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SCOPE AND CONTENTS ¢

A research programme is presented for the analytical
evaluation of the deflections of Vierendeel trusses comprised
of semi-rigid connections under panel voint loadings. The
semi-rigid connections are made of two unequal width square
ESS members welded at right angles. As the flexibvility of the
joints increases when the width ratio is less than 1.0, the
Jjoints are unable to develop the moment capacity of the wed
member and excessive deflections limit funciional capability
of the truss. Hence, several types of joint reinforcement are
recommended. A yleld line method is attemrted to estimate the

strength caracity of the Joint with and without reinforcements.
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CHAPTER I

INTRODUCTION

1.1 HOLIOW STRUCTURAL SECTIONS

The new structural shape of Hollow Structural

Sections (HESS) have gained wide popularity during the last

few years.

namelys.
(1)

This is mainly because of a number of advantages

ESS provide outstanding strength in proportion to
their weight, especlially under compressive and
torsional loading. This advantage is much better

than those of conventional steel shagpes.

(ii) Tue flat and smooth surfzces of rectzungular and

square sections (rovide easy attachment for a
branch HSS member, such a2s beam to column and webd

L)

membver to chord member in trusses.

(1ii)The smooth and clean avrearance of the sections

is zesthetically pleasing.

(iv) The ease of painting is also 2 benefit. Besides

that, it zives protection to the interior surface

from corrosion if voth ends of 3 memher are com—

o]
I—J
[0
ot
O]
e

(3]
‘L’ 3]
¢}
O]
-
(@]
£
L2

-

In multi-storey bulldings these sections can e

used in conjuncition with a clireulating fluld to



Provide fire resistance.

In order to use these sections properly, the be-
haviour of welded connections made from HSS members must
ve known. Unfortunately, the literature on HSS counnections
has not yet been adequately available. In this volume
attention is focused on the connections of unequal width square.
HSS members welded at right angles and subsequent behaviour on
truss deflection and strength for: design .purposes. It is hoped
“that some light.will be :cast on this interesting problem.

1.2 CLASSIFICATION OF CONNECTIONS

On the basis of structural behaviour, the HES conn-
ections can be divided into two categories, namely the equal-
width conneetions (d/b = 1) and the unsqual-width connections
(d/v< 1), where 4 and b are the widths of the web and chord

members respecitively.

| S

These two categories are shown in Fig. 1.1 .

Tor the equal-width connecticns, most of the load
applied on the branch member (or web membver) is directly trans-—
ferred from the wed plates of the branch to the web plates of
the main member (chord member) as they are in +the same plare
joined tozether by weld material. Also, the load on the flange
vlates of the branch will not be applied to the flange plate of
the wmain member. Instead, nost of the lozd is transmitted tar-
oush the corners of the connection as the flange plate of the

£

has 2 low stifiness in comparison with the web plate
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Then the widths of the sections are unequal (i/b<1l),

ot
:-"
©
[
iy

nayiour of the joint becomes the plate problem with

[N

lozding meinly resisted by flexure of the counscted plate.

2. s

The strength and stiffness of this tyve of connection are

0

¥

drastically reduced.

As joint flexibility increases rapidly with d/b, the
joint can no longer develop the yield momén® or the plastic
moment of the cross-section as it does when 4 = b.

A graph, shown in Fig. 1.2, is plotted with relative
rotation ¢ versus width ratio (constant applied moment) %o
show the change of flexibility of the unequal-widtk connection
with respect to width ratio.

Poth tyres of connections are basically semirigid (AISC
tyre III connection). The former type, however, will have a
lerger rigidity in most practical situations and would be, nore
or less, expected to behave a2s AISC tvve I connection (i.e.,

Tigid comnections) (1]
1.3 O3JECTIVE OF 3STUDY

A constant-heizht Vierendeel truss composed of square
hollow structural sections with unequal width of joints will

be rveferred to in the investigation of cemi-rigid connectlions

This research work was motivated vy Stelco (Steel

Comiany of Cenada)which fabricates HES Vierendeel irusses.,



width connectvions. TFor this reason, design information is

required 1f the aesthetlc and economical advantages, together

o

7ith nmany others, of these IS Trusses are 1o be exploited.

A prime obvjective of this research is to assess the
flexivnility of a tyrical Vierendeel truss composed of square
HSS under working loads to determine whether excessife deflect-
ions might pose = problem. KHence, while a comianion research
study also conducted at McMaster is to assess experimentally
the ultimate moment cagfacity and flexibility of various types
of connections in H3S, this study will be confined to an an-
alytical evaluation of

(1) The deflections of a Vierendeel truss comprised of
semi-rigid connections under panel point loading.
(2) Strength capacity and behaviour of HSS connections,
. and,
(3) The effectiveness of joint stiffeners.

It should be emphasized that Vierendeel trusses have in
general strength properties and aesthetic qualities that are
attractive to the désigner. There are cases, however, wien de-
flection limitations may rule out such a struciural alternative.
The case of a deep tyuss of limited sran, i.e. floor to floor
depth and exterior wall to wall lerngth in office buildings is a
possible aprlication. Two examples will be used to provide con-
tinuity of the various chapters of this volume. th examples
illustrate the need for considering deflection and strength in

Tvne design process.


http:strength.in

/&_9/

P/br'

Equal Width HSS Connection d = b

i‘/bY!

Unequal Width HSS Connection d< b

Fig. l.1 Classification of HSS (Onnections
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CHAPTER IT

HETHOD OF ANALYSIS FCR VIERENDEEL TRUSS
WITH SEMI-RIGID CONNECTIONS

2.1 VIERENDEEL TRUSS

A Vierendeel truss is a hyperstatic frame composed of
a2 series of rectangular or trapezoidal panels without diagornal
members. The truss was first proposed by Professor Vierendeel
in 1836. The main function of the truss at that time was for
bridges. In recent years, Vierendeel trusses have been used as
roof trusses in low-rise buildings such as schools and gymnasiunms.
It is also a commonly used structure for overhead pedestrian
bridges. The Vierendeel truss to be studied in this volume is

the one with recterngular parels as shkown in Fig. 2.1.
2.2 [ETHCD OF AVALYSIS FOR VIERENDEEL TRUSS

Tone method consicts of putting the slope-deflection
equations in matric form in a sinple and systematic way.]:BJ
The explenation of tie method is probably test given

0l lows

y
*®

by iliustrating an exzamnple as

Jonsider a Vierendeel 4russ with concentrated loads act—

ing a% zanel rolnts as shown in Flg. Z.1
The eight~panel Vierendeel trusz is externally determinate,



but is interrally indeterminate to the 24th degree. The
total degree of indeterminacy could easily be determined

Uy experience or by the formula

n=73m+4$zr-73] (2.1)

I

where 10 = the degree of indeterminacy

. = ftotal number of members in the structure

r = numbers of reactions

J = numbers of joints

Consider the Vierendeel truss in Fig. 2.2. -As there

are 18 joints (including the supports) in the truss, there are
18 possible unbalanced moments zcting at these joints. And
also, there are 8* rossible unbalanced linear forces acting at
certain joints as shown in Pig. 2.2 The unbalancéd momenﬁs are
assumed Vo ve in clockwise direction and the unbalzrced liﬁear
forces are assumed either in vertical or horizontal directions.
These unbalanced forces (moments and linear forces),‘denoted as

P with subscripts indicating their individual locations, are due

to the applied loads acting on the truss.

The number of possible unbalanced linear forces in a structure
can be determined by considering the number of degrees of free-
dom in jJjoint translation in the structure. According to the
formula [4) , the total number of joints in translation in a
structure is

I}

25 - (2f+ 2h + 7 + n)
wnere degree oi freedom in Joint translation or sways
aumber of Jjoints including sugporss

number of fixed supporevs

number of hinged supports

nunper of roller suprorts

number of members in the structure

Wuunuu

BHE‘H)C—J-U) 42}
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As

m

result of these possible unbzlanced forces due
to the external loads, the truss resporis with Jjoint rotations
and joint translations which are accordingly in the same direct-
ions as the unbalarced forces as shown in Fig. 2.2

Fig. 2.3 shows the end moments, denoted as M with sub-
scripts, zcting on the ends of all members. They are all assumed
in a clockwise direction. (The end moments can also be regarded
as 'distributed moments' from the point of view of the Moment

Distribution HMethod).
2.2.1 STATIC MATRIX A

Every joint or part of the truss can ve isolated as a
free-hody-diagram so long 25 the intermal forces are in eq-
vilibrium with the external forces. Consider every same palr
of joints in Figs (2.2) and (2.3). By using the conditions that

5. Moments = 0, the following eguations can be written as,

P = My i3
Po = o4 M3+ i36

Py = My + H5 + M3g | (2.2)
= - .

Pig = bigp+ yg
The expression for Pjg can be fournd by considering
the free-body diagram of the top chozxd continuous member =
shown in Pig (2.4.%). Using the condition that the sum of all
horizontal forces nmust be equal to zero, i.e. X F. = 0, we get
P19 = - 1/2 (Usm+Msg+435 ... M9 +350)
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Similarly, the expressions for PQO’ P21 ese Pog can
be obtained by considering the equilibrium éondition of the
vertical forces of the free-body diagram of the individual web
uember serarately as shown in Fig. (2.4.0).

Let {P} be a column matrix showing values of unbalanced
moments at the joints and unbalanced linear forces. TLet {i}
be a column matrix showing values of end moments.

Re-writing the exrressions for Iy, Py, P3 oo Pos
into matric form, we get,

{7} = -
(26x1) (2%590) ({5}&}1) | (2 3)

{A] is denoted as the static matrix which is defined

as a matrix exprressing the balancing moments at the Joints and
balancing lateral forces in terms of the end moments.

The static matriz [A] is tabulated in Table (2.1)
2.2.2 DEFORMATION MATRIX (B]

Deformation matrix [B] is defined as a matrix which
expresses the elastic rotations,8, at the ends of zll members,
as caused by the end moments M in terms of joint rotatioms or

translgtions, X.
{o}= [8l{x} (2.4)

[ 3] may be established columnwise by considering the

effects of each joint rotation and translation X on all the

elastic end rotations @ . [B] is called the deformation
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matrix because 1t is solely based on the effects of the
disturbing external joint rotations or translations on the
flexural deformation at the ends of the members.

Consider, for instance, the effect of X (keeving

X5y X3s Xgs ses Xpgallegual to zero) will be
o =X and O54= X
Similarly, the effect of X, {(keeping all other X's

zero) will be

s}

Turning to the effect of horizontal Joint translation,

Xl9 s, 2s shown in Pig. {2.52). From which

= g = 949 T G50 - TH Xig
where H is the height of the truss.

The effect Of each vertical joint displacement, for

instance, X,; , as shown in Fig. (2.5%) , is .

=g = = = _ 20
—m — - Lo d 1-0
9'3_9‘4_8'19_9’20_+——-L XZ’O

where L is panel lenzth.

By considering the effects of each joint rotation or

translation in this way, the deformation matrixz [B] can be
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established columnwise.

Table(2.2) shows the established matrix [B] for the
Vierendeel truss.

A comparison between Tables (2.1) and (2.2) shows that
the deformation matrix (B ) is the transpose of the static matrixz
[A] / This characteristic is always found in all cases solved

by this method.
Therefore, [B]= [AT] (2.5)

Hence, it is not necessary to establish directly matrix
(B] as it can be indirectly obtained by the trauspose of the
static matrix [A] . Sometimes, it is worthwhile to write out

a few elements of [B] to check the correctness of [A] .
2.2.,3 STIFFVESS MATRIX [S]

The internal end moments M, and My at the ends of an
initially straight prismatic member ab (as shown in Fig.2.6)
can be ezxpressed in terms of the two internmal end rotations

&, and &, by using the slope-deflection equation; ~

. 4EI 28T
i, = e+ ey

a L
v = 2ET 4ET
My = Tea-i- 5% | {2.6)

where E and I are the Young's modulus and the noment of inertia
of {he membver respectively, and are constant throughout its

length. The elastic end rotation € is considered positive when


http:Fig.2.t6
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the rotation is clockwise.
The total angle of rotation of semi-rigid cournected

member ab subjected respectively to couples M, and My is,

(Appendiz 1] [5]

- MaL M 'bL M

e, = — Ha

* EL - egx ¥ J (2.72)
- M-I M3

&p = a4 Mol | Mb (2.71)

6EI  3BI J

M
where J is the joint modulus .
Solving egns. (2.7a) and (2.7b) for M, and My , We

get [Appendix I) [7][8]

i
. 2L
iy = R —=2—— @, + 6ET — -l
,Ha BI 411"2"‘1':2 a 4}_‘,'2_]}2 gb
. (2.8)
e, = —2L . + 6E )
My, 6EI 4L'2—-L2 SR 6ET AT, —-L2 &y
where .'= L+ 38IZ
and Z=1.0/7J

The Joint modulus J , or the rotational spring constant is a
prorerty of the joint. HNathematically speaking, 1t is the app-
ied moment M divided by the relative rotatiorn @ of the connection
when behaviour is elastic,i.e. M/P . The relationship between
M and § is shown in Fig. 2.7 . The joint modulus is usually
measured in in~-kips rer radian.
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When Jzoe for the case of rigid connections, BEgu.(2.8)
coincides with Egqun.(2.6) .

Hence, the slope-deflection equations for the chord
members are given by Eqn.(2.6). Whereas, for the web members,
Eqn.(2.8) are used.

By using Eqns.(2.6) and (2.8) , the relationship
between the end moments and the end rotations for each member

in the truss can be written as ;-

g, = AEL 2EL
My ="t T8
_ 2B 4BT
M, = ey + 1 9
- 4B 2RI
- 28 .
" A
: ) ( 209)
~ 2L, L
B 6E g.
My = OB o2 O35 TORL g
-
~ T 2L
M=z4 = 6EI O+ 6EI e
54 g’ 212 37T 4pfe g2 34
o o I 21’
il — OEI 9’ 6EI 91—-
50 2172 - 12 29t 41'2-12 930
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Arranging Bqn.{(2.9) in matrix notation, we have
q

{M} = [s] {e}

= 9’ [ ==
(50x1) (50x50)(50x%1) ( 2.10)

[S) is call the stiffness matrix in which the internal

end moments are expressed inAteIms of'fhe internal end rotations.
(S]is a square matrix of order (50X50), its elements are given

as the coefficients of {&} in Eqn.(2.9) .
2.2.4 MATRTY {P}

Matrix {P} had been defined in Section 2.2.1 as a
column matrix showing values of unblanced moments at the joints
and unbalanced linear forces. Now, returning to the real situa-
tion, the truss is only subvjected to loading in which all P's
are zero excePt Poy, P21’ P22’ P23, ?24, PZS’ P26 of equal
magnitude acting at the ranel points. Reference is made to

Hgo 2.1

Therefore, matrix {?} can be guickly established as

(o0 )

rge e o O O O

{p} = 20 2.11
(26x1) <§ Poy > ( :
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The matrix {P} can also be extended to include many
different kinds of loading cornditions. Each column of matrix
{P] is for each loading condition. If there are four different
loading conditions, the matrix [P] will then have four columns.
Therefore (P ] is no longeTr a column matrix if the loading

condition is a combination of loads.
2.3 MATHIX OFERATIONS

Three matrices [4], {s]and -{P}, which have been discussed

in rrevious Sections, are all input matrices which have to be

established before solving the problem. The solutions, or the

output matrices are the displacement matrix«{x} and the intermal-—
end;moméntimafrix-{ﬁ}. R | B
The dpération of the matrix calculation is given as

follows.

From the static equilibrium condition

{2} (4] {u} (2.3)

Prom the condition of deformation

{o}= 5] {z} (2t

(47} {x}
since [B)= [aT] (2-42)

il

(2.5)

- From the slope~deflection equations

)= (s]{e] | (2.10)


http:kinds.of
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Substituting Eqn.(2.4a) into Eqn.(2.10), yields

{uy =[s a7} {z} (2.12)

Substituting Eqn.(2.12) into Eqn.{2.3), we get

{2} =[a s aT}{x} (2.13)

Rearranging matrix equation(2.13), we obtain the output
matrix {X}

{z} =[a s Ai]—l{P}' (2.14)

Substituting the known matriz {X} into Equ.(2.12), we
finally obtain another outrut matrix {M}.

With the results of {X} and {M} , the analysis is thus
complete.

A set of the solutions for a Particular case(see the
detail in Pig.(2.82)) is plotted on the truss as shown in .-

Pizgs.(2.8b) and (2.8¢)

2.4 TLIMITATIONS ON DEFLECTION

A computer programme [Appendix II] has been set up to
analyse the truss with joint moduli va arying from J = 1><10 to 1%108
( in-kirps/rad. ) and with constant panel point concentrated
loads. The dimensions of the adopted HSS are 4X4 for the web
menvers and 8X8 for the chord members. Thickness of l/z’,tt and

t
1/2 are used. The panel length and the height of the truss is


http:Eqn.(2.12
http:Eqn.(2.10
http:Eqn.(2.4a

8 ft. in the case of 3" +thick material and 1% ft. for %"
maverial.

It is recognised that, with the adding of semi-rigid
connections on the joints, the behaviour of the truss becomes
flexible. That is to say, when the modulus decreases, the
flexivility of the joint increases. As a result, the maximum
deflection of the truss a2t the central roint becomes more and
more conspicuous. With certain limits on deflection set for
The truss, the limits of joint modulus and loads caﬁ ve found.

Figs.(2.9) are plots of the central deflection versus
joint modulus to show the influence of joint modulus on the
deflection of trusses. As can be seen from the Figures. the
curves start to become flet when J>1x10° in-kips/rad. .
Tnerefore, the connections can be regarded as rigid when J
exceeds 1x10° iniips/rad. 253!

The limitations on deflection set by lational Building

Code (¥BC)[9)]are as follows,

(1) sma::.< 3];0 for plastered ceilings
L

for flooxr beams .

(1) § <

-
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- T .
(iii) Smax<:g§5 for asphalt roofing

(iv) § nax, < % for metal or elastic membrane
type roofing

where I is the span of a simply supported beam or truss.

With certain limitations on deflection in mind, the
designer can choose his Joint modulus within the required limits.

From Eqnr.(2.13), the deflections and rotations for any
joint can be found. Of primary interest is %03 which represents
the central vertical deflection of the truss. From the results
of the computer programme (Appendix II) and emPloying the
particulér examples of the Vierendeel trusses whose geometries
were specified earlier, Table 2.3 illustrates the deflections
at mid span with rigid(J =o0) and semi-rigid(J = 1x10%in-k/rad)
connections for 1 kip locading at each panel point. The NBC

limiting deflections for the specific trusses are also given.
2.5 STEENGTH LIMITATIONS

The computer programme referred to earlier (Aprendix
IT ) also defines the elastic stresses at all member ends

according to the formula

b

I

s

|

g = —+ {2.15)

ji

where & is the outer fibre stress in ksi at the eritical
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voint considered
M' is thé associated bending moment in in-ki ps
F 1is the pertinent axial force in kips
A is the cross sectional area in in.<
S

and is the section modulus in in.3

For the two trusses A* and B* considered, Figs.(2.102)
and (2.10b) indicate the stresses at each critical pdint for
panel point loadings of 4.2 kips and 2.5 kips respectively for
naterials that yield at 55ksi. Note that Egn.(2.15) has been
used in each case limifting the loading such that the maximum
stress is egual to the maximum value at the most highly stressed
gection. In each case the critical section is the exterior web
member. TFor truss A, Flate slenderness is sufficiently small
that the critical buckling stress i1s approximately equal to
the yield stress. For truss B, although the critical buckling
is somewhat less than yield because of increased slenderness,
there 1s very little reduction in the maximum stress. A more
complete description of the critical stiress for plate buckling
is described in Chapter ITI. Note that the flexibhility at the
web memper ends alters the stress somewhat. For semi-rigid
cornections, the chord members carry a greater share of the
load than do the web members. Consequently the critical Ioint
mentioned has a slightly reduced stress.

A simplified design for the examples will follow in the

Truss A 1s 3 f£T. deep using 1/2 iun. thick HSS
Truss B is 13 £t. deep using 1/4 in. thick HSS

® %
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next Section permitting the designer to emPloy Joint flexibvility

as a Parameter.
2.6 DESTIGN TFROCEDURES

For purposes of indicating the method design, the
simplest Possible geometry and sizing of members are assumed.
The top and bottom chords are assumed to be parallel and of the
same cross section. All web members are assumed to be of iden-
tical section,although it was evident from the previous Section
that stiffer end web members would have improved the overall
stress balance of the truss. However, since a deflection criterim
is normally important, the examples are merely an attempt to
illustrate the need t0 consider both strength and deflection in
design.

Sections 2.4 and 2.5 describe deflection and strength
criteria in the design Drocess. For truss A, it is evident
from Figs.(2.10) that a limiting panel roint loading of 4.2 kips
is necessary to prevent failure at a section (viz. sections
34 and 50 in Fig.(2.3) .

Deflection criteria are normally based on working stress
levels rather than computed maximum values. Consequently to
relate the panel roint loadings from a strength roint of view
to deflection limitations, a reduction 1o 60% of capacity is
required. When the deflection limitation of L/180 is imposed
under working loads, it is evident from Table 2,3 that for

J =00 the actual deflection for 2.5 kips(i.e. 4.2/1.67 kips)


http:4.2/1.67
http:Pigs~�(2.10
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4in~k/rad

is less than the limiting value. However, for J = 1Ix10
the actual deflection of 0.521 ft. exceeds that of 1./180
and is therefore not acceptable. A value of J = 2.5x10%"-k/rad
just satisfies the deflection criterion. Note that the stress
at sections 34 and 50 are reduced somewhat and hence an itera~
tion process may be attempted to refine the correct panel point
loading and assoclated J value. This was rot rursued in this
study because the stress changes were rather small.

For truss B, similar results are evident. The limiting
Panel point loading is 2.5 kips to cause a stress of nearly
55 ksi at the critical section. Again, from either Table 2.3
or Pigs.(2.10), when J = 5x10% in-k/rad., the limiting deflect~
ion of L/180 for 1.5 kips(=2.5/1.67 kips) per panel point.is

reached with little change in the stresses throughout.


http:ki:ps(=2.5/l.67
http:Figs.(2.10

Truss A Truss B
Chord Member|8'x 8"x 4"|8"x 8"x 4"
Web member |4"x 4"x % 4"x 4"x 3"
Panel length 8 ft. 8 ft.
Truss Depth 8 ft. 13 £t
b L Lo L
4 8%

Fig. 2.1 Vierendeel Truss With Panel Point Toads
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Fig. 2.7.a Semirigid Comnection with

Relative Rotation
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Design range
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Relative Rotation K P

Fige 2.7.1 1lloment-Rotation Jurve For

A Semirigid Conzmection
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13.02 10,5 4,62 13.44 3.36  13.02 7.98 11,34 L
/
55.02 54496 44.52 23.94 2.1 !
|
8
(42.00) (39.9) (30.24) (16.38) (0.29) ’%
\ ]
(9.66) (13.02)(4.62) (20.16) (13.86)

Fig. 2.10a @

Stresses For Pansl Point Toads

(Fotes RBracketed

Plzin

(2.1) (29.74) (23.1)

3

of 4,2 Xips For truss A

os. Refer to J=lxlo4¢ﬁ23

Tos. Refer to J=w )

13

5
l

¢
12.0 11,0 1.75 15.5 5.75 16.25 11.5 14.75 i
54.725 54,70 42.0 22,50 2.25
(53.75) (53.25) (41.0) (22.0) (2.25)
{(11.75) (11.25)(1.25) (15.0)(7.5) 17.0)(12.5) (15.75)
£
FLZ. 2.100 ¢

Stresses for Panzsl Toads ¢f 2.5 Xips for Truss B
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H = Heiaht of thes(ft))
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Central Deflections
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CHAPTER III

THE BUCKLING PROBLEM OF THE HSS MEMEERS
SOME DISTANCE AVAY FROM THE JOINT

3.1  GENERAL INTRODUCTION

In addition to the attention paid in the preceding
Section to the limitation on deflection, one of the important
facts for the design of a2 long~span Vierendeel truss is the
relationship between the load capacity and the geometry of
the section. These relationships are mostly a function of
instability. As the adopted sections are HSS which consist
of thin plate assemblages, the instability problem of the
section becomes more prominent. The top chord member at mid-
span is often critical. However, as the last Chapter showed
the ends of the outside web members are siressed most severely
for the trusses examined.

Thus the problem is to find the permissible ratio b/t
of the plate element of the compression flange.

The foregoing mentioned buckling problem is referred
to the section some distance away from the joint. The buckling
problem of the section right under the Joint is heyond The
scope of this volume and will not be included in the following

discussion.

A
(o)



3.2 ILOCAL BUCELING OF PLATE EIEMENT OF HSS
CCMFRESSION FLANGE

THE GOVERNTING EQUATION OF FLATE UNDER AXTAL LCAD

The goverming equation of the plate of dimensions axb
under the action of forces in its middle plane(see Fig.3.1)

is [10]

o oty
DSt 3123 2+ 4 )T *(‘ngwzﬂybewz +2Txy S:Eg‘y) °

(3.1)
where D = Flexural rigidity of plate per unit width

:1%%372)

Poisson's ratio, and is 0.3 for steel

i

Y
t = Plate's thickness

W = Transverse deflection of plate
éx,éy = Nomal stresses in x and y directions respectively

1%y = Shearing stress in the plane of the plate

Note that the x and y are orthogonal coordinates in +the
Plane of the plate, x being parallel to the chord member axis.
In the present case of HSS compression flange,
only a uniformly distributed compressive stressAdi exists.

Eqn.(3.1) becomes

+30 ) 43P0, =0 (5.2)

D ( 34*'1
*+ 274 %2

x2372
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Eqn.(3.2) is only valid within the elastic limit.
When &, exceeds the elastic limit, Eqn.(3.2) has to be modified.
Beyond the elastic limit, the tangent-modulus Ej will be
effective in the x-direction while in the y-direction Young's
modulus E can be assumed to remain valid as dy= 0 . Introduc-

ingT= E{/E, Eqn.(3.2) is generalised as

dw 4 O
D('fbx4+%?;—2‘wz+z’w )+d‘°3'--2-0 (3.3)

When.‘c’x is within elastic zone, T is equal to 1.0
as E, = E , thus Eqn.(3.3) returns to Equ.(3.2)
The momentsﬁiﬁ the x and y directions can be expressed

as

M—"D(T}W.i.yﬁ )

(3.4)
, 2

b = ? 2

i D (vF zzw‘ >4 20,)

GENERAT, SOLUTION OF THE GOVERNING EQUATION

The general solution of the governing Equation (3.3)
can be obtained by using the boundary conditions of which the

conditions on the loaded edges are first considered.

(A) The B. C. on The Loaded Edges

The loaded edges are assumed simply supported. The

B. C. are thus
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| ¥
Vi 0 : %2 =0 (3.5)
b4 0 z=20
X X =

il
Y

Where a is the length of the plate in z-direction,
b, apprears later, is the w_idth of the plate in y-direction.

The second rortion of Equ.(3.5) is due to the first
of Eqn.(3.4) where ¥_ = 0 and »2w/ey2 = O .

Assume W =Y sin 83X (3.6)

woich satisfies the above mentioned B.C.. Y is a function of y.
Substituting Eqn.(3.6) into the governing partial

differential equation(3.3) and solving the resuliting ordinary

differential equation leads to the full expression of Eqn.(3.6)

as given below
W= ( cy cosh k1y + cp sinh Kyy
+ ¢35 cos kpy + ¢, sin kyy ) sin 2=
(3.7)

where k= %f—%,l,u-rl T kz: -%L- ‘t,/,u—I ’
4.t , a2
= ’IS%—"(E‘E) ’ d, = buckling stress

The constant terms Cqs ces cy are to be determined

by using the B. C. of the unloaded edges

(8) The B. C. on The Unloaded Edges

The unlogded edges have the following 3. C. 3-—
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(1) The web rlates of HSS exert equal elastic
restraint on the unloaded edges. The deflection,
W, corresionding to the smallest value of & o is
an even function of y. Thus c, and Cy in
Eqn.(3.7) vanish. |
(ii) The unloaded edges remain straight.
(iii) The angle of rotation at the edge of the buckling
Plate is equal to the angle of rotation of the

ad joining restraining web plate.

Using the above mentioned B. C. leads to the buckling

condition, namely

JEF T tann( %}TI 9—.@;95—-) ,J#=1 tan( %FI Eii) |
+K$/“ E;Lﬁ: 0 (3.8)

where o= a/b and ¥is the coefficient of restraiut. §= O when

the edge is rigidly fixed, and Y=oo when the edgé is simply

supported.

(€) Eguation for Buckling Stress Le

A solution of buckling-condition Bgn.(3.8) for the
elastically restrained plate ( where 0<'¥<oe) leads to0 an

equation for &,

<4 5 (e (3:9)
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or &g =

2R tg
T (ﬁk (3.9)

12(1-y2)
where p and g are constants depending on the coefficient of
restraint ¥ and k is called the plate coefficient.

The value of k for a square HSS is 5.79 as can be

found from the curve in Fig. 3.2 prerared by Hudoba(1l] .

Determinations of Buckling Stress in the Inelastic Range

And the b/t Batio

In the elastic range whe:‘e’fﬁl 1.0, the buckling stress
can be determined directly from Equ.(%.9) .
In the inelastic range, 7 is an unknown as it derends

on dc

({5:7 - dc )40
(87 = ¢p)4p

ices = (3.10)

wbere.dy = yield sitress 3 &, = rroportiomal limit stress

D
therefore, a method of trial and error will be necessary by

using

2

2 %

do _ K ( ) . | (3
- - oll)

NT 12(1-pD)\ b ’

t

The procedure of calculation is as follows.
For a given HSS section, we can precalculate the value
on the right-hand side of Egn.(3.11), avd then, a table is set

up for the T- values comruted from Equn.(3.10) with given .,


http:Eqn.(3.10
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and £ p and for the corresponding value of <./% « When the
value of dclﬁ in the table is closely appmaching the pre-
calculated value on the righit-hand side of Eqn.(3.11), the
required buckling stress is found. TFor HSS steel dy =55 ksi
and é’P = 48 ksi . These values are based on the results of
temsile tests carried out by Hudoba [13] and pertain to the
example in Chapter IT. Such a table for these values is given
below |

e T “/7

48.0 1.0000  48.0

49,0 0.,38750 5245

50.0 0.7450 58,0

51.0 0.6070 654

52.0 0.4640  76.5

54.0 0.600 135.0

54.8 00326 303.0

55.0 0.0000 oo

In the above table it can be seen that T-values vary

from 1.0 to zero. Hudoba showed that when the total strain is
0.5% that T= 0.1 . The corresponding buckling stress 4, is
avout O.99¢’y and thus the designed 7 value of 0.1 can be consi-
dered reasonable for calculation of the critical b/t ratio in
allowable siress design. TFor this T-value of 0.1 the corres—
ponding value of dc{ﬁ: is 200, the critical b/t ratio can then

e calculated as

Zi2m(
B = Pt O N,
0/% Z[T3(377%) =

<l

= 28


http:resul.ts
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where = 29600 ksi

) = 0.3 (for steel)

oy
i1

5.79(for square HSS)
%/F= 200 lsi

Tor our examples of Vierendeel trusses whose members'
dimensions were given in Chapter II, we can determine the
buckling stress for the web members by using the following

data and Table 3.1 &

4, = 55 ksi dp = 48 Xksi
B 229500ksi Y2 0.3, K=579, b=4"
H
t = 1" and 3
Lo s Rz 2 = - L N .
A B (I) - 605.219 ksi (for 3 material)
T L2000)\%

= 2420.8 ksi (for & material)

Tor these caleulations, it is evident that assuming
the yield stress of 55 ksi for each case was in close agree-
ment with the critical stresses for buckling.

Although the stress of the top chord member was not
critical in the matrix analysis given in Chapter IT, it is
necessary to check that the 8 x £ plate does not have a critical
stress substanially below the 3ie1a value. Since the behaviour

purely elastic up to 48 Zsi , a simple elastic calculavion

[
0

|
[&]

given below.

Then T= 1, Eqn.(3.9) gives
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&5 ¥ x 29500 (D2 x5.79 = 151.3 kei
12(1-0.09) 32
Since this value exceeds 48 ksi (proportional limit),
it is apparent that the buckling stress for the inelastic case
will be between 48 ksi and 55 ksi. Hence the top chord for
truss B is not critical. Truss A need not be checked because

[/
of the 4 +thick material .
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Fig. 3.1 A Rectangular Plate Subjected To
Compresgive Axial Stress
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Table 3.1 Estimation of Buckling Stress

47

<. ksi. T JT S /T kst
48.0 1.0 1.0 48,0
49.0 0.875000 0.93600 52.5
54.0 0.160000 0.40000 | 135.0
54421 0.127450 0.35700 151.8
54.9% 0.011440 0.10700 | 513.36
54.945 0.008990 0.09490 578.977
54,950 0.008170 0.09060 | 606,512 *
54.970 0.004000 0.06300 | 782.540
54.990 0.001636 0.04000 | 1374.750
54,995 0.000818 0.02860 | 1922.900
54,9969 | 0.000507 0.02258 | 2435,600 *

*¥
(From above Table, the buckling stresses for the

- f "o .
web members of £ and 3 thickness material are

54,95 ksi. and 54,9969 ksi., respectively.)



STREUCTUEAL BEEAVICUE OF UNEQUAL~WIDTH

CONECTIONS

B
.
=
b

LASTIC BEHAVIOUR

The theoretical and experimental investigation of the
elastic behaviour of the unequal-width connectlons had been
carried out by Redwood t12] [13] .

As mentioned in Chapter I, when the width ratio 4/b
is leés than 1.0 , the joint problem is one of plate flexure
with certain loads aud boundary conditions. In addition to the
localised bendiing just descrived, the chord member is subjected
to bending and axial load from the rest of the truss. However,
a length of plate about four times the widtia 1s considered to
be sufficiently 'long' that end-effects might ve ignored.
Therefore, in the work descrived in this volume, particular
attention is devoted to the localised beunding of the connecting
flanze of the chord member.

Theoretical and exrerimental values of joint stiffness
obtain by Kedwood are plotted in Fig. (4.1) where D and ¢ were
defined earlier for applied moment. The detall of the joint

used in the tests is giver in Table 4.1

In Fig. (4.1), the stifiness incorporated ic aprropriate
non dinmeunsional form 1g shown to increase rapidly with the

= d/b)
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become non-linear. But in most cases, there is a large reserve
of strength which has not yet been fully utilised. Therefore,

e elastic analysis expPressed in Fig.(4.1) can give little

b»l

o
infornation on the strength of the joint.

Since the end web members are critical for the examiles
used(see Section 2.5), a plastic analysis of the joint is atte
mpted to estimate its collapse load to determine whether stiff-

ening rrocedures are required to establish full moment capacity.
4.2 THE STRENGTH OF JOINTS ESTIMATED BY FLASTIC METHOD

Use is nmade of Johansen's square yield criterion(14)

for the rlastic analysis of the joint. Although the square
yield criterion is mostly applied to reinforced concrete stru-
t has been shown by Vood[li that the method aprlied
fairly well for sieel rlates.

A colliapse mechanism is gssumed or the loaded slate.
By using tke principle of virtual work, the collalse load can
be calculated. As the collarlse load estimated by this method
is an uprer-bourd value, the lowest value of all calculated

collapse loads corresronding t0 various assumed mechanisms is

“ne most tYcorrect! one.

JOTI® SURJSCTED T0 APFLILD MOMENT

Initially, the assumed collapse mechanisa for the

plate subjected 0 moment Ttransmitied from the wet member is


http:assmn.ed
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The region of the plate enclosed by the web member is assumed
to be rigid as it rotates through, say, a unit angle. The
amount of rotation of plate elements about the vield lines and
their lengths are tabulated in Table 4.2 . Hote that the values
on one side of the center line are numerically equal to the
other side.

The equation of virtual work associated with the mechan-

ism is

2
27" . 2 atand
Tt = + 27\.(3013&) (4.1)

Ml = 2bmg (1-n+
for a unit angle rotation of the square eunclosed by the web

member, and where m. is the internal moment per unit length

P
along the yield line. Using the condition aM/d« = 0, we get

fand = /l—?\
Substituting into Egn.(4.1) , we obltain the minimum

value of M

2
. G £ = B 2N AN .
leed M= 2ty (I 720 + == ) (42)

Lower values of the collapse moment M were attempted
by employing other patterns of mechanism with 'fans' of yield
lines as shown in Tig.(4.3) .

The equation of virtual work works out to be

M= 2mmp (27 (F/2 = A=) + 1+ 2 (tendt tang)

2
+ 2)? COSA 4, 2N J (4473)

(1-p)cosd 1=
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The minimum value of M is obtained by setting >M/on

and 2M/p8 equal to zexro.
. 2
i M= mep (1 '*'}\.G ‘*“‘%L) (4-04)

In the range O0<A<0.635 Eqn.(4.2) gives a smaller
value of M than that given by Eqn.(4.4)
Equations (4.2) and (4.4) are plotted on Fig.(4.4)

showing values of M

with various values of 2, ( Yote that

O.5bm
b
“jir** is equal to four times the value in the parenthesis of
Eqn.(4-2) oxr (404-)0 )
4.3 COMPARTISON BETWEEN TEEOR&TICAL AND EXPERIMENTAT

COLLAPSY TOADS

The experimental results from the tests performed in
the University of Bristol [12) [23) plotted in Fig.(4.5) is
used to compare with the theoretical resulits derived above.
Fillet welded cornections were made between two square HSS
and were subjected to applied moment. The specimens were of
Grade 16 steel to BS 15 ¢ 1961. The average yield stress was
18.5 ton/in.z which was used to compute the ny of the specimens.

In using the theoretical equations for calculating
the collapse loads, the width b was taken as the outside dimen-
sions of the section minus twice the thickness Qf the wall,

And also, two values of » 7or each tested joint were taken;
one corresponds to the nominal size of the web member, the
other is the nominal size plus weld material.

Details of the connections are summarised in Table 4.1 .
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In Tig.e(4.5), the estimated collapse loads show sone
agreenent with the measured loads especially for the smaller
web menber.

When the web member becomes larger, the estimated
collapse load based on the nominal web size becomes increasingly
consexrvative. Onthe other hand, the larger load, based on the
nominal size plus weld, overestimates the strength of the joints
The latter discrepancy is probably as a result of the unconnected
web plates of chord member failing before the connected flange
plate for large sized web membvers,

For the trusses A and B(see Chapter IT) where the critical
sections are the ends of the web‘members, the results of the
yield line method and experimental results quoted herein are
important. For the itruss A, the moment capacity of the 4"x 4"x 3"
web member is 508.7§*in~kips, and the moment capacity by yield
line theory is 240 in-kips. For the truss B, the moment capacity

t i 44
for the 4"x 4"x %

member 1s 290.46 in-kiwps, and the moment
capacity by yield line method is 60,0 in-kips. TFrom these figures,
we know that the strength capacity of the web memdber is not fully
utilized., Furthermore, the experimental resulis of Redwood[l@[lﬂ
show that for small values of A{width ratio), the joint caracity

is less than the wen menmbver cayacity.

Therefore, on these iwo counts, the Joints require

o
-

stiffening if the parnel point loadings as computed in Chapter IT

are to be realized.

"y

ct
1
A
=
N
e
*
L ]

Based on steel that yilelds al


http:stiffe;.U.ng
http:im};X)rta.nt

53

An extension of the yield line method will e used to

study the strength of reinforced joints in Chapver VI.
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Table 4.1 Detail Dimensions of Joints [a] [i3]

| Weld ~ (d/p) | A (d/b)
Hain Member | Branch Member Size("ﬂ-) Excl, Weld Tncl.Weld

5 x5 x3/16] 25%2%%0.16 | 5/16 | o,541 0677
5=x5=x3/16/1x1x028 | % 0,217 0.325
5 x5 x3/ 16 'lgxlg,xo'l@ e 1%‘ 0.412 0.546
;J‘ ——i “ |
5 x 5 x3/16| 3:33%x0.192 | & | 0.758 | 0.920
107
;‘i%‘ > Experiment

P

-
Q

\BFim’.'be difference ;’;Ee-bhod

2 L 'y i 2 i 2 I H
B4 0@ B3 ok 035 ot 5. ob 55 fo SN

Fige 4.1 Joints with applied Moment

*(Reference is made to [13[13])
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Table 4.2 TLengths and Angles of Rotation of Yield ILines

Yield Tinpe Angle of Rotation Length
~ b(1~2N) END
AB, CD N 2 Tan o 2
' .
BC ' == tan ol b
EF » Ab
2\ cosx MNoSink Tand b{yv=—2)
BE, C® -~ T =~ = Snol
A + A B 2R -2+t
i T = —2A+
AE, DF 27 =2axt O aN-200 2
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Web memher

A1l square HSS

on nomial size plus fillet weld

Moment Capacity

58.37 ton-in
29,82 top-in
24.35 ton-in
13.08 ton-in

2.72 torn-in

M
N
53,6 _ton~in
M 5» " 6"
26 x5x%3/1
.§ ] —— Theoretical Estimation Based
c 24 on nominal size
{.—
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5 20
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Fig. 4.5 Applied Moment Versus Relative Rotation

(Experimental Results from Urniversity
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CEAPTER 7

TEE I¥FLUENCE OF SOME MEMBEE SIZING O
THE BEHAVIOUE OF JOINTS

5.1 GENERAL INTRODUCTION

This chapter presents a brief review of the dimensional
barameters of the connecting members which are important for
full web to chord member moment transfer. When certain ratio
limits are achieved, no additional strengthening is recessary
to obtain full working capacity of the truss. Chapter VI will
discuss strengthening methods and will attempt to arnalyze
joints for moment cavacity.

It was mentioned earliier that, when the welded
connectlions between two unegual-width square HSS at right angles
to one another were formed the problem of the joint was mainly
the bending of the connected plate, and that the strength and
stiffness of the joint were thus greatly reduced.

There mighnt be some ilmprovements for the joint if the
dimensions of the connected plate were carefully selected to
match the given dimensions of the branch member (i.e. webd
member) .

The experimental resulis by Redwood furnished in the
tant dimensions of the

precading  chapter were a2ll with cons

o =

main member, These tests, therefore, nave limited value in
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terms of relating slenderness or thicimess ratios +to moment
capaclity. Based on the limited tests carried out at the Drexel
Institute of Techrology [15], some information in this aspecs

can be gathered.
5.2 THE INFLUENCE OF CHORD WIDTE-to-THICKIIESS RATIO, /6o

The details of the tested joints at Drexel with various
b/%, Tatio are tabulated in Table (5.1), and the experimental

curves are plotted im Fig. (5.1).

In all these tests, the widths of the two members were
kept constants one was 4%, the other 6. The thickness of the
branch member was also kept unchanged. The only ckange was
made to the thickness of the main member to form b/te ratios
of 12, 16 and 24. (t, is the thickmess of the main member.)
The joints with these ratios are labeled as Jl, J2 and J3

resypectively.

As shown in Fig. (5.1 ), J1 and J2 with the b/t ratio
equal to.lz and 156 were capable of developing the fully plastic
moment of the branch member even though 4/b is less than 1.0 .
J3 with b/t, equal to 24 was unable to develop Mp or even My,

the vield moment of the branch.

It is concludied that, backed with observaitions from
geveral miscellaneous tests, the unequal-width connections

or even llp if

4

car considerably be strengthened to develop L

e

the width-to-thiciness ratio, b/fts is 15 or les

O]



61

5.3 THE INFLUZNCE OF ¢/t

In the preceding Section, attention was paid to the
fact that the joint with a b/te ratio egual to or less then 16
1s able to develop MF or even Hp .

Close examination of Table (5.1) shows that another
important parameter affecting the joint strength is the tc/tw
ratio. Where ty; 1s the thicxmess of the web member.

From Table (5.1), the to/%y ratios for the above
mentioned two 'strong' Jjoints, J1 and J2, which were able %o
develop Mp , are greater than 1.0 , whereas t./ty ratio for
the 'weak!' joint, J3, is equal to 1.0 .

Introduce another joint J4, with Joint dimensions
matching other joints as shown in Table (5.1) , to note the
influence of %o/t -

The experimerntal curves from the Drexel tests are plotted,
in Fig. (5.2) .

When a comparisor is made, regardless of all the
parameters excert b/t, , betweer J2 and J4, we might quickly
claim that J2 and J4, should have tThe same Jjoint resistance
because they heve the same b/t, ratio. But, as a matter of
fact, J4 is stronger than J2 even thouzgh the former has a
smaller A (as joint stiffress is prorortional ToA).

The reason for this is claimed To be that J4 nas a

nigher %tc/t, ratio than J2 .
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It is therefore concluded that the ratio t,/%y is

also an important parameter for strengthering the unegual-
width conrections; +the higher the tec/tw ratio, the stronger
the Jjoint. The unequal-width connections can bte assured to
develop My if te/ty 2 2.0 and at the same time b/tcs16.
Clearly, the examples of the two trusses mentioned in Chapter IT
do not satisfy the first inequality and, in addition, truss B

violates the second inequality.
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CHAPTER VI
JOINTS WITH REINFORCEMENTS
6.1 GENERAL INTRODUCTION

When the ratio b/t, is greater than 16 and t./t, is
less than 2.0 , the unequal-width joint is generally unable to
develop the fully plastic moment of tke smaller section (web
mexzber) unless reinforcement is applied to the joint.

Several iinds of reinforcement can be suggested such as
the use of web.flange plates, chord flange stiffeners(mounted on
the crord flange), haunched plates etc. as shown in Fig. (6.1).
Fevertheless, these forms of reinforcement should be consistent
with the requirements of efficiency, feasibility and economy
as a wrole.

The following sections are devoted To various forms

of reinforcement.
6.2.1 AFALYSIS OF FLANGE-PLATE REINFORCED JOINT

An approximate analysis of the Flange Plate Reinforce-

ment is discussed in this s=2ction.

Q
O
S
&3]
ot
[0
4]
H
v
]
o

negual-width connection reinforced oy two
he flanges of the branch member as
shown 1n T gz, (6.1a). A moment is applied orn the joint throush

A
9]

ne oranch menper.

[8)Y
Oy
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The relative rotation of the joint as a result of the
arplied moment can be found vy dividing the maxinum vertical
deflection of the chord flange plate by one nalf the devth of
the branch menmber.

The vertical deflection of the joint consists of two
parts; one part is attributed to the shortening (or elongation
at tension side) of the reinforcing plate, the other part is
the deflection of the connected plate of the main member subject-
ed to line load transmitted from reinforcement. The former
Part is small as compared to the latter part.

The exact distrivoution of line losd transmitted from
reinforcement is not fully known, But, 1t is gquite safe, with
some reasonable approximation, to say that the distribution of
loading falls somewhere between two extreme cases; one is the
uniform distrivution, the other is of Parabolic shape with

ero intensity at the center. However, the areas of two dis-

9

Ttributions should be equal to each other.
6.2.2 SHORTE'ING (OR ETOUGATION) OF THE FEINFORCING PLATE

On $he compression side of the Joint subjected to
applied moment, the reinforcing plate of dimensions b X h_x t 1s
assumed 0 be subjected to concentrated lcad of magnitude P
as shown in Fiz.(6.22). Since 2ll motion i1s surposed to occur

in the plane of the paper, a unit Tthiciress of the plate 1is



[on
(&3]

This type of plane stress problem is best solved by
the lower bound Ttheorem of limit aralysis 16] [1 } which
tates that 1f aun equilibrium state of stress below yield can

e

be found wlich satisfies the stress boundary conditions, then

y3
(6]

The loads imposed can be carried without collapse by a stavle
body composed of elastic-perfectly plastic material.

Instead of the plate, we suppose trat a triangular
munned truss is imagined to carry the load inside the body as
shown in Fig. (6.2b). The forces in the members of the truss

can easily bpe determined as

c= 577%%;77 ’ T=Csin &= -E-tan & (6.1)

where & 1s half the angle made by two inclined legs.

The cross—-sectional area of each member ics to be chosen
in such a manner as o give a2 safe or permissible axizl stress.
Here the stress must be chosen at or below 2k, where k 1s the
yield stress in shear, if a lower bound on the limit load is
to be found or if the safety of applying P to the rlate 1s to
be realized.

To maximize the lower bound loading, zall members of
the truss are taken at yield. The width of each member and
the Irincipal stress in the overlap regions are all indicated
iﬁ Fig.(6.2c)

The compressive force in the inclined legs and the

lower bound for the limit value of P can be written as
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C=2knb cos o , P=2C cos = 4k Ab cosSe’

The vertical projection of the shortening of the
inclined bar is egual to the change in the height of the truss.
Por simplicity, we assume the change in the height of the truss
is approximately equal to the shortening of the plate.

Therefore, by using Hooke's law, the shortening of the

bar is

b1~ 1
PSR E I

2 sin

gt =2

E:jlta

where C/A =2k, IL= b(l-pA)/2 sin &
The change in the beight of the truss or the shortening

of the plate is

H

i\
i
5t

e (6.2)

As can be seen from the above expression, the shortening
of the plate is proportional to its length, h. As will be seen
later, this shortening is small as compared to tre deflection
of the connected plate of the chord member and can thus be

neglecied.
6.2,3 DEFLECTION OF THE CONNECTED TFLATE OF MATN NEMBER

Two extreme cases of loading distributions on the plate
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will be considered. One is the uniform line load, the other
is parabolic line load with zero intensity at center.

The long edges of the connected plate of the main
member are assumed to remain straight and are subjected to
restraining moments from the web plates, The effect of these
restraining moments is disregarded for the purpose of counter-
balancing the assumption that all plates are rigid which in
reality have some flexibility.

A length of four times the width of the plate could
be regarded as sufficiently long to simulate the chord flange
as: mentioned in section 4.1 . 5o the length of the long edge
is assumed 10 be of this amount. And thus the loading conditions
at both ends of the plate of this length could be neglected,
and so fhe deflection is zero.

The middle of this length is the center of rotation of
the joint where deflection is zero. This middle line is anti-
symmetrical in relation to the forces. Taking one nalf of the
Jength of this long plate into consideration, a rectangular
plate of dimeusions bhx2b with four edges simply supported,
subjected to either uniform line load or Parabolic line load
is the main topic of discussion that follows.

The details of the rectangular rlate are showm in Fig.

(6.3) .

6.2.4 SINFLY SUPPORTED EECTANGULAR PLATE SUBJECTED TO UNIPORY
LI¥E TOAD

The probvlen of a rectangular ilate with all edge
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simply supported subjected to itransverse loading can be best
solved oy Navier's method[lS}.

Favier's method for plate Iroblems is essentially
explained as follows.

Consider a simply-supported rectangular plate of di-
mensions AxB with coordinate axes as shown in Fig. (6.4).

- The governing equation [19] is

247 A1, _ |
x4t 2 3xpyet 57 “%‘ (6.3)

where g= intensity of transverse loading, w and D having been
defined earlier.

The boundary conditions for all sldes simply supported

are
N b
il =0 - 3_%5{ =0
x =0 2%l x =0
Jx:A Ax = A )
(644)
b 2" -
W =0 ; 2% =0
y =0 T TByy =0
Jy = B iy =3B
Suprpose a deflection, which satifies the B.C. is equal
to

W= Gy sinEA& sin.%i | (645)

Substituting the above equation invo the governing
equation (6.3), the loading needed to produce this deflection

(6.5) is


http:satifi.es
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fzc"r ot 7t

inZE s, BY 5
= DCy 4% | sin=~ sin (6.6)
Ji To2g2 T A B
Similarly, suppose a deflection which satisfies all
B.Ce 1s
- .oon8x . ok
i "vcmn 51n-—z-51n.331 (6.7)
The loading needed to produce this deflection (6.7)
must be
4.4 4 4g4 4t T YW
m& om Ty n x . m N
q = i + + sin sin
Pomn | T 25 s+ A B
(6.8)

It is seen that a transverse loading of the form

sin—EZ vln-E& applied to an all-sided simply supported plate
will produce a deflection which is also of the form s:.r!A sxn—EL
Hence, a rrocedure for solving this type of plate

rroblem can be summarised as followss

{i) ZExpress the transverse loading into trigonometric

series as
ho o) o0 T
alx nty
E E %n sin —K~'31n 5
m=1,2,3.e8 =1,2,3...

(ii) The deflection of the plate will then he

Tl oo

nex n¥y
oo E E in — gin Sl
P Cmn sin A sin 5

m =1’ 2,3. o1 =1723 Bes e




13

o
where C = qmn/D[ Wh ot

+
2°8° g*
L

Turning to the case of a simply-supported plate of‘
dimensions bX2b , subjected to uniform line load of intensity

q, at {0 from one edge is [ Appendix IVJ,

p =] o0

. ~7 ~? ik o
4q0/ } sj_zlzb’ﬁs:u.n;{fc sin m%(y (6.9)

Zl-l 2, 9' .m—-l,3,5.

OO w
7 7 nfx
= q 81— sz_n?-ziz
. . Ratal 2b b

r}:l, 2, 3..13'-'-1, 3,5.00

Aay
where <N l(b -—n-; sin ng:g
Following the procedure described above, the deflection
of the plate can quickly be found as
e oo

’ 4 miy n&x
w= E z Con sz_nT sin — (6.10)

NR1,2,5. 051,353,500

mi

2
2 2
m 7
7} n = - ee——
where c qmn/mﬂ*{ o2 4‘02}
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64245 STMPLY SUTFORTED RECTANGULAR PLATE SUBJECTIED TO

PARABOLIC LINE TOAD

NWext, consider the simply supported plate of dimensions
bx2b subjected to a parabolic line load of maximum intensity
3qy a2t both ends and zero iuntensity at the centre acting at L
distance from one edge. The quantity 3q, is determined in such
a way that the area of parabolic line load is equal to that of
tThe uniform line load.

The equation (Appendix III] for this parabolic line

load can be expressed as

11 e . n¥x
_zﬂ(ihf?f{?) sin~5y s:.x:r-{)R sin=sy

121 3395021, 2,50

O oD
B - mg . nux ISt
= E g G, Sin _-E-b sin S (6.11)

mzl,B,BQ o-ﬁ:l’ 2,3:0‘

where = 4800—3—'- ) sin
G T~ gy B ? 2b
- 440 1 . 24 .., %
o m( 3 22 5" ) sin >0

Tollowing Navier's method, the deflection of the

plate can be found as

A 7
1 .
W= > g sin _I?-_gz‘ sin ﬁg—%— (6.12)




/0 IZ"2 + -2 )2

where Chn & an

Substituting p= (2-0.57)b, x= (2~0.50) b and y=0.5b
into Equs. (6.10) and (6.12), we can find the deflections of
the plate at the middle of two different line loads. The
actual deflection of the plate falls between these two values,
i.e.

5

(6.12)<' ga.ct. < S(6.10)

Three terms of either Equn. (6.10) or Egqn. (6.12) are
sufficient for an approximate value of deflection. By using
the above mentioned values of o, %, ¥ and g, = M/db = Mﬁnbz
and different » , values of deflection from Egns. (6.10) and
(6.12) are obtained. The obtained values are then changed
into relative rotations of the Jjoint by dividing them by 0.54
or Q.5Ab. The contribution of deflection ox relative rotation

nade by Equ. (6.2) is small and is invariably within 8% of

25
Eqn. (6.12). As the deflection by Eqn. (6.12) is already
small, the 8% value could be neglected. A graph with relative
rotation ¥ versus A is plotted on Fig.(6.5) to show the fle-

zivility of the rTeinforced joint with respect to A..
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6.3 CHORD FLANGE STIFFEVER

A stiffening plate mounted to the chord flange with
its centre coincident with the centre of the Joint is shown

in Pig.(6.1b)

It has been recognised that the loading transmitted
from the web member to the joint is mostly resisted by the
connecting flange plate when A ls less than 1.0 . An additional
plate a2bove the connected plate will automatically tend to in-
crease the flexural rigidity of the joint. This increase will
be by a factor of eight if the thickness of the stiffener is
the same as that of the chord flange.

A test of this type of reinforcement had veen carried
out in the Drexel Institute of Technology [15). The details
of the joints and the test results are shown in Tadble (6.2)
and Fig. (6.8) respectively.

In the test, the stiffening plate of dimensions 5x5z5/16

7as fillet welded to the 6 face of the main member of

dimensions 6x4xl/4, the branch‘member was then centrally fillet
welded to the stiffener.

As can be seen from Fig.(5.8), the moment resisted by
the joint with reinforcement is 175% that resisted by the same
joint without reinforcement. Therefore, the chord flange stiffern—
er may provide efficient reiunforcement for unequal-wlidih connect-
loms. In additiom, the addimg of this stiffener is rot object-

ionable from an aesthetic wviewpoint.
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6.4 HAUICEED REINFCRCEMENT

The haunch consists of HSS wedges cut at 45° with a
right angle %o match that of the web and chord member.

The detalls of the haunches for reinforcement are
shown in Pig.(6.7).

To therknowledge of the author, the experimental tests
on this type of reinforcement for unequal-width connection
has not yet been reported. The tests carried but in Corby,
Englandﬁzoj, on this type of reinforcement were solely for
equal-width connections.

In order to obtalin design information for haunched
reinforcements for unequal-width comnections, an experimental
programn is currently being carried out in HcMaster University
under the supervision of Dr. R.M. Korol with the sponsorship

£ CIDECT.
6.5 DPLASTIC MECHANISM FOE EEINFORCED JOINTS

As an extension of yield-line theory described in
Chapter 4, an aralysis will be made of reinforced joints

loaded o failure.

FLANSE PLATE REINFORCEMENT

The details of the flarnge-ilate reinforced joint are
shown in Fig.(6.la) in which two rectangular or trapezoidal
flat rlates are welded to the flanges ¢f the branch member

8]
L8]
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The collapse yield line prattern for this reinforced joint sub-
Jecved to applied moment is similaxr to that of the urreinforced
one (Fig. 4.2)

Like Eqn. (4.1), the internal virtual work done by the
yield lines when the Joint rotates through a2 unit angle of

rotation is

222 . 2 tand
I~Tt 1I=x

2omg (1 =7+ + 2A cotk ) (6.13)

Considering the reinforcing plate (Fig.6.8) on the
tension side of the joint, the shearing stress does the work
of lifting two triangular parts of the plate when the Joint
rotates through unit angle of rotation. As the plate is assumed
of rigid plastic material, the 1iftirng only occurs when the
shearing stress reaches its ultimate value as shown in Fig.(6.9).
Therefore, the total work done by the shearing stress

in two reinforcing plates is

aft+ an | (5.14)

iy 9= 5§ gf2 L b2
where t,T=%,/2 and Y= 5-d ~(0-a) /2 (b-d) /2 are constants.

Eqn.(6.14) becomes

49-/2-1 _2b/2 'tSdA
(v=d) /2

~ 28y Ab/? 1 b=d
4~§ICB:ES7§ t (% 5 n)

=3 & yAbth (6.15)
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Equating the intermal work to external work, we get

4

) ,
2N 2N tanol .
RN 2N cotel) + S Abth

M= 2bmp (1-n +

With the condition dM/dd = 0 , we get tand(= [1 =N

Thus we obtain the minimum M as

, . 2 . .
= - A& AN L y o
M 21011113 (1 - + = ﬁ:?x) + %dYaoth (6.16)

It is obvious that the last term of the above equation
is due to the reinforcing plates which add more strength to the

joint

CEORD FLANGE STIFFENER

‘A chord flange stiffener is a rectangular (usually
square) plate of dimensions b x 1 x t welded between the chord
flange and the web menmber with its center coincident with the
center of the web member as shown in Fig.{(5,1b) .

It is well known that 1if the fully »plastic moment of
a plate of thickness + is mp per unit length, a Plate of
thickness 2% should have moment capacity ecual to 4mp .
However, complete composite action is unlikely, hence it is
useful to also consider as a limit the case of no bhond beiween
reinforcing plate and chord flange. TFoxr this case, the two—
layer Plate has 2 monent cafacity of 2n.. Our actual case will

be hetween these two extrenes,
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The yield line pattern for this type of reinforced
joint is essentially the same as that of the unreinforced jJjoint
with only a slight difference. The diagonal yield lines may
propagate beyond the edges of the stiffening plate. Whether
or not the diagonal yield lines spread veyond the edges of the
stiffener 1s derendent on the length of the stiffener. 1In view
of this phenomenon, the yield-line ratterns are classified

into the following three cases.
(1) EXTEYSIVE YIELD LINES SIREAD

The collapnse mechanism with diagonal 7ield lines spread
beyond the edges of the stiffening plate is shown ir Fig.(6.10).
The yield lines occuring on a single-layered Plate are acted
ugon . oy mp, such as BB', CC', BC, BC', B'GF' **ees+ efc.. The
others occuring on double-layered plates have a moment caracity
of 2o, O 4mp. The angle of yield-lire rotations and vtheir
lengths are the same as in Tabvle 4.2 .

The equation of virtual wori for the 2myp case 1s

= e 22 tand, | AEgand & 228
¥ = 2bmyg 5 :7\ g : :c-ayri ‘4 2acotd, + Tt 2(1-2)
. 2
Y T 17

To find the minimum M, we let dM/d«, = O which yields


http:F.ig.(6.10
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2N 2 )
T sec 0(,1']_-3_.\;\ seczo(‘ - 22 cosec%(‘
b(1-A) 1-7\
2
or -—?3.‘. __7.&2_ - 27\00'&%(, 4 oAl tand, 2 tand, = 0
- I1=A b{ 1-n) 1

On further simplifying, the above equation becomes

tand/ - ( 2 237 () tan¥, - (2- m(m =0 (6.18)
Equation (6.18) can also be written as

tan = (_7?1)[(2%759 tan2(, (-:_a)J
t ab-1l |,

Por the case being studied a square reinforcing plate
is assumed such that 1 = b . Alsoa= 0.5 since the web member
is 4” and the chord member is 8' « The solution for 'ta..o(
from the above eguation is tan®= 0.57 and hence o= 29°21" .

7ith 1 = b and A= 0.5 , Bgn.(6.17) becomes

2

M= 2bm ( 2.5 tank 4 cotd, + 0.5 tand, + 3 )

Substituting tand, = 0.57 into above equation, we

obtain
M= 2bm - ( 6.33) (5.18)
.ilj
In similar way, the minimum i for 4m, case is 2hmne (10.1)
ith jand= 0,45 for 1 = b and A= 0.5 .
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(i1) DTAGOUAT YIELD LINES THROUGH THE CORNERS OF STIFPIENER
PTATE

The yield-line pattern for this case is shown in
Flg.(B ll) . There are only four yield lines, namely
BC ’ B’ C ’ BB and CC having moment caracity mp the others
have 2m,, for the no bond state.

The equation of virtual work is

2
M= zbmp {3_;\_3?53“ 3A cotd +—3§_—_-_75'— + 2(1—7\)}

Using dM/de,= 0, we get tand, = ,[1-N

Substituting tand, =/1-A , we obtain the nmin. M as

| | A 2 |
M= 2bm [ 6 BEAS 2(1-3\)}

-7 (N

For A= 0.5 as our previous example of truss A or B,
the min. M becomes
= Qbm '( 6064‘ )
P
(iii) CONFINED YIELD LIVES
The collapse yield-line pattern confined to the region
of the stiffener is shown in Fig.(6.12). As can be seen from
1
the Tigure, only BB and CC have moment capacity of N,y the
other have noment capzcity Zmp.

The equation of virtual work is


http:cai:e.ci
http:Fig.(6.11

47\tand3+ 3A coth, + 2o 3A.

1 = 2
) _bmp =~ T,

+ 2(1-n0)

By using dM/dX,= 0, we get tand,= /2 (1-0)

The min. ¥ is thus

2
o= zbmp{;%ffis + if;_ + 2(1~m0]

For A= 0.5 , M= 2hnp°( 7e4)

The 'fan' yield-line mechanism for avove three cases
was not attenpted because of its comlexity. In addition, the
ad justment to M would e slignt and therefore the attemit is
not Justified.

Table 6.3 compares joint moment capacities witl web
member values for the two cases studied. Comparing the joint
nmoment capaciities ovtaired for the flange plate reinforcement
and ture chord flange stifferer we observe that flaaze plate
reinforcement provides a value of moment capacity intermediate
vetween the extremes of full chord plate action and complete
sliding aCulOMu* Yo definitive statement can te made as 1o

wrich method of reinforcenent is suzerior. A test series such

as that currently underway in the A.D.T. will hopefully answer
that guestion. For the case of truss A, the reinforcenent
mevhrods a2dpear to be sufficient to develor the required HP T

the web menber. ©Phis is not the case for ftruss 3 where the 1/4

plates are ilunsuificient to develoy the regqulred webd nember
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Fig. 6.la Flange Plate
Reinforcement
Flange Plate Reinforcement Plan View Side View
D —
' 1
1 t
¥ t
§ 1
- . ]
Fig. 6.1b Chord Flange ! :
Stiffener ' '
| )
Chord Flange Stiffener Plan View Side View
b
! t
o
!
Tig.6.1lc Haunched b
Reinforcement M ¢
N ‘\\
= —
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Huancned Reinforcement Plan Tiew Side View
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L

Joint | Main Branch <L vt Reinforced
Mo Member (in) member (in) A="f c C/tw nent
ISR 6 x4 025 4 x4 x0.25 | 0.67] 24 | 1.0 |525%7% 1
J5 6 x4 x0.25| 4 x4 20,25 0.67| 24 1.0| WONE
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Table 63

Mowment Cafaci'\:ies oS- Joint and Web Members

Momen{: Ca?adty Of Jo'mf by Yiel&-—hne '\'heory *

Moment Ca{mc\‘ry °5'

Unre'mﬁorce_& Jo‘mt

Chord Flange Stiffener

H&\’\ge Plote Reinforeend (whgre 2= 5(d%- a%)

Web Member

Lower Extreme Upper Extreme M = 2bmy (4-32) M
=¥ = . = &, £

1 M=2bmg{a.32 - e - . ¥ e Y
% 5 ¢ )| M= 2bmg(6:33) | M=2bmp(10.) +ysAbth ¥k
4% q x iy = 240 in-kips = 348415 in-Kips =556 n-Kips = 458  in-Kips = 508-T5 in-Kipg

Truss B

sn,c 8")(}"4
4%y 4-,,){7; 60 in~Kips 87.0  in-Kips 139.0 n-Kips \70 in-Kips 290.46 in-k:Yg

*

—

¥% h=d (or nb)

‘{y = 55 Kst

—m?: 3, il z“.k;],s/un’.t width (-j'-or a¥ Ahickness mokerial )
©.36 InKips /umit width (f"' Vo' thickpess m‘\'er'ml)
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CHAPTER VII
SUMMARY AND CONCLUSIONS

Connections made between two unequal width square
HSS welded at right angles are regarded as semi-rigid.
This condition is caused by purely flexural action of the
connected chord flange due to internal loads transmitted to
the joint by the web member.

Vierendeel trusses composed ¢f unequal width square
H3S were used as examples utilizing this type of connection
and were analysed by a matrix method taking semi-rigidity
into consideration. The trusses were of egqual s@8' panel
widths, parallel chords 8' and 13’ avart and uniform size of

n 1] " " it H
web menbers, 4 x 4 © % for one case and 4 x 4 x &+ for the other.

) . n n n n n il . ,
Associgted chord sizes were 8 x 8 = 3 and 8 % 8 x % respectively.

X
A computer programme was set To estimate the naximunm
deflection of the truss subjected 1o constant panei-point
concentrated loads. With varying joint modulus, the maxinum
deflections were calculated and were plotted against the joint
modulus to facilitate the designers choice of joint modulus
or dimensions.
Puckling of the compressive top chord member was unlikely

the two examples considered 1n Chapters IT and IIT. Instead

Fh
12
¥

s

of the top chorl member, the end web members were critical

97
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and reeded to be increased in size due to the Dpresence of
nigh stresses there.

The loading acting on the Joint was confined to the
transmission of loads from the web member only. A length of
four times +the width of the chord member could ve considered
as sufficiently long for the chord flange plate analysis for
rotation under avplied moment.

The behaviour of the Jjoint becomes non-linear even
at relatively low loads due to the very high stresses at the
corners of the joint. However, this yielding is quite
insignificant if the ultimate load capacity of the joint is
required. Thus, the plastic analysis of the joints was attempted
to estimate the ultimate strength of the joints.

As an ordinary unequal width connection is weak to
developim or even M_, several reinforcing Techniques bave heen

D y
suggested, such as flange-vlate reinforcing, chord flange

stlffener and haunched rlate relnfor01a5. An approximate elastic

analysis of flange-plate reinforcement was attempted. An
extension of the yield line method was also used to estimate
the strength of the reinforced Jjoiants., lloment capacities of
tre reinforced and unreinforced joints were then calculated to
compare the momentAcapacity of the web memnter, In each case,
it was found that the moment carpacity of the Joint is usually
lower than the moment capacity of web membter. Hence, reinforce—

ment 1s deemed necessary 1f the strength of tThe web member is

to ne fully utilized.
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The following conclusions can be made based on the
study described;

(1) Vierendeel trusses are aesthetically pleasing
and are generally economical in a number of applications such
as for pedestrizan walkways and as roof trusses.

(2) Deflection criteria may be at least as important
to the designer as are strength considerations. Greater economies
are achieved with the use of unequal web members welded to
chord members in HSS material. However, this type of design
reduces the overall stiffness because of semi-rigid connéctions
and may result in excessive deflections under working loads.

(3) In each of the two trusses analysed, the web member
width to chord member width was equal to G;S(i;e.7\). Analyses
were carried out to show that the web to chord welded joints
vere inadequate in two respects, i.e€.,

(i) Strengtn as determined by a yield line solution,

(ii) stiffness, from the poiat of view of deflection.

An adeguate desizgn could only be achieved by employing
one of these joint strengthening techniques described herein.

| (4) Reducing A while desirable in materizl saving may

ve offget by costs incurred from Joint stiffening. To cost
analysis was attempted but experience in the use of HSS trusses
will tend to suggest optimum A in relation to other geometrical

.

prorerties of the members and the associated joint stiffenin

g

procedures nost



APPENDIX I
SEMI-RIGID CONNECTICH EQUATIOCN [5,7,8]

Consider a prismatic member ab with semi-rigid connec—-
tions of joint modulil Jd, and Jy (Por defination of J see foot~-
note on vp. 13) at ends 2 and b respectively. The internal
end moments M, and My, due to the external loadings or support
settlement somewhere in the structure are acting at ends a and
b respectively.

The total angles of rotation at both ends are determined
by adding the rotations of the member without elastic rotational
spring subjected to My and Iy with the additional rotations due
to the eiistance of the elastic rotationzl springs.

The first part of the rotations of the member a b without
elastic spring subjected To i, and Hb can be determined by the
Conjugate Beanm Method.[26) (27)

Consider Fig.A which shows the real beam a © and the
conjugate veam. The vending moment diagram of tue real beam with
a multiplier 1/3T is regarded as 'loading' acting on the conjugate
beam. To find the reaction force of the conjugate beam at the
support a, we btake moments about b, thus

F M T, T
_..LL«L'_ T MaT
BaL-+-& T )_3._ (._3__) -

100
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point is equal to the slope of the elastic line of real beam.

Thus, the rotation at a2 is
8! = MaL/EI - fJbL/GEI

Similarly, by taking moments about a, we get the rota-
tion of the beam at b

Oy = = MaL/6ET + M,L/3EL

The other part of the rotations due to the elastic

rotational springs are
g" =4, /3
a ar e
n
&y = Mb/Jb

where Ja and Jy, are the joint moduli at ends a and b respectively,

Hence the total angles of rotation at both ends of the

beam are

1 f
&, = Oy + &, = M L/3ET ~ MyL/6ET + 1, /3, (1.1)

ad ! n s <=y 1 M
&, = Oy + &y =-M LEEL + inI]/BEI + Mb/Jb (4.2)

Taking out the common factors Ma and Mb sy Two above
equations can be re~arranged as

Ld, + 3EI

o = . - oy
23S, ( T/GET ) iy (A03)
& = - ( T/6ET ) U, + ( Ldp + 3EI My, (4.4)

3ETdy
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Multiplying both sides of Eqn.(A.4) by 2(LJ,+ 38I) /LI,
and adding it to Eqn.(4.3), we get

2(Ld, + m)e _[4(LJa + 3EI) (Ldy, + SBL)=J 5 pL°
. =

& + LI, BELJ,dpk To
Let I, = L +(3EI/J,)
& Ly =TI +(3BT/3y)
My, can be written as
65T — g, + 6 2la (4.6)
M, = — + 6EI &y A
b 4Taly~ T2 2 4T, T - L2
Similarly, Ma can be written as
= 2Ly c L (A7)
M, = 6EI &, + 6EI o AT
2 AT Ty = 12 4T, Ty - T2 ©

If Jp=J,=J , then Iy = I, = L'

Eqns.(A.6) and (A,7) can be written as

o1’ 1
M. = 6RT ——— & 4 6ET —————— & (A.8)
.
i I ; oL,
M = 6B —————— E] ———— @
WO R 2 et T e 2 T (4-9)

Eqns.(A.8) and (a.9) coincide with Eqn.(2.8) .
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APPENDIX Il - COMPUTER PROGRAMME 10

HRK72T100. Y eKeLOO
FTN(R=3)
LGO.

1

C
C

6400 END OF RECORD
PROGRAM TST {INPUTOUTPUT »TAPES=INFUT s TAPE6=CUTPUT)

THIS PROGRAMME 1S USED FCR SCLVING THE VIERENUZEL TRUSS WITH SEMI-RIGID
CONNECTIONS AT SOTH ©nblS UF THE WiB MEMBERS #3335 5% 5% %3035 55 1505 350 % % 503 13656 % % 3 3%
DIMENSION A(26950)95(1U0 ) sASATI269201 9P (26911 sAL2651) sF (50917
CSPRING{25)9Z(25) sWEBSL(25) 9 STRESS(13a1) sAXIAL (43l sVERT (Lol
DIMENSION INDEX(26)
READ (99101} NPSNFsNLC
101 FORMAT (315)
WHERE NP=NO. OF UNBALANCED MUMENTS AND UNBALANCED LINEAR FORCES AT JOINTS
NF=NOe OF END MOMENTSS NLC=NOs OF LGADING CONUITIONS ON THE STRUCTURE
READ (591027  ((A(IsJd)ls J=LlaNFls I=1,NP}
102 FORMAT (10F6e3)
READ (5999) ((P(Isdls J=1sNLCls I=1snP)
59 FORMAT (1F4.0) '
WRITE (635104)
104 FORMAT (13HOTHE MATRIX AJ
DO 105 I=1,NP
105 WRITE (65106) Is (A(lsJdls J=1lainF)
106 FORMAT (4H ROWsI391Xs1P4E16.7/(8Xs1P4EL16e7))
WRITE (65110)
110 FORMAT (13HOTHE #ATRIX PJ
DO 111 I=1sNP
111 WRITE (63146) Ta (P(Ilsdi,y J=1,iLT
146 FORMAT (4H RCWeI3slXslF4e0)
THE PANEL LENGTH OF THE VIERENDEEL TRUSS IS 8FT AND ITS HEIGHT IS 13F7
THE DIMENSIONS OF CHORD AND WEB ARE 8X8X1/4 AND 4X&Xl/a RESPECTIVELY
DO 71 I=1s 61 4
71 S{1)=7844.
DO 72 1=4y b4y &
72 S{I1)=7844,.
DO 73 =2, 624 &
73 5{1)=3922.
DO T4 1I=3s 63 4
74 35(1)=3922,
KK=0
DO  30C1 1I=1,l0
KK=KK+1

EI=300004%8,18

SPRINGIKS I =FLOAT(II)#10s%10+%10%10s%10e/1a0
Z(KK)¥=1e /SPRING({KK)
WEBSLIKK}=156e+3 e %¥EI#Z (KK

DO 81 [=65y 97+ 4

Bl S{IV=(({6eH*EIH*24¥WEBSL(KK) J/ (4e®WbEDSLILK I *WEBSL (AR} ~156+%15641)1
C/1240
oG 82 I1=68y 100 4
2 S{II={ {6250 %#2+FWeDSLIKR I 1/ (4o irosl inn *WEDSLIAR I =loce 1lo8e
(/12 a0
DO 83 1=65s 98y 4
83 S{IV=({{6e*EI%156e)/{baH*WEBSLIKK I ¥*HEBSL{KKI=1964%156a11 /12
DO 84 [=26T7s SS9 4
G4 SL{I)=((Ea%E1#*155e )/ {de #¥WEBSLAKKI#WNEBSLIRKI=1564%156ed i /12
CO 112 1T=1,.NP
DG 112 J=1aNP
ASATL{I +J) =0,
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112

113
114

117

115

119

120

122

123

121

113

124

127

DO 112 K=1lsNF
K1={K~1)/2%2+1
K2=(K+1)/2%2
=2%K~—1
K &=2 %K
ASAT(IsJ)=ASAT(LsJl+Allsk 1%
DO 113 I=1NP
INDEX(1)=0
AMAX==1a
DO 115 I=1sNP
IF (INDEX(I)) 1155
TEMP=ABS(ASAT(Is1))
IF (TEMP=-AMAX) 11551159
icoL=1I
AMAX=TEMP
CONT INUE
IF  (AMAXJ) 118>
INDEX (ICOL)=1
PIVOT=ASAT(ICOL»ICOL)
ASAT(ICOLsICOL)=1e0
PIVOT=1e/PIVCT
DO 120 J=1sNP
ASAT (ICOL»J ! =ASAT(ICOL»J!*PIVOT
DO 121 I=1sNP
IF (I-ICOL)122s 1215
TEMP=ASAT(IsICOL)
ASAT{I,ICOL)I=C4W0
DO 123 J=1sNP
ASAT(IsJ)=ASAT(IsJ)=ASAT(ICOL»J/*TE
CONT INUE
GO TO 114
DO 124 I=1sNP
DO 124 J=1eNLC
((15J)=00
DO 124 K=1,NP
X{1sJl=X (1) +ASAT (K
127 1=1sNF
={I=1)/2%2+1
=(1+1)/2%2
=2%1-1

116 115

117

3001, 119

122

MP

)*P(&’J}

S WG

H

[N}
*
-t

127 J=1sNLC
[sJ)=0s
DO 127 K=1sNP

TY O et e e (O
S~ O

M ¢

AXTAL AND VERT ARE ThHE AXIAL FURCcs OF

(Tod)=F{IsJd)+X{KsI)H(SLIBIHA(KSILI+S (4]

105

[S{KBIFA{JsKL)+S(RLGIFA(JaRZI)

*A(Kel24

CHOURD A FEMOERS RKESPELTIVERY

tap —
WD

DG 210 J=lsNLC

AXTALI19Jd) S { «D% 7 a¥P{2Usd) #8atr{deditE{lasdil/13e4

AXTALI2sd)=(45 “(“D()JQJl“LbD—R(/USJ)“pt+g(;9u:+F\:09lef‘b*
AXIA)IBQJ)~(03‘]-VP\LU J}*£40~J(’usd}‘(300*691+%\‘)u)+ff ’Ji S i

AX1 L( ’J)‘\OB 7.”P(dv J)‘BZO_H(ZbQJI*
C+F(2*9JJ)/ 30
=T (lsJ)—.r(laJ}+P(/sJ')/d.

B i=(F{Bedi+F{bsJ

Gadi={F(Tad)+F (Bl —F{Dadi—F{

-

{4

etla+da b FF L add

brE g l=F{ledl—FldsJl?/Ca
‘“F(j”'—L(Q9J)}/6a
C,JJ)/H-
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[ SRR IR |

2190

310

107

108
1U%

1128

1129
1136

1125

106
VERT(59J)=(F(99J)+F(109J)“F(79J)‘F(83J))/8-
CONTINUE
SM AND $M2 ARE THE SECTICN MODULI UF CHUKD AND WEB ME4BERS RESPECTIVELY
SM=1848
SM2=4 409
THE CROSS SECTIONAL AREA OF THE CHURD MEMBER IS Te5Y SWe INe
THE CROSS SECTIONAL AREA OF THE Web MEMBER IS 3654 SUGe INe
DO. 310 J=1sNLC :
STRESS(13J)=ABS{F(laJ}%#124/SMI+ABSIAXIAL(L9J]/T459)
STRESS(2+J)=ABS(F(2sJ)#124/5MI+ABS(AXIAL(LsJ}/Te59)
STRESS(3sJ)=ABS{F(3+J1%12./SMI+ABS(AXIAL(25J7/7e53)
STRESS(49J)=ABSIF (49! %12e/SMI+ABSIAXTAL(Z2sd) /7591
STRESS(5sJ/=ABSIF(55sJ)%¥124/SMI+ABS{AXIAL(3sd)/Te59)
STRESS{(63J)=ABS(F(6sJ!#124/SM}+ABSLAXIAL(3sJ1/T7459!
STRESS(7sJ)=ABS(F(T7+J}%#124/SMI+ABS(AXIAL(49J1/Te59)
STRESS(8sJI=ABS(F(8sJ)%12e/SMI+ABS(AXIAL(49J)/Te59)
STRESS(99sJ)=ABS(VERT(1lsJ? /3454 +ABS(F (34, J)%12a/5M2)
STRESS(10sJ)=ABS(VERT(29J)/3e54)+ABS(F(36sJ)*12e/5M2)
STRESS(11sJ)=ABS(VERT(39J)/3e54 ) +ABS(F(38sJ)%12e/5M2}
STRESS(12sJ)=ABSIVERT(49J1 /354 +ABS(F(40sJ1¥*12e/50M2 )
STRESS(135J)=ABS(VERT(5sJ)/3e54 ) +ABSIF(42ZsJ)%12e/5M)
CONT INUE
WRITE (64+107)
FORMAT (13HOTHE MATRIX &)
DO 108 I=1sNF
Il1=(I=-1)/2%2+1
12=(1+1)/2%2
13=2%1-1
[4=2%]
WRITE (65109) ls Ils StI34s 125 S(I4)
FORMAT (4H ROWsIB395Xs3HCOL13s1PEL6e735Xs3HCUL I3 1PELET]
WRITE (6,1128)
FORMAT (13HOTHE MATRIX F!
DO 1129 I=1,sNF
WRITE (6911360 1s (F(IsJd?ls J=1aNLCT)
FORMAT (4H ROWsI391lXs 1Fléaesi
WRITE (6411251
FORMAT (13HCTHE MATRIX X!
DO 1126 I=1sNP
WRITE (6511360 Is (X{IsJd)s Js1,NLC)
WRITE (6,1820) '
FORMAT (54HOTHE ASSOLUTE VALUE OF STReSS InN THe socvborS oF TRUSS/Z)
DO 1821 1I=1,.13
WRITE (531830) Is (STRESS(IsJd!s J=lsniC!
FORMAT (7H STRESSs I3s 1Xs 1Flae4l
WRITE (541840}
FORMAT  (52H1THE AXIAL FURCES In CHORD AND wWib mMEmMseRS IN KIPS//)
50 1841 I=ls4
WRITE  (691850) Is  (AXIAL{IsJd)y J=1snNLC)
FORMAT  (6H AXIALs 13s 1Xs 1F1l&4e4
DO 1851 I=1s5
WRITE (6418607 1s (VERT(ILsdis J=1l,shLC!
FORMAT (5H VERTs I4s 1Xs 1F1l4e4?
CONTINUE
STOP
END


http:Row,13,5x,3HCOL,I3,1PE16.7,5X,3HCUL,I3,1PE16.7l
http:STRESS(5,JJ=A85(F(5,J}*l2�/SMl+Ad5(AXIAL(3,J>;7.59
http:STRESS(3,JJ=ABS(f(3,J'*l2./SM'+AB5CAXIAL(2,J'/7.59
http:5TRESS(l,Jj=ABS<F<l,JJ*l2./SMJ+ABS{AX1ALC1,Jj/7.59

ATPENDIX IIT

LOADING EQUATIONS EXPRESSED IN
TRIGONOMETRIC SERIES

UNIFORMLY DISTRIBUTED LINE IOAD

Consider a uniformly distributed line load of intensity
q, acting at a location of a plate as shown in Fig. B .

This loading equation can be expressed into double
- Prigonometric series. One component of the equation is expressed
in x-direction, the other component is expressed in y—-direction.
The product of two components is the required double trigonometric
series. .

In y-direction, +the loading can be regarded as U.D.TL.
of intensity g, acting on a simply supported beam. For a
structural element with simply supported ends the half range
series which is nost often used is the sine seriess Theréfore,

the load may be represented as

) . 2% : %
B LT TSR e

To find q, multipy both sides of this equation by
sin nzcy/‘h and integrate from O to b. Noting that
0 , wvhenmXn

b‘
. Ry _._ D%
g 3111-@—,51 s::.r_—n—sy- dy =
0 b/2, wvhenm=n

the resulting equation is
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-

(b gl
q_n(—g-) '=§O q sin 5%1 dy = e (1~ cos ng)

From. a2bove equation

q,. = 4% when n is odd
and g, =0 when n is even

Therefore, Eqn.(A.10) is expressed as
= 49p in ZY 3 1 e 31‘37 .
g - x ( Sln,.__b_ + _5 sin — "‘ PN ) (Ao 11)

In the x~direection, the loading can be regarded as a
unit concentrated load (because of line load) acting at a
distance P from one end of a simplied supported beam of length
2b. To derive the expression for this unit concentrated load,
we can treat the loading as a UDL of intensity 1/2€ between
x =p-€ and x =F+'e (see Fig.B). The loading on the beam is theng

zero from =x =0 ‘o X =p-&

1/2 from x =0-€ to x=p+e

zero from x =2t€ to x = 2b

Like Eqn.{A.10), the loading may be represented as
3%q, sin n¥x/2b, nultiplying both sides by sin nwx/2b and

intesrati between 0 and 2b we get
<3 3

-

£ {H‘E n¥z 2b nlx
(0) sin 53= ax g L osin—= ax - (0) sin dz
So 2‘0 f_aze 2% 2%

20 o, f*
= S 9, sin ﬂé(x dx
o D

3
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_1 2o 2b
Whence 5% o [os-——(,o £} - cos zb({O-a-&)J I =5

Using the cosine combination formula, this give

| . % ... n¥E
= —.0. ase ==
Q= = 2-sin 5% sin b
and since sin nas — 0¥ as -0
2b 2b
LS} - ngﬁ

The expression for this unit concentrated lozd is

thusg [l'?]
1 sin & sinXE 4 sin —£31n XX A.12
5 5% Tl 21 gb ( )

Multiplying Equ.(A.11) with Eqn.(A.12), we obtain the
reguired double trigonometric series for the uniform line load

acting on the plate, i.e.

= 4‘0 e = l 3 nzfs' mw o ?—Z.E_:E.
q ﬁ,‘z Z ( ?sa_n 55 Sin —g— sings
3])3’5..]1:!‘1’3- .
22 po . nm . n&x :
= Z Z; q sin _%‘1 sin ET (A.13)
LESEERRES 2
where q_ 4? oLl gin .Iff
n 7o n 20

iation {A.13) coincides with Fgn.(56.9)

=)
o
o)


http:Eqn~;(A.11
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PARABOTIC TTWE TOAD

Consider a parabolic Iine load at a location of a
plate as shown in Pig, C . The areas of this parabolic distri-
bution and the U.D.L, in preceading Section must equal each
other, The intensity of this parabolic distribution is found
equal %0 3q, at both ends and zero at the center.
The double sine series for this parzbolic line lozd
can. be decomposed into two components, namely x and y components.
Before dealing with the component equation, we would
like to find the equation of a parabolic curve as shown in
¥Pig,D where q is the vertical axis and y is the horizontal axis.

The general equation for the parabola in Fig(D) iszl]

| (7=1%9/2)°% 4k ( g-0) (As14)
where ( b/2, 0 ) and ( B/2, k ) are the coordinates of the
'vertex and the focus respectively., The value of k can be found
by substituting the boundary value of the curve, namely when
=0, g= 3q, « K is thus found equal to b>/48q, . Express
q in ferms of y, Equn.(A.14) can be written as
q=( y-‘-b/Z)zl_%g_o (4.15)
Returning to the y-component equation, we can regard
the loading in y-direction as a parabolic distribution load
acting on a simply supported beam of length b. Let this load

be represented as


http:Eqn.(A.14
http:location.of
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(A.16)
Where g, can be found by multiplying both sides of
above equation by sin my/’o and integrating with respect to
y from O %o h.

Js]
Thus Oy = -%. KO q sin E%E- dy

Substituting q as expressed by Eqn.(A.16) into above

equation, we get

-2 : 2
9o = m4zgo ["' mszJ(l - (-1 }

E-EC-( i mZZT.Z )

when 1t ig even a, = 0

"when m is odd q. =

Therefore, Equ.(A.16) can be written as

. o _484q4 :
= E ~5 5 S - _ZZ_ R
* m=3 35 m & ( 2 ) e (A 17)

which is the y~component of the parabolic line load acting
on the plate,

As in preceding Section, the loading in x-direction
can be regorded as a unlt concentrated load acting at =z distance
,° from one end of a simply supported beam of lepgth 2b. The

expreggion for this unit load is

&p Ty .
1 = 2F° 5 2
b[sn.n 5% sin 201- sin 5y ot Abe + .,.J
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The product of the two comronents gives the required

dounle sine series, thus
2

q =) i( q, sin BT i Z5X

n Q 2
M=135- n-_/,}. "

1 2 .
BT (" plg2 ) Sin wEp/2b

— 4g, 1 -2 .
=120 = Z - sin n&pF/2b
L0352 B) wa

(AJ18)
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N

Uniform Iine Toad on a Plate

J

“’T' b

Iine load in y-direction

Tine Ioad in w-direction

Tig.B : Uniformly Distributed Tine Ioad
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3%.
.
7 B f
i
34.
r L) S
2b y

Parabolic Tine Load Acting on a Plate

(0 33 (5,37

2.9

A Parabolic Curve on  J—-Q 2TeS



AFPFENDIX IV

FNOMENCLATURE

Matrices s

4]
[3

f
2}

5)
1%}

{e}

ok

Static matrix

Deformation matrix

Internal end matrix

A colunn matrix showing values of unbvalanced joint
moments and unbalanced linear forces

Stiffness matrix

A column matrix showing values of joint rotations
or traunslations

A column matrix showing values of elastic end
Totations

A symbol used to indicate the transpose of a matrix

Hotations

a Length of Flate in x—direction

b Width of Plate in y-direction; the width of chord
member of sguare HSS

c Compressive force in triangular pinned truss

d Width of web member of square LSS

D Elastic flexural rigidity of plate of uvnit width,
EI
DY) i

E Blastic modulus of steel

o Tangent modulus of steel

i
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Shear modulus

Height of Vierendeel truss ;3 height of stiffening
plate

Homent of inertia

Joint modulus (J = M/¢)

Plate coefficient

lenght ; span lenght of beam ; panel lenght of
Vierendeel truss

HModified length of the structural member with
semi-riglid connections at ends

Pully plastic nmoment of plate (per unit width)
Applied vending moment

Load

Haximum intensity of distributed ioad

Plate thickness

Co~ordinate axes

Transverse deflection of thin plate

l;OfU or @/u

Plastic section modulus

The angle made between the diagonal yield line
and the vertical

The angle made bhetween the diagonal yield line

nd +the hoxrizontal

m

€3]

hearing deformation
Deflection
Small increment

Coefficient of restraint



Vidth ratio (d/Dv)

-4

A certain distarce from one end beam where a

concentrated load is acting

% A& s A S Y
)]
-
(€]
)
6]

Relative angle of rotation between two members

Abbreviations

AISC Anmerican Institute of Steel Conctruction
- CIDECT The International Committee for the study and
Developaent of Tubular Structures {(Comite!’

international rour l'etude et le de'veloppemnent

Je la Counstruction Tubulaire)

HSS Hollow structural Sect
tin. Minimun
Max. Maxinum
TRC Mational Building Code

UD4 Unilforml; distridbuted Load
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