
A COMPUTING MEMORY

A COMPUTING MEMORY: DESIGN AND APPLICATIONS

WITH SPECIAL REFERENCE TO CORRELATION

By

DAVID A. LAWRENCE, B.ENG.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

For the Degree

Master of Engineering

McMaster University

May 1970

MASTER OF ENGINEERING (1970) McMASTER UNIVERSITY
(Electrical Engineering) Hamilton, Ontario.

TITLE: A Computing Memory: Design and Applications with
Special Reference to Correlation.

AUTHOR: David A. Lawrence, B. Eng. (McMaster University).

SUPERVISOR: Professor R. Kitai

NUMBER OF PAGES: ix: 142.

SCOPE AND CONTENTS:

The philosophy of parallel processing within

computers is discussed and a word-organized memory

array is described in which each word lQcation includes

an independent, autonomous, arithmetic and logical

processor. Several examples of computations within the

memory are suggested and application in the solution of

potential field problems is discussed. The concept of

the arithmetic memory cell is introduced and applied in

a design outline for a digital instrument capable of

measuring correlation functions and mean values of

fluctuating voltages.

ii

ACKNOWLEDGEMENTS

The author would like to express his sincere

appreciation to Professor R. Kitai and Dr. E. Della

Torre for their encouragement and guidance in the

preparation of this thesis.

Thanks are also due J. C. Majithia and

K. H. Siemens for the many useful discussions and

suggestions.

The financial assistance provided by the

Department of Electrical Engineering is gratefully

acknowledged.

iii

TABLE OF CONTENTS PAGE

CHAPTER 1:

INTRODUCTION 1

CHAPTER 2:

THEORY AND DESIGN OF ARITHMETIC MEMORY CELLS 8

2.1 Introduction 8

2.2 The Arithmetic Memory Cell 12

2.3 Circuit Description of the Basic Cell 17

CHAPTER 3:

THE COMPUTING MEMORY 26

3.1 Introduction 26

3. 2 Circuit Description 32

3. 3 Circuit Operations 39

3.3.1 EVEN = 0 . . . 4-0

3.3.2 EVEN = A 4-1

3. 3. 3 EVEN = EVEN + A 4-2

3.3.4- EVEN - EVEN 4- 2=
3.3.5 EVEN = ODD 4- 3

3. 3. 6 EVEN = EVEN + ODD 4- L~

3. 3. 7 EVEN = EVEN 4- 4­

3. 3. 8 EVEN = EVEN x N 4- 5

3. 3. 9 EVEN = EVEN/N 4-5

3.3.10 EVEN = ODD x A 4- 7

lV

PAGE

3.3.11 EVEN= EVEN x ODD 49

3.3.12 Location Shifting 52

3.3.13 Combinational Operations 53

3.4 Control Unit 54

3.4.1 Bit Selector and Pulse Switch 54

3.4.2 Data Load and Data Out Control 59

3.4.3 Instruction Line Driver 63

3·.5 Physical Layout 63

3.6 Summary 	 65

CHAPTER 4:

THEORY OF DIGITAL CORRELATOR 72

4.1 	 Theory of Amplitude and Time Quantised

Signals 72

4.2 	 Derivation of Algorithm for Correlation 76

4.3 	 Derivation of Algorithm for Mean Value 80

4.4 	 Effect of d.c. Bias 82

4.5 	 Summary 84

CHAPTER 5:

DESIGN OF DIGITAL CORRELATOR 86

5.1 Correlation Section 	 86

5.2 Mean Value Section 	 95

5.3 Removal of D.C. Bias 	 97

5.4 Complete System 	 101

5.5 Cascading of Memory Cells 	 102

PAGE

5.6 Summary 104

CHAPTER 6:

CONCLUSION 106

APPENDIX A

Circuit Diagrams for Integrated Circuits 112

APPENDIX B

Circuit Diagrams and Wiring Charts for Computing

Memory 118

Vl

LIST OF FIGURES 	 PAGE

2.1 	 Potential Field Matrix 10

2.2 	 Block Diagram of Arithmetic Memory Cell 13

2. 3 	 Schematic of Basic Cell 18

2.4 	 Control Circuit for Basic Cell 23

3.1 	 Internal Data Shifting Pattern 30

3.2 	 Typical Arithmetic Memory Cell 33

3. 3 Binary Multiplication of Two 4-Bit

Numbers 48

3.4 	 4-Bit Up-Down Counter 56

3.5 	 Bit Selector and Pulse Director 57

3.6 	 Data Load and Data Out Control 60

3.7 	 Instruction Line Driver 61.J.

3.8 	 Magnified Section of Computing Memory

Array 67

4.1 	 Quantised Voltage 73

4.2 	 Shifted Input to Quantiser 75

4.3 	 Amplitude and Time Quantisation of v 1 and v 2 78

5.1 	 Simplefied System Block Diagram for

Correlation · · 87

5.2 	 Flow Chart for Correlation 91

5. 3 	 Correlation Section Block Diagram 92

5.4 	 Mean Value Accumulator 96

5.5 	 Block Diagram for Storage of Correlation
Factor · 	 · 100

5.6 	 Complete Correlator Block Diagram 103

vii

PAGE

6.1 	 Simplefied Arithmetic Memory Cell 108

6.2 	 Counting Memory Cell 110

A.l 	 Logic Symbology: MIL 806B Specifications 113

A.2 	 Texas Instruments Integrated Circuits 114 - 116

A.3 	 Descrete Component Platforms 117

B.l 	 Memory Board Package Location Chart 120

B.2 	 Memory Board Wiring Diagram: Cell PO-E 121

B.3 	 Memory Board Wiring Diagram: Cell P0-0 122

B.4 	 Memory Board Wiring Diagram: Cell Pl-E 123

B.5 	 Memory Board Wiring Diagram: Cell Pl-0 124

B.6 	 Memory Board Wiring Diagram: Cell P2-E 125

B.7 	 Memory Board Wiring Diagram: Cell P2-0 126

B.8 	 Memory Board Wiring Diagram: Cell P3-E 127

B.9 	 Memory Board Wiring Diagram: Cell P3-0 128

B.10 	 Memory Board Wiring Diagram: Bit Select Drivers 129

B.11 	 Memory Board Wiring Diagram: Data Load and

Data Read Circuit 130

B.12 	 Memory Board Wiring Diagram: Instruction

and Pulse Buffers 131

B.13 	 Control Board Package Location Chart 132

B.14 	 Control Board Wiring Diagram: Bit Selector

and Pulse Director 133

B.15 	 Control Board Wiring Diagram: Data Load and

Data Read Control 134

B.16 	 Control Board Wiring Diagram: Instruction

line Drivers 135

B.17 	 Control Board Wiring Diagram: Up/Down

Counter 136

LIST OF TABLES PAGE

3.1 Cell Interconnection Identification Code 34

B.l Memory Board Output Pin Assignments 137-138

B.2 Control Board Output Pin Assignments 139-140

ix

CHAPTER 1

INTRODUC1TON

With the advent of the monolithic integrated circuit,

the new degree of freedom offered design engineers through

reduced size and cost has heralded in a new era for the

digital computer. No longer is it necessary to record

measured results for later analysis by a large general purpose

computer. Smaller, more efficient, special purpose computers

can now be taken directly to the source for a considerable

saving in time and cost. More recent technological advances

in the fabrication of integrated circuits have led to the

point where greater than 100 gates on a single chip is now

possible. The development of large scale integration (L.S.I.)

has created new and unique problems for the manufacturers.

The circuits must be complete independent units in themselves

so that the input and output connections may be minimized.

It is this necessity for entire functions to be completed

within a single integrated circuit that exemplifies the need

for cellular system design. A digital system will be an

assemblage of cells or blocks each of which is independent

within itself, and it is the duty of the system designer to

suggest of what these cells must consist. It is the proposal

- 1 ­

2

of such a block, the computing memory, that is the subject

of this thesis.

Considerable investigation of the concept of the

computing memory has been done in recent years. Perhaps

the first efforts at including logic capabilities within the

memory block occurred with the content-addressable or

associative memory. 1 Such a memory was built by Rux 2 using

glass delay lines as the storage unit. Although the memory

was an independent self-administrating block it still relied

on a central control unit to sequentially search the 2048

word memory every 100 microseconds. A qualitative study of

3

the relative advantages of the parallel and sequential

computers along with design concepts and software consider­

ations was made by Koczela and Wang. 3 Huttenhoff and

Shively4 proposed a computer system composed of perhaps

thousands of independent blocks each of which possessed the

capabilities of storage, arithmetic, and input-output

interfacing. The acceptance of such a system arrangement would

necessarily have to coincide with the development of new

software packages that would break down a large problem into

subprograms that could be simultaneously executed in each

of the computer blocks. The principle of the block oriented

computer was further extended by Campeau 5 in a paper that

draws a distinction between multiprocessors and array

processors. Whereas the multiprocessor concept would be

similar to that of Huttenhoff and Shively, the array pro­

cessor approach would have the arithmetic capability asso­

ciated with each and every word in the memory, permitting

the cellular redundancy desirable with the imperfect yield

inherent in L.S.I. circuit fabrication. An example of a

cellular logic-in-memory array is suggested by Kautz 6 to

solve the problem of data sorting. A device is proposed that

will arrange the data stored within it in either ascending

or descending order of magnitude without administration from

a central processor, effectively leaving this processor free

to proceed to other operations.

The computing memory described in this thesis is

4

most co1nparable to the array processors of Campeau. The

array is composed of identical cells and only the interconnec­

tion lines between them distinguishes one from the other.

The arithmetic operations of addition, subtraction, multi­

plication, and division can be simultaneously executed between

many pairs of cells, and in addition, shifting of cell contents

within the confines of the array is permitted. Since the

entire range of capabilities is a part of every cell and

each is autonomous, then the elements may be termed universal

arithmetic memory cells. An array composed of these cells

was built and tested and found to perform well within the

concepts of the design. Solution of a potential field

problem by the method of relaxation is presented as an

example of a problem most efficiently approached by a highly

parallel computer.

The philosophy of the arithmetic memory cell is not

to be restricted to application in a memory array for a

computer. In any situation where a large number of identical

operations are to be performed on unique groups of data all

of which become available at once, the arithmetic elements

enjoy several advantages. As a case in point, a design

proposal for a digital instrument for the measurement of

correlation function is included in the second part of this

thesis. Correlation was chosen because of its general

familiarity and usefulness in noise analysis and in extrac­

tion of a signal from a noisy source. The major part of the

5

digital correlator was found to be the arithmetic and storage

sections, and because of the adaptability to array processing,

it is dealt with in considerable detail.

Early instruments for the measurement of correlation

function were analogue in nature and incorporated a variety

of optical, mechanical and electronic methods. 7 The

advantages of digital processing for slowly fluctuating waves

has been recognized and in more recent years the digital

computer has been utilized in a number of ways. The incon­

venience involved in recording data for later processing by

a general purpose computer was recognized, however, and

special purpose computers as an integral part of the

measuring instrument evolved. The first commercially avail-­

able machines such as the Princeton Applied Research Corp­

oration Model 100 Signal Correlator were essentially hybrid

devices. In this instrument, one channel is converted to a

series of binary pulses, random in nature, but with a proba­

bility of being on equal to the normalized amplitude of the

input waveform. Effective time delay of this channel is

accomplished through a 100 stage shift register and at the

output of each stage a hybrid multiplier is used to multiply

the delayed pulse train by the analogue input of the second

channel. The voltage product of the multiplication is then

used to charge capacitive storage elements through low-pass

filters.

6

The principle of the probability computers was

further exploited by Jespers, Chu, and Fettweis, 9 in their

method for computing correlation functions. Both inputs to

their correlator are converted to a series of binary pulses

and multiplication is accomplished in an exclusive or gate.

Averaging of the gate output is performed in a conventional

up-down counter so that the contents of the counter contain

the digital coded value of correlation function at the

completion of the measuring run.

In more recent years the techniques of conventional

computer processing have beeri applied to the measurement of

correlation function. Kitai and MasukolO describe an instru­

ment that initially samples and quantises the input waveform

into a binary code and then employs a unique digital multiplier

to carry out the multiplication and time averaging process.

It is on this last principle that the design of the correlator

in this thesis is based, and the proposal may in fact be con­
/

sidered a modification of the Kitai and Masuko instrument to

make use of the concept of parallel processing.

The philosophy and design basis for the arithmetic

memory cell are presented in Chapter 2. A matrix of these

cells is organized in Chapter 3 to form a computing memory

array and solution of a potential field problem is discussed

as a possible application. Chapter 4 introduces the design

theory for the digital correlator and the pertinent algorithms

are developed for the digital realization of correlation

7

functions. These algorithms are used in Chapter 5 as the

design criterion for the hardware implementation of an instru­

ment that measures mean values and the autocorrelation or

cross correlation function of fluctuating waveforms. Chapter

6 summarizes the contents and offers areas for future improve­

ment and development of the concepts laid down in this thesis.

CHAPTER 2

THEORY AND DESIGN OF ARITHMETIC MEMORY CELLS

2.1 Introduction

In most modern computers, the arithmetic operations

of addition, subtraction, multiplication, and division are

carried out in a device known as a central processor. As

the name implies, this processor is central to the entire

computer and is shared by all the various peripheral devices.

For instance, if two words located in the memory core of the

computer are to be added, then they must both first be loaded

into the processor. The adding operation is then carried out

and the result is returned to some memory location. This

operation occupies the entire capability of the processor and

while it is being carried out, no other arithmetic operations

may commence. In the case where several groups of numbers are

to be added and several sums obtained, the processor must be

time shared so that the sums are obtained one at a time. The

same limitation carries over into the remaining operations of

subtraction, multiplication, and division.

The central processors of modern computers are

extremely fast devices and in most cases the limitation of

- 8 ­

9

single step operation may seem insignificant. In some

circumstances, however, notably correlation, fourier

analysis, and relaxation, a very large number of identical

operations are to be performed in parallel and the elapsed

time for computation can become rather extensive. Consider,

for example, solution of Laplacian field problems by the

method of relaxation.11 Figure 2:1 shows a potential field

divided into 36 matrix points identified by their relative

positions on the x and y axis. In this method, the poten­

tial at a given point, say P(x,y), within the boundaries of

the field, is a function of the potentials at the four

corners of an imaginary square surrounding that point. This

relationship may be expressed as

P(x,y) = 1 [P(x-1,y) + P(x+l,y) + P(x,y+l) + P(x,y-1)]
4

..... (2.1)

Equation 2:1 is applied to all the interior points

to complete one relaxation. The process is repeated again

and again until the solution converges or relaxes to the

desired accuracy. If the boundary conditions of the 36 point

field of Figure 2:1 are taken to be x = 0 and x = 5, then

there are 24 interior points to be analyzed. Each point

involves four additions and one division for each relaxation.

There are then 120 arithmetic operations per relaxation. In

this method of solution the number of relaxations performed

is typically 50. For the small 36 point field then there

http:relaxation.11

10

0

..._ 5

10 P(x,y+l)

/ ' ' /
/ '

/ '
/ '

/ ' '
I' '

20 ,P(x··l ,y) P(x,y) ' ' '

t
-3

'
' '

,
/

' / '
/

y ' /

/

P(x,y-1),. '---- 30 ' '
/

- ' 2

P(x+l,y)

100

90

80

70

.....___ 40 60

..._ 1

so so-0

0 1 2 3 4 s

FIGURE 2.1 POTENTIAL FIELD MATRIX

11

will be a total of 6000 arithmetic operations. For solution

by contemporary computers, therefore, the central processor

will be called upon to carry out 6000 steps in addition to

the loading of words from memory and the returning of words

to memory. In practise a 36 point field is of little interest

and for a reasonable degree of accuracy fields in the

neighbourhood of 1,000 points are used. One can clearly see

how a central processor can be used inefficiently.

In order to ease the burden on the central processor,

it would be preferable to create an active computer memory.

That is, instead of merely passively storing information, an

active memory would have the added capability of computing,

for example sums, differences, products, quotients, and do

logic. Each memory location would have the arithmetic

facility built in. In this way two or more words stored in

memory can be added together directly without the necessity

of unloading and reloading. Since each,location is its own

processor, there is no limit to the number of operations that

can be performed simultaneously. In the example of solution

by relaxation one complete relaxation will consist of five

steps, four additions and one division. The time saving

over conventional methods can be enormous.

This chapter suggests a special memory array capable

of the mass logic described above. It is built with present

day integrated circuits and is readily adaptable to large

12

scale integration. Several applications with examples are

given and possible extensions are suggested.

2.2 The Arithmetic Memory Cell

The basic cell consists of a 16 bit memory register

capable of serial addition. That is, any new word can be

added to the word stored in a particular cell location in a

single step without first removing the word from memory.

This is accomplished by including a full adder with each

memory location. Data in a memory location is addressed

one bit at a time and is available serially, as in a shift

register. Addition is therefore performed in a serial manner

starting with the least significant bit, l.s.b., and pro­

gressing toward the most significant bit, m.s.b. The carry

between bits is held in a delay as the adder is shifted.

Figure 2:2 shows the simplified block diagram of the process

with the three basic units, the memory, the adder, and the

carry delay. Any number of memory cells can be addressed

simultaneously and thus there is no limit to the number of

additions that can be carried on in parallel. Serial

addition is inherently slower than parallel addition but

there must necessarily be some trade-off between speed and

complexity of the single cell. In a large problem where

a very great number of identical additions are to be per­

formed, there is a point where the many slower serial

additions all performed at once become faster in total

13

AIJD IN INPlll'
(SERIAL)

+V

DATA
OUT

!--­
u
~
-l
Ul
U')

f:-..
H
o::l DATA

IN

A B CARRY
IN

OUT

A+B
.CARRY

OUT IN

MEMORY
'UNIT

AIJDING
UNIT CARRY

DELAY

FIGURE 2.2 BLOCK DIAGRAM OF ARITHMETIC
MEMORY CELL

14

elapsed time than the same additions executed in parallel

but sequentially. Assume that a single addition takes T

seconds regardless of the word length. Executed serially,

an n bit addition will take nT seconds to complete. If

parallel addition is employed, then the same n bit

addition will produce a sum in T seconds. For a single

addition, the parallel technique is faster than the serial

by a factor equal to the bit length of the word. Assume

now that m unique pairs of words are to be added each having

n bits. If m serial adders are used then the total time

required for the addition remains at nT. If a single parallel

adder is utilized, however, then the total time for the rn

additions increases to mT. Clearly, then, when the number of

similar additions to be performed becomes greater than the

number of bits in the words, a system of numerous serial

adders is, in fact, faster than a single high speed

parallel adder.

The question naturally arises at this point as to

why one should not use a system of many parallel adders to

gain even greater speed. The answer, of course, lies in

the complexity of the system. In a serial adder only a

single bit adder is used for n bits of a single word. In

the parallel case, an adder must be assigned to each of the

n bits. The parallel adder must be n times larger than when

serial addition is used. The interconnection between cells

must also be n times more complex since all bits must be

15

compared simultaneously instead of one bit at a time. Rapid

advances in large scale integration technology, however, may

in the near future make parallel addition more practical. In

the system proposed here, hardware availability limits consider­

ation to serial addition.

Consider again Figure 2:2. For a serial adder, a

memory is required having a system for addressing a number

of flip flops in such a manner that single data in and data

out lines can be used to selectively write information into

a unique location and also read the information held in the

location. Texas Instruments Model SN7480 integrated circuit

contains 16 flip flops arranged in a matrix form so that only

a single matrix position is activated at a time. Appendix

A contains specifications and circuit diagrams for all inte­

grated circuits utilized in this thesis. The bit positions

of the memory word are addressed in a cyclic manner from the

least significant bit to the most significant bit. In a

typical addition the l.s.b. is addressed first. The data

stored in this position is added at the A input of the adder

to information entering the B input. The sum of A & B is

then directed to the data-in input of the memory and this

sum is written into the position previously occupied by word

A. If a carry is generated as a result of the A & B addition

th{s information is held in the carry delay. When the writ­

ing operation has been completed the cyclic bit selector

selects the next m.s.b. and the corresponding bit position

16

of the new word to be added is applied to the B input of the

adder. The adder then compares the information stored in

the memory, the new information to be added and the stored

carry from the lesser significant bit and generates a new

sum and carry. The new sum is written into the memory and

the carry is again delayed fop the next m.s.b. The pr>ocess

is repeated until all 16 bits have been added. The cyclic

bit selector then resets itself to the l.s.b. to be prepared

for the next addition.

To read out the information stored in the memory,

the process is repeated with the exception that no new inform­

ation is directed into the B input of the adder. The sum is

then simply the information appearing at the A input and the

word stored in memory is unaltered. Readout is thus non­

destructive. New data may be entered directly into memory

through the adder's B input when the data out line from the

memory to the adder is disabled. In this case the sum is

merely the data entered at B. If no ri~w data is applied to

B and the data out line from the memory is disabled then all

bit positions in the memory are cleared.

Let the memory register be represented by A and the

register containing the word to be added by B. Then the

basic arithmetic me.mory cell is capable of !~ different

operations. These may be termed "settt operations,

17

1. set A = 0

2. set A = A

3. set A = B

4. set A = A+B.

Operation 1 is a clear, 2 a readout of stored data, 3 a

loading of data and 4 an addition of two numbers or more

correctly an accumulated total of numbers. The basic cell

then is no more than an accumulator and has no more capa­

bility than addition. It will be shown later that through

proper sequencing, the operations of subtraction multiplica­

tion and divis{on can be reduced to simple additions, well

within the ability of the basic cell.

2.3 Circuit Description of the Basic Cell

Figure 2:3 shows the schematic of the basic adding

memory cell. Texas Instruments Series S~74 integrated

circuits are used throughout and are referred to by the

4 digit package number 74XX. Circuit diagrams for these

packages are listed in Appendix A. Symbology for all gates

follows mil 806B specifications and is listed in Appendix A.

The 7481 memory array employs a direct internal

connection between the write inputs and the sense outputs.

Data already stored in a memory location cannot therefore

be used to write new infor•mation into the location without a

suitable delay. This delay is realized in a D-type flip

() ~
> Ai
AJ H
~ t-3
>-<: M
~t°< L-J

> z
t-3 >
() lto
L: t-<

M

r- ti
~>
0 t-3
==>

I

>
0
0

r.n c::
c:: ~
~ c::

t-<
)>

t-3
M

!-I z t4
1-1> >::r: 0zu ut:d ,_.o

u u ~ 0

, I _J___ ,

I 't-3

I II .

I I . I
ADDRESS

WRITEr----i, 1 SENSE
1

[
tr

I r - - - -1 YIB~ IBeI I B1 i

U'; ~ Cn :
1
1____ · I

!Ac ·j Y J-cn-:-:-11
OIL·:Az I BCn µ:I WRITE SENSE

0n o

. MEMORY .1.-1 c
I

! 'A~ ...
. 'i Cn+l I _, IA1 ~ I

QI I ATED \71
: cFuLL 1~ Is_ ­ """'
LADDER_ ­ -­ !

I- -"J _J-4 I
. /1 _n I I

~~--~~l-~!~--~~~~~~-

J Q'

'-----iK

U1

<:

TO CYCLIC
BIT SELECTOR ~

0
. /\'--~

9~,;.~

:::0 ()
M>
r.n ~
M~
t-3 >-<:

I-'FIGURE 2.3 SCHEMA TIC OF BASIC CELL co

19

flop clocked with a pulse termed DATA LATCH. The sense

lines of the memory, in practice, yield the complement of

the data stored in the bit position and inversion of this

data is accomplished by using the Q output of the flip flop.

The final stage of the sense amplifiers feature open

collector transistors and a 10 kilohm resistor is used,

tied to +5 volts to ensure the required logic levels to

drive the flip flop.

The full adder employed here, type 7480, incorporates

a range of gating inputs rendering it very useful for this

application. A simple adder utilizes A, B, and CARRY-IN

inputs and provides A+ B and CARRY-OUT outputs. These

functions are the central core of the gated full adder of

Figure 2:3. In the 7480, 3 gated inputs are provided to

each of the A and B inputs and in addition the complement

of the sum is available. This extra logic is shown within

the dashed section of Figure 2:3. If the Ac input is held

at logic 1, then the A2 input may be used to disable the A1

input. Only when A2 is held at logic 1 will data at A1 be

passed through to the adding core. The same holds for the

B inputs. When the Q output of the flip flop is fed to the

A1 input and the 8 1 input is used to direct new data to the

basic cell, then the A2 and inputs function as accumulateB2

sum and inhibit add respectively.

It is convenient to use both the sum and complement­

20

of-sum outputs of the adder. New information, either a

1 or a O, is written into a memory bit location by momentarily

raising the corresponding write input to the logic 1 level.

In order to maintain control over this write function,

2 input NAND gates and inverters are used to link the sum

outputs of the adder to the write inputs of the memory. One

input of each NAND gate is then taken to a common WRITE

ENABLE line. Only when a logic 1 is applied to this line

will the sum be written into the memory.

The carry delay is realized in the basic cell by a

J-K flip flop. A D-type flip flop is unsuitable in this

application since the state of the CARRY OUT output of the

adder is determined in part by the data at the CARRY IN

input. As long as the clock input of a D-type flip flop is

held high, whatever information appearing at the D input will

be passed through to the Q input. Typical propagation delay

from the rising edge of a clock pulse to the Q output is in

the neighbourhood of 7 ns. Delay from Cn to Cn+l through

the adder is typically 8 ns. Set-up time at the D input is

approximately 7 ns. The total delay in the loop is thus

about 22 ns. This, however, is a typical figure and in

practice, could be considerably less. The maximum clock

pulse width must therefore be of the order of 15 ns, £or

correct functioning of the system. Pulses of such a small

duration are difficult to achieve and in addition it is

21

desirable that the basic cell operate independently of

clock pulse duration. Unlike the D-type flip flop, the

J-K triggers on the trailing edge of the clock pulse. That

is, whatever information appears at the J and K inputs when

the clock input is in the logical 1 state, will be trans­

ferred to the Q output when the clock is returned to the 0

state. Since the CARRY OUT is complemented in the adder,

it is inverted at the input to the flip-flop. The clock

input, termed CARRY LATCH, is joined to the WRITE ENABLE

line so that at the same time as the new sum is written

into the memory, the carry to the next most significant

bit is stored. The clear input of the carry latch, called

CARRY RESET, is provided to prevent the carry from the m.s.b.

being returned to the l.s.b. As long as the l.s.b. is

being addressed, there must be no CARRY IN.

Once the new sum has been written into a bit

position, addition is carried on to the next most significant

bit by incrementing the bit selector by unity. In its

simplest form, the bit selector is simply a binary counter

with appropriate decoding to drive the X and Y address

lines. Incrementing of the counter may occur at the same

time as WRITE ENABLE and CARRY LATCH. There are two steps

to each bit addition:

1. DATA LATCH, and

2. WRITE ENABLE, CARRY LATCH, and RE-ADDRESS.

22

This can be accomplished with a single pulse generator by

gating the pulses alternately to one line or the other.

After the m.s.b. has been modified the bit selector returns

to the l.s.b. and ceases to count until another add command

is received. The control .circuitry can be made quite simply

and has the advantage that any nu~ber of cells can be driven

from a single control. Since each cell is an independent

adder and storage element in itself there is no need to

time-share the control unit and there is no limit.to the

number of additions that can be carried out simultaneously.

Figure 2:4 shows the control circuit required to drive the

basic cell. The cyclic bit selector is simply a 4 bit

binary counter, type 7493~ with the A and B outputs used

to drive one decoder for· the X address lines of the memory

and the C and D outputs taken to a second decoder for the

Y address lines. These decoders are BCD to decimal decoders,

type 7442, used as 2 line to 4 line decoders by taking the

C and D inputs of each to ground potential. The decoders

feature complementary outputs, and descrete component address

drivers may be designed to simultaneously drive as many

memories as desired. As a matter of convenience the counter

code for the least significant bit is taken as a high state

at all 4 counter outputs. The type of code and starting

point are completely arbitrary so long as they are consistent.

All high is chosen for the l.s.b. since this code is easily

d~tected using a 4 input NAND gate. Previous to the start

http:limit.to

23

1

J M J F

K K

INITIATE - c M c FCYCLE R R

CLOCK

CLOCK

4 BIT BINARY COUNTER

A B C D

A 1
er::
~ ---- B 0 2
0
l)

c ~
0

3

D 4

A 1
er::
~

B 0 2
0
l)

c ~ 3
0

DATA WRITE CARRY D 4

y

LATCH ENABLE RESET
&

CARRY -
LATCH

FIGURE 2.4 CONTROL CIRCUIT FOR BASIC CELL

x

24

of an adding cycle, control flip flops M and F are both in

the 0 state. The continuous train of clock pulses have no

effect on flip flop F since both J and K inputs are low.

When the INITIATE CYCLE input to the control is raised to

a logic 1 the clock input to flip flop M is raised from

0 to 1. As the INITIATE CYCLE input is raised to 0 the

trailing edge at the clock of M triggers the flip flop,

and since both J and K inputs are tied permanently to logic

1 the flip flop complements. Raising M to a logic 1 in

turn applies a high to both J and K inputs of F. Flip flop

F will then complement for every succeeding clock pulse.

The first clock pulse received following the raising of M

to logic 1 is directed through a 3 input NAND gate and inver­

ter to the DATA LATCH inputs of the various memory cells.

The second is carried through a 2 input NAND gate and inver­

ter to the WRITE ENABLE and CARRY LATCH inputs. At the

same time, the counter is incremented by unity to address

the second least significant bit. The third pulse is again

directed to the DATA LATCH. This is repeated for 32 clock

pulses, 2 pulses for each bit position, until the counter

recycles to the l.s.b. When the counter was first incremented

the output of the 4 input NAND gate was raised to a logic 1

causing the clock input to the M flip flop to be raised from

0 to 1. As the counter returns to the l.s.b. the output of

the 4 input NAND gate goes low and the trailing edge applied

to the clock of M causes the flip flop to complement again

25

and all further clock pulses are blocked. The adding cycle

is now complete and the control is reset and ready for the

next adding cycle. The output of the 4- input NAND gate is

also used to reset the carry latch so that overflow from

the m.s.b. cannot be carried back to the l.s.b.

Now that the principle and operation of the

arithmetic memory cell has been established, it remains to

show how these basic cells can be incorporated into a large

memory array. Chapter 4- describes such a computing memory

and suggests how such a device may be interfaced with exist­

ing machines.

CHAPTER 3

THE COMPUTING MEMORY

3.1 Introduction

The basic arithmetic memory cell described in

Chapter 2 is the fundamental block of the computing memory.

If many cells are arranged in some matrix array addressable

individually by matrix location, then the memory resembles

conventional passive memories but has an additional capa­

bility. Any new number can be added to a number already

stored in memory directly without first removing the word

from its location and returning the sum after the addition

has been completed. This is an interesting feature but of

questionable advantage when consideration is made of the

extra gating required to make every location an accumulator.

If, however, additional interconnection between matrix loca­

tions is provided and provision is made for direct addition

between locations, then the capabilities of the computing

memory become enormous. Such a computing memory is described

in this chapter. The memory is small, able to store only 64

15-bit words, but the concept is easily extendable and is

particularly adaptable to large scale integration. Only 8

- 26 ­

27

words of the memory have been built and tested at the time

of writing, but the design will incorporate the remaining

56 with no alteration.

In the memory described here, the 64 words are sub­

divided into 32 PAIRS, labeled EVEN and ODD, each being an

independent basic arithmetic memory cell. All arithmetic

operations are performed within the PAIRS and the result
'

is stored in either the EVEN or the ODD depending on the

command. For example, a command ADD EVEN TO ODD results in

the number stored in the EVEN cell being added to that stored

in the ODD cell and the sum stored in the ODD location. It

must be understood that there are 32 EVEN and 32 ODD locations

and thus a command ADD EVEN TO ODD will effect 32 independent

additions. That is, all EVENS will be added to all ODDS and

all sums will be stored in the ODDS. A similar command exists

for ADD ODD TO EVEN. In this case the same numbers are added

but the sum is stored in the EVEN location. An additional

important built-in feature of both EVEN and ODD cells is a

RIGHT SHIFT and LEFT SHIFT. These commands effect a shift

of the word stored in a cell location by a single bit position

to the right or left respectively. Since the words are stored

in a binary code, such a shift is effectively division and

multiplication by 2 respectively. By proper sequencing of the

adding and shifting operations, each PAIR becomes an independ­

ent multiplier. Provision for forming the two's complement

is included in all cells and thus subtraction can also be

28

realized as simply as addition.

It is noteworthy that when an addition between EVENS

and ODDS is performed, one of the words added is lost in

order to store the sum in the location previously occupied

by that word. In some cases this is undesirable and to

prevent unwanted operations an inhibit add facility is built

in. This feature is in the form of a bit position in the

stored word. At the commencement of any operation this bit

position is first surveyed. If a 1 is stored in the position

then the operation proceeds. If, however, a 0 appears in the

inhibit bit position then the word remains unchanged. Again,

all cells are independent and one operation inhibited for one

PAIR has no effect on the remaining PAIRS. For each individ­

ual PAIR the decision whether to add resides in the inhibit

bit of that pair.

The capabilities of a PAIR can be listed as SET

commands. That is SET EVEN = EVEN + ODD means add the number

stored in the EVEN location to the number stored in the ODD

location and place the sum in the EVEN location. Only those

operations in which the result is stored in the EVEN location

are listed here. It must be understood that exactly the same

capabilities are permitted where the result is stored in the

ODD location.

29

1. EVEN = 0

2 . EVEN = A

3. EVEN = EVEN + A

4. EVEN = - EVEN

5 . EVEN = ODD

6. EVEN = EVEN + ODD

7 . EVEN = EVEN

8. EVEN = EVEN x N

9. EVEN = EVEN/N

10. EVEN = ODD x A

11. EVEN = EVEN x ODD

A is a number stored in the control unit, and N lS an

integer such th~t N = 2x, x = 1, 2, 3, ... These operations

are described in detail later in this chapter. It will suff­

ice here only to point out that these capabilities exist for

each and every PAIR and that the particular operation is

simultaneously carried out in all PAIRS.
/

For example, oper­

ation number 10 implies that all 32 numbers stored in ODD

locations are simultaneously multiplied by a common number

A and all 32 products are stored in the corresponding EVEN

locations. 32 operations are performed at once.

In order that arithmetic operatjons between locations

outside the PAIR be permitted, a syst~m of shifting of words

from location to location is provided. Figure 3:1 shows the

32 PAIR memory organized into a rectangular array of 4 by

- - - - - - - - - - - - - - - - - -- - - - -

30

______,._ P2 -E
PO-E Pl-E 1-4'------.r.-i P3-E

I
I
L-~-, r-~-, r-~1

I I

I r------J.-------'
I

.- - - - -- J
I I II

P4-E I PS-E ------,...- P6-E--'---"-'1-i P 7 - E
I

I I I I

L--~, 1~i L~-:· ~
r--------.J

I
r-------J r - - - ----' r-----..J

I I I I
I I I

I P8-E ..-.-----..- P10-E ...,..._ _._-"'I._, P11-E--------:-'>-! P9-E
I I

I
I I

I

'--~, l~-, L~-,
I . I

L~
r.- - - - -- - -' r-------1 r-------J r - - - - -'

I I II
t I I

1 Pl2-E .,__~..--;..;~ Pl3-E i----,---':·->-t Pl4-E ----,-- PlS-E
I t I I

L-~: L>-fITT~: ~-: L~
,- - - - - - - -' i- - - - - - -' ,.... - - - - - - J r - - - - - ..J
I I I I
I I I
I I I
1 P16-E ~--=--~,~ Pl 7 -E i---0--1-......i P18-E-~---:!:.i-1 P19-E
I I I 1

L-~-: I~~ l~: ~
... - - - - - -- J r- - - - - - _J r - - - - - - _, r - - - - - J
I I I I
I I I

: I P20-·E ...~....---:"""i~- P21-E ~--"":"!,~ P22-E .__ _:_.....::~ P23-E
I I I 1

L-~1 ~, ~, L~
I . I I

.-------J r------1 r------J r-----J
I I I I

I I I

: P24-E --~...,.;'"""'""' P25-E ,.._..--'-~,-i P26-E i...;;-_.:._~:.;a...i P27-E
I I I I ~-__,

L-~r ~i ~"°1 ~I
r - - - - - _J ,... - - - - - ..J' r - - - - - ..J ,- - - - - - J

I I I

~<....__-,---!~,....ii P2 9- E i-I p31- E) : lj P2 8- E <E----'--~~ p30 -E , CoE-----;:~,__

-1
I
I
I
I

.

I I I I I
L-~-J L~--' ~--J ~---

FIGURE 3. 1 INTERNAL DATA SHIFTING PATTERN

31

8 PAIR locations, each location with an EVEN and ODD cell.

Each PAIR location possesses the capabilities previously

listed. In addition, all EVEN or all ODD words can be

shifted in two directions. If the array of Figure 3:1 is

considered to lie in the X-Y plane then the EVENS may be

'
said to be shifted in the plus X or minus X directions.

Likewise the ODDS can be shifted in the plus or minus Y

direction. To prevent loss of information at the end of a

row or column, an end around link is included so that the

word shifted beyond the last position of a row or column

is carried over to the first position of the next row or

column. The solid lines of Figure 3:1 designate the shift­

ing pattern for EVEN cells while that for ODD cells is

shown dashed. Position in the array is described by the

letter P followed by the PAIR number. Each position is

suffixed by the letter E or 0 to indicate EVEN or ODD cells

respectively.

Once the general configuration of the computing

memory is understood it remains to describe the circuit

blocks in detail and explain how the 11 operations previously

listed are to be realized. In addition, the following

sections present the control circuit required to drive and

manipulate the memory. The final section of this chapter

includes a discussion of the de~ign and suggestions for

improvement.

32

3.2 Circuit Description

All 64 arithmetic memory cells of the computing

memory are identical. It is only the system of cell inter­

connection that differentiates EVEN and ODD cells of a

particular PAIR. Hence, all PAIRS are also similar and it

is only their position in the array that makes them unique.

Figure 3:2 illustrates a typical cell. In order that this

may be regarded as a general cell, the interconnection lines

are shown unterminated. They are identified by a code

which describes their function. Once the code is understood,

the joining of interconnection lines between corresponding

cells will become obvious.

All codes consist of 4 uppercase characters. The

first is an identifier which classifies the line into one

of 3 subgroups. These subgroups are:

WXXX pulsed input command

ZXXX instruction step

TXXX data transfer

A complete listing of the code is recorded in Table 3.1.

It can be noted from Table 3 .1 that some codes are comm.on

to both EVEN and ODD cells while others are peculiar to each.

To avoid confusion the typical cell of Figure 3:2 will be

considered an EVEN cell for the purpose of coding. This

choice is completely arbitrary and the cell might just as

easily be made ODD by replacing the codes by those

(\

WWCL

WCRS

WCPE

TLDI
ZLCS
TAOI
ZAOE

ZISE

TGEI

ZESD
TLEI

ZESU

ZACE

ZCEC
ZIBA

TDOO

WDLC

WIAS

+5 v

-

~
-1~

iP­----1) I

--:I

o

Q

~

·­

10 K

"---1 ffJ.u cf
ffJ.N

r-1
,,--­ ffJ. u N

~ ~

]
J

C5
-~

-

10 o

0 Q

µ:i

~ .-1

µ:i
r.t)

33

- -

o 10 ,.,
P; er::P-J'-I

1-, ~ l)

4
r

I

lo~
""'
·~

<f

~b

/'

10]
0 y

((

N

µ:i
f-!
H~
er:: ~o
~

34

WWCL
WDLC
WIAS
WCRS
WCPE (WCPO)

ZCEC (ZCOC)

ZIBA

ZACE (ZACO}

ZESU (ZOSU}

ZESD (ZOSD}

ZAOE (ZAEO)

ZLCS

ZISE (ZISO}

TDOO

TLEI (TLOI)

TGEI (TGOI)

TAOI (TAEI)

TLDI

TABLE 3.1

WRITE ENABLE AND CARRY LATCH
DATA LATCH
INHIBIT ADD BIT SET
CARRY RESET
CARRY IN PRESET EVEN (ODD)

COMPLEMENT EVEN (ODD) DA TA
INHIBIT ADD BIT ENABLE
ACCUMULATE EVEN (ODD) DA TA
EVEN (ODD) SHIFT UP
EVEN (ODD} SHIFT DOWN
ADD ODD TO EVEN (EVEN TO ODD}
LOAD DATA
SHIFT EVEN {ODD) WORD 1 BIT

DATA OUT

LESSOR EVEN (ODD) IN

GREATER EVEN (ODD) IN

ADD ODD (EVEN) IN

LOAD DATA CELL SELECT

CELL INTERCONNECTION
IDENTIFICATION CODE

35

corresponding to ODD cells. For example ZAOE for the EVEN

cell would be replaced by ZAEO for the ODD cell.

The circuit is essentially the same as that for

the basic arithmetic cell of Figure 2:3 with additional

gating provided to expand its capabilities. Data appearing

in complemented form at the SENSE 1 output of the memory

is first latched by the upper D-type flip-flop. The lower

latch is used to detect and decode the inhibit add bit if

this mode of operation is chosen. A 1 contained in the

inhibit add bit position will allow addition to be completed.

If, however, a 0 is detected in this position then it is

required that a flag be set which prevents any change of the

word in the memory location. This feature is accomplished

through a system of ·1atching and gating. The inhibit add

option is first activated by applying a logical 1 to the

inhibit add bit enable, ZIBA. The inhibit add bit must

then be the first bit selected by the cyclic bit selector.

This means simply that the inhibit add bit is the starting

point of the selector. At the same time as this data is

latched in the upper D-type flip flop it is also stored in

the lower flip flop. Simultaneous pulsing of both WDLC

and WIAS will accomplish this end. It should be noted here

that while WDLC is pulsed for every bit position, WIAS is

pulsed for only the inhibit bit. If a 1 appears in the

inhibit add bit then a 0 will be taken to the Q output of

the lower latch due to inversion at the memory output. This

36

0 is further inverted at the 2 input NAND gate and then

applied to one input each of the two 3 input NAND gates.

Upon receipt of a write enable pulse at WWCL the 3 input

NAND gates will transmit the information appearing at the

sum outputs of the adder to the write inputs of the memory.

If, however, a 0 is located in the inhibit add bit position,

this low level will be carried through a 0similar path to

deactivate the 3 input NAND gates. When these gates are

deactivated, no new word can be written into the memory

location. If the inhibit add option is not to be used then

the ZIBA line is maintained in the 0 state and the output

of the 2 input NAND gate remains high regardless of the state

of the inhibit bit latch. The 3 input NAND gates remain

activated and writing is permitted. It should be noted,

that although the inhibit add bit will in most cases be the

first bit selected, this is not invariable. It will be shown

later in this chapter that there is some advantage in making

this bit position flexible. In some operations the bit

position will change many times in the course of a single

operation.

The Q output of the data latch is taken directly

to an exclusive or gate. Th~ inputs to this gate are the

instruction step ZCEC and the data transfer line TDOO. The

output of the exclusive or gate will then be the function

37

F = ZCEC © TDOO

= ZCEC·TDOO + ZCEC·TDOO

If the ZCEC command line is held in the logical 0 state

then the data from the latch will be passed through the

exclusive or gate unchanged. If, however, the ZCEC line is

taken to the logical 1 state then the data appearing at the

output of the gate will be the complement of that from the

D-type latch. When ZCEC is held high through an entire cycle

of the bit selector, all bit positions of the word in memory

will be complemented. Thus the one's complement of a number

stored in memory can be formed. This feature is particularly

useful in the processing of negative numbers. Negative numb­

ers are most conveniently handled in two's complement form.

Subtraction can then be performed as simply as addition. The

two's complement is just the one's complement plus unity.

Once the one's complement is formed by the exclusive or gate,

it remains only to add unity to this number by inserting

a carry in to the least significant bit. This is readily

accomplished using a presetable J-K flip flop for the carry

latch. When EVEN or ODD numbers stored in memory are to be

negated, the associated complement command lines ZCEC or

ZCOC respectively are raised to logical 1 and the presetable

J-K flip flops are set to 1 by the same pulse used to latch

the data in the l.s.b. position. In this manner the number

is negated in a single cycle of the bit selector.

38

By using two and-or-invert gates in conjunction with

the built in gating to the full adder, three distinct sources

are provided to both the A and B input of the adder. Refer

to Figure 2:3 or Appendix A for the meaning of the subscripted

A and B inputs. The AND functions permit passage of data

when the appropriate instruction line is held at a logical

1 voltage. Thus for each input source there is one Z coded

instruction line and one T coded data transfer line. The

three A inputs provide for either accumulation, up shifting

or down shifting. These may be expressed in functional form

A= (TDOO © ZCEC)·ZACE + TLEI·ZESU + TGEI·ZESD

Similarly the three B inputs allow for left and right shift­

ing of the stored word, addition of a second word, or data

loading.

B = (TDOO © ZCEC)·ZISE + TAOI·ZAOE + TLDI•ZLCS

Since each input is an OR function only one source for each

input may be selected at a time. It is the responsibility

of the central control unit to select the proper combina­

tion of sources for the operation desired.

The sum output of the adder is based on the A and

B inputs as expressed above and on the carry in. A J-K

flip flop is used for the carry delay as was explained for

Figure 2:3. The addition of the presentable feature has

already been examined. Again it is required of the control

unit to properly sequence the clear and preset pulses as

39

necessary. The design and operation of this control unit

is discussed in a later section. It will suffice here to

investigate the memory array itself. and the steps involved

in carrying out each operation.

The ten operations listed earlier in this chapter

will now be examined individually. It must first be

understood that a step consists of a single cycle of the bit

selector during which appropriate instruction step lines

must be activated. At the end of the cycle, other instruc­

tion step lines must be raised to a logical 1 for the next

step. The nature of the cyclic bit selector insures that

all steps require an equal amount of time. This time is

predictable and is based on the propagation delay of data

around the processing loop. Some operations, notably those

involving multiplication, however, require many steps for

completion. In other words, while all steps require the same

amount of time, this is not the case with all operations.

This is of no real disadvantage since a given operation will

always involve an integral number of steps and the total time

for completion is again predictable. The operations can be

discussed from the point of view of both realization and

application.

3.3 Circuit Operations

The circuit operations are listed again for convenience

40

1. EVEN = 0

2. EVEN = A

3 . EVEN = EVEN + A

4. EVEN = - EVEN

5 . EVEN = ODD

6 • EVEN = EVEN + ODD

7 . EVEN = EVEN

8 . EVEN = EVEN x N

9 . EVEN = EVEN/N

10. EVEN = ODD x A

11. EVEN = EVEN x ODD

Again only the EVEN cells are considered here. Since EVEN

and ODD cells are identical, separate consideration of ODD

cells would be redundant.

3.3.1 EVEN= O

This operation is effectively setting all the bit

positions of all EVEN cells to 0. It is a clear memory

operation that must precede any loading of new data. A

single step operation, it consists of simply ensuring that

nothing is applied to either A or B input of the adder and

no carry is permitted. In this case the sum will always be

zero and zeros will be written into all bit positions of

the memory. Care must be taken that the inhibit add option

does not prevent the writing of these zeros. This is easily

accomplished by maintaining the inhibit add bit enable line

41

ZIBA in the low state. The clearing operation is then a

single cycle of the bit selector with all Z instruction lines

held in the logical 0 level.

3.3.2 EVEN =A

This is a load operation where the number represented

by A is loaded serially into one of the EVEN cell locations.

Words are loaded into a previously cleared memory cell through

the B input of the appropriate adder when the accompanying A

input is held in the low state. As in the clear operation,

the inhibit add bit enable line ZIBA must be maintained low

to prevent this option interfering with the write operation.

For a word to be loaded the control unit selects the desired

cell by raising the particular load data cell select line,

TLDI, to the logical 1 state and entering data through the

load data line, ZLCS. This latter line is common to all

memory locations both EVEN and ODD, but because of the AND

gate at the B input only one cell is loaded at a time. One

limitation of the computing memory should be pointed out here.

Since all EVEN or ODD locations are cleared simultaneously

the word in a particular cell can not be changed without

losing the contents of all other similar locations. This

limitation may be alleviated by incorporating additional

gating in the accumulate data lines, ZACE and ZACO. Like the

clear operation, the load operation is one of the fundamental

single step operations.

42

3.3.3 EVEN= EVEN+ A

This operation is a simple extension of the load

data operation. A single step operation, it involves addi­

tion of a new number to a number already stored in a memory

location. As in the load operation, the new number is

serially added in and can be added to only one cell at a

time. The number is entered by the same path used for

EVEN = A, but it is also required that the number already

stored in the cell be re-entered at the A input to the adder.

Raising the accumulate data line, ZACE, to the logical 1 level

will ensure re-entry of the EVEN word. Use may be made here

of the inhibit add option by simply maintaining ZIBA to the

high level, otherwise it is held low.

3.3.4 EVEN = - EVEN

This operation is the number negation described earlier.

When negative numbers are expressed in two's complement form,

subtraction becomes a simple matter of addition. As pointed

out prev{ously, the two's complement of a number is found by

first complementing all bit positions to form the one's

complement and then adding unity. The most significant bit

position becomes a sign bit: a 0 represents a positive number

and 1 a negative number. The number of bits available for

storage of absolute numbers is reduced by one but the overall

range of storage is kept constant by allowing equal positive

43

and negative values. In practise all EVEN or all ODD cells

are negated simultaneously in a single step. The complement

data line ZCEC is held high for a complete cycle and the

carry delay flip flops are preset to 1 for the l.s.b. position

by the same pulse that latches the data for this bit. All

B inputs to the adder are disabled and the accumulate data

line, ZACE, is held high. The inhibit add option is available

here but a check must be made to prevent the inhibit add bit

position from being complemented by the exclusive or gate.

The control unit ensures this by blocking the write enable

pulse for this bit position.

3.3.5 EVEN = ODD

In this single step operation, all words located in

ODD cells are simultaneously transferred into the adjacent EVEN

locations. Readout from the ODD locations is non-destructive

as the ODD words are entered into the previously cleared EVEN

cells through the B inputs to the adder. The instruction step

line ZAOE, corresponding to add ODDS to EVENS, is held at a

logical 1 voltage for a complete cycle and data is entered

through the add ODD in transfer line, TAOI. This line is

directly connected to the data out line, TDOO, of the

adjacent ODD cell. The ODD word is then directly loaded

into the EVEN location one bit at a time. No data enters

through the A input to the adder and the inhibit add bit

enable line must be kept low.

44

3.3.6 EVEN= EVEN+ ODD

Known as add ODDS to EVENS, this single step opera­

tion simultaneously adds all the numbers in ODD cells to the

numbers in adjacent EVEN cells and stores the result in the

EVEN cells. ODD data enters the cell through the adder's B

input as in the EVEN = ODD operation, but data already in the

cell is applied to the A input by raising the accumulate

data line, ZACE, to high. A sum and carry are generated as

in normal addition and this information is used to update

the EVEN cells. The inhibit add feature is available if

desired and is activated in the usual manner. Since two's

complement arithmetic is employed either or both numbers may

be negative without interfering with the addition.

3.3.7 EVEN = EVEN

This operation may be thought to be trivial, but

it will be seen in a later section that certain combinations

of steps are permissible, and are more easily understood if

this fundamental step is considered. The operation is essen­

tially a reading of data and a rewriting of the data without

change. All B inputs t6 the adder are disabled and the latched

data is fed to the A input by maintaining a logical 1 on the

accumulate data line. This step may be used for nondestructive

readout of data and also as an insurance that EVEN data is

not lost while operations are performed in ODD locations.

Since stored data is not to be changed, the inhibit add

45

feature has no effect.

3.3.8 EVEN= EVEN x N

This is the first of the multiple step operations,

the number of steps required depending on the value of N.

If N is an integral number given by N = 2J, j = O, 1, 2, ... ,

then the number of steps required for the operation is j.

Multiplication of a binary number by 2 is a simple shifting

of all bits to the left by one bit position. Shifting by

two bits corresponds to multiplication by 4, three bits to

x 8 and so on. Each step effects a shift by one bit position,

hence a multiplication by 2. In practise, such a multiplica­

tion is accomplished by adding the number to itself. Data

from the data latch is simultaneously entered through both

the A and B inputs to the adder. The sum output is then just

twice the original number stored and this new number is written

into the memory location. Both the accumulate data line

ZACE and word shift line ZISE must be held high so that the

data is channeled to both adder inputs. All EVEN words or all

ODD words are shifted at once and the inhibit add option is

available.

3.3.9 EVEN= EVEN/N

This is a second multiple step operation closely

parallelling that of the previous section. Division of a

binary number by N = 2J, j = O, 1, 2, 3, ... is simply a

46

shifting of the number toward the l.s.b. by a number of bit

positions corresponding to j. Such a shift can be easily

accomplished in the computing memory if a simple technique is

employed. Consider again the process of multiplication by 2.

Since the data applied to the A and B inputs of the adder

is always identical, regardless of whether the bit position

contains a 0 or a 1 the sum will always be zero. If two l's

occur there will be a carry out; otherwise there will be no

carry for two 0 1 s. It is this carry delayed to th~ next bit

position that determines if the sum output of the adder will

be a 1 or a O. The process is effectively then a delay of the

data word by one bit position as the bit selector sweeps through

its cycle. Consider now the effect of reversing the direction

of the bit selector. Instead of initiating with the l.s.b.

and progressing toward the m.s.b., the selector will now

start with the m.s.b. and sweep towards the l.s.b. The state

of each bit will again be stored in the carry delay, but

in this case the stored data will be written into the next

l.s.b. position. The end result will be a shift toward the

l.s.b. and hence a division by two. As pointed out in an

earlier section, the bit selector is nothing more than a

binary counter with decoder drivers. By incorporating an

up-down count feature the bit selector can be made reversible.

The inhibit add operation is applicable in this operation and

all EVENS or all ODDS are shifted at once. No adding opera~

tions are permitted when the selector is reversed since the

47

carry is toward the lessor significant bit.

3.3.10 EVEN = ODD x A

In this operation all ODD numbers are multiplied by

a common multiplier, A, and the individual products are

stored in the corresponding EVEN cells. Binary multiplication

may be regarded as a process of shifting and adding, both

readily accomplished using the ODD/EVEN cell pairs. The

multiplicand is entered into the ODD location and is either

added or ignored depending on the l.s.b. of the multiplier.

The multiplier must thus be held in the control unit. If

the l.s.b. is a 1 then an EVEN = EVEN + ODD corrunand is given.

If on the other hand the bit contains a 0 then a EVEN = EVEN

blank command is called for. The ODD word is then shifted

toward the m.s.b. by one bit position and the next greater

significant bit of the multiplier is checked to determine

whether a second addition is to be performed. The process

of shifting and adding is repeated until the multiplication

is complete. Figure 3:3(a) illustrates a general multiplica­

tion of two 4 bit numbers and y 3y 2y 1y 0 • The multi­x 3x 2x 1x 0

plicand denoted by the subscripted x's is rewritten 4 times

each time displaced toward the m.s.b. by one bit position.

At the right adjacent to the shifted multiplicand is written

the corresponding bit of the multiplier that will determine

if the shifted multiplicand is to be added or ignored. It

is noted that due to the nature of the multiplication

48

(a) x3 x2 x1 XO

y3 y2 yl YO

x3 x2

x3 x2 x1

x3 x2 x1 XO

x3 x2 xl x
0

Xl

XO

XO -Y0

-Y l

-Y2

-Y ..
3

z6 zs z4 z3 z2 z1 zo

(b) x3 x2 xl XO

y 3 y2 y 1 YO

x3 x2

x3

x1 x
0

x2 Xl XO

x3 x2 xl

x3 x2

XO

xl XO

-Y

-Y

-Y

-Y

3

2

l

0

Y' Y' Y' Y' Y' Y' Y'654 3210

FIGURE 3. 3 	 BINARY MULTIPLICATION

OF TWO 4-BIT NUMBERS

(a) USING 3 REGISTERS

(b) USING 2 REGISTERS

49

operation the total number of bits in the numbers to be

multiplied is restricted to the total length of storage

capability of the memory. For a 16 bit memory storage,

the multiplicand and multiplier may have a combined total

of only 16 bits.

3.3.11 EVEN = EVEN x ODD

This is perhaps the most comptex operation and

exerts the greatest demands on the control unit. It involves

the multiplication of all ODD numbers by the neighbouring

EVEN numbers and the storage of all products in the EVEN

locations. Most multiplication operations require 3 registers

for the multiplicand, multiplier and product. By proper

sequencing of steps it will be shown here that the operation

can be performed using only two registers, one of which must

serve the double purpose of storing both the multiplier and

the product. Consider first Figure 3:3(b) showing the general

-multiplication of two 4-bit numbers. A simple rearrangement

of Figure 3:3(a), this method examines the m.s.b. of the

multiplier first and initially displaces the multiplicand by

3 bit positions to the left. After each addition step, the

multiplicand is shifted toward the lessor significant bit and

the next l.s.b. of the multiplier is examined. Consider now

how this multiplication may be performed between an ODD and

EVEN cell of the computing memory.

The multiplicand and multiplier are initially loaded

50

into the ODD and EVEN locations respectively. The ODD

multiplicand is then shifted 3 bit positions toward the

m.s.b. Whether or not this shifted word will contribute

to the accumulated sum depends on the data in the m.s.b. of

the multiplier stored in the EVEN cell. In order to

accumulate this sum in the EVEN location without losing all

the information already stored there, a function known as

the split cycle must be employed. For part of the cycle

of the bit selector the memory is called upon to perform

one step and for the remainder it is commanded to execute

a different operation. In the case of the 4-bit multiplica­

tion above, the three least significant bits of both EVEN

and ODD cells must be swept through without change. When

the fourth bit is selected, however, the inhibit add operation

of the EVEN location is activated and this bit is regarded

as the inhibit add bit. If this bit contains a 1 then the

shifted word in the ODD cell is added to the EVEN cell.

Since the ODD word has been left shifted three bit positions

with trailing zeros, addition from the fourth bit onward is

acceptable and correct. Once the fourth bit of the multiplier

is checked for a 0 or a 1 on the data latch pulse it is no

longer required and can be lost. On the fourth bit position

then, the accumulate data line of the EVEN cells, ZACE,

is taken to the 0 voltage level and the bit is destroyed.

The data contained in the fourth bit of the ODD cell is

entered into its place. For the fifth and succeeding bit

51

positions, however, normal addition takes place and the

accumulate data instruction is returned to the high level.

This completes the first of the four additions required

for the 4-bit multiplication. Before the second addition,

the multiplicand in the ODD location is right shifted one

bit position and the control unit readjusts itself so that

the third bit of the EVEN cell will be accepted as the

inhibit add bit. The first two bits are swept by without

alteration and on the third bit position the inhibit add

function is again activated and the accumulate data instruc­

tion is dropped for EVEN cells. An add ODD to EVEN attempt

is made the success of which depends on the data contained

in the third bit of the EVEN cell. If this is a 1 then the

l.s.b. of the multiplier is directly entered into the third

bit position. For the fourth and following bits, normal

ODD plus EVEN addition is commanded. At the end of two

additions bits y 3 and y 2 of the multiplier in Figure 3:3(b)

have been lost and the EVEN cell will contain part of the y'

accumulated sum as well as the two least significant bits of

the multiplier. The final two additions are carried out in

a similar manner as the first two with the inhibit add bit

being taken as the second l.s.b. and finally the l.s.b. itself.

At the completion of this last cycle the multiplication is

complete. The product has replaced the multiplier in the

EVEN cell location and the multiplicand resumes its unshifted

position in the ODD.

52

Demands which at first glance may appear rather

severe on the control unit relax considerably when a deeper

study of the process is made. Since the left shifted multi­

plicand is always followed by trailing zeros, an add odd to

even command can be made without fear of losing the multiplier

stored in the EVEN cell. The instruction can then be activated

for the entire cycle and only in the case of the current

inhibit add bit must any modification be made. For this bit

position the accumulate even data command must be dropped so

that this bit of the multiplier is destroyed. Such a feature

is easily incorporated into the control unit. Again note

that each EVEN and ODD pair acts as an ind_ependent unit and

thus all multiplications are carried out simultaneously.

3.3.12 Location Shifting

In addition to the operations between EVEN and ODD

cells of a particular PAIR, facilities ~re provided for

interaction between adjacent PAIRS. The entire contents of

all EVEN or ODD cells can be transferred in one cycle of the

bit selector. The bidirectional shifting pattern is shown in

Figure 3:1. Referring again to Figure 3:2, the AND-OR-INVERT

. gate provides two additional sources to the A input of the

adder, one for up-shifting, the other for down-shifting.

When the even shift up instruction line, ZESU, is held at the
/

high voltage level, data enters the adder through the TLEI

data transfer line. This line is permanently wired to the

53

TDOO data out line of the adjacent lessor EVEN cell.

Similarly data enters from the greater EVEN cell when the

instruction even shift down, ZESD, is raised to logical 1.

Since there is no B input or carry the sum output of the

adder is simply the shifted word and this new word is written

into the memory. The inhibit add option is not normally

used for this operation since the blocking of any shifted

word would result in the loss of that word.

3.3.13 Combinational Operations

Since some operations involve only the A input of

the adder while others the B input, certain combinations of

operations are permitted. Still others do not involve the

adder at all and are used only to retrieve data from a cell

to be used by another cell. Consider again for example, the

multiplication EVEN = ODD x A. In its simplest form this

multiplication involves the alternate repetitive use of two

fundamental steps; EVEN = EVEN+ ODD, and ODD = ODD x 2. ­

There is no reason why these two steps cannot run concurrently.

The multiplication of the ODD word by 2 in no way effects

the simultaneous readout of the word already stored in the

location. By combining these two steps, the total time for

the entire multivlication is reduced by one half. In general,

different operations for EVEN and ODD cells can be run

concurrently since each is an independent unit. In computer

solutions of lengthy problems, combining operations can add

54

up to a considerable saving of time and in such cases an

analysis of the memory capabilities should be made so that

the most efficient sequence of steps is utilized combining

as many steps as possible.

3.4 Control Unit

The control unit for the computing memory is basically

an interface between the memory and the device that it is to

be a part of. This device will in general be a computer

for which the computing memory is to be a special purpose

peripheral unit. Since the exact requirements of the control·

unit are not clearly defined in the general case, it is of

little use to design a completely all purpose unit. The

control unit described here contains the circuitry necessary

to drive the memory including the loading of data and the

extraction of information stored in the array. The design

is reasonably flexible so that interfacing with some central

device is a simple matter adding a few ~ates and instruction

decoders.

3.4.1 Bit Selector and Puls~ Switch

The heart of the control unit is a 4-bit up down

counter and a two position switch. The counter with decoders

and line drivers acts as the cyclic bit selector while the

switch steers clock pulses alternately to the data latch

and write enable lines of the memory cells. The synchronous

55

reversible 4-bit counter is shown in Figure 3:4. Consisting

of four 7473 J-K flip flops, four 7400 2 input NAND gates,

and six 7430 3 input NAND gates, the entire counter can be

condensed into five I.C. packages. In keeping with most

recent developments in I.C. technology where monolithic up­

down counters are becoming available, this circuit will be

referred to only as a block in subsequent figures.

The counter, decoders and switch are shown schematic­

ally in Figure 3:5. This circuit is similar in form and

operation to that of Figure 2:4 described in Chapter 2 with

additional gating included to provide for the inhibit add

and negation features. In this simple control unit, the

inhibit add bit is fixed, always the first bit in the bit

selector cycle, and so the operation EVEN ~ EVEN x ODD is

not readily available.

As noted earlier, care must be taken to prevent

alteration of the inhibit add bit in certain operations.

For example, forming the two's complement of a number must

not result in the inhibit add bit of that number being

inverted. Nor must the inhibit add bit be altered when the

contents of a cell are right or left shifted. Finally, when

an ODD and EVEN cell are added together, neither inhibit add

bit should be affected. To ensure that these three cases

for both EVEN and ODD cells are provided for, a condition

is imposed on the write enable pulse, WWCL. The condition

1

J

K

c

CLOCK

DOWN/UP

J J

K

c

J

K

CR
~

CT1

FIGURE 3.4 4 BIT UP - DOWN COUNTER
01

UJ

<
~

u - :.u u ~ E--<u E--<J u U)UJ 0 HU \..!) ~ u u - 0 ~~ z >- 0J ~ 00N N HU ...J u i:.:.. uo

Ml • I

c I I ~

K R Ml t I

IJ F i---i I

le I 111
I K _ 'F

lDOWN
BINARY

CLOCK COUNTER

AB C DIAB CD
I I I f I 1 I I

U)
U)

A l
:..w
0::B 2
Q
0c 3 <
x

D 4

U)A l U)
UJ

n 0::D 2 0
0
<c 3
>­

D 4

J_

UJ 0 U) uJc... 0.. <J
U)u 0::u u a 3::?:: ::;:: u -?:: ?:: 3:: ::;::

<.n
-..J

FIGURE 3.5 BIT SELECTOR AND PULSE DIRECTOR

58

allows that when the inhibit add bit position is detected

by the 4 input NAND gate at the counter and any of the above

instructions are in force then the write enable pulse will

be blocked. A check on these instructions can be expressed

as the OR function FACS such that

FACS = ZAEO + ZAOE + ZISE + ZISO + ZCEC + ZCOC.

Realization of FACS is discussed later in this section where

all instruction lines are covered.

Also included in Figure 3:5 is the gating required

to trigger the inhibit add bit latches at the same time as

the data latches. This is provided for in a simple 2 input

NAND gate and inverter that passes the data latch pulse only

when the inhibit add bit is selected.

As discussed in Chapter 2, the starting point of the

reversible counter is always with all bits in the logical 1

voltage level. For an up count then, th..e next state will be

with all bits in the low level. Since the first bit position

selected is always the inhibit add bit, the second will be the

l.s.b. of the word stored in the memory. When the two's

complement of the word is to be formed, it is reguir_ed to

direct an inverted pulse to the carry preset of the corres­

ponding memory cell at the same time as the data is latched.

Detection of the l.s.b. position is provided by a 4 input

NAND gate and an inverter, the output of which is combined

with the data latch pulse, WDLC, and either the complement

59

even data, ZCEC, or complement odd data, ZCOC, to preset

the necessary carry flip flops, WCPE for EVEN cells and

WCPO for ODD cells.

The only additional feature shown on Figure 3:5

is the instruction line ZRCS which when taken to the high

level will reverse the direction of the counter, for use

when words are to be shifted toward the lessor significant

bit. The inverters at the output of the decoder utilize

descrete transistors to supply the heavy current necessary

to drive the address lines of the memory.

3.4.2 Data Load and Data Out Control

Since only a single cell can be loaded or read at

a time, some system of addressing each cell location individ­

ually must be provided for in the control unit. Figure 3:6

illustrates a partial schematic of this cell identification

system. Each of the 64 cell locations is assigned a six bit

binary number represented by the subscripted characters

C5 C4 C3 C2 C1 C0 , even numbers 0 through 62 corresponding to

EVEN cell locations and odd numbers 1 to 63 for the ODD

locations. A common cell address is used for both loading

of data and reading out of stored data. For convenience,

the entire 64 word array is subdivided into groups of 8

words, 4 EVENS and 4 ODDS. Each group in turn possesses

its own binary to octal decoder for entering information

and 8 bit multiplexer for selecting the proper cell to be

DATA i ,IN Z,LCS
"

co PO-E

IA ~~ P0-0cl 0::I
UJ

3
B 0 4

c2 u
0L IC UJ 5~..,~~ / TLOI;
0

P2-0
P3-EAc3 ~ ~Eb;;. P3-0l; . - ~~ I I I I ID

B 0::c4 UJ 40
0cs c u
UJ ST l

DATA
L'S ill=j0 56 bB6 ALOAD< --[::::;:o---10 7· B 2

0:: 3
t.U8 ~~ I I C >< 4t.U

0: s
H

~ 6Xl
x ~ 7

X2 8
X3

DATA ---c(l:X4XSOUT I IX6

PO-E
P0-0
Pl-E
Pl-0

TOOOP2-E >
P2-0
P3-E
P3-0

I I IX7 IXS IA 13 le I

FIGURE 3.6 DATA LOAD AND DATA OUT CONTROL
CJ)

0

61

read. Only one such group is shown in Figure 3:6 but since

all other groups are identical the total system is easily

understood by examining a typical section. Recall again

Figure 3:4 showing the single cell. As described earlier,

data is entered to the cell through the B input to the

adder through the ZLCS load data line when the appropriate

TLDI cell select line is raised to the high logic level.

This high level is derived from the decoder-inverter combina­

tion of the group that the cell in question belongs to. The

inverters are required since the 74~2 decoders feature

complementary outputs. One of the 8 cells in each group is

thereby selected by the binary number represented by the 3

least significant bits of the cell address. Inverters and

buffers are provided in these lines to reduce the load of

the eight decoders and eight multiple~ers. Since every decoder

shares the common address lines, one cell for every decoder

would be selected at once. To prevent the simultaneous load­

ing of 8 cells with identical information, the three most

significant bits of the cell address are decoded in such a

manner that only one group decoder is activated at a time.

The 7442 decoders are in fact BCD to decimal decoders used

as 3 bit binary to octal decoders. If the D input to these

decoders is raised to the logical 1 level then none of the

octal outputs are driven. This D input therefore acts as a

group select when it in turn is driven by the complemented

output of another binary to octal decoder. This new decoder

62

is coded by the three most significant bits of the cell

address just as the other 8 decoders are coded by the three

least significant bits. The 8 outputs of the m.s.b. decoder,

labelled B1 through B8 , each lead to the D input of the

corresponding group decoder. Since the m.s.b. decoder is

also a B.C.D. to decimal decoder the D input can be used to

activate the load data function. Once the cell correspond­

ing to the unique coded address is selected, data is entered

through the DATA IN line shown in Figure 3:6 which is

directly connected to all 64 ZLCS load data lines.

Reading out of data is a simple matter of addressing

the desired cell and running through a cycle of the bit

selector. A 74151 multiplexer is used for each of the 8

groups of cells, with one input tied to the TDOO data out

line of each cell. The multiplexers are coded in a similar

manner to the decoders by the three least significant bits

of the cell select. Each multiplexer is also provided with

a strobe input which must be held in the low state before

any data can be transmitted. When this strobe input is

joined to the D input of the adjoining decoder, then only

one of the 8 multiplexers will be activated at a time, and

only one of the 64 cells will be considered. The X output

of the multiplexer yields the complement of the data selected

by the cell address code, and when all 8 outputs are led into

a common 8 input NAND gate, the output of this NAND gate

becomes the data stored in the desired cell. In this manner,

63

any one of 64 inputs can be selected to appear at a single

output terminal.

3.4.3 Instruction Line Driver

This section of the control unit is simply a terminal

point for all instruction lines. All lines to the memory array

are brought to the control unit so that the computing memory

may be easily adapted to any other device. Since the instruc­

tion lines may drive as many as 64 cells at once a system of

buffers is required. These buffers play no part in the logic

of the control unit and will therefore not be included in

this discussion. The instruction line driver is shown in

Figure 3:7. Included in this figure is the gating required

for the generation of the FACS function discussed in Section

3.4.1 and used in Figure 3:5.

3.5 Physical Layout

With the exception of memory address drivers .and pull

up resistors, the entire computing memory and control unit

is composed of integrated circuits mounted on nine 70

socket boards. The cell arrangement places 4 EVEN and 4 ODD

cells on a single board for eight of the boards and an extra

board for the control unit. No particular care was taken

to minimize the size of the device since a 64 word memory is

too small to be of much prctctical use in any case. Future

developments in large scale integration technology directed

64

FAGS

ZAOE

ZAEO

ZISE

ZISO

ZCEC

zcoc

ZESU

zosu

ZESD

ZOSD
,-/

ZACE

ZACO

ZIBA

FIGURE 3. 7 INSTRUCTION LINE DRIVER

65

toward inclusion of an entire cell in a single package

should reduce the size and cost of the system enormously.

All integrated circuits are either l4-pin or 16-pin dual

in line packages mounted to the boards with wire-wrap

sockets. All pin connections are wire wrapped with the

exception of Vee and ground. Due to the heavy load imposed

by the memory address lines, the power requirements are

rather high at approximately 10 amp. 5 volt D.C. The

circuit diagrams and pin connections are included in

Appendix B and need not be mentioned here.

3.6 Summary

In Chapter 2, the philosophy of the computing memory

was introduced: certain frequently encountered numerical

problems involving a myriad of identical arithmetic opera­

tions may be very efficiently solved by an arithmetic computer

memory array. Solution of potential field problems by the

method of relaxation was presented as a case in point. Recall

again the conventional computer solution by relaxation. The

equation for a single point relaxation is repeated for

convenience.

p ~ l(p + p + p + p) 2 1
x,y 4· x-1,y x+l,y x,y-1 x,y+l ··· · ·

For a single relaxation equation 2.1 must be applied to each

and every point in the descrete field individually, a

tedious and time consuming exercise.

66

Consider now how the computing memory developed in

this chapter might be applied to the relaxation problem.

Figure 3:1 illustrated the cell arrangement and shifting

pattern for the 64 word array. Assume that the potential

field is rectangular and can be divided into a uniform

4 x 8 matrix of 32 points. Any shape of field is permissible,

the rectangular field is chosen as it conveniently matches

the entire memory array. For the complete solution the EVEN

cells will be used to store the current approximation to the

potential at that point and the ODD cells will be used for

computation of new values. As a preliminary step all

memory locations are cleared and boundary values are loaded

into the EVEN cells at the appropriate points. Since these

boundary values must remain fixed, the contents of these cells

are protected by inserting zeros in the inhibit add bit of

each location. All interior points both EVEN and ODD cells,

have ones in their inhibit bit position~. The memory is now

ready for its first relaxation.

Figure 3:8 shows a magnified five point section of

the 32 point array. In order that this section be assumed

general and to conform to the notation of equation 2.1,

cells are labelled with a uppercase letter P and two sub­

scri~ts corresponding to the x and y matrix position. Only

one point Px y is considered but it must be remembered that
' '

this is a general point and every step taken here is simul­

taneously executed at every other point in the matrix.

67

P(x,y+l) - E

P(x,y+l) - 0 ~ ~

I
T--·------- _J

I

I

I

P(x-1,y) -E ~ l ~...._P_C_x_,Y_)_-_E_·_,"' -I P(x+l,y) -E I
I

P(x-1,y) -0 L_~ P(x,y) -CO r- -1 P(x+l,y) -0 I
I
I
I

I - - - - - - - - - - - .I
I

P(x,y-1) - E

I

:_~ P(x,y-1) - O I

FIGURE 3. 8 MAGNIFIED SECTION OF

COMPUTING MEMORY ARRAY

68

The first step is an up-shift of all ODD cells.

The word previously contained in cell Px,y will now reside

in Px,y+l" Since all ODD locations are initially cleared

this step is in fact unnecessary. It is included here so

that the movement of point Px,y may be better understood.

An add EVEN to ODD operation followed immediately by a down-

shift of all ODD cells will effect a transfer of the value

of the potential at point Px,y+l into the ODD location of

Px,y· This may be expressed as

p . = px,y x,y+l

A down-shift of all ODD locations will transfer this value

previously located in the P position to the P 1x,y x,y­

position. Again EVENS are added to ODDS and the ODDS are

up-shifted back to their undisturbed positions. The word

in the ODD P cell may now be expressedx,y

ODD cells are now retained in their positions and all EVEN

cells are up-shifted. The value of the potential at point

Px-l,y is now stored in the EVEN cell of point Px,y·

Simultaneous addition of EVENS to ODDS and down-shifting of

EVEN cells will return all potential values to their proper

points and update ODD cells to include yet another value.

p = p + p + p
x,y x,y+l x,y-1 x-1,y

69

The next step is obviously to down-shift EVEN cells, again

add EVENS to ODDS, and return the EVENS with a single up-

shift. The contents of the ODD cell at point P may now x,y

be expressed

Px,y = Px,y+l + Px,y-1 + Px-1,y + Px+l,y

It remains only to divide this number by 4 by shifting the

contents of all ODD cells by two bit positions toward the

lessor significant bit. At the completion of this division

the ODD cells of the memory contain the approximations to the

potential updated by one relaxation. The numbers previously

contained in the EVEN cells can now be destroyed, values in

the ODD cells transferred into the EVEN, and the ODD cells

cleared, all in a single step. The memory will then be set

up for the next relaxation. The complete relaxation cycle

can be summarized into 10 steps:

1. shift ODDS up

2. add EVENS to ODDS

3. shift ODDS down

4. shift ODDS down

5. add EVENS to ODDS

6, shift ODDS up and shift EVENS up

7. add EVENS to ODDS and shift EVENS down

8. shift EVENS down

9. add EVENS to ODDS and shift EVENS up

10. clear EVENS, add ODDS to EVENS, and clear ODDS.

70

Since all boundary points are guarded by the inhibit add

feature and the memory encorporates an end around shift,

there is no danger of losing these values. A complete

relaxation involves only 10 cycles of the memory bit

selector and the same time is required to relax 10 points or

10,000 points. For fields with many points then, the comput­

ing memory is very efficient.

Chapters 2 and 3 have traced the development of the

computing memory from the stage of a mere principle to a

full scale ap~licatio~. A single application, however, would

scarcely seem to warrant the development necessary to bring

a practical memory into production. References thus far

have been made solely toward applying the computing memory

as a special peripheral unit for a programmable data process­

ing computer. Recent advances in computer miniaturization

and in analogue to digital conversion techniques have

brought the special purpose computer into the realm of
,,/

instrumentation. More and more sophisticated measuring

instruments have been demanded, designed, and produced

and inadvertently the instrument designers have found

themselves deep in the field of computer design. That is

not to say that this is an undesirable situation. General

purpose computers are costly, must be programmed and are in

some cases very inefficient. There is considerable advantage

in a computer that needs no programming and can be readily

transported for on line measurement or control.

71

It is just such a computer "instrument" to which

the remainder of this thesis is devoted. A major portion

of the digital correlator described is the storage facility.

Many individual operations must be performed and many results

must be retained, an excellent application for the computing

memory. Again, since this is a special application of the

memory where only a few of its many features will be required,

the general memory described in this chapter may well prove

to be uneconomical. In such a case it is advisable to return

to basics and consider the basic arithmetic computing memory

cell described in Chapter 2 and utilize this as the unit

building block for the instrument memory ..It was with this

in mind that the control unit for the computing memory was

dealt with in such general terms. Once the principle of the

memory is established and justified the general unit can be

tailored to specific applications.

CHAPTER 4

THEORY OF DIGITAL CORRELATOR

This chapter describes the theory of amplitude and

time quantized signals and applies this theory to the

problem of correlation. An algorithm is developed whereby

the correlation function may be realized using digital

techniques. The method of development of this algorithm

follows essentially that of Masuko 12 in his design of a

digital autocorrelator. The principles used in this deriva­

tion were originally proposed by Deist and Kitai 13 in a

paper describing a technique for obtaining the mean square

value of a fluctuating voltage by digital methods.

4.1 Theory of Amplitude and Time Quantised Signals

Consider the voltage waveform shown in Figure 4:1.

For simplicity in this case it is assumed that this voltage

is always positive. The. voltage may be quantized into n des­

crete levels of amplitude designated by the integers 0 to n.

At a particular instant in time, say t*, the voltage is sampled

and found to lie somewhere in the interval bounded by m and

m+l. In the processing technique considered here, the prob­

ability of the voltage falling within a particular interval

- 72 ­

73

n-1

0

n ----------------------~--------~v 1.0
n

n-2

m+l

--(2m+ 1)/2n

m

-(2m-l)/2n

1

LEVEL VOLTAGE

- - - - - - - - - -

- - - - - - - - - - - - - -

m-1---+-------1-----------------------

time

FIGURE 4.1 QUANTISED VOLTAGE

74

is of concern. The probability distribution of the voltage

within each interval must necessarily be assumed uniform with

a mean at the mid interval value. If the voltage at the nth

level is taken as unity, then the sample taken at time t*

will be considered 2m+l , the mid-interval value.
2Il

A linear quantiser may now be employed to transform

the sampled voltage to m, an integer representing the highest

level exceeded. In processing this sample, m must be con­

2m+l
verted to the mid-interval value This is the technique2n

used by Masuko in the derivation of the algorithm realized

in his auto-correlator.

A somewhat simpler algorithm results if the half

interval shift is incorporated into the quantiser itself.

In this case for a sample falling somewhere between the m

and m+l levels the quantiser will be called upon to designate

an integer representing the mid-interval value directly.

If we call this integer r, then

r m 1 = - + n n 2n

1 r = m + •.... 4 . 1 2

The transformation suggested by equation 4.1 can be regarded

as a simple up-shift of the input to the quantiser by a half

level. In Figure 4:2 the solid lines indicate the quantiser

levels and the broken lines the shifted input. For a

75

n

n-1 - - - - - - - - - - - - - - - - - - ­

n-1

-m

r

m-1 - - - - - - - - - - - - - - - - - ­

r-1

1 ---------------------­

1

0 ---------------------­

0

SIGNAL QUANTISER
LEVEL LEVEL

FIGURE 4.2 SHIFTED INPUT TO QUANTISER

76

1 1 .sample now falling in the interval m - 2 to m + 2 the quantiser

will indicate the integer r. This integer r is in fact the

new mid-interval value of the shifted sample and can be used

in processing as representative of this value.

4.2 Derivation of Algorithm for Correlation

The most general form of correlation function is

the cross correlation function and is therefore considered in

this derivation. The autocorrelation function is merely a

special case where one signal alone is examined.

Consider two processes represented by the fluctuating

voltages v 1 and v 2 • If the two processes are ergodic with

respect to their correlation function,1 4 then the time aver­

aged correlation function R'v v (1) is expressed as
1 2

Lim 1 T
R'v v (1) = - f v 1(t)v 2 (t+t)dt.

1 2 T~oo T 0

/

Let p(x,y:1) be the probability that v; lies within an

interval dx about x at time t and v 2 within an interval dy

about y at a time t seconds later. Then the ensemble

averaged correlation function is written

00 00

Rv v (1) = J f xyp(x,y:1)dxdy ~ • • • • 4 • 2
1 2 -oo

In the case of a sampling system, and arev 1 v 2

quantised in amplitude and time and the double integral of

equation 4.2 is replaced by a double summation over the

.. ____ _
77

quantised range of v 1 and v 2 . In figure 4:3 both vI and v 2

are considered always positive and quantised into n intervals,

the nth being unity. Let p(r,s:T) be the probability that VI

lies within __!.of level r at time t and within !_of level sv 2
2n 2n

at a time T seconds later. If these values of and arev 1 v 2

then represented by -r and s respectively, the ensemble aver-
n n

aged correlation function is given by

n n
Rv v (T) - ~2 I I rsp(r,s:T) ••••• 4 • 3

1
- n

1 2 r=O s=O

As shown previously the probability that a voltage

lies within ~n of a level can be equated to the probability

that a particular level is the highest level exceeded if the

voltage under observation is shifted by ~ level. If the

signal voltages are both shifted positive by } level then

Pr,s is the probability that r is the highest level exceeded

by L at time t and s is the highest level exceeded by
2n
at a time T seconds later. For voltages confined

in the range 0 to 1 - ~n volts, equation 4.3 may be rewritten

n-1 n-11
Rv v (T) = ~ I I rs Pr,s ••••• 4 • 4

1 2 n r=l s=l

If n is large, then the half level restriction on the range

of v 1 and v 2 will be of little concern. In practise it is

convenient to superimpose v and v on a d.c. voltage to
1 2

permit processing of positive and negative voltages. A d.c.

Voltage . as of n+ 1 wi· 11 · t 1 · ·bl permi near equa positive and nega­, 2n

tive excursions of input voltage as well as realizing the

n-1

n

s+l

s

s-1

r+l

r

r-1

1

0

I
I V2 (t)
I

)

time

FIGURE 4.3 AMPLITUDE AND TIME QUANTISATION
OF v1 AND v2

79

necessary half level shift. In this way, the need for

precision rectifiers, subtracters, and up-down counters is

eliminated. However, the d.c. bias must be accounted for in

the final processing for the correlation function.

For a process monitored for a finite time, the

probabilities of equation 4.4 may be replaced by the fraction

of the total measuring time that the voltage spends in the

particular interval. If T 0 is the total time for which the

process lS observed and Tr,s lS the total time for which r
. 1

is the highest level exceeded by v 1 + - and s the highest
2n

level exceeded by v2 + 	1
T seconds later, then

2n

= Tr,s
T

0

Equation 4.4 can be further adapted to a time quantised

system if T0 is replaced by C0 , the total number of samples

taken within the measuring time, and Tr,s is replaced by Cr,s'

the number of samples taken for which the conditions of r and

s apply. Equation 4.4 may now be regarded as

n-1 n-1
RV v C-r) =

1
[[rs Cr,s• 4 . 5

n 2C1 2 0 r=l s=l

Equation 4.5 implies that a separate count must be

kept for each Cr,s over the time of measurement. That is,

(n-l)(n-1) separate counts are to be maintained and added at

the completion. In order to avoid such mass storage, it

would be preferable, at each sampling instant, to calculate

the cont~ibution of that particular sample pair to the

80

Rv v (T) sum. This is readily accomplished if for each
1 2

sample pair collected, a weighting number is calculated

equivalent to the contribution of that particular sample pair

to the Rv v (T) sum. This weighting number, a function of
1 2

r and s, is then fed to a single accumulator prior to

collecting the next sample pair for processing.

For a sample pair collected, represented by the r

and s levels exceeded, a count of unity is added to the cr,s

count. The contribution of this pair to the final sum then

lS simply rxsxl and the weighting factor is merely rs. At

the completion of the measuring time when all C0 weighting

factors have been accumulated it remains only to divide the

accumulated sum by n2-C 0 to obtain Rv v (T), the correlation
l 2

function.

4.3 Derivation of Algorithm for Mean Value

The time average of a fluctuating process represented

by a voltage v is

- Lim 1 T
v = f v(t)dt .

T-+ro T o

If p(x) is the probability that v lies within an interval

dx about x then the ensemble average is expressed by

00

-v = f xp(x)dx ••••• 4 • 6
-oo

Again, for a sampling system, where v is quantised in

amplitude and time, the integral of equation 4.6 is replaced

by a summation over the range of v. If v is assumed always

81

positive and quantised into n levels of amplitude, the nth

being unity, then a voltage at the rth level may be represented

by r . p(r) is then the probability that v lies within an
n

interval l_ about r and the ensemble average is now written,
2n

1 n
v :.:: L: r p(r) ••••• lj. • 7

n r:::O

If v is shifted in a positive direction by a half interval

then the probability that the voltage lies within l_ of
2n

level r can be expressed as Pr the probability that r is the

. 1
highest level exceeded by v + - . If this transformation

2n
is now applied to equation 4.7 and vis confined in.the range

1
O to 1 - - , v now takes the form

2n

_ n-1
1
v :.:: n L: r pr ••••• 4 • 8

r:::l

As in the case of correlation function, when the

process is measured for a finite time, the probability Pr

may be replaced by the fraction of the total measuring time

the voltage v + 1 spends within the rth level. For a
2n

process obser'ved for time To where v + 1:_ spends a total time
2n

of Tr within the rth level equation 4. 8 becomes

n-11
v :.:: L: r Tr

nT r:::l
0

Replacing times by number of samples taken for which r is

the highest level exceeded equation 4.8 takes the form

82

- n-1
••••• 4 • 9 v =

is the total number of samples taken and Cr is the totalC0

number for which r is the highest level exceeded by v + 1
2n

Rather than maintaining the n-1 separate counts and

summing at the end of the measuring run as implied by equa­

tion 4.9, it is preferable to calculate the contribution of

each sample to the final product. In this way the processing

of samples will keep pace with the sampling frequency and

the v will be available immediately at the end of the

measuring run. The contribution of each sample takes the

form of a weighting factor which is a function of r the

highest level exceeded. For one sample a single count is

added to the appropriate Cr in equation 4.9. The contribu­

tion of this sample to the final sum, and hence the weight-­

ing factor, is simply rxl. It remains only to add this

integer number to an accumulator before the next sample is

collected for processing. At the end of the measuring run

the accumulated sum is divided by nC 0 to give the mean value

v.

4.4 Effect of d.c. Bias

In order to handle both positive and negative going

signals it is necessary either to use a rectifier or to add

a d.c. bias to the input signal. A d.c. bias eliminates

the need for rectifiers, up-down counters, and subtractors

83

but has the disadvantage that the final value of correlation

function and mean value will be in error by an amount depend­

ent on the d.c. bias voltage used.

Assume that a d.c. bias of W volts is added to both

and inputs of a correlator. The measured timev 1 v 2

averaged correlation function then becomes

T
R' (-r) =l. f [v 1 (t) + W] [v 2 (t+·r) + W] dt

o T o

1 T = T ! [v 1 (t) v 2 (t+T) + Wv 1 (t) + Wv 2 (t+T) + W2] dt
0

••••• 4 • 10

The first term in the integral of equation 4.10 is seen to

be R'v v (T), the time averaged correlation function of
1 2

v 1 and v 2 . The second and third terms are the mean values

of v and v respectively multiplied by a constant W. The
1 2

last term is simply a constant set by the d.c. bias.

Equation 4.10 may then be rewritten

R 1 (T) = R'v v (T) + Wv + Wv + w2 .
0 1 2 1 2

Rearranging the equation, a corrected expression for

correlation function is obtained.

R'v v (T) = R'(T) - wcv + v > - w2 4.11
1 2 0 1 2

R~(T) is the measured correlation function taking into

account the d.c. bias. To obtain the true correlation func~

tion of v 1 and v 2 it is then necessary to perform the

84

operations shown in equation 4.11.

The time average of a fluctuating voltage v(t)

superimposed on a d.c. bias w lS simply

T1v = J [v(t)+W] dt
T 0

= v + w

where vis the time average of the voltage v(t). To

extract the mean value of v from the measured V it is then

necessary only to subtract the d.c. bias voltage from the

measured mean.

4.5 Summary

In this chapter the basic algorithms have been

developed whereby the correlation function of two fluctuat­

ing processes and their mean values can be realized by

digital means. This may be regarded as the software aspect

of the problem. It now remains to design the hardware

required to take this software and manipulate it in such a

way as to produce the desired result. The hardware will

take the form of a special purpose computer that has the

capability of yieldini the mean values and correlation func­

tion without any prior prograrruning. Chapter 5 presents the

detailed design of an instrument capable of measuring both

the mean values and correlation function of two fluctuating

voltages. If only a single voltage is examined then the

85

instrument yields the autocorrelation function of that

voltage.

CHAPTER 5

DESIGN OF DIGITAL CORRELATOR

5.1 Correlation Section

The basic algorithm for the digital correlator,

derived in Chapter 4, implies that for each time delay two

numbers represented in binary form are to be multiplied

together and their product, also in binary form, is to be

stored in an accumulator. This is repeated for every

sample pair collected and at the end of the measuring run

it remains to divide the accumulated total by a constant

to obtain the value of the correlation function for that

particular time delay. If this is implemented for all de­

sired time delays at once, then at the end of a single

measuring run the complete correlation function will be

available.

Figure 5:1 shows the simplified system block diagram

for the digital correlator. Both v 1 (t) and v 2 (t) waveforms

are continuously sampled and amplitude quantised by the A-D

converters and converted to binary representations r and s

respectively. These digital numbers are then fed into two

delay lines to provide the suitable time lag between the

v and v waveforms. The v delay line is exactly one half
l 2 1

- 86 ­

v1(t)

v2(t}

A-D
CONV.

A-D
CONV.

r
"T

I
I
I

mT SEC. DELAY

:_____A_UTOC2RR~LATION_9NLY ______ _

WT SEC. T SEC.

'1"=mT -r..(m- IY

STORE STORE

T SEC. 1.-U T SEC.T SEC.-1 ,.
!DELAY DELAY II !!DELAY

t'-=(m-2/T T=IT T=o

STORE STORE STORE

DELAY DELAY
-­

T=-IT

STORE

T SEC.

DELAY

T=-mT

STORE

FIGURE 5. 1 SIMPLEFIED SYSTEM BLOCK DIAGRAM FOR CORRELATOR

-.....]
00

88

the delay so that both positive and negative values ofv 2

T may be plotted on the graph of R(,). The delay isv 2

tapped at uniform intervals along its length corresponding

to the values of T on the correlation graph. At each tapped

position the binary representation of the delayed samplev 2

is multiplied by the common sample and the product is ·v 1

added to an accumulated sum. In Figure 5:1 the increment of

delay is assumed to be T seconds and there are 2m+l unique

sums to be accumulated corresponding to the range of delays

T = kT where k = o, ±1, ±2, ... , ±m.

The samples are delayed a fixed amount, mT seconds, so thatv 1

when multiplied by the v2 sample delayed through m stages

of T seconds each, the effective time lag between the two

samples is zero. When the system is used. to determine the

autocorrelation function, the delay may be eliminated sov 1

that only positive values of time delay are considered. If

this were not done, then one half the storage accumulators

would be redundant, since the autocorrelation function

possesses even symmetry.

An inspection of Figure 5:1 reveals that the only

complex part of the system lies in the multipliers and stor­

age units. A digital time delay is very easily realized in

a clocked shift register. What is required then is a device

that will simultaneously multiply many digital numbers by a·

common multiplier and add the products into corresponding

89

accumulators, an operation well within the capability of the

arithmetic memory cells. The cells will not only implement

the required multiplication but also provide storage for the

accumulated sums. A single central control unit will

manipulate all cells at once and since all cells are inde­

pendent, there is no limit to the number of delays that Gan

be driven by the basic control.

We recall now the technique for binary multiplication

discussed in Chapter 3. It is essentially a shifting and

adding operation where the appropriate bit of the multiplier

determines whether a particular addition will take place.

Assume now that in Figure 5:1, r, the digitized sample of

the waveform, will represent the common multiplicand andv 1

the 2m+l delayed samples of the v 2 waveform will be considered

the multipliers, sk. For each delay position then the

product rsk will be added to the accumulation of all previous

products. The multiplicand r is held in a register R that

has the capability of shifting the contents one significant

bit to the left after each addition. Whether or not this

addition is carried out in each delay position is determined

by the contents of the appropriate bit of the corresponding

multiplier sk. The multipliers are continually shifted down

the delay line, S, so that after each addition step, the

next m.s.b. is made available. At the end of the last

addition a further shift of the multipliers will bring the

l.s.b. of the next SQmple into position so that the next

90

multiplication may commence.

Figure 5:2 shows the flow chart for the process.

To ensure that negative delays are available at the start

of the measuring run, the A-D converter and shift register

delays are continuously active even before the computing is

begun. For the eight bit word length considered here, the

converters must obtain a new sample after every eight shifts

of the delay line so that the register is always filled.

C0 is the total number of samples to be_.taken for a complete

measuring run and COUNT is a record of the number of samples

processed thus far. A measuring run is initiated by resett­

ing COUNT to zero and terminated when the number of samples

taken re~ches C0 •

Figure 5:3 shows a section of the correlator in

block form. Only one delay position is illustrated, but

since all positions are identical and similar operations are

simultaneously carried out for all positions, examination of

one constitutes a survey of the whole system. We recall

again that the basic arithmetic memory cell introduced in

Chapter 2 is essentially a serial adding unit. Since it

is a serial unit, words to be added must be presented in

a serial form. Register R, contai.ning the multiplicand of

the rs product, is therefore a 17 bit ring counter with

parallel load capabilities in the 8 least significant bits.

Sixteen bits of this shift register are used to deliver the

91

SAMPLE vl & vz
CONVERT to r & s NO

ADD CONTENTS OF
R TO ACCUMULATOR

SHIFT CONTENTS OF
R & S TO RIGHT

SET STEP= 0

SHIFT CONTENTS OF
R & S TO RIOHT

STEP= STEP+ 1

NO

NO

'(ES

STEP= STEP+ 1

YES

COUNT= COUNT+ 1

FIGURE 5. 2 FLOW CHART FOR CORRELATION

vl
v2

A-D
CONV.

A-D
CONV.

8 BIT RIGHT SHIFT Sm BIT RIGHT 8 BIT RIGHT SHIFT 8 BIT RIGHT 8 BIT RIGHT
REGISTER WITH SHIFT REGISTER WITH SHIFT SHIFT.' f--1­

PARALLEL LOAD REGISTER PARALLEL LOAD REGISTER REGISTER
I

I

AUTOCORRELATION t° CROSS CORRELATION

I ..----·R2
I ,,.....___ __.__

ARITHMETICII I II I II
MEMORY

,--; 1 7 BIT RING COUNTER WITH 8 BIT 1--r-------­
CELLPARALLEL LOAD

, OVERFLOW
'ARITHMETIC Il MEMORY

REGISTER CLEAR CELL

FIGURE 5.3 CORRELATION SECTION BLOCK DIAGRAM
(!)

1'.)

93

multiplicand to the memory cell while the seventeenth bit is

used to effect a one bit left shift of the number after each

addition. The ring counter is pulsed 16 times corresponding

to the 16 bit addition, and at the sixteenth pulse, the S

register is pulsed once to address the next m.s.b. of the

multiplier s. A second addition of the left shifted multi­

plier is attempted depending on the contents of this bit of

the multiplier. The process is repeated until the entire

multiplication has been completed. On the eighth and final

cycle of the ring counter the ring is broken at the AND gate

so that the register is automatically cleared in preparation

for the parallel entry of the next r sample. The counter may

be loaded from two sources; either directly from the A-D

converter for autocorrelation, or from the end of a Sm bit

shift register for cross-correlation. This shift register is

clocked at the same time as the S register so that respective

r and S time lags are kept in their proper perspective. The

S shift register itself is simply a (2m+l)x8 bit shift regis­

ter tapped at every 8 bits and possessing parallel load

capabilities in the first 8 bits. It is the information

contained in this register that determines whether or not

the word in the.ring counter is to be added to the sum in

the memory cell. This is very simply accomplished through a

AND gate at the input to the cell such that when the approp­

riate bit of the multiplier contains a 1 then the multiplicand

is added and when a 0 appears no addition takes place. Since

94

a single 8 bit multiplication may require up to 15 bits to

store the product, one 16 bit memory cell could become

overloaded after very few samples are processed. To expand

the capacity, a second or even a third cell may be cascaded

to the first cell to count the overflow. This joining of

several cells to increase the word length will be discussed

in a later section.

At the end of the measuring run when all the sample

products have been collected it is required to divide all

these stored sums by C n 2 where n is the number of quantiza­, 0

tion levels and is the total number of sample pairsC0

taken. For 8 bit binary representation there are 256 quant­

ization levels and a division by 256 2 is simply a shifting

of the number 16 bit positions toward the l.s.b. Alterna­

tively, the n 2 division can be made to occur simultaneously

with sample processing if only the overflow from the first

16 bit memory cells are considered. The number stored in the

second cells will then be the accumulated products already

divided by n 2 • Since the number of samples required for a

given run may vary between problems, sufficient flexibility

must be built in so that division by C0 can be easily

accomplished. If C0 is made an even power of 10 and readout

is in either decimal or BCD form then division by C0 is simply

a shift of the decimal point. For example if 10 6 sample pairs

are collected then the decimal point must be shifted 6

positions to the left.

95

5.2 Mean Value Section

Measurement of mean value, as discussed in Chapter 4,

is· simply a matter of feeding a weighting number representing

the sample value to an accumulator at each sampling instant.

This accumulated total is then divided by a constant C0 n

where is the number of samples collected and n is thec0

number of quantization levels. Division by C0 ~s a simple

shifting of the decimal point, while for 8 bit binary repre­

sentation, division by n is a matter of shifting the binary

number 8 bits toward the l.s.b. As in the case of the sample

product accumulation discussed in the previous section a

more convenient method of this division is the counting of

the overflow from an 8 bit accumulator. If successive

approximation or cyclic analog to digital converters are

used then a very simple 8 bit accumulator can be constructed.

The device depends on the number being entered, serially,

m.s.b first, as pulses from the appropriate bit position.

If a particular bit positio~ contains a 1 then a pulse is fed

to the corresponding input to the accumulator. If the bit

is a 0 then no pulse is delivered. Figure 5:4 shows the

circuit diagram of the accumulator. The device ACTIVATE line

must be held in the logical 1 position for any new informa­

tion to be added. The overflow from the accumulator is

then fed to an arithmetic me.mory cell for storage. When

displayed the number in this cell must be divided by toc0

c

PULSED INPUTS FROM A - D CONVER TOR

Ao Al A2 A3 ~4 ~5 A6 A7

K

C RQ

J

K K

C RQ

J QJJ

KKKKK

C RQC RQ

OVERFLOW------'ACTIVATE---~

CLEAR-----­

to
CJ)FIGURE 5.4 MEAN VALUE ACCUMULATOR

97

yield the mean value.

Identical circuits are used for measurement of mean

value of the v 1 waveform and the v 2 waveform. In the case of

autocorrelation, only one would be required; however, two

are included for a general correlator.

5.3 Removal of D.C. Bias

As discussed in section 4 of Chapter 4 the numbers

stored in both the mean value and correlation section of the

instrument will be in error due to the effect of the half

range d.c. shift imposed on the input waveforms. Equation

4.11 is restated here for convenience.

R'v v (T) = R'(T) - W(v + v) - W2 ••••• 4.11
l 2 0 1 2

where R'v v (T) is the correlation function of two voltages
1 2

v 1 and v 2 ; R'(T) is the function as measured by the
0

correlator; and v2 are the mean values of andv 1 v 1 v 2

respectively; and W is the d.c. bias voltage superimposed on

the input waveforms. Consider again the derivation of this

relation. The and input voltages are quantised andv 1 v 2

converted to binary representations r and s respectively.

Because of the bias voltage W, however, the outputs of the

A-D converters is correspondingly modified to r+B and s+B

respectively, where B is the binary representation of W.

After suitable scaling to account for the number of quantisa­

tion levels, n, the number fed to the storage unit is

98

S = !_(r+B)(s+B)
n2

..... 5 .1

Equation 5.1 expresses the contribution of a single sample

pair to the accumulated sum of all sample pairs. For a

d.c. bias of exactly half the range of the instrument

nB :: and the equation may be rewritten
2

l(r+s) + 1
S :: 	 rs + 5. 2
n2 2n 4

Applying a similar approach to the mean value section of the

instrument the output of the mean value accumulators andE 1 E2

may be expressed as

r+B
n

r 	 1
:: 	 + 5.3(a)

n 	 2

and

s 1

E2 :: - + 	 •..•. 5.3(b)

n 	 2

If the outputs of these accumulators are both fed to a common

counter then the input to this counter will be the sum of

:: lcr+ s) + 1
n

99

The insertion of an additional flip flop at the input to the

counter may be made to effect a division by 2. The contribu­

tion of each sample pair to the count will then be

1 1
P = -(r+s) +- • • • • • 5 • L~

2n 2

A comparison between equations 5.2 and 5.4 shows that P is

very close to the correction factor required to obtain the

unbiassed correlation function. If the counter is initially

preset to -t using two's complement notation then at the end

of the measuring run, the exact correction factor will be

available. It remains only to subtract this correction factor

from each of the correlation accumulators to obtain the

correlation function.

It should be recognized here that the previous

analysis represents an approximation only. Equation 5.2

considers samples r and s that are delayed through a shift

register. The samples used in equation 5.4, however, are

taken directly from the A-D converters, not delayed, and are

not therefore necessarily equal to those in equation 5.2.

In a long measuring run where many thousands of samples are

taken, the effects of a change in input voltages over the

time of the delay will be negligible and the previous

analysis will be valid.

Figure 5.5 illustrates the block diagram for the

calculation of the correction factor. The arithmetic memory

vf+.W vz+w

l
A-D

CONVER TOR

8 BIT
ACCUMULATOR

l

OVERFLOW

A-D
CONVER TOR

8 BIT
ACCUMULATOR

OVERFLOW

I.-.! DIVIDE BY 2 !-----.. ..-------;DIVIDE BY 2 1-­
COUNTER COUNTER

16 BIT PRESETABLE1i-----------,

SHIFT REGISTER ARITHMETIC

MEMORY

CELL

(PRESET TO 1/2)

FIGURE 5.5 BLOCK DIAGRAM FOR STORAGE OF CORRECTION FACTOR
f-'
0
0

101

cell acts as the counter and is preset prior to the start

of the measuring run by serially loading the cell from a

presetable 16 bit shift register. This shift register is

preset to the two's complement representation of! suitably
4

scaled to the number of samples to be taken.

Removal of the W term in the mean value memory cells

is a simple matter of presetting these cells to -t at the

same time as the correction factor is preset. At the end

of the measuring run the number contained in these cells

will be the exact time average of the input waveforms.

5.4 Complete System

When the entire correlator is examined as a system,

it becomes evident that certain devices can be shared by

different sections of the instrument. For example, the

A-D converter represents a major expense in any system and

it would therefore be economical to utilize a single converter

for both and inputs. A sample and hold circuit wouldv 1 v 2

then be used in one of the input lines to permit simultaneous

sampiing of both inputs. While is being sampled andv 1

quantised by the converter, v is sampled and stored in the
2

sample and hold circuit until the A-D converter is again free.

Such sample and hold devices are considerably less complex and

more economical than quantisers and in a system where speed

of conversion is not important they represent significant

102

savings. An electronic switch driven by the control logic

would choose which of the two inputs is to be converted.

Figure 5:6 shows the complete correlator in block

form. The system blocks will not be described in any greater

detail than has already been done. Any further details such

as specification of components or construction techniques are

beyond the scope of this thesis. Suffice it to say that all

components required for a satisfactory implementation of the

design are currently available in integrated circuit form.

The principle of digital measurement of correlation functions

has been proven by Kitai and MasukolO and the design proposed

here may be considered an extension of their instrument.

5.5 Cascading of Memory Cells

In cases where a very large number of sample pairs

are to be processed, it may be found that some of the accumu­

lated products exceed the storage capaci~y of a single 16 bit
. ­

memory cell. In such cases a second cell can be used to

count the overflow from the first. Recall again the carry

delay incorporated in the typical arithmetic memory cell of

Figure 3:2. The carry between adjacent bit positions was

stored in a presetable J-K flip flop. Any carry from the

m.s.b. was destroyed with the data latch pulse so that it

would not effect the l.s.b. during following additions. If

this carry, before being cleared, is used to preset the carry

flip flop of a second memory cell then this second cell will

vl
A-D

SWITCH
DD DC BIASELECTRONIC

VOLTAGE CONVERTERSAMPLEvz
& HOLD

s

Sm BIT SHIFT REGIS TERI-<:

17 BIT ,RING COUNTER

8 BIT SHIFT

REGISTER

(PRESET TO -1/4}
ARITHMETIC ARITHMETIC! ARITHMETIC

MEMORY

r s
'

8 BIT SHIFT
REGISTER

· OVER-
jMEAN vALUE I FLOW MEAN VALUE

ACCUMULATOR ACCUMULATOR

~lcot~TER ___.____
RITHME TIC ARITHMETIC
MEMORY MEMORY

CELL CELL

MEMORY I MEMORY

CELL
 CELL l CELL

ARITHMETIC

MEMORY

CELL

FIGURE 5.6 COM:PLE TE CORRELA TOR BLOCK DIAGRAM

f-'

w
0

104

count the overflow from the first. A very simple logic

circuit can be used to recognize the l.s.b. position and

ensure that this carry between cells occurs at the proper

time. The reading of information from cascaded cells is

handled in a similar fashion to a single cell. Information

from the first is fed out serially followed immediately by

the second resulting in 32 bits of storage. Any number of

cells can be cascaded in this manner without increasing the

processing time beyond that for a single cell.

5.6 Summary

The digital correlator is intended primarily for low

frequency measurement where sampling intervals need not

necessarily be small. The upper limit on sampling frequency

is governed by the time required for the multiplication process,

or in the case of the instrument proposed, the time for eight

cycles of the arithmetic memory cells. At a clock frequency

of 2 MHz, a single cycle of the memory cell would require 16

microseconds and a sampling period of 128 microseconds could

be achieved. The design is such that the increment of time

delay between points on the correlation graph is equal to

the sampling period. There is, of course, no low frequency

limit to the range of input waveforms to be measured and the

upper frequency limit is governed by the minimum increment of

time desired in the plotting of the correlation graph.

The feasibility of the design from a commercial

105

standpoint hinges on the availability of arithmetic memory

cells in a low cost, compact form. The remainder of the

system consists of integrated circuits presently on the

market and no difficulty would be anticipated in the construc­

tion of this section of the instrument.

CHAPTER 6

CONCLUSION

The computing memory described in this thesis is

intended only to be a guide for future development of arith­

metic memory cells and not an ultimate design in its present

form. The memory was built using currently available inte­

grated circuits and hence is not particularly compact or

fast. A clock frequency of only 2 MHz was achieved, permitt­

ing a one microsecond per bit addition. This was taken to be

satisfactory since the purpose of the design was merely to

introduce the active memory and prove its feasibility. It

is to be expected that if the arithmetic memory cell is to

gain acceptance, then new circuits will be designed which are

suitable for large scale integration and higher speed. Once

such devices are available it must necessarily follow that

many more applications than those suggested here would be

explored. The problems of correlation and field plotting

are only two applications arbitrarily chosen because of their

general familiarity. Many other possibilities exist such as

Fourier analysis ·and Walsh-Fourier analysisl5 where a large

number of counters are required to operate simultaneously.

Many areas for improvement in the basic design

- 106 ­

107

naturally exist and although these have been considered,

restrictions on expense and availability have forced the

compromise discussed here. One rather obvious shortcoming

of the cell is the need to provide two write circuits for

the memory, one for each of the two possible binary states.

A second weakness lies in the need for two clock pulses for

each bit of addition, one to latch the data in memory and

a second to write new data into storage. It would be

preferable to use a memory circuit with a single data input

line and a separate write enable input that would act like

the. clock input of a J-K flip flop. In such a case it would

be possible to use the information already in a memory loca­

tion to write new data in using only one clock pulse. Such

a memory is available in the form of the Fairchild type MµL 9035

integrated circuit. This device incorporates four 16-bit

words in a single 36 pin package and could form the basis for

a group of four basic arithmetic memory cells. One such cell
/

is illustrated in Figure 6:1. Since the write enable line

acts as a clock input there is no need for the D-type flip

flop to latch the data in the memory. Combined with the

single data-in line the saving in circuitry is very consider­

able. Because of the restrictions on cost and availability,

however, it was not possible to encorporate this device into

·the memory, but its potentials are apparent.

One other question is raised in the investigation

of the correlate~ design: In many cases, the arithmetic

ADD

IN

FAIRCHILD
BMuL 9035

1 1- I-

en2 DATA DATA 2- t-­ FULL
A- 3 IN OUT 3 t-­ ADDERJr--­ 4 4 en Q i--'1j{>- J

WRITE

ENABLE
 A+B K

r--­ c Q

.....

WRITE ENABLE
AND

CARRY LATCH

FIGURE 6.1 SIMPLEFIED ARITHMETIC MEMORY CELL

I-'

o::i
0

109

memory cells are not required to add as such, but rather

to count uniformly time-quantized overflows from a second

memory cell. In such a case it would appear that a consider­

able portion of the memory cell is unnecessary and perhaps a

new device, the counting memory cell, should be investigated.

In the interest of simplicity such a design was not included

in the correlator proposal; however, it does warrant con­

sideration. A possible design for a counting cell is shown

in Figure 6:2 using the Fairchild 9035 memory. When the

l.s.b. of the counter is addressed a count in will preset

the J-K flip flop to a logical 1. This voltage level will

then complement the data in this bit position of the memory

through the exclusive-or gate and apply the new level to the

data input of the memory. If the flip flop is left in the

0 state then the data will remain unaltered. If the flip flop

is at the 1 level and a 1 state is encountered in the memory,

then the 2-input NAND gate and inverter will apply a 1 and a

0 to the J and K inputs of the flip flop _respectively and

upon receipt of a clock pulse a 1 will be entered into the

flip flop. If either of these conditions does not hold then

the flip flop will contain a 0 following the clock pulse. At

the same time as the flip flop is clocked, the memory write-

enable line is pulsed and the next bit is addressed. The flip

flop acts as a carry storage and the same analysis applies as

for the l.s.b. The cycle continues through all 16 bits and

at the end of the sixteenth bit the carry latch is reset to

FAIRCHILD

I MuL 9035

2 DATA DATA
3 IN OUT
4

WRITE
ENABLE

iL

2
3
4

. . .

COUNT
IN

J

p

Q

K

.
c Q

R

9 I
CARRY
RESET

WRITE

ENABLE

FIGURE 6.2 COUNTING MEMORY CELL

f-'
f-'
0

111

0 in preparation for a further count.

Counters of this type are restricted in that inputs

may not be random, but must occur at fixed periods in time.

In the case of the correlator, however, the overflow from

the adders do occur at predictable times and all counters

can be operated simultaneously.

It is not the purpose of this thesis to present the

computing memory solely as a system to be associated with

a general purpose computer; rather it is an attempt to

introduce the concept of the arithmetic memory cells as a

complete and independent unit in itself. It is through these

qualities that the cell must gain its widest acceptance. As

a special peripheral device to be used in conjunction with

a general purpose computer, a memory array composed of these

cells becomes a self-administering block, effectively freeing

the sophisticated central processor of the menial task of

repetitive but elementary arithmetic operations. When

considered as an independent unit, however, the range of

application of the cell broadens to encompass all areas of

digital systems, and is not restricted to general purpose

computers. It is the author's hope that this philosophy of

universal applicability be the predominant impression left

by this thesis so that the full potential of the cellular

operators be realized.

APPENDIX A

Logic Symbology

Texas Instruments Integrated Circuits

Descrete Component Circuits

- 112 ­

113

A F=A-(>o-

INVERTER

NAND GATE

NOR GATE

:==::)D- F : A1 Ell Az

EXCLUSIVE OR GA TE

FIGURE A.I LOGIC SYMBOLOGY

MIL 806B SPECIFICATIONS

SN7404NSN7400N

HEX INVERTER

SN7420NSN7410N

DUAL 4-INPUT NANO GATETRIPLE 3- INPUT NAl~D GATE

SN7440NSN7430N

DUAL 4-INPUT NANO BUFFER8- INPUT NAl~D GATE

114

FIGURE A.2 TEXAS INSTRUMENTS INTEGRATED CIRCUITS

115

SN7473NSN7451N DUAL J-K MASTER-SLAVE
DUAL 2-\'lIDE 2-INPUT N>JD-OR-INVERT FLIP-FLOP

SN7480N SN7481N

GATED FULL ADDER 16 BIT READ/WRITE MEMORY

SN7486N

QUAD 2-INPUT EXCLUSIVE-OR ELEMENT

FIGURE A. 2 TEXAS INSTRUMENTS INTEGRATED CIRCUITS

116

SN7442N SN7445
BCD TO DECIMAL DECODER DRIVER

BCD TO DECIMAL DECODER WIT!I OPEN COLLECTOR OUTPUTS

SN74151N SN74 76N
DUAL J-K MASTER-·SLAVE FLIP-FLOP

8 BIT DATA SELECTOR/MULTIPLEXER WITH PRESET AND CLEAR

SN7475N
QUADRUPLE BISTABLE LATCH

TEXAS INSTRUMENTS INTEGRATED CIRCUITS

117

DPlO
DUAL 	DRIVER PLATFORM

TRANSISTERS - 2N4227

DP20
QUAD 10 K RESISTER PLATFORM

DP30
QUAD 100.0.. RESISTER PLATFORM

FIGURE A.3 DESCRETE COMPONENT PLATFORMS

APPENDIX B

- 118 ­

119

This Appendix contains the wiring instructions for

the 8 word memory array and the control circuit capable

of driving up to 64 words of memory constructed for this

thesis. The memory and control are mounted on separate

circuit boards, Texas Instrument Part No. 10-000-PS, and

are shown in Figures B.l and B.13 respectively.

Each integrated circuit package location is desig­

nated by a two digit number representing the row and column

number. For example in Figure B.l package 46 is located in

row 4 column 6 and is a SN7480N gated full adder. In the

wiring diagrams that follow the location of each device is

shown as a circled 2 digit number appearing inside the device

representation. The numbers outside the device correspond to

the pin number of the particular package, as shown in

Appendix A.

Connections to the edge connector pins of the circuit

boards are shown in the wiring diagrams as numbers enclosed

in small squares. The codings of the output pin connections

for the memory board and control board are shown in Table B.l

and B.2 respectively.

!EDGE CONNECTOR I

0 I 7440 I I 7440 I I 7442 I I 74151 I I DPlO I I DPlO I 0

1 I 7404 I I 7404 I I 7404 I I 7404 I I DPlO I I DPlO I 1

R 2
0

I 7481 I L~~~--1 [_ ~481_ -' Li4~~] L74o~ __J I 74~4__] I 7410 I 2

W3 I 7475 I I DP20 I I 74 75 I 1 7400 I I 7410 I 3

N4 I 7480 I I 7480 I I 7480 I · I 7480 I I 7486 I I 7410 I 4H H

~5 [__~~-5_1__] I 7451 I I 7451 . I L7451 __ I I 7476 I I 747_6__J 5
I~ 6 I.. H74_81_ __ I L?481_ I I _ _74~1__ L748! I I 7404 I .l 7404~1 I 7410 I 6 . _I ____

R 7 L 7475 I I DP20 I 1 74 75 I 1 7400 l I 7410 I 7

8 I 7480 I I 7480 I I 7480 I I 7480 I I 7486 I I 7410 I 8

9 1 745]~ I 7451 I 1 7451 I I 7451 I I 7476 I j 7476 I 9

/ 7 6 5 4 3 2 1 ~

f-'
rvCOLUMN NUMBER

0

FIGURE B.l MEMORY BOARD PACKAGE LOCATION CHART

+ ~
U1 !-I

<:
(/}
>

/4

.....

®~~

1

,....,_,_9-11 W ~ITE

®

. I

I

t2odfs)l 13

1-3 N N N N 1-3 N 1-3 N N 1-3 N 1-3~ ~ ~ ~' H

Qu u \jj () :i> M !:""' M Cl (/} > > !:""' !:""' ()
() en ~!:""' 0 ::i:.M M en M M 0 0 () u "'O

() 0 () M c: HU H M H (/} !-I rn (/) ()
' 1-i..-

~

lb'~

~

l!i

I

!

@I 11.-.
.[ji ~2 !'3 2

u 110

l
\!®IQ
4 lc ol 1@

I Jll
12.d® 1~3 ~If-------------'

· :3 I~
I /Oc4j)~F!~!---1!---------.....l

IA l Bz Bc c

·Az ® ~
C­

Z: n+ 1-
~

6 !5

13

J ,c Ra,

f3

f-J
N
I-'

FIGURE B.2 MEMORY BOJ\RD WIRING DIAGRA0!: CELL PO-E

'.--J

+ ~ ~. t-3 NN. N
U1 1-1 u u IJj Cl >> ()<: C/l t""' o >o

() ~o o 0

I I i
12.

......

@~~
•
3

...-{~D Q

GJ)
131 c Q l'U13 !WRITE·-­

· l I~
• G IW~ITE

·@
~o
®

Z~!'

84 3

N N N t-3 N t-3 ~ ~ ~
Q 1-1 > > t""' t""' ()CJ)
CJ) fTl 0() u () ~

0 ""'O ;.o ()c: QHCfll-I 0 (/') t"

.h

L ,,2 "3 12

_Br~c ® r. 13

Az 4-6 --n

79 I A C--1 1-t s~ ~ 9 ! ~ ~ ~1 ti1 - no? ~b'-.;.

~" ~ro , 12!K@~ 1

61 - I
I r-jC faQ j8d.

I-'
l'V
l'V

FIGURE B.3 ME~10RY BOARD WIRING DIAGRAM: CELL P0-0

I

I 2.

+
U1

<:

10

@~~
~

5

131 WRITE

1

9 !WRITE
0 @

:El :El 1-3 NN. N N 1-3 N 1-3 N N 1-3 N 1-3 :El :El :El
H :> H

tJ t:J 5:i () M t"'M 0 CJ). :> :> t"' t"' ():> t"' 0 :;i:.M () U) MC/J. M M OOOtJ Q :El
CJ). 0 () C:: H U H M HU) H "' rn (/) ()

() M ' t"'
;

' !
l

I I I I I

I I I 1 I
I

I I . . I

2 ln QI L,
®lJJ~ . -- 12. ,,.3 12

3

II
 Bl BzH113'.c Q~: ~ @ cAc

G.ri '-~
B ,--,

Az @I 6in afj
1 - n-:-1 1- 9 s

0 15

9

8

I
A

-- 2

C-
I IJ p

z rJ

4- le al 1(33)! I'- 15

lhjK@!

iJc 6 QI
3

f-J
N
w

FIGURE B. 4 i··!E:-IORY BOARD WIRING DIAGRAM: CELL Pl-E

~ '""3 NN, N N '""3 N '""3 N N '""3 N '""3+ ~ '· 1-1 ~ ~ ~
1-1U'l tJ tJ t:il (') ' > o r.io8 > > t"' t"' (')Cli> t"' o >o (') Cli 0 Cli 0 r'lO()tJ ""O Q ~ < Cli (')o () 0 c::: _h tJ ~ Q H CJi 1-1 0 (./) (')

' t"'
[ill ­

I I I
­

8
....

@~~
7

I I

3,D
 Q

13 I
112

- l'f
®kLJu~,11

,'-:::-f I~/ I I

c
8

Az @
9

Al -
~

b

I l/3 12
C Q BI 11IA Bl Bz c

.L ~ 139 IWRITE 9o@ Un Q2.'1­ ~
c 45 . '1 .'S' -~ 4@ _ n+ 1 ;~ .,. ~ ,..,.l II

4lc ­
Q (~~ I IZIK@

I f~
2._ hl I 12_r ~ 1,3 I "

&.
3

4_.bl'3 6J®"··
I 4­

I-'
l'V
-I="

FIGURE B.5 MEMORY l30ARD WIRING DIAGRAM: CELL Pl-0

+ ~ ~. ~ NN
Ul 1-1 t1
<: > ti

CJl ()

14
.....

®~~

•
1

13 IWRlTE SEJ\1SE~L-~ I 1

..--......9...,I WRITE
o®

I 2,

10 II

FIGURE

t1 bj ()
0 >M0 ()

21 D Q

@
13lc
~

.10
'7 ~ D Q

@1 112.113

4 rc al I@
~

IZJ®I~ t

3

u~~
4­

N N ~ N ~ c N
M ti M Cl 1-1> CJl() cn M cn M Mc::: 1-1 t1 1-1M

I
I

112 I1.3

Ill B1 B2
Ac

BIA
2 ®

9IA
l ­

2 -.­
0

B.6 MEl'v!ORY BOARD WIRING DIAGRAM: CELL

N ~ N ~ ~ =El~
>>titi () 0 ~00()t1 :;:o ()
tcjHCJlH "' ·'-

(Tl ' (/) t"'

1'

12
B

c
cti I .3

I

I '"'K@
~~

3

f-'
rv
·c.n

· P2-E

+
\Jl

<:

____z_.4~3

~ t-3 N N
tJ tJ Ed()H:»
~

0 :» 0Ul l'
Cl ,,p ()

~

N N t-3 N t-3 N
H::i> 0 50 0 CJ)

() CJ) CJ) 0 0C:: HtJ ,,,H0 rv

..._____,J._

N t-3 N t-3 ~ ~ ~
>>l'l' () () ~
T'1 0 Cl tJ
Q H CJ) H "' ~ Cl0 l'

· 1

lo

___I.-­3

I IZ!K@

l
6

II

I

13

9

I

12.
>

@o
~~

3

WRITE
1 SEJ\1SE

WRITE 1
0

@

IZ I

I

3

~

7

4

D Q

-,-­

@1
~ c Qi!4

Tr-ul

·D Q
~

~@ 9 JO

~@J-c Q

. I z~, 8~
8 c(@fPl!

13 2.LA !:z Bz Be
c G.ri

I 8 1A2 @
9 cAl ­ Z: n-:-1;I

5

r

I

f-'
N
m

FIGURE B.7 MEMORY BOARD \I/IRING DIAGRAM: CELL P2-0

8 Az @
9 'A

1 -
~

u

~

_________-.1

+ :El :El 1-3 N N N N 1-3 N 1-3 N N 1-3 N 1-3 ~ :El :ElHV1 H ti 8 (") ~ M ~ M 0 CJ) ~~t-<~ (")
~ ti

0 ~M () Cf.l M C!.l M 0 0 (") u ""O
Q ~

~<: Cf.l
() 0 (") M C:: H U H

M t;:jHCf.lH rrt (/) (")
' ~

55

10
.....

@~~.
fo5 i I 2.., D Q

@
1

r---':;;..i3!WRITE ~lj L..@Jc Qµ..\ j !)~ I~ 3 2
l SENSE1z I 1 '.T)~f 11 B B B

1 1 ~· Al2c
_..-9-! WRITE ~ 110 c .13

o@ ~iD OIJ
 C,,
a ji

~ 4 . .~15'I ··~®- ~ I I
L-.1:..lc a l@I 15

I "!K@
)

_.--'L!.___)I 3
I t2.rv6 13 1z (j]) r-:';:----:l)

!!.odfzi! ,, ~d~~~ l I
f-'
l'0
-...J

FIGURE B.8 ME:.lORY BdARD WIRING DIAGRAM: CELL P3-E

http:t;:jHCf.lH

..;. ~ ~. ~ NN I N N
U1 l-1 d d tij() > 0
< en > ~ o >o () en

() 0 0 C:::
Cl.I

()

39

I I T
8
I -®~~
7 .I I I I I

3ID al

®
/'I­13 cIS I WRITE Q ~1

9 IWRITE 9
7 Do® Q

5'f.. @
4rc 0 @

Z-~11

'I

~3 l

SENSE 1i
1

12.J®
....___-"(bl£

I

~ N ~ l N N~Nl-3 ~ ~ ~ l-1
()t-'0 8 () ~ O cn a ~ ~ h b ;a ()

H d 1-1 Q 1-1 en H "' w ~ .O" ' (./) ~

10 I 16

12~ 113

BII 1 Bz cAc 3

Az ®
Cn8

9
A1 ­ , Jp7Q" I

~

' 5
I

121K@
I

"

1
- - ·-- !--'

N
to

FIGURE B.9 MEMORY BOARD WIRING DIAGRAM: CELL. P3-0

129

7 x,

Xz9

-
x3
11

,3 x4­

y
15 I

17
y

2

19 Ya

21
y

4

12 x.

ID

X2

12. x3

10

X4

1'2. Y,

10

Yi

12. y3

JO y4

FIGURE B.10 MEMORY BOARD WIRING DIAGRAM:

BIT SELECT DRIVERS

130

50

Do 	 PO-£
'' A

D, 3 	 P0-0/()
8 	 Q:::

x
l.LJ

D;. Pl·E2

9 c 	 l.u

Pl ·0n..
-l 	 D, I

TDOO- 157 t-	 D+ P2·£ST 	 _J

J 11
Ds 	 P2·0r:
13 P3-ED"

TDOO 6
)< D1
12.. 	

P3·0®

FIGURE 13.11 MEMORY 130AJW \'!IRING DIAGRAi•i:

DATA LOAD AND DATA READ CIRCUIT

131 @iJ ZCfC 11 ~10 ZCEC

~zcoc 13~

fii)ZLCS 9~

~~10 ZISf

~ Zi50 13_~ 12. ZISO

[@ ZAE'O S ~ 6 ZAED

~ ZAi5£ 3~4 ZADE

lilJ ZESD ~ 2.1 ZESO

ffi]ZOSD 5~

~4 ZE5U

ffiJ ZOS°U I ~ 2 Z05U

[§SJ ZAC~ B ZACE

~12. ZACO

@WCP£ 5~6 WCP!;

(HJ w c PO 9 ~_;8;..__w;..._;;_cP;.._..;;...O

@] ZiM z_1-"-e......11 ~-1_o__ A

\.v'WCL76 WWCL
2 +,!i Of;

78 WCR5 q 8 WCRS

eo Wt.OC G WLDC
2, 4 , 5 01r10-~-....;.:...;:;..;;;....;=--

62 WiAS

83 l.OGIC 1

FIGURE 13. 12 MEMORY BOARD WIRING DIJ\GRMI:

INSTRUCTION AND PULSE BUFFERS

I EDGE CONNECTOR I
0 I 7404 I I 7404 I I 7404 I I 7404 I I DP30 I I DP30 I 0

R 1 ,_ . 7400 I [7473 I 1 7440 I [7440 I 17445 I 1 7445] 1

w 0 2 I 7410 I ,_7420 I 1 7430 I 1 7430 _ I /_~3____J I 7400 I 2

N 3 1 7400 I 1 7473 I l_ 74 !~rn-l r7410___ I 1 7410 I 3

u 4 4M

B
 5 5E
R 6
6

\7 7'

8 8

9 9

/ 7 6 5 4 3 2 1 ~

wCOLUMN NUMBER 1-'

N

FIGURE B.13 CONTROL BOARD PACKAGE LOCATION CHART

9 1'5. A
~

~ I ':1° §
c ::l

10

12.
13

12101'i2' 14
==::::

5: l'
~

! I

- . }--1

3p--t="{..--..~·~-

¥! 3 !=ACS "I­-COCA.NT
DOllVN

DOWN BINARY

S COUNTER
~

I CLOCK

a, Gz t23G4

~ rCEC lzcoc.
l.OCOIC "'I"

11-IJ M112

II I I I ~
7J0--1----1C \!.!v

!

2.

2 II...._

r­

~
3

.wtAS

CLOCf(

!.iJ

lf--4C@
~KR f'B

~

G

rl

WOL.C
-"-

wwcl. j"wcRS

+5V

X,
x,

9,10
X3

\..'..::.)4~ ·.• x4
6

Y,
Y2,

c a YaD@
Y4

f 80 ™178

!-'FIGURE B.14 CONTROL BOARD \VIRING DIAGRAM: wBIT SELECTOR A:~D PULSE DIRECTOR (>)

Al!S

If

2

3

6 Q::
ll,J 4

ac 5
0
v

D a
\JJ 	 ~

7

® 8

7

.q..~DATA
ZLCS5@}>6 	 §)

~DATA ENTER2{,

OATA 	 4

OUT 8
 TDOO26 	 ;

6

" IZ

FIGURE B.15 	 CONTROL BOARD WIRING DIAGRAM:

DATA LOAD AND DATA nEAD CONTROL

'2

3

135
FJ\CS

I 2. 3 t S,6 11, 12.

ZAOE
11

6<') ZAOE

ZAEO 6 6 ZAEO

ZISE 2. 63 ZISE

4
Eli ZISO

ZCEC 8 6t ZCEC

t()

zcoc ~ zcoc

ZESU
8

' ZESU

ZOSll
4 7 zosu

ZESD 12 11 ZESD

ZOSD ~~o-10 --fill ZOSD

ZJ\CE~~2. ~ ZACE

B
70 ZJ\CO

ZIBJ\ ~10·
/

~ zrnA

£!91_6------(831 LOG~CJ\L

FIGURE B.16 CONTROL BOARD WIRING DIAGRAM:

INSTRUCTION LINE DRIVERS

I

13

QI 12./41J" 3~
12.

3IK@

11c o a. /3 4- 5

4i-----'

7J Q 9
'I.

- 8 IC QC R Oz __ _IL_ 3

K@
-le1~

R ~

"

CLOCK'

COUNT
DOWN

I-'
w
m

FIGURE B.17 CONTROL BOARD WIRING DIAGRAi\1: UP/DOWN COUNTER

1.

3.

5.

7.

9.

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

33.

35.

37.

39.

41.

43.

GROUND

x;
x;­
x3
x4

yl

y2

y3

Y4

TLOI 0

TDOO
0

TLOI l

TDOO1
TLOI 2

TDOO
2

TLOI 3
TD003

AO

Al

2.

4.

6.

8.

10.

12.

14.

16.

18.

20.

22.

24.

26.

28.

30.

32.

34.

36.

38.

40.

42.

44.

GROUND

TGOI 0

TGOI 1

TGOI 2

TGOI 3

ZLCS

TABLE B.l MEMORY BOARD OUTPUT PIN ASSIG,\JMENTS

138

45. A2 46.

47. 48.

49. Bl so. TUOO(l)

51. 52.

53. TLEI 54.TGEI

SS. TLEO S6.TGEO

S7. S8.

S9. 60.

61. 62.

63. ZISE 64. ZCEC

65. ZISO 66. zcoc
67. ZAEO 68. ZACE

69. ZAOE 70. ZACO

71. ZESO 72. WCPE

73. zosu 74. WCPO

75. ZESU 76. WWCL

77. zosu 78. WCRS

79. 80.WDLC

81. ZIBA 82. WIAS

83. LOGIC "1" 84./

85. v 86. v cc cc

TABLE B.1 (cont) MEMORY BOARD OUTPUT PIN ASSIGNMENTS

138

1. GROUND 2. GROUND

3. CLOCK 4. COUNT DO\VN

5. INITIATE CYCLE 6. ZISE-
7. 8. ZISO~
9. x 10. ZAEO2

11. 12. ZAOEx3
13. 14. ZESDx4
15. 16. ZOSIJv;
1 7. y2 18. ZESU

19. y3 20. zosu
21. y4 22. LOAIJ/READ

23. 24. LOAD DATA

25. ZCEC 26. DATA ENTER

2 7. zcoc 28. DATA OUT

29. ZACE 30. co
31. ZACO 32. c 1
33. ZIBA 34. c2
35. 36. c3 CELL
37. 38. c ADDRESS4
39. 40. c

5
41. 42.AO
43. 44. ZLCSAl

TABLE B.2 CONTROL BOARD OUTPUT PIN ASSIGNMENTS

140

~,' .

45. 46.A2
47. 48. TD001Bl
49. 50. TD002B2
51. 52. TD003B3
53. 54. TDOOB4 4
55. 56. TDOOBS 5
57. 58. TD006B6
59. 60. TD007B7
61. 62. TDOOBS 8
63. ZISE 64. 2CEC
65. TIso 66. zcoc
67. ZAEO 68. ZACE

69. ZAOE 70. ZACO

71. ZESD 72. \YCPE

73. ZOSD 74. WCPO

75. ZESU 76. \YWCL

77. zosu 78. \YCRS

79. 80. WDLC

BL Zil3A 82. / \\'IAS

83. LOGIC "l" 84.

85. v 86. v cc cc

TABLE B.2(cont) CONTROL BOARD OUTPUT PIN

ASSIGNMENTS

141

REFERENCES

1. 	 Hanlon, A.G.; 11 Content-addressable and associative

memory systems, A Survey'', IEEE Trans. Electronic

Computers, Vol.EC-15, pp.509-521, August 1966.

2. 	 Rux, P. T.; "A Glass Delay Line Content-Addressed

Memory System'', IEEE Trans. Computers, Vol.C-18,

pp.512-520, June 1969.

3. 	 Koczela, L.J.; Wang, G.Y.; 11 The Design of a

Highly Parallel Computer Organization 11 , IEEE

Trans. Computers, Vol.C-18, pp.520-529, June 1969.

4. 	 Huttenhoff, J.H.; Shively, R.R.; "Arithmetic

Unit of a Computing Element in a Global, Highly

Parallel Computer", IEEE Trans. Computers,

Vol. C-18, pp.695-698, August 1969.

/

5. 	 Campeau, J. 0. ; 11 The Block-Oriented Computer 11 ,

IEEE Trans. Computers, Vol.C-18, pp.706-718,

August 1969.

6. 	 Kautz, W. H. ; "Cellular Logic-in-Memory Array",

IEEE Trans. Computers, Vol.C-18, pp.719-727,

August 1969.

7. 	 Solodovnikov, V. V. ; "Introduction to the

Statistical Dynamics of Automatic Control Systems",

Dover, 1960, pp.116-122.

8. 	 Gaines, B. R. ; 11 Stochastic Computer Thrives on

Noise", Electronics, McGraw-Hill, Vol.40,

July 10, 1967, pp.72-79.

9. 	 Jespers, P.; Chu, P.T.; Fettweis, A.;

"A new method to compute correlation functions",

presented at International Symposium on

Information Theory, Brussels, September 3-7, 1962.

10. 	 Kitai, R.; Masuko, A.; "Digital instrumentation

for measurement of autocorrelation and moments 11 ,

Proc. IEE, Vol.116, pp.1950-1956, November 1969.

11. 	 Della Torre, E. ; Longo, C. V. ; "The Electromagnetic

Field", Allyn and Bacon, 1969, pp.231-231+.

12. 	 Masuko, A.; "Digital Auto-Correlator: Design

and Construction", McMaster University, 1969.

13. 	 Deist, F.; Kitai, R.; "Digital Transfer Voltmeters:

Principles and Error Characteristics 11 , Proc. IEE,

Vol.110, pp.1887-1904, October 1963.

14. 	 Beckman, P. ; "Elements of Applied Probability

Theory" Harcourt, Brace, and World, 1967,

pp.119-128.

15. 	 Siemens, K. H. ; 11 Digi tal Walsh-Fourier Analyser

for Periodic Waveforms", McMaster University, 1969.

	Structure Bookmarks

