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CHAPTER 1 


INTRODUC1TON 

With the advent of the monolithic integrated circuit, 

the new degree of freedom offered design engineers through 

reduced size and cost has heralded in a new era for the 

digital computer. No longer is it necessary to record 

measured results for later analysis by a large general purpose 

computer. Smaller, more efficient, special purpose computers 

can now be taken directly to the source for a considerable 

saving in time and cost. More recent technological advances 

in the fabrication of integrated circuits have led to the 

point where greater than 100 gates on a single chip is now 

possible. The development of large scale integration (L.S.I.) 

has created new and unique problems for the manufacturers. 

The circuits must be complete independent units in themselves 

so that the input and output connections may be minimized. 

It is this necessity for entire functions to be completed 

within a single integrated circuit that exemplifies the need 

for cellular system design. A digital system will be an 

assemblage of cells or blocks each of which is independent 

within itself, and it is the duty of the system designer to 

suggest of what these cells must consist. It is the proposal 
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of such a block, the computing memory, that is the subject 

of this thesis. 

Considerable investigation of the concept of the 

computing memory has been done in recent years. Perhaps 

the first efforts at including logic capabilities within the 

memory block occurred with the content-addressable or 

associative memory. 1 Such a memory was built by Rux 2 using 

glass delay lines as the storage unit. Although the memory 

was an independent self-administrating block it still relied 

on a central control unit to sequentially search the 2048 

word memory every 100 microseconds. A qualitative study of 
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the relative advantages of the parallel and sequential 

computers along with design concepts and software consider­

ations was made by Koczela and Wang. 3 Huttenhoff and 

Shively4 proposed a computer system composed of perhaps 

thousands of independent blocks each of which possessed the 

capabilities of storage, arithmetic, and input-output 

interfacing. The acceptance of such a system arrangement would 

necessarily have to coincide with the development of new 

software packages that would break down a large problem into 

subprograms that could be simultaneously executed in each 

of the computer blocks. The principle of the block oriented 

computer was further extended by Campeau 5 in a paper that 

draws a distinction between multiprocessors and array 

processors. Whereas the multiprocessor concept would be 

similar to that of Huttenhoff and Shively, the array pro­

cessor approach would have the arithmetic capability asso­

ciated with each and every word in the memory, permitting 

the cellular redundancy desirable with the imperfect yield 

inherent in L.S.I. circuit fabrication. An example of a 

cellular logic-in-memory array is suggested by Kautz 6 to 

solve the problem of data sorting. A device is proposed that 

will arrange the data stored within it in either ascending 

or descending order of magnitude without administration from 

a central processor, effectively leaving this processor free 

to proceed to other operations. 

The computing memory described in this thesis is 
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most co1nparable to the array processors of Campeau. The 

array is composed of identical cells and only the interconnec­

tion lines between them distinguishes one from the other. 

The arithmetic operations of addition, subtraction, multi­

plication, and division can be simultaneously executed between 

many pairs of cells, and in addition, shifting of cell contents 

within the confines of the array is permitted. Since the 

entire range of capabilities is a part of every cell and 

each is autonomous, then the elements may be termed universal 

arithmetic memory cells. An array composed of these cells 

was built and tested and found to perform well within the 

concepts of the design. Solution of a potential field 

problem by the method of relaxation is presented as an 

example of a problem most efficiently approached by a highly 

parallel computer. 

The philosophy of the arithmetic memory cell is not 

to be restricted to application in a memory array for a 

computer. In any situation where a large number of identical 

operations are to be performed on unique groups of data all 

of which become available at once, the arithmetic elements 

enjoy several advantages. As a case in point, a design 

proposal for a digital instrument for the measurement of 

correlation function is included in the second part of this 

thesis. Correlation was chosen because of its general 

familiarity and usefulness in noise analysis and in extrac­

tion of a signal from a noisy source. The major part of the 
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digital correlator was found to be the arithmetic and storage 

sections, and because of the adaptability to array processing, 

it is dealt with in considerable detail. 

Early instruments for the measurement of correlation 

function were analogue in nature and incorporated a variety 

of optical, mechanical and electronic methods. 7 The 

advantages of digital processing for slowly fluctuating waves 

has been recognized and in more recent years the digital 

computer has been utilized in a number of ways. The incon­

venience involved in recording data for later processing by 

a general purpose computer was recognized, however, and 

special purpose computers as an integral part of the 

measuring instrument evolved. The first commercially avail-­

able machines such as the Princeton Applied Research Corp­

oration Model 100 Signal Correlator were essentially hybrid 

devices. In this instrument, one channel is converted to a 

series of binary pulses, random in nature, but with a proba­

bility of being on equal to the normalized amplitude of the 

input waveform. Effective time delay of this channel is 

accomplished through a 100 stage shift register and at the 

output of each stage a hybrid multiplier is used to multiply 

the delayed pulse train by the analogue input of the second 

channel. The voltage product of the multiplication is then 

used to charge capacitive storage elements through low-pass 

filters. 
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The principle of the probability computers was 

further exploited by Jespers, Chu, and Fettweis, 9 in their 

method for computing correlation functions. Both inputs to 

their correlator are converted to a series of binary pulses 

and multiplication is accomplished in an exclusive or gate. 

Averaging of the gate output is performed in a conventional 

up-down counter so that the contents of the counter contain 

the digital coded value of correlation function at the 

completion of the measuring run. 

In more recent years the techniques of conventional 

computer processing have beeri applied to the measurement of 

correlation function. Kitai and MasukolO describe an instru­

ment that initially samples and quantises the input waveform 

into a binary code and then employs a unique digital multiplier 

to carry out the multiplication and time averaging process. 

It is on this last principle that the design of the correlator 

in this thesis is based, and the proposal may in fact be con­
/ 

sidered a modification of the Kitai and Masuko instrument to 

make use of the concept of parallel processing. 

The philosophy and design basis for the arithmetic 

memory cell are presented in Chapter 2. A matrix of these 

cells is organized in Chapter 3 to form a computing memory 

array and solution of a potential field problem is discussed 

as a possible application. Chapter 4 introduces the design 

theory for the digital correlator and the pertinent algorithms 

are developed for the digital realization of correlation 
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functions. These algorithms are used in Chapter 5 as the 

design criterion for the hardware implementation of an instru­

ment that measures mean values and the autocorrelation or 

cross correlation function of fluctuating waveforms. Chapter 

6 summarizes the contents and offers areas for future improve­

ment and development of the concepts laid down in this thesis. 



CHAPTER 2 


THEORY AND DESIGN OF ARITHMETIC MEMORY CELLS 

2.1 Introduction 

In most modern computers, the arithmetic operations 

of addition, subtraction, multiplication, and division are 

carried out in a device known as a central processor. As 

the name implies, this processor is central to the entire 

computer and is shared by all the various peripheral devices. 

For instance, if two words located in the memory core of the 

computer are to be added, then they must both first be loaded 

into the processor. The adding operation is then carried out 

and the result is returned to some memory location. This 

operation occupies the entire capability of the processor and 

while it is being carried out, no other arithmetic operations 

may commence. In the case where several groups of numbers are 

to be added and several sums obtained, the processor must be 

time shared so that the sums are obtained one at a time. The 

same limitation carries over into the remaining operations of 

subtraction, multiplication, and division. 

The central processors of modern computers are 

extremely fast devices and in most cases the limitation of 
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single step operation may seem insignificant. In some 

circumstances, however, notably correlation, fourier 

analysis, and relaxation, a very large number of identical 

operations are to be performed in parallel and the elapsed 

time for computation can become rather extensive. Consider, 

for example, solution of Laplacian field problems by the 

method of relaxation.11 Figure 2:1 shows a potential field 

divided into 36 matrix points identified by their relative 

positions on the x and y axis. In this method, the poten­

tial at a given point, say P(x,y), within the boundaries of 

the field, is a function of the potentials at the four 

corners of an imaginary square surrounding that point. This 

relationship may be expressed as 

P(x,y) = 1 [P(x-1,y) + P(x+l,y) + P(x,y+l) + P(x,y-1)]
4 

..... (2.1) 

Equation 2:1 is applied to all the interior points 

to complete one relaxation. The process is repeated again 

and again until the solution converges or relaxes to the 

desired accuracy. If the boundary conditions of the 36 point 

field of Figure 2:1 are taken to be x = 0 and x = 5, then 

there are 24 interior points to be analyzed. Each point 

involves four additions and one division for each relaxation. 

There are then 120 arithmetic operations per relaxation. In 

this method of solution the number of relaxations performed 

is typically 50. For the small 36 point field then there 

http:relaxation.11
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will be a total of 6000 arithmetic operations. For solution 

by contemporary computers, therefore, the central processor 

will be called upon to carry out 6000 steps in addition to 

the loading of words from memory and the returning of words 

to memory. In practise a 36 point field is of little interest 

and for a reasonable degree of accuracy fields in the 

neighbourhood of 1,000 points are used. One can clearly see 

how a central processor can be used inefficiently. 

In order to ease the burden on the central processor, 

it would be preferable to create an active computer memory. 

That is, instead of merely passively storing information, an 

active memory would have the added capability of computing, 

for example sums, differences, products, quotients, and do 

logic. Each memory location would have the arithmetic 

facility built in. In this way two or more words stored in 

memory can be added together directly without the necessity 

of unloading and reloading. Since each,location is its own 

processor, there is no limit to the number of operations that 

can be performed simultaneously. In the example of solution 

by relaxation one complete relaxation will consist of five 

steps, four additions and one division. The time saving 

over conventional methods can be enormous. 

This chapter suggests a special memory array capable 

of the mass logic described above. It is built with present 

day integrated circuits and is readily adaptable to large 
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scale integration. Several applications with examples are 

given and possible extensions are suggested. 

2.2 The Arithmetic Memory Cell 

The basic cell consists of a 16 bit memory register 

capable of serial addition. That is, any new word can be 

added to the word stored in a particular cell location in a 

single step without first removing the word from memory. 

This is accomplished by including a full adder with each 

memory location. Data in a memory location is addressed 

one bit at a time and is available serially, as in a shift 

register. Addition is therefore performed in a serial manner 

starting with the least significant bit, l.s.b., and pro­

gressing toward the most significant bit, m.s.b. The carry 

between bits is held in a delay as the adder is shifted. 

Figure 2:2 shows the simplified block diagram of the process 

with the three basic units, the memory, the adder, and the 

carry delay. Any number of memory cells can be addressed 

simultaneously and thus there is no limit to the number of 

additions that can be carried on in parallel. Serial 

addition is inherently slower than parallel addition but 

there must necessarily be some trade-off between speed and 

complexity of the single cell. In a large problem where 

a very great number of identical additions are to be per­

formed, there is a point where the many slower serial 

additions all performed at once become faster in total 
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elapsed time than the same additions executed in parallel 

but sequentially. Assume that a single addition takes T 

seconds regardless of the word length. Executed serially, 

an n bit addition will take nT seconds to complete. If 

parallel addition is employed, then the same n bit 

addition will produce a sum in T seconds. For a single 

addition, the parallel technique is faster than the serial 

by a factor equal to the bit length of the word. Assume 

now that m unique pairs of words are to be added each having 

n bits. If m serial adders are used then the total time 

required for the addition remains at nT. If a single parallel 

adder is utilized, however, then the total time for the rn 

additions increases to mT. Clearly, then, when the number of 

similar additions to be performed becomes greater than the 

number of bits in the words, a system of numerous serial 

adders is, in fact, faster than a single high speed 

parallel adder. 

The question naturally arises at this point as to 

why one should not use a system of many parallel adders to 

gain even greater speed. The answer, of course, lies in 

the complexity of the system. In a serial adder only a 

single bit adder is used for n bits of a single word. In 

the parallel case, an adder must be assigned to each of the 

n bits. The parallel adder must be n times larger than when 

serial addition is used. The interconnection between cells 

must also be n times more complex since all bits must be 
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compared simultaneously instead of one bit at a time. Rapid 

advances in large scale integration technology, however, may 

in the near future make parallel addition more practical. In 

the system proposed here, hardware availability limits consider­

ation to serial addition. 

Consider again Figure 2:2. For a serial adder, a 

memory is required having a system for addressing a number 

of flip flops in such a manner that single data in and data 

out lines can be used to selectively write information into 

a unique location and also read the information held in the 

location. Texas Instruments Model SN7480 integrated circuit 

contains 16 flip flops arranged in a matrix form so that only 

a single matrix position is activated at a time. Appendix 

A contains specifications and circuit diagrams for all inte­

grated circuits utilized in this thesis. The bit positions 

of the memory word are addressed in a cyclic manner from the 

least significant bit to the most significant bit. In a 

typical addition the l.s.b. is addressed first. The data 

stored in this position is added at the A input of the adder 

to information entering the B input. The sum of A & B is 

then directed to the data-in input of the memory and this 

sum is written into the position previously occupied by word 

A. If a carry is generated as a result of the A & B addition 

th{s information is held in the carry delay. When the writ­

ing operation has been completed the cyclic bit selector 

selects the next m.s.b. and the corresponding bit position 
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of the new word to be added is applied to the B input of the 

adder. The adder then compares the information stored in 

the memory, the new information to be added and the stored 

carry from the lesser significant bit and generates a new 

sum and carry. The new sum is written into the memory and 

the carry is again delayed fop the next m.s.b. The pr>ocess 

is repeated until all 16 bits have been added. The cyclic 

bit selector then resets itself to the l.s.b. to be prepared 

for the next addition. 

To read out the information stored in the memory, 

the process is repeated with the exception that no new inform­

ation is directed into the B input of the adder. The sum is 

then simply the information appearing at the A input and the 

word stored in memory is unaltered. Readout is thus non­

destructive. New data may be entered directly into memory 

through the adder's B input when the data out line from the 

memory to the adder is disabled. In this case the sum is 

merely the data entered at B. If no ri~w data is applied to 

B and the data out line from the memory is disabled then all 

bit positions in the memory are cleared. 

Let the memory register be represented by A and the 

register containing the word to be added by B. Then the 

basic arithmetic me.mory cell is capable of !~ different 

operations. These may be termed "settt operations, 
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1. set A = 0 

2. set A = A 

3. set A = B 

4. set A = A+B. 

Operation 1 is a clear, 2 a readout of stored data, 3 a 

loading of data and 4 an addition of two numbers or more 

correctly an accumulated total of numbers. The basic cell 

then is no more than an accumulator and has no more capa­

bility than addition. It will be shown later that through 

proper sequencing, the operations of subtraction multiplica­

tion and divis{on can be reduced to simple additions, well 

within the ability of the basic cell. 

2.3 Circuit Description of the Basic Cell 

Figure 2:3 shows the schematic of the basic adding 

memory cell. Texas Instruments Series S~74 integrated 

circuits are used throughout and are referred to by the 

4 digit package number 74XX. Circuit diagrams for these 

packages are listed in Appendix A. Symbology for all gates 

follows mil 806B specifications and is listed in Appendix A. 

The 7481 memory array employs a direct internal 

connection between the write inputs and the sense outputs. 

Data already stored in a memory location cannot therefore 

be used to write new infor•mation into the location without a 

suitable delay. This delay is realized in a D-type flip 
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flop clocked with a pulse termed DATA LATCH. The sense 

lines of the memory, in practice, yield the complement of 

the data stored in the bit position and inversion of this 

data is accomplished by using the Q output of the flip flop. 

The final stage of the sense amplifiers feature open 

collector transistors and a 10 kilohm resistor is used, 

tied to +5 volts to ensure the required logic levels to 

drive the flip flop. 

The full adder employed here, type 7480, incorporates 

a range of gating inputs rendering it very useful for this 

application. A simple adder utilizes A, B, and CARRY-IN 

inputs and provides A+ B and CARRY-OUT outputs. These 

functions are the central core of the gated full adder of 

Figure 2:3. In the 7480, 3 gated inputs are provided to 

each of the A and B inputs and in addition the complement 

of the sum is available. This extra logic is shown within 

the dashed section of Figure 2:3. If the Ac input is held 

at logic 1, then the A2 input may be used to disable the A1 

input. Only when A2 is held at logic 1 will data at A1 be 

passed through to the adding core. The same holds for the 

B inputs. When the Q output of the flip flop is fed to the 

A1 input and the 8 1 input is used to direct new data to the 

basic cell, then the A2 and inputs function as accumulateB2 

sum and inhibit add respectively. 

It is convenient to use both the sum and complement­
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of-sum outputs of the adder. New information, either a 

1 or a O, is written into a memory bit location by momentarily 

raising the corresponding write input to the logic 1 level. 

In order to maintain control over this write function, 

2 input NAND gates and inverters are used to link the sum 

outputs of the adder to the write inputs of the memory. One 

input of each NAND gate is then taken to a common WRITE 

ENABLE line. Only when a logic 1 is applied to this line 

will the sum be written into the memory. 

The carry delay is realized in the basic cell by a 

J-K flip flop. A D-type flip flop is unsuitable in this 

application since the state of the CARRY OUT output of the 

adder is determined in part by the data at the CARRY IN 

input. As long as the clock input of a D-type flip flop is 

held high, whatever information appearing at the D input will 

be passed through to the Q input. Typical propagation delay 

from the rising edge of a clock pulse to the Q output is in 

the neighbourhood of 7 ns. Delay from Cn to Cn+l through 

the adder is typically 8 ns. Set-up time at the D input is 

approximately 7 ns. The total delay in the loop is thus 

about 22 ns. This, however, is a typical figure and in 

practice, could be considerably less. The maximum clock 

pulse width must therefore be of the order of 15 ns, £or 

correct functioning of the system. Pulses of such a small 

duration are difficult to achieve and in addition it is 
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desirable that the basic cell operate independently of 

clock pulse duration. Unlike the D-type flip flop, the 

J-K triggers on the trailing edge of the clock pulse. That 

is, whatever information appears at the J and K inputs when 

the clock input is in the logical 1 state, will be trans­

ferred to the Q output when the clock is returned to the 0 

state. Since the CARRY OUT is complemented in the adder, 

it is inverted at the input to the flip-flop. The clock 

input, termed CARRY LATCH, is joined to the WRITE ENABLE 

line so that at the same time as the new sum is written 

into the memory, the carry to the next most significant 

bit is stored. The clear input of the carry latch, called 

CARRY RESET, is provided to prevent the carry from the m.s.b. 

being returned to the l.s.b. As long as the l.s.b. is 

being addressed, there must be no CARRY IN. 

Once the new sum has been written into a bit 

position, addition is carried on to the next most significant 

bit by incrementing the bit selector by unity. In its 

simplest form, the bit selector is simply a binary counter 

with appropriate decoding to drive the X and Y address 

lines. Incrementing of the counter may occur at the same 

time as WRITE ENABLE and CARRY LATCH. There are two steps 

to each bit addition: 

1. DATA LATCH, and 

2. WRITE ENABLE, CARRY LATCH, and RE-ADDRESS. 
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This can be accomplished with a single pulse generator by 

gating the pulses alternately to one line or the other. 

After the m.s.b. has been modified the bit selector returns 

to the l.s.b. and ceases to count until another add command 

is received. The control .circuitry can be made quite simply 

and has the advantage that any nu~ber of cells can be driven 

from a single control. Since each cell is an independent 

adder and storage element in itself there is no need to 

time-share the control unit and there is no limit.to the 

number of additions that can be carried out simultaneously. 

Figure 2:4 shows the control circuit required to drive the 

basic cell. The cyclic bit selector is simply a 4 bit 

binary counter, type 7493~ with the A and B outputs used 

to drive one decoder for· the X address lines of the memory 

and the C and D outputs taken to a second decoder for the 

Y address lines. These decoders are BCD to decimal decoders, 

type 7442, used as 2 line to 4 line decoders by taking the 

C and D inputs of each to ground potential. The decoders 

feature complementary outputs, and descrete component address 

drivers may be designed to simultaneously drive as many 

memories as desired. As a matter of convenience the counter 

code for the least significant bit is taken as a high state 

at all 4 counter outputs. The type of code and starting 

point are completely arbitrary so long as they are consistent. 

All high is chosen for the l.s.b. since this code is easily 

d~tected using a 4 input NAND gate. Previous to the start 

http:limit.to
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of an adding cycle, control flip flops M and F are both in 

the 0 state. The continuous train of clock pulses have no 

effect on flip flop F since both J and K inputs are low. 

When the INITIATE CYCLE input to the control is raised to 

a logic 1 the clock input to flip flop M is raised from 

0 to 1. As the INITIATE CYCLE input is raised to 0 the 

trailing edge at the clock of M triggers the flip flop, 

and since both J and K inputs are tied permanently to logic 

1 the flip flop complements. Raising M to a logic 1 in 

turn applies a high to both J and K inputs of F. Flip flop 

F will then complement for every succeeding clock pulse. 

The first clock pulse received following the raising of M 

to logic 1 is directed through a 3 input NAND gate and inver­

ter to the DATA LATCH inputs of the various memory cells. 

The second is carried through a 2 input NAND gate and inver­

ter to the WRITE ENABLE and CARRY LATCH inputs. At the 

same time, the counter is incremented by unity to address 

the second least significant bit. The third pulse is again 

directed to the DATA LATCH. This is repeated for 32 clock 

pulses, 2 pulses for each bit position, until the counter 

recycles to the l.s.b. When the counter was first incremented 

the output of the 4 input NAND gate was raised to a logic 1 

causing the clock input to the M flip flop to be raised from 

0 to 1. As the counter returns to the l.s.b. the output of 

the 4 input NAND gate goes low and the trailing edge applied 

to the clock of M causes the flip flop to complement again 
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and all further clock pulses are blocked. The adding cycle 

is now complete and the control is reset and ready for the 

next adding cycle. The output of the 4- input NAND gate is 

also used to reset the carry latch so that overflow from 

the m.s.b. cannot be carried back to the l.s.b. 

Now that the principle and operation of the 

arithmetic memory cell has been established, it remains to 

show how these basic cells can be incorporated into a large 

memory array. Chapter 4- describes such a computing memory 

and suggests how such a device may be interfaced with exist­

ing machines. 



CHAPTER 3 


THE COMPUTING MEMORY 

3.1 Introduction 

The basic arithmetic memory cell described in 

Chapter 2 is the fundamental block of the computing memory. 

If many cells are arranged in some matrix array addressable 

individually by matrix location, then the memory resembles 

conventional passive memories but has an additional capa­

bility. Any new number can be added to a number already 

stored in memory directly without first removing the word 

from its location and returning the sum after the addition 

has been completed. This is an interesting feature but of 

questionable advantage when consideration is made of the 

extra gating required to make every location an accumulator. 

If, however, additional interconnection between matrix loca­

tions is provided and provision is made for direct addition 

between locations, then the capabilities of the computing 

memory become enormous. Such a computing memory is described 

in this chapter. The memory is small, able to store only 64 

15-bit words, but the concept is easily extendable and is 

particularly adaptable to large scale integration. Only 8 

- 26 ­
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words of the memory have been built and tested at the time 

of writing, but the design will incorporate the remaining 

56 with no alteration. 

In the memory described here, the 64 words are sub­

divided into 32 PAIRS, labeled EVEN and ODD, each being an 

independent basic arithmetic memory cell. All arithmetic 

operations are performed within the PAIRS and the result 
' 

is stored in either the EVEN or the ODD depending on the 

command. For example, a command ADD EVEN TO ODD results in 

the number stored in the EVEN cell being added to that stored 

in the ODD cell and the sum stored in the ODD location. It 

must be understood that there are 32 EVEN and 32 ODD locations 

and thus a command ADD EVEN TO ODD will effect 32 independent 

additions. That is, all EVENS will be added to all ODDS and 

all sums will be stored in the ODDS. A similar command exists 

for ADD ODD TO EVEN. In this case the same numbers are added 

but the sum is stored in the EVEN location. An additional 

important built-in feature of both EVEN and ODD cells is a 

RIGHT SHIFT and LEFT SHIFT. These commands effect a shift 

of the word stored in a cell location by a single bit position 

to the right or left respectively. Since the words are stored 

in a binary code, such a shift is effectively division and 

multiplication by 2 respectively. By proper sequencing of the 

adding and shifting operations, each PAIR becomes an independ­

ent multiplier. Provision for forming the two's complement 

is included in all cells and thus subtraction can also be 
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realized as simply as addition. 

It is noteworthy that when an addition between EVENS 

and ODDS is performed, one of the words added is lost in 

order to store the sum in the location previously occupied 

by that word. In some cases this is undesirable and to 

prevent unwanted operations an inhibit add facility is built 

in. This feature is in the form of a bit position in the 

stored word. At the commencement of any operation this bit 

position is first surveyed. If a 1 is stored in the position 

then the operation proceeds. If, however, a 0 appears in the 

inhibit bit position then the word remains unchanged. Again, 

all cells are independent and one operation inhibited for one 

PAIR has no effect on the remaining PAIRS. For each individ­

ual PAIR the decision whether to add resides in the inhibit 

bit of that pair. 

The capabilities of a PAIR can be listed as SET 

commands. That is SET EVEN = EVEN + ODD means add the number 

stored in the EVEN location to the number stored in the ODD 

location and place the sum in the EVEN location. Only those 

operations in which the result is stored in the EVEN location 

are listed here. It must be understood that exactly the same 

capabilities are permitted where the result is stored in the 

ODD location. 
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1. EVEN = 0 

2 . EVEN = A 

3. EVEN = EVEN + A 

4. EVEN = - EVEN 

5 . EVEN = ODD 

6. EVEN = EVEN + ODD 

7 . EVEN = EVEN 

8. EVEN = EVEN x N 

9. EVEN = EVEN/N 

10. EVEN = ODD x A 

11. EVEN = EVEN x ODD 

A is a number stored in the control unit, and N lS an 

integer such th~t N = 2x, x = 1, 2, 3, ... These operations 

are described in detail later in this chapter. It will suff­

ice here only to point out that these capabilities exist for 

each and every PAIR and that the particular operation is 

simultaneously carried out in all PAIRS. 
/ 

For example, oper­

ation number 10 implies that all 32 numbers stored in ODD 

locations are simultaneously multiplied by a common number 

A and all 32 products are stored in the corresponding EVEN 

locations. 32 operations are performed at once. 

In order that arithmetic operatjons between locations 

outside the PAIR be permitted, a syst~m of shifting of words 

from location to location is provided. Figure 3:1 shows the 

32 PAIR memory organized into a rectangular array of 4 by 
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8 PAIR locations, each location with an EVEN and ODD cell. 

Each PAIR location possesses the capabilities previously 

listed. In addition, all EVEN or all ODD words can be 

shifted in two directions. If the array of Figure 3:1 is 

considered to lie in the X-Y plane then the EVENS may be 

' 
said to be shifted in the plus X or minus X directions. 

Likewise the ODDS can be shifted in the plus or minus Y 

direction. To prevent loss of information at the end of a 

row or column, an end around link is included so that the 

word shifted beyond the last position of a row or column 

is carried over to the first position of the next row or 

column. The solid lines of Figure 3:1 designate the shift­

ing pattern for EVEN cells while that for ODD cells is 

shown dashed. Position in the array is described by the 

letter P followed by the PAIR number. Each position is 

suffixed by the letter E or 0 to indicate EVEN or ODD cells 

respectively. 

Once the general configuration of the computing 

memory is understood it remains to describe the circuit 

blocks in detail and explain how the 11 operations previously 

listed are to be realized. In addition, the following 

sections present the control circuit required to drive and 

manipulate the memory. The final section of this chapter 

includes a discussion of the de~ign and suggestions for 

improvement. 
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3.2 Circuit Description 

All 64 arithmetic memory cells of the computing 

memory are identical. It is only the system of cell inter­

connection that differentiates EVEN and ODD cells of a 

particular PAIR. Hence, all PAIRS are also similar and it 

is only their position in the array that makes them unique. 

Figure 3:2 illustrates a typical cell. In order that this 

may be regarded as a general cell, the interconnection lines 

are shown unterminated. They are identified by a code 

which describes their function. Once the code is understood, 

the joining of interconnection lines between corresponding 

cells will become obvious. 

All codes consist of 4 uppercase characters. The 

first is an identifier which classifies the line into one 

of 3 subgroups. These subgroups are: 

WXXX pulsed input command 


ZXXX instruction step 


TXXX data transfer 


A complete listing of the code is recorded in Table 3.1. 

It can be noted from Table 3 .1 that some codes are comm.on 

to both EVEN and ODD cells while others are peculiar to each. 

To avoid confusion the typical cell of Figure 3:2 will be 

considered an EVEN cell for the purpose of coding. This 

choice is completely arbitrary and the cell might just as 

easily be made ODD by replacing the codes by those 

(\ 
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WWCL 
WDLC 
WIAS 
WCRS 
WCPE (WCPO) 

ZCEC (ZCOC) 

ZIBA 

ZACE (ZACO} 

ZESU (ZOSU} 

ZESD (ZOSD} 

ZAOE (ZAEO) 

ZLCS 

ZISE (ZISO} 


TDOO 

TLEI (TLOI) 

TGEI (TGOI) 

TAOI (TAEI) 

TLDI 


TABLE 3.1 

WRITE ENABLE AND CARRY LATCH 
DATA LATCH 
INHIBIT ADD BIT SET 
CARRY RESET 
CARRY IN PRESET EVEN (ODD) 

COMPLEMENT EVEN (ODD) DA TA 
INHIBIT ADD BIT ENABLE 
ACCUMULATE EVEN (ODD) DA TA 
EVEN (ODD) SHIFT UP 
EVEN (ODD} SHIFT DOWN 
ADD ODD TO EVEN (EVEN TO ODD} 
LOAD DATA 
SHIFT EVEN {ODD) WORD 1 BIT 

DATA OUT 

LESSOR EVEN (ODD) IN 

GREATER EVEN (ODD) IN 

ADD ODD (EVEN) IN 

LOAD DATA CELL SELECT 


CELL INTERCONNECTION 
IDENTIFICATION CODE 
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corresponding to ODD cells. For example ZAOE for the EVEN 

cell would be replaced by ZAEO for the ODD cell. 

The circuit is essentially the same as that for 

the basic arithmetic cell of Figure 2:3 with additional 

gating provided to expand its capabilities. Data appearing 

in complemented form at the SENSE 1 output of the memory 

is first latched by the upper D-type flip-flop. The lower 

latch is used to detect and decode the inhibit add bit if 

this mode of operation is chosen. A 1 contained in the 

inhibit add bit position will allow addition to be completed. 

If, however, a 0 is detected in this position then it is 

required that a flag be set which prevents any change of the 

word in the memory location. This feature is accomplished 

through a system of ·1atching and gating. The inhibit add 

option is first activated by applying a logical 1 to the 

inhibit add bit enable, ZIBA. The inhibit add bit must 

then be the first bit selected by the cyclic bit selector. 

This means simply that the inhibit add bit is the starting 

point of the selector. At the same time as this data is 

latched in the upper D-type flip flop it is also stored in 

the lower flip flop. Simultaneous pulsing of both WDLC 

and WIAS will accomplish this end. It should be noted here 

that while WDLC is pulsed for every bit position, WIAS is 

pulsed for only the inhibit bit. If a 1 appears in the 

inhibit add bit then a 0 will be taken to the Q output of 

the lower latch due to inversion at the memory output. This 
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0 is further inverted at the 2 input NAND gate and then 

applied to one input each of the two 3 input NAND gates. 

Upon receipt of a write enable pulse at WWCL the 3 input 

NAND gates will transmit the information appearing at the 

sum outputs of the adder to the write inputs of the memory. 

If, however, a 0 is located in the inhibit add bit position, 

this low level will be carried through a 0similar path to 

deactivate the 3 input NAND gates. When these gates are 

deactivated, no new word can be written into the memory 

location. If the inhibit add option is not to be used then 

the ZIBA line is maintained in the 0 state and the output 

of the 2 input NAND gate remains high regardless of the state 

of the inhibit bit latch. The 3 input NAND gates remain 

activated and writing is permitted. It should be noted, 

that although the inhibit add bit will in most cases be the 

first bit selected, this is not invariable. It will be shown 

later in this chapter that there is some advantage in making 

this bit position flexible. In some operations the bit 

position will change many times in the course of a single 

operation. 

The Q output of the data latch is taken directly 

to an exclusive or gate. Th~ inputs to this gate are the 

instruction step ZCEC and the data transfer line TDOO. The 

output of the exclusive or gate will then be the function 
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F = ZCEC © TDOO 

= ZCEC·TDOO + ZCEC·TDOO 

If the ZCEC command line is held in the logical 0 state 

then the data from the latch will be passed through the 

exclusive or gate unchanged. If, however, the ZCEC line is 

taken to the logical 1 state then the data appearing at the 

output of the gate will be the complement of that from the 

D-type latch. When ZCEC is held high through an entire cycle 

of the bit selector, all bit positions of the word in memory 

will be complemented. Thus the one's complement of a number 

stored in memory can be formed. This feature is particularly 

useful in the processing of negative numbers. Negative numb­

ers are most conveniently handled in two's complement form. 

Subtraction can then be performed as simply as addition. The 

two's complement is just the one's complement plus unity. 

Once the one's complement is formed by the exclusive or gate, 

it remains only to add unity to this number by inserting 

a carry in to the least significant bit. This is readily 

accomplished using a presetable J-K flip flop for the carry 

latch. When EVEN or ODD numbers stored in memory are to be 

negated, the associated complement command lines ZCEC or 

ZCOC respectively are raised to logical 1 and the presetable 

J-K flip flops are set to 1 by the same pulse used to latch 

the data in the l.s.b. position. In this manner the number 

is negated in a single cycle of the bit selector. 
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By using two and-or-invert gates in conjunction with 

the built in gating to the full adder, three distinct sources 

are provided to both the A and B input of the adder. Refer 

to Figure 2:3 or Appendix A for the meaning of the subscripted 

A and B inputs. The AND functions permit passage of data 

when the appropriate instruction line is held at a logical 

1 voltage. Thus for each input source there is one Z coded 

instruction line and one T coded data transfer line. The 

three A inputs provide for either accumulation, up shifting 

or down shifting. These may be expressed in functional form 

A= (TDOO © ZCEC)·ZACE + TLEI·ZESU + TGEI·ZESD 

Similarly the three B inputs allow for left and right shift­

ing of the stored word, addition of a second word, or data 

loading. 

B = (TDOO © ZCEC)·ZISE + TAOI·ZAOE + TLDI•ZLCS 

Since each input is an OR function only one source for each 

input may be selected at a time. It is the responsibility 

of the central control unit to select the proper combina­

tion of sources for the operation desired. 

The sum output of the adder is based on the A and 

B inputs as expressed above and on the carry in. A J-K 

flip flop is used for the carry delay as was explained for 

Figure 2:3. The addition of the presentable feature has 

already been examined. Again it is required of the control 

unit to properly sequence the clear and preset pulses as 
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necessary. The design and operation of this control unit 

is discussed in a later section. It will suffice here to 

investigate the memory array itself. and the steps involved 

in carrying out each operation. 

The ten operations listed earlier in this chapter 

will now be examined individually. It must first be 

understood that a step consists of a single cycle of the bit 

selector during which appropriate instruction step lines 

must be activated. At the end of the cycle, other instruc­

tion step lines must be raised to a logical 1 for the next 

step. The nature of the cyclic bit selector insures that 

all steps require an equal amount of time. This time is 

predictable and is based on the propagation delay of data 

around the processing loop. Some operations, notably those 

involving multiplication, however, require many steps for 

completion. In other words, while all steps require the same 

amount of time, this is not the case with all operations. 

This is of no real disadvantage since a given operation will 

always involve an integral number of steps and the total time 

for completion is again predictable. The operations can be 

discussed from the point of view of both realization and 

application. 

3.3 Circuit Operations 

The circuit operations are listed again for convenience 
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1. EVEN = 0 

2. EVEN = A 

3 . EVEN = EVEN + A 

4. EVEN = - EVEN 

5 . EVEN = ODD 


6 • EVEN = EVEN + ODD 


7 . EVEN = EVEN 

8 . EVEN = EVEN x N 

9 . EVEN = EVEN/N 

10. EVEN = ODD x A 

11. EVEN = EVEN x ODD 

Again only the EVEN cells are considered here. Since EVEN 

and ODD cells are identical, separate consideration of ODD 

cells would be redundant. 

3.3.1 EVEN= O 

This operation is effectively setting all the bit 

positions of all EVEN cells to 0. It is a clear memory 

operation that must precede any loading of new data. A 

single step operation, it consists of simply ensuring that 

nothing is applied to either A or B input of the adder and 

no carry is permitted. In this case the sum will always be 

zero and zeros will be written into all bit positions of 

the memory. Care must be taken that the inhibit add option 

does not prevent the writing of these zeros. This is easily 

accomplished by maintaining the inhibit add bit enable line 
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ZIBA in the low state. The clearing operation is then a 

single cycle of the bit selector with all Z instruction lines 

held in the logical 0 level. 

3.3.2 EVEN =A 

This is a load operation where the number represented 

by A is loaded serially into one of the EVEN cell locations. 

Words are loaded into a previously cleared memory cell through 

the B input of the appropriate adder when the accompanying A 

input is held in the low state. As in the clear operation, 

the inhibit add bit enable line ZIBA must be maintained low 

to prevent this option interfering with the write operation. 

For a word to be loaded the control unit selects the desired 

cell by raising the particular load data cell select line, 

TLDI, to the logical 1 state and entering data through the 

load data line, ZLCS. This latter line is common to all 

memory locations both EVEN and ODD, but because of the AND 

gate at the B input only one cell is loaded at a time. One 

limitation of the computing memory should be pointed out here. 

Since all EVEN or ODD locations are cleared simultaneously 

the word in a particular cell can not be changed without 

losing the contents of all other similar locations. This 

limitation may be alleviated by incorporating additional 

gating in the accumulate data lines, ZACE and ZACO. Like the 

clear operation, the load operation is one of the fundamental 

single step operations. 
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3.3.3 EVEN= EVEN+ A 

This operation is a simple extension of the load 

data operation. A single step operation, it involves addi­

tion of a new number to a number already stored in a memory 

location. As in the load operation, the new number is 

serially added in and can be added to only one cell at a 

time. The number is entered by the same path used for 

EVEN = A, but it is also required that the number already 

stored in the cell be re-entered at the A input to the adder. 

Raising the accumulate data line, ZACE, to the logical 1 level 

will ensure re-entry of the EVEN word. Use may be made here 

of the inhibit add option by simply maintaining ZIBA to the 

high level, otherwise it is held low. 

3.3.4 EVEN = - EVEN 

This operation is the number negation described earlier. 

When negative numbers are expressed in two's complement form, 

subtraction becomes a simple matter of addition. As pointed 

out prev{ously, the two's complement of a number is found by 

first complementing all bit positions to form the one's 

complement and then adding unity. The most significant bit 

position becomes a sign bit: a 0 represents a positive number 

and 1 a negative number. The number of bits available for 

storage of absolute numbers is reduced by one but the overall 

range of storage is kept constant by allowing equal positive 
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and negative values. In practise all EVEN or all ODD cells 

are negated simultaneously in a single step. The complement 

data line ZCEC is held high for a complete cycle and the 

carry delay flip flops are preset to 1 for the l.s.b. position 

by the same pulse that latches the data for this bit. All 

B inputs to the adder are disabled and the accumulate data 

line, ZACE, is held high. The inhibit add option is available 

here but a check must be made to prevent the inhibit add bit 

position from being complemented by the exclusive or gate. 

The control unit ensures this by blocking the write enable 

pulse for this bit position. 

3.3.5 EVEN = ODD 

In this single step operation, all words located in 

ODD cells are simultaneously transferred into the adjacent EVEN 

locations. Readout from the ODD locations is non-destructive 

as the ODD words are entered into the previously cleared EVEN 

cells through the B inputs to the adder. The instruction step 

line ZAOE, corresponding to add ODDS to EVENS, is held at a 

logical 1 voltage for a complete cycle and data is entered 

through the add ODD in transfer line, TAOI. This line is 

directly connected to the data out line, TDOO, of the 

adjacent ODD cell. The ODD word is then directly loaded 

into the EVEN location one bit at a time. No data enters 

through the A input to the adder and the inhibit add bit 

enable line must be kept low. 



44 


3.3.6 EVEN= EVEN+ ODD 


Known as add ODDS to EVENS, this single step opera­

tion simultaneously adds all the numbers in ODD cells to the 

numbers in adjacent EVEN cells and stores the result in the 

EVEN cells. ODD data enters the cell through the adder's B 

input as in the EVEN = ODD operation, but data already in the 

cell is applied to the A input by raising the accumulate 

data line, ZACE, to high. A sum and carry are generated as 

in normal addition and this information is used to update 

the EVEN cells. The inhibit add feature is available if 

desired and is activated in the usual manner. Since two's 

complement arithmetic is employed either or both numbers may 

be negative without interfering with the addition. 

3.3.7 EVEN = EVEN 

This operation may be thought to be trivial, but 

it will be seen in a later section that certain combinations 

of steps are permissible, and are more easily understood if 

this fundamental step is considered. The operation is essen­

tially a reading of data and a rewriting of the data without 

change. All B inputs t6 the adder are disabled and the latched 

data is fed to the A input by maintaining a logical 1 on the 

accumulate data line. This step may be used for nondestructive 

readout of data and also as an insurance that EVEN data is 

not lost while operations are performed in ODD locations. 

Since stored data is not to be changed, the inhibit add 
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feature has no effect. 

3.3.8 EVEN= EVEN x N 

This is the first of the multiple step operations, 

the number of steps required depending on the value of N. 

If N is an integral number given by N = 2J, j = O, 1, 2, ... , 

then the number of steps required for the operation is j. 

Multiplication of a binary number by 2 is a simple shifting 

of all bits to the left by one bit position. Shifting by 

two bits corresponds to multiplication by 4, three bits to 

x 8 and so on. Each step effects a shift by one bit position, 

hence a multiplication by 2. In practise, such a multiplica­

tion is accomplished by adding the number to itself. Data 

from the data latch is simultaneously entered through both 

the A and B inputs to the adder. The sum output is then just 

twice the original number stored and this new number is written 

into the memory location. Both the accumulate data line 

ZACE and word shift line ZISE must be held high so that the 

data is channeled to both adder inputs. All EVEN words or all 

ODD words are shifted at once and the inhibit add option is 

available. 

3.3.9 EVEN= EVEN/N 

This is a second multiple step operation closely 

parallelling that of the previous section. Division of a 

binary number by N = 2J, j = O, 1, 2, 3, ... is simply a 
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shifting of the number toward the l.s.b. by a number of bit 

positions corresponding to j. Such a shift can be easily 

accomplished in the computing memory if a simple technique is 

employed. Consider again the process of multiplication by 2. 

Since the data applied to the A and B inputs of the adder 

is always identical, regardless of whether the bit position 

contains a 0 or a 1 the sum will always be zero. If two l's 

occur there will be a carry out; otherwise there will be no 

carry for two 0 1 s. It is this carry delayed to th~ next bit 

position that determines if the sum output of the adder will 

be a 1 or a O. The process is effectively then a delay of the 

data word by one bit position as the bit selector sweeps through 

its cycle. Consider now the effect of reversing the direction 

of the bit selector. Instead of initiating with the l.s.b. 

and progressing toward the m.s.b., the selector will now 

start with the m.s.b. and sweep towards the l.s.b. The state 

of each bit will again be stored in the carry delay, but 

in this case the stored data will be written into the next 

l.s.b. position. The end result will be a shift toward the 

l.s.b. and hence a division by two. As pointed out in an 

earlier section, the bit selector is nothing more than a 

binary counter with decoder drivers. By incorporating an 

up-down count feature the bit selector can be made reversible. 

The inhibit add operation is applicable in this operation and 

all EVENS or all ODDS are shifted at once. No adding opera~ 

tions are permitted when the selector is reversed since the 
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carry is toward the lessor significant bit. 

3.3.10 EVEN = ODD x A 

In this operation all ODD numbers are multiplied by 

a common multiplier, A, and the individual products are 

stored in the corresponding EVEN cells. Binary multiplication 

may be regarded as a process of shifting and adding, both 

readily accomplished using the ODD/EVEN cell pairs. The 

multiplicand is entered into the ODD location and is either 

added or ignored depending on the l.s.b. of the multiplier. 

The multiplier must thus be held in the control unit. If 

the l.s.b. is a 1 then an EVEN = EVEN + ODD corrunand is given. 

If on the other hand the bit contains a 0 then a EVEN = EVEN 

blank command is called for. The ODD word is then shifted 

toward the m.s.b. by one bit position and the next greater 

significant bit of the multiplier is checked to determine 

whether a second addition is to be performed. The process 

of shifting and adding is repeated until the multiplication 

is complete. Figure 3:3(a) illustrates a general multiplica­

tion of two 4 bit numbers and y 3y 2y 1y 0 • The multi­x 3x 2x 1x 0 

plicand denoted by the subscripted x's is rewritten 4 times 

each time displaced toward the m.s.b. by one bit position. 

At the right adjacent to the shifted multiplicand is written 

the corresponding bit of the multiplier that will determine 

if the shifted multiplicand is to be added or ignored. It 

is noted that due to the nature of the multiplication 
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operation the total number of bits in the numbers to be 

multiplied is restricted to the total length of storage 

capability of the memory. For a 16 bit memory storage, 

the multiplicand and multiplier may have a combined total 

of only 16 bits. 

3.3.11 EVEN = EVEN x ODD 

This is perhaps the most comptex operation and 

exerts the greatest demands on the control unit. It involves 

the multiplication of all ODD numbers by the neighbouring 

EVEN numbers and the storage of all products in the EVEN 

locations. Most multiplication operations require 3 registers 

for the multiplicand, multiplier and product. By proper 

sequencing of steps it will be shown here that the operation 

can be performed using only two registers, one of which must 

serve the double purpose of storing both the multiplier and 

the product. Consider first Figure 3:3(b) showing the general 

-multiplication of two 4-bit numbers. A simple rearrangement 

of Figure 3:3(a), this method examines the m.s.b. of the 

multiplier first and initially displaces the multiplicand by 

3 bit positions to the left. After each addition step, the 

multiplicand is shifted toward the lessor significant bit and 

the next l.s.b. of the multiplier is examined. Consider now 

how this multiplication may be performed between an ODD and 

EVEN cell of the computing memory. 

The multiplicand and multiplier are initially loaded 
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into the ODD and EVEN locations respectively. The ODD 

multiplicand is then shifted 3 bit positions toward the 

m.s.b. Whether or not this shifted word will contribute 

to the accumulated sum depends on the data in the m.s.b. of 

the multiplier stored in the EVEN cell. In order to 

accumulate this sum in the EVEN location without losing all 

the information already stored there, a function known as 

the split cycle must be employed. For part of the cycle 

of the bit selector the memory is called upon to perform 

one step and for the remainder it is commanded to execute 

a different operation. In the case of the 4-bit multiplica­

tion above, the three least significant bits of both EVEN 

and ODD cells must be swept through without change. When 

the fourth bit is selected, however, the inhibit add operation 

of the EVEN location is activated and this bit is regarded 

as the inhibit add bit. If this bit contains a 1 then the 

shifted word in the ODD cell is added to the EVEN cell. 

Since the ODD word has been left shifted three bit positions 

with trailing zeros, addition from the fourth bit onward is 

acceptable and correct. Once the fourth bit of the multiplier 

is checked for a 0 or a 1 on the data latch pulse it is no 

longer required and can be lost. On the fourth bit position 

then, the accumulate data line of the EVEN cells, ZACE, 

is taken to the 0 voltage level and the bit is destroyed. 

The data contained in the fourth bit of the ODD cell is 

entered into its place. For the fifth and succeeding bit 
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positions, however, normal addition takes place and the 

accumulate data instruction is returned to the high level. 

This completes the first of the four additions required 

for the 4-bit multiplication. Before the second addition, 

the multiplicand in the ODD location is right shifted one 

bit position and the control unit readjusts itself so that 

the third bit of the EVEN cell will be accepted as the 

inhibit add bit. The first two bits are swept by without 

alteration and on the third bit position the inhibit add 

function is again activated and the accumulate data instruc­

tion is dropped for EVEN cells. An add ODD to EVEN attempt 

is made the success of which depends on the data contained 

in the third bit of the EVEN cell. If this is a 1 then the 

l.s.b. of the multiplier is directly entered into the third 

bit position. For the fourth and following bits, normal 

ODD plus EVEN addition is commanded. At the end of two 

additions bits y 3 and y 2 of the multiplier in Figure 3:3(b) 

have been lost and the EVEN cell will contain part of the y' 

accumulated sum as well as the two least significant bits of 

the multiplier. The final two additions are carried out in 

a similar manner as the first two with the inhibit add bit 

being taken as the second l.s.b. and finally the l.s.b. itself. 

At the completion of this last cycle the multiplication is 

complete. The product has replaced the multiplier in the 

EVEN cell location and the multiplicand resumes its unshifted 

position in the ODD. 
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Demands which at first glance may appear rather 

severe on the control unit relax considerably when a deeper 

study of the process is made. Since the left shifted multi­

plicand is always followed by trailing zeros, an add odd to 

even command can be made without fear of losing the multiplier 

stored in the EVEN cell. The instruction can then be activated 

for the entire cycle and only in the case of the current 

inhibit add bit must any modification be made. For this bit 

position the accumulate even data command must be dropped so 

that this bit of the multiplier is destroyed. Such a feature 

is easily incorporated into the control unit. Again note 

that each EVEN and ODD pair acts as an ind_ependent unit and 

thus all multiplications are carried out simultaneously. 

3.3.12 Location Shifting 

In addition to the operations between EVEN and ODD 

cells of a particular PAIR, facilities ~re provided for 

interaction between adjacent PAIRS. The entire contents of 

all EVEN or ODD cells can be transferred in one cycle of the 

bit selector. The bidirectional shifting pattern is shown in 

Figure 3:1. Referring again to Figure 3:2, the AND-OR-INVERT 

. gate provides two additional sources to the A input of the 

adder, one for up-shifting, the other for down-shifting. 

When the even shift up instruction line, ZESU, is held at the 
/ 

high voltage level, data enters the adder through the TLEI 

data transfer line. This line is permanently wired to the 
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TDOO data out line of the adjacent lessor EVEN cell. 

Similarly data enters from the greater EVEN cell when the 

instruction even shift down, ZESD, is raised to logical 1. 

Since there is no B input or carry the sum output of the 

adder is simply the shifted word and this new word is written 

into the memory. The inhibit add option is not normally 

used for this operation since the blocking of any shifted 

word would result in the loss of that word. 

3.3.13 Combinational Operations 

Since some operations involve only the A input of 

the adder while others the B input, certain combinations of 

operations are permitted. Still others do not involve the 

adder at all and are used only to retrieve data from a cell 

to be used by another cell. Consider again for example, the 

multiplication EVEN = ODD x A. In its simplest form this 

multiplication involves the alternate repetitive use of two 

fundamental steps; EVEN = EVEN+ ODD, and ODD = ODD x 2. ­

There is no reason why these two steps cannot run concurrently. 

The multiplication of the ODD word by 2 in no way effects 

the simultaneous readout of the word already stored in the 

location. By combining these two steps, the total time for 

the entire multivlication is reduced by one half. In general, 

different operations for EVEN and ODD cells can be run 

concurrently since each is an independent unit. In computer 

solutions of lengthy problems, combining operations can add 
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up to a considerable saving of time and in such cases an 

analysis of the memory capabilities should be made so that 

the most efficient sequence of steps is utilized combining 

as many steps as possible. 

3.4 Control Unit 

The control unit for the computing memory is basically 

an interface between the memory and the device that it is to 

be a part of. This device will in general be a computer 

for which the computing memory is to be a special purpose 

peripheral unit. Since the exact requirements of the control· 

unit are not clearly defined in the general case, it is of 

little use to design a completely all purpose unit. The 

control unit described here contains the circuitry necessary 

to drive the memory including the loading of data and the 

extraction of information stored in the array. The design 

is reasonably flexible so that interfacing with some central 

device is a simple matter adding a few ~ates and instruction 

decoders. 

3.4.1 Bit Selector and Puls~ Switch 

The heart of the control unit is a 4-bit up down 

counter and a two position switch. The counter with decoders 

and line drivers acts as the cyclic bit selector while the 

switch steers clock pulses alternately to the data latch 

and write enable lines of the memory cells. The synchronous 
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reversible 4-bit counter is shown in Figure 3:4. Consisting 

of four 7473 J-K flip flops, four 7400 2 input NAND gates, 

and six 7430 3 input NAND gates, the entire counter can be 

condensed into five I.C. packages. In keeping with most 

recent developments in I.C. technology where monolithic up­

down counters are becoming available, this circuit will be 

referred to only as a block in subsequent figures. 

The counter, decoders and switch are shown schematic­

ally in Figure 3:5. This circuit is similar in form and 

operation to that of Figure 2:4 described in Chapter 2 with 

additional gating included to provide for the inhibit add 

and negation features. In this simple control unit, the 

inhibit add bit is fixed, always the first bit in the bit 

selector cycle, and so the operation EVEN ~ EVEN x ODD is 

not readily available. 

As noted earlier, care must be taken to prevent 

alteration of the inhibit add bit in certain operations. 

For example, forming the two's complement of a number must 

not result in the inhibit add bit of that number being 

inverted. Nor must the inhibit add bit be altered when the 

contents of a cell are right or left shifted. Finally, when 

an ODD and EVEN cell are added together, neither inhibit add 

bit should be affected. To ensure that these three cases 

for both EVEN and ODD cells are provided for, a condition 

is imposed on the write enable pulse, WWCL. The condition 
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allows that when the inhibit add bit position is detected 

by the 4 input NAND gate at the counter and any of the above 

instructions are in force then the write enable pulse will 

be blocked. A check on these instructions can be expressed 

as the OR function FACS such that 

FACS = ZAEO + ZAOE + ZISE + ZISO + ZCEC + ZCOC. 

Realization of FACS is discussed later in this section where 

all instruction lines are covered. 

Also included in Figure 3:5 is the gating required 

to trigger the inhibit add bit latches at the same time as 

the data latches. This is provided for in a simple 2 input 

NAND gate and inverter that passes the data latch pulse only 

when the inhibit add bit is selected. 

As discussed in Chapter 2, the starting point of the 

reversible counter is always with all bits in the logical 1 

voltage level. For an up count then, th..e next state will be 

with all bits in the low level. Since the first bit position 

selected is always the inhibit add bit, the second will be the 

l.s.b. of the word stored in the memory. When the two's 

complement of the word is to be formed, it is reguir_ed to 

direct an inverted pulse to the carry preset of the corres­

ponding memory cell at the same time as the data is latched. 

Detection of the l.s.b. position is provided by a 4 input 

NAND gate and an inverter, the output of which is combined 

with the data latch pulse, WDLC, and either the complement 
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even data, ZCEC, or complement odd data, ZCOC, to preset 

the necessary carry flip flops, WCPE for EVEN cells and 

WCPO for ODD cells. 

The only additional feature shown on Figure 3:5 

is the instruction line ZRCS which when taken to the high 

level will reverse the direction of the counter, for use 

when words are to be shifted toward the lessor significant 

bit. The inverters at the output of the decoder utilize 

descrete transistors to supply the heavy current necessary 

to drive the address lines of the memory. 

3.4.2 Data Load and Data Out Control 

Since only a single cell can be loaded or read at 

a time, some system of addressing each cell location individ­

ually must be provided for in the control unit. Figure 3:6 

illustrates a partial schematic of this cell identification 

system. Each of the 64 cell locations is assigned a six bit 

binary number represented by the subscripted characters 

C5 C4 C3 C2 C1 C0 , even numbers 0 through 62 corresponding to 

EVEN cell locations and odd numbers 1 to 63 for the ODD 

locations. A common cell address is used for both loading 

of data and reading out of stored data. For convenience, 

the entire 64 word array is subdivided into groups of 8 

words, 4 EVENS and 4 ODDS. Each group in turn possesses 

its own binary to octal decoder for entering information 

and 8 bit multiplexer for selecting the proper cell to be 
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read. Only one such group is shown in Figure 3:6 but since 

all other groups are identical the total system is easily 

understood by examining a typical section. Recall again 

Figure 3:4 showing the single cell. As described earlier, 

data is entered to the cell through the B input to the 

adder through the ZLCS load data line when the appropriate 

TLDI cell select line is raised to the high logic level. 

This high level is derived from the decoder-inverter combina­

tion of the group that the cell in question belongs to. The 

inverters are required since the 74~2 decoders feature 

complementary outputs. One of the 8 cells in each group is 

thereby selected by the binary number represented by the 3 

least significant bits of the cell address. Inverters and 

buffers are provided in these lines to reduce the load of 

the eight decoders and eight multiple~ers. Since every decoder 

shares the common address lines, one cell for every decoder 

would be selected at once. To prevent the simultaneous load­

ing of 8 cells with identical information, the three most 

significant bits of the cell address are decoded in such a 

manner that only one group decoder is activated at a time. 

The 7442 decoders are in fact BCD to decimal decoders used 

as 3 bit binary to octal decoders. If the D input to these 

decoders is raised to the logical 1 level then none of the 

octal outputs are driven. This D input therefore acts as a 

group select when it in turn is driven by the complemented 

output of another binary to octal decoder. This new decoder 
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is coded by the three most significant bits of the cell 

address just as the other 8 decoders are coded by the three 

least significant bits. The 8 outputs of the m.s.b. decoder, 

labelled B1 through B8 , each lead to the D input of the 

corresponding group decoder. Since the m.s.b. decoder is 

also a B.C.D. to decimal decoder the D input can be used to 

activate the load data function. Once the cell correspond­

ing to the unique coded address is selected, data is entered 

through the DATA IN line shown in Figure 3:6 which is 

directly connected to all 64 ZLCS load data lines. 

Reading out of data is a simple matter of addressing 

the desired cell and running through a cycle of the bit 

selector. A 74151 multiplexer is used for each of the 8 

groups of cells, with one input tied to the TDOO data out 

line of each cell. The multiplexers are coded in a similar 

manner to the decoders by the three least significant bits 

of the cell select. Each multiplexer is also provided with 

a strobe input which must be held in the low state before 

any data can be transmitted. When this strobe input is 

joined to the D input of the adjoining decoder, then only 

one of the 8 multiplexers will be activated at a time, and 

only one of the 64 cells will be considered. The X output 

of the multiplexer yields the complement of the data selected 

by the cell address code, and when all 8 outputs are led into 

a common 8 input NAND gate, the output of this NAND gate 

becomes the data stored in the desired cell. In this manner, 
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any one of 64 inputs can be selected to appear at a single 

output terminal. 

3.4.3 Instruction Line Driver 

This section of the control unit is simply a terminal 

point for all instruction lines. All lines to the memory array 

are brought to the control unit so that the computing memory 

may be easily adapted to any other device. Since the instruc­

tion lines may drive as many as 64 cells at once a system of 

buffers is required. These buffers play no part in the logic 

of the control unit and will therefore not be included in 

this discussion. The instruction line driver is shown in 

Figure 3:7. Included in this figure is the gating required 

for the generation of the FACS function discussed in Section 

3.4.1 and used in Figure 3:5. 

3.5 Physical Layout 

With the exception of memory address drivers .and pull 

up resistors, the entire computing memory and control unit 

is composed of integrated circuits mounted on nine 70 

socket boards. The cell arrangement places 4 EVEN and 4 ODD 

cells on a single board for eight of the boards and an extra 

board for the control unit. No particular care was taken 

to minimize the size of the device since a 64 word memory is 

too small to be of much prctctical use in any case. Future 

developments in large scale integration technology directed 
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toward inclusion of an entire cell in a single package 

should reduce the size and cost of the system enormously. 

All integrated circuits are either l4-pin or 16-pin dual 

in line packages mounted to the boards with wire-wrap 

sockets. All pin connections are wire wrapped with the 

exception of Vee and ground. Due to the heavy load imposed 

by the memory address lines, the power requirements are 

rather high at approximately 10 amp. 5 volt D.C. The 

circuit diagrams and pin connections are included in 

Appendix B and need not be mentioned here. 

3.6 Summary 

In Chapter 2, the philosophy of the computing memory 

was introduced: certain frequently encountered numerical 

problems involving a myriad of identical arithmetic opera­

tions may be very efficiently solved by an arithmetic computer 

memory array. Solution of potential field problems by the 

method of relaxation was presented as a case in point. Recall 

again the conventional computer solution by relaxation. The 

equation for a single point relaxation is repeated for 

convenience. 

p ~ l(p + p + p + p ) 2 1 
x,y 4· x-1,y x+l,y x,y-1 x,y+l ··· · · 

For a single relaxation equation 2.1 must be applied to each 

and every point in the descrete field individually, a 

tedious and time consuming exercise. 
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Consider now how the computing memory developed in 

this chapter might be applied to the relaxation problem. 

Figure 3:1 illustrated the cell arrangement and shifting 

pattern for the 64 word array. Assume that the potential 

field is rectangular and can be divided into a uniform 

4 x 8 matrix of 32 points. Any shape of field is permissible, 

the rectangular field is chosen as it conveniently matches 

the entire memory array. For the complete solution the EVEN 

cells will be used to store the current approximation to the 

potential at that point and the ODD cells will be used for 

computation of new values. As a preliminary step all 

memory locations are cleared and boundary values are loaded 

into the EVEN cells at the appropriate points. Since these 

boundary values must remain fixed, the contents of these cells 

are protected by inserting zeros in the inhibit add bit of 

each location. All interior points both EVEN and ODD cells, 

have ones in their inhibit bit position~. The memory is now 

ready for its first relaxation. 

Figure 3:8 shows a magnified five point section of 

the 32 point array. In order that this section be assumed 

general and to conform to the notation of equation 2.1, 

cells are labelled with a uppercase letter P and two sub­

scri~ts corresponding to the x and y matrix position. Only 

one point Px y is considered but it must be remembered that 
' ' 

this is a general point and every step taken here is simul­

taneously executed at every other point in the matrix. 
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The first step is an up-shift of all ODD cells. 

The word previously contained in cell Px,y will now reside 

in Px,y+l" Since all ODD locations are initially cleared 

this step is in fact unnecessary. It is included here so 

that the movement of point Px,y may be better understood. 

An add EVEN to ODD operation followed immediately by a down-

shift of all ODD cells will effect a transfer of the value 

of the potential at point Px,y+l into the ODD location of 

Px,y· This may be expressed as 

p . = px,y x,y+l 

A down-shift of all ODD locations will transfer this value 

previously located in the P position to the P 1x,y x,y­

position. Again EVENS are added to ODDS and the ODDS are 

up-shifted back to their undisturbed positions. The word 

in the ODD P cell may now be expressedx,y 

ODD cells are now retained in their positions and all EVEN 

cells are up-shifted. The value of the potential at point 

Px-l,y is now stored in the EVEN cell of point Px,y· 

Simultaneous addition of EVENS to ODDS and down-shifting of 

EVEN cells will return all potential values to their proper 

points and update ODD cells to include yet another value. 

p = p + p + p
x,y x,y+l x,y-1 x-1,y 
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The next step is obviously to down-shift EVEN cells, again 

add EVENS to ODDS, and return the EVENS with a single up-

shift. The contents of the ODD cell at point P may now x,y 

be expressed 

Px,y = Px,y+l + Px,y-1 + Px-1,y + Px+l,y 

It remains only to divide this number by 4 by shifting the 

contents of all ODD cells by two bit positions toward the 

lessor significant bit. At the completion of this division 

the ODD cells of the memory contain the approximations to the 

potential updated by one relaxation. The numbers previously 

contained in the EVEN cells can now be destroyed, values in 

the ODD cells transferred into the EVEN, and the ODD cells 

cleared, all in a single step. The memory will then be set 

up for the next relaxation. The complete relaxation cycle 

can be summarized into 10 steps: 

1. shift ODDS up 

2. add EVENS to ODDS 

3. shift ODDS down 

4. shift ODDS down 

5. add EVENS to ODDS 


6, shift ODDS up and shift EVENS up 


7. add EVENS to ODDS and shift EVENS down 

8. shift EVENS down 

9. add EVENS to ODDS and shift EVENS up 

10. clear EVENS, add ODDS to EVENS, and clear ODDS. 
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Since all boundary points are guarded by the inhibit add 

feature and the memory encorporates an end around shift, 

there is no danger of losing these values. A complete 

relaxation involves only 10 cycles of the memory bit 

selector and the same time is required to relax 10 points or 

10,000 points. For fields with many points then, the comput­

ing memory is very efficient. 

Chapters 2 and 3 have traced the development of the 

computing memory from the stage of a mere principle to a 

full scale ap~licatio~. A single application, however, would 

scarcely seem to warrant the development necessary to bring 

a practical memory into production. References thus far 

have been made solely toward applying the computing memory 

as a special peripheral unit for a programmable data process­

ing computer. Recent advances in computer miniaturization 

and in analogue to digital conversion techniques have 

brought the special purpose computer into the realm of 
,,/ 

instrumentation. More and more sophisticated measuring 

instruments have been demanded, designed, and produced 

and inadvertently the instrument designers have found 

themselves deep in the field of computer design. That is 

not to say that this is an undesirable situation. General 

purpose computers are costly, must be programmed and are in 

some cases very inefficient. There is considerable advantage 

in a computer that needs no programming and can be readily 

transported for on line measurement or control. 
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It is just such a computer "instrument" to which 

the remainder of this thesis is devoted. A major portion 

of the digital correlator described is the storage facility. 

Many individual operations must be performed and many results 

must be retained, an excellent application for the computing 

memory. Again, since this is a special application of the 

memory where only a few of its many features will be required, 

the general memory described in this chapter may well prove 

to be uneconomical. In such a case it is advisable to return 

to basics and consider the basic arithmetic computing memory 

cell described in Chapter 2 and utilize this as the unit 

building block for the instrument memory ..It was with this 

in mind that the control unit for the computing memory was 

dealt with in such general terms. Once the principle of the 

memory is established and justified the general unit can be 

tailored to specific applications. 



CHAPTER 4 

THEORY OF DIGITAL CORRELATOR 

This chapter describes the theory of amplitude and 

time quantized signals and applies this theory to the 

problem of correlation. An algorithm is developed whereby 

the correlation function may be realized using digital 

techniques. The method of development of this algorithm 

follows essentially that of Masuko 12 in his design of a 

digital autocorrelator. The principles used in this deriva­

tion were originally proposed by Deist and Kitai 13 in a 

paper describing a technique for obtaining the mean square 

value of a fluctuating voltage by digital methods. 

4.1 Theory of Amplitude and Time Quantised Signals 

Consider the voltage waveform shown in Figure 4:1. 

For simplicity in this case it is assumed that this voltage 

is always positive. The. voltage may be quantized into n des­

crete levels of amplitude designated by the integers 0 to n. 

At a particular instant in time, say t*, the voltage is sampled 

and found to lie somewhere in the interval bounded by m and 

m+l. In the processing technique considered here, the prob­

ability of the voltage falling within a particular interval 

- 72 ­
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is of concern. The probability distribution of the voltage 

within each interval must necessarily be assumed uniform with 

a mean at the mid interval value. If the voltage at the nth 

level is taken as unity, then the sample taken at time t* 

will be considered 2m+l , the mid-interval value.
2Il 

A linear quantiser may now be employed to transform 

the sampled voltage to m, an integer representing the highest 

level exceeded. In processing this sample, m must be con­

2m+l
verted to the mid-interval value This is the technique2n 

used by Masuko in the derivation of the algorithm realized 

in his auto-correlator. 

A somewhat simpler algorithm results if the half 

interval shift is incorporated into the quantiser itself. 

In this case for a sample falling somewhere between the m 

and m+l levels the quantiser will be called upon to designate 

an integer representing the mid-interval value directly. 

If we call this integer r, then 

r m 1 = - + n n 2n 

1 r = m + •.... 4 . 1 2 

The transformation suggested by equation 4.1 can be regarded 

as a simple up-shift of the input to the quantiser by a half 

level. In Figure 4:2 the solid lines indicate the quantiser 

levels and the broken lines the shifted input. For a 
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1 1 .sample now falling in the interval m - 2 to m + 2 the quantiser 

will indicate the integer r. This integer r is in fact the 

new mid-interval value of the shifted sample and can be used 

in processing as representative of this value. 

4.2 Derivation of Algorithm for Correlation 

The most general form of correlation function is 

the cross correlation function and is therefore considered in 

this derivation. The autocorrelation function is merely a 

special case where one signal alone is examined. 

Consider two processes represented by the fluctuating 

voltages v 1 and v 2 • If the two processes are ergodic with 

respect to their correlation function,1 4 then the time aver­

aged correlation function R'v v (1) is expressed as 
1 2 

Lim 1 T 
R'v v (1) = - f v 1(t)v 2 (t+t)dt.

1 2 T~oo T 0 

/ 

Let p(x,y:1) be the probability that v; lies within an 

interval dx about x at time t and v 2 within an interval dy 

about y at a time t seconds later. Then the ensemble 

averaged correlation function is written 

00 00 

Rv v (1) = J f xyp(x,y:1)dxdy ~ • • • • 4 • 2 
1 2 -oo 

In the case of a sampling system, and arev 1 v 2 

quantised in amplitude and time and the double integral of 

equation 4.2 is replaced by a double summation over the 
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quantised range of v 1 and v 2 . In figure 4:3 both vI and v 2 

are considered always positive and quantised into n intervals, 

the nth being unity. Let p(r,s:T) be the probability that VI 

lies within __!.of level r at time t and within !_of level sv 2
2n 2n 

at a time T seconds later. If these values of and arev 1 v 2 

then represented by -r and s respectively, the ensemble aver-
n n 

aged correlation function is given by 

n n 
Rv v (T) - ~2 I I rsp(r,s:T) ••••• 4 • 3 

1 
- n

1 2 r=O s=O 

As shown previously the probability that a voltage 

lies within ~n of a level can be equated to the probability 

that a particular level is the highest level exceeded if the 

voltage under observation is shifted by ~ level. If the 

signal voltages are both shifted positive by } level then 

Pr,s is the probability that r is the highest level exceeded 

by L at time t and s is the highest level exceeded by
2n 
at a time T seconds later. For voltages confined 

in the range 0 to 1 - ~n volts, equation 4.3 may be rewritten 

n-1 n-11 
Rv v (T) = ~ I I rs Pr,s ••••• 4 • 4 

1 2 n r=l s=l 

If n is large, then the half level restriction on the range 

of v 1 and v 2 will be of little concern. In practise it is 

convenient to superimpose v and v on a d.c. voltage to 
1 2 

permit processing of positive and negative voltages. A d.c. 

Voltage . as of n+ 1 wi· 11 · t 1 · ·bl permi near equa positive and nega­, 2n 

tive excursions of input voltage as well as realizing the 
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necessary half level shift. In this way, the need for 

precision rectifiers, subtracters, and up-down counters is 

eliminated. However, the d.c. bias must be accounted for in 

the final processing for the correlation function. 

For a process monitored for a finite time, the 

probabilities of equation 4.4 may be replaced by the fraction 

of the total measuring time that the voltage spends in the 

particular interval. If T 0 is the total time for which the 

process lS observed and Tr,s lS the total time for which r 
. 1 

is the highest level exceeded by v 1 + - and s the highest
2n 

level exceeded by v2 + 	1 
T seconds later, then 


2n 


= Tr,s 
T 

0 

Equation 4.4 can be further adapted to a time quantised 

system if T0 is replaced by C0 , the total number of samples 

taken within the measuring time, and Tr,s is replaced by Cr,s' 

the number of samples taken for which the conditions of r and 

s apply. Equation 4.4 may now be regarded as 

n-1 n-1 
RV v C-r) = 

1 
[ [ rs Cr,s ....• 4 . 5 

n 2C1 2 0 r=l s=l 

Equation 4.5 implies that a separate count must be 

kept for each Cr,s over the time of measurement. That is, 

(n-l)(n-1) separate counts are to be maintained and added at 

the completion. In order to avoid such mass storage, it 

would be preferable, at each sampling instant, to calculate 

the cont~ibution of that particular sample pair to the 
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Rv v (T) sum. This is readily accomplished if for each 
1 2 

sample pair collected, a weighting number is calculated 

equivalent to the contribution of that particular sample pair 

to the Rv v (T) sum. This weighting number, a function of 
1 2 

r and s, is then fed to a single accumulator prior to 

collecting the next sample pair for processing. 

For a sample pair collected, represented by the r 

and s levels exceeded, a count of unity is added to the cr,s 

count. The contribution of this pair to the final sum then 

lS simply rxsxl and the weighting factor is merely rs. At 

the completion of the measuring time when all C0 weighting 

factors have been accumulated it remains only to divide the 

accumulated sum by n2-C 0 to obtain Rv v (T), the correlation 
l 2 

function. 

4.3 Derivation of Algorithm for Mean Value 

The time average of a fluctuating process represented 

by a voltage v is 

- Lim 1 T 
v = f v(t)dt .

T-+ro T o 

If p(x) is the probability that v lies within an interval 

dx about x then the ensemble average is expressed by 

00 

-v = f xp(x)dx ••••• 4 • 6 
-oo 

Again, for a sampling system, where v is quantised in 

amplitude and time, the integral of equation 4.6 is replaced 

by a summation over the range of v. If v is assumed always 
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positive and quantised into n levels of amplitude, the nth 

being unity, then a voltage at the rth level may be represented 

by r . p(r) is then the probability that v lies within an 
n 

interval l_ about r and the ensemble average is now written,
2n 

1 n 
v :.:: L: r p(r) ••••• lj. • 7 

n r:::O 

If v is shifted in a positive direction by a half interval 

then the probability that the voltage lies within l_ of 
2n 

level r can be expressed as Pr the probability that r is the 

. 1 
highest level exceeded by v + - . If this transformation 

2n 
is now applied to equation 4.7 and vis confined in.the range 

1
O to 1 - - , v now takes the form

2n 

_ n-1
1 
v :.:: n L: r pr ••••• 4 • 8 

r:::l 

As in the case of correlation function, when the 

process is measured for a finite time, the probability Pr 

may be replaced by the fraction of the total measuring time 

the voltage v + 1 spends within the rth level. For a
2n 

process obser'ved for time To where v + 1:_ spends a total time
2n 

of Tr within the rth level equation 4. 8 becomes 

n-11 
v :.:: L: r Tr 

nT r:::l
0 

Replacing times by number of samples taken for which r is 

the highest level exceeded equation 4.8 takes the form 
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- n-1 
••••• 4 • 9 v = 

is the total number of samples taken and Cr is the totalC0 

number for which r is the highest level exceeded by v + 1 
2n 

Rather than maintaining the n-1 separate counts and 

summing at the end of the measuring run as implied by equa­

tion 4.9, it is preferable to calculate the contribution of 

each sample to the final product. In this way the processing 

of samples will keep pace with the sampling frequency and 

the v will be available immediately at the end of the 

measuring run. The contribution of each sample takes the 

form of a weighting factor which is a function of r the 

highest level exceeded. For one sample a single count is 

added to the appropriate Cr in equation 4.9. The contribu­

tion of this sample to the final sum, and hence the weight-­

ing factor, is simply rxl. It remains only to add this 

integer number to an accumulator before the next sample is 

collected for processing. At the end of the measuring run 

the accumulated sum is divided by nC 0 to give the mean value 

v. 

4.4 Effect of d.c. Bias 

In order to handle both positive and negative going 

signals it is necessary either to use a rectifier or to add 

a d.c. bias to the input signal. A d.c. bias eliminates 

the need for rectifiers, up-down counters, and subtractors 
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but has the disadvantage that the final value of correlation 

function and mean value will be in error by an amount depend­

ent on the d.c. bias voltage used. 

Assume that a d.c. bias of W volts is added to both 

and inputs of a correlator. The measured timev 1 v 2 

averaged correlation function then becomes 

T 
R' (-r) =l. f [v 1 (t) + W] [v 2 (t+·r) + W] dt 

o T o 

1 T = T ! [v 1 (t) v 2 (t+T) + Wv 1 (t) + Wv 2 (t+T) + W2] dt
0 

••••• 4 • 10 

The first term in the integral of equation 4.10 is seen to 

be R'v v (T), the time averaged correlation function of 
1 2 

v 1 and v 2 . The second and third terms are the mean values 

of v and v respectively multiplied by a constant W. The 
1 2 

last term is simply a constant set by the d.c. bias. 

Equation 4.10 may then be rewritten 

R 1 (T) = R'v v (T) + Wv + Wv + w2 . 
0 1 2 1 2 

Rearranging the equation, a corrected expression for 

correlation function is obtained. 

R'v v (T) = R'(T) - wcv + v > - w2 ..... 4.11 
1 2 0 1 2 

R~(T) is the measured correlation function taking into 

account the d.c. bias. To obtain the true correlation func~ 

tion of v 1 and v 2 it is then necessary to perform the 
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operations shown in equation 4.11. 

The time average of a fluctuating voltage v(t) 

superimposed on a d.c. bias w lS simply 

T1v = J [v(t)+W] dt 
T 0 

= v + w 

where vis the time average of the voltage v(t). To 

extract the mean value of v from the measured V it is then 

necessary only to subtract the d.c. bias voltage from the 

measured mean. 

4.5 Summary 

In this chapter the basic algorithms have been 

developed whereby the correlation function of two fluctuat­

ing processes and their mean values can be realized by 

digital means. This may be regarded as the software aspect 

of the problem. It now remains to design the hardware 

required to take this software and manipulate it in such a 

way as to produce the desired result. The hardware will 

take the form of a special purpose computer that has the 

capability of yieldini the mean values and correlation func­

tion without any prior prograrruning. Chapter 5 presents the 

detailed design of an instrument capable of measuring both 

the mean values and correlation function of two fluctuating 

voltages. If only a single voltage is examined then the 
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instrument yields the autocorrelation function of that 

voltage. 



CHAPTER 5 


DESIGN OF DIGITAL CORRELATOR 

5.1 Correlation Section 

The basic algorithm for the digital correlator, 

derived in Chapter 4, implies that for each time delay two 

numbers represented in binary form are to be multiplied 

together and their product, also in binary form, is to be 

stored in an accumulator. This is repeated for every 

sample pair collected and at the end of the measuring run 

it remains to divide the accumulated total by a constant 

to obtain the value of the correlation function for that 

particular time delay. If this is implemented for all de­

sired time delays at once, then at the end of a single 

measuring run the complete correlation function will be 

available. 

Figure 5:1 shows the simplified system block diagram 

for the digital correlator. Both v 1 (t) and v 2 (t) waveforms 

are continuously sampled and amplitude quantised by the A-D 

converters and converted to binary representations r and s 

respectively. These digital numbers are then fed into two 

delay lines to provide the suitable time lag between the 

v and v waveforms. The v delay line is exactly one half 
l 2 1 
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the delay so that both positive and negative values ofv 2 

T may be plotted on the graph of R(,). The delay isv 2 

tapped at uniform intervals along its length corresponding 

to the values of T on the correlation graph. At each tapped 

position the binary representation of the delayed samplev 2 

is multiplied by the common sample and the product is ·v 1 

added to an accumulated sum. In Figure 5:1 the increment of 

delay is assumed to be T seconds and there are 2m+l unique 

sums to be accumulated corresponding to the range of delays 

T = kT where k = o, ±1, ±2, ... , ±m. 

The samples are delayed a fixed amount, mT seconds, so thatv 1 

when multiplied by the v2 sample delayed through m stages 

of T seconds each, the effective time lag between the two 

samples is zero. When the system is used. to determine the 

autocorrelation function, the delay may be eliminated sov 1 

that only positive values of time delay are considered. If 

this were not done, then one half the storage accumulators 

would be redundant, since the autocorrelation function 

possesses even symmetry. 

An inspection of Figure 5:1 reveals that the only 

complex part of the system lies in the multipliers and stor­

age units. A digital time delay is very easily realized in 

a clocked shift register. What is required then is a device 

that will simultaneously multiply many digital numbers by a· 

common multiplier and add the products into corresponding 
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accumulators, an operation well within the capability of the 

arithmetic memory cells. The cells will not only implement 

the required multiplication but also provide storage for the 

accumulated sums. A single central control unit will 

manipulate all cells at once and since all cells are inde­

pendent, there is no limit to the number of delays that Gan 

be driven by the basic control. 

We recall now the technique for binary multiplication 

discussed in Chapter 3. It is essentially a shifting and 

adding operation where the appropriate bit of the multiplier 

determines whether a particular addition will take place. 

Assume now that in Figure 5:1, r, the digitized sample of 

the waveform, will represent the common multiplicand andv 1 

the 2m+l delayed samples of the v 2 waveform will be considered 

the multipliers, sk. For each delay position then the 

product rsk will be added to the accumulation of all previous 

products. The multiplicand r is held in a register R that 

has the capability of shifting the contents one significant 

bit to the left after each addition. Whether or not this 

addition is carried out in each delay position is determined 

by the contents of the appropriate bit of the corresponding 

multiplier sk. The multipliers are continually shifted down 

the delay line, S, so that after each addition step, the 

next m.s.b. is made available. At the end of the last 

addition a further shift of the multipliers will bring the 

l.s.b. of the next SQmple into position so that the next 



90 

multiplication may commence. 

Figure 5:2 shows the flow chart for the process. 

To ensure that negative delays are available at the start 

of the measuring run, the A-D converter and shift register 

delays are continuously active even before the computing is 

begun. For the eight bit word length considered here, the 

converters must obtain a new sample after every eight shifts 

of the delay line so that the register is always filled. 

C0 is the total number of samples to be_.taken for a complete 

measuring run and COUNT is a record of the number of samples 

processed thus far. A measuring run is initiated by resett­

ing COUNT to zero and terminated when the number of samples 

taken re~ches C0 • 

Figure 5:3 shows a section of the correlator in 

block form. Only one delay position is illustrated, but 

since all positions are identical and similar operations are 

simultaneously carried out for all positions, examination of 

one constitutes a survey of the whole system. We recall 

again that the basic arithmetic memory cell introduced in 

Chapter 2 is essentially a serial adding unit. Since it 

is a serial unit, words to be added must be presented in 

a serial form. Register R, contai.ning the multiplicand of 

the rs product, is therefore a 17 bit ring counter with 

parallel load capabilities in the 8 least significant bits. 

Sixteen bits of this shift register are used to deliver the 
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multiplicand to the memory cell while the seventeenth bit is 

used to effect a one bit left shift of the number after each 

addition. The ring counter is pulsed 16 times corresponding 

to the 16 bit addition, and at the sixteenth pulse, the S 

register is pulsed once to address the next m.s.b. of the 

multiplier s. A second addition of the left shifted multi­

plier is attempted depending on the contents of this bit of 

the multiplier. The process is repeated until the entire 

multiplication has been completed. On the eighth and final 

cycle of the ring counter the ring is broken at the AND gate 

so that the register is automatically cleared in preparation 

for the parallel entry of the next r sample. The counter may 

be loaded from two sources; either directly from the A-D 

converter for autocorrelation, or from the end of a Sm bit 

shift register for cross-correlation. This shift register is 

clocked at the same time as the S register so that respective 

r and S time lags are kept in their proper perspective. The 

S shift register itself is simply a (2m+l)x8 bit shift regis­

ter tapped at every 8 bits and possessing parallel load 

capabilities in the first 8 bits. It is the information 

contained in this register that determines whether or not 

the word in the.ring counter is to be added to the sum in 

the memory cell. This is very simply accomplished through a 

AND gate at the input to the cell such that when the approp­

riate bit of the multiplier contains a 1 then the multiplicand 

is added and when a 0 appears no addition takes place. Since 
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a single 8 bit multiplication may require up to 15 bits to 

store the product, one 16 bit memory cell could become 

overloaded after very few samples are processed. To expand 

the capacity, a second or even a third cell may be cascaded 

to the first cell to count the overflow. This joining of 

several cells to increase the word length will be discussed 

in a later section. 

At the end of the measuring run when all the sample 

products have been collected it is required to divide all 

these stored sums by C n 2 where n is the number of quantiza­, 0 

tion levels and is the total number of sample pairsC0 

taken. For 8 bit binary representation there are 256 quant­

ization levels and a division by 256 2 is simply a shifting 

of the number 16 bit positions toward the l.s.b. Alterna­

tively, the n 2 division can be made to occur simultaneously 

with sample processing if only the overflow from the first 

16 bit memory cells are considered. The number stored in the 

second cells will then be the accumulated products already 

divided by n 2 • Since the number of samples required for a 

given run may vary between problems, sufficient flexibility 

must be built in so that division by C0 can be easily 

accomplished. If C0 is made an even power of 10 and readout 

is in either decimal or BCD form then division by C0 is simply 

a shift of the decimal point. For example if 10 6 sample pairs 

are collected then the decimal point must be shifted 6 

positions to the left. 
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5.2 Mean Value Section 

Measurement of mean value, as discussed in Chapter 4, 

is· simply a matter of feeding a weighting number representing 

the sample value to an accumulator at each sampling instant. 

This accumulated total is then divided by a constant C0 n 

where is the number of samples collected and n is thec0 

number of quantization levels. Division by C0 ~s a simple 

shifting of the decimal point, while for 8 bit binary repre­

sentation, division by n is a matter of shifting the binary 

number 8 bits toward the l.s.b. As in the case of the sample 

product accumulation discussed in the previous section a 

more convenient method of this division is the counting of 

the overflow from an 8 bit accumulator. If successive 

approximation or cyclic analog to digital converters are 

used then a very simple 8 bit accumulator can be constructed. 

The device depends on the number being entered, serially, 

m.s.b first, as pulses from the appropriate bit position. 

If a particular bit positio~ contains a 1 then a pulse is fed 

to the corresponding input to the accumulator. If the bit 

is a 0 then no pulse is delivered. Figure 5:4 shows the 

circuit diagram of the accumulator. The device ACTIVATE line 

must be held in the logical 1 position for any new informa­

tion to be added. The overflow from the accumulator is 

then fed to an arithmetic me.mory cell for storage. When 

displayed the number in this cell must be divided by toc0 
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yield the mean value. 

Identical circuits are used for measurement of mean 

value of the v 1 waveform and the v 2 waveform. In the case of 

autocorrelation, only one would be required; however, two 

are included for a general correlator. 

5.3 Removal of D.C. Bias 

As discussed in section 4 of Chapter 4 the numbers 

stored in both the mean value and correlation section of the 

instrument will be in error due to the effect of the half 

range d.c. shift imposed on the input waveforms. Equation 

4.11 is restated here for convenience. 

R'v v (T) = R'(T) - W(v + v) - W2 ••••• 4.11 
l 2 0 1 2 

where R'v v (T) is the correlation function of two voltages
1 2 

v 1 and v 2 ; R'(T) is the function as measured by the 
0 

correlator; and v2 are the mean values of andv 1 v 1 v 2 

respectively; and W is the d.c. bias voltage superimposed on 

the input waveforms. Consider again the derivation of this 

relation. The and input voltages are quantised andv 1 v 2 

converted to binary representations r and s respectively. 

Because of the bias voltage W, however, the outputs of the 

A-D converters is correspondingly modified to r+B and s+B 

respectively, where B is the binary representation of W. 

After suitable scaling to account for the number of quantisa­

tion levels, n, the number fed to the storage unit is 
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S = !_(r+B)(s+B)
n2 

..... 5 .1 

Equation 5.1 expresses the contribution of a single sample 

pair to the accumulated sum of all sample pairs. For a 

d.c. bias of exactly half the range of the instrument 

nB :: and the equation may be rewritten 
2 


l(r+s) + 1
S :: 	 rs + ..... 5. 2 
n2 2n 4 

Applying a similar approach to the mean value section of the 

instrument the output of the mean value accumulators andE 1 E2 

may be expressed as 

r+B 
n 

r 	 1 
:: 	 + ..... 5.3(a) 

n 	 2 

and 


s 1 

E2 :: - + 	 •..•. 5.3(b) 

n 	 2 

If the outputs of these accumulators are both fed to a common 

counter then the input to this counter will be the sum of 

:: lcr+ s) + 1 
n 
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The insertion of an additional flip flop at the input to the 

counter may be made to effect a division by 2. The contribu­

tion of each sample pair to the count will then be 

1 1
P = -(r+s) +- • • • • • 5 • L~

2n 2 

A comparison between equations 5.2 and 5.4 shows that P is 

very close to the correction factor required to obtain the 

unbiassed correlation function. If the counter is initially 

preset to -t using two's complement notation then at the end 

of the measuring run, the exact correction factor will be 

available. It remains only to subtract this correction factor 

from each of the correlation accumulators to obtain the 

correlation function. 

It should be recognized here that the previous 

analysis represents an approximation only. Equation 5.2 

considers samples r and s that are delayed through a shift 

register. The samples used in equation 5.4, however, are 

taken directly from the A-D converters, not delayed, and are 

not therefore necessarily equal to those in equation 5.2. 

In a long measuring run where many thousands of samples are 

taken, the effects of a change in input voltages over the 

time of the delay will be negligible and the previous 

analysis will be valid. 

Figure 5.5 illustrates the block diagram for the 

calculation of the correction factor. The arithmetic memory 
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cell acts as the counter and is preset prior to the start 

of the measuring run by serially loading the cell from a 

presetable 16 bit shift register. This shift register is 

preset to the two's complement representation of! suitably
4 

scaled to the number of samples to be taken. 

Removal of the W term in the mean value memory cells 

is a simple matter of presetting these cells to -t at the 

same time as the correction factor is preset. At the end 

of the measuring run the number contained in these cells 

will be the exact time average of the input waveforms. 

5.4 Complete System 

When the entire correlator is examined as a system, 

it becomes evident that certain devices can be shared by 

different sections of the instrument. For example, the 

A-D converter represents a major expense in any system and 

it would therefore be economical to utilize a single converter 

for both and inputs. A sample and hold circuit wouldv 1 v 2 

then be used in one of the input lines to permit simultaneous 

sampiing of both inputs. While is being sampled andv 1 

quantised by the converter, v is sampled and stored in the 
2 

sample and hold circuit until the A-D converter is again free. 

Such sample and hold devices are considerably less complex and 

more economical than quantisers and in a system where speed 

of conversion is not important they represent significant 



102 

savings. An electronic switch driven by the control logic 

would choose which of the two inputs is to be converted. 

Figure 5:6 shows the complete correlator in block 

form. The system blocks will not be described in any greater 

detail than has already been done. Any further details such 

as specification of components or construction techniques are 

beyond the scope of this thesis. Suffice it to say that all 

components required for a satisfactory implementation of the 

design are currently available in integrated circuit form. 

The principle of digital measurement of correlation functions 

has been proven by Kitai and MasukolO and the design proposed 

here may be considered an extension of their instrument. 

5.5 Cascading of Memory Cells 

In cases where a very large number of sample pairs 

are to be processed, it may be found that some of the accumu­

lated products exceed the storage capaci~y of a single 16 bit 
. ­

memory cell. In such cases a second cell can be used to 

count the overflow from the first. Recall again the carry 

delay incorporated in the typical arithmetic memory cell of 

Figure 3:2. The carry between adjacent bit positions was 

stored in a presetable J-K flip flop. Any carry from the 

m.s.b. was destroyed with the data latch pulse so that it 

would not effect the l.s.b. during following additions. If 

this carry, before being cleared, is used to preset the carry 

flip flop of a second memory cell then this second cell will 
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count the overflow from the first. A very simple logic 

circuit can be used to recognize the l.s.b. position and 

ensure that this carry between cells occurs at the proper 

time. The reading of information from cascaded cells is 

handled in a similar fashion to a single cell. Information 

from the first is fed out serially followed immediately by 

the second resulting in 32 bits of storage. Any number of 

cells can be cascaded in this manner without increasing the 

processing time beyond that for a single cell. 

5.6 Summary 

The digital correlator is intended primarily for low 

frequency measurement where sampling intervals need not 

necessarily be small. The upper limit on sampling frequency 

is governed by the time required for the multiplication process, 

or in the case of the instrument proposed, the time for eight 

cycles of the arithmetic memory cells. At a clock frequency 

of 2 MHz, a single cycle of the memory cell would require 16 

microseconds and a sampling period of 128 microseconds could 

be achieved. The design is such that the increment of time 

delay between points on the correlation graph is equal to 

the sampling period. There is, of course, no low frequency 

limit to the range of input waveforms to be measured and the 

upper frequency limit is governed by the minimum increment of 

time desired in the plotting of the correlation graph. 

The feasibility of the design from a commercial 
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standpoint hinges on the availability of arithmetic memory 

cells in a low cost, compact form. The remainder of the 

system consists of integrated circuits presently on the 

market and no difficulty would be anticipated in the construc­

tion of this section of the instrument. 



CHAPTER 6 


CONCLUSION 

The computing memory described in this thesis is 

intended only to be a guide for future development of arith­

metic memory cells and not an ultimate design in its present 

form. The memory was built using currently available inte­

grated circuits and hence is not particularly compact or 

fast. A clock frequency of only 2 MHz was achieved, permitt­

ing a one microsecond per bit addition. This was taken to be 

satisfactory since the purpose of the design was merely to 

introduce the active memory and prove its feasibility. It 

is to be expected that if the arithmetic memory cell is to 

gain acceptance, then new circuits will be designed which are 

suitable for large scale integration and higher speed. Once 

such devices are available it must necessarily follow that 

many more applications than those suggested here would be 

explored. The problems of correlation and field plotting 

are only two applications arbitrarily chosen because of their 

general familiarity. Many other possibilities exist such as 

Fourier analysis ·and Walsh-Fourier analysisl5 where a large 

number of counters are required to operate simultaneously. 

Many areas for improvement in the basic design 
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naturally exist and although these have been considered, 

restrictions on expense and availability have forced the 

compromise discussed here. One rather obvious shortcoming 

of the cell is the need to provide two write circuits for 

the memory, one for each of the two possible binary states. 

A second weakness lies in the need for two clock pulses for 

each bit of addition, one to latch the data in memory and 

a second to write new data into storage. It would be 

preferable to use a memory circuit with a single data input 

line and a separate write enable input that would act like 

the. clock input of a J-K flip flop. In such a case it would 

be possible to use the information already in a memory loca­

tion to write new data in using only one clock pulse. Such 

a memory is available in the form of the Fairchild type MµL 9035 

integrated circuit. This device incorporates four 16-bit 

words in a single 36 pin package and could form the basis for 

a group of four basic arithmetic memory cells. One such cell 
/ 

is illustrated in Figure 6:1. Since the write enable line 


acts as a clock input there is no need for the D-type flip 


flop to latch the data in the memory. Combined with the 


single data-in line the saving in circuitry is very consider­


able. Because of the restrictions on cost and availability, 


however, it was not possible to encorporate this device into 


·the memory, but its potentials are apparent. 

One other question is raised in the investigation 


of the correlate~ design: In many cases, the arithmetic 
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memory cells are not required to add as such, but rather 

to count uniformly time-quantized overflows from a second 

memory cell. In such a case it would appear that a consider­

able portion of the memory cell is unnecessary and perhaps a 

new device, the counting memory cell, should be investigated. 

In the interest of simplicity such a design was not included 

in the correlator proposal; however, it does warrant con­

sideration. A possible design for a counting cell is shown 

in Figure 6:2 using the Fairchild 9035 memory. When the 

l.s.b. of the counter is addressed a count in will preset 

the J-K flip flop to a logical 1. This voltage level will 

then complement the data in this bit position of the memory 

through the exclusive-or gate and apply the new level to the 

data input of the memory. If the flip flop is left in the 

0 state then the data will remain unaltered. If the flip flop 

is at the 1 level and a 1 state is encountered in the memory, 

then the 2-input NAND gate and inverter will apply a 1 and a 

0 to the J and K inputs of the flip flop _respectively and 

upon receipt of a clock pulse a 1 will be entered into the 

flip flop. If either of these conditions does not hold then 

the flip flop will contain a 0 following the clock pulse. At 

the same time as the flip flop is clocked, the memory write-

enable line is pulsed and the next bit is addressed. The flip 

flop acts as a carry storage and the same analysis applies as 

for the l.s.b. The cycle continues through all 16 bits and 

at the end of the sixteenth bit the carry latch is reset to 
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0 in preparation for a further count. 

Counters of this type are restricted in that inputs 

may not be random, but must occur at fixed periods in time. 

In the case of the correlator, however, the overflow from 

the adders do occur at predictable times and all counters 

can be operated simultaneously. 

It is not the purpose of this thesis to present the 

computing memory solely as a system to be associated with 

a general purpose computer; rather it is an attempt to 

introduce the concept of the arithmetic memory cells as a 

complete and independent unit in itself. It is through these 

qualities that the cell must gain its widest acceptance. As 

a special peripheral device to be used in conjunction with 

a general purpose computer, a memory array composed of these 

cells becomes a self-administering block, effectively freeing 

the sophisticated central processor of the menial task of 

repetitive but elementary arithmetic operations. When 

considered as an independent unit, however, the range of 

application of the cell broadens to encompass all areas of 

digital systems, and is not restricted to general purpose 

computers. It is the author's hope that this philosophy of 

universal applicability be the predominant impression left 

by this thesis so that the full potential of the cellular 

operators be realized. 
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This Appendix contains the wiring instructions for 

the 8 word memory array and the control circuit capable 

of driving up to 64 words of memory constructed for this 

thesis. The memory and control are mounted on separate 

circuit boards, Texas Instrument Part No. 10-000-PS, and 

are shown in Figures B.l and B.13 respectively. 

Each integrated circuit package location is desig­

nated by a two digit number representing the row and column 

number. For example in Figure B.l package 46 is located in 

row 4 column 6 and is a SN7480N gated full adder. In the 

wiring diagrams that follow the location of each device is 

shown as a circled 2 digit number appearing inside the device 

representation. The numbers outside the device correspond to 

the pin number of the particular package, as shown in 

Appendix A. 

Connections to the edge connector pins of the circuit 

boards are shown in the wiring diagrams as numbers enclosed 

in small squares. The codings of the output pin connections 

for the memory board and control board are shown in Table B.l 

and B.2 respectively. 
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45. A2 46. 

47. 48. 

49. Bl so. TUOO(l) 

51. 52. 

53. TLEI 54.TGEI 

SS. TLEO S6.TGEO 

S7. S8. 

S9. 60. 

61. 62. 

63. ZISE 64. ZCEC 

65. ZISO 66. zcoc 
67. ZAEO 68. ZACE 

69. ZAOE 70. ZACO 

71. ZESO 72. WCPE 

73. zosu 74. WCPO 

75. ZESU 76. WWCL 

77. zosu 78. WCRS 

79. 80.WDLC 

81. ZIBA 82. WIAS 

83. LOGIC "1" 84./ 

85. v 86. v cc cc 

TABLE B.1 (cont) MEMORY BOARD OUTPUT PIN ASSIGNMENTS 
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1. GROUND 2. GROUND 

3. CLOCK 4. COUNT DO\VN 

5. INITIATE CYCLE 6. ZISE-
7. 8. ZISO~ 
9. x 10. ZAEO2 

11. 12. ZAOEx3 
13. 14. ZESDx4 
15. 16. ZOSIJv; 
1 7. y2 18. ZESU 

19. y3 20. zosu 
21. y4 22. LOAIJ/READ 

23. 24. LOAD DATA 

25. ZCEC 26. DATA ENTER 

2 7. zcoc 28. DATA OUT 

29. ZACE 30. co 
31. ZACO 32. c 1 
33. ZIBA 34. c2 
35. 36. c3 CELL 
37. 38. c ADDRESS4 
39. 40. c

5 
41. 42.AO 
43. 44. ZLCSAl 

TABLE B.2 CONTROL BOARD OUTPUT PIN ASSIGNMENTS 



140 

~,' . 

45. 46.A2 
47. 48. TD001Bl 
49. 50. TD002B2 
51. 52. TD003B3 
53. 54. TDOOB4 4 
55. 56. TDOOBS 5 
57. 58. TD006B6 
59. 60. TD007B7 
61. 62. TDOOBS 8 
63. ZISE 64. 2CEC 
65. TIso 66. zcoc 
67. ZAEO 68. ZACE 

69. ZAOE 70. ZACO 

71. ZESD 72. \YCPE 

73. ZOSD 74. WCPO 

75. ZESU 76. \YWCL 

77. zosu 78. \YCRS 

79. 80. WDLC 

BL Zil3A 82. / \\'IAS 

83. LOGIC "l" 84. 

85. v 86. v cc cc 

TABLE B.2(cont) CONTROL BOARD OUTPUT PIN 

ASSIGNMENTS 
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