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ABS~? ACT 

Triples and the categories of triple algebras are 

relativized by a full faithful functors. The Tripleability 

Theorem in [1] is correspondingly relativized. The concept 

of the rank of a triple becomes intrinsic in this setting. 

Preservation of non-existing limits is interpreted 

in terms of limit-colimit commutation property. This is 

used to account for the usual description of the category 

of algebras as the cateeory of all product preserving set­

valued functors on the opposite category of free algebras. 
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INTRODUC'l1 ION 

There are two known categorical approaches to the 

study of algebras. The first is an approach, in which the 

operations of algebras play the pivotal role. Not only just 

the generic operations - e.g. multiplication and identity 

in the case of monoid - but also all derived operations are 

considered. This approach was initiated notably by W. Lawvere 

[7] among others. 

The second approach, which is referred to as the triple 

algebraic approach in the following, is that which is based 

on the adjointness situation between the categories of 

algebras and the category of sets. It was observed that an 

adjointness gives rise to a triple and conversely, a triple 

determines two, the largest and the smallest adjointness 

situations, called the Eilenberg-Moore Situation and the 

Kleisli Situation, respectively. They represent the category 

of all algebras and the category of all free algebrast resp-

e c ti ve ly. ( see [1] ) 

The main difference between these two approaches 

lies in the consideratiofo of the rank, .i.e. the smallest 

ref,ular cardinal Ereater than the arities of the operations 

of the algebras of the type under consideration. In the first 

approach a consideration of the rank is intrinsically includ­

ed; in the second such is conspicuously ignored. Consequently, 
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the category of compact Hausdorff space·s, for instance, is 

"algebraic" in the second sense but obviously not so in the 

first sense. 

This work proposes one way that would somewhat 

reconcile the difference by refining the triple algebraic 

approach. This work is done by considering relative adjoint­

ness situations instead of ad jointness situations. r·~oreover, 

it is noteworthy that the proposed way is not only a refine­

ment but also a generalization of t~e triple algebraic theory, 

in so far as the relative ad~ointness is 

of the adjointness. 

a generalization 

After having the above reconciliation between the two 

different approaches, the description of the category of 

algebras in the first approach, namely, as the category of 

all product preserving set-valued functors on the opposite 

category of free algebras, is justified in the triple algebraic 

sense .. 

Since in the arbitrary settinE as is studied in this 

work existence of limit or colimit is not kno~~, an appropri­

ate modification of limit preservance of functors for non-exist­

ing limits is studied. 

A word on the way the chapters and sections are 

referred is in order. The number precedineja colon refers 

to the number of the chapter, whereas the number immediately 

following the colon or the first number when there is no 

vi 



colon refers to the section nurrber. Therefore 3: 1 .J means 

the third stRtement in the Section • of the Chapter J, 

while 2.5 means the fifth statement in the Section 2 of the 

same chapter. 
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Chapter 0 

PP.ELirHNA?. I.2:S 

In this chapter we will review the basic definitions 

and some consequences that are needed in the later chapters. 

Section 1: Categories of Functors and Yoneda 2mbeddin~s. 

1.1 Preliminary ~emarks. 

1.1.0 In general, the collection of all functors from 

a category to another does not forrr a category. It fails to 

be a category only because the collection of all natural 

transformations from a functor to another may not be a set. 

As a foundation of the legitimate formulation of functor 

categories three possibilities exist: 

1o1g1 One uses the set theory of von Neumann-Bernays­

G~del as a basis. The fundamental concept here is that of ·a 

"class." Sets are those classes which are elements of classes. 

Small categories are those categories whose object 

classes are sets, equivalently those categories whose morphism 

classes are sets. 

In this situation only those functor categories with 

small domain categories are legitimate. The set theory of 

von Neumann-Bernays-Gadel as a :foundation does not permit to 

consider functor categories with arbitrary domain cateeories. 

l .1.2 Instead of an axiomatic theory of sets as a 

basis, we could use an axiomatic theory of the category of 

categories which encompasses set theory as the theory of 

1 



2 

categories which encompasses set theory as the theory of 

discrete categories. 

The formulation of functor categories is given as 

exponentiation![?]. For our purpose this approach is unnece-

ssarily sophiscated. 

1.1.3 One expands the set theory of Zermalo-Fraenkel 

by introducin~ universes as suggested by Grothendieck; i.e. 
suitable 

one admit7'inaccessible cardinals. Accounts of this approach 

could be found in [J]. We shall do no more than point out a 

few facts which will suffice for a formulation of functor 

categories. 

1.2 Universes. 

1.2.1 A universe is a non-empty.set1Jl subject to the 

following conditions: 

·(1) If Ae1Jl and BeA then Br/1[. 

(2) If A, Bel]l, then tA,B]EVl. 

(J) If AE()t, then the power set @(A)E1ll. 

(4) If [Ai J i ~I ~m J is a family of elements of 'VL • 

then iyI Ai E 1fL. 

1 .2 •. 2 ?rom these axioms one can easily deduce the 

following properties: 

-IfAelJL, then [A}~VL. 

-If Ac B eVl, then A ei}L. 

-If A, BElll., the couple (.A,B)= {(A,BJ,AJ is an 

element of 1.JL • 

- If A, B €1Jl, the union AVE and the product Ax B are 



elements of 1Jt. • 

-If £Ai { if;Ic11l.] is a family of elements of 1ll, then 

the product iTr- .Ai· is an element of 1JL • 
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-If AcVl., then card(A) < card((/l). In particular the 

relation CULe- ill can not be true. 

In short:1.llis closed under the usual constructions 

of set theo~y carried out on the elements of 9JL. 

1.2.3 An example of a universe is the set of all -. 

symbols of type [[~ ], ~ { <PJ• <P ;)' etc.} where every element of 

this universe is a finite set and this universe is countable. 

1.2.4 We require as an axiom that every set is an 

element of a universe. Thus in particular every universe is 

an element of a higher universe, 

i.J 1fl-categorieso 

1. J. 1 In the following we fix a uni verse 'Ul contain·,ncA-
. I• 

an element of infinite cardinality, for instance the set IN 
of natural numbers (and therefore also conta..\nin9Z, ~, 11<. and 

<C). We make use of uni verse, but we choose a language which 

would allow us to a large extent to use the language of the 

set theory of von Nerrnann-Bernays-G~del. 

1.J.2 A11Lsmall set is a set belonging tolJl. Subsets 

of'Ul are called '1ll.-classes. 'ilhenever there is no risk of 

confusion, we usually drop the prefix 1Jl. 
1.3.3 A category (rr.ore precisely a lfL-category) 

consists of 1/l.-class r-~or If\, and a composition rule which is O... 



partially defined associative binary operation with left 

and ri~ht identities for each element. In particular the 

composition determines the class of identity morphism of 

/f\ , denoted by Ob/~ , and the partitioning of rr.or/A into the 

classes HomU\(A,B) of all elements of r¥~or/~ with A as the 

right iciertH+)" and B as the left iderrt-1ty, which are required 

to be 1Jl-sets. 
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Hom/A(A,B) is often abbi:-eviated as [A,B] when there 

is no risk of confusion of the category under consideration. 

A category is 1Jl-small if Ob//\ is a 1.t-set. 

1. J. 4 Let /A be a 'Vl-ca tegory. Let 1.f be a uni verse 

containing 1/l. Then in particular /A is a small lf-category. 

For any 1T -ca te~ory lei, the functors {{\--;;.. lB and the .natural 

transformations between them form a 1.J--category.. The compo-

sition of the morphisms is that of the natural transforma­

tions. This category is denoted by [/~., lB] . If \13 is also 1T­
small, then QA ,JB] is '1f-small. 

In particular if IA is a Vt- small catec;ory t [/A, lB] 

is a 1JL-ca tegory for every (Jt-ca tegory IB. In general for 

any two categories we could then legetimately consider the 

functor category in an appropriately chosen universe. 

1.4 The Yoneda 2mbeddinP 

1. 4.1 We write Ens for the category of all ('U.-) small 

sets. In view of O.J.4 we have the category of all contra-

variant functors from a catev,ory (/\ to ~ns. ':ie denote this 



A 
category by /~ , which is often called the cate~ory of 

pre sheaves of sets on· ff\ • When /A. is a small lll-ca tegory, 
A 

the category//\ is a CUl.-category. T,'!hen IA is a '1JL -catee;ory 

the category~ is not in general a Vl-category, but a CJ­
ca tegory for a uni verse 1r containing 1Jl • In either case 

by choosing the universe appropriately, we could legetima-

tely consider the categories of presheaves of sets. 

l .4. 2 For a 11L-category //\ , and for every AEOb/A, 

we define a contra variant functor [-,.A J : ·/f\0 -..:-.? Ens by 

the rule B ·-·?{B,A]=Hom/~(B,A) and for g:B~B', [g,A] is 

given by composing with g on the right. 

Given f:A~A v in /A. , we have a natural trans­

formation [-,f]:(-,AJ~[-,A'] where for BfOb/~, [B,f]is 

given by'composing with f on the left~ 

For A£0b If\ , f~Mor./f\ P the rule A~ [-,A] and 
A 

f ~>~, f] defines a full embedding h-i~-: (/\.__;,,.. /A called the 

Yoneda Embedding, or often denoted sjmply by h, 

Therefore every category may be regarded as a full 

subcategory of a category of presheaves of sets. 

1. 4. J If a 1Jl-ca tegory ·/A is not a small 4Jl-
. A 
category, /A is no longer a 1JL -category •. 'I1herefore in 

eeneral we could not formulate the Yoneda ~mbedding within 

the uni verse 1Jl. Noting that the Yoneda Embeddine is a 

representation of ob.]ects of a 1ll-ca teeoy /~as set valued 

functors, we restrict ourselves to a subcateeory of 
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/' 
~ consisting of all proper presheaves of sets on ~ • 

' 
Let /A be a lJL-ca tegory. A set valued functor 

T·: /f\ ~ Ens is called pro-oer ( more precisely 1ll -nrouer) > 

if there exists a 1Jl -small set XJ of objects with the 

following pro~erty: 
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?or every AeOb~, and for every aET(A), there 

exists a suitable Din~ and d£:(D) together with a morphism 

f : D -4 A such that T ( f ) ( D ) =a • 

Such a set ~ is called a dominating set for T. 

It is then straightforward to see that the category 

of all proper presheaves of sets on a 'lJL-catego~y /A is 

again a CUL-category. 

Section 2: Ad,ioint Situations and l.~riples. 

In this section we recall the definitions and funda-

mental properties of triple aleebras~ . thereby providing. 

the ground work of Chapter 2. 

functors. F is said to be relative· left adioint to U with 

resnect to J or simply J-relative left adioint, if there 

exists a natural equivalence ~ , which is called the adiunc-

tion isomoruhism, 

o{ C , X : [F-: , X J ~ (~JC , U X] 
where CEOh<i: and ; .. ~€0b·x 

We sometimes write this situation in symbols as 



F--; U mod J 

If in particular J=Idb\ , then we simply say that ? 

is a left adjoint to U, which case is written in symbol 

F--1U. 
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2.2 Let F be a left adjoint to U with the adjunction 
-1 

isomorphism o<. We let"f1A= «-A,FA (1FA) and Ex= o< ux,x(luz) 

for every A£0b If\ and XE Ob'¥(, re spec ti vely. Then~= ('l'LA ~, -£ == 

[ E ~<J define natural transformations; 1: Idb\ ~- UF and· ·€': 

PU ~I~ respectively called the front and the back 
I\. 

ad ,iunctions , 

Let r=UF and p.;::::U£F. Then the 3-tuple(T,~,~) satisfies 

( 1 ) ,u.( "'l T ) = fA-{ TV = 1 T , and 

( 2 ) fL( µ,T ) = pi.. T fv) • 

2~J Let~ be a category, A trinle (fuonad, or triad) 
over IA 

lf=(T,,,µ..)/\is an endofunctor 'l':/A-)- /A with natural transfor-

mations -ri_: 1 ~ T and p-: TT: ---4- T which satisfies ( 1) and _( 2) 

of (2.2). 

2 .4 Let If\ be a category and 1f= (T •'1., µ.) a triple over 

/Ao A =tr-algebra is a pair (A,a) with AEOb-/A. and a:TA----tA 

such that 

(1) a'l'LA=1A' and 

( 2 ) a µ.,A =a T (a ) • 

A is called the carrier or the underlying object in 

of the algebra (A,a), and a is called the structure map. 

A 9f -ho:nomorphism (A, a) ~ ( B, b) is a J- tuple (a, 
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f, b) where f is an //\-morphism A~ E; making the following 

square commute: 
Tf 

11A --:--4 'IB 

a t Lb 
A f B 

f is called the underlying /A-morphism of the homo-

morphism (a,f,b). We usually drop the reference to the 

structure maps. 
1f 

~;·te have the ca tegor;v .//\ o:' if -alr,ebras and T -

horr.omorphisms. 

2.5 let 1r=(T,'1,µ,) be a triple over the category • 

Then there is the forgetful functor U::w-: /f\ 9f--+ IA which 

assigns to each algebra its carrier and to each homomorphism 

the underlying /~-morphism. 

The forgetful functor Ll:;r- is faithful. 
=if" 9f 

·fie define the free functor F : ·ff\~ //\ by the rule 

A~ (TA '~A) and f~T(f) where fiA~ B in ff\ . 
We note that FiF is a left ad joint to u~ and uli F:;r 

=T~ Moreover the triple induced by the adjointness situation 

F"ii""'--t U..9F is the same as the triple we started with. 

We call the category /A. -r the Eilenberg-Moore category 

correspondinr: to the triple 1f , and the ad jointness situ- ". · 

a ti on Fr -f U... ,.- the Eilenberp;-r.~oore situation corresponding 

to the triple T . 
2.6 Let F: ,_/A~'* be a functor. The full image of F 

is the category "i(F whose objects are those of /A and whose 



morphism sets Ho~~F(A,B) are precisely Hom~(FA,FB). 

There exist functors cl?: /A ~ ."fF , fimF: }R.F---f ~ 

so that the following holds: 

(1) fimF·ClF = F, 

(2) clF is bijective on objects, 

(J) fimF is full faithful. 

2.7 In (2.6), we have a factorization of a functor 
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in the category Cat of categories. The factorization is not 

an epi-mono factorization, but comes very close to it. 

~ore precisely, fimF satisfies the following: Given 

any tvw functors G, H: 'iJ ~ '*-F, if (fimF) ~G is naturally 

equivalent to (fimF)·H, then G is naturally equivalent~to 

H. And clF satisfies the followingr Given any two functors 

L, M: YA. F ~ ]_ ,. if L · ( c 1 F) is naturally eq u i va 1 en t to M ~ ( c lF) 

then L is naturally equivalent to M. 

In other words they satisfy the definitions of mono­

morphism and epimorphism in Cat in which the equality is 

replaced by the natural equivalence. This observation con­

stitutes the ground for callin~ them 2-monomorphism and 2-

epimorphism respectively in the 2-category Cat. (See for 

instance [4] for the concept of 2-ness) 

2. 8 Let lf = ('r ,1_, µ....) be a triple over /A , and 
lP 1f F ---i U the Eilenberg-f·,ioore situation corresponding to 

the triple 1i . let Fir=cl?lr and U-,r = U-ir= · fimF1r • V!e remark 

that there is an ad jointness situation F1F----i UT, which 



ei ves rise to the same triple T • 
T' We call the category ( ff\ ) p'T (see 2. 6), for short 

/A ·-rr, the Kleisli category corresponding to the triple T 

and the adjointness situation Fif---t UT the Kleisli sit­

uation corresnonding to the triple T. 

2.9 The Kleisli category ~Ir corresponding to a 

triple T=(T,._,,µ..) could be described in a more direct _ 

manner: 

The objects are the same as those of the category 

/A • For every A and A' in '/A , Hom./Arr(A ,A' ) consists of 

all /A -morphisms f: TA-; TA' such that 

Tf > 

f 
TA' 
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commutes. The composition is the one induced from the cate-

gory {A o 

In this description, U1F is determined by the rule 

A o"VV') TA and f AA.l'I fo F1f is determined by A .'VV)> A and h ....v0 Th. 

2.10 Let F-i Ube an ad.jointness situation with 

front ad junction 1 and back adjunction £ , Where F: /A~'*, 

and U:'//....~ /A. ·This ad jointness situation gives rise to a 

triple1f=(T,">J,~) where T=UF and j,t=:U£F (see 2.2), which in 

turn gives rise to two adjointness situations, namely the 

Ellenberg-Moore situation and the Kleisli situation. 

There exist two functors N: /~--?'K, and K :·"'/A.-) ~ both 



of which are called comparison functors. 

~>?A 

N is defined by the rule A ~FA and f: TA~ ·.cB 

~ F'h . . LA 
FUFA Ff) FU?:a ~PB £.?B - • 

K is defin'ed by the rule .X ~(UX,Ucv) and g:X -4 Y 
,{\, 

~ Ug. 

2.11 We need some notions about functors relative 

to diagrams. Let Ui~~ [~be a functor. Let~ be a cate-

gorical pronerty of diagrams (e.g. monomorphism, limits, 

etc.). Assume that with every diagram D in t_ , i.e. a 

functor D into the category'/:.. with a (small) domain cate­

gory, with nroperty lClJ. , the dagram U·D in l~ also has 

the property ~ • In this case _one says that U preserves 

the nroperty ~ • Assume that each diagram D in 'J for 

which the diagram U·D in IA has the property ~ has it-· 

·self the property ~ , then we say that U reflects the 

property ~ • 

11 

We say U creates colimi ts for a diagram D :][----? 11'. , 

if the followings are satisfied:· 

(1) there exists a colimit of U·D in /A , say 

:Xi :UD'(i·) ~ A , 

(2) ther~ exiRts exactly one pair (X, ~)consisting 

of an object X of~ and a cone -S-. :D(i) ~ X such 
. l 

that U~=A and U Si= ~i' and lastly 

(J) this cone ~i:D(i) ~ X is itself a colimit 

cone in ~ • 
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We could similarly define the limit-creation oro-

oertv. 

U is said to create isomorohism, if given any iso-

morphism f: U ( X) -----') B in /A. for arbi tray X of YJ... , there 

exists exactly one morphism v with domain X such that v 

is an isomorphism and U(v)=f. 

2 .12 Let FT ---1 U;r be the Eilenberg-Moore situation 

corresponding to the triple lr=(T,1,JL) over the category 

and D: I -7 //\. 9F a digram. The following is always true: 

( 1) U=;r crea ts limits, in particular isomorphisms, 

(2) If U9F·D has a colimit which is preserved by T 

and by TT, then U=tf creates colimits of D. 

2.13 A fork is a diagram 

f 
A~ B ~ C 

g 

·with rf=rg. A fork splits if there are morphisms 

A~BJ:_ C 

such that ri=lc, fi=1B, and gj=ir. 

Let U: t_ -?·ff\ be a functor and u, v: X ~ Y a pair 

of morphisma in Yi..._ • We say that the pair is split by U, 

if U(u) and U(v) can be completed to a split fork. 

2.14 As an answer to the question when the compa-

risen functor is equivalence or isomorphism, we have the 

theorem due to ,J. Beck [1]. 

Let the adjoint situ.a ti on ? -1 U generate the triple 

Y = ( T, 1 • f-L) where U: 't_ ~ {/\ , and let N: /Alf' ~ *- , and K: ~ -
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T 
~ /f\ be the comparison functors. :::e consider the pairs 

o:!' morphisms in X which are split by U. Then the follow-

ing holds: 

(1) N is dense if and only if K is full faithful 

if, and only if U reflects coequalizers of these pairs of 

morphisms. 

(2) K is an equivalence of categories if and only 

if there are coequalizers of the pairs of morpnisms con­

sidered in X and if U preserves and reflects these co­

equalizers. 

(3) K is isomorphism of categories if and only 

if U creates coequalizers of these pairs of morphisms. 

2.15 lastly we give a characterization of the 

~ilenberg-f•:oore categories as functor categories. [<J] 

let 9f = (T ,1, J-L) be a triple over a category /A . 
The following square is a pullback square in the category 

of categories (within the framework of a suitably chosen 

universe). 

/A.T 
p tJ 

[A'lft Ens] 

ulf l l ~T· ' Ens] 

IA [/Ar;,· Ens] 
h 

9f" 
where for the definitions of U and ?"if see (2.5) and (2.8) 

respectively; h is the Yoneda Zmbedding; and P is the asso-



.. ;..... 

14 

ciated functor (more precisely a lefi Kan extension) to 

f i m: ;r : /~ ~ /f\.-=tr, see ( 2 • 8 ) • 

Section 3: Kan Extensions 

In this section we review some rudimentary pro-

perties of the Kan Extension which are extensively used 

in the sequel. ~or details see for instance [2]. 

3.1 let J:<C---;)/Aand ~=<L~/Bbe functors. A functor 

Lan J ( F) :ff\ --;,.-lf? together with a natural transformation 1 F: 

F -->Lan T (:7) • J is called left Kan Extension of F along J, 
u 

if for each functor 'I': IA ---;). lB the ir:ap 

(I_an J ( F), ~ ~ c;, TJ] , '1f ~ ('1f'J )·"tp 

is bijective. 

·The pair (LanT(F), "'lt.D) is up to isomorphism unique-
~ u .;,,."'-

ly determined. It is obvious that the left Kan extension 

LanJ'J(F) exists, if lanJ,(lanJ(F)) exists and they are 

isomorphic. 

3.2 Let J:<C --7 /A be a functor~ For any category /0, 

[J .r~ = UA .1~ > 1§.,1~ 
is a functor. Suppose [! ,/f?] has a left ad joint which we 

designate by lanJ. Then the left Kan extension (lanJ(?), 

i'f[F) is precisely the fron-: adjunction at F in the category 

fL , rei] • 
3.3 ~e give two very important examples: 

(1) Let .J:<L -11' a functor, and CEObf-. In view 



of the Yoneda lemma, we have 

[gc,-J ,T] ~C,~ ,Tif 
for every functor T: /A~ .::ns. Hence LanJ@,-] =={Jc,-] 

and \c,.::J : [c,.j ~ [irc,Jj is the map induced by the 

functor J. 

/>. (2) Let J:L ~/A a functor, and let h:C ~ C be 
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the Yoneda i':mbedding, We cla i:n Lan J (h )(A)= Q- ,19 for every 

AEOb//\. , and 'Y/h:h ~LanJ(h)-J is given at CEObC', by 

°l h , c = [- ' cJ --> Gr-, Jc] which is induced by the functor J. 

3.4 The Kan construction gives us a case when left 

Kan extensions exist. 

Let J: <t--? f~ and ?: <C --) l.B be functors. For any 

ob.iect A in~ , we define the (lawvere) comma category asso­

ciated to A: objects are pairs (C, ~) where CfOblL and _5:JC 

--7 A in /A , and morphisms are a: -morphisms f: (C,S)-----;. 

( C', 3•), where f: C ~ C • in <C satisfies ~·· Ji' = J;;. We 

denote this category by J/A. \'le define J A 1 J/A -7 <C by 

(c;;) ·~c and f ~> fe 

If ~FJA exists in IB for every AEOb//t , then there 

exists lanJ (?) and lanJ ( F) (A) =li!)l,F J A. 

J.5 We ·have another interpretation of left Kan 

extensions. Let J: <C ~ /A and F: C ~ 1B be functors. As seen 

A in (J. 3) we always have Lan 'T" (h) and LanP (h) where h: CC --7 <C 
v • 

is the Yoneda Embedding. Then lanT(F) is precisely a rela-
u 

tive lef't ad.ioint to lanp(h) with respect to lanJ(h). 
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recall a very useful proposition concerning 

relative adjointness: 

Let P: iM' --? fM , s: lfv1' --?>IN and ~: IN ~ lM be func-

tors such that S is P-relative left adjoint to~ (see 2.1). 

let D:JC -7' IM' be any diagram with a colimit ~.:D{i) ~ L. 
1 

If P preserves the colimit l~J. then so does S. 

In other words, S preserves all colimits that are 

preserved by P. 

We could claim more: 

In the same si tua ti on as aboves Let o(. : D ( i) ~ A 
1 

be a cone. If P transforms {~i~ into a colimit cone, then 

so does s. 

As· an application of the abovef we consider J.5, 

thereby ~oncluding that lanJ(F) preserves all colimits that 

are preserved by lanJ(h). 

J.7 Let G: rB ---?~and I: C ~>J. be two additional 

functors in the same situation as in J.1. Suppose that 

lanJ(I) and LanJ(F) exist. If F is I-relative left adjoint 

to G9 then LanJ(F) is LanJ(I)-relative left adjoint to G. 

Section 4: Path Categories 

A diagram schema L consists of two sets Vr. and Ar 
and two maps o, e: ~ --4 V-c • The elements of \~ are 

called vertices and those of Ar arrows; for at:;AJ-, o (a) is 

called the origin and e(a) the end of a. We say that a is 

an arrow from o(a) to e(a). 
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If <C is a small cate~ory, ·se obviously have the 

underlying diagram scheme of the category <L by forgetting 

the composition of <(; • 

4.2 A diagram D in a category <1.:- of tyne 2:" consists 

of two rr.aps Vt~ Ob C, and At ~ Mor<C, both of which 

are written by D, such that for any af/rit, D(o(a)) is the 

domain of D(a) and D(e(a)) is the codomain of ~(a). 

A n~tural transfornation between diagrams of type 

2 in <C is defined by trarr:sforming the definition of the 

natural transformation between functors in the obvious way. 

One obtains a category [~, <[ J which is analoguous to a 

functor category. 

4.3 A uath w in a diagram scheme Z is a finite 

sequence of arrows a 1 , a 2 , .•• ,a such that e(a.)=o(a. 
1

) 
~ n i i+ 

for i=l,2, ••. ,n (n 1) is called the length of w. For such 

a path we write w=anan-lg •• a 2a 1 and define o(w)=o(a
1

) as 

the origin and e(w)=e(a ) as the end. 
n --

4.4 There is an obvious composition of paths. If 

w=a a 1 ••• a 1 and V=b b 1 ••• b 1 are two paths with e(w)= n n- rn m-

o ( v), then b b 1 ••• b 1 a a - 1 ••• a 1 is again a path which m m- ... n n-_ 

we denote by vvr and read v followine; w. Obviously this 

composition of paths is associative. 

4. 5 If' L is a diagram scheme, we construct its 

trivial extension Lo by adding to every vertex i of L 
an identity arrow 1. whose origin and end are both i itself. 

l 

The trivial extension ~o of a diagram D: 



4.6 A commutativitv condition for the diagram 

scheme L is a pair of paths (v,w) in the trivial ex­

tension ~o of 'L: , where v and w have the same origin 

and the same end. 

A diagram D::L°~<L satisfies the commutativity 

condition (v,w), if for the trivial extension D of D, 
0 

D
0

(v)=D
0

(w) holds. 

4.7 let z=. be a diagram scheme and K a set of 

commutativity conditions for~. A diagram is said to be 

of type L:/K, if it is of type 2 and satisfies all 

commutativity conditions of K. 

If <C is a category, then the diagrams o1 type 

=2'/K in <C together with their natural transformations 

form a category, v1hich we denote by [~/K, c:J . It is a 

full subcategory of [~,<CJ 

4. 8 Let L be a diagram scheme and let K be a 
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set of commuta ti vi ty conditions for 2.: • We define the 

category @>< L/K) as follows: The objects are the vertices 

of Z:. For any two paths u1 and u 2 in the trjvial _extension 

· 'L
0 

of 2: , we say that u
1 

and u2 are K-related, if there 

exist subpaths vi of ui (i=l,2) such that (v1 ,v2 )EK. 

Define Hon~(~/K)(i 1 ,i 2 ) as the set of all equivalence 

classes of paths in Z0 with origin i
1 

and end i 2 with 

respect to the equivalence relation generated by K-related-

ness. The comuosition of paths in~ induces a co~position 
L ~D 



of the equivalence classes. 

There exists a diagram ~:Z -4 @<2/K) with the 

following universal property: 

P1or any category <C , 

( 1) for any diagram D: L' ~ <C of type L/K, there 

exists exactly one functor TD: ~(2/K) ~ ([' such 

that D==TD·~· 

(2) There is an isomorphism of categories 

[2/K' <I: J tv 

where the map for objects is given by the rule 

D ~TD in (1). 
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Chapter 1 

~DENSITY 

The notion of density was st~died notably in [3], 
[5], [6], and G ~. Density presupposes a rule with respect to 

which density can be asserted. The rule is either limit or 

colimit operation. By considering a certain class of co-

limits we refine the concept of density. 

Section 1-: Dense Functors. 

In this section we provide a new perspective to 

density in terms of a cancellation property6 

1. ~ Definition .A functor J from a category C to a 

category JI\ is said to be dense, if each object A of /{\ is 

a colimit of J·JA where JA is the canonical functor from 

the corr.ma category J/A of objects (C,~:JC ---7 A) into 

assigning C to {C,~)· 

1. 2 Prouosi ti on Given a functor J: ((. -7 /A. The 

followings are equivalent: 

(1) J is dense. 

(2) The left Kan extension LanJ(h) of the Yoneda 

p:·mbedding h: (('.: ~ ~ alone J is full faithful. 

(J) The left Kan extension lanJ(J) of ~ along J 

exists and is equivalent to Id II\ • 

20 
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The above is a standard ~act and the proof is 

therefore omitted. 

1.J Theorem Let (("be a small category and J:~-----;> IA 
\ 

a full faithful dense functor. Let G be a functor from /A 
to any· cocomplete category 'I/.. • 'Ihen G is a left Kan extens-

ion of GJ alo_ng J, if, and only if G preserves all colimi ts 

which are preserved by LanJ(h). 

Proof: The necessity is included in O:J.6. Sufficiency 

follows since, for every A-EOb /A. , Lan J (h) ( lim JJ A) 
J/l 

}}t LanJ(h)JJA' G(A) ~ G( li~ JJA) !:::!.. liw GJJA 

LanJ(GJ)(A), where the middle isomorphism is guaranteed by 

the assumption" 

1.3.1 Remark We write [ff\,~] J'-left as the category 

o~ all J'-relative left adjoint functors where J' = LanJ(h)! 

and Cont[JjUA,~] as the category of all functors which 

preserve all colimits preserved by J'o Then there exists 

an isomorphism 

[ /A *' ~ Cont rJ;1[ /A, >k] 
I 'J J t -1 e ft L ..J 

1 .4 Corollary Let <C be a small category, '/A a cocom 

plete category and J: <'.('~/A a dense functor. '·The functor 

induces the maps 

[G,Gj [GJ ,G' J] 
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for any pair G, G' in DA,~]. If G preserves colimits, then 

the above maps are bijective. 

In particular, for two cocontinuous functors G and 

G', G and G' are equivalent, if, and only if GJ and G'J 

are equivalent. 

1.5 Pemark The import of 1.4 is that equivalence 

of two cocoritinuous functors is completely determined by 

the equivalence of respective restrictions on a dense sub­

category. This fact indeed characterizes density. 

1-. 6 Theorem Let cC. be a small category. The follow­

ings are equivalent for a full faithful functor J:<C ---7 /A 
(1) J is dense. 

(2) Let Cocont LJA,Ens
0

] be the full subcategory of 

[11', Ens1. consisting of cocontinuous functors. Then the 

functor 

[J ,Ens•]: Cocont LJA- ,Ens
0

] ~ [cc,En~ 
is full faithful. 

(3) For any cocomplete category X , the functor 

{!, t<] : Cocont [/A.¥'] ["<C,~J 

is full faithful. 

Proof: ( ~c) ~ ( J) follows from the following 

commutative diagram: 

[G,c~ 

l 
[GJ, G '~ 



(J) ==} (2) is obvious. 

( 2) ==9 U) For any pair of objects A, B of /A, 
[-,A] and [-,BJ are cocontinuous functors from /A into 

C> Ens • By the assumption, 

[[~,A], G-, BJ] ---> [Gr-.~ , CI-, Iil] 
is bijective. Since [J-,A] ~ lirr:i,.hJA, vm have [!,BJ~ 

J/A -

[[-,A], ~,B] ~ Jh-,A], fJ-,IiJ] tv * [hJA, Q"-,BJ] 

2J 
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Section 2: l -Dense Functors. 

In this section we study a refined notion of dense 

functors. We observe that properties concerning dense func-

tors are analoguously carried over. Vle use saturated class­

es in [2] as our means of refinement. 

2. 1 Definition Let 6 be a class of samll categories. 

/;i is said to be saturated if it satisfies the following: 

U) The final category 1 belongs to 6 . 
(2) For any cofinal functor H: 1[ ~ ~, if J[ 

belongs to ~ , so does J 
(J) Let H:~-----? Cat be a functor, where Cat is the 

category of all small categories. If '!/... E 6.. and for each 

XE~ , H(X) E6. then lim H(X) also belongs to L:J" 
--:> 

2.2 For a saturated class 6,. and for any category 

<C , the ~-cocompletion K.6 (a::) of <C is the full subcategory 
A 

of <C consisting of functors which are L\ -colimi ts of rep re-
/'-

sen table functors in<(' , where /j -colimi ts are colimi ts 

of diagrams with domain categories in 6 . 
We call the canonical embedding ([:. ---)- KA\<L) 

2.2.1 Remark For a given universe'l.JL, let 6. be 

a saturated class of CUL-small categories, 3nd <C' a 9JL-ca te-
/' 

gory. Although the functor category.(' may not be a 'lJL-cat-

egory, ~ (<L) is alv1ays a CUL-category. Indeed let F, G be 

any pair of objects of K~ (C). 'I'hen there exists I, .]"" in 6 
together with two functors I -----7- <[, J ~CC. such that 
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A 
lim ( .][ ~ a:- ~ <C ) .!:::.__ : and lim {.Jf '------? er 
-+- ~ 

G. Write the corresponding functors I (resp. 

J > <C ) by F (resp. G ) again. 

li19 hG ( j D ~ <:l~m ~F ( i), l~r., hG ( j IT 
l J 

.tV J-~m l~~t(i),G(jJ. Hence [-=·,G] 
l J 

Then [F,GJ~{].i~ hF(i), 

rv )-~m l~l}~?(i),hG(j] 
l. J 

is isomorphic to a {}Z,-

small set, which means that Y'-A (c:C) is a (}[-category. 

In particular, when ~ is the class of all small 

categories, which is certainly a saturated class, KA(<C) is 

precisely the category o:- all proper presheaves on <C. It 

is this reason why proper functors are sometimes called 

essentially small functors [J]. 

2.J Definition Let J: ~~/A be a functor and 6 
a saturated class" J is said to be ~-dense, if J is dense 

and the lef~ Kan extension Lan T(h) of the Yoneda Embedding 
t.., 

/'_ 
KA (<C) h : <C ----?> <C along J factorizes over 

2. J. ~- Pe mark ( 1 ) In the Definition 2.3, the condi-

tion that J is dense is redundant. 

(2) In the Definition 2.J, the first factor J't/A 

~ K6 (~ is precisely LanJ(ht)• Indeed let ~:K6 (q:) -.-i 
be the canonical embedding. ?or any G: /A -4 KA (<L') the 

following cha in of isomorphi sr:ls holds: [j' , q} """ [r6 J' , I
6 

cB 

_a::._ [Lan J (h), I~ cj ~ [h' IA GJ] !:::.__ [hA 'cJ] . 
(J) In view of (2) we can rewrite 2.3 as follows: 

lanJ(hD..) exists and is full faithful. 
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2.4 ?emark Let \B be any A ..:.cocom~lete ca tego~y, 

and Fa functor <L--?> fB· Then Lanh(F) is a ~-relative 

right adjoint functor. 

Proof: Define a functor 1 from K~ (<C) into lB as 

follows: For any object X of KA (<C), define L(X) = l~m~ FX(i) 
J_ 

where the functor X: I ~ <C represents the object x. 
?or morphisms, 

o~, Y] 
SI 

L is defined via: 

~ l~~ [x(i),Y(j~ i> J.~m l~W [FX(i),FY(j~ 
L J L J 

where the bottom row is the canonical map induced by the 

functor F. The following string of isomorphisms completes 

the :proof: [ix,B] ~ t~m f!xCi),B] r.._/ J.~m fjix(i), [f-,8J] 
~ ~ 

_.!.:::_ [it~ hX(i), Lanh (F) (B)] ~ ~6 {X), Lanh (F) (BJ , where . 

'f? is an object of IB. 

2.5 Pronosition Let J:<C ~/A be LJ-dense for a 

saturated class 6 , and ~ a 6. -cocomplete category and 

F: <f --? X a functor., Then LanJ(F) always exists. 

Proof: In view of the ?emark 2. J. 1_, Lan3 (h) == I 

Lanfat>) and since left Kan extension is preserved by the 

relative left adjoint functor L of 2.4, LanJ(P) is given 

as the composite functor L lan3 (hA). 

2. 6 Proposition Let J: <C ~ //\be a functor. 

Suppose J is ~ -dense. Then for any G: I/\ ~ ~ with 

6, -cocomplete ~ , if G is /i -cocontinuous, then G is 



the left Kan extension of GJ along J. 

Proo:': Since J is L -dense, for AE.Ob/f\, there 

exists a cofin2l functor H: ][ ~ J/A with ][ beloneing 

to ~ • We have : 

limGJ JA ::: LanJ ( GJ) (A). 
J/A 

2. 6 ·• ~ Corollary let J: <C -? /'A be a 6. -dense 

functor. For any 6.. -cocomplete category ~ the functor 

[!, t<]: Cocon~_[/A, 11..] -~> [<L ,'t<J 
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is full faithful, where Cocont~[~ 1*J is the full subcategory 

of OA.~] , consisting of all 6 -cocontinuous functors. 

2.7 ?reposition Let /~ be a category. The follow-

ing are equivalent: 

(: ) /~is a 6-retract, i .. e. there exists a small 

category((': together with an adjointness situation 

/A D ) 

with full faithful Po 

( 2) /A is 6 -cocomplete and hns a small 6 -dense 

subcategory. 

Proof: ( 1 
) =} ( 2) It is enoLtgh to show that LhL\ 

is /1-dense. This will follow if R :::: LanLhA (h~). Indeed 

Lan1h (ht) ~ LanT ( Lanh (hL\)) !:::::.. lan1 (Id) ~ R • 
. 6. .L; 6 ..1..... 

( 2) ~ ( 1 
) First observe that J is hb -re la ti ve left 

adjoint to LanJ(hb). Since /A is /l -cocomplete, Lanh (J) 
~ 
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exists. The sought adjointness situation is then 

2.8 Theorem Let /~be a category. The following are 

equivalent: 

( ! ) /~ is 6.,-cocomplete, 2.nd has a small ~ -dense 

subcategory. of objects C for which [c,-J preserves l.-co-

limits. 

(2) /A is equvalent to KA (<C) for a small category <C • 

Proof: The nontrivial part is ( 1
) =:::>(2). In view 

of Proposition 2.7, it is enough to show that Lanh,&(J) and 

LanJ(ht) provide an equivalence, in other words, the front 

and the back adjunctions are equivalencesr Since lianJ(h6 ) 

is full faithful, the back adjunction is an equivalence. 

The front ad junction being an· equivalence follows from IJ -

cocontinui ty of LanJ(h6 ). For if Lan J (h Ll) is 6-cocontin-· 

uous, in view of Corollary 2.611~., for two /l-cocontinuous 

functors Id and LanJ(hA)·lanhA(J), the front adjunction, 

being an equivalence when restricted by h6 , is itself· an 

equivalence. The ~ -cocontinuity of LanJ(hA) follows frore 

0:3.6. 

2. 9 Let J: <C ~ff\ be a functor, and 'f.. a cocomplete 

category. In O:J.4, we have seen that for every functor 

F: <C ~ '//... , LanJ(?) exists. In the following Theorem, we 

establish that this fact completely determines the cocomple-



ness of the category. 

2.9.! Theorem let ~be a category satisfying the 

following: 

For any 6, -dense functor J: ([ -----> 1~ such that 

for every CEOb<C, @c ,-] preserves all A -colimi ts, and 

for any F:.C --7 ~, lan3 (F) exists. 

Then yt is ~ -cocomplete. 

Proo:: For any I in fi , and any H: I. ---7 t , v.'e 

claim that lim H(i) ~ lanh (H)(lil1) h (i)), where tiA<I. 
T ~ i 
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~ K
6 

(JO. By the assumption Lanh& (H) preserves !J,, -colimi ts. 

Therefore Lanh (H)(lirn h 6 (i)) rv lim Lanh (H)(hr.(i)) ~ 
A ~ ~ ~ 4f-l l l -

lim H(i)o The latter isomorphism is due to the full faith-
7 

fulness of~· 
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Section J: Density with resoec-: to 2. Functor V:I& ---7-~ns. 

We introduce a notion of density which generalizes 

the density in Section~. ~his provides an interpretation 

of (algebraic) structured objects in concrete categories. 

3. 1 Definition Let V: iB -7 Ens be a functor. A 

functor J: <C --r IA is said to be V-dense, if LanJ (h) is 

factorized over [<r: V]: [([;", lG] -~> [C~Ens] with the first 

factor being full faithful, 

J.2 Pronosition Let V have a left adjoint F and 

\t? be cocomplete, ':'hen the followings are equivalent: 

( 1 ) /A is a retract of [<c- 0
1 Jt;J for some small cat-

egory <C • 

(.2) //\. is cocomplete and admits a small V-dense 

functor. 

Proof: ( 1 ) ~ ( 2) Let 

( s 

T 
> G:"0

115], S ---t T, 

with full faithful T be the adjointness situation of the 

assumption. /{\ is obviously coconplete. Consider S · [<r~ (J ~ h: 

<C -----:, IA. i,ire claim that S" [Cr", fJ ~ h is the V-dense functor. 

It is enough to show that [<L0

, 
17] • T == Lans _ [Q:", F} h {h). But 

Lans. [ <i:o, F]. h (h) . rv Lans{a: o , FJ ( Lanh (h)) :::::_ :Lans • [<ro, ~(Id) 

~ [<L0
, ~j] • T. ·'.I1he last isomorphism is due to the fact that 

S • [a:0
, F] is a left ad joint to [cc0

, v] · T. 
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(2)==}( 1 ) Since /{\is cocomplete, Lanh(J) exists. 

Put S = Lan[cc',F](Lanh(J)) IV Lan[~o,F]·h(J). It is now 

enough to show that S is a left adjoint to T. By the defi-

nition of S, it is equivalent to show that J is ( [~~ F] · h )­

relative left adjoint to T. Indeed [tc,F]·h(C),T(AD ~ 
[h(C), @::", vJ· fJ:(A] /\.I ITi<c).LanJ(h) (ATI ~ j!c,AJ , 
where CEOb<C and A~Ob /A. 

3.3 Examples (1) The canonical functor from the 

category of all finitely generated free monoids into the 

category of rings, assigning the monoid rings, is dense 

with respect to the forgetful functor on the category of 

A belia n groups. 

(2) The embedding of finitely generated f°ree alge-

bras as discrete topological algebras into the category 

of topological algebras is dense with respect to the forget­

ful functor on the category of topological spaces. 



Chapter 2 

T?. I:?LES ASSOC IA TED WITH 

RELATIVC ADJOIN1NESS SITUATIONS 

An adjointness situation is known to give rise to 

a triple on a categoryo (see [1], [9]) In this chapter we 
with 

study triples associated./'... relative adjointness situations. 

Section 1: Triples Generated by Relative Adjointness Situ-

ations. 

1. 0 Let J: <( ---? /A be a full faithful dense functor 

and s: C ~ >Jt , and r: ~ ---:).. IA functors such that s is J-

relative left adjoint to r, where the adjunction transforma-

tion for C~Ob <C and X~Ob~ is 

<XC,X; [Sc,;{J ~ [JC, rX]" 

Let for every C.cOb<C, 1..c:::: o<C,sC(1sc) and T =rs. Then 

[ ~ c} define a natural transformation 1 : J ~ T, which is 

often called the front adjunction of the relative adjoint-

ness. 

Put ·T = Lanh(J'·T) where J' :::: LanJ(h) and his the 

Yoneda Embedding <I: ~ ~ • We define a triple structure 
/". 

on the endofunctor T. 

1.0.1 For every H:c· ~ Ens, A. 
define '11 H to be the 

unique natural natural transformation making the following 
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diagram commute: 

/\ 

-riH 
H ------- ---·---------~ 

II 

hhH ( C, t;) 

11 s' ,., 
[- , c J - , v > [s- , s cJ 

Where ~(C,~) are the colimit morphisms. Indeed such an 

/\ 
·~H exists uniquely, since for every ~:(c,5) ~(D,~) in 

the category h/H, S-(D,t;)·o<_,
8

D·s_,D .. [-,lf]= 

[~ - , slf l .. s = <;'( f> ) '" [J- , T 1 " (){ • s == J -,C D,~ J -,sC -,C 

s _, C, which means that ( ~( C c) ·ti. C • s C{. 1 t';J -,s -, j 

( C ,; )EOb (h/H). 

1.0.2 Let ~(D,~):J'Th~(H)(D,~) 

be colimi t maps, where z;: [-, D] ---7 T (H)" 

" preserves all colimi ts in <C , there exists 

E> • ~ • 
{D,l?) -,sD 

is natural in 

Ji~ J' ThT (H) 
h j_ (H) 

Since [i1 (D), -] 

(C,. 'S )EOb (h/H) 

a.nd r;' : [·, D] ~ J' ThH ( C, ~) = [ J-, TC] such that the 

following diagram commutes: 

[-,DJ 
A 

T(H) 

i ~c.s> 
LJ-, TC] 
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Via the sequence of isor:iorphisms 

o( 

(_[-, D] ' [J-, TcJ] ...!::::__ GJn' T~ ( Dd ;3C 
-j 

't; ' corresponds to ~ 
0 

== o< D, sC (~D ( 1. D)) • 

[sD, sc] 

~ A ~ r, 1.0.3 Lemma Given i;': [::.,DJ --4 T(H), (C,~) •1..J-, 

r~0] does not depend on the choice of (C,~) and~· in 1.0.2. 

Furthermore, t~(C,~) '[J-,rz;
0
1} is natural in (D,~) 

over the category h~(H). 

Proof: Suppose (C,~) and ~· be another such as 

those in 1.0.2. i.e. ~(c,~r ~· =~ o In view of the isomorph­

ism [[-,D], ~ J'ThH] ..!::::__,, li9 [[-,DJ, J'ThHj , t;' and 

~· are equivalent in m [[-,DJ, J'ThHl· From the way 

colirnits in Ens are constructed, it is enough to show that 

whenever there is lf:(C,~) ~ (C,~) in h/H with~·::: LJ-·, 
- Tlf] · t;' , G' (C •:S) · [J-, ri0 ] = (;' (C, ~) • [J-, rt;

0
], where ~ 

0 
= 

-\ 

o(D,sC(~i)(lD)). By the naturality of the adjunction transf..:. _, 
orma tion c< , we have o( D, sC (Ttp • i; .D ( 1D)) = s tp• Gi'~, sC (t; .D ( 1 D)) • 

Since {-o (C •1S) ~ is natural, ~{C ;~y [ J-, r;;
0

] = \\(C, ~) • [J- • 

rsif· r~~.sc(i?i)(!n)D = CCc.~) ·[i-,Tlf] ·[J-,r~0] = s-(c,~)- • 

[J-,r~0]. This proves the claim. 

Let f: (D,17) --4 (D,~) be a morphism in hftf(H). 

Suppose£;'= ~(C,'S)' ~· as in 1.0.2. In view of what i1as 

oeen established in the above, it is enough to show that 

c;;-(c,i;J • [J-,rt;0 ] = ~(c,;> • [J-,r~~.scCi;i) ·fo,I] (1n>il. But 



' -1 _, 

,:( D. s c (~ D -[ D. f J (1 D ) ) = .( D. s c (t; D ( f') ) = o( D. s c ( i: D ( 1 D) ) • This 

co~pletes the proof. 

" 1. 0. 4 For every H: ([
0 

--4 Ens, define f.,t H ·to be the 

unique morphism making the following diagram commute: 

/'. /\ 

'~T'T(H) 

ff 
h~~tH) J' T'hT (H) 

r >xn .i:;) 
J' ThT (H) ( D ,tj) 

II 
, [J"-,TD] 

JvLH 
- - --------).. 

A 
T(H) 

II 
lir.1 J'ThH 
h7H 

1~c.~) 
J' ThH(C ,~ 

11 
/J-, 'l'C] 

.A 
where (C,~) and 1]

0 
are as in 1.0.2. The existence of jvl.H 

is guaranteed in view of Lerrma :.O.Jo 
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-i\ 
1. 0. 5 Remark ( 1 ) "Jh ( C) == ex_~ sC' s _, C for every CEOb ~ ~ 

(2) Since T(h(C)) !:: [J-,Tc], Pn(c)'A(D,~) = Gr-,rt;
0

] 

.I\. ·-r 
for every (Dpt; )EOb (h/Th ( e)), where t; = o( D C (~.).. In parti-

o ,s 

cular, for (6 ,~)E:Ob (h/Th (C)), where ~ corresponds to 'le via 

the Yoneda Embedding h, ~(C) '\c,~) = [J-,T(lc)]. 

1,0,6 Lemma l~Hl' andftlH} are extended to natural 

transformations in HEOb ~ • 
/\. 

Proof: Given 8: H ---7 K in C , for any ( C ,~ )EOb (h/H), 
./'. /\ /\. ~ 
T ( {I ) ·~ H • ~ == T ( e ) . ~ c , ~ ) . ex._ , s c .. s - , c == ( c ' e ~ ) ' o( - , s c . s - , c = 



/\ A. /\ 

For each (Dh)EOb (h/11 (H)), (D, T ( E>) • r; )EOb (h/1 (K)). 

Suppose t;= l;;'(c,r;)"!'.J'. 'l'hen we know TC&)·~= ~~c,e~)'~·, 

since 1 cg ) . t; = T c e ) . s-c c • ~ ) · t; • = ~ ~ c • -a~ ) • r; · • where t-s 1 c , "t ) , 
A /\ 

mc.ps. Therefore T (e) 'fAtt • 

--~ 

TT (K) are the colimi t morphisms. Since {).. (D ,?J )J are colimi t 

.I\ .I\ .I\ A/\.. 

morphisms, T ( 9-) ·,u,H = µ,K· TT ( (}). This completes the proof. 

~ A A 
1.0.7 Pronosition (T,~,f) is a triple onC. 

/\. /\ . 

Proof: ( 1 
) We show ~)t -~T (H) = 1T (H) for every HE 

Ob<L'. For ·every (D,~)cOb(h/T(E)), the following sequence qf 

equalities holds: 

d) 
s = ~ '~ ·[s-,~0J ·s-,C' where (i) and@ follow -,c (c,;) -,sc 

J6 

from 1 • 0. 1 and 1 
• 0. 4 respectively, and Q) from the na.tural i ty 

of o( • In view o"f Lemma 1 • 0, 3, it is enough to show 

o( _, sC · [s-, t:0] • s_, C = ~ ' , which follows from the def ini ti on 



[r-,rf
0
l, where f 

0 
corresponds to~H·~ as in 1.0.2, and 

where G) 
/\ 

follows from the definition of T and@ 

1.0.4. But in view of 1.0.2, fo is ipso facto lsc· 

from 

( ) ./\ /\ 1' "" 0 /\ . J )J.. H ·~T (H) = "tH· TPJt for every HE b C. Cons 1der 

the following diagram, where 

'T3 
(H) are colimi t maps, and ~ 

0 
and ~o are defined 

analoguously as in 1 .0.2: 

),(D,t;)•1S' ='S and ~(E,)}·~' = z;; 

[h<c), Q--,T~] ~ (_Jc,T~ 'V ~c,srTI, ~· ~~o' and 

[h(D), Q-,TE]] rv ~D,TE] rJ ~D,sE], t;' ~ t;
0

• 

/\.. 

MT(H) 
--~~~~~~~-=---~~~~~~ 

/'/\ 

TT(H) 

cg) X(n.~) / 
f!-,r~Oj / 

J' ThT (H) (D .t;) 

l@-, rt;d QJ 

J''IhH(E,f) 

CCE.f) ~ 
I'/\ 
TT(H) > 

/\. 
T(H) 

The diagrams @ and (JJ commute respectively by the 

definition off;., • Diagram 0) commutes by the definition 

of T, and commuta ti vi ty of @ is obvious. It is then 

enough to show the comrr:utativity of GJ, which means 

37 



38 

/\ 

in other words G'(E 
1 
f )' ~C, sE (t;0 ~o) = ,MH • ~. where 

o:(;, sE (t;
0

;
0

) is the corresponding natural transformation 

to t;' 0 <;0 via [!:i<c), [J-,TE]J /V !Jc,T~. MH ·~= _tH.~D,t;fZ:' 

= (:;"(E, j )' f.J- 'r£7o]' ;•" But c( C, sE (i;o 'So) = [J- 'r~J' 5' by 

the na turali ty of c<. and the Yoneda Lemma. 'l'his completes 

the proof of the proposition. 

1.1 A given relative adjointness situation has 

been shown to give rise to a triple. We now show that 

this triple is always cocontinuous, i.e. preserves all 

colimits. 

1. 1. 1 Lemma Let J: <[ --.:....) £ be a functor, and 

I :Jl_ --4 -l[ a diagram with li9 I = (L,).J, where ).. is the 
for 

the colimi t cone. IfJ\each CEOb<C, GJc,.-J preserves li19 I. t 

then (J/L,J/A) = lim J/I(i). 
i 

Proof: [J/~(i)} is certainly natural in iE-][lt 

Given a natural cone {~i :J/X(i) ----.:,.. ~kt define ~:J/L­

----7 ~ as follows: For each (c,;)EOb(J/L), since [Jc, 11~ y 
~ lins@"c,I(iLJ, there exists i~l and ;irJC----? I(i) 

such that ~ == ~i .. ; 1 • We need to show G' i (C, ; 1 ) is indep­

endent of the choice of ~ i. Suppose ~ == A j ~ j is another 

such factorization. In view of an analoguous reason to 

that in the proof of 1.0.3, we could without loss of gen­

erality assume that there exists lf:i ~ j in I such that 

I(~)";i ,= ; j• Since t~ 1 } is natural in iEOb][, {;'_ = ~- • 
l J 



J/I(~). ':'herefore ~i(c,~1 ) = Sj(C,I(if)~~i) = ~j(c,;j)._ 

Hence we could now define S(c,~) = ~i(C,~i). 
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For ±': ( C ,~) --? ( C' , ~; ) in J/L, suppose ~' = } f; j. 

Th en f : ( C , ~ j · J ( f) ) ----} ( G ' , ; j ) is a 1 so a morphism in J /I ( j ) • 

Define~(~) =Si(~). The independence of this definition 
t,; 

of the choice of j can be shown analoguously to the above. 

That this S defines a functor is obvious. The uniqueness 

easily follovrn from that [:Jc,-] preserves li~ I. 

1.1.2 Proposition In the same situation as in 1.0, 
.("\. 

T is cocontinuous. 
/\. . 

Proof: let I:J: ---7 <C be any diagram. Consider 

/\. . ) the following sequence of isomorphisms:_ T(lirg I == 

Q) 
li~ J'Thli I 

l~~ h/I(i) d.!.l]) 
l 

li~ lim J'ThI(") 
l. hlf (i) 1 

i~m Lanh(J'T)(I(i)) = 
l 

I' 
lim T (I (i)), Where (D follows from Lemma .,_. 1. 1 and @ is 
~ 

l 

not difficult to see. 

~ .• 2 Let J: <C --?- If\ be a full faithful dense functor, 

the 
/\. 

Eilenberg-iloore si tua ti on for if. Consider the :following 

pullback, where J' = Lanh(J): 



\P 

If\ 

'•' 
'I 

Tt A 

c 

1.2.1 Lemma In the situation of 1.2, 
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A 
if IF is 

induced by a J-relative adjoint situation as in ~.o and 

Proposition~ .0.7, then there exists a functor S:<(---} IP 

such that S is J-relative left adjoi~t to R and 

ptf:J '·J = w. s. 
/\ 

Proof: Since J'T(C) = T•h(C) fo:!:' every C€0bC, 

there exists a functor S:((: ~ tP such that ~ = P.S and 
~ 

F1Ch == W·S. Fo!' every CtObC, PEOblP, [s(c),~ /V) fSrs(c),W(PIJ 

= (F~h(C) ,W(?}l ~ fli(c) ,l·;;(pIJ = [h(C) ,J'!'(?fl "" 

[!(c),R(PD. 

1. 2. 2 Definition Let J: C -? /A be a full faithful 
A. A<'\A. /\ 

dense functor, andT= (T,~t~) a triple on C. The J-relative 

Eilenberg-r::oore situation for~ is a J-tuple (J<r,s~ ,R;f:) . 
~ ~ 

consisting of the followine data: JT is a category, S~:C----
A ~ ~ 

~ J:r and R : J-ir --7 JA are functors; and satisfying the 

following: 
/\ 

'l1here exists a functor W: J'lf'---4-
.1\ . ~ 

F'.';f"h 'T s--- d = ~ == ,,., • , an 

w I'\ 

--~> i1F 

J' 

/A 

l u~ 
~ 

/\ 
'=fr 
~ such that 



41 

is a pullback square. 
/\ 

The J-relative Kleisli Situation for==tF is a 

J-tuple (J~,3if ,::>'1~J, where J=lf is a category, 5%=<C ") ~ 

and ~: J4F ) /~ are functors, satisfying the following: 
J'\ 

There exists a functor Q:~ > ~T such that 
A. A. 

Q·S~ is the full image factorization of F~h, and J'P~= u1:Q. 

1.2.2. 1 Remark (1) Fron the pullback property of 

the" square 1,2.~1 there exists a unique functor M:J!Jf 

4 Jlf" such that R"':M = P~ and Q = W· P. 
A 

A 

(2) S~·(resp.~,) is a J-relative left adjoint to 

R -,r (resp. Ry) , 
A 

1. 2, 3 Notation When iF is induced by a J-rela ti ve 

adjoint situation as in Proposition 1~0~7f we write 

(JT,ST,RT) (resp. (JT,ST,RT)) for J-relative Eilenberg­
A 

Moore Si tua ti on (resp. Kleisli Si tua ti on) for 1T. 

1.2.4 Remark (1) In the situation of 1.2.3,_ JT is· 

defined as follows: the object~ are the same as those of 

C; JT-morphisms from C into D for C, ... DEObJT are morphisms 
A A /"-. 

<p: TC ~ TD in //\ such that J.lovh (D )" 'I'J '<(' = J 'tf. /Jl-h ( C). Then 

ST is given as C ~ C and f .-vv; Tf; and RT is C ~ TC 

and ~ ~ \f' • 

(2) T = RTST = RRST hold~ in the riotation of (1). 

1. J Proposition Let If= (T •1, µ-,) be a triple on 

I~. Put T = Lanh(h~T). Then the Id -relative ~ilenberg-
A 

Moore Situation (resp. Kleisli Situation) for 1f is 
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precisely the EilenbGrg-Koore (resp~ Kleisli) Situation 

for T. 
/'-

Proof: First 'Ne observe that T·h(A) = Lanh(h·T)( 

"" (h(A)) =h·T(A) for every AEOb/A. By Pemark 1.0.5, 1Jh(A) = 

h(~A). Since (TA,1?A)EOb(Id~/TA) is the final object, 

again by Remark 1.0.5, M_h(A) =fth(A)"A(TA,1TA) = [-,pAj 

/\ 
hlods. Hence JJ.h (A) = h (~A)• A 

1f ~9f 
Define a functor T/f ://\ ~ l/\ by (A, a) ~'> (h (A), 

h(a)) and <f l'V\.r> h('f). This functor is well defined in 

view of the above observations~ Consider now the following 

diagram: 

v· D... 

/A1f 
,, I.\ 1r-

IA. 

u~l Ju~ 

Jf\ /\. 

h 1/\ 

This diagram commutes by the definition of w .. For every 
/\ 

(X,x~~x ~ X) in J'A;r with X::::h(A), by the Yoneda Embedding 

there exists a unique a:TA ~ A such that h(a) = x •. From 

the fact that x is a structure map, it follows that a is 

also a structure map fortr. This proves the square is 
/\. A 

indeed pullback. Finally 'S ·FT == F~h follows from .tth (A) = 

1.4 Definition let J: <( ~ IA be a full faithful 



func·tor. J-absolute colimits are those colirnits in ~ 

which are preserved by J' = Lanh(J). 

1.4.1 Remark In vlew of 0:).6 we could easily 

conclude that colimits are J-absolute, if1 and only if 

they are preserved by all those functors which a~e the 

left Kan extensions of their restrictions on ((. 

1. 5 Lemma let 

"*' __ V_/ --Y/ 

ul ~/ 
I~ H lB 

be a pullback diagram. 

(1) If H has one of the properties: faithful, 

full, injective on objects, surjective on objects, then 

W has the same property. 

(2) If isomorphisms are lifted (uniquely) or, 

4J 

resp. if they are created by v, then the same is true for 

for u. 
{J) Let D::[-4'#._ be a diagram for which UD 

has a limit which. is preserved by H •. If V creates 

limits of WD, then U creates limits of D. Corresponding 

statements hold for col1mits. 

1, 5 Proposition Let 1F = {T ,~ 1Jk) be a triple 

over /A, and J: <C --7 fA a full faithful dense functor. 

Then the following are equivalent: 

(1) (/A.lf,FT.J,U=tF) is a J-relative Eilenberg-r.Ioore 
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Situation. 

(2) T preserves all J-absolute colimits. 

Proof: Consider the following diagram: 

IA.~ 

FY l;T 
a: > II\ J t.T' 

(1) ·.=::}_ (2) is included in Lemma 1 .5. 

(2) .:::;) (1) First observe that for every At Ob/A , 

-:.?J• (A) = Lanh(J•tiifpll'J)(J' (A))= lJm J'UTFTJJA rt J'U~ 
J A 

FT(~ J J A) ::: J' uir F 9f" (A ) == GI-, T (A)] ' where * follows from 

(2). For e~ch (A,a)fOb/~, define W(A,a) = (J• (A), @-,al) 

and W (~) = @- plf] • Then VI is a well defined functor, For 

l)..{f= r I every ( X, x)EOb ~ , with X = LJ- ,A_i , since J' is full 

faithful, x defines a unique a:TA~ A. That this 

a is a structure map for T follows from x' s being a 
/\. 

structure map for if . This together with the full faith-

fulness of W proves the pullback of the right end square 

in the above diagram. 

1.7 Theorem Given a J-relative adjoint situation 

__ r __ /A where for every CEOb <L t XEOb ~ , 

) fc,rx] 

is the adjunction transformation, there exists a unique 

functor N:JT ----7 '*' (resp. K:* ---> JT) such that 



TT1 

N·S. = s (resp. RJ.· K=r), 'l 

rforeover rN=R~. and l':I =Kn. (see1.2.2.1) '..L 

Proof: Define x to be the unique morphism making 

the following diagram commute for every X~Ob)\ : 

.A 
TJ'rX 

II 
lim J'Th(J' X) h7J'rx r 

G(D,~) r 
J'Th(J'rX) (D,;) 

II 
hr-, TD] 

x 
- - - - -7 

-ff-, r~J 

J'rX 

II 
@- t rXJ 

.-1 

where ~:h (D) --> J' rX and ~o = o(D, X ( 'Sn(1D)). 'Ihis is 

possible since £r:J--, r;'0JJ is natural in (D,S )EOb (h/J' rX), 

Indeed for any lp: (D,~) ~ (Dr,~,) in h/J,rX, since 

o<D,X -~1;>.x] = Q-ie.x]·o<D',X' [J-,r;~J·Q--.w] = Q--, 
rC;~ slf)] = 

~D( 1 D·)·Jf) 

r __ , r:; _, 
LJ-,r(o<D' ,xC~iJ. (lD, ))·sy>) = LJ-,r(C('D, ,xC 

= [J-. r c;(;Jfn ( ln))J = Q--. rs_J. 
"" We claim that (J'rX,x)EOb ~T • 

..;'\ 

Firstly, we show x·iJ'rX = 1J'rX' Indeed for every (D,s) 
/\. /\. 

€0b(h/J'rX), by the definition of'>],, (see 1.0,1 ), x·"l/_J'rX' 

-; = x.()'(D ~)·ex:: n· s D = G- ,r; ]~ix n· s == ex . 
tJ -,S -, Lu 0 -,S -,D -,X 

[s-,SJ • s-,D' But <Xn,x· [~n.~oJ· sD,D( 1D) = °'n,xC~o) = 



/\ 

By the Yoneda Iemma, x ·1J, rX .. ~ = ~ • Now since 

Secondly, we show 
/\. /\ 

X•/J..,J' X = x·T(x). Indeed for every (D,t;)EOb(h/J'rX), by . r ~ 

the definition ofp.. (see 1.0.4), x·fJ'rx·Acn.~) = X·~cc.s> 

[J-,r~0] = [!-,r(~0~0 >], where~' is such that ~C,'S) ·i;' 
-1 _, 

= t; and t;o = o(D,sc<l?r)(1D)), and ~o =<Xn,x<~D(JD)). On the 
/\ 

other hand, X•T(x)·.\n,t;;) = x.l>(D,x·c;)' Therefore by the _, 
definition of x, it is enoueh to show ~D,X((x·;)D(1J)) = 

~O~o· But x·t; = x.(;'°(C,'$ )'z;' = [J-,r~0J.~·. Since 5
0

:sC 

~ x and c<D x -~D,'$ J = [JD,r$ ]· O(D ,..., o(D cCs z; ) = , ~ L;;: O 0 
1 

Sv , O O 

~0·i;iJ0n). Hence (x<;)D(1D) = @n,~J·~r/1D) = r~>'z;ii(JD) 
A. /\ 

=c<n,x ("%'0 t;0 ). Therefore x·fAJ•rx·Acn,-;) = x·T(x)._A(D,t7) 
/\ /'. 

and x·~~. v = x·T(x) follows. 
• J r""" 

For any morphism lf: X--} Y in¥{ , ··we claim that 

J'r~: (J'rX,x) -7 (J'rY,y) is a homomorphism, where y 

is defined analoguously .. For every (D .. ~)cOb(h/J'rX), 

J'rlf-x-{;'(D,;) = J'r'f· Q"-,rt
0
J = [J-,r(q>·f

0
>} • On th~ 

/\. 

other hand, Y·'.:'J'r'f·~D.1$) = Y·6(D,J'r1f.!)' By tJie def-

inition of y, it is enough to show (J'rf-~)D(1D) = 

o<D, y ( te·'S0 ). Since o<D, y (sD,lf] = [JD, rlf] • Oi.D, X' we have 

o( D, Y ( <P ~o ) = rif · ·~D (1 D ). And ( J ' r<f' · 5 ) D (1 D ) = [JD, rV'] • 

~D(1D) = rf·~(:D) = cxD,YC~·"So)· It follows then from 



/\.,..... T t • • + I ,/'. the co 1 i mi t property of J.. u r ,,( , tna l- - J rtp · x = y · T J ' r f , 
/\ 

which proves that J' rtp is a T -homomorphism. 

Define H(X) = (J'rX,x) and H(~) = J'r~ H is a 
A. 
T 

well defined functor. Moreover J'r = U ·H. Since the 

square . in.1.2.2 is a pullback, there exists a unique 
rri ~ 

functor K: 'If.. ~ JJ. such that r = R.L· K and W·K = H. 

Define N:Jrri----:) t as follows: the object map 
.L 

is assie;ning sC to CEObJT and for any ~:C ~ D in Jm , 

i.e. lf: TC ---4 TD satisfying a certain condition, define 
-l 

N(lf) = o<c,sn(lf·1c) where'lc = o<C,sC(1sC). We show that 

this rule is extended to a functor. For any ~:C ~ D, 
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_, -1 

and f: D ~ E in J •r' N (l\J') N (Cf) = v\ D, s_E ('tp-~ D) • c{ C, sD (lf-11 C ) 

and n ('!Vf ) = ~ 'c, sE ('l}'·tp ·'I]_ c). Since ~ ~, sE ·[Jc, 'If] = [sc, 
-1 :-1 .... , 
o( D, s C ( 41'· ~ D ) .J ' O(C , s D' and r (o( D , s E ( qy. ~ D ) ) = "(.1 ' we have 

-1 -J -1 

o( D, sE ('f ·rrin) · D< c, sD ( \f·1Lc) = ~ c p sD ('!¥·Cf ·"1_ c) • 

Finally we show N·ST = s. Indeed N·Sm(C) = sC, 
.L. 

and for any JT-morphism 
-1 

= N (rs~) = C>( C, sD (rs lf · 

The last statement follows from the commutativity 

conditions and full faithfulness of Jt. 

1.7.~ Definition ?hefunctors N and Kin ~.7 are 

called comnarison functors. 



Section 2: Characterization of Felative Eilenberg-Lloore 

Situations. 

2. 1 Pronosition Given a J-relative adjointness 

situation <C __ s_.....,> r IA with relative 

ad junction c( , in view of the· Definition 1. 2. 2 and the 

Theorem 1 .7, we have the following diagram: 

/\ 
/\9F 

K c 

J IA J' ~ 

Then the following hold: 
rn 

( 1) r = LanN (RT), P. .i. = LanK ( r) = LanKN (E1J, and 

U ::::: LanQ ( J' RT) • 

(2) LanN(J'?T) = J' LanN(RT) and LanKN(J'DT) ::: 

J' LanKN(PT). 

( J ) VI = LanKN ( Q) , H = LanN ( Q) and ':f = LanK ( H) • 

Proof: (1) (a) Tl/e show that r == LanN(PT). 

For any XEOb£, any (C,~:sC -7 X)EOb{N/X), {r~:'l1C~ 

rx] is a natural cone in (C,~) Ob(N/X). We show {r~J 

are colimi t maps. Let (C(c,;) :TC~ A} be any natural 

cone. Since J is dense, and since for any (D,d)EOb(J/rX), 
-f _, 

(D,o<D,X(d))eOb(N/X), and since rc(D,X(d)-'LD = d and 



{.s-(D,;;(~' X(d)) -')j n} is natural in (D,d )E"Ob (J/rX), there . 

_, 
exists a unique morphism f:rX ~ A such that f·r«D,X(d)/0~ 

~( -t 
1.'fe need to show that for every (C ,~) in 

D,O{D,X(d))• 

N/X > f · r-g = C(c,;)· Since J is dense; it is enou~h to 

show that for any h:JD ~ T,.., 
v) f' ·r~ · h = ~( c, 'S) .. h. Then 

_, _, 
for any h:JD --7i TC, (D,r·c<D,sC(h))EOb(N/X) and rl\'D,sC(h): 

_, \'\ 
(D,~·qD,sC(hij --7 (C,~) is an (N/X)-morphism. By the 

na turali ty of 
1 I -I 
l~(C,1;)1• ~c.~)'roeD,sC(h) = G'(D,~·~~.sc(h)). 

Now 
Q) 

f.~·h = 

~ _, ~ _, 
( D ' ~. ~ D , s C ( h ) ) ·~ D = ( C , ~) re< D , s C ( h ) ''l(_ D = G' ( C , s) .. h ' 

where (i) follows from o<D, x = triD' rx} r sD, x: CV :follows 

from the definition of f; and Q) from the na turali ty of 

0( • We show the uniqueness of such f. Suppose g: rX--? A 

with g.r5 = CCc.~)· Since J is dense, it is enough to 

see that g·d = f•d for any d:JD-7- rX. The proof ·then 
-) 

follows from g·d = g·r«D,X(d)·'>!n = l>(D,;;r~,X(ct)f11D = f·d. 

S . T T T th ince P S ~ , e 

comparison functor JT --~? TT is precisely~~. hence 

by (a), the claim follows. 

rri 
(c) P~ = LanKN(:-·7.) = LanK(LanN(R1,)) == LanK(r). 



/\ 

A (d) Since J'~T = ulf'. Q, and Q is full faithful; and 
T ::W U is cocontinuous U :::: LanQ(J'nj_1 ), 

(2) For any XEOb'X , and for every (C,~)EOb(N/X), 

f fI-, r~]: ~-,TC] ~ LJ-, rXJ} is natural in (C ,~ )EOb (N/X). 

·:1e show that [CJ- ,if!} are colimit maps in~, Let lb(C .~): 
[J-,TCJ ~ L be a natural cone in (C,~)E-Ob(N/X). Define 

§: Q--, rXJ ~ 1 as follows: for every DE·Ob<C., for every 

hE[JD,rX] define §'.b(h) = ~(n,;;(~,x(h)),D('>)D), Then i&:=nJ is a 

natural transformation. Indeed for any tf :E ----::> D in <C, we 
_, -· 

first claim that rs~: (E,c(E,X(h·Jf)) ~ (D,o<D,X(h)) is an 
~1 _, 

(N/X)-morphism. In other words, o<D,X(h)~O("E,sD(rs<p·~) == 

-I r-J .-J 
o(~ x<h .. JW)·o(D x(h)·o<-n D(rstp·~~,) 

J.J ' 1 ' .c. ' s .._, 

d)-r ®-1 
= ~D,X(h)· sr:::: o(E,X(h•JCf), where CD follows from Qv,rs·~f,. 
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o<D D = ~ D r;, f, sQJ and ® from CJr, x] .o(D x = °'E x · 'stp, Xj. , s ..i..:.. , s L.:: , . .. f L~ . 

Now by the naturality of~(C,"'S)1 in ec;~)60beN/X), 

~(E ,;;(~, X (h. JI{')) = ~ (D, ;.~, X eh)) • [j_, T]. Therefore for 

every lf:E ~D in<C and for every h:JD ~ rX, ~E .[r~,rXJ 

eh) = ~E (h ,J fl = ~(E ,;~. x (h. J'f)) ,E ((E) = E'en,(;(~. x (h)) ,E 

[JE, Tc€[('11E) = lien.~~. x eh)) ,Ee Tlf%) = bcn '~~. x eh)). E <7L:::i. J'f') 

= :beD.-a~.x(h)) [JCf,TD] <''IJnl ~ Leif) -~D,°Z<;,xeh)),De1D> = 



L(lf) , ~ D (h), where (->~·) follows from the naturali ty o:' · 

fb'(D,;;\'D,X(h)),D} in D. Therfore ~}'°n} is a natural trans­

forrration. We next show that for every (C,f )EOb(N/X), 

~.[J-,11]== b(c,3)• let k:JD--> TC be an /A-morphism • 

....... , -I 
Since ro(D,sC(k): (D,o(D,x<rf· k))----? (C,~) is an (N/X)-

5!_ 

morphism and since ~( c, 'S) ,D [J.u' r.;(~, sC (k IJ = b(D, ;;(~' X ( rf· k) ~D , 

we have in<ri· k) = ~(D,-;;(~,x(Ji'· k)),n<"'/n) = £-(c,~),D(r;;(~,sc(k) 
'>tn)· = S'(C,~)~D(k). For the uniqueness of such 't• let -r be 

another such that ~(C,~) =Z· [J-,r~J. For every DEOb<C, 
_, 

and for every h:JD ~ rX, 'LD(h) = <:D(ro(D,X(h)·"iln) =Z D · 

[JD, r:<;, x (h D 0'/n) = F (D '~D, X (h)) C'l'L:::i> = bu (h). Consequent-

ly we have shovm that lanN(J'RT) = J'r. 

LanKN(J'RT) = J'LanKN(P.T) follows from LanN(J'RT) --

J LanN (PT) for precisely the same reason as ~T = LanKN (RT) 

~ 
= U · Vi, 

/\ 

and U <F creates all colirni ts, 
/\ 

where (j) follows from the cocontinui ty of U-:tr , ® from ( 2) 

and 6) from ( 1 ), v:e conclude that lanKN(Q) = \'l. 
(b) could be proved analoguously to (a), since 

~ ~ 
U · Lan1\l ( Q) = Lan.,1 (~l · Q) == lanN ( J'?"') = J • LanN (RT) ::: J' r == 

i' h i l 



vie cone lude H == Lanr,T ( Q). 
h 

(c) Since VI = lanKM ( Q) .. 
the claim follows. 

52 

2.2 Corollary In the same situ2tion as in Proposi­

tion 2.1, if r reflects J-absolute colimits, then N is 

dense. 

Proof; For any XE Ob Y/. , we have a natural cone t '1S: 

--">> r.x} is a colimi t 

cone by Proposition 2.~ (1), and by (2) the above colimit 

is preserved by J'. Since r reflects all such colimits, 

l S : NN X ( C , ~ ) ----7 X } is a coli mi t cone • 

- /\ 
2. J Theorem Let <C be a small category• and _ 9f::: 

(T ,~,fl) a triple over ~ • A ssurr.e that ~ is cocontinuous ~ /\ 
A A T 

Then {C 9f ..!:::!__ ID , where JD is the full image of' <C in <C 

s 
Proof: Let C ?> lD be the full 

A A 
image factorization of Fc;r· h ;> It is well known that i.f '11 is 

A A 
cocontinuous, u=tF creates all colimi ts and therefore <?.:-.,.,.. is 

cocomplete. (see 0:2,12) By the Corollary 2.2, N is dense. 

For each DcOblD, there exists a unique CEOb( such that 
,I\ 

s ( C ) = D. Hence [N ( D ) , -] = Ufa ( C ) , -J == [ F1r h ( C ) , -J 
" A 

[h (C), U;r-J == [h (C) ,- UT(- Dis co continuous. Consider the 

following diagram, where l: = Lank (N) and ~ = LanN(k), and 

k is the Yoneda Embedding. In view of Proposition !.6, 

Proposition 2.~ is applicable to this situation. 
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ID 

~/\ 
iD 1 

s 

h 
/' A A.. 

In particular, S·k = UiF·N and S = 
~ ~ . © ~ 

uif"" ( x) = u (l~ HN, ) = iy~ u l\Nx 
N/X "{ ~ 

S-'lt(X), where (j) and @ follow from the colimit creation 
~ /\. A A_ properties of u· and S respectively. Therefore u!l:Jr = S-]!.. 

.I\ ..I\ 

u-:rr. ~. For every Xf Ob CC ?F-' 

. I /\ ©A 
= lim S·kN, = S·lim kN, 

N/x x m x 

The Characterization ·rheorem~ of presheaf. categories [}O] now 

·show f snd ~ are equivalences, and that they are isomer-
,,.,. 

phisms of categories follows from the fact that u:ff ere ates 

all colimits. 

2.4 Corollary Given a J-relative adjointness situ~ 
9F 

a ti on s -i r mod J as in the proposition 2. l, ~ is isomor-

phic to JT and Q can be identified with the Yoneda Embedding. 

2.5 Theorem. Iet ([.': s > £ r 
~ /A be a J-rela-

tive adjointness situation as in Proposition2.1. Then the 

followings are equivalent: 

( 
1 

) N is dense. 

(2) K is full faithful. 

(J) r reflects J-absolute colimits. 
.I'\ 

A-:W­Proof: In view of Corollary 2.4, we identify <l: and 



/\ 
JT in Proposition 2.1. 

( 1 ) ~ (2) By the ?roposition 2.1., N is dense, if, 

and only if H::: LanN(Q) is full faithful, if, and only if 

K is full faithful, since W is always full faithful. 

(2) ===> (J) Let £~i :Xi ---7- x} be any natural cone 

in "K such that ~r3i: rXi -----!)- ri} is a colimi t cone in /A > 

and {J'r5i :J'rXi ~ J'rx} is also a.l\colimit cone. Since 

A r {_ u9f= creates all colimits, and since U "H = J'r, H~-:HX.-? 
l l. 

HX1 is a colimit cone. Since H is full faithful, H reflects 

colimi ts. Hence {_xi--~ X J is a colimi t cone in X , 

(J) ~ ( 1) is proved in the Corollary 2. 2. 

2.6 Corollarv In the same situation as the Theorem 

2.5, the followings are equivalent: 

( 1 ) <C 8 
) X ~ /A is a J-relative Kleisli 

situation. 

(2) s is bijective on objects and r reflects all 

J-absolute colimits. 

2.7 Theorem Let <C s > r 
> IA he a. J-rel-

t ~Vi ative adjointness situation. Let <C~~~> 11 ~~ be 

the full image factorization of s. Consider 

U' A ------..:l,.11 

TI 
\,) 

l~ 
IA----~~ 



A 
where N' == LanN (k), ani k: YI ____:;,. '# the Yoneda Embedding, 

and 't? = [t 0 ,En~. The followint;s are equivalent: 

( 1 ) The above square is a pullback square. 

(2) r creates all J-absolute colimits of diagrams 

in 'If • 

Proof; ( 1 
) ==> ( 2) is obvious in view of Lemma ~-. 5, 

(2) ====? (l) Fi~st observe that rN reflects all 
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J-absolute colimits, since N is full faithful. By the Corell-

.ary 2. 6, ([ t > YI rN >IA is a J-relati ve 

Kleisli situation. Since r creates all J-absolute colimits 

of diagrams in Yj, an investigation of the proof of the 

Theorem 2.5 produces that N is dense. 

/\. -
Now let ! : 7l ~ 7J , and 1:J!.: 7L ) /A be :functors 

A- 7/ with ti== J 'i. V:e show that for every ZEOb iL , the colirni t 

of the diagram k/f.(Z) ----7> 'Y/ ~ 1)... ~ IA is ~ (Z). 

Indeed for every s: k ( Y) ~ f (Z), observe that [t · k (Y), 

-'t .iCz )] == @• rN (Y), J 'i(Z fl and for every 'S in [k (Y) ;t_(z D _, " 
put f = J~N(Y),-i(z)(tk(Y),<t(Z)(~)), which is an element 

of [rN (Y), i<z )] . Then ~: rN (Y) --711- ~ (Z) is a natural 

cone in (Y, ~)(;Ob (k/f.(Z)). For given any tp: Y ~ Y 1 in 'II 

with ~·· k (lf) = ~ , we ·need to see i"' .rNf = i. This 

follows from a diagram chgsing of the diagram in the next . 

page. 

Since J' ({) = vt( ~), and since~ creates all colimi ts 

and J' is full faithful, it follows that l~1 is a colimit 
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cone in /A , and is p!'eserved by. J'. -By (2), there exists 

a unique P ( Z ) €Ob X , with ~( y, ~) : N ( Y) ---7 ? ( Z ) such that 

~~(Y ,''S)'} is a colimit; and r {;'(Y ,'SJ = ~ and rP(Z) = f (Z), 

Furthermore N'P(Z) = tCz) follows from the colimit creation 
A 

property of t. 

2. 8 -Corollary Let <C --8--> )\ r > JA be a J-

relative adjointness situation. (~,s,r) is a J-relative 

Eilenberg-Moore Situation if, and only if r creates all 

J-absolute colimits. 
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Cha D te.!:_l 

LIMIT P~Es~~VING FUNCTORS 

The co~cept of limit preservance of a functor is 

only meantnr;ful when the dor.:ain category has limits. In 

this chapter we discuss a concept o: limit preservance, 

which does not presuppose the existence of limits in the 

domain ca-:egory, nor i~ the codomain category, and which 

therefore allows us to study the limit preserving functors 

even when the existence of limits is not known. 

Section 1: li~it Preserving Functors. 

In this section we define a concept of limit 

preservance of a functor and study the basic properties. 

What ·forms the basis for limit preserving functors 

are the representable functors. Every set-valued functor 

admit a colimit representation of representable functors. 

The concept of limit preservance of functors can then be 

formulated as a co~mutativity of the limit under consider-

ation and a certg_in colimit in the category of sets. 

1. 1 Definition let ~: ((' 0~ Ens be an essentially 

small functor, where C is a category (not necessarily small). 

Let ~ be a small category, and H: ~· ~ <:C a functor. T·he 

functor T is said to be H-continuous, if the canonical map 
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is an isornornhlsm, where h is the Yoneda ~mbedding into 

the catee;ory of all ess8n!:.ially sr::all functors (see 0.1.h), 

and h/T is the co~ma category associated with T. h/T may not 

be small but by the essential smallness condition of T, it 

admits a cofinal functor from a small category, therefore 

the colimit indexed by h/T exists in Ens. 

T is said to be ~-continuous, for a small category 

;f , if 'T is H-continuous for every H: '$:. ~ <L • 

I.et /Ji. be a class of small categories. T is said 

to be A. -continuous, if T is ~ -continuous for every X 

in D. 
It is often convenient to say for T to be continuous 

_w_i_t_h~r_e_s __ p..__e_c_t~t_o~H_r ___ (r~e_s_n_.~,~~~-_._.•_o~r~l:::.~--) meaning H-(resp., 

~- - , or b - ) continuity of T. 

T is said to be continuous if T is continuous with 

respect to all small categories. 

Let T: <L -----? IA be a functor. We :assume for conven­

ience the smallness of <C • T is said to be H~cocontinuous 

for a small diagram H: }(----;:,. <C , if for every AEOb/A, 

Cr- , A] : <C 0 ---=> .Sns 

is H-continuo~~. The functor T is said to be H-continuous, 

if the dual functor 

Ce 

is H-cocontinuous. 

---> /A 

Similarly we define "i - and 6. - continuity. 
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1he definition indeei is reduced to the known 

concept of limit preservance in the case when limits exist. 

1. 2 Pronosi ti on Let -.:;:- : <[" ~~S be a an essentially 

small functor. let H: ~ ~ C be a small diagram in <C • 

Suppose (L, A ) be a colimi t of H in CC" • ·:1hen 1' is H-contin-

uous, if, and only if (71,~~) is a limit of TH. 

Proof: The proo: is an easy consequence of the 

following commutative diagram: 

i;m J-~m [~!(:), hT c c,s >] 

SI 
lirn [L, hrr ( C, ~)] 

fV-; si 
lim CTi ( L), hhT ( C, S )] 
h7t )f 

[_h(L),T] 

Sl 
T(L) 

where Prx is the X-th projectio~. 

1. J Corollar;y Let T: <C ~/A be a functor, and 

([:"' a small category. Let H: ~ ~ <[ be a small diagram with 

with a colimi t (L, A ) in ([ . Then T is H-cocontinuous, if, 

and only if (Tl,T~) is a colimit of TH. 

This corollary is due to the proposition 1.2 and 

the fact that a cone jJ., is a colimit cone in /A , if, and 

only if for every AEOb//\ , [µ,.r..J is a limit co~e in ~ns. 

Before we prove so~e basic ~roperties of our new 



continuous functors, we need a technical lemma: 

1. 4 lemma Let T: cC ~/A and S: /A ~fB be two 

functors and let ([ be a small category. For every EtOblB, 

we have the canonical isomorphism 

h/[ST-, B] lift h/[T- ,AJ 
( , ) 

where the colimit runs over (A,a)£0b(k/[S-,B]), and where 

h and k are the Yoneda Embeddings. 

Proof: Consider for every (A,a)eOb(k/[S-,B]), 

h/[~- ,A] h/[S'I-, B] 

( c , ~ : TC --7 A ) (C,STC ~SA ~ B) 

This assignment defines a functor ~(A,a)and the family 

[E;;(A,a)} is natural in (A,a)EOb(k/[s.:.,B]). Let[~(A,a): 
h/[T- ,A] ~ JP] be a natural family. Ti'ie define b : 

h/[ST-, B] ~ iP as follows: For (C, f : STC --:-.). B)EOb (h/ 

[ST-, B]), since (TC, f ) Ob (k/[S-, B]), we define S"(C, f )= 

~(TC, f ) (C, Id TC)" This takes care of the object part. 

For morphisms, let g: (C, f ) --:), (C', f ') be a morphism 

in h/[ST- ,BJ. Then since rrg: (TC, f ) ~ (TC', y ') is a 

morphism in k/[S-, B], we have S (TC, , f , ) .. h/[T-, Tg] = 

~(TC, f )• Hence b (TC, f )(C,Idc)= ~(TC', f, )(C,Te). 

'11h ere fore we define S ( g ) = S-( TC , , P , ) ( g ) where g : ( C , 'l1 g ) 

~ (C', IdT:,) in h/ T- ,TC' • It is obvious that the 

above defines a functor 1. rr.oreover "f. ~(A, a)= ~(A, a)• 

Indeed for (C, ~ )EOb(h/['11-,A]). r.s-(A,a)(C, s)==S' (C,a·S·~) 

== b(TC,a,s~ ) (C,Id,rc)= ~ (A,a) (C, ~ ), where the last 
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equality follows from the naturality of r~(A,a)} with. 

respect to a morphism ~: ( T:, a· S "S ) -~ (A, a) in h/[S-, B]. 

Mow let ~ be another functor such that ~. ~(A,a)-= b(A,a)• 

?or any (.:, ) )E Ob (h/[S~-, B]), (TC, f )E:Ob (h/[S-, BJ). Hence 

s- (-C,f )=°f. ~ ('rC,f )(C,IdTc)= b(TC, ~ )(C,IdTC)= E°(C,f ), 

where the middle equality follows from the assumption. 

This completes the proof. 

1.5 Pro~osition let~ be a small category. Let 1, 

I'' : C ~ If\ , S: If\ --:> lB be functors. 

(1) If T and T' are equivalent and Tis H-continuous 

for a diagram H:ID ~ ti:, then so is T'. 

( 2) If T and S are '£-cocontinuous for a small 

category~ , then ST is also X-cocontinuous. 

(J) If ST is H-cocontinuous for a small diagram. 

H: ID--? ([ and S is full faithful, T is H-cocontinuous. 

Proof: (1) is obvious. 

( 2) We first observe that h J ~ (;" -hr; J [ST-, B (A, a)- LT- ,A ' 

where h[ST-, B] and h [T- ,A] are the canonical functors .. The 

following sequence of isomorphisms proves the clair.1: For 

any sma 11 diagram H: Y/. --4 <( , 

li$ .lim 
h/ ( S 1- , BJ '(X c: ~ 

[}I ( X ) , h [S 'I'- , B Jl lim. 
. (A ,a) h7'[s-, BJ 

® ,..-...__,. ____,., 1 i m )_ ~ e, [H ( X ) , h [1:- , h QC'.:'.- , Bi1 (A , a ) J J 
h/[r-, h cL, B] (A, a D. x~"' ~ u 

1 i ~ t ~. m 1 i r9 rH ( X ) , h f"T _ h . (A a )J l ~ 1 i W J-i m f;.H ( X ) , 
(A , a ) .i': L L j ' [s- , B] ' ~ ( A , a ) x L~ 
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® 
l i m 1 i ~ f i-: (< ) , h "s B·' (A , a ) ] ~ 
~(' ) L_:-, ~ ;, A ,a 

lim Hm), rH(X),h0s·T1 B-1, where the isomorphisms CD x h/[ST-, B] LJ L· ... - • J-I 

and@ follow from Lemma i .4; @ from the '1.-cocontinui ty 

and (]) from '*' -cocontinui ty of s. 

(J) It is enough to see for every AEOb~, [?-,A] 

is H-continuo'J.s. Since S is full faithful, ['I- ,A] ~ [ST-, 

SA] is H-continuous by assumption. 

1. 6 Corollary let <C be a small category and 

T1: C ~ If\ a functor. let J: IB ~ IA be a codense functor. 

For any small diagram H: fD ~ <C , 'T1 is H-cocontinuous, i1""'} 

and only if for any BEObiB, [T-,JB] is H-continuous. 

Proof: Since J is codensep the associated functor 

J' :ff\ -? Qt:>, Ens] e-p , A ~ [4, J-] is full faithful. The claim 

then follows from the proposition 1.5, and the pointwise 

construction of limits in a functor category. 

1. 7 Proposition Let <C be a small category, For 

any CEObC, [- ,c] :Ct>---)' Ens is continuous. 

This is obvious since the category h/[-,C] has 

a terminal object. 

1.R Corollary: Svery right adjoint functor is 

continuous, or, equivalently, every left adjoint functor 

is coco~tinuous. 

We have a sli~htly more general clai~: 

1. 9 Pronosi tion: Let <C be a small category and 

J:C-> It\, t:C ---7 Y/ and r:YJ __,./A functors where t 



is J-relative left adjoint to r. i.et H: ID ~ <.C be a small 

diagram such that J is H-cocon~inuous. Then t is also H-

cocontinuous. (Compare with 0.3.6) 

?roof: For any YEOb~, we need to show the canonical 

map 

lim i;y{H (D), ty] ~ t L: 

is an iso:r.orphism. ?rom the relative ad.iointnesst we conclude 

t/Y ~ J/rY and ty ~ J rY' and the isomorphism follov1s from 

the assumption J being H-cocontinuous. 



Section 2: limit and Colimit Comrnu~ation. 

In this section we generalize the concept of 

cofilteredness of a category, obtainine a concept which 

is slightly more general than the corresponding general­

ization in [2], but still retaining the property of limit-

colimit commutativity. 

2 .1 Definition Let X and lD be small categories. 

'*',is said to be \D -cofil tered, i±' for any H •ID --7 ~ , 

the canonical map 

lim (im[H(D) ,x] ---4 
7 D 

is an isomorphism. 

Let ~ be a class of small categories, 'f< is said 

to be ~ -cofil tered, if '/. is ID -cofil tered for every 

category ID in 6 . 

2.2 qemark (1) Observe in 2.1 that Jim lim [H(D) ,?J 
D --y-> . 

is always a singleton set. 'Iherefore in a JD -cofil tered ca.t-e~ory 

)f< the category of all cones from H is connected. 

In particular there exists a cone from H to an 

object X of X, • In other words, the existence of a 

commutative completion of the diagram of H in ~ • 

( 2) If ~ is ID -cofil tered and G: ~ --? Y/ a 

cofinal functor, then 'fl is also tD -cofil tered. 

2. 3 ~xamule ( l) Let ~ be the class of all o< -small 

categories. Then ~ -cofil tered categories are precisely 

~ -cofiltered categories. (See [2]) 



(2) The (Cat)-cofiltered categories are precisely 

the coabsolut~ categories. (See 4.4) 

2. 4 ~heorem let <C be a srr.all catef,ory, and T:CC 

--7 2ns a functor. Let 6 be a class of small categories 
../\ 

and h: C ·----? ([' the Yoneda :Grnbedd ing. Then the followinr.;s 

are equivalent: 

(1) Tis 6 -continuous, 

(2) h/T is 6 -cofiltered. 

Proof: ( 1) ==} ( 2) ?or every ID e ~ and every H: ID 

h/T, D ~(CD' 5D: [-,CD]-> 'I), co:;isider the following 

commutative diagram: 

lim J_imG-r(D),(c,5 TI 
(c.-i) ~ 

~ l 

0 

lim limfh 1~H(D),hm(C, ~ LJ ~ lim lirg fhr-r,H(D),hrr(G,~ LJ 
(c,i) ~C' -l +LJcc,sfJ. .L 

'!le note that the one element of ~ ~ UHD), (C, 5 )] is 
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ma!>ped into [[rdc .. ,' (CD I ~ D )]} in ~ JJ:.!p (hT:t (D), hT ( c, s) l 
u 

where [rac_, (CD, 5 D)] is the equivalence class containing 
LJ 

tr. e image of the e 1 em en t Id C of [h 1H ( D ) , h rr (CD , ~ D ) ] • 
D 

'tie first clain that ~ is one-one. .Let [[rD}' (80 , ;
0

)] , 

be two elements of liE; ]-imUr(iJ), (::,'S )] 

such that their images under ~ coincide. In view of the 

construction of colimits in Ens, it is enough to show: if 

for a:ny (h/T)-morphisr.: u: (C
0

, 5
0

) --7 (C~, g ~) such that 



6? 

C' = ~ 
0 ~] 

ri ' v 
0 

in <C' , then r_D, -==u • r .. -
lJ 

is 

also valid in h/T, which is obvious .. We now show the onto-

ness ., 

[ni:::H(D),h'T(C,~ )] , there exists 

sD:hTH(D)--;. hT(C
0

, ~ 0 ) such that 

belongs to ~ li~ 

(C
0

, ;
0

) G Ob(h/T) and 

[Ide ,(C-., ~ . .)] -== [sD., 
'-'D l.J ;._) 

(C , ~ )] .. Then by the construction of colimit in ~ns, 
0 0 

there exists a finite sequence of (h/T)-morphisms between 

(CD, '5 D) and (C
0

, 5
0

) making the followinf~ diagram commute: 

r\ r. 
VD Id VD 

~ 
't 

"' 
1' 

SD "' c 
0 

But the sequence being in h/T, we could conclude that 

~ 
0 

• [-, sD J = ~ D, claiming that sD is indeed an (h/'I )-

morphism. 

(2) :==} (1) Let ID El and H: ID ---7 <L • We need to see the 

isomorphism of the canonical map 

lirn ~im§(D),h,r(C, ~ ~ -~Jim lim~(:;).h'T(C,~ il 
( C , sJ?h/T el D . ... 

First we show it onto. Since ~in: 1J:.r[1-HD) ,hT(C, ~ >] ~ 
l,im[h11"(0),T] , let x= [~ D: [-,H(:U)] ~ TJ be an element 

D 

of ~ li..m.0(0) ,hT(C, 5 )] • 8onsider the assir;nment D ~ 

(H (V) , SD: [- 'H (:J)] ~ T ) • That this assienment can be 

extended to a functor H : ID ----=> h/T is obvious. Since x 
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h/T· is ~ -cofiltered 1 there ezis ts a (C , ~ )EOb(h/T) and 
0 0 

r 0 :H(0) -~ ::;
0 

such that ~ J= ;
0

- [- ,rDj. We claim that 

[£r01, (C
0

, 1S 
0 

)] is a pre image to [~ l.J=x, i.e. for every 

~ € 0 b \D , [ [rd• ( C , ; ) ] ~ ~ ~ in 1 i m [H ( !J ) , h.11 ( C , ~ )] • But 
. 0 0 J h/~ ... 

this means precisely that SD= ~0 • [-,rJ] , which is always 

the c2se. 

We now show the one-oneness. let [f rD 1 • (C
0

, s 
0 

)] , 

-[tr 1) J ' ( C ~ , g ~ ) ] be two e 1 e men ts o: ~ J-im [H ( D ) , h T ( C , s ) ] 
such tha t for every DE Ob[) • [ r D , ( C 0 , ~ 0 

) J = [ r {; , ( C: ~ , 'S ~ )] 

= g .u· Let x. = t c; n1 and cefine Hx as above. By l.-cofil-

teredness of h/T, we could find (C
0

, ~0 ) and rD:H(D) ---7 

c0 such that ~ 0 ° [-,rDJ = ~ ~\[-,rI,J = ~D·[-,rD] = ~ D" 

It is then easy to see that both [trD3,Cc
0

, ~ 0 )] and 

[ -, -r' t (C' e ')1 are the image of the unique element of 
1-DP o' ~o J 

l.,hm l~m [i-rx (D), (C, ~ )j . This concludes the proof. 

Cofiltered categories as defined in 2t1 give rise 

to a commutativity condition, and are characterized by it: 

2.5 Theorem let ¥:·and[/ be small categories. The 

followine;s are equivalent: 

( 1) X is \D-cofil tered, 

... 

( 2) for every category <( , every functor G: ~ ----;} <( , 

and H: ID ---:). <l, the canonical map 

1 i m 1 i m (H ( D ) , G ( X )] 
y-;~ ;\. lJ 

is an isomorphism. 

) 

Proof: (1) =7 (2) Let T -- lin hG(X) 
X' 

/'. 
in i.' , where 



h iP tr.e Yoned2 ~mbedding. :."hen by 2. 2. h/~1 is lD-co1 ... il tered. , . 

By Theorem 2.4, ~ is then ID -continuous. The proof then 

follows from the sequence of isomorphisms: Jim lim rri(D), 
D ~t 

J~rn ~%~ [11 ( D) , hTl 
G (Z )] • 

lire lim fH ( D) , h,,,
1
J 

h/r> 'D ~ 

1 i m rih • p ( -, ) ml rv 
~L1 n !..J , 1j -----.). 

D 

(2) => (1) Consider any H: (D - ~ and Id~ : x·-
Then using (2), we have 

lim lim {!t (D) , x] 
~~ 

'~ ;J 

which is what is required. 
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Sect ion 3: 'l'he C2 teForv o-:' -:ont inuous Functors. 

In this section we apply our results 6f the previous 

sections in. the situation arisin~ in the .Sec. 2 of the Chap. 2. 

J • 1 Definition 1 et <L be a s ma 11 category and J : 

c( ---? I/\ a functor. :Jenote by [J] the class of all small 

categories JD such that for any H: iD ----:). <C , J is H-co-

continuous. Denote by Con-: - ( <C) 
J 

the full subcategory 

of (C determined by all those .. I' :<[
0

----:> Ens where T is [J] ... 

continuous. (see 1.1) 

J.2 Prouosition let ~be a small category and J: 

(° ~ IA a functor. Then the following holds: 

T 
t.J 

(1) Every representable functor is [J]-continuous, 

hence there exists an embedding hJ: <'.( ~ ContJ( <C' ) • 

( 2) There exists a functor J: /A --> Cont T ( c[ ) mak-
'"'° 

ing the following diagram camrr.ute: 

hLT A 

cf."' Cont T ( <r::) ~ <(" 
t..i 

l ~ lanJ(h) 

/A 
\ 

(3) hJ is [r]-cocontinuous. 

(4) ContJ(<L) is [J]-cofiltered cocomplete, i.e. 

for any [J]-cofil tered category ~ and f'or any 

.P: '* --)' Cont r ( <C), there exists a colimi t of P in 
\..; 

Cont T ( <C ) • 
u 

Proof: (1) is obvious. 



(2) follows from the f<:tct that lanJ(h) (A )=f)- ,A] 

is continuous for all those diagrams for which J is co-
+· convinuous. (see O:J.2) 

(J) Given any [J]-continuous T:<C 0 ·~.2:ns, we 

need to show the [J]-continuity of [hT-,T]. The result 
u 

then follows from the observation that (hJ-,T] ~ T. 
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(4) let~ be a [J]-cofiltered and ?:~ --) Cont.,.(~) 
u A 

a diagram. Let T = lim P ( X) in a: . Vle need to see T is --::> 

[J]-continuous. let IDE[.J] and H: iD--> <[ be a functor. 

The following sequence of isomorphisms establishes [J]-

continuity of Ti 

(?) 
lirn li~ liI!2[1(D),hP(X)J ""> ---x-7h7? (;( )~ ... 

lirn ti m ~11 (D) , hrr] 
h/T;> D t -· lim 

--x-> 

1 i m [hH ( D) , P ()~ )] 
~ 1 i m ii m [hH ( D ) , ? ( X )] 

~ ---v-=> . 
1.J ./. 

"'"'> Jim _li~ [H (D), 
D Z -

hT], where CY follows from T = li~P (X) ~ ® from [J]-con- -

tinuity o: ?(X) and (}) from Theorem 2.5. 

3.3 Remark From the proof of J.2 , we conclude 

/' that the canonical embedding iJ:ContJ( <C) ~ <C is 

[J]-cofiltered cocontinuous. 

J.4 Theorem Let<[ be a small cate~ory and J: C~ 

/A a functor. 'I'hen ContT(C) is [J]-cofiltered cocompletion 
u 

of C in the following sense: 

(1) ContJ(<[) is [J]-cofiltered cocomplete, 

(2) -:'or any [J]-cofil tered cocomplete category fB 
and a functror K: <L --; \B , there exists a [I]-
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cofil tered cocontinuous functor R:ContJ( <I:) -----:> iB 

, "'-h ' Y h -rr sucn G •• a i: -,., · ,J::::\. 

Proof': (1) is Proposition J.2 (4). 

(2) ~e define R to be lanh (K), which exists in 
J 

view of Theorem 2.5 and [J]-cofiltered cocompleteness of 

\B . (see O:J.4) That Lanh ... (K)=K is [J]-co.filtered cocont­
t.J 

inuous follows from the fact that K is iT-relative left 
u 

adjoint to Lany(h) and Proposition 1.9. 
~).. 

3.5 ~emark Theorem J.4 is also valid, even when 

~ is not s~all. In this case we use the standard procedure 

by redefining Cont J ( <C ) as the category of essentially 

small [J]-continuous functors. 

3. 6 Theorem I1et <C be a small ca tet;ory and J: <C --) IA 

a functor. :onsider h'-T: ~ -4 Cont3 ( <C) as in J.2. Let t: C 

--4 '// and r: 'ti ~ Cont r ( C) be functors. let IP be the 
v 

pullback of .the diagram: 

lP 

l 
Then lP is precisely the ·full subcategory of '/! consist in{; 

of all functors ~: '/J
0 

~ ~ns such that ~ is tE-continuous 

for all H: ID~ <( , and lD ~ [J]. 

Conversely, this property determines the pullback f . 
Proo:'"': I.et "."): Y/·

0 

--4 Ens be tE-continuous for a11 

H:lD ~ <(,and IDt[~rJ. 1:ie claim that ?.·t
0 

is [J]-contin-



uous. :or any iD E [l·r], any H: fD ---7 (., we need to show 

Jim lim [tr(!;), hR.-t"J ~ lim lir~: fir (Li), hR·t'J • ~:fe observe 
~·+-" ~ , <-n- ~·t~ 
11/ A'L· ;._, 0 ll/ - · 
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that lim irrkR == R·t", where k:-J/-4-~is the Yoneda 2mbeddinE k7R t.' 

with 
and kR is the diagram associated A P. Consider the follow-

ing sequence of isomorphisms: Jim l}(;l- [H (D), h 0 .tc] ~ lim 
D h.~1t ·' ~ 

lim fh:-r(D) ,hhRto] ~ lim [hH(!J) ,lim iJrkn] /'-' > l i :-n 
h/Fl.t~~ · ·· . ~ k7f{ n ~ 

lim fhH (D), iJrkRJ ~ J-im lim rhJH (D), rkt:11 k/? t ' D k/;} Ll ~l 

1 i rn ~H ( D ) , k 0 I kF uJ 
lim 4im [_tH(D) ,k:J 
k7P D -· 

CD 
lim 
T 

[H(D) ,hR·t~ ll where G) follows from relative adjointness, 

@ from ~ being tH-continuous, and G) follows from the 

following consideration: First observe that h/Rtc ~ lir.i 
(Y ,f) 

h/rk?(Y,f )• Then consider the following diagram. 

lim lim [H (D), hR.to] 
h/P·~~ ·· 

s I 
lim ~ J-Dim(_H(D),hrk (Y,f~ 

C,.-;r)c t:'~ ·A../,,_ c · r /R 7r~~ 0f) 

SIS-cy,r) 
lli J-im[H(D) ,h y] 
h/f Y D r 

s I Q) 

pm i~OHn) ,h y] 
D h rY r 

J-im 0H(D) ,rY] 
D 



where C'(Y, .f) and b(Y, j') are coliffiit maps respectively; 

and Q) follows from H-cont.inui ty of rY and @ from 

relative adjointness, Therefore we conclude an isomorphism 

! making the diagram commute. Therefore we have shm·m 

that R·t is J -continuous, fern which the tH-continuity 

of ~ fbllows. This then concludes the proof. 
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We write the category defined in 3.6 by ContT t(')f). 
tJ , 

J.? Theorer. In the same situation as in J.6, the 

following holds: 

( l) Given any K: a: --?> lB, snd any [J]-cofil tered 

cocomplete category IB , if K is (jJ.cocontinuous, then. 

Lanh (K) is concontinuous. 
J 

(2) Given any ?:'Yf ~ (D, with coconplete category 

6;(, if Fis tH-cocontinuous for all H:lD~ <C where J,is 

H-cocontinuous, then LanN(F) is cocontinuous, where N is 

the canonical embedding'#~ Contj,t(/f·). 

Proof: (1) Lanh (K) is a left adjoint functor with 
J 

IanK(hJ) as a right adjoint. This follows from that I.anJ.hJ) 

(B) = [K-,B] = [-,B]°K and Proposition i.5.. The proof of 

(2) is analoguous to that of (1). 
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Section 4: Absoluteness. 

In this section we study special cofiltered cate­

gories in the sense of 2.1, namely (Cat)-cofiltered cate­

gories. These categories arise naturally from absolute 

colimi ts [9] - those colimits which are preserved by every 

functor. 

4.l Definitio~ Let H be a small diagram 'i ~ <C. 

His said to be coabsolute if every functor F:<C---7 

//\ is H-cocontinuous. 

Dually, we could define the absoluteness of a dia-

gram. 

4. 2 Proposition Let H: X( ~ <L. be a small diagram. 

Let h be the Yoneda Embedding on <C • The followings are 

equivalent: 

(1) His a coabsolute diagram. 

(2) For every CeOb<C , [c ,-] is H-cocontinuous, 

(J.) Every T: C 0 ~Ens is· H-continuous. 

(4) h is H-continuous. 

The proof is trivial. One way to show is ( 1) -:=::::7 

(2) ~ (4) -=:::? (J) ====> (1). 

4.J Definition Let >X be a small category. 'J is 

said to be coabsolute, if every functor H: X __., a= .for 

any <C is coabsolute. 

Dually, we define absolute categories with respect 

to limits. 



4.4 Theorem Let X be a .small category. The follow~ 

ines are equivalent: 

(1.) "j is coabsolute. 

( 2) There exists a family of morphisms ILx: X ~ X
0 

for all XE Ob 'ti. which is a cone from Id)X to X • 
0 

(J) ~ is (Cat)-co:'iltered. 

Proof: ( 1) ::::::) (J) :L.et [D be any small category, 

and H: ID ---} '*. a functor. Consider the following functor 

A [ J A H':1f.. ~ID ,X ~ H-,X and ~:ID~ Ens, T'V\A>J=im 'I. 
A LJ V 

Since lD and Ens are cocomplete and If\ is coabsolute, we 

have the following sequence of isomorphisms: J-im lirs[}r(D~ 
D X 

J-irr. ( li~H' (X) ) (D) ~ 
D X 

lim ( lim H' (X) ) (D) ~ 
~ -7 

lim Jim{}i(D) ,x] . Hence YI.. is (Cat)-cofiltered. 
--x7 D 

(J) ~ (2) Since 'f._ is (Cat)-cofiltered, for I~~)}( 

ljm lim(!,x~ ~one point T X'') 

set. Hence there exist an X0EOb~ , and a cone from Id~ 

to X o. 

(2)-===? (1) Let [f\:X ~ x
0
3 be a cone from Id>R 

to X
0 

in the category ~ • Let H: ~ ---7' <C and T: <L 
0 

---7 Ens 

be two functors. We wish to show T is H-continuous. Le .. 

the canonical map 

lim 2-im[H(x) ,h;J ~ ]-im lim [H(X) ,hTl 
h/T X X h/T 

is an isomorphism. Given any [[rx:H(X) ->hT(Cx, 5 x), 
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in Jim iy-,,?~ ( X) ,her J we define a map 41' by 
x h 'l ~ 

assigning to it [[rx · H( .tLx)J, (CX , ~X )] - • We claim 
o ~o o 

that 1' is a two-sided inverse to the canonical map lf . 

Given any f = [[r x• (ex, ; x)]} in pm l)f. l!r (X), hTJ, lf 11' ( r) 
X h r. 

::: £[rx · H( µ..X), (CX , S X rJj. Vie need to show [rX' (CX' 
0 0 0 

~ x)J = [rx ~ H( µ,x), {ex , ~ x )] , which is equivalent to 
o o ·o 

T] , the result follows. Conversely, let g = [{sx~' (C, ~)] 

in the set lim J:im{JI(x),hr;i(C, s )] , 41f<p(g) = [f sx 0 H(fLx)~, h7T x ... 0 ~ 

(C, ~ H· We need to see for all XE.Ob~ , sx ·· H ( ~X) = sX, 
0 

which follows from the naturality of [sx!~ This completes 

the proof. 

4.5 Lemma Let iD be a small category and- H:fD ~ <[ 

a functor" Let (T, A) = lLm hH(D), where h is the Yoneda 

Embeddinge Then there exists a cofinal functor P: ID~ h/T 

D tf\N>(H(D), AD) such that hT·D = Hw 

Proof: For any (C, ~ )EOb(h/T), ~[(C, 'CS), (H(D), 
D 

l~~ 8 [_~.c], 'S ), ([-,H(D)], AD)] ~ [ir-.c]. 

; ) • 1 ~m, ( [- • H ( D ) ] , ) D B [( [- , C] , ~ ). ( T , id T ) ] 

~ singleton set, where the last three horn sets are taken 



./\ 

in ~/T, and the last iso~orphisrn follows since (T,id~) 
/' .L 

is a te~minal object in a:· /T • 

4.6 Theorem In the sa~e situation as in 4.5, the 

followings are equivalent: 

( l ) h/T is coabsolute. 

(2) T is continuous. 

(J) H is coabsolute. 

Proof: The equivalence of (1) and (2) follows 

from the Theorem 4.4 and the Theorem 2.4. (1) ~ (J) is 

trivial. It remains to prove (J) ===; (2). For any small 

diagram K:~ ~ <C, consider the following sequence of 

isomorphism: 

(f) 
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Jim 17¥ [K(X) ,hT] lirg [K(X),H(D)] (2> ~ lim 
·~ Jim x h T D x 

[hK(X),lim hH(D)] 
G) 

liIJ lim [hK(X),hH(DV ~ ;"'\.,- lim IJ7 D ~ ~ v 
® 

¢im [K(X),H(D)] ~ lim tirn [K(X),hT], where the iso-
X h?T X 

morphisms CD and @ follow from Lemma I+~ 5; @ from the 
.A. 

pointwise construction of colimi ts in <C' ; and GJ from the 

H-cocontinuity of the functor tim [hK(X),h-] and Proposi­
X 

tion 4.2. 

4.7 Pemark From the Theorem 4.6, we conclude that 

a coabsolute diagram can be factorized through a diagram 

from a coabsolute index category. This coabsolute index 



category may not be small. In the following we find a 

small coabsolute category for a coabsolute diagram so 

that the colimit of the coabsolute diagram could be re-

presented as a colimit of a diagram indexed by this co-

absolute category. 

4. 8 Theorem Let iD be a small category and H: lD 

~<[ a coabsolute diagram. Suppose (L, )\) == lii:n H(D) in 
~ 

<C • Then there exists a coabsolute category YI. and a 

commuting diagram 

fD Q 

H / K 

<C 

such that ~ K(X) == (L, ~) and ~Q(D) == AD' 

Proof: We recall the characterization theorem of 
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absolute colirnits in (9], from which we have: There exists 

D
0
E Ob ID and d

0
: L __,. H (D

0
) such that 

( l) for all DEOblD , (D
0

, d
0 

.. A D) and (D, .idH (D)) 

are connected in H(D)/H, and 

( 2) "A • d = idL. D
0 

o 

Let ): be a set bijective with the Ob ID. Let b:L:·<-

Obfb be the bijection. Let fD' be the underlying 

diagram scheme of the category ID , and JD " be the diagram 

scheme obtained from ~ ' by adding a set ~ of arrows 

where for DEOb\D, the origin of b(D) -:.: D and the end of 

b(D) = D
0

• For \D" we consider a set .f. of comrautativity 



condition, which consists of all those coming from the 

ca t ego ry ·ID , and a 11 pa i rs ( b ( D ' ) · f, b ( D ) ) for a 11 f : D 

---4- D'. We set '/{ == 6> ( tD"/I ), -the path category as in 

(0:4.8). Vi'e note that iD and ·'//... have the same objects. 

For fEfv:or lD , we define Q ( f) to be the equivalence class 

of the p2th £f} of length one. K:~ ~ <[. is defined as 
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follows: K(D) =H(D). We consider an assignment )D" ~ <C , 

b (.iJ) l'Vv) d
0 

.. AD' and f -~ H (f) for all other f in I'f:or iD • 

This assignment transforms the commutativity condition into 

identities in <l: , since d
0

• 'AD; H(f) = d
0 

·An• By (0:4.8) 

we have a functor K: /K---? <(. We observe that '#... is coab­

solute with [b(D)] :D---? D
0 

as a cone from I~ into D
0

, 

where [b(D)] is the equivalence class of the path ~b(D)j 

of length 

is enough 

1 • In order to show that 1 i m K ( X) ~ ( L, :A ) , it 
--? 

to show: for every CCObC, the canonical map 

J-im~(X),CJ 
x 

) 

is an isomorphism. Let l_rD:DfOblD} be an element of tim Q{CD), 

c]. We need to see that it is still natural with respect 

to the category* • It suffices to show that rn== rD .. d
0 

1 )\ D 
0 

for all DfOb ID.· But since :X D · d == L; rD == r·A D == 
0 0 l.J 

d
0

) "AD == rD • d
0

• ).. n• This completes the proof. 
0 

r( AD " 
0 

4.9 Examnle We consider a coequalizer diagram 

u 
A :a e 

> c 
v 
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Suppose this is coabsolute, we have then 

A B r c 

such that er= 1C' us = 1B and vs = rs. Obviously vs =re = f 

is an idempotent. We now consider the coabsolute category 

u 
A ) 

) 
v 

Clearly every morphism k:B--+ X with ku =kv also satisfies 

kf = k. Therefore C is also a colimit of the diagram indexed 

by the coabsolute category. 
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