RELATIVE ADJOINTNESS AND

PTESEPVATION OF NON-EZXISTING LIMITS



REIATIVE ADJOINTNZSS AND PRESERVATION OF NON-EXISTING LIMITS

By
SANG SHIN LEE, B.Sc., l.Sc.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Doctor of Philosophy

Vcliaster University

September 1977



DOCTOR OF PHILOSOPHY MCIVASTER UNIVERSITY
(Mathematics) Hamilton, Ontario

TITLE: Relative Adjointness and Preservation of
Non-existing Limits

AUTHOR: Sang Shin Lee, 2,Sc. (Sogang University)
ieSc. (lMclaster University)

SUPERVISOR: Professor B. Banaschewskil

NUMBER OF PAGES: vii, 82

ii



ABSTZACT

Triples and thevcategories of triple algebras are
relativized by a full faithful functors. The Tripleability
Theoram in [1] is correspondingly relativized. The concept
of the rank of a triple becomes intrinsic in this setting.

Preservation of non-existing limits is interpreted
in terms of limit-colimit commutation property. This is
used to account for the usual description of the category
of algebras as the category of all product preserving set-

valued functors on the opposite category of free algebras.



ACKHNO/IEDGELZNT

It is my pride to thank Professor B. Banaschewskil
for his guidance and encouragements.

I acknowledge with appreciation the indispensable
importance of the financial support from FKeclaster University,
National Research Council of Canada and Professor Banaschewski.

I dedicate this work to my parents.

iii



Chapter O

Section

Section
Section

Section

Chapter 1

£ W

Section 1

Section

Section

Chapter 2

Section

Section

Chapter 3
Section
Section
Section

Section

FEFEFENCES

2

°
H

3:

£ woon

..

TAB1= OF CONTENTS

PRELININAFRIES

Categories of Functors and
Yoneda Embeddings

Adjointness Situations and Triples
Kan Extensions

Path Categories

DENSITY

Dense Functors

A\ -Dense Functors

Density with respect to a Functor
TRIPLES ASSOCIATED WITH BELATIVE
ADJOINTNESS SITUATIONS

Triples Generated by Relative
Adjointness Situations

Characterization of Relative
Eilenberg-loore Situations

LINMIT PRTESEPVING FUNCTORS

Limit Preserving Functors

Limit and Colimit Commutation
Categories of Continuous Functors

Absoluteness

iv

Page

14
16

20
2L

30

32

48

58
65
70
75

82



INTRODUCTION

There are two known categorical approaches to the
study of algebras. The first is an approach, in which the
operations of algebras play the pivotal role. Not only just
the generic operations ~ e.g. multiplication and identity
in the case of monoid -~ but also all derived operations are
considered. This approach was initiated notably by W. Lawvere
[7] among others.

The second approach, which is referred to as the triple
algébraic approach in the following, is that which is based
on the adjointness situation between the categories of
algebras and the category of sets. It waé observed that an
ad jointness gives rise to a triple and conversely, a triple
determines two, the largest and the smallest adjointness
situations, called the Eilenberg-Moqre Sitvation and the
Kleisli Situation, respectively. They represent the category
of all algebras and the category of all free algebras, resp-
ectively. ( see [1])

The main difference between these two approaches
lies in the consideration. of the rank, i.e. the smallest
regular cardinal greater than the arities of the operations
of the algebras of the type under consideration. In the first
approach a consideration of the rank is intrinsically includ-

ed; in the second such 1s conspicuously ignored. Consequently,

v



the category of compact Hausdorff spaces, for instance, is
"algebraic" in the second sense but obviously not so in the
first sense.

This work proposes one way that would somewhat
reconcile the difference by refining the triple algebraic
approach. This work is done by considering relative adjoint-
ness situations instead of adjointness situations. Moreover,
it is noteworthy that the proposed way is not only a refine-
ment but also a generalization of the triple algebraic theory,
in so far as the relative ad ointness 1is a generalization
cf the adjointness.

After having the above reconciliation between the two
different approaches, the description of the category of
algebras in the first aporoach, namely, as the category of
all product preserving set-valued functors on the opposite
category of free algebras, is justified in the triple algebraic
sense. |

Since in the arbitrary setting as is studied in this
work existence of limit or colimit is not known, an appropri-
ate modification of 1limit preservance of functors for non-exist-
ing limits 1is studied.

A word on the way the chapters and sections are
referred is in order. The number vpreceding a colon refers
to the number of the chanter, whereas the number immediately

following the colon or the first number when there is ro

vi



colon refers to the section numter. Therefore 3:1.3 mezns
the third statement in the Section * of the Chavter 3,
while 2.5 means the fifth statement in the Section 2 of the

same chapter.
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Chaoter 0

PRELIMINARIZS

In this chapter we will review the basic definitions
and some consequences that are needed in the later chapters.

Section 1: Categories of Functors and Yoneda Zmbeddings.

1.1 Preliminary Remarks.

1.1.0 In general, the collection of all functors from
a category to another does not form a category. It fails to
be a category only becaﬁse the collection of all natural
transformations from a functor to another may not be a set.
As a foundation of the legitimate formulation of functor
categories three possibilities exist:

1,1.1 One uses the set theory of von Neumann-Bernays-
Gddel as a.basis. The fundamental concent here is that of a
"class." Sets are those classes which are elements of classes.

Small categories are those categories whose object
classes are sets, equivalently those categories whose morphism
classes are sets.

In this situation only those functor categories with
small domain categories are legitimate., The set theory of
von Neumann-Bernays-C8del as a foundation does not permit to
consider functor categories with arbdbitrary <domain categories.

1.1.2 Instead of 2an axiomatic theory of sets as a
tasis, we could use an axiomatlic theory of the category of

categories which encompasses set theory as the theory of
1



categories which encompasses set theofy as the theory of
discrete categories.

The formulation of functor categories is given as
exponentiation.{7]. For our purpose this approach is unnece-
ssarily sophiscated.

1.1.3 One expands the set theory of Zermalo-Fraenkel
by introducing universes as suggested by Grothendieck; i.e.

suitable
one admit§\inaccessible cardinals. Accounts of this approach
could be found in [3]. We shall do no more than point out a
few facts which will suffice for a formulation of functor
categories.,

1.2 Universes.

1,2,1 A universe is a non—empty‘set?ﬂ subject to the
following conditions:

(1) If A€Vl and B€A then BeUl.

(2) If A, BeW, then {A,Bjell

(3) If AeYL, then the power set $(A)eVl.

(4) 1 {Ai] iE:Ieln} is a family of elements of Ul .

then iLGII Aiem.

1,2,2 rom these axioms one can easily deduce the
following properties:

-If AeUL, then [A} E€UL .

-If AcB€eU, then A eUYL.

-1t 4, B€W, the couple (4,B)={[+,8},4] is an
element of UL.

-If A, Be?ﬂ, the union AYB and the product AxRB are




elements of UL .

-1 {Ai(ielelﬂ}is a family of elements of UL then

b

the product i-rerI--Ai'iS an element of UL .

-If AeVl, then card(A) < card(U. In particular the
relation ULe YL can not be true.

In short:Wis closed under the usual constructions
of set theory carried out on the elements of UL,

1.2.3 An example of a universe is the set of all
symbols of tyve {{}L{{¢},¢ &eﬂxu} where every element of
this universe is a finite set and this universe is countable.

1.2.4 We require as an axiom that every set is an
element of a universe. Thus in particular every universe is
an element of a higher universe.

1.3 Ul-categories.

1.3.1 In the following we fix a universefvlcontahﬁn%
an element of infinite cardinality, for instance the set [N
of natural numbers (and therefore also contahﬁngzgdl,uz and
C). We make use of universe, but we choose a language which
would allow us to a large extent to use the language of the
set theory of von Nermann-Bernays-Gddel.

1.3.2 AVsmall set is a set belonging to UW. Subsets

ofqﬂ, are called Qﬂ~classes. “henever there is no risk of

confusion, we usually drop the prefix QM.

1.3.3 A category (rore precisely a %Q-categpry)

consists of Yl-class For A, and a composition rule which is &



partially defined associative binary operation with left
and right identities for each element. In particular the
composition determines the class of identity morphism of
A, denoted by ObJA, and the partitioning of Mor/j into the
classes Homy(4,B) of all elements of FKor|A with A as the
right Heqﬁfyfand B as the leftidenﬁ#y, which are required
to be ’Ul—sets.

Hom%$A.B) is often abbreviated as [A,B] when there
is no risk of confusion of the category under consideration.

A category is Ul-srall if ObfA is a U-set.

1.3.4 Let A be a UYl-category. Let Y be a universe
containing YL . Theﬂ in particular{R is a small Tf—category.
For any U -category|p, the functors [\~ lPand the natural
transformations between them form a‘?f—category. The compo-
sition of the morphisms is that of the natural transforma-
tions. This categéry is denoted by'UhqlEJ. If P is also V-
small, then UA,RJ is U-small. |

In particular if K is a Ul-small category, [/A,IB]
is a Ul-category for every‘Ul—categoryﬂ}. In general for
any two categories we could then legetimately consider the
functor category in an appropriately chosen universe.

1.4 The Yoneda Embedding

1.4.1 We write Ens for the category of all (M) small
sets. In view of 0.3.4 we have the category of all contra-

variant functors from a category [\ to Zns. ‘e denote this



A .
category by [\ , which is often called the catesory of

presheaves of sets on-/A . When [\ is a small U-category,

the category ;}: is a ‘Ul—category. Yhen IA is a W -category
the categoryﬁ is not in general a ‘Ul-—category, but a U-
category for a universe’l}_ containing YW . 1In either case
by choosing the universe avppropriately, we could legetima-
tely consider the categories of presheaves of setls.

1.4.2 For a Ul-category [N, and for every AeOb/A,
we define a contravariant functor [-,4] :~H\°°—> Zns by
the rule B ~[3,4] =Hom,

given by composing with g on the right.

(B,A) and for g:3—>38', [z,A] is

Given f:A—>A"' in JA , we have a natural trans-
formation [-,#):{-,A] —[-,A'] where for BeObJ\, [B,f]is
given by composing with f on the left.

For AeOb |\ , felor [\ , the rule A~>[-,A] and

. . N
f -, f] defines a full embedding h,:[A—> [\ called the

Yoneda Embedding, or often denoted simply by h.

Therefore every category may be regarded as a full
subcategory of a category of presheaves of sets.

1.4.3 If a Ul-category JA is not a small <Ul-
'category, //R is no longer a 'U(, -category.. Therefore in
general we could not formulate the Yoneda Zmbedding within
the universe Ul. Noting that the Yoneda Embedding is a
representation of objects of a(UL-categoy /A as set valued

functors, we restrict ourselves to a subcategory of



N _
I\ consisting of all proper presheaves of sets on .
Let ﬁ\ be a (UL-category. A set valued functor

7: A —> Ens is called proper ( more precisely Ul -proper),

if there exists a Ul -small set jD of objects with the
following proverty:

Tor every A€Ob [k, and for every aeT(4), there
exists a suitable D hqf)and deT” (D) together with a morphism
f:+5—>A such that T(f)(D)=a.

Such a set & is called a dominating set for T,

It is then straishtforward to see that the category
of all prover nresheaves of sets on a ‘Ul-category ﬁk is

again a Qﬂfcategory.

Section 2: Adjoint Situations and Triples.

In this section we recall the definitions and funda-
mental properties of triple algebras, . thereby providing
the ground work of Chapter 2.

2.171et J: £ — Ak, U: ¥ — /Aand F:@— ¥ be three

functors. F is said to be relative left adjoint to U with

respect to J or simply J-relative left adioint, if there

exists a natural equlvalence & , which 1s called the adjunc-
tion lsomorvhism,

e, xt [F2X] =5 [oc,ux]
where CeObC and #€0b X .

We sometimes write thils situation in symbols as




F—4U mod J
If in particular ledﬁX’ then we simply say that T

is a left adjoint to U, which case is written in symbol

F—U.

2,2 Let F be a left adjoint to U with the adjunction
l

uz,y yz)
for every A€Ob [\ and XeOb){, respectively. Then n:{nA}, &=

isomorphism « . We letm,= &, VA(lFA) and €y= &
’-L

{21{} define natural transformations; ’q:Id/A____)_ UF and’ €1

FU———}IG},’\ respectively called the front and the back

adjunctions,

Let T=UF and p=UeF. Then the 3-tuple(T,n,m) satisfies
(1) m(nT)= m{Tn)=1y, and

(2) W(uT)= M (TpM).

2.3 Let [A be a category. A triple (monad, or triad)

over /A
T:(T,'YL,M,)/\J'.S an endofunctor T:/A— JA with natural transfor-

mations —vl:l —> T and w:TT —> T which satisfies (1) and (2)

of (2.2).

2.4 Let |\ be a category and T:(T,"Q,}L) a triple over
N o A T ~algebra is a pair (A,a) with A€ObJA and a:TA — A

such that
(1) am,=1,s and
(2) a;pA:aT(a).

A is called the carrier or the underlying object in

of the algebra (A,a), and a is called the structure map.

A T ~homomorphism (A,a) —> (B,b) is a 3-tuple (a,



f,b) where f is an [\ -morvhism 4 — B, making the following

square commute:
T

TA — TB

a ¥ Iy
ATr ot

f is called the underlying mt—morphism of the homo-

morphism (a,f,b). We usually drop the reference to the

AN

structure maps.

'.:‘f'-
e have the category [A of T -algebras and T -

homomorphisms.

2.5 let ﬁf:(T;n,MJ be a trivle over the category .

F o,
Then there is the forgetful functor U :H\T:—é IN  which

assigns to each algebra its carrier and to each homomorphism
the underlying [\-morphism.
-
The forgetful functor W is faithful.

5 +
We define the free functor [ :|k—> [k by the rule

A (TA W) and famwsT(f) where f:A—B in N . |

We note that Fﬁsis a left adjoint to UT ana L@&;T
=T, Moreover the triple induced by the adjointness situation
F;f—4 W' is the same as the triple we started withe.

We call the category ”\? the Eilenberg-lioore category

corresvonding to the triple " , and the adjointness situ- '~

. S x . . . . .
ation F —1 W the Ellenberg-loore situation corresponding

to the trivle T

2.6 Let F:JA— X be a functor. The full image of F

is the category )f(.F whose objects are those of /A and whose



morphism sets HOWXF(A’B) are preclisely Hom-XKFA.FB).

There exist functors clF: A — Ko » fimF: kg — K
so that the following holds:

(1) fimF.Cl1lF = F,

(2) clF is bijective on objects,

(3) fimF is full faithful.

2.7 In (2.6), we have a factorization of a functor
in the category Cat of categories. The factorization is not
an epi-mono factorization, but comes very close to it,

—
1%
+

Vore precisely, fimP satisfies the following: Given
any two functors G, H:‘i~—%'ﬂ;, if (fimF)-G is naturally
equivalent to (fimF7)-H, then G is naturally equivalent_to

He And clF satisfies the following: Given any two functors
L, M:Kkg — T, if L-(clF) is naturally equivalent to M«(clF)
then L i1s naturally equivalent to M.

In other words they satisfy the definitions of mono-
morphism and epimorphism in Cat in which the equality is
replaced by the natural equivalence. This observation con-
stitutes the ground for calling them 2-monomorphism and 2-
epimorphism respectively in the 2-category Cat. (See for
instance {47 for the concept of 2-ness)

2.8 Let “f =(T,m,w) be a triple over A, and

:ﬁ‘ ':11—‘ » L s 3
F —— U" the Eilenberg-Yoore situation corresponding to

the triple T . let F.=cl”’ and Up = U’ - fimF" . We remark
that there 1s an adjointness situation Rf-—1 UT" which
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gives rise to the same triple T .
We call the category (”\?)F“-? (see 2.6), for short

M=, the Kleisli category corresponding to the triple T _;

and the adjointness situation FT'T’_—i sz the Kleisli sit-

vation corresponding to the triple T .

2.9 The Kleisli category [ks corresponding to a
triple 'T:(T,'VI,;L) could be described in a more direct .
manner:

The objects are the same as those of the category
/A « For every A and A' in kA , Homlp“ﬁ_(A,A') consists of

all [k -morphisms f:TA - TA' such that

TTA ——-,‘r‘f—.——-} TTA'
Mg l l’uB '
TA T g TA"

commutes. The composition is the one induced from the cate-
gory [k .

In this description, UTr is determined by the rule
Armd>TA and £ ~2» T, F’r’r is determined by A ~» A and h ~ Th.

2.10 Let F— U be an adjointness situation with
front adjunction < and back adjunction € , Where F: /A—-))’(,
and U:¥.— JA. This adjointness situation gives rise to a
triple T:(T,ﬂ],pt where T=UF and k=UeF (see 2.2), which in
turn gives rise to two adjointness situations, namely the

Eilenberg-loore situation and the Kleislli situation.

There exist two functors N:{Af—'?)’( and K:'){L——)Iﬁ?. both
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of which are called comparison Functors.

N is defined by the rule A ~» A and f:TA-—7B

Ay FA —— FUFA —=> FUT3 -—> FB.

K is defined by the rule X ~»(UX,U€X) and g:X —> Y

~y Ug,

2.11 We need some notions about functors relative
to diagrams. Let U}, —> |\ be a functor. Let & be a cate-
gorical proverty of diagrams (e.g. monomorphism, limits,
etc.). Assume that with every diagram D in %{ , i.e. a
functor D into the category X with a (small) domain cate-
gory, with vroverty & , the dagram U'D in [N also has
the property U% . In this case one says that U preserves

the proverty Y . Assume that each diagram D in )f for

which the diagram U-D in /k has the property &% has it-~

self the property Ua , then we say that U reflects the

property G@ .

We say U creates colimits for a diagram D:IL.—> ¥ ,

if the followings are satisfieds
(1) there exists a colimit of U-D in ”& , say
)izUD(i) — A,
(2) there exists exactly one pair (<, ) consisting
of an object X of Y and a cone §,:D(i) —> X such
that U”=A and U Giz )i, and lastly
(3) this cone ¢;:0(1) — % is itself a colimit

cone in )z .
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We could similarly define the limit-creation pro-

perty.

e e

U is said to create isomorvhism, if given any iso-

morphism f:U(¥)-— B in [\ for arbitray X of X , there
exists exactly one morphism v with domain ¥ such that v
is an isomorphism and U{v)=f. .

2.12 Let Fl—i UT be the Eilenberg-lioore situation
corresponding to the triple T::(T,n,pJ over the category
and D: J — m:f a digram. The following 1is always true:

(1) UT creats limits, in particular isomorphisms,

(2) If UT-D has a colimit which is preserved by T

and by TT, then UT creates colimits of D.

2.13 A fork is a diagram

T
A— B X5 ¢
g

with rf=rg. A fork splits if there are morphisms
A« B & ¢

such that ri=1 fi:lB, and gji=ir.

C’
Let U:)Y —> |\ be a functor and u, viX — Y a pair

of morphisma in Y} . We say that the pair is split by U,

if U(u) and U(v) can be completed to a split fork.

2.14 As an answer to the question when the compa-
rison functor is equivalence or isomorphism, we have the
theorem due to J. Beck [1].

Let the adjoint situation © U generate the triple

T:(T,’!?,pv) where U:X ——->[/\ y and let I\I:IAT—>‘//\ , and K: )f( -~
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—9/§Fbe the comparison functors. e consider the pairs
of morphisms in K which are split by U. Then the follow-
ing holds:

(1) N is dense if and only if K is full faithful
if, and only if U reflects coequalizers of these pairs of
morphisms.

(2) K is an equivalence of categories if and only
if there are coequalizers of the pairs of morpnisms con-
sidered in X. and if U vpreserves and feflects these co-~
equalizers.

(3) ¥ is isomorphism of categories if and only
if U creates coequalizers of these pairs of morphisms.

2.15 Lastly we give a characterization of the
Zilenberg-Noore categories as functor categories. (8]

Let ?f:(T,n,p) be a triple over a category A .
The following square is a pullback square in the category
of categories (within the framework of a suitably chosen |

universe).

— P o
[AT > E//\-ﬂ-} Ens ]
JT Eﬁf ’ Ené]
A ; > [’y £ns]

. e 5
where for the definitions of U and Fg see (2.5) and (2.8)

respectively; h is the Yoneda Zmbedding; and P is the asso-



ciated functor (more precisely a left Xan extension) to

fim?ﬁ’:#ﬁf——*lx?, see (2.8).

Section 3: Kan Extensions

In this section we review some rudimentary pro-
perties of the Kan Extension which are extensively used
in the sequel. TFor details see for instance [2].

3.1 Let J:€—> kA and T:C —[B be functors. A functor
LanJ(F):m(——>m>together with a natural transformation ‘WF:

F—>lan.(F)-J is called left ¥an Extension of F along J,
(¥

if for each functor T:|A — B the map
[Lan;(F), 1 —> [, 1), % A~ (o),
is bijective. ’

The pair (LanJ(F),ﬂtF) is up to isomorphism unique-
ly determined. It is obvious that the left Kan extehsion
LanJ.J(F) exists, if LanJ,(lanJ(F)) exists and they are
isomorphic.

3.2 let J:€ —> |A be a functor. For any category |B,

[7.1) « [noE] —— [c.18
is a functor. Suppose [?,EJ has a left adjoint which we
designate by lanJ. Then the left Kan extension (LanJ(?),
qlp) is precisely the fron:t adjunction at F in the category
[€. 6] .
3.3 Ye give two very important examples:

(1) Let J:€ — A a functor, and CEObEL . In view



of the Yoneda Lemma, we have

[Ee,3.,1] D-oz 22 .3 17|

for every functor T:/A — Zns. Hence LanJEJ,-] :EC,~J

and ’TL[C'{} :[¢,] — EIC,J-] is the map induced by the
functor J.

(2) Let J:¢C — [N 2 functor, and let h:C — '6 be
the Yoneda Etmbedding. We claim Lan,(h)(4)= ET-,}U for every
A€ObA , and Mp#h —>lang(2)-J is given at CeOb C , by
qlh'C:[-,C] —_ [J-,JC] which is induced by the functor J.

3.4 The Kan construction gives us a case when left
Kan extensions exist.

Let J:+€C—> |k and 7: € - |8 be functors. For any
obiect A in/\ , we define the (Lawvere) comma category asso-
clated to A: objects are vairs (C,g) where C¢ObC and ¥:Jc

—> A in A , ang morphisms are € -morphisms f‘:(C,*cj)

>
(C'yg'), where £:¢ —s ¢' in © satisfies €.Jf = %, we
denote this category by J/A. Ve define JA:J/A —> C by
(CyE) ~>C and £ ~~o f.

If l_ir_,nFJA exists in |R for every A€Ob/A, then there
exists I_anJ(F) and LanJ(F)(A)z_l_igFJA.

3.5 We have another interpretation of left Kan
extensions. Let JtC—> A and F:C — B be functors. As seen
in (3.3) we always have LanJ(h) and LanF(h) where h: € — fLE
1s the Yoneda Embedding. Then IanJ(F) is precisely a rela-

tive left adjoint to I_anF('n) with respect to I_anJ(h).
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3.6 Ve recall a very useful proposition concerning
relative adjointness:

Let P:M'— M, S:IM'" —IN and 2:IN —IiM be func-
tors such that S is P-relative left adjoint to 2 (see 2.1).
let D:T —> |M' be any diagram with a colimit Bi:D(i)-——9 L.
If P preserves the colimit f%} then so does S.

In other words, S preserves all colimits that are
preserved by P.

We could claim more:

In the same situation as above. Let (Xi:D(i) —> A
be a cone. If P transforms ﬁdiﬁ into a2 colimit cone, then
so does S.

As an application of the above, we consider 3¢5,
thereby concluding that lanJ(F) preserves all colimits that
are preserved by LanJ(h).

3.7 Let G:|B —>¥ and I:C —¥ be two additional
functors in the same situation as in 3.1. Suppose that
IanJ(I) and LanJ(F) exist, If F is I-relative left adjoint

to G, then LanJ(F) is LanJ(I)-relative left adjoint to G.

‘Section 4: Path Categories

A diagram schemd » consists of two sets Vr, and Ar

and two maps o, e: A?-—%l\& « The elements of \A: are
called vertices and those of Pw arrows; for aéAm. o(a) is
called the origin and e(a) the end of a. We say that a is

an arrow from o(a) to e(a).




17

If € is a small category, werobviously have the
underlying diagram scheme of the category € by forgetting
the composition of C .

k.2 A diagram D in a category € of type 2. consists
of two maps Ve — obC, and Av — MorC, both of which
are written by D, such that Ffor any ae;AV, B(o(a)) is the
domain of D(é) and D(e(a)) is the codomain of D(a).

A natural transforration between diagrams of type
:E in C is defined by tramsforming the definition of the
natural transformation between functors in the obvious way.
One obtains a category [iZ,Qi] which is analoguous to a
functor category.

4.3 A path w in a diagram scheme 7 is a finite
sequence of arrows a,, 8,y+++9a  such that e(ai)=o(ai+1)
for i=1,2,...,n (n 1) is called the length of w. For such
a path we write w=a a, qe..23,3, and define o(w):o(al) as
the origin and e(w):e(an) as the end.

4.4 There is an obvious composition of paths. If

w=a a, y...a; and v::bmbm 1*++b; are two paths with e(w)=

o{(v), then bmbm-l"'blananil"'al is again a path which
we denote by vw and read v following w. Obviously this
composition of paths is associative.

b, 1% 2: is a diagram scheme, we construct its
trivial exten31on‘§; by adding to every vertex i of ZZ

an identity arrow li whose origin and end are both i itself.

The trivial extension Jo of a diagram D:



is obtained by defining “o(li):lb(i)} Do 3 =D.

L.6 A commutativity condition for the diagram

scheme > is a pair of paths (v,w) in the trivial ex-
tension 2, of 3  , where v and w have the same origin
and the same end.

A diagram D: 2 —>» @ satisfies the commutativity

condition (v,w), if for the trivial extension D, of D,

Do(v)=Do(w) holds. ' |

4,7 Let > be a diagram scheme and X a set of
commutativity conditions for 2{. A diagram is said to be
of type 2/K, if it is of type D and satisfies all
commutativity conditions of K.

If € is a category, then the diagrams of type
EyK in € together with their natural transformations
form a category, which we denote by [?/K,Gj . It is a
full subcategory of [Ef,éj .

4,8 Let Q. be a diagram scheme and let X be a
set of commutativity conditions for 2. . We define the
category @( Z/K) as follows: Thé objects are the vertices
of 7 . For any two paths u, and u, in the trivial extension
2, of S, we say that u, and u, are K-related, if there
exist subpaths v; of u; (i=1,2) such that (vl.vz)éli.
Define H°mg(§yx)(il'iz) as the set of all equivalence
classes of paths in 2, with origin i1 and end i, with
respect to the equivalence relation generated by K-related-

ness. The composition of paths in.E;’ induces a comrposition
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of the equivalence classes. ,
There exists a diagram AZ——-> &(Z/K) with the
following universal property:
For any category C ,
(1) Tor any diagram D:> —s C of type 2/X, there
exists exactly one functor TD: g(ﬁyk) —+ @€ such
that D=T,-A.
(2) There is an isomorphism of categories
[5x,C] =, [g(z/;(),q;] ,
where the map for objects is given by the rule
D A~ T

p in (1),



- DENSITY

The notion of density was studied notably in [3],
[5],{5], and(}@. Density presupposes a rule with respect to
which density can be asserted. The rule is either limit or
colimit operation. By considering a certain class of co-

limits we refine the concept of density.

Section 1: Dense Functors.

In this section we provide a new perspective to

density in terms of a cancellation property.

1.7 Definition A functor J from a category ¢ to a

category ]\ is said to be dense, if each object A of J\ is

a colimit of J-JA where JA is the canonical functor from

the comma category J/A of objects (C,g:JC ~—> A) into
assigning C to (C,i).
1.2 Provosition Given a functor J: L —> /A .+ The

followings are equivalent:

(1) J is dense.

(2) The left Kan extension LanJ(h) of the Yoneda
Embedding h:dﬁ———>‘a along J is full faithful.

(3) The left Kan extension LanJ(J) of J along J

exists and 1is equivalent to Idm‘.

20




The above is a standard fgct'and the proof is
therefore omitted.
1.3 Theorem Let € be a small category and J: @€ —> JA
a full faithful dense functor. Let G be a functor from A
to any cocomplete category'ﬂ « Then G is a left Kan extens-
ion of GJ along J, if, and only if G preserves all colimits
which are preserved by LanJ(h).

Proof: The necessity is included in 0:3.6. Sufficiency

follows since,for every A<€ObJA, Lan;(h)( linm JJA) AN
J/A

~N

. NS . Vavi .
}1§ LanJ(h)JJ y G(A) 22 o lim JJA) 2 1linm GJJ, L

LanJ(GJ)(A), where the middle isomorphism is guaranteed by

the assumption.
1.3.1 Remark We write DA’X(]J'-left as the category
of all J'-relative left adjoint functors where J' - LanJ(h);

and Cont[JjE%,Xj as the category of all functors which

preserve all colimits preserved by J'. Then there exists

an isomorphism

I~~~ . )l
UMK oy ™ Cont gl

1.4 Cordllarv Let € be a small category, )( a cocom
plete category and J:df-—+lA a dense functor. 'The functor
[?,{I:EA,XJ — [€,X]
induces the maps ’

G.¢] ———s [c5,c'J]
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for any pair G, G' in EAVX]. if G préserves colimits, then
the above maps are bijective,

In particular, for two cocontinuous functors G and
G'y G and G' are equivalent, if, and only if GJ and G'J
are equivalent.

1.5 Pemark The import of 1.4 is that equivalence
of two cocontinuous functors is completely determined by
the equivalence of respective restrictions on a dense sub-
category. This fact indeed characterizes density.

1,6 Theorem Let @€ be a small category. The follow-
ings are equivalent for a full faithful functor J:C —> A,

(1) J is dense.

(2) let Cocont[ﬁ,Eng] be the full subcategory of
{M: Enéq.consisting of cocontinuous functors. Then the
functor

[J,Ens.]:Cocont Dh,Ens"] _ [C,Eng
ig full faithful. ’
(3) For any cocomplete category')f, the functor
[7,X] :cocont [A Y] —— [
ig full faithful.
Proof: (1) = (3) follows from the following

commutative diagram:
~—~

[G,G'] —_— @anJ(GJ),Gj

L e

[GJ,G'J]
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(3) = (2) is obvious.
(2) = (1) Fé'r any pair of objects A, B of (A,
E—,A] and [—,B] are cocontinuous functors from [ into
Ens®. By the assumption,
.69 — [[-.4.0-.3]

is bijective. Since ET-,A] =~ 1im> hJ,, we have EA,B] L2

T A
[, Bl = -8, B8] 22 gin (b0, (- 10]

im [JJ ,B]. Therefore A 2 1im JJ..
574 AT 3K A
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Section 2: A-Dense Functors.

In this section we study a refined notion of dense
functors. ¥We observe that properties concerning dense func-
tors are analoguously carried over. We use saturated class-

es in [2] as our means of refinement,

2." Definition Iet A be a class of samll categories.
A is said to be saturated 1if it satisfies the following:

(1) The final category ]_belongs to A .

(2) For any cofinal functor H: [ — [, if L
belongs to /A , so does :Jr .

(3) Let H: X — Cat be a functor, where Cat is the
category of all small categories., If X( ¢ A and for each
xeX » H(x)€d then lim H(X) also belongs to A .

2.2 For a saturated class A and for any category
C , the A-cocompletion KA(a:) of € 1is the full subcategory
of@ consisting of functors which are /\-colimitgof repreé-
bsentable functors in@ s Where A-—colimits are colimits
of diagrams with domain categories in A .

We call the canonical embedding € —> KA (D)
| hA .

2.2.1 Remark For a given universerl, let A be
a saturated class of (UZ—small categories, and € a Ul-cate-
gory. Although the functor category% may not be a ‘Ul-cat-
egory, KA(C) is always a ‘Ul-—category. Indeed let F, G be
any pair of objects of KA(C)' Then there exists J[, J in A

together with two functors | — €, J —> € such that
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1in (I— € — ¢ ) 2 7eand 1in (T — C —> ¢ )
o G. VWrite the corresponding functors IrL — C (reso.
J —— C ) by ¥ (resp. G ) z2gain., Then EF,G]’:EL_i_;n hF(i),
lin nG(3)] &L 1:imEqF(i),1%r ne(j)] 2 Lin 13@ Ex?(i),h(;(j:)]

7~ . . N . - . . .
- 1im l;gE’(l),G(Jﬂ . Hence [:,G] is isomorphic to a CUZ-
small set, which means that KA(G:) is a (Ul—-category.

In particular, when A is the class of all small
categories, which is certainly 2 saturated class, KA(Q:) is
precisely the category of all proper presheaves on C . It

is this reason why proper functors are sometimes called

essentially small functors [37.

2.3 Definition Let J: € —> |A be a functor and JAN

a saturated class. J is said to be A-dense, if J is dense

and the left Kan extension LanJ(’n) of the Yoneda Embedding

A
h:C — C along J factorizes over KA(C) .

2.3.1 Remark (1) In the Definition 2.3, the condi-~
tion that J is dense is redundant.

(2) In the Definition 2.3, the first factor J's A
—_ KA(C) is prec}sely LanJ(hA). Indeed let IA:KA(C) ————a
be the canonical embedding. Zor any G: /A —> KA(C) the

. . . . e ~~r -5

following chain of isomorphismns holds: ET ,C:i] _ [IAU ,IA@
£ [tany(n),,¢) == [h,3,6J] 2~ [n,,Gd].

(3) In view of (2) we can rewrite 2.3 as follows:

LanJ(hA) exists and is full faithful.
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2.4 Pemark Let |B be any A ;cocomplete category,
and F a functor € —=> [B. Then Lan (F) is a I,~relative
right adjoint functor.

Proof: Define a functor L from K,(€) into [B as

follows: For any object X of K,(C), define L(X) = FX(i)

where the functor X:J. —— C represents the object X.

For morphisms, L is defined via:

S [Lx,1Y]
] [$

i Ly (xi)yg)  ——  Ue Lig [Fx(3),71(5)]
wnere the bottom row is the canonical map induced by the
funictor F. The following string of isomorphisms completes
the »nroof: EX,B:[_-__"i ;_;_m [FX(i),B] g ;;g E‘lX(i) [F-,B:[]
_r~ ng hX(i),lan (F)(B)] [% (%), 1an (F)(B)J, where
P is an object of B.

2.5 Proposition Let J:& — /A be /\-dense for a

saturated class A, and X( a A-—cocomplete category and

Fr: C — ){( a functor. Then lanj (F) always exists.
Proof: In view of the Pemark 2.3.1, Lany (h) = I

LanJﬁ'lA.) and since left Kan extension is preserved by ti’xe

relative left adjoint functor L of 2.4, LanJ(F) is given

as the composite functor L lanJ(hA).

2.6 Proposition let J: € —s J\ be a functor.

Suppose J is A -dense. Then for any G: {/\ —_—> )ﬁ( with

/\ -cocomplete X( , if G is A -cocontinuous, then G is
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the left Kan extension of 4J along <.
Proof: Since J is /A -dense, for A€Obj\, there
exists a cofinal functor H: L — J/A with T belonging

to A\ + We have: G(A) = G(limJJ,) = G(LimJJ,H(1)) = 1lim
378 i A T

GJJAH(«'.) = ]:uf;GJJA = LanJ{GJ)(A).

Y

v/ n
2.6.% Corollary lLet J: € — [\ be a A -dense
functor. For any A—cocomplete categoryX( the functor
[5.%]:coconty [, %] —— [, %]
is full faithful, where CocontA[/A,;(] is the full subcategory

of [/A,X] , consisting of all A -cocontinuous functors.

2.7 Proposition Let [\ be a categery. The follow-

ing are equivalent:
(1) JNis a A-—retract, i.e. there exists a small

category (C together with an adjointness situation

L

with full faithful R.

(2) /Ais A\ -cocomplete and has a2 small A -dense
subcategory.

Proof: (') = (2) It is enougn to show that Lha
is /\ -dense. This will follow if R = LanLhA(hA)‘ Indeed
LanLhA(hA) o LanL(LanhA(hA)) = ZIan,(Id) L .

(2) = (") First observe that J is hb—relative left

adjoint to Ian,(h,). Since /A is A -cocomplete, Lany (J)
© A
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exists. The sought adjointness situation is then

LanhA(J) —  Lang(h,).

2.8 Theorem Let [\ be a category. The following are
equivalent:

(1) ]A is A-cocomplete, and has a small A ~dense
subcategory'of objects C for which [ﬁ,{]preserves Z;-co-
limits.,

(2) (R is equvalent to KA(G) for a small category € .

Proof: The nontrivial part is {*) =>(2). In view
of Proposition 2.7, it is enough to show that LanhA‘J) and

LanJ(hA) provide an equivalence, in other words, the front
and the back adjunctions are equivalences. Since LanJ(hA)

is full faithful, the back adjunction is an equivalence.'

The front adjunction being an equivalence follows from A -
cocontinuity of LanJ(hA). For if LanJ(hA) is A-~cocontin-
uous, in view of Corollary 2.6.1, for two A -cocontinuous

functors Id and LanJ(hA)'IanhA(J), the front adjunction,

being an equivalence when restricted by hpo is itself an

equivalence. The A -cocontinuity of LanJ(hA) follows from

0:3.6.

2.9 Let J: € —> /A be a functor, and ﬂ a cocomplete
category. In 0:3.4, we have seen that for every functor
F: C — ¥, Lan;(7) exists. In the following Theorem, we

establish that this fact completely determines the coccmple-
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ness of the category.

2.9.' Theorem let )/( be a category satisfying the
following:

For any [\ -dense functor J: ¢ — Ik  such that
for every CeObC(, EIC,-] preserves all A -colimits, and
for any F:.(C —> ){(, I_anJ(P) exists.

Then X( is A ~cocomplete.

Proof: For any I in A , and any H: ]L———)){( , ve

. . . n . .
claim that lilm H(1) = LanhA(H)(lim' h (i)), where hA.]]:

__>KA(]D' By the assumption Lany (H) preserves A -colimits.
A

frr 3 3 nv 3 2 Va WV
Therefore LanhA(H)(ls}Lm hA(l)) I~ l;m La_nhA(H)(hA(l)) R

lim H(i)., The latter isomorphism is due to the full faith-
=3 ;

fulness of hA'
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Section 3: Density with respec* to 2 Functor V:IB —>.=ns.

We introduce a notion of density which generalizes
the density in Section *. This provides an interpretation
of (algebraic) structured objects in concrete categories.

3.7 Definition Let V:iB —> Ens be a functor. A

functor J: € — [ is said to be V-dense, if LanJ(h) is

factorized over Eﬁiv]: Etiwﬂ —_ EttEné] with the first
factor being full faithful,

5 =

3.2 Provosition Let V have a left adjoint F and

H} be cocomplete, Then the followings are equivalent:

(1) [ANis a retract of [€5I8] for some small cat-
egory € .

(2) [k is cocomplete and admits a small V-dense
functor,

Proof: (1) = (2) Let

L S
(cB], s —t T,

(S s—

T
with full faithful T be the adjointness situation of the

assumption. m\is obviously cocomplete. Consider S-Eii?]~h:
€C —> [A. Ye claim that S Efﬂﬁ]*h is the V-dense functor.

It is enough to show that [C€°,V]-7 = LanS-[ﬁﬂF]vh(h)' But

A N ot
Lan51:¢°,ﬁ]»h(h) A4 Lans{x:.’E](Lanh(h)) A uans‘[kp’ﬂ(ld)
o [ﬁf;?]o T. The last isomorphism is due to the fact that

s+ [e,F] is a left adjoint to |[C,V]-T.



(2) = (") Since f is éocomplete, lan, (J) exists.
h

Put § = Tanpge py(lan, () X 1an [e%,#].n(7)+ It is now
enough to show that S is a left adjoint to 7. By the defi-
nition of S, it is equivalent to show that J is ([€F]-h)-
relative left adjoint to T. Indeed D:C“,F]vh(c),T(A)] A
[n(e), [&v]- )] 2 [n(e),tan (n) ()] 2 [c,4] ,
where C€ObCand ACObJk .

3.3 Examples (1) The canonical functor from the
category of all finitely generated free monoids into the
category of rings, assigning the monoid rings, is dense
with respect to the forgetful functor on the category of
Abelian groups. _

(2) The embedding of finitely generated free alge-~
bras as discrete ‘copological_ algebras into the category
of topological algebras is dense with respect to the forget-

ful functor on the category of topological spaces.




Chapter 2

T2IPILES ASSOCIATED WITH

SETATIVE ADJOINTNESS SITUATIONS

An adjointness situation is known to give rise to
a triple on a category. (see El], [97) In tnhis chapter we
with
study triples associated A relative adjointness situations.

Section 1: Triples Cenerated by Relative Adjointness Situ-

ations.

1.0 Let J:€ —> /A be a full faithful dense functor
and s:€ — ¥, and r:¥ —> A functors such that s is J—k
relative ieft ad joint to r, where the adjunction transforma-
tion for CeObC and X€O0bX is
dC,X:EC'@ > [Jc,rx].

Let for every C€0b<C, M, = X sC(is“) and T = rs. Then
] s

{?10} define a natural transformation ﬁ?:J ~—> T, which is
often called the front adjunction of the relative adjoint-
ness.

Put T = Lan, (J'7) where J' = lan (h) and h is the
Yoneda Embedding € —> € . We define a triple structure
on the endofunctor %.

1.0.1 For every H:C — Ens, define ﬁﬁH to be the

unique natural natural transformation making the following

32
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diagram commute:

H N %(H)
I I

1im hh ’ lim J'ThH

w7 R

] %@T

hhy (C,2) T Thy(C,2)

[

]
S_~ « «.. ~
[-,¢] —==& 5 [e-,sc] —25% [-,1c]
Where gkC g) are the colimit morphisms. Indeed such an
$
ﬁiH exists uniquely, since for every ?:(C,g) ~—> (D,%) in

Sy + ’ ~[=,¥]l= & X .
the category h/H, (p,8) %-,sp S-,D [ :C] (D,8) =~,sD

.._ . — G - — . N - < s A .
[s-28]5_,c = S,y =02 ers o = Sie,8)' % o0

i S .8 . L s . .
S-,C’ which means that { (c,g) “-,sC S-ch 18 natural in
(C,2)€0b(h/H).

T(H

be colimit maps, where &:[-,D] —3> T(H). Since [h(D),~]
A

preserves all colimits in€, there exists (C,%)€0b(h/H)

and g'+[-,D] —> J'Thy(C,§) = [J-,TC] such that the

following diagram commutes:

[-,0] 5 T (H)

fy\‘ TQ\(c,g)

-, 1c]
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Via the sequence of isomorphisms

[0, -, ]| 2~ [Gp,7d 2esC  [sD,sc]

t ' corresponds to £ = D,sc(gD(lD))'
1.0.3 Lemma Given £: [—,D] —_> %(H), Q(C %.)'[;I-,

rz;oj does not depend on the choice of (C,%) and &' in 1.0.2.
Furthermore, { (¢,2) ‘[J-,rT '_]} is natural in (D, ‘l;)
over the category h/f(H).
Proof: Suppose (T,§) and &' be another such as
those in 1.0.2, i.e. C—- ) 6' =8 . In view of the isomorph-

Cig)
ism [, D],llmJTh‘_[___,l_g[[- o, g'1n ], and

—

ﬁ' are equivalent in ll_r)n [[-,D], J'ThH—J. From the way
colimits in Ens are constructed, it is enough to show that
whenever there is Y:(c,g) — (6,%) in h/H with g' = fJ-',
- . p' — e » - - — C L4 ) - . '5' —
Telg S5,z [0mrE,T - (c,g) =028 T, where & =

o(D.SE(r;I'J(lD)). By the naturality of the ad junction transf-

-1 -
ormation X , we have O(D’SE(TL(J-‘QI')(lD)) = sl{ho{;_) Sc(z‘;'(l )).

Since {ﬁ(c,g>§ is natural, Sz 2)[0-,r5,7 = S, Z) fJ-
rsy- r;(;,sc(%uD)ﬂ G, £) Lo, 2¢] - [o- 8] = Stc,e) *
[ZJ-,rz;O'_]. This proves the claim.

Let £:(D,5) —— (D,%) be a morphism in h/%(H).
Suppose ¢ = &(C.g)' %' as in 1.0.2. In view of what has -

been established in the above, it ig enough to show that

CC,%)G[&-’I‘QO] = Q(C,g). [J-'r;;)’sc(gﬁ'[brfj (1D))] « But
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- | f
X, 50y 008 (1)) =Ky o(E5()) =X (€,(10)). Tais

completes the proof,
o ~
1.0.4 For every H:C — Ens, define My to be the

unique morphism making the following diagram commute:
q g

AN L N
7 (H) - _-_/L_}_f_-_-> T(H)

il 1

T Xp,5) I@(c.z)

J'Tha (g, (D,5) | 7" Thy (C,9

[ ~ I

J-,

[;T—- s TD:I E rgoj —> ’ ET" ) TCj

‘ A
where (C,‘g) and ¢O are as in 1.0.2., The existence of /uLH
is guaranteed in view of Lemma *.0,3,

A
1.0.5 Remark (1) ,qh(C) = ,sc'S., ¢ for every CéObC.
(2) since T(n(c)) = [7-,1¢], Mh(C) >\(D ey = [9-r8 ]

for every (D,&)€0b(h/Th(€)), where 8, D SC(E}) In parti-

cular, for (C.‘Z)éOb(h/h(C)), where g corresponds to "’]C via
the Yoneda Embeddlnb h, Mh(C) >\(c ) - EJ—,L(T )] .

«0.6 Lemma {’77 R and{)u g are extended to natural

transformations in H€Oba .

&>

Proof: Given §:H — X in for any (C,Z)€0b(h/H),

0I5 = T(0)- S (c,8) %=, s¢"5-,¢ = S(0,88)" %, 50750 =
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'%K‘e'%' Hence {F\(B)'{U\H =:']\ K»G.
For each (DA€0b(h/T(H)), (D,T(8) 8)e0b(n/4(K)).
[ ' m . {:"\ )‘ K .
Suppose 5= (C,g)'(’}) « Then we know T(®)}E = @(C.Ei)'é’ ,
since %(9)-?3 = /T(B)ve(c’g)'(?,' :?%C'%g).z;', where {G%C,i)’

[—,C] —_— ,'.E‘(K)} are the colimit mezps. Therefore /’\1‘(9)'//:2}{-
N A
M,g) = TO1Sg gy [9-006.] = Sig, peyr [1-075,1 = g

K
A
A

T

(0,3(0)-5) = by TOI N g)0 wnere N o0 [5-,11] >

a
T

T(X) are the colimit morphisms. Since {)\(D%)} are colimit
?
. A A A AA .
morphisms, T(B) My = My TT(B). This completes the proof.

A N
1.,0.7 Provosition (T,"v)\,///\t) is a triple on C.

A A :
Proof: (1) We show M‘H.qm(H) = 1/’1\‘(}{) for every He

0bL . For every (D,Q)éOb(h/I‘\(H)), the following sequence of

equalities holds:

@

A A A - .
M8 Gi)8 = R Np,e) X, 50 5-,c = Sio,g) [958, o

©)

— Q \q . - L =]
S_ . ¢ (c,8)  -,sC [s ,qo] S_,c! where @ and@ follow
from *,0.7 and *'.0.4 respectively, and @ from the naturality
of o . In view of Lemma 1.0.3, it is enough to show

X.,sC '[S'v¢oj‘ 5.¢c 6 ywhich follows from the definition

of (30 from A in 1.0.2,.

A
(2) ﬁH TS‘JH = I{E\(H) for every He’Obe. For every

i ATEATN ~ A @
C,g)€0b(n/H), My iﬁH“?(c,g) =MH‘>‘(C,‘>)H"2) N 6\(C.i).



/\ .
[}-,rf;], where‘fo corresponds to'bH'g as in 1.0.2, and

N
T

where (1) follows from the definition of and @ from

1.,0.,4, But in view of 1.0.2, fo is ipso factc/;\ tege
A A ANEERAYN .
(3) My Moy = Wy Ty for every HeOb €. Consider

the following diagram, where E(C ):J"I‘h;ls.z (H)(C,%}‘—-———%

3 ,g
2 (H) are colimit maps, and Zgo and @o are defined

analoguously as in 1.0.2:
)(D’I;)L(g' =€ and Q(E,?)‘ﬁ ==l;;
[h(c), B-,md] = [sc,m0] = [sc,sD], ¢ awsg,, and
n(p), B-,76]] 2= [p,TE] 2L [sD,sE), &' ~es g, -

AA
8 (1) H) 5 TTGi)
\f«:.g) ® )\(D’V
@ Jd=,r
J'Th%z(H)(Cg) 5 %o 3 J'Th’,i,(H)(D.%)

" -] ® |57 O,

' Thy (E, )

v )\(C ,ﬁH-’g ) @ Q(Evf) \ \4

N P
T(H) . T(H)
ﬁn

~

N~
T

v

The diagrams @and @ commute respectively by the
A
definition of f4 . Diagram @ commutes by the definition
A
of T, and commutativity of @ is obvious. It is then

enough to show the commutativity of @, which means

37
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A
) } sords @ .o .
in other words (B, p) X, sE (€0205 My £, where

%3, sE z(8,¢,) 1is the corresponding natural transformation
[oved) - by 5=y Np, 675
Q(E’f) N [;T- quojo 2’ ° But dc ,SE (gogo) = [-J..’ré(j' E' by

the naturality of ® and the Yoneda Lemma. This completes

to ¢ g via [n(c), [-,7E]

the proof of the proposition.

1.1 A given relative adjointness situation has
been shown to give rise to a itriple. ¥We now show that
this triple is always cocontinuous, i.e. preserves all
colimits.,

1.7.1% Lemma Let J:C —> E be a functor, and
I:f — [ a diagramf&gith lig I = (L{X), where X is the
the colimit cone. IfAe;xch ceobl , EIC,.~] preserves _:_L_Hg 1.,

then (J/L,JA ) = 1lim J/I(i).
1

Proof: {J/A(i)} is certainly natural in i€l .

Given a natural cone {Q‘ 2 J/T(1) —> Xz define &:J/L —
— ){( as follows: For each (C,%)e0b(J/L), since EIC lin ﬂ
o, _:_L]iﬂ)ETC,I(lﬂ , there exists i€ ] and g’i:JC — I(i)
such that £ = }\i-gi. We need to show @.l(C, 2i) is indep-
endent of the choice of ¢ i+ Suppose C= )\j Z’,j is another
such factorization. In view of an analoguous reason to

that in the proof of *'.0.3, we could without loss of gen-
erality assume that there exists ({’:i —s j inJL such that

I(l{))-g’i = 23. Since {Qi} is natural in i€¢Obl , Qi = Qj .
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J/I(p). Therefore @i(c,g‘i) = Gj(,C,I((e)“Z,i) = Qj(c,gj)._

Hence we could now define §(c,g) = €.(c,5.).

)

or £:(C,2) — (C',¢') in J/L, suppose g o= )j-gj.
Then f:(C,Zj-J(f)) -——>(C',Zj) is also a morphism in J/I(]).
Definelé(?) = §,(¢). The indevendence of this definition

o

J
of the choice of ] can be shown analoguously to the above.
That this § defines a functor is obvious. The uniqueness

easily follows from that [?C,{} preserves lig I.

1.1.2 Proposition In the same situation as in 1.0,

N
T is cocontinuous.
A . .
Proof: let I:J]] ——> € be any diagram. Consider

A,
the following sequence of isomorphisms:. T(lig I) =

Tan, (J'T)(1lig I) = lip J'Thy. - o~ lim J'Th, .
h =23 Wy o gl S =9 1igl
in lim h/I(i)
> I

_g limg lim J'ThI(.) o~ _}_i_rgLanh(J'T)(I(i)) =
T’ h/T(i) * i

N
1im T(I(1)), Where C) follows from Lemma *.1,1 and (J) is
i j .

not difficult to see.

*.2 Let J: € — |JA be a full faithful dense functor,
A “%- 2
I0

D A aA A . 4 _
and T = (1v%vﬁ) a triple on € . let —4 U be the
N
Eilenberg-ifoore situation for T . Consider the following

pullback, where J' = Lan, (7);



Lo

e
P - )
Rl J/UT
A Ir—s €

1.2.1 Lemma In the situation of 1.2, if {’ﬁ\: is
induced by a J-relative adjoint situation as in '.0 and
Pronosition *.0.7, then there exists a functor S:C —s P
such that S is J-relative left adjoint fo % and

F%-J'-J = WS,
Proof: Since J'T(C) = T+h(C) for every CeOb <,

there exists a functor S:C —> |P such that 7 = PS and

FaN

FLh = W-S. For every C€0bC, PeoblP, [S(C),B 24 [Ws(c),w(P]]

= [F'n(c),w(@) &= EI(C),U%'«‘I(P:)] = [n(e),arp(p)] —
[7(c),m2]] .
1.2.,2 Definition Iet J:€ —s [k be a full faithful

>

~ LA A . ~ - .
dense functor, and T= T,')Mu) a triple on € ., The J-relative

. % ? A % .
Eilenberg-loore situation for is a 3-tuple (J',ST,R")

2 A
consisting of the following data: JT is a category, SHIPY gp—
% A

0 2
= J" and R :J"—> A are functors; and satisfying the

following: A

. = Ay
There exists a functor W:J —> ?ﬁ such that
A

A A
;’%J“J = F.h = W:ST, and
as
F

7

'/\ i‘l’
J“F —_—
J.
—

& <—0nu e
[an
4>

A



is a pullback square.

A
The J-relative Kleisli Situation for ™ is a

3-tuple (JA, ,:%), where l% is a category, S% C —> I
and R% J% —> |N are functors, sat*s¢y1ng the following:
There exists a functor Q: .% -———ecff such that
Q-S%=is the full image factorization of F ‘h, and J°' R%~ U Qs
1.2;2.1 Remark (1) From the pullback property of
the square 1.,2.2.1 there exists a unique functor M:dy —

I\

—éj? such that [ I = 9% and Q@ = W*P,

(2) S? (resp. S%) is a J-relative left adjoint to

4>

(resp. R$).
Pal
1.2.3 Notation When F is induced by a J-relative
adjoint situation as in Proposition 1.0.7, we write

T PT) (resp. (Jr,ST,R )) for J-relative Ellenberg-

(J S
Moore Situation (resp. Kleisli Situation) for 7’.

1.2.4 Remark (1) In the situation of 14243, Jg is -
defined as follows: the objects are the same as those of

€ 3 Jp-morphisms from C into D for C,:DeObJ, are morphisms

: N STto— Tt D
:TC —> TD in |\ such that Akh(D) TJ'¢= J 0B 0y Thgn

S is given as C~» C and f ~4 Tf; and B is C ~ TC
and Y A~y ,
(2) 7 = R.S, = R'ST holds in the notation of (1).

™7
1.3 Proposition Let T = (T;q,p) be a triple on

FaN
N, Put T = Lan, (h+T). Then the Id -relative Zilenberg-

AN
lMoore Situation (resp. Kleisli Situation) for F is
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precisely the Eilenberg-loore (resp. Kleisli) Situation
forT.
. N~
Proof: First we observe that T*h(A) = Lanh(h-T)(

(h(A)) =h-T(A) for every A€Obl\ . By Pemark 1'0'5’%h(!&) =

hOﬂA). Since (TA,lTA)GOb(IdA/TA) is the final object,
. B A A o

again by Remark 1.0.5, My () ”‘th(A)'A(TA,lTA) - [L,;%j

A

hlods. Hencelkh(A) = h(l, ). A
N

Define a functor W:mf__? AN by (A,a) > (h(a),

h(a)) and ¥ ~v» h(¥). This functor is well defined in

view of the above observations. Consider now the following

diagram:
K - S
1
I -

This diagram commutis by the definition of W. For every
(x,x:%x‘;——>x) in.ﬁﬁz with X=h(A), by the Yoneda Embedding
there exists a unique a:TA —> A such that h(a) = x.. Fron
the fact that x is a structure map, it follows that a is

also a structure map forT . This proves the square is

A\
oo

A
h follows from M

indeed pullback. Finally %- h(a) =

1.4 Definition let J:€ —s JA be a full faithful



functor. J-absolute colimits are those colimits in [;

which are preserved by J' = Lanh(J).

1.4.1 Remark In view of 0:3.6 we could easily
conclude that colimits are J-absolute, if,and only if
they are preserved by all those functors which are the
left Kan extensions of their restrictions on €.

1.5 Lemma lLet

X i 5/
U iv
IL = > B

be a pullback diagram.

(1) If H has one of the properties: faithful,
full, injective on objects, surjective on objects, then
W has the same property.’

(2) If isomorphisms are lifted (uniquely) or,
resp. if they are created by V, then the same is true for
for U,

(3) Let D:T —> Y be a diagram for which UD
has a 1limit which is preserved by H.. If V creates
limits of ¥D, then U creates limits of D. Corresponding
statements hold for colimits.

1.5 Proposition Let T = (Ty,) be a triple

over A, and J:C —> [A a full faithful dense functor.
Then the following are equivalent:

FOF_ T, . ) . )
(1) (AF,F-J,U ) is a J-relative Eilenberg-ioore
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Situation.
(2) 7T preserves all J-absolute colimits.

Proof: Consider the following diagram:

KT i s ©

- .
F/ uvr L u
<

€ =5

J'

(1) = (2) is included in Lemma 1.5.

(2) = (1) First observe that for every A€ObHA ,

; o

TI (A) = Lanh(J'UTFTJ)(J'(A)) - 13 J'UTFTJJA IV T3
7%

ﬁf(;ig JJA) = J'dFFT(A) = [&-,T(Ai}, where * follows from
(2). For eéch (A,a)éObﬂF: define W(A,a) = (J'(4), @L,é])
and W(Y) = E;,?]. Then VW is a well defined functor. For
every (X,x)éObq’f%, with X = [J-,4], since J' is full
faithful, x defines a unique a:TA —3s A. That this

a is a structure map for'T’ follows from x's being a
structure map for%% . This together with the full faith-
fulness of W proves the pullback of thé right end square

in the above diagram.

1.7 Theorem Given a J-relative adjoint situation

< S Y r > |A where for every CeObC, Xeob ¥ ,
. ~s
% yifseid] —~» [e,xx]
is the adjunction transformation, there exists a unigue

functor N:J, —» ¥ (resp. Ki} — JT) such that



ks

m
NSy = s (resp., R' K=r).
4
lioreover rN=P.T and M = K. (see1.2.2.1J
Proof: Define x to be the unique morphism making

the following diagram commute for every X€Obx :

T3 rx S N Jeri
| I
h%LPrxJ'Th(J'rX) - r]
- |
(D,g)
J'Th(J,rX)(D,z) ) Vg~'rgo]

I
[3-,7D] .

where Z:h(D) —s J'rX and S = X, x(6p(15)). This is
possible since {Ef-,rgoj} is natural in(D,£)€0b(h/J"rx),
Indeed for any (. (D,€)— (D",¢') in h/J*'rX, since
"(D,X'EW'X] = [J¢,x] X0 ET-»PS(;]‘D-»T‘.’] = [,
w5y o¢l] = [o-yr(y, (62, (1,,0) 0 = ESEIC
E5(15.)-7¢) = [J-,m?g,X@DuD)U = [5-,re].

We claim that (J'rx,x)cob &7,

. A
Firstly, we show ENgipy = ey ,I\[ndeed for every (D,2)
€0b(h/J'rX), by the definition of 7 (see 1.0.1), x'gl\J'rX'

§ = X'(\\(D,ﬁ)'q-,sD's-,D = E“’rgo}q-,sD's-,D =% _x
[s-+8,] s . But LI EsD,%O']-sD’D(lD) =%y (€)=



\
éDUD). By the Yoneda Ilemma, x-‘QJ.rX"g =g . Now since
A :
iiz are colimit maps XNgvpy = Yyrpye Secondly, we show

A
x'-ﬁJ'ry = %X-7(x). Indeed for every (D,fp)éOb(h/J'rX), by

the definition offt (see 1.0.4), x.ﬁJ,r

O
[=irey] = [3-,x(€8,)], where &* is such that Seig)y e
=G end G =dp 0@y ), ana g, =Ky L(€,0)). on the
other hand, x~(’T\(x)»)\(D'z;) = %-S(p, yg)+ Therefore by the
definition of x, it is enough to show &-;)'X((ng)D@D)) -
€080+ But xg= x-ﬁ\(c’g)‘g' = [5-,rg. 08", since €, :sC
—> Xand X, ., -[sD,5] = [9D,r5]. “n,scr %p,cBoB) =

Eo5hip). Hence (x6)p(1p) = [i,rg )81 (1) = 5850 )

. A A
=O(D,X (‘g’oﬁo). Therefore X'/AJ'rX‘A(D,ﬁ) = X'T(X)'>\(D,zg)

A ~
and  x<Jty, » = x-T(x) follows.

For any morphism WX — Y in)/’( y "We claim that
I'rl: (I'rx,x) — (J'rY,y) is a homomorphism, where y
is defined analoguously. For every (D,2)0b(h/J' rX),
TP p,g) = e [5-0rE T = [-,r(pg)] . On the

A
other hand, y»TJ'r'ﬁ-Q\(D,g) = y'e\(D,J’r(p-S)'

inition of y, it is enough to show (J'rl{)~g)D(1D) =

By the def-

MD,Y(Q-QO). Since °<D,Y [sD,¢] = [JD,r‘P]-O(D'X, we have
dD,Y((p go) = I'i(-‘gD(lD), And (J'rq?-';)D(iD) = [—JD’r(.IOJ.
‘gD(lD) = rtf-%(iD) = aD'Y(q-go). It follows then from
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the colimit property of‘%J'rK,_that'J'ry-x = yf%J'r@ ’
which proves that J'rY is a %’—homomorphism. |
Define H(X) = (J'r%,x) and H(?{\: J'rp . Hisa
well defined functor. Moreover J'r = U'-H. Since the
square Jin.1.2.2 is a pullback, there exists a unique
functor K: ¥ ~—— J% such that r = R-~K and W-K = H.
Define N:J, —> Y as follows: the object map

is assigning sC to C€ObJT and for any $:C — D in J. ,

i.e. Y:7C —> 7D satisfying a certain condition, define
-

N(Y) = “c,sn(¢’70) where 1, = dC,sC(lsC)' Ve show that

this rule is extended to a functor. For any ¥:C — D,
and 4:D —> E in J,, N@) N(¢) ='o~<,D’S‘E('\p-?zD)-E(':,;'SD(I,D-‘QC)
and N(¥Y ) :&'C'SE(’U{-({)""[C). Since &é’SE*DC,'\PJ = ESC,
%950 p] %, pr and r(D?iD,sE(q‘U'nD)) ="}, we have
;D,sE(ﬂV"lD)'O?C,sD“P”lC) = Xg, sp ¥4 o)

Finally we show N-ST = s. Indeed N‘ST(C) = sC,
and for any JT-morphism , NST(?) = N(rs?):f&g'sD(rsy.
‘qc). But since dc'sD(s%) = rs%lﬁc, NST(?) = sf.

The last statement follows from the commutativity

conditions and full faithfulness of J'.

1.7.1 Definition Thefunctors N and K in 1.7 are

called comparison functors.
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Section 2: Characterization of Felative Eilenberg-lioore

Situations.

2.% Proposition Given a J-relative adjointness

situation € —2— ¥ L /A with relative

adjunction, in view of the Definition 1.2.2 and the

Theorem ',7, we have the following dilagram:

Q

/////’/"/-—“‘_~_~“~‘N~;;N\“‘\\\\\\\S 3
) | T AT

i TR X Tx— 9w ¢

&
"\ T T U
St R;\\\\\\g .
¥
A
C J“?IA Nl > @

Then the following hold:

(1) r = LanN(RT), Pt = LanK(r) = LanKN(RT), and

(2) Lany(Jd'r;) = J' Lany(Ry) and Lang  (J'=5) =

J! LanKN(RT).
(3) W = LanKN(Q), H = LanN(Q) and W = Lang(H).

Proof: (1) (a) Ve show that r = LanN(FT).

For any X€0oX , any (C,%:sC —> X)éob(n/xX), [rg:7¢—03

rX} is a natural cone in (C,%) Ob(N/X). Ve show {rg}

are colimit maps. Let {g\ :TC —> A} be any natural
(C,g)

cone. Since J is dense, and since for any (D,d)€0b(J/rx),

— y . ~
(D,dD,X(d))éOb(n/X), and since rqb’x(d)fQD = d and



13,9

'~ - N i atura in - O1 7 th e .
{.(D,db K(d)).nD} is natural in (D,d)€0b(J/rX), ther

-
exists a unique morphism f:rX — A such that f-rdD’X(d)70=

-1 " t 1[ w 1 T e C i
GKD.ND,X(d))' /e need to show that for every (C,2) in

% . - C 3 o 3 [s2) 3 3 oY
N/X) f-rg = (C.E)‘ Since J 1s dense; 1t 1s enougn to
show that for any h:JD —> TC, f.rg-h = Q(o §)~h. Then
’
~ -
r k : T D N o (N/7 H
for any h:JD — TC, (D,$§ qD,SC(h))GOo(x/K) and rop o (h)

-1 . . .
(D,z\qD'SC(hD'———9 (C,g) is an (N/X)-morphism. By the

. ~p,
naturality of {G(c,f)}' G\(C,g)‘mg,sc(h) = G(D,Q.Eg sc(n)).

@ ©)

, )
Now fugh = 1 r"‘D x (7 B = 8p (8- n))Mp =

~J -~
g(D’?‘XD,sC(h))'%D - Q(C,‘i’,) r"(rD,sC(h)'nD = ()\(C,g)‘h'

where @ follows from O(D,X = EVID,rX} rsD,X: @ follows

from the definition of f; and (:) from the naturality of
X , We show the uniqueness of such f. Suppose g:rX —> A

with g.r¢ = Q}C'g). Since J is dense, it is enough to

see that g:d = f+d for any d:JD—>» rX. The proof then

follows from g-d = g- rqD K(d Np = S(D D X(d))‘QD = f-d.

(b) We show PT = Lan Since PTST = T, the

KD( T)'
comparison functor JT —_ TT is precisely KN, hence
by (a), the claim follows.

(c) pT _ lan, (RT) = LanK(LanN(RT)) = LanK(r).

KN



A

(d) Since J'%, = U™ 0, and 0 is full faithful; and
i : S
U is cocontinuous U" = LanQ(J'“T).

(2) For any X€0bX , and for every (¢, )eob(N/X),
{D—,ri]: [3-,7¢] —> E-,ri]} is natural in (C,§)€0b(N/x).
“ie show that {an‘ﬁ} are colimit maps ine, let &X(C'i):
[J-,Té] -—> L be a natural cone in (C,%)€0b(N/X). Define

St ET— r)?_j —> 1 as follows: for every DeObL, for every

ne[JD,rX] define §p(n) = €, 2, 5y). Then ig“\D} is a

natural transformation. Tndeed for any $:E —> D inT, we

first claim that rs\P (E, o( X(h J\f)) ——ﬁ(D (h)) is an

(N'/X)-morphism. In other words, o(D X(h)*D(E SD(I‘SYJ'*?L) =
l
F (2P oy o (R)- o<ﬁ  sp{rsmg) —0<D z (). o(E «n - J%)

Qs

= D X(h) stf? o(E X(h J¢), where @ follows from Dv,rs]ﬂ

o(D sp = sD [sgD,sIﬂ and@ from B‘f’ X__I b,x = I‘ X rlP,X] .

fow by the naturality oF)L (c "3)2 in (C,%)€0b(N/X),

ZS\(” (h J(f’)) _3 (h)) EJ— Tj Therefore for

every l{’:E —>D in€ and for every h:JD —> rX, }—;:E-EI%r}g

(h) = EE(h J‘P) = ?(u' ‘{(h J(e)) E "z = X(Dg&;) X(h))'E

L2150 = B0, L), 2P) = 30,3 02,599

= E(D'R'D’X(h)) Lo, 0] Mp) = L(y)- X(D o( L)), n )

50



L(?).‘§D(h), where (*) follows from the naturality of

-izkp,&b’x(h))’D} in D. Therfore Q}D} is a natugal trans-

formation. We next show that for every (C,f)eOb(N/X),

[J—,vz] SkC g) Iet k:JD —> TC be an /A -morphismn.

Since rqD’SC(k):(D.XD’X(rf-k)) _ (C,?) is an (N/%4)-~
. . ~

morphism and since Bkc,%),D [;D,rxr (K:] ST D /(rf %))D i
we have Jp(x§-k) = X(D,;(‘D,X(If‘ x)),nVp) = g(c.i).n(mn.sc(k)
QLD)‘: X}C 2) D(k). For the uniqueness of such ¥, let ¢z be
another such that S}C 2) =T [J—,rij. For every De0bC,
and for every h:JD — rX, ‘cD(h) = tD(r;é;)’X(h)J]D) =2 -
[bD'rgg,x(hI](nD) =‘Z~(D,&g v(h))cna) = Sb(h). Consequent-

ly we have shown that LanN(J'RT) = J'r.

LanKN(J'RT) = J'Lan (PT) follows from LanN(J'RT) =

KN
J LanN(PT)fbr- precisely the same reason as 2T IanKN(RT)
follows from r = lanN(R,).
A
: _ T I
(3) (a) Since U LanKN(Q) = LanKN(U ‘. Q) = lanKN(J ‘C‘T)
® 2 3
T o - ..

= J'-LanKN(R ) = J'R" =U"%, and U creates all colimits,

where (:) follows from the cocontinuity of U (?) from (2)
and (:) from (1), we conclude that LanKN(Q) = W.
(b) could be proved analoguously to (a), since

%

U -lanN(Q) = Lanq(u Q) = Lan, (J'“ ) = J° LanN(RT) = J'r =
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U -H, we conclude H

1

LanN(Q).

(c) Since W lanKN(Q) = lanK(LanN(Q)) = LanK(H),

the claim follows.

2.2 Corollary In the séme situation as in Proposi-~
tion 2.1, if r reflects J-absolute colimits, then N is
dense.,

_.?_r_p_ii_‘: For any X€0b¥ , we have a natural cone’lf:

NNX(C,i) —_— X}. {rzerNX(C,f) ———e.rx} is a colimit

cone by Proposition 2.7 (1), and by (2) the above colimit
is preserved by J'. Since r reflects all such colimits,

gg:NNX(C,i) —_—> X} is a colimit cone.

2.3 Theorem Let C be a small category, and fé%==

(%;W M) a trlple over'éf Assure that ? is cocontinuous. A
Then {t?F n) , where | is the full image of  in Gl
S N 2

i .
Proof: Tet C —— ) — '@: be the full
N\

image factorization of F'-h, It is well known that if'% is
cocontinuous, U$= creates all colimits and therefore ﬁfﬁ is
cocomplete. (see 0:2,12) By the Corollary 2.2, N is dense.
For each DeOb|D, there exists a unique CeObC such that
s(C) = D. Hence [N(D), ] [Ns(c),-] = [ﬁ’h(c),-] AN
[5(0) U -j [h(c), U (- :]is cocontinuous. Consider the
following diagram, where }Z: Lank(N) and iE = LanN(k), and
k is the Yoneda Embedding. 1In view of Proposition 1.6,

Proposition 2.1 is applicable to this situation.
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S

A N
U &. For every X¢0b<e ',

D ﬁ
¢
AL
JD\/S\A
23

s
>

In particular, k = "N and S =

U%(X) = U%(li NH.,) @:-_? ling U%I\’N = ‘li/m /S\'kI‘L %-) g-lim kN,
N7 ¢ N7f X V4 X Nx K
gf?(x), where C) and (:) follow from the colimit creation
properties of U%r and'g'respectively. Therefore U$==‘§~h.
The Characterization Theorem of bresnheaf. categories [10] now
show & snd ¥ are equivalences, and that they are isomor-

L
phisms of categories follows from the fact that yw creates

all colimits.

2.4 Corollary Given a J-relative adjointgess situ~
ation s — r mod J as in the proposition 2.1, Qf is isomor-

phic to JT and Q can be identified with the Yoneda Embedding.

2.5 Theorem Iet &€ —S 3 y _T A be a J-rela-
tive adjointness situation as in Proposition2,1. Then the
followings are equivalent:

(") N is dense.

(2) X is full faithful.

(3) r reflects J-absolute colimits.

N

. . - AW
Proof: In view of Corollary 2.4, we identify € and
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JT in Proposition 2.1.

(1) =—> (2) By the Proposition 2.1, N is dense, if,
and only if H = LanN(Q) is full faithful, if, and only if
K is full faithful, since W is always full faithful.

(2) = (3) Let {@;:XiN——$~ Af be any natural cone
in K such that grgi:rxi ——é'rk} is a colimit cone in [A,
and {q'rg.:J'rX.~—é J'rx} is also a colimit cone. Since

A = 1 A

.. . il
Uﬁz creates all colimits, and since U "H = J'r, {ﬁé&:HXi~f>

HX} is a colimit cone. Since H is full faithful, H reflects

colimits. Hence {?i-——f>X}is a colimit cone in ){ ’
(3) = (1) is proved in the Corollary 2.2.

2.6 Corollary In the same situation as the Theorem

2.5, the followings are equivalent:

(1) € =— X RSN JA  is a J-relative Kleisli

situation.

(2) s is bijective on objects and r reflects all

J-absolute colimits.

2.7 Theorem ILet q:-—fi—; X{ ..EL» LA hae a.J-rel-
ative adjointness situation. Let <C——-—t——> D% ...ﬁ.&x be

the full image factorization of s. Consider

X ‘ Y

Lo

IA -;-ﬁfl

<+>




A .
N LanN(k), ani X: Y% —>Y the Yoneda Embedding,

wvhere N' =
and /g = B",Ensj. The followings are equivalent:

(*) The above scuare is a pullback square.

(2) r creates all J-absolute colimits of diagrams
inY .

Proof: (') —> (2) is obvious in view of Lemma 1.5.
(2) —=> (1) First observe that rN reflects all

J-absolute colimits, since N is full faithful. By the Coroll-

P

ary 2.6, CC—L-% D/ -——I—L~—> /A is a J-relative

Kleisli situation. Since r creates all J-absolute colimits
of diagrams in)/, an investigation of the proof of the
Theorem 2.5 produces that N is dense.

Now let ¢:7, ——-é% , and P: ] —— JA be functors

A g
with t¢= 'g+ %e show that for every Z€O0b/J , the colimit

of the diagram %/§(Z2) —s Y s X s A is w(z).
Indeed for every € k(YY) — §(Z), observe that [%'k(Y):
/1?72‘_(")] = EJ'rN(Y),J"zI(Zﬂ and for every £ in Ec(Y),?Z{(ZB
put g = J;;J(Y),@(Z)(i:k(Y),ﬁ(Z)(g))’ which is an element
of [rN(Y),@,(z)] . Then %:ri(Y) — p(z) is a natural
cone in (Y,f)é‘Ob(k/i(Z)). For given any ¥:Y —> Y' in %/
with £'.k(p) =€, we "need  to see {'-rfh@:%. This
follows from a diagram chasing of the diagram in the next .
page.

Since J'(‘g’) :‘/t\(g), and since /ft creates all colimits

and J' is full faithful, it follows that g%z is a colimit
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> A
_ % " - Jvo
[(:),2] ——— B A3z - ['eN(0), 09z e [en (), 3(2)]
A
[k (9),8(2)] Fx(p),33(2)) breneg), o5 2)
[on($), 3]
[c(v),2(z)]

DT B, 23] = [0 ge) < [y Bz



57
cone in_”\ » and is vreserved by J'. By (2), there exists
a unique P(Z)€ObX\, with S}Y g): M(Y) — 2(%7) such that
»
'@ 3 imit: G - = {7 - o \.
g (Y'i;} is a colimit; and r (¥,8) ¢ and rP(Z) g:(z;

Furthermore N'P(2) = %(Z) follows from the colimit creation

N
property of t.

2.8 Corollary Let Q:-—§—a X _r. JA  be a J-

relative adjointness situation. (X,s,r) is a J-relative
Eilenberg-~loore Situation if. and only if r creates all

J-absolute colimits.



Crhavter 3

LINIT P2ESZR2VING FUNCTORS

The concept of 1limit vreservance of a functor is
only meaningful when the domain category has limiis. In
this chapter we discuss a concept of limit preservance,
which does not presuppose the existence of limits in the
domain ca*egory, nor in the codomain category, and which
therefore allows us to study the limit preserving functors

even when the existence of lirits is not known.

Section 1: Ilimit Preserving Functors.

In this section we define a concept of limit
breservance of a functor and study the basic properties.

What forms the basis for limit preserving functors
are the representable functors. Every set-valued functor
admit a colimit representation of representable functors.
The concept of limit preservance of functors can then be
formulated as a commutativity of the limit under consider-
ation and a certain colimit in the category of sets.

Bl

1.1 Definition Iet T7:€°—> ing be an essentially

small functor, where C is a category (not necessarily small),
Let X be a small category, 2nd H: X —» & a functor. The

functor T is said to be H-continuous, if the canonical map

___r_r;]g:x[( ), hm(C %)] —_— 111 le[[(") hy (C i)]
L % % ﬁ/

58
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is an isomornhism, where h lis the Yoneda Zmbedding into

the category of all essentially small functors (see 0.1.4),
and h/T is the coﬁma category associated with T. h/T may not
be small but by the essential smallness condition of T, it
admits a cofinal functor from a small category, therefore
the colimit indexed by h/T exists in Ens.

is said to be )Z-continuous, for a small category

!

+

is continuous for every H; X —> .

X, if

H-
/A be 2 class of small categories. T is said

ct

1

e
to be A&—continuous, if T is )( -continuous for every X

in A,

It is often convenient to say for T to be continuous

with respect to H (re=spn., K , Or A ) meaning H-(resp.;

X -, or N ) continuity of T.

T is said to be continuous if T 1s continuous with

respect to all small categories.
Iet T: € —>/A be a functor. We -assume for conven-

ience the smallness of C .+ T is said to be H-cocontinuous

for a small diagram H: X —» € , if for every A€0b/A,

[7-,A]:C°—> Zns

1

ig H~continuous. The functor T is said to be H-continuous,

U

if¥ the dual functor
C°— C —> A — A°
is H-cocontinuous.

Similarly we define ¥ -~ and A - continuity.
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’he definition indeed is reduced to the known -
concent of limit preservance in the case when limits exist.

1.2 Proposition Let T: (I:p--*)E?)s be a an essentially

small functor. Let H: X —> C be a small diagram in C .
Suppose (L, N\ ) be a colimi%t of ¥ inC . Then 7 is H-contin-
uvous, if, and only if (TL,IXN ) is a 1limit of TH.

2roof: The proof is an easy consequence of the

following commutative diagram:

%g%@(:~:>,hT(c.z)] —> ;_;g%%[}ux),hlxc,g)]
S|

lim[T,h.(C,2)] im 1im[hH(X),hh,(C,8)]
rvali v :
N R
%%@m.h%(c,g)] %m[jm(:c),ﬁ"]

g[ J, PrX
[h(v),1] (hH(x),T]
S' T, g[

T(L) s TH(X)

where PrX is the X-th projection.

1.3 Corollary Let T: C—>/A be a functor, and
C a small category. Let H:¥ —> C be a small diagram with
with a colimit. (Ly ) inC . Then T is H-cocontinuous, if,
and only if (TL,TX ) is a colimit of TH.

This corollary is due to tha proposition 1,2 and
the fact that a cone L is a colimit cone in [\ , if, and
only if for every A€ObJp , (1,47 is a 1imit cone in E=ns,

Before we prove sorme basic oroperties of our new



continuous functors, we need a technical lemma:
1.4 Ilemma Let T: € —>/A and S: A—>[® be two
functors and let (C be a small category. For every BEcOblB,

we have the canonical isomorvhism

h/{3T~,B DA | lin h/[T-,4
/L ] (E{%) /0-,47]

where the colimit runsvover (4,a)e0b(k/[S-,B]), and where
h and kx are the Yoneda Embeddings.
Proof: Consider for every (4,a)e0b(k/[s-~,B]),
n/[7-,4A] —_— h/[ST-,B]

(cy, €:TC —> A) ~ (C,STC soSh o B)
This assignment defines a functor Q(A’ )and the family
{G(A a)} is natural in (A,a)e0b(k/{S-,B]). Let {X(A,a)g
h/[T-,A] — ]P} be a natural family. We define $ :
h/[{ST-,B] — P as follows: For (C, f :STC —> B)€Ob(h/
[sT-,E]), since (T¢, f ) Ob(k/[S-,B}), we define S(C,f )=
g(TC, ¢ )(C'IdTC)" This takes care of the object part.
For morphisms, let g:(C,f ) — (C', p') be a morphisnm
in h/[ST-,B]. Then since Tg:(TC,§ ) — (TC', p') is a
morphism in k/[S-,B], we have S(T‘C' r 'y h/[(T-,Tgl=

% (TC, )" Hence 5( )(V,Id )= % (TC", 7 .)(C,Tg).

' §
(g)= (TC',? .)(g) where g:(C,Tg)

TC
Therefore we define %

— (C',IdT.‘.) in h/ T7-,TC' . It is obvious that the

: <. .*. o -
above defines a functor &. Moreover & (A,a)= S(A,a)'
Indeed for (C,% )€0b(n/[1-,4]), &5, 2)(C)8)=8(C,a-s%)

=5 (c,1d

(7C,a-SE ) g(A,a)(C'g ), where the last

1)
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equality follows from the naturality of {SkA )} with
respect to a morphism §:(72,a.S€ ) — (A,a) in h/[S-,E].

I‘i‘ W (\ L -P h Q =

ow let be another functor such that <. (A,2)" g}A,a)'

Tor any (C, ¢ )¢0vb(h/[s7-,B]), (ZC, P )€0b(h/[S-,B]l). Hencs
 §)=8- € (15, o )(CrTage)= ®(1c, 5 (Crldgg)= E(c,p ),

where the middle equality follows from the assumption.

This completes the proof,

1.5 Provosition lLet € be a small category. Let T,

I'sC — A, S:iIhN — B be functors.
| (1) If T and T' are equivalent and T is H-continuous
for a diagram H:D — &€ , then so is T'.
“(2) If T and S are ¥ -cocontinuous for a small
category X , then ST is also K-cocontinuous.
(3) If ST is H-~cocontinuous for a small diagram
H:lD— € and S is full faithful, T is H-cocontinuous.
Proof: (1) is obvious.
(2) We first observe that hrgp  gy° C(A,a):hET-.A]'

where hEST“-B] and h[T-'A] are the canonical functors. The

following sequence of isomorphisms proves the claim: For

;%g llm [u(“ yhrem j .é;L lim
h/[ST-,B] Xcx [57-,B] . (A,2)"n/’(5-,B]

any small diagram H: X — C,

@
llm
n/[T-hrs phea)] BB g 6] 5

D “'E{(“ S s | g S
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@

im  1lim,
X h/[ST-,E]

and@ follow from Lemma 1.4; @ from the X-cocontinuity

[h(x)’h[ST-,Bil where the isomorphisms ()

of T and @ from ){(-cocontinuity of S.

(2) It is enough to see for every A€Obfh , [T-,K]'
s H-continuous. Since S is full faithful, [T-,A] & [S7-,
SA] is H-continuous by assumption.

1.6 Corollary Iet € be a small category and
'T: € — [A a functor. Iet J:IB —> A be a codense functor.
For any small diagram H:D—> ¢ , T is H-cocontinuous, if,
and only if for any Be€Ob B, [T—.JQ] is H-continuous.

Proof: Since J is codense, the associated functor
J'i — (18,Ens]"" , A~ [5,5-] is full faithful. The claim
then follows from the proposition 1.5, and the pointwise
construction of limits in a functor category.

1.7 Proposition Let € be a small category. For

any Ce0bC, [-,c]:C°— 2Zng is continuous.

This is ebvious since the category h/[-,C] has
a terminal object.

1.8 Corollary: Zvery right adjoint functor is
continuous, or, equivalently, every left ad joint functor
is cocontinuous.

#e have a slightly more general claim:

1.9 Provosition: lLet € be a small category and

J:C— N, t:C — ¥ and r:y — A functors where t
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1s J-relative left adjoint to r. Let H:ID — € be a small
diagram such that J is H-cocontinuous. Then t is also H-

cocontinuous. {(Compare with 0.3.6)

2roof: FTor any Y€0b %/, we need to show the canonical

%A#[ﬁ(n),tﬂ ——  lim 171%[}{(5),&]

2
ig an isomorphism. From the relative adjointness, we conclude
t/Y = J/rY and ty &= J.y» and the isomorphism follows from

the assumption J being H-cocontinuous.



Section 2: Limit and Colimit Commu*ation.

In this section we generalize the concept of
cofilteredness of a category, obtaining a2 concept which
is slightly more general than the corresponding general-
ization in [27], but still retaining the property of limit-
colimit commutativity.

2.1 Definition Let X and |D be small categories.

% is said to be |D -cofiltered, if for any H;[D —» X

the canonical map

%r_g(l_%@[H(D),X] — (l_%ﬁ_l%rg[H(D),X]

s
is an isomorphism.
Let A be a class of small categories, X is said

to be ZX-—cofiltered, if )( is [>~cofiltered for every

category ID in A .

2.2 Remark (1) Observe in 2.1 that ;im 1imfﬁ(D),X]
D Y B

is always a singleton set. Therefore in a |D -cofiltered category
¥ the category of all cones from H is connected.

In particular there exists a cone from H to an
object X of X; . In other words, the existence of a
commutative completion of the diagram of H in X .

(2) 1f W is ID -cofiltered and G: ¥ — ¥ a
cofinal functor, then Y is also ID -cofiltered.

2.3 Zyamole (1) Let A, be the class of allX-small
categories. Then lﬁx-cofiltered categories are precisely

& -cofiltered categories. (See [2])
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(2) The (Cat)-cofiltered categories are preciéelﬁ
the coabsolute catezoriez. (See 4.4)

2. Theorem let € be a swrall category, and T:C”
—> Zns a functor. Let A be 2 class of small categories
and h: C — 8 the Yoneda Zmbedding. Then the followings
are equivalent:

(1) T is A -continuous,

(2) n/T is A\ -cofilte

L).

Proof: (1)=>(2) Tor every [D€A and every E:|D
h/T, D ~~> (C ?; : [-,C. —J — 7), consider the followin
commrutative diagram:

(%_}_g;) léﬂ[ﬁ(D) (c5)  — lgm(ifm[ﬁ D). (C, % )]

o |

lin 11m h,H(D),ho(C, € )] =5 lim @E,.H(D),hq(c,g):]
J,%) - D (Crg) ) .

“le note that the one element of lim J;';}’n[i{(D),(C, ‘f_r’,)] is
manped into [[Id r"(CD’ < )]} in lim limEh,,‘H(D).hT(C,g)l
where [IdC ,(u,-\, £ )] is the equivalence class containing

D
trhe image of the element .LdCD of (_hIH(D)’hT(CD' ED)]
We first claim that Y 1is one-one. Let [{rD},(C'O, 20)]

[{rl’)}, s gc;)] be ’two elements of lim glm[}{(a),(?,,'?) )]
such that their images under § coincide. In view of the
construction of colimits in Ins, it is enough to show: if

for any (h/T)-morphism u:(C _, ) — (C'y £ ') such that
o! %0 o' %o
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T~ u r
J ~ ' ~ o o

C,\ —_—— s —> C = o, —> |3
) e} o D 0

in € , then r'=u.r.. is
Iy} iy
also valid in h/T, which is obvious. We now show the onto-

ness, Since {[IdCD,(CD, giﬂ]} belongs to lim 11@

[hm}{(D),hT(C,ﬁ )] , there exists (C_, §,) ¢Ob(n/T) and
spthpH(D) — hp(Co, § ) such that [IdCD,(CL, )] = [sy
(Co’€<3)] . Then by the construction of colimit in =z=ns,
there exists a finite sequence of (h/T)-morphisms between

(C., gzﬂ and (CO, 50) making the following diagram commute:

5 TTm %o
T
\ £74
1
S N
D c
o]

But the sequence being in h/T, we could conclude that
go-[L,sD] = £ ;s claiming that sp is indeed an (h/T)-
moronism.,

(2) => (1) Let ID€A and H:ID — € . We need to see the

isomorphism of the canonical map

1i ; i H(D)ohr (Ctg ) — im lim H(D)Ahm(cl )
(c.g”%h/cv ir:no[‘ L J _ - ""‘l“rj’[ : s)

.First we show it onto. Since lim lip[ﬁ(D),hT(C,g ﬂ e
1in[h®(0),T] , let x=[£,:[-,H(D)] — 7] be an element
D

of lim llm(ﬁ(D),hT(C,g ﬂ . Consider the assignment D ~~

(K(D),85: [=»H(D)]—> T ), That this assignment can be

extended to a functor H_:[D —> h/7T is obvious. Since

,.l
.
PiS



h/T is A -cofiltered, there erists a '(Co,fO)GOb(h/T) and

rD:H(D)-~% o such that izfzgo‘[-.ra]. We claim that

| [g{ra},(co, EO)] is a preimage to {"S 1.)}:;ac, i.e. for every
neoolD, [{rh(c., 5] = € in %%[H(D),hl,(c,i Y] . But
this means precisely that '§D= go. ['-,rD] ) which is always

the case.

“e now show the one-oneness. let [{rD},(CO, ’éo)],
[(z53,(Cls g )] be two elements of lig lim [H(D),hq(C,$ )]
such that for every DeObD , [rD,(CO, %0):] = [rj;,(ct'),%"))]
= §,+ Llet x.= {2 D} and cefine H, as above. By A -cofril-

—

teredness of h/T, we could find (C_, £,) and ry:H(D) —>

o
Eo such that § - [-—,rD] =€ -] = £, [-rry7 = € ;e
It is then easy to see that both [{rD},(CO, ZO)] and
[llré}, (C(‘), g(;)] are the image of the unique element of
1im léi:_m[Hx(D),(C,g)] . This concludes the proof.
Cofiltered categories as defined in 2.1 give rise -
to a commutativity condition, and are characterized by it:
2.5 Theorem Let W and [ be small categories. The
followings are equivalent:
(1) X is |D-cofiltered,
(2) For every category € , every functor G: ¥ — C,
and H:|D —> <, the canonical map

Lin lém[H(D),G(X)] — 1§rn limE{(D),G(){ﬂ

is an isomorphism.

m . | 7
Proof: (1) = (2) Let T = 1im hG(X) in € , where
X
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h is the Yoneda ZImbedding. Ihen by 2.2 h/7 is |D-cofiltered.
By Theorem 2.4, ™ is then |[D -continuous. The proof then

follows from the sequence of isomorphisms: lim lim E{(D),
D L

c(n)] L %;%Ew(n),m()] ~, %BH(D).T RAAN

im lig{H¥(D),n ~, lim 1im{H(D),h. 7~y 1lim lim [H(D)
de pplo)n] S ug uale)ad 2 g i),
()],

(2) = (1) Consider any H: D — X and IdX :X@

- )K Then using (2), we have

N

l;m l:lJn E{(D),I{] — 1Bm ltrgE{(D).X]

which is what is required.
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Section 3: The Clategory of Zontinuous Functors.

In this section we aonply our results 6f the previous
sections in. the situation zrising in the .Sec. 2 of the Chap.

3.1 Definition Iet @€ be a small category and J:

€ —s [\ a functor. Denote by [J] the class of all small
categories |D such that for zny H:D — €, J is H-co-
continuous. Denote by ContJ(df) the full subcategory

. . . \ o - . s :
of © determined by all those T:C —3 Zns where T is [3J~
continuous. (see 1.1)

3.2 Proposition Iet € be a small category and J:

€ — A a functor. Then the following holds:

(1) Every representable functor is [J]-continuous,

hence there exists an embedding hJ:df —_ ContJ( < ).

(2) There exists a functor J: A —> Cont,(C ) mak-
<
ing the following cdiagram commute:

hT A
 —= Cont (€) — C

y 1an_ (n)

(3) hy is b]-cocontinuous.

Cq
—

(4) ContJ(dZ) is [ﬁ]-cofiltered cocomplete, i.e.
for any [J]-cofiltered category ¥ and for any
P — ContJ(<C), there exists a colimit of P in
ContJ(di).

Proof: (1) is obvious.
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(2) follows from the fact that LanJ(h)(A)=ET-,A]
is continuous for all those diagrams for which J is co-
continuous. (see Q:3.2)

(3) Given any [b]-continuous T:¢°~—+Ens, we
need to show the [J]-continuity of [hJ-,T]. The result
then follows from the observation that [hJ-,T] = 7.

(4) Let X be a [U]-cofiltered and P:¥{ — ContJ(C')
a diagram, let T = 1im P(X) in ¢ » %e need to gee T is
[7]-continvous. Let IDelr] and H:ID — € ve a functor.
The following sequence of isomorphisms establishes [JJ—
continuity of Ti

@

lim %im[%(D),h%] ng lim 1i lig[ﬁ(D),hD(x)] Ly 1im
h/T D : X n/B(r)D : ¥

& [ (o), P (1) 2, Lin %g[hﬁ(n).?(x)] 25 <l%~m,l;i?gng(D),
h,], where (D follows from T = 1igP(X), (& from [J]-con- -
tinuity of P(¥) and (3 from Theorem 2.5,

3.3 Remark From the proof of 3.2 , we conclude
that the canonical embedding iJ:ContJ(df) —_— aé is
[ﬁ]-cofiltered cocontinuous.

3.4 Theorem Let € be a small category and J: C——>
JA a functor. Then ContJ((f) is [J]-cofiltered cocompletion
of € in the following sense:

(1) ContJ(Qf) is [J]-Cofiltered cocomplete,

(2) Tor any [JJ-cofiltered cocomplete category [P

and a functor K: € — |B, there exists a [&]-
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cofiltered cocontinuous functor ?:ContJ(df)-—;?iB

such that K-h =X.

Proof: (1) is Proposition 3.2 (4).

(2) e define K %o be LanhT(K), which exists in
view of Theorem 2.5 and [Jl-cofilt;fed cocompleteness of
B . (see 0:3.4) That Lanh?(K)=Z'is [d]-cofiltered cocont-
inuous follows from the fa;t that ¥ is iJ-relative left
adjoint to LanK(h) and Proposition 1.9.

3.5 2emark Theorem 3.4 is also valid, even when
@ is not small. In this case we use the standard procedure
by redefining ContJ(QI) as the category of essentially
small [J]—continuous functors.

3.6 Theorem Let € be a small category and J:C — /A
a functor. Consider h;: € — Cont;(€) as in 3.2. Let t: C
—  and r: Y — Cont,( €) be functors. Let [P be the

pullback of the diagram:
P -

&
l |7
ContJ(C) —_— T

i PaN
Then P is precisely the full subcategory of ¥ consisting

of all functors R: Y — Zins such that 2 is tHE-continuous
for all H: 1D — € , and D ¢[J7].
Conversely, this property determines the pullback F .

-] - e .
Proof: let 2:Y — Ens be tH-continuous for all

H:l) — ¢, anda D 6[J]. e claim that 2-%t 1is [Jj~contin~
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—

h/Rt"

that 1lim iJrkR = R-ta, where

k

I3 h
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~or any D €[J], any H:[D —> €, we need to show

im 11m[n( ) th] XM, lin llrgk( ) th] . #We observe

k?y—*é‘ﬂis the Yoneda Zmbeddin

and kR is the diagram associated A F. Consider the follow-

ing sequence of isomorphisms: ;1m 11 [H(D) nDt«] =, lim
Kt

Lin [H(D),hhg 0] g%g[in(a),iim i

h/74¢

lim |hH(D),1i.rk
§73?[ '=Jd é] —>

%%%EH(D),kP:I

[H(D) by

%%g %§%[§JH(D),rk§]

T
k ~ m
77kz] > &iT
19
/\/& ’lim
"D

lim lim[tH(D),k.] _igi; lim lim
X/ °D -

h/5t° D

¢ Where CD follows from relative adjointness,

C) from ® being tH-continuous, and (3) follows from the

following consideration:

h/rk (Y,f).

1im llm{ﬁ(D) hnt]

h/75D
S|
1lim llm
OB Mlpnp D
$1Scv.e

Tirst observe that h/Rt® o~ 1lim

(Y,5)

Then consider the following dilagram.

&

1mEHD)h!{(Y?ﬂ

Lig, a0 0]

S| ©

dim 11 (H(D), Ny ]

D rY

—

lim 1m [H(D), %, ]

k/% &
T’;(af. ?)

lm &d(D),Y]
D

q ©

Lim[hH(D),rY]
D

=
[}
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where ka ) and SkY _y are colimit maps respectively;
, §)

and C) follows from H-continuity of rY and (:) from

relative adjiointness, Therefore we conclude an isomorphism

§z making the diagram commutes Therefore we have shown

that R-t is J -continuéus, fom which the tH-continuity

of R fdllows. This thezn concludes the proof.

We write the category defined in 3.6 by ContJ’t(vf).

3.7 Theorer. In the same situation as in 3.6, the
following holds:

(1) Given any X: C —> B, 2nd any [J]-cofiltered
cocomplete category B, if K is [J}cocontinuous, then
Lath(K) is concontinuous.

(2) Given any T:W — (@, with cocomplete category
R , if F is tH-cocontinuous for all H:lP —> € where J is
H-cocontinuous, then LanN(F) is cocontinuous, where N is
the canonical embedding ~y —s Contjrt(jf).

Proof: (1) Lany (X) is a left adjoint functor with
IanK(hJ) as a right adjgint. This follows from that Lan%hJ)
(B) = [K-,B] = [-,B]*K and Proposition t.5. The proof of

(2) is analoguous to that of (1).
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Section 4: Absoluteness.

In this section we study special cofiltered cate-
zories in the sense of 2.1, namely (Cat)-cofiltered cate-
gories., These categories arise naturally from absolute
colimits [9] - those colimits which are preserved by every
functor.

4,1 Definition Let H be a small diagram ¥ — .

H is said to be coabsolute 1if every functor F: C —

A is H-cocontinuous.
Dually, we could define the absoluteness of a dia-

gram,

4,2 Proposition Let Hi¥ — (. be a small diagram.

Let h be the Yoneda Embedding on € . Tﬁe followings are
equivalent:
(1) H is a coabsolute diagram.
(2) For every C€0bC , [b,{] is H-cocontinuous.
(3) Every T:C°—> Ens is H-continuous.
(4) h is H-continuous.
The proof is trivial. One way to show is (1) —>

(2) = #) = (3) = ().
4.3 Definition Let )X be a small category. ¥ is

said to be coabsolute, if every functor Hi ¥ —— & for

any € is coabsolute.

Dually, we define absolute categories with respect

to limits.
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L. Theorem Let X be 2 small category. The follow-
ings are eguivalent:

(1) X is coabsolute,

(2) There exists a family of morphisms U‘,L:X — X
for all XeObX which is a cone from Idx- to X

(3) X( is (Cat)-corfiltered.

Proof: (1) = (3) Let [D bve any small category,
and H: [D) — X a functor. Consider the following functor
H' 1Y, —/—\—> © vx ~»[H-,7] ana (%27[}»———5 Ens, T~ lim T,

Since I and Ens are cocomplete and X is coabsolute, we

have the following sequence of isomorphisms: lim lig E{(D).
X

D
x| 25 din (_1_;3;{ (x) )(D) £ Lig (_%@ H' (X) )(D)

lim !1m[§ D), K] Hence X is (Cat)-cofiltered.
(3) = (2) Since X is (Cat)-cofiltered, for Iqx.)/

— W 1im 2im[%,X7] = 1im M[{,X] 2. one point
L7 X £ X!

set. Hence there exist an Xoe‘ObX( s 2and a cone from Id)f(

to Xo.

(2) = (1) Let {,%X:X — XO} be a cone from Idy
to Xo in the category )f( . Let H: ¥ — € and T C° —> Ens
be two functors. We wish to show T is H-continuous. ie0.

the canonical map

lim Jim{H(x),hg) LR Lim Lin[H(X),hy)
n/T x X h/T

is an isomorphism. Given any {[ tH(X) — hq(Cy, 8 ),
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(CX, ix)]} in 1m :m E{(X.) hﬂ] we define a map Y by

assigning to it [{r cH( W, )} , E ] . We claim
%o

that ¥ is a two-sided inverse to the canonical map Y .

Given any f = {[rx,(cx. €, )]} in M 171%[}[()() hT] YY ()
{[rxo. _H(‘U'X)’(CXO’ ‘éxo)]}. We need to show [rx, (CX,

EX)] = ['rxo‘ H( ,LLX),(CXO, € XO)] » wnich is equivalent to
EK hr c;nh(su- ) = ‘Exahrx. But since {gx'hrx}e;ij{m th(X),

T] the result follows. Conversely, let g = [{s 1, (T, €)]
in the set %M[}I(Y) (€20, YP(e) = [[sy pr}

(C, %ﬂ We need to see for all X€0b¥ ,‘ s, H( L ) = s,

X
o

X'
which follows from the naturality of {SX}‘ This completes
the proof.

4.5 Lemma Let {) be a small category and H:[D — C
a functor. Let (T, A) = 1lipm hH(D), where h is the Yoneda
Embedding. Then there exists a cofinal functor P:ID — h/T

D ~v (H(D), >\D) such that nh.-D = H.

T
Proof: For any (C, ¥ )€0b(h/T), _l_';_gn)[(c, < ), (H(D),
. D

) B (e A D A e e [((-.cl,

£), 1in (L1, )] 2 [([,¢], ), (r,ia,) ]
D

22 singleton set, where the last three hom sets are taken
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in E’[\:/T, and the last isomorphism foilows since (T,idT)
is a terminal object in ZE/T«

4.6 Theorem In the sama situation as in 4.5, the
followings are equivalent

(1) h/T is coabsolute.

(2) T is continuous.

(3) H is coabsolute.

Proof: The equivalence of (1) and (2) follows
from the Theorem 4.4 and the Theorem 2.4, (1) = (3) is
trivial. It remains to prove (3) =» (2). For any small
diagram K:¥ —> C, consider the following sequence of

isomorphism:

. o | ® .
"‘%T‘ 7% [(K()ny] = U 1in [K(x),H(D)] &, Lin
%

'3

AN %%z[hK(X).hH(Dﬂ ~ lIi)m

®

&%ﬂ [K(X),H(Df] £~ %%% %%g [K(X),hT], where the iso-

[hK(X),%_rg hH(D)]

morphisms @ and @ follow from Lemma h.s; @ from the
A
pointwise construction of colimits in © i and (3) from the

H-cocontinuity of the functor gim [ﬁK(X),h—] and Proposi-
X

tion 4.2,
4.7 Remark From the Theorem h.6, we conclude that
a coabsolute diagram can be factorized through a diagram

from a coabsolute index category. This coabsolute index
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category may not be small. In the following we find a
small coabsolute category for a coabsolute dizgram so
that the colimit of the coabsolute diagram could be re-
presented as a colimit of a dizgram indexed by this co-
absolute category.

L ,8 Theorem Let ) be a2 small category and H: D
—=C 2 coab-solute diagram. Suppose (I, \) = ]g_rg H(D) in
€ . Then there exists a coabsolute category Y and a

commuting diagram
D _______9
\ / K

such that lim K(X) = (L, x) and AQ(D) = X pe

Proof: We recall the characterization theorem of
absolute colimits in [ 97, from which we have: There exists
DOGObID and d_:L — H(D,) such that

(1) for all D<OLID, (Do'do'>‘D) and (D,ldH(D))
are connected in H(D)/H, and

(2) 'XDO'dO = ldL'

let Y be a set bijective with the 0blD. Let b:i}) «
~ ’ . s . .
— ObjD be the bijection. Let |[D ' be the underlying
diagram scheme of the category |[D, and |D " be the diagram
scheme obtained from [) ' by adding a set > of arrows
where for IxO0bi), the origin of b(D) = D and the end of

b(D) = D,+ For |D" we consider a set $ or comnutativity
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condition, which consists of all those coming from the
category U , and all pairs (b(D')-f,b(D)) for all f:D

—> D', We set Y= £ (0"/F ), the path category as in
(0:4.8). %e note that iDand X have the same objects.

For felorlD , we define Q(f) to be the equivalence class

of the path {f} of length one., K:¥ —> & is defined as
follows: K(D) =H(D). We consider an assignment |p" — C ,
b(D) ~v d, A p» and £ H(f) for all other f in WoriD .
This assignment transforms the commutativity condition into

identities in € , since dg X pv H(f) = dg X By (0:4.8)

D.
we have a functor K),(—-) C. We observe that ),( is coab-
solute with ED(D)] :D—> DO as a cone from IdX into Do’
where [b(D)] is the equivalence class of the path flb(D)}
of length 1. In order to show that lim K(X) (L, M), it

is enough to show: for every C€0b €, the canonical map
Lim[K(x),0] — Lin[H(D),C]
X D

is an isomorphism. Let {rD:Déomp} be an element of ‘l im [};'(D),
C]. Wie need to see that it is still natural with respect
to the category){( +» It suffices to show that rp= rDo“ do'/\D

for all DeOvlD. But since Aptdg = ]YL; ry = r‘}\D = r( Ap*
0 o

do) “>‘D = ry+d, - XA This completes the proof.

u e



Suppose this is coabsolute, we have then

A &S B <5 ¢

such that er = 1C’ us = 1B and vs = rs. Obviously vs =re =

is an idempotent. ¥We now consider the coabsolute category

u
A 3 BYE,
v

Clearly every morphism k:B — X with ku =kv also satisfies

81

f

kf = k. Therefore C is alsoc a colimit of the diagram indexed

by the coabsolute category.
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