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ABSTRACT 

Neutron diffraction techniques have been used to determine the 

chemical and magnetic order in a single crystal of the Heusler alloy 

Ni 2Mn 0.8v0. 2sn. This material orders in the Heusler L21 structure and 

is ferromagnetic. Nuclear Bragg scattering intensity ratios have been 

measured at 298 K and compared with nuclear structure factor calculations 

based on a model of the crystal structure. This comparison is used to 

determine chemical disorder. Magnetic Bragg scattering intensity ratios 

have been measured at 117 K. These ratios, along with bulk magnetization 

measurements, are used to determine the spatial distribution of the 

magnetic moment. The crystal is found to have the L21 structure with 

possibly 5% or so Ni-Sn disorder. Nearly all of the magnetic moment, 

which is 3.19 ± .03 µ8/mol, is found to exist on the Mn-V sites. The 

rest is present on the Sn atoms. The values 3.74 ± .10 µ 8/Mn atom and 

.21 ± .08 µ8/Sn atom result from assuming the V atoms carry no moment. 
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CHAPTER I 

INTRODUCTION 

Ni 2MnSn and Ni 2Vsn are intermetallic compounds called Heusler 

a11 oys. The former is ferromagnetic a1though it is composed of e 1ements 

which are normally found to be non-ferromagnetic. Nearly all of the 

magnetic moment exists on the Mn atoms although metallic Mn is anti­

ferromagnetic. These Heusler alloys have the L21 structure. The ferro­

magnetism is thought to arise from the way in which the Mn atoms are sit­

uated in this structure. A large single crystal of Ni Mn _ v _2sn was
2 0 8 0

grown to explore the possibility of diluting the Mn sites with V. V has 

zero magnetic moment in Ni 2Vsn and is expected to retain this property when 

substituted for Mn in Ni 2MnSn. An additional feature is the dependence of 

the magnetic properties on chemical disorder. It is the purpose of the 

research reported in this thesis to determine the disorder in a Ni 2Mn 0_ _2sn8v0

crystal, and to establish on which sites magnetic moments exist. 

The remainder of Chapter 1 describes Heusler alloys and presents a 

brief historical review. Chapter II outlines the theory behind the method 

of neutron diffraction. The cross-sections for nuclear and magnetic scatter­

ing are derived and topics, such as the Debye-Waller factor, absorption and 

extinction are discussed. A structure model for Ni 2Mn0.8v0_2sn is proposed 

and structure factors are calculated for this model. The third chapter 

relates how the crystal was grown, the various experiments that were done 
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and the apparatus involved. Chapter IV consists of the neutron diffrac­

tion data and results pertaining to the chemical and magnetic order. 

Chapter V contains the conclusions of this study. Improvements are 

proposed for future reference. 

An excellent review of earlier work on Heusler alloys is found 

in an article by Peter J. Webster (1969). F. Heusler (1903) discovered that 

ferromagnetic materials could be made by alloying Cu-Mn bronze with group 

B elements, like Sn, Al or As. 

This magnetic behaviour has interested many people and a large 

number of compounds have been studied. 

These so-called 11 Heusler alloys" have many of the properties of 

metals, as for example, a metallic lustre and a high conductivity, but 

they have the structure of an ordered compound. They are therefore, classed 

as intermetallic compounds. The common chemical order is X2YZ where X 

can be Cu, Ni, Pd, Rh or Co; Y is usually Mn and Z is a group III B or 

IV B element such as Al, Si, Ga, Ge or Sn. 

Bradley and Rodgers (1934) were the first to determine the complete 

structure. They studied (CuMn) 3sn using x-rays of different wavelengths 

close to the absorption anomalies of Cu and Mn. The L21 structure is a 

four-atom basis on an FCC lattice. For Ni 2MnSn, the basis is Ni(OOO), 
111 .111 333Mn(44 4), N1(222)and Sn(444). A diagram is given in Fig. I-1. 

Those Heusler alloys that contain Mn also have an ordered magnetic 

structure. Most are ferromagnetic but some have been found that are anti­

ferromagnetic. The magnetic properties can be altered by changing the 

degree or type of chemical order. 



Fig. I-1 : Structure of Ni. 2MnSn. 
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Accurate determination of magnetic and chemical structure became 

possible with the development of neutron diffraction. Bacon (1975) is an 

excellent reference for the application of neutron diffraction to these 

problems. 

Felcher (1963) used neutron diffraction to study cu 2MnAl using 

a magnetic field of 12 kOe for saturating his samples. He found that at 77 

K, the magnetic moment per Mn atom was 3.7 µ8, and that all magnetic moment 

was confined to the Mn site within . 1 µ8. Other studies have shown that 

when Mn is involved in Heusler alloys, it nearly always carries a moment 

of~ 4 µ8. A few examples given by Webster (1969) are shown in Table I-1. 

There is considerable interest in the interaction mechanism between 

Mn atoms in Heusler alloys. Systematics with composition change and the 

constancy of the Mn moment argue for a localized magnetic moment, pre­

sumably arising from the Mn d-electrons. The mechanism responsible for 

the coupling of these moments has not been resolved. Inelastic neutron 

scattering experiments (Noda and Ishikawa, 1976) show that a long range 

oscillatory interaction exists. This suggests an s-d interaction but 

there are difficulties with the short range part of the interaction. 

Early work on Ni 2MnSn was carried out by Castelliz (1951, 1953), 

Hames (1960), Johnston and Hall (1968) and Webster (1968). These people 

established the stability of the compound and the chemical and magnetic 

structure. A magnetic moment of 4.05 µ8 per atom was found to reside on 

the Mn atoms. 
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Table I-1: The magnetic moment 

Composition 
Cu2MnAl 
Cu2Mn!n 
cu 2MnSn 
Ni 2MnGa 
Ni 2Mnin 
Ni 2MnSn 
Ni 2MnSb 
Co2MnAl 
Co2MnSi 
Co MnGa2
Co 2MnGe 
Co 2MnSn 
Pd2MnAl 
Pd Mnin2
Pd2MnSn 

per Mn atom in Heusler alloys. 

Moment/Mn(µ 8 :Bohr magnetons) 
3.8 

4.0 

4. 1 

4. 17 

4.40 

4.05 

3.27 

4. 01 
5.07 

4.05 

5.11 

5.08 

4.4 
4.3 
4.23 
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Campbell (1975) has measured the magnetic hyperfine fields 

acting on the non-Mn nucleii in a large number of Heusler alloys using 

the Mossbauer technique. The magnitude and sign of these fields give 

information on the spin polarization of the conduction electrons which 

are responsible for the indirect magnetic interaction between the Mn 

atoms. 

Noda and Ishikawa (1976) have studied spin waves in Pd2MnSn 

and Ni 2MnSn to obtain infonnation about the Mn-Mn interaction. Ishikawa 

and Tajima (1976) used polarized neutrons to accurately determine the 

atomic form factor of Mn2+ atoms in Pd2MnSn. Magnetization measurements 

have been done by Campbell and Stager (1976) on the series Ni 2MnxTl-xSn 

where T is Ti, V or Cr. Curie temperatures and saturation moments were 

recorded for polycrystalline samples. For Ni 2Mn0.8v0.2sn, they found the 

Curie temperature to be 261 K and the saturation magnetization to be 

3.20 µ8/mol. 

The present work was undertaken to explore the possibilities of 

a neutron diffraction study on the same series, Ni 2MnxTl-xsn. A single 

crystal of Ni 2Mn0_8v0. 2sn was grown. It is the chemical disorder and 

magnetic structure of this crystal which are the subject of this thesis. 



CHAPTER II 

THEORY AND MODEL CALCULATIONS 

The first s2ctions of this chapter deal with the theory involved 

in the aspects of neutron diffraction relevant to these experiments. 

This can by no means be a complete derivation of all the formulas 

used, but is merely a presentation of those effects that must be under­

stood to explain the data. The topics include nuclear and magnetic 

scattering cross-sections, the Debye-Waller factor, absorption and extinc­

tion. The last section is a calculation of the structure factors includ­

ing atomic form factors for an idealized model of a Heusler alloy. These 

allow the prediction of magnetic and nuclear integrated intensities and 

ratios. 

The thermalized neutron is a unique probe into the world of atoms 

as well as into the more remote world of nuclei. A 1 A0 neutron has 

.082 eV of energy, travels at a velocity of 3.95 x 103 m/s, and has a 

frequency of 3.95 x 1013 Hz. Its charge is zero but, rather anomalously, 

it has a magnetic moment of -1.91 nuclear magnetons. It is the scattering 

of this quantum creature by crystals to which we now turn our attention. 

The discussion follows closely that of Marshall and Lovesey (1971). 

A. 	 Scattering Theory 

The problem of calculating the neutron scattering cross-sections 

7 




8 


is set up as follows. A polar co-ordinate system is arranged so that a 

beam of incoming neutrons is travelling in the positive z-direction. It 

impinges on a scatterer at the origin which deflects the neutrons through 

the polar angle e in some direction defined by the azimuthal angle ¢. The 

incident and scattered neutrons are described as plane waves with propaga­
- -' tion vectors k and k respectively. The flux of incident neutrons, N, is 

defined as the number of particles incident on the scatterer per unit area 

per unit time. 

The cross section for a scattering arrangement is the number of 

scattered particles detected per unit time divided by N. When considering 

scattering into a differential solid angle dQ, a differential scattering 

cross-section ~~ is defined such that 

(da)dQ = (number of particles scattered into dQ per unit time)
dQ N 

Let the initial state of the system be described by the ket 

Ikon> where k refers to the neutron wave vector, a the neutron spin, and 
- I I I 

n the initial state of the scatterer. Similarly, let Jk a n > represent 

the state of the neutron and scatterer after scattering. Since the cross 
_I I I 

section is related to the transition probability between Ikon> and lk an >, 

it can be calculated, in the spirit of the Born approximation, by asing 

Fermi's Golden Rule. The result of this calculation is the total partial 
- _, 

differential cross-section for scattering from k to k , 
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The ntota l iti1 of the above express ion is achieved by summing over a11 
I - l 

final states a ,n that have wave vector k and averaging over all 

initial states cr,n with wave vector k. The coefficients Pa and Pn are 

the probabilities that the incoming neutron has spincr and that the 

scatterer is in the state described by n. The probabilities can be 

calculated by use of statistical mechanics. The partial differential 

--9. and the delta-function build into the equation the conservation 
aE 
of energy condition 

+ E I 
n 

where 
ti2 2 .2 
- (k - k ) = nw
2m 

A 

En and E , are the initial and final energies of the scatterer. V is 
n 

the operator associated with the interaction potential between the neutron 

and scatterer. 

B. Nuclear Scattering 

When a neutron is scattered by a nucleus the nucleon-nucleon 

interaction is responsible. This is knmvn to have a very short range, 

0approximately 1.5 x 10-5 A , much less than the wavelength of a thermal 

neutron. Therefore there can be little interference from different parts 
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of the nucleus and the scattering must be isotropic, S-wave scattering. 

It is well known that this type of scattering can be characterized by a 

single complex parameter b, called the scattering length. The imaginary 

part describes absorption processes such as radiative capture. In 

general, the scattering length is different for each ele~ent and isotope 

and is also sensitive to the spin orientation of the scatterer. 

To get S-wave scattering out of our Born-approximation different­

ial cross-section formula, we must ascribe a delta-function potential to 

the interaction. The Fermi pseudo-potential describes the interaction of 

a neutron at r with a nucleus at R. It is given by 

2 
v(r) = 2nn b a(r - R). (2)m 

For a rigid lattice model of a crystal with atoms at i this becomes: 

v(r) - --m lb_ o(r - i). 
- t 
R, 

R, is a lattice vector for Bravais lattices. 

For plane waves 

22TI1i=~ l b exp(iQ.t) 
m - i 

t 

- - -· where Q = k - k , the scattering vector. If we substitute this into 
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the scattering cross-section formula (Eq. 1), we obtain the result 

I 

Here n,n refer to the distribution of isotopes and nuclear spin orientations. 

To obtain an idea of the form of the nuclear scattering cross-section, we 

make the approximation that the energy of the lattice is independent of 

the above distributions, therefore restricting ourselves to elastic 
I I 

scattering. The sum over n and a can now be done by closure with the 

result 

da = l PP I exp{iQ.(i- £
1 

)} <crnlb-~b-lon>.
drt n 0 . - I Q, f_ n,o :€ t 

Performing the average over the nuclear spins and isotopes and defining 

we obtain 

do _ I *2exp{iQ.(l-i )}b_,b_.drt ­ __ , £ i 
H 

*Since b_,b_ = 
Q, Q, 
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- 2
Ib I ) 

and 
-, 

if ,Q, = .Q, 

The above can be written as 

so that 	the cross section splits into two parts 

da _ (da)· + (da) (3a)dn - dn coh dn incoh' 

where 

- 2 - - 2lbl I I exp(iQ.i)j , 	 (3b) 
-
R. 

and 

These two types of scattering are very different. The coherent scattering 

is subject to strong interference effects and can be large if certain 

geometric requirements are met, or it can vanish. The incoherent scatter­

ing is isotropic. 

We will concentrate on the coherent part. If it is generalized 

to the case where there is more than one type of atom per unit cell, then 
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where dis the position vector of the dth atom in the unit cell. The 
-

first factor is zero unless Q is a reciprocal lattice vector G and 

therefore this factor is proportional to the delta function o(Q-G). 

The quantHy 

I b_ exp(iQ.d), (4) 
- d
d 

is called the unit cell structure factor. 

The coherent elastic nuclear scattering off a rigid lattice is 

therefore given by: 

- - 2 - 2
II exp(iQ.i)I IFN(Q)I . (5) 
:[ 

- -
The b's in FN(Q) are determined experimentally and are tabulated (Bacon, 

1975). 

C. 	 Debye-Waller Factor 

The discussion so far has been restricted to a rigid lattice. 

When allowing for harmonic atomic oscillations it can be shciwn that the 

result for a Bravais lattice is the rigid lattice result multiplied by 
-	 - A A2 

exp{-2W(Q)}, the Debye-Waller factor. Since 2W(Q)= <{Q.~} >where ~ is 

the atomic displacement operator, we see that 2W is equal to the mean 

squared displacement of the atom perpendicular to Qmultiplied by 101 2. 
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"' "' - 2 1 -2 - 4
Since <µJ > = 3 <µ > for cubic crystals and IOI = 'A7f sine_ where 2e is 

the scattering angle 

1 8 2 2 ::.2W(Q) = -~rr~ sine<µ>. (6)
3 ,.2 

When allowing for vibrations in a non-Bravais lattice, the unit cell 

structure factor becomes 

= I 1)_ exp(iQ.d) exp(- Wd(Q)). (7) 
- d
d 

The Debye-Waller factors tend to make the intensities fall off with 

increasing sin2e. It is important to note that because they are differ­

ent for each atomic species, they do not enter FN(Q) as a simple expon­

ential scaling factor. These factors are also temperature dependent. 

For temperatures above the Debye temperature, the Debye-Waller factors 

are linear in temperature. In the high temperature region the dependence 

for monatomic crystals is given by 

D. Magnetic Scattering 

The magnetic interaction between the neutron and unpaired electrons 

is another equally-important effect. Because of the quenching of the 

orbital angular momentum, we restrict our attention to the spin of the 

unpaired electrons. There are other small effects due to the motion of 
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the electron which shall be neglected here so that the interaction 
-


potential is that of two dipoles R apart 

(8) 


The dipole moment of the neutron is µ 
,... 

= yµNCJ and that of the electron is 
" 

a and s 
,... 

are the spins of the neutron and electron respect­

ively. Substitution of this interaction into ~q. 1 for the cross-section 

gives 

2 2 kl -· t I ,... s. x R - 21 
I = (~) (2YµN µ8) { k PnPCJ I<k n 

I 

a I i a. cur1 ( _ 3 ) Ikn CJ> I x 
dstdE 1 

2n1i nn CJcr IRI 

x 8 (1iw + En - E , ) • ( 9) 
n 

The sum over i is over all unpaired electrons in the atom. Using the 

identities 

v(--J-) 1 1 J - 1 .- ­R -_- = - dq 2 exp(1q.R)IRl3 2IRI !RI 2n q 

part of this can be evaluated to give 

- 1 S. x R _ - - ~ ~ ~ ~ 

<k I I 0.curl( ,_ 3 )lk> = 4n? exp(iQ.ri)cr.{Q x (Si x Q)} 


i IR I 1 


" " -
(1 0) 
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where r; is the position vector of the ;th electron and the symbol ~ 

denotes a unit vector. Expressing the cross-section in terms of the 
~ ~ 

tensor components of cr.T1, allows us to write 

(11 ) 

where we have used the fact that 

for unpolarized neutrons. 
A 

For a Bravais crystal lattice, the sum in the expression for T 

will be over all unpaired electrons in the whole crystal. If these 

electrons are localized on the lattice sites, the term in the above ex­

pression becomes: 

I - I " 

<n !fin> = I exp(iQ.l) f(Q)<n IS-In>, (12) 
- t 
Q, 

where S 
.... 

is proportional to the total spin on the atom and f(Q) is the 
Q, 

atomic form factor. It is related to the spin density s(r) by: 

f(Q) = fdr exp(iQ.r)s(r). ( 13) 

The penultimate cross-section equation is 
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( 14) 

Finally, if the material is ferromagnetic and all spins are aligned in 

a certain direction n, the spin on each site can be expressed in terms 

of the average spin, giving 

(15) 


Thus, the cross-section for elastic-coherent magnetic scattering is 

(dcr)el 	 - I\ exp(iQ-.~)j2{1
dn coh 	 - l 

( 16) 

E. 	 Combined Scattering 

The total cross-section for elastic coherent Bragg scattering off 
'V

a ferromagnetic material with all spins aligned in a direction n, allowing 

for interference between those scattered by nuclear and magnetic inter­

actions, is: 

~~=I~ 	exp{iQ.:i:J1 2[iFN(Q)l 2 + 2 ~.P1R/N(Q)Fm*(Q) + q2 IFM(Q)i 2J, (17a) 
,Q, 
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where 

l "b:" exp(iQ.d) exp(- Wd(Q)), (17b) 
- d
d 


IP_ exp(iQ.d) exp(- Wd(Q)), ( l 7b) 

- d
d 

2 '\, '\, 2 
q ~ {l - (Q.n) }av' (17c) 

-
and Pl is the polarization of the incoming neutrons. For unpolarized neu­

trons, the interference tenn averages to zero and the intensities of the 

two types of scattering are additive. P_ is a magnetic quantity analog-
d 

ous to the nuclear scattering length. The expression allows for differ­

ent atomic species in the unit cell. It is written for magnetic spin 

angular momentum scatte9!ng but orbital angular momentum can be accounted 

for by adding a factor . ~ in P _ where 9- is the Lande splitting factor of 
d d 

the atom at din the unit cell. 

It was mentioned above that II exp(iQ.i)j 2 was a delta function 
- - I

for Q = G, a reciprocal lattice vector. Written out in full, the express­

ion is 

- -· ­nk - "flk = 1iG 

-
which is a conservation of momentum condition if nG is considered the 
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momentum of a crystal excitation. This is also Bragg's scattering law 

. I-QI 4rrsine d 1G- I - 2n . 1 . th t 2d .since = A an hk£ - dh l 1mo y1ng a A = hk~s1ne: 

Experimentally, the Bragg scatterin~ is not a delta-function for 1t is 

blurred by the mozaic spread of the crystals, the degree of collimation 

of the spectrometer and the wavelength spread in the neutron beam. The 

correct intensity ratios can still be obtained by integrating over a 

"rocking curve" since the integrated intensity is proportional to 

2
A3IFN(G)l= __;,.____ (18) 

2v s i n2 e 
0 . 

where si~ 28 is the Lorentz factor. 

To determine magnetic structure, we must be able to measure the 

magnetic scattering intensities to fit them to a model. Often the 

magnetic peaks occur at the same scattering angles as the nuclear peaks 

rendering some means of distinguishing them necessary. It is possible 

to use the fact that the magnetic scattering lengths have an additional 

form factor dependence which causes the magnetic intensities to decrease 

more rapidly with increasing si~e. However, the most convenient method 

of separation, apart from using polarized neutrons, is to adjust the 
2factor q q is known as the magnetic interaction vector. If a magnet 

is used to point all the spins in a ferromagnet in a direction~ such 
'\, '\,

that Q.n = 1 (i.e., magnetize the sample along the scattering vector) 

then q2 wi 11 be zero and only the nuc1ear intensity wi 11 be present. 

However, if no magnetic field is applied to the sample, it will 

break up into randomly oriented domains and q2 will average out to 2/3. 

The nuclear intensity plus 2/3 the magnetic intensity shows up. 
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I 

Subtracting the intensities obtained in these two cases gives 2/3 the 

magnetic scattering intensity, measurable as required. 

F. Absorption and Extinction 

There are two other effects that tend to decrease the scattered 

neutron intensities, namely absorption and secondary extinction. Absorp­

tion decreases the intensity by the factor 

A(µ) = ~ J exp[- µ(T 1+ T2)JdV, (19) 
. crystal 

where T1 and T2 are the path lengths in and out of the crystal. 

µ is the absorption coefficient. Secondary extinction is when 

mozaic blocks in the front part of the crystal diffract away neutrons so 

that the incident intensity on more remote areas of the crystal is 

diminished. The end effect is similar to absorption and it was shown by 

Darwin (1922) that extinction can be accounted for by modifying the 
I 

absorption coefficient µ to an effective coefficient µ where 

µ = µ + gQ • g is a constant which depends on the mozaic spread of the 28 

crystal and Q is defined above (Eq. 18). Since the true absorption 28 

coefficient µ for Ni 2Mn0.8v0. 2sn is only .225 cm-l, it can be neglected. 

Extinction, however, shows up quite markedly for low angle, high intensity 

peaks causing observed intensities to depend on crystal shape. A detailed 

analysis is possible for certain crystal shapes as shown by Hamilton (1957) 

and Zacharison (1967). 
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G. Disorder Model Predictions for Ni 2Mn0.8v0. 2sn 

Ni 2MnSn is a Heusler alloy of stoichiometric composition x2vz. 

It has the L2 1 crystal structure. The allowed reflections and relative 

intensities are determined by calculating its structure factors. Struct­

ure factors are calculated by using Eq. (4) 

hxd kyd ,Q,zd 
= ~ bd- exp{2ni(- + - + -)}, (20)

d a a a 

where h, k, £, are the Miller indices of the reflection planes correspond­
xd Yd 2d

ing to the reciprocal lattice vector G, and ~, ~, ~are the co-ordinates a a a 

of the atom at din the unit cell. The Debye-Waller factors have been 

omitted here. For Ni 2MnSn, there are three groups of allowed hk£-reflect­

ions. These are described below. 

h 'k ',Q, all odd eg. (111) 


k + ,Q,

h'k ',Q, all even and h + odd (200)2 

k + 9,
h 'k '9, all even and h + even (220)2 

The corresponding structure factors are: 

=FN(lll) 4lby - bzl 

FN(200) = 4lby + bz 2bxl (21) 

FN(220) = 4lby + bz + 2bxl 
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As a prelude to a possible study of the series Ni 2Mn SnxT1-x 
where T is Ti, V, Cr or Fe, a crystal of Ni 2Mn0.8v0.2sn was grown. In 

this crystal, the Y site can be occupied by either a Mn or a V atom 

since Ni MnSn and Ni 2vsn are ismorphous. Furthermore, disorder can occur
2

between the X, Y and Z sites, strongly affecting the observed intensities. 

To obtain agreement between measured and· calculated structure factors, one 

must propose a reasonable model of the disorder. The various disorder 

parameters can be adjusted to fit predicted to measured intensities. The 

formulas below and calculations, which are reported in Table II-1, assume 

that there is no chemical disorder and that all moments are located on the 

Mn sites. 

The nuclear structure factors are given by: 

FN(lll) = 4I . 8b~1 + 
I' n · 2bv - bsn I 

FN(200) = 4I . 8b.1 
I' n + .2bv + bsn 2bNil (22) 

FN( 220) = 4I. 8bMn + .2bv + bsn + 2bNi I . 

The scattering lengths used are given in Table II.l. 

To determine the magnetic scattering structure factors predicted 

by this model, one must first find the different magnetic scattering 

lengths for Mn when involved in the (111), (220) and (220) reflections. 

The magnetic scattering lengths are given by 

( 23) 
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where y = - 1.913148 and for Mn , <S> = 2. The dependence on the reflec­

tion planes is through the atomic form factor f(Q). This factor has been 

determined experimentally for Mn in Ni 2MnSn by Y. Ishikawa and K. Tajima 

(1976) as a function of 

The atomic form factors in Table II-1 were obtained from their graph. 

The magnetic structure factors are given by 

(24) 

for the model where all of the magnetic scattering originates from the Mn 

sites. 

The calculations for this model are presented in Table II-1. The 

experimentally observed intensities should be proportional to 

IFl 2 
sin2e 

if the model is correct. A convenient parameter for comparison is the 

ratio of the magnetic intensities to the nuclear intensities. 



Table II-1: Predictions based on ordered model with all moments on Mn site 

Nuclear Scattering Lengths (cm) Magnetic Scattering Lengths 

bNi = 1.03 x 10-12 (hki) f(form factor) PMn {cm) 
bMn = -.36 x 10-12 111 .794 ± .005 -(8.56 ± .06) x lo-13 

bv = - .051 x 10-12 200 .741 ± .005 -(7.99 ± .06) x io-13 

bsn = .61 x 10-12 220 .557 ± .005 -(6.01 ± .06) x lo-13 

2 2 2 2(hki) IFNl2(cm2) 1Fm1 (cm ) IF /IF 1 

x lo-23 (7.51 ± .09) x lo-24 
m N 

200 (4.89 ± .11) x 10-23 (6.54 ± .09) x lo-24 . 134 ± •005 
220 (9.00 ± .15) x 10-23 (3.69 ± .08) x lo-24 . 041 ± • 002 

111 (1.320 ± .026) . 569 ± • 018 

N 
+::­



CHAPTER III 

SAMPLE PREPARATION AND EXPERIMENTAL APPARATUS 

A. Crystal Growth 

The neutron scattering experiments were performed on three 

crystals of Ni 2Mn 0_8v0_2sn. They were all cut from one large single 

crystal and differed only in shape and volume. The large single crystal 

was grown at McMaster University using the Czochralski method. 

The Czochralski method of growing single crystals is to freeze 

the top of a melt onto a rod and slowly draw the solid out of the melt. 

More of the liquid will freeze on at the solid-liquid interface and by 

carefully controlling the speed of pulling and temperature of the melt, 

one can obtain a single crystal of the desired shape and size. A major 

advantage to this method is the ease of control due to the fact that 

the crystal can be seen. 

Enough of each element to make 150 g of Ni 2Mn 0_ _2sn was8v0
weighed out to the nearest 0.0001 g. The material was put into an 

Al 2o3 crucible which fits into a graphite suceptor which in turn fits 

inside the coils of an r-f induction furnace. (See Fig. III-1). At 

McMaster, the furnace used was an Arthur D. Little MP furnace; the r-f 

generator was a 30 kW model made by Thermonic; and the device for 

controlling temperature was a Leeds and Northrup AZAR Power Control 

Unit. The graphite susceptor couples to the r-f field and heats up 

25 




Fig. III-1: The Czochralski method of growing single crystals. 

(a) at the start 

(b) later 
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causing the material in the crucible to melt. 

Once the material was melted, a tungsten rod was lowered into 

the melt and the temperature was dropped until small crystals formed 

on the rod. This solid portion was then "necked down" by slightly 

raising the temperature until it was observed, by the way it reflected 

light, that only one crystal touched the melt. This single crystal was 

enlarged and grown to a suitable size. To ensure radial symmetry and 

mixing of the melt, the rod was rotated at 10 rpm. 

The major problem encountered in this growth was the presence 

of small aggregates of extraneous material floating in the melt. When 

they got caught on the boule new crystallites were formed. The con­

tamination was thought to be oxides of Mn. Fortunately, the little 

crystals remained small and close to the edge of the boule. This could 

be seen after the bottom of the crystal was polished and etched. About 

95% of the boule was a single crystal. 

This Heusler alloy is easily cut by spark erosion and the various 

crystals used were cut from the boule as shown in Fig. III-2. They 

are referred to as crystal #1, #2 and #3. 

B. Composition Analysis 

After the crystal was grown, its composition was checked and 

its bulk magnetic moment measured to compare with polycrystalline samples 

previously studied (Campbell and Stager, 1976). The results of these 

tests have direct bearing on the chemical order and magnetic moment 

distribution determinations. 



Fig. III-2: The cutting of samples from the main boule. 
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It was possible that the grown crystal was of different composi­

tion than the material weighed into the crucible because Mn is such a 

volatile material. Also, the crystal might not have grown with the 

same composition as the melt, due to effects such as the Y site being 

preferentially occupied by Mn over V. 

Some of the elemental ratios were measured by M. Patterson and 

W.V. Prestwich who are developing (at McMaster University) the technique 

of "neutron capture gamma-ray analysis" .(NCGA}. 

NCGA is a method of analytical spectroscopy. The sample is 

exposed to the high flux of thermal neutrons next to the core of a 

reactor while the resulting radiation is detected and the intensities 

measured. 

When a neutron is captured by a nuclide, it exists in the capture 

state for a time of order lo-14 s before the product nuclide de-exites 

by emmission of gamma-rays. These are called 11 prompt 11 gamma rays because 

they are produced almost immediately after capture. They are detectable 

if the sample is accessible while being bombarded. NCGA measures these 

prompt gamma rays. The product nuclide may then decay by emitting a s 

particle. This second product nuclide can also emit gamma rays but these 

appear later than the initial capture of the neutron at times determined 

by the half-life for s-decay. Measurement of this delayed radiation is 

the traditi ona1 method of "neutron activation analysis 11 (NAA). 

NCGA is ideal for bulk analysis because the neutrons and result­

ing gamma rays are highly penetrating (the gamma ray energies are the 

order of MeV). The energy of the emitted photons depends on the energy 
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levels of the product nuclide so each nuclide will display a unique 

y-ray spectrum. The energy level~ will be different for each isotope 

but since natural abundances are usually constant, the amount of 

element present may be deduced. 

Part of the Ni 2Mn 0. 8v0. 2sn boule was powdered and analyzed 

along with some other Heusler alloy samples. Elemental standards were 

examined to determine expected spectra. The ratio of Mn:Ni 2 obtained 

was .79 ± .02 and of V:Ni 2was .20 ± .01. These results are in good 

agreement with the starting composition of the melt. 

C. Bulk Magnetization Measurements 

Bulk magnetic moment measurements were made with a vibrating 

sample magnetometer. This apparatus vibrates a sample between two pick­

up coils in an arrangement where a large magnetic field can be applied. 

A signal proportional to the amplitude of vibration, the frequency of 

vibration and the magnetic moment of the sample is induced in the coils. 

This is compared to a reference signal proportional to the amplitude of 

vibration. Conventional electronics is then employed to produce a de 

voltage proportional to the magnetic moment. Standard cryogenic tech­

niques are employed for low temperature magnetization studies. 

A plot of magnetization vrs temperature for Ni 2Mn0.8v0_2sn in 

a field of~ 100 Oe is given in Fig. III-3. The Curie temperature is 

seen to be 262 ± 3 K. The sample should be well magnetized below 150 K 

The magnetization vrs field at 4.2 K is shown in Fig. III-4. Extrapola­

tion of the curve to zero magnetic field gives a magnetic moment of 



Fig. III-3: Magnetization vrs temperature for Ni 2Mn 0~ _2sn8 0
Tc = 262 ± 3 K 
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3.19 ± .03 µ8 per molecule in good agreement with data ~n polycrystall­

ine samples (Campbell and Stager, 1976). This value is consistent 

with the expectation that each Mn atom has a moment of 4 µB and the 

alloy contains 0.8 Mn atoms per molecule. 

D. The Neutron Spectrometer 

The major experiments done in this study made use of three 

neutron spectrometers; the double-axis and triple-axis spectrometers 

at the McMaster University Reactor (Rowe, 1966) and the McMaster E-2 

triple-axis spectrometer in the N.R.U. building at the Atomic Energy 

of Canada Laboratories in Chalk River, Ontario (Hallman, 1969). All of 

these machines are quite extensively documented in the references and 

only the modes used and changes related to these experiments need be 

discussed here. 

The basic concept of a thermal neutron spectrometer is to project 

a collimated beam of monoenergetic neutrons onto a single crystal or 

powder specimen and detect those that scatter off at specific angles. 

The primary source of thermalized neutrons is a nuclear reactor. To 

aid in the following discussion, please refer to the schematic drawing 

of the Chalk River spectrometer in Fig. III-5. The shaping of the 

neutron beam begins with a hole in the reactor wall (A) into which may 

be inserted a rough collimator. Out of this hole comes a beam about 311 

in diameter with an angular divergence of 1.5°. The energy spread of 

the neutrons is a Maxwellian distribution. 

This beam impinges upon a large single-crystal monochromator (B), the 



Fig. III-5: Schematic of Chalk River triple-axis spectrometer. 

A hole in reactor wall 

B single crystal (double) monochromator 

C Monochromatic beam 

D beam incident on specimen 

E beam gate 

F fission chamber monitor 

G Soller slit collimators 

H sample angling apparatus 

I counter angling apparatus 

J helium counters 

K parafin and cadmium shielding barrel 

L analysing crystal 
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angle and position of which can be adjusted to give a wide range of 

wavelengths, A • A list of the monochromators and wavelengths used 
0 

is given below. 

McMaster double-axis (220) aluminum 1.041 A0 

0triple-axis (331) copper 1. 001 A

and 

Chalk River. triple-axis ; (220) copper 1.15A0 

Although the beam is essentially monochromatic at (C), the mozaic 

spread of the crystal causes there to be a distribution in wavelengths, 

centered about A , and a directional divergence. The choice of crystal
0 

and final collimation ultimately determine the resolution of the spectro­

meter. The beam incident on the specimen (D) is typically about 1.5 11 

square. 

The striking feature of a neutron spectrometer is its size. 

Its movable parts are cumbersome and heavy, in contrast to similar 

x-ray machines, to allow for furnaces and low temperature dewars, 

magnets and bulky parafin shielding. The parts described below are 

standard to all neutron spectrometers. There is a beam gate (E) made 

of boron in aluminum, a low efficiency fission chamber (F) for moni­

toring the incoming flux (typical efficiency, 8 x 10-5), machined 

holders for placement of Soller slit collimators (G), and sample and 

counter angling apparatus (H &I). The specimen table angle is locally 

referred to as ~ and the angle that the counter makes with the straight 
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through beam is called~- Both angles are indexed in .1° steps. The 

counter (J) is a small cylinder of ·high pressure He3 gas with a detec­

tion area of about 3 in 2 It is approximately 70% efficient and is 

located a meter away from the specimen inside a barrel of shielding (K). 

In addition, the triple-axis spectrometers have an analysing 

crystal (L) inside this barrel to select scattered neutron energies in 

inelastic scattering experiments. However, this was removed and the 

counter set in the straight through position. 

The two-axis spectrometer was used to examine crystal #1 at room 

temperature. Preliminary neutron experiments on the whole boule made 

it evident that extinction was a sizable effect so crystal #1 was pre­

pared. This was simply attached to a goniometer with plasticene and 

mounted on the specimen table. The crystal orientation was approximately 

set by x-rays and then more accurately adjusted on the neutron spectro­

meter. By this method, the (011) direction was aligned with the speci­

men table rotation axis within 1°. ¢was scanned for a number of Bragg 

peaks while <P was set at the 2e angle for each reflection. The relevant 

data obtained are the integrated intensities. 

Analysis of this data suggested further experiments on a still 

smaller crystal. Thus some of the peaks were scanned again in the 

same way using crystal #2 on the triple-axis spectrometer. 

The final set of data was collected at Chalk River. The separa­

tion of magnetic scattering from nuclear scattering required that the 

Huesler alloy be well below its Curie temperature and in a saturating 

magnetic field. This was achieved by the special nitrogen dewar and 
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magnet arrangement described below. 

On the sample table was placed an aluminum plate to support 

the magnet and on top of this was built a dewar table to support the 

dewar. The dewar was free to rotate on the dewar table and its angle 

of rotation could be measur~d. 

Referring to Fig. III-6, the dewar was a small two chamber 

nitrogen dewar constructed out of thin-walled stainless steel. Its 

holding time was about 6 hours. It was discovered that due to the large 

coherent scattering cross-section of nitrogen (13.4 barns) it was best 

to fill the inner chamber with an exchange gas (helium) instead of liquid 

nitrogen as previously planned. This kept the sample at 117 K, well 

below its Curie temperature (262 K). 

The sample was mounted on the end of a mechanical assembly which 

enabled adjustment of the crystal orientation at liquid nitrogen temp­

erature. This assembly fitted inside the inner chamber and is detailed 

in Fig. III-7. To inhibit movement when the magnetic field was applied, 

the narrow crystal #3 was glued inside a hole drilled in a carefully 

shaped narrow aluminum rod. The glue was G.E. 7031 varnish. A copper­

constantan thermocouple was placed next to the crystal holder. 

The magnet was an aircooled electromagnet with a 0-30A constant 

current power supply. The frame had to be enlarged and the pole pieces 

tapered to allow greater access by the neutron beam (max ~ angle ~ 45°) 

while maintaining large magnetic field. With the poles set at 3/32 11 

from the sides of the dewar, giving a gap of 7/8 11 
, the magnetic field 

obtained at 30 A was ~ 8 KOe. The magnet orientation was adjusted so 



Fig. III-6: Nitrogen dewar for positioning sample in magnetic field. 
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Fig. III-7: Low temperature Goniometer. 
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that the magnetic field would be parallel to the scattering vector 

for each reflection. 



CHAPTER IV 

EXPERIMENTAL DATA AND DISCUSSION 

This chapter contains a presentation and discussion of the 

neutron scattering data and results pertaining to Ni 2Mn 0. 8v0. 2sn. 

The information sought is the chemical and magnetic order. With each 

sample, the Bragg peaks were scanned in .1° steps. At each step, the 

scattered neutrons were counted for a certain number of monitor counts. 

If one plots counts vrs angle in a histogram, the integrated area under 

the peak can be approximated by simply adding together all the counts 

taken at each step and subtracting the background. The total angle 

swept over must be sufficiently wide to get an accurate measurement of 

the background. Background counts arise from incoherent scattering in 

the sample and dewar and from stray neutrons. 

Errors occur due to the statistical nature of counting experi­

ments. These can be reduced at the expense of long counting times. 

Efficiency requires proper choice of monitor efficiency and counting 

times. If Ni is the number of counts obtained in the interval i, the 

statistical error in N. is v'Ni and the error in N;. due to the statis­
1 N. 

tical error in the monitor setting M is - 1
• The total error in Ni is 

v1r 
therefore 

N 2 

M-l; = [+ + Ni]l/2 
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and the error in the total number of counts under the pe~k, N is 

rN; 2 

~N = [-1_ + N]1I 2 


M 

where the sum is over the intervals which make up the peak. The error 

in the background was usually negligible compared to ~N. The data for 

crystal #1 is shown in Table IV-1. It was taken on the double-axis 

spectrometer at McMaster using neutrons of wavelength A= 1.041 A0 and 

a monitor setting of 5000 counts. The sample was at room temperature. 

In Table IV-l(a) are given the scattering angles 2e, the integrated 

intensities and the statistical errors. For a particular set of planes, 

the 2e-angle setting changes with the neutron wavelength. 

The intensities for each set of symmetry related reflecti ans 

are averaged and corrected for the Lorentz factor to get I 
0 

= I sin2e. 

They are presented in Table IV-l(b) along with (sine/A) 2 and in lnI 0 , 

The table is divided into three sections corresponding to the three 

structure factor groups. 

When I is plotted against (sine/A) 2 , each group appears to lie 
0 

on an exponential curve apart from the two anomalous points (220) and 

( 400). Therefore, lnI vrs (sine/A) 2 is plotted in Fig. IV-1. The 
0 

points fall on three straight lines of roughly the same slope. 

In Fig. IV-1, the points (220) and (400) are thought to be low be­

cause of extinction. The extinction effect causes scattered neutron inten­

sities to become dependent on the size and shape of the sample. The in­

tensities can be much lower for some crystal orientations than for others. 

This is discussed in a paper by Hamilton (1957). The two anomalies can 

be expla]ned by the irregular shape of crystal #1 .. 
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Table IV-1: Bragg peak intensities for crystal #1 at room temperature. 

(a) monitor 	 A = 1. 041 Ao (McMaster double axis) 
5000 

( hkt) 2e I Lil (hk£) 2e I Li I 

1ll 17.13° 6449 ± 110 511 53.10° 2007 ± 90 
llT 5920 ± 110 511 1928 ± 80 
TlT 6381 ± 100 511 1943 ± 80 
lll 5881 ± 100 333 53.10 2032 ± 80 
200 19. 81 18138 ± 170 333 1806 ± 80 
200 17742 ± 170 333 1823 ± 80 
022 28.16 15549 ± 160 333 1883 ± 80 
022 16934 ± 160 044 58.25 9033 ± 130 
3ll 33.15 3283 ± 90 044 9396 ± 130 
311 3279 ± 90 600 62. 15 4596 ± 100 
311 3171 ± 70 600 4638 ± 100 
311 3364 ± 80 244 62 .15 4388 ± 100 
222 34.68 10084 ± 130 244 4590±100 
222 8911 ± 120 244 4654 ± 100 
222 9784 ± 130 244 4380±100 
222 9053 ± 120 533 68.68 1373 ± 70 
400 40.25 8127 ± 120 533 1234 ± 70 
400 8207 ± 120 533 1437 ± 70 
133 44.05 2145 ± 80 533 1341 ± 70 
133 2269 ± 80 622 69.60 3903 ± 90 
133 2305 ± 80 622 3689 ± 90 
133 2114 ± 80 622 4127 ± 90 
422 49.86 11655 ± 140 622 3535 ± 90 
422 10803 ± 130 444 73.17 6531 ± 110 
422 11825 ± 140 444 6563±110 
422 11074 ± 130 444 6672±110 
5ll 53.10 1943 ± 80 444 6211 ± 110 



44 

Table IV-1: Bragg peak intensities for crystal #1 at room temperature. 

(b) 	 Averaged over symmetry related reflections and corrected for Lorentz 
factor. 

(hki) (sinef),) 2 1 = Isin2e 1nI
0 	 0 

111 .02048 7255 ± 60 8.8894 
311 .07513 7162 ± 90 8.8765 
331 . 1297 6141 ± 110 8. 7227 
511 . 1844 6323 ± 130 8.7519 
333 . 1844 6033 ± 130 8.7050 
533 .2937 5016 ± 130 8.5204 

200 .02732 24320 ± 170 10.0991 
222 .08197 21526 ± 140 9. 9770 
600 .2459 16329 ± 240 9.7007 

442 .2459 15926 ± 170 9.6757 

622 .3005 14297 ± 160 9.5678 

220 .05466 	 30660 ± 210 10.3307 

400 . 1093 	 21108 ± 220 9.9574 

422 . 1639 34674 ± 210 10.4537 
440 .2186 31342 ± 300 10.3527 

444 .3279 24864 ± 210 10.1212 



Fig. IV-1: lnI vrs (sins/~) 2 for nuclear peak intensities 1 •
0 0 

T = 298 K 

Crystal #1 = • 

Crystal #2 = X 

Crystal #3 = + 
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To remedy this, crystal #2 was cut reducing the volume by a 

factor of ten and giving a more symmetrical shape. The data for this 

crystal is given in Table IV-2. It was taken on the triple axis spectro­

meter at McMaster at room temperature using neutrons of wavelength 

A= 1.001 A0 Since the (200) group of the crystal #1 data gave the• 

best straight line, the crystal #2 data was normalized to the (200) reflec­

tion (i.e., the intensities were adjusted so that the (200) intensities 

from each crystal were the same). This data is also plotted in Fig. IV-1. 

It is observed that the use of the smaller crystal reduced the large 

extinction effect so that the (220) and (400) points now fall on their 

line. 

The lines were least squares fitted to the points and the results 

are presented in Table IV-3. 

The fact that within a group of reflections, the intensities fall 

off exponentially with (sine/>.) 2 is consistent with the theory of the 

Debye-Waller factor, under certain assumptions. Since Wd(Q) is related 

to the mean squared vibration amplitude of the atom at d in the unit 

cell, it depends both on the particular atom involved and the nature of 

the crystal site. For non-Bravais lattices, these are not simple scaling 

factors ~nd the fall off in intensities is not expected to be simply 

exponential. The structure factor should look like: 

F(200) 

Within the accuracy of this experiment, however, the lines in Fig. IV-1 

appear to be straight. This suggests that the Debye-Waller factors for 
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Table IV-2: Bragg peak intensities for crystal #2 at room temperature. 

0(a) 	 monitor A. = 1.001 A (McMaster triple axis)
1000 

(hkt) 28 I M (hkt) 28 I ~I-
lll 16.47° 1256 ± 40 022 27.06° 4744 ± 90 
lll 1229 ± 40 222 33.3 2205 ± 60 
T1T 1387 ± 50 222 1758 ± 50 
TT1 1375 ± 50 222 2086 ± 60 
200 19.04 3839 ± 80 222 2220 ± 60 
200 4125 ± 90 400 38.64 2955 ± 70 
022 27.06 5361 ± 100 400 3514 ± 80 

(b) 	 Averaged over symmetry related reflections and corrected for Lorentz 
factor. 

(hkt) (sin8/A.) 2 I = Isin2e Norma1 i zed to 1nI 
0 200 point 0 

111 .02048 1488 ± 25 6966 ± 120 8.8488 
200 .02732 5196 ± 80 24320 ± 370 10. 0991 
220 .05466 9194 ± 120 43033 ± 560 10.6697 
222 .08197 4540 ± 60 21250 ± 280 9.9641 
400 .1093 8080 ± 130 37819 ± 610 10.5406 
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Table IV-3: Data for least squares for Fig. IV-1. 

Structure 
factor 
grou~ 

(111) 

(200) 

(220) 

Slope (A02 ) 

- 1.344 ± .084 

- 1.884 ± .027 

- 1. 967 ± .029 

Intercept 

8.943 ± •014 

10 .1438 ± .0057 

10.7716 ± .0058 

Relative 
i n tens iti es 

7655 ± 110 

25433 ± 150 

47648 ± 270 
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each site are roughly equal or that the structure factor for each group 

is dominated by one of the scattering amplitude terms. The slopes of 

the least square fits as given in Table IV-3 for the (200) and (220) 

groups are very close to one another. This is to be expected since both 
-WN.1of the structure factors are dominated by the relatively large 2bNie 

tenn. The magnitude of the slope of the (lll) type group is 30% lower. 

Since bNi is not involved in this structure factor, the roles of the Debye­

Waller factors for Mn, V and Sn become more important. This increases the 

likelihood of a different slope. 

To obtain the relative peak intensities, proportional to IF(Q)l 2, 

the three lines are extrapolated to (sine/A) 2 
= 0. The intercepts are 

given in Table IV-3 along with the corresponding peak intensities. This 

data can now be compared with the model of an ordered crystal as discussed 

in the theory and shown in Table II-1. For easy comparison, the observed 

peak intensities are divided by the predicted structure factors squared 

and given below. Only relative intensities are meaningful. 

(111) 7655/1.32 = 5800 ± 200 

(200) 25433/4.89 = 5200 ± 140 

(220) 47648/9.00 = 5300 ± 120 

These ratios would be the same if the model was correct. The intensity 

for the (111) reflections is 5% too high. 

If the statistical errors shown are assumed to be the only errors 

in these numbers, then the data must be explained by disorder. As the 

(111) intensity is probably high rather than the (200) and (220) being 

http:47648/9.00
http:25433/4.89
http:7655/1.32
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low, a disorder effect must be found which increases the magnitude of 

this structure factor. Ni-Sn disorder would effect the relative inten­

sities this way. For example, if 5% of the Sn-atoms on the Sn site 

were exchanged with Ni atoms on the Ni site, the above ratios would be 

(111) 5547 ± 180 

(200) 5457 ± 150 

(220) 5300 ± 120 

Since these numbers are equal within their statistical errors, the data 

is consistent with this model. 

Because the points deviate from the straight line in the (111) 

group, the errors in the points were underestimated. Examination of the 

data in Table IV-l(a) shows that the intensities measured for symmetry 

related reflections also did not agree within these statistical errors. 

For instance, there is over 8% difference in intensity between the (11-1) 

and (lll) reflections. In some cases, the discrepancy is greater. 

These discrepancies are due to something other than counting statistics. 

There are two possibilities. The first is crystal alignment. It should 

have been done to an accuracy better than 1°. An attempt was made in 

later experiments to increase this accuracy. Secondly, crystal shape 

dependent effects like those due to extinction and absorption were in 

play. It was hoped that averaging over symmetry related peaks would 

give accurate intensity ratios. However, if the apparent error was not 

random, then the differences might not average to zero. For this reason 

the value of 5% Ni-Sn disorder is not very certain. 
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The data for the experiments on crystal #3 is contained in 

Tables IV-4, 5 and 6 and in Fig. IV-2. The sample was mounted in the 

dewar and a1igned at McMaster University for the work to be done at 

Chalk River. 

Alignment was achieved to within 0.1° by masking off the crystal 

with cadmium so that the diffracted beam was only 2 mm in diameter. It 

was easy to pinpoint the direction of this outgoing beam by masking the 

counter. A very sensitive way to measure the angle of the beam with 

respect to the horizontal was the result. Simultaneous leveling of the 

beams reflected off the front and back of planes for two dissimilar 

reflections fixes the crystal's orientation. It was observed that the 

alignment changed by as much as 0.5° when the crystal and mounting 

mechanism was cooled to liquid nitrogen temperature. The alignment was 

repeated at the lower temperature and it was found to be reproducible 

when the crystal was cycled to room and back to low temperature. 

Room temperature scans were taken of the (111), (200) and (220) 

peaks at a monitor setting of 20,000 counts. The wavelength was 1. 15 A0 
• 

These are also plotted in Fig. IV-1, normalized to the (200) reflection. 

It is noted that the (220) point for this crystal is low, again due to 

extinction. Crystal #3 is somewhat thicker than crystal #2. 

With liquid nitrogen in the inner dewar, the temperature of the 

sample was 78 K~ The first magnetic data was taken under these condi­

tions with a monitor setting of 40,000. The data is shown in Table IV-5 

(a). There are a few problems with this run. The large amount of 

liquid nitrogen surrounding the small crystal reduced the intensity 
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Table IV-4: Bragg peak intensities for crystal #3 at room temperature 

(a) monitor 
20,000 

A. = 1.15 A0 (Chalk River triple axis) 

(hk,Q, ~ 2e I ti I 

lll 18. 9° 41790 ± 260 

lll 36899 ± 230 

lll 38426 ± 240 

Tfl 39853 ± 250 

200 21.8° 105890 ± 490 

200 104256 ± 490 

022 31.3° 118347 ± 520 

022 112790 ± 510 

(b) Averaged over symmetry re 1 ated re fl ecti ans and corrected for Lorentz 
factor. 

(hk,Q,) (sine/>..) 2 1 = Isin2e Normalized lnI 
0 0.-­

111 .02048 50845 ± 160 7922 8. 9775 

200 .02732 156083 ± 510 24320 1o.0091 

220 .05466 240160 ± 760 37420 10.5300 
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Table IV-5: Bragg peak intensities for crystal #3 at T = 78 K. 

(a) monitor Liquid nitrogen in inner dewar I. = 1. 15 A0 

40,000 

(hkt) 1nucl + £ I3 mag 
1nucl 1mag 1mag1Inucl 

lll 50666 ± 320 40469 ± 300 15296 ± 440 .378 ± .02 

lll 51526 ± 320 40850 ± 290 16014 ± 430 .392 ± .02 

T1T 46852 ± 300 34550 ± 270 18453 ± 400 .534 ± .02 

TTl 55136 ± 340 42643 ± 290 18740 ± 450 .439 ± .02 

(b) 	 Averaged over symmetry related reflections and corrected for Lorentz 
factor. 

(hkt) 	 Ionucl 1omag (Imag/ 1nucl)av 

111 51345 ± 190 22189 ± 280 .436 ± .02 
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Table IV-6: Bragg peak intensities for crystal #3 at T = 117 K. 

20' 000: I 0(a) 	 monitor He 2 in inner dewar A= 1.15 A
40,000: 11 

(hkR-) I + _g_ I 	 Inucl 3 mag Inucl 	 1mag/1nucl~ 

lll' 51310 ± 290 41666 ± 270 14466 ± 590 .347 ± .02 

111· 52373 ± 290 40831 ± 250 17313 ± 570 .424 ± 

Tll' 51448 ± 290 37685 ± 240 20645 ± 570 .548 ± 

TTl I 57033 ± 320 45577 ± 270 17184 ± 630 .377 ± 

200' 116116 ± 520 107474 ± 490 12963 ± 1100 . 121 ± •01 

200 1 121343 ± 550 112871 ± 520 12708 ± 1100 . 113 ± . 01 

022 11 269655 ± 840 261407 ± 820 12372 ± 1800 .0473 ± .007 

022 11 248208 ± 780 239273 ± 770 13403 ± 1600 .0560 .007 

(b) 	 Averaged over symmetry related reflections and corrected for Lorentz 
factor. 

(hki) 1onucl 1omag (Imag/Inucl)av 

111 53692 ± 170 22547 ± 380 .424 ± .02 

200 163658 ± 530 19067 ± 1200 . 117 ± .02 


220 260113 ± 580 13391 ± 1250 .0517 ± .007 




Fig. IV-2: Typical Bragg peaks for crystal #3. 

• 	 magnet off 

Xmagnet on 
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from the crystal and produced a large background. The (111) data was 

given for comparison but the weaker magnetic reflections were buried 

in the noise. It was found that replacing the nitrogen in the dewar 

with helium exchange gas increased the intensities by a factor of 2 and 

almost eliminated the background contribution. 

The final set of data appears in Table IV-6 and Fig. IV-2. With 

the inner dewar compartment filled with helium, the temperature of the 

sample was 117 K. The monitor was set at 20,000. 

The nuclear scattering intensities and magnetic scattering 

intensities were determined from the combined scattering by controlling 

the magnetic scattering with a saturating magnetic field. When the 

sample was magnetized along the scattering vector, no magnetic scatter­

ing took place. When there was no magnetic field present, two thirds 

of the magnetic scattering occured along with the nuclear scattering . 

The integrated intensities obtained by this magnet on-magnet off method 

are given in the table along with the ratio of magnetic to nuclear 

intensities. Some representative data is plotted in Fig. IV-2. 

Since we already have obtained an idea of the chemical order 

from the room temperature part of the experiment, the information on 

magnetic moment distribution can be obtained from the ratios mentioned 

above. For any particular peak, the ratio should be independent of 

crystal shape effects. 

To compare the data with theory, we need only compare these 

ratios with those calculated from the model. The ratios for the (111) 

reflections do not agree within the statistical error. For this reason, 
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the error quoted below is the standard error of the mean. The toler­

ances in the theoretical ratios are due to the uncertainty in the 

scattering lengths. 

hkQ. Theory Experiment 

111 .569 ± .018 .424 ± .04 

200 . 134 ± • 005 . 117 ± • 02 

220 .041 ± .002 .052 ± .007 

The ratios for the (220) reflection are nearly equal within the 

estimated error. We know from our bulk magnetization analysis that 

there must be, on average, 3.2 µ8 of moment per unit cell. It is the 

nature of the structure factor for this reflection that the nuclear 

intensity is independent of chemical disorder and the magnetic inten­

sity is independent of which atoms have the magnetic moments and where 

the atoms are located. These ratios therefore have to agree within 

experimental error, barring extinction. Due to the statistical nature 

of the standard error, there is a 30% chance that the ratios agree. At 

any rate, the error is presumed to be slightly underestimated .. The 

agreement is good, keeping in mind the scatter in the (111) data and 

that, due to the form factor, the magnetic scattering is only 5% of the 

total. The ratios for the (200) are equal within experimental error 

but the ratio obtained for the (111) reflection is low compared to the 

model. To explain thi~ in terms of magnetic disorder, assuming that 

the crystal is chemically ordered, moment must be taken off the Y site 

(Mn and V) atoms and given to the· Z site (Sn) atoms. To calculate 
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what the moment distribution is, let· a fraction v of the 3.2 µ8 be 

situated on the Y site. The following relation, 

FM(disordered) Iv_ (l-v)l2 _ 2 = .424 ± .04 - 75 + 09
F (ordered) ~ 1 - l2v-ll .569 ± .018 - . - . ' 
M 

gives the value v = .933 ± .026. The predicted moment on the Y-site is 

therefore 2.99 ± .08 µ8 and on the Z site is .21 ± .08 µ8. If all the 

Y site moment existed on the Mn atoms and none on the V atoms, the 

moments would be 3.74 ± .10 µ8 per Mn atom and .21 ± .08 µ8 per Sn atom. 

These are unanticipated results. The moment on the Mn atom is 

expected to be 4 µ8 and on all the other atoms, zero. It is difficult to 

explain the drop in the (111) magnetic intensity in terms of disorder. 

Other structures where the Mn atoms are closer together are antiferro­

magnetic so any non Y-site moments in the Heusler alloy structure should 

point in the opposite direction. Chemical or magnetic disorder which 

incorporates this effect does not decrease the (111) ratio. 

There is some evidence {Felcher, 1963) that in a Heusler alloy, 

a small moment may exist on the X-site atoms. There is no evidence for 

a moment on the Sn atoms. The Z-site moment could be explained by 

Mn - Sn disorder but this did not show up in the nuclear scattering 

results. The value of 3.74 ± .10 µ8 per Mn atom is smaller than the 

4.05 µ8 obtained for Ni 2MnSn by Webster (1969). The value 3.74 µ8 is 

obtained from the (111) data in Table IV-6. 

As discussed above, the (111) data appears to have a systematic 

error. It was stated above that the ratios quoted should be independent 



59 

of crystal shape effects. The disagreement between the symmetry related 

peaks, however, is quite large. rt· is suspected that either the 

"saturating" magnetic field was not large enough or the crystal mount 

was bending in the magnetic field. The intensity of the (lll) peak is 

plotted as a fn-of current through the magnet in Fig. IV-3. Evidently 

the intensity did not level off with increased magnetic field. This 

example is probably the worst case. These effects are impossible to 

correct analytically and elimination requires a changed design and 

repeating the measurements. 

The (111) ratios were calculated by an alternate method where 

the nuclear intensities were obtained from the room temperature data 

instead of the magnet-on case. Corrections for the Debye-Waller factor 

were estimated from the other room temperature data. The result of this 

calculation is a moment of 3.82 ± .10 µB per Mn atom. 



Fig. IV-3: Field dependence of (llf) intensity. 

T = 117 K 
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CHAPTER V 

CONCLUSIONS 

The chemical and magnetic disorder in a single crystal of 

Ni 2Mn0.8v0. 2sn have been measured by neutron diffraction. This crystal 

has the Heusler L21 structure with the Mn and V atoms randomly distributed 

on one of the four FCC sublattices. 

A large ·single crystal of Ni 2Mn 0. 8v0_2sn was grown by the Czoch­

rolski method. It is important that the melt material be free of oxide 

to prevent small crystals from occuring in the boule. The material is 

easily cut by spark erosion. The mozaic spread of the crystal was less 

than 30'. 

Nuclear Bragg peak intensities were measured for diffraction 

planes parallel to the (110) direction, up to a value of (si~ 8 ) 2 = .3279. 

The intensities in each of the three structure factor groups decrease 

exponen ia · Th · ering.t · 11 y w1·th increasing· (sin-A-
8 ) 2• is was due t o p hanon seatt · 

The resulting Debye-Waller factors were measured to be: 

2W (111) = (1.344 ± .084 A02 ) x (sine)2 
A 


2W(200) = (1.884 ± .027 A02 ) x (sine)2 

A 

. oz (sine)22W(220) = (1.967 ±·.029 A ) x 
A 

The curves for each group of reflections were extrapolated to 

sine = 0 to obtain the intensity ratios. It is necessary to incorporate 
A 
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(5 ± 4)% Ni-Sn disorder into the model to obtain agreement between the 

measured nuclear Bragg peak intensity ratios and the calculated structure 

factor ratios. The large uncertainty in this number is due to problems 

with alignment and extinction and is apparent because the symmetry 

related intensities do not agree. It is possible that 5% of the Sn 

atoms are interchanged with Ni atoms but the results are inconclusive. 

To sufficiently reduce the effects of extinction, long thin 

crystals less than 1 mm thick must be used. 

The magnetic Bragg peak intensities were measured by the non­

polarized neutron method of controlling the magnitude of the magnetic 

interaction vector q. These intensity ratios are compared with the 

structure factor ratios calculated from a model of the magnetic structure. 

Bulk magnetization measurements on Ni 2Mn 0.8v0. 2sn give a value of 262 

± 3 K for the Curie temperature and 3.19 ± 0.3 µ8/mol. This result is 

in good agreement with the expected 0.8 Mn atoms/mol and 4 µ8/Mn atom. 

Using this result, and the measured intensity ratios, the magnetic 

moment distribution for the crystal is 2.99 ± .08 µ8/Mn site and 

. 21 ± • 08 µ8/Sn site. If the crys ta 1 is chemically ordered and a11 

Mn-site moment exists on the Mn atoms and none on the V atoms then the 

magnetic moment per Mn atom is 3.74 ± .10 µ 8• This value is low in 

comparison to the 4 µ8/Mn atom usually obtained for Heusler alloys. 

If the experiments were repeated, a crystal holder should be 

designed that removes any suspicion of crystal motion when the magnetic 

field is applied. It was possible that the magnetic field was not 

large enough but this is unlikely. 
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