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The temperature dependences of the deuteron spin-lattice

relaxation times, T,, in ferroclectric ammonium sulfate, (ND4)2804, and

1

ammonium fluoroberyllate, (ND4)ZBCF have been studied by transient

4?
methods over the range 80 to 475%K.  The ability to resolve the
individual correlations of the two independent ND4 groups in the deuteron
experiment has throwﬁ new light on the reorientation.of the ammonium
groups and their behaviour in the phase transition.

It has been proposed that the meéhanism of the phase trahsition
in ammonium sulfate is a disordering, with respect to the a b plane in
the paraelectric phase, of the ND, dipoles which also make the dominant
contribution to the spontaneous polarizafjon. The present N.M.R. results
show that in (ND

47250 ,T

at the phase transition, whereas in (ND

at both non-equivalernt ND, groups is affected

4

4)zBeF4, it is affected at only
one ND4 group. This suggests that the phase transitions in these two

ii



materials are rather different and that in ammonium sulfate both types
of ammonium ions are involved whereas in ammonium fluoroberyllate only
one type is involved in the transition. Such a conclusion is supported
by evidence from measurcments of thermal and dielectfic properties.

An earlier study of the proton spectrum in (NH4)2504 reported a
value of 33 gauss2 for the second moment at 20°K. This is considerably
smaller than the expected rigid lattice value of 50 gauss2 and it was
concluded that while some of the NH4+ groups are effectively rigid at
20°K others are still reorienting. Our new results for the proton

second moment confirm the low value down to 4.2°K but our results for

T indicate that the proton line is not motionally narrowed.
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CHAPTER 1
INTRODUCTION
I.1 Background Survey:

Since the discovery of Nuclear Magnetic Resonance (N.M.R.)
(Purcell, Torrey and Pound (1); Bloch, Hansen and Packard (2) ) in
1945, the N.M.R. technique has been developed into a powerful tool for
studying the internal structure and propertics of matter in the gaseous,
liquid and solid states. |

The N.M.R. principle depends on the fact that when an ensemble of
‘nuclear megnets is placed in a magnetic field Hos their orientational
energics with respect to I, are qgantized. These sc-called Zeeman levels .
have energies given by mgpNHO, where m, g, ny are the magnetic quantum
number, nuclear g-factor and nuclear magneton respectively. The values
taken by m range from I, I-1, ...-I, where I is the nuclear spin. The
relative populations of the Zeeman levels are governed by the well known
Boltzmann factor exp(-AE/kT) where AL = guNHO. Transitions may be
induced under' the correct resonance and polarization conditions by a
time varying magnetic field. These transitions among the various Zeeman
levels are governed by the magnetic dipole selection rule Am = ¢ 1.
Because of the Boltzmann factor, there will be a fraction exp(AE/KT)
more nuclei in the lower Zeeman state; consequently therc will be a
correspondingly larger amount of absorption than emission of electro-

magnetic energy. The experimental arrangement which observes this



abéorption of energy is called the continuum wave (cw) technique.

It is clear that the population difference on which the cw
technique is based would very soon disappear were it not for sﬁin—lattice
coupling. By the lattice we shall mean all other degrees of freedom of
the atomic system. It is this coupling which enables the nuclei in
higher energy states, to give up their energy and return to a lower
energy state, and, as a'consequehce, preserve the equiiibrium distribution.
The coupling of the sﬁin system to the lattice may be observed by
switching off the resonant oscillating field for a specific time and then
turning it back on and observing the change in the magnetization. The
- observation of the time dependent nuclear magnetization forms the basis
of the transient technique. The experiméntal arrangement which monitérs
the Spin—iattice coupling yields'the useful parameter, T;, the spin lattice
relaxation time.

It should also be noted that the nuclear spins are coupled to
one another as well as to the lattice. This coupling leads to a
broadening of the absorption spectrum the width of which can be related

to the paramcter, T,, the spin-spin relaxation time.

2’
For nearly two decades N.M.R. techniques have been applied
successfully to problems of structure and motion of atoms and molecules
in the solid state. Structural studies of protons have been by far the
most numerous. Although X-ray diffraction accurately determines the
positions of other atoms in a crystal lattice, little precise information
normally can be obtainéd for hydrogen atoms since they scatter X-rays

very wcakly. On the other hand, protons are very sensitive to the N.M.R.

technique because of their large magnetic mowment. A proton resonance



study can offen complete a structure in which the heavy atom positions
have been determined by the X-ray method. In other wérds, the two
techniques are complementary.

The factor in the dipolar Hamiltonian which gives rise to the
observed dipolar-broadeﬁed spectrum is (1 - 3c0529)r-3 for each pair of
nuclei in the system, where r is the internuclear vector and 6 is the
angle between r and the applied field H, - The r—3 dependence on distance
makes it clear that interactions between nearest neighbours will give the
largest contribution. Furthermore, these interactions are highly aniso-
tropic. A single crystal study will give the maximum information; however,
internuclear distances can often be obtained from a powder study although
the angular dependence is lost. |

Because of tﬁe complexity or in most cases the impossibility of
completely determining the spectrum, it is more useful to work with the
second moment or mean square width of the spectrum. A theoretical value
of the second moment may be calculated assuming a model and compared with
that oBserved. The general correctness of the aodel may be esfablished,
and if the model does not contain too many unknown parameters, these may
be determined;

Any form of atomic or molecular motion in the crystal is liéble
to modify the spectrum and its an moment, often quite dramatically. The
angular factor (1 - 3c0529) in each term bf the dipolar Hamiltonian is no
longer a constant; the mean interaction is in general reduced by the
motion, and as a result the spectrum ?s narrower. The amouht of the

narrowing, and the reduction of the observed 2nd moment, can be expressed

quantitatively, and usually enables the nature of the motion to



be established.

The dynamics of the nuciear motions revealed by line width
narrowing may be studied through the temperature-dependence of the épin-
lattice relaxation time, T . The fluctuating dipolar interaction caused
by the random molecular motien causes transitions through the off-
diagonal terms of the dipolar Hamiltonian, and attempts to maintain
thermal equilibrium between the spin system and the lattice. The-
efficiency of this relaxation mechanism depends on the intensity of the
Fourier spectrum of the raﬁdcm motion at the resonance frequency and this
~in turn depends upon the correlation time 1t of the random motion. At
. temperatures where T-l is of the same order as the resonance frequency
this relaxation mechanism is most effective and T, has its mininum value.

t either higher or lower temperatﬁras T is larger. From the theoretical
depgndcnce of Tl on 1, measurements of the temperature dependence of 1
can be deduced and often fit a simple activation law.

In the case when the nucleus under investigation has an electric
quadrupole moment (I > 1/2), spin-lattice relaxation may be effected
either through a fluctuating magnetic interaction or through the inter-
action of the quadrupole moment with the fluctuating crystalline electric
field. The quadrupole interaction dominates except in the cases when the
electric field gradient vanishes as at a site of cubic symmetry, or the
sample is heavily contaminated by paramagnetic impurities.

Much detailed information concerning the motion of atoms and
molecules has bcén extracted from the application of N.M.R. to solids.
Melecular rotation is quite common which however is almost never frec,

but consists rather in the reorientation cof the molecule or atomic group



between a number of equilibrium positions. The nature of the rotational
motion can usually be established. One can determine whether the whole
molecule reorients or only a part of it, and whether the motion is about
one axis or is morc general. The temperature-dependence of the rate of
the motion can generally be determined. The diffusion of atoms, ions
and molecules can be detected, and in favourable cases the rate of
migration and its temperature dependence may be determined. Since this
information is extracted from two pieces of experimental data, namely
the absorption spectrum and the spin-lattice relaxation fimc, a full
investigation of any solid will embrace measurements of both over as
wide a range of temperaturc as possible.

It is the application of N.M.R. to the dynamic situation in two
ferroelectric crystals that forms the basis of this thesis. Although
the phenomenon of ferfdelectricity has Leen extensively studied in
recent years, much remains to be understood about the atomic mechanism.
X-ray, neutron diffraction, thermal and dielectric studies of ferro-
electric crystals are very helpful in improving this situation but N.M.R.
techniques also can make important contributions. The resonance signal of
‘a nucleus in a crystal depends strongly upon the particular state of the
crystal and therefore may be used to detect and stud}.the progress of
phase transitions even when the actual atomic displacements are very small}
Furthermore, in hydrogen bonded crystals, where the interproton distances
arc only slightly greater than the distances over which p;oton notion
occurs, N.M.R. may clarify the role of the hydrogen atoms in the.ferro~

electric transition.



1.2 Ammonium Sulfate and Ammonium Fluoroberyllate:
The ferroelectric property of ammonium sulfate, (NH4)2804,

below 223°K and of ammonium fluoroberyllate, (NH4)2BeF below 176°K were

4’
discovered by Matthias and Remeika (3) and by Pepinsky and Jona (4),
~respecfively. Although both are ferroelectric‘and originally were
believed to be isomorphiC'in structure, they have been found to differ in
~a number of important aspects. The crystal symmetries of the two
materials are different in both their paraelectric and ferroelectric
phases and the polar axes in the ferroelectric phases defelop along
different crystallographic éxes.

An,eariy (1958) thérmal study of (NH4)2804'and (Nu4)2BeF4‘by
Hoshino et al.(5) indicated that the mechanism of the phase transitions
.of these two crystals are of a different type. There is evidence of
latent heaf-in the (Nll4')2SO4 transition, whereas (NH4)2BeF4 exhibits.a
broad peék at the transition which suggests a second-order transitiﬁn.
From a study of the dielectric constant these authors reported that the
shape of the ¢ vs T curves of (NH4)2$O4 and (NH4)ZBeF4 is rather unusual
for a ferroelectric transition. The Curie-Weiss law was not obeyed above
the transition temperature, unlike most of the ferroclectrics known at
that time. However, a more recent dielectric, spontéﬁeous polarization
and specific heat study cof (NH4]2BCF4 by Strukov et al, (6) in a narrow
range around the transition indicated that the transition is first order.

In an early proton N.M.R. study (1960), Blinc and Levstek (7)
tfound that (NH4)2SO4 and (NH4)286F4 which have very similar absorption
lines at room temperature, showed an entirely different behaviour at low

nd , . p
temperatures. In (NH4)?BeF the 2" moment of the proton absorption line

4



increases very slightly between 423 and 93°K where it attains the value
of 8 gaussz. The expected rigid lattice value for an ammonium group is
about 50 gaussz. The 2nd moment value of 8 gauss2 at 93°K demonstrated
the complete disappearance of the intra- NHZ magnetic interactions due to
the random reorientations of the NHZ ions. The potential barrier hindering
the movement of the ammonium ions appeared to be low. On the other hand
in (NH4)ZSO4 the 2nd moment of the proton absorption line increcased from
the value of 6 gauséz to 28 gau552 below 163°K. The absorption line
split into two.well resolvéd components. They interpreted these results
in terms of the broad band arising from "frozen-in" ammoﬁium ion protons
~and the narrow band from rapidly reorienting ammonium ions. Their IR

studies indicated the existence of deformation in the NH 804, and BeF4

4°
groups in the ferroelectric phase and from this they underlined the
importance of the N-H...0 and N-H... F hydrogen bonds in the transition.

In 1960 from a proton line-width study, Richards and Schaefer (8)
reported a 2nd moment value- for (NH4)ZSO4 at 20°K of 33 gau552 which is
again below the value expected for rigid ammonium groups. They explained
the 2nd moment and line shape of the derivative curve below the line
width transition on the assumption that two-thirds of the ions are rigid
while the others are in motion. They assumed that the minor peaks in the
derivétive curve at 20°K arise from rigid ions and that the central peaks
are due to ions in motion. The derivative curve was then treated as a
superpcsition of twoe such curves, one due to the outer peaks (40 gaussz)
and one due to the central peaks (6 gaussz).

From an early spin-lattice relaxation study (1962), Miller et al.(9)

reported that (NH4)2SQ4 displays a marked discontinuity in the proton T



at the ferroelectric transition. Ti abruptly decreases from 1 sec. to

1300 msec. which they interpreted as a large chqnge in the rate of NH4

motion on going to the ferroelcctrlc;phase. The slope of the proton T1

vs 1/T curve was found to change and from the slope they calculated that

the potential hindering the NHZ

paraelectric phase and 6.1 kcal/mole in the ferroelectric phase. In the

reorientation to be 2.3 kcal/mole in the

case of (NH BeF, no dlscontlnultv was reported but only a change in the

4)2

slope of the proton T, vs 1/T curve. From the slope, the hindering

1
potential was calculated to be 1.5 kcal/mole in the paraclectric phase

and 5.3 kcal/mole in the ferrcelectric phase. They concluded from these
data that the barrier to NHZ rotation is higher in the ferroelectric than
the paraelectric phase and that the change to the ferroelectric phase
involves‘a change in lattice structure and hence alters the effective
botentiallagainst which the motion occﬁrs.. Unfortunately, due to the
rather narrow temperature range over which the experiment was carried out,
the results are not complete.

In a nuch more recent spin-lattice relaxation study (1967), O'Reilly
and Tsang (10¢), (11) reported results only in anprox1mate agrecment with
those of Miller et al. Their observatlon of two minima in the protoen 11
Vs l/T curve was interprctéd in terms of  two non-equivalent NHZ (Type I
and Type I11) tetrahedra rotating at different frequencies and coupled to
each other via the dipale—dipéle interaction. In the case.of (NH4}2BGF4
they found that both the proton and fluorine spin-lattice relaxation
become  markedly non-exponential over certa 1in temperature ranges. For

(NH which contains protons at two chemically inequivalent sites

17250

at vhich relaxation processes arc differcnt, only exponential relaxation



processes were observed. In (NH4)2504 it was found that between the
ferroelectric and paraelectric phases the activation energy decreases by
4)oBeFy

the change in activation energy in going through the transition was found

40% for the Type I ion and 15% for Type II. In the case of (NH

to be very small.

Deuteron magnetic resonance data for (ND 804(10) suggested that

‘ 4)2
the tilt of the ammonium dipoies is symmetrical with respect to the ab

plane in the ferroelectric phase. The mechanism of the phase transition
is the disordering of the ammonium dipoles with respect to the ab plane.

Similar data for (ND BeF4(11) indicated that the transition is due to a

42
tilting of the ammonium ions either parallel or anti-parallel to the
ferroelectric axis. T

~ A neutron diffraction study of the structures of ferroelectric

and paraeléctric (NH SO, has been carried out (1966) by Schlemper and

4)2
Hamilton (12). Their results agreed with inelastic neutron sgattering
studies, Rush and Taylor (13), that the rotational freedom of the ammonium
ions undergoes little change in passingvthrough the transition. These
resu;ts'are not consistent with the N.M.R. studies of Miller et al, (9).
Also the interpretation given by Richards and Schaefer (8) is ruled out
from the symmetry requirement that there be equal numbers of two
independent ammonium ions in the structure. They suggest that the
transition is not of the order-disorder type, but‘rather involves a

change in the hydrogen bonding of‘the ammonium ions to the sulfate ions
which results in stronger hydrogen bonds in the ferroelectric phase. At

Toom temperature the ammonium ions are highly distorted with the H-N-H

angles varying from 104.7° to 118.5° in one ammonium ion, and from 100.2°

.
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o . . . .
to 116.2° in the other ammonium ion. In the ferroclectric phase the
ammonium ions are less distorted, with the H-N-H angles varying from

o o . . . . o . o . .
106.17 to 111.6° in one ammonium ion and from 104.7° to 114.1° in the
other ammonium ion. The transition then results in stronger hydrogen
bonds and less distorted ammonium ions, both of which seem to be

energetically favourable.

I.3 Scope of the Present Work:

From the foregoing discussion.of the published material on

ammonium sulfate and fluoroberyllate it is evident that many aspects of

~ the atomic nature of the ferroelectric phase transition and the’
behaviour of the ammonium groups at the transition are not clearly
understood. It is convenient to summarize those difficulties which
could perhaps be resolved by an appropriate N.M.R. study.

Early spin-lattice relaxation studies in ammonium sulfate (9)
indicated that there is a significant change in the hindering potential
for NHZ reorientation upon entering the ferroelectric phase. They
suggested that the change to the ferroelectric phase involves a change
in lattice stfucture and hence alters the effective potentialvagainst
which the motion occurs. These findiﬁgs are nbt‘in'agreement,with
ncutrbn studies (12,13) which indicated little change in the hindering
potential upon péssing into the ferroelectric phase. Proton spiﬁ—
lattice relaxation studies (10, 11) in both materials suggested that
relaxation was brought about by the reorientation. of two non-equivalent
NH4 groups, although individual correlations could not be resolved. A

proposed model based on deuteron magnetic abserption results (10, 11),
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that the ferroelectric phase comes about because of tilting of the
ammoniumAdipoles along the ferroelectric axes, is in good agrecement with
dielectric and thermal data (5). There is at present little known

about the nature of the phase transition in ammonium fluoroberyllate
although O'Reilly, Peterson and Tsang (11) suggest that it will be very
similar to sulfate. As a result of extensive studies a fairly clear

picture of the ferroelectric mechanism in (NH4) is beginning to

{0)
2774
emerge but much more needs to be done to bring our understanding of

(NH4)2BeF to an equivalent point.

4
With the foregoing in mind we decided to carry out a deutecren
relaxation experiment on both of these materials over the widest
possible temperature range. In the first piace this would give still
another opportunity to study the hindering potential across the
transition. Furthermore, since the deuteron possesses an electric
quadrupole moment it would be expected to be much more tightly coupled
to the lattice leading to shorter Tl's, The quadrupole coupling
reorientations could lower T, to a value where under

4 1

certain conditions it might be smaller than the spin-diffusion times.

combined with NI

In the light éf the foregoing, it was hoped that such an experiment

would be able to resolve the correlations of the two independent

ammonium groups. Should this prove possible a study of the individual
correlations at the transition would not only yield information concerning
the nature of the transition in ammonium fluoroberyllate but would also
provide additional data on both materials which ceould then be compared
with results already available.

It should also be noted that the mechanism responsible for the
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proton line narrow%ng in (NH4)2SO4 at very low temperatures is presently
still not understood. Attempts to explain the narrowing in terms‘of
reorientation of a fraction of the total number of groups have been |
shown to be inconsistent with other known data (12). As a result we
decided to check the earlier second moment analysis and to extend the
proton spin-lattice relaxation study down to 4.2°K in case there was a
line-width transition at temperatures lower than other workers had
reached. It was hoped that from the knowledge of -the relaxation rate

at very low temperatures we could decide whether or not motion was the-

cause of line narrowing at tliese temperatures.



CHAPTER 1I

THEORY

II.1  Introduction:
We are interested in abquantum—mechanical description of the

coupling of the spin system S with all other degrees of freedom,
called the lattice. Of particular interest is the form of the spin-
lattice relaxation time for dipolar and quadrupolar ccuplings. In an
attempt to inérease the éohcrence of the presentatioh, the physical
system will first be described in general terms from which the particular
expressions way be oblained with relative ease. Since thece is no claim
to originality in this section, the notation used ié that which is found

in Abragam (14).

II.2  The Density Matrix:

in order to simplify the discussion we will treat quantum-
mechanically only the spin system S assuming that the lattice is
classical and has an infinite teﬁperature. At the end of the discussion
the apprOpriate Boltzmann weighting will be introduced.

This procedure can be justified on purely quantum-mechanical
arguments (14).

We begin by considering the Hamiltanianflffo +h Hl(t). Here,
h_Ho is the main or Zeeman Hamiltonian and[1f{1(t) is the perturbing

* Throughout the text h is used in place of h/2m.
13
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Hamiltonian which describes the coupling of the spin system with the
lattice and is a stationary random operator. [Appendix A]
The equation of motion for the density matrix o [Appendix B] for

the spin system S is:

g = - il +H (1), o] (2.1)

To exhibit the slow variation of the observables due to the coupling of
the system S with the lattice rather than the fast motion due to the
main Hamiltonian h Ho, we introduce the interaction representation:
" iH t -iH t x iHot -iff t
c =e %ce ° and H1 (t) = € Hl(t)e °
Substituting the above into equation {2.1) we obtain:

*

¢ =il (), o) (2.2)

[=W

dt

Integrating equation (2.2) by iteration up to the ond order:

* * . t x * t t' * * *
o= - e e - e[, men,o o
0 0 o
(2.3)
Differentiating equation (2.3):
d.o-* . , * * t’ * * *
-CTE- = - 1[“1 (t),O' (0)] - J dt! [Hl (t): {Hl (t’)s o (0) ]} (2'4)

0

The fact that h Hl(t) is a stationary random operator it must depend on
t only through the difference. Upon the introduction of the variable

T =t - t', equation (2.4} may be written as:
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*
do t

T = - il (©),0 (0] J de [”1*(”;’[”1*('”3"’*(0)” (2.5)

(o)

From equation (2.5) it is élear that c*(t) is a random operator.
In'order‘to obtain the observable behaviour of a statistical ensemble of
spin systems, equation (2.5) must be averaged over the random Hamiltonians
h Hl(t)' :A number of-assumptidns will noﬁ be ma&e’whiéh'are justifiedli ‘
because of the shortness of the correlation time of the random
Hamiifonianﬁ. ‘Withéut préof;(14), we assumé:

| i.fTi’(’c")‘:d
2. it is permitted to neglect the correlation between Hl*(t)
and o*(O) in averaging equation (2.5) and average them
scparately,
: : * *
3. it is permitted to replace o (0) by o (t) on the right hand
side of equation (2.5),

4. it is permitted to extend the upper limit of the integral in

equation (2.5) to +w,

5. it is permitted to neglect all higher-order terms in the

expansion of equation (2.5).

~ Applying these assumptions, the first term on the right of
*
equation (2.5) averages to zero, and, dropping the bar on o which from

now on will stand for the average density matrix, we obtain:

do .. L)dT (1), [, (e1), o (0] ] (2.6)
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As mentioned previously it has been assumed in the present
treatment that the lattice is at an . infinite temperature. To correct
for a finite temperature, we introduce the Boltzmann weighting factor,
. * . * ) *

i.e., o (t) is replaced by ¢ (t) - Y% where

*

o, =0, = exp(-h Ho/kT) / tr { exp(-h HO/kT) }

.3 The Density Matrix in Operator Form:

The next step is to cast equation (2.6) into operator form.
This form will then be readily applicable to a specific spin-lattice
coupling.

The random Hamiltonian h Hl(t) can be expanded as:

H (1) = Vg g(a),(a) ~ (2.7)

(q)

where F are random functions of time and A(q) are operators acting on
the variables of the spin system.

We now introduce the correlation functions [Appendix A ]

ggqr @ = FP @ 1w+

with the Fourier transforms:

i}
——
8

Q

~~

~
~—

[¢:]

4
[
€
~

.
-~

Jqq.(w)

and

Sqqr @) = Jog“'(T) e " ldx
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A necessary requirement is that Hl(t) must be hermitian. Therefore, if
F(Q) qu) non-hermitian operators then for each

*aladt,

are complei functions and
term F(q)A(q) of our.expansion there must be associated a term F(q)
We introducé the convcption'F(_q) = F(q)*, Al o p@t Finally,

recalling that equation’(Z.é)ris written in the interaction representa-

tion, the following definitions will be useful in our present expansion:

,. | .. p . | VA | ) (q) . -
NG ek SN PR SO I T

, : : p

P

. ) (-q) |

N R SN P I o Tt T (2.8)
o GO, @
P b | —
and hence,
. iH t -iff t @, ( ) (Q)t
H() = e ° Hy(t)e = 7 r\4 A 1 (2.9)
P»q '
Now substitute equation (2.9) into equation (2.6):
. (q") (a)

* © . ¢y 1w, 't 1w (t-1)
do = - J dt. z [F(q )A ,(q )e p [F(q)(t T)A (q’ s 0 (t)]]
IF o L P ,

p’q’p ’q
,whicﬁ mﬁy be written as:
: (@, (@ L ar

* iw 4 o )t (q) -ilw T

oo ] e P (A, [A(Q) o (t)]}J ar pl@' )(t)F(Q)(t e P

P,q,p'q’ ' 0
’ (2.10)
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By recalling the definition of the correlation function gqq,(r), we

easily observe that the integrand on the right hand side of the equation

(2.10) is simply gq,-qf(f)' Assuming for simplicity gqq,(r) = § q,gq('r)

q
and neglecting off diagonal terms we finally obtain;

. L, @

do g g (@1 ” oy

& = o I m] T ) g (e dt (2.11)
pP,q

It can be shown [Appendix A] that:

(q)

Ay s N P R (@
§'J_wgq(T)e dr - i Jogq(r) 51n(wp 1)dT

Jo gq(r)e T

1 @y _ sy (q)
2.Jq(wp ) 1kq(mp )

The imaginary term leads to a small shift in energy of the spin system

and can be dropped from equétion (2.11). Thus we obtain:

*

doo | 1y @y [p O, @ *
dt ~ 2 z Jq(mp ) [Ap ’ [Ap » o ()] ] (2.12)
: p.q
I1.4 The Macroscopic Equations:

The'quantity which is observed in an experimeht on a macroscopic
sample containing a collection of systems § is q(t) = <Q>.= tr‘{c(t)Q}
[Appendix B] where Q is an operator which acts on variables of system S.
It will be convenient to calculate q*(t),= <Q>* = tr {o*(t)Q} which as

mentioned previously gives the slow variation of Q due to the coupling
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of the spin system with the lattice.  In order to obtain the equation of
motion of Q multiply both sides of equation (2.6) by Q and take trace.

It can be shown [Appendix C ] that we get an equation of the form:

" .
Slﬂ, o L * s .
where . * s
a =<A> =1tr {Ac}
a, = tr {Aoo}
and the operator A is defined as:
A= J ar [Hy (t - ), [H (t), Q] S (2.14)

Substituting equation (2.9) into equation (2.14), neglecting off-

diagonal terms and using for simplicity g. ,(v) = 6 ,g (1) we obtain:
q9 aq'7q

=1y () (q) (-q) - 5
A 5 q%p Jq(wp ‘)[Ap ,[AP : Q] ] (2.15)

5 The Dipolar Coupling:
The complete llamiltonian of a system of like interacting spins

in a large external field may be written as:
htl=h (Ho.+ Hy o | - v - (2.16)

where the main Hamiltonian is:

e - vhH k
h -—k—thO ;{ I


http:system.of

The perturbing Hamiltonian h Hl due to the dipolar coupling is:

2,2 s
hi o= ) BT % EI L

1 . 3 2
<
j<k rjk rjk
Equation (2.17) may be written as:
24,2
hHl - Y2h? (A+B+C+D+E+F)
A 3
T
where
~
A = I.I' (1-3cos?8)
2z
- _1 2 1 )
B = Z~(1 - 3 cos G)(I+I; + I_I'+)
- 3 - . -i¢ .
C -5 cin 0 cos € c (IZIL ' I£I+)
- i , ,
b = C = 5 sin 6 cos 6 e (IZ?~ + IZI_) %>
E = -2 sin2p e 2101 1
4 + +
« _ .
Fo= B =-3sin% o110

Equation (2.18) can be put into the form:

WK - g NONO

20

(2.17)

(2.18)

(2.19)

(2.20)

where the F(q) are random functions of the relative positions of the two

(q)

spins and the A are operators acting on the spin variables.

the convention F(q) = F(—q)*; A(q) = A(-q)f. We define

We adopt
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F(0) . 1 —jzcosze
r3
F_(1) _ sin 6 cos 8 e-1¢ , S
3 (2.21)
I I sin2p ¢ 21¢
T3 _

and

(0)_ 2 1 Tt . )
TG-S 8 (IR ¢ S R R SO I

60 I
AV = a{121+ + 1,11} (2.22)

A SRR RN « = -3 y2h

Assuming furthermore random isotropic motion for the orientation of the

vector r, we have:

FAyp@% 4 1y = aqq’c(q)(T)

> (2.23)

J(q)(w) = J G(q)(r)é_imrd;

The equation of motion for the longitudinal magnetization will have the
form:
d 's = - (a0 - =
o <IZ + Iz> (az ao)
*
where a, = tr {AZG 3, AZ being given by equation (2.15). Evaluating

equation (2.15);
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A, =5 P epa B e nny e W ™

1

AT NG S S 43 | PN TN S S DA

(2.24)

Using standard commutation relations [Appendix D], we obtain:

PR VACH SIS SN

2021 1'2 + 2021'T 2 - 02(I.1' + I 1')(I_ + 1)
Z 2 Z Z + - - + Z Z
(2.25)
(-2),(2) 117 = o2 12 12 2¢1 2 2y 711
[AY 7T [A ’Iz + Iz]] = q Iz(Ix + Iy ) + a (IX + Iy ) IZ 2.26)

Furthermore, it can be shown [Appendix D ] that:

BN G TN 65 RS N S S N ¢ 1) \
[A ,[A 3 IZ + IZ]] = {A :[A ’IZ + IZ]}
and

(-2) ;(2); . 1t - a(-2) A (2) |
[A :[A ’IZ + IZ]] - [A :[A ’IZ + IZ]]

. . : *
If we use the high temperature approximation wherein o -0, 1s

an infinitely small quantity of the first order, quantities such as

<Ix>’ <I >, <IZ> are also small of the first order and to the same

approximation:

<T I '2> =~ <] > Illil)
Z°X z 3

14

<I I '> <I I'> = 0
z'z 2 x

Combining equation (2.25), equation (2.26) averaging and

employing the above approximation, we obtain:



2
<A > = Z%_. 1(1+1) <I_ + I!> { J(l)(wr) * J(z)(ZwI)} (2.27)

The macroscopic equation for spin-lattice relaxation then takes on the
form:

. 1 '
1 - 'y . [
<I + Iz> = . [<1I_+ IZ <Iz + IZ>0} (2.28)

vn.lr.x
ct
™

with

==

1 =‘%. YRhﬁ;(i+1) {?(1?(m1) + 3P @0 ) | (2.29)

Finally, equation (2.29) may be generalized to the case when each spin

I interacts with several identical spins, provided their motions are

" not correlated. In such a case the equation

II.

did :
Z 1 .
a7 Tl— (M, - M)
is still valid with:
13 ' ] 2) .
T -3 Y*h2T (T41) g (0, P + 3, P @) (2.30)

6 The Spin-Lattice Relaxation Time for a
Four Spin System
Assuming the four spins uncorrelated we will use equation (2.30)

as the starting point.

Rewrite equation (2.21) as: "i¢ik -
F(l) i sin eikcos Sike
ik 3
>y
sin?@,, e Pk - - )
(2) ik
F.»""=
ik 3 :
T -
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Where r is the interproton distance, eik’ ¢ik is the orientation of the
H-H direction in the laboratory co-ordinate system with the magnetic
field Ho along the z-axis. For a tetrazhedron of protons there are six
different H-H pairé. In order to evaluate the pair correlation functions
we must appropriately weight the various possible orientations. At this
point it is necessary to introduce a model which represents the
disordered motion of the spin-carrying nuclei. To do so we intrcduce

the reduced correlation functions

@ = Dy
and maoke the convenient assumption that g(r) is the same for all G(i)
and can be represented by exp(-]rl/rc), where r; is a constant called the
correlation time and is a characteristic of the medium.
| Returning now to the weighting of the various possible orienta-
tions cf the H-H pairs, it can be seen that: the probability that a
pair remains at its initial orientation in a time t is [%—+ g~exp(-t/rc)];
and that the probability of a pair being in oné of the five remaining
orientations is([%-~ %-exp(wr/Tc)]. It is now possible to calculate the
pair correlation functions.
Begin by considering a proton pair at orientation ij at time t.

Then at time t + 1 we may write:

| ()
PSP = g e gew Cu/e)1 V) z F, k(t)[ﬁ - Lexp(-1/1)]
, , #1ij
(2.32)

Multiply equation (2.32) by Fi§q) and also drop time independent factors,

we obtain for the pair correlation function:



R HOLARCDEE S ICARILA s ) FiY T 1{Q)exp(-r/wc)

At any time, the six possible orientations are equally likely to be

occupied, and thercfore performing this average we obtain:

<Fi§q)(t)F;§qJ (t+r)> = i cxp( ABICNIS (q)'z ) Z' pOET (),

36 i3 ij i3 ik#ij ij ik
, o ' (2.33)
Equation (2.33) may be rewritten as:
;D r e = eptreto I Ir 0120 7 017
1) 3
ij ij (2.34)
Taking the Fourier transform we obtain:
(1) 1 (1) 2 (1)2
J. 7 (w) = >+ »-w [GZ[F |12 - 2 F.:"71?]
ij 3 1+(wr ij (2.35)
3 Pan L e L% (2)l2 -1 7P
) 3 1+(2mrcf‘ ij 1 (2.36)
Finally, for a powdered sample we must average over all possible
orientations of the magnetic field. Observing that Iz F. (q)[? = we
: ij
then have: -
e (M2 o2 -6
|E. . |2 = 5 T
— 7 (2.37)
F 8 -6
|‘ (2))2 . = r
; o/
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Combining equation (2.37) with equation (2.35) and (2.36),

: ' ' 21 T
(1) _ 1 c 2 1 _4 1 c
RS Evsenral HELS il T
1+(wt ) T T 1+(wrc)
(2.38)
3. (20) = 1| ZT?__ [36] & 1 _16 1 .____T__c_____
ij 36 > 15 ¢~ 15 )
_ l+(2wrc) T T 1+(2w1c)
Evaluating equation (2.30),
. . 5
"lf‘ = -‘g-yl*th(]ﬁx*l) ) J..m(m) + J..(“)(zw)
LY ij _
1 it
we obtain:
19 y%? i A -
e [er)? 1+ (2wt _)? (2.39)

I1.7 The Quadrupole Hamiltonian

In order to utilize the framework which has been developed thus
far, the quadrupole interaction will be treated as a Special'case‘of a
multipole-expansion in spherical harmonics of clectrostatic energy of
two chérge distributions. This approach has the advantage of exhibiting
clearly the various non-vanishing matrix elements of the interaction.
It also yields the form of equation (2.7} with relative ease.

Consider the nucleus and the electron cloud being described by
two charge distributions pn(rn) and pe(re), respectively. Then their

mutual electrostatic energy is given by:
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J JA Pe(rede, (ry)dr dr

lr, -l | (2.40)

Expanding the denominator by the classical theorem of spherical
harmonics,
L
v & 1 Tn

1 : m* m
— = ar Y ) A S ™ e 6 Y (e L0)
. Egl 2=0 m=-2 28+l rjl+1 g nom ok Tere

|z, (2.41)

It is assumed that fe.> r. and hence the small penetration of the

‘electron inside the nucleus is neglected. Equation (2.40) may now be

written:
U, = mopm* (2.42)
Vg = ) Ay By
: £,m
where
; Ao _4m (r ) r 2 Yo (6.6, dr (2.43)
L o 2%8+1 pn n n 9 n’’n n .
and —
mo_ A -(2+1) m 'y
By = Vamn I Pe(Te)Ty Vo (8g59.) drg (2.44)

Now if the state of the nucleus is defined by a wave function wn(Rl;.RK)
of the co-ordinates of its K nucleons, the nuclear charge density can
be written as the expectation value of the operator density of charge at

he poi S
the point T |
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K : _
p (r) = (W !izl e;8(r - RI[ v ) - @)

where e, = ¢ for a proton and zero for a neutron. Utilizing equation

(2.45), equation (2.43) may be written:

A" <A2m> where Az is defined as

' 4 [ :
. = /EEIT g e R 7Y (0,,8;) | (2.46)

by
g
1

where Ri’ Oi, ¢, are the polar co-ordinates of the K nucleons.

In a similar fashion B? = <B§> where
N e
1 : A . -(8+1)
B = ~¢ /o iél T Yo (8y595) (2.47)

where T, Gi, ¢i are polar co-ordinates of electrons.
Consequently, the energy of the electrostatic interaction between
the electrons and the nucleus is then the expectation value of the

Hamiltonian:

m pm*
Hy = 1 Ay B,
2,m

From equation (2.46) and (2.47) we see that the operators Az and Bz
transferm under rotation of co-ordinate axes in the same way as spherical
harmonics of ordcr 2. This is tlic definition of tensor operators of
order &. The tensor operator Ag with 22+1 components A? is called the

multipole moment of order & of the nucleus.
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For the quadrupole moment we rewrite [Appendix E] Ag asr

2 JE T S
AZ = - g ei(xi * 1yi]

/6 . > o
A = — §4 e;z; (x; * iy,) (2.48)
AC = L Z e.(32.2 - r.2)

2 2 i i i

i ‘ -

By means of the Wigner-Eckhart theorem we may now replace

(x + iy) with I+, (x - iy) with I , z with IZ and define:

+2 6 2
Q = o J:.4_ :[i
+1 ‘ J 6
S i T G 7 (2.49)
o _ 1 2 2
Q" = o5 (3L° - I
~?

o 1is determined by the demand that QO and A® have the same expectation

value in the substate IZ = I; namely:

"

K 2 2
eQ (11 1_2 e, (32, - r,") | 1I1)

i=1

2.1 |1

o (IT | 31,

and finally:



30

@ - o0

I(21 - 1)

We may now write equation (2.49) as:

Qi 2 = -._._...e._gw..._.. v _9, I 2 k
121 - 1) 4t
+ - .
Q"1 = e«Q__ V/t%; {1, 1, + I, 1} > (2.4%a)
I(2I - 1) - -
Qo . . €Q %_ { SIZ2 _ 12} v
I(21 - 1) _J
Returning to the electfon operator it is seen that:
N e.(32.2 - r.z)
B° - 1 Z 11 i
2 2 . S
i=1 T,
i
The above is simply equal to 1 337 v where UV(xyz) is the
’ 2 3z r=0 '

electrostatic potential produced by the electrons at the point x, y, z,

and is 'still an operator. By the same argument it can be shown

+2 1 M
BZ“‘ = — U@x -V o2 2ilV )
~ 2 /6 Y Xy |
:> (2.50)
+1 1 .
B T O/ 1U, )
2 S Xz yz 5
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Combining equation (2.50) and equation (2.4%a) the quadrupole

Hamiltonian may be written:

H, = § A" = f ngm
s 2 %y ¢ OB, (2.51)

1 m:-z m=-2

IT.8 Relaxation Due to Quadrupole Coupling:

Equation (2.51) may be rewritten as:

H = gl F(‘"‘) (SZ)A@’)(IV)

where the F(m%Q) are lattice functions and Am%l) are‘5pin operators, both
-of which transform under rofation as spherical harmonics of order 2. @
represents the three Fuler angles a, B, vy defining the orientation of
the molecule with respect to the laboratory frame.

We write:

Ay - 31, -1
AV S e, )
.o
Z

A(iz)(l)

Because the unperturbed Hamiotonian A Ho is honZ it follows that:
il t -if t imw t

e © A(ml(I)e = e o'A(m)(l)

' * ok
Also the expectation value p = tr(Po ) of any spin operator obeys the

equation:
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dp* o :
g = - @b -b) (2.53)
where
b = tr{Bc*}
and - ;
B = %— ;™2 3 (mwo)[A(_m),[A(m), P] ] (2.54)
m

where }(w) is the Fourier transform of the reduced correlation function:

FOD ey r 0 ey
8y =
| F (m) () ! 2
assumed to be the same for all F(m).

The functions F(m)(Q) can be related to the function F(m)(O) in

the frame of the molecule by:

P @ =] e @) o (2.55)
n" .

) 3
where the random character of F(m)(n) appears in the coefficients

amm,(Q) also,

9 1";"‘ Gm‘m“
%+

I3 i -
a‘mml Ln)a‘mm'il(gz) -

where in our case & = 2, and hence we may write equation (2.54) as:

B = %ﬁ-{z BARIOIEE) }(mwo)[A('m),tA(m),p] ] (2.56)
m' m
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In bulk matter there is in general, with the exception of a few
paramagnetic substances such as the rare earths, no orbital degenesracy
left, so the operators ij can be replaced by their expectation values
ij taken over the single wave function represeﬁting the non-degenerate
electronic state. As a consequence of this fact, the electric field
gradient at the nucleus is treated classically in bulk matter and
quantum-mechanically in free atoms or molecules.

Introducing the constants:

o _ 1, _1
V.o 2 \zz 2 <sz>
+1 1 .
vl —= (V,y * 1V,
vi2 oo 1w ov 12V )
T LA

and hence equation (2.51) may be written:

Thus far the orientation of the Oxyz has been arbitrary. If we
choose as axes of co-ordinates OXYZ the principal axes of the symmetrical
tensor vij so that VXZ = VYZ = VXY = 0 label these axes so that

i =V : = ! - !
|VZZI>|VXX|>|VYY[ and define eq = V., and n= (Vy, - Vi )/V,,, the

quadrupole. Hamiltonian becomes:

2419 (2.57)

o=
"
lo
e
VD
:
-
([
-t
1
St
+
\\)] Yt

n (I,
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or in terms of the A(m)'s
a0 1 L0, 0,2, 62,
hHl ——S— = {A + —— (A + A ) )
41(21-1) V6
from which
2 N
(03 (o) eq 1
41(21-1) h
> (2.58)
2 .
©41(21-1) S5k B
Usiﬁg equation {2.58) we may now evaluate equation (2.5¢6),
-2 2
Am 5 1 c qn 1
z ip( )(U)li = 1z LAl [1 + 33-] i
m' 1(21-1) h
and hence,
2
2 2 n
1 e qQ 1 n (-m) . m
B = S (4= ) Jmw ) [ATTS[AT, P] ]
160 1(21-1) .h? 3 m o (2.59)
Setting P = Iz and using standard commutation relations
[Appéndix D]:
(-1) (1) _3 3 _ h
[A SAY, Iz]] =5 {161Z - 1z [8I(T + 1) - 2]}
> (2.60)
G2 @ 193 =3 e+ et s 1) - 8
Z 2 z z g

Finally, carrying out the sum in equation (2.59) for the case

. e 3 .
I = 1 which implies IZ =1, we obtain:
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1 equ 2 1 v v
B = - 1+ = {6J(w) + 24 J(20 )}<I_>
160 1(21-1) 3 h2 0 (¢ z
d)* * . * -
Recalling a%— = - (b - bo) where b~ = tr{Bos} hence,
d 1 )
Fo <IZ> = - TI-{ <IZ> I0 }
or
1 3 e2 \ 2 2 1 v "
T T80 ~=4) o) = ) + 43 (20)) (2.61)
1 1(21-1) ne

17.9 Second Moments of N.M.R. Signals Broadered by the
Dipolaf Interaction (Like Spihsj:
We begin by recalling the dipolar Hamiltonian given by equationsv
(2.17), (2.18), and (2.19). The use of this Hamiltonian in an attempt
to calculate the shape'of the absorption line in a completely general
case presents an essentially impossiblé task. Only for a small number
cf interacting nuclei or for groups of nuclei displaying high symmetry
is such a direct calculation feasible. However, Van Vleck (15) showed
that even in the general case it is possible to calculate the moments of
the line shape. If g(ll) is the normalized shape function of the

absorption line, then Mn the nth moment is given by:

M = J g (H) (i - Ho)“ dH - - (2.62)

.y . . nd .
‘Of particular interest is the 2 moment given by:
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M, = J g(ﬁ)(H - Ho) dH o (2i63)

The value of the an moment for a single magnetic species may be

written according to Van Vleck as:

2 2
(3 cos“@., - 1)
My= 2 I(T+ 1) YN ] %k
| 3>k k Tik (2.64)

where the subscripts j, k refer to the nuclear species at resonance;
ejk is the angle the vector rjk separating j and k makes with HO; N is
the number of nuclei at resonance.

From the standpoint of this work, a more uscful formula is
deduced by averaging over all orientations as for a powder sample. The

angular factors become:

2 _ 4
(3 cos%%k - 1)av = T
so that
6 2,2 -1 1
My=g I+ 1) yRN° ] ] — (2.65)
j>k k rjk

When the nuclei at resonance are not fixed, the 2nd moment 1is
reduced from the so called 'rigid lattice" 2nd moment. To include motion
the factors (3 c0528ik - 1)2 appearing in the second moment must be

appropriately averaged.

Let us calculate the average for a rotation about any axis. The
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addition theorem for spherical harmonics yields:

< P (cos 6, > =P (cos 8') P, (cos y.,
2( Jk) ¢ l( ) 2[ YJk) (2'66)
where ¢ indicates an average over this variable.
For £ = 2, we have:
2 ! 2., 2
<(3 cos ij - 1)>¢ = 7-(3 cos“8' - 1)(3 cos Yij - 1) 2.67)

The second moment for a system rotating about an axis making an angle 6!
with “o is found by substituting equation (2.67) into equation (2.64).

. For a powder, the axes are isotropically distributed, and since

(3 c0520' - 1)2 averaged over a sphere is 4/5, the an moment for a
powder is:

(3 ¢052yjk - 1)2
r6
jk (2.68)

(521w

N
N

1+ ) N2 TS
: i>k k

.o nd .
Thus, to find the 2 moment for a powder when the species at resonance
is reorienting, one simply reduces the rigid lattice powder value by the

factor:

F(y) = %- (5 cos’y,, - 1)2 (2.69)

If the rotational axis is normal to all internuclear vectors which
contribute to the broadening then the Yjp are 7w/2; it is then said that
the 2nd moment for a powder in which such rotation occurs is one-fourth

as great as if the lattice were rigid.
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I1.10 Line-Width Transition in a Powder Sample:

| Another impoffant problem is the rate of reorientation necessary
for observation of motional narrowing. Bloembergen et al.(16) have
shown that the narrowing process begins when the average period of
reorientation approaches 1/2ndv where §v is the line width on the
frequency scale. Thés theory introduces a quantity Vs the correlation
frequency, defined as v, = 1/2nrc, vhere T, is the correlation time.
Ve is the average rété at which significant changes occur in the atomié
arrangement about a given nucleus. The motional narrowing can now be'

described by:

(6v)? = (6v0)2 2/n tan™" sv/v_ (2.70)

where 6v0vis the rigid lattice line width,

A physical argument describing what is happening has been given
by Slichter (17). Consider the nuclei of a rigid lattice and suppose the
line to have a width in angular frequency of.l/Tz0 = Am = yAH. This line
width corresponds to a spread in preceésion frequencies. It means that
nuclei originally precessing in phase in the rigid lattice get out of step
or lose their initial phase relationship in a time Tzo. If motion of the
nuclei from one point to another in the lattice occurs, a particular
nucleus experiences a number of different local situations. It will
sometime precess more rapidly and sometimés less rapidly. As a consequence,
its mean precession frequency or inﬁegrated phase compared with the other
nuclei decreases and the line therefore narrows. If this narrowing is to

occur, the nucleus wmust necessarily sample a number of lattice sites



within the time T during which the precessions would otherwise have

0
2 2
spread out in phase. Thus, if T, is a measure of the mean time the .
nucleus SpendsAat a given lattice site, narfowing occurs whenrrc
becomes as small as or smaller than TZO.

We can now find the dependence of the resulting T2 on T_.
Suppose there is a departure tAw from the mean frequency and that it lasts
for a time T A phase departure 11 bw is accumuiated in this time.
After n intervals, thére is a mean squafe angular displacement

(A¢)2 =n (TCAw)z. In time T, = nT_, we say that the initial phase

2

. . . . 2
relationship has been lost, which we can consider to mean (A¢)” % 1.

- Thus, 1 % (TZ/TC)(TCAw)Z or:

%}- X (Aw)zTc .
2 : (2.71)
1 0
e o T Iy

Equation (2.71) describes the course of the line narrowing as T, 8rows
shorter than the T20 of the rigid lattice. Equation (2.71) is basically
the limiting value of equation (2.70) when T is>small.

A knowledge of the dependence of v, on temperature gives the line
narrowing as a function of temperature. In the event that the
reorientatiop is thermally activatedbvc can Bé éxpressed as:

V. =V . exp (—Ea/RT) . 7(2.72)

where Ea is the activation energy. From the N.M.R, absorption;a value



of Ea can be derived by fitting equation (2.70) to the observed line
width versus temperature curves. Furthermore, an estimate of the correla-
tion frequency at the temperature where motion starts to influence the

line width is obtained.



CHAPTER II1

APPARATUS AND EXPERIMENTAL PROCEDURE

ITI.1 Introduction:
This Chgpter provides a brief'dcscription of both the cw and
pulse experiments including the apparatus utilized. Included also are
the techniques of attaining sample temperatures higher and lower than

rocm temperature.

II1.2 Absorption Experimwent:
The block diagram of the N.M.R. spectrometer is shown in Figure 1.

The 1arge‘magnetic field was produced by a 12" Varian electromagnet
monitored by a Varian V-FR 2503 Fieldial. Two sets of pole faces with a
3" and 1%'" gap produced fields of 10,000 gauss an& 19,000 gauss,
respectively, at maximnum current. Thg field inhomogeneity over the
samples used (¢ mm in diameter by 20 mm in length) was such as to cause
no significant broadening of the signals. This was chécked by observing
the proton signal shape of water paramagnetically contaminated by ferric

nitrate. The broadening as indicated by the H 0 signal was very small

2
compared to the natural linc -widths of the signals obtained in this work.
The oscillating detector consists essentially of a marginal

oscillator, a radio frequency amplifier, a detector and a wide-band audio

frequency amplifier. The sample coil which is part of the resonating

41



Figure 1

Block diagram of the absorption spectrometer,



AUDIO
FREQUENCY

GENERATOR

0(7'500‘0)

42

/HALL PROBE

FIELD DIAL

| TSSHELMHOLTZ COIL

N

OSCILLATING

DETECTOR

LOCK IN

 AMPLIFIER

RECORDING
MILLIAMMETER




43

circuit of the marginal oscillator is located in a dewar which is fixed
between the pole faces of the electromagnet. A pair of Helmholtz coils
are mounted on the pole faces to modulate the applied field. The
frequency of the marginal oscillator is fixed. The field can be swept
linearly at various rates with the help of the Fieldial. The Helmholtz
coils were energized by 100 Hz alternating current supplied by a Hewlett-
Packard audio frequency oscillator. The other parts of the spectrometer
are a Princeton Applied Research, Model JB-4 Lock-In amplifier consisting
basically of a mixer and a phase-sensitive detector, and-a Hewlett;Packard
6" recording milliammeter.

The spéctrometer functions as follows: the Helmholtz coils
modulate the external magnetic field with an amplitude much smaller than
the line-width of the N.M.R. signal. The resonance conditioh for the
nuclei inside the sample coil, which manifests itself as a pofential.drop
across the coil, is thus made repetitive at the modulating frequency. The
signal is first r.f. amplified and detected. It is then fed to the wide-
band audio-freqﬁency amplifier followed by a lock-in amplifier, where it
is mixed with the signal from the.audio—oscillator and phase detected.
The output of the lock-in amplifier is a d.c. signal approxiﬁately
proportional to the first derivative of the absorptiéﬁ curve. The d.c.
signal is plotted on the recording milliammeter.

With respect to the experimental conditions under which the
resonances were sought, several points were borne in mind during these
experiments. The density of r.f. electrohagnetic energy in the sample
determines the degree of nuclear spin saturation. By observing the

symmetry of the shape of the resonance signals and their width as a
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function of r.f. power, conditions were determined under which no
appreciable saturation was present. The sensitivity of the oscillating .
detector is greatest when the r.f. powef is lowest; however, the noise
level due to instabilities is greater at low r.f. power, so that power
levels were used between those at which saturation or excessive noise set
in.  Since the signal strength depends on the number of nuclei per unit
volume of the oscillator coil, maximum sensitivity was achieved by using
compressed powder sémﬁles. The modulating amplitude in gauss was |
calibrated by observing the peak-to-peak separation of the proton signal

in water as a function of modulating amplitude.

I11.3 Spin-Lattice Relaxation Experiment:

The resonance condition hay be approached slowly or rapidly. In
the latter case, transient motions of the magnetic moment vector are set:
up which eventually decay to steady state motion in a time determined by
the relaxation parameters Tl and TZ'

The sample under investigation is ?laced in an applied magnetic
field consisting of two components:vra steady component of magnitude HO
oriented in the z directibn and an oscillating component 2 H, coswt in
the x direction. As is well known, the oscillating component can be
further decomposed into two circularly polarized components in the x-y
plane, rotating in opposite directions about the z-axis. Only oné of
these, namely, that oﬁé rotating in the same sénse.as the free Larmor
precession of the nuclear moment, is effective in changing the orientation

of the nuclear moment; the other can be ignored. The resultant moment M

of the sample may be resolved into three components: MZ along the
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z direction, u parallel to the effective rotating component of magnetic
field and v orthogénal to Mz and leading the effective rotating field
component by m/2 radians. The time dependence of these three componénts
is given by the three Bloch differential equations (18).

The transient situation may be set up by any approach to the
resonance condition which is fast compared to the nutation time l/yﬂl.
To do this any one of the three external parameters Ho’ H1 or w may be
varied with time in the form of a pulse starting at t = 0.

The pulse technique lends itself readily to a direct and straight
forward measurement of the spin—lattice relaxation time Tl. Suppose that

H, is large enough to satisfy yH, >> 1/T2, or in other words the nutation

1 1
time should be short compared with the relaxation times so that the
inversion of the magnetization is adiabatic. In this case the solution

of the Bloch equation at resonance is:

MZ/MO = exp{- %{;/Tl + 1/T2)t} [coss + (E%E-) siné] + 0(a,B)

(3.1)
where
Mo = XoHo X, = static susceptbility
m = initial value of M_/M
(o} z' o
§ = yHlt
B = l/yHsz
a = I/YHITI

If the pulse duration is long compared with 2 Tsz/(T1 + T2), then the

final value of M, will be small compared with Mye In other words, the
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sample is almost completely demagnetized. During the interval between
pulses, the sample will regain some of its magnetization because of the
relaxation processes. Hence, if m, = MZ/M0 is the value at the
beginning of the pulse, then:

m, = 1 - exp(-t'/Tl), . (3.2)
where t' is the time between pulses. If m, N 1, then according to the’
Bloch theory, v becomes proportional to LI Hence, by observing the
dependence of the initial amplitude of v as a function of t' and making

use of equation (3.2), T, can be directly obtained.

1

The experimental arrangement of the T, spectrometer is given in

1
Figure 2. The spectrometer was designed by S. Vrscaj. It is capable of
giving 40 gauss pulses at 11.5 MHz.V The 60° pulse length is .9 psec in a
S mm ID coil. The spectrometer has a fast:recovery time and a high gain
receiver which allows the nﬁclear signal to be read 6 usec after the
pulse was applied. It produces the following pulse sequences: 90°, T,
1800; and 900, T, 900, .... where 1 is the pulse separation from 1 msec
" upward. Tektronix, series 160, pulse units were used for timing and
triggering, and a Hewlett-Packard 50 MHz oscilloscope with camera was
used for recording the free-induction decay amplitude.

| For T1 values above one minute, the pulse method for measufing T1
becones iﬁconvenient and problems of stability tend tq render the results
less reliable. Fortunately, other techniques exist which lend themselves

readily to the situation when Tl becomes much longer than one minute.

The signal decay technique utilizes an experimental set-up



Fipure 2

Block diagram of the T, spectrometer,
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identical to the absorption experiment. The theory for this effect can
be derived from the Bloch equations (19). The experiment proceeds as
follows: The main field Ho is set on one of the peaks of the deriva£ive
curve. The r.f. power 1ev§1 is fixed at a definite level producing a
significant amount of saturation in the absorption spectrum. The Hy
field is now switched away from resonance. A time estimated to be long

compared with T. is allowed to elapse. In our case this time was at

1
least 4T1. At this time the recording milliameter is started providing a
time axis, and HO is switched back to the resonance condition. The
signal is observed to decay from its value immediately after switching on

) Ho with a time’constant which decreases, in succeeding runs, as the r.f.
level is increased.

The exponentials were extrapolated to t = 0. All the curves

intersected Vin the amplitude of the signal in the unsaturated

sat’

/v the

situation. If one defines the saturation factor S as v sat’

unsat
ratio of unsaturated signal amplitude to the saturated signal amplitude,

then the time constant is Tl/S.

I11.4 Sample Temperature Control:
The powdered sample was encased in a thin-walled teflon cylinder.
The sample coil was wound around the teflon cylinder and fixed to it by
teflon tape. The sample and coil assembly were contained in a dewar which
was appropriately fixed between the magnet pole faces. To obtain tempera-
tures between 273°K and 423°K the boil off from liquid nitrogen was
passed over a heated nichrome coil contained in a glass tube and then

allowed to enter the dewar through a glass tube. Temperatures in the



49

range from below 273%K to 85°K were achieved by nitrogen boil off without
the heater. In both instances, the tempe¢rature of the sample could be
controlled by varying the amount of power delivered by a variac to the
immersion heater located in the liquid nitrogen source. The temperature
of tﬁe sample was measured by‘é éobper—constantan therﬁoéouple vhich was
buried in the middle of the sample. As a precaution against noise pick

up one point of the thermocouple circuit was grounded. The thermocouple
e.m.f. was measured by a Croydon Precision Instrument Co. Type P3
Potentiometer.. Another thermocouple monitored the temperature of the gas
outside the sample and the equality of the temperatures indicated that the
sample temperafure was uniform. To obtain liquid nitrogen temperature the
sample dewar was filled with liquid nitrogen.

To obtain sample températures below 77°K a helium cooled cryogenic
system was used. The dewar system and temperature controls were obtéined
from Andonian Asscciates, Inc. The sample is mounted on a copper sample
holder in which are embedded two temperature sensors. In our case, the
sensors are a calibrated germanium resistance thermometer and a calibrated
platinum resistance thermometer. A differential copper-constantan thermo-
couple was used to monitor temperature gradients between sampie and
copper sample holder. The flow of helium gas into tﬁé sample chamber may
be controlled by a needle valve cdnnecting the pressurized helium
storage chamber and sample chamber. A small electrical heater is wound on
the copper sample holder. A flow of helium gas is maintaiped such as to
yield é sample temperaturc slightly below that desired. Then with
minimum current flow through the electricel heater, a thermal balance is

obtained. This procedure minimizes the existence of tempcrature gradients.
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After apparent tempcrature stabilization, a minimum of half an hour was
allowed to elapse before the experiment was begun. Utilizing this
procedure temperature stability could be maintained over long periods of
time. At all temperatures the crystal temperature remained constant

within # 1°K for the length of time necessary to perform the experiment.



CHAPTER 1V

CRYSTAL DATA

1IV.1 Ammonium Sulfate:
The crystallogfaphic data reported in 1960 by Wyckoff @20) are
as follows:
Orthorhombic: space group: paraelectric phase Pnam
| ferroeléctric phase Pnazl
Cell Dimensions: a = 7.782%, b = 10.6368, ¢ = 5.993%

Cell Contents: 4[(NH4)ZSO4] per unit cell.

The crystal belongs to the potassiﬁm sulfate structure type. The
positions of the variqus atbms in (NH4)ZSO4 is shown in Table 1. The
crystal has three reflection planes (gb, bc, ca) and a centre of
inversion. There are two inequivalent kinds of ammonium ions in the unit
cell, which are denoted as Types I and II. In the ferroelectric phase,
the crystal is polarized along the caxis and the centre of inversion
and the ab planc of reflection are no‘longer present.

In Figure 3 the environment of the Type I NHZ is shown above
and below the transition. A comparison of Figure 3 (a) and Figure 3 (b),

which show all H...Q distances less than 2.6% around one of the ammoniUm

ions, shows that in the low-temperature phase three hydrogen atoms are

51



Table 1

Positional parameters above and below transition
for (NH4)ZSO4
At room temperature, since the multiplicity of the general

position in Pnam is eight and there are only four formula units/unit cell,

the sulfur atom, two oxygen atoms, the nitrogen atoms, and four hydrogen

atoms lie on the mirror planes (Positions "4c': x,y,%; X, ¥, %; %-- X,

1 3.1 1 1 ! - .

SHY, gt X 7Y 7 )+ The remaining atoms are in general

positions (x, y, z; l-+ X 1. y 1 z; X, ¥ l.+ 2. 1 X l.+ y 7
b b > 2 b4 2 3 2 3 3 3 2 E] 2 2 2 H >

= = =.1 1 1 1 1 1
XY, 2;7—}(, '2"")’) ?"' Z; X5 ¥, 2—"227‘*3(»-2'-}’, Z). At low

temperature, in Space CGroup PnaZ1 where the multiplicity of the general

position is four, all atoms can occupy the general positions (x, y, z;

1 1 1 1 1

- - 1
X, ¥, ’2—'+Z;—2—-X, ’2"‘"}’, -2-‘+Z;—2-+X, ’2"‘_')’, Z).

(after Schlemper and Hamilton)
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X y z
S (RT) 0.244+9.001 0.419::0.001 0.250
(LT) 0.243+0.002 0.421-£0.001 0.250
(Singh LT) 0.242140.0004  0.42302-0.0003  0.250
o(1) (RT) 0.0612:£0.0006  0.3887::0.0006  0.250
(LT) 0.061::0.001 0.402-:0.001 0.212:::0.004
(Singh LT) 0.0602:£0.0013  0.40244-0.009  0.212740.0016
0(2) (RT) 0.2701:£0.0007  0.5559+0.0004 . 0.250
(LT) 0.284:+0.001 0.557-:0.001 0.222-:0.004
(Singh LT) 0.2873:£0.0015  0.55653:0.0011  0.2255:0.0018
0@3) (RT) 0.3239::0,0005  0.3665::0.0003  0.0488:£0.0005"
(LT) 0.339+0. 001 0.34640,001 0.083+:0.004
(Singh LT) 0.33754:0.0011  0.346240.0008  0.0872::0.0014
0(4) (RT) 0.3239::0.0005  0.3665::0.0003  0.4512:0.0005
: (LT) 0.294+0.001 0.3562-:0.001 0.477-:0.004
(Singh LT) 0.2855+:0.0012  0.3840+:0.0009  0.4795::0.0015
N(1) (RT) 0.6895+0.0003  0.4025+0.0002  0.250
(LT) 0.6808-£0.0007  0.3958:0.0005  0.245::0.004
(Singh LT) 0.6789+:0.00iS  0.2966::0.0011  0.2533::0.0018
N(2) (RT) 0.9677::0.0004  0.70500.0002  0.250
(r.T) 0.0705:0.0006  G.6000:.0.0705  0,256:1:0.001
(Singh LT) 0.9786£6.0014  0,70074:0.C010 - -0.2656::0.0016
H(1) (RT) 0.810+0.002 0.3724:0.001 0.250
(LT) 0.7712£0.003 0.336:0.002 0.202:0.005
H(2) (RT) 0.6000.002 0.3432:0.001 0.250
(LT) 0.564-:0.003 0.360£0.002 0.206::0.005
H(3) (RT) 0.676:0.001 0.457::0.001 0.122::0.002
(LT) 0.601+0.002  0.480+0.001 0.157::0.005
H(4) (RT) 0.676:0.001 0.457-£0.001 0.378:0.002
(LT) 0.682-:0.002 0.412-:0.002 0.408::0.095
H(5) (RT) 1.0694-0.001 0.6494:0.001 0.250
(LT) 1.092::0.002 0.658=:0.002 0.2224-0.005
“H(6) (RT) 0.991:4-0.002 0.792::0.001 0.250
(LT) 0.990:0.003 0.7930.002 0.265:0.008
H(7) (RT) 0.893::0.001 0.682:4:0.001 0.1244:0.002
(LT) 0.896-:0.003 0.670:0.002 0.14249.005
H(8) (RT) 0.893::0.001 0.652::0.001 0.376:0.002
(LT) 0.945-:0.,003 0.672::0.002 0.4124:0.005

& RT2208°K, LT>~180°K.



Figure 3

- (a) Room temperature environment of ammonium (I),

(b) Environment of ammonium (I) at approximately 180°K3

[Both (a) and (b) constitute stereoscopic pairs and can be viewed with

a small hand-held stercoscope.]

. (after Schlemper and Hamilton)
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Figure 4

(a) Room temperature environment of ammonium (II),

(b) Environment of ammonium (II) at approximately 1800K¢

[Both (a) and (b) constitute stereoscopic pairs and can be viewed with

a small hand-held steréoscope.] (after Schlemper and Hamilton)
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involved'iﬁ strong hydrogen bonds whereas at room temperature only one
hydrogen is strongly hydrogen bonded to a neighbouring sulfate group.
This latter hydrogen has the weakest hydrogen bonding at low temperature.
A similar comparison of Figure 4(a) and Figure 4 (b} shows much less
change in the hydrogen bonding around the Type II ammonium ion. However,
in going from the room-temperature structure to £he low—tempefature
structure, for that ammonium icn there is a decrease in length and
presumably an increase in strength of the strongest hydrogen bond from

three of the hydrogens to the neighbouring sulfates.

IV.Z Ammoniﬁm Fluoroberyllate:
The crystallographic data reported in 1960 by Wyckoff (20) are
as follows: -
Orthorhombic  : space group; paraelectric Pnam

ferroelectric Pn21a

Cell Dimensions: a = 7.645%, b = 10.450%, ¢ = 5.929%

The crystal belongs to the K,S0, structure type. The above cell

4

dimensions are for the basic cell, but upon re-examination of the

4)2BeF4, Okaya et al. (21) found superstructuring with

the true room-temperature cell having the b and c dimensions doubled.

structure of (NH

The symmetry of the superstructured cell of (NH4)286F4 at room tempera-
ture is Acam.

Below the transition temperature (NH4)2B8F4 has its a dimension

doubled. The basic ferroelectric cell has:

b b b _
ap = 2a, be = b, c.=c¢
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The true ferroelectric cell has a supersturcture, and

b

ag

= 2a, b, = 2b, c. = 2c

f f

In the ferroelectric phase, the crystal is polarized along the b axis.
Hence, the direction of the ferroelectric axis in (NH4)2BeF4 is at 90°
to that of (NH4)2804. No information concerning the hydrogen bonding is
available since detailed x-ray or neutron diffraction studies have not

yet been reported.

IV.3 Sample Preparation:

The primary standard grade of ammonium sulfate was obtained from
TFisher Scicuiific. The deuterated ﬁdterial was prepared by successive
(three fold) iisotope exchange of (NH4)ZSO4 with 99.8% D20.

The deuterated ammonium fluoroberyilate sample used in this

study was given to us through the kindness of D. E. O'Reilly and T. Tsang.



CHAPTER V

- EXPERIMENTAL RESULTS

V.1 Deuteron Spin-Lattice Relaxation
in (ND4)ZSO4:

The deuteron spin-lattice relaxation times (Tl)‘were measured
using 90° pulses at 11.5 MHz. The free-induction decay (FID) was
photographed and T1 analyzed from the amplitude of the FID following the
second 90° pulse. All experimental values given in the text and in the
figures are averages obtained from about 10 exposures.

for (3D arc plotted

1 4)25%

in Figure 5 on a semi-logarithmic scale versus the inverse temperature.

The averaged CXPCTiﬁGntul\yaluss of T
The experiment was performed over a temperature range 475 to 105°K with
data being taken at approximately 10° intervals.

The 1n T, versus inverse temperature (1/T) relationship which

1

describes the composite T, above 223°K is linear with a slope corresponding

1
to an activation energy of 2.54 % 0.05 kcal/mole. On passing through the
first-érder phase transition at 223°K, the composite T1 decreases
abruptly to about 25% of its former value.

Between the transition temperature and approximately ISOOK, the
decay of the magnetization was observed to be non-exponential, but could

adequately be described in terms of two groups (Type I and Type II) of

equal numbers of deuterons possessing different relaxation times. The
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Figure 5§

Temperature dependence of the deuteron spin-lattice relaxation time T1

in (ND4)2804 at 11.5 Miz.
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experimental curve of magnetization decay in (ND SO4 at 188°K, which is

42
typical of the observations made between 150 and 210°K, is shown in Figure

6- In this region, the In T, versus 1/T relationship is not linear for

1
Type I deuterons whereas it is linear for Type II giving an activation
energy of 2.7 ¢+ 0.3 kcal/mole. A minimum in T{ of 750 &+ 200 psec occurred
at 165°K for Type I deuterons.

Below ISOOK, the magnetization decay was again exponential
indicating that the energy of both spin systems is transferred to the
lattice through a single group of deuterons. After passing its minimum,
Ti increases rapidly as the reorientation frequency of Type I deuterons
~ decreases. Because the relaxation rate of the Type II deuterons is still
increasing, this becomes the dominant relaxation mechanism and continues
to be so at the lowest temperatures reached in this work. The relaxation
rate of Type II deuterons reaches a maximum at 117°K producing a minimum
of 630 + 300 psec. After the minimum, In T

in the composite T versus

1

1/T is again linear.

1

.2 Deuteron Spin-lLattice Relaxation
3 ANF ‘
in (hD4)zBeF4

The experimental procedure in obtaining the deuteron spin-lattice

BeF, was identical to that employed in the

relaxation time, Tl’ in (ND4)2 4

\
case of (hD4)ZSO4.
The averaged experimental values of T for (ND4)ZBeF4 are plotted
in Figure 7 on a semi-logarithmic scale versus the inverse temperature.
The experiment was performed over a temperature range 475 to 77°K with

data being taken at approximately 10° intervals.



Figure ©

- Decay of the normalized magnetization in (ND4)ZSO4 at 188°K‘,
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Figure 7

Temperature dependence of the deuteron spin-lattice relaxation time

T, in (ND

1 Bev4 at 11.5 MHz.
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The 1In T1 versus inverse temperature (1/T) relationship which

describes the composite T, from 200 to 300°K is linear with a slope

1

corresponding to an activation energy of 2.7 ¢+ 0.3 kcal/mole. From

approximately 300 to 460°K the composite T, increases less rapidly and

1
the curve levels off. |

Between 180 and 125°K the decay of the magnetization was observed
to be non-exponential and as in thé case of (ND4)2804 could adequately be
described in terms of two groups (Type I and Type II) of equal numbers bf

~deuterons possessing different relaxation times. In this region, T{

decreases abruptly at Tc and the In T, versus (1/T) relationship is

1

linear below T. with a slope corresponding to an activation energy of
4.3 + 0.4 kcal/mole. On the other hand, T{I suffers no abrupt change

upon passing through Tc and here also the In T, versus (1/T) relationship

1
is linear with a slope corresponding to an activation energy of 2.4 ¢ (.2
kcal/mole. A minimum in T}Aof 1500 + 600 usec occurred at 140°K.

Below 125°K, the magnetization decay was again exponential
indicating that the energy of both spin systems is transferred to the
lattice predominantly through a single group of deuterons. After passing
its minimum, Ti

I deuterons decreases. Because the relaxation rate of the Type II

increases rapidly as the reorientation frequency of Type

deuterons is still increasing, this becomes the dominant relaxation
mechanism and continues to be so at the lowest temperatures reached in
this work. The relaxation rate of Type II deuterons reaches a maximum

at 95°K producing a minimum in the composite T. of 850 + 300 psec.

1



V.3 Proton Spin-Lattice Relaxation
in (NH4)ZSO4: |
Proton spin-lattice relaxation time measurements in (NH4)2804

have been made at 40 MHz in a temperature range 180 to 4.2°K. The free
induction technique was used in the temperature range 180 to 77°K, and,
the signal decay technique in the range 77 to 4.2°K.

| In Figure 8 the averaged experimental values of T1 are plotted
on a semi-logarithmic.scale versus temperature in the present case, thé
reason being that for temperatures much below 77°K a 1n T, versus inverse
temperature plot becomes inconvenient. In the temperature region above
180°K we have included the experimental values given by Miller et al.(9).
As the temperature decreases from ISOOK two minima in the relaxation‘
process are observed. The minima at 175 and 123°K'correspond to the
reorientation processes of the»two crystallographically non-equivalent
ammonium ions, Type I and Type II, respectively. The situation in the
present case of proton relaxation is very similar to that observed in the
deuteron relaxation experiment (see Figure 5). The difference between
the two can be seen by comparing the order of magnitude of T1 in both

cases. For protons the T, values at both minima are at least one order

1
of magnitude greater than those in the deuteron case. This has the
result that the spin-diffusion time is shorter than both Ti and TiI and

consequently prevents the establishment of two spin temperatures as
observed for the deuterons. Therefore, in (NH4)ZSO4 both NH4(I) and
NH4(II) ions relax through whatever group has the more effective
reorientation at a particular temperature. Below 90°K, the composite T1

begins to increase steadily and tapers off below 50°K attaining a value



Figure 8

Temperature dependence of the proton spin-lattice relaxation time T1

i \H, )., S0 MHz,
in (I\H4,ZSO4 at 40 Mhz
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of 1220 sec. at 4.2°K which is the lowest temperature reached in this

experiment.

.4 Proton Absorption Spectrum
of (NH4)2SO4:

The proton magnetic resonance absorption of (NH4)2804 has been
studied in the temperature region 100 to 4.2°K at 40 MHz. The present
results agree with the early measurements reported by Richards and
Schaefer( 8). |

The second moment versus temperature of the proton absorption is
- plotted in Figﬁre 9. In the temperature region well above 100°K the
second moment value is well below about 4 gau552 indicating that the
intra-group local fields are almost completely averaged out. As the
temperature is lowered the second moment begins to increase rapidly in
the temperatufe range 130 to 80°K and reaches a value of 31 gau552 at
>77°K. From 77 to 4.2°K there is no further increase in the second moment.,
In Figures 10 and 11 we have given sample absorption derivative curves
at 105 and 4.2°k. At 105°%K (Figure 10) which is in the transition
region, wings begin to develop at approximately 12 gauss from the centre.

At 4.2% (Figure 11) the wings are fully developed and are situated

12 gauss from the centre.



Figure 9

Temperature dependence of the second moment of the proton absorption

signal from powdered (NH4)2SO4O
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Figure 10

Proton absorption derivative curve from powdered (NH S0, at 105°K.

4)2






Figure 1J1

Proton absorption derivative curve from powdered (NH4)2804 at 4.2°K,
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VI.

CHAPTER VI

DISCUSSION OF EXPERIMENTAL RESULTS

1 Deuteron Relaxation in (ND4)ZSO4 and (ND4)2BeF4:

We refer to Figures 5 and 7 where the experimental values of
lnT1 versus (1/T) for (NI)4)ZSO4 and (ND4)ZBeF4 are plotted, respectively,
The temperature dependence of T1 in each material showed a number of

unusual features. The discontinuous changes in Tl are associated with

the transitions to the ferroelectric phases and, within experimental

‘error, occurred at the reported values (3, 4) of the Curie temperatures,

Tc’ which arc‘indicatedbin the figures.

Both ammonium sulfate and ammonium fluoro-beryllate have 8
crystallographically non-equivalent deuterons associated with two non-
equivalent ND, groups. However, in the temperature range of interest,
each ND, group is reorienting sufficiently fast that -eqQ/h is
time averaged to the same value at each of the deuteron sites within
a'ND4 group but not begween groups. Thus there are only two. effective
sub-systems of deuterons in these materials.

The two non-equivalent ammonium groups in both materials
reorient against different hindering potentials and also have different
quadrupolar couplings (10, 22). Consequently, the deuterons belonging to
these two ammonium groups have different spin-lattice relaxation times.
The observed double minima and the two values of T1 in both materials can
be understood in terms of the existence of two non-equivalent ND, groups

in each material. 69
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Normally, spins of the same nuclear species in a solid are more
tightly coupled among themselves than with the lattice. This has the
result that if the nuclei are disturbed from equilibrium with the
lattice, the spin-spin interactions establish an internal equilibrium
in a time less than the shortest spin-lattice relaxation time of the
sub-system of spins. This situation prevents the establishment of a
characteristic spin temperature for the various sub-systems of spins
and as a result the nuclei act as a single system.in approaching
equilibrium with the lattice. The approach to equilibrium by the total
magnetization, in the present case of two sub-systems of equal numbers

of spins, is described by the equation:

THIT 3417
Mzh) =ML - exp(-t/1)))

where M, is the component of magnetization along the magnetic field

direction, Mo is the equilibrium magnetization, and T, is the composite

1
spin-lattice relaxation time given by 1/T1 = 1/2 (l/Ti + 1/T{I).
However, if the spin-lattice relaxation for each of the sub-
systems is faster than spin-diffusion between sub-systems, each may
approach equilibrium with the lattice at a rate determined by its own

T.. Each sub-system may be said to possess its own spin temperature,

1
6> for which the rate equation for Type I in the case of two sub-systems,

may be written as:

d 1 1 I 1
S (/80 = (176 - 1/8)/T;
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with an analogous one for TypeVII. At t=o, eg = egI or, in terms of

~the magnetizations, Mi and Mil, are equal since the non-equivalent sub-
systems are made up of equal numbers of deuterons. The total magnetiza-
tion then approaches equilibrium at a rate determined by the characteristic
time constants of the sub—systéms. Again, for the case of two sub-systems

of equal numbers of spins, the approach to equilibrium by the magnetiza-

tion is described by the equation:

{1 - 0.5 exp(—t/Ti) - 0.5 exp(—t/TiI)}

We refer to Figure 6 in which is shown the exberimental curve of
magnetization decay in ammonium sulfate at 188°K, which is typical of
the observations made between 150 and 210°K. The experimental points
represent the values of the total magnetization decay as a function of
time. In order to resolve the individual time constants the longer one

which in the present case is Til is extrapolated to t = o. With the

assumption that this extrapolation represents T}I, Ti is obtained by
subtraction of TII from the total. The applicability and limitations

1
of this technique have been discussed by Trappaniers et al.(23). It
should be noted that the extrapolated magnetization decay characterized
II
by T1

be expected on the assumption of two sub-systems of equal number of

intersects the normalized.total decay at 0.5 which is what is to

deuterons.

. Agreement with the calculated curve using two decay constants
’ |

is excellent and it is clear that in the temperature range, 150 to 210°K

. ) o] . N .
in (ND4)2SO4, and, 125 to 180K in (ND4)2BeF4, each sub-system of
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deuterons approaches equilibrium with the lattice with its own relaxation

i and Til are smaller than the

spin-diffusion time, arises because the quadrupole coupling combined with

time. This situation, in which both T

molecular reorientation of both ND, groups produces very short values

for Ti and TiI. Outside the temperature ranges noted above, the
II

condition that Ti and T1

which is also a function of temperature, is no longer met and the

both be shorter than the spin-diffusion time,

magnetization decay is exponential with a single composite decay

constant.

- . . . I,I1
A minimum in T1 occurs when the correlation frequencies v, T,

. of the two non-equivalent reorienting ND, groups satisfy the condition

w o= 0.616 mcI?II where w, is the deuteron Larmor precession frequency.

L
The minimum at 165°K in (ND4)ZSO4 occurs in the region where Ti and Til

can both be measured and is associated, we believe, with the deuterons
denoted as Type I by Schlemper and lHamilton (12). After passing its
minimum, Ti

deuterons decreases. In the region of-lSOOK, T% becomes larger than

increases rapidly as the reorientation frequency of Type I

the spin-diffusion time between the two groups of deuterons. Because

tﬁe relaxatidn rate of the Type II deuterons is still increasing, this
becomes the dominant relaxation mechanism and continues to be so at the
lowest temperatures reached in this work. The relaxation rate of Type 11
deuterons reaches a maximum at 117°K producing a minimum in the observed

composite T.. In this temperature region,vTiI has been calculated with

1

. . I Ir . . 11
the approximation that T >> T,” giving T] = 1/2 'I‘1 except near the
“'"erossing" temperature. Extrapolation of the TI curve suggests for the

1

region above Tc that Ti >> TiI resulting in the Type II deuterons again
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providing the dominant relaxation mechanism with the composite T
11
17

region we would observe a larger activation energy in the paraelectric

1

being simply 2T If this assumption were not valid in this temperature

phase. It is clear from Figure 5 that the slope of TiI between 150 and

210%K is almost equal to the slope of the measured T, above 225°K.

1

The explanation for the observed behaviour of T, in (ND4)ZBeF

1

is similar to that in (ND4)ZSO4. The minimum at 140° occurs also in

4

the region where Ti and T%I can both be measured. In the region below

125°%K Type II deuterons become the dominant relaxing mechanism. In this

temperature region, T{I has been calculated with the approximation that
T§,>> TiI giving T{I =1/2 T, except near the "crossing" temperature.

I
1

(ND4)2804 is not valid. This may be seen by observing that the slope

However, above 200°K the approximation that T, >> Til as was the case in

(see Figure 7) of the composite T between about 200 and 300°K is not

the same as the slope of Til between 130 and 200°K. The reason for this
lies with the values of T{ and T{I in this temperature region. In contrast

to the case in (ND4)2804, Ti and T{I here are comparable in value and

therefore both contribute to the experimental relaxation time. The

extrapolations of both Ti and T{I (see Figure 7 ) were obtained by using

the relation 2/T1 = l/T{ + 1/T{I.
4)2BeF4 is probably

associated with the effect of reorientation of the BeF4 ions.

The decrease of T1 above 300°K in (ND

The activation energies, Ea’ for the various reorientation
processes have been obtained from the linear portions of the T, curves
in Figures 5 and 7. These are compared in Table 2 with values obtained

by other workers for protons in (NH4)2804 and (NH4)2BeF4. Within



Table 2

Activation energies (in kcal/mole) for reorientation of
the NDg4" ions obtaired from the Ty data. The crystal
phase for which each value was cbtained is indicated in
brackets after the value by the letter F or P for
ferrcelectric or paraelectric, respectively. Activation
energies in brackets were interpreted as associated with
Group I ions whereas a reinterpretation on the basis of
the dewnteron results show that they should be associated
with Group II ions or are cocuposite valves.



(NH4)2BeF

E (P)

(2.3%£1.1)

(2.3)

4.3£0.7

(1.5£0.7)

(2.7)

74

Ea (F) Reference
2.7+0.3

9
2.7 10
2.4%0.2

9
2.3 11
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experimental error, the activation energies for reorientation

-+

4 ions do not chande at the ferro-

of the Gréup I‘and ITI ND
electric fransition in égreément with the neutrpn.results
(12, 13) that the rotational freedom of the ammonium ions
undergoes little change iﬁ passihg through the transition.
Thé above fesﬁlts make possible an explanation for
the(contfadictory conclusion of Miller et al. (9) that the
activation energy increases substantially on going from the
paraelectric to the ferroelectric phase in both ammonium
"sulfate and fluéroberyllate. They assumed the existence
of only one effective tybe of ammonium ion énd attributed
"to it the observed activation energy in each phase. 1In
fact, their value for the activation energy iﬁ the ferro-
electric phase corresponds to that of GfQup I ions and their
value in the paraelectric phase corresponds to Group II.
Interpreted on this basis, one sees that their results,
shown in Table 2, are gquite good within the limitations
of the quoted errors.
O'Reilly and Tsang (10) and O'Reilly; Peterson and
Tsang (11) did interpret their proton results in terms
of two nonequivalent groups of ammonium ions, but they
do not seem to have ailowed for the fact that the Tl curves
for Groups I and II ions dross at two points. In the
sulfafe (10), the value given\for Groups I and Ii ions

in the paraelectric phase is valid only for Group II ions

because these ions provide the dominant relaxation



74-b
mechénism in this temperature range. _In.the fluoroberyllate
(11), the value4of>2.7-k¢a1/mole given for G}oup I ions
is actually a composite value because in this range’both
groups of ions are effective in the relaxation process.

Eor comparison, thé dguteron results éive a value of

2.7 + 0.2 kcal/mole for the composite activation eneigy
over the same temperature range. Fortunately, in the
deuteron case, the individual activation energies for the
two groups of ions can be obtained for the paraelectric
phase‘as well as the composite wvalue épplicable at highef
temperatures. This comparison shows clearl? the care with

‘which one must interpret T, results when dealing with

1

crystallographically nonequivalent groups cof like nuclei.
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Similarly, in Table 3 our Values for the correlation

. time, Toc ~at infinite temperature. calculated from the

condition at theTl minima are compared with similar values for protons.

In the case of deuterons, the dominant relaxation mechanism is
expected to be quadrupolar because the magnetic moment is so small.
The expression relating the quadrupole coupling constant, eqQ/h to the

relaxation time is given by equation (2.61), i.e.,

372 ‘ é . Tc 4Te
1/’1"1 = 5 (eqQ/h)2(1 + Uz/S){ * %
. 1+ w272 1 44w 2t 2
L ¢ L ¢

_where n is the asymmetry parameter of the electric field gradients, and
T is the correlation time governing the exponent%g} time decay of the
auto-correlation functions for mo}ecular reorientation. For a thermally
activated reorientation, the correlation time obeys the <Arrheniﬁs
“relation:

Te = Toc exp(Ea/RT)

From the expression for T1 (Equation 2.61) evaluated at the extremum
the-quadrupble coupling constants 'eqQ/h can be calculated. For the

Larmor frequency 11.5 MHz this expression reduces to:

_ 3 .-1
egQ/h = 2,6 x 10 Tl(min)

O'Reilly and Tsang (10) have determined nin a single crystal study of
N(ND4)ZSO4 and found it to take for Type I and II ions respectively, the
‘values 0.75 and 0.97 at 230°K and 0.32 and 0.52 at 210°K. The values

for p are expected to continue to decrease as the temperature is lowered



Table 3

Correlation times in the ferroelectric phase.



I .
TI (sec) TI (sec) Reference
oc oc

14 ' -14

(NH,) ,50, 7 x 10 8 x 10 10
-14 -14
(ND4)ZSO4 0.2 x 10 | 10 x 10
-14 -14
(NH4)2BeF4 3 x 10 3 x 10 11
14 -14

(ND4)2BeF4 0.2 x 10 : 2 x 10
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further and to approach zero when the ND, ions become rigid.‘ Thus,

4
the effect of n at the T, minima will be very small and, with the
assumption that it is zero, the values shown in Table 4 weré-calculatéd
for eqQ/h. _
 The value of 161 + 10 kHz for eqQ/h for Type I ion in (ND,),50,
compares well with the values obtained from the study of quadrupole
;perturbed absorption in a single crystal (10), 174 kHz, and in a
powdered sample (24), 162 kHz. An qu/h value for Type II ion is not
" available for comparison because these ions are reorienting too fast at
the lowest temperature reached in the quadrupole perturbed absorption

experiment. No data in the case of (ND4)ZBeF are available for comparison.

4
In.conclusion it is interesting to compare the present results

with those obtained from other experiments. The observation of

distinctly different relaxation times for the two non-equivalent groups

of deuterons in both materials confirms the interpretation given by

O'Reilly and Tsang (10,11) for thé occurrence in the ferroelectric

phase of two minima in the temperature dependence of the proton relaxation

time. The values obtained’for the activation energy of the Type II

deuterons over different temperature fanges in the case of (ND4)2804 are

the same (within experimental error) in agreement with the conclusion

drawn. from neutron diffraction work (12, 13) that no significant change

in the activation energy takes place at the ferroelectric transition.

In this respect, the deuteron results are clearer than the proton results

(10) where the direct measurement of the activation energy appears to be

for Type II protons above the transition and Type I below.


http:becor.ie

Table 4

Quadrupole coupling constants ¢qQ/h in kHz.
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Type (T) Ion Type (i1} Ion

(ND4)2SOA 161 £ 10

b
(&5
N
it

18

(ND,) BeF 107 £ 8 200 * 14
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O'Reilly and Tsang (10) have proposed a model forvthe ferro-
electric transition in both materials based on their deuteron magnetic
absorption results. They suggest that the transition from the para-
electric to the ferroelectric phase is due to the tilting of the
distorted ammonium tetrahedra along the respective ferroelectric axes.
Based on this model, calculations of the spontaneous polarization in
both materials, and of the latent heat in ammonium sulfate, are in good
agreement with the experimental data (5).

It is interesting to compare the effects of the ferroelectric

phase change on T, in ammonium sulfate and ammonium fluoroberyllate in

1
- the light of the present deuteron spin-lattice relaxation results where

we are able to resolve the individual correlations of the two independent
ammonium groups. In Figure 7, it is clear that in ammonium fluorcheryllate
§n1y one ammonium group (Type I) suffers discontinuous change in T1 ét Tc.
From a comparison of Figures S5 and 8 showing the deuteron and proton
relaxation results, respectively, it is evident that in ammonium sulfate

both ammonium groups suffer a discontinuous change in T, at Tc'

1
The above suggests that the phase transitions in these two
materials are rather different and that in ammonium sulfate.both types
of ammonium ions are involved whereas in ammonium flﬁbroberyllate only
one type is involved. Such a conclusion is supported by thermal and
dielectric results (5). From these thermal studies, the entropy change
at the transition was fouﬁd to be 1.90 cal/mole deg. for (NH4)ZBeF4 and

2.27 cal/mole dég. for (ND4)289F compared to almost twice as large a

4
value, 4.2 cal/mole deg., observed for (NH4)2SO4~and (ND4)2804. The

dielectric results are of particular interest if the ammonium ions do



80

indeed make the major contribution to the spontaneous polarization but
they are difficult to compare because of their different temperature

dependences. In (NH,) BeF, the spontaneous polarization, after a rapid

4)2 4
initial increase at the phase transition, continued to increase slowly
as the temperature was lowered whereas it showed no temperature
dependence after the initial large increase at the'transitiqn in
(NH4)2804. Nevertheless, the spontaneous polarization reached a value
of only 0.22 ucoul/cm2 at 153°K in the fluorcberyllate compared to 0.47
pcoul/cm2 in the sulfate.

It also is interesting to note that for the N.M.R. results the
phase transition in ammonium fluoroberyllate appears to be first order
and just as abrupt as in ammonium sulfate. This is supported by a more

recent dielectric study of the fluoroberyllate the results of which

indicate that the transition is first order (6).

VI.2 Low Temperature Proton Magnetic Resonance
in (NH4)2804: |

Although there exist data in the literature for proton absorption
in (NH4)2SO4 down to 20°K, we repeated the experiment from 100 to 20°K
and extended it down to 4.2°K. The temperature dependence of the second
moment is given in Figure 9. The agreement with earlier results (8) is
generally good, although the value of the second moment at 4.2% is
approximately 10% smaller than that reported at 20°k. The experimental
value of 31 gau552 for the second moment at 4.2°K is significantly lower
than reported values for ;imilar proton configurations. For example, in

“NH,C1, NH

J -~ J e v . Y 3
A ROS, NH IO3 and (NH4)2CrO4, the second moment at 20 K is

4 4
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approximately 50 gaussz 8).

According to a theoretical calculation (26) a rigid tetrahedral
four-proton spin configuration with proton-proton distance approprate
for the NH4 group, would be expected to produce a second moment of
about 50 gaussz. The observed value in (NH4)ZSO4 which is about 40%
lower indicates that some phenomenon is preventing thé rigid lattice
value from being attained. It should be mentioned that this unusual
narrow line~width is not isolated to the preseht case of (NH4)ZSO4.
Significant narrowing of the proton second moment at liquid helium
temperature has been observed in this laboratory for about ten ammonium
compounds, and; a very similar reduction has‘been reported for solid
methane (27). As a result of these oﬁservations, it 1s evident that the
reduction in line-width, whatever its nature, appears to occur often
with tetrahedral configurations of nuclei with I = 1/2.

"To differentiate between a motional narrowing, where the
correlation frequency is larger or equal to the line-width, and a
narrowing due to symmetry selection rules imposed on the total wave
function, spin-lattice relaxation times were measured at 40 MHz down to

4.2°K. The present T. results indicate that the correlation frequency

1
is indeed much smaller than the line-width with the cénsequence that
motional narrowing is not taking place in (NH4)2804 at 4.2%.

The low tempefature T data to which we refer are given in
Figure 8. We observe that below 90°K, Ti begins to increase steadily
and then tapers off bélow 50°K attaining a value of 1220 sec at 4.2°x.

This temperature dependence suggesting a limitation of T, usually suggests

1

that the effective relaxation mechanism is due to paramagnetic impurities.
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The argument which leads to the conclﬁsion that motional
narrowing, as for'example due to thermally activated reorientation or
tunneling, is incapable of line narrowing in (NH4)2804, proceeds as
follows: The dipolar relaxation rate for a four-spin system is given

by equation (2.39), i.e.

Y h? %
1 ' r6

41
c ‘c

+ %
T 2 144w 21 2
c L ¢

=]
(o]

1
T l+w

SN A

Using the approximation that at the low temperature side of the T1

minimun W T, >> 1, equation (2.39) reduces to:
2
T - 3 r6 W
1 9 472 T
Y h c

This frequency dependence was checked at 25 and 40 MHz in the region of
70°K and found to hold within experimental accuracy. Assuming that the
experimental value of 1220 sec for T1 at 4.2% represents a purely
dipolar relaxation rate we calculate Ve (motioﬁ) = 27 (200)sec~1. This
value is two orders of magnitude smaller than the line-width of the NH4
group (¢ 105 Hz) at 4.2°K. Consequently, the possibility of motional
narrowing is ruled out.

.As mentioned prevously, the temperéture dependence of the

observed T, in the region 50 to 4.2% suggests a paramagnetic impurity

1
relaxation mechanism. In the event that paramagnetic impurity relaxation

contributes to the observed rate we may write:

(ll _ 1 1
L) C () s (B
1/ experimental 1/ dipolar 1/ paramagnetic




83

As a result, the dipolar rate will be smaller than the one observed and
hence equation (2.39) becomes an inequality yielding
W, (motion) 2 2 (200) sechl. It is clear that this observation
reinforées our conclusion that motion in iﬁcapable of avéraging out the
local field.

To be complete we should discuss the possibility that one of the
“two non—equivalent'NH4 groups is motionally affected while the other is

at rest. In this case 1/ =1/2 (l/Ti + l/T{I) and since one rate

Tl exp
is zero we are left with T{ (or TiI) =1/2 T1 exp which will increase

the correlation frequency by a factor of two. It then follows that

W, (motion) £ 27 (400)sec'l which is still well below the line-width and
hence further strengthens our argument that motion is incapable of
averaging out the local field.

Having ruled oﬁt motional mechanisms as possible causes for
the observed line narrowing, a possible explanation of the narrowing
could be the symmetry requirement that the total wave function be
symmetric under the excﬁénge of two pairs of protons. This symmetry
requirement imposes selection rules on the spatial and spin wave functions
and restricts the possible combinations of rotationa} and the total
nuclear spin quantum numbers;

It is known (14 - pg. 106) that terms in the dipolar Hamiltonian
which coupie states of different energy must be dropped in the calcula-
tion of the second moment, since their contribution contains factors
which oscillate very rapidly and consequently average cut. This is the

reason why only terms A and B of the dipolar Hamiltonian [equation (2.19)]

are retained in the second moment calculation, since only these terms
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involve AM = 0 (i.e. AE = 0). It should be pointed out that the
inclusion of the terms C, D, E, F, of the dipolar Hamiltonian introduces
matrix elements in the Hamiltonian function of the type AM = + 1, + 2,
As a result transiticns are now allowed at energies 6f Zth, and 0,
which are not observed because they are shifted away from the Larmor frapéncy It
should be mentioned that the dropping of these non-adiabatic terms is
not just a simplification but necessary if we are to use the departure
of the mean square frequency from (th)2 as a measure of the mean square
line-width of the main line. The subsidiary lines are much fainter
than the primary Larmor component, but differ so much from the latter in
. frequency that‘their contribution to the mean square frequency deviation
is of the same order as the mean square width of the dominant line.

Returning now to the situation where the spin and rotational
states are not considefed in dependently, then their combinations are
governed by symmetry requirements. For the case of four protons on
the corners of a tetrahedron the total spin quantum number I of the
molecule combines with the rotational angular momentum quantum numbers,
L, such that, for example, I = 2 spin states only combine with even L
rotational states. This is a necessary consequency of the anfi-
symmetry of the total wave function ¥ under exchange 6f two protons
(fermions), cor in other words, ¢ is symmetric under any real rotation
of the tetrahedron.

Under these circumstances, the terms A and B of the dipolar
Hamiltonian have non-zero matrix elements between states of different
I, and hence of different L. Since stafes of different L have different

energies these transitions will be shifted in frequency and consequently



will not be observed. Therefore, these matrix elements must be
dropped from the calculation of the second momeht, resulting consequently
in a lowering of the second moment.

Quantitative estimates based on this possible narrowing
mechanism aré not available at present. Since this effect is not

peculiar to (NH4)ZSO but appears to occur reasonably often with

4,

tetrahedral configurations of nuclei with I = 1/2, an effort is

presently being made in this laboratory to help resclve this problem.



APPENDIX A

CORRELATION FUNCTIONS

Consider a function y(t) where t refers to time. y(t) is a
random function if the value y which it takes at each t is a random
variable subject to a law of probability p(y,t).

The average value of y(t) is:

yE - J y ply,t) dy “ (A1)

Also if f(y) is a given function of y, f will also be a random function

of t and:

——

f(t) = J ply,t) £(y) dy (A-2)

We define the function p(yltl; yztz) as the probability of y

taking on a value Y1 at t, and y, at t A function having a slightly

1 2’
different meaning and which is represented by P(yl,tl; yztz) is the
probability that y takes on the value y, at t, when we know that it takes

the value Y1 at t Hence, we may write:

1
Py ,tys yisty) = POyytys vot) p (ygs ) | (A-3)

The auto-correlation function G(tl,tz) of the random function

f(y) relative to the times t, and t2 is defined:

1

86
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— ' *
G(t,,t,) = f(tl)f*(tz) = JJ Py stysY,st))E(yIE (v,)dy,dy,
G(tl’tz) = jj p(ylatl) P(yltl;thz)f(yl)f*(yz)dyldyZ (A—A)

We are interested in a class of random functions which are
invariant under change of origin of time and are called stationary
random functions. For this class p(y,t) is in fact time-independent

and p(ylt1{y2t2)’ P(yltl,yztz) and G(tltz) depend on ty and t, only

through the difference t2 - t1 = T, Or:
. FA .
G(1) = jJ Py sym) flyy) £ (y,) dy,dy,
*
6(r) = ” p(y) Ply;y,,0) £(y)) £ (v,) dy,dy, (A-5)

We define a correlation time T, by the condition that G(t) is very small
for |t| >> 1 _.
c

We also have the property that:
P(Ylyz,T) = P(styl, -1)
and according to equation (A-5) we may write:
* .
G(-1) = G (1) (a-6)

If we assume symmetry between past and future so that:

P(Y1Y2 mT) = P(Ylsz)



we obtain:

6(-1) = G (1) = G(1) @A)

The auto-correlation function is both an even and a real
function of T.

Finally, we introduce the Fourier transforms of G.

jw) = J G{1) e_indT
E ¥e)
Jw) = 2 f G(1) cos{wt) dt = J G(T) e-iwrdr (A-8)
(¢} [
k(w) = J G(t) sin(ut) dt
0 ,

from which we have:

P = 3 IW - k@ (4-9)
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APPENDIX B

B.1 Properties of the Density Matrix:
The expectation value of an operator Q over the wave function
p(xyzt) is:

<@ =<y | Q| y> : (B..l‘)

v (xyzt) may be expanded in terms of an orthonormal set (¢1(xyz), ¢2..;)

as:

p(xyzt) = 1{Ck(t) by (xy2) (B-2)

If we now substitute equation (B-2) into equation (B-1)

Q@ = igk C;(8)C, (t) <o5] Q | ¢, (8-3)
The above représehts the average value of Q over the range of
possibilities presented by each member of an ensemble.of systems.
What corresponds, however, to an actual measurement on the physical
system is an average over all systems of the ensemble. Hence, we are

interested in:

ensemble ensemble
<Q> = izk Ci(t)ck(t_) <45 | Q| ¢)>
where y
-—————— ensemble 1 )
* ‘ _ 1 N %
c; ()€, (1) = X az ¢ (1)C, (1)
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for N systems a =1, 2,...N of an ensemble.

We define the density matrix Py ast

ensemble
_ *
Pri = GG (1) (B-4)
Finally,
<Q> = ] o0 = tr(eQ) (B-5)
i,k t
where

Qik = <¢i [ Q I ¢k>

B.2 The Density Matrix as an Operator:

Thus far p has been defined using a particular basis. Changing
the basis changes the form of the density matrix in the usual way.
Suppose (¢1¢2 ....¢n) are the first basis and that (xlxz...xn) arc a new
set related by the transformation (xlxz;..xn) = (¢1¢2;..¢H)U where U is

an nxn matrix of coefficients. Then px,the density matrix in the x

¢

representation is related to p’ by:

0¥ = Uty ' (B-6)

¢

“As px and p' describe the same system, although they look quite

=

different, it is more desirable to define a density matrix operator p,
from which a matrix can be formed with any basis in the usual way.

b = | 6. p 6.d
p J ¢; P ¢J T

1]

To do this recall:
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Tk
<¢; | ¢5> = ng;¢i¢j dr

and
*
<¢i I Q I ¢j? = J ¢iQ¢de = Qij
Hence, with the basis (¢1¢2 eed)
pij = < ¢1 l g |'¢j>

If we choose the basis (XIXZ"‘) where S is diagonal the only

X

i The operator

elements are diagonal such as o5

p = Z ' Xi > Pi < Xi I (3’7)
1

where the Pi are numbers, also only has diagonal elements pix = Pi.
This is the density matrix operator and from it the density matrix can
be written in any basis, e.g., in the ¢ basis.
pij = E < ¢i l Xk > pk < Xk [ ¢j > (B-8)
B.3 The Equation of Motion of the Density Matrix:
At a given instant we choose a basis set (xlxz..l) in which S

is diagonal. The operator p is then:

Szilxm>pm<xm
m

Differentiating;



92

C..IQ.
on

d
R
If we use the Schrodinger representation, the states are time

dependent;

The Pm are just numbers and do not vary with time, so equation
(B-9) becomes:

hod

— g o = - [Ho - pH] = - [H, o] (B-10)

B.4 Thermal Equilibrium:
What ever the cause of relaxation the system eventually reaches
thermal equilibrium. At thermal equilibrium, the probability of a

system being in the ith state is given by Boltzmann's distribution law,

exp(-Ei/kT)

g exp(—Ei/kT) (B-11)

1f S is diagonal Pi is the same as the ith diagonal element Pyie The
general expression for the density matrix operator So at thermal

equilibrium is:

exp (-H/kT)

tr exp(-H/kT) (B-12)



APPENDIX C

THE MACROSCOPIC EQUATION

In order to obtain equation (2.13), begin by multiplying

e‘quation (2.6) by Q and taking the trace. We obtain:

o..l_g.
o+
*
"
1

e GTETITEDTTEITT ) @D
o]

Now [A, [B,C]] [A, BC—CB]

ABC + CBA - ACB - BCA

Therefbre,
tr {[H, (1), [H, (t-1), o (©]]Q} =
tr (1) (0, (=10 (£) Q + o (0K, (t-0H, " (£)Q (C-2)

n Hl*(t)o*(t)Hl*(t—T)Q - Hl*(t-f)o*(t)ﬂl*(;)q }

Now:

tr {ABCD} = tr {BCDA} = tr {CDAB} = tr {DABC} (C-3)
Hence we may rewrite equation (C-2) as:

er {01 (), [ (t-1), o (0]1Q} = - tr {[H)" (t-1),[H, (£),Q))0 )

(C-4)
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which is:

tr {[H,"(6), [H," (t-1),0 (©)11Q} = - tr{to }

where

A =J dT[Hl*(t-T), [Hl*(t), Qll]
o

and hence:

dq  _ *
H%_' = - {a - ao}

(C-5)
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APPENDIX D

COMMUTATORS

D.1 Dipolar Coupling:

TS AN O RN U s R TS R IR AR I

First evaluate:

[L1} + 1,1}, I +1!']

1 t t ! 1 ]
. (113,10 + [T, 1)+ [1,I,1] + [1,11,1]]

| ' : 1
I1,1}] + TIL,,1,]

"

- I 1" -1'1
z + 0+
Now evaluate the remainder and obtain:

TSR PXSRS S 5

]

SISO SR 58 AN R SRS 3 08

-[1,10,1,11] - [LI',I!1] - [1_1;,121;]
- [I_I;, I;I+]
which yields:
AN +’1;]] - - 12[1;,1;] - 1P,n,) - LI, s I T
- I_IéIle + IzILI-Ié
The last four terms in above can be made to yield:
- [II 111 (1, + 1]
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Collecting terms and introducing a factor of a? which we dropped

for cbnvenience,
-1, (1) ' P T ) 2 2 12 ' 1 '
[AY7SAYSL, + 11]] = 2621010 + 2021 11° - o [I,I' + I I!(I_+ 1]

Form now:

(‘1 (l) ' t - 2711 2 2 12 ; ' ' t
[A R RS S (S IR 017 s 2021 12 - afr,1 + 110170+ 1

but,

[1,17 + 1_1;]+ = (LI +1'0) = [I,1"+ 11
because ILI_ commutes. Therefore,
-1, (1 o -1,
A VA R G DS NS NS I M 1A

Now to evaluate: ~
-2 2
ACAAr 1
Begin with:
MA@ 1y, Lo+ 1) = [ILINI) 4 [IINIY] = -2 1.1
z z + 40 z e z + 477z

Z +’ + 4

Now multiply by 1/2 because of factor in A(2). We must now

evaluate:

n

WOy = -0 - LI, 1)

L]

+ -7z

21 I1'1' -2111!
z -+
Again, drop factor 2. Hence,

[A(‘221 I'} = I_I'I' + 111!
+ 4+ AR + -z,



but I_I+ = Ii + 1 - IZ; substituting we obtain:
WA - azIz(Iiz . 1;2) + a2(1i + 15) !

where we have introduced a factor o? which was previously dropped for

convenience.

D.2 Quadrupole Coupling:

We begin by evaluatiﬁg:

AWMy < s 1, [y, +1,1,10)
First evaluate the inner commutator:
[IZI; $I0,1 ) =011 + 111 - 1 -I111
= I (LI, - 1)+ (IZI+ 1)1, - 11, - LI, - 1,]
= (1, - 1)2‘1+ - 1’1,
= (1 - 212)‘1+

We must now evaluate,
[IZI_ + I-Iz’ (1 - ZIZ) I+] = [(21z + nr, @ - ZIZ)I+]

[(21, + DI_,Q - 21)1,]

2 2
- [41Z + 4L, + 1T T+ (417 - 4T+ 1]T,1

2 \
4IZ[I+,I_] - 412 {I+’I_} + [1_'_’1__]

815 - 81 (1% - 1°) + 21
Z Z Z Z

97



A(—l)

and carrying through the numerical factor from we get:

“[A(-IE[A(lzlz]] = 3/2 (161> - I_[81(1 + 1) - 2]}

The commutator:

WAy = 0,

First evaluate the inner commutator.

]
—
~
—
1
[
~
[
+
]
-
-

We now must evaluate (drop numerical factors for convenience):

(12,14 = 1212 - 1212
=274 -4 + -

ITII -T11IT1TI
=TT + 4+ -

2
= 1P[1,1,) - 11 (1 + DI, + LI (I - DI_
= 21T« (12 + 2)[1 .1 31 {i‘ 1}
= z z )[_.,:_]‘ z iy,

3 2
= 81z + Iz (-817 + 4)

Carry through the numerical factors and obtain:

[A('ZB[A(ZBIZ]] - 3/2 (- 1612 1 [161(T + 1) - 8])
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APPENDIX E

TENSOR OPERATORS AND SPHERICAL HARMONICS

To evaluate the various members of equation (2.48) begin by

recalling:
2 y 20+1)! 1 L
e, = (nt/ GELD (=D,
27! (E-1)
Furthermore,
x + 1y = r sin® ei¢
x -1y = r sin® e—i¢ 4 (E-2)
z = r cosb
The above are obtained by substituting :
X = 1t sinB cos¢
y = r sinb sin¢
z = r cosB
The following will also prove useful:
- ; = oIt (34 3
L+ = LX + :LI._,y = e (36 + i cot © 8¢)
(E-3)
= 4] = o 1,2 ; 3
L_ = Lx iLy = e ( 6 + i cot © 8¢)
and m m m-1
LY =
-2 Ho Yy (E-4)


http:recalli.ng
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where n
H = V(L - m o+ 1)(2 + m)
. .. 2 .
We begin by first obtaining the operator A2 . Now by equation
(E-1):

| 2
2 o2/ eo2+ ! 1 x+dy

and hence,

—— + iy,
x, + iy,

2 _ [/ 2, 2 [(.2+1)!
Ay sV @aEFD g er (L /T 2 x

from which

N | ot
~
~r

2 /% o 2
A2 = 4 g ei(xi + 1yi)

Finally, observe

6,0 = (" Y (e,4) (E=4)
and hence;

»Az = g ei(xi—iyi)2

In order to get A%/we need Y;(6,¢). From equation (E-4):

2 2
LY LY,

H© 2

Now calculate L_Y2 .

MCMASTER UNIVERSITY LIBRARY,
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From equation (E-3) we may write:

(f?i:f?? 1 rzsin26e2i~¢ )
4 222! ‘ r2

Ly, 2 1¢(--a—-+1cot 3 (G 1)?

]

or dropping the numerical factors for now,

L_Yéz Y -i¢(_ §__+ i cot 6 —"9(31n 9e21¢)
= :%V z(x + iy)
r
“and , ,
Ly, 2 — :
-2 __ /22l 1 z_ Ll
2 G L 2 (x +1y) =Y,
Therefore:
1 [._41 2 /Zg.z+1)1 134
AZ -7 (2.2+41) Z eiri v 4 A “""r 2 (Xi+ iyi)
' i
or
1 a .
A2 = - T z eizi(xi + 1yi)
By equation (e-4):
-l Vo6 s
Ay = - 3 g egz; (x; = dyy)

To obtain A2 we need 20.

From equation (E-4) we have:
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=
<

Now calculate L_Y; .

From equation (E-3) we again may write:

1 _ -i¢,._ 23, . Ayl /2.241)0 x + iy)
L_Y2 = g (- 6 + i cot © 8¢)(— 7 e z 5 )

or dropping the numerical factors for now:

1 -i¢,_ 3 _ 9 y,sin 26 i¢
LY, ye "(-7g+icoth a¢)C-§~—— e’")
2
v - (3 cos"6 - 1)
And finally,
Ly o
_ . 1
e (2,Z+1). 1 (3 cosZe - 1)
/6 " 4 V6
Therefore,
1
A=y (2 gilf egry” /alﬁﬂ). = G eoso - 1)
: i . 46
1 " 2 2
= 7 ) oeg0z -
i
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