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which a feedback oscillator with a single non-linear element can support 

two component waves, These component waves are required to have 

unrelated frequencies. 

A theory is produced to predict the oscillation frequencies and 

amplitudes and exami:retheir stability. The conclusions reached in this 

thesis are then compared with those reached by previous workers in the 
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SECTION 1 

INTRODUCTION 

If a normal, single frequency sine wave oscillator has a natural 

frequency of w1 then it will, in the practical case, also contain in its 

output some, or all, of the harmonics of w1• These harmonics are usually 

unwanted, since they only represent distortion of the wave form, and to 

minimise this, the linear part of the oscillator is normally arranged 

to have a frequency response which strongly attenuates the harmonics. 

There is no reason, however, why the circuit should not be arranged to 

select one of the harmonics to suffer less attenuation than the othersso 

that this harmonic is of considerable size when compared with the funda­

mental. The presence of this second signal will naturally affect the 

reaction of the non-linear element to the fundamental, but its very exis­

tence depends on the presence of the fundamental component, and so any 

change in the amplitude of this will result in a change, in the samesense, 

in the amplitude of the harmonic component. In this way the existence of 

a double frequency oscillator of this type can be intuitively appreciated. 

Consider, on the other hand, the case in which two sine waves 

with a more complicated relationship between the frequencies, or with 

completely unrelated frequencies, are applied to a non-linear element. 

The output will consist of harmonics of both, together with all cross­

modulation products, as well as the two fundamental frequencies. If 

these two fundamental components were filtered out, amplified, and 

1 
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used to supply the input to the non-linear element, the system could 

conceivably continue to oscillate in the same mode, without any exter­

nal assistance. It is not possible to make any generalised statements 

at this time, since with all normal non-linear elements, a disturbance 

of one amplitude will not necessarily result in a change of the other 

in the same sense, and will in fact, usually have the opposite effect. 

If the two frequencies are related by mf1=nf2 , where m and n are 

integers, then with most non-linear elements there will be some cross­

modulation terms in the output which are of the same frequency as the 

fundamentals, so in this case, the existence of one oscillation can, 

to some extent, help to support the other. When the frequencies are 

not related, there is no exchange of energy from one component to the 

other, and the possibility of the stable existence of the two compon­

ents depends entirely on the form of the non-linear element, unless 

some special contrivance is used. 

Several attempts have been made in the past to make an exam­

ination of the conditions under which two unrelated components could 

exist stably together in the same oscillator. One obvious method, 

which will be mentioned here, but not discussed in detail, is to separ­

ate the two components and apply each to a different amplitude limiting 

device. This can be done either by using the same negative resistance, 

which can then be assumed linear, as in references (1) and (2) or by 

using two non-linear negative resistances (Reference 3), one for each 

component. This latter case is essentially equivalent to having two 

oscillators with part of the linear circuit in common. In the former 

case, the energy supplying element, and the amplitude limiting elements 
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are separate, but again the only parts of the circuits of the two 

components which are common, are approximately linear. In neither case 

is it necessary for the performance of the oscillator that the common 

part of the circuitry should be anything but linear. 

Another system which can be used to maintain two unrelated 

frequency components with a single non-linear element is to use, as 

the energy supplying element, a valve which has its bias voltage moving 

up and down at the difference frequency.(Reference (4) and (5)). This 

can be considered as another method of coupling the components. 

These last two methods are considered in more detail in section 

(8). 

The third alternative, which presents a far more complicated 

picture, is that in which the same non-linear element is used to limit 

the amplitudes of both components and where no extra coupling is intro­

duced. That is, the two components have a non-linear element in common, 

and hence one component amplitude can affect the other. This paper will 

be concerned with an oscillator of this type. of which it is also true 

that one component does not supply any energy to the other; that is, 

the two frequencies are incommensurable. It will be shown that the 

oscillator can be self-starting under these conditions, and that the 

two frequency mode, once established, is stable. 

The non-linear element used here is a 6BA6 remote cut off 

pentode, for which arrangements have been made to ensure that the char­

acteristic curve can be represented to within ! 3% by an exponential. 

The reason for the choice is purely mathematical, since this type of 

oscillation has also been produced by the author, and by Disman and 
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Edson (Reference 6) using a 6AK5 sharp cut off pentode, which is best 

approximated by a three-halves power law. However, the use of a three­

halves power law curve produces mathematical expressions which are very 

difficult, if not impossible to solve analytically. Double integrations 

are involved, which also prove difficult to compute numerically, due to 

the discontinuity in the characteristic at the cut-off point. The 

actual form of the non-linear element will be discussed in Section (3) 

and Appendix (I), but an important point to be made here :is that the 

amplitude limitation is achieved by employing automatic bias of the 

class C type, and not by a saturation phenomenon. 

The type of analysis used in this paper is to replace thernn­

linear element by two equivalent linear elements, each acted upon by one 

component only. These equivalent linear elements will have transfer 

properties which are independent of frequency since the frequencies are 

incommensurable, but will depend on both component amplitudes. In order 

to apply the approximation of the equivalent linear gains, it is neces­

sary to assume that the input to the non-linear element contains only a 

limited number of component sine waves; in this case, two. This condi­

tion is fulfilled by arranging that the linear part of the circuit 

attenuates all harmonics and modulation products to such an extent that 

they are negligible at the grid of the pentode The difference frequency 

component is the largest of the neglected components and its effect is 

discussed in some detail in section (7), 

The two component waves existing in this oscillator have compar­

able frequencies and amplitudes, and so it is not simply sufficient to 

regard one as modifying the shape of the non-linear element, upon which 
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the other acts. The equivalent linear gains are in fact expressed as 

functions of the two amplitudes, which can then be predicted from the 

Barkhausen oscillating conditions, as can the frequencies. It will be 

explained, however, that due to the nature of the equivalent gain 

functions, the predicted amplitudes are only close approximations to 

those observed experimentally when these amplitudes are very nearly 

equal. With this in mind, certain predicted amplitudes and frequencies 

will be presented alongside the corresponding experimental ones, and it 

will be seen that the agreement is reasonably close. 

The conditions under which the two oscillations can exist stably 

are presented in the form of restrictions on the circuit parameters, and 

one example of a stable situation is calculated to demonstrate that it 

does in fact conform to these restrictions. Another criterion is estab­

lished to give the conditions under which both the oscillations can start 

to build up from the noise inherent in the circuit. 

AppendixIJiof this report will be concerned with a description 

of a system for testing the periodicity of the wave at the input of the 

non-linear element, and the possibility of the component waves synchron­

ixing completely, or pulling in and out of synchronism, is discussed in 

connection with the effect on the practical results. 



SECTION 2 

THE "EQUIVALENT LINEAR GAIN" CONCEPI' 

(2.1) Introduction 

The method employed in the analysis of non-linear systems 

depends to a large extent upon the requirements of the specific 

problem, and upon the convenience of solution, because it is seldom 

easy to solve, directly, the non-linear differential equations involved. 

The equations, in fact, cannot always be formulated. One method devised 

to give a solution in these circumstances, is that in which the non­

linear element is approximated by a series of straight lines. A set of 

linear differential equations corresponding to each line is solved, 

using the starting conditions resulting from the final conditions of 

the previous section. This method can be applied to any degree of 

accuracy required, simply by increasing the number of straight line 

segments, although the labour involved increases in proportion This 

type of method is of great use in the analysis of relaxation oscillat­

ors for example, or in fact, of any system in which the wave form is 

markedly non-sinusoidal. 

This so called "piece wise linear approximation" has many dis­

advantages. These include its complexity and the fact that, even with 

the same non-linearity, each specific case must be examined individually. 

It is fortunate, therefore, that there are alternatives to this, which 

6 
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can be applied with considerable accuracy, if certain conditions are 

fulfilled. If for example, the wave form at the input of the non­

linear element could be approximated by the sum of a small number of 

sine waves, it would be possible to approximate the non-linear element 

to an equal number of linear elements, each of which was acted upon by 

one component, and whose slopes were functions of the amplitudes of all 

the components. This is the method of the "equivalent linear gains" or 

"describing functions", and is the one used here (References 7, 8 and 9). 

These equivalent linear gains are in no way related to the linear seg­

ments referred to above and they are in fact a fixed number of abstract 

linear circuit elements which are considered to replace completely the 

non-linear element for the purpose of analysis. The piece-wise approx­

imation is simply a representation of the non-linear element by an arbi­

trary number of consecutive straight line segments. 

When the equivalent linear gains technique is used to approxi­

mate the non-linear elements in a feedback loop, the assumption that there 

is a limited number of frequency components at the input is equivalent to 

saying that all the harmonics of each component, and all the cross modula­

tion products produced at the output of the non-linearity are attenuated 

before they return to the input. In the present case there are two main 

components whose frequencies are defined by the condition that the loop 

phase shift should be zero. Typical gain and phase characteristics for 

the feedback circuit are shown in figures (1) and (2) from which it can 

be seen that the two zero phase shift frequencies f 1 and f 2 ; which will 

later be shown to be the two stable oscillating frequencies, suffer much 

less attenuation than do other frequencies somewhat removed from them. 
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A typical frequency spectrum at the input is given if figure (3), and 

does, in fact, show that all components other than f 1 and f 2 represent 

at the most 5% of the fundamentals, and so the approximation that there 

are only two input frequencies is a reasonable one. 

(2.2) Definitions of the Equivalent Linear Gain 

There are several definitions of the equivalent gains in use, 

all of which are equivalent, and the one actually used depends on 

which is most convenient for the particular problem. In the case of 

the two input equivalent gain functions, two of the alternative defin­

itions are given as follows: 

1) Each equivalent linear gain is the ratio of the amplitude at 

one fundamental frequency at the output, to the amplitude of the same 

component at the input. The output component amplitude is calculated 

by Fourier analysis of the output wave form, which is itself either 

expressed analytically or constructed graphically from the non-linear 

element. 

2) The equivalent linear gains are defined as those gains which, 

when each is acted upon by one component, produce outputs whose sum 

has a minimum mean-square difference with the output of the non-linear 

element. (Reference 10). 

The equivalence of these two definitions can be proved, but it 

is not necessary to do this for the present purposes. In the analysis 

of the system involved here, however, the equivalent linear gain will 

be calculated in both ways, and so the equality can be verified in thms 

case (Appendix II) 
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(2.3) Possible Sources of Error 

When using this equivalent linear gain technique, it is of great 

importance to account for any phase shifts introduced by the non-linear 

element, since, in an oscillator, these can affect the possible natural 

frequencies. Such phase changes, suffered by components passing through 

a non-linear element, can be produced by one of two mechanisms. They 

could be caused by the non-linear element being something other than 

single valued, or by there being some relationship between the fre­

quencies of two or more of the input components. The first of these 

does not affect the present problem, because the non-linear element is 

entirely resistive at the frequencies involved. The second type of 

phase shifting isalsoassumed to be non-existent for the purposes of 

the analysis, since the harmonics of each component have been presumed 

to be of negligible amplitude at the grid, and the two main aomponents 

themselves are arranged to have incommensurable frequencies. 

The degree of approximation made by neglecting the harmonics, 

can easily be seen by reference to the previously given input frequency 

spectrum (figure 3). However, the relationship between the two main 

frequencies is difficult to estimate, and hence the degree of approxima­

tion is not known. Nevertheless, even if there were a relationship of 

the type of mf1 = nf2, a method is available to ensure that m and n are 

th thlarge, (appendix III), in which case the strength of them and (m-1) 

harmonics of f 1 and the nth and (n-l)th harmonics of f 2 can be taken to 

be so small that any extra components at frequencies or f 2 producedf 1 

by their reactions together can be entirely neglected. 



SECTION 3 

THE CHOICE OF NON-LINEAR ELEMENT 

(3.1) Power Series Representation 

It has been shown theoretically by previous investigators 

(References (1), (11), (12)) that the form of the non-linear element 

is the critical factor controlling the possible existence of an oscil­

lation mode containing two unrelated frequencies. It has been con­

cluded from these references, that if the characteristics were 

approximated by a power series, then the following statements can be 

made. First of all, it is not possible to obtain unrelated double 

frequency oscillations at all if the approximation includes terms only 

up to the third power: secondly, it is possible to obtain these 

oscillations when up to the fifth power terms are included. However, 

in this latter case, the system will not be self-starting at the two 

frequencies, and in fact the oscillations will have to be initiated 

from some external source. For these reasons, the non-linear charact­

eristic to be used must be considered either, as a power series con­

taining powers at least to the seventh, or alternatively, as some shape 

which cannot be closely approximated by a power series with a reasonably 

small number of terms. It will be shown in the appendices that the 

second alternative can result in a close approximation, which is also 

easy to handle mathematically. 

12 
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(3,2) Functional Representation 

It is evident that, practically, there is only a small number of 

non-linear negative resistance shapes available without building special 

circuits. These are included in the transfer characteristics of tunnel 

diodes, transistors, tubes and similar amplifiers. In the appendix on 

curve-fitting, various mathematical formulae are compared with the grid 

voltage anode current curves of several pentode tubes. From this it 

can be seen that, while a three halves power law curve is a good approx­

imation to the characteristic of a sharp cut off pentode, like that of a 

6AK5, a single exponential curve is not. Unfortunately, a three halves 

power law curve is much more difficult to handle mathematically than is 

the exponential. 

Appendix I, however, does show also that an exponential curve 

can be used as a fairly good approximation to the characteristic of a 

remote cut off pentode such as a 6BA6. Moreover. the aceuracy of the 

fit can be greatly increased by arranging for the grid voltage to be 

restricted to that region of the figure (4) which is approximately a 

straight line. This part of the curve, regarded as straight, can be 

extended without loss of accuracy, by decreasing the anode current values 

at low grid voltages and is simply achieved by causing a decrease in the 

instantaneous screen voltage as the grid voltage approaches zero. By 
a

feeding the screen from the supply voltage via resistance, but without 
/\ 

using a decoupling condenser, the desired negative feedback will be 

effected, since as the anode current rises, the screen current will rise 

and reduce the screen voltage, upon which the anode current is strongly 

dependent. 
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The non-linear element finally decided upon, therefore, is as 

shown in figure (5), which has as a typical characteristic, in terms of 

log i against v , that shown in figure (6), where i is the anode a g a 

current, and v is the grid-cathode voltage. It can be seen that it is 
g 

to within (~3%) a straight line within a range of v from -4volts to about g 

-37 volts, and so is, to this degree of accuracy, a single exponential 

curve. The restriction on the highest obtainable grid-cathode voltage 

is enforced by injection of the direct voltage VB in the cathode lead; 

and the limiting action of the non-linearity is obtained from the diode 

rectifier D, in conjunction with R and C , producing an additional 
g g 

bias which is dependent on the size of the two componenw amplitudes. 

Section (7) of this paper shows that the double frequency mode 

of oscillation can occur even with the component at the difference 

frequency at the grid being quite strong, but that if it were made too 

large one main component would suddenly die ·out. Moreover, it is also 

an experimental fact that the mode exists quite stably when the diff­

erence frequency component is negligibly small. If the difference 

frequency component at the input is neglected, therefore, that is to 

say, the time constant R8c8 is made large in comparison with I/(W1-w2), 

the equivalent linear gain of the non-linearity can be expressed as: 

2ail(bAl)Io(bA2)Exp(-b(Al+A2+VB)) 


Al 


where A1 and A2 are the amplitudes of the two components, and the expon­

ential approximation to the characteristic is i =aExp(bv ). I0(x) is 
a g 

0 
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the zero order modified Bessel function and I 1(x) is the first order 

modified Bessel function. K1 is the equivalent linear gain to the 

component of frequency f 1 and amplitude A1 and is in units of amperes 

per volt, since a is in amperes and A1 in volts. K2 is the corres­

ponding gain to the other component. These expressions are established 

in appendix (II). 



SECTION 4 

THE FREQUENCY AND AMPLITUDE EQUATIONS 

(4.1) The Feedback Loop and Block Diagram 

The linear portion of the circuit, the feedback loop, consists 

basically of two parallel tuned circuits in series and a linear ampli­

fier which is used as a phase inverter and is shown in figure (?); B 

is negative and v is the anode voltage resulting from the flow of the 
a 

anode current i through the two tuned circuits whose combined a 

inpedance is Z(p). The complete loop can now be represented by the 

block diagram of figure (8), where K is the equivalent linear gain of 

the non-linearity to the particular component being considered. In 

figure (9) G(p)= -BZ(p) and includes the phase inversion produced by 

the fact that an increase in the anode current will cause the anode 

voltage to change by an amount i Z(p) in the opposite sense. 
a 

(4.2) The Oscillation Conditions 

The impedance'Z,(p) is calculated from the two tuned circuit by 

considering the L's as pure inductances, and the R's as including all 

the losses in each corresponding circuit. Let z1 (p) be the impedance of 

c1 in parallel with R1 and L1 : 

1 1therefore = Rl + pLl + pcl 

2 
p LlRlCl + pLl 

= 

19 




20 


a..~ 
0 
0 
_J 

u ~ 
<( 
Cl] 
0 
LLJ 
w 
LL 

,.-..... 
.LL 

"---"' 
N 

- N u u-:1 

- II . 
Na: 0: 

·-d 

f'­ - N . _J _J 
<.::> 
LL 



THE BLOCK DIAGRAM 


Z(p) 


. 
lo.. K 

Fl G. 8 

G(P) 

K 

FIG.9 




22 

therefore Z1(p) = p 

= 
(1) 

2 1 (2)where WlO = LlCl 

(L C )1/2

1 1 


and al = 2R C (3)
1 1 

( 4) 


2 1
where w20 (5)=L2C2 

(L C )1/2
2 2 (6)and 

1therfore Z(p) = p[ 2 2 l ]
Cl(p + 2a1W10P + wlO) 

- P[<c1 + c2)p2 + 2<c2a2W20 + c1a1w1o)p + c1w102 + c2w202] 
- 2 2 2 2 

c1c2<P + 2a1w10P + w10 )(p + 2a2w20P + w20 ) 

2 2p(p + 2ApW0 + w )0 

= 
 (7) 

(8)where C 
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A = (9) 
+ c w 2)1/2

2 20 

w2 
0 = (10) 


In the above expression p is the Laplace complex variable s + jw, and 

the frequency response of the feedback loop is G(jw). The oscillating 

conditions can now be expressed implicitly, by writing down the require­

ments that, at each frequency, the signal amplitude and phase should be 

unchanged by passing completely round the loop; 

that is G(j\11 )K1 = l (11) 

and G(jV2 )K2 = l (12) 

This represents four equations resulting from the phase and amplitude 

conditions applied to both components and they can be obtained by 

separating the real and imaginary parts of the above two equations. 

(4.3) The Freguency Eguation 

The frequency equations can be reduced to one, since the con­

dition that the imaginary part of G(jw) =0 contains all possible zero 

phase shift frequencies. Hence the frequency equation is 

= 0 
p=jw 

i.e. 
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which is a cubic equation in w2• 

2 w2Let w = V, O (13) 

(16) 

(17) 

(18) 

is the frequency equation, whose roots will be the square of the angular 

frequencies at which the phase shift is zero. 

The coefficients B0 , B1 and B2 could be calculated from the values 

of A, a1 , a2 , w0 , w10, and w20 given by the relationships (2), (3), (5), 

(6), (9), and (10); that is, directly from the values of the circuit 

parameters. But it is more convenient and accurate to measure the response 

curves of the two tuned circuits separately in order to measure w10, w20, 

R1, R2, DW10 and DW20 and then use the realtionships: 

DWlO 
(19)al =~ 

10 
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DW20 
(20)a2 = 

2W20 

1 (21)cl = 2Wl0Rlal 


1 
 (22)c2 = 
2W20R2a2 

1/2
(ClVl + C2V2) 

(23)WO = (Cl + C2) 

(alWlOcl + a2W20C2)
A (24)= wo<c1 + c2) 

in which DW10 is the bandwidth of the circuit tuned to w10 and R1 = 
z1(jw10) , and corresponding definitions hold for DW20 and R2• 

Having obtained the values of the coefficients in the frequency 

equation (18) it can be solved as follows: 
(3Bl - B22) 

if x is defined as x = 3 

(2B23 - 9B2B1 + 27B0 ) 
and y as y = 27 

- 1/2 ylet ¢ = arc. (Reference (13))
cos. (-x3/27)1/2 

then the roots of equation (18) are given by: 

v = 2(-x/3) 112 cos (¢/3) (25) 

v = 2(-x/3) 112 cos (¢/3 + 2rt/3) (26) 

v = 2(-x/3)1/2 cos (¢/3 + 41t/3) (27) 

From these the zero phase shift frequencies can be obtained in cycles 

per second by taking the square roots and dividing by 2n. Let these 

frequencies be, in descending order of magnitude, f 1 , f 3 , and f 2• It 
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will be shown in section (6) that the frequencies f 1 and f 2 are in fact 

very close to the actual oscillating frequencies obtained. The frequency 

r3 , which is between r1 and f 2 represents an unstable oscillating con­

dition which does not exist in practice. 

(4.4) The Amplitude Equations 

Once the oscillating frequencies have been predicted, it is 

then possible to solve the amplitude equations. The amplitude equations 

are given by the real parts of equation (11) and (12) and are: 

- B(jWl)(Wo2 - wl + 2jWlAWO) 
(28)Re. 

C(Wl02 - wl2 + 2jalW10Wl)(W202 - w12 + 2ja2W20Wl) 


- B(jW2)(wo2 - w22 + 2jW2AWO) 
 1and Re. =r 
2 

(29) 

But the formulation of these two equations can be made very much 

easier by noting that, at w1 and w2, the imaginary part of G(jw) = 0 from 

the definition of the frequency equation. Hence equations (28) and (29) 

can be rewritten as: 

IG ( jW1) I= ~1 

and IG(jW2) = L1· 

K2 

since !GI = Re. (G) when Im.(G) = 0 and Re. (G) is greater than zero 

since B is negative. Consequently the amplitude equations are: 

(30) 

- .L (31) 
_ W2)2 + 4W 2 V )1/2 - K2 

2 2 a2 2 
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The left hand sides of equations (30) and (31) can be evaluated using the 

previously found values of V0 , A V1 , a1 , v2 and together with equationa2 
' 

(8). 

The right hand sides are functions of the two amplitudes, such 

as: 

and so equations (30) and (31) are not amenable to direct analytic 

solutions. 

The solutions are simply obtained in the special case in which 

= A2 since a graph of the functionA1 

can be drawn as a function of A1(=A2) and the intersection with the line 

representing Re. (G(jW1 )) will give the amplitudes of the components 

(figure 10). This can be done since one would expect Re. (G(jW1)) = 

Re. (G(jW2)). The values of IG(jW1 )1 and IG(jW2)1 evaluated from the 

roots of the frequency equations are in fact very nearly equal under 

these circumstances. Some results obtained by taking the average value 

fa (jW1)1 andlG(jW2 ) Iare presented in section (6) and it will be seen 

that they agree with the experimentally obtained amplitudes to within 

about lO'h. 

The case of unequal amplitudes could, theoretically, be solved by 

constructing a complete set of curves of 
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of A2 and another set for 

A2 
( ) ( ) ( ( )) against A2 with various values

2Io bAl Il bA2 aExp -b Al + A2 + VB 

of A1• The line representing IG( jW1) I is super-imposed on the first set 

and that representing IG(jW2)l on the second. This procedure can be 

simplified, however, by noting that K1(A1, A2) = K2(A2, A1), that is, K1 

becomes K2 if A1 and A2 are interchanged. This means that only one 

diagram needs to be used with the two lines representing IG( jW1) Iand 

jG(jW2)j super-imposed on it, as in figure (II). 

Once this figure is constructed, it is a simple matter to obtain 

pairs of values for A1 and A2 which satisfy the equation IG(jW1) I equals 

l/K1 and another set of pairs which satisfytG(jW2 ),equals l/K2• This is 

done by writing down the coordinates of the points where the IG(jW1)I 

line crosses the l/K lines and then renaming the A1 a,cis th• A2 axis, 

regarding the A2 increments as ~ increments and reading off another set 

of coordinates from the intersection of the IG(jW2) 'line with the l/K 

lines. 

At this stage there will be two lists of values for A1 and A2 each 

of which satisfies one of the equations (30) or (31). Theoretically, 

therefore, it would be expected that by drawing a graph of ~ against A2 

from these values, the point of intersection would give the, oscillation 

amplitudes, since this would be the only pair of values which would 

satisfy both equations simultaneously. 

One example, attempted in this manner, did not reveal any 

results since the two lines on the A1 vs. A2 graph did not intersect (see 

figure (12)), But the conditions of the experiment did, in actual fact 
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produce real non-zero values for the amplitudes. 

The inaccuracies involved in this method are so large that it 

can be of no practical use without greatly refining the measuring 

techniques, and the approximation of the non-linear element, but it is 

of interest theoretically, because it demonstrates the sources of error 

in the analysis. These errors are discussed in more detail in section 

(?), but for the moment it is sufficient to say that solution of the 

amplitude equations is here restricted to the case where the two ampli­

tudes are equal, since this can be done with much greater accuracy than 

when they are not equal. 

(4.5) Alternative Methods 

There is an alternative method of predicting the oscillation 

frequencies and amplitudes. This is to take a complete frequency res­

ponse curve as in figures (1) and (2) and treat each maximum as if it 

were produced by a single tuned circuit. The oscillating frequencies 

are accurately given by the zero phase shift frequencies f1 and f 2 and 

agree closely with those calculated in the manner previously shown. 

The amplitudes are given by choosing the directly measured values of 

IG(jw) Iat these frequencies; the fact that this does not improve the 

accuracy of the predicted amplitudes suggests that the main'source of 

error is in the treatment of the non-linear element. 

One further alternative is to simplify the expression for G(jw) 

by assuming at frequency f 1 the other tuned circuit is almost entirely 

capacitive and that at f2 the first tuned circuit is almost entirely 

inductive. The individual frequency response curves can be used to 
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ted, but in both cases, the effect of one on the zero phase shift fre­

quency of the other can be estimated to give f1 and f 2. The effect of 

one tuned circuit on the height of the other peak can also be estimated 

in this way in order to give, directly, values for IG(jW1 )1 andlG(jW2)1. 
Again, however, the final estimation of the amplitudes is, as before, 

graphical solutions of jG(jW1) I·= l/K1 and jG(jW2)1 = l/K2• 

(4.6) Summary 

I •o summarise this section, therefore, the possible oscillating 

angular frequencies are given by the square root of the solutions of 

v3 + B2v2 + B1V + B0 = 0, and the amplitudes (A) of the oscillations can 

best be found by a graphical solution oflG(jw)I = l/K(A), where w = w or1 
2alo(bA)Il(bA)Exp(-b(2A +VB)) 

w2 and K is equal to A and is restricted 

to the case of equal amplitudes. IG(jw)j is the average value ofjG(jW1)1 
and jG(jW2) j calculated directly from the solution of the frequency 

equation. 



SECTION 5 


THE STABILITY AND STARTING ABILITY OF THE OSCILLATIONS 


(5.1) Possible Oscillatory Modes 

The previous section described a system for obtaining theoretical 

values for the oscillation frequencies and amplitudes: in this, it was 

assumed that the system oscillated in a mode containing both the fre­

quencies f 1 and f2 , and only these two frequencies. Equation (18), 

however, does have six real solutions for w , three positive and three 

negative, where each of the negative roots is equal in magnitude to the 

corresponding positive root. The negative roots are of no concern in 

the present case, because they have no significance in reality, It is 

required, however, to establish which of the three positive roots 

represents stable oscillating components, and whether two or more of 

these components can exist together permanently in a single mode. In 

particular, it is necessary to show that the mode considered, containing 

f1 and f 2 , and only f1 and f 2 components, is stable and can exist in 

practice, as it was assumed in the previous section. 

There are seven possible oscillation modes containing finite 

frequency components. The first to be considered is the one of interest 

here, and stability criteria will be set up to show that this mode can 

in fact be stable in the presence of the disturbances inherently present 

in the system. Next it will be shown that either of the two modes con­

taining only one of the components f 1 and r2, can under certain 

34 
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circumstances, be the only stable mode, The remaining four modes 

contain components with a frequency given by the third root of the 

equation (18). Some indication will be given for the physical reasons 

why these modes cannot, in practice, exist. 

Finally it will be shown that if a particular mode is capable 

of stable existence, then it is also capable of starting from circuit 

noise without external assistance. 

(5.2) The Stability of the Double Freguency Mode 

Consider first, therefore, the stability of the mode containing 

components at frequencies f 1 and f 2 • If it is assumed that the oscill­

ations are existing in the state suggested in section (4), and the 

oscillations are disturbed from this state, the stability can be inves­

tigated by observing the reaction of the circuit to that disturbance. 

If this disturbance dies away as time goes on, then it can be assumed 

that the oscillations can persist without departing appreciably from 

the conditions assumed: that is, the oscillating frequencies and 

amplitudes are stable. 

If the disturbance produces transients at the grid, which are 

exponentially changing increments in the steady state amplitudes, then the 

grid signal can be expressed as; 

A1cos~t + A2cos w2t + d1Exp(s1t,cosW1t + d2 Exp (s2t)cosW2t - (A1 + A2)- VB 

(32) 

It is assumed that the transients have been in existence for such 

a short time that the d.c. level A1 + A2 + VB has not had time to change. 

(The grid time constant has already been postulated to be large.) 
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The anode cureent would now be given by; 

(33) 

=aExp(-(A1 + + VB)b)Exp(bA1cosW1t)Exp(bA2cosW2t)Exp(bd1Exp(s1t)cosW1t)A2 

Exp(bd2Exp(s2t)cosW2t) 

=aExp(-(A1 + A2 + VB)b)(e0 + e1cosW1t +••••••••.• ) 

(b0 + b1cosW2t + ••••••.•• ) 

(c0(t) + c1(t)cosW1t + ••.•.• ) 

(d0(t) + d1(t) cosW2t + ••••• ) (34) 

where the terms not written down contain the higher harmonics of w1 and w2• 

= I 0 (bA1 ) (35)eo 

= 2I1(bA1 ) (36)el 

= I 0(bA2) (37)bo 

bl = 2I1(bA2) (38) 

c0(t) = r0 (bd1Exp(s1t)) 

2 2 
= I+ 1/4 b d1Exp(2s1t)+ ..... (39) 

c1(t) = 2I1(bd1Exp(s1t)) 

= bd1Exp(s1t) + l/8.b3d13Exp(3s1t) + • - •• (40) 

d0(t) = I 0(bd2Exp(s2t)) 


2 2 

= I + 1/4 b d1 Exp(2s2t) + ••• (41) 

dl(t) ::: 211(bd2Exp(s2t)) 

= bd2Exp(s2t) + l/8.b3d23Exp(3s2t) + ..... (42) 

where the terms not written down contain powers of d1 or d2 greater than 

the third. 

In the case of the harmonics of w1 and w2 it has already been 

decided that these terms can be neglected because of the attenuating 
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action of the feedback loop. The terms in the expansions of c0(t), 

c1(t), d0(t), and d1(t), can all be neglected except for the first, 

not only beaause the coefficients decrease as the term order increases, 

but also because it can be assumed that d1 and d2 are small disturbances, 

and so their squares and higher powers can be neglected. It should be 

noted that the number b is less than unity. 

The component of the anode current at frequency w1 can now be 

written down as; 

aExp(~A1 + A2 + VB)b)(e1b0cosW1t + e0b0c1(t)cosW1t) 

of which 

aExpE-(A1 + A2 + VB)b)e0b0c1 (t)cosW1t 

is the transient portion. This is very nearly equal to 

aExp(~Al + A2 + VB)b)I0(bA1)I0(bA2)bd1Exp(s1t)cosW1t 

Let this equal 

k1d1Exp(s1t)cosW1t 

There will be a similar current transient at angular frequency w2, 

which can, in the same way, be written as, 

k2d2Exp(s2t)cosW2t, 

where 

k2= aExp~(Al + A2 + VB)b)Io(bAl)Io(bA2) 

It is now necessary to calculate the response o! the linear part 

of the circuit to the waves k1d1Exp(s1t)cosW1t and k2d2Exp(s2t)cosW2t and 

equate these to the original transients d1Exp(s1t)cosW1t and d2Exp(s2t) 

cosW2t. 

The response of G(p) to a wave such as VExp(pt) is VExp(pt)G(p) 

and so the response to k1d1Exp(s1t)cos W1t is Re.(k1d1Exp(pt)G(p)), with 
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p = sl + jWl. 

At this point we use the assumption, already implied, that the 

transients are exponentially varying components at the oscillating 

frequencies, and that these frequencies are unaffected by the presence 

of the transients. In other words, the imaginary part of G(s1 + jW1) 

is taken to be zero like the imaginary part of G(jW1 ). 

This assumption, that the transients are at the oscillating 

frequencies, amounts to regarding the gain characteristic of figure (1) 

as having even symetry around f 1 and f 2 and the phase characteristic 

of figure (2) as having odd symetry around f 1 and f 2. In the practical 

case, since the Q's of the tuned circuits are high, this approximation 

is fairly close to the real situation provided the disturbances are not 

too large. 

The transfer function G(p} to each particular frequency can now 

be approximated by those of single equivalent turned circuits, They are 

( ) -BP
Gl p = 

C' ( 2 2 'W I w ' 21 P + al 10 p + 10 ) 


-BP 


With this in mind G1(s1 + jW1 ) and GJs2 + jW2) can be taken as 

real and the closed loo~ equations for the transients are now 

k1d1G1(s1 + jW1)Re.Exp((s1 + jW1)t) = d1Re. Exp((s1 + jW1 )t) and 

k2d2G2(s2 + jW2)Re.Exp((s2 + jW2)t) =d2 Re.Exp((s2 + jW2)t) 

that is k1G1(s1 + jW1 ) = 1 

and k2G2(s2 + jW2 ) = 1 (44) 

or writing p1 = (s1 + jW1 ) and p2 = (s2 + jW2) (45) 

and k1G1(p1) = 1 (46) 
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Taking (45) as an example, the conditions of stability can now be 

established. These conditions result from the restrictions on the 

circuit parameters, which are required to ensure that the roots of 

equation (45) all have negative real parts. That is, all possible 

values of s 1 are less than zero, and so the transient will eventually 

die out. Equation (45) is; 

= 1 
C t ( 2 2 I w I w I 2)1 P1 + plal 10 + 10 

That is - klBpl = cl I (pl2 	+ 2al I wlO I P1 + w10''2) 

k1B2 	 1.2 
P1 + (2a1'W10' + er >P1 + WlO = 0 

1 
k1B k1B 

) j(Wi2 	 )from which p1 = -(a1'W10 1 + 2C' :!: 10 - (a1'W10 1 + 2C' (47) 
l 1 

k1B )
Therefore s 1 = -(a ' W ' +

1 10 2C I 

1 

The stability criterion can now be set down as the requirement that 
k1B 

a1 •w10 1 + ~ should be positive. That is a1 • should be greater than 
2Cl I 

and so the stability criterion reduces to a limit on the 
2C1'W10' 

minimum amount of damping which can be used. This is as would be 

expected, since with no damping at all there would be no losses and no 

mechanism by which the transient could loose energy. The gain of the 

non-linear element would then cause the amplitude of the disturbance to 

increase. 
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The conditions of stable oscillation in the double frequency mode, 

are thus dependent on a compromise being found between conflicting crit­

eria. Firstly, that the damping factors should be low enough to ensure 

that the linear circuit behaves as an efficient filter to remove the 

unwanted components and also so that the symetry approximations can 

be made, and secondly the damping factors should not be so low as to 

enable any transients in the amplitudes to increase with time. 

A similar condition results from equation (44), and the two 

become identical when the amplitudes of the steady state oscillations 

are equal. 

In section (6), one of the practical examples, which is known to 

be stable, and has typical circuit parameters, is tested against these 

conditions and they are shown to be satisfied. 

It is sufficient for the present purposes to show that it is 

possible to satisfy the prescribed conditions of stability of the double 

frequency mode with real circuit parameters. This is done as already 

stated, in the converse manner of showing that a real set of parameters 

can satisfy the conditions; consequently, it has now been shown that the 

amplitudes and the frequencies of the oscillations can be predicted and 

that they can also be stable. 

The complete treatment of the stability problem which concerns 

this mode can only be effected by considering the complete transfer 

function for Z(p) as given in equation (7) and would entail consideration 

of phase shifts produced by the transients. These phase shifts could be 

neglected and the stability conditions established using Routh's criteria 

(Reference 14). However, this is equivalent to the symetry conditions 
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already assumed and so the simplified transfer function entails no 

further approximation. 

(5.3) The Starting Ability of the Double Freguency Mode 

The conditions that the double frequency mode is self-starting 

from the circuit noise can be set down by stating that the loop gain to 

the two frequencies at zero amplitude should be greater than zero. 

That is, 

G(jW1) abExp(VB)is greater than unity ••• (47) 

and, 

G(jW2) abExp(VB) is greater than unity (48) 

which are simply found by noting that I 0 (bA) tends to unity as A tends to 

zero and 

Lim.2I1 (bA) 
Lim, 2(1/2bA + b3A3/16+, •. ) L' (b b3A2/l6 )= A--'P 0 A = im. + +•••A -4 0 A 

A --+ 0 

and they are always satisfied if there are real solutions to the amplitude 

equations (30) and (31). 

Two important points must be observed here: first of all, figure 

(13) shows that with this type of automatic bias and injection of the 

fixed bias, the loop gain is a maximum when the two amplitudes are zero; 

secondly, it also shows thatthe rate of change of gain to a,small ampli­

tude is greater than that to a large amplitude. One would intuitively 

expect, therefore, that if the two components are each capable of start­

ing, as given by conditions (47) and (48), they will continue to increase 

together until the stable oscillating point is reached. This is, in fact, 

observed experimentally, but rigorous proof would require the solution of 

b= 
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the non-linear differential equation governing the build-up. 

Several alternative methods of injecting the fixed bias were 

tried, one of which was to feed the grid from a direct voltage source 

via a resistor. The external direct voltage was made equal to 

-(A1 + A2 + VB) so that the grid would never become more positive than 

-VB. In this case, the system would have a minimum loop gain at the 

zero signal level, and it was observed that it would start in the 

single frequency mode and the second component would only appear after 

the loop gain had become sufficiently large. 

(5.4) 	 Single Freguency Mode 

If we now consider the situation where only one of the conditions 

(47) or (48) is satisfied it can be seen that only the component cor­

responding to that condition can build up. As it does, the working 

point will move along the top curve in figure (13), and both the gain to 

this component, and to the other, which has not started, will decrease. 

There is therefore no reason to believe that the second component should 

start at all, and the system will behave like a normal single frequency 

oscillator which has a slightly distorted frequency response curve. The 

amplitude could be predicted by equating G(jw) to l/K and solving it 

graphically. The stability can be examined by use of a similar technique 

to that used for the double frequency case, but it will, of course, 

result in a simpler equivalent gain k, and in only one set of conditions. 

The value of k needed for the stability criteria will be abI0 (bA)Exp(-A + VB)b 
2aI1(bA)Exp(-(A + VB)b) 

The value of K in this case would be A and 

for a given value of G(jw) the amplitude equation will require a greater 
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value of A for a solution than either of the amplitudes in the double 

frequency mode. 

It is evident that a set of real circuit parameters can exist 

which complies with the stability conditions for this mode, since the 

system can easily be made to degenerate into a normal single frequency, 

Class C, oscillator, by reducing the Q of one of the tuned circuits. 

(5.5) ~odes Containing the Third Root of the Frequency Equation 

The remaining part of this section will be concerned with the 

other solution of the frequency equation, namely the third root, which 

lies between wl and w2. 
This root could give rise to a component which, if it were stable, 

could produce four other modes of oscillation. The fact that none of 

these modes has occurred in practice would suggest that they are all 

unstable. However, to prove this would require that the oscillating 

conditions in each case should be evaluated and the conditions dis­

turbed to see if the transients did, in fact, increase with time. 

It should be observed that if the component did exist, along with 

the other two, the required value of G(jW3) in order that this component 

should have a non-zero amplitude would be: 

(49) 

which is greater than l/(ab). But l/(ab) is approximately equal to 

2.lcY ohms, whereas the value of G(jW3) is, at the most 200 ohms; hence, 

even if this component were stable, it could not exist under the present 

circumstances because the loop gain is too small. 
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The instability of one of these modes can be fairly simply 

established by observing that the polar locus of G(p) has a greater real 

part near p=jW3, when p=s+jw than when p=jw, for positive s (see 

appendix IV). The mode considered is that most likely to satisfy the 

loop gain condition, namely the one in which the other two components 

do not exist. 

With reference to figure (14), it can be seen that even if the 

non-linear element or the feedback network were altered so that the 

amplitude equation did have a solution, the oscillation at w3 could not 

possible be stable. This is due to the fact that the value of l/~ 

increases to the right along the positive real axis as the amplitude 

increases. 

The result of this 

is that any disturbance away from the working point at w3 will either, 

cause a decrease in amplitude and a movement into the negative s 

region, or an increase in amplitude and a movement into the positive s 

region. In either case, the change in the oscillating conditions will 

be assisted, and the component will either die out, or quickly change, in 

amplitude and frequency, to stable oscillations at w1 or w2, or both. 

(5.6) The Regions of the G Plane 

In appendix (IV) the method of investigating the effect of putting 

p = s + jw instead of jw, in the regions of wl, w2, and w3 is shown, and 

the actual variatioms of G(p) with s in these regions are given in figures 

(34), (35), and (36) for values of s ranging from -12.103 (seconds)-l to 
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12.103 (seconds)-1• These curves again represent the conditions of 

case (1). The first two of the figures indicate that oscillation 

frequencies w1 , and w2 may be stable and the last one, figure (36) is 

the basis of the argument which has been used to show w3 is an unstable 

oscillating frequency, at least when it exists alone. 

(5.7) Sguegging 

Another form of instability exists, which is unaccounted for by 

the present theor7. This is the amplitude instability known as 

"squegging". Instability of this form is not peculiar to double fre­

quency oscillators, and in fact has been thoroughly investigated before 

(see reference (15)) in terms of the general single frequency oscillator. 

One cause of this instability is that the gridis driven to cut 

off the tube by the accumulation of charge due to the grid time constant's 

being too long. Once the tube has cut off, the oscillations cease, and 

the grid loses its charge at the rate defined by the time constant 

C R , so at some point, the loop gain again returns to unity, and the 
g g 

oscillations can recommence. The result of this is a relaxation type o_J 

oscillation, which bursts of sinusoidal oscillations superimposed on it. 

Any discussion of squegging applies equally well to the double 

frequency case, since if the time constant is too large, any type of 

oscillation could continuously tend to drive the grid negative, reduce 

the gain of the tube, and finally, suppress the oscillations. The im­

portant point for the present purposes is that, even if the stability 

conditions previously given are satisfied, then, in order to obtain the 

desired oscillations, it is also necessary to ensure that squegging does 
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not occur. If the stability conditions are satisfied, but the time 

constant of the detector is too long, then squegging will occur at double 

frequency. Such a phenomenon is demonstrated by figures (23) and (24) 

of section (7), in which the limitations imposed by the onset of squegg­

ing are discussed. 
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SECTION 6 

COMPARISON OF THEORY WITH PRACTICAL RESULTS 

(6.1) The Practical Circuit 

The final experimental arrangement, from which the measurements 

were taken is given in detail in figure (15), and as a block diagram 

in figure (16). 

There are a few details left out of figure (15) for clarity, 

since they are unimportant for the present purposes. For the record, 

however, they are given here. The heaters of the two cathode followers 

are operated at an elevated D.c. level to avoid breakdown to the cathode; 

otherwise the heating system is normal. The other omissions are, loosely 

coupled secondaries on the coils 11 and 12 with various tapping points, 

and switching arrangements to select the various degrees of feedback and 

connect them to the grid, and at the same time to disconnect the second 

stage. Since the system would not oscillate in this configuration, due 

to insufficient gain, this selector switch was not used and the second­

aries were left open-circuited. It may be noted in passing that the 

system can be made to oscillate in the double frequency mode, by ampli­

fying the signals picked up on the secondaries and then applying them 

to the grid. 

(6.2) 	 Obtaining the Results 

From the arrangement given in figures (15) and (16), the practi­

cal 	results were obtained by observing the amplitudes of the main 

49 
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components by means of the wave analyser, after having selected the 

approximate oscillating frequencies on the switch S and using the fine 

adjustment variable condenser c2 • to ensure that the frequencies are 

incommesurable, in accordance with the method described in appendix (III)~ 

To obtain the equal amplitude condition, the wave analyser was 

tuned alternately to f 1 and f2 , and each time half the amplitude dif­

ference was added to the smaller amplitude, or subtracted from the larger 

by adjustment of R, until finally A1 was equal to A2 . The values of A1 

and A2 in R.M.S. volts were found by dividing the wave analyser readings 

by the gain of the cathode follower. 

The measurement of the frequencies was effected by applying the 

grid signal to they-plates of an oscilloscopeviaa cathode follower. 

The frequency of the component being observed was then found by reading 

a counter driven by a local oscillator which was also used to supply 

the voltage on the x-plates of the oscilloscope. Hence, the required 

frequency could be read directly by adjusting the local oscillator until 

the corresponding Lissajous pattern was made stationary on the oscillos­

cope screen. This system of frequency analysis is discussed in more 

detail in appendix (III). 

(6.3) Comparison with the Theoretical Values 

The theoretical values for the amplitudes and frequencies were 

calculated using the direct method discussed in section (4). The re­

quired circuit parameters were obtained from the individual frequency 

response curves and the value of B. The gain of the phase inverter and 

cathode follower together was measured directly. The frequency response 
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curves were obtained by isolating a tuned circuit, grounding one end, 

and forcing a current into the other end. The arrangement for reading 

the current is shown in figure (17), and it is to read the voltage 

drop across a resistance placed in series with the circuit by using the 

differential amplifier available in the Tetronix 502 oscilloscope. The 

zero phase shift frequencies could be read simply by observing the peak 

deflection on the V.T.V.M., or else by observing the Lissajous figure 

formed by applying a signal proportional to the current, to the y-plates, 

and on~ proportional to the voltage to the x-plates. The elliptical fig­

ure degenerated into a straight line when the two were in phase, and gave 

the same result as the peak deflection method, when corrections had been 

made for internal phase shift in the oscilloscope. The peak voltage w~s 

proportional to the equivalent shunt resistance. The effect of changes 

of load on the oscillator as the circuit impedence changed, was controlled 

by altering the oscillator output voltage so as to keep the current 

constant. 

In some cases the frequency response was observed throughout a 

range near the zero phase shift frequency, but usually only this frequency 

and those two which produced an impedence equal to R/(2) 1/ 2 were taken. 

With the circuit parameters calculated from these readings the 

zero phase shift frequencies were evaluated and then the value of IG(jw) I 
at the highest and lowest of these was found. Using the average of these 

two values of IG(jw)I, the oscillating amplitudes were obtained from the 

graph of l/K. 

Some of these calculated results are now given, along with the 

actual oscillating conditions. 
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Case (1), 

= 4.983 K.ohms.Rl 

= 4.761 K.ohms.R2 

= 31.16 Kc/s.flO 

= 22.62 Kc/s.f20 

= 1.16 Kc/s.DflO 

Df20 = 0.71 Kc/s. 

B = - 1.115 

from which the two oscillating frequencies are calculated. 

The frequencies are given here in Kc/s. 

OSCILLATING FREQUENCIES 

Calculated Actual 
Calues Values 

31.133 31.077 

22,641 22.671 

The frequency errors, in this case, are of the order of 6/3000 .100%, 

i.e. .2%. 

From these calculated values of f1 and f 2 , the values of Re.G(jW1) 

and Re,G(jW2) were found to be 5.557 K.ohms. and 5.308 K.ohms., whose 

average value is 5.433 K.ohms. By comparing this with the curve given 

in figure (10) for l/K against A, the oscillating amplitudes can be 

calculated. 

These amplitudes are given in R.M.S. volts; 
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OSCILLATION AMPLITUDES 

Calculated Actual 
Value Value 

6.75 7.6 

It can be seen that the error is about 12%. 

Several other sets of results will now be tabulated; 

Case 2 Case 3 Case 4 Case 5 

R1(K.ohms) 4.900 4.651 1.927 5.400 

R2(K.ohms) 4.790 4.402 1.905 5.261 

Df10 (Kc/s) 1.3210 1.3573 3.2890 1.2239 

Df20 (Kc/s) 0.7130 0.8598 0.5730 1.6910 

( Kc/s) 31.1390 31.1917 31.2470 31.1509flO 

f20 (Kc/s) 22.6340 24.3683 13.1330 22.6000 

B -1.137 -1.135 -0.940 -0.615 

These yield the following results, besides which the corres­

ponding practical results are given together with the approximate 

percentage error, E%. 
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SOLUTIONS OF THE FREQUENCY AND AMPLITUDE EQUATIONS AND THE 

CORRESPONDING PRACTICAL RESULTS 

(E% is the approximate percentage error). 

i 

r1(Kc/s.) f 2(Kc/s.) 

Calculated Practical E% Calculated Practical E% 

1 31.133 31.077 0.2 22.641 22.671 0.1 

2 31.108 31.064 0.1 22.648 22.645 0,1 

3 31.146 31.073 0.1 24.408 24.455 0,1 

4 31.122 31. 041 0.1 22.620 22.599 0.1 

5 31.210 30,910 0.1 13.148 13.136 0,1 

1 

2 

3 

4 

5 

Re.G(jW1) 

5.557 

5.572 

5.280 

3.321 

1.811 

Re,G(jW1) (K.ohms) 

Re,G(jW2) Average 
.. 

5.308 5.433 

5.445 5,508 

4.994 5.137 

3.235 3,278 

1.790 1.301 

Amplitudes (R.M.S.Volts) 

Calculated Practical E% 

6.75 7.60 12 

6.85 7.03 2.5 

5.11 4.30 16 

3.00 2.60 13 

1.06 •97 3.0 

i 

I 

l 
i 
l 
j 

I 

Approximations to the non-linear characteristic; 

I i 
a 

=0,0108Exp(0.04423v ) 
g 

2 i a = 0.0108Exp(0.04423v ) . g 

3 i a = o.00939Exp(o.05116v ) 
g 

4 i 
a 

= 0,00939Exp(0.05116v ) 
g 

5 i 
a 

= 0,01243Exp(0.11455v ) 
g 



It can be seen from these results that the errors in the oscil­

lation frequencies are quite negligible in comparison with the errors 

involved in calculating the amplitude, and this is simply because the 

frequencies do not depend on the non-linear element. 

The values of a and b chosen for the equivalent linear gain of 

the non-linear element have such a profound effect on the calculated 

values of the amplitudes that the non-linear characteristic should be 

plotted fairly often so as to account for any changes due to ageing. 

A new value of a and b should be selected for each new region of opera­

tion on the characteristic, for the same reason. The values of a and b 

for cases (1) and (2) are a= .01080, b = 0.04423 (figure (6)), for 

case (3) and (4) a= .0093933 amperes, b = .05116 (figure (18)), for 

case (5) a = .0124286 amperes, b = .11455 (figure (18)). The correspond­

ing equivalent gain curves are given in figures (10), (19), and (20). 

(6.4) Stability 

At this point it is possible to verify the stability criteria 

given in section (5). The stability of the double frequency mode is 

dependent on the restriction that neither of the roots of equation (45) 

should contain positive real parts. 

The conditions are now examined for the circuit parameters per~· 

taining to case (1). 

In this case, 

kl 	= abExp(-b(2~ + VB)) ro2(bA) 

= .0108 .04475 .3198 I.07 

= 16.5378 lo-5 
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B = -1.115 

therefore Bk1 = -18,43965 10-5 

= -1.844 10-4 approximately 

The requirement for stability reduces to, 2a1 • 

1be greater than -Bk1 . But 2a1' w10' C1' =R ' and 
l 

R1 • =31•32·g02·( 2) 
1/2 

K,Ohms since when the input to G(p) was 50 volts 

peak to peak across a resistance of 31.32 K ohms, the output had peaks 

of 3 volts R.M.s. at resonance, l = l,8814.10-4 mhos which isHence, R , 
l 

greater than -Bk1 and so any transients about the assumed conditions will 

decay exponentially with time. 

This means that the theory presented has, in this typical case, 

predicted the oscillating frequencies to within .1% of the actual values~ 

the amplitudes to within 12% of the actual values, and has shown that the 

assumed mode is stable, as it is in practice. 



SECTION ? 

ERRORS 

(7.1) Errors in the Assumed Feedback Loop 

Once the frequencies have been assumed incommensurable, the 

accuracy to which they can be predicted is limited by how closely the 

equivalent circuit of the linear portion of figure (15) corresponds 

to the actual facts. It is obvious, for instance, that there will be 

some stray capacitance unaccounted for, and also that the tuned cir­

cuits have been idealised. The last section shows, however, that the 

effect of these approximations on the frequencies is very small. 

The effects of these approximations on the amplitudes, while 

still small, is more important, because an approximation in the equiv­

alent circuit which produces an error of .1% in the oscillating fre­

quency may well produce a larger error in Re(G(jw)). Any error in 

Re.(G(jw) has more than double the effect on the amplitudes because of 

the small gradient of the l/K curves. 

(7.2) Errors in the Assumed Non-Linearity 

The errors in the assumed linear circuit are overshadowed by 

the errors resulting from the choice of straight line to represent the 

log i - V curve of the non-linearity. The 3% error, which is the e a g 

minimum unavoidable deviation from the straight line, could produce 

an error of up to 8% in the predicted amplitudes when they are equal, 
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and up to three times as much when they are not equal. Errors in 

reading VB and in the observation of a and b can have similarly 

magnified effects on the result. 

It is for these reasons that it is of such importance to define 

carefully the non-linear characteristic. The addition of the constant 

bias VB and the knowledge of the largest grid voltage excursion serves 

greatly to reduce the uncertainty as to which is the best approximation 

to the curve. The use of a sharp cut-off pentode would very much 

increase the difficulties involved in making such approximations on the 

basis of a continuous exponential characteristic unless the working 

ranee was severely restricted. 

(?.3) The Neglected Components 

The other important source of error in this analysis is the 

effect of the neglected harmonics and cross modulation products. The 

largest of these neglected components is at the difference frequency 

and represents at least 5% of the main component amplitudes (see figure 

(3)). This component is considerable because, not only is the atten­

uation due to G(p) not infinite at this frequency but also because there 

are two other mechanisms which give rise to its generation at the input 

of the non-linearity. Firstly, the rectification of the input to provide 

the grid bias must necessarily produce some difference frequency at the 

grid in the practical case. Secondly, the phase inventing amplifier, 

even with the cathode follower output stage, does not present zero 

impedence to the input of the non-linearity. Some effects of the pre­

sence of the cathode follower are considered in section (?.4). 
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It can be shown that the equivalent linear gain to the component 

at frequency f 1 , in the presence of a difference frequency component 

of amplitude Ad can be expressed as, 

where co = I 0 (bAd) 

cl = 2I1(bAd) 

= 2I3(bAd) etc.C3 

But bAd = .01 approximately, and so c0 = 1 approximately, c1 , c3 , c5 , 

all equal approximately zero. 
a1b0aExp(bD) 

Therefore K1 ' = 
Al 

D is the average value of the grid voltage, and since the grid time 

constant is assumed to be long compared with (Wl-W )' Dis approximately 
1 2 

equal to -(VB + A1 + A2 + Ad) 

Therefore ~ - K1 • is approximately equal to K1(I-Exp(-bAd)). 

Therefore the percentage error in the calculated value of K, due to the 

neglected difference frequency component alone is (I - Exp(-bAd))lOO%. 

Note that the error is a non-linear function of the amplitude. At about 

6 volts R.M.S, Ad is approximately equal to (2) 1/ 26/20, which is about 

.4 volts, and Exp(-bAd) equals ,98 so this error in K is about ;!'~. 

Therefore this error in the amplitudes would amount to about 4%. 

Several experiments were conducted to observe the effect on the 

main components of changing the magnitude of the difference frequency 

component. The conclusions drawn from these experiments are, that as 

the amplitudes of the difference frequency is increased one of the main 
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amplitudes decreases as the other increases, and that when Ad is about 

20% of the smaller amplitude then this component disappears. The other 

main component suddenly increases its amplitudes at this point, as would 

be expected. The mechanism used for increasing Ad was to reduce the 

grid time constant. The results are summarised in figure (21). It is 

of interest to note that the point at which one component becomes 

unstable coincides with that value of Ad which causes every peak of the 

grid wave to be clipped by the diode. 

(7.4) Extra Phase Shifts 

At this point it is convenient to explain the presence of the 

cathode follower which is interposed between the phase inverting amplifier 

and the input to the non-linear element, as shown in figures (15) and (16). 

First of all, it is useful in reducing the effect of changes in 

the output impedence of the phase inverter which results from the method 

of gain control. Its primary function is, however, to ensure that the 

output impedence of the phase inverting stage appears to be low to the 

circuit which is being used to provide the variable bias. 

In order to understand the reason for this, it is necessary to 

appreciate that the difference frequency component, unlike the other 

neglected components, is largely introduced at the grid by the action 

of the rectifier. It can be seen from figure (1) that the proportion 

fed back through the linear circuit would be small. If the output 

impedence of the phase inverter were high then the wave form of the grid 

will not be very much different from· that at a point between the grid 

capaciter and the phase inverter. This would mean that, in effect, the 
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difference frequency component is appearing first on this side of the 

capaciter, and not on the grid. The result of this is to make possible 

a phase shift of the difference frequency through the grid R C network,g g 

which is not the same as that of the main frequencies. 

The equivalent linear gains of the non-linear element, when the 

difference frequency component is considered, are given by, 

and 

aExp(bD) cl 9~3 7~c5 
K2 = A (aOblco + albo(2 + + + ••• ) 


2 

c1 9c3 75c5 

or writing ~ + + + = c8 8 


= aExp(bD)(a0b1c0 + a0b1c)/A1
K1 

and K2 = aExp(bD)(a0b1c0 + 8ub1c)/A2 

But if there were a phase shift to the difference frequency the input 

to the non-linearity would be, 

A1cosW1t + A2cosW2t + Adcos((W1 - W2}t + 9) + D 

l
where e = arc. tan (w _ w2 )c R which would result in complex linear 

1 g g 
gains 

The imaginary parts of these gains are dependent on the magnitude 

of (W1 - w2) as well as on the pamlitude of the component. 

Complex gains produced in this way would result in different 

oscillating frequencies due to the extra phase shift, as well as different 

amplitudes. 
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To avoid such difficulties the cathode follower is introduced, 

and so any difference frequency component produced by the rectifying 

action of the diode can be considered to exist only in the grid voltage 

and the anode current. 

The effect can be further reduced by increasing R C as much as 
g g 

possible, firstly to reduce the phase shift, and secondly to reduce the 

magnitude of Ad. Also, separation of the two main frequencies to make 

the difference frequency fairly large again reduces any possible dif­

ferent phase shifts. When all these precautions have been taken, it is 

possible to ignore the effect of the grid rectifier circuit on the value 

of G(p) since, although its transfer function is strictly pT /(l+pT ),g . g 

T is so large that this transfer function can be approximated to unity.
g 

There is an upper limit set on the size of the grid time con­

stant, and hence on the amount by which the difference frequency com­

ponent can be reduced. This limit is defined by the onset of the 

instability known as squegging. The value of T used was given by
g 

the grid capacitance .001 microfarads, and the back resistance of five 

IN96 point contact diodes in series, about three megohms. That is, T 
g 

was approximately .003 seconds, as 1compared with ( )
wl - w2 

which was 

about .00006 seconds. 

If the grid capacitance was increased much above this value, 

it was found that the system would commence squegging in the double fre­

quency mode as illustrated in figure (22) and (23). 
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SECTION 8 

COMPARISON WITH PREVIOUS WORK 

(8.1) Grid Circuit Tuned to the Difference Frequency 

One of the early investigators to produce double frequency 

oscillations was Edwin H. Armstrong in 1915 (Reference (5)). He found 

that a phenomenon similar to the squegging action mentioned in section 

(5) could be utilised to amplify incoming oscillations. The incoming 

signal consisted of bursts of radio frequency oscillations which drive 

the grid negative, and cut off the tube. The system then relaxed when 

each burst had passed. The tuning of the grid circuit time constant to 

the audio frequency was found to produce an amplifying effect. This 

led Armstrong and later, L. Hazeltine (Reference (4)) to produce systems 

in which self-sustaining double frequency oscillations could be pro­

duced by tuning the grid circuit to the beat frequency of the two main 

components. Neither of these two papers were primarily concerned with 

self-starting, unrelated double frequency oscillations, and no attempt 

was made to predict any values of amplitudes that might be expected. 

The theory presented was basically linear and the possibility of the 

continued existence of the two frequencies together was only discussed 

qualitatively. 

(8.2) External Limiting Devices 

One 	 other method of obtaining multi-frequency oscillations of any 
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frequency relationship which can be self-starting is to limit each 

component separately. Two of the many examples of this type of system 

are given in references (2) and (3), and they can all, in theory, be 

ultimately reduced to several separate oscillators. 

(8.3) Power Series Representation of the Non-Linear Element 

Fontana (Reference (16)) has shown that with the simplest power 

series representation, namely a cubic~ self-starting double frequency 

oscillations can be obtained in the case where tne two components have 

related frequencies. In his paper, he also established the limitation 

on the number of frequency relationships which can result in this effect. 

H. J. Reich, J. G. Skalnick, and J. D. Crone (Reference(l)) have con­

versely shown that a cubic characteristic cannot support general double 

frequency oscillations and that separate limitation of the two compon­

ents is required if they are to adjust stably together. 

J. S. Shaftner (Reference (11)) has agreed with the conclusion 

reached by L. Skinner (Reference (12)) that a fifth order power series 

can support two unrelated frequencies, but he has also shown that the sys­

tem will not be self-starting under these circumstances. Hence, at 

ljast a seventh power term must be included to ensure stable and self­

starting double frequency oscillations of this type. 

In reference (l?) it is shown that double frequency oscillations 

of either the synchronous or asynchronous types can exist together in an 

oscillating circuit in which the active element is a triode. The non­

linearity is again represented by a power series, but this time without 

any limit on the number of terms. It is concluded by this investigator 
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that with a triode the unrelated frequency condition is difficult to 

obtain because the system is not self-starting in this mode. 

(8.4) Other Approximations for the Non-Linear Element 

The alternatives to the equivalent linearisation used in this 

paper which has been referred to in section (2), is "Piecewise linear 

approximations". This technique has been used by G M, Utkin in his 

paper (Reference (18)) in which he shows that two frequency oscillations 

can exist stably together. Inthiscase, the asynchronous condition is 

obtained by detuning a circuit when a synchronous condition exists. It 

is not stated in this paper whether the author found it possible to 

start the unrelated oscillations from zero. Presumably this was not the 

case, since it is implied that he used a triode valve which has been 

shown by Mostofa (Reference (12)) not to give the system this self­

starting property. 

The use of a finite functional type of approximation to the non­

linearity has, it is believed, only previously been used by Disman and 

Edson (Reference (6)). These investigators also used an exponential 

function as an approximation to the actual non-linear element. The 

element they used in practice was a 6AK5 sharp cut-off pentode, which 

will be shown in Appendix 1 to have a transfer characteristic which does 

not very closely resemble an exponential. There is also no mention in 

their paper of any limitation of the working range. The authors resolve 

the problem of the stability and starting ability by drawing a map of 

isoclines and the trajectories of the build up. 

In the section of reference (6) on experimental results, the 
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authors state that the elements were adjusted so that the loop gains 

to each component were approximately equal. This would suggest that 

difficulties were experienced in correlating the actual amplitudes with 

those predicted when the loop gains were not equal. It is significant 

that no results are quoted for the amplitudes even when they are equal, 

since as it has been shown here the predicted amplitudes are extremely 

sensitive to the approximation to the non-linearity used. The two sets 

of frequencies quoted in this reference have relationships 12:11 and 

51:61 and so would probably not have contributed very much energy to 

each other. The system discussed in appendixlllcould have been used to 

recognize immediately any relationship of these orders of magnitude. 

(8.5) Single Freguency Modes 

Several of the authors referred to in this section have found 

that if the conditions of the system were such that the two components 

would not start together, then the component which did start and build 

up to a steady state was the one which corresponded to the tuned cir­

cuit with the higher Q. If the Q's were made equal the component which 

finally existed was unpredictable. These results were observed with 

this experimental arrangement also. The system could be made to support 

only one component by reducing the grid time constant, and the frequency 

of this component depended upon which circuit had the higher Q. 



APPENDIX I 

CURVE FITTING 

I.l Introduction 

This section will be used to show three of the commonly 

available non-linear negative resistances, namely, the transfer char­

acteristics of a sharp cut-off pentode, a remote cut-off pentode, and a 

semi-remote cut-off pentode. Some fairly simple mathematical equations 

will be used as an approximationto these, and it will be shown that the 

curve of a remote cut-off pentode with variable screen voltage, obtained 

as described in section (3), can be closely approximated by an expon­

ential characteristic. The next section, appendix II, shows that this 

is also easy to tre.at mathematically. 

Finally a method will be discussed for quickly obtaining a good 

fit for a curve approximated by the sum of two exponentials. 

The approximation of the curves using a power series is not 

discussed here, since all that is necessary is to take one more point 

of the curve than the order of the highest power to be used, and solve 

the simultaneous equations for the coefficients. This gives a fit in the 

region of the points. It has been decided, because of the experience of 

previous investigators, to use a functional approximation rather than a 

power series. 

I.2 Sharp Cut-off Pentode 

Figure (24) shows the transfer characteristic of a 6AK5 sharp 
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cut-off 	pen todP, 'Pl1i s can be very accurate] y represented by a discon­

tinuous 	curve, one which is zero beyond cut-off and is i = 1.8~4 (?.75
f-.1 

+ V )3/ 2 	between cut-off and zero grid volts. The constants in this 
g 

formula are easily found by using the points at which the curve inter­

sects the two axes. This equation has been found to present great 

difficulties in the analysis of the problem, and so some other approxim­

ation was sought. The possibility of an exponential can easily be in­

vestigated by observing how close the log ia = V curve is to a straighte g 

line. Figure (2)) shows that this condition is far from satisfied 

unless the working range is severely limited. The curve becomes asymp­

totic to the line V = -3.5 volts (the cut-off voltage), since the log­
r; 

arithm of zero is minus infinity. 

I.3 	 Remote Cut-off Pentode 

Because the use of an exponential characteristic is attractive 

from the mathematical point of view, the possibility of using some 

other means of obtaining it was considered. As shown in figure (4), 

section (3), the 6BA6 characteristic does in fact follow an exponential 

curve over a much wider range of grid voltages than does the sharp cut­

off pentode. This situation can be much improved by the arrangements 

discussed in that section to provide some negative feedback by automatic 

reduction of the screen voltage at the high current values. The selec­

tion of the screen dropping resistance to provide the correct amount of 

negative feedback produced the curve of figure (6), which can be approx­

imated by a straight line to within 3% over a range of about 35 volts of 

grid swing. 
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I.4 Semi Remote Cut-off Pentode 

It can be seen by comparison of figures (4) and (6) with figure 

(24) that,at low grid voltages, the characteristic of a remote cut-off 

pentode deviates to one side of the best exponential approximation, 

while that of the sharp cut-off tube deviates to the other. It was 

natural, therefore, to consider the possibility of using a semi-remote 

cut-off pentode to try for a closer approximation. Figure (26) shows the 

transfer characteristic of a tube of this type (6EH5) expressed in the 

log. i against V form. It can be seen from this that the curve a g 

possesses a shape similar to that of the remote cut-off tube with nega­

tive feedback, but deviates considerably more from being a straight line. 

One factor contributing to this is that the tendency for the curve of 

figure (26) to approach minus infinity begins to set in at lower grid 

voltages. It is evident from the nature of the curve that any reduction 

of screen voltage at low grid voltages would not improve the approxima­

tion because the cut-off voltage is too low. 

Figure (27) shows that the i - v curve of the 6EH5 does not 
a g 

correspond closely to a three-halves power law either. This curve is 

not as good a fit as it was for the sharp cut-off tube. The curve does 

bear some resemblance to a rectangular hyperbola but this again has 

errors at cut-off. 

I.5 	 Double Exponential Approximations to a Remote Cut-off Pentode 

Characteristic 

As it was pointed out in section (7), the main source of error 

in this investigation has been the approximation of the non-linear 
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element. In the present section, it has been shown that, apart from a 

discontinuous curve containing a three-halves power law portion, for a 

sharp cut-off tube, the best simple combination is an exponential curve 

for a remote cut-off tube. The possibility of using a more complicated 

expression for the characteristic has been considered as a means of 

improving the approximation. Although it was decided that the improve­

ment in accuracy obtained by using the sum of two exponentials, was not 

enough to warrant using this for the analysis, a quick method of obtain­

ing this approximation was devised. This method will now be briefly set 

down and the corresponding equivalent linear gains are derived in 

appendix II. 

Let the curve be approximated by the equation 

a1Exp(b1vg) + a2 Exp(b2vg) = ia 

This equation contains four arbitrary constants and so four points are 

required on the curve to find them. The method of choosing the position 

of these points is usually to space them evenly along the curve within 

the range of interest, although more complicated systems exist to reduce 

the mean square error to a minimum, The system given here is designed 

for easy calculation but it is found that it is in this case close to the 

minimum mean square error approximation. 

The first step is to decide upon the grid swing which is to be 

used. The range of v should then be divided into seven equal parts, in 
g 

order to distribute the error throughout the range. The points used are 

given by the grid voltages at the second, fourth, and sixth division. 

Let these be (v1 , i 1 ) (v2,i2 ) and Cv3, i 3) respectively. The fourth 

point is (O,i0 ). A better distribution of the error is obtained by 



dividing into eight parts and using the first, third, fifth and seventh 

to calculate the arbitrary constants; but this detracts from the sim­

plicity of the method. 

Using the points statedf therefore, the simultaneous equations 

required for the constants a1 , a2• b1 and b2 are, 

(I.l)al + a2 = io 


a1Exp (b1v:f + a2Exp (b2v1 ) = i 1 (I.2) 


2 2 
a1Exp (bl vl) + a2Exp (b2 vl) = i2 (I.3) 

a1Exp (b/v1) + a2Exp (b23vl) = 13 (I. 4) 

since = 2v1 and = 3v1 . Hence if we let Exp(b1v 1) = x1 and Exp(b2v1 )v2 v3 

= x2 the above four equations reduce to, 

al + a2 = io (I.5) 

(I.6)alxl + a2x2 = il 
2 2 . 

alxl + a2x2 = 12 (I.7) 


3 3 
 (I.8)alxl + a2x2 = i3 


From (I.5) a2 =10-a1 


th f ( . ) 2 2 ier ore - =10 a1 x 2 + a1x1 2 


d ( . ) 3 3 .
an - + a1x1 = 1 31 0 a1 x2 

2 2 2
Hence a1(x1 - x2 ) = Ci2-x2 i 0) (I. 9) 

( 3 3 ( 2and a1 x1 - x2 ) = - x2 i 0 ) (I.10)i 3 

(I.11) 

Dividing (I.9) and (I.10) by (I.11) gives, 

xl + x2 = (i2 - x22io)/(il - x2io) 

2 2 (. 3. )/(.and x1 + xlx2 + x2 = 13X2 10 11 
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therefore 	x1 = (i2 - x22i 0 )/(i1x2i 0 ) - x2 

( . 2. )2/(. i )2 2there f ore 	 1 2 - x2 1 0 1 1 - x2 0 + x2 - 2x2(i2 - x22io)/(il - x2i0) 

+ (i2 - x22io) x2/(il - x2io) - x22 + x32 = (i3 - x23io)/(i1 - x2io) 

(I.12) 

The expansion of (I.12) reveals the useful property that the 

cubes and fourth powers of x2 have zero coefficients. Equation (I.12) 

can simply be shown to be equal to, 

(I.13) 

This is a quadratic which has as solutions x1 and x2. 

But, Exp(bv1) = x1 

therefore b1 = logel/x1 (I.14) 

and b2 
logeI/x2 

= 
-v2 

(I.15) 

From ( I.14) a-d I.15) the other two parameters a1 and a2 can be calcu­

lated us-\ ~he facts that 

(I.16) 

(I.17) 

An example showing the use of this system to obtain a fit is 

now given. 

Using four points from figure (28) and taking v1 = -5 volts one 

would expect a reasonable fit up to about 17.5 volts. With this value 

of v1 the currents are, i 0 = 15mA, i 1 = 5.85mA, i 2 = 3.3mA and i 3 = 2.lmA. 

Hence equation (I.13) for xis, 

x2(5.852 - 15 3.3) - x(5.85 3.3 - 2.1 15) + (3.32 - 2.1 5.85) =0 

That is x215.25 - 12.2x + 14 = 0 
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This gives x = .66 or .138, from which equations (I.16) and (I,17) 

can be used to give 

a1 = -(5.85 - .66 15)/.522 = 7.7 

and 

a 2 = (5.85 - .138 .15 )/.522 = 7.4 

As a check, we note that a1 + =15.1 which is within roundinga2 

errors of the true value. ~quations (l,l.4-) and (1.15) now give 

and 

Hence the equation is i = 7.65Exp(.396v ) + 7.35Exp(.083v ),a g g 

(where a1 and a2 have both been adjusted slightly to give an exact 

fit at v g = O, in order to minimize rounding errors.) 

Some points calculated from this equation are shown in figure 

(28), and it can be seen that the fit is almost perfect from v =0 
g 

to v = -18 volts,
g 



APPENDIX II 

EQUIVALENT LINEAR GAINS 

II.l Exponential Characteristics With Two Inputs 

a) Double input equivalent linear gains can be calculated in 

several ways, as mentioned in section 2.2. Definitions (2) and (3) 

given in that section are equivalent, and it has been shown (Rf. 10) 

that the equivalent linear gains so defined can be obtained by a two 

step method, in which a modified non-linear element is calculated from 

the probability density distribution of one of the inputs together 

with the non-linear function, and any direct input. This modified 

characteristic is then used to calculate the overall gain to the 

other component. This procedure is only valid if the two inputs are 

statistically independent which is the case here since the frequencies 

are unrelated. 

If one input is x(t) and the other is y(t) the modified non­

linearity is given by 

g(z) , J:f(z + D + y)p(y)dy 	 (II. l) 

where p(y) is the amplitude probability density distribution of y(t). 

From this the equivalent linear gaiJ'i to x can be calculated using, 

(II.2) 


2where x = mean square value 	of x(t) and q(x) is the amplitude 
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probability density distribution of x(t). 

In this case x(t) = A1cosW1t 

y(t) = A2cosW2t 

1p(y) = 
2 1/2 

rt( A2 
2 

- y ) 

1
q(x) = 

2 2 1/2
n(A1 - x ) 

i = f(v ) is the non-linearity therefore f(v ) = aExp(bv ) ( .13)
a g g g 

IA2 
_ aExp(b(z + D + y))dyTherefore g( z) 
- 2 2 1/2 


n (A2 - y ) 


. -A 
2 

By changing the variable from y to y = A2cos9, we obtain 

ag(z) = Exp(b(z + D)) [ Exp(bA2cose )dQ
Tt 

Exp(bA2cos9)d9dx
2Therefore K = = xaExp(b(x + D))

x Kl r rA 2 2 1/22
1 n(A1 - x ) 

-Al 0 

And again, the variable can be changed from x to A1cos¢, which gives, 

1t 1t 

2aExp(bD) 
= Exp(bA2cos9)d8 cos¢ Exp(bA1cos¢)d¢Kl 

A1n 2 

J L
0 

b) The alternative approach is to use method I which is simply to 

express each part of the output of the non-linear element as a Fourier 

series, and to find the coefficients of those components at the 
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fundamental frequencies. 

The input to the non-linear element is A1cos W1t + A2cosW2t + D 

where in this case D = -(A1 + A2 + VB). Therefore the output will be 

aExp(bA1cosW1t)Exp(bA2cosW2t)Exp(bD) 

Let Exp(bA1cosW1t) .. eo "' 1cosW1t + e2cosW1t + e2cos2W1t + e3cos3W1t+••• 

(II.4) 

This is the Fourier expansion of Exp(bA1cosW1 t) which is periodic. 

1 J1t (II.5)eo ::: 2n 


-n 


and 1t 

e = Exp(bA1cosW1t)cosW1td(W1t) (II.6)LI 
1 n -n 

etc. 

(II.7) 

n: 

then b0 = ~. J Exp(bA2cosW2t)d(W2t) (II.8) 

I-n 

and bl -- ltl TC Exp(bA2cosW2t)cosW2td(W2t) (II.9) 

-rt 

But as defined in section (2.2) isK1 

n rt 

Exp(bA1cos9)cos9d9J Exp(bA2cos¢)d¢ I 
0 0 

(II.11) 




as before. 

Hence, theequivalence of the two definitions has been verified. 

c) It is known that 

rt 

Jn(z) = (j)-nJ Exp(jzcos8)cos n 8<10 

0 

and I (z) = (j)-nJ (jz) (Reference (19)), from which it can be 
n n 

established that 
(-I)-n

I ( z) = r: Exp(-zcos9)cos0d9.
n rt 

And so the equivalent linear gains can be expressed in terms of modi­

fied Bessel functions, since 

I 
n: J 

0 

I rand 
rt 

therefore the equivalent linear gains are given by 

( II.12) 

= 2aExp(bD) ( II.13)
A2 

II.2 The Three Input Equivalent Linear Gains. 

If the component of the input at the difference frequency is 
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considered to be of such a size that it cannot be neglected, then the 

equivalent linear gain to each of the main components must be calcul­

ated as follows. 

The input to the non-linear element is now A1cosW1t + A2cosW2t + 

Adcos(W2 - W1)t + D 

and so the output is 

= aExp(bD)(e0 + 

(bo + + b2cos2W2t•. . ) 

- w2)t + c2cos2(W1 - w2)t+ .• ,) (II.14) 

By multiplying the last three factors of the output function together, 

it can be shown that, 
75c5aExp( bD) cl 9c3 


Kl = (elbOcO + eObl (-'2 + 8 + 8 + .,.))
A1 

9c 75c 
+ ~ + ~ + ••• )) 

The derivation of these series is rather tedious, but only 

involves the manipulation of certain trigonometrical formulae. 

The coefficients in the expansion II.14 are ag~in obtained 

using Fourier's theorem, so as before e0 = I 0(bA1), = 2I1(bA1)e1 

and b0 = I 0 (bA2), = 2I1(bA2 ). In a similar manner it can be shown b1 

- w 2)t. 

-n 
c1 = 2I1(bAd)' c3 = 213(bAd), c5 = 215CbAd) etc. 

These higher order Bessel functions become progressively smaller, aid 
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for normal values of Ad terms beyond c3 can be neglected. 

The problem remaining in this case is to express Ad and D 

in terms of A1 and A2 in order that solutions can be found for the 

amplitude equations. 

To obtain a solution to this problem, some assumption must be 

made with regard to the effect of the input components on the average 

value of the grid bias, D. If it assumed that Ad = 0, the situation 

is as before, and D = -(A1 + + VB). The other extreme is to assumeA2 

that the grid bias follows the env~lope of the incoming wave, which is 
2(J\A )1/2 

the same as assuming Ad = (A : A ) • The actual condition will be 
1 2 

somewhere between these. 

In this latter case, the value of D can be calculated as follows. 

It is simply shown (Reference (20)) that 

A1cosW1t + A2cosW2t = (A1 
2 

A2sin(W2 - W1)t)) 
arc. tan( A A (w W ) 

1 + 2cos 1 - 2 t 

therefore D in this case is the average value of 

2 2 1/2 
(~ + 2A1A2cos(W1 - W2) + A2 ) plus any fixed bias, VB. 

that is 

-lt 

• VB + ~ In (~2 + A} + 2A1A2 (I - 2sin2 l/28)d8 

0 In/2therefore 

D = VB + 
n 
2 (A

1 
2 

0 
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= VB + 


2 2 2 2 2 2
But (Al + A2 ) + + 2A1A2 and A1 + - = - A2 )= A1 A1 A2 2A1A2 (A1 

which is not negative. Hence (A1 + A2 )2 is greater than 4A1A2• There­

fore D can be expressed as an elliptic integral of the second kind, 

namely D = VB + ~ (A1 + A2)E(2(~A2 >112 , 1/2n) with the usual 

Al + A2 



APPENDIX III 

METHOD OF FREQUENCY COMPARISON 

The most obvious method of reading the two main oscillating 

frequencies is to filter out each component separately and to measure 

their frequencies on counters. This method does, however, prove to 

be both inconvenient and inefficient in this case, for several reasons, 

the most important of which is that the relationship between the fre­

quencies is difficult to observe. 

One of the requirements of the present problem is that the two 

main frequencies should be unrelated or, at the most, the relationship 

mf1 =nf2 should only be satisfied for very large values of m and n. 

The only way that this condition could be tested by means of the method 

mentioned above is to read the frequencies, calculate the first thirty 

or so harmonic frequencies, and compare each one with every one of the 

harmonics of the other components. Should it prove that a certain har­

monic of one has a frequency which is very close to a harmonic of the 

other, the decision must then be made as to whether the frequencies are 

within experimental error of being equal, and if so, whether the values 

of m and n are acceptably large. If the values of m and n are not 

large enough, then one of the frequencies must be altered, and the 

process repeated. The other alternative is that the frequencies are 

not equal, in which case it must be d•cided whether or not they are 

close enough together to give rise to the possibility of pulling in 

and out of synchronism. 

94 
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Because of these difficulties, it was decided to try some 

more direct method of comparing the frequencies. There was the poss­

ibility, for instance, of observing the wave on the screen of an 

oscilloscope by applying all the alternating part to the y-plates while 

the x-plates were driven by the built-in time base. This did give 

some indication of the relationship between the various components in 

the wave but it was not used, because the time base in the synchronis­

ing mode could not be relied upon to stay exactly constant, and in 

the free-running mode, the pieture was in continually rapid motion. 

The method finally adopted was that shown diagramatically in 

figure (16). In this, an oscilloscope has its x-pi~tes driven by a 

voltage sine-wave from a local oscillator which has a continuously 

variable frequency, measured by a six decade counter. The alternating 

part of the grid voltage was fed to the y-plates via a cathode follower. 

By sweeping the local oscillator frequency slowly through the 

range of interest, stationary patterns could be formed on the screen 

momentarily each time the local oscillator frequency became equal to a 

harmonic or cross modulation frequency. The nature of these patterns 

could be used to indicate which component is causing it and, more im­

portantly, whether any other component has a related frequency. 

Since, in this case, there are only two basic frequencies, it 

is only essential to observe two patterns to obtain all the information. 

Any two can be used, but the most obvious are those belonging to the 

basic frequencies themselves. From one pattern, and the corresponding 

counter reading, one frequency can be found, and any relationship 

between this and the second frequency can be observed at once. The 
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local oscillator can then be tuned to make the pattern of the other 

main component stationary, and so its frequency can be read. 

This method depends on the concept that a complicated wave of 

this type can be assumed to consist of the sum of sine waves. If the 

frequency of the signal on the x-plates is made equal to that of one 

of these sine waves then the component of the y deflection resulting 

from this wave repeats itself with a period which is related to that of 

the deflection in the x direction. The deflections in the y direction 

arising from the sum of all the other waves are added to this with 

the result that the average value of these other deflections follows the 

stationary Lissajous figure formed by the first component, and the 

signal on the x-plates. The proposition here is that, if the other 

deflections do not form a stationary pattern around the original pattern, 

then their sum is either not periodic, or else has a period which is 

unrelated to that of the wave on the x-plates. In the present case, 

only two frequencies are involved, so that, if the pattern on the 

screen can be made entirely stationary, then both frequencies are re­

lated to each other. If the pattern can be made to be continually 

moving within a stationary envelope, then one frequency is related to 

that of the x deflection, but the other is not, that is, the two fre­

quencies contained in'fhe y deflection are unrelated as required. 

To prove this, consider first the pattern formed by two sine 

waves of equal frequency, one on each axis. It is well known, that if 

there is some phase difference between the two~ the resulting figure 

will be a stationary ellipse (figure (29). If now a second sine wave 

of voltage is added to that already on the y-plates, the y deflection 



FIG 29 


FIG .30 
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at any time will simply be the sum of the two. If, in addition, it is 

arranged that in m cycles of the x deflection, the second sine wave 

executes n cycles, then it is evident that at every m complete cycles 

of the x deflection the total change in the y displacement of the spot 

will be zero. Hence at normal frequencies, the persistance of the 

screen will cause the appearance of a single stationary pattern because 

every pair of coordinates on the pattern repeats itself with exactly 

the same frequency (figure (30)). 

If, on the other hand, the frequency of the second sine wave is 

adjusted so that it does not quite execute n cycles each time the first 

sine wave and the wave on the x axis execute m cycles, then the ~attern 

will appear to regress slowly about the original ellipse. These two 

statements can be best appreciated by the following argument. If the 

signal on the x-plates gives a deflection of x=XcosW1t and those on 

the 0 y-plates y1 = Y1cos(W1t + ¢1) and y2 = Y2cos(W2t + ¢2 ) then the 

total y deflection at time tis y = t 1cos(W1t + ¢1 ) + Y2cos(W2t + ¢2 ) 

when x =XcosW1t. In the time taken for the x deflection to go through 

m complete cycles, the total y deflection will be 
2Jtm 

y = Y1cos(W1(t+ W 
1 

where again x = XcosW1t. 

From this it can be seen immediately that a pair of coordinates can 
2JtmW2 

only repeat regularly if w = n2Jt that is, mW2=n":t where m and n1 

are integers. 
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To fix a point on the pattern, like a peak for example, we 

can consider the changes of the x and y displacements of the spot in 

time separated by the interval 2~n , since y2 will be in the same 
2 

point of its cycle at such intervals. 

Hence, a point fixed on the pattern will move through total 
2nnW1 

displacements of XcosW1t - Xcos(W1t+ W2 ) in the x direction and 

Y1cos(W1t + ¢1 ) - Y1cosCW1t + ¢1 + 2nnW1 ) in they direction in the 
w2 

2nntime Note that these displacements have a periodic dependence
w2 

on the time origin t. 

It can be seen that the x and y displacements of any part of 

the pattern change by these amounts every time the spot completes n 
nW1 

cy~les of its x displacement, and they are only zero when = somew2 
integer. 

The rate at which the pattern regresses depends on how far 

nW1 mW2 is away from zero. It is difficult to establish an expression 

for the rate of regression, but the following facts are known. Firstly, 

the higher the numbers n and m, the more complex is the pattern. (There 

will be a total of m peaks and the pattern will overlap itself n times). 

Secondly, if the pattern is initially completely stationary, it can be 

made to regress by changing w2• If w2 is continually changed in the 

same sense then the pattern will accelerate until all resolution is 

lost. It will then slow down, stop momentarily when nW1 = mW2 is 

satisfied by some other pair of values for m and n, and will then 

commence moving in the opposite direction, and so on. All this time it 

moves within the envelope defined by the stationary patterns. 
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From this evidence it is concluded that when all the resolutions 

of the pattern is lost, and it appears simply as an ellipse with its 

boundary extended in they direction to a width of 2Y2 (figure (31)), 

then either the oscillations are related in such a manner that n and 

mare both extremely large (greater than 1000), or else they are not 

related at all, and in fact the value of nW1 - mW2 is near its maximum 

in that region. In either case, the situation is conducive to concluding 

that, for all practical purposes, the two frequencies are incommesurable. 

It should be noted that several pairs of frequencies were 

measured and compared in this way and shown to be unrelated,at least up 

to the thirtieth harmonic 1by direct calculation. 

This system of frequency comparison also proved to be useful in 

several other ways. For instance it could be used to detect even weak 

pulling between the two components. If the two frequencies, on the 

average, were almost related by mW1 = nW2, then they often . became 

weakly coupled, and pulled in and out of synchronism. The direct method 

of observation of the frequencies could only detect this by a change 

in the scatter of the counter readings from about two or three parts 

in a million to between five and ten parts in a million. This exchange 

of energy could be observed directly from the Lissajous figures, since 

the movement of the ellipse became jerky and fine background patterns, 

such as shown in figure (32) periodically pulled into view. 

In reference (21) there is a discussion of mechanically obtained 

Lissajous figures, and a proof of the fact that if the two frequencies 

of the wave forming the pattern are incommesurable, the point in the 

plane will traverse all areas of the envelope. This amounts to saying 



FIG. 31 
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that, at higher frequencies, the pattern is irresolvable, which is as 

contc·nded here. 



APPENDIX IV 

VARIATION OF RE. G(p) WITH S. 

In section (5) it was shown that any oscillation at w3 alone 

would be unstable. This depended on the fact that any disturbance of 

the oscillating conditions away from the equilibrium would increase 

with time. This can be shown to be true by plotting the variation of 

G(p) with the real part of p in the region of w3 and observing that, 

if the disturbance was such as to increase the amplitude , then the 

working point moves into a region of positive s and the amplitude will 

continue to increase. 

Any single input equivalent linear gain from a single value 

non-linearity will be entirely real, and with the present exponential 

characteristic its reciprocal will always increase with amplitude. 

The oscillating conditions are defined by observing the intersection of 

the reciprocal of the equivalent linear gain function with the curve 

representing G(jW) in the complex plane. Hence, an oscillation will be 

stable if the value of G(p) for positive s is less than the value for 

s =O, and for negative s is greater than the value for s =o. 

The value of G(p) in the region of the three zero phase shift 

frequencies can be calculated by assuming that the addition of a small 

real part to p does not alter the phase shift. 

Any expression of the form p2 + 2aW0 + w02 becomes approximately 

-w2 + 2jw(s+W0a) + (w02 + s 2 ) when pis made equal to s + jw, (since 

as is much less than w0a and s). Hence, the value of G(p) in regions 

103 
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close top= jW1 , jW2 , and jW3 can be calculated from equation (18) by 
2 (s + w0a)w0 

first adding s 2 to wl02 ' w202 ' and w0 , replacing a by I 
2 2 1 2 (w + s )0 

(w 2 2 1/2 (W 2 + 2 1/2
and finally by multiplying by 3 + s ) /w3, 1 s ) /W1 or 

2 2 1/2
(W2 + s ) /W2 depending on which oscillating point is being con­

sidered. 

The results of these calculations are shown in figures (33), 

(34) and (35), from which it can be seen that near p = jW3 the larger 

values of G(p) correspond to positive s, whilst in the other two cases 

this is not so. 

It should be noted that the first two of these graphs can only 

be used to prove that a single oscillation is stable, since there is 

no provision for showing the effect of one component on the other. 

They are included, however, to show that stable single frequency 

modes might be expected if the other component was suppressed in some 

way, and also as a check on the calculations. The values of G(jW1) and 

G(jW2) have been calculated directly in section (6.3). 
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