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SCOPE AND CONTENTS: 

The temperature dependences of the deuteron spin-lattice 

relaxation times, T
1

, in ferroelectric ammonium sulfate, (ND4) 2so4 , and 

ammonium fluoroberyllate, (ND
4

) 
2

BeF 
4

, have been studied by transient 

methods over the range 80 to 47S°K. The ability to resolve the 

individual correlatio~s of the two independent ND4 groups in the deuteron 

experiment has thrown new light on the reorientation of the ammonium 

groups and their behaviour in the phase transition. 

It has been proposed that the mechanism of the phase transition 

in amraoniurn sulfate is a disordering, with respect to the a b plane in 

the paraelectric phase, of the ND4 dipoles which also make the dominant 

contribution to the spontaneovs polarizatjon. The present N.M.R. results 

show that in (ND4) 2so4 ,T1 at both non-equivalent ND4 groups is affected 

at tl1e phase transition, whereas in (ND4) 2BeF4 , it is affected at only 

one ND
4 

group. This suggests that the phase transitions in these two 

ii 



materials are rather different and that in ammonium sulfate both types 

of ammonium ions are involved whereas in ammonium fluoroberyllate only 

one type is involved in the transition~ Such a conclusjon is supported 

by evidence from measurements of thermal and dielectric properties. 

An earlier study of the proton spectrum in (NH
4

) 2so4 reported a 

value of 33 gauss2 for the second moment at 20°K. This is considerably 

2 smaller than the expected rigid lattice value of SO gauss and it was 

concluded that while some of the NH
4

+ groups are effectively rigid at 

20°K others are still reorienting. Our new results for the proton 

0 second moment confirm the low value down to 4.2 K but our results for 

T1 indicate that the proton line is not motionally narrowed. 
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CHAPTER I 

INTRODUCTION 

I.l Background Survey: 

Since the discovery of Nuclear Magnetic Resonance (N.M.R.) 

(Purcell, Torrey and Pound (1); Bloch, Hansen and Packard (2) ) in 

1945, the N.M.R. techn!que has been developed into a powerful tool for 

studying the internal structure and properties of matter in the gaseous, 

liquid and solid states. 

The N.M.R. principle depends on the fact that when an ensemble of 

·nuclear magnets is placed in a magnetic field H , their orientational 
0 

energies with respect to II arc qurmtized. These so-called Zeer'.1an levels 
0 . 

have energies given by mgµllo, where rn, g, pN are the magnetic quantum 

number, nuclear g-factor and nuclear magneton respectively. The values 

taken by m range from I, I-1, ... -I, where I is the nuclear spin. The 

relative populations of the Zeeman levels are governed by the well known 

Boltzmann factor exp ( -1\f:/kT) where LiE = gµNHo. Transitions may be 

induced under· the correct resonance and polarization conditions by a 

time varying magnetic field. These transitions among the various Zeeman 

levels are governed by the magnetic dipole selection rule Lim = ± 1. 

Because of the Boltzrnan;i factor, there will be a fraction exp(AE/kT) 

more nuclei in the lo\·:cr Zeernan state; conseque!1tly there will be a 

correspondingly larger a~ount of absorption than emission of electro-

magnetic energy. The ex:pe:dmental arrangement which observes this 

1 
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absorption of energy is called the continuum wave (cw) technique. 

It is clear that the population difference on which the cw 

technique is based would very soon disappear were it not for spin-lattice 

coupling. By the lattice we shall mean all other degrees of freedom of 

the atomic system-. It is this coupling which enables the nuclei in 

higher energy states, to give up their energy an<l return to a lower 

energy state, and, as a consequence, preserve the equilibrium distribution. 

The coupling of the spin system to the lattice may be observed by 

switching off the resonant oscillating field for a specific time and then 

turning it back on and observing the change in the magnetization. The 

observation of the time <lependcnt nuclear magnetization forms the basis 

of the transient technique. The experimental arrangement which monitors 

the spin-lattice coupling yields the useful parameter, T1 , the spin lattice 

relaxation time. 

It should also be noted that the nuclear spins are coupled to 

one another as well as· to the lattice. This coupling leads to a 

brocidening of the absorption spectruQ the width of which can be related 

to the parameter, T"'), the spin-spin relaxation time . 
..... 

For nearly two decades N.M.R. techniques have been applied 

successfully to problems of structure and motion of atoms and molecules 

in tl1e solid state. Structural studies of protons have been by far the 

most numerous. Although X-ray diffraction accurately determines the 

positions of other atoms in a crystal lattice, little precise information 

normally can be obtained for hydrogen ator:s since they scatter x .. rays 

very weakly. On the other hand, protons aTc very sensitive to the N.M.R. 

technique because of their large magnetic rnorncnt. A proton resonance 



study can often complete a structure in which_ the heavy atom positions 

have been determined by the X-ray method. In other words, the two 

techniques are complementary. 

The factor in the dipolar Hamiltonian which gives rise to the 

observed dipolar-broade~ed spectrum is (1 - 3cos29)r-3 for each pair of 

nuclei in the system, where r is the internuclear vector and e is the 

3 

angle between r and the applied field H • 
0 

-3 The r dependence on distance 

makes it clear that interactions between nearest neighbours will give the 

largest contribution. Furthermore, these interactions are highly anise-

tropic. A single crystal study will give the maximum information; however, 

internuclear distances can often be obtained from a powder study although 

the angular dependence is lost. 

Because of the complexity or in most cases the impossibility of 

completely determining the spectrum, it is more useful to work with the 

second moment or mean square width of the spectrum. A theoretical.value 

of the second moment may be calculated assuming a model and compared with 

that observed. The general correctness of the model may be established, 

and if the model does not contain too many unknown parameters, these may 

be determined. 

Any form of atomic or molecular motion in the"crystal is liable 

nd to modify the spectrum and its 2 moment, often quite dramatically. The 

2 angular factor (1 - 3cos 0) in each term of the dipolar Hamiltonian is no 

longer a constant; the mean interaction is in general reduced by the 

motion, and as a result the spectrum js narrower. The amount of the 
I nd 

narrowing, and the reduction of the observed 2 moment, can be expressed 

qu~ntitatively, and usually enables the nature of the motion to 
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be established. 

The dynamics of the nnclear motions revealed by line. width 

narrowing may be studied through the temperature-dependence of the spin-

lattice relaxation time, r 1 . The fluctuating dipolar int~raction caused 

by the random molecular motion causes transitions through the off-

diagonal terms of the dipolar IIamiltonian, and attempts to maintain 

thermal equilibrium between the spin system and the lattice. The· 

efficiency of this relaxation mechanism depends on the intensity of the 

Fourier spectrum of the random motion at the resonance frequency a~d this 

. iu turn depends upon the correlation time T of the random motion. At 

-1 . . 
temperatures where t is of the same order as the resonance frequency 

this relaxation mechanism is most effective and T 1 has its. 1ninirnum value. 

At either higher or lo\vcr temperatun~s T 1 is la1~gcr. From the theoretical 

dependence of T1 on T, measurements of the tenverature dependence of t 

can be deduced and often fit a simple activation law. 

In the case ld1cn the rn1cleus under investigation has an eJectric 

quadrupole moment (I > 1/2), spin-lattice relaxation may be effected 

either through a fluctuating magnetic interaction or through the inter-

action of the quadrupole moment with the fluctuating crystalline electric 

field. The quadrupole interaction dominates except in the cases when the 

electric field gradient vanishes as at a site of cubic symmetry, or the 

sample is heavily contaminated by paramagnetic impurities. 

Much detailed informat.ion concerning the motion of atoms and 

molecules has been extracted from the application of NJ,f.R. to solids. 

Molecular rotation is quite common wl1ich however is almost never free, 

but consists rather in the reorientation of the molecule or atornic group 



between a number of equilibrium positions. The nature of the rotational 

motion can usually be established. One can determine whether the whole 

molecule reorients or only a part of it, and whether the motion is about 

one axis or is more general. The temperature-dependence of the rate of 

the motion can generally be determined. The diffusion of atoms, ions 

and molecules can be detected, and in favourable cases the rate of 

migration and its temperature dependence may he determined. Since this 

information is extracted from two pieces of experimental data, namely 

the absorption spectrum and the spin-lattice relaxation time, a full 

investigation of any solid will e1Jbrace measurements of both over as 

wide a range of temperature as possible. 

It is the application of N.M.R. to the dynamic situation in two 

ferroelectric crystals that forms the basis of this thesis. Although 

the phenomenon of ferroelectricity has Leen extensively studied in 

s 

recent years, much remains to be understood about the atomic mechanism. 

X-ray, neutron diffract ion., thermal and dielectric studies of ferro-· 

electric crystals are very helpful in improving this situation but N.M.R. 

techniques also can make important contributions. The resonance signal of 

a nucleus in a crystal depends strongly upon the particular state of the 

crystal and therefore may be used to detect and ~tudy the progress of 

phase transitions even wJ1en the actual atomic displacements are very small. 

Furthermore, in hydrogen bonded crystals, where tl1e interproton distances 

arc only slightly greater than the distances over whicl~ proton motion 

occurs, N, M. R. may clarify the role of the hydrogen a toms in the ferro-

electric transition. 
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I.2 Ammonium Sulfate and Ammonium Fluoroberyllate: 

The ferroelectric property of ammonium sulfate, (NH
4

)
2
so

4
, 

below 223°K and of ammonium fluoroberyllate, (Nl~) 2 BeF4 , below 176°K were 

discovered by Mattl1ias and Rcmeika (3) and by Pcpinsky and ~ona (4), 

respectively. Although both arc ferroelectric and originally were 

believed to be isomorphic ·in structure, they have been £ound to differ in 

a number of irnpo:rtant aspects. The crystal symmetries of the tHo 

materials are different in both their paraelectric and ferroelectric 

phases and the polar axes in the ferroelectric phases develop along 

different crystallographic axes. 

An early (1958) thermal study of .(NH
4

) 
2
so

4 
and (NH

4
) 

2
BeF 

4
- by 

Hoshino et al. (5) inclicated that the mechanisril of the phase transitions 

_of these two crystals are of a different type~ There is evidence of 

latent heat in the (NII4) 2so4 transition, whereas (NH4) 2BeF4 exhibits a 

broad peak at the transition which suggests a second-order transition. 

From a study of the dielectric constant these a,uthors reported that the 

shape of the E:: vs T curves of (NH
4

) 
2
so4 and (NI-1

4
) 

2
BeF4 is rather unusual 

for a ferroelectric transition. The Curie-Weiss law was not obeyed above 

the transition temperature, unlike most of the ferroclectrics known at 

that time. However, a more recent dielectric, spontaneous polarization 

and specific heat study of (NH4) 2BcF4 by Strukov et al. (6) in a narrow 

range arou11d the transition indicated that the transition is first order. 

In an early proton N.M.R. study (1960), Blirtc and Levstek (7) 

found that (NH4) 2so4 and (NII4) 2BeF4 which have very similar absorption 

lines at room temperature, showed an entirely different behaviour at low 

temperatures. In (NH4 ) 2 BeF~ the 2nd moment of the proton absorption line 



increases very slightly between 423 and 93°K where it attains the value 

2 of 8 gauss The expected rigid lattice value for an ammonium group is 

2 nd 2 o about 50 gauss . The 2 moment value of 8 gauss at 93 K demonstrated 

7 

the complete disappearance of the intra-, Nf·I; magnetic interactions due to 

th d . . f h NIT+ • e ran om reorientations o : t c 1 · -i4 ions. The potential barrier hindering 

the movement of the ammonium ions appeared to be low. On the other hand 

nd in (NH4) 2so4 the 2 moment of the proton absorption line increased from 

the value of 6 gauss 2 to 28 gauss 2 below 163°K. The absorption line 

split into h:o, well resolved components. They interpreted these results 

in terms of the broad band arising from "frozen-in" ammonium ion protons 

. and the narrow band from rapidly rcori en ting ammonium ions. Their IR 

studies indicated the existence of deformation in the NH4 , so4 , and BcF4 

groups in the ferroelectric phase and from this they underlined the 

importance of the N-lI .•• O and N-H ... F hydrogen bonds in the transition. 

In 1960 from a proton line-width study, Richards and Schaefer (8) 

reported a 2nd moment value· for (NII4) 2so
4 

at 20°K of 33 gauss 2 
\vhich is 

again below the value expected for rigid ammonium groups. 'rhey explained 

the 2nd moment and line shape of the derivative curve below the line 

width transition on the assumption that two-thirds of the ions are rigid 

while the others are in motion. They assumed that the minor peaks in the 

derivative curve at 20°K arise from rigid ions and that the central peaks 

are due to ions in motio11. The derivative curve was then treated as a 

2 
superpcsition of t~0 such curves, one due to the outer peaks (40 gauss ) 

and one due to the central peaks (6 gauss 2). 

From an early spin-lattice relaxation study (1962), Miller ct al.(9) 

reported that (N1~) 2so4 displays a marked discontinuity in the proton T1 
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at the ferroelectric transition. T
1 

abruptlydecreascs from 1 sec. to 

300 msec. which they interpreted a~ a large change in the rate of m~ 

motion on going to the ferroelectric phase. The slope of the proton T1 

vs l/T curve was found to change and from the slope they calculated that 

the potential hindering the NH; reorientation to be 2.3 kcal/mole in the 

paraelectric ~1ase and 6.1 kcal/mole iri the ferioelectric phase. In the 

case of (f'.!H
4

) 
2

BcF 
4 

no discontinuity was reported but only a change in the 

slope of the proton T
1 

vs l/T curve. From the slope~ the hindering 

potential w~s calculated to be 1.5.kcal/mole in the paraclectric phase 

and 5. 3 kcal/mole in the .ferroelectric phase. They concluded from these 

data that the barrier to NH; rotation is higher in the ferroelectric than 

the paraelectric phase and that the change to the ferroel~ctric phase 

involves a change in lattice structure and hence alters the effective 

potential against which the motion occurs. Unfortunately, due to the 

rather narrow temperatilTe range over which the experiment was carried out, 

the results are not complete~ 

In a. much more recent spin-lattice relaxation study '(1967), 0 1 Reilly 

and Tsang (10), (11) reported rem1lts only in approximate agreement with 

those of Miller ct al. Their observatjon of two minima in the proton T1 

vs l/T curve was interprete:d in teTms of· two nori-equival ent NH~· (Type I 

and Type II) tetrahedra rotatjng at djfferent frequencies and coupled to 

each other via the dipo.le-dipole interaction. In the case of (NH4) 2BeF4 

they found that both the proton and fluorine spin-lattice relaxation 

become· markedly non-expo11ential over certain temperature ranges. For 

(NII
4

)
2
so

4
, which contains protons at two chcmica1ly inequivalent sites 

at i'lhich re.laxatioh processes arc diffcTcnt, only cxponcnt.ial relaxation 
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processes were observed. In (NH4) 2so4 it was found that between the 

ferroelectric and paraelectric phases the activation energy decreases by 

40% for the Type I ion and 15% for Type II. In the case of (NH
4

) 2BeF4 

the change in activation energy in going through the transition was found 

to be very small. 

Deuteron magnetic resonance data for (ND4) 2so4 (10) suggested that 

the tilt of the ammonium dipoles is symmetrical with respect to the a b 

plane in the ferroelectric phase. The mechanism of the phas~ transition· 

is the disordering of the ammonium dipoles with respect to the ab plane. 

Similar data for (ND4) 2BcF4 (11) indicated that the transition is due to a 

tilting of the ammonium ions either parallel or anti-parallel to the 

ferroelectric axis. 

· A neutron diffraction· study of the structures of ferroelectric 

and paraelectric (NH4)
2
so4 has been carried out (1966) by Schlemper and 

Hamilton (12). Their results agreed with inelastic neutron scattering 

studies, Rush and Taylor (13), that the rotational freedom of the ammonium 

ions undergoes little change in passing through the transition. These 

results are not consistent with the N.M.R. studies of Miller ct al. (9). 

Also the interpretation given by Richards and Schaefer (8) is ruled out 

from the symmetry requirement that there be equal numbers of two 

independent ammonium ions in the structure. They suggest that the 

transition is not of the order-disorder type, but rather involves a 

change in the hydrogen bonding of the ammonium ions to the sulfate ions 

which results in stronger hydrogen bonds in the ferroelectric phase. At 

room temperature the ammonium ions arc highly distorted with the H-N-H 

angles varying from 104.7° to 118.5° in one ammonium ion, and from 100.2° 



to 116. 2° in the other aHmonium ion. In the ferroelectric phase the· 

ammonium ions are less distorted, with the H-N-H angles varying from 

106.1° to 111.6° in one ammonium ion and from 104.7° to 114.1° in the 

other ammonium ion. The transition then results in stronger hydrogen 

bonds and less distorted ammonium ions, both of which seem to be 

energetically favourable. 

L 3 Scope of the Present Work: 

From the foregoing discussion of the p~1lished material on 

arrunonium sulfate and fluoroberyllate it is evident that many aspects of 

the atomic nature of the ferroelectric phase transition and the· 

behaviour of the ammonium groups at the transition are not clearly 

understood. It is convenient to summarize those difficulties which 

could perhaps be resolved by an arpropriate N.M.R. study. 

Early spin-lattice relaxation studies in ammonium sulfate (9) 

indicated that there is a significant change in th~·hindering potential 

for NH; reorientation upon entering the ferroelectric phase. They 

suggested that the change to the ferroelectric phase involves a chahge 

in lattice structure and hence alters the effective potential against 

which the motion occurs. These findings are not·· in agreement with 

neutron studies (12,13) which indicated little change in the hin<leririg 

potential upon passing into the ferroelectric phase. Proton spin

latticc relaxation studies (JO, 11) in both materials suggested that 

relaxation was brought about by the reorientation of two non-equivalent 

NH
4 

groups, although individual coTrelations could not be resolved. A 

proposed model based on deuteron magnetic absorption results (10, 11)> 

10 
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that the ferroelectric phase comes about because of tilting of the 

ammonium dipoles along the ferroelectric axes, is in good agreement with 

dielectric and thermal data (5). There is at present little known 

about the nature of the phase transition in ammonium fluoroberyllate 

although O'Reilly, Peterson and Tsang (11) suggest that it will be very 

similar to sulfate. As a result of ext~nsiVe studies a fairly clear 

picture of the ferroelectric mechanism in (Nl14) 2so4 is beginning to 

emerge but much more needs to be done to bring our tmderstanding of 

(M~) 2BeF4 to an equivalent point. 

With the foregoing in mind we decided to carry out a deuteron 

relaxation experiment on both of these materials over the widest 

possible temperature range. In the first place this would give sU 11 

another opportunity to study the l1indering potential across the 

transition. Furthermore, since the deuteron possesses an electric 

quadrupole moment it woulJ be expected to be much more tightly coupled 

to the lattice leading to shorter T
1 
's. The quadrupole coupling 

combined with ND4 reorientations could lower T1 to a value where under 

certain conditions it might be smaller than the spin-diffusion times. 

In the light of the foregoing, it was hoped that such an experiment 

would be able to resolve the correlations of the two independent 

ammonium groups. Should this prove possible a study of the individual 

correlations at the transition would not only yield.infor~ation concerning 

the nature of the transition in ammonium fluoroberyllate but would also 

provide additional data on both materials which could then be compared 

with results already available. 

It should also be noted that the mechanism responsible for the 
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proton line narrowing in (NII4) 2so4 at v:ery low temperatures is presently 

still not understood. Attempts to explain the narroi·Jing in terms of 

reorientation of a fraction of the total number of groups have been 

shown to be inconsistent witl1 other known data (12). As a result we 

decided to check the earlier second moment analysis and to extend the 

proton spin-lattice relaxation study dom1 to 4~2°K in case there was a 

line-width transition at temperatures lowet t}1an other workers had 

reached. It was hoped that from the k-nowledge·of-the relaxation rate 

at very low temperatures we could decide whether or not motion was the· 

cause of line narroHing at these temperatures. 



CHAPTER II 

THEORY 

II.I Introduction: 

We·are interested in a quantum-mechanical description of the 

coupling of the spin system S with all other degrees of freedom, 

called the lattice. Of particular interest is the form of the spin-

lattice relaxation time for dipolar and quadrupolar couplings. In an 

attempt to increase the coherence of the presentation, the physical 

system will first be described in general terms from which the particular 

cxpressi011s lii<:t)' be obtained wl Lh relative case. Since thc:ce is no claim 

to originality in this section, the notation used is that ~1ich is found 

in Abragam (14). 

* II. 2 The Density Matrix: 

In order to simplify the discussion we will treat quantum-

mechanically only the spin system S assuming that the lattice is 

classical and has an infinite temperature. At the end of the discussion 

the appropriate Boltzmann weighting will be introduced. 

1his procedure can be justified on purely quantum-mechanical 

argu1r.ent s (14) . 

We begin by considering t.he Hamiltonian h ff 
0 

~ h H 1 (t). Here, 

h H 
0 

is the main or Zeeman Hamil toniml and h H 1 (t) is the perturbing 

* Throughout the text h is used in place of h/2n. 

B 
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Hamiltonian which describes the coupling of the spin system with the 

lattice and is a stationary random operator. (Appendix A] 

The equation of motion for the density matrix o [Appendix B] for 

the spin system S is: 

do 
dt = - i[H

0 
+ H1 (t), a] (2. l) 

To exhibit the slow variation of the observables due to the coupling of 

the system S with the lattice rather than the fast motion due to the 

main Hamiltonian h H , we introduce the interaction representation: 
0 

* 0 

iH t 
0 = e o e 

-iH t 
0 and * H1 (t) = e 

Hf t -iH t 
o Hl(t)e o 

Substituting the above into equation (2.1) we obtain: 

* do 
dt = - * * i [H 

1 
(t), o ] 

nd Integrating equation (2.2) by iteration up to the 2 order: 

(2. 2) 

* * . It * * o (t) = o (0) - i 
0

[H 1 (t'),o (O)]dt' - Jt Jt' * * * d t ' d t" [H 
1 

( t ' ), [H 
1 

( t ") , a ( O) ] ] 
0 0 

(2.3) 

Differentiating equation (2.3): 

do* * * Jt * * * d t = - i [ H 1 ( t), a ( o) ] -
0 

d t ' [H 1 ( t), [H 1 ( t ' ), o ( O) ]] (2.4) 

The fact that h H
1

(t) is a stationary random operator~ must depend on 

t only through the difference. Upon the introduction of the variable 

-r ::: t - t', equation (2.4) may be written as: 
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* do = -dt (2. 5) 

* From equation (2~5) it is clear that a (t) is a random operator. 

In order to obtain the observable behaviour of a statistical ensemble of 

spin systems, equation (2.5) must be averaged over the random Hamiltonians 

h H
1 

(t). _A number of assumptions will now be made which arc justified 

because of the shortness of the correlation time of the random 

Hamiltonians. Without proof 04), we assume: 

1. H
1 

(t) = O 

* 2. it is pcrmi~ted to neglect the correlation between H1 (t) 

* and a (0) in averaging equation (2.5) and average them 

scp:iratcly, 

* * 3. it is permitted to replace a (0) by a (t) on the right hand 

side of equation (2.5), 

4. it is permitted to extend the upper limit of the integral in 

equation (2.5) to +co, 

5. it is permitted to neglect all higher-order terms in the 

expansion of equation (2.5). 

Applying these assumptions, the first term on the right of 

* equation (2.5) averages to zero, and, dropping the bar on a which from 

now on will stand for the average density matrix, we obtain: 

'i-: * 
[H

1 
(t), [H

1 
(t-T), a (t)] ] (2.6) 



As mentioned previously it has been assumed in the present 

treatment that the lattice is at an.infinite temperature. To correct 

for a finite· temperature, we introduce the Boltzmann weighting factor, 

* * i.e., o (t) is replaced by a (t) 

* 

- 0 
0 
* where 

cr
0 

= a
0 

= cxp(-h H/kT) I tr { exp(-h H/kT) } 

II.3 The Density Matri~ in Operator Form: 

The next step is to cast equation (2.6) into operator form. 

This form will then be readily applicable to a specific spin-lattice 

coupling. 

The random Hamiltonian h 1\(t) can be expanded as: 

16 

H
1

(t) = l F(q)A(q) 
q 

(2.7) 

where F(q) are random functions of time and A(q) are operators acting on 

the variables of the spin system. 

We now introduce the correlation functions [Appendix A ] 

with the Fourier transforms: 

and 

jqq' {w) 
-iWTd e t 
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A necessary requirement is that I\ (t) must be hermitian. Therefore, if 

F(q) are comple~ functions and A~q) non-hermitian operators then for each 

term F(q)A(q) of our expansion there must be associated a term F(q)*A(q)t. 

We introduce the convention F(-q) = F(q)*, A(-q) = A(q)t~ Finally, 

recalling that equation {2.6) is written in the interaction representa-

tion, the following definitions will be useful in our present expansion: 

iw (q)t 
= \ A (q) e p 

l p. 
p 

iH t ( ) -iff t 
e 0 A -q e 0 -

iw (-q)t 
l. A (-q)e p 

and hence, 

(r\ ( •q) ·- - w (q) 
p p 

iH t -iH t 
0 . 0 = e H

1 
(t)e 

p p 

Now substitute equation (2.9) into equation (2.6): 

* do 
dt 

which may be written as: 

(2.8) 

(2.9) 

(2.10) 



By recalling the definition of the correlation function g ,(T), we qq 
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easily observe that the integrand on the right hand side of the equation 

(2.10) is simply· g , (T). Assuming for simplicity g , (T) = o ,g (T) q,-q qq qq q 

and neglecting off diagonal terms we finally obtain; 

It can be shown [Appendix A] that: 

J
~ -iw (q)T 

g (T)e p dT = 
0 q 

The 

and 

imaginary term 

= ~ . J (w (q)) 
2 q p 

leads to a small shift 

can be dropped from equation (2.11). 

* do - .!. l J (w (q)) [A {-q) 
dt = 

2 p,q q p p ' 

II.4 The Macroscopic Equations: 

i k (w (q)) 
q p 

in energy of the 

Thus we obtain: 

[A (q) * 0 (t)] J p ' 

(2 .11) 

.spin system 

(2.12) 

The quantity which is observed in an experiment on a macroscopic 

sample containing a crillcction of systems S is q(t) = <Q> = tr {o(t)Q} 

[Appendix B] where Q is an operator which acts on variables of system S. 

* * * It will be convenient to calculate q (t) = <Q> = tr {o (t)Q} which as 

mentioned previously gives the slow variation of Q due to the coupling 
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of the spin system with the la~tice. In order to obtain the equation of 

motion of Q multi ply both .sides of equation (2. 6) by Q and take trace.· 

It can be shown [Appendix C ] that we get an equation of the form: 

* dq_ * = - {a - a } (2.13) 
dt 0 

where 
* * * a ·- <A> = tr {Ao } 

ao ... tr {Ao } 
0 

and the operator A is defined as: 

J
oo ---*-------* - , 

A ::: dT [Hl (t - T), [Hl (t), Q] ] 
0 

(2.14) 

Substituting equation (2.9) into equation (2.14), neglecting off-

A = 1 2 2 
q,p 

II. S The Di polar Coupling: 

we obtain: 

J (w (q)) [A (q) (A (-q) 0 .. J 
q p p ' p ' 

(2.15) 

The complete IIamiltonian of a system.of like interacting spins 

in a large external field may be written as: 

where the main Hamiltonian is: 

h H 
0 

::: - yh H . L 
0 k 

I k 
z 

(2 .16) 

http:system.of


The perturbing Hamiltonian h H1 due to the dipolar coupling is: 

= I h2y2 

J. <k 3 r.k 
J' 

Equation (2.17) may be written as: 

where 

= y2h2_ 

r3 
(A + B + C + D + E + F) 

A = I I ' (I 3 cos 2 8) z z 

B = - -4
1 (I - 3 cos 28)(I I' +I I' ) 

+ - - + 

c . 0 O· c-i<f>(I I' ·• I'T ) ZJ.n .• COS . . . • . .._ . z + z + 

D = c* = - ~2 sine cos 9 ei<f>(I I' + I'I ) 
z - z -

E = 

* F = E = 

Equation (2.18) can be put into the form: 
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(2.17) 

(2 .18) 

(2 .19) 

(2. 20) 

where the F(q) are random functions of the relative positions of the tlm 

spins and the A(q) are operators acting on the spin variables. We adopt 

the convention F(q) = F(-q)*. A(q) = A(-q)t. We define 
' 
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F(O) 1 - 3 cos2e = 
r3 

F(l) sin e cos e -i<f> e = 

J 
(2.21) r3 

F(2) sin2G -2i<P e = 
r3 

and 

A (0) = a{- ~I I' +} (I_.I~ + I I' ) } 
3 z z - + 

A (1) = a{I I' + I I'} (2.22) z + + z 

A (2) 1 
I I ' 

3 y2h = 2 Ct a. = - 2 + + 

Assuming furthermore random isotropic motion for the orientation of the 

vector r, we have: 

::: 0 G(q) (T) 
qq' 

(2. 23} 

The equation of motion for the longitudinal magnetization will have the 

form: 

d <I + I'> = - (a~ - a ) df" z z k 0 

* where a = tr {A a}, A being given by equation (2.15). Evaluating z z z 

equation (2.15); 
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+} J( 2 )(2wl){[AC- 2 ~[Ac 2 i1z +I~]] + [Ac- 2 ~[A(2 ~rz + I~]]t} 

(2.24) 

Using standard commutation relations [Appendix D], we obtain: 

2a2I 11 2 + 2a 2 I'I 2 - a 2(I I' + I I')(I +I') z z z z + - - + z z 

(2.26) 

Furthermore, it can be shown [Appendix D ] that: 

and 

* If we use the high temperature approximation wherein a -a is 
0 

an infinitely small quantity of the first order, quantities such as 

<I >, <I >, <I > are also small of the first order and to the same x y z 

approximation: 

2 I(I+l) <I I ' > ~ <I > zx z -3--

<I I '> ~ <I I'> ~ b 
z z z x 

Combining equation (2.25), equation (2.26) averaging and 

enploying the above approximation, we obtain: 
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(2.27) 

The macroscopic equation for spin-lattice· relaxation then takes on the 

form: 

with 
1 

Tl 

l {<I +I'> 
- T~ z z 

<I + I'> } z z 0 

+ J( 2) (2w ) } 
I 

(2.28) 

(2. 29) 

Finally, equation (2.29) may be generalized to the case when each spin 

I interacts ~ith several identical spins, provided their motions are 

not correlated. In such a case the equation 

is still valid with: 

dM z 
dt = 1 

- - (M - M ) T z o 
1 

II.6 The Spin-Lattice Relaxation Time for a 

Four Spin System 

(2.30) 

Assuming the four spins uncorrelated we will use equation (2.30) 

as the starting point. 

Rewrite equation (2.21) as: 

F(l) = 
. ik 

F (2)= 
ik 

-2icp.k 
. 2e i s1n - .ke 

1 J 
(2.31) 



Where r is the interproton distance, eik' ~ik is the orientation of the 

H-H direction in the laboratory co-ordinate system with the magnetic 

field H along the z-axis. For a tetrahedron of protons there are six 
0 
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different lI-H pairs. In order to evaluate the pair correlation functions 

we must appropriately weight the various possible orientations. At this 

point it is necessary to introduce a model which represents the 

disordered motion of the spin-carrying nuclei. To do so we introduce 

the reduced correlation functions 

= 

and make the convenient assumption that g(-r) is the same for all G(i) 

and can be represented by exp(-ITl/T ), where T is a constant called the 
c c 

correlation time and is a characteristic of the medium. 

Returning now to the i·:eighting of the various possible orienta-

tions cf the H-H pairs, it can be seen that:- the probability that a 

1 5 
pair remains at its initial orientation in a time 7 is [~ + ~ exp(-T/Tc)]; 

and that the probability of a pair being in one of the five remaining 

. 1 1 
orientations is [K - ~ exp(-T/Tc)]. It is now possible to calculate the 

pair correlation functions. 

Begin by considering a proton pair at orientation ij at time t. 

Then at time t + T we may write: 

F. ~q) (t+T) 
1J 

1 5 ( ) I (q) 1 1 
= [ -

6 
+ -6 exp ( - T /l c) ] F . . q ( t ) + l F . . ( t) [ -- - -

6 
exp ( - t / 1 c) ] 

1J · 1 .J:. • • 1k 6 
1J\., lJ 

(2.32) 

'Multiply equation (2. 32) by r. ~q) and al so drop time independent factors, 
lJ 

we obtain for the pair correlation fUnction: 
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-----~------~--------------

At any time, the six possible orientations are equally likely to be 

occupied, and therefore performing this average we obtain: 

<F. ~q) (t)F~~qj (t+:r)> = ~- exp(-1/T ) [S I jF. ~q) i2 - l ( F~~)F~(q)] 
lJ lJ . ,:,6 c . . lJ . . . kJ.. . lJ ik 

lJ 1J 1 ·rlJ 

Equation (2.33) may be rewritten as: 

--- ---------
<F. ~q) (t)F~~q) (t+1)> = _!__ exp(-1/T ) [6 l jF. ~q) 12 - 12 F. ~q) l 2 J 

lJ lJ 36 c . . lJ . . lJ lJ lJ 

Taking the Fourier transform we obtain: 

2t 
c [6 l IF. ~2) 12 

. . lJ 
lJ 

Finally, for a powdered san~le we must average over all possible 

orientations of the magnetic field. 

then have: 

Observing that 

-6 
r 

-6 
r 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 



Combining equation (2.37) with equation (2.35) and (2.36), 

J .. Cl) Cw) 
1J 

T 
c = _31_6 [ 2Tc J [36] 125 .!.._ - 415 .!__ 

l+(wT ) 2 r 6 · r 6 l+(wT ) 2 
c c 
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(2.38) 

J .. (Z) (2w) = 
1J 

[ 2 TC_ J ( 3 6) 8 .!-__ -
U+C2wt )'- Is r 6 

c 

16 1 
15 r6 

Evaluating equation (2.30), 

we obtain: 

1 9 y4h 2 

Tl = IO 6. 
r L+c~: )2 

c 

II.7 The Quadrupole Hamiltonian 

+ J .. (Z) (2w) 
lJ . 

4T J 
+ l+ (2w~ ) 2 

c 

l 
c 

1+ (2WT ) 2 
c 

(2.39) 

In order to utilize the framework which has been developed thus 

far, the quadrupole interaction will be treated as a special case of a 

multipole-expansion in spherical harmonics of electrostatic energy of 

two charge distributions. This approach has the advantage of exhibiting 

clearly the various non-vanishing matrix elements of the interaction. 

It also yields the form of equation (2.7) with relative ease. 

Consider the 11ucleus and the electron cloud being described by 

two charge distributions p (r) and p (r ), respectively. Then their n n e c 

mutual electrostatic energy is given by: 
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= J J 
Ir - r I -n -e (2.40) 

Expanding the denominator by the classical theorem of spherical 

harmonics, 

R, 
R, 

(X) r 
l 4n l l 1 n m* 

cen,<Pn) ym cee,<f>e) = .e.+1 y R, 
Ir - r I .Q, 

R,:::0 m=-i 2.e,+l r (2.41) -n -e c 

It is assumed that r > r and hence the small penetration of the 
e n 

electron inside the nucleus is neglected. Equation (2.40) may now be 

written: 

l 
m m* ·u = Ai BR, f; 

R,, m 

(2.42) 

where 

Am /2~~f f pn(rn) 
R, ym cen,<Pn) dr = r 

R, n R, n (2 .43) 

and 

f Cr )r -(i+l) Ym (8 ~ ) dr 
Pe e e R.. e''fe e (2.4'1) 

Now if the state of the nucleus is defined by a wave fi1nction ~11 (R 1 ~ .RK) 

of the co-ordinates of its K nucleons, the nuclear charge density can 

be written as the expectation value of the operator density of charge at 

the point r : 
n 
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K 

= Cl/Jn I I e.o(r - R.) I ~ ) 
l n i n 

(2.45) 
i=l 

where e. = e for a proton and zero for a neutron. Utilizing equation 
l 

(2.45), equation (2.43) may Le written: 

Am Am where Am is defined = < > as 
R, R, R, 

Am hk I 
9, m . 

= e.R. YR,(0.,4>.) 
R, 

i 1 1 1 1 

where R., 0., ¢. are the polar co-ordinates of the K nucleons. 
1 1 1 

In a similar fashion Bm 
R, = where 

;;
41r-·· ~ - (.t+l) vrn (e .+. ) 

- e -2 1 1 rl. l n i 'y i" 
9,+ i~l x, 

where r., e., <f>. are polar co-oTdinates of electrons. 
1 1 1 

(2 .46) 

(2.47) 

Consequently, the energy of the electrostatic interaction between 

the electrons an<l the nucleus is then the expectation value of the 

Hamiltonian: 

= I 
t ,m 

Am 8m* 
R, 9.. 

m m From equation (2.46) and (2.47) we see that the operators AR, and Bi 

transform under rotation of co-ordinate axes in the same way as spherical 

harmonics of order £. This is the definition of tensor operators of 

or<lcr 9,. The tensor operator AR, wit~1 29,+l components A~ is called the 

multi.pole moment of order R, of the nucleus. 
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For the quadrupole moment we rewrite [Appendix E] as:-

A ±2 
2 = l 

i 
( . ) 2 e. x. ± iy. 

1 1 ]_ . 

A±l = 
rJ--

}. e. z. (x. ± iy.) (2.48) 
2 2 ,_, 

i 
1 1 1 1 

A o 1 l e. (3z. 2 r.2) = -2 2 
i 

1 1 1 

By means of the Wigner-Eckhart theorem we may now replace 

(x t- iy) with I+' (x - iy) with I_ , z with I z and define: 

+2 J--6_ ~ 2 q- = a. I± 4 

Q±l = a. JI (I I± + I± I ) 
4 z z (2 .49) 

a. ]._ ( 3 I 2 - I 2 ) 
2 z 

a is determined by the demand that Q0 and A0 have the same expectation 

value in the substate I = I; namely: z 

eQ = 
K 

(II I l 
i~l 

2 
e. (3z. 

1 1 

2 
r. ) I II) 

1 

= a. (II I 3I 
2 

- r2 I II) z 

and finally: 



a. =-~ 
I (21 - 1) 

We may now write equation (2.49) as: 

Q±2 = ___ eQ_ __ _ 

I(2I - 1) 

Q±l = __ eg__ 
I(2I - l) 

= __ c:L_ 
I(2I - 1) 

~ 12 
-~r ± 

,;-"6 {J I + Ii· I } 
4 z ± z 

1 { 31 2 - 12} 
2 z 

Returning to the electron operator it is seen that: 

N 
B o = .!_ l 

2 2 i=l 

2 2 
e. (3z. - r. ) 

1 1 1 

5 r. 
1 

h 1 a2 l'I T e above is simply equal to 2 az-2 r=O where V (x yz) is the 
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(2 .49a) 

electrostatic potential produced by the electrons at.the point x, y, z, 

and is ·still an operator. By the same argument it can be shown 

B2 
±2 1 

( l' v ± 2i {I . ) = --- -
2 16 xx yy x.y 

(2.50) 

B2 
±1 1 (V :!.: iV yz) = ---

16 xz 
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Combining equation (2.50) and equation (2.49a) the quadrupole 

Hamiltonian may be written: 

2 
= \ A mB-m 

l 2 2 
m==-2 (2.51) 

II.8 Relaxation Due to Quadrupole Coupling: 

Equatibn (2.51) may be rewritten as: 

::: I F(m) (n)A~)(I) 
m 

where the F (mtn) are lattice functior.s and J11
)(I) are spin operators, both 

of which transform under rotation as spherical harmonics of order 2. n 

represents the three Euler angles n, B, y dcfinin~ the orientation of 

the molecule with respect to the laboratory frame. 

We write: 

A (o) (I) 

A (±2) (I) 

= 31 
2 

- 1
2 

z 

Because the unperturbed Hamiotonian h H is hw I it follows that: 
0 0 z 

iH t -iH t 
e 0 A(m~(I)e 0 = 

imw t 
e 0 A(m)(I) 

* * 

(2.52) 

Also the expectation value p = tr(Pa ) of any spin operator obeys the 

equation: 
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* dp 
Cit 

. * 
- - (b - b ) 

0 
. (2.53) 

where 

* * b = tr{Bo } 

and 

B = } l (2.54) 
m 

where J(w) is the Fourier transform of the reduced correlation function: 

~(t) = ---------

assumed to be the same for all p0nl. 

The functions F(m)(Q) can be related to the function F(m)(O) in 

the frame of the molecule by: 

F (m) (n) = l arnm' (n) F (m') (0) 
m' 

(m-. 
where the random character of F J(n) appears in the coefficients 

a ,(n) also, mm 

1 

2.t + 1 
0 m'm 11 

where in our case 1 = 2, and hence we may write equation (2.54) as: 

B ::: io o~ I F(m') (0) 12} 
m' 

(2.55) 

(2.56) 



In bulk matter there is in general, with the exception of a few 

paramagnetic suhstances such as the rare earths, no orbital degeneracy 

left, so the operators Vjk can be replaced by their expectation values 

Vjk taken over the single wave function representing the non-degenerate 

electronic state. As a consequence of this fact, the electric field 

gradient at the nucleus is treated classically in bulk matter and 

quantum-mechanically ln free atoms or molecules. 

Introducing the constants: 

Vo = 

:: 

= 

1 
-2 v zz 

1 

16 

1 

216 

= 1 
-2 <V > zz 

(V zx ± iV ) zy 

and hence equation (2.51) may be written: 

2iV ) xy 

Thus far the orientation of the Oxyz has been arbitrary. If we 

choose as axes of co-ordinates OXYZ the principal axes of the symmetrical 

tensor Vij so that VXZ = VYZ = VXY = 0 label these axes so that 

jv22 1>1Vxxl>!Vyyl and define eq = v22 and n = (Vxx - Vyy)/v22 , the 

quadrupole. Hamiltonian becomes: 

= 
2 

e qQ 
4TC:rr=ry- {31 2 

z (2. 57) 



or in terms of the A(m) 's 

2 
= ~_g_g___ ft {A (O) + _2.,_ (A (2) + A (-2)) } 

41(21-1) .r-6 

from which 

F (O) (0) 
2 

1 e qQ = -
41 (21-·l) h 

F(±2)(0) = 
2 

1 ~-qg_ .:._!l__ 

41(21-1) 16- h 

Using equation (2.58) we may now evaluate equation (2.56), 

l jF(!11){u)j2 
m' 

and hence, 

1 
B = 160 ( 

2 ~2 ~Q 

1(21-1) 

t 
2 j 2 2 

= i6 c qQ ll + \ ] 

1(2!-l) 

1 
h2 

1 .2 IV ( ) 
- (1 + n

3
-) l J(moi

0
) [A -m, [Am, P] ] 

h2 
m 

Setting P = I and using standard commutation relations z 

[Appendix D] : 

I [8I(I + 1) - 2]} z 
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(2.58) 

(2. 59) 

(2. 60) 

Finally, carrying out the sum in equation (2.59) for the case 

I = 1 which :implies I 3 
= I , we obtain: z z 
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1 ~ 2 y .2 
1 

'\, 'V 

B e Qq (1 + !L) {6J(w ) + 24 J(2w )}<I > = 160 ·h2 
I (21-1) 

3 0 0 z 

* dp * where b* Recalling = (b - b ) = tr{ Bo} hence, 
dt 0 

d 
<I > ~{ <I > - I } 

dt = z Tl z 0 

or 

'V 'V 1 3 ~2Q\2 2 1 

Tl 
= 80 (;~-~]~ (1 + !13) h2 U(ti.' ) + 4J(2tv )} (2.61) 

0 0 

JJ.9 Sc~ond Moments of N.M.R. Signflls Broadened by the 

Dipolar Interaction (Like Spins): 

We begin by recalling the dipolar Hamiltonian given by equations 

(2 .17), (2 .18), and (2 .19). · The use of this Hamiltonian in an attempt 

to calculate the shape of the absorptfon line in a completely general 

case presents an essentially impossible task. Only for a small number 

of interacting nuclei or for groups of nuclei displaying high symmetry 

is such a direct calculation feasible. However, Van Vleck (15) showed 

that even in the general case it is possible to calculate the moments of 

the line shape. If g(H) is the normalized shape function of the 

b . l" } "1 l th . . b a sorpt1on ine, t1en ~ t1e n moment is given y: 

M 
n = 

n 

·Of paxticular inteTest is the 2nd moment given by: 

(2.62) 
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= J g(H)(H - H
0

)
2 

dll (2.63) 

Th 1 f t} 'j nd .,_ f · 1 t · · b e va ue o. le "' momen1... .or a sing e magnc 1c species may e 

written according to Van Vleck as: 

l 
k 

(3 28 - 1) 2 cos jk 
6 ---

rjk (2.64) 

where the subscripts j, k refer to the nuclear species at resonance; 

ejk is the angle the vector rjk separating j and k makes with H
0

; N is 
~ 

the number of nuclei at resonance. 

Frorn the s tarnJpoint of this work, a more w-.cful formula is 

deduced by averaging over all orientations as for a powder sample. The 

angular factors become: 

so that 

l l 
j>k k 

= 
4 
5 

(2.65) 

nd When the nuclei at resonance are not fixed, the 2 · moment is 

reduced from the so called "rigid lattice" 2nd moment. To include motion 

the factors (3 cos 2ejk - 1) 2 
appearing in the second moment must be 

appropriately averaged. 

Let us calculate the average for a rotation about any axis. The 



37 

addition theorem for spherical harmonics yields: 

.. 

< P1 (cos ejk) >~ = P1 (cos 9') P1 (cos yjk) 
(2.66) 

where <f> indicates an average over this variable. 

For 1 = 2, we have: 

2 
<(3 cos ejk - I)>~ 

1 2 2 = -2 (3 cos 0' - 1)(3 cosy .. - 1) 
1J (2.67) 

The second moment for a system rotating about an axis making an angle 8' 

with II is found by substituting equation (2.67) into equation (2.64). 
0 

For a powder, the axes are isotropically distributed, and since 

(3 cos 2o• - 1) 2 averaged over a sphere is 4/5, the 2nd moment for a 

powder is: 

M 
2 = 

1 6 
45 l 

j>k 

(3 2 - 1)- 2 cos yjk l ____ 6 _____ _ 

k r.k 
J' (2.68) 

Thus, to find the 2nd moment for a powder when the species at resonance 

is reorienting, one simply reduces the rigid lattice powder value by the 

factor: 

F(y) = 
1 
4 (3 2 - 1) 2 cos yik 

If the rotational axis is normal to all internuclear vectors which 

(2.69) 

contribute to the broadening then the yjk are n/2; it is then said that 

nd the 2 moment for a powder in which suci1 rotation occurs is one-fourth 

as great as if the lattice were rigid. 
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II.IO Line-Width Transition in a Powder Sample: 

Another important problem is the rate of reorientation necessary 

for observation of motional narrowing. Bloembergen et al.(16) have 

shown that the narrowing process begins when the average period of 

reorientation approaches l/2n6v where 6v is the line width on the 

frequency scale. This theory introduces a quantity v , the correlation c 

frequency, defined as v = l/2nT , where T is the correlation time. c c c 

v is the average rate at which significant changes occur in the atomic c 

arrangement about a given nucleus. The motional narrowing can now be 

described by: 

-1 2/n tan ov/\1 c 

where 8v
0 

is the rigid lattice line width. 

(2.70) 

A physical argument describing what is happening has been given 

by Slichter (17). Consider ·the nuclei of a rigid lattice and suppose the 

0 line to have a wi4th in angular frequency of l/T 2 :: t:.w = yMI. This line 

width corresponds to a spread in precession frequencies. It means that 

nuclei originally precessing in phase in the rigid lattice get out of step 

or lose their initial phase relationship in a time r2°. If motion of the 

nuclei from one point to another in the lattice occurs, a particular 

nucleus experiences a number of different local situations. It will 

sometime precess more rapidly and sometimes less rapidly. As a conseqvcnce, 

its mean precession frequency or integrated phase compared with the other 

nuclei decreases and the line therefore narrows. If this narrowing is to 

occur, the nucleus must necessarily sanple a number of lattice sites 



0 within the time T 2 , duri.ng which the precess ions would otherwise have 

spread out in phase. Thus, if T is a measure of the mean time the 
c 

nucleus spends at a given lattice site, narrowing occurs when Tc 

becomes as small as or smaller than r 2°. 
We can now find the dependence of the resulting T

2 
on Tc. 
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Suppose there is a departure ±Aul from the mean frequency and that it lasts 

for a time Tc. A phase departure ±TcAw is accumulated in this time. 

After n inte.rvals, there is a mean square angular displacement 

2 
n (T Aw) • 

c 
In time T2 = nTc' we say that the initial phase 

relationship has been lost, which we can consider to mean (A~) 2 ~ 1. 

Thus, 1 % (T2/T )(T Aw) 2 or: 
c c 

T 0 
2 

(2. 71) 

Equation (2.71) describes the course of th~ line narrowing as T grows 
c 

shorter than the r 2° of the rigid lattice. Equation (2.71) is basically 

the limiting value of equation (2.70) when T is small. 
c 

A knowledge of the dependence of v on temperature gives the line 
c 

narrowing as a function of temperature. In the event ·that the 

reorientation is thermally activated v can be expressed as: 
c 

v = v exp (-E /RT) 
c oc a 

(2.72) 

where E is the activation energy. From the N.M.R. absorption-a value a 



of E can be derived by fitting equation (2.70) to the observed line 
a 
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width versus temperature curves. Furthermore, an estimate of the correla-

tion frequency at the temperature where· motion starts to influence the 

line width is obtained. 



CHAPTER III 

APPARATUS AND EXPERIMENTAL PROCEDURE 

III.I Introduction: 

This Chapter provides a brief description of both the cw and 

pulse experiments including the apparatus utiiized. Included also are 

the techniques of attaining sample temperatures higher and lower than 

room temperature. 

III.2 Absorption ExperilJ1cnt: 

The block diagram of the N.M.R.- spectrometer is shown in Figure 1. 

The large magnetic field was produced by a 12 11 Varian electromagnet 

monitored by a Varian V-PR 2503 Fieldial. Two sets of pole faces with a 

311 and 1~" gap produced fields of 10,000 gauss and 19,000 gauss, 

respectively, at maximum current. The field inhomogeneity over the 

samples used (9 nun in diameter by 20 mm in length) wassuch as to cause 

no significant broadening of the signals. This was checked by observing 

the proton signal sl1ape of water paramagnetically contaminated by ferric 

nitrate. The broadening as in<licated by the H
2
o signal was very small 

compared to the natural line -widths of the signals obtained in this woTk. 

The oscillating dctectbr consists essentially of a marginal 

oscillator, a radio frequency an~lifier, a detector and a wide-band audio 

frequency amplifier. The sample coil \d1ich is pcirt of the resonating 
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Figure 1 

Block diagram of the absorption spectrometc~ 
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circoit of the marginal oscillator is located in a dewar which is fixed 

between the pole faces of the electromagnet. A pair of Helmholtz coils 

are mounted on the pole faces to modulate the applied field. The 

frequency of the marginal oscillator is fixed. The field can be swept 

linearly at various rates with the help of the Fieldial. The Helmholtz 

coils were energized by 100 llz alternating current supplied by a Hewlett

Packard audio frequency oscillator. The other parts of the spectrometer 

are a Princeton Applied Research, Model JB-4 Lock-In amplifier consisting 

basically of a mixer and a phase-sensitive detector, and a Hewlett-Packard 

6" recording mi 11 iammeter. 

The spectrometer functions as follows: the Helmholtz coils 

modulate the external magnetic field with an amplitude much smaller than 

the line-width of tl1e N.M.R. signal. The resonance condition for the 

nuclei inside the sample .coil, which manifests itself as a potential drop 

across the coil, is thus made repetitive at the modulating frequency. The 

signal is first r.f. amplified and detected. It is then fed to the wide

band audio-frequency amplifier followed by a lock-in amplifier, where it 

is mixed with the signal from the audio-oscillator and phase detected; 

The output of the lock-in amplifier is a d.c. signal approximately 

proportional to the first derivative of the absorption curve. The d.c. 

signal is plotted on the recording millianmeter. 

With respect to the experimental conditions under which the 

resonances were sought, several points were borne in mind during these 

experiments. The density of r.f. electromagnetic energy in the sample 

determines the degree of nuclear spin saturation. By observing the 

symmetry of the shape of the resonance signals and their width as a 
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function of r.f. power, conditions were determined under which no 

appreciable saturation was present. The sensitivity of the oscillating 

detector is greatest when the r.f. power is lowest; however, the noise 

level due to instabilities is greater at low r.f. power, so that power 

levels were used between those at which saturation or excessive noise set 

in. .$ince the signal strength depends on the number of nuclei per unit 

volume of the oscillator coil, maximum sensitivity was achieved by using 

compressed powder samples. The modulating amplitude in gauss was 

calibrated by observing the peak-to-peak separation of the proton signal 

in water as a function of modulating amplitude. 

III.3 Spin-Lattice Relaxation Experiment: 

The resonance condition may be approached slowly or rapidly. In 

the latter case, transient motions of the magnetic moment vector are set. 

up which eventually decay to steady state motibn in a time determined by 

the relaxation paramet~rs T1 and T2 . 

The sample under investigation is placed in an applied magnetic 

field consisting of two components: a steady component_ of magnitude H 
0 

oriented in the z direction and an oscillating component 2 l\ coswt in 

the x direction. As is well known, the oscillating component can be 

further decomposed into two circularly polarized components in the x-y 

plane, rotating in opposite directions about the z-axis. Only one of 

these, namely, that one rotating in the same sense as the free Larmor 

precession of the nuclear moment, is effective in changing the orientation 

of the nuclear moment; the other can be ignored. The resultant moment M 

of the sample may be resolved into three components: M along the z 



z direction, u parallel to the effective rotating component of magnetic 

field and v orthogonal to M and leading the effective rotating field z 
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component by .n/2 radians. The time dependence of these three components 

is given by the three Bloch differential equations (18). 

The transient situation may be set up by any approach to the 

resonance condition which is fast compared to the nutation time l/yl\. 

To do this any one of the three external parameters I~, H1 or w may be 

varied with time in the form of a pulse starting at t = 0. 

The pulse technique lends itself readily to a direct and straight 

forward measurement of the spin-lattice relaxation time T1 . Suppose that 

H1 is large enough to satisfy yH
1 

» l/T2, or in other words the nutation 

time should be short coir.parc<l with the relaxation times so that the 

inversion of the magnetization is adiabatic. In this case the solution 

of the Bloch equation at resonance is: 

M /M z 0 

1 · 6-a = m
0 

exp{- 2 ci;r1 + l/T2)t} [coso + (~2~) sine] + O(a,S) 

(3 .1) 

where 
M = XOHO Xo = static susceptbility 

0 

m = initial value of M /M 
0 z 0 

0 = yH
1
t 

$ = l/yH1T2 

ex = l/yl\ Tl 

If the pulse dtiration is long compared with 2 T1T2/(T1 + T2), then the 

final value of Mz will be small compared with M
0

• In other words, the 
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sample is almost completely demagnetized. During t11e interval between 

pulses, the sample will- regain some of its magnetization because of the 

relaxation processes. Hence, if m = M /M is the value at the 
0 z 0 . 

beginning of the pulse, then: 

m 
0 

(3. 2) 

where t' is the time between pulses. If rn
0 

~ 1, then_ according to the 

Bloch theory, v becomes proportional to m . Hence, by observing the 
0 

dependence of the initialaJ11plitude of v as a function oft' and making 

use of equation (3.2), T
1 

can be directly obtained. 

The experimental arrangement of the T1 spectrometer is given rn 

Figure 2. The spectrometer wns designed b.Y S. Vrscaj. It is capable of 

giving 40 gauss pulses at 11.S Miiz. The 90° pulse length is .9 µsec in a 

9 mm ID coil. The spectrometer has a fast_recovery time and a high gain 

receiver which allows ~l1e nuclear signal to be read 6 µsec after the 

pulse was applied. It produces the following pulse sequences: 90°, T, 

180°; and 90°, T, 90°, .... where Tis the pulse separation from 1 msec 

upward. Tektronix, series 160, pulse units were used for timing and 

triggering, and a Ilewlett-Packard 50 MHz oscilloscope with camera was 

used for recording the free-induction decay amplitude. 

For T 
1 

values above one minute, the pulse method for measuri_ng T 1 

becomes inconvenient and problems of stability tend to render the results 

less reliable. Fortunately, other technici.ucs exist which lend themselves 

readily to the situation when T1 becomes much longer than one minute. 

The signal decay technique utilizes an experimental set-up 



Fipure 2 

Block diagram of the T1 spectromcte~ 
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identical to the absorption experiment. The theory for this effect can 

be derived from the Bloch equations (19). The experiment proceeds as 

follows: The main field H is set on one of the peaks of the derivative 
0 

curve. The r.f. power level is fixed at a definite level producing a 

significant amount of saturation in the absorption spectrum. The H 
0 

field is now switched away from resonance. A time estimated to be long 

compared with T 
1 

is allo\·red to elapse. In our case this time was at 

least 4T
1

. At this time the recording milliamcter is started providing a 

time axis, and H is switched back to the resonance condition. The 
0 

signal is observed to decay from its value immediately after switching on 

H with a time constant which decreases, in succeeding runs, as the r.f. 
0 

level is increased. 

The exponentials 1·:ere extrapolated to t = 0. All the curves 

intersected v , the amplitude of the signal in the unsaturated 
unsat · 

situation. If one defines the saturation factor S as vunsat/vsat' the 

ratio of unsaturate~ signal amplitude to the saturated signal amplitude, 

then the time constant is T
1
/s. 

III.4 Sample Temperature Control: 

The powdered sample ~as encased in a thin-walled teflon cylinder. 

The sample coil was wound around the teflon cylinder and fixed to it by 

teflon tape. The sample and coil assembly were contained in a dewar ~1ich 

was appropriately fixed between the magnet pole faces. To obtain tempera

tures between 273°K and 423°K the boil off from liquid nitrogen was 

passed over a heated nichrone coil contaihed in a glass tube and then 

allowed to enter the dm·:ar through a glass tube. Temperatures in the 
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range from below 273°K to 85°K were achieved by nitrogen boil off without 

the heater. In botl1 instances, the tempbrature of the sample ~ould be 

controlled by varying the am6unt of power delivered by a variac to the 

immersion heater located in the liquid nitrogen source. The temperature 

of the sample was measured by a copper-constantan thermocouple which was. 

buried in the middle of the sample. As a precaution against noise pick 

up one point of the thermocouple circuit was grounded. The thermocouple 

e.m.f. was measured by a Croydon Precision Instrument Co. Type P3 

Potentiometer. Another thermocouple monitored the temperature of Ll1e gas 

outside the sample and the equality of the temperatures indicated that the 

sample temperature was uniform. To obtain liquid nitrogen temperature the 

sample dewar was filled with liquid nitrogen. 

To obtain sample temperatures below 77°K a helium cooled cryogenic 

system was used. The dewar system and temperature controls were obtained 

from k1<lonian Associates, Inc. The sample is mounted on a copper sample 

holder in which arc embedded two temperature s~nsors. In our case, the 

sensors are a calibrated germanium resistance thermometer and a calibrated 

platinum resistance.thermometer. A differential copper-constantan thermo

couple was used to monitor temperature gradients between sample and 

copper .sample holder. The flow of helium gas into the sample chamber may 

be controlled Ly a needle valve connecting the pressurized helium 

storage chamber and sample chamber. A small electrical heater is wound on 

the copper sample holder. A flow of helium gas is maintained such as to 

yield a sample temperature slightly below that desired. Then with 

minimum current flo\·.' through the electrical heater, a thermal balance is 

obtained. This procedure minimizes the existence of temperature gradients. 
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After apparent temperature stabiliza-tion, a minimum of half an hour was 

allowed to elapse before the experiment was begun. Utilizing this 

procedure temperature stability could be maintained over long periods of 

time. At all temperatures the crystal temperature remained constant 

0 within f 1 K for the length of time necessary to perform the experiment. 



CHAPTER IV 

CRYSTAL DATA 

IV.I Ammonium Sulfate: 

The crystallographic data reported in 1960 by Wyckoff ~O) are 

as follows: 

Orthorhombic: space group: paraelectric phase Pnam 

ferroelectric phase Pna2 1 

Cell Dimensions: a = 7.782R, b = 10.636R, c = 5.993~ 

Cell Contents: 4[(NH
4

)
2
so

4
] per unit cell. 

TI1e crystal belongs to the potassium sulfate structure type. The 

positions of the various atoms in (NJI4) 2so4 is shown in Table 1. The 

crystal has three reflection planes (ab, be, ca) and a centre of 

inversion. There are two inequivalent kinds of ammonium ions in the unit 

cell, which are denoted as Types I and II. In the ferroelectric phase, 

the crystal is polarized along the c axis and the centre of inversion 

and the a.b plane of reflection are no longer present. 

In Figure 3 the environment of the Type I NH+ is shown above 
4 

and below the transition. A comparison of Figure 3 (a) and Figure 3 (b), 

which show all H ... O distances less than 2.6R around one of the ammonium 

ions, shows that in the low-temperature phase three hydrogen atoms are 
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Table 1 

Positional parameters above and below transition 

At room temperature, since the multiplicity of the general 

position in Pnam is eight and there are only four formula ~nits/unit cell, 

the sulfur atom, two oxygen atoms, the nitrogen atoms, and four hydrogen 

atoms lie the mirror planes (Positions "4c": 1 x, y, 3 1 on x,y ,4; 4' 2- x, 

1 3 1 f, 1 The remaining in -+ y, 4' 2+ x, 2- y, 4). atoms are general 
2 

positions (x, 
1 1 1 - 1 1 1 -y, z. -+ x, 2 - y, 2 - z. x, y, 2+ z. 2 - x, -+ y, z. 

' 2 ' ' 2 , 
- - - 1 1 1 1 1 1 z). At low x, y, z· 2 - x, 2+ y, -+ z. x, y, 2 - z. -+ x, 2 - y, , 

2 ' ' 2 

temperature, in Space Group Pna21 where the multiplicity of the general 

position is four, all atoms can occupy the general positions (x, y, z; 

- - 1 1 1 1 1 1 
x, y, 2 + z; 2 - x, 2 + y, 2 + z; 2 + x, 2~ - y, z). 

(after Schlernper and Hamilton) 
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x· 'Y I 

s (RT) 0.244±0.001 0.419±0.001 0.250 
(LT) 0.243±0.002 0.421±0.001 0.250 
(Singh LT) 0.2421±0.0004 0. 4230±0. 0003 0.250 

0(1) (RT) 0.0612±0.0006 0.3887±0.0006 0.250 
(LT) 0.061±0.001 0.402±0.001 0.212±0.004 
(Singh LT) 0.0602±0.0013 0.4024±0.009 0.2127±0.0016 

0(2) (RT) 0.2701±0.0007 0. 5559±0. 000·1 0.250 
(LT) 0.284±0.001 0.557±0.001 0.222±0.004 
(Singh LT) 0.2873±0.0015 0.5565±0.0011 0.2255±0.0018 

0(3) (RT) 0. 3239±0. 0005 0. 3665±0. 0003 0. 0488±0. 0005 
(LT) 0.339±0. 001 0.3·16±0.001 0.083±0.004 
(Singh LT) 0.3375±0.0011 0.3462±0.0008 0.0872±0.0014 

0(4) (RT) 0. 3239±0. 0005 0. 3665±0. 0003 0.4512±0.0005 
{LT) 0. 29-1±0. o:.H 0.3&2±0.001 0.477±0.004 
(Singh LT) 0.2885±0.0012 0.3849±0.0009 0.4795±0.0015 

N(l) (RT) 0.6895±0.0003 0.4025±0.0002 0.250 
(LT) 0.6808±0.0007 0. 3958±0. 0005 0.245±0.004 
{Singh LT) 0.6789±0.0015 0. 3966±0. 0011 0. 2533±0.0018 

N(2) (RT) 0.9677±0.0004 0. 7050±0. 0002 0.250 
{LT) 0. 97D5±D. ('.'.)'.)~ o.m<:9:·:_0.cc1s 0. 256±0. 00'1 
{Singh LT) 0.9786±0.0()14 o .. · 7,007±0.ca10 0.2656±0.0016 

11 (1) (RT) 0.810±0.002 0.372±0.001 0.250 
(LT) 0. 771±0.003 0. 336±0. 002 0.202±0.005 

H (2) (RT) 0.600±0.002 0.343±0.001 0.250 
(LT) 0.564±0.003 0.360±0.002 0.206±0.005 

H(3) (RT) 0.676±0.001 0.457:1::0.001 0.122±0.002 
(LT) 0.691±0.002 0.480±0.001 0.157±0.005 

H(4) (RT) 0.676±0.001 0.457±0.001 0.378±0.002 
(LT) 0.682±0.002 0.412±0.002 0. 408±0. 005 

H(5) (RT) 1.069±0.001 0.649±0.001 0.250 
(LT) 1.092±0.002 0.658±0.002 0.222±0.005 

. H(6) (RT) 0.991±0.002 0. 792±0.001 0.250 
(LT) 0.990±0.003 0. 793±0.002 0.265±0.008 

H(7) (RT) 0.893±0.001 0. 682::1.:::0. 001 0. 12·1±0. 002 
(LT) 0. 896±0. 003 0. 670±0. 002 0.14-2±0.005 

H(8) (RT) 0.893±0.001 0.682±0.001 0.376±0.002 
(LT) 0.9·15±0.003 0.672±0.002 0.412±0.005 

• R1'~98°K. L~l80°K. 



Figure 3 

(a) Room temperature environment of ammonium (I) 0 

(b) Environment of ammonium (I) at approximately 180°K~ 

[Both (a) and (b) constitute stereoscopic pairs and can be viewed with 

a small hand-held stereoscope.] 

(after Schlcmper and Hamilton) 
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Figure .4 

(a) Room temperature environment of ammonium (II)~ 

(b) Environment of arnmonium (II) at approximately 180°K, 

[Both (a) and (b) constitute stereoscopic pairs and can be viewed with 

a small hand-held stereoscope.] (after Schlemper and Hamilton) 
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involved in strong hydrogen bonds whereas at room temperature only one 

hydrogen is strongly hydrogen bonded to a neighbouring sulfate group. 

This latter hydrogen has the weakest hydrogen bonding at low temperature. 

A similar comparison of Figure. 4 (a) and Figure_ 4 (b) shows much less 

change in the hydrogen bonding around the Type I I arnmonium ion. However, 

in going from the room-temperature structure to the low-temperature 

structure, for that ammonium ion there is a decrease in length and 

presumably an increase in strength of the strongest hydrogen bond from 

three of the hydrogens to the neighbouring sulfates. 

IV.2 Ammonium Fluoroberyllate: 

The crystallographic data reported in 1960 by Wyckoff (2 O) are 

as follows: 

Orthorhombic space group; paraelectric Pnam 

ferroelectric Pn21a 

Cell Dimensions: a= 7.64SR, b = 10.4~0R, c = 5.929~ 

The crystal belongs to the K
2
so

4 
structure type. The above cell 

dimensions are for the basic cell, but upon re-examination of the 

structure of (NH4) 2BeF4, Okaya ct al. (21) found super structuring with 

the true room-temperature cell having the b and c dimensions doubled. 

The symmetry of the suv~r structured cell of (NH
4

) 2BeF 
4 

at room tempera-

ture is Acam. 

Bel ow the transition ten:perature (NH4) 2BeF 4 has its a dimension 

doubled. 1~e basic ferroelectric cell has: 
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The true ferroelectric cell has a supersturcture, and 

In the ferroelectric phase, the crystal is polarized along the b axis. 

Hence, the direction of the ferroelectric axis in (NH4) 2BeF4 is at 90° 

to that of (NH4) 2so4 . No information concerning the hydrogen bonding is 

available since detailed x-ray or neutron diffraction studies have not 

yet been reported. 

IV.3 Sample Preparation: 

The primary standard grade of ammonium sulfate was obtained from 

Pishc1· Sc:ic;<L.ifi\.:. The <lcutcrhtL'.J rnJ.terial was prepared by successive 

(three fold) isotope exchange of (NH4) 2so4 with 99.8% o2o. 

The deuterated ammonium fluoroberyllate sample used in this 

study was given to us through the kindness of D. E. O'Reilly and T. Tsang. 



CHAPTER V 

EXPERIMENTAL RESULTS 

V.1 Deuteron Spin-Lattice Relaxation 

The deuteron spin-lattice relaxation times (T
1

) were measured 

0 using 90 pulses at 11.5 MHz. The free-induction decay (FID) was 

photographed and T 
1 

analyzed from the amp! i tude of the FID following the 

0 second 90 pulse. All experimental values given in the text and in the 

figures are averages obtained from about 10 exposures. 

The avcraEcd cxpcdrwntc:1.l ~dues of Tl for (;'m 4) 2so 4 arc plotted 

in Figure 5 on a semi-logarithmic scale versus the inverse te1nperature. 

The experiment was performed over a temperature range 475 to lOS°K with 

data being taken at approximately 10° intervals. 

The ln T
1 

versus inverse temperature (l/T) relationship which 

describes the composite T1 above 223°K is linear with a slope corresponding 

to an activation energy of 2.54 ± 0.05 kcal/mole. On passing through the 

first-order phase transition at 223°K, the composite T1 decreases 

abruptly to about 25% of its former value. 

Between the transition temperature and approximately 1S0°K, the 

decay of t11e magnetization was observed to be non-exponential, but could 

adequately be described in terms of two groups (Type I and Type II) of 

equal numbers of deutcrons possessing different relaxation times. The 
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Figure 5 

Temperature dependence of the deuteron spin-lattice relaxation time T
1 

in (ND
4

)
2
so

4 
at 11.5 ~Iz. 
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experimental curve of magnetization decay in (ND4)2so4 at 188°K, which is 

typical of the observations made between 150 and 210°K, is shown in Figure 

6· In this region, the In T1 versus 1/T relationship is not linear for 

Type I deuterons whereas it is linear for Type II giving an activation 

energy of 2.7 ± 0~3 kcal/mole. A minimum in Tf of 750 ± 200 µsec occurred 

at 165°K for Type I deuterons. 

Below 1S0°K, the magnetization decay was again exponential 

indicating that the energy of both spin systems is transferred to the 

lattice through a single group of deuterons. After passing its minimum, 

T~ increases rapidly as the reorientation frequency of Type I deuterons 

decreases. Because the relaxation rate of the Type II deuterons is still 

increasing, this becomes the dominant relaxation mechanism and continues 

to be so at the lowest temperatures reached in this work. The relaxation 

rate of Type II deutcrons reaches a maximum at 117°K producing a minimum 

in the composite T1 of 630 ± 300 µsec. After the minimum, In T1 versus 

l/T is again linear. 

V.2 Deuteron Spin-Lattice Relaxation 

in (ND
4

)
2

BeF
4 

The experimental procedure in obtaining the deuteron spin-lattice 

relaxation time, T1, in (ND4) 2BeF4 was identical to that employed in the 

case of (ND4) 2so4 . 

The averaged experimental values of T1 {or (ND4) 2BeF4 are plotted 

in F.igure 7 on a semi-logarithmic scale versus the inverse temperature. 

The experiment was performed over a temperature range 475 to 77°K with 

data being taken at approximately 10° intervals. 



Figure 6 

Decay of the normalized magnetization in (ND4) 2so4 at 188°K~ 



60 

1.0 

N 0 

2 0 
0 

I 2 .4 
0 

2 

'.2 

I T; = 1·9msec 

5 10 15 20 25 30 
t {rnsec) 



Figure 7 

Temperature dependence of the deuteron spin-lattice relaxation time 

T
1 

in (ND
4

)
2

Ber
4 

at 11.S MHz. 
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The In T1 versus inverse temperature (l/T) relationship which 

describes the composite T
1 

from 200 to 300°K is linear with a slope 

corresponding to an activation energy of 2.7 ± 0.3 kcal/mole. From 

0 approximately 300 to 460 K the composite T1 increases less rapidly and 

the curve levels off. 
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Between 180 and 125°K the decay of the magnetization was observed 

to be non-exponential and as in the case of (ND4) 2so4 could adequately be 

described in terms of two groups (Type I and Type II) of equal numbers of 

deuterons possessing different relaxation times. In this region, T~ 

decreases abruptly at Tc and the ln T1 versus (l/T) relationship is 

. linear below Tc with a slope corresponding to an activation energy of 

4.3 ± 0.4 kcal/mole. On the other hand, Tr! suffers no abrupt change 

upon passing through Tc and here also the In T1 versus (l/T) relationship 

is linear with a slope corresponding to an activation energy of 2.4 ± 0.2 

kcal/mole. A minimum in rf _of 1500 ± 600 µsec occurred at 140°K. 

Below 12S°K, the magnetization decay was again exponential 

indicating that the energy of both spin systems is transferred to the 

lattice predominantly through a single group of deuterons. After passing 

its minimum, ri increases rapidly as the reorientation frequency of Type 

I deuterons decreases. Because the relaxation rate of the Type II 

deuterons is still increasing, this becomes the dominant relaxation 

mechanism and continues to be so at the 16west temperatures reached in 

this work. The relaxation rate of Type II deuterons reaches a maximum 

at 95°K producing a minimum in the composite T1 of 850 ± 300 µsec~ 



V.3 Proton Spin-Lattice Relaxation 

Proton spin-lattice relaxation time measurements in (NH
4

)
2
so

4 

have been made at 40 MHz in a temperature range 180 to 4.2°K. The free 

induction technique was used in the temperature range 180 to 77°K, and, 

0 the signal decay technique in the range 77 to 4.2 K. 

In Figure 8 the averaged experimental values of T1 are plotted 

on a semi-logarithmic scale versus temperature in the present case, the 
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0 reason being that for temperatures much below 77 K a ln T1 versus inverse 

temperature plot becomes inconvenient. In the temperature region above 

180°K we have included the experimental values given by Miller et al.(9). 

As the temperature decreases from 180°K two minima in the relaxation 

process are observed. 
0 . 

The minima at 175 and 123 K correspond to the 

reorientation processes of the two crystallographically non-equivalent 

ammonium ions, Type I and Type II, respectively. The situation in the 

present case of proton· relaxation is very similar to that observed in the 

deuteron relaxation experiment (see Figure 5). The difference between 

the two can be seen by comparing the order of magnitude of T1 in both 

cases. For protons the T1 values at both minima are at least one order 

of magnitude greater than those in the deuteron case. This has the 

result that the spin-diffusion time is shorter than 
. I 

and TII and both T
1 1 

consequently prevents the establishment or two spin temperatures as 

observed for the deuterons. Therefore, in (NH4) 2so4 both NH4 (I) and 

NH4(II) ions relax through whatever group has the more effective 

reodentation at a partic~lar temperature. Below 90°K, the composite T1 

begins to increase steadily and tapers off below so°K attaining a value 



Figure 8 

Temperature dependence of the proton spin-lattice relaxation time T1 

in (NH
4

)
2
so

4 
at 40 MHz. 
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of 1220 sec. at 4.2°K which is the lowest temperature reached in this 

experiment. 

V.4 Proton Absorption Spectrum 

The proton magnetic resonance absorption of (NH4) 2so4 has been 

studied in the temperature region 100 to 4.2°K at 40 MHz. The present 

results agree with the early measurements reported by Richards and 

Schaefer( 8). 
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The second moment versus temperature of the proton absorption is 

plotted in Figure 9. In the temperature region well above I00°K the 

2 second moment value is well below about 4 gauss indicating that the 

intra-group local fields are almost completely averaged out. As the 

temperature is lowered the second moment begins to increase rapidly in 

. 0 2 
the temperature range 130 to 80 K and reaches a value of 31 gauss at 

77°K. From 77 to 4.2°K there is no further increase in the second moment. 

In Figures 10 and 11 we have given sample absorption derivative curves 

at 105 and 4.2°K. At IOS°K (Figure 10) which is in the transition 

region, wings begin to develop at approximately 12 gauss from the centre. 

At 4. 2°K (Figure 11) the wings are fully develC?ped and are situated 

12 gauss from the centre. 



Figure 9 

Temperature dependence of the second moment of the proton absorption 

signal from po\':dered (NH4) 2so4c 
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Figure 10 

Proton absorption derivative curve from po~dered (NH4) 2so4 at lOS°K; 
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Fjr,ure 11 

Proton absorption derivative curve from powdered (NII4) 2so4 at 4.2°Kjl 
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CHAPTER VI 

DISCUSSION OF EXPERIMENTAL RESULTS 

VI.l Deuteron Relaxation in (ND4) 2so4 and (ND4) 2BeF4 : 

We refer to Figures 5 and 7 where the experimental values of 

The temperature dependence of T1 in each material showed a number of 

unusual features. The discontinuous changes in T
1 

are associated with 

the transitions to the ferroelectric phases and, within experimental 

error, occurred at the reported values (3, 4) of the Curie temperatures, 

T , which arc indicat0d i11 the figui.'CS. c 

Both ammonium sulfate and ammonium fluoro-beryllate have 8 

crystallographically non-equivalent deuterons associated with two non-

equivalent ND4 groups. However, in the temperature range of interest, 

each ND4 group is reorienting sufficiently fast that .eqQ/h is 

time averaged to the same value at each of the deuteron sites within 

a ND4 group but not between groups. Thus there are only two.effective 

sub-systems of deuterons in these materials. 

The two non-equivalent ammonium groups in both materials 

reorient against different hindering potentials and also have different 

quadrupolar couplings (10, 22). Consequently, the deuterons belonging to 

these two ammonium groups have different spin-lattice relaxation times. 

The observed double minima and the two values of T1 in both materials can 

be understood in terms of the existence of two non-equivalent ND4 groups 

in each material. 69 



Normally, spins of the same nuclear species in a solid are more 

t_ightly coupled among themselves than with the lattice. This has the 

result that if the nuclei are disturbed from equilibrium with the 

lattice, the spin-spin interactions establish an internal equilibrium 

in a time less than the shortest spin-lattice relaxation time of the 

sub-system of spins. This situation prevents the establishment of a 

characteristic spin temperature for the various sub-systems of spins 

and as a result the nuclei act as a single system.in approaching 

equilibrium with the lattice. The approach to equilibrium by the total 

magnetiz.ation, in the present case of two sub-systems of equal numbers 

of spins, is described by the equation: 

\~JtTJ 
1v, \.. J z 

where M is the component of magnetization along the magnetic field z 

direction, M
0 

is the equilibrium magnetization, and T1 is the composite 

spin-lattice relaxation time given by l/T1 = 1/2 (l/T~ + 1/Ti1). 

However, if the spin-lattice relaxation for each of the sub-

systems is faster than spin-diffusion between sub-systems, each may 

approach equilibrium with the lattice at a rate determined by its own 

T1 . Each sub-system may be said to possess its own spin temperature, 

70 

es' for which the rate equation for Type I in the case of two sub-systems, 

may be written as: 

(l/e1 
0 

http:system.in
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with an analogous one for Type II. At t=o, a~ = e~ 1 or, in terms of 

I II .the magnetizations, M and M , are equal since the non-equivalent sub-o 0 

systems are made up of equal numbers of deuterons. The total magnetiza-

tion then approaches equilibrium at a rate determined by the characteristic 

time constants of the sub-systems. Again, for the case of two sub-systems 

of equal numbers of spins, the approach to equilibrium by the magnetiza-

tion is described by the equation: 

I+Il 
M (t) = z 

I II 
{l - 0.5 exp(-t/T1 ) - 0.5 exp(-t/T1 )} 

We refer to Figure 6 in which is shown the experimental curve of 

magnetization decay in ammonium sulfate at 188°K, which is typical of 

the observations made between 150 and 210°K. The experimental points 

represent the values of the total magnetization decay as a function of 

time. In order to resolve the individual time constants the longer one 

which in the present case is T~I is extrapolated to t = o. With the 

lI I assumption that this extrapolation represents r 1 , r1 is obtained by 

subtraction of T~I from the total. The applicability and limitations 

of this technique have been discussed by Trappaniers et al.(23). It 

should be noted that the extrapolated magnetization decay characterized 

by T~I intersects the normalized-total decay at 0.5 which is what is to 

be expected on the assumption of two sub-systems of equal number of 

deuterons. 

Agreement with the calculate~ curve using two decay constants 
I 

is excellent and it is clear that in the temperature range, 150 to 2I0°K 

in (ND
4

)
2
so4 , and, 125 to 180°K in (ND4) 2BeF4, each sub-system of 
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deuterons approaches equilibrium with the lattice with its own relaxation 

time. This situation, in which both T~ and T~I are smaller than the 

spin-diffusion time, arises because the quadrupole coupling combined with 

molecular reorientation of both ND4 groups produces very short values 

for Ti ancl Ti1. Outside the temperature ranges noted above, the 

condition that T~ and T~I both be shorter than the spin-diffusion time, 

which is also a function of temperature, is no longer met and the 

magnetization decay is exponential with a single composite decay 

constant. 

. I II A minimum in T1 occurs when the correlation frequencies wc ' , 

of-the two non-equivalent reorienting ND
4 

groups satisfy the condition 

I II 
wL = 0.616 c.1.ic ' where wL is the deuteron Larmer precession frequency. 

o I II The minimum at 165 K in (ND4) 2so4 occurs in the region where T1 and T1 

can both be measured and is associated, we believe, with the dcuterons 

denoted as Type I by Schlemper and Hamilton (12). After passing its 

minimum, T~ increases rapidly as the reorientation frequency of Type I 

deuterons decreases. In the region of 1S0°K, T~ becomes larger than 

the spin-diffusion time between the two groups of deuterons. Because 

the relaxation rate of the Type II deuterons is still increasing, this 

becomes the dominant relaxation mechanism and continues to be so at the 

lowest temperatures reached in this work. The relaxation rate of Type II 

deuterons reaches a maximum at 117°K producing a minimum in the observed 

composite T1 . In this temperature region, T~ 1 has been calculated with 

I II 
the approximation that T1 >> T1 

. . TII g1v1ng 
1 

= 1/2 T1 except near the 

"crossing" temperature. I Extrapolation of the T
1 

curve suggests for the 

region above T that T1 
» T

1
II resulting in the Type II deuterons again 

c 1 
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providing the dominant relaxation mechanism with the composite T1 

bei.ng simply 2T~~: If this assumption were not valid in this temperature 

region we would observe a la.rger activation ene_rgy in the paraelectric 

II phase. It is clear from Figure 5 that the slope of T1 between 150 and 

210°K is almost equal to the slope of the measured T1 above 22s°K. 

The explanation for the observed behaviour of T
1 

in (ND
4

)
2

BeF
4 

is similar to that in (ND
4

)
2
so

4
. The minimum at 140° occurs also in 

- I. 
the region where T1 and Tf1 can both be measured. In the region below 

0 125 K Type II deuterons become the dominant relaxing mechanism. In this 

temperature region, T~ 1 has been calculated with the approximation that 

TI TII . . TII 1/2 T h ' . ' l~ >> 1 g1v1ng 1 = 1 except near t e 'crossing' temperature. 

LI . b 200°K } . . h T1 TI! h . cowever, a ove tle approx1mat1on tat 1 >> 1 as waste case in 

(ND4) 2so4 is not valid. This may be seen by observing that the slope 

(see Figure 7) of the cornposi te T 1 between about 200 and 300°K is not 

II o the same as the slope of T1 betw~en 130.and 200 K. The reason for this 

lies with the values of T~ and T~ 1 in this temperature region. In contrast 

to the case in (ND4) 2so4, T~ and T~ 1 here are comparable in value and 

therefore both contribute to the experimental relaxation time. The 

I II extrapolations of both T 1 and T 1 (see Figure 7) were obtained by using 

the relation 2/T1 = l/T~ + l/TI 1 . 

0 The decrease of T
1 

above 300 K in (ND4) 2BeF4 is probably 

associated with the effect of reorientation of the BeF4 ions. 

The activation energies, E , for the various reorientation .a 

processes have been obtained from the linear portions of the T1 curves 

in Figures 5 and 7. These are compared in Table 2 with values obtained 



'I'able 2 

Activation energj_ss (in kcal/mole) for reorientation of 
the ND4+ ions obtained from the Ti data. The crystal 
phase for which e2.ch value: was obtained is indicated in 
brackets after the value by the l~tter F or P for 
ferroelectric or paraelectric, respectively. Activation 
energies in brackets were interpreted as associated with 
Group I ions whereas a reinterpretation on th~ basis oI 
the denteron results show that they should be associated 
with Group II ions or are ccrnposite values. 



E I (P) 
a 

{2.3±1.1) 

( 2 • 3) 

(NH
4

)
2

BeF
4 

(1.5±0.7) 

(2 • 7) 

E I (P) 
a 

5.1±1.0 

6.1±1.2 

3.9 

4.3±0.7 

5.3±1.2 

3.3 

E II (P) 
a 

2.54±0.05 

2 . 3 

2.4±0.2 
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II 
E (F) Reference 

a 

2.7±0.3 

9 

2 • 7 10 

2.4±0.2 

9 

2.3 11 

http:2.54�0.05
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experimental error, the activation energies for reorientation 

h d + . d h h of t e Group I an II ND 4 ions o not c ange at t e ferro-

electric transition in agreement with the neutron results 

(12, 13) that the rotational freedom of the ammonium ions 

undergoes little change in passing through the transition. 

The above results make possible an explanation for 

the contradictory conclusion of Miller et al. (9) that the 

activation energy increases substantially on going from the 

paraelectric to the ferroelectric phase in both ammonium 

sulfate and fluoroberyllate. They assumed the existence 

of only one effective type of ammonium ion and attributed 

to it the observed activation energy in each phase. In 

fact, their value for the activation energy in the ferro-

electric phase corresponds to that of Group I ions and their 

value in the paraelectric phase corresponds to Group II. 

Interpreted on this basis, one see~ that their results, 

shown in Table 2, are quite good within the limitations 

of the quoted errors. 

O'Reilly and Tsang (10) and O'Reilly, Peterson and 

Tsang (11) did interpret their proton results in terms 

of two nonequivalent groups of ammonium ionsj but they 

do not seem to have allowed for the fact that the T
1 

curves 

for Groups I and II ions cross at two points. In the 

sulfate (10), the value given: for Groups I and II ions 

\ 
in the paraelectric phase is valid only £or Group II ions 

because these ions provide the dominant relaxation 
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mechanism in this temperature range. In the fluoroberyllate 

(11), the value of 2.7 kcal/mole given for Group I ions 

is actually a composite value because in this range both 

groups of ions are effective in the relaxation process. 

For comparison, the deuteron results give a value of 

2.7 ± 0.2 kcal/mole for the composite activation energy 

over the same temperature range. Fortunately, in the 

deuteron case, the individual activation energies for the 

two groups of ions can be obtained for the paraeiectric 

phase as well as the composite value applicable at higher 

temperatures. This comparison shows clearly the care with 

which one must interpret T
1 

results'when dealing with 

crystallographically nonequivalent groups of like nuclei. 
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Similarly, in Table 3 our values for the correlation 

. time, 't 
QC 

at infinite temperature.calculated from ·the 

condition at the T1 minima are compared with similar values for protons. 

In the case of deuterons, the dominant relaxation mechanism is 

expected to be quadrupolar because the magnetic moment is so small. 

The expression relating the quadrupole coupling constant, eqQ/h to the 

relaxation time is given by equation (2.61), i.e., 

where n is the asymmetry parameter of the electric field gradients, and 

~ is ~he cqrrelation time_~_()~~rning the exponential time decay of the 

- auto-correlation functions for molecular reorientation, For a thermally 

activated ·reorientation, the correlation time obeys the Arrhenius 

relation: 

T = T exp(Ea/RT) c oc 

From the expression for T1 (Equation 2.61) evaluated at the extremum 

the quadrupole coupling constants eq Q/h can be calculated. For the 

Larmor frequency 11.S MHz this expression reduces to: 

3 -1 
eqQ/h = 2.6 x IO Tl(min) 

O'Reilly and Tsang (10) have determined ·nin a single crystal study of 

(ND4) 2so4 and found it to take for Type I and II ions respectively, the 

values 0.75 and 0.97 at 230°K and 0.32 .and 0.52 at 210°K. The values 

for n are expected to continue to decrease as ·the _temperature is lowered 



Table 3 

Correlation times in the ferroelectric phase. 



I 
T (sec) 

oc 

7 x lo- 14 

0 2 10
-14 . x 

3 x lo-14 

0.2 x 10-14 

II 
T (sec) 

oc 

8 x lo- 14 

10 x lo-14 

3 x lo-14 

2 x 10-14 
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Reference 

10 

11 . 



further and to approach zero when the ND4 ions becor.ie rig~d. Thus, 

the effect of n at the T
1 

minima will be very small and, with the 

assumption that it is zero, the values shown in Table 4 were calculated 

for ~qQ/h. 

The value of 161 ± 10 kHz for eqQ/h for Type I ion in (ND4) 2so4 

compares well with the values obtained from the study of quadrupole 

perturbed absorption in a single crystal (10), 174 kHz, and in a 

powdered sample (24), 162 kHz. An· eqQ/h value for Type II ion is not 

available for comparison because these ions are reorienting too fast at 
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the lowest temperature reached in the quadrupole perturbed absorption 

experiment. No data in the case of (ND4) 2BeF4 are available for comparison . 

. In .. conclusion it is interesting to compare the present results 

with those obtained from other experiments. The observation of 

distinctly different relaxation times for the two non-equivalent groups 

of deuterons in Loth materials confirms the interpretation given by 

O'Reilly and Tsang (10,11) for the occurrence in the ferroelectric 

phase of two minima in the temperature dependence of the proton relaxation 

time. The values obtained for the activation energy of the Type II 

deuterons over different temperature ranges in the case of (ND4) 2so4 are 

the same (within experimental error) in agreement with the conclusion 

drawn·. from neutron diffraction work (12, 13) that no significant change 

in the activation energy takes place at the ferroelectric transition. 

In this respect, the deuteron results are clearer than the proton results 

(10) where the direct measurement of the activation energy appears to be 

for Type I I prot~ms above the transition and Type I below. 

http:becor.ie


Table 4 

Quadrupole coupling constants cqQ/h in kHz. 
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(ND
4

)
2

so
4 

161 ± 10 232 ± 18 

(ND
4

)
2

BeF
4 

107 ± a 200 ± 14 



O'Reilly and Tsang (10) have proposed a model for the ferro-

electric transition in both materials based on their deuteron magnetic 

absorption results. They suggest that the transition from the para-

electric to the ferroelectric phase is due to the tilting of the 

distorted ammonium tetrahedra along the respective ferroelectric axes. 

Based on this model, calculations of the spontaneous polarization in 

both materials, and of the latent heat in ammonium sulfate, are in good 

agreement with the experimental data (5). 

It is interesting to compare the effects of the ferroelectric 

phase change on T
1 

in ammonium sulfate and ammonium fluoroberyllate in 

the light of the present deuteron spin-lattice relaxation results where 
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we are able to resolve the individual correlations of the two independent 

ammonium groups. In Figure 7, it is clear that in ammonium fluorobcryllatc 

only one ammonium group (Type I) suffers discontinuous change in T
1 

at T • 
. c 

From a comparison of Figures 5 and 8 showing the deuteron and proton 

relaxation results, respectively, it is evident that in ammonium sulfate 

both ammonium groups suffer a discontinuous change in T
1 

at Tc. 

The above suggests that the phase transitions in these two 

materials are rather different and that in ammonium sulfate both types 

of ammonium ions are involved whereas in ammonium fluoroberyllate only 

one type is involved. Such a conclusion is supported by thermal and 

dielectric results (5). From these thermal studies, the entropy change 

at the transi ti.on was found to be 1. 90 cal/mole deg. for (~iI4 ) 2BeF 4 and 

2.27 cal/mole deg. for (ND4) 2BeF4 compared to almost twice as large a 

value, 4.2 cal/mole deg., observed for (NH
4

)
2
so

4 
and (ND

4
)

2
so

4
• The 

dielectric results are of particular interest if the ammonium ions do 



indeed make the major contribution to the spontaneous polarization but 

they are diffii:ult to compare because of their different temperature 

depen<lences. In (NH4) 2BeF4 the spontaneous polarization, after a rapid 

initial increase at the phase transition, continued to increase slowly 

as the temperature was lowered whereas it showed no temperature 

dependence after the initial large increase at the transition in 

(NH4) 2so4 . Nevertheless, the spontaneous polarization reached a value 

of only 0.22 µcoul/cm 2 at 1S3°K in the fluoroberyllate compared to 0.47 

µcoul/cm 2 in the sulfate. 

It also is interesting to note that for the N.M.R. results the 

phase transition in ammonium fluoroberyllate appears to be first order 

and just as abrupt as in ammonium sulfate. This is supported by a more 

recent dielectric study of the fluoroberyllate the results of which 

indicate that the transition is first order (6). 

VI.2 Low Temperature Proton Magnetic Resonance 
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Although there exist data in the literature for proton absorption 

in (NH
4

) 2so4 down to 20°K, we repeated the experiment from 100 to 20°K 

and extended it down to 4.2°K. The temperature dependence of the second 

moment is given in Figure 9. The agreement with earlier results (8) is 

generally good, although the value of the second moment at 4.2°K is 

approximately 10% smaller than that reported at 20°K. The experimental 

value of 31 gauss2 for the second moment at 4.2°K is significantly lower 

than reported values for similar proton configurations. For example, in 



approximately 50 gauss 2 (8). 

According to a theoretical calculation (26) a rigid tetrahedral 

four-proton spin configuration with proton-proton distance approprate 

for the NH4 group, would be expected to produce a second moment.of 

2 about 50 gauss The observed value in (NfI4) 2so
4 

which is about 40% 

lower indicates that some phenomenon is preventing the rigid lattice 

value from being attained. It should be mention~d that this unusual 

narrow line-width is not isolated to the present case of (M~) 2so4 . 

Significant narrowing of the proton second moment at liquid helium 

temperature has been observed in this laboratory for ~bout ten ammonium 

compounds, and, a very similar reduction has been reported for solid 
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methane (27). As a result of these observations, it is evident that the 

reduction in line-width, whatever its nature, appears to occur often 

with tetrahedral configurations of nuclei with I = 1/2. 

· To differentiate between a motional narrowing, where the 

correlation frequency is larger or equal to the line-width, and a 

narrowing due to symmetry selection rules imposed on the total wave 

function, spin-lattice relaxation times were measured at 4 0 r,1Hz down to 

0 4.2 K. The present T
1 

results indicate that the correlation frequency 

is inde.ed much smaller than the line-width with the consequence that 

motional narrowing is not taking place in (NH4) 2so4 at 4.2°K. 

The low temperature T1 data to which we refer are given in 

Figure 8. We observe that below 90°K, T1 begins to increase steadily 

and then tapers off below so°K attaining a value of 1220 sec at 4.2°K. 

This temperature dependence suggesting a limitation of T1 usually suggests 

that the effective relaxation mechanism is due to paramagnetic impurities. 

http:moment.of


The argument \dlich leads to the conclusion that motional 

narrowing, as for example due to thermally activated reorientation or 

tunneling, is incapable of line narrowing in (NH4) 2so4, proceeds as 

follows: The dipolar relaxation rate for a four-spin system is given 

by equation (2.39), i.e. 

1 
Tl 

9 y4h2 
= 10-6-

r 

Using the approximation that at the low temperature side of the T
1 

minimum wLTc >> 1, equation (2.39) reduces to: 

:: 

This frequency dependence was checked at 25 and 40 MHz in the region of 

70°K and found to hold within experimental accuracy. Assuming that the 

experimental value of 1220 sec for T1 at 0 4.2 K represents a purely 
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dipolar relaxation rate we calculate (motion) :: 21T (200)sec -1 This (l) . c 

value is two orders of magnitude smaller than the line-width of the NH
4 

group ("' 105 Hz) at 4.2°K. Consequently, the possibility of motional 

narrowing is ruled out. 

As mentioned prevously, the temperature dependence of the 

observ~d T
1 

in the region 50 to 4.2°K suggests a paramagnetic impurity 

relaxation mechanism. In the event that paramagnetic imp11ri ty relaxation 

contributes to the observed rate we may write: 

~il) experimenta~ ( 1) r- + 
1 dipolar paramagnetic 



As a result, the dipolar rate wili be smaller than the one observed and 

hence equation (2.39) becomes an inequality yieldi?g 

< -1 w (motion) = 2n (200) sec • It is clear that this observation c 

reinforces our conclusion that motion in incapable of averaging out the 

local field. 
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To be complete we should discuss the possibility that one of the 

two non-equivalent NH4 groups is motionally affected while the other is 

at rest. In this case l/T1 exp= 1/2 (l/T~ + l/T~ 1 ) and since one rate 

I II is zero we are left lvith T1 (or T1 ) = 1/2 T1 exp which will increase 

the correlation frequency by a factor of two. It then follows that 

· we (motion) ~ 2n (400)sec-l which is still well below the line~width and 

hence further strengthens our argument that motion is incapable of 

averaging out the local field. 

Having ruled out motional mechanisms as possible causes for 

the observed line narrowing, a possible explanation of the narrowing 

could be the symmetry requirement that the total wave function be 

symmetric under the exchange of two pairs of protons. This symmetry 

requirement imposes selection rules on the spatial and spin wave functions 

and restricts the possible combinations of rotational and the total 

nuclear spin quantum numbers. 

It is known (14 - pg. 106) that terms in the dipolar Hamiltonian 

which couple states of different energy must be dropped in the calcula-

tion of the second moment, since their contribution contains factors 

which oscillate very rapidly and consequently average out. This is the 

reason why only terms A and B of the di.polar Hamiltonian [equation (2.19)] 

are retained in the second moment calculation, since only these terms 
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involve llM = 0 (i.e. 6E = 0). It should be pointed out that the 

inclusion of the terms C, D, E, F, of the dipolar Hamiltonian introduces 

matrix elements in the Hamiltonian function of the type liM = ± 1, ± 2. 

As a result transitions arc now allowed at energies of 2hwL, and 0, 

which are not observed because they are shifted away from the Larmor fra:pency; It 

should be mentioned that the dropping of tl1ese non-adiabatic terms is 

not just a simplification but necessary if we are to use the departure 

2 of the mean square frequency from (hwL) as a measure of the mean square 

line-width of the r.1.ain line. The subsidiary lines are much fainter 

than the primary Larmor component, but differ so much from the latter in 

.. frequency that their contribution to the mean square frequency deviation 

is of the same order as the mean square width of the dominant line. 

Returning now to the situation where the spin and rotational 

states are not considered in dependently, then their combinations are 

governed by symmetry requirements. For the case of four protons on 

the corners of a tetrahedron the total spin quantum nurrilier I of the 

molecule combines with the rotational angular momentum quantum numbers, 

L, such that, for example~ I = 2 spin states only combine with even L 

rotational states. This is a necessary consequency of the anti-

symmetry of the total wave function ljJ under exchange of two protons 

(fermions), or in other words, $is symmetric under any real rotation 

of the tetrahedron. 

Under these circumstances, the terms A and B of the dipolar 

Hamiltonian have non-zero matrix elements between states of different 

I, and hence of different L. Since states of different L have different 

energies these transitions will be shifted in frequency and consequently 
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will not be observed. Therefore, these matrix elements must be 

dropped from the calculation of the second moment, resulting consequently 

in a lowering of the second moment. 

Quantitative estimates based on this possible narrowing 

mechanism are not available at present. Since this effect is not 

peculiar to (NH4) 2so4 , but appears to occur reasonably often with 

tetrahedral configurations of nuclei with I ~ 1/2, an effort is 

presently being made in this laboratory to help resolve this problem. 



APPENDIX A 

CORRELATION FUNCTIONS 

Consider a function y(t) where t refers to time. y(t) is a 

random function if the value y which it takes at each t is a random 

variable subject to a law of probability p(y,t). 

The average value of y(t) is: 

y(t) = J y p(y,t) dy (A-1) 

Also if f (y) is a given function of y, f will also be a random function 

of t aud: 

f(t) = J p(y,t) f(y) dy (A-2) 

We define the function p(y1t 1 ; y2t 2) as the probability of y 

taking on a value y1 at t 1 and y2 at t 2 . A function having a slightly 

different meaning and which is represented by P(y1,t1; y2t 2) is the 

probability that y takes on the value y2 at t 2 when we know that it takes 

the value y1 at t 1 . Hence, we may write: 

(A-3) 

The a~to-correlation function G(t1,t2) of the random function 

f(y) relative to the times t 1 and t 2 is defined: 

86 



= JJ 

(A-4) 

We are interested in a class of random functions ~1ich are 

invariant under change of origin of time and are called stationary 

random functions. For this class p(y,t) is in fact time-independent 

and p(y1t 1 ~y2 t 2 ), P(y
1

t
1

,y2t 2) and G(t1t 2) depend on t
1 

and t 2 only 

through the difference t
2 

- t
1 

= T. Or: 

(A-5) 
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We define a correlation time T by the condition that G(T) is very small 
c 

'[' . 
c 

We also have the property that: 

and according to equation (A-5) we may write: 

G(-T) * = G (T) 

If we assume symmetry between past and future so that: 

= 

(A-6) 



we obtain: 

* G(-T) = G (T) = G(T) 

The auto-correlation function is both an even and a real 

function of T. 

Finally, we introduce the Fourier transforms of G. 

CX> 

j (bl) J G(T) 
-iwT = e dT 

,0 

J(w) 2 rG(T) cos (<in) d-r = 
0 

k(w) = J00 

G(T) sin(wT) dT 
0 

from which we have: 

r G(T) 
-iwT = e d-r 

CX> 

j(w) = ~ J(w) - ik(w) 
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(A-7) 

(A-8) 

(A-9) 



APPENDIX B 

B.1 Properties of the Density Matrix: 

The expectation value of an operator Q over the wave function 

¢ (~yzt) is: 

<Q> = <~ I Q I ~> (B-1) 

¢ (?';yzt) may be expanded in terms of an OL'thonormal set (cp
1 

(xyz), <P.
2 

•• ~) · 

as: 

If we now substitute equation (B-2) into equation (B-1) 

<Q> = l 
i,k 

(B-2) 

(B-3) . 

The above represents the average value of Q over the range of 

possibilities presented by each member of an ensemble of systems. 

What corresponds, however, to an actual measurement on the physical 

system is an average over all systems of the ensemble. Hence, we are 

interested in: 

ensemble 
_<_Q_> = l 

i,k 

where 
ensemble 

= 

ensemble 

c:-(t)Ck(t) <¢. I Q I <Pk> 
1 . 1 

N 

1 ~· 
fr l 

a=l 
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for N systems a= 1, 2, ... N of an ensemble. 

We define the density matrix pki as: 

ensemble 

(B-4) 

Finally, 

< Q > - \ p Q = tr(pQ) - .lk ki ik 
1, 

(B-5) 

where 
= «t>i I Q I ~k> 

B.2 The Density Matrix as an Operator: 

Thus far p has been defined using a particular basis. Changing 

the basis changes the form of the density matrix in the usual way. 

Suppose (¢1¢2 ~ •.. ~n) are the first basis and that (x1x2 .•. xn) arc a new 

set related by the transformation (x1 x2 ~ •• xn) = (¢ 1 ¢ 2 ~ .• ~n)U where U is 

an nxn matrix of coefficients. Then pX, the den,sity matrix in the, -x 

representation is related to p$by: 

x 
p = (B-6) 

'AS px and p¢ describe the same system, although they look quite 
= 

different, it is more desirable to define a density matrix operator p, 

from which a matrix can be formed with any basis in the usual way. 

To do this recall: 



and 

<<t>· I <t> .> = 
1 J 

<¢ . I Q I cp • > 
1 J = J 

Hence, with the basis (¢14> 2 .~~) 

p.. = < q,. 
1J 1 

* cp. Q<P. d-r 
1 J 

-p cp.> 
J 

= Q .. lJ 

-If we choose the basis Cx1x2 ... ) where pis diagonal the only 

elements are diagonal such asp.~. The operator 
11 
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-p = I I X· > P. < X· 
1 l 1 

(B-7) 
i 

where the P. are numbeis, also only has diagonal elements p.x = P .. 
1 1 1 

This is the density matrix operator and from it the density matrix can 

be written in any basis, e.g., in the¢ basis. 

4> p .. 
1J 

= 

B.3 The Equation of Motion of the Density Matrix: 

(B-8) 

-At a given instant we choose a basis set Cx1x2 .. :) in which p 

is diagonai". -The operator p is then: 

-p = 

Differentiating; 
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d -
dt p = 

a· 
l dt c I~ > Pm < ~ I ) (B-9) 
m 

If we use the Schr~dinger representation, the states are time 

dependent; 

The P are just numbers and do not vary with time, so equation 
m 

(B-9) becomes: 

h d -
i dt p 

B.4 Thermal Equilibrium: 

= - [Hp pH] = - [H, p] (B-10) 

What ever the cause of relaxation the system eventually reaches 

thermal equilibrium. At thermal equilibrium, the probability of a 

system being in the ith state is given by Boltzmann's distribution law. 

P. 
1 

exp(-E/kT) 
= -------

2 exp (-E/kT) 
i 

If - . d. 1 . h h . th d. 1 1 p 1s 1agona P. 1st e same as t e i 1agona e ement p ..• 
1 11 

-general expression for the density matrix operator p
0 

at thermal 

equilibrium is: 

= 
exp(-H/kT) 

tr exp (-H/kT) 

(B-11) 

The 

(B-12) 



APPENDIX C 

THE MACROSCOPIC EQUATION 

In order to obtain equation (2e13), begin by multiplying 

equation (2.6) by Q and taking the trace. We obtain: 

ddgt* -- - tr { .. Joo dt [f/
1 

*Ct), T~Ct--r)~~ttflTQ- } 
0 

(C-1) 

Now [A, [B,C]] = [A, BC-CB] 

= ABC + CBA - ACB - BCA 

Therefore, 

* * * tr {[H
1 

(t), [H
1 

(t-T), er (t)])Q} = 

* * * * * * tr {H1 (t)H
1 

(t-T)a (t) Q + a (t)H1 (t-t)H
1 

(t)Q (C-2) 

* *. * * * * - H1 (t)cr (t)H1 (t-T)Q - H1 (t-T)cr (t)H
1 

(t)Q } 

Now: 

tr {ABCD} =tr {BCDA} =tr {CDAB} = tr {DABC} (C-3) 

Hence we may rewrite equation (C-2) as: 

* * * * * * tr {[H1 (t), [H
1 

(t--r), a (t)]]Q} = - tr {[H
1 

(t--r),[H
1 

(t),Q]]o } 

(C-4) 

93 



94 

which is: 

* * * * tr {[H
1 

(t), [H
1 

(t-T), o (t)]] Q} ~ - tr{Ao } 

where 

(C-5) 

and hence: 

* ~ 
dt = - * {a - a } 

0 



D.1 Dipolar Coupling: 

First evaluate: 

[ I I' +I I' z + + z' 

APPENDIX D 

COMMUTATORS 

= [A ( - l) [I I ' + I I I 

' z + + z' 

=I [I' I')+ I'(I I] z +' z z +' z 

:: - I l' l'l z + z + 

I + I'] ) z z 

Now evaluate the remainder and obtain: 

[A(-l)[A(l)I +I')] =-(I I' +I I' I I'+ I'I) 
' ' z z z - - z' z + z + 

=-[I I' I I') z _, z + [I I' I'I ) - [I I' I I'] z -' z + - z' z + 

- [I I' I'I ] - z' z + 

which yields: 

= - I 2[I' I'] - I' 2[I I ] - I I'I'I + I'I I I' z _, + z _, + z - z + z + z -

- I I'I I' + I I'I I' - z z + z + - z 

The last four terms in above can be made to yield: 

- [I I'+ 1·1•] [I +I'] 
+ - - + z z 
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Collecting terms and introducing a factor of a 2 which we dropped 

for convenience, 

- 2 2 = 2a2I'I + 2a2 I I' - a [I I'+ I I'][I +I'] z z z z + - - + z z 

Form now: 

2a2 I I' 2 - a[I I' +I I')t[I +I') z z + - - + z z 

but, 

[ J_ I ' + I I I ] i· = [ I ' I + I I I ] = [ I I I - + I I ' ] 
+ - - + + - - + + - - + 

because I'I commutes. Therefore, 
+ -

Now to evaluate: 

Begin with: 

[A (2) I + I') = [I I' I + I 1 ] = [I I' I ) + (I I' I'] = -2 I I' , z z + +' z z + +' z + +' z + + 

Now multiply by 1/2 because of factor in A( 2). We must now 

evaluate: 

[A(- 2)r I')= -(I ,I ]I'I' - I I [I', I'] 
' + + - + - + + - - + 

= 2 I I'I' - 2 I I I' z - + + - z 

Again, drop factor 2. Hence, 

[A(-2)r I'] =I I'I' + I I I' 
J + + z - + + - z 
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but l l = 12 
+ 12 - I · substituting we obtain: 

- + x y z' 

where we have introduced a factor a 2 which was previously dropped for 

convenience. 

D.2 Quadrupole Coupling: 

We begin by evaluating: 

[A(-l)(A(l)l ]] = [l l + l l [l l +I l ,I)) 
' ' z z - - z' z + + z z 

First evaluate the inner commutator: 

l I I + I I I - I
2

I - I I l z + z + z z z + z + z 

I ) + (I I I )I - 121 + z + - + z z + - I [I I - I ) z z + + 

We must now evaluate, 

[(21 + 1)1 ,(1 - 21 )I ] = - [41
2 

+ 41 + l]I I + [41
2 

- 41 + l]I l z - z + z z -+ z z +-

= 41
2

[1 ,I ] - 41 {l+,I_} + [I+,I_] z . + - z 



and carrying through the numerical factor from A(-l) we get: 

First 

3/2 {1613 - I [81(! + 1) - 2]} z z 

The commutator: 

evaluate the inner commutator. 

[12' I ] = I 2I - I 12 
+ z + z z + 

= I I I I 12 
+ + z z + 

= I (I 1)1 l 12 
+ z + z + 

= (I - 2)1 2 - I 12 
. z + z + 

= - 2I2 
+ 

We now must evaluate (drop numerical factors for convenience): 

= I I I I - I I I I 
+ + + + 

= I2[I ,I ] - I I (I + l)I + I I (I - l)I 
- + - z z + + z z 

= 21 2
1 + (1

2 
+ 2) [I , I ] z z + -

= 8 r3 
+ I ( -8 I 

2 
+ 4) z z 

Carry through the numerical factors and obtain: 

(A(-Z~[A( 2 ~Iz]] = 3/2 (- 161~ + Iz [161(1 + 1) - 8]) 
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APPENDIX E 

TENSOR OPEP-ATORS AND SPHERICAL HARMONICS 

To evaluate the various memb~rs of equation (2.48) begin by 

recalli.ng: 

(E-1) 

Furthermore, 

x+ iy = r sine e i<f> 

x - iy = r sin8 e 
-i<j> 

(E-2) 

z = r cose 

The above are obtained by substituting 

x = r sine cos¢ 

y = r sin9 sin¢ 

z = r case 

The following will e.lso prove useful: 

= eicp d d 
l,+ = L + iL <ae + i cot e ~) x y 

(E-3) 
-i<ji d a L = L iL" -· e (- - + i cot e ~) x y ae 

and 

(E-4) 

http:recalli.ng


where 
- m + 1) (.9, + m) 

2 We begin by first obtaining the operator A2 • Now by equation 

(E-1): 

and hence, 

A 2 
2 = I -(-2 ~-;-+-1-) l 

i 

from which 

Finally, observe 

and hence; 

2 _/ 16 
A = 2 4 

-m 
Yi (6,<!>) 

.r6 
4 

\ ( + . )2 l e. x. iy. 
l. 1 1 

i 

(E~4) 

l 
i 

( • ) 2 e. x. - i.y. 
l. l. l. 

1/ 1 
In order to get A2 we need Y~(6,<P). From equation (E-4): 

yl -
2 

Now calculate L_Y
2

2 . 

L y 2 
- 2 

I 
.. 2 
-1 
2 

= 

L y 2 
- 2 

2 
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From equation (E-3) we may write: 

2 • 28 2icf> 
~2-_Il __ e_) 

2 r 

or dropping the numerical factors for now, 

and 

Therefore: 

A .•1 
= 2 

or 

L y·2 "" e-icp(- _L + i = - 2 ()9 

-4 z(x + iy) = 2 
r 

L y 2 -fQ.. 2-f:l)-~ - 2 --- = 2 lrn 

/
~--

(2.2+1) 

A 1 
2 

= -

By equation (e-4): 

n;-
2 

cot 

1 
4 

l 
i 

e L) c . 2e 2i<P> Cl</> sin e 

= yl z -2 (x + iy) 2 r 

z. 
1 

2 (x. + iy.) 
1 1 , r. 

1 

e. z. (x. + iy.) 
1 1 1 1 

r e.z.(x. - iy.) 
1.1 1 1 

i 

From equation (E-4) we have: 
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1 Now calculate L_Y2 • 

y 0 = 
2 

From equation (E-3) we again may write: 

-i~< a + . tea )( 1 /Q.j;2.2;1)! = e - - 1 co - - - - · z ae · a~ 4 4n 

or dropping the numerical factors for now: 

L Y 1 -i~ ( a + 1 cot 8 .L.) <sin 2e ei~) 
- 2 ~ e - ae 34> 2 

~ -

And finally, 

1 . 
L_Y

2
-

y 0 
2 

= --- = 
r6 

Therefore, 

l = 2 l 
i 

2 
(3 cos e - 1) 

2 
e. (3z. 

l. l. 

l ---- 2 
(3 cos e - 1) 

4 r6 
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