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ABSTRACT

The theory of canonical correlation analysis has been combined
with that of trend surface analysis in order to construct a multivariate
trend surface which is called a canonical trend surface.

A canonical trend surface is a parsimonious summarization of
areal variations of a set of geological variates. This trend has a
property of maxi@um correlation between variates and geographic
coordinates. It does not show the absolute value of each variate,
but it shows the nature of the variation of a linear combination of
the variates. The Permian system in western Kansas and eastern Colorado
was studied as a numerical example to illustrate the general procedures
in solving practical problems and also to demonstrate the validity ofv
this technique. By use of this type of trend it is possible to reveal
the underlying pattern of geographic variation common to a set of variates.

Other applications of cénonica] correlation analysis in geology
have been explained with illustrative geological examples, namely: the
relationships between two.sets of variates, matching two factor patterns,
Q-technique canonical correlation, and discriminatory analysis.

Comparison of canonical correlation analysis and principal
factor solution in factor analysis suggests that factor analysis may
be more appropriate for suggesting interrelationships among variables,
while canonical correlation analysis may be a suitable tool for prediction

problems.
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FORTRAN IV programs for these computations are listed in

appendices with instructions for using them.
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CHAPTER 1
INTRODUCTION

Suppose we have a number of rock specimens taken from a rock
body, and that the abundance of various kinds of minerals, major elements,
trace elements, fossils and sn on, are estimated from each specimen.

It may be asked whether or not there are some relationships between

the major and trace elements, or between the minerals and size parameters,
or between trace elements and clay minerals, or hetween sediment types

and fossils. | 7

Let us take the trace elements and clay minerals as an example.
One simple correlation coefficient indicates a possible relation between
one of the trace elements and one of the clay minerals. If we had
five clay minerals and ten trace elements, we will have 50 simple
correlation coefficients to show all possible relationships. The
relationships indicated by 50 coefficients are not easily understood:
“what is needed is some technique which will express the relationship
between the set of trace elements and the set of clay minerals in a
more concise form. .

Canonical correlation analysis was introduced by Hotelling in
1936 (the paper was read in 1935), It is a technique to understand the
relationships between two sets of vériab]es (for example, trace elements
and clay minerals) and was an outgrowth of simple correlation analysis.
The relationship between the two sets of variables are summarized and

expressed by a simple index. For example, the clay mineral and



trace element abundances are weighted and combined into two linear

‘combinations such as

U= a, (kaolinite) + a, (i1lite) + as (chlorite ) + ....
V= b, (vanadium) + b, (zirconium) + bs (titanium) + ....
where a1s 2y A3, ceae bl’ b2’ b3, «e.... are weights to be determined

such that U and V have a maximum simple correlation coefficient which
is called the canonical correlation coefficient or canonical root.

The strength of the link between the sets is measured by the canonical
root, whereas the nature of the link is indicated by those trace
elements and clay minerals having larger weights.

The principle of candnical correlation analysis was immediately
used as a procedure for discriminating between two populations and also
as a technique for testing difference between groups. The technique
has the properties of maximizing the difference between two populations
and also displaying each individual on a set of canonical coordinates
(Bartlett, 1938). Canonical correlation was generalized for three or
more sets of variables and partial canonical correlation was also
proposed by Roy (1957, p. 26). Canonica]ifactor analysis (Rao, 1955)
was developed by making use of the canonical correlation principle.
Horst (1961, 1961la) has applied the same principle to the problem of
matching two or more factor patterns. The probability function of the
canonical roots has been studied by a number of mathematical
statisticians (Hsu, 1941; Bartlett, 1941, 1947; Constantine and James
1958). Uses of this technique has been suggested in various fields:

psychology (Bartlett, 1947, 1948; Thomson, 1947; Burt, 1948; Hotelling,



1957; Beech and Maxwell, 1958; Maxvwell, 1961; Kendall, 1961, pn. 75-85;
Meredith, 1964; Das, 1965; Dunteman, 1967), bioloqy (Pearce and Holland,
1960; Kshirsagar, 1962; Bartlett, 1965, p. 201-224; Seal, 1964,

p. 123-152), economics (Waugh, 1942; Tintner, 1946; Morrison, 1967,

© p. 207-220), socioloqy (Cooley and Lohnes, 1962, p. 31-49; Koons, 1962),
and geology (Buzas, 1966; Reyment, 1966).

Supnose that a number of rock specimens have been collected
from an area, so that each specimen has its own geographic locality.
After estimation of trace elements, for instance, we would like to
know the areal variation of each trace element over the area studied.
The simplest technique is to plot each individual value of a particular
trace element on the map according to its locality, and then to draw
contour lines showing equal abundance of that trace element. This type
of map shows not only regional variation buf also local fluctuations.
If we are able to filter out the local fluctuations, then the regional
variation will be accentuated. This could be done by fitting a
polynomial surface to this set of data over the area. Deviations from
the polynomial are cbnsidered to be residuals or local fluctuations
and the computed surface is considered to be the regional 'trend'. If
we had ten trace elements, then we will have ten polynomial surfaces
or trend maps indicating variations of trace elements. It may be asked
whether or not is it possible to evaluate a single trend which is
common to all or some of the trace elements. Again, we encounter the same
problem as in the prevfous example, i.e. we need a summarization of the

ten maps.



After a period of discussion about the possible application of
the canonical correlation analyvsis in geoloqy at McMaster University in
1965, Dr. G. V. Middleton sugqgested the canonical trend idea. Since
that time, extensive studies were carried out on both real geological
and hypothetical data in order to understand the geological meanings of
this technique.

A canonical trend is a polynomial surface which shows the
variations of many variables over an area simultaneously by making use
of the principle of canonical correlation analysis. In this case,
one set of variables consists of geological variables such as trace
elements, whereas the second set of variables is composed of location
of specimens, i.e. (X, Y) coordinates. The canonical trend is a succinct
summarization of areal variations of many geological variables and their
geographical coordinates.

Application of canonical trend analysis was introduced by Lee
and Middleton (1967) before a colloquium on trend analysis held in
Lawrence, Kansas, and also by Middleton and Lee (1967) before the seventh
-International Sedimentological Congress held in England.

A quadratic surface which is an homogeneous expression of a second
degree is reduced to a linear combination of squares only, the cross-
product terms being eliminated. A form of this type is said to be a
canonical form. This reduction process is also called a canonical analysis
in chemical engineering (Hi1l and Hunfer, 1966). This canonical
reduction of chemical engineers is algebraically equivalent to the
canonical analysis of Hotelling's method, but the underlying purposes,

assumptions and impiications of the canonical reduction are completely



different from that of the canonical trend analysis discussed in this
paper.

In Section 2.1 the physical meaning of the canonical correlation
coefficient is introduced. A proof of the theory of the analysis is
presented in Section 2.2. Section 2.3 states the prohability distribution
of canonical roots. Detailed computation procedures of the two-dimensional
canonical trend are formulated in Section 3.2. Sections 3.3 and 3.4
are devoted to a full discussion of the physical meaniﬁq and uses of
canonical trends, using hypothetical data. A numerical example, taken
from the Permian of Kansas and Colorado is given in Section 3.5. Other
applications in geology are demonstrated with illustrative examples in

Chapter 4.



CHAPTER 2
THEORY OF CANONICAL CORRELATION

2.1 General Statement

Suppose we have a sample from a p-dimensional space, then the
purpose of canonical correlation analysis (Hotelling, 1936) is to find a
Tinear function of the first p]-variates and a linear function of the
last pz-variates (p] +p, = p), so that these two linear functions have
the highest possible correlation coefficient. In a practical situation,
interrelationships between two sets of measurements made on the same
samples would be analyzed through this fechnique. Under the assumption
of normality, if the canonical correlation is zero, these two sets are
complete]y independent, and it is useless to predict the dependent
variates by means of the independent variates. If the canonical |
correlation is unity, this means that the dependent variates would be
predicted perfectly by means of the independent variates based on the
particular linear functioné. For the shecia1 case in which the number
of dependent variates is equal to one, the problem is mu]tip]e
regression. In this case, it is usual to make use of a regression
model rather than a correlation model.

The geometrical meaning of the canonical correlation can be
stated as follows: In a p-dimensional space, a sample of Py + Py
variates determines one hyperplane of Py and one of Py dimensions,

intersecting at the origin, and containing a swarm of points representing



the two sets. Linear transformations are developed for the first P
coordinate axes and also for the Pp coordinate axes such that these
two hyperplanes are as parallel as possible in a new p-dimensional space.
The cosine of the angle between these twn hyperplanes is defined as
the canonical correlation coefficient.

The assumption is that the observed variates are linear
functions of the canonical variates. Furthermore we will assume that
the observed variates are ﬁormal]y distributed in order to make a
statistical inference on the denendence between two sets and to derive

the probability distribution of the canonical correlation coefficients.

2.2 Canonical Correlation and Variates

Suppose (Zij’ i=1,2, v..sps3 j =1,2, ...,N, N>p) is a random
sample of size N from a p-dimensional distribution and has covariance
matrix R which is known to be a positive definite real symmetric
matrix. Without loss of generality we may suppose that Zi has zero
mean, i.e. E [Z{] = 0.

We partition Z into two subvectdrs of 0 and Py components

(p = py + py) respectively,

-, ~ _
z; zp] + 1
Zl . Zp1 + 2
7= , where Z, = | s 1, =| : (1)
1 . 2
Z b4 .
2 Bl RO

For convenience we shall assume Py € Ppe The covariance matrix is

partitioned into matrices as follows:



where R]] is the correlation matrix for Z], R22 for ZZ’ and R12 = R 21
is the correlation matrix between Z] and 22. The canonical variates

U and V are defined as:

u=A 7, v=g Z, (3)
where
3y b,
A = . R B = R (4)
% p
L. -l... L 2..J

We require A and B to be such that U and V have unit variance, that

is
1= vl = gA 2 2, Al = A Ry A (5)
1=E(v%y = £8 Z, zé Bl= B Ry B (6)
E[UV] = COVIUV] + ETul ELV]

L]

E[A Z.I 22 Bl + EIA Z]]. ElB 22]

A E[Z] 22] B+ A E[Z]]B E[ZZ]

A Ry, B (7)



0

Thus the problem is to find A and B to maximize (7) or E[ UV]subject

to (5) and (6).

Bt (A Ry A-T)-5ul® R

- )
1] B - 1) (8

Letyp= A R]Z

22
where ) and ; are Lagrange multinliers. We differentiate y with respect

to the variables of A and B. The vectors of derivatives set ecaual to

Zero are
R]Z B - AR}] A= (9)
' 0w 0 {
R -IZA - 3"{R22 2} (J ih]ﬂ)

Multiplication of (9) on the left by A and {I0)) on the left by B gives

! [)
] ] (]
B R]2 A - 4B R22 B =40 (12)
we have
A = qu = A R12 L (13)
Thus (9) and (10) can be written as
- I SN {14)
)‘P‘H A+R~52‘, { (14)
RZl A~ kkgz 5= 0 )

In one matrix equation this is

| v
i -5 R
21 /,”a §
In order that there be & nonorivic. oo on, Th cla ol E 06
the left must be singular. Fuiliniicat on o0 a e (g o



10

left by Rél, gives

2
A Ryp B =2 Ryp A (17)

-1

Roz Roy

A =)B (18)

Substitution from (18) into (17) gives
-1 2

Rig Rop Ryp A =" Ryp A (19)
ar
-1 2 i
(Ryp Rpp Rpp = A" Ryy) A =0 (20)
or
-1 -1 2 i
(R Ry, RS Ry -2% D) A= 0 (21)

The solution involves finding latent roots 22 of the equation

-1 2 ) |
22 Roy - A2 1| =0 (22)

-1

R11 Ry

R

. -1 C- . . . .
The matrix, Rn R]2 R2; Roys s (p]xp]) in dimension. Thus A

is the (plxp]) diagonal matrix.

From (13) we see that A = A' R]2 B is the correTation between U
and V. Thus, the elements, Xis of X were called the canonical roots or
canonical correlation coefficients by Hote11in§ (1936). Values of Ai
in equation (3) are the eigenvectors a§sociated with A?. Solving
for B from equation (15), we have B, for a particular Ais

- )] |

The A, and B, are normalized, so that we have

Al A,

PA = and By B, =1 (24)

Then Ui and Vi are normalized linear functions of Z] and 22, respectively,

with maximum correlation.



11

We now consider finding the second linecar functions of Z] and
22, respectively, such that cach of these two linear functions are
uncorrelated with the first linear functions. This procedure is

continued. At the r-th step vie have obtained linear combinations

.
= Al - = At - n! i _
U] = A' Z] . V] = Bl 22 s eeees Ur = Ar Z] . Vr = Br 22 with correspond
ing roots A] s ree aee > A e Let the (r + 1)th linear functions of
- Nt - DNt .
Z] and Z2 be Ur+] = Ar+] Z], and Vr+1 = Br+] 22, respectively. The

condition that Ur+1 be uncorrelated with Ui (1 i< r) is

0= E[Ui Ur+1] = E[A% Z] Z] Ar+1]
= A5 R A (25)

Rip A5 = Ryp By /A, (Ai%:()) (26)
Therefore, E[Ur+] Vi] = A;+1 R]2 Bi = X5 A;+] R]I Ai =0 (27)
If A, =0, R]2 B, = 0 and (27) holds.

The condition that Vr+1 be uncorrelated with Vi is

0=E [Vr+1 Vi} = B;+] R22 Bi (T<igr) (28)
By ‘the same argument we have

0= Brq Ry Ay = E [V 4 Us] (29)

We now maximize E [Ur+1 Vr+11 » choosing A and B to satisfy
(5), (6), (25), and (28) for i = 1, 2, cvee.y . Let
Vo4 © A‘R]2 B —.% A(A Rip A - 1) - % u(B' Ry, B - 1)
r r
+ 151 vi A" Ryp A+ igl 8; B' Ry, B, | (30)



where A, u, Vi seeeees Voo ) , Qr are Lagrange multipliers.
We differentiate wr+1 with respect to the variables of A and B

and set equal to zero. Thus, we have

r
R12 B - AR]] A+ % v R]l Ai =0 (31)
r
ultiplication of (31) on the left by A3 (3 =1,2, «vu.. , r) and (32)
on the left by 83 gives
0= “j Aj R]] Aj = vj (33)
0= G B R22 j = Gj (34)

Thus equations (31) and (32) are simply (16). Therefore any A
from the py roots satisfies the conditions (5), (6), (25), and (28)
fori=1,2, ..... y T

Finally, the canonical transformation can be summarized into

the following matrix ecuation:

Al 0 Ry { Ry A l 0 0
0 By . — I =
. 0 B B
0 B, 21 22_ 1 2
M1 A 0 T U
A I 0 = [u v'] (35)
0 0 I v
where U = A' Z, , V= [V, V,] ' B, B,]' [z, Z,1',

= diag(xl, ceeesh_ ), and A, are the population canonical roots.

P



Consider approximating u bv a multiple of V, say K V; then the
mean square error of approximation is
2! _ 2 2 2
E DU-KV)] = 0, 2 Kouove + K o

= 02 (1 -€)+( KOV-PGU

2
y )

(36)
where the 05 andcv2 are variances of U and V, respectively, e is
simple correlation coefficient between U and VY. This is minimized by
taking K = OuP/ov' We can consider K V as a linear prediction of U
from V; then 05 (1 - g) is the mean square error of prediction.
Detailed discussion of canonical correlation is given by

Anderson (1958, p. 288-306) and Wilks (1963, p. 587-590).

2.3 Tests of Significance for Canonical Roots

The distribution of xf of equation (22) has been discussed by
Hsu (194]), Bartlett (1947), Constantine and James (1958), Anderson
(1958, p. 323-324), and Wilks (1963, p. 590-592). For the case PsPo>

13

the distribution of A?, when these roots are arranged in descending order

of magnitude, is given by

oo ]
s r_[s(n-1)] ,
st r [istop#1-0)] e [i(py1-0)]
- 205(p,py-1) 1. 2y(N-pyopy-2) | o 2 2
. [(xi)z PPy (12 £) 3PPy T (1§ -3
i=1 4 ‘ J

i< (37)
This distribution holds when Z; and Z, are independently

distributed and ZT has a multivariate normal distribution, whereas
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22 has any distribution. .
A criterion which is useful in detecting the simultaneous departure
of several roots Af from zero was suggested by Bartlett (1938, 1941).
Bartlett's statistic
N [B - % (py +py * 1ﬂ Tog A (38)

p
! (I-Af), follows approximately a chi-square distribution

where A=T

i=l+r
with (p] -r) (p2 - r) degrees of freedom. The assumption is made that
Z] and 22 follow a multivariate normal distribution with zero means.

A slight }mprovement which was suggested by Lawley (1959) for
the test of significance of residual canonical roots is that the multi-
plying factor N - %(p; + p, + 1) should be replaced by taking the factor
as
%)

; (39)

N-r-ls(plfnzﬂ)«*i; (1 /2
If A% s are equal to 1, Bartlett's criterion and Lawley's criterion are
jdentical. If the sample size N is large, these two criteria are
approximately equal.

If canonical roots are much less than 1.000, then Lawley's
criterion will yield higher chi-square value than that of Bartlett's
criterion. This means that type I error will be high if Bartlett's
criterion is adopted, on the other hand, type II error must be high
if Lawley's criterion is used. As will be illustrated later, the use
of statistical significant tests presents a problem of reconciling
geological significance and statistical significance. In the present

study, qut]ett's criterion is used for reference but not as the sole

basis for making critical decisions.



CHAPTER 3
TWO-DIMENSIONAL CANOMNICAL TREND ANMNALYSIS

3.1 General Statement

Investigations may be performed to analyze a set of geological
variates measured on a stratigraphic unit or a rock body spreading over
a large or small area. What geologists would 1ike to do is to
filter the error variance from the systematic areal variance in order
to evaluate the trend of a certain variate. The technique (trend
analysis) which has been frequently used in geo]ogy is basically the
fitting of a polynomial surface to the observed data of a single
variate, by the principle of least squares. In geology, where most
problems are beset with a highly multiple determination of events, convent-
‘jonal trend analysis is essentially a univariate technique which is
not adequate to handle the inherently multivariate data.

The concept of a composite end member in facies analysis was
introduced by Krumbein (1955). Three predetermined end members were
used to construct a facies triangle. Selection of a particular point
within this facies triangle was considered as an optimum combination
of end members. Contour Tines around this point were used to measure
the deviation of facies from this optimum facies. The deviation was
called the distance function. This technique, as Forgotson (1960)
pointed out, does not distinguish end members or give any information

on the absolute values of end members. It does not indicate the nature

15
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of the change in composition from the optimum facies.

An entropy function derived from information theory was applied
in multicomponent system mapping (Pelto, 1954) to express the degree of
intermixing of the end members and to define facies quantitatively with
one set of contours. This technique does not distinquish between end
members and show the change of each individual variate.

The D-function (Pelto, 1954) divides a system into classes based
on the difference in amounts of components. It provides information
on the relative proportion of a specific end member within its own class.
It does not distinguish between end members and provide information on
the absolute value of components.

One elegant approach to the problem of dealing with spatially
distributed multivariate data is to process the data first through
péincipa] component analysis, and then use trend analysis to map each
individual principal component. It nrovides information on the areal
distribution of the principal component which is composed of a set of
geological variates with different weights. There are two ways to
approach this problem.

(1) An R-mode factor or principal component anaiysis is first
performed on the well (and/or outcrop) data, and then factors or
principal components are expressed in terms of observed variates by
using the principle of muitivariate regression. After calculating
the factors or princiﬁal components for each well, trend surfaces may
be fitted_to each factor or principal component over all wells.

The result is a factor or princfpa] component map. When a factor model

is used, the factor map implies 1ithologic associations resulting from
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underlying deposition environmental factors. When based on the concept
of principal component analysis, the first principal component map
indicates the spatial variation of the first principal component, which
is the component which explains the most variance of a set of geological
variates. In the both models,the factor or princinal component may or

may not have a clear geological interpretation.

(2) A factor-vector map is obtained from a Q-mode factor analysis
as suggested by Imbrie (1963) and Krumbein and Imbrie (1963). Reference
wells are chosen for each factor-vector map and all other wells are
expressed in terms of similarity to the reference well for that
particular map. The geo1dgica1 meaning of each map can only be obtained
by looking at the particular 1ithologic association of each reference
well. The concept of a reference well is analoguous to the concept of
an optimum facies in the distance function technique (Krumbein, 1955).
This kind of factor-vector map expresses the intergradation between
the reference wells in which respect it is similar to the concept of an
entropy function map (Pelto, 1954).

Another technique will be discussed here, namely the construction
of a trend surface for a set of multivariate data fhrough a canonical
transformation. The basic difference between this canonical trend
analysis and the method of least squares is that in canonical trend
analysis the covariance of correlation between geological variates
and geographic coordinates'is maximized, while in conventional trend

analysis the variance is maximized (i.e. the error variance is

minimized). The canonical trend surface is a polynomial surface which
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has a maximum correlation with a set of geological variates combined
together as a linear function. The coefficient of each variate indicates
the degree of contribution of the particular variate to the trend
surface, because the sum of squares of each coefficient is equal to 1,

the total variance of the linear function.

3.2 Computation Procedures

The geographic coordinates, X and Y, and their various powers
and cross-products constitute one set of variates, and the qeological
variates, Zi, constitute the second set. What the canonical correlation
analysis can do is to find one linear function for the (X,Y) coordinates,
and one for Zi such that these two linear functions have a maximum
correlation. The trend surface evaluated by this principle is
considered to be a most predictable surface for the particular linear
function of a set of geological variates. An additional assumption is
that X and Y are uncorrelated. This means that samples are taken by
using a systematic or stratified sampling method from a two-dimensional
area but not from an one-dimensional line. The calculation procedures
are fully explained below:

STEP 1. Transformation of geological variates if necessary.

When the distribution of raw data is highly skewed or if the
error variance is not stable, transformations may be carried out in
order to symmetrize the distribution or stabilize the variance, or both.
Bartlett (1947b) has summarized thoﬁe transformations appropriate to a
particular situation, and also suggested a general transformation

as follows:



Q(m) =f_...c_.._.._ dm (])

where f(m) is a function between variance, 02, and mean, m, of a
particular variate, c is a constant,

There are three alternatives allowed in the computer program
prepared for the present study, (1) arc sine square root transformation;

(2) logarithm transformation; and (3) no transformation.

STEP 2. Standardization of geological variates.

A correlation coefficient is a dimensionless value, therefore
a trend surface equation derived from a correlation matrix is also
scale independent. In order to have a scale dependent trend surface
equation, the covariance matrix for the (X, Y) coordinates and

., should be used. On the other hand, geological

geological variates Z;

variates may be measured in noncomparable units. Thus, we should
deal with the correlation matrix rather than the covariance matrix.
In order to satisfy both of the two requirements, the geological
variates are standardized according to equation (2), and then the
covarfance matrix is computed for z, and the (X, Y) coordinates.
The equation for standardization of the geological variates

is as follows:

: ij
7..2 —0 (2)

2 . . - .
where S j = sample variance of variate zj, Zj = sample mean of variate zj,

Zij is the i-th observation on the j-th variate.



STEP 3.
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Generation of high power and cross-product terms of the
(X, Y) coordinates.

The high power and cross-product terms of the (X, Y) coordinates

are generated within the computer based on the input raw data (X,Y)

as follows:

Cumulative

Polynomial Term

2
5
9
14
20
27

variates in an array D(I), where I =1, 2, ....

X Y

x> xy 2

x> x%y xy? 3

¥ o3y x&H2 g3 v

X xh x3W2 x33 xyh S

X0 X%y X% 33 %t xS 6

The polynomial terms of each observation will follow the geological

> P + Ps, where Py = the

number of geological variates, Py = the number of polynomial terms.

The process of generation is listed in figure 1.

STEP 4,

Computation of covariance matrix.

The covariance between i-th and j-th variates is calculated by

standard formula which is defined as

Ifi-=

N N N

N ! (z z ! Z.

)
k=1 ik L) - adn L wdy Lk

N(N - 1)

§2. =

:s (3)

i%xJ

Js S?i is the variance of i-th variate, which is defined as

N N '
2 2
N k21 Lik - (PZ] Ziy)

N(N - 1)

The covariance matrix is partitioned into four parts as

2 _
5 ®

(4)
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:
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l:z2 141

FIGURE 1 - Flow chart for (jenerating all terms up to a sextic
polynomial based on geographic coordinates X and Y.
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(5)

where the order of Ry, is ?ess than that of R,,, R;y and R,, are
covariance matrices of geological variates and polynomial terms,
respectively if Py Poe The contents of R]] and R22 should be
exchanged if P12 Py This covariance matrix is a symmetrical matrix:
each element is stored into an one-dimensional array at location L,
where L = j(j - 1)/2+i, i=1, 2, ..., Py * 27 for a sextic polynomial,
Jjx i. |
STEP 5. Calculation of canonical roots and variates.

The canonical roots A 's and their associated canonical variates
(Ai) for variates in matrix R]], are respectively the eigenvalues and

eigenvectors of the matrix equation:

-1 -1 2 -

The matrix on the left side of (6) is nonsymmetric (pl X p]).
A Jacobi-like method (Eberlein, 1962) was used to solve for the Py
roots, Az's. The eigenvectors are Ai each of which is the canonical
variate for one set of variafes, either the canonical variate for the
geological variates or for the (X, Y) coordinates. The A; are

normalized, i.e. A% Ai = 7].

STEP 6. Determination of degree of polynomial surface.
We begin with a linear polynomial and evaluate the degree

through canonical correlation analysis. When the canonical root is
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greater than 0.950 or the difference'between two successive roots is
less than 0.05l(the initial canonical root is set to zero), then the
canonical root corresponding to the deqree of the polynomial is used
as the canonical trend surface. If not, the degree of the polynomial
is increased 1, and steps 5 and 6 are repeated until the iterative
process reaches a suitable degree.

It should be kept in mind that the sample size should always
be greater than the sum of the number of the geological variates and the
number of polynomial terms. Suppose we have a sample of size 30 with
4 variates, the highest order of polynomial that may be fitted to this
data is 5, because a sextic polynomial must have 27 terms. In this
example, for a sextic, the sum (= 31) of the number of variates (= 4)

and number of polynomial terms ( = 27) is greater than the sample size.

STEP 7. Calculation of the canonical variate of the second set of
Variates.
The canonical variate of the second set is computed as follows:
= n- | '

The Bi is normalized, i.e. B% Bi =1,

STEP 8. Calculation of residuals.
Consider approximating U (a linear function of geological
variates) by a multiple of V (a linear function of the X-, Y-coordinates)

plus a constant, say c + kV, then k and ¢ are defined as follows:

U=c+kV (8)
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(= %] is1 1o
N N (9)
N Ve - (L V)P
i=1 i=1
N, N N
v u, - .U
121 ! izl ! 121 Wy by)
c= v N (10)
N - :
i=1 ' =1 !

The residual of canonical trend surface for the j-th sample
and i-th root is defined as:

Res1dua1j = Uj - (k Vj +c) = Aj Zj - (k Vj + ¢) (1)

where Zj is column matrix for standardized geological variates, thus,

A; Zj is called observed value, whereas C + ij is called calculated value
for Uj. The U and V should be exchanged, i.e. Ai is replaced by Bi if

U is a linear function of the (X,‘Y) coordinates while V is a linear

function of geological variates.

 STEP 9. Contouring of canonical trend surface.

| In the canonical trend surface map; the X-axis is the abscisa,
whereas the Y-axis is the ordinate. In the computer printout the length
along X-axis is greater than'or equal to‘that of Y-axis. The length of
X-axis is divided into 50 units, while the\]ength of Y-axis will be
assigned to a certain units proportional to their relative lengths.
Each point (having integer coordinates) of the new coordinate system
is substituted into the polynomial equation V = f(X, Y}, so we have a

set of Vij’ where i = 1, 2, ..., 50, j ¢ i. The values, Vij’



are scaled according to equation ¢ + k Vij
Suppose U is a linear function of geological variates, then the
calculated value for U is k V + ¢ as mentioned above. The difference

between Uma and Umin s AU, is divided into ten parts, and the values

X
so defined are used for contours. . The purpose of using AU rather than

AV =V is to avoid extreme values introduced from high order

max = Vmin
polynomial.

Each Vij is then replaced by one of following ten integers in
order to indicate'its relative value: 0(low), 1, 2, 3, 4, 5, 6, 7, 8,
9 (high). Finally a map cgmposed of these integers is printed by the

computer. The scale is printed in feet per unit in the (X,Y) coordinates.

STEP 10. Residual plot.

Residuals of all observations are calculated according to
equation (11). The difference between the maximum and minimum values
is divided into ten parts, each residual is represented by one of the
following integers according to its value: 0 (Tow)s1, 2, 3, 4,5, 6, 7,
8, 9_(high). These integer numbers are plotted as a residual map

according to their relative geographic coordinates.

3.3 Canonical Trend Surface of Hypothetical Data

An illustration of some of the physical meaning of the canonical
trend which results from the computations described in the previous
sections can be given by making use of hypothetical exaﬁples. One
hundred and fifty sampling points were spread over a rectanqular area,

the points being located by a stratified sampling method (Cochran,
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1963, p. 87-88). Geogranhic coordinates of each sampling point within

a grid were defined by a pair of random numbers. The sampling roints,
defined by a set of 150 pairs of random numbers from a table (Krumbein
and Graybill, 1965, p. 445-450), were used for all the examples

discussed later. Values for the hypothetical variates at the sampling
points were computed from various equations incorporating an independent,
randbm, normally distributed, error term with zero mean and any

desired variance.

3.31 Experiment 1: The canonical trend surface achieves a parsimonious

sumnarization of a set of trend surface showinag distributions of
variates from a single population.
(a) Let two hypothetical variates be

Z 0.707 X + 0,707 Y + E

]

1 1

Z, = -=0.707 X - 0,707 Y + E, (12}
where E] and E2 are independent variates with normal distritution

N(0,1). The canonicaltrend was

U= -0.652 7, + 0.755 Z, (14)
V= -0.693 X - 0.721 ¥ (16

The canonical root was 0.9834. Eaquation (15) isthe polynomial of thc
canonical trend surface. Equation (14) represents the lincar
combination of variates 21 and ZQ. The absolute values, -0.652 and
0.758 (-0.652% + 0.758° = 1.000), indicate the contributions to the
trend. The variates, Z] and Z2 have anpproximately eoual Yoadines hut
are in opposite signs, so that these two variates vary anproxinate’ v

in opposite directions. GCtouations (14) and (15) show that variate



Z] increases toward north-east, while variate 22 increases toward south-
west. This interpretation agrees with the equations (12) and (13).

(b) Let two hypothetical variates be

' Z

1 ° 0.707 X + 0.707 Y + E] (16)

Z, ==X +E, (17)

2
where E] and E2 vere N(0,1). The canonical trend was
U= -0.549 Z.I +0.836 Z,- . (18)
V=-0.941 X - 0.339 Y (19)

The canonical root was 0.9837. Equation (19) indicates that the
canonical trend (NNW-SSE) is intermediate between the trends of the two
variates, but slightly closer to 22. Because the variance in X was
larger than that in Y (the area studied was rectanqular, with the
larger dimension in the E-W direction), the variance of 22 was larger
than that of Z]. After standardization, therefore, the contribution
of the variance of the variate E2 to the variance of Z2 was proportionally
less than the contribution of E] to Z]. Thus the weighting of 22 is
greater than that of Z, in the equation (18).

The second canonical root is equal to 0.8509, its associated
canonical variates are

U

L]

0.724 Z; + 0.690 Z, (20)

V=-0.163 X + 0,987 Y (21)

The combination of equation (20) which is orthogonal to
equation (18) and contradictory to that of equations (16), (17) and
(18) shows that both the variates Z] and 22 increase toward northwest.

This root should be rejected even though it is statistically



significant at 1 percent level.

3.32 Experiment 2: The coefficients of geological variates are a

function of the strength of the trend or the magnitude of the random
variance error. .

(a) Let two hypothetical variates be

Z] = 0.707 X + 0.707 Y + E] (22)
22 = =X + E2 (23)
where E] was N(0,1), E2 was N(0,4). The canonical trend was
U=0.996 Z] - 0.093 22 (24)
V=0,736 X + 0.677 Y (25)
The canonical root is 0.9666. It is clear that Z] is so
strongly weighted that'Z2 has a negligible effect on the trend.
(b) Let two hypothetical variates be
Z, = 0.707 X + 0.707 Y + E, (26)
22 = E2 (27)
where E] was N(0,4), E, was N(0,1). The canonical trend was
U = 0.986 Z] - 0.196 22 (28)
_ 2 2 (29)
V=0.954 X - 0.284 Y - 0.014 X" + 0.025 XY + 0.088 Y

The canonical root is equal to 0.6967. It is obvious that variate
ZZ should contribute nothing to the trend and in fact contribute very
little. Figure 2 shows the variation of Z] which approximately agrees

with equation (26).

3.33 Experiment 3: If the information (areal variations of the variates)
cannot be obtained from the first canonical root alone, the second

canonical root will supply part of the remaining information.
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Let five constructed variates be

Z] = X + E] (30)
Z, =V +E, (31)
Zy = =X + Eg (32)
Z,= - Y +E, (33)
Zy = Ig (34)

where E; (i =1, 2, 3, 4, 5) where N(0,1). The first canonical
root was 0.9887, its aésociated canonical variates were

u

[i]

0.622 Z] - 0.163 22 - 0.763 Z3 + 0.048 Zy + 0.034 Z. (35)

5
v

0.974 X - 0.228 Y ' (36)
The second canonical root is 0.9701, its associated canonical

variates were

-0.098 Zl + 0.527 22 3 4

0.101 X + 0.995 Y (38)

u - 0.272 Z, - 0.799 Z

- 0.005 25(37)
v

The first canonical root explains the variations of variates Z] and
23 whereas the second canonical root explains the variations of

variates Z2 and 24. The variate 25 does not contribute to the trend.

3.34 Experiment 4: The univariate case of the canonical trend surface

is also a most predictable surface for a single geclogical variate,
(a) Let the constructed variate be

L, = 0.707 X + 0.707 Y + E, (39)

where E] was N(0,1). The canonical root for the linedr polynomials
is 0.9649. The linear trend was accepted as follows:

V =0.709 X + 0.705 Y (40)
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(b) Let the constructed variate be

2

Z] = 0.13 X - 0.13 Y + 0.60 X° - 0,50 XY + 0.60 Y2 + E] (41)

where E; was N(0,1). The canonical trend surface for variate Z, is

that

2

V = 0.098 X + 0.092 Y + 0.611 X* - 0.513 XY + 0.587 Y2 (42)

The canonical root is equal to 0.9996.

(c) Let the constructed variate be

_ X+Y

where EI was N(0,1). The canonical trend surface for variate ZI is

(43)

that
V= 0.6613 X + 0.6246 Y - 0.1812 X% = 0.3195 XY - 0.1754y2

+ 0.0220 X3 + 0.0521 X2Y + 0.0555 XY2 + 0.0224 v

- 0.0012 X% - 0.0035 X3y - 0.0050 x%¥% - 0.0042 XY

- 0.0013 Y* + 0.0001 X% + 0.0001 x3¥% + 0.0002 X2v3

+ 0.0001 xy* (44)

3

The canonical root is equal to 0.9700. The expression for V was a
quintic polynomial. Figure 3 illustrates this use of a canonical trend

to approximate an'exponential variation.

3.4 Funétions of Canonical Trend Surface

Stratigraphers or petrologists usually handle a great number of
maps, and like to sort them into groups showing analogous features, and
other groups showing quite 'different features. Canonical trend analysis
achieves a parsimonious summarization of a set of maps showing
distributions of variates from a single population. It is thus a useful

technique for screening maps, at least for exploratory studies.



Figure 3 - Canonical trend surface (univariate Figure 2 - Canonical trend surface fitted
case) shows an exponential variation. : to Z] = 0.707 X + 0.707 Y + E], 22 = EZ’ vhere

E1 was MN(0,4), and E, was N(0,1).

Le
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The fundamental principle of canonical trend analysis is to
maximize the covariance between a set of geological variates and the
(X, Y) coordinates. This implies that the canonical trend surface is
a most predictable surface to the particular set of variates. It
weighs each variate according to its error variance. HNo other trend
surface possesses these characters.

Canonical trend surface will show the nature of variation of
any number or any kind of geological variates if they can be amalgamated
in a linear function. We can interpret the variations of each variate
even though the geological meaning of the particular combination is
not yet known. This type of trend surface does not show the absolute
values at each contour. On the other hand it does show the general
trends of the variates at least for the first approximation. The
coefficients of a particular set of variates would not drastically
change from low to high order polynomials.

Theoretically, we may map as many variates as we wish at a
time. It is génera]]y true that if many variates are analyzed
simultaneously,the interpretation of the result will not be as clear as
the interpretation for fewer variates. There is no way to decide the
appropriate number of variates in advance. Rased on the writer's
experience of practical problems, a reasonable number is four or fewer
but not more than five. It is not necessary that the geological
variates be uncorrelated variates. DBut, if they are highly correlated,
the correlation matrix will be nearly sinqular, and matrix inversion

may yield a meaningless solutionl as a result of the limited number of
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digits in the computer. With a sufficiently large computer, this is not
always a serious problem. However, we should keep this prohlem in our
mind when we are decaling with highly intercorrelated variates. If a
number of variates is available for canonical trend analysis, the

type of variates which should be chosen for the analysis is dependent
on what geologically meaningful hypothesis we expect to establish.
Poor selection of variates would produce geologically ambiquous and
trivial result.

Real linear combinations other than the first one cannot be
obtained un]éss the equations (5), (6), (25), and (28) of Chanter 2
are satisfied. This means that variations obtained from canonical
correlation analysis exist in nature if they are orthogonal to the
previous linear comhinations, otherwise, the variations obtained are
mere artefacts brought in by mathematica] operations. We should
realize, however, that the coefficients in the linear function which give
max imum corre]ationtmay not be suitable as a solution to a practical
problem. The linear combination associated with the largest canonical
root is most ]ikely to have some physical interpretations. If the
subsequent combinations associated with smaller canonical roots give
contradictory combinations, these subsequent canonical roots should be
rejected without hesitation, even though these canonical roots are
statistically significant at a high probability level. On the other
hand it can be demonstrated by using geological example that even where
the largest canonical root is not significant statistically, the

information resulting from the canonical root may be correct. This
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illustrates a controversial problem regarding the difference between
geological and statistical significance.

Coefficients of canonical variates will yield ambiquous signs
in the Tinear function, if the sample size is insufficient, if the order
of polynomial is too high, if the number of variates is too large,
and if geological variates and/or (X, Y) coordinates are highly
correlated. The investigator should be extremely careful that results
have a real geological base. Does this destroy the value of the
technique? The answer is not at all. In dealing with multivariate
statistical analysis such as multiple regression analysis, nrincipal
component analysis, and so on, results which cannot be interpreted may
be obtained in attemnting to solve practical problems. This is a
general difficulty in applying multivariate techniques in geclogy and
results more from the real complexity of nature than from problems caused
by the mathematical analysis.

After working a number of practical problems, the writer is
convinced that the canonical trend analysis is an adequate technique to
evaluate a trend common to a set of variates in preliminarv and concent-

formation stages of research as nart of data-reduction scheme.

3.5 Permian System in testern Kansas and Eastern Coloraco

3.51 Geological Setting: The upper part of the Permian rocy in

western Kansas and eastern Colorado, which is above the Stone Corral
dolomite, is comnosed of Guadaupian series and Upnper Lecnardian
(Mippewalla) series. The rock sequence consists of aitercatins

sandstones and shale with thin dolomites and apprecianlc amounts

g3
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evaporites. The stratigraphic sequence studied is cauivalent to the
upper part of intervals B and C-D (Mudge, 1967) in the central
Midcontinent region. '

A total of 31 wells were selected from this area and analyzed
by W. T. Fox (see Krumbein, 1962) by using conventional stratiqraphic
maps. Inteqratign of stratiqraphic maps shows that four components of
this System, namely sandstone, sha]e, carbonate, and evaporites
thicken toward a center, i.e. the areca shows the characteristics of
a sedimentary basin.

The Permian basin was a broad, shallow, fairly stable restricted
marine basin. The basin was encircled on the west by the Front Range
and Wet Mountains from which feldspathic and quartz grains were mainly
derived. On the north and east the Permian basin was probably bounded
| by Tow-1ying land areas. There was a restricted connection with open
sea on the south of the basin.

The petrography of the Permian rocks (Swineford, 1955) and the
stratigraphic-correlations between western Kansas and southeastern

Colorado (Maher, 1953) are listed below:

Western Kansas , Southeastern Colorado

Big Basin (Taloga) formation (0'Connor, 1963)
Red (at the top) and greenish-gray (at the
base) montmorillonitic shale, silty shale,
siltstones and some very fine-grained

sandstone



Day Creek dolomite . . + . ¢« . « v ¢« v v

Pale-gray to pink fine-grained dolomite

(2 to 3 feet)

Whitehorse sandstone

Reddish-brown, fine-grained, well-sorted

sandstone, siltstone, and shale, and
minor quantities of white to buff

sandstone and dolomite

Dog Creek shale . . . . . . . . . e e e e

Dark-red silty shale, brownish-red
-and greenish-gray siltstone, and

very fine-grained sandstone, dolomite,
dolomitic and gypsiferous sandstone

and gypsum

Blaine formation
Anhydrite or anhydritic gypsum,

thin dolomite, and brownish red shale

Flowerpot shale
Reddish-brown gypsiferous shale with
a few thin beds of sandstone and

siltstone

Upper "crinkly" Timestone

bed

Lower “"crinkly" 1limestone

bed

Cedar Hills sandstone

Brownish-red, massive very fine-grained

Lyons sandstone

Fine-grained, quartz,
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sandstones and siltstone separated by subanqular, 1littoroal
beds of argillaceous siltstone and silty deposit (Thomnson, 1949)
shale

Salt Plain formation
Reddish-brown flakey siltstones, thin
sandy siltstones, and very fine-grained

sandstones

Harper formation

Brownish-red sandy siltstone and shale

Stone Corral do]omite‘
Dense to cellular, and grayish buff in color, containing many vugs
partly or completely filled with coarsely crystalline calcite or

gypsum, oolitic at the base

3.52 Stratigraphic factor map analysis: The 31 wells with six comnonents,

namely: total thickness, nonclastic thickness and the thickness of the
four componenfs mentioned above, were subjected to Q-mode factor analysis.
Three stratigraphic factor maps were constructed (Imbrie, 1963; Krumbein
and Imbrie, 1963), one for each of the first three factors, respectively.
One reference well which has an identity factor loading in a particular
factor is chosen for each map. The geological implications of the Q-
mode analysis can be clarified by examination of the actual lithologic
association of each reference well. Reference vell R] of the first
factor-vector map (fig. 4A) has maximum evaporite thickness and the

minimum carbonate thickness of any well. Reference well R2 of the second
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factor-vector map (fig. 4R) has minimum thickness, shale content,
and evaporite content of any well. The reference well of the third
factor-vector map has minimum sandstone and carbonate content, and
contains considerable shale, and somé evaporite, Imbrie (1263) and
Krumbein and Gfaybi]] (1965, p. 402-406) suggested that the first factor
map represents an evaporite basin with rapid subsidence and clay influx,
the second factor map indicates the distribution of shelf scdimentation,
and the third factor map represents the distribution of an off-shore
sedimentation of fine detritals adjacent to the evaporite basin.

The fundamental approach of the stratigraphic factor map
analysis is to visualize the geologic implications of the distribution
of a hypothetical variate through interpretations’of the lithologic

associations for a particular mép.

3.53 Canonical trend surface analysis: The hypothesis we expect to

establish is that the area shows the characteristics of a sedimentary
basin. A sedimentary basin, in general, should show that some of
sediments thicken toward the center, and the relative amount of shale
and evaporite should be predominate over that of sand and carbonate,
respectively, in the central part of the basin.

A sample of size 30 (excluding one well which did not contain
any evaporite) was subjected to canonical trend analysis on two sets
of different geological variates; The variates of the first set are
thickness of sand, shale, carbonates, and evaporites, while the
variates of the second set are total thickness, sand-shale ratio, and

carbonate-evaporite ratio. The order of polynomial fitted to these two



A. FACTORI

0 50 miles
[ ER——

\

KANSAS

B. FACTOR2

o] 50 miles

Figure 4 - Permian system of Western Kansas and Eastern Colorado stratiqraphic factor mans.
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sets of variates cannot be greater than five. The raw data of this
problem were published by Krumbein (1262, table VI).

Principal components werce obtained from a covariance matrix
of the thickness of sand, ;ha]e, carbonate, and evaporites. The first
principal component contributes 73.8 percent of total variance, the
sccond one contributes 20.6 percent, and the last onc contributes
0.6 percent. The rotated, normalized eiqenvectors are listed in
Table 1.

TABLE 1

ROTATED, NORMALIZED EIGENVECTORS OF SEDIMENT THICKNESS OF PERMIAN SYSTEM

Principal
component
Variate 1 2 3
Sand thickness 0.03 0.99 0.12
Carbonate thickness 0.06 -0.12 -0.99
Shale thickness -0.99 -0.10 -0.10
Evaporite thickness -0.97 0.06 0.23

The first principal component indicates a shale-evaporite
association which is equivalent to the first factor obtained by Imbrie
(1963) and also by Krumbein and Imbrie (1963). The second principal
component explains the variance contributed by the thickness of sand,
whereas the last principal component explains the variance contributed
by the thickness of carbonates. These three principal components are

mathematically orthogona1, but transitions between them are possible
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from the geological point of view.

The result from the principal component analvsis indicates
that the carbonates .behave quite differently from the evanorites,
and the sand behaves in an opposite way from the shale and evaporites.
Thus, the clastic ratio (= (sand + shale)/{carbonates + evaporites))
should not be included in the analysis, because its geological meaning
is ambiguous.

The first set of four variates, namely thickness of sand, shale,
carbonates and evaporites were treated through canonical trend surface
analysis. After three iterative procésses, the highest canonical root
that could be Eeached was 0.9464 which indicates that a cubic polynomial

is the most predictable response surface {table 2).

TABLE 2
RECORD OF THE SUCCESSIVE EVALUATION OF THE ORDER OF POLYNOMIAL
FOR FOUR VARIATES

Canonical root Order of polynomial
0.7804 Linear

- 0.8810 Quadratic
0.9464 Cubic

The canonical variate for the geological variates was
U= 0.516 (sand) + 0.408 (shale) - 0.104 (carbonate) + 0.746
(evaporite) (45)




The canonical variate for the nolvnomial was

V= - 0,407 X - 0.014 Y + 0.002 X% - 0.001 XY - 0.0071 V2

(41)
The canonical trend, equation (45), mainly indicates the varia-
tions in thickness of evaporite, sand and shale.
The second canonical root of the third order canonical trend

surface is equal to 0.8676. The associated canonical variates are

as follows:

U= 0.757 (sand) - 0.111 (shale) + 0.617 (carbonate) - 0.185
(evaporite) (47)

and
V=20.183 X - 0.983 Y - 0.001 X2 + 0.001 XY - 0.002 Y2 (48)

The canonical trend, figure 5A, and equation (48), mainly
summarizes the variations in the thickness‘of sand and carbonates.
This figure shows that the sand and carbonate have a maximum thickness
located around the southeast of Colorado.

A quadratic polynomial was fitted to these four variates. The

canonical variates were

U= 0.575 (sand) + 0.425 (shale) + 0.154 (carbonate) + 0.632
(evaporite) (49)
V = 0.357 X - 0.934 Y - 0.001 X° - 0.001 Y2 (50)

Judging from figure 58 and equation (50), it is concluded that
sand, shale, carbonate, and evaporites thicken toward the southwest
corner of Kansas. It is interesting to compare this canonical trend
surface with net ghickness maps of the same data. The general trend
of the net thickness maps of sand (fig. 6A), shale (fig. 6B) carbonate

(Fig. 6C), and evaporite (fig. 6D) display patterns analoguous to that



shown by the canonical trend surface.. Fiqure 5A displays a trend pattern
very similar to the thickness of the carbonate and sand, whereas fi-

gure 5B displays a trend pattern almost identical with the thicknass of
tﬁe evaporites and shale. Figure 5B fails to show the maximum thickness
of the sand in the northwést part of Colorado, hut it indicates that the
sand thickens toward the southwest of Kansas and thins toward the north-
east of Kansas and the southwest of Colorado, respectively. The area
having maximum thickness of carbonate and the thinning directions of

the carbonates were also shown by Figure 5B.

Smaller canonical roots.show different linear combinations of
the four variates. These linear combinations are contradictory to the
first two. It isegenerally true that the first or first two canonical
roots have a higher probability of approximating real trends, while
the interpretation of the smaller canonical roots may be obscured by
local variation ("noise"). Thus, the other combinations are not
discussed.

The second set ofvthe three variates, namely, total thickness,
sand/shale ratio, and carbonate/evaporite ratio were analyzed in the
same way. The record of evaluation of the trend surface is listed in

table 3.
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TABLE 3
RECORD OF THE SUCCESSIVE EVALUATIOM OF THE ORDER OF POLYMNOMIAL FOR
THREE VARIATES

Canonical root Order of Polynomial
0.7829 ' Linear

0.9189 , -Quadratic

0.9612 Cubic

The maximum canonical root obtained is equal to 0.9612
" indicating that a cubic nolynomial is an adequate fitting surface.
The canonical variate for the geological variate is that
U =‘O.803 (total thickness) - 0.254 (sand/shale) - 0.539
(carbonate/evaporite) (51)

The canonical variate for the polvnomial is that

2 2

V=-0.335X+0.843 Y+ 0,233 X~ - 0.088 XY + 0.335 Y

- 0.026 X3 + 0.018 X2y + 0.009 xy2 3

+ 0.041 Y (52)
The negative sign for the ratio indicates that the high values
in the map should be the Tow va1qe for the ratios. Fiqure 7A shows
that the total thickness increases toward the most westsouthern part
of Kansas, whereas the sand/shale ratio and carbonate/evaporite ratio
decrease toward the same area. The isopach map and the maps of two
ratios (Krumbein, 1962) were also plotted for comparison (figs. 7B,
7C, and 7D). It is also worthwhile to note how the canonical trend
fits closely to the total thickness and slightly to the carbonate/

evaporite and sand/shale ratios.
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The smaller canonical roots also yield contradictory combinations
to the first onc. They are discarded here.

The question is vhether is it possible to detect a gross trend
representing variations of all or most of variates. The canonical
trends (Figs. 5 and 7A) answer this question at least to the first
approximation and also establish the hypothesis we expected tefore
carrying out the analvsis.

Judging from the nature of change of all the variates and their
similarity in gross trend pattern to the two canonical trend surfaces,
it was concluded that there was shelf sedimentation adjacent to an
evaporite basin in southwest Kansas during Upper Permian time.

The essential approach to the interpretation of canonical
trend surface is to visualize the geological implications of the
variations of all or most of the variates being displayed realistically
in a single map. The merit of a canonical trend surface is to evaluate
a common trend to a.set of variates and to condense a set of maps
, showing areal distributions of geological variates from a single
population. Its maximum correlation property yields a high fidelity
between the population response surface and the sample response

surface,
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Figure 5 - Permian system of Western Kansas and Eastern Colorado. A. Third order canonical trend
associated with second canonical root showing variations in thickness of the sand and the
carbonate. B. Second orcer canonical trend associated with first canonical reot showing

variations in thickness of the evanorates, the sand, and the shale.
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Figure 6 - Permian system of Western Kansas and Eastern Colorado.
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maﬁ (right upper), sand/shale ratio map (left lower), and
carbonate/evaporite ratio map (right Tower). (Data after

Krumbein, 1962; redrawn by the present writer).



CHAPTER 4
OTHER APPLICATIONS IN GEOLOGY

4.1 Relationships Between Two Sets of Variates

4,11 General Statement: Canonical correlation may be considered as

a multivariate case of simple correlation. Supnose we have a set of
Py predictor variates and a set of Ny criterion variates for the same
set of samples, then canonical correlation determines that linear
function of the predictor variates and that of the criterion variates
which gives the maximum correlation betwgen these two sets.

Both canonical analysis and principal factor solution in
factor analysis deal with linear functions. The most important
difference between canonical and factor analysis is that in canonical
analysis the criterion is exterral while in factor énalysis the
criterion is derived from the internal evidence of the variates.
Thus, canonical analysis is called extefna] factor analysis whereas
conventional factor analysis is called internal factor analysis
(Bartlett, 1948; Burt, 1948).

Canonical analysis or external factor analysis is a technique
to reveal the maximum possible covariance between two sets of variates.
We are not interested in the relations of the variates within either
set itself, but in the relationship between the two sets. Internal
factor analysis seeks underlying influence factors which explain
maximum variance in any particular direction, but canonical analysis

does not seek factors. Factor analysis expresses each variate in

49
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terms of factors which are trecated as independent variates, while
canonical analysis expresses cach canonical variate in terms of tihe
geological variates which are treated as independent variates. Due to
the difference between the two linear reqression models similarity
tetween the factor loadings and tne coefficients of canonical variates
is not to be expected. Comparisons of canonical correlation and factor
analysis were made by Burt (1948) and Das (1965) by using psychological
' examples.

Y'hen we have two sets of variates relating to onc set of
samples, various statistical techniques may be adopted aoccording to
the nature of the problem discussed. We may, for example factorize
the two sets together, or we may factorize each set independentlyv,
and try to correlate factors; or we may perform a canonical correlation
analysis between the two sets of variate in order to yield a maximum
correlation. The largest canonical root has the best chance of
demonstrating the existence of a relation between the two sets if one
actually exists, but each cdnonica] root will help to elucidate the
nature of a particular relation, which cannot be explained fully by
any other canonical root. X

In geology, a typical experimental design may be made to observe
several variates on a set of rock specimens. For example, in a recent
sediment study one set of variates may be the abundances of various
kinds of animals or plants, while the other set of variates may be
the physico-chemical parameters of the dépositional environments,

and the size parameters of the sediments which contain the animals.



The nature of the relations between the two sets of variates may be
explained by some of the canonical roots between the two sets. There

is a number of analogous probiems such as correlations between modal

and chemical analysis, between major and trace elements, between trace
elements and clay minerals, between textural parameters (size, roundness,
sphericity and so on) and composition parameters (mineral compositicn)}.
These problems may be untangled by using Hotelling's idea to a certain
extent. The following numerical example is given to demonstrate the

usefulness of this mathematical model.

4.12 Recent Sediment from Puttonwood Sound: Recent sediment sarnles

were collected from 19 stations located in Buttonwood Sound, Florida
Bay by Lynts (1966). Three samnles of size 19 were taken on Auqust 14th,
17th, and 20th, 1962 respectively. A sample of size 16 was taken on
February 9th, 1963. For each location, the following environmental
parameters of the sediment-water interface were measured: denth of
water, temperature, salinity, pH, and Eh. The sand, silt, and clay
fractions were analyzed from each samnle. The dominant element of
microflora in the Sound was qgrasses, in particular, turtie grass.
The distribution of turtle qrass was ménped by using three arades,
namely: very dense, dense-moderate, and patchy. The abhundance of tho
turtle grass was coded by the present writer as follows: very denso--
1; dense-moderate--0; patchy-- =1.

The problem here is to determine to what extent the environmential
factors, namely: depth, temrerature, salinitv, pH and abuncance of

turtle qrass are related to the size parameters of scdiments, Tho



four samples were considered as a single sample of size 73, because
the turtle grass map is not specified to any one of the four sampling
dates.

Looking at the simple correlation coefficients of all possible
pairs of the seven variates (table 4), one may conclude that the turtle
grass is positively related to silt and also negatively related to
sand. The simple correlation coefficients between the sediments and

the depth, temperature, salinity, and pH are very small,

TABLE 4
*SIMPLE CORRELATIOM COEFFICIENTS OF SEDIMEMTS FROM BUTTONWOOD SOUND

Turtle grass 1.000

Depth -0.061 ~ 1.000

Temperature 0.091 -0.059 1.000

Salinity -0.085  0.086 -0.976  1.000

pH -0.194  0.242 0.#22_-0.070 1.000

Sand -0.665  0.073 -0.192  0.194  0.173  1.000
Silt 0.458  0.084  0.015  0.001 -0.139 -0.602

A canonical analysis was performed on this set of data. The
first canonical root is equal to 0.683 which is significant at the 1
percent level. The second canonical correlation (0.242) is not
significant at the 5 percent level. This would suggest that in
studying the relation between these two sets we can confine our

attention to the first pair of canonical variates which is listed in



table 5.

It is clear thét the distribution of sand is correlated
closely with the abundance of turtle qrass. Sands are more abundant
in regions of less qrass in Ruttonwood Sound. Lynts (1966) obtained
the same conclusion by comparison of turtle grass man with sediment-
size distribution map. In addition to confirming this conclusion,
canonical correlation analvsis also indicates that there is no relation
between the abundance of sand and measured physical parameters other
than turtle grass.

TABLE 5
CANONICAL VARIATES FOR SEDIMENTS FROM BUTTONWOOD SOUND

Environmental factor Sediment
Turtle grass -0.98 " sand 1.00
Depth -0.00 Silt -0.09
Temperature -0.07

Salinity 0.13

pH 0.10

The variate, sand, was discarded, then canonical correlation
analysis was performed on the same data. The canonical root is 0.483,
its associated canonical variate for the environmental factors is as
follows:

V = 0.70 (turtle grass) + 0.19 (depth)‘+ 0.47 (temperature)

+ 0.49 (salinity) - 0.15 (pH) (1)
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Equation (1) suggests that the silt is also moderately correlated
with turtle grass and weakly to other parameters. The canonical root
is significant at 1 percent level, but it gives a result contradictory
to the principal component analysis which will be discussed Tater,

It is concluded from the canonical correlation analysis that
(1) The abundance of sand is a better predictor of turtle qraés
than that of silt; but if the variate; sand is not used then the variate
silt would give a less satisfactory result.

(2) If the variate, clay, is inserted,the result may be a completely
different linear function of environmental factors to predict clay or
silt or sand or some combination of them.

Principal component analysis was also performed on the correlaion
matrix of the same set of data. The rotated and normalized eigenvectors
of the last eigenvalue are practically zero. The eigenvectors of the
sixth eigenvalues indicates the same relationship on sand, silt and
turtle grass as that of the first eigenvalues. The analysis was repeated
again and only the first five eigenvectors were orthogonally rotated.

The result of the second run is Tlisted in table 6.

The coefficients of the first component are highly loaded with
turtle grass and sand, with coefficients of opposite sign. This shows
that the first canonical variate is very similar to the first component
obtained by an ordinary principal component analysis. This component
is interpreted as a factor gf sediment stabilizer, as Ginsburg and
Lowenstam (1958) pointed out that a dense growth of grass may produce

a layer of semi-motionless water-over the bottom which traps fine



(&
(&3]

sediments. Actually these two variates are mutuallv dependent. The
factor pattern (table 6) fails to show the relationship of eauation (1).
A more detailed discussion of the result of this factor analysis is
given by Lee (1967).
TAPLE 6
ROTATED AND NORMALIZED FIVE PRINCIPAL COMPONENTS FOR
SEDIMENT FROM BUTTONWOOD SOUND

Component

Variate 1 2 3 4 5
Turtle grass 0.98 0.03 -0.01 0.09 -0.16
Sand -0.80 -0.18 0.08 -0.08 0.57
Temperature 0.06 1.00 -0.02 -0.07 -0.02
Salinity -0.06 -1.00 0.04 0.02 0.00
Depth -0.04 -0.05 0.99 -0.12 -0.04
Silt 0.30 -0.02 0.07 0.06 -0.95
pH -0.11 0.07 0.13 -0.98 0.06
Eigenvalue 2.362 1.902  1.208 0.705 0.518
Cumulative |

Percentage 33.74 60.91 78.17 88.24 95.64

Canonical correlation gave the result that the only significant
correlation between the sediment and environment variates was between

sand and turtle grass. Inspection of components 2-5 confirms this
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conclusion, since the only relationships revealed are those between
environmental variates (components 2-4) or between sediment variates
(component 5).

In this particular case, the loadings on first component
(table 6) and the coefficients of the canonical variate (table 5) are
very similar in magnitude and in sign. In this example, the principal
factor so]ution in factor analysis has revealed more extensive
information, and is likely to be a powerful tool for displaying the
internal relations of a set of measures. On the other hand, when the
pdrpose is to investigate the relations between two sets of variates,
or for prediction in manyldependent variates problems, the technique

of canonical correlation is more appropriate.

4.2 Matching Two Factor Patterns

4,21 General Statement: Suppose a separate factor analysis has been

conducted for a rock body at different geographic localities or
different stratigraphic sections. It may be that the factor patterns
ohtained at the various localities appear quite different but that
canonical transformations exist such that at least some of the factors
in one set may be found to correspond closely to factors in the other
set. In this case, the number of samples,N, is equal to number of
variates, o) the number of factors for one set, and Py the number of
factors for another set. Thus, the sum of b] and p2; in general, is
qgreater than the value of N. 1In this anplication, the technique is
used to determine to what extent the two factor patterns represent the

same set of underlying factors. The technique has been qeneralized



for m sets of variates or m factor patterns by Horst (1961, 1961a) to
find m canonical transformations which will yield new patterns havina

maximum similarity.

4.22 Factor patterns of sediment from Buttonwood Sound: Two samples

of size 19 and 16 were taken from PButtonwood Sound, Floriday Dav
(Lynts, 1966) in 14 August, 1962 and 9 February, 1963, respectively.
Factor analysis was performed scparately on these two sets of data.
The factor patterns are listed in table 7.

The problem is to determine to what extent the two factor
patterns are similar. Canonical analysis was carried out on the two
patterns. In this case, Py = 7, Py = 7, N = 8 (number of variates).
The result is that seven caronical roots are unity. A1l of them are
significant at the 1 percent level. Their associated canonical
variates are listed in table 8.

Judging from table 8, it is concluded as follows:

(1) Factor F9-1 is negatively ré1ated to factor F14-1, because they
have an opposite sign in their original factor patterns.

(2) F9-2 is negatively related to F14-3 and partly to Fi4-1.

(3) F9-3 is related to F14-2.

(4) F9-4 is negatively related to F14-6.

(5) F9-5 is negatively related to F14-5.

(6) F9-6 is related to F14-4. The analysis shows that these two
factor patterns represént the same set of underlying factors, although

these two sets of samples were collected at different times.



TARLL 7
FACTOR PATTERNS FOR SEDIMENTS FRO!M DUTTOMMOOD SOUND

Factor pattern for samples collected in 14 August, 1962

actor .
F4-1 " P42 F14-3  Fl4-4  F14-5  Fl4-6  F14-7
Variate

Sand 0.95 -0.07 0.19 .11 -0.12 -0.01 -0.18
Turtlie grass | -0,54 -0.14 -0.16 -0.22 0.25 0.00 0.74

Silt -0.90  -0.02 0.39  -0.08  0.05  -0.09 6.1

Depth -0.05  -0.23 0.18  -0.15 -0,09  -0.94  -0.00
pH 0.02 -0.95 0.14  -0.09  0.09  -0.22 0.07
Clay 0.05 0.14  -0.96 -0.03 0.00  0.17 0.10
Temperature -0.14 -0.08 -0.02 -0.97 -0.01 -0.14 0.11

Salinity 0.13  -0.08 0.08  -0.01 -0.97  -0.08  -0.12
Eigenvalue 2,733 1,905 1,154  0.998 0.539  0.449  0.22]
Cumulative

percentage 34.16 57.98 72.41 84.89 91,63 97.24 100.00

Factor pattern for samples collected in 9 February, 1963

Factor F9-1 F9-2 F9-3 F9-4 F9-5 F9-6 F9-7

Variate

Silt 0.95 0.00 0.00 0.04 -0.17 -0.22 0.10
Sand -0.75 -0.60 -0.10 0.08 0.19 0.07 -0.15
Clay 0.08 0.95 0.16 -0.17 -0.10 -0.14 0.1

Turtle grass 0.42 0.45 0.16 0.00 -0.35 -0.25 0.64




Table 7

Factor pattern for samples collected in 9 February, 1963 - (continuteu)
\\\fgffor F9-1 FO-2 Fo-3 Fo-4 F9-5 F9-6 F9-7
Variaté\\\\\

Depth 0.01 -0.15 -0.09 0.97 0.1 -0.10  -0.00
Salinity -0.23 -0.14 -0.06 0.15 n.91 0.23 -0.13
pH -0.03 -0.16 -0.97 0.09 0.06 0.12  -0.06

Temperature 0.24 -0.11 0.15 0.13 -0.24 -0.91 -0.10

Eigenvalue 3.545 1.631 0.296 0.825 0.556 0.276 0.170
Cumulative

percentage| 44.32 64.71 77.16 87.47 94.42 97.87 100.06

— ——

TABLE 8
CANONICAL VARIATES FOR TWO FACTOR PATTERNS

Variate

Factor 1 2 3 4 5 6 7
F9-1 0.00 0.00 1.00 0.00 0.00 0.00 0.00
F9-2 0.00  0.00 0.00 0.00 0.00 0.00 1.00
F9-3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 )
F9-4 0.00 0.00 0.00 1.00 0.00 0.00 0.00
F9-5 0.06 0.00 0.00 0.00 0.00- 1.00 0.00
F9-6 1.00 0.00 0.00 0.00 0.00 0.00 0.00
F9-7 0.00 1.00 0.00 0.00 0.00 0.00 0.00

cont'd ....
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Table 8

Canonical variates for two factor patterns - (continued)

Yariate
Factor 1 2 3 4 5 6 7
Fi4-1 -0.01 0.02  -0.95  0.13  0.09  0.00 -0.42
F14-2 -0.29  0.2] 0.08  0.16  0.93  -0.18 0.0
F14-3 -0.32  0.01 0.02  0.04  0.04  -0.07 -0.836
Fl4-4 0.84 -0.01 -0.04  0.01 -0.16  0.21  0.15
F14-5 -0.33  0.09  0.20 -0.05  0.13  -0.95 -0.00
 F14-6 -0.02  -0.04  0.09 -0.97 -0.13  -0.05 -0.03
Fl14-7 0.02  0.97 -0.20  0.10  0.26  -0.04  0.09

4.3 Q-Technique Canonical Correlation

4.31 General statement: Q-technique canonical correlation is used for

dealing with sample space. Suppose we have two sets of samples collected
from different groups (such as localities, or different formations), the
problem is to determine to what extent these two sets of samples are
similar, based on observable variates. In this case, Py is the number of~
samples in one set, Py number of samples in another one, and N is the
number of variates. The canonical root provides an index of the degree of
similarity between the two groups of samples.

It must be noted, however, that canonical root indicates the
maximum deqree of similarity between the groups, and not the average degree
of similarity. If there hapben to be two closely similar individuals,

one in each group, the canonical root will be very high even though the
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majority of the samples in the two groups differ considerably. There is
no statistical criterion for testing the cocfficients of the canonical
variates. Thus, the coefficients must be carefully examinec. If the
coefficients are "approximately" equal, this implies that the degree of
similarity (the canonical root) is more or less reliable. On the other
hand, if the coefficients are large in onc or two samples, this indicates
that these two groups may or may not be generally similar, even though
the canonical root is high. On the other hand, if the canonical root is
Tow for two groups, this stronqly suggests that these two groups are
quite different.

The Q-technique canonical root presents the same problem as in
Q-technique factor analysis. The different variates may be measured
in quite different units, and correlation of a pair of samples over N
values of noncomparable units does not, in general, make sense. This
difficulty cannot be overcome by standardization. Kendall (1966)
suggested removing this difficulty by working with rank correlation, for
example,presence of a variate is coded by 1, absence is coded by -1;
or "rare", "common", and "abundant" are coded by using -1, 0, and 1,
respectively.

4.32 Ordovician and Silurian Sediments: Two specimens of shale from

each of four formations exposed in the Niagara escarpment, Ontario were
analyzed for both major elements and trace elements (Cr, Mn, Ga, YV, Ni, Ti,
Zr, Sr, and Ba expressed in terms of ppm) (Candy, 1963). The formations
were the Silurian Cabot Head (gray and green shale), Grimsby (red shale),

and Thorold (gray and green shale), and the Ordovician Queenston (red
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and green shale). The Q-technique canonical correlation matrix based

on the trace elements is listed in table 9.

TABLE 9
CANONICAL CORRELATTOM MATRIX FOR THE FOUR FORMATIONS FROM ONTARIO

Thorold 1.000

Grimsby 0.954 1.000

Cabot Head 0.996 0.977 1.000
Queenston 0.940 0.866* 0.829*

NOTE: * not significant at 1 percent level,

Table 9 suqgested that there is a clear geochemical distinction
between the Ordovician Queenston shale and Silurian shales. This canonical
correlation matrix also indicates that the Silurian shales are closely
similar. Unfortunately, the coefficients of the canonical variates for
the Grimsby formation are not approximately equal for all samples, the
same is with the Thorold formation. Thus, the latter conclusion is still
doubtful. The canonical variates of the Thorold and Grimsby formations,

for example, are

1]

U = 0.98 (Grimsby sample 1) - 0.13 (Grimsby sample 2) (2)

V = -0.15 (Thorold sample 1) + 0.99 (Thorold sample 2) (3)

]

The simple correlation coefficients hetween samples of the
Grimsby and of the Thorold formation are positive. Thus, the opposite
sign in the linear functions U and V would imply that these shale

samples cannot be simply amalgamated in such a linear form.



[oa)
[S%]

The advantage of this technique is that it dees not reaquire a
large samnle size for each qroup. There ¥s an clegant way to apnroach

the same problem, and this will be discussed in the following section.

4.4 Discriminatory Analysis by Canonical Variates

4.41 General statement: Testing similarity of k aroups can be carried

out through cancnical correlation analysis (Bartlett, 193%a, 1247, 1965).
Suppose a discriminant function is defined as

Y=AZ : (4)
where A is p x 1 matrix to be determined, Z is p x 1 variate matrix,

then the analysis of variance of Y is

Between groups A' B A
Within groups A WA
Total A'TA

where B, is the matrix of sums of squares and products 'between' the k
groups, and w for the corresponding pooled 'within' matrix, and T for
the corresponding 'total' matrix.

In order to make the variable Y as effective as possible in

discriminating between these two groups, the ratio

2 _A'BA : (5)

A' TA
should be as large as possible. The solution to this problem may be
obtained through canonical correlation analysis, that by solving the set

of linear equations as

(B - R T)A = 0 (6)
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where Rz's are latent roots of the ecquation

2

B-RET| =0 (7)

Seal (1964, p. 127-144) used the following matrix cquation instead of
(7),

B-RE(B+H) | =0 (3)
or IB-2%u ]| =0 (9)
where 1% = R% /(1 - RZ)- .

The Az's are the eigenvalues of the nonsymmetrical matrix H']R, and
their normalized eigenvectors will be the columns of matrix A.

This means that the first transformed axis passes through
the direction of the greatest variability 'between' the k means; then
the second axis, at right angles to the first; passes in the direction
of the next greatest varia?i]ity and so on. This is essentially the
case of several populations in discriminant analysis (Wilks, 1963,
p. 576-581).

Equation (4) may be generalized for more than two groups, say k
groups. In this case, Y is m x 1 matrix, A is m x p matrix, Z is
p x 1 matrix, where m is the number of non-zero eigenvalues of
equation (9), m=p, ifps k-1, m=k -1, if p>k - 1. Thus, if
'k = 2, equation (4) is known as the discriminant function. A new
observation vector Z may be inserted into this function, and the
unknowns will be allocated to one or other of the two groups depending
on whether the value of Y is positive or negative, respectively. The
set of linear equation (4) may be used for classification. After

substituting each observation Z into the equation (4), we will have m



coordinates on the m-dimensional canonical axes for each observation.
Finally, the canonical coordinates will display the m-dimensional
relationship of all observations. If we emphasize the differences
between the means of the k groups, the vector Z is replaced by a mean
vector Z. The canonical coordinates of the mean of each qroup will be

obtained by placing the mean values of each variate in Z.

Bartlett's test (1947) of significance of canonical roots is

that ,
xZ = {(N=1) - 0.5(0+K?} Inh (10)
m
where A =1 (1 +A§), p = number of variates, k = number of groups,
j=14+1 ‘
is approximately chi-square variate with (p - i)(k - i - 1) degrees of
freedom when Ai+] = Ai+2 = tirens e = Xm = 0.

The assumptions are that (1) the variance-covariance matrix of
pivariate groups are supposed equal (the classification of two multi-
variate distributions with different covariance matrices was discussed
by Anderson and Bahadur (1962)), (2) the unknown samples which are to
be discriminated belong to one, and only one, of the qroups and that the
probabilities that the unknown sample belongs to any group are equal.

This technique has the great advantage that the’p variates may
be different types of measurements if all the variates are standardized.
On the other hand, the disadvantage is that if p is large, and k = 2,
the comparison between the two groups is contained in a straight line,
because we only have one canonical root.

Suppose we have measured p variates on Nj samples of a given

rock type (or fossil types) (j =1, 2, ...., k); | NJ=N, where these



66

vériates may be measured in any one of nominal, ordinal, interval, or
ratio scales, then canoniéa? corrclation analysis is the most

reasonable procedure to discriminate between these k rock types (or
fossil types) and to discover their underlying affinities. Canonical
correlation analysis may be renlaced by O-technique principal component
analysis if the following conditions are satisficd (Secal, 1964,

p. 171-172): (1) thebmeasured v;riates are uncorrelated, this would be
done through a principal component analysis on each rock type, and

(2) the corresponaing diagonal elements of coVériance matrices of
"between rock type" and "within rock type" are equal. These are

severe restrictions. The proper uses of factor analysis, canonical
analysis, and principal component analysis have been discussed thoroughly
in the recent literatures {Bartlett, 1948, Eysenck, 1952; Lindley, 1262,
1964; Rao, 1964; Cattell, 1965, 1965a; Gower, 1966, 1967). Seal (1964,
p. 171) summarized the different purposes of these techniques as
follows:

"(1) Principal component analysis is intended to achieve a
parsimonious summarization of a random sample from a single universe of
mu]tivariaté Normal measurements;

(2) Canonical analysis is a procedure of discriminating as
clearly as possible between two or more multivariate Normal universes
with the same variance-covariance matrix; and

(3) Factor analysis is an attempt to elicit the underlying

Normal multivariate structure of a universe that can be sampled with

respect to many correlated variates."
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4.42 Ordovician limestones from Colborne quarrv: The upnrer part of

the Middle Ordovician Cobourg 1imestone was sampled at Colborne uarry,
Ontario (Lee, 1965). Three samples of size 78, 22, and 29 were collected
from three stratigraphic sections, A, B, and C, respectivelv. The
percentages of 1limestone variates, namely; matrix, sparry calcite,
brachiopod shells, echinoderm fragments, trilobite fragments, bryozoa
fragments, and ostracod shells were estimated from peel prints. Two

peel prints were counted in order to make replicates for each sample.

One problem is whether or not these three stratigraphic sections
are different, based on the seven limestone variates. The raw data were
analyzed through canonical correlation analysis. The largest two
canonical roots are equal to 0.426 and 0.320, respectively, which are
significant at 5 percent level; whereas the last three roots are not
significant at the same level. According to the canonical coordinates,
sections A and C are slightly different from section B when based on the
seven Timestone variates (table 10). The individuals of the three
sections are displayed on canonical coordinates (fiq. 8).

Another problem is whether or not these three stratigranhic
sections are different, based only on brachiopod shells. The canonical
coordinates indicate that sections A and C are very similar, while
section B is different from the other two sections even though the
canonical root (0.140) is not significant at the 5 percent level. The
last conclusion is confirmed by thé result obtained by using one-way

analysis of variance and t-test (Lee, 1965; Lee and Winder, 1967).
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TABLE 10
CANONICAL COORDINATES OF LIMLCSTONES FRQOM COLPORNE OUARRY, OHTARIO

Rased on 7 variates Based on brachiopod shells

Section no.

Canonical axis Canonical axis

1 2
Section A 1 39.238 ' 7.516 8.590
Section A 2 33.488 7.396 7.397
Section B 1 38.400 7.786 10.136
Section B 2 37.975 7.565 10.364
Section C 1 38.406 7.531 ’ 3.414
Section ¢ 2 38.212 -7.450 8.310
Canonical root 0.426 0.320 | 0.140

Buzas (1966) applied the same principle to test the differences
among the groups of Elphidium from Long Island Sound based on morphological
characters.

The Nigerian Upper Cretaceous and Lower Tertiary ostracoda
were analyzed through canonical correlation analysis by Reyment (1966).

This téchnique elegantly quantifies means of k grouns, or all
individuals, on the canonical coordinates according to their underlying
affinities, whereas the multivariate analysis of variance and generalized

Tz-statistic show only the significance levels for difference between

the groups.
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CHAPTER 5
CONCLUSIONS

The merit of canonical trend surface analysis is tnat it is a
parsimonious summarization of a set of geographic variations of geological
variates. The canonical trend surface has the eleqant property of
maximum correlation between geoiogical variates and geographic
coordinates. The succinct trend obtained does not show the absolute
value of each variate, but it does indicate the nature of the variation
for each variate. The linear function associated with the largest
.canonical root has highest probability of showing the true variations.
The linear functions associated with smaller canonical roots explain
other changes which cannot be summarized into the first linear function.

Examination of the canonical trend‘for a set of variates
frequently leads to an understanding of the intrinsic trend, common to
several variates, that would be difficult or impossible to obtain by
other means.

The relation between two sets of variates may be untangled to
a certain extent through canqnical correlation analysis. The technique
should have applications in prediction and exploratory studies.

The technique for matching two factor patterns is very
interesting in some cases. It can help the investigator to visualize
the variation of factors from pTace to place. Similar results may be
obtained by examination of the factor loadings 6n particular variates,
but canonical correlation provides more precise information and more
rapidly.

70
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The Q-technique canonical correlation analysis is apnlicable to
samples of small size. In the case of samples of large size, the method
-~ where individuals are displayed on canonical coordinates through
canonical correlation analysis -- has a strong mathematical rationale.

The use of canonical analysis as a procedure of discriminating
between two populations is restricted by the assumption that the
populations have the same covariance matrix. It has the advantage
that variates may be different types of‘%;asurements because changing
the scale of any one of them does not affect the results. Furthermore,
experience from solving practical problems suggests that the number
o% dimensions required for a comparison of groups will generally be
less than the number required by principal component analysis |
(Seal, 1964, p.123).

Principal factor analysis explains the maximum variance of a
single sample whereas canonical factor analysis (Rao, 1955) yields
factors which have maximum correlations between the obsérvable
variates. This result is the same as Lawley's (1940; Lawley and
laxwell, 1963) maximum-1ikelihood solution. Ifs'application in geology
has not yet been studied.

The use of canonical corre1ation'ana1ysis in multiple
regression analysis is quite interesting. In this case, the number of
variates in one set is equal to one (the dependent variable). The
canonical root is identical with the multiple correlation coefficient,
but the weights for each variate in the linear function may be different
in these two approaches. To date, there has been no discussions on this

topic from the geological point of view.
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Another possible use of the canonical correlation analysis
in geology is to differentiate sedimentary environments when based on
grain size distribution. One SFt of variates would consist of the
sedimentary environments such as bcach, dune, lagoon, river and so on,
the second sct of variates would contain only one variate, the unknown
individual to bezdetennined. The grain size parameters would be treated
as observations. The canonical correlation would give a maximum
correlation between the unknown and the known environments. The largest
coefficient attached to the known environment would indicate the nature
of the unknown. This technique would be able to identify an individual
which came from mixed environments, for instance dune sand and beach
sand. The coefficients would be approximately equal on these two
variates or environments.

The concept of two-dimensional canoncial trend can easily be
genera]ized}into three-dimensional canonical trend, but it will need
a large computer storage to handle the computation process.

Canonical and factor analysis are appropriate tools for
geological data, but there are some disadvantages. Unfortunately,
the existing tests of statistical significance do not in some
cases help to make a reasonable decision. At the present time, the
proper use of these methods is to generate hypotheses. Once a
hypothesis has been created, the question should be whether or not it
is interesting to conduct experiments to prove or disprove the hypothesis.
One should not lean too much on the statistical tests of the number of

factors or canonical roots, since these tests were derived from
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specified assumptions which may not be reasonalle in all cases. On
the other hand, if there exists a hypothesis, obtained from experiments
or experience, the use of this technique is to see whether or rot the
hypothesis can be confirmed bv statistical analvsis.

Canonical trend surface analysis represents a step toward
the theoretical development of "geometrics". Its applications in
geology open a promising field. More extensive studies on this field

are desirable.



REFERENCES

ANDERSON, T. W., 1958, "An Introduction to Multivariate Statistical

Analysis", John Wiley & Sons, Inc., New York, 374 p.

ANDERSON, T. W., 1963, "Asymptotic Theory for Principal Component

Analysis", Ann. Math. Stat., V. 34, p. 122-148.

ANDERSON, T. W. and BAHADUR, R. R., 1962, "Classification into Two
Multivariate Normal Distributions with Different Covariance

Matrix", Ann. Math. Stat., V. 33, p. 420-431.

BARTLETT, M. S., 1938, "Further Aspects of the Theory of Multiple

Regression", Proc. Cambridge Philosophy Soc., V. 34, p. 33-40.

BARTLETT, M. S., 1941, "The Statistical Significance of Canonical

Correlation", Biometrika, V. 32, p. 29-37.

BARTLETT, M. S., 1947, "The General Canonical Correlation Distribution",
Ann. Math. Stat., V. 18, p. 1-17.

BARTLETT, M. S., f947a, "Multivariate Analysis", Jour. Roy. Stat. Soc.,
Suppl. IX, p. 176-197.

BARTLETT, M. S., 1947b, "The Use of Transformation", Biometrics,
V. 3, p. 39-52.

BARTLETT, M. S., 1948, "“Internal and Externé] Factor Analysis",

British Jour. Psychology (Stat. Section), V. 1, p. 73-81.

74



BARTLETT, M. S., 1965, "Multivariate Analysis" in Theoretical and
Mathematical Biology, Edited by Waterman, T, H. and Morowitz,

H. J., Blaisdell Publishing Company, London, 426 p.

BEECH, H. R. and MAXWELL, A. E., 1958, "Differentiation of Clinical
Groups Using Canonical Variates", Jour. Consulting Psychology,

V. 22, p. 113-121.

BURT, C., 1948, "Factor Analysis and Canonical Correlations", British

Jour. Psychology (Stat. Section), V. 1, Pt. II, p. 95-106.

BUZAS, MARTIN A., 1966, "The Discrimination of Morphological Groups of
Elphidium (Foraminifer) in Long Island Sound through Canonical
Analysis and Invariant Characters", Jour. Paleontology, V. 40,

p. 585-594.

CANDY, G. J., 1963, "The Geochemistry of some Ordovician and Silurian
Shales from Southwestern Ontario", M. Sc. Thesis, Dept.

Geology, McMaster University, unpublished, 175 p.

CATTELL, R. B., 1965, "Factor Analysis: An Introduction to Essentials
I: The Purpose and Underlying Models", Biometrics, V. 21,
p. 190-215.

CATTELL, R. B., 1965a, "Factor Analysis: An Introduction to Essentials
II: The Role of Factor Analysis in Research', Biometrics, V. 21,
p. 405-435,

COCHRAN, W. G., 1963, "Sampling Techniques", 2nd Edition, John Wiley &
Sons, Inc., Mew York,413 p.

CONSTANTINE, A. G. and JAMES, A. T., 1958, "On the General Canonical

Correlation Distribution’, Ann. Math. Stat., V.29,p. 1146-11€6.



76

COOLEY, W. W. and LOHNES, P. R., 1962, "Multivariate Procedures for the

Behavioural Science", John Wiley & Sons, Hew York, 211 p.

DAS, R. S., 1965, "An Application of Factor and Canonical Analysis to
Multivariate Data", British Jour. Math. Stat. Psychology,
V. 18, p. 57-67.

DUNTEMAN, G. H., 1967, "A Canonical Correlation Analysis of the Strong
Vocational Interest Blank and the Minnesota Multiphasic
Personality Inventory for a Female College Population",

Educational Psychol. Measurement, V. 27, p. 631-642.

EBERLEIN, P. J., 1962, "A Jacobi-1like !ethod for the Automatic
Computation of Eigenvalues and Eigenvectors of an Arbitrary

Matrix", Jour. Soc. Indust. App. Math., V. 10, p. 74-88.

EYSENCK, H. J., 1952, "Uses and Abuses of Factor Analysis", App. Stat.,
V. 1, p. 45-49,

FORGOTSON, J. M., Jr., 1960, "Review and Classification of Quantitative
lapping Techniques", Bull. Am. Assoc. Petroleum Geologists,

V. 44, p. 83-100.

GINSBURG, R. N. and LOWENSTAM, H. A., 1958, "The Influence of Marine
Bottom Communities on the Depositional Environment of Sediments",

Jour. Geology, V. 66, p. 310-318.

GOWER, J. C., 1966, "Some Distance Properties of Latent Root and Vector
Methods Used in Multivariate Analysis", Biometrika, V. 53,

p. 325-338,



17

GOWER, J. C., 1967, "Multivariate Analysis and Multidimensional Geomctry",

The Statistician, V. 17, p. 13-28,

HILL, W. J. and HUNTER, W. é., 1966, "A Review of Response Surface
Methodelogy, A Literature Survey" ,Technometrics, V. 8, p.
571-590.

HORST, P., 1961, "Generalized Canonical Correlation and Their Application
to Exrerimental Data", Jour. Clinical Psycholoqy, Monograph

Supplement No. 14, p. 331-347.

HORST, P., 1961a, "Relations Among m Sets of Measures", Psychometrika,
V. 26, p. 129-149,

HOTELLING, H., 1936, "Relations Between Two Sets of Variates",

Biometrika, V. 28, p. 321-377.

HOTELLING, H., 1957, “The Relations of the Newer Multivariate Statistical
Methods to Factor Analysis", British Jour . Stat. Psychology,
V. X, Pt. II, p. 69-7S.

HSU, P. L., 1941, "Canonical Reduction of the General Regression

Problem", Ann. Eugen. London, V. 11, p. 42-46.

HSU, P. L., 1941a, "On the Limiting Distribution of the Canonical

Correlations", Biometrika, V. 32, p. 38-45.

IMBRIE, J., 1963, "Factor and Vector Analysis Programs for Analyzing
Geological Data", Tech. Rept. No. 6, ONR Task no. 389-135,
Contract nonr 1228(26), Office of Naval Research, Geography
Branch, Northwestern Univ.‘Il1inois, 83 p.

KENDALL, M. G. 1961, "A Course in Multivariate Analysis", Griffin's Stat.

Mono. Cour., London, 185 p.



78

KENDALL, M. G., 1966, "Discrimination and Classification", Proc.
International Symp. held in Davton, Ohio, June 14-19, 1965,

Edited by Krishnaiah, Academic Press, MNew York, 592 p.

KOONS, P, B., Jr., 1962, "Canonical Analysis" in "Computer Applications
in the Behavioural Sciences", Edited by Borko, H., Englewood

Cliffs, N. J., Prentice-Hall, MNew York, 633 p.

KRUMBEIN, W. C., 1955, "Composite End Members in Facies Mapping",

Jour. Sedimentary Petrology, V. 25, p. 115-122.

KRUMBEIN, W. C., 1962, "Open and Closed Number Systems in Stratigraphic
Mapping", Am. Assoc. Petroleum Geologists Bull., V. 46,

p. 2229-2245.

KRUMBEIN, W. C. and IMBRIE, J., 1963, "Stratigraphic Factor MapsS's Bull.

Am. Assoc. Petroleum Geologists, V. 47, p. 698-701.

KRUMBEIN, W. C. and GRAYBILL, F. A., 1965, "An Introducticn to

Statistical Models in Geo1ogy", McGraw-Hill Rook Company, 475 p.

KSHIRSAGAR, A. M., 1962, "A Note on Direction and Collinearity Factors

in Canonical Analysis", Biometrika, V. 49, p. 255-259.

LAWLEY, D. N.,1940, "The Estimation of Factor Loadings by the Method of
Maximum Likelihood", Proc. Roy. Soc. Edinburg, Series A, V. 60,

p. 64-82.

LAWLEY, D. N., 1959, "Tests of Significance in Canonical Analysis",

Biometrika, V. 46, p. 59-66.



79

LAKWLEY, D. N. and MAXWELL, A. E., 1963, "Factor Analysis as a Statistical

Method", London, Butterworths, 117 p.

LEE, P. J., 1965, "Sedimentology of the Middle Ordovician Cobourg
Linestone at Colborne, Ontario, Canada", M. Sc. Thesis,

Univ. Western Ontario, unpublished, 70 p.

LEE, P. J., 1967, "FORTRAN IV Program for Princinal Component Analysis",

Tech. Mem. 67-5, Dept. Geology, McMaster Univ., 24 p.

LEE, P. J. and MIDbLETON, G. V., 1967, "Application of Canonical
Correlation to Trend Analysis", Colloquium on Trend Analysis,
Edited by Merriam, D. F. and Cocke, N. C., Computer Contribution

Pt eyl AN

12, State Geological Survey, Kansas, p. 19-21.

LEE, P. J. and WINDER, C. G., 1967, "Fabric of a Middle Ordovician
Linestone at Colborne, Ontario", Can. Jour. Earth Sci.,

V. 4, p. 529-540.

LINDLEY, D. V., 1962, "Factor Analysis: A Symposium", The Statistician,
V. 12, no. 3.

LINDLEY, D. V., 1964, “Factor Analysis: A Summary of Discussion", The

Statistician, V. 14, p. 47-61.

LYNTS, G. W., 1966, "Relationship of Sediment-size Distribution to
Ecologic Factors in Buttonwood Sound, Florida Bay", Jour.

Sedimentary Petrology, V. 36, p. 66-74

MAHER, J. C., 1953, "Permian and Pennsylvanian Rocks of Southern Colorado",

Am. Assoc. Petroleum Geo6logists, Bull., V. 37, p. 913-939.



co
O

MAXWELL, A. E., 1961, "Canonical Variate Analysis when the Variables
are Dichotomous", Educational Psychol. Measurement, V. 21,

p. 259-271.

MEREDITH, W., 1964, "Canonical Correlations with Fallible Data",

N

Paychometrika, V., 29, p. 55-65,

MIDDLETON, G. V. amd LEE, P. J., 1967, "Applications of Canonical
Correlation to Sedimentology", 7th Inter. Sedimentological

Congress, England.

MORRISON, D. F., 1967, "Multivariate Statistical Methods", McGraw-
Hi1l Book Company, New York, 388 p.

MUDGE, M. R., 1967, "Palecotectonic Investigations of the Permian System
in the United States", Chapter F, Central Midcontinent Region,

Geological Survey Professional Paper, 515-F, p. 93-123.

0'CONNOR, H. G., 1963, "Changes in Kansas Stratigraphic Momenclature",

Am. Assoc. Petroleum Geologists, Bull., V. 47, p. 1873-1877.

PEARCE, S. C. and HOLLAND, D. A., 1960, "Some Applications of Multi-

vériate Methods in Botany", App. Stat., V. 9, p. 1-7

PELTO, C. R., 1954, "Mapping of Multicomponent Systems", Jour.
Geology, V. 62, p. 501-511.

RAO, C. R., 1955, "Estimation and Tests of Significance in Factor

Analysis", Psychometrika, V. 20, p. 93-111.

RAO, R., 1964, "The Use and Interpretation of Principal Component
Analysis in Applied Research", Sankhya, Series A, V. 26,
p. 329-358.



81

REYMENT, R. A., 1966, "Studies on Nigerian Upper Cretaceous and Lower
Tertiary Ostracoda: Part 3: Stratigraphic, Paleoecological
and Biometrical Conclusions, Stockholm Contributions in Geology,

Acta Universitatis Stockholmiensis, V. XIV, 151 p.

ROY, S. N., 1957, "Some Aspects of Multivariate Analysis", John Wiley

& Sons Inc., New York, 214 p.

SEAL, H. L., 1964, "Multivariate Statistical Analysis for Biologists",
Methuen and Co. Ltd., New York, 207 p.

SWINEFORD, A., 1955, "Petrography of Upper Permian Rocks in South-
central Kansas", State Geological Survey of Kansas, Bull. 111,

179 p.

THOMSON, G., 1947, "The Maximum Correlation of Two Weighted Batteries",

British Jour. Psychology (Stat. Sec.), Pt. I, V. 2, p. 27-34,

THOMPSON, W. 0., 1949, "Lyons Sandstone of Colorado Front Range",

Am. Assoc. Petroleum Geologists, Bull., V. 33, p. 52-72.

TINTNER, G., 1946, "Some Applications of Multivariate Analysis to
Economic Data", Jour. Am. Stat. Assoc., V. 41, p. 472-500.

WAUGH, F. V., 1942, "Regressions Between Sets of Variables",
Econometrika, V. 10, p. 290-310.

WILKS, S. S., 1963, "Mathematical Statistics", John Wiley & Sons, Inc.,
New York, 644 p.



6.1
6.11

APPENDIX I -

FORTRAN IV PROGRAM FOR TWO-DIMENSIONAL CANONICAL TREND

Instructions for Using the Program

Input to Program

I
(1)

(2)

(3)

(4)

(5)

(6)

Instruction card

First 3 columns are reserved for punching the number of
samples. The maximum sample size is 30n0.

Columns 4 and 5 are for punching the number of variates

to be analyzed.. The maximum number of variates is 15.
Columns 6 and 7 are for punching the number of variates

to be read by the computer, it may or may not be the same
as stated in (2) of I.

Columns 8 and 9 are for punching the number of description
cards (see IV).

Column 10

Punch 1 Arc Sine transformation on the geological variate
Punch 2 Log transformation (base 10) on the geological variate
Punch 3 No transformation on the geological variate

Column 11

Punch the order of the polynomial. The maximum order is 6.
If the number 6 is punched on the column 11, the computer
will stop computing the higher order polynomial (< 6) if
the difference of two successive canonical correlations is

less than 0.05.
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(7)

II

II1

v

VI

VII
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Columns 12-19

In general we use an arbitrary coordinate system for
sample location. In order to have an actual scale for the
map printed by the printer , the distance in feet which is
equal to-1 unit in the arbitrary coordinate system is

punched on columns 12-19. The.input format is F8.0.

Title Card
The project title and investigator's name are punched on

one card (no more than 80 characters).

Map Title card

The title for the trend surface is punched on one card.

Description card(s)

A brief description of the project is allowed. The maximum
number of cards is 50, whereas the minimum number is 1..
Variate name card(s)

Twelve characters are used for the names of each variate.
vThey should be punched in the same order as in the data
matrix. Six names are punthed on one card, (i.e. eight
columns are left at the end of each card).

Data Format card

This format is used for the input data cards. No more
than 80 characters are allowed.

Data cards

The X-, Y-coordinates must be in the first two places and
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are followed by the geological variate data.

The origin of the coordinate may be placed anywhere, but
the coﬁvention for the reference coordinate is the same
as the Cartesian coordinate system. The right hand side
of the X- axis is positive whereas the left hand side is
negative. The Qpper part of the Y-axis is positive,
whereas the lower part is negative. The maximum length
of the X-axis should be greater than or equal to that

of the Y-axis.

EACH SAMPLE HAS ITS OWN SEPARATE DATA CARD(S).
TWO OR MORE SAMPLES SHARING ONE DATA CARD IS NOT ALLOWED.

6.12 Output from Program

(1)
(2)
(3)
(4)
(5)

(6)

Project title and investigator's name.
Description of the project.
Mean, and standard deviation of the geological variates.

Covariance matrix for the geological variates.

Record of successive evaluation of the degree of the

trend surface.

Each canonical correlation has one set of the following

outputs.

(i) The trend surface equation

(ii) The observed, calculated, and residual values with X-,
Y-coordinates.

(iii) The contoured trend surface map with title and legend.

(iv) The residual map.
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6.2 Listing of the Program
THIS 1S CANONICAL TREND SURFACE PROGRAM JULY 1966 P J LEE

DOUBLE PRECISION Q(903)sR11(27927)35R22(15+15)5R12(27515)>
1PRO(27515)9PRO1(15515)sSUMSQ(42)

" REAL IPOLY

N

20
21

DIMENSION E{(27)+D(99)sSUM{42)s DOT(10)s N1(108)sVEC(15915)
1PRO2(15915)sP(27)sPOLY(50950)sB(300)sC{30C)sFMT(16)sDM(200517)>
2TITLE(16)sTITLE2(16)sVARIAT(30) sSOQURCE(800) sIPOLY(5Us5U)
3RESIDU(300) s WORK (54) s TERM(27) sA(959) yMAPING(30U2)951Gt3uV)

EQUIVALENCE (QsPOLYs»IPOLY) s (SUMsR22) s (SUMSQIPRO1sP)
1(TITLESTITLE2) s (R125A)

DATA TERM/GH X s6H Y s6H X2 26H XY s6H Y2  s6H X3 y6H
1 X2Y +6H XY2 s6H Y3 s6H X& s6H X3Y 96H X2Y2 »6H XY3  6H Y&
2 s6H X5 yG6H X4Y s6H X3Y2 s6H X2Y3 +s6H XY4 s6H YS s6H X6
3456H X5Y 26H X4Y?2 s6H X3Y3 s6H X2Y&4 s6H XY5 96H Y6 /

DATA SAMPLE sBLANK/2H %92H /

DATA DOT/2H Os2H 192H 292H 392H 492H 592H 692H 792H 892H 9/

READ(59¢1) NyMsMVsNNsI1sNORDERSFEET

FORMAT(13531252115F840)

S=N

READ(552) TITLE .

FORMAT(16AS5)

WRITE(6s3) TITLE

FORMAT(1H1920X9s16A5///)

"READ(592) TITLE2

NU=NN%16

READ(5s4) (SOURCE(I)sI=1sNU)

FORMAT(16A5) . -

WRITE(695) (SOQURCE(I)sI=19NU)

FORMAT(1H +25Xs16AS5)

MU=M*2 .

READ(596) (VARIAT(I)sI=1sMU)

FORMAT(12A6) . :

READ({S5s7) FMT

FORMAT (16A5) .

XMAX=~10000040

XMIN=100000,0

YMAX=-100000.0

YMIN=100000.0

M90=M+27

IMOO=(27+M+1 )% (27+M) /2

DO 20 I=1sM90

SUM(1)=0,0

SUMSQ(11=040

DO 21 I=19IM90,1

Q(I)zooo

DO 131 ISAMPL=1sN

.



19
12

13
10
15

11
16

130

131

126

96

93
95
106
127
129

128

READ(59FMT) XsYs(D(J)sJ=1sMV)

GOTO (93s10511%s I1

WRITE(6512)

FORMAT {1HO»30H WRONG CODE FOR TRANSFORMAIION)
GOTO 100

DO 13 I=1sM

D(I)=ARSIN(D(I))

GOTO 11

DO 15 I=1sM

D(1)=ALOGLO(D(I))

DO 16 J=1sM

DM ISAMPL s J)=D(J)

DM( ISAMPL sM+1)=X

DM ISAMPL sM+2) =Y

XMAX=AMAX1 (X s XMAX)

YMAX=AMAX1 (Y s YMAX)

XMIN=AMINL (X s XMIN)

YMIN=AMINI (Y s YMIN)

DO 130 I=1sM

SUM(I)=SUM(T)+D(1)
SUMSQ(1)=SUMSQ(I)1+D(1)*D(1)

CONTINUE %

DO 126 I=1sM
SUMSQ(I)—QORT((S*SUMSQ(I)—(SUM(I))**2)/(3*(5 1.0)1))
SUM(I)=SUM(I)/S

WRITE(6596)

FORMAT (111 »30Xs5H MEAN»5Xs19H STANDARD DEVIATION/)
DO 93 I=1sM

IV=2%I~-1

IV1=1V+1 : .
WRITE(6995) {(VARIAT(J)9J=IVsIV1)sSUMIT)sSUMSQ(I))
FORMAT(1HO»10X92A635XsF10e 3,7x,F12.3)
WRITE(65106)

FORMAT(///)

DO 127 J=1sN

DO 127 1=1sM
DM(Js1)=(DM(JsI)=SUM(T))/SUMSQLI)

DO 129 I=1sM

SUM(1)=0.0

SUMSQ(1)=040

DO 8 1S=1sN

DO 128 J=1sM

D(J)=DM(1SsJ)

X=DM(ISsM+1)

Y=DM(ISsM+2)

L=M

Allsl)=1. 0
DO 17 I=1sNORDER

DO 18 J=1»sl
ACJsI+1) =AU 1) %X

86
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L=L+1
18 D(L)Y=A(JsI+1)
ACT+191+1)=A(TsT)®Y
L=L+1
17 D(L)=A(I+1sI+1)
DO 22 1=1sM90
22 SUM(I)=SUM(I)+D(])
DO 8 I=1sM90
DO 8 J=1sM90
L=(J=1)%J/2+1
QIL)=Q{LY+D{( I %DI( 1)
8 CONTINUE
DO 25 I=1,M90
DO 25 J=1sM90
K=(J=1)%J/2+1
25 Q(K)={S*%Q(K)=SUM(I)*SUM(J))/(S*#({S~1.0))
J2=1
J3=J2+1
WRITE(65102) N
102 FORMAT(1HO»10Xs19H COVARIANCE MATRIX»10Xs21H THE SAMPLE SIZE IS
1,1377) .
. DO 103 J=1M
K=0
DO 104 I=1sJ
KK=J*(J=1)/72+I
: K=K+1
104 E(K)=Q(KK)
© WRITE(69105) ((VARIAT(J1)9J1=U29J3)s(E(K1)9sK1l=1sK)).
105 FORMAT(1HOs5X32A6915F743)
J2=J2+2 .
103 CONTINUE ' : ‘
’ ROOT=0.000
ITERM=0
WRITE(6s113)
113 FORMAT(1H1»10Xs53H RECORD OF SUCCESSIVE EVALUATION TREND SURFACE D
1EGREE///) .
125 DO 27 NPOWER=1,NORDER
IPOWER=NPOWER
ITERM=IPOWER+I TERM+1
IF(MeGT«ITERM ) GOTO 37
NL=1TERM ;
NR=M
DO 32 I=1,NR
DO 32 J=1sNL
K= (J+M=1) % (J+M) 72+
32 R12(Js1)=Q(K)
33 DO 35 I=1sNR
" DO 35 J=IsNR
L=Jd*(J=1)72+1



35

39
34

- 29

31

43
37

42
44
56
45
40

36

46

47

R22(1sJ)=Q(L)

R22(Js1)=R22(19J)

CALL DMINVS(R223159NR31E=15sIERRIN1 sWORK)
IF{TERREG.Q) GOTO 29

WRITE(64934)

FORMAT(1HOs45H GEOLOGICAL VARIATE MATRIX CANNOT BE INVERTED)
GOTO 100

DO 31 I=1sNL

DO 31 J=1sNL

K= {J+M=1)1 % (J+M) 72+ +M

R11(IsJ)=Q(K)

R11(JsI)=R11(1¢J)

CALL DMINVS(R11927sNLs1,E-159TERRsN1sWORK)
IF(IERR«EG.0) GOTO 36

WRITE(6+30)

EORMAT({1HO»42H X-Y COORDINATES MATRIX CANNOT BE INVERTED)
GOTO 100

NL=M

NR=1TERM

NTOTAL=NL+NR

DO 44 I=1sNR

‘DO 44 J=1sNR

K={J+M~ 1)*(J+M)/2+I+M
R22(1+J1=Q(K)
R22(Js1)=R22(1sJ)
CALL DMINVS(R229159NRs14E~-159IERRsN1sWORK)

‘IF(IERR.+EQ.0) GOTO 56

GOTO 43

DO 45 I=1sNL

DO 45 J=1sNR : )
K= (J+M=-11*(J+M) /2+1 . .
R12(1s0)=Q(K)

DO 40 I=1sNL _

DO 40 J=TsNL )
K=J#{J=-1)1/2+1

R11(I9J)=G(K)

R1I1(JsI)=R11(TsJ)

CALL DMINVS(R11927sNLslE~ 15!IERR9NIQWORK)

IF(IERRJEQ. 0) GOTO 36

GOTO 39

DO 46 I=1sNL

DO 46 J=1sNR

PRO(1s4)=040

DO 46 ¥=1NL -

PRO(IsJ)=PRO(IsJ)+R11(I4KI*¥R12(KsJ)

DO 47 I=1sNR

DO 47 J=1sNR"

PRO1(1+J)=0.0

DO 47 K=1sNL

PRO1(1sJ)=PRO1(I s J)+R12(Ks1)%PRO(KsJ)
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48

49

50

52

27
51
53

89

DO 48 I=19NR
DO 48 J=1sNR
PRO2(1+J1=0.0
DO 48 K=1sNR
ROZ(I,J)*PROZ(I;J)+R22(I’K)*PR01(K’J)
DO 49 I=1sNR
DO 49 J=1sNR
VEC(IsJ)=0e0
IF(T4EQeJ) VEC(TI9J)=1,000
CONTINUE.
CALL EBERVC(PRO2sNR»51520050 0190.001 1000, 0915!VEC’1)
TEMP=-100.0
DO 50 J=1sNR
IF(TEMP.GT«PRO2(JsJ)) GOTO 50
TEMP=PRO2(JsJ)
JJ=J
CONTINUE
CANON=SQRT(PRO2(JJsJJ))
D1F=CANON-ROOT
ROOT=CANON
WRITE(6+52) IPOWERsROOT
FORMAT(1H »10Xs24H THE DEGREE IS EQUAL TO I2+5X»23H THE CANONICAL
1ROOT IS F10e4&) '
IF(DIFeLTe0s0540ReRO0T«GE«0495000) GOTO 51
CONTINUE .
WRITE(6953) IPOWERSROOT
FORMAT(1HO»10Xs57H THE DEGREE OF THE MOST PREDICTABLE SURFACE IS
1EQUAL TO 1293X;48H THE CORRESPONDING CANONICAL ROOT IS EQUAL T0

C2FT.4/7)

174
171

NR1=NR-1 : : )
DO 171 I=1sNR1 ’ . )
JP=1+1 \ :
DO 171 J=JPs»NR :
IF(PRO2(Is1)eGE.PRO2(J9sJ))IGOTO 171

TEMP=PRO2(Is1)

PRO2(191)=PRO2(JsJ)

PRO2(JsJ)=TEMP

DO 174 K=1sNR

TEMP=VEC(KsJ)

VEC(K s J)=VECI(Ks])

VEC(Ks [ )=TEMP

CONTINUE

TOTALX=XMAX~XMIN

TOTALY=YMAX~-YMIN

INDEX=TOTALY/TOTALX%*5040

DELTA=TOTALX/50.0

TX=50,0/TOTALX

TY=FLOAT(INDEX)/TOTALY

DO 172 JJ=1s9NR

INDEX1=1"



173

114

54

55

57

58
60

59

132
112

115
62

61
63

65
64

97

90

PRO2(JJsJJ)=SQRTIPRO2(JIJsJJ))

WRITE(65173) PRO2(JJrJIY

FORMAT(1H1910Xs37H TREND SURFACE FOR THE CANONICAL ROOT»2XsF8e84/7)
WRITE(65114)

FORMAT(1HO»10Xs34H THE EQUATION OF THE TREND SURFACE///)

DO 54 1=14sNL

E(1)=0.0 '

DO 54 J=1sNR

E(I)=E(I)+SNGLIPRO(I sJ))I®VEC(J9JJ)

RR=0.0

DO 55 I=1sNL

E(I)-E(I)/PROZ(JJoJJ)

RR=RR+E(I)I*E(])

DO 57 I=1sNL

E(I)=E(I1)/SQRT(RR)

J2=1 ‘

J3=J2+1

IF(MeGT«ITERM ) GOTO 59

DO 60 J=1,M B

WRITE(6958) (VARIAT(J1) 9J1=J25J3) sVEC(JsJJ)

FORMAT(1H 95X92A693XsF6e3)

J2=J2+2. :

J3=J3+2

GOTO 112

DO 132 J=1sM

WRITE(6+58) (VARIAT(J1)sJ1=J29J3)9E(J)

J2=J2+2 )

J3=J3+2

DO 64 1=1,ITERMs10

IPRINT=149 :

LIMIT=ITERM _ ;
IF(ITERMeGT« IPRINT) LIMIT=IPRINT '
WRITE(65115) .
FORMAT(//) ' )
WRITE(6962) (TERM(J) »J=1sLIMIT) ' :
FORMAT(1HO»10(4XsA6))

IF(MeGT.ITERM) GOTO 65

WRITE(6+63) (E(IK)sIK=1sLIMIT)

FORMAT(1HO910F10e4///)

GOTO 64 :

WRITE(6563) (VEC(JsJJ)sJ=IsLIMIT)

CONTINUE

WRITE(6597) :

FORMAT (1HO s 40H NOTE X4Y2=X*##4%Y%%24X3=X%*%#33AND SO ON)
BSUM=0.0 )
CSUM=0,0

BSS5=0.0

€SS=0,0
BCR=0,0
DO 72 NSAMPL=1sN



T4

73
108

76
77

75
78

.79
81

12

133
116

117

118

80

82

9]

L=0

Alls1)=140

DO 73 I=1sI1POWER

DO 74 J=1»l
AlJsI+1)=A(Ds 1) #DMINSAMPL sM+1)

L=L+1 '

PILYI=A{JsI+1)
A(I+191+1)—A(lsI)*DM(NSAMPL9M+2)

L=L+1

PIL)=A(I+1y141)

BINSAMPL) =040

CINSAMPL)=0.0

IF(MeGTWITERM )} GOTO 75

DO 76 J=1sITERM
B{NSAMPL Y =B (NSAMPL)I+E(J)%2P(J)

DO 77 I=1sM
CINSAMPL)Y=C{NSAMPL)4+VEC(IsJJ)I*¥DM(NSAMPL s 1)
GOTO 81

DO 78 J=1sITERM
BINSAMPL)=B{NSAMPL)I+VEC(JsJJ)*P(J)

DO 79 I=1sM
C(NSAMPL)=C(NSAMPL)+E;I)*DM(NSAMPL,I)
BSUM=BSUM+B (NSAMPL) "
BSS=BSS+B(INSAMPL ) *%#2

CSUM=CSUM+C (NSAMPL)
CSS=CSS+C(NSAMPL ) %32
BCR=BCR+B(NSAMPL ) *C{NSAMPL)
DENON=S*#B8SS-BSUM#%2
ALPHA=(BSS*CSUM-BSUM#BCR) /DENON
BETA={S*BCR~-BSUM*CSUM) /DENON

DO 133 I=1sN

B(I)=ALPHA+BETA*B(1) : oo
RESIDU(I)—C(I)~B(I)

S2=0.0

DO 116 1=1sN

52=52+RESIDUI(I)

S$2=-1.,0%S2/S

DO 117 I=1sN

RESIDU(I)=RESIDU(I)+52

WRITE(65118) S2

FORMAT(1HOs10Xs55H THE CONSTANT OF THE TREND SURFACE EQUATION IS E
1QUAL TOsF10e4)

WRITE(6+80)

FORMAT (1H1s13H X~COORDINATE »5Xs13H Y-COORDINATE»5Xs15H OBSERVED VA
1LUE»5Xs17H CALCULATED VALUE»5Xs9H RESIDUALZZ /)

WRITE(8982) ((OMUTsM+1) sDMUT sM+2) 9C(I)sB(I)sRESIDU(I)})s1I= 1sN)
FORMAT(1H 9F10e498X3sF106498XsF10e4912X5F10¢ h¢8X,F10-4)

DO 66 LENGTH=1s»INDEX

Y=YMAX-DELTA*{FLOAT(LENGTH)=1.,0)

DO 66 LWIDTH=1+50



X= XMIN+DFLTA*(FLOAT(LWIDTH)-] Q)

L L=0"

68

67
107

70
69

71
66

83

86

121

123
88

134

138

A{ls1)=1.0

DO 67 1= l,IPOWER
DO 68 J=1sl
AlJsI+1)1=A0Us]) %X
L=L+1

PILY=A(JyI+1)

ACT+191+1)=A(1s])*Y

L=L+1

PIL)=A(I+1s1+1)

POLY(LENGTHsLLWIDTH)=S2 .

IF(MeGTLITERM ) GOTO 69

DO 70 J=1,ITERM
POLY(LENGTHsLWIDTH)=POLY(LENGTHsLWIDTH)+E(J)*P(J)
GOTO 66

DO 71 JU=1HITERM ‘

POLY(LENGTHsLWIDTH) = POLY(LENGTHgLWIDTH)+VEC(J,JJ)*P(J)
POLY(LENGTHsLWIDTH)=ALPHA+BETA*POLY(LENGTHsLWIDTH)
PMAX=-~10000040

PMIN=100000.0

. DO 83 I=1sN"

PMAX=AMAX1(PMAXsB(1))
PMIN=AMINLI(PMINyBLI))
CONTINUE
DIFF=PMAX~PMIN
GRAD=DIFF/10.0

DO 88 LENGTH=1sINDEX
DO 88 LWIDTH=14+50

DO 121 I=1,10

IGRAD=1 :
DISC= GRAD*(FLOAT(I)—1.0)+PMIN .
IF(DISCeGE«POLY{LENGTHsLWIDTH)) GOTO 123
CONTINUE : ,
IGRAD=10

IPOLY (LENGTHsLWIDTH) =DOT ( IGRAD)

CONT INUE

DO 134 I=14N

DTEMPX=(DM{T sM+1)=XMIN) %TX
DTEMPY=(YMAX=DM{ I sM+2) ) %TY
MAPING(151)=DTEMPX

MAPING(1+2)=DTEMPY

IF(MAPING(I51)«EQeQ) MAPING(Is1)=1
IF(MAPING(1+2)+EQe0) MAPING(Is2)=1
CONTINUE :

DO 137 I=1sINDEX

DO 137 J=1550
DO 138 K=1»sN
IF(MAPING{Ks1) sEQeJsAND, MAPING(K;Z).EQ.I) GOTO 139

CONTINUE
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13
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7
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<
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1
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15

7

)

15

GOTH 137

IPCLY (T9J)=SAMPLE

CONTINUE

SCA E=TOTALX#440/100.0%FEET
WRITE(6989) TITLE2
FORMAT(1H1926X916A5/7)
4 ALE=SCALE
w1TE(6990) MSCALE
FORMAT (1HO 935X 95H ~~—=—=31895H FEET»5Xs18H * SAMPLE LOCALITY///)

YRITE(6991)
rO GATUIH 913X910GH ¥FRRHRAXEIRHHRFARLHZHH XXX XXX RIX AR AXIRFA R

AEI X ETE IR E L RS k**********************************,

w1 TEL6992) ((IPOLY(TI+J)sJ=13950)51=19INDEX)
FOIMATIIH 913X 92H #5101X92H */14X92H *950A291X92H *)
~RITE(6s124)
FORMAT(1H s13Xs2H #9101Xs2H *)
WRITE(6s91)
WRITE(69122)
FORMAT(1HO»10Xs7H LEGEND/)
LV 109 I=1,10
F1SC=GRAD#*(FLOAT(I)~1.0)+PMIN
SITE(69110) (DOT(I)sDISC)
FORMAT({1HOs11X9A292H =9F8e3)
IFUINDEXYEQe2) GOTO 172
FMAX==100000.0
PMIN=100000.0
DO 151 I=1sN
PMAX=AMAX1{(PMAXRESIDU{T1))
PAIN=AMIN1{(PMINSJRESIDU(1))
CONTINUE ‘
GRAD=(PMAX-PMIN)/10.,0
DU 161 I=1sN N
DO 159 J=1s10
JD0OT=J
DISC=GRAD*(FLOAT(J)~=1.0)+PMIN
[F(DISCeGE.RESIDU(I)) GOTO 160
CCNTINUE
Ju0T=9 .
161 1)=DOT(UDOT)
< CANTINUE

152 I=1sINDEX
D 152 J=1550
DO 157 K=1sN |
IFIMAPING(K91)eEQeJs AND MAPING(K2)eEQslI) GOTO 156
IPOLY(IsJ)=BLANK
CONTINUE -
GNHTO 152
# Y (19J)=SIG(K)

~TINUE
IX1=2


http:FTd~V.AT

156

172
100

94

WRITE(69158)

FORMAT(1H1910Xs17H THE RESIDUAL MAP//)
GOTO 153

CONTINUE

SToP

END .

iote: If this program is to be used outside McMaster University,
one has to insert two subroutines, (1) double precision matrix
inversion, (2) eigenvalues and eigenvectors of an arbitrary

matrix.



APPENDIX II
FORTRAN IV PROGRAM FOR CANONICAL CORRELATION

7.1 Instructions For Using the Program

7.11 Input to Program

I

11
(1)

(2)

(3)

Instruction card 1.

The function of this card is to tell the computer how
many sets of different data are going to be subjected

to canonical correlation analysis. Each data set should
have the following input cards (from II to VII).
Columns 1 to 10 are reserved for punching the number,

digits are right justified.

| Instruction card 2.

First 5 columns are reserved for punching the number of
samples. There is no reasonable limit on the sample size
(N < 99999 at present case). Digits are right justified.
Columns 6 to 7 are reserved for punching the number of
variates on the left hand set.

Columns 8 to 9 are reserved for punching the number of
variates on the right hand set.

The total number of variates is 100. The number of
variates on the left hand set is greater than that of
the right hand set. Neither of them can exceed 50.

Otherwise, the Dimension statement should be changed.

95



(4)

(5)

(6)

(7)

111

IV

96

Columns 10, 11 and 12 are to specify the number of
variates read in by the combuter. This number is not
necessarily equal to the number of total variates to
be subjected to canonical correlation analysis.
Columns 13, 14 and 15 are used to indicate the number
of description cards (see IV).
Column 16, punch 1 if input is correlation matrix,
punéh 2 if input is raw data matrix.
Column 17, punch 1 Arc sine square root transformation.
The user must make sure that all input data are less
than 1.0, and positive when arc since square root trans-
formation is used.
punch 2 Log transformation (base 10)
The user must make sure that all input data are greater
than zero.

punch 3 No transformation

Title card.

The project title and the investigator's name will be

- punched on one card (no more than 80 characters).

Description card(s).
A brief description about the project is allowed. The
maximum number of cards is 50, whereas the minimum

number is 1.



VI

VII

97

Variate Name card(s).

Twelve characters are used for the names of each variate.
They should be punched in a continuous sequence and also in
the same order as in the data matrix or correlation matrix.

Six names are punched on one card.

Data Format card.
This is used for the input data card. For example, the original

data cards contain 14 variates, such as Siy0, Ti0p,

~ A1203, Fé203, FeO, Mg0, Ca0, Na20, KZO' C02, quartz,

feldspar, micaceous materials, and carbonates. Five
columns are used for each variate. If one wishes to
study the set of five variates, namely Mg0, CaO, COZ,
feldspar, and carbonates, the variable format card should
be

(30X, 2F5.2, 10X, F5.2, 5X, F5.2, 5X, F5.2)
The . sample numbers are puﬁched at the first 5 columns in

this case.

Data cards.
One may punch the data cérds in one's own‘way. EACH SAMPLE
HAS ITS OWN SEPARATE DATA CARD(S). TWO OR MORE SAMPLES
SHARING ONE DATA CARD IS NOT ALLOWED. The correlation
matrix must be stored row by row, each row going up to

the diagonal elements.

For exaﬁp]e: .
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1.000

0.979 1.000

0.807 0.818 1.000

0.462 0.549 0.731 1.000

The input data cards should be as follows:
1000097910000807081810000462054907311000
The input data format is (10F4.3).

7.12 Output from program

(1)
(2)
(3)
(4)
(5)

(6)

Note:

Project title and the investigator's name,

Description about the project,

Correlation matrix,

Mean, variance, and standard deviation of each variate,
Canonical roots, their chi-square values, and significant
levels,

Canonical vectors both of right hand set and left hand set.

If this program is to be used outside McMaster University,
one has to insert two subroutines, (1) double
precision matrix inversion, (2) eigenvalues‘and eigen-

vectors of an arbitrary matrix.
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10

11

16

99
7.2 Listing of the Program

THIS IS CANONICAL CORRELATION PROGRAM AUGUST 1966 P J LEE

DOURBLE PRECISION Q(1830)sCOR(30530)sA2(30530)sB(30530))
1SUMSQ(60)sB1(30530)sA(465) .

DIMENSION TITLE(16)9VARIAT(120)9SOURCE(800),FMT(16)sSUM(6O),D(60)
1sR(30)sVEC(30530)+82(30930)sCHI(30)

DATA CHI/6¢6355902109116345913e627791540863516¢812918¢475+9204090»
121.666923420952407259264217927¢6889294141+306578+3240005334409
234.805,36.191,37.566,38.932,40.289.41.638.42.980,44.314.45.642.
346.963 94802789490588’50Q892/

READ(5591) ISET

FORMAT(110)

DO 90 NSET=1sISET

READ(5351) NsNLsNRsMMsNSsI1s12

FORMAT(15+212s2135211)

READ{(5s2) TITLE

FORMAT(16A5)

WRITE(693) TITLE

FORMAT(1H1930Xs16A5)

WRITE(634)

FORMAT(/77)

NN=NS*16

READ(555) (SOURCE(I)sI=19sNN)

FORMAT(16A5)

WRTTE(696) (SOURCE(I)sI=1sNN)

FORMAT(1HOs20Xs16A5)

M=NL+NR

V=2%M . }

s:N . 4

Ml=(M+1)%#M/2

READ(5+7) (VARIAT(I)sI=1sNV)

FORMAT(12A6) ‘

READ(5+8) FMT

FORMAT(16AS5) .

IF(I1.EQ.1) GOTO 9

DO 10 J=1sM.

SUM(J1=0.0

SUMSQ(J)=0.0

DO 11 J=1M1

Q(J)=0.0

DO 20 NSAMPL=1,N

READ(5sFMT) (D(J)sJ=19MM)

IF(12.EQ.3) GOTO 13

IF(12.EQs2) GOTO 14

IF(12.EQe1) GOTO 15

WRITE(6516)
FORMAT(1HOs37H WRONG CODE NUMBER FOR TRANSFORMATION)
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" GOTO 83
14 DO 17 J=1M
17 D(J)=ALOG10(D(J})
GOTO 13 ’
15 DO 18 J=1sM
18 D(J)=ARSINISQRT(D(J)))
13 DO 19 J=1sM
SUM(J)Y=SUM(J)+D(J)
19 SUMSQ(J)—SUMSO(J)+D(J)*D(J)
M2=M~1
DO 20 K=1sM2
DO 20 K1=KM
L=K1%(K1=-1)/2+K
88 IF(K1=K) 21922521
22 Q(L)=1.000
GOTO 20
21 QL)I=Q(L)I+D(K)I*D(K1)
20 CONTINUE
DO 23 1=1,M2
DO 23 J=1sM
K=J#(J=11/2+1
IF(I=J) 24925424
25 Q(K)=14000"
GOTO 23
24 Q(K)—(S*Q(K)—SUM(I)*SUM(Jl)/SQRT((S*SUMSQ(I) ~SUM{T)1#SUML(T))*
L1 (S*#SUMSQUJ)Y=SUM(J)I*SUM(J) ) )
23 CONTINUE
~ Q(K+1)=1,000
WRITE(6999) ‘
99 FORMAT(1H1s30Xs5H MEAN»11Xs9H VARIANCE»5Xs19H STANDARD DEVIATION)
DO 101 I=1sM .
AMEAN=SUM(I)/S: ) . )
VAR*(S*SUMSO(I)-SUM(I)**2)/(5*(S—lo0)) .
DEV=SQRT(VAR)
[V=23#1-1
IVi=IvV+1 : '
101 WRITE(6s100) ((VARIAT(J)9J=IVsIV1)9sAMEANIVARIDEV)
100 FORMAT(1H 310X 92A695X9F8e399X9F104399XsF843)
' GOTO 26
9 READ(SsFMT) (Q(I)sI=1sM1)
26 DO 27 L=1sMs14
WRITE(6+30) N }
30 FORMAT(1H1+10Xs41H CORRELATION MATRIX THE SAMPLE SIZE 1Ssl5/777)
IF(12=-2) 92993994
94 WRITE(6595)
95 FORMAT(1HOs30H NO TRANSFORMATION ON RAW DATA//)
GOTO 96
92 WRITE(6+97)
97 FORMAT(1HOs36H ARC SINE TRANSFORMATION ON RAW DATA//)

GOTO 96

McMASTER UNIVERSITY LIBRARY,
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93 WRITE(6+98)
98 FORMAT(1HOs31H LOG TRANSFORMATION ON RAW DATA//)
96 J2=(L-1)%2+1" l
J3=J2+1
DO 27 J=L M
K=0
DO 29 1=LsJ
LIMIT=L+13 ;
IF{1«GTLIMIT) GOTO 86
KK=J¥(J=1)/2+1
K=K+1 )
29 A(K)=Q(KK)
86 WRITE(6s84) ((VARIAT(J1)9J1 JZ’J3)’(A(K1)9K1 I,K))
84 FORMAT(1HO95Xs2A6914F843)
J2=J2+2
J3=J3+2
27 CONTINUE
28 L=0
" NLH=(NL+1)*NL/2
DO 32 J=1sNLH
L=L+1
32 AlL)Y=Q(L)
CALL DSYMIN(AQNL’[ERR)
IF(IERR.EQs«0O) GOTO 34
WRITE(6+85)
85 FORMAT(1HOs85H CORRELATION MATRIX ON THE LEFT HAND SIDE CANNOT BE
1 INVERTED TRANSFORMATION 1S NEEDED)
GOTO 90
34 DO 49 I=1sNL
DO 49 J=1NL
K=d*{J=11/2+1
- A2(19J)=A(K)
49 A2(Js1)=A2(1sJ)
NLI=NL+1
L=0
DO 53 J=NL1sM
DO 53 1=NL1lsJ
L=bk+1
K=(J-1)2J/2+1
53 A(LI=Q(K)
DO 50 J=1sNR
DO 50 I=1sNL
K=(J+NL-1)*{J+NL)/2+1
50 COR(1sJ)=Q(K)
DO 51 K=1sNL
DO 51 I=1sNR"
B(Ks1)=0.0
DO 51 J=1sNL
51 B(Ksl)= B(K911+A2(K,J)*COR(JOI)
DO 52 K=1sNR
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DO 52 I=1sNR
Bl1(KsI)=0.0
DO 52 J=1sNL
52 Bl(KsI)=B1(KsI)+COR(J9KI*B(Js1)
CALL DSYMIN(ASNRSIERR)
IF(IERR.EQ.0) GOTO 55
WRITE(63956)
56 FORMAT(1H1:85H CORRELATION MATRIX ON THE RIGHT HAND SIDE CANNOT BE
1 INVERTED TRANSFORMATION 1S NEEDED)
_ GOTO 90
55 DO 58 I=1sNR
DO 58 J=1sNR
K=J*(J=1)/2+1
A2(1sJ)=A(K)
58 A2(Js1)=A2114J)
DO 59 I=1sNR
DO 59 J=1sNR
B2(1+J)=040
DO 59 K=1,NR
59 BZ(IoJ)-BZ(IsJ)+A2(IoK)*Bl(K9J)
DO 60 I=1,sNR ‘
DO 60 J=1sNR
IF(I.EQeJ) GOTO 61
VEC(14J)=040
GOTO 60
61 VEC(1+J)=1.00
60 CONTINUE
CALL EBERVC(B2sNR51520050¢01504 001.1000.0,30,VEC-1)
M3=NR-1
DO 62 I=14M3
[J=1+1
DO 62 J=1JsNR
IF(B82(1s1)eGEeB2(JsJ)) GOTO 62
TEMP=B2(1,41)
B2(1s1)=B2(JsJ)
B2(JsJ)=TEMP
DO 63 K=1sNR
R(K)=VEC(K»sI)
VEC(Ks1)=VEC(KJ)
63 VEC(KsJ)=R(K)
62 CONTINUE
WRITE(6965)
65 FORMAT(1H1+10Xs47H CHI SQUARE TESTS OF SUCCESSIVE CANONICAL ROOTS)
WRITE(6+64)
64 FORMAT(1HOs»16H CANONICAL ROOTSs5Xs7H LAMBDA38X»18H CHI SQUARE VALU
1ES+5Xs18H DEGREE OF FREEDOMs5Xs18H SIGNIFICANT LEVEL)

WwL=1.000

NROOT=0

DO 66 I=1sNR . . .
JJ=NR=1+1
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IF(B2(JJsJJ) eLT<06000) B?(JJ’JJ} 0.0
WL=WL¥(1,00-B2(JJsJJ))

L=(NR=JJ+1)# (NL-JJ+]1)
CHISQ==1.00#({S5-045%(FLOAT{M)+1. 00)’*ALOG(WL)
IF(82(JJ9sJJ) «NE«0«000) GOTO 67
GOTO 68

67 NROOT=NROOT+1
BZ(JJsJJ)"SQRT(BZ(JJoJJ))
68 IF(L.GE«30) GOTO 69
IF(CHISQ.GE.CHI (L)) GOTO 70
71 F=-0.01
GOTO 66
70 F=0,01
GOTO &6
. 69 IF{CHISQ.GES CHI(BO)) GOTO 70
GOTO 71
66 WRITE(6972) B2(JJesJJ)sWLsCHISQsL sF
72 FORMAT(1HOs6X9F8e¢335XsF843915XsF843318X914912X9F642)

WRITE(6512)

*12 FORMAT(1HOs56H 0401 SIGNIFICANT AT 1 PERCENT LEVEL -0.01 INSIGNIFI
1CANT)

WRITE(6+73)

" '73 FORMAT(1H1510Xs41H CANONICAL VECTORS ON THE RIGHT HAND SIDE//710X>

131H LARGEST VECTOR AT FIRST COLUMN//)
KKK=2%#NL ,
DO 74 I=13sNR :
KK=KKK+1 -
KKK=KK+1
74 WRITE(6975) ((VARIAT(K) 9K=KKsKKK) 9 (VEC(1sJ)9J=19NROOT))
75'FORMAT(1H052A6,4Xo14F6o2) ' .
DO 76 I=1sNL '
DO 76 J=1sNROOT _
COR(IJ)=0e0 _
DO 76 K=1sNR ’ .
76 COR(IsJ)= COR(I;J)+B(I,K)*VEC(K9J)
DO 77 I=15NROOT
DO 77 J=1sNL
77 COR(JsI)=COR(JI9II/B2(1s1)
DO 78 [=1sNROOT
R( I )=0'00
DO 78 J=1sNL
78 R(I)=R(I)+COR(Js1)%*COR(Js1)
DO 79 1=1sNROOT
DO 79 J=1sNL
79 COR(Js1)=COR(Js1)/SQRT(R(I))
WRITE(6589)
89 FORMAT(///)
WRITE(6580)
80 FORMAT(1HO+»10Xs40H CANONICAL VECTORS ON THE LEFT HAND SIDE///IOXo
131H LARGEST VECTOR AT FIRST COLUMN//)
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KKK=0 -

DO 81 I=1sNL

KK=KKK+1

KKK=KK+1 '

WRITE(6982) ((VARIAT(K) sK=KKsKKK) s (COR(I9J)9J=1s9NROOT))
FORMAT(1HOs2A694X914F642)

CONTINUE -

STOP

END
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APPENDIX III

FORTRAN IV PROGRAM FOR DISCRIMINATORY ANALYSIS BY CANONICAL VARIATES

8.1
8.1

Instructions For Using the Program

Input to Program A

I
(1)
(2)

(3)

II

111

Iv

Instruction card

Columns 1 and 2 are for punching the number of groups (< 20).
Columns 3 and 4 are for punching the number of variates
(g50).

Columns 5 and 6 are for punching the number of description

card(s) (1 and <20).

Description card(s)
The title of project, name of investigator, and a brief
description about the project are punched on the description

cards.

Variate Name card(s)
Twelve characters are uséﬁ for one variate name. Six names
are punched on.one card. A11 groups should have the same

variate(s).

Group Name card(s)
Twelve characters are used for one group name. Six names

are punched on one card.

105
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v Data Format card
This is used for the input data. EACH SAMPLE HAS ITS OWN
SEPARATE DATA CARDS. TWO OR MORE SAMPLES SHARING ONE DATA
CARD IS NOT ALLOWED. Data of all groups should be punched

in the same format.

VI Data cards
Each group should have the following cards: First card'is
used for punching the number of samples of this group.
First five columns are reserved for this number. Digits
are right justified. Data cards follow the first card

imvediately.

8.12 Output from Program A

8.13

I Description about project

I1  Canonical root and result of statistical test

IIT Canonical transformation matrix (print as well as punch)

IV Means of all groups expressed in terms of canonical coordinates.

Input to Program B
If one wishes to plot each individual sample on canonical

coordinates, the program B should be used.

I Instruction card
(1) Columns 1 and 2 are for punching the number of groups (< 20).
(2) Columns 3 and 4 are for punching the number of variates

(& 50).
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(3) Columns 5 and 6 are for punching the number of canonical

axes (L50).
I1 Data format card (same as used in program A)

III Canonical transformation matrix

These are the output cards from program A.

IV Data cards

These are exactly same as used in program A.

8.14 Output from Program B

Canonical coordinates for each sample are printed and

group 1, 2, ..., are also labelled.

Note: If the program A is used outside McMaster University,
two subroutines should be inserted into the main
program (1) matrix inversion, (2) éigenvalues and eigen-

vector of a nonsymmetrical matrix.
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8.2 Listing of the Program

THIS 1S DISCRIMINATORY ANALYSIS BY CANONICAL VARIATES
JULY 1967 Pe Je LEE
THIS IS PROGRAM A

DIMENSION SUM(20+50)sSUMBI(50)sR(50)sVEC(50s50) sFMT(16)sZ2(50)
1S0URCE(320) s TITLE(16)»CHI(3T)sWORK(100)9sN1{(350)sVARIAT(100)
2B(50350)9T(50950) sSUMA(50950) sBPOOL(50450) s NUMBER(50) sGROUP (40)

DATA NUMBER/ 19 29 39 49 59 69 Ty 8s 9931051151291 3914915916917518)»
119+2092192292392492592632792892993093193532+33934935936937338939440
2419042903944 94594694 7948949950/ .

DATA CHI/ 666349y 9421033 1134499 13427679 1508639 16438119y 18
16047539 20609029 21466609 23620939 2472509 26421705 27.6883y 29.14
213s 3045779 31699999 33,4087 3448053y 3661908y 37,5662y 3849321,
3 4062894y 61463849 4297989 443141y 45464179 646¢96309 48427829 49
4458799 50489229 6346907y 76615399 88437949100042509112.3290912411
560+135,8070/

READ(551) NOGsNOVsNOD

FORMAT(312)

NOC=NQV*2
NOD=NOD*16

READ(S93) (SOURCE(I)sI=1sNOD}

FORMAT(16A5) -

WRITE(6942) (SOURCE(T)sI=1sNOD)

FORMAT(1HO»20Xs16AS5)

NOV1=2%NOV

READ(554) (VARIAT(I)s1=1sNOV1)

FORMAT (12A6) .

NOG1=NOG*2 - A

READ(534) (GROUP(1)sI=14NOG1) : :

READ(593) FMT : i

NTOTAL=0 ' ' : i

DO 6 I=1y¢NOV _ : N , .

DO 5 J=1sNOV : 7 .

T(IsJ)=0.0

T(Js11=0.0

BPOOL(I+J)=0.0

BPOOL(Js1)=040

R(IY=0.0

DO 7 I=1,.NOG

DO 7 J=IsNOV

SUM(T1+J)=0.0

SUM(Js1)1=0.0 .

DO 8 NGROUP=13NOG B

READ(599) NN

FORMAT(15) .

NTOTAL=NTOTAL+NN

S51=NN "

DO 10 I=1sNOV

¢



11
10

13
12

15

14

16

DO 11 J=I1sNOV
B(IsJ)=040

B({Js1)=0,0

SUMB(I1)=040

DO 12 IREAD=1sNN
READ(SsFMT) (Z(J)sJ=1yNOV)
DO 12 1=1sNOV

DO 13 J=1sNOV
B(IsJ)=B(IsJ)+Z(1)%2(D)
B(JsI)=B(1sJ)
SUMB(T)=SUMBI(I)+Z (1)

DO 14 I=1sNOV

DO 15 J=1sNOV
TIIa)=T(IsJ)+B(1sJ) '
T(JIsyI)=T(1sJ)
R(I)=R({I)+SUMBI(I)
SUMB(1)=SUMB(1)/51
SUM(NGROUPs 1 )=SUMBI(1)
DO 16 I=1,NOV

DO 16 J=1sNOV
SUMA(I,J)—SUMB(I)*SUMB(J)*SI
SUMA(Js»1)=SUMA(TJ)

* DO 17 I=1,R0OV

18

19

20

21

22

DO 17 J=1sNOV

BPOOL(IsJ)= BPOOL(I.J)+B(I:J)—SUMA(I’J)
BPOOL(Js1)=BPOOLI(15J)

CONTINUE

SS=NTOTAL

DO 18 I=1sNOV

R(IN=R(1)/SS

DO 19 I=1sNOV

DO 19 J=1sNOV - . _
SUMA(IsJ)=R(I)*R(J)*SS

DO 20 I=1sNOV

DO 20 J=1sNOV
Bl{IsJ)=T(IsJ)-SUMA(I9sJ)=BPOOL(1sJ)
B(Js1)1=B(IsJ)

CALL MINVSE(BPOOL 9509NOVs0,0sIERRsN1 sWORK)

IF(IERR.NE+O) GOTO 99

DO 21 I=1sNOV

DO 21 J=1sNOV

T(I1+J)=0.0

DO 21 K=1sNOV
TIsJ)=T(1sJ)+BPOCL(IsK)*B(KsJ)
DO 22-1=1sNOV

DO 22 J=1sNOV

VEC(I+J)1=0e0

VEC(Js911=0.0
IF(1.EQeJ) VEC(19J)=1.000

CONTINUE
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CALL ERERVC(TsNOV31920035040150400191000,0950sVECs1)
M3=NOV-1 .

DO 23 I=15M3 -

. 24
23

25
26

[J=1+1

DO 23 JU=1JsNOV

IF(T(Is1)eGE«T(JsJ)) GOTO 23

TEMP=T(Is1)

T(IsI)=T(JeJ)

T(JsJ)=TEMP

DO 24 K=1sNOV

R(K)=VEC(Ks1)

VEC(Ks1)=VEC(KsJ)

VEC{KsJ)=R(K)

CONTINUE :

WRITE(6+25)

FORMAT(1H1910X»47H CHI SQUARE TESTS OF SUCCESSIVE CANONICAL ROOTS)
WRITE(6+26)

FORMAT(1HOs16H CANONICAL ROOTSs5Xs7H LAMBDAs 8Xs18H CHI SQUARE VAL

‘JUESs5Xs18H DEGREE OF FREEDOMsS5Xs18H SIGNIFICANT LEVEL)

WL=1,000 |
NROOT=0 |
NOV2=NOoV | .

. NOG1=NOG-1"-

27
30
29

28

- 32

31
34

35

IF (NOV+GT+NOGL) NOV2=NOG1
DO 31 I=1sNOV2
JJ=NOV2~1+1
IF(T(JJI9JJ) «LT0,000) T(JIJIsJIJ)= o.o
WL=WL%(1,000+T(JJsJJ))

L= (NOV=JJ+1) *(NOG=JJ)
CHISQ=($5=140-045*(FLOATINOV)+FLOATINOG) ) ) *ALOG (WL )
IF(T{JJ»JJ) eEQe04000) GOTO 27
NROOT=NROOT+1 . o
T(JJIsJII=SART(T(JIJsIJ)) - | ~
IF(L.GT«30) GOTO 28
IF(CHISQeGE«CHI(L)) GOTO 29
F=-0.,01
GOTO 31
F=0,01
GOTO 31 |
IF(LeGT4100) GOTO 32
L=(L-25)/10+30
IFICHISQ.GE«CHI(L)) GOTO 29
GOTO 30
CHI1=045%(243263+SQRT (2. 0¥FLOAT(L)=14000) ) #%2
IF(CHISQ.GE«CHI1) GOTO 29
GOTO 30
WRITE(6934) T(JJsJJ)sWLsCHISQsLSF

FORMAT(1H0’6X’F8.3’5X9F8o39lSXaF8o3’18X914’12X0F6 2)

WRITE(64+35)
FORMAT(1HOs61H NOTE 0 01 SIGNIFICANT AT 1 PERCENT LEVEL -0.01 INSI
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1GNIFICANT)
WRITE(6536)
36 FORMAT(1H13s10Xs29H THE CANONICAL TRANSFORMATION//)
CALL ROSIE(VECsVARIAT sNUMBERNROOT sNOV) ‘
DO &1 J=1sNOV
41 WRITE(Ts2) (VEC(J,I),lﬂl’NEOOT)
2 FORMAT(10F844)
DO 37 I=1sNOG
DO 37 J=1,»NROOT
T(1+J)=0,0 '
DO 37 K=1,NOV
37 T(Isd)=T(1sJ)+VEC(KsJI¥SUM(T+K)
WRITE(6538) |
38 FORMAT(1H1s10X»68H THE GROUP MEAN COORDINATES OF FACH VARIATE ALON
1G THE CANONICAL AXES//)
CALL ROSIE(TsGROUPS NUNBER:NROOT;NOG)
WRITE(6439) .
39 FORMATI(//7)
WRITE(6+40)
40 FORMAT(1HO40Xs68H *%*#¥%O0UR PROGRAM 1S ONLY TO PRODUCE WHAT IT CON
1TAINS THANK YOU##3##%} ,
WRITE(6s44)
46 FORMAT(1H1)
GOTO 100 .
99 WRITE(6:¢43)
43 FORMAT(1HO»51H WITHIN GROUP DISPERSION MATRIX CAN NOT BE INVERTED)
100 sTOP
END

SUBRQUTINE ROSIE(VECsVARIAT sNUMBER SNROOT s Ni:¥)
DIMEMNSION VEC(50+50)sVARIAT{100} sNUMBER(50 -HROUP(40)
DO 1 L=1sNROOT,10
LIMIT=L+9
IPRINT=NROOT
IF(NROOT«GT&LIMIT) IPRINT=LIMIT
WRITE(652) (NUMBER(J}3J=1sIPRINT)
2 FORMAT(1HOs7Xs15H CANONICAL AXISs5Xs10110/7)
DO 1 K=1sNOV'
IV=2%#K=}

. [vi=Ilv+l .
1 WRITE(6s3) ((VARIAT(J?9J=YV9lV1’9(VEC(K9J) J=Ls IPRINT})
3 FORMAT(1H 916X92A6510F10e4)

RETURN
END
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THIS IS PROGRAM B

DIMENSION T(50)sVEC(50550)sD(50)sFMT(12)
READ(591) NOGsNOVsNROOTsFMT
FORMAT(312/12A6)

DO 2 J=1sNOV

READ(S593) (VEC(JsK)sK=19yNROOT)
FORMAT(10F8e4)

WRITE(6+10)

12

FORMAT(1H1s42H THE CANONICAL COORDINATES FOR ALL SAMPLES///) -

DO 7 NGROUP=1,sNOG

READ{596) N

FORMAT(I5)

DO 8 I=1sN

READ(S5+FEMT) (D(J)sJ= laNOV)

DO 5 K= l’NROUt

T(K)1=0.0

DO 5 J=1sNOV

TIK)Y=TIK)+VEC(JsK)*D(J)

WRITE(659) NGROUP» (T (K)sK=1sNROOT)
FORMAT(1HO»8H GROUP 12510Xs(15F842))
CONTINUE :
END

T e



APPENDIX IV

FORTRAN PROGRAM FOR PRINCIPAL COMPONENT ANALYSIS
v

9.1 Instructions For Using The Program

9.11 Input to Program

I

I
(M

(2)

(3)

(4)

(5)

Instruction card 1.

The function of this card is to tell the computer how many
sets of different data are to be subjected to component
analysis. Each data set should have the following input
cards (from 11 to‘VIl). Columns 1 to 10 are reserved

for punching the number, digits are right justified.

Instruction card 2.

First 5 columns are reserved for punching the number of
samples. There is no reasonable 1imit on the sample size
(N <99999 at the present case). Digits are right justified.
Columns 6, 7 and 8 are reserved for punching the number
of variates. The maximum number of variates is 100.
Columns 9, 10 and 11 are reserved for punching the total
number of variates:v It is not necessary that all variates
are to be subjected to principal component analysis.
Columns 12, 13 and 14 are used to indicate the number of
description cards.

Column 15

punch 1 1f input 1s correlation matrix

13
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punch 2 if input is raw data matrix
(6) Column 16
.punch 1 Arc sine square root transformation
The user must make sure that all input data are less
than 1.00, and positive when this transformation is used.
punch 2 Log transformation (base 10)
The user must make sure that all input data are greater
than zero.
punch 3 no transformation
(7) Column 17
| punch 1 number of components to be rotated is
specified by the user (see no. 8).
punch 2 numbef of components to be rotated is
equal to number of components (or eigenvalues) of the
corre1ation matrix which are greater than zero.
punch 3 number of components to be rotated
is equal to the number of components (or eigenvalues),
“which are greater than 1.000.
(8) Columns 18, 19 and 20
To specify the number of components to be rotated. It is
used for the case 1 of (7).
(9) Column 21
punch 1 for using correlation matrix
punch 0 for using covariance matrix
If the variates are in widely different units, covariance

of the original quantities would have 1ittle meaning and
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v

VI

VII

115

the correlation matrix should be used. Conversely, if the
variates are reasonably comparable, the covariance form
has a greater statistical appeal (Anderson, 1963).
Column 22

punch 1 for R-mode

punch 0 for Q-mode

Title card
The project title and 1nvestigator'§ name will be punched

on one card (no more than 80 characters).

Description card(s)
A brief description about your project is allowed. The
maximum number of cards is 50, whereas the minimum number

is 1.

Variate Name Cards

Twelve characters are used for the name of each variate.
They should be punched in a continuous sequence and also
in the same order as in the data matrix or correlation

matrix. Six names are on one card.

Data Format cards
This is used for your input data card. See "Instructions

for using the Canonical Correlation Program).

Data cards

One may punch the data cards in one's own way. The
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correlation matrix must be stored row by row, each row
going up to the diagonal elements (see "Instructions for
using the canonical correlation programme"). Each
sample has its own separate ‘data card(s). Two or more
samples sharing one data card is not allowed.
If the variates are punched in columns whereas the
samples are punched in rows, this data matrix will
only be used for R-mode principal component analysis.
If we wish to carry out both R- and Q- mode on the same
set of data, the raw data matrix should be transposed and
repunched by matrix transpose program in order to arrange
the sample in columns and variates in rows. Again,
each variate has its own separate dafa card(s). Two

or more variates sharing one data card is not allowed.

9.12 Output from Program

I

I1

I

Iv

VI

Project title and investigator's name.
Description of the project.

Mean, variance, and §tandard deviation of each variate for

R-mode.

Correlation matrix.

- Components (eigenvalues) and their contributions to the

total variance.

The number of cycTe for varimax rotation and varimax
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criterion.
VII The rotated normalized component loadings arranged in

column for each factor.

VIII Punch the normalized component loadings (6E12.4) and the
rotated normalized component loadings (10F8.4) on the
cards. |
Note: If this program is to be used outside McMaster University,
one has to insert a subroutine fof evaluating eigenvalues

and eigenvectors of a symmetric matrix.
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9.2 Listing of the Program

118

THIS IS PRINCIPAL COMPONENT ANALYSIS PROGRAM JUNE 1966 P J LEE

DIMENSION TITLE(16)sVARIAT(200)sSOQURCE(800)sFMT(16)sSUMSQ(100)
1SUM(100)9Q(5050)oD(lOO)’R(10O)9VEC(100’100)’hORK(TOZ)9A(5050)9

2H(100)sR1(100)»R2(100)yNUMBER(100)

EQUIVALENCE (TITLE:SOURCE’VARIAT’o(QoVEC)yiAyVEC(SOSI))’(SUMoHio

1(SUMSQ»sR1)

DO 200 I=1s100
NUMBER (1) =1
READ(5591) ISET
FORMAT(110) -

DO 90 NSET=1sISET

READ(5»1) N9M:NOV9Nb’l1912’1331FAL¢i4015

FORMAT(I593139311913+211)
READ(5s2) TITLE
FORMAT(16A5)

WRITE(6s3) TITLE
WRITE(7+2) TITLE
FORMAT(1H1+30Xs16A5)
-WRITE(6s4) *

FORMATI(/77)

NN=NS*16

READ{5355) (SOURCE(I)sI=19sNN)
FORMAT (16A5)

WRITE(6+6) (SOURCE(I’;I:I’NN)
FORMAT (1H 920X916A5)

S=N

M1=(M+1)%M/2

NV=M*2

READ(5+7) (VARIAT(I)QI=10NV)
FORMAT(12A6) .

READ(5+8) FMT

FORMAT(16A5)

IF(I1.EQel) GOTO 9

DO 10 J=1sM

SUM{J)=0.0

SUMSQ{J)=0.0

DO 11 JU=1sM1

Q(J)=0,0

DO 20 NSAMPL=1sN
READ(5+sFMT) (D(J)sJd=1sNOV)
IF{I24EQe3) GOTO 13
IF(124EQ.2) GOTO 14
IF(I2+EQsl) GOTO 15
WRITE(69+16) .

FORMAT (1HOs37H WRONG CODE NUMBER FOR TRANSFQRMATION)

GOTO 90

2
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14 D0 17 J=1sM
17 D(J)=ALOG1O(D(J))
GOTO 13
15 DO 18 J=1sM
18 D(J)=ARSINISQRTI(D(J)))
13 DO 19 J=1,M
SUM(J)=SUM(J)+D(J)
19 SUMSQ(J)=SUMSQ(J)I+D(J)*D(J)
M2=M-1 '
DO 20 K=1sM2
DO 20 K1=KsM
L=K1%(K1-1)/2+K
21 QIL)Y=Q(L)Y+DIK)*D(K1)
20 CONTINUE
IF(I44EQel) GOTO 138
IF(14.EQ.0) GOTO 139
WRITE(65140)
140 FORMAT(1HOs48H WRONG CODE FOR COVARIANCE OR CORRELATION MATRIX)
- GOTO 90 '
139 DO 142 I=19sM2
DO 142 J=1sM
K=(J=1)%J/2+1
© 142 O(K)-(S*Q(K)~SUM(I)*SUM(J))/(S*(S—I.O))
GOTO 141 .
138 DO 23 I=1,M2
DO 23 J=1sM
K=(J=1)%J/2+1
IF(I=J) 24325924
25 Q({K)=1.000
GOTO 23
24 Q(K)w(SxQ(K)—SUM(I)*SUM(J))/SQRT((S*SUMSQ(I)~SUM(I)*SUM(I))*
- 1(S*SUMSQ(J)=SUM(JI%#SUM(J))) . 4
23 CONTINUE
Q(K+1)=1,000
141 IF(I15.EQs1) GOTO 143
IF(I5.,EQ.0) GOTO 26
WRITE(65145)
145 FORMAT(1HOs29H WRONG CODE FOR R OR Q MATRIX)
GOTO 90
143 WRITE(6+51)
51 FORMAT(1H1s30Xs5H MEANs11Xs9H VARIANCEs5Xs19H STANDARD DEVIATION)
DO 28 1=1sM
AMEAN=SUM(I1)/S
VAR=(S#SUMSQ(I1)=SUM(T)*%2)/(S*(S5=1.0))
DEV=SQRT(VARY ,
Iv=2%=-1
IVli=iV+1l ,
28 WRITE(6949) ( (VARIAT(J)»J=1VsIV1)s AMEANSVARSDEV)
49 FORMAT(1H 910X92A695X9sF8e199X9E124499XsEL1264)
IF(144.EQ.0) GOTO 150 ‘
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" GOTO 26
9 READ(S5sFMT) (Q(I)sl= 19Ml)
26 DO 27 L=1sMs14 )
WRITE(6530) NsM
30 FORMAT(1H1510Xs55H CORRELATION OR COVARIANCE MATRIX
1SIZE 15s1535X926H THE NUMBER OF VARIATES 1Ss13/)
IF(12-2) 12291219120

120 WRITE(69123)

123 FORMAT(1HOs30H NO TRANSFORMATION ON RAW DALA//7)
GOTO 124

121 WRITE(64125)

125 FORMAT(1HOs31H LOG TRANSFORMATION ON RAW DATA///)
GOTO 124

122 WRITE(6+127)

127 FORMAT(1HO»36H ARC SINE TRANSFORMAT[ON ON RAw DA1AZ/7)

124 J2=(L-1)#2+1
J3=J2+1
DO 27 J=L M
K=0 '
DO 29 1I=LsJ
LIMIT=L+13
IF(I1«GT.LIMIT) GOTO 86
KK=J#(J-1)/2+1
K=K+1 L

29 A(K)=Q(KK) ‘

86 WRITE(6984) ((VARIAT(J1)9J1=J29J3)s(A(K1)9sK1=19K))

84 FORMAT(1H +5X92A6914F843)
J2=J2+2
J3=J3+2

27 CONTINUE

150 K=0

- DO 35 I=1sM
DO 35 J=1sM
K=K+1 _
L=Jd*(J-11/2+1

35 A(K)=Q(L)
REWIND O
CALL HOQUSE2(MsMy0. 0000019A9R’WORK0M)
REWIND O
DO 37 I=1»M

37 READ(O) (VEC(1sJ)9eJd=1sM)
DO 38 I=1sM
SUM(1)=0.0
DO 38 J=1sM

38 SUM(I1)= SUM(I)+VEC(I¢J)*VEC!I;J!
DO 39 I=1sM )

- DO 39 J=1sM
39 VEC(IsJ)= VEC(I;J)*SQRT(ABS(R(I))!/SQRT(SUM(I)’
~ NFAC=0

DO 40 I=1sM

120

THE SAMPLE
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IF(R{I)eLE«0.001) GOTO 40
NFAC=NFAC+1
40 CONTINUE
pER:OOO
DO 92 I=1,NFAC
92 PER=PER+R(I) :
DO 93 I=1sNFAC .
93 RI1(I)=(R(I)/PER)*100.0
WRITE(6+43) - ,
43 FORMAT(1H1s10Xs66H TABLE FOR COMMON FACIORS AND iHEIR CONiRIBuU1IION
1 TO TOTAL VARIANCE//17Xs8H FACTORS»2Xs30H PER CENT OF TOIAL COMMUN
2ALITYs2X920H CUMULATIVE PER CENIZ)
R2(11=0.0
DO 116 1=1sNFAC
116 R2(I1+1)=R2(1)+R1(1)
DO 115 I=1sNFAC
115 WRITE(6594) (R(IDsRI(IIsR2(T+1))
94 FORMATI(1H s15XsE1244912X9FB842919X9F842)
IF(I3.EQel) GOTO 109
IF(13.EQ.2) GOTO 110
IF(I3.EQ.3) GOTO 111
WRITE(69112)

112 FORMAT(1HO»10X324H WRONG ‘CODE FOR ROTATION)

’ GOTO 90

109 LFAC=IFAC
GOTO 113

110 LFAC=NFAC
GOTO 113

111 KFAC=0

' DO 114 I=1sM
IF(R{I)eGE+1+000) KFAC= KFAC+1 \

114 CONTINUE o _ i
LFAC=KFAC “ '

113 NFAC1=LFAC-1

, WRITE(79146)

146 FORMAT(26H NORMALIZED FACTOR LOADING)
DO 147 J=1sM '

147 WRITE(75135) (VEC(IsJ)sl= loLFAC)
IF(LFAC.EQ.1) GOTO 201
WRITE(6+136)

136 FORMAT(1H1s15X+38H RECORD OF SUCCESSIVE VARIMAX ROTATION///)
WRITE(69128) NFAC -

128 FORMAT(1HO»17Xs34H THE NUMBER OF POSITIVE FACTORS 15+13/)
WRITE(65129) LFAC

129 FORMAT(1HO»17Xs33H THE NUMBER OF ROTATED FACTORS 1S913/7/7)

133 CRITEI=0.0

. DO 75 1=1520
DO 73 J=1sNFAC1
J12=J+1 -

DO 73 K=J12»LFAC



71

72

DO 71 J2=1sM

H{J2)=0,0

DO 71 JP=1LFAC
H{J2)=H(J2)+VEC(JPsJ2 ) *¥VEC(JPJ2)
U=0,0

V=0.0

AU=0,0

BV=0.,0

CW=0.0

DW=0.,0

DO 72 L=1sM
VEC(JsL)=VEC(JsL)/SQRTI(HIL))
VEC(KsL)=VEC(KsL)/SQRT(HI(L))
USVEC!JaL)**?-VEC(K,L)**Z
V=VEC(JsL)*VEC(KsL)*2,0
AU=AU+U

BV=BV+V

CW=CWHU#%2-V¥##2

DW=DW+2 40UV
T1=DW=2.0%AU*BV/FLOAT (M)
T2=CW~{AU*%2-BV*%2) /FLOAT (M)
IF(T2.EQe0e0) GOTO 90

. PHI=ATAN(ABS(T1)/ABS(T2))

101

102

105

103

104
107

106

T4

73

IF(T1eGTe0e0eANDeT24GTe0e0) GOTO 101
IF(T1eGTe0e0sANDeT24LTe0e0) GOTO 102
IF(T1eLTe0e0eANDeT24LTo040) GOTO 103
IF(T1eLTe0e0sANDaT24GT4040) GOIO 104
PHI=PHI/440

GOTO 105 _
PHI=0478539813-PHI /440
T12==1.0%SIN(PHI)

T21=SIN(PHI).

GOTO 106

PHI=0478539813-PHI/440

GOTO 107

PHI=PHI/44,0

T12=SIN(PHI)

T21=—1.0%SIN(PHI)

T11=COS(PHI)

T22=COS(PHI)

DO 74 L=1sM
WEC1=VEC(JsL)*T11+VEC(KsL)*T21
WEC2=VEC(JsL)*T12+VEC(K L) #T22
VEC(JsL)=WEC]

VEC(KsL)=WEC2

ANGLE=PHI#57.29577867

CONTINUE '

V1=000

V2=000

DO 76 J=1,sLFAC’

122
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76

78

79

75
117

148

137
151

201.

63

95

61

123

SUM(J)=040

SUMSQ(J)=0.0

DO 76 Jl=1sM
SUM(J)=SUM(JI+VEC(JsJ1) %2
SUMSQUJ) =SUMSQUJII+VEC(JeJ1) %4
DO 78 J=1sLFAC

V1=V1I+SUM(J) %#2

V2=V2+SUMSQ{J)
VARIMA=FLOAT (M) *#V2=V1
CRITIC=VARIMA-CRITEI
WRITE(6+79) (IsVARIMA)
FORMAT(1HO»10Xs15H ROTATION CYCLEs2X9I254Xs18H VARIMAX CRITERION,

1F12.4)

IF(CRITIC.LE.O0.10) GOTO 117
CRITEI=VARIMA

CONTINUE

JEN=1

WRITE(7+148)

FORMAT (34H ROTATED NORMALIZED FACTOR LOADING)
DO 137 K=1sM

WRITE(75151) (VEC(JsK)sJ=19sLFAC)

FORMAT (10F8.44)

NF=0 :

M&=M-1

DO 62 I=1sLFAC

NFAC3=0

DO 63 J=JENsM

IF(ABSIVEC(I9J))eGTe0s500) NFAC3=NFAC3+1
CONTINUE

IF(NFAC3.EQ+0) GOTO 62

DO 61 J=JENsIM4 . :

Jl=J+1 , : -
DO 61 K=J1sM |

IFCABSIVEC(T9J))oGTe ABS(VEC(ioK))) GOTO 61
DO 95 L=1sLFAC

DI(L)=VEC(LsJ)

VEC(L»sJ)=VEC(LsK)

VEC(LsK)=DI(L)

TEMP=VARIAT(2%*J-1)

TEMP1=VARIAT(2%J)

VARIAT(2%#J-1)= VARIAT(Z*K-I)
VARIAT(2%))=VARIAT(2%*K)
VARIAT(2#K-1)=TEMP

VARIAT(2#K)=TEMP1

CONTINUE

NFAC2=NFAC3-1+NF

NFAC4=NFAC2+1

DO 64 J= JEN!NFACZ

S Jdl=J+l .
" DO 64 K=J1sNFACH '
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IF(VEC(1sJ)eGTVEC(1sK)) GOTO 64
DO 96. L=13sLFAC

DILY=VEC(LsJ)

VEC(LsJ)=VEC(LsK)

96 VEC({LsK)=DI(L)
TEMP=VARIAT(2%J-1)
TEMP1=VARIAT (2%J)
VARIAT(2%#J-1)=VARIAT(2%K=1) -
VARIAT(2%J)=VARIAT(2%K)
VARTAT(2%K~-1)=TEMP
VARIATI(2#K)=TEMP1

64 CONTINUE
JEN=NFAC3+1+NF
NF=NFAC3+NF
IF(JEN.EQ.M) GOTO 134

.62 CONTINUE

134 DO 34 L=1sLLFAC»15

WRITE(64+52)
52 FORMAT(1H1+10Xs74H THE ROTATED NORMALIZED FACIOR LOADINGS ARRANGED

1 IN COLUMN FOR EACH FACTOR//Z)

LIMIT=L+14

IPRINT=LFAC

IF(LFAC.GT«LIMIT) IPRINT=LIMIT

WRITE(65130) (NUMBER(I)sI=LsIPRINT)

130 FORMAT(1HOs7Xs7H FACTOR$2Xs1517)
DO 34 K=1sM
1V=2%K~1
IVi=1V+1

34 WRITE(6550) ( (VARTAT(J)9J=IVsIV1)s(VECIJrK) 9J=Ls IPRINT))

50 FORMAT(1H s4Xs2A6915FT¢2)

135 FORMAT(6E12¢4)

90 CONTINUE < : ;

83 STOP * °
END
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