced
outwards and the boundary layer separates from the wall,

Separation is assoclated with the formstion of vortices and
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large enérgy losses in the wake of the body. In general, the
fluid particles behind the point of separation move in the
direction of the pressure gradient, i.e., opposite to the
external flow, Figﬁfg 2 represents the picture of the flow

field near a point of separstion.

. /f/v></,
/
— -
- P T

= ~7 /:*/////
: -+ — T ul .~ 7/ 7
—r7--7 A

Fe - — s -

‘ 5

Figure 2. Flow in the Boundary Layer Near

a Point of Sepsaration, s.

The point of separation is defined as the point of
the reversal of flow in the irmmediate neizhbourhood of the

wall, MatheﬁatlcQ1ly, it is defined as the voint on the wall

where
au)

| (20
ayyo0 (20)

and obviously, the skin friction T, =0 there as well.

Separation occurs invariably when an adverse bressure gradlient

-§§-> 0) exists.

2.7 VALIDITY OF THE BCUNDARY LAYFR EQUATICNS

It has already been mentioned that the boundary layer

equations are valid provided that the Reynolds number is
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sufficiently large, so that az/iaxz terms can be neglected
against‘the J?/ OJy? terms. Clearly this assumption is not
valid near the leading edge, where‘steep changes in the
X-direction occur,

A rough estimate of the distance from the lesading
edge where the boundary layer equation msy be expected to
hold, may be obtéined after some elementafy algebra. For the
case of the flat plate it was found (R16) that the thickness
O of the boundary layer varies as the square root of the
distance x, from the leading edge

SDCE. (21)
Ue
One finds that if Re is 0(109) then ommision of the ?92/23x2
terms will lead to an error of 0(10~2) or less from &
dimensionless distance x/LZy 0.1. If Re is 0(106) then for
the same X the corresponding error would be reduced to 0(10~3).

It should be mentioned that laminar flow over a flat
plate will prevail for Re <:5 x 102 (R2). For Vaiues of
Re > 106 the flow becomes turbulent. FLowever, it has been
proved that several technliques (for instance cooling of the
wall or suction) cen be used to keep the flow laminar at much
higher Reynolds numbers (R17).

In the region close to the leading edge, where the
Prandtl boundary layer equations do not apply, the problem of
flow can be solved only by considering the full Navier-Stokes

equations.' In the past few years this problem has been
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delved into by several inves gators who applied perturbation

expansion techniques (R9, R18, R19).

2.8 STARTING PRCFILE

Some renarks need to bhe made concerning starting
(initial) profilés. The momentun and energy eguations are
partisl differential equations of the parabolic type, 2né, in
order to start the numerical integration of such eguations
one needs, in addition to the houndary conditions, initial
profiles, i.e., setgs of values of u and T at all zrid points
‘along a line <*Dec*“1ef1 at a location x=13X5 1In the x-¥y plane.
The integration of the equations 1s achleved by use of a

marching procedurs, Xnowing the u and T values along the line

X =X, one may proceed to find the corresponiing values on a
line x=%xq located one step further downstream, and so on.

The qguestion of the cholce of sterting profiles has
not been dealt with in detall in the literature. This is
sonewhat surprising, since it 1s zenerally knoun that differ-

Py

ntial equations of the parsbolic tyre describe physicsl .

,.J.
a0
pury

ions

st

inere dounstrezn conditions are uniquely deternined
from glven upstrean and boundary conditions (R62, R63).

Stated differently, this mesns that there exists a
solution of the equations which contains the starting profiles
as interior, i.e., not starting, profiles (R9). Clearly,
starting with such profiles at a location X:éxo would be

tantanount to assunming that particular solution that yields
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these profiles at the locatlon x,. The éontinuation of the
solvution further downstream would be uniquely determinédvby
the‘bouﬁdary conditions of the problem in hand.

| One then is faced with the problenm of Tinding
sultable profiles to start the nunericsl computatiéns. One
has to either obtain them experimentally or use profiles
obtained by some other method. In the latter case, the
problem actually solved is that of the continuation of a
known solution. |

However, problems arise when the flow situation
presents a discontinuity ahead of the initial station Xé.

In this case, iIf a starting profile is adopted that does not
take this discontlinulty into account, one would expect that
the solution obtained farther dounstresm would be unaffected
by the presence of the édiscontinuity. In other words, the
solution would be identical to the solution of the problem
without the discontinuity.

One way of getting around this difficulty is to
carry out experiments end obtain the actual profiles as -
meacsured at some distence downstream from the discontiﬁuity.
'Computation can then be started usiﬁg these profiles.
However, such exverimental work is time consuming and in nost
cases quite tedious. Besides, one would have to perform such
experiments for every psrticular type of flow,

The only other way to treat this problem is to start

right from the leading edge utilizing the actual boundary
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conditions there, as starting profiies. Of course, it is
well knqwn that the Prandtl boundary layer eguations are not
valid in the immédiate neighbourhood of the leading edge,
because, as it has already been shown, there exist large
gradients in the x-direction, which cannot be neglected as
it i1s done in the derivetion of the equations.

Wu (EL2) has demcnstrated, howeVef, that use of such
sterting profiles leads to_solutions at least as accurate as
results obtained by methods using "similer" solutions,
aveilable at a particuler location X, &s starting profiles.
Conmmentings on the use of the Wu-tyve profiles, Blotther and
Fiuegge-Lotz report (RL3) ‘

a) It is generally o serious problem to obtain
starting profiles. This problem is mininized
when similar solutions are sought, since
similarity solutions are available in many

cases.,

b) Wu-type initial profiles lead- to numerical
solutions which are close to the exact solutions.

Wu's nmethod (R42) is an explicit finite difference
one, and in this.case care must be taken that the proper
mesh sizes are chosen, During the course of the present
"study, the possibility of using Wu-type initial profiles
with the proposed implicit fihite difference nmethod has beén
investigated., It was found thst the results were sufficlently
accurate for both similar and non-similar flow situations at
small distances from the leading edge. Therefore, Wu-type

starting profiles have been adopted throughout the computation
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of solutions of the boundary layer equations to be reported
in the 1ast section,

It is clear from the foregoing discusslon that use
of éuéh starting profiles has the added advantage of
proviéing solutions to boundary layer problems wherg a
discdntinuity exists (for exenple, impulse suction or
injectionj near the leadinz edge. The acéuracy of the
results was verified in seversl flow cases exXanlined during
this study; .

_ The following are referred to as VWu-type startiﬁg

profiles:

"a) The velocity u and temverature T are free-strean
values at all the grid points across the layer
except at the wall.

b) At the wall the velocity u is zero (no slip
condition),'and the teﬁperature corresponds to
the well temﬁerature.

¢) The normal veiocity component, v, is assuned
zero at all the zrid points scross the boundary

layer.

2,2 COMPATIBILITY CONDITIONS FCR STARTING PRECFILES

_In the case where other than the Wu-type initisl
profiles are used at a station X5, in order to continue a
Xnown soclution farther downstresm, the starting profiles

" have to satisfy certain conditions known &as "ﬁhe conpatibllity
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conditicns at the wall" (R2, R52).
The incompressible boundery layer equations are

written as

aU_' aV' .
3% oy O | (&n)
.au' .au' _ _ Dzu'
b ax'-+v dy! == & ay2 (90)

with boundary conditions

In these equations the following dimensionless variables

have been introduced:

u':...p'...
Ue
v'=-t R
U, ©
X',':—z{—-
L
y'={— Re
p
p'=
)
P-Ue
o =dp_
- ax!
U_L
Re = emSe
©= 5

An expasnsion of the prescribed velocity profile ul(x,y) in

powers of y is assumed, the expansion being
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u(X,y)=aly+§%y2+-§~:iy3+... (22)

where the coefficients ai, 2, 83 are functions of x. From

(8b)'énd (19) one obtains a series expression for v:

K

4 5 |
2+ ~3-%—y3+-2;?—yu-+ ve e '- (23)
where a dot denotes differentiation with'respect to x.
Substituting (22) 2nd (23) into (9b) one obtsins the

following conditions that the coefficlients 814 89, ... ust

satisfy: ”
aq free
8,2 = O

2), = a,4,, hence free
a5=2a19
36;—_29é
l'li - . 2
a7=:«a1 a-aqaq , hence free
_ 2.‘ . Q .0 ‘ . 2 o
= , 9(a ‘
ag 10aq1"6 - 13a1aq + (ala1+al bEi

89 = L’«Oaleé. - 168.1é2

In sum; only the coefficlents ay, g, a7, 210 etc., sre free

(they depend on the choice of aq only) while fhe remaining
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coefficients are connected with them thraugh the comvatibility
conditions. |

‘Furthermore, as it was shown by Prandtl, in order to
start the numerical integratioh of the Iincompressible boundary
layer equations (8a, 9a), specification of a starting profile
for the velocity u, u(xo,y) at a location x,, is enough., OCne
does not need to specify a profile for the normal velocity v
since, using the equation of continuity, one co2n eliminate
atv'ax from the equaticn éf notion and thereby obtain v as a
function of u end y. Nor is it necessary to svecify the
X-derivativeiof un, since trhis can be obtained from the
continuity equation after v has been calculated. For the
conpressible flow problen specification of T at the same
initial station is also required.

In conclusion, care must be taken in choosing the ;
proper initial profilés, so that the proper varisebles are
chosen, and that the compatibility conditions are satisfied. 
It has been shown (R56) that with nurerical nethods, s gross i
violation of the compatibility conditiors may lead to an j

erratic sequence of velocity profiles,



3. LITERATURE SURVEY

Various methods have been adopted in the effort to
solvé{the boundary layer equations since Prandtl's hypothesis
was set forth, The existing literature in this area is quite
extehsive and one could only hope to givé.an outline of the

techniques that have been used in the past.

3.1 SIMILARITY SOLUTICNS

Blasius (R16) obtained a solution for the incompressible
1éminar flow over a flat plate at zero incidence. To solve
the eguations (8a) and (9a), he introduced the similarity
variable n::yVUe/VX and defined a stream function W by the
equations
=5
_ov

V=

Upcn introductior of a dimensionless stiream function f(n)

‘Q)=\/ xUY fn)

equation (92) is reduced to the following differentisl

defined by

eQuation:
LM + 204 = 0 (24)

(where 2 prime denotes differentistion with respect to n)

27
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with boundary conditions

n=20 f=0 f*=20

n—s of f'r=1

The solution of (24) obtained by Blasius has been verified
by subsequent investigators and has been confirmed experi-
mentally with measurements performed by Nikuradse (R20),

Blasius' solution is a "gimilar" solution in the sense
that two wvelocity profiles u(x,y) located at different
locations ¥ differ only by a scale faotor in v and y.

Similar solutions of the boundary layer equations
attracted the interest of meﬁy eariy investigatcrs (H21, R22).
This is due to the fact thet, in cases where gimilar solu-
tions exist, it is vossible to reduce the system of non-linear
partial differential equations (8- 10) to one involvirng
ordinary differentlsl equations. This 1s considered a definite
sdvantagze since methods of analytical or numericszl solution
of ordinary differential equations are more readily availéble
and easler to apply than methods for the solution of partial
differential equations (R23, R24).
| Similar solutions exist, and the reduction to
ordinary differential equations is possidble if the varisbles
in the undisturbed potential flow satisfy certain conditions

(R2, R25, R26, R27).
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3.2 APPROXIMATE METHODS

’Approximate methods of solution have been applied
with -various degrees of success., One such method, widely
used in the past, was suggested by Pollhausen (R28) and
extended by Hollstein and Bohlen (R29). The method is based
on Von Karmanis momentum integral equation (R2). Details of
this method may be found in (R2, R28, R29f.

Von Karman and VMilliken (R30) devised a different
approxinmate method which yields better results thén
Ppllhausen's rnethod, particulsrly in tke case of flows where
seperetion occurs.,

From the numerous otﬂer approxiﬁate metrods that h=ave
been provosed, one should mention thet of Smith (R31) and the
one suggested'by Tieghardt (R32) and simplified by Walz (R33).
These methods seem to be ragid ard produce satisfactory
results, -

For a detailed review of approximate metvodq

reference (R3%) should be consulted.

3.3 ANALYTICAL SOLUTICNS

The apnlicqbility of analyticszl metrods is lirited to
partlcular flow situations and in fact the majority of
available analytical solutions concern nainly flow cases where
similar soluticns exist,

The failure of analytical methods tc treat complicated

problems of boundary layer flow, is basically due to the
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character of the partial differentiél equations involved.
These are non-linear, and in most cases where similar
solvtions do exist, and a transformation to ordinary differ-
entisl equations can be obtalrned, one usually has to turn

to series expansion technigues or numericel methods in order
to solve the resulting ordinafy differential equations. The
term, exact solutions of the boundary layér equations, adopted
by workers in this field, should not be misleading, in so far
28 1t refers to a solution of the boundary layer equations
over the eﬁtire flow regime, irrespective of whether it has

been obtained snalytically or by nunerical methods.

3.4 NUWMERICAL METHODS

It is not surprising then that numarical methods
were used as early as the 30's although oompﬁtiﬁg equipnent
was scarce. With the advent of the fest conputers the use of
numerical methods was generallzed aﬁd several finite-differ-
ence technigues were developed in an attempt to obtain accurate
solutions of the'boundary layer equations. Definite advan-
tages of numerical methods over other existing methods bf
solution are that they cen handle complicated flow problems
and that their applicability is not linited to particular
forms of varistion of the fluid properties, (\A, K, Cp)
contained in the equations. In addition, accuracy and the
possibllity of obtzining easily results for eny prescribed

chanzes of the boundary conditions, including discontinuities,
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and capabllity to handie a variety éf boﬁndary layer problens
with a minimum of adlitionsl effort, are sufficlent ressons
to justify the increasing use of numericsl methods,

At a first glance it might appear that there already
exist many different numerical techniques that have been
épplied to boundary layer problems, snd indeed, nany numnerical
solutions are available in the 1iterature; However, there
exist but a few successful nethods that have been proposed..
Others appear as modifications or extensions of previously
suggested techniques and much of the literature concarns
investigation of & partlicular problen rather than development

of a "

general”™ method applicéble to a variety of boundary
layer flows. In what follows, the most successful met
that have been suggestad at recent times will be reviewed
briefly and their advantases and shortcominzs will be
discussed., This topic will be delwvad into agaein in this
study after the procedure develoned in this report has been
described, so that a comparison cen be made,

For several years Smith snd Clutter's method (R36 -
R40) has been widely used. Their procedure, as applied to
inconmpressible flows, involved the definition of a strean

function | through the relations

u::é.g.)
oy
V= - 2..

ox
X
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By the introd uctloq of a dimensionless "helght”
n::que/Vx and a dimensionless stream function f(x,n) =
tP/-UeVX thé equation of momentun (9a) transforns to a
non;linear partial differential equstion in f of third order
with }espect to n and first order with resoect to X. To
solve .this 91Uﬂtwoq the x-derivativas are replaced by finite
dlfferences while the n-derivatives are 1efu in differential
forn, an idea advanced by Hartree and Womersley (RU1), sinmed

alt reducing the partial differential eqawblon to an ordinary

one in n. Detaoils of their method of solution can be found

u.
o7

ilscusgse

92}

in (R36 - R40) and will not be ~ here,

Theilr method was used successfully in the comvnutation

)]

of several boundary layer problewms Advantagzes of thie method
are said to bé:

a) The method 1s inherently stable

b) It reduces the proble em to the solution of

ordinary differential egustions

0]

¢) It produces hizhly accurate results

d) The transformed eguations exhibit no

e) There are no difficultles in starting the
solution in the region near the leading
édge since the transformed eguatlon "shous
a very good behaviour at the origin"

The most serious disadvantaze of this method is the

difficulty in satlsfying the boundary conditions =2t the outer

3
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edge, This difficulty necessitates additional assumptions
at the outer edge in order to make the integration possible,
as an initial value vroblen startiﬁglat the wall, The
computed values of the functions are c¢ompared with the
desired values, the assumed conditions are corrected and the
process repeated until the outer conditions are satlsfied,
Though this iteration method of satisfyiné boundary conditions
is acceptable in cases when a2 singls condition is imposed at
the outer edge, 1t is quits cumbersome when the nmomentum and
enerzy equations are coupled (compressible flow cases) and it
can lead to large computing times,

Stability of the method is.not ascertalmed., Snith

and Clutter report (R39) that in their computation of a

L

linearly retarded flow oveir a flat plate, an error of one in
the sixth decimal point in the initial proflle can produce a
difference of one in the secord decimal point near the separé
ation point, located at a distence x=0,95 from the origin.
Such a sensitivity of the method is unacceptable, for the
mere reason that it 1s extremely difficult to obtain (exper-
imentally or otherwise) profiles accurate to the sixth
decimal point,

It is also reported that there exists a rather
severe limitation on the step size AX to be used., In their
calculations x/ AX has to be kept less than 25. For smaller
values of X the solutions diverged, an evidence of instabhil-

1ty. Besides, small step sizes AX are essential near
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separation points or in any reglion where changes in the
outer flow take place rapidly.
| LTo start the numerical integration thelr method

requires specification of u and Ju/ Ox (and for compressible
flows T and OT/ dx) in contradiction of the cémpatibility
conditions (E51). . |

Tﬁere 1s no clesr indication as tb the computatipn of
the normal velocity comoonent, v, and its behaviour 1s not
taken 1nto'acoount Auring the course of the calcﬁlations.
This last remark applies to 211 numerical methods that Use a
transformation to elininate v from the momentun and enerzy
equations by automatically-(i.e., upon éubstitution) satisfy-
ing the continuity eqﬁation, which is discarded. Tris may
lezd to violation of the compatibility conditions for the
starting profiles and in sone cases the results nay beconme .
eroneous (E51).

For the reasons étated, the method cannot be consgsidered
a generally applicable one, though it produced good results
in many cases.

Wu (RL2) developed an explicit-finite difference
method for the solution of the boundary layer problems,
While results obtained by him are in good agreement with
known sblutions, one must be very careful with the choice of
the proper step sizes., Simply reducing the step sizes does

not alwsys imovrove the results.
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As is always the case with eiplicit finite-difference
methods the step sizes are limited by stability considerations.

In Wu's method the stability critefion is
Ax £ B (AY)?
2V _

where u is the velocity at any point in the boundary layer.
Sinée u approaches zero near the wall this criterion necessi-
tates a small AX and, consequently, 2 large number of steps
have to be taken in the x-direction. In problems with

adverse pressure gradient or injection, when u tends to zero
at some interior point, AX nust épproach zero and the schene
fails. A similar difficulty appeafs when AY has to be talken
small in order to obtain accurate profiles further downsiresn,
when the sterting profile is complicated, as in the case of a
boundary layer - jet interaction. |

Wu was the first to recommend use of the exact
boundary conditions at the leading edge as starting profiles
as described previously. However, one would not recommend
general use of an expliclt finite difference method,

Baxter and Fluegge-Lotz (R4L) modified the boundary
layer eqguations using the Crocco transformation (BY5)., An
explicit finite difference scheme was then used to solve the
resulting eguations. It was found that the method was not
conpletely satisfactory due to the small step sizes required
to ensure stability. Besides, the Crocco transformation

exhibits a singularity at the outer edge of the boundary
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layer and this must be taken into éccount, when the nunsarical
approxinations are made., Another disadvenfage of methods
baséd_on the Crocco transformation 1s that they‘cannot handle
velobity profiles with overshoot., Such velocity profiles
X

occur in certaln cases of heated walls with favouradble
preésure gradient and this effect becomes.ﬁore important for
boundary layer flows with helium injection (R46). In these
cases, the veloclty at some points in the boundary layer
exceeds the free strean velocity.

To overcome these difficulties Fluegze-Lotz and’Yu
(RL7?) investigated an explicit finite difference schene to
éolve the boundary layer eduations in the ovhysical plane
(x, y co-ordinates)., However, the method was not found
.satisfactory and, narticularly with heated walls and hizgh
HNach numbers, the step slize. requirements were so severe that
it was impossible to obtain stable solutions. |

An implicit finite difference schene was developed
by Fluesge-Lotz and 3axter (B48). This method appears to be
sufficiently suitable for boundary layer problems, Howeﬁer,

in order to avoid the extremely involved task of solving

W)

great number of non-linear difference equations, the authors

have used a linesrization of the non-linezxr terms, such as

u%?i and u%?g. Such a linearizzstion introduces an overall
X X

truncaetion error of O0({AX) z2nd therefore a small AX is

required to ensure accuracy of the results,
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In order to circumfere this difficulty, Davis and
Fluegge-Lotz (RL9) introduced a modified nethod where 3-point
differences are used to replace thé x-derivatives, In this
case, the truncation error is O([XXZ) but one needs initial
profiles at two stations x in order to start the calculations.
Obtaining two sets of initial profiles 1s, however, qulte a
problen., As it has already been mentioned, use of a

particular profile st a location X=x_ restricts the applica-

o}
bility of the method to similaf flows, unless that particular
set of data hos been obtained experinentz2lly, or by use of
sqme othéﬁ/method for the’same fldw being considered. It is
obvious thst requiring two sets of.starting profiles compli-
cates the problem, and fhis was in fact renorted later (R50).
Reference (RLB) is indeed devoted to the treatment of
"similar" flow problems. Besldes, srecification of profiles

«

at two stations is equlvalent to specifying the profiles at

u o7

one station and also prescribing the derivatives Frs and-ag-
at that station, a regulrement inconsistent with the original
problen,

The authors of (RL43) and (R48) find it necessary to
specify in addition to the longitudinal velocity profile, =2
profile of the normal velocity component, in order to start
the computation. Ting (R51) shows clearly that this is not

in agreement with the formulation of the problem. Indeed

Prandtl (R1, R52) showed that once the longitudinal velocity
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profile is‘speoified it 1s possible to obtain the normal
veloclty from the eguation of continulity.

Krause (R53),based on Ting's rgmarks, refornulated
the.method of reference (RU8) so as to eliminate the
requigement of an initiel profile for the normél velocity
profile, His method is basically the ssme as that set forth
by Flueggé—Lotz and Blottner, except for én iteration scbene
for the computation of the normal velocity component. It
appears that such an iteration, not only eliminates the
difficulties at the start of the integration but it alsd
improves the results. Fowever, Krause's method still suffers
from the shortcomings of the Fluegge—Lofz and Blottner method,
nenely that of the linearization of the non-linear terms and
.the requiremeht of an accurate starting profile for the
1ongitudiha1 velocity component specified at some locatlion.

Pallone (Hﬁb) suggested a different approaéh to the
numerical solution of the boundary layer equations. The
boundary laver is divided into a number of strips (four or
six) parallel to the wall, and the eguations are integrated
from the wall to the various strips, where the velocity and
temperature profiles have baen avoroximated by a polyncmial
iny. vThe advantage of the methed is that it reduces the
equiations to a set of ordinary differentizl equations.
However, since a polynomisl is fitted through a large number

of points in each strip, one would guestion the accuracy of
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the‘method; in so far as there is no guarantee that such a
fit can always be made, or that the method would converge to
the exact solution as the number of strips is increased. The
polynomials can be greatly different from the exact profiles
between the fitting points.

Recently, Cebeci, Smith and Wang (R55) presented a
new nethod capable of handling both compressible and incom-
pressible turbulent or laminar flows. A streamn-function is:
introduced and the Probstein-Elliot/Levy-Lees transformation
is veed to reduce the system of the boundary layer equation
to a set of ordinary differential'equations. However, the
transformation equatlions used in tﬁeir rnethod are a natural
conseguence ol seeking similarity solutions. Linearization
is necessary in this method ds well, in order to avoid
sclution of non-lineer difference equations, after the finite-
difference substitutions are made,

The method appears as a modification and extension of
the older Snith and Clutter methods. Specisl attention to
the boundary conditions at the outer edze is necessary again.
It is reportsd that double precicion arithmetic was used in
some cases in order to reduce the truncation error. The
results presented (all of them in terms of skin friction and
heat transfer coefficients) asgree quite well with available

data.
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From the previous discussion one may conclude that

there is still & need for a satisfactory finite-difference

method that would avoid the shorteonings of the methods

sugzested up to now, and that would satisfy most of the

following requirements:

1-
2-

The method shcould be simple, accurste and fast.

It should handle reliably nany problems of-boundéry
layer fTlow.

One should be able to start the integration fron

the leading edge using the exact boundary conditions
there.

Stability of the method shouid be independent of

the cholce of the step sizes.

Linearizations that increase the truncation error
should be avoided.

Boundary conditions should e easy to satisfy even
In the presence of discontinuities,

The normal velocity component should be easy to
calculate and should be used during the course of
the comvutations in order to improve the accurscy

of the results,

Starting profiles of u 2nd T and at one station

only should be required.

A minimun of additional effort should be reguired

in order that the method handles a different boundery

layer prohlemn,
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10. Any veriation of fluid properties and wall or free
stream conditions inclucing discontinulties should.

be easily accounted for,

In what follows an impliéit finite difference technique
Will be described for the solution of the boundary layer
equations, Severa)l problems were investigated using this
new technique, in an effort to examine the snitahility of
the method for use with the complicated non-similar boundary
iayer flews., It is believed that this procedure dces not

have the shortcomings of the methods discussed in this section,

1
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L, TEE FINITE DIFFEREVCE SOLUTICN CF THE BCUMDARY LAYER-

EQUATIONS

L,1 DERIVATICN OF THE DIMENSICNLESS EGUATIONS

As a first step to the solution of the system of
equations (8) to (11), the equations are made dimensionless.
Handling of dimensionless egquations is convenient from the
point of view that all varisbles stay in scale during the
domputations, and direct comparison of results is easlierx

For convenience, thes systeéem of the boundary layer
equations 1s re-uritten here,

Continuity

B(Qu) a(QV) (8)

Ix Jy
Motion
_du Ju dp'
pugE e gl -- B Pe g (9)
Energy
’c)T T _ 9_(x9L) Jdu 2
QCp + PCDV%i;-—IIGX + ﬂ\ay Y(z%;) -(10)
State (ideal gss):
p= PRT (11)

The following substitutions are nade:

U= g
e

L2
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. (26)
Ue
?&:% : (27)
F o S 28
¥ : (28)
¥ n
. (29)
EeUe
se:-_g._ (30)
S
. K (31)
Ke
p = 2 (32)
Cre
VR o (33)
Ve
po T-Tw . (34)
TB—TW
o lotn
T= AT, (35)
ATo =T -T, (36)

Stars aenote_dimensionless variables, L is a characteristic
length of the body, the subscript e denotes main stresm values
and the subscript w, values at the wall. .The temverature is
nade dimensionless so as to vary ffom zero at the wall to 1

at the outer edge. In this way direct conparison between the
tempersture and velocity profiles can be made. If the wall
temperature is equal to.the free stream temperature or if the
heat flux and not the temperatufe at the wall is given, a

convenlent definition of a dimensionless temnperature is
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=:T/Te. Subsequent‘discussion i1s based on the definition

Pl

of equation (34). If (34) does not avply, the modification
is obvious.

Substituting for u, v,...T, from (25) to (34) into
equations (&) to (11) one obtains after some elementary

algebra the following equivalent set:

Continuity
* 3% ¥ 3
AW, aEhH _, (37)
(PR3 oy
lotion .
pid, By d§+{ e 39 (598 ()
ox v ax LUe?ea O¥ oy
Energy -
3 3 ) %
LR X kS -
CpPu—g.-i-Cpgv-gg-:- Ue ud?
X oy Cpe AT, dx
*
+{ Ke z-Q_ (K@;)
PeCrelel § Oy oy
x _
+i el (232 (39
L Pelre AT, oy
State ’
* Te i
=& Lo
P == (40)
* Tn
or ©= e (hoa)
i"ATO+Tw

In deriving the dimensionless equation of state, use is made

of the fact that in the boundary layer the pressure p(xl,y)



L5

remains constant on any line (x=3x;). Then, since (11)

applies throughout the boundary layer, one obtains from (11):

whence (40) is obtained,
The quantities in brackets in equation (38, 39) are

evaluated as follows:

e __ 1 S (41)
L PeUe Re :
U2 | | o
e . | (B2) ", . .
Cpe ATq -
Ke _ Ke e 1 1 (43)
PeCpeUeL Cpe‘*e ?eLUe Pr Re
2 .
Bele _ Ue pe ___E (40)
L0eCpe AT, Cpe Al UL Po Re

He 1s the Reynolds number, é is the Eckert number and
Pr is the Prandtl number, all based on free stream conditions.
One may‘note the.following concerning the physical signifi-
cance of the dimensionless numbers Ee, Pr, II, The Reynolds
nunber represents the ratio of the inertia forces to the
friction forces. The Eckert ﬁumber relates the temperéture
increase through adiabatic compression in the boundary layer
(this temperature increase is equal to Ue?/2Cpe (R2)) to the
temperature difference between the main stream and the body.
Heat,effects due to friction and compression are important if

E=0(1). It can be proved (R2) that the Eckert number is
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related to the Mach nunber MN=TU /CS through the equation

_(5-1 TT' (45)
= te

where ) =Cp/Cv, the ratio of specific heats of the mediun,
and Cs‘is the speed of sound at the mein stream conditions,

| The Prandtl number depends only'on the properties of
the medium., For gases Pr is 0(1) while fér liquids it is
much greater (0(103) for oils). The thickness of the temper-
ature boundary layer is proportional, to a first approxima-
tion, to Pr-%,

Substituting from (41) to (4L4) into.equations (38)

and (39) the following dimensionless boundary layer equations

are obtained:

Continuity
dlpu) . 9I(ev) _
o + 5y =0 (46)
Hotion
__4p 1 9 du :
?u + Pvu~- -3 T Sy (V o8 ) (47)
Energy
oT oT 1 d .27
Cp?ué—;—FCp?vay = 55T By (Kay)
p{ Qw2 e .,
E{Re ( . udx} (48)
State

Te

N - A (L9)
e T AT, + Ty,
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Sters have been dropped but 1t will be understood that all
quantities in equations (46) to (49) are dimensionless
(except Ter Ty» AT, in (49)). 811 quentities referred to
from now on will be dimensionless too, unless otherwise
stated.

Expressions for the viscosity V” thermal conductivity

- X, and specific heat Cp, ss functions of temperature of the

forn
W= (T) (50)
K=K(T) (51)
Cp=Cp(T) (52)

conplement the system of equations (46) to (49).
Boundary conditions usually imrosed on equations
(46) to (48) are:

at the wall, y=0

u=20

T=0C or
T=Ts(x) or
(§5) _g=alx)
V= 0 or

v = ve(x)

at the outer edge, y — b
u=1

T=1
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h.Z' THE NUMERICAL METEOD

L ,2.,8 Finite Difference Approximations of the Momentum and

Fnergy Equations

Paskonov (E58) has pointed out that it is possible to

write both the equations of motion and energy in the form

agi + b’gi =a}§ (cgi )+ d+ ef : (53)

where f stands for either the velocity u or the temperature T.
The coefficients a, b, ¢, 4, e, may devend on u or T and their
derivatives. It is easy to bring equations (47) and (48) to

the form of equation (53). The coefficients a2re respectively

ou du

Motion: a5 + blg; = a? (01-53—) +dq + equ (54)
ay = pu (55)
by = OV (56)
R | (57)
4y =- <2 ) (s8)
ey =0 o (59)
Energy: aggz + bggg = E)ay (02%;") +do+ epT | (60)
ap =CpPu | (61)

bp=CppPv (62)
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2= Ferr e3)
~_-{ dp @ ,Ou 2} &
dZ-E{udx (L2 (64)
ex =0 (65)

Since both equationé (54) and (60) are similar to the
general equation (53), discussion will be focused on (53).
The conclusions will concern both (54) and (60), taking into
account the coefficients defined by (55) to (59) and (61) to
(65). |

Following Paskonov (E58), equation (49) is solved by
an implicit finite difference scheme in the x and y plane.

A rectengulzr grid is constructed

X=IAX : (66)
Y=NAY (67)

where 1 £ T £1X and 1 N NY, IX, NY being the number of

points'in the x- 2nd yfdirections respectively. An auxiliary

net _
X=(I+3)AX - (68)
Y= (N+3)AY (69)

is superimposed (Figure 3).
The coefficients a, b, ¢, d, e are comﬁuted at the
auxiliery net, 1l.e., at the "central points of the basic grid.
The terms in (53) are replaced by their corresponding

difference approximations as follows:



50

Y =NAY

N+1

| !
i 1
I I

| |
] 1
) ]
. l l
N} e b= -+ -d—-— Ay
| |
| {
1 |
| |

X=IAX I

Figure 3: Rectangular grid for the

finlte difference nmethod
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N N
df _ ,.N f1-T1_ 1, 1 Ay 9%t 0
’a - = (al_%) <3 + 5 52 (70)
bN
of T2 N+1 N-1 N-+1._ N -1.}
b5y = 2AY2{S(fI -t )+ (1-8)ry T -fy )
_ 1 Ay? 991 (71)
6 * oy’ 7
O A 0Of 1 N+1 N N-1, .N

+ (1-s)(x*?fi~2f¥_1+f1§_1)01}7_%
+ 0(AY?) : (72)
a=d_, (73)
-}
N X N
ef:el-%(l-s) £y _ 4 +5f; (74)

In equations (71), (72) and (74), S is an averaging
parameter. In order that no restriction i1s placed on the step

sizes X and Y, S should be chosen in the range %—&;Eiég 1.

L,2.b Solution of the Finite Difference Zaguations

Substituting from (70) to (74) into (53) and
rearranzing terms, the following difference equation is

obtained
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R RS S i AR (75)
where
N _ S N 1 N N -1 | §
x -—:mz%ﬁ-%+ZY (Cp_3+Cr_y) (76)
i _01-3% S N+1 N n ]
N _ 5
6" = AX * 2(AY)? {CI-%""ZCI-%*CI-%S (77)
N_ S .N 1 N+1 K
X'“ﬂﬁ{bl—%”ZY (Cp_z+Cr_yg) (78)

2 AY tTAY 1-32 - I-1
aN
I1-1% (1-8)[N+1+ N N-1 N N
C + C - f
{AX 2(AY)2 I-3% 21-% I-—}) Cr-it1-1
(1-8) (N 1  N+1 X '}N»+1
- SAY bI_%—E (CI—%+CI-%) I-1
N
+tdr 1 (79)
<

Equation (75) enables one to compute the values éf f
along the grid line I provided that the values of f on the
previous grid line (I -1) and fhe values of the coefficients
2, b, ¢, d, e on the grid line (I -%) are known. Boundery
conditions for f at the wall and a2t the outer edge should also

be specified. In most cases
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' [ =
N = 1, Wall: 17l = 0 (80)

N = NY, Cuter Edge: f¥==hY =1 (81)

(The particular form of equations (80) and (81) can be
determined from the prescribed boundary conditions. It is
easy to see that (80) and (81) are the actual boundary
conditions for the velocity u, and for T in the case where
the wall tempersture is specified.)

In this fashion cne may proceed from grid line (I -1)
to line (I) and so on to integrate the equations. The values
of f on the grid line'(Izzl)are known, once a starting profile
for £ (1.e., v and T) has been specified, However, the‘vaiues
of the coefficients a, b, ¢, d, e on the grid line (I ~%) are
still urnknown. Thus, one has to compute these coefficients
as functions of unknown functions. This can be achleved by
iteration in the usuval way. In the first approximetion the
values of a function on the (I-1)" 1ine are sssumed for the
corresponding points on the 1th line.

It can be seen Tfrom (76) that xN'<:O. Also from
(77), jN < 0, in general, since b is 0(v), (equation (56,
62)) while c/AY is 0(1/AY). Obviously, @V > 0 and

noreover
as 1t can be verified by direct substitution from (78) to
(78) into (82).
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This last remark suggests that direct use of the
recurrence relaticn (75) should be avoided. This is because’
in order to compute a particular value of f§ one would have to
subtract very nearly equal numbers, and so‘large errors may
arise, especially at the start of the calculations, since
both u and T increasse alrmost exponentislly with N.

Therefore a different procedure has been emplcyed
(R63, R6L), It will be noted that all quentities stay in
scale during the comvutations by this method.

N 5 BN

We require two quantities A" and terned "forcing

N
coefficients", such that for any 1 the relstion
R - (83)

holds. If (79) is to be true for any fg one finds, teking

(80) into account that
sl oo (8L)

Bl - o (85)

Applying (83) with N -1 instead of N there results

V - -
N lfN+BN 1 (86)

=A T

-
U

Substituting for f1 1 from (86) into (75) one obtains

X gV N1 sV_ Ngi-1
i~ i I T
dNAh-1+ %IQ

NN -
Direct comparison of (83) and (87) shows that

(87)
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N - x"

: (88)

N - -

N_S_uNBNl .

BY = T = _(89)
At mly g

Starting with the known values of A1 and Bl one may

proceed to find AN

and BN in the direction of increasing N by
use of (88) and (89)., Knowing AN and BN for all 1 é;N’é;NY,‘
one can easily determine all f§ from (83) starting with the
boundary condition at thre outer edege(81).

Note that 1f AN =1 1, then

N
A\< 6N< =

_ <><N -zN

by use of (82). Since Al1=0, this establishes that 0 éAN< 1
for 211 N. Since fI is generally less than 1 (or, at any
rate bounded) it can be seen from (83) that BY will also be of
the same order of magnitude as AN.

| It ié seen then that use of (83) instead of (75) is
advantageous from the computational-point of view. liorecver,
this method for solving difference equations of the type of
{(75) is faster tran conventional matrix methods. To
11llustrate the polnt, suppose that the coefficients <xN, @N,
BN’ 5N

three multiplications and two divisions per point per line,

in (75) are constant, then use of (83) requires only

while matrix methods involve inversion of the matrix of the

coefficients « ¥, @Y, BN and post-multiplicatior of the
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inverse matrix by the vector of the “constants"lérq. The
last operation alone reguires NY multiplications per point,

per line.

L. 2.c Finite Difference Apnroximation of the Continuity

FEquation

The finite difference expresslon for the terms in the

continuity equation (42) are

0 (ou) 1 N N N+1 N+1
D% =zax{(€“’1‘(€u>1_1+<gu>l -(gu)1_1}(90)

a(a@y"’ - {( gv)i\;i;- (pv)y _ } (91)

Tre particular‘choice of expressions (90) and (91)
lies in the fact that thé'truncation errors ére small(O([&Xz)
and 0( AY2))., Also tre truncated terms involve only third
order derivatives of ( ?v) with respect to y. This is
1mportént since the second derivatives may sssume large
values near the wall,

Substituting (90) and (91) into (46) one obtains:
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Having computed the values of u end T at all grid
points on the lines (I), (I-%), (I-1), equation (92) is
vsed to calculste the normal velocity component v starting

from the known boundary condition at the wall (N=1).

L.,2.8 The Computation of the Boundarv Layver Parameters

The displacement thickness, wall shear and heat
transfer are computed fron finite-difference approximations
of equations (14, 15, 16). In the calculation of the
displacement thickness Simpson's rule is used for the

evaluation of the integrsl. Thus:

O =NY x &Y - .4.33( N‘Z:_ZuN(eveQ)+ZZ ;UN(odd)*-uI\Y)
+0(aY5) (93) =
Also
tw=‘2§§ (18up - Jus + 2uy) +0( Ay™) (ok)
Qy = - 612; (13T2_9T3+ 2Ty - 117T¢) +o(bYY) (95)

| In (93) and (9L), uy, the velocity at the wali, is
taken to equal zero and the quantities in equations (94) ang
(95) are dimensiocnal, |
A dimensionless skin friction may be defined as
follows:

cf = ._ng (96)
il |
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or, Introducing the dimensiocnless u, snd y, fron equations
(25, 28),

_Hw 1, du
Cf_Pe i (-ay)y=o (97)

and Cf may be computed numerically fron

_Hw 1 |

A heat transfer coefficiert A may be defined, such
that according to Newton's law of cooling, the quantity of
heat exchanged between thé solid and the fluid per urit area
and time is: |

Q= M(Te-Ty) = XAT, (99)

. . - B a *
Introcducing the dimensionless temperature T and y from

equations (34) and (28), equation (16) assumes the form

KwAT
Q@ =- Zufflo (9T, (100)
L 0F w
Introducing the dimensionless Nusselt number
L
Ny = AL (101)
W e
(100) becomes '
AT >
Q =- 2270 (21, (102)
Nu ay W

and taxing into sccount that Q=Q,, and equatioh (99) one

obtains 5
Nu= - (—a—g-
y w

(103)
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The Nusselt number mey be thus used to characterize the heat

transfer at the wall. It may be computed from the equatiocon

Nus= - —2— (18T, - 975+ 2T},) (104)

where all the quantities are dimensionless and T1:=O-

according to (34).



5. CCNVERGENCE AXD STABILITY

Whenever a differentlal eguation is replaced by a
finite difference approximation one nust investigate the
convergence and the stabilify of the difference scheme. Let
D represent the exact solutlon of a differentiel equation,

/A the exact solution of the difference equation and A the
numerical solution of the difference equation., Then, (D-A)
is called the truncation error. It arises because of the
finlte distance betweern the peints of the difference net,
Convergence 1s concerned with the cénditions under which
A—-+D, (A-A) is ca2lled the nunerical error. Thousgh

(A -4) nay consist of several errors wWe may consider that it
is basically due to round-off errors during the computations.
Finding the conditions under which (D-A) renmains small
throughout the entire region of integration is a problem of
stability.

The problems of the convergence and stabllity of
finite difference schemes used to solve non-linear partiél
'differential equations has not been resolved comnletely up
to now., More difficulties are encountered when a study of the
stability of a system of such equations is attémpted.

Convergence may be ascertained if the truncation
error involved in replacing’the differential by difference

quotients goes to zero as the step sizes go to zero. That

60
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the finite difference apprcximations used in this study
satisfy this requirement can be noteé'from equations (70)
to (72).

The faster the truncetion error goes to zero,\the
‘more accurate is the difference approxinmation and it would be
expected that the numerical solution would approximate the
exact solution more accurately.

However, convergence does not guarantee stability.' Te
ensure stability of a numerical scheme, one must ensure
that an error occurred in the computations will remain
bounded. Von Neurann suzggested that the stabllity of a finite

s the growth

=

difference method may be determined by considerin
of the general error tera. To do so one nmust perform a
Fourier series expansion of a line of errors.
A lucid account of Von Neumann's theory may be
found in (R59), (R61). However, only partial differential
equations with constant coefficlents can be treated using
this method, and to the best of the auther's knowledge, no
general method of treating the stability of numericsl schenes
approximating non-linear partial differential equations 1is
available un to the present time.
An avproximate stability analysis for the case in
hand can be performed if the following assumptions are nade:
1. The momentum equation‘dominates in determining the
stabllity of the finite difference methecd. With

this assumption one needs to considser only the
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stability requirements for the equation of motion,
instead of the whole system of equations (46) to
(48). Blottner and Fluezze-Lotz report, (Rh}), that
this assunption can be made in so far ss it has been
Justified repeatedly from previous eXperience.

2. The mesh sizes are sufficiently small so.that the
coefficients in the equation of motion (47) vary only

slightly between adjacent grid points and can be

considered constant at these points,

An arproxinate stability analysis of the Tinite
difference schene presénted in this renort hased on these
assumptions is given in the appendixz, The result of the
analysis indicates that»the finite difference scheme 1is
stable for any cholce of tre step sizes AX aﬁd AY provided

the averaging parameter S 1s chosen so that

ol

£s(1




6, TLE INTEGRATION PROCEDURE

The basic algoritim used to accomplish the numerical
integration of the boundary layer equations 1is given‘in
Figure 4. A detailed algorithm of the computations is given
in the appendix along with the computer listings.

les have been used throughout

fts

Wu-typre starting prof

the computations to be in the last section. It hsas

H

eportes

been found that use of sudh profiles leads to quite accurate
results at a short distance from the lealing edge.

The iteration scheme presented in the algorithm of
Figure 4, 1s one of several alternstes that were examined
during the course of this study. It was found that ilteration
for the normal velocity v is not necessary in general. In
most cases, results obtained when iteration for v was
included differ in the fourth decimal place from the results
computed without such iteration.

A different scheme was also exanined for the iter-
ation for u and T. In this case the scheme involved an
lteration until the profiles of the velocity components u and
v were established along a particular line using only the
equations of motion and continuity. These profiles were then
used to compute T from the enerzgy eguation., However, it turned
out that additional lterations for T were necsessary, and the

values of u and v had to be re-computed. Although in the end
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STARTING PROFILES. BOUNDARY CONDITICNS
| AT THE WALL AND AT THE OUTER EDGE

b

I=1
ASSUME VALUES OF u, T, v, ON LINE (I+ 1)

!

I=1I+1

COMPUTE VALUES OF COEFFICIENTS a, b, ¢,
>4, e, CN LINES (I),(I+13), (I+1)(w YUATIONS

(35) TO (59) AND (61) TC (63)
)

COMPUTE COEFFICIZNTS A, &,y , & , ON
LINE (I+1) (EQUATICNS (76) T0 (79))

CCIIPUTE FCRCING COEFFICIENTS ALCNG LINE
(I+1) (EQUATIONS (88) 41D (89))

CCIHPUTE u AND T CN LINE
(I+1) (EQUATION (83))

1
COLPUTE v ALONG LINE (I+ 5)(EQUATION (92))

(CALCULATIOES OF u AND T ON
LIYE (I+ 1) EAVE CONVERGED

NO
NO YES '
\
EEPLACE ASSUIED VALUES OF VALUES OF u AND T CN TEIS
n, T, v, ON LINE (I+1) BY LIYE DIFFZR BY LESS TIHAN

TEE COHPUTED VALUES CNM A SPECIFIZD TOLEEANCE FRCH
TEIS LIVE THCOSE QI PREVICUS LINE

YES

Figure 4. Basic Conputer Algorithm
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the results were identical to those oﬁtained by the algorithm
of Figure 4, almost twice as nany iterations were necessary
and the computer time was increased by approximately 407%.
This was expected since the momentun and continulty equations
involve the density P , and satisfactory profiles for u and v
can be obtained only after P i.e., T, has been calculated,
Thie number of iterations to establish profiles along
a particular line was invariably small, With a tolerance 6f
0.001 for convergence of the velocity and temverature profiles
along a line, an average of 10 iterations per line was reguired
at the start of the calculations for the flow over a flst
plate., Farther downstreazan, after the first 5 stations, the

nunber of lterations never exceeded three.

6.1 DISCUSSION COF COMPUTER RUNS

| Results obtained with the algorithm of Figure 4 at
the tenth station downstream from the edze were accurate to
the second decimal point. Wear the twentieth station accuracy
in the third decimal point was obtained and beyond the 5ch
station the profiles changed by less than 0.0001, The |
greatest changés occurred always near the wall,

As it hes been nentioned already there is no limita-
tion on the step sizes AX and AY to be used in the numerical
integration, provided 1 é;f‘é;%. Several computer runs were
made in a effort to investigate the influence of the step

sizes on the accuracy of the ressults and on the computer time.
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The results of such a series of runs with different step size
ratios are presented in the last section for the case of a
flat plate at zero incidence. It may be noted here, that

step size ratios in the region

75 LAy 100
have beesn found to produce accurate results in most cases.
From egquations (70) to (72) it is clear that use of small AX
is recommended in order that the truncation-error of the
finite difference svproximation for %g% (equation (66)) remains
small, However, use of small AX would require many stens
in the x-direction in ordef to cover a sufficient distance in
the downstresm direction, It was found that a step size

ratio

et

AX
1 20
NAY X
produces results accurate to the hthidecimal voint and at the
same time enables one to proceed with large steps in the

downstrean direction. For ratios
é-x-> 100
AY

less accurate results were obtained and aporoximately twice

as many iterations per line were necessary to ensure conver-
gencé of the profiles at a particular station, as compared to
the number of iferations when g§;==2o. Iteration for the

normal velocity component v was fcund to improve the accuracy
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of the results in this case. It was also found that while

the computation of the longitudinal velocity U is relatively
insensitive to the use of large step ratios (error in the
Vfourth decimal place in the.case of a flat plate with%ﬁé::loo)
the conputation of thg normal velocity component v 1s subject
to severe errors when iterétion for v is not used (error in the
second decimal point for the same case)., Iteration for v
increases the computer time by approximately 107 and gives

values of v accurate to 1% for the flat plate with.ééz-z 100

AY
The computer time is invariably small. For 100 points

in the y—diréction and 100 stations in the x-direction with i
outputs at 10 stations, the computer time on the CDC 6400

is 25 seconds for the incoﬁpressible boundafy layer on a flat
plate at zero incidence and 35 seconds for the compressible
flow in the same case. Conmputer time for other case studies
is of the same order of magnitude, i.e., approximately 0.25

seconds per station for the incompressible and 0.35 seconds

per station for the compressible boundary layer.



7. CASE STUDIES

Several boundary layer flow problens were solved
using the method developed in this revort, in order to
evaluate the accuracy and speed of the finite difference
technique. The examples presented in this section have been
chosen from the cases where accurate solutions have already
been obtained by other methods, so that direct comparisons

can be made,

7.1 DBCOUNDARY LAYER ON A FLAT PLATE, INCOIPRESSIBLE FLOW

This 1s the simplest example of the application of
the boundary layer equations. Historically, this was the
first boundary layer case treated by Blasius (R16) in his
Doctor's thesis at Goettingen, in order to illustrate the
application of Prandtl's boundary layer theory. Several
investigators have since then confirmed Blasius' results.
For an.account of previous work on this problem reference
(R2) may be consulted.

This flow problem has been solved using the présent
method, because it provides a good test of the accuracy of
the numerical technique, since exact solutions are available,

. The dimensionless boundary layer equations to be

solved in this case are:

| ou ‘Jdu _ 1 02y
uax'+vay"'Re dy2

68
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.@.P..-}—_D_Y..:O

&x Oy
y=O u=v=0
y —> 06 u=1

The results obtained are plotted in Figure 5 for
the lonzitudinal velocity component, Figure 6 for the normal
velocity component, and Figure 7 for the dimensionless local
shear stress at the wall, and are compasred to Howarth's (R6L)
results. The excelleﬁt agreement in all cases may be noted
from these plots. Table 1 presents a study of the dependence
of the longitudinal véloéity u, on the ratio of the step
sizes AX/AY, 1t is seen from this table that the variation
of the results is negligible (4th decimal point)., A similar
study for the normal velocity component v is given in Figure 8.
In this case results obtained with and without iteration for v
are presented., It nmay be noted thgt for large step size ratios
AX/AY, iteration for v is necessary in order to obtain
accurate results,

Figures 9 and 10 show the variation of computer time
with the number of points in the y-direction and the number of
stations in the x-direction. Total time and average time per
station are shown. It is seen that the computer time is

indeed small,
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Table 1

INCOMPRESSIBLE BOUNDARY LAYEDRl ON A FL.T FPLATE

THE LONGITUDINAL VELOCITY CCMPCNINT,u

HTOYARTE Tresent Hethod
(RéL) 100 y-points
0.1 1 10 50
1’1:} f__&?‘ u
<X

0 0 0 : 0 0 0

0.2 0.066L1 0.06625- 0,06601 0.06592 0.06576
0.L 0.13277 0.1325C | 0.13228 0.13214 0.13206
0.6 0.19894 0.19876 | 0.1985L 0.19828 0.19813
0.8 0.26171 0.26"65 | ©,26418 0.26L.37 0.,26b273
1.0 0.32979 0.32972 | 0.32962 0.3295C 0.3203
1.2 0.39378 0.39375 0.39368 0.39363 0.39359
1.0 0.h5627 0.h562L | 0,b5616 0.45608 0.4550L
1.6 0.51476 0.51666 | 0,5166L 0.51657 0.51651
1.8 0.57477 0.57470 1 0,57L67 0.57h61 0.57hL9
2.0 0.62977 0.62973 | 0.62970 0.62966 0.62958
2.2 0.68132 0.68130 | 0.6812¢ 0.68125 0.68122
2.l 0.72899 0.72900 | 0.7289 0,7289 0.72888
2.6 0.77246 0.772h8 | 0.772LL 0.77241 0.77236
2.8 0.81152 0.81154 | 0,81150 0.811L7 0.811243
3.0 0.8L675 0.84607 | 0.84601 C.84599 0.8595
3.2 0.87609 0.87612 | 0.87607 0.87602 0.87600
3.4 0.90177 0.90181 0.90175 0.90172 0.90170
3.6 0.92333 0.92336 | 0.92328 0.92225 0.92322
3.8 0.94112 0.94117 | 0.94111 0.94109 0.94105
b0 0.95552 0.95559 | 0.95552 0.95550 0.95547
b 0.97587 0.97596 | 0.97591 0.97588 0.97586
4,8 0.98779 0.98791 | 0.9878L 0.98780 0.98777
5.2 0,99425 0.99432 | 0.99426 0.99L23 0.99419
5.6 0.99748 | 0.99760 | 0.99753 | 0.99743 0.99745
6.0 0.99898 0.99911 | 0.99602 C.90897 0.998¢9
6.0 0.99961 0.99976 | 0.99%965 0.99961 0.99956
6.8 0.99987 | 1.00000 | 0.9999L | 0.99290 0.99988
7.2 0.99996 1.00000 | 1.000¢ 0.9999 0,999k
7.6 0.99999 1.00000 | 1.00000 1.00000 11.00000
8.0 1.00000 1.00000 | 1,00000 1.00000 1.00000
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7.2 BCUNDARY LAYIFR CN A FLAT PLATE, CCMPRESSIBLE FLOW

In this case, the system of equations to be solved

is:-

d(pu) , o(pPv) ;O‘
Ox oy

du du _ 1 o Ju
ox T €79y T Ee 3y (v’c)y)

Cp E)u—-z + Cp gva

T 1 d 'DT PERG
Jdy  RePr ay (% neP( )

- Te
- TAT, + T,

V:fl'(T)
y=0 u=20
v=20
T=0
Yy > ob u=1
T=1

This system has been solved -using the present method.
The algorithm of Figure 4 is employed for the numerical
‘solution. Cohen and Reshotko (ﬁ65), Brown and Donoughe (R66)
and Chapman and Rubesin (R67) have considered the same problen,

The velocity and temperature profiles obtained by the present
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method are compared with those of Brown and Donoughe in
Figures 11 dnd 12, In order to make direct comparison
possible, Y and K are taken as the foilowing functions of

T (T here is dimensional, °R):

B (=460 0.7
YW Ty - 160

X _¢ T - L60 )0-85'
K,  Tw- 460

D w60

The agreement between the results can be noted from

Figures 11 and 12,

7.3 INCOMPRESSIBLE BOUNDARY LAYER WITH ADVERSE PRESSURE

GRADIENT
A number of investigators have studied the boundary
layer flow on a flat plate with a2 linearly retarded veloclty
field
Upg(x) =1 -ax

a=0,125

Reasons for studying this flow is that it leadé to separation,
and it provides a good test of the numerical method, under
conditions of adverse pressure gradients. Both analytical and
numerical solutions are available in this case. FHowarth (R6L)
was the first to obtain an analytical solution. Leigh (R68)

presented an extensive study of the flow near the separstion
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Table 2

SEHEAR STRESS AT THE WALL FOR TEE FLOW

WITH ADVERSE PRESSURE GHADIENT

81

1
2

ax | zw(l/a)

Howarth Smith and Krause{Cebecl et al] Presdent

(RAL)  [Clutter (R35) (R53) (R55) . Method

0.0125 2.739 2.730 2.7400 2.7356
0.0250 1.772 1.7713 1.768 1.7721 1.7693
0.0375 1.309 1.306 1 1.3090 1.3072
0.0500 1.011 1.0106 1.009 1.0093 1.0079
0.0625 0.790 | 0.789 0.7898 0.7795
0.0750 0.613 0.610 0.6115 0.6083
0.0875 0.459 | 0.456 0.4573 0.h552
0.1000 0.315 0.3155 0.312 0.3137 0.3120
0.1100 0.195 - 0.195 0.1944 0.1929
0.1125 0.163 0.161 0.1611 0.1598
0.1150 0.128 0.126 0.1241 0.1242
0.1175 0.080 0.0791 0.0822
0.1195 0.034 0.0137 0.0305
0.11972 | ~0.0194

L 0.11986 0.019
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point. Smith and Clutter (R35), Krause.(BSB) and. Cebecl et al.
(R55) have obtained solutions by numerical methods.

JThe separation point obtained by extrapolation by
all previous investigators is at.ax = 0.120, The present
method computed the flow to a point very close to the separs-
tion point, up to ax==0.11972. The veiocity profile near the
separation point is compared to that given by Leigh (R68) in
Figure 13 while the shear stress at the wall 1s compared with

results from previous investigators in Table 2.

7.4 INCOMPRESSIBLE BCUNDARY LAYER CN A FLAT PLATE VITH

CONTINUGUS SUCTICN

Fluid suction has favourable effects on the develop-
ment of the boundary 1éyer, in that 1t'reduces the drag on
the body and 1t stabilizes the boundary 1ayér. Such
stabilization 1s understood to account for two effects:

a) Prevention of separation, i.e., fornation of a
boundary layer which is capable of overcoming
a greater adverse pressure gradient.

b) Laminar flow is maintained at much hizher Reynolds
numbers (approximetelyvloO times larger than if no
suction is applied).

The effect of suction consists in the removal of
decelerated perticles fron the boundéry layer. The
application of suction which was orizinally tried by Prandtl,

was later widely used in the desizn of aircraft wings.



In order.to ensure that a flow with suction satisfies
the simplifying conditions of the boundsry layer theory, it
1s necessary to limit the suctior velocity at the wall Vos to
a magnitude of O(Re’%) (R2). 1In this case the external flow
may be assumed to remain unaffected by the presence of
suction, since the quentity of fluid removed from the strean
is so small that only fluid particles in the immediate
neizhbourhood of the wall are sucked away.

The equations to be solved in this case are:

:Q.P;-{—E.X.:O
X  Qy

du , Jdu _ 1 92y
'uﬁx-Fvay'—Re’ayZ

y=0 u=0

v=v0=const <O
Yy = o5 u=1

A particulasr solution for the fully develovned

boundsry layer flow may be obtained in this case by putting

=2 _0. The equation of continuity then gives v(x,y)=v.= "

ox °

const. and the equation of motion becones:

.vau_ 1 azu
°9y = Re Dy2

which has the solution:

u(y) =1-exp (v Rey)
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with o vix,y)=vo L 0

The local shear stress coefficient at the wall is given by

1 (Qu 1
Co= — (£2) = -2 (-v.Re) = -,
¥~ Re (ay w_ Re o o

This silution may be regarded as an "asymptotic
suction solution". It was in fact shown by Iglisch (E69) that
this asymptotic case is reached after a length of about

y
—

Re vq

X =

Iglisch (R69) made a detailed study of the development
of the boundasry 1ayer'on a flat plate with continuous suction
applied from the leading edge.

This problem wés solved by the present method. The
results obtained are compared to Iglisch's results in Figure
14 for the longitudinal velocity profile, ani in Tables 3 and
L for the asymptotic velocity profile and the shear stress at
the wall respectively. The agreeﬁent of the results is quite
gocd. The asymptotic veloclty profile for v =- 10'3 and
Re = 106 was found by the present method at x=£4,0098 in'(
Jexcellent agreenent with Iglisch's predibtion. At that
station, the normal velocity component at all points across

the boundary layer was equal to the value at the wall and the

profile of the longitudinalrvelocity component differed by

less than 10=5 from the values at the previous station. Since
a considerable distance along the flat plate had to be

covered, in order to reach the asymptotic state, a large step
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Table 3

- ASYNMPTOTIC SUCTION PROFILE

Iglisch (R69) | Present Method
; = - VoRey u u

0 0 0

0.2 0.1813 0.1820
0.b - 0.3297 0.3304
0.6 0.bhs12 0,517
0.8 0.5507 0.5512
1.0 0.6321 0.6329
1.2 0.6989 0.6C9L
1.4 0.753L 0.7539
1.6 0.79%81 0.7985
1.8 0.83L7 0.8351
2.0 0.8647 0.8650
2.2 0.8892 ' ¢, 8894
2.4 0.9093 0.9096
2,6 €.9257 0.92583
2.8 0.9392 0.9393
3.0 0.9502 0.9504
3.2 0.9592 0.959
3.4 0.9665 0.9666
3.6 0.9727 0.9728
3.8 0.9776 0.9775
,0 0.9817 0.9817
L,2 0.9850 0.9849
h. L 0.9877 0.9876
b.6 0.9899 0.9900
L.,8 0.9918 0.9917
5.0 0.9933 0.9932
5.5 0.9959 0.99560
6.0 0.9972 0.9972
6.5 0.9985 0.9985
7.0 0.9991 0.9992




Table 4

BOCUNDARY LAYER ON A FLAT PLATE WITH CONTINUCUS SUCTIOX

Iglisech (RA9) | Present Method
F= - Vo Rex Tw Tw
0.005 5.322 5.304
0.02 2.986 2.969
0.0L5 2,216 2.197
0.08 1.835 1.829
0.125 1.612 1.611
0.18 1.467 1.463
0.245 1.366 1.362
0.32 1.292 1.290
0.405 1,237 1.236
0.5 1.194 1.193
0.72 1.135 1.133
0.98 1.09% 1.094
1.28 1.068 1.068
2,00 1.036 1.036
2.88 1.019 1.020
5.12 1..009 1.009

87
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size ratio (AX/AY =100) was used with iteration for the
normal velocity componeﬁt. Computer time for 400 stations in
the x—direction and 1GO'points in the y-direction was 75
seconds on the CDC 6400, The corresponding computer time

for AX/AY =10 ard without iteration for v was 320 seconds

with results differing at the fourth decimal point,

7«5 BCUNDARY LAYER ON A FLAT PLATE WITH DISCOKTINUOUS SUCTION
VELOCITY | |

The problem of the boundary lsyer flow with discon-
tinuous suction velocity has not received much attention in
spite of its importanée in préctice. Rheinboldt (R70) in his
Ph.D. thesis pfesented an accurate analytical solution based
on series eXpansion teéhniques. Smith end Clutter (R39)
attempted a nunerical solution, using their ﬁethod, which was
discussed previously. They report that the calculated values
of the wall shear stress differed in the second decinal peint
from those obtained by Eheinboldt, just aft of the suction
region. This error is introduced by the very short steps AX
- which are necessary at the discontinuity inm order to achieve
convergence of the solution further downstrean.

Two cases were trested usihg the present numerical

method. The eguations to be solved are again:
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In one of the case studies (Case A) the boundary

condition for v at the wall was taken zs

y:O:OéXél v=20

:1L0x v=v,=const L0

l.e., the wall is assumed impermeable upr to x=1, and porous
trhereafter, with continuous suction avplied ir the porous
region, |

In the second case (Case B) the boundary condition

for v was

y=O O.éX(l v=0
1<4£x £1.15 v=v,=const <0

i.e., "impulse" suction is assumed in the region 1£ x££ 1.15,
with constant suction VQlocity Vos While the rest of thé wall
i1s impermeable, In Figures 15 through 18, the results
obtaired by the present method are compared to Rheinboldt's
results, for Casel, for the following values of vo:vbﬁ§1=-0.5,
- 1.0, - 1.5, Results for Case B are presénted in Figures 19

through 21. In 21l cases the agreement is guite satisfactory.
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7.6 INCCHPRESSIBLE BCUNDARY IAYFR WITEF UNIFORM INJECTICN

While suctlon has a stabilizing effect on the
bourdary layer, uvniform similar fluid injection destabilizes
the boundsry layer aznd eventually leads to separation,
Moreover, the velocity profile near the separation point
assunes the extreme form of what is known as "blow-off profile".
In this case the boundary layer is blown away from the wall,

Catheral et al. (R71) made an extensive analyticalv
end nunerical study of this case, which presents particular
difficulties due to the blow-off effect. They located the
separatién point at a distance x=0,7456 from the leading
edge, aﬁd they showed that near the separation point the
velccity profile appr&aches the profile u=0 at all grid
points ascross the boundary layer, no matter how far from
the plate the outer edge is located. This ﬁeans that as x
approaches the separation point xg the distsnce between the
wall and the edge of the boundary layer tends to infinity.
Clearly this leads to the impossibillity of meeting the outer
edge boundary condition near the separation pcint.

Catheral et al., (R71) found that it was impossible
to obtain a completely satisfactory snalyticsl solution, and
thatva.satisfactory agreenent between the analyticsl snd the
nurierical solution could not be reached.

An attempt was made to sclve the boundary layer
equations with fluid injection, using the present method.

The equations to be solved in this case are:
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2u éBv
v 2V o
9x Oy
Yy =5 u=1
y=0 u=0

v=vo=const } 0

The results obtained for the shear stress at the
wall are presented in Figure 22,.and agree quite well with
Catheral's et al, up to X=0.70. Further downstrean differ—A
ence between the results develops and at ¥x=0.73 there is a
difference in tre fifst sionificant digit., Separation is

predicted at x=0.7432,
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8. CONCLUSICNS

An implicit finite difference method has been
described and its convergence, accuracy and sveed have been
evaluated, Various flows have been calculated by the present
method, and comparisons with analytical and numericsl solutions
have been made. In all cases, it was found that the method
lg accurate for both incompressible and compressible flows,
The computer time reguirements are very snall,

| It is believed that the present method comueres
favourably with previously proposed numericsl methods. The
technique presented in this report may be extended ezslily to
cover magnetohydronamlic boundary layer flows, turbulent flous,
non-Newtoniar beundary layers and binary (or multicomponent)

boundary layers.

McMASTER UNIVERSITY. LIBRARY,



Cs
FCv

Forcing coefficient, BEquation (88)
Coefficient in reccurrence formula
Forcing coefficient, Equation (89)
Coefficient in reccurrence formula
Specific heat, constant pressure
Speed of sound

Specific heat, constant volunme
Coerficient in reccurrence formula
Coefficient in reccurrence formula
Eckert number

Coefficient in reccurrence fornula
Velocity u or temperature T
Thermal conductivity
Cheractefistid length

Mach number

Nusselt nunber

Pressure

Prandtl nunmber

Heat flux

Reynolds nunber

Averaging parsneter

Temparature
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(53)

(53)

(53)
(53)

(53)
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u : Longitudinal velocity component

Ue ¢ Main sfream velocity

v : Normal wvelocity conmponent ‘

Vo : Suction (or injection) velocity

X : Distance in the direction of the flow

y : Distance perpendicular to the direction of the flow

: Coefficient in equation (75)

oA

& : Coefficient in equation (75)
¥ Coefficient in eQuation (75)
S : Coefficient in eguation (75)

ZSTO : Temperature difference between the wall and the
nean strean

AX : Step size in the x-direction
AY t Step size in the y-direction
Eeat transfer coefficient
V;séosity

Kinematic viscosity

Density'

: Shear stress

Q N <& e P

i Dissipation function

Subsecrints
e : lMain stream variables
w ¢ ¥Wall variables

I : Denotes grid points in the direction of the flow



Suverscriots

N

.

Denotes grid points in the direction normal
to the flow

Denotes dimensionless variables
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APPENDIX A

STABILITY ANALYSIS CF TEE FINITE DIFFERINCE SCHEIR

If the finite difference approximstions (70) to (72)
are substituted into the momentum equaticn (47) with f=u and
under the assumptions that the coefficients aq. bl' ¢y defined
in equations (55) to (58) are constant (moreover, we assume,
without loss of generality, that the pressure gradlent is zero,

il.e., d1==o) the following difference equation is obtained:

a?“uI}T 1 Py (. N1 M- N+1 N-1
3 b " S - d - T
e —a UM P SIES R

c
1 N1 N N-1 N+1 N N-1
AZ{S( -2up+up )+ (1-8)(up - 2u1_1+u1_1)}

Rearranging terms, snd putting for simplificztion (See Note 1)

S=%, one obtains:

u ( - + —_ 4 + 1
I LAY  2AY? )+ g AX AR LAY  2AY2 )
h*‘l cq I -1 by c1
+ U L )+ u (- -
11 uAY 15157 1 Ax AYZ -1 UAY  20Y% )
= 0 (A1)

Dividing throush by ‘231(" {see Note 2) and introducing the

perameters:
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by AX
L'falAY

k ClAX - H

Ky=G-H

Ko =1+ 2H
K3=-G- H

Li =G-H=Ky
Ly=- 1+ 21
'L3=_G-H=K3

(A1) cen be written as

N+1 N ., N-1 N+1 N N-1
KluI 4—K2ul+-ﬁ3ul

+L1uI_1+L2uI_1+L3uI_1=O (A2)

. i
According to Von Neumarn's theory the term Uy in the exvression

(A2) 1s substituted by

uN - Aelxegmy

I (43)

or uI}T:AelIAXeJMN AY (AL)

where A=0 and 1, m are real constants, j::ﬂ—l . In order that

jmY

an orlginal error e will not increase as x ‘increases, a

necessary and sufficient condition is

S (85)
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Setting Z = el DX ona substituting from (AlL) into (42)

there results

, Lﬁgmm+1)AY+L(QmAY ;mm-;)AY
eyﬂN+1)AY+£€Jm Y+§fyﬂN—1)DY
o - (G-F)ed®PY (L1420) + (-G -H)e MDY
(6-1)ed®BY L (1 4 2E) 4 (mG-H)eIMAY
or 7o 1-2G3sin(mAY) -2E(1 ~cos (mAY))
1+2Gjein (nDY) + 28(1 - cos (m AY))
Putting 2Gsin (mAY) =g

2H(1 - cos (mDY)) =h>0

we obtain

_l-h-gj
T 1+h+gj
2 2
or Z= 1-h -?g -ZZgj (A6)
(1+n)“+g
Since, 2ccording to (A5)
2] {1
' 2
or |Z| gl
we obtesin |
(1-}~ ) +2Q2(1+h2)+gu
(1+h) +20~ (1+1A) + g
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If h=0, (A7) becones

end (A5) is satisfied.
With h#0, and since

(1-12)° - (1+n)?1 -h)zg (1+n)"

and 1+h2<(1+h)2

it is clesr that the numerator of (A7) is smaller than tlre
denominator and so (A35) holds, for 211 G and H. Therefore,
the implicit method is stable reszardless of the choice of the

step sizes,

Note 1

| If the paremeter S 1s left in the difference
equation, the derivetion of the analogue of (A7) is similar,
but the salgebra is scomewhst more comrlicated. The analogue

of (A7) arrived at by identical considerations is in this cose:

256212 (=1-3248) + h2(1 - 6S) + 2h, g2 (-1+5-25%) + g2(1 - 28)
17 1 147 1 |
Sho(1 - 6382) + 5o (S - 2) + SPRE (1 - 28) - 2 0  (A72)
+ o Ll 1 - = + Ql - + ‘1 1 - - hl < 73
where 81 =28

hy = 2h

Ir 1$ S é%, hy, gy #0, then the terms in parentheses in
(A72) are either negative or zero, since hy > 0 and (A5) is

satisfied. The stability criterion concerning the case
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0 (S { 3 1is difficult to obtain since 1t requires the

solution of the inequality (A7a).

Note 2
a
If a4=0, 1,e., u=0, omnission of the Zé? terms in
(41) leads to

1z)% =1

so that the stability condition (A5) is =2zzin fulfilled.



APPEXNDIX B

ToE CONPUTER PRCGRAI

B.1 COMFUTER PROGRAl: NCIEKCLATURE

Indices
N :1, 2, 3,...NPY : Number of points in the y-direction

I:1, 2, 3,...NPX : Number of stations in the x-direction

Non Subscripted Variables

DIFTEX : Maxinum difference between the assumed and the
calcvlated tempersture profile on a line

DIFUMX : HMaximum difference between the assumed and the
calculated longitudinal velocity profile on = line

DIFVIHX : lMaximum difference between the assumed and the
calculated normal velocity profile on a line

DIS : Displacement thickness

DTO : Difference between the wall temperature and the
free strean temperature

DTPIMA : HMaximum difference between the calculated
. temperature profile on a line a2nd thet on the
previous line —

DUFIA ¢  HMaxinum difference between the calculated
longitudinal velocity profile on a line and
that on the previous line

DX : Step size in the x-direction
DY : Step size in the y-direction
ECK : The Eckert number

EXCP : The specific hesat
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The characteristic length L
The pressure
free strean tenperature
The free stream veloclty
brintout of the wall
n
Control variable for the printout of the velocity
and temperature profiles

Control variasble to stop the programn when
calculations convasrge

Number of points across the boundary layer

Number of pcintes in the domailn of integration in
the y-direction

NPY - 1
Number of stations in the x~direction
NPY - 2

Number of 1ltsrations to establish the temperature
vrofile along a line

Number of iterations to establish the longitudinsl
velocity prorile along a line

Number of iterations to establish the normal
velocity profile on a line

The Prandtl nunber

The Reynolds number
Shear stress at the wall
Step size ratio

Averaginzg perameter in the finite difference
approxination of the momeantun eguation
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TOLT

e
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Averaging parancter in the finite 4i
anproximation of the enerzy equation

Tolerance for the convergence of cslculations
for the temperature

Tolerance for the convergence of calculaticns
Tor the velocity :

Tolerance for the velocity profile along a line
Tolerance for the tenperature profile 2long a line
The velocity zgradient at the wall

The wall temperature

The wall longitudinal velocity

The well normsl velocity

Distance along the body

Distance perpendicular to the body

achnieve acceleration of

Parameter us o)
he profiles along a line

ced t
convergence of t

Subscrinted Variables

A, B, C, : Coefficients in the equation of motion
' and energy

AL1, AL2, BE1, Coefficlents in the recurrence relation

BE2, GA1l, GAZ2, for the velocity (suffix 1) ard

DE1, DE2 for the temperature (suffix 2)

FCA1, FCB : Forcing coefficlents in the reccurrence

rcaz, ¥C

]

formula for the veloclty

Forcing coefficients in the reccurrence
formula for the temperature

The density

The temperature

4

The longitudinal velocity conponent
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v : The normal velocity component
RAS : Assumed density for the points on the next line
TAS 1 Assuned temperature for the points on the

next line

Assunied longitudinal velocity for the points

UAS :
on tie next line

VAS :  Assumed normal velocity component for the points
on the next 1line .

RI{ : Storage array for calculated values of density
on a line

TH : Storage array for calculated values of tenperature
on a line '

UM : Storage array Tor the calculated valuss of the
longitalinal velocity component on a line

VH : Storage array for the calculated values of the
normal velocity component on a line

RIZD ¢ Density along the outer edge

TIED : Temperature along the outer edze

UIED : Velocity along the outer edge

RIW : Density along the wall

TIW ¢ Temperature along the wall

UIW : Longitudinal velocity component along the wall

VIW ¢ Normsl velocity component along the wall
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ALGORITHM FOR TH

E COMPUTER PROGRAI

EXL, EXU,
WU, WT, WV

NPX, 81, 82, NB

TOL1, TOL2
Z, STEPRA.

EXT, EXCP,
» NPY,

, TOLU, TOLT,

CALL

BINCO|

=3

TECSE oW LINE (I).

ASSUNE VALUES OF VARIABLES ON LINE (I+1)

STORE VALUES OF

VARIABLES ON LINE (I)

COIFUTE COEFFICIANTS
AND ENERGY. EQS. (55)

IN EQUATICKNS CF INCTICN
TO (59) AND (61) TO (65)

COMPUTE COETTICIENTS
AND ENERGY AT MIDDLE

IN ERUATIONS OF MOTION
PCINTS (ON LINE (I+%))

CCHFUTE CUEFFICIENTS

IN RECCURRENCE FORMULA

(EQ. (75)) FOR THE VELOCITY AND TEMPERATURE

-

COMPUTE FORCING COEFFICIENTS IN THE EXPRES-
SJIONS FOR THE VELCOCITY AND TEE TEVMPERATURE

CALCULATE THE VELOCITY AND TEMPERATURE
PROFILES AT THE STATION (I + 1)

COLPARE THE CO.PUTED PROFILES
WITH THE ASSUNED PROFILE
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YES

(BOTH PRCFILES LAVE CONVERGED

NO

YES

(VELOCITY PROFILE HAS CCNVERGED

NO

REPLACE THE ASSUNED VELOCITY
PROFILE BY THE COMPUTED PROFILE

n
(:::)——-——————(TEHPEBATUBE PROFILE FAS CONVERGED)— o

NO

REPLACE THE ASSUMED TEHNPERATURE
PROFILE BY THE CALCULATED PRCFILE

121

<EEE} . [G0 7o 51
CONPUTE THE NGRUAL
17 |VELOCITY PROFILE

PRINT PRCFILES
AT STATION (I+1)

I::LESEW N YES

3Y LESS THAN SPECIFIED TOLERANCE FROM THE

COMPUTED PROFILES AT THIS STATICN DIFFER
VALUES AT THE PREVICUS STATION

)

NO "~ YES
{

IGO TO 1]




[ SUBROUTINE BINCO]

COMPUTE VALUES CF PHEYSICAL
PRCPERTIES AT TEE WALL AND
AT TiX OUTER EDGE

COIPUTE DIMENSIONLESS
NUMBERS, Re, Pr, E

COMPUTE BOUNDARY CONDITICNS
AT THE CUTER EDGE

CCHPUTE BOUNDARY CONDITICNS
AT THE WALL

CO¥PUTE STEP SIZES, DX, DY

COMPUTE INITIAL PROFILES
AT STATION (X = 0.0)

\

COHPUTE DIIMINSIONLESS INITIAL

PRCFILES AND DINENSIONLESS

CONDITIONS AT THE CUTER EDGE

AND AT THE WALL

RETUBN
END

122



aNaEaNaNaNaEaNaNaNalaNaNANANANANANARANANANANANANANANANGONANANANANANANAIANANATA!

PR

123

OGRAX FOR THE NUMERICAL SOLUTION OF THE BOUNDARY LAYER

EQUATICNS FOR COMPRESSIBLE FLOW WITH VARIABLE FLUID PROPERTIES.

'THE EQUATIONS ARE SCLVED B8Y A FULLY IWMPLICIT FINITE DIFFERENCE

TECHNIQUE IN THE X-Y PLANE.
INPUT DATA NEEDED ARE
EXL CHARACTERISTIC LENGTH
EXU MAIN STEAM VELOCITY
EXT MAIN STREAM TEMPERATURE
EXCP SPECIFIC HEAT
EXP PRESSURE
WU WALL VELOCITY (ZEROs IF WO SLIP CCONDITION APPLIES)
(Y NORMAL VELOCITY AT THE WALL
WT WALL TEMPERATURE
NPY NUMBER OF POINTS IN THE DOMAIN OF INTEGRATION
NP X NUMBER OF STATIONS IN THE X-DIRECTION
S1 AVERAGING PARAMETER {SleLEel o AND S1.GE«1/2 )
52 AVERAGING PARAMETER (S2eLEel o« AND S24GEe1/2 )
NB NUMBER GF PCINTS ACCKGSS THE BOUNDARY LAYER
ToL1 TOLERANCE FCR. THE COMVERGENCE OF THE VELOCITY
PRCFILE ALCONG A LINE
TOL?2 TOLERANCE FOR THE COMVERGENCE OF THE TEMPERATURE
PROFILE ALONG A LINE
JOLU TCLERANCE FOR CONVERGENCE OF THE CALCULATIONS
OF THE VELOCITY -PROFILE
TOLT TOLERANCE FOR CONVERGENCE OF THE CALCULATIONS
OF THE TEMPERATURE PROFILEL
z PARAMETER FOR THE ACCELERATICN OF CORNVERGENCE
STEPRA STEP SIZE RATIO (DX/DY)

N
N

EXTKR CONTROLS PRINTOUT STATIONS FOR THE PROFILES
EXTKS CONTROLS PRINTOUT STATICONS FOR THE WALL SHEAR

COMMON AND DIMEMSION STATEMENTS

COMMON  EXLIEXUSEXRIEXTsEXCPSEXKSEXMsDTOs ECKIREYsSPRAS
SWUSWT s WRWV s NPY sNPXsDY DX THICK s NPYMs NBs EXPs Ny
T U(30C)s T30y R{3CO)s V(200G Y300},

FUIW(S1C) o TIW(510)sRIW(S5IC)sVIW(S1Q) s

S UIED(51C) s TIED(510)sRIED(510)

DIMENSION UAS(300)s TAS(300)s RAS(200)s VAS(300)
UM(300)se TM(300)s RM(300)s VM(300) s ‘
A{3C0)s B(3CO)Ys D(30C)s AA(3COH)s BRBI30ON)s DDI(300)
AOLD(30U)s BOLD(300)s DOLD(300)s RNEW{3CO}s C1(300),
C2(200)s COLDI(3C0)s COLD2(300)rs CC1(300)s CC2(300)s
FCA1(3CQ0)s FCA2(30C)s FCB1(300)s FCB2(300),
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C

C
C

8888

1

H H A A AN

AL1(30C)s BE1(300)s GA1{(300)s DE1(3C0)»
AL2(30C)s BE2(300)s GA2(300)s DE2(3C0) >
DUP(30C) sDTP(3C0)s HTA(300)s VDIM(3CO),
VOLD(3008) sDIFV(300) »

UU(300)sTT(300)s RR(300)

DIFU(300)s DIFT(300)

WRITE(659011) ‘

READ(559C01) EXLsEXUsEXTsEXCPIEXP
WRITE(6+9C12) EXLsEXUSsEXTHIEXCPIEXP
WRITE(6+9021) )

READ (559C2 )  WUsWVsWT

WRITE (659022) WUsWVeWT
WRITE(659021) .

READ(5+903) NPYsNPXsS1s529NB
WRITE(6s9U32)NPYsNPX3sS515529NB

READ (5+9C4) TOL1sTOL2sTOLUSTOLT
WRITE (6+49C41) TOL1sTCL2sTOLUSTOLT
READ( 559C5) 2sSTEPRA

WRITE (6s9051) ZsSTEPRA

READ (559U6) NEXTKRINEXTKS

WRITE (6s9061) MEXTKRsNEXTKS

NPYN =NPY-1

CALL BINCO

= -

D=1
2

12

X RAR [T
=Z=;pm

(@i
O H

DO 1010 N=1sNPY

ASSIGN VALUES AT I+1 THOSE AT I

UAS(N)
TAS(N)
RAS(N)
VAS(N)

UIN)
TN)
RIN)
V(N)

#Hono#uon

STORE VALUES AT I

1010 CONTINUE

UM(N)
TM(N)
RM(N)
VM(N)

U{N)
T{N)
RIN)
VIN)

124



125

C COMPUTATIONS OF COEFFICIENTS IN EQUATIONS OF MOTION AND ENERGY.
2 DO 1020 N=1sNPY
AIN) = RINY*UIN)
BIN) = R(IN)*V(N)
Cl(N) VIS(TsN}/REY
C2(N) CON(TaN)/(REY*PRA)
IF(NaGENPYN) UIN+2) = U(INPY)
DIN) = (ECK*((UIN+2)=U(N) )/ (2¥DY) ) **2)%(1s/REY)
1C20  COMTINUE
C NITERUSsNITERTSMITERV COUNT ITERATIONS FOR UsVsT AT THE SAME 1.
NITERU=1
NITERT=1
NITERV =1

C .
C COMPUTATION Of COEFFICIENTS IN EGUATIONS OF MOTION AND ERNERGY
C AT MIDDLE POINTS. -

I=1+1
X=X+DX
3 DO 1C30 N=1sMPY
AOLD(N) = UASIN)I®*RAS(N)
BOLD(R) = VAS(N)*RAS(N)

COLD1(N) = VIS(TASsSN)}/REY

COLDZ (N) = CON(TASSN)/(REY*PRA)

IF (NeGELNPYN) UASIN+2) = UASINPY)

DOLD(N) = (ECKH ((UASIN42)I~UASINY )/ (2%¥DY ) ) #%2)¥ (14/REY)

AACH) = (A(N)I+AOLDINY) /2
BB(N) = (E(N)+8CLDIN))Y/2
DD(N) = (DINI+DOLDINY) /2

CCL(N) = (C1{N)I+COLD1I(N))Y/2.

CC2(N) = (C2(N)Y+COLD2(N)) /2.

VOLDIN) = (VAS(N) + VM(N}Y)/2.
1030 CONTINUEL

C
C
C COMPUTATION OF COEFFICIENTS IN RECCURENCE FORMULAE
€ FOR VELOCITY (SUFFIX 1) AND TEMPERATURE (SUFFIX 2)
C
C .

4 DO 1040 N=2sNPY

IF (NeEQeNPY) UM(N+1) = UM(N)
IF (NsEQJNPY) TMIN+L) = THIN)
IF(NSEQeNPY) CCL(N+1)= CCLI(N)
IF{NJEQeNPY) CC2(N+1)= CC2(N)

ALT (M) = =S1%*(PRIN)+(CCLINY+CCLIN=-1)Y/DY)/ (2¥DY)

BE1(N) = AA(NI/DX+(S1/2)% (CCLIN+1)+2%CCLINI+CCLIN+1))/{DY*%2)
GA1(N) =S1#(BBIN)—(CCL(N+1)+CCLIN)Y)I/DY)/(2.%DY)

DE1(N) = (1-S1I*(BEB(N)+(CCLIN}+CCIIN=1))/DY))*UMIN=1)/(2%DY)

S+ (AA(N)/DX=(1-S1)#(CCIAN+FLI+CCIINY*24+CCLIN=1) ) Z{2%(DY*%2) ) ) *UM(D
$ —(1-S1)1#(B3(N)-(CCT{N+1)-+CCLINY)I /DY) #UMIN+1)/7(2%DY)
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252% (BRIN)+(CC2(N)+CC2(N=1)1/DY)/(2%DY)

Y AL2UINY =
BE2{(NY = AA(N)/DX+(S2/2)%(CC2(N+1)+2%¥CC2(NY+CC2(N+1))/(DY*%2)
GAZ2(N) =S2*¥{(BRBIN)—(CC2(N+1)+CC2(N))I/DY)/(2.%DY)

DE2(N) = (1-32)1%{(BB(N)+(CC2(N)+CC2(N=1))/DY)*TM(N=1)/(2%DY)
B+(AALNY/DX=(1-5S2)1*(CC2(N+1)+CC2(N)*2+CC2{N=1) )/ (2%(DY*3%2)) ) *T¥ (N
$ =(1-52)%(BBIN)=(CC2(N+1)+CC2(N}Y) /DY) =*TM(N+1)/(2%DY)
$ +DD(MN)

104C CONTINUE
C . .
IF (IeGTo240ReNITERUCGTS1) GG TO 41
C WRITE STATEMENTS TO CHECK THE COcFFICIENTS IN THE RECCUREMNCE
C FORMULAE
WRITE (6s91040)
WRITE (699101) [(ALLIN)»BEI(N)s GAL(N)SDEL(N)»
S AL2(NYsBEZ{N)YsGA2(MN) +DE2(N}sN=14+19)

DO 1045 N=2UsNPYs1C

WRITE (6391v1) ALL(MN)sBELI(N})s GAL(IN)SDEL1(N}»
$ AL2(N)sBE2(N)sGA2(MN)sDE2(N)

1245 CONTINUE
C
C COMPUTE FORCING COEFFICIENTS (SUFFIX 1 FOR VELOCITY
C AND 2 FOR TEWMPERATURE)

41 FCA1(1)=0.0

FCA2(1)=CaJ

FCB1(1)=0C.0

FCB2(11=0.0

IF ([1eGTa2+OReNITERUSGTS1) GO TO 5

WRITE (6+9110) 1

5 DO 1U50 N=2sNPY

FCAL(N)= —GALINY/Z(ALL(MN)I®FCALIN=L)+BEL(N))

FCAZ2 (W)= =CGAZ2(N)/{ALZ(MN)I*FCA2{N-1)Y+BE2(N})

FCRI(N)= (DEL(N)=ALT(MI®FLBI(N=-1))/(ALT (N)*FCAT(N=-1)148E1(N))

FCR2INY= (DE2(NY-AL2(NI*FCB2(N-11)/(AL2 (NY*¥FCA2(N=1)+BE2(N))

105C CONTIMUE

IF (I1eGTe2e0ReNITERUGTS1) GO TO 51

C WRITE STATENMENTS TO CHECK THi FORCING COEFFICIENTS

WRITE (699111 (NsFCALIN)sFCAZIN) sFCBI(N)9FCR2(N) sN=1+919)

DO 1055 N= 2UsNPYs10

WRITE (659111) NsFCAITINYSFCA2(N)YsFCETI(N)sFCR2(N)

1055 CONTINUE : '

nu |

C ‘
C CALCULATION CF DEPENDENT VARIABLES AT NEXT STATION DOWNSTREAM
51 UINPY) = UIED(I)
TI(NPY) = TIED(I)
R(NPY) = RIED(I)
6 DO 1060 L=2+10C0
IF (LaGTMPY) GO TO 7
N= NPY+1-L

UIN} = FCATIN)I®UIN+1) + FCB1(N)
TIN) = FCAZ(N)}#T(N+1) + FCB2(N)
1C60C CONTINUE
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C COMPUTE DENSITY AT 1
7 DO 1070 N =1sNPY

TIM) = TIN)I*DTO + WT
RIN) = EXT®EXR/T(N)
RIN) = R(INJ/EXR

1C7C CONTINUE

C RE-ESTABLISH DIMENSIONLESS T(IsN)e NECCESSARY BECAUSE OF 7
8 DO 10UBO N=1sNPY
TINY = (T(N) - WT)/DTOC
1080 CONTINUE
C
C CHECK RESULTS AT THE START OF THE CALCULATIONS
IF (I1eGTa3eCRe NITERULGT»1) GO TO 81
WRITE (6+912v) 1
WRITE (€+9121) ( NsU(NYs TIN) sR{N)» V(N)sN=1+19)
PO B5 N=20sNPY»1C
WRITE (6+9121) NsU(N)s TIN) sR{N)sVIN)
85 CONTINUE
C TEST TO ESTABLISH PROFILES AT I
81 DIFUMX =00l
DIFTMX =00

9 DO 1090 N=2sNPY
DIFU(N) = ABS({ U(N) = UASIN))
DIFT(N) = ARS( T(N) - TAS(N))

C LOCATE MAXIMUM DIFU DIFTs DIFV.
IF (DIFU(N) «GT«DIFUMX) DIFUMX =DIFU(N)
IF (DIFT(NY«GT«DIFTMX) DIFTMX =DIFT(N)
1090 CONTINUE
C
C COMPARE RESULTS WITH ASSUMED PROFILES
IF (1.GT410) GO TO 10
WRITE(629130u) DIFUMXsDIFTMXsI
C
10 IF (DIFUMXeLT«TOL1 «ANDe DIFTHXeLTWSTOL2) GO TO 17
IF (DIFUMXsLT«TOLL ) GO TO 13 '
11 DO 1110 N=1sNPY
UUIN) = UINY +Z%(UIN)-UASIN))
IF (UU(N) oLE«Ce) GO TO 1125
1110 CONTINUE
DO 1120 N=1sNPY
UAS(N) = UU(N)
1120 CONTINUE
GO TO 1128
1125 DO 1127 HN=1sMPY
UAS(N) = U(N)
1127 CONTINUE
1128 NITERU = NITERU +1
IF(1.GTs 10) GO TO 13
WRITE (6+9140)
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13"+ IF (DIFTMX.LT.TOL2)} GO TO 14

DO 1135 N=1sNPY
TTIN) = TIN) +Z%(T(N)=TAS(N))
IF (TT(N) «LEe«Te} GO TO 1145
1135 CONTINUE
' DO 1140 N=1sNPY
TASIN) = TT(N)
. RASIN) = R(N) +Z#(R{N)~RAS(N))
114C CONTIMUE
GO TO 1148
1145 DO 1147 N=1sNPY
TASIN) = T(N)
RAS(N) = R(N)
1247 CONTINUE
1148 NITERT = NITERT +1
IF(I.GT«14U) GO T2 15
WRITE (659150)
C
C
14 WRITE (649160)1s NITERUs NITERT
15 IF (NITERU«GTe20e0RaMITERTSGT2C) GO TO 16
3333 GO TO 3 '
le WRITE (6sS1T7T0)IeNITERUSNITERT$DIFUMXaDIFTMX
C :
C COMPUTE DENSITY AT THE AUXILIARY GRID
17 DO 1150 N=1sMNPY
RMEW(N) = (RMIN)+RIN))Y/2.
1150 CONTINUE
C  COMPUTE NORMAL VELOCITY AT THE AUXILIARY GRID
18 DO 1160 N=1sNPYN
VIN+1) = ( 1e/RMEWIN+1)I*OVINYFRNEW(N)
S—(DY/{24#DX ) )*(RINIHU(N) — RM{N)*UALN)
PHRIN+II®U N+ I =RM(N+1 Y #UMIN+1)))
1160 CONTINMNUE
C .
19 IF (TeMEJXWR«ANDLENDMES10Q) GO TO 21
KWR = KWR+NEXTKR
191 WRITE (5+9180) 1
DO 1170 N=1sNPY
HTA(N) = Y(N)*SQRT(REY/X)*SQRT{WR/EXR)
VDIMI{N) = VIN)*¥SQRT(REYH*X)
1170 CONTIMNUE
20 WRITE (69919CYH(NsUIN)s TIN)sR(N)s VINYsY{N)SHTA(N)sVDIMIN) 9N=1519
DO 1180 N=2CsNPYs10
WRITE (699150) NaUIN)s TINIsR(N)s VIN)YIN) sHTA(N) s VDIMIN)
1180 CONTINUE
IF (TeNE«NPXeANDSLEND.NEL1C) GO TC 21
GO TC 555
21 DUPMA =C,
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DTPMA =U.

DC 1190 N=1sMPY

DUP(N)Y = ABS{UIN) - UM(N))

DTP(N) = ABS(T(M) - TM(N))

IF (DUP{N) «GT«DUPNMA) DUPHMA=DUP(N)
IF (DTP{N) «GT.DTPMAY DTPIMA=DTP(N)
CONTINUE

IF (DUPMACGT«TOLU +ANDJDT”MAGTSTOLT } GO TO 22
LEND=1C

WRITE (64+9200) TsX

GO TO 17¢1

IF (I+EQ«NPX) GO TO 191

DO 1200 N=1shNPY

VIN) = Z24%VIN) =VAS(N)

CONTINUE

IF (IT«NE«KS) GO TC 1111

KS = KS+ NEXTKS

VELGR = (18%U(2)1-9*U(3)+2%U(4))/(6*DY)
SHEAR = VELGR/REY
SUMIN = Qe0

NSIM = NPY=2

DO 1210 N=1sNSIMs2

SUMIN = SUMIN + (U(N) +4%U(N+1) +U(N+2))
CONTINUE

DIS = DY*(NPY=SUMIMN/3.)

WRITE (6+9210) TaXsSHEAR »DIS

GO TO 1

IF (LEND.EGe10) GO TO 5555

WRITE (6+9230) X

STOP

RMAT STATEMENTS

FORMAT( 15Xe3HEXLs7Xs3HEXUsTXs3HEXT»6X s 4HEXCP 97X 9 3HEXP)
FCRMAT | F1l0e6sF10e33F1Ce3s F10e25F1063)
FORMATL 12XsF10eb6sF1l0439F10e39 F10e3sF1043//)
FORMAT (24Xs2HWUs 18X s2HWV 918Xy 2HWT)
FORMAT FlOaboalOXeF1lCabs10XeF10a4)
FORMAT (20XeF10a¢4910XsF10e4310XsF1064//)
FORMAT( 24XsZHNPY s 7TX s 3HNP X s TX9s2HS1 98X e2HS298X s 2HNB/)
FORMAT ( 211092F1043 »110)
FORAAT( 2uUXs211Cs2F1Us3 110//)
FORMAT (4F1C40) .

FORMAT (20Xs4HTOL1 96X s 4HTOL2s6Xe4HTOLUs6Xs4HTOLT/
$ 19Xs4(F6e495X)) -
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9C5 FORMATI(2F10.0)
9051 FORMAT (20X92HZ=9F542310Xs THSTEPRA=sF643/)
S0e FORMAT (2110) ’
961 FORMAT (2UX s THNEXTKR=9 14 s THNEXTKS=s14/)
9160 FORMAT(15X93HAL191UX93H851913X53HGA1910X93HD519
% : 1O0Xe3HALZ2s1UX92HBE2210X9s3HGAZ2 10X 3HDE2/)
9101 FORMAT(8(5XsE1043))
9110 FORMAT (20X 9e26HFORCING COEFFICIENTS AT I=912/
3 lOX,lHN99Xa7HFCAl(N)99X57HFCA2(N)s9X97HFC91(N);9X97HFCBZ(N)/)
9111 FORMAT (8X91358X3sE94298X9E9e298XsEGe298XsEQ,2)
9120 FCORMAT (1CXs 27HRESULTS FROM LODP SIX AT I=y 13/
$ 18XeIHNsTXs1HU 14X s IHT s 14X s 1HR s 14X s 1HV /)
9121 FORIFAT (1UX91109F10e6395X3F10e635XsF10e635XsF10e6)
913C FORMAT (ZDX96HDIFUMX910X96HDIFTMX9lOXsI/lQX;EBonQXQES.Zs?XB13/)
9140 FORMAT (1UXs 22HDIFUMX 15 NOT.LT. TOL1)
9150 FORWMAT (1CXs 22HDIFTMX IS NOTLT. TOL2)
9160 FORMAT (ZbX91HI97X36HNITERU96X96HNITERT/ISX,13910X913510X913/)
9170 FORMAT( 10Xs48HNUMBER OF ITERATIONS TO ESTARLISH PRCFILES AT I=y
$I343HARE/ 17Xs6HNITERU, LXs6HNITERT/ 10Xs21107/
$LUX922HMAXT UM DEVIATIONS ARE/ 17X s6HUIFUMX st X s
SEHDIFTMX/ 1UXe2F1Ce6//)
9180 FORMAT (10X 22HPROFILES AT STATION I=413// 18Xs1HMNs 7Xs1HUS
$14Xe1HTs14XsIHR 914X s 1HV 914X s 1HY s 12X 9 3HHT A1 1 X s 4HVDIN/ ) -
9190 FORMAT (1UXsI1l0e7(F10.685X))
- 9200 FORMAT (//10Xe28HCALCULATIONS CONVERGED AT I=s1495X92HX=3F10e5//)
9210 FORMAT (16X32H1=aI4;10X92HX=9F804910X$6HSHEAR=5512-55
S 10Xs4HDIS=3E12.5) '
9230 FORMAT(1UX»352HCOMPUTATIONS COMPLETED UP TO LAST STATION DOWNSTREA
$/7/15X42HX=9F10a5/)

END

SUBRCUTINE BINCO
SUBROUTINE TO CALCULATE BOUMNMUARY CONDITIONS AND INITIAL PROFILES

COMMON  EXLsEXUSEXRIEXTsEXCPsEXKsEXMyLTOs ECKIREYsPRA,
EWUSWT s WRsWVs NPYsMPXsDYaDXs THICKs NPYNs NBs EXPs MNs
$ U30C)Ys T(3CC)s R(300)s VI3C0)s YI(300)s
BUIW(510) s TIW(S51C)sRIW(S510)sVIWI(B10) s
$ UIED(51C)>TIED(510)9sRIED(510)

DENSITY sVISCCSITY AND CONDUCTIVITY STATEMENT FUNCTICNS
RHO(T) = 1e26%EXP/T
VIMIT) = 24270%(T*#145)%(104%*(=8))/(T+198e6)
COUT) = 0642161%(040132340,00002%(T=460))

COMPUTE VALUES OF PROPERTIES AT THE WALL AND AT THE OUTER EDGE
~ EXR = RHO(EXT) :
WR = RHO(WT)
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EXM = VIM(EXT)
WM = VIM{WT)
EXK = CO(EXT)
W = CO(WT)

WRITE (69 9U) EXRsWRsEXMyWieEXKs WK

C

C

C

C COMPUTE DIMENSICNLESS PARAMETERS
REY = (EXL*EXU*EXR)/EXM
DTO=EXT=WT
ECK = = (EXU%%2)/(EXCP*DTO)

PRA= (EXM3*cXCP)/EXK
WRITE( 6491) REYsDTOsECKsPRA
C COMPUTE BOUNDARY CCNDITIOMS AT OUTER EDGE

DO 110 I=2sNPX
UIED(I}) = EXU
TIED(I) = EXT
RIEC(I) = EXR

116 COMTINUE
C COMPUTE BOUNDARY CONDITICNS AT WALL
DO 120 I=2sNPX

UlwWi(I) = wWu
TIW(I) = WT
RIW(I) = WR
VIWII) = WV

120 COMTIMNUE
THICK= 5¢%SORT(EXM¥EXL/ (EXR®¥EXU))
DY = THICK/NB
DX = STEPRA¥DY
WRITE (6592) THICKsDYsDX

C COMPUTE INITIAL PROFILES AT STATION X=0,0

WRITE (64+93)
Y(1)=0a0
DO 130 N=1sNPY
Y(N+1) = Y{(N) +DY
IF (NeGTa1) GO TO 135

UIN) = 0«0
TN) = WT
RIN)  =EXT®EXR/T(N)
GO TO 130
135 UlN) = EXU
TIN) = EXT
R(N) = EXR

130 CONTINUE
WRITE(6+94) (NaY(N)s UIN)s TIN)s R{N) sN=1519)
DO 131 N=20sNPY,s1C
WRITE(6994) NsY(NYs U(N)s T{N)s R(N)

131 CONTINUE
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C COMPUTE DIMENSIONLESS INITIAL PROFILES AT X=0.0
WRITE (6+95) .
DO 140G N=1sNPY
Y{NI= Y{N)/EXL

UCN) = UN)/EXU
TINY = (T{N)=-WT)/DTO
R(N) = R{N)/EXR

140 CONTINUE
"WRITE (69 9610 NaY(N)s U(N)s TIN)s R(N) sN=14+19)
DC 145 N=2CsNPYs10
WRITE (69 96) NeY{N)s U(IN)s TIN}s R(N)
145 CONTINUE
C C(CMPUTE DIMENSICNLESS BOUNDARY CONDITIONS AT CUTER EDGE

DO 15C I= 2sNPX

UTED(I) = UIED{(I}/EXU
TIED(I) = (TIED(I)=-WT)/DTO
RIED(I) = RIED(I)/EXR

150 CONTINUE
C DIMENSIONLESS BOUNDARY CONDITIONS AT THE WALL
DO 160 1= 2sNPX

UIW(I) = UIW(I)/EXU
TIW(IY = (TIW({I)=-WT)/DTO
RIW(I) = RIW(I)I/EXR
VIW(I) = VIW(I)/EXU

16C  CONTINUE
C COMPUTE DIMENSIONLESS DYsDX
DY = DY/EXL
DX=DX/EXL
WRITE (6s 97) DYsDX

FORMAT STATEMEMTS

aNaNaNa!

9C FORMAT (10X s 24HEXR s WRsEXM o wMsEXKeWK ARE//10Xs6(E10e395X))

91 FORMAT ( 10X s9HREYNOLDS=5F10e193Xs THEXT - T=9F10e293Xs THECKERT =
$F1Ce4593XsBHPRANDTL=9F10s4//) '

92 FORMAT (1UXs30HTHICKNESS OF BOUNDARY LAYER 1SeF10.6/ 30HSTEP SIZE
SINTHE Y-DIRECTICN IS8S+F129/30HSTEP SIZE IN THEX-DIRECTION 1S,
$F12.9//7) ’

93 FORMAT (1UXs33HINITIAL PROFILES AT STATION X=0a40//18Xs1HNs7Xs1HYs
$14Xs1HU214XsTHT s14X91HR/)

94 FORMAT (1CXsI10sF10e595XsF10e595XsF10s535X3F10e5)

95 FORMAT (10X9s39HDIMENSIONLESS INITIAL PROFILES AT X=0.0//18Xs1HNs
ETXeIHY 914X IHUs 14X s 1THT s 14X IHR14X s 1HV /)

96 FORMAT (1CXaI109F104a595XsF10a595XsF104595XsF104645)

87 FORMAT (1UXs28HDIMENSIONLESS STEP SIZES DY=3F12843HDOX=F12.87/
$3CHEND OF SURROUTINE 3INCO QUTPUT////)

RETURN
END
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FUNCTION VIS(TsN)
VIS IS THE VISCOSITY-TEMPERATURE RELATIONSHIP.

COMMON NPYsEXM sEXToWT
DIMENSION T(300)

CHANGE 70 DIMENSIONAL TEMPERATURE.
TIN) = TINY*(EXT=WT)+WT

VIS = 24270%(T(N)#%145)%(10e%%(=8))/ (T(N)+19846)
VIS = VIS/EXM

RETURN

END

FUNCTION COMN(TsN)
CON IS THE CONDUCTIVITY - TEYPERATURE RELATIONSHIP.

COMMON NPY s EXK 9EXT o WT
DIMENSION T(3C00)

CHANGE TO DIMEMSIONAL TEMPERATURES
TIN) = TINIR(EXT-WT)+WT

CON = 042161%(0,0133+0,00002%(T(N)=460))
CON = CON/EXK
RETURN

END



	Structure Bookmarks

