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ABSTRACT

The work presented in this thesis relates to one of the most
important problems in the design of high-density, high-speed bubble
memory systems. A new approach for the analysis, design and
optimization of bubble circuits is developed. This formulation is
suited to computer-aided methods of solution.

A micromagnetic approach to the modeling of permalloy bubble
circuits 1is examined. Basic to the approach is the discretization of
the circuit into very small regions to simulate the ferromagnetic
essence of the permalloy. This method of analysis is very useful in
studying submicron bubble circuits. However, the numerical difficulties
as well as the excessive computer time required for such analysis led %o
careful consideration of possible approximations. A continuum model for
analyzing field access bubble circuits has, thus, been developed and
used to characterize arbitrary shaped permalloy structures. Various
prbpagation circuits, including gap tolerant circuits, and bubble
replicators are analyzed and the results compared to experimentally
available data.

A model for studying bubble size and position fluctuations is
introduced. The model assﬁmes that the bubble domain is circular.
However, with slight modifications it can accept general elliptical
shapes. For various propagation circuits, the model results are in

excellent agreement with experimental measurements in the literature.

iii



An algorithm for bubble circuit optimization is developed and
discussed in detail. The problem is formulated as a constrained minimax
objective which is suited to nonlinear programming methods of solution.

Typical examples of T-I propagation circuits are furnished to illustrate

the approach.
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CHAPTER 1

INTRODUCTION

The problem of modeling and analysis of magnetic bubble field
access devices and, in particular, circuits used for bubble propagation
is the subject of this thesis. A secondary objective is to introduce a
new optimization procedure for the design of bubble propagation
circuits.

For the reader who is unfamiliar with these circuits, Chapter 2
presents a brief review of magnetic bubbles, bubble materials and bubble
circuits. The definition of the problem of propagation circuit modeling
is introduced. Micromagnetic modeling, domain modeling and continuum
modeling techniques are discussed and a unified review of the existing
models is also given.

One of the basic functions necessary for the operation of a
serially accessed bubble memory system is the ability to manipulate the
stored data. This is done by moving the bits of information (the
presence or absence of bubbles), along certain propagation tracks within
the memory. Since bubble domains are stabilized by an external fixed
bias field, it is possible to move them by introducing a traveling local
perturbation of the bias field, that is a traveling potential well. It
is the role of the bubble propagation circuits to provide such
perturbations. The use of permalloy features magnetized by a rotating

transverse magnetic field has thus far proven to be the most reliable
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propagation method. Propagation structures built of permalloy are
called field access circuits.

To date, the design of field access propagation circuits for
bubble memory and logic applications (Smith 1974, 0'Dell 1974, Bobeck
and Della Torre 1975 and Chang 1975) has largely been a cut-and-try
process, relying almost exclusively on intuition and experience. The
questions of which factors determine the minimum rotating field required
for propagation, the value of this minimum field and the optimum
permalloy gecmetry for an operating device have not been adequately
answered.

At present, when designing a means for propagating bubbles, one
is faced with a large number of different circuits. Within Just the
framework of field access circuits there are still a bewilderihgly large
number of different circuits, such as: T-I (Perneski' 1969), Y-I
(Danylchuk 1971), Chevrons (Bobeck, Fischer and Smith 1972), X-I
(Parzefall, Littwin and Metzdorf 1973), parallel-bars (Della Torre and
Kinsner 1973), channel-bars (Della Torre and Kinsner 1975), half-disks
(Bonyhard and Smith 1976 and Gergis, George and Kobayashi 1976) and
asymmetric chevrons (Bobeck and Danylchuk 1977), to name a few.

The important characteristics for a good propagation structure
are: good margins, compatibility with the design of other functions in
the memory system and the capability of propagating bubbles at high
speed. The bias field margin (the range of bias field over which the
bubble does not strip-out or collapse) depends on the rotating

propagation field amplitude, the permalloy shape and the bubble domain



parameters (diameter, height and saturation magnetization). Since along
the propagation track (bubble path) the bias field margin varies from
point to point, the overall circuit margin is determined by the smallest
bias field margin. The smallest bias field margin occurs at critical
points in the propagation circuits such as the gaps between the T and
the I elements in T-I circuits and along the arms of the Y elements in
Y-I circuits. Therefore, a good design of a propagation circuit should
guarantee that the bubble will move reliably past critical points, that
is the margins are adequate at these points.

In order to be able to optimize field access structures, an
efficient and accurate model for analysis of arbitrary permalloy shapes,
under the influence of general applied fields, is required. This model
should be capable of analyzing the higher density bubble memory systems
that are increasingly being used.

The work presented in this thesis includes new approaches for
modeling of field access bubble circuits and, particularly, bubble
propagation circuits. Moreover, it provides a novel procedure for
optimization of propagation structures. In particular, Chapter 3
presents new micromagnetic and continuum models for the analysis of
bubble propagation circuits. These models are general enough to be
applied to arbitrary shapes of permalloy overlays. Comparison to
results of other models is also given.

The analysis of Chapter 3 is used to study the propagation
characteristics of various bubble propagating circuits and the results

of this analysis are presented in Chapter 4. The potential well



distribution of rectangular bars, symmetric and asymmetric half-disks
and asymmetric chevrons are given in Chapter 4, In addition, a new
algorithm for the analysis of bubble size fluctuations in propagation
citcuits is developed where an iterative technique is used to compute
the stable bubble-permalloy configuration. This is essential for
studying the dynamics of bubble circuits. Comparison to experimentally
available data (Jones and Enoch 1974) is also included.

A novel procedure for propagation circuit optimization’is given
in Chapter 5. A discussion of the effect of circuit parameters on the
circuit behavior is included. The potential well produced by the
permalloy is modeled using a quadratic polynomial approximation
technique (Abdel-Malek 1977). The optimization problem is, then,
formulated and solved (Bandler and Sinha 1977). A typical T-I
propagating circuit is analyzed using this procedure and the results are
compared to experimental data (Kryder, Ahn and Powers 1975).

Appendices are included to supplement the tex£ with specific
material. These include a summary for conversion between RMKS and CGS
units, the computation of the demagnetizing factors of permalloy
circuits, the computation of exchange energy and a summary of useful M-H
approximations.

The following are the original contributions claimed for this
work:

(1) The formulation of a new micromagnetic model for the study of
submicron bubble circuits.

(2) The formulation and implementation of a continuum model for



(3)

(4)

(5)

(6)

analysis of arbitrary shaped field access bubble propagation
circuits in which the permalloy nonlinear characteristics are
included.

The analysis of gap tolerant propagation structures and
replicate/transfer gates.

An ‘improved algorithm for studying the stability of bubble
domains in uniaxial magnetic materials.

An algorithm for computing the fluctuations in bubble size and
bubble center position.

The formulation of a novel algorithm for bubble circuit

optimization.



CHAPTER 2
MAGNETIC BUBBLES, BUBBLE CIRCUITS AND CIRCUIT MODELING:
A REVIEW
2.1 Introduction

It has now been a decade since the first paper on device
applications of magnetic bubbles appeared in a techﬁical journal (Bobeck
1967). Advances in bubble physics, devices, materials and memory
systems in that decade have been impressive. Storage in bubble memories
is nonvolatile and requires no stand-by power. The insensitivity of
this solid-state memory to shock, vibration and radiation makes it very
attractive for applications in which the memory is subject to severe
operating conditions (Chang 1975).

To date, the design of bubble domain field access bubble circuits
is performed by fabricating a device and testing it. If it does not
perform adequately, a small change is made in the design and it is
refabricated. The process is repeated until satisfactory performance is
achieved. This approach is time consuming and expensive. It is
desirable, therefore, to develop a model which accurately characterizes
and analyzes bubble circuits and which can be used for the design of
these circuits.

This Chapter gives a brief review of bubble domain materials and
circuits. A review of the main approaches for modeling of field access
bubble circuits is also presented. Several books (Smith 1974, O0'Dell
1974, Bobeck and Della Torre 1975 and Chang 1975) provide supplemental

6



reading for the interested reader.

2.2 Bubble Domains

Figure 2.1 shows the configuration of a bubble domain in a thin
magnetic film. It is a cylindrical region in a platelet (thin film)
with magnetization perpendicular to the film plane and opposite to that
in the surrounding region. This configuration can be achieved only if
the bubble supporting film possesses certain magnetic properties such
as: uniaxial magnetic anisotropy, to orient the magnetization
perpendicular to the film plane, and magnetization sufficiently small,
to prevent the demagnetizing field from forcing the magnetization into
the film plane. See Bobeck and Della Torre (1975) and Chang (1975). A
bias field must be applied antiparallel to the bubble magnetization to

prevent the bubble from running into a serpentine domain.

2.3 Bubble Materials

Successful design of high-density, high-speed bubble devices
depends on the availability of a material capable of supporting
sufficiently small and highly mobile domains. The storage density, data
rate, stability and temperature sensitivity of bubble devices are
determined by the materials parameters. These parameters and their
units are:

h; material thickness (m),

MB; material saturation magnetization (A/m),

Ku; uniaxial anisotropy constant (J/m3),



bubble-supporting

bias field film
cylindrical 1 .
domain |
o . .. _l._._ ‘ h
magnetic - =N\ = - = = -
poles . (YT T
N +++++ + - - —
ST

Figure 2.1 A cylindrical bubble domain in a uniaxial thin film.

The bubble is stabilized by the external bias field.



Ay exchange constant (J/m) and

uos

w» domain wall mobility (m?/A s).

A material characteristic length

y Aex Ku
lm = (2.1)
2
uo MB

conveniently characterizes materials as to the range of bubble domain

sizes they can support. According to Thiele (1969), the optimum film

thickness

h=4 % (2.2)

results in the smallest stable domain diameter

d= 8 Qm . (2.3)
at a bias field
Hp = 0.3 Mj. (2.4)
The quality factor
2K
Q=__°2% (2.5)
2
uo MB

where Uy is the permeability of free space, is a measure of the
stiffness of the magnetization. Experience has shown that for most
useful bubble materials, Q should be in the range of 3 to 10 (Bobeck,

Bonyhard and Geusic 1975). The material parameters h, M , and

B? Ku’ Aex
u, can be adjusted by tailoring the material composition.

At present, the best materials available are single-crystal

garnet films in the form: (X) Feg 0,, where X is a combination of rare

3
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earths or Yttrium. The bubble size can be adjusted by varying the
magnetization of the garnet. This is achieved by using solid solutions
instead of one rare earth and by substitution of nonmagnetic ions (Ga or
A2) into the iron ions (Nielsen 1971). Garnet films are grown by
liquid-phase epitaxy (LPE) techniques on nommagnetic substrates such as
gadolinium gallium garnet (GGG). This process is described in detail by
Blank and Nielsen (1972). For example, a 3 um thick garnet (Smg.y Yo 6

Fe3.8 Ga; , 012) on a substrate (Gd3 Gag 012) can support 3 um diameter

bubbles yielding a storage density of 0.6x1010 bits/m2 (with four bubble
diameters separation). To achieve a data rate of 0.1 M bit/s, the 3 um
bubbles must have a mobility of at least 0.016 m?/A s.

Other bubble materials are under consideration. The most
promising of these are the amorphous magnetic films (Chaudhari, Cuomo
and Gambino 1973). These films (typically GdCoMo) are made by low-
- temperature sputtering processes on noncrystalline substrates and are

capable of supporting submicron diameter bubbles.

2.4 Bubble Circuits

Storage of binary information in a bubble memory system can be
achieved by various methods such as: presence or absence of a bubble at
a given site or by two different domain wall configurations (bubble
lattice file). A memory system must have not only the ability to store
information, but also provide access capability for reading and writing
at a selected storage location. Therefore, in a memory system one must

be able to perform the following functions: introduce new data
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(generate bubbles), read data (detect bubbles), remove data (annihilate
bubbles) and access data (propagate bubbles). In some cases, it is
advantageous to detect replicas rather than the original of the stored
data and hence a fifth function, namely bubble replication, is useful

(Bobeck and Della Torre 1975).

2.4.1 Bubble Generation

In the early days of bubble technology, bubble generation was
accomplished primarily by replication of a bubble from a rotating seed
bubble attached to a permalloy circular disk (Perneski 1969). Such disk
generators have the disadvantage of requiring initialization (creation
of the seed bubble). The most commonly used method of bubble generation
is based on nucleate generators (Nelson, Chen and Geusic 1973). In this
method a hairpin conductor loop is pulsed with an adequate current pulse
to produce a bubble domain. See Fig. 2.2(a). This bubble is then
propagated away, and if so desired, another bubble may be generated on
the next propagate cycle. Excellent operating margins and low
generating currents are obtained by locally annealing the bubble

material just under the hairpin conductor loop.

2.4.2 Bubble Detection

Nondestructive readout (NDRO) of a single bubble domain can be
achieved through the use of Hall-effect detectors (Strauss and Smith
1970). The vertical componént of the bubble's stray field produces a

Lorentz force in an adjacent semiconductor thin film, which causes a



elongated
seed bubble

permalloy disc garnet

(a) nucleate generator

r e
coppe magnetostrictive

film
LAkt V

L ]

7 \
garnet  bubble

(¢} MP detector

(d) replicate /transfer gate

Figure 2.2 Bubble circuits: (a) a nucleate generator (Nelson, Chen
and Geusic 1973), (b) a magnetoresistive detector
(Strauss 1971), (c) an MP detector (Ishak, Kinsner, and
Della Torre 1975) and (d) a bubble replicator (Bobeck,
Bonyhard and Geusic 1975).
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voltage to appear at right angles to both the bubble field and the
current direction in the semiconductor. The main disadvantage of this
method of detection is the requirement of an external power supply to
produce the necessary current in the semiconductor film.

Magnetoresistive detection is based on the fact that the
resistance of a permalloy bar changes when subject to an external
magnetic field (e.g. from an adjacent bubble). This change in
resistance will result in a detectable voltage change at the permalloy
terminals (Strauss 1971 and Almasi, Keefe, Lin and Thompson 1971). See
Fig. 2.2(b). Although this detector is easy to fabricate, it still
requires external current to operate and also responds to the
propagation field which results in a low signal-to-noise ratio.

More recently, the magnetostrictive-piezoelectric (MP) detector
(Kinsner and Della Torre 1974, Ishak 1975 and Ishak, Kinsner and Della
Torre 1975) and the acoustic-magnetostrictive (AM) detector (Kinsner and
Della Torre 1975) were suggested. In the MP detector, the vertical
component of the bubble's stray field is used to produce a mechanical
strain in a nearby magnetostrictive film (e.g. 60% Ni -~ U40% Fe
permalloy). This strain is coupled to a piezoelectric film (e.g. Zn0),
as shown in Fig. 2.2(¢), which prcduces an output signal at a very high
output impedance. The noise generated in this detector is much smaller
than in the magnetoresistive detector since it does not respond to the
propagation field. In the AM detector, a combination of a sonic pulse
and the bubble field is used to produce a voltage signal in a

magnetostrictive thin film. This detector is capable of detecting a
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stationary bubble, a property which is needed for a random-access NDRO

of a bubble memory configuration.

2.4.3 Bubble Annihilation

An information bit in the form of a bubble can be cleared by the
annihilation of the bubble through various techniques. A hairpin
conductor could be used to produce a strong magnetic field opposite to
the bubble magnetization, or a bubble could be merged to a seed bubble
attached to a permalloy sink or a bubble could be propagated to a

permalloy guard-rail outside the memory area (Chang 1975).

2.4.4 Bubble Replication

In a serial-access bubble memory, the cycle time can be reduced
by utilizing controlled replication of data before reading. The bubble
to be read is sent to a replicate circuit where it is cut into two
bubbles. One bubble is sent back directly to the original bubble
location and the other is routed to a detector circuit. Thus the need
for restoring data back into the storage 1loops after reading is
eliminated. The most useful bubble replicators thus far developed
employ permalloy elements and a control conductor pattern (Bonyhard,
Chen and Smith 1977). Controlled replication is achieved by applying a
specified current pulse at an appropriate time within the rotating field

cycle. See Fig. 2.2(d).
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2.4.5 Bubble Propagation

In a memory system the access of information, through bubble
propagation, is done much more frequently than any of the other
functions described in Subsections 2.4.1-2.4.4. The success of a bubble
memory system, then, depends mainly on how well and reliable bubble
propagation is performed. Almost all circuits analyzed in this thesis
are bubble propagation circuits.

Bubble propagation is accomplished by spatially varying the
strength of the bias field to create a gradient across the bubble. The
bubble then moves toward the region of the lower bias field. In
practical bubble devices, a traveling local gradient of bias field
across the bubble is created by permalloy patterns magnetized by a
rotating in-plane field. Figure 2.3 1illustrates how a bubble is
attracted to a rectangular permalloy bar magnetized by a magnetic field
HT and Fig. 2.4 shows some typical field access bubble propagation
circuits. While the T-I and Y-I circuits, shown in Fig. 2.4(a) and (b)
respectively, have two gaps per period, the half-disk (gap tolerant)
circuits of Fig. 2.4(e) have single gap peb period. Gap tolerant
circuits offer many advantages over other propagation circuits such as
increase of the minimum feature resolution (smallest permalloy
dimension) to 1/8 th of a period, excellent bias field margins and the
elimination of channel-to~-channel interconnection elements (such as the
I bars in Fig. 2.4(a) and (b)).

The parallel-bar (Della Torre and Kinsner 1973) and the

channel-bar (Della Torre and Kinsner 1975) circuits have the advantage
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of requiring an oscillating propagation field rather than a rotating
field, thus saving one propagation coil. By adjusting the overlapping
between successive bars, the parallel-bar circuit produces linear and

uniform bubble propagation.

2.5 The Modeling Problem

The simplest field access bubble circuit is composed of a
permalloy circuit overlay - magnetized by an in-plane transverse field,
adjacent to a magnetic bubble domain, stabilized by a bias field (see
Fig. 2.3). The modeling of such a circuit requires the solution of two
basic problems: the forward modeling problem and the backward modeling
problem. In the former, the changes in the permalloy magnetization and
total energy, due to the in-plane propagation field, the bubble's stray
field and the bias field, are to be computed. The later problem deals
with computation of the changes in bubble size and shape due to the
change in the permalloy total energy. A complete modeling technique
should be able to solve both the forward and the backward modeling
problems. While the forward problem has been analyzed by various
authors, the backward problem has only been investigated experimentally.

Modeling techniques for the forward problem vary according to how
one can characterize the permalloy material (bubble circuit material).
This results in three main modeling approaches: micromagnetic models,

domain moaels and continuum models.
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2.6 Micromagnetic Models

Almost all field access bubble propagation circuits are made of
thin ferromagnetic films such as a non-magnetostrictive permalloy (80%
Ni - 20% Fe). These .f‘erromagnetic films in the demagnetized state (e.g.
zéro applied field) are divided into a number of small regions called
domains. Each domain is spontaneously magnetized to the saturation
value, Mo but the directions of magnetization of the various domains
are such that the specimen as a whole has 2zero net magnetization
(Cullity 1972).

A micromagnetic model for a permalloy element placed in an
applied field HA’ typically used in bubble circuits, ghould thus take
into account the ferromagnetic nature of the permalloy. The magnetiza-
tion vector at any point in the permalloy must be of a constant
magnitude equal to Ms' Only the direction of this vector is allowed to
vary. In addition, an accurate micromagnetic énalysis requires the
computation of the magnetization distribution over a very large number
of points in the permalloy. A typical permalloy bar of dimensions
15x3x0.4 ym requires a mesh of about 18000 points. This will result in
a cell size (the distance between two neighboring points) of about 500
K which reasonably simulates a micromagnetic cell for such bar. For
such small cell dimensions, the exchange force (a force, quantum
mechanical in origin, trying to align the magnetization vectors parallel
to each other), and hence the exchange energy, ‘will contribute a
significant term to the total energy.

The actual magnetization distribution in a permalloy element, for
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no applied field —

Figure 2.5 A magnetic body (a) in the demagnetized state responds to an
applied field HA by (b) a domain wall motion where the domains
whose magnetization are closest to H, grow at the expense of
the other domains until (c) the whole body becomes a single
domain and then (d) a magnetization rotation occurs to make
MS parallel to HA'
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‘any applied field configuration, is obtained by minimizing the permalloy
total energy. This distribution should describe the domain structure,
including domain walls, in the permalloy.

Due to the large amount of computations and large computer memory
requirements involved in this approach, micromagnetic modeling has been
avoided by most of the workers in the area of bubble circuit modeling.

This problem, however, is discussed in detail in Chapter 3.

2.7 Domain Models

This approach assumes an initial domain distribution in the
permalloy, with zero domain wall thickness. The presence of an applied
field changes the overall magnetization distribution by an increase in
the volume of the domains whose magnetization directions are closest to
the applied field, at £he expense of the other domains (Della Torre and
Longo 1969 and Cullity 1972). See Fig. 2.5.

In one of the domain models, Della Torre and Kinsner (1973)
assumed a two domain configuration per rectangular bar as shown in Fig.
2.6(a). This one-dimensional model (the magnetization is allowed to
vary only along the bar's long axis) is fairly accurate for analyzing
bars with relatively large aspect ratio (length/width). However,
experimental observations proved that for short bars, the closure domain
configuration, shown in Fig. 2.6(b), should be considered. It was shown
(Della Torre and Kinsner 1973) that assuming more than two parallel
domains per bar will not produce significant changes in the

magnetization distribution.
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Figure 2.6 Domains and domain walls in rectangular permalloy bars.
(a) two longitudinal domains per bar (Della Torre and

Kinsner 1973) and (b) a closure domain configuration
(Khaiyer 1976).
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Khaiyer (1975) suggested a two-dimensional domain model using the
closure domain configuration of Fig. 2.6(b). The magnetization, in this
model, is allowed to vary along the bar length and width. Only straight
domain walls are allowed which is questionable if the bubble's stray

field is considered.

2.8 Continuum Models

Continuum models are based on approximating the magnetization in
a permeable body by a continuous distribution rather than division into
domains. This approach allows using mathematical simulation techniques
to compute an average magnetization distribution.

4 magnetostatic model for analyzing bubble-permalloy configura-
tions in the absence of in-plane propagation fields Was intreoduced by
Boyarchenkov, Raev, Samarin, Balbashov and Chervonenkis (1971). In
their model, the charge distribution, on the permalloy element, due to
the presence of the bubble domain is computed using an approximate
expression for the bubble field (Bobeck 1967)._ Copeland (1972)
suggested a one dimensional continuum model for rectangular permalloy
bars using a series expansion to approximate the demagnetizing field
(the field set up by the magnetization) in the permalloy. Starting with
an initial magnetization distribution, an iterative procedure is used to
compute the final one-dimensional magnetization distribution. Thé
model, formulated in this way, is not capable of analyzing cases where
two permalloy elements interact with each other.

Later, Lin (1972) introduced another one-dimensional model in
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which he used a Fourier series method to compute the magnetization
distribution in rectangular permalloy bars. No extension to the
two-dimensional case was made.

A three-dimensional model was introduced by Kinsner and Della
Torre (1972) in which the Poisson's equation for inhomogeneous medium
was solved using an iterative technique. Various bubble propagation
circuits were analyzed including T-I, Y-I and Chevron circuits (Kinsner
and Della Torre 1975). In that model the polarizing influence of the
bubble's stray field was not taken into consideration.

Archer, Tocci, George and Chen (1972) and, later, George and
Archer (1973a,b) suggested an energy minimization technique to solve for
a two-dimensional magnetization distribution in permalloy circuits. The
total local field (the vectorial sum of the applied field and the de-
magnetizing field) is assumed to be identically zero everywhere in the
permalloy. This assumption implies that the susceptibility of the
permalloy must be infinite to achieve finite magnetization values. This
is a disadvantage of the model since measurements proved that thin
permalloy films, when etched into small bars, will possess a finite
susceptibility in the range of 200-2000 (Dove, Watson, Ma and Huijer
1976 and Feng and Thompson 1977). Basic to the magnetization computa-
tion, in this model, is the solution of a large system of linear
equations. A typical permallcy bar modeling problem with a mesh of 100
points (points at which the magnetization is to be computed) requires
the solution of a set of 200 equations. In addition to large computer

memory requirements, the coefficients in these equations may vary over a
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wide range which may result in an ill-conditioned formulation (Wilkinson
1963). The model was used to analyze various thick permalloy bars
(George and Archer 1973a) and ¢chevron circuits (George and Hughes
1976a) .

Dove, Watson, Huijer and Ma (1975) used a Fourier series method
for the calculation of the permalloy magnetization and energy. Spatial
variation of the demagnetizing field in the permallocy was represented in

this model by a Fourier series expansion and only rectangular bars were

analyzed.

2.9 Analytical Models

A new approach for modeling of bubble circuits was introduced by
Almasi, Lin, Munrc and Slusarczuk (1974) and generalized by Almasi and
Lin (1976). In this model the problem was approached from the viewpoint
of the bubble, that is the change in the bubble energy due to the
presence of the magnetized permalloy circuit. Approximate analytiecal
expressions were derived giving the change in the bubble energy aé
functions of the circuit parameters (permalloy and bubble parameters).
Although this model offers a simple computation procedure, yet the error
in the energy values could be as high as 20% (Almasi and Lin 1976).
Using this technique, the forward modeling problem is not solved and it
is difficult to analyze complicated propagation structures such as gap

tolerant circuits.
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2.10 Conclusions

In summary, there exist several modeling techniques for analyzing
simple bubble  domain field access propagate structures. Some are
unrealistic especially when dealing with thin permalloy circuits and
some are approximate and cannot deal with complicated shapes of
propagation circuits such as gap tolerant circuits. It is the rapid and
varied development in the shapes and characteristies of bubble
propagation structures, and hence the necessity of developing a general,
accurate and efficient model that formed the motivation of this research

work.



CHAPTER 3

NEW APPROACHES TO BUBBLE CIRCUIT MODELING

3.1 Introduction

In this chapter new techniques for modeliné of field access
bubble propagation circuits are presented. First a micromagnetic model
for magnetized permalloy circuits is given. The implementation of this
analysis was successful; however, it was not practical for use in an
optimization program since it required excessive running time and memory
storage. Several assumptions are examined that led to a simplified
analysis which introduced a new continuum model. In the remainder of
this chapter, this continuum model is described in detail.

Both models are numerical in nature and iterative schemes are
used to compute the magnetization distribution in the permalloy overlay
described in Chapter 2, In the continuum model an arbitrary M-H
relation 1s used to express the permalloy's nonlinear characteristics.
The model 1is capable of handling arbitrary permalloy shapes in two
dimensions. Various examples are analyzed using the continuum model and

comparison to the results of models of other workers is given.

3.2 Statement of the Problem
An objective of the forward modeling problem, described in
Section 2.5, is to find the magnetization distribution M(g) and the

total energy Ep of a permalloy body placed in an applied field H,(r),
27



28

where r is a position vector. See Fig. 3.1. The applied field ?A(g),
in a typical field access bubble circuit, is composed of four
components:

(N QB; the bias field required to stabilize bubble domains in a
bubble circuit. This field is wusually produced by a pair of
permanent magnets and is normal to the permalloy plane, that is
applied in the z-direction, |

(2) gT; the transverse in-plane field required for the propagation of
bubble domains. A pair of coils is required to produce this
field which is uniform, rotatable about the z-axis and applied in
the x-y plane,

(3) %R(E); the radial component of the bubble's stray field which is
highly nonuniform in the x-y plane, and

)] QN(t); the normal component of the bubble's stray field which is
nonuniform and in the z-~direction.

An algorithm for the computation of the bubble's stray field is given

later in Subsection 3.4.1.

When a bar is magnetized by an applied field, a demagnetizing
field HD(r) is created which acts generally in the opposite direction of
the magnetization @(E). The computation of H (g) for an arbitrary
shaped magnetized body is one of the most difficult problems in the
following analysis. Subsections 3.4.2 and 3.5.1 describe in detail such
computations.

In general, the total energy Ep of a magnetized body is composed

of the following terms:
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Figure 3.1 A rectangular permalloy bar of dimensions £ x w x t in the
x-y plane. The z-axis is perpendicular to the bar plane.
The applied field and magnetization at point P, whose position
vector is rp, are HA(rP) and M(rP), respectively.



30

(&D) An applied field energy term EA’
(2) A demagnetizing energy term ED,

(3) A magnetocrystalline anisotropy energy term EMA’

(4) An exchange energy term EEx and

(5) A magnetoelastic energy term Eyp.

The goal of micromagnetic analysis of a magnetic body‘is the computation
of the magnetization distribution M(r) which will minimize the total

energy

Ep = Ey + Ej + Eyy + Epy + B - , (3.1)

3.3 Energy Analysis

The following analysis refers to ferromagnetic and ferrimagnetic
bodies where the magnetization of each elementary subvolume AV in the
body is of fixed magnitude but variable orientation. When a field %A(E)
is applied to such a body, the torque exerted on each subvolume AV is
given by gA(E) X y(f) AV. This torque tends to align M(E) parallel to
QA(r). The total applied field energy may be written as (Cohen 1970)

By = - U, j Hy(r) « M(r) Qv , (3.2)

Vp

where VP is the volume of the body.

Similarly, the demagnetizing energy which will result from the

creation of H_ (r), inside the body, is given by (Cohen 1970)

D
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ED = - _ My [ ED(E) . y(f) dav . (3.3)
Vp

1
2

The factor 1/2 arises from the fact that self-energy is involved. The
demagnetizing field HD(ri) at point i1 is computed by summing the

contributions of the magnetization M(rj) at all points in the body. The

~ o~

contribution from the magnetization %(Ej) to the demagnetizing field
%D({i) depends on the distance between the two points, lfijl’ and the
shape of the magnetic body. The demagnetizing energy ED is, thus,
sometimes called the shape energy or shape anisotropy energy.

In addition to shape anisotropy, the magnetized body, due to its
crystalline structure, exhibits a magnetocrystalline anisotropy.
Generally speaking, any body has one or more easy directions of
magnetization (directions along which the body can be magnetized to
saturation with quite low fields). Any attempt to magnetize it in some
other direction results in an increase in its internal energy by an
amount called the magnetocrystalline anisotropy energy. it is
convenient to define this energy in terms of the direction cosines
Gx(t), ay(t) and az(t) of the magnetization M(r) in the form (Della

~ o~

Torre and Longo 1969)

EMA = J {KO + K1[a§(£) ag(s) + ai(f) ai(f)

Vp

+ a2(p) o2(0)] + K

5 ai(s) as(g) ai(f) + ...}dV (3.4)

where K K K ... are the anisotropy constants of the body. Higher

o "1 T2

powers are generally not needed and sometimes K2 is so small that the
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term involving it can be neglected. Since we are usually interested in

the change in the energy when M(r) is changed, the term KO need not be
considered. In uniaxial magnetic boedies, EMA reduces to
E,, = | K,sin® 6,(r) dv (3.5)
MA ~ 1 M~ *
vP

where © (E) is the angle between the magnetization and the easy axis.
In this case K1 is called the uniaxial anisotropy constant.

The atomic structure of a ferromagnetic material, such as
permalloy, is such that exchange forces of a quantum-mechanical nature
tend to force the spins of adjacent atoms to lie in parallel directions.
The exchange forces are short range and decline so markedly with
distance that only adjacent atoms interact. The exchange energy is

given by (Brown 1963)

Egy J Mgy (07 e (1% 4 [T a (1% 4 (7 o (117 av (3.6)

v
1Y

where AEX is the permalloy exchange constant.

When a substance is exposed to a magnetic field, its dimensions
change due to magnetostriction. Conversely, when a stress, or a strain,
is applied to a magnetic material, its magnetization changes due to the
maghetoelastic effect. The magnetoelastic energy term is given by
(Cohen 1970)

Eya = - J. \e a(r) sin2 [BU(E)] dav, (3.7)

p
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where AME is the magnetoelastic constant, o(r) is the stress vector and

Gc(r) is the angle between the stress and the magnetization.

3.4 A Micromagnetic Model
Brown (1977) showed that the magnetoelastic energy of the body

can be reduced to an expression similar to that in (3.4) (or (3.5) in
case of uniaxial materials). Therefore, the effect of the elastic and
magnetoelastic properties of the material can be combined and the
magnetocrystalline anisotropy constants at zero strain (Kd, K1, K2, e
in (3.4)) replaced by slightly different elastic consténts so that

EM = EMA + EME = J {Ké + K;[ai(g) ai(s) + ai(z) ai({) + ai(z) ai(z)] +

v

P

K; ai(z) as(z) ai(f) + ...} dv, (3.8)

] ]

K .+«.» are the new anisotropy constants. For uniaxial

K Ky

1
where KO ’

materials .,

E,=E_ +E _ = J K; sin2 [eM(g)} dav . (3.9)
P

Using (3.2), (3.3), (3.6) and (3.8), EP can be expressed as

[ ] 1 *
Ep =J [-uo §A(g) M(r) - 5 L gD(g) M(r)
i)

P
+ gy 17 @ (01 + 17 a (1% + 17 a (1% +

KF, le (1), a (r), az(g)]:) av (3.10)
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where

Falog(n), ay(r), o, (0] = e2(r) a2(r) + a2(r) o2(p)
+ ag(z) ai(f) (3.11)

is the effective magnetocrystalline-magnetoelastic anisotropy function.

To find the equilibrium condition for @(g), we 1imagine the
magnetization to undergo virtual variations 6@({) subject to the
constraint

lM(pi)( =Mg , i=21,2, ...; N, (3.12)

and require that the resulting first derivatives of EP be zero. The
constraints (3.12) can, alternatively, be stated as (Brown 1963)

§ Iy(ry) =88 x Ny(r), 121, 2, ..oy N, (3.13)

where

ury) =0 (py) 1 oy (py) 1+ 0 (py) 1, 1 =1, 2, .o, ?3 )

is a unit vector along M(ri) and 8% is an arbitrary small vector which

~ o~

discribes a rotation of 1M(ri) through a small angle IGEl about an axis

in the direction of 6&. The equilibrium condition, therefore, requires

that (neglecting surface effects)

() x B (e) =0, i=1,2, .., N, (3.15)
where
LY
§L(§i) z §A(§i) + gD(;i) + gEx(gi) - ey (3.16)
Mg A1y(x;)

i=12, ..., N,
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A E .
Hex(r;) = * VZ[lM(Eiﬂ y =1, 2, ..., N, (3.17)
u M.
os
and
LA LA I T (3.18)
3u(r) aax(g) 8ay(£) 3a_(r)

If the permalloy has no anisotropy, then (3.17) reduces to

Hp(pg) = Hy(py) + Hplpy) + Hpy(pyd)y 121, 2, oy N (3.19)

and the equilibrium condition is satisfied by setting (see Fig. 3.2(b))

eM(Ei) = eL(gi), i = 1, 2, caay N . (3-20)

From now on, a symbol that denotes a vector without a tilde will refer
to the vector magnitude. For example HL(E) é l%L(E)l.

In most bubble circuits, the dimensions in the plane of the
permalloy film (x-y plane in Fig. 3.1) are very large compared to the
film thickness. For example, in a 3 Hm diameter bubble circuit, typical
dimensions of a rectangular bar would be 7.5 x 1.5 x 0.3 um. This gives
a length-to-thickness ratio and a width-to-thickness ratio of 25 and 5,
respéctively. Therefore, M(r) tends to lie in the film plane, since if
for any reason, %(t) tilts out of the plane, the resulting demagnetizing
field will be 1large enough to pull it back (Cohen 1970 and Cullity
1972). To a good approximation, the following analysis will refer to a
two~dimensional magnetization distribution %(E) in the x-y plane.

Moreover, the bias field H, and the normal component of the bubble's

B

stray field Hy(r) will not affect the magnetization M(r) since they are

in the z-direction.
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The problem can still be simplified by assuming that the
magnetization distribution @(E) is to be computed over a discrete mesh
of N points distributed uniformly over the magnetic body. Since the
magnetization vector has a constant magnitude, over an elementary
subvolume AV in a ferromagnetic body, it is thus required to compute the
direction of @({i), in the x-y plane, where i = 1, 2, ..., N. This

magnetization distribution should be in such a way that Ej of (3.12) is

P
minimized relative to small variations in the magnetization.
Figure 3.2(a) illustrates a two-dimensional mesh of N points, in
the x-y plane, over a permalloy bar of dimensions %, w and t. It will
be assumed that the magnetization %(Ei) at point 1 represents the
magnetization over a cell of dimensions Ax and Ay, (1/2)Ax and (1/2)Ay,
Ax and (1/2)8y and (1/2)Ax and Ay for interior, corner, x-edge and
y-edge points, respectively. A typical point, i, of the mesh is shown
in Fig. 3.2(b) together with the fields %A(ti)’ %D(ti) and %Ex(ti)' The

following subsections describe, in detail, the computation of HA(r),

By (5) a0ty (0).

3.4.1 Computation of the Applied Field
Considering only field components in the x-y plane, the total
applied field is given by

Hy(r) = Hp + Ho(p) . (3.21)

Expressions for H_(r) and HN(r) in terms of the elliptical integrals of
the first, second and third kinds are available in the literature (Lin

1972 and Almasi and Lin 1976). Since H (r) will be computed at large
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Figure 3.2 A discretization mesh of N points placed over a permalloy bar
in the x-y plane. (a) the cell dimensions are Ax and Ay and

(b) at point i, the total local field H (r ) is inclined at
an angle 6 (r ) to the x-axis.
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number of points in the permalloy, an efficient and fast algorithm is
required. It was decided to use the expressions derived by Druyvesteyn,
Tjaden and Dorleijn (1972) where the bubble's stray field components are

expressed in terms of a single generalized elliptical integral

m/2 2 2
CEL(k,p,a,b) = .[ acos Y+bsin“y dy . (3.22)
(o} cosZW+psin2w c032¢+k2sin2¢
They showed that (see Fig. 3.3)
—2RMB’fCEL(k1,1,—1,1) CEL(k,,1,-1,1)
Hp(r) = - 1o (3.23)
" LF/(R+r)2 + z2 VAR+r)2+(z+h)2
where 1r' is a unit radial vector,
2 2
k? - (R-r)° + =z (3.24)
2 2
(R+r)” + z

and

2 2
kg - (R=-r)° + (z+h)° ] (3.25)

(R+r')2 + (z+h)2

A FORTRAN IV program was implemented and tested (Ishak and Della Torre
1976) for computing the bubble's stray field using an iterative scheme
to compute the CEL function (Bulirsch 1969). The program proved to. be

efficient and accurate.
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- Figure 3.3 The coordinate system used to compute the radial component
of the bubble's stray field at a point P(r,z).
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3.4.2 Computation of the Demagnetizing Field
The demagnetizing field Hp(r;), at point 1, will be given by

(Della Torre and Longo 1969)

_o 1 ;
p{ry) = - = ya‘[ Y M(ry) dvy (3.26)

!
v 715

Whefe‘ﬁ and Vﬁ are the nabla operators with respect to the field point i

~

and the source point j, respectively as shown in Fig. 3.4. The x and y

components of HD(Ei) can be written as

HDx(gi) = J..j [Dxx(gi;gj) Mx(gj) + ny(gi;qj) My(gj)]dxjdyj,
(3.27)

HDy(gi) = -{ J- [Dyx(gi;gj) Mx(gj) + Dyy(gi;gj) My(gj)]dxjdyj,
(3.28)

" where the coefficients Dxx(fi;fj)’ ny(fi;fj)’ Dyx(fi;fj) and Dyy(fi;fj)
are functions of the permalloy thickness t and the distance dij between
the field point i1 and the source point j. In Appendix B expressions for
these coefficients are derived in detail.

Since M(Fj) is constant over an elementary cell around point j,

it can be shown that (3.27) and (3.28) reduce to

"
n ™M=

HDx(fi) [Mx(fj) Dxx(fi;fj) + My(fj) ny(fi;fj)] , (3.29)

1

"
TR

HD (fi)

, ; [Mx(fj) Dyx(fi;fj) + My(fj) Dyy(fi;fj)] , (3.30)

1


http:r.)]dx.dy
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magnetized body

/e

] field point
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Figure 3.4 The coordinate system used to compute the demagnetizing field
at a field point i due to the magnetization at a source pointj_
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A
Dkl(gi;gj) = jJ“Dkz(gi;gj) dk

;AR .
J jz'J
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(3.31)

The two-dimensional demagnetizing field distribution as a

function of the magnetization distribution, is thus given by (3.29) and

(3.30).

3.4.3 Computation of the Exchange Field

Since a unit vector in the direction of the magnetization can be

written as

A .
1M(£) = cos eM(E) 1x + sin eM(E) l

(3.32)

then the x and y components of the exchange field (see (3.17)) at point

i are given by

Hoo (r.) = 2hex |92 32
EX ~i7 ° ”
*o ax~  ay
H (e = 2hpy | 22 2
EX *~i’/ ~© n M
y fo) L_Bx 3y
where
8 (r.) 4% ( )
MEi? F VX Y

Following the analysis of

2AEx
X uo M

- sin O, (p.) [8y (r;) + &y ()]

- cos 8,(x,) [e§x<gi) + 02 (r,)]

Appendix C, (3.33) and (3.34) reduce to

yy

(3.33)

- (3.34)

(3.35)

(3.36)



where
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Hpy (£) = o ) = sin e (r.) [of (r) + 0 (r)]
y Mo MS X y
+ cos eM (gi) [GM (gi) + 6y (gi)] , (3.37)
XX Yy
A3 T ’

0y (r;) 2 -—[SM(Ei)] , (3.38)

n an{
2

0, (ry) é-i——[eM(Eiﬂ : (3.39)

nn anz

and n refers to x and y.

3.4.4 The Micromagnetic Algorithm

Following the analysis of Sections 3.2-3.4, a two-dimensional

magnetization distribution M(r) in a permalloy element, placed in an

applied field H

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

~ o~

A(r-), can be computed using the following steps:

Define a mesh of N points over the permalloy as shown in Fig.
<]

3.2(a) such that Ax and Ay < 500 A.

Set k = 1. Choose a tolerance € for the termination criterion.

Choose an under-relaxation factor B such that B << 1.

(0)

Choose a suitable initial magnetization distribution {M (ri),
i= 1, 2, ...y N}.
Compute {H (r,), i =1, 2, ..., N}, using (3.21) and (3.23).

Compute {Qék)(ti), i=1, 2, ..., N} using (3.29) and (3.30)

and the results of Appendix B.

(k)

+
Compute {gEX

(ri), i= 1, 2, ...y N} using (3.36) and (3.37)



Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

and the results of Appendix C.

Compute {g(k)(ri), i= 1, 2, ..., N} using (3.16)

{eék)(fi)’ i=1,2, ..., N} using

(k)
H .
6 (1) - tan™! Ly )
L fyf=stan o

Hék)(ri)

set 80K)(p.) = eék)(ti), i=1,2, ..., N.

(3.

Replace {eék)(fi)’ i=1,2 ...,} by an under-relaxed

using

0 (r) « 8 0 (r) + (1-8) o Vr),

i=1,2, ..., N

Compute the residual error

e(k) = max Agk)

1<i<N
where
Aik) A leék)(fi) _ eék—1)(fi)|
stop if ¥ <. set
M(ry) = Mg Iék)(fi) s i=12

Set k = k+1. Go to Step 5.

3.4.5 Discussion

initial magnetization distribution.

(3.

(3.

(3.

,» (3.
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and

40)

set

41)

42)

43)

uy)

Step 3 of the above algorithm requires the choice of a suitable

Since the magnitude of the

magnetization vector is constant and equal to Ms everywhere in the



permalloy, it is convenient to define a demagnetized initial
distribution; otherwise, the demagnetizing field components will be very
high and instability of the solution may occur.

The reason for using an under-relaxation factor g8 in Step 9 of
the micromagnetic algorithm is that since the permalloy is a high
permeability material, then small changes in M(r) can produce large
changes in gék+1)(§) which could produce very large changes in
g(k+1)(£). Therefore, only very small changes are allowed in g(k)(g)
and this is controlled by using a very small under-relaxation factor.

The assumption in (3.44) imposes a certain condition on the cell
size of the N-point mesh in the permalloy. The cell size should be
small enough to simulate accurate micromagnetic dimensions. Since
domain wall thickness in permalloy films are in the range of 0.05 to 0.1
pum, it is convenient to define & mesh with a cell size of about 200 A.
'In a rectangular permalloy bar of dimensions 7.5 x 1.5 x 0.3um if one
uses square cells of dimensions 200 x 200 A, then a mesh of more than
28000 points is required. In addition to the large amount of computer
memory necessary, a great deal of computer time is requifed to perform
the micromagnetic algorithm with such a large number of points.
However, it should be noted that the obtained magnetization distribution
is a general one and accurately describes the domain and domain wall
behavior in the permalloy.

It is noted that (Ishak and Della Torre 1978c) the computation of
the field gD(E) (Step U4) consumes most of the running time required for

the algorithm. Therefore, one way of reducing the required computer
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time is to use a fine/coarse mesh configuration where the magnetization,
the applied field and the exchange field are computed over the fine mesh
and the demagnetizing field is evaluated over a coarser mesh. Inter-
polation procedures are then used to obtain the demagnetizing field
canponents over the fine mesh.

Using a fine/coarse mesh configuration with 4681/561 points over
a permalloy bar of dimensions 7.5 x 1.5 x 0.3 um, it was found that,
using a CDC-6U400 computer, one iteration in the micromagnetic algorithm
requires 60 seconds of computer time. About 60 iterations were required
to converge to a residual error of 1%.

Due to computer memory and time limitations, it was decided to
use another approach for the forward modeling problem. Nevertheless,
the micromagnetic algorithm as described in Subsection 3.4.4 is the most
general and accurate way of analyzing a ferromagnetic body, and will

. ﬁave to be used for analyzing submicron bubble propagation circuits.

3.5 A Continuum Model
3.5.1 Introduction

In this approach, the magnetization is assumed to be continuously
distributed within each of the permalloy pattern elements. This is a
macroscopic model which views the magnetization as the average of each
individual domain magnetization. Therefore, the magnetization
components are computed over a relatively coarse mesh. Since the
exchange field decreases rapidly with the distance between neighboring

points, it is reasonable to neglect the effect of the exchange energy on
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the total permalloy energy in a continuum model.

During the deposition of permalloy films for bubble circuit
applications, a rotating deposition field, in the plane of the film, is
applied to create essentially isotropic films, on a macromagnetic scale.
In addition, most bubble cirduits are fabricated using non-
magnetostrictive films to eliminate the stresses between the permalloy
layer and the garnet film. Thus, to a reasonable approximation, the
permalloy energy can be written as

Ep = By + Ep (3.145)

which means that the total local field at any point i in the permalloy
will be composed of only the applied field and the demagnetizing field
components.

Further, it is assumed that the magnetization distribution can be
"approximated by a discrete expansion coupled with a suitable

interpolation scheme (George and Hughes 1976a)

N

M (r;) = ji1 Mx(:j) I(i;3) (3.46)
N

M (r;) = i M (rpy) I(153) (3.47)

j=1
where I(i;j) is an interpolant having the Kronecker delta form :

I(i;J) i=3

1
—
-

=0 , i#j (3.48)
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Viewed from this point, the substitution of (3.46) and (3.47)

into (3.27) and (3.28) yields

. C C M
~Dx TXX Xy X
= , (3.49)
H C C M
~Dy yx Yy iy
where
Hy = [Hy (£ Hy (£p) ... B (p)17 (3.50)
k k k k
M2 IM(r) M(r) (r,)17 (3.51)
=p, = Me'Ey M (ry) oo Mgl :
ck£(1,1) ck2(1,2) ces ck£(1,N)
-~ A
ckm = ck2(2,1) ckz(z,z) e C (2,0, (3.52)
Ckz(N’1) Ckz(N,Z) ces Ckz(N,NZ
Cyep, (m,sD) é‘[j Dy (pyir,) I(psn) dk de . (3.53)

Since the elements of Ckz depend only on the geometrical
parameters of the permalloy, they are computed once, for each circuit,
and used throughout the analysis of the circuit and for different
applied field configurations. It is noted that the integrand in (3.53)
is singular when m = n. Appendix B discusses the nature of this
singularity and the procedure used to perform the integration when m=n.
It is also noted that, generally, the matrix (Ll is diagonally dominant
which means that the demagnetizing field is almost in the opposite

direction of the magnetization. A similar technique for computing the

demangetizing field distributiocn has been used by Della Torre and
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Kinsner (1973).

The magnetization in the permalloy is computed iteratively from
an initial distribution M(O)(r). Assuming a fixed bubble size and
position, the two in-plane components of gA(S), namely §T and HR(E), and
the demagnetizing field qD({) are computed using (3.21), (3.23) and
(3.52), respectively. The total local field is, then, computed and a

new magnetization distribution

M D) et (2 19 (r) (3.54)

is next computed where k refers Lo the iteration number and f determines
the M—HL relation for the permalloy. The process is repeated until a
final magnetization distribution is obtained according to a pre-
determined accuracy.

Ma (1976) showed that permalloy patterns for bubble circuit
‘applications possess a wide variety of M-HA characteristics. In
general, the magnetization varies nonlinearly with the applied field
and, hence, with the local field (Cullity 1972). This is in agreement
with the results of Doyle and Casey (1972) and Krinchik, Chepurova,
Shamatov, Raev and Andreev (1975). They measured the magnetization
loops for various permalloy films and came to the conclusion that even
when M varies linearly with HA for low applied fields, it asymptotically
approaches Ms for large fields. The point at which M no 1longer

increases linearly with H, was difficult to measure. However it did

A
vary in different samples from 0.3 MS to 0.9 Ms'

A wide variety of functions were tested to simulate the permalloy

M-HL characteristics and it was found that the magnetization converged



50

to reasonable values in all cases. The M-Hj relation

H; (1)
M(p) =M_tt, » B (r) < H, (3.55)
H
t
2 -1 i (£)
M(r) = Ms t1 +_; (1-t1) tan [1]__75___iJ , HL(E) 2_Ht, (3.56)
t

where tq, Hg and n are the parameters shown in Fig. ﬁ.2, is found to be
general enough that by controlling these parameters, a wide variety of
functions can be obtained. Typical values for t,, H, and N are 0.5,
1000 A/m and 7 /2, respectively. Appendix D sketches various other

functions together with their properties.

3.5.2 The Magnetization Algorithm
The iterative procedure to compute the magnetization distribution
in a permalloy body, at a fixed bubble diameter and position, can be

summarized in the following steps (Ishak and Della Torre 1978a):

Step 1 Define a suitable mesh of N points over the permalloy body.

Step 2 Compute the elements of the matrlces(%x, ny, ny and qu in
(3.49) using the procedure outlined in Appendix B.

STEP 3 Set k= 1. Choose a tolerance vector £ for the termination
criterion. Choose a suitable under-relaxation factor 8.

Recommended values are in the range 0.03 < B < 0.05. Choose a

suitable function f to represent the M-H| characteristics as

shown in (3.55), (3.56) and Appendix D.

Step 4 Compute {BR(gi), i=z1, 2, ..., N} using (3.23).



Step 5

Step 6

Step 7
Step 8
Step 9

Step 10

Step 11
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Compute {QA(gi), i=1,2, ..., N} using (3.21).

Define a suitable initial distribution {M(O)(Ei), i=1,2,...,N}.
For example, use (3.54) replacing gL(E) by gA(E).

Compute {gék)(fi), i=1, 2, ..., N} using (3.49).

Cmm%e{ﬂkhﬁ),i

H
-
nN

.., N} using (3.19).

1]

—
-

n
-

Compute {M(k)(ri), i «ssy N} using (3.54).
Replace {M(k)(ri), i= 1,2, ..., N} by an under-relaxed set

using

My <8 u® )+ Geam® V),

i=1,2, ..., N. (3.57)
Compute the residual error
(k) _ (k) (k)T
e = m™" m ™) (3.58)
where
(k) (k-1)
N M (e )-M (r.)-lz
m(k) ﬁ 5 n i n ~i o (3.59)
n i=1 (k)
Mn (gi) J
Step 12 Stop if %) ¢ e. set
y(gj) = g(k)(gi), i=1,2, «e., N . (3.60)

Step 13 Set k = k+1. Go to Step 7.
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3.5.3 Discussion

Following the argument in Subsection 3.4.4, a very small undef-
relaxation factor B should be used to avoid oseillation and/or
divergence in the numerical process. On the other hand, wusing an
extremely small value for B will result in a slow convergence.
Therefore, an optimization of B is desired to affect a stable solution
as well as a reasonably fast convergence.

Figure 3.5 shows the effect of the under-relaxation factor B on
the number of iterations required to achieve a residual error of less
than 0.1% in the magnetization components of a 105 point mesh defined
over a 15 x 3 x 0.4 um rectangular permalloy bar. It was found in
general, that the optimum value for B8 1is problem dependent which
decreases as the number of points, in the iteration mesh, increases.
Moreover, the value of B is inversely proportional to the slope of the
M-HL characteristics which is in agreement with the results of
Ortenburger (1977). For most of the problems treated in this thesis it
is noted that 0.03 < B < 0.05 results in reasonable computer times as
well as numerical stability in the iterative procedure.

In Step 9§ of the magnetization algorithm, the x and y components
of the magnetization vector everywhere in the permalloy are computed.
By neglecting the cross-coupling terms, each component can be computed
separately. Ma (1976) showed that this is reasonable for ferromagnetic
bodies and Ortenburger, Cole and Potter (1977) used separate analysis
for the x and y components of the magnetization in high permeability

recording media.
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Figure 3.5 Effect of the under-relaxation factor on the number of
iterations required in the magnetization algorithm.
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The residual error defined in (3.56) is the normalized total
error in the magnetization camponents. Alternatively, the maximum
change in these components can be used to terminate the iteration

process, that is
oK) | (W) e§k)]T’ (3.61)

where

B ()l y |
er(lk) = n<1alc n ":(Lk) n ~1 , (3.62)
<IN M (r,)
n ~1

3.6 Examples

Figure 3.6 shows the demagnetizing factors (see Appendix B) of a
15 x 3 x 0.4 um permalloy bar calculated from the matrix of (3.49)
using a cubic-spline interpolation function in (3.46) and (3.47).
Camparison to the case of a linear interpolation is also given. The
'ﬁagnetization distributions in a 7.5 x 1.5 x 0.3 um permalloy bar when
placed in a uniform in-plane field are shown in Fig. 3.7 together with
its demagnetizing factors. It is noted that the magnetization
distribution reflects the demagnetizing factor distribution.

The effect of the position of a bubble domain on the
magnetization distributions in a rectangular bar is given in Fig. 3.8.
The maximum magnetization, for any bubble position, usually occurs near
the bubble perimeter due to the bubble's stray field. Figure 3.9 shows
the demagnetizing field distributions and the magnetization
distributions along the center line of a rectangular permalloy bar for

two different bubble positions. It is noted that the maximum of the
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Figure 3.6 Demagnetizing factor distributions of a rectangular permalloy bar of dimensions
15 x 3 x 0.4 ym (shown in the inset). Solid lines refer to cubic spline inter-

polation (see (3.46) and (3.47)) and dashed lines to linear interpolation
(George and Hughes 1976a).
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The magnetization distributions in a rectangular permalloy bar

of y and the demagnetizing factors and (c) y-component of the
magnetization as a function of ¥.
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magnetization occurs at the minimum of the demagnetizing field.

To compare the results of the magnetization algorithm with
results of models of other workers, the average magnetization
distributions along the x and y axes of a 15 x 3 x 0.4 um permalloy bar
are computed and plotted as shown in Fig. 3.10. Since the present model
uses a finite value for the permalloy susceptibility, it yields
relatively lower magnetization values than those of the infinite
susceptibility model of George and Hughes (1976a).

Both symmetric and asymmetric half-disk circuits are analyzed to
show the capabilities of the model regarding the handling of complicated
permalloy shapes. Figure 3.11 illustrates the demagnetizing factor
distributions of a symmetric half-disk and Fig. 3.12 shows the
demagnetizing field and the magnetization distributions at two different
_cross-sections of a two-period asymmetric half-disk circuit. Since
characteristics of half-disk circuits have not been published, it is not
possible to compare the results of Figs. 3.11 and 3.12 to experimental
data. However, in Chapter 4, it will be shown that, using the
magnetization algorithm, some propagation characteristics of half-disk
circuits are obtained and that they are in a good agreement with
experimental observations.

The FORTRAN IV program used to test the magnetization algorithm
of Section 3.5 was developed on a CDC-6U400 computer (Ishak and Della
Torre 1978b). The program consists of two main parts. The first part
accepts the permalloy pattern definitions, constructs a suitable mesh of

N points over this pattern, computes the matrices of (3.52) and stores
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Figure 3.8 Effect of the bubble position on the magnetization distribution along the
center line of a rectangular permalloy bar of dimensions 7.5 x 1.5 x 0.3 um.
The maximum magnetization occurs at the bubble perimeter.
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Figure 3.9
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The x-component of the demagnetizing field and the magnetization distribution
along the center line of a rectangular permalloy bar of dimensions

7.5 x 1.5 x 0.3 um (a) for two bubble positions and (b) y-component

of the magnetization as a function of y.
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Figure 3.10 Comparison between the results of the magnetization algorithm
and the results of models of other workers.
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them on a magnetic disc. In the second part, the permalloy-bubble
configurations are read and the computation proceeds to determine g(s)
for each configuration.

A memory storage of about 55 K words, using a CDC-6400 computer,
is required for each part of the program for a mesh of 300 points. It
is noted that the computation time required for the analysis in the
second part of the program depends on the choice of the initial
magnetization distribution M(o)(r)- However, certain criteria can
reduce this time appreciably when the analysis involves different bubble
positions. Starting with an initial bubble position, any initial
distribution @(o)(g) can be assumed, preferably based on ?A(E)’ and the
final magnetization distribution @(f) is computed wusing the
magnetization algorithm. For the next bubble position, @(E) (of the
previous position) is used as an initial distribution. If the
consecutive change in the bubble position, along the permalloy, is not
large, a reduétion in computer time is obtained using this criterion.

For a half-disk circuit, with a mesh of 91 points, 15 seconds of
computer time are required for the analysis in the second part of the
program (using B = 0.045) for the first bubble position. When the
bubble moves along the perimeter of the disk, in steps of about 1 um,
only 5 seconds are required for each consecutive bubble position. The
entire analysis of the two parts of the program for the half-disk
circuit for 10 bubble postions and 10 in-plane field orientations, takes
about 11 minutes of cbmputer time.

A comparison between the computer time and memory requirements to
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TABLE 3.1

COMPARISON BETWEEN THE COMPUTER TIME AND
MEMORY REQUIREMENTS FOR THE PRESENT MODEL

AND THE MODEL BY GEORGE AND HUGHES (1976a)

PARAMETER PRESENT MODEL (1) GEORGE AND HUGHES' MODEL @)
COMPUTER

TIME 1 3
(MIN)
COMPUTER 55 (Part 1)

MEMORY --(3)

(K WORDS) 55 (Part 2)

Number of points in the mesh, N = 100
. Number of field orientations = 10

Number of bubble positions = 10

(1) Using a CDC-6400 computer,
(2) Using an IBM-370/168 computer.

(3) In a private communication with P.K. George, he indicated that he
used an IBM-370/168 with 800 K Byte memory.

Note: The IBM-370/168 computer is about 4 to 10 times faster than the
CDC-6U400 computer (Fleming 1978).
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analyze a typical bubble circuit is shown in Table 3.1 for the present
model and the model of George and Hughes (1976a). Taking into account
the speed factors of the two computers used in the analysis of the two
medels, it is seen that the present model requires less computer time

and memory.

3.7 Conclusions

The micromagnetic algorithm of Subsection 3.4.4 can be used to
accurately analyze submicron bubble circuits since it takes into account
all possible energy terms. This algorithm is also applicable for
studying other kinds of memory circuits such as thin film memories.

Having an arbitrary two dimensional permalloy layout in a general
nonuniform applied field, the magnetization algorithm of Subsection
,3'5'2 is an efficient means of computing the demagnetizing field and the
magnetization distributions in the permalloy. The inclusion of the
permalloy nonlinear characteristics, through the wuse of an
experimentally determined M-HL relation, allows more realistic analysis
of bubble circuits.

Proper choice of the under relaxation factor B8 and the initial
magnetization distribution g(o)(r) results in appreciable saving in

computation times.



CHAPTER 4

ANALYSIS OF PROPAGATION CIRCUITS
AND BUBBLE SIZE FLUCTUATIONS

4.1 Introduction

The model described in Chapter 3 is used for analysis of various
propagation structures and the results are presented in Sections 4.2-4.4
of this chapter. These include rectangular bars, chevrons and
half-disks. The potential well distributions, for these circuits, are
computed and plotted as functions of the bubble position. Various
conclusions are drawn and used to characterize each individual ecircuit.
The results for rectangular bars are compared to the results of other
existing models.

Experimental observations show that a bubble domain trapped at
the end of a permalloy element has a different variation of diameter
versus bias field than does a free isolated bubble (Chang 1975, Almasi
and Lin 1976 and George and Hughes 1976b). The interpretation of this
is that the permalloy changes the magnetostatic energy of the bubble
domain by locally modifying the bias field acting on the bubble. In
other words, the permalloy acts as a potential energy well for the
bubble. Depending on the direction of the rotating in-plane field, this
potential well is either decreased or increased. This means that in
actual propagation circuits, the bubble diameter might be either larger

or smaller than that of a free bubble for the same bias field.
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Since bubble domains are stable only over a cértain range of the
bias field (Thiele 1969), it is important to avoid stripping-out or
collapsing a trapped bubble in order to prevent anomalous propagation
and loss of information, respectively. Thus any serious approach to the
dynamics of bubble circuits should at least consider bubble size
fluctuations.

Using. the continuum model of Chapter 3, a new algorithm for
computing the bubble size fluctuations is developed and presented in
Section 4.5 of this chapter. The results obtained using this algorithm
for rectangular permalloy bars are compared to experimental data by

Jones and Enoch (1974).

4.2 The Potential Well

If we assume the zero energy level for the permalloy to be the
energy of the configuration without the bubble and the in-plane field,
then the permalloy energy, Ep, can be interpreted as the change in the
energy when the in-plane field is applied and the bubble is introduced.
See (3.1). Using the magnetization algorithm of Section 3.5, @(5) and
gD(E) can be computed for an arbitrary shaped permalloy circuit and
hence Ep, using (3.45). The new distribution of magnetic charges inside
and on the surface of the magnetized permalloy produces a local
z-directed field, §Z, where the z-axis is normal to the permalloy plane
as shown in Fig. 3.1. The magnitude of gz’ that is the potential Wel;
depth, Hz’ is obtained by normalizing Ep to twice the bubble's magnetic

moment gy (Kinsner 1973 and George and Archer 1973). Thus
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where

@ n) , (4.2)

=]
)

g = (ug M) ('%

This field, H,, locally modifies the bias field, Hg, acting on the
bubble. Since the bubble will move towards the position of a lower bias

field, the potential well distribution of a permalloy circuit can be

used to determine how the bubble moves along the propagation track.

4.3 Analysis of Bubble Circuits
4.3.1 Rectangular Bars

The reason for analyzing rectangular permalloy bars is that they
are considered one of the basic building blocks in many propagation
" circuits such as T-I, Y-I, X-I, parallel-bars and channel-bars circuits.
Potential well profiles for T-I, chevron and Y-I circuits have been
developed by Kinsner (1974).

Figure 4.1 shows the potential well distribution along the center
line of a rectangular bar under the influence of a bubble's stray field
and two different in-plane field values. The maximum potential well
depth (minimum qz) does not occur at the edge of a bar but rather for
this geometry about 0.75 um inside it. This fact is experimentally
verified by looking at the position of the center of a trapped bubble
domain under a bar (Jones and Enoch 1974). The nonlinearity of the

permalloy is evident in that doubling the applied field does not double
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Figure 4.1 The potential well distribution along the center line of a
rectangular permalloy bar of dimensions 7.5 x 1.5 x 0.3 um

for two different in-plane field values in the positive
x-directions.
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the weli depth.

Comparison to the results of George and Hughes (1976b) is shown
in Fig. 4.2 for a rectangular permalloy bar of dimensions 15 x 3 x 0.4
um. Again the use of an infinite permeabilify in their model results in
a relatively larger potential well depth. Nevertheless, the profiles of
the potential well are similar and the minima of both distributions
occur at about 1.5 ym inside the bar. A two-dimensional potential well
profile for the same bar under the same applied field configuration is
shown in Fig. 4.3 where the well depths corresponding to the contours
labelled E and P are 0 A/m and -800 A/m, respectively with steps of -75
A/m for the contours in-between.

The field HZ is plotted as a function of bubble diameter in Fig.
4,4 for a 7.5 x 1.5 x 0.3 um rectangular bar with a bubble sitting on
the end as shown in the inset. Because the curves in Fig. 4.4 are not
. flat, trapped bubble strip-out and collapse diameters will differ from
the free bubble values. It is noted that for a given bubble diameter,
the potential well depth increases as the in-plane field increases.
Moreover, this increase usually becomes greater as the bubble diameter
decreases which is attributed to the higher bubble's stray field. A
detailed algorithm for computing the trapped bubble characteristics is

presented in Section 4.U4.



71

H' , ' spacer
z permalloy bar (10zm)
(a/m) 4 (i5x 3x 04pum)
. 4 [Lm _
//
S . L £
f/ll/?//I//{f/‘/. I///'7 T ['/‘/7, Mx
0O 2 4 6 8 10 12 6 I8 (pm)

présent model

— —— George & Hughes
(I976b)

bubble parameters

d=6um
h=3pm
I Mp=16000A/m
\\_// | | Hy= 800A/m
_-_960 .

Figure 4.2 Comparison between the results of the present model and
the results of George and Hughes (1976b) for a rectangular
permalloy bar of dimensions 15 x 3 x 0.4 um.
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Figure 4.4 Effect of bubble diameter on the potential well depth along
the center line of a rectangular permalloy bar of dimensions
7.5 x 1.5 x 0.3 um.
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4.3.2 Chevron Circuits

The problem with symmetric chevrons shown in Fig. 4.5 as
propagation circuits is that the bubble does not move appreciably from
position 1 to position 2 until the in-plane field, gT’ rotates almost
60° from the the horizontal (dotted curve). This is verified
experimentally in the work of Almasi and Lin (1976). Therefore,
nonuniform propagation results along the arms of the chevron and the
propagation margins (HT versus Hp curves) are unacceptable for efficient
operation. Figure 4.5 illustrates such a drawback where the potential
well distributions along the bubble path in a 90° chevron are shown for
6 different in-plane field orientations. The bubble's center position,
corresponding to the minimum H_, stays essentially at point 1 until 6 is
more than 60° (Della Torre and Ishak 1978).

The asymmetric chevron circuit offers some advantages over the
symmetric chevron circuit. This can be seen by comparing the potential
well distributions of Fig. 4.6 (for the asymmetric case) to those of
Fig. 4.5. It can be seen that, in general, oH,/3X in the former are
higher than those in the latter, where X refers to the bubble position.
Since the gradient O9H_/9X is proportional to the speed of the bubble
(Thiele 1969) it is advantageous to use a propagation circuit with large
SHZ/BX. Moreover, the graph for 6 = 60° in Fig. 4.6 shows a minimum
substantially away from point 1. This results in a more uniform

propagation than in the case of the symmetric chevron.
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The potential well profile along the bubble path in a 90° symmetric chevron
for six in-plane orientations. The bubble hardly moves from point 1 (see
the inset) to point 2 until & > 60°.
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Figure 4.6 The potential well profile along the bubble path in a 90° asymmetric
chevron for seven in-plane field orientations. The potential well
gradients for 0 < 8 < 90° are larger than those of Fig. 4.5.
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4,3.3 Half-Disk Circuits

The half-disk propagation structures (see Fig. 2.4(c¢)) represent
the state-of-the-art in bubble propagation circuits. In these circuits,
the gaps are situated between essentially parallel poles (poles
magnetized in the same direction by the applied field). This is in
contrast to the T-I circuit shown Fig. 2.4(a) where the gaps are located
between orthogonal poles (poles magnetized in directions almost
perpendicular to each other). As the bubble approaches the gap in a
half-disk circuit, it comes under the influence of two strong poles
stretching it across the gap. The bubble then shrinks away from its
original position as the field rotates. Because the bubble crosses the
gap by stretching rather than by translation, the potential well
gradient required in the T-I circuits, is virtually eliminated.
Furthermore, in the half-disk propagation circuits, there are no
permalloy bar connectors between the adjacent tracks thus eliminating
the possibility of a bubble moving to another track and permalloy
mediated bubble-bubble interaction.

Figures 4.7 and 4.8 illustrate the two-dimensional potential well
profiles for one period of symmetric and asymmetric haif—disk circuits,
respectively. Eight positions for the rotating in-plane are shown
corresponding to one complete propagation field cycle. Assuming that
the bubble will seek the position of a minimum potential, it is clear
that it will move on the outer perimeter of the disks, that is along the
locus of point M.

The potential well distributions for two periods of a symmetric



Figure 4.7 Two-dimensional potential well profile for a symmetric
half-disk of 14 pym period and 2 ym gap. The points M
refer to the location of the minimum potential well
depth, where the center of a bubble (d = 2 ym, h = 3 um)
will be located.



Figure 4.8 Two-dimensional potential well profile for an asymmetric
half-disk circuit of 14 um period and 2 um gap. The
points M refer to the minimum potential well depth, where
the center of a bubble (d = 2 ym, h = 3 ym) will be
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half-disk circuit are shown in Fig. 4.9 for four different in-plane

field orientations. When H, is in the negative y-direction (see inset),

T
two well defined poles are located on the sides of the gap (point D).
The bubble will elongate and bulge across the gap. The large potential
gradient for the case when %T in the positive x-direction assurs that
the bubble will move away from the gap to point C as the field rotates.
The same is true for point E when gT is in the negative x-direction.

Better operation, especially across the gap, is obtained by using
the asymmetric half-disk structure. Figure 4.10 shows that when %T is
in the negative y-direction, the potential well distribution in the gap
is smoother and deeper as compared to Fig. 4.9. One of the most
important characteristics of thé asymmetric half-disk propagation
circuits seen from the present analysis, and experimentally validated
(Bonyhard and Smith 1976), is the fact that propagation from right to
left is superior to propagation from left to right (see inset of Fig.
4,10). This is clear by comparing the gradients of the potential wells
for qT in the negative and the positive x-directions. The former is
larger than the latter suggesting smoother propagation from point D to
point E.

Investigation of the potential well distributions when §T is in
the positive y-direction for both symmetric and asymmetric half-disk
circuits in Figs. 4.9 and U4.10 reveals a drawback of these circuits.
The poten%tial well is flat and the bubble will strip-out. More defined

magnetic poles are required near points B and F which can be achieved by

having a sharp, rather than a flat, permalloy pattern near these points
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Figure 4.9 The potential well profile along the bubble path in a two period symmetric
half-disk circuit (see the inset) for four in-plane field orientations.
The bubble stretches across the gap when HT

is in the negative y-direction.

18



period=12em gap=2um thickness=03m
spacer=04um |Hy|=2400A/m
H, (A/m) BUBBLE, d=3um h=3um
Mg= 20 000 A/m

G E E __ bubble

0 o
l position

"

O

~480-
- 6401

~ 800

- 1120- ;;;}ﬂhn '\\ f,f’ J ’:mm / ;\“Eyf /

-1280-

Figure 4.10 The potential well profile along the bubble path in a two period asymmetric
half-disk circuit (see the inset) for four in-plane field orientations.
The well depth across the gap is smoother than that in Fig. 4.9.
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as in the case of the asymmetric chevron gap tolerant circuits.

4,3.4 Bubble Replicators

Figure 4.11 shows how a bubble in a gap tolerant circuit is
replicated into two bubbles. One bubble goes back to the propagation
track to substitute for the original bubble and the'other goes to the
major loop for detection (or annihilation). The permalloy element that
does the replication and the transfer is called the "sideways"
replicator (Bonyhard, Chen and Smith 1977).

A typical "sideways" replicator was analyzed using the analysis
of Chapter 3 and the results are shown in Fig. 4.12. When gT is in the
positive x-direction, the flat potential well produced at point 1, 2, 3
and U4 stretches the bubble. A magnetic field normal to the permalloy
plane, produced by the hairpin conductor, splits the stretched bubble
into two bubbles. As gT rotates to the negative y-direction, one bubble
should go to point 7 and the other bubble to the major loop on top of
point 1 (not shown in inset of Fig. 4.12). However, the strong poles
produced at points 5 and 6 might attract the first bubble and an
improper transfer could occur. This problem, clearly shown in Fig.
4,12, was observed experimentally (Bonyhard, Chen and Smith 1977) and a

modified gate was designed (Bonyhard 1977).

b oy Bubble Size Fluctuations
The potential well depth given by (4.1), produced by the

permalloy, assumes a fixed bubble diameter, d. Actually since gz
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Figure 4.11 '"Sideways" replicator (Bonyhard, Chen and Smith 1976).
The bubble stretches under the copper loop and is split
into two bubbles when I is applied. One bubble goes back
to the minor loop and the other to the major loop.
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modifies H the bubble diameter changes and further analysis is

B’
required t¢ compute the total effective change AHB in HB and hence the

trapped bubble diameter d George and Hughes (1976b) used an

trap*

equilibrium analysis based on Thiele's (1969) results to evaluate AHB.
They assumed that at fixed bubble diameter,the change Ep in the
- permalloy energy, in the presence of a bubble, is equal to the change

AEMS in the magnetostatic energy of the bubble, in the presence of the

permalloy. That is

Ep = AEys . (4.3)

The total energy ET of a ecylindrical bubble domain is given by (Thiele

1969)

(4.4)

- T 2
B, =0 (ndh) + 2(n M) (E d*h)Hy - Eyq,

where

(o] = 4 A K (4-5)

is the wall energy density and EM is the domain's magnetostatic energy.

S

The equilibrium relationship between H_, and d is in general found by

B
setting BET/Bd to zero which gives

H E L
B ! MS _mo (4.6)
MB 1 M2 wdh ad d
B
Ir EMS is changed by an amount AEMS' then
AH 3 (AE,, )
B - 1 MS 4.7)
Meooy M2wan 9
o B
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and combining (4.1)-(4.3) and (4.7), the total effective change in HB

is, then, given by

q H

AHp = H + _ . (4.8)
2 3d

The bubble will, thus, be affected by an effective bias field

Hp (eff.) = Hy + 8Hy . (4.9)

George and Hughes (1976b) computed the quantity 3Hz/3d by
plotting variocus graphs for Hz versus d and measuring the slope of these
graphs. In addition to the neccessity of evaluating HZ for several
bubble diameters in order to measure the slope, the error using this
approach can be as high as 10% (George and Archer 1973b).

A simpler and more accurate approach based on understanding the
physical essence of the problem was implemented and tested by Ishak and
Della Torre (1978a). When a bubble approaches a magnetized permalloy
element, it changes the permalloy energy by an amount Ep and the bubble,
momentarily, feels a change HZ in the bias field. The bubble diameter
changes to a new value to stabilize with the new bias field value. This
new bubble will, again, change the permalloy energy by an amount AEp and
HZ is modified by an amount AHZ (corresponding to AEp). The bubble
diameter changes again. The process is repeated until an equilibrium is
achieved and a stable bubble-permalloy configuration is attained. This
iterative interaction between the bubble and the permalloy suggests an
iterative numerical procedure, to compute the stable bubble
characteristics and the final permallcy magnetization distribution and

energy.



4.5 The Bubble Size Fluctuation Algorithm
4.5.1 Introduction

Given é bubble material of thickness h and characteristic length
lm which éupports bubble domains of diameter d at a bias field HB’ the
bubble size fluctuation algorithm computes the new diameter dtrap of the
bubble when it is trapped under the permalloy as well as its new center
position (the backward modeling problem). The algorithm also checks the
collapse and the run-out conditions. Thiele's analysis (1969) or
DeBonte's analysis (1975) can be used to study the stability of high Q
bubbles and low Q bubbles, respectively. Computer programs based on the
analysis of DeBonte (1975) are implemented (Ishak and Della Torre 1977a
and Ishak and Della Torre 1977b) to compute the parameters of bubble
domains in low Q materials.

The bubble size fluctuation algorithm consists of the following
steps:

(k-1) d. Choose a tolerance ¢, for the

1
= 10‘8.

Step 1 Set k = 1. Set d

termination criterion. Recommended value, €y

Step 2 Call the collapse and run-out algorithm, of Subsection 4.5.2,

to compute the collapse and run-out fields HCO and HRO’

respectively.
Step 3 Call the magnetization algorithm of Subsection 3.5.2 to compute
M(k)(r) and hence E;k) using (3.45).

)
~Z

Step 4 Compute using (4.1).

Step 5 Compute the modified bias field



Step 6

Step 7

Step 8

Step 9

Step 10
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(k)
Hp

(k)

. (4.10)

(mod.) = H, + H

B

Exit if Hék)(mod.) > H. or Hék)(mod.) <H

co RO®
Call the bubble diameter algorithm, of Subsection 4.5.3, to
(k)

compute the modified bubble diameter d

Compute the residual error

el = 1qll) L gtk (4.11)

<e,. Set d d(k).

1
Set k = k+1. Go to Step 3.

Stop if egk)

trap =

4.5.2 Computation of the Collapse and Run~out Fields

Thiele (1969) derived the equilibrium and stability conditions

for a bubble domain as

and

where

HB
A ~a__ -F(a) =0 , (4.12)
My
A - So(a) <0 , (4.13)
p Q- Sn(a) >0, n2> 2, (4.14)
a = (4.15)

is the aspect ratio of the bubble,
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A =

2
= (4.16)
h

is the normalized characteristic length, F(a) is the force function,

2 2 are the higher

So(a) is the radial stability function and Sn(a), n
order stability functions. Since

S (a) > 8  (a), n>2 : (4.17)

for any a, (4.14) can be reduced to

A - Sz(a) >0 . (4.18)

Hegedus and Della Torre (1977) obtained simple expressions for F(a),
So(a) and Sz(a), among other functions, in terms of the complete

elliptical integral CEL, defined in (3.22). They showed that

F(a) = 22 [CEL (k, 1, 1/k, k) - a] , (4.19)
™
2a2
So(a) =" [1 - ak CEL (k, 1, 1, 0)] , (4.20)
™
s,(a) = 28 ra -k CEL (k, 1, a%+4, -1)] (4.21)
On
where
ke = | (4.22)
>
a +1

If a bubble of diameter d and characteristic length lm is stable
at a bias field HB’ then the collapse and run-out fields can be computed

using the following algorithm:
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The Collapse and Run-out Algorithm

Step 1 Compute a using (4.15). Compute X using (4.16).

Step 2 Call the inverse bubble function algorithm, of Subsection
4.5.2, to compute the collapse and run-out aspect ratios a, and

i = A ‘ = A,

a,» respectively such that So(ac) and SZ(ar)

Step 3 Compute F(ac) and F(ar) using (4.19).

Step 4 Compute HCO and HRO using (4.12) and replacing a by a, and a.

respectively.

The following algorithm computes the aspect ratio a_ given any of

f
the three function F(af), So(af) or Sz(af). The steps of the algorithm
are illustrated in Fig. 4.13. For simplicity only the case for So(a) is

shown, that is given So(af) this algorithm computes a..

The Inverse Bubble Function Algorithm

Step 1 Set k = 1. Choose a tolerance €5 for the termination
criterion.
Step 2 Let at¥°1) = 1o 5,(ap).
(k-

Step 3 Compute So(a 1)) using (4.20). This corresponds to point A

in Fig. 4.13.

Step 4 Compute a(k) using
S (a,)
So(a(k_1))
Step 5  Set a'¥) = 0.01, if a'¥) < e,

Step 6 Compute So(a(k)) using (4.20). This corresponds to point B in
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Figure 4.13 The radial stability function S (a) as a function of the

bubble's aspect ratio (Thiele 1869). The points A, B
and C illustrate the steps of the inverse bubble function
algorithm of Subsection 4.5.2.
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Fig. 4.13.
Step 7 Compute the residual error

¥ = |s ¥y - s (ap] . (4.24)

Step 8 Stop if eék) < €5. Set ap = a(k)-

Step 9 Set k = k+1. Go to Step 4.

Comment: To accelerate the convergence of the domputations, an
over-relaxed value for a(k) can be used to replace the value
obtained in Step 4 as

(k)

a <Y a

(k) (k-1)

+ (1-Y) a R ‘ (4.25)
where Y > 1. Recommended values:

Y

1.4 when F(ap) is given,

-

1.2 when So(af) or Sz(af) are given.

_4.5.3 Computation of the New Bubble Diameter
If we define G(a) as
G(a) = a H +F(a) -2 (4.26)

where

H = _~ (4.27)

then G(a) = 0 is a solution of (4.12) and this suggests that a can be
obtained using the Newton-Raphson iterative algorithm in the form

(n-1)
a(n) n-1) _ G(a ) (4.28)

:a( —_—
G'(a(n'1))
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where n is the iteration number and

G'(a(n-1)) A 3G(a)

2 . (4.29)
%a a=a(n—1)

Thiele (1969) showed that
°F(a) . 1 r(a) - s (a)] (.30
da a

and hence

AG(a) aHn+F(a)-_>\
r'g = = (’4.31)

¢'(ay Hyr(1/2)[F(a)-s (2)]

Viewed from this point, the modified bubble diameter d(mod.) at a

bias field HB(mod.) can be computed from an initial value d using the

following algorithm:

The Bubble Diameter Algorithm

'Step 1 Set k = 1. Choose a tolerance €3 for the termination

criterion.

(k)

Step 2 Compute a using (4.15). Compute A using (4.16). Compute

Hn(mod.) using

HB(mod.)
Hn(mod.) = (4.32)
My
St (k) ; (4 )
ep 3 Compute re using .31).

Step 4 Compute alkr1) using (4.28).
Step 5  Campute a(k+1) as

d(k+1) - h a(k+1) (4.33)
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Step 6 Compute the residual error
egk) = [F(a(k+1)) - alks1) H (mod.) - Al . (4.34)

ék) <eg. Set d(mod.) =_d(k+’).

Step 8 Set k = k+1. Go to Step 3.

Step 7 Stop if e

4.6 Examples

Figure 4.14 shows a T-I bubble propagation circuit used by
Kryder, Ahn, and Powers (1975) to propagate 2 ¥m diameter bubbles in a
1.5 x 1010 bits/m2 memory chip. The bubble size fluctuation algorithm
is used to compute the changes in the bubble diameter as it moves from
the I bar to the T bar across the gap. Table 4.1 gives the actual
bubble diameter at 3 points along the propagation track (points, A, B
ana the middle of the gap). The effective change in the bias field and
bubble diameter is shown in Table 4.1 for two in-plane field values.

To check the bubble size fluctuation algorithm, the diameter
versus the bias field curves for a bubble trapped at the end of a
rectangular permalloy bar are plotted and compared to the experimental
results of Jones and Enoch (1974). See Fig. b4.15. The observed
agreement is excellent and the maximum error in the computed bubble
diameter is about U4%. It is noted that about 3 iterations are required
to achieve an accuracy of better than 0.5% in the bubble diameter using
the algorithm of Subsection 4.5.1. ' In fact, during the execution of
Step 3 of this algorithm, a search is performed over a few pecints in the
neighborhood of the bubble center, at each iteration, to find the

minimum of the potential well at which the new bubble center will be
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Figure 4.14 The T-I propagation circuit used by Kryder, Ahn and
Powers (1975) to propagate 2 um diameter bubbles in
amorphous films.
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TABLE 4.1

RESULTS OF THE BUBBLE SIZE FLUCTUATION ALGORITHM FOR

THE T-I PROPAGATION CIRCUIT OF FIG. 4.14

Hy = 2400 A/M Hy, = 3200 A/M
BUBBLE CENTER ITERATION NO.
POSITION (IT) Hz BUBBLE Hz BUBBLE
DIAMETER DIAMETER
(A/m) (um) (A/m) (um)
A 1 -1368.23 2.818 -2064.79 3.275
2 -1088.10 2.645 -1452.08 2.930
3 -1071.65 2.635 -1412.00 2.910
1 1 ~959.01 2.567 -1331.03 2.795
MIDDLE
OF 2 -868.04 2.513 -1063.24 2.630
GAP
3 -874.58 2.517 -1101.39 2.653
B 1 -974.75 2.577 -1370. 44 2.819
2 -850.90 2.502 -1098.39 2.651
3 -863.15  2.510 -1087.32 2.645

Original bubble diameter, d = 2um
Original bias field, HB = 12722 A/m

Collapse field, H,, = 13620 A/m

co

Run-out field, H,. = 10396 A/m

RO
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Figure 4.15 Comparison between the results of the bubble size
fluctuation algorithm and the experimental data of
Jones and Enoch (1974).
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located. This means that not only the new bubble diameter is computed

using this algorithm but also the new bubble center.

4,7 Conclusions

The analysis presented for bubble propagation circuits, based on
the continuum model of Chapter 3, provides an accurate and efficient
means of characterizing arbitary shaped permalloy circuits. The
analysis showed that gap tolerant circuits (half-disks and asymmetric
chevrons) have the advantages of providing a smooth potential well
across the gap and large potential well gradients, in general. These
result in low in-plane field requirement for propagation.

The results for the chevron circuits shows that the method can be
used to m;dify a specific design to improve the performance. For
example, the asymmetric chevron structure is superior to the symmetric
one because of the larger potential well gradients and, hence, the more
uniform bubble propagation.

The bubble size fluctuation algorithm provides an excellent means
of avoiding improper propagation and loss of information, corresponding
to stripping or collapsing of bubbles, respectively. In addition, being
able to determine the bubble center location under the permalloy circuit
is useful in studying bubble replicators because the position of the
hairpin conductor loop which provides the cutting field and the phase of
the current pulse is determined by the location of the bubble under the
permalloy. Moreover, the bubble size fluctuation algorithm can be used

in studying the dynamics aspects of bubble circuits.



CHAPTER 5

BUBBLE CIRCUIT OPTIMIZATION

5.1 Introduction

The continuum model of Chapter 3 and the analysis of bubble
circuits, presented in Chapter 4, are used as the analysis part of an
algorithm for propagation ecircuit optimization. The criterion for
optimization is based on minimizing bubble size fluctuations, assuring
proper propagation at all eritical points in the circuits and satisfying
certain constraints set by practical considerations. As a result, a set
of optimum parameters for the bubble-permalloy circuit is computed which
when used will result in achieving a potential well profile that yields
optimum performance and meets the required specifications.

To reduce the computer time required for the optimization
procedure, quadratic polynomial approximations are used to model the
potential well depths as functions of the circuit parameters. This
method was checked separately and proved satisfactory and efficient.

The constraints on the shape of the potential well distribution
and specifically, on the gradient of the well, for a specific circuit,
are based on experimental observations of the difficulties associated
with propagation along this type of circuit. An example is the gap
between the I and the T elements in a T-I circuit where a large gradient

is required to move the bubble from the I, across the gap, to the T.

100



101

5.2 Qualitative Analysis

In one class of field access propagation circuits the propagation
track is almost linear and the bubble velocity does not change
appreciably along the propagation track. Examples of circuits belonging
to this class are T-I, parallel-bars and half-disks. On the other hand,
in the class of circuits including symmetric and asymmetric chevrons,
the bubble velocity varies over a wide range as discussed in Chapter U4.
Optimum propagation is achieved 1if the bubble is translated in a
potential well whose depth and shape remains constant as it moves by
circuits belonging to the first class and in a potential well whose
depth is proportional to the bubble velocity for circuits in the second
class.

The velocity of a bubble domain (Thiele 1969) is given by

v = (MH_ - _H)) , (5.1)

where AHZ is the z-field differential across the bubble, that is
3HZ
AHZ =__ .4, (5.2)
X
H, is the domain wall coercivity and H, is the effective potential well

depth as computed in the bubble size fluctuation algorithm of Subsection
4.5.1. As AHZ increases, V increases until the saturation velocity
which varies from one material to another fram about 20 m/s to about 60
m/s.

Equations (5.1) and (5.2) suggest that to overcome bubble

coercivity and mobility drag, the gradient of the potential well should
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satisfy

QHZ

39X

d z_f_Hc + EX (5.3)
m uw

everywhere along the propagation track. Experimental observations,
though, show that it is enough to satisfy (5.3) at the critical points
in the circuit to assure propagation elsewhere (Almési and Lin 1976).

Knowledge of these points, therefore, is essential for circuit design.

5.3 Circuit Parameters

Figure 5.1 shows a typical T-I bubble propagating circuit. The
effective potential well depth HZ and, hence, the well gradient aHZ/aX
at any point in the c¢ircuit are functions of the circuit parameters.
These include permalloy, bubble and external parameters such as the
in-plane field and temperature fluctuations. In the following analysis,
only those parameters shown in Fig. 5.1 will be considered, that is

Hy = Hyy (%, %5, W, &, 8, d, b, My, s, H) (5.4)
where i refers to any point along X.

Although any of the parameters in (5.4) may vary independently,
yet practical device fabrication requirements and memory specifications
impose certain bounds on the values of these parameters. Table 5.1

illustrates the factors affecting the upper and lower bounds on each of

the parameters in (5.4).
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Figure 5.1 A typical T-I propagation circuit. X refers to the bubble
path. Permalloy, bubble and external parameters are shown.
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5.3 The Optimization Problem
Following the discussion of Sections 5.1-5.3, the problem of

propagation circuit optimization can be stated as

minimize Uy(¢) = max  [Hy;(¢) - Hyp(4)] (5.5)
ieNy ¥ v
OH_.
subject to c.(¢) = 2 -.l E_H + EX 20, JeN, (5.6)
J - X dlr °© u
17}
cp(¢) 2 0 ' , ke N3 (5.7)
A A
where $S0, 2, wt g d h My s H1T, (5.8)
N1 = {1, 2, «.ou, n1} , | (5.9
Nzé {1, 2, ..., n} , (5.10)
N31§ {n2+1, Ny+2, ... n3} , (5.11)
ny - n, Lp ) (5.12)

'n1 is the number of points, along the propagation track, at which Hz is
considered, ny is the number of critical points in the c¢ircuit and p is
the number of circuit parameters. Equation (5.5) requires the
definition of a reference potential HZR(?)' This can be taken as the
potential well depth at the end of the I elements in T-I and Y-I
circuits or at the end of the disks in half-disk circuits. It should be
noted that the objective function (5.5) refers to circuits where the
bubble moves with a uniform velocity.

The set of constraints in (5.7) determines the upper and the

lower bounds on each of the parameters listed in (5.8). For example
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°n2+1(‘1’) 1n - %1 (5.13)

cn2+2(?) 84 = %9y » (5.14)

where 21h and 212 are the upper and the lower bounds on 21.

5.5 Approximation and Method of Solution

Since an optimization procedure will require a repetitive
calculation of the objective function, a reduction in the required
computer time can be achieved by using a suitable approximation for Hz
as a function of the circuit parameters. Abdel-Malek and Bandler
(1978a) developed a technique to compute the coefficients of a quadratic
polynomial approximation to a function which is assumed continuous and
has continuous derivatives. 1In this work, the well depth, Hz, will be
approximated by a quadratic polynomial in the components of the vector

_ ¢, which are the circuit parameters. That is

2 2 2
: P(?) = b1¢1 + b2¢2 oo, + bp¢p + bp+1¢1¢2

S VL L PR IR RN S YR S

* e o1t Beparta t oot Boqfk * B o (5.15)

The coefficients in (5.15) are chosen in such a way to force the
polynomial to coincide with H,(¢) at K base points,

¢ 2 =1,2 ., K, K= (ort)(pe2) (5.16)
that is

P(s™) = H () , %

1"

—
n
=

(5.17)
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and to accurately approximate Hz(?) at other points within the specified
interpolation region (the region within which the approximation is
valid). See Abdel-Malek (1977) and Abdel-Malek and Bandler (1978b).

To test the quadratic approximation method, it was used to model
the potential well depths HzA and Hz}3 at the two points A and B,
respectively, in the T-I propagation circuit shown in Fig. 4.14.
Keeping the first eight components (¢1, ¢2, ey ¢8) of the vector ?,
that is (%4, %, w, t, g, d, k, MB), in (5.8) fixed at the values
illustrated in Fig. 4.14, the last two components, that is (s, HT) are

allowed to vary in the ranges

3.0 < ¢ < 6.0, (5.18)
0.4 < ¢1O £ 3.6, (5.19)
where
by = 10 s, (5.20)
-3
4)10 = 10 HT (5.21)

The scaling factors in (5.20) and (5.21) are used to improve the
numerical conditioning of the computation. The quadratic polynomial

approximations of HzA and HZB are, respectively,

_ 2 2
PA(¢9,¢1O) = b1A¢9 + b2A¢10+ b3A¢9¢10+ buA¢9 + b5A¢1o+ b6A , (5.22)

_ 2 2
PB(¢9,¢10) = b1B¢9 + b2B¢10+ b3B¢9¢10+ buB¢9 + b5B¢10+ bep - (5.23)

where the coefficients are to be determined.

Two sets of variables (¢9 and ¢10) are used to compute H,,, H,p
PA and PB. The base points, interpolation region and the results

obtained are shown in Table 5.2. The maximum error is less than 5%.
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TABLE 5.2

COMPARISON BETWEEN THE ACTUAL POTENTIAL WELL DEPTH
AND THE QUADRATIC POLYNOMIAL APPROXIMATION
FOR THE CIRCUIT OF FIG. 4.14

PARAMETERS POTENTIAL WELL DEPTHS QUADRATIC APPROXIMATION
% L H,, (OE) H,p(0E) Py Pg
4.500  1.600 - 8.5500  -10.6500 - 8.4926  -10.6421
4.936  3.272 -17.8801  -26.1425 -16.9866  -25.8055

¢9 = 1073, s in meters

- -3 ;
¢10 = 107 Hy, Hp in A/m
Interpolation region: 3.0 < ¢9‘$ 6.0
0.4 £ ¢10.$ 3.6
Base points (¢§, ¢fo) = (4.5, 2.0), (6.0, 2.0), (3.0, 2.0),
(4.5, 3.6), (4.5, 0.4), (3.8, 1.2)
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Equations (5.5)-(5.7) will, thus, reduce to

minimize U(4) = max |pi(¢) - pR(¢)] , (5.24)
N ien, - -
. 1.8 2v .
subject to c;(9) =Pps(9) - _ [ _H,+ 120, J¢Ny (5.25)
J ~ J~ a T c y 2
w
e (¢) 20 ~y k € Ng» (5.26)

where ¢, N., N, and N, are given by (5.8)-(5.11) and P.:(¢) is the
~ 1 2 3 Di‘L
quadratic polynomial approximation to the potential well gradient at
point j, that is
3sz(?)
X

] J € NZ. (5.27)

PDj(?)

The FORTRAN IV program FLOPT4 for least pth optimization with
extrapolation to minimax solutions (Bandler and Sinha 1977) is used to
' solve the constrained minimax problem defined above in (5.24)-(5.26).
In this program, the Bandler-Charalambous technique (1974) is used to
transform the constrained nonlinear programming problem into an
unconstrained minimax problem. A least pth objective function is then
formulated and the minimax solution is obtained by using a slightly

modified version of the quasi-Newton method (Fletcher 1972).
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5.6 Examples
10 . 2
Kryder, Ahn and Powers (1975) reported a 1.5 x 10 bits/m
bubble memory chip with 2 um bubbles in GdCoMo amorphous films using T-I
propagation structures with parameters as shown in Fig. U4.14. The
amorphous film has a coercive field of 240 * 80 A/m and for s = 0.3 um,
good quasistatic operation with a bias field margin of about 2400 A/m is

obtained for H, > 4800 A/m.

T

The optimization procedure of Sections (5.4) and (5.6) is used to
cbtain, independently, the optimum spacer and bubble height which will
minimize the difference between the well depths at points A and B, of
Fig. 4.14, as well as satisfying (5.6) in the middle of the gap. In the
rest of this section a discussion is presented for the effect of the

spacer and the bubble height on the circuit performance using this

model.

5.6.1 Spacer Effect
Keeping 21, 22, w, t, g, h, d and MB fixed at the values shown in
Fig. b,14, and leaving s and Hp to vary in the ranges
0.05 < s < 0.45 um , (5.28)

1200 < H, < 5000 A/m , (5.29)

T

the optimization procedure gives the results shown in Table 5.3(a).
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TABLE 5.3(a)

RESULTS OF THE OPTIMIZATION PROCEDURE
FOR THE T-I CIRCUIT OF FIG. 4.1l
(SPACER EFFECT)

PARAMETER INITIAL VALUE FINAL VALUE
s(um) 0.25 0.3874

HT(A/m) 2500 4604

H = 240 A/m
¢ 6 2

= 8x 10" m"/A s

v =0

h = 2.08 um

CDC-6400 computer time:
for the quadratic approximation = 600 s

for the optimization procedure = 3 s

Although one might think that decreasing the spacer may result in better
operétion because of the resulting better bubble-permalloy coupling, yet
the results of Table 5.3(a) show the opposite. When the spacer is
increased from 0.25 um to 0.3874 um, all optimization criteria are
satisfied and propagation is achieved across the gap. This is in
agreement with the initial suggestions by George, Hughes and Archer
(1974) for single permalloy bars. The increase in the spacer thickness
results in more uniform distribution of the permalloy stray field across

the bubble and, hence, in higher field differential AHZ.
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5.6.2 Bubble Height Effect
Table 5.3(b) gives the results obtained using the optimization

procedure, when h is left to vary in the range

1.5 <h<3.0um. (5.30)

TABLE 5.3(b)

RESULTS OF THE OPTIMIZATION PROCEDURE

FOR THE T-I CIRCUIT OF FIG. 4.14
(BUBBLE HEIGHT EFFECT)

PARAMETER INITIAL VALUE FINAL VALUE
h(um) 2.0 1.75

HT(A/m) 2500 4000

8 =03y

The fact that smaller bubble height results in better propagation can be
attributed to the higher resulting z~directed permalloy field on the
bubble. Again, for rectangular bars, George, Hughes and Archer (1974)
predicted that better operation could be obtained by reducing the bubble

height which agrees with this analysis.
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5.7 Discussion

Fig. 5.2 shows the potential well profiles along the bubble path
for the T-I circuit of Fig. 4.14. Three cases, numbered 1, 2 and 3 are
considered which correspond to the initial parameters of Table 5.3(a),
the final parameters of Table 5.3(a) and the final parameters of Table
5.3(b), respectively. It is seen that, while the constraint (5.6) is
not satisfied in case 1 in the middle of the gap, it is satisfied for
cases 2 and 3. It is noted that the effect of reducing the bubble
height is stronger than that of increasing the spacer since the former
results in lower in-plane field amplitude. On the other hand, Thiele
(1969) proved that the stability of bubble domains is largely dependent
on the ratio of the diameter to the height. Therefore the upper and
lower limits on the domain height are more critical than those on the
spacer.

The analysis of Sections 5.2 - 5.5 can be used to compute the
minimum in-plane propagation field, for any bubble-permalloy
configuration, as a function of the bubble velocity. This is done by
allowing the circuit paramefers to vary over very narrow ranges and thus
are effectively kept constant. For the circuit of Fig. 4.14 and
allowing the spacer to vary in the range

0.295 < s £ 0.305 um , (5.31)
the minimum in-plane fields required for quasistatic and high frequency
propagation, with minimum bubble size fluctuations, are shown in Table
5.4, The measured value is reported by Kryder, Ahn and Powers (1975)

and is also shown in Table 5.4. The discrepancy between the two results
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can be attributed to the errors in the measuring of the coercivity and
the height of the bubble materials and the errors in approximating the

potential well depth.

TABLE 5.4

MINIMUM IN-PLANE PROPAGATION FIELD
FOR THE T-I CIRCUIT OF FIG. 4.1

COMPUTED MINIMUM MEASURED MINIMUM
BUBBLE VELOCITY IN-PLANE FIELD IN-PLANE FIELD

(m/s) (A/m) (A/m)

0 2800 2080
10 5900 -

= 0.3 um
h = 2.08 um
U, = 0.125 m2/A s
5.8 Conclusions

The optimization procedure discussed in detail, in this chapter
can be used in optimizing the permalloy shape required to propagate
bubble domains in a given uniaxial magnetic material . By allowing the
permalloy parameters 21, 12, w, t, g of (5.4) to vary and by solving thé
minimax optimization problem of Section 5.5, one can expect to obtain
the optimum permalloy configuration that will assure bubble propogation

across the circuit's critical points as well as minimizing the bubble
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size fluctuations. The effect of varying the permalloy parameters,
however, has not been studied in this thesis because of computer time
limitations. The demagnetizing factors should be updated each time any
of the permalloy parameters changes and this requires large amounts of
computer time. However, this is a reliable method of optimization and
is much less expensive than trying the design by a cut-and-try method.
In conclusion, a novel optimization procedure for propagation
circuit optimization has been presented in detail. The algorithm
minimizes bubble size fluctuations and, hence minimizes the possibility
of improper propagation or loss of information. It also assures
propagation along the specified bubble path. An example has been worked
out and the effect of two circuit parameters has been discussed.
Comparison to experimentally measured in-plane field values shows

agreement with the computed values.



CHAPTER 6

CONCLUSIONS

In this thesis, the problem of modeling and optimization of field
access bubble propagation circuits has been considéred. The miecro-
magnetic approach for modeling of bubble circuits, presented in Chapter
3, is general enough to consider the domain and domain wall structure in
the permalloy which is important in studying submicron bubble devices.
The concept of the continuum modeling of permalloy circuits requires
reasonable computer time and memory. The use of iterative procedure to
compute the magnetization in the permalloy allows the inclusion of
various energy terms in the total permalloy energy, such as coercivity.

The analysis of various bubble propagation circuits reveal the
relative merits of these circuits. The potential well profiles of half-
disk circuits show little variations in the well depths along the
propagation track. These result in small bubble size fluctuations and,
hence, improved operation. The analysis of the asymmetric chevrons
shows the reason for the improvements in bubble propagation as compared
to the symmetric chevron circuits.

The bubble size and position fluctuation algorithm of Chapter 4
is useful in detecting improper propagation (stripping-out of bubbles)
and. loss of informatioh (collapsing of bubbles) in any propagation
circuit. The algorithm. allows the use of such different stability

analyses as Thiele's theory (1969) or DeBonte's method (1975) for high
117
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and low Q bubbles, respectively.

An algorithm for bubble circuit optimization has been introduced
in Chapter 5. The objective is to minimize the bubble size fluctuation
along the propagation track and to assure propagation across the
critical points in the propagation circuit. To reduce the computation
time required in the optimization procedure, a quadratic polynomial
approximation to the potential well depth is used which proved accurate
and efficient. The optimization algorithm can be used to obtain the
optimum shape for the permalloy circuit or the optimum bubble material
parameters which meet the required specifications.

This research work has revealed various promising topies for
further investigation such as:

(1 A technique for the optimization of the under-relaxation factor B
to reduce the number of iterations required in both the micro-
magnetic and the magnetization algorithms.

(2) Investigation of other techniques of setting up the discreti-
zation mesh in the permalloy circuit to reduce the computer time
required for evaluating the demagnetizing field distribution for
the micromagnetic analysis of submicron bubble circuits.

(3 Modification of the bubble size fluctuation algorithm to include
analysis for elliptical bubbles. This is important for studying
bubble generators and replicators where the bubble is stretched
before cutting.

(4) Applying the optimization algorithm of Chapter 5 to a specifie

permalloy structure and allowing the permalloy parameters to vary
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until the optimum shape is obtained. This is very useful for gap
tolerant circuits and, specifically, for half-disks since a wide
variety of disk shapes is being used now and it would be
beneficial to compute the optimum disk shape.

Implementation of an algorithm for automatic calculation of the
upper and lower bounds on each of the propagation circuit.
parameters, as discussed in Chapter 5. It is important, for
example, to define the bounds on the bubble height and saturation
magnetization, which assure bubble stability, before using the

optimization algorithm.



APPENDIX A

RELATIONSHIPS BETWEEN SI AND CGS UNITS

Table A.1 gives the conversion relations between the SI and the

CGS systmes of units for various bubble material parameters (Bobeck and

Della Torre 1975).

TABLE A.1

RELATIONSHIPS BETWEEN SI AND CGS UNITS

Physical SI CGS Conversion
quantity Symbol Unit Symbol Unit relation
Flux 4y  Weber 6 Maxwell 1 Wb = 10%Mx
Flux density B Tesla(Wb/m?) B Gauss(Mx/cm?) 1 T = 10u G
Field intensity H A/m Oersted 1 A/m = 4p x 1073 Qe
Magnetization M A/m I emu 1 A/m = 10'3 emu
1 kA/m = 1 emu
Wall energy O J/m2 Oy er'g/cm2 1 J/m2 = 103 erg/cm2
1 mI/m® = 1 exr*g/cm2
Uniaxial Ku J/m3 Ku erg/cm2 1 J/m3 = 10 er'g/cm2
anisotropy
constant
Mobility ny m2/A s Ny cm/s Oe 1m2/A s = 109/ur cm/s Oe
Constitutive B = uo(H + M) B =H+ Uyl
equation
Free space My = yT ox 10"7 1
o o
Material zm = = wé m =:—-ﬂ§
length quB Yoy
2K 2K

Anisotropy He = ——ﬁ Hy = —u
field Ho™B s

2K 2K
Quality Q = ;ﬁ = > Q = u2
factor B 1 M 4o

o B s

120



APPENDIX B

COMPUTATION OF THE DEMAGNETIZING FACTORS

The scalar magnetic potential of a magnetized body is given by

(Della Torre and Longo 1969)

1 1

r..) = M(r,) * v, av . B.1

Yuag(Tig) = g} Moyt Iy () (B.1)
v Ji

where the different parameters are as defined in Fig. 3.4. Using

integration by parts it can be shown that the magnetic potential of a

magnetized body is due to both surface and volume charges. The

demagnetizing field, which is set up by the magnetization inside the

body, is then given by

A 1 1
= . V = - . . .
gD(gi) s wmag(gi) o Zi J y(gj) Yj - dVj (B.2)
Vj ji

Using Cartesian-coordinate system, one can define F1 by

i Mx(fj) (xi-xj) + My(tj) (yi-yj)

Poime v [ 1) ., (B.3)
~~3 ~n 2 ( \2]3/2
ji 13 * (24724
where
ry =X J—X + Yy Jy (B.4)
2 2 2
dij = (xi—xj) + (yi-yj) (B.5)
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and the =z-component of the magnetization is neglected. Integrating

w.r.t. Zj from -t/2 to +t/2, where t is the permalloy thickness, gives

t/2
‘I F1 dz:j = {F2 Mx(sj) + F3 My(gj)} lx
~t/2
+ {Fu Mx(fj) + F5 My(sj)} ly ’ (B.6)
where
(xi-xj)2 5
d. .
1]
2(xi—x.)(yi-y.) di.
Fy = J J J Fg - F.} =F , (B.8)
3 > 7
d. .
1]
Fg = - {dij Fg - F7} , (B.9)
d. .
1]
(zi+t/2) (zi—t/2)
F6 = - -+ ’ (Bn‘lO)
F3/2 F3/2
8 9

(z#t/2)  (z4-t/2)

F7 - , (B.11)
pl/2 pl/2
8 9
Fg = dij + (zi+t/2)2 , (B.12)
F9 = dfj + (zi—t/2)2 . (B.13)

The terms in (B.6) can be integrated over the permalloy thickness

to get the average demagnetizing field or solved for zi = t/2 to get the
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demagnetizing field at the film's mid plane. Using the former method,

the average terms will be

A1 o2 1 /-2 2 d§j+2t2
D (r.;r.) = _ F., dz, = __ (x.-x,) -d,.
e e 1l Ta R 1J
-£/2 £y 5 d; 5*°
2,2 .2
ds . (a5 .+t%)
-y - 43, , (B.14)
2 2 1J
\/ﬁ..+t
ij
£/2
A 1 /=2
D (r.;r.) = F_ dz. = X, =X, =Y. - d, .
xy Faily) = o J 395 % o [ | Gy Yy i
—t£/2 td, g
4p (r.:r ) (B.15)
Ty ’ )

and Dyy(gi;gj) is obtained from (B.14) by interchanging the x's and the
y's.

To obtain (3.53), an interpolation function is required.
Greville (1969) suggested a cubic-spline interpolation algorithm which
tries fitting to n points the smoothest interpolation function. This

algorithm, which is available as a set of subroutines in IMSL library

(1977), was used to express I(i;j) in (3.46) and (3.47).

Singularity Analvsis
It is noted that the coeffiecients in (B.14) and (B.15) are
infinite when d., = 0. This occurs when x, = x, and y. = y.. Since the
1] 1 J 1 J
integrals in (3.53) are performed over all points in the permalloy, a

singularity appears in the integrand.
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Since analytical integration of the expressions in (B.1Y4) and
(B.15) is difficult, the technique used to avoid the singular integrand
is to enclose the point of singularity by an infinitismally small
rectangle (region S) as shown in Fig. B.1. The integration in (3.53) is
done numerically in region N and the equivalent analytical value (Joseph
and Schlomann 1965) of the integral is used to replace the integration
over region S. Five different types of region S are illustrated in Fig.
B.1 corresponding to different kinds of singularities. These are
interior, 90o corner, 270o corner, x-edge and y-edge singularities as
shown in Fig. B.1(a)-(e), respectively.

Since the coefficients in (B.14) and (B.15) decrease rapidly as
dij increases, a large number of points should be considered arbund the
singular points. Figure B.2 illustrates the mesh of points established
over region N in a 90° corner singularity.

A typical example of a rectangular permalloy bar has the

following parameters:

£ = 15 um

W= 3unm

t = 0.4 um

Ax = Ay = 0.75 um

§x = 8y = 0.0375 um
NXs = Nys = 21 points.

It is noted that reducing the dimensions of region S further than the
values given above does not result in appreciable change in the

singularity contribution to the total integral value.
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The Demagnetizing Factors
The substitution of constant x and y magnetization components in

(3-“’9) gives

Hpe = M (Cop + ) (B.16)

where M is the constant magnetization. Therefore, the demagnetizing

factors of the body at point i are given by

Nkz(i) = -

5 Gt (B.18)

1

n ™2

which is ‘equivalent to adding the elements of each row in the matrix C
of (3.52). Figure 3.6 gives the demagnetizing factors of a rectangular

permalloy bar of dimensions 15 x 3 x 0.4 um obtained using (B.18).



APPENDIX C

THE EXCHANGE ENERGY

The exchange energy forms an important part of the total energy
of many solids. Heisenberg showed that it also plays'a decisive role in
ferromagnetism. If two atoms m and n have spin angular momentum §dh and
§ﬂh, respectively, then the exchange energy between them is given by

Epy = =2 gy Sy " S, = -2 Jdgy S S cos § (c.1)

where.JEXis a particular integral, called the exchange integral, and §
is the angle between the spins. If JEx is positive, EEx is a minimum
when cos 6§ = 1 and a maximum when cos § = -1. If JEX is negative, the
lowest energy resulis from antiparallel spins. Since ferromagnetism is
due to alignment of spin moments on adjacent atoms, a positive wvalue of
JEX is therefore necessary for ferromagnetism to occur. The only three
elements with positive JEX are iron, nickel and cobalt (Cullity 1972).

It can be shown (Brown 1963) that the exchange field of an

infinitismal volume in a magnetic body is given by (3.17) where

Q Jgy s@
AEX = (c.2)
a

2

is the exchange constant, a, is the lattice parameter, q is 2 for BCC

structure and 4 for FCC structure, and 1y is a unit vector along the

M

magnetization of that infinitismal volume.

Assuming that a unit vector 1M is inclined at an angle eM to the
128
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x-axis, as shown in Fig. C.1(a), then

dy = cos By 1 +sin oy 1o, (C.3)
where
A
Oy = eM(x,y) . (c.4)
Since
9 cos e, =-sino, * 0 (C.5)
_— M M M ' '
ax X
? sin e, = cos 6, * © (C.6)
— M = MM :
3x X
82 2
cos 6y, = - sin @, * 8, =~ cos 6 (eM )T, (Cc.7)
XX X
9X
32 2
sin 0 = cos 8, * 6, - sin 6y (eM )T, (c.8)
- XX p'e

and similarly for the derivatives with respect to y, then (3.36) and
(3.37) follow.
Figure C.1(b) shows a mesh of points centered around point (m,n).
Using central difference approximations for first and second
derivatives, the terms in (3.36) and (3.37) can be approximated as
eM(m+1,n) - eM(m-1,n)

Oy (m,n) = , (C.9)
X 2 Ax )

8 (m+1,n) - 2 6, (m,n) + 6_(m~1,n)
o, (mn) =" M M . (C.10)

XX (Ax)2
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Figure C.1 A (a) unit vector inclined at angle © to the x-axis and
(b) a mesh of points centered around point (m, n).
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eM(m,n+1) - eM(m,n—1)
: eM (m,n) = [] (C-11)
y 2 Ay

o, (m,n+1) - 2 6,(m,n) + 98,(m,n-1) ’
oy (mn) = M M . (C.12)
yy (AY)Z




APPENDIX D

M-H APPROXIMATIONS

Let us assume that a magnetic body has an average demagnetizing

factor Nk in a certain direction, k. If a field HA is applied to the

body along the k direction, a demagnetizing field HD results and the

total local field will be

H =Hy + Hy
=Hy - N % (0.1

where Mk is the average magnetization along the applied field direction.
A curve of Mk vs. HL can be obtained from an Mk—HA curve by a graphical
method (Cullity 1972). 1In Fig. D.1, OA is a Mk'HA curve. The dashed

line OC is a plot of the relation H - Nk Mk and has a slope of —1/Nk.

D:
If we plot OC with an equal but positive slope, it becomes OD.
Therefore, if OD and OA are sheared to the left by an amount sufficient

to make OD vertical, OA will then be a curve of Mk as a function of the

local field H. . It is clear that the apparent susceptibility Xa

L pp’

given by Mk/HA’ is much 1less than the true susceptibility X¢pue® or
M /H; . It can be shown , using (D.l), that

| I S (D.2)

Xt rue app
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Figure D.1 The M-H, and the M-H_ relations. When OD and OA are

sheared to the left %y an amount sufficient to make OD
vertical, OA will then give the M—HL relation.
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In general, for permalloy bars, N is not constant but varies along the

k
bar's length and width. Nevertheless, the above discussion can be
applied to these bars by using their average demagnetizing factors. The
conclusion, therefore, is that the M-HL relation resembles the M-HA
relation but with higher susceptibility.

Various M-HA relations for permalloy bars were examined using the
results of Doyle and Casey (1974), Krinchik, Chepurova, Shamatov, Raev
and Andreev (1975) and Ma (1976). In general M varies nonlinearly with
HA but for most bars the relation is linear at low applied fields and

asymptotically reaches Ms at high fields.

The relation

2
M/Ms = t1(HL/Ht) -k, HL S,Ht s (b.3)
M/M = (t,-k) + 2 (1=t +k) tan @ ( HL_Ht) > H,, (D.4)
s = (& — (-t n » B, 2 He, (D
T H
t
where the parameters t1, Ht and n are shown in Fig. D.2, represents an
M-HL relation for a material with coercive field
HC = Ht /k/t1 . (D.5)

The continuity of the first derivatives of (D.3) and (D.4) is achieved
by choosing

g = N(1+K) , (D.6)

1
T+1

where n determines the curvature of (D.4). For the special case where

k<<1, n=1 and Ht >> HC,

ty= W/(mel) (D.7)
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tMF——— —

parabolic-arctan relation

coercive fields

Figure D.2 Linear-arctan and parabolic-arctan M—HL approximations.
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Figure D.3 Approximating arctan (x) by a simpler funétion.
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and the approximate susceptibility is given by

M
s

) " (D.8)
(1+1‘|')Ht
which is about 300 for th 650 A/m and Ms = 800,000 A/m.
The linear-arctan relation (3.55) and (3.56), shown in Fig. D.2,
can also be used to represent the permalloy M-H. characteristiecs.

L

In conclusion, it is noted that the M-H, relation given by (D.3)

L
and (D.4) represents a wide variety of curves with the required

properties. A great deal of computer time can be saved, however, using

tan"'(x) = T X, (D.9)
2 x+1

as shown in Fig. D.3.

The computer program written for the magnetization algorithm of
Chapter 3 accepts the specific M-HL approximation in a separate
subroutine. This allows using an experimentally determined permalloy

characteristic.
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magnetocrystalline, 30, 31
megnetoelastic, 30, 32
shape, 31

uniaxial, 32
Annealing, 11

Annihilation, 11, 14

Base points, 106, 107, 108

Bias field, t, 8, 9, 28, 86, 87, 94

margins, 3

Bubble
annihilation, 11, 14
aspect ratio, 89
circuit analysis, 66, 68
collapse field, 88, 91, 98
detection, 11, 12, 13
generation, 11
mobility, 9, 10
lattice file, 10
materials, 7
parameters, 7, 8, 102, 103
propagation, 15, 17

148



149

SUBJECT INDEX (continued)

Bubble (continued)
size fluctuations, 66, 83, 88
stability, 88
stray field, 28
velocity, 101, 102, 115

Characteristic length, 9, 80

Chevron circuits, T4
asymmetric, T4, 75
symmetric, T4, 76

Coercivity

bubble, 101
permalloy, 134

Constraints, 100, 105, 109
Continuum models, 1, 23
Critical points, 3, 102

Demagnetizing
energy, 30, 31
factors, 54, 55, 121, 127
field, 30, 31, 34, 35, 37, 40, 41, 54, 59

Deposition field, 47

Detection
acoustic-magnetostrictive, 13
Hall-effect, 11, 12
magnetoresistive, 13

magnetostrictive-piezoelectric, 12, 13
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Domain
closure, 21, 22
models, 1, 21
wall, 21

Energy

anisotropy, 30

magnetocrystalline, 30, 31, 33
magnetoelastic, 30, 32
shape, 31

applied field, 30
exchange, 30, 32
demagnetizing, 30, 31

minimization, 30
Epitaxial films, 10

Exchange
constants, 9, 32, 128
energy, 30, 32
field, 34, 35

Ferromagnetic films
magnetostrictive, 12, 13
nonmagnetostrictive, 19

permalloy, 19, 23
Field access circuits, 2
Force function, 90

Fourier series expansions, 24, 25

Gap tolerant circuits, 5, 15
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Garnets, 9

gadolinium galium, 10

Generation
disk, 11

nucleation, 11

Half-disk circuits, 77-82

Hall-effect detectors, 11, 12

Magnetization
algorithm, 50
distributions, 30

saturation, 7, 19
Magnetocrystalline anistropy (see Anisotropy)
Magnetoelastic anisotropy (see Anisotropy)
Magnetoresistance (see Detection)
Magnetostriction (see Detection)

M-H approximations, 132-137

Micromagnetic
algorithm, 43
models, 19

Minimax objective, 109

Nondestructive read-out, 11
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Optimization
bubble circuits, 9, 100-116

procedure, 110

Over-relaxation factor, 93

Permalloy (see Ferromagnetic films)
Polynomial approximation, 100, 106, 107

Potential well, 66, 67
depth, 67

distributions, 68

Propagation
field access, 2
circuits, 15, 17

asymmetric chevrons, 2, TU-T6
asymmetric half-disks, 2, 77-83
channel-bars, 2

gap tolerant, 2

parallel-bars, 2

optimization, 5, 100-116

T-1, 2, 95-97

symmetric chevrons, 2, Ti4-76
symmetric half-disks, 2, T77-83
Y-I, 2

track, 101

Quality factor, 9

Replicators, 5, 14
sideways, 14, 83-85

Stability functions, 90
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Susceptibility, 132

Under-relaxation factor, U4, U5, 51-53

Uniaxial anisottopy (see Anisotropy)
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