APPLICATIONS OF CANONICAL CORRELATION IN GEOLOGY
APPLICATIONS OF CANONICAL CORRELATION IN GEOLOGY

By

PEI JEN LEE

B. Sc. M.Sc.

A Thesis
Submitted to the Faculty of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

McMaster University
May 1968
TITLE: Applications of Canonical Correlation in Geology

AUTHOR: Pei Jen Lee, B. Sc. (National Taiwan University)
 M. Sc. (University of Western Ontario)

SUPERVISOR: Professor Gerard V. Middleton

NUMBER OF PAGES: xi, 124

SCOPE AND CONTENTS: The purpose of this thesis is to develop a technique for constructing a multivariate trend surface through canonical correlation analysis. The surface is called a canonical trend surface and is a succinct summarization of variations of a set of variates. It has the property of maximum correlation between the variates and their geographic coordinates.

The contents of this thesis include: (1) a literature review of both the theory and application of canonical correlation in psychology, biology, economics and social sciences, (2) a practical computation scheme for canonical trend analysis, with a computer program, and examples of this application, (3) suggestions for other applications of this theory in geology with numerical examples and computer programs.
ABSTRACT

The theory of canonical correlation analysis has been combined with that of trend surface analysis in order to construct a multivariate trend surface which is called a canonical trend surface.

A canonical trend surface is a parsimonious summarization of areal variations of a set of geological variates. This trend has a property of maximum correlation between variates and geographic coordinates. It does not show the absolute value of each variate, but it shows the nature of the variation of a linear combination of the variates. The Permian system in western Kansas and eastern Colorado was studied as a numerical example to illustrate the general procedures in solving practical problems and also to demonstrate the validity of this technique. By use of this type of trend it is possible to reveal the underlying pattern of geographic variation common to a set of variates.

Other applications of canonical correlation analysis in geology have been explained with illustrative geological examples, namely: the relationships between two sets of variates, matching two factor patterns, Q-technique canonical correlation, and discriminatory analysis.

Comparison of canonical correlation analysis and principal factor solution in factor analysis suggests that factor analysis may be more appropriate for suggesting interrelationships among variables, while canonical correlation analysis may be a suitable tool for prediction problems.
FORTRAN IV programs for these computations are listed in appendices with instructions for using them.
ACKNOWLEDGEMENTS

The writer is deeply indebted to Dr. Gerard V. Middleton for his helpful suggestions all through the work and also patiently reading the manuscript and contributing valuable comments.

Special thanks are due to Dr. H. P. Schwarcz, of the Department of Geology, Dr. M. Behara, and Dr. S. K. Banerjee, of the Department of Mathematics for kindly reviewing this manuscript.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>INTRODUCTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 2</td>
<td>THEORY OF CANONICAL CORRELATION</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>General Statement</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Canonical Correlation and Variates</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Tests of Significance for Canonical Roots</td>
<td>13</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>TWO-DIMENSIONAL CANONICAL TREND ANALYSIS</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>General Statement</td>
<td>15</td>
</tr>
<tr>
<td>3.2</td>
<td>Computation Procedures</td>
<td>18</td>
</tr>
<tr>
<td>3.3</td>
<td>Distinguishing Characters of the Canonical Trend</td>
<td>25</td>
</tr>
<tr>
<td>3.31</td>
<td>Experiment 1</td>
<td>26</td>
</tr>
<tr>
<td>3.32</td>
<td>Experiment 2</td>
<td>28</td>
</tr>
<tr>
<td>3.33</td>
<td>Experiment 3</td>
<td>28</td>
</tr>
<tr>
<td>3.34</td>
<td>Experiment 4</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>Functions of the Canonical Trend Surface</td>
<td>30</td>
</tr>
<tr>
<td>3.5</td>
<td>Permian System in Western Kansas and Eastern Colorado</td>
<td>34</td>
</tr>
<tr>
<td>3.51</td>
<td>Geological Setting</td>
<td>34</td>
</tr>
<tr>
<td>3.52</td>
<td>Stratigraphic factor map analysis</td>
<td>37</td>
</tr>
<tr>
<td>3.53</td>
<td>Canonical trend surface analysis</td>
<td>38</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>OTHER APPLICATIONS IN GEOLOGY</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>Relationships Between Two Sets of Variates</td>
<td>49</td>
</tr>
<tr>
<td>4.11</td>
<td>General Statement</td>
<td>49</td>
</tr>
<tr>
<td>4.12</td>
<td>Recent Sediment from Buttonwood Sound</td>
<td>51</td>
</tr>
<tr>
<td>TABLE OF CONTENTS, continued</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>4.2 Matching Two Factor Patterns</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>4.21 General Statement</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>4.22 Factor Patterns of Sediment from Buttonwood Sound</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>4.3 Q-Technique Canonical Correlation</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>4.31 General Statement</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>4.32 Ordovician and Silurian Sediments</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>4.4 Discriminatory Analysis by Canonical Variates</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>4.41 General Statement</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>4.42 Ordovician Limestones from Colborne Quarry</td>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 5 CONCLUSIONS

REFERENCES
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Flow chart for generating all terms up to a sextic polynomial based on geographic coordinates X and Y.</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Canonical trend surface fitted to $Z_1 = 0.707X + 0.707Y + E_1$, $Z_2 = E_2$, where E_1 was $N(0,4)$, and E_2 was $N(0,1)$.</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Canonical trend surface (univariate case) shows an exponential variation.</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Permian system of Western Kansas and Eastern Colorado. Stratigraphic factor maps. A. Factor 1; B. Factor 2 (Data after Imbrie, 1963; redrawn by the present writer).</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Permian system of Western Kansas and Eastern Colorado. A. Third order canonical trend associated with second canonical root showing variations in thickness of the sand and the carbonate. B. Second order canonical trend associated with the first canonical root showing variations in thickness of the evaporites, the sand, and the shale.</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Permian system of Western Kansas and Eastern Colorado. Net thickness maps of the sand, the shale, the carbonate, and the evaporite. (Data after Krumbein, 1962; redrawn by the present writer).</td>
</tr>
</tbody>
</table>
LIST OF FIGURES, continued

Figure 7 Permian system of Western Kansas and Eastern Colorado
 A. Canonical trend surface for the total thickness, the sand/shale ratio, and the carbonate/evaporite ratio. Isopach map (right upper), sand/shale ratio map (left lower), and carbonate/evaporite ratio map (right lower). (Data after Krumbein, 1962; redrawn by the present writer).

Figure 8 Ordovician limestone specimens from Colborne quarry (dot: section A; square: section B; and circle: section C) are shown on a canonical coordinates based on first two canonical variates. Mean values of all sections are shown in the upper right corner.
LIST OF TABLES

Table 1 Rotated and Normalized Eigenvectors of Sediment Thickness of Permian system. 40
Table 2 Record of the Successive Evaluation of the order of Polynomial for Four Variates. 41
Table 3 Record of the Successive Evaluation of the order of Polynomial for Three Variates. 44
Table 4 Simple Correlation Coefficients for Sediments from Buttonwood Sound. 52
Table 5 Canonical Variates for Sediments from Buttonwood Sound. 53
Table 6 Rotated and Normalized Five Principal Components for Sediments from Buttonwood Sound. 55
Table 7 Factor Patterns for Sediments from Buttonwood Sound. 58,59
Table 8 Canonical Variates for Two Factor Patterns 59,60
Table 9 Canonical Correlation Matrix for the Four Formations from Ontario 62
Table 10 Canonical Coordinates of Limestones from Colborne Quarry, Ontario. 68
CHAPTER 1
INTRODUCTION

Suppose we have a number of rock specimens taken from a rock body, and that the abundance of various kinds of minerals, major elements, trace elements, fossils and so on, are estimated from each specimen. It may be asked whether or not there are some relationships between the major and trace elements, or between the minerals and size parameters, or between trace elements and clay minerals, or between sediment types and fossils.

Let us take the trace elements and clay minerals as an example. One simple correlation coefficient indicates a possible relation between one of the trace elements and one of the clay minerals. If we had five clay minerals and ten trace elements, we will have 50 simple correlation coefficients to show all possible relationships. The relationships indicated by 50 coefficients are not easily understood: what is needed is some technique which will express the relationship between the set of trace elements and the set of clay minerals in a more concise form.

Canonical correlation analysis was introduced by Hotelling in 1936 (the paper was read in 1935). It is a technique to understand the relationships between two sets of variables (for example, trace elements and clay minerals) and was an outgrowth of simple correlation analysis. The relationship between the two sets of variables are summarized and expressed by a simple index. For example, the clay mineral and
trace element abundances are weighted and combined into two linear combinations such as

\[U = a_1 \text{(kaolinite)} + a_2 \text{(illite)} + a_3 \text{(chlorite)} + \ldots \]
\[V = b_1 \text{(vanadium)} + b_2 \text{(zirconium)} + b_3 \text{(titanium)} + \ldots \]

where \(a_1, a_2, a_3, \ldots \) and \(b_1, b_2, b_3, \ldots \) are weights to be determined such that \(U \) and \(V \) have a maximum simple correlation coefficient which is called the canonical correlation coefficient or canonical root.

The strength of the link between the sets is measured by the canonical root, whereas the nature of the link is indicated by those trace elements and clay minerals having larger weights.

The principle of canonical correlation analysis was immediately used as a procedure for discriminating between two populations and also as a technique for testing difference between groups. The technique has the properties of maximizing the difference between two populations and also displaying each individual on a set of canonical coordinates (Bartlett, 1938). Canonical correlation was generalized for three or more sets of variables and partial canonical correlation was also proposed by Roy (1957, p. 26). Canonical factor analysis (Rao, 1955) was developed by making use of the canonical correlation principle. Horst (1961, 1961a) has applied the same principle to the problem of matching two or more factor patterns. The probability function of the canonical roots has been studied by a number of mathematical statisticians (Hsu, 1941; Bartlett, 1941, 1947; Constantine and James 1958). Uses of this technique has been suggested in various fields: psychology (Bartlett, 1947, 1948; Thomson, 1947; Burt, 1948; Hotelling,

Suppose that a number of rock specimens have been collected from an area, so that each specimen has its own geographic locality. After estimation of trace elements, for instance, we would like to know the areal variation of each trace element over the area studied. The simplest technique is to plot each individual value of a particular trace element on the map according to its locality, and then to draw contour lines showing equal abundance of that trace element. This type of map shows not only regional variation but also local fluctuations. If we are able to filter out the local fluctuations, then the regional variation will be accentuated. This could be done by fitting a polynomial surface to this set of data over the area. Deviations from the polynomial are considered to be residuals or local fluctuations and the computed surface is considered to be the regional 'trend'. If we had ten trace elements, then we will have ten polynomial surfaces or trend maps indicating variations of trace elements. It may be asked whether or not is it possible to evaluate a single trend which is common to all or some of the trace elements. Again, we encounter the same problem as in the previous example, i.e. we need a summarization of the ten maps.
After a period of discussion about the possible application of the canonical correlation analysis in geology at McMaster University in 1965, Dr. G. V. Middleton suggested the canonical trend idea. Since that time, extensive studies were carried out on both real geological and hypothetical data in order to understand the geological meanings of this technique.

A canonical trend is a polynomial surface which shows the variations of many variables over an area simultaneously by making use of the principle of canonical correlation analysis. In this case, one set of variables consists of geological variables such as trace elements, whereas the second set of variables is composed of location of specimens, i.e. (X, Y) coordinates. The canonical trend is a succinct summarization of areal variations of many geological variables and their geographical coordinates.

Application of canonical trend analysis was introduced by Lee and Middleton (1967) before a colloquium on trend analysis held in Lawrence, Kansas, and also by Middleton and Lee (1967) before the seventh International Sedimentological Congress held in England.

A quadratic surface which is an homogeneous expression of a second degree is reduced to a linear combination of squares only, the cross-product terms being eliminated. A form of this type is said to be a canonical form. This reduction process is also called a canonical analysis in chemical engineering (Hill and Hunter, 1966). This canonical reduction of chemical engineers is algebraically equivalent to the canonical analysis of Hotelling's method, but the underlying purposes, assumptions and implications of the canonical reduction are completely
different from that of the canonical trend analysis discussed in this paper.

In Section 2.1 the physical meaning of the canonical correlation coefficient is introduced. A proof of the theory of the analysis is presented in Section 2.2. Section 2.3 states the probability distribution of canonical roots. Detailed computation procedures of the two-dimensional canonical trend are formulated in Section 3.2. Sections 3.3 and 3.4 are devoted to a full discussion of the physical meaning and uses of canonical trends, using hypothetical data. A numerical example, taken from the Permian of Kansas and Colorado is given in Section 3.5. Other applications in geology are demonstrated with illustrative examples in Chapter 4.
CHAPTER 2
THEORY OF CANONICAL CORRELATION

2.1 General Statement

Suppose we have a sample from a p-dimensional space, then the purpose of canonical correlation analysis (Hotelling, 1936) is to find a linear function of the first p_1-variates and a linear function of the last p_2-variates ($p_1 + p_2 = p$), so that these two linear functions have the highest possible correlation coefficient. In a practical situation, interrelationships between two sets of measurements made on the same samples would be analyzed through this technique. Under the assumption of normality, if the canonical correlation is zero, these two sets are completely independent, and it is useless to predict the dependent variates by means of the independent variates. If the canonical correlation is unity, this means that the dependent variates would be predicted perfectly by means of the independent variates based on the particular linear functions. For the special case in which the number of dependent variates is equal to one, the problem is multiple regression. In this case, it is usual to make use of a regression model rather than a correlation model.

The geometrical meaning of the canonical correlation can be stated as follows: In a p-dimensional space, a sample of $p_1 + p_2$ variates determines one hyperplane of p_1 and one of p_2 dimensions, intersecting at the origin, and containing a swarm of points representing
the two sets. Linear transformations are developed for the first \(p_1 \) coordinate axes and also for the \(p_2 \) coordinate axes such that these two hyperplanes are as parallel as possible in a new \(p \)-dimensional space. The cosine of the angle between these two hyperplanes is defined as the canonical correlation coefficient.

The assumption is that the observed variates are linear functions of the canonical variates. Furthermore we will assume that the observed variates are normally distributed in order to make a statistical inference on the dependence between two sets and to derive the probability distribution of the canonical correlation coefficients.

2.2 Canonical Correlation and Variates

Suppose \((Z_{ij}, i = 1, 2, \ldots, p; j = 1, 2, \ldots, N, N > p) \) is a random sample of size \(N \) from a \(p \)-dimensional distribution and has covariance matrix \(R \) which is known to be a positive definite real symmetric matrix. Without loss of generality we may suppose that \(Z_i \) has zero mean, i.e. \(E [Z_i] = 0 \).

We partition \(Z \) into two subvectors of \(p_1 \) and \(p_2 \) components \((p = p_1 + p_2) \) respectively,

\[
Z = \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix}, \quad Z_1 = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_{p_1} \end{bmatrix}, \quad Z_2 = \begin{bmatrix} z_{p_1 + 1} \\ z_{p_1 + 2} \\ \vdots \\ z_p \end{bmatrix}
\]

(1)

For convenience we shall assume \(p_1 \leq p_2 \). The covariance matrix is partitioned into matrices as follows:
\[R = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix} \]

(2)

where \(R_{11} \) is the correlation matrix for \(z_1 \), \(R_{22} \) for \(z_2 \), and \(R_{12} = R'_{21} \) is the correlation matrix between \(z_1 \) and \(z_2 \). The canonical variates \(U \) and \(V \) are defined as:

\[U = A' z_1, \quad V = B' z_2 \]

(3)

where

\[A = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_p_1 \end{bmatrix}, \quad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_p_2 \end{bmatrix} \]

(4)

We require \(A \) and \(B \) to be such that \(U \) and \(V \) have unit variance, that is

\[1 = E[U^2] = E[A' z_1 z_1 A] = A' R_{11} A \]

(5)

\[1 = E[V^2] = E[B' z_2 z_2 B] = B' R_{22} B \]

(6)

\[E[UV] = \text{COV}[UV] + E[U] E[V] \]

\[= E[A' z_1 z_2 B] + E[A' z_1]. E[B' z_2] \]

\[= A' E[z_1 z_2'] B + A' E[z_1] B' E[z_2] \]

\[= A' R_{12} B \]

(7)
Thus the problem is to find A and B to maximize (7) or $E[UV]$ subject to (5) and (6).

Let

$$\psi = A' R_{12} B - \frac{1}{2} \lambda (A' R_{11} A - 1) - \frac{1}{2} \mu (B' R_{22} B - 1)$$

where λ and μ are Lagrange multipliers. We differentiate ψ with respect to the variables of A and B. The vectors of derivatives set equal to zero are

$$R_{12} B - \lambda R_{11} A = 0$$

$$R_{12} A - \mu R_{22} B = 0$$

Multiplication of (9) on the left by A' and (10) on the left by B' gives

$$A' R_{12} B - \lambda A' R_{11} A = 0$$

$$B' R_{12} A - \mu B' R_{22} B = 0$$

Since $A' R_{11} A = 1$, $B' R_{22} B = 1$, and $(A' R_{12} B)' = B' R_{22} A$. Thus, we have

$$\lambda = \mu = A' R_{12} B$$

Thus (9) and (10) can be written as

$$-\lambda R_{11} A + R_{12} B = 0$$

$$R_{21} A - \lambda R_{22} B = 0$$

In one matrix equation this is

$$\begin{bmatrix}
-\lambda R_{11} & R_{12} \\
R_{21} & -\lambda R_{22}
\end{bmatrix}
\begin{bmatrix}
A' \\
B'
\end{bmatrix}
= 0$$

In order that there be a nontrivial solution, the matrix on the left must be singular. Multiplication of (14) by A' and (15) on the
left by \(R_{22}^{-1} \), gives

\[
\begin{align*}
\lambda R_{12} B &= \lambda^2 R_{11} A \\
R_{22}^{-1} R_{21} A &= \lambda B
\end{align*}
\tag{17}
\tag{18}
\]

Substitution from (18) into (17) gives

\[
R_{12} R_{22}^{-1} R_{21} A = \lambda^2 R_{11} A
\tag{19}
\]

or

\[
(R_{12} R_{22}^{-1} R_{21} - \lambda^2 R_{11}) A = 0
\tag{20}
\]

or

\[
(R_{11}^{-1} R_{12} R_{22}^{-1} R_{21} - \lambda^2 I) A = 0
\tag{21}
\]

The solution involves finding latent roots \(\lambda^2 \) of the equation

\[
\begin{vmatrix}
R_{11}^{-1} R_{12} R_{22}^{-1} R_{21} - \lambda^2 I
\end{vmatrix} = 0
\tag{22}
\]

The matrix, \(R_{11}^{-1} R_{12} R_{22}^{-1} R_{21} \), is \((p_1 x p_1)\) in dimension. Thus \(\lambda \) is the \((p_1 x p_1)\) diagonal matrix.

From (13) we see that \(\lambda = A' R_{12} B \) is the correlation between \(U \) and \(V \). Thus, the elements, \(\lambda_i \), of \(\lambda \) were called the canonical roots or canonical correlation coefficients by Hotelling (1936). Values of \(A_i \) in equation (3) are the eigenvectors associated with \(\lambda_i^2 \). Solving for \(B \) from equation (15), we have \(B_i \) for a particular \(\lambda_i \),

\[
B_i = R_{22}^{-1} R_{21} A_i / \lambda_i \quad (\lambda_i \neq 0)
\tag{23}
\]

The \(A_i \) and \(B_i \) are normalized, so that we have

\[
A_i' A_i = 1 \quad \text{and} \quad B_i' B_i = 1
\tag{24}
\]

Then \(U_i \) and \(V_i \) are normalized linear functions of \(Z_1 \) and \(Z_2 \), respectively, with maximum correlation.
We now consider finding the second linear functions of \(Z_1 \) and \(Z_2 \), respectively, such that each of these two linear functions are uncorrelated with the first linear functions. This procedure is continued. At the \(r \)-th step we have obtained linear combinations

\[
U_1 = A'_1 Z_1, \quad V_1 = B'_1 Z_2, \quad \ldots, \quad U_r = A'_r Z_1, \quad V_r = B'_r Z_2
\]

with corresponding roots \(\lambda_1, \ldots, \lambda_r \). Let the \((r+1)\)th linear functions of \(Z_1 \) and \(Z_2 \) be \(U_{r+1} = A'_{r+1} Z_1 \), and \(V_{r+1} = B'_{r+1} Z_2 \), respectively. The condition that \(U_{r+1} \) be uncorrelated with \(U_i \) \((1 \leq i \leq r)\) is

\[
0 = E[U_i U_{r+1}] = E[A'_i Z_1 Z_1 A'_{r+1}]
\]

\[
= A'_1 R_{11} A'_{r+1}
\]

\[
R_{11} A_i = R_{12} B_i / \lambda_i \quad (\lambda_i \neq 0)
\] \hspace{1cm} (26)

Therefore, \(E[U_{r+1} V_i] = A'_{r+1} R_{12} B_i = \lambda_i A'_{r+1} R_{11} A_i = 0 \) \hspace{1cm} (27)

If \(\lambda_i = 0 \), \(R_{12} B_i = 0 \) and (27) holds.

The condition that \(V_{r+1} \) be uncorrelated with \(V_i \) is

\[
0 = E[V_{r+1} V_i] = B'_{r+1} R_{22} B_i \quad (1 \leq i \leq r)
\] \hspace{1cm} (28)

By the same argument we have

\[
0 = B'_{r+1} R_{21} A_i = E[V_{r+1} U_i]
\]

We now maximize \(E[U_{r+1} V_{r+1}] \), choosing \(A \) and \(B \) to satisfy (5), (6), (25), and (28) for \(i = 1, 2, \ldots, r \). Let

\[
\psi_{r+1} = A' R_{12} B - \frac{1}{2} \lambda(A' R_{11} A - 1) - \frac{1}{2} \mu(B' R_{22} B - 1)
\]

\[
+ \sum_{i=1}^{r} \theta_i B' R_{22} B_i
\]

\[
+ \sum_{i=1}^{r} \nu_i A' R_{11} A_i
\] \hspace{1cm} (30)
where λ, μ, ψ_1, ψ_2, ψ_3, ψ_4 are Lagrange multipliers.

We differentiate ψ_{r+1} with respect to the variables of A and B and set equal to zero. Thus, we have

$$R_{12}B - \lambda R_{11}A + \sum_{i=1}^{r} \psi_i R_{11} A_i = 0 \tag{31}$$
$$R_{21}A - \mu R_{22}B + \sum_{i=1}^{r} \psi_i R_{22} B_i = 0 \tag{32}$$

Multiplication of (31) on the left by A_i^T ($j = 1, 2, \ldots, r$) and (32) on the left by B_j^T gives

$$0 = \psi_j A_i^T R_{11} A_j = \psi_j \tag{33}$$
$$0 = \psi_j B_j^T R_{22} B_j = \psi_j \tag{34}$$

Thus equations (31) and (32) are simply (16). Therefore any λ_i from the p_1 roots satisfies the conditions (5), (6), (25), and (28) for $i = 1, 2, \ldots, r$.

Finally, the canonical transformation can be summarized into the following matrix equation:

$$[A' | 0] = [R_{11} | R_{12}] [A | 0 | 0]$$

$$[I | \Lambda | 0] = E [U | V]'$$

where $U = A' Z_1$, $V = [V_1 \cdot V_2]'$, $[B_1 B_2]'$, $[Z_1 Z_2]'$, $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_{p_1})$, and λ_i are the population canonical roots.
Consider approximating \(U \) by a multiple of \(V \), say \(K V \); then the mean square error of approximation is

\[
E \left[(U - K V)^2 \right] = \sigma_u^2 - 2K \sigma_u \sigma_v \rho + K^2 \sigma_v^2
\]

\[
= \sigma_u^2 (1 - \rho^2) + (K \sigma_v - \rho \sigma_u)^2
\]

where the \(\sigma_u^2 \) and \(\sigma_v^2 \) are variances of \(U \) and \(V \), respectively, \(\rho \) is simple correlation coefficient between \(U \) and \(V \). This is minimized by taking \(K = \frac{\sigma_u \rho}{\sigma_v} \). We can consider \(K V \) as a linear prediction of \(U \) from \(V \); then \(\sigma_u^2 (1 - \rho^2) \) is the mean square error of prediction.

2.3 Tests of Significance for Canonical Roots

The distribution of \(\lambda_i^2 \) of equation (22) has been discussed by Hsu (1941), Bartlett (1947), Constantine and James (1958), Anderson (1958, p. 323-324), and Wilks (1963, p. 590-592). For the case \(p_1 \leq p_2 \), the distribution of \(\lambda_i^2 \), when these roots are arranged in descending order of magnitude, is given by

\[
\prod_{i=1}^{p_1} \frac{1}{\pi} \prod_{i=1}^{p_1} r \left[\frac{1}{2}(N-1) \right] \frac{1}{r \left[\frac{1}{2}(N-p_2-i) \right] r \left[\frac{1}{2}(p_1+1-i) \right] r \left[\frac{1}{2}(p_2+1-i) \right]}
\]

\[
\prod_{i=1}^{p_1} \left[(\lambda_i^2)^{2i-1}(p_2-p_1-1) (1- \lambda_i)^{\frac{1}{2}(N-p_2-p_1-2)} \right] \prod_{i<j} (\lambda_i^2 - \lambda_j^2)
\]

This distribution holds when \(Z_1 \) and \(Z_2 \) are independently distributed and \(Z_1 \) has a multivariate normal distribution, whereas
Z_2 has any distribution.

A criterion which is useful in detecting the simultaneous departure of several roots λ_i^2 from zero was suggested by Bartlett (1938, 1941). Bartlett's statistic

$$\chi^2 = - \left[N - \frac{1}{2} (p_1 + p_2 + 1) \right] \log \Lambda \quad (38)$$

where $\Lambda = \prod_{i=1+r}^{p_1} (1 - \lambda_i^2)$, follows approximately a chi-square distribution with $(p_1 - r) (p_2 - r)$ degrees of freedom. The assumption is made that Z_1 and Z_2 follow a multivariate normal distribution with zero means.

A slight improvement which was suggested by Lawley (1959) for the test of significance of residual canonical roots is that the multiplying factor $N - \frac{1}{2}(p_1 + p_2 + 1)$ should be replaced by taking the factor as

$$N - r - \frac{1}{2}(p_1 + p_2 + 1) + \sum_{i=1}^{r} (1 / \lambda_i^2) \quad (39)$$

If λ_i^2's are equal to 1, Bartlett's criterion and Lawley's criterion are identical. If the sample size N is large, these two criteria are approximately equal.

If canonical roots are much less than 1.000, then Lawley's criterion will yield higher chi-square value than that of Bartlett's criterion. This means that type I error will be high if Bartlett's criterion is adopted, on the other hand, type II error must be high if Lawley's criterion is used. As will be illustrated later, the use of statistical significant tests presents a problem of reconciling geological significance and statistical significance. In the present study, Bartlett's criterion is used for reference but not as the sole basis for making critical decisions.
3.1 General Statement

Investigations may be performed to analyze a set of geological variates measured on a stratigraphic unit or a rock body spreading over a large or small area. What geologists would like to do is to filter the error variance from the systematic areal variance in order to evaluate the trend of a certain variate. The technique (trend analysis) which has been frequently used in geology is basically the fitting of a polynomial surface to the observed data of a single variate, by the principle of least squares. In geology, where most problems are beset with a highly multiple determination of events, conventional trend analysis is essentially a univariate technique which is not adequate to handle the inherently multivariate data.

The concept of a composite end member in facies analysis was introduced by Krumbein (1955). Three predetermined end members were used to construct a facies triangle. Selection of a particular point within this facies triangle was considered as an optimum combination of end members. Contour lines around this point were used to measure the deviation of facies from this optimum facies. The deviation was called the distance function. This technique, as Forgotson (1960) pointed out, does not distinguish end members or give any information on the absolute values of end members. It does not indicate the nature.
of the change in composition from the optimum facies.

An entropy function derived from information theory was applied in multicomponent system mapping (Pelto, 1954) to express the degree of intermixing of the end members and to define facies quantitatively with one set of contours. This technique does not distinguish between end members and show the change of each individual variate.

The D-function (Pelto, 1954) divides a system into classes based on the difference in amounts of components. It provides information on the relative proportion of a specific end member within its own class. It does not distinguish between end members and provide information on the absolute value of components.

One elegant approach to the problem of dealing with spatially distributed multivariate data is to process the data first through principal component analysis, and then use trend analysis to map each individual principal component. It provides information on the areal distribution of the principal component which is composed of a set of geological variates with different weights. There are two ways to approach this problem.

(1) An R-mode factor or principal component analysis is first performed on the well (and/or outcrop) data, and then factors or principal components are expressed in terms of observed variates by using the principle of multivariate regression. After calculating the factors or principal components for each well, trend surfaces may be fitted to each factor or principal component over all wells. The result is a factor or principal component map. When a factor model is used, the factor map implies lithologic associations resulting from
underlying deposition environmental factors. When based on the concept of principal component analysis, the first principal component map indicates the spatial variation of the first principal component, which is the component which explains the most variance of a set of geological variates. In the both models, the factor or principal component may or may not have a clear geological interpretation.

(2) A factor-vector map is obtained from a Q-mode factor analysis as suggested by Imbrie (1963) and Krumbein and Imbrie (1963). Reference wells are chosen for each factor-vector map and all other wells are expressed in terms of similarity to the reference well for that particular map. The geological meaning of each map can only be obtained by looking at the particular lithologic association of each reference well. The concept of a reference well is analogous to the concept of an optimum facies in the distance function technique (Krumbein, 1955). This kind of factor-vector map expresses the intergradation between the reference wells in which respect it is similar to the concept of an entropy function map (Pelto, 1954).

Another technique will be discussed here, namely the construction of a trend surface for a set of multivariate data through a canonical transformation. The basic difference between this canonical trend analysis and the method of least squares is that in canonical trend analysis the covariance or correlation between geological variates and geographic coordinates is maximized, while in conventional trend analysis the variance is maximized (i.e. the error variance is minimized). The canonical trend surface is a polynomial surface which
has a maximum correlation with a set of geological variates combined together as a linear function. The coefficient of each variate indicates the degree of contribution of the particular variate to the trend surface, because the sum of squares of each coefficient is equal to 1, the total variance of the linear function.

3.2 Computation Procedures

The geographic coordinates, X and Y, and their various powers and cross-products constitute one set of variates, and the geological variates, Zi, constitute the second set. What the canonical correlation analysis can do is to find one linear function for the (X,Y) coordinates, and one for Zi such that these two linear functions have a maximum correlation. The trend surface evaluated by this principle is considered to be a most predictable surface for the particular linear function of a set of geological variates. An additional assumption is that X and Y are uncorrelated. This means that samples are taken by using a systematic or stratified sampling method from a two-dimensional area but not from an one-dimensional line. The calculation procedures are fully explained below:

STEP 1. Transformation of geological variates if necessary.

When the distribution of raw data is highly skewed or if the error variance is not stable, transformations may be carried out in order to symmetrize the distribution or stabilize the variance, or both. Bartlett (1947b) has summarized those transformations appropriate to a particular situation, and also suggested a general transformation as follows:
where \(f(m) \) is a function between variance, \(\sigma^2 \), and mean, \(m \), of a particular variate, \(c \) is a constant.

There are three alternatives allowed in the computer program prepared for the present study, (1) arc sine square root transformation; (2) logarithm transformation; and (3) no transformation.

STEP 2. Standardization of geological variates.

A correlation coefficient is a dimensionless value, therefore a trend surface equation derived from a correlation matrix is also scale independent. In order to have a scale dependent trend surface equation, the covariance matrix for the \((X, Y)\) coordinates and geological variates \(z_i \), should be used. On the other hand, geological variates may be measured in noncomparable units. Thus, we should deal with the correlation matrix rather than the covariance matrix. In order to satisfy both of the two requirements, the geological variates are standardized according to equation (2), and then the covariance matrix is computed for \(z_i \) and the \((X, Y)\) coordinates.

The equation for standardization of the geological variates is as follows:

\[
Z_{ij} = \frac{z_{ij} - \bar{z}_j}{\sqrt{s^2_j}}
\]

where \(s^2_j \) = sample variance of variate \(z_j \), \(\bar{z}_j \) = sample mean of variate \(z_j \), \(z_{ij} \) is the \(i \)-th observation on the \(j \)-th variate.
STEP 3. Generation of high power and cross-product terms of the
(X, Y) coordinates.

The high power and cross-product terms of the (X, Y) coordinates
are generated within the computer based on the input raw data (X,Y)
as follows:

Cumulative Polynomial Term

\[
\begin{array}{cccc}
2 & x & y & \gamma^2 \\
5 & x^2 & xy & y^2 \\
9 & x^3 & x^2y & xy^2 & y^3 \\
14 & x^4 & x^3y & x^2y^2 & xy^3 & y^4 \\
20 & x^5 & x^4y & x^3y^2 & x^2y^3 & xy^4 & y^5 \\
27 & x^6 & x^5y & x^4y^2 & x^3y^3 & x^2y^4 & xy^5 & y^6
\end{array}
\]

The polynomial terms of each observation will follow the geological
variates in an array D(I), where \(I = 1, 2, \ldots, p_1 + p_2 \), where \(p_1 \) = the
number of geological variates, \(p_2 \) = the number of polynomial terms.

The process of generation is listed in figure 1.

The covariance between i-th and j-th variates is calculated by
standard formula which is defined as

\[
S_{ij} = \frac{\sum_{k=1}^{N} (Z_{ik}Z_{jk}) - \frac{1}{N} \sum_{k=1}^{N} Z_{ik} \sum_{k=1}^{N} Z_{jk}}{N(N - 1)} \quad \text{if} \quad i \neq j \quad (3)
\]

If \(i = j \), \(S_{ii} \) is the variance of i-th variate, which is defined as

\[
S_{ii} = \frac{\sum_{k=1}^{N} Z_{ik}^2 - (\sum_{k=1}^{N} Z_{ik})^2}{N(N - 1)} \quad (4)
\]

The covariance matrix is partitioned into four parts as
FIGURE 1 - Flow chart for generating all terms up to a sextic polynomial based on geographic coordinates X and Y.
\[
R = \begin{bmatrix}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{bmatrix}
\] (5)

where the order of \(R_{11} \) is less than that of \(R_{22} \), \(R_{11} \) and \(R_{22} \) are covariance matrices of geological variates and polynomial terms, respectively if \(p_1 < p_2 \). The contents of \(R_{11} \) and \(R_{22} \) should be exchanged if \(p_1 > p_2 \). This covariance matrix is a symmetrical matrix: each element is stored into an one-dimensional array at location \(L \), where \(L = j(j - 1)/2 + i, i = 1, 2, \ldots, p_1 + 27 \) for a sextic polynomial, \(j > i \).

STEP 5. Calculation of canonical roots and variates.

The canonical roots \(\lambda \)'s and their associated canonical variates \((A_i) \) for variates in matrix \(R_{11} \), are respectively the eigenvalues and eigenvectors of the matrix equation:

\[
\begin{vmatrix}
R_{11}^{-1} R_{12} & R_{22}^{-1} R_{21} - \lambda^2 I
\end{vmatrix} = 0
\] (6)

The matrix on the left side of (6) is nonsymmetric (\(p_1 \times p_1 \)). A Jacobi-like method (Eberlein, 1962) was used to solve for the \(p_1 \) roots, \(\lambda^2 \)'s. The eigenvectors are \(A_i \) each of which is the canonical variate for one set of variates, either the canonical variate for the geological variates or for the \((X, Y)\) coordinates. The \(A_i \) are normalized, i.e. \(A_i^T A_i = 1 \).

STEP 6. Determination of degree of polynomial surface.

We begin with a linear polynomial and evaluate the degree through canonical correlation analysis. When the canonical root is
greater than 0.950 or the difference between two successive roots is less than 0.05 (the initial canonical root is set to zero), then the canonical root corresponding to the degree of the polynomial is used as the canonical trend surface. If not, the degree of the polynomial is increased 1, and steps 5 and 6 are repeated until the iterative process reaches a suitable degree.

It should be kept in mind that the sample size should always be greater than the sum of the number of the geological variates and the number of polynomial terms. Suppose we have a sample of size 30 with 4 variates, the highest order of polynomial that may be fitted to this data is 5, because a sextic polynomial must have 27 terms. In this example, for a sextic, the sum (= 31) of the number of variates (= 4) and number of polynomial terms (= 27) is greater than the sample size.

STEP 7. Calculation of the canonical variate of the second set of variates.

The canonical variate of the second set is computed as follows:

\[B_i = R_{2i}^{-1} R_{22} A_i / \lambda_i \quad (\lambda_i \neq 0) \]

The \(B_i \) is normalized, i.e. \(B_i^T B_i = 1 \).

STEP 8. Calculation of residuals.

Consider approximating \(U \) (a linear function of geological variates) by a multiple of \(V \) (a linear function of the X-, Y-coordinates) plus a constant, say \(c + k V \), then \(k \) and \(c \) are defined as follows:

\[U = c + k V \]
The residual of canonical trend surface for the j-th sample and i-th root is defined as:

$$\text{Residual}_j = U_j - (k V_j + c) = A^t_j Z_j - (k V_j + c) \quad (11)$$

where Z_j is column matrix for standardized geological variates, thus, $A^t_j Z_j$ is called observed value, whereas $C + kV_j$ is called calculated value for U_j. The U and V should be exchanged, i.e. A^t_j is replaced by B^t_j if U is a linear function of the (X, Y) coordinates while V is a linear function of geological variates.

STEP 9. Contouring of canonical trend surface.

In the canonical trend surface map, the X-axis is the abscissa, whereas the Y-axis is the ordinate. In the computer printout the length along X-axis is greater than or equal to that of Y-axis. The length of X-axis is divided into 50 units, while the length of Y-axis will be assigned to a certain units proportional to their relative lengths. Each point (having integer coordinates) of the new coordinate system is substituted into the polynomial equation $V = f(X, Y)$, so we have a set of V_{ij}, where $i = 1, 2, \ldots, 50, j < i$. The values, V_{ij},
are scaled according to equation $c + k V_{ij}$.

Suppose U is a linear function of geological variates, then the calculated value for U is $k V + c$ as mentioned above. The difference between U_{max} and U_{min}, ΔU, is divided into ten parts, and the values so defined are used for contours. The purpose of using ΔU rather than $\Delta V = V_{\text{max}} - V_{\text{min}}$ is to avoid extreme values introduced from high order polynomial.

Each V_{ij} is then replaced by one of following ten integers in order to indicate its relative value: 0 (low), 1, 2, 3, 4, 5, 6, 7, 8, 9 (high). Finally a map composed of these integers is printed by the computer. The scale is printed in feet per unit in the (X,Y) coordinates.

STEP 10. Residual plot.

Residuals of all observations are calculated according to equation (11). The difference between the maximum and minimum values is divided into ten parts, each residual is represented by one of the following integers according to its value: 0 (low), 1, 2, 3, 4, 5, 6, 7, 8, 9 (high). These integer numbers are plotted as a residual map according to their relative geographic coordinates.

3.3 Canonical Trend Surface of Hypothetical Data

An illustration of some of the physical meaning of the canonical trend which results from the computations described in the previous sections can be given by making use of hypothetical examples. One hundred and fifty sampling points were spread over a rectangular area, the points being located by a stratified sampling method (Cochran,
1963, p. 87-88). Geographic coordinates of each sampling point within a grid were defined by a pair of random numbers. The sampling points, defined by a set of 150 pairs of random numbers from a table (Krumbein and Graybill, 1965, p. 445-450), were used for all the examples discussed later. Values for the hypothetical variates at the sampling points were computed from various equations incorporating an independent, random, normally distributed, error term with zero mean and any desired variance.

3.31 Experiment 1: The canonical trend surface achieves a parsimonious summarization of a set of trend surface showing distributions of variates from a single population.

(a) Let two hypothetical variates be

\[Z_1 = 0.707 X + 0.707 Y + E_1 \]
\[Z_2 = -0.707 X - 0.707 Y + E_2 \]

where \(E_1 \) and \(E_2 \) are independent variates with normal distribution \(N(0,1) \). The canonical trend was

\[U = -0.652 Z_1 + 0.753 Z_2 \]
\[V = -0.693 X - 0.721 Y \]

The canonical root was 0.9834. Equation (15) is the polynomial of the canonical trend surface. Equation (14) represents the linear combination of variates \(Z_1 \) and \(Z_2 \). The absolute values, -0.652 and 0.758 \((-0.652^2 + 0.758^2 = 1.000\), indicate the contributions to the trend. The variates, \(Z_1 \) and \(Z_2 \) have approximately equal loadings but are in opposite signs, so that these two variates vary approximately in opposite directions. Equations (14) and (15) show that variate
Z_1 increases toward north-east, while variate Z_2 increases toward south-west. This interpretation agrees with the equations (12) and (13).

(b) Let two hypothetical variates be

\begin{align*}
Z_1 &= 0.707 X + 0.707 Y + E_1 \\
Z_2 &= -X + E_2
\end{align*}

where E_1 and E_2 were $N(0,1)$. The canonical trend was

\begin{align*}
U &= -0.549 Z_1 + 0.836 Z_2 \\
V &= -0.941 X - 0.339 Y
\end{align*}

The canonical root was 0.9837. Equation (19) indicates that the canonical trend (NNW-SSE) is intermediate between the trends of the two variates, but slightly closer to Z_2. Because the variance in X was larger than that in Y (the area studied was rectangular, with the larger dimension in the E-W direction), the variance of Z_2 was larger than that of Z_1. After standardization, therefore, the contribution of the variance of the variate E_2 to the variance of Z_2 was proportionally less than the contribution of E_1 to Z_1. Thus the weighting of Z_2 is greater than that of Z_1 in the equation (18).

The second canonical root is equal to 0.8509, its associated canonical variates are

\begin{align*}
U &= 0.724 Z_1 + 0.690 Z_2 \\
V &= -0.163 X + 0.987 Y
\end{align*}

The combination of equation (20) which is orthogonal to equation (18) and contradictory to that of equations (16), (17) and (18) shows that both the variates Z_1 and Z_2 increase toward northwest. This root should be rejected even though it is statistically
significant at 1 percent level.

3.32 **Experiment 2**: The coefficients of geological variates are a function of the strength of the trend or the magnitude of the random variance error.

(a) Let two hypothetical variates be

\[Z_1 = 0.707 X + 0.707 Y + E_1 \] \hspace{1cm} (22)

\[Z_2 = -X + E_2 \] \hspace{1cm} (23)

where \(E_1 \) was \(N(0,1) \), \(E_2 \) was \(N(0,4) \). The canonical trend was

\[U = 0.996 Z_1 - 0.093 Z_2 \] \hspace{1cm} (24)

\[V = 0.736 X + 0.677 Y \] \hspace{1cm} (25)

The canonical root is 0.9666. It is clear that \(Z_1 \) is so strongly weighted that \(Z_2 \) has a negligible effect on the trend.

(b) Let two hypothetical variates be

\[Z_1 = 0.707 X + 0.707 Y + E_1 \] \hspace{1cm} (26)

\[Z_2 = E_2 \] \hspace{1cm} (27)

where \(E_1 \) was \(N(0,4) \), \(E_2 \) was \(N(0,1) \). The canonical trend was

\[U = 0.986 Z_1 - 0.196 Z_2 \] \hspace{1cm} (28)

\[V = 0.954 X - 0.284 Y - 0.014 X^2 + 0.025 XY + 0.088 Y^2 \] \hspace{1cm} (29)

The canonical root is equal to 0.6967. It is obvious that variate \(Z_2 \) should contribute nothing to the trend and in fact contribute very little. Figure 2 shows the variation of \(Z_1 \) which approximately agrees with equation (26).

3.33 **Experiment 3**: If the information (areal variations of the variates) cannot be obtained from the first canonical root alone, the second canonical root will supply part of the remaining information.
Let five constructed variates be

\[
\begin{align*}
Z_1 &= X + E_1 \\
Z_2 &= Y + E_2 \\
Z_3 &= -X + E_3 \\
Z_4 &= -Y + E_4 \\
Z_5 &= E_5
\end{align*}
\]

where \(E_i \ (i = 1, 2, 3, 4, 5) \) where \(N(0,1) \). The first canonical root was 0.9887, its associated canonical variates were

\[
\begin{align*}
U &= 0.622 Z_1 - 0.163 Z_2 - 0.763 Z_3 + 0.048 Z_4 + 0.034 Z_5 \quad (35) \\
V &= 0.974 X - 0.228 Y \quad (36)
\end{align*}
\]

The second canonical root is 0.9701, its associated canonical variates were

\[
\begin{align*}
U &= -0.098 Z_1 + 0.527 Z_2 - 0.272 Z_3 - 0.799 Z_4 - 0.005 Z_5 \quad (37) \\
V &= 0.101 X + 0.995 Y \quad (38)
\end{align*}
\]

The first canonical root explains the variations of variates \(Z_1 \) and \(Z_3 \) whereas the second canonical root explains the variations of variates \(Z_2 \) and \(Z_4 \). The variate \(Z_5 \) does not contribute to the trend.

3.34 **Experiment 4**: The univariate case of the canonical trend surface is also a most predictable surface for a single geological variate.

(a) Let the constructed variate be

\[
\begin{align*}
Z_1 &= 0.707 X + 0.707 Y + E_1 \quad (39)
\end{align*}
\]

where \(E_1 \) was \(N(0,1) \). The canonical root for the linear polynomials is 0.9649. The linear trend was accepted as follows:

\[
V = 0.709 X + 0.705 Y \quad (40)
\]
(b) Let the constructed variate be

\[Z_1 = 0.13X - 0.13Y + 0.60X^2 - 0.50XY + 0.60Y^2 + E_1 \] (41)

where \(E_1 \) was \(N(0,1) \). The canonical trend surface for variate \(Z_1 \) is that

\[V = 0.098X + 0.092Y + 0.611X^2 - 0.513XY + 0.587Y^2 \] (42)

The canonical root is equal to 0.9996.

(c) Let the constructed variate be

\[Z_1 = e^{X+Y} + E_1 \] (43)

where \(E_1 \) was \(N(0,1) \). The canonical trend surface for variate \(Z_1 \) is that

\[
\begin{align*}
V &= 0.6613X + 0.6246Y - 0.1812X^2 - 0.3195XY - 0.1754Y^2 \\
&+ 0.0220X^3 + 0.0521X^2Y + 0.0555XY^2 + 0.0224Y^3 \\
&- 0.0012X^4 - 0.0035X^3Y - 0.0050X^2Y^2 - 0.0042XY^3 \\
&- 0.0013Y^4 + 0.0001X^4Y + 0.0001X^3Y^2 + 0.0002X^2Y^3 \\
&+ 0.0001XY^4
\end{align*}
\] (44)

The canonical root is equal to 0.9700. The expression for \(V \) was a quintic polynomial. Figure 3 illustrates this use of a canonical trend to approximate an exponential variation.

3.4 Functions of Canonical Trend Surface

Stratigraphers or petrologists usually handle a great number of maps, and like to sort them into groups showing analogous features, and other groups showing quite different features. Canonical trend analysis achieves a parsimonious summarization of a set of maps showing distributions of variates from a single population. It is thus a useful technique for screening maps, at least for exploratory studies.
Figure 3 - Canonical trend surface (univariate case) shows an exponential variation.

Figure 2 - Canonical trend surface fitted to $Z_1 = 0.707 \times + 0.707 \times Y + E_1, Z_2 = E_2$, where E_1 was $N(0,4)$, and E_2 was $N(0,1)$.
The fundamental principle of canonical trend analysis is to maximize the covariance between a set of geological variates and the \((X, Y)\) coordinates. This implies that the canonical trend surface is a most predictable surface to the particular set of variates. It weighs each variate according to its error variance. No other trend surface possesses these characters.

Canonical trend surface will show the nature of variation of any number or any kind of geological variates if they can be amalgamated in a linear function. We can interpret the variations of each variate even though the geological meaning of the particular combination is not yet known. This type of trend surface does not show the absolute values at each contour. On the other hand it does show the general trends of the variates at least for the first approximation. The coefficients of a particular set of variates would not drastically change from low to high order polynomials.

Theoretically, we may map as many variates as we wish at a time. It is generally true that if many variates are analyzed simultaneously, the interpretation of the result will not be as clear as the interpretation for fewer variates. There is no way to decide the appropriate number of variates in advance. Based on the writer's experience of practical problems, a reasonable number is four or fewer but not more than five. It is not necessary that the geological variates be uncorrelated variates. But, if they are highly correlated, the correlation matrix will be nearly singular, and matrix inversion may yield a meaningless solution as a result of the limited number of
digits in the computer. With a sufficiently large computer, this is not always a serious problem. However, we should keep this problem in our mind when we are dealing with highly intercorrelated variates. If a number of variates is available for canonical trend analysis, the type of variates which should be chosen for the analysis is dependent on what geologically meaningful hypothesis we expect to establish. Poor selection of variates would produce geologically ambiguous and trivial result.

Real linear combinations other than the first one cannot be obtained unless the equations (5), (6), (25), and (28) of Chapter 2 are satisfied. This means that variations obtained from canonical correlation analysis exist in nature if they are orthogonal to the previous linear combinations, otherwise, the variations obtained are mere artefacts brought in by mathematical operations. We should realize, however, that the coefficients in the linear function which give maximum correlation may not be suitable as a solution to a practical problem. The linear combination associated with the largest canonical root is most likely to have some physical interpretations. If the subsequent combinations associated with smaller canonical roots give contradictory combinations, these subsequent canonical roots should be rejected without hesitation, even though these canonical roots are statistically significant at a high probability level. On the other hand it can be demonstrated by using geological example that even where the largest canonical root is not significant statistically, the information resulting from the canonical root may be correct. This
illustrates a controversial problem regarding the difference between geological and statistical significance.

Coefficients of canonical variates will yield ambiguous signs in the linear function, if the sample size is insufficient, if the order of polynomial is too high, if the number of variates is too large, and if geological variates and/or \((X, Y)\) coordinates are highly correlated. The investigator should be extremely careful that results have a real geological base. Does this destroy the value of the technique? The answer is not at all. In dealing with multivariate statistical analysis such as multiple regression analysis, principal component analysis, and so on, results which cannot be interpreted may be obtained in attempting to solve practical problems. This is a general difficulty in applying multivariate techniques in geology and results more from the real complexity of nature than from problems caused by the mathematical analysis.

After working a number of practical problems, the writer is convinced that the canonical trend analysis is an adequate technique to evaluate a trend common to a set of variates in preliminary and concept-formation stages of research as part of data-reduction scheme.

3.5 Permian System in Western Kansas and Eastern Colorado
3.51 Geological Setting: The upper part of the Permian rock in western Kansas and eastern Colorado, which is above the Stone Corral dolomite, is composed of Guadalupian series and Upper Leonardian (Nippewalla) series. The rock sequence consists of alternating sandstones and shale with thin dolomites and appreciable amounts of
evaporites. The stratigraphic sequence studied is equivalent to the upper part of intervals B and C-D (Mudge, 1967) in the central Midcontinent region.

A total of 31 wells were selected from this area and analyzed by W. T. Fox (see Krumbein, 1962) by using conventional stratigraphic maps. Integration of stratigraphic maps shows that four components of this System, namely sandstone, shale, carbonate, and evaporites thicken toward a center, i.e. the area shows the characteristics of a sedimentary basin.

The Permian basin was a broad, shallow, fairly stable restricted marine basin. The basin was encircled on the west by the Front Range and Wet Mountains from which feldspathic and quartz grains were mainly derived. On the north and east the Permian basin was probably bounded by low-lying land areas. There was a restricted connection with open sea on the south of the basin.

The petrography of the Permian rocks (Swineford, 1955) and the stratigraphic correlations between western Kansas and southeastern Colorado (Maher, 1953) are listed below:

<table>
<thead>
<tr>
<th>Western Kansas</th>
<th>Southeastern Colorado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Basin (Taloga) formation (O'Connor, 1963)</td>
<td></td>
</tr>
<tr>
<td>Red (at the top) and greenish-gray (at the base) montmorillonitic shale, silty shale, siltstones and some very fine-grained sandstone</td>
<td></td>
</tr>
</tbody>
</table>
Day Creek dolomite. Upper "crinkly" limestone
Pale-gray to pink fine-grained dolomite bed
(2 to 3 feet)

Whitehorse sandstone
Reddish-brown, fine-grained, well-sorted
sandstone, siltstone, and shale, and
minor quantities of white to buff
sandstone and dolomite

Dog Creek shale. Lower "crinkly" limestone
Dark-red silty shale, brownish-red bed
and greenish-gray siltstone, and
very fine-grained sandstone, dolomite,
dolomitic and gypsiferous sandstone
and gypsum

Blaine formation
Anhydrite or anhydritic gypsum,
thin dolomite, and brownish red shale

Flowerpot shale
Reddish-brown gypsiferous shale with
a few thin beds of sandstone and
siltstone

Cedar Hills sandstone
Brownish-red, massive very fine-grained Lyons sandstone
Fine-grained, quartz,
sandstones and siltstone separated by subangular, littoral beds of argillaceous siltstone and silty deposit (Thompson, 1949) shale

Salt Plain formation
Reddish-brown flakey siltstones, thin sandy siltstones, and very fine-grained sandstones

Harper formation
Brownish-red sandy siltstone and shale

Stone Corral dolomite
Dense to cellular, and grayish buff in color, containing many vugs partly or completely filled with coarsely crystalline calcite or gypsum, oolitic at the base

3.52 Stratigraphic factor map analysis: The 31 wells with six components, namely: total thickness, nonclastic thickness and the thickness of the four components mentioned above, were subjected to Q-mode factor analysis. Three stratigraphic factor maps were constructed (Imbrie, 1963; Krumbein and Imbrie, 1963), one for each of the first three factors, respectively. One reference well which has an identity factor loading in a particular factor is chosen for each map. The geological implications of the Q-mode analysis can be clarified by examination of the actual lithologic association of each reference well. Reference well R_1 of the first factor-vector map (Fig. 4A) has maximum evaporite thickness and the minimum carbonate thickness of any well. Reference well R_2 of the second
factor-vector map (fig. 4B) has minimum thickness, shale content, and evaporite content of any well. The reference well of the third factor-vector map has minimum sandstone and carbonate content, and contains considerable shale, and some evaporite. Imbrie (1963) and Krumbein and Graybill (1965, p. 402-406) suggested that the first factor map represents an evaporite basin with rapid subsidence and clay influx, the second factor map indicates the distribution of shelf sedimentation, and the third factor map represents the distribution of an off-shore sedimentation of fine detritals adjacent to the evaporite basin.

The fundamental approach of the stratigraphic factor map analysis is to visualize the geologic implications of the distribution of a hypothetical variate through interpretations of the lithologic associations for a particular map.

3.53 Canonical trend surface analysis: The hypothesis we expect to establish is that the area shows the characteristics of a sedimentary basin. A sedimentary basin, in general, should show that some of sediments thicken toward the center, and the relative amount of shale and evaporite should be predominate over that of sand and carbonate, respectively, in the central part of the basin.

A sample of size 30 (excluding one well which did not contain any evaporite) was subjected to canonical trend analysis on two sets of different geological variates. The variates of the first set are thickness of sand, shale, carbonates, and evaporites, while the variates of the second set are total thickness, sand-shale ratio, and carbonate-evaporite ratio. The order of polynomial fitted to these two
Figure 4 - Permian system of Western Kansas and Eastern Colorado stratigraphic factor maps.

A. Factor 1; B. Factor 2 (Data after Imbrie, 1963; redrawn by the present writer).
sets of variates cannot be greater than five. The raw data of this problem were published by Krumbein (1962, table VI).

Principal components were obtained from a covariance matrix of the thickness of sand, shale, carbonate, and evaporites. The first principal component contributes 73.8 percent of total variance, the second one contributes 20.6 percent, and the last one contributes 0.6 percent. The rotated, normalized eigenvectors are listed in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Variate</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand thickness</td>
<td>0.03</td>
<td>0.99</td>
<td>0.12</td>
</tr>
<tr>
<td>Carbonate thickness</td>
<td>0.06</td>
<td>-0.12</td>
<td>-0.99</td>
</tr>
<tr>
<td>Shale thickness</td>
<td>-0.99</td>
<td>-0.10</td>
<td>-0.10</td>
</tr>
<tr>
<td>Evaporite thickness</td>
<td>-0.97</td>
<td>0.06</td>
<td>0.23</td>
</tr>
</tbody>
</table>

The first principal component indicates a shale-evaporite association which is equivalent to the first factor obtained by Imbrie (1963) and also by Krumbein and Imbrie (1963). The second principal component explains the variance contributed by the thickness of sand, whereas the last principal component explains the variance contributed by the thickness of carbonates. These three principal components are mathematically orthogonal, but transitions between them are possible.
from the geological point of view.

The result from the principal component analysis indicates that the carbonates behave quite differently from the evaporites, and the sand behaves in an opposite way from the shale and evaporites. Thus, the clastic ratio \(\frac{\text{sand} + \text{shale}}{\text{carbonates} + \text{evaporites}} \) should not be included in the analysis, because its geological meaning is ambiguous.

The first set of four variates, namely thickness of sand, shale, carbonates and evaporites were treated through canonical trend surface analysis. After three iterative processes, the highest canonical root that could be reached was 0.9464 which indicates that a cubic polynomial is the most predictable response surface (table 2).

| TABLE 2 |
| RECORD OF THE SUCCESSIVE EVALUATION OF THE ORDER OF POLYNOMIAL FOR FOUR VARIATES |

<table>
<thead>
<tr>
<th>Canonical root</th>
<th>Order of polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7804</td>
<td>Linear</td>
</tr>
<tr>
<td>0.8810</td>
<td>Quadratic</td>
</tr>
<tr>
<td>0.9464</td>
<td>Cubic</td>
</tr>
</tbody>
</table>

The canonical variate for the geological variates was

\[U = 0.516 \text{ (sand)} + 0.408 \text{ (shale)} - 0.104 \text{ (carbonate)} + 0.746 \text{ (evaporite)} \] (45)
The canonical variate for the polynomial was
\[V = -0.407 X - 0.914 Y + 0.002 X^2 - 0.001 XY - 0.001 Y^2 \] (46)

The canonical trend, equation (45), mainly indicates the variations in thickness of evaporite, sand and shale.

The second canonical root of the third order canonical trend surface is equal to 0.8676. The associated canonical variates are as follows:
\[U = 0.757 \text{(sand)} - 0.111 \text{(shale)} + 0.617 \text{(carbonate)} - 0.185 \text{(evaporite)} \] (47)
and
\[V = 0.183 X - 0.983 Y - 0.001 X^2 + 0.001 XY - 0.002 Y^2 \] (48)

The canonical trend, Figure 5A, and equation (48), mainly summarizes the variations in the thickness of sand and carbonates.

This figure shows that the sand and carbonate have a maximum thickness located around the southeast of Colorado.

A quadratic polynomial was fitted to these four variates. The canonical variates were
\[U = 0.575 \text{(sand)} + 0.425 \text{(shale)} + 0.154 \text{(carbonate)} + 0.632 \text{(evaporite)} \] (49)
\[V = 0.357 X - 0.934 Y - 0.001 X^2 - 0.001 Y^2 \] (50)

Judging from figure 5B and equation (50), it is concluded that sand, shale, carbonate, and evaporites thicken toward the southwest corner of Kansas. It is interesting to compare this canonical trend surface with net thickness maps of the same data. The general trend of the net thickness maps of sand (Fig. 6A), shale (Fig. 6B) carbonate (Fig. 6C), and evaporite (Fig. 6D) display patterns analogous to that
shown by the canonical trend surface. Figure 5A displays a trend pattern very similar to the thickness of the carbonate and sand, whereas Figure 5B displays a trend pattern almost identical with the thickness of the evaporites and shale. Figure 5B fails to show the maximum thickness of the sand in the northwest part of Colorado, but it indicates that the sand thickens toward the southwest of Kansas and thins toward the northeast of Kansas and the southwest of Colorado, respectively. The area having maximum thickness of carbonate and the thinning directions of the carbonates were also shown by Figure 5B.

Smaller canonical roots show different linear combinations of the four variates. These linear combinations are contradictory to the first two. It is generally true that the first or first two canonical roots have a higher probability of approximating real trends, while the interpretation of the smaller canonical roots may be obscured by local variation ("noise"). Thus, the other combinations are not discussed.

The second set of the three variates, namely, total thickness, sand/shale ratio, and carbonate/evaporite ratio were analyzed in the same way. The record of evaluation of the trend surface is listed in table 3.
TABLE 3

RECORD OF THE SUCCESSIVE EVALUATION OF THE ORDER OF POLYNOMIAL FOR THREE VARIATES

<table>
<thead>
<tr>
<th>Canonical root</th>
<th>Order of Polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7829</td>
<td>Linear</td>
</tr>
<tr>
<td>0.9189</td>
<td>Quadratic</td>
</tr>
<tr>
<td>0.9612</td>
<td>Cubic</td>
</tr>
</tbody>
</table>

The maximum canonical root obtained is equal to 0.9612 indicating that a cubic polynomial is an adequate fitting surface. The canonical variate for the geological variate is that

\[U = 0.803 \text{ (total thickness)} - 0.254 \text{ (sand/shale)} - 0.539 \text{ (carbonate/evaporite)} \] \hspace{1cm} (51)

The canonical variate for the polynomial is that

\[V = -0.335X + 0.843Y + 0.233X^2 - 0.088XY + 0.335Y^2 - 0.026X^3 + 0.018X^2Y + 0.009XY^2 + 0.041Y^3 \] \hspace{1cm} (52)

The negative sign for the ratio indicates that the high values in the map should be the low value for the ratios. Figure 7A shows that the total thickness increases toward the most westsouthern part of Kansas, whereas the sand/shale ratio and carbonate/evaporite ratio decrease toward the same area. The isopach map and the maps of two ratios (Krumbein, 1962) were also plotted for comparison (Figs. 7B, 7C, and 7D). It is also worthwhile to note how the canonical trend fits closely to the total thickness and slightly to the carbonate/evaporite and sand/shale ratios.
The smaller canonical roots also yield contradictory combinations to the first one. They are discarded here.

The question is whether it possible to detect a gross trend representing variations of all or most of variates. The canonical trends (Figs. 5 and 7A) answer this question at least to the first approximation and also establish the hypothesis we expected before carrying out the analysis.

Judging from the nature of change of all the variates and their similarity in gross trend pattern to the two canonical trend surfaces, it was concluded that there was shelf sedimentation adjacent to an evaporite basin in southwest Kansas during Upper Permian time.

The essential approach to the interpretation of canonical trend surface is to visualize the geological implications of the variations of all or most of the variates being displayed realistically in a single map. The merit of a canonical trend surface is to evaluate a common trend to a set of variates and to condense a set of maps showing areal distributions of geological variates from a single population. Its maximum correlation property yields a high fidelity between the population response surface and the sample response surface.
Figure 5 - Permian system of Western Kansas and Eastern Colorado. A. Third order canonical trend associated with second canonical root showing variations in thickness of the sand and the carbonate. B. Second order canonical trend associated with first canonical root showing variations in thickness of the evaporites, the sand, and the shale.
Figure 6 - Permian system of Western Kansas and Eastern Colorado.

Net thickness maps of the sand, the shale, the carbonate, and the evaporite. (Data after Krumbein, 1962; redrawn by the present writer).
Figure 7 - Permian system of Western Kansas and Eastern Colorado.

A. Canonical trend surface for the total thickness, the sand/shale ratio, and the carbonate/evaporite ratio. Isonach map (right upper), sand/shale ratio map (left lower), and carbonate/evaporite ratio map (right lower). (Data after Krumbein, 1962; redrawn by the present writer).
CHAPTER 4
OTHER APPLICATIONS IN GEOLOGY

4.1 Relationships Between Two Sets of Variates

4.11 General Statement: Canonical correlation may be considered as a multivariate case of simple correlation. Suppose we have a set of p_1 predictor variates and a set of p_2 criterion variates for the same set of samples, then canonical correlation determines that linear function of the predictor variates and that of the criterion variates which gives the maximum correlation between these two sets.

Both canonical analysis and principal factor solution in factor analysis deal with linear functions. The most important difference between canonical and factor analysis is that in canonical analysis the criterion is external while in factor analysis the criterion is derived from the internal evidence of the variates. Thus, canonical analysis is called external factor analysis whereas conventional factor analysis is called internal factor analysis (Bartlett, 1948; Burt, 1948).

Canonical analysis or external factor analysis is a technique to reveal the maximum possible covariance between two sets of variates. We are not interested in the relations of the variates within either set itself, but in the relationship between the two sets. Internal factor analysis seeks underlying influence factors which explain maximum variance in any particular direction, but canonical analysis does not seek factors. Factor analysis expresses each variate in
terms of factors which are treated as independent variates, while canonical analysis expresses each canonical variate in terms of the geological variates which are treated as independent variates. Due to the difference between the two linear regression models similarity between the factor loadings and the coefficients of canonical variates is not to be expected. Comparisons of canonical correlation and factor analysis were made by Burt (1948) and Das (1965) by using psychological examples.

When we have two sets of variates relating to one set of samples, various statistical techniques may be adopted according to the nature of the problem discussed. We may, for example factorize the two sets together, or we may factorize each set independently, and try to correlate factors; or we may perform a canonical correlation analysis between the two sets of variate in order to yield a maximum correlation. The largest canonical root has the best chance of demonstrating the existence of a relation between the two sets if one actually exists, but each canonical root will help to elucidate the nature of a particular relation, which cannot be explained fully by any other canonical root.

In geology, a typical experimental design may be made to observe several variates on a set of rock specimens. For example, in a recent sediment study one set of variates may be the abundances of various kinds of animals or plants, while the other set of variates may be the physico-chemical parameters of the depositional environments, and the size parameters of the sediments which contain the animals.
The nature of the relations between the two sets of variates may be explained by some of the canonical roots between the two sets. There is a number of analogous problems such as correlations between modal and chemical analysis, between major and trace elements, between trace elements and clay minerals, between textural parameters (size, roundness, sphericity and so on) and composition parameters (mineral composition). These problems may be untangled by using Hotelling's idea to a certain extent. The following numerical example is given to demonstrate the usefulness of this mathematical model.

4.12 Recent Sediment from Puttonwood Sound: Recent sediment samples were collected from 19 stations located in Buttonwood Sound, Florida Bay by Lynns (1966). Three samples of size 19 were taken on August 14th, 17th, and 20th, 1962 respectively. A sample of size 16 was taken on February 9th, 1963. For each location, the following environmental parameters of the sediment-water interface were measured: depth of water, temperature, salinity, pH, and Eh. The sand, silt, and clay fractions were analyzed from each sample. The dominant element of microflora in the Sound was grasses, in particular, turtle grass. The distribution of turtle grass was mapped by using three grades, namely: very dense, dense-moderate, and patchy. The abundance of the turtle grass was coded by the present writer as follows: very dense---1; dense-moderate--0; patchy-- -1.

The problem here is to determine to what extent the environmental factors, namely: depth, temperature, salinity, pH and abundance of turtle grass are related to the size parameters of sediments. The
four samples were considered as a single sample of size 73, because the turtle grass map is not specified to any one of the four sampling dates.

Looking at the simple correlation coefficients of all possible pairs of the seven variates (table 4), one may conclude that the turtle grass is positively related to silt and also negatively related to sand. The simple correlation coefficients between the sediments and the depth, temperature, salinity, and pH are very small.

TABLE 4

'SIMPLE CORRELATION COEFFICIENTS OF SEDIMENTS FROM BUTTONWOOD SOUND'

<table>
<thead>
<tr>
<th></th>
<th>Turtle grass</th>
<th>Depth</th>
<th>Temperature</th>
<th>Salinity</th>
<th>pH</th>
<th>Sand</th>
<th>Silt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtle grass</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>-0.061</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>0.091</td>
<td>-0.059</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salinity</td>
<td>-0.085</td>
<td>0.086</td>
<td>-0.976</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>-0.194</td>
<td>0.242</td>
<td>0.122</td>
<td>-0.070</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>-0.665</td>
<td>0.073</td>
<td>-0.192</td>
<td>0.194</td>
<td>0.173</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td>0.458</td>
<td>0.084</td>
<td>0.015</td>
<td>0.001</td>
<td>-0.139</td>
<td>-0.602</td>
<td></td>
</tr>
</tbody>
</table>

A canonical analysis was performed on this set of data. The first canonical root is equal to 0.683 which is significant at the 1 percent level. The second canonical correlation (0.242) is not significant at the 5 percent level. This would suggest that in studying the relation between these two sets we can confine our attention to the first pair of canonical variates which is listed in
table 5.

It is clear that the distribution of sand is correlated closely with the abundance of turtle grass. Sands are more abundant in regions of less grass in Buttonwood Sound. Lynts (1966) obtained the same conclusion by comparison of turtle grass map with sediment-size distribution map. In addition to confirming this conclusion, canonical correlation analysis also indicates that there is no relation between the abundance of sand and measured physical parameters other than turtle grass.

| TABLE 5 |
| CANONICAL VARIATES FOR SEDIMENTS FROM BUTTONWOOD SOUND |

<table>
<thead>
<tr>
<th>Environmental factor</th>
<th>Sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtle grass</td>
<td>Sand</td>
</tr>
<tr>
<td>Depth</td>
<td>Silt</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Salinity</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
</tbody>
</table>

The variate, sand, was discarded, then canonical correlation analysis was performed on the same data. The canonical root is 0.483, its associated canonical variate for the environmental factors is as follows:

\[V = 0.70 \text{(turtle grass)} + 0.19 \text{(depth)} + 0.47 \text{(temperature)} + 0.49 \text{(salinity)} - 0.15 \text{(pH)} \] (1)
Equation (1) suggests that the silt is also moderately correlated with turtle grass and weakly to other parameters. The canonical root is significant at 1 percent level, but it gives a result contradictory to the principal component analysis which will be discussed later.

It is concluded from the canonical correlation analysis that

1. The abundance of sand is a better predictor of turtle grass than that of silt; but if the variate, sand is not used then the variate silt would give a less satisfactory result.

2. If the variate, clay, is inserted, the result may be a completely different linear function of environmental factors to predict clay or silt or sand or some combination of them.

Principal component analysis was also performed on the correlation matrix of the same set of data. The rotated and normalized eigenvectors of the last eigenvalue are practically zero. The eigenvectors of the sixth eigenvalues indicates the same relationship on sand, silt and turtle grass as that of the first eigenvalues. The analysis was repeated again and only the first five eigenvectors were orthogonally rotated. The result of the second run is listed in table 6.

The coefficients of the first component are highly loaded with turtle grass and sand, with coefficients of opposite sign. This shows that the first canonical variate is very similar to the first component obtained by an ordinary principal component analysis. This component is interpreted as a factor of sediment stabilizer, as Ginsburg and Lowenstam (1958) pointed out that a dense growth of grass may produce a layer of semi-motionless water over the bottom which traps fine
sediments. Actually these two variates are mutually dependent. The factor pattern (table 6) fails to show the relationship of equation (1). A more detailed discussion of the result of this factor analysis is given by Lee (1967).

TABLE 6

ROTATED AND NORMALIZED FIVE PRINCIPAL COMPONENTS FOR SEDIMENT FROM BUTTONWOOD SOUND

<table>
<thead>
<tr>
<th>Component Variate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtle grass</td>
<td>0.98</td>
<td>0.03</td>
<td>-0.01</td>
<td>0.09</td>
<td>-0.16</td>
</tr>
<tr>
<td>Sand</td>
<td>-0.80</td>
<td>-0.18</td>
<td>0.08</td>
<td>-0.08</td>
<td>0.57</td>
</tr>
<tr>
<td>Temperature</td>
<td>0.06</td>
<td>1.00</td>
<td>-0.02</td>
<td>-0.07</td>
<td>-0.02</td>
</tr>
<tr>
<td>Salinity</td>
<td>-0.06</td>
<td>-1.00</td>
<td>0.04</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Depth</td>
<td>-0.04</td>
<td>-0.05</td>
<td>0.99</td>
<td>-0.12</td>
<td>-0.04</td>
</tr>
<tr>
<td>Silt</td>
<td>0.30</td>
<td>-0.02</td>
<td>0.07</td>
<td>0.06</td>
<td>-0.95</td>
</tr>
<tr>
<td>pH</td>
<td>-0.11</td>
<td>0.07</td>
<td>0.13</td>
<td>-0.98</td>
<td>0.06</td>
</tr>
<tr>
<td>Eigenvalue</td>
<td>2.362</td>
<td>1.902</td>
<td>1.208</td>
<td>0.705</td>
<td>0.518</td>
</tr>
<tr>
<td>Cumulative Percentage</td>
<td>33.74</td>
<td>60.91</td>
<td>78.17</td>
<td>88.24</td>
<td>95.64</td>
</tr>
</tbody>
</table>

Canonical correlation gave the result that the only significant correlation between the sediment and environment variates was between sand and turtle grass. Inspection of components 2-5 confirms this
conclusion, since the only relationships revealed are those between environmental variates (components 2-4) or between sediment variates (component 5).

In this particular case, the loadings on first component (table 6) and the coefficients of the canonical variate (table 5) are very similar in magnitude and in sign. In this example, the principal factor solution in factor analysis has revealed more extensive information, and is likely to be a powerful tool for displaying the internal relations of a set of measures. On the other hand, when the purpose is to investigate the relations between two sets of variates, or for prediction in many dependent variates problems, the technique of canonical correlation is more appropriate.

4.2 Matching Two Factor Patterns

4.2.1 General Statement: Suppose a separate factor analysis has been conducted for a rock body at different geographic localities or different stratigraphic sections. It may be that the factor patterns obtained at the various localities appear quite different but that canonical transformations exist such that at least some of the factors in one set may be found to correspond closely to factors in the other set. In this case, the number of samples, N, is equal to number of variates, p, the number of factors for one set, and p the number of factors for another set. Thus, the sum of p and p, in general, is greater than the value of N. In this application, the technique is used to determine to what extent the two factor patterns represent the same set of underlying factors. The technique has been generalized
form m sets of variates or m factor patterns by Horst (1961, 1961a) to find m canonical transformations which will yield new patterns having maximum similarity.

4.22 Factor patterns of sediment from Buttonwood Sound: Two samples of size 19 and 16 were taken from Buttonwood Sound, Florida Bay (Lynts, 1966) in 14 August, 1962 and 9 February, 1963, respectively. Factor analysis was performed separately on these two sets of data. The factor patterns are listed in table 7.

The problem is to determine to what extent the two factor patterns are similar. Canonical analysis was carried out on the two patterns. In this case, $p_1 = 7$, $p_2 = 7$, $N = 8$ (number of variates). The result is that seven canonical roots are unity. All of them are significant at the 1 percent level. Their associated canonical variates are listed in table 8.

Judging from table 8, it is concluded as follows:

(1) Factor F9-1 is negatively related to factor F14-1, because they have an opposite sign in their original factor patterns.
(2) F9-2 is negatively related to F14-3 and partly to F14-1.
(3) F9-3 is related to F14-2.
(4) F9-4 is negatively related to F14-6.
(5) F9-5 is negatively related to F14-5.
(6) F9-6 is related to F14-4. The analysis shows that these two factor patterns represent the same set of underlying factors, although these two sets of samples were collected at different times.
Table 7

Factor Patterns for Sediments from Buttonwood Sound

Factor Pattern for Samples Collected in 14 August, 1962

<table>
<thead>
<tr>
<th>Factor Variate</th>
<th>F14-1</th>
<th>F14-2</th>
<th>F14-3</th>
<th>F14-4</th>
<th>F14-5</th>
<th>F14-6</th>
<th>F14-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>0.95</td>
<td>-0.07</td>
<td>0.19</td>
<td>0.11</td>
<td>-0.12</td>
<td>-0.01</td>
<td>-0.18</td>
</tr>
<tr>
<td>Turtle grass</td>
<td>-0.54</td>
<td>-0.14</td>
<td>-0.16</td>
<td>-0.22</td>
<td>0.25</td>
<td>0.00</td>
<td>0.74</td>
</tr>
<tr>
<td>Silt</td>
<td>-0.90</td>
<td>-0.02</td>
<td>0.39</td>
<td>-0.08</td>
<td>0.05</td>
<td>-0.09</td>
<td>9.11</td>
</tr>
<tr>
<td>Depth</td>
<td>-0.05</td>
<td>-0.23</td>
<td>0.18</td>
<td>-0.15</td>
<td>-0.09</td>
<td>-0.94</td>
<td>-0.06</td>
</tr>
<tr>
<td>pH</td>
<td>0.02</td>
<td>-0.95</td>
<td>0.14</td>
<td>-0.09</td>
<td>0.09</td>
<td>-0.22</td>
<td>0.07</td>
</tr>
<tr>
<td>Clay</td>
<td>0.05</td>
<td>0.14</td>
<td>-0.96</td>
<td>-0.03</td>
<td>0.09</td>
<td>0.17</td>
<td>0.10</td>
</tr>
<tr>
<td>Temperature</td>
<td>-0.14</td>
<td>-0.08</td>
<td>-0.02</td>
<td>-0.97</td>
<td>-0.01</td>
<td>-0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>Salinity</td>
<td>0.13</td>
<td>-0.08</td>
<td>0.08</td>
<td>-0.01</td>
<td>-0.97</td>
<td>-0.08</td>
<td>-0.12</td>
</tr>
</tbody>
</table>

| Eigenvalue | 2.733 | 1.905 | 1.154 | 0.998 | 0.539 | 0.449 | 0.221 |
| Cumulative percentage | 34.16 | 57.98 | 72.41 | 84.89 | 91.63 | 97.24 | 100.00 |

Factor Pattern for Samples Collected in 9 February, 1963

<table>
<thead>
<tr>
<th>Factor Variate</th>
<th>F9-1</th>
<th>F9-2</th>
<th>F9-3</th>
<th>F9-4</th>
<th>F9-5</th>
<th>F9-6</th>
<th>F9-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silt</td>
<td>0.95</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>-0.17</td>
<td>-0.22</td>
<td>0.10</td>
</tr>
<tr>
<td>Sand</td>
<td>-0.75</td>
<td>-0.60</td>
<td>-0.10</td>
<td>0.08</td>
<td>0.19</td>
<td>0.07</td>
<td>-0.15</td>
</tr>
<tr>
<td>Clay</td>
<td>0.08</td>
<td>0.95</td>
<td>0.16</td>
<td>-0.17</td>
<td>-0.10</td>
<td>-0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>Turtle grass</td>
<td>0.42</td>
<td>0.45</td>
<td>0.16</td>
<td>0.00</td>
<td>-0.35</td>
<td>-0.25</td>
<td>0.64</td>
</tr>
</tbody>
</table>
Table 7

Factor pattern for samples collected in 9 February, 1963 - (continued)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Variate</th>
<th>F9-1</th>
<th>F9-2</th>
<th>F9-3</th>
<th>F9-4</th>
<th>F9-5</th>
<th>F9-6</th>
<th>F9-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td></td>
<td>0.01</td>
<td>-0.15</td>
<td>-0.09</td>
<td>0.97</td>
<td>0.11</td>
<td>-0.10</td>
<td>-0.00</td>
</tr>
<tr>
<td>Salinity</td>
<td></td>
<td>-0.23</td>
<td>-0.14</td>
<td>-0.06</td>
<td>0.15</td>
<td>0.91</td>
<td>0.23</td>
<td>-0.13</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>-0.03</td>
<td>-0.16</td>
<td>-0.97</td>
<td>0.09</td>
<td>0.06</td>
<td>0.12</td>
<td>-0.06</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td>0.24</td>
<td>-0.11</td>
<td>0.15</td>
<td>0.13</td>
<td>-0.24</td>
<td>-0.91</td>
<td>-0.10</td>
</tr>
<tr>
<td>Eigenvalue</td>
<td></td>
<td>3.545</td>
<td>1.631</td>
<td>0.996</td>
<td>0.825</td>
<td>0.556</td>
<td>0.276</td>
<td>0.170</td>
</tr>
<tr>
<td>Cumulative</td>
<td></td>
<td>44.32</td>
<td>64.71</td>
<td>77.16</td>
<td>87.47</td>
<td>94.42</td>
<td>97.87</td>
<td>100.00</td>
</tr>
</tbody>
</table>

TABLE 8

CANONICAL VARIATES FOR TWO FACTOR PATTERNS

<table>
<thead>
<tr>
<th>Variate</th>
<th>Factor</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F9-1</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>F9-2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>F9-3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>F9-4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>F9-5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>F9-6</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>F9-7</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

cont'd
Table 8
Canonical variates for two factor patterns - (continued)

<table>
<thead>
<tr>
<th>Variate</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>F14-1</td>
<td>-0.01</td>
<td>0.02</td>
<td>-0.95</td>
<td>0.13</td>
<td>0.09</td>
<td>0.09</td>
<td>-0.43</td>
</tr>
<tr>
<td>F14-2</td>
<td>-0.29</td>
<td>0.21</td>
<td>0.03</td>
<td>0.16</td>
<td>0.93</td>
<td>-0.18</td>
<td>0.01</td>
</tr>
<tr>
<td>F14-3</td>
<td>-0.32</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td>-0.07</td>
<td>-0.86</td>
</tr>
<tr>
<td>F14-4</td>
<td>0.84</td>
<td>-0.01</td>
<td>-0.04</td>
<td>0.01</td>
<td>-0.16</td>
<td>0.21</td>
<td>0.16</td>
</tr>
<tr>
<td>F14-5</td>
<td>-0.33</td>
<td>0.09</td>
<td>0.20</td>
<td>-0.05</td>
<td>0.13</td>
<td>-0.95</td>
<td>-0.00</td>
</tr>
<tr>
<td>F14-6</td>
<td>-0.02</td>
<td>-0.04</td>
<td>0.09</td>
<td>-0.97</td>
<td>-0.13</td>
<td>-0.05</td>
<td>-0.03</td>
</tr>
<tr>
<td>F14-7</td>
<td>-0.02</td>
<td>0.97</td>
<td>-0.20</td>
<td>0.10</td>
<td>0.26</td>
<td>-0.04</td>
<td>0.09</td>
</tr>
</tbody>
</table>

4.3 Q-Technique Canonical Correlation

4.31 General statement: Q-technique canonical correlation is used for dealing with sample space. Suppose we have two sets of samples collected from different groups (such as localities, or different formations), the problem is to determine to what extent these two sets of samples are similar, based on observable variates. In this case, \(p_1 \) is the number of samples in one set, \(p_2 \) number of samples in another one, and \(N \) is the number of variates. The canonical root provides an index of the degree of similarity between the two groups of samples.

It must be noted, however, that canonical root indicates the maximum degree of similarity between the groups, and not the average degree of similarity. If there happen to be two closely similar individuals, one in each group, the canonical root will be very high even though the
majority of the samples in the two groups differ considerably. There is no statistical criterion for testing the coefficients of the canonical variates. Thus, the coefficients must be carefully examined. If the coefficients are "approximately" equal, this implies that the degree of similarity (the canonical root) is more or less reliable. On the other hand, if the coefficients are large in one or two samples, this indicates that these two groups may or may not be generally similar, even though the canonical root is high. On the other hand, if the canonical root is low for two groups, this strongly suggests that these two groups are quite different.

The Q-technique canonical root presents the same problem as in Q-technique factor analysis. The different variates may be measured in quite different units, and correlation of a pair of samples over N values of noncomparable units does not, in general, make sense. This difficulty cannot be overcome by standardization. Kendall (1966) suggested removing this difficulty by working with rank correlation, for example, presence of a variate is coded by 1, absence is coded by -1; or "rare", "common", and "abundant" are coded by using -1, 0, and 1, respectively.

4.32 Ordovician and Silurian Sediments: Two specimens of shale from each of four formations exposed in the Niagara escarpment, Ontario were analyzed for both major elements and trace elements (Cr, Mn, Ga, V, Ni, Ti, Zr, Sr, and Ba expressed in terms of ppm) (Candy, 1963). The formations were the Silurian Cabot Head (gray and green shale), Grimsby (red shale), and Thorold (gray and green shale), and the Ordovician Queenston (red
and green shale). The Q-technique canonical correlation matrix based on the trace elements is listed in table 9.

TABLE 9

CANONICAL CORRELATION MATRIX FOR THE FOUR FORMATIONS FROM ONTARIO

<table>
<thead>
<tr>
<th></th>
<th>Thorold</th>
<th>Grimsby</th>
<th>Cabot Head</th>
<th>Queenston</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorold</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grimsby</td>
<td>0.954</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabot Head</td>
<td>0.996</td>
<td>0.977</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Queenston</td>
<td>0.940</td>
<td>0.886*</td>
<td>0.829*</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: * not significant at 1 percent level.

Table 9 suggested that there is a clear geochemical distinction between the Ordovician Queenston shale and Silurian shales. This canonical correlation matrix also indicates that the Silurian shales are closely similar. Unfortunately, the coefficients of the canonical variates for the Grimsby formation are not approximately equal for all samples, the same is with the Thorold formation. Thus, the latter conclusion is still doubtful. The canonical variates of the Thorold and Grimsby formations, for example, are

\[U = 0.98 \text{ (Grimsby sample 1)} - 0.13 \text{ (Grimsby sample 2)} \] \hfill (2)

\[V = -0.15 \text{ (Thorold sample 1)} + 0.99 \text{ (Thorold sample 2)} \] \hfill (3)

The simple correlation coefficients between samples of the Grimsby and of the Thorold formation are positive. Thus, the opposite sign in the linear functions \(U \) and \(V \) would imply that these shale samples cannot be simply amalgamated in such a linear form.
The advantage of this technique is that it does not require a large sample size for each group. There is an elegant way to approach the same problem, and this will be discussed in the following section.

4.4 Discriminatory Analysis by Canonical Variates

4.41 General statement: Testing similarity of k groups can be carried out through canonical correlation analysis (Bartlett, 1938a, 1947, 1965). Suppose a discriminant function is defined as

\[Y = A' Z \]

(4)

where A is p x 1 matrix to be determined, Z is p x 1 variate matrix, then the analysis of variance of Y is

\[
\begin{align*}
\text{Between groups} & : A' B A \\
\text{Within groups} & : A' W A \\
\text{Total} & : A' T A
\end{align*}
\]

where B, is the matrix of sums of squares and products 'between' the k groups, and W for the corresponding pooled 'within' matrix, and T for the corresponding 'total' matrix.

In order to make the variable Y as effective as possible in discriminating between these two groups, the ratio

\[R^2 = \frac{A' B A}{A' T A} \]

(5)

should be as large as possible. The solution to this problem may be obtained through canonical correlation analysis, that by solving the set of linear equations as

\[(B - R^2 T)A = 0 \]

(6)
where \(R^2 \)'s are latent roots of the equation
\[
|B - R^2 T| = 0 \quad (7)
\]
Seal (1964, p. 127-144) used the following matrix equation instead of (7),
\[
|B - R^2 (B + W)| = 0 \quad (8)
or
|B - \lambda^2 W| = 0 \quad (9)
\]
where \(\lambda^2 = R^2 / (1 - R^2) \).
The \(\lambda^2 \)'s are the eigenvalues of the nonsymmetrical matrix \(W^{-1} \), and their normalized eigenvectors will be the columns of matrix \(A \).

This means that the first transformed axis passes through the direction of the greatest variability 'between' the \(k \) means; then the second axis, at right angles to the first; passes in the direction of the next greatest variability and so on. This is essentially the case of several populations in discriminant analysis (Wilks, 1963, p. 576-581).

Equation (4) may be generalized for more than two groups, say \(k \) groups. In this case, \(Y \) is \(m \times 1 \) matrix, \(A \) is \(m \times p \) matrix, \(Z \) is \(p \times 1 \) matrix, where \(m \) is the number of non-zero eigenvalues of equation (9), \(m = p \), if \(p \leq k - 1 \), \(m = k - 1 \), if \(p > k - 1 \). Thus, if \(k = 2 \), equation (4) is known as the discriminant function. A new observation vector \(Z \) may be inserted into this function, and the unknowns will be allocated to one or other of the two groups depending on whether the value of \(Y \) is positive or negative, respectively. The set of linear equation (4) may be used for classification. After substituting each observation \(Z \) into the equation (4), we will have m
coordinates on the m-dimensional canonical axes for each observation. Finally, the canonical coordinates will display the m-dimensional relationship of all observations. If we emphasize the differences between the means of the k groups, the vector \(Z \) is replaced by a mean vector \(\bar{Z} \). The canonical coordinates of the mean of each group will be obtained by placing the mean values of each variate in \(\bar{Z} \).

Bartlett's test (1947) of significance of canonical roots is that

\[
\chi^2 = \{(N - 1) - 0.5(p + k)\} \ln \Lambda
\]

where \(\Lambda = \prod_{j=i+1}^{m} (1 + \lambda_j^2) \), \(p \) = number of variates, \(k \) = number of groups, and \(\lambda_i^{+1} = \lambda_i^{+2} = \ldots = \lambda_m = 0 \) is approximately chi-square variate with \((p - i)(k - i - 1)\) degrees of freedom when \(\lambda_i^{+1} = \lambda_i^{+2} = \ldots = \lambda_m = 0 \).

The assumptions are that (1) the variance-covariance matrix of \(p \)-variate groups are supposed equal (the classification of two multivariate distributions with different covariance matrices was discussed by Anderson and Bahadur (1962)), (2) the unknown samples which are to be discriminated belong to one, and only one, of the groups and that the probabilities that the unknown sample belongs to any group are equal.

This technique has the great advantage that the \(p \) variates may be different types of measurements if all the variates are standardized. On the other hand, the disadvantage is that if \(p \) is large, and \(k = 2 \), the comparison between the two groups is contained in a straight line, because we only have one canonical root.

Suppose we have measured \(p \) variates on \(N_j \) samples of a given rock type (or fossil types) \((j = 1, 2, \ldots, k)\); \(\sum N_j = N \), where these
variates may be measured in any one of nominal, ordinal, interval, or ratio scales, then canonical correlation analysis is the most reasonable procedure to discriminate between these k rock types (or fossil types) and to discover their underlying affinities. Canonical correlation analysis may be replaced by Q-technique principal component analysis if the following conditions are satisfied (Seal, 1964, p. 171-172): (1) the measured variates are uncorrelated, this would be done through a principal component analysis on each rock type, and (2) the corresponding diagonal elements of covariance matrices of "between rock type" and "within rock type" are equal. These are severe restrictions. The proper uses of factor analysis, canonical analysis, and principal component analysis have been discussed thoroughly in the recent literatures (Bartlett, 1948, Eysenck, 1952; Lindley, 1962, 1964; Rao, 1964; Cattell, 1965, 1965a; Gower, 1966, 1967). Seal (1964, p. 171) summarized the different purposes of these techniques as follows:

"(1) Principal component analysis is intended to achieve a parsimonious summarization of a random sample from a single universe of multivariate Normal measurements;

(2) Canonical analysis is a procedure of discriminating as clearly as possible between two or more multivariate Normal universes with the same variance-covariance matrix; and

(3) Factor analysis is an attempt to elicit the underlying Normal multivariate structure of a universe that can be sampled with respect to many correlated variates."
4.42 Ordovician limestones from Colborne quarry: The upper part of
the Middle Ordovician Cobourg limestone was sampled at Colborne Quarry,
Ontario (Lee, 1965). Three samples of size 73, 22, and 29 were collected
from three stratigraphic sections, A, B, and C, respectively. The
percentages of limestone variates, namely; matrix, sparry calcite,
brachiopod shells, echinoderm fragments, trilobite fragments, bryozoa
fragments, and ostracod shells were estimated from peel prints. Two
peel prints were counted in order to make replicates for each sample.

One problem is whether or not these three stratigraphic sections
are different, based on the seven limestone variates. The raw data were
analyzed through canonical correlation analysis. The largest two
canonical roots are equal to 0.426 and 0.320, respectively, which are
significant at 5 percent level; whereas the last three roots are not
significant at the same level. According to the canonical coordinates,
sections A and C are slightly different from section B when based on the
seven limestone variates (table 10). The individuals of the three
sections are displayed on canonical coordinates (Fig. 8).

Another problem is whether or not these three stratigraphic
sections are different, based only on brachiopod shells. The canonical
coordinates indicate that sections A and C are very similar, while
section B is different from the other two sections even though the
canonical root (0.140) is not significant at the 5 percent level. The
last conclusion is confirmed by the result obtained by using one-way
analysis of variance and t-test (Lee, 1965; Lee and Winder, 1967).
TABLE 10

CANONICAL COORDINATES OF LIMESTONES FROM COLBORNE QUARRY, ONTARIO

<table>
<thead>
<tr>
<th>Section no.</th>
<th>Based on 7 variates</th>
<th>Based on brachiopod shells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Canonical axis</td>
<td>Canonical axis</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Section A 1</td>
<td>39.238</td>
<td>7.516</td>
</tr>
<tr>
<td>Section A 2</td>
<td>38.488</td>
<td>7.396</td>
</tr>
<tr>
<td>Section B 1</td>
<td>38.400</td>
<td>7.786</td>
</tr>
<tr>
<td>Section B 2</td>
<td>37.975</td>
<td>7.565</td>
</tr>
<tr>
<td>Section C 1</td>
<td>38.406</td>
<td>7.531</td>
</tr>
<tr>
<td>Section C 2</td>
<td>38.212</td>
<td>7.450</td>
</tr>
</tbody>
</table>

| Canonical root | 0.426 | 0.320 | 0.140 |

Buzas (1966) applied the same principle to test the differences among the groups of *Elphidium* from Long Island Sound based on morphological characters.

The Nigerian Upper Cretaceous and Lower Tertiary ostracoda were analyzed through canonical correlation analysis by Reyment (1966). This technique elegantly quantifies means of k groups, or all individuals, on the canonical coordinates according to their underlying affinities, whereas the multivariate analysis of variance and generalized T^2-statistic show only the significance levels for difference between the groups.
Figure 8 - Ordovician limestone specimens from Colborne Quarry (dot: section A; square: section B; and circle: section C) are shown on a canonical coordinates based on first two canonical variates. Mean values of all sections are shown in the upper right corner.
CHAPTER 5
CONCLUSIONS

The merit of canonical trend surface analysis is that it is a parsimonious summarization of a set of geographic variations of geological variates. The canonical trend surface has the elegant property of maximum correlation between geological variates and geographic coordinates. The succinct trend obtained does not show the absolute value of each variate, but it does indicate the nature of the variation for each variate. The linear function associated with the largest canonical root has highest probability of showing the true variations. The linear functions associated with smaller canonical roots explain other changes which cannot be summarized into the first linear function.

Examination of the canonical trend for a set of variates frequently leads to an understanding of the intrinsic trend, common to several variates, that would be difficult or impossible to obtain by other means.

The relation between two sets of variates may be untangled to a certain extent through canonical correlation analysis. The technique should have applications in prediction and exploratory studies.

The technique for matching two factor patterns is very interesting in some cases. It can help the investigator to visualize the variation of factors from place to place. Similar results may be obtained by examination of the factor loadings on particular variates, but canonical correlation provides more precise information and more rapidly.
The Q-technique canonical correlation analysis is applicable to samples of small size. In the case of samples of large size, the method -- where individuals are displayed on canonical coordinates through canonical correlation analysis -- has a strong mathematical rationale.

The use of canonical analysis as a procedure of discriminating between two populations is restricted by the assumption that the populations have the same covariance matrix. It has the advantage that variates may be different types of measurements because changing the scale of any one of them does not affect the results. Furthermore, experience from solving practical problems suggests that the number of dimensions required for a comparison of groups will generally be less than the number required by principal component analysis (Seal, 1964, p.123).

Principal factor analysis explains the maximum variance of a single sample whereas canonical factor analysis (Rao, 1955) yields factors which have maximum correlations between the observable variates. This result is the same as Lawley's (1940; Lawley and Maxwell, 1963) maximum-likelihood solution. Its application in geology has not yet been studied.

The use of canonical correlation analysis in multiple regression analysis is quite interesting. In this case, the number of variates in one set is equal to one (the dependent variable). The canonical root is identical with the multiple correlation coefficient, but the weights for each variate in the linear function may be different in these two approaches. To date, there has been no discussions on this topic from the geological point of view.
Another possible use of the canonical correlation analysis in geology is to differentiate sedimentary environments when based on grain size distribution. One set of variates would consist of the sedimentary environments such as beach, dune, lagoon, river and so on, the second set of variates would contain only one variate, the unknown individual to be determined. The grain size parameters would be treated as observations. The canonical correlation would give a maximum correlation between the unknown and the known environments. The largest coefficient attached to the known environment would indicate the nature of the unknown. This technique would be able to identify an individual which came from mixed environments, for instance dune sand and beach sand. The coefficients would be approximately equal on these two variates or environments.

The concept of two-dimensional canonical trend can easily be generalized into three-dimensional canonical trend, but it will need a large computer storage to handle the computation process.

Canonical and factor analysis are appropriate tools for geological data, but there are some disadvantages. Unfortunately, the existing tests of statistical significance do not in some cases help to make a reasonable decision. At the present time, the proper use of these methods is to generate hypotheses. Once a hypothesis has been created, the question should be whether or not it is interesting to conduct experiments to prove or disprove the hypothesis. One should not lean too much on the statistical tests of the number of factors or canonical roots, since these tests were derived from
specified assumptions which may not be reasonable in all cases. On the other hand, if there exists a hypothesis, obtained from experiments or experience, the use of this technique is to see whether or not the hypothesis can be confirmed by statistical analysis.

Canonical trend surface analysis represents a step toward the theoretical development of "geometrics". Its applications in geology open a promising field. More extensive studies on this field are desirable.
REFERENCES

BARTLETT, M. S., 1948, "Internal and External Factor Analysis", British Jour. Psychology (Stat. Section), V. 1, p. 73-81.

COOLEY, W. W. and LOHNES, P. R., 1962, "Multivariate Procedures for the

DAS, R. S., 1965, "An Application of Factor and Canonical Analysis to
Multivariate Data", British Jour. Math. Stat. Psychology,
V. 18, p. 57-67.

DUNTEMAN, G. H., 1967, "A Canonical Correlation Analysis of the Strong
Vocational Interest Blank and the Minnesota Multiphasic
Personality Inventory for a Female College Population",

EBERLEIN, P. J., 1962, "A Jacobi-like Method for the Automatic
Computation of Eigenvalues and Eigenvectors of an Arbitrary

V. 1, p. 45-49.

FORGOTSON, J. M., Jr., 1960, "Review and Classification of Quantitative

GINSBURG, R. N. and LOWENSTAM, H. A., 1958, "The Influence of Marine
Bottom Communities on the Depositional Environment of Sediments",

GOWER, J. C., 1966, "Some Distance Properties of Latent Root and Vector
Methods Used in Multivariate Analysis", Biometrika, V. 53,
p. 325-338.

APPENDIX I

FORTRAN IV PROGRAM FOR TWO-DIMENSIONAL CANONICAL TREND

6.1 Instructions for Using the Program

6.11 Input to Program

I Instruction card

(1) First 3 columns are reserved for punching the number of samples. The maximum sample size is 300.

(2) Columns 4 and 5 are for punching the number of variates to be analyzed. The maximum number of variates is 15.

(3) Columns 6 and 7 are for punching the number of variates to be read by the computer, it may or may not be the same as stated in (2) of I.

(4) Columns 8 and 9 are for punching the number of description cards (see IV).

(5) Column 10

Punch 1 Arc Sine transformation on the geological variate
Punch 2 Log transformation (base 10) on the geological variate
Punch 3 No transformation on the geological variate

(6) Column 11

Punch the order of the polynomial. The maximum order is 6. If the number 6 is punched on the column 11, the computer will stop computing the higher order polynomial (≤ 6) if the difference of two successive canonical correlations is less than 0.05.
(7) Columns 12-19
In general we use an arbitrary coordinate system for sample location. In order to have an actual scale for the map printed by the printer, the distance in feet which is equal to 1 unit in the arbitrary coordinate system is punched on columns 12-19. The input format is F8.0.

II Title Card
The project title and investigator's name are punched on one card (no more than 80 characters).

III Map Title card
The title for the trend surface is punched on one card.

IV Description card(s)
A brief description of the project is allowed. The maximum number of cards is 50, whereas the minimum number is 1.

V Variate name card(s)
Twelve characters are used for the names of each variate. They should be punched in the same order as in the data matrix. Six names are punched on one card, (i.e. eight columns are left at the end of each card).

VI Data Format card
This format is used for the input data cards. No more than 80 characters are allowed.

VII Data cards
The X-, Y-coordinates must be in the first two places and
are followed by the geological variate data.

The origin of the coordinate may be placed anywhere, but
the convention for the reference coordinate is the same
as the Cartesian coordinate system. The right hand side
of the X-axis is positive whereas the left hand side is
negative. The upper part of the Y-axis is positive,
whereas the lower part is negative. The maximum length
of the X-axis should be greater than or equal to that
of the Y-axis.

EACH SAMPLE HAS ITS OWN SEPARATE DATA CARD(S).
TWO OR MORE SAMPLES SHARING ONE DATA CARD IS NOT ALLOWED.

6.12 Output from Program

(1) Project title and investigator's name.
(2) Description of the project.
(3) Mean, and standard deviation of the geological variates.
(4) Covariance matrix for the geological variates.
(5) Record of successive evaluation of the degree of the
trend surface.
(6) Each canonical correlation has one set of the following
outputs.
 (i) The trend surface equation
 (ii) The observed, calculated, and residual values with X-,
 Y-coordinates.
 (iii) The contoured trend surface map with title and legend.
 (iv) The residual map.
6.2 Listing of the Program

THIS IS CANONICAL TREND SURFACE PROGRAM JULY 1966 P J LEE

DOUBLE PRECISION Q(903),R11(27,27),R22(15,15),R12(27,15),
1PRO(27,15),PR01(15,15),SUMSQ(42)
REAL IPOLY
DIMENSION E(27),D(99),SUM(42),DOT(10),N1(108),VEC(15,15),
1PRO(15,15),P(27),POLY(50,50),B(300),C(300),FMT(16),DM(300,17),
2TITLE(16),TITLE2(16),VARIAT(30),SOURCE(800),IPOLY(50,50),
3RESIDU(300),WORK(54),TERM(27),A(9,9),MAPPING(300,2),SIG130U)
EQUIVALENCE (Q,POLY,IPOLY),(SUM,R22),(SUMSQ,PR01,P),
1(TITLE,TITLE2),(R12,A)
DATA TERM/6H X 6H Y 6H X
1 X2Y 6H Y 6H Y 6H X2Y 6H X Y 6H X Y 6H X Y 6H Y4
2 6H X5 6H X4Y 6H X3Y 6H X2Y 6H X Y 6H X Y 6H X Y 6H X6
3 6H X5Y 6H X4Y2 6H X3Y3 6H X2Y2 6H X Y 6H X Y 6H Y6
READ(5,1) N,M,MV,NN,I1,NORDER,FEET
1 FORMAT(13,312,211,F8.0)
S=N READ(5,2) TITLE
2 FORMAT(16A5) WRITE(6,3) TITLE
3 FORMAT(1H1,20X,16A5//) READ(5,2) TITLE2
NU=NN*16 READ(5,4) (SOURCE(I),I=1,NU)
4 FORMAT(16A5) WRITE(6,5) (SOURCE(I),I=1,NU)
5 FORMAT(1H,25X,16A5) MU=M2 READ(5,6) (VARIAT(I),I=1,MU)
6 FORMAT(12A6) READ(5,7) FMT
7 FORMAT(16A5) XMAX=-100000.0 XMIN=100000.0
8 FORMAT(16A5) YMAX=-100000.0 YMIN=100000.0
9 FORMAT(16A5) M90=M+27 IM90=(27+M+1)*(27+M)/2
10 DO 20 I=1,M90 SUM(I)=0.0
11 20 SUMSQ(I)=0.0 DO 21 I=1,IM90,1
12 21 Q(I)=0.0 DO 131 ISAMPL=1,N
READ(5,FMT) X,Y,(D(J),J=1,MV)
GOTO (9,10,11), II
19 WRITE(6,12)
12 FORMAT(1HO,3OH WRONG CODE FOR TRANSFORMATION)
GOTO 100
9 DO 13 I=1,M
13 D(I)=AR SIN(D(I))
GOTO 11
10 DO 15 I=1,M
15 D(I)=AL O G10(D(I))
11 DO 16 J=1,M
16 DM(ISAMPL,J)=D(J)
DM(ISAMPL,M+1)=X
DM(ISAMPL,M+2)=Y
XMAX=AMAX1(X,XMAX)
YMAX=AMAX1(Y,YMAX)
XMIN=AMIN1(X,XMIN)
YMIN=AMIN1(Y,YMIN)
DO 130 I=1,M
SUM(I)=SUM(I)+D(I)
130 SUMSQ(I)=SUMSQ(I)+D(I)*D(I)
131 CONTINUE
DO 126 I=1,M
SUMSQ(I)=SQR T((S*SUMSQ(I)-(SUM(I))**2)/(S*(S-1.0)))
126 SUM(I)=SUM(I)/S
WRITE(6,96)
96 FORMAT(1H1,3OH MEAN,5X,19H STANDARD DEVIATION/)
DO 93 I=1,M
IV=2*I-1
IV1=IV+1
93 WRITE(6,95) ((VARIAT(J),J=IV,IV1),SUM(I),SUMSQ(I))
95 FORMAT(1HO,10X,2A6,5X,F10.3,7X,F12.3)
WRITE(6,106)
106 FORMAT(/ /)
DO 127 J=1,N
DO 127 I=1,M
127 DM(J,I)=(DM(J,I)-SUM(I))/SUMSQ(I)
DO 129 I=1,M
SUM(I)=0.0
129 SUMSQ(I)=0.0
DO 8 IS=1,N
DO 128 J=1,M
128 D(IS,J)=DM(IS,J)
X=DM(IS,M+1)
Y=DM(IS,M+2)
L=M
A(1,1)=1.0
DO 17 I=1,NORDER
DO 18 J=1,I
A(J,I+1)=A(J,I)*X
L = L + 1
18 D(L) = A(J, I, I + 1)
 A(I + 1, I + 1) = A(I, I) * Y
 L = L + 1
17 D(L) = A(I + 1, I + 1)
 DO 22 I = 1, M90
22 SUM(I) = SUM(I) + D(I)
 DO 8 I = 1, M90
 DO 8 J = I, M90
 L = (J - 1) * J / 2 + 1
 Q(L) = Q(L) + D(J) * D(I)
 8 CONTINUE
 DO 25 I = 1, M90
 DO 25 J = I, M90
 K = (J - 1) * J / 2 + 1
25 Q(K) = (S * Q(K) - SUM(I) * SUM(J)) / (S * (S - 1.0))
 J2 = 1
 J3 = J2 + 1
 WRITE(6, 102) N
102 FORMAT(1HO, 10X, 19H COVARIANCE MATRIX, 10X, 21H THE SAMPLE SIZE IS
 1, 13//)
 DO 103 J = 1, M
 K = 0
 DO 104 I = 1, J
 KK = J * (J - 1) / 2 + 1
 K = K + 1
104 E(K) = Q(KK)
 WRITE(6, 105) ((VARIAT(J1), J1 = J2, J3), (E(K1), K1 = 1, K))
105 FORMAT(1HO, 5X, 2A6, 15F7.3)
 J2 = J2 + 2
 J3 = J3 + 2
103 CONTINUE
 ROOT = 0.000
 ITERM = 0
 WRITE(6, 113)
113 FORMAT(1H1, 10X, 53H RECORD OF SUCCESSIVE EVALUATION TREND SURFACE D
 1EGREE///)
125 DO 27 NPORDER = 1, ORDER
 NPOWER = NPORDER
 ITERM = IPOWER + ITERM + 1
 IF(M.GT.ITERM) GOTO 37
 NL = ITERM
 NR = M
 DO 32 I = 1, NR
 DO 32 J = 1, NL
 K = (J + M - 1) * (J + M) / 2 + 1
32 R12(J, I) = E(K)
33 DO 35 I = 1, NR
 DO 35 J = 1, NR
 L = J * (J - 1) / 2 + 1
R22(I,J) = Q(L)

35 R22(J,I) = R22(I,J)
 CALL DMINVS(R22, 15, NR, 1.E-15, IERR, N1, WORK)
 IF (IERR.EQ.0) GOTO 29

39 WRITE(6,34)
34 FORMAT(1HO,45H GEOLOGICAL VARIATE MATRIX CANNOT BE INVERTED)
 GOTO 100

29 DO 31 I=1, NL
 DO 31 J=1, NL
 K = (J+M-1)*(J+M)/2+I+M
 R11(I,J) = Q(K)

31 R11(J,I) = R11(I,J)
 CALL DMINVS(R11, 27, NL, 1.E-15, IERR, N1, WORK)
 IF (IERR.EQ.0) GOTO 36

43 WRITE(6,30)
30 FORMAT(1HO,42H X-Y COORDINATES MATRIX CANNOT BE INVERTED)
 GOTO 100

37 NL = M
 NR = ITERM
 NTOTAL = NL + NR

42 DO 44 I=1, NR
 DO 44 J=1, NR
 K = (J+M-1)*(J+M)/2+I+M
 R22(I,J) = Q(K)

44 R22(J,I) = R22(I,J)
 CALL DMINVS(R22, 15, NR, 1.E-15, IERR, N1, WORK)
 IF (IERR.EQ.0) GOTO 56
 GOTO 43

56 DO 45 I=1, NL
 DO 45 J=1, NR
 K = (J+M-1)*(J+M)/2+I
 R12(I,J) = Q(K)

45 DO 40 I=1, NL
 DO 40 J=1, NL
 K = J*(J-1)/2+I
 R11(I,J) = Q(K)

40 R11(J,I) = R11(I,J)
 CALL DMINVS(R11, 27, NL, 1.E-15, IERR, N1, WORK)
 IF (IERR.EQ.0) GOTO 36
 GOTO 39

36 DO 46 I=1, NL
 DO 46 J=1, NR
 PRO1(I,J) = 0.0
 DO 46 K=1, NL
 46 PRO1(I,J) = PRO1(I,J) + R11(I,K)*R12(K,J)
 DO 47 I=1, NR
 DO 47 J=1, NR
 PRO1(I,J) = 0.0
 DO 47 K=1, NL
 47 PRO1(I,J) = PRO1(I,J) + R12(K,I)*PRO(K,J)
DO 48 I=1,NR
DO 48 J=1,NR
PRO2(I,J)=0.0
DO 48 K=1,NR
48 PRO2(I,J)=PRO2(I,J)+R22(I,K)*PRO1(K,J)
DO 49 I=1,NR
DO 49 J=1,NR
VEC(I,J)=0.0
IF(I.EQ.J) VEC(I,J)=1.000
CONTINUE
CALL ERERVC(PRO2,NR,1.200,0.01,0.001,1000.0,15,VEC,1)
TEMP=-100.0
DO 50 J=1,NR
IF(TEMP.GT.PRO2(J,J)) GOTO 50
TEMP=PRO2(J,J)
JJ=J
50 CONTINUE
CANON=SQRT(PRO2(JJ,JJ))
DIF=CANON-ROOT
ROOT=CANON
WRITE(6,52) IPOWER,ROOT
52 FORMAT(1H,10X,24H THE DEGREE IS EQUAL TO 12,5X,23H THE CANONICAL
1ROOT IS F10.4)
IF(DIF.LT.0.05.0.OR.ROOT.GE.0.95000) GOTO 51
CONTINUE
51 WRITE(6,53) IPOWER,ROOT
53 FORMAT(1H,10X,57H THE DEGREE OF THE MOST PREDICTABLE SURFACE IS
1EQUAL TO 12,3X,48H THE CORRESPONDING CANONICAL ROOT IS EQUAL TO
2F7.4//)
NR1=NR-1
DO 171 I=1,NR1
JP=I+1
DO 171 J=JP,NR
IF(PRO2(I,I).GE.PRO2(J,J))GOTO 171
TEMP=PRO2(I,I)
PRO2(I,I)=PRO2(J,J)
PRO2(J,J)=TEMP
DO 174 K=1,NR
TEMP=VEC(K,J)
VEC(K,J)=VEC(K,I)
174 VEC(K,I)=TEMP
CONTINUE
TOTALX=XMAX-XMIN
TOTALY=YMAX-YMIN
INDEX=TOTALY/TOTALX*50.0
DELTA=TOTALX/50.0
TX=50.0/TOTALX
TY=FLOAT(INDEX)/TOTALY
DO 172 JJ=1,NR
INDEX1=1
PROCEDURE PRO2(JJ,JJ)=SQRT(PRO2(JJ,JJ))
WRITE(6,173) PRO2(JJ,JJ)
173 FORMAT(1H1,10X,37H TREND SURFACE FOR THE CANONICAL ROOT, 2X, F8.4/)
WRITE(6,114)
114 FORMAT(1H0,10X,34H THE EQUATION OF THE TREND SURFACE/)
DO 54 I=1, NL
E(I)=0.0
DO 54 J=1, NR
54 E(I)=E(I)+SNGL(PRO(I,J))*VEC(J,JJ)
RR=0.0
DO 55 I=1, NL
E(I)=E(I)/SQRT(RR)
55 RR=RR+E(I)*E(I)
DO 57 I=1, NL
57 E(I)=E(I)/SQRT(RR)
J2=1
J3=J2+1
IF(M.GT.ITERM) GOTO 59
DO 60 J=1, M
WRITE(6,58) (VARIAT(J1), J1=J2, J3), VEC(J, JJ)
58 FORMAT(1H0, 5X, 2A6, 3X, F6.3)
J2=J2+2
60 J3=J3+2
GOTO 112
59 DO 132 J=1, M
WRITE(6,58) (VARIAT(J1), J1=J2, J3), E(J)
J2=J2+2
132 J3=J3+2
112 DO 64 I=1, ITERM, 10
IPRINT=I+9
LIMIT=ITERM
IF(ITERM.GT.IPRINT) LIMIT=IPRINT
WRITE(6,115)
115 FORMAT(/)
WRITE(6,62) (TERM(J), J=1, LIMIT)
62 FORMAT(1H0, 10(4X, A6))
IF(M.GT.ITERM) GOTO 65
61 WRITE(6,63) (E(IK), IK=I, LIMIT)
63 FORMAT(1H0, 10F10.4/)
GOTO 64
65 WRITE(6,63) (VEC(J, JJ), J=1, LIMIT)
64 CONTINUE
WRITE(6,97)
97 FORMAT(1H0, 40H NOTE X4Y2=X**4*Y**2, X3=X**3, AND SO ON)
BSUM=0.0
CSUM=0.0
BSS=0.0
CSS=0.0
BCR=0.0
DO 72 NSAMPL=1, N
L=0
A(1,1)=1.0
DO 73 I=1,IPOWER
DO 74 J=1,I
A(J,I+1)=A(J,I)*DM(NSAMPL,M+1)
L=L+1
74 P(L)=A(J,I+1)
A(I+1,I+1)=A(I,I)*DM(NSAMPL,M+2)
L=L+1
73 P(L)=A(I+1,I+1)

108 B(NSAMPL)=0.0
C(NSAMPL)=0.0
IF(M.GT.ITERM) GOTO 75
DO 76 J=1,ITERM
76 B(NSAMPL)=B(NSAMPL)+E(J)*P(J)
DO 77 I=M
77 C(NSAMPL)=C(NSAMPL)+VEC(I,JJ)*DM(NSAMPL,I)
GOTO 81
75 DO 78 J=1,ITERM
78 B(NSAMPL)=B(NSAMPL)+VEC(J,JJ)*P(J)
DO 79 I=M
79 C(NSAMPL)=C(NSAMPL)+E(I)*DMC(NSAMPL)
81 BSUM=BSUM+B(NSAMPL)
BSS=BSS+B(NSAMPL)**2
CSUM=CSUM+C(NSAMPL)
CSS=CSS+C(NSAMPL)**2

72 BCR=BCR+B(NSAMPL)*C(NSAMPL)
DENOM=S*BSUM-BSUM**2
ALPHA=(BSUM*CSUM-BSUM*BCR)/DENOM
BETA=(S*BCR-BSUM*CSUM)/DENOM
DO 133 I=N
B(I)=ALPHA+BETA*B(I)
133 RESIDU(I)=C(I)-B(I)
S2=0.0
DO 116 I=N
116 S2=S2+RESIDU(I)
S2=-1.0*S2/S
DO 117 I=N
117 RESIDU(I)=RESIDU(I)+S2
WRITE(6,118) S2
118 FORMAT(1HO,10X,55H THE CONSTANT OF THE TREND SURFACE EQUATION IS E
QUAL TO,F10.4)
WRITE(6,80)
80 FORMAT(1HO,13H X-COORDINATE,5X,13H Y-COORDINATE,5X,15H OBSERVED VA
1LUE,5X,17H CALCULATED VALUE,5X,9H RESIDUAL///)
WRITE(6,82) ((DM(I,M+1),DM(I,M+2),C(I),B(I),RESIDU(I)),I=N)
82 FORMAT(1H ,F10.4,8X,F10.4,8X,F10.4,12X,F10.4,8X,F10.4)
DO 66 LENGTH=1,INDEX
Y=YMAX-DELTA*(FLOAT(LENGTH)-1.0)
DO 66 LWIDTH=1,50
X = XMIN + DELTA * (FLOAT(LWIDTH) - 1.0)
L = 0
A(1,1) = 1.0
DO 67 I = 1, IPower
 DO 68 J = 1, I
 A(J, I+1) = A(J, I) * X
 L = L + 1
 68 P(L) = A(J, I+1)
 A(I+1, I+1) = A(I, I) * Y
 L = L + 1
 67 P(L) = A(I+1, I+1)
107 POLY(LENGTH, LWIDTH) = S2
 IF (M > ITERM) GOTO 69
 DO 70 J = 1, ITERM
 POLY(LENGTH, LWIDTH) = POLY(LENGTH, LWIDTH) + E(J) * P(J)
 70 GOTO 66
69 DO 71 J = 1, ITERM
71 POLY(LENGTH, LWIDTH) = POLY(LENGTH, LWIDTH) + VEC(J, JJ) * P(J)
66 POLY(LENGTH, LWIDTH) = ALPHA + BETA * POLY(LENGTH, LWIDTH)
 PMAX = -100000.0
 PMIN = 100000.0
 DO 83 I = 1, N
 PMAX = AMAX1(PMAX, B(I))
 PMIN = AMIN1(PMIN, B(I))
 83 CONTINUE
 DIFF = PMAX - PMIN
 GRAD = DIFF / 10.0
 DO 88 LENGTH = 1, INDEX
 DO 88 LWIDTH = 1, 50
 DO 121 I = 1, 10
 IGRAD = I
 DISC = GRAD * (FLOAT(I) - 1.0) + PMIN
 IF (DISC .GE. POLY(LENGTH, LWIDTH)) GOTO 123
 121 CONTINUE
 IGRAD = 10
123 IPOLY(LENGTH, LWIDTH) = DOT(IGRAD)
88 CONTINUE
 DO 134 I = 1, N
 DTEMPX = (DM(I, M+1) - XMIN) * TX
 DTEMPY = (YMAX - DM(I, M+2)) * TY
 MAPING(I, 1) = DTEMPX
 MAPING(I, 2) = DTEMPY
 IF (MAPING(I, 1) .EQ. 0) MAPING(I, 1) = 1
 IF (MAPING(I, 2) .EQ. 0) MAPING(I, 2) = 1
134 CONTINUE
 DO 137 I = 1, INDEX
 DO 137 J = 1, 50
 DO 138 K = 1, N
 IF (MAPING(K, 1) .EQ. J .AND. MAPING(K, 2) .EQ. I) GOTO 139
138 CONTINUE
GOTO 137
139 IPOLY(I,J)=SAMPLE
137 CONTINUE
150 SCALE=TOTALX*4.0/100.0*FEET
WRITE(6,9) TITLE2
89 FORMAT(1H1,26X,16A5/)
*SCALE=SCALE
WRITE(6,90) MSSCALE
90 FORMAT(1H0,35X,5H----,18X5H FEET,5X,18H * SAMPLE LOCALITY///)
16 WRITE(6,91)
71 FORMAT(1H,13X,105H***
*SCALE=SCALE***)
WRITE(6,92) ((IPOLY(I,J),J=1,50),I=1,INDEX)
72 FORMAT(1H,13X,2H *,101X,2H */14X,2H *,50A2,1X,2H *)
WRITE(6,124)
124 FORMAT(1H,13X,2H *,101X,2H *)
WRITE(6,91)
WRITE(6,122)
122 FORMAT(1H0,10X,7H LEGEND/)
DO 109 I=1,10
DISC=GRAD*(FLOAT(I)-1.0)+PMIN
109 WRITE(6,110) (DOT(I),DISC)
110 FORMAT(1H0,11X,A2,2H =,F8.3)
IF(INDEX1,EQ.2) GOTO 172
PMAX=-100000.0
PMIN=100000.0
GOTO 151
172 CONTINUE
GRAD=(PMAX-PMIN)/10.0
DO 161 J=1,N
DO 159 K=1,N
JDOT=J
DISC=GRAD*(FLOAT(J)-1.0)+PMIN
IPOLY(I,J)=BLANK
157 CONTINUE
GOTO 152
152 CONTINUE
 IPOLY(I,J)=SIG(K)
15 CONTINUE
EX1=2
WRITE(6,158)
158 FORMAT(1H1,10X,17H THE RESIDUAL MAP//)
GOTO 153
172 CONTINUE
100 STOP
END

Note: If this program is to be used outside McMaster University, one has to insert two subroutines, (1) double precision matrix inversion, (2) eigenvalues and eigenvectors of an arbitrary matrix.
APPENDIX II

FORTRAN IV PROGRAM FOR CANONICAL CORRELATION

7.1 Instructions For Using the Program.

7.11 Input to Program

I Instruction card 1.

The function of this card is to tell the computer how many sets of different data are going to be subjected to canonical correlation analysis. Each data set should have the following input cards (from II to VII). Columns 1 to 10 are reserved for punching the number, digits are right justified.

II Instruction card 2.

(1) First 5 columns are reserved for punching the number of samples. There is no reasonable limit on the sample size ($N \leq 99999$ at present case). Digits are right justified.

(2) Columns 6 to 7 are reserved for punching the number of variates on the left hand set.

(3) Columns 8 to 9 are reserved for punching the number of variates on the right hand set.

The total number of variates is 100. The number of variates on the left hand set is greater than that of the right hand set. Neither of them can exceed 50. Otherwise, the Dimension statement should be changed.
(4) Columns 10, 11 and 12 are to specify the number of variates read in by the computer. This number is not necessarily equal to the number of total variates to be subjected to canonical correlation analysis.

(5) Columns 13, 14 and 15 are used to indicate the number of description cards (see IV).

(6) Column 16, punch 1 if input is correlation matrix, punch 2 if input is raw data matrix.

(7) Column 17, punch 1 Arc sine square root transformation. The user must make sure that all input data are less than 1.0, and positive when arc sine square root transformation is used.

 punch 2 Log transformation (base 10)

The user must make sure that all input data are greater than zero.

 punch 3 No transformation

III Title card.

The project title and the investigator's name will be punched on one card (no more than 80 characters).

IV Description card(s).

A brief description about the project is allowed. The maximum number of cards is 50, whereas the minimum number is 1.
V Variate Name card(s).
Twelve characters are used for the names of each variate.
They should be punched in a continuous sequence and also in
the same order as in the data matrix or correlation matrix.
Six names are punched on one card.

VI Data Format card.
This is used for the input data card. For example, the original
data cards contain 14 variates, such as Si20, TiO2,
Al2O3, Fe2O3, FeO, MgO, CaO, Na2O, K2O, CO2, quartz,
feldspar, micaceous materials, and carbonates. Five
columns are used for each variate. If one wishes to
study the set of five variates, namely MgO, CaO, CO2,
feldspar, and carbonates, the variable format card should
be

(30X, 2F5.2, 10X, F5.2, 5X, F5.2, 5X, F5.2)

The sample numbers are punched at the first 5 columns in
this case.

VII Data cards.
One may punch the data cards in one's own way. EACH SAMPLE
HAS ITS OWN SEPARATE DATA CARD(S). TWO OR MORE SAMPLES
SHARING ONE DATA CARD IS NOT ALLOWED. The correlation
matrix must be stored row by row, each row going up to
the diagonal elements.
For example:
The input data cards should be as follows:

```
1000097910000807081810000462054907311000
```

The input data format is (10F4.3).

7.12 Output from program

(1) Project title and the investigator's name,
(2) Description about the project,
(3) Correlation matrix,
(4) Mean, variance, and standard deviation of each variate,
(5) Canonical roots, their chi-square values, and significant levels,
(6) Canonical vectors both of right hand set and left hand set.

Note: If this program is to be used outside McMaster University, one has to insert two subroutines, (1) double precision matrix inversion, (2) eigenvalues and eigenvectors of an arbitrary matrix.
DOUBLE PRECISION Q(1830), COR(30, 30), A2(30, 30), B(30, 30), SUMSQ(60), B1(30, 30), A465
DIMENSION TITLE(16), VARIAT(120), SOURCE(800), FMT(16), SUM(60), D(60)
R(30), VEC(30, 30), B2(30, 30), CHI(30)
DATA CHI/6.635, 9.210, 11.345, 13.277, 15.086, 16.812, 18.475, 20.090,
121.666, 23.209, 24.725, 26.217, 27.688, 29.141, 30.578, 32.000, 33.409,
346.963, 48.278, 49.588, 50.892/
READ(5, 91) ISET
91 FORMAT(I10)
DO 90 NSET=1, ISET
READ(5, 1) N, NL, NR, MM, NS, I1, I2
1 FORMAT(I15, 2I2, 2I3, 2I1)
READ(5, 2) TITLE
WRITE(6, 3) TITLE
3 FORMAT(1H1, 30X, 16A5)
WRITE(6, 4)
4 FORMAT(/)
NN=NS*16
READ(5, 5) (SOURCE(I), I=1, NN)
5 FORMAT(16A5)
WRITE(6, 6) (SOURCE(I), I=1, NN)
6 FORMAT(1H0, 20X, 16A5)
M=NL+NR
NV=2*M
S=N
M1=(M+1)*M/2
READ(5, 7) (VARIAT(I), I=1, NV)
7 FORMAT(12A6)
READ(5, 8) FMT
8 FORMAT(16A5)
IF(I1.EQ.1) GOTO 9
DO 10 J=1, M
SUM(J)=0.0
10 SUMSQ(J)=0.0
DO 11 J=1, M1
Q(J)=0.0
DO 20 NSAMPL=1, N
READ(5, FMT) (D(J), J=1, MM)
IF(I2.EQ.3) GOTO 13
IF(I2.EQ.2) GOTO 14
IF(I2.EQ.1) GOTO 15
WRITE(6, 16)
16 FORMAT(1H0, 37H WRONG CODE NUMBER FOR TRANSFORMATION)
GOTO 83
14 DO 17 J=1,M
17 D(J)=ALOG10(D(J))
GOTO 13
15 DO 18 J=1,M
18 D(J)=ARSINTSQRT(D(J))
13 DO 19 J=1,M
SUM(J)=SUM(J)+D(J)
19 SUMSQ(J)=SUMSQ(J)+D(J)*D(J)
M2=M-1
DO 20 K=1,M2
DO 20 K1=K,M
L=K1*(K1-1)/2+K
88 IF(K1-K)21,22,21
22 Q(L)=1.000
GOTO 20
21 Q(L)=Q(L)+D(K1)*D(K1)
20 CONTINUE
DO 23 I=1,M2
DO 23 J=1,M
K=J*(J-1)/2+1
IF(I-J)24,25,24
24 Q(K)=1.000
GOTO 23
23 CONTINUE
Q(K+1)=1.000
WRITE(6,99)
99 FORMAT(1H1,30X,5H MEAN,11X,9H VARIANCE,5X,19H STANDARD DEVIATION)
DO 101 I=1,M
AMEAN=SUM(I)/S
VAR=(S*SUMSQ(I)-SUM(I)**2)/(S*(S-1.0))
DEV=SQRT(VAR)
IV=2*I-1
IV1=IV+1
101 WRITE(6,100) ((VARIAT(J),J=IV,IV1),AMEAN,VAR,DEV)
100 FORMAT(1H1,10X,2A6,5X,F8.3,9X,F10.3,9X,F8.3)
GOTO 26
9 READ(S,FMT> (Q(I),I=1,M1)
26 DO 27 L=1,M,14
WRITE(6,30) N
30 FORMAT(1H1,10X,41H CORRELATION MATRIX THE SAMPLE SIZE IS,15///)
IF(I2-2) 92,93,94
94 WRITE(6,95)
95 FORMAT(1HO,30H NO TRANSFORMATION ON RAW DATA//)
GOTO 96
92 WRITE(6,97)
97 FORMAT(1HO,36H ARC SINE TRANSFORMATION ON RAW DATA//)
GOTO 96

McMASTER UNIVERSITY LIBRARY
WRITE(6,98) FORMATT(110,31H LOG TRANSFORMATION ON RAW DATA//)

J2=(L-1)*2+1
J3=J2+1
DO 27 J=L*M
K=0
DO 29 I=L+J
LIMIT=L+13
IF(I.GT.LIMIT) GOTO 86
KK=J*(J-1)/2+1
K=K+1
A(K)=Q(KK)
WRITE(6,84) (VARIAT(J1),J1=J2+J3),(A(K1),K1=1,K)
FORMAT(110,5X,2A6,14F8.3)
J2=J2+2
J3=J3+2
CONTINUE

L=0
NLH=(NL+1)*NL/2
DO 32 J=1,NLH
L=L+1
A(L)=Q(L)
CALL DSYMINC(NL, NLH, IERR)
IF(IERR.EQ.0) GOTO 34
WRITE(6,85)
FORMAT(110,85H CORRELATION MATRIX ON THE LEFT HAND SIDE CANNOT BE
1INVERTED TRANSFORMATION IS NEEDED)
GOTO 90

DO 49 I=1,NL
DO 49 J=I,NL
K=J*(J-1)/2+1
A2(I,J)=A(K)
A2(J,I)=A2(I,J)
NL1=NL+1
L=0
DO 53 J=NL1,M
DO 53 I=NL1,J
L=L+1
K=(J-1)*J/2+1
A(L)=Q(K)
DO 50 J=1,NL
DO 50 I=1,NL
K=(J+NL-1)*(J+NL)/2+1
COR(I,J)=Q(K)
DO 51 K=1,NL
DO 51 I=1,NR
B(K,I)=0.0
DO 51 J=1,NL
B(K,I)=B(K,I)+A2(K,J)*COR(J,I)
DO 52 K=1,NR
DO 52 I=1,NR
B1(K,I)=0.0
DO 52 J=1,NL
52 B1(K,I)=B1(K,I)+COR(J,K)*B(J,I)
CALL DSYMIN(A,NR,IERR)
IF(IERR.EQ.0) GOTO 55
WRITE(6,56)
56 FORMAT(1H1,85H CORRELATION MATRIX ON THE RIGHT HAND SIDE CANNOT BE
1INVERTED TRANSFORMATION IS NEEDED)
GOTO 90
55 DO 58 I=1,NR
DO 58 J=I,NR
K=J*(J-1)/2+I
A2(I,J)=A(K)
58 A2(J,I)=A2(I,J)
DO 59 I=1,NR
DO 59 J=1,NR
B2(I,J)=0.0
DO 59 K=1,NR
DO 60 I=1,NR
DO 60 J=1,NR
IF(I.EQ.J) GOTO 61
VEC(I,J)=0.0
GOTO 60
61 VEC(I,J)=1.00
60 CONTINUE
CALL EBERVC(B2,NR,1,200,0.01,0.001,1000.0,30,VEC,1)
M3=NR-1
DO 62 I=1,M3
IJ=I+1
DO 62 J=IJ,NR
IF(B2(I,I).GE.B2(J,J)) GOTO 62
TEMP=B2(I,I)
B2(I,I)=B2(J,J)
B2(J,J)=TEMP
DO 63 K=1,NR
R(K)=VEC(K,I)
VEC(K,I)=VEC(K,J)
VEC(K,J)=R(K)
63 CONTINUE
WRITE(6,65)
65 FORMAT(1H1,10X,47H CHI SQUARE TESTS OF SUCCESSIVE CANONICAL ROOTS)
WRITE(6,64)
64 FORMAT(1H0,16H CANONICAL ROOTS,5X,7H LAMBDA,8X,18H CHI SQUARE VALU
1ES,5X,18H DEGREE OF FREEDOM,5X,18H SIGNIFICANT LEVEL)
WL=1.000
NROOT=0
DO 66 I=1,NR
JJ=NR-I+1
IF(B2(JJ,JJ) .LT. 0.000) B2(JJ,JJ) = 0.0
WL = WL * (1.00 - B2(JJ,JJ))
L = (NR - JJ + 1) * (NL - JJ + 1)
CHISQ = -1.00 * (S - 0.5 * (FLOAT(M) + 1.00)) * ALOG(WL)
IF(B2(JJ,JJ) .NE. 0.000) GOTO 67
GOTO 68
67 NROOT = NROOT + 1
B2(JJ,JJ) = SQRT(B2(JJ,JJ))
68 IF(L .GE. 30) GOTO 69
IF(CHISQ .GE. CHI(L)) GOTO 70
F = -0.01
GOTO 66
70 F = 0.01
GOTO 66
69 IF(CHISQ .GE. CHI(30)) GOTO 70
GOTO 71
66 WRITE(6,72) B2(JJ,JJ),WL,CHISQ,L,F
72 FORMAT(1H0,6X,F8.3,5X,F8.3,15X,F8.3,18X,14,12X,F6.2)
WRITE(6,12)
12 FORMAT(1H0,56H 0.01 SIGNIFICANT AT 1 PERCENT LEVEL -0.01 INSIGNIFICANT)
WRITE(6,73)
73 FORMAT(1H1,10X,41H CANONICAL VECTORS ON THE RIGHT HAND SIDE///10X,
131H LARGEST VECTOR AT FIRST COLUMN///)
KKK = 2 * NL
DO 74 I = 1, NR
KK = KKK + 1
KKK = KKK + 1
74 WRITE(6,75) ((VARIAT(K), K = KKK, KKK), (VEC(I,J), J = 1, NROOT))
75 FORMAT(1H0,2A6,4X,14F6.2)
DO 76 I = 1, NL
DO 76 J = 1, NROOT
COR(I,J) = 0.0
DO 76 K = 1, NR
76 COR(I,J) = COR(I,J) + B(I,K) * VEC(K,J)
DO 77 I = 1, NROOT
DO 77 J = 1, NL
77 COR(J,I) = COR(J,I) / B2(I,I)
DO 78 I = 1, NROOT
R(I) = 0.0
DO 78 J = 1, NL
78 R(I) = R(I) + COR(J,I) * COR(J,I)
DO 79 I = 1, NROOT
DO 79 J = 1, NL
79 COR(J,I) = COR(J,I) / SQRT(R(I))
WRITE(6,89)
89 FORMAT(/)
WRITE(6,80)
80 FORMAT(1H0,10X,40H CANONICAL VECTORS ON THE LEFT HAND SIDE///10X,
131H LARGEST VECTOR AT FIRST COLUMN///)
KKK=0
DO 81 I=1, NL
 KK=KK+1
 KKK=KK+1
81 WRITE (6,82) ((VARIAT(K), K=KK, KKK), (COR(I,J), J=1, NROOT))
82 FORMAT (IHO*2A6,4X,14F6*2)
90 CONTINUE
83 STOP
END
APPENDIX III

FORTRAN IV PROGRAM FOR DISCRIMINATORY ANALYSIS BY CANONICAL VARIATES

8.1 Instructions For Using the Program

8.11 Input to Program A

I Instruction card

1. Columns 1 and 2 are for punching the number of groups (≤ 20).
2. Columns 3 and 4 are for punching the number of variates (≤ 50).
3. Columns 5 and 6 are for punching the number of description card(s) ($1 \leq$ and ≤ 20).

II Description card(s)

The title of project, name of investigator, and a brief description about the project are punched on the description cards.

III Variate Name card(s)

Twelve characters are used for one variate name. Six names are punched on one card. All groups should have the same variate(s).

IV Group Name card(s)

Twelve characters are used for one group name. Six names are punched on one card.
V Data Format card
This is used for the input data. EACH SAMPLE HAS ITS OWN SEPARATE DATA CARDS. TWO OR MORE SAMPLES SHARING ONE DATA CARD IS NOT ALLOWED. Data of all groups should be punched in the same format.

VI Data cards
Each group should have the following cards: First card is used for punching the number of samples of this group. First five columns are reserved for this number. Digits are right justified. Data cards follow the first card immediately.

8.12 Output from Program A
I Description about project

II Canonical root and result of statistical test

III Canonical transformation matrix (print as well as punch)

IV Means of all groups expressed in terms of canonical coordinates.

8.13 Input to Program B
If one wishes to plot each individual sample on canonical coordinates, the program B should be used.

I Instruction card
(1) Columns 1 and 2 are for punching the number of groups (≤ 20).
(2) Columns 3 and 4 are for punching the number of variates (≤ 50).
(3) Columns 5 and 6 are for punching the number of canonical axes \(\leq 50 \).

II Data format card (same as used in program A)

III Canonical transformation matrix
 These are the output cards from program A.

IV Data cards
 These are exactly same as used in program A.

8.14 Output from Program B

Canonical coordinates for each sample are printed and group 1, 2, ..., are also labelled.

Note: If the program A is used outside McMaster University, two subroutines should be inserted into the main program (1) matrix inversion, (2) eigenvalues and eigenvector of a nonsymmetrical matrix.
8.2 Listing of the Program

THIS IS DISCRIMINATORY ANALYSIS BY CANONICAL VARIATES
JULY 1967 P. J. LEE

DIMENSION SUM(20,50),SUMB(50),R(50),VEC(50,50),FMT(16),Z(50),
1SOURCE(320),TITLE(16),CHI(37),WORK(100),N1(350),VARIAT(100),
2B(50,50),T(50,50),SUMA(50,50),BPOOL(50,50),NUMBER(50),GROUP(40)

DATA NUMBER/ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
241, 42, 43, 44, 45, 46, 47, 48, 49, 50/

DATA CHI/ 6e6349, 9e2103, 11.3449, 13e2767, 15.0863, 16e8119, 18
213, 30.5779, 31.9999, 33.4087, 34.8053, 36.1908, 37.5662, 38.9321,
3 40.2894, 41.6384, 42.9798, 44.3141, 45.6417, 46.9630, 48.2782, 49
4.5879, 50.8922, 63.6907, 76.1539, 88.3794, 100.4250, 112.3290, 124.11
560, 135.8070/

READ(5,1) NOG*NOV*NOD
1 FORMAT(312)
 NOC=NOV*2
 NOD=NOD*16
 READ(5,3) (SOURCE(I),I=1,NOD)
3 FORMAT(16A5)
 WRITE(6,42) (SOURCE(I),I=1,NOD)
42 FORMAT(1H0,20X,16A5)
 NOV1=2*NOV
 READ(5,4) (VARIAT(I),I=1,NOV1)
4 FORMAT(12A6)
 NOG1=NOG*2
 READ(5,4) (GROUP(I),I=1,NOG1)
 READ(5,3) FMT
 NTOTAL=0
 DO 6 I=1,NOV
6 DO 5 J=1,NOV
5 T(I,J)=0.0
 T(J,I)=0.0
 BPOOL(I,J)=0.0
5 END
6 BPOOL(J,I)=0.0
 R(I)=0.0
 DO 7 I=1,NOG
7 DO 6 J=1,NOV
 SUM(I,J)=0.0
6 END
7 SUM(J,I)=0.0
 DO 8 NGROUP=1,NOG
8 READ(5,9) NN
9 FORMAT(I5)
 NTOTAL=NTOTAL+NN
 SI=NN
 DO 10 I=1,NOV
DO 11 J=I,NOV
B(I,J)=0.0
11 B(J,I)=0.0
10 SUMB(I)=0.0
DO 12 IREAD=1*NN
READ(5,FMT) (Z(J),J=1,NOV)
DO 12 I=1,NOV
DO 13 J=1,NOV
B(I,J)=B(I,J)+Z(I)*Z(J)
13 B(J,I)=B(I,J)
12 SUMB(I)=SUMB(I)+Z(I)
DO 14 I=1,NOV
DO 15 J=1,NOV
T(I,J)=T(I,J)+B(I,J)
15 T(J,I)=T(I,J)
14 SUMNGROUP(I)=SUMB(I)
DO 16 I=1,NOV
DO 16 J=1,NOV
SUMA(I,J)=SUMB(I)*SUMB(J)*ST
16 SUMA(I,J)=SUMA(I,J)
CONTINUE
SS=NTOTAL
18 R(I)=R(I)/SS
DO 19 I=1,NOV
DO 19 J=1,NOV
SUMA(I,J)=R(I)*R(J)*SS
19 SUMA(I,J)=SUMA(I,J)
B(I,J)=T(I,J)-SUMA(I,J)-BPOOL(I,J)
20 B(J,I)=B(I,J)
CALL MINVSE(BPOOL,50,NOV,0.0,IERR,N1,WORK)
IF (IERR.NE.0) GOTO 99
DO 21 I=1,NOV
DO 21 J=1,NOV
T(I,J)=0.0
DO 21 K=1,NOV
21 T(I,J)=T(I,J)+BPOOL(I,K)*B(K,J)
DO 22 I=1,NOV
DO 22 J=1,NOV
VEC(I,J)=0.0
VEC(J,I)=0.0
IF (I.EQ.J) VEC(I,J)=1.000
22 CONTINUE
CALL EBERVC(T,NOV,1,200,0.01,0.001,1000,0.5,VEC,1)
M3=NOV-1
DO 23 I=1,M3
IJ=I+1
DO 23 J=IJ,NOV
IF(T(I,I).GE.T(J,J)) GOTO 23
TEMP=T(I,I)
T(I,I)=T(J,J)
T(J,J)=TEMP
DO 24 K=1,NOV
R(K)=VEC(K,I)
VEC(K,I)=R(K)
24 CONTINUE
WRITE(6,25)
25 FORMAT(1H10X,47H CHI SQUARE TESTS OF SUCCESSIVE CANONICAL ROOTS)
WRITE(6,26)
26 FORMAT(1H10X,16H CANONICAL ROOTS,5X,7H LAMBDA, 8X,18H CHI SQUARE VALUES,5X,18H DEGREE OF FREEDOM,5X,18H SIGNIFICANT LEVEL)
WL=1.000
NROOT=0
NOV2=NOV
NOG1=NOG-1
IF(NOV.GT.NOGL) NOV2=NOG1
DO 31 I=1,NOV2
JJ=NOV2-I+1
IF(T(JJ,JJ).LT.0.000) T(JJ,JJ)=0.0
WL=WL*(1.000+T(JJ,JJ))
L=(NOV-JJ+1)*(NOG-JJ)
CHISQ=(SS-1.0-0.5*(FLOAT(NOV)+FLOAT(NOGL)))*ALOG(WL)
IF(T(JJ,JJ).EQ.0.000) GOTO 27
NROOT=NROOT+1
T(JJ,JJ)=SQR(T(JJ,JJ))
27 IF(L.GT.30) GOTO 28
IF(CHISQ.GE.CHIL) GOTO 29
30 F=-0.01
GOTO 31
29 F=0.01
GOTO 31
28 IF(L.GT.100) GOTO 32
L=(L-25)/10+30
IF(CHISQ.GE.CHIL) GOTO 29
GOTO 30
32 CHI1=0.5*(2.3263+SQR(2.0*FLOAT(L)-1.000))**2
IF(CHISQ.GE.CH11) GOTO 29
GOTO 30
31 WRITE(6,34) T(JJ,JJ),WL,CHISQ,L,F
34 FORMAT(1H10X,6X,F8.3,5X,F8.3,15X,F8.3,18X,I4,12X,F6.2)
WRITE(6,35)
35 FORMAT(1H10X,61H NOTE 0.01 SIGNIFICANT AT 1 PERCENT LEVEL -0.01 INSI
IGNIFICANT)
WRITE(6,36)
36 FORMAT(1H1,10X,29H THE CANONICAL TRANSFORMATION//)
CALL ROSIE(VEC,VARIAT,NUMBER,NROOT,NOV)
DO 41 J=1,NOV
41 WRITE(7,2) (VEC(J,I),I=1,NROOT)
2 FORMAT(10F8.4)
DO 37 I=1,NOG
DO 37 J=1,NROOT
T(I,J)=0.0
DO 37 K=1,NOV
37 T(I,J)=T(I,J)+VEC(K,J)*SUM(I,K)
WRITE(6,38)
38 FORMAT(1H1,10X,68H THE GROUP MEAN COORDINATES OF EACH VARIATE ALONG THE CANONICAL AXES//)
CALL ROSIE(T,GROUP, NUMBER,NROOT,NOG)
WRITE(6,39)
39 FORMAT(///)
WRITE(6,40)
40 FORMAT(1H0,40X,68H *****OUR PROGRAM IS ONLY TO PRODUCE WHAT IT CONTAINS THANK YOU*****)
WRITE(6,44)
44 FORMAT(1H1)
GOTO 100.
99 WRITE(6,43)
43 FORMAT(1H0,51H WITHIN GROUP DISPERSION MATRIX CAN NOT BE INVERTED)
100 STOP
END

SUBROUTINE ROSIE(VEC,VARIAT,NUMBER,NROOT,NOV)
DIMENSION VEC(50,50),VARIAT(100),NUMBER(50),GROUP(40)
DO 1 L=1,NROOT,10
LIMIT=L+9
IPRINT=NROOT
IF(NROOT.GT.LIMIT) IPRINT=LIMIT
WRITE(6,2) (NUMBER(J),J=1,IPRINT)
2 FORMAT(1H0,7X,15H CANONICAL AXIS,5X,10I10//)
DO 1 K=1,NOV
IV=2*K-1
IV1=IV+1
1 WRITE(6,3) ((VARIAT(J),J=IV,IV1),(VEC(K,J),J=L,IPRINT))
3 FORMAT(1H ,16X,2A6,10F10.4)
RETURN
END
THIS IS PROGRAM B

DIMENSION T(50),VEC(50,50),D(50),FMT(12)
READ(5,1) NOG,NOV,NROOT,FMT
1 FORMAT(3I2/12A6)
 DO 2 J=1,NOV
2 READ(5,3) (VEC(J,K),K=1,NROOT)
3 FORMAT(10F8.4)
WRITE(6,10)
10 FORMAT(1H1,42H THE CANONICAL COORDINATES FOR ALL SAMPLES///)
 DO 7 NGROUP=1,NOG
7 READ(5,6) N
6 FORMAT(I5)
 DO 8 I=1,N
 READ(5,FMT) (D(J),J=1,NOV)
 DO 5 K=1,NROOT
8 T(K)=0.0
5 T(K)=T(K)+VEC(J,K)*D(J)
6 WRITE(6,9) NGROUP,(T(K),K=1,NROOT)
9 FORMAT(3H0,8H GROUP 12,10X,(15F8.2))
7 CONTINUE
END
APPENDIX IV

FORTRAN PROGRAM FOR PRINCIPAL COMPONENT ANALYSIS

9.1 Instructions For Using The Program

9.11 Input to Program

I Instruction card 1.

The function of this card is to tell the computer how many sets of different data are to be subjected to component analysis. Each data set should have the following input cards (from II to VII). Columns 1 to 10 are reserved for punching the number, digits are right justified.

II Instruction card 2.

(1) First 5 columns are reserved for punching the number of samples. There is no reasonable limit on the sample size ($N \leq 99999$ at the present case). Digits are right justified.

(2) Columns 6, 7 and 8 are reserved for punching the number of variates. The maximum number of variates is 100.

(3) Columns 9, 10 and 11 are reserved for punching the total number of variates. It is not necessary that all variates are to be subjected to principal component analysis.

(4) Columns 12, 13 and 14 are used to indicate the number of description cards.

(5) Column 15

 punch 1 if input is correlation matrix
(6) Column 16

punch 1 Arc sine square root transformation
The user must make sure that all input data are less than 1.00, and positive when this transformation is used.
punch 2 Log transformation (base 10)
The user must make sure that all input data are greater than zero.
punch 3 no transformation

(7) Column 17

punch 1 number of components to be rotated is specified by the user (see no. 8).
punch 2 number of components to be rotated is equal to number of components (or eigenvalues) of the correlation matrix which are greater than zero.
punch 3 number of components to be rotated is equal to the number of components (or eigenvalues), which are greater than 1.000.

(8) Columns 18, 19 and 20
To specify the number of components to be rotated. It is used for the case 1 of (7).

(9) Column 21

punch 1 for using correlation matrix
punch 0 for using covariance matrix
If the variates are in widely different units, covariance of the original quantities would have little meaning and
the correlation matrix should be used. Conversely, if the variates are reasonably comparable, the covariance form has a greater statistical appeal (Anderson, 1963).

(10) Column 22

punch 1 for R-mode
punch 0 for Q-mode

III Title card
The project title and investigator's name will be punched on one card (no more than 80 characters).

IV Description card(s)
A brief description about your project is allowed. The maximum number of cards is 50, whereas the minimum number is 1.

V Variate Name Cards
Twelve characters are used for the name of each variate. They should be punched in a continuous sequence and also in the same order as in the data matrix or correlation matrix. Six names are on one card.

VI Data Format cards
This is used for your input data card. See "Instructions for using the Canonical Correlation Program)."

VII Data cards
One may punch the data cards in one's own way. The
correlation matrix must be stored row by row, each row going up to the diagonal elements (see "Instructions for using the canonical correlation programme"). Each sample has its own separate data card(s). Two or more samples sharing one data card is not allowed.

Note: If the variates are punched in columns whereas the samples are punched in rows, this data matrix will only be used for R-mode principal component analysis. If we wish to carry out both R- and Q-mode on the same set of data, the raw data matrix should be transposed and repunched by matrix transpose program in order to arrange the sample in columns and variates in rows. Again, each variate has its own separate data card(s). Two or more variates sharing one data card is not allowed.

9.12 Output from Program

I Project title and investigator’s name.

II Description of the project.

III Mean, variance, and standard deviation of each variate for R-mode.

IV Correlation matrix.

V Components (eigenvalues) and their contributions to the total variance.

VI The number of cycle for varimax rotation and varimax
criterion.

VII The rotated normalized component loadings arranged in column for each factor.

VIII Punch the normalized component loadings (6E12.4) and the rotated normalized component loadings (1OF8.4) on the cards.

Note: If this program is to be used outside McMaster University, one has to insert a subroutine for evaluating eigenvalues and eigenvectors of a symmetric matrix.
9.2 Listing of the Program

THIS IS PRINCIPAL COMPONENT ANALYSIS PROGRAM JUNE 1966 P J LEE

DIMENSION TITLE(16), VARIAT(200), SOURCE(800), FMT(16), SUMSQ(100),
1 SUM(100), Q(5050), D(100), R(100), VEC(100, 100), WORK(702), A(5050),
2 H(100), R1(100), R2(100), NUMBER(100)
EQUIVALENCE (TITLE, SOURCE, VARIAT), (Q, VEC), (A, VEC(5051)), (SUM, H),
1 (SUMSQ, R1)

DO 200 I=1, 100
200 NUMBER(I) = I
READ(5, 91) ISET
91 FORMAT(I10)
 DO 90 NSET = 1, ISET
 READ(5, 1) N, M, NOV, NS, 11, 12, 13, 14, 15
1 FORMAT(I5, 3I3, 13, 2I11)
 READ(5, 2) TITLE
2 FORMAT(///)
 WRITE(6, 3) TITLE
 WRITE(7, 2) TITLE
3 FORMAT(1H1, 30X, 16A5)
 WRITE(6, 4)
4 FORMAT(///)
 NN = NS*16
 READ(5, 5) (SOURCE(I), I=1, NN)
5 FORMAT(16A5)
 WRITE(6, 6) (SOURCE(I), I=1, NN)
6 FORMAT(1H1, 20X, 16A5)
 S = N
 M1 = (M+1)*M/2
 NV = M*2
 READ(5, 7) (VARIAT(I), I=1, NV)
7 FORMAT(12A6)
 READ(5, 8) FMT
8 FORMAT(16A5)
 IF(I1.EQ.1) GOTO 9
 DO 10 J=1, M
 SUM(J) = 0.0
10 SUMSQ(J) = 0.0
 DO 11 J=1, M1
11 Q(J) = 0.0
 DO 20 NSAMPL = 1, N
 READ(5, FMT) (D(J), J=1, NOV)
 IF(I2.EQ.3) GOTO 13
 IF(I2.EQ.2) GOTO 14
 IF(I2.EQ.1) GOTO 15
 WRITE(6, 16)
16 FORMAT(1H0, 37H WRONG CODE NUMBER FOR TRANSFORMATION)
 GOTO 90
119

14 DO 17 J=1,M
17 D(J)=Aalog10(D(J))
 GOTO 13
15 DO 18 J=1,M
18 D(J)=Arsin(Sqrt(D(J)))
13 DO 19 J=1,M
 SUM(J)=SUM(J)+D(J)
19 SUMSQ(J)=SUMSQ(J)+D(J)*D(J)
 M2=M-1
 DO 20 K=1,M2
 DO 20 K1=K,M
 L=K1*(K1-1)/2+K
21 Q(L)=Q(L)+D(K)*D(K1)
 CONTINUE
 IF(I4.EQ.1) GOTO 138
 IF(I4.EQ.0) GOTO 139
 WRITE(6,140)
140 FORMAT(1H0,48H WRONG CODE FOR COVARIANCE OR CORRELATION MATRIX)
 GOTO 90
139 DO 142 I=1,M2
 DO 142 J=1,M
 K=(J-1)*J/2+1
 Q(K)=(S*Q(K)-SUM(I)*SUM(J))/(S*(S-1.0))
 GOTO 141
138 DO 23 I=1,M2
 DO 23 J=1,M
 K=(J-1)*J/2+1
 IF(I-I) 24,25,24
25 Q(K)=1.000
 GOTO 23
24 Q(K)=(S*Q(K)-SUM(I)*SUM(J))/Sqrt((S*SUMSQ(I)-SUM(I)*SUM(I))*
 (S*SUMSQ(J)-SUM(J)*SUM(J))
 CONTINUE
 Q(K+1)=1.000
141 IF(I5.EQ.1) GOTO 143
 IF(I5.EQ.0) GOTO 26
 WRITE(6,145)
145 FORMAT(1H0,29H WRONG CODE FOR R OR Q MATRIX)
 GOTO 90
143 WRITE(6,51)
51 FORMAT(1H1,30X,5H MEAN,11X,9H VARIANCE,5X,19H STANDARD DEVIATION)
 DO 28 I=1,M
 AMEAN=SUM(I)/S
 VAR=(S*SUMSQ(I)-SUM(I)**2)/(S*(S-1.0))
 DEV=Sqrt(VAR)
 IV=2*I-1
 IV1=IV+1
28 WRITE(6,49)((VARIAT(J),J=IV,IV1), AMEAN,VAR,DEV)
49 FORMAT(1H1,10X,2A6,5X,F8.1,9X,E12.4,9X,E12.4)
 IF(I4.EQ.0) GOTO 150
I

GOTO 26
9 READ(5,FMT) (Q(I),I=1,M)
26 DO 27 L=1,M+14
 WRITE(6,30) N,M
30 FORMAT(1H1,10X,55H CORRELATION OR COVARIANCE MATRIX THE SAMPLE SIZE IS,5X,26H THE NUMBER OF VARIATES IS,I3/)
 IF(I2-2) 122,121,120
120 WRITE(6,123)
123 FORMAT(1H0,30H NO TRANSFORMATION ON RAW DATA///)
 GOTO 124
121 WRITE(6,125)
125 FORMAT(1H0,31H LOG TRANSFORMATION ON RAW DATA///)
 GOTO 124
122 WRITE(6,127)
127 FORMAT(1H0,36H ARC SINE TRANSFORMATION ON RAW DATA///)
124 J2=(L-1)*2+1
 J3=J2+1
 DO 27 J=L,M
 K=0
 DO 29 I=L,J
 LIMIT=L+13
 IF(I.GT.LIMIT) GOTO 86
 KK=J*(J-1)/2+1
 K=K+1
29 A(K)=Q(KK)
86 WRITE(6,84) ((VARIAT(J1),J1=J2,J3),(A(K1),K1=1,K))
84 FORMAT(1H5X,2A6,14F8.3)
 J2=J2+2
 J3=J3+2
27 CONTINUE
150 K=0
 DO 35 I=1,M
 DO 35 J=1,M
 K=K+1
 L=J*(J-1)/2+1
35 A(K)=Q(L)
 REWIND 0
 CALL HOUSE2(M,M,0.000001,A,R,WORK,M)
 REWIND 0
 DO 37 I=1,M
37 READ(0) (VEC(I,J),J=1,M)
 DO 38 I=1,M
 SUM(I)=0.0
 DO 38 J=1,M
38 SUM(I)=SUM(I)+VEC(I,J)*VEC(I,J)
 DO 39 I=1,M
 DO 39 J=1,M
39 VEC(I,J)=VEC(I,J)*SQRT(ABS(R(I)))/SQRT(SUM(I))
 NFAC=0
 DO 40 I=1,M
IF(R(I) \leq 0.001) GOTO 40
NFAC=NFAC+1

40 CONTINUE
PER=0.0
DO 92 I=1,NFAC
92 PER=PER+R(I)
DO 93 I=1,NFAC
93 R(I)=(R(I)/PER)*100.0
WRITE(6,43)

43 FORMAT(1H1,10X,66H TABLE FOR COMMON FACTORS AND THEIR CONTRIBUTION
1 TO TOTAL VARIANCE//17X,8H FACTORS,2X,30H PER CENT OF TOTAL COMMUN
2ALITY,2X,20H CUMULATIVE PER CENT/)
R2(I)=0.0
DO 116 I=1,NFAC
116 R2(I+1)=R2(I)+R1(I)
DO 115 I=1,NFAC
115 WRITE(6,94) (R(I),R1(I),R2(I+1))
94 FORMAT(1H1,15X,E12.4,12X,F8.2,19X,F8.2)
IF(I3.EQ.1) GOTO 109
IF(I3.EQ.2) GOTO 110
IF(I3.EQ.3) GOTO 111
WRITE(6,112)
112 FORMAT(1H0,10X,24H WRONG CODE FOR ROTATION)
GOTO 90
109 LFAC=IFAC
GOTO 113
110 LFAC=NFAC
GOTO 113
111 KFAC=0
DO 114 I=1,M
114 CONTINUE
LFAC=KFAC
113 NFAC1=LFAC-1
WRITE(7,146)
146 FORMAT(26H NORMALIZED FACTOR LOADING)
DO 147 J=1,M
147 WRITE(7,135) (VEC(I,J),I=1,LFAC)
135 IF(LFAC.EQ.1) GOTO 201
WRITE(6,136)
136 FORMAT(1H1,15X,38H RECORD OF SUCCESSIVE VARIMAX ROTATION///)
WRITE(6,128) NFAC
128 FORMAT(1H0,17X,34H THE NUMBER OF POSITIVE FACTORS IS,I3/)
WRITE(6,129) LFAC
129 FORMAT(1H0,17X,33H THE NUMBER OF ROTATED FACTORS IS,I3///)
133 CRI TEI=0.0
DO 75 I=1,20
DO 73 J=1,NFAC1
73 J12=J+1
75 K=J12+1
DO 73 K=1,LFAC
DO 71 J2=1*M
H(J2)=0.0
DO 71 JP=1*LFAC
71 H(J2)=H(J2)+VEC(JP,J2)*VEC(JP,J2)
U=0.0
V=0.0
AU=0.0
BV=0.0
CW=0.0
DW=0.0
DO 72 L=1*M
VEC(J,L)=VEC(J,L)/SQRT(H(L))
VEC(K,L)=VEC(K,L)/SQRT(H(L))
U=VEC(J,L)**2-VEC(K,L)**2
V=VEC(J,L)*VEC(K,L)*2.0
AU=AU+U
BV=BV+V
CW=CW+U**2-V**2
72 DW=DW+2.0*U*V
T1=DW-2.0*AU*BV/FLOAT(M)
T2=CW-(AU**2-BV**2)/FLOAT(M)
IF(T2.EQ.0.0) GOTO 90
PHI=ATAN(ABS(T1)/ABS(T2))
IF(T1.GT.0.0.AND.T2.GT.0.0) GOTO 101
IF(T1.GT.0.0.AND.T2.LT.0.0) GOTO 102
IF(T1.LT.0.0.AND.T2.LT.0.0) GOTO 103
IF(T1.LT.0.0.AND.T2.GT.0.0) GOTO 104
101 PHI=PHI/4.0
GOTO 105
102 PHI=0.78539813-PHI/4.0
105 T12=-1.0*SIN(PHI)
T21=SIN(PHI)
GOTO 106
103 PHI=0.78539813-PHI/4.0
GOTO 107
104 PHI=PHI/4.0
107 T12=SIN(PHI)
T21=-1.0*SIN(PHI)
106 T11=COS(PHI)
T22=COS(PHI)
DO 74 L=1*M
WEC1=VEC(J,L)*T11+VEC(K,L)*T21
WEC2=VEC(J,L)*T12+VEC(K,L)*T22
VEC(J,L)=WEC1
74 VEC(K,L)=WEC2
ANGLE=PHI*57.29577867
73 CONTINUE
V1=0.0
V2=0.0
DO 76 J=1,LFAC
SUM(J)=0.0
SUMSQ(J)=0.0
DO 76 J1=1,M
SUM(J)=SUM(J)+VEC(J,J1)**2
76 SUMSQ(J)=SUMSQ(J)+VEC(J,J1)**4
DO 78 J=1,LFAC
V1=V1+SUM(J)**2
78 V2=V2+SUMSQ(J)
VARIMA=FLOAT(M)*V2-V1
CRITIE=VARIMA-CRITEI
WRITE(6,79) (I,VARIMA)
79 FORMAT(1H0,10X,15H ROTATION CYCLE, 2X, I2, 4X, 18H VARIMAX CRITERION, 1F12.4)
IF(CRITIE.LE.0.10) GOTO 117
CRITIE=VARIMA
75 CONTINUE
117 JEN=1
WRITE(7,148)
148 FORMAT(34H ROTATED NORMALIZED FACTOR LOADING)
DO 137 K=1,M
137 WRITE(7,151) (VEC(J,K),J=1,LFAC)
151 FORMAT(10F8.4)
201 NF=0
M4=M-1
DO 62 I=1,LFAC
NFAC3=0
DO 63 J=JEN,M
IF(ABS(VEC(I,J)).GT.0.500) NFAC3=NFAC3+1
63 CONTINUE
IF(NFAC3.EQ.0) GOTO 121
DO 64 J=JEN+NFAC4
J1=J+1
DO 95 L=1,M
IF(ABS(VEC(I,J)).GT.ABS(VEC(I,K))) GOTO 64
95 VEC(L,J)=VEC(L,K)
TEMP=VARIAT(2*J-1)
TEMP1=VARIAT(2*J)
VARIAT(2*J-1)=VARIAT(2*K-1)
VARIAT(2*J)=VARIAT(2*K)
VARIAT(2*K-1)=TEMP
VARIAT(2*K)=TEMP1
61 CONTINUE
NFAC2=NFAC3-1+NF
NFAC4=NFAC2+1
DO 64 J=JEN+NFAC2
J1=J+1
DO 64 K=J1,NFAC4
IF(VECI(J).GT.VECI(K)) GOTO 64
DO 96 L=1,LFAC
 D(L)=VECI(L,J)
 VEC(L,J)=VECI(L,K)
96 VEC(L,K)=D(L)
 TEMP=VARIAT(2*J-1)
 TEMP1=VARIAT(2*J)
 VARIAT(2*J-1)=VARIAT(2*K-1)
 VARIAT(2*J)=VARIAT(2*K)
 VARIAT(2*K-1)=TEMP
 VARIAT(2*K)=TEMP1
64 CONTINUE
 JEN=NFACT+1+NF
 NF=NFACT+NF
 IF(JEN.EQ.M) GOTO 134
62 CONTINUE
134 DO 34 L=1,LFAC,15
 WRITE(6,52)
52 FORMAT(1H10X,74H THE ROTATED NORMALIZED FACTOR LOADINGS ARRANGED
1 IN COLUMN FOR EACH FACTOR//)
 LIMIT=L+14
 IPRINT=LFAC
 IF(LFAC.GT.LIMIT) IPRINT=LIMIT
 WRITE(6,130) (NUMBER(I), I=L,IPRINT)
 130 FORMAT(1H10X,7H FACTOR,2X,15I7)
 DO 34 K=1,M
 IV=2*K-1
 IV1=IV+1
34 WRITE(6,50)((VARIAT(J), J=IV,IV1),(VECI(J,K), J=L,IPRINT))
50 FORMAT(1H4X,2A6,15F7.2)
135 FORMAT(6E12.4)
90 CONTINUE
83 STOP
END