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ABSTRACT 

The work presented in this thesis relates to one of the most 

important problems in the design of high-density, high-speed bubble 

memory systems. A new approach for the analysis, design and 

optimization of bubble circuits is developed. This formulation is 

suited to computer-aided methods of solution. 

A micromagnetic approach to the modeling of permalloy bubble 

circuits is examined. Basic to the approach is the discretization of 

the circuit into very small regions to simulate the ferromagnetic 

essence of the permalloy. This method of analysis is very useful in 

studying submicron bubble circuits. However, the numerical difficulties 

as well as the excessive computer time required for such analysis led to 

careful consideration of possible approximations. A continuum model for 

analyzing field access bubble circuits has, thus, been developed and 

used to characterize arbitrary shaped permalloy structures. Various 

propagation circuits, including gap tolerant circuits, and bubble 

replicators are analyzed and the results compared to experimentally 

available data. 

A model for studying bubble size and position fluctuations is 

introduced. The model assumes that the bubble domain is circular. 

However, with slight modifications it can accept general elliptical 

shapes. For various propagation circuits, the model results are in 

excellent agreement with experimental measurements in the literature. 
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An algorithm for bubble circuit optimization is developed and 

discussed in detail. The problem is formulated as a constrained minimax 

objective which is suited to nonlinear programming methods of solution. 

Typical examples of T-I propagation circuits are furnished to illustrate 

the approach. 
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CHAPTER 1 


INTRODUCTION 


The problem of modeling and analysis of magnetic bubble field 

access devices and, in particular, circuits used for bubble propagation 

is the subject of this thesis. A secondary objective is to introduce a 

new optimization procedure for the design of bubble propagation 

circuits. 

For the reader who is unfamiliar with these circuits, Chapter 2 

presents a brief review of magnetic bubbles, bubble materials and bubble 

circuits. The definition of the problem of propagation circuit modeling 

is introduced. Micromagnetic modeling, domain modeling and continuum 

modeling techniques are discussed and a unified review of the existing 

models is also given. 

One of the basic functions necessary for the operation of a 

serially accessed bubble memory system is the ability to manipulate the 

stored data. This is done by moving the bits of information (the 

presence or absence of bubbles), along certain propagation tracks within 

the memory. Since bubble domains are stabilized by an external fixed 

bias field, it is possible to move them by introducing a traveling local 

perturbation of the bias field, that is a traveling potential well. It 

is the role of the bubble propagation circuits to provide such 

perturbations. The use of permalloy features magnetized by a rotating 

transverse magnetic field has thus far proven to be the most reliable 
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propagation method. Propagation structures built of permalloy are 

called field access circuits. 

To date, the design of field access propagation circuits for 

bubble memory and logic applications (Smith 1974, O'Dell 1974, Bobeck 

and Della Torre 1975 and Chang 1975) has largely been a cut-and-try 

process, relying almost exclusively on intuition and experience. The 

questions of which factors determine the minimum rotating field required 

for propagation, the value of this minimum field and the optimum 

permalloy geometry for an operating device have not been adequately 

answered. 

At present, when designing a means for propagating bubbles, one 

is faced with a large number of different circuits. Within just the 

framework of field access circuits there are still a bewilderingly large 

number of different circuits, such as: T-I (Perneski 1969), Y-I 

(Danylchuk 1971), Chevrons (Bobeck, Fischer and Smith 1972), X-I 

(Parzefall, Littwin and Metzdorf 1973), parallel-bars (Della Torre and 

Kinsner 1973), channel-bars (Della Torre and Kinsner 1975), half-disks 

(Bonyhard and Smith 1976 and Gergis, George and Kobayashi 1976) and 

asymmetric chevrons (Bobeck and Danylchuk 1977), to name a few. 

The important characteristics for a good propagation structure 

are: good margins, compatibility with the design of other functions in 

the memory system and the capability of propagating bubbles at high 

speed. The bias field margin (the range of bias field over which the 

bubble does not strip-out or collapse) depends on the rotating 

propagation field amplitude, the permalloy shape and the bubble domain 
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parameters (diameter, height and saturation magnetization). Since along 

the propagation track (bubble path) the bias field margin varies from 

point to point, the overall circuit margin is determined by the smallest 

bias field margin. The smallest bias field margin occurs at critical 

points in the propagation circuits such as the gaps between the T and 

the I elements in T-I circuits and along the arms of the Y elements in 

Y-I circuits. Therefore, a good design of a propagation circuit should 

guarantee that the bubble will move reliably past critical points, that 

is the margins are adequate at these points. 

In order to be able to optimize field access structures, an 

efficient and accurate model for analysis of arbitrary permalloy shapes, 

under the influence of general applied fields, is required. This model 

should be capable of analyzing the higher density bubble memory systems 

that are increasingly being used. 

The work presented in this thesis includes new approaches for 

modeling of field access bubble circuits and, particularly, bubble 

propagation circuits. Moreover, it provides a novel procedure for 

optimization of propagation structures. In particular, Chapter 3 

presents new micromagnetic and continuum models for the analysis of 

bubble propagation circuits. These models are general enough to be 

applied to arbitrary shapes of permalloy overlays. Comparison to 

results of other mod~ls is also given. 

The analysis of Chapter 3 is used to study the propagation 

characteristics of various bubble propagating circuits and the results 

of this analysis are presented in Chapter 4. The potential well 
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distribution of rectangular bars, symmetric and asymmetric half-disks 

and asymmetric chevrons are given in Chapter 4. In addition, a new 

algorithm for the analysis of bubble size fluctuations in propagation 

circuits is developed where an iterative technique is used to compute 

the stable bubble-permalloy configuration. This is essential for 

studying the dynamics of bubble circuits. Comparison to experimentally 

available data (Jones and Enoch 1974) is also included. 

A novel procedure for propagation circuit optimization is given 

in Chapter 5. A discussion of the effect of circuit parameters on the 

circuit behavior is included. The potential well produced by the 

permalloy is modeled using a quadratic polynomial approximation 

technique (Abdel-Malek 1977). The optimization problem is, then, 

formulated and solved (Bandler and Sinha 1977). A typical T-I 

propagating circuit is analyzed using this procedure and the results are 

compared to experimental data (Kryder, Ahn and Powers 1975). 

Appendices are included to supplement the text with specific 

material. These include a summary for conversion between RMKS and CGS 

units, the computation of the demagnetizing factors of permalloy 

circuits, the computation of exchange energy and a summary of useful M-H 

approximations. 

The following are the original contributions claimed for this 

work: 

( 1) 	 The formulation of a new micromagnetic model for the study of 

submicron bubble circuits. 

(2) 	 The formulation and implementation of a continuum model for 
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analysis of arbitrary shaped field access bubble propagation 

circuits in which the permalloy nonlinear characteristics are 

included. 

(3) 	 The analysis of gap tolerant propagation structures and 

replicate/transfer gates. 

(4) 	 An improved algorithm for studying the stability of bubble 

domains in uniaxial magnetic materials. 

(5) 	 An algorithm for computing the fluctuations in bubble size and 

bubble center position. 

(6) 	 The formulation of a novel algorithm for bubble circuit 

optimization. 



CHAPTER 2 


MAGNETIC BUBBLES, BUBBLE CIRCUITS AND CIRCUIT MODELING: 

A REVIEW 


2.1 Introduction 

It has now been a decade since the first paper on device 

applications of magnetic bubbles appeared in a technical journal (Bobeck 

1967). Advances in bubble physics, devices, materials and memory 

systems in that decade have been impressive. Storage in bubble memories 

is nonvolatile and requires no stand-by power. The insensitivity of 

this solid-state memory to shock, vibration and radiation makes it very 

attractive for applications in which the memory is subject to severe 

operating conditions (Chang 1975). 

To date, the design of bubble domain field access bubble circuits 

is performed by fabricating a device and testing it. If it does not 

perform adequately, a small change is made in the design and it is 

refabricated. The process is repeated until satisfactory performance is 

achieved. This approach is time consuming and expensive. It is 

desirable, therefore, to develop a model which accurately characterizes 

and analyzes bubble circuits and which can be used for the design of 

these circuits. 

This Chapter gives a brief review of bubble domain materials and 

circuits. A review of the main approaches for modeling of field access 

bubble circuits is also presented. Several books (Smith 1974, O'Dell 

1974, Bobeck and Della Torre 1975 and Chang 1975) provide supplemental 
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reading for the interested reader. 

2.2 Bubble Domains 

Figure 2.1 shows the configuration of a bubble domain in a thin 

magnetic film. It is a cylindrical region in a platelet (thin film) 

with magnetization perpendicular to the film plane and opposite to that 

in the surrounding region. This configuration can be achieved only if 

the bubble supporting film possesses certain magnetic properties such 

as: uni axial magnetic anisotropy, to orient the magnetization 

perpendicular to the film plane, and magnetization sufficiently small, 

to prevent the demagnetizing field from forcing the magnetization into 

the film plane. See Bobeck and Della Torre (1975) and Chang (1975). A 

bias field must be applied antiparallel to the bubble magnetization to 

prevent the bubble from running into a serpentine domain. 

2.3 Bubble Materials 

Successful design of high-density, high-speed bubble devices 

depends on the availability of a material capable of supporting 

sufficiently small and highly mobile domains. The storage density, data 

rate, stability and temperature sensitivity of bubble devices are 

determined by the materials parameters. These parameters and their 

units are: 

h; material thickness (m), 

MB; material saturation magnetization (A/m), 

K · u' uniaxial anisotropy constant (J/m3), 
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Figure 2.1 	 A cylindrical bubble domain in a uniaxial thin film. 

The bubble is stabilized by the external bias field. 
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A ; exchange constant (J/m) and ex 

µwi domain wall mobility (m2/A s). 

A material characteristic length 

4·~Vtiex 1\.u
Q, = (2 .1)
m 

conveniently characterizes materials as to the range of bubble domain 

sizes they can support. According to Thiele (1969), the optimum film 

thickness 

h = 4 Q, m (2.2) 

results in the smallest stable domain diameter 

d = 8 Q, (2. 3)m 

at a bias field 

(2.4) 

The quality factor 

2Ku 
(2.5)Q =-­

where µ
0 

is the permeability of free space, is a measure of the 

stiffness of the magnetization. Experience has shown that for most 

useful bubble materials, Q should be in the range of 3 to 10 (Bobeck, 

Bonyhard and Geusic 1975). The material parameters h, MB, K , A , and u ex 

µw can be adjusted by tailoring the material composition. 

At present, the best materials available are single-crystal 

garnet films in the form: (X) Fe 0 where X is a combination of rare
3 5 12 
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earths or Yttrium. The bubble size can be adjusted by varying the 

magnetization of the garnet. This is achieved by using solid solutions 

instead of one rare earth and by substitution of nonmagnetic ions (Ga or 

At) into the iron ions (Nielsen 1971). Garnet films are grown by 

liquid-phase epitaxy (LPE) techniques on nonmagnetic substrates such as 

gadolinium gallium garnet (GGG). This process is described in detail by 

Blank and Nielsen (1972). For example, a 3 µm thick garnet (Sm0. 4 Y2 .6 

Fe3 . 8 Ga 1. 2 012 ) on a substrate (Gd Ga5 012 ) can support 3 µm diameter3 
bubbles yielding a storage density of 0.6x1010 bits/m2 (with four bubble 

diameters separation). To achieve a data rate of 0.1 M bit/s, the 3 µm 

bubbles must have a mobility of at least 0.016 m2/A s. 

Other bubble materials are under consideration. The most 

promising of these are the amorphous magnetic films ( Chaudhari, Cuomo 

and Gambino 1973). These films (typically GdCoMo) are made by low-

temperature sputtering processes on noncrystalline substrates and are 

capable of supporting submicron diameter bubbles. 

2.4 Bubble Circuits 

Storage of binary information in a bubble memory system can be 

achieved by various methods such as: presence or absence of a bubble at 

a given site or by two different domain wall configurations (bubble 

lattice file). A memory system must have not only the ability to store 

information, but also provide access capability for reading and writing 

at a selected storage location. Therefore, in a memory system one must 

be able to perform the following functions: introduce new data 
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(generate bubbles), read data (detect bubbles), remove data (annihilate 

bubbles) and access data (propagate bubbles). In some cases, it is 

advantageous to detect replicas rather than the original of the stored 

data and hence a fifth function, namely bubble replication, is useful 

(Bobeck and Della Torre 1975). 

2.4.1 	 Bubble Generation 

In the early days of bubble technology, bubble generation was 

accomplished primarily by replication of a bubble from a rotating seed 

bubble attached to a permalloy circular disk (Perneski 1969). Such disk 

generators have the disadvantage of requiring initialization (creation 

of the seed bubble). The most commonly used method of bubble generation 

is based on nucleate generators (Nelson, Chen and Geusic 1973). In this 

method a hairpin conductor loop is pulsed with an adequate current pulse 

to produce a bubble domain. See Fig. 2.2(a). This bubble is then 

propagated away, and if so desired, another bubble may be generated on 

the next propagate cycle. Excellent operating margins and low 

generating currents are obtained by locally annealing the bubble 

material just under the hairpin conductor loop. 

2.4.2 	 Bubble Detection 

Nondestructive readout (NDRO) of a single bubble domain can be 

achieved through the use of Hall-effect detectors (Strauss and Smith 

1970). The vertical component of the bubble's stray field produces a 

Lorentz force in an adjacent semiconductor thin film, which causes a 
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Figure 2.2 	 Bubble circuits: (a) a nucleate generator (Nelson, Chen 
and Geusic 1973), (b) a magnetoresistive detector 
(Strauss 1971), (c) an MP detector (Ishak, Kinsner, and 
Della Torre 1975) and (d) a bubble replicator (Bobeck, 
Bonyhard and Geusic 1975). 

(b) magnetoresistive detector 

elongated 
bubble 

(d) replicate /transfer gate 
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voltage to appear at right angles to both the bubble field and the 

current direction in the semiconductor. The main disadvantage of this 

method of detection is the requirement of an external power supply to 

produce the necessary current in the semiconductor film. 

Magnetoresistive detection is based on the fact that the 

resistance of a permalloy bar changes when subject to an external 

magnetic field (e.g. from an adjacent bubble). This change in 

resistance will result in a detectable voltage change at the permalloy 

terminals (Strauss 1971 and Almasi, Keefe, Lin and Thompson 1971). See 

Fig. 2.2(b). Although this detector is easy to fabricate, it still 

requires external current to operate and also responds to the 

propagation field which results in a low signal-to-noise ratio. 

More recently, the magnetostrictive-piezoelectric (MP) detector 

(Kinsner and Della Torre 1974, Ishak 1975 and Ishak, Kinsner and Della 

Torre 1975) and the acoustic-magnetostrictive (AM) detector (Kinsner and 

Della Torre 1975) were suggested. In the MP detector, the vertical 

component of the bubble's stray field is used to produce a mechanical 

strain in a nearby magnetostrictive film (e.g. 60% Ni 40% Fe 

permalloy). This strain is coupled to a piezoelectric film (e.g. ZnO), 

as shown in Fig. 2.2(c), which produces an output signal at a very high 

output impedance. The noise generated in this detector is much smaller 

than in the magnetoresistive detector since it does not respond to the 

propagation field. In the AM detector, a combination of a sonic pulse 

and the bubble field is used to produce a voltage signal in a 

magnetostrictive thin film. This detector is capable of detecting a 
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stationary bubble, a property which is needed for a random-access NDRO 

of a bubble memory configuration. 

2.4.3 Bubble Annihilation 

An information bit in the form of a bubble can be cleared by the 

annihilation of the bubble through various techniques. A hairpin 

conductor could be used to produce a strong magnetic field opposite to 

the bubble magnetization, or a bubble could be merged to a seed bubble 

attached to a permalloy sink or a bubble could be propagated to a 

permalloy guard-rail outside the memory area (Chang 1975). 

2.4.4 Bubble Replication 

In a serial-access bubble memory, the cycle time can be reduced 

by utilizing controlled replication of data before reading. The bubble 

to be read is sent to a replicate circuit where it is cut into two 

bubbles. One bubble is sent back directly to the original bubble 

location and the other is routed to a detector circuit. Thus the need 

for restoring data back into the storage loops after reading is 

eliminated. The most useful bubble replicators thus far developed 

employ permalloy elements and a control conductor pattern (Bonyhard, 

Chen and Smith 1977). Controlled replication is achieved by applying a 

specified current pulse at an appropriate time within the rotating field 

cycle. See Fig. 2.2(d). 
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2.4.5 Bubble Propagation 

In a memory system the access of information, through bubble 

propagation, is done much more frequently than any of the other 

functions described in Subsections 2.4.1-2.4.4. The success of a bubble 

memory system, then, depends mainly on how well and reliable bubble 

propagation is performed. Almost all circuits analyzed in this thesis 

are bubble propagation circuits. 

Bubble propagation is accomplished by spatially varying the 

strength of the bias field to create a gradient across the bubble. The 

bubble then moves toward the region of the lower bias field. In 

practical bubble devices, a traveling local gradient of bias field 

across the bubble is created by permalloy patterns magnetized by a 

rotating in-plane field. Figure 2.3 illustrates how a bubble is 

attracted to a rectangular permalloy bar magnetized by a magnetic field 

HT and Fig. 2. 4 shows some typical field access bubble propagation 

circuits. While the T-I and Y-I circuits, shown in Fig. 2.4(a) and (b) 

respectively, have two gaps per period, the half-disk (gap tolerant) 

circuits of Fig. 2.4(c) have single gap per period. Gap tolerant 

circuits offer many advantages over other propagation circuits such as 

increase of the minimum feature resolution (smallest permalloy 

dimension) to 1/8 th of a period, excellent bias field margins and the 

elimination of channel-to-channel interconnection elements (such as the 

bars 	in Fig. 2.4(a) and (b)). 

The parallel-bar (Della Torre and Kinsner 1973) and the 

channel-bar (Della Torre and Kinsner 1975) circuits have the advantage 

I 
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Figure 2.3 Bubble domains attracted to the ends of permalloy 

overlays and underlays by an in-plane field HT. 
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Figure 2.4 	 Bubble propagation circuits: (a) T-1 circuit (Perneski 
1969), (b) Y-1 circuit (Danylchuk 1971) and (c) asymmetric 
half-disk circuit (Bonyhard and Smith 1976). 



18 

of requiring an oscillating propagation field rather than a rotating 

field, thus saving one propagation coil. By adjusting the overlapping 

between successive bars, the parallel-bar circuit produces linear and 

uniform bubble propagation. 

2.5 The Modeling Problem 

The simplest field access bubble circuit is composed of a 

permalloy circuit overlay - magnetized by an in-plane transverse field, 

adjacent to a magnetic bubble domain, stabilized by a bias field (see 

Fig. 2.3). The modeling of such a circuit requires the solution of two 

basic problems: the forward modeling problem and the backward modeling 

problem. In the former, the changes in the permalloy magnetization and 

total energy, due to the in-plane propagation field, the bubble's stray 

field and the bias field, are to be computed. The later problem deals 

with computation of the changes in bubble size and shape due to the 

change in the permalloy total energy. A complete modeling technique 

should be able to solve both the forward and the backward modeling 

problems. While the forward problem has been analyzed by various 

authors, the backward problem has only been investigated experimentally. 

Modeling techniques for the forward problem vary according to how 

one can characterize the permalloy material (bubble circuit material). 

This results in three main modeling approaches: micromagnetic models, 

domain models and continuum models. 
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2.6 Micromagnetic Models 

Almost all field access bubble propagation circuits are made of 

thin ferromagnetic films such as a non-magnetostrictive permalloy (80% 

Ni - 20% Fe). These ferromagnetic films in the demagnetized state (e.g. 

zero applied field) are divided into a number of small regions called 

domains. Each domain is spontaneously magnetized to the saturation 

value, Ms, but the directions of magnetization of the various domains 

are such that the specimen as a whole has zero net magnetization 

(Cullity 1972). 

A micromagnetic model for a permalloy element placed in an 

applied field HA, typically used in bubble circuits, should thus take 

into account the ferromagnetic nature of the permalloy. The magnetiza­

tion vector at any point in the permalloy must be of a constant 

magnitude equal to M . Only the direction of this vector is allowed to s 

vary. In addition, an ace urate micromagnetic analysis requires the 

computation of the magnetization distribution over a very large number 

of points in the permalloy. A typical permalloy bar of dimensions 

15x3x0. 4 µm requires a mesh of about 18000 points. This will result in 

a cell size (the distance between two neighboring points) of about 500 
0 

A which reasonably simulates a micromagnetic cell for such bar. For 

such small cell dimensions, the exchange force (a force, quantum 

mechanical in origin, trying to align the magnetization vectors parallel 

to each other), and hence the exchange energy, 'will contribute a 

significant term to the total energy. 

The actual magnetization distribution in a permalloy element, for 
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Figure 2.5 	 A magnetic body (a) in the demagnetized state respands to an 
applied field HA by (b) a domain wall motion where the domains 
whose magnetization are closest to HA grow at the expense of 
the other domains until (c) the whole body becomes a single 
domain and then (d) a magnetization rotation occurs to make 
Ms parallel to HA. 
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any applied field configuration, is obtained by minimizing the permalloy 

total energy. This distribution should describe the domain structure, 

including domain walls, in the permalloy. 

Due to the large amount of computations and large computer memory 

requirements involved in this approach, micromagnetic modeling has been 

avoided by most of the workers in the area of bubble circuit modeling. 

This problem, however, is discussed in detail in Chapter 3. 

2.7 Domain Models 

This approach assumes an initial domain distribution in the 

permalloy, with zero domain wall thickness. The presence of an applied 

field changes the overall magnetization distribution by an increase in 

the volume of the domains whose magnetization directions are closest to 

the applied field, at the expense of the other domains (Della Torre and 

Longo 1969 and Cullity 1972). See Fig. 2.5. 

In one of the domain models, Della Torre and Kinsner ( 1973) 

assumed a two domain configuration per rectangular bar as shown in Fig. 

2.6(a). This one-dimensional model (the magnetization is allowed to 

vary only along the bar's long axis) is fairly accurate for analyzing 

ba~s with relatively large aspect ratio (length/width). However, 

experimental observations proved that for short bars, the closure domain 

configuration, shown in Fig. 2.6(b), should be considered. It was shown 

(Della Torre and Kinsner 1973) that assuming more than two parallel 

domains per bar will not produce significant changes in the 

magnetization distribution. 
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Figure 2.6 Domains and domain walls in rectangular permalloy bars. 
(a) two longitudinal domains per bar (Della Torre and 
Kinsner 1973) and (b) a closure domain configuration 
(Khaiyer 1976). 
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Khaiyer (1975) suggested a two-dimensional domain model using the 

closure domain configuration of Fig. 2.6(b). The magnetization, in this 

model, is allowed to vary along the bar length and width. Only straight 

domain walls are allowed which is questionable if the bubble's stray 

field is considered. 

2.8 	 Continuum Models 

Continuum models are based on approximating the magnetization in 

a permeable body by a continuous distribution rather than division into 

domains. This approach allows using mathematical simulation techniques 

to compute an average magnetization distribution. 

A magnetostatic model for analyzing bubble-permalloy configura­

tions in the absence of in-plane propagation fields was introduced by 

Boyarchenkov, Raev, Samarin, Bal bashov and Chervonenkis ( 1971) • In 

their model, the charge distribution, on the permalloy element, due to 

the presence of the bubble domain is computed using an approximate 

expression for the bubble field (Bobeck 1967). Copeland (1972) 

suggested a one dimensional continuum model for rectangular permalloy 

bars using a series expansion to approximate the demagnetizing field 

(the field set up by the magnetization) in the permalloy. Starting with 

an initial magnetization distribution, an iterative procedure is used to 

compute the final one-dimensional magnetization distribution. The 

model, formulated in this way, is not capable of analyzing cases where 

two permalloy elements interact with each other. 

Later, 	 Lin ( 1972) introduced another one-dimensional model in 
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which he used a Fourier series method to compute the magnetization 

distribution in rectangular permalloy bars. No extension to the 

two-dimensional case was made. 

A three-dimensional model was introduced by Kinsner and Della 

Torre (1972) in which the Poisson's equation for inhomogeneous medium 

was solved using an iterative technique. Various bubble propagation 

circuits were analyzed including T-I, Y-I and Chevron circuits (Kinsner 

and Della Torre 1975). In that model the polarizing influence of the 

bubble's stray field was not taken into consideration. 

Archer, Tocci, George and Chen ( 1972) and, later, George and 

Archer (1973a,b) suggested an energy minimization technique to solve for 

a two-dimensional magnetization distribution in permalloy circuits. The 

total local field (the vectorial sum of the applied field and the de­

magnetizing field) is assumed to be identically zero everywhere in the 

permalloy. This assumpt.ion implies that the susceptibility of the 

permalloy must be infinite to achieve finite magnetization values. This 

is a disadvantage of the model since measurements proved that thin­

permalloy films, when etched into small bars, will possess a finite 

susceptibility in the range of 200-2000 (Dove, Watson, Ma and Huijer 

1976 and Feng and Thompson 1977). Basic to the magnetization computa­

tion, in this model, is the solution of a large system of linear 

equations. A typical permalloy bar modeling problem with a mesh of 100 

points (points at which the magnetization is to be computed) requires 

the solution of a set of 200 equations. In addition to large qomputer 

memory requirements, the coefficients in these equations may vary over a 
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wide range which may result in an ill-conditioned formulation (Wilkinson 

1963). The model was used to analyze various thick permalloy bars 

(George and Archer 1973a) and chevron circuits (George and Hughes 

1976a). 

Dove, Watson, Huijer and Ma ( 1975) used a Fourier series method 

for the calculation of the permalloy magnetization and energy. Spatial 

variation of the demagnetizing field in the permalloy was represented in 

this model by a Fourier series expansion and only rectangular bars were 

analyzed. 

2.9 Analytical Models 

A new approach for modeling of bubble circuits was introduced by 

Almasi, Lin, Munro and Slusarczuk (1974) and generalized by Almasi and 

Lin (1976). In this model the problem was approached from the viewpoint 

of the bubble, that is the change in the bubble energy due to the 

presence of the magnetized permalloy circuit. Approximate analytical 

expressions were derived giving the change in the bubble energy as 

functions of the circuit parameters {permalloy and bubble parameters). 

Although this model offers a simple computation procedure, yet the error 

in the energy values could be as high as 20% (Almasi and Lin 1976). 

Using this technique, the forward modeling problem is not solved and it 

is difficult to analyze complicated propagation structures such as gap 

tolerant circuits. 
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2.10 Conclusions 

In summary, there exist several modeling techniques for analyzing 

simple bubble domain field access propagate structures. Some are 

unrealistic especially when dealing with thin permalloy circuits and 

some are approximate and cannot deal with complicated shapes of 

propagation circuits such as gap tolerant circuits. It is the rapid and 

varied development in the shapes and characteristics of bubble 

propagation structures, and hence the necessity of developing a general, 

accurate and efficient model that formed the motivation of this research 

work. 



CHAPTER 3 


NEW APPROACHES TO BUBBLE CIRCUIT MODELING 


3.1 Introduction 

In this chapter new techniques for modeling of field access 

bubble propagation circuits are presented. First a micromagnetic model 

for magnetized permalloy circuits is given. The implementation of this 

analysis was successful; however, it was not practical for use in an 

optimization program since it required excessive running time and memory 

storage. Several assumptions are examined that led to a simplified 

analysis which introduced a new continuum model. In the remainder of 

this chapter, this continuum model is described in detail. 

Both models are numerical in nature and iterative schemes are 

used to compute the magnetization distribution in the permalloy overlay 

described in Chapter 2. In the continuum model an arbitrary M-H 

relation is used to express the permalloy's nonlinear characteristics. 

The model is capable of handling arbitrary permalloy shapes in two 

dimensions. Various examples are analyzed using the continuum model and 

comparison to the results of models of other workers is given. 

3.2 Statement of the Problem 

An objective of the forward modeling problem, described in 

Section 2. 5, is to find the magnetization distribution M(r) and the ,., ­
total energy EP of a permalloy body placed in an applied field ~A<:), 

27 
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where r is a position vector. See Fig. 3.1. The applied field !JA(!:°), 

in a typical field access bubble circuit, is composed of four 

components: 

( 1) 	 ~8 ; the bias field required to stabilize bubble domains in a 

bubble circuit. This field is usually produced by a pair of 

permanent magnets and is normal to the permalloy plane, that is 

applied in the z-direction, 

(2) 	 ~T; the transverse in-plane field required for the propagation of 

bubble domains. A pair of coils is required to produce this 

field which is uniform, rotatable about the z-axis and applied in 

the x-y plane, 

(3) 	 ~R (r_:); the radial component of the bubble's stray field which is 

highly nonuniform in the x-y plane, and 

(4) 	 ~N( r:_); the normal component of the bubble's stray field which is 

nonuniform and in the z-direction. 

An algorithm for the computation of the bubble's stray field is given 

later in Subsection 3.4.1. 

When a bar is magnetized by an applied field, a demagnetizing 

field ~D(~) is created which acts generally in the opposite direction of 

the magnetization M( r) • The computation of ~0 (r_:) for an arbitrary 

shaped magnetized body is one of the most difficult problems in the 

following analysis. Subsections 3.4.2 and 3.5.1 describe in detail such 

computations. 

In general, the total energy E p of a magnetized body is composed 

of the following terms: 
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Figure 3.1 A rectangular permalloy bar of dimensions £ x w x t in the 
x-y plane. The z-axis is perpendicular to the bar plane. 
The applied field and magnetization at point P, whose position 
vector is :p• are ~A(:p) and ~(:p), respectively. 
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(1) An applied field energy term EA' 

(2) A demagnetizing energy term ED' 

(3) A magnetocrystalline anisotropy energy term EMA' 

(4) An exchange energy term EEX and 

(5) A magnetoelastic energy term EME" 

The goal of micromagnetic analysis of a magnetic body is the computation 

of the magnetization distribution M( r) which will minimize the total 

energy 

(3 .1) 

3.3 Energy Analysis 

The following analysis refers to ferromagnetic and ferrimagnetic 

bodies where the magnetization of each elementary subvolume !J. V in the 

body is of fixed magnitude but variable orientation. When a field ~A(~) 

is applied to such a body, the torque exerted on each subvolume /J.V is 

This torque tends to align M(r) parallel to 

~A(~). The total applied field energy may be written as (Cohen 1970) 

(3 .2)EA = - µ 0 I ~A (:) • ~(:) dV ' 

VP 

where VP is the volume of the body. 

Similarly, the demagnetizing energy which will result from the 

creation of ~n<:), inside the body, is given by (Cohen 1970) 
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~D (!') • M( r) dV (3.3) 

The factor 1/2 arises from the fact that self-energy is involved. The 

demagnetizing field ~D<:i) at point i is computed by summing the 

contributions of the magnetization M(r.) at all points in the body. The 
- -J 

contribution from the magnetization M( r.) to the demagnetizing field 
- -J 

~D (~i) depends on the distance between the two points, I:ij I , and the 

shape of the magnetic body. The demagnetizing energy ED is, thus , 

sometimes called the shape energy or shape anisotropy energy. 

In addition to shape anisotropy, the magnetized body, due to its 

crystalline structure, exhibits a magnetocrystalline anisotropy. 

Generally speaking, any body has one or more easy directions of 

magnetization (directions along which the body can be magnetized to 

saturation with quite low fields). Any attempt to magnetize it in some 

other direction results in an increase in its internal energy by an 

amount called the magnetocrystalline anisotropy energy. It is 

convenient to define this energy in terms of the direction cosines 

a (r), a (r) and a (r) of the magnetization M(r) in the form (Della 
x - y - z -

Torre and Longo 1969) 

2 2
{KO + K [a;(!_') a 2 (r) + a (r) a (r)EMA =I 1 y - y - z ­

VP 

2 2 2 2+ a (r) a 2(r)] a (r) a ( r) a (r) + ••• } dV (3 .4)+ K2 z - x - x - y - z ­

where K0 , K1, K2 , ••• are the anisotropy constants of the body. Higher 


powers are generally not needed and sometimes K is so small that the
2 
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term involving it can be neglected. Since we are usually interested in 

the change in the energy when M(r) is changed, the term K0 need not be 

considered. In uniaxial magnetic bodies, EMA reduces to 

EMA = I K1 sin
2 SM(~) dV (3. 5) 

VP 

where SM(12) is the angle between the magnetization and the easy axis. 

In this case K1 is called the uniaxial anisotropy constant. 

The atomic structure of a ferromagnetic material, such as 

permalloy, is such that exchange forces of a quantum-mechanical nature 

tend to force the spins of adjacent atoms to lie in parallel directions. 

The exchange forces are short range and decline so markedly with 

distance that only adjacent atoms interact. The exchange energy is 

given by (Brown 1963) 

EEX = J AEX {[~ ax(£)]2 + [~ ay(£)]2 + [~ az(£)]2} dV (3.6) 

v p 

where AEX is the permalloy exchange constant. 

When a substance is exposed to a magnetic field, its dimensions 

change due to magnetostriction. Conversely, when a stress, or a strain, 

is applied to a magnetic material, its magnetization changes due to the 

magnetoelastic effect. The magnetoelastic energy term is given by 

(Cohen 1970) 

EMA= - f AME ~(r) sin2 [ecr(r)J dV, (3.7) 

VP 
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where AME is the magnetoelastic const~nt, a(r) is the stress vector and 

e (r) is the angle between the stress and the magnetization. 
a - . 

3.4 A Micromagnetic Model 

Brown (1977) showed that the magnetoelastic energy of the body 

can be reduced to an expression similar to that in (3.4) (or (3.5) in 

case of uniaxial materials). Therefore, the effect of the elastic and 

magnetoelastic properties of the material can be combined and the 

magnetocrystalline anisotropy constants at zero strain (K0 , K
1

, K
2

, 

in (3.4)) replaced by slightly different elastic constants so that 

2 2 2' ' 2 a (r) + a (r) a (r) + a2(r) a 2(r)] +EM = EMA + EME "' {KO+ Kl[ax(!:)J y - y - z - z - x ­
VP 

(3.8) 

' ' ' where K
0 

, K1, K2 , • • • are the new anisotropy constants. For uniaxial 

materials, 

2
EM = EMA + EME "' J K; sin [eM(~)] dV • (3.9) 

VP 

Using (3.2), (3.3), (3.6) and (3.8), Ep can be expressed as 

Ep = I [-µ 0 !lA ( !: ) 
VP 

2 2 2 
+ AEX {[~ ax(E)] + [~ ay<r>J + [Va(r)]}+ 

- z ­

~FA [•x<rl, •/:l, •z<:JJJdV (3.10) 
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where 

FA[a (r), a (r), a (r)] A a 2(r) a2(r) + a2(r) a2(r)
x- y- z- x- y- y- z­

(3.11) 

is the effective magnetocrystalline-magnetoelastic anisotropy function. 

To find the equilibrium condition for M(r), we imagine the 

magnetization to undergo virtual variations cSM(r) subject to the 

constraint 

i = 1, 2, ••• , N (3. 12) 

and require that the resulting first derivatives of Ep be zero. The 

constraints (3.12) can, alternatively, be stated as (Brown 1963) 

cS 1M(r.) = cSf; x 1M(r.), i = 1, 2, ... , N (3. 13) 
- -1 - - -1 

where 

= a (r.) 1 + a (r.) 1 + a (r.) 1 , i = 1, 2, ... , N x -1 -x y -1 -Y z -1 -z (3.14) 

is a unit vector along M(r.) and cSf; is an arbitrary small vector which 
- _1 ­

discribes a rotation of !M<:i> through a small angle lcSf;I about an axis 

in the direction of cSf;, The equilibrium condition, therefore, requires 

that (neglecting surface effects) 

(3. 15) 

where 

(3.16) 

••• ' N' 
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!:!Ex<.ri) 
2A 

~ ~ 
µ M. 

0 s 
V 

2 
[1M(£i)] i = 1 ' 2, • • • ' N' (3.17) 

and 

a 
31M<r) 

h. a 
= 

aa (r) 
x -

1 -x + 
a 

1 
aa (r) -Y 

y -

+ 
a 

aa (r)
z -

1 z (3.18) 

If the permalloy has no anisotropy, then (3.17) reduces to 

(3.19) 

and the equilibrium condition is satisfied by setting (see Fig. 3.2(b)) 

eM(r.) = eL(r.), i = 1, 2, ••• , N • (3. 20)
-l. -i 

From now on, a symbol that denotes a vector without a tilde will refer 

to the vector magnitude. 

In most bubble circuits, the dimensions in the plane of the 

permalloy film (x-y plane in Fig. 3.1) are very large compared to the 

film thickness. For example, in a 3 µm diameter bubble circuit, typical 

dimensions of a rectangular bar would be 7.5 x 1.5 x 0.3 µm. This gives 

a length-to-thickness ratio and a width-to-thickness ratio of 25 and 5, 

respectively. Therefore, M(r) tends to lie in the film plane, since if 

for any reason, M(r) tilts out of the plane, the resulting demagnetizing 

field will be large enough to pull it back (Cohen 1970 and Cullity 

1972). To a good approximation, the following analysis will refer to a 

two-dimensional magnetization distribution M(r) in the x-y plane. 

Moreover, the bias field ~B and the normal component of the bubble's 

stray field I:!N(~) will not affect the magnetization ~(~) since they are 

in the z-direction. 
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The problem can still be simplified by assuming that the 

magnetization distribution M(r) is to be computed over a discrete mesh 

of N points distributed uniformly over the magnetic body. Since the 

magnetization vector has a constant magnitude, over an elementary 

subvolume AV in a ferromagnetic body, it is thus required to compute the 

direction of M(r.), in the x-y plane, where i = 1, 2, .•• , N. This 
- _J. 

magnetization distribution should be in such a way that EP of (3.12) is 

minimized relative to small variations in the magnetization. 

Figure 3.2(a) illustrates a two-dimensional mesh of N points, in 

the x-y plane, over a permalloy bar of dimensions R., w and t. It will 

be assumed that the magnetization ~(~i) at point i represents the 

magnetization over a cell of dimensions Ax and Ay, (1/2)Ax and (1/2)Ay, 

Ax and ( 1 /2) Ay and ( 112 )Ax and Ay for interior, corner, x-edge and 

y-edge points, respectively. A typical point, i, of the mesh is shown 

in Fig. 3.2(b) together with the fields ~(~i), ~D(~i) and ~EX(~i). The 

following subsections describe, in detail, the computation of HA ( r), 

3.4.1 Computation of the Applied Field 

Considering only field components in the x-y plane, the total 

applied field is given by 

(3.21) 

Expressions for ~R<:> and ~N<:> in terms of the elliptical integrals of 

the first, second and third kinds are available in the literature (Lin 

1972 and Almasi and Lin 1976). Since ~R(1:) will be computed at large 
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Figure 3.2 	 A discretization mesh of N points placed over a permalloy bar 
in the x-y plane. (a) the cell dimensions are ~x and ~y and 
(b) at point i, the total local field HL(r.) is inclined at 
an angle 8L(r.) to the x-axis. - _i
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number of points in the permalloy, an efficient and fast algorithm is 

required. It was decided to use the expressions derived by Druyvesteyn, 

Tjaden and Dorleijn (1972) where the bubble's stray field components are 

expressed in terms of a single generalized elliptical integral 

Tr /2 2 
CEL(k,p,a,b) __ J acos2w+bsin w diJi (3.22) 

2 ,,, . 2,,, . I 2 k2 . 2o cos o/+psin o/ vcos IJ!+ sin 1Ji 

They showed that (see Fig. 3.3) 

-2RMB[ CEL(k1, 1,-1, 1) CEL(k2 , 1,-1, 1j
~R(£) = --- - 1 , (3.23) 

Tr ,-;:: . /, 2 21===;2;==::;;2;::::- -r 
V(R+r) + z V(R+r) +(z+h) 

where 1 is a unit radial vector,
-r 

(R-r) 2 
+ z2 

(3. 24) 
2(R+r) 2 + z

and 

(R-r) 2 + (z+h) 2 
(3.25) 

(R+r) 2 + (z+h) 2 

A FORTRAN IV program was implemented and tested (Ishak and Della Torre 

1976) for computing the bubble's stray field using an iterative scheme 

to compute the CEL function (Bulirsch 1969). The program proved to be 

efficient and accurate. 



39 

.X 

z 
P(r,z) 

y 

Figure 3.3 The coordinate system used to compute the radial component 
of the bubble's stray field at a point P(r,z). 
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3.4.2 	 Computation of the Demagnetizing Field 

The demagnetizing field HD(r.), at point i, will be given by- _ l. 

(Della 	Torre and Longo 1969) 

• M( r .) 	 dV. (3.26) 
- _J J

Ir.·_l.J j 

where ~i and ~j are the nabla operators with respect to the field point i 

and the source point j, respectively as shown in Fig. 3. 4. The x and y 

components of H-(r.) can be written as-1) ,.,l. 

HD (r.) = f J [D (r. ;r.) M (r.) + D (r. ;r.) M (r.)]dx.dy.,x -i 	 xx -i -J x -J xy -i -J y -J J J 

(3. 27) 

H__ (r.) = I J [D (r. ;r.) M ( r.) + D (r. ; r . ) M ( r.) ]dx .dy. ,
-1) 

y 
-l. 	 yx -l. -J x -J YY -i -J Y -J J J 

(3. 28) 

where the coefficients Dxx<:i;:j), Dxy<:i;:j), Dyx<:i;:j) and Dyy<:i;:j) 

are functions of the permalloy thickness t and the distance d .. between
l.J 

the field point i and the source point j. In Appendix B expressions for 

these coefficients are derived in detail. 

Since M(_:j) is constant over an elementary cell around point j, 

it can be shown that (3.27) and (3.28) reduce to 

N 

HD ( r.) = l: [M ( r.) v (r.;r.) + M (r.) V (r.;r.)] (3. 29)
-l. x -J xx -l. -J y -J xy _i - J ' x j:1 

N 
HD (r.) = l: [M ( r.) V ( r. ;r.) + M (r.) V (r.;r.)] (3.30)

- l. x -J yx -l. -J y -J yy _l. _J ' y j:1 

http:r.)]dx.dy
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Figure 3.4 The coordinate system used to compute the demagnetizing field 
at a field point i due to the magnetization at a source point j. 
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i 

where 

(3.31) 

The two-dimensional demagnetizing field distribution as a 

function of the magnetization distribution, is thus given by (3.29) and 

(3.30). 

3.4.3 Computation of the Exchange Field 

Since a unit vector in the direction of the magnetization can be 

written as 

(3.32) 

then the x and y components of the exchange field (see (3. 17)) at point 

are given by 

= 2AEX cos [eM(r.)J (3.33)r~+~]HEX (!'.i) -l. x µM a2 .1 2
0 s x c y 

= 2AEX [ ~+:•2 Jsin [eM<ri)J (3.34)HEX <ri) 
y µM a2 .1 2

0 s x c y 

where 

(3.35) 

Following the analysis of Appendix C, (3.33) and (3.34) reduce to 

(3.36) 




43 

(3. 37) 

where 

(3.38) 

(3.39) 

and n refers to x and y. 

3.4.4 The Micromagnetic Algorithm 

Following the analysis of Sections 3. 2-3. 4, a two-dimensional 

magnetization distribution M( r) in a permalloy element, placed in an 

applied field ~A (:) , can be computed using the following steps: 

Step 1 Define a mesh of N points over the permalloy as shown in Fig. 
0 

3.2(a) such that ~x and ~Y < 500 A. 

Step 2 Set k = 1. Choose a tolerance E for the termination criterion. 


Choose an under-relaxation factor a such that a « 1 . 


Step 3 Choose a suitable initial magnetization distribution {M(O) (r.), 

- -l. 

i = 1 , 2, ••• , N} • 

Step 4 Compute {I:_A ( ':i) ' i = 1 ' 2, . . •' N}' using (3 .21) and (3.23) • 

Step 5 Compute 
(k)

{~D C:_i)' i = 1 ' 2, ... ' N} using (3. 29) and (3.30) 

and the results of Appendix B. 

Step 6 Compute (k)
{~EX <:i)' i = 1 ' 2, ... ' N} using (3.36) and (3. 37) 
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and the 	results of Appendix C. 

Step 7 	 Compute {~[k)<:i), i = 1, 2, •.. , N} using (3.16) and 

{eL(k) (~i), ' 1 2 N} ' _ i = 	 , , . . . , us i.ng 

(3. 40) 

Step 8 Set e(k)(r.)M -l. 
= e(k)(r.),L _i 

i = 1, 2, ... , N. 

Step 9 Replace {8 M{k) ( ~i),_ i· -­ 1 , 2 , }•.. , by an d 1 dun er- re axe tse 

using 

i = 1, 2, ••• , N (3.41) 

Step 10 Ccmpute the residual error 

(3.42) 

where 

t:.(k) t:. le(k)(r.) - eM(k-1)(r.)I
i M -i -l. 

Step 11 Stop if e{k) < £. Set 

M( r.) = M 1 ( k) ( r.) i = 1, 2, .•• , N , (3.44) _ _i s _M _i 

Step 12 Set k = k+1. Go to Step 5. 

3.4.5 Discussion 

Step 3 of the above algorithm requires the choice of a suitable 

initial magnetization distribution. Since the magnitude of the 

magnetization vector is constant and equal to M everywhere in the s 
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permalloy, it is convenient to define a demagnetized initial 

distribution; otherwise, the demagnetizing field components will be very 

high and instability of the solution may occur. 

The reason for using an under-relaxation factor 13 in Step 9 of 

the micromagnetic algorithm is that since the permalloy is a high 

permeability material, then small changes in M(r),.. ,.., can produce large 

changes in H(k+1)(r) ...n ,., which c~ould produce very large changes in 

M(k+1)(r).,., ,.., Therefore, only very small changes are allowed in M(k) (r),.., ,.., 

and this is controlled by using a very small under-relaxation factor. 

The assumption in (3.44) imposes a certain condition on the cell 

size of the N-point mesh in the permalloy. The cell size should be 

small enough to simulate accurate micromagnetic dimensions. Since 

domain wall thickness in permalloy films are in the range of 0.05 to 0.1 

µ.m, it is convenient to define a mesh with a cell size of about 200 A. 

In a rectangular permalloy bar of dimensions 7. 5 x 1 . 5 x 0. 3 µ m if one 
0 

uses square cells of dimensions 200 x 200 A, then a mesh of more than 

28000 points is required. In addition to the large amount of computer 

memory necessary, a great deal of computer time is required to perform 

the micromagnetic algorithm with such a large number of points. 

However, it should be noted that the obtained magnetization distribution 

is a general one and accurately describes the domain and domain wall 

behavior in the permalloy. 

It is noted that (Ishak and Della Torre 1978c) the computation of 

the field ~D(~) (Step 4) consumes most of the running time required for 

the algorithm. Therefore, one way of reducing the required computer 

0 
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time is to use a fine/coarse mesh configuration where the magnetization, 

the applied field and the exchang,e field are computed over the fine mesh 

and the demagnetizing field is e~valuated over a coarser mesh. Inter­

polation procedures are then usied to obtain the demagnetizing field 

canponents over the fine mesh. 

Using a fine/coarse mesh configuration with 4681/561 points over 

a permalloy bar of dimensions 7,5 x 1.5 x 0.3 µm, it was found that, 

using a CDC-6400 computer, one iteration in the micromagnetic algorithm 

requires 60 seconds of canputer t:ime. About 60 iterations were required 

to converge to a residual error of 1%. 

Due to computer memory and time limitations, it was decided to 

use another approach for the forward modeling problem. Nevertheless, 

the micromagnetic algorithm as de:scribed in Subsection 3.4.4 is the most 

general and ace urate way of analyzing a ferromagnetic body, and will 

have to be used for analyzing submicron bubble propagation circuits. 

3,5 A Continutxn Model 

3.5.1 Introduction 

In this approach, the magn•etization is assumed to be continuously 

distributed within each of the permalloy pattern elements. This is a 

macroscopic model which views the magnetization as the average of each 

ind iv id ual domain magnetization. Therefore, the magnetization 

components are computed over a relatively coarse mesh. Since the 

exchange field decreases rapidly with the distance between neighboring 

points, it is reasonable to negleot the effect of the exchange energy on 



the total permalloy energy in a <lontinuum model. 

During the deposition o:f permalloy fiims for bubble circuit 

applications, a rotating deposition field, in the plane of the film, is 

applied to create essentially isotropic films, on a macromagnetic scale. 

In addition, most bubble circuits are fabricated using non­

magnetostrictive films to eliminate the stresses between the permalloy 

layer and the garnet film. Thus, to a reasonable approximation, the 

permalloy energy can be written as 

(3. 45) 

which means that the total local field at any point i in the permalloy 

will be composed of only the applied field and the demagnetizing field 

components. 

Further, it is assumed that the magnetization distribution can be 

approximated by a discrete expansion coupled with a suitable 

interpolation scheme (George and Hughes 1976a) 

N 

Mx<ri) = 1: 

j=1 
l\Crj) I(i;j) ' 

(3.46) 

N 

My(£i) = 1: 
j=1 

My(£j) I(i;j) ' 
(3.47) 

where I(i;j) is an interpolant having the Kronecker delta form 

I(i;j) = i = j 

= 0 i -/. j (3. 48) 
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Viewed from this point , the substitution of ( 3. 46) and (3.47) 

into (3. 27) and (3. 28) yields 

~n ·xx 
x 

(3. 49)[] [c
H C 

:•Y][:j
-n yx yy "'Yy 

where 

A TH = [H0 cr 1> HD Cr2> HD CrN)] (3. 50)-D
k k k k 

A T (3.51)Mn = [Mk(£ 1) ~Cr2 > ~(£N)] ' 
k 

ckR. c 1 , 1) ckt c 1 , 2) CkR. ( 1 , N) 

A (3. 52)ckt c2, 1) cktc2,2) CkR.(2,N) 

CkR. (N, 1) CkR. (N, 2) CkR. (N ,N) 

ckt = 

ckR.(m,p) dk d.t (3.53)~ JJDk.t Crm;!:n) I(p;n) n n 

Since the elements of Ckt depend only on the geometrical 

parameters of the permalloy, they are computed once, for each circuit, 

and used throughout the analysis of the circuit and for different 

applied field configurations. It is noted that the integrand in (3.53) 

is singular when m = n. Appendix B discusses the nature of this 

singularity and the procedure used to perform the integration when m=n. 

It is also noted that, generally, the matrix Ck.t is diagonally dominant 

which means that the demagnetizing field is almost in the opposite 

direction of the magnetizatio.n. A similar technique for computing the 

demangetizing field distribution has been used by Della Torre and 
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Kinsner (1973). 

The magnetization in the permalloy is computed iteratively from 

an initial distribution M(O) (r). Assuming a fixed bubble size and 

position, the two in-plane components of ~A(:), namely ~T and ~R(:), and 

the demagnetizing field ~(r:_) are computed using (3.21), (3.23) and 

(3. 52), respectively. The total local field is, then, computed and a 

new magnetization distribution 

(3. 54) 

is next computed where k refers to the iteration number and f determines 

the M-HL relation for the permalloy. The process is repeated until a 

final magnetization distribution is obtained according to a pre­

determined accuracy. 

Ma (1976) showed that permalloy patterns for bubble circuit 

applications possess a wide variety of M-HA characteristics. In 

general, the magnetization varies nonlinearly with the applied field 

and, hence, with the local field (Cullity 1972). This is in agreement 

with the results of Doyle and Casey ( 1972) and Krinchik, Chepurova, 

Shamatov, Raev and Andreev ( 19'75). They measured the magnetization 

loops for various permalloy films and came to the conclusion that even 

when M varies linearly with HA for low applied fields, it asymptotically 

approaches M for large fields. The point at which M no longers 

increases linearly with HA was difficult to measure. However it did 

vary in different samples from 0.3 M to 0.9 M . s s 

A wide variety of functions were tested to simulate the permalloy 

M-HL characterist.ics and it was found that the magnetization converged 
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to reasonable values in all caseB. The M-HL relation 

HL(£) 
M(!;>) = Ms [ t1 ' ~(£)~Ht' (3.55) 

Ht l 
HL(£) l HL(£) 2. Ht'2 ( -1 [M(r) = + 1T 1-t 1) tan n 	 (3.56)

Ms f1 
Ht 

where t 1, Ht and n are the parameters shown in Fig. D. 2, is found to be 

general enough that by controlHng these parameters, a wide variety of 

functions can be obtained. Typical values for t 1, Ht and n are 0 · 5, 

1000 A/m and TI /2, respectively. Appendix D sketches various other 

functions together with their properties. 

3.5.2 The Magnetization Algorithm 

The iterative procedure to compute the magnetization distribution 

in a permalloy body, at a fixed bubble diameter and position, can be 

summarized in the following steps (Ishak and Della Torre 1978a): 

Step 1 Define a suitable mesh of N points over the permalloy body. 

Step 2 Compute the elements of the matrices CXX' CXY' cyx and cyy in 

(3.49) using the procedure outlined in Appendix B. 

STEP 3 	 Set k = 1. Choose a tolerance vector f, for the termination 

criterion. Choose a suitable under-relaxation factor S. 

Recommended values are in the range 0.03 < $ < 0.05. Choose a 

suitable function f to represent the M-HL characteristics as 

shown in (3.55), (3.56) and Appendix D. 

Step 4 	 Compute {~R(~i)' i = 1, 2, ... , N} using (3.23). 
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Step 5 Compute {~(~i), i = 2, ... ' N} using (3.21).1 ' 

Step 6 Define a suitable initial distribution {M(O)(r.), i= 1 , 2, ••• , N} • 
- -J. 

For example, use (3.54) replacing HL(r) by ~A<:>· 
(k)Step 7 Compute i = 2, ... ' N} using (3.49).{~D (:i)' 1 ' 
(k)Step 8 Compute i 2, N} using (3. 19).{~L <:i)' = 1 ' ... ' 

Step 9 Compute {M(k)(r.), i = 2, ... N} using (3.54). 
- _l. 1 ' ' 

Step 10 Replace {M(k)(r.), i = 2, ••• t N} by an under-relaxed set1 ' - _l. 

using 

i = 1, 2, ••• , N. (3.57) 

Step 11 Compute the residual error 

(3. 58) 

where 

(k) 
m (3. 59)

n 

Step 12 Stop if e(k) < £, Set 

(k)
M( r. ) = M ( r. ) , i = 1 , 2, ••• , N (3. 60) 
- -J. - ··]. 

Step 13 Set k = k+l. Go to Step 7. 
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3.5.3 Discussion 

Following the argument in Subsection 3. 4. 4, a very small under­

r elaxat ion factor a should be used to avoid oscillation and/or 

divergence in the numerical process. On the other hand, using an 

extremely small value for a will result in a slow convergence. 

Therefore, an optimization of a is desired to affect a stable solution 

as well as a reasonably fast convergence. 

Figure 3. 5 shows the effect of the under-relaxation factor S on 

the number of iterations required to achieve a residual error of less 

than 0. 1% in the magnetization components of a 105 point mesh defined 

over a 15 x 3 x 0. 4 µm rectangular permalloy bar. It was found in 

general, that the optimum value for a is problem dependent which 

decreases as the number of points, in the iteration mesh, increases. 

Moreover, the value of a is inversely proportional to the slope of the 

M-HL characteristics which is in agreement with the results of 

Ortenburger ( 1977). For most of the problems treated in this thesis it 

is noted that 0. 03 < a < 0. 05 results in reasonable computer times as 

well as numerical stability in the iterative procedure. 

In Step 9 of the magnetization algorithm, the x and y components 

of the magnetization vector everywhere in the permalloy are computed. 

By neglecting the cross-coupling terms, each component can be computed 

separately. Ma (1976) showed that this is reasonable for ferromagnetic 

bodies and Ortenburger, Cole and Potter (1977) used separate analysis 

for the x and y components of the magnetization in high permeability 

recording media. 
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Figure 3.5 	 Effect of the under-relaxation factor on the number of 
iterations required in the magnetization algorithm. 
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The residual error defined in (3. 56) is the normalized total 

error in the magnetization canponents. Alternatively, the maximum 

change in these components can be used to terminate the iteration 

process, that is 

(3.61) 


where 

(k) 
e = max (3. 62)

n 
1~i~ ik) ( r.) 

n ~i 

3. 6 Examples 

Figure 3.6 shows the demagnetizing factors (see Appendix B) of a 

15 x 3 x 0.4 µm permalloy bar calculated from the matrix of (3.49) 

using a cubic-spline interpolation function in (3.46) and (3.47). 

Canparison to the case of a linear interpolation is also given. The 

· magnetization distributions in a 7. 5 x 1. 5 x 0. 3 µm permalloy bar when 

placed in a uniform in-plane field are shown in Fig. 3. 7 together with 

its demagnetizing factors. It is noted that the magnetization 

distribution reflects the demagnetizing factor distribution. 

The effect of the position of a bubble domain on the 

magnetization distributions in a rectangular bar is given in Fig. 3. 8. 

The maximum magnetization, for any bubble position, usually occurs near 

the bubble perimeter due to the bubble's stray field. Figure 3. 9 shows 

the demagnetizing field distributions and the magnetization 

distributions along the center line of a rectangular permalloy bar for 

two different bubble positions. It is noted that the maximum of the 
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Figure 3.6 	 Demagnetizing factor distributions of a rectangular permalloy bar of dimensions 
15 x 3 x 0.4 µm (shown in the inset). Solid lines refer to cubic spline inter­
polation (see (3.46) and (3.47)) and dashed lines to linear interpolation Lil 

(George and Hughes 1976a). Lil 
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Figure 3.7 	 The magnetization distributions in a rectangular permalloy bar 
of dimensions 7.5 x 1.5 x 0.3 µm: (a) x-component of the 
magnetization as a function of HT' (b) x-component as a function 
of y and the demagnetizing factors and (c) y-component of the 
magnetization as a function of Y• 
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magnetization occurs at the minimum of the demagnetizing field. 

To compare the results of the magnetization algorithm with 

results of models of other workers, the average magnetization 

distributions along the x and y axes of a 15 x 3 x 0.4 µm permalloy bar 

are computed and plotted as shown in Fig. 3.10. Since the present model 

uses a finite value for the permalloy susceptibility, it yields 

relatively lower magnetization values than those of the infinite 

susceptibility model of George and Hughes (1976a). 

Both symmetric and asymmetric half-disk circuits are analyzed to 

show the capabilities of the model regarding the handling of complicated 

permalloy shapes. Figure 3. 11 illustrates the demagnetizing factor 

distributions of a symmetric half-disk and Fig. 3. 12 shows the 

demagnetizing field and the magnetization distributions at two different 

cross-sections of a two-period asymmetric half-disk circuit. Since 

characteristics of half-disk circuits have not been published, it is not 

possible to compare the results of Figs. 3.11 and 3.12 to experimental 

data. However, in Chapter 4, it will be shown that, using the 

magnetization algorithm, some propagation characteristics of half-disk 

circuits are obtained and that they are in a good agreement with 

experimental observations. 

The FORTRAN IV program used to test the magnetization algorithm 

of Section 3. 5 was developed on a CDC-6400 computer (Ishak and Della 

Torre 1978b). The program consists of two main parts. The first part 

accepts the permalloy pattern definitions, constructs a suitable mesh of 

N points over this pattern, computes the matrices of (3.52) and stores 
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them on a magnetic disc. In the second part, the permalloy-bubble 

configurations are read and the computation proceeds to determine ~(~) 

for each configuration. 

A memory storage of about 55 K words, using a CDC-6400 computer, 

is required for each part of the program for a mesh of 300 points. It 

is noted that the computation time required for the analysis in the 

second part of the program depends on the choice of the initial 

magnetization distribution M(O)(r). However, certain criteria can 

reduce this time appreciably when the analysis involves different bubble 

positions. Starting with an initial bubble position, any initial 

distribution M(O)(r) can be assumed, preferably based on ~A<:>, and the 

final magnetization distribution M(r) is computed using the 

magneti zation algorithm • For the next bubble position, M(r) (of the 

. previous position) is used as an initial distribution. If the 

consecutive change in the bubble position, along the permalloy, is not 

large, a reduction in computer time is obtained using this criterion. 

For a half-disk circuit, with a mesh of 91 points, 15 seconds of 

computer time are required for the analysis in the second part of the 

program (using a = 0. 045) for the first bubble position. When the 

bubble moves along the perimeter of the disk, in steps of about 1 µm, 

only 5 seconds are required for each consecutive bubble position. The 

entire analysis of the two parts of the program for the half-disk 

circuit for 10 bubble postions and 10 in-plane field orientations, takes 

about 11 minutes of computer time. 

A comparison between the computer time and memory requirements to 
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TABLE 3. 1 

COMPARISON BETWEEN THE CCMPUTER TIME AND 


MEMORY REQUIREMENTS FOR THE PRESENT MODEL 


AND THE MODEL BY GEORGE AND HUGHES (1976a) 


PARAMETER PRESENT MODEL(1) GEORGE AND HUGHES' MODEL (2 ) 


CCMPUTER 
TIME 11 3 

(MIN) 

COMPUTER 55 (Part 1) 
-- (3)MEMORY 

(K WORDS) 55 (Part 2) 

Number of points in the mesh, N = 100 

Number of field orientations = 10 

Number of bubble positions = 10 

(1) Using a CDC-6400 computer. 

(2) Using an IBM-370/168 computer. 

(3) In a private communication with P. K. George, he indicated that he 
used an IBM-370/168 with 800 K Byte memory. 

Note: The IBM-370/168 computer is about 4 to 10 times faster than the 
CDC-6400 computer (Fleming 1978). 
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analyze a typical bubble circuit is shown in Table 3. 1 for the present 

model and the model of George and Hughes (1976a). Taking into account 

the speed factors of the two computers used in the analysis of the two 

models, it is seen that the present model requires less computer time 

and memory. 

3.7 Conclusions 

The micromagnetic algorithm of Subsection 3.4.4 can be used to 

accurately analyze submicron bubble circuits since it takes into account 

all possible energy terms. This algorithm is also applicable for 

studying other kinds of memory circuits such as thin film memories. 

Having an arbitrary two dimensional permalloy layout in a general 

nonuniform applied field, the magnetization algorithm of Subsection 

3.5.2 is an efficient means of computing the demagnetizing field and the 

magnetization distributions in the permalloy. The incl us ion of the 

permalloy nonlinear characteristics, through the use of an 

experimentally determined M-HL relation, allows more realistic analysis 

of bubble circuits. 

Proper choice of the under relaxation factor a and the initial 

magnetization distribution M(O)(r) results in appreciable saving in 

computation times. 



CHAPrER 4 


ANALYSIS OF PROPAGATION CIRCUITS 


AND BUBBLE SIZE FLUCTUATIONS 


4.1 Introduction 

The model described in Chapter 3 is used for analysis of various 

propagation structures and the results are presented in Sections 4.2-4.4 

of this chapter. These include rectangular bars, chevrons and 

half-disks. The potential well distributions, for these circuits, are 

computed and plotted as functions of the bubble position. Various 

conclusions are drawn and used to characterize each individual circuit. 

The results for rectangular bars are compared to the results of other 

existing models. 

Experimental observations show that a bubble domain trapped at 

the end of a permalloy element has a different variation of diameter 

versus bias field than does a free isolated bubble (Chang 1975, Almasi 

and Lin 1976 and George and Hughes 1976b). The interpretation of this 

is that the permalloy changes the magnetostatic energy of the bubble 

danain by locally modifying the bias field acting on the bubble. In 

other words, the permalloy acts as a potential energy well for the 

bubble. Depending on the direction of the rotating in-plane field, this 

potential -w-ell is either decreased or increased. This means that in 

actual propagation circuits, the bubble diameter might be either larger 

or smaller than that of a free bubble for the same bias field. 
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Since bubble domains are stable only over a certain range of the 

bias field (Thiele 1969), it is important to avoid stripping-out or 

collapsing a trapped bubble in order to prevent anomalous propagation 

and loss of information, respectively. Thus any serious approach to the 

dynamics of bubble circuits should at least consider bubble size 

fluctuations. 

Using the continuum model of Chapter 3, a new algorithm for 

computing the bubble size fluctuations is developed and presented in 

Section 4.5 of this chapter. The results obtained using this algorithm 

for rectangular permalloy bars are compared to experimental data by 

Jones and Enoch (1974). 

4.2 The Potential Well 

If we assume the zero energy level for the permalloy to be the 

energy of the configuration without the bubble and the in-plane field, 

then the permalloy energy, E p , can be interpreted as the change in the 

energy when the in-plane field is applied and the bubble is introduced. 

See (3.1). Using the magnetization algorithm of Section 3.5, ~<:> and 

HD(r) can be computed for an arbitrary shaped permalloy circuit and 

hence E p , using (3.45). The new distribution of magnetic charges inside 

and on the surface of the magnetized permalloy produces a local 

z-directed field, H , where the z-axis is normal to the permalloy plane 
~z 

as shown in Fig. 3. 1 . The magnitude of H , that is the potential well 
~z 

depth, H , is obtained by normalizing E to twice the bubble's magneticz p 

moment mB (Kinsner 1973 and George and Archer 1973). Thus 
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E 
p
H = ( 4. 1)_z ~z ' 

2mB 

where 

mB = (µo ~) ( ~ d2 h) (4. 2)
' 4 

This field, Hz, locally modifies the bias field, HB, acting on the 

bubble. Since the bubble will move towards the position of a lower bias 

field, the potential well distribution of a pennalloy circuit can be 

used to determine how the bubble moves along the propagation track. 

4.3 Analysis of Bubble Circuits 

4.3.1 Rectangular Bars 

The reason for analyzing rectangular permalloy bars is that they 

are considered one of the basic building blocks in many propagation 

circuits such as T-I, Y-I, X-I, parallel-bars and channel-bars circuits. 

Potential well profiles for T-I, chevron and Y-I circuits have been 

developed by Kinsner (1974). 

Figure 4.1 shows the potential well distribution along the center 

line of a rectangular bar under the influence of a bubble's stray field 

and two different in-plane field values. The maximum potential well 

depth (minimum H ) does not occur at the edge of a bar but rather for_z 

this geometry about O. 75 µm inside it. This fact is experimentally 

verified by looking at the position of the center of a trapped bubble 

domain under a bar (Jones and Enoch 1974). The nonlinearity of the 

permalloy is evident in that doubling the applied field does not double 
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Hz (Alm) 

160 	 permalloy bar spacer 
(7.5X l.5X0.3µ.m ) (0.3µ.m) 

X(µ.m) 

-160 

-320 

· Bubble Parameters: 
d = 3µ.m-480 
h = 3µ.m 
M8 =20000A/m 

HT= 1600A/m 

-960 

Figure 4.1 	 The potential well distribution along the center line of a 
rectangular permalloy bar of dimensions 7.5 x 1.5 x 0.3 µm 
for two different in-plane field values in the positive 
x-directions. 
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the well depth. 

Comparison to the results of George and Hughes ( 1976 b) is shown 

in Fig. 4. 2 for a rectangular permalloy bar of dimensions 15 x 3 x 0. 4 

lJill, Again the use of an infinite permeability in their model results in 

a relatively larger potential well depth. Nevertheless, the profiles of 

the potential well are similar and the minima of both distributions 

occur at about 1.5 µm inside the bar. A two-dimensional potential well 

profile for the same bar under the same applied field configuration is 

shown in Fig. 4. 3 where the well depths corresponding to the contours 

labelled E and P are 0 Alm and -800 Alm, respectively with steps of -75 

Alm for the contours in-bet ween. 

The field H is plotted as a function of bubble diameter in Fig.z 

4. 4 for a 7,5 x 1.5 x 0.3 µm rectangular bar with a bubble sitting on 

the end as shown in the inset. Because the curves in Fig. 4. 4 are not 

flat, trapped bubble strip-out and collapse diameters will differ from 

the free bubble values. It is noted that for a given bubble diameter, 

the potential well depth increases as the in-plane field increases. 

Moreover, this increase usually becomes greater as the bubble diameter 

decreases which is attributed to the higher bubble's stray field. A 

detailed algorithm for computing the trapped bubble characteristics is 

presented in Section 4.4. 
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Figure 4.2 Comparison between the results of 
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Figure 4.3 	 Two-dimensional potential well profile for a rectangular 
permalloy bar of dimensions 15 x 3 x 0 .4 µm. The contours 
labelled P and E correspond to H = -800 A/m and 0 A/m,z
respectively. 
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Figure 4.4 	 Effect of bubble diameter on the potential well depth along 
the center line of a rectangular permalloy bar of dimensions 
7.5 x 1.5 x 	 0.3 µm. 
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4.3.2 Chevron Circuits 

The problem with symmetric chevrons shown in Fig. 4. 5 as 

propagation circuits is that the bubble does not move appreciably from 

position 1 to position 2 until the in-plane field, ~T, rotates almost 

60° from the the horizontal (dotted curve). This is verified 

experimentally in the work of Almasi and Lin (1976). Therefore, 

nonuniform propagation results along the arms of the chevron and the 

propagation margins (HT versus H8 curves) are unacceptable for efficient 

operation. Figure 4.5 illustrates such a drawback where the potential 

well distributions along the bubble path in a 90° chevron are shown for 

6 different in-plane field orientations. The bubble's center position, 

corresponding to the minimum Hz, stays essentially at point 1 until e is 

more than 60° (Della Torre and Ishak 1978). 

The asymmetric chevron circuit offers some advantages over the 

symmetric chevron circuit. This can be seen by comparing the potential 

well distributions of Fig. 4.6 (for the asymmetric case) to those of 

Fig. 4.5. It can be seen that, in general, aHz/aX in the former are 

higher than those in the latter, where X refers to the bubble position. 

Since the gradient oH /oX is proportional to the speed of the bubblez 

(Thiele 1969) it is advantageous to use a propagation circuit with large 

oHz/oX. Moreover, the graph for 8 = 60° in Fig. 4.6 shows a minimum 

substantially away from point 1. This results in a more uniform 

propagation than in the case of the symmetric chevron. 
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Figure 4.5 	 The potential well profile along the bubble path in a 90° symmetric chevron 
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the inset) to point 2 until e > 60°. 
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4.3.3 Half-Disk Circuits 

The half-disk propagation structures (see Fig. 2.4(c)) represent 

the state-of-the-art in bubble propagation circuits. In these circuits, 

the gaps are situated between essentially parallel poles (poles 

magnetized in the same direction by the applied field). This is in 

contrast to the T-I circuit shown Fig. 2.4(a) where the gaps are located 

between orthogonal poles (poles magnetized in directions almost 

perpendicular to each other) • As the bubble approaches the gap in a 

half-disk circuit, it comes under the influence of two strong poles 

stretching it across the gap. The bubble then shrinks away from its 

original position as the field rotates. Because the bubble crosses the 

gap by stretching rather than by translation, the potential well 

gradient required in the T-I circuits, is virtually eliminated. 

Furthermore, in the half-disk propagation circuits, there are no 

permalloy bar connectors between the adjacent tracks thus eliminating 

the possibility of a bubble moving to another track and permalloy 

mediated bubble-bubble interaction. 

Figures 4.7 and 4.8 illustrate the two-dimensional potential well 

profiles for one period of symmetric and asymmetric half-disk circuits, 

respectively. Eight positions for the rotating in-plane are shown 

corresponding to one complete propagation field cycle. Assuming that 

the bubble will seek the position of a minimum potential, it is clear 

that it will move on the outer perimeter of the disks, that is along the 

locus of point M. 

The potential well distributions for two periods of a symmetric 
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Figure 4.7 	 Two-dimensional potential well profile for a synnnetric 
half-disk of 14 µm period and 2 µm gap. The points M 
refer to the location of the minimum potential well 
depth, where the center of a bubble (d = 2 µm, h = 3 µm) 
will be located. 
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Figure 4.8 	 Two-dimensional potential well profile for an asymmetric 
half-disk circuit of 14 µm period and 2 µm gap. The 
points M refer to the minimum potential well depth, where 
the center of a bubble (d = 2 µm, h = 3 µm) will be 
located. 
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half-disk circuit are shown in Fig. 4.9 for four different in-plane 

field orientations. When ~Tis in the negative y-direction (see inset), 

two well defined poles are located on the sides of the gap (point D). 

The bubble will elongate and bulge across the gap. The large potential 

gradient for the case when ~T in the positive x-direction assurs that 

the bubble will move away from the gap to point C as the field rotates. 

The same is true for point E when ~T is in the negative x-direction. 

Better operation, especially across the gap, is obtained by using 

the asymmetric half-disk structure. Figure 4.10 shows that when ~T is 

in the negative y-direction, the potential well distribution in the gap 

is smoother and deeper as compared to Fig. 4.9. One of the most 

important characteristics of the asymmetric half-disk propagation 

circuits seen from the present analysis, and experimentally validated 

(Bonyhard and Smith 1976), is the fact that propagation from right to 

left is superior to propagation from left to right (see inset of Fig. 

4.10). This is clear by comparing the gradients of the potential wells 

for ~T in the negative and the positive x-directions. The former is 

larger than the latter suggesting smoother propagation from point D to 

point E. 

Investigation of the potential well distributions when ~T is in 

the positive y-direction for both symmetric and asymmetric half-disk 

circuits in Figs. 4.9 and 4.10 reveals a drawback of these circuits. 

The potential well is flat and the bubble will strip-out. More defined 

magnetic poles are required near points B and F which can be achieved by 

having a sharp, rather than a flat, permalloy pattern near these points 
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Figure 4.9 	 The potential well profile along the bubble path in a two period symmetric 
half-disk circuit (see the inset) for four in-plane field orientations. 
The bubble stretches across the gap when HT is in the negative y-direction. 

00 
f-' 



l 
period= 12µ.m gap= 2µ.m thickness =0.3µ.m !

3
spocer=0.4µ.m IHTI= 2400A/m 

Hz (A/m) BUBBLE, d= 3µ.m h= 3µ.m 4µ.m 

Me• 20 ooo A/m 

G F ~ Q q ~ f:. _bubble 
O ' position 

-­ II 

~ -uQLJ ~ 

J2 >-;< 3 ..,.. 2 ,_,.. 3 >--;< 2 7'm 

-480 

.\._l HT : :: 

-640 

/.
/ !-( 

: ! 

! \	~ .........-

/ .I.. 

......... I 

. 
\ 

·. / 

l\ 

\\\ 

-800 \ // 

/ 

: 

: 

\ // 
. I 


-960i\ ·.... I \ 
 )<
I \ : . 

\ ........ I '\ 
 . / .\ ... I
' "I .· . , ...... .,; ....- I-1120 '- ....... _....;....,_ ·~..... / 
 ' - ··· .........................._. --::.................. ~ .:\·· I. 

\ I·-· -1280 

Figure 4.10 	 The potential well profile along the bubble path in a two period asymmetric 
half-disk circuit (see the inset) for four in-plane field orientations. 
The well depth across the gap is smoother than that in Fig. 4.9. 

co 
tv 

I 
I 

\ I 

I 
/ \ I 

\ 



83 

as in the case of the asymmetric chevron gap tolerant circuits. 

4.3.4 Bubble Replicators 

Figure 4. 11 shows how a bubble in a gap tolerant circuit is 

replicated into two bubbles. One bubble goes back to the propagation 

track to substitute for the original bubble and the other goes to the 

major loop for detection (or annihilation). The permalloy element that 

does the replication and the transfer is called the "sideways" 

replicator (Bonyhard, Chen and Smith 1977). 

A typical "sideways" replicator was analyzed using the analysis 

of Chapter 3 and the results are shown in Fig. 4.12. When ~Tis in the 

positive x-direction, the flat potential well produced at point 1, 2, 3 

and 4 stretches the bubble. A magnetic field normal to the permalloy 

plane, produced by the hairpin conductor, splits the stretched bubble 

into two bubbles. As ~T rotates to the negative y-direction, one bubble 

should go to point 7 and the other bubble to the major loop on top of 

point 1 (not shown in inset of Fig. 4. 12). However, the strong poles 

produced at points 5 and 6 might attract the first bubble and an 

improper transfer could occur. This problem, clearly shown in Fig. 

4.12, was observed experimentally (Bonyhard, Chen and Smith 1977) and a 

modified gate was designed (Bonyhard 1977). 

4.4 Bubble Size Fluctuations 

The potential well depth given by ( 4. 1), produced by the 

permalloy, assumes a fixed bubble diameter, d. Actually since H-z 
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Figure 4.11 	 "Sideways" replicator (Bonyhard, Chen and Smith 1976). 
The bubble stretches under the copper loop and is split 
into two bubbles when I is applied. One bubble goes back 
to the minor loop and the other to the major loop. 
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modifies ~B' the bubble diameter changes and further analysis is 

required to compute the total effective change t::,. HB in HB and hence the 

trapped bubble diameter dtrap' George and Hughes (1976b) used an 

equilibrium analysis based on Thiele' s ( 1969) results to evaluate t::,. HB. 

They assumed that at fixed bubble diameter,the change Ep in the 

permalloy energy, in the presence of a bubble, is equal to the change 

t::,.EMS in the magnetostatic energy of the bubble, in the presence of the 

permalloy. That is 

(4.3) 


The total energy ET of a cylindrical bubble domain is given by (Thiele 

1969) 

where 

(4.4) 


(4.5) 


is the wall energy density and EMS is the domain's magnetostatic energy. 

The equilibrium relationship between HB and d is in general found by 

setting aET/ad to zero which gives 

JI. 

= ---­ m (4.6) 

If EMS is changed by an amount t::,.EMS' then 

(4.7)= ---­
ad 
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and combining (4. 1)-(4. 3) and (4. 7), the total effective change in HB 

is, then, given by 

(4.8) 

The bubble will, thus, be affected by an effective bias field 

(4.9) 

George and Hughes ( 1976b) computed the quantity a Hz/ad by 

plotting various graphs for Hz versus d and measuring the slope of these 

graphs. In addition to the neccessity of evaluating H for several z 

bubble diameters in order to measure the slope, the error using this 

approach can be as high as 10% (George and Archer 1973b). 

A simpler and more accurate approach based on understanding the 

physical essence of the problem was implemented and tested by Ishak and 

Della Torre ( 1978a). When a bubble approaches a magnetized permalloy 

element, it changes the permalloy energy by an amount EP and the bubble, 

momentarily, feels a change Hz in the bias field. The bubble diameter 

changes to a new value to stabilize with the new bias field value. This 

new bubble will, again, change the permalloy energy by an amount ~E p and 

H is modified by an amount ~ H (corresponding to ~ E ) • The bubblez z p 

diameter changes again. The process is repeated until an equilibrium is 

achieved and a stable bubble-permalloy configuration is attained. This 

iterative interaction between the bubble and the permalloy suggests an 

iterative numerical procedure, to compute the stable bubble 

characteristics and the final permalloy magnetization distribution and 

energy. 
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4.5 The Bubble Size Fluctuation Algorithm 

4.5.1 Introduction 

Given a bubble material of thickness h and characteristic length 

JI. m which supports bubble domains of diameter d at a bias field 8s, the 

bubble size fluctuation algorithm computes the new diameter dtrap of the 

bubble when it is trapped under the permalloy as well as its new center 

position (the backward modeling problem). The algorithm also checks the 

collapse and the run-out conditions. Thiele's analysis (1969) or 

DeBonte's analysis (1975) can be used to study the stability of high Q 

bubbles and low Q bubbles, respectively. Computer programs based on the 

analysis of DeBonte (1975) are implemented (Ishak and Della Torre 1977a 

and Ishak and Della Torre 1977b) to compute the parameters of bubble 

domains in low Q materials. 

The bubble size fluctuation algorithm consists of the following 

steps: 

Step 1 Set k = 1. Set d ( k-1) = d. Choose a tolerance e: for the1 

termination criterion. Recommended value, e: 1 = 10-8 • 

Step 2 Call the collapse and run-out algorithm, of Subsection 4. 5. 2, 

to compute the collapse and run-out fields HCO and HRO' 

respectively. 

Step 3 Call the magnetization algorithm of Subsection 3.5.2 to compute 

M(k)(r) and hence E(k) using (3.45).
p 

Step 4 Compute H(k) using (4.1). 
-Z 

Step 5 Compute the modified bias field 
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~~k) (mod.) = 

Step 6 Exit if H~k)(mod.) > HCO or H~k)(mod.) < HR0 • 

Step 7 Call the bubble diameter algorithm, of Subsection 

compute the modified bubble diameter d(k). 

Step 8 Compute the residual error 

e(k)
1 = I d(k) - dCk-O I 

(k) = d (k) • Step 9 Stop if e1 < € 1. Set dtrap 

Step 10 Set k = k+1. Go to Step 3. 

4.5.2 Computation of the Collapse and Run-out Fields 

Thiele ( 1969) derived the equilibrium and stability 

for a bubble domain as 

HB 
A - a 	_ - F(a) = O 

MB 

A - S	 (a) < 0 
0 

and 

A - Sn(a) > 0 , n 2.. 2, 

where 

d 
a = 

h 

is the aspect ratio of the bubble, 

(4.10) 

4. 5. 3, to 

(4.11) 

conditions 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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JI. 
m

A = (4. 16) 
h 

is the normalized characteristic length, F( a) is the force function, 

S (a) is the radial stability function and Sn(a), n L 2 are the higher
0 

order stability functions. Since 

(4.17) 


for any a, (4.14) can be reduced to 

(4.18) 


Hegedus and Della Torre ( 1977) obtained simple expressions for F( a) , 

S (a) and s2 (a), among other functions, in terms of the complete
0 

elliptical integral CEL, defined in (3.22). They showed that 

2aF(a) = [CEL (k, 1, 1/k, k) - a] (4.19) 
11' 

2a2 
S (a) = [ 1 - ak CEL ( k , 1 , 1 , 0) ] (4.20)

0 11' 


2a
s2(a) = [a - k CEL (k, 1, a2+4, -4)] (4.21) 
911' 

where 

k2 (4.22)= 
2 a +1 

If a bubble of diameter d and characteristic length Jl.m is stable 

at a bias field HB' then the collapse and run-out fields can be computed 

using the following algorithm: 
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The Collapse and Run-out Algorithm 

Step Compute a using (4.15). Compute A using (4.16). 

Step 2 Call the inverse bubble function algorithm, of Subsection 

4.5.2, to compute the collapse and run-out aspect ratios a and c 

ac' respectively such that S0(ac) =A and s2(ar) =A. 

Step 3 Compute F(a) and F(a) using (4.19).c r 

Step 4 Compute HCO and HRO using (4.12) and replacing a by ac and a ' r 

respectively. 

The following algorithm computes the aspect ratio af given any of 

the three function F(af)' S (af) or s2(af). The steps of the algorithm
0 

are illustrated in Fig. 4.13. For simplicity only the case for S (a) is 
0 

shown, that is given S
0 

(af) this algorithm computes af. 

The Inverse Bubble Function Algorithm 

Step 1 Set k = 1. Choose a tolerance e: 2 for the termination 

criterion. 

Step 2 Let (k-1)a = 10 S
0 
(af). 

Step 3 Compute S (a(k-l)) using
0 

(4.20). This corresponds to point A 

in Fig. 4. 13. 

Step 4 Compute a(k) using 

(4.23) 


Step 5 Set a ( k) = 0. 0 1 , if a ( k) < e: .
2 

Step 6 Compute S (a(k)) using (4.20). This corresponds to point Bin 
0 
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Figure 4.13 	 The radial stability function S (a) as a function of the 
bubble's aspect ratio (Thiele 1~69}. The points A~ B 
and C illustrate the steps of the inverse bubble function 
algorithm of Subsection 4.5.2. 
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Fig. 4.13. 


Step 7 Compute the residual error 


(4.24) 


Step 8 Stop if e~k) < E2 • Set af = a(k). 


Step 9 Set k = k+1. Go to Step 4. 


Comment: To accelerate the convergence of the computations, an 


over-relaxed value for a(k) can be used to replace the value 

obtained in Step 4 as 

a ( k) + Y a ( k) + ( 1-Y) a ( k-1 ) , (4.25) 

where Y > 1. Recommended values: 

Y = 1. 4 when F(af) is given, 

Y = 1.2 when S (af) or s2 (af) are given.
0 

4.5.3 	 Canputation of the New Bubble Diameter 

If we define G(a) as 

G ( a) = a Hn + F ( a) - A (4.26) 

where 

(4.27) 


then G(a) = 0 is a solution of (4.12) and this suggests that a can be 

obtained using the Newton-Raphson iterative algorithm in the form 

(n) 	 (n-1) G(a(n- 1» 
a = a - , (4.28) 

G' (a( n-1 » 
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where n is the iteration number and 

a'ca<n-1» 6 aa(a) \ (4. 29) 
aa ( n-1)a:a 

Thiele (1969) showed that 

ClF( a) = [F(a) - S (a)] (4. 30)
0

Cla a 

and hence 

a Hn + F( a) - A.6 G( a) 
r (4. 31)

g -- = --------­
I H +(1/a)[F(a)-S (a)]

G (a) n o 

Viewed from this point, the modified bubble diameter d(mod.) at a 

bias field HB(mod .) can be computed frcm an initial value d using the 

following algorithm: 

The Bubble Diameter Algorithm 

Step 1 Set k = 1. Choose a tolerance E: for the termination
3 

criterion. 

Step 2 Compute a(k) using (4.15). Compute A. using (4.16). Compute 

Hn(mod . ) using 

(4. 32)H (mod.) = 
n 

Step 3 Compute 
( k) 

rg using (4.31). 

Step 4 Compute a< k+ 1) using (4.28). 

Step 5 Compute d(k+1) as 

d ( k+ 1) = h a ( k+1) ( 4 . 33) 



95 

Step 6 	 Compute the residual error 

(4 .34) 

(k) 	 (k+1)Step 7 	 Stop if e < E • Set d(mod.) = d •
3 3

Step 8 Set k = k+1. Go to Step 3. 

4.6 	 Examples 

Figure 4.14 shows a T-I bubble propagation circuit used by 

Kryder, 	 Ahn, and Powers (1975) to propagate 2 µm diameter bubbles in a 

10 21.5 x 10 bits/m memory chip. The bubble size fluctuation algorithm 

is used to compute the changes in the bubble diameter as it moves from 

the I bar to the T bar across the gap. Table 4. 1 gives the actual 

bubble diameter at 3 points along the propagation track (points, A, B 

and the middle of the gap). The effective change in the bias field and 

bubble diameter is shown in Table 4.1 for two in-plane field values. 

To check the bubble size fluctuation algorithm, the diameter 

versus the bias field curves for a bubble trapped at the end of a 

rectangular permalloy bar are plotted and compared to the experimental 

results of Jones and Enoch (1974). See Fig. 4.15. The observed 

agreement is excellent and the maximum error in the computed bubble 

diameter is about 4%. It is noted that about 3 iterations are required 

to achieve an accuracy of better than 0.5% in the bubble diameter using 

the algorithm of Subsection 4.5.1. In fact, during the execution of 

Step 3 of this algorithm, a search is performed over a few points in the 

neighborhood of the bubble center, at each iteration, to find the 

minimum of the potential well at which the new bubble center will be 
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Figure 4.14 The T-I propagation circuit used by Kryder, Ahn and 
Powers (1975) to propagate 2 µm diameter bubbles in 
amorphous films. 
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TABLE 4. 1 

RESULTS OF THE BUBBLE SIZE FLUCTUATION ALGORITHM FOR 

THE T-I PROPAGATION CIRCUIT OF FIG. 4.14 


2400 A/M 3200 A/MHT = HT = 
BUBBLE CENTER ITERATION NO. 

POSITION (IT) H BUBBLE H BUBBLE z DIAMETER z DIAMETER 
(A/m) (µm) (A/m) (µm) 

A -1368.23 2.818 -2064.79 3.275 

2 -1088.10 2.645 -1452.08 2.930 

3 -1071.65 2.635 -1412.00 2.910 

-959.01 2.567 -1331.03 2.795 
MIDDLE 

OF 2 -868.04 2.513 -1063.24 2.630 
GAP 

3 -874.58 2.517 -1101.39 2.653 

B 1 -974.75 2.577 -1370.44 2.819 

2 -850.90 2.502 -1098.39 2.651 

3 -863.15 2.510 -1087.32 2.645 

Original bubble diameter, d = 2µm 

Original bias field, = 12722 A/mH8 

Collapse field, HCO = 13620 A/m 

Run-out field, HRO = 10396 Alm 
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Figure 4.15 	 Comparison between the results of the bubble size 
fluctuation algorithm and the experimental data of 
Jones and Enoch (1974). 
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located. This means that not only the new bubble diameter is computed 

using this algorithm but also the new bubble center. 

4.7 Conclusions 

The analysis presented for bubble propagation circuits, based on 

the continuum model of Chapter 3, provides an accurate and efficient 

means of characterizing arbi tary shaped permalloy circuits. The 

analysis showed that gap tolerant circuits (half-disks and asymmetric 

chevrons) have the advantages of providing a smooth potential well 

across the gap and large potential well gradients, in general. These 

result in low in-plane field requirement for propagation. 

The results for the chevron circuits shows that the method can be 

used to modify a specific design to improve the performance. For 

example, the asymmetric chevron structure is superior to the symmetric 

one because of the larger potential well gradients and, hence, the more 

uniform bubble propagation. 

The bubble size fluctuation algorithm provides an excellent means 

of avoiding improper propagation and loss of information, corresponding 

to stripping or collapsing of bubbles, respectively. In addition, being 

able to determine the bubble center location under the permalloy circuit 

is useful in studying bubble replicators because the position of the 

hairpin conductor loop which provides the cutting field and the phase of 

the current pulse is determined by the location of the bubble under the 

permalloy. Moreover, the bubble size fluctuation algorithm can be used 

in studying the dynamics aspects of bubble circuits. 



CHAPTER 5 


BUBBLE CIRCUIT OPTIMIZATION 


5.1 Introduction 

The continuum model of Chapter 3 and the analysis of bubble 

circuits, presented in Chapter 4, are used as the analysis part of an 

algorithm for propagation circuit optimization. The criterion for 

optimization is based on minimizing bubble size fluctuations, assuring 

proper propagation at all critical points in the circuits and satisfying 

certain constraints set by practical considerations. As a result, a set 

of optimum parameters for the bubble-permalloy circuit is computed which 

when used will result in achieving a potential well profile that yields 

optimum performance and meets the required specifications. 

To reduce the computer time required for the optimization 

procedure, quadratic polynomial approximations are used to model the 

potential well depths as functions of the circuit parameters. This 

method was checked separately and proved satisfactory and efficient. 

The constraints on the shape of the potential well distribution 

and specifically, on the gradient of the well, for a specific circuit, 

are based on experimental observations of the difficulties associated 

with propagation along this type of circuit. An example is the gap 

between the I and the T elements in a T-I circuit where a large gradient 

is required to move the bubble from the I, across the gap, to the T. 

100 
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5.2 Qualitative Analysis 

In one class of field access propagation circuits the propagation 

track is almost linear and the bubble velocity does not change 

appreciably along the propagation track. Examples of circuits belonging 

to this class are T-I, parallel-bars and half-disks. On the other hand, 

in the class of circuits including symmetric and asymmetric chevrons, 

the bubble velocity varies over a wide range as discussed in Chapter 4. 

Optimum propagation is achieved if the bubble is translated in a 

potential well whose depth and shape remains constant as it moves by 

circuits belonging to the first class and in a potential well whose 

depth is proportional to the bubble velocity for circuits in the second 

class. 

The velocity of a bubble domain (Thiele 1969) is given by 

(5 .1) 

where 6H is the z-field differential across the bubble, that is z 

ClH z
6H = • d ' (5.2)z ax 

H is the domain wall coercivity and Hz is the effective potential well
0 

depth as ccmputed in the bubble size fluctuation algorithm of Subsection 

4. 5. 1. As ti Hz increases, v increases until the saturation velocity 

which varies frcm one material to another frcm about 20 mis to about 60 

mis. 

Equations (5.1) and (5.2) suggest that to overcome bubble 

coercivity and mobility drag, the gradient of the potential well should 
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satisfy 

aHZ d > 8 H + 2v (5.3)-- cax 

everywhere along the propagation track. Experimental observations, 

though, show that it is enough to satisfy (5. 3) at the critical points 

in the circuit to assure propagation elsewhere (Almasi and Lin 1976). 

Knowledge of these points, therefore, is essential for circuit design. 

5.3 Circuit Parameters 

Figure 5.1 shows a typical T-I bubble propagating circuit. The 

effective potential well depth Hz and, hence, the well gradient aHz/aX 

at any point in the circuit are functions of the circuit parameters. 

These include permalloy, bubble and external parameters such as the 

in-plane field and temperature fluctuations. In the following analysis, 

only those parameters shown in Fig. 5.1 will be considered, that is 

ti
Hzi = Hzi (t 1, t 2 , w, t, g, d, h, ~' s, HT) , (5.4) 

where i refers to any point along X. 

Although any of the parameters in (5.4) may vary independently, 

yet practical device fabrication requirements and memory specifications 

impose certain bounds on the values of these parameters. Table 5. 1 

illustrates the factors affecting the upper and lower bounds on each of 

the parameters in (5.4). 
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Figure 5.1 	 A typical T-I propagation circuit. X refers to the bubble 
path. Permalloy, bubble and external parameters are shown. 
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5,3 The Optimization Problem 

Following the discussion of Sections 5. 1-5. 3, the problem of 

propagation circuit optimization can be stated as 

minimize u 1 c~) = max IHzi(~) - HzR(!)I (5. 5) 
icN 1 

subject to c. (cf>) = 0Hzj _2(2:Hc+ 2•] 2. 0 ' . j (5.6)E: N2'
J ­ ax d TI µw 

(5,7)ck(~) 2. O k E: N3' 

where cf> ~ - [ R, 1 R, 2 w t g d h MB s HT]T ' (5.8) 

N1 
D. 
= { 1 ' 2, ... ' n1} ' 

(5,9) 

N2 
D. 
= { 1, 2, ... , n2 l ' (5. 10) 

N3 
D. 
= { n2+ 1 , n2+2, ... ' n3} ' 

(5.11) 

n3 - n2 i. p (5. 12) 

· n 1 is the number of points, along the propagation track, at which Hz is 

considered, n is the number of critical points in the circuit and p is
2 

the number of circuit parameters. Equation (5,5) requires the 

definition of a reference potential HzR( !) . This can be taken as the 

potential well depth at the end of the I elements in T-I and Y-I 

circuits or at the end of the disks in half-disk circuits. It should be 

noted that the objective function (5. 5) refers to circuits where the 

bubble moves with a uniform velocity. 

The set of constraints in (5. 7) determines the upper and the 

lower bounds on each of the parameters listed in (5.8). For example 
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(5.13) 


(5.14) 


where t 1h and t 1t are the upper and the lower botmds on t 1. 

5.5 Approximation and Method of Solution 

Since an optimization procedure will require a repetitive 

calculation of the objective function, a reduction in the required 

computer time can be achieved by using a suitable approximation for Hz 

as a function of . the circuit parameters. Abdel-Malek and Bandler 

(1978a) developed a technique to compute the coefficients of a quadratic 

polynomial approximation to a function which is assumed continuous and 

has continuous derivatives. In this work, the well depth, H , will be 
z 

approximated by a quadratic polynomial in the components of the vector 

cp, which are the circuit parameters. That is 

2 2 2p (cp) b1"''1'1 + b "' + . . . + bp"'p + bp+1"'1"'2'I' 'I'-- 2'1'2 'I' 

(5.15) 

The coefficients in (5. 15) are chosen in such a way to force the 

polynomial to coincide with Hz( f) at K base points, 

cp ,Q,' 9., = 1' 2, ... ' K , K = 
( p+1 )(p+2) 

2 
(5.16) 

that is 

p(cp9.,) = H ( c/J9.,) 
z - ' 

9., = 1' 2, ... ' K ' (5.17) 
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and to accurately approximate H (<!>) at other points within the specified
- z ~ 

interpolation region (the region within which the approximation is 

valid). See Abdel-Malek (1g77) and Abdel-Malek and Ba.ndler (1g78b). 

To test the quadratic approximation method, it was used to model 

the potential well depths HzA and HzB at the two points A and B, 

respectively, in the T-I propagation circuit shown in Fig. 4.14. 

Keeping the first eight components (<I> , <I> , ... ' <1>8 ) of the vector !1 2 1 

that is p,1, .9.2 , w, t, g, d, k, MB)' in (5.8) fixed at the values 

illustrated in Fig. 4.14, the last two components, that is (s, HT) are 

allowed to vary in the ranges 

3. 0 .s <Pg ~ 6 • 0 ' (5.18) 

(5. 1 g)0.4 ~ <1>10 s 3. 6 ' 

where 

/::,. 7 (5.20)<Pg = 10 s ' 

<I> ~ 10-3 HT (5.21)
10 

The scaling factors in (5. 20) and (5. 21) are used to improve the 

nt.merical conditioning of the computation. The quadratic polynomial 

approximations of HzA and HzB are, respectively, 

2 2 
PA(<l>g,<1>10) = b1A <Pg + b2A <1>10+ b3A <l>g<l>10+ b4A <Pg + b5A <1>10+ b6A ' (5.22) 

2 2
PB (<l>g ,<!>10) = b1B<l>g + b2B<P10+ b3B<l>g<l>10+ b4B<l>g + b5B<j>10+ b6B • (5.23) 

where the coefficients are to be determined. 

Two sets of variables (<!> g and <!>10 ) are used to compute HzA' HzB' 

The base points, interpolation region and the results 

obtained are shown in Table 5. 2. The maximt.m error is less than 5%. 
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TABLE 5, 2 


CCMPARISON BE'IWEEN THE ACTUAL POTENTIAL WELL DEPTH 


AND THE QUADRATIC POLYNOMIAL APPROXIMATION 


FOR THE CIRCUIT OF FIG. 4.14 


PARAMETERS POTENTIAL WELL DEPTHS QUADRATIC APPROXIMATION 


<1>10 HzA (OE) 

4.500 1.600 - 8. 5500 -10.6500 - 8. 4926 -10.6421 

4. 936 3.212 -17. 8801 -26. 1425 -16.9866 -25.8055 

<1> = 101s, sin meters
9 

<1> 10 = 10-3 HT' HT in A/m 

Interpolation region: 3.0 ~ <1> ~ 6.0
9

0.4 ~ <1>10 ~ 3.6 

.R. .R.Base points (<!>
9

, <1> 10 ) = (4.5, 2.0), (6.0, 2.0), (3.0, 2.0), 
(4. 5, 3.6)' (4. 5, 0.4)' (3. 8, 1.2) 
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Equations (5.5)-(5.7) will, thus, reduce to 

minimize U(~) = max IPi(~) - PR(~)I (5.24) 
iE:N 1 

1 8 2v
subject to [ _ H + ] 2.. 0 j e: N ( 5 • 25 ) 2 ,0

d 7T 

, k e: N (5. 26 ) 
3

, 

where ~' N1, and N are given by (5.8)-(5.11) and Pnj<t> is theN2 3 

quadratic polyncmial approximation to the potential well gradient at 

point j, that is 

3H .(~) 
PD. ( ~) ZJ - (5.27) 

J ­ ax 

The FORTRAN IV program FLOPT4 for least pth optimization with 

extrapolation to minimax solutions (Bandler and Sinha 1977) is used to 

solve the constrained minimax problem defined above in (5. 24 )- (5. 26). 

In this program, the Bandler-Charalambous technique (1974) is used to 

transform the constrained nonlinear programming problem into an 

unconstrained minimax problem. A least pth objective function is then 

formulated and the minimax solution is obtained by using a slightly 

modified version of the quasi-Newton method (Fletcher 1972). 

http:5.8)-(5.11
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5.6 Examples 

Kryder, Ahn and Powers ( 1975) reported a 1. 5 x 1010 2bits/m 

bubble memory chip with 2 µm bubbles in GdCoMo amorphous films using T-I 

propagation structures with parameters as shown in Fig. 4. 14. The 

amorphous film has a coercive field of 240 ± 80 A/m and for s = 0.3 µm, 

good quasistatic operation with a bias field margin of about 2400 A/m is 

obtained for HT 2. 4800 A/m. 

The optimization procedure of Sections (5.4) and (5.6) is used to 

obtain, independently, the optimum spacer and bubble height which will 

minimize the difference between the well depths at points A and B, of 

Fig. 4.14, as well as satisfying (5.6) in the middle of the gap. In the 

rest of this section a discussion is presented for the effect of the 

spacer and the bubble height on the circuit performance using this 

model. 

5.6.1 Spacer Effect 

Keeping t 1, t 2 , w, t, g, h, d and~ fixed at the values shown in 

Fig. 4.14, and leaving s and HT to vary in the ranges 

0.05 ~ s ~ o.45 µm ' (5.28) 

1200 ~ HT ~ 5000 A/m (5.29) 

the optimization procedure gives the results shown in Table 5.3(a). 
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TABLE 5.3(a) 

RESULTS OF THE OPTIMIZATION PROCEDURE 

FOR THE T-I CIRCUIT OF FIG. 4.14 

(SPACER EFFECT) 

PARAMETER INITIAL VALUE FINAL VALUE 

s(µm) 0.25 o. 3874 

HT(A/m) 2500 4604 

H 240 A/m 

µw 
c = 

= 8 x 106 m2/A s 

v = 0 

h 2.08 µm= 

CDC-6400 computer time: 

for the quadratic approximation = 600 s 

for the optimization procedure = 3 s 

Although one might think that decreasing the spacer may result in better 

operation because of the resulting better bubble-permalloy coupling, yet 

the results of Table 5.3(a) show the opposite. When the spacer is 

increased from 0.25 µm to 0.3874 µm, all optimization criteria are 

satisfied and propagation is achieved across the gap. This is in 

agreement with the initial suggestions by George, Hughes and Archer 

( 1974) for single permalloy bars. The increase in the spacer thickness 

results in more uniform distribution of the permalloy stray field across 

the bubble and, hence, in higher field differential ~H • . z 
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5.6.2 Bubble Height Effect 

Table 5.3(b) gives the results obtained 

procedure, when h is le~ to vary in the range 

1.5 < h .5.. 3.0 µm • 

using the optimization 

(5.30) 

TABLE 5.3(b) 

RESULTS OF THE OPTIMIZATION PROCEDURE 

FOR THE T-I CIRCUIT OF FIG. 4.14 

(BUBBLE HEIGHT EFFECT) 

PARAMETER INITIAL VALUE FINAL VALUE 


2.0 1. 75 


2500 4000 


s = 0.3 µ 

The fact that smaller bubble height results in better propagation can be 

attributed to the higher resulting z-directed permalloy field on the 

bubble. Again, for rectangular bars, George, Hughes and Archer ( 1974) 

predicted that better operation could be obtained by reducing the bubble 

height which agrees with this analysis. 
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5.7 Discussion 

Fig. 5.2 shows the potential well profiles along the bubble path 

for the T-I circuit of Fig. 4.14. Three cases, numbered 1, 2 and 3 are 

considered which correspond to the initial parameters of Table 5.3(a), 

the final parameters of Table 5.3(a) and the final parameters of Table 

5.3(b), respectively. It is seen that, while the constraint (5.6) is 

not satisfied in case 1 in the middle of the gap, it is satisfied for 

cases 2 and 3. It is noted that the effect of reducing the bubble 

height is stronger than that of increasing the spacer since the former 

results in lower in-plane field amplitude. On the other hand, Thiele 

( 1969) proved that the stability of bubble domains is largely dependent 

on the ratio of the diameter to the height. Therefore the upper and 

lower limits on the domain height are more critical than those on the 

spacer. 

The analysis of Sections 5. 2 - 5. 5 can be used to compute the 

minimum in-plane propagation field, for any bubble-permalloy 

configuration, as a function of the bubble velocity. This is done by 

allowing the circuit parameters to vary over very narrow ranges and thus 

are effectively kept constant. For the circuit of Fig. 4. 14 and 

allowing the spacer to vary in the range 

0.295 ~ s .£ 0.305 µm , (5.31) 

the minimum in-plane fields required for quasistatic and high frequency 

propagation, with minimum bubble size fluctuations, are shown in Table 

5. 4. The measured value is reported by Kryder, Ahn and Powers ( 1975) 

and is also shown in Table 5.4. The discrepancy between the two results 
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can be attributed to the errors in the measuring of the coercivity and 

the height of the bubble materials and the errors in approximating the 

potential well depth. 

TABLE 5.4 

MINIMUM IN-PLANE PROPAGATION FIELD 


FOR THE T-I CIRCUIT OF FIG. 4.14 


COMPUTED MINIMUM MEASURED MINIMUM 
BUBBLE VELOCITY IN-PLANE FIELD IN-PLANE FIELD 

(m/s) (Alm) (Alm) 

0 2800 2080 

10 5900 

s ::< 0.3 µm 

h = 2.08 µm 
2 

µ = 0,125 m IA s w 

5.8 Conclusions 

The optimization procedure discussed in detail, in this chapter 

can be used in optimizing the permalloy shape required to propagate 

bubble domains in a given uniaxial magnetic material • By allowing the 

permalloy parameters 1 1, 1 2 , w, t, g of (5.4) to vary and by solving the 

minimax optimization problem of Section 5. 5, one can expect to obtain 

the optimum permalloy configuration that will assure bubble propogation 

across the circuit's critical points as well as minimizing the bubble 
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size fluctuations. The effect of varying the permalloy parameters , 

however, has not been studied in this thesis because of computer time 

limitations. The demagnetizing factors should be updated each time any 

of the permalloy parameters changes and this requires large amounts of 

computer time. However, this is a reliable method of optimization and 

is much less expensive than trying the design by a cut-and-try method. 

In conclusion, a novel optimization procedure for propagation 

circuit optimization has been presented in detail. The algorithm 

minimizes bubble size fluctuations and, hence minimizes the possibility 

of improper propagation or loss of information. It also assures 

propagation along the specified bubble path. An example has been worked 

out and the effect of two circuit parameters has been discussed. 

Comparison to experimentally measured in~plane field values shows 

agreement with the computed values. 



CHAPTER 6 


CONCLUSIONS 


In this thesis, the problem of modeling and optimization of field 

access bubble propagation circuits has been considered. The micro-

magnetic approach for modeling of bubble circuits, presented in Chapter 

3, is general enough to consider the domain and domain wall structure in 

the permalloy which is important in studying submicron bubble devices. 

The concept of the continuum modeling of permalloy circuits requires 

reasonable computer time and memory. The use of iterative procedure to 

compute the magnetization in the permalloy allows the inclusion of 

various energy terms in the total permalloy energy, such as coercivity. 

The analysis of various bubble propagation circuits reveal the 

relative merits of these circuits. The potential well profiles of half­

disk circuits show little variations in the well depths along the 

propagation track. These result in small bubble size fluctuations and, 

hence, improved operation. The analysis of the asymmetric chevrons 

shows the reason for the improvements in bubble propagation as compared 

to the symmetric chevron circuits. 

The bubble size and position fluctuation algorithm of Chapter 4 

is useful in detecting improper propagation (stripping-out of bubbles) 

and loss of information (collapsing of bubbles) in any propagation 

circuit. The algorithm allows the use of such different stability 

analyses as Thiele's theory (1969) or DeBonte's method (1975) for high 

ll7 
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and low Q bubbles, respectively. 

An algorithm for bubble circuit optimization has been introduced 

in Chapter 5. The objective is to minimize the bubble size fluctuation 

along the propagation track and to assure propagation across the 

critical points in the propagation circuit. To reduce the computation 

time required in the optimization procedure, a quadratic polynomial 

approximation to the potential well depth is used which proved accurate 

and efficient. The optimization algorithm can be used to obtain the 

optimum shape for the permalloy circuit or the optimum bubble material 

parameters which meet the required specifications. 

This research work has revealed various promising topics for 

further investigation such as: 

(1) 	 A technique for the optimization of the under-relaxation factor S 

to reduce the number of iterations required in both the micro­

magnetic and the magnetization algorithms. 

(2) 	 Investigation of other techniques of setting up the discreti­

zation mesh in the permalloy circuit to reduce the computer time 

required for evaluating the demagnetizing field distribution for 

the micromagnetic analysis of submicron bubble circuits. 

(3) 	 Modification of the bubble size fluctuation algorithm to include 

analysis for elliptical bubbles. This is important for studying 

bubble generators and replicators where the bubble is stretched 

before cutting. 

(4) 	 Applying the optimization algorithm of Chapter 5 to a specific 

permalloy structure and allowing the permalloy parameters to vary 
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until the optimum shape is obtained. This is very useful for gap 

tolerant circuits and, specifically, for half-disks since a wide 

variety of disk shapes is being used now and it would be 

beneficial to compute the optimum disk shape. 

(5) 	 Implementation of an algorithm for automatic calculation of the 

upper and lower bounds on each of the propagation circuit 

parameters, as discussed in Chapter 5. It is important, for 

example, to define the bounds on the bubble height and saturation 

magnetization, which assure bubble stability, before using the 

optimization algorithm. 



APPENDIX A 


RELATIONSHIPS BETWEEN SI AND CGS UNITS 


Table A. 1 gives the conversion relations between the SI and the 

CGS systmes of units for various bubble material parameters (Bobeck and 

Della Torre 1975). 

TABLE A. 1 

RELATIONSHIPS BETWEEN SI AND CGS UNITS 

Physical SI CGS Conversion 
quantity Symbol Unit Symbol Unit relation 

Flux <l>m Weber <l>m Maxwell Wb = 108Mx 

Flux density B Tesla( Wb/m2 ) B Gauss( Mx/ cm2) T = 104 G 

Field intensity H Alm H Oersted Alm = 41T x 10-3 Oe 

Magnetization M Alm I emu Alm = 10-3 emu 

kA/m = 1 emu 

Wall energy crw J/m2 
crw erg/cm2 1 J/m2 = 103 erg/cm2 

mJ lm2 = 1 erg/cm2 

Uniaxial Ku J/m3 Ku erg/cm2 J/m3 = 10 erg/ cm 2 

anisotropy 

constant 

Mobility llw m21A s llw cm/s Oe 1m2/A s = 105;41T cm/s Oe 

Constitutive µo(H + M) B = H + 4irIB = 
equation 
Free space 41T x 10-7J.lo = 

--5:t_
Material R, 

m = 2 m
length J.loMB 

Anisotropy 
field 

2K 
Q =_u_Quality 

241TIfactor s 
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APPENDIX B 


COMPUTATION OF THE DEMAGNETIZING FACTORS 


The scalar magnetic potential of a magnetized body is given by 

(Della Torre and Longo 1969) 

1 1 (B. 1)lfJ ( r .. ) = J M( r . ) • V. ( )dV. ,mag -iJ - - -J -i ~- J4'If V r .. 
j J1 

where the different parameters are as defined in Fig. 3.4. Using 

integration by parts it can be shown that the magnetic potential of a 

magnetized body is due to both surface and volume charges. The 

demagnetizing field, which is set up by the magnetization inside the 

body, is then given by 

1 1= - _ v . I M( r . ) (B.2)• V. (-) dV.-i - -J -J J4
'If v. rji 

J 

Using Cartesian-coordinate system, one can define F by
1 

M (r .) (x.-x .) + M (r .) (y.-y .)
!::. • ~j _ 1 = _x___J__,,,,,___i__J___Y___=J__i__J_F :M(r.) (B.3)

1 - -J ( 
rji ) [d~j + (zi-zj)~3/2 

where 

r. = x. 1 + y. 1 (B.4)
-i i -x i -Y 

(B.5) 
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and the z-component of the magnetization is neglected. Integrating 

w.r.t. zj from -t/2 to +t/2, where t is the permalloy thickness, gives 

t/2 


= {F M (r.) + F M (r.)} 1
I F1 2 x -J 3 y -J -x 

-t/2 


+ {F4 Mx ( r.) + F M ( r.)} 1 , (B.6)
-J 5 y -J -Y 

where 

(B. 7) 

(B.8) 

(B.9) 

(zi+t/2) (z.-t/2)
+ ____ l. 

(B. 10) 
F3/2 


8 


(B.11) 

(B. 12) 

(B. 13) 

The terms in (B.6) can be integrated over the permalloy thickness 

to get the average demagnetizing field or solved for z. = t/2 to get the 
l. 
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demagnetizing field at the film's mid plane. Using the former method, 

the average terms will be 

1
D (r.;r.) F2 dzixx -l. -J ~ t 

t/2

I 
-t/2 

(B.14) 

D (r.;r.)
xy -i -J 

~D (r.;r.) (B.15)
yx _l. -J 

and D (r.;r.) is obtained from (B.14) by interchanging the x's and theYY -i ~J 

y's. 

To obtain ( 3. 53), an interpolation function is required. 

Greville ( 1969) suggested a cubic-spline interpolation algorithm which 

tries fitting to n points the smoothest interpolation function. This 

algorithm, which is available as a set of subroutines in IMSL library 

(1977), was used to express I(i;j) in (3.46) and (3.47). 

Singularity Analysis 

It is noted that the coefficients in (B.14) and (B.15) are 

infinite when d .. = 0. This occurs when x. = x. and y. = y .• Since the 
l.J l. J l. J 

integrals in (3. 53) are performed over all points in the permalloy, a 

singularity appears in the integrand. 

2 2
dij+2t 

2 2
d ..+t

l.J 
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Since analytical integration of the expressions in (B. 14) and 

(B.15) is difficult, the technique used to avoid the singular integrand 

is to enclose the point of singularity by an infinitismally small 

rectangle (region S) as shown in Fig. B.1. The integration in (3.53) is 

done numerically in region N and the equivalent analytical value (Joseph 

and Schlomann 1965) of the integral is used to replace the integration 

over region S. Five different types of region S are illustrated in Fig. 

B. 1 corresponding to different kinds of singularities. These are 

interior, 90° corner, 210° corner, x-edge and y-edge singularities as 

shown in Fig. B.1(a)-(e), respectively. 

Since the coefficients in (B. 14) and (B. 15) decrease rapidly as 

d .. increases, a large number of points should be considered around the
l.J 

singular points. Figure B.2 illustrates the mesh of points established 

over region N in a 90° corner singularity. 

A typical example of a rectangular permalloy bar has the 

following parameters: 

t = 15 µm 

w = 3 µm 

t = 0.4 µm 

Ax = Ay = 0.75 µm 

ox = oy = 0.0375 µm 

N = N = 21 points.
XS ys 

It is noted that reducing the dimensions of region S further than the 

values given above does not result in appreciable change in the 

singularity contribution to the total integral value. 
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(b)28y 
90° corner 

(a} 
interior point 

(c) 	 (d) 
x-edge point270° corner 

(e) 

y-edge point 

Figure B.l 	 Various kinds of singularities that appear in the computation 
of the demagnetizing field: (a) interior, (b) 90° corner, 
(c) 270° corner, (d) x-edge and (e) y-edge singularities. 
Region S is singular and N is nonsingular. 
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Nxs points 

tJ.y 
Nys points 

t7t7tr-:t''"T7f717V"J~~:;zf;4--4- reg ion N 
(non-singular) 

region 
(singular) 

Ax------­

Figure B.2 The discretization mesh used to compute the contribution 
of a singular corner point to the demagnetizing field. 
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The Demagnetizing Factors 

The substitution of constant x and y magnetization components in 

(3.49) gives 

(B.16) 

(B.17) 

where ~ is the constant magnetization. Therefore, the demagnetizing 

factors of the body at point i are given by 

N 
1: Ckt(i,j) (B.18) 

j=1 

which is equivalent to adding the elements of each row in the matrix C 

of (3.52). Figure 3.6 gives the demagnetizing factors of a rectangular 

permalloy bar of dimensions 15 x 3 x 0.4 µm·obtained using (B.18). 



APPENDIX C 


THE EXCHANGE ENERGY 


The exchange energy forms an important part of the total energy 

of many solids. Heisenberg showed that it also plays a decisive role in 

ferromagnet ism. If two atoms m and n have spin angular momentum Sn and -m 

§nn' respectively, then the exchange energy between them is given by 

(C.1) 

where. JEXis a particular integral, called the exchange integral, and o 

is the angle between the spins. If JEX is positive, EEX is a minimum 

when cos o = 1 and a maximum when cos o = -1. If JEX is negative, the 

lowest energy results from antiparallel spins. Since ferromagnetism is 

due to alignment of spin moments on adjacent atoms, a positive value of 

JEX is therefore necessary for ferromagnetism to occur. The only three 

elements with positive JEX are iron, nickel and cobalt (Cullity 1972). 

It can be shown (Brown 1963) that the exchange field of an 

infinitismal volume in a magnetic body is given by (3.17) where 

(C.2) 

is the exchange constant, aR. is the lattice parameter, q is 2 for BCC 

structure and 4 for FCC structure, and JM is a unit vector along the 

magnetization of that infinitismal volume. 

Assuming that a unit vector 1M is inclined at an angle eM to the 
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x-axis, as shown in Fig. C.1(a), then 

(C.3) 

where 

(C.4) 

Since 

a 
cos eM = (C.5) 

ax 

a sin eM = cos eM • (C.6)eM ' ax x 


2 

a 2 cos eM = - sin e

M 
• eM - cos e ( eM ) (C. 7) 

2 xx x ax 

a2 
sin eM = cos eM • eM - sin eM Ce )2 (C.8)

M2 xx x ax 

and similarly for the derivatives with respect to y, then (3.36) and 

(3.37) follow. 

Figure C.1(b) shows a mesh of points centered around point (m,n). 

Using central difference approximations for first and second 

derivatives, the terms in (3.36) and (3.37) can be approximated as 

eM(m+1,n) - eM(m-1,n) 
eM (m,n) "' (C.9) 

x 2 h.x 

eM(m+1,n) - 2 eM(m,n) + eM(m-1,n) 
eM (m,n) "' (C.10) 

xx 2(fix)
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(a) 

m+I n+I 

(b) 

Figure C.l A (a) unit vector inclined at angle e to the x-axis and 
(b) a mesh of points centered around point (m, n). 
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eM(m,n+ 1) - eM(m,n-1) 
eM (m,n) (C.11)"' 

y 2 b.y 

eM(m,n+1) - 2 eM(m,n) + eM(m,n-1) 
(m,n) (C.12)eM "' 

yy 2
(b.y) 



APPENDIX D 

M-H APPROXIMATIONS 

Let us assume that a magnetic body has an average demagnetizing 

factor Nk in a certain direction, k. If a field HA is applied to the 

body along the k direction, a demagnetizing field HD results and the 

total local field will be 

~L =~A + ~D 

(D. 1) 

where ~ is the average magnetization along the applied field direction. 

A curve of Mk vs. HL can be obtained from an Mk-HA curve by a graphical 

method (Cullity 1972). In Fig. D.1, OA is a ~-HA curve. The dashed 

line OC is a plot of the relation HD = - Nk Mk and has a slope of -1/Nk. 

If we plot OC with an equal but positive slope, it becomes OD. 

Therefore, if OD and OA are sheared to the left by an amount sufficient 

to make OD vertical, OA will then be a curve of~ as a function of the 

local field HL. It is clear that the apparent susceptibility Xapp, 

given by M /HA'-ic is much less than the true susceptibility Xt­vrue , or 

Mk/HL. It can be shown, using (D,l), that 

- N (D.2)---= k 
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M 

c 
\ 

\ 

A 

\ 

-HDI 

\ 
\ 

\ 
\ I 

0 

I 
I 

I 
I 
I 
I 
I 
I 
i--HLI 
I 
I 

HDI HAI HA,HL 

Figure D.l 	 The M-HA and the M-H relations. When OD and OA are 
sheared to the left ~y an amount sufficient to make OD 
vertical, OA will then give the M-11, relation. 
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In general, for permalloy bars, Nk is not constant but varies along the 

bar's length and width. Nevertheless, the above discussion can be 

applied to these bars by using their average demagnetizing factors. The 

conclusion, therefore, is that the M-HL relation resembles the M-HA 

relation but with higher susceptibility. 

Various M-HA relations for permalloy bars were examined using the 

results of Doyle and Casey (1974), Krinchik, Chepurova, Shamatov, Raev 

and Andreev (1975) and Ma (1976). In general M varies nonlinearly with 

HA but for most bars the relation is linear at low applied fields and 

asymptotically reaches M at high fields. s 


The relation 


M/M (D.3)s 

M/M
s 

where the parameters t 1, Ht and n are shown in Fig. D. 2, represents an 

M-HL relation for a material with coercive field 

(D.5) 

The continuity of the first derivatives of (D.3) and (D.4) is achieved 

by choosing 

n ( 1+k) (D.6)tl = --­
ir+n 


where n determines the curvature of (D.4). For the special case where 

k<<l, n=1 and Ht>> He, 

t1 "' 1/(ir+1) (D. 7) 
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M 

linear-orcton relation 

relation 

coercive fields 

Figure D.2 Linear-arctan and parabolic-arctan M-HL approximations. 
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-rr/2 


3'17"/8 

-rr/4 

-rr/8 

Figure D.3 Approximating arctan (x) by a simpler function. 
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and the approximate susceptibility is given by 

Ms 
(D.8)X"'--­

( 1+11' )Ht 

which is about 300 for Ht= 650 Alm and Ms = 800,000 Alm. 

The linear-arctan relation (3.55) and (3.56), shown in Fig. D.2, 

can also be used to represent the permalloy M-HL characteristics. 

In conclusion, it is noted that the M-HL relation given by (D.3) 

and (D. 4) represents a wide variety of curves with the required 

properties. A great deal of computer time can be saved, however, using 

(D.9) 
2 x+1 

as shown in Fig. D.3. 

The computer program written for the magnetization algorithm of 

Chapter 3 accepts the specific M-HL approximation in a separate 

subroutine. This allows using an experimentally determined permalloy 

characteristic. 
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