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1. ABSTRACT
A diffusion cell of the "shearing type" was used to diminish

the effect of convection which is always present when two liquid phases
are brought into contact with each other in a diffusion cell. Also a
special optical arrangement was used to photograph the refractive index
distribution of the system. For those systems with refractive index
changing linearly with chce.ntration, the concentration profiles were
obtained and diffusion coefficients were calculated at different
concentrations.

This optical method gave only fair reproducibility - the
deviation among‘ d_iffusivities found for systems investigated varying
from 3 to 10 per cent - however, it permitted rapid analysis and on this
basis is recommended for situations where speed is essential and high

accuracy is not required.



~ 2, ' INTRODUCTION

Diffusion has been defined as the process by which material .at
one part of a system is transported to another part by random molecular
motion, due to either thermal agitation or collisional impact.

While self diffusion is a special case where the diffusing
particles are identical, rotary diffusion involves a rearrangement of
anisotropic particl'es‘ fram a state of preferred order to one of randomn
distribution. The most important mode of diffusion, ho_wever, is mutual
diffusion where one componeit of a binary mixture diffuses into the
other and vice versa.

The first attempt to describe statistically the relationship
between the random molecular motion and diffusion flow was made by
Einsteina) in his discussion of the Brownian motion but fifty years
earlier, Fick (2) had already established a phenamenological formulation
of the diffusion process. ,

Recognizing that there -is an analogy between thé transfer of
heat by conduction and diffusion of material, Fick adopted the equation

for heat conduction, derived by Fourier (3) and stated that at constant

pressure and temperature, the rate of transfer of material is proportional

to the concentration gradient, namely:

N=-D g_xc_ (2.1)

where N is the rate of material transfer per unit area, 3c is the
ax

concentration gradient at a particular time and D, presumed to be a



constant for a given system, is called the "diffusion coefficient" or
diffusivity. |

In some cases, e.g. diffusion in dilute solutions, D can be
considered as a constant while in others, it variee with concentration,
‘particularly for liquid-phase diffusion.

The theoretical and experimental studies in diffusion helped to-
develop successfully the kinetic theory of gases, the structural
discoveries for solids and electrolytes; they are being used in formulating
mass transfer processes as well as in the determination of particle size
or molecular weight(4), .. Given such a wide application of Fick's first
law, extensive research hes been carried out to estimate and to measure
the diffusion coefficient.

Diffusion in binary gaseous systems has been theroughly
investigated and a mmber of semi-empirical equations, based on experimental
data, have been proposed and tried out suecessfully et moderate pressures
and temperatures., There are equations by Gilliland(5) , Hirschfelder,
Bird and Spotz (6), Slattery and Bird(7) for diffusivities in binary
gaseous system. Same of these equations agree reasonably well with
exper:imentai findings. On the other hand, for multicamponent mixtures,
the equation of Stefan-Maxwell (8) is the most widely used.

For measuring gaseous diffusion coefficients, perhaps the mosﬁ
famous method was the_one'developed by Loschmidt (9r 10)and 1ater by
stefan(11s 12, 13) which consisted of a tube divided in two halves by
a stopcock. Gases were separately introduced into each half and the
diffusion started by opening the stopcock to let the gases contact with

each other. ILater, Obermayer (14) modified this technique by replacing



the stopcock by two ground discs, rotating upon each other, each connected
to one tube. Diffusion coefficients obtair_led by this method appeared to
be very accurate, with a deviation of about 1 percent only.
| Diffusion in liquid 'systems has been given special attention
because of the wide need of diffusion coefficients. Many theories have
béen developed to formulate rigourously the diffusion process in liquids.
Among them, the most famous are those by Einst'ej__r_l_(l) ‘with a hydrodynamic
development for dilute solutions, by arnold(15) and Eyring(16) who applied
the kinetic theory of gases to diffusion of liquids. ILater, Crank and
Hartley(17) used both thermodynamic and hydrodynamic considerations in
their development of a relation between the nori—_ideality of a system
.and its diffusion coefficients. Pynn and Fixman (18) extended the
hydrodynamic model to concentrated systems while Olander, Gainer and
Metzner (18) applied Eyring's theory in the case of dilute solutions of
high viscosity. Their technique has been used by Cussler and Lightfoot (18)
to obtain an approximation of diffusion coefficients in systems.

For engineering purposes, several correlations have been proposed
to estimate diffusion coefficients in dilute solutions. Among them,
the Wilke and Chang(lg) correlation was obtained from data for 285 points
among 251 solute-solvent systems and appéared to agrée well with
experitﬁental values. Othmer and Thakar (20) offered another correlation
by carbining Eyring's theory with the Clausius-Claperon equation. Since
this correlation has not been thoroughly tested, its validity remains
unknown., Diffusivities of électrolytes at infinite dilution can be
prédicted very accurately by Nernst's equation&l) while at concentrations

other than zero, the equation of Gordon (22) js recommended.



- . Since no adequately accurate and broadly applicable theory or
at higher concerifration

correlation for the prediction of liquid diffusionvexist, experimental
techniques have been the main source of diffusion data. Céﬁsiderable
effort and ingenuity has been spent in devising techniques in which
variations in concentration, distance, and time can be observed and used
in the calculation of the diffusivity from various forms of diffusion
equations.

In self diffusion experiments, radioactive isotopes have been
extensively used while mutual diffusion measurements have been carried
out by a large number of techniques, ranging fram a simple diaphragm
cell to a éophisticated laser interferometer.

It has been widely agreed that the best combination of simplicity
and accuracy is perhaps the method using a diaphragm cell, first
introduced by Northrop and Anson(23), 1In this procedure, the diffusion
process takes place through a porous diaphragm connecting two cells in
which the respective liquid concentrations are maintained uniform.
Convection currents which often occur in large diffusion cells are
eliminated because the interfacial areas between 2 liquids are greatly
feduced.. The diffusivity obtained here represents the integral value
of diffusivities in the fange of concentrations involved. Though
widely used, the diaphragm cell sometimes gives serious differences
- among data obtained by various investigators. One of the main source
of error perhaps lies in the fact that entrapped air or vapor in the
porous diaphragm might change the effective diffusion section to a
great extent. Furthermore, pgsides being time consuming, this method

also requires that concentrations of solutions interdiffusing must be



small thusrendering the analysis of final solutions inaccurate.
In addition to the diaphragm cell, other devices have been
developed such as the capillary cell, the segmented cell, the radiocactive
cell but so far, the most accurate techniques are the roptica,l cells in
which sharp, initial boundary is easy to obtain, changes of concentration
with distance and time can be recorded at any time throughout the experiment.
| One of the earliest investigators in this optical fiéld was
Gouy(24) who considered the use of refractive index measurements in
diffusivity determination but Wiener (25) was the first to be credited
with the mathematical- formulation of optical diffusion experiments. He
developed the equation for the curvature of a light beam passing through
a diffusing medium. In Wiener's experiment, curves of refractive index
gradient were photographed on a 45° axis and converted to conéentration
gradient curves. ILater, Thovert (26) modified this method by photographing
Wiener's refractive curve through a cylindrical lens. In this way, ’
curves of concentratic_m grédient were cbtained directly in rectangular
co-ordinates. With non volatile liquids, another optical method has
been used with exceilent results: the interferometric method, first
présepted in 1947 by Kegelés and Gosting(27) along with the experimental
test of the method of Longsworth(zs) . This method was later used by
Coulson (29) r Robinson(30) and more recently, by Nishijima and Oster (31)
and Secor (32) |
: : ' method
Although very simple and accurate, the interferametric‘has at
least one disadvantage: the température of solutions interdiffusing
cannot be controlled easily. To overcame this difficulty, Lanm(33)

proposed his well known "scale method" in which displacements of the
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marks on a uniformly graduated scale placed between a light source and
a diffusion cell were photographed and converted into a concentration
gradient curve. In 1964, Sato and co-worker (34) modified this method '
by putting another screen on the image to make‘appear a mOiré;Eﬁiern
of the refractive indek curve., Diffusion coefficients cbtained by

Sato were often higher than those found by other investigators. The
reason of this is that in his experiments, the two solutions interdiffusing
were put into ¢contact with eachvother by pushing the heavier one in
under the other solution, thus same convection occurred between the 2
phases at the beginning of the diffusion process. It was the purpose
of this project to adopt Sato's method but using an improved cell to

.obtain accurate diffusion coefficients of binary liquid systems.



3. THEORY

3.1 Derivation of Fick's Second Law

Iet us consider an isothermal,' free, .mlidj.rectionai di ffusion
- process between two species A and B along a certain direction x.

3.1.1 Systems with no volume change on mixing

According to Fick's first law, we have, for the species A

N, = -D _" (3.1.1)

where Ny is the molar flux of A in the x direction
C, is its éoncentration
x 1is the distance from the boundary, in the diffusion direction
D is the mutual diffusion coefficient between A and B, at the
1:,emperature of ’experiment.
In the absence of chemical reaction between A and B, a balance

of material gives us:

vt

Cp __ %4 ' (3.1.2)
ot ox

Which, combined with (3.1.1), leads to Fick's second law:

ocC )
A =3 o A (3.1.3)
ot ox =

For dilute solutions, D can be reasonably taken as a constant

but in general, it varies with concentration.



Boltzmann (33) showed that if ¢ is a function of (x/vE), as is
usually the case, with certain special boundary conditions D can be

derived from (3.1.3) as follows:

let o _=.}.<.._
%3
We have:
¥a -1 &a
5 acA o D ch
= D) =°2_ (== =)
axX dx 90X VE dn
oC ' :
> oA =14 (p%a, (3.1.4)
X X t dn dn
and:
‘ dc
¥ . _x_ A (3.1.5)
ot % dn
2t

dc
- 1‘__5 f‘_:é =14 (D.a._é)
7 & E@ T
2t
or:
ch a ch
n_8_-_o 9 3.1.6
T an (Dd-.—)n (3.1.6)

which is an ordinary differential equation between ¢ and n.
The above transformation can be used when diffusion takes place
in infinite media, provided that the concentration is originally constant

in the region x < 0 and x > 0
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Thus if:

Cp = Co for x <0 and t =0
and:
cA=cl for x>0 and t =0

the following new boundary condition result:

Cp = Cg for n = - =

Cp =Cp for n =+ =

An integration of equation (3.1.6) fram Cp=cgtoc = 'cA gives:

-1 c a
A 4 C
S ondey, = -2 02 p A
c dc “a
rBdcy= -2 D2 (3.1.7)
o dn
€0
Since dc
D —d—é- = 0,
N
o
We have finally:
Dicy) = % 5= /' nde : (3.1.8)
A ch CO A
Replacing n by x_, the above relation becames:
vE
1 dx ca
D(c,) = - 57 5= i) (3.1.9)
A 2’? dc, S xdcp |

According to these equations, the diffusion coefficient can be
calculated as a function of concentration once the concentration profile

is available.



dc

Since D _& = 0 too, fram (3.1.7) we have:
dn . Cl : .
< <
S ndc, = f xdop =0 (3.1.10)
o A" ¢ A

To satisfy the boundary conditions, the origin of the x-axis
must be determined by (3.1.10).

3.1.2 Systems with Volume Change on Mixing

The interdiffusion of two camponents forming a system which
displays volume change on mixing has been considered by Prager(36) and
later investigated by Takamatsu and co-workers (37) with exéeriments done
on the methanol-water system. |

In the case of systems with volume éhangé on mixing, the molar

flux of each component can be expressed as following:

: b 8CA
Na=""a 55 t*a Wa+Np) (3.1.11)
D aCB

where D, andDy are the intrinsic diffusion coefficients of A'and B and
Xp, Xg, their mole fractions. _
| If v is the velocity of the bulk flow,assuned to be in the

x~direction and dependent on x and t only, we have:

. ac
Np=-D, 2 +vc (3.1.13)

X

. ac
Ng = -D B &cl?- vy - (3.1.14)

Let VA and VB be the partial molal volumes of A and B. Since

only A and B present, at constant pressure and temperature we have:

11.


http:interdiffusion.of

12,

VA cy + \73 cg =1 | o (3.1.15)

The definition of a new diffusion coefficient for the diffusion’

process with volume change on mixing by:

D = 'DA VB cB-+ﬁ
and (3.1.15) can be combined to transform equations (3.1.11) and

(3.1.12) to:

3cy Jc x dc
A =9 (p_B +2_ A, 2 :
3t x Oz + ax{cA L Dglea) ) dx} (3.1.17)
and:
3 "5 O +a{% L D9 G dx} (3.1.18)
where: _ :
3VB _ (BVA/BCA)

glcy) = (3.1.19)

Vgca  dcp 1-V,cp
Details of these transformations can be found in the Appendix I.
With the same boundary conditions as in the first case (i.e.

c = Cy for x < 0, t = 0; c=c1forx> 0, t = 0), the Boltzmann

variable n = 7_}5 can be used here to give:
t

, _ . dn ca Ca oy
) D(CA) = - aEX cé ndCA - C c{) g(cA)(_ cé .ndCA)dCA

(3.1.20)
The equation for the determination of the x~origin in this case
is: .
9] <1 C

1
dc, = ¢3 [ d
cé ndcy 1 o glcy) ( C(f) ndc,) dcp (3.1.21)
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It should be noted here that in absence of volume change on
mixing, g(ca) = 0 and equations (3.1.20) and (3.1.21) reduced to equations
(3.1.8) and (3.1.10).

3.2 Relation Between the Moiré Curve and Concentration Gradient

3.2.1 Deflection of a Light Beam Passing Through a Diffusion Cell

The application of optics in diffusion experiments, especially,
the observation of deflection of a light beam passing through a medium
of varying refractive index, has been treated by Stefan (38) ' wiener (25)
arnd later, by Minter (39) and Lam(40) . The simplest mathematical
developments can be sumarized as follds}s(4lj .

’ Considering a monochromatic light beam falling perpendicularly
upon a medium assumed to be formed by a number of thin layers, each of
height Ax, the refractive index n increasing by An when we pass from one
layer to another, we will have the situation as shown by Figure 1.

The deflection of the light beam when it passes from one layer
to the next one is given by the law of refraction:

Siny  _ n +An - 3.2.1
~Sin(y+4ay) n ( )

If Ax is small enough, we have:

Sin y N n + An

Siny + Aycosy ~ n (3.2.2)
or:

~{cotan y) Ay ~ in (3.2.3)

. , T

If y is the direction of the light beam, from Fig. 1, we have:

Ax = Ay cotan y ' (3.2.4)



14,

And from (3.2.3) and (3.2.4):

Ay M . (3.2.5)
Ay = nAx

On the other hand, the radius of curvature of the deflected
light is:

p- 1 : (3.2.6)
dv/dy

When Ay is very small, we have:

oo D (3.2.7)
- U ® Fn/ax

This is the relation between the radius of curvature of a
deflected light beam, the refractive index and the refractive index
gradient.

Let us now see how the above relation can be applied in
diffusion measurements. |

Considering a diffusion cell which consists of two thin,
transparent glass plates S1, S2 and which contains a medium of continuocusly
changing refractive index (Fig. 1). |

If a is the width of the‘cell, b is the distance fram it to a
screen where a deflection z of the original light beam is recorded, we
shall have (for a<<b):

873 angle of deflection of the light beam when it emerges from
the cell.
If n” is the refractive index of the medium surrounding the
diffusién cell, we have:
n“6, ~ noy : (3.2.9)

_with 81, as the incident angle of the light beam on surface S3.
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Deflection of a light beam passing through a medium of
continwusly varying refractive index

15.



Moreover,

~

p

from the definition of the radius of curvature of the deflecteci light
beam.

The three previous expressions can be combined to give:
gz DED ' (3.2.10)
o
Replacing p by —_n we obtain:
W—-d}{ 14

2z ~-ab dn ©(3.2.11)
n’ dx '
'or, in absolute value,

ab dn - (3.2.12)
n’ dx

z

14

This is the expression of the deflection of the light beam in
terms of the width of the cell, the distance fram the cell to the screen
where the deflection is recorded and the refractive index gradient.

3.2.2 Height of the Moiré Curve and Concentration Gradient

In Fig. 2a, (A) is a glass grating screen with parallel,
equidistant lines; (B) is a diffusion cell where the refract._i_ve index
gradient exists in the vertical direction only. The lines on (A) are
put perpendicular to the direction of diffusion in (B).

When a parallel light beam is directed through the screen and
the cell, a.n image Y(C) of (A) which can be cbserved in front of the
cell, coﬁsists of a series of parallel but. non-uniformly spaced lines.
The displacement of any line from (A) to (C) is given by equation (3.1.12)
if (C) is far enough from (B). If the displacements of the lines are

plotted against the position of the original lines, the refractive index

16.
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grédient curve will be cbtained. This method is the well-known Lamm
scale method (39), .

Sato and Miyamdto have sho«m(‘iz) that if another screen (D),
the same as (A), is placed upon (C) so that the lines of (D) make a
small angle with those of (C), moiré curves (43) will appear: it is
the refractive index curve, same as the curve obtained by Lamm's
scale method but can be observed directly. |

The geametry of the moiré curves can be explained as follows:

In Fig. 2b, (A) and (D) - two screens with parallel lines spaoed
at a distance d - make a small angle ¢ between them. The image (C) of
(A) is represented by the dashr lines.

When t_:hé concentration of the medium inside the diffusion cell
is uniform (i.e. no mutual diffusion), straight lines like 17, 1p, will
not be straight. They bendrbecaAuse the images of lines on (A) are not
uniformly spaced.

Iet us consider a point P on 1;. Because of the deflection of
the light beam passing through the screen (A) and the cell, a line on
(A) passing through P will have an image on (C) a lihe passing through
P’. ILet z be the verﬁml distance between these two lines.

If:

PP° = u,

we have:

z | $(3.2.13) -

U = Sing

but accofding to (3.2.12),

z= abdn
ax

”I



- @b dn -
= T & (3.2.14)

where a is the width of the cell, b is the distance from the cell
to (D).
Now if it is assumed that the refractive index is a linear
function of concentration, as is usually the case, we can write:
n = ng + kc (3.2.15)
Where ng is the refractiﬁe index of the solvent, k is a
constant of-prbportionality, and c is the concentration of the solute.

Equation (3.2.14) and (3.2.15) can be combined to give:
_( abky dc
u _(Hgﬁiﬁ = : (3.2.16)

In a system where a, b, k and ¢ are fixed, we have:

u=xge (3.2.17)

Where K is another constant of proportionality, equal to
abk
sing °
At this point, it can be stated that the height of moird curves

along the direction of the lines on (D) is proportional to the refractive

index gradient.

18.

_ Equation (3.2,17) will be used to plot the concentration gradient

curve (K € vs. x) to determine the concentration profile and to
Y
calculate diffusion coefficients accordlng to equations (3 1, 8), (3 1.9)

or (3 1.20), depending on the case.
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Relation between height of moiré curves: and
refractive index gradient



4, E_b_cggriments
4.1 Apparatus

4,1.1 The Diffusion Cell (Fig. 3a)

The diffusion cell consists mainly of two parts: a Teflon block
(I) reinforced by a stainless steel case andl a stainless steel body (IT).
The Teflon block (I) can be moved horizontally in (II) by a lever (III).
A steel plate, placed on the top of (I) can be pressed »downward by two
bolts to keép the Teflon block in tight contact with the steel body.

Both sides of (II) are mounted with optically flat glass plates,
fixed by two screw-tightenwindows. To prevent water of the temperature-
controlled bath from leaking to the cell, rubber gaskets are placed
between the windows and the main body and also, between the windows and
the glass plates.

The whole cell measures 12.7 cm high, 8.3 cm wide and 2.5 cm
thick. The test sections in the Teflon block (I) and the steel body (II)
are both 2 am high and 1 cn wide.

4,1.2 Experimental Setup

The experimental setup is shown in Fig. 3b. The diffusion cell
is placed inside a two-window bath (a) which temperature is controlled
by a thermostat (Haake unit). Light beam, fram a point source (b)
(Sylvania concentrated arc lamp K25) cast through a collirhator lens (c)
becomes parallel and passes through the windows of the water bath and
the diffusion cell. The image of the screen (d) (with horizontal,

uniformly spaced lines), superimposed by the screen (e) appears on a

20.
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=
] IIT
I: Teflon block ]
_ = —— /
II: Stainless steel )
Body = :
‘III: Lever IT

Figure 3a

The Diffusion Cell

Diffusion cell

— 29— -

g9

a

a: Temperature controlled bath; b: Light source; c: Lens; d: First screen;
e: Second screen; f: Ground glass; g: Camera

Figure 3b
Experimental setup
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ground glass (f) and is photographed by a Pentax Camera (g) (Model S1)
equipped with a close up extension tube (No. 2). The settings on the
camera are: £4 and % second with Isopan ISS film.

4.1.3 Refractive Index Measurements

Refractive indexes of all systems investigated were measured as
a function of concentration with a dipping refractometer (Bauch and Lomb
Co.) at controlled temperatures (+ 0.1°C).

4.2 Procedure ‘ '

At the beginning of the experiment, all parts of the diffusion
cell are cleaned with soap, chromic acid, rinsed with double-distilled
water then, dried in air. After the cell is reassembled, the Teflon block
is placed at posj'.tion 1 - Fig. 4a. The heavier of the two solutions
interdiffusing is then injected to the lower compartment and the other
one, to the upper part of the test section with a 5 cc hypodermic syringe.

The cell is now placed inside the temperature controlled bath.

To start the experiment, the Teflon block is slowly pushed to position

2 - (Fig. 4a) by means of the lever. Both sides of the Teflon block

are then filled up with the lighter solution to equal.ize the hydrodynamic
pressures inside and outside the test section.

The tJmer is started when one half of the lower campartment is
overlapped by the upper one. Finally, the light source is turned on and
photographs are taken at different times (e.g. every 10 minutes over
5 hours for the éucroée—water system) . |

After developing the film with D76 developer, themoiré curves

on the negative are magnified through a microfilm reader and traced out.
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Prior to the experiment itself, refractive indices of the system
are measured at various concentrations to make sure that the relation
between them is a linear one.

4,3 Method of Calculation

Suppose that from the picture, the curve in Fig. 4b is cbtained,
with U as the direction of the lines on the second screen (e). |

First of all, heights u (= Kggé) of the moiré curve are measured
at different points on the x-axis and reconstructed to give the
concentration gradient curve (Fig. 5a).

At the point M, the concentration of A is ¢y (solvént side or
solution of lower concentration) and at the point N, it is ¢ ( solution
of higher concentration).

If we integrate the surface under the Kggé. vs. X curve from

M to N, we have:

+= dc <o
A
J dx = f Kdc, = K (cg-c3) = S (4.3.1)
e I%EZ' o A 0 1 _

At a certain value the x abscissa, we have:

X qu c
S Kk— d&x = [ K qu = Ky -¢) = s (4.3.2)

Dividing (4.3.2) by (4.3.1), the following relation is obtained:

C

C
s - A-"71 (4.3.3)
S o - €1

Thus if s and S are given by a numerical integration, we can
determine the concentration C, at any point along the x-axis.
In the case of diffusion between a solvent and a solution of

concentration ¢y, we have: c = 0

23,
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. Position 1 Position 2

Figure 4a

Procedure

Figure 4b

Moiré curve and Concentration Gradient Profile
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Integration of moiré curves
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'Figure 5b

Concentration Profile with corrected x-origin
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Hence:

co _- (4.3.4)

nln

CA=

Once the concentration profile of the system has been established
Fick's second law is used to calculate the diffusion coefficient according
to equation (3.1.8), (3.1.9) or (3.1.20).

Since in Fick's equations, x is in the direction of diffusion,
i.e. fraom a more concentrated solution to a less concentrated solution,
we plot the concentration profile as shown/by Fig. 5b.

To find the origin of the x~axis, equation (3.1.10) or (3.1.21)
is used, with the help of the Fibonacci root searching technique.

All the calculations involved in this project have been programmed

and run with an IBM 7040 computer. The programs can be found in the

Appendix IIT,
5. Results

Diffusion coefficients of 5 inorganic and organic systems have
been measured - all at ZSOC. The reason for this choice of temperature
is that data of the investigatea systems are all available at 25°C,
allowing a comparison of results and evaluation of the moiré pattern
method.

Refractive index data of the systems used were obtained first |
to check the linear dependence of refractive index on concentration.
These data are shown in Fig. 6, 7, 8, 9, and 10.

As for the experiments themselves, four runs have been done for
each sysfem and two photographs of each run were analyzéd to calculate
diffusivities. That is, 8 sets of results were cbtained for each system,

A regression analysis was then applied to find by the least square
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method, the polynomial which best fits the experimental data ofveach
system. ‘ _

In the following table‘solution 1 and solution 2 represent the
two solutions interdiffusing. The third column represents the
original concentration of solution 2 according to which diffusivities
were calculated, the original concentration of solution 1 being zero
- for all systems (pure solvent). These concentrations have been chosen
since diffusion coefficients of the investigated systems are available

at these concentrations,thus a comparison of results is possible.

Solution 1 Solution 2 Concentration

: of 2 (gmole/1)
Water | éucrose | 0.500
Water | Sodium Chloride- 2,000
Water - Glycine . 2.000
Water Ethyl Acetate 0.608
Carbon Tetrachloride Benzene 2.012

The Boltzmann assumption (c = £ (x//t)) was tested in each case
to make sure that the concentration profile for each system can be

represented by a unique curve of c vs. x/v¥t . These curves are shown

in Fig. 11, 12, 13, 14 and 15.

32.
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It should be here added that all the systems considered in this
project were supposed to have no volume change on mixing, they were
considered to be nearly' ideal because either they display no volume
change or because the concentrationé involved were small (ethyl acetate -
water, benzene-carbon tetrachloride systems). Thus, in the calculations
equations (3.1.9) and (3.1.10) were used.

Curves of diffusivities vs. concentrations are shown in Fig. 16,
17, 18, 19 and 20.

To test the method of calculation used here, a computer program
was prepared to pfedict the concentration profile from the expression of
diffusion coefficient in function of concentration found for each system.

In order to use Fick's second law:

3C — 9 D B_C‘;)
at X X

A MIMIC program (44) was used with the finite difference form of

- the above equation:

2.
3c _ 3D 3c 3 c
3T - 3% % + -—-2D (c)
X
e -c 2 c - 2c +'c .
- [ i+l l—l] g_.g + |-t i 1—1} D (c) .
2A% C 2

A X

The effective length of the cell (3.0 cm) was divided into 16
sections of 0.1875 cm each. Fifteen integrators were used in the MIMIC

program. Results are shown on Figures 21, 22, 23, 24 and ' 25.
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6. DISCUSSION

At first glance, the results obtained agreed reasonably with data
found by other researchers. 2s for the reproducibility of the technique,
a survey of diffusion coefficients measured for each system showed that
the deviation among results of one system ranged from 3 to 10 percent,
seldom over 10 percent. It was also noticed that the deviations are
highest at the two extremes of the diffusion coefficient concentration |
curves. This was due to the fact that the values of u are very small at

the ends of the moiré curve, thus when 1 is used in the calculation of
Dppr @ small deviation of « from the cor‘r"ect value can lead to a highly
' inaccurate Dape |

It was observed that however tightly the Teflon block was
pressed uﬁon the steel body, there always existed a layer of liquid on
the top of the lower solution due to leaking from the upper campartment
to the lower one when the solutions were not brought into contact with
each other. On the other hand, When the Teflon blockwaé pushed to bring
the test se_ctions together, convection, however slight, occurred between
- the 2 phases. Although carmpared with the whole process of diffusion
these effects are not important, they contribute nonetheless to the ovefall
error of the experiment.

- As for the time origin, it was taken as the moment when half of
the upper test section overlapped the lower one. Since the whole process
of pushirig £he Teflon block to its proper position (when 2 sections are
aligned) tock only about half a minute, .compared with the time when

photographs were taken (generally 40, 50 up to 200 minutes after the timer



was started), this way of taking the time origin cannot affect the results

45,

significantly. There is, however, a method of correcting the time origin:

if the distance x from the boundary is plotted against vt for each
concentration of a system, we would obtain a series of straight lines
passing through the origin of the vt - x coordinate system if the time
origin is correct, assuming that the Boltzmann assumption is valid
(c=f (/D) (39 By trial and error, we can easily determine the
correct time origin., Another way of checking the Boltzmann relation is
to plot the concentration as a function of x/Vt. If the assumption is
valid, all points should lie on the same curve. .

A major source of error is perhaps due to thé tracing of moiré
-curves from films through the microfilm reader. Since the lines of the
gradvated screens we used are not thin enough (100 lines per inch), when
-the film was magnified 10 times by the microfilm reader, the thickness
of_moiré curves was about 5 mm. Moreover, with the camera used in this
project (an Ashahi Pentax model S-1), despite many trials by varying the
camera settings, we were not able to get photogi'aphs with desired contrast.
The moiré curves thus cbtained were not as distinct as they should be,
especially in the region adjacent to the boundary on the side of the more
concentrated solution. With these difficulties we were pleased to measure
diffusivities with a deviation of less than 10 percent. It is believed
that the temperature control was sufficiently good hence errors caused by -
fluctuations in temperature were negligible. However, if the optical
system is refined an improved texhperature control is also recommended.

Before the experiments, solutions interdiffusing were held in a

temperature controlled bath for 2 to 3 hours. During the diffusion process



46,

itself, the temperature was again under control. Its fluctuations, if
any, were less than 0.1°C. |

All main sources of error having been discussed; each system
investigated may be worth special considerations now.

6.1 Sucrose — Water System

For this system, the two solutions to diffuse were distilled water
and a solution of 0.5N in sucrose. A solution of 1.0N was tried before
but since the moiré curves were too high (due to large change in concentra-
tion), no resiﬁlts were obtained. This, however, is not a disadvantage of
the method. Indeed, experiments can be done with successive concentration
ranges provided that the heights of moiré curves do not exceed the width
6f the test sections and that the linear relation between refractive index
and concentration holds up to the concentrations invoived. For example, |
to find diffusivities of the water - sucrose system from zero
concentration to 2.0N, we can do experiments with 0.0 - 0.5N, 0.5N -
1.0N, 1.0N - 1.5N and 1.5N - 2.0N solutions.

Data of. the sucrose ~ water system were plotted in Fig. 16 to
canpare with results found by Sato(34) and Irani and Adamson(4%), 1t can
be seen that a fairly good agreement was obtained. -

6.2 Sodium Chloride - Water System

‘The sodium chloride solution used here to diffuse into distilled
water is of 2.0N concentration. Diffusion coefficients found for this
system were shown in Fig. 17 to campare with results obtained by Stokes (46)
and Saf_:o(34) whose experimenfs were also done at 25°%C. A father_ good
agréement can be seen,

An extrapolation of the diffusion coefficient - concentration
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curve gave diffusivity at infinite dilution of 1.08 x 1075 cm?/sec compared
with the value of 1.61 x 10™2 an?/sec predicted by the Nernst equation(21) .
A calculation based on Nernst's equation was presented in the Appendix IT. |

Diffusivities at concentrations other than zero can be determined
by Gordon's relation(22) or the general expression given by Harned (47) ,
Both relations embodied thé principle that the diffusion coefficient is
proportional to the gradient of chemical potential. Due to the lack of
thermodynamic data, no calculated diffusivity as a function of concentra-
tion was available in this report. |

It was observed(4) that the diffusion of ions in electrolyte
solutions is dependent not only upon the concentration gradient but also
upon the maintenance of electréneutrality in the system. Ions of a
diffusing electrolyte may have very different mobilities but every species
migrate at the same rate since the interionic forces of attraction accelerate
the slower-moving and retard the fast -moving ones. In the presence of ’
other electrolytes, the mobilities of diffusing ions will not be the same
as when they are not disturbed. ‘It was also found(48) that the diffusion
of electrblytes may e@n be influenced by the presence of non-electrolytes.
Thus, care must be taken to assure that the presence of other substances
in an electrolyte diffusion medium is kept at é minimum level.

"~ 6.3 Glycine - Water System

Diffusivities of this system were shown in Fig. 18 in comparison
with data obtained by Lyons and Thomas (49). Unfortunately, the concen-
tration range covered by these reséarchers was relatively narrow and a
camparison of diffusivities at cohcentrations highef than 0.6N was thus
impoésible. Nevertheless, if can be seeﬁ from Flg 18 that the compared

values differ as much as 25 percent. ILyons and Thomas claimed that
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diffusivities given by their experiments, based on the Gouy interference
method (24) have a deviation of less than 0.1 percent. On the other hand,
results of this work also appeared rather consistent. Moreover, in. |

Lyons & Thamas experiments, the boundary between the two phases was
sharpened by sucking out same liquid at the boundary. This might cause
sare disturbance in the diffusing system and hence the ocbserve diffusivities
are somewhat higher than our results.

Fram the definition of ﬁe diffusion coefficients, it can be
stated that at 1nf1nlte dilution, the self-diffusion coefficient is
identical to the mutual diffusion coefficient. Thus, it is interesting
to note that an extrapolation of the diffusion coefficient-concentration
curves reported by Lyons & Thomas, this work and Wang's self diffusion
experiments on the glycine - water system(so) leads almost to the same
value of the diffusion coefficient at infinite dilution (0.95 x 107> dnz[
sec) . |

6.4 Ethyl Acetate - Water System

The two solutions used héré were distilled water and a solution
of Q.608N_ in ethyl acetate which is about the most concentrated solution.
in ethyl acetate possible at 25°C. Beyond this concentrat:ion, there will
be phase separat;ioh.

Diffusivities found for this system were shown in Fig. 19. Sihce
no data of this system were available in the literature, the diffusion
coefficient at infinite dilution obtained by extrapolation of the
diffusivity - coefficient curve was used to campare with values predicted

by some existing correlations.
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According to Fig. 19, the diffusion coeffi¢ient at zero ethyl
acetate concentration is 0.75 x 10~ crhz/sec while the Othmer-Thakar

correlation(zo). gave a value of 0.97 x 10> cm?/sec and Wilke and Chang's
correlation(19) gave 1.04 x 1073 sz/sec. Sample calculations with these

correlations were presented in the Appendix II.

6.5 Benzene - Carbon Tetrachloride System

For this system, a solution of 2,012N in benzene was allowed to
diffuse into pure carbon tetrachloride. Results were shown in Fig. 20.

It can be seen that except in low concentration range, the agreement
between these data and those cbtained by Caldwell and Babb(51) and sato
et al.(34) is not very good: owr results are about 15% lower than the
findings of these investigators.

In the case of Sato's data, not only in this system but all the
diffusivities found in this project are lower than his. This is perhaps
because in his experiments, the lower solution was puéhed into the cell
under the other one, the reé;ion between the two phases was thus submitted
to convection before the diffusioﬁ process itself.,

Caldwe.ll and Babb used a single-channel diffusion cell with a
Mach—Zehrxdér interferameter technique. They applied a Boundaxy sharpening
method by siphoning out some of the liquid between the 2 diffusing solutions.
This might also produce convection as in Sato's case. |

Calculations with the Wilke and Chang correlation gave a diffusivity
at infinite dilution of 1.55 x lO_‘5 anz/séc. An extrapolationA of the curve

in Fig. 20 yielded 1.21 x 10~ cm?/sec for infinite dilution.
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6.6 Concentration profiles predicted bj} MIMIC

Figures 21, 22, 23, 24 and 25 show that the experimental oéﬁcen—
tration profiles are very consistent with the profiles predicted by MIMIC
from the experimentally obtained expressions of diffusion coefficient as
functioﬁ of concentration. Thus, we are confident that the method of
calculation wused here is correct.

6.7 Shape of D vs c curves

Looking back over the results presented here, we will find that

the curves of Dpp VS Cp generally exhibit a minimum, This is a charac-

teristic of non-ideal solutions. Although we cannot predict at what concentratior

the diffusion will be maximum or minimum, we are at least able to
explain why such a minimun or maximum is possible.
It has been widely agreed that no matter how the expression of

.the diffusivity is derived, be it from Eyring's kinetic theory,

hydrodynamic approach or thermodynamic standpoint, we always have: (52)
. 3 In v, '
DAB = g (1+ ——) /U (6.1)
3 1n XA

Where £ is a function of molecular size, intermolecular forces,

shape of the molecule and temperature. The second term is a thermodynamic
term, indicated the departure of the solution from ideality:

3 Iny_
1+——-—————A=1+__.._.._..
alnxA al_an

9 Iny
B (6.2)



Yar Yp? activity coefficients _bf'A, VB

U is the viscosity of the solution.

Thus, we can see from (6.1) that the way diffusivities vary
deperds on how the last two terms change with concentration. |

It is interesting to note here that although the concentration
ranges covered in this project are not very large, the diffusivities at
infinite dilution found by extrapqlation are rather consistent with
data fram other sources. These diffusivities can be used to deduce
diffusivities in concentrated solutions.

One of the simplest correlations has been derived from equation

(6.1):
DAB 3 1n YA Ho
o = Q+—— — (6.3)
D ap 3 In x,° M
where DZ?B is the diffusion coefficient at infinite dilution and ug is

the viscosity of the solvent.

It can be seen here that DAB

provided that DZB as well as viscosity and thermodynamic data of the

is calculable at any concentration

system are available.
Recently, Vignes (53) studied diffusion data of 30 solid and liquid

systems. and deduced the following correlation:

om0 \¥B Xp 3 1n yp
Dap (Oxg) B (OBa) & (1 + =5 XA) (6.4)

It appeared from his results that his correlation is very accurate

o Y
and'the curves of log (D, /(1 + CAnayy . X, were all linear.
F

*a
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When the two diffusing species are very similar, Dfp = DRy and
(6.4) simplifies to (6.3), except for ‘the term ug /ﬁ. Thus it might be

reasonable to add the viscosities into (6.4) as following:

 Re v Ofa vy)”

1]

.9 .l.nAYA

(14 (6.5)

Dag

)
9
In XA
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7. CONCLUSIONS AND RECOMMENDATIONS

After analyzing the diffusivities found for 5 inorganic and

organic systems, several interesting conclusions have been drawn:

a.

It has been proved that this method offers a quick, simple,

efficient way of measuring diffusivities of liquid systems.

The results obtained from this moiré pattern technique are

rather crude, witha deviation of about + 10 percent.

The diffusivities at infinite dilution turned out to be
very consistent with many other sources. Whenever thermo-

dynamic data are available, these diffusivities can be used

- to check values at higher concentrations.

Wider concentration ranges should be covered in order to
establish the dependence of diffusivity on concentration
from zero to 1.0 mole fraction, to test correlations like

(6.3), (6.4) or (6.5) to find the best one.
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To improve the accuracy of this technique, same changes in
apparatus and technique should be carried out:

Firstly, since the major source of error comes frdﬁ the traci_ng
of moiré lines through a microfilm reader, this tracing should be avoided
by using the photographs directly. However, such photographs must be
clear, have good contrast, ‘and the lines must be thin enough to reduce
- errors. In order to have all these, a high quaiity camera should be used
along with mdre finely graduated scfeens. It is suggested that a Hasselblad
500C is good enough. On the other hand, screens of about 1000 lines per
inch are recommended. Of course, with these cameras and screens, a new
light source, brighter than the presently used (a K25 Sylvania concentrated
arclamp) would be necessary. Whenever possible, an interference filter
would be desirable to produce highly monochramatic light. The optical
system could be further improved by using a finer ground glass and a
higher quality lens to .produc'e parallel light beam.

As far as the diffusion cell is concerned, the present cell is
reasonably good but when it is expected to be in use for a long time, the
Teflon block should be replaced by one made of Delrin (suggested by
r’dr. L.J . Suggett of the Faculty of Engineering Machine Shop, McMaster
University) since it does not subject to shri_rﬂdng as much as Teflon.

" If the liquids interdiffusing are not very volatile, an alternative
technique can be used to measure diffusivities more quickly and perhaps,
more accurately than the ‘moiré pattern method. This technique, called

- the microinterferometric method, has been used by Nishijima and Oster(3l) '

(32) and recently by Paul (54) to measure diffusion coefficients for

Secor
concentrated solutions, including some polymer systems. Details of this

method can be found in the above references.
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" To have a higher accuracy, it is suggested that: 1. a laser
beam be used instead of the combinatioﬁ of a point source and a
collimator lens; 2. the temperatures of solutions interdiffusing should
be controlled by containing them in two constant temperature syringes
placed besides the diffusion cell; 3. the concentration profile be
fitted to a sigmoid equation (S-shaped curve) to avoid calculation errors
due to integration and differentiation.

A setup recommended for this method is shown in Fig. 26.



6
5
r
)—
d‘rm‘l
-
1 3
2

1

1: gas laser; 2: water filter; 3: mirror
4: diffusion cell; 5: microscope; 6: camera

Figure 26

‘Diffusion Measurement by Laser Interference
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NOMENCLATURE

— thickness of the diffusion cell

~ distance from the diffusion cell to the screen where deflections
of the light beam were measured

- concentration

- diffusion coefficient

- intrinsic diffusion coefficient, defined by (3.1.11) and (3.1.12)

~ function defined by (3.1.19)

- constant in equation (3.2.15)

- constant in equation (3.2.17)

- refractive index

- molar flux in the x-direction

- area under the curve of u vs x from x = 0 to x = x (Fig. 5a)

- total area under the curve of u vs x

- diffusion time

- height of moiré curve

- velocity of the bulk flow

~ partial molal volume

- distance from the boundary, in the direction of diffusion

- (subscripted) molar fraction

- distance in the direction perpendicular to the direction of
diffusion

- deflection of the light beam when emerging fram the diffusion

cell
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Greek Symbols

y - activity coefficient
u - vVviscosity
n. - Boltzmann variable
p - radius of curvature of the deviated light beam
¥ - angle defined in Fig. 1 |
0, = - ibid -
6y~ - ibid -
¢ = angle between the linés of the two screens (A) and (D) in Fig. 2b
g - constant in equation (6.1) ‘
Subscripts
A - refers to one of the two diffusing species
B - - ibid -
1 - refers to the solvent or -the solution of lower concentration
o - refers to the solution of higher concentration
AB - refers to the diffusion of species A into Species B
refers to the diffusion of speéies B into species A

XB - SA - refers to the diffusion coefficient at J_nfinite dilution
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Appendix I

Derivation of the Expression for Diffusivities when there is Volume |
" 'Change on Mixing

The diffusion equations for this case are:

aC

S A
Ny ==, - + Xy (NA + NB) (A.1.1)
aC
N = - B +x (N +N) (A.1.2)
B B 9x B "A B :

Where DA and DB are the intrinsic diffusion coefficients (55)
of A and B.
If v is the velocity of the bulk flow, assumed to be in the

x-direction and to depend on x and t only, we have:

3Ca

N, = - —+ vC (A-l°3)
A A 3% A | |
aC
= - B (a.1.4)
NB ~DB X + VCB

Now if VA and VB are the partial molal volumes of A and B, since
in 1 unit of overall volume we have VACA volure unit of A and VBCB

volure unit of B,

Jc +Ve = .
Vil T Vg = 1 (a.1.5) |
Which can be differentiated to give, at constant pressure and

tenperature: :
Cy

A |
(—) - = (a.1.6)
BCA P,T VB
On the other hand, a material balance gives us:
aC
i N (a.1.7)
ax ot /
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9N 3C _
B -_-_2 | (3.1.8)
X ot . ,

Equations (A.1l.1) and (A.l.2) become:

aC ~Cc,

A=3 O 5__13) -2 () (A.1.9)
ot X X X

aC e

_B=3 @™ _B _2 A.1.10

Inserting (A.1.5) and (A.1.6) in (A.1l.10), we get:

, Vv, oC '
N N WU Y_P:QA)_CB_BX (a.1.11)
VB ot 3% D VB X 5 X
v
‘ X
This, when added to (A.1.10) multiplied by V, gives:
vB
V. sc v
A ™A e
0=-2_ @B_—_—-—-—-—)—CBE.‘.'.+V._§. A
X V. ox 33 vV, ox
B B
T aC v 7. °C
+Ba P B _c AN_, A_R
B
or, after a simplification:
- - — vV ac 3C
(CV+CBV)3V=—V3 (D A A)+V_B__D A
A T By e P
B X X Vx X A xRy

(A.1.12)



Since Cp Vo + CgVg = 1,

aC vV, 3oC

VT D A _T A %0
=V 3 B _BH-7ga H =2 _A
X Aax Aax Bax B-VB ax)

After a regrouping of the above relation, we have:

9 ' aC
W T E"‘-(DA—DB) Ca b A
5% AR ax B B3
: . . to. .
An integration of (A.l.14) from x = - » X = X gives:
X =X X BC .
i A
fav =17 L[(D -D)————]dx
X = — o _mA 3% A B’ sx
1
< —
AR BCA?__ (Y.Zi) ax
B B & %
N, B v
2
BCA
Assuming that v and I are zero at x = -», we have:
v= 1 + 2
wh : .
ere % ’c, 7,
- (b -5 A _ -D 4
1 =T B0y 2 i,,(b » 5o 5
X, 3C oV 3c. VoV
2 = D _A_A D _AA_B) g
- B3x 3x B3 T ax
B
Hence:
— aC X W v N2
v=V 2 -0,y A, (D A, Ap B

(1.1.13)
-
oxX VB
(A.1.14)
(A.1.15)
dx
*n ax
ox

(A.1.17)
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oV W, W, aC
Replacing . Aby 2. _B . A we dbtain:
' X avB acA oxX

X V¥ N ac"2
v (D v, b A, A By A
v=0, BBy R+ A + 2D ) By (D ax

B VB B» aCA 9xX

-00

(A.1.18)
Now since VA CA + VB CB = 1,
a3
BVB CA

" (Aa.1.18) becames:

o 3. X  C. 'V 3V 3C, 2
v=7 (& -2 Res B BLAS ) (LB (D
X -—C0 A B aCA X
(A.1.19)
Substituting (A.1.19) to (A.1.9), we get:
3C aC 3C Xc
A= D A3 (v O D) R+ B
3t X A 5y ) X A ( A A B %x _, CA
v C v )
@ +H 2 A (a B (C)de)}
A BvB Cg oC ox (A.1.20)

oC
Cas Pl T Dby
t 2. A AA'A B "3

- _B A (A.1.21)
S e/ B+t 2D ax )



By defining a new diffusion coefficient D:

_b o o
D=2, VgC+ DV G - (A.1.22)
We have:
_ T (D -0 = - 7
A" P =Py -G T+ Yy
= CBVBDA + CAVADB
) b I =
and:
b _ b .p 2% (A.1.24)
= B T ~ -
v, Vs &
Thus {(A.l1.21) becomes:
3y, x W, ac, 2
Tk O il s = (2) (=) dx}
(A.1.25)
Similarly,
3 aC v
CB_a B, _ 5 xD WV 3C, 2
=3 O "G 7/ L _ (98 &«
X aX ax - C_ V. aC,
A 'B A
(A.1.26)

By defining a function g (CA) such that:

gy =_1_%.
Ca Vg 3C,
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the previous relations can be written as follows:

aC aC :

.__A.= 3 D A 9 - ’ X 3C 2

% Ul TERiC /D g(C,) (.._axA) ax 3 (A.1.27)
and:

3CB 3 aCB C 2

(D )+——-{c]3 ng (C )( ) ax }  (A.1.28)
With a Boltzmann variable defined as n = ’—}E and the following boundary

conditions:
CA=CoatX<0,t=0
CA=c1atX>0,t=0

equation (A.1l.27) can be transformed to:

dac . 4c n ac, 2
A _ d A d A
Ne——=-22_ O._2) -2 {c, / DglC)(—=2) dnl
dn ~ dn dn dn A A
(A.1.29)
_ dc, aC,
Since D .2 = (D )(____) YE (D -.-) =0atx = or
dn ax

n= -», we have the following expression for the diffusion coefficient
D, assuming that D of the second term on the right hand side of (A.1.29)

C
can be approximated by—l an_ Cf A ndC, (case of no volume change on

3 &,
. . o
mixing):
C, cA Ca
D | =-19 [ ;%54 -c 9(C) (f Pndc,) dc
- 3 & A~ A A
C =% { o CO

(A.1.30)



Thus, diffusion coefficients of systems displaying volume change
on mixing can be calculated through the same ways as in the case of
systems without volume change on mixing,.provided that thermodynamic

data, i.e. the g (C,) values are available,
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Appendix II

Estimation of Diffusivities at Infinite Dilution

The two most famous correlations used to estimate diffusion
coefficients in dilue solutions are the equations of Wilke and Chang(lg)

and Othmer and Thakar(zo).

The Wilke-Chang's equation is:

_ - 0.5
D =7.4x1078 T (X0 (A.2.1)
u (V )0.6 .
o
where Do is the diffusion coefficient at infinite dilution,
cn?/sec

Ok

T is temperature,

X is a solvent factor, given in (19), dimensionless

M is molecular weight of the solvent

p is viscosity of the solvent, cp

Vb is molal volume of the soluté, given in (19),
an/g-mole

The Othmer-Thakar's equation is:

-5 . .
b - 14.0x10 3.2.2)

(]
by (L 1Lg/Ty,) VI?I.G W2

where Do is the diffusion coefficient at infinite dilution,

an’/sec’
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qw is viscosity of water, cp
Lg is latent heat of vapofization of the solvent,
cal/g-mole
L, is latent heat of vaporization of water, cal/g-mole
.V, is molal volure of the diffusing substance (solute),
cm;/g—mole |
ﬁ: is viscosity of the solvent at 20°C, cp
Foliowing is a sumary of calculations for diffusivities at

infinite dilution of the four non-electrolyte systems covered in this

project.

' Diffusion coefficients at infinite dilution

- 2
(10 cm /sec)
[Vilke Othmer This work

System* [« Chang & Thakar (extrapolated)
Sucrose-Water : 0.53 - 0,49 ' 0.44
C1ycine-Water 1.21 1.12 0.95
Ethyl Acetate-Water 1.04 0.97 0.75
Benzene-CCl, 1.54 0.90 1.21

Table A.1 Estimation of Diffusivities at Infinite Dilution

*In these calculations, the diffusion of the first substance to the
second was considered,
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T o Vg °F Yy M Ls Tw s
System* (°K) X M (@) | (an’/g-mole) | (Cp) (cal/g-mole) | (Cp)
Bucrose-Water | 298.16 2.6 18.02 0. 89;1 340.4 , 0.894 560.0 560.0 1.000
Glycine-Water 298,16 .2.6 18,02 0.894 82.6 0.894 560.0 560.0 1.000
Ethyl Acetate-Water 298.16 2.6 18.02 0.894 103.6 0.894 560.0 560.. 0 1.000
Benzene—CCl4 298.16 0.7 153.84 0.955 96.0 0.894 560.0 49.0 1.020

Table A.1 (continued) Estimation of Diffusivities at Infinite Dilution

*In these calculations, the diffusion of the first substance to the second was considered.
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Since NaCl is an electrolyte, the diffusion coefficient of

the NaCl -HéO system was estimated according to Nernst's equation(zl)_.

o 40

| . 1°91°
D_=8.931x 10710 ¢ (= ¢
(o] AO

-) (A.2.3)
z, z_

where D, is the diffusivity of molecule at infinite dilution,

cnz/seé

T is absolute température, Ok |

12 is cationic conductance at infinite dilution,
mhos/equivalent

1° is anioni¢ conductance at infinite dilution ,
‘mhos/equivalent

A°_=,1$ + lg.is electrolyte ‘conductance at infinite
dilution, mhos/équivalent

T is absolute temperature, °k

z, is valence of cation

z 1is valence of anion

(56), we have at 25°C, for

According to Robinson and Stokes
WaCl diffusing in water:

o
1; 50.1
12 = 76.35

On the other hand,

Thus, the diffusivity of the NaCl-H20 system at 25°C and

infinite dilution is:

D, = 8.931 x 10710 x 298,16 (30-1 % 76:35) (1 +1,
50.1 x 76.35 1x1



D = 1.61 x 1075 cm2/sec
o -

- 2
conpared with the value of 1.08 x 107> an-/Sec found by
extrapolation of the diffusion coefficient-concantration curve obtained

in this project for the NaCl -H20 system at 25%.
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Appendix ITI

Camputer Programs

Program A - Calculation of diffusion coefficients fram
.moiré curves.

Program B - Calculations of standard deviatibns , percent
standard deviations of diffusion coefficients at
different concentrations. Fitting the values of
diffusion coefficient vs concentration into
polynamials by the least square method to find the
best fitted polynomial.

Program C - Determination of the concentration profile fram the
expression D = D (C) found for each system, using

MIMIC,

80.



a¥aRaNaNaNaNaNaNaNalalNaNaNaNaNaRaRaNalaNaNaNaRaNaFaNalaNaNaNaNaNaWa

777

301

8l.

PROGRAM TO CALCULATE DIFFUSIGCN COEFFICIENTS FROM MOIRE CURVE

NSYSTeesesseelS NUMBER OF SYSTEMS TO CALCULATE DIFFUSIVITIES

NPROBeesessselS NUMBER OF RUNS IN EACH SYSTEM

TITeeooeonooslS NAME OF SYSTEM

DAeeecssesseelS DENSITY OF SOLUTE

DBeeseesceeeslS DENSITY OF SOLVENT

AMeossssoeeeelS MOLECULAR WEIGHT OF SOLUTE

BM..‘.'....O.IS MOLECULAR WEIGHT OF SOLVENT

XXeooseosoeoelS DISTANCE IN THE X-DIRECTION ON MAGNIFIED PICTURE ’
M o .

YY...-......;IS HEIGHT OF MAGNIFIED MOIRE CURVE ] CM

XXCeooossesealS DISTANCE FROM BOUNDARY » CM

YYCeoooonssselS CORRECT HEIGHT OF MOIRE CURVE s CM

CONCesosossselS CONCENTRATION OF THE DIFFUSING SPECIES CONSIDEREDS,
GMOLE/L v

COlesooenoneelS INITIAL CONCENTRATION » GMOLE/L

TeseeoseesneselS DIFFUSION TIME o SEC

XMooooooo‘oooIS MAGNIFICATION FACTOR .

NesooessesseoolS THE NUMBER OF DATA POINTSe THE FIRST ONE IS XX=0e0

LIMITeeseoeealS THE MAXIMUM NUMBER OF SEARCHES

BMANNeeosoeaslS BOLTZMANN VARTABLE s CHM/SEC*%#045

FeoseonsseososalS THE FIBONACCI NUMBER

DIMENSION TIT(9) sXX(60)sYY(60)sCONC(60)3sCO(60) sAREA(60)sDC(60),
lDERIV(éO),ACX(6O)aAXX(6O),F(25)9XXN(6O)sCOO(éo)sDCC(bO),CONCEN(GO’
1;DIFFCO(60)sXXC(6J)9YYC(6O),BMANA(éo)sFRMOLE(éO’

COMMON XXs CCNCs N»s CO1

READ(55300C)INSYST

DO 7777 ISYST=1sNSYST

READ(552999)TIT

WRITE(6+2C01)TIT

READ(542998)DAsDBsAMBM

WRITE(652000)DAsDBsAMBM

READ(5+2997)NOPROB

NNN=0 .

READ (5s2996) COls Ts XMs No LIMIT

WRITE(6+1999)C0O1 9T sXMsNsLIMIT

WRITE(791999)C0O1sTsXMsNoLIMIT

NN1 = N-1

NN2=N=-2

AREA(1) = 0.0

READ (552995) (XX(I)s YY(I)s I = 1,iN)

DO 301 I = 24N

XX{I)=XX(1)#049763

AREA(I) = ((YY(I)+YY(I=-1))/2, O)*(XX(I)—XX(I—l)) + AREA(I-1)

CONTINUE

DO 302 I = 14N
CONC(I) = AREA(I)/AREA(N)
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CO(I) = CO1l * CONC(I) 82.

302 CONTINUE

FIBONACCI SEARCH FOR LOCATING THE NEW ZERO POINT ON THE DIFFERENTIAL
DEFINE FIBONACCI SERIES UP TO F(25)

CF(1)=1.0

F(2)=2,0

DO 7 LLL=3525

7 F(LLL)=F(LLL-1)+F(LLL=-2)

LIMIT DEFINES ACCURACY BY SPECIFYING NUMBER OF TIMES FIBONACCI
SEARCH 1S CARRIED OUT
DEFINE SEARCH RANGE

X0 = XX(1)

XN = XX(N)

YO=DARINT (X0)

YN=DARINT (XN}
PLACEMENT OF FIRST CALCULATION
THIS ASSUMES THAT EPSILON/F(LIMIT) IS NEGLIGIBLE

S={XN=XO)Y*(F(LIMIT-1)/F(LIMIT})

X1=XN-S

X2=X0+S

Y1=DARINT(X1)

Y2=DARINT(X2)
FIBONACCI SEARCH FOR MINIMUM OF [CARINT
INTERIOR CALCULATIONS ARE PLACED. SYMMETRICALLY

LL=LIMIT-2

DO 8 NOFIRBR=1,LL

IF(YleGEeY2) GO TO 9

XN=X2

YN=Y?2

X2=X1

Y2=v1

X0=X0

YO=Y0

X1=X0+(XN=X2)

Y1=DARINT(X1)

IF(X1eLTeX2) GO TO 8 .

XXX = X1

YYY = Y1

X1=X2

Y1l=Y?2

X2 = XXX

Y2 = YYY

GO TO 8

9 X0=X1

YO=Y1

X1=X2

Yl=Y2

XN=XN

YN=YN .

X2=XN-(X1-XC)

Y2=DARINT(X2)

IF(X1eLTeX2) GO TO 8

XXX = X1
YYY = Y1
X1=X2

Yl=Y2
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X2 = XXX
Y2 = YYY
8 CONTINUE

R IS THE MIDPOINT OF THE FINAL INTERVAL
R=(X1+X2)7/240
DO 1113 I=1,N
XXC(I)=(R=XX(I))/XM
BMANN(TI)=XXC(I)/SQRTI(T)
YYC(I)=YY(I)/XM

1113 CONTIMNUE

WRITE(651998)

WRITE(751998)
WRITE(6951997)1(YY(I)aXX(I)sCO(I?sXXC(I)aYYC(I)sBMANN(I)3I=14N)
WRITE( 719971 (YY) eXX(I)sCOCI) oXXC(IsYYC(I)4BMANN(I)3I=14N)
WRITE(651996)R

THE FOLLOWING SECTION CALCULATES THE INTEGRAL UNDER THE CURVE
OF CONCENTRATION VERSUS DISTANCE FOR VARIOUS DISTANCESe.

AREA1 IS THE TOTAL AREA UNDER THE CURVE UP TO Re.
AREA2 IS THE AREA ABOVE THE CURVE MINUS AREAl.
ACX IS A DIFFERENTIAL AREA.

AXX 1S THE TOTAL .AREA UNDER THE CURVE UP TO XX

ACX(1) = 0.0
AXX(1) = 00
AREAl = 0.0
AREA2 = 0.0
DO 77 1 = 14NNl
IF (XX(I+1)eGT.R) GO TO 78
ACX(I+1) = (CONC(I+1)=CONCII)I#(XX(I+1)=XX(I))/240
RECT = (CONC(I+1)-CONC(I})#(R=XX(I+1))
AXX(I+1) = ACX(I+1) + RECT + AXX(I)
AREA1l = AXX(I+1)
GO TO 77
78 ACX(I+1) = (CONC(I+1)—CONC(I))¥*0e5¥(XX(I+1)+XX(I)=2,0%R)
AREA2 = ACX(I+1) + AREA2

AXX(L+1) = AREA1l - AREA2
77 CONTINUE '

THIS SECTION CALCULATES THE DIFFUSION COEFFICIENT.

DERIV IS THE DERIVATIVE OF THE CURVE.
DC 1S THE DIFFUSION COEFFICIENT IN CMe SQUARED PER SECONDe

DO 82 I=3sNN2
DERIV(I’ = (=CONC(I+2/+8+0%CONC(I+1)=840%CONC(I~1)+CONC(I=2))/(12.

10¥(XX(I+1)=XX(1)))
DC(I) = AXX{I)/(2eC*T%DERIV(I)*XM¥XM)
82 CONTINUE :

INTERPOLATION TO GET DIFFUSION COEFFICIENTS AT FIXED INTERVALS OF
CONCENTRATION

83.
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DO 1110 I=3,NN2
NJ=1-2 .
COO(NJ)Y=CO(1I)
1110 DCC(NJ)=DC(I)
NN=N-4&
I1=1
DO 1111 JK=1,9
CONCENI(JK)=C01/10.0%FLOAT (UK
FRMOLE (JK)=CONCEMN(JK )/ {CCNCEN(JK)}+ (100040~ CONCEN(JK)*AM/UA)*DB/BM)
DO 1112 II=11sNN
IF(CONCEN(JK) «GTCOO(II}IGO TO 1112
DIFFCO(JK)=DCC(II=1)+(DCC(II)=DCC(II=1))/(COO(II)~COO(II-1))%(CONC
1EN(JK)=COO(II-1))
I11=11+1
GO TO 1111
1112 CONTINUE
1111 CONTINUE
- WRITE(651995)
WRITE(7+1995)
'WRITE(651994)(CONCEN(JI)9FRMOLE(JI’,DIFFCO(JI);JI-1s9)
WRITE(751994) (CONCEN(JI) sFRMOLE(JI ) sDIFFCO(JI! 9JI=149)

"NNN = NNN+1
IF(NNN+LT«NOPROB) GO TO 777
7777 CONTINUE
3000 FORMAT(I13)
2999 FORMAT(9AS)
2998 FORMAT(2F6e332F642)
2997 FORMAT(I5)
2996 FORMAT(3F10e35215)
2995 FORMAT (2F10.2)
2001 FORMATI(1H1s9A5////)
2000 FORMAT(5Xs19HDENSITY OF SOLUTE =+F6e393Xs20HDENSITY OF SOLVENT =»
1F643//5Xs18HMOL WT OF SOLUTE =3F74233Xs19HMOL WT OF SOLVENT =4F7e2
1) ‘ o
1999 FORMAT(1H1s5X9s5HCO1l =sF6e3s4H N 93HT =3sF9e296H SEC s4HXM =9sF6e2
15H N =9I1342Xs7HLIMIT =513/7)

1998 FORMAT(8Xs2HYY 38X s2HXX s 7Xs2HCO95Xs THCOR XX33Xs7HCORe YY3»3Xs18HBOL
1TZMANN VARIABLE/7Xs4H(CM) 96X s4HICM) 33X sOH(GMOLE/L) 93X s4H(CM) 96X s4H
1(CM)s5Xs13H(CM/SEC*¥%Ce5) /)

1997 FORMAT(1H s5F1Ce336XsE10e3)

1596 FORMAT(1HOs4HR ISsF8e4)

1995 FORMAT(1H195Xs13HCONCENTRATIONs3X»13HMOLE FRACTIONs3Xs21HDIFFUSION
1 COEFFICIENT/8Xs9H(GMOLE/L) 925X s11H(CM*%2/SEC) /) ‘

1994 FORMAT(5XsF10e327XsF1043510X5E10. 3)

sToP
END

AN NON

IBFTC DARINT
FUNCTION DARINT(RR)
C FUNCTION SUBPROGRAM FOR CALCULATING THE DIFFERENCE BETWEEN THE AREAS,
C DARINT»s ON EACH SIDE OF THE SELECTED ZERC POINT USING TRAPEZOIDAL RULE
DIMENSION TIT(9)sXX(60)sYY(60)sCONC(60)sCO(60!sAREA(60)+DC(60!
lDERIV(éo)9ACX(6O),AXX(6O)aF(ZS"XXM(éo)sCOO(éO)aDCC(éo’,CONCEN(60)


http:FOR~ATC5XtFl0.3,7x,F10.3,1ox,El0.3l
http:IS,F8.4l
http:FORMATC2F6.3,tF6.2l

1sDIFFCO(60) s XXC(60)sYYC(60) 4BMANN(60) sFRMOLE(60)
. COMMON XXs CONCs N, CO1
C LOCATION OF RRIN PROPER INTERVAL ON XX(I) AXIS
DO 1 I=1sN ‘
IF(XX({I1)eGT«RRIGO TO 2
1 CONTINUE
2 I1=1-1 ;
C CALCULATION OF SUBAREA BETWEEN XX(I) AND RR
C HR IS CURVE HEIGHT AT RR
HR=CONC(I)+({ RR=XX(I))#*(CONC(I+1)=CONC(I?)/(XX(I+1)=XX(I))
“C CALCULATION OF AVERAGE HEIGHT, HAVGl, IN SUBINTERVAL AND SUBAREA,
C SUBA1 :
HAVGl = (HR + CONC(I))/2.0
SUBA1l = HAVG1¥*(RR-XX(I))
SAREA=0.0
CAREA = 0.0
C CALCULATION OF AREA UNDER CURVE UP TO XX(I) AND AREA UP TORR»ARINT1
‘ NN=1-1
IF(NN «EQe 0) GO TO 4200
DO 3 J=1sNN

CAREA = (XX(J+1) = XX{(J))*(CONC(J+1) + CONC(J}1/2.0
3 SAREA = SAREA + CAREA ’
GO TO 4201 ‘
4200 CAREA = 0.0
SAREA = 0.0

4201 ARINT1=SAREA+SUBA1 '
C CALCULATION OF SUBAREA BETWEEN RRAND XX(I+1), SUBA2
C CONC(I) IS REPLACED BY (CO1-CONC(I+1))

HR = CONCI(N) - HR

HAVG2= (HR+CONC(N )=CONC(I+1)1}/2.0

SUBA2 = HAVG2¥*(XX(I+1}-RR)

CAREA = 0.0 '

SAREA=C.0
C CALCULATION OF AREA UNDER CURVE FROM RRTO XX(N)
' 1J=1+1

NN=N-1

DO 4 J=1JsNN
CAREA = (XX(J+1)—XX(J)’*(2 0% CONCIN )=CONC(J+1)-CONC(J)) /2.0

4 SAREA SAREA + CAREA
ARINT2=SAREA+SURBA2
DARINT=ABS(ARINT 2~ AQINTI)
RETURN
END

85,
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3000

4000

2000

86.

CALCULATIONS OF MEAN DIFFUSION COEFFICIENTSsSTANDARD DEVIATIONS
AND PERCENT OF STANDARD DEVIATICNS

MDCooeoooosnssseeslS MEAN DIFFUSION COEFFICIENT
SQDEV...Q.....III.IS SQUARE OF DEVIATION

STDDEV......-.....IS STANDARD DEVIATION

PCSTDVeassoosoaseslS PERCENT OF STANDARD DEVIATION
PCSTDVeesseeasseesselS PERCENT STANDARD DEVIATION (MEAN/STD DEV)
DCPOLYeoossasesesslS VALUE OF DIFFUSION COEFFICIENT AFTER FITTING
DEVNEWeessseeveseelS STANDARD OF ULUEVIATION AFTER FITTING
PCONEWoeeeoeseneaselS PERCENT STANLUARD OEVIATION AFTzZK FITTING
ASUMPCeoessesesssslS Trik AVERAGE OF PERCENT STD DEV

DOUSLE PRECISIOI CO(1C910)sDC(10510)4MDC(10) +SADEV(10),,STDDEV(10)
lPCSTDV(lu)sA(9)sCOO(luO)sDCC(l“J)9AA(lOu)sPOLY(o)sDCPOLY(B’sSU”SQ(
110) sDEVNEW(1U) s PCONEW (11U »F RrOLE(lo,lu)

REAL MDC

READ(55998 )} NPROB

DO 1000 I1=1,NPRORE

READ(5+996)A

WRITE(55999)A

WRITE(7+999)A

READ(5, 994)((CO(I’J),FRHOLE(I,J) DCl1sJ)s1=159)45J=1,8)

SUMPC_K/. 0

DO . 2000 I=1,9

MCC(I)=0.0

DO 300C J=1,48

MDC(I)=MDC(I)+DC(1sJ)

CONT.IMUE

MDC(1)=MDC(I)/8.0

SQDEV(I)=C.C

DO 40C0 J=1,8

SQDEV(I)=SQOEVIII+(DC( T o) =MDC( 1)) %%

CONT INUE

STDDEVI(I)=SQRT(SQDEV(I)/8.0)

PCSTDV(I)=STDODEV(I)/MDC(I)%10040

SUMPC=SUMPC+PCSTDV (1)

CONTINUE

ASUMPC=SUMPC/9.0

WRITE(65997)

WRITE(7+997)

WRITE(63995) (CO(I191) sMUC(I) $STULEV(I) sPCSTOUVI(I)sI=1+9)

WRITE(T79995) (CCO(191) sMDCII)3STDDEV(I) oPCSTOV(I)sI=1459)

WRITE(6598G)ASUMPC

WRITE(7+98G)1ASUMPC



FITTING DIFFUSION COeFFICIEAnTS VS CONCENTRATION TO A POLYNOMIAL
BY THE LEAST SQARE METHOU

I11=1
DO 5100 I=1,9
DO 5200 J=1,8
COO(I1)=CO(IsJ)
DCC(I1)=DC(IsJ)
I1=11+1
5200 CONTINUE
5100 CONTINUE
N=T2
M=1
DO 5600 M1=1,8
POLY(M1)=(Ca0
5600 CCNTINUE
5000 CALL DLESQ(AASPOLY sCOOsDCCsMaN!
Ml=M+1
WRITE(6s987)
WRITE(6+993)POLY
WRITE(7s993)POLY
SUMPC=Ca0
DO 5300 I=1,9
DCPOLY(I)=POLY (1)
DO 54CC JK=2,M1
DCPOLY(I)-DCPOLY(I)+PuLY(JK’*CO(Ia1)*y(JK 1!
54G0 CONTINUE
SUMSQ(I)=0a0
DO 5500 J=1,48
SUNSO(I)-SUVSO(I)+(DC(19J)—DCPOLY(I')* ¢2
5500 CONTINUE
DEVNEW(I)=SQRT(SUMSQ(1)/8.0)
PCONEW(I)}=DEVNEYW(I)/DCPOLY(I)7%1000
SUMPC=SUMPC+PCDNEW ()
5300 CONTINUE
ASUMPC=SUMPC/940
WRITE(65991)
WRITE(7+991)
WRITE(69995)(CO(191) sDCPOLY (1) sDEVNEW(I) sPCDONEW(I) 91=149)
WRITE(75995) (CO(I51)sDCPOLY (1) sDEVNEW(L) sPCONEW(T) 91=149)
WRITE(69989)ASUMPC
WRITE(7s989)ASUMPC
M=41
IF(MelLTe8)GO TO 5000
1000 CONTINUE
998 FORMAT(I5)
996 FORMAT(9A6)
994 FORMAT(5XsF10e337XsF10e3910XsE10e3)
999 FORMAT(1H1+5X99A6//7/)
997 FORMAT(6Xs5HCONCe s X s 14HMEAN DIFFe COe9s4X918HSTANUARY DEVIATIONs&4X
1517HPERCENT S$TDe DEVe/)
995 FORMAT(1H sF10e335XsE10e3512XsE10Ce337XsF10e3)
993 FCRMAT( 1UX9sE12e5310XsE1245)
991 FORMAT( ///6X9s5HCOMNCe 94X 14HBEST FITTED DCs4Xs18HSTANDARD DEVIATIO
1Ns&4X s 1 7THPERCENT STDe DEVa/)
989 FORMAT( /10Xs27HAVERAGE PERCENT STDe DEVe =sF7.2)
987 FORMAT( ///777715Xs23HPOLYNOMIAL COEFFICIENTS/Z!
sTop -
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$EXECUTE

MIMIC

SOLUTION OF THE UIFFUSION EGUATION WITH A DIFFUSIVITY LEPENUING ON

CONCENTRATION

DTQO.ooooo-ocno---o-ooooIS TIME STEP SIZt
DELXeeoesooseesensccceaceslS UISTANCE STEP SIZE
COleesssscsosssccsnsnseaslS AIGHCR CONCENTRATION
C170.oo.0.oo.-oo..uo-oo.IS LO‘/."!ER C(\JNCE\:TRATIOI\!

AOsAl sA29A39A4 9A5esusese®RE CONSTANTS I DIFFUSIVITY POLYNOMIAL

C
C

CAVER
K
G271
0272
02F
u2G
co2
0371
U372
J3F
C3G
CcO3
G4T1
JaT2
U4k
04G
CG4
C5T1
0572
O5F
356G
cd5
U6T1
U672
U6F
066G
Cco6
0771
0772
O7F
u7G
Co7
G8T1
C8T2
o8F
08G
cous8

CON(DT sDELXsCOLlsC175A0 A1)
CON(AZsA3sAbL AL
EGL((CC1+C1T71/240)
EQL(1e0/DELX/DELX)
EQL((CO3=-COLI*(CG3~CU1l)/440)
EQL(CO3=240%C02+C01!

ECQLUADH(AL+H(AZH(AB+H(AGHAS®CI2)I%#C021%C021*C021%Co2!

EQLIAL+(A2+ (AZ+ (AL4+ASXCQZ I % 024%C021%C02)
INTUKR¥(0O2TLI%C2G+I2T2#02F ) sCC1)
EQLII(CC4=-CUZ )% (CC4-Co2)/ba0)

EQL(CU4=-2.0%CO3+C021

EQLIAU+(AL+ A2+ (A3+(AL+ASHCCRI*CO3I*C03)%L03)%C03 1!
EQLIALI+(A2+ A3+ (AG+ASHC0O3)%CO31%#CO5)*C53)
INT(K#(D3T1%03G+03T2%03F ) 4CQ1)
EQL((CC5-C03)3#(CN5-CC3)/440)

EQL(CC5=2e0%C04+C03)
EQLIAUHF(AL+{A2+ A3+ (A4+nB%¥CO4 I %C041%Co4 I *C04I*TC4)!
EGLIAL+ (A4 (AB+ (a4+n5%#C 064 ) *C04 I*C0a)*CO4)
INT(K*(04T1*#C4G+04T2%04F ) +C01)
EQLI(C6~-CO4)*(C06-C04) /4a0)

EQL(CCH6—-2e0%CL54+C04 )
FQLIADH{AL+(A24 (A3+ (AL+ASXCHSI#CO5I#CN5I*C05 1%L
EQLIATI+(A2+ A3+ (AL4+ASHCOBI*CO5I%CN5)*CCH)
INT(K®(OSTL1*05G+05T2%05F ) sCC1)
EQL((CUT7-CO5!%#(COT~CO5} /40

EGLICOT=2e0%C06+C0O5

FQLIAUH(AL+ A2+ (A3+(AG+AS*C0613#C06 ) %061 %L061%*C06 !
EQLIAL+(A2+ A3+ (A4+AS*¥CO6I#C061%¥CO61%CL6)
INT(K*(06T1%¥06G+06T2%06F ) sCO1)
EQLI(CO8~CO6I1%(CO8-C26)/440)

EFQL(CUB8=2e0#CLT+CCH ! :
EQLIAUH(AL+(A2+(A3+(AL+ABRCOTIHCCTI*COTI*I0TI*COT)
EQL(AL+(A2H+ AR+ (AL+ASRCOTI*COTI*CQTI*CQT
INT(K*(0TTL*¥0T7G+07T2*0TF) $C0L)
EQLI(CCO=-COT 1% (C09-COT)/4a0Q
EQLICU9=-20%CO8+COT !
EQLIAD+(AL+(A2+(AZ+(AL+A5%CCB
EQLIATI+(A2+(A3+(AL+AS*COBI*CN
INT(K*(CBT1*%C8G+IE8T2%C8F ) 9CH1

) JECQLI*CCE 1 ¥COBI
§1%Cn8IXCO8)
)

e
~
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09T1
0972
O9F
096
Cco9-
1071
16T2
10F
130G
C1l0
1171
1172
11F
11G
Cl1l
1271
1272
12F
126G
Clz2
1371
1372
13F
13G
cl3
1471
1472
14F
146G
Cla
1571
1572
15F
15G
"C15
1671
1672
16F
166
cleé

EQL((C10-C08)%¥(C10-Cl8!/440)

EQL(C10=-2eC*C0U9+C08)

EQL(AC+ AL+ (A2+ (A3+(A4+A5*CE)%C09)*C09)#CO9 I *COG)
EQLIAL+(A2+ (A3+ (A4+ABXCO9I*COG!I*COG ) *C0Y)
INT(K¥(09T1%09G+L9T2%0GF ) s CAVER!

EQL((Cl1- CQ9Jw(C11 -C091/6440)

EQL(CL1-2.0%Clu+C09!
EQL(AJ+(A1+(A2+(A3+(h4+A5*QIU)’LIO'*LIO)*CIC)*ClC)
EQLIAL+(A2+ A3+ (AL+AS*CICHI*¥C10%#C10/*C10)
INT(K*¥(1CT1#1GG+10T2%107F ) ,C17)
EQL((C12-Cl0)*(C12-C10!/440)

EQL(CL2=-2.0%C11+C10)
EQL(AU+(~1+(A2+(n3+(A4+A5*C11'?Cll)*Cll)vCll'*Cll)
EQL(ALI+(A2+ (A3+ (AL+AS¥(C11)*C11I%C11)*C11)
INTUK®(11T1%11G+11T2%*11F),C17}
EQL((C13-C11)%(C13-Cl1!/4a40C)

EQL(C13-240%C124C11)

EQL(AG+(AT+(A2+(A3+(A4+A5*C121%C121%C12)%C121%C12)"

EQLIAT+(A2+(A3+(A4+AS®CL2)%C12/%xCL21%C12 )
INT(K*(12T1%12G+12T2#12F)+C17)
EQLI(CL4=-C12)%(Cla-Cl2)/440)

EQLIC14=-2e0%C13+C12)

EGLIADH+(AL+(AZ+ (A3+(A4+ASHC13)%¥C13}I%(C13)%C13/%C13)
EGQLIAL1+(AZ+(A3+(A4+AE*C13)%C131%C13)*%C13)
INT(K*¥(13T1%13G+13T72%13F) 4C17)
EQL((C15-C12)%#(C15-C13)/440)

EQL(C15-240%C14+C13)

TEGQLUAUHLALF A2+ (AR +{AL+ASRC 14 I #C 14 ) ¥CL4)*CLla i1y
CEQLAL+(AZ+ LA3+{AL+ASR T4 I*¥CLG % CLla) *Clal

INTOK* (1GTi¥%146+14T2%14F ) ,C17)
EQLE(C16=Cla)*(Cl6~Cl4)/4e0)

EQL(C16-240%C15+C14 )
EQL(Au+(A1+(~2+(A3+(A4+A5‘C15)*ClplACIS)%ClDI*CISJ
EQUIAL+(A2+(A3+(AL+AS¥C15)%¥C15iI*¥C15)}%C15)
INT(K*(15T1%15G+15T2%15F ) 4C17)
EQL((CL7-C15)%(C17-C1l5)/440)

EQLICLT-2e0%CLl6+CL5 )

EQLIACH(AL+(A2+ (A3+(A4+A5*C161%C18)%C1leI¥C161%C16)
EGLIALI+(A2+(A3+(A4+ABH¥CL16I*CLOI#CL16I%(16)
INT(K*(16T1%160+16T2%16F ) +C17)

HDR(T sCO7+CU69CT9sC10,C11)

HDR

OUT(TsCOT+CUESCN9+C1D5C11)

FIN(T+2800.u1

END

89.
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Figure 27

Sample Picture - Sucrose-Water System @ 25°C after 244 minutes of Diffusion



EQUATTONS EXPERTMENTALLY FOUND FOR DIFFUSION COEFFICTENTS AS FUNCTION OF CONCENTRATION.'-l

General Form:

ag + alCl+ a202 + a3C3 + a4C4 + a5c5

cm2/ sec

gmole/1, concentration of the first substance in the

following table.

Value of Coefficients

System ap aj as as ay ag
Sucrose-Water | 0.44424 x 10~5 | 0.33786 x 10~% | -0.37170 x 1073 | 0.14273 x 1072 | -0.23642 x 1072 | 0.14244 x 1072
NaCl-Water 0.10804 x 10~% | 0.26287 x 1074 | -0.77257 x 1074 | 0.86971 x 10~%4 | -0.41758 x 10~4 | 0.72616 x 10™>
EtAc-Water 0.75493 x 10~5 | 0.28566 x 10™4 | -0.18939 x 10~3 | 0.40335 x 10~3 | -0.28200 x 103 0.0
Glycine-Water | 0.95558 x 107> | -0.82456 x 107> | 0.12676 x 107> | 0.10214 x 10~% | -0.78592 x 107> | 0.16902 x 107>
, =7 =7 3 .3 ) =5
CeHg~ OCL, 0.12140 x 10 0.48276 x 10 -0.73211 x 10 ~0.15320 x 10 0.14067 x 10 -0.34567 x 10

Table A.2

*16
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