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ABSTRACT 

The theory of canonical correlation analysis has been combined 

with that of trend surface analysis in order to construct a multivariate 

trend surface which is called a canonical trend surface. 

A canonical trend surfqce is a parsimonious summarization of 

areal variations of a set of geological variates. This trend has a 

property of maximum correlation between variates and geographic 

coordinates. It does not show the absolute value of each variate, 

but it shows the nature of the variation of a linear combination of 

the variates. The Permian system in western Kansas and eastern Colorado 

was studied as a numerical example to illustrate the general procedures 

in solving practical probl.ems and also to demonstrate the validity of 

this technique. By use of this type of trend it is possible to reveal 

the underlying pattern of geographic variation common to a set of variates. 

Other applications of canonical correlation analysis in geology 

have been explained with illustrative geological examples, namely: the 

relationships between two sets of variates, matching two factor patterns, 

Q-technique canonical correlation, and discriminatory analysis. 

Comparison of canonical correlation analysis and principal 

factor solution in factor analysis suggests that factor analysis may 

be more appropriate for suggesting interrelationships among variables, 

while canonical corre1ation analysis may be a suitable tool for prediction 

problems. 
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FORTRAN IV programs for these computations are listed in 

appendices with instructions for using them. 
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CHAPTER 1 


INTRODUCTION 


Suppose we have a number of rock specimens taken from a rock 

body, and that the abundance of various kinds of minerals, major elements, 

trace elements, fossils and so on, are estimated from each specimen. 

It may be asked whether or not there are some relationships between 

the major and trace elements, or between the minerals and size parameters, 

or between trace elements and clay minerals, or hetween sediment types 

and fossils. 

Let us take the trace clr.ments and clay minerals as an example. 

One simple correlation coefficient indicates a possible relation between 

one of the trace elements and one of the clay minerals. If we had 

five clay minerals and ten trace elements, we will have 50 simple 

correlation coefficients to show all possible relationships. The 

relationships indicated by 50 coefficients are not easily understood: 

·what is needed is some technique which will express the relationship 

between the set of trace elements and the set of clay minerals in a 

more concise form. 

Canonical correlation analysis was introduced by Hotelling in 

1936 (the paper was read in 1935). It is a technique to understand the 

relationships between two sets of variables (for example, trace elements 

and clay minerals) and was an outgrowth of simple correlation analysis. 

The relationship between the two sets of variables are summarized and 

expressed by a simple inde~. For example, the clay mineral and 

1 
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trace element abundances are weighted and combined into two linear 

'combinations such as 

U = a1 (kaolinite)+ a2 (illite) + a3 (chlorite ) + ... . 


V = b1 (vanadium)+ b2 (zirconium)+ b3 (titanium)+ ... . 


where a1, a2, a3, b1, b2, b3, ··-··· are weights to be determined 


such that U and V have a maximum simple correlation coefficient which 

is called the canonical correlation coefficient or canonical root. 

The strength of the link between the sets is measured by the canonical 

root, whereas the nature of the link is inrlicated by those trace 

elements and clay minerals having larger \\!eights. 

The principle of canonical correlation analysis was immediately 

used as a procedure for discriminating between two populations and also 

as a technique for testing difference between groups. The technique 

has the properties of maximizing the difference between two populations 

and also displaying each individual on a set of canonical coordinates 

(Bartlett, 1938). Canonical correlation was generalized for three or 

more sets of variables and partial canonical correlation was also 

proposed by Roy {1957, p. 26). Canonical factor analysis (Rao, 1955) 

was developed by making use of the canonical correlation principle. 

Horst (1961, 196la) has applied the same principle to the problem of 

matching two or more factor patterns. The probability function of the 

canonical roots has been studied by a number of mathematical 

statisticians (Hsu, 1941; Bartlett, 1941, 1947; Constantine and James 

1958). Uses of this technique has been suggested in variou~ fields: 

psychology (Bartlett, 1947, 1948; Thomson, 1947; Burt, 1948; Hotelling, 
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1957; Beech and Maxwe11 , 1958; Maxwe 11 , 1961; Kenda 11 , 1961, r. 75-85; 

Meredith, 1964; Das, 1965;· Dunteman, 1967), biolO!l.Y (Pearce and Holland, 

1960; Kshirsagar, 1962; Bartlett, 1965, p. 201-224; Seal, 1964, 

p. 123-152), economics (Waugh, 1942; Tintner, 1946; Morrison, 1967, 

p. 207-220), socioloqy (Cooley and Lohnes, 1962, r. 31-49; Koons, 1962), 

and geology (Buzas, 1966; Reyment, 1966). 

Supoose that a number o~ rock specimens have been collected 

from an area, so that each specimen has its own geographic locality. 

After estimation of trace elements, for instance, we would like to 

know the areal variation of each trace element over the area studied. 

The simplest technique is to plot each individual value of a particular 

trace element on the map according to its locality, and then to draw 

contour lines showinq equal abundance of that trace element. This type 

of map shows not only regional variation but also local fluctuations. 

If we are able to filter out the local fluctuations, then the regional 

variation will be accentuated. This could be done by fitting a 

polynomial surface to this set of data over the area. Deviations from 

the polynomial are considered to be residuals or local fluctuations 

and the computed surface is considered to be the regional 'trend'. If 

we had ten trace elements, then we will have ten polynomial surfaces 

or trend maps indicating variations of trace elements. It may be asked 

whether or not is it possible to evaluate a single trend which is 

common to all or some of the trace elements. Again, we encounter the same 

problem as in the previous example, i.e. we need a summarization of the 

ten maps. 
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After a period of discussion ahout the possible application of 

the canonical correlation analysis in qeolo0y at McMaster University in 

1965, Dr. G. V. Middleton sug~ested the canonical trend idea. Since 

that time, extensive studies were carried out on both real gcoloqical 

and hypothetical data in order to understand the geological meanings of 

this technique. 

A canonical trend is a polynomial surface which shows the 

variations of many variables over an area simultaneously by making use 

of the principle of canonical correlati0n analysis. In this case, 

one set of variables consists of geological variables such as trace 

elements, whereas the second set of variables is composed of location 

of specimens, i.e. (X, Y) coordinates. The canonical trend is a succinct 

summarization of areal variations of many geological variables and their 

geographical coordinates. 

Application of canonical trend analysis was introduced by Lee 

and Middleton (1967)' before a colloquium on trend analysis held in 

Lawrence, Kansas, and also by Middleton and Lee (1967) before the seventh 

International Sedimentological Congress held in England. 

A quadratic surface which is an homogeneous expression of a second 

degree is reduced to a linear combination of squares only, the cross

product terms being eliminated. A form of this type is said to be a 

canonical form. This reduction process is also called a canonical analysis 

in chemical engineering (Hill and Hunter, 1966). This canonical 

reduction of chemical engineers is algebraically equivalent to the 

canonical analysis of Hotelling's method, but the underlying purposes, 

assumptions and implications of the canonical reduction are completely 
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different from that of the canonical trend analysis discussed in this 

paper. 

In Section 2.1 the physical meaning of the canonical correlation 

coefficient is introduced. A proof of the theory of the analysis is 

presented in Section 2.2. Section 2.3 states the probability distribution 

of canonical roots. Detailed computation procedures of the two-dimensional 

canonical trend are formulated in Section 3.2. Sections 3.3 and 3.4 

are devoted to a full discussion of the physical meaninq and uses of 

canonical trends, using hypothetical data. A numerical example, taken 

from the Permian of Kansas and Colorado is given in Section 3.5. Other 

applications in geology are demonstrated with illustrative examples in 

Chapter 4. 



CHAPTER 2 


THEORY OF CANONICAL CORRELATION 


2.1 General Statement 

Suppose we have a sample from a p-dimensional space, then the 

purpose of canonical correlation analysis (Hotelling, 1936) is to find a 

linear function of the first p1-variates and a linear function of the 

last p2-variates {p1 + p2 = p}, so that these two linear functions have 

the highest possible correlation coefficient. In a practical situation, 

interrelationships between two sets of measurements made on the same 

samples would be analyzed through this technique. Under the assumption 

of normality, if the canonical correlation is zero, these two sets are 

completely independent, and it is useless to predict the dependent 

variates by means of the independent variates. If the canonical 

correlation is unity, this Means that the dependent variates would be 

predicted perfectly by means of the independent variates based on the 

particular linear functions. For the special case in which the number 

of dependent variates is equal to one, the problem is multiple 

regression. In this case, it is usual to make use of a regression 

model rather than a correlation model. 

The geometrical meaning of the canonical correlation can be 

stated as follows: In a p-dimensional space, a sample of p1 + p2 
variates determines one hyperplane of p1 and one of p2 dimensions, 

intersecting at the origin, and containing a swarm of points representing 

6 




7 

the two sets. Linear transformations are dcvelorerl for the first p1 
coordinate axes and also for the p2 coordinate axes such that these 

two hyperplanes are as parallel as possible in a new p-dimensional space. 

The cosine of the angle between these two hyperplanes is defined as 

the canonical correlation coefficient. 

The assumption is that the observed variates arc linear 

functions of the canonical variates. Furthermore we will assume that 
, 

the observed variates are normally distributed in order to make a 

statistical inference on the dependence between two sets and to derive 

the probability distribution of .the canonical correlation coefficients. 

2.2 Canonical Correlation and Variates 

Suppose (Zij' i = 1,2, ••. ,p; j = 1,2, ••• ,N, N>p) is a random 

sample of size tJ from a p-dimensional distribution and has covariance 

matrix R which is known to be a positive definite real symmetric 

matrix. Without loss of generality we may suppose that Zi has zero 

mean, i.e. E [Zi] = O. 

We partition z·into two subvectors of p1 and p2 components 

(p = + p2) respectively,P1 
z, z + 1P1z2 zp + 2• 1 (1)z, = , z2 = Z = [ ::] , where 
z zP1 p 

For convenience we shall assume pl ~ Pz· The covariance matrix is 

partitioned into matrices as follows: 
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R = (2) 

where R11 is the correlation matrix for z1, R22 for z
2

, and R = R1 

12 21 
is the correlation matrix between z1 and z2• The canonical variates 

U and V are defined as: 
I I 

U = A z1, V=B ~ (3) 

where 

A = B = (4) 

We require A and B to be such that U and V have unit variance, that 

is 
2 I I 

1 = E[lJ ] = E[A 
I 

z1 Z l A] = A R l l A (5) 

2 I I I 

l = E[V ] = E[B z2 z2 B]= B (6)R22 B 


E [ UV] = CO V [ UV 1 + ET U] E [ V] 


I 

= A R12 B (7) 
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Thus the problem is to find A and A to maximize (7) or 8UV]subject 

to (5) and (6). 
I 

Let ip = A R l 2 B - \ ~, \ A R l l A - 1 ) - 15 µ ( R - 1 ) ( 8 ) R2 2 B 

where A andµ are Lagrange multipliers. We differentiate~ with respect 

to the variables of A and B. The vectors of derivatives set eoual to 

zero are 

( 9) 

I 

( 10}R 12A - µR 22 R = 0 

l I 

Multiplication of (9) on the left by A and (10) on the -left by B gives 
I 

A Rl2 B - >..A 
I 

D\11 A = 0 ( 11) 

I I 

= ( 12) B Rl2 A uB R22 E 0 

I 

R1 0' I\Since A A= 1, B' 1, and (A' R12 B) 1 
- '' 12 Thus,f'\.R11 R22 B = 

we have 

).. = µ =A' R12 8 ( 13) 

Thus (9) and (10) can he written as 

- n (14) 

( 1 5) R21 A 

In one matrix equation this is 

I ->.. R11 


I 


L 
») - ), 

p
l\?2"21 

In order that there be a rn:.(; r~v 

the left must be singular. 
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-1left by R22 , gives 

A R12 B =A 2 
A (17)R11 


-1 

A = AB (18)R22 R21 

Substitution from (18) into (17) gives 

-1 2 (19)Rl2 R22 R21 A= A Rll A 

or 

(20) 

or 

( -1 -1 - A2 I} A= 0 ( 21 )R11 R12 R22 R21 
The solution involves finding latent roots A2 of the equation 

I 
-1 -1 2 I (22)Rll Rl2 R22 R21 - A I . = O 

-1 -1 ( )The matrix, R11 is p1xp1 in dimension. Thus AR12 R22 R21 , 

is the (p1xp ) diagonal matrix. 1

From (13) we see that A =A' R12 B is the correlation between U 

and V. Thus, the elements, Ai' of A were called the canonical roots or 

canonical correlation coeffi.cients by Hotelling (1936). Values of Ai 

in equation (3) are the eigenvectors associated with A~. Solving 
' 1 

for B from equation (15), we have B; for a particular A;, 

-1 (23)B; = R22 R21 A;/ Ai 

The Ai and Bi are nonnarized, so that we have 

A~ A. = 1 (24)
1 1 

Then Ui and Vi are nonnalized linear functions of z1 and z2, respectively, 

with maximum correlation. 
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\!c nO\'J consider finding the second linear functions of z and
1 

z2, respectively, such that each of these two linear functions are 

uncorrelated with the first linear functions. This procedure is 

continued. At the 	r-th step we have obtained linear combinations 

' 
1= 	A1' , = , •••• , Ur = A~ z1 , Vr = f3~ z2 11ith correspondu1 z1 v1 81 z2 

inq roots >.. 1 , .••••• , >..r. Let the (r + l)th linear functions of 

z1 and z2 be Ur+l = A~+l z1, and Vr+l = B~+l z2, respectively. The 

condition that Ur+l be uncorrelated with u (1~ i~ r) is
1 

(25) 


(26) 


Therefore, E[Ur+l Vil = A~+l R12 Bi =Ai A~+l R11 A; = 0 (27) 

If A; = 0, R12 B; = 0 and (27) holds. 

The condition that Vr+l be un~orrelated with V; is 

(28) 

By the same argument we have 

(29) 


We now maximize E [Ur+l Vr+ll , choosing A and B to satisfy 

(5), (6), (25), and (28) for i = 1, 2, ••••• , r. Let 

• r+l = A'R12 B - ~ A(A' Rll A - 1) - ~ ~(B' Rz2 B - 1) 

r 	 r 

+ 	 l v; A' R11 A; + l e1 B' R22 B; (30) 
i=l i=l 
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where A,µ, "l' ...... , "r' 91, ••....•. ,gr are Laqrange multipliers. 

We differentiate ~r+l with respect to the variables of A and G 

and set equal to zero. Thus, we have 
r 

R12 B - ARll A+ ~ "; Rll A; = 0 (31) 
1 
r 

R21 A - µR22 B + 4 gi R22 Bi = 0 (32) 
l 

Multiplication of (31) on the left by A~ (j = 1, 2, ••••. , r) and (32)
J 

on the left by B~ gives
J 

0 = v. A' A. = v. (33)
J j 

R11 J J 

0 = 9j Bj R22 Bj = 9j (34) 

Thus equations (31) and (32) are simply (16). Therefore any Ai 

from the p1 roots s~tisfies the conditions (5), (6), (25), and (28) 

for i = l, 2, ....• , r. 

Finally, the canonical transformation can be surrmarized into 

the following matrix equation: 

0 0 

= 
0 

I A 0 u 
A I 0 [ u• v•J (35)= E 

0 0 I v 
I I Iwhere U = A' z, , v = CV1 · V21 [Bl 82] cz, Z2] ' 

A = diag(Al' •••• '" ), and L are the population canonical roots.pl 1 
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Consider approximating Uby a multiple of V, say K V; then the 

mean square error of approximation is 
2 2

E [(u - K V) ] = 0 ~ - 2 K 0 u 0 vP + K 0 ~ 

(36) 

2 2where the o and a are variances of U and V, respectively, o is u \) \ 

simple correlation coefficient between U and V. This is minimized by 

taking K=ouplov· we· can consider KV as a linear prediction of U 

2{ ~). hfrom V; then o u 1 - p is t e mean square error of prediction. 

Detailed discussion of canonical correlation is given by 

Anderson (1958, p. 288-306) and Wilks (1963, p. 587-596). 

2.3 Tests of Significance for Canonical Roots 

The distribution of A-~ of equation (22) has been discussed by 

Hsu (1941), Bartlett (1947), Constantine and James (1958), Anderson 

( 1958 , p. 323-324), and Wilks ( 1963, p. 590-592). For the case p~p2 , 
the distribution of A~, when these roots are arranged in descending order 

of magnitude, is given by 

P1 
!2P1 IT 

r [~(N-1)]
71' i=l 

P1 
TI [(>.~)1>(P2-P1-l) (1- ~)1>(N-p2-P1-2 l] d(A~ - A~)
i=l 

i<j (37) 

This distribution holds when z1 and z2 are independently 

di~tributed and z1 has a multivariate normal distribution, whereas 



14 

z2 has any distribution. 

A criterion whith is useful in detecting the simultaneous departure 

of severa 1 roots Ai2 from zero was suggested by Bartlett ( 1938, 1941). 

Bartlett's statistic 

x2 = - [ N - 12 (pl + p2 + 1~ 1 ogJI ( 38) 
P1 2

where A:TI (1-Ai), follows approximately a chi-square distribution 
i =1 +r · 

with {p1 - r) (p2 - r) degrees of freedom. The assumption is made that 

z1 and z2 follow a multivariate normal distribution with zero means. 

A slight improvement which was suggested by Lawley (1959) for 

the test of significance of residual canonical roots is that the multi

plying factor N - ~(p + p2 + 1) should be replaced by taking the factor1 
as 


r 2 

N - r - !~(pl t P2 + l) + l (·1 /'>. . ) (39)

i=l , 
If Ai s are equal to 1, Bartlett's criterion and Lawley's criterion are 

identical. If the sample size N is large, these two criteria are 

approximately equal. 

If canonical roots are much less than 1.000, then Lawley's 

criterion will yield higher chi-square value than that of Bartlett's 

criterion. This means that type I error will be high if Bartlett's 

criterion is adopted, on the other hand, type II error must be high 

' if Lawley's criterion is used. As will be illustrated later, the use 

of statistical signif~cant tests presents a problem of reconciling 

geological significance·and statistical significance. In the present 

study, Bartlett's criterion is used for reference but not as the sole 


basis for making critical decisions. 




CHAPTER 3 

TWO-DIMENSIONAL CANONICAL TREND A~ALYSIS 

3.1 General Statement 

Investigations may be perfonned to analyze a set of geological 

variates measured on a stratigraphic unit or a rock body spreading over 

a large or small area. What geologists would like to do is to 

filter the error variance from the systematic areal variance in order 

to evaluate the trend of a certain variate. The technique (trend 

analysis) which has been frequently used in geology is basically the 

fitting of a polynomial surface to the observed data of a single 

variate, by the principle of least squares. In geology, where most 

problems are beset with a highly multiple determination of events, convent

ional trend analysis is essentially a univariate technique which is 

not adequate to handle the inherently multivariate data. 

The concept of a composite ~nd member in facies analysis was 

introduced by Krumbein (1955). Three predetermined end members were 

used to construct a facies triangle. Selection of a particular point 

within this facies triangl~ was considered as an optimum combination 

of end members. Contour lines around this point were used to measure 

the deviation of facies from this optimum facies. The deviation was 

called the distance function. This technique, as Forgotson (1960) 

pointed out, does not distinguish end members or give any information 

on the absolute values of end members. It does not indicate the nature. 

15 
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of the change in composition·from the optimum facies. 

An entropy function derived from information theory was applied 

in multicomponent system mapping (Pelto, 1954) to express the degree of 

intenriixing of the end members and to define facies quantitatively with 

one set of contours. This technique does not distinquish between end 

members and show the change of each individual variate. 

The D-function (Pelto, 1954) divides a system into classes based 

on the difference in amounts of components. It provides information 

on the relative proportion of a specific end member within its own class. 

It does not distinguish between end members and provide infonnation on 

the absolute value of components. 

One elegant approach to the problem of dealinq with spatially 

distributed multivariate data is to process the data first through 

principal component analysis, and then use trend analysis to map each 

_ 	 individual principal component. It provides information on the areal 

distribution of the principal component which is composed of a set of 

geological variates with different weights. There are two ways to 

approach this problem. 

(1) An R-mode factor or principal component analysis is first 

performed on the well (and/or outcrop) data, and then factors or 

principal components are expressed in terms of observed variates by 

using the principle of multivariate regression. After calculating 

the factors or principal components for each well, trend surfaces may 

be fitted to each factor or principal component over all wells. 

The result is a factor or principal component map. When a factor model 

is used, the factor map implies lithologic associations resulting from 
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underlying deposition environmental factors. When based on the concept 

of principal component analysis, the first principal comronent map 

indicates the spatial variation of the first principal component, \'thich 

is the component which explains the most variance of a set of geological 

variates. In the both models,the factor or princiral component may or 

may not have a clear geological interpretation. 

(2) A factor-vector map i~ obtained from a Q-mode factor analysis 

as suggested by Imbrie (1963) and Krumbein and Imbrie (1963). Reference 

wells are chosen for each factor-vector map and all other wells are 

expressed in terms of s imi la ri ty to the reference we 11 for that 

particular map. The geological meaning of each map can only be obtained 

by looking at the particular lithologic association of each reference 

\'1e 11 • The concept of a reference we 11 is ana 1oguous to the concept of 

an optimum facies in the distance function technique (Krumbein, 1955). 

- This kind of factor-vector map expresses the intergradation between 

the reference wells in which re~pect it is similar to the concept of an 

entropy function map (Pelto, 1954). 

Another technique will be discussed here, namely the construction 

of a trend surface for a set of multivariate data through a canonical 

transformation. The basic difference between this canonical trend 

analysis and the method of least squares is that in canonical trend 

analysis the covariance or correlation between geological variates 

and geographic coordinates is maximized, while in conventional trend 

analysis the variance is maximized (i.e. the error variance is 

minimized). The canonical trend. surface is a polynomial surface which 
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has a maximum correlation with a set of geological variates combined 

together as a linear function. The coefficient of each variate indicates 

the deqree of contribution of the particular variate to the trend 

surface, because the sum of squares of each coefficient is equal to 1, 

the total variance of the linear function. 

3.2 Computation Procedures 

The geographic co.ordinates, X and Y, and their various powers 

and cross-products constitute one set of variates, and the geological 

variates, Zi, constitute the second set. What the canonical correlation 

analysis can do is to find one linear function for the (X,Y) coordinates, 

and one for Zi such that these two linear functions have a maximum 

correlation. The trend surface evaluated by this principle is 

considered to be a most predictable surface for the particular linear 

function of a set of geological variates. An additional assumption is 

that X and Y are uncorrelated. This means that samples are taken by 

using a systematic or stratified sampling method from a two-dimensional 

area but not from an one-dimensional line. The calculation procedures 

are fully explained below: 

STEP 1. Transfonnation of geological variates if necessary. 

When the distribution of raw data is highly skewed or if the 

error variance is not stable, transfonnations may be carried out in 

order to symmetrize the distribution or stabilize the variance, or both. 

Bartlett (1947b} has summarized those transformations appropriate to a 

particular situation, and also suggested a general transformation 

as fol lows: 
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g(m) =f_c_ dm ( l) 

JfW 
where f(m) is a function hetween variance, 2 o , and mean, m, of a 

particular variate, c is a constant. 

There are three alternatives allowed in the computer nrogram 

prepared for the rresent study, (1) arc sine square root transformation; 

(2) logarithm transformation; and (3) no transformation. 

STEP 2. Standardization of geological variates. 

A correlation coefficient is a dimensionless value, therefore 

a trend surface equation derived from a correlation matrix is also 

scale independent. In order to have a scale dependent trend surface 

equation, the covari·ance matrix for the (X, Y) coordinates and 

geological variates zi' should be used. On the other hand, geological 

variates may be measured in noncomparable units. Thus, we should 

deal with the correlation matrix rather than the covariance matrix. 

In order to satisfy both of the two requirements, the geological 

variates are standardized according to equation (2), and then the 

covariance matrix is computed for z1 and the (X, Y) coordinates. 

The equation for standardiz~tion of the geological variates 

i s as fo11 ows : 
-z.. - z.

lJ J (2)z .. = lJ M 
J 

wheres 2j_ =sample variance of variate zj, ij =sample mean of variate zj, 

zij is the i-th observation on the j-th variate. 
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STEP 3. 	 Generation of high power and cross-product terms of the 


(X, Y) coordinates. 


The high 	po\'1cr and cross-product terms· of the (X, Y) coordinates 

are generated within the computer based on the input raw data (X,Y) 


as f o 11 O\'IS: 


Cumulative 

Polynomial Term 


2 x y 


5 x2 y2
xv 

9 x3 x2v xv 2 y3 


14 x4 . x3v x2y2 XY 3 y4 


20 	 x5 x4y x3y2 x2v3 4 y5xv
 

27 x6 x5v x4v2 x3v3 x2y4 5 y6
xv

The polynomial tenns of each observation will follow the geological 

variates in an array 0(1), where I= 1, 2, .•.• ,pl+ p2, where p =the
1 

number of geological variates, = the number of polynomial tenns.r2 
The process of generation is listed in figure 1. 

STEP 4. 	 Computation of covariance matrix. 

The covariance between i-th and j-th variates is calculated by 

standard formula which is defined as 
N N 


2 
 (zik zjkl - k~l 2ik k~l zjks .. = (3)lJ · . N(N - 1) 

If i = J,. s2 .. is the variance of i-th variate, which is defined as11 
N 2 N 


N l z.k - ( L zik) 
2 


2 k=l 1 k=ls .. = 
11 

N(N - 1) {4) 

The covariance matrix is partitioned into four parts as 
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START 

L:: P, 

A (1, 1) :: 0. 0 

I : =1 

J : = 1 

A( J, I+ 1):: A(J, I)* X 

L::L+l 


D ( L )=A(J, 1+1) 


J :: J + 1 

L:: L + 1 
A { I+ 1, I + 1):: A ( I I I )* y 
D ( L) :: A ( I + 1, I+ 1 ) 

I : : I+ 1 

FIGURE 1 - Flow chart for generating all terms up to a sextic 
polynomial based on geographic coordinates X and Y. 
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R = ( 5) 


where the order of R11 is ~ess than that of R22 , and R22 areR11 
covariance matrices of geological variates and polynomial terms, 

respectively if p1~ p2• The contents of R11 and R22 should he 

exchanged if r1 ~ p2. This covariance matrix is a symmetrical matrix: 

each element is stored into an one-dimensional array at location L, 

where L = j(j - l)/2+i, i=l, 2, •.• , p1 + 27 for a sextic polynomial, 

j ~ i. 

STEP 5. Calculation of canonical roots and variates. 

The canonical roots A 1 s and their associated canonical variates 

(A;) for variates in matrix R11 , are respectively the eigenvalues and 

eigenvectors of the matrix equation: 

A = 0 (6) 


The matrix on the left side of (6) is nonsymmetric (p1 x p1). 

A Jacobi-like method (Eberlein, 1962) was used to solve for the p1 
roots, A2•s. The eigenvectors are Ai each of which is the canonical 

variate for one set of variates, either the canonical variate for the 

geological variates or for the (X, Y) coordinates. The A; are 

nonnalized, i.e. A~ A. = 1. 
1 1 

STEP 6. Determination of degree of polynomial surface. 

We begin with a linear polynomial and evaluate the degree 

through canonical correlation analysis. When the canonical root is 
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greater than 0.950 or the differen~e between two successive roots is 

less than 0.05 (the initial canonical root is set to zero), then the 

canonical root corresponding to the deqree of the polynomial is used 

as the canonical trend surface. If not, the degree of the polynomial 

is increased 1, and steps·s and 6 are repeated until the iterative 

process reaches a suitable degree. 

It should be kept in mind that the sample size should always 

be greater than the sum of the number of the geological variates and the 

number of polynomial terms. Surpose we have u samrle of size 30 \·lith 

4 variates, the highest order o~ polynomial that may be fitted to this 

data is 5, because a sextic polynomial must have 27 terms. In this 

example, for a sextic, the sum (= 31) of the number of _variates (= 4) 

and number of polynomial tenns ( = 27) is greater than the sample size. 

STEP 7. Calculation of the canonical variate of the second set of 

Variates. 

The canonical variate of the second set is computed as follows: 

(7) 

The B• is nonnalized, i.e. B! B. =1. 
1 l l 

. STEP 8. Calculation of residuals. 

Consider approximating U (a linear function of geological 

variates) by a multiple of V (a linear function of the X-, Y-coordinates) 

plus a constant, say c +kV, then k and care defined as follows: 

u = c + k v (8) 
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N N N 

N l (V. U.) - l v. l u. 


1 11 l i =1i =l i=1k = N N (9)
v.) 2N l v~

1 
- ( I 

1i=l i=l 

N N N 
v~ - (V. U.) .l ll l l 1

l =l i~l u. 
i =l 

c = N N (10) 

N l v~ - ( l v. )2 
i=l l i=l l 

The residual of canonical trend surface for the j-th sample 

and i-th root is defined as: 

Residual.= U. - (k v. + c) = A~ Z. - (kV.+ c) (ll)
J J J J J J 

where Zj is column matrix for standardized geological variates, thus, 

A~ Zj is called observed value, whereas C + kVj is called calculated value 

for Uj. The U and V should be exchanged, i.e. Ai is replaced by Bi if 

U is a linear function of the (X, Y) coordinates while V is a linear 

function of geological variates. 

STEP 9. Contouring of canonical trend surface. 

In the canonical trend surface map, the X-axis is the abscisa, 

whereas the Y-axis is the ordinate. In the computer printout the length 

along X-axis is greater than or equal to that of Y-axis. The length of 

X-axis is divided into 50 units, while the length of Y-axis will be 

assigned to a certain units proportional to their relative lengths. 

Eac.h point (having integer coordinates) of the new coordinate system 

is substituted into the polynomial equation V =f(X, Y), so we have a 

set of Vij' where i =1, 2, ••• , 50, j ~ i. The values, Vij' 
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are scaled according to equation c + k V .. 
l J. 

Suppose U is a linear function of geological variates, then the 

calculated value for U is k V + c as mentioned above. The difference 

between Umax and Umin , 6U, is divided into ten parts, and the values 

so defined are used for contours •. The purpose of usin~ 6U rather than 

t>.V = Vmax - Vmin is to avoid extreme values introduced from high order 

polynomial. 

Each V.. is then replaced by one of fol lov!inry ten inte<Jers in 
lJ 

order to indicate its relative value: O(low), l, 2, 3, 4, 5, 6, 7, 8, 

9 (high). Finally a map composed of these integers is printed by the 

computer. The scale is printed in feet per unit in the (X,Y) coordinates. 

STEP 10. Residual plot. 

Residuals of all observations are calculated according to 

equation (11). The difference between the maximum and minimum values 

is divided into ten rarts, each residual is represented by one of the 

following integers according to its value: 0 (low),1, 2, 3, 4, 5, 6, 7, 

8, 9 (high). These integer numbers are plotted as a residua1 map 

according to their relative geographic coordinates. 

3.3 Canonical Trend Surface of Hypothetical Data 

An illustration of some of the physical meaning of the canonical 

trend which results from the computations described in the previous 

sections can be given by making use of hypothetical examples. One 

hundred and fifty sampling points were spread over a rectangular area, 

the points being located by a. stratified sampling method (Cochran, 
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1963, p. 87-88). Geographic coordinates of each samplinq noint within 

a grid were defined by a pair of random numbers. The sampling noints, 

defined by a set of 150 pairs of random numbers from a table (Krumbein 

and Graybill , 1965, p. 445-450), were used for a11 the exaMp l es 

discussed later. Values for the hypothetical variates at the samrlinq 

points were computed from various equations incorporating an independent, 

random, norrna 11 y distributed, error term with zero mean and any 

desired variance. 

3.31 Experiment l: The canonical trend surface achieves a parsimonious 

surrmarization of a set of trend surface: showinq distributions of 

variates from a single population. 

(a) 	 Let two hypothetical variates be 

= 0.707 X + 0.707 Y + E1 ( 1 2) z1 


z~ = -0.101 x - n.101 v + E? ( l 3) 

~ 	 ~ 

where E1 and E2 are independent variates with normal distrH.ution 

N(O,l). The canonical trend was 

U = -0.652 z1 + 0.753 z2 

v = -0.693 x - 0.721 y ( 1 

The canonical root v1as 0.9B34. Equation (lS) isthe polynomial of 

canonical trenti surface. E~uation (14) renresents the linear 

combination of variates z1 and Z~:·· The absolute values, -O.fiS2 and 
2 ')

0.758 (-0.652 + 0.758~ = 1.000), indicate the contributions to 

trend. The variates, z1 and z2 have approximately enual inr!s 

are in opposite signs, so that these tv!Ci va ria tcs vary <J. rox r 11'1 

i;: orrosite directions. Equations (14) and (15) shov: that varia 
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z1 increases toward north-east, while variate z2 increases toward south

west. This interpretation aqrees with the equations (12) and (13). 

(b) 	 Let two hypothetical va·riates be 

= 0.707 X+ 0.707 Y+ ( 16) z1 E1 

z2 =-X + E2 ( 17) 


where E1 and 	 E2 were N(O,l). The canonical trend was 

U = -0.549 z1 + 0.836 z2 ( 18) 

v = -0.941 x - 0.339 v ( 19) 

The canonical root was 0.9837. Equation (19) indicates that the 

canonical trend (NNW-SSE) is intermediate between the trends of the two 

variates, but slightly closer to z2• Because the variance in X was 

larger than that in V (the area studied was rectangular, with the 

larger dimension in the E-W direction), the variance of z2 was larger 

than that of z1• After standardization, therefore, the contribution 

of the variance of the variate E2 to the variance of z2 was proportionally 

less than the contribution of E1 to z1• Thus the weighting of z2 is 

greater than that of z1 in the equation (18). 

The second canonical root is equal to 0.8509, its associated 

canonical variates are 

U = 0.724 z1 + 0.690 z2 (20) 

v = -0.163 x + 0.987 y (21) 

The combination of equation (20) which is orthogonal to 

equation (18) and contradictory to that of equations (16), (17) and 

(18) shows that both the variates z1 and z2 increase toward northwest. 

This root should be rejected even though it is statistically 
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significant at 	1 percent level. 

3.32 Experiment 2: The coefficients of geological variates are a 

function of the strength of the trend or the maqnitude of the random 

variance error. 

(a) 	 Let two hypothetical variates be 

= 0.707 X+ 0.707 Y + El (22)z1 

z2 = -X + E2 (23) 

where E1 was N(O,l), E2 was N(0,4). The canonical trend was 

U = 0.996 z -	 0.093 z2 (24)1 

v = 0.736 x + 0.677 y (25) 

The canonical root is 0.9666. It is clear that z1 is so 

strongly weighted that z2 has a negligible effect on the trend. 

(b) 	 Let two hypothetical variates be 

z = 0.707 X + 0.707 Y + E1 (26)
1 

(27)Z2 = E2 

where E1 was 	 N(0,4), E2 was N(O,l). The canonical trend was 

U = 0.986 z1 -	 0.196 z2 (28) 

V = 0.954 X - 0.284 Y - 0.014 x2 + 0.025 XY + 0.088 v2 (29 ) 

The canonical root is equal to 0.6967. It is obvious that variate 

z2 should contribute nothing to the trend and in fact contribute very 

little. Figure 2 shows the variation of z1 which approximately agrees 

with equation (26). 

3.33 Experiment 3: If the information (areal variations of the variates) 

cannot be obtained from the first canonical root alone, the second 

canonical root will supply part of the remaining infonnation. 
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Let five constructed variates be 

z1 = X+ E1 (30) 

z2 	 = y + E2 (31) 

= -X (32)z3 + E3 


Z4 = - y + E4 (33) 


z, :::' r.r. ( 311)

:.> :.> 

where Ei {i = 1, 2, 3, 4, 5) where N(O,l). The first canonical 

root was 0.9887, its associated canonical variates were 

U = 0.622 z1 - 0.163 z2 - 0.763 z3 + 0.048 z4 + 0.034 z5 (35) 

v =0.974 x - 0.228 y (36) 

The second canonical root is 0.9701, its associated canonical 

variates were 

U = -0.098 z1 + 0.527 z2 - 0.272 z3 - 0.799 z4 - 0.005 z5(37) 

v = 0.101 x + 0.995 y (38) 

The first canonical root explains the variations of variates z1 and 

z3 whereas the second canonical root exrlains the variations of 

variates z2 and z4• The variate z5 does not contribute to the trend. 

3.34 Experiment 4: The univariate case of the canonical trend surface 

is also· a most predictable surface for a single geological variate. 

{a) Let the constructed variate be 

= 0.707 X + 0.707 Y + E1 (39)z1 

where E1 was N(O,l). The canonical root for the linear polynomials 

is 0.9649. The linear trend was accepted as follows: 

v =0.709 x + 0.705 y 	 (40-) 
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(b) 	 Let the constructed variate be 

= 0.13 X - 0.13 Y + 0.60 x - 0~50 XY + O.GO y2 t (41)z1 
2 E1 

where E1 was N(O,l). The canonical trend surface for variate z1 is 

that 

V = 0.098 X + 0.092 Y + 0.611 x2 - 0.513 XY + 0.587 Y2 (42) 

The canonical root is equal to 0.9996. 

(c) 	 Let the constructed variate be 

z1 =e X+Y + E1 (43) 

where E was 	 N(O,l). The canonical trend surface for variate z1 is
1 

that 
2 2V = 0.6613 X + 0.6246 Y - 0.1812 x - 0.3195 XY - 0.1754Y

3 2 2 3 
+ 	0.0220 x + o.os21 x v + 0.0555 xv + 0.0224 v 

4 3 2 2 3 - 0.0012 x - 0.0035 x v - o.ooso x v - 0.0042 xv 
4 4 3 2 2 3 - 0.0013 v	 + 0.0001 x v + 0.0001 x v + 0.0002 x v 

+ 0.0001 XY4 	 (44) . 
The canonical root is equal to 0.9700. The expression for V was a 

quintic polynomial. Figure 3 illustrates this use of a canonical trend 

to approximate an'exponential variation. 

3.4 	 Functions of Canonical Trend Surface 

Stratigraphers or petrologists usually handle a great numher of 

maps, and 	 like to sort them into groups showing analogous features, and 

other groups 	 showing quite 'different features. Canonical trend analysis 

achieves a parsimonious summarization of a set of maps showing 

distributions of variates from a single population. It is thus a useful 

technique for screening maps, at least for exploratory studies. 
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The fundamental principle of canonical trend analysis is to 

maximize the covariance between a set of geolo~ical variates and the 

(X, Y) coordinates. This implies that the canonical trend surface is 

a most predictable surface to the particular set of variates. It 

weighs each variate according to its error variance. No other trend 

surface possesses these characters. 

Canonical trend surface will show the nature of variation of 

any number or any kind of geological variates if they can be amalqamated 

in a linear functioa. We can interpret the variations of each variate 

even though the geological meaning of the particular combination is 

not yet known. This type of trend surface does not show the absolute 

values at each contour. On the other hand it does show the general 

trends of the variates at least for the first approximation. The 

coefficients of a particular set of variates would not drastically 

change from low to high order polynomials. 

Theoretically, we may map as ~any variates as we wish at a 

time. It is generally true that if many variates are analyzed 

simultaneously,the interpretation of the result will not be as clear as 

the interpretation for fewer variates. There is no way to decide the 

appropriate number of varfates in advance. Based on the writer's 

experience of practical problems, a reasonable number is four or fewer 

but not more than five. It is not necessary that the geological 

variates be uncorrelated variates. nut, if they are highly correlated, 

the correlation matrix will be nearly singular, and matrix inversion 

may yield a meaningless solution as a result of the limited number of 
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diqits in the computer. With a sufficiently largecomrutcr, this is not 

always a serious problem. However, we should kcer this rro!,lcm in our 

mind when we arc dcalinq with highly intercorrelated variates. If a 

number of variates is available for canonical trend analysis, the 

type of variates which should be chosen for the analysis is derendent 

on what geologically meaningful hypothesis we expect to establish. 

Poor selection of variates would produce geologically ambiguous and 

trivial result. 

Real linear combinations other than the first one cannot be 

obtained unless the equations (5), (6), (25), and (28) of Chanter 2 

are satisfied. This means that variations obtained from canonical 

correlation analysis exist in nature if they are orthogonal to the 

previous linear combinations, otherwise, the variations obtained are 

mere artefacts brought in by mathematical operations. We should 

realize, however, that the coefficients in the linear function which give 

maximum correlation may not be suitable as a solution to a practical 

problem. The linear combination associated with the largest canonical 

root is most likely to have some physical interpretations. If the 

subsequent combinations associated with smaller canonical roots give 

contradictory combinations, these subsequent canonical roots should be 

rejected without hesitation, even though these canonital roots are 

statistically significant at a high probability level. On the other 

hand it can be ·demonstrated by using geological example that even where 

the largest canonical root is not significant statistically, the 

information resulting from the canonical root may be correct. This 
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illustrates a controversial problem regardinq the difference between 


geological and statistical siqnificance. 


Coefficients of canonical variates will yield ambiquous signs 

in the linear function, if the sample size is insufficient, if the order 

of polynomial is too high, if the number of variates is too large, 

and if geological variates and/or (X, Y) coordinates are highly 

correlated. The investigator should be extremely careful that results 

have a real geological hase. Does this destroy the value of the 

technique? The answer is not at all. In dealing with multivariate 

statistical analysis such as multiple reqression analysis, nrincipa1 

component analysis, and so on, results whic~1 cannot be interpreted may 

be obtained in attemptinq to solve practical problems. This is a 

general difficulty in applying multivariate techniques in qeoloqy and 

results more from the real comnlexity of nature than from problems caused 

by the mathematical analysis. 

After working a number of practical problems, the writer is 

convinced that the canonical trend analysis is an adequate technique to 

evaluate a trend common to rt set of variates in prP.liminarv nn:: cnnccnt

formation stages of research as nart of data-reduction schc~rne. 

3.5 Pennian System in Hestern Kansas and Eastern Colorado 

3.51 Geological Srttinq: The tq1per part of the Permian rock ir. 

western Kansas and eastern Colorado, which is above the Stone CcrrA~ 

dolomite, is comoosed of Guadaupian series and Uriner Le(Hii:ff·:J·i<1 

(Niprewalla) series. The rock sec:uence consists o·= a1ter~:r.L,,,...'i 

sandstones and shale with thin dolomites and an;1recir~1bic c1F;Q~ t(; c 
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evaporites. The stratigraphic SCfluence studied is equivalent to the 

upper part of intervals n and C-0 (Mudge, 1967) in the central 

Midcontinent region. 

A total of 31 wells were selected from this area and analyzed 

by W. T. Fox (see Krumbein, 1962) by us i nri convent iona 1 strati qraph i c 

maps. Integration of strati0raphic mars shov1s that fo11r components of 

this System, namely sandstone, shale, carbonate, and evanorites 

thicken toward a center, i.e. the area shows the characteristics of 

a sedimentary basin. 

The Permian basin ~as a broad, shallow, fairly stable restricted 

marine basin. The basin was encircled on the west by the Front Range 

and Wet Mountains from which feldspathic and quartz grains were mainly 

derived. On the north and east ·the Permian basin was probably bounded 

by low-lying land areas. There was a restricted connection with open 

sea on the south of the basin. 

The petrography of the Pennian rocks (Swineford, 1955) and the 

stratigraphic·correlations between western Kansas and southeastern 

Colorado (Maher, 1953) are listed below: 

Western Kansas Southeastern Colorado 

Big Basin (Taloga) fonnation (O'Connor, 1963) 

Red (at the top) and greenish-gray (at the 

base) montmorillonitic shale, silty shale, 

siltstones and some very fine-grained 

sandstone 
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Day Creek dolomite • • Urrer "crinkly" l imcstone 

Pale-gray to pink fine-grained dolomite bed 

(2 to 3 feet) 

Whitehorse sandstone 

Reddish-brown, fi ne-qra i ned, we 11-sortcd 

sandstone, siltstone, and shale, and 

minor quantities of white to buff 

sandstone and dolomite 

Dog Creek shale . Lower 11 cri nk ly" 1imes tone 

Dark-red silty shale, brownish-rec bed 

-and greenish-gray siltstone, and 


very fine-grained sandstone, dolomite, 


dolomitic and gypsiferous sandstone 


and gypsum 


Blaine fonnation 

Anhydrite or anhydritic gypsum, 

thin dolomite, and brownish red shale 

Flowerpot shale 

Reddish-brown gypsiferous shale with 

a few thin beds of sandstone and 

siltstone 

Cedar Hills sandstone Lyons sandstone 

Brownish-red, massive very fine-grained Fine-grained, quartz, 
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sandstones and siltstone separated by suhanqular, littoroal 
, 

beds of a rg il 1aceous silts tone and s i1 ty derosit (Thompson, 19~9) 

shale 

Salt Plain fonnation 

Reddish-brown flakey siltstones, thin 

sandy siltstones, and very fine-grained 

sandstones 

Harper formation 

Brownish-red sandy Siltstone and shale 

Stone Corral dolomite 

Dense to cellular, and grayish buff in color, containing many vugs 

partly or completely filled with coarsely crystalline calcite or 

gypsum, oolitic at the base 

3.52 Stratigraphic factor map analysis: The 31 wells with six comronents, 

namely: total thickness, nonelastic thickness and the thickness of the 

four components mentioned above, were subjected to Q-mode factor analysis. 

Three stratigraphic factor maps were constructed (Imbrie, 1963; Krumbein 

and Imbrie, 1963), one for each of the first three factors, respectively. 

One reference well which has an identity factor loading in a particular 

factor is chosen for each map. The geological implications of the Q

mode analysis can be clarified by examination of the actual lithologic 

association of each reference we11. Refe·rence we11 R1 of the first 

factor-vector map (fig. 4A) has maximum evaporite thickness and the 

minimum carbonate thickness of any well. Reference well R2 of the second 
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factor-vector map (fig. 4f1) has minimum thickness, shale content, 

and evaporite content of any well. The reference well of the third 

fac~or-vector map has minimum sandstone and carbonate content, and 

contains considerable shale, and s~me evaporite, Imbrie (1963) and 

Krumbein and Graybill (1965, p. 402-406) suqgested that the first factor 

map represents an evaporite basin with rapid subsidence and clay influx, 

the second factor map indicates the distribution of shelf sedimentation, 

and the third factor map represents the distribution of an off-shore 

sedimentation of fine detritals adjacent to the evaporite basin. 

The fundamental approach of the stratigraphic factor mar 

analysis is to visualize the geologic implications of the distribution 

of a hypothetical variate through interpretations of the lithologic 

associations for a particular map. 

3.53 Canonical trend surface analysis: The hypothesis we expect to 

establish is that the area shows the characteristics of a. sedimentary 

basin. A sedimentary basin, in general, should show that some of 

sediments thicken toward the center, and the relative amount of shale 

and evaporite should be predominate over that of sand and carbonate, 

respectively, in the central part of the ba~in. 

A sample of size 30 (excluding one well which did not contain 

any evaporite) was subjected to canonical trend analysis on two sets 

of different geological variates. The variates of the first set are 

thickness of sand, shale, carbonates, and evaporites, while the 

variates of the second set are total thickness, sand-shale ratio, and 

carbonate-evaporite ratio. The order of polynomial fitted to these two 
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sets of variates cannot be qreatcr thJn five. The rav1 d,1ta of this 

problem were published hy l(rumhcin (19G2, tllblc VI). 

Principal components were obtained from il covarL1ncc matrix 

of the thickness of sand, shale, carbonate, and P.varorit(~S. The first 

principal component contributes 78.B rcrcent of totul v;iriancc, thr. 

second one contributes 20.6 percent, and the lilst one contributes 

0.6 percent. The rotated, normalized eiqenvectors are listed in 

table 1. 

TABLE l 

ROTATED, NORMALIZED EIGENVECTORS OF SEDIMENT THICKNESS OF PERMIAN SYSTEM 


Variate 

Sand thickness 

Carbonate thickness 

Shale thickness 

Evaporite thickness 

1 2 3 


0.03 0.99 0. 12 

0.06 -0. 12 -0.99 

-0.99 -0 .10 -0.10 

-0.97 0.06 0.23 

The first principal component indicates a shale-evaporite 

association which is equivalent to the first factor obtained by Imbrie 

(1963) and also by Krumbein and Imbrie (1963). The second principal 

component explains the variance contributed by the thickness of sand, 

whereas the last principal component explains the variance contributed 

by the thickness of carbonates. These three principal components are 

mathematically orthogonal, but transitions between them are possible 
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from the geological roint of view. 

The result from the principal component analysis indicates 

that the carbonates .behave quite differently from the evarorites, 

and the sand behaves in an orrosite way from the shale and evaporites. 

Thus, the elastic ratio (= (sand+ shale)/(carbonates + evarorites)) 

should not be included in the analysis, because its geoloqical meaning 

is ambiguous. 

The first set of four variates, namely thickness of sand, shale, 

carbonates and evaporites were treated through canonical trend surface 

analysis. After three iterative r~oc~sses, the highest canonical root 

that could be reached was 0.9464 which indicates that a cubic polynomial 

is the most predictable response surface {table 2). 

TABLE 2 


RECORD OF THE SUCCESSIVE EVALUATION OF THE ORDER OF POLYNOMIAL 


FOR FOUR VARIATES 


Canonical root 

0.7804 

0.8810 

o. 9464 

Order of polynomial 

Linear 

Quadratic 

Cubic 

The canonical variate for the geological variates was 

U = 0.516 (sand)+ 0.408 (shale) - 0.104 (carbonate)+ 0.746 

(evaporite) (45) 
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The canonical variate for the ~olynomial WAS 

2 2V = - 0.407 X - 0.914 Y + 0.002 x - 0.001 XY - 0.001 v (4C) 

The canonical trend, equation (45), mainly indicates the varia

tions in thickness of evaroritc, sand and shale. 

The second canonical root of the third order canonical trend 

surface is equal to 0.8676. The associated canonical variates are 

as fa 11 mvs: 

U = 0.757 (sand) - 0.111 (shale)+ 0.617 (carbonate) - 0.185 

(evaporite) ( 47) 

and 
2 2v = o.183 x - o.983 v - 0.001 x + 0.001 xv - 0.002 v (48) 

The canonical trend, ~igure SA, and equation (48), mainly 

summarizes the variations in the thickness of sand and carbonates. 

This figure shows that the sand and carbonate have a maximum thickness 

located around the southeast of Colorado. 

A quadratic polynomial was fitted to these four variates. The 

canonical variates were 

U = 0.575 (sand)+ 0.425 (shale)+ 0.154 (carbonate)+ 0.682 

(evaporite) ( ti9) 

2 2 v = o.357 x - o.934 v - 0.001 x - 0.001 v (50) 

Judging from figure 58 and equation (50), it is concluded that 

sand, shale, carbonate, and evapprites thicken toward the southwest 

corner of Kansas. It is interesting to compare this canonical trend 

surface with net thickness maps of the same data. The general trend 

of the net thickness maps of sand (tig. 6A), shale (;ig. 6B) carbonate 

(fig. 6C), and evaporite (;ig. 60) display patterns analoguous to that 
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shO\'m by the canonical trend surface. Fi<Jure SA disrlays a trend rattern 

very similar to the thickness of the carbonate and sand, v1hereas -Fi

gure 58 displays a trend pattern almost identical with the thick11'2ss qf 

the evaporites and shale. Figure 5D fails to show the maximum thickness 

of the sand in the northwest part of Colorado, but it indicates that the 

sand thickens toward the southwest of Kansas and thins toward the north

east of Kansas and the southwest of Colorado, respectively. The area 

having maximum thickness of carbonate and the thinning directions of 

the carbonates were also shown by -Figure 58. 

Smaller canonical roots show different linear combinations of 

the four variates. These linear combinations are contradictory to the 

first two. It is generally true that the first or.first two canonical 

roots have a higher probability of aprroximating real trends, while 

the interpretation of the smaller canonical roots may be obscured by 

local variation ("noise"). Thus, the other combinations are not 

discussed. 

The second set of the three variates, namely, total thickness, 

sand/shale ratio, and carbonate/evaporite ratio were analyzed in the 

same way. The record of evaluation of the trend surface is listed in 

table 3. 



TARLE 3 

RECORD OF THE SUCCESSIVE EVALUATIOtl OF THE ORDER OF POL nmmAL FOR 

THREE V/\RIATES 

Canonical root 

0.7829 

o. 9189 

0.9612 

Order of Polynomial 

Linear 

·Quadratic 

Cuhic 

The maximum canonical root obtained is e~ual to 0.9612 

indicating th~t a cubic oolynomial is an adequate fittinq surface. 

The canonical variate for the geological variate is that 

U = 0.803 (total thickness) - 0.254 (sand/shale) - 0.539 

(carbonate/evaporite) (51) 

The canonical variate for the polynomial is that 

V = - 0.335 X + 0.843 Y + 0.233 x2 - 0.088 XY + 0.335 Y2 

3 2 2 3- 0.026 x + o.01a x v + 0.009 xv + 0.041 v (52) 

The negative sign for the ratio indicates that the high values 

in the map should be the low value for the ratios. Figure 7A shows 

that the total thickness increases toward the most westsouthern part 

of Kansas, whereas the sand/shale ratio and carbonate/evaporite ratio 

decrease toward the same area. The isopach map and the maps of two 

ratios (Krumbein, 1962) were also plotted for comparison (figs. 78, 

7C, and 70). It is also worthwhile to note how the canonical trend 

fits closely to the total thickness and slightly to the carbonate/ 

evaporite and sand/shale ratios. 
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The smaller canonical roots also yield contradictory combinations 

to the first one. They are discarded here. 

The question is v1hcther is it possihlc to detect a gross trend 

representinq variations of all or most of variates. The canonical 

trends (figs. 5 and 7A) answer this question at least to the first 

approximation and also establish the hypothesis we expected before 

carrying out the analysis. 

Judging from the nature of chanqe of all the variates and their 

similarity in gross trend pattern to the two canonical trend surfaces, 

it was concluded that there was shelf sedimentation adjacent to an 

evaporite basin in southwest Kansas durinq Upper Permian time. 

The essential approach to the interpretation of canonical 

trend surface is to visualize the geological implications of the 

variations of all or most of the variates being displayed realistically 

in a single map. The merit of a canonical trend surface is to evaluate 

a common trend to a set of variates and to condense a set of mars 

. 	showing areal distributions of geological variate~ from a single 

population. Its maximum correlation property yields a high fidelity 

between the population response surface and the sample response 

surface. 
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CHAPTER 4 


OTHER APPLICATIONS IN GEOLOGY 


4.1 Relationshirs Between Two Sets of Variates 

4.11 General Statement: Canonical correlation may be considered as 

a 	multivariate case of simrle correlation. Suppose we have a set of 

predictor variates and a set of r2 criterion variates for the samep1 

set of samples, then canonical correlation detennines that linear 

function of the predictor variates and that of the criterion variates 

which gives the maximum correlation between these two sets. 

Both canonical analysis and principal factor solution in 

factor analysis deal with linear functions. The most imrortant 

difference between canonical and factor analysis is that in canonical 

analysis the criterion is external while in factor analysis the 

criterion is derived from the internal· evidence of t!1e variates. 

thus, canonical analysis is called external factor analysis whereas 

conventional factor analysis is called internal factor analysis 

(Bartlett, 1948; Burt, 1948). 

Canonical analysis or external factor analysis is a technique 

to reveal the maximum possible covariance between two sets of variates. 

We 	 are not interested in the relations of the variates ~ithin either 

set itself, but in the relationship between the two sets. Internal 

factor analysis seeks underlyinq influence factors which explain 

maximum variance in any particular direction, but canonical analysis 

does not seek factors. Factor analysis expresses each variate in 
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terms of factors which arc treated as independent variates, while 

canonical analysis expresses each canonical variate in terms of the 

geological variates v1hich arc treated as independent variates. Due to 

the difference between the two linear reqression models similarity 

between the factor loadings and the coefficients of canonical variates 

is not to be expected. Comparisons of canonical correlation and factor 

analysis were made by nurt (1948) and Das (1965) by using psychological 

examples. 

When we have two sets of variates relatinq to one set of 

samples, various statistical techni~ues may be adopted aoccording to 

the nature of the problem discussed. We may, for example factorize 

the two sets together, or ~e may factorize each set independently, 

and try to correlate factors; or we may perform a canonical correlation 

analysis between the two sets of variate in order to yield a maximum 

correlation. The largest canonical root has the best chance of 

demonstrating the existence of a relation between the two sets if one 

actually exists, but each canonical root will help to elucidate the 

nature of a particular relation, which cannot be explained fully by 

any other canonical root. 

In geology, a typical experimental design may be made to observe 

several variates on a set of rock specimens. For example, in a recent 

sediment study one set of variates may be the abundances of various 

kinds of animals or plants, while the other set of variates may be 

the physico-chemical parameters of the depositional environments, 

and the size parameters of the sediments which contain the animals. 
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The nature of the relations betvreen the two sets of variates may be 

explained by some of the canonical roots between the two sets. There 

is a number of analogous problems such as correlations between modal 

and chemical analysis, between major and trace elements, between trace 

elements and clay minerals, between textural parameters (size, roundness, 

sphericity and so on) and composition parameters (mineral composition). 

These problems may be untangled by using Hotel1inq 1 s idea to a certain 

extent. The followinq numerical example is qiven to demonstrate the 

usefulness of this mathematical model. 

4.12 Recent Sediment from Puttonwood Sound: Recent sediment sa~ples 

were collected from 19 stations located in Button'v'!OOd Sound, Florida 

Bay by Lyn ts ( 1966). Three samp1 es nf size 19 were ta ken on Auqus t 14th, 

17th, and 20th, 1962 respectively. A sample of size 16 was taken on 

February 9th, 1963. For each location, the following environmental 

parameters of the sediment-water interface were measured: derth of 

water, temperature, salinity, pH, and Eh. The sand, silt, tind clay 

fractions were analyzed from each sample. The dominant element of 

microflora in the Sound i•1as qrasses, in particular, turtle qrass. 

The distribution of turtle qrass \11as manned by usinfJ three oradcs, 

namely: very dense, dense-moderate, anrl ra tchy. The ahunda nee of th.::-: 

turtle qrass was code<i hy the present writer a:; fn 11 ov'<;: verv dr:nsr' - ·

1; dense-moderate--0; ratchv-- -1. 

The rro!ilem here is to determine tn \1tiv;t r:xtcnt Lr> cr:virnu,ent.i'. 

factors, namely: depth, tcmrerature, salinity, nH and u ur,(1Micc . 

T;, ....turtle grass are related to the size rarameters of s 
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four samples were considered as a single sample of size 73, hecause 

the turtle grass map is not specified to any one of the four sampling 

dates. 

Looking at the simple correlation coefficients of all possible 

pairs of the seven variates (table 4), one may conclude th~t the turtle 

grass is positively related to silt and also negatively related to 

sand. The simple correlation coefficients between the sediments and 

the depth, temperature, salinity, and rH are very small. 

TAl3LE 4 


·SIMPLE CORRELATION COEFFICIENTS OF SEDIMENTS FROM BUTTONWOOD SOUND 


Turtle grass 1. 000 

Depth -0. 061 l. 000 

Temperature 0.091 -0.059 1 .000 

Salinity -0.085 0.086 -0.976 l.000 

pH -0.194 0.242 0.122 -0.070 1. 000 

Sand -0.665 0.073 -0. 192 0. 194 0.173 l. 000 

Si 1t 0.458 0.084 0.015 0.001 -0.139 -0.602 

A canonical analysis was performed on this set of data. The 

first canonical root is equal to 0.683 which is siqnificant at the 1 

percent level. The second canonical correlation (0.242) is not 

significant at the 5 percent level. This would suggest that in 

studyinq the relation between these two sets we can confine our 

attention to the first pair of canonical variates which is listed in 



S3 


table 5. 

It is clear that the distribution of sand is correlated 

closely \·Jith the abundance of turtle 0rass. Srtnds are more aLundilnt 

in regions of less grass in nuttonwood Sound. Lynts (1%G) ohtaincd 

the same conclusion by comrarison of turtle qrass r.lilD 1.·dth scdiment

sizc distribution map. In addition to confirming this conclusion, 

canonical correlation analysis also indicates that there is no relation 

between the abundance of sand and measured rihysical parameters other 

than turtle grass. 

TARLE 5 

CANONICAL VARIATES FOR SEDIMENTS FRffi1 RUTTONWOOD SOUND 

Environmental factor Sediment 

Turtle grass -0.98 Sand 1.00 

Depth -0.00 Silt -0.09 

Temperature -0.07 

Salinity o. 13 

pH o. 10 

The variate, sand, was discarded, then canonical correlation 

analysis was performed on the same data. The canonical root is 0.483, 

its associated canonical variate for the environmental factors is as 

follows: 

V =0.70 (turtle grass) + 0.19 (derth) + 0.47 (temperature) 

+ 0.49 (salinity) - 0.15 (pH} (l) 
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Equation (1) suggests that the silt is also moc!eratcly corrr.latec.i 

\'Jith turtle grass and \'teakly to other parameters. The canonical root 

is significant at 1 percent level, but it gives a result contradictory 

to the principal comronent analysis which will he discussed later. 

It is concluded from the canonical correlation analysis that 

(1) The ahundancc of sand is a better rredictor of turtle ~rass 

than that of silt; but if the variqte, sand is not used then the variate 

silt would give a less satisfactory result. 

(2) If the variate, clay, is inserted,the result may be a completely 

different linear function of environmental factors to predict clay or 

silt or sand or some combination of them. 

Principal component analysis was also performed on the correlaion 

matrix of the same set of data. The rotated and normalized eigenvectors 

of the last eigenvalue are practically zero. The eigenvectors of the 

sixth eigenvalues indicates the same relationship on sand, silt and 

turtle grass as that of the first eiqenvalues. The analysis was repeated 

again and only the first five eiqenvectors were orthogonally rotated. 

The result of the'second run is listed in table 6. 

The coefficients of the first component are highly loaded with 

turtle grass and sand, with coefficients of opposite siqn. This shows 

that the first canonical variate is very similar to the first component 

obtained by an ordinary principal component analysis. This component 

is interpreted as a factor of sediment stabilizer, as Ginsburg and 

Lowenstam (1958) pointed out that a dense growth of grass may produce 

a layer of semi-motionless water·over the bottom which traps fine 
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sediments. Actually these two variates are riutual 1/ dcrcndcnt. The 

factor pattern (table 6) fails to sho1:1 the relationship of er:uation (1). 

A more detailed discussion of the result of this factor analysis is 

~iven by Lee (1967). 

TABLE 6 

ROTATED AND NORf~ALIZED FIVE PRiflCIPAL conrm1rnTS FOR 

SEDIMENT FROM BUTTONWOOD SOUND 

Component 

1 2 3 4 5 

Turtle grass 0.98 0.03 -0.01 0.09 -0.16 

Sand -0.SO -0.18 0.08 -0.08 0.57 

Temperature 0.06 1.00 -0.02 -0.07 -0.02 

Salinity -0.06 -1.00 0.04 0.02 0.00 

Depth -0.04 -0.05 0.99 -0.12 -0.04 

Silt 0.30 -0.02 0.07 0.06 -0.95 

pH -0.11 0.07 0.13 -0.98 0.06 

Eigenvalue 2.362 1.902 1.208 0.705 0.518 

Cumulative 
Percentage 33.74 60.91 78.17 88.24 95.64 

Canonical correlation gave the result that the only significant 

correlation between the sediment and environment variates was between 

sand and turtle grass. Inspection of components 2-5 confirms this 
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conclusion, since the only relationships revealed are those between 

environmental variates (components 2-4) or between sediment variates 

(component 5). 

In this particular case, the loadings on first component 

(table 6) and the coefficients of the canonical variate (table 5) are 

ve'ry similar in magnitude and in sign. In this examrlc, the principal 

factor solution in factor analysis .has revealed more extensive 

information, and is likely to be a powerful tool for displaying the 

internal relations of a set of measures. On the other hand, when the 

purpose is to investigate the relations between two sets of variates, 

or for prediction in many dependent variates problems, the technique 

of canonical correlation is more appropriate. 

4.2 Matching Two Factor Patterns 

4.21 General Statement: Suppose a separate factor analysis has been 

conducted for a rock body at dif.ferent geographic localities or 

different stratigraphic sections. It may be that the factor patterns 

obtained at the various localities appear quite different but that 

canonical transfonnations exist such that at least some of the factors 

in one set may be found to correspond closely to factors in the other 

set. In this case, the number of samrle~N, is equal to number of 

variates, p1 the number of factors for one set, and p2 the number of 

factors for another set. Phus, the sum of r1 and r2, in general, is 

greater than the value of N. In this anplication, the technique is 

used to determine to \·that extent the two factor patterns rerresent the 

same set of underlying factors. The technique has been qeneralized 
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form sets of variates or rn factor rattcrns hy Horst (1%1, lrJ6la) to 

f i n d m canon i ca 1 trans f orma t ions Hh i ch ,,,; 11 y i c1 d n c \'' r at terns ha vi n'1 

max i mum s i mil a r ity . 

4.22 Factor patterns of sediment from P,uttonwood Sound: T\'10 sa111rles 

of size 19 and l () \'Jere ta ken from 8ut torn·mod Sound, Flori day r>av 

(Lvnts, 1966) in 14 /\ugust, 1962 and 9 February, 1963, respectively. 

Factor analysis \·1as performed scrarately on these hm sets of dc:lta. 

The factor ratterps are listed in table 7. 

The problem is to determine to what extent" the two factor 

patterns are similar. Canonical analysis was carried out on the two 

patterns. In this case, = 7, = 7, N = 8 (number of variates).r1 r2 
The result is that seven canonical roots are unity. All of them are 

significant at the 1 rercent level. Their associated canonical 

variates are listed in table 8. 

Judging from table 8, it is concluded as follows: 

(1) Factor F9-l is negatively related to factor Fl4-l, because they 

have an opposite sign in their original factor patterns. 

(2) F9-2 is negatively related to Fl4-3 and partly to F14-l. 

(3) F9-3 is related to F14-2. 

(4) F9-4 is negatively related to Fl4-6. 

(5) F9-5 is negatively related to F14-5. 

(6) F9-6 is related to Fl4-4. The analysis shows that these two 

factor patterns represent the same s~t of underlying factors, although 

these two sets of samples were collected at different times. 
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FACTOR PATTERNS FOR SEDIMENTS rno:1 DUTTOrJl.!000 SOUND 

Factor rattern for samples collected in 14 Auqust, 1%2 

~ Fl4-l F14-2 Fl4-3 F14-4 Fl4-5 Fltl-6 F14-7 
e 

Sand 0.95 -0.07 0.19 o. 11 -0.12 -0. 01 -0. 18 

Turtle grass -0.54 -0. 14 -0. 16 -0.22 0.25 0.00 0.74 

Silt -0.90 -0.02 0.39 -0.08 0.05 -0.09 Q. 11 

D~pth -0.05 -0.23 0. 18 -0.15 -0.09 -0.94 -0.00 

pH 0.02 -0.95 0. 14 -0.09 0.09 -0.22 o.n7 
Clay 0.05 o. 14 -0.96 -0.03 0.09 0. 17 0.10 

Temperature -0. 14 -0.08 -0.02 -0.97 -0.01 -0. 14 0.11 

Sa 1inity 0.13 -0.08 0.08 -0.01 -0.97 -0.08 -0. 12 

Eigenvalue 2.733 l. 905 1.154 0.998 0.539 0.449 0.221 

Cumulative 

percentage 34 .16 57.98 72.41 84.89 91.63 97.24 100.00 

Factor pattern for samp1 es co11 ected in 9 Fcbrua ry, 1963 

F9-l F9-2 F9-3 F9-4 F9-5 F9-6 F9-7 

Silt 0.95 0.00 0.00 0.04 -0.17 -0.22 o. 10 

Sand -0.75 -0.60 -0. 10 0.08 0.19 0.07 -0.15 

Clay 0.08 0.95 0. 16 -0.17 -0.10 -0 .14 0.11 

Turtle grass 0.42 0.45 0.16 o. 00 -0.35 -0.25 0.64 



S9 
Table 7 


Factor rattern for sam pl es co11 cc t cd in 9 February, 1%3 - (continutc~) 


~or 
Variate~ 

Depth 

Sa 1inity 

pH 

Temperature 

F9-1 

0.01 

-0.23 

-0.03 

0.24 

F9-2 

-0.15 

-0.14 

-0. 16 

-0 .11 

F9-3 

-0.09 

-0.06 

-0.97 

0.15 

F9-tl 

0.97 

0. 15 

0.09 

o. 13 

F9-5 

0.11 

(). 91 

0.06 

-0.24 

F9-6 F9-7 

-0.10 -0.00 

0.23 -0. 13 

0. 12 -0.0() 

-0.91 -0. 10 

Eigenvalue 3.545 1. 631 o. 996 0.825 0.556 0.276 0.170 

Cumulative 

percentage 44.32 64.71 77 .16 87.47 94.42 97.87 100.00 

TABLE 8 


CANONICAL VARIATES FOR TWO FACTOR PATTERNS 


1 2 3 4 5 G 7 


F9-l 0.00 o.oo 1.00 0.00 0.00 0.00 0.00 

F9-2 0.00 o.oo 0.00. 0.00 0.00 0.00 1.00 

F9-3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

F9-4 0.00 o.oo 0.00 1.00 0.00 0.00 0.00 

F9-5 o.oo o.oo 0.00 0.00 0.00· 1.00 0.00 

F9-6 1.00 0.00 o.oo o.oo 0.00 0.00 0.00 

F9-7 0.00 1.00 o.oo o.oo o.oo 0.00 0.00 

cont'd 



Table 8 


Canonical variates for two factor patterns - (continued) 


2 3 4 5 6 7 


.,. 

Fl'1-l -0.0l 0.02 -0.95 0. 13 0.09 0.09 -0.40 

Fl4-2 -0.29 o. 21 o.on 0. l (i 0.93 -0.18 0.01 

Fl4-3 -0.32 0. 01 0.02 0.04 0.04 -0.07 -0.36 

F14-4 0.84 -0.0l -0.'14 0.01 -0.16 0.21 0. 16 

Fl4-5 -0.33 0.09 0.20 -0.05 0. 13 -0.95 -0.00 

Fl4-6 -0.02 -0.04 0.09 -0.97 -0.13 -0.05 -0.03 

Fl4-7 -0.02 0.97 -0.20 0 .10 0.26 -0.04 0.09 

4.3 Q-Technique Canonical Correlation . 

4.31 General statement: Q-technique canonical correlation is used for 

dealing with sample space. Suppose we have two sets of samples collected 

from different groups (such as localities, or different formations), the 

problem is to detennine to what extent these two sets of samples are 

similar, based on observable variates. In this case, r1 is the number of 

samples in one set, p2 number of samples in another one, and N is the 

number of variates. The canonical root provides an index of the degree of 

s imil a ri ty between the two groups of samr l es. 

It must be noted, however, that canonical root indicates the 

maximum degree of similarity between the grours, and not the average degree 

of similarity. If there happen to be two closely similar individuals, 

one in each group, the canon i ca 1 root t'li 11 be very high even though the 
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majority of the samples in the two grours differ considerably. There is 

no statistical criterion for testinq the coefficients of the canonical 

variates. Thus, the coefficients must be carefully examined. If the 

coefficients are "approximately" equal, this implies that the degree of 

similarity (the canonical root) is more or less reliable. On the other 

hand, if the coefficients arc lorge in one or two samrlcs, this indict1tcs 

that these two groups may or may not be generally similar, even though 

the canonical root is high. On the other hand, if the canonical root is 

low for two groups, this stronqly suggests that these two qroups are 

quite different. 

The Q-technique canonical root presents the same problem as in 

Q-technique factor analysis. The different variates may be measured 

in quite different units, and correlation of a pair of samples over N 

values of noncomparable units does not, in general, make sense. This 

difficulty cannot be ov·ercome by standardization. Kendall (1966) 

suggested removing this difficulty by working with rank correlation, for 

example,presente of a variate is coded by l, absence is coded by -1; 

or "rare", "common", and "abundant" are coded by using -1, 0, and 1, 

respectively. 

4.32 Ordovician.and Silurian Sediments: Two specimens of shale from 

each of four formations exposed in the Niagara escarpment, Ontario were 

analyzed for both major elements and trace elements (Cr, Mn, Ga, V, Ni, Ti, 

Zr, Sr, and Ba expressed in terms of ppm) (Candy, 1963). The formations 

were the Silurian Cabot Head (gray and green shale), Grimsby (red shale), 

and Thorold (gray and green shale}, and the Ordovician Queenston (red 
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and green shale). The Q-techniquc canonical correlation matrix based 

on the trace clements is listed in table 9.. 

TA8LE 9 

CANONICAL CORRELATION r·ll\TRIX FOR THE FOUR FOf?~/\TIONS FROM OilTARIO 

Thorold 1. 000 

Grimsby 0.954 1. 000 

Cabot Head 0.996 0. 977 1.000 

Queens ton 0.940 0.886* 0.829* 

NOTE: *not significant at 1 percent level. 

Table 9 suqgested that there is a clear geochemical distinction 

between the Ordovician Queenston shale and Silurian shales. This canonical 

correlation matrix also indicates that the Silurian shales arc closely 

similar. Unfortunately, the coefficients of the canonical variates for 

the Grimsby formation are not approximately equal for all samples, the 

same is with the Thora 1 d format ion. Thus, the 1 a tter cone l us ion is st i 11 

doubtful. The canonical variate~ of the Thorold and Grimsby formations, 

for example, are 

U = 0.98 (Grimsby sample 1) - 0.13 (Grimsby sample 2) (2) 

V = -0.15 (Thorold sample 1) + 0.99 (Thorold sample 2) (3) 

The simple correlation coefficients between samples of the 

Grimsby and of the Thorold formation are positive. Thus, the opposite 

sign in the linear functions U and V would imply that these shale 

samples cannot be simply amalgamated in such a linear form. 
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The advantJ.']C of this technique is that it docs not rrf!uirc a 

large sam~le size for each ')rour. There i·s an clcriflnt v1ay to ar;iroach 

the sume problem, and this will be discussed in the followinq section. 

4.4 Discriminatorv Analvsis hy Canonical Variates 
..._, "' ' 

4.41 Gener;il statement: Tcstinq similarity of k orours can be carried 

out through canonical correlation analysis (Bartlett, l938a, 1947, 1965). 

Surrpose a discriminant function is defined as 

Y= A' Z (4) 

where A is p x 1 matrix to be determined, z is r x 1 variate matrix, 

then the analysis of variance of Y is 

Between groups A' B A 


Within qrours A' HA 


Total A' TA 

where B, is the matrix of sums of squares and products ·~etwecn' the k 

groups, and w for the corresponding pooled 'within' matrix, and T for 

the corresponding 'total' matrix. 

In order to make the variable Y as effective as possible in 

discriminating between these two groups, the ratio 

R2 =A' B A (5) 

A' TA 

should be as large as possible. The solution to this problem may be 

obtained through canonical correlation analysis, that by solving the set 

of linear equations as 
2(B - R T)A = 0 (6) 
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where R21 s are latent roots of the equation 
2 	 .

IB-R Tl =O ( 7) 

Seal (1964, p. 127-144) used the following matrix equation instead of 

(7), 

IB - R2 (B + W) I = 0 (3) 

or IB - A
2 \~ I = 0 (9) 

2 2 2where A = R /(1 - R ). 

2The A •s are the ei~envalues of the nonsymmctrical matrix \·i- 1n, and 

their normalized eigenvectors v:ill l'C the columns of matrix A. 

This means that the first transformed axis passes through 

the direction of the greatest variability 1 between 1 the k means; then 

the second axis, at right angles to the first; passes in the direction 

of the next greatest variability and so on. This is essentially the 

case of several populations in discriminant analysis (Wilks, 1963, 

p. 	 576-581). 

Equation (4) may be generalized for more than two groups, say k 

groups. In this case, Y ism x 1 matrix, A ism x p matrix, Z is 

p x 1 matrix, where m is the number of non-zero eiqenvalues of 

equat ion (9) , m = p , i f p ~ k - 1 , m = k - 1 , i f p > k - 1 • Thus , i f 

k = 2, equation (4) is known as the discriminant function •. A new 

observation vector Z may be inserted into this function, and the 

unknowns will be allocated to one or other of the two groups depending 

on whether the value of Y is positive or negative, respectively. The 

set of linear equation (4) may be used for classification. After 

substituting each observation Z into the equation (4), we will have m 
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coordinates on the m-climcnsional canonical axes for each observation. 

Finally, the canonical coordinates will display them-dimensional 

relationship of all observations. If we emphasize the differences 

bet\'/een the means of the k qroups, the vector Z is replaced by a mean 

vector 2. The canonical coordinates of the mean of each qrour will be 

obtained by placing the mean values of each variate in Z. 

Bartlett's test (1947) of significance of canonical roots is 

that 
2x = {(N - 1) - 0.5(p + k)} ln A (10) 

m 2
where A = n (1 +A.), p = number of variates, k = number of groups, 

j=i+1 J 
is approximately chi-square variate with (p - i)(k - i - 1) degrees of 

freedom when Ai+l = Ai+2 = ••••..•• =Am= 0. 

The assumptions are that (1) the variance-covariance matrix of 

p-variate groups are supposed equal (the classification of two multi

variate distributions with different covariance matrices w~s discussed 

by Anderson and Bahadur (1962)), (2) the unknown samples which are to 

be discriminated belong to one, and only one, of the groups and that the 

probabilities that the unknown sample belongs to any group are equal. 

This technique has the great advantage that the p variates may 

be different types of measurements if all the variates are standardized. 

On the other hand, the disadvantage is that if p is large, and k = 2, 

the comparison between the two groups is contained in a straight line, 

because we only have one canonical root. 

Suppose we have measured p variates on Nj samples of a given 

rock type (or fossil types) (j = l, 2, •••• , k); l Nj=rJ, where.these 
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variates may be measured in any one of nominal., ordinal, interval, or 

ratio scales, then canonical correlation analysis is the most 

reasonable procedure to discriminate between these k rock types (or 

fossil types) and to discover their underlyin:J affinities. Canonical 

correlation analysis may be replaced by Q-tcchnique princiral component 

analysis if the following conditions are satisfied (Seal, 1964, 

p. 171-172): (1) the measured variates are uncorrelated, this would be 

done through a principal component analysis on each rock type, and 

(2) the corresponding diagonal elements of covariance matrices of 

"between rock type" and 11 v1ithin rock tyre" are equal. These are 

severe restrictions. The proper uses of factor analysis, canonical 

analysis, and principal component analysis have been discussed thoroughly 

in the recent literatures ~Bartlett, 1948,.Eysenck, 1952; Lindley, 1962, 

1964; Rao, 1964; Ca tte11 , 1965, l 965a; Gower, 1966, 1967). Seal ( 1964, 

p. 171) summarized the different purposes of these techniques as 

follows: 

"(l) Principal component analysis is intended to achieve a 

parsimonious summarization of a random sample from a single universe of 

multivariate Nonnal measurements; 

(2) Canonical analysis is a procedure of discriminating as 

clearly as possible between two or~ multivariate Nonnal universes 

with the same variance-covariance matrix; and 

(3) Factor analysis is an attempt to elicit the underlying 

Normal multivariate structure of a universe that can be sampled with 

respect to many correlated variates." 
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4.42 prdovician 1 imcstoncs from CollJornc ouarr.v: The urnc~r rart of 

the Middle Ordovician Cobourg 1 imestone was sampled at Col borne 0uarry, 

Ontario (Lee, 196S). Three samples of size 73, 22, and 29 v.'erc collected 

from three stratigraphic sections, A, B, and C, respectively. The 

percentages of limestone variates, namely; matrix, sparry calcite, 

bra chi oped she11 s, echinoderm fragments, tri 1obite fragments, bryozoa 

fragments, and ostracod shells were estimated from peel prints. Two 

peel prints \'/ere counted in order to make replicates for each samrle. 

One problem is whether or not these three stratiqraphic sections 

are different, based on the seven limestone variates. The raw data were 

analyzed through canonical correlation analysis. The largest two 

canonical roots are equal to 0.426 and 0.320, respectively, which are 

significant at 5 percent level; whereas the last three roots are not 

significant at the same level. According to the canonical coordinates, 

sections A and Care slightly different from section B when based on the 

seven limestone variates (table 10). The individuals of the three 

sections are displayed on canonical coordinates (~ig. 8). 

Another problem is whether or not these three stratigrarhic 

sections are different, based only on brachiopod shells. The ·canonical 

coordinates indicate that sections A and C are very similar, while 

section B is different from the other two sections even though the 

canonical root (0.140) is not ~ignificant at the 5 percent level. The 

last conclusion is confirmed by the result obtained by using one-way 

analysis of variance and t-test (Lee, 1965; Lee and Winder, 1967). 



TAeLE 10 

CAiWNICAL COORDINATES OF LmCSTONES FROM COLEORr:E (/U/\RRY' OrffArUO 

Secti on no. 

8ascd on 7 variates Based on brachiopod shells 

Canonical axis 
1 2 

Canonical axis 

Section A 1 

Section A 2 

Section n 1 

Section B 2 

Section c 1 

Section C 2 

39.238 7.516 

38.488 7.396 

38.400 7.786 

37.975 7.565 

38.406 7.531 

33.212 7.450 

8.590 

7.397 

10. 136 

10.364 

8.414 

8.310 

Canonical root 0.426 0.320 o. 140 

Buzas (1966) applied the same principle to test the differences 

among the groups of Elohidium from Lonq Island Sound based on morphological 

characters. 

The Nigerian Upper Cretaceous and Lower Tertiary ostracoda 

w~re analyzed through canonical correlation analysis by Reyment (1966). 

This technique elegantly quantifies means of k groups, or all 

individuals, on the canonical coordinates according to their underlying 

affinities, whereas the multivariate analysis of variance and generalized 

T2-statistic show only the significance levels for difference between 

the groups. 
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CHAPTER 5 

CONCLUSIONS 

The merit of canon~cal trend surfate analysis is that it is a 

parsimonious summarization of a set of geographic variations of geoloaical 

variates. The canonical trend surface has the eleqant property of 

maximum correlation between geological variates and geographic 

coordinates. The succinct trend obtained does not show the absolute 

value of each variate, but it does indicate the nature of the variation 

for each variate. The linear function associated with the largest 

canonical root has highest probability of showing the true variations. 

The linear functions associated with smaller canonical roots explain 

other changes which cannot be summarized into the first linear function. 

Examination of the canonical trend for a set of variates 

frequently leads to an understanding of the intrinsic trend, common to 

several variates, that would be difficult or impossible to obtain by 

other means. 

The relation between two sets of variates may be untangled to 

a certain extent through canonical correlation analysis. The technique 

should have applications in prediction and exploratory studies. 

The technique for matching two factor patterns is very 

interesting in some cases. It can help the investigator to visualize 

the va~iation of factors from place to place. Similar results may be 

obtained by examination of the factor loadings on particular variates, 

but canonical correlation provide~ more precise information and more 

rapidly. 

70 
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The Q-tcchnique canonical corrrlation analysis is arrlicable to 

samples of small size. In the case of samples of large size, the method 

-- where individuals are displayed on canonical coordinates through 

canonical correlation analysis -- has a stron0 mathematical rationale. 

The use of canonical analysis as B procedure of discriminating 

between bm porwlations is restricted by the assurnrtion that the 

populations have the same covariance matrix. It has the advantage 

that variates may be different types of measurements because chanqing 

the scale of any one of them does r.ot affect the results. Furthermore, 

experience from solving practical problems suggests that the number 

of dimensions required for a comparison of groups will generally be 

less than the number required by principal component analysis 

(Seal, 1964, p.123). 

Principal factor analysis explains the maximum variance of a 

single sample whereas canonical factor analysis (Rao, 1955) yields 

factors which have maximum correlations between the observable 

variates. This result is the same as Lawley's (1940; Lawley and 

Maxwell, 1963) maximum-likel~hood solution. Its.application in geology 

has not yet been studied. 

The use of canonical correlation analysis in multiple 

regression analysis is quite interesting. In this case, the number of 

variates in one set is equal to one (the dependent variable). The 

canonical root is identical with the multiple correlation coefficient, 

but the weights for each variate in the linear function may be different 

in these two approaches. To date, there has been no discussions on this 

topic from the geological point of view. 
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Another possible use of the canonical correlation analysis 

in geology is to differentiate sedimentary environments ~·1hcn based on 

grain size distribution. One set of variates would consist of the 

sedimentary environments such as beach, dune, lagoon, river and so on, 

the second set of variates would contain only one variate, the unknown 

individual to be dctcnnincd. The ')rain size parameters would be trcJted 

as observations. The canonical correlation would give a maximum 

correlation between the unknown and the known environments. The largest 

coefficient attached to the known environment would indicate the nature 

of the unknown. This technique would be able to identify an individual 

which came from mixed environments, for instance dune sand and beach 

sand. The coefficients would be approximately equal on these two 

variates or environments. 

The concept of two-dimensional canoncial trend can easily be 

generalized into three-dimensional canonical trend, but it will need 

a large computer storage to handle the computation process. 

Canonical and factor analysis are appr~priate tools for 

geological data, but there are some disadvantages. Unfortunately, 

the existing tests of statistical significance do not in some 

cases help to make a reasonable decision. At the present time, the 

proper use of these methods is to generate hypotheses. Once a 

hypothesis has been created, the question should be whether or not it 

is interesting to conduct experiments to prove or disprove the hypothesis. 

One should not lean too much on the statistical tests of the number of 

factors or canonical roots, since these tests were derived from 
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specified assumptions which may not be reasorwLlc in <111 cases. On 

the other hand, if there exists a hyrothesis, .obtained from experiments 

or experience, the use of this technique is to see whether or not the 

hypothesis can be confirmed by statistical analysis. 

Canonical trend surface analysis represents a step toward 

the theoretical development of -"geometrics". Its arplications in 

geology open a promising field. More extensive studies on this field 

are desirable. 
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APPENDIX I · 


FORTRAN IV PROGRAM FOR TWO-DIMENSIONAL CANONICAL TREND 


6.1 	 Instructions for Using the Program 

6.11 	 Input to Program 

I Instruction card 

(1) 	 First 3 columns are reserved for punching the number of 

samples. The maximum sample size is 300. 

(2) 	 Columns 4 and 5 are for punching the number of variates 

to be analyzed. The maximum number of variates is 15. 

(3) 	 Columns 6 and 7 are for punching the number of variates 

to be read by the computer, it may or may not be the same 

as stated in (2) of I. 

(4) 	 Columns 8 and 9 are for punching the number of description 

cards (see IV). 

(5) 	 Column 10 

Punch l Arc Sine transformation on the geological variate 

Punch 2 Log transformation (base 10) on the geological variate 

Punch 3 No transformation on the geological variate 

(6) 	 Column 11 

Punch the order of the polynomial. The maximum order is 6. 

If the number 6 is punched on the column 11, the computer 

will stop computing the higher order polynomial (~ 6) if 

the difference of two successive canonical correlations is 

less than 0.05. 

82 
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(7) Columns 12-19 

In general we use an arbitrary coordinate system for 

sample location. In order to have an actual scale for the 

map printed by the printer , the distance in feet which is 

equal to·l unit in the arbitrary coordinate system is 

punched on columns 12-19. The.input format is F8.0. 

II Title Card 

The project title and investigator's name are punched on 

~card (no more than 80 characters). 

III Map Title card 

The title for the trend surface is punched on one card. 

IV Description card(s) 

A brief description of the project is allowed. The maximum 

number of cards is 50, whereas the minimum number is 1•. 

V Variate name card(s) 

Twelve characters are used for the names of each variate. 

They should be punched in the same order as in the data 

matrix. Six names are punched on one card, (i.e. eight 

columns are left at the end of each card). 

VI Data Format card 

This format is used for the input data cards. No more 

than 80 characters are allowed. 

VII Data cards 

The X-, Y-coordinates must be in the first two places and 
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are followed by the geological variate data. 

The origin of the coordinate may be placed anywhere, but 

the convention for the reference coordinate is the same 

as the Cartesian coordinate system. The right hand side 

of the X- axis is positive whereas the left hand side is 

negative. The upper part of the Y-axis is positive, 

whereas the lower part is negative. The maximum length 

of the X-axis should be greater than or equal to that 

of the Y-axis. 

EACH SAMPLE HAS ITS OWN SEPARATE DATA CARD(S). 


TWO OR MORE SAMPLES SHARING ONE DATA CARD IS NOT ALLOWED. 


6.12 Output from Program 

(1) 	 Project title and investigator's name. 

(2) 	 Description of the project. 

(3) 	 Mean, and standard deviation of the geological variates. 

(4) 	 Covariance matrix for the geological variates. 

(5} 	 Record of successive evaluation of the degree of the 

trend surface. 

(6) 	 Each canonical correlation has one set of the following 

outputs. 

(i) The trend surface equation 


{ii) The observed-, calculated, and residual values with X-, 


Y-coordinates. 

{iii) The contoured trend surface map with title and legend. 

(iv) 	 The residual map. 
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6.2 Listing of the Program 

c THIS IS CANONICAL TREND SURFACE PROGRAM JULY 1966 P J LEE 
c 
c· 

DOUBLE PRECISION QC903),RllC27,27)tR22(15,15),Rl2(27,15), 
1PROC27,15),PR01(15tl5),SUMSQ(42) · 

RE.AL I POLY 
DIMENSION EC 27> tDC99) tSUMC42>' DOT( 10), NlC 108) tVECC 15t15) t 

1PR02< 15tl5) tPC27) tPOLY(5Q,50) tBC300) tCC300) 'FMTC 16> tOMC300tl7) t 

2TITLEC16)tTITLE2<16),VARIAT(30)tSOURCEC800),IPOLrt5ut5U)t 
3RESIDU·(300) tVi0RK(51+) tTERM(27) tAf9,9) tMAPINGl3Uu,z> ,~JGt3UU) 

EQUIVALENCE (Q,POLYtIPOLY),CSUMtR22),(SUMSQ,PROltP)t 

1CTITLEtTITLE2> tCR12tA)


DATA TERM/6H X t6H Y t6H X2 t6H XY t6H Y2. t6H X3 t6H 
1 X2Y t6H XY2 t6H Y3 t6H X4 t6H X3Y t6H X2Y2 t6H XY3 t6H Y4 
2 t 6 H X5 t 6 H X 4 Y , 6 H X 3 Y2 ' 6 H X 2 Y3 ' 6 H X Y '• t 6 H Y5 ' 6 H X 6 
3,6H X5Y ,6H X4Y2 t6H X3Y3 t6H X2Y4 ,6H XY5 t6H Y6 I 

DATA SAMPLEtBLANK/2H *t2H I 
DATA DOT/2H Ot2H lt2H 2t2H 3t2H 4t2H 5t2H 6t2H 7t2H 8t2H 9/ 
READC5tl> NtMtMVtNNtlltNORDERtFEET 

1 	EORMAT<I3t3I2~2IltF8~0> 


S=N 

READ(5,2l TITLE 


2 FORMATC16A5) 

WRITEC6t3) TITLE 


3 FORMATC!Hlt20X,16A5///) 

· READC5t2) TITLE2 

NU=NN*l6 

READ<5•4) <SOURCE<I>tI=ltNU) 


4 FORMATC16A5) 

WRITEC6t5) CSOURCE<I>tI=ltNU> 


5 FORMATClH •25Xtl6A5) 

MU=M{{-2 
READCS,6> (VARIATCI>,I=ltMU) 


6 FORMATC12A6) 

READC5t7) FMT 


7 FORMATC16A5) 

XMAX=-100000.0 

XMIN=lOOOOO.O 
YMAX=-100000.0 
YMIN=lOOOOO.O 

M90=M+27 

IM90~C27+M+l)*(27+M)/2 
DO 20 I=l,M90 

SUM<I)=O.O 


20 SUMSQCI>=O.O 

DO 21 I=ltlM90tl 


21 QCI>=OeO 

DO 131 ISAMPL=ltN 
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READ(5,FMT> X,Y,(D(J),J=l,MV> 

GOTO (9,10,11·>, 11 


19 	 \>JRITE(6,12) 
12 FORMATC1H0,30H WRONG CODE FOR TRANSFORMAIION) 


GOTO 100 

9 DO 13 I= 1 'M 


13 D(Il=ARSIN<DCI>> 

GOTO 11 


10 DO 15 I=l,M 

15 D< I) =/\LOGlO(D( I)) 

11 DO 16 J=l,M 

16 	 DM<IS/\MPLtJ)=DfJ) 

DM<ISAMPL~M+l>=X 
DM<ISAMPLtM+2>=Y 

XMAX=AMAXl<XtXMAX> 

YMAX=AMAXl<YtYMAX> 

XMIN=AMINl<X,XMIN> 

YMIN=AMINlCYtYMIN) 

DO 130 I=l'M 

SUM ( I ) =SUM< I >+D ( I ) 


130 SUMSQf I>=SUMSQ<Il+O(l)*D(I) 
131· CONTINUE 

DO 126 I=ltM 
SUMSO<t>=SORT((S*SUMSQ(J)-(SUMCI>>**2)/(S*CS-l.0))) 

126 SUMCI)=SUM(l)/S 
WRITEC6t96) 

96 	FORMAT<1Hl,30Xt5H MEANt5X•l9H STANDARD DEVIATION/) 
DO 93 I=ltM 
IV=2*I-1 
IVl=IV+l • 

93 WRITEC6t95) CCVARIAT(J) tJ=IVtIVl> tSUM( I) tSUMSQ( I)) 
95 FORMAT<IHOtlOXt2A6t5XtFl0•3t7XtFl2e3) 

WRITEC6t106) ' 
106 	FORMATC///) 

DO 127 J=ltN 
DO 127 I=l tM 

127 	DM<J•I>=<DMCJtl)-SUM(l))/SUMSQ(I) 
DO 129 I=ltM 
SUM<I>=O.O 

129 	SUMSOCI>=O.O 
DO 8 IS=l tN 
DO 128 J=ltM 

128 	D<J>=DM<IStJl 
X=DM<IStM+l) 
Y=DM<IStM+2) 
L=M 
A<ltl)=l.O
DO 17 l=ltNORDER 

DO 18 J=ltl 

A<J,I+l>=A<Jtl»*X 
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L=L+l 
18 	 D(L)=A<Jd+l>


A< l+l,I+l>==A( l,l >*Y 

L=L+l 


17 	D(L)=A<I+l,I+l) 

DO 22 l=l,M90 


22 	 SUMCI)=SUM(l)+O(I) 

DO 8 I=l•M90 

DO 8 J=l•M90 

L=<J-1 ) ·l* J I 2+ I 

Q(L)=Q<L>+D<J>*D(I) 


8 	 CONTINUE 

DO 25 I=ltM90 

DO 25 J=I,M90 

K=<J-ll*J/2+1


25 	 Q(K)=(S*O<K>-SUM(l)*SUMCJ))/(S*(S-l•O>> 

J2=1 

J3=J2+1 

WRITE(6'102) N 

102 FORMAT<1Ho.1ox,19H COVARIANCE MATRIX,10Xt21H THE SAM~LE SIZE IS 
1'13//) 
. DO 103 J=ltM 

K=O 

DO 104 1=1,J 

KK=J*(J-ll/2+1 

K=K+l 


104 	E(Kl=Q(KK) 
WR I TE < 6 '105 > < ( VAR IAT ( J 1 > 'J1=J2 t J 3 > ' <E ( K 1 > ' K 1=1 'K >>. 

105 	FORMAT<1Ho,5x,2A6tl5F7.3) 
J2=J2+2 
J3=J3+2 

103 	 CONTINUE 
ROOT=0.000 
ITERM=O 
WRITE<6•113).

113 FORMAT<1Hl•10Xt53H RECORD OF SUCCESSIVE EVALUATION TREND SURFACE D 
lEGREE///) 

125 DO 21 NPOWER=ltNORDER 
IPOWER=NPOWER 
ITERM=IPOWER+ITERM+l 
IFCM.GT.ITERM ) GOTO 37 
NL= I TERM 
NR=M 
DO 32 I=l,NR 
DO 32 J=ltNL 
K=CJ+M-l)*(J+Ml/2+1 


32 R12(JtI>=Q(K) 

33 DO 35 l=ltNR 


DO 35 J=ItNR 

L=J*CJ-1)/2+1 
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R 2 2 < I , J >=Q < L ) 
35 R22<JtI>=R22(1,J) 

CALL DMINVSCR22tl5,NRtl.E-15,IERRtNltWORK) 
IF< IERR.EC.0) GOTO, 29 

39 \VRITEf6t3lf.) 
34 FORMAT(IH0,45H GEOLOGICAL VARIATE MATRIX CANNOT 

GOTO 100. 
29 DO 31 I= 1, NL 

DO 31 J=ItNL 
K=<J+M-ll*(J+M)/2+1+M 
Rll<ItJl=QCK) 

31 Rll(J,I>=Rll(ltJ) 
CALL DMINVSCRllt27tNLtl.E~l5tlERRtNltWORK) 
lf(IERR.EQ.Q) GOTO 36 	 . 

43 	WRITE<6t30) . 
30 	 FORMAT<1H0,42H X-Y COORDINATES MATRIX CANNOT BE 

GOTO 100 
37 	 NL=M 

NR=ITERM 
NT.OTAL=NL+NR 

42 	 DO 44 1=1,NR 
DO 44 J~ItNR 
K= CJ+M-1 >.* <J+M > / 2+ I +M 
R22C I tJl=Q<K> 

44 	 R22(J,Il=R22CltJ) 
CAL~ D~INVSCR22tl5tNRtl•E-15tlERRtNltWORK) 
·IF<IERR.EQ.Q) GOTO 56 
GOTO 43 

56 	DO '•5 I=l tNL 
DO 45 J=ltNR 
K=(J+M-l>*<J+MJ/2+1 

45 	 Rl2CltJJ=Q(K) 
DO 40 I=ltNL 
DO 40 J=ltNL 
K=J*(J-ll/2+1 
R 11 < I , J J =Q <K > 

40 	Rll(Jtil=RllCitJ) 
CALL D~ 1 I NV5 ( Rl l , 2 7 t NL t 1 • E-1 5 ' I ERR t N 1 t WORK ) 
IF<IERR.EQ.O) GOTO 36 
GOTO 39 

36 	DO 46 I=ltNL 
DO 46 J=ltNR 
PROCltJJ=O.O 
DO 46 K=ltNL 

46 	PROCitJ)=PROCitJ)+Rll(ltKl*Rl2CKtJ) 
DO 47 I=ltNR 
DO 47 J=ltNR · 
PROl(ltJ)=O•O
DO 47 K=ltNL 

47 PROl(J,J>=PR0l(ltJ)+Rl2(Ktl)*PROCK1J) 

BE 	 INVERTED> 

INVERTED> 
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DO 48 l=l,NR 

DO 48 J=ltNR. 

PROZ< I ,J)=O.O 

DO 48 K=ltNR 
.. 48 	 PR02(J,J>=PR02CJ,Jl+R22CI,K>*PR01(KtJ) 

DO 49 I=ltNR 

DO 49 J=l,NR 

VEC(J,J)=O•O 

IF<I.EQ.J) VECCltJ)=l.000 


49 	 CONTINUE
CALL EBERVC<PR02tNRtlt20Q,Q,Olt0100ltlOOO,Otl5tVECtl) 

TEMP=-100.0 

DO 50 J=ltNR 

IF<TEMP.GT.PR02(JtJ)) GOTO 50 

TEMP=PR02CJ,J) 

JJ=J 

50. 	 CONT I NUE 

CANON=SQRTCPR02(JJ,JJ)) 

DIF=CANON-ROOT 

ROOT=CANON 

WRITEC6t52> IPOWERtROOT 


· 52 ~ORMAT<iH tl0Xt24H THE DEGREE IS EQUAL TO 12t5Xt23H THE CANONICAL 
lROOT IS F.1014) 

IF<DIF.LT.0.05.0ReROOT.GE•0•95000) GOTO 51 
27 CONTINUE 
51 WRITEC6t53) IPOWERtROOT 
53 FORMAT<1Ho,1ox,57H THE DEGREE OF THE MOST PREDICTABLE SURFACE IS 

!EQUAL TO 12t3Xt48H THE CORRESPONDING CANONICAL ROOT IS EQUAL TO 
2F7.4/I) 


NRl=NR-1 

DO 171 I=ltNRl 

JP:;: l+l 

DO 171 J=JPtNR 

IFCPR02Citl).GE.PR02fJtJ)JGOTO 171 

TEMP=PR02Cltl) 

PR02Cltl)=PR02(JtJ) 

PR02CJtJ)=TEMP 

DO 174 K=l,NR 

TEMP=VECCKtJ) 

VECCKtJl=VECCKtIJ 


174 	VECCKtl)=TEMP 
171 	 CONTINUE 


TOTALX=XMAX-XMIN 

TOTALY=YMAX-YMIN 

INDEX=TOTALY/TOTALX*50~0 
DELTA=TOTALX/5010 

TX=50.0/TOTALX 

TY=FLOATCINDEX)/TOTALY 

DO 172 JJ=ltNR 

I NOE-X 1=1 · 
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PR02(JJtJJ>=SQRTCPR02(JJtJJ)) 
WRITEC6tl73) PR02CJJ,JJ)

173 FORMAT<IHltl0Xt37H TREND SURFACE FOR THE CANONICAL ROOTt2XtF8.4//) 
WRITE(6tll4) 

114 	 FORMATClHOtlOXt34H THE EQUATION OF THE TREND SURFACE///) 
DO 54 l=ltNL 
E(I>=O.O 
DO 54 J=ltNR 

54 	 E<I>=ECI)+SNGLCPROf I,J))*VEC(JtJJ) 

RR=O.O 

DO 55 I=ltNL 

E ( I > =E< I > IPR 0 2 ( J J 'JJ ) 


55 RR=RR+E<I>*E(I) 

DO 57 I=ltNL 


57 	E< I )=E< I )/SQRT'cRR> 

J2=1 

J3=J2+1 

IF<M.GTeITERM > GOTO 59 

DO 60 J=ltM 

WRITEC6t58) <VARIAT<Jl) ,Jl=J2,J3),VECCJtJJ) 


. 58 .FORMAT<.lH t5Xt2A6t3XtF6e3) 
J2=J2+2. 

60 J3=J3+2 . 
GOTO 112 

59 	DO 132 J=ltM 

WRITEC6t58> CVARIAT(Jl>tJl=J2tJ3>tE(J) 

J2=J2+2 


132 	J3=J3+2 
112 	 DO 64 I=ltITERM~lO 

IPRINT=I+9 
LIMIT=ITERM 
IF<ITERM.GT~IPRINT> LIMIT=IPRINT 
WRITEC6tl15) 

115 FORMAT< I/) 
WRITEC6t62) CTERM(J),J=ItLIMIT> 

62 FORMAT<lHOtl0(4XtA6)) 
IFCM.GT.ITERM> GOTO 65 


61 WRITEC6t63) <ECIK>tIK=ltLIMIT) 

63 FORMATClHOtlOF10e4///) 


GOTO 64 

65 WRITEC6t63). fVEC(J,JJ)tJ=ltLIMITJ 

64 CONTINUE 


WRITEC6t97) 

97 	FORMAT<lHOt40H NOTE X4Y2=X**4*Y**2tX3=X**3tAND SO ON) 


BSUM=OeO 

CSUM=O.O 

BSS=O.O 
CSS=O.O 

BCR=OeO 

DO 72 NSAMPL=ltN 
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L=O 

ACldl=I.-o 

DO 73 I=l,IPOWER 

DO 74 J=ld 

A(J,I+ll=A<JtI>*DMlNSAMPLtM+ll 

L=L+l 


74 	P<L>=A<Jtl+ll , 

A(l+ltl+l)=ACltll*DM<NSAMPLtM+2) 

L=L+l 


73 	 P<L>~A<I+ltl+ll 
108 	B(NSAMPLl~O.O 


C<NSAMPL>=O.O 

IF<M.GT.ITERM > GOTO 75 

DO. 76 J= 1 ti TERM 


76 B(NSAMPL>=B<NSAMPLl+E<J>*P(J) 

DO 77 I=ltM 


77 C<NSAMPL>=CCNSAMPLl+VEC(ltJJ)*DMCNSAMPltl) 

GOTO 81 


75 DO 78 J=ltITERM 

78 B<NSAMPL>=BCNSAMPL>+VEC(JtJJ>*P(J) 


DO 79 I=ltM 
. 79 C<NSAMP~>=C<NSAMPL>+E~I>*DMCNSAMPLtlJ 

81 	 BSUM=BSUM+B(NSAMPL>. 

BSS=BSS+B·( NSAMPL) **2 

CSUM=CSUM+C(NSAMPL) 

CSS=CSS+C(NSAMPLl**2 


12 	 BCR=BCR+BCNSAMPL>*CCNSAMPL) 

DENON=S*BSS-BSUM**2 

ALPHA=IBSS*CSUM-BSUM*BCR>IDENON 

BETA=CS*BCR-BSUM*CSUM)/DENON 

DO 133 I=l•N 

B<I>=ALPHA+BETA*B(I) 


133 	RESIDUCl>=C(l)-8(1) 

52=0.0 

DO 116 I=ltN 


116 	52=S2+RESIDU(I) 

52=.-1. 0*52/S 

DO 117 I=ltN 


117 RESIDU<I>=RESIDU<I>+S2 
WRITE(6,118) S2 

.118 FORMAT<lHOtlOXt55H THE CONSTANT OF THE TREND SURFACE EQUATION IS E 
lQUAL TOtFl0.4) 
WRITEC6t80) 

80 FORMAT<1Hltl3H X-COORDINATEt5Xtl3H Y-COORDINATEt5Xtl5H OBSERVED VA 
1LUEt5Xtl7H CALCULATED VALUEt5Xt9H RESIDUAL///) 

WRITEC6t82) ((OM(ltM+l>tOMCitM+2>.cc1>,B<I>tRESIDU(l))9J=ltN> 
82 	 FORMATClH tFl0e4t8XtFl0.4t8XtFl0•4tl2XtFl0•4t8XtF10•4) 


DO 66 LENGTH=ltlNDEX 

Y=YMAX-DELTA*CFLOATCLENGTH)-1.0) 

DO 	 66 LWIOTH=lt50 
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X=XMIN+DELTA*CFLOAT<LWIDTHJ-1.0) 

L=O· 

ACl,1)=1.0 

DO 67 I=l,IPOWER 

DO 68 J=ltl 

A<Jtl+l>=ACJtll*X 

L=L+l 


68 	PCL>=A<J,I+l). 

A<I+ltl+l)=ACltl)*Y 

L=L+l 


67 	PCL>=A(l+ltl+l) 
107 	POLYCLENGTH,LWIDTHl=S2 

IF(M.GT.ITERM ) GOTO 69 
DO 70 J=ltITERM 

70 POLY(LENGTHtLWIDTHl=POLY<LENGTHtLWIDTH>+E(J)*P(J) 
GOTO 66 

69 DO 71 J=l,ITERM 
·71 POLY<LENGTHtLWIDTH>=POLY(LENGTHtLWIDTHJ+VECCJjJJ>*P(J) 
~6 POLYCLENGTHtLWIDTH>=ALPHA+BETA*POLY<LENGTHtLWIOTH) 


PMAX=-100000.0 

PMIN=lOOOOO.O 


. DO 83 I=ltN · . 

PMAX=AMAXl<PMAXtB(f)) 

PMIN=AMINl<PMINtBCl)). 


83 	CONTINUE 

DIFF=PMAX-PMIN 


86 	GRAD=DIFF/10.0 

DO 88 LENGTH=ltlNDEX 

DO 88 LW1DTH=lt50 

DO 121 I= 1t10 · 

IGRAD=I . 

DISC=GRAD*<FLoAn I >-1.0)+PMIN 

IF~DISC.GE.POLY<LENGTHtLWIDTHJ) GOTO 123 


121 CONTINUE 
IGRAD=lO 

123 IPOLY<LENGTHtlWIDTH>=DOTCIGRAO) 
88 	CONTINUE 


DO 134 I=ltN 

DTEMPX=<DM<ItM+ll-XMIN>*TX 

DTEMPY=(YMAX-DM<ItM+2J>*TY 

MAPING<Itl>=DTEMPX 

MAPING(lt2l=DTEMPY 

IF(MAPING<Itl>•EQ.Q) MAPINGCltl)=l 

IF<MAPING(I,2>.Eo.o> MAPINGflt2)=1 


134 	CONTINUE 
DO 137 I=ltlNDEX 
DO 137 J=lt50 
DO 138 K=ltN 
IF<MAPINGCKtl).EQ.J.AND.MAPINGCKt2JeEOel) GOTO 139 

138 CONTINUE 



GOTO 137 

139 IPG~Y(J,J)=SAMPLE 


13 l COl\I T I NUE 
l 5 0 SC /J. ~ E=T0 TA L X *4 • 0 I 1 0 0 • 0 *FEET 

WPITE(6,89) TITLE2 
a.:., FTd~V.AT< 1Hl,26Xtl6A5/) 

-1: .. i\LE=SCALE 
I\ l TE ( 6 '9 0} MSCA LE 

, . 0 f ~) 1<,\ 4AT { 1 H 0 ' 3 5 X ' 5 H - - - - ' t 8 t 5 H FEE T ' 5 X t 18H * SAMPLE LOCAL I TY / / /) 
F -~ '•l RI rE C 6 '91 ) 
~l FO' ·iAT<iH '13Xt105H *****************************************••~~

,·-~~'******************************************************) 
,, l1E(6t92) ((IPOLYCI,JltJ=lt50hl=ltlNDEX) 


'h).:-~-'.t\TClH tl3Xt2H *tl01Xt2H */14Xt2H *t50A2t1Xt2H *) 


., \ I TE C 6, 124 ) 
124 	 FORMAT(lH '13Xt2H *tl01Xt2H *) 


\'/ R I T E C 6 , 9 1 ) 

WRlTE(6tl22) 


1 2 2 •.- tJ HM AT < 1H0 , 1 0 X , 7 H LEGEND I ) 
Gu 109 I=ltlO 
r J.c>C=GRAD~-<FLOAT< I l-1.0>+PMIN 

. l 0 t:1 •· n T E <6 '1 1 0 l <D 0 T ( I > ' .D I SC l 
110 t-nRMATCiHOtllXtA2t2H =tF8•3) 

IFtINDEXl.EQ.2) GOTO 172 
P~~,\X=-100000 • 0 
~' M I N =1 0 0 0 0 0 • 0 

DO 151 l=ltN 

PMAX=AMAXl(PMAX,RESIDLl(I)) 

P'1IN=AMIN1< PMINtRESIDUC l)) 


151 	 CONTINUE 

GRAD=<PMAX-PMINl/lOeO 

Dd 161 I=ltN to 


DO 159 J=ltlO 

J00T=J 
DIS(=GRAD*<FLOAT(JJ-1.0)+PMIN 

If<DISC.GE.RESIDUCJ)) GOTO 160 


1·~. (C\JflNUE 


16 •. iG( I >=DOTCJDOT> 
16. 	 •.CH I NUE 

152 l=l,INDEX 

!) .. 152 J=lt50 

Du 157 K=ltN 

IFtMAPING(Ktll.EQeJeAND.MAPINGCKt2)eEO.I) GOTO 156 

IPOLYCltJ)=BLANK 


157 CONTINUE 

Gi"'TO 152 


.:, .. _'.Y< t tJ)=SIG(K) 

J ~>: • . , TI NUE 


:Xl=2 


http:FTd~V.AT
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\>J R I T E ( 6 ' 15 8 ) 
156 FORMAT<1H1,1ox,11H·THE REStDUAL MAP//) 

GOTO 153 . 
172 CONTINUE 

· 100 STOP 
END. 

Hote: If this program is to be used outside McMaster University, 

one has to insert two subroutines, (l) double precision matrix 

inversion, (2) eigenvalues aid eigenvectors of an arbitrary 

matrix. 



APPENDIX II 


FORTRAN IV PROGRAM FOR CANONICAL CORRELATION 


7.1 Instructions For Using the Program. 

7.11 Input to Program 

I 	 Instruction card 1. 

The function of this card is to tell the computer how 

many sets of different data are going to be subjected 

to canonical correlation analysis. Each data set should 

have the following input cards (from II to VII). 

Columns 1 to 10 are reserved for punching the number, 

digits are right justified. 

II 	 Instruction card 2. 

(1) 	 First 5 columns are reserved for punching the number of 

samples. There is no reasonable limit on the sample size 

(N ~ 99999 at present case). Digits are right justified. 

(2) 	 Columns 6 to 7 are reserved for punching the number of 

variates on the left hand set. 

(3) 	 Columns 8 to 9 are reserved for punching the number of 

variates on the right hand set. 

The total number of variates is 100. The number of 

variates on the left hand set is greater than that of 

the right hand set. Neither of them can exceed 50. 

Otherwise, the Dimension statement should be changed. 

95 
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(4) Columns 10, 11 and 12 are to specify the number of 

va~iates read in by the computer. This number is not 

necessarily equal to the number of total variates to 

be subjected to canonical correlation analysis. 

(5) Columns 13, 14 and 15 are used to indicate the number 

of description cards (see IV). 

(6) Column 16, punch l if input is correlation matrix, 

punch 2 if input is raw data matrix. 

(7) Column 17, punch 1 Arc sine square root transformation. 

The user must make sure that all input data are less 

than 1.0, and· positive when arc sin.ce square root trans

formation is used. 

punch 2 Log transformation (base 10) 

The user must make sure that all input data are greater 

than zero. 

punch 3 No transformation 

I II Ti t 1e card • 

The project title and the investigator's name will be 

punched on one card (no more than 80 characters). 

IV Description card(s). 

A brief description about the project is allowed. The 

maximum number of cards is 50, whereas the minimum 

number is 1. 
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V 	 Variate Name card(s). 

Twelve characters are used for the names of each variate. 

They should be punched in a continuous sequence and also in 

the same order as in the data matrix or correlation matrix. 

Six names are punched on one card. 

VI 	 Data Format card. 

This is used for the input data card. For example, the original 

data cards contain 14 variates, such as Si20, Ti02, 

Al203, Fe203, FeO, MgO, Cao, Na20, K20, C02, quartz, 

feldspar, micaceous materials, and carbonates. Five 

columns are used for each variate. If one wishes to 

study the set of five variates, namely MgO, Cao, co2, 

feldspar, and carbonates, the variable format card should 

be 

(30X, 2F5.2, lOX, F5.2, 5X, FS.2, SX, F5.2) 

The.sample nll1lbers are punched at the first 5 columns in 

this case. 

VII 	 Data cards. 

One may punch the data cards in one's own way. EACH SAMPLE 

HAS ITS OWN SEPARATE DATA CARD(S). TWO OR MORE SAMPLES 

SHARING ONE DATA CARD IS NOT ALLOWED. The correlation 

matrix must be stored row by row, each row going up to 

the diagonal elements. 

For example: 
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1.000 

0.979 1.000 

0.807 0.818 1.000 

0.462 0.549 0.731 1.000 

The input data cards should be as follows: 

1000097910000807081810000462054907311000 

The input data fonnat is {10F4.3). 

7.12 	 Output from program 

(1) 	 Project title and the investigator's name, 

(2) 	 Description about the project, 

(3) 	 Correlation matrix, 

(4) 	 Mean, variance, and standard deviation of each variate, 

(5) 	 Canonical roots, their chi-square values, and significant 

levels, 

(6) 	 Canonical vectors both Qf right hand set and left hand set. 

Note: 	 If this program is to be used outside McMaster University, 

one has to insert two subroutines, (1) double 

• 1 precision matrix inversion, (2) eigenvalues and eigen

vectors of an arbitrary matrix. 
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7.2 	 Listing of the Program 

c TH IS IS CANON I CAL CORR1RA TI ON PROGRAM AUGUST .1966 P J LEE 
c 
c 

DOUBLE PRECISION Q(1830),CORC30130)1A2<30,3Q),8(30,30)t 
1SUMSQ(6Q),BlC30t30),AC465) 

DIMENSION TITLE<l6>1VARIAT<120ltSOURCEC800),FMT<l6)1SUMC6Q),DC60) 
l1R<30),VECC30t30>,B2C30130)1CHIC30) 

DATA CHI/6e635t9•210111.345tl3•277115e086116.812118e475t20.090t 
121.666t23.209t24.725126.217127.688t29el4lt30.578t32.000t33e409t 
234.805136.191137.566138.932·t40.289t41.638t42.980t44.314t45.6421 
346.963148.278,49.588,50.892/ 

READCS191) ISET 
.91 	FORMATCI10) 


DO 90 NSET=ltISET 

READ(51l) N1NL,NR1~MtNS1Ilt.12 


1 FORMATCI5121212131211) 

READC5t2) TITLE 


2 FORMATC16A5) 

WRITEC6t3) TITLE 


3 FORMATC1Hlt30Xtl6A5) 

·w R I T E C 6 ·' 4 ) 


4 FORMAT<///.) 

.MN=NS*l6 

READC515) <SOURCECI>tI=ltNN) 


5 FORMAT <16A5) 

WR)TEC6t6) <SOURCE<I>tl=ltNNJ 


6 	 FORMATClHOt20Xtl6A5) 

M=NL+NR 

NV=2*M 

S=N 
Ml=CM+l)*M/2 

READC517) <VARIATCI>tl=t,NVJ 


7 FORMAT(12A6) 

READC5t8l FMT 


8 	 FORMATC16A5) 

IFlil.EQ.1) GOTO 9 

DO 10 J=ltM. 

SUMCJ)=O.O 


10 SUMSQ(J)=O.O 

DO 11 J=ltMl 


11 Q(J)=O.O 

DO 20 NSAMPL=ltN 

READC5tFMT> (-Q(J) ,J::t,MM) 

IFCJ2.E0.3l GOTO 13 

IF<IZ.EQ.2) GOTO 14 

IFCI2.EO.ll GOTO 15 

WRITEC6tl6J 


16 FORMATC1H0t37H WRONG CODE NUMBER FOR TRANSFORMATION> 

http:IFCI2.EO.ll
http:IFCJ2.E0.3l
http:N1NL,NR1~MtNS1Ilt.12


100 


GOTO 83 

14 DO 17 J=l,M 

17 D<J>=ALOG10(01Jl) 


GOTO 13 

15 DO 18 J=l,M 

18 DCJl=ARSINCSQRT(D(J))) 

13 	 DO 19 J=l,M 


SUM<J>=SUM<Jl+D(J) 

19 	 SUMSQ(Jl=SUMSQ(J)+O(J)*O(J) 


M2=M-l 

DO 20 K=ltM2 

DO 20 Kl=KtM 

L=Kl*(Kl-ll/2+K 


8 8 IF (K 1 :-K) 21 92 2 '21 

22 Q(L)=l.000 


GOTO 20 

21 Q(L)=Q(L)+DCK>*DCKl) 

20 CONTINUE 


DO 23 I=ltM2 

DO 23 J=ltM 

K=J*(J-lJ/2+1 

IF<I-J> 24t25t24 


25· O<K>=l.000 .. 

GOTO 23 


24 QCK>=<S*O<K>-SUMCI>*SUM<Jl)/SQRT<<S*SUMSQCil-SUMCil*SUMCI>>* 

-l<S*SUMSQ(J)-SUM(J)*SUM(J))) 


23 	 CONTINUE 

Q(K+l)=l.000 

WRITE(6t99)


99 	 FORMAT<1Hl,30Xt5H MEANtllXt~H VARIANCEt5Xtl9H STANDARD DEVIATION). 
DO 101 I= l tM 
AMEAN=SUM (I) /S · . 
VAR=<S*SUMSQCI>-SUM<I>**~)/(S*CS-1.0ll 
DEV=SQRT<VAR) 

IV=2*I-1 

IVl=IV+l 


101 WRITEC6tl00) <CVARIAT(J)tJ~IVtIVl>tAMEANtVARtDEV> 
100 FORMATClH '10Xt2A6t5XtF8.3t9XtFl0.3t9XtF8.3) 

GOTO 26 
9 READ(S,FMT> (Q(l)tl=l1Ml) 

26 DO 21 L=ltMtl4 
WRITE<6t30) N 

30 FORMAT<1Hltl0Xt41H CORRELATION MATRIX THE SAMPLE SIZE 1Stl5///I 
IF<I2-2) 92t93t94 


94 WR1TEC6t9SI 

95 FORMATC1H0t30H NO TRANSFORMATION ON RAW DATA//) 


GOTO 96 

92 WRITEC6t971 

97 FORMAT(lHOt36H ARC SINE TRANSFORMATION ON RAW DATA/II· 


GOTO 96 

McMASTE'R· UNIVERSITY LIBRAft~ 
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93· WRITE(6t98)

98 FORMAJ(lHOt3lH LOG TRANSFORMATION ON RAW DATA//) 

96 J2=CL-1)~2+1· 
 I 

J3=J2+1 

DO 27 J=LtM 

K=O 

DO 29 I=LtJ 

LIMIT=L+13 

IFCI.GT.LIMIT> GOTO 86 

KK=J*<J-1)/2+1 

K=K+l 


29 A(Kl=Q<KKl

86 WRITE<6•84) ((VAR1AT<Jl)tJl=J2tJ3)t(A(Kl)tKl=ltK)) 

84 FORMAT(lHOt5Xt2A6tl4F8e3) 


J2=J2+2 
J3=J3+2 

27 CONTINUE 
28 L=O 

NLH=CNL+l)*NL/2 

DO 32 J=ltNLH 

L=L+l 


32 	 A<Ll=Q(L) 
.CALL DSYMINCAtNLtlERR) 

IF<IERR.~Q.Q) GOTO 34 

WRITEC6t85)


85 FORMAT<tH0•85H CORRELATION MATRlX ON THE LEFT HAND SIDE CANNOT BE 
lINVERTED T~ANSFORMATION IS NEEDED> 

GOTO 90 
34 	DO 49 I=ltNL 

DO 49 J=ltNL 
K=J*(J-lJ/2+1 
A2CitJ)=A<K> 

49 	A2CJtl)=A2(~tJ) 
Nll=NL+l 
L=O 
DO 53 J=NLltM 
DO 53 l=NLltJ 
L=l+l 
K=<J-l)*J/2+1 

53 	 A<L>=Q(K) 
DO 50 J=ltNR 
DO 50 I=ltNL 
K=(J+NL-ll*(J+NL)/2+1 

50 	COR(l,J)=Q(K) 
DO 51 K=l tNL · 
DO 51 I= l tNR · 
B(Ktl)=OeO 
DO 51 J=ltNL 

51 B<Ktl >=BCKtl l+A21KtJ·)*CORCJtll 
DO 52 K=ltNR 



5 2 

56 

55 

58 

59 

. . 
61 
60 

63 
62 

65 

64 
. 
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DO 52 I=l•NR 
Bl<KtI)=O.O 
DO s-2· J=ltNL 
81 CK' I ) =B 1 <K' I >+COR ( J, K) *B ( J t I l 
CALL DSYMINCAtNRtlERR) 
IF<IERR.EQ.Q) GOTO 55 
WRITEC6t56) 
FORMAT<1Hl•85H CORRELATION MATRIX ON THE RIGHT HAND SIDE CANNOT BE 

!INVERTED TRANSFORMATION IS NEEDED> 
GOTO 90 
DO 58 I=ltNR 
DO 58 J=I,NR 
K=J*CJ-1)/2+1 
A2CitJ)=ACK) 
A2(J,f )=A2C I tJ) 
DO 59 I=ltNR 
DO 59 J=ltNR 
82CltJ)=O.O 
DO 59 K=ltNR 
B2(I,Jl=B2<ItJ)+A2(ItK>*Bl<KtJ) 
DO 60 I=ltNR . 
DO 60 J=ltNR 
IF<I.EQ.J) GOTO 61 
VEC(ltJ)=OeO 
GOTO 60 
VECCitJ)=l.OO 
CONT I NUE . 
CALL EBERVC<B2tNRtlt200tOeOltOe00ltlOOO.Ot30tVECtl) 
M3=NR-1 
DO 62 I=ltM3 
IJ=l+l 
DO 62 J=IJtNR 
IFC82(l,I>.GE.B2(J,J)) GOTO 62 
TEMP=B2(J,I) 
B 2 C I , I ) =B 2 CJ t J ) 
82(J,J)=TEMP 
DO 63 K=ltNR 
R<K>=VEC(Ktl) 
VEC<K•l>=VECCKtJ)
VECCKtJ)=R(K) 
CONTINUE 
WRITEC6t65) 
FORMATC1Hltl0Xt47H CHI SQUARE TESTS OF SUCCESSIVE CANONICAL ROOTS> 
WRITEC6t64)
FORMATC1H0tl6H CANONICAL ROOTSt5Xt7H LAMBDA98Xtl8H CHI SQUARE VALU 

lESt5Xtl8H DEGREE OF FREEDOMt5Xtl8H SIGNIFICANT LEVELi 
WL=l.000 
NROOT=O 
DO 66 I=ltNR 
JJ=NR-1+1 

http:VECCitJ)=l.OO
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IFCB2CJJ,JJ).LT.0.000) B2<JJtJJ)=Oe0 
WL=~·iL*( l.OO-B2(JJtJJ)) .. 
L=CNR-JJ+l>*<NL-JJ+ll 
CHISQ=-1.00*<S-0.5*(FLOAT<M>+1.oo>>*ALOGCWL) 

IF<82(Jj,JJ).NE.o.ooo> GOTO 67 

GOTO 68 


67 NROOT=NROOT+l 

82(JJ,JJ>=SQRT<B2CJJ,JJ)) 


68 IF<L.GE.30) GOTO 69 

IF(CHISQ.GE.CHl(L)) GOTO 70 


71 F==-0.01 

GOTO 66 


70 F=0.01 

GOTO b6 


69 IF<CHISQ.GE.CHl(30)) GOTO 70 

GOTO 71 


66 WRITE(6,72J B2CJJtJJ)tWLtCHISQtltF 

72 FORMAT(lH0,6XtF8e3t5XtF8e3tl5XtF8e3tl8Xtl4tl2XtF6e2) 


vHH T E ( 6 ' 12 > 
·12 FORMAT<IH0t56H 0.01 SIGNl~ICANT AT 1 PERCENT LEVEL -0.01 INSIGNIFI 

lCANT> 
WRITEl6t73) . · 

. "73 FORMATC1Hltl0Xt41H CANONICAL VECTORS ON THE RIGHT HAND SIDE///lOXt 
131H LARGEST VECTOR AT FIRST COLUMN//) 


KKK=2*NL 

DO 7'+ I =l tNR 

KK=KKK+l 

KKK=KK+l 


74 WRITEC6t75> <<VARIAT<K>tK=KKtKKK>tCVECCltJ),J=ltNROOT)) 

75· FORMAT(lHOt2A6t4Xtl4F6e2) 


DO 76 I=ltNL 

DO 76 J=ltNROOT 

COR<ItJ)=O.O 

DO 76 K=ltNR 


76 	CORCitJl=CORCitJl+B<ItK)*VECCKtJ) 
D 0 	 7 7 I = 1 ' N R 00T · 
DO 	 77 J=ltNL 

77 	 COR<JtI>=COR(Jtll/B2Cltl) 

DO 78 I=ltNROOT 

R<I>=O.O 

DO 	 78 J=ltNL 

78 	 R<I>=R(l)+COR(J,l)*CORCJtl) 

DO 79 I=ltNROOT 

DO 79 J=l,NL 


79 	COR(Jtl>=COR(J,J)/SQRTCRCI>> 
WR1TEt6t89) 


89 FORMAT(///) 

WRITEC6t80) 


80 FORMATC1H0tl0Xt40H CANONICAL VECTORS ON THE LEFT HAND SIDE///lOXt 
131H LARGEST VECTOR AT FIRST COLUMN/II 

http:F==-0.01
http:IF<L.GE.30
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KKK=O 
D 0 8· l . I =1 t NL ... 
KK=KKK+l 
KKK=KK+l 

81 WRITE(6t82• ((VARtAT<K>tK=KKtKKKlt(COR(ltJ)tJ=ltNROOT)) 

82 FORMAT<lHOt2A6t4Xtl4F6e2) 

90 CONTINUE 

83 STOP 


END 

. . 


•, 




APPENDIX I II 


FORTRAN IV PROGRAM FOR DISCRIMINATORY ANALYSIS BY CANONICAL VARIATES 

8.1 	 Instructions For Using the Program 

8.11 	 Input to Program A 

I Instruction card 

(1) 	 Columns 1 and 2 are for punching the number of groups (~ 20). 

(2) 	 Columns 3 and 4 are for punching the number of variates 

(~50). 

(3) 	 Columns 5 and 6 are for punching the number of description 

card(s) (1 ~ and 420). 

II 	 Description card(s) 

The title of project, name of investigator, and a brief 

description about the project are punched on the description 

cards. 

III 	 Variate Name card(s) 
) 

Twelve characters are used for one variate name. Six names 

are punched on.one card. All groups should have the same 

variate(s). 

IV 	 Group Name card(s) 

Twelve characters are used for one group name. Six names 

are punched on one card. 

105 
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V 	 Data Format card 

This is used for the input data. EACH SAMPLE HAS ITS OWN 

SEPARATE DATA CARDS. TWO OR MORE SAMPLES SHARING ONE DATA 

CARD IS NOT ALLOWED. Data of all groups should be punched 

in the same format. 

VI 	 Data cards 

Each group should have the following cards: First card' is 

used for punching the number of samples of this group. 

First five columns are reserved for this number. Digits 

are right justified. Data cards follow the first card 

imYrediately. 

8.12 	 Output from Program A 

I Description about project 

II 	 Canonical root and result of statistical test 

III 	 Canonical transformation matrix (print as well as punch) 

IV 	 Means of all groups expressed in tenns of canonical coordinates. 

8.13 	 Input to Program B 

If one wishes to plot each individual sample on canonical 

coordinates, the program B should be used. 

I 	 Instruction card 

(1) 	 Columns 1 and 2 are for punching the number of groups (~ 20). 

(2) 	 Columns 3 and 4 are for punching the number of variates 

(~ 50). 



II 

107 

(3) 	 Columns 5 and 6 are for punching the number of canonical 

axes (~ 50). 

Data fonnat card (same as used in program A) 

III 	 Canonical transfonnation matrix 


These are the output cards from program· A. 


IV 	 Data cards 


These are exactly same as used in program A. 


8.14 Output fran Program B 

Canonical coordinates for each sample are printed and 

group 1, 2, ••• , are also labelled. 

Note: 	 If the program A is used outside McMaster University, 

two subroutines should be inserted into the main 

program (1) matrix inversion, (2) eigenvalues and eigen

vector of a nonsymmetr1ca1 matrix. 
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. 	 8.2 Listing of 

\ 

the Program 

C THIS IS DISCRIMINATORY ANALYSIS ~y CANONICAL VARIATES 
C JULY 1967 P. J. LEE 
C THIS IS PROGRAM A 
c 

DIMENSION SUM<20t50),SUMB<50ltRC50)tVECC50t50),fMT(l6ltZ<50)t 
1SOURCE(320>,TITLEC16)tCHI<37),WQRKC100ltN1(350),VARIATC100)t 
2B<50,5Q),T(5Q,5Q),SUMAC5Q,50)tBPOOL(50t50),NUMBER(501tGROUPC40) 

DATA NUMBER/ lt 2t 3, 4, 5, 6t 7, Bt 9tl0tlltl2tl3tl4tl5tl6tl7tl8t 
119t20t2lt22t23t24t25t26t27t28t29t30t3lt32t33t34t35t36t37t38t39t40t 
24lt42t43t44t45t46t47t48t49t50/ . 

DATA CHI/ 6e6349t 9e2103t 11.3449, l3e2767t 15.0863t 16e8119t 18 
1.4753, 20.0902, 21.6660t 23.2093t 24j7250t 26.2170t 27.6883t 29.14 
213t 30.5779t 31.9999, 33.4087t 34.8053t 36.1908t 37.5662t 38.9321, 
3 4 o • 2 a9 t., '• 1 • 6 ·3 a4 , 4 2 • 919a , 1. 4 • 3 14 l • 4 s • 6 '• l 1 , '• 6 • 9 6 3 o , '•a •21 a2 , 4 9 
4e5879t 50e8922t 63e6907t 76el539t 88e3794tl00e4250tll2e3290tl24ell 
560t135.8070/ 

READC5tl) NOGtNOVtNOD 
1 FORMAT< 3 I 2) 

NOC=NOV*2 
NOD=NOD*l6. . 
READf5t3) <SOURCE<I.lt1=ltNOD> 


3 FORMATC16A5) 

WRITEC6t42) CSOURCEflltl=ltNOD) 


42 	 FORMAT<lHOt20Xtl6A5) 

NOV1=2*NOV 

READ(5,4) <VARIAT<Iltl=ltNOVl) 


4 	 FORMAT <12A6 > 

NOG1=NOG*2 

READC5,4> <GROUP(IJtl=ltNOGl) 
READC5t3) FMT 
NTOTAL=O . 
DO 6 I=ltNOV 

DO 5 J=I,NOV 

T<ItJ>=O.O 

T(J,J)=O.O 

BPOOLCitJ)=OeO 


5 	 BPOOL(J,I>=OeO 
6 	 R'f I>=O.O 


DO 7 I=ltNOG 

DO 7 J=I,NOV 

SUM<ItJJ=OeO 


1 	 SUM ( J' t I ) =0 • 0 
DO 	 8 NGROUP=ltNOG 
READC5t9) NN· 

9 	 FORMAT(l5> 

NTOTAL=N10TAL+NN 

Sl=NN 

DO 10 I=ltNOV 


' 
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DO 	 11 J=l,NOV 
B(ltJ)=O.O 


11 B<Jd >=O.O 

10 SUMBCI>=O.O 


DO 12 lREAD=ltNN 

READ< 5, FM T> CZ ( J > t J =l t NOV) 

DO 12 I=l•NOV 

DO 13 J=ItNOV 

8(1,J>=BCitJ)+Z<I>*Z<JJ 


13 	BCJd >=B< I tJ) 
12 	 SUMBCJ)=SUMBCil+Z(I) 


DO 14 I=ltNOV 

DO 15 J=ltNOV 

T<ItJ)=T<I•J>+B<ItJJ 1 


15 	 TCJtI >=T< I tJ) 
R C I >=R ( I ) +SUMB ( I ) 

SUMB(ll=SUMB(l)/Sl 


14 SUM<NGROUPtl>=SUMBCIJ 

/ DO 16 I=ltNOV 


DO 16 J=ltNOV 

SUMACitJl=SUMB<I>*SUMB(J)*Sl 


16 	SUMA<Jtl)=SUMA(ltJ) 
. DO 1~, I=ltNOV 


DO 17 J=ltNOV , 

BPOOL<ItJl=BPOOLCltJJ+BCl1J)-SUMAtitJ) 


17 	BPOOLCJtI)=BPOOL(l1J) 
8 	 CONTINUE 


SS=NTOTAL 

DO 18 I=ltNOV 


18 	RCI>=R<Il/SS 

DO 19 l=ltNOV 

DO 19 J=ltNOV 


19 	SUMA(l,J>=R<I>*R(JJ*SS 

DO 20 I=ltNOV 

DO 20 J=ltNOV 

B<ItJl=T<ItJl-SUMACitJJ-BPOOLCltJ) 


20 	8(JtI>=B(ltJ) 
CALL MINVSE<BPOOlt50tNOVtO•OtlERRtNltWORKJ 
IF<IERReNE.Q) GOTO 99 
DO 21 I= 1 'NOV 
DO 21 J=ltNOV 
T(ItJJ=O.O 
DO 21 K=l•NOV 

21 	 T(ltJ>=T<ltJl+BPOOL<ItKl*B(KtJ) 

DO 22·I=ltNOV 

DO 22 J=ltNOV 

VEC<I1JJ=OeO 

VEC(J,IJ=O•O ..IFCl.EQ.JJ VECCltJJ=leOOO 


22 CONTINUE 


http:IFCl.EQ.JJ
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CALL EBERVCCTtNOVtlt200~0.0ltO.OOltlOOO.Ot50tVECt.l) 

M3=NO)J-1 

DO 23 I=ltM3 · 

IJ=I+l 

DO 23 J=IJ,NOV 

IF(T(ltl).GE.T<J,JJ) GOTO 23 

TEMP=T(l,l) 

T< I ,1 J=TCJ,JJ 

TCJ,J)=TEMP 

00 2'+ K= l tNOV 

R<K>=VEC(Ktl) 

VEC<Ktl>=VEC<KtJ) 


. 24 VEC(KtJ)=R(K) 
23 CONTINUE 

WRITEC6t25) 
25 FORMAT<1Hltl0Xt47H CHI SQUARE TESTS OF SUCCESSIVE CANONICAL ROOTS> 

. \aJRITEC6t26) 
26 FORMAT<1H0,16H CANONICAL ROOTSt5Xt7H LAMBOAt 8Xtl8H CHI SQUARE VAL 

·1UESt5Xtl8H DEGREE OF FREEDOMt5Xtl8H SIGNIFICANT LEVEL> 

\•JL= 1. 000 

NROOT=O 

NOV2=NOV 

NOGl =NOG-1 · 

IFCNOV.GT.NOGll NOV2=NOG1 

DO 31 I=ltNOV2 

JJ=NOV2-I+l 

IF(T{JJ,JJ).LT.o.croo> T(JJtJJ)=O.o 

WL=WL*<l.OOO+T(JJ,JJ)) 

l=CNOV-JJ+ll*(NOG-JJ) 

CHISQ=CSS-1.0-0.s~<FLOAT<NOV>+FLOATlNOG)))*ALOG(WL) 
IF<TCJJtJJ>.Ea.o.ooo> GOTO 27 

NROOT=NROOT+i . 

T ( JJ t JJ >=SQRT CT fJJ t JJ)) · 


27 JFCLoGT.30) GOTO 28 

IF<CHISQ.GE.CHICL>> GOTO 29 


30 F=-0.01 

GOTO 31 


29 F=0.01 

GOTO 31 


28 	 IF(LeGT.100) GOTO 32 

L=<L-25)/10+30 

IF<CHISQ.GE.CHI<L>l GOTO 29 

GOTO 30 


32 CHI1=0•5*<2.3263+SQRT<2.0*FLOATCL>-1.000>»**2 

IF<CHISQ.GEeCHil) GOTO 29 

GOTO 30 


31 WRITE(6t34) TlJJ,JJ)tWLtCHISOtltF 

34 FORMATl1HOt6XtF8e3t5XtF8e3tl5XtF8e3tl8XtI4tl2XtF6•2> 


WRITE(6t35)
35 	 FORMAT(IH0t61H NOTE OeOl SIGNIFICANT AT 1 PERCENT LEVEL -0.01 INSI 

http:JFCLoGT.30


.., 

Hl 

.lGNIFICANTl 
WRITE<6,36> 	 . . 

36 	 FORMATC1Hl,lbXt29H.THE CANONICAL TRANSFORMATION//) 
CALL ROSIE<VECtVARIATtNUMBERtNROOTtNOV) 
DO 41 J:-:1,NOV 

41 	 WRlTEC7,2> CVECCJtlltl•lt~IOOTJ 
2 	 FORMAT<lOF8.4) 


DO 37 l=ltNOG 

DO 37 J=ltNROOT 

T<I tJ)=O.O 

DO 37 K=ltNOV 


3 7 T ( I , J ) :: T ( I ' J ) +VE C ( K t J ) *SUM ( I t K ) 
WRITE(6t38)

38 FORMAT ClH1'10Xt68H THE GROUP MEAN COORDINATES o.:. FM.H VARIATE ALON 
lG THE CANONICAL AXES//) , 


CALL ROSIE<TtGROUPt NUMAERtNROOTtNOG) 

WRITEC6t39) . 


39 FORMAT(///.) 
VJRITEf 6t40) 

40 FORMAT<!H0t40Xt68H ~****OUR PROGRAM IS ONLY TO PRODUCE WHAT IT CON 
lTAINS THANK YOU*****) 
.WRITE(qt44i 


44 FORMAT (lHl) 

GOTO 100 . 

99 WRITE(6943) 
43 FORMATC1H0t51H 

100 STOP 
ENO 

WITHIN GROUP DISPERSION MATRIX CAN NOT BE INVERTED> 


SUB ROUT I NE ROS IE ( VEC 'VAR I AT tNUMBER tNROOT tNc~n 
DIMENSION VEC<5Q,5Q),VARIAT(l00)tNUMBER<50~ GROUP(40) 
DO 1 L=l9NROOTtl0 
LIMIT=L+9 
IPRINT=NROOT 
IF<NROOT.GTeLIMIT) lPRINT=LIMIT 
WRITE<6t2l CNUMBER(J),J=ltIPRINT> 

2 	 FORMAT<lHOt7Xtl5H CANONICAL AXISt5Xtl0110/I)
DO 1 K=ltNOV. 

IV=2*K-1 

IVl=IV+l 


l WRITEl6t3) f CVARIATiJ)1J=iVtlVl)1fVECfKtJ)1J=L1IPRINT)) 
3 FORMATf lH tl6Xt2A6t10Fl0•4) 

R.ETURN 
END 
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C 
c 
c 

1 

2 
3 

· 10 

6 

' I 

. ·5 
8 
9 
1 

THIS IS PROGRAM B 

DIMENSION T<50>,VECC5Q,5Q),0(5Q),FMT(l2) 
READ<5tl) NOG,NOVtNROOTtFMT 
FORMAT(312/12A6) 
DO 2 J::l,NOV 
READ<5t3l (VEC(J,K)tK=ltNROOT) 
FORMAT< 10F8.4) 
WRITEC6tl0)
FORMATC1Hlt42H THE CANONICAL COORDINATES FOR ALL SAMPLES///)· 
DO 7 NGROUP=ltNOG 
READ(5t6) N 
FORMAT(!5) 
DO 8 I=ltN 
READ<5tfMT> (0(J)tJ=ltNOV) 
DO 5 K=l t N~ou-1 
T·< Kl= 0 • 0 
DO 5 J=ltNOV 
T<K>=TlKJ+VEClJtK)*D(J) 
WRITEC6t9) NGROUPtlTl·KltK=ltNROOT> 
FORMA.T <lHO t SH GROUP t 2 t lOX ,.( 15F8 • 2 >) 
CONTINUE 
END 



APPENDIX IV 

FORTRAN PROGRAM FOR PRINCIPAL COMPONENT ANALYSIS 
IV 

9.1 Instructions For Using The Program 

9.11 Input to Program 

I 	 Instruction card 1. 

The function of this card is to tell the computer how many 

sets of different data are to be subjected to component 

analysis. Each data set should have the following input 

cards (from II to VII). Columns 1 to 10 are reserved 

for punching the number, digits are right justified. 

II 	 Instruction card 2. 

(1) 	 First 5 columns are reserved for punching the number of 

samples. There is no reasonable limit on the sample size 

(N ~99999 at the present case). Digits are right justified. 

(2) 	 Columns 6, 7 and 8 are reserved for punching the number 

of variates. The maximum number of variates is 100. 

(3) 	 Columns 9, 10 and 11 are reserved for punching the total 

number of variates. It is not necessary that all variates 

are to be subjected to principal component analysis. 

(4) 	 Columns 12, 13 and 14 are used to indicate the number of 

description cards. 

(5) 	 Column 15 


punch 1 1f 1nput is correlation matrix 
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punch 2 if input is raw data matrix 

{6) Co 1umn 16 

.punch 1 Arc sine square root transformation 

The user must make sure that all input data are less 

than 1.00, and positive when this transfonnation is used. 

punch 2 Log transformation (base 10) 

The user must make sure that all input data are greater 

than zero. 

punch 3 no transfonnat1on 

t7) Column 17 

punch 1 number of components to be rotated is 

specified by the user (see no. 8). 

punch 2 number of components to be rotated is 

equal to number of canponents {or eigenvalues) of the 

correlation matrix which are greater than zero. 

punch 3 number of components to be rotated 

is equal to the number of components {or eigenvalues), 

which are greater than 1.000. 

(8) Columns 18, 19 and 26 · 

To specify the number of components to be rotated. It is 

used for the case 1 of (7). 

(9) Column 21 

punch 1 for using correlation matrix 

punch 0 for using covariance matrix 

If the variates are in widely different units, covariance 

of the original quantities would have little meaning and 
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the correlation matrix should be used. Conversely, if the 

variates are reasonably comparable, the covariance fonn 

has a greater statistical appeal {Anderson, 1963). 

(10) 	Column 22 

punch 1 for R-mode 

punch 0 for Q-mode 

III 	Title card 

The project title and investigator's name will be punched 

on one card {no more than 80 characters). 

IV 	 Description card(s) 

A brief description about your project is allowed. The 

maximum number of cards is 50, whereas the minimum number 

is 1. 

V 	 Variate Name Cards 

Twelve characters are used for the name of each variate. 

They should be punched in a continuous sequence and also 

in the same order as in the data matrix or correlation 

matrix. Six names are on one card. 

VI 	 Data Format cards 

This is used for your input data card. See "Instructions 

for using the Canonical Correlation Program). 

VII 	 Data cards 

One may punch the data cards in one's own way. The 
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correlation matrix must.be stored row by row, each row 

going up to the diagonal elements {see "Instructions for 

using the canonical correlation programme"). Each 

sample has its own separate 'data card(s)~ Two or more 

samples sharing one data card is not allowed. 

Note: 	 If the variates are punched in columns whereas the 

samples are punched in rows, this data matrix will 

only be used for R-mode principal component analysis. 

If we wish to carry out both R- and Q- mode on the same 

set of data, the raw data matrix should be transposed and 

repunched by matrix transpose program in order to arrange 

the sample in colt.111ns and variates in rows. Again, 

each variate has i~s own separate data card(s). Two 

or more variates sharing one data card is not allowed. 

9.12 	 Output from Program 

I Project title and investigator's name. 

II 	 Description of the project. 

III 	 Mean, variance, and standard deviation of each variate for 

R-mode. 

IV 	 Correlation matrix. 

V 	 Components (eigenvalues) and their contributions to the 

total variance. 

VI 	 The number ~f cycle for var1max rotation and ~ar1max 



117 

criterion. 

VII 	 The rotated nonnalized component loadings arranged in 

column for each factor. 

VIII 	 Punch the normalized component loadings (6E12.4) and the 

rotated normalized component loadings (lOFB.4} on the 

cards. 

Note: 	 If this program is to be used outside McMaster University, 

one has to insert a subroutine for evaluating eigenvalues 

and eigenvectors of a symnetric matrix. 
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9.2 Listing of the Program 

C THIS IS PRINCIPAL COMPONENT ANALYSIS PROGRAM JUNE 1966.P J LEE 
c 
c 

DIMENSION TITLE(l6>tVARJAT(200)tSOURCE(800)tFMTC16)tSUMSQ(100)t 
1SUM<100),Q(5Q50JtOC100),R<1oo>tVEC<100,1oo>tWORK(702)tA(5050)t 
2H(100)tR1ClOO>tR2<100)tNUMBERC100) 

EQUIVALENCE <TITLEtSOURCEtVARIAT>tCOtVEC)tCAtVEC<SOSl>>•<SUMtH)t 
l(SUMSOtRl) 

DO 200 l=ltlOO 
200 NUMBER (I>= I 

READC5t91> ISET 
91 	 FORMAT CI 10 J · 


DO 90 NSET=ltISET 

READC5tl) NtMtNOVtN~tllt12tl3ttFA~t&4,i5 


1 	FORMATCI5t313t3Iltl3t2111 . 

READC5t2J TITLE 


2 	 FORMAT(l6A5) 

WRITEC6t3) TITLE 

WRITEC7t2) TITLE 


3 FORMAT(1Hlt30Xtl6A5) 

·WRITE(6t4) ' . 


4 	 FORMAT(///) 

NN=NS*l6 

READC5t5) CSOURCECI>tl=ltNN> 


5 	 FORMAT f16A5) 

WRITEC6t6> <SOURCE(JJtl=l•NN) 


~ 	FORMAT(lH t20Xtl6A5) 

S=N 

Ml=(M+l)*M/2 

NV=M*2 .. 

REAO<St7) <VARIAT<I>,J=l;NV) 


7 	 FORMAT(l2A6J. 

READC5t8) FMT 


8 	 FORMATC16A5) 

IF<Il.E0.1> GOTO 9 

DO 10 J=ltM 

SUM(JJ=O.O 


10 	SUMSQ(JJ=OeO 

DO 11 J=ltMl 


11 	 Q(J>=O.O 

DO 20 NSAMPL=ltN 

READC5tFMT) CDCJ)tJ=ltNOV) 

IFCI2eEQ.3) GOTO 13 

IF<I2eEQ.2) GOTO 14 

IF<12.EQ.1J GOTO 15 

WRITEl6tl6J 


16 	FORMAT(lHOt37H WRONG CODE NUMBER FOR TRANSFQRMATIONJ 

GOTO 90 


http:IF<12.EQ.1J
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11.- D0 l 7 J == 1 t M 
17 D(J)=ALOGlO<D<J>> 

GOTO 13 . 
15 DO 18 J=ltM 
18 DCJ>=ARSIN(SQRTCD(J))) 
13 DO 19 J=ltM 

SUMCJ>=SUMCJ)+DCJ) 
19 SUMSQ(J)=SUMSQ(J)+D(J)*O(J) 

M2=M-1 
DO 20 K=ltM2 
DO 20 Kl=KtM 
L=Kl*CK1-1)/2+K 

21 Q(l)=QCL>+DCK>*D<Kl) 
20 CONTINUE 

IFCI4.E0.1) GOTO 138 
IF<I4.EQ.0) GOTO 139 
WR I TE f 6, l'.. o) 

140 FORMATCIH0t48H WRONG CODE FOR COVARIANCE OR CORRELATION MATRIX) 
· GOTO 90 

139 DO 142 l=ltM2 
DO 142 J='ItM 
K=<J-l)*J/2+1 

· 142 ~<K>=C~*QCK>-SUM<I>*SUM(J)J/CS*(S-leOlJ 
GOTO 141 . 

138 DO 23 I=ltM2 
DO 23 J::J,M 
K=(J-l)*J/2+1 
IFCl-J) 24t25t24 

25 QCK>=leOOO 
GOTO 23 

24 QCK>=<S*OCK>-SUM<I>*SUM(JJ)/SQRTC<S*SUMSQ(I)-SUMCI>*SUM<t>>* 
· lCS*SUMSQ(J)-SUMCJ)*SUM(J))) . 

23 CONTINUE . 
QCK+l)=l.000 

141 JFCIS.EQ.lJ GOTO 143 
IFCIS.EQ.0) GOTO 26 
WRITE(6tl45) 

145 FORMAT(lHOt29H WRONG. CODE FOR R OR Q MATRIX) 
GOTO 90 

143 WRITEC6t51J 
51 FORMAT<1Hlt30Xt5H MEAN.tllXt9H VARIANCEt5Xtl9H STANDARD DEVIATION) 

DO 28 I=ltM 
AMEAN=SUM(l)/S 
VAR=CS*SUMSQCI>-SUM<I>**2)/(S*(S-le0)) 
DEV= SQRT (VAR,. . 
IV=2*1-l 
IVl=IV+l 

28 WRITE(6t49)((VARIAT<JltJ=IVtlV1Jt AMEANtVARtDEV) 
49 FORMAT(lH tlOXt2A6t5XtF8.lt9XtEl2e4t9XtE12.4) 

IFf 14.EQ.0) GOTO 150 

http:JFCIS.EQ.lJ
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. GOTO 26 
9 READ(5,FMTl (Q(lltI=ltMl> . 

26 DO 27 L=l,Mtl4 . 
WRITE(6,30) NtM 

30 FORMAT(1Hltl0Xt55H CORRELATION OR COVARIANCE MATRIX THE SAMPLE 
!SIZE IStJ5,5Xt26H THE NUMBER OF VARIATES 1Stl3/) 

IF<I2-2l 122tl2ltl20 
120 WRITE<6tl23)
123 FORMATtlHOt30H NO TRANSFORMATION ON RAW DAIA///) · 


GOTO 12'l 

121 WRITEC6tl25)

125 FORMAT<lHOt31H LOG TRANSFORMATION ON RAW DATA///) 


GOTO 124 

122 WRITE(6tl27)

127 FORMAT(lHOt36H ARC SINE TRANSFORMATION ON RAW DA1A///) 

124 J2=<L-ll*2+1 


J3=J2+1 

DO 27 J=LtM 

K=O 
DO 29 I=LtJ 

LIMIT=L+13 


..IF<I.GT.eLIMIT> GOTO 86 

KK=J*(J-1)/2+1 

K=K+l 


29 ACKl=Q<KK> 

86 WRITE<6t84> C<VARIATCJ1>,Jl=J2tJ3)tCACKl)tKl=ltK>> 

84 FORMAT(lH t5Xt2A6tl4F8e3) 


J2=J2+2 

J3=J3+2 


27 CONTINUE 

150 	K=O 


DO 35 I=ltM 

DO 35 J=ItM 

K=K+l 

L=J*(J-1)/2+1 


35 	 ACKl=O<Ll 

REWIND 0 

CALL HOUSE2<MtMt0e00000ltAtRtWORKtMJ 

REWIND 0 

DO 37 l=ltM 


37 	 READ(O) <VECCltJ)tJ=ltM) 

DO 38 I=ltM 

SUM(l)=O.O 

DO 38 J=ltM 


38 	SUM<t>=SUM<lt+VECCl~J)*VECCltJJ 

DO 39 I= l tM 

DO 39 J=ltM 


39 	VECCI1J)=VECCl1J>*SQRTIABSCRCl)))/SQRTISUMIJ)) 

NFAC=O 

DO 40 l=ltM 
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IFCRf lleLE.0.001) GOTO 40 

NFl\C=NFAC+l 


40 	CONTINUE 

PER=O.O 

DO 92 I=l,NFAC 


92 PER=PER+R<I> 

DO 93 I=ltNFAC 


93 Rl(l)=(R(l)/PER)*lOO.O 

WRITE(6t43) 


43 FORMAT<1Hlt10Xt66H TABLE FOR COMMON FACIOR~ AND iHEIR CON1RIButlON 
1 TO TOTAL VARI/\NCE·//17X.81-t FACTO.Rs,2x,30H PER CENT OF TOrAL COMMUN 
2ALITYt2Xt20H CUMULATIVE PER CENI/) . 

R2<U=O.O 
DO 116 l=ltNFAC 


116 R2CI+ll=R2<I>+Rl(I) 

DO 115 l=ltNFAC 


115 	 WRITEC6,94) CRCIJ,Rlf IltR2<1+1)) 
94 	FORMAT<lH tl5X,El2.4,12XtF8.2•19itF8e2) 


IF(I3.EQ.1) GOTO 109 

IFCl3.EQ.2) GOTO 110 

IFCI3.EQ.3) GOTO 111 

WRITE(6tll2) 


112 FORMAT<tH0tl0Xt24H WRONG ·CODE FOR ROTATION)
. . 
GOTO 90 


109 LFAC=IFAC 

GOTO 113 


110 LF.AC=NFAC 

GOTO 113 


111 	 KFAC=O 

DO 114 I=l'M 

IF<R<I>.GE.t.000) KFAC=KFAC+l 


114 CONTINUE 

LFAC=KFAC 


·113 NFACl=LFAC-1 

· ..WR I TE ( 7 t'l46) 


146 FORMATC26H NORMALIZED FACTOR LOADING) 

DO 147 J=ltM 


147 	WRITEl7tl35) <VECCt,Jlti=ltLFACJ 

IF(LFAC.EQ.1) GOTO 201 

WRITE(6,136) 


136 FORMATC1Hltl5Xt38H RECORD OF SUCCESSIVE VARIMAX ROTATION///) 
WRITEC6tl28) NFAC 

128 FORMAT(lHOtl7Xt34H THE NUMBER qF POSITIVE FACTORS IS,13/J 
WRITE<6tl29> LFAC 

129 	FORMAT<lHQ,17X,33H THE NUMBER OF ROTATED FACTORS 1Stl3///). 
13.3 	 CRI TEI =O.O 


DO 75 I=lt20 

DO 73 J=ltNFACl 

Jl2=J+l . 

DO 73 K~Jl2tLFAC 


I 
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DO 71 J2=1tM 

fHJ2 > =O.O 

DO 71 JP=ltLFAC 


71 	 H(J2>=H(J2)+VEC(JPtJ2)*VECtJPtJ2) 

U=O.O 

V=O.O 

AU=O.O 

BV=O.O 

CW=O.O 

DW=O.O 

DO 72 L=ltM 

VECCJtL>=VEC(Jtl)/SQRT(H(LJ> 

VEC<KtL>=VEC<Ktl)/SQRT(H(L)) 

U~VEC (J, L) **·2-VEC (Kt L) **2 

V=VECCJtl)*VEC(KtL>*2.0 

AU=AU+U 

BV=BV+V 

CW=CW+U~·*2-V**2 

72. 	DW=DW+2.0*U*V 

Tl=DW-2.0*AU*BV/FLOAT<MJ 

T2=CW-<AU**2-BV**2)/FLOATCM) 

IF<T2.EQ.O.O> GOTO 90 


. PHI=ATANCABS(Tl)/A8$(T2>J 
IF<T1.Gr.o.o.AND.T2.GT.o.o) GOTO 101 
IF(Tl.GT.o.O.AND.T2eLT.o.OJ GOTO 102 
IF<T1.LT.o.o.AND.T2.LT.o.o> GOTO 103 
IF<T1.LT.o.o.AND.T2.GT.o.o> GOid 1U4 

101 	 PHI=PHl/4.0 
GOTO 105 

102 PHI=0.78539813-PHl/4e0 
10~ T12=-l•O*SIN(PHIJ 

T2l=SIN<PHI) .. 
GOTO 106 

103 PHI=0.78539813-PHl/4.0 
GOTO 107 

104 PHI=PHI/4.0 
107 T12=SIN(PHIJ 

T21=-l.O*SINCPHI) 
106 	Tll=COS<PHI) 

T22=COSCPHI> 
DO 74 L=ltM 
WECl=VEC<Jtll*Tll+VECCKtL>*T21 
WEC2=VECCJtL>*Tl2+VECCKtL>*T22 
VEC<J.tl)=~ECl 

74 	VEC<KtLJ=WEC2 

ANGLE=PHl*57e29577867 


73 	CONTINUE 

Vl=OeO 

V2=0e0 

DO 76 J=ltLFAC. 


http:IF(Tl.GT.o.O.AND.T2eLT.o.OJ
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SUM(J)=O.O 

SUMSQ(J)=O.O 

DO 76 Jl=1'M 

SUM(J)=SUM(Jl+VEC(J,Jl)**2 


76 	SUMSQ(J)=SUMSQ(Jl+VEC<JtJ1)**4 

DO 78 J=ltLFAC 

Vl=Vl+SUM<J>**2 


78 	V2=V2+SUMSQ(J) 

VARIMA=FLOAT(M)*V2-Vl 

CRITIC=VARIMA-CRITEI 

WRITE(6t79> <ItVARIMA)


79 	 FORMATC1H0•10Xtl5H ROTATION' CYCLEt2XtI2,4Xtl8H VARIMAX CRITERION, 
1Fl2.4)


IF(CRITIC.LE.0.10) GOTO 117 

CRITEI=VARIMA 


75 CONTINUE 
117 JEN=l 

WRITE<7t148) 
148- FORMAT<34H ROTATED NORMALIZED FACTOR LOADING) 

DO 137 K=ltM 
137 WRITE<7tl51> <VECCJtK>tJ=ltLFAC> 
151 FORMATC10F8e4J 
201. NF=O 

M4=M-l 

DO 62 I=ltLFAC 

NFAC3=0 

DO 63 J=JENtM 

IF<ABSCVEC<ItJ>>.GT.0.500) NFAC3=NFAC3+1 


63 	CONTINUE 

IF<NFAC3.EQ.0) GOTO h2 

D 0 6 1 J =J.E N , M 4 . 

Jl=J+l 

DO 61 K=JltM 

IF<ABS<VEC<1,J>>.GT.ABSCVECCt1KJ)) GOTO 61 

DO 95 L=ltLFAC 

D<L>=VEC<L•J)

VEC<LtJ>=VEC<LtKJ 


95 	 VEC<LtKl=D<LJ 

TEMP=VARIAT<2*J-1) 

TEMP1=VARIAT<2*J) 

VARIAT<2*J-l)=VARIATC2*K-1) 

VARIAT<2*Jl=VARIATC2*K) 

VARIAT<Z*K-l>=TEMP 

VARIAT<2*K>=TEMP1 


61 	 CONT I NUE . 
NFAC2=NFAC3-l+NF 

NFAC4=NFAC2+1 

DO 64 J=JENtNFAC2 

Jl=J+l 

DO 64 K=JltNFAC4 


http:IF(CRITIC.LE.0.10
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IF(VECCI,J>.GT.VEC(ltK>> GOTO 64 
DO 	 96. L=l ,LFAC 

.. . 	 .D<Lr=VEC(LtJ) 
VECCL,J>=VEC<L,K> 

96 	VEC(L,Kl=D<L) 

TEMP=VARIAT(2*J-l> 

TEMP1=VARIAT<2*J) 

VARIAT<2*J-ll=VARIAT<2*K-1) 

VARIATC2*Jl=VARIAT(2*K) 

VARTAT(2*K-l)=TEMP 

VARIAT<2*K>=TEMP1 


64 	CONTINUE 

JEN=NFAC3+l+NF . 

NF=NFAC3+NF 

IFCJEN.EQ.M) GOTO 134 


62 CONTINUE 
134 DO 34 L=ltLFACt15 

WRITE<6t52J 
52 FORMAT<1Hltl0Xt74H THE ROTATED NORMALIZED FACIOR LOADING~ ARRANGED 

1 IN COLUMN FOR EACH FACTO~//) 


LIMIT=L+l4 

IPRINT=LFAC 

IF<LFAC.GT.LIMIT> l~RINT~LIMIT
.. 
WRITE<6tl30) <NUMBERH) tI=LtIPRINT) 

130 	 FORMAT<lHOt7Xt7H FACTORt2Xtl5I7> 

DO 34 K=ltM 

IV=2*K-l 

IVl=IV+l 


34 WRITEC6t50)CCVARIAT(J)tJ=IVtlVl)tCVECCJtK)tJ=LtlPRINT)) 

50 FORMAT<lH t4Xt2A6tl5F7e2) . 


135 FORMAT(6El2e4) 

90 CONTINUE 

83 	 STOP • · 


END 



	Structure Bookmarks



