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A research programme is presented for the analytical. 

evaluation of the deflections of Vierendeel trusses comprised 

of semi~rigid connections under panel feint loadings. The 

semi-rigid connections are made of two unequal width square 

ESS members welded at right angles. As the fle.id.bility of the 

joints increases when the width ratio is less than 1.0, the 

joints are tmable to develop the moment capacity of the web 

member and excessive deflections limit functional capability 

of the truss. Hence, several types of joint reinforcement are 

recommended. A yield line method is attempted to estimate the 

strength capacity of the joint with and without reinforcements. 

In adtlition, a plate analysis forms the basis for estimating 

elastic joint stiffness for evaluating anticipated deflections 

at mid span. 
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CHAPTER I 

INTRODUCTION 

1.1 	 HOLIOW STRUCTURAL SECTIONS 

The new structural shape of Hollow Structural 

Sections (HSS) have gained wide popularity during the last 

fev1 yea;rs. This is mainly because of a number of advantages 

namely: 

(i) HSS provide outstanding strength in proportion to 

their weight, especially under compressive and 

torsional loading. This advantage is much better 

than those of conventional steel shapes. 

(ii) The flat and smooth surfaces of rectangular and 

square sections f;Tovide easy attacbment for a 

branch ESS member, such as bean to column and web 

member to chord :nember in trusses. 

(iii)The smooth and clean a~peara.nce of the sections 

is aesthetically pleasing. 

(iv) 	The ease of painting is also a benef'it. Besides 

that, it gives protection to the interior surface 

from corrosion if ooth ends of a member are com

pletely ;::ealed. 

( v) In rnul-ti-storey buildings these sections can be 

used in conjunction Yli th a ci-rculating fluid to 

1 
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provide fire resistance. 

In order to use these sections properly, the be

b.aviour of welded connections made from HSS members must 

be known. Unfoxtunately, the literature on HSS connections 

has not yet been adequately available •. I'n this vo.lume 

attention is focused on the connections of unequal width square* 

RSS members welded at :right angles and sub~equent behaviour on 

truss deflection and· stre.ngth<for :«design ~~pu.rpo~se.s. It ,i·s ho.~d 

-~,t-~t: some lj;g~t·.--W:ill -b_e ~:cas.t ..on.~·t.hia: ·1nt~:resting problem. 

1.2 CLASSIFICATION OF CONNECTIONS 

On the basis of structural behaviour, the HSS conn

ections can be divided into two categories, namely the equal

width connections (d/b = 1) and the unequal-width connections 

( d/b < 1), whe:re d and b are the widths of the web and chord 

members respectively. 

These two categories are shown in Fig. 1.1 • 

For the equal-width connections, most of the load 

applied on the branch member (o:r web member) is directly trans

ferred from the web plates of the branch to the web plates of 

the main member (chord member) as they are ill the same plane 

joined together by weld ma~eri~l. Also, the load on the flange 

pl:J.tes of tLe brg,::1ch ~.1ill not be applied to the flange plate of 

the main r:1ember. Instead, :iost of the load is tra.nsmi tted t~'1r

ough the corners of the cor1nection as the flange plate of the 

main :nem.bex has 2w low stif.fness in couparison with t1·ie web pls.te 

of the main member. 
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7lhen the ·.1idths of tt:.e sections are unequal ( d/b < 1) , 

the behaviour of the joint becomes the plate :p:r:oblem with 

102..ding mainly resisted b~r flexure of the cor:nected plate. 

The strength 2..nd stiffness of this type of connection are 

drastically reduced. 

As joint flexibility .increas~s rapidly with d/b, the 

joint can no: longer. develop the yield .moment·. or. the·· :Plastic 

moment of the cross-section as it does when d: b. 

A graph, shown in :Fig. 1.2, is plotted with relative 

rotation¢ versus width ratio (constant applied moment) to 

show the change of flexibility of the unequal-width connection 

with :respect to width ratio. 

J3oth ty Jies of connections are basically semirigid (AISC 

type III com1ection). The fo:rmer type, hmvever, vlill have a 

larger :rigiclity in most practical situations and would be, more 

or less, expected to behave ~s AISC type I connection (i.e., 

• - ::? • • ):ri ,Q°lu.... connec1;i ons ( 1) 

1. 3 03JECTIVE OF STUDY 

A constant-height Vierendeel truss composed of square 

hollovr structural sections with unequal width of joints will 

be referred to in the investig~tion of semi-rigid connections 

made of ESS. 

T1li 3 :c·esea . .Tch v:ork was ::iotivated by Stelco (Steel 

Co:nr-2.n:r of Canad2) which .fahricates ESS Vie:!'endeel trusses .. 

While sufficient information eyists for designers for equal

~nidth connections, (2) t:~~e S'3.2Je is i:lOt t:t:e case for unequal
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width connections. For tbis :reason, design infoi"Illation is 

:requi:::....,ed if tl:e aesthetic and economical advantages, together 

vri th :CTany others, of these ESS trusses are to be e:~:ploited. 

A prime objective of thls research is to assess the 

flexibility of a typical Viexendeel truss composed of square 

HSS under working load.s to determine whether excessive deflect

ions might pose a problem. Hence, while a comi:anion research 

study also conducted at Mc1Iaster is to assess experimentally 

the ultimate moment capacity and flexibility of various types 

of connections in HSS, this study will be confined to an an

alytical evaluation of 

( 1) The deflections of a Vierendeel truss comprised of 

semi-rigid connections under panel point loading. 

(2) Strength capacity and behaviour of HSS connections, 

and, 

(3) The effectiveness of joint stiffeners. 

It shoilJ_d be emphasized t:tat Vierendeel trusses have in 

general strength :properties and aesthetic qualities that are 

attractive to the designer. There are cases, however, when de

flection limitations may rule out such a stxuctural alternative. 

The case oi a deep truss of limited sfa,n, i.e. floor to £loor 

depth and exterior wall to wall length in office buildings is a 

possible application. Two examples will be used to provide con

tinuity of the various cl:lapters of tbis volume.. Both examples 

illustrate the need for considering deflection and strength.in 

the design process. 

http:strength.in
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Equal Width HSS Connection d = b-

Unequal Width ESS Connection d < b 

Fig. 1.1 Classification of HSS Connections 
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1.0O.;a o.4 

Width Ratio, A {A-=d/b) 

Fig~' i;:2 Relative Rotation Versus Width Ratio J\.. 

Under elastic Conditi.on 



CHAPTER II 

IiIBTHOD OF A..l'fALYSIS :FOR VIERIDillEEL TRUSS 

WITH SEMI-RIGID CON1IBCTIONS 

2.1 1HERENDEEL TRUSS 

A Vierendeel t211ss is a hyperstatic frame composed of 

a series of rectangular or trapezoidal panels without diago;ial 

members. The truss was first proposed by Professor Vierendeel 

in 1896. The main function of the truss at that time was f()r 

bridges. In recent years, Vierendeel trusses have been used as 

roof trusses .in low-rise buildings such as schools and gymnasiums. 

It is also a commonly used structure for overhea~ pedestrian 

bridges. The Vierendeel truss to be studied in tbis volume is 

the one with rectangular panels as shown in Fig. 2.1. 

2. 2 ~IETHOD OF AI!"ALYSIS FOR VIERENTIEEL TRUSS 

The method consists of putting the slope-deflection 

equations in matric form in a sinple and systematic way. ( 3 J 
The explanation of the method is :probably best given 

by ilh1strating an e:rample as followsi 

Conside::~ a Vierencleel trti.Ss with concentrated loads act

ing ~t ~~nel poi~ts as shown in Fig. 2.1 

7 
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but. is internally indeterminate to the 24th degree. The 


total degree of indeterminacy could easily be deter:nined 


by experience or by the fornula 


n = 3m + r - 3j ( 2.1) 

where n =the degree of indetermi:oacy 

m =total number of members in the structure 

r = numbers o:f reactions 

j : numbers of joints 

Consider the Vierendeel truss in Fig. 2.• 2. As there 

are 18 joints (including the supJ;orts) in the truss, there are 

18 possible unbalanced moments acting at these joints. And 

also, there are 8 ;possible unbalanced linear forces acting at* 
certain joints as shown in Fig. 2.2 The unbalanced moments are 

assumed to be in clockwise direction and the unbalanced linear 

forces are assumed ei t.her in vertical or horizontal directions· 

These unbalanced forces (moments and linear forces), denoted as 

P with subscripts indicating their individual locations, are due 

to the applied loads acting on the truss. 

* The number of possible unbalanced linear forces in a structure 
can be determined by considering the number of deg:reesof free
dom in joint translation in the structure. According to the 
formula (4) , the totai.number of joints in translation in a 
structure is 

s = 2 j - ( 2f + 2h + r + m) 

where s :.leg:ree of freedom in joint translation or sways= ,...j nmnbe1" of joints including supports 
f ::: number of fixed supports 
h =number of binged supr.,orts 
r = number of roller supForts 
l!t = number of members in the structure 
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As a result of tbese possible unbalanced forces due 

to the exteni..al loads, the truss respoms with joint rotations 

and joint tra..11slations wbich are acco:cdingly in the same direct

ions as the unbalanced forces as shown in Fig. 2.2 

Fig. 2.3 shows the end moments, denoted as M with sub

scripts, acting on the ends of all members. They are all assumed 

in a clockwise direction. (The end moments can also be re~arded 

as 'distributed moments' from the point of View of the Moment 

Distribution Method). 

2.2.1 STATIC i~~TRIX A 

Every joint or part of the truss can be isolated as a 

free-body-d.iagra.:n so long as the internal forces are in eq

uilibrium with the exteJ:nal forces. Consider every same pair 

of joints in Figs (2.2) and (2.3). By using the conditions that 

~Moments= O, the following equations can be written as, 

P2 -- r1i2 + Ivi3 T M36 


P3 = M4 + M5 -t-1i3s (2.2) 

• I• .: .. 
l?1 ·--· _o = l'il32+ !Yl49 

The expression for P19 can be found by considering 

the free-body diagram of the top chord continuous member as 

shown in Fig (2.4.t). Using the condition that the sum of all 

horizontal forces must be equal to zero, i.e. I:Fx =O, we get 

P19 = - l/H (1\I33;.M34+M35 ••• M49;-:i150) 
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Similarly, the expressions for P20 , P21 ••• P25 can 

be obtained by considering the equilibrium cond.i tion o:f the 

vertical forces of the free-body diagram of the individual web 

member serarately as shown in Ri.g. (2.4.c). 

Let {P} be a column matrix showing values of unbalanced 

momenta at the joints and unbalanced linear forces. Let {v} 
be a column matrix showing values of end moments. 

Re-writing the ex:Pressions for P1, P2, P3 ••• P~6 

into matric form, we get, 

{p} = [A) {tr} (2. 3)
(26Xl) (26X50) (50Xl) 

(A) is denoted as the static matrix which is defined 

as a matrix expressing the balancing moments at the joints and 

balancing lateral :forces in terms of the end moments. 

The static matrix (A) is tabulated in Table ( 2._J.) 

2.2.2 DEFORMATION MATRIX (BJ 

Deformation matrix [BJ is defined as a matrix wJxLch 

expresses the elastic rotations,.Q, at the ends of all members, 

as caused by the end moments M in terms of joint rotations or 

translations, x. 

{e}= [B]{x} ( 2.4) 

( B) may be established columnwise by considering the 

eff'ects of each joint rotation and t:ranslation X on all the 

elastic end rotations ff • (BJ is called the defonnation 
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matrix because it is solely based on the effects of the 

disturbing external joint rotations or translations on the 

flexural defo:rmation at the ends of the members. 

Consider, for instance, the effect of x1 (keeping 

x2 , x3, ~' ••• x26 all equal to zero) will be 

and 

Similarly, the effect of x2 (keeping all other X's 

zero) will be 

and 

Turning to the effect of horizontal joint translation, 

, as.shown in Fig. (2.5a). From \vhichx19 

0'33 =9'34 ':::I 8'35 = 6'36 ::a ••• 
i.o. 

:: 9'43 =9'49 =0'50 :: -,-119 

where H is the height of the truss. 

The effect of each vertical. joint displacement, for 

instance_, , as shown in Fig~: ( 2. 5b} , is .x20 

9'1 = fi2 = s'17 = e'ia = - li,O ~ 

""0 - 0 - t:J; - l"V20 -- + ..1.!2.. x3 - ol4 - \719 - L 20Q 

where L is panel length. 

By considering the effects of each joint rotation or 
translation in this way, the deformation matrix [B) can be 
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established column.wise. 

Table(2.2) shows the established matrix (BJ for the 

Vierendeel truss. 

A comparison between Tables (2.1) and (2.2) shows that 

the de.fo:rmation matrix (BJ is the txanspose of the static matrix 

(AJ • Tbis characteristic is always found in all cases SOilved 

by this method. 

(2.5)Therefore, 

Renee, it is not necessary to establish directly ma~rix 

(BJ as it can be indirectly obtained by the transpose of the 

static matrix (A) • Sometimes, it is worthwhile to write out 

a few elements of (BJ to check the correctness of' (AJ ~: 

2. 2. 3 STIFHTESS t11ATRIX (SJ 

The internal end moments Ma and Mb at the ends of 
-

an 

initially straight prismatic member ab (as shmvn in Fig.2.t6) 

can be expressed in terms o.f the two internal end rotations 

&a and ~b by using the slope-deflection equation;

1t[ .... 2EI n. + 4EI o (2.6)~{.b - -r;-~a --r;- 0 b 

where E and I are the Young's modulus and the moment of in$rtia 

of the member respectively, and are constant throughout its 

length. The elastic end rotation ~is considered rositive when 

http:Fig.2.t6
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the rotation is clockwise. 

The total angle of :rotation of semi-rigid connected 

member ab subjected respectively to couples Ma and r.rb is, 

(Appendix :r] [ 5J 

( 2. 7a) 

e =-MaL + MbL + Mb ( 2.7b)b 6EI 3EI J 

JM
where J 	 is the joint modulus • 

Solving eqns. (2.7a) and (2.7b) for Ma and M , we0 
get (Appendix I) [1)[8] 

f 

i;:r· 
fira 

= 6EI 2L ~ + 
4L~2-L2 oa 

6EI 
. 

L a.,_
4L'2-L2 "o 

M0 = 6EI 
2L' I, 

4L, 2~ ~2 0'b + 6EI 41 
1 2_ L2 9'a 

( 2.8) 

where L'= L+3EIZ 

and z =1.0/ J 

The joint modulus J , or the rotational spring constant ~s a* 

property of the joint. Mathematically speaking, it is the app
ied moment M divided by.the relative rotation 0 of the connection 
when behaviour is elastic,i.e. M/¢ • The relationship bettmen 
M and ~ is shown in Fig. 2. 7 • The joint modulus is usually
measured in in-kips fer radian. 
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When J=oo for the case of rigid connections, Eqn.(2.8) 

coincides with Eqn.(2.6) • 

Hence, the slo:pe-de.flection equations :for the chord 

members are given by Eqn.(2.6). Whereas, for the web members, 

Eqn.(2.8) are used. 

J3y using Eqns.(2.6). and (2.s) , the relationship 

between the. end moments and the end rotations for ea.ch meniber 

in the truss can be written as ;·

M1 =4~I 9'1 + ~I 0'2 

M. = 2EI fJ + 4EI fY 
2 L 1 L 2 

4EI rv + 2EI e
Lo3 L 4 

2EI 9'3 + 4EI 9'4 
L· L . 

( 2.9) 
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A:rranging Eqn.(2.9) in matrix notation, we have 

{ M} = (s) {9'} ( 2.10)
(50Xl) (50X50)(50Xl) 

[SJ is call the stiffness matrix in which the.internal 
- . 

end moments are expressed in terms of the internai end rotations. 

( S) is a square matrix of order (50X50), its elements are given 

as the coefficients of {&} in Eqn. ( 2.9) • 

Matrix {P} had been defl.ned in Section 2.2.1 as a 

column matrix showing values of unblanced moments at the joints 

and unbalanced linear forces. Now, returning to the real situa

tion, the truss is only subjected to loading in which all P's 

are zero except P20 , P21 , P22, P23 , P24 , P25 , P26 of equa.1 

magnitude acting at the Panel r.oints. Reference is made to 

Fig. 2.1 

Therefore, matrix { P} can be quickly established as 

0 


0 


0 
• 
• 
'"O 
• 
.1..20{p}  ( 2.11)-

{ 26xl) P21 

P22 

p23. 
• 
"P 
"'"26 
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The matrix { P} can also be extended to include many 

different kinds.of loading conditions. Each column of matrix 

(PJ is for each loading condition. If there a.re foun·different 

loading conditions, the matrix (P) will then have four columns. 

Therefore (P) is no longer a column matrix if the loading 

condition is a combination of loads. 

Three ma.trices (A), ( s)and {P}, which have been diseussad. 

in previous Sections, are al.l input matrices which bave to be 

established before solving the problem. The solutions, or the 

output me.trice~ are the displacement matrix {x} and the inter.oa.1
- , ~ r 

end-moment matrix { M}· 

The operation of the matrix calculation is given as 

follows. 

From the static equilibrium condition 

{ P }= f A) {1t} 
(2. 3) 

From the condition of deformation 

{e'}= [:a-·) {x} 
(2.4) 

: (AT] tx} 
(2.4a) 

Since (B)= (AT) 
(2.5) 

From the slope-deflection equations 

{ r~r}=[s J { e-} ( 2.10) 

http:kinds.of
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Substituting Eqn.(2.4a) into Eqn.(2.10), yields 

( 2.12) 


Substituting Eqn.(2.12) into Eqn.(2.3), we get 


( 2.13) 


Rearranging matrix equation( 2.13), we obtain the output 

matrix iX} 

( 2.14) 


Substituting the known matrix {X} into Eqn.(2~12), we 

finally obtain another output matrix {M}. 

With the results o:f {X} and 1M} , the analysis is thus 

complete. 

A set of the solutions for a Iarticular case(see the 

detail in Fig. ( 2. Sa)) is plotted on the truss as shown in . 

2.4 LIMITATIONS ON DEFLECTION 

A computer p:rogramme [Appendix II] has been set up to 

analyse 'the truss with joint moduli varying from J =1 x io4 to lx10
8 

( in-kips/rad. ) and with constant panel J;>Oint concentrated 

loads. The dimensions of the adopted HSS are 4X4 for the web 
tt 

members and BXS for the chord members. Thickness of 1/4 and 

1/2" are used. The panel length and the height oi the truss is 

http:Eqn.(2.12
http:Eqn.(2.10
http:Eqn.(2.4a
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8 ft. in the case of ! n thick material and 13 ft. for i- n 

material. 

It is recognised that, with the adding of semi-rigid 

connections on the joints, the bebaviour of the truss becomes 

flexible. That is to say, when the modulus decreases, the 

flexibility of the joint increases. As a result, the maximum 

deflection of the truss at the central I-Oint becomes more and 

more conspicuous. With certain limits on deflection set fo:r: 

the tniss, the limits of joint modulus and loads can be found. 

Figs. ( 2. 9) are :plots of the central deflection versus 

joint modulus to show the iri_fluence of joint modulus on the 

deflection of trusses. As can be seen from the Fi.gures. the 

cu:rves start to become flat when J> lx10 6 in-ki:ps/ra.d.•• 

Therefore, the connections can be regarded as rigid when J 

6exceeds lx10 in-kips/rad•• (6) 

The limltations on deflection set oy National Building 

Code (NBC) (9] are as follows, 

(i) ~ < L for plastered ceilings 
max. 360 

for floor bea111s(ii) ~maz. < 3~ 
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(iii) for asphalt roofing~maJ<.< ~~o 
(iv) L for metal or elastic membraneSmax.< 180 

type roofing 

where L is the span. of a simply supported beam or truss. 

With certain limitations on deflection in mind, the 

designer can choose bis joint modulus within the required limits. 

From Eqn.(2.13), the deflections and rotations for any 

joint can be found. O.f Primary interest is x23 which represents 

the central vertical deflection of the t:russ. Fxom the results 

of the computer programme (Appendix , II) and employing the 

particular examples of the Vierendeel t:rnsses whose geometries 

were specified earlier, Table 2.3 illustrates the deflections 

at mid sian with rigid( J. =oa) and semi-rigid( J =ix104in-k/rad) 

connections for 1 ki~ loading at each panel point. The NBC 

limiting deflections ~or the specific trusses are also given. 

2.5 STB:ElTGTR LIMITATIONS 

The computer programme refer:red to earlier (Appendix 

II ) also defines the elastic stresses at all member ends 

according to the formula 

'!'!~ i:;1 
../ h!. ...c ( 2.15)Q::-t

s A 

where ¢ is the outer fibre stress in ksi at the c:ri.tical 

http:Eqn.(2.13
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point considered 

M is the associated bending moment in in-kips 

F is the pertinent axial force in kips 

A is the cross sectional area in in. 2 

and s is the section modulus in in.3 

-JI ~ 
For the two trusses A and B considered, Figs.(2_.10a) 

and ( 2. lOb) indicate the stresses at each cri tica.l Faint for 

panel I-Oint loadings of 4~'2 kips and 2.5 kips respectively for 

materials tba.t yield at 55ksi. Note that Egn. ( 2.·15) bas been 

.used in each case limiting the loading such tbat the maximum 

stress is equal to the maximum value at the most highly stressed 

section. In each case the critical section is the exterior web 

member. For truss A, Plate slenderness is sufficiently small 

that the critical buckling stress is approximately equal to 

the yield stress. For truss B, although the critical buckling 

is somewhat less than yield because of increased slende:tness, 

there is very little reduction in the maxi.mum stress. A more 

complete description of the critical stress for plate buckJing 

is described in Chapter III. Note that the flexibility at the 

web mem~)er ends alters the stress somewhat. For semi-rigid 

connections, the chord members cany a greater sbare of the 

load than do the web members. Consequently the critical r.oint 

mentioned r.ias a slightly reduced stress. 

A simplified design for the examples will follow in the 

~ Truss A is 8 ft. deep using 1/2 in. thick BSS 
ft T:russ B is 13 ft. deep using 1/4 in. tlTI.ck HSS 
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next Section permitting the designer to employ joint flexi bill ty 

as a Parameter. 

2.6 DESIGN FROCEDDP-ES 

For purposes of indicating the method design, the 

simplest i:ossible geometry and sizing of members are assumed. 

The top and bottom chords are assumed to be parallel and of the 

same cross section. All web members are assumed to be of iden

tical section, although it was evident from the previous Section 

that stiffer end web members would have improved the overall 

stress balance of the truss. However, since a deflection crttertcn 

is normally im:r:ortant, the examples are merely an attempt to 

illustrate the need to consider both strength and deflection in 

design. 

Sections 2.4 and 2.5 describe deflection and strength 

criteria in the design process. For truss A, it is evident 

from Pigs~·(2.10) that a limiting panel fiQint loading of 4.·2 kips 

is necessary to prevent failure at a section (viz. sections 

34 and 50 in Fig.(2.3) • 

Deflection criteria are normally based on working stress 

levels rather than computed mrudmum values. Consequently to 

relate the panel r~int loadings from a strength roint of view 

to deflection limitations, a :reduction to 60% of capacity is 

required. IThen the deflection limitation of L/180 is imposed 

unde:r working loads, it is evident from Table 2.3 that for 

J =oo the actual deflection for 2.5 h.-ips(i.e. 4.2/1.67 kips) 

http:4.2/1.67
http:Pigs~�(2.10
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is less than the liuliting value. However, for J =r~104in-k/rad 
the actual deflection of 0~521 ft. exceeds tb.at of L/180 

and is therefore not acceptable. A value of J ~ 2.5xl04"-k/rad 

just satisfies the de~lection c:ritexion.' Note that the stress 

at sections 34 and 50 axe reduced somewhat and hence an itera

tion process may be attempted to refine the correct :panel JX>int 

loading and associated J value. This was not pursued in tbis 

study because the stress changes were rather small. 

For truss B, similar results are evident. The limiting 

panel point loading is 2.5 kips to cause a stress of' nearly 

55 ksi at the critical section. Again, from either Table 2. 3 

or Figs.(2.10), when J = 5x104 in-k/rad., the limiting deflect

ion of .L/180 for 1.5 ki:ps(=2.5/l.67 kips) per panel point is 

reached with little change in the stresses throughout. 

http:ki:ps(=2.5/l.67
http:Figs.(2.10
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Truss BTruss A 

Chord Member a" a" -t-"x x .a a0 x B"x t" 
" ft ~Web member 4"x 4"x !".4 x 4 x i:tf 

g. ft.Panel length 8 ft. 

Truss 'Depth 13 ft~·8 ft. 

H 

lp ip ip }p f, I I ~ 
p tp tp 

~. @f!:: 8L 

Fig,. 2;:1__ V-1.e:rendeel. Tru.srf W1th ·Panel. Point i,Load~ 

f\) 
\..I~ 
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Pig~l 2~~2 Ac Diagram showing Uhba1aneed Forces and Ili.splacements 

(Displacements X's a.re in the same directions as 

unbalanced forces pt s) 
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Fl.g. (2~-4.'a) Vierendeel Truss With 

Panel Point Loading 
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Fig.: 2.7 .a Semirigid Connection with 

Relative Rotation 

Relative Rotation. <P 

Fig. 2.7;b Moment-Rotation Curve For 

A Semirigid Connection 
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13.02 10.5 4~ 62 13.44 3.86 l 


55~02 


f 

8 

(42.00) 

54~96 44.52 23.94 2.1 

( 39~9) ( 30. 24) (16. 38) (0~
1

29) 

• 2 • -•) 

{ 2~'1) (19~74) ( 23.1) t i(9 .. 66) (13.02) (4.62) (20.16) (13.86) 

It 
Fig. 2.1oa : Stresses For Panel Point Loads of 4~'.2 Kips For truss A. 

(Note: :Bracketed Hos. Refer to J.=lx.104 ;~~ 

Plain nos. Refe:r to J= oo ) 

54.70 42.0 22~:50 

(53.:25) (41.0) (22.0) 

1.? .. Q 11~0 1~15 15.5 6.75 16.'25 11.5 14.·75 

2.2554.725 

13 ' 

( 2. 25)( 53.75) 

(11.75) (11.25)(1~25) (16.0)(7.5) 

Fi.g. 2.lOb :· Stresses for Panel I.-0ads of 2.5 Kips for Truss B 
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Truss A* Truss B
;t 

J value 
DefilectioIIS:: f:or:_ l~kip· at 
Panel :Pointa (:Et.) 

.. 
!Den.ection...... 

~ 
Pane]~ :?oint LoadsC:r:i..terton (ft) _T_ru~~ A* rp~ +:r* 

~<L/360 o.·17a 2::11 K. 0~83 K. 

0.85 K. 0~54 rr
A. 

I 2~37 -rr 00,·94 K. 
~<L/3'20. 

!\.. 

0.200 -
0~·96 K. Oo61 K. 

i> < L/240 o.·267 3.11 K. 1 .. 26 K. 

1 .. ?a T(. () R_l 1<. 

4.'21 K. 1.67 K. 
~<L/1so o.·355 · 1 

1~10 "17" 1aOR K..:."\.. i 

J Value 
in-Ura..d. 

00 
iJl..k.,.._ 

C-Ad• 

lzJ.04 n 

00 n 

1xio4 If 

(:0 u 

l.x-J04 n 

co fl 

1>:rl04 
Tl 

Table 2.3 Ceut:ra.l Deflections and Code Limitations 

'* r.Truss A is 8 deep using 2
1n tbick HSS 

jji:. Truss Bis 13 1 deep using i" tbick HSS 



CHA-."PTER III 

THE BUCKLIMG :PROBLEM OF TEE HSS MEMBERS 

SOME DISTANCE AWAY FROM THE JOINT 

In addition to the attention paid in the preceding 

Section to the limitation on deflection, one of the important 

facts for the design of a long-span Vierendeel truss is the 

relationship between the load capacity and the geometry of 

the section. These relationsbips are mostly a function of 

instability~' As the adopted sections are HSS which consist 

of thin plate assemblages, the instability problem of the 

section becomes more prominent. The top chord member at mid

span is often critical. However, as the last Chapter showed 

the ends of the outside web members are stressed most severely 

for the trusses examined. 

Thus the problem is to find the permissible ratio b/t 

of the plate element of the compression flange. 

The foregoing mentioned buckling problem is referred 

to the section. some distance away from the joint. The buckling 

problem of the section right under the joint is beyond the 

scope of t'bis volume and will not be included in the following 

discussion. 

......,,.. 

.)0 
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3. 2 LOCAL BUCKLING OF PLATE ELEMENT OF HSS 

COMPRESSION FLANGE 

TEE GOVEF..NING EQUATION OF PLATE UNDER AXI.A.L LOAD 
1 

The governing equation of the plate of dimensions a)Q) 

under the action of forces in its middle :plane( see Fig.'3~1) 

is (10) 

DC -z>4w +2 ~!:~ 2+114w4 )+t<¢xll-w2+4~'tf.w2+21xyo2w ):i: o
'bx4 .. Y 0 y ~x J ~y oxay 

( 3~'1) 

where D =Flexural. rigidity of plate per unit width 
. --E:tl._ 

-12(1-JJ2) 

JJ =Poisson's ratio, and is 0.3 for steel 

t =Plate's thickness 

W=Transverse deflection of plate 

4x,~ =Normal stresses in x and y directions respectively 

1xy =Shearing stress in the :Plane of the plate 

Note that the x and y are orthogonal coordinates in the 

plane of the Plate, x being :parallel to the chord member axis~ 

In the present case o~ HSS compression flange, 

only a uniformly distributed compressive stress .&x exists. 

Eqn.(3.1) becomes 

( 3. 2) 



Eqn.(3.2) is only valid within the elastic limit. 

( 3.3) 

When &x exceeds the elastic limit, Eqn. ( 3. 2) bas to be modified. 

Beyond the elastic limit, the tangent-modulus Et will be 

effective in the x-direction while in the y-direction Young• s 

modulus E can be assumed to remain valid as oy= 0 • Introduc

ing'(= Et/E, Eqn.(3.2) is generalised as 

When .Ox is within elastic zone, r( is equal to 1.0 

as Et =E , thus Eqn.(3.3) returns to Eqn.(3~2) • 

The moments. in the x and y directions can be expressed 

as 

]f = - D ( e,2w e2W- ) 
x ~ -ox2+>'fi-;;y2 

M y :t - D <v;r o2w2 + ~2 )
-ax ay 

GENERAL SOLUTION OF TEE GOVEFJH'NG EQUATION 

The general solution. of the governing Equation (3.3) 

can be obtained by using the boundary conditions of which the 

conditions on the loaded edges are first considered. 

(A) The B. c. on The Loaded Edges 

The loaded edges are assumed simply supported. The 

B. c. are thus 
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w] =o • ~2w~2J =0 ( 3.5) 
x = 0 ' x=o 
x=a x =a 

Where a is the length of the plate in x-direction, 

b, appears later, is the width of the plate in y-direction. 

The second portion of Eqn.(3~5) is due to the first 

of Eqn.(3.4) where Mx =O and ~2w/~y2 = O • 

Assume W = Y sin n~x ( 3.6) 

which satisfies the above mentioned B.C•• Y is a function of y. 

Substituting Eqn.(3.6) into the governing pa.rtia1 

differential equation(3. 3) and solving the resulting ordinary 

differential equation leads to the full expression of Eqn.(3.6) 

as given below 

Wa ( c1 cosh k1Y + c2 sinh k1y 

+ c3 cos k 2y + c4 sin k 2y ) sin np 

( 3.7) 

where ' 

' 

' 
<le =buckling stress 

The constant terms c1 , .~. c4 a:re to be determined 

by using the B. c. of the unloaded edges 

(3) The B. C. on The Unloaded Edges 

The unloaded edges have the following B. c. ;
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(i) The web plates of HSS exert equal elastic 

restraint ,"on the unloaded edges. The deflection, 

W, corresfQnding to the smallest value of & is c 

an even function of y. Thus c 2 and c4 in 

Eqn.(3.7) vanish. 

(ii) The unloaded edges remain straight. 

(iii) 	 The angle of rotation at the edge of the buckling 

Plate is equal to the angle of rotation of the 

adjoining restraining web plate. 

Using the above mentioned B. c. leads to the buckling 

condition, namely 

J/,.+ f tanh( ~JJt+I n~) t Jp.-1 tan( ~/P-1 n'f!) 

+~~_,,« nty:= 0 ( 3.a) 

where c(= a/b and !is the coefficient of restraint. ':) =0 when 

the edge is rigidly fixed, and ~=oo when the edge is simply 

supported. 

( C) Equation for Buckling Stress 4c 

A solution of buckling-condition Eqn.(3.8) for the 

e lastically restrained plate ( where O< 'f<oo) leads to an 

equation for 4
0 

( 3.9) 
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22
 
or 6 - 1!. E.fl 
 (3k

c - 12(1-))2) b) 

where p and q are constants depending on the coefficient of 

restraint '$ and k is called the plate coefficient. 

The value of k for a square HSS is 5.79 as can be 

found from the curve in Fig. 3.2 prepa,red by Hudoba(11J .: 

Dete:rminations of Buckling Stress in the Inelastic Range 

And the b/t Ratio 

In the elastic range where r(• 1.0, the buckling stress 

can be determined directly from Eqn.(3.9) • 

In the inelastic range, ~ is an unknown as it.: de I-ends 

on .de 
<oy - <Sc )Jc

i.e. 	 r(= ----- ( 3.10)
<4>y - ~p )~p 

where 6 y =yield stress ; ~ P = pro poTtional limit stress 

therefore, a method of trial and error will be necessary by 

using 

( 3.11) 


The procedure of calculation is as follows. 

For a given HSS section, we can precalculate the value 

on the right-hand side of Eg_n. ( 3.11), and then, a table is set 

up for the 't- values computed from Eqn.(3.10) with given J ..... 
,,,'1 

http:Eqn.(3.10
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and ip and for the cor:resJ.)Onding value of -6'0 /,ft • When the 

value of <i'0 !fi in the table is closely approaching the pre

calculated value on the right-hand side of Eqn.(3~11), the 

required buckling stress. is found. For HSS steel -'y ::.55 ksi 

and ~n = 48 ksi .• These values are based on the resul.ts of ... 
te12sile tests carried out by Hudoba f1J1 and pertain to the 

example in Cbapter rr~·' Such a table for these values is given 

below 

4c 7 "'-/H 

48.0 1~0000 48~0 
49.0 0.'8750 52~'5 
50.0 0.7450 58.0 
51.0 o.6070 65.4 
52.0 0.4640 76.5 

54~0 0~1600 135.0 

54.8 0.0326 303.0 
55.0 0.0000 00 

In the above table it can be seen that 'l'-values vary 

from 1.0 to zero. Hudoba showed that when tm total strain is 

0.57~ that'!':: O.l • The corresponding buckling stress d 0 is 

about 0.99iy and thus the des:f.o-::n,ed "(value of O.l can be consi

dered reasonable for calculation of the critical b/t ratio in 

allowable stress· design. For tbis '!-value of 0.1 the corres

:ponding value of d 1t- is 200, the critical b/t ratio can then
0 

be calculated as 

o/t 

:: 28 


http:resul.ts
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where E = 29600 ksi 

y -- O~ 3 (for steel) 

k= 5.79( for square HSS) 

4cf.r:r =200 ·ksi. 

For our examples of Vierendeel trusses whose members' 

dimensions were given in Chapter Ir, we can detemine the 

buckling stress for the web members by using the following 

data and Table 3.1 • 

~ =55 ksi.. 6 p =48 ksiy r 

E =29600ksi )J =0.3, K = 5~79 b= 4
f1' 

' tt 
- 1. ut - 4 and i 

2 2 ( 1. n 
~ ,. . .de =- 'lt E Ct) - 605~ 219 ksi for 4 material.) 

--R 12( l-.V2) b k 1t 

2420.8 ksi (fort material) 

For these calculations, it is evident that assuming 

the yield stress of 55 ksi for each case was in close agree

ment with the critical stresses for buckling. 

Although the stress of the top chord member was not 

critical in the matrix analysis given in Cb.apter II, it is 

necessary to check tbat the 8 xi plate does not have a critical 

stress substanially belovr the yield Yalue. Since the behaviour 

is purely elastic up to 48 lrni , a simple elastic calculation 

is given belovr. 

When rr'= l , Eqn. ( 3. 9) gives 
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2 
<1. 	 = ~ x 29600 ( 1~ 2 x 5.79 = 15l.3 ksi 

c 12(1-0.09) 32 

Since· this value exceeds 48 ksi ( pro:r:ortional limit), 

it is ap:f)arent that the buckling stress for the inelastic case 

will be between 48 ksi and 55 ksi. Hence the top chord for 

truss B is not critical. Truss~ A need not. be checked because ., 
of the i thick material • 

http:12(1-0.09
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Table 3.1 Estimation of Bu.ekJ.ing S~ss 

&"c ksi. 7 ff ~..Iffksi..~' 

48.0 l~O l~O 48~0 

49.'0 0~875000 0.93600 52~;5 

54;~0 0;~160000 0~';40000 135.0 

54~·21 0.127450 o. 35700 151~8 

54~93 0~011440 0~1 10700 513~;36 

54.945 o~bos990 0.09490 578~977 

54~950 0~:008170 0.09_060 606~;5_12 ~ 

54.970 0.004900 0.06300 782.540 

54~:990 0.001636 0~04000 lY/4~750 

54.995 o.noos1a 0~:02860 1922~900 

54.9969 0~000507 0.02258 2435. 600 #

~(From above Table, the buckling stresses for the 

web members of -i!' and iutlti.cknesa material are 

54.;95 ksi. and 54.9969 ksi. respectively.) 



CH.APTER IV 


STRUCTtEAL 	BSEAVIOVR OF UNEQUAL-7lTDTil 

com:rECTIOITS 

4 .1 ELASTIC BEEAVTOu"'R 

The theoretical and experimental investigation o:f the 

elastic behaviour of the unequal-width connections had been 

carried out by Redwood (12 J ( 13) . 

As mentioned in Chapter I, when the width ratio d/b 

is less than 1.0 , t·ne joint problem is one of plate flexure 

with certain loads and boundary conditions. In addition to the 

localised bending just described, the chord member is subjected 

to bending and axial load from the rest of tbe truss. However, 

a length of plate about four times the width is considered to 

be sufficiently 'longr that end-effects might be ignored. 

Therefore, in the \York described in tl1is volume, particular 

attention is devoted to the localised bending of the connecting 

flange of the c"hord me:nber. 

Theoretical and experimental valt~es of joint stiffness 

obtain by Redwood are plotted in Fig. (4.1) where D and ~ were 

de£ined earlier for applied moment. The detail of the joint 

used iu the tests is given in Table 4.1 

In Fig. ( 4.1), the stifi:'c.ess irwor:porated L:-j_ appropriate 

non di::1ensional form is sl~own to inc:rease rapidly with the 

joint pa:ra:neter 7'.. ( 7'.:== d/b) 

At Telativel:/ low loads, the load-displace;rr1ent cul"'\°1es 

48 



4-9 


become non-linear. But in most cases, there is a large reserve 

1of strength rrhich has not yet been fully utilised. I·herefore, 

the elastic analysis expressed in Fig.(4.1) can give little 

in.fornation on the strength of the joint. 

Since the end web members are critical for the examfles 

used(see Section 2.5), a plastic analysis of the joint is atte

mpted to estimate its collapse load to determine whether stiff

ening ;rocedures are required to establish full moment capacity. 

4.2 TEE STF.ENGTH OF JOINTS ESTTIJ,,ATED BY PLASTIC METEOD 

Use is made of Johansen's square yield criterion (14} 
for tbe Plastic analysis of the joint. Although the square 

yield criterion is mostly applied to reinforced concrete stru

ctures, it has been shown by Wood[l4) that the method aPflied 

fairly well for steel plates. 

A. collapse mechanism is assU!Iled on the loaded plate. 

By using the principle of virtual work, the collapse load can 

be calcuJ.ated. As the collapse load estimated by this method 

is an upper-bound value, the lowest value of all calculated 

collapse loads cor:resJ;<>nding to various assmn.ed mechanisms is 

the most 1 cor:rect• one. 

JOIFT SUBJ3CTED TO APPLIED rmllirE'NT 

Initially, the assumed collapse nech2Ji..ism for the 

pl:?..te subjected to :noment transmittecl f:rom the weo nember is 

s.c.o·:r:.1. in Fig. ( 4~ 2) in '-'Illich the dotted lines are tt:.e 7ield lines 

http:assmn.ed
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The region of the Plate enclosed by the web member is assumed 

to be rigid as it rotates through, say, a unit angle. The 

amount of rotation of plate elements about the yield lines and 

their lengths are tabulated in Table 4.2 • note that the values 

on one side of the center line are numerically equal to the 

other side. 

The equation of virtual work associated with the mecban

ism is 

2 
M•l =2bm.p (1-1\+~+ 2"-tan~ + 21'-cot~) (4.1)

1-1'. 1-7'

for a unit angle rotation o:f the square enclosrz:d by the web 

member, and where mp is the internal moment per unit length 

along the yield line. Using the condition d?!/dd... =O, we get 

tanG(=Ji - 7\.. 

Substituting into Eqn.(4.1) , we obtain the minimun 

value of M 

M =2bm (1-J\+ 2X 
2 

+ 4 A... ) 
p 1-" Jl-x. 

Lower values of the collapse moment M were attempted 

t 'by employing other patterns of mechanism with fans of yield 

lines as shown in Fig.(4.3) • 

The equation of virtual work works out to be 

2* cosie + 2~ ]+ 
(1-~) cosd.. 1-7\. 
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The minimum value of M is obtained by setting oM/'iJti.. 

and oMhJ equal to zero • 

• • 

In the range 0<7\.-< 0.635 Eqn~;(4~2) gives a smaller 
. . 

value of M 'tbail that given by Eqn.(4.4) • 

Equations (4.2) and (4~4) are plotted on Fig.(4.4) 

showing values of 11 with various values of~ ( note tl:!a.t
0 • 5bmp 

~~ is equal to four times the value in the parenthesis of
0 .::>omp 

Eqn.(4.2) or (4.4). ) 


COMPARISON BETWEEN THEORETICAL AND EX1'ERIMENTAL 
co1t.~s:g 'LOADS 

The experimental results from the tests perfonned in 

the University of Bristol (12) (13) plotted in Fig.(4.5) is 

used to compare with the theoretical results derived above. 

Fillet welded connections were made between ixlo square HSS 

and were subjected to applied moment. The specimens were of 

Grade 16 steel to BS 15 : 1961. The average yield stress was 

18.5 ton/in.2 which was used to compute the mp of the specimens. 

In using the theoretical equations for calculating 

the collapse loads, the width b was taken as the outside dimen

sions of the section minus twice the thickness of the wall. 

And also, two values of i\ fQr each tested joint were taken; 

one corresponds to the nominal size of the we.b member, the 

other is the nominal size plus weld material. 

Details of the connections are summarised in Table 4.1 • 
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In. Fig.(4.5), the estimated collapse loads show some 

agreement with the measured loads especially for the smaller 

v1eb member. 

\T~en the web member becomes larger, the estimated 

collapse load based on the nominal web size becomes increasingJ.y 

conservative. Onthe other hand, the larger load, based on the 

nominal size plus weld, overestimates the strength of the joint: 

The latte~ discrepancy is probably as a result of the unconnected 

web plates of chord member failing before the connected flange 

plate for large sized web members. 

For the trusses A and B( see Chapter II) where the c:ritical 

sections are the ends of the web members, the results of the 

yield line method and experimental results quoted herein are 

im};X)rta.nt. For the truss A, the moment capacity of the 4 "x 4"x.i-" 

* web member is 508.75 in-kips, and the moment capacity by yield 

line theory is 240 in-ldps. For the truss B, the moment cap:ici ty 

for the 4".x 4 "xi" member is 290~'46 in-ki:ps, and the moment 

capacity by yield line method is 60.0 in-kips. From these figures, 

we know that the strength capacity of the web member is not fully 

utilized~ Furthenn.ore, the experimental results of Redwood (12) [13) 

show tbat fox small values of J\ (width ratio) , the joint capacity 

is less than the web member capacity. 

Therefore, on these two counts, the joints require 

stiffe;.U.ng if the panel roint loadings as eornrn1ted in Cl1apter II 

are to be realized. 

* Based on steel that yields at 55 ksi. • 

http:stiffe;.U.ng
http:im};X)rta.nt
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An extension of the yield line method will be used to 

study the strength of reinforced joints in Chapter VI. 
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Main. Member Branch Member 

.l. 1 ' 22X22x0 •.165 x 5 x3/16 


5 x 5 x3/16 
 l .x 1 x O~iJ.28 

Table 4~·1 Detail lli.mensions of Joints (taJJ•~J 

A. _{_dlhl_ rWeld :A. (d/b) 
Size(itt-) Exel.'~ Welc ~ Incl. WelJi 

5/16 0~'541 ~:677 

~· 0~'217 0~325 

5 
I6 0.412 0.'546 

-2.. 
16 0~60_5_ 0~739 

± o.-1sa 0.920 

5 x 5 x3116 

5 x"·5 x3/16 

5 x 5 X3ll6 

.... ::-~~~~.160 .' ~ .. 

7'' 

~x21-~.l6 
l. '1 :,

32X3txQ .192 

~Finite difference ~!ethodlOL.
I') 

10 

o.\ •.a. o;~ -.4 o.s o.~ 0.1 Q.\ ••, r.o 7' 

4.1 Join.ts with applied Moment * 
+(Reference is made to [1~(13]) 

http:x21-~.l6
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Table 4.2 Lengths and Angles of Rotation of" Yield Lines 

b 
,, J\.b 

7\. <:o.s t!(. :>ti. s'1nci. ~ b <\- 7'.) 
- \ - " "'t- I  A. 2 ssnoe. 

.AE,DF 
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F1.g; 4.4 Theoretical Applied Moment :for Collapse 
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M 

~2-~..6__ ton-in 

we.b Member 
.. u" 

3ix3ix.192 
.. ,. .. 

2t-x2~x0.16 
ff u ., 

2~~n>.16 
7" 7'} ..13xi8 .x0 .16 
.. 	 ., ,.

ly.J..xQ .128 

1.0 	 2.0 3.0 

Relative Rotation(ra.d.Xl0-2),sb 

Applied Moment Versus Relative Rotation 

(Experimental Results from University 

of B:ristol (12) [13) ) 

r.r 
~eb member 

~ All square HSS 
5x5..x3/16 .. 

Theoretical Estimation Based 
on nominal size 

26,...... 
.~ 
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, 
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Fig. 

....... _.,. Theoretical Estimation Based 
on nomial size plus fillet weld 

Moment Ca.pacity 


58.TI ton-in 


29.82 ton-in 

24.35 ton-in 

13.08 ton-in 

2.72 ton-in 

4.5 


http:2~~n>.16
http:2t-x2~x0.16
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CF~PrER V 

THE n~FLUENCE OF SOME MEMBER SIZING ON 


THE BEHAVIOtJR OF JOINTS 


5.1 GENERAL INTROTIUCTION 

This chapter presents a brief review of the dimensional 

parameters of the connecting members which are important for 

fU.11 web to chord member moment transfer. When certain ratio 

limits are achieved, no additional strengthening is necessary 

to obtain full ~orki.ng capacity of the truss. Chapter VI will 

discuss strengthening methods and will attempt to analyze 

joints for moment capacity. 

It was nentioned ee..rlier that, when the welded 

com1.ections betvrnen two unequal-width square ESS at right angles 

to one another were formed the problem of the joint was nainly 

the bending of the connected plate, and that the strength and 

stiffness of the joint were thus greatly reduced. 

There might be some improvements foT the joint if the 

dimensions of the connected plate were carefully selected to 

match the given dimensions of the b:ranch member (i.e. web 

member). 

The experimental results by Redwood furnished in the 

preceding chapter were all with cor;.sta:::it dimer1sio::is of the 

main :nembe:rG These tests, therefo:ce, have lL.ni ted value in 
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terms of relating slender;.'1ess or thicimess ratios to moment 

capacity. Based on the limited tests carried out at the Drexel 

Institute of Technology [15), some information in this aspect 

can be gathered. 

5. 2 THE I'NFLUENCE OF CHORD WIDTE~to-THICKNESS RATIO, b/t
0 

The details of the tested joints at Drexel with various 

b/t0 ratio are tabulated in Table (5.1), and the experimental 

curves are plotted in Fig. (5.1). 

In all these tests, the widths of the two members were 

kept constant; one was 4", the other 6tt. The thickness of the 

branch member was also kept unchanged. The only change was 

made to the thickness of the main member to form b/tc ratios 

of 12, 16 and 24. (t0 is the tbickness of the main member.) 

The joints with these ratios are labeled as Jl, J2 and J3 

respectively • 

..~s shown in Fig. ( 5.1 ) , Jl and J2 with the b/t0 ratio 

equal to 12 and 16 v1ere capable of developing the :fully plastic 

moment of the branch member even though d/b is less tban 1.0 • 

J3 with b/t equal to 24 was unable to develop Mp or even My,
0 

the yield moment of the branch. 

It is conclu:led that, backed with o·oservations from 

seve:r:al miscellaneous tests, the unequal-width connections 

c:~n considerably be st:rengtilened to develop H..,. or even Mu if 
- - - ;J .;,; 

the width-to-tb; cmess ratio, b/tc is 16 or less. 
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T-r<f[i: ITT "PT TTf0'<: C"P 010 t /+
.>-W ·'-' - ..u l...:.:..:i.:., ..w - c '-'vr 

In the preceding Section, attention was :paid to the 

fact that the joint with a b/tc ratio eq_ual to or less tl:an 16 

is able to develop M,
.) 
7 or even Mp • 

Close examination of Table (5.1) shows that another 

important parameter affecting the joint strength is the t 0 /tw 

ratio. Where ~v is the thickness of the web member. 

From Table (5.1), the tc/"tw ratios for the above 

mentioned two 'strong' joints, Jl and J2, wmch were able to 

develop Mp , are greater than 1.0 , whereas tc/tw ratio for 

the 'v1eak' joint, J3, is equal to 1.0 • 

Introduce another joint J4, with joint dimensions 

matching other joints as shown in Table (5.1) , to note the 

influence of t 0 /tn . 

The experimental curves from the Drexel tests are plotted,. 

in Fig. ( 5 • 2) . 

When a comparisoL is made, regardless of all the 

:para.:!leters except b/t0 , between J2 and J4, we might quickly 

claim that J2 and J4, should have the same joint resistance 

because they bave the same b/tc ratio. But, as a matter of 

fact, J4 is stronger than J2 even though the former has a 

smaller 7\ (as joint stiffr~ess is pro1:ortional to J\). 

The Teason fOT this is claimed to be that J4 1::as a 

highe:r tc/tw ratio than J2 • 
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It is therefore concluded tbat the ratio tc/~v is 

also an important parameter for strengthening the unequal-

width coru:.ections; the higher the tc/~N ratio, the stronger 

the joint. The unequal-width connections can be assured to 

develop Mp if tc/~,~ 2.0 and at the same time b/tcE="l6. 

Clearly, the examples of the two trusses mentioned. in Chapter II 

do not satisfy the first inequality and, in addition, truss B 

violates the second inequality. 
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 2.0 
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CHAPTER vr 

JODTTS WITH REilIFORCEME:NTS 

6.1 GENEBAL nrTRODUCTI01T 

When the ratio b/tc is greater tban--16 and-·tcftw·-is 

less than 2.0 , the unequal-width joint is generally unable to 

develop the fully plastic moment of the smaller section (web 

member) unless reinforce~ent is applied to the joint. 

Several kinds of reinforcement can be suggested such as 

the use of web. flange plates, chord flange stiffeners(mounted on 

the ct.ord flange), haunched plates etc. as shown in Fig. (6.1). 

Nevertheless, these forms of reinforcement should be consistent 

with the requirements of efficiency, feasibility and economy 

as a whole. 

The following sections are devoted to various forms 

of reinforcement. 

6.2.1 ANALYSIS OF FLANGE-PLATE REIJ:1FDRCED JOINT 

An appro:d.mate analysis of the F1.8.J.""lge Plate Reinforce

ment is discussed in tbis section. 

Co-:.:.sid.er an unequal-width connection :reinforced 1Jy two 

flat plates welded on the flanges of the branch oember as 

" • "rL! ,. .... 1)snown 1.ll J.i'...!..g. \ b. a • A nonent is applied or:. the joint through 

the branch member. 

http:Co-:.:.sid.er
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The relative rotation of the joint as a result of the 

applied moment can be found by dividing the maxiBlli21 vertical 

deflection of the chord flange plate by one half the depth of 

the branch member. 

The vertical deflection of the joint consists of two 

parts; one part is attributed to the shortening (or elongation 

at tension side) of the reinforcing plate, the other part is 

the deflection of the connected plate of the main member subject

ed to line load transm:i.tted from Teinforcement. The former 

part is small as compared to the latter part. 

The exact distrtbution of line 102:.d. transmitted from 

reinforcement is not fully known. But, it is quite safe, with 

sane rea.sonable a:ppro~dmation, to say that the distribution of 

loading falls somewhere between two extreme cases; one is the 

uniform distribution, the other is of parabolic shape with 

zero intensity at the center. However, the areas of tv10 dis

tributions should be equal to each other. 

On the compression side of the joint subjected to 

applied moment, the reinforcing plate of dimensions b x h x t is 

assTh~ed to be subjected to concentrated load of magnitude P 

as shown in Fig. ( 6. 2a). Since all motion is supposed to occur 

ir1 tl1e plane of the :pa1)er, a unit thic.l.G..:ess of the plate is 

taken in the discussion. 
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This ty1;e of plane stress problem is best sol-r..recl b;y 

the lower bound theoie;n of lil'lit ar:alysi s (16J ( 17Jwhich 

states that i.f atJ. eq_uili bri um state of st:ress below yield. can 

be found which satisfies the stress boundaI-y conditions, then 

the loads imposed can be carried without collapse by a sta"ble 

body composed 0£ elastic-per£ectly plastic material. 

Instead of the plate, we suppose that a triangular 

:Pinned truss is imagined to carry the load inside the body as 

shown in Fig. ( 6. 2b). The forces in the members of the truss 

can easily be determined as 

p 
c =2 cos 0' T =- C sin e' =Ltan 0" ( 6.1)

' 2 

where ~ is half the angle made by two inc~ned legs. 

The cross-sectional area of each member is to be chosen 

in such a manner as to give a safe or pennissible axial- stress. 

Here the stress must be chosen at or below 2k, where k is the 

yield stress in shear, if a lower bound on the limit load is 

to be found or if the safety of applying P to the plate is to 

be realized. 

To maximize the lower bound loading, all members of 

the truss are taken at yield. The width of each member and 

the J;Tincipa.l stress in the overlap regions are all indicated 

in Fig. ( 6.~c) 

The compressive force in the inclined legs and the 

lower bound :for the limit value of P can be written as 
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c =2k 7'.b cos 0' P : 2C cos f5 ::: 4k 7\b co s20-"
' 

The vertical projection of the shortening of the 

inclined bar is equal to the change in the height of the truss. 

For simpllcity, we assume the change in the height of the truss 

is app:roxLmately equa1 to the shortening of the plate~ · 

Therefore, by using Hooke's law, the shortening of the 

bar is 

where C/A =2k , L = b(l-..7\.)/2 sin f1 

The change in the height of the truss or the shortening 

of the plate is 

=kb(l-P.) h 
E b( 1-A.) /2 

- 2kh 
J:., 

( 6.2)-~ 

As can be· seen from the above expression, the shortening 

of the plate is proportional to its length, h. As uill be seen 

later, tbis shortening is small as compared to the deflection 

of the cori.J.1ected plate of the chord mernber and can thus be 

neglected. 

DEFLECTION OF THE CONNECTED PL..~TE OF .MAIN MEMBER 

Two extrerae c2ses of loading distributions on the plate 
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will be. considered. One is the uniform line load, the other 

is parabolic line load with zero intensity at center. 

The long edges of the connected plate of the main 

member are assumed to remain straight and are subjected to 

restraining moments from the web plates. The effect of these 

restraining moments is disregarded for the purJ.X>se of counter

balancing the assumption that all plates are rigid vrhich in 

reality ba.ve some flexibility. 

A length of four times the width of the plate could 

be regarded as sufl.~ciently long to simulate the chord flange 

aamentioned in section 4.1. So the length of the long edge 

is assumed to be of this a.mount. And thus the loading conditions 

at both ends of the plate of this length could be neglected, 

and so the deflection is- zero. 

The middle of this length is the center of rotation of 

the joint where deflection is zero. This middle line is anti

symmetrical in relation to the forces. Taldng one half of the 

length of tris long plate into conside:Tation, a rectangular 

plate of dimensions bx2b with four edges simply suprorted, 

subjected to either u...-riiform line load or rarabolic line load 

is the main topic of discussion that follows. 

The details of the rectangular .Plate are shmm in Fig. 

{6. 3) • 

6. 2.4 SI:1IFLY SUPPORTED F~CTANGUT,AR PLATE St.JBJECTED TO UNIFOPJ:! 

LINE LOAD 

The :problen of a rectang-ulo.:c :t:late with all edges 
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simply supported subjected to transverse loading can be best 

solved by Navier' s methodf1sJ. 

Navier' s method for plate :problems is essentially 

explained as follows. 

Consider a simply-supported rectangular plate of di

mensions AxB with coordinate axes as shown in Fig. (6.4). 

The governing equation [19] is 

( 6. 3) 

where q~ intensity of transverse loading, w and D having been 

defined earlier. 

The boundarJ conditions for all sides simply supported 

are 

• ;,2w l = o' 0~2 x = 0 
x::: A 

(6~4) 


w]Y = 0=o •
' 

y =B 

Suppose a deflection, which satifi.es the B.C. is equal 

to 

W - C s-ln zrA4. si·n \Y ( 6.5)'j - 11 ..i.. 

Substituting the above equation into the governing 

equation (6~3), the loading needed to produce tbis deflection 

(6.5) is 

http:satifi.es
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2~4 ~41
-	 - . - • ·7{:X • ~ q - + 	 sinA sin¥ ( 6.6)nc1 2 2 + 4AB B . 


Similarly, suppose a deflection which satisfies all 


B. c. is 

.. m«x . n~W = 0mn sin -p;- sin (6.7) 

The loading needed to produce t~is deflection (6.7) 

must be 

_ [m4z.t.4 2m4n4~ n4z.t::4] ml{x n""Jl.Y 
sin-sinq - Damn --:t t 2:82 t 4

A· A B A B 

(6~'8) 

It is seen that a transverse loading of the form 

sin 7Z.x sin ~l applied to an all-sided simply sup:ported plate-r 
will produce a deflection which is also of the fonn sinlx sin~1 

Hence, a procedure for solving tbis type of plate 

problem can be summarised as follows; 

(i) 	 Express the transverse loading into trigonometric 

series as 

. m~x . n~;z
qmn' sin -A- sin B 

b. 

(ii) The deflection of the plate will then be 

.. m~x .. nzz-;.. 
cmn sin T sin -~Vf= L 

m =1,2,3•• n ==1,2,3••• 
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where 

Turning to the case of a simply-supported plate of 

dimensions bX2b , subjected to unifo:rm line load of intensity 

% at f :from one edge i s [ Appendix IVJ , 
-<.:><) 00. -" ' L 1 . n'f!.f • n\fx sinm"«y,- 4q0 / ..:;,. SJ.~ SJ..ll2b (6.9) 

q -· z.<b :-::.: , _ m b 
n~1,2,3 •• TIF-l,3,5 ••• 

nl#:x m~y
sin-si~Q 

-mn 2b b 

4qo l . ntt;f'where q :::a "11b - Sl..ll -
inn '""' m 2b 

Following the procedure described above, the deflection 

of the plate can quickly be £ound as 

(6.10) 

[m2 n2J 
2 

where C ::. q /D~ - - 
mn mn b2 4b2 
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SIMPLY SUPPORTED RECTA.MGULAR :PLATE SURJEOJ:ED TO 

J?ARABOLIC LINE LOAD 

Next, consider the simply supported plate of dimensions 

bx2b subjected to a parabolic line load o~ maximum intensity 

3qd at both ends and zero intensity at the centre acting at f° 
distance from one edge. The quantity 3q0 is determined in such 

a way that the area of parabolic line load is equal to that of 

the uri.i fonn line load. 

The equation [Appendix III] for this parabolic line 

load can be exp:ressed as 

oO 00 

q =:;3qboL. L 1.1 __H2-, • n~f . mTV • n~x ~ -\-;--~ sin: 2b si~ sin 2b 
m "i' m ~ 

m=1, 3, 5•• n=1, 2, 3. • • · 

fl : ~ 0 sin m?;;z sin n"{l;x (6~'11)~ "'inn b 2b 
m=1~3,5 ••• n=1,2,3••• 

48qo 1 ( 1 2 ) . . n'J.!;f'where ~n =~m 4-« ,sin2b 

=4~0 l_ ( 24 ) .. nl!:f 
ZJ.:b m 3 - m2~2 sin Tb 

Following Navie~'s method, the deflection of the 

plate can be found as 
00 co 

l~ ==\ 
.1 ·~ 

\_ C 
~ mn 

.. m'ttx ..
sin -i;- sin 

n:{{:y
2b 

m=l, 3, 5 •• n=l, 2, 3••• 
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where 

Substituting r= (2-0.~57'\)b, X::: (2-0.'57'.)b and y=o~'5b 

into Eqns. (6.10) and (6.12), we can find the deflections -of 

the plate at the middle of two different line loads. The 

actual deflection of the plate falls between these two values, 

i.e. 

£ < ~ 
act. ( 6 .10) 

Three terms of either Eqn. (6.10) or Eqn. (6.12) are 

sufficient for an approximate value of deflection. By using 

the above mentioned values off, x, y and q0 = M/db = M/J\.b2 

and different?\., values of deflection from Eqns. (6.10) and 

(6.12) are obtained. The obtained values are then changed 

into relative rotations of the joint by dividing them by 0.5d 

or 0.5.i\.b. The contribution of deflection or relative rotation 

made bJ Eqn. (6.2) is small and is invariably v1i thin 8% of 

Eqn. (6.12). As the deflection by Eqn. (6.12) is already 

small, the 85~ value could be neglected. A graph with relative 

rotation <P versus A. is plotted on Fig.(6.5) to show the fle

xibili ty of the reinforcel joint with respect to 1\.. 
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6. 3 CHORD FLANGE STIFFEFER 

A stiffening plate mounted to tae chord flange with 

its centre coincident with the centre of the joint is shown 

in Fig. ( 6.lb) 

It has been recognised that the loading transmitted 

from the web member to the joint is mostly resisted by the 

connecting flange plate when 7\.is less tban 1.0 • An additional 

plate above the connected plate will automatically tend to in

crease the flexural rtgidity of the joint. This increase will 

be by a factor of eight if tbe thickness of the stiffener is 

the same as tbat of the chord flange. 

A test of tbis type of reinforcement had been carried 

out in the Drexel Institute of Technology (15) • The details 

of the joints and the test results are shown in Table (6.2) 

and Fig. (6.6) respectively. 

In the test, the stiffening plate of dimensions 5x5x5/16 

was fillet welded to the 6n face of the main member of 

dimensions 6x4xl/4, the brax..ch member was then centrally fillet 

welded to the stiffener. 

As can be seen frora Fig.(6.6), the monent resisted by 

the joint with reinforcement is 175~1~ that resisted by the same 

joint without reinforcement. Therefore, the chord flange stif'.fen.... 

er ma;:r provide efficient :reL1forcemex1t for unequal-wid..th connect

ions. In addition, the adding.. of tl1i s stiffener is not object

ionable from an aesthetic vie~:>ipoint. 



I 

77 

. 

6.4 HAUtTCEE.D REINFORCEHEITT 

The haunch consists of HSS wedges cut at 45°.with a 

right angle to match that of the web and chord member. 

The details of the haunches for reinforcement are 

shown in Fig.(6.7). 

To the knowledge of the author, the experimental tests 

on this type of reinforcement for unequal-width connection 

has not yet been reported. The tests carried out in Corby, 
(20)

England , on this type of :reinforcement were solely for 

equal-width connections. 

In order to obtain design information for haunched 

reinforcements for unequal-width connections, an experimental 

programn is currently being carried out in I~cMaster University 

under the supervision of Dr. R.r:I. Korol with the sponsorship 

of CIDECT. 

6. 5 PLASTIC MECHANISM FOR REI1JFORCED JOINTS 

As an extension of yield-line theory described in 

Cb.apter 4, an analysis will be made of reinforced joints 

loaded to failure. 

FL.AF :}.E PLATE REI1~FORCE:.f.E:CJT 

The details of the flance-I;late reinforced joint are 

shown in Fig. ( 6.la) in which tvro rectangular or trapezoidal 

.fle.t :91ates are welded to the flanges of the branch member. 
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The collapse yield line pattern for t:'ois reinforced joint sub

jected to applied moment is similar to that of the unreinforced 

one (Fig. 4. 2) 

Like Eqn. (4.1), the internal vir~ual work done by the 

yield lines when the joint rotates through a unit angle of 

rotation is 

. 2A2 . 27\ tanc( . t.J )
2bmp ( 1 - 7\ + 1-A.. + 1-.i'\. _,. 2A. co <Jo.. ( 6.13) 

Considering th~ reinforcing plate {Fig.6.8) on the 

tension side of the joint, the shearing stress does the work 

of lifting two triangular parts of the plate when the joint 

rotates through unit angle of rotation. As the plate is assumed 

of rigid. plastic material, the lifting only occurs when the 

shearing stress reaches its ultimate value as shown in Fig.(6.9). 

Therefore, the total work done by the shearing stress 

in two reinforcing plates is 

(6.14) 


$ - d/2 - /\b/2 
and 'f =~ -( b-d) 12 - (b-d) 12 are constants. 

2 

Eqn.(6.14) becomes 

4 <:5y A.b/2 tJdA 
2 ( b-d) /2 

: Ad~ 7\.b/2 t (1=. Jc:.d. h) 
. 2 (b-d)/2 2 2 

( 6.15) 


http:Eqn.(6.14


79 

Equating the internal work to external work, we get 

~r =2bmp ( 1 -7\. + 21\.. 
2 

+- 21\.. tanc(-t- 27\. cotc:L) + idy.i\bth
1-1\. 1- 'J'\.. 

With the condition dM/dct:: O , we get tanc(= J1 - 'A 

Thus we obtain the minimum M as 

M. ::: 2bm ( l - ~ +· 2J\.2 ,; 4?\. ) ' 1 " h p J\. ~+ fi~~ + ~«y?\.Ot ( 6.16) 

It is obvious that the last term of the above equation 

is due to the reini'orcing plates which add more strength to the 

joint 

CHORD FLANGE STIFFENER 

·A chord flange stiffener is a rectangular (usually 

square) plate of dimensions b x 1 x t welded between the chord 

flange and the web member with its center coincident with the 

center of the web member as shown in Fig. ( 6.lb) • 

It is well known that if the fully plastic moment of 

a plate of thickness t is mp per unit length, a plate of 

thickness 2t should have monent capacity equal to 4mp. 

However, complete composite action is unlikely, hence it is 

useful to also consider as a limit the case of no bond between 

reinforcing plate and chord flange. For t:b.is case, the tvm

la~1er Plate li~1-S a moment capacity of 2mp• Our actual case v1ill 

be "bet~.~;een these two extremes. 
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The yield line pattern for this type of reinforced 

joint is essentially the same as that of the unreinforced joint 

with only a slight difference. The diagonal yield lines may 

propagate beyond the edges of the stiffening plate. Whether 

or not the diagonal yield lines spread beyond the edges of the 

s_tiffener is der;endent on the length of the stiffener. In view 

of tbis phenomenon, the yield-line fatterns are classified 

into the followil:J:g th:ree cases. 

( i) EXTEITSIVE YIELD LINES SffiEAD 

The collapse mechanism with diagonal :·ield lines spread 

beJ.rond the edges of the stiffening plate is shown in F.ig.(6.10). 

The yield lines occuriug on a single-layered Plate are acted 

upon. b:/ mp' such as BB', CC', BC, BC' , B' G' • • • • • • etc •• The 

others occuring on double-layered plates have a moment ca:Pacity 

of 2n-r. 	 or 4m...... The angle of yield-line rotations and their 
~ 	 .l::' 

lengths 	are the same as in Table 4.2 • 

The eq_uation of virtual work for the 2mp case is 

M =2bm:-- [ 2 7'. tano(, + 7'... 
2

tanc(, + 27'..cotc( + 2A? + 2(1-J\) 
!:' 1 -:Av 1 - 7\.. 	 l 1-J\... 

d.. 7\.1 · ( 1 + tan2d't) _ 7'..2 tan~, ] 
' b 1- 7" l-7'. ( 6.'17) 

To find the nir.imum M, we let dM/dot1 =0 which yields 

http:F.ig.(6.10
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27\. 2 2 2 -- sec O{ 1" ~ sec d.. 27\. co sec~",
1-/\.. I 1-J\... I - ~ 

+ 2A.l tan«, . sec~, - 27'.2 tanoc'.,. sec~ =O 
b( 1-7\) 1-7\. t 

27'. + ")1.2 - 2 ·' 2:hl 2-J2. J -- 0or "'" 27\.cotei, T tami -- tanQ.,
l-7'. 1-}\. . b( l-?\.) t 1-J\. 


On fu.-""1;her simplifying, the above equation becomes 


tanU - ( 2 +"-) ( " ) tan~, - (1-7\)(~1) =0 ( 6~'18)
\ 2 ~b-1 


Equation (6.18) can also be written as 


tan1: = ( __lL ) (< 2-t-~ tan~ ~ ( 1-.A)J 

I ~b-1 . 2 l 

For the case being studied a square reinforcing plate 

is assumed such tbat l = b • Also../\.= 0.5 since the web member 

is 4tt and the cho:rd member is 8 " • The solution for tanO(, 

from the above equation is tanc<.,:: 0.57 and hence cf;= 29°41' • 

With 1 == b and .A..= 0.5 , Eqn.(6.17) becomes 

Substituting tanc( 1 = o.·57 into above equation, we 

., ..I- • 
001.12.ll1 

U = 2bm · ( 6. 33) ( 6.18)p 

case is 2bm:p·(lO.l)In siwilar v1ay, the minimum 11! 

http:Eqn.(6.17
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( iL) DIAGOIJAL YIELD LINES THROUGH THE CORNERS OF STIFEErJER 

PL.ATE 

The yield-line pattern for this case is shown in 

Fig.(6.11) • There are only four yield lines, namely 

BC , :s' C , ' BB ' and CC ' having moment cai:e.ci ty mp' the others 

have 2mn £or the no bond state• 
..i.; 

The equation of virtual work is 

]if' :::: 2bm [ 3.7\. tanc<i.+ 37\. cot« + 3J\..
2 

+ 2(1-J\.)]
p 1- J\. .;r. 1-A.. 

Using dM/dol..l.: O, we get tan~,_ :: Jl-7'

Substituting tanc<~ =Jl-1\.., , we obtain the min~' M as 

Tur f\.=·· 0.5 as our previous example of truss A or B7 

the min. M becomes 

(iii.) CONFilIBD YIELD LINES 

The collapse yield-line pattern confined to the region 

of the stiffener is shown in Fig.'( 6 .12) • As can be seen from 
1 

the Figure, only BB' and CC bave moment ca:pacity of m:P' the 

other haYe moment capacity 2mp· 

The equation of virtual work is 

http:cai:e.ci
http:Fig.(6.11
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By using dll/do<..3=-o, we get tano(3 : Ji(l-'J\.) 

The min~' tr is thus 

For J'\.:: o_:5 , 

The 'fan' yield-line mechanism for above three cases 

vtas not attempted because of its comlexity. In addition, the 

adjustment to M would be slight and therefore the attemft is 

not justified. 

Table 6.3 compares joint moment capacities with ·web 

me:nber values for the two cases stud.ied. Comparing the joint 

moment capacities obtained for the flange plate reinforcement 

and the chord flange stiffer.er we observe tbat flan.:.;e :Plate 

reinforcement provides a value of moment oapacity intermediate 

bet~een the extre~es of full chord plate action and co~plete 

sliding action.* No definitive statement can be made as to 

vfrJ..ch method of reinforcew.ent is supe:cior. A test series such 

as t~1at currently underway in the A. D.L. will hopefully answer 

that auestion.. ?o:r the case of truss A, the :reinforce:::ient 

methods a11pea:::... to be si;_ffi cient to develo .P the required Hp for 
I) 

the rmb ;ne:.nber. This is not the case for truss the 1/4 

plates are tnsufficient to develop the Tequired \Vea l'1eaber 

~nonent. 

*------------------------r.1 • .~o:r Truss A only 

http:stiffer.er
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Fi.g~ 6.la Flange Plate 
Reinforcement 

- - - - - - - - - - ....,_ 

Flan~ Plate Reinforcement Plan View Side View 

rr l]
I •I I 
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*I I 
t I 
I I 
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Fig•' 6.lb Chord Fla.D.oo-e 
Stiffener 

Chord Flange Stiifener J?lan View 	 Side View 

Fig.6.lc 	Haunched 
Reinforcement I 

, " t 
; I 

[0[] 

Hua...~ched Reinforcement Plan.View Side View 

http:Fig.6.lc
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Fig. 6.2a Rein.forcing Plate Subjected 

To Modified Concentrated JJOad 

p 

I 
I 
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I c,..___,c 	 I 
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hI 

I 
I 
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P/i. 	 Pf2.. 

I< 

Fig.· 6. 2b Triangular Pinned Truss 

in Plate 
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I
c 

7\ \> cos & sin& 

l 

tI 

( nb ~ +-7\bsin29' 

p 


2k~ cos f /( l+ sin219') 

. .... 0 
7\b + ?\.bsin2e- ...-.......:::----.1 


P/2 P/2 

Triangular Pinned Truss 
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Reinforced ·JIQint Under .Applie'd>:T\ioment 

~-~_-_-_-_-2=b==~~-4-b~:>_,/-/"!IE''<_·-_-_-_-2~b=====:;-,..~/ 

Tsolation of Loaded ~late 

/I /Ul(/

;(_< (.2./,-1:) >;4 P.-j 

I2b 
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.P;.;_ Simply-supported :Plate and its x-y Axes 
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Table 6.:2 : Joint Dimensions 

Join.ii 
No 

Branch d
'J\.•-o b/t0 tcftw Rei~o:rc 

JSR 6 x 4 x0~~25, 4X4 x 0.25 0~'67 24 l~O 5x5XJf PL 

J5 6 x 4 ~.'25 4 x 4 xa.;25 o.'67 24 1.0 NON'E 
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Rein.forced Joint 

Haunch 


Fig. 6.7 : Haunch Cuttings 
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Fig~·6.8 Defozmed. Pla.noo-e :Plate Reinforcement 

On the Tension Side of Joint 

F1.g;·6.9 Relationships Between Shearing St:ress 

And Strain for Rigid Plastic 'tJateria.1 
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F.lg~· 6~'10 case (i) · 

B c 

5' ~~..........._________~c I 


A D 

Fig~1 6.·11 Case (ii) 

D 

~ "',,,.. 1.i:J..g. o.. 2 Case (iii) 

l 

Yield ·:~ine J?atte:rx:s f'o:r Cl::.orct Fl831.:~e s~tif.fener 



Table 6·3 Motnent Co.roc.\ttes- oj Joint ancl Web Me""bers 

Movnent C~ftlc.'1ty oJ-
We\> Mem.b~r 

Moment Ca.r"'"c:.1ty of Joint by l'telcl .. hne 1'heo7_ ~ 
"' Fbn_ae flo-\e Re·1n~rce~J (whtre cP:::.*-(d~- dn 

Lower E:l<t\'"lll\\Q 

Unre"m sorc.d Jc»,nt Chord Fl~e. Stifjen<tr 
Upper Ext~me 

~..---. M = 2.\>'lT\·f (+.32)Truss 	 A M = ~t"'"!M = 2-l:>lny('l·.32) M=2.l>m,.-( 1o. l)M = 2b7ttt" ( 6·33') ... ;i:&"i\.bt h ~*
Chord ~·· :ic. s ·'"" v~' 

Wttb 4''x +· )( '/2.. 
 :::: 2..40 lf\~1'.<p\ = 458 lti·k'f&::: 3+4il • l 5 	 ·in·\<~s = 508·'15 ·11\·'cc.·~~=S56 	 ln·\<~s 

Truss B 
Chord g"" a">< Y~~rt 60 ifi·\<ir \39.. o 	 ··n·Kir no 	 in~K:fr. 290A6 in-k:r87.o in·'<irsWel> 4 u >' 4 

,, 'J 

* 	"Yl\t =:: 3·44- in·k.ips/un·1t. wicl~" ( fot- v.,_u "\htc.knQ.U 'm.ct\"er;o.\) 

:::: 0. 8 6 1h·K;p$ / uni-l. Wicl'\~ ( ~r" V4-' t\,\c:.knus ~'\"el"io.l) 

*~ 	 h ::: c! (or 7\b) 

d'y ::: 55 \<st 

\..0 
0\ 

http:i:&"i\.bt
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CHAPTER VII 

stm!J.11fARY AND CONCLUSIONS 

Connections made between ~No unequal width square 

HSS welded at :right angles are regarded as semi-rigid~ 

This condition is caused by purely flexural action of the 

connected chord flange due to internal loads transmitted to 

the joint by the web member~ 

Vierendeel trusses composed ~f unequal width squaxe 

HSS were used a.s examples utilizing this type of connection 

and were ari..alysed by a matrix method taking semi-rigidity 

into conside:ration. The trusses were of equal 8@8 
t 

panel 

widths, parallel chords 8' and 13' apart and uniform size of 
tf f1 if 11 n 11 

web members, 4 x 4 x ~ for one case and 4 x 4 x ! for the other. 
n n " n n n

Associated chord sizes were 8 x 8 x i and 8 x 8 x t :respectively., 

..1- ' • .J.. .J..~ •A computer programme was set ~o es~ina~e une maximum 

deflection of the truss subjected to constant panel-p::>int 

concentrated loads. With varying joint modulust the maximum 

deflections were calculated and were plotted against the joint 

modulus to facilitate the design.ers choice of joint modulus 

or dimensions. 

Buckling of the compressive top chord :nember nas Ui.""llikely 

.,
in ~ne two examples considered in Cha.pters LL and III. Instead 

of the top chord member, the end web members '.Vere critica.l 
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and needed to be increased in size due to the presence of 

high stresses there. 

The loading acting on the joint was confined to the 

transmission of loads f:rom the web member only. A length of 

four times the width of the chord member could.be considered 

as sufficiently long for the chord flange plate analysis for 

rotation under applied moment. 

The behaviour of the joint becomes non-linear even 

at relatively low loads due to the very high stresses at the 

corners of the joint~· However, this yielding is quite 

insignificant if the ultimate load capacity of the joint is 

required. Thus, the plastic analysis of the joints was attempted 

to estimate the ultimate strength of the joints. 

As an ordinary unequal width connection is weak to 

develop Mp or even My' several reinforcing techniques have been 

suggested, such as fla.nze-'Plate reinforcing2 chord flange 

stiffener and haunched plate rein.forcing~ AI1 approximate elastic 

analysis of flange-plate reinforcement was attempted. An 

extension of the yield line method was also used to estimate 

the strength of the reinforced joints. Moment capa.cities of 

tb.e reinforced and unreinforced joints were then calculated to 

compare the moment capacity of the web member. In each case, 

it was found tbat the moment capacity of the joint is usually 

lovrn:r than the moment capacity of web rn.ember. Eence, reinforce

ment is deemed. necessary if the strength of the web :nember is 

to rJe fully utilized. 

http:could.be
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The following conclusions can be made based on the 

study descri.bed; 

(1) Vierendeel trusses are aesthetically pleasing 

and are generally economical in a nQ~ber of applications such 

as for pedestrian walkways and as roof trusses. 

(2) Deflection criteria may be at least as important 

to the designer as are strength considerations. Greater economies 

are achieved with the use of unequaJ. web members welded to 

chord members in HSS material.' However, this type of' design 

reduces the overall stiffness because of semi-rigid connections 

and may result in excessive deflections under worldng loads~; 

(3) In each of' the two trusses analysed, the web member 

width to chord member width was equal to o~-5(i~e. 'J\.). Analyses 

were carried out to show that the web to chord welded joints 

r1e:re inadequate in two respects, i.e., 

(i) Strength as dete:rmined by a yield line solution, 

(ii) Stiffness, from the point of view of deflection. 

An adequate design could only be achieved by employing 

one of these joint strengthening techniques described herein~ 

( 4) Reducing 7\ wbile desirable in material saving may 

be offset by costs incu:cred from joint stiffening·. No cost 

analvsis was attemnted but e~rnerience in the use of HSS trusses 
~ ~. 

will tend to suggest o ptir.rum ]\ in relation to other geometrical 

pro:pe:~ies of the members and the associated joint stiffening 

procedures most desirable. 



APPENDIX I 

SE:U-RIGID CONNECTION EQUATION (5, 7,8) 

Consider a prismatic member ab with semi-rigid conne~ 

tions of joint moduli Ja and Jb (For defl.nation of J see foot

note on pp. 13) at ends a and b respectively. The internal 

end moments Ma and Mb due to the external loadings or support 

settlement somewhere in the structure are acting at ends a and 

b respectively. 

The total angles of rotation at both ends are determined 

by adding the rotations of the member without elastic rotational 

spring subjected to Ma and Mb with the additional rotations due 

to the e.xi.stance of the elastic rotational springs. 

The first part of the :rotations of the member a b without 

elastic spring subjected to Ma and ?.10 can be determined b~r the 

Conjugate Beam. Turethod. ( 26) (27) 

Consi<ler Fig. A wr.i ch shows the real beam a b and the 

conjugate bea.m. The bending monent diagram of ti1e real beam with 

a multi:plie:r l/EI is regarded as 'loading' acting on the conjugate 

beam. To f'ind the reaction force of the conjugate be&~ at the 

support a, we take moments aoout b, thus 

R , MhL ) T "'r T 
-a1 + \ 3EI . 3 - ( Tr ) =0 

• 
11,r L/c..,..,I•• - ..~10 O..t!J 

I 

As the shear force of the conjugate l:eam at any particular 

100 
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point is equal to the slope of the elastic line of real beam. 

Thus, the rotation at a is 

Similarly, by taking moments about a, we get the :rota

tion of the beam at b 

The other pa.rt of the rotations due to the elastic 

rotational springs are 

where Ja and Jb are the joint moduli at ends a and b respectively. 

Hence the total angles of rotation at both ends of the 

beam are 

(A.l) 

(A~2) 

Taking out the common factors Ma and M~b , two above· 

equations can be re-arranged as 

0'. _ ( LJa t 3EI 

a - ) tf. - ( L/6EI ) Mb


3EIJa a (A~'3) 

Erb = - ( L/6Er } ( A.4) 



102 

Multiplying both sides of Eqn.(A.4) by 2(LJa+. 3EI) /LJa 

and adding it to Eqn.·( A. 3) , we get 

Let La : L ~(3EI/Ja) 

& Lb ::: L +( 3EI/Jb) 

~rb can be w:ritten as. 

I 
T, 

Similarly, M can be written as 
a 

2Lb L 
Ma =6EI 2 S-a + 6EI 2 0': 

4LaLb .;. L 4LaLb - L o 

If' Ja ::a Jb = J , then La =L0 =L 
f 

Eqns~(A.6) and (A.7) can be written as 

1
2L L 

rK = (A.8)a 6EI '2 2 S-a + 6EI 4T.' 2 2 €Yb 
4L - L .u L 

t 
L 2L 

M : 6EI. tr + 6EI ~ 
b 41'2 - L2 a. 4L'2 - L2 o 

Eqns.(A.8) and (a.9) coincide with Eqn.(2.9) • 
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Real Beam Under Actions 
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APPENDIX II CGMPUT~R PROGRAMME 
HRK7,TlOO. 
FTN(f~=3) 

LGO. 
6400 END OF RECORD 

PROGRAM TST !INPUT,OUTPUT,TAµE5=INPUT,TAPE6=0UTPUT) 
c THIS PROGRAMME IS USED FOR SOLVING THE VltRE~Oc~L TRUSS WITH SEMI-RIGID 
r 
'- CONNECTIONS AT dOTH E~DS uF THE ~~b MEMbLRS *****************************~ 

DIMENSION /.i..(26,5iJ),S(lvU> ,A.SAT(26,26) ,p(z6,·lj ,x.(26,l) ,f(:JQ,ll' 
CSP~ING{25),Z(25),WEBSL(25i,STk~SS(l3,l),AXIAL(4,lJ,VEKT(4,l> 

DIMENSION INDEX(26J 

READ (5,101> NP,NF,NLC 


101 FORMAT C3I5) 
c WHERE NP=NO. OF UNBALANCED MUMENTS AND UNbALANCED LINEAR FORCES AT JOlhTS 
c NF=NO. OF END MOMENTS, NLC=No. OF LOADING CONuITlONS ON THE STRUCTURE 

READ (5tl02) ((A( I ,J), J=l,Nfi, l=l,NP> 
102 FORMAT (10F6.3) 

READ (5,99) «P<I,J), 
99 FORMAT (1F4.Q) 

~\J'RITE <6'104) 
104 	FORMAT Cl3HOTHE MATRIX AJ 

DO 105 I=l,NP 

J=ltNLCi, I=l,NP) 

105 WRITE (6,106) It (A(I,Jl, J=l,NFl 

106 FORMAT (4H Row,13,1x,1P4El6.7/(8X,1P4E16.7}) 


ltJR IT E ( 6 d 1J > 

110 FORMAT ( 13HOTHE rl:ATR IX P J 


DO 111 I=1, NP 

111 WRITE (6,146) I, {P(I,J', J=l,NLCJ 

146 FORMAT (4H RGw~13,1x,1F4.0) 


c THE PANEL LENGTH OF THE VIERENDEEL TRUSS IS 8FT AND ITS HEIGHT IS l3FT 
c THE DIMENSIONS OF CHORD AND WEB ARE 8X8Xl/4 ANO 4X4Xl/4 RESPECTIVELY 

DO 7 l I = 1 , 6 1 , 4 
71 5(1)=7844. 

DO 72 1=4, 64, 4 
72 5(1)=7844. 

DO 73 I=Z, 62, 4 
73 5(I)=3922. 

DO 74 I=3, 63, 4 
74 	 SCI)=3922. 


KK=O 

DO 3001 II=l,10 

KK=KK+l 

EI=30000.*8.18 

SPRING(K~>=FLOAT(II>*lO.*l0.*10.*lO.*lO./l.o 

Z<KK>=I./SPRING(KK> 

WEBSLCKKJ=l56.+3.*EI*Z(KKl 

DO 81 1=65, 97, 4 


81 S(l)=((6.*EI*2•*WEBSL(KK)J/(4•*WE6SL<KK~*W~dSL(K~1-156.*156.)l 


C/12.0 

DO 82 1=68, 100, 4 


B 2 S ( I 1 = ( ( 6 • 1'· c I f..'- 2 • * 'w'J t. o ~ L { K i<-. J J I ( 4 • ~- 1\i t. o ..::i L ( ";( i -;<- wt. o ,,'::) L { r-... r'.. J - .L ::> c • ~" J. :.:> 6 • > J 


Cl U .• 0 

DO 83 I=66, 98, 4 


83 5(1)=( (6.*EI*l56.)/(4.*WEBSLCKKJ*WlBSL(KK)-l~6.*lS6.l)/l2• 


DO 84 I=67• 99, 4 

34 	 S(ll=((6.*EI*l56.l/(4a*wEBSL<KKJ*WEbSL(KKJ-l56.*lj6.J};l2• 


DO 112 I=i,NP 

DO 112 J=l,i\lP 

AS.ATCI,J)=O. 


http:EI=30000.*8.18


lOS 

1-< t. Si..:> C. C T I VE L Y 

J I J. 3 • 

112 

113 
114 

116 

11 7 

115 

119 

120 

122 

123 
121 

118 

124 

127 

DO 112 K=l,NF 
Kl=<K-1)/2-*2+1 
K2=(K+ll/2*2 
K3=2*K-l 
K4=2*K 
ASATtI,J>=ASAT(l,J}+A(I,~>*CS(K3)*A(J,~l)+S(K4J*A(J,K2J} 

DO 113 I=l,NP 
INDEXCI)=O 
AMAX=-1. 
DO 115 I= 1 , NP 
IF CINDEX<I)) 115' 116t 
TEMP=ABS<ASATCI,Il) 
IF <TEMP-AMAX> 115,115, 
I COL= I 
AMAX=TEMP 
CONTINUE 
IF CAMAXl 118' 3001, 
INDEX <ICOL>=l 
PIVOT=ASAT<ICOL,ICOL) 
ASAT<ICOL,ICOLJ=l.O 
PIVOT=l./PIVOT 
DO 120 J=l,NP 

115 

117 

119 

ASAT(ICQL,J'=ASAT<ICQL,J'*PIVOT 
DO 121 I=l,NP 
IF <I-ICOL}l22, 121, 122 
TEMP=ASAT{I,ICOL> 
ASATtI,ICOL>=O.O 
DO 123 J=l,NP 
ASATCI,J)=ASATCI,Jl-ASAT<ICQL,J'*TEMP 
CONTINUE 
GO TO 114 
DO 124 I=l,NP 
DO 124 J=l,NLC 
X<I,J>=O. 

DO 124 K=l,NP 
X(I,J}=X(l,J}+ASAT{I,K)*P(K,Jj 
00 127 I=l,NF 
Il=(l-ll/2*2+1 
IZ=<I+l)/2*2 
I3=2*I-l 
I4=2*I 
DO 127 J=l,NLC 
FCI,J}=O. 
DO 127 K=l,NP 
F{I,Jl=FCI,Jl+X{K,J)*(S(l3)*A(K,Il)+S{I4J*A(K,I2JJ 
AX I A L AND VER T A H E THE A X I A L FU i~ CC. S vF CH 01-.( 0 A j "i 0 'w :.o i, i Eivf d t.r'\ S 
DO 210 .J=l,NLC 
AXIAL(l,J}=(.5*7•*Pl20,JJ*d.+F(L,JJ+f(lb,JJ l/13•0 
AXIAL{2,Jl=(.5*7o*PC2J,...Jl*l6.-P(2Q,J)*8.+F(4,JJ+F 
.r:..., X I A L { 3 , J ) =t • 5*7 • i¢ P ( 2 0 , ..J ) -it 2 L~ • - P ( 2 J , J J ~~ ( l 6 o + 6 • i + F { 
AXIAL(4,Jl=<.5*7.*P(20,..J}*32.-P(2C,Jl*(24.+l6.+d. 

C+F ( 2 4 ,J) } / 13. 0 
V~RT(l,JJ=lF<l,J}+f(2,JJJ/8. 

V~KT(~,Jl=C~(3,J)+f(4,~J-F(l,J'-f(i,J''/8. 

vERT(3,Jl=(F(5,Jl+F(6,J'-F(3,JJ-F(4•J' 1;3. 
V~kT{4,J)=(f(7,~l+F{8,Jl-F(5,JJ-F(b,JJ)/8o 

zo,Jji/lj • 
, J ' + F ( 2 ::.: , ...J ) 

+f{d,J i 
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VERT(5,J)=(F(9,Jl+FClO,J)-F(7,JJ-F(8,J})/8• 

210 CONTINUE 
SM AND SM2 ARE THE SECTIU~ MODULI UF CHukD A~D WEb NE.~clEKS RESPECTIVELY 
SM=18.8 
Siv1Z =4. 09 

... ... 	 THE CROSS SECTIONAL AR EA OF THE CriC.n<D MElvit:H::R IS 7 • 5':1 SCil. IN• 
THE CROSS SECTIONAL AREA OF THE W~~ MEMBER IS 3.54 SLl. IN. 
DO 	 310 J=l,NLC 
5TRESS(l,Jj=ABS<F<l,JJ*l2./SMJ+ABS{AX1ALC1,Jj/7.59} 
STRES5(2,J)=A8S(FC2,J)*l2·/SM)+AB5CAXIAL(l,Jl/7•59> 
STRESS(3,JJ=ABS(f(3,J'*l2./SM'+AB5CAXIAL(2,J'/7.59) 
STRESS(4,J)=A85{F{4,JJ*12./SMJ+Aci5{AXIAL(2,Ji/7.59J 
STRESS(5,JJ=A85(F(5,J}*l2·/SMl+Ad5(AXIAL(3,J>;7.59) 
STRE55{6,J>=ABS<F<6,Jl*l2.ISMl+ABStAXIAL(3,J}/7.59J 
STRESSC7,Jl=ABSCF<7,Jl*l2./SMi+ABS<AXIALt4,Jl/7.59l 
STRESS(8,J)=ABS<F<8,J>*l2·/SM)+ABS<AXIALC4,Jl/7•59) 
STRESS(9,Jl=ABS<VERT<l,J>13.54l+ABSCFC34,J>*l2./SM21 
STRESS<lO,Jl=ABS<VERT(2,JJj3.54J+ABSCF(36,~)*12•/SMZJ 
STRESSC11,J>=ABSlVERT(3,J)/3.54l+AbS[f(38,J}*l2•/SM2> 

STRESS<l2,Jl=ABS(VERT(4,Jl/3.54i+AdSlFl4Q,Jl*l2•/SM2J 

STRESSC13,Jl=ABSlVERT(5,J)/3.54>+A8S(f (42,Jl*l2./SN2) 


310 	CONTINUE 
~'/RITE (6,107> 

107 	 FORMAT (13HOTHE MATRIX s> 

DO 108 I=l,NF 

Il=<I-1)/2*2+1 

I2=(I+ll/2*2 

I3=2*I-l 

I4=2*I 


108 WRITE (6,109) r, 11, SCI3'' I2, S<I4l 

1U9 FORMAT (4H Row,13,5x,3HCOL,I3,1PE16.7,5X,3HCUL,I3,1PE16.7l 


WRITE (6,1128> 

1128 FORMAT Cl3HOTHE MATRIX f} 


DO 1129 I =l ,NF 

1129 WRITE (6'1136) I' .<F( I ,J>, J=l,NLCJ 

1136 FORMAT (4rl Row,13,1x, 1Fl4.4 1 


WRITE (6,1125) 

1125 FORMAT <13HOTHE MATRIX XJ 


DO 1126 I=ltNP 

1126 WRJTE (6,1136) I, lXCI,JJ,~ J=l,NLC) 


WR i TE . ( 6 , 18 2 0 } 

1820 FORMAT l54HOTHE AciSOLUTE VALUE OF STRcSS IN TH~ M~~bc~S 0F TRUSS/) 


DO 18 2 1 I =1 , 13 

1821 WRITE (6,1830> 1' <STRESS< ItJJ' ..J=l,NLCJ 
1830 FORMAT <7H STRESS, 13, lX, 1Fl4.4J 

WRITE (6,1840) 
1840 FORMAT C52HlTHE AXIAL FORC~S Ii~ CHORD AND W~b MtMb~RS IN KIPS//) 

00 1841 I=l,4 

1841 1i1iRITE (6'1850} I, (AXIAL< r,J), J=l,NLC) 

1850 FORMAT C6H AXIAL, 13, lX, 1Fl4.4J 


00 1851 1=1,5 

1851 W~ITE {6,1860' I, (VERTCI,JJ, J=l,NLCJ 

186U FORM.~T (5H VE.RT, 14, lX, 1F14.4 1 


30C;l CONTINUE 

STOP 

END 


http:Row,13,5x,3HCOL,I3,1PE16.7,5X,3HCUL,I3,1PE16.7l
http:STRESS(5,JJ=A85(F(5,J}*l2�/SMl+Ad5(AXIAL(3,J>;7.59
http:STRESS(3,JJ=ABS(f(3,J'*l2./SM'+AB5CAXIAL(2,J'/7.59
http:5TRESS(l,Jj=ABS<F<l,JJ*l2./SMJ+ABS{AX1ALC1,Jj/7.59


L"'PFENDIX rrr 

LOADING EQUATIONS EXPRESSED IN 

TfilGONOMETRIC SERIES 

UNIFORMLY filSTRI:BUTED LINE IDAD 

Cbnsider a uniformly distr.ibuted line load of: intensity 


Clo acting at a location of a plate as shown in F.lg.1 B • 


Tl:Us loading equation can. be expressed into double 


· t:rigonomet:ric series.- One component of the equation is expressed 

in x-direction., the other component is exp:ressed in y-direction. 

The product of two components is the required double trigonometric 

series•. 

In y-direction, the loading can be :regarded as U.D.L. 

o:f intensity q0 acting on a simply supported beam. For a 

st:ructuraJ. element with simply supported ends the half range 

series which is most of'ten used is the sine series~; Therefore, 

the load may be represented as 

To find qn multipy both sides of this equation by 


sin. n7$.y/b a.i'J.d integrate from O to b. Noting that 


b 0 when m ~ n 
sin m.~y sin. n'!'y dy = ' S0 b D b/2, ".-7hen m_ =n 

the resulting equation is 

107 
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b , rb 'E!!::JL. qb
qn(~ =Jo q sin b dy = n"tt (l~ cos. ·.n'll:) 

From. above equation 

q =4qo when n is odd 
n n~ 

an.a. q =·a when. n is even n 

Therefore, Eqt4~(A.'10) is expressed as 

(A.11) 

Ih. the x-direction, the loading can be regarded as a 

unit concentrated load (because of line load) acting at a 

distance f from one end of a simplied supported beam of· length 

2b. To derive the expression for this unit concentrated load, 

we can treat. the loading as a UDL of intensity l/2E between 

x =t-€ and x =r+t:: (see Fig.B). The loading on the beam is then; 

zero from .x = 0 to x =p-f:. 

1/2 from x =~-t to x =p+<c 

zero from x =r' +e to x-- 2b 

Like Eqn.(.A~·10), the loading may be ;represented as 

Zqn sin n~x/2b, multiplying both sides by sin n1!.:X/2b and 

integrating betweenO and 2b we get 

2b n"(t.x. n~z ~f+E 1 . n~x~~(o) sin 2b dx i" -. sin -- dx - (0) sin -- dx 
f-i2E 2b ~ 2b 

('t"~2b 2 n7r..,..= q_ sin ~dx~ 0 n 2o 
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1 2b ( n<.t( ) n~( )J _ 2bWhence - - cos - f-f - cos 2b /J-tf -- % 2f nll. 2b , I 2 

Using the cosine combination. formula, this give 

- I • n~c . n~q - --· 2 ·sin. ·Sl..n n l!:ll"{{ 2h 2b 

and since sin~-+ n~t as z.-+O 
2b 2b .,, . _ 1. .. niIJ° 

•• qn --h sin 2b 

The expression. for this unit concentrated load is 

thus [17J 

• ({,.a .. ~% ,, • 2«t .. 2<cr ' 
1h sin. 2'b sin 2b ..,. sin 2b sin ~ + ••• (A.12) 

Multiplying· Eqn~;(A.11) with Eqn~;(A~:l2), we obtain the 

required double trigonometric series for the uniform line load 

acting on the plate, i~e. 

.. n~x)
SJ..n2b 

where 

Equation (A.13) coincides with Eqn.(6.9) .. 

http:Eqn~;(A.11
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1?ARABOLIC LINE LOAD 

Consider a parabolic line load at a location.of a 

plate aa shown.. in Fig~' C •· The a.l.~eas of this :parabolic distri~ 

bution. and the U.D.L. in prece•ding· Section.must equal each 

other. The intensity of this. pa:rabolic distribution is found 

equal to 3~ at both ends and zero at the center. 

The double sine series for this parabolic line load 

can~ be decomposed into two components, namely x and y components. 

Before dealing with the. comJ?Qnent equation, we would 

like to find the equation of a parabolic curve as shown in 

Fig~'D where q is the vertical a.xis and y is the horizontal axis. 

The general equation for the parabola in Fig,'D) is f21] 

< y ~ bI 2 ) 2 ::· 4k f q - o) 

where ( b/2, 0 ) and ( b/2-, k ) are the coordinates of the 

vertex and the focus respectively~' The value of k can be found 

by substituting the boundary value of the curve, namely when 

y ::: o, q • 3q0 .! K is thus found equal to b2/48q0 • Expxess 

q in tenns of y, Eqn.(A.14) can be written as 

q = ( y ..:. b/2 ) 
2 

12Qo (A.15) 
b?. 

Returning to the y-com:ponent equation., we can regard 

the loading in y-direction as a parabolic distribution load 

acting on a simply supported beam of length b. Let this load 

be represented as 

http:Eqn.(A.14
http:location.of
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q ::: ql ..~-,i·n 7!. Y ...a. • n 2'llY ·- s · n m"!J:y, b 'q2 si -0-~ ••• + qm i b ~··· 

(A.16) 

Where ~ can be found by multiplying_- both sides of 

above equation b~ sin ~y/b and integrating with respect to 

y from 0 to b. 

Thus 

Substituting q as expressed by Eqn.(A~il6) into above 


equation, we get 


%n =24qo r~ {-l)m]..; /21[1 
m:cc . m z.<:j 


· when m is odd a = 4sqo ( l.. ..:..
4 ~ 2 ) 
-m m. ~ m <L: 


when n is:. even a :: O
--m 

Therefore, Eq~( A;~16) can be wrttten as 

wbich is the y-component of the parabolic line load acting 

on the plate~ 

As in preceding Section, the loading in ~-direction 

can be regarded as a unit concentrated load acting at a distance 

r from one end of a sim:ply supported beam of le-11gth 2b~t The 

expression for this u.."'lit load is 

1 [ si· n 15.(J s;n <:ex • .... i.. n 2S:e " sin 2~\b 2b 2b 20.J. I ,.::J J. .2b 
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The product of the two comronents gives the req_uired 

double sine se:ries, thus 

(A~'l8) 


where - 48qo 1 .( .:t:. 2- ) .. n :.ttf/2b<Iron 	 - b<t m 4 - nt2~2 SJ. . n 

=~ .±:. ( 3 ~ ~m ) sin n';?!:.f/2b
b~ m m2~ 
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---~b---~-1___.dy-
Unifo:rm Line Load on a Plate 

i 
i. uvuwumumumimJ~ 

,,i 1yw< ------ b J 

Line load in y-direction 

-1I .,.,.;t· 
.2.!. 

im 
-IJj ;, ~ 

lllllj t-£ ++.'.:l,.pfx 
f' i 

~ !~ ib 

nine L.oad in x-clirection 

Rl.g_•B : Uni£o:rmly Distributed Line Load 
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Fig. C Parabolic Line Load Acting on a Plate 

y 

Fi.g. D A Parabolic curve on y-q axes 



APP3IDIX IV 


1. Matrices : 

c~J Static matrix 


[BJ Deformation matrix 


p1) Internal end matrix 


{:e} A colunm matrix showing values of tmbalanced joint 

moments and Ui!balanced linear forces 

(sJ Stiffness matrix 

{x} 	 A column matrix showing values of joint rotations 

or translations 

{&} 	 A column matrix sb.owing values of elastic end 

rotations 

A symbol used to indicate the transr~se of a matrix 

2. Notations 

a Length of ?late in ::-direction 

b V:lidth of Plate in ;I-direction; the width of chord 

member of square HSS 

C Conpressive force in triangular pinned truss 

d Width of web 2ember of squa:re HSS 

D Elastic flexural rigidity of plate of lmi t width, 

E I 
1 -)?

E Elastic nodulus of steel 


E~ 
:,, 

Tangent modul~s of steel 
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G Shear modulus 

H Height of Vierendeel truss ; height of stiffening 

plate 


I Moment of inertia 


J Joint modulus (J ~ M/~) 


K Plate coefficient 

"1 	 '1L 	 lenght ; span lenght of beam ; panel lenght 0£ 

Vierendeel truss 

Modified length of the structural member with 

semi-rigid connections at ends 

mp Fully plastic moment o~ plate (per unit width) 


M- Applied bending moment 


P Load 


Q Maximum intensity 0£ distributed load 


t Plate thickness 


x,y Co-ordinate axes 

W Transverse deflection of thin plate 

Z 1.0/J or ¢/M 

Zn Plastic section modulus 
J.,; 

°'- The angle made between the diagonal yield line 


and the vertical 


The angle made between the diagonal yield line 


and the horizontal 


Shearing deformation 


A~ Deflection} 

E Small inc:re::ient 


Coefficient of restraint 
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?\. Width ratio (d/b) 

Y Poission's ratio 

f A certain distance from one end beam --ahere a 

concentrated load is acting 


.E Summation 


<( Sress 


4¢ Buckling stress 


efy Yield stress 


<f'f FropoTtional limit stress 


r( Shearing strss; E/Et 


<f 	 Relative angle of rotation between two members 

at joint 

3. Abbreviations 

AISC 	 American Institute of Steel Conctruction 

CIDECT 	 The International Committee for the study and 

Develop2ent of Tubular Structures (Comite' 

international pour 1 1 etude et le de'veloppe=ient 

HSS HolloTI structural Sections 


i',Iin. Minimum 


!'fa.x. Maximum 


1TBC national Building Code 


FDL Ur.if'o:rml~... di stri :·mted Loa.:.l 
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