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ABSTRACT

A high-pressure nitrogen-driven viscometer has been
used to study the melt fracture of polystyrene.b The poly-
styrene samples used differed in molecular weight and mole-
cular weight distribution. The welght average molecular
weight (M) ranged from 97,200 to 1.8:{106 and the distribu-
tion breadth (ﬁw/ﬁn) from 1,06 to 9.21, Results obtained
indicate that the critical shear stress varies linearly with
perature and 1s lundepemdenc
of the polydispersity of polymers. This type of behaviour'>
1s satlisfactorily explained in terms of Graessley's entangle-

ment theory.
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1. INTRODUCTION

1.1 General

Engineering interest and involvement 1n non-Newtonian
fluid technology has developed largely within the past fifteen
years. Whlle industrial experience with non-Newtonlan méter-
ials has a far longer history, the systematic study and charac— :
terization of mass, heat and momentum transfer processes in
these systems is of recent origin, Prior t6 this time the
approach and techniques available for the study and interére-
taticn of such processes were principally those of Newtonlan |
fluld mechanics and design and scale-up criteria required

exhaustive experimental studies,

However, for many processes in non-Newtonlan systems,
design and scale-up criteria are now based upon the rheological
characteristics of the fluld medla. JOnce such characterization
is made, the results are readily applied with a minimum require-
ment for further experimental studies.

The continulng growth and competition in the plastics,
fiber, and elastomer industries have made clear the necessity
off a deeper understanding of the processing behaviour of poly-
mers and of obtaining quantitative methods for prediction of

the rheological properties of these materials as they flow



through dles and spinnerets, between calender rolls, and screw

and barrel of extruders.

1.2 Nature of Polymer Molecules

The word polymer 1s generally used to describe a large
molecule composed of many small primary molecules chemically
bound together. The primary molecules are usually referred to
as "monomer units" and the number Z of monomer units in the
polymer is called the "degree of polymerization", In spite of
the fact that even dimers (i.e., Z=2) are polymer molecules,
the "degree of polymerization" may reach ten thousand before’

the reactionterminates, and so molecular welghts may be of the
order of milliona. A ftypical nolymer mnalecnle will therafore
congist of a long chainlike structure such as that shown in
Figure 1. This chain will in general be of appreciable length,
so that 1t can ordinarily be considered even more flexible
than the picture would indicate. Moreover, Brownlan motion will

cause the chain to writhe and squirm, and 1t will change its

configuration continuocusly under the action of thermal motion.,

FIG. 1. TYPICAL POLYMER MOLECULE .



Although the nunber Z of primary molecules composing
the polymer molecule is quite definite for any given molecule,
the methods of preparation of these macromolecules usually
preclude the possibllity of a sample in which all the polymer
molecules contaln the same number of primary molecules., Thus,
most commercial polymers are mixtures of chains of various
molecular welghts. It is generally acceptable that the dis-
tribution of molecular weights in a polymer sample has a marked
influence upon the physical behavliour of the material; hence,
it is important to have ways of characterizing the distribution.
One may define a molecular welght distribution function and

various molecular weight "averages" for a polymer sample.

distribution function can be used.) Suppose, for example, that
one denotes the number fraction of chains of molecular weight
In the range M to M + dM by f(M ). Then the "number average
molecular weight" M, 1s defined by‘

My, = /M £(M) au ‘ (1-1)

(o]

and the "welght average molecular weight" M, 1is defined by

o o
H, = /mz £(M) au / /M £(M) aM (1-2)

o o)
Other averages may be defined, and the relationships among the
various averages depend upon the particular molecular weight

distribution.



It should be pointed out, however, that one reason for
defining different molecular weight averages lies in the fact
that certain experiméntal techniques are sensitive to different
moments of the molecular weight distribution, that is, to
different average molecular weilghts, For polydisperse polymers
the welght average ﬁg, is found to be larger than the number
averagejﬁn . The ratilo ﬁw,/ﬁn is a measure of the breadth of

the molecular weight distribution.

1.3 [The Bheology of Polymers

Conventional measurements for the study of the properties
of polymers were of two types.

a) Measurements of "physical® properties. carried out an ealid
specimens (e.g. tensile tests).

b) Measurements of "molecular" properties,'carried out on d4i-
lute solutions (e.g. measurement of intrinsic viscosity,
osmotic molecular weight).

In the last few years the development of suitable in-
struments has made possible the obsgservation of the rheological
characteristics of molten polymers. It has thus become possible
to establish correlations between these characteristics and both
the molecular properties of molten polymers and the physical
behaviour of solid polymers.

Thé study of polymeric flﬁids is but a small part of the
broader field called rheology. It has come to include almost

every aspect of the study of the deformation of matter under the



influence of imposed stress; it is the study of the internal
response of materials to forces.
V Several broad, qualitative categories of response can
be described., If a small stress is suddenly exerted on a solid
a deformation will begin to occur. The material will contlinue
to deform until molecular (internal) stresses are established
which just balance the external stresses (equilibrium deforma-
tion). Most solids exhibit some degﬁee of elastic response,
in which there is complete recovery of deformation upon re-
moval of the deforming stresses. The simplest such body is ‘
the Hookean elastic solid, for which the deformation 1s direc-
tly proportional to the applied stress.

Not all materials reach an equilibrium deformation,.
A fluid response 1s one in which there i1s no resistance to
deformation. In such a fluid, if an external stress is eierted,
deformation occurs, and continues to occur indefinitely until
the stress 1s removed. But 1nterna1‘frictional forces retard
the rate of deformation, and an equilibrium can be established
in which the rate of deformation is constant and related to the
properties of the fluid. The simplest such fluid is the New-
tonlan fluid, in which the rate of deformation is directly pro-
portional to the appllied stress. However, many flulds exhibit
a non-linear response to stress and are called, collectively,
non-Newtonian fluids. Most synthetic polymer solutions and

melts exhibit some degree of non-Newtonian behaviour.



1.4 Rheological Classification

Gases and liquids of low molecular weight are "New-
tonian", meaning that their viscosity 1s independent from the
flow conditions and dependent solely upon temperature and
composition. Hence, only one viscosity value 1is sufficient
in order to describe their behaviour in the same way that one
value of a solid's elastlcity module describes its behaviour
toward a certain kind of deformation. The viscosity of molten
polymers though can easily change by a factor of'10u as a
functlon of the flow conditions and it may be necessary to
measure it in a larger shear range. Thus, the rheological
properties of a polymer will not be completely deflned, at
eacit temperature, by a single viscosity value, but by a flow
diagram, giving the values of viscosity as a function of shear
rate, or other parameters of flow.

In the following, the more common variables one en-
counters in rheology will be described: the viscosity of a
fluid undergoing a laminar motion in the so-called "steady

flow® is glven by

’Yl = —T— (1_3)

and is called the "apparent viscosity" in the case of non-New-
tonian fluids. The "shear stress" "TU is the stress originating
the viscous motion and it is defined as the ratio of the force

F, tangentlally applied to a flowing surface S, and the surface S

T = F/S (1-4)



The shear stress T 1is not a pressure although its
dimensions correspond to a pressure. The neighbouring elements
of any viscous fluid have different velocities V,. The shear
rate Y 1s defined as the gradient of the velocity of the flow-
ing liquid, and it 1s given Dby:

Y = e (1-5)
dr
where r is perpendicular to the flow direction.
The viscoslty ‘YL 1s the coefficient of internal friction

measuring the reslstance of a glven material to motion. The

relation between 'YL and \& :
‘YL: Ik%) or ‘T = f(%} (1-6)

defines the rheological behaviour of the liguids. The flow
curves are diagrams of shear stress as a function of the veloclty

gradient \& or
T = £{})

The simplest type of flow curve is obtained when T 1is

- a linear function of ‘g « The ratio ”fz = ’t/% is then constamt
and only one viscosity value describes the rheological behaviour.
The liquid is a "Newtonian" one. Non~-Newtonian fluids such as
oils, plastisols, molten polymers, do not have a constant
viscosity and the relation T = £(Y) may be of different kinds,
and even hard to describe mathematically. However, it can still
be used to describe the rheological character of the different

systems, In fact, the relation



< = kM (1-7)

where n and ksare constants (it is called the "power law")
describes quite well the flow curves of many materials for
large intervals of is and it can be useful also for classify-
ing the fluids:
For n{ 1 a fluid is called "pseudo plastic”. The slope of
the flow curves becomes smaller with increasing X and the
viscosity M = 't/%v diminishes with an increase of the |
shear rate (or ‘T which is the equivalent). Almost every
molten polymer behaves as a pseudoplast within a given
shear rate range, while out of this range they can behave
as Newtonian flulds.
For n>1 the flulds are called "dilatent" ones. In such
systenms the viscosity increases with increasing shear rate
‘% or the shear stress T . Many heterogeneous systens,
suspensions and plastisols are "dilatant".

The above classification applies only to "viscous"”
fluld systems, in which the energy causing deformation 1s dls-
sipated as heat., For "elastic" systems, energy is stored as
potentlial energy. In this case, the deformation ls reversible,
Molten polymers behave as "iscoelastic” systems, since they can
absorb energy in both ways at the same time. The fraction of
energy being elastically stored during the flow is a function
of the system under examination of temperature, of the deforma-

tlion veloclity and the employed instrument. The elastic defor-



mation experienced by the polymers under flow might or might

not follow Hooke'!s law.

1.5 Objlectives of Thesis

In the flow of amorphous or molten polymers through
capillaries, a rather striking phenomenon occurs called melt
fracture (1,2, 3). Thlis phenomenon manifests itself as a gross
distortion of the extrudate which can take various forms such
as, for example, a regular helix of wave-length comparable
with the diaméter, a zig-zag distortion, irregular convolutions
or even complete fragmentatlon.

The purpose of this investigation 1s to explain the
nature of this phenomenon and how it 1is related to the mole..

e e i N D

cular strudture of the polymer.



2., GENERAL DESCRIPTION OF FLOW DEFECTS:

2.1 General

During the extrusion of molten polymers at high stiesses
it is frequently found that the surface or shape of the extru-
date is impaired by the presence of flow defects. The various.
flow defects shown by different polymers are of great importance
in polymer processing. The most important of these defects are:

swelling, mattness, sharkskin, melt fracture.

2.2 Swelling

When certain non-Newtonion £Inide ore gjiected from an
orifice or tube, the resulting jet is commonly observed to
expand to a diameter muchvlarger than its initial ejection -
diameter.ﬁ This effect 1s sometimes called the "Barus pheno-
menon and is usually referred to industrially as "die swell"
or "extrudate swelling".’ This effect has variously beeh at=-
tributed to polymer memory of conditions before the die, to
shear recovery (4), to normal forces, and to thenchange from

a parabololdal distribution of veloclities within the die to a
flat veloclity profile in the solid extrudate (5).

2.3 'MattneSS"
This phenomenon consists of a loss of surface gloss.
Mattness does not initlate at a critical stress, and was not

examined in the present investigation.

10
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2.4 Sharkskin

This defect glves finely spaced, sharp, regular, cire
cunferential ridges in the extrudate. It has not been inves-
tigated by so many wofkers as has melt fracture. This is
probably due to the fact that it is not such a catastrophlc
phenomenon and can often be tolerated to a certain degree.

There i1s general agreement amongst workers in this
field that sharkskin is formed either in the die land or at
the exit. Howells and Benbow (6) propose that the principél
cause of this defect is the cyclic build-up and release of
surface tensile forces in the extrudate at the die exit., It
is also suggested by these authors and others (7, 8) that a
type of stick-slip mechanism is involved, and it seems proba-
ble'that both these mechanisms are closely related to each
other and to the other view of Kendall (8) that sharkskin is

due to differential recovery between the skin and core.

2.4,1 Influence of extrusion variables

There l1ls general agreement among the workers who have
investigated sharkskin that; for a particular polymer, shark-
skin bccurs at a fixed linear velocity raﬁher than at a cri-
tical shear rate (6, 7, 9). This is well illustrated by Clegg
(7) who showed that the onset of sharkskin is independent of
die dlameter but considerably delayed by increasing temperature.

It 1s also generally agreed by the same workers that die entry

angle does not influence the onset of sharkskin.
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2.4.,2 Effect of molecular structure

The information available on the effect of molecular
structure on sharkskin is incomplete., However, it is generally
acceptable that sharkskin is not very dependent upon molecular
welght but 1s much more severe for narrow than for wide mole=-
cular weight distribution (MWD) materials (10).

The noticeable characteristic of these defects (mattness,
sharkskin) is that they leave the rest of the flow effectively

unaltered,

2.5 Melt Fracture

The flow of molten polymers through dles can be dis-
rupted hy the anset of a flow inctabilit
which exhibits itself as a gross distortion of the extrudate.

Although considerable research effort has been expended
on melt fracture, the problem has not been eliminated from
rlastics processing. There 1s no general agreement among the
investigators in the eiplanation of this phenomenon regarding
its mechanism and the effects of extrusion variables and mole-
cular structure on it.

Figure 2 is an 1illustration of the‘development of this
type of irregularity with Increase in shear rate for polystyrene
of My = 355,000 at 170°C. For bQ/nry> = 27 sec~! the extrudate
is smooth. For hQ/nro3 = 83 sec-l the extrudate is irregular

(incipience of melt fracture). For 4Qﬁ7r03 = 240 sec™! there is

a pronounced distortion of the extrudate.



M, = 355,000 _
i, . 4Q

— = 2,92 3
My To

Temperature 170°¢ sec

19.0

38.1

13

dynes/cm2

10.3

18.2

29.2

Fig. 2. Specimens of polystyrene extruded at successively
higher shear rates at 170°C, The arrow indicates

the first appearance of waviness.



3. MELT FBACTURE. SELECTED LITERATURE SURVEY

3.1 Mechanism - ¢

The gross extrudate distortion described as "melt
fracture", "elastic turbulence", "waviness", "knobbliness" or
bambooing” 1s recognized as a departure from smooth flow which
arises because polymer melts are elastlic as well as viscous,
This 1s why the phrase "elastic turbulence" is used; although
it is clear that the phenomenon is not turbulent in the classi-
cal Reynolds sense.

A number of mechanisms have been proposed for the pheno-

Reynolds turbulence, outlet phenomena, "viscous"” heating, Frac-

ture hypothesis, stick-slip mechanism, elastic energy hypothesis,

3.1.1 Turbulence A

The first theory for melt fractufe, proposed by Nason (1)
and supported later by Westover and'Maxwell (12), was on the
basis of conventional turbulence in the classical Reynolds
sense (i.e., when the Reynolds number, the relationship between
inertia and viscous forces, exceeded a given value). The usual
6r1terion fdr onset of turbulence involves a critical valu; of

the Reynolds number. The Reynolds number 1is
Re = VpPro/n = (Q/rgn) (Y/n) ’ (3-1)

14
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where V 1s the mean velocity of flow, Q@ the volumetric flow
rate, ro the caplillary radlus, o the viscosity, and @ the
density. As it was pointed out by Tordella (13), if Reynolds
turbulence does occur, thén the critical flow rate will vary
as the first power of the capillary radius and directly with
viscosity. In contrast, Tordella found that the critical
flow rate, in which wavy-type distortion occurs, varlies nearly
inversely with the third power of the radius of the capillary.
On the basis of extensive experimental data (14) it
has been shown that turbulence in non-Newtonian systems does
not occur until Reynolds numbers of the order 2100 are reached,
as in the case of Newtonian behaviour. The maximum value of
ths generalized Reynolds number at the inception of lrregulari-
ties in the work of Westover and Maxwell is 1.6x10™*. Thus,
it is safe to say that melt fracture does not involve Reynolds
turbulence (that is, energy is not dissipated into inertial
eddies).

3.1.2 Outlet Dhenomena.

A second theory (2) was that the distortion was due to
the differential orientation between the extrudate skin and
core causing an unstable system. They proposed that progressive
increases in molecular orientation must accompany increase in

shearing rate as one moves radially from the center line of the

tube toward the wall. The re-randomizing of molecular orienta-

tion as shearing stresses (hence shearing rates) are removed
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upon emergence of the fluid from the tﬁbe would cause a greater
contraction at the surface of the fllament than at the center
line. This buckling of the emerging stream was presumed to
occur when a critical differential elastic strain between the
core and the outer surface of the stream was exceeded. This
theory is now more in favour in connection with sharkskin than

with melt fracture.

3.1.3 Viscous heating

This mechanlism is based on temperature dependence of
viscosity (15, 16, 17) and notions of a thermal catastrophe.
It has been postulated that at some stress the heat generation
might reduce the wiceosity at or neer the carillary anrface
sufficlently to cause instabllities of the type under discus-
sion, But it has been shown (18) that the magnitude of the
tenperature rise is no more than 2°0C in polyethylene. So

viscous heating effects seem unimportant.

»

3.1.4 Fracture hypothesis

According to thls hypothesls meit fractufé is caused
because of disruption of molecular network at sufficient
stresses (19, 20). Fracture occurs due to a failure of the
melt to sustaln the high elastic tensile stresses which arise
in the die-entry region. It 1s this local melt network bresk-

down that causes the observable back-flow or recoil near the

dle entry.
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The 1dea of melt fracture near the die entry is also
supported by Tordella (3, 21, 22, 23). The noise which
occured in assoclation with the distortion was considered by
Tordella to be indicative of a type of fracture. Papers by
Metzner et al. (24), Beynon and Clyde (25), Clegg (7), Bagley
and Birks (26), Mills et al. (27), and Schulken and Boy (28)
give general support to the iaea that melt fracture is caused
by a fracture or tearing of the melt in the dle entry region.

Reiner (29) proposed that rupture would occur in
viscoelastic liqulds when the stress reached a definite 1limit
equivalent to the strength of the material., This hypothesis
was not supported by Tordella (11) who says that failure of
this type would involve, primarily, short-range dlspersion
forces. Were this the case, the fallure stress would be ex-

- pected to decrease with increasing temperature; dispersion
forces decrease with increasing temperature due to increasing
free volume. Similarly, fallure stress should increase with
molecular weight., Free volume decreases as the volume fraction
of covalent bonds increases with molecular weight. The effect
is a smaller averége interchain distance and increased dispef-
sion forces.

Since the effects of temperature and molecular weight
are opposite to those predicted by dispersion force considera-

tions, the "melt fracture" does not seem to be of a type similar

to that proposed by Relner.



18

3.1.5 Stick-slip mechanism

Howells and Benbow in their paper (6), whilst support-
ing a network breakdown in the region of the die entry, also
allowed that slip between polymer and die wall may be a con-
tributory factor.

In a paper published in 1963, Benbow and Lamb (30)
report various experiments, including motion pictures of mark-
ers flowing in transparent dies, which led them to conclude
that the distortion phenomenon known as elastic turbulence or
melt fracture originated in a stick-slip actlon at the die
surface., Because of the accelerative effects at the dle entry
this would be the favoured initiation point, but initiation
han at the entry. Thils
slip theory had some support in the work of Kennoway (31) who
obtained results for the adhesion of molten polyethylene, poly-
methylmethacrylate and unplasticized PVC,

The mechanism of stick-slip.at the die wall has been
investigated very carefully by Galt and Maxwell (32, 33) who
employed carborundum particles in low-density polyethylene and
showed that only 25 per cent of particles near the wall had
zero veloclitlies, that 1s, considerable slip occured. Lypton
and Regester (18) obtained results for high-density polyethylene
which confirmed slipping at the wall and also found that in the

vicinity of turbulence, where there was a discontinulty in the

flow curve, the slip velocity increased very rapidly. Westover

(34) concludes that for high-density polyethylene, slip is more
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dependent upon a critical shear stress within the polymer or
at the die wall than upon a frictional effect.

To summarize the findings on stick-slip, therefore,
the latest belief 1s that above a certain critical stress,
intermittant slipping occurs at the dle wall to relieve mo-
mentarily the recoverable elastic strain to which the material
has been subjected in its passage through the die and which,
at lower stresses, manifests itself as uniform die swell. The
releasing of the stored-up elaétic energy, possibly assistéd
by a local temperature rise during slip, causes the melt to
adhere again to the die surface. The extrudate thus emerges
in a distorted form, showing intermittant rather than uniform

T
SWweld » fic

>riion depending on the shear siress.
It seems reasonable to expect the greatest tendency for slip

- in the dle entry region where the rate of change of stress and
shear rate are highest. If this is the case, then the influence
of‘die entry angle on turbulence is more easy to understand than

if the first slip occured 1in the die land.

3.1.6 Elastic energy hypothesis

This hypothesis merely points to elastic energy con-
tained within the flowing melt as the likely source of insta-
bility (18, 35).

Some authors consider that the Weissenberg number,
representing the balance between difference of normal and shear

stresses and itself a function of the local shear rate in
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steady flow, should be a useful defining parameter (35), and
according to White (35) this number becomes equal to the re-
coverable elastlc strailn.

Other authors think that it 1s acceleration effects
in the entry region that are critical and so are led to con-
sider the Deborah number (36) which compares the characteristic
of the fluid with the characteristic time of the motion. |
Still others seek a more direct measure of elastlc effects
and use the recoverable elastic strain (also a function of rate
of shear) as the relevant parameter. This again is to be
thought of as a directly measurable dimensionless quantity,
but it can be defined in various ways, depending on the type
inich recovery 1s measured., in the parti-
cular definitions considered by White (35) the Weissenberg
number becomes equal to the :ecoverable elastiec strain.

The possibllity that unstable flow occurs when a cri-
tical elastlic strain is exceeded appears worthy of consideration;
That characteristic which distinguishes molten polymers from
other llquids 1s their ability to deform elastically. Dis-
tortion of the colled molecules from their equilibrium con-
figuration occurs in shear and constitutes the elastic strain.
Substantial elastic strain is imposed at shear rates at which
"melt fracture" occurs.

Spencer and Dillon in theilr early work (2) found that
the onset inlet melt fracture was characterized by a critical

average elastic straln of about 3 units. The straln was
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assessed from the degree of swelllng of the emerging polymer
stream. Bagley (37), using a correlation of Philippoff and
Gaskins (38) between the inlet correction and elastic strain,
found a critical value of about 15 strain units for branched
polyethylene and 6 for linear polyethylene, 7 for polystyrene
and polymethylmethacrylate. Tordella (39) and Menefee (40)
found a critical value of 5 units for a variety of polymers,
including both branched and linear polytheylene.

According to this mechanism, fracture involves the
time-dependent charactér of the vlscoelastlc polymers. At
short times deformation of molten polymers is not merely a
viscous process. Substantial elastic straln l1ls lmposed and
ty ¢of the structure to de-
form further elastically.

Support for the critical strain, fracture hypothesis,
is found in the experiments of Philippoff and Gaskins (38)
with solutions of polylsobutylene. Rgcoverable. elastlic shear
straln of these solutlions increased linearly with stress up to
10 or 12 units: Hooke's law in shear applied in this range.
Beyond this limiting strain, shear strain increased sharply with
stress to a level of about 600 units. Apparently, polymer
molecules in solution disentangle and uncoll at strains above
a critical strain. In bulk, rupture or fracture appears to

result instead,
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3.2 Influence of Extrusion Variables

The workers cited above generally agree that streanm-
lining the die entry reduces the tendency for turbulence.
Tordella (3) reported that there was a 12-fold increase 1in
critical rate in changing from a flat entry to one of 20° in-
cluded angle. Other people have not found such a large lmprove-
ment, and in particular Metzner et al. (24), and Metzger et al.
(41), have reported that in the angle range 180°-40° there is
virtually no 1mprovement. However, in the former work (24), re-
sults between 40° and 20° showed a marked increase in critical rate.

Hammond (42) and Ferrari (43) have carried out very de-
teiled exneriments to bptimize die design for wire coating.
Hammond worked with low-density polyethylene and determined
critical rates for various entry angles with different flow
grades, He concluded that for best results a multiple angle
die, such as 20/8/3°, with a land length of about 10:1 should
be used. Ferrarl carrled out similar work with high-density
polyethylene, volypropylene, foam;d polypropylene and PVC.

He found that polypropylene was very sensitive to entry angle
but that PVC was relatively unaffected by changes in angle

although very sensitive to changes in land 1ength. Foamed

polypropylene showed a 10 to 20 per cent higher critical rate
than normal polypropylene. The best die design was concluded
to be one with an initial entry of 60°, changing in a conical
manner to the final parallel section. This die gave 15 times

the critical rate of a single taper die of the same length.
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Tordella (3) reports that apparent critical stress
values were higher for smaller length/dliameter (L/D) ratios;
later work does not mention the effect on stress but there 1s
general agreement (24, 41) that the critical shear rate for
melt fracture is increased by increasing L/D and also that the
severity of turbulence is reduced for longer dies (8, 9, 39).
Metzner et al. (24) report an interesting experiment in which
they extruded from an "infinite" tube with no entry region,
previously filled at low pressure and allowed to relax for
about 10 hours. Under normal extrusion conditions turbulence
was obtained at 135 sec=1, but with the entry-free experiment
the extrusicn at this shear rate was completely smooth. From
this 1t was concluded that the entry provided the site for
melt fracture.

In view of the dependence of apparent critical stress
on ratio L/D, it might appear desirable to do all experimental
work in long capillaries wherein inlet losses are negligible,
There are valid reasons for working in short capillaries. First,
the degree of distortion of the emerging stream decreases with
increasing L/D. Consequently, critical rate may be difficult
to detect using long capillaries with the result that use of
short caplllaries can be more convenient, Secondly, short ca-
rillaries are technologically important, and knowledge of the
variation of critical stress with L/D may be desired.

The influence of die diameter has not been evaluated

thoroughly but Westover and Maxwell (12) and Tordella (39)
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report that larger dlameters are more prone to turbulence,

Several workers have examined the influence of dle
finish and material of die construction on melt fracture. It
is agreed (30, 44) that finish has no effect, although small
but apparently significant differences in critical stress weie
found for caplllaries of different materials of construction
(30). Branched polyethylene was found to have a critical
stress of about 1.53:106 dyn/cm? in brass, nylon, and copper
capillarles, 1.3x:106 dyn/cm2 in capillaries of nickel, silver,
and steel, and 1.0z:106 dyn/cm2 in capillaries of phosphor
bronze, and "sillver steel".

Stuaies by ‘lordella (3, 22) and Spencer and Dillon (2)
on fracture of a variety of polymers showed that the critical
shearing stress corresponding to ilncipient occurrence of lrregu-
- larities was temperature-independent for polyethylene from
130° to 240°, for polystyrene from 210° to 260°, and for metha-
crylate from 140° to 220°C, For PVC the reverse relationship
has been found (45). There is, however, general agreement
that increasing temperature gives a higher critical extrusioﬁ

rate before "turbulence".

3.3 Effect of Molecular Structure
3¢3.1 Molecular welght

The idea that melt fracture is caused by a failure of
the elastic network suggests that it should occur more readily

the higher the molecular welght, since longer molecules form a
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more entangled network which, because of the restrictions to
flow, caﬁsed by entanglements points, 1s broken down at a
lower rate of shear than would be the case for a low molecular
weight., Most workers (2, 27, 37) have found that as molecular
weilght decreases, critical stress increases; in fact, the pro-
duct of molecular weight and critical stress 1s approximately
constant (2, 37). For PVC, however, Sieglaff (45) does not
support this conclusion. Also Barnett's (46) data on poly-
propylene show that the product of molecular weight and critical
shear stress is not a constant but the critical shear stfess is
constant., So far as processing goes, it willl always be true
that as molecular weight decreases, viscosity decreases and

feasSes.

3.3.2 Molecular welght distribution

Most investigators (6, 47) of the irfluence of poly-
dispersity of polymers on melt fracture fin& that critical
stress is independent of polydispersity, but Mills et al. (27)
find, for high-denslity polyethylene, that as polydispersity
widens, the critical stress is increased. So far as the cri-
tical rate is concerned, there will generally be a considerable

increase with increasing width of distribution.



4, CAPILLARY FLOW

L,1 Theory
The basic equations which describe the flow of a fluid

in a capillary are the equations of continuity, momentum,and
energy, which are mathematical formulations of fundamental
physical principles of conservation of mass, momentum and
energy, respectively. These equations in thelr most general
\form are:

Continuity equation—

De -
— - e(“V.V) 3 (L”"‘l)
Dt
Momentum equation-—
v =
(3__)= Np- (0.0 + ZEF, (4-2)
Dt s
Energy equation——
DT - QP - = .
OC., —= == (7.9) - T{=) (T.V) + (T:VV) (4-3)
20, — -1l

The wvector form in which the continuity, momentum ahd
energy equations are written above has the advantage of making
the equations conclise and independent of coordinate systems.
In analyzing flow problems, however, one must usually select

a coordinate system and resolve the vector and tensor quantities

into components. The choice of a coordinate system depends

26
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primarily upon the geometry of the boundaries of the fluid.

The geometry of the problem and the coordinates used are given e

!
SN\
o 2V
2 |
g !
= g
3 :
2 | Z
O .
- |
“ .
2" | |
’ ! “
<—l'°—)|

FIG. 3. SCHEMATIC ILLUSTRATION OF THE FLOW
IN A CAPILLARY TUBE. '

- . B e e - e

In cylindrical coordinates (r, 6, z), equation (4-2)
may be represented 1n-t_erms of 7T, by the following equations,

assunlng gravity to be the only field force present:
r=component -

. 2 ’
e (‘)v v, v, . Ve Av.. _¥et Ly Vv,
Ot LDr r 3@ T Z 2

<

) =

=-C-)‘-?i-{i3-( )+ L Jze Tog %Trz +Rap  (4-b)
%I‘ _r “or I'I‘ r %6 T r



f-component—
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o o,y Wo g Wy, Ve, YV, _
" Dy T Qr r 09 T z
1 Op 109 2 1 31:69 3T9z
= - - (r“Trg) + (4-5)
r e Krz c‘ér rtre+r °~>e Dz E
Z=component -
(f( RAZCAL Yy, v ovz) i
ﬁbr r fbe
‘ép 19 1 Jt
= e = (rTp,) + — —ZZ | 4 (4-6)
DAz r or ez’ * r e Pez

The shear rate dVZ/dr is always negative, since r 1s measured

from the center line, and Ty, 18 always vositive. i.e.. the

momentum is transferred from the center line towards the wall.

Therefore, to define an apparent viscosity which will not be

constant, we have

wherewla i1s the
For the
ing assumptions

1. The flow is

(4-7)

av
z ='Ala(

true apparent viscosity.
purpose of mathematical development the follow-
are made:

steady (all partial derivatives with respect to

time are zero).

a function of the radial distance r alone.

The axial component of the velocity (VZ) is assumed to be

The radial and

tangential components (Vr, Vg) of the veloclty are assumed
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5.

6.

7.

8.
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zero, (V. is assumed to be negligible in comparison to

Vz’ and Vg 1s zero because of axial symmetry.)

End effects are neglected with respect to the development

of the velocity profile.

External forces, such as gravity, are neglected.

Laminar flow prevails throughout.

There is no slip at the walls.

The non-Newtonian nature of the fluid can be taken into

account by using the ordinary Newtonlan expression for the

momentum
taken to
The flow

M.,
+11€K1

(4-6) reduce

flux, but with the coefficient of shear viscosity
be some assumed function of the local shear stress.
is isothermal,

these assumptions are made, the equations (4-4&) and

(4-8) |

1
0 = = oo = o S (I"T_'rz) (4-9)

From equation (4-9)

that 1s,

Dp

Ca(r’t'rz) =-§;; rdr
r dp
Trz T e — A (14'-10)

2 dz



At the wall, r=r, and Trz =Ty

ro, dp
Tw =-— ——
2 dz

Dividing:(h-lo) by (4-11) we get:

r
e — ‘

Lrz = T“w
To
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(4-11)

(b-12)

The boundary conditlon is VZ=O at r=r, for no slip at the

wall,

The volume flow rate in a laminar steady state flow

through a circular tube or capillary of radius T, is related

to the velocity Vz(r) by:

To

j 2qr V,(r) dr

[o]

Q

We have from equation (4-12) that:

r = Tolry
“Cw
Equation (4-13) becomes:
Tw
r, 2 ~
Q = 2"\(#-—) TrzVzd Tz
Ty

(4-13)

(b-14)
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The velocity may be given by:

To v
Vz == Q— ‘Z) dr
dar
T
that is, i
Tw
Vv
v, = Lo S (.. d Z) ATpy (4-15)
Tur dr
Trz

Combining equations (4-14) and (4~15) we have

3 Ty Ty '
T dvz G a
Q = 27 —) Trz ~ =1 AlpzdTyy
Ty dr
° Tz
that is,
Ty Tw
5Q 8 Yoavy
= - dt.., 4T (4-16)
ﬂr03 TWB [ Trz j ( dr) ‘rzlrz
° Trz
Integrating by parts:
I v ' v
d
2 = T.zrz(' """"Z') ATpy (4-17)
qr.0 Ty dr
4 ,

Equation (4-17) is the general equation which relates the flow

to the veloclilty gradient in the system.
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av ‘
For a Newtoniasn fluld (- Z) = I§Z , and equations
ar
(4-15) and (4-16) integrate to: .
2 2
T d r
4y dz - T,
and
L ' r d
P S L (4-19)
qr°3 1y 2\ dz
The latter equation can be used to define a capillary shear
dlagram as 49 versus T,,. |
)

For a non-Newtonian fluid, it 1s possible to define

an apparent viscoslty as:

av,
ar

) atn, (4-20)

wherewlap may be distinguished from“fla as defined by equation
(L,""7)’ ioeo. |

d ' hQ

Ve
Y = )
et A L

Tw = ""Yla(

The term U = hQ/qro3 is sometimes called the pseudo-shear rate,
Rabinowitsch (48) obtained a simple relation between
the flow rate and the wall shear rate (or betweenﬂla andwlap).

Differentiation of equation (4-17) gives:


http:Crz(-dL.rz
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- 3 3
Aty dr
that 1s, 3
v
Ory” 4T, hr,” ar, 9T, ar
. ‘ 3
S dvz)w AL AL (4-23)

Equation (4-23) can now be used to obtain the basic
shear diagram, i.e;, for any given value of Tyys the value of

le/ﬂro3 may be obtained from the data, and the slope of the

av.,’
curve may also be obtained at the point, hence f- mzé;)w may
N ax /

v
be calculated. Both T, and (f d Z) are obtained at the same
w dr W
point and hence are the terms of the basic shear diagram,
There is no need to assume any kind of rheological law for

this calculation.

L,2 Errors in Capillary Flow

h,2,1 Slip at the wall

The equation (4-14) may be modified for slip-at-the-
wall conditions by allowing for a slip velocity Vg : 1.,e., the
new boundary conditlon at the wall becomes V,=Vg as opposed

to V,=0. 3o, To
av

V, = Vg+ S (- drz) dy
T «
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th dVv
V, = Vgt 2 (. Z) aTpp (4m2t)
Tw dr
Trz

Combining equation (4-24) with equation (4-14) we have a rela-
tion similar to equation (4-16), that is,

Tw

Tw
Lq Lvg . 8 - (
= L -
"|r03 Ty TWB A e

Trz

av
Z) aT,, AT, (4-25)
ar

Integrating by parts, as before, we have an equation similar to

equation (4-17)
Tw

( "grz<" E}_z_) d‘T'rz (4-26)

/
o

bg WV b

N’ or, T

L

0ldroyd (49) defines:
v y av
§ AR T g,tzrz(- L2) ety
) , r

Tw W

’

Substituting the above relations into equation (4-26) we have:

L4q ~

= - (45 /ro + $) T, (4-27)
ar,
A plot of 4Q/qr03 versus 1/r, will determine both % and lf).
With this information we can then obtain the true basic shear

diagram,
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As can be seen from equation (4-27) at any constant
Twe fOr a system with slip, increasing the diameter will de-
crease MQ/ﬂrOB, but there is no effect of length if steady
state 1s obtained. Hence, a plot of 4QA1r03 versusT, will
determine the existence or the absence of slip. If slip is
present then the slip velocity may be easily determined from

Oldroyd's parameters.

bh,2,2 End effects:

This analysls of flow in é capillary, described in
section (4.,1) is based upon the assumption that a simple shear
flow exists. This is achieved in steady state, laminar, iso-
thermal flow in a tube of constant cross section, as long as
one does not consider regions near the entrance and exit of the
tube. If these end effects cause an apprecliable amount of pres-
sure drop, the estimation of T, by equation (4-10) is in error.

The accuracy in calculating the end effects for pipe
flow 1s far from satisfactory, even for Newtonian materials.
The treatment i1s complicated by thé fact that pressure-drop
measurements are usually made between two reservolrs, and thus,
there may be both an upstream entrance effect and a downstreanm
exit effect. These in turn involve frictional loéses and ki~

netic energy corrections associated with the change in velocity

and the development of the velocity profile. It is preferable
to design a capillary instrument so that end effects are neg-

ligible., But thls is not always possible, for the case of

molten polymers,
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It will prove convenient in the discussion to refer
to the various regions shown in Figure (4 ). Region 3 is
designated the region of steady flow. The development of the
steady flow velocity profile occurs in region 2, the entrance
region. The length of tube required for the complete develop-
ment of the steady flow velocity profile is designated as Le,
This length 1s generally a function of tube dliameter and some
dynamic parameters. For example, for Newtonlan fluids, the

"entrance length" depends upon the Reynolds number (4)

Le/D = 0.035 _j&ﬁﬁg = 0.035 Ry

A's

where R, represents the Reynolds number for the flow in the
tube. |

Obviously, 1f one applies the equations developed for
region 3 to the over-all tube, the entrance region will intro-
duce certain errors.

One method of minimizing the effect of the entrance
length is to use a viscometer tube so long that the pressure
drop over the entrance region is very small éompared with the
drop over the entire tube. This means that if L is the total
tube length, then Le/L must be small, perhaps of the order of
0.01. Because of the high viscosity of polymer melts, however,
it is difficult to work with long capillaries.

An empirical method of correcting for entrance effects
has been developed by Bagley (50). 1In Bagley's technique, the

equation for shear stress 1s modified by assuming that the
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L >
——Le —e Ls |
| D | Ds
| 2 . ) 3 4f
ENTRANCE REGION OF STEADY FLOW EXIT
REGION , : [REGION

FIG. 4. REGIONS ASSOCIATED WITH FLOW THROUGH TUBES. \

entrance effect i1s a function of thg caplllary dimensions.

If experimental data from a series of capillaries are avail-
able, the correction term can be obtained by extrapolating

to zero pressure the linear plot of pressure versus L/D (at
constant shear rate). This correction term is strongly de-
pendent on the shear rate and it also varies from one polymer

to another. If the correction terms are determined and the

shear stresses re-calculated, flow data from different capil-

laries reduce to a single curve.
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The procedure developed by Bagley is outlined below

(4).

In the entrance region, fluild particles entering the

tube from the reservolr are accelerated to thelr final steady

flow velocities.,

The energy consumed in this process causes

the pressure to drop more rapidly in this region than in the

steady flow region. As shown by Figure® , the pressure

gradlent decreases throughout the length Le of the entrance

region and eventually reaches a constant value that 1s main-

tained over the length Lg of the steady flow region.

-

( =T_
- AP
=~ GRADIENT = (——-—-—)
+
AP ’ L+ND
L ‘_—_l-s ‘\\‘\\\\\\\\\;
< ND L >

FIG.5. CORRECTION OF THE TUBE LENGTH BY THE ADDITION OF LENGTH

ND IN ORDER TO CALCULATE THE PRESSURE GRADIENT .
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In the steady flow region the shear rate”%w.at the
tube wall can be calculated with equation (4-23) if the shear
stress“tw.at the tube wall is known. Hence, the entrance
correction problem is essentially one of determining the true
value of T, from the over-all measurements of flow rate and
pressure d4drop.

Noting from equation (4-23) thatT, 1s a unique

function of the parameter | = 4Q/ﬂr°3. we have
Tw = D/4 Py = &(1) (4-28)

where PS is the préssure gradlient in the region of steady flow.

It is clear that

LP
I4+ND

P, = (

) (4-29)

where ND, as shown by Figure © , represents a fictitious tube
length, that when added to the actual length enables one to
use the over-all pressure drop in calculating the‘gradient in
the steady flow section. )

The expression for the shear stress at the wall in
the steady flow section of the tube (equation (4-29) ) can now

be written

) = £(7) (4-30)
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Upon rearranging, equation (4-30) becomes

AP
. N + (4-31)
D LE(T)

which suggests that the value of N might be determined from
flow measurements made with a series of capillary tubes having
different L/D ratios. For each tube, the pressure drop O P,
3

giving some specific value of [ =4Q/qry”, would be determined.
Then, by plotting L/D versus DP, a straight line having -N
as an intercept would be obtained, and from equation (4-30)

corrected values of shear stress would be calculated.

L,2.3 Heat effecté

Deformation gives rise to frictional forces within the
2luid, and this friction dissipates a part of the kinetic energy
of the fluid and causes it to appear as heat. This generatlon
of heat can lead to significant temperature variations across
the shear fields. One concludes from this that no flow is iso-
thermal, despite any precautions of thermostating the boundaries
of the system, '

Because fluid properties such as viscosity are rather
stréngly temperature dependent the shear stress-shear rate '
relation 1s considerably altered by non-~isothermal effects.
Hence, a shear stress-shear rate curve obtained under non-iso-
thermal conditions does not reflect the basic fluid response
Independently of any temperature-dependent effect. In this

case, one must be able to correct any calculations based on an

isothermal analysis and separate that part of the response due
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to non-isothermal behaviour from that part of the response due

to non-Newtonian behaviour. This would require a knowledge of

the temperature field in the fluid as well as a knowledge of

the effect of temperature on fluid properties such as viscosity.
Let us now consider the application of the basic flow

equations to the problem of the extrusion of molten polymers

through small capillary tubes of circular cross section at

such high shear rates that the heat produced by viscous dls-

sipation is of importance (4). The same assumptions are nade

as in section 4.1, but now we allow for changes in density and

temperature of the fluid. So equations (4-1), (4-3), (4-6),

become:
%V ’:}Q
(—2)+V (ZX) = 0 (b-32)
t Dz 2z

'} 7, W, 1 I 3VZ }

sz

)2 (n-34)

Jvz 22 ) g2

The boundary conditions are:

A

dr
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where Tb is the reservolr temperature of the fluid, amdl(,@,_
and C, are the fluid thermal conductivity, density, and heat
capacity, respectively.

The total differential of the fluid density P, is

wriltten
e e
= ——— e L,L..
dp (‘BT )p AT+ (‘Dp )p P (k-35)

which can be put in the equivalent form

df = - kpdT + bRAT (4-36)

by introducing the'duantities k, and b, where k 1s the coeffi-
clent of thermal expansion and b the compressibility of the

fluid., These quantities are defined by the egquations

1 ’Ag
kK = « e )
e %T P
1 ()e
b = (%?)T (4=37)

From equation (4-36) it can be shown that

oF Sk - (& =) (4-38)

To consider the variation of the fluid density with the z
position coordinate, equation (4-36) is written
(28 QT dp

%z) —-kg(—-)+be(%—z—) (4-39)
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and upon introducing (4-39) into the equation of continuity
(4-32) one obtains

%Vz = (_Ei) - (?.f.) (4-10)
Az Uz Az

If one now introduces (4-38) and (4-40) into the equation of

momentum and energy (4-33) and (4-34) one obtains

- Q& | q\T Fr |« e, e AV,
e~ % s o5 - - Sl
(4-42)

Equations (4-41) and (4-42) constitute a pair of simultaneous
non-linear, vartial differential equations. Solutions of
certain special cases of these equations have been obtained.
For example, if the fluid propertieé are assumed constants,

in which case the isothermal veloclity profile is known, solu-
tions exist from which the temperature profile may be calcu-
lated as a function of axial position. Bird (15) gives solu-
tions for the case of the power law fluid with either the
isothermal or adiabatic wall. Toor (51) solves a similar pro-
blem but allows for compressibility of the fluid and its

accompanying heating or cooling effect. Siegel et al. (52)
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gives solutions for the Newtonian fluid with boundary condl-
tions specifying constant prescribed flux at the tube wall,
The simplest case studied was that of Brinkman (53), for the
Newtonian fluid with temperature-independent properties, with
elther isothermal or adiabatic wall,

None of the studies named accounts for the alteration
of the flow field arising from viscosity variation across the
radius of the capillary and so none of these studies may be
used to correct viscometry data. The major use of the results
of these workers 1s the estimatlon of the temperature rise
experienced by the'fluid. Capillary viscometry of highly
viscous materials should always be accompanied by an estimate
of temperature rise due to viscous heating. If the estimate
of the maximum temperature rise is small, say from 1°C, then
one might judge that the results need not be corrected at all
for heating effects. If the estimated temperature rise is
large, then one 1s faced with the problem 6f rejecting the
data or accepting the results as subject to significant error.

In order to calculate the temperature rise due to
viscous heating, in our experiments we used a nomograph that
has been prepared by Middleman (54). This nomograph ylelds
the wall temperature at the outlet of a capillary (or at any
axial position in the capillary) and it is based upon Bird's
solutions for the power law fluid with adiabatic wall., (Ex-
perimental results (55) indicate that the wall of a capillary

behaves in a nearly adiabatic manner under usual operating
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conditions.) Figure 6 shows Bird's solutions, plotted as a
dimensionless wall temperature as a function of a dimension-
less axial variable with n as parameter., The dimensionless

varlables are deflned as:

. bKeo/® m+1
8 = (T=1T,) 5o i1/ ( - ») (4=43)
z, = Ly n+l z (L-lly)

Po' 3n+1 D

where‘t% is the wall shear stress (for our experiments the
corrected shear stress) and P,' 1s the Pe'clet number Po' =
D‘Vﬁecv/K). This nomograph neglects the effect of non-
approximations. In cases tested by Middleman (54) it was found
to be accurate to within a factor of 2, in comparison with the

use of the exact relationships.



L6

\

Ol Z

\

| L1 L L1 i i1 ‘
0.00I 0.0l 0.10 1.0
Z, ’

FIG. 6. DIMENSIONLESS WALL TEMPERATURE RISE DOWN
THE LENGTH OF A CAPILLARY DUE TO VISCOUS
HEATING.
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The nomograph shown in figure 7 is based upon the
solution for fully develored capillary flow of a power law
fluid (15). That solution glves the temperature rise at the
| wall of the caplllary at some axial position z, under the
assumption that the wall is adiabatic. To simplify the nomo-
graph, approximations were made which essentially remove any
dependence on the power law index n., In examples tested, the
nomograph yields a temperature rise within a factor of 2 of
the analytical solution, Hence, it provides a rapid estimate
of the order of magnitude of the effect of viscous‘dissipation
in a highly viscous capillary flow.

All scales are in cm/g/sec units. A short table of
thermal properties of polystyrene 1s also given., Note espe-
cially, that k must be in cm/gm/sec units.

Move from left to right across the nomograph. For a
given set of data, begin by connect}ng points on the *k and T
scales, and find the intersection of this line with Reference
scale 1, Connect that poinf, through D, to Refefence scale 2,
and so on across the other scales to the temperature scale.
The value of &T is an estimate of the temperature rise at the
wall of the capillary, at the given value of z/D.

Thermal Properties

2

g.cm cm
K,(-—T—.) K /pCv( )

sec”’°C e sec

Polystyrene  1.2x 10% 6.2x10"%
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L,2.4 Laminar flow

The flow of molten polymers is usually laminar. Be-
cause of thelr high viscosity one camnot reach the critical

value of Reynold's number where turbulent flow is encountered.

L4,2,5 Expansion of the fluid

The correction for the flulid expansion along the capil-
lary changes the value of Q. For polystyrene one can calculate
this correction from the equation of state of the fluld as

given by a Van der Waals type equation (56):
(V-0.882) (p+27,000) = 11.6T | (4-45)

where V is the svpecific volume in cm3/g, p the nresaure in nei

and T the absolute temperature. Differentiating, one has

C 2 op3

(OV/p)p = - 11.6T/(p + 27,000)° em’/g.psl (4-46)
If the pressure drop is linear along thé caplllary, by measuring

Q (and hence '%vw) halfway along the caplillary, one has to

correct Q by the following amount:

p(9V/Ip)
2

(4-47)

where p is the extruding pressure in psi.
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4,3 Normal Stress Effects

To this point, the analysis of capillary flow has
been limited to the measurement of the shear stresses, or
the corresponding forces, required to maintain a simple shear
flow in a capillary tube., It is known, however, that many
fluids, when subjected to a simple shear flow, develop not
only shear stresses but also normal stresses. The normal
stresses afe assoclated with both the static pressure P and
a normal shear., For steady state capillary flow the normal

stresses are (57):

Prp == P+Tpp C (4-48)

P.. ==-0p+C.. (4-0b9)
hvlv) (vl

Pz =-P+T,, (4-50)

In order to generate information specifically about
the dynamic stress components, it is necessary to "remove" the
influence of p from the measurement. This is most commonly
achieved by presenting results in terms of stress differences.,

So, for equations (4-48), (4-49), (4-50), we have:

Prr=Pog = Tpr=Cgg = Tpyr = (h-52)

where all stresses are a function of both r and z, that is,

P, (r,z). It is by no means easy to evaluate the normal stress
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terms, and there 1s considerable disagreement on how measured
variables are to be translated into meaningful results (5, 58,
59, 60)., The first capillary jet experiments reported were
by Philippoff and Gaskins (38, 61, 62).

The term ¢ 2 can be evaluated from a detailed knowledge
of the conditions within the capillary tube. From the eguation
(4-8) we obtain

0 == ((%p)" ((B‘rrr)"' (TI'I')_ (:E_Q_e__)
dr r r o
or
(\}.’, - B
Uirr _ _(’crr .Tee)z - 92 | (4-53)
dr r ol

Integration of this between O and r gives
r
P.p(r,z) -p(o,z) == fc'zdlnr -~ (4-54)
° .
since by symmetry at the tube axis, (o,z)=0. At the exit
of the tube z=L, and at the wall = ro. Thus,

r

0
P‘I,I,(ro,L) = p(ro,L) - J szlnr (4-55)
o

Differentiating with respect to ln"c;, and using the linear

variation of T, over the radius (equation 4-12) gives:

dp(r,,L) e (% 2y, dp(o,L)
d1nt, et dlnT,

(4-56)



The expressiontfz(%wz) means that ¢, will be a unique functlon
of the square of the shear rate at the wall, (%)zw. Sakiadis
(63) assumed that the last term was zero because the system
was open to the atmosphere; that is, at the center line, the
stresses are zero by symmetry and only the pressure exists.

This 1s taken as the ambient pressure Po and does not change,

dp(I‘o}L) _ dp o
dlnTﬁ dlnT%

= 0

Sakiadls then obtained a non-zero ¢,. White (60) has criticized
Sakiadis' use of eéﬁation (b-56) for his daté, so these results
are open to question.

The term<Si can be evaluated from an integral momentum
balance written for the jet lssulng from a capillary tube.
This takes the form

To To

| J ZQrEszdr - j é3..(\1‘Pzzd.r+‘§Lx\r(1:'J -15) -?\rozpo = \’\rjzevjz =

o] 0 '

=pQ%/nry® . (4-57)

where the subscript j refers to the jet and Po is the amblent
pressure, usually taken as zero, without loss of generality.
The third term accounts for surface tension effects, and is
‘probably small at high exit velocities (58), This assumption
Is usually made in data evaluation (60, 64)., It is easiest

to assume a power law for V, and differentiate equation (L4-57)
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to obtain an expression for Pzz(ro,L) in terms of the surface
tension contribution and terms involving the jet contractlon
or expansion ratio (64). An equivalent approach (60, 63) is
to use equations (4-51), (4=-52) to give

Pzz(r.z) - Prr(r.z) =¢, -0,

then combine this with equation (4-54) to obtain
T
Pzz (r, z) = plo,z) - j(&‘zdlnr-!-(?’l -6 (4-58)
' o
At the wall, equation (4-58) becomes

To

P, {r,.,L) = plo, L) +&, (¥, -&(Y,) - Jcrzdlnr (4-59)

o

or, if we use equation (4-55) we obtain
P__(r ,L) = p(r_,L)+6, (2.) -a_(3F) (4-60)
zz' ~0° = Pir,, 1XW ZXw

4

Sakiadis (63),in effect, neglects Pzz(ro,L) in equation (4-60)
and calculates ¢, from ¢, obtained from equation (4-56) and
the pressure p(r,,L). Because of existing questions of this
measurement, White also questioned the use of equation (4-60)
to interpret the data as measured.

Gavis and Middleman (58) have considered the source
for the axial normal stress Py,, concluding that there is, in

addition to the internal normal stress,a profile relaxation
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stress occuring outside the tube. The profile relaxation
stress occurs in any fluild and is associated with the change
in the velocity profile from that within the tube to the flat
profile in the jet. The external normal stress develops in
viscoelastic materlals because of the change in the rate of
shearing during the velocity profile relaxation (an elastic
reaction to the change). Of course there is also the effect
of surface tension or surface traction., Clearly, the simple
Jet 1s a complicated tool and measurements should be made with
caution; 1t is not surprising that there are differehces re-
ported in the 1ite;éture (63, 65). Savins (59), as still an-

other alternative, has suggested the use of a pitot tube

"
&

ithin the pipe to obtain a measurs of

Pzz(r,z)4-%evzz

and thus, by equation (4-58), to obtain information and ¢7y

and 0—2-



5. EXPERIMENTAL WORK

5.1 Apparatus
The equlpment used in this study was a caplllary

rheometer (ﬁelt indexer) purchased from Monsanto Research
Cbrporat;on, which is shown in Figure 8 and consists of the
following:~ |

1. Rheometer ram stand with pressure gauges

2. Bheometer extruder barrel

3. Temperature controller cabinet.

Nitrogen was supplled in the piston from commeréial cylinders
in the range of 0 to 150 psi. The desired range of nressnres
were obtgined through the dual-stage pressure regulator and
accurately measured by the Bheometer's gauges. The barrel is
a stainléés steel cylinder having three heater bands (top,

middle and bottom) wrapped directly around the barrel, spaéed

evenly along its 1ength.' By means of a retaining nut, orifices o

of different dimensions can be installed at the bottom of the

barrel. The geometrical characteristics of the éapillaries

used are shown in Table I. The temperature controller unit

was operated over a temperature range of 170°-250°C and could

be controlled to about & 19C at any temperature in this range.
The procedure followed during a run was as follows:

1. With the rheometer at test temperature, (with piston and

oriface in place), about 10 gr of polymer were packed into
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Table 1 Diameters and Length/Dismeter

N /
3y " Ratios of Capillary Tubes
Capillary Entrance Diameter \ L/D
Angle
no. cm
1 60° 0.172 10
\\ L]
2 60° 0.104 \J 15
3 '60° 0.0812 / 19.5

L 60° 0.071 24
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the barrel incrementally to minimlize air entrapment.
Sufficient time was allowed to elapse (about 45 minutes)

to insure that the material was at the desired temperature.
After the preheated time had élapsed, one inch of piston
motion was extruded. Usually the first sample contalned

alr bubbles and was discarded. When a steady flow had been
obtained, the extrusion rate was determined by weighing
samples of the extrudate collected over timed intervals,

A higher pressure was then bullt up through the dual pres-
sure regulator, and the above process was repeated to ob-
tain data at a éecond pressure. 4in this way, data were
obtained for extrusion rates at a series of driving pres-~
sures but at a constant temperature and the same polymer
(and of course the same capillary). The incipience of
fracture was visually determined by the appearance of a
pronounced waviness in the extrudate. For polymers samples
with M;; under 400,000, the extrudate was smooth and straight
right up to the critical shear éﬁress. For molecular weights
above 400,000 the extrudates showed a loss of surface gloss
and a mild surface roughness (sharkskin) before critical
coﬁditions were reached, both for narrow and broad distribu-

tion samples.

After the completion of the experiment, the remainder of the

specimen was discharged and the orifice was pushed out through

the top of the cylinder. The orifice was cleaned by dissolving

the residue in a solvent (THF). A new orifice was adjusted and
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the barrel was charged with a new polymer sample. This pro=-

cedure was followed for all the samples used.,

5.2 Materials

Five polystyrenes of narrow molecular weight distribu-
tion were obtalned from the Pressure Chemical Co., Pittsburgh,
Pa. They ranged in reported ﬁw/ﬁn from 1,06 to 1.,20. Nine
broad distribution polystyrenes were prepared by blending of
fractions of narrow molecular weight distribution polystyrenes,
The blending of fractions was done by dissolving components in
tetrahydrofurane (at room temperature), then precipitating and

filtering with purified methanol. The molecular weilghts of

tlends wore caloulated from the sguations:
M, =Z§w1 (M,)4 (5-1)
= 1
g s 2
1 (Mdy
2
i, = Loy ®
2wy My
3
7 PARA
z+l v 2
WMy

where Wy 1s the welight fractlon of the i component.

The characteristics of the materials used are listed in

Table 11,
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Table IT Polymer Samples Used

- M MM
M, g&l f_%;l Sources of Sample
Mn MW
97,200 < 1,06 1.25 Pressure Chemical Company
128,000 2.9 2.86 Blend 20,400 (0.40)
+ 200,000 (0.60)
200,000 <. 1.06 1.25 Pressure Chemical Company
204,430 6.9 9.02 Blend 20,400 (0.65)
+ 498,000 (0.25)
+ 670,000 (0,10)
207,250 9,21 85.6 Blend 20,400 (0.895)
+ 1,800,000 (0.105)
207,300 2,78 6.15 Blend 51,000 (0.65)
. + 498,000 (0.35).
212,000 2.71 8.649 Riend 51,000 (0,60)
+ 200,000 (0.08)
+ 498,000 (0,34)
355,000 2.92 - Monsanto Research
Serial DD-0353
498,000 < 1,20 1.25 Pressure Chemical Company
600,000 2.32 8.42 Blend 200,000 (0.75)
.+ 1,800,000 (0.25)
670,000 < 1.10 1.25 Pressure Chemical Company
760,000 2.60 5.76 Blend 200,000 (0.65)
‘ + 1,800,000 (0.35)
1,060,000 2.31 3.10 Blend 200,000 (0.30)

+.498,000 (0.20)
+ 1,800,000 (0.50)

1,350,000 2.14 2.08 Blend 200,000 (0.20)
+ 498,000 (0.10)
+ 1,800,000 (0.70)

1,800,000 41.20 1.25 Pressure Chemical Company
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5.3 Treatment of Data
In the present work, two macroscopic variables were
measured: the pressure drop ﬁkP’in the caplllary rheometer

and the volume flow.rate Q. The pressure drop in the capil- .

lary rheometer is actually the sum of the following:

1. Pressure drop in capillary

2. Pressure drop in reservoir

3. Friction between piston and reservoir wall

L, Conpressibility of melt.

Without ioSS'of accuracy, the observed pressure was considered

to be the pressure drop through the capillary. Any other losses

were lumped into the entrance effect.

& at the wall
were calculated from these two quantities by using equations
(4-11) and (443 ), Corrected values of shear stress (Bagley's
entrance correction) and shear rate (Rabinowitsch correction)
were obtained with the help of equations (4-30) and (4n23),

" In addition to these two quantities, the expansion

ratio D /D was also measured. (Dg is the diameter of the emer-
ging polymer from the capillary. D‘is the diameter_of the
capillary tube.) Although this last quantity was not used in

. the analysis, it has been measured for future reference.

In Chapter 4 the errors encountered in a caplllary
flow were discussed., No further corrections were made because:
1. The flow was laminar. A maximum value of Ry = 102 was

calculated at the incipience of fracture.
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The flow was lisothermgsl. A maximum temperature rise of

2°C was calculated, and so corrections for heat effects
were considered negligible,

The compressibility of polymer was negligible as calculated
from equations (4-46) and (4-47).



6. RESULTS AND DISCUSSION

The results of the experimental measurementé, i.e., values
of AP, Téé, .l&Q/qro3, T s {‘w, Dy/D’are given in Appendix I. Typical
flow curves for monodisperse polystyrene with ﬁw=670,000 at 250°C:
are shown in Figures (9),(10)-, ‘(1{1),(12),(13). Figure (9) shows
the uncorrected flow curves for different capillaries with L/D =
10, 15, 24, while Figure (12) shows true shear stress T, versus
shear rate iw' Table III summarizes values of T.n, ’301.,"/2_01..(»10
and TchEw- Values of T .., x er»™) oy Were directly measured. Val-
ues °ft'lcr vs.% were also obtained. However, estimations ,ofarlo by
extrapolation from high shear rates are subject to large errors.

For this reasons), was determined using the formula (66):

logm, = 3.4 los Z+2.7x1016/16 _ 9,51 (6-1)

where Z = EW/SZ. ‘

From the experimental part of this work, one may observe:

1. The critical shear stress is independent of the capillary
dimensions if end corrections ar:e applied.

2. The critical shear stress varles between .68x 106 dyne:s/cm2
and 2.15x 106 dynes/cm?. The product Top ¥ My Tanges fron'l
1.88x1011 to 12.9x 1011, and the ratio‘YLcr/yLo takes values
from 0.0007 to 0.055. These results are therefore in con-

tradiction with Spencer and Dillon's (2) and Bagley's (37)

 conclusion that TCorxM, 1s a constant. Also Barto's (67) cri-
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1,800,000<1.20

1 0.0034  12.9

TABLE I11 CRITICAL CONDITIONS OF POLYSTYRENE |
ﬁ; ﬁw/ﬁ; Ter Ver 4 ncr":/no rcrg x ﬁ% Tempefgture
(dynes/em™) (sec )
97,200 <1.06 1.92 x 10° - —  1.88 x 10! 158
97,200 <1.06 2.15 x 10° - — 2.08 x 10t 170
128,000 2.9 1.6 x 10° — - 2.05 x 1011 170
200,000 <1.06 1.37.x 10° 105 0.0076  2.76 x 10! 170
200,000 <1.06 1.34 x 10°  — - 2.68 x 101 194
204,450 6.9  1.36 x 10° - - 2.78 x 10t 180
207,250 9.21 1.3 x 10° - — 2.69 x 101 180
207,300 2.78 1.17 x 10° = — — 2.42 x 1011 170
212,000 2.71 1.4 x 10° 182 0.0035  2.97 x 10%1 170
355,000 2.92 - 1.03 x 16° 27 0.0034  3.66 x 1071 170
355,000 2.92 1.06 x 10° 1,000  0.0022  3.76 x 10%! 210
355,000 2.92 1.12 x 10° 3,000 0.0027  3.98 x 10t 230
498,000 <1.20 1.17 x 10°  4.21 0.055  5.83 x 10" 194
498,000 <1.20 1.28 x 10° 50.0 0.0162  6.37 x 10%t 210
. 498,000 <1.20 1.30 x 10° 135.0 0.0196  6.47 x 10t 230
600,000 2.32 1.14 x 10° 100.0 0.0021  6.85 x 10T 200
670,000 <1.10 0.73 x 10° 30.0 0.022  4.90 x 10%? 230
670,000 <1.10 0.82 x 10° 180.0 0.0086 5.5 x 10! 250
760,000 2.60 0.97 x 10° 85.0 0.0007  7.36 x 10*! 200
1,060,000 2.31 1.06 x 10° 19.0 0.0012 11.2 x 10%! 200
1,350,000 2.14 0.70 x 10°  — - 9.45 x 10! 170
1,800,000<1.20 0.68 x 10° 3.6 0.0055  12.2 x 10tt 230
0.715 x 10° 12.80 x 1011 250


http:1,800,000<1.20
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terign thatﬁ\cr/qo==0.025 does not seem to hdld.‘

3. The critical shear stress is practically independent of
temperature, within the limits of experimental error.
However, some carefully controlled experiments were
carried out using the broad distribution sample of ﬁw"
355,000, The result is shown in Figure (14). The shear
stress at the onset of fracture seems to increase only
slightly with temperature.

L, The influence of polydispersity on critical shear stress
is negligible, in full agreement with the results of'the
bulk of literature (6, 47).

In Figure (15),'["0r (average) is plotted against i/ﬁw.

~ L 23 2N oa s o T - own o wa Y —-— -
It ic seen that the results for all the samples are well TeEpre=-

(]

sented by a single straight line. A least squares fit yielded

the expression

1
Tor = 0.785x10%+ 1,14 x 1011 — (6-2)
My
From equation (6-2) one may obtain
TopThy = 1.1 x10% 0,785 x 10% x H,, (6-3)

This is also shown in Figure (16), and it 1s clearly in contrast
with Bagley's (37) conclusion that Top x My = constant. However,
Bagley's result was supported by Spencer and Dillon's (2) data,
who have carried out experiments for a rather limited range of

molecular weights (196,000 to 527,000).
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_It is interesting to note that when/tbr'is plotted
against 1/ﬁW for the present set of data and the data given in
References (2, 46), as shown in Figure (17), the discrepancies
do not seem really large and may well be attributed to experi-
mental errors. In fact, the stralght line which is the least
squares fit for our data falls between the data of Spenéer and
Dillon (2) and Barnett (46). 1In addition, it must be noted
that the experimental range of the present work is extended
from E; = 97,200 to ﬁ; = 1.8x:106 which is a much larger range

than in any previous investigation.
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7. ANALYSIS

Bagley (37, 68) and White (35) conjectured that the
onset of melt fracture occurs at constant value of "recover-

able shear strain®
Sp = Tepd (Hooke's law) (7-1)

where J 1s the steady-state shear complliance. Bagley has

taken the value of J as

aszcerding o an expression given by Wall (69). White (35)
has taken the value of J as the value of the steady state shear
compliance of a monodisperse collection of Rouse chains. This

value is given by Ferry (70)

g =2 L
5 vigT

in which v i1s the number of chains per unlt volume, kgls
Boltzmaenn's constant and T the absolute temperature. For the

case in which there are no entanglements

s0 s=2 % _2 N
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White has ﬁsed this expression to prove that
TeorX ﬁ.w = constant

By substituting the value of J into the equation (7-1)

o

2My

SR = Tcrx
and therefore, it follows that
= 5
Teor X My= — ERBT Sy = constant
2

if we suppose that the experimentally observed value of re-
coverable shear stféin is constant,

Recently, it has been shown that the non-Newtonian
rroperties of long-chaln polymers are associated with the pre-
sence of entanglements (71). According to this theory (71)
the entanglements provlide a network which is able to store
elastic energy, in much the same way as a deformed specimen
of cross-linked rubber. Because the recoverable strain repre-
sents the amount of elastically stored energy, 1t is reason-
able to associate the phenomenon of melt fracture with the
presence of a network due to entanglement (72). According to
Graessley's theory (73) there is a characteristic time:\o,
constant for the polymer, and its magnitude controls the time
for formation of molecular chain entanglements between any
molecule in the system and other molecules. its value 1s of

the order of the Rouse relaxation time’XR where
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_ 6 M,
*m = W2 ear

Graessley (73) found that the ratio )o/AB%for monodisperse
systems 1s a simple functlon of molecular weight ﬁw which is:
2.00
1+ 0.17E

(7-2)

Ao/Ng =

Moy
16,500

where E =

The same form of variation holds for the relaxation time assoc-

iated with normal éﬁress. At low shear rates:

Toz-TCor = kbrgz (7-3)

where kNjis the normal stress coefficlent.

For a polydisperse collection of Rouse chains we have:

2 — q—
kp = jﬁl_, o MMoiq (7=4)
. 15 o L'fﬁ;z-

Graessley evaluated an experimental time constant >HF

15k M.
>\N" = nlzq ﬁ ﬁw (7"'5)
‘np z z+1

where ky represents the experimental values of normal stress

coefficient given by the equation,
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v - n ’t;z"T;r
T iio ¥*

The ratios,j\o/kﬂ and:XN/KR measure the deviation of any poly-
mer from the Bouse theory. Graessley found that~>N/kR for
monodlsperse systems obeys a relation of the form of equation

(7-2) which 1is: ,
AN 2.2

‘)R 1+ 0.34E

—

Moy
16,500

where E =

For the case in which the chains behave like a Bouse chaln

(¢

=

and there are no entanglement points in each chsain, can

(White criterion)

But in real systems, however, the properties are changed as
entanglements are introduced randomly and successively between
the chains. Chompff and Duiser (74) proved that the equili-
brium compliance of a cross-linked network of Rouse chains is

given by:

v kT
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where v, 1s the number of actlve network elements per unit

volume. Graessley (73) shows that:

-E-R- = 1 ) (E‘(l)
J

J 1

e : (E»>1)
J 5

The first equation gives J = Jp so from equation (7-1) we
obtain’tcrzcﬁw = constant. The second equation glves

J = == = constant, This case was supported experimentally
late1;§(75). If we substitute this value into equation (7-1)
we obtain T,,. = constant. This has been observed by Barnett
(46) for polypropylene.

On the basis of the previous discussion, it 1s easy to
arrive at the conclusion that neither the’tcr:cﬁw nor T.,. are
constants because both represent extreme cases. Incipience of
fracture however, can téke place and at»intermediate entangle-
ment densities.

At the limit of zero shear’-i- = 2N (as 1t is shown

J.
in Appendix1II). So at finite shearI%atesI%ne might expect

J A _
= (7"6)
JB 1+ BE

J

The ratio 5 represents the deviation in the behaviour of any
R

sample from the Rouse theory.

Then, setting
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”tcrxﬁfz SR

and, for a monodisperse system

2 My
R == =
5 ERT

J

one obtains a linear relationship betweenT.,.xM, and M, ,

that 1is,

RSpT B -
2 &%%% (4, ) (7-7)
2 A 16,500

TCI' X MW =

which 1s of the same form as equation (6-3 ) obtalned by a
least squares fit of the experimental data.

For a polydisperse system, Bouse's expression is (70):

Ju = ji My MoMzeq
8" 5 err W7

in which the factor Mzﬁz+1/ﬁw2 implies a large dependence on
the molecular weight distribution, especially in the high
molecular weight tail. The fact, however, that the same type
of equation is obeyed by both narrow and broad molecu%gz_weight
- , - MM

distribution samples suggests that M rather than MW(-J%jgﬁa)
should be used in Ji when Graessley's expression for J/Jh is
applied, which also has ﬁ; as the correlating variable.

By comparing with equation (6-3) which is a least

squares fit of the experimental data we obtain



82

S

A= B | (7-8)
1.16

B = 0,113 , (7-9)

The values of A, and B were calculated by taking an average
temperature T = 473%. Graessley's constants were A=2.2
and B= 0,34 respectively at the limit of zero shear,

At finite shear rates one might assume

J A
EN 1+k1§-§Ei—)Eo (7-10)
Then
B kz E
EO

where Ej 1s the entanglement density at‘% = 0 and E is the
entanglement density at finite shear rates. The ratlo
E/E, = g(¥) is the entanglement density ratio given by
Graessley's entanglement theory (76).

Setting Graessley's value for kg= 0.3%, one obtains
Eﬁ/Eb=:0.332, which means that melt fracture occurs at
sufficiently high shear rates when the entanglement density
i1s reduced to one third of its value at zero shear. Therefore,
melt fracture is due to the relatively large loss of entangle-
ment poinfs. It is interesting to note that this result is

related to Bartos! criterion that melt fracture occurs at
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:(Z-Lcr = 0.025, Graessley (73) glves E/Ej = 0,486 for /-f-l'- =
o) /
= 0,0302 and E/Eo = 0,415 for 2%? = 0,0148, The largé)range

of values of

shown in Table III 1s probably due to the

Ver
Mo
fact that small changes in E/Eo correspond to large differences
in zl; » Which was also pointed out by Malkin and Vinogradov
(77) in a similar way. Moreover, the equation (6-1) which
was used for the calculation ofwlp 1s not always accurate.

In Graessley's paper (73) a& experimentally determined
constant A = 2.2 is given and therefore, using Sp = Ax1.16
one obtains Sy = 2.56. This means that fracture occurs at a
value of a recoveréble shear strain of 2.56 units. This is
different from Bagley's result (SR¢57.O) because of the factor
2/5 used in the expression for Jp.

In Figure 18,T,p/T vs. 1/ﬁ% is plotted and the solid

line through the points is the least squares fit

Lor _ 09,1522 10% +2.965 x 108

T , M

A comparison with equation (7-7) yields

s
A= B and B = 0,0845
1.42

Therefore for A = 2.2 and k)= 0.34 we obtain Ecr/Eo = 0.254
and Sp = 3.12.
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8. CONCLUSIONS

The melt fracture is ultimately molecular in nature and
seems loglical to correspond to the breakdown of the mole-
cular entanglement network,

The critical shear stress 1s a linear function of 1/My.

The critical shear stress ilncreases slightly with tempera-
ture,.

The critical shear stress is independent of polydispersity.
The behaviour of polystyrene at the onset of melt fracture
can be well described using Hooke's law for constant re-
ain and the results of Graessley's

entanglement theory.
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9. NOMENCLATURE

constant

compressibility of the fluld

constant

heat capacity at constant volume

caplllary diameter

diameter of the emerging polymer from the capillary
entanglement density at finite shear rates
entégglement density at zero shear rates
entanglement density at incipience of melt fracture
molecular weilght dlstribution function

force tangentlally applied to a flowling surface
r-component of the gravity vector

z-component of the gravity vector

8-component of the gravity vector

shear compliance '

Rouse's shear compliance

coefficient of thermal expansion

Boltzmanmn's constant

normal stress coefflcient

power law constant

normal stress coefficlent for a polydispersed
collection of House chains

constant

thermal conductivity
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Po
Pe'

Prr’Pzz'Pee
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tube length

entrance length

length of the steady state reglon
number average molecular weight
welght average molecular weight
z-average molecular weight
z+1l-average molecular weight
power law constant

Avogadro's number

ambient pressure

Peclet number

normal stresses

heat flux vector

volumetric flow rate

cylindrical coordinates
capillary radius

l1deal gas constant
Reynolds number

su?face

recoverable shear strain
temperature

reservolr temperature
volume

velocity vector

average veloclty
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Ve, Vos Vg scalarrcomponents of V in cylindrical coordinates
VS slip velocity

Wy welght fraction of the i-th component

A number of monomer units in the polymer chailn

Zo dimensionless length

Greek letters

2 shear rate
%cr critical shear rate
gw shear rate at the wall
M viscosity
q@? | - true apparent viscosity
qlap anngrent viecocosity
Mer critical viscosity
Mo zero shear.viscosity
;b . dimensionless temperature
do viscosity relaxation time
DY relaxatioﬁ time associated with normal stress
A\r Rouse relaxation time
V* ' Newtonlan viscosity
v number of polymer chains per unit volume
Va number of active network elements perunit volume
S Oldroyd's parameter
e density
SERIP ‘normal stress coefficlents

T shear stress
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il

shear stress tensor
Tap apparent shear stress
“Ter critical shear stress

Tprr T8 T = .
rr’ =80 tzz scalar components of T 1n cylindrical coordinates

Tro Trzloz
Tw shear stress at the wall
43 Oldroyd's parameter

Mathematical Symbols

Ay "del" vector operator
-]%- substantive derivative
R

—y m——, y~—Dpartial derivatives
Ot ' or 98 oz

Z . sunmation
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Polystyrene
M, = 200,000

Temperature: 170°C

Table I-1

96

L/D | AP Tapx1075 Mafiry? Tux10 Yy  Dg/D | Remarks
(psi) dynes/cm?® (sec™l) dynes/cm? (sec~l)
10 1,600 27.50 76,0 13.60 105.00 Fracture
1,135  13.00 7.8 9.90 10,00
15 1,470 16.90 26,80 13.20 34,80
1,790  20.60 57.50 15,00 79.00
12,000  23.00 75.50 13.80 105.0 Fracture
1,265 9,10 2,26 1.35 3,00
1,600 11.50 .20 9.75 9.60
24 1,880 13,50 16.30 11.10 21.80
2,300 16.60 40,7 13,00 56,00
2,710 19.50 75.70 13.70 105.00 Fracture
Tep = 13.7% 107
Tor X M, = 2.76x 1011




Polystyrene

-~

M, = 212,000

Table 1.2

97

Temperature: 170°C
L/D | DP qgpx1070 4aATed Tyx1075 Y, D/D | Remarks
(psi) dynes/cm? (sec~l) dynes/cm? (sec=1)
600 10,30 20 8.75 26,0  1.78]
840 14,40 35 10.15 hé6,50 1.80
1,000 17.20 L8 11.45 64,00 2.06
10 1,220 21.00. 70 12.35 96.00 2.26
1,420 24,40 99 13.55 135.0 2.33
1,580 27.20 130 14,00 182,00 2.47 | Fracture
600 6.90 15 6.45 19.50 1.80
800 9,20 21 8,30 28,00 1.86
1,020 11.70 30 9.50 40.50 2.06
15 1,700 19.50 85 13.00 110.00 2.30
1,880 21.60 112 13,80 150,00 2.36
1,950 22,40 128 14,00 182,00 2.40 | Fracture
540 h,78 10 4,52 13.50 1.75
960 8.50 18 7.25 23.80 2.00
1,540 13.60 42 10.90 57.00 2.20
19.5 12,020 17.90 77 13.00 105.00 2.35
2,260 20.00 110 13.90 149,0 2.42
2,380 21,00 14,05 182,00 2.50 | Fracture

127

Tor = 14x10°

Tor XM, = 2.97x 1011
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Table I-3
Polystyrene
My = 355,000
M/M, = 2,92 |
Temperature: 170°C
L/D | &P Tgpx1075 4Q/yrg3 Ty x1073 {w  Do/D |Remarks
(psi) dynes/cm® (sec=l) dynes/em? (sec~1)
316 5.45 1.6 5.30 2.10
Lo7 6.95 2.0 5.8 2,90
600 10.3 3.8 6.7 L,.30
10 805 13.9 8.50 8.15 11.20
928 16,0, 12,40 8.80 14,00
1,060 18.2 19.00 10.00 27.00 Fracture
635 7.30 3.50 6.60 8.00
794 9.15 6.10 7.70 10.20
i5 927 10.70 8.50 8.20 10.80
1,025 11.80 11.50 8.60 11.40
1,240 14.307 17.50 9.30 13.00 :
1,312 15,20 20,00 10.50 27.00 Fracture
805 5.75 1.36 5.20 6.30
927 6.63 2.72 6,15 7.20
24 1,240 8.85 7.00 7.90 9.50
1 670 11.90 16.30 9.30 14,00
1,880 13.40 19.50 10.40 27.00 Fracture
Ler = 10.3x105
TchEW = 3.66}!1011
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Table I-4
Polystyrene
MW/Mn = 2.92
Temperature: 230°C
L/D AP 'r_apxlo"S ’+Q/qr°3 Ty ¥ 10~5 %W D,/D |Remarks
(psi) dynes/cm?® (sec~l) dynes/cm? (sec~l)
180 3.10 15.5 L,20 22,00 -
280 L,8 48,3 5.30 62,00 -
Los 6.95 154 6.40 220.00 ~
10 630 10.80 535 7.50 705,00 -~
780 13.40 952 8.40 1,500 -
930 16,00 1,875 11.2 3,000 - Fracture
430 k.95 37.2 b, 83 hg,00 -
550 6.33 89.0 6.8 130,00 —
800 9.20 340 7.65 490,00 -~
15 1,030 11.80 825 8.5 1,200 -
1,200 13.80 1,370 9.35 2,100 -
1,320 15.20 1,870 11.3 3,000 — Fracture
510 3.70 30.2 3.2 42,00 —
800 5.73 105 5.5 135,00 —~
1,210 8.65 370 7.9 502.00 -
24 1,430 10.20 725 8.95 1,020.00 —
1,630 11.60 1,180 9.15 1,680
1,820 13.00 1,890 11.2 3,000 Fracture

Top = 11.2X105
ep XM, = 3.98x 1011
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Table I-5
Polystyrene
M, = 498,000
B/, = <1.20
Temperature: 194°C
L/D bp Tap X 10'5 LQ/q rO3 TwXx 10~5 %W DS/D Remarks
(psi) dynes/cm® (sec=l) dynes/cm?® (sec-1)
384 6.60 0.20 6.05 0.25 1.0 |
k75 8.15 0.475 7.80 0.65 1.03
10 605 10.40 1.00 9.45 1.30 1.05
770 13.25 2,01 10.30 2.70 1.10
850 14.60. 3.00 11,70 4,21 1.17 | Fracture
535 6.15 0.25 5.90 0.30 1.06
605 6.95 0.36 6.85 0.49 1.07
700 &.05 c.58 7.75 C.79 1.09
15 870 10.00 1.15 9.30 1.55 1.16
1,086 12.50 2.20 10.90 2.94 1.27
1,200 13.80 2.95 11.65 L,21 1.27 | Fracture
24
Tep = 11.7x107
Tor X My = 5.83x 1011

MCMASTER UNIvERSILY LIBRARY




Polystyrene
Mw = 498,000
Mw/Mn = <1,20

Temperature; 210°C

Table I-6

101

12,85

L/D | OP wapx1075 4eAr,d T,x107°  §,  Dg/D | Remarks
(psi) dynes/cm? (sec~l) dynes/cm? (sec~1)
362 6.24 1.50 6.12 1.90 1,00
196 8.55 4,00 8. 30 5.0 1,09
10 600 10.30 7.70 10.00 10.00 1.15
w2y 12,50 13,70 11.70 18.50 1.17
850 14.60 24,20 12,10 33.00 1.20
925 15.90 37.00 12,80 50.00 1.23 | Fracture
L7s §.Lg 0,40 z.h0 052  1.10
543 6.25 0.60 6.20 0.82 1.10
15 632 7.25 1.30 7.15 1.75  1.11
850 9.75 5.20 9.30 7,10 1.15
1,130 13.0 18.00 12.10 24,00  1.17
1,310 15.0 36,00 50.00 1.20 | Fracture

24

Cop = 12.8x105

TerXMW = 6.37X 1011




Polystyrene
M, = 498,000
Mw/Mh =<1,20

Temperature: 230°C

Table I-7

102

Tor XM, = 6.47x1011

L/D | &P Topx1075 ba/mrgd Tux107> . Dg/D | Remarks
(psi) dynes/cm2 (sec~1) dynes/cm2 (sec™1)
415 4.00 1,02
543 9.35 11,00 8.90 14,70  1.09
10 606 10,40 15.80 9.70 21,00 1.12
72k 12,40 29,00 11.10 39,00 1.15
815 14.0-. Lh2,50 11.70 57.50 1,19
1,020 17.50 104, 13.00 135. 1.22 | Fracture
815 9.36 10.0 9.05 14,30  1.19
905 10.50 14,90 9.90 15.50 1.21
15 1,085 12,50 30,00 11.50 40,50 1.22
1,240 14,30 54,00 12.10 74.00 1.25
1,360 15.60 85.20 12,80 115.0 1.25
1,400 16,10 102.0 13.00  .135,00 1,26 | Fracture
24
Tep = 13.0x105




Polystyrene
Mw = 600,000
Mﬁ/mn =,2'32

Temperature: 200°C

Table I1-8
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100,00

L/D | AP Tapx1075 kafzgd ryx1075 . Dg/D |Remarks
(psi) dynes/cm? (sec~1) dynes/cm? (sec-1)
690 11.85 20 8.30 26,00 1.68
836 14,40 27.4 9.05 36.80 1.82
10 928 16,00 33.5 9.52 45,90 1.95
980 16.40 38,0 9.80 52.00 1.96
1,150 19.80 56,0 10.75 77.00 2.24
1,270 21.80 72,0 11.40 100,00 2.30 | Fracture
836 9.65 16.5 21.50 1.67
930 11.30 22.0 8.50 29.00 1.74
1,150  13.25 31.0 9.30 41.80 1.82
15 1,221 14.00 36.0 9.70 48,70 2.06
1,460 16.80 57.5 10.72 78.70 2,10
1,590 18,30 71.50 11.40 100.00 2.18 | Practure
1,130 10.00 22.0 8.50 29.00 1.96
1,335 11.80 28,50 9.20 38.20 2.04
1,460 12,90 34,50 9.55 47,00 2.10
19.5 11,590 14,00 43,00 10,10 58,70 2.15
1,830 16.20 65.50 11,12 90,00 2,20
1,890 16.70 71,80 11.40 2.21 | Fracture

Top = 11.4x105
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Table I-9
Polystyrene
Mw = 670,000
M./My = <1.20
Temperature: 250°C
1,/D Ap Tap x 10™5 l&Q/nro3 T X 10~ \‘&W Dg/D ' Remarks
(psi) dynes/cm?® (sec-1) dynes/cm2 (sec~1)
430 7.40 9.4 5.10 12,80 1,02
596 10.30 19.50 6.00 42,00 1.12
10 680 11.70 27.50 6,34 52.00 1.16
814 14,00 L6,0 6.95 84,00 1.19
975 16,80 86.0 7.96 160,00 1.90
1,010 17.40 95.0 8.20 180.00 1.90 | Fracture
860 9.90 26.50 6.20 L, 00 1,18
375 11.20 41,0 6.82 76,00 1.32
15 1,040 12.00 50.0 7.10 94,00 1.40
1,150 13,20 68,50 7.56 126.00 1.40
1,245 14,30 88.0 8.00 163.00 1.40
1,270 14,60 94,0 8.20 180.00 1.40 | Fracture
602 L,33 L, 40 3.50 5.10 1.06
705 5.08 5.50 L,05 7.20 1.10
24 975 7.02 14,0 4,90 21.0 1.15
1,110 8,00 21.0 '6,00 42,00 1.20
1,450 10.45 55.0 7.21 100.00 1,27
1,700 12,20 93.0 8.20 180.000 1.40 | Practure

TchMW = 5.5X1011
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Table I-10
Polystyrene
M, = 760,000
M, /M, = 2.60
Temperature: 200°C
L/D | BP Tapx1075 bRAry” Tux10°5  \y  Dg/D |Bemarks
(psi) dynes/cm?® (sec~l) Dynes/cm? (sec-1)
b2 7.78 L,00 5.40 5.47 1.46
679 11.70 10.00 6.90 13.00 1.58
10 836 14,40 16.00 7.30 21.50 1,70
974 16.75 23.00 7.6 31.50 1.86
1,192 20.00- Lo,00 8.75 55.0 2,12
1,360 23.40 60,20 9.65 85,00 2.18 | Fracture
679 ?;?6 6.00 5.0 8,20 1.5k
733 8.50 7.15 6.00 10.00 1.66
15 980 11.20 13.80 6.80 18,70 1.76
1,242 14,25 25.40 7.80 33.20 1.94
1,460 16.70 39.80 8.70 55.0 2.04
1,680 19.30 59.50 9.70 85.0 2.12 | Fracture
980 8.62 7.50 . 6.10 10.80 1.74
1,175 10.35 14,10 6.70 19.20 1.89
19.5 1,242 10.91 17.50 7.00 24,0 1.92
1,460 12.85 27.70 8,00 37.0 2.00
1 560 13.70 33.00 8.35 Ls,0 2.10
1,880 16.50 59.00 9.75 85.00 2.40 | Fracture

Tep = 9.7%105
er XM, = 7.36x 1011
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Table T-11
Polystyrene
M, = 1.06x 100
MM, = 2,31
Temperature: 200°C
L/D | 6° mapx1075 Ma/ere? T, x107°  §,  Dg/D | Remarks
(psi) dynes/cm® (sec~1) dynes/cm2 (sec-1)
557 9.60 3.30 7.20 L,10 1.29
750 12,90 5.28 8.42 730 1.48
10 841 14.50 6.70 9.15 9.20 1.50
930 16.0 8.50 9.85 11.50 1.51
987 17.0°- 10.10 10.20 4.0 1.54
1,080 18.6 13.50 . 10.55 19.00 1.72 | Fracture
605 6.95 2.50 5.00 3.0 1.29
750 8.62 3.20 6.20 L. 20 1.30
836 9.63 3.80 7.36 5.20 1.40
15 1,038 11.95 5.80 8.72 8.00 1.45
1,250 14,40 9.60 10.1 13.20 1.58
1,400 16.10 13.30 10.65 19.00 1.79 | Fracture
24

Teop = 10.6%105

TerxM, = 11.2x10t
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Table I-12
Polystyrene
N, = 1.8x10°
M,/M, =<1.20

Temperature: 230°C

L/D | AP T,ox 107 bafryd ~, x10°5 §w Ds/D|Remarks
(psi) dynes/em® (sec~l) dynes/cm2 (sec™1)
360 6.20 0.50 4,35 0.63 1,10
k30 7.40 0.72 4,96 0.95 1.15
10 496 8.53 1.00 5,50 1.30 1.18
5440 9.30 1.22 5,73 1.65 1.24
650 11.20. 1.96 6.30 2.70 1.35 | -
710 12.20 2.50 = 6.80 3.60 1.50 | Fracture
k52 5.20 0.46 4,05 0.60 1.15
510 6.20 0.62 4,83 0.85 1.20
15 632 7.27 0.88 5,43 1.20 1.32
73] 8.52 1.26 6.00 1.75 1.35
8L0 9.65 1.91 6.35 1.65 1.40
900 10,40 2.54 6.83 3.61 1.43 | Fracture
800 5.75 0.6 L.,87 0.83 1.12
900 6.50 0.86 5.34 1.18 1.17
2 1,040 7.50 1.30 5,91 1.79 1.24
1,150 8.30 1,84 6.25 2,54 1.30
1,221 8.80 2,30 6.62 3.45 1.37
1,250 9.00 2.47 6.79 3.60 1.40 | Fracture

Ter = 6.8x 100 _
Tor* ¥, = 12.2x 1011




Polystyrene

- 6
M, = 1.8x10

M /M) = <1.20

Temperature: 250°C

Table I-13
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\

L/D AP Tap X 10-5 LQ/q r03 Tw X 10~5 \& W D./D | Remarks
(psi) dynes/cm?® (sec~l) dynes/cm® (sec~1)
340 5.85 2.18 4,55 3.00 1,05
Lo6 5.55 3.80 5.72 5.20 1.19
10 588 10,10 5.20 6.10 7.30 1.20
680 11.70 7.20 6.66 10,00 1.25
700 12.00. 7.75 6,867 10.50 1.25
730 12.60 8.70 7.15 12,80 1.25 | Fracture
Lés 5.35 2.10 L 47 2.95 1.25
557 6.40 2.80 5.30 3.90 1.27
705 8.10 L,35 5.92 6,10 1.30
15 750 8,63 5.00 6.00 8.30 1.32
841 9.65 6.50 6.46 9.00 1.32
930 10.70 8.60 7.10 12.80 1.32 | Fracture
605 4.33 1.3 3.70 1.75 1,07
836 6,02 2.6 5¢32 3.50 1.12
1,080 7.78 5.0 6,07 8,30 1.19
24 1,192 8.60 6.6 6.53 9.20 1.24
1,245 9,00 7.4 6.80 10.80 1.26
1,330 9.60 8.80 7.25 1.26 | Fracture

Topr = 7.15% 105
TerxM, = 12.9x 101




APPENDIX IIX

At low shear rates according to White (35)

rtzz"trr = 27.8p (II-1)
Also at low shear rates
Tez="Gr = kN\‘dz (11-2)
Combine equations (II-1) and (II-2) and we obtain
2T,5p = kyY (11-3)
But \:?,= Lzr for low shear rates., Sg cguation {(II-3) becoumes
o
2Tzr-s,-R = kl\ITzrz
o
or Sg = kN“;%%: | (IT-4)
But for a monodisperse collection of Rouse chainsx
ky = kp = "2'2‘2""?0>\B= 2“2,\(2 6 "’Qoﬁw
15 O 15 0% errp
So ky = kp = —:-%2 -é—émg; (1I-5)
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Substituting equation (II-5) into (II-4) we obtain

S = o2 My Tor _ 2 ”szr
R -5_% PET 24202 5  QRT




APPENDIX I

At low shear rates

Tz~ Trr = k»{& (mr-1)

where kyls the normal stress coefficient.

For a polydisperse collection of Rouse chains

M,
'qoxR —i}?"-fztk (Ir-2)
where | Ag = "6 "'};og: (Ir-3)

An experimental time constant associate with the normal stress

can be evaluated as -
15k M
AN = ; — (II-4)
2N MzMzyq

where k= T.Zz_g_l‘_l‘. | (l;E'-5)
(at 1ow shear rates).

But, according to White (35),
Tzz~Trr = 253 X Ty (II-6)

So equation(II-5) becomes

(I-7)
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S
where J = R
Trz
Combining equations (II-7) and (III-4) we obtain
: 2 T2 |
J
>\N = 15 'vloz __rf_w (1II-8)
o'V MzMayg

If we divide equations (I[-8) and (II-3) we obtain

o 2

M RT
A _ 5 My BRT 1 (Tm=9)
XR 2 MzMz+1 Hw

But for a polydispé’rse collection of Rouse molecules the steady-

state shear compliance is (70)

Jo = 2 MpMpyq My
R= 7T 7=2
5 My TRT
So equation (II-9) becomes
L
Az Jr-

for low shear rates.
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